From 4c9d2ed0c801d9f9b0cca1550a433a54835316d9 Mon Sep 17 00:00:00 2001 From: Delpoo Date: Mon, 7 Apr 2025 20:21:30 -0300 Subject: [PATCH 1/9] First commit --- .vscode/launch.json | 37 + ADRpy/analisis/Data/Datos_aeronaves.xlsx | Bin 0 -> 65069 bytes ADRpy/analisis/Modulos/config_and_loading.py | 65 + .../analisis/Modulos/correlation_analysis.py | 108 + .../Modulos/correlation_imputation.py | 224 + ADRpy/analisis/Modulos/data_processing.py | 234 + ADRpy/analisis/Modulos/excel_export.py | 71 + ADRpy/analisis/Modulos/html_utils.py | 71 + ADRpy/analisis/Modulos/imputation_loop.py | 202 + .../analisis/Modulos/similarity_imputation.py | 295 + ADRpy/analisis/Modulos/user_interaction.py | 59 + ADRpy/analisis/README.md | 0 ADRpy/analisis/aaa.ipynb | 9397 +++++++++++++++++ ADRpy/analisis/main.py | 171 + ADRpy/analisis/requirements.txt | 8 + archivo_imputaciones.xlsx | Bin 0 -> 50354 bytes ...-wing Aircraft Design (Keane et al.).ipynb | 12 +- 17 files changed, 10948 insertions(+), 6 deletions(-) create mode 100644 .vscode/launch.json create mode 100644 ADRpy/analisis/Data/Datos_aeronaves.xlsx create mode 100644 ADRpy/analisis/Modulos/config_and_loading.py create mode 100644 ADRpy/analisis/Modulos/correlation_analysis.py create mode 100644 ADRpy/analisis/Modulos/correlation_imputation.py create mode 100644 ADRpy/analisis/Modulos/data_processing.py create mode 100644 ADRpy/analisis/Modulos/excel_export.py create mode 100644 ADRpy/analisis/Modulos/html_utils.py create mode 100644 ADRpy/analisis/Modulos/imputation_loop.py create mode 100644 ADRpy/analisis/Modulos/similarity_imputation.py create mode 100644 ADRpy/analisis/Modulos/user_interaction.py create mode 100644 ADRpy/analisis/README.md create mode 100644 ADRpy/analisis/aaa.ipynb create mode 100644 ADRpy/analisis/main.py create mode 100644 ADRpy/analisis/requirements.txt create mode 100644 archivo_imputaciones.xlsx diff --git a/.vscode/launch.json b/.vscode/launch.json new file mode 100644 index 00000000..85b64e34 --- /dev/null +++ b/.vscode/launch.json @@ -0,0 +1,37 @@ +{ + // Use IntelliSense to learn about possible attributes. + // Hover to view descriptions of existing attributes. + // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 + "version": "0.2.0", + "configurations": [ + + { + "name": "Python Debugger: Current File", + "type": "debugpy", + "request": "launch", + "program": "${file}", + "console": "integratedTerminal" + }, + { + "name": "Python Script Debugging", + "type": "debugpy", + "request": "launch", + "program": "${file}", + "console": "integratedTerminal" + }, + { + "name": "Jupyter Notebook Debugging", + "type": "debugpy", + "request": "launch", + "program": "${workspaceFolder}/mi_notebook.ipynb", + "console": "integratedTerminal" + }, + { + "name": "Custom Task", + "type": "debugpy", + "request": "launch", "program": "${workspaceFolder}/custom_script.py", + "args": ["--custom-arg", "value"], + "console": "integratedTerminal" + } + ] +} \ No newline at end of file diff --git a/ADRpy/analisis/Data/Datos_aeronaves.xlsx b/ADRpy/analisis/Data/Datos_aeronaves.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..f8349ad5c952e52fa9581cdcfa4b8d544b46237c GIT binary patch literal 65069 zcmeFZRajij)-4Pn5P}ES#sb0JH3WAWcelm~EMc413RMki07J`FO!6@9nGl&FC*WREV>>5(-@P5@SQM=3Ern2!LJ<=|;j z-br#ZW0`%}XB?`>`bxahMlX^@O_v&~YXHDQV8dDMkZMXucvc_3XpAzkRAc+*S@x4E z@odGElH~oiWD#G)mKED1YD_des{qy>6s#Y{=VIw~U-F(aSVnpMzPr2>NCbdrLw{jL z-$w-MsxKXTh|};sE|_z*|tolT5YRy@9f1?*cFf-ts-fyL?2qX z4OCq9wyH9{C+yz$VLItNY%u_QF2%^n+s@yp_l^nerg;$wA!>}C&6_SUML}_K8ko|= zy_t?owt%D*GO@KgCCcc*S4Qn~$mxTsMlb5g_fE2sNW$&shu4yDADrv)p!t}#bg+d8 z0rC0@1tIq@`cSRJKzaoRy%d=K@L+w=`D$cgM^E?1_5bO@|6norr=b@|Ny~OJAo!n( zJq7gLPA^BGe35h#5Njk>^zag2Laq+Y`iQsO`UxLJ5!V+=)U(;+X<%`gC-k6?_-2Ep zI2aY3o3zHM#6SMQ*5Mr$`PVoR+v4@E502B<(>IBt5-t>u&EZr&VKx&gHt2mz#S(N4%63jZcB_V3>uHUnK5@?bGBIinEj46C zwbN41m;D2Zt!M2YZf_wpONvDf`5f?-*s4g)h+PNtvN0=2ajmvfvs}f+b8sabX1M@8 zk&_>KN|?V;t@;ojB*og34*bm0Oc(fQ83^-GsMnk{)^I^OS>S|lH%p1KGD7W!SUPWnU^;TKACUfiQ_i-g&XzkhP}rQQ%Jtosw6%5|VAa(Z zX0-2-)kzXEEL!lT0s*TV55VEjxkC}Jj`2?qyKNt#4ZK^3lsTf9$lM$x?R{b9)0p$y zzD{SN=BQU4ea1>LGtrq`kkmx=|9G+aor}9L;pBZMW92B+j zS$Sk=be5j^Eo7hl#9m1pY^gOHVTMd=B$OiJ(p!O$+!pVOx)&AgfvM*QY^+4W;>)EG z8_ap{L(8L&>eiN?jUzS*yMY10twh*3IXOhWRxR&4K9?0k6uz46k#b6t(#gD2<{fuN z2qNjx!=78TOq+uYgLA82`hLTvX)KP971-)`Or$&cz{l*WC_BMeyLaVxE`hHScdT!k ziacr^zPW~_ybq&)(~Lsn=y8))(FlXxsI3c_k@{jLRrFmHlO)Ig;H1xE2>q^iOj|9S zZltmcd6w-)YZNKU$n=w5#GFe47N7QGvU8wl!$`>KoVWL_vxvL>u)pa~l%Mi8`2k;^ zeXXRJads1eK9d-k-NdlRnxmf47kLWgtnDp5bR$5$sn>O;XCybuj2y5~V$j%ry&NI* z!(5AWBzA3Kp1(pi zu(v&P+D-Vj%0rx5Q-{1aD>C;WCY$yrPU7U=kDTD`+{rW495%QYb+li<8T0QbA6k97q}A)-Pl=z~TZp&OgZVZn7U{#IbV;^5DPD#C-{|7{mhI$c?my#d?vlI~h^!(`{=!Qv^4 zo;eQ#?Y5iqS5cszvW!UwBPct6OM!SGI&fcsE@-Z`w{W#(WK~hpzrJiG1xM2Bgf&Z?!$JRLc zO)5A8r9?!)6?{qUBK!3%?XqQeE=~JXc)f`sr=CXPyA~m5aW>QDHkUBJ=Ms`g-?)Da z4y9qgyuB{2md>{qmSyqlV)hW6cd$7!<2?yx8!ky!2}BFA7}R>?@e(LdWoF0w5{yyP z0-0xTRta5w&QMvu2R3{szD!Z5iLs|v1>yeChi1&sv3AbUSm0~?5l>kGRaTOg)@8&z zd2VB$D{E7j9anE#fUZq?ytF-s*LqI5M}Srd#e@X6^=o~nW> zgVYWG!@&`T`YKxEBX;oT#?H$Mis9JJPMu zG^^NF3wrsOHP4f_O7pJrZpRplY!ti0Ak;%Vzm)F}3I~9${vl z#N}}JEiLK8=I7wb)DvFrGWj4;35!a74xQygCpWer<1s*9Y|JRz9a7g_L>>v5-Ay<~ z6(EfKYe+FTrPHWF3dk~i&R?fL0>tIOk`vy!8XRnz=@O}2#Ku-rDKn_PcTM(!VZiI0 zSPk_(Uo>K~O}`^Q!ux2oxrU?ZmU{eRr{S~s08^(j5@cEv(Tz4b1oQNnj43YKQqR?Q zE|diSzLV(0m~iU^zH)>JMr2CIZDpi&%?oQw z5#OF$&C!K^;rV+L>L*Jj`yL}B=`II>?A(f7qD!aUx7dW{0$4v-^^tz)wTk+vhfe-U zAA&36d=yw$*WkpZm`sno)jMUfH zs?`0ct-9D8og8v$;}SqLPil*sTEP%@%jx3-eO?T1^}HBsoLbh2$78+yC$Wtsyte+J zzPo6p07CjbA|wbOh`Y(zR?nBG#j{E4bdQ()!Lrx;&iGb$F}|m>>sOD5U6uPX!erii z!u#-t078#@PaV(4Yr;*P)~C%$YvjGt3)vzybN9RT)~K009gn9&Ph@`2=j}^=;nLY8 zLh#>YrWL5~?e;69lcjaTQO=uaVLC96RP0Z>3%vVMObKzpi7%_?$?Crjyj<9t( zqED253o~gZnBj{7Yt=KZzh<0517p=Q-#}D{gB9$ZY+H?8hr|BIO)dDQfZ2H3kG8LC zs=^H3O4Q7y8d@z?-Plq}cH(N(=+#9*Sg2hibbZb-AgiOl9=y+Z^1=g$b*=kX48`ZR|&-M|;UGThjMJ>H^m8hqs}ai42b8CD;Mb+1f+ zbk@v#Mqz0RGj;iJI**d+Q+Dp_4P^C&#Lk>lsx)|eKS>~bkou0|2~&@!O}$$F zm-D723(UM@LLGI_huY1&*K1F{=d;;S{_NK0&Dk=~$EWQ{R8-jc21S-En>`ird5-X}iAK;+d3=PV8L0eY)h4ROJTgWQSCQF^TmOUm8+p{kG8#uuLx#u^`^XNOF%{7~CxHc|YvAk)B3YSB@ z^_Xyry?UW_nJad9T=qvGntI%T1dGvA7c$j(=VFjmv(BkF?TXb^R4MlO=`P`OS2)%A z<{~c2e$=ODk*vw1K^qT(pp$;tr)*UIZ@pck9vddHclWe`x8|wZwaNCl&oX87C7+tk z>+b?}6gT2)W3IDjq8DkG{X|+n#aRl1S|0*+ls0Bh6Yhp(pK?)KzxC!`o_z9930!S8 z*Z>{m(HWe~Da7OjudXVETqnry<>xl!QH|2I@;@8rDWBG&f@sv`R~8A}J>P#*a#73h zc+qez3Y94tFJ*UaHf~)$ta@~C_tV@j^~@Q{YqmS=l*)d5{^K{#VreNGP$Aj zSEJ&7BVPrmbTZwuSDmHgDu{5O-u@x@G?DMBR$+NP&gAA)KHeq#kx6ikH$bM+=D?QF zShi_Pj_;fZwD)V0g7IzUba&)nr0f+2gFgyyJyHTC%y;{4uLO}m98Hmu*#Qsh^LGwM zJiW1#+`aD3LR`8!tFy=V zR9>EvJs;Sfjy7p=>^eXOC~~b#bs~WpF?FJWEYLzJ-lqrDn200F87FS)jOOL5ZNf!& zZ0MF9!bKb$bLu^pLu#{1=84_UB(ciwkJw2TW?hLh!sil!Dt1n*wL2pn1xa}R2s&RW zn5Mn|Nw6e<%%afTYQN=^DUXC1KVQ{6XhCi&F4GacIxinen1J#?2)G*+)v}S5cK4V^ zpZ@x=9ss`H#3S#XgzsnBJO>QLzn)!kMy~tpHon`t*VGQZytXZrDvHO#JjS($E1d!{ zh}in-+$_c)*=D;Q$Fj_(zwE0h-Lj{q=2~+%=bHe+<;pbee5wz<2FO$LHKzpIt8krV zCo+xUQfJ!&JB6h&q!0<4f|IDrEL)DXbA@9uT}ZAjPE8W&jt6X^=zkQ=$(I^SYEAb@ z-}KG=YRimksTyf@Dy-7LB;{|}v$@qPKPL-F3f)x%;ShZ92O#zB0Q>NUR$isdhK(m; z))!2K<)W3C5phavo;}2LRe5y^y>MG{@w>fj5fV6vRAF;H5?o7`3mhXKzfruej6xp1 z%F2fprX?UV@Gj#gF8Tj?Y^4Y=#U@HM6qq?e#kdNIrDUUfb#dUOd*2A0O3j>z>4bCQ z|0FPN)B=F&k?AwdTXF6Q;FzCxoUS zpQ7J=y=ddE9|!f<3EWh0?5|56{Pet#lL5qilDy4US3QtZ7kTL?<#Z8B=edyu4E7s5 zYz1=P*BcTAYVJ+Rnp1(K2dmUs6M2a?pPyxl=ndF;ZRU%4IHxdyQ$Cq-VQ{s=ip8wL zmK0`(6#H1sDuFPuGoUG`O2G*>uYBm?l;*S_#U|46ynk)?YCtl1p=3H8kZm zyJ^8SJLQN0mYf#7dTvPEHgl1kGWd==5`BK1rTC7U<=g@NH#GO;bb9=f%o}yOjPcUy z9HsUi9NM5~1{GKSq1YW{yPU^Pe30jSz26{K#hZv{4gK?{8j?kxb>77wcV-yt&s6Q4 z(DdSA;_I#!A#&y)9X$I0B0q!BmTdACf(M0ZysX%Sx28Y&MTTMX={=QvlA_{g8skm- zI#(R!ZkqAqPfNw@55HI1GF+q&D^h;<^Ki1-i{_U%7JbgSmR5G+#B~{S_IA$ubq`XIE9eW@ zUh*| zx_r5`K8F2K<2r#)O1zlX{-jA{qqMI0O6MGv0_n{xv+Il~_ZiCuU+0iEcyqKp3yIIB z?CcHtFPO~5LIGpz2(REJ5z?bGlRgQQGGynp(`E>af zE!d=ECR{LFC1w7(W9D^fT2vaZOjMQ5PwH%oJa4!UE?U-ZM~EaYhA9p%=$f1t$%9#+ z2M)URLPxT)R*p9O86m1{Fx$%^e6;%h!p)Nd;*$$A(bUr&Cj`@L`)E5fgtNOE{wW_j z2@HD))$Y5;87sTUwZ%z9EX%|4n@S|PB5Fs?6yB%1mZ7z?%3X->4N#&(y6$m2-CoQp z*mU@g+vRux%bZdTqbD~oS|76*6&WMOvBRjB@o1DQY^`wU-7?}?-;7bxrQ(Gts^6+@ zQuK;<4{NziH~ysiHr+v7da#9}!u3$CbD(lGf3bF3Ja@U>BloNGur$7_L}H{8r&q%# zAi&0PqW5GO_WhoCc-9AUvCpDLaJ_hPl|vn^Heq>!chL9&dxIM`+Ln*^wH?6$fDx{! z2bj@-t=bc3ZGlfVZcdR`w~=@6I93YR<0eHzn6~amPTFuWpg7R)m&x$Um59RCFR3e1lEpKzkpTCYg z6cQv$P|C?kQ_oI;Ol@fBbs~p(k8eF|xS1#tW%y{@ z$4BwaW)J1gxRSi`tx?h%wJ%zh^;Yj{pDY~TTxWv5YNGR!*&rMHvP@C3Woc0l)sqFN zV4lG)1Qy!;17{0OSR)e44WkN*Kq=(F3T~i`^f#T%CxZ5Rx-&ba46Q5uoAF>y#UE|m z_?$;wdL~L4PXkw|oF1Y0t-@ieq`f(%H<#MOCZ6ja`SxMNC^tq$D~L*o3zdZm2;IWc z3B46wUKgawr_4Vx9CcJ)6b?NN=7C%cgdZuAVOlpv;>_xU8n5vUPFjs%Np&8eG1yt8 z=mRx~F^lJ5{zadnF}{v+#xmuixkroX!P6~Nv=vfgOr0E1(=8-*vfGPW8#*7lLD6C;7>`5rqp!%hQh^$a9wLN#cgGgU(Q@_8%o@)Pw z(htHNqviwl^Jt&4mJy|8bG4)cKg%gyMKgc3Z6~-Lo4Qaa%3$lJ6Qg$iR+bD*uac=| zg`$|L)XOp#g+LVi`oOOFb=k}4`9sw2)?AFI+!6Pp4o)_Q&k8Xd)NcZc>4Qw6l3Uq zKJAZQ_;)oIWs7|$4J(9UuUKhAvTYwSJEHDwhhjQ>?$4Q8UQ0#~9>(0y$mQeT6`hE* zoWK`aIj6*YgKOeeF6*DEZx7s9c|UK$c~D*y>W;^?PgbF4$VUEp*9r2X8a7_kaP)(( zHdJ|2*Vp&H0H_CI_U$OWUBlg-Gb^#vs2{- zz7D{;&_v@UcDR-YrB>S$(q6C^xw+VPPJn;94!`&9Y6Rb_O)G=ZE6EiAH3H`))u20{ z?-D$JSm)V>aY``M+{fNomvFb5ie)W+iVH9IkbADu#5vpP z7^MMsyypiEqqn9g7k+XtKjiS(D~D>%J&#~-n)v3OHD~bGQAO_iVq}d73kGrx9HV3u z_%L#e4c>&ii4M+YJbBxh3T>N9w{Ko><~%tYLIiYd6^VM7X{F55tdi*i9=0w85Xg1z z`+x0HG`pu__Uvyh#>pYKe7UU~txK;oBn&&@Oc+8XINX(;r}e^6A}Xc5BzC)aif+jJ7CY z!E70P^V)VB*I%_NRh&6jG6fEq9ZTu*9+Ug52*JqJOx~SoiZHg zBN%MSzg7=>thRRG-E*62vEt2NB~aNs=OkY~|4eTmVHuRJG68APr$>r}XE*n~GZ&w2 zvz#-4mcyc7j~YqCZqC262ES&roHu}gO4XRVda*4s*bW?<04IZB3quJJ9sK+IW|3e&IG@bnO;(i+bhDO`qF4T<9;?g5#+ib&a6(s-`@IF8nwpp z4{~UG)U1peAv9S~pPS%_jJn(#n=w?sPvMQMH2T5I-$+fL^o+;3U7_2fXNRO=GZ)pV zjQ=l{uQR)fdvFcUS6dly`CI-EE|dEezRwn4=cpKnAomMqC#g3pL2*^kxc2-(`i&ln zcj+{ri{BjC^=^yG_r)k%G%NFyq7vdOtbADIU8qFOm*d498~@$sE$S8Bn0K|G`ew+L zL|rOQ7yE7o#%>T$4rdGx#Ikf`X3x#n^!$*Qe*IN%T}MBgr`zi7;Mc5`8+i+BL&Vfl zN0gb}Mp`c;$t%OdaO15A3Qv<)o&~=)FXA1|y zfya_qUZlZ&NE(~{^E(?&?RouAE67CLM|W+oq(ls1kkM~`G?fmQWs?z(dAPsDD>YOW zr{Dm+^N3s!LcK(oP{ZuKG*Xl^R=)E+WEy}ajWpN2(hkKtnYH+1KJ>U}L{Rs+R}7H0 z=8Sf6htKH|h~Fv_wo1}_8o4Pi&?t|7=op_v%LAFV>96@B2|e6h)WFR1)X|+BwI5|1 zJHi=%;WQ@T~=LrZFH(;zI!;GF{3({U+Wsd(j9L1NGy!e zI)>kbs%YyNM)QB$|QW#;eG$sEf5W*fCAB(bn6cL`TMGU@cFQrV&!Q?lpu zD2&hQGZ5>T_S>bS<}Nh9%4=sY?y^@enl9m1bL%^5--X}OBL!FUY&Ud`4Jp$tfKv!G zW-$smKHD~Gs_oq0=Cxu_Ld$-v@q7PJDUPE)y-!Hoc5{C>L>%fZ{102bHy~$_OMXQh z5~IMTv^_p$$;$w)-^5lKt-hDg)NE~Gk4G`E4GSSVCr5hyYc7jJv9v9#!!@XfY=d`L zRexRf5VVtuMbAFmJ;>{UoKrnU6foORMu<34AFDALgMsFC;@|3R#Y zN06R}=l3C{!&sPnhMLtG=j_#)rptxX-0GXg=}z%Rq+s4*8}nA`@roK4_8}xf09F8L zNl0Uy81*K7d5m>T`}R=XD&KFR`Dd%}YXTY(2i=i0WByzZ(8EG%{5lufd4f-FiBR8{ zyan@-{bT)y{#eKGYR0A0R4_Yh;@SKq<5^mo{MI)xW^Na;RZ`t7Lx?fSYea@tTo_%L zbs`h`ntV1C5JTT$MRU{4^vF?@1!z|NCC^C7f5X~VIYvMUr$wip2GXMKTv{g*zT;Lo zT0koGoIy^=LiN!bp`uB@{wo#HK1UR_5Sf~F-lHivfrg+us7T8;WGF5Wz6)gbxEv71 zt8cXZdtsc1J>GS-;_;CObLpM$cl*-52yB|4RyWh^$3*~-k=I!j1=cg){l46BGma3A zJLv_Lq;OT9SKE!$cxU#@oB$7{aE*gz4jScY1xfP%GkY(|1bs9JG&lNK!s}jK z_WcSER&)0@iWQ-&NB*B@b^+B}#3jxg@`UY)w&TC^8d*RIhsCg7GTco*vR)_$meKDe zsPAR_*nIAAgnZ!OD|n=m`OL)z|6Yg^H~6fjDe<6=3pMb1@x^yj%zQ9LhYkR;O1v2C zCOxM0l?L0jHi6x>aUUvB^Y8)JH=8W;UTHK8;nsbToj3XZU_jYnM~3t7{yspO)8cD{+hQ#);k_Pl%Da~+__|SJOT0! z=s`Sns~U6ssAXrK->Ip*U{$6d%D#GR>d|O>&i0V%uT*Zj{o;I zHu(rF+k#ExI65jXAE*EOLJKak$)in{+#R2M0b-xC-zDie+@WY)$K!`m2G6SVwTql` za8tg)x=^R*0))H^B|5qKC<`!dlBs7IHRmymC*wsR`>?X#zWG60IsX$AoATA$C?pR^ z(%y%5j{)$uCFk@d7UfzzKc(4`JOUpwc>mH&>)V9)B2SjbW=bY_H>>I^$$neb`aqc9 zqSie6(lMfgmIl?#NG_4eEt}sed1mRM81Pf0y8!Z?RBQ^ouomTk2+%1=LZNbREoJwr zyJyXt+TrFVgjz>A;I<*RHM-QbrW{Rph!Y=GNfvYJSSq#m=SjOzYCkcs+Hg!t(WtDF zQ>YV~wPv)j%srvXs07Qi*O*u*CP9(E0Uw|q>4Sy`fXRA45 zK8exZb?8AM*}a5)JU{@nr*x9eeQ#vjJvXiVyq#=UPdIFfS!}9h;b57rqOSD{YFEE_ z4jcZ`f<9)AX_IkF_KFa#vi@nF-KUVA83vs-JO6`lD5cpKphEBjec7?AYD-5;gX29E3Q9566%-6$B&F8LJ z>HM{H9>W4J>-6}nxb#6a4HH2se4X1(^gwa<6l^5f0Y1PIGv9P%bKKZFXh#zexMKlm zmr7ST^;xA+J*-;&rPil%d_VjJjU5KW`)h9Ujo_cIQ<(amnTyVvm0vGRb~k?NCoQn~ zYl!lUjYp*HNL6mV%o2|3DO6g3tT{*j*g^u41c&Sss8HZzt~97#-jMTkI;OfDDywM!u2E zedrqx7*pYHb%iPa{!&^Dv)>_Rh<7l|h>p!s1&kor>t#?wEo1MEe4fDMN!^UaesY;W z$Bw!F-uBimF0AIQ6obiusUY~FCaeZZiedNAl=-t!$^Ox7GNk$RB{v(C)rYEEI>^?p z%L!Ng=d&s0AY85i*$)qCV9+T{b>(IRa8*+nj8TjRt_|MQr;=PbVi^bBF_bbTw(SFO#|2t!%FxS;oNw4GV zoUZo0f_9z=EYZLrT^|<#hZO8L4DiEmzwNlcn6Y?{^{EqsJ?EprK$~Ta*=c0 zrSB_(z?!WeN?|4iL<>ripBl=H;$tzhqnZJ;0=+sj|MxzPB#=93L1D@}GYs8fpg^_q zjAs0$632snTfbW(qG18uDo_uIxb(7arEoXHl;e@jLz&QuI#4yllgY4a-NziV^Cw9X zDxKfj0dC7h2tLVjMnn0d#iR^o4f{k|KL`xnr&wSXJB**s(bO4DOdJ0M_R?Qgr>PdJ z>E;t-mVls`Cd!$v}F9N}R~GXbDvkUDS* zEF$RDIr+ceB>4;!4dU8XELL-ldsMA#lT)GU{uA@iI~`jf?+zGzaM%i(L0cb3)#`#YJ|T{pHCTnHm#$yKX6A>W14 zS|+EbXfiY@khf|BAIS-VkSe7+YxqrUKC?@eT1F;kvS=n}dTWr&@Ryo*-A)#mfb~kH z;g!iRP_2!r29W|EgK*`ieq{Ebv;NGd6dtB9vjT>~pzruew?kb_26>?#Lv7N3!J|czV{dyDU3N6AESFOB>b|;eVxh8IG;!OVP(rFvw-5AIqR@qT%Up#`(M;-tgEsVCH}@@bC3gA5lKxrf zkdJp9`CDy`L=+Co;m>$53ru5S-Zu#L48%%{jXoNwOz*}51MS&}^9AS-?2R(;pq6nc zXooe1p^6{1^Hp=*&_awJRDij@7)GwDz}#RAqX%#kjbY@5vk0*`WJXHLd@4CmwopVJ z9bBj-blGfMq;n{l`fTZDUb}o?cwbw5>{f>`tanW{4{VG?lacV&^Ck0D$_X=bn@I-NQX-W(iw<`pKOH~^OuL0k$`egm`MH=!sFWPlSy zTQ8*naMcL!fU2M~-KvRof#ND>6lz{TmqhftUme@?6CtxsBC?$6d4A()iG)huJA)W$ zQvf}1MXmn#C4vs}z!@$>f~RbyXknXmq?TmbsmHVNZ`?nhr*KQY;F^N+b0Xt<)RRm> zg*j?;WT6+-;8zeeuoouAl>KYiszQHSB3hc5x(RY)FN}}L_&d(be;uDtl4Pe{uKsxK z-7v22QG(;d&uZmqw)8qh0Z{;aBcBEPzaxRa^ozhnG6a`s?aW1+0V)+;VuOKL_`>_doHkjRmg(K7I`lgN)pk)Bv;+G zREMbo!&Bs(GFxbW=7(>NahqFW7Mr)DCM@158pIT&;W#Oxj%yCe%qfU7uHUMr@~>g2 z%K2G>U}_OiYN|4#ARaLl` z8O}>p*iPgFN|C9Rm1!x$opM3ip$4>$e7SOeuYI%fc7cmBaH2db`=7#juiQ^xvjE9l z_n-A=^;1>Y{BQlGo1;Vg3fc)FAyOV+S{lRj-x=_lhU^qr4N&50HL$4N>~SnQ9#Xg* z%F5RB$ekUbFe@$yjLTI|s)xU9Fud<}-5Fn);BYcBH5XjOUYHqk^siyB^8HDGcx-5D zl1ht3t5t13IiV$~4{&Jh;!(%LPO^RM=6TS}g81RWVuB9I7{0Ru_7pgvG?$9($J9Mt z9`Pe-EHbFo3|;{RYs^ZvYKt{Q)2s zFo3H3e%3STCgv?26rUT^L|(Jk@-U@6ZO^_Ad9Z5mjf5JH>h$W~f0dJvWEY81%sjB*? zC4!~7DYxJv-a`9Wn7<=aRpm%ra9pW+18BcAhlQ18b0-hVm-%10m0gOU2&aEA@L9>u zD5J2RNp4ybC*KVGB`X;FNz_oX!)}Jhaar7}!;$xwU#BA_aQW!EE|0||4QQpSSf(dv z;@w4eNEI>S>Hagii54~{wP640t+1){kT*nOQz^i=U6D!2c;N0@NU!U`U<7~n$9+-C zY2R0r{YFkE&+IZTdGXHDsDB1O_e3ad?D0;=+J7*9GTZD1zYVdH-?ZBh`&J5s0Qbop zMfiGLY#Lwi9XX>|?D zh}M6{_9zbd3_?3`~s_=9P)oM zkVF0t2HIx-!N9PozZiHbMlkxIyWkQ;ZQe{6(HgHFA{Y(F=rF|I4}05gcR znvH>F^ClRKBoRn(k0TUszz!cq1dH=;WSwi`oDmdof|WpY1264#t#22mChgyN`jWSq zSJccBl+yU$aqEANEe-77xOU)CfpG_06AL*Qd6#y@&B3J80sQvw#)~E95;pZ8sojQ{ z1AKSn-_$Phx7v}ig4GTj=fA0)yXb-QUwn!qwXJD)vN3GQ%svn!Lu{151%Zlleyi+u z)Tvl)RRLE;*8c@RBZ%I#yr!gzqQ0aM{7cdtBpZ$V57QT=G~#jh*dH8vnW}p&07A%T zz0DT+Af|uORV8ZW< zyYjr%qB8muhPP~gXUS;`cAR%(ja4doXtb4evGk%4x1E!=c`B*JoIaxcs8!eLkd7mLvi5u<~5pJSVtR~%Ap7?Ow0CI}AtbAYq ztd0`C{^WEuK={N2Es<@PShq*n-+>(mnxfhEOwM{`d}<>4>=XV07EgM7Dw0N$Jc?P+ zV%(p?r1}SydYVD#T0Aslg-eK+8eaZTR5lSwB$d%dFk%-@mirW)+OGNARyx?N&9`b8 z>A`YceqBG%NzkZMi1XFow{wvplze!qA(9J6=IQeO;s|>SYkTtqfLYldnt!s@OMq^;=I4dKnHg8D%NH3DEl2u`n2-`$p90dG%2Q0 zaNZQ_RuT&{2_jC;WXlZ`(+`WJQ$+W1#eR8@2&;u#6j)7(5?qL5Zc3GD2BQ;)E{nZD zfi%n@O%jR{y%sZvE+F6l*Ukw7rEV;eb)&_}&|z}dVh^YYi3p0@%%GlDNpu*bsjARU z%|~s#SFpnaF%_cVeT9VXRQTRxXxl@b&oNlI+oHkLHvK4Wl6oVMETpLO^A=OP(KrZ$+>$Dh5~{!}jKvkv}dh@y~}o$}H%esOm57WY`=|$e=1}Vwli5 z^pKAX%$7A2)$3}ukXaRGk3$yV5iJ#XbvYG^&Zi+PIa7l(DAFMbjJI6$WR!@ymw6ehIWd zMFRmn!ggA=&RcS>gIIluDIy&@C$y)!0I7a+M0T{2=+2SBq`RZ_8==@OiV9_={WN;w z^;TX(nTgyE4)SpxwmK>7Qd~(fT|cUlH@nm0x6i1k9*?L-JAA^~)D~Z8qv6vXFplv* z#WH+$Abu+U{=M}kLf$Z^UO0xXU5;44juGd54e2)dw%4k8wWfL;AuilR?~4KI@C`$Z z9zb4LfYXFHC}q6LtXGFNi-#pf@W%j59|7FQ34_qZm|gSl_dbhVazMW)(0dot{Cp{K zWtSyFgw7yxjx?M=t>pTMK%5T}wCBNOABV1T;#AWnI7Cng7YugSw|*A%Q7H6}<$rMi zHfetWGz4Jn@nnXSBcRTPeGwWOuIp%zt}`u+-Wo=|7~@@m7AG@imIcTMAlugD3o)sa zS1CeM?<#DF1_W%?H1BIyZAyFAYFIWLf|kduBOd2gm-u*Op+>}>f_k1Ar6$i#){kq< z%NlGwd@o7^^jw|W?>RQL?I)idt1WG7w68oj6-DYef*KnOQmv01DhYZ(7LNsL&(om_ zp7T}{HSbp1DXI6|L#!H-Z!QdQ7jG|lTUza)llcM7ggv#5i>1jj;Q#FKZ_W?io!hFU z^FlxJAx^Mh}N)PZznIiSJ?Ek3+n$RhES`P|P%&$k4hh_m$zRX;(#zu^pD zy}g@@KKvG`F)BqxH}F<(Q5ciDK+L6HX6)8_P#}aRM?5h~GloXsUGCWR^sa1lYJ{v= zXF`paT;W^Gs?wgYtUZ4Wq4`XGvLVASm_nU8^^S^UIO2!dBu+fD1YFSTWM;4iF7E{m zaq=wa_G)xO@f;m9@k0AaCD*y&78gkfxF*pcn${Ob6#^R>gYrk6e^G6e8@PN*como{_f7oTe;$|j-ZeB!cn?X`d5tcQ-IvHQ z&)1nN9ocvtQ5&JtdFOG(+MZRM^D52ONIZ_rG^m#y{z#;+K51(B*|#$Fpjks*QAah` zgl3c&KhFI_rgL_eg%0ee(#OZ?6wDutzB^te-<_GNxFdEu1~4cSt38V|a8S`RYS*Ae zFn=cTSGvJUq7*;0&Ejbh>LNlVqSF@_8&#wTeB>}iRW~AqeV%s4ZAN5Rj|^w4V9}97in4Q<~xV<2ER^_{>YfH>m&}x zBmyeSzNm_#;lrGq9ZAo=-Uzy%zp1C*F8eci72Bt{3;+C??i-HkQ;w1B2G- z@4OkBV&99Ceh_b)f|q_ME_^-91Ahuh7sw2p=`hUswmCiFpoO-tzxKV)#6(Lwc=^D& z{%gf~ub0>4Igb0<8+6#<`|^*3UX=s7Eo`5 zhpmA{8+tm_n%*bD6dm$Iu%*QA!QEyMC<|k^jwiq*zJuKQ@_f0wDw6K;cy%5?-}-dx z1U@zx@$K$p_VwYaOlQCKWnzE)_5NIN<@Ib?_H}o5)#HA5E1v!pTwI_%a6eC4v0dc8 z&VF4xy5xURM%g-kH9nT*f8H*8wZ6KaP3LI&*U3c7_XV4aN%m?GoMMA*Q(h@Cw)at zl$exC+L@?|$jxCX$p+C%oMo7by;P%16v)dIvda|V%M_!_6v!(SvMUtfD-@$E6v(R-va1x~ zs}!TF6c}w3tZfuZZ4?e|6tQg-)om2hZ4}pQ!UgZ>>D;%JSe#p^p~*#EPz1?AhJ{2lHNz8qJfSob zeN3Un=-;7_s(lP;F03Jpix}1J5FBx%1BL*)NDy{!6VTdHAa^nuOU@cfA?%d6k}b>R!~b;Tq}fado>q*XqS~1#~0Q53{B*OsqC6kIR~RJ zD1;|Ig2aq9i&L$TBfhgm0dK!lvmRyQ5%ihV&jO0$lLl&G`?ZZV=T~VyN0=U04V*<* zvhuyRMsA;kgLJ+xWjzweVGmx}ZRl;}9s4Qn)K4;?W(@9YwM6y;xE%+A``j%ctpN*k zFM@&nXo4{p>lA)ewpqS&D3#&4+Yie1J7LuDa@8Gg?ASXmzP>3yXdXXl`H8&*AZwNtL4E!92d_Ks`jNox&_juc!del#l8J0 z`tV>orDV8;v04G^OM4%)V!{_4-8?!Yhp_Uus&J+r{><%9UJ6 z0-t-u)`H6AqObdOe9j&fd4aHr>(;>tex!+uI~62{1`+Zn&|Si^CpjJt z86OV$9}eF?RIr}s7;FgY9GiYOiA-3b7xelTp(=`{kzH1(F`{0$p!I}FHlt#U9SPui4+WykH-C_3-yr&>v+j z5qmvjDEISvue72`v=)RlCqI%bFeXVFU%t&RM&}49{$IDZYD8ZD+_V{#>-9vmLCHS$3#Yb|b3TA|9mk8Dv#h5C{Ce zMZ#+Qfo+>vxWC>%-7*&)ZytUxXH!3;!-Ku;T$V4Yw4FAMy@S8%GX+@nsjUv+o7uD+ z5Mei{XuTCbLkUTwrZr55HlsDnhQ>t&bU4P#!eKY`m%_T-sZ}bI%+nesKsVDGra<4& z{xZ;jYm6Ij9HKt18H7BWTN=3_-Fql#cJ+~73v*CUo`Jju?2iY*F9=} z=F^|BFU?LJa_V@0Tw`GHrb5i|>FeDEt~)8+JrUw|eF>6$ER+q^4#KO)#H;u03u;V{ za&1`JpHVq-TRgUl;fR`dS&x(W4V&M*9%KUwvRR`D^nG7)IK;c6U$V0A3TI>Eiig{U z6?D4lir4N@GI!A2uGKAv;on4j3tab7x_hw=LgT4&ZJ9Z8^$Mt5GY@zJx3^A2et@k% zB&|EN&zOI}?m4dB{>%E>%b8S5jxR(!NBrk*%W|K30oUI4F;kG@w14P&O6^$$&C^A5 z`4SQPBQ}WFL+~&T{a0jF?O6rQ(?j!H5g&h>*xi+RGHch2%7fM3Ui z2~;=?vHFrf%hn@Uug(U`@l)1dJa))gdt}V7eN6To-!#7`)Oy*`NuDHFZA=%Noo-?8 zR9O)+)`=RSfnl8RoKy<#B_=ebk^4a-n&W~JjM(=m{Qi)K$kcE~YXG;thOOS{o{8|i zJf@07qu25v!v|RCR5m;xo|rRs+{j#9viHf-Mv(IApZ0L0Nm^nCIvv}SaQQc`?nW7l zmWAzYE?pbUguf_}`!#O`q=|Abxv8ErMZVQo@D2KPvAlYV!@ah}ZQu7iBAuQeAD(%I zwpf-%DA1asZdYI!PY=lw)QPw-6SEbOm8eh)W5VSS@0GFhFuwD=8kn&j%b;Ea>_~G3 zdptw|vqOymDvrg=Y$f_`IuU7b-brvZ>X;7SUGx)o&4cm_!;OHeUOV9>g2@b(jAOVq zL`J0|-aFx!Bs)l)@12iI`)6^GGmOBqZ7m(+ZZ4m zGOrOBp>G1<`lFUUc!lNY1UM_@J5bT>_izDu(nQze#r-a+;MA#K-U@j**%{j6_Ez7Z zSDe`BEpsLQjr)q42g5jNZVP7??5Q)sk&r<9bCAKhy+Qa%svm-WTZY1`QQVApB1H{9 z+QZ1Eq&-77s_3NM7X9w{!p8JGDX1?OUb{=x>zG9VsS8!*=d|Ow^Fa>|FUxL(?12z2 zW6VMjPwjJ8h_Ymd*xIL#2vW-oD2*B?)^4~2Oj}Q7!8FZ{8VUoe@R;io(`})=x0}TvN2Z860Ow(63>qc#@h~Sw~vbmwXV{8e+EXH(|%K_K6>;F|3g; zZP{{{&tG`{<`v&lI}DwsR(>9I2m(|V8q=U-kD)n=n=FJ2<5xZ2yQedpjO zuNM%l2@{7yh|+1kT2F|lv|4UfA~1S)E}B|&2QGjO1J=bA)w9T*uS-h)wDqOR>$rYy zwLnWkD4nt3Xy}+3UJ>LA`XyT{sj#;v{l$5;=(*tm^f{n%()`nBtzRlUp4y~xRc(g! zqUsvvM|=3h`~fl94F$W-S40AyO2m3h=fjx0-%W}b%NkAfwA+O*752n`<}Q&;u@I43 z>w8E_Vwpa(P=H}Co2zQY@&gf9jDtv6jx>R@R^I$!IV|?($nAz;oIVJjZt1kQWJm!L z?Y!Shl4LRgTyLM%>S)qFV>NJU=0|6HlEIT#Pvm5c&t42HPZpKpqckpkY(SQ_2F zi+s~~NVzjfD<_){s+KxUV?Sn+6`p3W1x{~S^L%`Fa3M~NYs8&UbMR%B?GT6l@D7#* zI`991F z(I=ISf^~UW?U&q#i|YG=GmVbkOJ2Pq#xc?joNVafCtzoY57Rl~r1JUvR3Im{SGE<= zf3p~iy4wGe>g2uOttIIEE&S?xZ~CGEuD!Kv!Fnu5;Xp3rc4LmMufW7Ivhk_p8^|oR zVGKppwTloFmCpZcz6WSj2(FTsZIkX=J(uu&0^fhd@aOrID#!w>2nTn$n^;U)YQ&s& zd-NOJY5DD~+G6ip&;q|1;s>n6YmyJ8kqTq@ItHMgd#9XKiENI(6mCd4%tKQr+yk;S z{Ac80UjxhwbDH@;y~L95iD-xi{?S5 z^?z$5z!g+W7`#$PaM8mu0z9z!a+;O`2_dT#1i%B}q z>}KYUvxt%+Nt}U(WIgmM3%ZQn=CF3{?DnYE0lP03hL;X*9o?%(2iaVo-oC9f7pqw@ zJf5JG?V4#U8vA7 zSPK(OOgv9(9H&|8()*P83xs9?tK#m(6p60zd&HjQRDMmlhqwY64Y`0Ma0x)Koo9)S zyqT$QNu}tl(~Yq=nPPL))Kaqy&_MdcLmKFbe&T6cijEX-bw0p9cfiPx@KXu3Y&5)k zaqyD?h}Ewv)mWGD;4X;=ALZdA2wS#sjSU2*TuU@Mxc^cVwT(4T127{1;gLo%B-MHM z3PSI*WGHBACEQJ_+&FRmMp?$E)-*86zN-EGR<>96#%lt4kyWGK%W78?pw*FAQlg)szB#X%W)d(0Ev{ z*l>7Q-BL`HFYU}l?$~JdCAvXaFB6jq)^wXr2v%xI3YoXZWz2@gxtJvpYR#wkCCB9} zWb!G^Eb^BX05e3&8?#1qq?t6pj)Qf`HQ`4GJDcq>UX(>@h7xAqpEuHtwsZcVAlglx zDptWW@2V_#8jV?$SGp4C~>QX>FK?`Om8-E=!$8EpDt5*sIOWsk==(BwBha zAAHx;yW3Zx?G;Z`;dtQGS8g-+IPbXH`6zfIBJ`@iILl;@aeI8kJ2I&Txc1eymns6C zeLnb>=!>}9_d_S7VE?|-b?NkgA}!*Jtg|kjDYrROno*$TgXFY(- zAybI7D_}Es**pXWo--Z2?JEXw{v)qpz(x~rb$|5D>pYWsXhMqo_2 zlYL%$pVC_N;>$#9E6jvp5Iuq;Rg8IDc4)$?Uz3Fi`=n{k2%ZS*%CjfEvi{K=4Xm_OVVK4lP_i`1^Vwpw8n*IXUGADF?H+ zj>bnMQ|d>G#B5EoDhLRd8WH?Su`GT~%YVMKz@Co6ZdnbNV8)}|T-eIh)lmEC%uw6M zh3RZ7G)%tUEv;E*V{>@qlWO_l3Td*=wPve>))KnhQ@scU8=E(r5A16$Ep<+MsG<_) zUzYOmws8lOYY;4wnO?Ks9a9cqDqeM3_aeET!n&R2||l8N+%ARqI~C_*F} z3OBbo&X4M>X+_QO)JeGv+@d4xNWkkffe5)!b)Au1ME#m7< z+1vb#Nauq@dAC`jJ3LL&lcP{1^Vm-0+JI-`xBH?ucS=uNs5v{Ne@Cq>#b*o_k56PR z57PqO2!jJ?SyC1jj*J zgib>o%J(dJi3Vt?g8+3Zs(0=sIAH_U$V-Oc=H939+zzC2W=7670R7ef?g1d)^svat zo>+<>R(QPO##63WUtWX1+6_tC8#6vSQSw75&$^1Djl6^rJ9;{3MJLwIy_M8#qmP9V z^?zdw<)a4AD_FwL_zQ=gevR$ducUP0`h;d6tC<8s>_n-rqS0`Eki~h&8s0`9oN>sn zV9nKB`;cp%nhE|4Z%RQ^zT>j-bS^geDT!I2Zw!|E!k==>}o?N<-cZ2YCYixR)|V zVcAkuH|{Z}(8)*#*`5IK^|z6d$zG!uq2n29D;7WN82XlM%(eTfq_viI6@)@{pESpG zl&_!EEVU%HcwdXp+1mTr_LQXveX6xxX}3Obw9pA0DWCZ~S1~U<DXXeAJF!|1|lhM_{fIG~R&4st8GO}KQJinT&KrHE3Vvn)3hSjHsE|G(bDtmY? zZg-`$79J`u9l-J+R(-AB#g*4SoX*252?m9EKSuBiZgy$je#<(?=#zi)?yn{{ca^B3 z^5b=hb1CiXCVL-Si{LE#RVS4hz}&gpZ(27%c|B&;w!fqd&}eUh zH(*Hio)muH-oX}nHqALEt79}ZL^AXpX9Fb+RH}m!riZ0t5(iHK#_s#KxeWsTRU+Iz zSHOQjm%C=3b={8zoJ*&^THauOmPk*$*wRwBuMYBO2-iO&T*uY`TS9X)k4Tleinmv| zB$se>IjaVSf9B}z)}nzDFNnwc#w$6@2g4hL$K-AtGA)m@wQqZWYv6l-8Y4LM>V3OC zh~`n}e8oQ#trt#ENNhxjJktgv9S7ROKBSkz3q?aVxO&-&+lt*_DJNI z;dPp1V`5BJae}K@Z32Kg$V)&lN#DOQ1(Qz~5n1fi;lLN~b3E>nN#6A<+~S+7%x$KUgZp$p zo^|`i%>2X`<@2=1+t0cRenyKUzl?%Dt z()YR9@VFB9WrLFC6aPeYidwhMmNil{ID&0iY;=IvAb!eU#=TF= zEJqXJ11UJgDi#gaVdyl-S7?s3i9XB&rzVV^Mo9h{K1kMLW9{!3mF4- zb1Zak;S~5aso*v7x;W&U4rC4196viDd_sdk5N$*j6d2#lWG%!1>s1vz0d0zSU$%D% zpjKMjx!POGyz|abNl%VXta`V45npVYg81k|3xYrZ8D&@s`$-QArOW*oR0!pRGJq3Q ziyu7BYV#E+i>w0#6Z{EKK_UYpj-&)JsD&qWB4{KxvlN6c0!DW70M~(9BwkvQo0=mx zftd5;yXWYv0hqqXH*I*aPSf%?oY6qv^}rguIN?9k^R4ZLWNNWj>SXt)Mh$JP|u-Z7*^J^#Fo z>YE=KQntx=OtJsI&$1M9P%AJW_$+@3?`}Vwop%^`KFKxK3WqwT(vuIp;RH`KZ#l4Z$aNn z#A01dv^s($z0651#R|OK>0)lKg+|6OMKXX?P;z>9YFmk@{>!Y4A~sxVYEJ8UbW36> zbwcrQrl979Ne)N|>H;n_|7a-Lr{^Sr34I8$8nzxv--l&i%9?XGSm++&tYkD`PO3Icb^}QZlJAGr~ z3QlEIk?hTj%~mwBLBq9{Ix#Op64PPOSY6shY70a!=ott=xPaz&Le0@Y`EqH5H2flh0L$suY!+V-6WZKWEV`o#Iij^0qPoePR}q+(%q=13WHo zp9lPrAERF6u}|aRld@>EN93{RaX<7{GGpfP$5V>j+}Iu=N>PefFb9_HR+U;BS;uN2 zrfLXL+zZPNrhwSWZi8=6{aR^vL~P<`;Uuq{VbZ znmia>^R8%|mdl%w<`aRu%Rc!YDcwN1RnT*vKk|&xx$Dm=3$K_)i=ttvo1Vvlh7YVYp<+hP=835X$~ku`Hr#>* zIIeK>e^z;n!N)8%|Af`U_=h9?+>Rpe+x`h>4%Wg2D{%&H3F`?*I$w-Do80cmNVm*N>*`Za7~$2-{)Jfm1zdq^QY9V zl>!bEF|P<=K7Nh`8J*pJj&*(G6-x#g!RL%Pg!m>;iDVfnDGQvJeh>O=o9k_~x`Nx; zzHsOM?h%Yv5B=v%si>1gtg^bU`g-D#mNPvdUejM?V6_PWdLi=~f+6k+z|~9vV!}EM z^{f9Ztp8#>=KDetnMlBHVU~PkYB#GU6OH`=z0vlBP_?=@d!=Fw2E7}CW9|hltI_ti z#ghKed#3|5EMuIT&VCwO`F`M}(wAAM#$8M*36N$lKu@8pjzVK{|K}H6V&5BYRgwTB6%Ag zVP+vE(H5$9!*zAr=6;N=WIi}}9(N11jnUi1B$oG1zs)#=(h=@Im)U^k{{zz@2p6o! zdK3(FL!)1__z73t7ker7egJAr79<7-8#&|Y*aowQme`(V=r-p6jVpHpg~kKMYSllV zEB63}#tY_P)xVcZp3_%h*s{NcTlkJshb8mTxx6m3=m4t6-E28I-3fSz)*po{;SpTDpi(qzeVau|?LKeqH2o&RC_Z{VaR z>A?N_o$bG&jQ+`eg4cW8*L(eEqVZ3V2-}BUb_@kWX0lzAEO}?mw%kVApTKs1|BYg? zkb9VIxiHjA4Fo=t5t^T0+q3j)`^O9!fl>Qz0IvTAGMv%-!M8Q3Elc#P;Ln?0L2qx4W{Xo(4Ne#UCFoN+Y`fbjEtu zhj_r^>b=#ay6@_OQ9x3KU%lIUDmg2BWKurUoHo2VjYcta3`4QRFT(^OMIQ?p*`wuH z?f<>D>aG3j4@Llak(Z3Y{|?vd|G3i_W3h)s?0FeT@*x%$9}|<#R4NiC$lhvukZldX z;0EoObccn}rR?{uVk_r2-7_`Y2iKem_}H=7^zM#6!7+7^Kg-Nz6hWCr>BHfL-o7`2 z2Yx;3lzy-(g!B&NvRF0olH60N144*ulQ%`_(mZ!)tSSClC<64-cVWx%%ejS%S`&&9 z7Qc5hk)Wq7zX1-wDGbIoAc)B^&Y|ID)*@6g zLBE(a^u02sd&cMd_>)U`Q!wh32Qj$;b(WFab*0J?0rQlH9{EA>0`q)Kn<&Tb8>K`9 z*(B8bq$Eu8K(&WxFDGcUSt|7a0QHyPbG@sqUVJLAFjp^hgAFYOS4{G;uuL4f_Rw%H z)*rmXeO87wkf{=$22aw8|T+jTCs65tCLbOriK;@8OA(J4fLkq zQWP;;Mv$W*5;E`50!cn9LDKoYkL1w8-(;GvrSxJex$T}IrEp?OObw6vVs0q8y0Ab| zWI`Yq(3jb}=@M7mAe8c(J^O4&EV~C+Gf#d8!CrnBVGM!4KT)@MC6>gVZcq92y!cy* z3v-Iv`s%3Z^iJ9QsHp(n&1g7i!(0EAcjsd}?n=(iT61%*fmzBA$s{&MNi$)l%~Od1 zTqH-W^UgZ+Lo%4r$oMv>Vd4?5X^X>&%ldACm`8xG2 zj0=}DXI)DAm{I(H~E)RidB(WRVisjfGVTp z>yVq8up>w)ZfR}>HVrJ74=L*_9j9oM5u#&j66C{Jg|Cl5sbtFC)mC9oNb+3Q)y*Je zOdX>}xR)=K10lP}!JUR+^gamy=e%7=q$d_K1j+-oOU_LM5yMQ_)i8TA#}eA$E_MR5 z$M|Ep)DE;y%ACm@73ya133o`^<9UYoA+SKw9?Bc%mDxge+jzgb8lDo$cWYvc`$~n* zF-LnYAVVA19hfFsjY|O1V$quz!J+MKlqk8kMq@T zk#YNaJz5CuZT?GizL-7<$_n``dcFiY$2<+=8X5JDYSw42P_~jo69qVjoy4rqoS|&g z$0pUn-F3Q$}4n@yUQ-4jcr_iy2e^pG7fPRFu%JktWO7Bn)KU+DwRo&^R)9XtwOslL8Tc*8^W8YN@$_^nJVg8Vws*lYRQA6SRg{- zV23r9k>LLET!^bbj4#cD%wB$HcoxRPNkn0XWGExSvp1u}<zF?3Qi~D!-yU3d=7+F&)ZOG-e1JciG_P}h~ zWD>u20hKzD+El`m+q6u^AvV`{?Av_{c!<$-_P*J}8Bc`2aAmjC>W4mY1bIWu$6pl` znMKT>M{oLC$|!bBW`(8%7s?|t`)`ZEkTk*;8cGt&3^}k}euJ0`h}A2oNqx&X-?1$x z!0(xF?7iBM@Cj*}kN7X4j=|^eq~*86VoyyV^iF8y8F`5u(S9nTMs!hzyZl@Wxh)zq z?s9~9K{lzW6KgJ`^E54y)Iv6C@&uFqFX~jYg-h{OH;D3a(VGHGam1>~tzeXNLKlT+ zAvO)&C9w3bm_jRQgnrkeOEO2t;3qRkG)Fg2G$*qO1ws@bo@<~(j>RS%D8CuzF?oc|HOSrBI)rx18dk|ER9k2kGhZFO zX}*-td>XumO^6OYz+N*KF1q_3#V&Y=f#6)+19Fo4*OO2vPIH8(7#s(HZ z0w?k0LFQLRVF!P2nXgIp@*SV8DyITM(s;#fQdRl379<+xG5hdkSyt_9j&ADZw`ahr z;4bYWt8*peo({QnzU0Xe%Wjj{gea$5s-}4vD_{Qt@&!joDFm{~t%{U9WXGhZs^d-_ z>y%`-X4RSFOb4>$>&99k5HTx!4bs>katSvbNYJKu4ZPC21zqflmuS9p93&2Tj9`u2 z6WzC8<4`4Ystm&9)9liQkF~K8^r^6}CIJoregPYAC#wCsF98*+Jl>*QC1+DQA!u51 zF7{8I-7}vq2i6{W?66x06*oGh{1G%eQjO&e zM7%mm${hY+(`y@OrJ3*xFB?5|d~@`F4V`}EH0k0}TX^=r=Evp=NRl^0LL|BEe!->{YQ|LAcGhqd~2*1K8G4+ogBxP>~&11%7>r|c7s7LUH&(XygHH{T$R$bDl zBXoi_XzEe;s9aPm`3uBLY6c`!!uX@rtYVD2bUS9Z4x&;Fyjk6crOBVmPl~9em3k~_xaXa^1F?Ni?wMGP_hARUf>Zv>xu88o*3hZ0q2MCN#>IWpw` z>%Kl+*_*%NT&v&c`H#y2=Ze!K_FyLxUH#y@?@;X z0pAyKwOcL>(EspvZ<17amJetOhx8=ZQ!`u_kH^-BHU{W_TM4mXKtW;NR>u~0$0!D# z4;%dSbl?>12o(2hTE*rA*XB;|3xX^yc$f-Uv^(W$nQO)sQ3_s2P##2 zi^z<)Uk;7L9A9{b3FtdhW>|aWuS#+J<%g~xXsOwug0T+z^>jvongtdOIHM>{EBv2j z7ypt22zv`{D~Q@vY`j3OiZ+rUS7jS>kgJl72FO*##?3>AWLj)poDTt!d3q*AUyXb_ zlxzq=&1yFPFBy>VxZ4q5PaL#|XxsJ2KZO4G!WD-(vQVy(dx(BHRTI2Dm*AdP3m{vi z$*h1C?oj$vMF6NG0aQ@{s;B@OIKA!#vuSu5gpGBpMxIN&pbW?J*0mlF9yF1uKZIfr z5U$%$#AN=5ZiT%&AF#7qZ?VU=s{p%(+tz?l!;eeB^5MsoV5acna}Wsq-N@C|syOHPNqDcwenZ#EG;)4>aZfOfL zpNf)xEI{*1ruiaK`%tj2-! z9HdI32uFQv#|92kCsKq<{AoQh)`wPVwY;pkmdGe1dNzq55_b;TYdbzjTq z&v~eiC3=_8d#LScHK;%6)NH90nU8B9*fVaal|dSZe;QThhqzoHZ;Rcxh3op5}Tnmdb`PhBfRrG_DNE$9aI>g*woLXv9 zrYi=*JglO4l*0@+?PmO#M$G^ppKOS#^oGe8m$=D`l7|~;KW?@wJ(VOd< zkjT#hojfD5oRW3~@>n>tjRb752qO=9%CyvS>=Ko5NxrIlocSSSj=IlMIq-TeuMh5?e_gjxWzMJ{hv-h`V&&UvG#aFc71M^d4HdR>Ig z!x$Ql8pfLR1<{c+AB$v+WhR0!Z7BodS}8c)CCG;NS{EkZ)dB*A zaM7qBRo%`@|x$Z9Kh>|XF3Q_ zaP}0^PR3cQ1n^~u^xE@E!3dQmVld;A;fpK{Od_kl%Zci3(+cnw2ny_WjjjGI#6Xb{ zPl?QN^6P!L6z%F^san2^o*d)oElN=kqI|v#Oj@)W1#=PmhxT4Q_-Xem60D0;qqFDE0lg3!y0jeQfY$FWQ6R&>p|&-=!F32nurK_&y$-K$0G{Jz3?PM>2pM|sT~ zAc*U#q4#58^x$WR%d4H&N^{?E_uukX7$`+qn77zauuzcqk3*3|ojt$C1|vg3U5i5f z-(CvK_NS;jGhr!ukp(^Yl>VBSVr|!(hRhH|m0LZluGSJ_J(%V%PNcGwseQe|%Ni&y zQobi6J>a@=`by14B1j~*c_d`Xw1j}r>Hlf!qt>}AH~Cr@)AAdK#yneb!e70CM8XLn z`%7G#ovPNI&@8B!+Wh47#+>ih7Hr;qvr@3j1#va0ej~^%FRI}}v@qog8;JQvcKL3b zksCwefF!umdLlR0hCY{rI`msG!BvfhcY#;B;qC9YYKO-Irph+xN*BQy1wojSwLfR- zlfsixc6{KmMlu6>>3exkOphL-;(vdZX0+ZU|0U?rCFi$?<}<=nxb$?|8yHq&IM@!| zm7Bkyg*bym@A(x}6KIO3dD}i~F&O|RM%un9%<%(50Optg9_F)28Q!@~qx6Q`hgPbcRm1&?HZZ6TjShPQP zrLqt^ZdrG@t~}xb=hbWbX2c3<--MRU8;+a(?mC3#htt^%&;Ec#U-w-r$!#`n^QjgTYaRT)NqkKymgaO1@kq`c|K|32qqd4u`D(;`7UA2wI`l|$srYBExBNQr18g56 zJ82pPUh<-tjyWTDZAFfrM60e$B@R z2dBk;?%t1wf}1m=n=^Q5)oacbOBsVK^UOe&$<=BNjh7U>7{7Mnhm1q}7OsUDGGa{2 z24JQcHMis!*oj}V6PoLd*2CO$pG4`URgz|h!Pnsg&vQMt1J;ta0No96vKVb&>CGD^chUqIt;cChY$bfZkuscS$bX*dBp|L@Z$%$1+5$pD5WY zatn!?(hI9S-`Ku)+`OODCF?Wwy7fQo_c1RG*W`$BvjY^I7!2(%QuG zcHCDpm+c1xoj4G$T|5xuyra-uDhj}{%l(!_hQpxN2)X7vS=$riAd`8~^;yo)MJP{J zYh5E1Nv{WSBy4hX@l*u?$+jA}W3p^S`Qg_)LUB znngHBAXzk^vff|0uoqSIq#Mo{@QIJf@`VJRzWFSfj|D%RUeaRqZis>2vm-#6I5km^ z7cI8%WYJ?*iYf?$R(ql8*G!mVV@vF)!g#WHaQ>4rIQ(6ArGrI1vw1RVDzY&9B*em)BX#NYocRL;!%VL07K8>phhnmQ zQ-zIPoPwM=iOauaO!3@Gmh{W&|hG6!U0Gy9hr^6lC!Vp_h65|sY(fSQ->9B&Mg zzSMz>2)8o$sFjkX>+9`ZSrUHZf_bDkt$8?jQhn)f(Ke*%)~3E3SmPl5xonCLR6= zXB8w)fmcfBXsStHk3Y9A?kZ*}wu1#f`3lq=(?sFg9G;mh8yK zcv@7e4=O|^m}-iD>a`C@s%X1@Px&~nRc^?OQPGHEg{SS| zFeV9fXq6utMSCz&)?0LF`l2hMpNhw1-!iXjQVQ9z<{W0zM2t)f27V% zyoT*Luth4?TQma^1_nTP9RU@@cGxL#GNXqwi}TB4E8~O2E@y?N|KDA6R^hO4YrP*iAe25O;Gd+S1 z-#&NeL#;kdSp&6{$nb#4B*CbZbRk92Uq#HdQ8p{3*nYLn6$xO^22J-7``e1mOn#8B z^lKU0s&TkbDD!np@4mfq!u4&Ah1sHJU?U*pn138AhwpAIL-ZAp87Ev=(e~>> zTI|spP&36modjs8y~o!`lAbNkWMJ1Bdb3e2Ba{yXe`x>fZJZvCi$B_V@k@a9YRbvH z=K^%a=4G+Yp>2d_k$TgVN!~9JRCMO7w;z&p7HNXs5tUGCFac$_J7w2piZWM=L&Zma z+_O;IYc&KBk>wFR#T`qA>}tDCnELf6$)+k#9Ldzu8%^w^DGl5~cU@4Y$>XN~r2umz z%SCi$+Ky(G%w|`YJ98m)ZgDS}tvb=E`X{5g(a+3)pmnDSp@z<>H;}FzJS*=aC(s%N zH;=zXALSx|gWY1(*>8Gz6w+`$+=ES&)l4kS3Drhz6sL;;M13 zk`d9dntr7sj}}1)^QLV2DZX^rwF~$uSMG zciXTe#^VGkYj!RWITWEcTVLU=a;RGi9FnV}H_u3f`ceTM62%h0Unv7Yahl?qhn`H2 zE`^h~>fk_H;C0Gnt1?0b(j`H~%D#eosM>R22;>hlZ1qRKdoX)92)n~;WqGqnq9qHz z1tI{)&1YK`&Atunr3YhHRtZSu=gG+Si~JcpIYhbgeJzo&?Q9tm z|H0ckhF8{f?V_>mbZpzsif!BKIO!N2+g!2Jv5k&x+h)g3?>x`DuW#?`obUU2&YxQI zN6lF^X05fxxbGTu4;{35z}?MpF`(#lqX>y>%cT%wp-uMpXhy@)tDuoAH;wb z!!*bXKIXlm3BXq+)@Nm4h69@Uvqe#L3Th^5f^^b&`8MMwb|n3dmLSMG?l z%-n`oV&lUpJ=Mu*^5UM2?g-kjMgq#Tq(Yu59%6Cn_wfInAQiK3X)Gfg2na3j|A<}K z|G_Rr$=eQJ*kyQ|>e4^_T>*`cL zsz)FHz3p!EiN8xgqxfkc1*<-XT!XZQxKXKl;Jeg+$(si`ge zqL5pV#c}S!ie@5T*X-nE5W7kIHe%>7sKBQ)Xb@QO%WLCWLQaEExKfN}qAY;4#v}=;WHz=q-XbtITLQbT|c@^0X`GuVGS2Jk49(X%5mlNaT6+JTT7GbTjiAkL9He%nDk zfi(n+M)RC;CF@cb{=q%ul#cS1=l!NlxaCr}`fUaMjYVyI%uXc>OOI`ar|3+Q6OmFj z9QL;X#YJbJ+-Y517$^DYJ2_8(6A#CsR6@(%8hywhS=?n)LW=B-oSo;)eJJ$fM1L8P zIC*sK|l@B*iR)y;(1nh^K3dzq?6Rt>XoMPdJ zK}2*K7_QJP@!CWDQBNFHXjpO@rO+%x;M>$GC92$Y`I&8BHUD%_lk}SFG)(-~+=Tr) zT~m>RhqR#xt+y_!a}EXmlmzIbV?@57?C0&$sBROK;=+?o*1vzub(fma+wuQDKr1Ul zH)%}*Blzza*0u30B)Q(W1|$R;HmLU-sBUHzH*%e-#Xk98K{hF=jH^_JUF`MAQZ^S0 zFGgNR_t*E&&xB6D&aG|Vx7X>(men4-jjYeFlq=T1uLqfbeLm9>hvtpBTRq>t^s64G zFFxY7t1JXxm*EY!1wS4QZ~eTy|C%(;GUIG)cdau2UgHjp{OFB&IWW7wegdFuZ2JBF z-Qi1D_7VaI)l%GOL}P3{Iu}`-TpV4@A&ZyVOn<30roGnSYIHg>2QC{&FHm>xeh3&}v>&x#kQlLfZI$qiS73G+2fbKzDM|?Eq5wg& zH1~i<{X9|ZlNCs>JQ{zsILP?xq(Bj^ylJpo{`AQ-IMy7OEFr9^I6pU^m9UfNpT0KL zc`&@csfqV}yo-a8llJ;o?z_5w41q9Iz#v+|oz{>;V9EVEnw$uVH3P}YDJR^m(e#E4 z%;SwdkAlV0*?7hm=|KSzx=u&^vzK2A#^SG*$WcwZBIx}oz#O~h=9O9x1&SF$kyZu9 z*DDp}{#0D#M{d@jDW~o6%JXjacwYlR?>E7uw03+w9R`!V!J-Ji*=(s6N=Ld44FJ1&vAar|) zk%DGMUuJcQkp`Q5Z)3IW*u?;6n-w?g-catT#|!+uQ{jFfdUHmfrl@=`%yCBGVN2RV zQI6cQX7gIG_yE$ign@FgvoA+}Mt;GHCZ>6q9|Bv_Nr_QvTH?2)8nc%CLA4ebwoGd{ z3pafgUmptS7#|9@UQOCfNk_Tr;aDFEUE8}91{?kTiUORYSK7WbWJTqRipaTc6#(S{ z-73b5%n+&J=z-C!8EYHtOL_R>uqG?|ZOTNj4+YI_ifw`qg=y2v*phGcjk+=unBlJ7 zm@39wdBIe7AgY{MJj}0R`$!*(4nzYf^GeuDOxE-2yXz?)D8$~ zO=`^}Ly4xs*po5j~(2|)`BQa;Cso%thXl11YqAA!&Oh=bSwGv59r6Z$@e=TM5rIuc3 ze(2j@i7Sr?z?QnA(MHCoD_ffGE{8=>trrw3DcjPE@786EVR;TGt|rutdFdmYj>?T_ zIjfzdD5>1bP=7s=rhHM$V!X_azGL|ZN2)K94B~EhtOy{Yu=Z;%#RYPsT9GEEG?6hB zG;4KcZf2E%XD-8u!1%g@U-5P1;zR#jVl3KJTFkb^)kV&gH<*Tyt<^zLM5`+^45=uu z{MX&AsS~l$>Po)7Vf@;k=1VF)_86v0TlsU}bPB3Z@2?yF165|7fz- zGjOIxhA@<{ViAR~^08_F9#~Q%`6$2a*h%eB1qKs-I!jEWF`WQoKkmkTiqaPnxckmdMY=g#f#3KTJoQdBAu8; z`i>`-)L*@!g58*FMBw}Kaya8O9dC`MWz-~ivKke2u@t7Wu@rBUL;t)^xbnC<-o?!y zUn|R@*l2p{Nox8~*6}vk{$)%AsqM)=!8ty`Z~3B@z6{=LEmXh!!h&EygDrF2PE+-d z?)Q4)Dxyv)T-oobob-0uYjw#DjqXKzcrEL%*zf<582wM2IR!upWJU?utzdTnK~*D{ zCn2$4Y~2M>FJ;JQE~>hD)k!)Nal7-+u|PV+m_6t?1nu1ifWp^{0aVikud$dN!mT{rI61^6E0v#4eF3U zzY>vI97AOwfvT++Z(yeL-^u(x`Eg$=94F8(syvD8e~d9X{@?sK^zle)cx^$^uMIWz zxaA=r3Otd@dRF^chdUZXGselYSWgJRSBk6b`ooN}tc55wWKZ>d4k zzt@Z=@#&-A8Em%qLi*m+MEl+5{Mo{$i8-r=Z8^srCB0-ZAIiXnXUDassKxXDgLD2} z_hjIv{Q)OJh#|$FE`ks3R4gFK<%(Y%F=DOex(T}NdJB`er-cXg>aQbO7@_ec7HNV} zrrd2I!S17$nwI6XT>sCH`@6Z*tJAxh7NXqyWv*=j-@omyQ%EJ=uaX@tPY(X?eEvS& z{_lDI6}@gXOxLFc+jHt^Qv+8KV7d3#hBdE;FU#lScW<%p1^@)oWjGU5AYHhqSs5`I z>37H*_XA*Z>o@>C&H2QM*jV9EN;Bc7AG!!E3GuJNLVcFB1H8t~v}T}1H9 z)N4)N8N@chtevx=YAU?lB=8fpV&3pLkpC)ZGs%sl1=>;wVO}GTER-4%79a0x~LC9YoN~7hzB%Xkz z^TMXheYv?mMI5Dp*lznrK3%PTPO`Yy{>I=@xz+0%{M!H%C4&UGJb-)wtdQdL-I@+^ zqa%nz96rj^p1whS+&WS2r&`dkH(PjPmpxZUDKG(^KG-_Yi&s-m`3tl=7=tK`^j)uv0yiTic=2beU`1Ym`43GqgpCcthh(fc8QuBD@QX+_ zJz9{iYIY65KAgi0_~i=Y=o9hCZ+nFaq~a=nTDhPze{7m4ay>Hw2J^sXzH?!iCw3WQ zIb{{$1)WO=O82jkUZ(eSMHrbD6M=7Jf}57>W}QN9W0rZSf_PoZir33-U^DjY04v%P*~Eo)T+@gg`OQKWr=w$8j>PRN3U@1|B1U_bZI&0y#{JSBqm+J|ae3_;Ce!q{D|=#@u}l&U0vk8Uo;sQh4+1SvJY z*imX6?9Q+SG1VyATLL+WVZz)cn{rDGLkyXfwE6ifjimLf^eLkx@MNtd9N5n za-2?x)CbSwT2MDz{DZ1DE4kyPGB7I<`~mmR%a*)%sh{pUF(AOt%fJHf=uNZNEHaq^ zIbmRcQc1Y@b_b&%D~r55k5R?#ka&FJ!`>GZ*v;s+NEdyz*t;8UT~~?c^Pd~4XfQ{s zS?EkmZwLaytRuhick)LV?6{SUWbsQv_BEjU(kEl3+0>t}&li}?f}B+0Mb^;xK=5H! z1%+8_$n<+NW|Z~l$7>J}j#PkaTIl$kL2a|;?~Q%+WD*|{{4ot-xB!JbFDX#>H%)`U zK21hCXQ@V5Nr!-*lwoPX?6}oZWH20bW?d<=N3!<9miF3u*9*76sRKEzNUAiCfF$FPC(KVgHs!#?pp z+v=D8wXN&V6&j|4Wh#6c-nv!o9hQN^EO0p3BWW6M+wK?C*2Q`SGQ?0Q(-ZJaccq1i zTZGY=?MzY_!2>}#=Mwjsf$v@wACi08!>^&zo1y>(qtW@jx0V+`X4NG~R#@;BR*{SS z2u)Kb_@Heb^odjHq6ABrYD2yob5F);d?Gtie>5$nmow$T5n-skZg2jaPidaJWjN?4 z{*nV9%L=^wjkjYY@Y4QIn+7=Pk_eo8M&5ubzyId_T5Xfq<}kJS2H!VZmdArc3!UGi zMG#zTXG@S$CC3>Khtns~tbP=mXTRamix+wfqLH5iB7bYB+&h{N64f3=)n35i)r=qT z&0-ulWbsp-mREjMR+0(H?~fTyY0&-U@%GUQ9j`AxJ0a4ZzzbmFFTX`-gw&Ss1eygi z9wi0%!E>)D)^WW$RXwttZw`1*BI6u z*W5XMDScbsd0MG8w0#Kv-riY{vgY(p5im6H`}FSGVqAWz5hV+;j(v*?^LttmE!1!5 zPf*2I)^GUwhx++sYWdjl=JdOR*n-~p0=yxJo3PhPf|(E=kfix^zeqLk?C&U4PS40n z6Y^sSu^k`Vc49vBpiW!wqtkX}M0KE%gr4tOJRRQ&6tTf!IB7NZ&w0xqXegFegEjje z%g+uoYz8u&xDcy1pbEb9QCWk_je-wb}-W6B#gs=yZO!n3-^Z$VbB19O$yJMA#*a(_r+EYz`9{&F4ypN^-J2 zkkI%rvCxle0C0CdzhCAkFieR2mmd_W4(2$v3|j7YCoR-IH*uDd1{H4eU7$+~7UeLD zS}!ZsTy);A$tk)kqa$Hf5+c-1$tn#mKH6}0M~9-5s`JK6opqoFrRz-gQF@e!i&R^j zXtFmEB*!jT`Ix}4uv#yCJLD5gWJE`J%!Eunp9dO2r^8V*w0(#4fVq4Vk07`+K{Ml|-aTf)ni~lV zg_^t^|FPmWBACYm96=T2T&G7EWka5aosg?NC;y6QGKtspacdM~>v*6(L=&vzm&T{(6?M! z>!&WV&e9~ZPUV`3JwmIvr6#$vj6pFBR(&Fb=ZEKpsvm`}iSw>fit z`u|t2!lKpVZ2DE30~_{#^eSBc@haMJng48f&^_>J`9ZrdfMV2-CC0QnES3*9n99|f znA-3Sm!G*`3s33$iFzjFC_Ns>aO}0ZFLr8L|I*4bVd}uZK!atc>Grc|Ny?D9((QjM{$wm^oo7_Yr2kCcqFFd2L=Gb#~AMVC| z!8qOM{h$WQv%@NIM2wXua8W`qvP`x4`Xwuo?E}A$cg+Y(@2Hq^2U61bH6xxH^@_Gg z;qT0F<;(efKZ7jib$Vct)k*p@(KMCoCRl*-!!Iu+&s*KPg~s@rIu207@WHS@joJ=u zaS+6MFFXc|>2FB!C0>_d2$p`5V;{Xe0Dt34K34$fY&?q(6_q=%uHf`iGPqpnHh-|) zHPB}VuO95~`7FLM=~e1NCk`m)q4!f`KCB1oLa`yVz23w_&ZCL+Vbg%Rqk5H`7&pF| z4sZ{I+f~hk;VlbkG%6hw>?Qe(m`jCmupQ*tH{&2d_8H*kOaNRUr6F~DxV3$^9#*NIvz zIDNMkbG|Zm_!^EisDgF6?lBt~QDQWkWVyePWw2RU`chAuiVyMquu(cLbBWtXzyGWY zvorOkE9C|PncUB`;pd8c1&(DxlzfsyrRR^9(p|0jzX@#bQvk^k@K_KXWI>8QZKsh` z2TB5NuovGd>9()2B_5tugwK1;A*z`jA=-usp^ZyewBj6(0fQ-^ws{XLaD5tUd)y32 z9Wp8#!%c>Im>|$P$kn8dDIsK=_bUh0VRlm)dKk3TNJijQrgxOaHSk--*pSzWv&bAT z#PlW?egqEx#%2FD|KEpuLGrdE8qgphBg7ye=wD-c*fP0VncJEFr)Bx)H+iA08;8e% z;U~E#q;;2b#QC)mN;B3Z+p(^(*%&VAuxGaM5KXqeY8OnKe>(t=hDK}<@39X`5-$vP z(-&8^5IG*Vv%)sIf){46LMq&mpn-eLH#~fd?=R@$^H3EAD_SZhH8!uH)TIK8B2DEZ zGw(^&%0-x>1DXg|syg8z!`mABEX0C$&o5NMdu=A+!?H2%U~Bi zvCn~x5v_7Zd172OU|QIrZ>&kCSXqHt9z1yuVj&g)B@f#!kU0wrTV1t?j60D)TLw)j zhi`pIo>o^opHwa}l5)Wopulnt!91Uw8#5}3NgP@nNW=>me1|;zt~u_(gl%FIR!PCd z>fffv$ShC>Sa&r2u;*sQNNwd z3RoeXsY5%Q);O$g#M}?};whB~ZS=)S`2Hyf;>trHvfC{*=-_gEz*7o!u-(l}xgxgZ zeMO|UU>8^w(JYYY`fYFt#kz014eubi`%8N~1)F*#RNn2B#)4nH!X>Jbx=kDk}QLfLQ-lXB}BNsgN*bPC2(fDx_#VUZ6PYZ<|9 zA4k{98}@UiH&8IaH$9Wu!EyCgLsq{4aj0Ux+w~gwvFi&;zYlI;DClS_5ILx#JUzj+ zKLASTJmsb5LExx5ZSLvODR=xiIyg79IrzN52a)$1q>|%I;?J&1-b3bxzq^|^F)xf|IVsW6rgVK%EyndOhUB)VRlZ!07 zT_c1+zAroGPZT5ZX{n$l{>IzUEH0GPXcp1=J%45y!nt>u#O~W{22u^$fF0IR%)-V8 z3w*Hhxw`LJblwI2B^Ni?%-BkQo-zMst5{+eU*ys`y6t`jnNNZ+&GSJhB-%~2SK2UE zWbF7GE?%sSr!`HOGq`AvfB7i`Sq9Z)CZ$yjeZu)WX}4w{i{v`8CX)l)OE3H50T9Y zP$wUV#dd3=ndv%E=++47baXy=)y}Ey^*~GP3czYMU!N0Pr*f}v5e94 zld~N?t0H%vq*YuHibr1XNU4^lD!#N*&9ve*c(FB>J{hiM7&=5#57eoKdHXg)v&waG zDT2F3x}}bM=E7Akg1RMg=U6-~8#YMUS#2t-1+rF6;Ep&|I$#*5n-YG6plrLHIkSIo zTr9%2|2JF%eXtrh{r<#ms4FX{)GtynmJC<0u6KFP+6Bk(x+)!Tk>}-a%TPKmEx6DC z_aHe7HdbY~l`7QB(+gA_!F{;v8j1JCUY$fHk`2k5djx`p;?^jV!2%0)K1Ue}J$yAb z2L+mqV7u_jk>4)RstO&C>dB+|w)hR=(Rb*Bly?aBQm&@4o@>uNUSrD$NSkiEH+n?1 z{%;GupUPDNmI)S47QB@Oit<9h?rzbo`f_eDf(q6%&g+Hxo%Y9!b7JML(g7ERO>Axy z`uWIF{Q1Vgb@oagKB6D;9X)|Pw_>JY+nkoc%jh*;w?P{(m5a~=?bYlN4vdqRx^{l= zAS0$APhqkpMX(eb+VBYChHl`%St#3tFxnc_T|6DQHQ22RvCUe;sMlf{x^Jm{URpFw z1@>JFF$G>faMbC73@%ae>1h?pmEDYm0_hN%$7(JopO+SW>${8FSa+p?nRGApEE{^8 zn%}1uecce_hF&cMg)yX#yCm!us$0BcR64c@Qu+Wj>NZb!U2}P}4oDI~ehW5ngpel- zKl|;wh&V&5R0`Lw)A}UDGq-KhGK{O15HmNIm@fp!#&NVfC5YOXdb)oCK96$l98f84N(tEa8G%fAkoVAXzq<)z@DYR%%i;xuD7At54 z^f9G?Is%6fPTKPj@iFNZ^QBJhF20>%>u8o-BM69EX5qf6uCKqT_wL%va5VYHXZ}ZO zrQ>u%^zO;klIx@FqhZaNm<6uTOjeaeTWp=#He&9F^~3US`uCkpRs*C^ROXqGeWq1W z6nr9{sb%EQs+Xs$S;w8U?DJI}khHCwySSWuJKy_wJ15fVX&zlR0?xDD*`;w;lkZz` z^G*dFkIL{9G1kCd?-lIvmDl~2u6?hyAuy%sz@pO$?R0Nam&ZgvUkBIzO377QcL)4c zzTwp7rQBvKq~thZtu?nRLqIyqvJ)8YdttMiWxI&vBjK*7P-`|g z&OrHkxQ^w)pQc5*H@3D3mhEB0o5nB8o|S-j{psco9dmu9$0-|B}f1$cOPG@1)g$LlLZiOT5QrS!%pXV z)(&+O#+=^XGPCCfrN9cp8UK(s`qVb20Td%%DEhvfKu=eeAiV!=BQJq3@UI%P#z1{& zcnI0jx85Q*Tm!LMr2#xFM!oQ^4~xC&X{)Gn`LLwUn z!bY*eI|Xi#RZlsOjNuKp$j{a0_NW+d9E4Rg^yul-BL~++7~%;bZS>=j?3m;gi=9SES!6-lW zy>z8;sjMXcfq$6WTXeLB7(wp#fp6fiLXL4GIBftB&&5TP?>64cv-B9Sl!`lwBGtHa zW3rsw!aCfe$bJYUvnV$(#cN@;!FkCxNW@eqX*NV8nuJ{ID;ZR8iWj_l`k-wU&T*`x zwlE!Hrsz2suHK8kqMXxw>gn60(dR0*{EFnOA(TwMv(h_GKVAe0SwVi2xo?0p#8$2; zr%eVaYQCL^kX24b4Z}m}ItexJ%46PN-lPZySU2Ax>AnZ2<1l>WL#p0mCfeUDQ|m-9 z8ckG&l>m`h)^4o2{yNulg_ed!?eC)O>L+h>7zl(IFFm|QnO_mC!z9_;E=;;lBO(aE zU|;vEaoGKF;Ydz3QZ+xKyGNW^s+b!XdcXw59Z0pIx2&)(1weTVHhu6c-iqf zx}HI;o{1^*;F3`jQ<7`etqZ3iuk6_eV_QLsqnoMB$)1}1I@_5kENDqS@=BrbE%olU z@>_O!u(HevbO4;Q3WRZ&V_~SX@v8xPiF4mNjI47gSS;0?u91|iv;z;(O62G#K6*s_ zGi7uaR5cN5w5;-7sW#U~f@&!_{uE*HfEpw8QJ~SAOYr&Fy0RdZ6~_Q-&#)^Bqb3Y> zByqvWBI-A|hiGi?G^Vyw+6=iyYnZTc5~x{Z9tt96lb41eP_k5_f>_8pmI%^?(F3gm zP#1b3PCR&%!luZ=#X3;ZQ1MHT4dr-WDv{C&1W(Z$i#8lEyKu6(S8z^nFjO%RCc!9e z2YNIZRRM0f+QY$Fi9IEa)Rs97{g{(l=$>|`DVia(6Bs@&%2-rhj;|&>Cc<>U%vuhg z3f3wxZ4Y%Ga3MUb2by2 za8(AErPM$<=D)sy1Pj{&rj|Lglsk=^tD~D%?vIzDL1(%UGVQ>zks@1$Ys6<)?0Fd$ zKfDLMbi46jAlfQTbDVad8eQ5(#nWhC(Ng7`qMVE^L$#Sj7&gEH7Q-&Rv74yXg-N4A zD@P`!7%>U1es0lz?hO6=1n3jCsYZsEk$BswcW@$h>ix)dk86ZWj>=Ba+KpSKR> z=r1h_X*t)dGX&&9Qz2klkMrRRKx4n`=ygXGi^770HF%~Rb;a8`KBmXu`}W0gj3UL# z{P9{<$E3u``aFIk>be%C^vstAz_*>HO-nKm_#IaC>(#n9X@%(urxh&7h>mFjR49k3 z*7z=B^W}SM%%G$@Ii9kEtq92EL`=EjxZnZwB2?egUdc>VJO)J+5}EH=a=TX3{+5YGnQn7J$e5C>+Vo^SiR*&vFH-`NE-qB|ddA3!DIK-fOl|<3%)Dnf@f5%xWFIR5~|5 z<4u>&Q~#4J;dLfSYV}iF8tRD)O~4#F`{~QWcpz`~@oJ&zEL#5AUiw}p{g2`W!!TLN zm@cQn-(V|n>VPV6o`aNri`$PzY|O7}N|BAlw6s9fv%DI^nN4h3%m*Gad7;i=&GvJq z9WahJsnGmpoS4%JaXRO60gb;+7p2rW-lAybV~IyQ%(&BxQ32PWD7CD(t};9tVIZ2x z*+!T>c*1{Ap>*z>wJ3b_FD|{2MnxwZZVIoThb3-;V9fO{$d2*ASs2X|9|r#CUXeno$1*4A|NbCdtu*81Pi^AoCZ`CxEy2&#EFx#M-W(J^|D z8d--?m+L=S=Db3QmNSh5-u%EnJ^s(nYyp3BXN2A#hzw%=-pQ(#4fUp%=;b6>m>t`qtRty;Z$OR?{0mI744m=t z^-{|DUA`xFlzR}t&S8OW{&>$1ls+##wp8C0_xpej54Gd@+}Dmzy&!>!jl(}ahwfi` z_g-HRSax^s?Ydga>R1Q1_r6F@&oqDbGJ~z}iREZ=hcs}^gX;fOAoPXT@nq>W1?$$k zX3)MMB{dF5`x(<;9q#fuF1JH%*J*iw)qDBdcg=d4>?=tAXqma15~v z_kO{`YzOYjoRB6a^QVKD+7TE8k>(h9mr&;cNY?ov`tPuYkfL10>=)NJ0RREP_}^H= z%GlZ5Ox4xd+TQYC$Wf#>>5M1s+|Ac_tpo@oSYZzKk6(}~t#E%wn z2eqy9ul*23b6GE^MLz4 z@Le(O^sf=Fnt7o~;k$&)%5#Oz@QDaIJ+nO=3`!l2oOfmGQtL2SJO6Gyp)sMtnYBF$ zQI;Kx^{I=LbHg3R^o?bw717G6-?ry;d+Jk>^AzOddRZSujmz8iXy)9w{gAXk z(d_z=<~HU;<1-e}3?5eek(3&_KP2p4nB(k`6gx4a!&zhcm;`Xx^1#@+hI4)+$_UMdV!l65`Aj^ST(^=F8 zy3M)6JO%Sy34eC+?t97yWZDepTM!%MioNxj zg1)`t#UVqPz9B{3@b^E4yf`VnI9bDEqqQft@4kMP2~As`>UI$&Tz(Q7V2mIUvp__x z@;T9+(h2XbNG%dqVxs(e0HCP8W;N1y{8aQnT73$+*Um%rc|pG0BCnnR$OZb!TQq_YotGE%+Y5=`as>_xkMZNP_Fgdv+TMyd{)V#({hivTEv<#X zdxH=m;`Fh)9;=^r&ztfAS)#wkc?5Pj2qw9S8V_;6vqJm3Ak=<2jxT8u_Lj86*we?L zvwD`iqI|mYL7&S|cqpe|aJ?jMEbryR0HbitsYFKHebP(3y8}QWv>a+x%9-6yePS01 zoP3?~k0<%TS_^&j(nNb!@_?fQ+lrhzX5D>l5(8Vd$>4@|$S>w9a-gJ3S=`91xndd( zvechw;8|cl<(z%Yp-3Z_HR5PR%*7LD$NKa>C!l$LqyMlM)SopwH!>2>VW8?(L$foo zaJgwoxfgK@kMW(ztk#cWYYbzQy*g#kCdep;oK(^Zt*Kmhq}^bV$DAypmL6V=NZT*) zXBbdICca78tpFs1XP7WeWsYo$_#m~QA9}qz2?mz?HjLNPGiopIlR^SDF<(GE5zv}o zvSwSyk0htc^0J~u!lk_$eZS)>73)iZeh^H8-l?(g|M$7(vf43ACEgFC5_LL3{0Ffj zD5`Ap%J09RaN#Cqq|TNa_2OyGR;1aR4a1|_itKTCKS8>(WCwCMSXpSLbwDiUWXYUf zW7E*Ka*-fXl=qaDK~VIv?}a0Opa&oN7D3alJd*maHc7qpS0i0HP3n=tNCl zNE#>J-0xJ{FAi7zN!RsdCF(qG!j2FFi>TEa`IDi2&~R3{#+7gqwunr$dUsPvyOk3I zl;*xc2~UFTPGAXStqaDn&{=DPhehvG&c_6N>4qIta)nV% zNCy|khCgAsDs*a>j#c?1z@~h1xu_K{L`%){6J(_gzn3O!VTS}l_8FpgwHaU%Eg<4s zs>?C1*roS`8xd=sBTQut^B<1NpTa~(k~pC0~6L7a?dya{v1fQ-u^&_ zVfzJEFOb&wx{)9TPl6@Dq>!bx8TpuazefF^x*wmT0#gB15Avs|z9jj#i z3P&+T&_g#XD$#r|D9eAv|6nlwY0z-rbtLOV6)T&z&OpzFSA1?INaD!i>9Yqg`DG2g zoJ3U)@2Ostw)Pb9ma9q_!C}+5{%D!Bn31`emCn~IGrZXkwWO1WaX{!U-cwKqMjFOv zqeX1cd~)d~`S)Ut_=s@Lam~LRgr%@K2cuz=nB7Ef#X?UlN{kmxQVwH!7DewcAO4mG zS7ih_Gh7e$3`)|fei13IJuoPzu$b}5p0xsbdKdZEUF#-wyfM^#xFepn5Srte4-oHR zPsq$Fje8_Y*;I>|ra?Q5KW;@yCmk)vGCOV<{u^S05zp|iJ}S3t*rRi5TSS_Xx5p6^ zu;M~+#`vnRz--#m@}x8FDR1?7Kk zIWrj9=A9k?vfWB@w?U|X$Cw4cv2m`$>A^lIUf>XaL+&Dyr*fjf#Qwz?XUt$QI?Lc=lB4%9qIuM}K3OSZ?}^OH}HqgIwU zUx5D=j&kUWY|_>|{2hlB!`!a>Sou~M@IY6uD~lYcvGR*`RRD0j`?>9|yGg8fe-W);n7{8{Do)RX9=sP_0Hz{Q)_Li3olh%%J3qGKlelPhl80G6RLAoddFAXKN_ zN6I#fCaPaN{_k^i`*kPB&_>NHK>06&4K@1;=rO{1STn;Nw`Xc}Y6cRX#j4k3gMkoF z=c7|0>V37CCFN8n2Om>Fr&yR1vXrW~H9PYY=x!=uyD74leNG+BOBu^S(j`k*d{>cg z0eZ-=DpLeAOaDMVj+hBp_u=|U8Lpf`9`;>)~&|;`Q6LTy!Df)iw#dk7hR!+_V2fh zsK??_?U-vGald4Tou9MMwAP;~JHNNqd7giCO>_c)27^+Z(pVD>{8C_h9SGgmvkz&F zlIVvR_`=gJOl2K+s(=k_m_HVk*~HXJqZ2f>zG*^JOIHHlXZyKzbRisTAzt}`V-159q?vx9_*b<$5H~y?cDJpA z)|ey5#0&}J1O^pGg3wM8KK7`(5RDk;HO&&@4UgJKV-Q~5=ze`Sq+NMFig8fDOe1@= zY$bB$XtC3~fLzaD8){wzc1~4>XUmcucBGfUP{tVz5n&Vt8b&y*y(b)5;~B_y zlRXJoydi6>t+AL9DoO|_5HZ@C#VD&b2!&9mbvWRxE8=d2;UL0^Z?IX6RIq=kHT>HU zJN#J`SVGL}6I==lITE$Az|%M7yq}GVv1ojRptu8}stTHxD+?!S z;30qud=XZQ4(nXsVF|+~b2`CWcZ|&?kC?2aBI}6GmlQc@AY6wwwm+;qN-*J9XKwAF zzJm=fE($H*_p!uT=nJbJ+$Dfe%0dcJ*xX;^`5jpY#2 z04xzrt|T=`0LP0*@~UCxd zZC2G7Oa)?%2skt44H{#`b04}h17$c{+0{^W*rk5T5TGY$#Hicrsz*CSVpBV7Frep5 z>SV?s?6<-fL91nm*nzSMT<~U?B=|OycZRJTw+^9*$PWlb^wY}c=>(VfYW0JaXAVEx z$*AE8V6=qedKiyKd7`534dxo`z{APfK~7w`4f;?rADLYFnDI%aJv0+J!4nbZwf9wb zt2;&|#3}GRI~OsH^rb1#9m{6=u@w{LB1{dLu;;|Rqz|k{Nd%#0;#cWrP#`>2wQwMgPT|HEq{9a(_h@C*pvuRI+=vb$VBDx~ie4UZ?f;nF zu|6`GKkq3cf6vJ-FgEeI6hFCRSngK7a{%Z##1se?!HG=Df$G%5l=uc4Mv^A4w^ByE$W#SkP7D;)X-J+0bSMP(?XP(6u*=doq z(!6OZzJyV2Jng&xlx%N;*L7*StEeSj7C*;IDwY!`%(qTKy`v^p6hr2S4ypQiikJ{=eG$>Zq#Lu3x&FO@}laX+*laK~lQA8wu$SK^jClq#Fcj0Tn6f z?(RnNZt=Vy=j_)n?tgcT`>nwq>;=r2!guFK&_a4xB^1^!Ge9xr)chm%vHW%o{Z6c7|p z$kF_a{G3+9KEq<+c~m*REmAerD&FSp7l28ymYxG|YBvP=%ClByuym_O@lKrHE>o%@ zCPOfd)gW#QQXbO9YHry*ek_NjAj~3}Gp}BMD-C~;10T0a4)b;K2{ViZAi?+K8&BsG zbJ}&LOAltbnnj(E?&PXv-AWI85qV#DKlK{gc_W#ft7mt{S2u_l(QpUhBPTR(hPE6_ zc8}U4TEV6m8^d&w)RKEleW_(}T=1!2_^rE)sSWciZLJoq>LM73J zovwkIAhzc2&ONaUL~Y??xENR$J&KzvM)adgT~hLH^jl|PEm&%wHz+u`u0%>arM8w9 zShOZxAnAOj0;j;WFozk5Zx_N zxP-MsVIl!WjoIS;b!MnEN%#mO7=Ofza^beQKDPNb*G15rqrvpKxA`nCx34->arh?R?pWY)a79nP z0iuw~L*VI~55fDjYflXzZZ?F&TsGj`afsaEp(rJaaPpnu|3OGUVo1Na_R*dwY7}6e%m(Xl6hRE)>j>td)F_P zzT}d%AC=gN%hVPb{kR=h!*^JK+shY}&rG=JwF(IJ-vqJr} zdr7`NL{gYk$jZ0@Nln&Le2<>;Wdt_G4$q3R#Y`R28^pT(PU2eJkFKsXwLOKpf|97a z&D{H+#X3#{ure>#^Z4~YXF*Yx!Sq+>L)KL-|9GxucBZu*heh9~WTZFMH*b<{gf~0| zU{riN6A-+#%h0JpzS>l2aY`{^0d zyxGr{rjY3M)g6k)+|O@H-V9~IPIooiEjL=&1~K}tuvbS1-$rEs_fgeylTCS1W-A?A ziQjwMh@fA=B+)F4LK$v`e$wxEw|3wTUDM2SL}X0bQ|ASuMm4&mcMiv}nWmOFFOpGF ztyfRMHu0VI)tT8%2C|dpHbh4DqVAa9el(rE~KUahHHU($yF=h}>D1<(d^ph-k9Dcgzo{1k?Yi&PYbsr*K$+W!!Wy{=y zO0xgi8?@plYH1^gzdip;{$~5l-;XVJDnG&NK~ZH3?a;(EDfrCL*v6l;sHugaI__NN zOy*_#-VQisxmXq6dZe-E8C>t*oX!2jmTHp0^sY6um1&4JD*%coraMwc!l9JzHTp%= zCFWGD&()5Ix1RbjHFs9hKlSO7)RU2hL zxWeOR)d5TUp5>zsoSzZnI25fnVqpi@#A3A_^~WE3W91S?)nc*tX~2z+M>uP!CUO#e z=#?pD)E?;kYH2$NpB|jnzfNn>m^_=rfHX+MS}sG*nQt2DP~AS(_0o!o2lvdWjNOSk zv6fdI)bf`!u1>WW0#;roU$1NCQ{xPK<=8uKUepS@qdh_jb_@UW&87n`y;_b=_4X>F zpW~g`y`V{gsA?-4rd}vIHC1iI`#v@@PtFia<*IC9I$79%Iy@KD37k3cc!g`JBOGek zTtcD-*Q3*v-Z>uQY?|8Vyb5CSrRq8OCZEk@qJEtkNli9!`zOhA+8kf5Tzi=kjaNw6 zHNpKR(BxB)iWP%wx;wN?)1gQzP z3KPoJ!0%Y}8uRGCG;>+Y6FPkH6n(ycL7rRb2^zdo>L=Cwm@q`qadwA(fN@oFtw z;JyjXqb-c1HQzVbjStxzJMYlfGcBLMz2Zfiu)8-_EG$-Z z;EHEV-bzIirNE7I>&hi;>q^Z6q<4gGw;;~%#m}fs;PNaa?!mU(As1(l$%Xkfu(ouFZ|&Dj6Ox>MZH&TytXCa>frf?LI;~vdt%s~ZMceYBLCtIKvzlys zK4hW1qys7+>APGPhY5%UK3=*Z7TUz(=Hl<}IVp@Y&qyt~%iItHA=nd21J%DF6 zm1U#ojxYj=1EgLxyFtCu>YmG(zIG^7gEG14o|=4AV^V?Y2A!`O0tREAN=qr!7p&Y{M8D2F^}$b*|tO!SsG*V_A@JfWo-(Gxx!VuGPj zZ({0|%F$q=BsV!mTOd$&^*%{mcn*h0K+wapcZigse3ack+!b#y!Nf3{VGOV<| zT0@sHz05R{j$8da3&-T%5?E)x+tEh&lo={&v?_uVz{Gp&|hz@6i% z@G`w+QBG<~7~x01wcU>`Mj9HNxg}?nmAQ0>&+9LVt^~JuR8F`HCWY_0##FIKKUq=Q zOk^9ljWP+*TA&|8XILYe2L`_{8!q&VHjm#_FG`A=?BR@!T==6nMsGPRd4t4p>%S96 zwqN<3e~IJQU*g#ETO1Qs8RRi(5t<;lPk$7c8&kxXbOJuaCM35V3=I^Fx)t{rM(9OJ zCD6re^n2OU6mCRnp_y5f4p{+Ar3q1$aMF;~qH{7e^jFY_+kcB=M3P1BNzKK9!Y^^u zuf`spganBrFpX=%+vGbgc4-Gqldw2_KF4#AIO14mrHBMGD2`B?kse@XxSkX19KSGO zdc_e1r_mRpcYCwm#31gU={h`KG#lbxiMVHyr=&6skPEhJDa#if+&F;=`fye!g``{4 zV=<2#(_ag)!?EIX?pjF@sEg80=|;VU65w!anBwf;dZ&+z77ayE#fUkqNXS4Difj&) zmEEbVe*;~EGGtMLBN@?i9!V~U1PD}8Z%k661lHYMBG&G55Oxv(gJhN~&5`B_RT{V= z&3_u|)GPM@s~jW%)((!}@Xt}`2BC6ffOdXwhyAq5S;VD9`nZyYWO`-Dx2(>F8sXN0 zNVJzA5sYJ2w17+5g$5yRrKc%S_F9OX}_im9bW zL25caOw3JudCNBe1k1O4x;2XSCWur1woRAg5WZw93I`7SZ@1vkM2m&+i`dVybRx;2*YL|<8Sbt%d zR?XMujvkcgrG4&l&7|yg|4w~utPqmA!Cxr3EgYtmyt1yeV%&MMjO=wJ|FAQDKcBIj z>^3nrN`TNR-w(`@^#s2fxR4XzO{x?Edm`Bvd*Vfbm{|T3RT&9y5>M+`*F)-iMk0Em zoF6NzJg9URDb)z!Cu_nSU~@<&M9Xx#z>o`M>XGGwk!JW zfQbmt5Z}orPDsQro}?EFF}7V1L+U(#Mto*b;+QzJQ4VKeO#4b<8Wr(|6zX@y9JmpX za(l(N0x|-eK(&P!zduJ~ds|ymI~V5%EvPi1-)@ErqxS&v7!5jua!0#fXU3mlM#!HO zSNy#4e)=y5B$P^tLig$ZqX9;D|>VY1Jd++C^nZ=QYRmx1(RPqKb~ zmLt3gS**pWQ&u>i=}zyv>hCJ|T+Sj`skuKfkoSyZz_wS|U(r_HxjS7`IHev51z13GFO@h2!(yhLT0Fil#Eaoe!^gupSY8( zDtGAB)$Ga`uk+5+d6s|_*gj82Cq6Zzbelb@74N1gh{&VYU`)ZrHEfOwySOZj&P;J8Z%^vVXK0?cva49^H9Phs5k<51ZBSTud)M{_@i?7)x zW7X=A#g@d34ix+OcS5%cbVCS`JwwXl;0i%=kO(&xC(-dBOWRmkWl@evz`>Ef5XRa?xKTd_~SiysBSYM_$FDG{|$ zt;E>YnzX^Jbhh{Lvb>f%r4GMW`CR@rYAEk^oZ}#Izzsj3O<$F}*@822xL}`CH2d#XsC3>6^KogVMYH-AMSq-`LpxcVqj1 zaAO-)IlAut^Tzg|PnIV1*-Z-pLM}iZlj9~>d+^$o$Z~Xwr8HI5nu>~<;I8o{Qjs$V z>^@MOkz9rNyd^c3BDBb3u+pR)Jo^6ec0ummlNQ!y=wJ2H_xx{@i+h863fz(W7c zDD+Osx6~md_<7PYcmC3etJEZ{#2O*A1QHL~4fPhX$|)@B8q^jMabF}`DrffRk?rLu z)w4{P8318Wr9AZ4#^a~x{HZP7;U?>^TaM|jBDe)M0-A3-lHu8Q<`@zt2)Vs;rf?Bg}R(HJNvW!_S8awMfx=zZ> zD+?D)3(j6Zn^_t6n2x5Mn=%$Gsu$RMC$M<&ToMu+Kwo}(60jnJo~Y;2qGGUpdsXM?IJ`DdBEqV z2CUD@bm~mL!(9Ms;!f=KgzCv$cg`VO}5%1;zugwI*Ff?rU zffJC3XDY4a;4f4zqbyqj1&7q&ktz;t7e@fAOtdSE*hKvUujvRY*NDEc3B9~8j!KHR z-!35`Ke{CMN6CcW`&2sZ#(ZeFHs8AdV00SU8jg1k{@{9JJeA2lJe7h_CrqM3N0q6$ zl6TmQ?=#HSPBC`b^c6?8<3f@E4ry9r!D#br!3?n)g%p<`Ks!M_7FK3hey3rdo`4c! zcd4TM4U^fb{G{DXgLn8`g3v96B7@R5ikN+}1?CzIlyA34t1UP-hxvQR!nOM8zYq)? zY4$jwa=#r_z?O}$L5RU7cVQH%FCcp3Z_pmAYC`0#n;EY>hAGg$dk7ke_J^&j!zJ1C z8l;m^g8E1N>sfASV=QW6XleJ$gmM|zwohjPz#m>nU!#3Fp!au~5+_eIW{J(yZC<+z zL9nH842MvgX~Q4jfV+sdnGHFgr;rH&i9bdT{uZO4yC zG|W_86EbsZzhH;nNVu0D5^OPqgX&5rr zq!pe0RN9M<2AY=QdRb;NB@X{RZ-5R`KqoPUDkc2dp%SADP#_HENJs|*k_~=IH3onN zI0v`^>RI}Wr$!2ry%DP+5QV)l5SRTCV!06to$?&ADhn%fEAuO}D+>-II~9=>0i?iL z6~A*)^X%v$@no9dauF50dV#w+Mr2_qj3=wo`e{u4A)QH`F`e%_(>f`Gp8(VWpFNJ< zUeWHU$VBy$T_KJ}R-N5$_A!!}YO6Bvd)X)CH{>yMkmS2(;RWEtlk5C2b=rjS^-J-J zP0ZJr-y_l|3zmX>`-Uoxj|xwktUr!x2y^u?Q*Hks|P1GK@n*HY| zX6Fz6-oceV&^R-S91x>$fUIv!2n0wIdt)Uhdk1G`V|yplUz|dg0|N=ng7~H1|9^dW zzwH3|8&E$k$E3rD1h#Da^E?RS1A>4qvT! zGs?_VzL3u2)rApVBTHij+cy+2(o>$iyR*%7|G8S~o0S@Gr0lq%$;8-HD69t})1t8h zDKtTpCdCx6gLw)$F8Q6LM~6hWrt+k!w_Em$gwD!!y^azsO6JJrx13Tk^va*$*I!dq zGb(olou(_HL!c5{+YBkM8qr+p$>OJZ9Cs>lD{+MIWX{);T*Q_cGAL|cSkM^G)YrHP zM8&P+-CTFwjvS88PR`Q{sWY-mv8fu@EnXY*boUSHBd`|~lHrhLQQ#Fb`yO8O7-Y;D z?M1tG-Rf2~+~PEk!;)Yx17%R6F$0bg1e|Rg5~Q}Z#66|ju5FZj_Z3dBG)5XwF3qk` z3AFbqQ3DHCc8h92nVkG{YOVeDb{g)bPa}`{@F5pFM>3m(jk-V?Yy>78K&Y2px z^j#L$OL&zUmRt=`)*-=g_p^GbD&FXpP1GAoN9Z=Gtd&EnTsy^sv@f>pFjDeot8{m> zK<@;^wSq9ecEGRgFO&DcQpb()TD3|8>GlHILa+N^!6j<*~@ z@{pVBm`gt9%U9d;^JqQTVivK;(xA>0_Nnfd@;?&#(PS58Exon?0GY72A+|E&hN$y# zQ^}jgJfzX(Dtuz6-0OI1iYYEp@jQ3TmI?*Kz3A!2)B(@6K*Yy#@9F|KWLjdm-Dw|*$$!1Y*!cjRl8~~WfWUF_~ zA@#3{dnRv%fa?v=L@kw_o>U_its`=5~t`=S%`ug?FJe}6%@*9HZHAdZzHAP=nTCtq)#ErtFhFT z)qq?7RCx2LYAeONKxb(-^VOO#R6ZUHGww)gM}J6wn;V+>k@K-D^nzEq=pEhwzhdIrPq;FFtU-Hc?%MUf46dY^HpK7 zLBFvBy>LK$0SbjUm^wMz+d2RB{g)(4%jRxJEA$8XE8G*XYQ?ZSlE=eJC98N z#)&m{rHUa0+rQo0!Mx0FLc=!knyh}p97eDI=e^R{pB1iw)AzeFpgTAUdV&04zwV-o zg_EhFiK&U`UrrS8A3Qi!OyY*E0$Bhd2k>5@u{+(Li&!JHO3NxE=TI&na;lKzDWoTP zBn%HKIcMX)yO9|0jQMBYdv9zAPHmH2ENbHOS|*AvP+}mAZM{}*CKh=9d>P~AL~-k! zHMP^_QwANJ22Raqgu~}K6}1T>+{n1G)!f7x=_*mSoJdnziV7LS>gWSIwVyrl3lt1^ zGu`%pLGfO4;e%Dpi?|a6@NKWQmLiJGvy-#~IjUX9N6g&2DN*{|lqtkZj@0HrE{BWkEQ4qUPc=|`=$3i zM1l%b-Y4icInUdiFhZ9o%r8IHM77o75!~H}E&s>F7)U5aP=VIJ=3O$vk=<;7K8=0Q z+?ZdTn*Moci`s)cly)xqs;?YOoppclxRUHY0qWFPC{ICDav;+YbdA3qWT0ot?-=1j zC<2_&mel7%4M?BzLV$qy#VwDAI4HjUSE$j*-ro98SFQJduA&86HY(^(K`ll9c2I*B z0V4i=;a}0pe?k0l5&FkBR!CeB5Rz$-592-`f!aVR0DmpwuXyKUq!avKxjb^z$mEBB zP^|_>xflN<%7Z}-jsiY<^l>etfqz7K7(@z=0zL%j5hXVEk0=i#fxuC~+q^%boTmK| z<)P_2I0|^z*GClk+&`i`^ne9N0q^qnh~od@k0=j4|G-heTarDZ5SBflfHx=u2LNxT z@(7S!`vCCRS_PaGyf*TY6t&|wDR`wMI0ATT)guDN*aO0UmS_bI1fIk42y{5{p8-8& zw15MF=LS3iElocF{dbuH;DF%K%|}3o`Tqj&G1dtV2=17C1Y}%(00fJ-FoT^x#9zQc z!QKClpl2%&p#KO4fK&hHOM=_@pDgLYa|#X$?znqg(!l0Fmh{J62iynpNZqmXoBHn_ z5%6pO(=dLdg@D-JgMj!qGZ~!xpXSHk$-55!M*f#E0!|IClReV!p8UR>|E8gVLx3wJ ij}UBU4-o$&^+ZV)7S!ANSJER9gc|6H)Or5v?Ee5-5^_}l literal 0 HcmV?d00001 diff --git a/ADRpy/analisis/Modulos/config_and_loading.py b/ADRpy/analisis/Modulos/config_and_loading.py new file mode 100644 index 00000000..de1dced2 --- /dev/null +++ b/ADRpy/analisis/Modulos/config_and_loading.py @@ -0,0 +1,65 @@ +import pandas as pd +import tkinter as tk +from tkinter import simpledialog, messagebox +from openpyxl import load_workbook + + + +def configurar_entorno(max_rows=20, max_columns=10): + """ + Configura el entorno para mostrar más datos en la consola. + :param max_rows: Número máximo de filas para mostrar en consola. + :param max_columns: Número máximo de columnas para mostrar en consola. + """ + pd.set_option('display.max_rows', max_rows) + pd.set_option('display.max_columns', max_columns) + + +def cargar_datos(ruta_archivo='Datos_aeronaves.xlsx'): + """ + Carga los datos desde un archivo Excel y realiza validaciones. + Devuelve el DataFrame cargado y la ruta utilizada. + """ + # Solicitar al usuario la ruta del archivo si no se proporciona + if ruta_archivo is None: + ruta_archivo = input("Ingrese la ruta del archivo Excel original (o presione Enter para usar 'C:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsx'): ").strip() + if not ruta_archivo: + ruta_archivo = "C:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsxC:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsx" # Asignar valor predeterminado + + # Validar el formato del archivo + if not ruta_archivo.endswith(('.xlsx', '.xlsm')): + raise ValueError("El archivo debe estar en formato .xlsx o .xlsm compatible con openpyxl.") + + # Mostrar mensaje de carga + print(f"=== Cargando datos desde el archivo: {ruta_archivo} ===") + + try: + # Cargar el archivo con encabezado e índice configurados + df = pd.read_excel(ruta_archivo, header=0, index_col=0) + + # Validaciones adicionales + if df.empty: + raise ValueError("El archivo cargado está vacío. Verifica el archivo de origen.") + + # Manejar índices nulos + if df.index.isnull().any(): + print("Advertencia: El índice contiene valores nulos. Se reemplazarán por 'indice_desconocido'.") + df.index = df.index.fillna("indice_desconocido") + + # Manejar columnas nulas + if df.columns.isnull().any(): + print("Advertencia: Algunas columnas contienen valores nulos. Se reemplazarán por 'columna_desconocida'.") + df.columns = df.columns.fillna("columna_desconocida") + + # Mostrar información básica del DataFrame cargado + print("\n=== Resumen inicial del DataFrame cargado ===") + print(df.info()) + #print("\n=== Vista previa de índices y columnas ===") + #print(f"Primeros índices: {df.index.tolist()[:10]}") + #print(f"Primeras columnas: {df.columns.tolist()[:10]}") + + return df, ruta_archivo + except FileNotFoundError: + raise ValueError("Error: Archivo no encontrado.") + except Exception as e: + raise ValueError(f"Error al cargar el archivo: {e}") diff --git a/ADRpy/analisis/Modulos/correlation_analysis.py b/ADRpy/analisis/Modulos/correlation_analysis.py new file mode 100644 index 00000000..093a34da --- /dev/null +++ b/ADRpy/analisis/Modulos/correlation_analysis.py @@ -0,0 +1,108 @@ +import pandas as pd +import seaborn as sns +import matplotlib.pyplot as plt +from sklearn.metrics import r2_score +from sklearn.linear_model import LinearRegression +import numpy as np +from .html_utils import convertir_a_html +from .user_interaction import solicitar_umbral + + + + +def calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados, valor_por_defecto=0.7): + """ + Calcula las correlaciones completas y filtradas entre variables seleccionadas, + genera tablas en HTML con un resumen agregado, y crea un heatmap. + :param df_procesado: DataFrame procesado con los datos completos. + :param parametros_seleccionados: Lista de variables a incluir en los cálculos y visualización. + :param valor_por_defecto: Umbral predeterminado para correlaciones significativas. + :param devolver_tabla: Si True, retorna la tabla completa de correlaciones. + :return: Tabla completa de correlaciones (opcional). + """ + def agregar_resumen_a_tabla(tabla, titulo): + """ + Agrega un resumen al final de una tabla HTML indicando: + - Cantidad total de valores. + - Cantidad de valores numéricos. + - Cantidad de valores NaN. + """ + total_valores = tabla.size + valores_numericos = tabla.count().sum() + valores_nan = total_valores - valores_numericos + + resumen = pd.DataFrame({ + "Resumen": ["Total de valores", "Valores numéricos", "Valores NaN"], + "Cantidad": [total_valores, valores_numericos, valores_nan] + }) + + convertir_a_html(tabla, titulo=titulo, mostrar=True) + convertir_a_html(resumen, titulo="Resumen de la Tabla", mostrar=True) + + try: + # === Paso 1: Solicitar umbral al usuario === + umbral = solicitar_umbral(valor_por_defecto) + print(f"\nUmbral seleccionado para correlaciones significativas: {umbral}") + + # === Validación de parámetros seleccionados === + parametros_no_encontrados = [v for v in parametros_seleccionados if v not in df_procesado.index] + if parametros_no_encontrados: + raise ValueError(f"Los siguientes parámetros no se encontraron en los datos procesados: {', '.join(parametros_no_encontrados)}") + + # === Tabla completa (sin filtrar) === + print("\n=== Cálculo de tabla completa ===") + tabla_completa = df_procesado.transpose().corr() + agregar_resumen_a_tabla(tabla_completa.round(3), "Tabla de Correlaciones con todos los parametros(tabla_completa)") + + # Filtrar correlaciones por el umbral + tabla_completa_significativa = tabla_completa[ + (tabla_completa.abs() >= umbral) & (tabla_completa != 1) + ] + #agregar_resumen_a_tabla(tabla_completa_significativa.round(3), f"Tabla de Correlaciones Significativas (Umbral >= {umbral})") + + # === Filtrar datos seleccionados === + print("\n=== Filtrando datos seleccionados ===") + + datos_filtrados = df_procesado.loc[parametros_seleccionados].transpose() + + # Tabla filtrada + print("\n=== Cálculo de correlaciones filtradas ===") + tabla_filtrada = datos_filtrados.corr() + agregar_resumen_a_tabla(tabla_filtrada.round(3), "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)") + + # Filtrar correlaciones por el umbral para la tabla filtrada + tabla_filtrada_significativa = tabla_filtrada[ + (tabla_filtrada.abs() >= umbral) & (tabla_filtrada != 1) + ] + agregar_resumen_a_tabla( + tabla_filtrada_significativa.round(3), + f"Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= {umbral})" + ) + + # Preparar datos para el heatmap + print("\n=== Preparando datos para el heatmap ===") + heatmap_data = datos_filtrados.dropna(thresh=2) # Excluir variables con menos de 2 valores válidos + heatmap_correlaciones = heatmap_data.corr() + + # Generar heatmap + print("\n=== Generando heatmap ===") + plt.figure(figsize=(12, 10)) + cmap = sns.diverging_palette(10, 145, s=80, l=55, n=9, as_cmap=True) + sns.heatmap( + heatmap_correlaciones, + annot=True, + cmap=cmap, + center=0, + linewidths=0.5, + vmin=-1, + vmax=1 + ) + plt.title(f"Heatmap de Correlaciones de Variables Seleccionadas (Umbral >= {umbral})") + plt.show() + + except ValueError as e: + print(f"Error: {e}. Por favor verifica los parámetros seleccionados.") + except KeyError as e: + print(f"Error: {e}. Asegúrate de que las variables seleccionadas existen en los datos.") + + return tabla_completa \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/correlation_imputation.py b/ADRpy/analisis/Modulos/correlation_imputation.py new file mode 100644 index 00000000..05ce634f --- /dev/null +++ b/ADRpy/analisis/Modulos/correlation_imputation.py @@ -0,0 +1,224 @@ +import pandas as pd +import numpy as np +from sklearn.linear_model import LinearRegression +from .html_utils import convertir_a_html + + + + +def Imputacion_por_correlacion( + df_correlacion, + parametros_preseleccionados, + tabla_completa, + min_datos_validos=5, + max_lineas_consola=250, + umbral_correlacion=0.7, + nivel_confianza_min_correlacion=0.5, + reduccion_confianza=0.05 +): + # Lógica de la función + """ + Imputa valores faltantes en un dataframe basado en correlaciones significativas entre parámetros. + + Parámetros: + df_procesado (pd.DataFrame): DataFrame con los datos a procesar. + parametros_preseleccionados (list): Lista de parámetros a imputar. + umbral_correlacion (float): Valor mínimo absoluto de correlación para considerar como significativa. + min_datos_validos (int): Mínimo número de datos válidos requeridos por parámetro para ser incluido. + max_lineas_consola (int): Máximo número de líneas a imprimir en la consola. + + Retorna: + pd.DataFrame: DataFrame con valores imputados. + """ + # Cargar datos simulados + df = df_correlacion.copy() + + # Mostrar df en formato HTML + print("\n=== DataFrame inicial ===") + convertir_a_html(df, titulo="DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())", mostrar=True) + #print("Parámetros disponibles en el índice del DataFrame:") + #print(df.index.tolist()) + + # Convertir todo a numérico + print("\n=== Convertir todo a numérico ===") + df = df.apply(pd.to_numeric, errors='coerce') # Forzar datos no numéricos a NaN + + #afasfasfasfasf no se que hace + parametros_validos = df.index[df.notna().sum(axis=1) >= 5].tolist() + df = df.loc[parametros_validos] + print(type(parametros_validos)) + + + # === PASO 1: CÁLCULO DE CORRELACIONES === + print("\n=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===") + tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen(df, parametros_seleccionados, valor_por_defecto=0.7) + correlaciones = tabla_completa.copy() + indices_validos = df.index + + # Filtrar correlaciones para que coincidan los índices y las columnas con parámetros válidos + correlaciones_filtradas = correlaciones.loc[ + indices_validos.intersection(correlaciones.index), # Filtra filas válidas + indices_validos.intersection(correlaciones.columns) # Filtra columnas válidas + ] + + correlaciones_aceptables = correlaciones_filtradas[(correlaciones_filtradas.abs() >= 0.7) & (correlaciones_filtradas.abs() < 1.0)] + + # Mostrar tabla de correlaciones + #convertir_a_html(correlaciones, titulo="Tabla de Correlaciones", mostrar=True) + #print("Parámetros disponibles en el índice del DataFrame:") + #print(correlaciones.index.tolist()) + + # Mostrar correlaciones aceptables en HTML + convertir_a_html( + datos_procesados=correlaciones_aceptables, + titulo="Tabla de correlaciones con filtro de umbral", + mostrar=True + ) + #print("Parámetros disponibles en el índice del DataFrame:") + #print(correlaciones_aceptables.index.tolist()) + + # === PASO 2: IMPUTACIÓN === + print("\n=== PASO 2: IMPUTACIÓN DE VALORES ===") + valores_imputados = 0 + lineas_impresas = 0 + MAX_LINEAS_CONSOLA = 40000000 + + def evaluar_confianza(puntaje): + """Evalúa el nivel de confianza basado en el puntaje.""" + if puntaje >= 0.9: + return "Confianza Muy Alta" + elif puntaje >= 0.75: + return "Confianza Alta" + elif puntaje >= 0.6: + return "Confianza Media" + elif puntaje >= 0.4: + return "Confianza Baja" + else: + return "Confianza Muy Baja" + + + #Declara una variable para crear una lista para registrar las imputaciones + reporte_imputaciones = [] + + + + for parametro in parametros_preseleccionados: + if parametro not in correlaciones_aceptables.index: + print(f"\n=== {parametro}: Sin correlaciones significativas (|r| < 0.7) ===") + continue + + valores_faltantes = df.loc[parametro][df.loc[parametro].isna()].index.tolist() + if not valores_faltantes: + print(f"\n=== {parametro}: No hay valores faltantes para imputar. ===") + continue + + print(f"\n=== Imputación para el parámetro: **{parametro}** ===") + for aeronave in valores_faltantes: + if lineas_impresas >= MAX_LINEAS_CONSOLA: + print("\n--- Límite de impresión alcanzado. ---") + break + + print(f"\n--- Imputación para aeronave: **{aeronave}** ---") + valores_predichos = [] + + correlaciones_parametro = correlaciones_aceptables.loc[parametro].dropna() + + for parametro_correlacionado, correlacion in correlaciones_parametro.items(): + datos_validos = df.loc[[parametro, parametro_correlacionado]].dropna(axis=1) + + if datos_validos.shape[1] < 5: + continue + + # Evitar duplicados + datos_validos = datos_validos.T.drop_duplicates().T + + X = datos_validos.loc[parametro_correlacionado].values.reshape(-1, 1) + y = datos_validos.loc[parametro].values + + # Entrenar modelo de regresión + modelo = LinearRegression().fit(X, y) + r2 = modelo.score(X, y) + desviacion_std = np.std(y - modelo.predict(X)) + varianza = np.var(y - modelo.predict(X)) + incertidumbre = desviacion_std / np.sqrt(len(y)) + puntaje_confianza = 0.4 * r2 + 0.3 * (1 - incertidumbre) + 0.2 * (1 - desviacion_std) + 0.1 * (1 - varianza) + nivel_confianza = evaluar_confianza(puntaje_confianza) + + if pd.notna(df.loc[parametro_correlacionado, aeronave]): + valor_imputado = modelo.predict([[df.loc[parametro_correlacionado, aeronave]]])[0] + valores_predichos.append( + (parametro_correlacionado, round(valor_imputado, 3), round(r2, 3), round(desviacion_std, 3)) + ) + + # Detalle de datos usados + print(f"\n--- Correlación: {parametro_correlacionado} (r = {round(correlacion, 3)}) ---") + print(f"Aeronaves utilizadas: {datos_validos.columns.tolist()}") + print(f"Valores para {parametro_correlacionado}: {X.flatten().round(3).tolist()}") + print(f"Valores para {parametro}: {y.round(3).tolist()}") + print(f"Ecuación de regresión: y = {round(modelo.coef_[0], 3)}x + {round(modelo.intercept_, 3)}") + print(f"Valor del parámetro correlacionado para la aeronave: {round(df.loc[parametro_correlacionado, aeronave], 3)}") + print(f"Predicción obtenida: {round(valor_imputado, 3)}") + print(f"\tR²: {r2}, Desviación Estándar: {desviacion_std}, Varianza: {varianza}, Incertidumbre: {incertidumbre}") + print(f"\tNivel de confianza: {nivel_confianza}") + lineas_impresas += 1 + + if valores_predichos: + valor_final = np.median([pred[1] for pred in valores_predichos]) + df.loc[parametro, aeronave] = round(valor_final, 3) + valores_imputados += 1 + print(f"Valores imputados: {[f'{pred[0]}: {pred[1]}' for pred in valores_predichos]}") + print(f"**Mediana calculada:** {round(valor_final, 3)}") + + # Registro correcto + reporte_imputaciones.append({ + "Aeronave": aeronave, + "Parámetro": parametro, + "Valor Imputado": valor_final, + "Nivel de Confianza": puntaje_confianza + }) + else: + info_imposible = pd.DataFrame([{ + "Mensaje": f"No se pudo imputar el parámetro '{parametro}' para la aeronave '{aeronave}'." + }]) + convertir_a_html(info_imposible, titulo="Imputación no Exitosa", mostrar=True) + + lineas_impresas += 1 + + + # Filtro y generación del reporte final + df_reporte = pd.DataFrame(reporte_imputaciones) + #print("Contenido de reporte_imputaciones:", reporte_imputaciones) + #print("Columnas de df_reporte:", df_reporte.columns) + #print("Contenido inicial de df_reporte:\n", df_reporte.head()) + if "Nivel de Confianza" in df_reporte.columns: + df_reporte = df_reporte[df_reporte["Nivel de Confianza"] >= nivel_confianza_min_correlacion] + else: + print("La columna 'Nivel de Confianza' no está presente en df_reporte.") + # Maneja el caso sin filtro, por ejemplo: + return df_procesado, [] + + + # Resumen de imputaciones + resumen_imputaciones = df_reporte.groupby("Aeronave").size().reset_index(name="Cantidad de Valores Imputados") + total_imputaciones = resumen_imputaciones["Cantidad de Valores Imputados"].sum() + resumen_imputaciones.loc["Total"] = ["Total", total_imputaciones] + + # Mostrar reportes (HTML opcional) + convertir_a_html(df_reporte, titulo="Reporte Final de Imputaciones", mostrar=True) + convertir_a_html(resumen_imputaciones, titulo="Resumen de Imputaciones", mostrar=True) + + # Validar si se realizaron imputaciones + if not reporte_imputaciones: + print("No se realizaron imputaciones con éxito.") + return df, [] + + # Validar si el DataFrame está vacío (seguridad adicional) + if df.empty: + print("El DataFrame de resultados está vacío.") + return df, [] + + # Opcional: convertir reporte_imputaciones a DataFrame si necesario + #df_reporte_final = pd.DataFrame(reporte_imputaciones) + + # Retornar el DataFrame procesado y la lista de imputaciones + return df, reporte_imputaciones \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/data_processing.py b/ADRpy/analisis/Modulos/data_processing.py new file mode 100644 index 00000000..eed26b63 --- /dev/null +++ b/ADRpy/analisis/Modulos/data_processing.py @@ -0,0 +1,234 @@ +import pandas as pd +import numpy as np +import tkinter as tk +from tkinter import simpledialog + + + +def procesar_datos_y_manejar_duplicados(df): + """ + Limpia un DataFrame preservando la estructura original y maneja duplicados en índices y columnas. + Incluye interacción para gestionar duplicados según las elecciones del usuario. + :param df: DataFrame a procesar. + :return: DataFrame limpio y procesado. + """ + import tkinter as tk + from tkinter import simpledialog + + try: + print("=== Inicio del procesamiento de datos ===") + + # Paso 1: Limpieza inicial de encabezados + df.columns = df.columns.str.strip().str.replace('\xa0', ' ', regex=True) + df.index = df.index.astype(str).str.strip().str.replace('\xa0', ' ', regex=True) + + # Paso 2: Eliminar filas y columnas completamente vacías + df.dropna(how='all', inplace=True) # Filas vacías + df.dropna(how='all', axis=1, inplace=True) # Columnas vacías + + # Paso 3: Manejo de duplicados + print("\n=== Comprobación de duplicados ===") + duplicados_fila = df.index[df.index.duplicated()].tolist() + duplicados_columna = df.columns[df.columns.duplicated()].tolist() + + if not duplicados_fila and not duplicados_columna: + print("No se encontraron duplicados en índices o columnas.") + else: + print(f"Índices duplicados: {duplicados_fila}") + print(f"Columnas duplicadas: {duplicados_columna}") + + # Crear ventana emergente para interacción + root = tk.Tk() + root.withdraw() + + # Preguntar manejo global de duplicados + respuesta_global = simpledialog.askstring( + "Manejo global de duplicados", + "Se encontraron duplicados. ¿Deseas aplicar una acción global a todos?\n" + "[1] Eliminar todos los duplicados\n" + "[2] Conservar el primero en todos\n" + "[3] Conservar el último en todos\n" + "[4] Procesar duplicados uno por uno" + ) + + # Aplicar acción global si corresponde + if respuesta_global in ['1', '2', '3']: + if respuesta_global == '1': + print("Eliminando todos los duplicados...") + if duplicados_fila: + df = df.loc[~df.index.duplicated(keep=False)] + if duplicados_columna: + df = df.loc[:, ~df.columns.duplicated(keep=False)] + + elif respuesta_global == '2': + print("Conservando el primero en todos los duplicados...") + if duplicados_fila: + df = df.loc[~df.index.duplicated(keep='first')] + if duplicados_columna: + df = df.loc[:, ~df.columns.duplicated(keep='first')] + + elif respuesta_global == '3': + print("Conservando el último en todos los duplicados...") + if duplicados_fila: + df = df.loc[~df.index.duplicated(keep='last')] + if duplicados_columna: + df = df.loc[:, ~df.columns.duplicated(keep='last')] + else: + # Procesar duplicados uno por uno si respuesta_global es '4' + for duplicado in duplicados_fila + duplicados_columna: + tipo = "Índice" if duplicado in duplicados_fila else "Columna" + respuesta = simpledialog.askstring( + "Duplicado encontrado", + f"{tipo} duplicado '{duplicado}' encontrado. Opciones:\n" + "[1] Eliminar\n" + "[2] Conservar el primero\n" + "[3] Conservar el último" + ) + # Realizar la acción según la elección del usuario + if respuesta == '1': + if tipo == "Índice": + df = df[df.index != duplicado] + else: + df = df.loc[:, df.columns != duplicado] + elif respuesta == '2': + if tipo == "Índice": + df = df.loc[~df.index.duplicated(keep='first')] + else: + df = df.loc[:, ~df.columns.duplicated(keep='first')] + elif respuesta == '3': + if tipo == "Índice": + df = df.loc[~df.index.duplicated(keep='last')] + else: + df = df.loc[:, ~df.columns.duplicated(keep='last')] + + # Paso 4: Convertir valores internos a numéricos + print("\n=== Convirtiendo valores a numéricos donde sea posible ===") + for col in df.columns: + try: + df.loc[:, col] = pd.to_numeric(df[col], errors='coerce') + except Exception as e: + print(f"Advertencia: No se pudo convertir la columna '{col}' a numérico. Error: {e}") + + print("=== Procesamiento completado ===") + return df + + except Exception as e: + raise ValueError(f"Error durante el procesamiento y manejo de duplicados: {e}") + + +def mostrar_celdas_faltantes_con_seleccion(df): + """ + Permite al usuario seleccionar una columna para analizar y muestra las celdas faltantes. + Si el usuario no selecciona ninguna columna, utiliza una columna predeterminada. + Maneja columnas con más de 26 posiciones generando etiquetas en formato Excel. + :param df: DataFrame procesado. + :return: DataFrame con los detalles de las celdas faltantes (si las hay). + """ + def seleccionar_columna(df): + """ + Permite al usuario seleccionar una columna específica para validar. + Si no selecciona ninguna, retorna la primera columna como predeterminada. + """ + # Crear un diccionario para asociar números con las columnas + columnas_dict = {i + 1: col for i, col in enumerate(df.columns)} + opciones_texto = "\n".join([f"{num}: {col}" for num, col in columnas_dict.items()]) + + try: + # Solicitar al usuario seleccionar una columna + columna_numero = simpledialog.askstring( + "Selección de columna", + f"Selecciona el número correspondiente a la columna que deseas validar:\n\n{opciones_texto}" + ) + if not columna_numero: # Si no se selecciona nada, usar la primera columna + print("No se seleccionó ninguna columna. Usando la primera columna como predeterminada.") + return df.columns[0] + + columna_numero = int(columna_numero) + + if columna_numero not in columnas_dict: + raise ValueError("Número ingresado fuera del rango válido.") + + return columnas_dict[columna_numero] + + except ValueError as e: + print(f"Error: {e}. Finalizando la ejecución.") + exit() + + def indice_a_columna_excel(indice): + """ + Convierte un índice numérico de columna en una etiqueta al estilo Excel (A, B, ..., Z, AA, AB, ...). + :param indice: Índice numérico de la columna (0 para A, 1 para B, ..., 25 para Z, 26 para AA, etc.). + :return: Etiqueta de columna en formato Excel. + """ + etiqueta = "" + while indice >= 0: + etiqueta = chr(indice % 26 + ord('A')) + etiqueta + indice = indice // 26 - 1 + return etiqueta + + try: + # Selección de columna + columna_prueba = seleccionar_columna(df) + + # Identificar celdas faltantes en la columna seleccionada + print(f"\n=== Analizando celdas faltantes en la columna: '{columna_prueba}' ===") + missing_indices = df[df[columna_prueba].isna()].index.tolist() + + if not missing_indices: + print(f"No se encontraron valores faltantes en la columna '{columna_prueba}'.") + return pd.DataFrame() # Devuelve un DataFrame vacío si no hay faltantes + + # Crear un DataFrame para almacenar los resultados + resultados = [] + + for idx in missing_indices: + fila_excel = df.index.get_loc(idx) + 2 # +2 para ajustarse al formato Excel (encabezado en fila 1) + columna_excel = indice_a_columna_excel(df.columns.get_loc(columna_prueba)) + celda_excel = f"{columna_excel}{fila_excel}" + resultados.append({ + "Índice": idx, + "Celda": celda_excel, + "Columna": columna_prueba, + "Valor Actual": "NaN" + }) + + # Convertir resultados a DataFrame + df_resultados = pd.DataFrame(resultados) + + return df_resultados + + except Exception as e: + print(f"Error al analizar celdas faltantes: {e}") + raise + + +def generar_resumen_faltantes(df, titulo="Resumen de Valores Faltantes por Columna", ancho="50%", alto="300px"): + """ + Genera un resumen de los valores faltantes por columna en un DataFrame. + También genera una tabla HTML con la sumatoria total de los valores faltantes de todas las columnas. + + :param df: DataFrame a analizar. + :param titulo: Título opcional para mostrar en la tabla HTML. + :param ancho: Ancho del contenedor HTML. + :param alto: Alto del contenedor HTML. + :return: Tuple con dos DataFrames: resumen de valores faltantes por columna y sumatoria total. + """ + # Calcular la cantidad de valores faltantes por columna + faltantes_por_columna = df.isnull().sum() + + # Crear un DataFrame con el resumen por columna + resumen_faltantes = faltantes_por_columna.reset_index() + resumen_faltantes.columns = ["Columna", "Valores Faltantes"] + + # Calcular la sumatoria total de los valores faltantes + total_faltantes = faltantes_por_columna.sum() + resumen_total = pd.DataFrame({"Resumen": ["Total de Valores Faltantes"], "Cantidad": [total_faltantes]}) + + # Mostrar el resumen por columna como una tabla HTML + convertir_a_html(resumen_faltantes, titulo=titulo, ancho=ancho, alto=alto, mostrar=True) + + # Mostrar la sumatoria total como una tabla HTML + convertir_a_html(resumen_total, titulo="Sumatoria Total de Valores Faltantes", ancho=ancho, alto="100px", mostrar=True) + + # Retornar ambos DataFrames para su posible uso posterior + return resumen_faltantes, resumen_total \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/excel_export.py b/ADRpy/analisis/Modulos/excel_export.py new file mode 100644 index 00000000..05216195 --- /dev/null +++ b/ADRpy/analisis/Modulos/excel_export.py @@ -0,0 +1,71 @@ +import pandas as pd +from openpyxl import load_workbook +from openpyxl.styles import PatternFill +from openpyxl.comments import Comment + + + + +def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputaciones, archivo_destino="archivo_imputaciones.xlsx"): + """ + Exporta el DataFrame procesado a un archivo Excel manteniendo el formato original. + Agrega colores y comentarios a las celdas imputadas por similitud y correlación. + + :param archivo_origen: Ruta del archivo Excel original. + :param archivo_destino: Ruta del archivo Excel de salida. + :param df_procesado: DataFrame con las imputaciones realizadas. + :param resumen_imputaciones: Lista de diccionarios con detalles de imputaciones. + """ + try: + # Asegurarse de que 'resumen_imputaciones' sea una lista de diccionarios + if isinstance(resumen_imputaciones, pd.DataFrame): + resumen_imputaciones = resumen_imputaciones.to_dict('records') + + # Manejar el caso donde no haya imputaciones + if not resumen_imputaciones: + print("No hay imputaciones para exportar.") + return + + print(f"=== Exportando datos al archivo: {archivo_destino} ===") + wb = load_workbook(archivo_origen) + ws = wb.active + + color_similitud = PatternFill(start_color="FFFF00", end_color="FFFF00", fill_type="solid") + color_correlacion = PatternFill(start_color="00FF00", end_color="00FF00", fill_type="solid") + + imputaciones_por_celda = { + (registro["Parámetro"], registro["Aeronave"]): registro + for registro in resumen_imputaciones + } + + # Recorrer las celdas del archivo original y actualizar según las imputaciones + for fila in ws.iter_rows(min_row=2, min_col=2): # Ajustar filas/columnas según tu estructura + for celda in fila: + aeronave = ws.cell(row=1, column=celda.column).value # Obtener nombre del parámetro + parametro = ws.cell(row=celda.row, column=1).value # Obtener nombre de la aeronave + + if (parametro, aeronave) in imputaciones_por_celda: + registro = imputaciones_por_celda[(parametro, aeronave)] + valor_imputado = df_procesado.loc[parametro, aeronave] + + # Actualizar el valor en la celda + celda.value = valor_imputado + + # Asignar color según el tipo de imputación + if registro["Método"] == "Similitud": + celda.fill = color_similitud + elif registro["Método"] == "Correlación": + celda.fill = color_correlacion + + # Agregar comentario con el nivel de confianza + comentario = f"Nivel de confianza: {registro['Nivel de Confianza']:.2f}" + celda.comment = Comment(comentario, "Sistema") + + # Guardar el archivo con las imputaciones + wb.save(archivo_destino) + print(f"Exportación completada. El archivo se guardó como '{archivo_destino}'.") + + except FileNotFoundError: + print(f"Error: El archivo '{archivo_origen}' no fue encontrado.") + except Exception as e: + print(f"Error al procesar el archivo: {e}") diff --git a/ADRpy/analisis/Modulos/html_utils.py b/ADRpy/analisis/Modulos/html_utils.py new file mode 100644 index 00000000..293ebdfc --- /dev/null +++ b/ADRpy/analisis/Modulos/html_utils.py @@ -0,0 +1,71 @@ +import pandas as pd +import numpy as np +from IPython.display import display, HTML + + + +def convertir_a_html(datos_procesados, titulo="", ancho="100%", alto="400px", mostrar=True): + """ + Convierte un DataFrame o Series a una tabla HTML, redondeando números a 3 cifras significativas. + :param datos_procesados: DataFrame o Series a transformar. + :param titulo: Título opcional para mostrar en la tabla. + :param ancho: Ancho del contenedor HTML. + :param alto: Alto del contenedor HTML. + :param mostrar: Si True, muestra la tabla directamente; si False, devuelve el HTML. + """ + + # Asegurarse de que sea un DataFrame + if isinstance(datos_procesados, pd.Series): + datos_procesados = datos_procesados.to_frame(name="Valores") + datos_procesados.index.name = "Índice" + + # Redondear números a 3 cifras significativas sin notación científica + datos_procesados = datos_procesados.apply( + lambda col: col.map( + lambda x: f"{x:.3f}" if isinstance(x, (int, float)) else x + ) if col.dtypes in [np.float64, np.int64] else col + ) + + # Estilo CSS modificado + estilo_scroll = f""" + + """ + # Generar el HTML con el título y la tabla + tabla_html = estilo_scroll + f"

{titulo}

{datos_procesados.to_html()}
" + + # Mostrar o devolver el HTML + if mostrar: + from IPython.display import display, HTML + display(HTML(tabla_html)) # Muestra directamente + else: + return tabla_html # Devuelve el HTML diff --git a/ADRpy/analisis/Modulos/imputation_loop.py b/ADRpy/analisis/Modulos/imputation_loop.py new file mode 100644 index 00000000..77349906 --- /dev/null +++ b/ADRpy/analisis/Modulos/imputation_loop.py @@ -0,0 +1,202 @@ +import pandas as pd +from .similarity_imputation import imputacion_similitud_con_rango +from .correlation_imputation import Imputacion_por_correlacion +from .html_utils import convertir_a_html +from .data_processing import generar_resumen_faltantes + + + + +def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza=0.05, max_iteraciones=7): + """ + Realiza un bucle alternando imputaciones por similitud y correlación, consolidando los resultados. + Ahora se evita actualizar los DataFrames inmediatamente, y se eligen las imputaciones finales + al final de cada iteración. + + Retorna: + df_procesado_base (pd.DataFrame): DataFrame con imputaciones realizadas. + df_resumen (pd.DataFrame): Detalle consolidado de imputaciones realizadas. + """ + + df_procesado_base = df_procesado.copy() # Copia base del DataFrame original + df_filtrado_base = df_filtrado.copy() # Copia base del DataFrame original + + convertir_a_html(df_procesado_base, titulo="df_procesado_base", ancho="100%", alto="400px", mostrar=True) + convertir_a_html(df_filtrado_base, titulo="df_filtrado_base", ancho="100%", alto="400px", mostrar=True) + resumen_imputaciones = [] # Lista para consolidar detalles de todas las imputaciones finales + + # Configuración inicial para imputaciones por similitud + print("\n=== Configuración Inicial ===") + try: + rango_min = float(input("Ingrese el rango mínimo de MTOW (1-200, predeterminado 85): ") or 85) / 100 + rango_max = float(input("Ingrese el rango máximo de MTOW (1-200, predeterminado 115): ") or 115) / 100 + nivel_confianza_min = float(input("Ingrese el nivel mínimo de confianza (0-1, predeterminado 0.5): ") or 0.5) + + if not (0.01 <= rango_min <= 2.00 and 0.01 <= rango_max <= 2.00): + raise ValueError("Los rangos deben estar entre 1% y 200%.") + if rango_min >= rango_max: + raise ValueError("El rango mínimo no puede ser mayor o igual al rango máximo.") + if not (0 <= nivel_confianza_min <= 1): + raise ValueError("El nivel de confianza debe estar entre 0 y 1.") + except ValueError as e: + print(f"Error: {e}. Usando valores predeterminados (85% mínimo, 115% máximo, 0.5 confianza mínima).") + rango_min, rango_max, nivel_confianza_min = 0.85, 1.15, 0.5 + + print(f"\nValores configurados: Rango MTOW [{rango_min*100:.0f}% - {rango_max*100:.0f}%], Confianza Mínima: {nivel_confianza_min:.2f}") + + # Configuración inicial para imputaciones por correlación + try: + umbral_correlacion = float(input("Ingrese el umbral mínimo de correlación (0-1, predeterminado 0.7): ") or 0.7) + nivel_confianza_min_correlacion = float(input("Ingrese el nivel mínimo de confianza para correlación (0-1, predeterminado 0.5): ") or 0.5) + + if not (0 <= umbral_correlacion <= 1): + raise ValueError("El umbral de correlación debe estar entre 0 y 1.") + if not (0 <= nivel_confianza_min_correlacion <= 1): + raise ValueError("El nivel de confianza debe estar entre 0 y 1.") + except ValueError as e: + print(f"Error: {e}. Usando valores predeterminados (umbral = 0.7, confianza mínima = 0.5).") + umbral_correlacion, nivel_confianza_min_correlacion = 0.7, 0.5 + + # Definir valores predeterminados para correlación + min_datos_validos = 5 # Cantidad mínima de datos requeridos por parámetro + umbral_correlacion = 0.7 + nivel_confianza_min_correlacion = 0.5 + reduccion_confianza = 0.05 + max_lineas_consola = 40000000 + + for iteracion in range(1, max_iteraciones + 1): + print("\n" + "="*80) + print(f"\033[1m=== INICIO DE ITERACIÓN {iteracion} ===\033[0m") + print("="*80) + + print(f"\n=== Iteración {iteracion}: Resumen antes de imputaciones ===") + resumen_antes, total_faltantes_antes = generar_resumen_faltantes( + df_procesado_base, titulo=f"Resumen de Valores Faltantes Antes de Iteración {iteracion}" + ) + + # Crear copias independientes para cada método + df_similitud = df_filtrado_base.copy() + df_correlacion = df_procesado_base.copy() + + # Imputación por similitud (no actualiza todavía) + print("\n" + "-"*80) + print(f"\033[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN {iteracion} ***\033[0m") + print("-"*80) + df_resultado_final, reporte_similitud = imputacion_similitud_con_rango( + df_filtrado=df_similitud, + df_procesado=df_procesado_base, + rango_min=rango_min, + rango_max=rango_max, + nivel_confianza_min=nivel_confianza_min + ) + + if reporte_similitud and len(reporte_similitud) > 0: + print("\033[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\033[0m") + # Se guardan las imputaciones de similitud, pero NO se actualiza el DataFrame aún. + # Se agregan la iteración y método aquí. + for registro in reporte_similitud: + registro["Iteración"] = iteracion + registro["Método"] = "Similitud" + registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** (iteracion - 1) + else: + print("\033[1mNo se realizaron imputaciones por similitud en esta iteración.\033[0m") + + # Imputación por correlación (no actualiza todavía) + print("\n" + "-"*80) + print(f"\033[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN {iteracion} ***\033[0m") + print("-"*80) + df_correlacion_final, reporte_correlacion = Imputacion_por_correlacion( + df_correlacion, + parametros_preseleccionados, + tabla_completa, + min_datos_validos=min_datos_validos, + max_lineas_consola=max_lineas_consola, + umbral_correlacion=umbral_correlacion, + nivel_confianza_min_correlacion=nivel_confianza_min_correlacion, + reduccion_confianza=reduccion_confianza + ) + + if reporte_correlacion and len(reporte_correlacion) > 0: + print("\033[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\033[0m") + for registro in reporte_correlacion: + registro["Iteración"] = iteracion + registro["Método"] = "Correlación" + registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** (iteracion - 1) + else: + print("\033[1mNo se realizaron imputaciones por correlación en esta iteración.\033[0m") + + # Combinar las imputaciones de similitud y correlación + imputaciones_candidatas = {} + + def registrar_imputacion(regs): + for reg in regs: + parametro = reg["Parámetro"] + aeronave = reg["Aeronave"] + key = (parametro, aeronave) + if key not in imputaciones_candidatas: + imputaciones_candidatas[key] = [] + imputaciones_candidatas[key].append(reg) + + if reporte_similitud and len(reporte_similitud) > 0: + registrar_imputacion(reporte_similitud) + if reporte_correlacion and len(reporte_correlacion) > 0: + registrar_imputacion(reporte_correlacion) + + # Seleccionar las mejores imputaciones por celda (la de mayor confianza) + imputaciones_finales = [] + for key, candidatos in imputaciones_candidatas.items(): + parametro, aeronave = key + # Si ya hay un valor en df_procesado_base, no imputar. + if not pd.isna(df_procesado_base.loc[parametro, aeronave]): + continue + # Escoger la de mayor confianza + mejor = max(candidatos, key=lambda x: x["Nivel de Confianza"]) + imputaciones_finales.append(mejor) + + # Ahora sí, aplicar las imputaciones finales al DataFrame base + for imp in imputaciones_finales: + parametro = imp["Parámetro"] + aeronave = imp["Aeronave"] + valor = imp["Valor Imputado"] + metodo = imp["Método"] + df_procesado_base.loc[parametro, aeronave] = valor + df_filtrado_base.loc[parametro, aeronave] = valor + resumen_imputaciones.append(imp) + print(f"Imputación final aplicada: {parametro} - {aeronave} = {valor} ({metodo})") + + print(f"\n=== Iteración {iteracion}: Resumen después de imputaciones ===") + resumen_despues, total_faltantes_despues = generar_resumen_faltantes( + df_filtrado_base, titulo=f"Resumen de Valores Faltantes Después de Iteración {iteracion}" + ) + + # Verificar condición de salida + no_similitud = (reporte_similitud is None or len(reporte_similitud) == 0) + no_correlacion = (reporte_correlacion is None or len(reporte_correlacion) == 0) + if no_similitud and no_correlacion: + print("\033[1mNo se realizaron nuevas imputaciones. Finalizando...\033[0m") + # Retornar resultados actuales antes de salir + return df_procesado_base, pd.DataFrame(resumen_imputaciones) + + print("\n" + "="*80) + print(f"\033[1m=== FIN DE ITERACIÓN {iteracion} ===\033[0m") + print("="*80) + + # Si se terminan las iteraciones sin break: + df_resumen = pd.DataFrame(resumen_imputaciones) + print("\n" + "="*80) + print("\033[1m=== RESUMEN FINAL ===\033[0m") + print("="*80) + + convertir_a_html( + df_procesado_base, + titulo="DataFrame Procesado Final (df_procesado_base)" + ) + convertir_a_html( + df_resumen, + titulo="Resumen Final de Imputaciones (df_resumen)" + ) + + print(f"\033[1mTotal de iteraciones realizadas: {iteracion}\033[0m") + print(f"\033[1mTotal de valores imputados: {len(resumen_imputaciones)}\033[0m") + + return df_procesado_base, df_resumen \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/similarity_imputation.py b/ADRpy/analisis/Modulos/similarity_imputation.py new file mode 100644 index 00000000..28706356 --- /dev/null +++ b/ADRpy/analisis/Modulos/similarity_imputation.py @@ -0,0 +1,295 @@ +import pandas as pd +import numpy as np +from sklearn.metrics import r2_score +from .html_utils import convertir_a_html +from .imputation_loop import imprimir_detalles_imputacion # si la función está ahí, si no corregimos + + + + + +def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min, rango_max, nivel_confianza_min): + + """ + Ajusta el rango de similitud e imputa valores faltantes en los parámetros de df_filtrado. + Genera un reporte final en HTML con un resumen agregado, filtrando por nivel de confianza. + :param df_filtrado: DataFrame con los parámetros a imputar. + :param df_procesado: DataFrame procesado con todos los datos. + :return: Nuevo DataFrame con los valores imputados. + """ + + # Crear una copia para mantener intacto el DataFrame original + df_resultado_por_similitud = df_filtrado.copy() + + # Función interna para imputar por similitud + def imputar_por_similitud(datos, parametro, aeronave, rango_min, rango_max, numero_valor_imputado): + + """ + Imputa un valor faltante basado en la similitud dentro del rango de MTOW. + Detalla el proceso con mensajes informativos y utiliza la mediana para calcular el valor imputado. + :param datos: DataFrame con los datos originales. + :param parametro: Parámetro a imputar. + :param aeronave: Aeronave con valor faltante. + :param rango_min: Rango mínimo de similitud. + :param rango_max: Rango máximo de similitud. + :return: Tuple (valor imputado, nivel de confianza) o (None, None) si no es posible imputar. + """ + + if df_filtrado.isna().all().all(): + print("Todos los valores en 'df_filtrado' están vacíos. No se puede proceder con la imputación.") + return df_filtrado, [] + + if df_procesado.isna().all().all(): + print("Todos los valores en 'df_procesado' están vacíos. No se puede proceder con la imputación.") + return df_filtrado, [] + + try: + # Verificar si MTOW está presente + if "Peso máximo al despegue (MTOW)" not in datos.index: + print(f"Advertencia: 'Peso máximo al despegue (MTOW)' no está en los datos para la aeronave '{aeronave}'.") + return None, None + + # Obtener el valor actual de MTOW + mtow_actual = datos.loc["Peso máximo al despegue (MTOW)", aeronave] + + # Validar si MTOW es válido + if pd.isna(mtow_actual): + print(f"MTOW faltante para la aeronave '{aeronave}'. Imputación no es posible.") + return None, None + + # Filtrar candidatas dentro del rango ajustado + candidatas_mtow = datos.loc[ + :, (datos.loc["Peso máximo al despegue (MTOW)"] >= rango_min * mtow_actual) & + (datos.loc["Peso máximo al despegue (MTOW)"] <= rango_max * mtow_actual) + ] + + if candidatas_mtow.empty: + print(f"No hay candidatos dentro del rango de {rango_min*100:.0f}% - {rango_max*100:.0f}%.") + return None, None + + # Excluir la misma aeronave de las candidatas + candidatas_mtow = candidatas_mtow.loc[:, candidatas_mtow.columns != aeronave] + + # Verificar que las candidatas tengan valores válidos en el parámetro a imputar + candidatas_validas = candidatas_mtow.loc[parametro].dropna() + + if candidatas_validas.empty: + print(f"Razón: Ninguna aeronave se encuentra dentro del rango MTOW de '{aeronave}'para el parametro '{parametro}'.") + return None, None + + + # Calcular los valores ajustados individualmente en función del MTOW de cada candidata + valores_ajustados = [] + mtow_candidatos = [] # Nueva lista para almacenar los valores de MTOW de los candidatos + detalles_ajustes = [] + + for candidata in candidatas_validas.index: + mtow_candidata = datos.loc["Peso máximo al despegue (MTOW)", candidata] + relacion_mtow_individual = mtow_candidata / mtow_actual + ajuste_individual = (relacion_mtow_individual - 1) / 4 + + valor_candidata = candidatas_validas[candidata] + valor_ajustado = valor_candidata * (1 + ajuste_individual) + + # Guardar en las listas correspondientes + valores_ajustados.append(valor_ajustado) + mtow_candidatos.append(mtow_candidata) + + + # Registrar detalle del ajuste + detalles_ajustes.append({ + "Aeronave": candidata, + "MTOW Candidata": mtow_candidata, + "Relación MTOW": relacion_mtow_individual, + "Ajuste Individual": ajuste_individual, + "Valor Original": valor_candidata, + "Valor Ajustado": valor_ajustado + }) + + + # Usar la mediana de los valores ajustados como valor final imputado + valor_imputado = np.median(valores_ajustados) + + # Calcular la confianza directamente + cantidad_minima = 3 + penalizacion_candidatos = 1 - (cantidad_minima - len(valores_ajustados)) / (3 * cantidad_minima) + penalizacion_candidatos = max(0, penalizacion_candidatos) # Evitar valores negativos + + # Cantidad ponderada basada en calidad + pesos_mtow = np.exp(-np.abs(np.array(mtow_candidatos) - mtow_actual) / mtow_actual) + cantidad_ponderada = np.sum(pesos_mtow) / len(mtow_candidatos) + + # Evaluación de R^2 con normalización + if len(candidatas_validas) > 1: + try: + r2 = r2_score(candidatas_validas.tolist(), valores_ajustados) + ponderacion_modelo = r2 + except ValueError: + print("No se puede calcular R^2: insuficientes datos válidos.") + r2 = None + else: + r2 = None + + # Usar dispersión como respaldo cuando R^2 no se puede calcular + if r2 is None: + dispersion = np.std(valores_ajustados) if len(valores_ajustados) > 1 else 1.0 + ponderacion_modelo = 1 / (1 + dispersion) + + # Validar ponderación del modelo + if ponderacion_modelo is not None and (ponderacion_modelo < 0 or ponderacion_modelo > 1): + print(f"Advertencia: Ponderación del modelo ({ponderacion_modelo:.3f}) fuera de rango. Revisar lógica previa.") + ponderacion_modelo = max(0, min(ponderacion_modelo, 1)) # Forzar a rango válido + + + # Confianza final combinada + peso_candidatos = 0.6 + peso_modelo = 0.4 + confianza_base = ( + peso_candidatos * cantidad_ponderada + + peso_modelo * ponderacion_modelo + ) + + # Aplicar penalización por pocos candidatos + confianza = confianza_base * penalizacion_candidatos + + # Asegurar valores entre 0 y 1 + confianza = min(1.0, max(0.0, confianza)) + + # Detalles del cálculo de confianza + calculos_confianza = { + "Penalización por pocos candidatos": penalizacion_candidatos, + "Cantidad Ponderada (basada en MTOW)": cantidad_ponderada, + "Ponderación del modelo (R² o dispersión)": ponderacion_modelo, + "Confianza Base": confianza_base, + "Confianza Final (tras penalización)": confianza + } + + imprimir_detalles_imputacion( + numero_valor_imputado=numero_valor_imputado, + parametro=parametro, + aeronave=aeronave, + mtow_actual=mtow_actual, + rango_min=rango_min, + rango_max=rango_max, + candidatas_validas=candidatas_validas, + detalles_ajustes=detalles_ajustes, + valores_ajustados=valores_ajustados, + valor_imputado=valor_imputado, + confianza=confianza, + calculos_confianza=calculos_confianza + ) + + + return valor_imputado, confianza + + + except Exception as e: + print(f"Error durante la imputación: {e}") + return None, None + + + + + try: + # Mostrar df_resultado_por_similitud en HTML para verificar valores iniciales + print("\n=== Verificación de 'df_resultado_por_similitud' ===") + convertir_a_html(df_resultado_por_similitud, titulo="Datos Filtrados por aeronaves seleccionadas antes de imputar(df_resultado_por_similitud)", mostrar=True) + + # Reporte de imputaciones + reporte_imputaciones = [] + numero_valor_imputado = 0 + + for parametro in df_resultado_por_similitud.index: + for aeronave in df_resultado_por_similitud.columns: + if pd.isna(df_resultado_por_similitud.loc[parametro, aeronave]): + # Realizar imputación + valor_imputado, confianza = imputar_por_similitud( + df_procesado, parametro, aeronave, rango_min, rango_max, numero_valor_imputado + ) + + # Verificar si se realizó una imputación válida + if valor_imputado is not None and confianza is not None and confianza >= nivel_confianza_min: + # Incrementar el contador SOLO aquí + numero_valor_imputado += 1 + # Asignar el valor imputado al DataFrame + df_resultado_por_similitud.loc[parametro, aeronave] = valor_imputado + # Registrar la imputación en el resumen + reporte_imputaciones.append({ + "Aeronave": aeronave, + "Parámetro": parametro, + "Valor Imputado": valor_imputado, + "Nivel de Confianza": confianza + }) + + elif confianza is not None and confianza < nivel_confianza_min: + print(f"Imputación descartada por baja confianza: {confianza:.3f} < {nivel_confianza_min}.") + else: + print(f"No se pudo imputar: {parametro} para {aeronave}.") + + + + # Generar reporte final en HTML con filtro de confianza + print("\n=== Generando reporte final ===") + if reporte_imputaciones: + df_reporte = pd.DataFrame(reporte_imputaciones) + #print("Contenido de reporte_imputaciones:", reporte_imputaciones) + df_reporte = df_reporte[df_reporte["Nivel de Confianza"] >= nivel_confianza_min] + convertir_a_html(df_reporte, titulo="Reporte Final de Imputaciones", mostrar=True) + else: + print("No se realizaron imputaciones con el nivel de confianza aceptable.") + + + except Exception as e: + print(f"Error durante la imputación: {e}") + + # Generar DataFrame con valores imputados + if not reporte_imputaciones: + print("No se realizaron imputaciones con éxito.") + return df_filtrado, [] + + + # Convertir lista de diccionarios a DataFrame para exportación final + df_reporte_final = pd.DataFrame(reporte_imputaciones) + + # Asegurar estructura del DataFrame imputado + df_resultado_final = df_resultado_por_similitud.copy() + + # Validar resultados + if df_resultado_final.empty: + print("El DataFrame de resultados está vacío.") + return df_filtrado, [] + + # Retornar DataFrame imputado y lista de diccionarios + return df_resultado_final, reporte_imputaciones + +def imprimir_detalles_imputacion(numero_valor_imputado, parametro, aeronave, mtow_actual, rango_min, rango_max, candidatas_validas, detalles_ajustes, valores_ajustados, valor_imputado, confianza, calculos_confianza): + """ + Imprime un resumen claro y organizado del proceso de imputación en consola. + """ + negrita = "\033[1m" + reset = "\033[0m" + + print(f"\n{negrita}======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #{numero_valor_imputado} ========================{reset}") + print(f"{negrita}Parámetro:{reset} {parametro}") + print(f"{negrita}Aeronave a imputar:{reset} {aeronave}") + print(f"{negrita}MTOW actual:{reset} {mtow_actual} kg") + print(f"{negrita}Rango Similitud:{reset} {rango_min*100:.0f}% - {rango_max*100:.0f}%") + print(f"{negrita}Candidatas dentro del rango:{reset} {', '.join(candidatas_validas.index)}") + + print("\nAeronaves Válidas para el Cálculo:") + print("-----------------------------------------------------------------------------------------------") + print("Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado") + print("------------|----------------|------------------------------|-------------------|----------------|---------------") + for detalle in detalles_ajustes: + print(f"{detalle['Aeronave']:12}| {detalle['MTOW Candidata']:14}| {detalle['Relación MTOW']:<30.3f}| {detalle['Ajuste Individual']:<19.4f}| {detalle['Valor Original']:<16.2f}| {detalle['Valor Ajustado']:<13.2f}") + print("-----------------------------------------------------------------------------------------------") + + print("\nCálculo del Valor Final:") + print(f"{negrita}- Se tomó la mediana de los valores ajustados {valores_ajustados} = {valor_imputado:.2f}{reset}") + print(f"{negrita}- Nivel de Confianza calculado:{reset} {confianza:.2f}") + print(f"{negrita}- Valor Imputado Final:{reset} {valor_imputado:.2f}") + + print("\nDetalle del Cálculo de Confianza:") + for key, value in calculos_confianza.items(): + print(f"{negrita}- {key}:{reset} {value:.2f}") + print(f"{negrita}============================================================================================{reset}\n") diff --git a/ADRpy/analisis/Modulos/user_interaction.py b/ADRpy/analisis/Modulos/user_interaction.py new file mode 100644 index 00000000..3af78070 --- /dev/null +++ b/ADRpy/analisis/Modulos/user_interaction.py @@ -0,0 +1,59 @@ +from tkinter import simpledialog + + + +def seleccionar_parametros_por_indices(elementos, predeterminados): + """ + Permite seleccionar parámetros desde los índices usando números en lugar de nombres. + :param elementos: Lista de nombres de parámetros disponibles (índices). + :param predeterminados: Lista de parámetros preseleccionados por defecto. + :return: Lista de parámetros seleccionados válidos. + """ + print("\n=== Selección de Parámetros ===") + print("Parámetros disponibles:") + for i, elem in enumerate(elementos, 1): + print(f"{i}. {elem}") + + # Mostrar preseleccionados + preseleccion_indices = [elementos.index(param) + 1 for param in predeterminados if param in elementos] + print("\nPreseleccionados: ", ", ".join([f"{i}" for i in preseleccion_indices])) + + # Entrada del usuario + seleccion = input("\nIngresa los números separados por coma (o presiona Enter para usar los preseleccionados): ") + + # Manejar casos según la entrada del usuario + if seleccion.strip(): # Si el usuario ingresó algo + try: + indices_seleccionados = [int(num.strip()) - 1 for num in seleccion.split(",")] + except ValueError: + print("⚠️ Entrada inválida. Usando parámetros preseleccionados.") + indices_seleccionados = [i - 1 for i in preseleccion_indices] + else: # Si el usuario presiona Enter sin ingresar nada + indices_seleccionados = [i - 1 for i in preseleccion_indices] + + # Construir la lista de seleccionados a partir de los índices válidos + seleccionados = [elementos[i] for i in indices_seleccionados if 0 <= i < len(elementos)] + + # Validar parámetros seleccionados contra elementos disponibles + seleccionados_validos = [p for p in seleccionados if p in elementos] + if len(seleccionados) > len(seleccionados_validos): + print(f"⚠️ Algunos parámetros seleccionados no son válidos y fueron eliminados: {set(seleccionados) - set(seleccionados_validos)}") + + # Retornar solo los parámetros válidos + return seleccionados_validos + +def solicitar_umbral(valor_por_defecto=0.7): + """ + Solicita al usuario ingresar un umbral para las correlaciones significativas. + Si el usuario no proporciona un valor válido, se usa el valor por defecto. + :param valor_por_defecto: Valor predeterminado del umbral si el usuario no ingresa ninguno. + :return: Umbral de correlación como flotante. + """ + try: + umbral = float(input(f"Ingrese el umbral mínimo de correlación significativa (por defecto {valor_por_defecto}): ") or valor_por_defecto) + if not (0 < umbral < 1): + raise ValueError("El umbral debe estar entre 0 y 1.") + return umbral + except ValueError as e: + print(f"Valor inválido: {e}. Se usará el umbral por defecto de {valor_por_defecto}.") + return valor_por_defecto \ No newline at end of file diff --git a/ADRpy/analisis/README.md b/ADRpy/analisis/README.md new file mode 100644 index 00000000..e69de29b diff --git a/ADRpy/analisis/aaa.ipynb b/ADRpy/analisis/aaa.ipynb new file mode 100644 index 00000000..85b09255 --- /dev/null +++ b/ADRpy/analisis/aaa.ipynb @@ -0,0 +1,9397 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "id": "b70a4a82", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "=== Cargando datos desde el archivo: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\data\\Datos_aeronaves.xlsx ===\n", + "\n", + "=== Resumen inicial del DataFrame cargado ===\n", + "\n", + "Index: 52 entries, Distancia de carrera requerida para despegue to kjbk\n", + "Data columns (total 37 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Stalker XE 52 non-null object\n", + " 1 Stalker VXE30 52 non-null object\n", + " 2 Aerosonde® Mk. 4.7 Fixed Wing 52 non-null object\n", + " 3 Aerosonde® Mk. 4.7 VTOL 52 non-null object\n", + " 4 Aerosonde® Mk. 4.8 Fixed wing 52 non-null object\n", + " 5 Aerosonde® Mk. 4.8 VTOL FTUAS 52 non-null object\n", + " 6 AAI Aerosonde 52 non-null object\n", + " 7 Fulmar X 52 non-null object\n", + " 8 Orbiter 4 52 non-null object\n", + " 9 Orbiter 3 52 non-null object\n", + " 10 Mantis 52 non-null object\n", + " 11 ScanEagle 52 non-null object\n", + " 12 Integrator 52 non-null object\n", + " 13 Integrator VTOL 52 non-null object\n", + " 14 Integrator Extended Range (ER) 52 non-null object\n", + " 15 ScanEagle 3 52 non-null object\n", + " 16 RQNan21A Blackjack 52 non-null object\n", + " 17 DeltaQuad Evo 52 non-null object\n", + " 18 DeltaQuad Pro #MAP 52 non-null object\n", + " 19 DeltaQuad Pro #CARGO 52 non-null object\n", + " 20 V21 52 non-null object\n", + " 21 V25 52 non-null object\n", + " 22 V32 52 non-null object\n", + " 23 V35 52 non-null object\n", + " 24 V39 52 non-null object\n", + " 25 Volitation VT370 52 non-null object\n", + " 26 Skyeye 2600 52 non-null object\n", + " 27 Skyeye 2930 VTOL 52 non-null object\n", + " 28 Skyeye 3600 52 non-null object\n", + " 29 Skyeye 3600 VTOL 52 non-null object\n", + " 30 Skyeye 5000 52 non-null object\n", + " 31 Skyeye 5000 VTOL 52 non-null object\n", + " 32 Skyeye 5000 VTOL octo 52 non-null object\n", + " 33 Volitation VT510 52 non-null object\n", + " 34 Ascend 52 non-null object\n", + " 35 Transition 52 non-null object\n", + " 36 Reach 52 non-null object\n", + "dtypes: object(37)\n", + "memory usage: 15.4+ KB\n", + "None\n", + "Datos cargados correctamente desde: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\data\\Datos_aeronaves.xlsx\n", + "\n", + "=== Validando datos cargados ===\n", + "\n", + "=== Continuando con el procesamiento de datos ===\n", + "\n", + "Encabezados iniciales cargados:\n", + "['Stalker XE', 'Stalker VXE30', 'Aerosonde®\\xa0Mk. 4.7 Fixed Wing', 'Aerosonde®\\xa0Mk. 4.7 VTOL', 'Aerosonde®\\xa0Mk. 4.8 Fixed wing', 'Aerosonde®\\xa0Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "\n", + "=== Mostrando datos iniciales en formato HTML ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Datos Iniciales

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Distancia de carrera requerida para despegue00Nan0Nan0NanNanNanNanNanNanNan0NanNanNan000000000Nan050060000000
Tasa de ascensoNanNanNanNanNanNan2.49936NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan5Nan5NanNanNanNanNanNanNan5NanNanNan
Altitud a la que se realiza el crucero6000600060006000600060005500600060006000600060006000500060006000600060006000600060006000600060006000600060006000600060006000600060006000600060006000
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NanNan30.406584NanNan18.26582630.62533630.953465NanNan25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288Nan32.8128636.09414730.625336Nan32.8128621.8752421.8752427.34405
Techo de servicio máximo12000120001470097001820015000150009.842NanNanNan1950019500Nan1950020201313.12313.123488001600016000160001600017000NanNanNanNanNanNanNan17000100001300016000
Velocidad de pérdida limpia (KCAS)NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan1415.517NanNanNan101812.52415NanNan25NanNanNan
Área del ala0.871.1582831.551.551.55Nan0.57NanNanNanNanNanNanNanNanNanNan0.84NanNan0.80.52NanNanNanNan0.8811.331.322.6152.6152.615NanNanNanNan
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Longitud del fuselaje2.12.5908333Nan1.71.21.21.21.481.712.5Nan2.52.42.50.750.90.90.930.9311.88Nan2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Ancho del fuselaje0.2110.20.2770.2770.277NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.3750.3750.375NanNanNanNan
Peso máximo al despegue (MTOW)13.619.95804842.253.554.49313.12055326.526.574.87574.836.361106.26.21012.523.532244015282840901001001009.51891
Alcance de la aeronave370433NanNanNanNan32708001505025NanNanNan500Nan92.6270100100NanNanNanNanNanNanNanNanNan300Nan800NanNanNanNanNan
Autonomía de la aeronave8819.81219.81426824621824161918164.531.831.83344.52.84.515234.5688Nan561220
Velocidad máxima (KIAS)2025.03421133.4388633.4388633.43886Nan30.84572541.7363625.641.246.3Nan46.341.246.3NanNanNan333333333333Nan30Nan3342423850303035
Velocidad de pérdida (KCAS)NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan1415.517NanNanNan101812.52415Nan2425131313
Radio de giroNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan100120150NanNanNanNanNanNanNanNanNanNanNanNanNanNan
envergadura3.6574.87684.44.44.4Nan2.935.24.42.13.14.8Nan4.844.82.692.352.352.152.453.23.53.96.52.62.933.63.65555.1236
Cuerda0.2390.3181950.3520.3520.352Nan0.196552NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
payload2.4947562.49475614.511.317.722.7NanNan125.5Nan51818188.617.731.21.21.52.2510518461010202515250.61.57
duracion en VTOL2NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan4.53NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.050.050.05
Crucero KIAS15.4333216.093422252525NanNan27.8NanNan16.72828.3NanNan23.530.916.5416161820202525253324Nan3033283530202025
RTF (dry weight)NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan4.8NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan611.854
RTF (Including fuel & Batteries)NanNan27.742.236.770.3NanNanNanNanNanNanNanNanNanNanNan6.8NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan8.916.584
Empty weight10.88620817.463292NanNanNanNan10NanNanNanNanNanNanNanNanNanNan4.8NanNan2.653.456.45NanNanNan6.57.111.51132Nan35Nan35.831
Maximum CrosswindNanNanNanNanNanNanNanNanNanNanNanNanNan30NanNanNan455050NanNanNanNanNanNanNanNanNanNanNanNanNanNan151515
Rango de comunicación59161140140140Nan150Nan1505025101.8692.6NanNanNan92.6Nan50303030303030NanNanNanNanNanNanNanNanNanNanNanNan
Wing LoadingNanNanNanNanNanNan23NanNanNanNanNanNanNanNanNanNanNanNanNan12.52425NanNanNanNanNanNanNanNanNanNanNanNanNanNan
Potencia/PesoNanNanNanNanNanNan98NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Capacidad combustibleNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan13NanNan11.511.528282825NanNanNan
ConsumoNanNan0.60.6NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.96NanNanNanNan1.2NanNan5NanNanNan
Potencia(W)NanNan29802980NanNan1280NanNanNanNanNanNanNanNan170NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Potencia(HP)NanNan44NanNan1.74NanNanNanNanNanNanNanNanNan8NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
PrecioNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan399946796999979998999899922996799499969999999139001599916599NanNanNan
Tiempo de emergencia en vueloNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.1080.1080.108NanNanNanNanNanNanNanNanNanNanNanNanNanNan
Distancia de aterrizajeNanNanNanNanNanNanNanNanNanNanNanNanNan0NanNanNan000NanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Dimensiones de la bahía de carga útilNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.2 x 0.2 x 0.11Nan15 x 10 x 9NanNanNanNanNanNanNan560 x 210 x 185 mm560 x 260 x 270 mm560 x 260 x 270 mm920 x 340 x 350 mmNanNanNanNanNanNan
Battery Power SupplyNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanSemi Solid State LiNanion, 22AhNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan2 x 3800mAh 4S Lipo2 x 9000mAh 4S Lipo12 x 16000mAh 4S Lipo
Modelo Motor Fixed WingNanNanELNan005ELNan005NanNanEnya R120NanNanNanBatería recargableMotor de combustible pesado (JPNan5 o JPNan8)EFI con JPNan5/JPNan8NanEFI con JPNan5/JPNan8Heavy Fuel (JPNan5/JPNan8)EFI, JPNan5/JPNan8NanNanNanNanNanNanNanNanEFI de gasolina20–35 cc gasolinaCompatible con motores eléctricos o de gasolina50–100 cc gasolina50–100 cc gasolinaDLA 180cc EFINanNanMotor pistón EFITNanMotor MN501Saito FG21HFE International DA100EFI
Modelo Motor VTOLNanNanNanNanNanNanNanNanNanNanNanNanNanFLARES eléctricoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanTNanMotor MN501TNanMotor ALTI U7TNanMotor ALTI U15 II KV100
PortabilidadsisisisisisiNanAltaAltamente transportableAltamente transportableSistema transportable en cajas ligerasNanTransportable por barco y aviónOperaciones en espacios reducidosTransportable por barco y aviónAltaOperable desde tierra y marIncluye maleta de transporteMontaje en 2 minutosMontaje en 2 minutosAltaAltaAltaAltaAltaMediaNanNanNanNanNanNanNanNanNanNanNan
CámaraNanNanNanNanNanNanNanNanEO/IR, WAMI, SAR, COMINT, ELINTEO/Cooled IR, WAMI, COMINT, ELINTEO, IR giroestabilizadasEO, MWIR, ViDAREO, MWIR, ViDAR, LRFModular payloadsEO, MWIR, ViDAR, LRFEO, MWIR/EO, ViDAREO, MWIR, LRF, IR MarkerNanRGB, Multiespectral, TérmicaNo aplicaNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
DespegueBungee, rail, VTOLBungee, rail, VTOLRailVTOLRailVTOLRailRailRailRailRailRailRailVTOLRailRailRailVTOLVTOLVTOLVTOLVTOLVTOLVTOLVTOLVTOLNanVTOLNanVTOLNanVTOLNanVTOLNanNanNan
Datalink banksNanNanL,S,CL,S,CL,S,CL,S,C,KUNanNanLOS, BLOSLOS, AESNan256, RelayDigital, varias frecuenciasEnlace de datos digital encriptadoEnlace de datos encriptadoNanSATCOM, BLOS, robustoEncrypted/UnencryptedEncriptadoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
Material del fuselajeNanNanNanNanNanNanNanFibra de carbonoNanNanNanNanNanNanNanNanNanNanNanNanFibra de carbono, Kevlar, PVCFibra de carbono, Kevlar, PVCFibra de carbono y compuestosFibra de carbono, Kevlar, fibra de vidrioFibra de carbono completaNanFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoCarbon FiberFibra de carbono compuestaNanNanNan
Motor recomendadoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanEFI de gasolinaGasolina 20–35 ccGasolina o eléctricaGasolina 50–100 ccGasolina 50–100 ccGasolina EFI DLA 180 ccNanNanGasolina o diéselNanNanNan
Hélice recomendada VTOLNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanMaster Airscrew 3x Power 13x12TNanMotor 18x6.1 Carbon FiberTNanMotor 40x13.1 Carbon Fiber
Hélice recomendada Fixed WingNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan16 pulgadas16Nan17 pulgadas17Nan18 pulgadasVTOL: 26 pulgadas; Ala fija: 24 pulgadasVTOL: 22 pulgadas; Ala fija: 21 pulgadasNan19 x 8 pulgadasNanNanNan32 x 10 pulgadasNanNanNanNanNanNan
Sistema de controlNanNanNanNanNanNanNanNanNavegación avanzada, redundanteNavegación avanzada, precisiónGPS/INS, navegación manual o automáticaArquitectura abiertaArquitectura abiertaModular y portátilNavegación avanzadaModularModular y portátilNanControlador DeltaQuadControlador DeltaQuadNanNanNanNanLightning X7NanNanNanNanNanNanNanNanNanNanNanNan
Características adicionalesNanNanNanNanNanNanNanAlta fiabilidad y facilidad de usoMultiNanpayload, operable en clima extremoMultiNanpayload, operable en clima extremoModular, navegación spline, ATOLModular, flexibleModular, multiNanmisiónResistente a alta mar y vientosSeguridad aumentadaCapacidad MultiNanINTModularidad y flexibilidadDespegue y aterrizaje vertical, resistente a lluvias ligerasDespegue y aterrizaje vertical, transmisión de video en vivo, integración de múltiples sensoresDespegue y aterrizaje vertical, transmisión de video en vivo, mecanismo de liberación de carga útil personalizableAlta portabilidadAlta portabilidadAlta portabilidadMayor capacidad de cargaLarga autonomíaAutonomía extendidaUso optimizado para misiones prolongadasCompatible VTOL; configuración flexibleDiseñado para vigilancia y cartografíaAlta capacidad VTOL; alcance extendidoTanque de combustible de Kevlar; sistema de freno en las ruedasConfiguración VTOL avanzadaNanDiseño modular de ala tándemNanNanNan
EmpresaLockheed MartinLockheed MartinTextron SystemsTextron SystemsTextron SystemsTextron SystemsTextron SystemsThales GroupAeronautics GroupAeronautics GroupIndra SistemasInsituInsituInsituInsituInsituInsituVertical TechnologiesVertical TechnologiesVertical TechnologiesAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAirmobiAltiAltiAlti
kjbkpdfpdfLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkNanNanLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkNanLinkpdfpdfpdf
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Procesando los datos ===\n", + "=== Inicio del procesamiento de datos ===\n", + "\n", + "=== Comprobación de duplicados ===\n", + "No se encontraron duplicados en índices o columnas.\n", + "\n", + "=== Convirtiendo valores a numéricos donde sea posible ===\n", + "=== Procesamiento completado ===\n", + "\n", + "✅ Los encabezados se preservaron correctamente.\n", + "\n", + "=== Mostrando datos procesados en formato HTML ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Datos Procesados

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia/PesoNaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia(W)NaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia(HP)NaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
DespegueNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
EmpresaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
kjbkNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parámetros disponibles en df_procesado antes de seleccionar:\n", + "['Distancia de carrera requerida para despegue', 'Tasa de ascenso', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia/Peso', 'Capacidad combustible', 'Consumo', 'Potencia(W)', 'Potencia(HP)', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Dimensiones de la bahía de carga útil', 'Battery Power Supply', 'Modelo Motor Fixed Wing', 'Modelo Motor VTOL', 'Portabilidad', 'Cámara', 'Despegue', 'Datalink banks', 'Material del fuselaje', 'Motor recomendado', 'Hélice recomendada VTOL', 'Hélice recomendada Fixed Wing', 'Sistema de control', 'Características adicionales', 'Empresa', 'kjbk']\n", + "\n", + "=== Selección de Parámetros ===\n", + "Parámetros disponibles:\n", + "1. Distancia de carrera requerida para despegue\n", + "2. Tasa de ascenso\n", + "3. Altitud a la que se realiza el crucero\n", + "4. Velocidad a la que se realiza el crucero (KTAS)\n", + "5. Techo de servicio máximo\n", + "6. Velocidad de pérdida limpia (KCAS)\n", + "7. Área del ala\n", + "8. Relación de aspecto del ala\n", + "9. Longitud del fuselaje\n", + "10. Profundidad del fuselaje\n", + "11. Ancho del fuselaje\n", + "12. Peso máximo al despegue (MTOW)\n", + "13. Alcance de la aeronave\n", + "14. Autonomía de la aeronave\n", + "15. Velocidad máxima (KIAS)\n", + "16. Velocidad de pérdida (KCAS)\n", + "17. Radio de giro\n", + "18. envergadura\n", + "19. Cuerda\n", + "20. payload\n", + "21. duracion en VTOL\n", + "22. Crucero KIAS\n", + "23. RTF (dry weight)\n", + "24. RTF (Including fuel & Batteries)\n", + "25. Empty weight\n", + "26. Maximum Crosswind\n", + "27. Rango de comunicación\n", + "28. Wing Loading\n", + "29. Potencia/Peso\n", + "30. Capacidad combustible\n", + "31. Consumo\n", + "32. Potencia(W)\n", + "33. Potencia(HP)\n", + "34. Precio\n", + "35. Tiempo de emergencia en vuelo\n", + "36. Distancia de aterrizaje\n", + "37. Dimensiones de la bahía de carga útil\n", + "38. Battery Power Supply\n", + "39. Modelo Motor Fixed Wing\n", + "40. Modelo Motor VTOL\n", + "41. Portabilidad\n", + "42. Cámara\n", + "43. Despegue\n", + "44. Datalink banks\n", + "45. Material del fuselaje\n", + "46. Motor recomendado\n", + "47. Hélice recomendada VTOL\n", + "48. Hélice recomendada Fixed Wing\n", + "49. Sistema de control\n", + "50. Características adicionales\n", + "51. Empresa\n", + "52. kjbk\n", + "\n", + "Preseleccionados: 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 25\n", + "Parámetros seleccionados después de filtrar:\n", + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Datos Filtrados por Parámetros (df_filtrado)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Analizando celdas faltantes en la columna: 'Aerosonde® Mk. 4.7 Fixed Wing' ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Celdas Faltantes Identificadas en df_filtrado (df_celdas_faltantes)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ÍndiceCeldaColumnaValor Actual
0Alcance de la aeronaveC8Aerosonde® Mk. 4.7 Fixed WingNaN
1Velocidad de pérdida (KCAS)C11Aerosonde® Mk. 4.7 Fixed WingNaN
2Empty weightC15Aerosonde® Mk. 4.7 Fixed WingNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Generando resumen de valores faltantes por columna ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes de df_filtrado

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE1.000
1Stalker VXE301.000
2Aerosonde® Mk. 4.7 Fixed Wing3.000
3Aerosonde® Mk. 4.7 VTOL3.000
4Aerosonde® Mk. 4.8 Fixed wing3.000
5Aerosonde® Mk. 4.8 VTOL FTUAS9.000
6AAI Aerosonde3.000
7Fulmar X6.000
8Orbiter 47.000
9Orbiter 37.000
10Mantis7.000
11ScanEagle6.000
12Integrator6.000
13Integrator VTOL11.000
14Integrator Extended Range (ER)6.000
15ScanEagle 36.000
16RQNan21A Blackjack5.000
17DeltaQuad Evo4.000
18DeltaQuad Pro #MAP6.000
19DeltaQuad Pro #CARGO6.000
20V213.000
21V253.000
22V324.000
23V356.000
24V397.000
25Volitation VT3706.000
26Skyeye 26005.000
27Skyeye 2930 VTOL4.000
28Skyeye 36006.000
29Skyeye 3600 VTOL3.000
30Skyeye 50004.000
31Skyeye 5000 VTOL5.000
32Skyeye 5000 VTOL octo6.000
33Volitation VT5105.000
34Ascend4.000
35Transition4.000
36Reach4.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes185.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Calculando correlaciones y generando heatmap ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distancia de carrera requerida para despegueTasa de ascensoAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Radio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia/PesoCapacidad combustibleConsumoPotencia(W)Potencia(HP)PrecioTiempo de emergencia en vueloDistancia de aterrizajeDimensiones de la bahía de carga útilBattery Power SupplyModelo Motor Fixed WingModelo Motor VTOLPortabilidadCámaraDespegueDatalink banksMaterial del fuselajeMotor recomendadoHélice recomendada VTOLHélice recomendada Fixed WingSistema de controlCaracterísticas adicionalesEmpresakjbk
Distancia de carrera requerida para despegue1.000nan0.0630.467nan-0.5050.363nan0.260nan0.4250.168nan-0.0680.316-0.308nan0.145nan0.229nan0.389nannan0.357nannannannan-0.018-0.240nannan-0.156nannannannannannannannannannannannannannannannannannan
Tasa de ascensonan1.0001.000nan0.870nannannan0.531nannan0.589nan-0.8660.439nannan0.656nannannannannannannannan-1.000nannannannannannannannannannannannannannannannannannannannannannannannannan
Altitud a la que se realiza el crucero0.0631.0001.000nan-0.038nan0.301-0.3510.081nannan-0.095-0.952-0.2800.128nannan0.1360.761-0.183nannannannan0.0600.038-0.325-0.215nannannan0.2770.690nannannannannannannannannannannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)0.467nannan1.0000.0410.1280.587-0.9990.535nan0.9360.6630.4070.3360.8150.2570.8030.4720.8460.696-0.6941.0000.9150.7230.426-0.8550.3590.997nan0.4910.4611.0001.000-0.296nannannannannannannannannannannannannannannannannannan
Techo de servicio máximonan0.870-0.0380.0411.000-0.502-0.152-0.3140.082nan0.3690.1370.4630.079-0.111-0.071-0.8030.0570.0170.087-0.8750.0410.6770.579-0.138-0.961-0.120-0.986nannan0.5150.653-0.933-0.257nannannannannannannannannannannannannannannannannannan
Velocidad de pérdida limpia (KCAS)-0.505nannan0.128-0.5021.0000.097nan0.260nannan0.546nan0.4010.4461.0000.9930.505nan0.536nan0.128nannan0.038nannan0.900nan0.0681.000nannan0.163nannannannannannannannannannannannannannannannannannan
Área del ala0.363nan0.3010.587-0.1520.0971.000-0.8310.867nan0.9840.977-0.3010.0810.7370.423-1.0000.8410.9840.899-1.0000.675nan0.9230.941nan0.595-0.996nan1.0001.0001.0001.0000.899nannannannannannannannannannannannannannannannannannan
Relación de aspecto del alanannan-0.351-0.999-0.314nan-0.8311.000-0.790nan-0.996-0.823-0.998-0.305-0.859nannan-0.349-0.744-0.888nan-0.999nannan0.622nan-0.298nannannannan-1.000-1.000nannannannannannannannannannannannannannannannannannannan
Longitud del fuselaje0.2600.5310.0810.5350.0820.2600.867-0.7901.000nan0.9380.7860.1290.3890.2560.1800.9180.6930.9950.599-0.6170.5760.9660.9400.880-0.7180.6760.263nan0.9290.0360.6860.359-0.210nannannannannannannannannannannannannannannannannannan
Profundidad del fuselajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Ancho del fuselaje0.425nannan0.9360.369nan0.984-0.9960.938nan1.0000.9860.982-0.0900.940nannan0.6710.7600.868nan0.944nannan0.955nan0.323nannannan1.000nannannannannannannannannannannannannannannannannannannannannan
Peso máximo al despegue (MTOW)0.1680.589-0.0950.6630.1370.5460.977-0.8230.786nan0.9861.000-0.0510.4340.6780.5390.9730.7910.8580.875-0.4010.7080.9990.9790.947-0.4640.5140.628nan0.9760.7580.5590.8550.052nannannannannannannannannannannannannannannannannannan
Alcance de la aeronavenannan-0.9520.4070.463nan-0.301-0.9980.129nan0.982-0.0511.0000.578-0.062nannan-0.107-0.7550.554-1.0000.407nannan-0.059-1.0000.508nannan1.000nannan-1.0001.000nannannannannannannannannannannannannannannannannannan
Autonomía de la aeronave-0.068-0.866-0.2800.3360.0790.4010.081-0.3050.389nan-0.0900.4340.5781.0000.297-0.1640.9540.532-0.2010.461-0.5940.3360.9400.6340.428-0.7150.8020.268nan-0.113-0.732-0.391-0.5770.011nannannannannannannannannannannannannannannannannannan
Velocidad máxima (KIAS)0.3160.4390.1280.815-0.1110.4460.737-0.8590.256nan0.9400.678-0.0620.2971.0000.539nan0.4000.5120.715-0.9270.7750.9940.8570.517nan0.094-0.215nan0.7050.910-0.6240.9700.015nannannannannannannannannannannannannannannannannannan
Velocidad de pérdida (KCAS)-0.308nannan0.257-0.0711.0000.423nan0.180nannan0.539nan-0.1640.5391.0000.9930.401nan0.627nan0.417nannan0.321nannan0.900nan0.2301.000nannan0.160nannannannannannannannannannannannannannannannannannan
Radio de gironannannan0.803-0.8030.993-1.000nan0.918nannan0.973nan0.954nan0.9931.0000.992nan0.976nan0.803nannan0.979nannan0.844nannannannannan0.921nannannannannannannannannannannannannannannannannannan
envergadura0.1450.6560.1360.4720.0570.5050.841-0.3490.693nan0.6710.791-0.1070.5320.4000.4010.9921.0000.8850.734-0.2580.5010.9830.9360.924-0.4520.6480.780nan0.2970.0850.5220.8350.032nannannannannannannannannannannannannannannannannannan
Cuerdanannan0.7610.8460.017nan0.984-0.7440.995nan0.7600.858-0.755-0.2010.512nannan0.8851.0000.776nan0.846nannan0.971nan0.354nannannannan1.0001.000nannannannannannannannannannannannannannannannannannannan
payload0.229nan-0.1830.6960.0870.5360.899-0.8880.599nan0.8680.8750.5540.4610.7150.6270.9760.7340.7761.000-0.0240.6940.9150.5590.778-0.1420.5460.707nan0.7110.8460.8410.866-0.008nannannannannannannannannannannannannannannannannannan
duracion en VTOLnannannan-0.694-0.875nan-1.000nan-0.617nannan-0.401-1.000-0.594-0.927nannan-0.258nan-0.0241.000-0.694-0.408-0.402-0.3151.000nannannannannannannannannannannannannannannannannannannannannannannannannannan
Crucero KIAS0.389nannan1.0000.0410.1280.675-0.9990.576nan0.9440.7080.4070.3360.7750.4170.8030.5010.8460.694-0.6941.0000.9150.7230.583-0.8550.3590.997nan0.5810.4611.0001.000-0.243nannannannannannannannannannannannannannannannannannan
RTF (dry weight)nannannan0.9150.677nannannan0.966nannan0.999nan0.9400.994nannan0.983nan0.915-0.4080.9151.0001.0000.995-0.408nannannannannannannannannannannannannannannannannannannannannannannannannannan
RTF (Including fuel & Batteries)nannannan0.7230.579nan0.923nan0.940nannan0.979nan0.6340.857nannan0.936nan0.559-0.4020.7231.0001.0000.996-0.402nannannannannannannannannannannannannannannannannannannannannannannannannannan
Empty weight0.357nan0.0600.426-0.1380.0380.9410.6220.880nan0.9550.947-0.0590.4280.5170.3210.9790.9240.9710.778-0.3150.5830.9950.9961.000-0.3190.8320.530nan0.995nannannan-0.029nannannannannannannannannannannannannannannannannannan
Maximum Crosswindnannan0.038-0.855-0.961nannannan-0.718nannan-0.464-1.000-0.715nannannan-0.452nan-0.1421.000-0.855-0.408-0.402-0.3191.000nannannannannannannannannannannannannannannannannannannannannannannannannannan
Rango de comunicaciónnan-1.000-0.3250.359-0.120nan0.595-0.2980.676nan0.3230.5140.5080.8020.094nannan0.6480.3540.546nan0.359nannan0.832nan1.0000.215nannannan-1.000-0.972nannannannannannannannannannannannannannannannannannannan
Wing Loadingnannan-0.2150.997-0.9860.900-0.996nan0.263nannan0.628nan0.268-0.2150.9000.8440.780nan0.707nan0.997nannan0.530nan0.2151.000nannannannannan0.568nannannannannannannannannannannannannannannannannannan
Potencia/Pesonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Capacidad combustible-0.018nannan0.491nan0.0681.000nan0.929nannan0.9761.000-0.1130.7050.230nan0.297nan0.711nan0.581nannan0.995nannannannan1.0000.377nannan0.817nannannannannannannannannannannannannannannannannannan
Consumo-0.240nannan0.4610.5151.0001.000nan0.036nan1.0000.758nan-0.7320.9101.000nan0.085nan0.846nan0.461nannannannannannannan0.3771.000nannan0.998nannannannannannannannannannannannannannannannannannan
Potencia(W)nannan0.2771.0000.653nan1.000-1.0000.686nannan0.559nan-0.391-0.624nannan0.5221.0000.841nan1.000nannannannan-1.000nannannannan1.0001.000nannannannannannannannannannannannannannannannannannannan
Potencia(HP)nannan0.6901.000-0.933nan1.000-1.0000.359nannan0.855-1.000-0.5770.970nannan0.8351.0000.866nan1.000nannannannan-0.972nannannannan1.0001.000nannannannannannannannannannannannannannannannannannannan
Precio-0.156nannan-0.296-0.2570.1630.899nan-0.210nannan0.0521.0000.0110.0150.1600.9210.032nan-0.008nan-0.243nannan-0.029nannan0.568nan0.8170.998nannan1.000nannannannannannannannannannannannannannannannannannan
Tiempo de emergencia en vuelonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Distancia de aterrizajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Dimensiones de la bahía de carga útilnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Battery Power Supplynannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Modelo Motor Fixed Wingnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Modelo Motor VTOLnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Portabilidadnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Cámaranannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Despeguenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Datalink banksnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Material del fuselajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Motor recomendadonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Hélice recomendada VTOLnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Hélice recomendada Fixed Wingnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Sistema de controlnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Características adicionalesnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Empresanannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
kjbknannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores2704.000
1Valores numéricos700.000
2Valores NaN2004.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)1.0000.0410.587-0.9990.5350.6630.4070.3360.8150.2570.4720.8460.6960.426
Techo de servicio máximo0.0411.000-0.152-0.3140.0820.1370.4630.079-0.111-0.0710.0570.0170.087-0.138
Área del ala0.587-0.1521.000-0.8310.8670.977-0.3010.0810.7370.4230.8410.9840.8990.941
Relación de aspecto del ala-0.999-0.314-0.8311.000-0.790-0.823-0.998-0.305-0.859nan-0.349-0.744-0.8880.622
Longitud del fuselaje0.5350.0820.867-0.7901.0000.7860.1290.3890.2560.1800.6930.9950.5990.880
Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.7861.000-0.0510.4340.6780.5390.7910.8580.8750.947
Alcance de la aeronave0.4070.463-0.301-0.9980.129-0.0511.0000.578-0.062nan-0.107-0.7550.554-0.059
Autonomía de la aeronave0.3360.0790.081-0.3050.3890.4340.5781.0000.297-0.1640.532-0.2010.4610.428
Velocidad máxima (KIAS)0.815-0.1110.737-0.8590.2560.678-0.0620.2971.0000.5390.4000.5120.7150.517
Velocidad de pérdida (KCAS)0.257-0.0710.423nan0.1800.539nan-0.1640.5391.0000.401nan0.6270.321
envergadura0.4720.0570.841-0.3490.6930.791-0.1070.5320.4000.4011.0000.8850.7340.924
Cuerda0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nan0.8851.0000.7760.971
payload0.6960.0870.899-0.8880.5990.8750.5540.4610.7150.6270.7340.7761.0000.778
Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.9240.9710.7781.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos190.000
2Valores NaN6.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannan0.846nannan
Techo de servicio máximonannannannannannannannannannannannannannan
Área del alanannannan-0.8310.8670.977nannan0.737nan0.8410.9840.8990.941
Relación de aspecto del ala-0.999nan-0.831nan-0.790-0.823-0.998nan-0.859nannan-0.744-0.888nan
Longitud del fuselajenannan0.867-0.790nan0.786nannannannannan0.995nan0.880
Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannan0.7910.8580.8750.947
Alcance de la aeronavenannannan-0.998nannannannannannannan-0.755nannan
Autonomía de la aeronavenannannannannannannannannannannannannannan
Velocidad máxima (KIAS)0.815nan0.737-0.859nannannannannannannannan0.715nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannan
envergaduranannan0.841nannan0.791nannannannannan0.8850.7340.924
Cuerda0.846nan0.984-0.7440.9950.858-0.755nannannan0.885nan0.7760.971
payloadnannan0.899-0.888nan0.875nannan0.715nan0.7340.776nan0.778
Empty weightnannan0.941nan0.8800.947nannannannan0.9240.9710.778nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos64.000
2Valores NaN132.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUy/8H8PfS3Q3SjaCoKBZgIIiCLXahXrv72t2i99oBtmJgYBcWqBioKAoiiEp3557fH8jCsruEgvi738/Lh+dxZ+fMmbNnzuzZORMshmEYEEIIIYQQQgghhBBCeAg1dgYIIYQQQgghhBBCCPlTUeMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYSQ38rX1xcsFgvPnz/n+37Pnj2hr6/foHkICgrC8uXLkZGR0aD7aQzLly8Hi8Wq93TfvHmD0aNHw8DAABISEpCRkUGLFi2wceNGpKWl1fv+fkVgYCBYLBYCAwMbJP2YmBiwWCz4+vo2SPqNbdSoUfV2Ddra2kJbWxulpaUC47Rv3x4qKiooKir65f39yrmvqW6qrD4/o9piGAanTp1Cx44doaamBgkJCejo6MDFxQUHDhz4qTSdnJzg5ORUvxmto4aqs+obi8XC8uXLf/t+Hz58CHFxcXz58oUTpq+vj549e/KN//z583qvn+pybdSH/y9lolxOTg5mzJgBLS0tSEhIoHnz5jh16lSttnVycgKLxRL4l5CQAAAoLi6GkZERvL29G/BICCHVocYzQggh/3OCgoKwYsWK/2TjWUPYv38/WrZsiZCQEMydOxfXr1+Hv78/BgwYgD179sDLy6uxs/hbaWpqIjg4GD169GjsrPzxvLy8EBcXhxs3bvB9PyIiAkFBQRg+fDjExMR+eX8tWrRAcHAwWrRo8ctp/WkWLlyIwYMHw8LCAgcOHMC1a9ewevVqqKur4+LFi42dvZ82duxYBAcHN3Y2/kgMw2DGjBkYN24c9PT0Gjs7RIC+ffvi8OHDWLZsGa5duwY7OzsMHjwYJ06cqHHbXbt2ITg4mOvvzp07EBUVhb29PTQ0NAAAoqKiWLp0KVauXInU1NSGPiRCCB8ijZ0BQgghhPy5goODMXHiRDg7O+PChQsQFxfnvOfs7IzZs2fj+vXr9bKvvLw8SElJ8YSXlpaipKSEa9+NSVxcHPb29o2djf8Xhg4dirlz5+LQoUNwc3Pjef/QoUMAgDFjxvzSfoqLi8FisSAnJ/efPDf5+fnw9vbGiBEjsG/fPq73Ro0aBTab3Ug5+3U6OjrQ0dFp7Gz8ka5fv46XL1/WqhHmTyaobv9V8fHxkJaWhpycXL2nXVtXr17FrVu3cOLECQwePBgA0KlTJ3z58gVz586Fp6cnhIWFBW5vaWnJE3b48GEUFxdj7NixXOGDBw/GrFmzsHfvXixatKh+D4QQUiPqeUYIIeSPxzAMdu3ahebNm0NSUhKKioro378/Pn/+zBXv1q1b6NWrF3R0dCAhIQFjY2P89ddfSElJ4cRZvnw55s6dCwAwMDDgDI0oH+ZVPhwmICAAtra2kJSUhIWFBQICAgCUDV+xsLCAtLQ0WrduzTOM5fnz5xg0aBD09fUhKSkJfX19DB48mGvITXk6LBYLt27dwujRo6GkpARpaWm4u7vzHJcgV65cQfPmzSEuLg4DAwNs3rz5lz4/ftauXQsWi4V9+/bxbbwSExODh4cH5zWbzcbGjRthbm4OcXFxqKmpYcSIEfj27RvXdk5OTmjatCkePHiAdu3aQUpKCmPGjOEMidy4cSNWr14NAwMDiIuL4969ewDKPl8PDw8oKSlBQkICtra28PPzq/E4anteAOD79+8YP348mjRpAjExMWhpaaF///5ITEwEIHjY5qNHj9ClSxfIyspCSkoK7dq1w5UrV7jilJ/3e/fuYeLEiVBRUYGysjL69u2LuLg4nrycPn0abdu2hbS0NGRkZODi4oJXr15xxfn8+TMGDRoELS0tiIuLQ11dHV26dEFoaGiNn4uvry/MzMwgLi4OCwsLHDlyhG+8oqIirF69mnNeVVVVMXr0aCQnJ1ebvqKiIvr06YPLly/z9JYoLS3F0aNHYWdnB2tra3z69AmjR4+GiYkJpKSkoK2tDXd3d7x9+5Zru/KhmUePHsXs2bOhra0NcXFxfPr0ie+wzbqcewBIT0//qWuyttfZq1ev0LNnT6ipqUFcXBxaWlro0aMHzzVSWW5uLgoLC6Gpqcn3fSEh7lv6nz1fdd32xIkTaNu2LWRkZCAjI4PmzZvj4MGDXHGuX7+OLl26QF5eHlJSUrCwsMC6des47/MbolfXeiQkJAQdO3aElJQUDA0NsX79eq4GxYKCAsyePRvNmzeHvLw8lJSU0LZtW7499rKysjBu3DgoKytDRkYGrq6uiIiI4IlX2/LKZrOxevVqmJmZQVJSEgoKCrCxscH27durOQtldu/eDTs7O5iZmdUYtzqjRo2CjIwMPnz4ABcXF0hLS0NTUxPr168HADx58gQdOnSAtLQ0TE1NcfjwYb7p1ObaEFS3A2X1Wbdu3aCpqcn5bl2wYAFyc3N/6rhu3LgBdXV19O/fH+fPn0dBQcFPpfMr/P39ISMjgwEDBnCFjx49GnFxcXj69Gmd0zx48CBkZGTg6enJFS4mJgZPT0/s27cPDMP8Ur4JIXVHjWeEEEIaRXlvoqp//G4I//rrL8yYMQNdu3bFhQsXsGvXLrx79w7t2rXjNGgAQFRUFNq2bYvdu3fj5s2bWLp0KZ4+fYoOHTqguLgYQNkQoalTpwIAzp8/zxkmUXmY1+vXr7Fw4ULMnz8f58+fh7y8PPr27Ytly5bhwIEDWLt2LY4fP47MzEz07NkT+fn5nG1jYmJgZmYGb29v3LhxAxs2bEB8fDzs7Oy4GvHKeXl5QUhICCdOnIC3tzeePXsGJyenGoeU3rlzB7169YKsrCxOnTqFTZs2wc/PDz4+Pj/9+fE7R3fv3kXLli3RpEmTavNTbuLEiZg/fz6cnZ1x6dIlrFq1CtevX0e7du14jj8+Ph7Dhg3DkCFDcPXqVUyaNInz3o4dO3D37l1s3rwZ165dg7m5Oe7du4f27dsjIyMDe/bswcWLF9G8eXN4enrWOL9Pbc/L9+/fYWdnB39/f8yaNQvXrl2Dt7c35OXlkZ6eLjD9+/fvo3PnzsjMzMTBgwdx8uRJyMrKwt3dHadPn+aJP3bsWIiKiuLEiRPYuHEjAgMDMWzYMK44a9euxeDBg2FpaQk/Pz8cPXoU2dnZ6NixI96/f8+J5+bmhhcvXmDjxo24desWdu/eDVtb2xrLkK+vL0aPHg0LCwucO3cOixcvxqpVq3D37l2ueGw2G7169cL69esxZMgQXLlyBevXr8etW7fg5OTEVf758fLyQlFREY4dO8YVfuPGDcTFxXGG/cbFxUFZWRnr16/H9evXsXPnToiIiKBNmzb4+PEjT7oLFy5EbGws9uzZg8uXL0NNTY3v/n/XNVmb6yw3NxfOzs5ITEzEzp07cevWLXh7e0NXVxfZ2dkC01ZRUYGxsTF27dqFrVu34sOHDwJ/PP/K+arLtkuXLsXQoUOhpaUFX19f+Pv7Y+TIkVyNkgcPHoSbmxvYbDbnPE2bNq3ahkKgbvVIQkIChg4dimHDhuHSpUvo3r07Fi5cyFXeCgsLkZaWhjlz5uDChQs4efIkOnTogL59+3I1GDMMg969e3MaZv39/WFvb4/u3bvz5LG25XXjxo1Yvnw5Bg8ejCtXruD06dPw8vKqsTwVFRXh9u3b6NSpU7Xxaqu4uBh9+/ZFjx49cPHiRc7ntGjRIowcORJjxoyBv78/zMzMMGrUKLx48YInjdpeG4Lq9sjISLi5ueHgwYO4fv06ZsyYAT8/P7i7u//UMfXp0wc7duxAeno6Bg4cCHV1dYwaNQo3btyodp5FhmH43n/w+6tJWFgYLCwsICLCPaDLxsaG835dREZG4uHDhxg0aBBkZGR43ndycsKXL1/qnC4hpB4whBBCyG/k4+PDAKj2T09PjxM/ODiYAcBs2bKFK52vX78ykpKSzLx58/juh81mM8XFxcyXL18YAMzFixc5723atIkBwERHR/Nsp6enx0hKSjLfvn3jhIWGhjIAGE1NTSY3N5cTfuHCBQYAc+nSJYHHW1JSwuTk5DDS0tLM9u3beT6HPn36cMV//PgxA4BZvXq1wDQZhmHatGnDaGlpMfn5+ZywrKwsRklJian89f6znx/DMExCQgIDgBk0aFC1eSkXHh7OAGAmTZrEFf706VMGALNo0SJOmKOjIwOAuXPnDlfc6OhoBgBjZGTEFBUVcb1nbm7O2NraMsXFxVzhPXv2ZDQ1NZnS0lKGYRjm3r17DADm3r17AvMq6LyMGTOGERUVZd6/fy9w2/I8+vj4cMLs7e0ZNTU1Jjs7m2sfTZs2ZXR0dBg2m80wTMV5r/oZbdy4kQHAxMfHMwzDMLGxsYyIiAgzdepUrnjZ2dmMhoYGM3DgQIZhGCYlJYUBwHh7ewvMLz+lpaWMlpYW06JFC07eGIZhYmJiGFFRUa5r8OTJkwwA5ty5c1xphISEMACYXbt2VbsvNpvNGBgYMDY2Nlzh/fr1Y6SkpJjMzEy+25WUlDBFRUWMiYkJM3PmTE54+fl1cHDg2eZXzn1drsmRI0f+VD31/PlzBgBz4cIFgfkT5NmzZ4yuri6nnpSVlWV69uzJHDlyhOsc1uV8OTo6Mo6OjnXe9vPnz4ywsDAzdOhQgfnNzs5m5OTkmA4dOnDlr6ply5Zx1Vk/U488ffqUK66lpSXj4uIicJ8lJSVMcXEx4+Xlxdja2nLCr127xgDgKhcMwzBr1qxhADDLli2rNk1+5bVnz55M8+bNBW4nSPnxnjp1iuc9PT09pkePHny3Kz9XleunkSNH8pzX4uJiRlVVlQHAvHz5khOemprKCAsLM7NmzeKE1eXaEFS3V1X+HX3//n0GAPP69WvOe1XLRG0kJCQw//zzD9O+fXuGxWIxampqzOTJk5lHjx7xlL/a3IeU/9XExMSEb1mLi4tjADBr166t03HMnz+fAcAEBwfzfT8yMpIBwOzevbtO6RJCfh31PCOEENIojhw5gpCQEJ6/Dh06cMULCAgAi8XCsGHDuJ4Ga2hooFmzZlzDs5KSkjBhwgQ0adIEIiIiEBUV5UyyHB4eXuu8NW/eHNra2pzXFhYWAMqe+Faet6U8vHJPi5ycHMyfPx/GxsYQERGBiIgIZGRkkJubyzcPQ4cO5Xrdrl076OnpcYYp8pObm4uQkBD07dsXEhISnPDynk6V1eXz+1XleR41ahRXeOvWrWFhYYE7d+5whSsqKqJz58580/Lw8ICoqCjn9adPn/DhwwfO51X5WNzc3BAfH8+3d1K52p6Xa9euoVOnTpxzWxu5ubl4+vQp+vfvz9VTQFhYGMOHD8e3b9948lZ5qCtQ0UuhvCzduHEDJSUlGDFiBNexSkhIwNHRkXPelJSUYGRkhE2bNmHr1q149epVrea/+vjxI+Li4jBkyBCuIXN6enpo164dV9yAgAAoKCjA3d2dKy/NmzeHhoZGjWWIxWJh9OjRePPmDac3S2pqKi5fvox+/fpx5isqKSnB2rVrYWlpCTExMYiIiEBMTAyRkZF8r51+/frVeJzA77kma3udGRsbQ1FREfPnz8eePXu4ehDWxM7ODp8+fcL169exaNEitG3bFnfu3MGIESPg4eHB6Yn2K+erttveunULpaWlmDx5ssC0goKCkJWVhUmTJtVp5cS61iMaGhpo3bo1V5iNjQ3PsNwzZ86gffv2kJGR4Xw/HDx4kKsMlO+7ahkYMmQITz5rW15bt26N169fY9KkSbhx4waysrJq9TmUD+MW1KOyrlgsFte8gyIiIjA2NoampiZsbW054UpKSlBTU+M7rLm214aguv3z588YMmQINDQ0ICwsDFFRUTg6OgKo23c0P+rq6pgyZQoePXqEL1++YN68eZye5wYGBlxDQ93d3fnef/D7q43qynddyn5JSQkOHz4MKysrgXM3lpeH79+/1zpdQkj9oAUDCCGENAoLCwu0atWKJ1xeXh5fv37lvE5MTATDMFBXV+ebjqGhIYCy4UbdunVDXFwclixZAmtra0hLS4PNZsPe3r7GoWWVKSkpcb0uXwVQUHjleVaGDBmCO3fuYMmSJbCzs4OcnBznRwu/PJSvpFU1rLrVtNLT08FmswVuW1ltPz9+VFRUICUlhejoaIFxKivPM795mbS0tHh+jAmav4nfe+XD3ubMmYM5c+bw3YbfELxytT0vycnJdZ68PD09HQzDCDxuADznU1lZmet1+Xxy5XkpP147Ozu++yyf44rFYuHOnTtYuXIlNm7ciNmzZ0NJSQlDhw7FmjVrICsry3f78vwIKkMxMTGc14mJicjIyBC4GmZ1n3u50aNHY/ny5fDx8UHLli1x/PhxFBUVca3UOmvWLOzcuRPz58+Ho6MjFBUVISQkhLFjx/K9dqorP5X9jmuytteZvLw87t+/jzVr1mDRokVIT0+HpqYmxo0bh8WLF3M1GPMjKioKFxcXuLi4ACg7j/3790dAQACuXbsGNze3Xzpftd22fP6z6q6V2sThp671SNVrCSi7niqf2/Pnz2PgwIEYMGAA5s6dCw0NDYiIiGD37t2cRSvK9y0iIsKTJr8yUdvyunDhQkhLS+PYsWPYs2cPhIWF4eDggA0bNvD9DixXnkblByTlREREBA5LLB9qWLUsSUlJ8aQlJibG871WHs5v/rDaXhv8zl1OTg46duwICQkJrF69GqamppCSksLXr1/Rt2/fOn1H1yQzMxMZGRnIzMwEAM65KaekpAR5efl62ZeysjLfuiEtLY2zr9q6evUqEhISMH/+fIFxys9hfX5ehJDaocYzQgghfzQVFRWwWCw8fPiQ74T15WFhYWF4/fo1fH19MXLkSM77nz59+m15zczMREBAAJYtW4YFCxZwwsvn2+EnISGBb5ixsbHA/SgqKoLFYgnctrLafn78CAsLo0uXLrh27Rq+fftW44/g8h+c8fHxPHHj4uKgoqLCFVaXp/Xl2y5cuBB9+/blu42gSbXrcl5UVVVrnI+pqvIfZvHx8TzvlfceqXrsNSmPf/bsWU7vSUH09PQ4k7RHRETAz88Py5cvR1FREfbs2cN3m/JzVdsypKysLHBVVUENdJXp6OigW7duOHHiBLZs2QIfHx8YGxvDwcGBE+fYsWMYMWIE1q5dy7VtSkoKFBQUeNKsTY+O33VN1uU6s7a2xqlTp8AwDN68eQNfX1+sXLkSkpKSXHmsDWVlZcyYMQOBgYEICwuDm5vbL52v2m6rqqoKAPj27ZvA+RArx6mLutYjtXHs2DEYGBjg9OnTXOWmsLCQZ98lJSVITU3lakDjVyZqW15FREQwa9YszJo1CxkZGbh9+zYWLVoEFxcXfP36VeAqlOXHya+cqqurC+x5VB4uqCH3V9T22uB3bd69exdxcXEIDAzk9DYDUOPcb7UVERGB06dP49SpU3j//j2MjY0xePBgDBkyBObm5lxxDx8+jNGjR9cqXaaGifmtra1x8uRJlJSUcM17Vr5wRNOmTWt9DAcPHoSYmBiGDx8uME55efiZ64AQ8mto2CYhhJA/Ws+ePcEwDL5//45WrVrx/FlbWwOouFmv+sN17969PGlW7eVTX1gsFhiG4cnDgQMHBPYSOH78ONfroKAgfPnyBU5OTgL3U77SZ9XVxbKzs3H58mWuuLX9/ARZuHAhGIbBuHHjUFRUxPN+cXExZ5/lw3SqTgwfEhKC8PBwdOnSpdp9VcfMzAwmJiZ4/fo13+No1aqVwEaBupyX7t274969e9UOAa1KWloabdq0wfnz57nKFJvNxrFjx6CjowNTU9M6HC3g4uICERERREVFCTxefkxNTbF48WJYW1vj5cuXAtM3MzODpqYmTp48yfXj8MuXLwgKCuKK27NnT6SmpqK0tJRvPmq7EqCXlxfS09OxdOlShIaGYvTo0Vw/slksFs85unLlyi8NT/pd1+TPXGcsFgvNmjXDtm3boKCgUO35Ki4uFtjzrXy4W3kvx185X7Xdtlu3bhAWFsbu3bsFptWuXTvIy8tjz549dVoZsCHqERaLBTExMa7ylpCQwLPaZvnk/FXLwIkTJ/imWdfyqqCggP79+2Py5MlIS0vj6uFZVfnQ8aioKJ73unbtirCwML7Dfv38/CAjI4M2bdoITPtn/cy1Ua4u39G1lZSUhA0bNsDW1hZmZmbYs2cPunXrhmfPniEyMhIrV67kaTgD6nfYZp8+fZCTk4Nz585xhR8+fBhaWlq1Pg8JCQm4evUqevfuzbc3Zbny1U0tLS1rlS4hpP5QzzNCCCF/tPbt22P8+PEYPXo0nj9/DgcHB0hLSyM+Ph6PHj2CtbU1Jk6cCHNzcxgZGWHBggVgGAZKSkq4fPkybt26xZNm+Q/Z7du3Y+TIkRAVFYWZmVmtetBUR05ODg4ODti0aRNUVFSgr6+P+/fv4+DBg3x7zgDA8+fPMXbsWAwYMABfv37F33//DW1tba6VJ/lZtWoVXF1d4ezsjNmzZ6O0tBQbNmyAtLQ0V0+F2n5+gpSvXjpp0iS0bNkSEydOhJWVFYqLi/Hq1Svs27cPTZs2hbu7O8zMzDB+/Hj8888/EBISQvfu3RETE4MlS5agSZMmmDlz5k99ruX27t2L7t27w8XFBaNGjYK2tjbS0tIQHh6Oly9f4syZM3y3q8t5WblyJa5duwYHBwcsWrQI1tbWyMjIwPXr1zFr1iy+P8QAYN26dXB2dkanTp0wZ84ciImJYdeuXQgLC8PJkyfrNO8NAOjr62PlypX4+++/8fnzZ7i6ukJRURGJiYl49uwZpKWlsWLFCrx58wZTpkzBgAEDYGJiAjExMdy9exdv3ryptheTkJAQVq1ahbFjx6JPnz4YN24cMjIysHz5cp6hWYMGDcLx48fh5uaG6dOno3Xr1hAVFcW3b99w79499OrVC3369KnxmDw8PKCiooJNmzZBWFiYq4coUNZw4+vrC3Nzc9jY2ODFixfYtGlTnYf9Vfa7rsnaXmcBAQHYtWsXevfuDUNDQzAMg/PnzyMjIwPOzs4C08/MzIS+vj4GDBiArl27okmTJsjJyUFgYCC2b98OCwsLTo/MXzlftd1WX18fixYtwqpVq5Cfn4/BgwdDXl4e79+/R0pKClasWAEZGRls2bIFY8eORdeuXTFu3Dioq6vj06dPeP36Nf7991++eWiIeqRnz544f/48Jk2ahP79++Pr169YtWoVNDU1ERkZyYnXrVs3ODg4YN68ecjNzUWrVq3w+PFjHD16lG+atSmv7u7uaNq0KVq1agVVVVV8+fIF3t7e0NPTg4mJicA86+jowNDQEE+ePMG0adO43ps+fTqOHDkCJycnTj2Vnp6O06dP4+zZs9i6desvf5/x87PfV0BZY6qioiImTJiAZcuWQVRUFMePH8fr169/Oj9Xr17F+vXr0a9fP2zevBmdOnXiGp4piLKycrUNVHXRvXt3ODs7Y+LEicjKyoKxsTFOnjyJ69ev49ixYxAWFubE9fLywuHDhxEVFcXTo/jw4cMoKSnB2LFjq93fkydPOEN/CSG/2e9eoYAQQsj/tvJVrkJCQvi+36NHD65V7ModOnSIadOmDSMtLc1ISkoyRkZGzIgRI5jnz59z4rx//55xdnZmZGVlGUVFRWbAgAFMbGws31XSFi5cyGhpaTFCQkJcq/MJWsUMADN58mSusPJVFzdt2sQJ+/btG9OvXz9GUVGRkZWVZVxdXZmwsDBGT0+PGTlyJM/ncPPmTWb48OGMgoICIykpybi5uTGRkZE1fIplLl26xNjY2DBiYmKMrq4us379eoGrlNXm86tOaGgoM3LkSEZXV5cRExNjpKWlGVtbW2bp0qVMUlISJ15paSmzYcMGxtTUlBEVFWVUVFSYYcOGMV+/fuVKz9HRkbGysuLZD7/PtLLXr18zAwcOZNTU1BhRUVFGQ0OD6dy5M7Nnzx5OHH4rLtb2vDBM2QqJY8aMYTQ0NBhRUVFGS0uLGThwIJOYmMiVx8qr2TEMwzx8+JDp3Lkz5zO2t7dnLl++zBVHUPkXtErkhQsXmE6dOjFycnKMuLg4o6enx/Tv35+5ffs2wzAMk5iYyIwaNYoxNzdnpKWlGRkZGcbGxobZtm0bU1JSwvczrOzAgQOMiYkJIyYmxpiamjKHDh3iWUmSYcpW5tu8eTPTrFkzRkJCgpGRkWHMzc2Zv/76q9bllWEYZubMmQwAxs3Njee99PR0xsvLi1FTU2OkpKSYDh06MA8fPuRZEbL8szpz5gxPGr9y7utyTfL7jBim5uvsw4cPzODBgxkjIyNGUlKSkZeXZ1q3bs34+vpW+7kVFhYymzdvZrp3787o6uoy4uLijISEBGNhYcHMmzePSU1N5Ypf2/NV9bOty7YMwzBHjhxh7OzsOPFsbW15rourV68yjo6OjLS0NCMlJcVYWloyGzZs4LzPr8761XqE3/lZv349o6+vz4iLizMWFhbM/v37+e47IyODGTNmDKOgoMBISUkxzs7OzIcPH3i+R2pbXrds2cK0a9eOUVFR4dTVXl5eTExMDE++q1qyZAmjqKjIFBQU8LyXkJDATJw4kdHV1WVEREQYWVlZpkOHDnyvi5EjRzLS0tI84YI+v6rfg3W5NgSlyTAMExQUxLRt25aRkpJiVFVVmbFjxzIvX77kqU9ru9pmSkoKU1hYWGO8hpadnc1MmzaN0dDQYMTExBgbGxvm5MmTPPHKVz3lt9K3qakpo6+vX+3KtAzDMB07dmTc3d3rK+uEkDpgMUwd+lETQgghpF74+vpi9OjRCAkJqXbSaEIIIf+b4uLiYGBggCNHjsDT07Oxs0MaWVRUFExMTHDjxo1qe6oSQhoGzXlGCCGEEEIIIX8YLS0tzJgxA2vWrAGbzW7s7JBGtnr1anTp0oUazghpJDTnGSGEEEIIIYT8gRYvXgwpKSl8//5d4Mqm5L+vpKQERkZGWLhwYWNnhZD/WTRskxBCCCGEEEIIIYQQAWjYJiGEEEIIIYQQQgipdw8ePIC7uzu0tLTAYrFw4cKFGre5f/8+WrZsCQkJCRgaGmLPnj08cc6dOwdLS0uIi4vD0tIS/v7+DZD7CtR4RgghhBBCCCGEEELqXW5uLpo1a4Z///23VvGjo6Ph5uaGjh074tWrV1i0aBGmTZuGc+fOceIEBwfD09MTw4cPx+vXrzF8+HAMHDgQT58+bajDoGGbhBBCCCGEEEIIIaRhsVgs+Pv7o3fv3gLjzJ8/H5cuXUJ4eDgnbMKECXj9+jWCg4MBAJ6ensjKysK1a9c4cVxdXaGoqIiTJ082SN6p5xkhhBBCCCGEEEIIqVFhYSGysrK4/goLC+st/eDgYHTr1o0rzMXFBc+fP0dxcXG1cYKCguotH1XRapuEEEIIIYQQQgghf5D2Oyc0dhb4ck7WwIoVK7jCli1bhuXLl9dL+gkJCVBXV+cKU1dXR0lJCVJSUqCpqSkwTkJCQr3kgR9qPCOEkHr0p37J/azHk/cgLiOpsbNR77QU1LD6lk9jZ6NeLXYejXTnPo2djXqleMsfW+43TNf7xjLbcTDmX9nV2NmoVxt6TMKxF9cbOxv1alhLV1wKe9jY2ahXHk07YuiJ5Y2djXp3fMhyBH560djZqFdOxi2xN/hCY2ejXv3VtjcGHl3c2NmoV37DV2PGRe/Gzka98u41A0dCrjZ2NurVCDu3xs7Cf87ChQsxa9YsrjBxcfF63QeLxeJ6XT7bWOVwfnGqhtUnajwjhBBCCCGEEEIIITUSFxev98ayyjQ0NHh6kCUlJUFERATKysrVxqnaG60+0ZxnhBBCCCGEEEIIIX8Q1h/6r6G1bdsWt27d4gq7efMmWrVqBVFR0WrjtGvXrsHyRT3PCCGEEEIIIYQQQki9y8nJwadPnzivo6OjERoaCiUlJejq6mLhwoX4/v07jhw5AqBsZc1///0Xs2bNwrhx4xAcHIyDBw9yraI5ffp0ODg4YMOGDejVqxcuXryI27dv49GjRw12HNTzjBBCCCGEEEIIIYTUu+fPn8PW1ha2trYAgFmzZsHW1hZLly4FAMTHxyM2NpYT38DAAFevXkVgYCCaN2+OVatWYceOHejXrx8nTrt27XDq1Cn4+PjAxsYGvr6+OH36NNq0adNgx0E9zwghhBBCCCGEEEL+IEINOPn97+Tk5MSZ8J8fX19fnjBHR0e8fPmy2nT79++P/v37/2r2ao16nhFCCCGEEEIIIYQQIgA1nhFCCCGEEEIIIYQQIgAN2ySEEEIIIYQQQgj5g7D+I8M2/yuo5xkhhBBCCCGEEEIIIQJQ4xkhhBBCCCGEEEIIIQLQsE1CCCGEEEIIIYSQP8h/ZbXN/wrqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8ICDdv8k1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBattvlHoZ5nhBBCCCGEEEIIIYQIQI1nhBBCCCGEEEIIIYQI8Nsbz/T19eHt7f1b02OxWLhw4cIv7Wf58uVo3rz5L6VRVWBgIFgsFjIyMuo1XcKt6ufs6+sLBQWFRs3TqFGj0Lt370bNw58gNTUVampqiImJaeyscPn333/h4eHR2NkghBBCCCGE/I8SYrH+yL//VbWe88zd3R35+fm4ffs2z3vBwcFo164dXrx4gRYtWtRrBmsSEhICaWnp37pP8v+bp6cn3NzcGjsbBMC6devg7u4OfX19AEBMTAwMDAzw6tUrTmN1dnY23N3dkZCQgI8fP1abXnR0NPT19REUFISOHTvC2dkZ169f54l37tw5bNy4ER8+fACbzYauri5cXV2xZcsWAMC4ceOwZs0aPHr0CB06dKjXY/4VzTSNMcS2G8zVdKEirYAFV3fjYfTrxs4WAODCWX+cPnYSqamp0DfQx5SZ02Bj20xg/NCXr7DL+1/ERMdARUUZg4YPgUff3nzj3r15G6uWrEB7hw5YvWkdJ/z1q1CcPnYSER8+IjUlFas2rkEHR4f6PjQuHx+8xLs7T5GfmQMFTRW06tcV6sZN+MZNiPiCWztO8oR7LB4HeQ1lAAC7tBRhN4MR9TQMeRnZkFdXgm2vTtC2NGzQ4/hZoh3sId6jG4RNjCAkL4esCTNRGhXT2Nni8S7wGd7cCEJeZjYUtdTQ1tMVmiZ6fOPGfYxGwJbDPOEDV0yGgqYqT/inZ29x98A56DUzg8vkwfWed0Hs9azgaGgLWXEpJOak4fK7x4hJjxcYX1hICF1N7GCrZQpZcSlkFuTg7qcXeP7tAyeOhIgYXMzaoKmGISRFxZGen42A94/xMTn2dxwSnt96iOCAu8jOyIKqtgZcRvSFrrlRjdt9/fgZh1f9A7Ummhi/bh4nPOlbPO6fuYr46G/ITElDt+F90Ka7UwMeAa+g6/cQePEGstMzoN5ECx6jB8HQ0pRv3OjwSFw5ehbJ3xNQVFQERRVl2HdzgIN7N77xQx89w/Ft+2Bl1xyjFkxpyMPg0tXEDj0s2kFBUhbfM5Nw9MX1astIO31r9LRoDw1ZZeQVF+BN3CeceHUTOUX5AIBORi3QwaAZmiioAQCi0+Jx+vUdfE79/luOp1xgwC3cPB+AzLQMaOlqY+D4ETBpas437svHz/Dg6m18/fwFJcUl0NTThvuQfrBqyf09l5eTiwtH/PAqKAR5OblQUVdF/7FDYW1n+zsOCaF3gvH82n3kZmRDWVsdTkPcoWNmUON23yNj4LduL1S01TF81QxOuN+6vfj28TNPfAMbc/SZNbo+sy5QN9PW8LDqCAVJGXzLSILv86v4kPRFYPwOBs3gYdkBmnLKyCsqRGhcJI6+uMYpf46Gtpjcvh/PdkOPL0cxu6TBjqM67fVt0Nm4JeQkpJGQnQr/t/fxOS2Ob9whtt3QWteSJzw+KxUb7h1t6KwK9PzWIzy5eg85P+pz52G9a1efR3zG0dU7oaqjgXFr53LCP4S8weNLt5CemAJ2KRuK6iqwd3OCdQe7hjwMQqpV68YzLy8v9O3bF1++fIGeHvcN6KFDh9C8efPf3nAGAKqqvDe25L+hqKgIYmJi9Z6upKQkJCUl6z3dxtRQn1VtFBcXQ1RUtM7b5efn4+DBg7h69arAOMnJyejevTsA4Pbt2xARqaiy7OzsMH78eIwbN44TVl4fHDp0CFOnTsWBAwcQGxsLXV1dTpzbt29j0KBBWLt2LTw8PMBisfD+/XvcuXOHE0dcXBxDhgzBP//880c1nkmKiuNT6jdc/RCEtd0nNHZ2OO7euoOd23ZgxrxZaGpjjcv+lzB/5lz4njoKdQ11nvjxcXFYOHMeevRyx98rliDszVt4b9wKeQUFOHZ24oqbEJ+A3Tt2waY5b0NcQX4BjEyM4drTDcsWLG6ow+OIeRGO5+duo7WnC9QMtRHxKBR3d/nBY/FYSCvJC9yu15LxEJWsuD7FZaQ4/w+9/ACfQ96h7ZDukFNXRlz4Z9zffx6us4ZBqYlGgx7Pz2BJiKPk3QcUPQiC9KzJjZ0dvqJCwhB8+jo6DOkBdWNdhD94jms7jmHg8smQUVYQuN3AVVMgJiHOeS0hy/tgLjs1A0/P3oSGiS7Pew3JRtMY7pYdcCHsAb6kJ6CNriXGtO6JrfdPIqMgh+82Q21dICsuibNv7iE1LxPSYpIQFqoYcCDMEsLYNh7IKcrHsZc3kFmQAwUJGRSWFP+WY3oX/BI3jvjDbcwA6Jga4OWdIJzYsAcTNy2EvIqSwO0K8vJxcfcxGFiZIjcrm+u9ksIiKKqpwKKNLW4d82/oQ+AR+vgZLvmcQp9xQ6FvbownNx/g4JrtmOO9EoqqyjzxxcTF0b57Z2jq6UBMQhzR4ZE4t/coxMTFYd/NkStuelIqAg6fgYGFye86HACAva4Vhrdwhc/zK4hIjkVn41aY5zQM867sRGpeJk98U1VdTLTvg2Mvb+Dl949QlJLDGLueGNvGA94PTwMALNT1EfwlDEeef0URuwQ9LdpjQafhmH9lJ9Lzs3nSbAghD4Lht/8IhkwaAyMLUzy4fgf/LNuA5bs3QUlNhSd+5LsPsLC1Ru+RnpCUlkLQ7fvYuXIzFmxdBV0jfQBASXEJvBevg6y8HP5aNB2KKkpIT06F+G+65/z49DUCT1xGlxG9oWWihzf3nsJ/6yGMXDsLcsqKArcrzMvH9X2noWtphLxM7vrEfepwsEtKOa/zc3NxdMl2mNpZN9hxVNZWrylGtXLDgWeX8TEpFl1N7bCo8wjMvLSDb/kzU9XDlHb9cPjFVTz/9hFKknIYZ++BCW37YPP9E5x4eUUFmH7Rm2vbxmo4s9UyRR9rR5x9fRfRaXFop2+Dv9r2xrq7R5HB53o4/zYQl98/4rwWYglhXqeheB0X+Rtzze39k1e4dewCXEf1RxNTA7y8G4RTm/bhrw0LIK8iuOwV5OXj0p4TMLAyQU4m97FKSkuhvYczVLTUISwijMhX73B53ylIycnCyIZ/IzchDa3WwzZ79uwJNTU1+Pr6coXn5eXh9OnT8PLyAgAEBQXBwcEBkpKSaNKkCaZNm4bc3FyB6cbGxqJXr16QkZGBnJwcBg4ciMTERK44ly5dQqtWrSAhIQEVFRX07duX817VYZuRkZFwcHCAhIQELC0tcevWLZ59zp8/H6amppCSkoKhoSGWLFmC4mLum8X169dDXV0dsrKy8PLyQkFBQbWfT2lpKby8vGBgYABJSUmYmZlh+/bt1W5TVWpqKgYPHgwdHR1ISUnB2toaJ0/y9lqoytfXF7q6upCSkkKfPn2wZcsWrmGJ/IYIzpgxA05OTpzXDMNg48aNMDQ0hKSkJJo1a4azZ89Wu99du3bBxMQEEhISUFdXR//+/X8pPX19faxevRqjRo2CvLw8p1GkpjJ17NgxtGrVCrKystDQ0MCQIUOQlJRU7edV+fPR19cHi8Xi+StXm/JS1ffv3+Hp6QlFRUUoKyujV69edR6a+PjxYzg6OkJKSgqKiopwcXFBeno6AMDJyQlTpkzBrFmzoKKiAmdnZ8TExIDFYiE0NJSTRkZGBlgsFgIDAzlh7969Q48ePSAnJwdZWVl07NgRUVFRnPd9fHxgYWEBCQkJmJubY9euXZz3yvfh5+cHJycnSEhI4NixY2Cz2Vi5ciV0dHQgLi6O5s2b8+3xVdm1a9cgIiKCtm3b8n3/69ev6NixI2RlZXHv3j3o6OhAQ0OD8ycsLMw555XDcnNz4efnh4kTJ6Jnz548dVZAQAA6dOiAuXPnwszMDKampujduzf++ecfrngeHh64cOEC8vPzqz2O3+lJ7Dvsf3oJ9z+HNnZWuJw5eRpuHj3Qo5c79Az0MWXWNKipq+HSOf4/Xi+dvwg1DXVMmTUNegb66NHLHd3de8Dv+CmueKWlpVizdCVGjR8DTW1NnnTatLOH14RxcOjkyPNeQ3h/9xmM2zaDSbtmkNdQgV3/rpBSlMPHh6+q3U5CVgqScjKcP6FKDRifn72Ddbe20LYygqyKAsw6toCmhQHe3w1p6MP5KUW376PgmB9KXv4ZPR75eXMrGGYdWsC8Y0soaqqinWd3yCjK4/3959VuJykrDSl5Wc5f5fMEAGw2G3cPnENLj06Qq+bHQEPoaNAMIV/DEfI1HEk56bj8/jEyC3Jgr9eUb3xT1SYwVNbCoZAr+JT6Den52fiWmYQv6QmcOK2aWEBKVBxHnl/Dl/QEZOTnICY9AfHZqb/lmJ5cDYStkz1sO7Xl9DqTU1bE89uPq93uyoHTsGrXEjom+jzvaRnpoevQXmjargWERX7/gvIPLt+CXecOaNPVAeo6Wug1ZhAUlBURfCOQb3xtQ13YdmwDDV1tKKmpoKVjW5g1t0J0OPePYHYpGye270c3Tw8oqf/eh8bdzdsi8PNLBEa9RFxWCo69vI7UvEx0NWnFN76xsg6SczNwI+IpknMzEJEci7ufnsNQSYsTZ1fQedyODMGXjATEZ6XgwLNLEGKxYKXx+3rc3va/ivbdnNDBpRM0dbXhOX4EFFWUcf8q7wgbAPAcPwIu/d2hb2oEdW1N9Bk5CGpaGnjz9CUnzuNbgcjNzsGkJbNgbGkGZTVVGFuZo4kh/16v9e3FjYdo6mAHa8fWUNZSR6ehHpBVksfru0+q3e6273mY2zeHphFvPiVlpCCtIMv5iw2LhKiYKExb2zTUYXDpadkedz+9wN1PL/A9KxmHn19FSl4mupm15hvfVFUHSbkZuPbhCZJz0vEx+QtuR4TAUFmbKx4DBpkFOVx/jcXJuAWefnmHJ7HvkJiTDv+w+8jIz0EHff6fcUFJEbIL8zh/ugrqkBSVwNPYd7855xWeXgtEc6c2sO1kDxVtdXQb3gdyygp4eaf6+vzaoTOwatsC2sb6PO/pWRrD3M4GKtrqUFRXQWtXR6g10cRXPj0h/8v4/Ub9E/7+V9W68UxERAQjRoyAr68vGIbhhJ85cwZFRUUYOnQo3r59CxcXF/Tt2xdv3rzB6dOn8ejRI0yZwr9rOcMw6N27N9LS0nD//n3cunULUVFR8PT05MS5cuUK+vbtix49euDVq1e4c+cOWrXi/4XNZrPRt29fCAsL48mTJ9izZw/mz5/PE09WVha+vr54//49tm/fjv3792Pbtm2c9/38/LBs2TKsWbMGz58/h6amJlcDgqB96+jowM/PD+/fv8fSpUuxaNEi+Pn5VbtdZQUFBWjZsiUCAgIQFhaG8ePHY/jw4Xj69KnAbZ4+fYoxY8Zg0qRJCA0NRadOnbB69epa77Pc4sWL4ePjg927d+Pdu3eYOXMmhg0bhvv37/ON//z5c0ybNg0rV67Ex48fcf36dTg4OPx0euU2bdqEpk2b4sWLF1iyZEmtylRRURFWrVqF169f48KFC4iOjsaoUaNqfewhISGIj49HfHw8vn37Bnt7e3Ts2JHzfk3lpaq8vDx06tQJMjIyePDgAR49egQZGRm4urqiqKioVnkKDQ1Fly5dYGVlheDgYDx69Aju7u4oLa14+nf48GGIiIjg8ePH2Lt3b63S/f79O6dx+e7du3jx4gXGjBmDkpKyp2379+/H33//jTVr1iA8PBxr167FkiVLcPgw95Cm+fPnY9q0aQgPD4eLiwu2b9+OLVu2YPPmzXjz5g1cXFzg4eGByEjBT8EePHgg8Fr++PEj2rdvD3Nzc1y/fh2ysrK1Oj4AOH36NMzMzGBmZoZhw4bBx8eHq87S0NDAu3fvEBYWVm06rVq1QnFxMZ49e1brff8vKi4uRsSHCLRqw30j26q1HcLe8v+M3799h1atubvd29m3xsfwD5yyCABHDvpCQVEBPTx61n/G66i0pBRpXxOgaaHPFa5loY/k6OqHGgVs8MHZRf/g1o6TSIjgHmpSWlICIVHuH/kioiJIivpaL/n+X1NaUoKU2DjoWHIPFdGxNEJiDZ/p+VV7cXTOZgRsPYy4D9E8778MuA9JWWmYd/i9veyFWULQlldFZDJ3/iOSv0JPkbdnJwBYqhvgW2YSHA1tsajLCMxxHIIeFu0gIiRcKY4+vmQkonfTjljcdRRmOniik1ELsNDwN8WlJSWIj/4KQxszrnAjazN8i+D97MuFBj5BelIKHPu5NnQW66ykuATfo77AtLkVV7hpMyt8+RglYCtu3z/HIuZjFAytuId53jpzGdJysmjdtaOALRuGsJAwDJS08DaeO/9vE6JgosJ/uHpkylcoScmhmVZZDzk5CWm0bmKJ0Gp6xYgLi0KYJYTcwt/zsKqkuASxn6JhacvdOGHZwhpR4RG1SoPNZqMgvwDSlXqovnn6AobmJjixywdzhk7AiknzcPX0BbBL2fWaf35KS0qQGPMdek25eybqNTVF3CfBQxzDHoYgIzkNbXt3rdV+3j58DrM2zSAq3vCjHYSFhGGopIXX8Z+4wt/EfYKZKv/evx+TY6EsJQdbrbJrSF5CGvZ6Vnj1nXvaDwkRMezsMwe7+87F/E7DoK/I+4DudxBmCUFHXg0fkrnP0YekL9BXql2e2uhZISI59rf12qyqrD7/BoOm3PW5YVMzfIuMEbjd6/tPkZ6YAoe+LjXug2EYRIdFIC0huVZDQQlpKHV6LDdmzBhs2rQJgYGB6NSpE4Cy4VF9+/aFoqIipk+fjiFDhmDGjBkAABMTE+zYsQOOjo7YvXs3JCQkuNK7ffs23rx5g+joaDRpUvYlfPToUVhZWSEkJAR2dnZYs2YNBg0ahBUrVnC2a9aM/zw6t2/fRnh4OGJiYqCjowMAWLt2LWfYV7nFiyuG9+jr62P27Nk4ffo05s0rmzfD29sbY8aMwdixYwEAq1evxu3bt6vtfSYqKsqVRwMDAwQFBcHPzw8DBw4U/KFWoq2tjTlz5nBeT506FdevX8eZM2fQpk0bvtts374dLi4uWLBgAQDA1NQUQUFBNfb6qSw3Nxdbt27F3bt3Ob2ADA0N8ejRI+zduxeOjry9OmJjYyEtLY2ePXtCVlYWenp6sLW1/en0ynXu3JnrMxgxYkSNZWrMmDGc+IaGhtixYwdat26NnJwcyMjI1Hj8lYf+Tp8+HfHx8QgJqej1UVN5qerUqVMQEhLCgQMHOC3zPj4+UFBQQGBgILp14z+XSWUbN25Eq1atuBptray4b8iNjY2xceNGzuva9GzbuXMn5OXlcerUKc5QS1PTipv0VatWYcuWLZzenQYGBnj//j327t2LkSNHcuLNmDGDqwfo5s2bMX/+fAwaNAgAsGHDBty7dw/e3t7YuXMn37zExMRAS0uL73sjRoxAu3btcO7cOQgLC/ONI8jBgwcxbNgwAICrqytycnJw584ddO1admM4depUPHz4ENbW1tDT04O9vT26deuGoUOHQly8YsiWtLQ0FBQUEBMTw7fMFhYWorCwkCus8vb/KzIzMsEuLYWiEndPHEVlRaQ/SeO7TVpqKhSVuRvbFJUUUVpaisyMDCirqODt6ze4eukKDhw71GB5r4vCnDwwbIZnKJ+ErDQKsvj3rpaUl4H9YFco6WqAXVyKzyFhuPXPSXSbPgTqxmU3/loWhgi/GwJ14yaQVVFE/McYfH0TydXgS2qv4Md5kpTjPk+SctLIy+Lfs0BKXhYdh7tDVVcTpSWliHzyGgHbDsN99ihomuoDABI+xeLjo5fot+T3D5eWEpOAsJAQZ76ecjmFeZAV59+AoSQpB31FTZSUluLI8+uQFpNA76YOkBQVx9k398riSMnBSFIWoXGR8Hl2BSrS8ujV1AFCLCHc+VR9L71flZedC4bNhrS8HFe4tLwsz9CdcqnxSbh76jJGLpsOoTp+L/wOudk5YLPZkK1yTDIKcsjO4B1eVtnqcXORk5UNNrsUzgM90KZrxcPI6A+RCLnzCDO3LG2QfFdHVlwKwkJCyCzgruMy83Mhr8n//ioy5St2BZ3H1Pb9ISosAhEhYbz49gGHnwueomFQ865Iy89GWMLv6VFS9lmzIafAPdxeVkEeWenVn6tyt/yvoKigEC072nPCkhOSkJr4Hm2c2mPq8nlIikvAyd2+YJey0XNI32pS+3X52Xll15Qc93mRkpNBnoBrKj0hBY/OXIfnogm1uqbiP39F6rcEdBvTv8a49UFOXArCQsI8vcIyC3KhIMG//EUkf8WOR2cww8GTU/5Cvobj0LMATpy4rGTsCjqP2IxESIqKw828LVa5jsPcgJ1I+E09b8tJi5cNp88uyOMKzy7Mg5yElICtKsiJS8FCTR9HX1xrqCzWqLw+l5HnftAtLS+LnIwsvtukJSTj3ukADF8ytdqyV5CXjx1Tl6O0pAQsISG4juoPQ2szgfEJaWh1ajwzNzdHu3btcOjQIXTq1AlRUVF4+PAhbt68CQB48eIFPn36hOPHj3O2YRgGbDYb0dHRsLCw4EovPDwcTZo04TScAYClpSUUFBQQHh4OOzs7hIaGcs1pVJ3w8HDo6upyGs4A8B0SdvbsWXh7e+PTp0/IyclBSUkJ5OTkuNKZMIH7Brlt27a4d+9etfvfs2cPDhw4gC9fviA/Px9FRUV1WqGztLQU69evx+nTp/H9+3fOj/PqFkQIDw9Hnz59ePJal8az9+/fo6CgAM7OzlzhRUVFnAaxqpydnaGnpwdDQ0O4urrC1dUVffr0gZSU1E+lV65qT6TalKlXr15h+fLlCA0NRVpaGtjssid8sbGxsLTknVBTkH379uHgwYN4/PgxV4NaTeWlqvI8V+0tVVBQwDU8sjqhoaEYMGBAtXEE9dqqKd2OHTvynaMsOTkZX79+hZeXF9c1V1JSAnl57hvMyvvOyspCXFwc2rdvzxWnffv2eP1a8NCu/Px8ngb1cr169YK/vz/OnTtX68ZnoKzH2rNnz3D+/HkAZT1mPT09cejQIU7jmbS0NK5cuYKoqCjcu3cPT548wezZs7F9+3YEBwdDSqriZkVSUhJ5eXl897Vu3TquBnMAWLZsGfA/Og0jTxduBkA13bqr9m4pbyxisVjIy83D2mWrMWfRPMg38sq4VfH0ymEAQR115NWVIa9eMc+RqqE2ctOz8P72M07jmV3/rgg+eQ2XVu0HWICsiiKM7G0Q9eRNAx1B7Yl1doDUjIrvwpxFq1ASFt6IOao93vIlOK6ChgoUNCrmOFI3aoKc9Cy8vhkETVN9FBUU4t7B8+g43IPvPGi/C0+DKosFQYdVfj2eCr2NgpKyHs8B4UEY1sIFF8IeoIRdChZYyC3Kx7k3gWDA4HtWMuQkpOFg2LzBG884+azyWtDlxGaz4b/zCBz7d4eyptpvyNkv4KkLq6kkfpi0eh4KCwoRG/EZV4+dg4qGGmw7tkFBfgFObj+I/hNHQFqu9j2w6xtTpaSxWICgwqctp4oRLbvDP+w+3sRHQUFSBkOad8OY1j2x/+klnvg9LdqjrZ41Vt/x/f1zTtW2AFbxLDAIAcfPY9KSWVwNcAybgayCHIZNHQshYSHomRgiIy0dN89dafDGMw5+38V8DorNZuPq3pNo29sZihq1u3EJe/AMyjoa0DTk32jfUPjV34LqPm15VYy264Gzb+7hdVwkFCVlMaylK8bZ98Ke4LKpJCJTviEy5Rtnm49JsdjQYxK6m9vDJ+RKAxxB3bFY1X9vlWuta4X84kKe3qGNokrZK7sN5F/2Luw8io79XGusz8UlxDF2zRwUFRYh5l0Ebh+/AEVVZehZGtdnzv9oQr+hNzipvTpPCOHl5YUpU6Zg586d8PHxgZ6eHrp06QKg7GL466+/MG3aNJ7tKk/YXY5hGL4XVeXwukzszu9JfdX0nzx5wunJ5uLiwumFU77K3s/y8/PDzJkzsWXLFrRt2xaysrLYtGlTtUMuq9qyZQu2bdsGb29vWFtbQ1paGjNmzKh2qF9teicICQnxxKs8Z1d5Y9OVK1egrc09J4CgnjSysrJ4+fIlAgMDcfPmTSxduhTLly9HSEjIT6VXrmpDYU1lKjc3F926dUO3bt1w7NgxqKqqIjY2Fi4uLrUeIgkAgYGBmDp1Kk6ePMnVs/FnygubzUbLli25GvzK1XaBi9qU+6qfVfn8PJXPddW52apLt/y87d+/n6enY9XeX/wadKtea4Ku73IqKiqcOdyqWrRoEWxsbDB06FAwDMM1lLs6Bw8eRElJCVe5YxgGoqKiSE9Ph6JiRe8oIyMjGBkZYezYsfj7779hamqK06dPY/ToitWj0tLSBJ6zhQsXYtasWVxh4uLiuHVgeq3y+l8hryAPIWFhpKVy9zJLT0vn6Y1WTklZmSd+RnoGhIWFIScvj5jP0UiIj8eiOQs47zM/ymeXdk444ncc2jrcdUtDE5eRAkuIhfxs7ifgBTm5dWpQUdXXxueQinlJJGSl0Gl8P5QWl6AwNx+S8jJ4dTGw2ontf5ei4Gco+VAxhImdwr8n4Z9E4sd5qtrLrCA7F1JyNfdELqdmoINPT8saMLOS05CdmoEbOysmmy6vZ/dPWAHPlVMhpyZ4gvtflVdUgFI2G7Li3L0QZMQkkVPIv3E/uzAXmQW5nIYzAEjOSYcQiwV5CRmk5mUiuzAXpQybq2EkKScdchLSEGYJoZRpuKFmUrLSYAkJISeTu1dCXmY2pOV5G4mK8gsQ//krEmK+45rvOQA/zgHDYPWwmRi6cCIMrPivaPm7SMuWzWdYtZdZTmY2ZBUEP3ADwJnHTFNPB9mZWbjldwm2HdsgNSEJ6Ukp8FlXMSdnedmbP2A85v6zGioaDdeYmF2Yh1I2m6eXj5yEtMA5ojysOiAiJRZXwoMAAF8zEuFTcgXLnMfgzOu7XAtcuJm3g4dVR6y7ewRfMxL5ptcQZOTK5jSs2sssOzOTpzdaVSEPgnFkxz78tWA6LGy5J82XV1KAsLAwhIQrZsXRbKKNrPQMlBSXQES0zj+7ak1SVgosISHkVulllpedAyl53rqvKL8QidHfkPQlDnePXQRQcU1tG7MQ/eZ4QbdSA0VxYRE+Pn2Ndn1qHj1RX7IK81DKLoWCJHf+5aspf32aOuJjcixnQv3YjEQUPL2MVa7jcCr0FjLyebdjwCAq9Ts0ZHkX9WhouYX5ZfW7RNX6XQrZAur3ytroWuL5t/AGra9rwqnPM2pbnxciPvorEr58x43DZQ+7y8ve2hGzMWT+BOhblQ0/ZgkJQelH466GnjZSvici6PLt/6nGM/JnqXMtPnDgQEyfPh0nTpzA4cOHMW7cOM4P5BYtWuDdu3cwNq5dgba0tERsbCy+fv3K6X32/v17ZGZmcnqp2djY4M6dO1w/aGtKLy4ujjMcLDg4mCvO48ePoaenh7///psT9uUL9zhzCwsLPHnyBCNGjOCEPXlS/WSbDx8+RLt27TBp0iROWG17GVVOo1evXpwhZ2w2G5GRkTw99iqztLTkyVvV16qqqjzzO4WGhnJ6H1laWkJcXByxsbHVDqmsSkREBF27dkXXrl2xbNkyKCgo4O7du3B2dv6p9PipqUy9ffsWKSkpWL9+PacMPX9etyfmnz59Qr9+/bBo0SKuoYhA7coLvzyfPn0aampq1fZQq055ua/as6k65Y088fHxnB5+lRcPKE/38OHDfFfIVFdXh7a2Nj5//oyhQ4fWer9ycnLQ0tLCo0ePuOa9CwoKQuvW/Cd0BQBbW1scO3ZM4PuLFy+GiIgIhg4dCjabjcGDB1ebj5KSEhw5cgRbtmzhGRrbr18/HD9+XOD8i/r6+pCSkuJaiCIqKgoFBQUCe0uKi4v/Tw7TrEpUVBSm5qZ4/iwEHZ0qzv+LZyFo78B/pVJLaysEP+SeRPb502cwszCHiIgIdPV0cegE9zx7B/fsR15eHqbOmg419d/f80RYRBhKTTQQ/yEGus0qhgzEf4iBjnXtV79L+5YISXnexjZhURFIKciCXVqK2NCP0GshuN7/bfILwM5PqDneH0RYRAQqulr4/j4KBrYVn+G38CjoN6v96lypX+M5PzgVNFTQf9lErvdDLtxFcWER2nm6Qlrp5+r52ipl2PiemQwT1SZ4l1gxH5iJig7eJ8bw3SYmLQHWmkYQExZBUWlZbx4VaXmwGTbnR2dMegKaa5mgciciFWkFZBXkNvgPMWEREWgaNMHntx9hblfxwOpz2EeYtuRdxU9cUgJ/beCew/b5rUeIeReJ/jNGQ4HPSpa/m4ioCLSN9BD5+j2s21TMixfx5j2s7JrXOh2GYVBSXHbO1LQ1MXsb933A9RP+KCwoQK8xg6Gg3HCNtgBQyi5FdFocmmoY4fm3D5xwaw0jvKj0ujIxYVGwq5QfzutKD9R6WLRDbysHbLh3DNFpcfWf+WqIiIpA19gA4a/ewrZdxfyb4a/C0My+pcDtngUG4cj2vRg7bwqsW/PeGxhZmiIkMAhsNpvzQDPxezzklRQatOEMKLum1PW1EfsuEiYtKxYS+fIuEka2vKMwxCXFMWL1TK6w13eDEfs+Cu5ThkFelbtsRTx7g9LiUli0q34ESX0qZZfic1ocbDSNEfK1otezjaYxQr7x7wUtLizKU3+Vl7/q5nPUU9T4rQ245UoZNr5lJsFMVZer95iZmi7C4qsfxmysrANVGUU8qTQktTGU1ec6iA6LgLldxTyC0WERMG3Ju6iNuKQ4xq3jnvrmxe3H+PI+En2njYKCavX1Wnn9SEhjqHNNLiMjA09PTyxatAiZmZlcE7PPnz8f9vb2mDx5MsaNGwdpaWmEh4fj1q1bPCvZAUDXrl05vUu8vb1RUlKCSZMmwdHRkTMsbNmyZejSpQuMjIwwaNAglJSU4Nq1a3znm+ratSvMzMwwYsQIbNmyBVlZWVyNHkDZPFGxsbE4deoU7OzscOXKFfj7c68IN336dIwcORKtWrVChw4dcPz4cbx79w6GhoJXATI2NsaRI0dw48YNGBgY4OjRowgJCYGBgUGtP1tjY2OcO3cOQUFBUFRUxNatW5GQkFBt49m0adPQrl07bNy4Eb1798bNmzd5hmx27twZmzZtwpEjR9C2bVscO3YMYWFhnEYBWVlZzJkzBzNnzgSbzUaHDh2QlZWFoKAgyMjIcM11VS4gIACfP3+Gg4MDFBUVcfXqVbDZbJiZmf1UeoLUVKZ0dXUhJiaGf/75BxMmTEBYWBhWrVpV6/Tz8/Ph7u6O5s2bY/z48UhIqPihqKGhUavyUtXQoUOxadMm9OrVi7MCZWxsLM6fP4+5c+dyDSsWZOHChbC2tsakSZMwYcIEiImJ4d69exgwYABUVHiXUAfKepXZ29tj/fr10NfXR0pKCtd8bQAwZcoU/PPPPxg0aBAWLlwIeXl5PHnyBK1bt4aZmRmWL1+OadOmQU5ODt27d0dhYSGeP3+O9PR0nl5Wlc2dOxfLli2DkZERmjdvDh8fH4SGhvLtfVfOxcUFCxcu5OkRVtmCBQsgLCyM4cOHg81mV9uoFxAQgPT0dHh5efEMM+3fvz8OHjyIKVOmYPny5cjLy4Obmxv09PSQkZGBHTt2oLi4mGuo8cOHD2FoaAgjoz9nYlJJUXHoyFf0hNOSU4GJig6yCnKRmMO/F9/vMGCwJ9YtXw0zc3NYWVsh4MIlJCYmwb1vbwDA/p17kJycgkXLy8qjR99euHDmPHZ6/4Oevdzx7u07XL10BYtXLQMAiImLw8CIu76VkS1ryKgcnp+Xh+/fKibrj4+Lx6eISMjKyUFdg/9E6r/CsnNrPD5yGcq6GlA10EbE41DkpmXBtGNZXfryYiDyM7PRfoQ7ACD8XgikleShoKkCdmkpPj97h9jQj3AcWzHUPjkmDvkZ2VDUUUdeRjbeXH0EhmFg1ZX/PJeNjSUrAyE1FbB+/GgX+tEDkJ2WASY9oxFzVsHGuS3uHToPFT0tqBs1QfiDF8hJy4SFY9l9xbPzt5GbkYVOY8oelry9HQxZZQUoaqmhtLQUn568QfTLcDhPKBsyLiIqCiVt7vIkLlU25LxqeEN5GP0ans274FtGEmIzEtG6iSUUJGXxJLbswZirmT3kJKTh9/oOACA0LgJdTFphQLPOuBURAmkxCbiZt8Pzrx9Qwi5beObJl3dor28Nd6sOCIp5CxVpBXQyboHHMW9/yzHZuznhwq5j0DLUhbaJPl7dDUJmSjpadimbAuDOqcvITstE70nDwBISgloT7jkypeVkISImyhVeWlKC5G8JnP9np2UiIeYbxCTEOb0XGpKDuzNO7TgIHSN96JkZ4umtB8hISUPbbk4AgKvHziEzLQODp5WtUP/42l0oqihB9cdqwjEfIvHg0k20794ZACAqJgoNXe5ethLSZT1UqoY3lGsfgjGxbV9Ep8UhMuUrOhu3hLKUPO5Elj2o9GzWBYpScpwhca++R8CrjTu6GLfCm/goKErKYFhLV3xK+YaMHxOa97Roj/42nbAz6BySczMg/6NnW0FJEQpLaj9q4Fd07eMGny27oGdiCENzEzy8fhdpySlwcCsbTePvewoZqWkYPbvsofizwCD4bN0Nz/EjYGBmgsy0DACAmLgYJH+cE0c3Z9y7fBOn9x5BZw8XJH1PwDW/i+js/nsWuGjp0hHX9p2Gur4ONI118TbwGbJTM9CsU9m8bA/PXENOeha6j/cES0gIKjoaXNtLyspARFSEJxwoW1jAuIUlJGV+79D1gPePMbV9f3xO/Y6I5K/oatoKKtLyuBVRNjfxYFtnKEnKYWdQWY/U598+4K+2veFs2pozbHNkKzdEpnzlTKjf36YTIpO/Ij47lTPnmb6SJg4+u/xbj61c4KeXGNrSBV8zEhGTFo+2+tZQlJTF45iy3s89LdpDXlIax1/e5NqujZ4VYtLif/s8bfy06e6Ei7uPQ9OwCXSM9fHqXhAyU9PRoks7AMC90wHITs+Ex4ShP+pz7sUQpOVkICwqwhX++NJtaBo0gaK6MkpLShEVGo63j0LgOqr6aW3+a/6XV7b8E/3UYxAvLy8cPHgQ3bp14xqOaWNjg/v37+Pvv/9Gx44dwTAMjIyMBA65YrFYuHDhAqZOnQoHBwcICQnB1dWVq6HNyckJZ86cwapVq7B+/XrIyclx9W6pTEhICP7+/vDy8kLr1q2hr6+PHTt2wNW14kurV69emDlzJqZMmYLCwkL06NEDS5YswfLlyzlxPD09ERUVhfnz56OgoAD9+vXDxIkTcePGDYGfyYQJExAaGgpPT0+wWCwMHjwYkyZNwrVrtZ/AccmSJYiOjoaLiwukpKQwfvx49O7dG5mZgicvtbe3x4EDB7Bs2TIsX74cXbt2xeLFi7kakFxcXLBkyRLMmzcPBQUFGDNmDEaMGIG3bytukFetWgU1NTWsW7cOnz9/hoKCAlq0aIFFixbx3a+CggLOnz+P5cuXo6CgACYmJjh58iRnUvu6pidITWVKVVUVvr6+WLRoEXbs2IEWLVpg8+bN8PDwqFX6iYmJ+PDhAz58+MAzeT3DMLUqL1VJSUnhwYMHmD9/Pvr27Yvs7Gxoa2ujS5cute6JZmpqips3b2LRokVo3bo1JCUl0aZNmxp7Xx06dAhjxoxBq1atYGZmho0bN3L1wlJWVsbdu3cxd+5cODo6QlhYGM2bN+fMVzZ27FhISUlh06ZNmDdvHqSlpWFtbc1ZsEGQadOmISsrC7Nnz0ZSUhIsLS1x6dIlmJgI7pFjbW2NVq1awc/PD3/99ZfAeHPnzoWwsDBGjhwJNpuN4cOH84138OBBdO3alafhDCjrebZ27Vq8fPkSjo6O2LlzJ0aMGIHExEQoKirC1tYWN2/ehJlZRY+ikydP1nq+xd/FXFUP//apaMSc1qHsBuJqeDDW3D0saLMG19m5C7Iys3DkkC/SUlKhb2iA9ds2QkOz7AY8NTUVSYkVT3Q1tbSwbttG7PL+BxfP+kNZRQVTZ0+HY2enOu33Y/hHzJxUMaR7l/e/AACXHq5YsPRvQZv9NP2WFijMzceba4+Rn5ULBU0VdJ40ADJKZWUuPysHuWkVwxbYJaV46X8XeZk5EBYVKYs/cQC0rSoaZNnFJQgNeIDslAyIiotB28oQ7Uf0hJgU//kAG5toWztIz634zGUWly3wkn/kFAqOnm6sbHExsmuKgtw8vLxyH3mZOVDSUkP3qUMh+2MobF5mNnLSKr5XS0tK8eTsTeRmZENEVASKWmpwnToEutaNOwywsjfxnyAlJo4uJq0gJy6NhJxU+IQEcIYgyYpLcQ1tKiotwYGnl9DLqiOmduiPvKJCvIn/hBsfK6aSyCzIwYGnl+Fu2R4zOnoiqyAXj6PfIDDq1W85Jqu2LZCfk4sH528gJyMTqjqaGDzvL06vg5yMLGSl1u2hQHZ6JvYv2sR5HXzlLoKv3IWehTFGLJlar/nnp3n71sjLzsXtM5eRlZ4JDV0teC2aDkW1sp5xWemZyEip+KHLMAyuHj+PtKQUCAsLQ1ldFd2H9oV9t1/rtV+fnsS+g4y4FPo0dYSCpAy+ZSZhU+BxpOSVXUMKkrJQlqr43n0QHQoJUTF0M22NoS1ckFdUgHeJ0TgVeosTp6uJHUSFRTCjI/fvg3NvA3H+beBvOCrAzqEtcrNycOXkeWSmZUBLTwdTVsyDslpZI2tmWgbSkivO1cPrd8AuLcXJ3T44uduHE962iwNGzSqbG1JJVRnTVy3Amf3HsHLyAigoK6Kzhytc+9funvRXmbVphvycPDy5eAe5mVlQ1tZAn1mjIadS9oAyNyMb2akZdU43PSEZ3yNi0G+OVz3nuGbBX8IgKy6FfjadoCgpi68ZiVh39yhScjMAAIqSslCRVuDEv//5FSRFxeFq1gYjWroit6gA7xI+49jLit9w0mISGG/fGwqSMsgrLkB0WjyW3TiAqNTqV85uKK/iIiAlJgEXM3vIiUshPjsVe59c5DT2yUlIQ1GS+/eDhIgYmmka43zY/cbIMg9Le1vkZefikf8N5GRkQVVHE4Pmjoe8SkV9nplSt/q8uLAI133PIjstEyJiolDWUkOvicNgaf/7ej8SUhWLoSW9/nN8fX0xY8YMZGRkNHZWCKnW1atXMWfOHISFhXGGOPwJwsLC0KVLF0RERPBtjKtO+52/fzW+hvR48h7EZSQ1djbqnZaCGlbf8qk54v8ji51HI925T80R/x9RvOWPLfdPNnY26tVsx8GYf2VXzRH/H9nQYxKOvaj9QkX/Hwxr6YpLYQ8bOxv1yqNpRww9sbyxs1Hvjg9ZjsBPLxo7G/XKybgl9gZfaOxs1Ku/2vbGwKOLa474/4jf8NWYcdG7sbNRr7x7zcCREMGr4/5/NMLOrbGz8NO6HxA88qcxXRu7tbGz0CgadgA+IYRUw83NDZGRkfj+/TvXqruNLS4uDkeOHKlzwxkhhBBCCCGE1AcW68/pXECo8YwQ0simT//zVqesuuAAIYQQQgghhJD/XdSU+R80atQoGrJJCCGEEEIIIYQQUg+o5xkhhBBCCCGEEELIH0SIVtv8o1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmD0GqbfxbqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8KiYZt/FOp5RgghhBBCCCGEEEKIANR4RgghhBBCCCGEEEKIADRskxBCCCGEEEIIIeQPQsM2/yzU84wQQgghhBBCCCGEEAGo8YwQQgghhBBCCCGEEAFo2CYhhBBCCCGEEELIH0QINGzzT0I9zwghhBBCCCGEEEIIEYAazwghhBBCCCGEEEIIEYCGbRJCCCGEEEIIIYT8QWi1zT8Li2EYprEzQQghhBBCCCGEEELK9D/yd2Nnga+zI9Y0dhYaBfU8I4SQehSXkdTYWahXWgpqaL9zQmNno949nrwH2R8iGjsb9UrW3BRZt+81djbqlVzXTohO+d7Y2ahXBiraeBcf1djZqFdWmkbY/+RiY2ejXo2z7/WfLHvZ0TGNnY16J2ugj+y4uMbORr2S1dLC1/SExs5GvWqiqIGkrNTGzka9UpNTxueUb42djXplqKKD7MhPjZ2NeiVrYtzYWSD/EdR4RgghhBBCCCGEEPIHEaJhm38UWjCAEEIIIYQQQgghhBABqPGMEEIIIYQQQgghhBABaNgmIYQQQgghhBBCyB+EVtv8s1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmDCNFqm38U6nlGCCGEEEIIIYQQQogA1HhGCCGEEEIIIYQQQogANGyTEEIIIYQQQggh5A/ComGbfxTqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIeSPkZeXh1WrVuHLly+NnRVCCCGEEEIIaTSsP/Tf/ypqPCP/L/n6+kJBQeG37MvJyQkzZsz4LfuqT3X9jPT19eHt7d1g+amNqVOnIi4uDnp6enXa7v/rOSKEEEIIIYQQ8uejBQNIg2HVMMHhyJEj4evr+3sy8z/I09MTbm5utY4fEhICaWnpBsxR9U6ePInExERcvHixztueP38eoqKiDZCrhnHhrD9OHzuJ1NRU6BvoY8rMabCxbSYwfujLV9jl/S9iomOgoqKMQcOHwKNvb75x7968jVVLVqC9Qwes3rSOE/76VShOHzuJiA8fkZqSilUb16CDo0N9H1qdNdM0xhDbbjBX04WKtAIWXN2Nh9GvGztbAjEMg32nTsL/xg1k5+bAytQU8/+aACNdwQ2+UbFfsOfEcXyIikJ8UhJmeY3FEI9eXHH2njyB/adOcoUpKyjgxuGjDXIclTEMg/1XA+D/+BGy8/Jgpa+PeQMHw0hLS+A2d0NfwffGNXxNTkZJaSmaqKphWJeucGtjz4nzMjISR2/fxIevsUjJzMSm8RPg1Kx5vef/8vmLOHviNNJSU6FnoI8J0yajaXMbgfHfvHqNff/swpfoGCirqGDAEE/06OPBFcf/9FkE+F9CcmIS5BTk0dHJAaMnjIOYuBgA4NSRE3h8/yG+fYmFmLg4LK2tMGbiODTR06334yt37UIALp46h/TUNDQx0MOYKeNhadOUb9y01DQc3rUfURGfEP8tDm59PeA19S+BaT+6cx9bV21A6/b2WLBmaUMdAo9Xd4IQcvU+cjOzoaKljk5DPaBjZlDjdt8jYnBq3R6o6Khj5KqZXO8V5Obj0bnriHwehoK8fMirKMFpcA8YNrNokGOo7/I3d8pMvH3FWwfatW2DVZvL6vS83Dwc2X8IQQ8eISM9A0amxpgwYwrMLMzr/wB/YBgG+44dg/+1q8jOyYGVmTnmT54MI319gdtExcRgz9Ej+BD5CfFJiZj1118Y0qcvV5yXb9/i6NkzCI+MREpaGjYvXQandu0aJv+HD8M/IADZ2dmwsrDA/OnTYWRQfXm7c/8+9vj44FtcHHS0tDDJywudOnbkvO8+aBDiExN5thvQqxfm/3iod/fBA5y/fBnhERHIzMrC8f37YWZs/MvHdPGsP84cP4XU1DToG+hj0swpsG4u+F7i9ctQ7Nm+EzHRMVBWUYbnsMFw71vxXXQj4Bo2rV7Ps93V+zchJi4OABja2xOJCQk8cTz69ca0uTN5wuvK/8w5nDx2AqkpqdA3NMC0WdPRzLa5wPivXrzCv947EPM5GsoqKhgyYih69+vDeT866jMO7j2Ajx8+ICE+AVNnTsfAIZ5caQzw6IuEeN5j6tO/L2bNn/PLxwQAAecv4uwJP0498de0STXWE/v/2c2pJ/oP8USPPu5ccfxPn8OVSt9THZwcMHrCWM731Mh+Q5CUwFs2e/b1wOTZ0+vluCpjGAb7TpyA/43rZXWEqRnmT5wIo2oeiEd9+YI9x4/hw6dPZfdH48ZhSK/eAuP7+Plh55HDGOzRC7PHj6/3YyCkJtR4RhpMfHw85/+nT5/G0qVL8fHjR06YpKRkY2Tr/73S0lKwWCwICVXfcVRSUrJOn7GqquqvZu2XDB48GIMHD/6pbZWUlOo5Nw3n7q072LltB2bMm4WmNta47H8J82fOhe+po1DXUOeJHx8Xh4Uz56FHL3f8vWIJwt68hffGrZBXUIBjZyeuuAnxCdi9Yxds+Nw8F+QXwMjEGK493bBsweKGOrw6kxQVx6fUb7j6IQhru09o7OzU6PD5czhx8QKWTZ8BXS1tHPQ7jclLl+Lcrt2QlpLiu01BYSF01DXQtV0HbD10QGDahrq62LVyNee1cA3XeH05cusmTty9g6XDR0JXTQ2Hrl/DlH+34+zSFZCWkOC7jbyUFEa7dIe+hgZEhUXwMOwNVh47AkVZWbS1tAIA5BcVwlRHB+5t22H+/r0Nkvf7t+9h7/admDx7OqxsmuLqhctYPGcB9h3zgRqf6ykhLh5L5ixEd3c3zFu6CO/ehGHnlu2QV1BAh05ljcl3b9zGoT37MWvhPFhYW+F77FdsWbMRAPDX9MkAgLehr+HetxdMLczALmXDd99B/D1zHvYd94FEA3y3Pbp7Hz7/7sO4GZNgYW2JG5euYfW8pdh+eA9U1dV44pcUFUNOQR79hg1CwBn/atNOSkiE7+4DsLSxqvd8V+fD01DcO34ZXUf0hrapPl7fe4pzWw5i9LrZkFNWFLhdYV4+ru47BT1LY+RmZXO9V1pSgjOb9kNKTgYeU4ZDRkke2WkZEJMQb5BjaIjyt3TtChQXl3C2ycrMxKRR49CxkyMnzHv9ZsR8jsbcpQuhrKKCOzduYeH0udh3/BBUGui7/PAZP5zwP49ls2ZDV0cHB0+ewORFC3HuwMHq6z4NTXTt6ICte/nXAfkFBTAxMIS7czfMW72qQfIOAIdPncKJM2ewbP586DZpgoNHj2Ly3Lk4d+SIwPy/efcOi1auxIQxY9CpY0fce/gQC1aswMEdO9DU0hIAcGTPHpSy2ZxtoqKjMXnOHHRxcuI6xmZNm6KrkxNWb95cL8dz79Zd7Pb+F9PmzoSVTVNcuXAZC2fOx8GThwXcS8Tj71nz4darJxYs/xvv3oRhx6ZtkFdQgEPnirIlJS0NXz/uhzblDWcAsNNnL9jsUs7r6KhozJ82Gw5V7kd+xp2bt7Fj63bMmj8H1s1scOn8BcydPhtH/Y5DXUODJ37c9zjMmzEb7r09sGTlMrx9/QZbN2yGgqICnDp3AgAUFBRAU1sLTl074Z+tO/jud9/hg2CXVpzD6KjPmDllOjp17fzLxwSU1xO7MHn2NFjaNMXVCwFYMmch9h47JLCeWDpnEVzd3TB36UK8fxOGnVt2QF5Bnut7ymfPfsxcOBeW1lb4FvsNWznfU5MAANsP7AK7Utn88jkai2bM46pL6tPhc2dx4oI/ls2cWXZ/dPo0Ji9ZjHN79tZQR2iga/sO2Hpgf7Xpv4uIgP+N6zDRr/kBy39JTZ1RyO9FwzZJg9HQ0OD8ycvLg8VicYU9ePAALVu2hISEBAwNDbFixQqUlFTcMGZkZGD8+PFQV1eHhIQEmjZtioCAAK593LhxAxYWFpCRkYGrqytXgx2bzcbKlSuho6MDcXFxNG/eHNevX682z7m5uRgxYgRkZGSgqamJLVu28MQpKirCvHnzoK2tDWlpabRp0waBgYHVprt8+XLo6upCXFwcWlpamDZtWq3TKx9+GRAQAEtLS4iLi2P//v2QkJBARkYG136mTZsGR0dHru0qu3TpElq1agUJCQmoqKigb9+KJ8BVh23GxsaiV69ekJGRgZycHAYOHIhEPk9Xy8XExIDFYsHPzw8dO3aEpKQk7OzsEBERgZCQELRq1YpznpKTkznbhYSEwNnZGSoqKpCXl4ejoyNevnzJeT8wMBBiYmJ4+PAhJ2zLli1QUVHhnO+qwzb19fWxevVqzrnU09PDxYsXkZyczDkma2trPH/+nOsYzp07BysrK4iLi0NfX5/v+f9VZ06ehptHD/To5Q49A31MmTUNaupquHSO/w/cS+cvQk1DHVNmTYOegT569HJHd/ce8Dt+iiteaWkp1ixdiVHjx0BTW5MnnTbt7OE1YRwcGuim6Wc9iX2H/U8v4f7n0MbOSo0YhsHJy5cwesBAdG7bDsZ6elgxYyYKigpx/cF9gdtZmZhi+ugxcHFwgFg1PSRFhIWhoqjI+VOUl2+Iw+DCMAxO3ruD0S7d0bm5LYy1tLF8+EgUFBXhRsgzgdu1NDVDp+a2MNDQhI6qKgZ36gJjbW2ERkVx4rS3aoqJ7r3Qubltg+X//OkzcOnZHd09ekBXXw8TZkyBqpoaAvwv8Y1/5cJlqKmrYcKMKdDV10N3jx7o1qM7zp7048QJD3sHK+um6NStCzQ0NdCyjR2cnDsj4kMEJ86arRvQrYcr9A0NYGhihFmL5iEpMQmRHyP47faXXT7jjy5u3eDc0xU6errwmvoXlNVUcePiFb7x1TTV4TV1Ajq5dIFUNT2KS0tL4b16EwaNHgZ1Td56oyE9v/4Q1g52sHFqA2UtdXQe6gFZJQWE3nlS7XY3fc/Doq0tNI15e/m9fRCCgpw89J42Etqm+pBXUYSOqQHUdAX3ovwVDVH+ZOXkoKSsxPl7FfICEuISnAaOwsJCPLr/AF6T/4J182bQ0tHGcK9R0NDUELjfX8UwDE76X8DoQYPQuUMHGOvrY8XsOSgoLMT1e/cEbmdlZobp48bBxclJYN3X3s4Ok0aNQucOHRok78CP/J89i9HDhqGzgwOMDQywYsECFBQU4Prt2wK3O3n2LNq0aoXRQ4dCX1cXo4cOResWLXDi3DlOHEUFBagoKXH+HgUHQ0dLCy2bVTzE6tGtG8aNHInWLVvW2zGdO+kHV3c3uPXqCT0DfUyaORVqaqq4fJ5/7/2A8xehpq6GSTOnQs9AH269esLV3Q1nTnDfS7BYLCgpK3P9VaagqMD13tPHwdDS0UazFs1/+ZhOnziFHr3c4d7bA/oG+pg2ewbU1NXgf5b//dHF8/5Q11DHtNkzoG+gD/feHujh0ROnjp3gxLGwssTk6VPQtZszxMT4l0FFRUUoqyhz/oIePYa2jjaat6if7y7/02fRrWd3uHLqiclQVVPDFf/LfONX1BOToauvB1ePHujWwxXnKtUTH8Lew/LH95S6pgZatmkFJ+dOiPxQ0Umh7FxV1CVPHz+BprYWrKsZ6fCzGIbByYsXMdrTE53btS+rI2bNKqsj7ldzf2RqiuljvODi6Fjt/VFefj6WbN6Ev6dOhayMTL3nn5DaosYz0ihu3LiBYcOGYdq0aXj//j327t0LX19frFmzBkBZw1f37t0RFBSEY8eO4f3791i/fj2EhYU5aeTl5WHz5s04evQoHjx4gNjYWMyZU9G9evv27diyZQs2b96MN2/ewMXFBR4eHoiMjBSYr7lz5+LevXvw9/fHzZs3ERgYiBcvXnDFGT16NB4/foxTp07hzZs3GDBgAFxdXQWme/bsWWzbtg179+5FZGQkLly4AGtr6zqll5eXh3Xr1uHAgQN49+4dhg0bBgUFBZyrdANXWloKPz8/DB06lG8+rly5gr59+6JHjx549eoV7ty5g1atWvGNyzAMevfujbS0NNy/fx+3bt1CVFQUPD09+cavbNmyZVi8eDFevnwJERERDB48GPPmzcP27dvx8OFDREVFYenSimFBWVlZGDFiBB4+fIjg4GAYGhrCzc0N2dllPQrKG8aGDx+OzMxMvH79Gn///Tf2798PzWp+7G3btg3t27fHq1ev0KNHDwwfPhwjRozAsGHD8PLlSxgbG2PEiBFgGAYA8OLFCwwcOBCDBg3C27dvsXz5cixZsqRehxYXFxcj4kMEWrVpzRXeqrUdwt6G8d3m/dt3aNXajivMzr41PoZ/4GpsPnLQFwqKCujh0bPe8ku4fU9MRGp6OuxtK26oxURF0cKqKd58+PDL6cfGxcF11Eh4jPPCwk0b8Y3P0Jj69j01BalZWbC3qBjSJiYqihbGJngT/blWaTAMg2cfPuBLYiJa1MNQpNoqLi5G5McItGjNXY+1aN0K4WHv+G4THvaOJ37LNq0Q+eEj53qyamaNyI8R+Pg+HAAQ/z0OIcFP0bpdG4F5ycvNBVDW8FHfiouLEfXxE5rZteAKb25niw/vwn8p7TNHTkJOQR5de7j8Ujp1VVpSgsSY79BvasoVrt/UBHGfYgRu9/ZBCDKSUtGud1e+70e9eg8tYz3cOeKPXVNXwmfRFjy5fJer90V9aajyV9WNgGtw7NqJ06OxtKQU7FI2xMTEuOKJiYvj3Rv+3yO/6ntCAlLT02DfoqLxR0xMDC2srfEm/H2D7LM+fY+PR2paGuwr3fOIiYmhRbNmePOO/7kCgDfv36NNlfskezs7gdsUFxfj6q1b8OjevUF7ixQXFyPiYwRateG+N2jZxg7vBd1LhL1DyyrxW7WxQ0Q4d9nLz8/HkN4DMci9P/6evaDaBwLFxcW4ff0WXHv++vGW3R99ROsq90d2bVoj7M1bvtu8exsGuyrxW9u3wYf3HwReT7XJx81rN+Dm0bNezqHgeqIl3guoJz6EvUeL1twNrS3a2CHyQwTnuCybNcWnjxH4+L7s3qPse+oZWrez50mvPB/3bt5Gtx6uDVI2vycm/Lg/qvieEhMVRYumTfEm/Ne+pwBgw+7daG9nhzYN+DCOkNqgYZukUaxZswYLFizAyJEjAQCGhoZYtWoV5s2bh2XLluH27dt49uwZwsPDYWpqyolTWXFxMfbs2QMjIyMAwJQpU7By5UrO+5s3b8b8+fMxaNAgAMCGDRtw7949eHt7Y+fOnTx5ysnJwcGDB3HkyBE4OzsDAA4fPgwdHR1OnKioKJw8eRLfvn2D1o/5gObMmYPr16/Dx8cHa9eu5Uk3NjYWGhoa6Nq1K0RFRaGrq4vWrVvXKb3i4mLs2rULzSo9yfT09MSJEyfg5eUFALhz5w7S09MxYMAAgZ/5oEGDsGLFCk5Y5fQqu337Nt68eYPo6Gg0adIEAHD06FFYWVkhJCQEdnZ2fLcrz7+LS9kPsenTp2Pw4MG4c+cO2rdvDwDw8vLiapDq0qUL1/YHDhyAgoIC7t+/j549yxqCVq9ejdu3b2P8+PF49+4dhg8fjj59+qA6bm5u+Ouvsjl+li5dit27d8POzo7z+cyfPx9t27ZFYmIiNDQ0sHXrVnTp0gVLliwBAJiamuL9+/fYtGkTRo0axZN+YWEhCgsLucLExasfGpSZkQl2aSkUlbiHJCkqKyL9SRrfbdJSU6GozH1zqKikiNLSUmRmZEBZRQVvX7/B1UtXcODYoWr3T35Nano6AEBZXoErXFlBAfFJSb+UdlNTU6yYMRN6WtpIzcjAwTOn4TV/Lk7/sxMKDdAgUy41KwsAoCTLvQ8lOTkkpPEvk+Vy8vPhtmgBikqKISwkhPmeg9HGwrLB8lpVVkYm2KVs3utJURFpqfzznp6WDkXFKvE511MmlFWU4dS1MzLTMzB74nQwDIPS0lL07OMBz+FD+KbJMAz27tgFKxtr6BvW/3CS7MwssNlsKCgqcIXLKyoiIy39p9MNf/sOt6/cwNYD//5iDusuPzsXDJsNKXnuHgRS8rLIzczmu016QjIenrmGQX9PhFClB2mVZSanITY8ChZtbdF31hhkJKbg9pELYJeWol1v53o9hoYqf5V9fB+OmM/RmLmw4sGglLQULJpa4oTvUejq6UJBSRGBt+/i4/twaOlo19PRcUtNLzse5Sp5V1ZURHzir9V9v0NqWnX5F9yjPjUtje82qQLqxsBHj5CTkwN3V9dfzHH1Ku4luKesUFQSXPbSUtN4y6qSElfZa6Kvi3mLF8DA2BB5ubk4f/ocZoyfgr1HD0FHV4cnzcf3HyInJwfdenSvh2PKQCm/Y1JWEnhMqalpaK1c9TMoO6aMjAyoqKjUOR8PAx8gJycHbj1rP2dwdQTVEwqKikgXWE+kQUFAPZGVkQklzvdUJuZU+p7q0ccDA4fzn/4k+MFj5OTkwNmtYR6UcO6Pqox4Kbs/SuazRe3duH8fH6I+4cg2719K5/8rIRb1dfqTUOMZaRQvXrxASEgIp6cZUNZzqqCgAHl5eQgNDYWOjg6n4YwfKSkpTsMZAGhqaiLpxw/YrKwsxMXFcRpsyrVv3x6vX/OfjDwqKgpFRUVo27YtJ0xJSQlmZmac1y9fvgTDMDz5KiwshHKVru3lBgwYAG9vbxgaGsLV1RVubm5wd3eHiIhIrdMTExODjQ33xKJDhw5F27ZtERcXBy0tLRw/fhxubm48N+blQkNDMW7cOL7vVRUeHo4mTZpwGs4AwNLSEgoKCggPD6+28axyPtXVy+ZyqNzTTl1dnXOeACA1NRWrV69GYGAgkpKSUFpairy8PMTGxnId/7Fjx2BjYwM9Pb1arQpam3wAQFJSEjQ0NBAeHo5evbgncW/fvj28vb1RWlrK1esRANatW8fVEAmU9bobP2NSjXnjeerHAKjmSWDVJaHLe8uxWCzk5eZh7bLVmLNoHuR/0wq0/yuuBQZi7e6KhnbvJWU9JqueP4ZhfvlJbvuWFU+ljQHYmJuj91/jEHDvLoZVM3luXV179hTrTlYMadk2qWwOL37HVBMpcXEcX/g38goLEfLxA7adPwttFRW0NDWrcdt6VTXvqOF88BxreXBZ+OuXoTh15Dgmz54OcysLxH37jj3bd0LR5yiGjh7Ok9zOrTsQHfUZW3bzn0+nvvDWG8xPLxefn5eH7Ws2Y9LcaZBTaPjhwYLwPSY+547NZiNgz0m06+MMJQ3Bc3oxbAZSsjLoNrofhISEoGGgg5yMLIRcvV/vjWcc9Vz+KrsecA36hgYws+Re7GDukoXYtm4ThvYeCCFhIRibmsDJuQuiIgT3rK+La3fvYu2O7ZzX3ivL5iKrmsOyuq9edlmvrt26hbVbt3Jee68rW2iBp57jE8aDX30vIOrFq1fRrk0bqP5Eo83P4HP51LHsMVzBlk2tYNm0Yu5DKxtrTBw5DhfOnMMUPhPMX7t8Fa3tW0NFtf6Olyf7NZQxnvsjMHzDayvg0mW0aWtf73MH8r/tq+a+T9B38o/wNy9DcfrIcUyePQ1mVhaI+xaHvdt34oSPEobw+Z66EXANrexbQ7meztW1e/ewdmfFgxfvZcsF5Lva29saJSQnY8v+ffh35SqIV+ltS0hjoMYz0ijYbDZWrFjBNedWOQkJiVpNdF91dUUWi8Xzg68uP3Jr82ORzWZDWFgYL1684GlMkREwBr9Jkyb4+PEjbt26hdu3b2PSpEnYtGkT7t+/X+v0JCUlefLdunVrGBkZ4dSpU5g4cSL8/f3h4+MjMO91WTxA0OdUm0aCyuelPG7VsMpDaEaPHo3U1FRs374denp6EBcXh7W1NYqKirjSDQoKAgCkpaUhLS2txpVBa5MPAJy88Du26srEwoULMWvWLK4wcXFxpOZnCtxGXkEeQsLCPE9R09PSeZ5KllNSVuaJn5GeAWFhYcjJyyPmczQS4uOxaM6Cinz/OKYu7ZxwxO84tBuoN8J/nUPr1mhqVtGwXVRcDABIyUiHSqWn42mZmVCq54ZLSQkJGOnp42tcXL2m62DTDE0rTbZb9GMISGpWJlQqzbGWnp0N5Rp6vAkJCaGJWtlk9WZNmiAmMQG+N2/8tsYzOQV5CAkL8Ty9z0jPEHg9KSopIj2tavz0H9dT2fEe2e+Dzi7O6O7RAwBgYGSIgoIC7NiwFYNHDuVarGXX1h148igIm3d6Q1WtYSZql5WXg5CQENKr9DLLzMiAvJLCT6WZ8D0eSQmJWLuw4gFAeX3Xv3NP/Ht0PzT4zJ1YXyRlpcESEkJuBncvs7ysHEjJ8X6XFuUXIjH6G5K+xOHO0YsV+WUYbBm9AAPmjoWupTGkFWQhJCzMdY6UNNWQm5mN0pISCIvU321vQ5W/cgUFBbh/+x5GjB3Fk46WjjY27fRGQX4+cnPzoKyijLVLVkJdk3dS9Z/hYG+PpuYV13FR0Y+6Lz0dKpUe7KVlZEBJwAO7xuTQvj1nQn8AnPuJlLQ07vynp1ebf2UlJZ5eZmkZGXwXKYpPSMCzly+xscpDtYYg6F4iI726ewklPmU1nXMvwY+QkBBMLczw/es3nvcS4xPwKuQFlq2vn0Ue5BUUICzw/oj/olDKykpIS03lCstIKzsm+Z94KJAQH48Xz55j9UbeUSQ/q7yeSEutUn+np0NBYD2hxKeeyOD7PeVa6XuqsCAfOzZsw6Aq31OJCYkIff4Si9cur7fjcmjTBk0rdS7g3B+lV70/yoCSws/XER8+fUJaRgaGz6hovC1ls/HqXRj8Ai4jyP8Cz+8nQhoSNZ6RRtGiRQt8/PgRxgLmx7GxscG3b98QERFRbe8zQeTk5KClpYVHjx7BwcGBEx4UFMQZMlmVsbExREVF8eTJE+jqlk1EnJ6ejoiICM4k/La2tigtLUVSUhI6VlqqvCaSkpLw8PCAh4cHJk+eDHNzc7x9+/an0ys3ZMgQHD9+HDo6OhASEkKPHj0ExrWxscGdO3cwevToGtO1tLREbGwsvn79yul99v79e2RmZsLCwqKGrevm3r172L17N+c8ffnyBSkpKVxxoqKiMHPmTOzfvx9+fn4YMWIE7ty5U+OKo3VhaWmJR48ecYUFBQXB1NSU7xezuLg4/2Ga+YL3ISoqClNzUzx/FoKOThXl8sWzELR34D9ZsqW1FYIfPuYKe/70GcwszCEiIgJdPV0cOnGY6/2De/YjLy8PU2dNhxqflfhI7UhLSXGtEMUwDJQVFfE0NBTmhmW9XouLi/HyXRimjhhZr/suKi5GzLevsLWs32GQ0hISXCtoMgwDZTk5PP0QDrMmZfVecUkJXn6KxNRe1Q+NrophGBSVFNdrfqsjKioKEzNTvAp5gfaOFfXnq5AXsO/Qju82Fk2t8PRxMFfYy2fPYWJuBpEfDSuFhQU8dYuQkBAYhuE0MDEMg11bdyDowSNs/HcbNLQarqFJVFQURmbGeP38Few7VhzX6+ev0Lo9//ltaqKt2wTbDu3iCjt58Ajy8/MxZspfUFZr2J4zwiIiUNfXRsy7SJi0asoJj3kXCWNb3lU/xSXFMXIN98OK0DvB+Br+Ce5ThkNetezHmraJPsKfhIJhs8H6cQ7TE1MgrSBbrw1nQMOVv3IP7gSiuLgInV34z+8GABKSkpCQlER2VjZePAuB16S/fuGIKvCv+5Tw9NVLmP+4bysuLsbLt28xdYxXveyzPvHNv5ISnj5/DnMTEwA/8v/6NaaOHy8wHRtLSzx98QJDK02H8fT5c9hY8ZbRS9evQ1FBAR0qjV5oKKKiojA1M8WLZ8/Rgete4jnaCbqXaGqF4EdBXGHPn4bA1IK37JVjGAZRkZ9gYGTI8971gGtQUFSAvYA5tuqq7P7IDCFPn3EtbBTyLAQdHPjfH1tZN8XjKvdHz54+g7mlucBjqs7Vy1egoKiItu35X78/g7ueqDg3L0NeoG2H9ny3MW9qKaCeMK30PVUIlhD3A18hIWGu76lyt65ch7yiAlq3rZ9zBVRzf/TqFcyNKt0fhYVh6qiaf3cIYtesGU79yz3Vzsrt3tDT0cHIfv3/JxrOaLXNPws1npFGsXTpUvTs2RNNmjTBgAEDICQkhDdv3uDt27dYvXo1HB0d4eDggH79+mHr1q0wNjbGhw8fwGKx4FrLuSTmzp2LZcuWwcjICM2bN4ePjw9CQ0Nx/PhxvvFlZGTg5eWFuXPnQllZGerq6vj777+5fkSZmppi6NChGDFiBLZs2QJbW1ukpKTg7t27sLa2hpsb7xwJvr6+KC0tRZs2bSAlJYWjR49CUlISenp6UFZWrnN6lQ0dOhQrVqzAmjVr0L9/f0hU+lFc1bJly9ClSxcYGRlh0KBBKCkpwbVr1zBv3jyeuF27doWNjQ2GDh0Kb29vlJSUYNKkSXB0dBS4yMDPMjIywuHDh9GyZUtkZmZizpw5XL3kSktLMXz4cHTr1g2jR49G9+7dYW1tjS1btmDu3Ln1lo/Zs2fDzs4Oq1atgqenJ4KDg/Hvv/9i165dNW9cBwMGe2Ld8tUwMzeHlbUVAi5cQmJiEtz79gYA7N+5B8nJKVi0fDEAwKNvL1w4cx47vf9Bz17uePf2Ha5euoLFq5YBKJskuuqNrYxsWc+NyuH5eXn4/u0753V8XDw+RURCVk6O77L2v4ukqDh05Ct67GjJqcBERQdZBblIzPn5+ZwaAovFwmB3D/icPQNdTS000dKCz1k/SIiJw9Wh4mZ/6batUFNWxpQfDWrFxcX4/PXrj/+XIDk1FR8/f4aUpASaaJbNdejtcxAd7VpDQ1UV6RmZOHjmNHLz8tCzcxfejNT3MXXqAp8b19FEVQ1N1NTge+M6JMTE4GJX8aBh2WEfqCooYMqPBjWfG9dhqasLbVVVlJSU4vG7MFx5+gQLBlXMC5ZXUICvlVbWjUtNwcevXyEvLQ0NAT0J6qqv5wBsWrUOJuZmsGhqiWsXA5CUmIgefdwBAId270dqSgrmLlkIAOjR2x2Xzl3A3h270N2jB8LD3uNGwDUs+HG9AUCb9m3hf+osjEyNYW5ZNmzzyH4f2Hdox7lR37llO+7duoNl61dDUkqK01tCWka6xrkPf4b7gD7YsXYLjM1MYGZljpuXryMlMRndPMq+I47t80FqSiqmL6qYGys6smzl04L8fGRlZiI6MgoioqJooq8LMXEx6Bnqc+1D+kdv56rhDaWVa0dc3XsaGgY60DLWxZt7T5GdmoFmnct+4D3wu4ac9Ey4/TUILCEhqOpw96qSkpOGsKgIV3izzm3x8vZj3D1+CbbO7ZGekIKnl++ihTP/H6m/qiHKX7kbAdfQrmMHvr2Cnj8NARgGOrpNEPftOw7s3Asd3Sbo1qNh5tpisVgY3Kc3fE6dgq6WNppoa8Pn1ElIiIvDtVMnTrylmzZCTVkFU8aMAfCj7vsxBUNxSTGSU1LxMSqqrO7TKusRnZefz9XD9ntCAj5GRUFeVhYaavXz8IfFYmFw//7wOX4cujo6aKKjA59jxyAhIQHXrhWNk0vXroWaqiqm/JjiYlC/fhg/fTp8T56EU/v2CHz8GE9fvMDBHdxDtNlsNi5fv46eLi4Q4fNjPjMrCwlJSUj+8WDwy4/PRPnHCp0/o9/ggdiwYg1MLcxg2dQKVy4GICkxCe59PAAAB3btQ0pyMhYs+xsA0LNvL1w864/d3v/CrVdPvA97h+uXr2LRyooFnI4c8IVFU0toN9FBXm4u/P3OISriE6bNmclzvDeuXIOzm2u9Nkp7DhmE1ctWwtzSAlbWTXHJ/yKSEhLRu19vAMCef3cjJTkZi1eU5blX3z4473cO/2zbDvfevfDubRiuXLyMZWsqev8VFxcj5nP0j/+XIDk5GZEfIyApJQWdJhXzuLHZbFy9fAXde3T/qYa36vTx7I/Nq9bDxNz0Rz1xBcmJSXD7UU/47D6A1JQUzFlSNoKgR293XD53Eft27ILrj3riZsA1zF/+NyfNNu3b4nwN31Plx3XrynV07d4NwiIN19DEYrEwuFcv+Jzxg67Wj/ujM35ldYRjpfujLVvK7o9+zCVcdn9UXkeU3x9FQUpCEk20tCAtJQVjfX2ufUmIS0BBVo4nnJDfgRrPSKNwcXFBQEAAVq5ciY0bN0JUVBTm5uYYO3YsJ865c+cwZ84cDB48GLm5uTA2Nsb69etrvY9p06YhKysLs2fPRlJSEiwtLXHp0iWY/HjqyM+mTZuQk5MDDw8PyMrKYvbs2cjM5B6G5+Pjg9WrV2P27Nn4/v07lJWV0bZtW4ENXQoKCli/fj1mzZqF0tJSWFtb4/Lly5w5zeqaXmUmJiaws7NDSEhIjfOAOTk54cyZM1i1ahXWr18POTk5rl55lbFYLFy4cAFTp06Fg4MDhISE4Orqin/++afGPNWVj48Pxo8fD1tbW+jq6mLt2rVcq6auWbMGMTExuHy5bElvDQ0NHDhwAAMHDoSzszOaN29eL/lo0aIF/Pz8sHTpUqxatQqamppYuXIl38UCfkVn5y7IyszCkUO+SEtJhb6hAdZv2wiNH8NtUlNTkVRpAmNNLS2s27YRu7z/wcWz/lBWUcHU2dPh2NmpTvv9GP4RMydN47ze5V02V4VLD1csWPq3oM0anLmqHv7tU9GjZFqHsif8V8ODsebuYUGbNZqRffuhsKgI6/fuRnZODpqamuLfFSu5nsAmpCRDqNIT4eS0NAydWTHk4OgFfxy94I8WTZti35qyuXgSU1Lx9+bNyMjOgqKcHJqamcFn42Zo1tOPx+qMcO6GwuIibDh9Etl5ebDSN8A/U6Zx9VBLSE/jevpZUFSIDadPIikjA+KiotBT18DKUWPQrdLcbeGxXzBh+zbO623nzgIAerSxx/IRo+ol745dOyErKwvHfY4gPTUNeob6WLV5HdQ1yq6ntNQ0JFWa0FxDSxOrNq/D3h07EXD+IpRUlDFxxhR06FRRFw4ZORwsFguH9x1CanIK5BUV0KZ9W4waX9HDJsD/EgBg3hTuH5WzFs1rkAaMDp0dkZ2VDb/DJ5CelgZdA338vWEF1H40fKenpiMlkXtS5tnjpnL+HxXxCQ9vB0JVXQ17T/vWe/5+hnmb5sjPyUPwxdvIzciCirYG+s4aA3mVsiE+uZlZyErLqFOacsoKGDB3HO6duIzDi7dBRkEOLbp1QOseTvV/AGiY8gcA32K/4t2bt1i7bSPf/ebl5MJnz36kJKdARk4WHRw7YtRfXvX+o7+ykQMGorCwCOv//RfZOdloam6Of9eu4677kpK5JrdOTk3F0MkV84AePXcWR8+dRQtrG+zbtAkA8D4iAhPmVzzE27ZvLwCgZ1dnLK90L/DL+R80CIWFhVjv7Y3s7Gw0tbDAv5s2Vcl/EtcD02ZNm2LN0qXYffAg9hw6BB0tLaxbupRrSCgAPHvxAgmJifDozn/i/AdBQVixYQPn9aJVZUMdx40cib9+8h6jk3NnZGVm4tjBI0hLLbuXWLt1A2foblpKKpISKsqeppYm1mzdgN3e/+LSuQtQVlHG5FnT4NC5omEjJycH29ZvRnpqGqRlpGFkaoJte3bA3Ip7xMHLkBdISkhEd/f6mVS/XJduXZGVmQnfA4eQmpIKAyNDbPTeDI0fK6unpqQiMaHi/khLWwsbvbfgn23b4X/mPFRUVTB9zkw4da5o0E1JTsGYYaM4r08dO4FTx06geQtb/LO3okfT82chSExIhFsDrFju2LUTsrOycMLnKNJS06BvqI+Vm9dxHlympaby1BMrN6/Fvh27cPn8JSirKGNClXpi8MhhYLFYOLLPp9L3lD1GjufuCfoq5CWSEpMarGG9spH9+pfVEbt3ld0fmZnh35WruK+xZD73R9Mq7k2Pnj+Po+fPo0VTa+yrw28+Qn4XFlObiZ4IIYTUSlzGn7/yWF1oKaih/c4JjZ2Nevd48h5kf4ho7GzUK1lzU2TdvtfY2ahXcl07ITrle80R/x8xUNHGu/ioxs5GvbLSNML+JxcbOxv1apx9r/9k2cuOjmnsbNQ7WQN9ZNfz/JCNTVZLC1/TExo7G/WqiaIGkrJSa474/4ianDI+p/DOCff/maGKDrIjPzV2NuqVrAn/aYL+Pxjrt66xs8DXgYELGzsLjYLWPiWEEEIIIYQQQgghRABqPCOEEEIIIYQQQgghRACa84wQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhJD/Y+++w5uq3gCOf5N07z0ohRYKbSl77703gvADWQoqojhwIE4UBVEZooKKbJG9lL33KqPMslpKGd17jyS/PwopaROGtrTq+3mePE9ze+7NOcnNSfLe95wjhBDCCAmeCSGEEEIIIYQQQohSMWfOHHx9fbGwsKBBgwYcPHjQaNmRI0eiUCiK3YKCgnRlFi1aZLBMdnZ2qbVBgmdCCCGEEEIIIYQQ5Yih4FB5uD2plStX8uabb/Lhhx9y5swZWrVqRbdu3YiMjDRY/rvvviMqKkp3u3XrFk5OTjz77LN65ezs7PTKRUVFYWFh8Zee68chwTMhhBBCCCGEEEIIUeJmzJjBqFGjGD16NIGBgcyaNQtvb2/mzp1rsLy9vT0eHh6628mTJ0lKSuL555/XK6dQKPTKeXh4lGo7JHgmhBBCCCGEEEIIIR4pJyeH1NRUvVtOTo7Bsrm5uZw6dYrOnTvrbe/cuTNHjhx5rMebP38+HTt2pHLlynrb09PTqVy5MhUrVqRnz56cOXPmrzXoMUnwTAghhBBCCCGEEKIcUaIol7epU6dib2+vd5s6darBNsTHx6NWq3F3d9fb7u7uTnR09COfg6ioKLZu3cro0aP1tgcEBLBo0SL++OMPli9fjoWFBS1atODatWt//Ql/BJNSO7IQQgghhBBCCCGE+NeYOHEi48eP19tmbm7+0H2KzpWm1Wofa/60RYsW4eDgQN++ffW2N23alKZNm+rut2jRgvr16/P9998ze/bsRx73r5DgmRBCCCGEEEIIIYR4JHNz80cGy+5zcXFBpVIVyzKLjY0tlo1WlFarZcGCBQwbNgwzM7OHllUqlTRq1KhUM89k2KYQQgghhBBCCCFEOVLWq2qWxGqbZmZmNGjQgJ07d+pt37lzJ82bN3/ovvv37+f69euMGjXqkY+j1WoJCQnB09Pzier3JCTzTAghhBBCCCGEEEKUuPHjxzNs2DAaNmxIs2bN+OWXX4iMjGTMmDFAwTDQO3fusGTJEr395s+fT5MmTahZs2axY3722Wc0bdqUatWqkZqayuzZswkJCeHHH38stXZI8EwIIYQQQgghhBBClLhBgwaRkJDA559/TlRUFDVr1mTLli261TOjoqKIjIzU2yclJYW1a9fy3XffGTxmcnIyL730EtHR0djb21OvXj0OHDhA48aNS60dEjwTQgghhBBCCCGEKEeUTzhEsjwbO3YsY8eONfi/RYsWFdtmb29PZmam0ePNnDmTmTNnllT1HovMeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjjzpypaidEnmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5okCGbZYnknkmhBBCCCGEEEIIIYQRCq1Wqy3rSgghhBBCCCGEEEKIAuPWzyjrKhj0fb/xZV2FMiHDNoUQogR9sXNhWVehRH3U6XnSLl8t62qUONuA6rT4cUxZV6NEHX71J5JfeK2sq1GiHBb8QP/FH5R1NUrU2hFTaD1nbFlXo0QdGDuH1D0HyroaJcqufWtuxN8p62qUKF8XL15Z+01ZV6PEze3/LkuCt5R1NUrU8EbdGfTbx2VdjRK1cujkf2Xf13PBu2VdjRK16YVv6PTLG2VdjRK186XvyroKf5lSVtssV2TYphBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMybLN8kcwzIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEiQzbLE8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJHVNssXyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJHMMyGEEEIIIYQQQgghjJDgmRD/EdnZ2XzxxRfExMSUdVWEEEIIIYQQQoh/DBm2KcR/xMcff0xqairu7u5lXRUhhBBCCCGEEA+hUEiuU3kir4YQ/wE5OTk4Ozsze/bssq6KEEIIIYQQQgjxjyLBMyH+A8zNzXn//fcxNzcv66oUs2/fPhQKBcnJyY+9j4+PD7Nmzfpbj6tQKNiwYcPfOoYQQgghhBBCiH8/GbYpxH/AkSNHaNWqFZ06dWLbtm1lXR1RxJUDp7m4+zhZKek4eLrQsH9H3P28DZaNvnqTnbOXF9ve+6MXsfdwBkCjVnNhx1HCjl8gMzkNe3cn6vVph1eNKqXajqK0Wi2/rFjO+u3bSctIJ6h6dSa8PIaqlSob3Scs8iY//b6My2FhRMXGMn7UaIb07qNX5uflvzNvhf5z4OzgwPbFS0ulHU+qjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62o9lEWf7pi1aYHCyhJ1+E0yf1uJ5m70Q/cx79QWs3atUDo5ok3PIPfkGbLX/AH5+QCYtW2JebtWKF2cAFDfiSb7z63kn79U6u3p4t+EPkGtcLSy5VZyLAtPbCY0NsJo+Va+dehbszWeds5k5mZz5u41Fp/cQnpOFgCfdRlNTY/i759Tty8zZfeS0mqGnr5BrRlcryNOVvZEJEbx/eHVnIsKM1q+X83WPFOrLR62TsSkJbH09Da2XzmuV+bZ2u3oE9Qad1tHUrIz2Bd2ml+ObSRXnV/azTFKq9Uyb/OfrD90gLTMTIJ8fHnvf0OoWsHL6D57zpxm0bYt3IqLJV+txtvNjaEdO9O9SbNSr++f6zay5veVJCYkUNnXhzGvv0rNurWNlj935iy/fD+HmzcicHZx4dkhg+jRr7demfUr17Bp/R/ExcRi52BPq7ateX7Mi5iZmwFwPuQsa35fybXL10hMSOCTqZ/TvHXLUmtj6yp16VS9EfYWNkSlxrP67B6uJ9wxWHZ4g24086lZbPvd1Hgm71xYbHvDigGMatKLkLvX+PnohpKu+kOd3HmIY1v2kp6ciquXB52G9qVSQNVH7nfrajhLv/gR14oevDjlXd32M3uPcv5gMHG3C/pOD9+KtB3YA6+qxj/zSlrn6o3pVaMlDpY23E6OZfHJrVyOu2m0fEuf2vQOaoWHrROZeTmcvXuNpae2kZ6bVaxs88q1eKPVQIJvhfLt/t9Lsxl6/gt9X/eAZjxTqy1OlrZEJscw7/gfXIy5YbR8j8Dm9AxsjpuNE3EZSaw6u4c91089xRoX16tGS56t3R5nKzsikqKZe3QdF6LDjZbvXaMlfYJa4W7rRGx6Er+f2cmua8EGy7atWo8PO4zkcMQ5Ju2YX1pNKJcUyGqb5YkEz4T4D1iwYAHjxo3j119/JTIykkqVKhktq9VqUavVmJhI9/A0RJwK5eTaXTQe1AW3Kl5cPRTCnjmr6P3RaKyd7I3u1+fjlzC1NNPdN7ex0v0d8ucBwoMv0mxIN+zcnbkbGs7+eevoOn4oTt4epdqeBy1et5bfN27g0zfepFIFL+avWsmrn3zC2jlzsbayMrhPdk4OFd096Ni8JTMW/Gr02FUqVWLO51/o7quU5SeR2tLUnOsJt9ly+QhTuo0p6+o8knm3jph3bkfm/N9Qx8Ri0bMrNu+MI/WDzyE7x+A+pk0bYjGgD5kLlqG+Ho7Sww2rUcMAyF6xDgBNUjJZazaiiY0HwKxFE6zHvUTapK8eGZj7O5r71OL5Rj2Yd/wPLsfepHP1xnzYcQRvbpxFfEZKsfIBbpUZ1/JZFgVv5uTtyzhZ2fFy076Mbf4MX+9dBsA3e5dholTp9rG1sGJ6r3EcjbhQau14UHu/BoxrOYAZB1ZwITqc3jVa8nXPVxm+fDKx6UnFyvcJasVLTfvwzb7fCY2NINDNh/faPkdadiZHbp4HoFO1RrzUtC/T9i7lQnQ43g7uTGxf8Br+cHjtU2mXIUt2bOP33Tv5ZPjzVHJzZ8HWzbw2eyZrJn2BtYWFwX3sra15vlt3fNw9MTVRcfD8OT5fsghHW1ua1SgeyCkp+3ft5efvfuTVt98gqHZNtmz4k4/eeZ9ffluIm0fx+UWj70bx8TsT6darO+998gEXz13gx+nfYe/gQMt2rQHYs30XC36ax/iJ7xFYK4g7kbeY/uXXALz8xqsAZGdl4+tXlU7du/LFh5NKrX0ADSr682yd9qw4s5OwhDu08q3Dqy0H8PmOBSRlpRUrv+rsbjZcOKC7r1Qq+LDDSE7fvlKsrJOVHc/Uasu1uFul2gZDLh07w87fNtB15AC8q/tyes8RVnzzCy9Pex97F0ej+2VnZvHHT7/jG1SN9BT99t8MvU6NZvWpWN0XE1MTjm7aw/JpP/HSVxOwc3Io5RZBs8o1GdGgG/ODN3ElNpKO1Roysf0wxv/5PQmZxfs+f9dKvNq8P4tPbeXUvb7vxSa9eblpX6Yf0L9A5WJtz9D6XQiNiSj1djzov9D3tfKtw4tNejP36HouxUTQLaApkzqPYuy6b4nLSC5WvltAM0Y06Mb3h9dwNf4W/i7evNZyAOk5mZy4FfrU6w/Qpko9XmnWj+8PreZizA16BDZnSrcxjFo1lbiM4q9Tz8AWvNC4FzMPrOBKXCQBbpV4q9X/SM/J5FjkRb2ybjaOvNSkL+eirj+t5ghhVPn5tSGEKBUZGRmsWrWKV155hZ49e7Jo0SK9/98fNrl9+3YaNmyIubk5Bw8eRKvV8vXXX1OlShUsLS2pU6cOa9as0e2nVqsZNWoUvr6+WFpa4u/vz3fffffI+mzZsoXq1atjaWlJu3btiIiIKFbmyJEjtG7dGktLS7y9vXn99dfJyMh47DYHBwfTqVMnXFxcsLe3p02bNpw+ffqh+0yYMIHq1atjZWVFlSpV+Pjjj8nLy3vsx/yrLu05gV+zOlRrXgd7DxcaDeiIlaMdVw6eeeh+FrZWWNrZ6G7KB4JH4ScuUqtzM7yCqmLr4oB/q/p4BvpyaY/hK3qlQavVsvzPP3j+2YG0b9Ycv8qV+ezNt8jOzWHbgf1G9wuqVp03nn+BLq1bY2ZqarSciUqFi6Oj7uZobzzQ+LQdi7zIvON/sD88pKyr8ljMO7Uje9N28k6fRXMnisz5S1GYmWLWpKHRfUyq+pJ/LZy84yfRJCSSf/EyucdPYuJTGJjPP3uB/POX0MTEoomJJXvdn2izczCp6luq7elVoyV7rp9i97WT3EmJY2HwZhIyUuji38Rg+equ3sRlJLHl8lFi05O4HHuTHVdPUNW5MNMpPTeL5Ox03a22px85+Xm6H2OlbWCd9mwOPcLm0CPcTIrm+8NriEtPpm/N1gbLd/Fvwh8XD7Hn+imiUhPYc/0Um0OPMKR+J12ZIA9fLkSHsevaSaLTEgm+Fcruayfxd316WTJFabValu/ZzfNdu9O+Xn38vLyYNOJ5snNz2R583Oh+Dar7065ufXw9Pano6sbg9h3x86pIyPXS/bG1buVquvTsRrfePajkU5kxb76Gq5sbm9b/YbD85g1/4ubuxpg3X6OST2W69e5B5x7dWLN8la5M6IWLBNWqSbvOHfDw9KBBk0a07dSeq5ev6so0ataEkS+NomVbw69/SepQrSFHIs5zOOI80WmJrD63l6TMNFpXqWuwfHZ+Lqk5GbpbZUcPrMwsOHpTP9CsQMHzjXqwKfSwwaB2aTu+dR912zahXrumuHi503lYP+ycHTi9+/BD99u6YDVBzerj5edT7H99xw6jYaeWeFT2wqWCOz1GD0Kr0RJx8VoptUJfj8Dm7Ak7zZ7rp7iTGsfiU1tJyEylc/XGBstXc/EmNiOZbVeOEZeRzJW4SHZdC6aKs36Wp0KhYFyLZ1l9bg8x6YlPoyk6/4W+r2/N1uy8GsyOqye4nRLLvON/EJ+RTPcAw5mz7avWZ+uVYxy8cZaYtEQO3DjLzqvB9K/d7inXvFD/2m3ZduUYW68cIzI5hrlH1xOXnkSvGi0Mlu9YrRGbQw+zP/wM0WkJ7As7w7YrxxhUt6NeOaVCwcT2w1lyaivRqQlPoylCPJQEz4T4l1u5ciX+/v74+/szdOhQFi5ciFarLVbuvffeY+rUqYSGhlK7dm0++ugjFi5cyNy5c7l48SJvvfUWQ4cOZf/+gsCHRqOhYsWKrFq1ikuXLvHJJ5/wwQcfsGrVqmLHvu/WrVs888wzdO/enZCQEEaPHs3777+vV+b8+fN06dKFZ555hnPnzrFy5UoOHTrEa6+99thtTktLY8SIERw8eJBjx45RrVo1unfvTlpa8avk99na2rJo0SIuXbrEd999x7x585g5c+ZjP+Zfoc5Xk3grGs9AH73tFQJ9iLtheEjMfZumLWTNB9+zc/Zyoq/qD8lQ5+ejNNXPHDQxNSE27Old3b8TE0NCUhJN69XTbTMzNaV+UE3OXb78t48fefcuXUeOoPeLo5j4zdfcji69TKZ/M6WrM0oHe/IvPvCa5OeTf+U6Jn7Gh/nmXwvHxMcblW9l3XFMawWRd+6i4R0UCkwbN0BhbkZ+mPGhKH+XiVJFVecKhNzV/7F69u51oz+MrsRG4mxlT32v6gDYW9jQrHJNThnIlLmvQ7WGHI44R05+6QfYTZQqqrtWIrhIRkHwrVBquht+jUyVJuSq9euWo84j0M1Hl6V5LiqM6q6VCHQreF487ZxpWrkmx24+nWw6Q+7Ex5OQmkLTGkG6bWamptSvVp1zYcaHaT1Iq9Vy4nIoN2OiqV+temlVlby8PK5duUr9xvpB5vqNGxJ6wfD7IPTCxWLlGzRpyLXLV8i/N9w5qE4trl25ypVLBa931J27BB89TuPmhoO/pUmlUFLJwYNLRbKNQmMjigVYjGnuU4vLsTdJzEzV294jsDnpOVkciXg6AegHqfPzibpxG9+a/nrbq9T05/a1CKP7nd1/nKSYeFo/0+WxHicvJxeNWoOljeFM65KkUqqo4lShWHbO2ajrVHc1PA3E1bhInK3sqFuhGgD2FtY0qRTEmTv6fd+AWu1Izc5gb9jDL0KWtP9C32eiVOHn7MWZu1f1tp+5c5UAN8OfWaYqE/KKDC/Nzc+juos3qjJYmdFEqaK6i3exz8xTt68Q5G74YpmpyqTYENmc/Dz8XSvptWFo/a4kZ6Wz7cqxkq/4P4RSoSiXt/8qGZclxL/c/PnzGTp0KABdu3YlPT2d3bt307Gj/tWdzz//nE6dCq7MZWRkMGPGDPbs2UOzZgVXvqpUqcKhQ4f4+eefadOmDaampnz22We6/X19fTly5AirVq1i4MCBBusyd+5cqlSpwsyZM1EoFPj7+3P+/HmmTZumK/PNN98wZMgQ3nzzTQCqVavG7NmzadOmDXPnzsXCyLCdB7Vv317v/s8//4yjoyP79++nZ8+eBvf56KOPdH/7+Pjw9ttvs3LlSt577z2D5XNycsjJ0R/S9qQLMuSkZ6LVaLGwtdbbbmFrTXaq4Uw7S3sbmg7uilMlDzR5asKDL7Dz++V0fmMI7n4FWT8VAqsQuicYdz9vbF0ciboSwa1z1wwGTUtLQlJBmr6zvYPedmcHB6JiY//WsWtWr85nb75F5QpeJCQnM3/1SkZNeJeV3/+Ig53d3zr2f43i3vOlSdUPLGtS01A6OxndL+/EKbJsbbCZ+BagQGGiImfPAXK27NQrp/SqgO2Hb4OpCeTkkPHDvFIdsmlrboVKqSIlK11ve3J2Gg6W1QzucyUuklkHVzG+zWBMVSaYKFWciLzE/ON/Gizv51KRyo4ezDmyrsTrb4i9hQ0mSlWxIXKJmak4eRs+30/cukTPwBYcvHGWq3G38HetRPeAZpiqTHCwsCEhM5U910/hYGnLD/3eRoECE5WK9RcOsOzMjqfRLIMSUgsykJxs9dvlZGdHdMLDsw7SszLpPvE9cvPyUSkVTBj8HE0Ca5RaXVOTU9CoNTg66Q/xc3R0JDHBcHZOUmISjo5Fyjs5olarSUlOwdnFmbYd25OSlMzbr7yhm0ahZ7/eDBo2pNTaYoyNuSUqpZK0bP3Po7TsDOzdrY3sVcjOwpog9yosOLFJb3sVZy+a+9Tiy92LS7S+jyszLQOtRoONva3edmt7W9KTUw3ukxgdx96Vmxj28TiUKpXBMkXtXbkJW0d7fINKL4h7n52Rvi8lKx2HCrYG97kaf4vvD6/hzVaDdH1f8K1QFgZv1pXxd61Eu6r1mbBlTqnW35D/Qt9nZ26NykAbk7LSqW9l+HU7fecKnas35ujNC4Ql3MHPuSIdqzfCVGWCnYW1weHUpcne4n4b9N87SVlpOBppw6nbl+kW0JQjEee4Fn+b6i7edPVviqnKBHsLGxKzUgly96Wrf1PGrP36aTRDiMciwTMh/sWuXLnCiRMnWLeu4EeeiYkJgwYNYsGCBcWCZw0bFl4Nv3TpEtnZ2bpg2n25ubnUeyCT6KeffuLXX3/l5s2bZGVlkZubS926dY3WJzQ0lKZNm6J44IrF/eDcfadOneL69essW7ZMt02r1aLRaLhx4waBgYGPbHdsbCyffPIJe/bsISYmBrVaTWZmJpGRkUb3WbNmDbNmzeL69eukp6eTn5+P3UMCMVOnTtULHgJ8+umnmLR48rT/YpOBasHY/KD27s7Yuzvr7rtW8SIjKZVLu07ogmeNBnTk6PKt/DF5HijA1sWRqk1rE3bs3BPX7XFt3bePKXN/1N2f9fEnAHqvNRS8lkW3PakWDQrPVT+gdkAAfV9+kU179zC0T9+/dex/O9OmDbEaPlh3P33W3II/DAVWHxJsNfGvhkXPLmQtXUl++E1U7i5YDh6AJiWVnD8LFyXRRMeQNmkqCisrTBvUxWr0MNKnfVeqATQALfp1f9iEuxXt3RjVuCerz+4h5O41HC1tGd6gKy8362swQNbBryE3k6K5Hn+7xOv9MEWD3wqFolg771t8citOVnb89Mx7oICkzDS2XT7GkPqdUWs1ANStUI1hDbow48AKQmMi8LJ35fWWz5LQoBtLTm0t9fYAbD1xjKm//6a7P3PsOACKdhFarYGNRViZW7Dsg0/IzMkm+MplZq5ZhZeLKw2q+z90v7+taB/HI/q4Yn3i/c0F28+eDmHFkmW8+vYbBAQFcvf2HX767kccFy7lueeHlWjVH1fxs8z4ufegZpVrkpWXzdkHMkHNTUx5vlF3lp3eToaBSemfqmKvXfHPLCjItN/w41Ja9e+Ks6fbYx366KbdXDx6hqEfvoqJmfEpCEpa0VdFoVAYvXDmZe/KyIbdWXt+L2fvXsfR0pbn6ndhdJPe/HxsAxYmZrzWYgC/HN9IWk5m6VfeiH9j31dMkeYoFMY/gleE7MLR0pbpvcahAJKz0tl97SQDardDc6+NZaFofRUKQ31Hgd9Ob8fRypbZfcejoCDQtuPqcQbV7YhGq8HS1JwJ7YYx8+AKUnMef9oWIUqbBM+E+BebP38++fn5eHkVDq/QarWYmpqSlKR/BdzauvAqskZT8OG7efNmvX2hMLtq1apVvPXWW0yfPp1mzZpha2vLN998w/HjxueleZzMJ41Gw8svv8zrr79e7H8PW+jgQSNHjiQuLo5Zs2ZRuXJlzM3NadasGbm5uQbLHzt2jP/973989tlndOnSBXt7e1asWMH06dONPsbEiRMZP3683jZzc3O+OfD4K1CZ21ihUCrIStO/UpydnlEsG+1hXH28CA8uHCZkYWtFu5f6o87LJycjC0t7G85s3IeNs8NjH/NJtW7cmJr+hVfXc+/NFxefnISLU2EGU2JKCk4OJVsPSwsLqlb24dbduyV63H+jvJDzpIVHFG64tzCI0t4OdUrhVWOlnS3aVONXry369SD3yAlyDx4FQHPnLpiZYzViMDmbthd+i1ardQsGqCMiUflWwrxjW7KWrCjZht2TlpOJWqPGwVL/are9hQ3JRTIy7numVhsux95k48WDANxMiiY7P5cvu73M72d2kvzAVXwzlSktfGuzMmRXqdTfkJTsdPI1apys9IP5jpa2JGUafo1y1XlM2/sb3+7/HSdLOxIyU+hVoyUZuVmkZBX8EBnVuBc7rpxgc+gRAMIT72Jhas67bYaw9NS2xwqO/F2ta9elpk/h8Kvce8NgE1JTcXkgazUpLRVn24dnlSqVSrzdCgIb/t6ViIiKYtG2LaUWPLNzsEepUpJUJMssOSm5WDbafY5OjiQlFi2fhEqlws6+oH1L5i2kfZdOdOvdAwDfqlXIzs5m9rQZDB7xnN78lqUtPScLtUaDnYX+55GthRWp2Y8OpjT3qcXxyEu6oAWAq7UjLtYOvNL8Gd22+wGrH/q9zaQd84k3MEl6SbKytUahVBbLMstMScPavnimTG5WDlE3bhF98w7bFxcE1LVaLWi1TBn+NkMmjMEnqDCz9djmvRz+YxdD3n8F90oVSrUt96Xq+j4bve12FtakZBvu+/oGteZqXCR/XiqY5y0yOYbsE7l83uVFVp7dhb2FDW42jrzX9jndPvdfq9+HTOKtP74jxsCk/SXl39z33Zeak4Faoy6WoeVgYaP32fOgXHU+3x1azQ+H1+JgaUtSVipd/JuSmZv9WO/LkpaSXdCGoq+Tg4UtyQ95nabvX86sAytxtLIlMTOV7gHNycjNJiU7gyrOFfC0c2Zylxd1+9w/97aNnsHzK78kKu2/MQfa373gLEqWBM+E+JfKz89nyZIlTJ8+nc6dO+v9r3///ixbtszoPGI1atTA3NycyMhI2rRpY7DMwYMHad68OWPHjtVtC3vEnDQ1atRgw4YNetuOHdOfx6B+/fpcvHgRPz+/hx7rYQ4ePMicOXPo3r07UDDXWnx8vNHyhw8fpnLlynz44Ye6bTdvGl/aHQoCZU86TLMolYkKJ28Poi5HUKlO4Q+8qMsRVKxleIiZIYm3Y7C0Lx5sU5maYOVgi0atJjLkCpXrPzpr76+ytrLSW0FTq9Xi7OjI8ZAQAqpUBQrmCDp98QLjho8o0cfOzcsj4vYt6tUovSFa/xrZOWiKrKCpSU7BpEYA6sh7mVQqFSb+fmSt3mj8OGZmxS8zazVGMyYLKVCU4kq++Ro1YQl3qePpx4nIS7rttSv4EXzrksF9zE1MUWv0r9bfv3pftDktfGphqlKxP/zhC3qUpHyNmqtxkTT0DuTgjbO67Q0rBnAo4uHZpGqNRrdaWwe/hhyJuKD7YWhhYlbsgoZGo0GheHjWQ0mytrDQW0FTq9XibGfP8dBL+HsXXCzJy8/n9LWrjOvX/4mOrUVLbn7+owv+RaamplTzr86Z4FO0aNNKt/1M8CmatmxucJ/AmkEcP3xUb9vpEyepFuCvW+E6Jye7WIBMqVSi1Wqf6tB7ALVWQ2RyNIFulfWyxwruP3wxhmou3rjZOBab0yw6LYHJOxfqbesV1BILEzNWn91DUqbhYZMlSWVigqdvRW5cuEpAo9q67TcuXKV6g+Krs5pbmvPiVP0pHE7tOszNS9d45vWROLgWXiA6umkPhzfuZPCEl6lQ5fEu+JUEtUZNeOJdantU1ZsjrLZHVU7eNjzPqOG+r+AcU6Dgbko87/z5vd7/B9XtiIWJGYtPbiG+lF+rf3Pfd1++Rs31hDvUrVBNb1GNuhWqczzSyByi96i1Gt0qqq1963DiVuhTDfzdl69RczX+FvW9/Dn8wOtSv6L/I+c0VGs1ugVD2lWtz/HIi2jREpkcw4urv9IrO7JRd6xMLZhzZJ3BVUiFeBokeCbEv9SmTZtISkpi1KhR2BdZiXDAgAHMnz/faPDM1taWd955h7feeguNRkPLli1JTU3lyJEj2NjYMGLECPz8/FiyZAnbt2/H19eXpUuXEhwcjK+v8ZX0xowZw/Tp0xk/fjwvv/wyp06dKrb654QJE2jatCmvvvoqL774ItbW1oSGhrJz506+//57wwcuws/Pj6VLl9KwYUNSU1N59913sbS0fGj5yMhIVqxYQaNGjdi8eTPr169/rMf6u2q0b8zhJX/iXMkDV18vrh4OISMxleqtCobHnt64j6yUNFoM7wVA6N5grJ3scfB0QaNWE37iIpEhV2gzup/umHERd8lKTsOxojuZyWmc23IIrVZLUMenN+G0QqFgcK/eLFyzmkqeFfCuUIGFa1ZhYWZO19aFAdlPZs7AzdmZ1+4F1PLy8gi/deve3/nEJSRwJTwcK0sLvD0LruDPWjifVo0a4+HqSlJyCvNXryQjM5Oe7Ts8tfY9jKWpORXtXXX3K9i5UM2lIqnZGaV6lf6vytm5F4uendHExqKOicOiRxe0uXnkHj+pK2M1ehiapBSy1xasIph/9gLmnduhjryNOjwCpZsrFn17khdyXvfLw+KZXuSdv4Q2MQksLDBr0gCTgGpkzCjduXP+vHSI11s+S1jCHa7ERdKpeiNcrO3ZceUEAM/V74yTlR3fHypYPfjkrcuMad6PLv5NCLlzFQdLW15o3JOrcbeKzR3TvlpDTkSGkp7zdIebrTq7hw87jOBK7E0uxtygV40WuNk6svFCQbbcS0374GLtwJR7c0hVtHcj0N2H0Jgb2JpbMbBOB3ydPZmyp3COqSM3zzOwTnuuxt/SDV0a1aQnhyPO635AP20KhYLB7TuwcNsWvN3c8HZ1Z9G2LViYmdGlUWH/9emi+bg6OPJa34LspYXbtlCjsg9eLq7kq/M5fOE8m48d4/3Bzxl7qBLxzKBn+WbyVKoF+BNYswZbN24iNiaGHv0K+usFc+eREB/Pux9PBKBH3178sXYDP8+eQ7fePQi9cIntm7by/qTCOTebtGjG+hVrqFrdj4AaBcM2l8xbSNOWzVHdm2srKzOLu7cLF5WJvhtF2NXr2NrZ4ubhXqJt3H3tJCMb9eBmUjQ3Eu/S0rcOjlZ2umBGn6BWOFjasvjkFr39WvjU4kbCXe6m6l+4yteoi23Lyi0I6BfdXpqadGvLxrnL8KziTUU/H87sPUJKQhL1OxQEPveu3ERaUgq9xzyHQqnEzdtTb39rOxtUpiZ6249u2s3+NVvpO3YY9i5Ousw2MwtzzCz+3sW2x7E59AivNe9PWOJdrsXdokO1hrhY27PzWkHfN7huJ5ys7PjxyFqgYEL3l5r2oVO1RpyNKhi2OaJhN67FF/Z9t1L05yi9P9S26PbS8l/o+zZcOMD41v/jevxtQmNv0tW/Ca42Dmy5XBBoH9GgG87W9sw4UJCxXcHOhequlbgaF4mNmSV9a7amsqMHMw+ufOp1v2/tuX1MaDeUq/GRhMZE0D2wOW42jmwKLchqfKFRT1ys7fl6X8GULF72rgS4VuZy7E1szC3pX7sdPk6euv/nqfOJSIrSe4yMe5+7RbcL8TRJ8EyIf6n58+fTsWPHYoEzKMg8mzJlCqdPG185afLkybi5uTF16lTCw8NxcHCgfv36fPDBB0BBICwkJIRBgwYV/OAZPJixY8eydavx+SIqVarE2rVreeutt5gzZw6NGzdmypQpvPDCC7oytWvXZv/+/Xz44Ye0atUKrVZL1apVGTRo0GO3fcGCBbz00kvUq1ePSpUqMWXKFN555x2j5fv06cNbb73Fa6+9Rk5ODj169ODjjz9m0qRJj/2Yf5VPg0ByMrI4t/UwWakZOHi60H7ss9g4FbxuWanpZCQWXt3V5Ks5vX4PmSnpqExNCsq/8ixeQVULy+TlE7LpAGnxyZiam+EVVIUWw3tiZvXoxRZK0ohn+pOTm8tXP88lLT2dmtWr88Nnn+tlqEXHx6FUFub3xCUm8txbb+juL92wnqUb1lO/Zk1++XIqADHxCXz47bckp6XiaGdHTX9/Fn79LZ5ujzcXTWkLcK3MD/0Kh/S+3vJZALaEHuXLB77Alxc5W3ehMDPDcuggFNZWqMMjSJ/+AzyQoaZ0cgJN4Y+K7D+3odVqsejXE6WjPdq0dPLOXiB7beEk+wp7W6xfHI7C3g5tVjbq23fImDGH/Et/f7XVhzkScR5bcyuerdMeR0tbIpNjmLJ7se5KtaOlLS7WDrrye8NOY2FqTreApoxo2I2M3GzOR4Xx2+ntesf1tHOmhrsPn+1YUKr1N2TP9VPYmVszomF3nK3tuJEQxYRNc4hJLxgC6Gxlh7tN4VBBlVLJoDodqOTgTr5GzZk7Vxm77lui0wqHDC45uRWtVsvoJr1wtXYgOSudIxHnmXf8j6fevgcN79yVnLw8pi3/nbTMDIJ8q/D9uLf0MtSiExP1hrJk5+QwbfkyYpOTMDc1pbKHJ58/P4rODRuVal3bdGxHamoqyxYuISkhkcpVfJj87VTcPTwASExIJDamMMjgUcGTyd9O5efZP7Jp3UacXJx55c3XaNmuta7MkBHDUCgULP5lAQlx8dg7OtCkRTNGvjRKV+bq5StMGFfYx/zyfcHchR27deGdjyaUaBtP3b6CtZklPQKbY2dhTVRqPD8eXqtbPdPewganIkPOLEzMqOdVnVVn95RoXUpSjab1yEzL4ND67aQnp+Ja0ZP/vfsS9i4FWWTpyamkxD/ZxY5Tuw6jzlezdvYive2t+nWhdf+uJVV1o47evICtuRX9a7XF0dKWW8kxfLV3qS6zx8HSBmfrwu+E+8PPYGlqRhf/pgxr0JWM3GwuxtxgWZG+ryz9F/q+gzfOYmtuxf/qdsTJyo6bSdFM2jG/8DPLyg7XBz6zlAol/Wq2xsveFbVGzbmoMN7d9COxZXhxbn/4GewsrBlavwtOVvZEJEbx4dafdXVytrLD7cHXSaFkQO12VHRwQ61RE3L3Gm9snKV7XUWh//LKluWRQvu0c8CFEOJf7Isiw1H+6T7q9Dxpl68+uuA/jG1AdVr8OKasq1GiDr/6E8kvGM4m/adyWPAD/Rd/UNbVKFFrR0yh9Zyxjy74D3Jg7BxS9xwo62qUKLv2rbkRf+fRBf9BfF28eGXtN2VdjRI3t/+7LAne8uiC/yDDG3Vn0G8fl3U1StTKoZP/lX1fzwXvlnU1StSmF76h0y9vPLrgP8jOl74r6yr8ZR9v+6Wsq2DQ5K4vlXUVysTTm3VUCCGEEEIIIYQQQoh/GBm2KYQQQgghhBBCCFGOKB69EpN4iiTzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUchqm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCNKGbZZrkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli+SeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjiiRYZvliWSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SKZZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAzbLF8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEKrVarLetKCCGEEEIIIYQQQogCX+1ZUtZVMOj99sPLugplQuY8E0KIEpTUqV9ZV6FEOe5cT+quvWVdjRJn17EdyS+8VtbVKFEOC36gxY9jyroaJerwqz+RPGZ8WVejRDn8NIPkUePKuholymH+9//Ovm/3/rKuRomy69CG5OH/rj4CwGHJT2VdhVKRumVHWVehRNl170zyWx+UdTVKlMPMKST/b1RZV6NEOayYzyfb5pV1NUrU511fLOsqiH8JGbYphBBCCCGEEEIIIYQRknkmhBBCCCGEEEIIUY4okNU2yxPJPBNCCCGEEEIIIYQQwggJngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYQoR5QKGbZZnkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKheQ6lSfyagghhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUI0pktc3yRDLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRhUKGbZYnknkmhBBCCCGEEEIIIYQREjwT/wknT55k5syZaDSasq6KEEIIIYQQQggh/kEkeCbKREREBAqFgpCQkBI7pkKhYMOGDcW2x8fHM3DgQGrWrIlSWfKn/KRJk6hbt26JH/e/ZOTIkfTt2/exy+/btw+FQkFycvJffsxFixbh4ODwl/cXQgghhBBCiNKiVCjK5e2/SuY8E09s5MiRLF68GACVSkWFChXo0aMHU6ZMwdHRsczqFRUVVezxtVotw4cP55NPPqFTp05lVLN/B4VCwfr1658oyCVKh2nLppj36IyqWlWU9nakjnkLdVhEWVerGK1Wy7wtm1h/+BBpmZkE+fjw3sDBVK1Qweg+e0LOsGj7Vm7FxZGvVuPt6sbQDh3p3qSprszpa9dYumsHl29FEp+SwjcvjaFtnbpPoUUFLPp0x6xNCxRWlqjDb5L520o0d6Mfuo95p7aYtWuF0skRbXoGuSfPkL3mD8jPB8CsbUvM27VC6eIEgPpONNl/biX//KVSb8/jqOPpx5B6nQlwq4SLtQPvb5nLwRtny7paD2XRswtmLZuisLJCHXGTzOVr0UTFGC1vM34sJtX9im3PO3+JjB9/Lbhjbo5l726Y1q2JwtYW9a3bZK3agPrmrdJqhh6L3t30z71lqx597nVsi1m7lg+ceyFkry0898y7d8K0fh1Unu5oc/NQh90ga/VGNDGxT6NJT+Sf0vcVpdVqmbf5T9YfPnivL/TlvUFDHt4Xnjl9ry+MLegL3dwY2qET3Zs0e4o112fRrydmbVuisLZCHRZB5pLlaO5EPXQf8y7tMWvfGqWzE9q0dHKDz5C9ej3k5evKKBwdsBzYD5M6QShMzdBEx5A5fynqiMjSbtK/jlarZd72raw/epi0rCyCKlXmvf4DqerpaXSfPedCWLRzB7fi48nXqPF2cWVo2/Z0b9RYV+aXbVuYt32r3n5OtrZs/3xKqbXlQRZdOmDWrBEKS0vUkbfIXPsHmmjjfZTNq6Mx8atSbHvepctkzFtSbLt5hzZY9uxCzv7DZG3YXKJ1N8ZiQG/M2rdBYWOF+no4mQuWobl996H7mHfriFmndihd7r2fjp8ke/nawveThQWWA/ti2qg+Cntb1BGRZC1ajjo8otTb08g7kJa+dbAxtyQuPYmtl49xM8n455NKoaStX33qVPDDxtyK1OwM9oed4cydqwA0qOhP3QrVcbMt+G13NyWeXdeCuZMSV+ptEcIYCZ6Jv6Rr164sXLiQ/Px8Ll26xAsvvEBycjLLly8vszp5eHgU26ZQKNiyZUsZ1EaI0qOwMCf/4mVyDxzBevyrZV0do5bs3MHve3bzybARVHJzY8G2rbz2w3es+eQzrC0sDO5jb2XF81264ePhganKhIMXzvH5b0twtLWlWY0gALJyc6hesSK9mjVnwryfn2aTMO/WEfPO7cic/xvqmFgsenbF5p1xpH7wOWTnGNzHtGlDLAb0IXPBMtTXw1F6uGE1ahgA2SvWAaBJSiZrzUY0sfEAmLVogvW4l0ib9NUjgyNPg6WpOdcTbrPl8hGmdBtT1tV5JPPO7THv0IbMxctRx8Zh0a0TNm+MIfXTryDH8OuU8dMiMFHp7iusrbD96B3yThcGCa2GDURVwZOMhb+jTUnFrEkDbN4cQ+pnX6NNTindNt0/9xYsu3fudcHm7ddI/XCy8XOvSUMsBvQmc+Ey1NdvFJx7LwwFIHtlwblnUt2P3L0Hyb9xE5QqLJ/pic3br5L60ZeQm1uqbXpS/5S+r6glO7fz+55dfDJsJJXc3VmwdTOvfT+TNZ9ONt4XWlvzfNfu+Lh7YGqi4uD583y+dDGOtna6vvBpMu/RGfOuHcictxh1VCwWfbph894bpE741Pj516wxFs/2I3P+EtTX7vV9L44AIPv31QAorKyw/ehd8kKvkPHtD2hT01C6uaDNzHxqbfs3WbJnF7/v28snQ56jkqsbC3Zu57WffmDNxI8f8rlrzfOduuDj7o6pSsXBixf5fMWygs/dgEBduSoenvz4ymu6+yrl08k+MW/fGvO2Lcj8fS3quHgsOrXDZswLpE6dATmG+6iMhctAVaQ/f2cceSEXipVVeXth1qwR6kcEgkuSee9umHfvTObcBaijYrB4pic2H7xN6vgPITvb4D6mLZpgMXgAmT8vRH31OkpPD6zGvABA9pKVAFi9PAJVRS8yfvwVbVIyZq2aYvPR26S+/THapORSa09Njyp0C2zGpkuHiUyKoZF3AEMbdOWHQ6tJyc4wuM/Auh2wMbdkw4UDJGamYm1mqZfR5ONUgXNR17kVGkO+Rk1L3zoMb9iNHw6tIS1H+od/ojlz5vDNN98QFRVFUFAQs2bNolWrVgbL7tu3j3bt2hXbHhoaSkBAgO7+2rVr+fjjjwkLC6Nq1ap8+eWX9OvXr9TaIMM2xV9ibm6Oh4cHFStWpHPnzgwaNIgdO3bolVm4cCGBgYFYWFgQEBDAnDlzjB5PrVYzatQofH19sbS0xN/fn++++65YuQULFhAUFIS5uTmenp689lrhh3jRYZvnz5+nffv2WFpa4uzszEsvvUR6erru//eHCn777bd4enri7OzMq6++Sl5e3kPb/tVXX+Hu7o6trS2jRo0i28CH3JO0HWDbtm20bNkSBwcHnJ2d6dmzJ2FhYbr/5+bm8tprr+Hp6YmFhQU+Pj5MnTpVr+1z586lW7duWFpa4uvry+rVq/Ue486dOwwaNAhHR0ecnZ3p06cPERERj/X8+vj4ANCvXz8UCoXuPsDcuXOpWrUqZmZm+Pv7s3Tp0oe2Va1WM378eF1b33vvPbRarV4ZrVbL119/TZUqVbC0tKROnTqsWbPmocctasaMGdSqVQtra2u8vb0ZO3as3utfVFhYGH369MHd3R0bGxsaNWrErl27nugxn5bcXfvJ/m0V+afLb+aPVqtl+d7dPN+lG+3r1sOvgheTho0gOzeX7cEnjO7XoLo/7erWw9fDk4qurgxu1wE/Ly9CHng/tAiqySu9+tC+br2n0RQ95p3akb1pO3mnz6K5E0Xm/KUozEwxa9LQ6D4mVX3JvxZO3vGTaBISC378Hz+JiU8lXZn8sxfIP38JTUwsmphYstf9iTY7B5Oqvk+jWY90LPIi847/wf7wkLKuymMx79Ca7K27yAs5j+ZuNJmLf0dhZoZZ4/pG99FmZqJNTdPdTAP9ITeP3FP33memppjWq03Wuj9RXw9HExdP9qbtaOITMW/dvPTb1LEt2Zt3PHDu/fZ45971cPKOn3rg3Duld+5lzJpL7uHjaO5Go7l9h8wFy1A6O6Hy8S71Nj2pf0LfV5RWq2X5nl0837U77evVL+gLhz9/ry88bnQ/XV/o6UlFVzcGt7/fF15/irUvZN6lA9l/bCXvZAiaO3fJ/GVxwXuqWWOj+5j4VSH/Whh5R4PRxCeQfyGU3GPBmPgWnn/mPTujSUwk69clqMMjCspduqK7kCAen1arZfn+fTzfqTPta9fFz7MCk4YMJTs3j+2nTxrdr4FfNdrVroOvuwcVXVwZ3KYtfp4VCAkP0yunUipxsbPT3RxtbEu7SQCYt2lO9s595J2/WJCV+Pvqgr6vfl2j+2gzs9CmpetuptX9IC+P3LPn9QuamWE1dBBZq9ajzcoq3YY8wLxbR7I3bCYv+HRBvztnPgpzM8xaNDG6j0n1quRfvU7e4eNo4hLIP3eR3CPHManiU1DA1BTTxg3I+n0N6stXC75LrPkDTWw85p2KByFKUnOfWpy+fYXTt68Qn5HM1svHSM1Op1GlGgbL+7lUxMfJk99ObSc84S7JWencSYnjVnJhNuHac3sJvhVKdFoi8RkpbLxwEIVCQRVnr1JtS3mjUCjK5e1JrVy5kjfffJMPP/yQM2fO0KpVK7p160Zk5MMzjK9cuUJUVJTuVq1aNd3/jh49yqBBgxg2bBhnz55l2LBhDBw4kOPHjX+2/l0SPBN/W3h4ONu2bcPU1FS3bd68eXz44Yd8+eWXhIaGMmXKFD7++GPdcM+iNBoNFStWZNWqVVy6dIlPPvmEDz74gFWrVunKzJ07l1dffZWXXnqJ8+fP88cff+DnV3yIDUBmZiZdu3bF0dGR4OBgVq9eza5du/SCbQB79+4lLCyMvXv3snjxYhYtWsSiRYuMtnXVqlV8+umnfPnll5w8eRJPT89igbEnbTtARkYG48ePJzg4mN27d6NUKunXr59ugYPZs2fzxx9/sGrVKq5cucJvv/2mF8AC+Pjjj+nfvz9nz55l6NChDB48mNDQUN3z0a5dO2xsbDhw4ACHDh3CxsaGrl27knsvs+Bhz29wcDBQEBSMiorS3V+/fj1vvPEGb7/9NhcuXODll1/m+eefZ+/evUbbOn36dBYsWMD8+fM5dOgQiYmJrF+/Xq/MRx99xMKFC5k7dy4XL17krbfeYujQoezfv9/ocYtSKpXMnj2bCxcusHjxYvbs2cN7771ntHx6ejrdu3dn165dnDlzhi5dutCrV69HdurCsDsJ8SSkptI0sPCqtZmpKfX9qnHuRvhjHUOr1XLi8mVuxsRQ38h7/WlSujqjdLAn/+Llwo35+eRfuW5weIiuyLVwTHy8UflW1h3HtFYQeecuGt5BocC0cQMU5mbkh90oySb8JyhdnFDa25EfeqVwY76a/GthhT8yHoNZiybknjxTmH2lVKJQqfSGmwFo8/Iw8SvdIKfS5SHn3kMCrPnXwzCp/MC55+KMaa0axs89QGFVkJ2izZAr+yWhsC8s/BFpZmpK/WrVORf+JH1h6L2+sNqjdyhhSleXgvPvQmjhxvx88q9cw6TaQ/q+q9cx8amE6t77TunqgmmdmuSdLcz+Ma1Xh/wbkVi99iJ2P3yNzeQPMGvbsrSa8q92JyGBhLRUmvoXZmWYmZhS38+Pczce77NEq9Vy4uoVbsbFUr+q/ufurfg4un36IX0mf8oHSxZyO770A5xKZ0eUdnbkX7lWuFGtJv/6Db0g7KOYNWlI7plzkKt/gdxqQG/yQi+TfzXMyJ4lT+nmgtLRgfwH++H8fPJDr2BSvarR/fIvX8fEtzKqe32+0s0F03q1yDt9rqCASnXvM0q/jdrcPEwCSu87lEqhxNPOhbD4O3rbr8ffoZKDu8F9Atwqczclnpa+tXmn7RBebzWQLv5NMFGqDJYHMFWZoFIoycoznOkqyrcZM2YwatQoRo8eTWBgILNmzcLb25u5c+c+dD83Nzc8PDx0N9UDGaWzZs2iU6dOTJw4kYCAACZOnEiHDh2YNWtWqbVDhm2Kv2TTpk3Y2NigVqt1mVczZszQ/X/y5MlMnz6dZ555BgBfX18uXbrEzz//zIgRI4odz9TUlM8++0x339fXlyNHjrBq1SoGDhwIwBdffMHbb7/NG2+8oSvXqFEjg/VbtmwZWVlZLFmyBGtrawB++OEHevXqxbRp03B3L+jMHR0d+eGHH1CpVAQEBNCjRw92797Niy++aPC4s2bN4oUXXmD06NG6Ou3atUsv++xJ2w7Qv39/vfvz58/Hzc2NS5cuUbNmTSIjI6lWrRotW7ZEoVBQuXLlYsd49tlndfWaPHkyO3fu5Pvvv2fOnDmsWLECpVLJr7/+qrtasHDhQhwcHNi3bx+dO3d+6PPr6uoKgIODg97w2G+//ZaRI0cyduxYAMaPH8+xY8f49ttvDaba3n8OJ06cqGvzTz/9xPbt23X/z8jIYMaMGezZs4dmzQrmdqlSpQqHDh3i559/pk2bNgaPW9Sbb76p+9vX15fJkyfzyiuvGM0CrFOnDnXq1NHd/+KLL1i/fj1//PFHsaArQE5ODjlFhn+Zm5s/Vt3+CxJSUwFwsrXT2+5kZ0d0YuJD903PyqL7B++Tm5+HSqlkwqDBNAk0fPXyaVLYFbRFk5qmt12TmobS2cnofnknTpFla4PNxLcABQoTFTl7DpCzZadeOaVXBWw/fBtMTSAnh4wf5pWLIZv/NA99nZweb15OlU8lVF6eZC5dWbgxJ4f8sBtY9OhERnRMQXZao/qofCqVepaMwv5+m1L1tj/63DtNlo0NNu+/ie7c23uQnK07je5jOegZ8q+GPXIuK/F4ElKM9IW2dkQnJjx03/SsTLp/MIHcvHt94f+GlElfqDv/UoqcfympunkaDck7fpIsOxtsPnoH3fm3ez85mwo/85WuLpi3b03Otl1k/LkNVRUfLIcORJuXR97h0sse+DdKSDNyrtnYEp30GJ+7kz4iNz+/4FwbMJAmDwThgipX5rMhw6jk6kZCWioLdm5n1OwZrJzwIQ73vmeXBoVtQXabJk1/5IAmPR2lo8NjHUNVqSKqCh5k3huqfp9pvdqovCqQOfPho0NKmsLBHjD2fnI2ul/e0RMF76fP3i84jokJOTv2kvPHvbnosrPJv3odi2d6knEnCm1yCqYtmqDy833o/HB/l5WZBSqlkvRc/QsuGblZ2JhbGtzH0dKWSo7u5GvULD+zEytTC3oGtcDS1JwNFw4Y3KdT9UakZmcQnnDH4P/F02Xsd5Ch30K5ubmcOnWK999/X297586dOXLkyEMfp169emRnZ1OjRg0++ugjvd+XR48e5a233tIr36VLFwmeifKnXbt2zJ07l8zMTH799VeuXr3KuHHjAIiLi+PWrVuMGjVKLwiVn5+Pvb290WP+9NNP/Prrr9y8eZOsrCxyc3N1q1jGxsZy9+5dOnTo8Fj1Cw0NpU6dOrrAGUCLFi3QaDRcuXJFFzwLCgrSi2B7enpy/vz5Ysd78LhjxujP99OsWTNdptVfbXtYWBgff/wxx44dIz4+XpdxFhkZSc2aNRk5ciSdOnXC39+frl270rNnTzp37lysHkXv31/N9NSpU1y/fh1bW/0U++zsbMLCwp74+X3w+XjppZf0trVo0cLgkFuAlJQUoqKi9OpqYmJCw4YNdUM3L126RHZ2drEFHnJzc6lX7/GH6e3du5cpU6Zw6dIlUlNTyc/PJzs7m4yMDL3z4r6MjAw+++wzNm3axN27d8nPzycrK8to5tnUqVP1Ar4An376KW8YLP3XmbVvjdWbhedc+geT9a/+lxNbTxxn6vLfdfdnji2Yj6hoanfRIbqGWJmbs2zih2Tm5BB85TIz163By8WFBtX9S7bSj2DatCFWwwfr7qfPund1zFAbHtIuE/9qWPTsQtbSleSH30Tl7oLl4AFoUlLJ+XObrpwmOoa0SVNRWFlh2qAuVqOHkT7tOwmgPYJp4/pYDXlWdz/9/uT+RV+TJxhmYNa8Ceo7UcUmLM9c+DtWw/+H/bRJaNVq1LfukBd8BlWlkh1GYtqkIVbD/6e7n/7dTwV/FD3NFIpHnHt+Befeb6vID49A5eaK5eD+aHp20Qtg3Gf53LOoKlYg7atZJdCKv+ef0vcVVdAX/qa7P/PeHFFFTz8t2keek1bmFiyb+PG9vjCUmWtX4+XiWup9oWmzxlg9P0R3P336jwV/GHpPPaRLNwmojkWvbmQtXk5+2A1U7m5YDh2IJjmFnI335qNVKlDfuEn2mo0AqG/eQuXliXmHNhI8e4Stp4KZumqF7v7MFwveL0XPqsc718xZ9s77ZObmEHz1CjM3rMfL2YUG9zIdWwQWzrPnRwVq+/jS98vP2Bx8nOfati+ZBgGm9etgNbCv7n66gcn9Czz83HuQWZOGqO9Go468Xbi3gz2W/XqS/tMC3eIppcW0RROsXhyuu58+7d535GJ99yP68xr+WPTrSdb838i/Ho7Kww3LEYPRJPckZ90mADJ//BWrl5/Hfu70gs+oGzfJO3xcl338tBlrzv3vhmvO7SEnvyBTbtvlYwyq25FNlw6Tr1HrlW/pW5tanlVZeGJzsf/925XXlS2N/Q6aNGlSsbLx8fGo1Wrd7+/73N3diY42/B3X09OTX375hQYNGpCTk8PSpUvp0KED+/bto3Xr1gBER0c/0TFLggTPxF9ibW2tG9I3e/Zs2rVrx2effcbkyZN1gZ958+bRpIn+2P0HA1UPWrVqFW+99RbTp0+nWbNm2Nra8s033+jGLFtaGr5yYYxWqzU6HvvB7Q8ONb3/v/v1/yv+StsBevXqhbe3N/PmzaNChQpoNBpq1qypG1JZv359bty4wdatW9m1axcDBw6kY8eOj5wH7H5bNRoNDRo0YNmyZcXKuLq6olT+9RHchoIjf2Us/H33n8PNmzfj5aX/g/RxM7tu3rxJ9+7dGTNmDJMnT8bJyYlDhw4xatQoo3Pavfvuu2zfvp1vv/0WPz8/LC0tGTBggO41KGrixImMHz++WP0ye/7PYPm/KvfoCfIvX9Xd18Q//OpxWWlduw41fQqHj+Xe+zKakJqCywOB46S0NJzt7Irt/yClUom3mxsA/t7eRMREs2jH9qcePMsLOU/agytUmRR8ZCrt7VA/cMVYaWeLtkiW04Ms+vUg98gJcg8eBUBz5y6YmWM1YnBBAOP+t0u1WpfBpI6IROVbCfOObclassLYoQWQd/YiaTceCHLdm/RfaW+H+oHXRWlr89DXScfUFLNGdcl6ILB5nyY+gfQZP4KZGQoLc7SpaViNHlbi78u8s+dJ+yyicIOxc+8RbbLo25Pcow+ee1FgbobV8MHkbN6h98vGcsgATOvWIn3ad6U6sfTj+qf0fUUZ7wtTcbF30G1PSkvD2fYJ+8LoaBZt31rqfWHembOkPThk3PTe+edgb6DvSy26u45F/17kHjlO7v7DAAUrCZqbYfX80IJsGa0WbXJKsYna1XejMW1ofH5CUaB1UC1qvuOju68719JS9T9309NxfsT8ZEqlEu97owz8vSoSERPDol07dMGzoizNzfHzrMCtuJJd+TDvYihp3z6wevH9vs/WRr8/t7FG+5B5bHVMTTGrV5usbfpz2JpUrIDS1gbbBxYeUahUqKr4YNayKSnvfvLQQNaTyDt1lrTrDwQZHnw/PbDQjNLeFm3KQ95PA/uSe/AouXsPAqC5dQfMzbF6cTg56zeDVosmJo70z78GczMUlpZok1OweuPlUs2OzszNRq3RYGNmpbfd2sySjFzD88il5WSSmp2hC5wBxKUno1QosLOwJjGz8Hlo4VOLVlXqsjh4CzHp/4zPgf8CY7+DHuZJfjP6+/vj71/4WdesWTNu3brFt99+qwuePekxS4IEz0SJ+PTTT+nWrRuvvPIKFSpUwMvLi/DwcJ577rnH2v/gwYM0b95cN/wP0Jsw39bWFh8fH3bv3m10OOCDatSoweLFi/WyjA4fPoxSqaR69epP2LpCgYGBHDt2jOHDC68gHTt2TPe3u7v7E7c9ISGB0NBQfv75Z92KI4cOHSpWzs7OjkGDBjFo0CAGDBhA165dSUxMxMnJSVePovW6n6lVv359Vq5ciZubG3ZGAhePen5NTU1Rq/Wv9gQGBnLo0CG9xz1y5AiBD8xz9SB7e3s8PT05duyYruPLz8/n1KlT1K9f8EW5Ro0amJubExkZ+dhDNIs6efIk+fn5TJ8+XRcYfHD+PEMOHjzIyJEjdSu0pKenF1tQ4UHGUpNLfJagrGw0WeU/88jawkJvJS+tVouznR3HL4fi710wL0lefj6nr19jXJ8nWwVHq9WSm//whTxKRXYOmiKryGmSUzCpEVB4BVulwsTfj6zVG40fx8ys+JdwraZ4ekAxChQm8jH9SDk5aOKKvE4pqZgEVkd9697wDpUKk2pVyVq/6ZGHM2tYF0xMyDt+ynih3Fy0ubkorCwxrRFA1ro//0YDDDB67vkXP/fW/GH8OGamxc89jbbYuWc55FlM69cm/evZaOIfPpTwqfmH9H1FGe0LQy/p94XXrjKu7zNPdOyCvrB0s2SAe+efflBEk5yCSVAg6pv3AhsqFSb+1chatd7AAe4xMys43/QOpN/35V8LQ+Wpnzmg9HBHk1BOzsNyzOC5ZmvH8StX8K9YsOBHwefudcb16v1Ex9by8HMtNz+PiJgY6lYxPkfXX5KTiyZHP0CiSU3FxN+vMMiqUmHi50vWn8WzZ4syq1sLTFTknTyjtz3vWhip9zPA7rEa3B9NbBzZuw+UWOAMgOxsNEUWF9MkJWNSq0ZhdrNKhUmgP1m/P+SiuKHvEhqN4azCnFy0ObkorK0wrV2TrN9XFy9TQtRaDVGp8VR18SI0NkK3vaqLF5djbxrcJzIphiCPKpipTMhVF5xnLtb2aLQaUh9YnbOFT23aVK3HkpNbuZsqi4iUJ8Z+Bxni4uKCSqUqlhEWGxtbLHPsYZo2bcpvvxVmdnt4ePztYz4p+VYuSkTbtm0JCgpiypQp/PDDD0yaNInXX38dOzs7unXrRk5ODidPniQpKalYlBrAz8+PJUuWsH37dnx9fVm6dCnBwcH4+hZevZ00aRJjxozBzc2Nbt26kZaWxuHDh3XDRR/03HPP8emnnzJixAgmTZpEXFwc48aNY9iwYX/rDfXGG28wYsQIGjZsSMuWLVm2bBkXL16kSpXCCXOftO33V7/85Zdf8PT0JDIystiY8JkzZ+Lp6UndunVRKpWsXr0aDw8PHBwcdGVWr16tV68TJ04wf/583fPxzTff0KdPHz7//HMqVqxIZGQk69at491336VixYqPfH7vB9datGiBubk5jo6OvPvuuwwcOJD69evToUMH/vzzT9atW/fQVSrfeOMNvvrqK6pVq0ZgYCAzZswgOTlZ939bW1veeecd3nrrLTQaDS1btiQ1NZUjR45gY2NjdN64B1WtWpX8/Hy+//57evXqxeHDh/npp58euo+fnx/r1q2jV69eKBQKPv7447+VhViaFLY2KN1cUNyb60hZsSBDT5OYXC4yRqDgStDgdh1YuH0b3q5ueLu5sWj7NizMzOjSqHB1tk8XL8TVwYHX7gXUFm7fRo1KlfBydSU/X83hixfYfPwY7/+vcAhRZna23tXuuwnxXLl1C3trazycjM+/UxJydu7FomdnNLGxqGPisOjRBW1uHrnHC1cysxo9DE1SCtlrC4Ia+WcvYN65HerI26jDI1C6uWLRtyd5Ied1X4QtnulF3vlLaBOTwMICsyYNMAmoRsaMpzsXizGWpuZUtHfV3a9g50I1l4qkZmcQk55UhjUzLGf3ASy6dkQTG486Ng6Lrh3R5uaSe+K0rozVyMFoklPJ3rBZb1+z5k3IC7lgcMJ8kxr+gAJNTCxKNxcsn+mFOiaW3CPGV5AtKTm79mHRozOamLiCNnXvXPzcGzUMTVIy2feCefrn3k2Ubi5Y9O1BXsgF3blnOXQgZk0akP79PLTZ2SjsCjJUtFnZxSaeLmv/hL6vKIVCweD2HVm4fSvebu4FfeG2rff6wsIM9U8XLSjoC+8F1BZu20qNypXv9YX59/rCo7w/+PEuzJW0nO27sejVFU1MLOroWCx6dy14Tx0tPPetXhpZcP6t3gBAfsh5zLt2QH3zFuqwGyjd3bDo35u8M+d051/Ott3YfPwe5r26knf8FKqqPpi3a0nmguKZ8uLhFAoFg9u0ZeGuHXi7uuLt6sqiXTuwMDOlS/3CVXk/XbYEV3sHXutZEFBbuGsHNbwr4eXsQr46n8Ohl9gcfIL3nx2k22fWxvW0CqqJh6MjSenpzN+xnYzsbHo2alKsHiUtZ/8RLDq2RROXgDouAYuObQv6vtMhujJWQwqmQsjevENvX7OmDck7H4o2s0gGVE4umugY/W25uWgzMotvLwU5W3dh0bcHmugY1FGxWPTrjjYnl9wHhipbjR2FJjGJ7BUFc7Xlnz6LeffOqG9Eor4ejtLDDYuBfck7FaJ7P5nUDgKFAs3daJQeblg+9yzqqGhy9x0u1fYciTjPM7Xb6lbMbOgdgL2FDcGRBUPtO1ZvhJ25NevO7wPgfNR12latR99abdh77RRWZhZ09m/C6dtXdcMyW/rWpn21hqw5u4fkrDRszApGIeWq83QBt/+C0syielrMzMxo0KABO3fu1CUpAOzcuZM+ffo89nHOnDmDp6en7n6zZs3YuXOn3rxnO3bsoHnz0lsBXYJnosSMHz+e559/ngkTJjB69GisrKz45ptveO+997C2tqZWrVp6k7g/aMyYMYSEhDBo0KCCD//Bgxk7dixbt27VlRkxYgTZ2dnMnDmTd955BxcXFwYMGGDweFZWVmzfvp033niDRo0aYWVlRf/+/fUWNfgrBg0aRFhYGBMmTCA7O5v+/fvzyiuv6E14/6RtVyqVrFixgtdff52aNWvi7+/P7Nmzadu2ra6MjY0N06ZN49q1a6hUKho1asSWLVv0hlt+9tlnrFixgrFjx+Lh4cGyZcuoUaOG7vk4cOAAEyZM4JlnniEtLQ0vLy86dOigy0R71PM7ffp0xo8fz7x58/Dy8iIiIoK+ffvy3Xff8c033/D666/j6+vLwoUL9epe1Ntvv01UVBQjR45EqVTywgsv0K9fP1JSClPXJ0+ejJubG1OnTiU8PBwHBwfq16/PBx988FivU926dZkxYwbTpk1j4sSJtG7dmqlTp+plyBU1c+ZMXnjhBZo3b46LiwsTJkwg9SHDUcqSabNGWL/7uu5+wWTMkLVkBdkPTnBexoZ36kxOXi7TVi4nLTOTIB9fvn/tdb0r5dFJiXpfDLJzc5i2cjmxycmYm5pS2d2Dz0e+QOcGhV/8QyNvMua7mbr7M9cWXKnt0aQpk4aPLNU25WzdhcLMDMuhg1BYW6EOjyB9+g/wQJaQ0slJL9si+89taLVaLPr1ROlojzYtnbyzF8heW5itpLC3xfrF4Sjs7dBmZaO+fYeMGXPIv3SZ8iDAtTI/9CsM/r/esmCOsS2hR/lyj/GVhMtKzo49KMxMsRzcH4WVJeobkaTP/hlyHnydHItdxVe6uWJSrUrhHGNFKCwtsOjbA6WDA9rMTPLOnCNrw5aCq/+lLGfrLhSmplgOHVh47s34sci5p9+m7E3b0VIwfFPv3FtXmIFn3q4g49l2gv6MjZkLftP7IVce/FP6vqKGd+pCTm4u01YsK+wLx71ZvC9UFukLV/xObHLSA33hKDo3NLxQUmnL2byjoO8bMRiFlRXq8Bukfz1b//xzdtI//zZuKej7BvRG6ehQcP6dOaeb3wxAfeMmGbN/wvLZvlj06YEmPp6sZavJO1r6Ael/o+HtO5KTl8e0NatIy8okqLIP3495tci5llTkczeXaWtWEZty73PXzZ3Phw6nc70GujKxKcl8tHQRyRkZONrYULOyDwveHI9nKV+wAsjZc6Cg7xvQG4WlJeqbt0n/aSHkFE6roXR0KN6fuzpjUsWH9LkLSr2OTyrnj60Fn1EvDEVhbY36ejjpU2bAAxlqSpci76d1m9BqwWJQX5ROjmhT08g7dZbsBxZCUFhZYjG4f8H/0zMKFixasR7UpTtP2IXocCxNzWnrVx9bcyti0xL57dQ2UrILhtbamlthb1k433CuOp/FJ7fQI7A5LzfvR1ZuNheiw9l9rfBiUKNKNTBRqvhfPf05kPdeP8Xe66cR/yzjx49n2LBhNGzYkGbNmvHLL78QGRmpm0t84sSJ3LlzhyVLCuY5nDVrFj4+PgQFBZGbm8tvv/3G2rVrWbt2re6Yb7zxBq1bt2batGn06dOHjRs3smvXLoMjuEqKQvs4szcLIco1hULB+vXr6du3b1lX5T8vqdOTDUks7xx3rid1196yrkaJs+vYjuQXiq+i+k/msOAHWvw45tEF/0EOv/oTyWOKZ+z+kzn8NIPkUcUzpv/JHOZ//+/s+3bvL+tqlCi7Dm1IHv7v6iMAHJY8PLP8nyp1y45HF/oHsevemeS3Hu8i6D+Fw8wpJP9vVFlXo0Q5rJjPJ9vmlXU1StTnXV98dKFyas6RtY8uVAbGNu//xPvMmTOHr7/+mqioKGrWrMnMmTN10/iMHDmSiIgI9u3bB8DXX3/NL7/8wp07d7C0tCQoKIiJEyfSvXt3vWOuWbOGjz76iPDwcKpWrcqXX37JM8882ZQIT0Iyz4QQQgghhBBCCCHKESV/fVG38mbs2LF685s/aNGiRXr333vvPd57771HHnPAgAFGR6KVhn/PqyGEEEIIIYQQQgghRAmTzDMh/gVk9LUQQgghhBBCCFE6JHgmhBBCCCGEEEIIUY78G1bb/DeRYZtCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YhShm2WK5J5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKJBhm+WJZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKWW2zXJHMMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCnDNssVyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEdktc3yRTLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRJTJsszxRaLVabVlXQgghhBBCCCGEEEIUWBK8payrYNDwRt3LugplQjLPhBCiBE3fv7ysq1Ci3m4zmBvxd8q6GiXO18WL/os/KOtqlKi1I6aQPGZ8WVejRDn8NIMWP44p62qUqMOv/sTzK78s62qUqIWDPiQ0Orysq1GiAj2qsPLMzrKuRokaVK8T+66fKutqlLi2fg04dSu0rKtRohp4B/LWH9+VdTVK1Mzeb/wr+/PPdy4o62qUqE86vUDfRe+XdTVK1IaRX5V1FcS/hATPhBBCCCGEEEIIIcoRWW2zfJEFA4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKERm2Wb5I5pkQQgghhBBCCCGEEEZI8EwIIYQQQgghhBBCCCNk2KYQQgghhBBCCCFEOaKUYZvlimSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjCmTYZnkimWdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5Yistlm+SOaZEEIIIYQQQgghhBBGSPBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDmikGGb5YpkngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRzDMhnqKIiAgUCgUhISGlcnyFQsGGDRueaJ+2bdvy5ptvPnb5RYsW4eDg8NAyly9fpmnTplhYWFC3bt0nqs9f9aTtKO3XQgghhBBCCCHEv4Nknon/jJEjR5KcnPzEwaWS5O3tTVRUFC4uLgDs27ePdu3akZSU9MiA1D/Jp59+irW1NVeuXMHGxqasq2NQ0deiLF3cd4Jz24+QmZKGYwU3mg3qime1ygbL3r1yg03TFxfbPvCzV3HwdC22/fqJ8+z5dS2V6/jT5dXBJV73+/5ct5E1v68kMSGByr4+jHn9VWrWrW20/LkzZ/nl+zncvBGBs4sLzw4ZRI9+vfXKrF+5hk3r/yAuJhY7B3tatW3N82NexMzcDIAVS37n8P6D3L4ZiZm5OTVqBfHCKy/iXblSqbWzi38T+gS1wtHKllvJsSw8sZnQ2Aij5Vv51qFvzdZ42jmTmZvNmbvXWHxyC+k5WQB81mU0NT2qFNvv1O3LTNm9pLSaUYxFzy6YtWyKwsoKdcRNMpevRRMVY7S8zfixmFT3K7Y97/wlMn78teCOuTmWvbthWrcmCltb1Lduk7VqA+qbt0qrGU+sjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62oZ1M6vAd38m+JgacOdlDh+P7OTa/GGn8tRjXvS0rdOse13UuL4aNsvAKgUSnoENqeFb20cLW2JSktg9dk9XIgOL9V2PGjL+k1sWLGGpMREvH0qM+q1lwmqU9Ng2cSERBb+OI+wq9eIun2XHv17M3rcGL0yRw8cZs1vK4m6cxd1fj6eFb3oM/AZ2nXp8DSaA8CJHQc49Odu0pNTcK3oSbfh/fEJLP5eAbh5OYwdv28k/m40eTl5OLg60bBDC5r3aK8ro85Xc2DjDkL2HyctKRlnT3c6D+lDtbo1nlaT2LdpJzvWbSIlMZkKlbwY+NJwqtUMMFj29OETHNiyi1vhN8nPy8ezshe9hvQnqIH++ZiZnsGGJas4cySYzPQMXNxdGTD6OWo1qvc0mgTAzo1b2LR6A8kJSXj5eDN87CgCagUZLJuUkMiynxZy41oY0Xei6NKvB8PHji5WbuvaP9j15zbiY+OxtbelSavmDBo9DDMzs9JuDgAtfGrTrmp97CysiU5LYMOFA4Qn3jVaXqVU0aV6YxpUDMDO3Irk7HR2Xg3mxK1LACgVSjpWa0gj70DsLWyITU9i06XDXI67+VTaA9CvZhuG1OuEs5U9NxLvMvvQas5GXTda/pmabehfqy2eds7EpCWy+NRWtl05rvu/SqlkeP2udAtohou1A5HJMcw9uo7jkZeeRnMMunrgNJd2nyArJR0HTxca9O+Am5+30fLqvHzObz3CjeCLZKdlYOVgS80uzajazPj3rtLWzb8pfWu2Lvh+lBTD/BObuPSQ70etq9SlX802VLBzJiM3mzN3rrLo5BbScjJ1ZXrVaEFX/6a4WDuQlpPBkYgLLD29jTx1/lNokRDFSfBMiKdIpVLh4eFR1tUodWFhYfTo0YPKlQ0HgMqD8vJahAVf4OjKbbQc0gN3v0qEHjjJ1tm/MXDSq9g4Oxjdb+Dk1zCzMNfdt7C1LlYmLSGZ42t24FGt9IJJAPt37eXn737k1bffIKh2TbZs+JOP3nmfX35biJuHe7Hy0Xej+PidiXTr1Z33PvmAi+cu8OP077B3cKBlu9YA7Nm+iwU/zWP8xPcIrBXEnchbTP/yawBefuNVAM6HnKXXM32oHuiPRq1h0S/z+fCt9/hl2UIsLC1LvJ3NfWrxfKMezDv+B5djb9K5emM+7DiCNzfOIj4jpVj5ALfKjGv5LIuCN3Py9mWcrOx4uWlfxjZ/hq/3LgPgm73LMFGqdPvYWlgxvdc4jkZcKPH6G2PeuT3mHdqQuXg56tg4LLp1wuaNMaR++hXk5BjcJ+OnRWBSWG+FtRW2H71D3unCwJPVsIGoKniSsfB3tCmpmDVpgM2bY0j97Gu0ycWfr7JgaWrO9YTbbLl8hCndxjx6hzLS2DuQIXU7sfT0Nq7F3aKtX33Gt/4fH277mcTM1GLlfz+zk9Xn9uruqxRKPu8ymuBbobptz9RqQ7PKtVh0cjNRqQnU9KjCuBYD+HL3YiKTjQdOS8qhPftZ8MPPvPzWqwTUrMH2P7cwecLHfL/4Z1zd3YqVz8vNw97BnmeH/o8/Vq83eEwbW1ueHToIr0remJiacPLoCb6fNgMHRwfqNW5Q2k3i/JFTbF28lp6jBlHJvwrBuw7x21dzeG36Rzi4OBUrb2ZuRpMurfGo5IWpuRmRV8L449cVmJmb0bBjSwB2r/yTs4eC6fPSEFwquHP9bCjLp8/jxc/H4+lr/Md1SQk+cJRV85YwZOwLVA2szoFtu/n+02lMmvsNTm7FLz5du3iZwHq16DtiEJbWVhzZtZ8fP/+W92dMplJVHwDy8/KZ9dFUbO3tePmDN3B0cSIpLgHzUui3jTm69xBL5i7ghddfpnpQALs3b2faxMl8M/97XNyLX4jKz8vD1sGePkOeZevaPwwe89Du/az4dSkvvfMa1YMCiLp9l5++mQ3AsLGjSrU9AHUrVKNvzdasObeXG4l3aV65Fi817cNXe38jOSvN4D4jGnTD1tyKlSG7iMtIxtbcCqWicGBS94BmNKgYwKqzu4lNT8TfrTLPN+7J7IOruJMaV+pt6uDXgDdaPsv0/cs5Fx1G36BWfNvrNYb+/hkx6UnFyvcNas2YZn2Ztvc3QmNvEujmw/vthpKWk8nhiPMAvNSkD12qN2Havt+4mRRNY+8aTO02hpfXfmP0gkRpijgVyqm1u2k0qDOuVby4diiEvXNW0/Oj0Vg72Rnc59CCjWSlZdD0uW7YujqSnZaBVqN5yjUv1MKnNi807snPxzZyOTaCLv5N+LjT84zbMMPg96NAt8q80XIgC4I3EXwrFGcrO8Y068erzfvz1d6lQEFwbViDrvxwaA2X4yKpYOfC6y2fBWBB8Kan2r6ypESGbZYnMmxTiHv2799P48aNMTc3x9PTk/fff5/8/MIrG23btuX111/nvffew8nJCQ8PDyZNmqR3jMuXL9OyZUssLCyoUaMGu3bt0htK+eBQwYiICNq1aweAo6MjCoWCkSNHAuDj48OsWbP0jl23bl29x7t27RqtW7fWPdbOnTsf2caMjAyGDx+OjY0Nnp6eTJ8+vViZ3Nxc3nvvPby8vLC2tqZJkybs27fvkce+T6FQcOrUKT7//HMUCgWTJk1i3759KBQKkpOTdeVCQkJQKBREREQAcPPmTXr16oWjoyPW1tYEBQWxZcsWXflLly7RvXt3bGxscHd3Z9iwYcTHxxutx2+//UbDhg2xtbXFw8ODIUOGEBsbq/u/oWGbT/oYJeHczqP4t6xPQKsGOHq60nxQN2wc7bm0/+RD97O0tcbK3lZ3Uyr1u3ONRsOeX9fSoHc77FwcS7MJrFu5mi49u9Gtdw8q+VRmzJuv4ermxqb1hn9gbN7wJ27ubox58zUq+VSmW+8edO7RjTXLV+nKhF64SFCtmrTr3AEPTw8aNGlE207tuXr5qq7MlzOm0blHV3yq+FKlWlXGf/AesTGxXLty1dDD/m29arRkz/VT7L52kjspcSwM3kxCRgpd/JsYLF/d1Zu4jCS2XD5KbHoSl2NvsuPqCao6e+nKpOdmkZydrrvV9vQjJz+PIzfPl0obDDHv0JrsrbvICzmP5m40mYt/R2Fmhlnj+kb30WZmok1N091MA/0hN4/cU/eCZ6ammNarTda6P1FfD0cTF0/2pu1o4hMxb938KbXs0Y5FXmTe8T/YHx5S1lV5qM7+TThwI4QD4SFEpSWw/MxOErNSaV/V8GuUlZdDanaG7ubj5ImVmSWHHsiqa+ZTi02hhzkXFUZcRjJ7w05zITqcrkbO55K2cdV6OnbvTKeeXfH2qcTocWNwcXVl28bNBsu7e7oz+vUxtOvaESub4hcLAGrVq03T1i3w9qmEp1cFeg3oi08VXy6dv1iaTdE5snkP9ds1o0H75rh6edB9xADsnB0J3nnQYHlPX29qt2iIm7cnjm7O1GnVGL/agdy8HKYrc/bQCVr37Uz1ekE4ubvQuHMr/OoEcnjznqfSpl3rt9Cic1tadmmHZyUvBr00HEcXZ/Zv2WWw/KCXhtNlQC98qlfF3cuTfiP+h1sFD84dP60rc3jnPjLS0hn78Xj8avjj7OaKX1AA3lWe3gW3LWs30rZrR9p174RXZW+Gjx2Ns5sLu/7cZrC8q4c7I14dTevO7bCytjJY5tqlK1SvGUCLDm1w9XCndsN6NG/XivCrxrOkSlLbqvU5HnmR45EXiU1PYsPFAyRnpdPCp5bB8gGulfFzqci84xu5Gn+LpKw0IpNjiEiK0pVp6B3ArmvBhMZGkJCZypGI81yJvUlbP+OfDyVpUN2ObAo9zJ+hh7mZFM13h1YTm5ZEv5ptDJbv6t+EjRcPsvv6Ke6mxrP7+kk2hR7muXpd9MosObWVozcvcDc1ng0XD3A88hKD63Z8Km0q6vKeYKo2q41f8zrYe7jQcEBHrBxtuXrwjMHydy+FE3P9Fu1eeRbPAB9snO1x8amAa5WKT7nmhfoEtWTXtZPsuhbM7ZQ45p/YRHxGCl39mxosX921EnHpSWwOPUJsehKhsTfZceUEfi6F34/8XStxOeYmB26cJTY9iZC71zgYflavjBBPmwTPhADu3LlD9+7dadSoEWfPnmXu3LnMnz+fL774Qq/c4sWLsba25vjx43z99dd8/vnnuqCVRqOhb9++WFlZcfz4cX755Rc+/PBDo4/p7e3N2rVrAbhy5QpRUVF89913j1VfjUbDM888g0ql4tixY/z0009MmDDhkfu9++677N27l/Xr17Njxw727dvHqVOn9Mo8//zzHD58mBUrVnDu3DmeffZZunbtyrVr1x6rblFRUQQFBfH2228TFRXFO++881j7vfrqq+Tk5HDgwAHOnz/PtGnTdEM+o6KiaNOmDXXr1uXkyZNs27aNmJgYBg4caPR4ubm5TJ48mbNnz7JhwwZu3LihC04aq/eTPsbfpc7PJz7yLhVrVNXbXrFGVWLCHn71c93kn1n6zrdsmrGYu5dvFPv/6U37sbS1JqBl6X7BzcvL49qVq9Rv3FBve/3GDQm9YPgHa+iFi8XKN2jSkGuXr+gC1kF1anHtylWuXCrIlIm6c5fgo8dp3Nz4D/vMjAwAbO0MX6n9O0yUKqo6VyDkrv774Ozd6/i7Gv7BdyU2Emcre+p7VQfA3sKGZpVrcur2FaOP06FaQw5HnCMnP6/kKv8QShcnlPZ25Ic+UKd8NfnXwjCp4vPYxzFr0YTck2cgN/fegZUoVCrI0x9aoc3Lw8TPtwRq/t+hUirxcfTkYrT++/xidDhVXR7vx1Jr37pcirlBwgNZaqZKVbGhL7nqfKq5ln42U15eHmFXr1G3kX7/VLdRfS5fKJmhU1qtlrOnznDn1m2CahseClqS8vPzibpxi6q1A/W2+9UOJPJq8T7akKgbt7h1NRyfGtUKj5uXj4mpqV45UzNTIh8IsJWW/Lx8Iq/foEY9/aFgNerXIiz08S5SaDQasrOysX4gO/rc8VNUCajG73MW8s5zY/hs7HtsWbkBjfrpZM7k5+Vx42oYtRvW1dteq0Fdrl66/JeP618zkBtXw7h+7yJPzN1oQk6cpl6Tho/Y8+9TKZRUtHfjSmyk3vYrcTfxcfQ0uE+QRxVuJcfQ3q8hn3YaxcT2w+ldoyWmD2RDmyhV5GvUevvlqfOp4lSh5BtRhIlShb9rJU5EhuptP3Er1OB0BwCmKhNyi3x+5uTnUcPdB9W9i4ymKhNy1cXL1PY0PLy6NKnz1STeisYzUP9z0TPQl/gbdwzuc/v8dZwreXBp13HWffgjf3z2C6fX7SE/9+l8byiq4PuRV7HvRyF3rxHgZvj70eXYmzhb29PAyx+49/3IpyYnbxe+/0JjI6jq4kW1e59z7jZO1K/or1dGiKdNhm0KAcyZMwdvb29++OEHFAoFAQEB3L17lwkTJvDJJ5/osnpq167Np59+CkC1atX44Ycf2L17N506dWLHjh2EhYWxb98+3XDAL7/8kk6dOhl8TJVKhZNTwTAONze3J5rzbNeuXYSGhhIREUHFigUfKlOmTKFbt25G90lPT2f+/PksWbJEV6fFixfr9oeC4ZbLly/n9u3bVKhQ8MXonXfeYdu2bSxcuJApU6Y8sm4eHh6YmJhgY2PzRMMiIyMj6d+/P7VqFVwhrVKl8IvR3LlzqV+/vt7jL1iwAG9vb65evUr16tWLHe+FF17Q/V2lShVmz55N48aNSU9PNzgP25M+Rk5ODjlFhrSZm5vzJLLTM9FqtFja6WdRWNpZk5mabnAfK3tbWg3rhWslT9T5aq4dO8ummYvp9fZIPKv7ABB9PZIrh07T/+PSH4aWmpyCRq3B0Uk/u83R0ZHEhESD+yQlJuHoWKS8kyNqtZqU5BScXZxp27E9KUnJvP3KG2i1WtRqNT379WbQsCEGj6nVavl59hyCatfCp0rJB2dsza1QKVWkZOm/LsnZaThYVjO4z5W4SGYdXMX4NoMxVZlgolRxIvIS84//abC8n0tFKjt6MOfIuhKvvzGKe4FGTar+kB5NahpKp8fLWFT5VELl5Unm0pWFG3NyyA+7gUWPTmRExxRkpzWqj8qnEprY0s3m/LexNbNCpVSSmq1/7qVkZ1DT4tFzStpb2FDLsyo/H9ugt/1CdDhd/JtwNS6S2PQkAt19qedVHeVTWNkrLSUVjVqDQ5FzzN7RgaTE4kOxnkRGegajBgwlLzcPpUrJy2++WixIVxoyU9PRaDTY2Nvqbbe2tyU9ufjQ2gd9O/YjMlLT0ajVtBvQnQbtC7Mz/WoHcmTLHnwC/XB0dyH8whUunzyHRqMtlXY8KD01DY1Gg52Dvd52Wwd7UpMeb+j1zvWbyc3OoUGrwgyUuOhYEmIu0aRtC8ZNeo/Yu9Esn7sIjVpDzyHPlGgbDElLKWiXvaOD3nZ7R3tS/sb517xdK9KSU/jszQ/g3udWx15d6T24/9+s8aNZm1miUir15osCSMvJws7CcKams7Udvk4VyFOrWRi8CWszSwbUboeVmQUrQgoyCy/HRtK2Sj3CEu6QkJFMNddK1PSo8lT6CQcLG0yUKhKz9N8/SVmpOFsZvkh24tYletZoyYEbZ7kSF0mAayV6BDbHVGWCg4UNCZmpHI+8xP/qdiTk7nXupMTRsGIArXzroFQ+/eFxOfe+B1rY6mczWthak5WaYXCf9PhkYsNuozQxofWL/cjJyCJ45Q5yMrNpNrT706i2nvvfj4oODU7JSsPRsvj3cyj4fjTjwAreaTtE9/3oeOQl5h0rHLFw6MY57M1tmNJtDAqFAhOliq2Xj7Lu/P5SbU95o1BIrlN5IsEzIYDQ0FCaNWumtxxwixYtSE9P5/bt21SqVDBnVO3a+ldfPT09dUMBr1y5gre3t17AqHHjxqVW30qVKukFvpo1a/bQfcLCwsjNzdUr5+TkhL+/v+7+6dOn0Wq1BgNFzs7OJVR7w15//XVeeeUVduzYQceOHenfv7/u+T516hR79+41GPQKCwszGDw7c+YMkyZNIiQkhMTERDT35oKIjIykRo3iEy0/6WNMnTqVzz77TG/bp59+im07f56Uosh8BtqH/CZy8HDBwaNwnhn3qt6kJ6VydscRPKv7kJudw97562g1rLfBedBKTZEv0lq0D19eu2h57f3NBdvPng5hxZJlvPr2GwQEBXL39h1++u5HHBcu5bnnhxU73I8zZnMjLJzpc2f/vXY8ghb9F6foa/egivZujGrck9Vn9xBy9xqOlrYMb9CVl5v1NRgg6+DXkJtJ0VyPv13i9b7PtHF9rIY8q7uffn9y/6In3RP8MDJr3gT1nSjUEfoZD5kLf8dq+P+wnzYJrVqN+tYd8oLPoKokQy7+iqLdQsG59+gASkvf2mTmZXP6jn7G4+9ndjKyYXemdBuDFohNT+LQjbMGFxooPUXPs0f0G4/B0sqSmb/+SFZWFudOh7BgzjzcK3hSq95Tmki7WPUf3aZRk94kNzuHW9ci2Ll8I04ertRuUZCt1H3kADb+spzZ4yejUChwdHehXtumnNl3rHTqb0jxl8lAO4s7se8Im5atY+zH4/UCcFqNFlsHO4aOG41SpaRytSokJyaxY+3mpxI80zHYrr9+/l0KOc+G39fwwusvUzWgGjF3o1ny46+sc17JM0MH/a2qPq6in1FQcHHJECUKtMBvp7eRnV+QNbzh4gFGNuzB2nN7ydOoWX9hP4PqdGBi+2FotZCQmcKJW5do7P30FqwoXn+F0Z5vYfAWnKzs+KX/BFBAUmYaWy4fZWj9LqjvHee7g6uY0G4ovw+ZhBYtd1Pi2Hz5CD0CynJKgSLnnVZr9FTUagv6lBYje2FmWXDRVv1Mew7O30CjgZ0wMTM1vOPTplAYPB+h4PvRi016szJkN2fuXsXR0paRDbvzSrN+/HCkYFROTY8qDKjTjp+PbeRaXCQedi6MbtyLpNpprDr3dIatC1GUBM+EoPCDqOg2QG+7aZGhEwqFQheUMXSMv0qpVBb7spCXV5iObeiL0KMe29iXpwdpNBpUKhWnTp1CpVLp/e/vrJp5P3PvwTo82B6A0aNH06VLFzZv3syOHTuYOnUq06dPZ9y4cWg0Gnr16sW0adOKHdvTs/hwhIyMDDp37kznzp357bffcHV1JTIyki5dupB7f1hZEU/6GBMnTmT8+PF628zNzfnh2ONnDVnYWKFQKoplmWWnZWBl9/jPt5tvRa4fPwdAalwiaQnJbP/xd93/7z/v88Z8xqDPx2HnVnzi6r/KzsEepUpJUpEss+Sk5GLZaPc5OjmSlFi0fBIqlQo7+4KryUvmLaR9l050690DAN+qVcjOzmb2tBkMHvGc3hxvc2bM5tihI3z74yxc3YpP9FwS0nIyUWvUOFjqZ5XYW9iQnGU4S/CZWm24HHuTjRcL5ju6mRRNdn4uX3Z7md/P7NS7SmumMqWFb21WhhieR6ik5J29SNqNB4Jc9yb9V9rboX4g+0xpa4M21fAE03pMTTFrVJcsA/MEaeITSJ/xI5iZobAwR5uahtXoYWjiDWckCsPScjNRazTYF8kys7OwIiXbcGbCg1r51uFIxHnURSaTTsvJ5PvDazBRqrAxtyI5K41na7cjPiO5JKtvkK29HUqVkuQi/UBKUgoORbKBnpRSqcSzYkHmdJVqVbl98xZrl60s9eCZlZ0NSqWS9GT9901GSjrWRbLRinK8N/G+eyUv0lPS2Ltmiy54Zm1ny5B3XiIvN4+s9AxsHe3Z+ftGHNxK94IWgI1dwXyaRbPM0lJSimWjFRV84ChLZv/Cy++/QWA9/Tm37J0cUKlUKFWF/bintxepScn3hqmW7s8T23vzhKYkJuttT0lOKZaN9iRWL/qdlh3b0q57QXZ/pSo+5GRn8+vMOfQd8myxuUlLUkZuFmqNBjtz/YtmtuaWxbLR7kvNySAlO10XOAOISUtEqVBgb2lLfEYyGblZLAjehIlShbWZBSnZGfQMbGFwoZKSlpydTr5GjbOV/rnmaGlr9PFz1XlM3bOUr/ctw8nSjoTMFHrXaEVGbpYuczw5O52JW3/CTGWCnYUN8RnJvNKsH1FpTz8r2vze98DsNP2+PDs90+gFUEs7GyztbXSBMwB7D2fQQmZyWol+x3scf+X70YDabQmNjWDDxQNAwfejn49tYGr3V1h2ZgdJWWkMqdeJfWGn2XUtTy5RrwABAABJREFUuKBMcgwWJqaMbf4Mq8/tNRqYE6I0SR6gEECNGjU4cuSIXnDnyJEj2Nra4uX1eFkSAQEBREZGEhNTuEpZcHDwQ/e5v3S5Wq0/n4SrqytRUYUTtqampnLjRuGcKTVq1CAyMpK7dwuXHz969OhDH8vPzw9TU1OOHSu8Wp2UlMTVq4XzltSrVw+1Wk1sbCx+fn56t7+zMqWra0FA48E2PThR/33e3t6MGTOGdevW8fbbbzNv3jwA6tevz8WLF/Hx8SlWL2vr4l8uLl++THx8PF999RWtWrUiICBAb7EAQ570MczNzbGzs9O7PemwTZWJCS6VKnDnkv7cNbdDw3Cv+vjzDiXcisLKvuCHtYOHCwM+fYX+H4/R3SrX9qeCvy/9Px5jdOWmv8rU1JRq/tU5E6w/d96Z4FME1gwyuE9gzaBi5U+fOEm1AH9MTAp+NOXkZBf7oXE/qHz/farVavlx+ncc3n+QabOn41HB8LwuJSFfoyYs4S51isyJUruCH1fibhrcx9zEtFjQWqMtCGAUDXW38KmFqUrF/nDDEwSXmJwcNHHxhbeoGDQpqZgEPpBZqVJhUq0q+eERjzycWcO6YGJC3vFTxgvl5qJNTUNhZYlpjQDyzj69lUT/DdQaDRFJUQR56A9HruHuS9gjshT9XSvhbuvEwQcWCigqX6MmOSsNlUJJg4oBnLlTOgtuPMjU1JSq1asRclL/fA85eZqAmiWb0aLVaotdrCkNJiYmePp6E3Zefz6esPOXqVT9CYaSa7Woi8wVCAXznNk5OaBRa7h0IoSABqWfSWdiakIlP19Cz+gvYBJ65gJVAw0Px4KCjLPFM39i9LuvUqtxvWL/r1qjOnFRMbqLjwAxd6Kwd3Io9cAZgImpKb7Vq3L+VIje9gunQqheI+AvHzcnJ6fY0L+Czy0enlJeAtRaDbdTYqnuqr+6dnXXSnoLADzoRmIU9ubWmKkKLwy72Tii0WpIKTIEL1+jJiU7A6VCSe0KfpyPDi/5RhSRr1FzJS6SRt768wg28g7kwiMeX63REJeRjEarpWO1hhyOOF8s2JKrzic+IxmVUknbqvUe2k+WFpWJCidvD6IuR+htj7ocgYuv4d8frlW8yEpJJy+nMOiZGpuEQqHAyuHhgfrSUPD96A51K+h/P6pbwY/LsUa+H6nMDHw/0hYpY+g7VEHa61MYNVxuKBWKcnn7r5LgmfhPSUlJISQkRO8WGRnJ2LFjuXXrFuPGjePy5cts3LiRTz/9lPHjxz/2lcJOnTpRtWpVRowYwblz5zh8+LBuwQBjWWGVK1dGoVCwadMm4uLiSE8vuELTvn17li5dysGDB7lw4QIjRozQywTr2LEj/v7+DB8+nLNnz3Lw4MGHLk4ABZljo0aN4t1332X37t1cuHCBkSNH6rWvevXqPPfccwwfPpx169Zx48YNgoODmTZtmt7Kl0/Kz88Pb29vJk2axNWrV9m8eXOxlT7ffPNNtm/fzo0bNzh9+jR79uwhMLDgC9Orr75KYmIigwcP5sSJE4SHh7Njxw5eeOGFYoFHgEqVKmFmZsb3339PeHg4f/zxB5MnT35oHZ/0MUpK7U7NuHzoNJcPnSYpKo4jK7eRnphCYJuCrIMT63axd0FhNtv5XUeJOBNKSkwCiXdjObFuFzdOhxLUrmCIsImpKU5e7no3cysLTM3NcPJyR2VS8j9Mnhn0LNv+3ML2TVuJjLjJz9/9SGxMDD369QJgwdx5fDN5qq58j769iImO4efZc4iMuMn2TVvZvmkrAwYXLs7QpEUzNq//g3279hB9N4rTJ06yZN5CmrZsrnsv/Dj9O/bs2MWESR9haWVFYkIiiQmJxeaiKyl/XjpEh2oNae/XAC97V0Y26o6LtT07rpwA4Ln6nRnXcoCu/Mlbl2lSOYgu/k1wt3HE37USoxr34mpcwapmD2pfrSEnIkNJz8kqlbo/TM7uA1h07Yhp3VooK3hgNWIw2txcck8Uro5nNXIwFn17FNvXrHkT8kIuoM0ontlgUsMfkxoBKJ2dMAmsjs1bY1HHxJJ75ESptudJWJqaU82lom5C4gp2LlRzqYi7TemuUPukdlw5TmvfurTyrYOnrTP/q9sRZyt79oYVvEYDarVldJNexfZrXaUuYQl3uJMSV+x/VZwq0MDLH1drB6q5eDO+zf9QKBRsufzwCzElpc/AfuzavJ1dm7dzKyKS+T/8THxsHF16F8zZs/SXhcz68lu9fcKvhRF+LYzsrGxSk1MIvxbGrYjCH2drfltJSPBpou9GcfvmLTauXMe+7btp26n9U2lT8x7tOb3nCKf3HiXuTjRbF68lJT6RRh1bAbBz+UbW/rhEV/749v1cPnWehKhYEqJiOb3vKIc37aZ2q0a6MreuRXDpRAiJMfFEhF5nydQf0Wq1tOz9dFYG7NivO4d27OXwjn1ERd5h1S9LSYyLp3X3DgCsX7SChdPn6Mqf2HeEhTPmMmDUUHz9q5GSmExKYjJZD/QRbbp3Ij0tnZU/LyHmThTnT5xh66qNtO3R+am0CaB7/z7s3bqLfVt3cefmLZbOmU98bDwdehWsyrji16XM+WqW3j4R18OJuB5OdnY2qcmpRFwP5/bNwsV96jdtxK4/t3Fk70Fio2I4fyqE1Yt+p0GzRiiLZPOXhn1hp2laOYjG3jVws3Gkb1BrHC1tORJREPzsEdicIfUKn+NTt6+QkZfN4HqdcLdxoopTBXrVaMnxyEvk3VskoJKDO7U8q+JsZUcVpwq83LQvShTsuf7wFcFLysqQXfSq0YIegc2p7OjB6y2exd3WkfX3MpbGNO3LRx1G6sp727vRuXpjKtq7Eejmw2edR1HFuQI/H9uoK1PD3Yc2VepSwc6FOp5+zOj1OgoULDu946m0qaiA9o0IO3KWsKPnSImO59Ta3WQmplKtVV0Azmzcz5Elm3TlfRrVwNzakmO/bSElKp6Y67c4s34vVZrVKrMhmxsvHqJjtUZ08GtIRXtXXmjUExdrB7ZfOQ7A0PpdeKNl4Xe84NuhNK1ck67+TXC3cSLArTKjm/Tialyk7vtR8O3LdPVvSkvf2rjZOFLH048h9ToRfOtSsUCbEE+LDNsU/yn79u2jXj39q6AjRoxg0aJFbNmyhXfffZc6derg5OTEqFGj+Oijjx772CqVig0bNjB69GgaNWpElSpV+Oabb+jVqxcWFhYG9/Hy8uKzzz7j/fff5/nnn2f48OEsWrSIiRMnEh4eTs+ePbG3t2fy5Ml6mWdKpZL169czatQoGjdujI+PD7Nnz6Zr164PreM333xDeno6vXv3xtbWlrfffpuUFP3hGAsXLuSLL77g7bff5s6dOzg7O9OsWTO6d//rk5CampqyfPlyXnnlFerUqUOjRo344osvePbZwrmX1Go1r776Krdv38bOzo6uXbsyc+ZMACpUqMDhw4eZMGECXbp0IScnh8qVK9O1a1eDwU1XV1cWLVrEBx98wOzZs6lfvz7ffvstvXv3NlrHJ32MklK1UU2yMzI5vXk/mSnpOFVwo9u457B1dgAgMyWN9MTC10idr+bYmh1kJKdhYmqCYwU3uo4bQqVaxrMASlubju1ITU1l2cIlJCUkUrmKD5O/nYr7vWzFxIREYmMKM/88Kngy+dup/Dz7Rzat24iTizOvvPkaLdu11pUZMmIYCoWCxb8sICEuHntHB5q0aMbIl0bpymxaXzCx7HuvvaVXn/EfvEfnHg9/L/wVRyLOY2tuxbN12uNoaUtkcgxTdi8m7t4wN0dLW1z+z959R0VxvQ0c/y69914UEAUEe+9d7JrE3o2JMRqNMZpE/RljjJqiiSaxx967xl6xN+wNG4pYQJDe675/oIsrLGoEIXmfzzl7Djt77+y9u8PM7DPPvWNsoSofEHweA119WnvXpl/11iSlp3IlLJgV5/eordfRzJry9m5M3Luo0Nv8OtL2HkShp4thjw9QGBmSdS+UxN/nwQtBSC0ryzyZE1p2tuiU9SBx5tx816swNMCgU1u0LCxQJieTceEyKVt2wkvDB4uTt21p/nwvd/j18Po5+6SdQSeZfHBpcTUrjzMPgjDWN6KDb33MDUx4FBfJb0fXqO6eaW5okmdok6GuPtVcvFl1If8fhLraOrxXoRF2JpakZqZzOewOC079TUpG0QSfX1a/aSPi4xJYu2wVMVHRlHJ3Y/xP32PnYA/k7DciX8oYHvnRZ6q/g2/e5sj+Q9g62LFgbc53lZaayrzfZhEV+RQ9fT2cS7nyxf9GU79po3fSpwp1q5GSmMShjbtIiI3HztWR3t8MwcI2ZxhVQkw8cS8MW1Yqlexf/TcxkVFoaWlhZW9Dix4dqd68nqpMZkYGB9ZuJybiKXoG+pSt7MsHQ/tiaGyU5/2LQo2GdUiKT2TH6k3ERcfiVNqFzyZ+hfWzIfJx0bFER0apyh/dfYDsrCxWz1nM6jmLVcvrNGtI/5E5N7GxsrXm80nfsH7BCr4f+g0W1pY07dCKVp01H6MLW50m9UmMj2fTirXERsfg4laKr6aMx9beDoDY6GiiItSDzmMH5+4r7t0K5sTBI9jY2/L7ypws+fd6d0WhULB+8Uqin0ZjZm5G1To16Pphr3fSp4uPb2OsZ4i/Vy3M9I0IS4hi/qmtqmCEmb4xli8MrUvPymDuyc28X6ExIxt2JykjlYuPb7Mr6ISqjK62Dm2862BtZE5aZgZBESGsPL9HbahnUTpw5xxmBiYMqN4Wa2Mz7kY9ZtS2P3mSkPN/ZG1kjr1p7jBFLS0telRuTikLBzKzszj/6CaDN/5CeELuNqqnrcvHtTriZGZDSkYaJ+9fZdK+xSSmv/uLVwBu1XxIT0rhyq7jpMQnYeFoQ+MhXTCxytmnp8YnkhT9wp2S9fVo+lk3zq7fx66fl6JvbEipqt5UategWNoPcDzkMmb6RnSr3Czn/CgmnEn7l6jOj6yMzLA1sVCVP3jnHIY6+rTxrsuAGm1JSk/lclgwy87tUpVZd+kgSqWSXlVaYmVkTnxqEoEPglh5YQ9CFBeF8nUmQhJC/CPHjx+nfv363LlzhzJlyhR3c8QLbt68ibe3N7dv38bTs/BuTz798OpCW1dJ8GWjHtx7mv/t0v/N3G2c+WDp2OJuRqHa2G8KsYNHvrrgv4jF3F+pN6vo7xr7Lh0fOpcBaycXdzMK1eJu4wh6B8O43iUfBw/WXthX3M0oVN2qtODQnQKGWP9LNfasxrkHQcXdjEJVzdWHL/6eWdzNKFS/dfj8P7k//35f8Vz4KirftviQTku+Ke5mFKot/X8s7ib8Y1uvHinuJuSro1/DVxf6D5LMMyEK0ebNmzExMaFs2bLcuXOHzz//nHr16kngrISJjo5mw4YNmJmZ4er6+nOLCSGEEEIIIYT4/0eCZ0IUooSEBL766isePHiAjY0NzZs3zzO3lyh+AwcO5Ny5c8yZM+eNJ/kXQgghhBBCCPH/iwTPhChEffv2pW/fvsXdDPEKmzdvLu4mCCGEEEIIIYRGijz3ZxfFSe62KYQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCaClk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIQoZtliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgsiwzZJFMs+EEEIIIYQQQgghhNBAgmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShAtZNhmSSKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliNxts2SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkRLhm2WKJJ5JoQQQgghhBBCCCGEBgqlUqks7kYIIYQQQgghhBBCiBz7bp4u7ibkq4VXreJuQrGQYZtCCFGIvt4xu7ibUKh+ajuEa2HBxd2MQufrWIaGs4cUdzMK1ZEhs4kdOKy4m1GoLBb+wYC1k4u7GYVqcbdx1Js1uLibUaiOD51LQkREcTejUJna2bEkcEdxN6NQ9a/RllHb/ijuZhS6ae2HMf3w6uJuRqH6slEP+q2ZVNzNKFRLu4+n87Jxxd2MQrWh72Q6LfmmuJtRqLb0/5Fm84YXdzMK1YFPfi/uJvxjcrfNkkWGbQohhBBCCCGEEEIIoYEEz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIApk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIltxts0SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBCiBFEoFCXy8U/Mnj0bd3d3DAwMqFatGkePHtVYdtOmTbRo0QJbW1vMzMyoU6cOe/bsUSuzZMmSfNuWmpr6j9r3OiR4JoQQQgghhBBCCCEK3dq1axkxYgTjxo3jwoULNGjQgNatWxMaGppv+SNHjtCiRQt27tzJuXPnaNKkCe3bt+fChQtq5czMzAgLC1N7GBgYFFk/5IYBQgghhBBCCCGEEOKV0tLSSEtLU1umr6+Pvr5+vuV//fVXBg4cyEcffQTAjBkz2LNnD3PmzGHq1Kl5ys+YMUPt+ZQpU9i6dSvbtm2jSpUqquUKhQIHB4e37M3rk8wzIYQQQgghhBBCiBJES6EokY+pU6dibm6u9sgvCAaQnp7OuXPnaNmypdryli1bcuLEidf6HLKzs0lISMDKykpteWJiIqVLl8bFxYV27drlyUwrbJJ5JoQQQgghhBBCCCFeacyYMYwcOVJtmaass6dPn5KVlYW9vb3acnt7e8LDw1/r/aZPn05SUhJdu3ZVLfP29mbJkiVUqFCB+Ph4Zs6cSb169bh06RJly5Z9wx69HgmeCSGEEEIIIYQQQohXKmiIpiYv32hAqVS+1s0HVq9ezXfffcfWrVuxs7NTLa9duza1a9dWPa9Xrx5Vq1bljz/+4Pfff3+jtr0uCZ4JIYQQQgghhBBClCAK/tmdLUsSGxsbtLW182SZRURE5MlGe9natWsZOHAg69evp3nz5gWW1dLSokaNGty+ffut26zxPYpszUIIIYQQQgghhBDi/yU9PT2qVavGvn371Jbv27ePunXraqy3evVq+vfvz6pVq2jbtu0r30epVHLx4kUcHR3fus2aSOaZEEIIIYQQQgghhCh0I0eOpE+fPlSvXp06deowf/58QkNDGTx4MJAzh9qjR49YtmwZkBM469u3LzNnzqR27dqqrDVDQ0PMzc0BmDhxIrVr16Zs2bLEx8fz+++/c/HiRWbNmlVk/ZDgmRBCCCGEEEIIIUQJolD8NwYKduvWjaioKL7//nvCwsLw8/Nj586dlC5dGoCwsDBCQ0NV5efNm0dmZiZDhw5l6NChquX9+vVjyZIlAMTGxjJo0CDCw8MxNzenSpUqHDlyhJo1axZZPyR4Jv6RJ0+eMG/ePIYNG4alpWVxN0cIIYQQQgghhBAl0JAhQxgyZEi+rz0PiD136NChV67vt99+47fffiuElr2+/0YoU7xTSqWSPn36oK+v/8aBMzc3N2bMmFE0DXtLCoWCLVu2vFGdxo0bM2LEiCJpz79Vnz59mDJlSnE3462MGjWK4cOHF3czhBBCCCGEEEKUAJJ59g7079+fpUuXAqCjo4Orqyvvv/8+EydOxNjYuJhb9+amTp2Kh4cHX3/99RvXDQwM/Ff2Wbyey5cvs2PHDmbPnq1a1rhxYw4fPszUqVP55ptv1Mq3adOGXbt2MWHCBPr374+7u3uB658wYQLfffcdAEuXLmXWrFlcu3YNLS0tqlSpwldffUW7du0ASExMxNLSkhUrVtCtWzfVOrp168a6deu4c+cOZcqUUS0vU6YM3bp1Y8qUKXz11VeUKVOGL7744pVtKgy1S/vSyKMKpvpGPEmMZtu144TEhGksr62lRfOyNajiVA5TfSPiUhM5eOccZx/eUJUx0NHD36sWfg4eGOrqE5OSwPbrx7kZGapxvYVp15btbF2zkZioaFzdS/PhZ4MoX9Ev37LRUdEsnb2A4Ft3CHv4mDbvd2DgsE80rvvYgcP8OuknatarzTeTvy2qLuSrk29DelRpjpWROSHRYfxxfD2Xw4I1ln/PryHvV2iMg6kVTxJiWH5+N3tunlYr06ViEzr6NsTe1JK41CQOBZ9n/qmtpGdlFnV3VAw6tEavUT0URoZk3b1P8sp1ZD8OL7COfvPG6DWpj5aVJcrEJNLPXiR149+QmdNu/TYt0K1aCW1He5TpGWQF3yNl/Vayn0QUeX+aeFajtVdtLAxNeBQXyaoL+7j99EG+ZQfWbEd990p5lj+Ki+R/u+cDoK3Qoq1PXeq5V8TS0JSwhCjWXzrI1fC7RdqPf6KSoyc9q7TE264UNsYWfLNzDkfvXSruZgE5F9/mL17M5r//JiEhAd/y5fl65EjKvGI/e+DQIeb+9RcPHz/GxcmJIYMG0aRhQ9Xr8xYtYsHixWp1rK2s2LN1q+r5wcOH2bR1K0G3bhEXF8fKRYvwKlu2cDsInNt3nNM7A0iMjcfW2YHmvTvh6u3xynoPb91jxQ+zsHVxYOCUUarlNwMvc+Lv/cQ8eUp2VjaW9jbUbNOYCvWrF3rbNalbugKNPatgqm/Mk4Rotl47yr3oxxrLa2tp0aJcTao5e2Gqb0xsaiIHbgcS+CBIVaaBeyXquFXA0tCUpPQULofdYWfQSTKzs95FlwC4dugMl/ecIDkuAUsnO+p0a4Vj2dL5ln188x7bpy/Ns7zrxKFYONrmWX7nzBUO/rWR0pW88B/ao9DbrklTz2q08a6DuaEpj+MiWXlhD7ci89/3fVSrAw007PvG7poL5Oz72pWvR333ilgYmhEeH8W6Swe4Eq75uFfY/L1q0aF8fSyNTHkQG8GSwB0ERdzXWL6BeyU6+jbA0cya5PQ0Ljy+xbJzu0hMS1GVMdI1oGeVFtQq5YuxvgERCTEsPbeLC49uvYsu0dqrNp38Gub0KeYJC89s53pEiMbyDT0q855fI5zMrElKT+XCo1ssObuThLRkVZn25evRyqs2NsYWJKQlcSLkKsvP7ybjHZ1LdChfn66VmmFtZEZITDizT2zkSgHHyI6+Dejo2wAHUysiEmNYeX4v+24Hql73L1eTr5r0zlOv1V8j31mfSgItxb//bpv/JRI8e0datWrF4sWLycjI4OjRo3z00UckJSUxZ86c4m7aGxs7duw/rmtrm/cEQ/x3/Pnnn3Tp0gVTU1O15a6urixevFgtePb48WMOHjyouiOKq6srYWG5AaNp06axe/du9u/fr1pmYmIC5GSG/fnnn/zwww906tSJjIwMVqxYQceOHZk5cyafffYZJiYmVK9enYCAALXg2eHDh3F1dSUgIEAVPHv48CF3796lSZMmANjZ2dGyZUvmzp3LTz/9VMifkrqKjp60L1+fLVePcD8mnFqlyvNhzXb8eng1samJ+dbpVcUfU31DNlwOICo5DmM9Q7S1chOJtRVafFSrA4npKaw4v4e41EQsDExIy8wo0r48d+zgYRb/OZ+PRwzBp0J59vy9ix+++paZS+dia2+Xp3xmegZmFuZ80Ls729dvLnDdEeFPWDLnL8pX9C2q5mvU1LMaw+p35tcja7gafpcO5evzc7uh9F09iYjEmDzlO/o2YFDtjvxyaBVBESH42LnxVeNeJKQmc+L+FQBalK3BoNqd+ClgOVfD7+JqYc+Ypn0A+PP4xnfSL/3WzdFv2YTkRSvJehKBQTt/TL78jPhxkyA1Ld86urWqY9C5A8mLV5J15x5aDnYYfZhzkpu6dhMAOuU8SQ84Sua9+6CljeH77TD5cijx/5sM6elF1p+arj70rNyC5ed3czvyAY09qzKyYXfG7Z5HdHJ8nvKrLuxj/eUA1XNthRbf+3+k9kP//QqNqFO6AkvO7iAsPgo/Bw+G1evM5ANLCY19UmR9+ScMdfW5E/WQnTdOMKX14OJujpqlq1axau1aJowdSylXVxYuXcrQL75g46pVGBsZ5Vvn8tWrjP3uOwYPHEiThg0JOHKEb779loWzZuHnm7sf8HB3Z/YLwzde3CcCpKSkUKlCBZo3acIPP/9cJP27fuoC+1dswb//B7iUc+fCwROs/WU+H//0NeY2mjP1U5NT2DZ3FW6+ZUmKS1B7zcDYiLodmmPtZI+2jjZ3Llxnx/w1GJuZ4FHRu0j68aJKTmXp4NeATVcOERIdRu3SfnxUqz2/HFpJbEr+x6g+1Vpjqm/EuksHeZoUi4m+kdoPwCrO5WjjU5d1lw4QEh2GrYkF3So3B+Dva8eKvE8AwYFXObl2N/V7tsXesxRBR86y6/cVdP1uKCbWFhrrdZ30GXoG+qrnBqZ5LwgnRMVyesNeHMqWKoqma1TTtTy9qviz7NxObj19SJMyVfmyYU/G7JqT775v5fk9rL90QPVcS6HFD60GcebBddWyDyo2oW5pPxYF7iAs/ikVHMswvH4XJu1fQmhswRdYCkNdtwr0r96Gv05v40bkfVqUrcHYZv344u+ZPE2Ky1Pe2640n9XrzNKzOzn78AZWRmYMqtWRT+u8zy+HVgKgo6XNty0GEJeaxLTDq4hKjsfG2JyUjPyPd4WtnltFPqzZjnmntnIjIgR/r1qMbzGAYVt+zbdPPnal+bx+VxYFbifwQRDWRmYMrvMeQ+t+wI8By4Gc4Fqfaq3489gGbkSG4mRmw/D6XQBYFLi9yPvUuEwVhtR9n9+Predq+F3ala/H1Daf8uG6KfmeH7UvX5+BNdvz65HV3IwIxduuNCMbdicxPYWT96+qyiWmpdB/7Q9qdf8/Bc5EySPDNt8RfX19HBwccHV1pWfPnvTq1Us1RFCpVPLzzz/j4eGBoaEhlSpVYsOGDaq6MTEx9OrVC1tbWwwNDSlbtiyLX7jCeuXKFZo2bYqhoSHW1tYMGjSIxMT8T2ggZwyxQqFgz549VKlSBUNDQ5o2bUpERAS7du3Cx8cHMzMzevToQXJy7hWN3bt3U79+fSwsLLC2tqZdu3YEB+deeVq2bBkmJibcvn1btWzYsGGUK1eOpKQkIO+wTYVCwbx582jXrh1GRkb4+Phw8uRJ7ty5Q+PGjTE2NqZOnTpq7wMwZ84cypQpg56eHl5eXixfvrzAzz8wMJAWLVpgY2ODubk5jRo14vz58wXWeVlSUhJ9+/bFxMQER0dHpk+fnqdMeno6X331Fc7OzhgbG1OrVi21Mdv379+nffv2WFpaYmxsjK+vLzt37gRyv5cdO3ZQqVIlDAwMqFWrFleuXFF7jxMnTtCwYUMMDQ1xdXVl+PDhqs8XciZcbNu2LYaGhri7u7Nq1Sq1zz0kJASFQsHFixdVdWJjY1EoFGptvX79Om3atMHExAR7e3v69OnD06dPNX4+2dnZrF+/ng4dOuR5rV27dkRFRXH8+HHVsiVLltCyZUvs7HKCKdra2jg4OKgeJiYm6Ojo5Fl26tQppk+fzi+//MKoUaPw9PTEx8eHyZMnM2LECEaOHMmDBzlXWZs0aaLWp6CgIFJSUhgyZIja8oCAAHR1dalXr55qWYcOHVi9erXG/haWBu6VCHwQROCDICISY9h2/ThxqYnULp1/llY5W1c8rJ1YFLiDO1EPiUlJ4GFcBPdjck9iq7v6YKSrz7Kzu7gfE05sSiIhMeGEJUQVeX8Atq3fTLM2LWnRrhUupUsxcNgnWNvZsmfrjnzL2znaM3DYYJr4N8OogMzUrKwsZvzwC90H9Ma+CG9DrUnXSk3ZEXSCHUEnuB8Tzh/HNxCZGEsnv4b5lvf3qsXf145x8M45wuKjOHjnHDuCTtCzagtVGV8Hd66GB7P/9lnCE6IJfBDEgdtn8bLNP/uhKOg3b0zqjr1knL9E9qMwkheuQKGni14tzZktOmXcybxzl4zT58iOiibz2g3ST59Dxy33x2LSjDmkHz9N9uNwsh8+InnRSrSsrdB2cy3S/rT0qsWRexc5cvciYQlRrL6wj+iUeJqWqZpv+ZSMNOJTk1QPNytHjPQMOfZCtlYdtwpsDzrO5bBgIpNiCQg+z9Xwu7TyqlWkffknToVeY8Hpvzl892JxN0WNUqlk9bp1DOjbl6aNGuHp4cHEceNITUtj90u3r3/R6vXrqVW9OgP69MGtdGkG9OlDzWrVWLV+vVo5HW1tbKytVY+Xp5Vo26oVHw8YQM3qRZexdWbXYSo1rkXlJrWxcbanRZ/3MLO24MKB4wXW271oPeXrVMXZM+//fenynnjVqIiNsz2W9jbUaNUQO1dHHty8V1TdUNPIozJnQq9zJvQ6EYkx/H3tKLEpidQpXSHf8l62pShj7cxfp//m9tMHxKQk8CD2idoxys3SkZDoMC48ukVMSgK3Ih9w8dFtXMzt30mfAC7vO4lX/ap4N6iGpaMtdbu1xsTSnOuHzxZYz9DUGCNzU9VD66UgbXZ2Ngf/2ki1Dk0wKyBgWhRaedfmyN0LHL57kbD4p6y6sJfo5Hiaeea/zadkpBGXmqR6uFs5YaRnyNG7ufu+um4V2Hb9OJfD7hCZFMvBO+e4En6X1t6130mf2vvU4+Cdcxy4c5ZHcZEsObuTqKQ4WpbLf99bzsaVyKQYdt44SURiDDci7rPv9hnKWDupyjT1rIaJviE/B6zgZmQoT5NiuRFxX20bLUodfeuz//ZZ9t8O5GFcJAvPbOdpUhytvPL/TMvZliIyMYYdQSeISIwhKOI+e2+ewdPGWVXGy7YUN57c58i9S0QkxnDx8W2O3r2kVqYoda7QhF03TrHzxklCY58w+8QmIhJjaF++fr7lW5Stwfag4xwKvkBYQhQBwefZdfMU3So1e6mkkpiUBLWHEMVJgmfFxNDQkIyMnCyQ//3vfyxevJg5c+Zw7do1vvjiC3r37s3hw4cBGD9+PNevX2fXrl0EBQUxZ84cbGxsAEhOTqZVq1ZYWloSGBjI+vXr2b9/P5999tkr2/Ddd9/x559/cuLECR48eEDXrl2ZMWMGq1atYseOHezbt48//vhDVT4hIYEvvviCwMBA9u/fj1Kp5L333iM7OxuAvn370qZNG3r16kVmZia7d+9m3rx5rFy5ssChmpMmTaJv375cvHgRb29vevbsySeffMKYMWM4ezbnJObF/mzevJnPP/+cL7/8kqtXr/LJJ58wYMAAAgICNL0FCQkJ9OvXj6NHj3Lq1CnKli1LmzZtSEh4/Z3w6NGjCQgIYPPmzezdu5dDhw5x7tw5tTIDBgzg+PHjrFmzhsuXL9OlSxdatWqlCigOHTqUtLQ0jhw5wpUrV/jpp59U2VQvvs+0adMIDAzEzs6ODh06qLaVK1eu4O/vz/vvv8/ly5dZu3Ytx44dU/t8+vbty+PHjzl06BAbN25k/vz5RES82TCpsLAwGjVqROXKlTl79iy7d+/myZMndO3aVWOdy5cvExsbS/V8fpjo6enRq1cvtaDvkiVL+PDDD9+oXZBz62ITExM++STvsL4vv/ySjIwMNm7Mydhp0qQJN2/eVGW0BQQE0KBBA5o2bZoneFarVi2MXsh8qFmzJg8ePOD+fc1DA96WtkILZ3Nbbr80pOJW5ANKW+b/I6K8vTsP4yJo5FGFsc36MqpRT9r61EVHS/uFMm7cj31CJ78G/K95f75o2I0mZaqioOhTvzMyMgi+eYdKNdQDFZVrVOHGtSANtV7P+mWrMbMwp3lb/7dazz+ho6VNOdtSatlIAIEPgvCzz39Ilq6WDulZ6tl+aVkZ+Ni5qbJiLocFU862FD52OT+aHc2sqV3aj1MvXHktSlo21mhZmJN5LXfIL5mZZN68g04ZzUPpMu8Eo1PaFW330qr16FYoT8blaxrrKIwMAFAmJWss87a0tbRws3TkWrh6YOFa+F3K2Li81joaulfm+pN7RL2QqaGrpZ3nand6ViZlbYs2EPhf8igsjKjoaGrXqKFapqenR9XKlbl8VfP2fvnqVWq9UAegds2aeeqEPnxIq06d6NC1K2MmTODhY83DCotCVmYm4fce4u5XTm25u58XD2+HaKx3+fAZYp5E0eD9lq98D6VSScjVW0SHR1LqNYaCvq2cY5Qdt14a7n8rMhQ3q/wvYPg6uPMgNoImZaoxvvkAvm7Sm3bl66kdo+5FP8bFwg5Xi5zjnJWRGd52pQkqYNhaYcrKzORp6GNcypdRW+5SvgxPgvMf4vjcpknzWD5qGtt/XcrjG3kDmOe3H8bQ1Bjv+vkH64vK833fy0PJr4YH4/m6+z6Pylx/cpeo5NzsJ10tbTKy1fd9GVkZ72Tfp6OljYe1E5ce31FbfinsDl62+Wf13YwMxdrInCrOOf+H5gbG1C7lx/mHucMxq7t4cyvyAR/V6sBfXcbwa/vhvO/X6J0Mj9PR0qaMtTMXH99WW37x8W287fK/aHYj4j7WxuZUc/YCwNzAhDpufmpTdQRFhFDGxpmyz75rexMrqrp4qZUpKjnnR6553uvcwxv42ud/HqGrrUP6S6Mh0jIz8LYrrZY1bKirz6qe37Gm1/dMbjUIT+vX25b/SxQKRYl8/H8lwzaLwZkzZ1i1ahXNmjUjKSmJX3/9lYMHD1KnTh0APDw8OHbsGPPmzaNRo0aEhoZSpUoVVVDCzc1Nta6VK1eSkpLCsmXLVAGqP//8k/bt2/PTTz9hb6/5Kt4PP/ygyrQZOHAgY8aMITg4GA+PnBOyzp07ExAQoJrbrEuXLmr1Fy1ahIODA9evX8fPLydLZt68eVSsWJHhw4ezadMmJkyYQI2XTnpfNmDAAFVQ5uuvv6ZOnTqMHz8ef/+cH8iff/45AwYMUJWfNm0a/fv3V92tY+TIkZw6dYpp06apht29rGnTpmrP582bh6WlJYcPH1bNkVWQxMREFi5cyLJly2jRIidrZOnSpbi45O7Eg4ODWb16NQ8fPsTJKecK16hRo9i9ezeLFy9mypQphIaG8sEHH1ChQs4V2+ef9YsmTJiQ5z02b95M165d+eWXX+jZs6fqJgVly5bl999/p1GjRsyZM4eQkBD2799PYGCganv566+/KPuG87rMmTOHqlWrqk38v2jRIlxdXbl16xblypXLUyckJARtbW1VJtnLBg4cSP369Zk5cybnzp0jLi6Otm3bquYwe123bt1SZR2+zMnJCXNzc27dyjlJqlevHrq6uhw6dIgePXpw6NAhGjVqRNWqVYmLi+P27duULVuWQ4cO0bu3+rwKzs7Oqn49v43yi9LS0khLU0/x19fXz1OuIEZ6BmhraZGYnqK2PDEtGVP9/E9MrQzNcLN0JDMri2Vnd2OsZ0Anv4YY6uqz4dnQMysjM8oYmnLx8W0Wn9mBjbE5Hf0aoqXQ4sCdgq+qv62EuHiys7OxsLRQW25uaUlsdN7U/dcVdOUa+3fs4de//nzLFv4z5gYm6Ghp57nqGZ0cj5WrWb51zjy4Tjufehy9d4lbkQ/wsi1FG+866GrrYGFgQlRyPAfvnMPC0JQ/3/sSBQp0tLXZfPUIKy/sfRfdQmGe0/bsePUhPdnxCWhZW2msl3HmPCkmJph8MwJQoNDRJi3gKGm7NGcQGXZ7n8xbwWQ/0jyf39sy1TNCW0uL+JeGPMelJuFnYKKhVi5zAxMqOJZh3qktasuvht/F36sWtyJDiUiMwcfenSrO5WQukjcQFZWT+Wptpb5dWVtaEhauOeMjKjo6bx0rK6Kio1XP/cqXZ+K4cZR2dSUqJoaFS5cy8NNPWbtsGRbm5oXYC82SE5JQZmdjbK4+bYGxuSlJsflfqIsOjyRg7XZ6j/8MLW3tfMtAzrDOP4dNJCszE4WWFv79P8C9glehtj8/z6cEeHFeJYCEtBRM9fMfZmtlZI67lSOZ2ZksObsTYz0D3q/QGCNdA9Y9GyJ48fFtjPUMGVrvAxSAtpY2J0IuE3DnXL7rLGypickos5UYmqlf2DU0MyY5Pv+RG0bmpjTo0x7bUo5kZWZx+9Qltv+2lPZf9sexnBsA4XdCuXnsPB+Mf/fDpZ/v++JSk9SWx6UlYf6a+76Kjp7MPak+dcKV8Lu08qrNzYhQIhKjKW/vThVnr3ey7zPVN0JbS5u4l/fnKYlYOOXfp5uRocw8uo6RDbujq62DjpY2gQ+CWHhmm6qMvakVfiYWHL17iSkHluJoZs1HtTqgpaWlOo8q6j7FvnQuEZeSgKVh3nPr53369cgaRjXuqerT6dDrLDj1t6rMsXuXMdc3YUrrwSgUCnS0tNl14ySbrhwu0v5AToBSO5/zo5iUBKyMTPOtc/ZhEG2863A85Aq3nz6gnI0rrb1qoautg7mBCdHJ8YTGRvDzoZXcjXqs2o/M7DiCQRt+4lF8ZJH3S4j8SPDsHdm+fTsmJiZkZmaSkZFBx44d+eOPP7h+/TqpqamqYMlz6enpVKlSBYBPP/2UDz74gPPnz9OyZUs6depE3bp1gZxhaJUqVVLL7KpXrx7Z2dncvHmzwOBZxYoVVX/b29tjZGSkFsyxt7fnzJkzquehoaFMmjSJ06dP8/TpU1XGWWhoqCp4ZmlpycKFC/H396du3bp5Joh/nXYAquDS82WpqanEx8djZmZGUFAQgwYNUltHvXr1mDlzpsb3iIiI4Ntvv+XgwYM8efKErKwskpOTCQ19vcnTg4ODSU9PVwU4AaysrPDyyj15PX/+PEqlMk9gKS0tDWtrawCGDx/Op59+yt69e2nevDkffPCBWv+BfN8jKCgn2+XcuXPcuXOHlStXqsoolUqys7O5d+8et27dQkdHh6pVc694enp6vvFdUc+dO0dAQECerLjnn0V+wbOUlBT09fU1Xo2oWLEiZcuWZcOGDQQEBNCnTx90dXXfqF2vQ6lUqtpgZGREzZo1VcGzw4cPM3r0aHR0dKhXrx6HDh1CX1+fe/fu5QmwGhoaAqgNXX7R1KlTmThxotqyCRMmQI38g4evarMahQJl/kVVfVtzcT+pmTnzRm0POkHvqv5suXqEzOwsFChISk9h4+VDKFHyKD4SMwNjGnpULvLg2cvtVFEq/3HmW0pyMjMnT2PI6OGYWbybH8KavPxdKRQKlBq+raVnd2FlZMbc978CBcQkJ7D7xil6Vm1JljJn/1nZqSx9qvnz65E1BD0JwdncluH1uxBVrTXLzu0q9Pbr1qqOUd/uqueJM+c+69hLBRUKeHm7fIGOlycG7fxJWbGOzLshaNvZYtjjA7Lb+ZO2fU+e8oa9uqDt4kTCjzMKoRevlqc7KPJZmld994okZ6Ry/tFNteWrLuyjf/U2TGk9GCUQkRjDsXuX8r3RgMixa+9epkybpno+49n8kS/vBV7cZ2v00usv16lXO3e4kydQ0deXTt27s33XLnp378479XJbUeZZBjnD+7bOWkGDD1ph7VjwcUPfQJ8PJ39JRlo6Idduc2DlVixsrSld3rNQm/66Cvq6nn8vq87vVR2j/r52jL7VW7PpyiEys7MoY+1Ms7LV2XTlEKExT1QXeJqnJrP/hQnDi9rLx6QCdnlYONhg4WCjem5fxpXEmHgu7T2BYzk30lPTCFi4iQZ9OuQ7D9q78vLxSIHmY9SLGrhXIjkjlXOP1LOHVp7fw4Aa7fixzaeqfd/Rexdp4F65EFtdsPzOkTRxMbflw5rtWH/5IJce3cbCyJS+1VozqHZH5jwLDCoUCuJSk5h3agvZSiV3ox9jaWhGR98GRR4806iAcwkXczs+rtWBtRcPcOHxLSwNTelfvQ2f1nmPP0/kjLTwc/Cgc6UmzDu1lduRoTiY2fBRzfbEVExg3eWD76gTeY+8mv6nlp/bg6WhGX92GolCkRNo23PrDN0rN1f9vgyKCFHLRr0afo+5H4ymk19DZp14N3PCCvEyCZ69I02aNGHOnDno6uri5OSkChrcu5eT8r1jxw5Vpstzz7NYWrduzf3799mxYwf79++nWbNmDB06lGnTphV40vmqk9EXAxcKhSJPIEOhUKh2YJAzb5W7uzsLFizAycmJ7Oxs3NzcSH9p4ucjR46gra3N48ePSUpKwsws/6wMTe3QtOzFtrzct1edfPfv35/IyEhmzJhB6dKl0dfXp06dOnnarkmeA3c+srOz0dbW5ty5c2i/dAX5eRDqo48+wt/fnx07drB3716mTp3K9OnTGTZsWIHrfvEz+OSTTxg+fHieMqVKleLmzZt5lr/c/ufzc7y47Pmw0Bf78jx78WWOGuaasrGxITk5mfT09HyzwgA+/PBDZs2axfXr19UCs2+iXLlyHDt2LN/3efz4MfHx8WqZdk2aNGHt2rVcu3aNlJQUVWCxUaNGBAQEoKenh4GBAbVrq881Ef0sq0HTTS7GjBnDyJEj1Zbp6+vz7f6Fr92X5PRUsrKz81zBN9EzJDEt/6BdQlrO3CTPf5QARCbGoKVQYG5gQlRyHAlpSWQps9VOxCISYzAzMEZboaUK3BQFU3MztLS0iHkpyywuNhZzK4t/tM7wR2FEhD9hypjcYOXz7bdz03b8uXwBDs5FOwdaXGoimdlZWBmp788sDU2JSc4/qyQ9K4OfAlYw7fAqrAzNiEqOo335+iSlpxCXkpMdMLBme/bePMOOoBMA3I1+jIGuPqMb9WT5ud2v9aPnTWRcukLCxJDcBTo5pwFa5mZkxeVmn2mZmqCM1zys3aBTO9JPniH96EmAnGwyfT2M+vYgbcdetV+hhj07o1u5Aok/zUQZE1uo/XlZQnoyWdnZeTItzAyM8mRk5KeBeyVOhFwhK1v9fyQhLZk/jm9AR0sbE30jYlMS6FKxCU+TYguz+f8pDevXx698edXz9GfHmafR0aqpJwCiY2OxstKc5WhtZaXKWlPViYnBqoCLQoaGhpTx8ODBw4f/tPlvzMjUGIWWFkmx6lmcyXGJGJvnvRCVnpJG+L0HPLn/iL1Lc26yoVQqQankx76j6P71J7j55hzLFFpaWDnkHIvsSzsT9egJJ7cdKPLgWVJ6isZj1MvZaM8lpCYRl5qodoyKSIxGS6HAwtCEp0lx+HvV5vzDm5wJzZmYPjwhCj1tXTpXasKB24GFvNfLy8DECIWWIk+WWWpCEkZmr87Ses7O3YU7py8DEB8ZTUJULHtmrVK9/vw4tWDwRLp9PwwzO83b+dt6vu+zeHnfp29E/Ovs+zwqcSLkcr77vt+PrUP32b4vJiWBrpWavZN9X0JaMlnZWVgYqmcvmRsYa7xZxXt+jbgZcV9144n7sU9YkPk3P7QaxOqL+4lNSSAmOYEsZRbZLxynHsVFYmlkio6WdpHe8VVzn0w09qlzxcYERYSw5dqRnD7FhDPv1BamtvmUlRf2EpOSQM8qLTgUfF4VfL4f+wQDHV2G1H2f9ZcDCv1c4kVxqUlkZWdhafjy+ZGJxjnK0rMymHZ4Fb8dXYOloRnRyXG09alHUnqqxmO1EiU3I0NxMf//dfM5rXcw5Yp4fTLn2TtibGyMp6cnpUuXVgsMlS9fHn19fUJDQ/H09FR7uLrmDtuytbWlf//+rFixghkzZjB//nxV/YsXL6pNGH/8+HG0tLTyzQ76p6Kiorhy5QqjR4+mVq1auLq6EhISkqfciRMn+Pnnn9m2bRtmZmavDAr9Ez4+Phw7pn43phMnTuDj46OxztGjRxk+fDht2rTB19cXfX39Aie/f5mnpye6urqcOnVKtSwmJkY1PBCgSpUqZGVlERERkee7dHBwUJVzdXVl8ODBbNq0iS+//JIFCxaovVd+7+HtnXNHrapVq3Lt2rU86/f09ERPTw9vb28yMzO5cOGCah137twhNjZW9fx5MOjFO1u+ePOAF9/Hzc0tz/tomr+ucuXKQM6NBjTp2bMnV65cwc/Pj/Iv/Kh6E927dycxMZF58+bleW3atGno6urywQcfqJY1adKE27dvs2rVKurXr68KbDZq1IhDhw5x6NAh6tSpg4GBgdq6rl69iq6uLr6++d/VUV9fHzMzM7XHmw7bzFJm8yguMs/cIWVtXLgfk/8d/EKiwzEzMEJPO/fah42xOdnKbNXQhpCYcKyNzNUOtzbGFsSnJhVp4AxyAt9lvDy5dPaC2vJLZy/g7av5f7QgzqVc+W3RbKb/9afqUaNuLfyqVGT6X39ibWfz6pW8pczsLG5FhlLdVb0P1V28ufpE863YAbKys4lMiiVbqaSZZ3VOhFxVncga6OjlCc5nZ2ejUBSc3fGPpaaRHfE09/E4nOzYOHTKvzAETFsbHS9PMoMLmJBcTzdvmka2Mk9akWHPLuhWrUTiL3+Q/bTob1iRlZ1NSEwYvg7q86yUt3cn+GnBgRQv21LYm1px9IUbBbwsMzuL2JQEtBVaVHPx5sKjWxrL/n9nbGSEq4uL6uHh5oa1lRWnA3MzizIyMjh/8SIV/fK/QQpART8/Tp9Vz5g9HRhYYJ309HRC7t/H5lnW97ugraODg7sL966qbxP3rt7CpaxbnvL6hvp8NHU0Ayd/qXpUaVoHK0c7Bk7+Eqcymu/UqERJVkbR33Eu5xgVQbmXjlHlbEsREp3/8Ot70WGYGRijp517rmtrbEG2MlsVHNDT1snzYz5bmf0sE6zofyhq6+hgU8qJR9fVb0b1MCgY+zKvP5dX1IMwjJ4FRi0cbOg84VM+GD9Y9Shd0QsnL3c+GD8YY6uCLyS/rdx9n/p0IL4OHtx5xb7P2640DqbWBd5kJCM7i5hn+77qLt55snOLQmZ2FnejHlPRST1IXNHRk5uR+Y8c0dfRJfvlbetZQPD5lnUz8j4OptZqmYeOZtZEJ8cXaeAMcvoUHPWIyi/1qbKTJzci8p9jV187n/OEl57ra+tqKKMomnOJF+ScHz2gmov6UPJqLt5ce1LwjU2ysrN5+uz8qEmZqpy6f7XAQF8Za2e1+UiFeNck86yYmZqaMmrUKL744guys7OpX78+8fHxnDhxAhMTE/r168e3335LtWrV8PX1JS0tje3bt6sCRb169WLChAn069eP7777jsjISIYNG0afPn0KHLL5piwsLLCysmLu3Lk4ODhw//591VxozyUkJNCnTx+GDRtG69atKVWqFNWrV6ddu3Z55kt7G6NHj6Zr165UrVqVZs2asW3bNjZt2sT+/fs11vH09GT58uVUr16d+Ph4Ro8erRqW9zpMTEwYOHAgo0ePxtraGnt7e8aNG6d2l6Vy5crRq1cv+vbty/Tp06lSpQpPnz7l4MGDVKhQgTZt2jBixAhat25NuXLliImJ4eDBg3mCft9//73ae9jY2NCpUycgZ0642rVrM3ToUD7++GOMjY0JCgpS3dzB29ub5s2bM2jQIFWm45dffomhoaEqe83Q0JDatWvz448/4ubmxtOnT/nf//6n1oahQ4eyYMECevTowejRo7GxseHOnTusWbOGBQsW5Mmsg5ygXNWqVTl27JgqkPYyS0tLwsLC3mq4Zp06dfj8888ZPXo06enpdOrUiYyMDFasWMHMmTOZMWOGWuC5bt266Ovr88cffzBu3DjV8ho1ahAXF8fGjRsZPXp0nvc5evQoDRo0eKPt5J84eu8S3So342FsBKGxT6jpWh4LQ1NOheZMht3KqzZmBsYvzBVzi2Zlq9OlUlP23QrEWM+ANt51Ofvghuqk79T9a9Rzq0B73/qcCLmCjbEFTTyrcjzkisZ2FKb2Xd7j9ynT8fQqi5evN3u37ebpk0hadmgDwIr5i4l6GsXnY0ep6ty7nfMjJjUlhfi4OO7dDkZHVxdXt1Lo6etR2sNN7T2Mn2Vzvry8KK27dJBxzfpxM+I+157co335etiZWrL16lEABtXuiI2xBVMOLAVyhlr42LsR9OQepvpGdK3UDHdrR6YcXKpa54n7V+haqSm3nj5QDdscWKsdx0Ou5Dk5Lipp+w9h0LYl2U8iyYqIxKBNS5TpGaSfzg1YGA3sQ3ZMLKmbcuaNybx0Ff2WTcgKfUjW3fto2dlg0KktGRevqoJqhr27olerGol/LECZmorCLOdKuzIlFV7Kdi1Me2+e5uNaHQmJDuPO04c0KlMFayNzAoJz7rDcuUJjLIxM+ev0NrV6DT0qExz1iEdxeedS8bBywtLQlNDYJ1gYmtLJrwEKhYKdN04WWT/+KUNdfbUr805mNpS1cSE+NYknif983sG3pVAo6NG1K4tXrKCUqyuuLi4sXr4cA319Wr0wdcW3P/yAnY0Nnw3OmTeqe+fODBo2jCUrV9K4fn0OHTvG6bNnWThrlqrOjFmzaFC3Lg729sTExLBw2TKSkpJo17q1qkxcfDzhT54Q+ezC2f1n0zZYW1kVWpCtZutGbJuzCkcPV5w93bgYcJL4qBiqNMuZauPQ2u0kxMTTfnBPFFpa2LqqZ8wam5mgo6ujtvzE3/txdHfFwt6G7MxMgi8GcfXYWfz7dy6UNr/K4bsX6VGlBQ9ic+7qXLu0LxaGJqqbmrT2roO5gQlrLubMd3jh0S1alKtBt8rN2HvzNMZ6hrQrX48zoUGqY9T1J/do6FGFR3GRhMY8wdrYnFbetbkWfq9IM2ReVLFFHQIWbcKmtBP2ZVwJOnKOxOg4fBrlzBd7ZtN+kmLjafLh+wBc2X8SU2sLLJ3syMrK4s6py9w7H0SLwTlz9uro6mLlrH7erf/sJikvLy8qu2+c4pPanbgX/Zg7UY9o8mzfd/DZXHJdKjbF0tCU+ae3qtVr6FGZO08fat73GZkRGhOOpZEpnfwa5ez7nmVLF7VtQccZVq8zd6MecTMylBZla2BjbM7eWzmjF3pWaYm1kRl/HN8AwNmHNxhc5z1alqvJxce3sTQ0ZUCNttyOfKDKgtpz8wytveswoGZbdgWdxNHMhvcrNH5n+/Ot144xokFX7jx9xM3I+7QsVwsbYwv23DwNQO+q/lgbmTPz2DoAAh8GMaTu+7TyqsWFR7exNDJlYM123IoMVfUp8OENOpSvz93ox9yKfICjqTU9q7Qg8MH1d3IuseFKAN806cOtyAdcf3KPtj51sTOxZNv1nGSHgTXbY2Nszk8BK4Cc4bXedqUJenIfE31DulRsgruVo+p1gD7VWhH0JIRHcZEY6Rnwnl8jPK1d+P3Y+nzbIMS7IMGzEmDSpEnY2dkxdepU7t69i4WFBVWrVmXs2LFAzt2oxowZQ0hICIaGhjRo0IA1a9YAOXM67dmzh88//5waNWpgZGTEBx98wK+//lqobdTW1mbt2rUMHz4cPz8/vLy8+P3332ncuLGqzOeff46xsbFqknlfX19++uknBg8eTN26dfMMS/2nOnXqxMyZM/nll18YPnw47u7uLF68WK0tL1u0aBGDBg2iSpUqlCpViilTpjBq1CiN5fPzyy+/kJiYSIcOHTA1NeXLL78kLi5OrczixYv54Ycf+PLLL3n06BHW1tbUqVOHNm1yggZZWVkMHTqUhw8fYmZmRqtWrfjtt9/U1vHjjz/y+eefc/v2bSpVqsTff/+tGp5YsWJFDh8+zLhx42jQoAFKpZIyZcrQrVs3Vf1ly5YxcOBAGjZsiIODA1OnTuXatWtqmVWLFi3iww8/pHr16nh5efHzzz/TsmXunb6cnJw4fvw4X3/9Nf7+/qSlpVG6dGlatWqV57bsLxo0aBBLliwp8G6vFhYWr/6wX2HGjBlUrFiROXPmMH78eBQKBVWrVmXLli20b99erezzIZmHDx9W20Z0dXWpU6cOBw4cyPdGE6tXr84zp1lRuBx2ByM9fZqVrY6ZvjHhiVEsDtyuukJvqm+EhWHuMIz0rEz+Ov03HX0bMKx+Z5LT07gcdkd10gU5Qwz/Or2N9uXrMaJBN+JTkzh+7zKHgi/kef+iUL9pIxLiE1i3dBUx0dGUcndj3E8TsXPI+QERExXD0yfqJ+lffpybpRp86w5H9x/C1t6OeWuXvJM2v46Dd85hpm9Mv+ptsDY2415UGF9vn82TxJwhvtZGZtib5A4l09bSolulZpSysCczO4sLj24xZNM0whNyJzpfdnYXSqWSj2q1x9bYgtiURE6EXGHB6b/zvH9RSdu1H4WuLoa9u6IwNiLrbgiJv86C1NwbYmhZWaplmqVu34OSnOGbWpbmKBMSybh0ldRN21Vl9Js0AMD068/V3i950QrSj5+mqJx5EISxvhEdfOtjbmDCo7hIfju6RnW12tzQBGsj9bnzDHX1qebizSoNN2rQ1dbhvQqNsDOxJDUzncthd1hw6m9SMtLyLV+cvG1L8+d7uUPKh9fPuXi1M+gkk18I3BaHfj17kpaWxo/Tp5OQmIifjw9//vorxi/c6Tj8yRO1ycgrVajA5AkTmPPXX8z96y9cnJ2ZOnEifi9kBT+JiGDcxInExsVhaWGBn68vi+fOxfGFrO8jx44xcepU1fOxz25W8/GAAXzyD+78nJ/ytauQkpDM8c17SYyNx9bFka6jP8bcJme4XmJsAvFP3yyAmZGWzp4lG0mIjkVHTxdrJ3vaf9qL8rWrFEqbX+XS49sY6xrQolzNnGNUQhQLT29T/Wg3MzDGUu0YlcG8U1t5z68hnzfsRnJ6Kpce32HXC4GJ/c+GZrbyro25gQmJ6SlcD7+nVqaolanhR2pSMud3HCY5LhErJztaD+uFqbUFAMlxCSRG557jZWVmcWrDXpJiE9DR1cHSyY5Ww3pSqkLhjfJ4W2ceXMdE35COfg2xeLbv+/XIatXdM80NTbAyVs+AM9TVp7qLDyvP552rEnL2fR9UaIytiSVpmelcfnyH+Se3kPyO9n0nQq5gqm9E54pNVBcwphxYpho2amloio1x7v78UPAFDHX1ae1dm37VW5OUnsrV8LusOJfbv6jkOCbtW0z/Gm2Y3mEY0cnx7Aw6oRoWWdSOh1zGTN+IbpWb5fQpJpxJ+5cQ+axPVkZm2JpYqMofvHMOQx192njXZUCNtiSlp3I5LFhtXtR1lw6iVCrpVaUlVkbmxKcmEfggiJUX8v9eC9uh4AuY6RvTp5o/VkbmhESHMWbXXCKeXbCxNjLD7oXzIy2FFp0rNsXV3I7M7CwuPb7NsC2/qc6nIGd4+MiG3bE0MiMpPYU7Tx/yxbaZGrMO/6v+P9/ZsiRSKF9nMichRJE7dOgQTZo0ISYmplACTM89fPgQV1dX1Xx5RSk1NRUvLy/WrFmjduODf5sdO3YwevRoLl++jI7Om11j+HrH7CJqVfH4qe0QroUFv7rgv4yvYxkazh5S3M0oVEeGzCZ2YOEPlS9OFgv/YMDaycXdjEK1uNs46s1693fjK0rHh84lISKiuJtRqEzt7FgSuKO4m1Go+tdoy6htfxR3MwrdtPbDmH54dXE3o1B92agH/dZMKu5mFKql3cfTedm4Vxf8F9nQdzKdlrz65mj/Jlv6/0izeXnnVv43O/DJ78XdhH/szP1rxd2EfNUsnf+0Nv91knkmxH/MwYMHSUxMpEKFCoSFhfHVV1/h5uZGw4YNi/y9DQwMWLZs2RvNJ1cSJSUlsXjx4jcOnAkhhBBCCCGE+O+RX4ZC/MdkZGQwduxY7t69i6mpKXXr1mXlypVvNc/Ym2jUqNE7eZ+i1LVr1+JughBCCCGEEOL/MRm2WbJI8EyIEqJx48Z57pTzT/j7++Pv718ILRJCCCGEEEIIIYTmmb+FEEIIIYQQQgghhPh/TjLPhBBCCCGEEEIIIUoQLRm2WaJI5pkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFECaJAhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCyN02SxbJPBNCCCGEEEIIIYQQQgMJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoQRQybLNEkcwzIYQQQgghhBBCCCE0kOCZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiBJEhm2WLJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAwmeCSGEEEIIIYQQQgihgcx5JoQQQgghhBBCCFGCaCFznpUkknkmhBBCCCGEEEIIIYQGCqVSqSzuRgghhBBCCCGEEEKIHFcf3ynuJuTLz8mzuJtQLGTYphBCFKIV53YXdxMKVe9qrVhwamtxN6PQfVy7I/EHjxR3MwqVWdOGxLR4r7ibUags920mKPxucTejUPk4eJAQEVHczShUpnZ21Js1uLibUaiOD53LlANLi7sZhWpss34khD8p7mYUOlMH++JuQpFICLlf3E0oVKZupYn9/Jvibkahspj5I78ErCjuZhSq0U16/+f2E//mfYRCIcM2SxIZtimEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmipZBcp5JEvg0hhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkShkLttliSSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJn4j/h0KFDKBQKYmNji7sphc7NzY0ZM2b84/ohISEoFAouXrxYaG0SQgghhBBCCCH+v5Bhm+Jf48SJEzRo0IAWLVqwe/fu4m6OEIXm7L6jnNx+kITYeGydHfDv+z6lvMu8st6Dm3dZOukP7FwdGTT1K9XyiIdhHF6/k7B7D4l7Gk3LPu9Rq3XjIuxBXhcOnCBw52GS4hKwcbKnSa8OuHi5v7Leo1shrJk6FxsXe/pN+kLttdSkFI5t3M3ts1dJTU7B3MaKxj3a4lHJp6i68UpKpZIFO7ax+dgREpKT8XVz56vuPSnj5KyxzsEL51myeycPIiPIzMrC1c6O3s1b0qZWnXfY8n9Gt35t9Nu2RLtsGbTMzYgf/AVZwSHF3aw8dm7ezpY1G4iJjsbVrTQDP/sE30p++ZaNjopm8awFBN+6TdjDx7T9oAMfDRusVubkkeNsWLGWsEePycrMxNHFmY5d36eJf7Mi64NSqWT+4sVs/vtvEhIS8C1fnq9HjqSMe8H/RwcOHWLuX3/x8PFjXJycGDJoEE0aNlS9Pm/RIhYsXqxWx9rKij1bt6qeHzx8mE1btxJ06xZxcXGsXLQIr7JlC7eDb6CSoyc9q7TE264UNsYWfLNzDkfvXSq29hTkxuFzXNt/iuS4RCwcbanZpTn2nqXyLRt+6z57ZqzMs7zTt4Mwd7BRPb9+8Aw3j5wnKSYefWNDSlf1plrHJmjrFs1pvFKpZP6SxWzeti132xvxxau3vcOHmLtwYe6299HHatseQERkJH/Mm8uJ06dJTUujtKsr47/6Gh8vLzIzM5n91wKOnzrFo7AwTIyNqVmtOsM++QRbGxsN7ypepFQqmb9iOZt37iQhMRFfb2++HvoZZdzcNNYJDglh7rJl3Lhzm7AnTxj5yWB6vv++WpnzVy6zfP16gm7f5ml0NNMmTKBx3XpF3JtcBq2ao1e3JgpDQ7LuPyB5wxaywyM0ljf5bBA6ZT3yLM+4doOk+UtU6zRo3Vzt9ez4BOLHTy7Utufn+qGzXN53kpS4BCycbKnTxR+HsvnvJx7fDGHnb8vzLO/83adYPNtP3DpxiSPL/s5Tpv8fY9D5l+0n5i1exIIlS9TqWFtZsWfzFtXzqOho/pg3l1OBgSQkJlK1UiVGf/45pVxcC7OLJYICGbZZkkjwTPxrLFq0iGHDhvHXX38RGhpKqVL5H2TEv0dGRga6urrF3Yxide3kefYs20ybD7vgUs6d8wdOsOqnuXz6yxjMbaw01ktNTmHrnBW4+5YjKT5B7bXMtHQs7WzwqVWFfSs2F3UX8rhx+iIBK7fRvG8nnMu5cSngNBunL2TA1C8xs7bUWC8tOYWd89dQurxnnj5lZWay/pcFGJmZ0OGzPphYmZMQHYuegX5Rd6dAy/buZtWBfXzbdwCl7OxZtGsHn/3+Gxu++wFjA4N865gbGzOgdRvc7B3R1dHm6JXLfL9sCZamptQpn3+Ap6RQGOiTee0G6UdOYDxyaHE3J1/HDh5m0Z/z+OSLoXj7lWfPtp1M+no8fyydh629XZ7yGekZmFuY06V3d/5en///i4mpKV16d8O5lCs6ujqcPXmGP376FQtLC6rUrFYk/Vi6ahWr1q5lwtixlHJ1ZeHSpQz94gs2rlqFsZFRvnUuX73K2O++Y/DAgTRp2JCAI0f45ttvWThrFn6+vqpyHu7uzP7tN9VzbS31gQgpKSlUqlCB5k2a8MPPPxdJ/96Eoa4+d6IesvPGCaa0HvzqCsXk3tnrBG7YR63urbDzcOHWsQvsn7WWjuMHYWJlrrFepwmfqO3L9E1zv9+7Z65ybksA9fq0w87Dmbgn0Rxfvh2Amp1bFEk/lq5exap165gwZgylXFxZuHwZQ78cycYVKwve9iZOZPCHA2nSoAEBR4/yzXcTWPjnLPzKlwcgPiGBgZ8NpXrlKsz8+WesLCx5+PgxpiYmAKSmpnLj1m0+6tuPsp6eJCQkMP3PPxg5dgzL5y8okr7+1yxdt45VmzYx4ctRlHJxZuGqVQwd8w0bFy7S+N2lpqXh4uhA84YN+HXevHzLpKSmUtbDg/Yt/flq0vdF2YU89Js1Qr9JfZJXricr8ikGLZtiMuQj4idPg7T0fOskLVoO2tqq5wpjI0y/+pyMi1fUymWFhZM466/cBdnKIunDi4LPXuPU+j3U7dEG+zIu3Dh6nt1/rqLzhE8L3E90mTgE3Rf2Ewam6t+nroE+XSYOUVtWVIEzKLr9BDw7Rk3/VfVc+4XvUqlUMmrcOHR0tJk+eQrGxsasXLeWISNHsn7pMgwNDYusz0LIsE3xr5CUlMS6dev49NNPadeuHUteuiKRn+PHj9OoUSOMjIywtLTE39+fmJgYAHbv3k39+vWxsLDA2tqadu3aERwcrKr7fKjjpk2baNKkCUZGRlSqVImTJ0++9nsolUp+/vlnPDw8MDQ0pFKlSmzYsKHANkdERNC+fXsMDQ1xd3dn5cq8V6Tj4uIYNGgQdnZ2mJmZ0bRpUy5dev0r8FlZWQwcOBB3d3cMDQ3x8vJi5syZhVJn8eLF+Pj4YGBggLe3N7Nnz1a99vwzXbduHY0bN8bAwIAVK1aQnZ3N999/j4uLC/r6+lSuXFkts/B1vouoqCh69OiBi4sLRkZGVKhQgdWrV6tenzdvHs7OzmRnZ6u1t0OHDvTr10/1fNu2bVSrVg0DAwM8PDyYOHEimZmZr/3Z/hOndh6iSuPaVGlSR5V1ZmZtydn9xwust+OvtfjWrYZLWbc8rzmVKU3zXh3xq1sVbZ13f43k7O6jVGhYg4qNa2HtZE/TXh0wtbLg4oFTBdbbu2QTPnWq4JhPlsaVI4GkJibTaXg/nMu5YW5jiUs5d+xKORVVN15JqVSy+uABBrRqQ9MqVfF0dua7fgNITU9nT+BpjfWqlfOiSeWquDs64mJrR4+mzfF0duHinTvvsPX/TPr+w6SuWEfm+ZKZ9QOwdd1mmrdpSYt2rXB1K8VHwwZjY2vL7q078i1v72jPR8MH06RVc4xMjPMtU6FKRWo3rIerWykcnZ1o37kTbh7uXL9yrUj6oFQqWb1uHQP69qVpo0Z4engwcdw4UtPS2L1vn8Z6q9evp1b16gzo0we30qUZ0KcPNatVY9X69WrldLS1sbG2Vj0sLdWD2m1bteLjAQOoWb16kfTvTZ0KvcaC039z+O7F4m5Kga4fPINn3UqUq1cZC0cbanZpgbGFGTePnC+wnqGpMYbmJqqH1gvBzIh7j7Ar44JHDV9MrC1wLu+Be/XyRN0PK5I+KJVKVq9fz4A+fWja8Nm2N2Zszra3v4Btb8N6alWrzoDevXO2vd6982x7S1etxN7WjgljxuDnUx4nR0dqVquGi3NOpq6JiQmzf/2VFk2b4laqFBV8fRk9/HOCbt4k/MmTIunvf4lSqWT1ls0M6N6DpvXr4+nmzsRRo3O+u4CDGuv5ennx+ceD8G/cBD0NFzTr1ajJkP4DaFq/flE1XyP9RvVI3RtAxuVrZIc9IXnFOhS6uuhVq6yxjjI5BWVCouqh61UWMjJIv3hZvWBWtlo5ZVJS0XYGuLr/FOXqVcG7fhUsHW2p09UfY0szgg6fLbCegakxRuYmqofWSxc9FArUXjcyNymyPhTlfgLyOUZZWKheC334kCvXr/HNyC/x9fHBrVQpvvliJCkpKew5cKCouiwEIMEz8S+xdu1avLy88PLyonfv3ixevBilUvPVoYsXL9KsWTN8fX05efIkx44do3379mRlZQE5wbiRI0cSGBjIgQMH0NLS4r333ssTXBk3bhyjRo3i4sWLlCtXjh49eqiCKa96j//9738sXryYOXPmcO3aNb744gt69+7N4cOHNba7f//+hISEcPDgQTZs2MDs2bOJiMhNS1cqlbRt25bw8HB27tzJuXPnqFq1Ks2aNSM6Ovq1Psvs7GxcXFxYt24d169f59tvv2Xs2LGsW7fureosWLCAcePGMXnyZIKCgpgyZQrjx49n6dKlauv6+uuvGT58OEFBQfj7+zNz5kymT5/OtGnTuHz5Mv7+/nTo0IHbt2+/9neRmppKtWrV2L59O1evXmXQoEH06dOH06dzAhhdunTh6dOnBAQEqNYXExPDnj176NWrFwB79uyhd+/eDB8+nOvXrzNv3jyWLFnC5MlFl76flZlJ2L0HeFT0UltepoIXD2/d01jv4qFTxEQ8pdEHrYqsbf9UVmYmT0Ie4eZXTm25m19ZHt8J0VjvypFAYiOiqNupeb6vB1+4jpNnaQ4s28zsYd+zeOx0Tm07mOd/9l169PQpUfFx1C6fm9Gjp6tL1bLluPxCML4gSqWSMzeCuP8knKply726gihQRkYGwbduU7lGVbXllWtU5cbV64XyHkqlkkvnLvDowUN8KxZNpuCjsDCioqOpXaOGapmenh5VK1fm8tWrGutdvnqVWi/UAahds2aeOqEPH9KqUyc6dO3KmAkTePj4ceF24P+hrMwsokLDcPJRHyrm5ONO5N2HBdbdNnUh676ZyZ6ZKwm7GaL2mn0ZF6JCw4kMyfmOEp7G8OhqMC5+noXa/udU2171l7a9SpUK3vauXcu77dWoyeVruXWOHD+Oj7cXX3/7LS06dqDnwIFs3ratwPYkJiWhUCgwMSm6QMB/xaPw8JzvrlpuNqyenh5VK1Tk8vXC2f+9a1rWVmiZm5F544VzwqwsMoPvoeNe+rXXo1e7BunnL0F6hvr6bW0w+34spt9+hVG/HmhZa874LwxZmVk8DQ3D5aX9hItPGZ68Yj+xefICVn71Gzt/W87jl/YTABlp6awZ+zurvpnBnllreBpaNAF2KNr9BDw7Rr3/Hh26dWXMxO/UjlEZ6TnZhvp6eqpl2tra6OjocPHKS8HR/wCFQlEiH/9fybBN8a+wcOFCevfuDUCrVq1ITEzkwIEDNG+e/w/tn3/+merVq6tlPvm+MGTlgw8+yLN+Ozs7rl+/jp9f7o+hUaNG0bZtWwAmTpyIr68vd+7cwdvbu8D3SEpK4tdff+XgwYPUqZMzj5GHhwfHjh1j3rx5NGrUKE+bb926xa5duzh16hS1atVStcvHJ3c+p4CAAK5cuUJERAT6+jmp29OmTWPLli1s2LCBQYMGveqjRFdXl4kTJ6qeu7u7c+LECdatW0fXrl3/cZ1JkyYxffp03n82T4a7u7sqCPVidteIESNUZZ63/+uvv6Z79+4A/PTTTwQEBDBjxgxmzZqlKlfQd+Hs7MyoUaNUZYcNG8bu3btZv349tWrVwsrKilatWrFq1SqaNcuZo2j9+vVYWVmpnk+ePJlvvvlG1VYPDw8mTZrEV199xYQJE/J8JmlpaaSlpakte/6dvK7khCSU2dkYm5upLTc2NyUxLiHfOlFhERxcs41+Ez5H64U09pIi5VmfXr7iaWRuSpKGPsWER3J0/S66j/tUY5/iIqMJDQrGp04V3h/5IbFPnrJ/2Rays7Ko26lohi69SlR8HABWpurfn5WZGeFRUQXWTUxJps2Yr0jPyERbS8HXPXpRy6d8gXXEqyXExZOdlY2FlXomlbmlBTHRMW+17qTEJAZ27k1GegZa2lp8MmJoniBdYYl6tv1YW6n/kLO2tCQsPFxzvejovHWsrIh64eKKX/nyTBw3jtKurkTFxLBw6VIGfvopa5ctw8Jc85AhUbC0xGSU2UoMTdWzFw3MjEmJzz+bxdDchDo9W2NdypGszEzunr7K3t9X4T+it2r+I/fqvqQmJLN7+jKUSlBmZ+PVoCoV/OsWST+iojVte1aEPXnFtvdSBqO1paXatvcoLIyNW7fSq0tXBvTuzbUbQUz7fSa6urq0a5X3YlBaWhp/zp9Hq+bNMTHOPytU5Hr+Wef9HiwIi9A8P1hJpjDNOZfITlA/f8hOSEDLUvM0EC/SLuWCtpMDyavVR39k3g8la+U6siIi0TI1zRkOOuJTEqb+hjI5uXA68JLU5/sJM/Xt2dDMmJT4xHzrGJmbUL9XW2xKO5KVmcWdU5fZOWM5bUf2xbFsTgDRwsGahv06YOVsR0ZKOlcPnmbbL0t4/3+DMLe3LvR+FOV+ws+nPBPHjqW0y7Nj1PJlDBw6hLVLlmJhbo5b6dI4Ojjw5/z5jB01CkMDA1auW0tUdDRPX3HuJcTbkuCZKPFu3rzJmTNn2LRpEwA6Ojp069aNRYsWaQyeXbx4kS5dumhcZ3BwMOPHj+fUqVM8ffpUlb0SGhqqFjyrWLGi6m9HR0cgZ2ilt7d3ge9x/fp1UlNTadFC/Ud9eno6VapUybdOUFAQOjo6VH9hmIy3tzcWL6Qqnzt3jsTERKyt1Q+EKSkpasNOX2Xu3Ln89ddf3L9/n5SUFNLT06lcufI/rhMZGcmDBw8YOHAgH3/8sapOZmYm5i/9GHuxf/Hx8Tx+/Jh69dQnna1Xr16eoagFfRdZWVn8+OOPrF27lkePHqkCW8YvnGz36tWLQYMGMXv2bPT19Vm5ciXdu3dXzaNw7tw5AgMD1TLNsrKySE1NJTk5GaOX5m+YOnWqWkARYMKECXi2r13g55ifl6/fKPNZBjkZgJtnLaNR59ZYO+adu6kkyXNVSqnM90pVdnY22+eupu57LbBysNW4PmW2EiNTE1oO+AAtLS0c3F1IjI0ncOfhdxY823XmFFNXrVA9/23IMCBnqIRaW5X5LHyJkb4BK8d+S3JaKoE3b/DbhnU429hSrZxXgfXeJb2mDTEakTu/VOLYSWReDSrGFr2JvP9Vb3ul1NDIkN/+mkVKSgqXz19k0ewF2Ds5UqFKxVdXfoVde/cyZdo01fMZP/0E5NMLDf9Hal56/eU69Wrn7qM8gYq+vnTq3p3tu3bR+9lFDPEWXneHDpjbW6v9sLXzcCEpJp5r+0+rgmfht+5zec8JanVvha2bE/GRMQSu38elnceo1Obth9Dt2reXKdOnq57P+PHZtpdnv/YPtr2X/u+ys7Mp7+XF0GcX+rzLlePuvRA2bt2aJ3iWmZnJ2O8nkp2dzddfjHzTbv2/sOvgAaa8MIXGjEk/APntN/49k47rVquMUbf3VM8T5y3RUFJBzj/Xq+nVrkHW43CyQtUzuzKDbqn+zg57QmLIfczGf4VezaqkHTr2hi1/Q/nspzXtKCwcbFQ3BgCw93AhMSaeK/tOqoJndh4u2Hm45JYp48rmKQu4diiQut3efpTCu9xP5HuM6tmD7bt307tbN3R0dPj5+0lM+vknmrZri7a2NjWrVaPus8QDIYqSBM9Eibdw4UIyMzNxds69e51SqURXV5eYmJg8c7UAr5wssn379ri6urJgwQKcnJzIzs7Gz8+P9HT1iUdfnMz++Y79eaCtoPd4XmbHjh1q7QbN2UnPh6EWdNDJzs7G0dGRQ4cO5XntxSBbQdatW8cXX3zB9OnTqVOnDqampvzyyy+qIY7/pM7z/i5YsECVNfec9kuZRMb5XD1+uc/5HXwL+i6mT5/Ob7/9xowZM6hQoQLGxsaMGDFC7fts37492dnZ7Nixgxo1anD06FF+/TV3MtLs7GwmTpyolhX3nEE+E7+PGTOGkSPVT+j19fVZfzUgT1lNjEyNUWhpkRgXr7Y8OS4BY3PTPOXTU1IJu/uA8JBH7FqyEXi23SiV/ND7C3qN+RR33+Id+mf4rE9JsepXiZPjEzEyyzvsJj0ljSf3HhJx/zEHlufc7e95n6YP+IYuoz+iVHlPjC1M0dLWVpvjw8rRjqS4BLIyM9/J3G4NK1bGzy13qEV6Zs7wj6j4eGzMLVTLYxLisX4pG+1lWlpauNrlBEC9XEsREhbGkt07S1TwLP3kGTJvvPDj4unrDQ0vTqbmZmhpaxH70jD2uJg4LCwt3mrdWlpaOLrkzLHnUbYMD+8/YOPKtYUSPGtYv77aZMnpGTnb1tPoaGxeuMtgdGwsVlaahxVZW1mpstZUdWJisCogQ8PQ0JAyHh48eFjwkCFRMH0TIxRaijxZZqkJSXmy0Qpi6+7M3TO5Q5gubDtMmZp+lKtXGQBLZzsy0zI4uWonFVvVQ6H1dkGRhvXq4+eTz7YXFY2N9YvbXsHb0csZjgDRMbFqdWysrXF/6a6P7qVLc/CI+nQWmZmZfDNhAo/Dwpjz2wzJOtOgYe06+Hl5q56rvruYGGxeuMgaHRuL1Vvu/96VjKvXSbj/IHeBTs45pJapKVkv3EhIy9QEZUL+mVpqdHXRq1qJlF2a5+FSSc8gKywcLduiu7OrwfP9RJx621MTkvNkoxXEzt2ZO2euaHxdoaXAtrQT8RGFc9x+l/uJlxkaGlLGXf0Y5ePlxaqFi0hMTCQjMxNLCwv6Df6E8l4l5xyqsGj9Px4iWRJJ8EyUaJmZmSxbtozp06fTsmVLtdc++OADVq5cyWeffZanXsWKFTlw4ECezCDIGQ4TFBTEvHnzaNCgAQDHjr35FaaC3qN8+fLo6+sTGhqa7xDN/Pj4+JCZmcnZs2epWbMmkJN1FxsbqypTtWpVwsPD0dHRwa2A244X5OjRo9StW5chQ3LvyPOqrLVX1bG3t8fZ2Zm7d++q5hB7HWZmZjg5OXHs2DEavnCb6hMnTqg+g9dx9OhROnbsqBram52dze3bt9WGvBoaGvL++++zcuVK7ty5Q7ly5aj2wrwgVatW5ebNm3h6vt48Mvr6+m88TPNl2jo6OLq7cvfKTbxrVFItv3v1JuWqVcj7noYGfPLT12rLzu47Rsi123QeMQAL28JPzX9T2jo62Ls5E3LtNmWr52Zxhly7jWcV3zzl9Q316TdZPQh58cBJHgTdof1nfTC3zQkUOJd1I+jURZTZ2SieBdBinjzF2ML0nd0UwdjAQO0OmkqlEmszc04HXcfLNSdLJCMzk/O3bzHsvQ80rSZfSpSkF/HNKd5YSirZKZqHX5REurq6lClXlotnL1C7YW5G68Wz56lVv06hvpdSqSQjI+PVBV+DsZGR2t3JlEol1lZWnA4MxLtcTkA8IyOD8xcvMmyw5rtNVvTz4/TZs/Tq1k217HRgIBX9NM/Nlp6eTsj9+1Sp+PZBwP/PtHW0sS7lSFjQPUpXzv0B9/jGPVwrvv5FjeiH4Ri+MOw9Mz0zz8Wk5wEzJcq3zijSuO2dPau+7V26xLBPPtG4noq+vpw+G0ivF6Z/OB0YSEXf3G2vkl8F7oc+UKt3/+EDHO3tVc+fB85CHz1k3oyZMpS4ABq/u/Pn8X52LpORkcH5K5cZNnBgcTXzzaSlk52mfgEgOy4eHS9Psh49m/dKWxudMu6kbNv1ytXpVakIOtpkBF549Xtra6Ntb0dmcMg/aPjr0dbRxqaUI4+C7uJWJTfw+SjoLqUrvf5+IupBOEb5XGR9TqlUEvUwHCvnwhml8C73Ey9LT08nJDT/Y9TzuRBDHz4g6OZNPv23bOfiX0uCZ6JE2759OzExMQwcODDP8L/OnTuzcOHCfINnY8aMoUKFCgwZMoTBgwejp6dHQEAAXbp0wcrKCmtra+bPn4+joyOhoaF88803b9y2gt7DxsaGUaNG8cUXX5CdnU39+vWJj4/nxIkTmJiYqM0B9pyXlxetWrXi448/Zv78+ejo6DBixAi1DLfmzZtTp04dOnXqxE8//YSXlxePHz9m586ddOrUSW1IpCaenp4sW7aMPXv24O7uzvLlywkMDMTd3f2t6nz33XcMHz4cMzMzWrduTVpaGmfPniUmJiZPhtaLRo8ezYQJEyhTpgyVK1dm8eLFXLx4Md87jRbUvo0bN3LixAksLS359ddfCQ8PVwueQc7Qzfbt23Pt2jVVoO25b7/9lnbt2uHq6kqXLl3Q0tLi8uXLXLlyhR9++OG12/KmardpzJbZK3DyKIVzWTcuHDxB3NMYqjXL+eF/YM02EqLj6DSkNwotLexc1e8uaWxmio6ertryrMxMIh+Gq/5OiI4jPOQhegb6BQ6NLCzVWzVg57y1OLi74ORZissBp0mIiqVS05xU/CPrdpEYE0ebT7qj0NLC1sVBrb6RmTHaujpqyys1rcP5/cc5uPJvqrSoR0z4U05vO0jVFupDft8lhUJBj6bNWLx7J652drja2rNk904M9PTwr5GbgTlhyUJsLSz5rFNOVuPi3TspX9oNZxtbMrMyOX71CjtOneKbHq8feC4uClMTtOxsUDybVFnLJSezNjs6FmVMbDG2LFfHru8xY/I0PL3K4uXrw97tu3gaEYl/hzYALJ+/mKjIKEaMy50n8e7tnIsBqSmpxMfGcfd2MLq6Ori65QyJ2bBiLZ5eZXFwdiQzI5NzpwI5tOcAg0fmPf4UBoVCQY+uXVm8YgWlXF1xdXFh8fLlGOjr0+qF6QC+/eEH7Gxs+OxZQK17584MGjaMJStX0rh+fQ4dO8bps2dZ+ML8kTNmzaJB3bo42NsTExPDwmXLSEpKol3r1qoycfHxhD95QuTTpwDcDw0FcrIGbKzffZDeUFcfF/PcfZeTmQ1lbVyIT03iSeLbzWVXmMo3rcmxpX9jXdoRW3dnbh2/QFJMPF4NcubGO7clgOTYBBr07wDk3J3TxMocCydbsjKzuHvmKvcv3KTxx7kZ0K4VPLl+8AxWrvbYuDmTEBnDxe1HcK1QNs/d9gqDQqGgR5cuLF65glIuLjnb3ooVOdte8xe2vcmTsbO14bNBOT+Uu3fuzKDhw1myaiWN69Xn0PFjnD53loV/5m57Pbt04cOhQ1i0fDktmjThWlAQm7dtY9yzOUszMzP56tvx3Lx1i99+/ImsrCzVHEbmZmZqGegiL4VCQY9O77F4zWpKOTvh6uzM4tVrcr67Jk1V5b79+WfsbKz57MOcQENGRgZ3n/2PZ2RkEBn1lJvBwRgZGOD6bPREckoKD16YtP1ReDg3g4MxNzXFwa5op5FIO3wcgxZNyH4aRVbkUwxaNEGZkUH6uYuqMka9upIdF0fq9j1qdfVqVyfjyvV85zAz6NiGjKtBKGNiUZiaYNCyKQoDfdLPnCvS/vg1r83hxVuwKe2EnYczN49eIDEmDu+GORd0AzcfICk2gcYDOgFw9cBpTKzNsXS0JTsrizunrxBy4QbNPumsWuf57Yexc3fBzM6KjNQ0rgWcIerBE+p2b51fE95aUe4nZsyeRYO69XCwtyMmJjb3GPXC0O79AQFYWFjgYG/PnbvBTP/jDxrVr0/tGq9/4V2If0KCZ6JEW7hwIc2bN88TOIOczLMpU6Zw/nzeW8CXK1eOvXv3MnbsWGrWrImhoSG1atWiR48eaGlpsWbNGoYPH46fnx9eXl78/vvvNG7c+I3aVtB7QM4E+nZ2dkydOpW7d+9iYWFB1apVGTt2rMZ1Ll68mI8++ohGjRphb2/PDz/8wPjx41WvKxQKdu7cybhx4/jwww+JjIzEwcGBhg0bYv/ClduCDB48mIsXL9KtW7ecg1+PHgwZMoRduzRfwXudOh999BFGRkb88ssvfPXVVxgbG1OhQgVGjBhRYHuGDx9OfHw8X375JREREZQvX56///6bsmXLvlZ/AMaPH8+9e/fw9/fHyMiIQYMG0alTJ+Li4tTKNW3aFCsrK27evEnPnj3VXvP392f79u18//33/Pzzz+jq6uLt7c1HH3302u34J3zrVCUlMYkjm/aQGBuHrYsjPb76BItnGVeJsfHER73Zj8OEmDgWjP1F9fzkjoOc3HGQ0j6e9B0/rFDbnx/vWpVJSUzm5Nb9JMXGY+PswPsjP8TcJictPykunvjo2Ddap5m1BV1Gf0zAqm0s/d9vmFiYUbVlfWq2bVz4HXgDfVu2Ii0jg59WryIhOQlfdw/+GPaFWoZaeHS0WuZIaloaP61eSURsDPq6upR2cOT7AQNpWb1Gfm9RoujWqYHx6OGq5yb/y/nRm7JsDanL1xZXs9TUb9qI+LgE1i5bRUxUNKXc3Rj/0/fYOeTsI6Ojool8afLskR/lBsGCb97myP5D2DrYsWBtzt2C01JTmffbLKIin6Knr4dzKVe++N9o6jd9vczif6Jfz56kpaXx4/TpJCQm4ufjw5+//qp29T/8yRO1IR2VKlRg8oQJzPnrL+b+9Rcuzs5MnTgRvxdumPMkIoJxEycSGxeHpYUFfr6+LJ47F0eH3GD1kWPHmDh1qur52O++A+DjAQP45MMPi6zPmnjblubP93IvwgyvnzPf6M6gk0w+uFRTtXfOvXp50pJSuLTzGCnxiVg42tJsSDdMrHPOYVLiE0mKyR2mn52ZxdnNB0mOTUBbVwcLRxuaDemqdifNiq3rg0LBhW1HSI5NwMDECJcKnlTt0LjI+tGvx7Nt77dfc7e9adPVt72IJ2i9MGS0kl8FJn87gTkL/2LuwoW4ODkx9bvv1IYj+/r4MO2Hyfw5fx5/LVuKk4MDX342jNYtckYWRERGcuT4cQB6DlTfzubOmEl1DXPGilz9unYlLT2NH//8k4SEBPy8vflz6lT17y4yQu27i4yKoteQT1XPl2/YwPING6hasSLzf8mZi/H6rVsM/mq0qsxv8+YB0K5FC74blbu8KKQdOIxCVxfDzh1RGBmSdf8BiXMWQlru1BxalhbPJhzNpWVrg04ZdxJn/5XverUszDHu1wOFsRHKxCQy7z8g4dfZRX4hqEx1X9ISU7iw4wjJ8YlYOtni/1kPTK0tAEiOSyQxOnc/kZWZxZmN+0mKTUBHVwcLJ1v8h3bHtULueXJ6chrHVu4gOT4RPUN9rF0daDeqH3buzi+/faEpqv3Ek8hIxn3/wjGqfHkWz1E/Rj2NiuK3WX8S9WyIclt/fz7qmzcx4b/g//OdLUsihVKpfL3ZFoUQQrzSinO7i7sJhap3tVYsOLW1uJtR6D6u3ZH4g0eKuxmFyqxpQ2JavPfqgv8ilvs2ExR+t7ibUah8HDxI+Jfe+U4TUzs76s3SPJz03+j40LlMOVByAnOFYWyzfiSEPynuZhQ6U4fXu3j4b5MQcr+4m1CoTN1KE/v5m4/0KMksZv7ILwErXl3wX2R0k97/uf3Ev3kf8SCmZE6f4Wrp8OpC/0GFn+8thBBCCCGEEEIIIcR/hAzbFEIIIYQQQgghhChB3vamMKJwSeaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmiJXfbLFEk80wIIYQQQgghhBBCCA0keCaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiBFHIsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmikLttliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQRWL27Nm4u7tjYGBAtWrVOHr0aIHlDx8+TLVq1TAwMMDDw4O5c+fmKbNx40bKly+Pvr4+5cuXZ/PmzUXVfECCZ0IIIYQQQgghhBAlii7aJfLxptauXcuIESMYN24cFy5coEGDBrRu3ZrQ0NB8y9+7d482bdrQoEEDLly4wNixYxk+fDgbN25UlTl58iTdunWjT58+XLp0iT59+tC1a1dOnz79jz/vV5HgmRBCCCGEEEIIIYQodL/++isDBw7ko48+wsfHhxkzZuDq6sqcOXPyLT937lxKlSrFjBkz8PHx4aOPPuLDDz9k2rRpqjIzZsygRYsWjBkzBm9vb8aMGUOzZs2YMWNGkfVDgmdCCCGEEEIIIYQQ4pXS0tKIj49Xe6SlpeVbNj09nXPnztGyZUu15S1btuTEiRP51jl58mSe8v7+/pw9e5aMjIwCy2haZ2GQu20KIUQh6l2tVXE3odB9XLtjcTehSJg1bVjcTSh0lvuKdq6H4uDj4FHcTSh0pnZ2xd2EQnd8aN65SP7txjbrV9xNKHSmDvbF3QTxmkzdShd3Ewqdxcwfi7sJhW50k97F3YRCJ/uJkkNbWTLvtjl16lQmTpyotmzChAl89913eco+ffqUrKws7O3Vtyt7e3vCw8PzXX94eHi+5TMzM3n69CmOjo4ay2haZ2GQ4JkQQhSiv68WPPnlv00Hvwbce/qouJtR6NxtnP9z/XK3cSb+wOHibkahMmvWiLUX9hV3MwpVtyotWBK4o7ibUaj612jLlANLi7sZhWpss37UmzW4uJtRqI4PncvuoJPF3YxC18qnDglBN4u7GYXK1MeL6YdXF3czCtWXjXqQcPFycTejUJlWrsiCU1uLuxmF6uPaHVkWuLO4m1Go+tZoU9xN+M8ZM2YMI0eOVFumr69fYB2FQj0QqFQq8yx7VfmXl7/pOt+WBM+EEEIIIYQQQgghxCvp6+u/Mlj2nI2NDdra2nkywiIiIvJkjj3n4OCQb3kdHR2sra0LLKNpnYVB5jwTQgghhBBCCCGEKEmys0vm4w3o6elRrVo19u1TH0mwb98+6tatm2+dOnXq5Cm/d+9eqlevjq6uboFlNK2zMEjmmRBCCCGEEEIIIYQodCNHjqRPnz5Ur16dOnXqMH/+fEJDQxk8OGd6hDFjxvDo0SOWLVsGwODBg/nzzz8ZOXIkH3/8MSdPnmThwoWsXp07nP3zzz+nYcOG/PTTT3Ts2JGtW7eyf/9+jh07VmT9kOCZEEIIIYQQQgghhCh03bp1Iyoqiu+//56wsDD8/PzYuXMnpUvn3BglLCyM0NBQVXl3d3d27tzJF198waxZs3BycuL333/ngw8+UJWpW7cua9as4X//+x/jx4+nTJkyrF27llq1ahVZPyR4JoQQQgghhBBCCFGSPJsk/79gyJAhDBkyJN/XlixZkmdZo0aNOH/+fIHr7Ny5M507dy6M5r0WmfNMCCGEEEIIIYQQQggNJHgmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQoiT5Dw3b/C+QzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIkiRbhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKLOLuwXiBZJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKOVumyWJZJ4JIYQQQgghhBBCCKGBBM+EKEQ3b95k6tSppKWlFXdThBBCCCGEEEIIUQgkeCZEIUlISOC9997D3d0dfX39Qluvm5sbM2bM+Mf1Q0JCUCgUXLx4sdDaJIQQQgghhBCiCGUrS+bj/ymZ80wUiRMnTtCgQQNatGjB7t2737j+d999x5YtW/5VAZ9+/frx0Ucf0b179+JuiviXObE7gENb95AQE4u9qxMdBnTHo3y5fMveC7rNjuUbiHwUTnp6OpY21tRu2ZCG7VvmW/7isTOs/G0+vjUq0/+bz4qsD9s2bWXDqrVER0VR2t2NwcOH4le5osbyly9cYv4fs7l/LwRrGxu69OxG2/c6qF4f/dkXXLlwKU+9GnVqMWnaVACSk5JZtmARJ44cIzYmljLlPBk84jO8fLxLZJ8ANq/dwPbNfxP5JAIzC3MaNG7IgMEfo6evB8CVi5fYsGott2/cJjoqim+nfk/dhvULpT+vS6lUsmDHNjYfP0pCcjK+bu581a0nZZycNNY5eOE8S/bs4kFkBJlZWbja2dG7WQva1KrzDlue68zeIxzbdoDE2DhsXRxp3fcD3Hw88y17/0Ywe1dt5enjcDLSMrCwtaJ6s3rUbdtUVSYrM4sjW/dy8fBpEmJisXa0p2XPjpStXP5ddYlz+45zemcAibHx2Do70Lx3J1y9PV5Z7+Gte6z4YRa2Lg4MnDJKtfxm4GVO/L2fmCdPyc7KxtLehpptGlOhfvWi7IaaG4fPcW3/KZLjErFwtKVml+bYe5bKt2z4rfvsmbEyz/JO3w7C3MFG9fz6wTPcPHKepJh49I0NKV3Vm2odm6CtW7JOeSs5etKzSku87UphY2zBNzvncPRe3n1eSXV05wEObtlFfEwsDq7OvD+wJ2V8vfItG3z9FtuWrePJozAy0tKxtLWmrn8TmnTwf8etVqdUKpm/ZjWb9+4lISkR37Ll+PqTwZQplf82CBAcGsrcVSu5ERxMWGQEIz8cSM8OHfOUi4iK4o9lSzhx/jypaWmUdnJm/GfD8PHMfz9UWK4dOsPlPSdIjkvA0smOOt1a4Vi2dL5lH9+8x/bpS/Ms7zpxKBaOtgDcO3+dC7uOEh8RTXZWNuZ2VlRoUZdydSoVaT9eRalUMn/DejYf2E9CYiK+Zcvy9YcfUcbVVWOdzQf2s+PIYYIfPADAx92DIT164OdZ9l01W+XCgRME7jxMUlwCNk72NOnVARcv91fWe3QrhDVT52LjYk+/SV+ovZaalMKxjbu5ffYqqckpmNtY0bhHWzwq+RRVN9Sc3XeMUy8co1r07kQp7zKvrPfg1l2WPztGfTxltGr5jcDLHP97n9oxqnabxlSoX6MouyFEgUrWmYT4z1i0aBHDhg3jr7/+IjQ0lFIFnIj8V2zatKm4m/Cvk5GRga6ubnE3o1hdPH6Gvxev4b2Pe+Hm7cmpvUdYOHkmo2Z8j6WtdZ7yevr61GvdFMfSLugZ6HMv6DYb5y1HT1+f2i0bqZWNiYhi+9L1uPsU7Ynh4f0BzJs5i6Fffo5vRT92btnG/0Z9w/wVi7FzsM9TPvxxGONHjaF1+zZ89e1Yrl2+yqzpMzG3sKB+k4YAfDtlIhkZmao68XFxDOn/MQ2a5PZxxo/TCLl7j9HfjsHaxoYDe/Yx5vPRzF+5CBtb2xLXp4N79rNo7gJGjvkKnwq+PAp9wPTJPwPwyedDAUhNScXdswwt2rTih3HfvVUf/qll+/aw6uB+vu3Tn1L29izatYPP/viNDRMmYWxgkG8dc2NjBrRqg5u9A7o62hy9coXvly/F0tSMOuV932n7r5w4x66lG2k3sBulvDwI3H+MFT/O5rPp/8PCxipPeT19PWr5N8ShlDO6+nqE3gzm77/WoKevR/XmOYHLA2u3celYIB0H9cTGyZ47l4JYPX0BH38/Ekd3zT/WCsv1UxfYv2IL/v0/wKWcOxcOnmDtL/P5+KevMbex1FgvNTmFbXNX4eZblqS4BLXXDIyNqNuhOdZO9mjraHPnwnV2zF+DsZkJHhULJwBdkHtnrxO4YR+1urfCzsOFW8cusH/WWjqOH4SJlbnGep0mfIKeQW52t76pkervu2eucm5LAPX6tMPOw5m4J9EcX74dgJqdWxRdZ/4BQ1197kQ9ZOeNE0xpPbi4m/NGzh87zeZFq+jySV/cvctyYk8Acyf9ypg/pmCVz3FL30CfBm2a4+Tmip6+HneDbrNuzhL09fWp69/43XfgmaWbN7Hq761MGP45pZycWbh+HUMnfMvG2bMxNjTKt05qWhouDg40r1ePXxctzLdMfGIiA7/5muoVKjBz/ASszM15GB6OqbFxUXaH4MCrnFy7m/o922LvWYqgI2fZ9fsKun43FBNrC431uk76TO1/ysA0t536xoZUadMQCwcbtLW1uX/lFoeXbsHQzBhX36INBBZk6d9bWbVjOxM+HUopR0cWbtrI0MmT2PjbTIwNDfOtc+7aNfzr1qeiVzn0dfVY+vdWPpv8A+um/4qdVd7ttqjcOH2RgJXbaN63E87l3LgUcJqN0xcyYOqXmFlr3p+nJaewc/4aSpf3JClefX+elZnJ+l8WYGRmQofP+mBiZU5CdKza91qUrp+6wL4VW2jVvzOu5dw5f/AEa36Zzyc/ffPKY9Tfc1fh7luWxJeOUYbGRtTr0AKbZ8eo2xeusW3+GozMTCnzDo5RQuRHhm2KQpeUlMS6dev49NNPadeuHUuWLFF7fcmSJVhYWKgt27JlCwqFQvX6xIkTuXTpEgqFAoVCoVpHaGgoHTt2xMTEBDMzM7p27cqTJ09U6/nuu++oXLkyy5cvx83NDXNzc7p3705CQu4OOS0tjeHDh2NnZ4eBgQH169cnMDBQ9fqhQ4dQKBTs2bOHKlWqYGhoSNOmTYmIiGDXrl34+PhgZmZGjx49SE5OVtVr3LgxI0aMUD1fsWIF1atXx9TUFAcHB3r27ElERESBn11ERATt27fH0NAQd3d3Vq7Me5U9Li6OQYMGYWdnh5mZGU2bNuXSpde/Wp2VlcXAgQNxd3fH0NAQLy8vZs6cWSh1Fi9ejI+PDwYGBnh7ezN79mzVa8+Hj65bt47GjRtjYGDAihUryM7O5vvvv8fFxQV9fX0qV66slq34vN6mTZto0qQJRkZGVKpUiZMnT6rKREVF0aNHD1xcXDAyMqJChQqsXr1a9fq8efNwdnYmOztbrb0dOnSgX79+qufbtm2jWrVqGBgY4OHhwcSJE8nMzKQoHdm2jxpN61OreUPsXZzo+GF3LKwtObnnUL7lnT1KUaVBLRxKOWNlZ0O1RnXwquzLvaDbauWys7JZNXMBLbt1wMr+7QJJr7Jp7Xr827WmdYe2lHIrzeARn2FrZ8f2zX/nW37Hlm3Y2dsxeMRnlHIrTesObWnZtjUbVq9TlTE1M8PK2kr1uBB4DgN9Axo2zQmepaWlcezwEQYO/YQKlSvh5OJMn4H9cXB00Pi+xd2noKvX8K3gR5OWzXBwdKBarRo0btGUWzduqcrUqFOL/oMGUr9xw7fuwz+hVCpZfXA/A1q1oWmVqng6OfNd3wGkpqezJ/C0xnrVynnRpHIV3B0dcbG1o0fTZng6O3Mx+M47bH2OEzsOUrVJHao1rYutswNt+nXGzNqSwH1H8y3v6O5KxXrVsXN1xNLOmkoNauJZ0Yf7N4JVZS4dO0PDTi0pV8UXK3sbarZsgGclH47vOPhO+nRm12EqNa5F5Sa1sXG2p0Wf9zCztuDCgeMF1tu9aD3l61TF2TNv5knp8p541aiIjbM9lvY21GjVEDtXRx7cvFdU3VBz/eAZPOtWoly9ylg42lCzSwuMLcy4eeR8gfUMTY0xNDdRPbS0ck9lI+49wq6MCx41fDGxtsC5vAfu1csTdT+sqLvzxk6FXmPB6b85fPdicTfljR3auofazRtSp0UjHFydeP+jXljaWHF8d/7/Dy4epanWsDaOpZyxtrelRuO6eFepQPD1m++45bmUSiWrt/3NgC5daVqnLp6lSzPx8xGkpqWx+8gRjfV8y5bl8/4D8G/QED2d/C/+Ld20EXsbGyYM/xy/cuVwsrenZqVKuDg6FlV3ALi87yRe9avi3aAalo621O3WGhNLc64fPltgPUNTY4zMTVWPF/+nnLzcca/ig6WjLWZ2VlRoVhsrZ3vC74QWaV8KolQqWb1zBwPee5+mtWrhWaoUE4d+lvPdHTumsd4Pwz+ni78/Xm7uuDk7879PPkGpVHLmytV32Ho4u/soFRrWoGLjWlg72dO0VwdMrSy4eOBUgfX2LtmET50qOOaTnXvlSCCpicl0Gt4P53JumNtY4lLOHbtSmjPGC9PpXYeo3LgWVZ4do1o+O0adf8Uxatei9fjWqYqzp1ue10qX98T7hWNUzVaNnh2j7hZRL0oopbJkPv6fkuCZKHRr167Fy8sLLy8vevfuzeLFi1G+wT9Zt27d+PLLL/H19SUsLIywsDC6deuGUqmkU6dOREdHc/jwYfbt20dwcDDdunVTqx8cHMyWLVvYvn0727dv5/Dhw/z444+q17/66is2btzI0qVLOX/+PJ6envj7+xMdHa22nu+++44///yTEydO8ODBA7p27cqMGTNYtWoVO3bsYN++ffzxxx8a+5Gens6kSZO4dOkSW7Zs4d69e/Tv37/Avvfv35+QkBAOHjzIhg0bmD17tlrATalU0rZtW8LDw9m5cyfnzp2jatWqNGvWLE/7NcnOzsbFxYV169Zx/fp1vv32W8aOHcu6deveqs6CBQsYN24ckydPJigoiClTpjB+/HiWLlUfEvD1118zfPhwgoKC8Pf3Z+bMmUyfPp1p06Zx+fJl/P396dChA7dvqweDxo0bx6hRo7h48SLlypWjR48eqsBWamoq1apVY/v27Vy9epVBgwbRp08fTp/O+bHfpUsXnj59SkBAgGp9MTEx7Nmzh169egGwZ88eevfuzfDhw7l+/Trz5s1jyZIlTJ48+bU+138iMyOTR8H3KVdZPTOnXCVf7t8M1lBL3aO7oYTcDMbDV32Y57712zA2M6Vm8waF1t78ZGRkcPvmLarWVB/qVbVmdYKuXsu3TtDVa3nKV6tVnds3bmoMVu7ZvotGzZtg8OyKclZmFtlZ2ejp6amV09PX59rltzsRLqo++VaqwO2bt7h5PQiAsEePCTx5mpp1a71VewvTo6inRMXHU9sndziinq4uVcuW4/Ld1zthVSqVnLkRxP0nT6j6jofDZGZmEnbvAWUqqg9T8azoQ+it1wsKhd17wINbd3Ern9v2zIxMdF7KktXV0yX0xuv9n76NrMxMwu89xN1P/X/c3c+Lh7dDNNa7fPgMMU+iaPB+/kO6X6RUKgm5eovo8EhKvcZQ0LeVlZlFVGgYTj7q7+Xk407k3YcF1t02dSHrvpnJnpkrCbsZovaafRkXokLDiQx5DEDC0xgeXQ3Gxa/4MmT+azIzMnkQHIJXZT+15V6V/bh34/WC5Q/v3ufejdt4+hVf9sijJ0+IiomhduXKqmV6urpU9fPl8o2gt1r3kTNn8PH05Ouff6RFvz70/OJzNu/d85YtLlhWZiZPQx/jUl59mJxL+TI8CX5QYN1Nk+axfNQ0tv+6lMc3NO8nlUolj4LuEvckSuNQ0HfhUUQEUbGx1K6YO3RUT1eXquXLc/nW6wdkU9PSyczMxNzEpCiama+szEyehDzC7aX9uZtfWR7fCdFY78qRQGIjoqjbqXm+rwdfuI6TZ2kOLNvM7GHfs3jsdE5tO5jnonFRyMrMJOzeQ9z91Idte7ziGHXp8Glinjyl4fuvHr6tVCq5pzpGvXooqBBFRYZtikK3cOFCevfuDUCrVq1ITEzkwIEDNG+e/w7/ZYaGhpiYmKCjo4ODg4Nq+b59+7h8+TL37t3D9dmcBsuXL8fX15fAwEBq1MgZA5+dnc2SJUswNTUFoE+fPhw4cIDJkyeTlJTEnDlzWLJkCa1btwZygj779u1j4cKFjB6dO9b+hx9+oF69egAMHDiQMWPGEBwcjIdHzsl+586dCQgI4Ouvv863Hx9++KHqbw8PD37//Xdq1qxJYmIiJvkcqG/dusWuXbs4deoUtWrVUn2WPj65PwIDAgK4cuUKERERqpsSTJs2jS1btrBhwwYGDRr0ys9XV1eXiRMnqp67u7tz4sQJ1q1bR9euXf9xnUmTJjF9+nTef/99VZnnQagXs7tGjBihKvO8/V9//bVqrriffvqJgIAAZsyYwaxZs1TlRo0aRdu2bQGYOHEivr6+3LlzB29vb5ydnRk1Kncun2HDhrF7927Wr19PrVq1sLKyolWrVqxatYpmzZoBsH79eqysrFTPJ0+ezDfffKNqq4eHB5MmTeKrr75iwoQJeT6TtLS0PHdVfdMbRSQlJJKdnY2puZnachMLMxJi4wqs+8PHo0mMTyA7O4sWXTtQq3luptK9G7cJPHCML6Z/+0bt+SfiY+Ny5qKwUk/Lt7S0JDoq/4BuTHQMlpYvlbeyJCsri7jYOKxt1IdP3LweRMjde3wxJvc7NjI2wsevPKuWLKdU6VJYWFlyaP9Bbl4PwsnFuUT2qXHzpsTFxPLlp5+jVCrJysqi3Xsd6Nan51u1tzBFxcUDYGWqvk1amZoRHh1VYN3ElGTajP2a9IwMtLW0+Lp7T2r5vLs5wQCS43P+p0zMTdWWG5ubkhgbX2DdaUP+R1J8ItlZWTTp3IZqTeuqXvOs6MOJnQdx8/HE0t6Gu1dvcuPsZbLfwaS5yQlJKLOzMc6nT0mxCfnWiQ6PJGDtdnqP/wwtbW2N605NTuHPYRPJysxEoaWFf/8PcK+Q/7xVhSktMRllthJDU/VhbAZmxqTEJ+Vbx9DchDo9W2NdypGszEzunr7K3t9X4T+iNw5lczIx3Kv7kvp/7N11dBRX+8Dxb4y4u4cQBYK7hECB4BSneJGW4qUt0PalQGmpUFpeatAWL+7u7u4EC4RgAeKuu78/AptsshugJCRvf8/nnD0nO3tn9t7dyczsM8+9NymV7TMW5d4cVyjwb1yDoNAGGrcpXl1KUhIKhQILK/VjhLmlBUlxRZ+3vhj0IckJueet1j3epn6LJkWWL0kx8XEA2BboCWFracWjp09fa9sPHkexZvs2enfoyLtdu3Hl5k1++OtPDAwMaNe02Ys38A+kP/+fslD/nzK2MCU1MVnjOiaW5jTu2x57D2dysnO4efwCm39aSPuPBuDs56Uql5mazt/jZ5CTlYOurg4Ne7UtFKR7k2Li4wGwtVTv3m1racmjp9EvvZ1fli7B3saGOkFBxVm9IqU9O56bWKr/DjCxNC/Utf65uKinHFq1jZ6ff6D1eJ7wNJbIsHAC61en89iBxD+OZvei9Shycmjwdsl2WX9+jnqV8+7zc1TfiSNfeI6aNXKy6hzVakBXvN/AOUoIbSR4JorV9evXOXnypGr8L319fXr06MG8efNeOnimTVhYGO7u7qrAGUDFihWxsrIiLCxMFTzz8vJSBc4AnJ2dVdlb4eHhZGVlqYJikBsYqlOnDmFh6ncaq1TJGxjc0dERExMTVeDs+bKTJ09qre+5c+eYPHky58+fJzY2VnX3JzIykooVC/+gDAsLQ19fn1q18rJXAgIC1Lq4njlzhuTkZGxt1YMLaWlphIe/fAbE7Nmz+euvv7h79y5paWlkZmZSLd/d11dd5+nTp9y7d49BgwYxZMgQ1TrZ2dlYFri4yd++xMREHj58qPZ9ADRs2LBQV9T834fzs64PT548ISAggJycHL799ltWrFjBgwcPVIEt03zji/Tu3Zv33nuP3377DUNDQ5YsWULPnj3Re3bSPnPmDKdOnVLLNMvJySE9PZ3U1FRMTNTHP/nmm2/UAooAkyZNokbXt4r8HDV61mVZRakEdDQWfW7YV+PISM8g8sZttv69BjsnB6o3rkt6WjrL/juXrh/0w9TCvMhtFKsCbVCiVHXFfqnyyueLC6+zffM2vLzL419RPZvok4mf8tM30+n9dnd09XTx8fMlpMVbhN+4WWgb/0gxt+nC2fMsX7SE4R+NJqBSIA/vP2D2f3/Fev5ier/bt3jq/Iq2nTzBN8v+Vj3/6YMRz+qsXk6JsvDCAkwMjVjy6URSMzI4dT2Mn9aswtXOnpp+pXChW6iqL/jugEGTx5CZnsG9mxHsWrYBGyd7qjTMPV61GdCVDX8sY9bYqejo6GDtaEf1kHqc2190N5tipWF/1PSdKBQKNvz6N427tMLW2aHITRoaGTLw64/Iysgk4spN9izZgJW9LZ4V31CmVsHqF3Hos3S0xdIx79zn4O1GSlwiV3afUAXPom7c5eKOo9Tt2Qp7LxcSn8ZxatUuLmw9TNU2b3bijX8/DV9e0f9ijJ72GRlp6UTcCGfT4lXYOTtSM7heidUwv20H9jPt97yhJGb+J/fmkg4F/69eeKh7IYVSScUKPgzv2w+AAO8K3I6MZM32bSUWPHuuUHuKiO9bOdlhlW+yDccK7iTHJXJh51G14JmBUTm6TBxKVkYmD8PucHzVDizsrXF5iQHui8O2Q4eY9ucc1fOZEz4FCl8vKF98mlJZuGEDO44cZs6kKRgWyGB/Ewqdj5Saz1EKhYLNs5fRoFMLbJy0D8GhVCgxMTej5btd0NXVxam8G8nxiZzaeqDEg2cqhc5Rmq/pFAoF639d/NLnqMFff0xmRiYRV26we8l6rN/kOaosUJZ89qB4eRI8E8Vq7ty5ZGdn4+qal/mhVCoxMDAgLi43M0NXV7dQN86srKwXblup5cRScHnBAeh1dHRUgavn71v4hFt42/m3o6OjU+R2C0pJSaFly5a0bNmSv//+G3t7eyIjIwkNDSUzM1Nr+zTVLT+FQoGzszP79+8v9FrBceS0WblyJR9++CEzZsygfv36mJubM336dFUXx3+yzvPP4c8//1RlzT2nV+COkqmGAXP/yfeR/31nzJjBTz/9xMyZMwkKCsLU1JQxY8aofdbt27dHoVCwZcsWateuzaFDh/jxxx9VrysUCqZMmaKWFfeckYZB0j/99FPGjh2rtszQ0JAdN7UHVAsyNc8dr6dglllyQhLmBe7qF/R8HDNnTzeSEhLZtXIj1RvXJSbqCXFPopn/TV6X4uf71vhu7/HJz19h51T0xcqrsLCyRFdPl7gCGVnxcfGFMrees7axJi62YPk49PT0sCiQhZeens6B3fvoN3hAoe24uLky/deZpKelkZKSiq2dLdMmfomjs1OhsmWhTYv+nE+z0Ba07pCbQVm+gjfp6enM+u5H3unfW22cmTcluEpVKnvl/QDKfNbFNCYxETtLK9XyuKQkbM2L3id1dXVxd8jdt/zd3YmIimLBjm1vNHhmYpH7P5VcICMrJSG5UOZWQdYOuT8iHT1cSU5IYt/qrargmamFOb0+fo+szCzSklMwt7Zk19INWDmU/CDTJuam6OjqklLgDn5qQjKmloWzmDPTMoi6c4/Hdx+wc2HujSzlszFKvu33MT3Hv49XpdwuqTq6uqofZI6ersQ8eMyxTXtK/IeJoZkJOro6hbLM0pNSCmWjFcW+vCu3T+Z10z636QAV6lTGr2E1AKxdHcjOyOLY0q1UadUQHd3XjIoITM1zx8RKLHDeSkpIwtxK+0QPALbPzlsuXu4kxSeyffn6NxY8C65Th8p+eV3lMp9NSBMdH4edTd5EIrEJ8di85PWUNnbW1pQvMOtjeTc39h47+lrbLYrRs/+pgllm6UkpmFi8fLdEh/Ju3DpxUW2Zjq4uls+OdXbuzsRFPeX8tsNvLHgWXKsWlX3zjkl53108dvkyvmMTE7DJd97SZvGmjcxfv5bf/vMFvp5vtvupsep4rn6OSk1M1vg9ZaZl8PjOfZ7cfciexRuAvOP5jHcn0O2TwXhU9MHUyhxdPT216wgbZwdSEpLIyc5GT7/kfvI/P0cVzDJLTUjSeN7NTMvg0Z17RN19wI4C56hp/T6i1/ihGs9RTp6uRD94zNFNu/9/Bc9EmSLBM1FssrOzWbRoETNmzKBlS/UxVrp06cKSJUsYMWIE9vb2JCUlkZKSogqknD9/Xq18uXLlyMnJUVtWsWJFIiMjuXfvnir77OrVqyQkJKh1bSyKj48P5cqV4/Dhw/TqldtVKisri9OnT6sN9v+6rl27RnR0NN9++62qrqdPFz1ga2BgINnZ2Zw+fZo6deoAuZl88c/S0wFq1KhBVFQU+vr6eHl5/aO6HTp0iAYNGjBs2DDVshdlrb1oHUdHR1xdXbl9+7ZqDLGXYWFhgYuLC4cPHyY4OK/b4dGjR1Wfwcs4dOgQHTt2VHUXVigU3Lx5U22/MDY2pnPnzixZsoRbt27h5+dHzZo1Va/XqFGD69ev4/OS08gbGhq+cjfNgvQN9HGt4MnNC1cJqltDtfzGxatUql3tpbejVCrJfnYx6eDqzEc/qWfEbV+6joz0dDoOfAcr28KzDb4OAwMDfP39OHfqDA2b5I2vdu7UGeo10txVKrByJU4cOaa27OzJ0/gG+KNf4ALv4J79ZGVl0ixUe+aqkbExRsbGJCUmcebkKQYNe/81WlRybcrISC8UIHt+M+FVxoUsTqZGRmozaCqVSmwtLDgRdhV/99xsnqzsbM7evMHItwsHlouiVCpVwbg3RV9fH+fy7oRfukbFOnnj4YRfukZArVfomqNUkpNVuO4G5QwwsLEiJzuHqyfPU6leDQ0rFy89fX2cyrtx5/IN/GvnZeDeuXwDv5qFZzI1NDZk8DefqC07s/sId6/eovOo/ljaaz8GKNHc7uKmp6+HrYczj8Lu4FktL7j68Nod3Kv4FbGmutj7URjnCyBmZ2YXuvHyPGCmRFkoK0e8On0DfdwreHH9/BWq1ss7h14/f4WgutVffkNKJdkvceO0uJgam6jNoKlUKrG1tubE+fMEeOd2QczKyuLs5SuMzDfUxD9RNSCQuw8eqC27+/AhzvbFd+OqID19few8XHhwNZzy1fOufe6HheNV9eXHlou596hQl8JClLnjXL0ppsbGajNoKpVKbK2sOHHxIgHlcwN4WdlZnL16lZG9+hS5rUUbNzB37Rp++ew/VKzw5rue6unr4+jlSsSVm/jWyhs3MOLKTXyqaz6e9/9a/Ubt+T3HuBd2i/Yj+qqO566+XoQdP49SoUDn2XVG3ONoTK3MSzRwBrltcn52jgoodI6qXKi8obEhQ74Zp7Ys9xx1k86jBmBVxDkKUF3vClEaJHgmis3mzZuJi4tj0KBBhbrqde3alblz5zJixAjq1q2LiYkJn332GSNHjuTkyZOFZuT08vLizp07nD9/Hjc3N8zNzWnevDlVqlShd+/ezJw5k+zsbIYNG0aTJk3UugIWxdTUlA8++IBPPvkEGxsbPDw8+P7770lNTWXQoEHF9VHg4eFBuXLl+Pnnnxk6dCiXL19m6tSpRa7j7+9Pq1atGDJkCH/88Qf6+vqMGTMG43wXDM2bN6d+/fq8/fbbfPfdd/j7+/Pw4UO2bt3K22+//VKfg4+PD4sWLWLHjh2UL1+exYsXc+rUKcqX134H8WXWmTx5MqNGjcLCwoLWrVuTkZHB6dOniYuLK5Shld8nn3zCpEmTqFChAtWqVWP+/PmcP39e40yjRdVvzZo1HD16FGtra3788UeioqIKBVV79+5N+/btuXLliirQ9twXX3xBu3btcHd3p1u3bujq6nLx4kUuXbrEV1999dJ1eVXB7VuwfNZc3Cp44envzYldB4mPjqV+yxAAtv69hoTYeN4Zlbt/Htm2F2s7G+xdc7uuRly7ycGNO2nYOrcriEE5A5w81Mf8MjLN/cFQcHlx6dyjG9OnfoNvgD+BlSuybcNmnjx+TNtO7QGY9/ufxERH88nE3K4Wbd9uz8Y165kz6zdad2hL2OWr7Ni8jQmT/1No2zs2b6NB40ZYWBbOaDh94hQolbh5uPPw/gP++nUObh7utGzbqky2qW7D+qxbvpoKfj4EVMzttrnoz/nUa9RAlaGZlprGw/t5P7qiHj4i/MYtzC3McXByfO12vYiOjg7vNGvO/B3bcHdwxN3BgQXbt2FUrhyhtfOySictmIe9lRUjngXU5m/fRkVPT1zt7cnOzubIlctsOXGMCe+8fDC9uDRo24y1vy7C1dsDd7/ynN59hIToWGo/mzxj17INJMYm0GV4bpeqEzsOYGlng71L7ud793o4RzbvoW6rvPGY7t2MICkuHidPNxJj49m3eitKpZJGHV5vOIKXVad1Ezb9vhRnb3dcfbw4v+8YiTFxVH8rN5i7f8VmkuISaT+0Fzq6uti7q8/qZ2phhr6Bvtryoxt341zeHStHOxTZ2YSfD+Py4dOEDuj6RtpUsVkdDi/ciK2nM/blXblx5BwpcYn4N84NSJ5Zv4/U+CQaD+gA5M7OaWZjiZWLPTnZOdw+eZm7564TMiQvqOse5MPVvSexcXfEzsuVpKdxnN98EPcg31LJ7CyKsYEhbpZ53bBcLOzwtXMjMT2Fx8lxpVizFwvpGMrfM//Aw8cLL38fju7cT1x0DA1DmwKwafEqEmLi6DMmdxzWQ1t3Y21ni4Nb7v53O+wmezdsJ7jtm/n/0URHR4d32ndg/urVeLi44O7swvzVqzAyNKRVvpt5X8z8CQdbG0b0zQ2oZWVlcfte7gD8WdnZPI2N5frt25gYG+HunDuzYa8OHRk4YRzzVq2kRaNGXLlxk3U7d/D5sOEl2qYqLeqzb95a7DxdcKzgTtjBMyTHJhDYJPfa8OTa3aTEJ9J0YO7/zKXdxzC3tcLaxYGcnBxuHb/InbNhtBiaN/7tuW2HsPd0wcLeGkV2DpGXb3Lj2AUa925bom0pio6ODu+0acv89WvxcHbC3cmZ+evX5n53jfK6Z3/xy8842NgwolfueWjhhg3MXrmcr0aNxtnBnuhn496ZGBlhYmSs8b1KQq1Wjdk6ZwVO5d1w8fHg4r4TJMXEU7VZbhbmwZXbSI5LoM37PXOP527q2fQmFqboGeirLa/arD5ndx9h75KNVG/RkLioaE5s2kuNFurDopSUuq1D2PD7Epy93XHz8eLcvqMkxMRR49k5at+KzSTFJdBhaG90dHVx0HCO0jPQV1t+5Nk5ytrRlpzsHMLPh3Hp8ClaDej2RtpUZryBsVXFy5PgmSg2c+fOpXnz5oUCZ5CbeTZt2jTOnj1LjRo1+Pvvv/nkk0/4448/aN68OZMnT1Yb7L5Lly6sXbuWpk2bEh8fz/z58xkwYADr169n5MiRBAcHo6urS6tWrYqc8VKTb7/9FoVCQd++fUlKSqJWrVrs2LGj0GDfr8Pe3p4FCxbw2WefMWvWLGrUqMEPP/xAhw4dilxv/vz5DB48mCZNmuDo6MhXX33FxIkTVa/r6OiwdetWPv/8cwYOHMjTp09xcnIiODgYR8eX+2E9dOhQzp8/T48ePXIvQN55h2HDhrFt27bXWmfw4MGYmJgwffp0xo0bh6mpKUFBQS/M6Bs1ahSJiYl89NFHPHnyhIoVK7Jx40Z8fV9+lr6JEydy584dQkNDMTEx4b333uPtt98mIUG9W0mzZs2wsbHh+vXrqszD50JDQ9m8eTNffvkl33//PQYGBgQEBDB48OCXrsc/Ua1hHVKTUti9ahOJcQk4ebgw6LPRWD/rIpEYl0B8dN5A7Uqlkq1L1hL7JBo9PT1sHe1p3bsz9VqW3sDLTZo3JTExkSXzFxEXE4untxdTf/gGx2cTfsTGxPLkcd6ssU4uzkz94RvmzPqVzWs3YGNnywdjRtCoabDadu9H3uPKxUtM++l7je+bmpzC/Nl/Ev00GjMLcxo1acyA9wcVyl4rK23q1b8vOjo6LPxjHjFPo7G0tqJuw/oMeC8vcH/j2nXGj8wLNv/x8+8ANG8dysf/0Tw5SXHr1yKUjMxMvlu+hKTUVCp5lefnkWPUMtSi4mLVusClZ2bw3fKlPImPw9DAAE9HJ74cMIiWtWq/kTrnF9SgJmnJKexfs42k+EQc3J3pM2GY6m52UlwiCdF5XWyVSiW7l20k7mkMurq62Dja0eKdjtRqnvejIzsriz0rNhP3JJpyRob4VqtEl+H9MDY1KfT+JaFiveqkJaVyZN1OkuMTsXdzpvsnQ7C0y21TcnwSidGvFnDJyshkx4I1JMXGo1/OAFsXR9p/0JuK9V4he+g1lK9VkYyUNC5sPUxaYjJWzva8NawHZra51xBpicmkxOV1A1Jk53B63V5S45PQM9DHytmOt4Z1V5tJs0rrRqCjw7lNB0mNT8LIzAS3IB9qdAh5I216FQH2nvzSKe9/fVSj3B+EW8OO8fXehdpWKxNqNKpLSmIyO1ZsICEuAWcPV96fOBabZ12fE2PjiXua77ylULLp79XEPn6Krp4edk4OtO/bjQahIaXUglz9O3UmIyODb+fMJik5mcp+fvwyeYpahlrU06fo5stmfBobS++xY1TPF69fx+L166hRqTJ/fD0NgEq+vvww4TN+WbyIv1auwMXRkY8GDaZ1k5ASbU+F2pVJT0nl7JYDpCYkY+PiQOuRvTG3tQJyu9Elx+ZdF+Vk53B89U5S4pPQN9DH2sWBViN74RGUl/2ZnZHJ4aVbSIlLRN9AHysnO5oN6kyF2oUzit6k/h06kpGZybdz/yIpJYXKPj788tl/1DLUomKi0c13nlq9awdZ2dmM/3GG2raGdO3G+900T5hVEgLqViMtOZVjG3KDmXauTnQeOxBLu9zfISkJiSTGxr/SNi1srej2yRD2Ld3Ewv/8hJmVBTVaNqJO25Dib4AGFetVJzUphcPrdqjOUT0/eS/fOSqRhH9wjtq+YDVJsQnPzlEOdPygzxs7RwmhiY6ytPqKCCHEv9DGy4dKuwrFqkPlxtyJfvDigv9jytu5/uvaVd7OlcQ9B0q7GsXK4q0mrDi3q7SrUax6VG/BglNbSrsaxWpA7bZM21O2Az6v6rO3+tPw16GlXY1idWT4bLaHHXtxwf8xrQLrkxR2vbSrUazMA/2ZcWBZaVejWH3U5B2Szl98ccH/IebVqvDn8Q2lXY1iNaReRxad2lra1ShW/Wq3Ke0q/GNJ98vmtar5a85s/79KMs+EEEIIIYQQQgghyhLJcypTytYAEEIIIYQQQgghhBBClCESPBNCCCGEEEIIIYQQQgvptimEEEIIIYQQQghRlki3zTJFMs+EEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKForRrIPKRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskRm2yxTJPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRSLfNskQyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEplts0yRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskSpKO0aiHwk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFHIbJtliY5SKfOfCiGEEEIIIYQQQpQVSddvlnYVNDL39y3tKpQKyTwTQohi1Hvp5NKuQrFa0msySXciSrsaxc68vBcfrJle2tUoVr93+YT4fkNLuxrFymrRbPbfOlPa1ShWIT41+XjTz6VdjWL1Q/uRJEU9Lu1qFCtzJ0e2hx0r7WoUq1aB9Wn467/rGAFwZPhsfti/pLSrUaw+DunN0rM7SrsaxapXjVBmHVpZ2tUoVqMad2fkuh9LuxrF6udOY5l5cEVpV6NYjQnuUdpVEP8SEjwTQgghhBBCCCGEKEukk2CZIhMGCCGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbSQbptCCCGEEEIIIYQQZYlCum2WJZJ5JoQQQgghhBBCCCGEFhI8E+Jf5vHjx3z55ZfExcWVdlWEEEIIIYQQQoj/eRI8E/+TvLy8mDlz5hvdno6ODuvXr3+t95k8eTLVqlV7rW0URalU0rdvXwwNDbG2tn6ldYv7M31VwcHBLF26tNTeP7+PP/6YUaNGlXY1hBBCCCGEEP9fKRVl8/H/lATPxBvVvn17mjdvrvG1Y8eOoaOjw9mzZ99wreDUqVO89957b/x9i9s333yDt7c348ePf+V1S/Mz2Lx5M1FRUfTs2VO1rGAwT6lU8tFHH2Fubs7evXsBCAkJYcyYMYW2t3TpUvT09Bg6dKjG95szZw5Vq1bF1NQUKysrqlevznfffad6fdy4ccyfP587d+4UTwOFEEIIIYQQQvzPkgkDxBs1aNAgOnfuzN27d/H09FR7bd68eVSrVo0aNWq88XrZ29u/8fcsCZ999tk/Xrc0P4NZs2bx7rvvoqurOZ6fk5PDkCFD2LRpE3v37qV27dpFbm/evHmMGzeO33//nR9//BETExPVa3PnzmXs2LHMmjWLJk2akJGRwcWLF7l69aqqjIODAy1btmT27NlqQbWS0ty3Nm0DG2BlbM6DhCcsPrOd608jtZZv4BVEu8CGOJnbkpqVzsWHt1h6bifJmWkANK1Qg0blq+Ju5QDAndhHrLiwh9sxD0q8LfkplUr++Ptv1m3bSlJyMpX8Axg/fDgVvLy0rhMeEcHsxYu4dvMWj548Zuz779OrU2e1MmcvXWLx6lWE3bxJdGwsP3wxiZAGDUq4NbmCvavRwq82lkZmPEqMZtWFvdzS8rn2q9ma+l6VCy1/mBjN1F3zCy2v5RbAoLrtOf/wJnOOrS/uqhfJqFM7yoU0QsfUhJzwCFIXLUPx4FGR6xiGNqNcs2B0bW1QJiWTeeoc6avWQVa2qoyOtRXG3TuhX7USOgblUEQ9JnXuYnIitO/fxWH/5l3sXLuZhNh4XDxc6f5eP3wrB2gse/bISQ5u3c2923fJzsrG2dOV9r26UKlmVbVyqckprF+0knNHT5GanIKdoz1dB/cmqHb1Em3Lcw08gwjxqY65oSmPk2LZcOUQd2Ifai2vp6tLC7861HT1x9zQlPj0ZPbcPMWpe2GqMo3LV6W+VxDWxuakZKZx8dEttoYdI1uRUyJtUCqV/LFgPus2bSIpKYlKFSsyfsyHVChfvsj19hzYz+y5c7n/8CFuLi4MGzyEpsHBamWePH3Kz3Nmc/TECdIzMvB0d2fiuPEE+vuTnZ3Nb3/9yZHjx3nw6BFmpqbUqVmLke+/j72dXYm0Nb9DW/ewd/02EuPicXJ3pfOgXlSo5K+xbPjVG2xatJLHDx6RlZGJtb0tDUKb0rRDaInX83VVdfahV/WWBDh4YGdqxYStv3PozoXSrpZWV/ef4sLOY6QlJGHt4kC97i1x9vXUWPbh9Qi2/Lio0PJuU4Zh5VR4Hwo/dZm9f63Fs6o/LYf1KPa6v6xTOw9xdPMekuITcXBzIrRfFzwDKrxwvcjrt1nw5Swc3J0Z+u2r35AtTpf2neDcjsOkxidj4+JAo56tcfHz0lj2wbU7rP9hXqHlvaaOwto59zo35sFjTm7Yy9O7D0mKiadRj9ZUbfFmriGea1y+Km/51sLCyJRHiTGsvbSfcC3XEn1qhFLXs1Kh5Y8So5m2J3efdDK3pW1gA9ytHLA1tWTNxX3sDz9Xkk0o5PK+k5zfcZjUhGSsXexp2KOI7+n6HTb+UPg6qOeXI1Xf09WDp7l+7DyxD58AYO/pQt1OzXEs71ZibRDiRSTzTLxR7dq1w8HBgQULFqgtT01NZcWKFQwaNAiAo0ePEhwcjLGxMe7u7owaNYqUlBSt242MjKRjx46YmZlhYWFB9+7defz4sVqZjRs3UqtWLYyMjLCzs6Nz57wf5AWznG7evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTi/x89u/fj46ODjt27KB69eoYGxvTrFkznjx5wrZt2wgMDMTCwoJ33nmH1NRU1Xrbt2+nUaNGWFlZYWtrS7t27QgPD1e9vmjRIszMzLh586Zq2ciRI/Hz81N9rgU/Ax0dHebMmUO7du0wMTEhMDCQY8eOcevWLUJCQjA1NaV+/fpq7xMeHk7Hjh1xdHTEzMyM2rVrs3v37iLbHB0dze7du+nQoYPG1zMyMujWrRu7du3i4MGDLwycRUREcPToUSZMmEBAQACrV69We33Tpk10796dQYMG4ePjQ6VKlXjnnXeYOnWqWrkOHTqwbNmyIt+rONTzqETfGq3YcOUQn2+bzbUnkYwL6YOtiaXG8n72HnxQrxMHws8xfsuvzDq8Cm9bVwbXzfv8Ah29OHb3Ml/vXsiknXOJTklgQtO+WBubl3h78lu4aiVL161l3LDhLJz1M7Y21gz/7FNS8u27BaVnZODm5MyIgQOxtbbRWCYtPR3f8t6MGza8pKquUU03f7pVbcb2a8eZtmcht6LvM7xRV62f68oLexi/+TfV49Otv5OckcbZ+9cLlbUxsaBzUAg3n94r6WYUYti2JYat3iJt8XKSJn2LIiEBs3GjwchQ6zoG9etg1K0T6eu3kDRhCqlzF1Oubk2MunVSldExMcH8P5+gzMkh5YdfSPp0CmnLVqMs4vsvDqcOHmPln4to0+Nt/jNrGj6VA/h50nfEPonWWP7mlWsEVg9i5JRxfPbfr/CvUpFfv/yByPAIVZnsrGxm/ucbYh4/5f3PRvPlHz/Qd9RgrGw176PFraqLLx0qN2b3zdP8dHA5t2MfMrhue6yMzbSu07dma3zt3Fl5YS/f7VvMkrM7eJKcNxZmdVc/2gQ2YNeNk3y/729WXthDVRdf2gTWL7F2LFy2lKUrVzJuzBgWzvkDWxsbhn80tshjwsXLl/lsyhTatAxl2dx5tGkZyoTJk7ic74ZHYlISg0YMR19Pn/9+/z2rFi5izLDhmJvlfj7p6elcu3GTwf368/effzF96ldE3r/H2M8+LbG2Pnf28AnWzVtKy27t+eTHL6lQ0Y/ZU38k9mmMxvKGRoY0btOcUV9/xqc/T6Nltw5sXbKGozv2l3hdX5exgSG3Yu7z48HlpV2VFwo/dYVjK3dQvU0jOv3nPZx8PNj+81KSYxOKXK/bl8Pp/f1Y1cPCofAxICkmnhOrd+Hk41FS1X8pl4+dZfuitTR+uyXvfzMOD/8KLPn2dxKiY4tcLz01jfW/Lca7st8bqql2N09e4vDybdRq04TuX3yAs58nm/67mKSY+CLX6/3VaAbMGKd6WDraql7LzszCwt6a+l1aYGKp/RhaUmq4+tG5Sgg7rp/gu31/Ex7zgA8adNJ6LbH64j4+2zpb9Zi47Q9SMtM49yDvmr6cnj7RqQlsvHKYhPTkN9UUlVunLnFkxTZqtG1Cty8+wNnXky2z/n7h9/TO1FH0/+ET1SP/9/TwegS+darQ8aN36TxhCOY2lmz+aRHJcYkl3JoyRqksm4//pyR4Jt4ofX19+vXrx4IFC1Dm+8dbtWoVmZmZ9O7dm0uXLhEaGkrnzp25ePEiK1as4PDhw4wYMULjNpVKJW+//TaxsbEcOHCAXbt2ER4eTo8eeXf6tmzZQufOnWnbti3nzp1jz5491KpVS+P2FAoFnTt3Rk9Pj+PHjzN79myN3SDNzc1ZsGABV69e5b///S9//vknP/30k+r1lStXMmnSJL7++mtOnz6Ns7Mzv/3220t9TpMnT+aXX37h6NGj3Lt3j+7duzNz5kyWLl3Kli1b2LVrFz///LOqfFJSEh9++CGnTp1i9+7dKJVKOnXqhEKR2ye9X79+tGnTht69e5Odnc327duZM2cOS5YswdTUVGs9pk6dSr9+/Th//jwBAQH06tWL999/n08//ZTTp08DqH0vycnJtGnTht27d3Pu3DlCQ0Np3749kZHas0wOHz6sCs4VlJycTNu2bbly5QpHjhzRWKagefPm0bZtWywtLenTpw9z585Ve93JyYnjx49z9+7dIrdTp04d7t2798Jyr6t1QH323z7L/vCzPEyM5u+z24lJTaC5r+b908fWjacp8ey4cYKnKfHceBrJ3lun8bZxUZX57ehadt88xd34KB4lRvPXyY3o6uhQycm7RNuSn1KpZNm69bzbsyfNGjXCx8uLKR99THpGBtv37dO6XiV/f0YPGUJoSAjlDAw0lmlYuzbDBgygWaNGJVV9jd7yrcXRiEscibhEVFIsqy7uIy41iWDvahrLp2dnkpiRonp4WjthUs6IY3cvq5XTQYd3a7dlc9gRolOK/uFWEgxD3yJ94zayTp9H8eAhqX8sRKdcOcrVr6N1HX0fb7JvhpN17BSK6BiyL4eRefwU+uXzfiwatmuJIjaWtL8WkXM7Irfc1esotASxisvudVtp2DKERqFNcfZwpcd7/bC2s+XAVs2B/B7v9SO0a3u8/Crg6OpMp/49cXBx4uKJvCEEjuzaT0pSMsMmjsWnoj+2Dvb4VArA3Vtzlkpxa+JdjZORVzkZeZUnyXFsvHKI+LRk6nsGaSzvb+9BBVtX/jqxkZvR94hLS+Je/GPuxkWpynhZOxMR+4hzD24Ql5bEjaf3OP/gJm6WjiXSBqVSybJVq3i3b1+aBTfBx9ubKZ9+lntM2F34BtVzy1avom7NWrzbpw9enp6826cPdWrWZOmqVaoyC5cuwdHegUmffkrlwIq4ODtTp2ZN3FxdATAzM+O3H3+kRbNmeHl4EFSpEp+MGk3Y9etEFbjRVtz2b9hBvebB1G/RBCd3FzoP7o21nQ1Htu/VWN7N25OawfVw9nDF1tGe2iENCKgeRPjVwkH3suZ45BX+PLGRA7fPl3ZVXujS7mP4N6xOQKMaWDvbU79HKGbWllw9cLrI9YzNTTGxNFM9CmbMKxQK9s1dR432IZjbv9rYs8Xt+JZ9VG9ajxrNGmDv6kSr/l2wtLXm1K7DRa63+a8VVG5YCzdfrzdT0SKc33WUwEY1qBhcCxsXBxr3bIO5tQWX958scj1jC1NMLc1Vj/zfk2N5Nxp2a4VvnSro6b/5TlhNfWpyLOIyx+5e5nFSLGsv7ScuLYlG5atqLJ+enUlSRqrq4WHtiLGBEcfzXUtExj9mw+WDnH1wneyckskcLsqFXUcJaFSDio1rYu1sT6OebTCztuDKgVNFrmdsYYqJpbnqkf97aj6kK5Wb1sHOwxlrZ3ua9OuIUqnkQdjtkm6OEFpJ8Ey8cQMHDiQiIoL9+/erls2bN4/OnTtjbW3N9OnT6dWrF2PGjMHX15cGDRowa9YsFi1apDFza/fu3Vy8eJGlS5dSs2ZN6taty+LFizlw4ACnTuUetL/++mt69uzJlClTCAwMpGrVqlq7OO7evZuwsDAWL15MtWrVCA4OZtq0aYXK/ec//6FBgwZ4eXnRvn17PvroI1auXKl6febMmQwcOJDBgwfj7+/PV199RcWKFV/qM/rqq69o2LAh1atXZ9CgQRw4cIDff/+d6tWr07hxY7p27cq+fAGIbt260aVLF3x9falevTrz5s3j0qVLal0R58yZw6NHjxg1ahQDBgxg0qRJL8zievfdd+nevTt+fn6MHz+eiIgIevfuTWhoKIGBgYwePVrte6xatSrvv/8+QUFB+Pr68tVXX+Ht7c3GjRu1vkdERASOjo4au2xOnTqV8+fPc+jQITw8XnwHV6FQsGDBAvr06QNAz549Vdlyz02aNAkrKyu8vLzw9/dnwIABrFy5UhVofM712Y+uiIiIF77vP6Wnq0d5GxcuPQpXW34pKhxfO3eN69yMvoeNiQVVXXwBsDAypY57Rc4/vKmxPIChngF6OrqkZKQVX+Vf4EFUFDFxsdSrUVO1rFy5ctQICuJi2NUi1iyb9HR08bBy4urjCLXlYU8i8LZ1faltNPAK4tqTu8Smqt81bRvYgOSMNI5GXCqu6r40XXs7dK0syb6c15WP7Gyyr99E31d7sDX7xi30vTzQ8/ZSbcegamWyLuRdzBtUr0r2nUhMRgzB4pfvMZv6GeVCSjbgmZ2VTeStO1SsXkVtecUaQYSH3XipbSgUCtLT0jE1z7uxcPHEGbwDfFn623w+7j2UKcPGsXXFehQ5JT9orp6OLq6WDtwo0JX7xtNIvGycNa5Tyak89+Kf0LRCTSY2f5fxTfvQrmJD9HX1VGXuxD7EzcoBd6vcYJmNiQUBDp6EPYkokXY8ePSImNhY6tXKO++UK1eOGlWrcvHyZa3rXbxyhboFzlX1atfh4pW8dQ4eOUJggD/jv/iCFh070GvQINZt2lRkfZJTUtDR0cHMrOQyT7KzsrkXHoF/NfXu2/7VKnPn2i0ta6m7f/sud67dxEdLt2Px6nKyc4iOfIRrRfXui64VvXkcXnT279qv/uDvT35ky4+LeHi98Lio5zYfxMjchIBGb6Y7tzY52dk8vHOPClXU9xvvKgHcv6F9PNdz+48T9ziakC6tSrqKL5STnc3Tuw/xqOSjtty9kg9RL/ieVnz5G/M/+o71P8zn/rWyE2zR09HF3cqRa0/Ub8xee3yX8rYuWtZSV8+zMtef3CUuLakkqvjKcr+nR7gX+H/K/Z6KHqJh1Ze/s/Dj79k4Yz4PXvA9ZWdmocjJwdDU+LXrLMQ/JWOeiTcuICCABg0aMG/ePJo2bUp4eDiHDh1i586dAJw5c4Zbt26xZMkS1TpKpRKFQsGdO3cKZR+FhYXh7u6Ou3tesKFixYpYWVkRFhZG7dq1OX/+PEOGDHmp+oWFheHh4YGbW16f+vr1C3djWb16NTNnzuTWrVskJyeTnZ2NhYWF2nYKDlhfv359taCXNlWq5P3wc3R0VHUNzb/s5Mm8u26RkZFMnTqVEydOEB0drQoERUZGUrly7kW7tbU1c+fOJTQ0lAYNGjBhwoRXrgdAUFCQ2rL09HQSExOxsLAgJSWFKVOmsHnzZh4+fEh2djZpaWlFZp6lpaVhZGSk8bWWLVuye/dupk2b9lIzge7cuZOUlBRat24NgJ2dHS1btmTevHmqAKizszPHjh3j8uXLHDhwgKNHj9K/f3/++usvtm/frgriGRvnnpxTtXQnysjIICMjQ22ZoaH2bm6amBuaoKerS0K6epfkhLQULJ01/6C7GX2P346uZWTDrhjo6aOvq8eZ+9dYeHqr1vfpWa05sWlJXI56cxeQMXG53UJsC8z6amttzaPHT95YPYqLmaExerq6JBX4rpLSU7B01J69+ZyFkSmVHL2Zd3Kz2nJvW1caeAXx9Z6FxVrfl6VjmXvMUiSoB/QUCYno2mnvkph14jRpFmaY/edjQAcdfT0y9hwgY/MOVRldezsMmwWTsX03KZu2o+fthXGf7iizssg6cqJE2pOcmIRCocDCSr3bs7mVJYlxL5fVt2vdFjLTM6jZuJ5q2dOoJ8Q8vkrdkIaMnDyOJw+jWPb7AhQ5Ctr16lzE1l6fabln+16G+rEoKSMNc0MTjevYmFhS3saZbEU2C05vxbScEZ2DQjAxMGLlhT0AnH94E9Nyxgxv2AUdcoP5RyMusu/WmRJpR0xsbjdFWxv1/crW2oZHj6M0rfJsvViNx5GY2LyuZw8ePWLNhg307tadd/v04cq1MH6Y9V8MDAxo16pwECAjI4Nf/phDq+bNMSsi+/p1pSQ93x8t1JabW1qQ9IL98YtBH5KckIRCkUPrHm9Tv0WTEqvn/zfpyakoFUpMLNS/e2NzU9ISNQ8RYmJpRuM+7bDzdCYnK5ubJy6x5afFtBvbH2e/3AzUqFuRXD9yjs4T3y/xNrxIamIKSoUCM0v1roBmluaEJ2gOusQ8esKeZZt4d/JodPX0NJZ5k3K/JwXGFurXQ8YWZqRqaYOJlRkh/Tri4OlCTnY2149dYMOMBXT6ZKDW8bfeJNPn1xIZBa4lMlKx0HI8z8/C0JSKjuWLvOZ7055/TyYFvydzU1ITNHchNbE0p0nfDtg/+55uHL/Axh8X0vHjd7V+T8fX7MLUygK3im+uF0VZoFT8/+0iWRZJ8EyUikGDBjFixAh+/fVX5s+fj6enJ2+99RaQe9f//fffZ9SoUYXW05R9pFQq0dHRKXL580DIy1Bq6MddcPvHjx9XZbKFhoZiaWnJ8uXLmTFjxku/T1EM8nVX09HRUXv+fFn+TKl27dpRvnx5/vzzT1xcXFAoFHh5eZGZmam23sGDB9HT0+Phw4ekpKSoBfteph7alj2vyyeffMKOHTv44Ycf8PHxwdjYmK5duxaqR352dnbExcVpfO2tt95i1KhRdOzYkZycHLWuqprMmzeP2NhYtQkCFAoF586dY+rUqejluxisXLkylStXZvjw4Rw+fJjGjRtz4MABmjZtCkDssx9m2iZS+Oabb5gyZYraskmTJsE/GCJEifo+p6MDaDlXulrY069ma9ZdPsDFR+FYGZvRq1pLBtZpx58nCmf4tQtsSH3PIL7as4AsRbaGLRaPbXv3Mm3Wf1XPZ36ZO4Zcwf/M3P/LEqtGidNwdCj0/WlS37MyaVnpXMiXIWiob8C7tduw5OwOUjLfTFagQf06mLzbS/U8ecavuX8UPO7p6GjdBwH0A/wwat+atIXLyA6/g56jA8Z9uqOITyBjw7OLel0dcu7cJX31BgBy7t5Dz9UZw7ealFjwLK/+BZ4rNSzT4OT+o2xespZhE8eqBeCUCiXmVhb0GTkYXT1dPH29iY+NY+eaLSUePNOmqP+j58fmpWd3kp6de/zdeOUw/Wq1Zu2l/WQrcqhg68pbvrVYe2k/kXGPsTO1pGPlYJqnp7L7ZtFdbV7Gtl07mZbvnDjz2+801lvbObxAg9TXQX0dhUJBRX9/hj+bMTrAz4/bdyJYs2FDoeBZdnY2n305BYVCwfgPx75qs/4hDTvkC5o8etpnZKSlE3EjnE2LV2Hn7EjN4HpFryRKjJWTndrEAI4V3EmJTeDirmM4+3mSmZ7Bvnnrady3HUZmLw6CvDkF/neUmvc9hULB2l8WEdK1NbbODm+obi+n0OFBqdR6ALR2ssfaKe+6zamCB8mxCZzbcbhMBM+e+6fhkLqeFUnLyuDiw5fLXH2jNHwl2o7t1k52WOf7f3r+PZ3feUTj93Ru+yFunbxEx0/eRV/LkB5CvAkSPBOlonv37owePZqlS5eycOFChgwZojrA1qhRgytXruDj4/OCreSqWLEikZGR3Lt3T5V9dvXqVRISElRZalWqVGHPnj28++67L729hw8f4uKSm0J97NgxtTJHjhzB09OTzz//XLWs4NhYgYGBHD9+nH79+qmWHT9+/KXa9CpiYmK4dOkSv/32G3Xr1gXgwIEDhcodPXqU77//nk2bNjFhwgRGjhzJwoXFm+1y6NAhBgwYQKdOuYOGJycnv7DbY/Xq1YmKiiIuLg7rAtkFAC1atGDz5s20b98ehULBL7/8ovFkHBMTw4YNG1i+fDmVKuXNSqRQKGjcuDHbtm2jXbt2GuvwvDtt/kkpLl++jIGBgdq28vv0008ZO1b9h5ehoSED13xTZHvzS8pIJUehwMpI/W6dhZGp1gFfO1RqxI3oSLaEHQXgXvxj5mdvYVKLgay6sJf4fOu1CWhAh0qN+WbvIu7Fl+y4PsH16lE5IG/2uMzM3MkzouPisLPNGwA2Nj4eGw3fc1mXnJFGjkKBhZF6poK5kQmJ6S8eAL+BVxAnIq+So8wLetubWmNnasUHDfKCL8/37V86fcTknXOJTokvngY8k3XuAknh+brsGOReBuhaWZKTL/tM18IcZaL2QXmNurQn8+gJMg8cAUBx/yEYlsPk3T5kbNwGSiXK+ARyCszYmfMwCoNaJTejsplF7pgpBbPMkhISCmWjFXTq4DEWzfqD9yeMJrC6+lhiljZW6OnpoauX173c2d2VxLh4srOy0TcoucuplMzcfa9glplZOeNC2WjPJaWnkJCerAqcATxJjkVXRwcrYzOiUxII9a/H2fvXORmZ2406KimGcnoGdK3alD03T/3jH3fPBTdsROXAvKEKMp9NqBMdE4udbd6Pptj4uCKPCbY2NmpZZgCxcerHETtbW8oXmMW3vKcnew+qnwuzs7OZMGkSDx894vefZpZo1hmAqfmz/TG+4P6YhPkL9kdbx9wAgIuXO0nxiWxfvl6CZ8XEyMwEHV0dUgtkmaUlpWBs8fL7hIO3G7dO5Ha3T3oaR3JMPDt+zZss4fnN2L8+mEr3L4djYf9mJhgBMLEwRUdXl+QCWcUpicmYWRQemD4zLZ2HtyN5FHGfrQtyJ1pSPhsY/MveY+j76TDKv+EJBHK/J91C2UtpSSmFspyK4ujtxo3jZWPW15Tn1xKGBa4lDE1I1HI8z6+eZ2VO3VO/lihtRX1Pr/L/5OjtrvF7Or/jMGe3HqL92P7Yujm9dn2FeB0SPBOlwszMjB49evDZZ5+RkJDAgAEDVK+NHz+eevXqMXz4cIYMGYKpqSlhYWGFBsl/rnnz5lSpUoXevXszc+ZMsrOzGTZsGE2aNFFNCjBp0iTeeustKlSoQM+ePcnOzmbbtm2MGzdO4/b8/f3p168fM2bMIDExUS1IBuDj40NkZCTLly+ndu3abNmyhXXr1qmVGT16NP3796dWrVo0atSIJUuWcOXKFbXul8XBysoKGxsbZs+ejZOTE3fv3i00wUFSUhJ9+/Zl5MiRtG7dGg8PD2rVqkW7du3o1q1bsdXFx8eHtWvX0r59e3R0dJg4cWKhscQKql69Ovb29hw5ckRrcKtZs2Zs2bKFdu3aoVQq+fXXXwsF0BYvXoytrS3dunUrNH5au3btmDt3Lu3ateODDz7AxcWFZs2a4ebmxqNHj/jqq6+wt7dX65576NAhGjdurDVr0dDQ8JW7aRaUo8jhTuxDKjtV4PT9a6rlQU4VOJPveX7l9AxQFLhoUj3P95m0DWzA25WC+W7f39yJffha9XwZpiYmmObL+FMqldha23Di3FkCngXCs7KyOHvpEiMHDirx+hS3HKWCyPgoAh081bLHcp8XfQfY184dBzPrQmOaRSXFMHWX+lTt7Ss1wki/HKsu7CUuVXvw6h9Lz0CR/lRtkSI+Af1KgeTcfTaGjJ4e+v6+pK1cp2EDz5QrBwW7EigUanees2+Go+esPvi8rpMjihjNswwWB30DfTx8yhN27hLVG+SNkxV27jJV69XUut7J/UdZ9N85DB43gqA6hccqqlDRj1P7j6JQKFTHl8cPHmFpY1WigTPI3fceJDzBz95dreu1n72H1q7Yd2IfUcXFh3J6BmTm5Aat7E2tUCgVxKfl/sApp6dfKGtSoVSggw65X+Trhc80HhNsbDhx+jQBfrk/wrOysjh74QIj39feza1KpUqcOH2K3t27q5adOHWKKpXyxhGrWjmIu5HqYyDdvX8PZ8e8/e954CzywX3mzPwvVpZFB6+Kg76BPu4VvLh+/ora/nf9/BWC6r7CmFhKJdkFZvMW/5yevh52Hs48CLtN+ep5Y4I9CLuNZ1X/ItZUF3MvCuNnszVaOtnR5Qv1oTpOb9hHVnoG9Xu0wtS65Pe3/PT09XEp787ti9cJrJ03EP3tS9fwr1l4ohFDYyM++F59OI9TOw9z5+oNuo8ZiJW9baF1Spqevj72ni7cuxqOd428QPy9q+GUr/byYwBG33uEidWbnW1cmxylgnvxjwlw8ODio7xrB38Hz0Lj3xbkY+eGg5k1f0VoHyOyNOR+T87cD1P/nu5fDcfrVb6nyEeYFOhmfG7HYc5uOUDb0f1w8Hq58WX/df4fz2xZFsmEAaLUDBo0iLi4OJo3b67WHbNKlSocOHCAmzdv0rhxY6pXr87EiRNxdtY8MLKOjg7r16/H2tqa4OBgmjdvjre3NytWrFCVCQkJYdWqVWzcuJFq1arRrFkzTpzQ3G1IV1eXdevWkZGRQZ06dRg8eDBff/21WpmOHTvy4YcfMmLECKpVq8bRo0eZOHGiWpkePXrwxRdfMH78eGrWrMndu3f54IMP/unHpZWenh4rVqzg7NmzVK5cmbFjxxbqPjp69GhMTU1V435VqlSJ7777jqFDh/LgwYNiq8tPP/2EtbU1DRo0oH379oSGhlKjRtFZJnp6egwcOFBtjDtNQkJC2Lp1K4sXL+aDDz4o1L123rx5dOrUSePEA126dGHz5s08fvyY5s2bc/z4cbp164afnx9dunTByMiIPXv2YJsvQ2rZsmUvPU7e69h27RhNK9SgiXd1XCzs6FMjFFsTS/bczJ3xq0fVtxhav5Oq/LkHN6jlHshbPrWwN7XGz86dfjVbcyv6PvHPBo9tF9iQblWa8ceJDTxNicfSyAxLIzMM9cuVeHue09HR4Z1ObzN/+XL2HTnCrYgIJs/4ASNDQ1o96xoL8MX07/ll3jzV86ysLK6Hh3M9PJys7CyeRsdwPTycew/z9tPUtDRVGcidnOB6eDhRT0p2LLU9N0/TsHwV6ntWxsnchq5VmmJtYsGhO7l3SjtWakz/Wm0KrdfQK4g7MQ95mKg+y2S2IoeHidFqj7TMDNKzM3mYGP3G7ixn7NiDUftWGNSshq6rCybv9UeZmUnmsbxxFU3eG4BRt7fz6n7+EoZvBWNQtxa6drboVwrEqEsHss5dVF3oZWzfg14Fbwzbt0LXwR6D+rUxbNqIjN2FM2OLU/NObTi8cx9Hdu7nUeQDVv6xmNin0QS3yR0aYN2C5cyfkTfz8cn9R5n/4+90HdSH8v6+JMTGkxAbT1pKXhZAkzYtSE5KZsWcRTx+8IhLJ8+xbeUGQtq2LNG2PHfg9nnqeFSitnsgDmbWdKjUCCtjM9Vsa60D6tOzWgtV+XMPbpCamU6Pam/haGaNt40L7So25GRkGNmK3JnYrj6+Q33PIKq5+GJjbIGvnTutAupxJerOS3VFflU6Ojq8060b85f8zb6DB7l1+zaTv/km95jQPK/uX3z9Nb/8MUf1vGfXrpw4fZoFS5cQcfcuC5Yu4cSZ0/TKd+OnV7duXLp6hXmLF3Pv/n2279rFuk2b6PYsCzo7O5txX0wk7Po1vvrPRHJycoiOiSE6JoasEg5KhXQM5fjuAxzffZCoew9ZO3cpcdExNAzNPQ5uWryKv2f+oSp/aOtuLp88x5OHUTx5GMXxPYfYu2E7tUIalGg9i4OxgSG+dm742uWOGetiYYevnRuOZmUv2zioeX2uHz7L9SPniHv0lGMrd5Acm0BgcG6Q8+S6Peybv15V/tLu40Scv0bC4xhiHz7h5Lo93DkbRqWQ3CC9voE+Nq4Oao9yJkYYGBli4+qAnv6bH0OsXtumnN13jHP7jvH0QRTbF60lITqOWs1zJ27ZvWwj635bDICOri4O7i5qD1NLM/QNDHBwd6Gc0evdLPynqrVowNVDZ7h6+AyxD59wePlWkmITqBSSOxv0sTU72T13tar8hV1HuX3uKvGPY4h58Jhja3YSfuYqQU3rqsrkZGfzNPIRTyMfkZOdQ3J8Ik8jHxH/uORu7OS379YZ6nsFUc+zEo7mNnQOaoKNiTmHn11LtK/YiL41C4/VWN+zMndiH/EoqXA9cyeWscfV0h59XT0sjc1xtbTHztSqpJsDQNUWDQg7dJaww2eJe/SUIyu25X5PTXL/P46v3cWeuWtU5S/sPsqdc2HEP44h9sETjq/dxe2zVwlqlvc9ndt+iJPr9xDS/20s7KxITUgiNSGJrPSMQu8vxJsimWei1NSvX1/j+GIAtWvXVk0goEnBroAeHh5s2LChyPfr3LkznTtrHpum4Pb8/Pw4dOiQ2rKCdf3+++/5/vvv1ZaNGTNG7flnn31WaFbP7777TmsdQ0JCCr3PgAED1DLzACZPnszkyZNVz5s3b642s2bB+s7LF5x4btSoUWrjyhX8DArWw8vLq9CygvX18vJi7969amWGDx9e6L0LGjNmDJUqVeLu3bt4enpqrA9AcHAwSUl5g8Tmn+nz4sWLWrffuXNn1Q+kLl260KVLlyLrs2XLFvT09OjatesL6/66jkdewczQhE6Vm2BlbMb9hCdM37+E6NTcbj5WxubYmuTdsT545zxGBuVo6VeH3jVCSc1M58rjOyw/v0tVprlvbQz09BnTuIfae625tJ+1l/aXeJue69+tOxkZmXz7yy8kJSdROSCAX6Z9o5aNEvXkKbo6eQHPpzEx9B4+TPV88ZrVLF6zmhpBVfhj+nQArt64wdDxeVmjPz37od2ueQsmf/xxibXnzP3rmJYzpm1gAyyMTHmUGM2vR9aoZs+0NDLDxkT9rqmRfjmqu/qx8sJeTZssEzK27ESnXDmM+7+DjokJObfvkPz9LMh3gapra6N29zN9w1aUSiVGXTuga22FMimZrHMXVeObAeTcuUvKrNkYd3sbo45tUURHk7ZkFVn5gnIloXZwfVISk9mybC0JsfG4eLoxYso4bB1yu8ElxMYT+zTvx8eh7XtQ5OSw7Pf5LPs9LxOw/lvBDBibm0liY2/L6KkTWPXn33w5fAJWttY069CKVl07lGhbnrvw8CamBka08KuDhaEpUUkxzD2xSTXbmoWRKdbGed2YMnOymHN8A50qBzM6uAepmelceHiLbdfyhiDY/axrZquAelgamZGcmcbVqDtqZYpb/3d6kZGRwbc//UhScjKVAwP55YcZBY4Jj9HVzUthrFo5iK+/mMTvc/9i9ty5uLm48M3kyVTON3t1pcBAfvgqN+j216KFuDg58dGIkbRukRvcfPL0KQeP5HYx7jVooFqdZs/8L7Wql9zMiDUa1SUlMZkdKzaQEJeAs4cr708ci41DbtfVxNh44vLtj0qFkk1/ryb28VN09fSwc3Kgfd9uNAgNKbE6FpcAe09+6ZQ3nMGoRrkBzq1hx/h6b+lMiqJNhdqVyEhJ5eyWg6QmJGPj4kCrEb0wt7UCIDUhmZTYvO62ipwcTqzeRUp8EvoG+li52BM64h08gnxLqQUvVrl+DdKSUjiwdgfJ8Qk4uDvTe/xQrJ51H02OTyQhWvOYs2WFb50g0lNSOb1pPykJSdi6ONJ+dF8s8n1PSTF531NOdg5HVu4gJT4RfQMDbFwdaDuqL15V8rqcpsQnsfLLvBso53cc4fyO3LG2Oo0r+cz4sw9uYFrOmFb+9Z5dS8Tw+9F1quO5pZEp1saFryWqufiy5tJ+jdu0NDZjQrO+qufNfWvR3LcWN5/eY9bhVSXVFBWf2kGkJ6dxZnPu92Tj4kDbUX3y/p/ik0jO//+UncPRVXnfk7WLPW1G9cEzKO97urL/FIrsHHbOXqH2XrXah1C7Q7MSb5MQmugotUUvhBDiDdqwYQM2NjY0bty4tKvCypUr8fT0VI0h9yp6L51c/BUqRUt6TSbpTkRpV6PYmZf34oM100u7GsXq9y6fEN9v6IsL/g+xWjSb/SU0+2NpCfGpycebip785H/ND+1HkhRVsuMqvmnmTo5sDyu5QGJpaBVYn4a//ruOEQBHhs/mh/1FZ6//r/k4pDdLz+54ccH/Ib1qhDLr0MrSrkaxGtW4OyPX/Vja1ShWP3cay8yDK15c8H/ImOAeLy5URiWeKpvXQBa1tQ+F8W8mmWdCiDKhY8eOpV0Fle75xtYRQgghhBBCCPH/m4x5JoQQQgghhBBCCCGEFpJ5JoQQQgghhBBCCFGWFJzZXJQqyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCiFIVFxdH3759sbS0xNLSkr59+xIfH6+1fFZWFuPHjycoKAhTU1NcXFzo168fDx8+VCsXEhKCjo6O2qNnz56vVDcJngkhhBBCCCGEEEKUJUpl2XyUoF69enH+/Hm2b9/O9u3bOX/+PH379tVaPjU1lbNnzzJx4kTOnj3L2rVruXHjBh06dChUdsiQITx69Ej1mDNnzivVTcY8E0IIIYQQQgghhBClJiwsjO3bt3P8+HHq1q0LwJ9//kn9+vW5fv06/v7+hdaxtLRk165dast+/vln6tSpQ2RkJB4eHqrlJiYmODk5/eP6SeaZEEIIIYQQQgghhHihjIwMEhMT1R4ZGRmvvd1jx45haWmpCpwB1KtXD0tLS44ePfrS20lISEBHRwcrKyu15UuWLMHOzo5KlSrx8ccfk5SU9Er1k+CZEEIIIYQQQgghRFmiUJbJxzfffKMak+z545tvvnnt5kZFReHg4FBouYODA1FRUS+1jfT0dCZMmECvXr2wsLBQLe/duzfLli1j//79TJw4kTVr1tC5c+dXqp902xRCCCGEEEIIIYQQL/Tpp58yduxYtWWGhoZay0+ePJkpU6YUuc1Tp04BoKOjU+g1pVKpcXlBWVlZ9OzZE4VCwW+//ab22pAhQ1R/V65cGV9fX2rVqsXZs2epUaPGC7cNEjwTQgghhBBCCCGEEC/B0NCwyGBZQSNGjHjhzJZeXl5cvHiRx48fF3rt6dOnODo6Frl+VlYW3bt3586dO+zdu1ct60yTGjVqYGBgwM2bNyV4JoQQQgghhBBCCPE/Sako7RoUCzs7O+zs7F5Yrn79+iQkJHDy5Enq1KkDwIkTJ0hISKBBgwZa13seOLt58yb79u3D1tb2he915coVsrKycHZ2ful2yJhnQgghhBBCCCGEEKLUBAYG0qpVK4YMGcLx48c5fvw4Q4YMoV27dmozbQYEBLBu3ToAsrOz6dq1K6dPn2bJkiXk5OQQFRVFVFQUmZmZAISHh/Pll19y+vRpIiIi2Lp1K926daN69eo0bNjwpesnwTMhhBBCCCGEEEIIUaqWLFlCUFAQLVu2pGXLllSpUoXFixerlbl+/ToJCQkA3L9/n40bN3L//n2qVauGs7Oz6vF8hs5y5cqxZ88eQkND8ff3Z9SoUbRs2ZLdu3ejp6f30nWTbptCCCGEEEIIIYQQZYlSWdo1eONsbGz4+++/iyyjzPe5eHl5qT3XxN3dnQMHDrx23STzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIsUfz/67ZZlknmmRBCCCGEEEIIIYQQWkjwTAghhBBCCCGEEEIILaTbphBCCCGEEEIIIURZolSUdg1EPpJ5JoQQQgghhBBCCCGEFjpKpVJGoRNCCCGEEEIIIYQoIxIPHC7tKmhk0aRRaVehVEi3TSGEKEb7b50p7SoUqxCfmiQ9fFja1Sh25i4uLDq1tbSrUaz61W5T2lUoEWfuhZV2FYpVTfdAZhxYVtrVKFYfNXmntKtQIpLCrpd2FYqVeaA/P+xfUtrVKHYfh/Sm4a9DS7saxerI8NksPbujtKtRrHrVCC3tKpSIidv/KO0qFKuprd5j85WyGbD5p9pV+h8O9EieU5ki3TaFEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKFdNssSyTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS5SK0q6ByEcyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEoXMtlmWSOaZEEIIIYQQQgghhBBaSPBMCCGEEEIIIYQQQggtpNumEEIIIYQQQgghRFmilG6bZYlkngkhhBBCCCGEEEIIoYUEz4QQQgghhBBCCCGE0EK6bQohhBBCCCGEEEKUJdJts0yRzDMh/octWLCAbdu2lXY1hBBCCCGEEEKIfy0JnokS4+XlxcyZM9/o9nR0dFi/fv1rvc/kyZOpVq3aK62zf/9+dHR0iI+Pf633fhVr167l+++/p169ev9o/QEDBvD222+rnoeEhDBmzJgi1ymu73Tv3r0EBASgUChee1sl4cmTJ9jb2/PgwYPSrooQQgghhBBCiFIm3TZFIe3btyctLY3du3cXeu3YsWM0aNCAM2fOUKNGjTdar1OnTmFqavpG37Osun37Nv/5z3/Ytm0b1tbWxbLNtWvXYmBgUCzbepFx48bx+eefo6ubG79fsGABY8aMUQs+hoWF0aJFC+rUqcOyZcswNDRk3759TJ8+nRMnTpCWloaXlxetW7dm7NixuLq6qr2Hv78/d+7c4c6dO4Veu337Np9//jkHDhwgNjYWOzs7atasyfTp0/Hz88PBwYG+ffsyadIk/vrrrxL/PPZv3sXOtZtJiI3HxcOV7u/1w7dygMayZ4+c5ODW3dy7fZfsrGycPV1p36sLlWpWVSuXmpzC+kUrOXf0FKnJKdg52tN1cG+CalcvkTYolUr+WLiQdZs3k5SURKXAQMaPHk2F8uWLXG/PgQPMnj+f+w8f4ubiwrBBg2jauLHq9fY9e/Lo8eNC63Xr2JHxz4K9ew8eZO2mTYTduEFCYiJL/vwTfx+fYm3fc6d3Heb41n0kxydi7+pEiz5v4xFQ4YXr3btxm8Vf/Yq9mxNDpn2iWn5u3zEuHTrF0/tRADiVdyOke1tcK3iWSP3/v9i1YSubV60nPiYOVy93+g0bREBQJY1l42JiWTJ7PnduhhP14BGhndrSb9jgQuW2rdnI7k3biX4SjbmlOXUbN6DH4L6UK1eupJsDwJX9J7m44yipCUlYuzhQv0crnH017ycPr99h84yFhZZ3nzIcK2f7QstvnbzE3r/W4FnVn9Dh7xR73f+/USqV/LF8Get27iQpJZlKvn6Mf38oFTw8tK4THhnJ7KVLuBYezqOnTxg7cBC9OnQsVO5JTAw/L1rA0bNnSc/IwNPFlYkjRhJYQsc8gKv7T3Fh5zHSnu179bq3LGLfi2DLj4sKLe82ZRhWTnaFloefuszev9biWdWflsN6FHvdX1dVZx96VW9JgIMHdqZWTNj6O4fuXCjtar20UzsPcXTzHpLiE3FwcyK0Xxc8X+KcFXn9Ngu+nIWDuzNDvx3/Bmr6/0sd94o0Kl8FM0MTniTHse3aMe7GRWktr6ejS1OfmlR18cHM0ITE9BQOhJ/j7IPrAFR09CLYuzo2Jhbo6egSk5rAkYhLXHh48001iSPb9rJ/ww4S4+Jxcnel48CeeFf001j2dthNtixazZMHj8jMzMTa3pb6LZvQpH1LVZnjuw5wev8xoiJzb2S7VfCkTe/OePh6v5H2lBllNNHg/ysJnolCBg0aROfOnbl79y6enuoXR/PmzaNatWpvPHAGYG9f+IL//ytvb2+uXr36UmWzsrJeKihmY2PzutV6KUePHuXmzZt069ZNa5lTp07RunVrOnbsyB9//IGenh5z5sxh2LBh9O/fnzVr1uDl5UVkZCSLFi1ixowZ/Pjjj6r1Dx8+THp6Ot26dWPBggV8/vnnqtcyMzNp0aIFAQEBrF27FmdnZ+7fv8/WrVtJSEhQlXv33XepU6cO06dPL7YApca2HjzGyj8X0WvYQCoE+nFw+x5+nvQdk3+fjo1D4R8aN69cI7B6EG/374GxqQlHdx/g1y9/YMKPU/Go4AVAdlY2M//zDeaWFrz/2Wis7WyIexqDobFxibVj4fLlLF21iknjx+Ph7s7cxYsZ/sknrFm0CFMTE43rXLxyhc++/JKhAwfStHFj9h06xIQpU5g7axaVK1YEYNHs2eTku3AIv3OH4R9/zFshIaplaenpVK1cmeYhIXz1ww8l1sarx8+x6+/1tBrQFXe/8pzde5Tl0//g/e8mYGmnfR9JT01j4+yllK/kS3JCktprd8NuUbF+Ddz8yqNvoM+xzXtZ9t1s3vt2PBY2ViXWln+zY/sOs+j3eQwc9T5+lQLYs2UH3306lelzf8bOsfB5JDsrC3MrSzr26sa2NRs1bvPwngMs/2sx7308Ar9KATy6/5DZ02cB0HfYoBJtD+QGGI6t2E6jXm1x9PEg7OBpts36m+6Th2Nma6V1ve5TR1DOyFD13Mi88A2opJh4TqzeiZOv9sCOeDUL161l6cYNTBo1Gg8XV+auWsnwSV+w5rffMDXWfDxMz8jAzcmJ5g0b8uO8uRrLJCYnM2jCeGoFBfHfiZOwsbTkflQU5iV4YzH81BWOrdxBw15tcKzgzrWDZ9n+81K6TR6GmY2l1vW6fTm8wL5XuN25+94unHzK7r5nbGDIrZj7bL12lGmth5Z2dV7J5WNn2b5oLW0HdsPd35szu4+w5NvfGf7DZ1jaab/mS09NY/1vi/Gu7FfonCVeX2Unb1oH1mfz1cNExj2mlnsgfWu25ufDK0lIT9G4To9qzTEzNGbd5YPEpiZgWs4YXZ28DmSpWRkcCD9HdEo82Yoc/B086VS5CSmZadyKvl/ibTp3+CQb5i+n85A+lA/04diOA/z51UzG/Xcq1va2hcqXMyxHwzbNcPF0o5yRIXfCbrJ69iLKGRpSv2UTAG5dvk71RnXwCvBB38CAfeu3MWfKj4z771QsbUvuulyIoki3TVFIu3btcHBwYMGCBWrLU1NTWbFiBYMG5f5QOHr0KMHBwRgbG+Pu7s6oUaNISdF80AeIjIykY8eOmJmZYWFhQffu3XlcIKNk48aN1KpVCyMjI+zs7OjcubPqtYJdBm/evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTX/gZbd26FT8/P4yNjWnatCkRERGFyrzq5/O8u+icOXNwd3fHxMSEbt26FeoKOn/+fAIDAzEyMiIgIIDffvtN9VpERAQ6OjqsXLmSkJAQjIyM+Pvvv8nJyWHs2LFYWVlha2vLuHHjUBYYgLJgt80nT57Qvn17jI2NKV++PEuWLClU5x9//JGgoCBMTU1xd3dn2LBhJCcnF/nZLV++nJYtW2JkZKTx9b1799KsWTPeffdd5s6di56eHvfv32fUqFGMGjWKefPmERISgpeXF8HBwfz111988cUXatuYO3cuvXr1om/fvsybN0+trVevXuX27dv89ttv1KtXD09PTxo2bMjXX39N7dq1VeWCgoJwcnJi3bp1Rbbnde1et5WGLUNoFNoUZw9XerzXD2s7Ww5sLZz5CdDjvX6Edm2Pl18FHF2d6dS/Jw4uTlw8cVZV5siu/aQkJTNs4lh8Kvpj62CPT6UA3L1LJptJqVSybPVq3u3Th2bBwfiUL8+UCRNIT09nu4YM1ueWrV5N3Vq1eLd3b7w8PHi3d2/q1KjB0jVrVGWsrayws7FRPQ4fO4abiws1q+Zl2rVt2ZIh/ftTp2bNEmnfcye27adaSF2qN62HnasjLft2wsLWirN7jhS53rZ5q6hUvwauPl6FXnt7WF9qtWiEk6crdi6OtB3cA6VCScSVN3e3+N9m65oNhLRqTtM2LXD1dKffsMHYOtixe9N2jeXtnRzpP3wwwS2bYmKqObBx8+p1/CoH0PCtJtg7OVKlVnUaNG3M7Ru3SrIpKhd3HcO/UQ0CGtfE2tmeBj1aY2ZtydUDp4tcz9jcFBNLc9XjebbvcwqFgr1/raFmh6ZYFBEAFi9PqVSybNNG3u3WnWb1G+Dj6cmU0WNIz8hg+8GDWter5OvL6AHvEto4mHL6mm94LVy7Bkc7OyaNGk1lPz9cHB2pU7Uqbs7OJdUcLu0+hn/D6gQ0qoG1sz31e4S+wr5npnpo2vf2zV1HjfYhmNuX3X3veOQV/jyxkQO3z5d2VV7Z8S37qN60HjWaNcDe1YlW/btgaWvNqV2Hi1xv818rqNywFm6+Xm+mov/PNPCqwtn71zlz/zpPU+LZdu0YienJ1PGoqLG8j50bXjbOLD6zndsxD4hPS+ZBwlPuxef9hoqIfUTYkwiepsQTl5bE8buXeZwUi6eV0xtp08FNO6nzVmPqtQjG0c2Ftwe9g5WtDUd37NdY3s3bkxqN6+Lk4YqNgx01m9THv1pl7oTdUJXp8+F7NGzdDNfyHji6OdP9gwEolUpuXgx7I20SQhMJnolC9PX16devHwsWLFALOqxatYrMzEx69+7NpUuXCA0NpXPnzly8eJEVK1Zw+PBhRowYoXGbSqWSt99+m9jYWA4cOMCuXbsIDw+nR4+8FP0tW7bQuXNn2rZty7lz59izZw+1atXSuD2FQkHnzp3R09Pj+PHjzJ49m/HjC6eVm5ubs2DBAq5evcp///tf/vzzT3766SfV6ytXrmTSpEl8/fXXnD59GmdnZ7VglCb37t2jc+fOtGnThvPnzzN48GAmTJigVuZVP5/nbt26xcqVK9m0aRPbt2/n/PnzDB8+XPX6n3/+yeeff87XX39NWFgY06ZNY+LEiSxcqN49Z/z48YwaNYqwsDBCQ0OZMWMG8+bNY+7cuRw+fJjY2NgXBoUGDBhAREQEe/fuZfXq1fz22288efJErYyuri6zZs3i8uXLLFy4kL179zJu3Lgit3vw4EGt3+u6deto27Ytn3/+OdOnT1ctf77vadu2lZWV6u+kpCRWrVpFnz59aNGiBSkpKezfv1/1ur29Pbq6uqxevZqcnJwi61qnTh0OHTpUZJnXkZ2VTeStO1SsXkVtecUaQYTnu4AoikKhID0tHdN8GSUXT5zBO8CXpb/N5+PeQ5kybBxbV6xHkVMyqd8PHj0iJjaWevm+13LlylGjalUuXrmidb2LV69St8C+UK92ba3rZGVlsXXXLjq0bo2Ojk7xVP4l5WRn8+jOfcpX9ldb7l3Zn/s3I7Sud+HACeIeRxPcOfSl3icrIxNFjgJjM81BHFG07Kws7twIp0qtamrLg2pW48bVa/94u/6VA7lzI5xb13L/Lx8/jOL8ybNUr6v5WFaccrKziY58iFtF9a5WbhUr8Dj8XpHrrp06h8Uf/8DmHxfy8NqdQq+f3XwAY3NTAhq9+Wzyf6sHjx8TExdHvXxjp5YzMKBG5UpcvPZ6P/oOnjxJoI8P47//lhb9+9Lrw9Gs27njNWusXU52DtGRj3AtsO+5VvR+8b731R/8/cmPbPlxEQ+vF973zm0+iJG5CQGNSmYogf/vcrKzeXjnHhWqqA8B4V0lgPs3Cn8fz53bf5y4x9GEdGlV0lX8f0lPRxcXC7tC2WC3ou/jbuWocZ0AB08eJjylUfmqfBLSm9GNuxPqXxd9XT2t7+Nt44KdqSURcY+Ktf6aZGdlcz/8Lv5V1YdG8K9WkYhrL3eD6f7tu0Rcv4V3RX+tZTIzM8jJycFEQwb1v5pSWTYf/09Jt02h0cCBA5k+fTr79++nadOmQG6Xzc6dO2Ntbc3o0aPp1auXKlPJ19eXWbNm0aRJE37//fdCWUW7d+/m4sWL3LlzB3d3dwAWL15MpUqVOHXqFLVr1+brr7+mZ8+eTJkyRbVe1XzZJQW3FxYWRkREBG5ubgBMmzaN1q1bq5X7z3/+o/rby8uLjz76iBUrVqiCMDNnzmTgwIEMHpw7vs1XX33F7t27i8w++/333/H29uann35CR0cHf39/Ll26xHfffacqM3369Ff6fJ5LT09n4cKFqjb9/PPPtG3blhkzZuDk5MTUqVOZMWOGKiOvfPnyXL16lTlz5tC/f3/VdsaMGaOWtTdz5kw+/fRTunTpAsDs2bPZsUP7BfeNGzfYtm0bx48fp27dukBuNldgYKBaufyZauXLl2fq1Kl88MEHRQYgIyIicHFxKbQ8OTmZbt268dlnnxUKRt68eRMLCwucX+Lu+vLly/H19aVSpdyTeM+ePZk7d65qP3Z1dWXWrFmMGzeOKVOmUKtWLZo2bUrv3r3x9lYfR8HV1ZVz585pfJ+MjAwyMjLUlhkaGmosq01yYhIKhQILK/WuL+ZWliTGJWhZS92udVvITM+gZuO8iSOeRj0h5vFV6oY0ZOTkcTx5GMWy3xegyFHQrlfnIrb2z8TExgJgW6B7q621tcbxyvKvp2md59sraP/hwyQnJ9O+1Zu/qE9NSkGpUGBmaa623NTSnOT4RI3rxEY9Zd+KzfSdOBJdPe0XufntW7EZc2tLylfSPE6IKFpSQu7/lKW1ldpyS2tLEmLj/vF2GzRtTFJ8AlPGfAZKJTk5OTRv34oO73R5zRq/WHpyKkqFEmML9R8MxhampCZqzvQ1sTSncd/22Hs4k5Odw83jF9j800LafzQAZz8vAKJuRXL98Fm6TPzf6opW1sXE5+5ntvlu6gDYWlrx6OnT19r2g8dRrNm+jd4dOvJu125cuXmTH/76EwMDA9o1bfZa29bk+b5nUnDfMzclLVFzJr2JpRmN+7TDztOZnKxsbp64xJafFtNubH+c/XKzn6NuRXL9yDk6T3y/2OsscqUmaj5nmVmaE66lK2bMoyfsWbaJdyePfulzlng1JuWM0NPVJTkzTW15cmYa5oaab5rZGFvgYe1EtiKHped2YmJgRPtKjTA2MGL95QOqcob6BnwS0gd9XT0USgWbrx4hPKbkJ75KSco975pZWagtN7O0JCn+cpHrfjn442fXwjmEdu9IvRbBWstuWbwGSxtrfKtoztAT4k2Q4JnQKCAggAYNGjBv3jyaNm1KeHg4hw4dYufOnQCcOXOGW7duqXXlUyqVKBQK7ty5UyjIEhYWhru7uypwBlCxYkWsrKwICwujdu3anD9/niFDhrxU/cLCwvDw8FAFmQDq169fqNzq1auZOXMmt27dIjk5mezsbCwsLNS2M3So+g+H+vXrs2/fviLfu169emqZLwXf+1U/n+c0tUmhUHD9+nX09PS4d+8egwYNUvucsrOzsbRUD77kz+xKSEjg0aNHanXU19enVq1ahbpu5m/j8zLPBQQEqGV4Aezbt49p06Zx9epVEhMTyc7OJj09nZSUFK2TO6SlpWkMHhobG9OoUSP+/PNP3nnnHbXPSKlUvnSm0dy5c+nTp4/qeZ8+fQgODiY+Pl5V/+HDh9OvXz/27dvHiRMnWLVqFdOmTWPjxo20aNFCrU6pqaka3+ebb75RC/QCTJo0iZA+7V+qnmoKNk2pYZkGJ/cfZfOStQybOFYtAKdUKDG3sqDPyMHo6uni6etNfGwcO9dsKZbg2bZdu5iWb4y5md98k9uMAt+RUsOyQgquo1RqbfqGrVtpULcu9naFx4J7Y16yjQqFgvW/LqZxl1bYOju81KaPbd7DlWPn6PP5cPTLvZnJO/61NP5P/fNsxavnL7F+6WoGjnqfCgG+PH4YxaJf/2Kt7Qo693kzg5zrUPB/RXtZKyc7tcHZHSu4kxyXyIWdR3H28yIzPYN9c9fSuG8HjeOgiZe37cB+pv2ed8No5n9yhxEo9H3xWrsgAAqlkooVfBjetx8AAd4VuB0ZyZrt20okePZPaNr3UmITuLjrGM5+nrn73rz1NO7bDiPJsH0DCp9jNZ1kFQoFa39ZREjX1i99zhKvQ/0AroOO1mP682uMVRf3kpGdO/TM9mvH6FGtBZuvHiZbkduLIjM7i9+OrqGcngHeti60CqhHbFoiEbEln32WW8+CS5QvPOgN/3o8mekZ3L0RzpbFa7B1dqBG47qFyu1dt41zh08w7MtxGMj1kShFEjwTWg0aNIgRI0bw66+/Mn/+fDw9PXnrrbeA3JPs+++/z6hRowqt56FhNiltwY/8y41fYTBzTUGfgts/fvy4KpMtNDQUS0tLli9fzowZM176fV72vQt61c9Hm+dt0tHRQfFs0PQ///xTlQ32nF6BO4SvOyvp8zYWFfi4e/cubdq0YejQoUydOhUbGxsOHz7MoEGDCo0rl5+dnR1xcYUzQPT09Fi/fj1dunShadOm7N27l4rPBo338/NTBQGLyj67evUqJ06c4NSpU2rdeHNycli2bBkffPCBapm5uTkdOnSgQ4cOfPXVV4SGhvLVV1+pBc9iY2O1TlTx6aefMnbsWLVlhoaGHLtX9F22/MwscscgKphllpSQUCgbraBTB4+xaNYfvD9hNIHVg9Res7SxQk9PD129vJ75zu6uJMbFk52Vjb7B6x36gxs2VA3oD7mTMABEx8ZiZ5s3MGxsXBw2RUy2YGtjUyjLLDY+XuPkFY+iojh59izfFwhYvikm5qbo6OoWyjJLTUjCtMCdfYDMtAwe3blH1N0H7Fi4Fnj2f6VUMq3fR/QaPxSvSr6q8se37OPIxt30mvABjh6FMzPFyzF/Nq5XQmy82vKE+IRC2WivYtWCpTRqHkLTNrnHBw9vLzLS0/nrp994u1e3QuM5FScjMxN0dHUKZZmlJ6VgYmH20ttxKO/GrRMXAUh8GktSTDw7fl2qev35cf/PoVPo8eVILBzezCQy/+uC69Shsl9epmhmVjYA0fFx2OU7lsUmxGNT4AbUq7KztqZ8vpuQAOXd3Nh77OhrbVebvH1PPcssLSmlUCZkURy83bh14hIASU/jSI6JZ8evy1WvP9/3/vpgKt2/HI6Fvex7r8vE4tk5K0H9nJWSmIyZhaZzVjoPb0fyKOI+WxesBvLOWV/2HkPfT4dRvrJkRL+u1Mx0chQKzMqpB45NyxmRnKn5Zm1SRiqJ6SmqwBnA0+R4dHV0sDAyJTY19ztWgurvqKQY7E2tCfauVuLBM1Pz3PNuUpz6vpackIi5pYWWtXLZPpvEx9nTjaT4RHau2FAoeLZv/Xb2rNnC0Mkf4+Llrmkz/27/j7tIlkUSPBNade/endGjR7N06VIWLlzIkCFDVMGUGjVqcOXKFXxecmr0ihUrEhkZyb1791TZZ1evXiUhIUGVYVSlShX27NnDu++++9Lbe/jwoaoL4LFjx9TKHDlyBE9PT7WZFu/evatWJjAwkOPHj9OvXz/VsuPHj7/wvdevX6+2rOA6r/r5PKepTbq6uvj5+eHo6Iirqyu3b9+md+/eL71NS0tLnJ2dOX78OMHBuenQ2dnZnDlzRuusqYGBgWRnZ3P69Gnq1KkDwPXr19UmLzh9+jTZ2dnMmDFD9cNx5cqVL6xP9erVtc4UamhoyNq1a+natStNmzZlz549VK5cma5duzJhwgS+//57tTHrnnueVTZ37lyCg4P59ddf1V5fvHgxc+fOVQue5aejo0NAQABHj6r/ALl8+TIh+WZ1LFjXV+2mWZC+gT4ePuUJO3eJ6g3yJisIO3eZqvW0D35/cv9RFv13DoPHjSCoTuHxYipU9OPU/qMoFArVd/P4wSMsbaxeO3AGYGpiojaDplKpxNbGhhOnTxPgmxsQysrK4uyFC4x87z2t26lSsSInzpyhd76ZV0+cPk2VSpUKld24fTvWVlY00pBh+ibo6evjXN6NO5dvEFA7b4y6O5dv4FezcqHyhsaGDPlGfYy+M7uPcPfqTTqPGoBVvh+Hxzbv5ciGXbwz/n1cvMvurHP/C/QNDCjvV4FLZ85Tu1FeV+bLZ85Ts0Hhu9kvKyMjA11d9ZsJurq6ude0JXxhq6evj52HCw+uhlO+el5G7v2wcLyqBhSxprqYe48wscwNtlk52dF1kvrx8NT6vWRlZNKgRytMbYr+wSPymBqbqM2gqVQqsbW25sT58wR4544VlpWVxdnLVxiZb3iFf6JqQCB3H6h3w7r78CHO9iWTKaSnr4edhzMPwm5TvnrevvYg7DaeVbWPTVRQzL0ojJ/te5ZOdnT5Qj3j//SGfWSlZ1C/RytMrYu+cSRejp6+Pi7l3bl98TqBtfOGQLl96Rr+NYMKlTc0NuKD79WHzDi18zB3rt6g+5iBWGmYMVG8uhylgoeJ0VSwcyXsSYRqeQU7N67le55fZFwUlZy8KaenT2ZObnDe1tQShVJBopbZOSE36auocdGKi76BPm4VPLlx4QpB9fJ+V9y4cJVKGq5RtVLmjp+W377129m9ejPvTfwQdw2TLgnxpknwTGhlZmZGjx49+Oyzz0hISGDAgAGq18aPH0+9evUYPnw4Q4YMwdTUlLCwMHbt2sXPP/9caFvNmzenSpUq9O7dm5kzZ5Kdnc2wYcNo0qSJqmvgpEmTeOutt6hQoQI9e/YkOzubbdu2aRwkvnnz5vj7+9OvXz9mzJhBYmKiWpAMwMfHh8jISJYvX07t2rXZsmVLoUHyR48eTf/+/alVqxaNGjViyZIlXLlypdDYV/kNHTqUGTNmMHbsWN5//33OnDlTaGbSV/18njMyMqJ///788MMPJCYmMmrUKLp3746TU+5sOZMnT2bUqFFYWFjQunVrMjIyOH36NHFxcYWyoAq289tvv8XX15fAwEB+/PHHQrN45ufv70+rVq0YMmQIf/zxB/r6+owZM0YtO7BChQpkZ2fz888/0759e44cOcLs2bO1bvO50NDQQhMc5FeuXDnWrFlD9+7dadasGXv27CEoKIiffvqJESNGkJiYSL9+/fDy8uL+/fssWrQIMzMzvv32WxYvXsyXX35J5crqwYzBgwfz/fffc+HCBZRKJZMmTaJv375UrFiRcuXKceDAAebNm6eWrZaamsqZM2eYNm3aC9v0Opp3asP8Gb/h6euNd4Avh7bvJfZpNMFtcrM81y1YTnxMLO9+NAzIDZzN//F3erzXj/L+vqoMm3KG5TB+NlNgkzYt2LdpJyvmLKJZh1CePIhi28oNNGtfMmOF6ejo8E7XrsxfsgQPNzfc3dyY//ffGBkZ0ap5c1W5L6ZNw8HenhHPuh337NKF90aPZsGyZYQ0bMj+I0c4ceYMc2fNUtu+QqFg0/bttAsNRV/DOCwJiYlEPXnC0+hoAO5GRgK5mW12GrLY/qm6rUPY8PsSnL3dcfPx4ty+oyTExFHjrQZA7nhlSXEJdBjaGx1dXRzc1bMkTS3M0DPQV1t+bPMeDqzextvD+mJpZ6PKbCtnZEg5o9cLzv5/1aZLR377bibefj74VvRn75adRD+J5q32uZM2LP9rMbHRMQybMEa1TsSt20DuuJOJ8YlE3LqNvoEBbp65N3tq1KvNtjUb8fTxxifAj8cPH7FqwVJq1q/9RsYGqtKiPvvmrcXO0wXHCu6EHTxDcmwCgU1yz58n1+4mJT6RpgNzu2Vf2n0Mc1srrF0cyMnJ4dbxi9w5G0aLod2B3CCjjav64NSGJrnd6QsuF69GR0eHd9p3YP7q1Xi4uODu7ML81aswMjSkVXDeeD5fzPwJB1sbRvTNDahlZWVx+17uIPxZ2dk8jY3l+u3bmBgb4e6ce0OtV4eODJwwjnmrVtKiUSOu3LjJup07+HzY8MIVKSZBzeuzf/467D2dcfB249qhs7n7XnDuDZ6T6/aQEp9E03ffBuDS7uOY21lh7Wyfu++duMSds2E0fz/3Jom+gT42rurBvnKqfa/sdRc0NjDEzTIvA93Fwg5fOzcS01N4nPzPx1F8E+q1bcq6Xxfj4u2Om195zuw5SkJ0HLWaNwJg97KNJMUl0GlY32fnLPWsZ1NLM/QNDAotF6/naMRFulRpysOEaO7FP6aWeyCWRmacjMydUKSFX20sDE1Zc2k/ABcf3SKkQg06BYWw9+ZpTMoZEepfl7P3r6u6bAZ7V+NBwlNiU5gnmD4AAQAASURBVBPR09XFz96Dai5+bLpacpNe5RfcviXLZv2Fm48XXv4VOL7zIHHRsdRv2QSALX+vISEmjl6jc8eYPrxtL9Z2Nji45l4P3Qm7yf6NO2jUJq/7+d5129i+bD19PhyCtYOdqpeGoZEhhsaax44WoqRJ8EwUadCgQcydO5eWLVuqdTesUqUKBw4c4PPPP6dx48YolUoqVKigNntmfjo6Oqxfv56RI0cSHByMrq4urVq1UgskhYSEsGrVKqZOncq3336LhYWFKlOqIF1dXdatW8egQYOoU6cOXl5ezJo1i1b5BhLv2LEjH374ISNGjCAjI4O2bdsyceJEJk+erCrTo0cPwsPDGT9+POnp6XTp0oUPPvigyMH0PTw8WLNmDR9++CG//fYbderUYdq0aQwcOPAffz7P+fj4qGbyjI2NpU2bNmqD7w8ePBgTExOmT5/OuHHjMDU1JSgoSG3gfk0++ugjHj16xIABA9DV1WXgwIF06tSJhATtg9LPnz+fwYMH06RJExwdHfnqq6+YOHGi6vVq1arx448/8t133/Hpp58SHBzMN998o5bFp0mfPn0YP348169fx99f851rAwMDVq5cyTvvvKMKoA0bNgw/Pz9++OEHOnXqRFpaGl5eXrRr146xY8eyceNGYmJi6NSpU6Ht+fr6EhQUxNy5c/niiy/w8vJiypQpREREoKOjo3r+4YcfqtbZsGEDHh4eNG7cuMj2vK7awfVJSUxmy7K1JMTG4+Lpxogp47B1yL1YT4iNJ/ZpjKr8oe17UOTksOz3+Sz7fb5qef23ghkwNvduvo29LaOnTmDVn3/z5fAJWNla06xDK1p17VBi7ejfsycZGRl8O3MmSUlJVA4M5Jfp09Uy1KKePFHr3la1cmW+/uILfp87l9nz5uHm4sI3X3yh1iUU4OSZM0Q9fkyHAhOCPHfw6FGm5Juw47OpUwEY0r8/7+cL+r+uivWqk5qUwuF1O0iOT8TezZmen7yHpV1ugC45PpGE6Ff7MXVm9xFysnNYM2uB2vLGnUIJltnO/pH6TRuRnJjI2r9XEB8bh5uXB+OmTcTeMfeHeXxsLDFP1Adu/2xo3s2HOzfCObr3IHaO9sxa8icAnfp0R0dHh1XzlxAbHYuFpQU16tem+8CXzwJ+HRVqVyY9JZWzWw6QmpCMjYsDrUf2xtzWCsjtPpwcm3c8z8nO4fjqnaTEJ6FvoI+1iwOtRvbCI0i6Xb0J/Tt1zj0ezplNUnIylf38+GXyFLUMtainT9HNNzTC09hYeo8do3q+eP06Fq9fR41Klfnj69ybOJV8fflhwmf8sngRf61cgYujIx8NGkzrJiEl1pYKtSuRkZLK2S0HVfteqxG98u17yaTk2/cUOTmcWL1Lte9ZudgTOuIdPIJ8tbxD2RZg78kvnfKOD6Ma5QYBt4Yd4+u92m8ElgWV69cgLSmFA2t3kByfgIO7M73HD1VlPv+Tc5Z4fZejbmNiYESITw3MDU14nBTL4jPbSEjP7ZpvZmiCpXFel/zMnGwWnN5C28CGDG3QmbTMdC5H3Wb3zVOqMgZ6+rSv2AgLI1OycrKJToln9cW9XI66/UbaVL1RHVKTktm1chOJcQk4e7gy+PPR2Djkjn+YGBdPfHTeMB1KhZKtf68h9kk0unp62Dra07ZPF+o9C7YBHN2+j5zsbBZO/13tvVp270Boz45vpF1lgkK6bZYlOsqXGcBJCFHiJk+ezPr16zl//nxpV6XEjRs3joSEBObMmVPaVdGqTp06jBkzhl69er3SevtvnSmhGpWOEJ+aJD18WNrVKHbmLi4sOrW1tKtRrPrVblPaVSgRZ+6FlXYVilVN90BmHFhW2tUoVh81eae0q1AiksKul3YVipV5oD8/7F/y4oL/Yz4O6U3DX/9ds8YeGT6bpWe138j9X9SrRmhpV6FETNz+R2lXoVhNbfUem68cLu1qFKt2lRqVdhX+scSN20q7ChpZdNB8Q/vfruRGuBVCCC0+//xzPD09ycnJKe2qaPTkyRO6du3KO+/8O38QCiGEEEIIIYR4edJtUwjxxllaWvLZZ5+VdjW0cnBw0DjWnhBCCCGEEEK8EUpFaddA5COZZ0KUEZMnT/5/0WVTCCGEEEIIIYT4XyLBMyGEEEIIIYQQQgghtJBum0IIIYQQQgghhBBlicy2WaZI5pkQQgghhBBCCCGEEFpI8EwIIYQQQgghhBBCCC2k26YQQgghhBBCCCFEWaKUbptliWSeCSGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbTQUSolF1AIIYQQQgghhBCirEhctqa0q6CRxTtdSrsKpULGPBNCiGI059j60q5CsXq//tvci4sq7WoUO3drJ3r8PbG0q1GsVvSZSuLWnaVdjWJl0aYlH278b2lXo1j91GE0/ZdPLe1qFKuFPSeSFHG3tKtRrMy9PJlxYFlpV6NYfdTkHZae3VHa1Sh2vWqE/uva1atGKA1/HVra1ShWR4bPpuP88aVdjWK14d3v+GDN9NKuRrH6vcsntPrzw9KuRrHaPuSn0q6C+JeQbptCCCGEEEIIIYQQQmghmWdCCCGEEEIIIYQQZYhSqSjtKoh8JPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRKku7BiIfyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCCKGFdNsUQgghhBBCCCGEKEsU0m2zLJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRGbbLFMk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFEqSrsGIh/JPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoSxQy22ZZIplnQgghhBBCCCGEEEJoIcEzIYQQQgghhBBCCCG0kOCZEOJ/VkhICGPGjCntagghhBBCCCFE8VIqy+bj/ykZ80wIIUrZ+T3HOL3tACnxSdi6OhLSqz1u/uVfuN6DmxGs/GYOdq6O9J06RrV85TdzuH/9dqHy5asE0Gnsu8VZdZUNq9exaslyYmJi8SrvxbAPRxBUrarW8hfOnmf2f38l4k4Etna29OjzDu07d1S9vmPzNqZ/9W2h9bYe2Ek5Q0MAer/dg8dRUYXKdOjyNqM++bAYWlVYS786tK/YCCtjM+7HP2Hh6W1ce3pXa/lGXlXoUKkxTuY2pGZlcOHhTRaf2U5yZlqhsg08gxjduDun7oXxw4GlJVJ/TZRKJX/u2Ma6Y0dISkujkocn47p0p4Kzs9Z19l48z4JdO7kXHU22Igd3O3v6hDSjTe06qjJ/bN/Knzu2qa1nY27Oji+nlVhbnmvoVYWmFWpgYWRKVFIM6y8f5HbsQ63l9XT1CPWrQ023ACwMTYhPT2bXjVOcvHcVAF0dXZr71qK2eyCWRmY8SY5j89UjRX73xa2ZT03aBNTH0tichwlPWXJuBzee3tNYdnDdDjQuX/j/70HCUz7bNhsAPR1d2lVsSKPyVbAytiAqMYaVF/ZwKSq8RNuRn1Kp5I+/F7Nu61aSkpOpFBDA+OEjqODlpXWd8IgIZi9axLVbN3n0+DFj3x9Kr86d1cqcvXSRxatWEXbzJtGxsfwwaRIhDRqWcGtyXdl/kos7jpKakIS1iwP1e7TC2ddTY9mH1++wecbCQsu7TxmOlbM9AHfOXuXctkMkPolFkaPA0sGGoBYN8Kuv/fj6JpzaeYijm/eQFJ+Ig5sTof264BlQ4YXrRV6/zYIvZ+Hg7szQb8e/gZq+vH9jmzSp6uxDr+otCXDwwM7Uiglbf+fQnQulXS2tWgfUo1PlJlgbmxMZ/5i5Jzdx9XGE1vJNvKvRKagJLhZ2pGSmc+7BDeaf2kJSRiqQe+zrWqUpTX1qYmtiwYPEpyw8vY1zD268oRZBsHc1WvjVxtLIjEeJ0ay6sJdbMQ80lu1XszX1vSoXWv4wMZqpu+YDUM3Fl1YB9bA3tUJPV5cnyfHsvnmKk5FXS7Qd+bULbEjXqk2xMbbgblwUs4+v50pU4WvR59pXbEj7io1xNLfmaXI8y87vYs/N06rXW/nXo7lfbTytnQC4FX2f+ae2cONpZIm3RQhtJHgmhCgxmZmZlCtXrrSrUaSsrCwMDAxK7f2vn7jA/qWbeKvf27j4enJx3wnW/TiP/tPGYmFrrXW9jNQ0tv+xAo+KFUhNSFZ7rf3Iviiyc1TP01JSWDzxv/jVDiqRNuzbtZffZ/7CqE8+pFKVymxZv4lPPxzP3GULcXRyLFT+0cNHfD52PG06tmPC5M+5cvEys6b/hKWVFcHNmqjKmZiasmDlYrV1nwfOAH6dPweFIq+dd8LvMH7URwQ3Cyn+RgL1PSvTv2Zr5p7azPUnkTT3rcWnzfoydtPPxKQmFCrvb+/B8AZdWHhmG2fuX8PGxIIhdTvwfr23mXFwmVpZO1NL+tQIJayIHwQlZdHe3Szdv48vevXGw96Bebt2MGL2L6z+dCKmRkYa17E0MeXdFqF4OTpioKfHoStX+HL5EqzNzakfEKgq5+3kzK8fjFA919PVKfH2VHPx5e3Kway+uI87sQ9p4BnEe/U68u2+v4lPS9K4Tv+arTE3NGHF+d08TYnH3NAEXZ285Pw2AfWp6RbAygt7eJIci7+DJ+/WacesQyt5kPi0xNtUx70ivauHsujMVm5E36dphRp8FNyLT7f9TmxqYqHyS87uYNWFParnujq6fNXqPVUwEKBLlaY08KzMvFNbeJQYTZBzBUY16sbU3QuIjC8clC4JC1euZOnatUz66GM83FyZu3Qpwz+dwJq58zA1MdG4TnpGBm7OTjQPbsyPc+ZoLJOWno6vtzftW4YybuqXJdkENeGnLnNsxXYa9WqLo48HYQdPs23W33SfPBwzWyut63WfOoJyRnnHNiNzU9XfhqbGVG8TjJWTHXp6ety9dIMDC9djbGGKeyWfkmyOVpePnWX7orW0HdgNd39vzuw+wpJvf2f4D59haWejdb301DTW/7YY78p+JCdo/l8sLf/GNmljbGDIrZj7bL12lGmth5Z2dYrUqHwVBtVpz5xj6wl7cpdQ/7p80WIgI9b9SHRKfKHygQ5ejG7cg3knN3HyXhi2JpZ80KATIxp24Zu9udcTvWuGEuJdnV+PruF+/FOqu/rxabN+jN/yG3eKuMlSXGq6+dOtajOWn9tFeMwDGpevyvBGXfly5zziNJyjVl7Yw/rLB1XPdXV1+PytAZy9f121LCUznW3XjvM4KYZshYIgZ2/61WxNUkbqG7muCPauxvv13+bXI6u58vgObQIa8FWr93hv1bc81fA9tQ1swIDa7fjvoRXceHoPf3sPRjfuTnJGGicirwBQxcWH/bfOcvXxHTJzsulWtRnTWg/l/dXfabzmEv8ecXFxjBo1io0bNwLQoUMHfv75Z6ysrLSuM2DAABYuVL8ZVbduXY4fP656npGRwccff8yyZctIS0vjrbfe4rfffsPNze2l6ybdNoX4l1AqlXz//fd4e3tjbGxM1apVWb16NQD79+9HR0eHPXv2UKtWLUxMTGjQoAHXr+eeeK9fv46Ojg7Xrl1T2+aPP/6Il5cXymfpuVevXqVNmzaYmZnh6OhI3759iY6OVpUPCQlhxIgRjB07Fjs7O1q0aAHAxo0b8fX1xdjYmKZNm7Jw4UJ0dHSIj48HICYmhnfeeQc3NzdMTEwICgpi2TL14EJKSgr9+vXDzMwMZ2dnZsyYUegz0NHRYf369WrLrKysWLBgAQARERHo6OiwcuVKQkJCMDIy4u+//36p9y8pZ3YconJwbYKa1MHWxZGmvTtgbmPJhb3Hi1xv94K1BNSrhnOFwhkNxmYmmFqZqx6Rl29iUM4AvzpVSqQNa5atpFX7NrTp2A7P8l4M+3AkDg72bFq7QWP5zWs34ODowLAPR+JZ3os2HdvRqn0bVi1drlZOR0cHG1tbtUd+VtZWaq+dOHIMFzdXqtaoViLtbBvYgL3hZ9l760zuneoz24hJTaSlXx2N5X3t3HmSEs/268d5mhLP9aeR7L55Cm9b10LtHNmwG6su7uVxcmyJ1F0bpVLJsgP7ebdFS5pVqYaPswuTe/UhPTOLHWdPa12vpo8vTatUpbyjE2529rzTJAQfZxfO31bPWtLT1cXOwkL1sDYzL+kmEVKhBicir3Ai8gpPkuNYf+Ug8WnJNPTSHDwOsPfEx86NP09s4Eb0PeLSkoiMf0xE3CNVmVruAey+eYqwJxHEpCZyNOIS15/cJcSnRom3B6BVQD0O3j7HgdvneZQYzdJzO4lNTeQtn1oay6dlZZCQnqJ6lLdxwaScMYdu52WXNPAKYtPVI1x8dIunKfHsvXWG/2PvvsOjKtoGDv92N733RkiBQEIIvSX03jsIAqIIigVsqK/9tX32gl2xgCgCUqQ3QXoPJdQkJIGQ3ntPdvf7I7Bhk11ATeHV576uvXRnZ87OcE7OOTvnmZlzaZcZERTaKG3SarWsWL+O+++exsDevQnw8+f1Z56lrLyc7Xt2Gy3XNjCQJx6cy7D+AzAz8uCjV7fuPDrrfgb27t1Q1Tfo7M4jBPbuTFCfLjh6utJz6ghsHO25uM/43xKApa01Vva2updSWXN77hXoj3+nNjh6umLn5kS7QaE4NXMnLbbpoi+ObtlDpwGhdB7YE9dmHgy/bxL2zo6E7zx403Kbv/+VkF5d8W7l1zgV/RP+iW0y5mjCBb47tpF9lyOauiq3NK5tH3bFhLMzJpyk/Ax+OL6JrOJ8o+epQDef6sjgyMNkFOUSmRHPjuhjBLjU/Dge0LIza87u4WRSNOlFOWyPPsrp5EuMD+nTKG0a1Korh+PPcSj+HGmFOaw+u4fckkL6tuhoMH9ZVQUF5cW6l6+jB1ZmFhy5el6XJyYrkTMpMaQV5pBVnMee2FMk52cSUOt+o6FMbNefHdHH2B59jMS8DBYdXU9mUR6jgw1H/A5q1ZVtkYfZfzmCtMJs9l0+zY7oY0zpMFCX5/09y9gceYjLOSkk5Wfw6YFfUSgUdGzWqlHadMfQaO/MVwOaPn06ERERbN++ne3btxMREcHMmTNvWW748OGkpqbqXlu3btX7/Mknn2TdunWsXLmSgwcPUlRUxOjRo1Gr1Ua2WJd0ngnxD/Hyyy+zZMkSvv76ay5cuMBTTz3FPffcw759+3R5XnrpJT766CNOnDiBiYkJs2fPBiAwMJAuXbrwyy+/6G1z+fLlTJ8+HYVCQWpqKv369aNjx46cOHGC7du3k56ezpQpU/TKLF26FBMTEw4dOsSiRYuIj49n8uTJjB8/noiICB566CFeeuklvTJlZWV06dKFzZs3c/78eebOncvMmTM5duyYLs+zzz7Lnj17WLduHb///jt79+7l5MmTf+nf6rnnnuPxxx8nMjKSYcOG3db3NwR1VRXp8cn4hujfCPiGtCYl1vhwsPMHwsnLzCFs/ODb+p5zB04Q2KMDpub1HwVYWVnJpehLdO3RTS+9S49uXDx33mCZi+cv0KVW/q49unEpMpqqqipdWmlpKdPHT+HuMZN56enniYk2PqSisrKSXdt3Mnz0CBSK+o9uUilVtHDy4mxqrF76mdRYWrs2N1jmUmYCzlZ2dPSq3r/2Ftb08GnL6eRovXyT2w2goKyYPXGn6r3et5KcnU12YQGhgUG6NDMTUzoHBHD2ypXb2oZWq+X4pWiuZmbQuaV+JExiViYjXn2JcW++yos/LSHphs72hqBSKPG2dyM6Q79jITrzKn6OhoehtvVoQWJeOgMDuvLqkDm8MPBexgb3xlSp0uUxUaqo0ujfXFWqq2jh5FX/jahFpVTi5+jJ+VrDX86nxen9ILyZvi06cjH9st7TelOlikpNlV6+SnUlrYwcz/UtOS2N7JwcQrt00aWZmZnRuV17zl5svKFG9UVdVUVWQgrewfrD/LyDW5IeZ3h47XW/vbmIn5/5kM0fLyUlyvjfnVarJTnyMvnp2UaHgjY0dVUVKVcSadk+SC+9Rfsgki4Zr/vpvUfJTc+i/6ThDV3FP+2f2KZ/AhOlipbOzYhIjtFLj0i5RJCb4eM/KuMqLtb2dPEOBMDewoaefu04kVjzcNhEqaJCrX/uq1BX0sbNr34bYIBKocTHwaPOsNPIjPg6D9aM6enXjqiMqwajjq8LdPXB3daRmKykv1Pd22KiVNHKxZtTte5tTiVH08bdz2AZU6WJwX3Q2tUHlcJw94S5iRkmSqVu+K34Z4qMjGT79u18//33hIWFERYWxnfffcfmzZt1QR/GmJub4+HhoXs5OdVEDefn5/PDDz/w0UcfMXjwYDp16sSyZcs4d+4cu3btuu36ybBNIf4BiouL+fjjj9m9ezdhYWEAtGjRgoMHD7Jo0SLmzp0LwFtvvUW/ftXD4p5//nlGjRpFWVkZFhYWzJgxgy+++II333wTgEuXLnHy5El++uknAL7++ms6d+7M22/XzFe0ePFimjdvzqVLl2jdujUAAQEBvP/++7o8zz//PIGBgXzwwQdAdUfd+fPneeutt3R5mjVrxjPPPKN7/9hjj7F9+3ZWr15Njx49KCoq4ocffuCnn37SRbMtXbr0T4XZ3ujJJ59kYq05cm72/YaUl5dTXl6ul2Z+w5DC21FaWIJWo8HazkYv3crOhhIjwz9y07I4uHo7U198GKVKZTDPjVIvJ5KdlMbQ2ZP/VN1uV35ePhq1Gkcn/WEtjk6O5GQbjqLKyc7B0cmxVn4n1Go1+Xn5OLs409zPh/+8/Dz+AS0oKS7mt1/X8uTc+Sz6eTHePnX3+6F9BygqKmLoqBH117gb2JlboVKqyC/VHyKbX1qEg5fhaKpLWYl8fmgNT/aZiqnKBBOlivDESJaEb9HlCXT1YUDLzjy39asGqfetZBdW33w72drppTvZ2JKWe/MouKLSUka+9jIVVVWolEqemzyFHjd0wrX19eX16TPxcXUju7CAxTt3MOezj/n1uZdwsLa+yZb/OmszS1QGbq4Ly0uxszD8nc7Wdvg7eVGpVrMkfDPWZpZMbj8AKzMLVkZU31BFZSTQv0Un4rKTyS7Oo5WrDyEeLVA2QEdtbbZmVqiUSvLLivXS88uLsbewMVKqhr2FDe09A/jmyDq99HNplxkeGEp0RgIZRTkEu/vTqVlgo7QJIDun+vhydtQ/Fzg7OpCakdEodahPZUUlaDVaLO30jzNLO2tKCooMlrGyt6XPzDG4+niirlITc/QMmxcuZczTs/Bs7afLV1FSxrLnPkJdqUapVNBr+qg6nXSNpaSgGK1Gg429/nnPxt6WOCPXrezUDP5YsYn7X3vitq5bje2f2KZ/guvX3bwy/b+fvNIiHC0NX3ejMq7y8b6VPNt/hu66eyzhAt8erYmEP518iXFt+3Ah/TJpBTm09wqgh0+w3lD9hmJjfu0aVet8XlhWjL37ra+LdhbWtHVvweLjm+t8ZmFixjujHsFUqUKj1bLi9E6iMhp+Xk47C2tUShW5Jfp/K7mlhThZ2hksczIpiuFBoRy+eo7YrCRauTRnaOsemKpMsLewIae0bsfg7G6jyS7Ob9S56YRxxn4H/dnfQrUdOXIEe3t7vd9foaGh2Nvbc/jwYQIDA42W3bt3L25ubjg4ONCvXz/eeust3NzcADh58iSVlZUMHTpUl9/Ly4uQkBAOHz7MsGHDbqt+0nkmxD/AxYsXKSsr03UsXVdRUUGnTp1079u3rxm253ltMvCMjAx8fHy4++67efbZZzl69CihoaH88ssvdOzYkeDgYKD6pLNnzx5sbOr+WIuLi9N1nnXtqj+MKDo6mm7d9KOMunfXH+amVqt59913+fXXX0lOTtadkK2v/cCOi4ujoqJC1zEI4OTkdNMT6M3UruOtvt+Qd955h9dff10v7dVXX8VzWMc/X6HaP1a1AHV/wGo0GrYuWkHY+CE4erje1qbP7z+Os7cHni0aNpqkThO03DwCrNZn14cGX08ODmlLcEhb3edt27fjkfseZP3qtcx/+ok6m9u2aSvdQ7vj4ury1xpwm2oHqisUCl3da2tm78qsriNZe24PZ1JicbS0ZUbnYTzQYyyLjq7HwsSM+b0m8+2xDY32JHXbyXDeWVUzPHbhg9Xz3dTeU1q0dXdqLVbm5vzyzPOUVJQTfimahevX0czZhS4B1ZF2vdrU7L8AvGjv58/4t15nS/gxZvQfaGyz9UJbZ09hdD8pUaAFlp3aTllVBQDrL+xnVtdRrD27h0qNmnXn9zG1wyBeGDgTrRayS/I5nniR7s2DG7IZ+vWv1SYFCoPtrK2PfwdKKss4maw/LP+XUzu4v9to3h35CFogoyiXA1ci6OPfsR5rXWPb7j94+9NPde8/efP/AAPHnra6bf+ratf9ZouSOXi44OBRc85yb9mcotwCzvx+WK/zzNTCjEmvPExleQUpkVc4unoHdq6OeN3GwjINx8A53MBu02g0/PbFT/SfPAJnT7dGqttf9U9s0/++2uduhYG065rbu/Fg6Fh+jdjFqeRLOFnaMavbSB7pOZEvDlVPZfL9sU3M6zWJLyc8A2hJK8zhj5gTDGpleBh8Q6hb+9s7n4f5hlBaWcaZlJg6n5VXVfD2rqWYm5gR6ObD5PYDyCrOJybr5pGv9cfAfjLSpuWnd+JoZccn455EQXVH286Y40zpMAi1VlMn/+T2A+nfshP/2fIllbUi1v7xDPx73AmM/Q567bXX/tZ209LSdB1eN3JzcyPNwCJh140YMYK77roLX19frly5wiuvvMLAgQM5efIk5ubmpKWlYWZmhmOtB3bu7u433W5t0nkmxD+ARlN9Yt2yZQvNmumHfZubmxMXVz0P0Y0T41/v2Lhe1tPTkwEDBrB8+XJCQ0NZsWIFDz30kN53jBkzhvfee6/O93vesCpf7Q4nrVZbpxOl9k3PRx99xMKFC/nkk09o164d1tbWPPnkk1RUVBjMb4yhjozKyso6+WrX8Vbfb8gLL7zAggUL9NLMzc358dQ2IyXqsrS1QqFUUlzryXZJYRFW9nU7KStKy0m/kkTG1RR2L6t+iqq9tmT0wtkvMOmZOfgE1wybqyyvIPrYGXpOGFpnW/XF3sEepUpVJ8osLze3TnTZdU7OTuQayK9SqbCztzdYRqlU0rpNIMmJdYcgpKemcTr8JK++++ZfbMWtFZSXoNaocbDU3y92FtbklxmOKhnfti+XMhPYdPEQAAl56ZQdr+CNYQ/y65ld2FvY4GbjyH/6z9CVuf63snz6azy18VPSi3LrtR1927Yj5Bk/3fuKa8NkswsLcLnh3z63qAjnW8xPplQqae5a3Ykb2Myb+PR0ftz1u67zrDZLc3MCPL1IzGy4CfaLK0pRazTYmev/jduaWxrtoCwoLya/rEjXcQaQXpiDUqHA3tKWrOI8iitKWRy+GROlCmszC/LLihndptdNh83Ul8KKEtQaDQ61oszszK0oqBW9YEifFh04HH8WtUb/BrywvITPDq7CVKnCxtyK3NJCpnQYZHAS7vrQNzSMkBsiEyuunZuzcnNxuWE+w5y8PJwcHRqkDg3JwsYKhVJRJ8qsrLAYK7tbRwhe5+bvTeyxs3ppCqUSe7fqfyOX5p7kpmUSse1gk3SeWdlZo1AqKcrXP/aLC4qwsat7zqgoLSPlcgKp8Uls/bG68+L6deuNGU8y84VH8Q9p3Sh1N+af2KZ/guvX3dpRZvaWNnWi0a6b1H4AkenxrLs2wf7V3DTKjlTw7qhH+OXUDnJLCykoL+ad3T9hqjLB1tyKnJIC7u06gvTC+r3eGlJUfu0aVSsS2tbCioKyWz9E6+nXjmMJFw12MGlBNzl/Un4GnrbODA/qQczBhu08Kygrrt5PVvpRZg6WtgYXQIDqIZoL96/kswOrcLSyJaekgBFBYRRXlNW5rk1q15+7Ow7mha1fcyUn1eD2ROMz9jvImNdee61OZ1tt4eHhgOGH74Z+T95o6tSpuv8PCQmha9eu+Pr6smXLljqjjf7MdmuTzjMh/gGCg4MxNzcnISFBNyzzRtc7z25lxowZPPfcc0ybNo24uDjuvvtu3WedO3dm7dq1+Pn5YWJy+6eOoKCgOhM2njihP3nygQMHGDduHPfccw9Q3VEXExNDmzbVq/YFBARgamrK0aNH8fHxAapXYrl06ZJee11dXUlNrbmwxsTEUFJy65uRW32/IfURmqwyMcHdrxkJF2Jo1aVmGfKrF2Jo2aluRIu5pTn3/t9Temlndh8h4WIcY+bfg72r/tDJS8fPoq5U06ZnJxqKqakprQNbc/L4CXr376tLP3n8BD37Gp6sOzikLUcOHtZLO3EsnNZtAo0eW1qtlriYWPxbtqjz2fbN23BwdCC0Z8NNdK7WqLmck0J7j5aEJ0bq0tt7tOREUpTBMuYmpnU6LDTXI+xQkJKfxTObPtf7fGrHwViYmLH0xFayGqBjxtrCQm8FTa1Wi7OtHceiown0ro5OrKyq4lRsLI+NGfuntq1Fq+uMM6SiqpL49HQ6tmi44WZqrYak/Axau/pwLq3mvNfa1afOnGHXXclJpYNnK8xUplSoqzt03Gwc0Wg15Ne68a/SqMkvK0apUNLeK6DOXDwNQa3REJ+bSluPFpy8YU6Zth4tbjl8JcjNFw9bZz67vNponkqNmtzSQlQKJV29g/RW5KxP1lZWeitoarVanJ2cOHbqFEEB1Z3+lZWVnDp3lsfmzGmQOjQklYkJLj5eJF+Mw79TzbUjKTIOvw5BNympLzsx1eDDEz3a6nm6moLKxAQv/+ZcPhtNm24ddOmXz0UR2KXuohzmlhY88v7zemnhvx/kysVLTHlyNg6uznXKNLZ/Ypv+Cao0auKyk+ng1Yqj11ZghOoVlY8lGD5PmZuYotHWvu5Wv6/987hSXUVOSQEqhZKeviEcvHKWhqbWakjIS6ONm69e9Fj1+9iblKxehMjNxpHD8edu+/tMlA0/pLhKoyYmK4lOzVrr1a1Ts9YcvWp47tvr1FoNWcXVc3H2a9mJ4wkX9KLVJrcfwLROQ3hp26JGjKATt+PP/g6aP3++3u9KQ/z8/Dh79izp6el1PsvMzMTd3f22v8/T0xNfX19iYqr/zjw8PKioqCA3N1cv+iwjI4OePXve9nal80yIfwBbW1ueeeYZnnrqKTQaDb1796agoIDDhw9jY2ODr+/tTSw8ceJEHnnkER555BEGDBigF8U2b948vvvuO6ZNm8azzz6Li4sLsbGxrFy5ku+++w6VkTk/HnroIT7++GOee+455syZQ0REhG71y+s9/QEBAaxdu5bDhw/j6OjIxx9/TFpamq7zysbGhjlz5vDss8/i7OyMu7s7L730kt6KZAADBw7kiy++IDQ0FI1Gw3PPPacXbWfMrb6/IXUZ1odt3/6Ku583ngE+nNt7nMLsPDoMqO4IOrB6G0W5BYyYOxWFUomLt4deeUtbG0xMTeqkQ/XCAgGdg7G0aZj5pa6bNG0K773+Fq3bBBIc0pYtGzaTkZ7BmAnVnS/ff/UtWZmZPP9q9UIRoyeOY8OadXz9yReMHDeai+cvsH3TVl5847+6bf70/Y+0CQmmWXNvSoqLWbdqLXGXYnn8Gf3OQ41Gw44t2xgycjiqP9Gp+1dsiTzM/J6TiMtJISYzkUGtuuJibc/OmOMATOs4BCcrO748vBaAk0nRzA0dx5BW3TiTWj1s876uI4i5tqIjQGK+/txOxRWlBtMbikKhYFq//izZ9TvNXV1p7urKj7t+x8LMlGGda4awvPrLT7jaOzB/dPU+XbLrd4Kb+9DM2YUqdRWHIi+yJfw4z99V8+Tvkw3r6NM2BA9HR3KLivjh9x0Ul5UxupvheQTry964U8zoPIzEaytm9vRth6Olre6mflSbnthb2LD89O9A9X4a0ro70zoNYXvUUazNLBgT3JtjCRepvLZIgI+DO/aWNqTkZ2JvYcOwwFCUKNgde/NVFOvL9qijPBQ6nis5KcRmJzOgZSecrezZHVu9aMpd7QfiaGnLt8f0V7jt26IjsVlJJOfXjfZr4eSFo5UdCblpOFrZMj6kHwqFgq2Rh+vkbQgKhYJp4yewZOUKfJp50bxZM5asWImFuTnDB9QM6/3v++/j5uLM/NnVHWqVlZVcTkjQ/X9mdhbRcXFYWVjQ/No1q6S0lMSUFN02ktPSiI6Lw97WFg8Dw0HqS/shYexZ/Bsuvl64t2xO5P6TFOXk06Zf9d/S8d92UZxXwIDZ1U/Bz+06gq2zA45ebqjVamKPnuXKqUiGPFyzEM/pbQdw9fXCztURTZWahPMxXDpyhj4zRjVYO24ldNQA1n35M14tmuPd2p+TfxwmPyuXroOrH5jsWrGRwtx8Jjw6E4VSiVtz/YU1rO1tMDE1rZPelP6JbTLG0tQcb/uaqR+87Fxo5eJNQVlxvUc7/10bLhzgyT5Tic1OIjojgWGB3XGxdmB7VPWK5DO7DMfZyo5PDqwCIDwxknm9JjE8MJTTyZdwtLLlge5juJSZQM61625rl+Y4WdtxJTsVZ2s77u44BIVCwbrz+4zWoz79EXOCWd1GcTU3jSs5KfT274CjlR0HrlSvhjyubR8cLG1ZekL/wXMvv3ZcyU4hpaDuwjvDAntwNTeNrOI8VEoVIR4tCPVty4rTOxulTb+d28uz/WcQk5lIZEY8I4J64mbjyJZr15P7u43C2dqeD/cuB6qntQh09SEq4yo25lZMbNcPP0dPPrr2OVQP1by36wje2/0z6YU5ugjE0spyvUjxfzzNnTls889ycXHBxeXWU6uEhYWRn5/P8ePHddP8HDt2jPz8/D/VyZWdnU1iYqJudFSXLl0wNTVl586dusXuUlNTOX/+vN5c3bcinWdC/EO8+eabuLm58c4773D58mUcHBzo3LkzL774om5o5q3Y2dkxZswYVq9ezeLFi/U+8/Ly4tChQzz33HMMGzaM8vJyfH19GT58eJ1OrBv5+/uzZs0ann76aT799FPCwsJ46aWXeOSRR3RPLF555RWuXLnCsGHDsLKyYu7cuYwfP578/JqV4T744AOKiooYO3Ystra2PP3003qfQ/Xwy/vvv5++ffvi5eXFp59+elsrct7O9zeUwB4dKC0q4eiGPyjOL8C5mQcTFtyPnUv1U5HivEIKs/P+9HZz0zJJvhTPpGcaPoJjwJCBFOTns+yHn8jJzsavhT9vf/we7p7VHXo5WdlkpNV0Bnl6efLWx+/x9SdfsHHtepxdnJm34HH6DqyJIiwqKmLhux+Sm52DtY01LVu3YuE3nxHUVr9D81T4STLS0hkxZmSDt/PI1fPYmlsxqV1/HC1tScxL5909P+uemjpY2uBsXTP0cd/l01iamjEsMJSZXYZTXFHGhfQr/HJqR4PX9c+4d+BgyisreW/NKgpLS2jr68fnD8/Ti1BLy83VC2svq6jgvTWryMjPw9zUFF83d964516GdqpZOTEjP4+Xf/6RvOJiHG1sCPH1Y/GTC/CstbhEfYtIicHazJJhgT2wM7citTCbb49u0HVY2plb6w0DqlBX8s2RdUxs158Ffe+muLKMiJQYtt3QiWSqMmFkUBjOVvaUV1USmRHPL6d2NNoN/PHEi9iYWzIupC8OFjYk52fy8f4VutUz7S1tcLLWHzJjaWpOV+82Ro83U5UJk9r1x9XGkfKqCs6mxPLtkfWUVJYbzN8Q7psyhfKKct794gsKCwsJCQrii3fe0YtQS8vMQKmsOfYys7OZ8egjuvc/r1nDz2vW0Ll9e7794EMALl66xMP/eVaXZ+GiRQCMHjKE156pSa9vLbuFUFZcwqkt+yjJL8LJy40Rj83A1tkBgJL8Qopyaq4r6io1R9f8TnFeISamJjh6uTH8sen4tKsZ8ldVXsHB5Vsozi3AxNQEBw8XBs6ZSMtuIbW/vtGEhHWmtLCYfb/toCgvH7fmnsx47mEcrkU/F+UVkJ91Z3XC3Mo/sU3GBLn68sWEmuFWj/e+C4CtkUd4a/fSpqqWQQevnMXW3IqpHQbhZGXH1dw03ti5RDc80dHSFhdrB13+3bEnsTQ1Z1SbnszuPoriijLOpsay9ETNlBqmKhPu6TwMdxsnyqoqOJkUxSf7V1JcUdYobTqZFI21mSWj2vTEzsKa1IIsvjy0VjcNgL2FDU5W+kNVLUzM6NSsNavO7Da4TXOVKdM6DcHB0oZKdRVphTksCd/CyaSbr05YX/ZfjsDO3JoZnYfhaGXH1ZxUXtn+LRnXOmOdrOxws66J9lEqFExs1x9vBzfUGjVnUmJZUGuqijHBvTBTmfDKkPv1vmvZye0su8Puo0T9adOmDcOHD+fBBx9k0bVr99y5cxk9erTeXNdBQUG88847TJgwgaKiIl577TUmTZqEp6cn8fHxvPjii7i4uDBhwgQA7O3tmTNnDk8//TTOzs44OTnxzDPP0K5dOwYPHnzb9VNob3cyISGEqCdvvfUW33zzDYmJ/7wQ7EVH1jd1FerVQ2HjScy9/Yk0/1c0d/Rg6rJXmroa9erXe96kYOvvTV2NemU3cihPbfz01hn/hywc+wT3rWy4+fmawtK7X6EwvuFXdWtMtn6+fLRvRVNXo1493W8ay/+BPzqndx72j2vX9M7D6PXlw01djXp1aN43jFvyXFNXo15tuP89Hln7QVNXo159PelZhn/31K0z/g/Z/uDCpq7CX5a/aElTV8Eg+4fuv3WmvygnJ4fHH3+cjRs3AjB27Fi++OILHBwcdHkUCgVLlixh1qxZlJaWMn78eE6fPk1eXp5uHu8333yT5s1rFkwrKyvj2WefZfny5ZSWljJo0CC++uorvTy3IpFnQogG99VXX9GtWzecnZ05dOgQH3zwAfPnz2/qagkhhBBCCCHEnelfGOfk5OTEsmXLbprnxvgvS0tLduy49QMUCwsLPv/8cz7//PNb5jVGOs+EEA0uJiaG//u//yMnJwcfHx+efvppXnjhhaaulhBCCCGEEEIIcUvSeSaEaHALFy5k4cL/3ZBpIYQQQgghhBD/XtJ5JoQQQgghhBBCCHEn0fz7hm3eyYwvkSeEEEIIIYQQQgghxL+cdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJP8C1fbvJNJ5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIO4lW09Q1EDeQyDMhhBBCCCGEEEIIIYyQzjMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQdxKNrLZ5J5HIMyGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eq0M27yTSOSZEEIIIYQQQgghhBBGSOeZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiDuJDNu8o0jkmRBCCCGEEEIIIYQQRkjnmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQog7iUbT1DUQN1BotTKQVgghhBBCCCGEEOJOkf/xl01dBYPsF8xr6io0CYk8E0KIejTl55ebugr1atXM/yOjILupq1Hv3Oyc6fvVo01djXq1/9GvyHvqxaauRr1yWPg2vb58uKmrUa8OzfuGyT+91NTVqFdr7n2LvCeeb+pq1CuHT9+lMOJsU1ejXtl2bM9nB1Y1dTXq3eN9pjR1FRrEuCXPNXUV6tWG+9/7R57PZ696u6mrUa8WT3mRfl//szpG9j1yZ3ZAif890nkmhBBCCCGEEEIIcSeRQYJ3FFkwQAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRIZt3lEk8kwIIYQQQgghhBBCCCOk80wIIYQQQgghhBBCCCNk2KYQQgghhBBCCCHEnUQjwzbvJBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOJOotU0dQ3EDSTyTAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRCurbd5JJPJMCCGEEEIIIYQQQggjpPNMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghxJ1EI8M27yQSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiKrbd5RJPJMCPGvs3fvXhQKBXl5eU1dFSGEEEIIIYQQdziJPBNCNIq0tDTeeusttmzZQnJyMm5ubnTs2JEnn3ySQYMGNXX1mtTQ1t0Z27YPDpY2JOVl8OOJrURlXDWav7d/B8YG98bTzpmSinIiUmL4+eQ2iipKAejXohPzek2qU27GL69RqalqkDasW72WFcuWk52VjV8Lfx5f8AQdOnU0mv/0ydN88clnxF++grOLC9PvncH4SRN0n1+Ju8wPi74nOiqKtNQ0HnvqCaZMn6q3jbvGTiQtNa3OtidMnsiC556pt7bdaHzbvkzrNBgnK3vic1L5/NBqzqbGGc0/IaQvE9v1x8PWifTCXH4+tZ0d0cf08tzVfgDj2vbF3daR/LJi9sad4tujG6hQN8y+MsRi2CDMwrqhsLREnZBIydqNaNIyjOa3mfcAJgEt6qRXXoyi+Luf6qSbD+qH5ehhlO87ROn6LfVad0MmhPRjeqchOFvZcyUnhc8OruZMaqzR/BND+jGpXX887ZxJL8xh6cltbL9hP6mUSu7tPJwRQWG4WDuQkJfO10d+41jCxQZvy3XDAnswNrg3jla2JOZl8GP4FiJvcp7o49+BcW376M4Tp1Mu8dPJbRSVl+ryWJlaML3TEHr4tMXa3IKMwlyWntzG6eRLjdEkACyGD8asZ/fqY+9qIiVr1t/82Js/F5NWBo69C1EUf/ujbpsWIwbrfa4pKKTglbfqte63S6vV8u2a1az7YxeFRUW0bdWK52Y/QMvmzY2WWffHLrbs30dcYiIAbfxb8Oi0aYQEtGqsauuc23OM0zsOUpJXhJOXG73vHoFXaz+DeZOjrrD+w8V10qe/+TiOnq4AZCenc3zDbjKvplCYnUfvqSPoMKRnQzbhX2NEUCgTQvrhaGlLQl46PxzfxMX0eKP5+7XoyIR2/fCyc6G4oozTyZdYEr6FwvISAFQKJZPbD2BAQBecrexILshk6YnGPUfcrg6eAUzvNJQgNx9crB14fuvXHLhypqmrZdCAlp0ZHhiKg6UNyfmZrIjYRUxWosG8s7uNprd/+zrpyfmZvLLjO937Ia26MaBlZ5ys7CiqKOVEUhRrzu6hSqNusHbcaHzbPtzd8dr9UW4qXxxac9P7o/Ft+zKxXb/q+6OiXJad3M6OS8d1n38y9gk6NWtdp9yRq+d5fuvXDdIGIW5FOs+EEA0uPj6eXr164eDgwPvvv0/79u2prKxkx44dzJs3j6ioqAb53oqKCszMzBpk2/UlzDeEWV1H8v3xTURnJDC4dTdeHHgvT238jOyS/Dr5A119md9zEktPbuVEUjROlnY8GDqWh8Mm8OG+5bp8JRVlPLHhE72yDdVx9sfvu/js409Z8NwztOvQno2/refZJ57m51W/4O7hUSd/SnIK/3nyacaMH8srb7zKuTNn+fi9D3FwdKD/wAEAlJWV4dnMi/6DB/D5x58Z/N5vl/6ARq3Rvb8Sd5mn5j/BgMEDG6SdAwO68FjvyXy8fyXn0y4zNrg374+ex70r3iSjKLdO/nFt+zA3dBwf7F1OZEY8bdz8+E//GRSWlXD46jmg+mZ3buh43tvzM+fTLtPcwZ0XBs4E4ItDaxukHbWZD+yLef9elCxfizozC4shA7B5eDYF73wM5RUGyxQv+QVUKt17hbUVts88RmXE+Tp5Vc2bYRbWDXVyaoO14UaDArrwRO+7+GjfCs6mxTG+bR8+HDOfe5a/TrqB/TS+bV8eDhvPe3uWEZlxlTZufjw/4B4Ky0s4FF+9n+b2GMew1j14b+8yruam0b15MO+MeJiH1n5g9AdPferp1676PHFsE1GZVxnSqhsvDrqPpzZ+SlZx3fNEkJsv83tNZumJrZxIisLJyo65PcbxSNhEPtj7CwAmShX/HXI/+WXFfLhvOdklBbhY21NaWd7g7bnOfFA/zAf0puSX1dXH3tCB2Dz6AAVvfWj82Fv8c91j7z9PUBlxTi+fOjWNoi+/r0lowhXLlm7cwPItm3n1kXn4eHryw29rmffWm6xd+CnWlpYGy5y8cIFhPXvTPrA15qZmLN24gflv/R+rPvoYNyfnRqt7zPFzHFy5jX4zRuMR4MOF/SfY9OnPTH/jMWydHYyWm/F/T2Bqaa57b2lrrfv/qopK7FwdCejaloO/bmvI6v+r9PZvz5zuY1h0ZD2RGVcZFtiD/w6Zzfx1H5NVnFcnfxs3P57oM5XFxzdxPDESZyt7Huk5gfm9JvHO7p8BmNFlGP1bdOLLw2tJysukU7PWvDDwXp7b8hVXclIauYU3Z2lqTmx2ElujDvP2iIebujpGdWvehmkdh/Dzqe3EZiXRv2UnnuozlZd3fEtOSUGd/CsidrLm3B7de5VCyetD53AiqebeOdSnLZPbD2Bx+GZis5LxsHViTvfRAKyM2NXgbRrQsjPze01m4YFfOZ8ax5i2vXlv1DzuW3mz+6OxfLB3OVEZV2nj7sez/aZTWF7C4avV9xGv7PgOU2VNV4WdhTU/THmBvXGnG7w9dxSN5tZ5RKORYZtCiAb36KOPolAoOH78OJMnT6Z169a0bduWBQsWcPToUeLj41EoFEREROjK5OXloVAo2Lt3ry7t4sWLjBw5EhsbG9zd3Zk5cyZZWVm6z/v378/8+fNZsGABLi4uDBkyBICtW7fSunVrLC0tGTBgAPHx8Xr1y87OZtq0aXh7e2NlZUW7du1YsWJFQ/6T6IwO7sXu2JPsjj157YnuVrJK8hka2N1g/tau3mQU57Et6iiZRblEZ15l16VwWjg308unRUt+WZHeq6H8unwlo8aNYcz4sfj5+/H400/i5u7GujXrDObf8Ns63D3cefzpJ/Hz92PM+LGMGjualctqOv/atA1m3hPzGTx0CGZmpga34+joiLOLs+51+OAhmnk3o2PnTg3SzikdBrIl8jBbIg9zNTeNzw+tIbMoj/EhfQ3mHxbYg40XDrI79iSpBdnsjj3JlsjDTO88RJenrYc/59Pi2BVzgrTCHMITI/kj5gSBrr4N0gZDzPv1pGznXirPXUCTlk7J8tUozEwx69zRaBltSSnawiLdy7R1AFRWUnFGvwMDMzOs7plK6ap1aEtLDW+snk3tOJjNkYfYFHmIq7lpfHpwNRmFuUwI6Wcw//DAHmy4cIA/Yk+SUpDFH7En2Bx5iBmdhunl+enkNo5cPU9KQRbrL+znWMJFpnUcbHCb9W1Mm+rzxB+xJ0jOz+THE1vJLs5naOseBvO3dmlOZnEuW6OOkFGUS1TGVXbGHKels5cuz8CALtiYW/L+nmVEZyaQVZxHVMZVrubWjeZsKOb9elH2+x4qz15Ak5pOybJVKExNMevS0WiZOsdeYKvqYy/irH5GtUYvn7a4uGEbY6y+Wi0rtm7h/gkTGdijBwE+Prw+bz5l5eVsP3jQaLn/e/wJ7ho2jEA/f/yaNePlhx5Cq9Vy/FzdDuqGFLHzMG16dya4b1ecvNzoc/dIbB3tOL/3+E3LWdpZY21vq3splTU/Odz9vel113BadW+PykSe49eXcW37sCsmnJ0x4STlZ/DD8U1kFeczIijUYP5ANx8yinLZHHmYjKJcIjPi2RF9jAAXb12eAS07s+bsHk4mRZNelMP26KOcTr7E+JA+jdWs23Y04QLfHdvIvssRTV2VmxrWujsHrpzhwJUzpBZmsyJiFzmlBQxo2dlg/tLKcgrKinUvP0dPrMwsOXhDVF1L52bEZCVxLOEi2SX5XEi/wrGEi/g5ejZKm6Z0GMTWqCPV90d56XxxaC2ZRbmMa2v4OBnaujsbLx5iT9wpUguv3R9FHWZap6G6PIXlJeSUFuheXZsHUV5Vwd64U43SJiEMkc4zIUSDysnJYfv27cybNw9ra+s6nzs4ONzWdlJTU+nXrx8dO3bkxIkTbN++nfT0dKZMmaKXb+nSpZiYmHDo0CEWLVpEYmIiEydOZOTIkURERPDAAw/w/PPP65UpKyujS5cubN68mfPnzzN37lxmzpzJsWP6w+vqm0qpooWTV53hZGdTYgl09TFYJjozAWcrOzp5VYey21tYE+rbltPJ0Xr5LEzM+HLCM3w98VmeG3BPg91AVVZWcikqmu499Dv7uvXozvmz5wyWuXDuPN1q5e8e2oOoi1FUVf216LjKykp+37aDkWNHo1Ao/tI2bsZEqaK1qw/hiZF66eGJkYS41x1CBmCqNKFCXamXVq6upI2bH6prPyTPpsbR2tWHNm7VnWWeds6E+oZw9Grj/EBWOjuitLOjKjqmJlGtpir2Cib+ho9BQ8x6dKXi9Fmo0G+v1eSxVEZGUXXJ+NCN+mSiVBHo6sPxBP39dDwxkhAPI/tJZUJFVa39VFVJsHvNfjJVGdiXVZW09wyox9obZqJU0cLZizMp+ueJM6m3Ok/Y64a82FtYE+oTwqmkmqFWXb2DuJSZyAM9xvL9XS/w8ZjHmRjSD2UD/P0YonR2QmlvR1VUrWMv7gom/rffeWwW2o2KU2fqHHtKVxfs3ngR2//+B6v7pqF0dqqvqv8pyRkZZOflEdq+gy7NzNSUzsHBnL0UfZOS+srKK6iqqsLexqYhqmmQuqqKzKsp+LTVP86btw0gLe7mEZe/vvEVS55+j/UfLiEp6nJDVlNQfZ5o6dyMiOQYvfSIlEsEuRn+e4rKuIqLtT1dvAMBsLewoadfO04k1kQ0mShVdaYQqLh2HRN/nkqpxNfRkwvp+n8TF9KuEODsbaSUvj4tOnAx/QrZN0SpxWQl4efogb9T9b2eq7UD7TxbcvYm0xXUl+r7o+aG74/+5HW3jZuv7rpb26igMHbHnqSsynBUshCNQR73CCEaVGxsLFqtlqCgoL+1na+//prOnTvz9ttv69IWL15M8+bNuXTpEq1bV/9IDAgI4P3339flefHFF2nRogULFy5EoVAQGBjIuXPneO+993R5mjVrxjPP1MyR9dhjj7F9+3ZWr15Njx6GIzvKy8spL9cf3mRubm4wrzF25laolKo6UWH5ZcU4WBj+gXQpM5HPDq7myb5TMVWZYKJUEZ4YyeLjm3V5Ugoy+erwbyTkpWNpas7IoDDeHP4gz27+krTC7D9Vx1vJz8tDrVbj6KT/w9TR2Ymc7ByDZbKzc+he64eso5MTarWavLw8XFxc/nQ9DuzdT1FRESNHj/zTZW+HvYUNJkoVuaWFeuk5JQU4NbczWOZ44kVGt+nFgStnuJSZSKCrDyODwjBVmeBgYUN2SQG7Y0/iYGnLFxOeRoECE5WKdef388vp3xukHbUpbG0B0BTqH4OaoiKUjg63tQ2VjzcqLw9Kfv1NL920U3tUzbwoWfhVvdT1djhc2085pfpDX3JLC3C2usl+Cu7N/itniM5MIMjVh1Fteurtp2MJF7m742AiUmJJzs+kq3cQffw7oFQ2fEeTrbHzRGkRDl6GzxPRmQl8emAVC/rerXee+OH4Jl0ed1snQmwcOHD5DG//sRRPO2ce6DEWpVLJmrN7DG63Pilsq+uuKdT/m9IUFqJ0dLytbeiOvRVr9NKrriag/mUV6oxMlLa21cNBn3yEwncWoi0pqZ8G3KbsawvTONvb66U729uTmplloIRhXyz/BVcnJ7q3a1ef1bupsqIStBoNlnb6x5mlnQ0l+YUGy1g52ND/3nG4+Xqhrqoi+sgZNnz0IxOenW10njTx912/n8irdZ7IKy3C0dLWYJmojKt8vG8lz/afoTtPHEu4wLdHN+jynE6+xLi2fbiQfpm0ghzaewXQwycYpULiL/4KWzMrVEol+WX6kbAF5cXYW9R9wFybvYU17Txa6u0jqL6O2Zpb8cKAe0FR3aG1O/YkW6OO1Gv9Ddfp2nW3pPZ1txAnI9fd8MRIRrfpycErZ7iUpX9/ZG9hU2dbQW6+tHBuxnvXph34V5HVNu8o0nkmhGhQ2msn/b8bDXTy5En27NmDjYGn7nFxcbrOs65du+p9FhkZSWhoqN73h4WF6eVRq9W8++67/PrrryQnJ+s6xgxFyl33zjvv8Prrr+ulvfrqq9DyTzfN4HXR2KWymb0r93cbxZqzeziTEoOjpS33dBnOg6Hj+OZI9TDJmKwkYrKSdGWiMxJ4b9SjjAgKZUl4w0zWXmf3arV1027Mj/6H2mstrp1+uzZv3ESPsFBcXF3/Uvnbpa21sxQKha7utS09sQ0nKzu+mfgfUEBuSSHbo44yvfNQ1NrqOSw6erViZpdhfLx/JZHp8TSzd+Xx3neR3WUEP52s/7mATDt3wGrKeN37IgOT+1dTGD8IazHr0RV1ShrqhJpjTuFgj+WE0RR9sxj+YjTh31F7P4HCaHOWhG/FycqObyc9p9tPW6OOcE/nYaivbefTA6t4bsA9LJ/+Glq0pORnsiXqMKOCGm+S8zptuskfmLe9K7O7j2b12d2cSY7BwcqWe7uMYG7oOL6+dp5QKBTklxWz6Oh6NFotl3NScLS0Y1zbPg3SeWbapSNWU2sWBSla9KORnApu9+AzC+1W59gDqIqsibDTpKZTFH8Vu1f+g1n3zpTvNT5Usj5sO3CAt79bpHv/yfMvAHWvgVrtTXehnqUbNrDj0EEWvfo65k0wj6eh87uxyjt6uOLoUXMe9mjpQ1FOPqd3HJTOs0ZQ5xplIO265vZuPBg6ll8jdnEq+RJOlnbM6jaSR3pO5ItD1R3S3x/bxLxek/hywjOAlrTCHP6IOcGgVl0NblP8Nbd71uvl156SyjJOpehHrQa6+jC6TU9+PrWdyzkpuNs4Mq3jEPKDi9h08VCD1Pl2GDv2lp7YhpOlHV9PfLbm/ij6KNM7DUWjrTvH16ignlzOTr7pYlpCNAbpPBNCNKhWrVqhUCiIjIxk/PjxBvNcnwvlxotsZaV+OLdGo2HMmDF6EWPXeXrWDEms3eFl7MJ9o48++oiFCxfyySef0K5dO6ytrXnyySepqDAeGv7CCy+wYMECvTRzc3Nmrnrzlt93XUF5CWqNGgdL/Q5Bewtro3OUTQjpR3RmApsuVv8ATMhLp+zYJt4c/iArI3aSV1q3nBYtcdnJeNjW/yTT9g4OqFSqOlFmuTm5daLRrnN2diInWz8CLi8nF5VKhb2DvcEyN5OWmsrJ4yf4v/ffvnXmvyi/rIgqjbrOU1RHS1tySwxHYFSoK3lvzzI+3LccJ0s7skvyGRPcm+KKUvJLq586z+k+ht+jj7Ml8jAAl3NSsDA159l+0/n55HajHXN/VeWFSAo/vGG41bX5hpS2NqgLatqhtLFGW3Qb8+SZmmLWqT2l2/UnJDbx9kJpa4Ptgnm6NIVKhaqFH2a9Q8l/9r8N8jQ179p+crbSP44cLW0NTsQM1fvpnd0/8/7eX3T7aWxwn2v7qUi33Re2fYOZygQ7CxuyivN4JGwCqYW3Hzn0VxXqzhP60SP2FtYG/97h2nki4yobL1SfJ67mpfNd1Ub+b/hcVkTsIq+0kNySQtRaNZob9kNyfiaOVraYKFX1vkJb5fmLFF698dirnvRfaWurf+zZ2qAtvM1jr3MHSrftvHXeikrUqWkoXf98VOuf1bdrV0Ja1QxzrKis7jzOysvD5YaIupyCfJzsHW65vZ83bWTJ+t/46uX/0sq38eZCBLCwsUKhVFKSr78/SguLsbK7/eGj7i28uXT0zlz18J/i+v1E7Sgze0ubOtFo101qP4DI9HjWnd8PwNXcNMqOVPDuqEf45dQOcksLKSgv5p3dP2GqMsHW3IqckgLu7TqC9MK6k8CLWyusKEGt0dSJMrM1t6ag7NbzMvbx78CRq+dR15pEfkJIPw5fPa9bXTQ5PxMzlSn3dR3J5ouH6vlOQt9N749Kb3J/tHcZH+43fn90nbmJKQMDurA4fLPBbQnRmCTmVgjRoJycnBg2bBhffvklxQYmbM7Ly8P1WrRQamrNanw3Lh4A0LlzZy5cuICfnx8BAQF6r5tFiAUHB3P06FG9tNrvDxw4wLhx47jnnnvo0KEDLVq0ICZGf96Q2szNzbGzs9N7/dlhm2qNmss5KXXmTWrvGUB0ZoLh71WZ1ukQvP6U7mZRW76OHuQZuYn5O0xNTWkdFEj4Mf3Jo8OPhxPS3vDworbtQgg/Hq6XdvzYcYKCgzD5C5NHb920BQdHR8J6NVwUUJVGzaXMBLo2b6OX3tU7iPPpN5/PR63RkFmch0arZVBAVw7Hn9d1ilmYmNXdnxoNCsXtR6X8KeUVaLJyal5pGWgKCjAJvOEYVKkwCfCn6orhY/BGZh3bgYmKyhP6q19VxsRR8N6nFH74he5VlZBE5akzFH74RYMNQ6jSqInOTKBbrf3UrXkbzqfd/n4a3Korh+LP1em8rFBXkVWch0qppH/LTrofKg2pSqPmcnYK7b3+xHnCxBQNdY8rQHeWiM68ioets955w9POmZySgnrvOAOuHXvZNa+0DDT5Bo69lv5UXbl1dIFZp/bVx174bay8plKhcndDU1D/58DarC0tae7hqXu18PbG2cGBY2drFjSorKrk1MWLtG8deNNt/bRxA9+vXcPnL7xEcMu/ENb8N6lMTHD19SLxov6chYkX4/Bo2fy2t5OVmIqVg+Ghg6J+VGnUxGUn08GrlV56R69WRqN1zE1M65zjau4n9FWqq8gpKUClUNLTN4RjCRfqre7/JmqNhqu5qQS7++ult3X3JzY7yUipaoGuPrjbOnHgct3rjpnKpM6+1Gq11fuxgeexrL4/SqSrt/70LF29g/7UdXdgQBeOXD1fpx0DWnbBVGXCzkvhRrbyD6fV3pmvfynpPBNCNLivvvoKtVpN9+7dWbt2LTExMURGRvLZZ58RFhaGpaUloaGhvPvuu1y8eJH9+/fz8ssv621j3rx55OTkMG3aNI4fP87ly5f5/fffmT17Nmq18R96Dz/8MHFxcSxYsIDo6GiWL1/Ojz/+qJcnICCAnTt3cvjwYSIjI3nooYdIS2ucFec2XzzEoIAuDGjZmWZ2rtzXdQQu1va6m4RpnYYwr+ckXf4TSVF09wlmSOvuuNk4Eujqw/3dRhGTlah7wje5/QA6eAbgZuOIr6MHj4RNwM/Jk98v3Xx1tL9q6vS72bxhE1s2bib+SjyfffwpGWnpjJ80HoBvvvia/3v1DV3+cRMnkJ6axucLPyX+SjxbNm5my4ZN3H3PdF2eyspKYqIvERN9icrKKjIzM4mJvkRSov7NpUajYeumLYwYNeIvdbz9GavO7GZ0m56MDArD19GD+b0m4WbryIbzBwCYGzqOFwfdp8vvbe/GkNbd8bZ3pY2bL68OmY2/syffHauZq+Tw1XOMC+nDwIAueNo609U7iDk9RnMo/pxeRFBDKt93GIvB/TFtF4zSwx2raZPRVlRScSpCl8dq+mQsRg2tU9YstCuV5yLRltRaSbO8Ak1aut6Ligq0xSXV/9+Afo3YxZjgXoxq0xNfRw8e73UX7raOrLtQHV3xcOh4Xh40S5e/ub0bQ1t3x9vejTZufrw+dA4tnL1YdMOcMsHufvRr0REvOxc6eAbw8ZjHUaDgl1ONMzfdpsjq88TAgC40s3dlVteRuFjb6/6mp3caymO9Juvyn0iKoodPW4becJ6Y3X00MZk154kd0cexNbfi/u6j8LR1pnOzQCa268/26IZdKOVG5fsOYTFkAKbt26L0dMdqxl1oKyupOBmhy2M1YwoWo4fVKVt97F00OIeZxbiRqFr6o3RyROXbHOvZ96CwMKfi+MmGbI5BCoWCaSNHsWT9b+w5fozYhARe++pLLMzNGd67ty7ff7/4nC+W18zns3TDBr7+dSX/feRRPN1cycrLJSsvl5Kyxlm19rqOQ3py8cBJLh48SU5KBgdXbqUwJ5+2/asXfTmy9nd2/VAz59yZnYe5fPoieenZZCenc2Tt78SdvEi7ATXzh6qrqshMSCUzIRV1lZqivAIyE1LJS6/fOTn/bTZcOMCQ1t0Y1Kor3vZuzOk+GhdrB7ZHVT8wnNllOE/2qVlkKTwxklDfEIYHhuJu40SQmy8P9hjLpcwEcq6dJ1q7NCfUty3uNk4Eu/vx6tA5KBQK1p3f1yRtvBlLU3NauXjT6tpqoV52LrRy8cbd5vbmUGwsOy4dp69/R3r7t8fT1pm7Ow7GycpOt4rkpHb9eaD7mDrl+vh3IC47meSCzDqfnUmNZUDLznRvHoyLtT3B7n6MD+lLRErMbY3A+LtWnfmDUdfvjxzcmddzEm62Trro5wd7jOXFgffq8nvbuzGkVTea2bsS5ObLfwffj7+TJ98d21hn26PahHHwyhkKyptmxWQhbiTDNoUQDc7f359Tp07x1ltv8fTTT5OamoqrqytdunTh66+/Bqon/589ezZdu3YlMDCQ999/n6FDa36se3l5cejQIZ577jmGDRtGeXk5vr6+DB8+XDfs0xAfHx/Wrl3LU089xVdffUX37t15++23mT17ti7PK6+8wpUrVxg2bBhWVlbMnTuX8ePHk5+f33D/KNccuXoeW3MrJrUfgKOlLYl56byz+2eyivOA6rB3F2sHXf59l09jaWrO8MAe3NtlOMUVZVxIu8yyUzt0eazNLJgbOh4HSxtKKsu4kpPKqzu+Jy47uUHaMGjoYAry8/nx+8VkZ2Xj37IF73/yIR7XhtNmZ2WTfkOHiVczL97/5CM+X/gp61b/hourC0888xT9Bw7Q5cnKzGL2PbN071cuW87KZcvp2LkTny/6Upd+4ng46WnpjBw7ukHadqPdsSexM7fmvq4jcba240p2Ks9t/or0ouohq85Wdno36SqlkqkdBuHj4E6VRs3p5Es8+tuHpBXWDHH96cQ2tFotD/QYg6u1A3mlRRyOP2fwBrKhlO/ej8LUFMvJY1FYWqK+mkTRN0ugvGbYstLRoc6TRqWrMyYt/Cj6enGj1fV2/BF7EjsLG+7vOgpnazsuZ6fwzKYvSC+8vp/scbetGVKsVCqZ1nEwPg4eVGnUnEqO5uG1H+gtrmGmMuXBHuPwsnOhtLKcI1fP8+bOJRRVNE5HxuH4c9iaWzH52nkiIS+dt//4qdZ5omao6t646vPEiKBQ7us6guKKMs6nXWbZyZrzRHZJPm/uXMKsbiP5aOxj5JQUsDXyMOuvdTI2hvI/9l079sahsLJEfTWRoq9/uI1jzwWTlv4UffW9we0qHeyxvm8aCmsrtEXFVF1NpPDjr9Dm5jVga4y7b+w4yisqePeH7yksLiYkIIAvXnwZa0tLXZ607Cy9BSjW7NxBZVUVz338kd62Hpx8Fw/dpb/KdENq1b0dZcUlnNi0l+L8Qpy93BnzxEzsnB0AKMkvojC75lqprlJzaNUOivMKMDE1xamZG6Men4lf+9a6PMV5hax6o2YhkYgdh4jYcQiv1n5M+M+cxmraP87BK2exNbdiaodBOFnZcTU3jTd2LiHTyP3E7tiTWJqaM6pNT2Z3H0VxRRlnU2NZeqJmvk1TlQn3dB6Gu40TZVUVnEyK4pP9KymuKGvk1t1akKsvX0yomU7j8d53AbA18ghv7V7aVNWqIzwxEhszS8YG98bewobk/Ew+OfCrbvVMewubOkMgLU3N6eIdxIoIw8PUN108iFarZUJIXxwtbSksL+FMaixrz+1t4NZU2xN3CnsLa+7tMqL6/ignlee23Hh/ZI/bjfdHCgVTOwyi+fX7o5RLzFv3kd79EVR3srX3DODpTZ83SjuEuBWFtjG6o4UQ4l9iys8v3zrT/5BVM/+PjIJ/XjSAm50zfb96tKmrUa/2P/oVeU+92NTVqFcOC9+m15cPN3U16tWhed8w+aeXmroa9WrNvW+R98TzTV2NeuXw6bsURpy9dcb/IbYd2/PZgVVNXY1693ifxutMbEzjljzX1FWoVxvuf+8feT6fvarh5lttCounvEi/r+fdOuP/kH2PfHnrTHeo/FffaeoqGGT/+gtNXYUmIcM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQuY8E0IIIYQQQgghhLiDyAxbdxaJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5Fhm3cUiTwTQgghhBBCCCGEEMII6TwTQgghhBBCCCGEEMIIGbYphBBCCCGEEEIIcSfRyLDNO4lEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g1TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9HKapt3Eok8E0IIIYQQQgghhBDCCOk8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCHEn0ciwzTuJRJ4JIYQQQgghhBBCCGGEdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJPIapt3FIk8E0IIIYQQQgghhBDCCIVWK92ZQgghhBBCCCGEEHeKvP+82tRVMMjh/debugpNQoZtCiFEPXpywydNXYV69cm4J7mcldTU1ah3LVy8Gb342aauRr3aPPsD8u6e09TVqFcOK3/gjZ2Lm7oa9eq/Q2Yz/sfnm7oa9Wr9rHf5YM+ypq5GvXp2wD18d3RDU1ejXj0YOo7H1n3c1NWod59PWMAr279t6mrUqzeHz+WRtR80dTXq1deTnmX2qrebuhr1avGUF+n15cNNXY16dWjeN//I/fQ/S6tp6hqIG8iwTSGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eo1MT38nkcgzIYQQQgghhBBCCCGMkM4zIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEHcSrQzbvJNI5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEZI55kQQgghhBBCCCHEnUSrvTNfDSg3N5eZM2dib2+Pvb09M2fOJC8v76ZlFAqFwdcHH3ygy9O/f/86n999991/qm4y55kQQgghhBBCCCGEaFLTp08nKSmJ7du3AzB37lxmzpzJpk2bjJZJTU3Ve79t2zbmzJnDpEmT9NIffPBB3njjDd17S0vLP1U36TwTQgghhBBCCCGEELdUXl5OeXm5Xpq5uTnm5uZ/a7uRkZFs376do0eP0qNHDwC+++47wsLCiI6OJjAw0GA5Dw8PvfcbNmxgwIABtGjRQi/dysqqTt4/Q4ZtCiGEEEIIIYQQQtxJNJo78vXOO+/ohlVef73zzjt/u7lHjhzB3t5e13EGEBoair29PYcPH76tbaSnp7NlyxbmzJlT57NffvkFFxcX2rZtyzPPPENhYeGfqp9EngkhhBBCCCGEEEKIW3rhhRdYsGCBXtrfjToDSEtLw83NrU66m5sbaWlpt7WNpUuXYmtry8SJE/XSZ8yYgb+/Px4eHpw/f54XXniBM2fOsHPnztuun3SeCSGEEEIIIYQQQohb+rNDNF977TVef/31m+YJDw8Hqif/r02r1RpMN2Tx4sXMmDEDCwsLvfQHH3xQ9/8hISG0atWKrl27curUKTp37nxb25bOMyGEEEIIIYQQQog7SQOvbNlY5s+ff8uVLf38/Dh79izp6el1PsvMzMTd3f2W33PgwAGio6P59ddfb5m3c+fOmJqaEhMTI51nQgghhBBCCCGEEKLpuLi44OLicst8YWFh5Ofnc/z4cbp37w7AsWPHyM/Pp2fPnrcs/8MPP9ClSxc6dOhwy7wXLlygsrIST0/PWzfgGlkwQAghhBBCCCGEEEI0mTZt2jB8+HAefPBBjh49ytGjR3nwwQcZPXq03kqbQUFBrFu3Tq9sQUEBq1ev5oEHHqiz3bi4ON544w1OnDhBfHw8W7du5a677qJTp0706tXrtusnnWdCCCGEEEIIIYQQdxKN9s58NaBffvmFdu3aMXToUIYOHUr79u35+eef9fJER0eTn5+vl7Zy5Uq0Wi3Tpk2rs00zMzP++OMPhg0bRmBgII8//jhDhw5l165dqFSq266bDNsUQgghhBBCCCGEEE3KycmJZcuW3TSP1sBccHPnzmXu3LkG8zdv3px9+/b97bpJ5JkQ4n+KQqFg/fr1/5jvEUIIIYQQQghxZ5PIMyGEuAP18mvPwIAu2FlYk1aYzbpz+7ick2Iw7/ROQ+nuE1wnPbUgm/f2/GygRP3b/NsG1ixfRU52Nr7+fjz0+KOEdGxvNP/Z02f47vOvuXolHmcXFyZPn8qoCWP08qz7dS1b1m0kMz0DOwd7evfvy/0PP4CZuRkA902aTkZa3RV5Rk8cy7ynn6jfBhoxMiiMie3642RpS0JeOt8d28iF9CtG849q05PRbXriZuNEZnEuq87sZnfsyUap681YTB6L2cB+KGysUMdepmTxL2iSDB9v15mPGIzZkAEoXZzQFhZRcewEZSvWQmXVtY1aYDllPKbdOqOwt0Udn0DpjytQX45v+AbVcmn/KS7+cZzS/CIcPF3oMmkQbgHNjeZXV1ZxbtthroRfoKywGCsHW0KGhdEyzPgx3dBGBIYyPqQvjla2JOam88PxzVzMiDeav2+LjkwI6YeXnTPFFWWcTr7Ejye2UlheosszJrgXwwNDcbF2oLC8mMPx5/n51HYq1VWN0CK4uPcEZ3ceoTS/EAcvV8LuGoZHKx+DeVOi49m6sO75bPJrj+DgUT0J8aXDZ9j/08Y6eWZ9/gImpo1zy3v6j8OEb91HcX4hLl7uDJgxFu9A/1uWS74Uz8p3vsHF25373nxK77Oy4lIOrt1OzInzlJWUYu/iRP9po2jRoU1DNUNPH/8ODGrVFTsLa1ILsvnt3F7ispMN5r2n8zB6+Latk55akMXbf/wEgIetM6Pa9KS5gxvO1vasPbuHvXGnG7IJBnVvHkxv//bYmFuRUZTLtqgjXM1NM5pfpVAyIKALHbwCsDG3oqCsmH1xpzmVHA1AsLsffVt0wsnKDpVCSXZJPofiz3EmJaaxmkTfFh0Z0rob9hY2pBZksfrMbmKN7Kt7u4wgzC+kTnpKQRZv7lwCQEevVgwPCsXV2gGVUklGUR67YsI5nnCxQdtxowEtOzM8MBQHSxuS8zNZEbGLmKxEg3lndxtNb/+65+nk/Exe2fGd7v2QVt0Y0LIzTlZ2FFWUciIpijVn91ClUTdYO/6KDp4BTO80lCA3H1ysHXh+69ccuHKmqatl0L95PzWof8hqm/8U0nkmhBB3mE5erZnQrh9rzuzmSk4KPf3a81DYeN7Z/TN5pYV18v92bi+bLh7UvVcqlPxnwIxGu2Hft2sPiz79inlPP05w+xC2rt/MK8+8wKJli3HzqLusdFpKKv995kWGjxnJs/99gYtnz/PlR59h72BP7wF9Adi9YxdLvvmOp154luB2bUlKSOLjt94H4KEnHgXg0++/QqPR6LZ79fIVXnzyP/QZ0K8RWl39g/LBHmP5+sg6LqbHMyIolNeGzuHR3z4kszivTv4RQWHc12UEnx9aw6WsRAJdmjO/92SKyks4nhjZKHU2xHzsCMxHDqXk68WoU9OxmDgamxefpmDBS1BWZrCMaa8eWEybTMmiJagvxaL09MDq4dkAlP1UvTy41UP3ofJuRvGX36PNzcOsTyg2Lz9NwdOvoM3Na6zmEX8ykpNr/6Db1KG4tmhGzMEI9ny1mtEvP4C1k53BMgcXb6C0sJjQGSOwdXWkrLAY7Q3HWmPr5dee2d1Hs+joBqIy4hkW2INXhtzPY+s/Jqs4v07+Nm6+PNF7CovDNxOeGImzlR0Ph01gXs9JvHutQ71vi47M7DKcLw6uISozAS87Fx7vfRcAi8M3N3ib4k5c4OjqHfScNhL3lt5EHTjF9i+WM/nVR7Bxsjda7q7XH8XUwlz33sLWSu9zUwtz7nr9Ub20xuo4izoWwZ5fNjH43vE0a+3HmT3HWPvRD9z/ztPYOTsaLVdeUsrWb1fiGxxAcYH+OV5dVcXqD77Dys6GsfNnYuNkT2FOHmY3/Bs0pM7NWjOxfX9WRfzB5ZwUevm155GeE3hr11JyDVyP1pzdw4YLB3TvVQolzw+ayenkmuuRmcqErJJ8TidfYmL7xjlf1xbi0YIRbcLYfPEgCbnpdG3ehpldRvD5wVXklxUbLDO142BszC1Zd34/OSX5WJtZolTUDOIpqSxnX9xpsorzqNKoCXTzZUJIP4orSonNSmrwNnXxDuSuDgNZeXoncdnJ9PHvwLzek3nj98UG99WqM3+w/vx+3XulUsFLg2ZxKilal1ZcUca2qKOkF2ZTpdHQzrMF93YZQWF5CZHp8Q3epm7N2zCt4xB+PrWd2Kwk+rfsxFN9pvLyjm/JKSmok39FxE7WnNuje69SKHl96BxOJEXp0kJ92jK5/QAWh28mNisZD1sn5nQfDcDKiF0N3qY/w9LUnNjsJLZGHebtEQ83dXWM+rfvJ/HvIcM2hRD1pn///syfP5/58+fj4OCAs7MzL7/8sm5c+rJly+jatSu2trZ4eHgwffp0MjIygOqx6wEBAXz44Yd62zx//jxKpZK4uDiD33nu3DkGDhyIpaUlzs7OzJ07l6KiIt3n4eHhDBkyBBcXF+zt7enXrx+nTp3S20ZMTAx9+/bFwsKC4OBgdu7cWZ//LH9a/4DOHLt6gaMJF0gvymXd+X3klRbR289w1EtZVQWF5SW6l4+DO5amFhxLuNAo9V336xqGjh7B8LGj8PHz5eEn5+Hq5saWdZsM5t+yfhNu7m48/OQ8fPx8GT52FENHDWftilW6PFHnLxLcLoQBQwfh7ulBlx5d6T9kADFRNTf1Do4OODk76V7HDh3Fs5kX7Trdennq+jA+pC87L4Xz+6XjJOVn8N2xjWQV5zEyKMxg/oEtO7Mt+igHrpwhvTCH/VfOsPNSOJPaD2iU+hpjPmIwZeu3UBl+Ck1SMiVf/YDC3AyzXj2MljFp3ZKqS7FUHjqGJjObqrMXqDh8DJMWftUZTE0x7d6F0uVrUEddQpOeQdmajWgysjAf0rjtjdodTsuw9gT07IC9hwtdJw/GytGWSwcMR7qkXLxMemwiAx65C88gP2yc7XHx88K1hXej1vtG49r2ZlfMCXbFhJOUn8kPxzeTVZzP8MBQg/lbu/qQWZTLlsjDZBTlEplxld+jjxPg0kyXJ9DVh6j0q+y/coaMolwiUmI4cPmMXp6GdH7XUVr36kRQ7044eroSNmUY1o52RO47cdNyFrbWWNnb6F5Kpf6trEKB3udW9jYN2Qw9J7YfoF3fbrTv3wNnL3cGzhiLrZMDEX8cvWm533/8jTZhnfAMqBt1d25/OGVFJYx//D6atfbD3sUR79b+uPl4NVQz9AwI6MKR+PMcuXqe9MIcfju3l9zSQnr7Gz7P1rkeOVZfj45ePa/Lk5CXzobz+zmVHE2VumkiSHr6tedUUjQnk6LJLM5jW9QRCsqKDEZxAwS4eOPn5MnPJ7dzOTuZvNIikvMzScyriX6Oz0klMiOezOI8cksLOXrt38zXwaNR2jSoVVcOx5/jUPw50gpzWH12D7klhfRt0dFg/rKqCgrKi3UvX0cPrMwsOHLDvorJSuRMSgxphTlkFeexJ/YUyfmZBDg3znliWOvuHLhyhgNXzpBamM2KiF3klBYwoGVng/lLK8spKCvWvfwcPbEys+TgDdFaLZ2bEZOVxLGEi2SX5HMh/QrHEi7i5+jZKG36M44mXOC7YxvZdzmiqatyU//2/ST+PaTzTAhRr5YuXYqJiQnHjh3js88+Y+HChXz//fcAVFRU8Oabb3LmzBnWr1/PlStXmDVrFlA9x9js2bNZsmSJ3vYWL15Mnz59aNmyZZ3vKikpYfjw4Tg6OhIeHs7q1avZtWsX8+fP1+UpLCzkvvvu48CBAxw9epRWrVoxcuRICgurn8JqNBomTpyISqXi6NGjfPPNNzz33HMN9K9zayqFEm97N6Iyr+qlR2Vcxc/p9m4Yevi25VJmgsEnzfWtsrKSmOhLdO7eVS+9c/cuXDxvuPMu6vxFOnfvop+/Rzdioi5RVVU9XCy4Qwix0ZeIvlj9FDI1OYXwI8fp3tNwZ0FlZSV7ft/F0FHDUSgUf7dZt2SiVBHg3IzTKZf00k8nXyLIzddgGVOVSZ3hcBVVlbR2aY5K0TSXY6WbC0pHB6rO3rCvqqqoiozGpHXdvzldlqhYTPx9UbX0123HtFM7Kk+drc6gUqFQqaCyUq+ctqISk6CAem+HMeoqNTmJaXi20R8259nGn6wrhocyJZ2LxdnHg4u7jvHbS1+y8fVvOfXbbqoqKg3mb2gmShUtnZsRUSuSNCIlxuixFpVxFWdre7o0q17W3d7ChjC/EL2n+pEZ8bR0aUYrl+pOQXcbJzp7B+rlaSjqKjVZCal4t2mhl+7dpiXpl28eobPure/45T8L2brwZ1Ki4+t8XllewcoXP2P585+w48uVZCWk1mfVjVJXVZEen4xfSGu9dL+QVqTE1q3ndef2h5OXkU3P8YMNfh53+iJeAb788dM6vnrsDZa8+BFHN+3Wi7ptKCqFkuYO7kRl1LoepV/F3/n2Ou9CfUOIzrjaKNej26VSKPGyc6kTDRablURzh7rR0gBBbr6k5GfS278Dz/afwRN9pjAssAcmSuOrtLVw8sLF2p743IY/BlUKJT4OHlysFQ0WmRFPi9vs6Orp146ojKsGI4WuC3T1wd3WkZhGiKRTKZX4OnpyIf2yXvqFtCsEON/ew4w+LTpwMf0K2Te0KSYrCT9HD/yv3VO5WjvQzrMlZ1Nj66/y/yKynxqYVnNnvv6lZNimEKJeNW/enIULF6JQKAgMDOTcuXMsXLiQBx98kNmzZ+vytWjRgs8++4zu3btTVFSEjY0N999/P//97385fvw43bt3p7KykmXLlvHBBx8Y/K5ffvmF0tJSfvrpJ6ytrQH44osvGDNmDO+99x7u7u4MHDhQr8yiRYtwdHRk3759jB49ml27dhEZGUl8fDze3tUX+bfffpsRI0bctJ3l5eWUl5frpZmb//1hNNbmlqiUSgrLSvTSC8tLsLOwMlKqhp25FW3c/Pj55La/XZfbUZCXj0atwdFJf0iSg6Mjudk5Bsvk5uTg4Kif39HJEbVaTUFePk4uzvQfPJD83HyeeeQJtFotarWaURPGMmVm3eWnAY7sP0RRURFDRg6rn4bdgp25NSqlqs4PwtzSIjpb2Roscyo5mqGtu3Pk6nnispMJcPZmcOtumKpMsLOwbpIflwqH6uFxmnz9H0ua/AKULs5Gy1UeOU6pnQ02rz9fvR0TE8p/30P5xmvHXVkZVZdisZg4muLkVLR5+Zj26oEqwB9NWkbDNMaA8qIStBptnaF9FrbWlBYYHppVlJVHRlwSShMT+j44gfLiUsJ//Z3ykjLC7hnZGNXWY2tuhUqpqjNkO7+0EEfL1gbLRGcm8PH+lTzTfzqmKhNMlCqOJVzku6M184EdvHIWe3Mb3h7xMAqFAhOlim1RR/jt3N9fjepWyq7tF0s7a710SztrSguKDJaxsreh94xRuPh6oq5SE3v0LFs/+ZlRC+7Fs1V1J6KDhzN97xuLUzM3KksrOL/7GJs++JGJL8/F3t348VwfSq8N7a0d6WZlb0txvuG/7dy0TA6s3sbdLz2CUmW4EyY/M4eEyDjahHVi4oLZ5KVnseun9WjUanqOH1Lv7biR7npUrv+3Ulhegp357VyPrAl292fpia0NVcW/xMrMApVSSVFFqV56UUUptkba5WRph4+jB1UaNctP/46VqQVj2vbG0tSC9edr/mbMTUx5tv89mChVaLQaNl88ZHR+uPpko7t3qLWvyoqxd7c2UqqGnYU1bd1bsPh43SHbFiZmvDPqEUyVKjRaLStO76zTodoQbM2sUCmVdYbRFpQXY29x6zbZW1jTzqMl3x7doJd+PPEituZWvDDgXlBUP6DYHXuSrVFH6rX+/xayn8S/iXSeCSHqVWhoqF7kT1hYGB999BFqtZqzZ8/y2muvERERQU5Oju7JeUJCAsHBwXh6ejJq1CgWL15M9+7d2bx5M2VlZdx1110GvysyMpIOHTroOs4AevXqhUajITo6Gnd3dzIyMvjvf//L7t27SU9PR61WU1JSQkJCgm4bPj4+uo6z63W+lXfeeYfXX39dL+3VV1+FTg63/W/1ZygUtzdnaHeftpRWlnMu1fAw14ZSO9hLCzeNAKv9mW7J6WvpZ09F8OtPvzDv6ccJbNuGlKQUFn36JcuXODH9/pl1trdj8za6hnbH2dXlb7XjT6u1T262n1ZG7MLR0paPxjyGAsgrLeKPmBNMbj8ATSM9xTPt1QOrB+/VvS9679Pq/6lT6ZsfcCbBgVhMGE3pD8uoir2MysMNy/umockbTflv1T++Sr78HquH7sf+64/QqtWor1yl8tAxVP6Go6UaVu0DVFvnmK35SItCoaDXrDGYWVZ3iKsnDuTAD+vpNmUIJmamDVzX26RQoK19AF7jbe/Ggz3G8mvEH5xOuYSjpS2zuo7kkbAJfHF4LVA959PkDgNYdHQDMZkJeNi58ED3MeS2L2TV2d2N1oYbVZ8HDO8YBw8X3cIAAO4tvCnKLeDcziO6zjO3Ft643TC81r1lc9a9/R0X9obTc+rw+q+/AXXOe9eOp9o0Gg2bv1lBzwlDcPJwNbo9rUaLla0NQ++fhFKpxMPfm6K8AsK37mvwzjNdHf5iuR6+wZRWlnM25U6NFNFvmQKF0dPe9X24+uxuyquqo1C3Rx1haschbL54UDeBeUVVJV8dXouZypQWzl4MDwolp7SA+JzGiYCsW33j54kbhfmGUFpZZnCu1PKqCt7etRRzEzMC3XyY3H4AWcX5RieDb2gKbu+Y7OXXnpLKMk6lROulB7r6MLpNT34+tZ3LOSm42zgyreMQ8oOL2HTxUIPU+d9I9pP4J5LOMyFEoygrK2Po0KEMHTqUZcuW4erqSkJCAsOGDaOiokKX74EHHmDmzJksXLiQJUuWMHXqVKysDD8J1hr5UQI1N7qzZs0iMzOTTz75BF9fX8zNzQkLC9N9p9bAnfLtDPt74YUXWLBggV6aubk5z23/+pZlb6a4vBS1RoNtrSgzGzMrvVXyjOnhE8yJpEjUjdQZY+dgj1KlJCc7Vy89PzcXh1rRaNc5OjmRm6MflZaXm4dKpcLOvnoC95++W8LAYUMYPnYUAP4tW1BeVspn7y3k7vtm6M1zlJ6WTsSJU7z89mv12LKbKygvRq1R41gryszBwsbgog4AFeoqPj24mi8OrcXB0pbc0gKGBYZSUlFGQdmt9219qDx5hsLYGzp9r02krnSwR51XM/G80t4Wbb7xoTsWU8ZTceAIFXuqJwbXJCaDuTlWD95L+botoNWiSc+k6I33wdwMhaUl2rx8rJ54CE1GVsM0zgBzGysUSgVlhfpPxMuKSrCwNfxE3NLOBkt7G13HGYC9hzNooSSvEDs3pwatc22F5SWoNWocLPWPNXsLG/JKDUdpTW7fn8iMeNZfqJ4M/GpuGouOruedkY/wy+nfyS0tZHqnIeyNO8WumPDqPHnpWJiY8mjPiaw+u+e2fnD/VRbX9ktpvn79ywpL6kSj3YybfzNij58z+rlCqcDV14uCDMNRsPXJ0tYahVJJcZ7+339JQRFWdnXnXasoLSf9ShIZV1P44+fqiAutVgtaLR/d/zx3PfsAPsEBWDvYolSp9M55Tp5uFOcXoq6qQmXScLfy169Hdub6+8TW3IqC27gehfqGEJ54sdGuR7erpKIMtUaDjZn+ddbazIKiCsPtKiwvoaCsWNdxBpBZlIdSocDOwlo31FELuv9PK8zG1dqRvi06NnjnWdH1fVUr0sfWwuq2ri89/dpxLMHwvtKCbhGcpPwMPG2dGR7Ug5iDDdt5VlhRglqjqRO9ZGtuTYGRRR1u1Me/A0eunkdda4jzhJB+HL56XrdqZXJ+JmYqU+7rOpLNFw814Jnvn0n2UwPT/Gta+j9B5jwTQtSro0eP1nnfqlUroqKiyMrK4t1336VPnz4EBQXpFgu40ciRI7G2tubrr79m27ZtekM9awsODiYiIoLi4pqL86FDh1AqlbRuXT2c6cCBAzz++OOMHDmStm3bYm5uTlZWlt42EhISSElJ0aUdOXLrkHBzc3Ps7Oz0XvUxbFOt1ZCUn0Ggq/7E0YFuPre8+Q5w9sbVxpGjVxtnoQAAU1NTWgW25nT4Sb30U+EnCQ5pa7BMUEgwp2rnP36CVkGtMbn2Q7C8vByFUr8TU6lUodVq63R47tyyHXtHB7qHGZ4PrSFUadTEZifT0auVXnpHr9a3HM6i1mrILslHo9XS178DxxMjG7SjQk9ZGZr0jJpXUgqa3DxM2t0wSbZKhUmbQKou3SR60cysbmSaRlM3BBGgvAJtXj4KaytM24dQedLwRP0NQWWiwqm5B6lR8XrpqVHxuPgbngfItUUzSvOLqCyv6dQvyMhFoVBg5WB4SG5DqtKoictOpqOX/lxxHb0CjB5r5iqzOn8nmlrvzVWmRvIojEbl1ReViQoXH0+SI/XnyEmOvIz7n1iYITsxDSt74/tEq9WSnZTWKIsGqExMcPdrRvwF/cid+AsxeAX41clvbmnOfW8t4N43n9S9OgwIxcnTlXvffBKPltXXgGat/MjLyNZb7TU3PQtrB9sG7TiD6nNVYl46QW61r0e+XMlOMVKqWoCLN242jhyJP3/TfE1BrdWQUpBFy1qLY7R08dZbAOBGCblp2FpYY6aq+Td3trZHo9XctINAcW24WUNTazUk5KXRptY8iG3cfLl8i2GjrVya42bjyOF44x3RtTVKmzQaruamEuyuP2dlW3d/YrNvPuda9dxsThy4fKbOZ2YqkzrXXK1WWx3z2ghzpv7TyH4S/ybSeSaEqFeJiYksWLCA6OhoVqxYweeff84TTzyBj48PZmZmfP7551y+fJmNGzfy5ptv1imvUqmYNWsWL7zwAgEBATcdQjljxgwsLCy47777OH/+PHv27OGxxx5j5syZuLtXT/obEBDAzz//TGRkJMeOHWPGjBlYWlrqtjF48GACAwO59957OXPmDAcOHOCll16q/3+YP2Fv7ClCfUPo4ROMu40j40P64mhpy6H46snYR7fpxYzOQ+uU6+HblvicVNIKsxu1vhOmTmbHpq3s2LyNhPirLPr0KzLTMxg5YQwAS77+ng/ffFeXf9T4MWSkZfDtZ1+REH+VHZu38fvmbUyaNqWmLb3C2LJuE3t37SYtJZVTx0/w03dLCO3dE9UNcwNpNBp2btnO4BFDUZk0/M38jdaf38/Q1t0Z0qob3vZuPNB9DK42Drr5OO7rMoIFfe/W5feyc6F/y8542bnQ2qU5/+k/A19HD35qpPnpjCnftguL8aMw7dYJpXczrB6djba8gopDx3R5rB6dg8XdE3Xvq06dwXxwf0zDuqN0dcGkXTAWU8ZTeTJC16lm0r4tJh1CdJ/bvPIs6tQ0KvY27nCLoIHdiDt8hrgjZ8lPy+Lk2j8oySmgVZ+OAJzesI/DP9XM8+PXLRhza0uOLttKfmoW6bGJnF63hxZh7ZpsyOaGCwcZ3KobgwK64m3vyuxuo3GxdmBHdPU+uqfzMJ7oXfP3E54USahvCMMDe+Bu40SQmy8P9Bijt5BIeFIUwwND6e3fHjcbRzp4BjC90xDCEy/W6WhrCCGDQ4k+dJroQxHkpmZydNXvFOXmE9S3ejGR8HV/sHfJel3+838cIz4iivz0bHJTMghf9wfxp6MI7l+zWMmpzftIuhBHQWYu2YlpHPh5E9mJ6QT16VL76xtE1+F9OLfvOOf2h5Odks6eXzZSmJ1Hh4HVHfv7V21j66KVACiUSly9PfReVnbWqExNcPX2wMzcDIAOA8MoLSpm9y8byUnLJC4ikmObdtNpUM9GadOe2JOE+bUj1Lct7rZOTGzXDycrW92qeGOCezOzS90hsWG+IVzJSSXVwPVIpVDSzN6VZvaumChV2Fva0szeFRdrh4Zujs7h+LN08Q6ic7NAXK0dGBEUhr2FDccTIgEY0robk9r11+U/mxpLaUUZE9r1x9XaAV9HD4YF9uBUUrRuyGbfFh1p6dwMR0tbXKzt6enXjo5erQ0OhWwIf8ScoJd/e8J8Q/CwdWJy+wE4WtnpInfGte3DfV3rztvYy68dV7JTSCmoGxU8LLAHQW6+uFjb427rxKBWXQn1bcvxhIsN3h6AHZeO09e/I7392+Np68zdHQfjZGXH3rjqVdMntevPA93H1CnXx78DcdnJJBdk1vnsTGosA1p2pnvzYFys7Ql292N8SF8iUmIMjkZoSpam5rRy8dYt7OJl50IrF2/cbQxH9jeVf/t+Ev8eMmxTCFGv7r33XkpLS+nevTsqlYrHHnuMuXPnolAo+PHHH3nxxRf57LPP6Ny5Mx9++CFjx46ts405c+bw9ttv3zTqDMDKyoodO3bwxBNP0K1bN6ysrJg0aRIff/yxLs/ixYuZO3cunTp1wsfHh7fffptnnnlG97lSqWTdunXMmTOH7t274+fnx2effcbw4Y0zP44hp1MuYWVmwbDAUOzMrUgtzGbR0Q26H712FtY4WtrplbEwMaODZwC/3TBxcWPpN3gAhQUFLF/yMznZOfi18OOND9/B3aO6AzMnO5uM9JooQw8vT9748G2+/ewrNv22EWcXZx5+cj69B/TV5Zl23z0oFAp++nYJ2ZlZ2Ds60KNXKPfNnaP33afDT5GRnsHQUY2/vw5cOYOtuZXuJvFqbhqv/f6DbniLo5Udrjf8GFQqlEwI6Usze1fUGjVnU+N4dvOXZBTlGv6CRlK+cRsKM1MsZ9+Dwtoadexlit7+GMrKdHmULk56kWZlv21GqwWLqeNROjmiLSik8uQZyn79TZdHYWWJxbRJ1Z8XFVN5/CSlK9eBWt2o7fPr0oaK4lLObTtEaUExDp4u9H/0LmycqhdLKCsoojinZoiqqbkZA+dP5cTqnWx7fynm1pb4dA6iw+g+jVrvGx2KP4uduRVTOw7C0dKWhNw03tz1o+5Yc7Kyw9XGQZd/d+xJLE3MGRnUk/u7jaK4ooyzqXF6HbWrzuxGq9Uyo9NQnKzsKSgrJjwxkl9O72iUNrXs2pbyolJOb9lPSUERjl6uDJs/DVvn6naU5BdRdMN+UVepOb52F8V5hZiYmuDg5cqweXfTvF1N9GdFSTkHf9lCSUERZpbmODf3YPQz9+FmJMqwvgX16EhpUQlHNuyiOK8Al2YeTFwwG3uX6h+6xfkFFOTk/alt2jk7cNezD7Jn+SaWvrwQGwc7Og/tTfdR/eu/AQacSr6EtZklwwNDsbOwJrUgm68Pr9Ndj+wtrHGsNaTYwsSMjl6tWHtur8Ft2lva8PzAmrkrB7fqyuBWXYnJTOSzg6sbqil6zqddxsrUgv4BnbE1tyK9MIefT24jv6x6KLGNuRX2ljURixXqKn48sYVRbXrxcM+JlFaUcT7tsm7YM1SvqDwmuDd2FtZUqqvIKs5jzdndnE+7XOf7G8LJpGiszSwZ1abntX2VxZeH1uqGkdpb2OBkVXdfdWrWmlVnDM9zaK4yZVqnIThY2lCpriKtMIcl4Vs4mRRtMH99C0+MxMbMkrHBvbG3sCE5P5NPDvyqW5Wxuk3690OWpuZ08Q5iRcROg9vcdPEgWq2WCdceTBaWl3AmNdbo8dqUglx9+WJCzRQhj/eungN4a+QR3tq9tKmqVce/fT81KOkovKMotNJ1K4SoJ/3796djx4588sknf2s7hw4don///iQlJekiyP5XPLnhk6auQr36ZNyTXG6EJekbWwsXb0Yvfrapq1GvNs/+gLy759w64/8Qh5U/8MbOxU1djXr13yGzGf/j801djXq1fta7fLBnWVNXo149O+Aevqu1+tv/ugdDx/HYuo9vnfF/zOcTFvDK9m+buhr16s3hc3lkreGVxv9XfT3pWWaverupq1GvFk95kV5fPtzU1ahXh+Z984/cT/+r8h56qqmrYJDDooVNXYUmIZFnQog7Rnl5OYmJibzyyitMmTLlf67jTAghhBBCCCHEP4/MeSaEuGOsWLGCwMBA8vPzef/995u6OkIIIYQQQgjRNK6twnzHvf6lJPJMCFFv9u7d+7fKz5o1i1mzZtVLXYQQQgghhBBCiPogkWdCCCGEEEIIIYQQQhghkWdCCCGEEEIIIYQQdxKNpqlrIG4gkWdCCCGEEEIIIYQQQhghnWdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQggh7iT/4pUt70QSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiLDNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k6ikWGbdxKJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9FqmroG4gYSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEy55kQQgghhBBCCCHEnUSrbeoaiBtI5JkQQgghhBBCCCGEEEYotFrpzhRCCCGEEEIIIYS4U+Td+3BTV8Egh5++aeoqNAkZtimEEPXop/CtTV2FenVvt5EUxsQ2dTXqnW2rAIZ8+0RTV6Ne7Zz7Kf/d/l1TV6NevTH8Qcb/+HxTV6NerZ/1LoMWPd7U1ahXfzz0GYVp6U1djXpl6+H+jzyff7L/16auRr17su9UNl842NTVqFej2/Zm+HdPNXU16tX2BxfS7+t5TV2NerXvkS+Zvertpq5GvVo85UV6fXlndtj8VYfm/Q939GgkzulOIsM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQtxJZHr6O4pEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g0TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5HVNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k4iwzbvKBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOIOotXIsM07iUSeCSGEEEIIIYQQQghhhHSeCSGEEEIIIYQQQghhhAzbFEIIIYQQQgghhLiTaDVNXQNxA4k8E0IIIYQQQgghhBDCCOk8E0L8T5s1axbjx4//U2X8/Pz45JNPGqQ+QgghhBBCCCH+WWTYphD/Q2bNmsXSpUvrpA8bNozt27c3+Hfn5eWxfv36Bv2eP+vTTz9Fq63flWji4+Px9/fn9OnTdOzYsV63bciJnQc5unUPRXkFuDbzYMg94/EJannLcomXLvPz/32Jq7cHD779rC49KvwshzbuJDc9C41ag6O7C6Ej+9Oud7eGbEYdWq2Wb5cvZ92O7RQWFdG2dSDPPfIILX19jZaJu3qVb35ZRlRsLKkZGSx48EGmjxtvNP+SVav48qelTBs7jqfnzm2AVugbE9ybu9oPxNnKjvjcNL4+8hvn0y4bzT82uDfj2vbB3daJjKJclp/eya6YcIN5+7fsxEuDZnEo/iyv/f5DQzWhjm7N29DbvwM25pZkFuWyLeooV3PTjOZXKZT0D+hMB68AbMytKCgrZl/caU4nXwKgi3cgHb1a42brCEBKfha7YsJJzs9slPYAjAgMZXxIXxytbEnMTeeH45u5mBFvNH/fFh2ZENIPLztniivKOJ18iR9PbKWwvESXZ0xwL4YHhuJi7UBheTGH48/z86ntVKqrGqFF1cfSlA6DdMfeV4fXcu4mx964tn0Y17YPHteOvV9O/c7OG469Ya27858B99QpN/z7BQ3WJq1Wy7c/LmHdpk0UFhbSNjiY5558ipb+/jct98e+vXzzww8kpaTg7eXFow88yIC+fXWfL1qymO9+/FGvjLOTEzvWrde9z87J4fNF33A0PJzCoiI6d+jAs088gY938/ps4j/yfH5+z3EidhykJL8IRy9Xek0dgVdrP4N5k6OvsPHDJXXS737jMRw9XQG4uP8E0UciyEnJAMDV14seEwbj7u/dYG0w5NC23ezdsIOC3Dw8mjdj3Oy7aRHc2mDey5ExbPlpDRnJqVRUVODo6kzY0H70GzNUl+fozn2c2HuEtIRkALxb+jJyxkR8WrVolPYAjG7Ti8kdBuBkacfV3DS+ObqeCzc5T4wJ7sWY4D642zqSWZTHioid/BFzQvf58MBQBrfuhq+jBwCxWUksCd/CpcyEBm/LdePb9uHujoNxsrInPjeVLw6t4Wxq3E3y92Viu3542DqRXpTLspPb2XHpuO7zT8Y+QadmdffzkavneX7r1w3ShtoGtOzM8MBQHCxtSM7PZEXELmKyEg3mnd1tNL3929dJT87P5JUd3+neD2nVjQEtO+NkZUdRRSknkqJYc3YPVRp1g7Xjr+jgGcD0TkMJcvPBxdqB57d+zYErZ5q6Wneuev6NI/4e6TwT4n/M8OHDWbJE/8bU3Ny8iWrT9Ozt7Zu6Cn/LxaOn2blsPcNnTaZ5a39O7T7Myg++5aH3nsfexdFoubKSUjZ+sxz/tq0oyi/U+8zS2opeY4fg4uWOykRFzOkLbPp2JVZ2trRsH9TQTdJZunYNy9ev49WnnsLHqxk//Por8155mbXfLMLayspgmbLycrw9PBjcqzcff/+dwTzXXbh0iXU7ttPK7+Y/vOtLvxadeCRsAp8fXM2F9CuMatOTt0c8zJxV75BZnFsn/+g2vZjdfQwL968kOjOBIDcfnupzN0XlJRxNuKCX183Gkbk9xnM2NbZR2nJdiEcLRrQJY/PFQyTkptOteRD3dBnOFwdXk19WbLDMlI6DsDG3ZP35/eSUFGBtZolSodB97ufkxdnUWBIj06nSqOnt34F7u47gi4Nr9DqjGkovv/bM7j6aRUc3EJURz7DAHrwy5H4eW/8xWcX5dfK3cfPlid5TWBy+mfDESJyt7Hg4bALzek7i3T0/A9WdazO7DOeLg2uIykzAy86Fx3vfBcDi8M0N3qb+LTvxaM+JfHZwNefTLjM6uBfvjHyE2aveJqOo7rE3Jrg3c7qP4eP9K4jOSCDIzZcFfe+mqKKUI1fP6/IVlZcy69f/0yvbkJ2BS1csZ/mqVbz6wgv4eDfnh59/Yt7TC1i77Bej54Sz58/z4uuv8/DsOQzo04c9Bw7w/Guv8sMXXxISHKzL18Lfn68++lj3XqVS6f5fq9XyzEsvYWKi4qO33sba2ppfVv3KowsWsHrpT1haWtZL+/6J5/PY8HMc+nUbfWaMxjPAhwv7wtny2TLufn0+ts4ORstNe/NxzCxr7k0sbK11/58SHU+r7u3xaNkclakJETsOsnnhT0x9fT42jnYN2Ryd0wePs2HJSiY+eA/+bQI4smMf3/3fJ/zn0zdxdHWuk9/M3IxeIwfi5euNmYU5VyJjWPPNT5iZmxM2tB8Aseej6dS7O35BAZiYmrJn/TYWvf4x//n0Teydje//+tK3RUceChvPl4fWcCH9CiODevJ/w+cyd/W7ZBbn1ck/qk1PZnUbzacHfuVSZiKBrj480WcKReWlHLt2jWrvFcDe2FNcTL9ChbqKuzoM5O0RD/PQmvfILql7Pq1vA1p2Zn6vySw88CvnU+MY07Y3742ax30r3zR47hvXtg9zQ8fywd7lRGVcpY27H8/2m05heQmHr537XtnxHabKmp/AdhbW/DDlBfbGnW7w9kD1A6tpHYfw86ntxGYl0b9lJ57qM5WXd3xLTklBnfwrInay5twe3XuVQsnrQ+dwIilKlxbq05bJ7QewOHwzsVnJeNg6Maf7aABWRuxq+Eb9CZam5sRmJ7E16jBvj3i4qasjxJ8iwzaF+B9jbm6Oh4eH3svRseamTKFQsGjRIkaPHo2VlRVt2rThyJEjxMbG0r9/f6ytrQkLCyMuruap3WuvvUbHjh1ZtGgRzZs3x8rKirvuuou8vDzd50uXLmXDhg0oFAoUCgV79+5l4MCBzJ8/X69+2dnZmJubs3v37jp1z8/PR6VScfLkSaD6B42TkxPdutU8QV+xYgWenp6698nJyUydOhVHR0ecnZ0ZN24c8fHxus9rD9ssLCxkxowZWFtb4+npycKFC+nfvz9PPvmkXl1KSkqYPXs2tra2+Pj48O233+o+878WBdGpUycUCgX9+/e/+U75G45t20vH/j3oNCAUl2buDJ05ATtnB079ceim5bYtXk3bsM40C/Cr85lvcABB3drj0swdR3cXug/vh1tzTxKjjT99rm9arZYVGzZw/9SpDOzZiwA/P15fsICy8nK279tntFzb1q15YvYchvXrh5mpqdF8JaWlvPLhB7z02GPY2tg0RBPqmNS+P9ujj7It+igJeel8fWQdmUW5jAnuZTD/4Fbd2BJ5iH2XT5NWmM3euNNsjz7K1I6D9fIpFQpeGHgvP53cRlpBdmM0RaenXztOJUVzKimarOI8tkUdpaCsiG4+wQbzB7h44+fkybKTO7icnUJeaRHJ+Zkk5mXo8qw9u4fwxEjSCnPIKs5nw/kDKBQKWjg3a5Q2jWvbm10xJ9gVE05SfiY/HN9MVnE+wwNDDeZv7epDZlEuWyIPk1GUS2TGVX6PPk6AS019A119iEq/yv4rZ8goyiUiJYYDl8/o5WlIk9sNYFvUUbZGHSEhL52vDv9GRlEuY4J7G8w/pFU3NkceYm/caVILs9kTd4pt0UeZ2mFQrZxacksL9V4NRavVsmL1au6fOZOBffsR0KIFr7/wYvU5YddOo+VWrFlNjy5duf+ee/Dz9eX+e+6he5cuLF+9Wi+fiUqFi7Oz7uXo4KD7LCEpiXMXL/D8gqdp26YNfj4+PP/UAkpLS9nxxx/11sZ/4vn8zM7DBPXuTHCfLjh6utL77pHYONpxYZ/hCNrrLO2ssbK31b2UypqfHIMfnEzIgO64+Hji6OlKv3vHodVqSY5svGvU/k2/031QH0KH9MXd24vxc6bh4OzE4R17Deb3buFL5z498PBphpObC136hRHYMYQrkZd0ee55ai69Rgykmb8P7t6eTHlkFlqtlpizkY3Spont+rMj+hjbo4+RmJfBoqPrySzKY7SRa9SgVl3ZFnmY/ZcjSCvMZt/l0+yIPsaUDgN1ed7fs4zNkYe4nJNCUn4Gnx74FYVCQcdmrRqlTVM6DGJr1BG2RB7mal46XxxaS2ZRLuPa9jGYf2jr7my8eIg9cadILcxmd+xJtkQdZlqnmgjBwvISckoLdK+uzYMor6pgb9ypRmnTsNbdOXDlDAeunCG1MJsVEbvIKS1gQMvOBvOXVpZTUFase/k5emJlZsnBG6K1Wjo3IyYriWMJF8kuyedC+hWOJVzEz9HT4Dab0tGEC3x3bCP7Lkc0dVWE+NOk80yIf6A333yTe++9l4iICIKCgpg+fToPPfQQL7zwAidOVIfj1+70io2NZdWqVWzatInt27cTERHBvHnzAHjmmWeYMmUKw4cPJzU1ldTUVHr27MkDDzzA8uXLKS8v123nl19+wcvLiwEDBtSpl729PR07dmTv3r0AnD17VvffgoLqp2179+6lX7/qp7glJSUMGDAAGxsb9u/fz8GDB7GxsWH48OFUVFQYbPuCBQs4dOgQGzduZOfOnRw4cIBTp+reEH300Ud07dqV06dP8+ijj/LII48QFVX9FO/48erw/l27dpGamspvv/12e//wf5K6qorUK0n4hwTqpbcICSQpJt5ouTP7jpGbnkXficNu+R1arZYr5y+Rk5Z5W0OH6ktyehrZubmEdqq5GTQzNaVzSAhnI//+D4n3vv6aXt260aNjp7+9rdtholTR2qU5J5Oi9dJPJkXT1t1w5JupyoSKWlE85VWVBLr6oFLUXH7v6TycvNIitkcfrf+K34RKocTTzoW4rGS99NisZHwc3A2WCXLzJSU/i97+7Xmm/3Qe7zOFYYE9MFGqDOaH6n8HlUJJaWW50Tz1xUSpoqVzMyJSYvTSI1JiCHIzPFw4KuMqztb2dGlW/Xdob2FDmF+I3lP9yIx4Wro0o5VL9bAydxsnOnsH6uVpKCZKFa1dm9f5rpNJUTc/9qoq9dLKqyoJcvNFdUMnhqWpOcunv8bKGW/w1vC5BDg33LC55NRUsnNyCO1a87DEzMyMzh06cPb8eaPlzl64QI9u+kMUQ7t15+wF/TIJSUkMnziBsVOn8MLrr5GUkqL7rPLa9cLczEyXplKpMDExIeLc2b/Vruv+iedzdVUVmVdTaR6s/13N2waQFnfzYXur3/iapc+8z8aPlpAcdfNOsaqKSjRqNebW9RMBeCtVlVUkxV0lsENbvfTAjsHER91e9G/S5avER8fSIjjQaJ6KinLUajVWN0TdNRQTpYpWLt6cSta/Rp1KjqaNu5/BMqbKuteoCnUlrWtdo25kbmKGiVLZKFHE18994Yn69wzhiZGEeBgeCmvs3Nem1rnvRqOCwtgde5KyKsP3lfVJpVTi6+jJhXT9v4kLaVdu+/zbp0UHLqZfIfuGKLWYrCT8HD3wd6ruLHO1dqCdZ8tGj2YXDUCjvTNf/1IybFOI/zGbN2/GplakzXPPPccrr7yie3///fczZcoU3WdhYWG88sorDBtWfXP+xBNPcP/99+tto6ysjKVLl+LtXX3x/vzzzxk1ahQfffQRHh4eWFpaUl5ejoeHh67MpEmTeOyxx9iwYYPu+5YsWcKsWbNQ3DCM60b9+/dn7969PP300+zdu5dBgwZx+fJlDh48yMiRI9m7dy9PPfUUACtXrkSpVPL999/rtrdkyRIcHBzYu3cvQ4cO1dt2YWEhS5cuZfny5QwaNEiX38vLq049Ro4cyaOPPqr7N1q4cCF79+4lKCgIV9fqeVmcnZ312nuj8vJyvU5D+PPDZ0sKi9FqNNjY2+qlW9vbUpRXN3QfICctkz2/bmbmK4+hVBnvsCgrKeWzx15DXVWFQqlk+KzJtGhn/Ca/vmXnVg+ncL4h+uP6+9SMvzf31Y59+4iKi+WnhZ/8re38GfYW1qiUKnJL9fdLbmkhjla2BsucTIpiRFAoh+PPEpOVRGuX5gwPDMVUZYK9hQ05pQW0dfdneGAoD699vzGaocfKzAKVUklRhf6PoOKKUmzMDf+IdbS0xcfRnSqNmhWn/5+9+46K4mrDAP4svTcBCyJVEBQVBLsCKmrQ2EsUBYm9gdjzGUvsxt6xYW+IxqixK6AoNqoCAlLEAoogvbPz/UHYuIIKCzLM+v7O4Rz2zhCfG5bZ2bv3vvcGFKTl0L9lF8hLy+L8szuV/oyDiQ2yCnIRn/am0uO1SVlWAZISksj4bAZVZn421OUrr2UUnZqETXdOYa7daEhLSkFKQhIPkyKx78EFwTkBCeFQlVXC6p+mgMfjQUpCEleeB+Lc0y/Poqwt/z33hPv0MT8bGl947j15HQXHFp1wL/EpYj+8gommLn4y7fDfcy8vC0kZ7/Gn33HEp72FoowchljYYevAWZjksw5vsmq/Pl1aetmsygYaGkLtDdQ1kPzuyzX20tLT0UBdeMlbA3V1pKWnCx63MjPHH//7H/Sa6iLt40ccOHoE46dPw+lDh6Gmqgp9PT00btQIO/buxf/mzoW8nByOe59GWno6PqTVzmxPcbyeF+TkgeHzoaAifM8hr6yIvMycSn9GQVUZtmMHQEuvCUpLShDzIAwXNh3GwLmuX6yT9uDsDSiqqaCped3UBsvNzgafz4eSmvASUSVVVWRnfHkgFwCWT5iLnKxs8Pml6DNiIDo6dP/iuf8cPQtVDXU0b135TN7apFJ+ncir5DohX/lS2KDXz9G3RUfcf/kULz68RnNNXfQ26SD0GvW5X236Iy03U1Dj8ntSlVOClIRkhaWMZde+yvv0+FUU+pt1RkBCGGI+lC1FdWzRSeja96kW2nowbKCDdX7Hv1s/PqUsowBJCYkKZRGyCnOhKvftQVZVOUVYNDLC3gd/C7U/ehUJZVkF/GbvDPDKBh5vvwjC5eeBtZqfkB8dDZ4RwjH29vbYvVu4oKnGZ29GWrf+r7Bow4ZlM0gsLCyE2goKCpCVlQUVlbIbkGbNmgkGzgCgU6dO4PP5iI6O/uIAkqysLMaMGQMvLy+MGDECoaGhCAsL++qmAnZ2djhw4AD4fD78/f3Rs2dPNGvWDP7+/rCyskJMTIxg5llQUBBevHgBZWXhNyMFBQVCy07LxcfHo7i4GO3btxe0qaqqwtS04puMT/8f8Xg8NGrUCO/fv69w3pesWbMGf/zxh1Db0qVLYdiv/Rd+4is+G2hk/s30OT6fj/M7j6Lb0L5o0Fj7q/9JWTlZTFg1F0WFRUiMiMHN4+ehrtUAeubG1c9XBVd8fbF65w7B4y1LlwGo2A+GqdDdaklJTcXGfXuxY/kKoVkkdeXzuq08XtnvqzLHgq9BXUEZ2wbNBg9lN/zXYx5iZNte4DN8yEvLYoH9WGy+ewpZhZXXF2PLl+rTlv8+fcJvo/DfT/evPi9binop8l6FwsRdDVrDorERDj76h92ixTwemC/8ppqqamNihwE4HXoLIW9joC6vjHHWjpjaaTB23D8LoKw23LA29tjz4G/EpiahkYomJrT/GR9bZ8M7vOIS9e/j8/y8L/6ejgZdg7q8CnYMmg0er+y5dy3mEX5p2wt8Ph9A2Wy6qE82UXiWkgDPofMwqFV37Py33zVx5cZ1rN64UfB4y9p1Zak/+/tnGOaLH7YIVLhGCv9Ml47/Lck1BtC6ZUsMGj0Kl65exZiRIyElJYU/l6/Aij/XoUf/fpCUlET7du3QuUMH0TpXrazcu55XUMmv50u/M/VGmlBvpCl43MioGXLSMxF6/V6lg2chV+/ixaOnGDjPFVJfWar/PVTswrdfoKavWoCigkK8jInDP0fPokFjbVh1q/g8uv3XFYQEPMS05fMhLVOX/RK+KPCAL177ToTcgLqCCrYMnCV4jboR+wgj2vREKcOvcP6w1j1gZ2SJ+f/srLONUr7kSxtFHX5yBRryKtg9ZB7AAz7mZeNq9AOMtuwNfiV96teiM+LT3uD5+5ffO/JXlf2evq2LfmvkFRcg+K3wDENTrWbob9YZR4OvIj79LRoqqWNUWwdkmufgYuTXl40TQqqOBs8I4RhFRUUYG3/9hln6kxvQ8hvcytrK30RVpvycb72pmTBhAtq2bYvXr1/Dy8sLPXv2hN5XdlPs3r07srOzERwcjLt372LFihXQ1dXF6tWr0bZtW2hra8PMzEyQr127djh+vOInguWzwz5VfjNVccCm4i2J9Gc36Twe76v/Pz7322+/Yfbs2UJtsrKyOB1e9fo5CsqK4ElIVJiVkJeZDUXVijNKivILkZzwCikv3+Da4bKlpAzDAAyD1c5zMHrBFOi3LKtDwpOQgEajsv9HjfR08OHNO9y/ePO7vdnq3qEDWn0ySFlUXDaw8uHjR2h+MribnpkBDTXRCyc/f/EC6RkZGDvLXdBWyucjJOIZvC9dxP2/zgsVCq8tmQW5KOWXVvi0W01OGRl5ldeJKiotxkb/k9hy5zTUFZSRnpcFxxadkVtUgMyCXBg2aILGKg2wos9Ewc+UP3evTtgE19OrkJz9/Wqg5RUVoJTPh5KMcKF2RRl55BblV/oz2YV5yCrIFQycAUBqTgYkeDyoyCkKfarfRd8C3Qzb4vDjy3iXk17Zf67WZRfmoZRfCjV54b8fVTklZORXPlNmWGs7RL1PxPmIsplzLz+mYM+D81jjOBXHQ67jY342Rls6wC8uWLBT6suMd5CTksa0zkNwJtz3i29Oa0P5c0/9s9kj6vJKX6xRVlRajA3+J7D57imoy6sgPS8T/cy6CJ57lWHAIDo1CU1VK15bRdG9S1e0Mvtvxo3gmpCWDs0G/w2upGd8hIb6l68JDTQ0hGaZAUD6x4yv/oy8vDyMDAzx6vVrQZuZqSlOHPBCTk4OiktKoK6mBpcpk2FeyYcrohCn63k5OSUF8CQkKswyy8/OhbxK1ZciNjTURcyDirvphV4LQPDlu/h5tgsaNK38Q7rvQVG5rAZb9kfh31VOZhaUVb++YUGDhmW/h8Z6TZGdkYXrp/+uMHjme/4qbp39B1OWzUUT/drdzfVLssqvE5+/Rskrf/U6sfnOKWy76y14jfqpRSfkFhUg67PrxFALO/zSthd+u7wbCenJ360fn8osyEFJJa+76t/o0zq/Y9hw5wQ05FWQlpeJn827IrcoH5n5wn2SlZJGD+N2dbLpS7nsojyU8vkVZpkpyypW+H9emW4GbRD48hlKP7tfHdzKFvdfPhPsWvkmMxUyktJwsXbEpch73/EVinx3lQz6EvbQ4BkhBACQlJSEt2/fCpY4BgYGQkJCAiYmZUudZGRkUFpaceaIhYUFrK2tsW/fPpw4cQLbt2//6r9TXvdsx44d4PF4MDc3R5MmTRASEoJLly4JZp0BgJWVFU6fPg1tbW3BDLmvMTIygrS0NB49egRd3bIb1qysLMTGxgr9d79F5t8ZTZX1t5ysrGyNdzmVlJJCY4OmSHgWgxY2/82ES3gWA5N2rSr+m/KymLhmvlBb0M17eBkZiyFu46CmpVHhZz5VUvz9PilWVFAQ2i2PYRg0UFfHw5AQtDAqq5dTXFyM4GfPMHOc65f+M99k06YNTu3YKdS2fOsW6DVtCpehw77LwBkAlPBLEfPhFax0THEv8b8aSVZNTXE/8elXf7aU4Qt2ebQ3ssLDpAgwYJCU8Q4Tz6wVOnecjSMUpOWw6/65SndHq02lDB/JWR9gpKkjNAPJSFPni5/CJ318h5aNDCHzST03TUVV8Bm+0I1/F/3WsDWyxJEnV/A268N37cenSviliEt7g7ZNjAW7xQH493FkpT8jKymDUkb4b53/2YC7rKR0hUH4snN4ZbMPv+M7kxJ+KWJSX6FdU+HnXrumLXDvW889Ph8f/n0e2RtZ4cHLZ18d6DNqoFNrb4wrvSZoaODhkydo8e/rSnFxMYLDwjBz8uQv/ndat2yJh08ew+nf0gAA8PDxY7RuWfEaWa6oqAiJSS9h+ckM43LlZQ+SXr9CVHQ0po4fX+2+VUacruflJKWkoKXXGK+j4mBo9d9A6OvIOOi3rfpOnx+SkqHw2QBiyLUABP/jj37uztDWr5uNN8pJSUuhqZEeYsIiYNHxv7qcMWGRaNm+GnU0mYq/B9/zV3HT5xImLfaAbiUbQHwvJfxSxH54DUsdE6HXJEsdEzx4+fWlqJ++RtkaWeLRv69R5Ya1tscoSwcsurIHsR9efZ8OVKL82mfdtIVgUAgArJu2QEDi12sVlvL5gtfQHsbtEFjJtc/eqB2kJaVwI+brm1/UplI+Hy8/JsO8oQGCP1n62rKhAULefn0prKlWMzRU1sDdexUHomUkpSr0j2GYskmj3/tFipAfCA2eEcIxhYWFSEkRrg8jJSUFTU3NL/xE1cjJycHFxQUbNmxAVlYW3NzcMGLECMGSTX19fVy7dg3R0dFo0KABVFVVBbO3JkyYgBkzZkBBQQGDBw/+5r9lZ2eHrVu3YvDgweDxeFBXV4e5uTlOnz6Nbdu2Cc5zcnLC+vXrMXDgQCxfvhxNmzZFUlISzp07h3nz5gktMwUAZWVluLi4YN68edDQ0IC2tjaWLl0KCQmJby8L+oS2tjbk5eVx9epVNG3aFHJyclBVVa3yz1dHh5/s8Pfu42hsqIumxvoI8b2PzLSPsOrZGQDge/oSsj9mYsAUJ/AkJKCtK7xzkqKKEiSlpYTa7124icYGulBv2AClJaWIC43C04DH6Dtu+HfpQ2V4PB5GDRyIg2e80axJE+g2aYKDZ7whJyuLvp8MZC7ZuBHaDRpgxrhxAMreTMe/KitEXVxSgtS0NETHx0FBTh66TZpAUUEBxvr6Qv+WnKwc1JRVKrTXtrPhflhgPwYxH5IQ9S4Rjmadoa2kjktRZUsifrXpD01FVfz5b+0UHVUttNDSw/P3L6EkK4+hre2hr9FYcLy4tASJH4UHKnILy2Z8fd7+vdxPfIohre0EO2Za67aAqpwSHieVFWjuZWIDFVlFnHvqBwB4mvwCdkaWGGRhC9/YICjIyKG3aQcEv44RLMvsatAaPZpbwyfsNjLys6EkU1Y/rai0uEJx6u/h74gAzOo2Ai8+vEF06kv0NukATUU1XIt+CAAYY9UHDRRUsTXAGwDw+HUUpnUegr6mHRDyJhbqCsoY374/YlKTBLMbHr9+jgHmXRGf/hYxqa/QWLkBRls64PGryAoDbd+Dz1NfLLQfi5jUV4h8l4B+/z73LkYGAADGt/8ZmoqqWOd7DADQVFULLbT1EPWu7Lk3vLU9DDQaC44DwNh2fRH1LhFvMlOhICOHwa1sYdygKbYFnKk0Q03xeDyMGj4cB48fQ7OmTaHbtCkOHjtWdk3o5SA4b8mqVdDW0sSMSWUDar8MG4ZJbm44dOI47Lp0hd+9ADwMeoIDnwyib9m1E906d0Gjhtr4+DEDB44cQW5uLvr37Ss456avL9TU1NCoYUO8iI/Dxu3bYdu1KzraiLDU/gvE8XrexqEzbh04By09HTQy0kXknSfITs9ES9uyTRwenLuB3I9Z6Dl+KAAg7OZ9qDRQh3oTbfBLShHzMAzxwZHoM/UXwX8z5OpdPPr7NnpNGAYVTTXkZZb9nUnLykBarmYfSlVV95974+S2/WhqrA99UyM8uH4HHz+ko1Pvstenf46dRWbaR4x2nwAACLhyG+qaGtDWKfvdJETFwu/CNXR1/G9nytt/XcHVk+cxxmMi1LU1kfWxbEBKVk4WsvJy371P5576YZ6dE2JTXyHqfSJ+alF2nfgn6j4AwNWmHxooqmKD3wkAZa9RplrN/n2NUsAQC1voqzfGxn+PA2VLNZ2tf8K620fxLjsd6v/O6s0vLqyTAvveYbewqKcLolOTEJESj/7mXaGtrIELEWXXvokdBkBLUQ2rbx8BULYM30xbD5HvE6Esq4ARrXvAQKMx1vx7/FP9zDohICGszssmXIt5hIntByDxYzLiPryBrZElNBRUBLt9DrWwg7q8MvY/uij0c90M2iAu7U2lNSnDkl+gt0l7JH18h/j0N9BWUsegVt0R+jb2i0tc2SIvLSs0w7mJiiaaazZFVkEu3uV8ZDEZId9Gg2eEcMzVq1fRuLHwDbepqalgp0hRGRsbY8iQIXB0dER6ejocHR2xa9cuwfGJEyfCz88P1tbWyMnJga+vL+zs7AAAo0aNwqxZszB69GjIyX37BtHe3h6bNm0S/DwA2NraIjQ0VGiGmIKCAu7cuYMFCxZgyJAhyM7Oho6ODnr27PnFmWibNm3ClClT0L9/f6ioqGD+/Pl49epVlXKVk5KSwrZt27B8+XIsWbIE3bp1E+wQWtvMO1oiLzsXAX9dQ05GFrSaNsYv8yZBVbNs1kFORhYyP1TvZqK4sAhXD/kgOz0TUjLSaNBEGwOnjoF5x7rZmbKcy9BhKCwswtrdu5Cdk4NWpqbYsXyF0GyUlNRUSEj8N7CZmp4OJzc3weOj587h6LlzsGplgb1rhWdp1TX/+BCoyClijFUfaCioIjE9GYuu7MH7f2/2GiioQFvpv6VkkjwJDGttj6Zq2ijllyL0bSzc/95SZ0sYq+JZSjzkpWVhZ2wFZVkFvM9Ox7Ggq8gsKFumpSyrAFX5/5aXFJWW4PCTy+hn1hmTOw9GflEBnqXE41bsE8E5Ns3MISUhiV8sHYT+Ld8XQfB9UXHn29p2LzEcKrIKGNm2J9TllZH0MQUrbh4SzELQUFCBlpKa4PzbL4IgLyULxxad4WrTD7lFBQhPjsORoCuCc7zDboNhGDhZ9oaGgiqyCnLx+FUUjodc++79AQC/uBCoyCpibLv/nnu/XfH84nNPgieBYa17QFdVGyX8UoS9jcXM85uFnntKMvKY3f0XqCuoILcoHy8+vIbHxa2ITv36Loo14TJqNAoLC7F286aya4KZGXZs2Ch8TXj/Tuia0KaVBVYtWYrdB/bD88ABNG3SBGuWLUMr8/9mQr1LTcWi5X8gIzMT6mpqaGVujoO7PdH4k3qdH9LSsHnnDqR9/AjNBg3Qr08fTHB2qdX+ieP13NjGAgU5+Qi65IfczGxoNNFGP7cxUG6gBgDIy8hGTnqm4Hx+SSnun7mG3IwsSElLQ72JFhzdxkDP4r8NOyL8HoNfUorrnqeF/i3rn+1gM6AH6oJl1/bIy87BDe+LyPqYicbNdDBhkTs0tMs+iMz6mIGMD//9vTB8BpePnUX6+w+QkJREg4Za6DdmKDr2/u+e5f5VX5SWlODweuG6tL1HDECfXwZ+9z7diQ+FiqwinKz6QF1BBS/Tk7H46l7BdUJDQQXaip9eJ3gYYmEneI0Ke/sCsy9sFRrA+Nm8C2QkpbDYQXjG+LGgqzgW/P2vf75xwVCVU4Rzu5/QQFEFCenJWPDPLsG1rIGC6mevuzyMbNMTumplG9uEvI3B9L82IiVb+HW3qao2Wjc2xpyLX18t8T08fhUFJRl5DDDvClU5JbzJTMWWu6cFu2eqyilVWKoqLy2Ldk1b4GTojUr/mxcjA8AwDAa36g51eWVkF+YhLPkFzj71+869qb4WWnrYMfi/siduXcs+CLgcFYhVtw+zFav+qmeDnz86HlPfhqMJIXVu2bJlOH/+PEJDQ0X6+VevXkFfXx+PHz+GlZXVt3+gDuXm5kJHRwcbN27E+FpanvM1Rx5f/u7/Rl1ytnFEdqz4bXWu3NwYDnvdv30ih9yYtBVLru5jO0atWt53IgYdWsh2jFp1ftxa9Nzj9u0TOeTW5G3ITnnHdoxapdyooVhez7fcOf3tEzlmVveRuPTvTCRx0b9lV/Td58F2jFp1deJm2O6eznaMWuU/dSd+9V7Ndoxa5TXif+iycwrbMWrVvemebEcQ2ceBo9mOUCn1v098+yQxRDPPCCEiKy4uRnJyMhYuXIiOHTvWi4GzkJAQPH/+HO3bt0dmZiaWL18OABg48Pt/6ksIIYQQQgghRPzQ4BkhRGT37t2Dvb09TExM4OPjw3YcgQ0bNiA6OhoyMjJo164d7t69W+OacIQQQgghhBBSZ/i0SLA+ocEzQgiWLVuGZcuWVfvn7Ozs6l0hUktLSwQFBbEdgxBCCCGEEEKImJBgOwAhhBBCCCGEEEIIIfUVzTwjhBBCCCGEEEIIqU/q2QqfHx3NPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QnDZzsB+QTNPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QmfdtusT2jmGSGEEEIIIYQQQgghX0CDZ4QQQgghhBBCCCGEfAEt2ySEEEIIIYQQQgipTxhatlmf0MwzQgghhBBCCCGEEEK+gAbPCCGEEEIIIYQQQgj5Alq2SQghhBBCCCGEEFKf0LLNeoVmnhFCCCGEEEIIIYQQ8gU0eEYIIYQQQgghhBBCWLVq1Sp07twZCgoKUFNTq9LPMAyDZcuWoUmTJpCXl4ednR0iIiKEziksLMTMmTOhqakJRUVFDBgwAK9fv65WNho8I4QQQgghhBBCCKlP+Pz6+fUdFRUVYfjw4Zg6dWqVf+bPP//Epk2bsGPHDjx+/BiNGjWCg4MDsrOzBefMmjULf/31F06dOoWAgADk5OSgf//+KC0trfK/QzXPCCGEEEIIIYQQQgir/vjjDwDAoUOHqnQ+wzDYsmULFi1ahCFDhgAADh8+jIYNG+LEiROYPHkyMjMzceDAARw9ehS9evUCABw7dgy6urq4efMm+vTpU6V/i2aeEUIIIYQQQgghhJBvKiwsRFZWltBXYWEhK1kSEhKQkpKC3r17C9pkZWVha2uL+/fvAwCCgoJQXFwsdE6TJk3QqlUrwTlVwhBCCOGUgoICZunSpUxBQQHbUWoN9YkbqE/cIY79oj5xA/WJG6hP3CGO/RLHPv1Ili5dygAQ+lq6dGmt/hsHDx5kVFVVv3nevXv3GADMmzdvhNonTpzI9O7dm2EYhjl+/DgjIyNT4WcdHByYSZMmVTkTj2Fo/1NCCOGSrKwsqKqqIjMzEyoqKmzHqRXUJ26gPnGHOPaL+sQN1CduoD5xhzj2Sxz79CMpLCysMNNMVlYWsrKylZ6/bNkywXLML3n8+DGsra0Fjw8dOoRZs2YhIyPjqz93//59dOnSBW/fvkXjxo0F7RMnTsSrV69w9epVnDhxAq6urhUyOzg4wMjICJ6enl/9N8pRzTNCCCGEEEIIIYQQ8k1fGyirzIwZM/DLL7989Rx9fX2RsjRq1AgAkJKSIjR49v79ezRs2FBwTlFRET5+/Ah1dXWhczp37lzlf4sGzwghhBBCCCGEEEJIrdPU1ISmpuZ3+W8bGBigUaNGuHHjBiwtLQGU7djp7++PdevWAQDatWsHaWlp3LhxAyNGjAAAJCcn49mzZ/jzzz+r/G/R4BkhhBBCCCGEEEIIYVVSUhLS09ORlJSE0tJShIaGAgCMjY2hpKQEAGjRogXWrFmDwYMHg8fjYdasWVi9ejWaN2+O5s2bY/Xq1VBQUMDo0aMBAKqqqhg/fjzmzJmDBg0aQENDA3PnzoWFhYVg982qoMEzQgjhGFlZWSxdurRa06XrO+oTN1CfuEMc+0V94gbqEzdQn7hDHPsljn0itWPJkiU4fPiw4HH5bDJfX1/Y2dkBAKKjo5GZmSk4Z/78+cjPz8e0adPw8eNHdOjQAdevX4eysrLgnM2bN0NKSgojRoxAfn4+evbsiUOHDkFSUrLK2WjDAEIIIYQQQgghhBBCvkCC7QCEEEIIIYQQQgghhNRXNHhGCCGEEEIIIYQQQsgX0OAZIYQQQgghhBBCCCFfQINnhBBCCCGEEEIIIYR8AQ2eEUIIYRXDMKC9a0hde/HiBa5du4b8/HwAoOdgPVdQUMB2hFonjn0ihJDK9OjRAxkZGRXas7Ky0KNHj7oPRIgIaLdNQgip5woLC/Ho0SMkJiYiLy8PWlpasLS0hIGBAdvRauTIkSNYv349YmNjAQAmJiaYN28exo4dy3Iy0ZSWlmLz5s3w9vZGUlISioqKhI6np6ezlKzmXr9+jQsXLlTar02bNrGUSjRpaWkYOXIkbt++DR6Ph9jYWBgaGmL8+PFQU1PDxo0b2Y4oslevXgldJ1q2bAlZWVm2Y4mMz+dj1apV8PT0xLt37xATEwNDQ0MsXrwY+vr6GD9+PNsRq00c+wSI13MvMzMTf/31F+7evVvhdbdPnz7o3Lkz2xEJ4RwJCQmkpKRAW1tbqP39+/fQ0dFBcXExS8kIqToptgMQQgip3P3797F9+3acP38eRUVFUFNTg7y8PNLT01FYWAhDQ0NMmjQJU6ZMgbKyMttxq2XTpk1YvHgxZsyYgS5duoBhGNy7dw9TpkzBhw8f4OHhwXbEavvjjz+wf/9+zJ49G4sXL8aiRYuQmJiI8+fPY8mSJWzHE9mtW7cwYMAAGBgYIDo6Gq1atUJiYiIYhoGVlRXb8arNw8MDUlJSSEpKgpmZmaB95MiR8PDw4Nzg2cuXL+Hp6YmTJ0/i1atXQjPoZGRk0K1bN0yaNAlDhw6FhAS3FhysXLkShw8fxp9//omJEycK2i0sLLB582ZODjSJU5/E7bmXnJyMJUuW4Pjx42jUqBHat2+Ptm3bCl53fX19sWHDBujp6WHp0qUYOXIk25FF8vjxY5w5c6bSD0POnTvHUqqaEcc+iYvw8HDB95GRkUhJSRE8Li0txdWrV6Gjo8NGNEKqjyGEEFLvDBgwgGncuDEzZ84cxt/fn8nNzRU6HhcXxxw6dIjp06cP06hRI+b69essJRWNvr4+c/jw4Qrthw4dYvT19VlIVHOGhobMpUuXGIZhGCUlJebFixcMwzDM1q1bmVGjRrEZrUZsbGyYxYsXMwxT1q+4uDgmOzubGTBgALNr1y6W01Vfw4YNmdDQUIZh/usPwzBMfHw8o6ioyGa0anNzc2OUlZWZoUOHMocPH2aioqKYrKwspri4mHn37h1z69YtZtmyZYypqSnTsmVL5tGjR2xHrhYjIyPm5s2bDMMI/66ioqIYNTU1NqOJTFz6JI7PPS0tLWbOnDnM06dPv3hOXl4ec+LECaZ9+/bM+vXr6zBd7Th58iQjLS3N9OvXj5GRkWH69+/PmJqaMqqqqsy4cePYjicScerT33//XeUvruDxeIyEhAQjISHB8Hi8Cl8KCgrMgQMH2I5JSJXQzDNCCKmHevfujTNnzkBGRqbS44aGhjA0NISLiwsiIiLw9u3bOk5YM8nJyZUufencuTOSk5NZSFRzKSkpsLCwAAAoKSkhMzMTANC/f38sXryYzWg1EhUVhZMnTwIApKSkkJ+fDyUlJSxfvhwDBw7E1KlTWU5YPbm5uVBQUKjQ/uHDB84tM5ORkUFcXBy0tLQqHNPW1kaPHj3Qo0cPLF26FJcvX8bLly9hY2PDQlLRvHnzBsbGxhXa+Xw+Z5f4iEufxPG5FxERUWl/PiUvL49Ro0Zh1KhRSE1NraNktWf16tXYvHkzpk+fDmVlZWzduhUGBgaYPHkyGjduzHY8kYhTnwYNGiT0mMfjCc3o5PF4gu9LS0vrKlaNJCQkgGEYGBoa4tGjR0J/YzIyMtDW1oakpCSLCQmpuvo/h5oQQn5A06dP/+LA2edatmwJBweH75yodhkbG8Pb27tC++nTp9G8eXMWEtVc06ZNBQN/xsbGuH79OoCy5SRcG5T5lKKiIgoLCwEATZo0QVxcnODYhw8f2Iolsu7du+PIkSOCxzweD3w+H+vXr4e9vT2Lyapv/fr133yzX87R0RHDhg37zolqV8uWLXH37t0K7WfOnIGlpSULiWpOXPokjs+9qvZH1PPrg7i4OPTr1w8AICsri9zcXPB4PHh4eGDv3r0spxONOPWJz+cLvq5fv462bdviypUryMjIQGZmJi5fvgwrKytcvXqV7ahVpqenB319ffD5fFhbW0NPT0/w1bhxYxo4I5xCM88IIYRDCgoKcPr0aeTm5sLBwYGzA01//PEHRo4ciTt37qBLly7g8XgICAjArVu3Kh1U44LBgwfj1q1b6NChA9zd3TFq1CgcOHAASUlJnKzhVq5jx464d+8ezM3N0a9fP8yZMwdPnz7FuXPn0LFjR7bjVdv69ethZ2eHJ0+eoKioCPPnz0dERATS09Nx7949tuNV2++//44ePXqgc+fOkJOTYztOrVq6dCnGjh2LN2/egM/n49y5c4iOjsaRI0dw6dIltuOJRBz79Dl/f3/k5uaiU6dOUFdXZztOtbx48QKZmZlo166doO3WrVtYuXIlcnNzMWjQIPzvf/9jMWHNaGhoIDs7GwCgo6ODZ8+ewcLCAhkZGcjLy2M5nWjEsU8AMGvWLHh6eqJr166Ctj59+kBBQQGTJk1CVFQUi+lEExMTAz8/P7x//x58Pl/oGJdrw5IfB+22SQgh9dS8efNQVFSErVu3AgCKiorQoUMHREREQEFBASUlJbhx4wY6derEclLRBAUFYfPmzYiKigLDMDA3N8ecOXM4Nfviax48eID79+/D2NgYAwYMYDuOyOLj45GTk4PWrVsjLy8Pc+fORUBAAIyNjbF582bo6emxHbHaUlJSsHv3bgQFBYHP58PKygrTp0/n3BIfADAyMkJCQgJkZGTQoUMH2Nvbo0ePHujYsWOVZ6/WZ9euXcPq1auFfldLlixB79692Y4mMnHp0/r165GTk4M//vgDAMAwDH766SfBrFttbW3cunULLVu2ZDNmtQwePBitWrXCihUrAJQtOWvZsiW6deuGFi1awMvLCytWrMCsWbPYDSqi0aNHw9raGrNnz8aqVauwdetWDBw4EDdu3ICVlRUni+uLY5+AsiXCjx49EpSDKBceHo4OHTogPz+fpWSi2bdvH6ZOnQpNTU00atRIaAkqj8dDcHAwi+kIqRoaPCOEkHqqVatWWL16tWDg5eDBg5gzZw5CQkLQrFkz/Prrr3j//j3++ecflpMSQtj05s0b3L59G35+fvDz80NCQgLk5eXRqVMn2Nvbw97evtIag4TUhJWVFRYsWCDYdfLMmTNwcXHBjRs3YGZmBmdnZygoKHBqNrGuri68vb0FH0qtXLkSPj4+CA0NBQAcOHAA27dvFzzmmvT0dBQUFKBJkybg8/nYsGGD4MOQxYsXc26mICCefQLKSgxIS0vj2LFjgg92UlJSMHbsWBQVFcHf35/lhNWjp6eHadOmYcGCBWxHIURkNHhGCCH1lIqKCoKDgwXFpUeNGgVlZWVBDY/Q0FA4OjpybrOAT71//77S6futW7dmKVH1XLhwocrncnn2GdeFh4ejVatWkJCQQHh4+FfPVVJSgq6uLqSlpesoXe179eoVfH194efnh7NnzyI3NxclJSVsx6o2V1dXjBkzBj169BCapcBl4tQndXV13L9/H2ZmZgDK+lZSUoKjR48CKJt9O3z4cLx69YrNmNUiLy+PmJgY6OrqAgB69uyJzp07C2aixcXFoV27dsjIyGAxpWhKSkpw/Phx9OnTB40aNWI7DvmGFy9eYPDgwYiOjkazZs0AAElJSTAxMcH58+cr3XikPlNRUUFoaCgMDQ3ZjkKIyKjmGSGE1FMSEhJCuyw9ePBAaNdGNTU1fPz4kY1oNRYUFAQXFxfBks1P8Xg8zuwi9fnOWF/CpT4BZW+Kq/rGPj09/Tunqbm2bdsiJSUF2traaNu2bYUdzD6nqqoKT09PwYwaLomLi4Ofn59gJlppaSnnNkIol5aWhn79+qFBgwb45ZdfMGbMGM4v6xanPhUXFwtthhIYGAh3d3fB4yZNmnBuUxENDQ0kJydDV1cXfD4fT548EapZWVRU9NVrR30mJSWFqVOncrJW1ueysrKqfK6Kisp3TPL9GBsbIzw8HDdu3MDz588F5S169erFyYH34cOH4/r165gyZQrbUQgRGQ2eEUJIPdWiRQtcvHgRs2fPRkREBJKSkoTeBL98+RINGzZkMaHoXF1dYWJiggMHDqBhw4acvBEEUGHGnLjYsmUL2xFqVUJCgmBnvISEhK+eW1hYiDNnzggtR6vPEhIS4OvrK5hplpmZiS5dusDW1hYzZsyAjY0NpKS4ebt34cIFZGRkwNvbGydOnMCWLVtgamqKMWPGYPTo0dDX12c7YrWJU5+MjY1x584dGBoaIikpCTExMbC1tRUcf/36NRo0aMBiwuqztbXFihUrsGvXLpw5cwZ8Pl/odTcyMpJTv6PPdejQASEhIZysVfkpNTW1Kt83cOmDq8/xeDz07t2bc/UQy23btk3wffky2gcPHsDCwqLC7G43N7e6jkdItdGyTUIIqafOnj2LUaNGoVu3boiIiICNjQ0uXrwoOL5gwQIkJCRwqp5MOWVlZYSEhHBu2QH5MXz8+BHjx4/nRKFpCQkJNGvWDNOmTYO9vT2srKwgKSnJdqzv4vXr1zh58iS8vLwQGxvLyaWon+Nyn/bs2YM5c+Zg5MiRePDgAdTU1IR2rF25ciUePnwo9LpV3yUkJMDBwQEJCQmQkJDAtm3bMHXqVMHxQYMGwcDAAJs3b2YxpejOnDmDhQsXwsPDA+3atYOioqLQca6UTPi03ldiYiIWLlyIcePGCWrVBQYG4vDhw1izZg1cXFzYilljubm58Pf3R1JSEoqKioSOcWGwycDAoErn8Xg8xMfHf+c0hNQcDZ4RQkg9dvPmTfzzzz9o1KgRZs6cCQUFBcGxP/74A3Z2dkKf9HPFoEGDMHbsWAwdOpTtKLWK6ze635Kfn4/i4mKhNq4uicnLy6v098SVN4/lRo4ciTt37qCgoADdunWDra0t7O3tYWlpydkZnZUpLi7GP//8g2PHjuGff/6BhoYG3rx5w3asGhGHPh04cACXLl1Co0aNsHTpUqFaWtOmTUOvXr0wZMgQFhNWX3FxMSIjI6GlpYUmTZoIHQsLC4Ouri40NDRYSlczEhISFdrKl7FzrbxAuZ49e2LChAkYNWqUUPuJEyewd+9e+Pn5sROshkJCQuDo6Ii8vDzk5uZCQ0MDHz58gIKCArS1tWmwiRAW0OAZIYRwWGhoKNq2bct2jGr78OEDXFxc0L59e7Rq1arC9H0uFtcX1xvd3NxcLFiwAN7e3khLS6twnGtvtlJTU+Hq6oorV65Uepxr/Sn3/PlzwdJNf39/FBQUoGvXrrC1tYWdnR1sbGzYjigSX19fnDhxAmfPnkVpaSmGDBkCJycn9OjRo9KBAC4Qxz59SWpqqmDJtDh4+vQpDhw4wNml7S9fvvzqcS4u51RQUEBYWBiaN28u1B4TE4O2bdsiLy+PpWQ1Y2dnBxMTE+zevRtqamoICwuDtLQ0xowZA3d3d84NShMiDmjwjBBCOCYzMxPHjx/HgQMHEBoaysk3+xcuXMDYsWORnZ1d4RhXP/0W1xvd6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di2cnJzYjlgtTk5OSExMxJYtW2Bvb4+//voL7969w8qVK7Fx40b069eP7Yi1IjIyEidOnMD27ds5u9tm06ZNkZaWhj59+sDJyQk///wz5OTk2I5VI+LYp88xDIMrV64IZqUVFhayHalGsrKycPLkSRw4cABPnjxB69atERoaynYs8i9TU1P0798fGzduFGqfM2cOLl26hOjoaJaS1YyamhoePnwIU1NTqKmpITAwEGZmZnj48CFcXFzw/PlztiNWy+zZsytt5/F4kJOTg7GxMQYOHMjZWZ3kx0CDZ4QQwhG3b9+Gl5cXzp07Bz09PQwdOhRDhw7l5E5t+vr66N+/PxYvXszZTQ8+J243uuWaNWuGI0eOwM7ODioqKggODoaxsTGOHj2KkydP4vLly2xHrJbGjRvj77//Rvv27aGiooInT57AxMQEFy5cwJ9//omAgAC2I4rs3bt38PPzg5+fH3x9fRETEwNZWVl07NgRvr6+bMertr1792L48OFQV1dnO0qtEcc+lYuPj4eXlxcOHz6MnJwc9OvXD0OHDsXgwYPZjiYSf39/HDhwAGfPnkVBQQHmzZuHCRMmcLpW55EjR7563NnZuY6S1J7Lly9j6NChMDIyQseOHQGU7U4eFxeHs2fPwtHRkeWEotHS0sK9e/dgYmICU1NTbNu2DX369MHz589hZWXFuRl19vb2CA4ORmlpKUxNTcEwDGJjYyEpKYkWLVogOjoaPB4PAQEBMDc3ZzsuIZXi5vZLhBDyg3j9+jUOHToELy8v5ObmYsSIESguLsbZs2c5fXORlpYGDw8PsRk4AwBpaWlBjamGDRsiKSkJZmZmUFVVRVJSEsvpRJeeni4o+quiooL09HQAQNeuXYUKaXNFbm4utLW1AQAaGhpITU2FiYkJLCwsEBwczHK66jtz5oxguWZ0dDSkpKTQvn17jBgxAvb29ujcuTNkZWXZjimSSZMmsR2h1olbnwoKCuDj44P9+/fjwYMHcHBwQHJyMkJDQ9GqVSu241VbcnIyDh48KHjNHTVqFPz9/dGpUyc4OztzeuAMANzd3YUeFxcXIy8vDzIyMlBQUODk4JmjoyNiY2Oxe/duREVFgWEYDBw4EFOmTIGuri7b8URmaWkp+HDH3t4eS5YswYcPH3D06FFYWFiwHa/aymeVHTx4UFArNSsrC+PHj0fXrl0xceJEjB49Gh4eHrh27RrLaQmpHA2eEUJIPeXo6IiAgAD0798f27dvR9++fSEpKQlPT0+2o9XYkCFD4OvrCyMjI7aj1Bpxu9EtZ2hoiMTEROjp6cHc3Bze3t5o3749Ll68CDU1NbbjVZupqSmio6Ohr6+Ptm3bYs+ePdDX14enpycaN27Mdrxqc3JygrW1NQYPHgx7e3t06dIF8vLybMeqNY8fP8aZM2cq3dyBC7uhVkZc+jRt2jScOnUKpqamGDNmDM6ePYsGDRpAWlqas7XbDAwMMHz4cOzcuRMODg6c7ceXfPz4sUJbbGwspk6dinnz5rGQqGaKi4vRu3dv7NmzB6tWrWI7Tq1avXq1oLTFihUr4OLigqlTp8LY2BgHDx5kOV31rV+/Hjdu3BDaZEhFRQXLli1D79694e7ujiVLlqB3794spiTk62jwjBBC6qnr16/Dzc0NU6dOrVAIl+tMTEzw22+/ISAgABYWFhU2DODizpTidqNbztXVFWFhYbC1tcVvv/2Gfv36Yfv27SgpKcGmTZvYjldts2bNQnJyMgBg6dKl6NOnD44fPw4ZGRkcOnSI3XAi+PjxIxQVFdmO8V2cOnUKzs7O6N27N27cuIHevXsjNjYWKSkpnF0KKE592rt3LxYsWICFCxdCWVmZ7Ti1Qk9PDwEBAWjWrBn09PTQokULtiN9d82bN8fatWsxZswYzpUXkJaWxrNnz8RqZ+Fy1tbWgu+1tLQ4VyLhc5mZmXj//n2FVROpqanIysoCUFb+4vMPFAipT6jmGSGE1FOBgYHw8vKCt7c3WrRogbFjx2LkyJFo0qQJwsLCOL1ss3wZYGV4PB5nd6b8ESQlJeHJkycwMjJCmzZt2I5TY3l5eXj+/DmaNWsGTU1NtuOI7M2bNzh79ixiYmLA4/HQvHlzDB06FDo6OmxHE1nr1q0xefJkTJ8+HcrKyggLC4OBgQEmT56Mxo0b448//mA7YrWJU59OnDiBgwcPIjAwEP369cPYsWPRt29fyMvLc/o16t69ezhw4ADOnDkDExMTjBkzBvPnz0d4eDjMzMzYjvddhISEwNbWVjCIwSVz5syBtLQ01q5dy3aU7yI1NVVQD8zU1JSzr1NOTk4IDAzExo0bYWNjAx6Ph0ePHmHu3Lno3Lkzjh49ilOnTmHDhg148uQJ23EJqRQNnhFCSD2Xl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9VWw+7SeEiG7Xrl2YPXs2ioqKoKqqCoZhkJWVBRkZGWzatAnTpk1jO6JIFBUVERERAX19fWhqasLX1xcWFhaIiopCjx49BDMIuUQc+5SYmIiDBw/i0KFDyMvLQ3p6Ok6fPo1hw4axHa1GcnJycPLkSXh5eeHhw4ewtbXF6NGjMWjQIGhpabEdTyQXLlwQeswwDJKTk7Fjxw7o6uriypUrLCUT3cyZM3HkyBEYGxvD2tq6wkxcLs6QBsrqc86cORNHjx4V7EAuKSkJZ2dnbN++HQoKCiwnrJ6cnBx4eHjgyJEjgt2fpaSk4OLigs2bN0NRUVGwi23btm3ZC0rIV9DgGSGE1FNJSUnQ1dUVWo4QHR2NAwcO4OjRo8jIyICDg0OFm2FCiLDZs2dX+VyuvdH6559/MHDgQMyaNQtz5swR1G1LTk7G+vXrsX37dvz999+c3HFOV1cXly9fhoWFBdq0aYOFCxdi1KhRCAwMRN++fZGZmcl2xGoTxz6VYxgG165dg5eXFy5cuABNTU0MGTIE27ZtYztajUVFRQlee9PT01FcXMx2JJF8XsONx+NBS0sLPXr0wMaNGzlZ99He3v6Lx3g8Hm7fvl2HaWrP5MmTcfPmTezYsQNdunQBAAQEBMDNzQ0ODg7YvXs3ywlFk5OTg/j4eDAMAyMjIygpKbEdiZAqo8EzQgippyQlJZGcnCzYGfBTpaWluHjxouBNChfMnj0bK1asgKKi4jcHM7g2gEHqt6+9ufoUF99o2draolu3bli5cmWlx3///XfcvXsX/v7+dZys5kaPHg1ra2vMnj0bq1atwtatWzFw4EDcuHEDVlZWnCquX04c+1SZ9PR0HDlyBAcPHkRYWBjbcWpNSUkJLly4gCFDhrAdhYg5TU1N+Pj4wM7OTqjd19cXI0aMQGpqKjvBCPmB0eAZIYTUUxISEkhJSal08IyL7O3t8ddff0FNTU1sPykmpK6pqKjg8ePHMDU1rfR4dHQ0rK2tBZtZcEl6ejoKCgrQpEkT8Pl8bNiwAQEBATA2NsbixYuhrq7OdsRqE8c+iZO3b99i06ZNWLJkidCugEBZwfOVK1di7ty5aNiwIUsJyZe8ePECcXFx6N69O+Tl5cEwDKc3ElBQUEBQUFCFOnsRERFo3749cnNzWUpWdUOGDMGhQ4egoqLyzQFncfnggIg3GjwjhJB6StwGzwipT8TljZaSkhLCw8NhaGhY6fH4+Hi0bt0aOTk5dZyMiLuqLIfm8XjYuHFjHaSpHXPnzkVWVhb27t1b6fEpU6ZAVVUV69atq+NkohPnZesAkJaWhhEjRsDX1xc8Hg+xsbEwNDTE+PHjoaamxqnn36d69uyJBg0a4MiRI5CTkwMA5Ofnw8XFBenp6bh58ybLCb/N1dUV27Ztg7KyMlxdXb96Lpd3JSc/Dim2AxBCCPmy/fv3f7MehJubWx2lqT3v3r374if34eHhaN26dR0nEk11avlw6fdUnR3XPp+dUd996Y3WhAkTOPlGq2XLlvj777/h4eFR6fHz58+jZcuWdZyq9vD5fLx48QLv378Hn88XOta9e3eWUtWMuPQpJCSE7Qi17urVq/D09PzicWdnZ0ycOJFTg2ef/56CgoJQWloqmK0aExMDSUlJtGvXjo14Nebh4QFpaWkkJSUJzdIaOXIkPDw8OHdNL7d161b07dsXTZs2RZs2bcDj8RAaGgo5OTlcu3aN7XhV8umAGA2OEXFAM88IIaSekpCQQNOmTSEpKfnFc3g8HuLj4+swVe3Q1tbG/v37MWDAAKH2DRs2YPHixcjPz2cpWfUYGBhU6Tyu/Z4kJCS+OQurfKZW+S5gXOHs7Iz3799j//79MDMzQ1hYGAwNDXH9+nV4eHggIiKC7YjVcvjwYUydOhUbNmzApEmTICVV9rloSUkJ9uzZg3nz5mHXrl0YN24cu0FF8ODBA4wePRovX77E57erXHzuAeLZJ3GiqKiIqKgoNGvWrNLj5QM0XFgyV5lNmzbBz88Phw8fFiwR/vjxI1xdXdGtWzfMmTOH5YTV16hRI1y7dg1t2rSBsrKy4JqekJAACwsLTs+6zc/Px7Fjx/D8+XMwDANzc3M4OTlBXl6e7WgiKSkpgZ+fH+Li4jB69GgoKyvj7du3UFFRoY0DCCfQzDNCCKnHnjx5IpbLNhcsWICRI0cKtihPT0/H2LFjERERgdOnT7Mdr8oSEhLYjvBd+Pr6sh3hu7l+/TquXbuGpk2bCrU3b94cL1++ZCmV6FxcXPD06VPMmDEDv/32G4yMjAAAcXFxyMnJgZubGycHzoCyJXLW1tb4559/0LhxY04uq/2cOPXJz8+vQjHzz02bNg27du2qm0C1QF5eHomJiV8cPEtMTOTswAUAbNy4EdevXxeqraeuro6VK1eid+/enBw8y83NhYKCQoX2Dx8+QFZWloVEtUdeXh4TJ05kO0atePnyJfr27YukpCQUFhbCwcEBysrK+PPPP1FQUPDVGZ+E1Bc0eEYIIaTOzZkzB7169cKYMWPQunVrpKeno2PHjggPD+d8IeaioiIkJCTAyMhIMAuIa2xtbdmO8N2I4xutDRs2YNiwYTh58iRiY2MBlC3/++WXX9CxY0eW04kuNjYWPj4+MDY2ZjtKrRGnPg0cOBC+vr6wsrKq9Pj06dNx/PhxTg2edejQAUePHv3i8tkjR46gffv2dZyq9mRlZeHdu3cVlnK/f/+ek5uKAGXXuiNHjmDFihUAymZw8vl8rF+/vso7LdcX1dk9/fOZ+/Wdu7s7rK2tERYWhgYNGgjaBw8ejAkTJrCYjJCq4+ZdPSGEEADA8ePH4eTkxHYMkRgaGqJly5Y4e/YsAGDEiBGcHjjLy8vDzJkzcfjwYQBldWQMDQ3h5uaGJk2aYOHChSwnFN3du3exZ88exMfH48yZM9DR0cHRo0dhYGCArl27sh2vWsTpjRYALF++HHPnzkXHjh05PVBWmQ4dOuDFixdiMdBUTpz6NGHCBPz000+4e/cuTExMhI7NmDEDR44cweXLl1lKJ5q5c+fCwcEBqqqqmDdvnuA16d27d/jzzz9x6NAhXL9+neWUohs8eDBcXV2xceNGwfXiwYMHmDdv3jd3Q6yv1q9fDzs7Ozx58gRFRUWYP38+IiIikJ6ejnv37rEdr1oGDRpUpfO4uMQ7ICAA9+7dg4yMjFC7np4e3rx5w1IqQqqJIYQQUi+1aNGCefv27RePHz9+nJGWlq7DRLUnICCA0dfXZ9q1a8dERkYy+/btY5SVlZnhw4cz6enpbMcTiZubG9OuXTvm7t27jKKiIhMXF8cwDMP8/fffTNu2bVlOJzofHx9GXl6emTBhAiMrKyvo186dO5mffvqJ5XTVFxERwWhpaTF9+/ZlZGRkmGHDhjFmZmZMw4YNmRcvXrAdr9okJCSYd+/esR3juzh37hxjbm7OHDx4kHny5AkTFhYm9MVF4tYnV1dXplmzZszr168FbTNnzmQUFRUZPz8/FpOJztPTk5GVlWUkJCQYNTU1Rl1dnZGQkGBkZWWZXbt2sR2vRnJzc5mpU6cK+ichIcHIyMgwU6dOZXJyctiOJ7Lk5GRmyZIlTL9+/ZiffvqJWbRo0Vfvn0jdU1dXZyIiIhiGYRglJSXBvcTdu3cZbW1tNqMRUmW0YQAhhNRTdnZ2yM/Px+3bt6GoqCh07NSpU3B2dsa6deu+uMtefSYrKwsPDw+sWLEC0tLSAMpqNI0dOxZJSUl4/fo1ywmrT09PD6dPn0bHjh2Fiha/ePECVlZW1drBsj6xtLSEh4cHnJ2dhfoVGhqKvn37IiUlhe2I1ZaSkoLdu3cjKCgIfD4fVlZWmD59Oho3bsx2tGqTkJBASkqKWNZGlJCQqNDG4/E4u1kFIH594vP5GDZsGKKionD37l2sWrUKe/fuxaVLlzg5k7O4uBjS0tJ48+YNvL298eLFCzAMAxMTEwwbNgxNmzbFs2fP0KpVK7aj1khubi7i4uLAMAyMjY0r3GMQ9iUkJFR5UyIuGDlyJFRVVbF3714oKysjPDwcWlpaGDhwIJo1a0a7cRJOoMEzQgipp3JycmBnZwc1NTVcuXJFMMjk7e2NMWPGYPXq1Zg7dy7LKUXj7+9faV0tPp+PVatWYfHixSykqhkFBQU8e/YMhoaGQoNMYWFh6N69OzIzM9mOKBIFBQVERkZCX19fqF/x8fEwNzdHQUEB2xF/aBISEnj37h20tLTYjlLrvrWBg56eXh0lqT3i2KeioiL069cPYWFhyM3NxYULF9CzZ0+2Y4lk2LBhOHPmzBc3cnj27Bl69uyJd+/e1XEy8iV37tz56vEv1a+r7yQlJdG9e3eMHz8ew4YNg5ycHNuRauTt27ewt7eHpKQkYmNjYW1tjdjYWGhqauLOnTti+QEQET80eEYIIfVYamoqunfvDnNzc/j4+MDHxwdOTk5YsWIFFixYwHY88glbW1sMGzYMM2fOFHyqamBggBkzZuDFixe4evUq2xFFYmRkhD179qBXr15Cg2dHjhzB2rVrERkZyXbEarl69SqUlJQEtdp27tyJffv2wdzcHDt37hTahY4LJCQk0KpVq29uThEcHFxHiciPYtu2bYLvs7OzsWLFCvTp06fCwJmbm1tdRxOZrq4ufvrpJ+zdu7fCsYiICPTo0QPdu3fHmTNnWEhXOx4/fowzZ84gKSkJRUVFQsfOnTvHUirRfWk2ZzmuzeYs9+zZM3h5eeH48eMoLCzEyJEjMX78eE5vWJGfn4+TJ08iODhYMOvbycmJ0zvYkh8LDZ4RQkg99+rVK3Tt2hXGxsYICAjAkiVLsGjRIrZj1Vhubi78/f0rvYHn0putcvfv30ffvn3h5OSEQ4cOYfLkyYiIiEBgYCD8/f3Rrl07tiOK5M8//8Thw4fh5eUFBwcHXL58GS9fvoSHhweWLFmCGTNmsB2xWiwsLLBu3To4Ojri6dOnsLa2xpw5c3D79m2YmZlxbumIhIQE5syZAyUlpa+et3Tp0jpKVLvi4uKwZcsWREVFgcfjwczMDO7u7jAyMmI7msjEpU9VWVLG4/EQHx9fB2lqR1RUlGC2z9q1a4Xa7e3t0blzZ5w5cwaSkpIsphRdecmH3r1748aNG+jduzdiY2ORkpKCwYMHc+76B6DCrO7i4mKEhIRg8eLFWLVqFWdnQZYrKSnBxYsXcejQIVy5cgXNmzfH+PHjMXbsWLGccUxIfUaDZ4QQUk+Fh4cLvn/+/DmcnZ0xaNAg/O9//xM6r3Xr1nUdrdpevXoFXV1dweOQkBA4OjoiNzcX+fn5UFdXx4cPH6CgoABtbW1Ovdn61NOnT7FhwwahWloLFiyAhYUF29FqZNGiRdi8ebNgiaasrCzmzp0r2LGSS5SUlPDs2TPo6+tj2bJlePbsGXx8fBAcHAxHR0fO1XAT55pn165dw4ABA9C2bVt06dIFDMPg/v37CAsLw8WLF+Hg4MB2xGoTxz6Jm8ePH6Nnz55YvHgx5s2bh+fPn8Pe3h7t27fHuXPnODtwBpTdL0yePBnTp08XzCQ2MDDA5MmT0bhxY/zxxx9sR6w1d+7cgYeHB4KCgtiOUisKCwuxa9cu/PbbbygqKoK0tDRGjhyJdevWcaJeZ5MmTWBnZyf4+nyHXkK4gAbPCCGknpKQkBAqJF1+uf78ey4sSVi5ciWSk5OxY8cO8Hg82NnZwcjICHv37kXTpk0RFhaG/Px8jBkzBh4eHhgyZAjbkcln8vLyEBkZCT6fD3Nz82/OdKqvNDQ0EBAQAHNzc3Tt2hXOzs6YNGkSEhMTYW5ujry8PLYjVoukpCSSk5PFcvDM0tISffr0EZoBBAALFy7E9evXObkUVRz7JI5u376N/v37Y/78+di3bx+srKxw7tw5Qe1RrlJUVERERAT09fWhqakJX19fWFhYICoqCj169EBycjLbEWtNVFQUbGxskJOTw3aUGnny5Am8vLxw6tQpKCoqwsXFBePHj8fbt2+xZMkSZGdn49GjR2zH/KaTJ0/C398ffn5+iImJQcOGDWFraws7OzvY2trCzMyM7YiEfBMNnhFCSD31rcLS5bhQYDo/Px8zZsxAamoqLly4ADU1NTx48AAtWrRA06ZNERgYCF1dXTx48ADjxo3D8+fP2Y5cJdXZQVNFReU7JiFVNWDAABQVFaFLly5YsWIFEhISoKOjg+vXr2PGjBmIiYlhO2K1iPPMMzk5OTx9+hTNmzcXao+JiUHr1q05uVmFuPTp1KlT+OWXX6p07qtXr5CUlIQuXbp851S16/z58xg+fDh69+6N8+fPc37gDCir6Xb58mVYWFigTZs2WLhwIUaNGoXAwED07duXkxvbfDpLHwAYhkFycjLWrl2L4uJi3Lt3j6VkNbNp0yYcPHgQ0dHRcHR0xIQJE+Do6ChU4+3Fixdo0aIFSkpKWExafe/evYOvry8uXbqE06dPg8/nc+KDYEK+Xl2WEEIIa7gwKFZV8vLyOHDgAE6dOgUAkJaWFtwAamtr4+XLl9DV1YWamhqSkpLYjFotampqX9yV7XNcujGszsw/rhWY3rFjB6ZNmwYfHx/s3r0bOjo6AIArV66gb9++LKervoSEBLGte6OlpYXQ0NAKA02hoaGcHSwUlz7t3r0by5Ytg6urKwYMGFBh1khmZibu3buHY8eO4ebNmzhw4ABLSatHXV29wjX97t27aNiwoVBbenp6XcaqNd26dcONGzdgYWGBESNGwN3dHbdv38aNGzc4Wxusbdu2QjPyy3Xs2BFeXl4spaq53bt349dff4WrqysaNWpU6TnNmjXjzN8WULaLfEBAgGAGWkhICCwsLCrdfZ2Q+ogGzwghpB5KSkpCs2bNqnz+mzdvBIMA9Vn5TAVLS0s8fvwYJiYmsLW1xW+//YapU6fi8OHDnKoP5uvrK/g+MTERCxcuxLhx49CpUycAQGBgIA4fPow1a9awFVEkqqqqgu8ZhsFff/0FVVVVWFtbAwCCgoKQkZHByeW1zZo1w6VLlyq0b968mYU0NXf48OEqnbdkyZLvnKT2TZw4EZMmTUJ8fDw6d+4MHo+HgIAArFu3DnPmzGE7nkjEpU/+/v64dOkStm/fjv/9739QVFREw4YNIScnh48fPyIlJQVaWlpwdXXFs2fPODMwuGXLFrYjfFc7duwQzG787bffIC0tjYCAAAwZMgSLFy9mOZ1oEhIShB5LSEhAS0sLcnJyLCWqHbGxsd88R0ZGBi4uLnWQpuY6dOiA8PBwtGrVCnZ2dvjf//6Hbt26QU1Nje1ohFQZLdskhJB6qGHDhhgwYAAmTpz4xW3JMzMz4e3tja1bt2Ly5MmYOXNmHacU3ZMnT5CVlYUePXogPT0d48aNg5+fH4yMjHDo0CG0adOG7YjV1rNnT0yYMAGjRo0Saj9x4gT27t0LPz8/doLV0IIFC5Ceng5PT09BoezS0lJMmzYNKioqWL9+PcsJq+dbMxurM2hdH0hISKBJkybQ1tauMPOiHI/H42QtLYZhsGXLFmzcuBFv374FUFZ0et68eXBzc6vyrM/6RBz7lJaWhoCAACQmJiI/Px+ampqwtLSEpaWl0BIzQmrT7du3MWPGDDx48KBCWYTMzEx07twZnp6e6NatG0sJa0deXl6lu5JzYbOoT2loaIDH46FXr16CTQOozhnhGho8I4SQeig9PR2rV6+Gl5cXpKWlYW1tjSZNmgg+1Y+MjERERASsra3x+++/46effmI78g9PQUEBYWFhldYyatu2LecK0ZfT0tJCQEAATE1Nhdqjo6PRuXNnpKWlsZRMNOUbcXwJl5bXAoCjoyN8fX3Rp08f/Prrr+jXrx+ndwMsV1JSguPHj6NPnz5o1KgRsrOzAQDKysosJxOdOPbpR1a+mQ+XfKlOJ4/Hg6ysLGRkZOo4kegGDBgAe3t7eHh4VHp827Zt8PX1xV9//VXHyWpHamoqxo0bh6tXr1Z6nGuvVUBZfTo/Pz/4+/vj7t27kJCQgK2tLezt7TFlyhS24xHyTfRxECGE1EMaGhrYsGED3r59i927d8PExAQfPnwQTON3cnJCUFAQ7t27RwNn9YSuri48PT0rtO/Zswe6urosJKodJSUliIqKqtAeFRUFPp/PQqKaCQkJQXBwsODr4cOH8PT0hImJCc6cOcN2vGq7fPky4uPj0aFDB8ybNw9NmzbFggULEB0dzXa0GpGSksLUqVNRWFgIoGyAieuDTOLYJ3FiZmaGEydOVJjh87nY2FhMnToV69atq6NktUdNTQ3q6uoVvtTU1CAvLw89PT0sXbqUE9f2sLCwr9ap7N27N4KCguowUe2aNWsWMjIy8ODBA8jLy+Pq1as4fPgwmjdvjgsXLrAdTyStW7eGm5sbzp49iytXruCnn37CuXPnMH36dLajEVIlVPOMEELqMTk5OQwZMoSTtaW+Ji0tDUuWLIGvry/ev39f4Uadi8WYN2/ejKFDh+LatWvo2LEjAODBgweIi4vD2bNnWU4nOldXV/z666948eKFUL/Wrl0LV1dXltNVX2VLgstndq5fv56Tf2uNGzfGb7/9ht9++w137tzBwYMHYWNjAwsLC9y8eRPy8vJsRxRJhw4dEBISIlabp4hjn8TFzp07sWDBAkyfPh29e/eudMZ3QEAAIiMjMWPGDEybNo3tyNV26NAhLFq0COPGjUP79u3BMAweP36Mw4cP4/fff0dqaio2bNgAWVlZ/O9//2M77le9e/fuqzugSklJITU1tQ4T1a7bt2/j77//ho2NDSQkJKCnpwcHBweoqKhgzZo16NevH9sRqyUkJAR+fn7w8/PD3bt3kZ2djTZt2sDd3R329vZsxyOkSmjwjBBCSJ0bM2YM4uLiMH78eDRs2JBzS18q4+joiNjYWOzevRtRUVFgGAYDBw7ElClTOD3zbMOGDWjUqBE2b96M5ORkAGWDNfPnz+dUgfNvMTExwePHj9mOUWM2NjZITExEZGQkQkJCUFxczNnBs2nTpmHOnDl4/fo12rVrB0VFRaHjXKv5A4hnn8RFjx498PjxY9y/fx+nT5/GiRMnKtRxc3Z2xpgxYzhb5Pzw4cPYuHEjRowYIWgbMGAALCwssGfPHty6dQvNmjXDqlWr6v3gmY6ODp4+fQpjY+NKj4eHh6Nx48Z1nKr25ObmCjba0NDQQGpqKkxMTGBhYcHJGpY2NjawtLSEra0tJk6ciO7du1eoVUdIfUc1zwghhNQ5ZWVlBAQEcHJjgB9Zeb0cLt/wfl7zh2EYJCcnY9myZXj+/DlCQ0PZCVZDgYGB8PLygre3N0xMTODq6orRo0dz9k0+gEqLzfN4PEGtKS7W/BHHPhHu+FJtztjYWLRp0wZ5eXlISEhAy5Yt632dzpkzZ8LPzw+PHz+usLNmfn4+2rdvD3t7e2zbto2lhDVjY2ODlStXok+fPhg0aJBgxtm2bdvg4+ODuLg4tiNWS1ZWFqfvHQgBaOYZIYQQFrRo0QL5+flsxyDVJA43vmpqahVmOjIMA11dXZw6dYqlVKL7888/cfDgQaSlpcHJyQkBAQGwsLBgO1atSEhIYDtCrRPHPhHuaNq0KQ4cOIC1a9cKtR84cEAwQzotLQ3q6upsxKuW33//HefOnYOJiQlmzJgBU1NT8Hg8REVFYefOnSgtLcWiRYvYjimyWbNmCWZ7L126FH369MGxY8cgIyODw4cPs5yu+sTh/oEQmnlGCCGkzj1+/BgLFy7EkiVL0KpVqwp1S+gmi3wv/v7+Qo8lJCSgpaUFY2NjSElx7zNFCQkJNGvWDP379//qTnmbNm2qw1TkR/P69WtcuHABSUlJFQru03Ov/rhw4QKGDx+OFi1awMbGBjweD48fP8bz58/h4+OD/v37Y/fu3YiNjeXE7+3ly5eYOnUqrl27hvK3tDweD3369MGuXbugr6/PbsBawjAM8vPz8fz5czRr1gyamppsRyLkh0SDZ4QQQupcbGwsRo0ahZCQEKF2WrpEvgcrKyvcunUL6urqWL58OebOnQsFBQW2Y9UKOzu7b9YM5PF4uH37dh0lql1Hjx6Fp6cnEhISEBgYCD09PWzZsgUGBgYYOHAg2/FEIm59unXrFgYMGAADAwNER0ejVatWSExMBMMwsLKy4uxzT1y9fPkSnp6eiI6OBsMwaNGiBSZPnszpgaaPHz/ixYsXYBgGzZs358TMuao4cOAANm/eLNhpvXnz5pg1axYmTJjAcjJCfkw0eEYIIRwQFxeHLVu2ICoqCjweD2ZmZnB3d4eRkRHb0UTSvn17SElJwd3dvdINA2xtbVlKRsSRvLw8YmNj0bRpU0hKSiIlJQVaWlpsxyLfsHv3bixZsgSzZs3CqlWr8OzZMxgaGuLQoUM4fPgwfH192Y5YbeLYp/bt26Nv375Yvnw5lJWVERYWBm1tbTg5OaFv376YOnUq2xEJgOLiYvTu3Rt79uyBiYkJ23HINyxevBibN2/GzJkz0alTJwBltS137NgBd3d3rFy5kuWEhPx4aPCMEELquWvXrmHAgAFo27YtunTpAoZhcP/+fYSFheHixYtwcHBgO2K1KSgoICQkBKampmxHIT+ATp06QUlJCV27dsUff/yBuXPnQklJqdJzlyxZUsfpyJeYm5tj9erVGDRokGBQxtDQEM+ePYOdnR0+fPjAdsRqE8c+KSsrIzQ0FEZGRlBXV0dAQABatmyJsLAwDBw4EImJiWxHJP/S0tLC/fv3K2wYQOofTU1NbN++HaNGjRJqP3nyJGbOnMm5a4Wfnx/s7OzYjkFIjXCvuAchhPxgFi5cCA8PjwoFfhcuXIgFCxZwcvDM2toar169ErvBMx8fH3h7e1da94eLW8uX8/f3x4YNG4RmPs6bNw/dunVjO1qVHDp0CEuXLsWlS5fA4/Fw5cqVSuub8Xg8Tg2erV27FjNnzoSiouI3z3348CE+fPiAfv361UGy2pGQkABLS8sK7bKyssjNzWUhUc2JY58UFRVRWFgIAGjSpAni4uLQsmVLAODcG/zK5Ofno7i4WKiNq3U5nZ2dK90wgNQ/paWlsLa2rtDerl07lJSUsJCoZvr27QsdHR24urrCxcVFsEEFIVxCg2eEEFLPRUVFwdvbu0L7r7/+ii1bttR9oFowc+ZMuLu7Y968ebCwsKiwYUDr1q1ZSia6bdu2YdGiRXBxccHff/8NV1dXxMXF4fHjx5g+fTrb8UR27NgxuLq6YsiQIXBzcxPMfOzZsycOHTqE0aNHsx3xm0xNTQU7aUpISODWrVvQ1tZmOVXNRUZGQk9PD8OHD8eAAQNgbW0tWI5aUlKCyMhIBAQE4NixY0hOTsaRI0dYTlw9BgYGCA0NhZ6enlD7lStXYG5uzlKqmhHHPnXs2BH37t2Dubk5+vXrhzlz5uDp06c4d+4cOnbsyHY8keTl5WH+/Pnw9vZGWlpaheNcrctZVFSE/fv348aNG7C2tq4w8M6FTQJ+FGPGjMHu3bsr/E727t0LJycnllKJ7u3btzh27BgOHTqEZcuWoWfPnhg/fjwGDRr01c1uCKlPaNkmIYTUc7q6uti0aROGDx8u1O7t7Y25c+ciKSmJpWSik5CQqNDG4/E4vWFAixYtsHTpUowaNUpoOdaSJUuQnp6OHTt2sB1RJGZmZpg0aRI8PDyE2jdt2oR9+/YhKiqKpWQEAMLDw7Fz506cOXMGmZmZkJSUhKysLPLy8gAAlpaWmDRpElxcXCArK8ty2uo5ePAgFi9ejI0bN2L8+PHYv38/4uLisGbNGuzfvx+//PIL2xGrTRz7FB8fj5ycHLRu3Rp5eXmYO3cuAgICYGxsjM2bN1cYKOSC6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di0nBy8AwN7e/ovHuLyxiDiaOXMmjhw5Al1dXcEg9IMHD/Dq1Ss4OzsLfejItUHP0NBQeHl54eTJk+Dz+XBycsL48ePRpk0btqMR8lU0eEYIIfXc8uXLsXnzZixcuBCdO3cGj8dDQEAA1q1bhzlz5uD3339nO2K1vXz58qvHufhmS0FBAVFRUdDT04O2tjZu3LiBNm3aIDY2Fh07dqx09gIXyMrKIiIiAsbGxkLtL168QKtWrVBQUMBSMvIphmEQHh6OxMRE5OfnQ1NTE23btoWmpibb0Wpk3759WLlyJV69egUA0NHRwbJlyzB+/HiWk4lOHPskbpo1a4YjR47Azs4OKioqCA4OhrGxMY4ePYqTJ0/i8uXLbEckYu5rA52f4uqg59u3b7F3716sXbsWUlJSKCgoQKdOneDp6SlY9k1IfUODZ4QQUs8xDIMtW7Zg48aNePv2LYCyujLz5s2Dm5tbhZ0qCTsMDQ3h4+MDKysr2NjYYMKECZg8eTKuX7+OX375Benp6WxHFImxsTHmzZuHyZMnC7Xv2bMHGzZsQGxsLEvJyI/kw4cP4PP5YrHctpw49iknJwd8Pl+ojYv1wZSUlBAREQE9PT00bdoU586dQ/v27ZGQkAALCwvk5OSwHbFGXrx4gbi4OHTv3h3y8vKCWd+EfE/FxcX4+++/4eXlJVg6PH78eIwaNQrp6elYsGABQkNDERkZyXZUQipFNc8IIaQeKykpwfHjxzFq1Ch4eHggOzsbQNnuZqR+6dGjBy5evAgrKyuMHz8eHh4e8PHxwZMnTzBkyBC244lszpw5cHNzQ2hoqNDMx0OHDmHr1q1sxyM/CK7PoKuMuPQpISEBM2bMgJ+fn9BMVC4vwzc0NERiYiL09PRgbm4Ob29vtG/fHhcvXoSamhrb8USWlpaGESNGwNfXFzweD7GxsTA0NMSECROgpqaGjRs3sh2RiKmZM2fi5MmTAMrquf35559o1aqV4LiioiLWrl0LfX19lhIS8m0084wQQuq5T5cDkvqLz+eDz+cLdnH09vYW1P2ZMmUKpwvi/vXXX9i4caOgvln5bpsDBw5kORkRd+K4g6249alz584AAHd3dzRs2LDCDCZbW1s2YtXI5s2bISkpCTc3N/j6+qJfv34oLS1FSUkJNm3aBHd3d7YjisTZ2Rnv37/H/v37YWZmJqjNef36dXh4eCAiIoLtiERM9ezZExMmTMDQoUO/eD9UUlKCe/fucfKaQX4MNHhGCCH1nL29Pdzd3TFo0CC2oxBCSJ35dAfbffv2VdjBdtWqVWxHrDZx7JOSkhKCgoJgamrKdpTvJikpCU+ePIGRkRGni5o3atQI165dQ5s2bYQ2thGX5aik/rpz5w46d+4s+ICxXElJCe7fv4/u3buzlIyQqqNlm4QQUs9NmzYNc+bMwevXr9GuXbsKW8u3bt2apWTkc3fv3sWePXsQFxcHHx8f6Ojo4OjRozAwMEDXrl3ZjicSQ0NDPH78GA0aNBBqz8jIgJWVFeLj41lKVnXq6upVrufD1dp04mjXrl3Yu3cvRo0ahcOHD2P+/PlCO9hykTj2ycbGBq9evRLrwbNmzZqhWbNmbMeosdzcXCgoKFRo//DhA+d24yXcYm9vj+Tk5Ao1HjMzM2Fvb8/J5d3kx0ODZ4QQUs+NHDkSAODm5iZo4/F4nK4nUy4oKAhRUVHg8XgwMzODlZUV25FEdvbsWYwdOxZOTk4ICQlBYWEhACA7OxurV6/m7O5siYmJlT7HCgsL8ebNGxYSVd+WLVvYjlBnxKkQeFJSkmBJoLy8vKDm49ixY9GxY0fs2LGDzXgiEcc+7d+/H1OmTMGbN2/QqlUrSEtLCx3nygc827Ztq/K5n74ec0n37t1x5MgRrFixAkDZvQSfz8f69eurvLsjIaL40mtRWlpahQ+FCamvaPCMEELquYSEBLYj1Lr379/jl19+gZ+fH9TU1MAwjODTx1OnTkFLS4vtiNW2cuVKeHp6wtnZGadOnRK0d+7cGcuXL2cxmWguXLgg+P7atWtQVVUVPC4tLcWtW7c4U9jXxcWF7QjfXVpaGkaOHInbt2+LTSHwRo0aIS0tDXp6etDT08ODBw/Qpk0bJCQkgKtVR8SxT6mpqYiLi4Orq6ugjYsf8GzevFnocWpqKvLy8gQbBGRkZEBBQQHa2tqcHTxbv3497Ozs8OTJExQVFWH+/PmIiIhAeno67t27x3Y8IobKN0zi8XgYN26c0AzH0tJShIeHCz5QIKS+o8EzQgip58Rxo4CZM2ciKysLERERMDMzAwBERkbCxcUFbm5ugh2ZuCQ6OrrSmh0qKirIyMio+0A1VF5jj8fjVRh8kpaWhr6+PicHZAAgLi4OBw8eRFxcHLZu3QptbW1cvXoVurq6aNmyJdvxROLh4QEpKSkkJSUJ/qaAspmrHh4enPxdieMOtuLYp19//RWWlpY4efJkpRsGcMWnH1SdOHECu3btwoEDBwTLUaOjozFx4kRMnjyZrYg1Zm5ujvDwcOzevRuSkpLIzc3FkCFDMH36dDRu3JjteEQMlX/wxjAMlJWVIS8vLzgmIyODjh07YuLEiWzFI6RaaMMAQgjhgKNHj8LT0xMJCQkIDAyEnp4etmzZAgMDA07ueKiqqoqbN2/CxsZGqP3Ro0fo3bs3JwebjIyMsGfPHvTq1UuoEPORI0ewdu1aREZGsh1RJAYGBnj8+DE0NTXZjlIr/P398dNPP6FLly64c+cOoqKiYGhoiD///BOPHj2Cj48P2xFFIo6FwMVxB1tx7JOioiLCwsJgbGzMdpRaY2RkBB8fH1haWgq1BwUFYdiwYWI5I5yQ7+mPP/7A3LlzaYkm4TQJtgMQQgj5ut27d2P27NlwdHRERkaGYAmMmpoaZ2s58fn8CnVxgLIZTXw+n4VENTd58mS4u7vj4cOH4PF4ePv2LY4fP465c+di2rRpbMcTWUJCgtgMnAHAwoULsXLlSty4cUNooMLe3h6BgYEsJqsZcSwELiEhIbQz24gRI7Bt2za4ublxcpAJEM8+9ejRA2FhYWzHqFXJyckoLi6u0F5aWop3796xkKh2GBgYYPHixYiOjmY7CvnBLF26FIqKinj//j3u3r2LgIAAvH//nu1YhFQLDZ4RQkg9t337duzbtw+LFi2CpKSkoN3a2hpPnz5lMZnoevToAXd3d7x9+1bQ9ubNG3h4eKBnz54sJhPd/PnzMWjQINjb2yMnJwfdu3fHhAkTMHnyZMyYMYPteCJzc3OrtJD2jh07MGvWrLoPVENPnz7F4MGDK7RraWkhLS2NhUS1o7wQeDkqBE7qys8//wwPDw8sW7YMZ8+exYULF4S+uKhnz56YOHEinjx5IqhF9+TJE0yePBm9evViOZ3oZs6ciatXr8LMzAzt2rXDli1bkJyczHYs8gPIysrC2LFjoaOjA1tbW3Tv3h06OjoYM2YMMjMz2Y5HSJXQsk1CCKnn5OXl8fz5c+jp6Qktx4qNjUXr1q2Rn5/PdsRqe/XqFQYOHIhnz55BV1cXPB4PSUlJsLCwwN9//42mTZuyHbFaSktLERAQAAsLC8jJySEyMhJ8Ph/m5uZQUlJiO16N6Ojo4MKFC2jXrp1Qe3BwMAYMGIDXr1+zlEw0TZs2hbe3Nzp37iz09/TXX39h7ty5iIuLYzuiSCIjI2FnZ4d27drh9u3bGDBggFAhcCMjI7YjEjElIfHlz+K5tGHAp1JTU+Hi4oKrV68KZkmXlJSgT58+OHToELS1tVlOWDMxMTE4fvw4Tp06hfj4eNjb22PMmDFwdnZmOxoRUyNGjEBoaCi2b9+OTp06gcfj4f79+3B3d0fr1q3h7e3NdkRCvokGzwghpJ4zNzfHmjVrMHDgQKE3+9u2bcPhw4cRFBTEdkSR3bhxA8+fPwfDMDA3N+f0J/pycnKIioqCgYEB21FqlZycHJ49e1ahntGLFy/QqlUrFBQUsJRMNPPnz0dgYCDOnDkDExMTBAcH4927d3B2doazszOWLl3KdkSRpaSkYPfu3QgKCgKfz4eVlRUVAiekBmJiYgSvUWZmZjAxMWE7Uq178OABpk6divDwcE4OdBJuUFRUxLVr19C1a1eh9rt376Jv377Izc1lKRkhVUe7bRJCSD03b948TJ8+HQUFBWAYBo8ePcLJkyexZs0a7N+/n+14NeLg4AAHBwe2Y9QKCwsLxMfHi93gmbGxMa5evVph6emVK1dgaGjIUirRrVq1CuPGjYOOjo5g0La0tBSjR4/G77//zna8GmnUqBH++OMPtmMQIjZMTEzEcsAMKNug58SJEzh9+jQyMzMxbNgwtiMRMdagQQPBzpufUlVVhbq6OguJCKk+mnlGCCEcsG/fPqxcuRKvXr0CULaUbtmyZRg/fjzLyapu27ZtmDRpEuTk5CqtofUpNze3OkpVe65fv44FCxZgxYoVaNeuXYUdpVRUVFhKVjNeXl6YMWMG5s2bhx49egAAbt26hY0bN2LLli2c3WI+Li4OISEh4PP5sLS0RPPmzdmOVCN37tz56vHu3bvXURLyIxDH6/ns2bOxYsUKKCoqYvbs2V89d9OmTXWUqnaVL9c8ceIEEhMTYW9vDycnJwwZMgTKyspsxyNibO/evThz5gyOHDkimA2dkpICFxcXDBkyBJMnT2Y5ISHfRoNnhBDCIR8+fACfz+dkvRUDAwM8efIEDRo0+OrsLB6Ph/j4+DpMVjs+rfvD4/EE3zMMw9m6P+V2796NVatWCTZ40NfXx7Jly6g+Tj1SWd2pT5+HXH3++fj4wNvbG0lJSSgqKhI6FhwczFKqmhGHPonj9dze3h5//fUX1NTUvrrJBo/Hw+3bt+swWe2RkJCAtbU1Ro8ejV9++QWNGjViOxL5QVhaWuLFixcoLCxEs2bNAABJSUmQlZWt8OEVV66D5MdDyzYJIaSeS0hIQElJCZo3bw5NTU1Be2xsLKSlpaGvr89euGpISEio9Htx4evry3aE72bq1KmYOnUqUlNTIS8vz7lNEL41i+RTXJ1R8vHjR6HHxcXFCAkJweLFi7Fq1SqWUtXMtm3bsGjRIri4uODvv/+Gq6sr4uLi8PjxY0yfPp3teCIRlz6J4/X802u4uF7Pnz9/LrbLUEn9NmjQILYjEFJjNPOMEELqOVtbW/z6669wcXERaj927Bj2798PPz8/doKRKgsNDUXbtm3ZjiGykpIS+Pn5IS4uDqNHj4aysjLevn0LFRUVTgykfT6LJCgoCKWlpTA1NQVQtpRJUlJSsFOlOLlz5w48PDw4ubFIixYtsHTpUowaNUpos5QlS5YgPT0dO3bsYDtitYljn/Lz8yEvL1/pseTkZNqwoh4qKirC+/fvwefzhdrLZwQRQgipiAbPCCGknlNRUUFwcHClux1aW1sjIyODnWA1MGzYMFhbW2PhwoVC7evXr8ejR49w5swZlpLVnszMTBw/fhz79+9HWFgYZ5fNvXz5En379kVSUhIKCwsRExMDQ0NDzJo1CwUFBfD09GQ7YrVs2rQJfn5+OHz4sKBI8cePH+Hq6opu3bphzpw5LCesXVFRUbCxsUFOTg7bUapNQUEBUVFR0NPTg7a2Nm7cuIE2bdogNjYWHTt2RFpaGtsRq00c+9SiRQucOHECVlZWQu0+Pj6CGatcMGTIkCqfe+7cue+Y5PuJjY3Fr7/+ivv37wu1i0N5AcIdOTk5FQZuuVoXlvxYKhbIIIQQUq/weDxkZ2dXaM/MzOTsja6/vz/69etXob1v377fLHxe392+fRtjxoxB48aNsX37djg6OuLJkydsxxKZu7s7rK2t8fHjR6HZJYMHD8atW7dYTCaajRs3Ys2aNUK7e6mrq2PlypXYuHEji8lqJjw8XOgrLCwMV69exdSpU9GmTRu244mkUaNGgsEkPT09PHjwAEDZMkGufvYrjn1ycHBA586dsXbtWjAMg5ycHIwbNw4uLi5YsmQJ2/GqTFVVVfCloqKCW7duCV27g4KCcOvWrUp3DOSKcePGQUJCApcuXUJQUBCCg4MRHByMkJAQqjNFvquEhAT069cPioqKgh021dXVoaamRrttEs6gmmeEEFLPdevWDWvWrMHJkychKSkJoKz495o1a9C1a1eW04kmJycHMjIyFdqlpaWRlZXFQqKqS01NhZaWllDb69evcejQIXh5eSE3NxcjRoxAcXExzp49C3Nzc5aS1o6AgADcu3evwu9LT08Pb968YSmV6LKysvDu3Tu0bNnVrS96AABheElEQVRSqP39+/eVDlJzRdu2bcHj8SoMwHTs2BFeXl4spaqZHj164OLFi7CyssL48ePh4eEBHx8fPHnypFqzhOoTcezT9u3b0a9fP7i6uuKff/4RLOl+/Pgxp65/Bw8eFHy/YMECjBgxAp6enkKvu9OmTeP0DJnQ0FAEBQWhRYsWbEchPxgnJycAZTt4N2zYUGhDG0K4ggbPCCGknvvzzz/RvXt3mJqaolu3bgCAu3fvIisri7P1mVq1aoXTp09XmJVw6tSpev9ma+/evXj9+jW2bdsGaWlpODo6IiAgAP3798f27dvRt29fSEpKcm4545fw+fxKZzi+fv0aysrKLCSqmcGDB8PV1RUbN25Ex44dAQAPHjzAvHnzODt4AVQs2i4hIQEtLS3IycmxlKjm9u7dK1jaM2XKFGhoaCAgIAA///wzpkyZwnI60YhjnwCgd+/eGDJkCHbv3g0pKSlcvHix3l/Lv8bLywsBAQGCgTMAkJSUxOzZs9G5c2esX7+exXSiMzc3x4cPH9iOQX5A4eHhCAoKEtQaJYSLqOYZIYRwwNu3b7Fjxw6EhYVBXl4erVu3xowZM6ChocF2NJFcuHABQ4cOxejRo9GjRw8AwK1bt3Dy5EmcOXOmXu/KVFhYiMWLF0NTUxPz58+HlJQU3NzcMHXqVKHt1qWlpREWFsbpN5AAMHLkSKiqqmLv3r1QVlZGeHg4tLS0MHDgQDRr1kxotgYX5OXlYe7cufDy8kJxcTEAQEpKCuPHj8f69euhqKjIckJCuKV8I5GUlBTs378f/v7+2LBhA9zc3LBq1SpIS0uzHbHa1NXVcfDgwQqvRefPn4erq2uF3W254vbt2/j999+xevVqWFhYVPjdcHlWHanf7O3tsWjRIvTq1YvtKISIjAbPCCGEsOKff/7B6tWrERoaKhgQXLp0KWxtbdmOViVFRUWQkZFBYGAgvLy84O3tjRYtWmDs2LEYOXIkmjRpIhaDZ2/fvoW9vT0kJSURGxsLa2trxMbGQlNTE3fu3IG2tjbbEUWSm5uLuLg4MAwDY2Njzg+abdu2rdJ2Ho8HOTk5GBsbo3v37kIzaeqj8PDwKp/bunXr75ik9ohjnz6lrKyMfv36wdPTE2pqagCA+/fvw9nZGcrKyggJCWE3oAhmz56NQ4cO4X//+5/QDNW1a9fC2dkZmzZtYjmhaCQk/it3/emyOdowgHxvcXFxmDJlCsaMGYNWrVpVGLjl4rWP/Hho8IwQQuq5bxXQ7969ex0lIV+Tl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9lZPLGz+Vn5+PkydPIjg4GHw+H1ZWVnBychLaQICwy8DAAKmpqcjLy4O6ujoYhkFGRgYUFBSgpKSE9+/fw9DQEL6+vtDV1WU77hdJSEhUWrvtc1x6oy+OffrU0aNHMXbs2Art2dnZmDVrFg4cOMBCqprh8/nYsGEDtm7diuTkZABA48aN4e7ujjlz5tT7Qegv8ff3/+pxrnx4RbjnwYMHGD16NBITEwVt5ddFrl77yI+HBs8IIaSe+/ST4nKffmJMNxz1T3R0NA4cOICjR48iIyMDDg4OuHDhAtuxiBg7efIk9u7di/3798PIyAgA8OLFC0yePBmTJk1Cly5d8Msvv6BRo0bw8fFhOe2XvXz5ssrn6unpfccktUcc+yTOSkpKcPz4cfTp0weNGjUSbGIjLksa7969iz179iAuLg4+Pj7Q0dHB0aNHYWBgwNlNiEj9Z25uDjMzM8yfP7/SDQPo2ke4gAbPCCGknsvMzBR6XFxcjJCQECxevBirVq1Cz549WUpWPRoaGoiJiYGmpibU1dW/utNSenp6HSb7fkpLS3Hx4kV4eXlxevAsOjoa27dvR1RUFHg8Hlq0aIEZM2bQjm31iJGREc6ePYu2bdsKtYeEhGDo0KGIj4/H/fv3MXToUMFMGkJqU2RkJJKSklBUVCRo4/F4+Pnnn1lMJRoFBQVERUWJ3Rv6s2fPYuzYsXBycsLRo0cRGRkJQ0ND7Nq1C5cuXcLly5fZjkjElKKiIsLCwmBsbMx2FEJERrttEkJIPaeqqlqhzcHBAbKysvDw8EBQUBALqapv8+bNguWLmzdv/iG2KZeUlMSgQYPq9QYI3+Lj44NRo0bB2toanTp1AlC2/MLCwgInTpzA8OHDWU5IACA5ORklJSUV2ktKSpCSkgIAaNKkCbKzs+s6GhEzmZmZQq9L8fHxGDJkCMLDw4WWp5Zf47k4O7pDhw4ICQkRu8GzlStXwtPTE87Ozjh16pSgvXPnzli+fDmLyYi469GjBw2eEc6jwTNCCOEoLS0tREdHsx2jylxcXATfjxs3jr0gpFrmz5+P3377rcIbq6VLl2LBggU0eFZP2NvbY/Lkydi/fz8sLS0BlM06mzp1qmBH26dPn8LAwIDNmEQMbNu2DXJycpg3bx4AwN3dHbq6urh27Rratm2Lhw8fIiEhAXPnzuVsYf1p06Zhzpw5eP36Ndq1a1dhQxGuFjePjo6utE6qiooKMjIy6j4Q+WH8/PPP8PDwwNOnTyvd6XXAgAEsJSOk6mjZJiGE1HOf79TGMAySk5Oxdu1aFBcX4969eywlE529vT3GjBmDYcOGVTqzjtQfCgoKCA8Pr/BpcWxsLNq0aYO8vDyWklVddZbMcvUGPiUlBWPHjsWtW7cEb0pKSkrQs2dPHD16FA0bNoSvry+Ki4vRu3dvltMSLnv//j3Gjh0LY2Nj7Ny5E5qamrh16xbatGkDHR0dPHr0CDo6Orh16xbmzp3Lyd02v1RrlOvFzY2MjLBnzx706tULysrKCAsLg6GhIY4cOYK1a9ciMjKS7YhETFX2N1WOy39T5MdCM88IIaSea9u2baU7tXXs2BFeXl4spaoZCwsL/P7775gxYwYcHR0xduxYODo6QkZGhu1o5DN2dna4e/duhcGzgIAAdOvWjaVU1fP5stnP/57EYQOORo0a4caNG3j+/DliYmLAMAxatGgBU1NTwTn29vYsJiTiQltbG9euXcOaNWsAlP3NlC/J19TUxNu3b6GjowN9fX1OzY7+VEJCAtsRvovJkyfD3d0dXl5e4PF4ePv2LQIDAzF37lwsWbKE7XhEjPH5fLYjEFJjNPOMEELquc93apOQkICWlhbk5ORYSlQ7+Hw+bt68iRMnTuCvv/6CpKQkhg0bBicnJ9ja2rIdj/zL09MTS5YswYgRI9CxY0cAZTXPzpw5gz/++ANNmjQRnMuFWVs3b97EggULsHr1anTq1Ak8Hg/379/H77//jtWrV8PBwYHtiDVSVFSEhIQEGBkZQUqK+5+RZmRkwMfHB3FxcZg3bx40NDQQHByMhg0bQkdHh+14IhG3PnXr1g2zZ8/G4MGDMWnSJKSmpmLevHnw9PREcHAwnj17xnZE8olFixZh8+bNKCgoAADIyspi7ty5WLFiBcvJCCGkfqPBM0IIqcfKl1jt2bMHJiYmbMf5bgoKCnDx4kWsWrUKT58+5ezsH3H0taUWn+LKsotWrVrB09MTXbt2FWq/e/cuJk2ahKioKJaS1UxeXh5mzpyJw4cPAwBiYmJgaGgINzc3NGnSBAsXLmQ5YfWFh4ejV69eUFVVRWJiIqKjo2FoaIjFixfj5cuXOHLkCNsRq00c+3Tt2jVkZ2dj2LBhePXqFfr164dnz55BQ0MD3t7egpp7XHP06FF4enoiISEBgYGB0NPTw5YtW2BgYICBAweyHa9G8vLyEBkZCT6fD3NzcygpKbEdiYgpR0dHnDx5UlCiY9WqVZg+fTrU1NQAAGlpaejWrRstGSacULU7YkIIIayQlpbGs2fPxHpnypSUFHh6emLdunUIDw+HtbU125HIJ/h8fpW+uDBwBgBxcXGV1tkrH8zgqt9++w1hYWHw8/MTmpXaq1cvnD59msVkops9ezbGjRuH2NhYoT799NNPuHPnDovJRCeOferTpw+GDRsGANDV1UV4eDg+fPiA9+/fc2bg7Nq1a8jMzBQ83r17N2bPng1HR0dkZGQIrm9qamrYsmULSylrj4KCAqytrdG+fXsaOCPf1bVr11BYWCh4vG7dOqSnpwsel5SUcHZ5N/nx0OAZIYTUc87Ozjhw4ADbMWpVVlYWDh48CAcHB+jq6mL37t34+eefERMTg4cPH7Idj3wDl3dls7GxwaxZs5CcnCxoS0lJwZw5c9C+fXsWk9XM+fPnsWPHDnTt2lVosN3c3BxxcXEsJhPd48ePMXny5ArtOjo6SElJYSFRzYljnyqjoaFR5Vmr9UFKSgq6dOmC169fAwC2b9+Offv2YdGiRZCUlBScZ21tjadPn7IVkxDO+XyRGy16I1zG/WIYhBAi5oqKirB//37cuHED1tbWUFRUFDq+adMmlpKJrmHDhlBXV8eIESOwevVq2NjYsB2JfMG6deugr6+PkSNHAgCGDx+Os2fPonHjxrh8+TLatGnDcsLq8fLywuDBg6Gnp4dmzZoBAJKSkmBiYoLz58+zG64GUlNToa2tXaE9NzeXszNX5eTkkJWVVaE9OjoaWlpaLCSqOXHsU0FBAbZv3w5fX1+8f/++QmHw4OBglpJVnYuLC5SVldG3b188e/YMCQkJsLS0rHCerKwscnNzWUhICCGEbTR4Rggh9dyzZ89gZWUFoKyO0ae4+KaYYRhs3boVY8aMgYKCAttxyDfs2bMHx44dAwDcuHEDN2/exNWrV+Ht7Y158+bh+vXrLCesHmNjY4SHhwt2pmQYBubm5ujVqxcn/57K2djY4J9//sHMmTMB/Hdt2LdvHzp16sRmNJENHDgQy5cvh7e3N4CyPiUlJWHhwoUYOnQoy+lEI459+vXXX3Hjxg0MGzYM7du35+zf0ZAhQwQDZgYGBggNDYWenp7QOVeuXIG5uTkb8QjhJB6PV+GawNVrBCG0YQAhhJA6xefzIScnh4iICDRv3pztOOQb5OXlERMTA11dXbi7u6OgoAB79uxBTEwMOnTogI8fP7IdkQC4f/8++vbtCycnJxw6dAiTJ09GREQEAgMD4e/vj3bt2rEdsdqysrLg6OiIiIgIZGdno0mTJkhJSUGnTp1w+fLlCrNwuUAc+6SqqorLly+jS5cubEepNQcPHsTixYuxceNGjB8/Hvv370dcXBzWrFmD/fv345dffmE7IiGcICEhgZ9++gmysrIAgIsXL6JHjx6Ca11hYSGuXr3Kmbqp5MdGM88IIaSey8zMRGlpKTQ0NITa09PTISUlBRUVFZaSiUZCQgLNmzdHWloaDZ5xgLq6Ol69egVdXV1cvXoVK1euBFA2g5CLN7vLly//6vElS5bUUZLa1blzZ9y7dw8bNmyAkZERrl+/DisrKwQGBsLCwoLteCJRUVFBQEAAbt++jeDgYPD5fFhZWaFXr15sRxOZOPZJR0cHysrKbMeoVa6urigpKcH8+fORl5eH0aNHQ0dHB1u3bqWBM0KqwcXFRejxmDFjKpzj7OxcV3EIqRGaeUYIIfXcTz/9hJ9//hnTpk0Tavf09MSFCxdw+fJllpKJ7p9//sHatWuxe/dutGrViu045CtmzJiBS5cuoXnz5ggJCUFiYiKUlJRw+vRprFu3jhP1jD71eR2j4uJiJCQkQEpKCkZGRpzrDyFsu3LlCrZt2wZPT88KyxzFwYcPH8Dn8yutKUgIIeTHQYNnhBBSz2loaODevXswMzMTan/+/Dm6dOmCtLQ0lpKJTl1dHXl5eSgpKYGMjAzk5eWFjn+6jTlhV3FxMbZu3YpXr15h3LhxgsGnLVu2QElJCRMmTGA5Yc1lZWVh3LhxGDx4MMaOHct2HJGVlpbir7/+QlRUFHg8HszMzDBw4EBISXFnocG2bduqfK6bm9t3TFJ7xLFPn0pNTcWIESNw584dKCgoQFpaWug4l6/n79+/R3R0NHg8HkxNTTm7qQMhhJCao8EzQgip5xQVFfHgwYMKS6+ePn2KDh06IC8vj6Vkojt8+PBXj38+zZ+Q7+3Zs2fo378/EhMT2Y4ikmfPnmHgwIFISUmBqakpgLINRrS0tHDhwgXOLN00MDAQepyamoq8vDyoqakBADIyMqCgoABtbW3Ex8ezkLD6xLFPn+rVqxeSkpIwfvx4NGzYsEIxcC5ez7OysjB9+nScPHlSsHuopKQkRo4ciZ07d0JVVZXlhIQQQuoaDZ4RQkg9Z2dnBwsLC2zfvl2offr06QgPD8fdu3dZSkZ+JJGRkUhKSkJRUZFQ+4ABA1hKVLsCAgLw888/c3YDhI4dO0JbWxuHDx+Guro6AODjx48YN24c3r9/j8DAQJYTVt+JEyewa9cuHDhwQDAgGB0djYkTJ2Ly5MlwcnJiOWH1iWOfFBQUEBgYiDZt2rAdpdaMGDECoaGh2L59Ozp16gQej4f79+/D3d0drVu3FuyWSggh5MdBg2eEEFLP3bt3D7169YKNjQ169uwJALh16xYeP36M69evo1u3biwnFE1cXBwOHjyIuLg4bN26Fdra2rh69Sp0dXXRsmVLtuORf8XHx2Pw4MF4+vQpeDweym8bymeXcG3TgM+X0DEMg+TkZBw9ehTdu3fHyZMnWUpWM/Ly8njy5EmFv51nz57BxsYG+fn5LCUTnZGREXx8fCrUqQsKCsKwYcOQkJDAUjLRiWOfrKyssGvXLnTs2JHtKLVGUVER165dQ9euXYXa7969i759+yI3N5elZIQQQtgiwXYAQgghX9elSxcEBgZCV1cX3t7euHjxIoyNjREeHs7ZgTN/f39YWFjg4cOHOHfuHHJycgAA4eHhWLp0KcvpyKfc3d1hYGCAd+/eQUFBAREREbhz5w6sra3h5+fHdrxq27x5s9DXtm3b4OfnBxcXF+zdu5fteCIzNTXFu3fvKrS/f/8exsbGLCSqueTkZBQXF1doLy0trbSvXCCOfVq7di3mzJkDPz8/pKWlISsrS+iLixo0aFDp0kxVVVXBzE5CCCE/Fpp5RgghpM516tQJw4cPx+zZs6GsrIywsDAYGhri8ePHGDRoEN68ecN2RPIvTU1N3L59G61bt4aqqioePXoEU1NT3L59G3PmzEFISAjbEQmAy5cvY/78+Vi2bJlgBtCDBw+wfPlyrF27VmgGjYqKClsxq+Xnn39GUlISDhw4gHbt2oHH4+HJkyeYOHEidHV1ceHCBbYjVps49klCouyz+M9rnTEMAx6Px7nZqQCwd+9enDlzBkeOHEHjxo0BACkpKXBxccGQIUMwefJklhMSQgipazR4RgghpM4pKSnh6dOnMDAwEBo8S0xMRIsWLVBQUMB2RPIvdXV1BAUFwdDQEEZGRti/fz/s7e0RFxcHCwsLzm1Y8euvv2Lr1q1QVlYWas/NzcXMmTPh5eXFUrKaKR/AAP4bxPh8iS3XBjNSU1Ph4uKCq1evCnZwLCkpQZ8+fXDo0CFoa2uznLD6xLFP/v7+Xz1ua2tbR0lqj6WlJV68eIHCwkI0a9YMAJCUlARZWVk0b95c6Nzg4GA2IhJCCKlj3Nm7nBBCiNhQU1NDcnJyhV3oQkJCoKOjw1IqUplWrVohPDwchoaG6NChA/7880/IyMhg7969MDQ0ZDtetR0+fBhr166tMHiWn5+PI0eOcHbwzNfXl+0ItU5LSwuXL19GbGwsoqKiwDAMzMzMYGJiwnY0kYljn7g4OPYtgwYNYjsCIYSQeoZmnhFCCKlz8+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM9U9q0euXbuG3NxcDBkyBPHx8ejfvz+eP3+OBg0a4PTp0+jRowfbEaskKysLDMNAXV0dsbGx0NLSEhwrLS3FxYsXsXDhQrx9+5bFlIQQQgghpD6iwTNCCCF1rri4GOPGjcOpU6fAMAykpKRQWlqK0aNH49ChQ5CUlGQ7IvmK9PR0qKurV6hxVJ9JSEh8NS+Px8Mff/yBRYsW1WGq2nP16lUoKSkJapvt3LkT+/btg7m5OXbu3ElFzgkhhBBCaoAGzwghhLAmPj4ewcHB4PP5sLS0rFBLhpDa4u/vD4Zh0KNHD5w9exYaGhqCYzIyMtDT00OTJk1YTFgzFhYWWLduHRwdHfH06VNYW1tjzpw5uH37NszMzHDw4EG2IxJCCCGEcBYNnhFCSD00ZMiQKp977ty575ikbpSWluLp06fQ09OjGTLku3r58iWaNWvGqVlzVaGkpIRnz55BX18fy5Ytw7Nnz+Dj44Pg4GA4OjoiJSWF7YiEEEIIIZxFGwYQQkg9pKqqynaE72rWrFmwsLDA+PHjUVpaCltbW9y/fx8KCgq4dOkS7Ozs2I5IxEh4eDhatWoFCQkJZGZm4unTp188t3Xr1nWYrPbIyMgIdj69efMmnJ2dAQAaGhrIyspiMxohhBBCCOfRzDNCCCF1rmnTpjh//jysra1x/vx5TJs2DX5+fjhy5Ah8fX1x7949tiMSMSIhIYGUlBRoa2sLap9VdvvD4/FQWlrKQsKaGzBgAIqKitClSxesWLECCQkJ0NHRwfXr1zFjxgzExMSwHVEkd+/exZ49exAXFwcfHx/o6Ojg6NGjMDAwENR346K8vDwkJSWhqKhIqJ0rg7eWlpZVnr0ZHBz8ndN8P0VFRUhISICRkRGkpGjOASGE/Mgk2A5ACCHk20pKSnDz5k3s2bMH2dnZAIC3b98iJyeH5WSi+fDhAxo1agQAuHz5MkaMGAETExOMHz/+q7OCCBFFQkKCYHfNhIQExMfHIyEhocJXfHw8y0lFt2PHDkhJScHHxwe7d++Gjo4OAODKlSvo27cvy+lEc/bsWfTp0wfy8vIICQlBYWEhACA7OxurV69mOZ1oUlNT0b9/fygrK6Nly5awtLQU+uKKQYMGYeDAgRg4cCD69OmDuLg4yMrKws7ODnZ2dpCTk0NcXBz69OnDdlSR5OXlYfz48VBQUEDLli2RlJQEAHBzc8PatWtZTkcIIYQNNPOMEELquZcvX6Jv375ISkpCYWEhYmJiYGhoiFmzZqGgoACenp5sR6w2PT097Nu3Dz179oSBgQF27dqF/v37IyIiAl27dsXHjx/Zjkg+cfToUXh6eiIhIQGBgYHQ09PDli1bYGBggIEDB7Idj4gpS0tLeHh4wNnZGcrKyggLC4OhoSFCQ0PRt29fTtZxc3JyQmJiIrZs2QJ7e3v89ddfePfuHVauXImNGzeiX79+bEestgkTJqBx48ZYsWKFUPvSpUvx6tUreHl5sZRMdO7u7rh37x62bNmCvn37Ijw8HIaGhrhw4QKWLl2KkJAQtiMSQgipYzT/mBBC6jl3d3dYW1sjLCwMDRo0ELQPHjwYEyZMYDGZ6FxdXTFixAg0btwYPB4PDg4OAICHDx+iRYsWLKcjn9q9ezeWLFmCWbNmYdWqVYJljWpqatiyZQvnBs8uXLhQaTuPx4OcnByMjY1hYGBQx6lqR1xcHA4ePIi4uDhs3boV2trauHr1KnR1ddGyZUu241VbdHQ0unfvXqFdRUUFGRkZdR+oFty+fRt///03bGxsICEhAT09PTg4OEBFRQVr1qzh5ODZmTNn8OTJkwrtY8aMgbW1NScHz86fP4/Tp0+jY8eOQstTzc3NERcXx2IyQgghbKHBM0IIqecCAgJw7949yMjICLXr6enhzZs3LKWqmWXLlqFVq1Z49eoVhg8fDllZWQCApKQkFi5cyHI68qnt27dj3759GDRokNByJWtra8ydO5fFZKIZNGhQpTXPytt4PB66du2K8+fPc2rnV39/f/z000/o0qUL7ty5g1WrVkFbWxvh4eHYv38/fHx82I5YbY0bN8aLFy+gr68v1B4QEABDQ0N2QtVQbm4utLW1AZRt5pCamgoTExNYWFhwtjaYvLw8AgIC0Lx5c6H2gIAAyMnJsZSqZlJTUwW/p0/l5uaK3U69hBBCqoZqnhFCSD3H5/MrLWL++vVrKCsrs5CodgwbNgweHh5o2rSpoM3FxYVzM5nEXUJCQqW1mGRlZZGbm8tCopq5ceMGbGxscOPGDWRmZiIzMxM3btxA+/btcenSJdy5cwdpaWmcGxhcuHAhVq5ciRs3bggNtNvb2yMwMJDFZKKbPHky3N3d8fDhQ/B4PLx9+xbHjx/H3LlzMW3aNLbjicTU1BTR0dEAgLZt22LPnj148+YNPD090bhxY5bTiWbWrFmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDg8PD7bjicTGxgb//POP4HH5gNm+ffvQqVMntmIRQghhEc08I4SQes7BwQFbtmzB3r17AZTdxOfk5GDp0qVwdHRkOR0RdwYGBggNDYWenp5Q+5UrV2Bubs5SKtG5u7tj79696Ny5s6CtZ8+ekJOTw6RJkxAREYEtW7bg119/ZTFl9T19+hQnTpyo0K6lpYW0tDQWEtXc/PnzkZmZCXt7exQUFKB79+6QlZXF3LlzMWPGDLbjiWTWrFlITk4GUFYTrE+fPjh+/DhkZGRw6NAhdsOJaOHChTA0NMTWrVsFz0EzMzMcOnQII0aMYDmdaNasWYO+ffsiMjISJSUl2Lp1KyIiIhAYGAh/f3+24xFCCGEBDZ4RQkg9t3nzZtjb28Pc3BwFBQUYPXo0YmNjoampiZMnT7Idj4i5efPmYfr06SgoKADDMHj06BFOnjyJNWvWYP/+/WzHq7a4uDioqKhUaFdRURHsttm8eXN8+PChrqPViJqaGpKTkyvUawsJCRHsvMlFq1atwqJFixAZGQk+nw9zc3MoKSmxHavKiouLIS0tLXjs5OQk+N7S0hKJiYl4/vw5mjVrBk1NTTYi1ooRI0ZwdqCsMp07d8a9e/ewYcMGGBkZ4fr167CyskJgYCAsLCzYjkcIIYQFtNsmIYRwQH5+Pk6dOoWgoCDw+XxYWVnByckJ8vLybEcjP4B9+/Zh5cqVePXqFQBAR0cHy5Ytw/jx41lOVn1du3aFsrIyjhw5Ai0tLQBl9Y2cnZ2Rm5uLO3fu4ObNm5g2bRpiYmJYTlt18+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM5YuXcp2xGrLzMxEaWkpNDQ0hNrT09MhJSVV6SBofbN27VoYGhqK1cASIYQQ8iOiwTNCCCGEVMmHDx/A5/MrLaTNFdHR0Rg4cCASEhKgq6sLHo+HpKQkGBr+v707j6q62v8//jogChjiXM6C5EChgpqpZU44ZDlfKk1N9NpwFXMqu6Vm5fDNGb1KpjjmgJpmV0scSRJSERxREy3MOQ1UkFQ4vz+68ZPQUlP2OYfnYy3Xgn3OH0/XNb3nzf7s7a0vvvhCVatW1erVq3X58mV1797ddO4du379ul555RUtXbpUVqtVBQoUUGZmprp27ap58+bJ2dnZdOJda9OmjZ5//vlc55uFhYVpzZo1WrdunaGyO3fkyBF17NhRffv21YABAzRo0KA/ff+kSZPyqOz+yczM1OTJkxUREaHk5GRdu3Ytx+sXL140VHZ3Ll26dMfvtYfBLQDg/mJ4BgAwIikpSXPnzlVSUpKmTp2q0qVL6+uvv1aFChX02GOPmc6DA7NarVq/fr2OHDkiq9Wq6tWrKzAwUE5O9n+PUlJSkuLj45WVlSV/f/9cNyDak+LFi+vbb79VjRo1cqwfOnRIjRo1spuz3C5fvqxXXnlFK1euVNOmTW/7PovFos2bN+dh2f0xYsQIzZ49W4MGDdLw4cP17rvv6ocfftDq1as1YsQIhYSEmE68I05OTnd8k+atLvEBADg2hmcAgDwXFRWlNm3aqFGjRvrmm2+UmJgob29vffzxx9qxY4dWrFhhOjFf8/f3v+MPkbt3737ANcivChcurNjY2FxnTO3bt0/169dXenq6oTLcrEqVKgoNDVXbtm3l4eGhhISE7LXY2NhbXmRhi26+COCHH37QsGHD9Morr2TfrhkTE6P58+dr7Nix6tmzp6lMAIAhDM8AAHmuQYMG+sc//qFBgwbJw8NDe/bskbe3t3bu3KkOHTro5MmTphPztVGjRmV/nZGRoRkzZsjX1zf7Q2RsbKwOHDigN954Q2PHjjWVec82bdqkTZs26dy5c8rKysrxWnh4uKGqu/dXjwDezB4fB2zSpIn8/Pw0bdq0HOv/+te/tHfvXm3bts1QGW5WuHBhJSYmqmLFiipTpozWrl2rgIAAHTt2TP7+/kpNTTWdeNeaN2+uPn366KWXXsqxvnjxYs2aNUtbt241EwYAMIbbNgEAeW7fvn233I1QqlQpu3kUy5HdfLh8nz59FBISog8//DDXe36/QMCejBo1Sh988IHq1q2rMmXK3PEOO1sUHx+f4/u4uDhlZmaqWrVqkn47b8vZ2Vl16tQxkfe3jR49Wi1atNCePXvUvHlzSb8NPnfu3KnIyEjDdfcmIyND06ZN05YtW245vLXHnZzly5fX6dOnVbFiRfn4+GTfTLlz504VKlTIdN49iYmJUVhYWK71unXrqk+fPgaKAACmMTwDAOS5okWL6vTp0/Ly8sqxHh8fr3Llyhmqwq0sX75cu3btyrX+8ssvq27duna1U0v67bD5efPm2dVlALezZcuW7K8nTZokDw8PzZ8/X8WKFZMk/fLLL+rVq5eefvppU4l/S6NGjRQTE6Px48crIiJCbm5uqlmzpubMmWO3Z7kFBwdrw4YN6tKli5544gm7Ht7+rmPHjtq0aZPq16+vAQMG6KWXXtKcOXOUnJysgQMHms67JxUqVFBYWJgmTpyYY/2TTz5RhQoVDFUBAEzisU0AsHGOcpPZzd566y3FxMRo+fLlqlq1qnbv3q2zZ8+qR48e6tGjR46dTzDrkUce0dixY9WrV68c63PnztWwYcN09uxZQ2X3pkSJEtqxY4eqVKliOuW+KleunCIjI3NdtrF//361bNlSp06dMlSGm3l6emrdunVq1KiR6ZQHJjY2Vtu3b5ePj4/atWtnOueerFu3Tp07d1aVKlX05JNPSvrt95WUlKSVK1fq2WefNVwIAMhr7DwDABs3atSoP73JzB6NHj1ar7zyisqVKyer1SpfX19lZmaqa9eueu+990zn4SZvvvmmXn/9dcXFxeX4EBkeHm6Xf/769OmjxYsXa/jw4aZT7qtLly7p7NmzuYZn586d0+XLlw1V/X1ZWVk6evToLR9xbNy4saGqe1euXDl5eHiYznignnzyyey/K+zVs88+q++//14zZ85UYmKirFar2rdvr9dee42dZwCQT7HzDABsnKPcZHYrSUlJio+PV1ZWlvz9/e32USxHFxERoalTpyoxMVGSVKNGDQ0YMEBBQUGGy+7egAEDtGDBAtWsWVM1a9aUi4tLjtft8WB9SerRo4eioqI0ceLEHEPOoUOHqnHjxpo/f77hwrsXGxurrl276scff9Qf/++qxWJRZmamobJ799VXXyk0NFRhYWGqVKmS6Zx7tmbNmjt+r73uPgMA4GYMzwDAxjniTWaAKU2bNr3taxaLRZs3b87DmvsnPT1dQ4YMUXh4uK5fvy5JKlCggHr37q3x48ercOHChgvvXu3atVW1alWNGjXqlpc7eHp6Giq7d+fPn1dQUJC++eYbubu75xre2stj+E5OTjm+t1gstxxwSrLLIScAAH/EY5sAYOMc5SazQYMG3fF77XX3D2zfzYfsOxJ3d3fNmDFD48ePV1JSkqxWq3x8fOxyaPa777//XitWrJCPj4/plPvmpZde0smTJzVmzBg9/PDDdnthwM2P0G7cuFFvv/22xowZowYNGshisWj79u167733NGbMGIOVAADcPwzPAMDGOcpNZvHx8Tm+j4uLU2ZmpqpVqyZJOnLkiJydnVWnTh0TeciHfvrpJ1ksFoe64bVw4cKqWbOm6Yz7on79+jp69KhDDc+2b9+umJgY1apVy3TKffPmm28qLCxMTz31VPZaq1at5O7urr59+2Y/7g0AgD1jeAYANm7cuHHZX3fp0kUVKlTQt99+a3c3md2842fSpEny8PDQ/PnzVaxYMUnSL7/8ol69eunpp582lYh8ICsrSx999JEmTpyoK1euSJI8PDw0ePBgvfvuu7keR4M5/fv31+DBg3XmzBn5+fnlesTRHoeE1atX19WrV01n3FdJSUm3fITW09NTP/zwQ94HAQDwAHDmGQAgz5UrV06RkZG5bgbcv3+/WrZsqVOnThkqg6N75513NGfOHI0aNUqNGjWS1WrVt99+q/fff1///Oc/NXr0aNOJ+J9bDTJ/P1vLXi8MiIyM1KhRozR69OhbDgSLFCliqOzeNW7cWC4uLlq0aJHKlCkjSTpz5oy6d++ua9euKSoqynAhAAB/H8MzALBxzs7Oaty4sVauXKnixYtnr589e1Zly5a1yw+QHh4e+uKLL9SsWbMc65s3b1b79u11+fJlQ2VwdGXLllVYWFiuXZtffPGF3njjDZ08edJQGf7oxx9//NPX7fG2yt8Hgn8868yeB4JHjx5Vx44ddfjwYVWsWFGSlJycrKpVq2r16tV289itv7//HZ9Bt3v37gdcAwCwNTy2CQA2zmq16tdff1XdunW1Zs0aPf744zles0cdO3ZUr169NHHiRD355JOSpNjYWA0dOlSdOnUyXIebZWZmat68edq0aZPOnTuX46BwSXZ3O+XFixdVvXr1XOvVq1e3m5sO8wt7HI79FUe8sMLHx0d79+7Vhg0bdOjQIVmtVvn6+qpFixZ2dSFChw4dsr/OyMjQjBkz5OvrqwYNGkj67d+oAwcO6I033jBUCAAwiZ1nAGDjnJ2d9dNPP2ncuHGaO3euFi5cqPbt29v1zrP09HQNGTJE4eHhun79uiSpQIEC6t27t8aPH2/XNwQ6mn79+mnevHlq27atypQpk+vD8OTJkw2V3Zv69eurfv36Cg0NzbHev39/7dy5U7GxsYbK7t6aNWvu+L32dD7iHx08eFDJycm6du1ajnV7/j3BtvXp00dlypTRhx9+mGN95MiROnHihMLDww2VAQBMYXgGADbOyclJZ86cUenSpTVr1iyFhITovffeU58+fVSuXDm7HJ79Li0tTUlJSbJarfLx8WFoZoNKliypBQsW6NlnnzWdcl9ERUWpbdu2qlixoho0aCCLxaLt27frxIkTWrdunV1dWHGnlxvY6+OAx44dU8eOHbVv377ss86k///Ioz3+niQpJSVFc+bMUWJioiwWi3x9fRUcHHzLQ/dtVWhoqPr27StXV9dcg+g/CgkJyaOq+8fT01O7du3So48+mmP9+++/V926dZWammqoDABgCsMzALBxNw/PJGnr1q3q0qWL/P39tXnzZrv9AAn7ULZsWW3dulVVq1Y1nXLfnDp1Sv/5z39yPGL2xhtvqGzZsqbTcJPnn39ezs7O+vTTT+Xt7a0dO3bowoULGjx4sCZMmGBXg87f7dq1S61atZKbm5ueeOIJWa1W7dq1S1evXlVkZKQCAgJMJ94RLy8v7dq1SyVKlJCXl9dt32exWHTs2LE8LLs/HnnkEY0dO1a9evXKsT537lwNGzZMZ8+eNVQGADCF4RkA2LibP6T87ujRo3r++ed15MgRhmd4oCZOnKhjx45p+vTpdnV+0d06ceKERo4cyeNYNqRkyZLavHmzatasKU9PT+3YsUPVqlXT5s2bNXjwYMXHx5tOvGtPP/20fHx89Omnn6pAgd+OHr5x44b69OmjY8eO6ZtvvjFcCEkaN26c3n//ffXp0yfHuZzh4eEaMWKEhg0bZrgQAJDXGJ4BgJ3KyMjQ2bNnHfJQbdiOjh07asuWLSpevLgee+wxubi45Hj9888/N1R2f+3Zs0cBAQF2PYxOS0tTVFTULc8Hs8dH54oVK6a4uDh5e3urSpUqmj17tpo2baqkpCT5+fkpPT3ddOJdc3NzU3x8fK5LKw4ePKi6deva5e/JUUVERGjq1KlKTEyUJNWoUUMDBgxQUFCQ4TIAgAnctgkAdsrV1ZXBGR64okWLqmPHjqYz8Bfi4+P17LPPKj09XWlpaSpevLh+/vlnubu7q3Tp0nY5PHv88ce1d+9eeXt7q379+vr4449VsGBBzZo1S97e3qbz7kmRIkWUnJyca3h24sQJeXh4GKr6e7p06aK6devm2o01fvx47dixQ8uXLzdU9vcEBQUxKAMAZGPnGQDYoOLFi+vIkSMqWbKkihUr9qePy128eDEPywDHZO87z5o0aaKqVatq5syZKlq0qPbs2SMXFxe9/PLLGjBggDp16mQ68a6tX79eaWlp6tSpk44dO6bnnntOhw4dUokSJbRs2TI1a9bMdOJdCwkJ0apVqzRhwgQ1bNhQFotF0dHRGjp0qDp37qwpU6aYTrxrpUqV0ubNm+Xn55djfd++fWrRogXngwEAHAI7zwDABk2ePDl7F4I9fpi6E0lJSZoyZUr2jXO/PxJTpUoV02m4hfPnz+vw4cOyWCyqWrWqSpUqZToJN0lISNAnn3wiZ2dnOTs769dff5W3t7c+/vhj9ezZ0y6HZ61atcr+2tvbWwcPHtTFixf/8gcKtmzChAmyWCzq0aOHbty4IUlycXHR66+/rnHjxhmuuzdXrlxRwYIFc627uLjo0qVLBor+vszMTE2ePFkRERG3fAyaH1oBQP7D8AwAbFDPnj1v+bWjWL9+vdq1a6fatWurUaNGslqt2r59ux577DF9+eWXCgwMNJ2I/0lLS1P//v21YMECZWVlSZKcnZ3Vo0cPTZs2Te7u7oYL78xfDY9SUlLyJuQBcXFxyR4oPfzww0pOTlaNGjXk6emp5ORkw3X3JjU1VZmZmSpevHj2WvHixXXx4kUVKFBARYoUMVh3bwoWLKipU6dq7NixSkpKktVqlY+Pj938d3Qrjz/+uJYtW6YRI0bkWF+6dKl8fX0NVf09o0aN0uzZszVo0CANHz5c7777rn744QetXr061+8TAJA/8NgmANigu/lpvT1+gPT391erVq1y7bQYNmyYIiMjtXv3bkNlmDJlivz8/NS8eXNJ0quvvqqNGzdq+vTpatSokSQpOjpaISEhCgwM1MyZM03m3rFevXrd0fvmzp37gEsejJYtW+qVV15R165d9dprryk+Pl4hISFauHChfvnlF3333XemE+9amzZt9Pzzz+uNN97IsR4WFqY1a9Zo3bp1hspwszVr1qhz587q2rVr9qO0mzZt0pIlS7R8+XJ16NDBbOA9qFKlikJDQ9W2bVt5eHgoISEhey02NlaLFy82nQgAyGMMzwDABjk5Of3lY0lWq1UWi8Uuz2hydXXVvn379Oijj+ZYP3LkiGrWrKmMjAxDZYiLi1NQUJDef/99de/eXSVLltSKFSvUpEmTHO/bsmWLgoKCdP78eTOhyGHXrl26fPmymjZtqvPnz6tnz56Kjo6Wj4+P5s6dq1q1aplOvGvFixfXt99+qxo1auRYP3TokBo1aqQLFy4YKrt3aWlpGjdunDZt2qRz585l7+b83bFjxwyV/T1r167VmDFjlJCQIDc3N9WsWVMjR47UM888YzrtnhQuXFiJiYmqWLGiypQpo7Vr1yogIEDHjh2Tv7+/UlNTTScCAPIYj20CgA3asmWL6YQHqlSpUkpISMg1PEtISFDp0qUNVUGS6tSpo++++049e/ZU9+7dlZ6erocffjjX+0qXLq309HQDhbiVunXrZn9dqlQph9iV9euvv2afC3az69ev6+rVqwaK/r4+ffooKipK3bt3V5kyZez27LY/atu2rdq2bWs6474pX768Tp8+rYoVK8rHx0eRkZEKCAjQzp07VahQIdN5AAADGJ4BgA2y15/W36l//vOf6tu3r44dO5bjxrn/+7//0+DBg03n5XslS5bU2rVrJUkNGjTQyJEjtWDBArm6ukqSrl69qlGjRqlBgwYmM+Hg6tWrp1mzZmnatGk51sPCwlSnTh1DVX/PV199pbVr12Y/Au1I4uLisi+A8fX1lb+/v+mke9axY0dt2rRJ9evX14ABA/TSSy9pzpw5Sk5O1sCBA03nAQAM4LFNALAT6enpt7z1q2bNmoaK7p3VatWUKVM0ceJEnTp1SpJUtmxZDR06VCEhIQ6zG8MR7N+/X61bt1ZGRoZq1aoli8WihIQEubq6av369XrsscdMJ8JBffvtt2rRooXq1auXfQbfpk2btHPnTkVGRurpp582XHj3vLy8tG7dulyPotqzc+fO6cUXX9TWrVtVtGhRWa1WpaamqmnTplq6dKlD3MwbGxur7du3y8fHR+3atTOdAwAwgOEZANi48+fPq1evXvrqq69u+bo9nnl2s8uXL0uSPDw8DJfgdq5evapFixbp0KFDslqt8vX1Vbdu3eTm5mY6DQ4uISFB48ePz3GW1jvvvJPrkW97sWjRIn3xxReaP3++Xd+webMXXnhBSUlJWrhwYfZQ8ODBg+rZs6d8fHy0ZMkSw4UAAPx9DM8AwMZ169ZNP/zwg6ZMmaKmTZtq1apVOnv2rD766CNNnDjRoc6ZAQBH5u/vr6SkJFmtVlWuXFkuLi45XrfHm4Y9PT21ceNG1atXL8f6jh071LJlS6WkpJgJu0tr1qy54/ey+wwA8h/OPAMAG7d582Z98cUXqlevnpycnFSpUiUFBgaqSJEiGjt2rF0Oz86ePashQ4Zk3zj3x5/j2PtuOnu3Zs0atWnTRi4uLn/5gZIPkbifLl26dMfvLVKkyAMseTA6dOhgOuG+y8rKyjUElCQXF5dct4nasj/+b2OxWHL92/T7kQL8GwUA+Q87zwDAxhUpUkR79+5V5cqVVblyZX322Wdq1KiRjh8/rscee8wubzxs06aNkpOT1a9fv1veONe+fXtDZZAkJycnnTlzRqVLl5aTk9Nt32exWPgQaUOioqI0YcKE7EPba9SooaFDh9rV2WBOTk5/eeah1Wrlz54Nad++vVJSUrRkyRKVLVtWknTy5El169ZNxYoV06pVqwwX3r2NGzfq7bff1pgxY9SgQQNZLBZt375d7733nsaMGaPAwEDTiQCAPMbOMwCwcdWqVdPhw4dVuXJl1a5dW5988okqV66ssLAwlSlTxnTePYmOjta2bdtUu3Zt0ym4hZt3i9jTzpH8bNGiRerVq5c6deqkkJAQWa1Wbd++Xc2bN9e8efPUtWtX04l3ZMuWLaYT8oQj3Uw5ffp0tW/fXpUrV1aFChVksViUnJwsPz8/LVq0yHTePXnzzTcVFhamp556KnutVatWcnd3V9++fZWYmGiwDgBgAjvPAMDGffbZZ7p+/bpeeeUVxcfHq1WrVrpw4YIKFiyoefPm6YUXXjCdeNd8fX312Wef2fUHRsCW1KhRQ3379tXAgQNzrE+aNEmffvqpw33YT0hIsMvhuyPfTLlhw4Ycl4q0aNHCdNI9c3Nz044dO+Tn55djfe/evapfv76uXr1qqAwAYArDMwCwM+np6Tp06JAqVqyokiVLms65J5GRkZo4cWL2LjrYrpCQEPn4+CgkJCTH+vTp03X06FFNmTLFTBhyKFSokA4cOCAfH58c60ePHtXjjz+ujIwMQ2X3T2pqqj777DPNnj1be/bsscvHNrmZ0j40btxYLi4uWrRoUfYO7zNnzqh79+66du2aoqKiDBcCAPIawzMAsBPXrl3T8ePHVaVKFRUoYH9P3RcrVizHWUZpaWm6ceOG3N3dcx02ffHixbzOw22UK1dOa9asUZ06dXKs7969W+3atdNPP/1kqAw38/Hx0dChQ/Xqq6/mWP/kk080YcIEff/994bK/r7NmzcrPDxcn3/+uSpVqqTOnTurc+fOdrlz1VFupgwNDb3j9/5x8G4Pjh49qo4dO+rw4cOqWLGiJCk5OVlVq1bV6tWrcw2pAQCOz/4+fQFAPpOenq7+/ftr/vz5kqQjR47I29tbISEhKlu2rIYNG2a48M6wQ8k+XbhwQZ6enrnWixQpop9//tlAEW5l8ODBCgkJUUJCgho2bCiLxaLo6GjNmzdPU6dONZ1313766SfNmzdP4eHhSktLU1BQkK5fv66VK1fK19fXdN49c5SbKSdPnnxH77NYLHY5PPPx8dHevXtv+SjqX11oAQBwTOw8AwAbN2DAAH377beaMmWKWrdurb1798rb21tr1qzRyJEjFR8fbzoRDuzxxx/Xa6+9pn79+uVYnzZtmmbOnKmDBw8aKsMfrVq1ShMnTsw+3+z32zbt7fbaZ599VtHR0XruuefUrVs3tW7dWs7OznJxcdGePXvsenjmiDdTAgCQH7DzDABs3OrVq7Vs2TI9+eSTOX7i7evrq6SkJINl927dunVydnZWq1atcqxHRkYqMzNTbdq0MVSGPxo0aJD69eun8+fPq1mzZpKkTZs2aeLEiewmtDEdO3ZUx44dTWf8bZGRkQoJCdHrr7+uRx991HTOfeWIN1P+zt6PFggNDVXfvn3l6ur6l4+l2uNuOgDA32N//7IBQD5z/vx5lS5dOtd6Wlqa3T4+MmzYMI0bNy7XelZWloYNG8bwzIYEBwfr119/1ejRo/Xhhx9KkipXrqyZM2eqR48ehutwK1euXMn1CGCRIkUM1dy9bdu2KTw8XHXr1lX16tXVvXt3u7xV+FYqVKig3bt3O9TNlI5ytMDkyZPVrVs3ubq6/uljqfb6KCoA4O/hsU0AsHHPPPOMunTpov79+8vDw0N79+6Vl5eX+vXrp6NHj+rrr782nXjX3NzclJiYmOumzR9++EGPPfaY0tLSzIThT50/f15ubm566KGHTKfgD44fP65+/fpp69atOW7WtFqtslgsdnkzZXp6upYuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6754sWLBAL7zwggoVKpRj/dq1a1q6dKldDqQ5WgAAkB8wPAMAG7d9+3a1bt1a3bp107x58/Tqq6/qwIEDiomJUVRUVK5bEO3BI488osWLF2c/Bvi7jRs3qmvXrjp37pyhMsA+NWzYUNJvg4yHH344167UZ555xkTWfXP48GHNmTNHCxcuVEpKigIDA7VmzRrTWXfN2dlZp0+fzrWb+MKFCypdurRdDjkrVaqUfbSAh4eH9uzZI29vbx09elQBAQG6dOmS6UQAAP42HtsEABvXsGFDbd++XePHj1eVKlUUGRmpgIAAxcTEyM/Pz3TePWnXrp3efPNNrVq1SlWqVJEkHT16VIMHD1a7du0M1+GPVqxYoYiICCUnJ+vatWs5Xtu9e7ehKtxs7969iouLU7Vq1UynPBDVqlXTxx9/rLFjx+rLL79UeHi46aR78vtOwD/66aefbnmrrT1wxKMFunTporp16+Z65HT8+PHasWOHli9fbqgMAGCKk+kAAMDtXb9+Xb169ZK7u7vmz5+v/fv36+DBg1q0aJHdDs6k3z6AFC5cWNWrV5eXl5e8vLxUo0YNlShRQhMmTDCdh5uEhoaqV69eKl26tOLj4/XEE0+oRIkSOnbsGGfT2ZB69erpxIkTpjMeOGdnZ3Xo0MHudp35+/srICBAFotFzZs3V0BAQPavWrVq6emnn7bbc8/q1auntWvXZn//+8Ds008/VYMGDUxl/S1RUVFq27ZtrvXWrVvrm2++MVAEADCNnWcAYMNcXFy0atUqDR8+3HTKfeXp6ant27drw4YN2rNnj9zc3FSzZk01btzYdBr+YMaMGZo1a5ZeeuklzZ8/X2+99Za8vb01YsQIXbx40XQe/mf27Nl67bXXdPLkST3++ONycXHJ8XrNmjUNlUGSOnToIElKSEhQq1atcpwbWLBgQVWuXFmdO3c2VPf3jB07Vq1bt9bBgwd148YNTZ06NcfRAvboypUrKliwYK51FxcXHkMFgHyKM88AwMb16tVLfn5+GjRokOmUByIjI0OFChWy28d7HJ27u7sSExNVqVIllS5dWhs2bFCtWrX0/fff68knn9SFCxdMJ0JSbGysunbtqh9++CF7zWKx2PWFAY5o/vz5euGFF+Tq6mo65W9LSEhQ7dq1JUn79u3ThAkTFBcXp6ysLAUEBOjtt9+22x3S9erV0/PPP68RI0bkWH///ff15ZdfKi4uzlAZAMAUdp4BgI3z8fHRhx9+qO3bt6tOnToqXLhwjtdDQkIMld27rKwsjR49WmFhYTp79qyOHDkib29vDR8+XJUrV1bv3r1NJ+J/HnnkEV24cEGVKlVSpUqVFBsbq1q1aun48ePi52+2Izg4WP7+/lqyZMktLwyAbejZs6fphPsmICBA/v7+6tOnj7p27ar58+ebTrpvhg8frs6dOyspKSn7YptNmzZpyZIlnHcGAPkUO88AwMZ5eXnd9jWLxaJjx47lYc398cEHH2j+/Pn64IMP9M9//lP79++Xt7e3IiIiNHnyZMXExJhOxP/06dNHFSpU0MiRIxUWFqZBgwapUaNG2rVrlzp16qQ5c+aYToSkwoULa8+ePfLx8TGdgj/h5OT0p4NNe9ohGBMTo/DwcEVEROj69evq3LmzgoOD1bRpU9Np98XatWs1ZswYJSQkZB8tMHLkSLu/uRYAcG8YngEA8pyPj48++eQTNW/eXB4eHtqzZ4+8vb116NAhNWjQQL/88ovpRPxPVlaWsrKyVKDAb5vVIyIiFB0dLR8fH7322mu3PBcIee/555/XK6+8YrfnZuUXq1evzjE8u379uuLj4zV//nyNGjXKLnfdXr16VREREZo7d662bdumypUrKzg4WD179lT58uVN5wEAcF8wPAMA5Dk3NzcdOnRIlSpVyjE8O3jwoJ544glduXLFdCJgV2bNmqWPPvpIwcHB8vPzy3VhQLt27QyV4U4sXrxYy5Yt0xdffGE65W9JSkrS3LlztWDBAp0+fVqBgYFat26d6ax7FhcXp8TERFksFvn6+srf3990EgDAEIZnAIA8V7duXb355pt6+eWXcwzPRo0apY0bN2rbtm2mE/O1vXv33vF7ucXRNjg5Od32NS4MsH1JSUmqWbOm0tLSTKf8bVeuXNFnn32mf//730pJSbHLP3vnzp3Tiy++qK1bt6po0aKyWq1KTU1V06ZNtXTpUpUqVcp0IgAgj3FhAAAgzwQHB2vq1KkaOXKkunfvrpMnTyorK0uff/65Dh8+rAULFui///2v6cx8r3bt2tk3Nf4ZhjK2Iysry3QC7tHVq1c1bdo0u3/EMSoqSuHh4Vq5cqWcnZ0VFBRkl4+hSlL//v116dIlHThwQDVq1JAkHTx4UD179lRISIiWLFliuBAAkNfYeQYAyDPOzs46ffq0SpcurfXr12vMmDGKi4tTVlaWAgICNGLECLVs2dJ0Zr73448/3vF7K1Wq9ABLAMdSrFixHGeeWa1WXb58We7u7lq0aJHdPV574sQJzZs3T/PmzdPx48fVsGFD9e7dW0FBQbluhrYnnp6e2rhxo+rVq5djfceOHWrZsqVSUlLMhAEAjGHnGQAgz9z885pWrVqpVatWBmtwOwzE7ENoaKj69u0rV1dXhYaG/ul7Q0JC8qgKf2bKlCk5vndyclKpUqVUv359FStWzEzUPQoMDNSWLVtUqlQp9ejRQ8HBwapWrZrprPsiKysr17mBkuTi4sIuTwDIp9h5BgB2YNu2bfrkk0+UlJSkFStWqFy5clq4cKG8vLz01FNPmc67Y05OTjp79iznxdiZhQsXKiwsTMePH1dMTIwqVaqkKVOmyMvLS+3btzedl295eXlp165dKlGihLy8vG77PovFomPHjuVhGe5FQkKCateubTrjjrVr1069e/fWc889J2dnZ9M591X79u2VkpKiJUuWqGzZspKkkydPqlu3bipWrJhWrVpluBAAkNduf7osAMAmrFy5Uq1atZKbm5vi4+P166+/SpIuX76sMWPGGK67e1WrVlXx4sX/9Bdsx8yZMzVo0CA9++yzOQ7/Llq0aK5dNMhbx48fV4kSJbK/vt0vBme2KzU1VTNmzFBAQIDq1KljOueurFmzRu3bt3e4wZkkTZ8+XZcvX1blypVVpUoV+fj4yMvLS5cvX9a0adNM5wEADGDnGQDYOH9/fw0cOFA9evTIcTNlQkKCWrdurTNnzphOvGNOTk6aMmWKPD09//R9PXv2zKMi/BVfX1+NGTNGHTp0yPHnb//+/WrSpIl+/vln04nQb4fOu7m53fK106dPq0yZMnlchD+zefNmhYeH6/PPP1elSpXUuXNnde7cWf7+/qbTcJMNGzbo0KFDslqt8vX1VYsWLUwnAQAM4cwzALBxhw8fVuPGjXOtFylSxC4PLX7xxRdVunRp0xm4Q8ePH7/lB/pChQopLS3NQBFuxd/fX4sXL1ZAQECO9RUrVuj111/X+fPnDZXhdz/99JPmzZun8PBwpaWlKSgoSNevX9fKlSvl6+trOg+3EBgYqMDAQNMZAAAbwPAMAGxcmTJldPToUVWuXDnHenR0tLy9vc1E3aObb5mDffDy8lJCQkKuSwS++uorPvDbkMDAQDVs2FDvv/++3n77baWlpalfv35avny5xo0bZzov33v22WcVHR2t5557TtOmTVPr1q3l7OyssLAw02n4n7+6dONmXMABAPkPwzMAsHGvvvqqBgwYoPDwcFksFp06dUoxMTEaMmSIRowYYTrvrnBSgP0ZOnSo/vWvfykjI0NWq1U7duzQkiVLNHbsWM2ePdt0Hv5n2rRpatu2rXr16qW1a9fq1KlTKlKkiHbu3MmQ0wZERkYqJCREr7/+uh599FHTObiFyZMn39H7LBYLwzMAyIcYngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3TeXcnKyjKdgLvUq1cv3bhxQ2+99ZbS09PVtWtXlStXTlOnTtWLL75oOg83admypTp16qSZM2eqQIEC+vLLLxmc2Yht27YpPDxcdevWVfXq1dW9e3e98MILprNwk+PHj5tOAADYMC4MAAA7kZ6eroMHDyorK0u+vr566KGHTCchn/n555+VlZWVfWbdyZMnVa5cOcNVkKSkpCR17dpVZ86c0ezZsxUVFaUJEyYoJCREo0ePlouLi+lE6Le/x5cuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6D39w7do1HT9+XFWqVFGBAuw5AID8jOEZANiZS5cuafPmzapWrZpq1KhhOgf50JkzZzR69GjNnj1bV69eNZ0DSR4eHmrbtq3CwsJUtGhRSdL27duzb+mNj483G4hcDh8+rDlz5mjhwoVKSUlRYGCg1qxZYzoL+m3I2b9/f82fP1+SdOTIEXl7eyskJERly5bVsGHDDBcCAPKak+kAAMCfCwoK0vTp0yVJV69eVb169RQUFKSaNWtq5cqVhuvgqFJSUtStWzeVKlVKZcuWVWhoqLKysjRixAh5e3srNjZW4eHhpjPxPzNmzNDSpUuzB2eS1LBhQ8XHx+e6gRO2oVq1avr444/1008/acmSJaZzcJN33nlHe/bs0datW+Xq6pq93qJFCy1btsxgGQDAFHaeAYCNe+SRR7R+/XrVqlVLixcv1siRI7Vnzx7Nnz9fs2bNYkcJHog33nhDX375pV544QV9/fXXSkxMVKtWrZSRkaGRI0fqmWeeMZ0IAA9EpUqVtGzZMj355JPy8PDQnj175O3traNHjyogIECXLl0ynQgAyGM8vA8ANi41NVXFixeXJH399dfq3Lmz3N3d1bZtWw0dOtRwHRzV2rVrNXfuXLVo0UJvvPGGfHx8VLVqVU2ZMsV0Gv7EwYMHlZycrGvXrmWvWSwWPf/88warAPty/vz57LMdb5aWliaLxWKgCABgGsMzALBxFSpUUExMjIoXL66vv/5aS5culST98ssvOR4nAe6nU6dOZd/U6O3tLVdXV/Xp08dwFX6XmpoqT0/P7O+PHTumTp06ae/evbJYLPr9wYLfP+hnZmYa6QTsUb169bR27Vr1799f0v//7+jTTz9VgwYNTKYBAAxheAYANu7NN99Ut27d9NBDD6lSpUpq0qSJJOmbb76Rn5+f2Tg4rKysrBw3NDo7O6tw4cIGi3Cz0NBQubq6Zu8+HTBggCpUqKD169erdu3a+u6773T8+HENGTJEkyZNMlwL2JexY8eqdevWOnjwoG7cuKGpU6fqwIEDiomJUVRUlOk8AIABnHkGAHYgLi5OycnJCgwM1EMPPSTpt8fqihYtqkaNGhmugyNycnJSmzZtVKhQIUnSl19+qWbNmuUaoH3++ecm8vK9c+fOqXv37vLx8dF//vMflSxZUps2bVKtWrVUrlw57dixQ+XKldOmTZs0ZMgQzkYE7kBCQoJq164tSdq3b58mTJiguLg4ZWVlKSAgQG+//TY/tAKAfIrhGQAAyKVXr1539L65c+c+4BL8mbFjx+qdd95RsWLFFBcXJ29vb9WqVUuzZ89WvXr1lJSUJD8/P6Wnp5tOBWyek5OT/P391adPH3Xt2jXHo9EAgPyN4RkAAICde/rppzVo0CB17NhRffv21fnz5zV06FCFhYVp9+7d2r9/v+lEwObFxMQoPDxcERERun79ujp37qzg4GA1bdrUdBoAwDCGZwAAAHZu/fr1unz5srp06aITJ06obdu22r9/v4oXL66IiAg1a9bMdCJgN65evaqIiAjNnTtX27ZtU+XKlRUcHKyePXuqfPnypvMAAAYwPAMAAHBAFy9eVNGiReXk5GQ6BbBbSUlJmjt3rhYsWKDTp08rMDBQ69atM50FAMhjDM8AAAAA4DauXLmizz77TP/+97+VkpKizMxM00kAgDxWwHQAAOCvbdu2TZ988omSkpK0YsUKlStXTgsXLpSXl5eeeuop03kADMvIyNC0adO0ZcsWnTt3TllZWTle3717t6EywH5FRUUpPDxcK1eulLOzs4KCgtS7d2/TWQAAAxieAYCNW7lypbp3765u3bopPj5ev/76qyTp8uXLGjNmDI+PAFBwcLA2bNigLl266IknnpDFYjGdBNilEydOaN68eZo3b56OHz+uhg0batq0aQoKClLhwoVN5wEADOGxTQCwcf7+/ho4cKB69OghDw8P7dmzR97e3kpISFDr1q115swZ04kADPP09NS6devUqFEj0ymA3QoMDNSWLVtUqlQp9ejRQ8HBwapWrZrpLACADWDnGQDYuMOHD6tx48a51osUKaKUlJS8DwJgc8qVKycPDw/TGYBdc3Nz08qVK/Xcc8/J2dnZdA4AwIZw/RIA2LgyZcro6NGjudajo6Pl7e1toAiArZk4caLefvtt/fjjj6ZTALu1Zs0atW/fnsEZACAXdp4BgI179dVXNWDAAIWHh8tisejUqVOKiYnRkCFDNGLECNN5AGxA3bp1lZGRIW9vb7m7u8vFxSXH6xcvXjRUBgAAYP8YngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3QeABvw0ksv6eTJkxozZowefvhhLgwAAAC4j7gwAADsRHp6ug4ePKisrCz5+vrqoYceMp0EwEa4u7srJiZGtWrVMp0CAADgcNh5BgB2wt3dXXXr1jWdAcAGVa9eXVevXjWdAQAA4JDYeQYANq5p06Z/+gjW5s2b87AGgC2KjIzUqFGjNHr0aPn5+eU686xIkSKGygAAAOwfO88AwMbVrl07x/fXr19XQkKC9u/fr549e5qJAmBTWrduLUlq3rx5jnWr1SqLxaLMzEwTWQAAAA6B4RkA2LjJkyffcv3999/XlStX8rgGgC3asmWL6QQAAACHxWObAGCnjh49qieeeEIXL140nQIAAAAADsvJdAAA4N7ExMTI1dXVdAYAAAAAODQe2wQAG9epU6cc31utVp0+fVq7du3S8OHDDVUBAAAAQP7A8AwAbJynp2eO752cnFStWjV98MEHatmypaEqAAAAAMgfOPMMAAAAAAAAuA12ngEAADiI8+fP6/Dhw7JYLKpatapKlSplOgkAAMDuMTwDABtXrFgxWSyWO3ovN28C+VNaWpr69++vhQsXKjMzU5Lk7OysHj16aNq0aXJ3dzdcCAAAYL8YngGAjRs+fLg++ugjtWrVSg0aNJD0202b69ev1/Dhw1W8eHHDhQBMGzRokKKiorRmzRo1atRIkhQdHa2QkBANHjxYM2fONFwIAABgvzjzDABsXOfOndW0aVP169cvx/r06dO1ceNGrV692kwYAJtRsmRJrVixQk2aNMmxvmXLFgUFBen8+fNmwgAAAByAk+kAAMCfW79+vVq3bp1rvVWrVtq4caOBIgC2Jj09XQ8//HCu9dKlSys9Pd1AEQAAgONgeAYANq5EiRJatWpVrvXVq1erRIkSBooA2JoGDRpo5MiRysjIyF67evWqRo0alf24NwAAAO4NZ54BgI0bNWqUevfura1bt2Z/CI6NjdXXX3+t2bNnG64DYAumTp2q1q1bq3z58qpVq5YsFosSEhLk6uqq9evXm84DAACwa5x5BgB24LvvvlNoaKgSExNltVrl6+urkJAQ1a9f33QaABtx9epVLVq0SIcOHcr+e6Jbt25yc3MznQYAAGDXGJ4BAAAAAAAAt8GZZwAAAHZu/vz5Wrt2bfb3b731looWLaqGDRvqxx9/NFgGAABg/xieAQAA2LkxY8ZkP54ZExOj6dOn6+OPP1bJkiU1cOBAw3UAAAD2jcc2AQAA7Jy7u7sOHTqkihUr6u2339bp06e1YMECHThwQE2aNNH58+dNJwIAANgtdp4BAADYuYceekgXLlyQJEVGRqpFixaSJFdXV129etVkGgAAgN0rYDoAAAAAf09gYKD69Okjf39/HTlyRG3btpUkHThwQJUrVzYbBwAAYOcYngGAHdi5c6eWL1+u5ORkXbt2Lcdrn3/+uaEqALbiP//5j9577z2dOHFCK1euVIkSJSRJcXFxeumllwzXAQAA2DfOPAMAG7d06VL16NFDLVu21IYNG9SyZUt9//33OnPmjDp27Ki5c+eaTgQAAAAAh8WZZwBg48aMGaPJkyfrv//9rwoWLKipU6cqMTFRQUFBqlixouk8ADZi27Ztevnll9WwYUOdPHlSkrRw4UJFR0cbLgMAALBvDM8AwMYlJSVln19UqFAhpaWlyWKxaODAgZo1a5bhOgC2YOXKlWrVqpXc3Ny0e/du/frrr5Kky5cva8yYMYbrAAAA7BvDMwCwccWLF9fly5clSeXKldP+/fslSSkpKUpPTzeZBsBGfPTRRwoLC9Onn34qFxeX7PWGDRtq9+7dBssAAADsHxcGAICNe/rpp7Vhwwb5+fkpKChIAwYM0ObNm7VhwwY1b97cdB4AG3D48GE1btw413qRIkWUkpKS90EAAAAOhOEZANi46dOnKyMjQ5L0zjvvyMXFRdHR0erUqZOGDx9uuA6ALShTpoyOHj2qypUr51iPjo6Wt7e3mSgAAAAHwW2bAAAAdu7jjz/W/PnzFR4ersDAQK1bt04//vijBg4cqBEjRqhfv36mEwEAAOwWwzMAsEGXLl264/cWKVLkAZYAsBfvvvuuJk+enL1TtVChQhoyZIg+/PBDw2UAAAD2jeEZANggJycnWSyWP32P1WqVxWJRZmZmHlUBsHXp6ek6ePCgsrKy5Ovrq4ceesh0EgAAgN3jzDMAsEFbtmwxnQDADqSnp2vo0KFavXq1rl+/rhYtWig0NFQlS5Y0nQYAAOAw2HkGAABgp4YOHaoZM2aoW7ducnV11ZIlS9SkSRMtX77cdBoAAIDDYHgGAABgp6pUqaLRo0frxRdflCTt2LFDjRo1UkZGhpydnQ3XAQAAOAaGZwAAAHaqYMGCOn78uMqVK5e95ubmpiNHjqhChQoGywAAAByHk+kAAAAA3JvMzEwVLFgwx1qBAgV048YNQ0UAAACOhwsDAAAA7JTVatUrr7yiQoUKZa9lZGTotddeU+HChbPXPv/8cxN5AAAADoHhGQAAgJ3q2bNnrrWXX37ZQAkAAIDj4swzALADK1asUEREhJKTk3Xt2rUcr+3evdtQFQAAAAA4Ps48AwAbFxoaql69eql06dKKj4/XE088oRIlSujYsWNq06aN6TwAAAAAcGjsPAMAG1e9enWNHDlSL730kjw8PLRnzx55e3trxIgRunjxoqZPn246EQAAAAAcFjvPAMDGJScnq2HDhpIkNzc3Xb58WZLUvXt3LVmyxGQaAAAAADg8hmcAYOMeeeQRXbhwQZJUqVIlxcbGSpKOHz8uNg8DAAAAwIPF8AwAbFyzZs305ZdfSpJ69+6tgQMHKjAwUC+88II6duxouA4AAAAAHBtnngGAjcvKylJWVpYKFCggSYqIiFB0dLR8fHz02muvqWDBgoYLAQAAAMBxMTwDAAAAAAAAboPHNgEAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALiNAqYDAAC5+fv7y2Kx3NF7d+/e/YBrAAAAACD/YngGADaoQ4cO2V9nZGRoxowZ8vX1VYMGDSRJsbGxOnDggN544w1DhQAAAACQP1isVqvVdAQA4Pb69OmjMmXK6MMPP8yxPnLkSJ04cULh4eGGygAAAADA8TE8AwAb5+npqV27dunRRx/Nsf7999+rbt26Sk1NNVQGAAAAAI6PCwMAwMa5ubkpOjo613p0dLRcXV0NFAEAAABA/sGZZwBg49588029/vrriouL05NPPinptzPPwsPDNWLECMN1AAAAAODYeGwTAOxARESEpk6dqsTERElSjRo1NGDAAAUFBRkuAwAAAADHxvAMAAAAAAAAuA3OPAMAAAAAAABugzPPAMDGZWZmavLkyYqIiFBycrKuXbuW4/WLFy8aKgMAAAAAx8fOMwCwcaNGjdKkSZMUFBSk1NRUDRo0SJ06dZKTk5Pef/9903kAAAAA4NA48wwAbFyVKlUUGhqqtm3bysPDQwkJCdlrsbGxWrx4selEAAAAAHBY7DwDABt35swZ+fn5SZIeeughpaamSpKee+45rV271mQaAAAAADg8hmcAYOPKly+v06dPS5J8fHwUGRkpSdq5c6cKFSpkMg0AAAAAHB7DMwCwcR07dtSmTZskSQMGDNDw4cP16KOPqkePHgoODjZcBwAAAACOjTPPAMDOxMbGavv27fLx8VG7du1M5wAAAACAQ2N4BgAAAAAAANxGAdMBAIDc1qxZc8fvZfcZAAAAADw47DwDABvk5JTzSEqLxaI//nVtsVgkSZmZmXnWBQAAAAD5DRcGAIANysrKyv4VGRmp2rVr66uvvlJKSopSU1P11VdfKSAgQF9//bXpVAAAAABwaOw8AwAb9/jjjyssLExPPfVUjvVt27apb9++SkxMNFQGAAAAAI6PnWcAYOOSkpLk6emZa93T01M//PBD3gcBAAAAQD7CzjMAsHGNGzeWi4uLFi1apDJlykiSzpw5o+7du+vatWuKiooyXAgAAAAAjovhGQDYuKNHj6pjx446fPiwKlasKElKTk5W1apVtXr1avn4+BguBAAAAADHxfAMAOyA1WrVhg0bdOjQIVmtVvn6+qpFixbZN24CAAAAAB4MhmcAAAAAAADAbRQwHQAAyC00NFR9+/aVq6urQkND//S9ISEheVQFAAAAAPkPO88AwAZ5eXlp165dKlGihLy8vG77PovFomPHjuVhGQAAAADkLwzPAAAAAAAAgNtwMh0AAAAAAAAA2CqGZwBg47p06aJx48blWh8/frz+8Y9/GCgCAAAAgPyDxzYBwMaVKlVKmzdvlp+fX471ffv2qUWLFjp79qyhMgAAAABwfOw8AwAbd+XKFRUsWDDXuouLiy5dumSgCAAAAADyD4ZnAGDjHn/8cS1btizX+tKlS+Xr62ugCAAAAADyjwKmAwAAf2748OHq3LmzkpKS1KxZM0nSpk2btGTJEi1fvtxwHQAAAAA4Ns48AwA7sHbtWo0ZM0YJCQlyc3NTzZo1NXLkSD3zzDOm0wAAAADAoTE8AwAAAAAAAG6DxzYBwE7ExcUpMTFRFotFvr6+8vf3N50EAAAAAA6P4RkA2Lhz587pxRdf1NatW1W0aFFZrValpqaqadOmWrp0qUqVKmU6EQAAAAAcFrdtAoCN69+/vy5duqQDBw7o4sWL+uWXX7R//35dunRJISEhpvMAAAAAwKFx5hkA2DhPT09t3LhR9erVy7G+Y8cOtWzZUikpKWbCAAAAACAfYOcZANi4rKwsubi45Fp3cXFRVlaWgSIAAAAAyD8YngGAjWvWrJkGDBigU6dOZa+dPHlSAwcOVPPmzQ2WAQAAAIDj47FNALBxJ06cUPv27bV//35VqFBBFotFycnJ8vPz0xdffKHy5cubTgQAAAAAh8XwDADsxIYNG3To0CFZrVb5+vqqRYsWppMAAAAAwOExPAMAAAAAAABuo4DpAABAbqGhoXf83pCQkAdYAgAAAAD5GzvPAMAGeXl53dH7LBaLjh079oBrAAAAACD/YngGAAAAAAAA3IaT6QAAwJ25du2aDh8+rBs3bphOAQAAAIB8g+EZANi49PR09e7dW+7u7nrssceUnJws6bezzsaNG2e4DgAAAAAcG8MzALBx77zzjvbs2aOtW7fK1dU1e71FixZatmyZwTIAAAAAcHzctgkANm716tVatmyZnnzySVkslux1X19fJSUlGSwDAAAAAMfHzjMAsHHnz59X6dKlc62npaXlGKYBAAAAAO4/hmcAYOPq1auntWvXZn//+8Ds008/VYMGDUxlAQAAAEC+wGObAGDjxo4dq9atW+vgwYO6ceOGpk6dqgMHDigmJkZRUVGm8wAAAADAobHzDABsVEJCgiSpYcOG+vbbb5Wenq4qVaooMjJSDz/8sGJiYlSnTh2zkQAAAADg4CxWq9VqOgIAkJuTk5P8/f3Vp08fde3aVZ6enqaTAAAAACDfYecZANiob7/9VgEBARo2bJjKlCmj7t27a8uWLaazAAAAACBfYecZANi4q1evKiIiQnPnztW2bdtUuXJlBQcHq2fPnipfvrzpPAAAAABwaAzPAMCOJCUlae7cuVqwYIFOnz6twMBArVu3znQWAAAAADgshmcAYGeuXLmizz77TP/+97+VkpKizMxM00kAAAAA4LAKmA4AANyZqKgohYeHa+XKlXJ2dlZQUJB69+5tOgsAAAAAHBo7zwDAhp04cULz5s3TvHnzdPz4cTVs2FC9e/dWUFCQChcubDoPAAAAABweO88AwEYFBgZqy5YtKlWqlHr06KHg4GBVq1bNdBYAAAAA5CsMzwDARrm5uWnlypV67rnn5OzsbDoHAAAAAPIlHtsEAAAAAAAAbsPJdAAAAAAAAABgqxieAQAAAAAAALfB8AwAAAAAAAC4DYZnAAAAAAAAwG0wPAMAAAAAAABug+EZAAAAAAAAcBsMzwAAAAAAAIDb+H/ijI1qDMKIFQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "NameError", + "evalue": "name 'df_filtrado' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "File \u001b[1;32m~\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\main.py:126\u001b[0m\n\u001b[0;32m 117\u001b[0m tabla_completa \u001b[38;5;241m=\u001b[39m calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados)\n\u001b[0;32m 119\u001b[0m \u001b[38;5;66;03m# Paso 10: Ajustar rango e imputar valores faltantes\u001b[39;00m\n\u001b[0;32m 120\u001b[0m \u001b[38;5;66;03m#print(\"\\n=== Paso 8: Imputación con ajuste de rango ===\")\u001b[39;00m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;66;03m#imputacion_similitud_con_rango(df_filtrado, df_procesado)\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 124\u001b[0m \n\u001b[0;32m 125\u001b[0m \u001b[38;5;66;03m# Paso 10: Llamar a la función principal\u001b[39;00m\n\u001b[1;32m--> 126\u001b[0m df_procesado_actualizado, resumen_imputaciones \u001b[38;5;241m=\u001b[39m bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.05\u001b[39m, max_iteraciones\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m7\u001b[39m)\n\u001b[0;32m 128\u001b[0m \u001b[38;5;66;03m# Paso 11: Exportar resultados a Excel\u001b[39;00m\n\u001b[0;32m 129\u001b[0m archivo_destino \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIngrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32m~\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\config_and_loading.py:1022\u001b[0m, in \u001b[0;36mbucle_imputacion_similitud_correlacion\u001b[1;34m(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza, max_iteraciones)\u001b[0m\n\u001b[0;32m 1011\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1012\u001b[0m \u001b[38;5;124;03mRealiza un bucle alternando imputaciones por similitud y correlación, consolidando los resultados.\u001b[39;00m\n\u001b[0;32m 1013\u001b[0m \u001b[38;5;124;03mAhora se evita actualizar los DataFrames inmediatamente, y se eligen las imputaciones finales\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1018\u001b[0m \u001b[38;5;124;03m df_resumen (pd.DataFrame): Detalle consolidado de imputaciones realizadas.\u001b[39;00m\n\u001b[0;32m 1019\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1021\u001b[0m df_procesado_base \u001b[38;5;241m=\u001b[39m df_procesado\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;66;03m# Copia base del DataFrame original\u001b[39;00m\n\u001b[1;32m-> 1022\u001b[0m df_filtrado_base \u001b[38;5;241m=\u001b[39m df_filtrado\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;66;03m# Copia base del DataFrame original\u001b[39;00m\n\u001b[0;32m 1024\u001b[0m convertir_a_html(df_procesado_base, titulo\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf_procesado_base\u001b[39m\u001b[38;5;124m\"\u001b[39m, ancho\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m100\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\"\u001b[39m, alto\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m400px\u001b[39m\u001b[38;5;124m\"\u001b[39m, mostrar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 1025\u001b[0m convertir_a_html(df_filtrado_base, titulo\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf_filtrado_base\u001b[39m\u001b[38;5;124m\"\u001b[39m, ancho\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m100\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\"\u001b[39m, alto\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m400px\u001b[39m\u001b[38;5;124m\"\u001b[39m, mostrar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", + "\u001b[1;31mNameError\u001b[0m: name 'df_filtrado' is not defined" + ] + } + ], + "source": [ + "%run main.py" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (adrpy)", + "language": "python", + "name": "adrpy" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ADRpy/analisis/main.py b/ADRpy/analisis/main.py new file mode 100644 index 00000000..970231f1 --- /dev/null +++ b/ADRpy/analisis/main.py @@ -0,0 +1,171 @@ +# ===================== # +# IMPORTACIONES # +# ===================== # + +# Librerías estándar +import os + +# Librerías externas +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +from openpyxl import load_workbook +from openpyxl.styles import Font, PatternFill +from openpyxl.utils.dataframe import dataframe_to_rows +from openpyxl.comments import Comment +from tkinter import simpledialog, messagebox +import tkinter as tk +from sklearn.linear_model import LinearRegression +from sklearn.metrics import r2_score +from IPython.display import display, HTML + +# ===================== # +# IMPORTAR MÓDULOS # +# ===================== # + +from ADRpy.analisis.Modulos.config_and_loading import configurar_entorno, cargar_datos +from ADRpy.analisis.Modulos.data_processing import procesar_datos_y_manejar_duplicados +from ADRpy.analisis.Modulos.user_interaction import seleccionar_parametros_por_indices, solicitar_umbral +from ADRpy.analisis.Modulos.correlation_analysis import calcular_correlaciones_y_generar_heatmap_con_resumen +from ADRpy.analisis.Modulos.similarity_imputation import imputacion_similitud_con_rango, imprimir_detalles_imputacion +from ADRpy.analisis.Modulos.correlation_imputation import Imputacion_por_correlacion +from ADRpy.analisis.Modulos.imputation_loop import bucle_imputacion_similitud_correlacion +from ADRpy.analisis.Modulos.excel_export import exportar_excel_con_imputaciones +from ADRpy.analisis.Modulos.html_utils import convertir_a_html + + +# Solicitar la ruta del archivo al usuario +archivo_origen = input("Ingrese la ruta del archivo Excel original: ") + +# Paso 1: Configurar entorno +configurar_entorno(max_rows=20, max_columns=10) + +# Paso 2: Cargar datos +try: + df_inicial, ruta_archivo = cargar_datos(archivo_origen) # Aquí se valida la entrada + print(f"Datos cargados correctamente desde: {ruta_archivo}") +except ValueError as e: + print(f"Error al cargar datos: {e}") + exit(1) # Detiene el programa si hay un error + +# Validar que los datos se hayan cargado correctamente +print("\n=== Validando datos cargados ===") +if df_inicial.empty: + print("El archivo cargado no contiene datos. Verifica el archivo y vuelve a intentarlo.") + exit(1) + +# Continuar con el siguiente paso solo si los datos son válidos +print("\n=== Continuando con el procesamiento de datos ===") + +# Validar encabezados iniciales +print("\nEncabezados iniciales cargados:") +print(df_inicial.columns.tolist()) + +# Paso 3: Mostrar datos iniciales en HTML +print("\n=== Mostrando datos iniciales en formato HTML ===") +convertir_a_html(df_inicial, titulo="Datos Iniciales", mostrar=True) + +# Paso 4: Procesar datos +print("\n=== Procesando los datos ===") +df_procesado = procesar_datos_y_manejar_duplicados(df_inicial) + +# Validar encabezados después del procesamiento +#print("\nEncabezados después del procesamiento:") +#print(df_procesado.columns.tolist()) + +# Comparar encabezados antes y después del procesamiento +if df_inicial.columns.tolist() == df_procesado.columns.tolist(): + print("\n✅ Los encabezados se preservaron correctamente.") +else: + print("\n❌ Los encabezados fueron modificados durante el procesamiento.") + +# Paso 5: Mostr en HTML +print("\n=== Mostrando datos procesados en formato HTML ===") +convertir_a_html(df_procesado, titulo="Datos Procesados", mostrar=True) + +# Paso 6: Selección de parámetros + +# Parámetros disponibles en el índice del DataFrame +parametros_disponibles = df_procesado.index.tolist() +print("Parámetros disponibles en df_procesado antes de seleccionar:") +print(parametros_disponibles) + +# Parámetros preseleccionados de interés +parametros_preseleccionados = [ + "Velocidad a la que se realiza el crucero (KTAS)", + "Techo de servicio máximo", + "Área del ala", + "Relación de aspecto del ala", + "Longitud del fuselaje", + "Peso máximo al despegue (MTOW)", + "Alcance de la aeronave", + "Autonomía de la aeronave", + "Velocidad máxima (KIAS)", + "Velocidad de pérdida (KCAS)", + "envergadura", + "Cuerda", + "payload", + "Empty weight" +] +# Filtrar preseleccionados para mantener solo los parámetros válidos +parametros_preseleccionados = [p for p in parametros_preseleccionados if p in parametros_disponibles] + +# Imprimir parámetros preseleccionados válidos +#print("Parámetros preseleccionados válidos:") +#print(parametros_preseleccionados) + +parametros_seleccionados = seleccionar_parametros_por_indices(parametros_disponibles, parametros_preseleccionados) +# Imprimir parámetros seleccionados después de filtrar +print("Parámetros seleccionados después de filtrar:") +print(parametros_seleccionados) + +# Filtrar el DataFrame por los parámetros seleccionados +try: + df_filtrado = df_procesado.loc[parametros_seleccionados] +except KeyError as e: + print(f"Error al filtrar df_procesado: {e}") + print(f"Parámetros seleccionados inválidos: {set(parametros_seleccionados) - set(df_procesado.index.tolist())}") + raise + +# Mostrar la tabla en formato HTML con 3 cifras significativas (sin notación científica) +convertir_a_html(df_filtrado, titulo="Datos Filtrados por Parámetros (df_filtrado)", mostrar=True) + +# Paso 7: Mostrar celdas faltantes con selección de columna + +# Analizar celdas faltantes en la columna seleccionada +df_celdas_faltantes = mostrar_celdas_faltantes_con_seleccion(df_filtrado) + +# Verificar si hay celdas faltantes +if df_celdas_faltantes.empty: + print("No se encontraron valores faltantes en la columna seleccionada.") +else: + # Mostrar resultados en formato HTML + convertir_a_html(df_celdas_faltantes, titulo="Celdas Faltantes Identificadas en df_filtrado (df_celdas_faltantes)", mostrar=True) + +# Paso 8: Resumen de valores faltantes por columna +print("\n=== Generando resumen de valores faltantes por columna ===") +resumen_faltantes = generar_resumen_faltantes(df_filtrado, titulo="Resumen de Valores Faltantes de df_filtrado") + +# Paso 9: Calculando correlaciones y generando heatmap +print("\n=== Calculando correlaciones y generando heatmap ===") +tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados) + +# Paso 10: Ajustar rango e imputar valores faltantes +#print("\n=== Paso 8: Imputación con ajuste de rango ===") +#imputacion_similitud_con_rango(df_filtrado, df_procesado) + #Paso 11: Ajustar rango e imputar valores faltantes por correlación +#Imputacion_por_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, umbral_correlacion=0.7, min_datos_validos=5, max_lineas_consola=250) + +# Paso 10: Llamar a la función principal +df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza=0.05, max_iteraciones=7) + +# Paso 11: Exportar resultados a Excel +archivo_destino = input("Ingrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): ") +exportar_excel_con_imputaciones( + archivo_origen=ruta_archivo, + df_procesado=df_procesado_actualizado, + resumen_imputaciones=resumen_imputaciones +) +print("\n=== Flujo completado. Verifique el archivo generado. ===") + diff --git a/ADRpy/analisis/requirements.txt b/ADRpy/analisis/requirements.txt new file mode 100644 index 00000000..8ea863fe --- /dev/null +++ b/ADRpy/analisis/requirements.txt @@ -0,0 +1,8 @@ +pandas +numpy +matplotlib +seaborn +openpyxl +tk +scikit-learn +ipython \ No newline at end of file diff --git a/archivo_imputaciones.xlsx b/archivo_imputaciones.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..e7650ebe2290d9384c29c4a9274a2497735ab197 GIT binary patch literal 50354 zcmcG$byS>LwmwXPC1`M$1b27$0KwftaJRxexVyW%YXOA>2yVgMg1dVGKhoVZ-90n+ zuDNS{-yg+Wb!xFWXUnsnz2A2uFAWKW4gmr220}Y3NK?E|=3~Okr;(S}yO)=tje$JC z#@3!e&(@aS#mZ7**Zq=7|=*%<$r&21SMeY>e`Q& zOCR!qyfInqjDFLKg}Dz=aE9cbe`qi#G-uPjl4;o|yapFJpNJ5$JJ)LVYXB1h=kQNp z_1+Y{xQXLfqOfx(RuQLS1=*o35qW5&b%|FZ>6PdDHXYa<5 zlGBf$&eUU>T7ni55x|#;Tri@jMDC-_9hqrbOd{$Q>(h-ekGbGliX-aSgQJI8Y-9C!iKxr- z3Q!AS=5I~oprl(R_U?P@Y$TXVfAU^2s8#W!|$mR`G zni$q_8>Qac6ns`bz({rSk*ke36T%T=l%nKfNXUhAX>QM^aJF*n^E1TX)#oQ;*`ERf z0ntwk0fF|SJ{L;{2U8;}qu+lr{ZinO#z+_*2YLtAy+Cj?4@;v7809CFyXB4rheoZe zROCX16aIT5qMrq9)33W_WM=Ns@>h~H<)NYGv zCeeF6%|m;94j}#TX4Alx5Lhl>vgf*(_{zb+HBwFz!GMJRLwPn;@3s6I$qzgx&`(Y_ zo-Wo#`EU|>9ta#((%o%SQAm9q?a~vb+t7qh+^@;6{TxO=kp~gT4h}@6OJ}`x2-X<# zO$h{>3PvUbU?;-CXeP#a(LVfyb|?F;>|-fgndOBEfcII?j~xs->y-N8$OoMHyjNv- z543A@tC}gRxGaFchpL{a6*6i234*sois!?1a6VWz*XZ84R0Ez`G2Bg_PP45ncilWZ zEd+AOU+-G2x5?H`PG7lOcv!*fIxpw|E7z6e`%QW0g?T<#>@%o=e8V|G`u-ezK;0_Z zHH-L+u*y&Ts$w;m>+af@ucEoJXmCl`vSLw?Aa)GIk)gzR9PowLWbB5?9C$E_PL$Vq z?(8Rvrt)riJGu7CX`;1s-V%{Q3Kf+a=|EPfBAx%7uiHV+;`hFNxR8j-6aYIi-83#? z;745ms=V&EvxwS7y`Qf)%KBDQ&zPgU?}pSEo^LN4_Y=eqKoksF{H|w@v)+&3IS3ng zkLVy|Q&G|up~xR}gq^Pu(V`*km_vkuOUQjh1aZIeVVHlzvmgG{gfuSWA|Y7F_=;id z*i8FIgh^=%qLok_*EY$1X1%K^{a`@*Zfp2wjVpj@Xv131!!&hq)z;RAJs`S>Ji+TD zYpOd!YeXL@IUJdRhj6gaA$>urjJ#iDlzxQ=eWYGe)|Jd?=9I zE=;y?s1gZe0(mBlkPuLzXCz1SBwz5>4pDdo=as~;M0E3Bm!=B_>(}=s#6ZnDf1H33 zSZn&R>`bXZu{Z;K519fwA7H-3K~QBQ%@1gbDkMuzS$Ez^K#c zcMcDwZ^w$3KHY1+(b$4xn%~BqF<>+66Ge@mVT0*YED1Q|$GLdT54wo>&eCV+FBY?n zhsI~2q9D4Pl!ciX(2-% zE38<)g(pKAf6e*ESfKSTB}FXuC_Z!~96;hZS-JehW{L+TVpSb%8PB)UN9E41-f4ed zAgdrXPiq@$``lSu7-n)t=o7bDUdmNw{uHGmGya*s%xKg+rA~7@Z<_hwyk~UvJYO@n zizW-j$WnI%XFkSkokZ^h`Qb+jyJF5X;v}noUylQ>HLdM^IFy>MJjQX53*2PxFs>N)<5ZcAMDAfaW>}$*SRR-g(`l5(mh*l3Qn0&q@0%_}VYlR4syJP@n<+jW z!%v>`7~SWo$0e?sBr)(D8KU$EBAmSJAi4S3k;3_D43Y@94UyZ0l~F|68Lizn*V@yN zY_BpK%Td6SP*LOPmjk3qdhC%}s@a%bTH2rTN{@f8BOp>MvMLe*qCLx#;R z4JNc)?8RDeXJu|3%233O2Sb%+n=Jd+dHFYDpsX}*2&#_m zF~%6U5UbPxWtB?iE=T4iN3PR=F&ds_*{xUDVgU;CL)*vQ0uPq$E>>CBHf=3Yi3Qiq zUnSV(4!-bU$m%X9(JYibl*@|y87>K<)7p2a?s1fj$W~01H$IR77tP{Ry(*OUXTWa2 z)vGq~y611gK~!^AYM#Iui+FRRRfc9Zikwx`#C_|638#Z2@i8j_^*LPCcCbz=$Cl%n z?%y*RM?d`v2|EOYz=zim*uQ5oXB&Wpy{VCrgFVA}jdP;Kz$MQ22y|5ZJd{QCHiO*Lgcf;S9(_)7P`kM9!eTECvSPMbwHPs7+nK ztxT|4%Z6}C=X7@DaqHS{qdAQ4vbuHHh*>QOxw6CUW|85+`@quc!RWDG>z<~nj;T=& z8TokopaQ7I~|Q(PYlS<*o5anSNBS9=E8JW zjaCBq)Lna%o;D@~9L#}U4y_=ac`cY9oVT#f?H2;>8Q%_Poqd{4ylfeHoUy>&%f^q$ zHjcZAz{}T@*?q7-*LN}boiB3>nQ`SvVjRujap~jTE!?x%k*!E;>qu)r)!|49&z*~RCbCOx7Pv%Uz6|WRZo7{x z(jhR8;k@&rTjR%|n)!|OJE~0v07YMrpo6VT~sBEH3{TnUs9eM#*JOlkFKr_4>*3-cj_)QYq`uO)@6YTcbZ*f2ko7u8} z8=~hOfhXsS$pD2WN}R;!9xZGGZ^tngR+Okbp+!9pjXh5tBKI5ERS@-0ro#+9#K0*N z-kDh5SgZ6l=GKgFT5?0gad>Dj6%^S=Be33B>EPGh?5y*=-P~_2Cv}d%bdczcUK;(R~Ka` z3Es5OIVTLo+JPK)vb>O=qUS-i5Yq++$QdqKk};Z6Wx5*znk&tlD)lOliY;`?BlQpw z>>0~L^ym;QEYkClwp+sV_z(^(@cRY3jf?eICaQ5P=034n7UHtAAmV)>$kVbsm81|+ z2wBnW0n4rNk+kjMMVr(MNJI%78;7q`RUk9uc>!}%~!0Z=E`@v26Xwnj=M6E zY?HaY5?DbKnQ1>e7I<&&T}4*QKEqPBo08&YoS3O`W$1K~t5NZ80KYGry41Ka6WEfe zAu={R&SJ5j(r`JvAWH81t!q_%o@ zb(@neo|expNzUumPY2%j@Q-9S7rNygn=B_`C$Mcfce5QZh|AF30GEI@Rwgk#>ONfR z4h4|}Q;`I9kpvF&{&04~UR>tY;`cNQ(HIu}Zh3*FMS+U+Q%u8=goy+^v=0$TWlwE6 z$_E|@_PIe@-;st~^SaH&@yvU1&D#}3DojNx)I};d%!?x;TwuFf#=G}>k;)##gQmmS zr^48#-17qO#{=(c0`G06eh@GGAfEZL7J-W^j)&Wei~I8Xd8Q(H>LPg@=BD^oruY`7 zU~xp5TtpdtM46T19JBfyv+|rhJT}%acGfU9))!&HxpXK!sc`!@9Olv`-zY!(j%!VS z$w${iuj<;Z7-TH{qLC6`8~W1`qfJFmOv*^?Y$9}}v@y4ILX~Yr^{Qf_)W@JI-VnWN zV7DTaxs=9gdc$gZwX`B|LX~7ib)#ZIabF-5>+2;9#uvjF*Q-*oZIuZYIh!Xtf@_BZ zEB*(2Z!2Dpha`q4NcW`k(B}8)BRw`s<_jw7AYm$}yx2NWNQy=|=s^2WmdpaHV@q|i zzHa_lM;oh)g#VGDY^jNt`OdOMWeCGzkEduxkw3!_c8%PruCc&uw%2WS++lU=5U`&i zN07(AsQ4Glk68G<&*piFw(CYS z>8U&K1XqA)gh`pTn__*g=x5}nmTZrahP7nPPeZbCXkEF60=v+LQfs9n;Uzk zrJDZE+&O@;;_a9z@IHjpdNp6Wl zZO8TDp3^4Dzp&$RECP$ZDJc--(2R4xOPuAdYGg=XDLpuNWtb?y%h>j0Gau%`kJlcH z>y3W5e66t#P*7fpX1*Gx<*VBtpj~b*vs+=o65BdGDo(j(4gCd#vg%CBtf37vUDfP? zj*R8MLE%NGgO2=6U-HfSzzBa?DjJh@?tUtGlSAq>{W*m0V8LTmY-*$O;^9Kls|XT) zo2>*bJktEmR_62X+nq~2Dyp7m^`#d5+x(;NhP|K)1zukeag{Xp^LkvQy55rO5gxlr zJ0E*L0H@cTS)*1wfL>;r?IEMU`LvWrKR(~nOaEP64vH}#17L96o>B(jAqq&cBy87Nrnl-R08NrVf?HkUtM5kiak4x_%Pg{JV$|nyzFObZr4Er z!=6v>+_Uzp7{l>fR&rxnS!_ev@#r9*FV1s#a68Itw9re*~ z(mo%t&%;}S<736dbwp03|u5nGCs!)Ojm zo7??3pX*XU2%p6Wz}jczF4uYA54FlCZjyCaW}G!?EH!aBIbVK~sT#Hcx$6Ix5?;*e z@7cw3Tai9YsPYwHG)20Z8D`PKM;mXGn|KzwnXvy#$QlA55{>6G+l{?RPRs$_jMI;j zvqtAaUL5X=fzGP%L%5R~Zbtr{%#y#cwXhNg*IuXTbgUOv?~cll8J2j7dCv5D#*x1p zS>ICRsP<-U4VgVXpxQ*lv5hu4A-SO1GP`5cK+9hOA7S8r|O0A>C&VDrIcJGTY z@yRXJ!k2&4x`2G$x*G=Uh&?Km%1O|6@r z6NJq-sDl)RJdH|67O7UaQ&(ERIiE|M;oQrY69B09-~mNo(NE8kGxjMKJhKL_?F#)U zSaR@uDD<5&ji_-e$Cfbh&#G^8QFXTl!K)%Bcq%7h7fGJO;T`)1o*NAJX>;w$T?3&< z(gkLHx>t5QPc0oG%V9fJ;BszCq?6-^>310taC>T59IHh!8<^@T7G_t?>7cS^toF4A z2gKRMaAB`w3lD{a@}vLC;Oq=Ov5Ka#ADWhSu(P3ijUr)GJgI zC$KhVZdoM8SBHXKY7m|FbqRgbm{`K!*L+aAh7hU~4ldQBJ;df!2)q2Wv~oUqJ32?a zko-slRbn9VZa!?DlG}X-d6wK>Q3iPr)uS2ka|KcRV_6wX8CLUT>F6G=IK~X6IvceU zxlPejdtxDw`sLcsHbY(Hl`6Qyc+gtr%Z*~Ms)%)e0cS0YiS9eRTX8z+wD9ID9TE&zFZ_oGc=BN(70((KQV--0E z;FjgXVN8rnhso5%-p_iIcvc;cRniSx4yGlXZcL|MPOi9n&vbhAvY%q)y8T9V0iXDt z3$z6=Fb8%R;O-7AjG{--8&%;J_vhJ<6r-$2z;BIe;%VY5;R@y?Y}NDMxg$4?f>c}C z>dVvXR2-&@RvxXSJe7Q#dKP<*9~&@u9vw3>pDT^M-BX|Lzj(tEb3ir6yj$2mEHGdj zuT3@A7^yE0z8szkkJEqKtD8`Bhj7VYlrx9WC!WFmUioU+UpY@Uz{4%Xvr@L7zNRhf zau|Q5oO0M~kHgE2zbJ#a_ay{X1+=is(cL~@7Ew!gKoy{pEsdjo>qr# zhUw=rk##GPc2j}1sDcJqMIU_C#@civo`r3G)sHA-oo@@)31zZT2^TOjJd)bCjL`98 zi6#;5)OvE!*Bx0O`6)-PQ8!no$*j>mx1l1%8(cRVKxJP|WngCRm5>^@;o?t1<9Lc|zE=A?M;c|qB zOd}${a^f&i4nHx;aTFb$KO~=E*{YZHz!eTb5;S@3cwlY*ot{y9mcou?dXIN6(aYT@wEUJnC7?rGD6lc08z?fa<#`RD!5WtHE+*QU-Qp1x>>nj5TVDv%b0GHvpUAb z5r!wC?K!u(eU?pkYKtY0l(;zn9MR9YeZbqhZT4-aiVxk7;#ZneRbR9`q!Ww-4wY6d zskiD#dJ>cl-Y^v{OpiM40sJd&XBo)np2~()XQ;0o#<;lT@0 zbSL5R0hKRHP4)p*(u}-yo$F?nrdtc=SG$5D8J|OHe;B|ll@vkq*V+-G<%u@H4l&w( zRC^%=;qS3$!l1Z4%a;B8zCYsIEs@_6)MgEm)ldL(e zsg~&FG;1ZL!B%@qKiC}R@ZT|oCt~h#Ft~lz+>AT^`m5+Pw({>_(H{!s)ymUBKX-ME zi)XfRcZ_L%>uu$b&^B0>#avb$thtz?shXIma%Gv&DEf^v?LOPF0oJB(O2!H6VF2hgQz2K{>DddUAVK{`w0F{d7bNh^#~W5 zD|inumHevX#0#3~NU_k-eBfi@pZxCC(@l{w$J1i2FUf>=9`jD?t;JO%wKi5w!b^X< z9d%|uEmg{2r6rXMiiKkDQp}|6Qj3%?t3pD)4x~~Qa_tevbL?De)I zB78PpY5`@uKpLH{J9_5=%l zwS@*`)EG=NcR!op=&NS({szHHL;ykbfv-05<~^LV8ycso$d}_FVvg6%O#L!~)^LDd z@GHbRj+$y#;_FKer%9>);uJDysYQ}9Q$=cuQ)=Mp@8HLFt@6+>1X3!Z_eZUnYA8iV zt@+el9xh86)+*K0T^P>tDPac(W$E`S%gi>~EtJ|@_8j{Z0q6#g?x@%%KH3CWKZZ4cLg!`1oXm(C4PMar zJcN~>>y)b={h=W)m4D1)X0DygSMN~omAkP%Pn6FqVGnLYLZYuv)BgR>mC`caMM>rx z@SZbiry~Kj62WSp#tZzZTK2roh%yPo&yCxbpVq5xoq^J8rGy)Q?ZqGh9HW2F7Na}A zWeXboXU-Z(x0Bx#c{pAixA3(=5qOVnt`YGqGg8Rhdp8AdENSj)5?>aAIDbh=AmM2`yi+&LExn$ z3iRH9S-;+-P8HD?AlfOf-M^WmZcVwrqW?$Im}sYV-h@l(zYC=stIF9ey=aT_{2D^! zeFgc+q^y6GbRRbPmYiiC-f`y~(<0?GBA1;L^>-KGYT}=p6FdMTYS1(U;+SbfG?bHT zsw&Zyr6gjYxV(=|^-~-!A}%H`MZchWQ#wG~;{oT(hAzrNSVAR-ryQ5f{)?;CotCk` z9wM`XVn@mvE6s<<3cf!g&#h(s`Hz16SC;Yc2uWRoZQrHz|!G2V`v$5+o{-Ycb`9N zJS^OIwVX_6?pF~U{e$f)HEo!yx@sHwtsMNGi3(`Vzx~HNWJ13s_w-lW-lhD2k}(Y= z{|9R38=E}}zkwbfmNDHYhlL&+NTc!p{9}Q^lt48MQ@CnDj3KK&?DM>*1F~*-S``sL z)F>EP`r2>)j+WK(4}Hy~NV_J%Zkm4)u!=78`=crn?fTDE(bAvg8P(cZp!%U-O|dtt zP+V%x78ZviBHavQqmPKn*r$;fKTDM_AV4116Go%tqI8kXvCR2kafDTmR3-+Wpk_6c zEVqzY)B4#ei}2Q+ZBG2xZZ_{^3Z_mP4pKB+ErI1PwCP)3qfq5P%-03EPL@@GWzb?mqC8X&S8SAUKR3D|KuvbE11mSa;^U7j)f|JZ8t|_aCcq3i@ zg?a$_)AZo^bFrD2SoErx)ZcU0H8&u`7ZtP zsCP0={>IvhO4gyNFKt!y^4#pyL?v`4;$U)fVHUQWlGM@W)Cvp3ibvlWy#`aAi&7ck z3&}M9%!5?TAO_2Ch{8gZu{-SSN*%=I28J0C6N#+YY6d(BZIl>Ou`o;fXq&jiJ72ZY zHveQaeZ4{VRt7)rAT|U4BjQTRG*H3eI^@aywwZV(bk<$*EXv?*GhsBg3>G%6AN`sS z&=uY0O`<($Wv%#svBR7|-Lk@s8@D^CRk@gJgo3%A8ciC}5I3lL%W7VN?M+i*nqyo$XJV zGL7?x-S3~J))6-HKAIEqwiVmQDR}Ew8n;gt!r5h+SMnUGD}-z0&PV*X6c_Xg8{Mc{ zKxXw$V2nccI9a#ra1Fj$vpT-vpz4xy^YS`R1Ybs4&8fmP!}X^S|DGU-P5iV8{#}QE zvO-sDir!%{)nyNtatqFJw)9NI$#!mEYx+=MQ&e(Rc(l~OwQ+CR_eNDmQuER=5c*`v@ zIkw(W5Wd#uK_Z}oz9Z=P)2+ZQ&G8st>>2?XTszxZ3titE|a8u9U+ri^{Q$J%XpJGh4UJZ0Wah_VyeO zJ@u>Z*P0Lnt&`E+ga-n2Mhy_szRaO_8)J*dC#(4NBUHAzJL4%&(j?Kf#(HcrKc9Gm zt31Y&$8;~1WY3j83-GoCz1T;cuix6z7K zd_Ei?@j-KT^RvS2ChC6bs9T-A!0piK5R|24oOHj1R#t^6ak;M^d7uWiYEQN12l50K zNqjozrPoE3(EKh!DOQK<$L0@B$k5l;3LA)?ToStH3-8rCT#&7&6mG-1njb(Qw#274 zpdHZC%pcK?CI(Nm1r^+RyJo#@u~D|}h1njzBI~f=g%D}rN3KdgTdT@+I&4CY^HrT3qa280ocOal7ti@^r3=g2k1SgMG4OBQ zlHUsmdb=mrJH%4qCyZ%z{v2Ey?}sE}7J#0YyS~z@*1v`{UkuA)lG8~WQ(@ub%C6FB z9{^+qggHT+eEUSCm0)&DTQw_fqvzqAu{q74eI6{^| z%-c8ea7=r0+2j279v=Q!=)-K;3QU`eCJgl2^>`Yr*y4E`)9v-xh@ZgD#4;n*8!d}& zPwn&5-8V&EYj5<>5dLvXg#AqP<1|L^pEMDY3vYA(g&;P6pC`#_p>EA>p(a&UOJKZN z5~xXgmHvgvZ<)X1nD3;m#_o~W@vR)hkj+M6>~7&sZ3i7Inoy1yyj4wTqq>Mzy+U=Q zFCw}_WVQ>_8*MbJ>HuG>OID{Jm>|kIkxqWMa7c7~@(gbuJfFYNyPP#ERLVrAFMb%+ zLTFY$UgMSLBF=n+v8wOnp8Ep1iCX6@Or_)@MrFUit3hkDlz|6cq}cES-G8r8vWcQs zoOv)pC`;$2HU7Bc`Rtiep)Nn+J5Wk^*Un^kkVvZDV&`vnwK>}Oa1yb&)?vAqD;778 ztT~2JwSvcIvj-4Za6si#0lRx+RUQa{@K%>`o$+j*>Q|BCJJ{kk$F%8|U2ix0)tf+9 zGwS$YJfES6=O%lsr7-b|DQjJaS(q_RikO4R>?LbLS?y|k^`NRbd%j(B{2v|{S9Uve z^g%QymnMz26KAAIVnq0%FO9({?R~X8V$1Nq*aLHOkXY>%7uqImbeXR<;-=*v?08DM zUcbdntjA%Ykegz85!oAa3wE-vOAFUoZt+X%1~7ovRq8Pt@o$Op1vs99M$9@YkPk38 zOr|?~@&1*m{lPL$`wJ>nP#M|2ui_z|Tudyta&VJa8?ks<1jW@OMO3Yyh!JJA(mlVP zLO)qwmb^P;U_VUqGcIw*yJqu<3$IGej*|kKxpyYX+pOiEW6BN#ZS~s%;`X&TOUSsW zPBchPd-zEx@Zf4seZSL&!I3ABDaBMDyFMSc})ps&@?a z;m7QQz4^%39zK`ik+fD4>tBh06z@D#I_-5Jxp;b9HEvg*ny;E9E|p=^Y`&()rG}}B znB8D|e@4`yP!?&hdDgzSKhfaZ9OOaP_7g+-45oU;J5U` zfhFi26`=I~%vVqVAhFuNQb4{CiJ4K5 zXYb~geq70$Vtmi2fZ-&|C$XgQ(4B1zj4?#{Gg8ZZSI8N@|C81ndj%@;D{L@8?re&Wetglw_%1l;>mZsxCtTTZR=-P;@Pey&K6*lB;!h*oJa zWYleiU0WkSD+T6C7aI=wp=GCz2#nW3Ws*DA?)+Ro-xu|OejH1!Vk_x2Xx$`Xy1V1h zc*oc3)*|8*dh)m%27Y{>x6RRo%;Q?1Y8B7xN8G~*Qz+!!`eFy{#vQhywZTC}tcdRT=m6bP@hgO{9P{(%`#>$`OLfx`92z6J$u3$`Aa+`I- z)Xn@oFT}ySySsDF2rR7!@>{?)BtfNwT4(5`?%gU3Dd98@a$O}*^Y)NT4k#HJxab%? z;QS=gG_bPZf)I*Cf{^{#*csI+Y}^)mqDRi47V z+HuwXxN2V{@Nn}qf#{7y_$2;)`EaHa+Jz##ssw{=b?heR=9sz3V|&H*`(4%t(q_V@ zvX@7}_LIhZI|#jk&p8Yp9!D3Kd$o?LR*j;^*yS=EyxHzVMSJ;p)01ZIm8AicGmn}S zR#v?Dvk#q2Ez+}ZRKaBdeO^@{B&UK`fS0@dEu@^sg;}8XrkO_=r|pN_wWchGLP}O^ zeqI=RSdiaAO2YZ5+tXg&4qewHjx&D;x=TZtRBV`#I%%bv__GD}rZ#I@m9t*kirCc^ zz4^;Kik4e!df144K&Y9 z&cP9pEi%sg4A6hN{!*JI8W~Ae$aK0*q$Z?dds0VsxK@FWxH>pa$>jDp(tQtkBNM?C zDQoKxn#Y1q<_4X{dDHrhT$Y=mI;3s{-ts5w#p^WAj$cc(FH0L27pzBu=MntxZiQSX)oss5i~3%r)Vb% zT;%wqfKVqD+^Br?8*&@HT7)=^WLCWwMnU~4^TJiAW$68ij&K?;#ib?H^rh4b)tT@c zf4zM>IcB+@`;I|v)M#)|B6IdZT=gV;$o@Sb8UU?A6(%L7{7Iokw1AqLO`%2(Hh!pB zQ6~|%cC%kmDN(a_DzPAv*3qbhLfTUUw|_!DQT*q(C^4fC)Jh5|A#gFY1Mj5)!?F1F zq!M%kdeVTUSo|i#q2C4ADzb_#nHB_3R^=w6+mRH$kt_)grJ_zORu(HDr@r3%+JydI z3Q+@KSVARDr(r&%D3RDwI~7;ZPK#)0Mk!5Vx7L@-jFM1NJS-aUF>y1RjLTRONi#Mt zakH9?%UTjiyVj_LUiw7*aAT3wzRD3}qZG%w>iL{Q! z{(z!xB1|o7d_fH7sewXD@Sw7?ajr0_G@w5gzm61^Za_gAFc*stB!#7)uT@U^B_JJL z2BmMOV!q5|Oe+Q7u7zrFGq^RGgtXuTbz!l3t|CT4YVlkVxk1QP>mSy5rVXsOW@QbGqmDF+)$B5A}LByMJtahXdZX~k|NZhj-vO5Cq~ z5fBuY%axlPO_DpKR#GlqQeLH`v6^2)Z-jl251a(-pu1{uuS^Z}oo5&SRjVL}mb~P! zEg=o_{#X)e84dFRMXf~c+Np$sOxi0WGh%5G4crh&0nCJu;!k2m-@{3*Cc;OF9p52nEx^; z{%`smd;OwM8YVo+zu|HeTw26`i!A>aZwYpvC6-~Q4w?U`NS&)68cIg3qEHeN>Zv?u zN%~)6^Z!kopigGC;|>4jE*5)Ir9+A$iTE1kgNo9L3$;@*1(mc{h9wNrkQ%sy6Cd$! zYl=UK8c|cTD7>wWq5NOc&Oh_k3y9XC+*BH-S~`&Yi}{@P#9Ly2LyP|gZhT*K@xP$x zKVi6AGRD&3anQM@s>iuT>~A1Cdk&iW1y29XpZj0Y?N0%md(jc}Kq5XHH9KePFRh>H zz{^icHbJ8G@E!3@j}N^dcvRVA6To=^+Ny_?%X z7dxMg_*T73_nDIhv~{do3-H(*9(M(-S8*O7mu-TY@8*%YJ8H1zAJrdA5L07d?7hAG zRP#H*S*vSaW1|5bp4u%!w*F~G{1zRjJ3!qqeA}}zn;(&^E>}Ao>QSuf_ZN7UqPVS3 z7kCaI5Ldu=i0pZ;#1}ijxzNU2NJTl0g`dd%d~K#-0>pQhd2~--9aw^2zBnIYeEH%d z=L6z5=L5%E*G}El=EdfRR!9NjR}s30-;h6kjKktNg+!gYEI``y5^PUxoAV)xZb!na z2;;kbwRc#p2b%LEie5p&>-cTqxZ0=n*TNGL-uQ0|r`0)azZQ^@@iu-fygjRyYoGHI z5pVTqk92o9X)6RZ->7LB>@7n}PY#PQDyMbxRXt`oAM`zD`BL6juN=)F7j<}EE(HMJ zK4Y@F0Y9INdN=cO9=n5zBuLbw1Bu9y9_|l7r}pJ|v#Ze3Djd6FtIrbEzKHjZ_t92c z`3G!*%x5sUt5Ll05kY#wROK736A+t0rMZF~ z2Md8Yw^_K#l9FlEup_4Hk)~)BX;_}=06G>ot^LZwjJoq;d^>eJnOVK$PcimoavRJ^ zhlV*Bj-We_mUISS*b%?9)BL*oXk};`;2ERi@-^9^ypwQR5&U6I|MXp(?GqD3m<)zzEnQCp;&fx|7UjiZIVjjQ@prh4}22Y<4@X~YUT zfY{|x&y$e8f79Uw_IJUM$ew~)QSd2p03;R0kK&B$W0@W!bOMR~(~x8HjB@_})dx5Q0sa4`Y*<%Qhe8_U*G(1m6RjbqtL+m#O%dq4-}D@rD3BXESS)f12A~^!EiOdZ(B1cx4@%Nk;TXnnYKfS@H*c zYqYnBM~Kl7A$OSqVc*2=6lcF&`83jY zrAKdk@)aUHH>K9;=zo)^VZt1vpUP0kAg`}A0edU&Cm1&nlE^hwpEQI5m2d%-;(q9_OA zcu;)=6bpv24|>pCu+S2TDVAOPO<5?9`{U2rb3MfEE$zf6)77l3e zG^%RAojsM2i}$_CWt+S(*QQO%16xMRqtf3T2lltw%d^OL5$dT^PJV2l(wz$>m?Cge zshU~|C8i1*W6*!Re}qE(O2h0EwZc45bIG4lFzaVpqw4^%_eRfcp){ur`!q=v3y;cl zFU$(EFwUCxhz5s%i!;HtdN_6=?_)wyNGGL(ym>BNS)_40V-wHJ_r&O~1|@~&9W&;KHN1Y&_8{XoIC}M zb^ME0CB5sv9eMGp>=y(f`M2p*U4W70UuRV5e|=s~k&)YAd?)xUH4WMzEvVLcg^KFF zR-J@#V;W3RqSD9S7}xmhmEk1_qJDYuym_cXa%s0&hjC$*&hlg@w3-I8z@lSljZAIeJg8-8i<_>`KmTK9rXJBwHz~ zwUTdv^x2z|VD=rFw>^DRC=Nuj@Lam{$mG=K+?b`W=!ir3bhqU{A9PRxoXdKJ7DR}cMbIJwIY(Hmt?v>i*@o`Sm z;sk7eA5)zGv`-^@>2%ptUV#b?E~6nzc6+$!@~prA%-IC0E-THx%$dAVW>X(27Au6e zWAAC+J1{W#s*8+et%R+AD|LlMYp~i^l~dDBSH_{C*i?|)8h*%~j}jXbG07w2C3N1a ztRu`;K)^J54;P4ZTEvqDbusi$TE?2HLQgP-q#~WH9(UARzD3Q!%rVF+Fo9Xw>0n=r ze;d=czi44D@Xn4XKS(aylS_cX6`3%b)_9CR-t{8g=<3Or}ZKF*{gBW zZaSDr!ZI-;rcwLnJEUc%?cKi-A?D)|6ohYe@bAf#S*amNu>Y1;!XXt&&BM(g* zE)_LefuzzVY~$7FaOxlFqUKkk%4CqHH>q~$qV9qo-UDUd9;?1@9p0t(3{o6US&NR% zptB1h?f9gmcm~bPyz>;Fv59VP$hpmm(`FK+ABiksDNZz>lWZ^6zjsN%4HPmkV38H5 z7TICfJmk)3f4M4w{jhF|BHv{;cpK_Q>_nWHW4e(l)l= zNwsMtkS${(Z%$Ow^AapS1bsiU`8&p5;tuU4^FTmIiv5qX+RVTH^+;RWV(hP3?K|q^ z2@;b1ms#y?=tBB~Ts6bOll$6@U$ff8 zZv!W@rLetk!ZA})KR#b6u|UAFv5|av8P*=To;=RmIE-K@+j6@(07X4KPLAE&fbJwr zj82Z(#qb_Ahhcb37e#7Jau9-kL3+Ih0Q536k2p7BAW!=J#BTJK8V4 zcfWEC0s?PVhzJ|gI(QBY1TqRXQr!A%No940+#9`l2vt7UxGQ?JZ<-HG;qZbVJlesd z9bji$P3j=&os4

rpD}L<8rV=iLm~lP0WDzsJ_4j#~pTeL`rFev0UQ`8B)uRQlxf z`4hMI$`MD|g)S07vP~kW`(b%N|u z^iAS}*Y#QF{1MG@4cCC~{U(F!d6M#D!G!aG;fKU4~vpvkPJc^Qb6Low(1V`l8{g(LV9(1;p&;qTy=MU;Tq9C3G3U` z6{BuPuuxm{_%>&W%dl2oZaYul$#q1G*|d_@HA6G~&75>-r){$A1=r|<4yNa<9#q(G z5B#$RNIBBbjA4XHA74_7flssAR4X^EfBY^Ld>or8m<)G z5x4G4%&sjOuJT_ZWTN5f(E?e z3Sq4)4ZByiI;~mlE}SjqPAtEa@v05zF6L&+;c~A@SY)bcT;SrRccy&B8xJ$Q*sOFp z>IsIY&}YJ)ruMDNF?6=G zh`mAEv+XLyjq5O=#A5F-6NUc5f$3ShK`({`;)?Ohk0ETIevB6IZNgwOH>&gH_{UKi zPdM8`gkg%5Wy%uvqA;0mfAba&!%!aSJ<)A2YUrisU(W7^2nxZ3>puKt)3(u17>xO@ zarn~pq1kk9Z@j=a=W2}9}Kxo!VI%L`NJIes&^4t#t@;M0|5|}9t(X4h?Nncye zesRWzEg=D=b1f(zPBigeFHRyvcpioJYm0bTdLwQ`Nv!S1rKAfU$8Bx&UzYK(G6#Jq zJ%DmL(f}f}5|8S~%qtLiTev`v8RWm09p$K>GPt$rOUt(eH!HguS_3Rv)y+!?V#V`U zmLFvS4UU|rTy@U(FLLyN3Ws-oDMj1qZ!Qtv5^ifwVPzoNFu;hr-S3nyKCErhAV`S~ z*;=`EEc_tz+GLngNjWlS?e?;e4M?e&-^>+hDe4+jCYTRJw6QEh6wRA)5krobsIZF_ z3AHFi589Y%5Jj$2ZFIXm?)+&S`O`KBOekD3qm@GohcGIr(s_N`{>NEgqWzNW#A}Ds zDCEX>%-Aj8yJ!Sq1xWFB(3kuQ=(iwf9Pv$KWj)YSZql0!$W6aB1P0rua%UFU1UTB! zzO0H#eQjG&d*_E*?%-I26nBp8b|00tC-^zPA-vWx)U?4Ok%V(EXuqk+@k;BCsY}Ws zTdJ9HtA{2S)AiTc;H4;=fozV%$c`A#<E21^OGIY7+oLJrOVxIu-m)$Fk6{p(7~d^S#k3Vi<-k4b6$() zmR9vc0MIbEl%7`F#KxVui8B>*cKs72btC3MkZ$VsAYr)8<>vToU?;&}lDR?@=I*?V znl)m~+CsN%53>v_ac?sZge&;zSiG&Kdj$Y_jKe*j_e#-e* zm*3L;k`(`4K^(O=4KZ5%NMB3wNWaUK6jYdLp0SXoM|%a_6-2(T*a}WF7pz?4O|10N zM6au?32Wo#>>i@8(9pT@7)#tIN_=kM!e%+qm%Yt6LWp(YKReFMbNU8tQRZ z2Z1uFht0nl3Fn$9kJM0_&c>b7@WwG8P$WAlN;V~bO)E6XcX^N(7?)xMi!_9JKZyMy zS@g4%Q!>}-h9>jrMrRalKJ)28I=0ctZ9ezyyfb}&0Nu>6P^cH7QA5%#?X^(o=Wgk+ zmlq8m$@&}Ya8BoF;oIVnW^OZnEi5kQ%Z^uJg4BkM{o4mecPx(;^cpP-NBDcI7xzuu zdwwlb}l54BoFg;@&!If_y2xc+Ab^2hu81BcLGN7Y z0$s84Ttdu4XysMNV$lzRyv}UvFd-{NeOV2YVqDAOdnF6z?{?)AhR8HS+oeT}rsNj2 zKP+k&i%RRplsM;=Zb5JZ3?GcL_qkHu`!rJw7u!^?$#phbsqixdq`9=}J1(br;x-Cw zp|j#2H-V~^51$Toe3;s7oDMBRC+of3ZIt)^|EosK!J-Du2A<8amyLnNbth3?F}XzbsZ4N{H^35Dnaut2X2jK5 zdAuy(qP2X-^ZN|(M3(_h4#J$SoT|!Z*kN;FOH~ah6MN&We1p2NLy|);HSHcIsy%E- zqdzf#Zh(qjkB<-KIeAOsIeBZEs#~K1)eKz^wf5$lky5RL&#ryI0Ac-u;4P)UB_40+ z!b*$JD^YAuUN?tcTXrpu%U@U0cAf^DV?h-)IM$eEbBiMP=LZ>ceh;0XPJ_Fl?nFL^ zti%Y))5@a}_OX%~43u~Cl(e^*)N~TW3aau|x4STHW z7)P78$)f9~J|$OT1O$uF6RsY>6lr{^rz~<5S}e<*jdO0QGF9F@peWMtt1m8cR9r0k zIy>piDPPOz($r|Gymf%7Eh8guk=e)k*^rfg97~l9o#->ApD1wi2T{h2W& z)Q(4k-`R4T=8h#`U)(Or5-3TvU#j=ey1Gb8D|}k~09-P^K{PjuM)_v-5HVGt+(-rM z)@K=s?koc7H?wl#-=waj>dZDr9MLw?v-V&Fq)7_BjYtge0($D)Wgj++Qx01E?HO zt}S-*-AWcrwkMI~YoExuk61APjTeedVOCj;$+ zr)ttWMp9}xF-1tgBB-SFJ?m3NX&k4}Z5sDu#qlc`RM`q&Z-Zl98HmSp2mw$M`BOeS zlM_;MGxXr1ewKFRQdultpK=_ZXv14E;aGb3;rl7VsfgPMU=D5+-1J@0E3p#q-{ndSYjU<7y>}2BQ!f`8dz0L{w z@1$>OY4|_(7{LxRG#`IAgk$zEC^P9H4XMD%phk4M8JUSf6z0eQ!4iy!PP-;GDowEo zZxtfi!<-FjBw9>sB>Hj;#Efdx*`!yEF*ZKqQOhIb7#KCVIBU{MNh=DzO(fq&E&lvi z;RmWrcq-tS;5NZ0FWqm`jQHV5(1e zTD(DIoFs7+(jdxd z%vEJs1bx-xKcmlrPNG77D+h=pfSNYqxXbQ`W=S?&9Ag(XDIC5X#B1|f<(W_l6;v&; z@6L5AUE3czn!vm~1wy=D%LjbNJS*P-=h5Ohz?5Dzm@o~f9a!2JZ%F*r^dXK}ig;qS zpnEn?U@w`(DnTycaIYk-adROOPL=#Pxg_n^FT;?d6kBi$fS8B&ActBDaDg}{JsfVS zGEyUUI8Q(+A{+$u+m4T8|?ki5gD-dnjfi) zf>l~&=Zn@%6e5N7JMybnan~ty=VDY|=qp9%1YR0mP=-A84o<`5Nfa9_{5wT)B;_u z^oP^5Kxv3LUbIkK3s&7bwUMMox67=x>6}0}e1t`>xnFqkz&oTix_1!OD&*gF*-Z?z z*{?YFc`F)fVCQBm0hdOe4)3Rt8P85p2a8hVDh$alL^pS5_UnR-VL=Ilph7wyUNz_o zduG+95hZYH09Bc1Z{A=sNPnE6xMh&{^Pd&h`X%of3K|o5muZS4N6Jt#Z}Hv4&hFP( zX&9r| zg`C|IY@6ig%w$}v#5$i$KhV>Hekiqo0P(~*)-X@iAH6BUP|+&V(zxn;9@H9Xc!%lNINrzQHtaag+6JeCq9SM>q#m=hCmNd^GC&VBfk3jwB6? zRm-JcCmZibt?tl8R$tdvwWYQOFT=Qf6morc84lz4Iac`Fk=sWc<-$AI90`+-g63|Q zvSX#4CKZObz#jQZeS)0%Q$ z^Qrsy8&QH%#{t!iS9_%Ssc5u)de4o773j@x|I88gsN5}VND zHJHtJlee9;tTwSuR&TKv*)$cOVIs!oVoJ00hPl&^j}?ocfq6$qVg-S-;=lDkg+ES; z`4|@|aPIrkSbr7~Lpr0$AwY?{%TgxoMFA5@&cs- zX(Qwp#dHt@kl@4npvlpDm!`$pH&-q_ZAa)kpFN7`Gdov{wwPV6=K(oQ8{);_DxY-z zIq1YI{WS&nr1Lxl_zRTyJ^G_aIqTbXr}%lwk}lGma|*m{hAj;ACPt?6F^Z=E6~4D) z!X%Tad~An=$qq^!k&rN^AbA7fqwkO>CAO$ey3yK3m&A7P3N^tJ!fd4amv9i|;zM$2 z_#~E$o6I2=&Tf>fCFaJxwh9Ba&+G&fl;Nmucy?yZX*MQhdTy${=JluDb=r6|GNZeh z8J^kuoGf!qWK*Gb{=Fd`(!ShEhWj;T0nfP1yL|;Op>`>DS_Rz${-agI3xOff;y+U65hFRGg3?@RYtbOa%_@)YIv$>cY4yf`!h}od{(l2N>_Jk)hbVgj^3T0shr2!eGUH;f@%Gu7w@y+V*oJGLMo^ z(tG7c#)mmBri@qr5q)}`#1#bpd7D?Vl2^yQ+V%pe2XyyFkI>U!^Ek4=zaWtjK}qAU zBut9(NDyi;=&@{B!xpum5_J|>I)6UTM!79eTxCmtgX3dtFsW#XUG9}&6@sFa%`KNx z9ahH@m3OIimHCQmf*8rtKlQAVj{sS;gT z-xWpiz52Y|{&_J{X!Vf#{i!awffs2-Q{$0&0&l;%F&1=1J*YQ0Zh^leM$31t%1d4C4Hy&zX;#tc7#ZgLYV^l0BOWzq^)X~giW}&_IyecG7Bn^FdEmhQr3-FWfO>TKiehXyYu{P57&HShl9cpD~!Tbol|S@l|RCYK6? zj`{_}7O$L2n9+TCkyf!kE_n%gJo9i>_ow9GydBl#5(ACO61R8*%G5G=;= zCoV^>evIx>kla2m{TDm(*Ba~z%aB8XFe5Y0*2aMtm5?+pB4JjBlBO#x?=5J!xwX|V zNY}yf-%AP^`%-8G>SA_oveQMoJ6(mJx)@gyYcc@i#^gAUO6$sQ{P!=XsUsRR38I}7 z!+gixGffI4Nxj8*WlEv7Qzjq<;!#KOWz27`dhKfUh~R-5_?jN}KOzKJiYtm3BX^*+ zv3WhB6UK$AB!H%`*|HDQ@Q42v=z+962AK*!A5VgR069;Xp}-M!5ym-J1pGl2IeHQA z#xWXcO#>@BVW&~&aRg_97c=Rpm2nXUoiip^&2_t*y!5BYWtw2WoWIh1zl$dL^&Pmm zw^B*0+UgKIUYtEfj4vN68BAuh<|ohk$t+o$7Vr*}Jw^$RZTG5Ro^?!;XPf4C!9VCY z%rJZ&Z`AZ3C%o2Id`Hi~1~;Yy8D6#0?xi>qbusz$`18mN5%PEde;>JV7 z%sVjUD+TOIbk*lSz2Ei&M6;jsaIr1p7^4 zpFmK+j2?R1-}Iyf-h(xj_hHwmV;GcjB38HryOk2!bu>ZS?w~plC~bE2opJQZ5sUJ{ z`VtmaTejp|D@R#h7(Xd75G*oWl4+zg!ASY#ilESB+n?eU_@ugn0Ln{mQ=X=*;1`dB zx@g2iNj_|miwstc3|()$`2oJzQ=<3h7#gz(cf+8@WhR&dplH)2D={ zYyFiE$P#vXx6&OILQr*UdJumLG>KHrT@g=;LC(Fedc=XMhvrKM=vDq(ut}cfSH}`c z%88Tc_S}B6>NP3JzGmLza-!mGx=K-|_P?6{WUiZl4TQHb0SOaQ3}_iaV;Djy`J<$8l$t7v9a?F6u!YCU2D z)}KaC*IEC)pAlG*8bD*OO$57ghXB>+sTv&ubm8XDQ2yq${a&S?|6KTX_U36O_q)CP zlZ%=V^bmL%cz6Rs7%m?tOTaZZBB{@=@gTN&`kg zHj_*hs4--lJCHm#h7YkYTWWr#L;9umLX_3B1`d}+Er~Iwnm?-)B!u_7=9|%+^x&HN znP&}K+%!+j>_B7~=;V^zgb^|Bf@yy;G(?=kuLh|p#|0qh?6C&&@%$#gnRmeW&-07i z9P#gIi>Qc>i-Q&p69iJSkErAi){>SlnSJS@Bl(;K;VhpG4dvt+AB5nT5Rj6C9)lui z)p03g&zZ`y6scBhb+$3JV<@FRO%vkOE*0a{l*;CxZcsd>nPh4#*=mTkqADRZRH|9J zvLfsJ9Z4QES97i5A+EWFPjx!#J_pKNS(nAo=^3cKwU2Dxze%>^DfVLZP5f=ozd|?9 zwBzp)e>7Fxc#N2NZ&4=i3y8>bKvrNpgEhcRb zUtGs2-9MK$AV-f;x!_XT5pOFym!?I%@!evG544;6tYBsw!kaVO00Ou*O!NFzr6m304Y{Q#(AaPho;!@Qp`jY)Hi9%K5gl+o!% zOQxNAmhXw4{cDBy4AOvDlYa<9-lO?Xd$ng;v6vnrAjH~bkn61)>q`#Rk%X;$iW_=uF6WHV`Dx`A; z(%{M0f0T{Usvwn_&QCt{hD{j57iVfmNM3m@VuR)&u&a2Ro4@WcX7D%>Y~*vl-rbik z!iFrXcI7ay-6%;tSkocywFY!=85#AVB7f;odjs=F-2Q)>mi&&D75;#LC+V6zV)$tf z8&pF*On$w&RUrckt{UT#JT+Hn$u8ebUH%yQteM0SdkJG65+;14MZDlkx+5t{=D}K70gLwVFo4y;_|A= zL2_R}gCPm$fm%k8iIV<_!l9ce>b`e6Y%P^|UNsRnvZAdrNTIR>3=Nf+$Jd>--(Mdr z!F2)V7kOs8>mR0@#Or1`ZluKHQWPxyT*!hq{Kp;mgd#?%@6+hG(|bQ$v@!LR#Os7f z6Erx_nla;^-IETNB}2FayKUjt{&hIZ>@oS4C18|M+8k?IeVr?=-F7B=U8OH&6sLwy zysGKjr4Pb@iBX=X&`Sag4%bUH>-pj7(~vMMvX4Fi$lQ{VbWfl{47dAQzsAm2(EG<1yZa$L;J|GCgYvipZk(I4P&Lt>O=VY#$x8=rL&w$FbJBTM;3iN0ky(wn~8JizIEoXDy>Z zDbRZT(FH61cg((>1g4IF&xA0}QK_BE>86v^p&*M_=-OJ3x({_?7^#sFElaob zMfg-xO(i|tL+_m*H8&yc$FB3#@(7->tB=a&^ucLG_bC_J?{*3|r!(3xwFHxXPu$EDSNeC4ANJsuzW?3^_@qW%=B)?W5b)AU|L}*4A_CTH@?;IDAh zXysj+qZ2Q`6q}Ei7npBY(SytJ;Fg(>Ya3wIklc;g%FcvCqF%`cFigAto`#)uE~pRi ztAOnr{9btMbuJ`6aA@0s9{35_#*tj~-=Trws|Dzm!apgmPkrzk@841k%zI_<2E^XD zN6c37@g)qugIu8Bl1){j&p+@<1{+5=yh%P3rah_ANfy>ajGR3La~qFZ{Y^Ugvh}({$ce)fI1-6qwp-H)9I-qX=E8 z1N1hDU35TTXRaJgaLz`03ZSm$d)%62S?C==^C%rI>pKln-O@+`3QE6+6=1hyU;N{} z+JW6|`Q?yGV+7not2-1|*Mf+p^(e{_UN@8*=MuUW>}~blV8u)_eShJ_I!+JpI=0Hm zerV`ndcn}hJgw_&Uc>yG!2Sb<22LhE%LJ!z8{r$H`eWS=hdQ;ny@CG4syL%qUOR3r z9xn$j&z*hvVY`eR-;i3H+zxvG>p+o@r<%Vz29M@)vPKf?O!@1=hzb`enp zvP*axMAImFT;*sK#j^_hS1jRK&J4l!2A7hIRX0fV5Hd)NqwFYA$1tqyr!$r)dKhAIcE%S9|b)1;#?9+wBIPt?`i&Q`H0iw`|YftWlY zDT8CG=t~+OU23zvo6K9T<}o4;9oP25k&@cx-ehrv9}VDw2^jagD>CA_xVYO{A9i6uHofwT27=zW z4`rcYjtVcI9pb0O=Z7+A+b4i{{RM%NYl5n8@wshz!TGwh2sonh&PIh8E$Eb-i+SR@ zyKg#W^a<&Y|2X?KYO{!?Hg_>ra9nJ?VKJ{jxNvTMS$p`2h^)pqn;I~Rie(%kiEN&w zjRjF!AcFc0ZdMx&!fo4NKZhDl#yZfO@EpB|j4i0~{uS#p@2>q4f-t5T9JBxlg{4&B z!z%HH1&lySRYJ-_q1hGuN!ZP5*chpcbtLxC%=AuA70e9T|N2eoNXZO1LvKB_%x*_0Ag%w+y zA?ikXv*xVb!xp!m&Jio8p3S+HGfn;B_@bt@^bZFsN4H50_-4~PkuqtY>`4wyHY>}j z6RpoHu5=@8nKzev+LGct$tH3Q*UpTIXUwf2)tl0-e%2qw6A>E`rr%M`68X;H~A^$UE@&p2@0Fs4u zOat3kF^9JDT0E@mh388wF9C2tmKVnE7g`2hu8xjCLRW?Fx7Y8;G8Vex?{W!+!tt{1 zf3;j>IOEZb05mH$)<6tRt6$8l8XNu6579g7RHp1yWcZSm8{LewOcG@Md+K&! z)i`TX5QRAl7!~`v$)}&vvQ9r?KQa<`?0MZci0XRy=RFhE{NgGf}7ALD8F(hJoEZ0K9i|Nh_l5 zMOR@-hn`DChr+d@QwF|vW~ z;zv>JAJduO)lZj}N9M4$^-VW`n+_3Ac8_-abReSiahII$z)?zkr=1pqlMSIM?9kX% zVz5ULX?bIFNrmOz_wE50N^)ft(S{#lx+qE`)6^({3+foK1lB24bmhN?VV}EB(5o%L zZ2u#J#oM671Q~T0U3z%n;|j`}D$`*t*0AOoAMy^-9%rA1gIu8P>ad;{3*r*|mKN-% z*>0a(<+)qC-J-MJmF0D=cFqVb2hAU4*l~o?YKzyp>bzzs6$ejTdgy9&(ApJbIgUAw zdGpJ^M9Iffy}FO0RV6Z@RrQ*vjLqjVk|qr+Cb(J~udHM7Veihd!;_9R%z{AcKe{{E z!|F5R;k%ZOx3|?TmseBHUemchi>Idc>(nepc4AoJt(|_*7%1hAo9262J-SpEZ;mM4 z?#yY!!gP4u>KE(1_HQzHIHDF!ZtIPlj(%PZtIbvLejAGSP|3bk3U`eP_on7={WaHo za3`>KIKpF3Kbu>vs>2<-4<&+pNYnZ3B)WQjZo$a$}JD%WSfpG(Q&I=Y^s%$~=+e0lcEe%A1yr4rh)wOg@kuw&iJu>9`9Rya^yRFxHah3ap8LUja#Uaw7m5$z=c!B*1iD(} zL*K$Dc00F&L!|)P6zaRB%~q$AV-umZIWOmGl#Zrqr~40U4O>S^CKH)Xy*AQQPU{&h zen{D@Cvt(OV^wXgF_||vkkCWuyjp?Q0IpOsFU+<}lG6v0W_TnAb)$Ld<{{UWDktu^ z9Bf!8EZU@_g}Anr?QZAOUAT^jtPaOR=|!Mbb!*iS_6o4e=@M9b?sb8-jH^zokw$PN zru)@2_AI)|uJx`Q#N0GR9FAQ&eLh|at*XBbbAso2y;c7eg>{Mcy7KCBtjT9{=qB_{ z`I4XqOQ+_;!Hg`g(C*#V$w9Ffv*QvP6<*!YFY7n7EwObTj-AZMy>D!67VkP5>IC`2 z$O2Z?Mfb8TLMKgu?xK=>4f*LK992I%$LVgz*r*!+b-J}>6R@25k>3u;6a7pBn z9PPEYVlkpG&9k-NK+KUDXK6!0fMB|iw~9LmuS2miZ5W>f7+Gs?Z+Ya@tb`>>QQ4{& zF+zz{?fMublys_oeV7uUQ9hv0PE0z_s}Q8cJ$e%6G*Y3ZELry&bq55@4nj`3M{Iy5dFrlHbMY(x~VR70c~VZSZd-ZI=@~ zvjF524zebJVvKB=f(5e{k3t63e-J0)daB92V+vd+jI#JoU<*aRoale6)A(KJuiy7~ z_hm=ycr0!^k8(v^c{Smya!pbRO5h~TnUgT3mr*B>n!HP$j*a1lGcplKeN!CxOos%E zX((W3kG%y6B1_p5@xzoRYAt47)UPlC=<*~s6JmcA%)+wExVrio|dr7!vqh$n72 zk8)I8`A0%oC#__;F{A3^#oRnfRk|Mvx>1u0Zdf+clemW?BJmQxr+AiJ60_yd;`|Gk ze85&u>&a>j{_%?-+NX*sJ}-z$vI~h93FV1b$;+mS16A7mOLF6BdE`J8KG!W!drT3b<#O3==Yb+LIE;;{*A$4 zHxLET^i}?a$^3b%Xh4HbREs^a`;HiJ>^ztyruJ3ktigTw-p0|l#5UqQGKxI+AB<7RcSILJq8woEIWRXHn0o=t%>nA41NF0k`WHa` z9N_vna6KEiegRx31a|6uLi)DaPV*y1iCmUzTF80q&90AzFKJ5!&(oLvr!OPVUk;zX z9P><{q#rur;TRoxk>A&ADGgnYl5-4f41wOTIF)YjYayf!Q*En#!2M)@I93E(olFit z?$^z+n59bg`7m-sr5M+tD25aTsVB`yW!~+P#~GYywdS|mj<1+K33HeCBs@)RIQZqn zln!i{0gGp2^p{#0sai|yTIqE|LtfmMX(u%ftZGgV7gJ7)H!AKfbZBj@Auiv2w)S02 z9sqTayh(SL6^dk6o)q~HrwLkzU^@x7Im!=s>a+wLAJb|ydsatr&fFIO)e)L*b9qho zHEt(XYXhbYi+B4%eLZ*gJ6pH63&5P}DkrBDQlkSCcqphvFH5{5R?z!y=gBQL0}fyg zkt$U-J@=?A+6oswUYT4SIxoOkxtV)8wk%o=3IVNOK1@KGp}~^e10e@PAY(v8Mu4&$ z>fxb@iQDK(+ndwuyNQe?&$ZRhwF?HG(<;$%{z5Gn{SvNF8<#Upcpv42fb`RHDZhJ*Bm#|?+q zrqz!dPQuGYo;Dm`7u7y)K!_+ef80QRa=lv*+7N}5qU>h3kE_P3+` zjEuKda=S;;TUVfKdjC~jZEnGBTybtsXz8wrHRR$K%D$13tL>d?@sZBX5%hI!P3^<+ z)^{uSI=HP)O|JzHP3j1vr=nRM_O<#4yg#dX;W;7#8~^V>##1$~L$tW%9NjzrD~_%Y zW^=I@*5=A`E5Brsdy9HW$Qs}0MhV5j$K`_F+4W^Ui*;X=!}}mtRE_%eP$chGhE=Sx zF!{t{yQt_vaK%Nd8pCE0DvA@*c-GgLZj~->KgVHpqo}Dep>we+wqQdEo2(9otrn{= zhbhUO;#Ie3;bNj8)HR1w8m#;?b4JaBuj41?9BM{;2Lv-zj=Z*xvg&bjR@b#?WI8@o zNV8m8+R{QaLsoug(l1ragRN_WV%`m*@lFV#`z?Q3TyfFb#FZvG*~o8lG=?zy*2@dk z-m*iD{S0K(~Y=1HJeQ{s1O+hRV95OH+K4P!YsM%nDD?xb$%UP!ZWxoz70 zgNoqB#3jKHHdybAnH7c?zZ?PE?a_-JaEo+(4iYjV956sa1{EgXU{LfLN;&L=2(_!gTjq^-&F>jLV-}^u*hXTr$$Q5k!9}>FEZyhk2T#IQ=V%tn zd!(vp%wNBZ2ow=by|p8u?LPrURK1^|WSVVNJRI`TB~=k5LA*-E_es zut6%4tQ4bL;feO! zJl+x9R($2DWp(sxvOD7BL&al_b!#LPa?8*+k^Yjp9$iMRWU-hGCfqWCJ?gjo8n7oP zc0jhVl-V7vs<90(%DdXQ#q@`HF*L8`To>R1+R{H-6{@XV-v3I-cz0PFzcH2*5qwhSxq1N`OSDI*GR^nW;8b>VAQkfMe`VCSTEn2UnPnMcq@~= zfosr;%*!#!R>ctMVKU`t_OiPktAY^m74r=TrK>R>(>%nz%$Eq{Qd(M+x&0D&`yR*r z)!@L5OP|~Ei!j~GeZ3^s;hER`BlIau0xQc6FCBZsN(p%0V_JOc(w^0;-Nprb_%e~{ zvrX@25AV8?Q2gG#L}{TNjJ4Kv^>*9dEuv;7@Y+P+9kR-`rc5M&oG?v_qRUy46pVWLN?vT5oaK5=XbFyu2cr2dzDwr=yqyYQH>ZcmJ8S&s5R|2UcN z{HCfuFBi*MxRqk^Q|qZV@eX_DKM{XZ3pi$2D?Y~&qc`%_6LW0+ffBvXASv3H(A(>M zEAJRB|1&CU*o4D#7_JK&&(*y9Pa(sMQS`Tv!TAp%!|hSXkOK)B9*;tXz>|<+Y6cQA zC^rPC>KZ^ohDIFm0UZ2#e;F+o4)^tc3K>OiA0d=rU%a?h_!m0mWMyk+XKY{qVyB)y z7$1d%cafbm^+t`2oPA>u@{yg11Sru}P1PyVeGDPy zhWFY)J+R13s>rK%bxC2=JKLK4Y*6p5UmOE@1})F1xBM!SCV0ay}W?1P`q5&`VdWSrf(03yM3r*lWkSos8Q` zz~4~z48Qj9Je{SO9z?@Et5_~(xH>XvyhW@^Y{R|2@0;`L&p=Yf>&N^iISLyBU?a=nmtCkacf?&6fGhGBlMKs(~f`v&@C;*LE zXF`|PWhsz%qRM&ANZ&>gwLYoKaTvSlCttS<#gJL|;83@o6_aDSt&JA(i5eQ-&G0p> z;~nAtuJYUBVCp27VHii7^t>x2B}kE1BvNSws|Q49QH1y}PMkOp2%rtNu`c=~)cKcX z2^=2sdckpn%uvvLP=<3PZDWMox!Legv(XXJ{VCe#D848VV0iVlA;}&oOrQ&T=+1QD zacb(5BLElQ0p$@(6UkT*I9PqlRH8Qd=PFUU5u{Z7cB5_8G-G}){jfJFR&i2FM zX%-WLAlA$;j+He9vz$M!Yhw0aC2eJoRw`2T8!P%PRD<4|BmWxSM(l3=Ltbhud5l;z z;&tX{6QpnM3Zh^)ucIhoFkn1zg?1GPYI}?rANn}ba2;6&Hfr_g5T1&z?50H=Ic#@suo zyd2?KJqw7Uy3}~gch)=D4aP+;36znu3)>I!A<>H350pAc#NqoWIA4%|TTr~yWXSME zh!K0O8gDat$#6gS#VC8AFgbhM`O@7k(>46c|2+4Ddi4kO50{89zl11czNpW8g;w<9 z=@-B6<-dY2`o5>cr`buaR@${pHb{oyyud}>{~_-SY|MhI!HLqi!?W}aHJX!w^l3<~0d*C5NzVrbE;S8z) zqerUaP6zMOSsQ&J`9I{o~!4pBB#f5q%tO}6`l;wRm?C@*kR84m^FP((GlAPyV zL^-`S2S{r(l2yzgfyY;RYn5N=_pt7L-K88D=!-#&=n^^$77U4Dt_+D5;M?tsjHT&! z2OM6SH_e<3ewK)T{aOLGmh6E}z%CzSVmNerfhj$2ayGyi13ppd-B%7yLG}PAHkA7@ zwbWi*TkRtZh8X=lK9spNS+mf2;4IE|5&&ItTu0go)khn|Wai;&a+sN=&G8pgsT-l_(4{;CQrr zx#@02+0#_co<2~blU)$?ohm<3MHZaE6qcY2AFvI z#rEd~+obSaAnvs!VlG=fKSNI}RjPB3Jqb7+ga3 zoJoBY|J|jERP(??b!nx_Qn#sB1mc0_^+e@VN%#!bHzbn12WVFt88&dmYQZVLDI5(WqrMB5kBEn zI8}Z*)&o8qhJlM*Op9^S5koRWNvuYFZ2{Uqe*0Nh4my@PZDjrIQtW}q=0VqEz{>89 z3-hj_bmou@MKXtdUuGGRH^-|{r|k1{1?>GovR)Al_Cms|>`+(hDf)!*vvk`jL9#=M zyzKhSOmRp!CIvFVtwTS581{a9Q>Q%ceuc<@eKn!nM7c;1?EFfoUe&#uh+n!)cIJZ! z1*}j`pT~~qvqIYRx`AZ+h3nft|rY8VhC|VyyiR!(g1f=2&Ls>p};~U{@wix%C z1RrAB0xGFTY2H`)ie$di?FBWOFWiG@P${%9r-lVLLVf-QsTxPv(bya6@1^kWsdWbw z`B29>Z{9*XKHS2KhT(^rs=wh5R8QAnX|wx*H{ZXJSc0CPkFussDa;qiOVWLz6V)e~ zMC7IE#O=9xvKIc6LU~p+AF9X-E=mXq--K_JPva#xb$U>IdP){{GnN=%WW4tQdjq}{ z1V8^`NlxNHwk_62G^Dpz(F zh-PHDaO@K8Vl-!}54y(sp6G}&u8 zbjwQ38D;Ugpxk$9 zCFw(fK4}OLd{qD_7hj4QWVH`~nkHS|uYF(D@8Z?t`licsLkz?O8JYav;_E|4WtP41 z&MMqdnj8nWsesPTwDebUhsQ|9NS2Q;gYOed0zyW=Z7_~Dj3n}G7B&(zSa5fDcW>O? z-QC^Y-5r9vyC*mVhu{+2AwaM|_&b?5Z|-Hy`!%Q{FV*J*`Hra9W%QNDkMa~2NScDcqUj%knt>KMEG@JCX0#+MWMHcgZ?YB(5ZK!N4MQGnFS+(EwVx};54J+(w=PU z2By-XT^56gkzT`K>3;CBbRo3AZ;0*BvcQZrv7K{OR@J~L#NPr)XZ7p>DZd-&pGMl?x>9baiM9EYBFYf#hYt}`*7AUXp|G$ZA68kkm*p`1 ztvM9a{r3fl&)J+QMhdcVk$Q}V?zbS*36b5ubmF=3Yc1q@u(!Cs!4d_&_k~~Dv-aTg zg-85}4I8BMy}0`_zy!5wW;$#fNgU=jd}0#u5e# zRY>6?ANS(Mz;~lZeMiND53dSiz{fEamZXBE6p&otwS4^Wrz^(ieNiIG$m^BwKK9s) zU6PGwrDJZ5Lg2C;uJX`m$rrV0*^a=sHkJ@%*%dNF`d#{;c4^pxG9P*3>pUJFqJn%( zd~xt)igQ5sYT5H;Zd1xWSW?NGYyVF>3jPWasOntjQIe(?`xQyhx-FAQT z85h^Yr$7RpHfYR`cFFG~;`~ZUeCS`RmF8Xh+GF$Ca#nH&{~|brU}S#lv*R7%h2lHB zo4QX%Sv9(>tZVEx8*I6$u9yOOH;Y5jb|x=UGwJIkyUTXF=&dxL?!pR+ zJoC&~V#C?R3%>CC0_LqKTcq}4W!PisSXMMj8yhkwF48*8Y3Em#znI(8@W+^P<77Xc zRc~-DXp%R7lNjA-gxV-MfF$$$WJlWaZg81!aG~wAos4K0l9<@E6?c=2beNn>HY&P< zc%bFkNk`jslA$yuneaWrUGhUBS*SNZ2j{tu9c8HcO=!lT*rPYX4d!ERlpe;?0A+r- zeWS=SfG7(OdWaK^1tEJ#Gv_Mh#lSHwLi#yglrw(*MU6Zwp|6dtk~LmRmT4X%OVM+n zV?U!gCm{{Nl8cPaym&vS*+p^!!m@*uj&E*`f=<17KdTu|V#0imnUs#Bct5RqeT;-cuC?Jw{E3NlD)`x_SqPPU0B_}z7WywWBr#t5)q(v_& z9p8K_Ie})`K~4ugcb(Y`CpiIc*+E9nSGo1y?R&UbEI|k%Pgal56 zq!0?wH8hM}d!17;fiZw(ur8Z>At2{(;XhU zB@LCIEEB~KiZxiEto^{P&{0>cWr->}%x`iaEw<@cfJllWX&9pm*D=W*UApq4mhO=z zWZg?1V#OSRIpsCwjf9nq&W+kAp$+${%-!<;bxM^3fgJfuEtmd7r`7rfa-#KufRQ9qgh>`zPs(KT@>xuMEx4cDjYr@$x1;q`eDM$+7H{gpCy_?q4)`UK+Ilai`r!8s6j;&hRca zqPapPyGYyzS#g?0H&}47Ic50tQ7RhbARl{|&|&Bf(cGB(_p7~0egkZ2Pp zK0UUywv8u>~SWhNyZ&yu)OSCTZLsmnDZj@_%|e` zd~9~v!+&m;sTpW&4ARJw2A8Hx40O)gf#R z4r`tzi8Wq3f}yI7P;?!FA9F)LAO>3~<>g37-%-Kl+iym?o?~70z|6-?Z{pLAe&rP` zM~S^Q&Tp`J*LC#kkrk8f)HeT>D{Fj;kv?EN-6IR4??z|Wi#|%LqWx!RF7AZa0dk3I z&U3@|Vr0hA7R~W>Gn9&+oO%B8Nrr0g+<6gitUrc2bDqBlhv~?-y+{A&M}bc&tsaU5 zKZstlLXu707iHuh>A?YceKh$W_^7Xeht@Y4uXsLwxMo`}=cd>)CZC96p;)Q*dDbdl z-^}=x{Q@6Fo_5Kc@=?2i{e>_M{&7c1jHO$)VJ1B>=2^sRgCVLT$JD6fGYVGJVSDl= zMxVed9eBO=8;*g)|MV@r6o43SgC$?|T zgCc6u;#G(c8p!cg@q8v@9-;3L2HFVtdxobJK2HTKb0Ku~7!I7`PIUk7R>oP?a?m`NL;vZcXskYI1NIp@_dW08b8?{BY*U z#`7INseUqvZ=!e^94v#6FkqP_b(uwVndkiLHz?AD?<}fU;Iov^0oh=F5`mu)A6$zF zd{pS~A66-hlpqyRtgu+y43R{tjgi_b8KFrTg9SlYpx+?{ry&QUo6V3NgHN5@Y9c?a z17#A6JaXd#VB(H|iK7WcY^R#?rSzb4|H{4|7~#4OsxIzK=vub z5O4tpsLOt=oCdD1gHED(Qw2?LhR6^4NfTJq8(R0G3T&4J5GXhlujdnSh(0Uaq(3xt zAZfXEq=n(uCharAbCI-&xSq@Xev<$A{Wjn{=ORhBw<;x z1CA*JVRjM?3f+tt1HmB39jqHELw##x%9`MF34QQ#Ef!RcL|zb&-+{p&y_1TNQ;(Fx zm_J^e$`mXB&8mGTYY#4qI!zQOl}I3lLOHrLZaymOI2E!{EmP73p9%z|_Ag$cvByz9 zCrMpzqe8P5AX5@i^O60&P7h@YW#a@&<6 z6tMq9uOBI=A31fS3__V;2~uA7jxtIdH0qhLKrj#twVe$V^{$1v;1_#9(3NWdm^zuD zq6ai3k_8B*f^Yye-@0-0_rqU5poD%W{aluHa`J^d!W?Umi`I$)nD~cxS^ct(itoEL zGso}PRe%VU!ZdAIZCTV!stT7;Wz7_}6BRHr!IFww*0_o*Rs?QnVeAuwti};1_I{D? zl#GTvL>Ur+ASfMd87z+aRdbehH{}Sh`Tz=>4zOHC-a?epIObdlnAwWknYc)T)v;rd zXf4ut5QVV;9%R8;Wh~T!OFthdDun>BHu8W<{?Ean8wZ~FsJ#dZ3r=Xivtp49<#ht; zyOqpWI+x5x?$JvrbJ2$jwbUf~NGh*Fpwm<)=L^;7_d7PB? ze$Gi!%d5CVUaQt5jX7A$daIXpcdYn9tp8a6fv%ADHUHRJUB5T0{#m%O4f1t2m4W4U zJsw>B#L%ysrZ2qu2Xg0g(x6|0%x6kd|ckABR z+-Q4=dtBW4*j=@$dX9+LKxj85KeA$Tzxb`a22oOZLvKoNLfx9~DGA@RuO=_9Xlty_ zwa4FG`J!?nv!%)Krt9L`eVT`77t!^lf#$)?nG0njRK4q@^n6Nr*q>i@!V2TqzBzj7 zr?UUaulwWG&eiXi3>Xa;*;HCSl<|v=n=kDf&G)m+dN-w=bOi3_Yfs0gCrw>rU$&J} zY&}~nPRfdpvr9-~rWR;BJb7Dx{8B+CA_C-xx^%V<Ocd4) zIT}lkc-W4lXYQ#b>cmBlAr{vrIjH{TdM>#noG7LnA}r>c_&v&vfq8aGn<7krySgKZ zknY@SFeevt3Y- zNQ2Hi3!pKYP?Ad$(*(w_{0Cf@M@d5tQ!>>{PALRrDGi?`9Xn&@n4Q*GY@mX?Duj$pln)Q zsd2hMki=k?f~rU*QX9f0@mWw1rEPO5R_XVE=kO?xbSK($A|ALKq3N7j^txOZmC8UfS%*Ey!OyHCQ zcQi@L1u0!Jjr&6kj#&DW;H>t5GspBJVVU|Mn=;GPyF&)OFo&{ttzgL)n6#>3UiqJ@ z31w9o6`GT8d+T?&pbp?T^z^1D#TnA_ZWQG<1p~N@Dwtt`3=#=QF#FIymK? zZ)@Bp7h;kJJ!#+^<@v%(80{d)e=urP;8ODhYZFLhX5CK+%?#4(iyefG;aTX;$g?X$7ec|0|Pv(%_{I90!uQP z9$b_p>#G{?!7*&387Bof{`z9VNs6c=`5G`Tv?!8N@NNY$N^D8&6OS)gUeV^jpCI>Q z3+FmfPKDq=O1F${t8yD<#Z3YmOQN828Vi0J$6ihbG>27$E48>Y`8tq-mqk*F7vmZt zQu^I7Z9k@TVms@bO-9x}pjsJ!GSg$gpyJLVE+Y(z3o`0}%h$Zah>OJe33|YRT}JkX zXt^TbK&M!UmJMw3LvX(uqXMh@?MIs-CoxKm?F1YFj$D5s?9Vyq7E|5LM)eDnjOL88 zm%YGzI|H_g>pZ5sR}bOL!E+C9W;woHoIbRfI=AuRChNN5R2k9cl1<*Y5B_r37P#%( z*?IhEx90U~dfH3Pp*n9n#B*$`+g28Pp?!C}`?~1=-^wVEI|oqjcOW3$82{&x!~RDZ zm9Y|6B!(HPKeRK4q4556R4mJkRf?V*`-er6^(y_^C@nr^Tk_#J$=;BXV5U*U5Z%vV z!51h5pDTj$$(qXP$w;Kmr>@ZnGwWQ+9v`P1Gk0Rq)#b&|6q`MTMNz30D_@r^Y1uhn z3Th`P&}|;ktW>q`<5u6gU0K%>Pqn1WAC(>GqFS#v!q+FQEd{PyS6O)S&1>6(+0tI5 z0?;p>hG4BHa6ebfA*iyesnyxIY-*;jl!IR6=2D+C6SY~i^jges)Km}M_U~W5g4IwZ zCF9xNCpPxECnfN1X-N)NKcC#K(j$o5rta?lyy$bo2zd0C#z|6n)L+TV%kVd-x!X(7 zbAHm=@FRJy)>%WN?<;1F<#2V?UOa~x$=2<<>gYk&e((7;ifX*J8^_}q%3ucG#MGO} ze^G>a7a`@vHv#y~PM?)i|ym;lr0b2OpneF$-_t#R_F6l4#_Ee5npIb8W zmAgITzYTj5WT&Knto^9R`1sLj2M%$nep55)pvyY%qKZ4!^K=oo53`o%W*BisFBsGi$=d9rcg))NlQI8teE5BI*;%;Q&LJQAT|(Zoa-r= z;gu?`2m9l!Az&@r^M-=-#dXJ00y4NsP?Y(BGi5VEh_erZy!Z1b^@n$3Gcrl(?M28o zBoHGO4rqKsOj=GZ01&gUg)pNQxgppIND&vXUWUy!buZ9huxtK0_f9F~hTo3xr8!TY z!^CQaJTbhn^BS=Yyk}g+>FiJBZv8EwLBQ4M3GOu+8c7&FN4rf(599&WD`q<4>ZG89 zQk@!z$2y!8R64;^AnGBYthe@jI_{68^xINa0kL3r%DfEtph+a5XBP}!n)QiZkUGsr1ZH1wU;YrhQ+Pya50u#l`$%&KN<+%Z zr=WoHGYHn_evyXsBF8RxTTEF$=dz1;^%Ee*cm|2^qsm}+w*_|)N!M(n2bC2}AKs5% zeJUtB6%bTc0=EG{^AV*c1W;!@KqB|vTuek?2!cZ{EP)sIXqa+6M~H&kKNUoM7SsX+=JMqTN%SHvJm zzS8I`UlSS8Km7%7V~D%BoBWDGV$m7FgVpnP?`+oTX*5530HxSt^6VrbDx<#^xxzYb zRK|@9C0XfJC|Hzs+q^XK!iY{q68^NeADp_982ifESyG2T6BTz7;N<@+q-wfd$~-w| z*2bQv=!LE(UUQ||$;rSQiv338{$^lN0B;`rTR<*Ml>XZ`l0hP6pU0J{^%J#UqJJ}`A=(dD~* z3_`22ut&SdQbNx5q3aWzNOnJ8i^u7+YK%Vjg%B#zecx54wN;`FpPQ zNZMW~E8c~Z-Zxw~!ah~l0^zn@Ntob9@@^5Z#?U5Me0G*#M*D6gi&H%uOBU}bMDB+q zdR+Nw7)nwlWrH7_pJ6F=IjsfMlpifMWV@0Vm;HWH*E3-$psep=tL6AnRM4h?P76_) zw12#IH|LGowKy4>ug6)xzWYF*M^O~{L58ztQow4uy+KNRZXv0OrYjheYB9iTC)u-; z16lxEbapU0XeKB}Cm|Vh&jZ)PcncPuVde@S+XG$1MM&h(C+{WmtfpabqGOv58Mbab z>1dc*L3D;m$&#oes@$CMv9Kx5G6J!`#(C=_$DfN6_rgnVAO~N|GkY ztFoee4ck*mvEFMbbbbKTaUFCCJTHkIaG!0>QWr(vnsc>FM1cGK{Tg2#^;2AGGRyDHPAfPB29Ua@h= z&ByEP8Bo`6l-JlRu3iM2MjghfaEiVuFjU}kvHEh8Ui20U1cavo1O&L3@3$*KXBST!Q|I69{XF;7>4Y6AKtI&+S8D^Q zemzhB7fUndbD6bc)CN=lRPySvJ#x_P_D$ps^-=CGfqz0i0&FV=hs?(-qbAC#N9h%)y~Rx6$^e0Gmj!k zCfv(%L?RzHNwL`-;oO2VJ7ymnf#lM`PI>jqi-$j39WJ1~Aj+L@2)sySVq_?FkyGCE zb$1_8+S))no|IZOX_i0{qD&vJt49vbK+p@au;G2D$T|6$c#Ak<;HafrE{dj!RjNs7 z3e`;5!O`-jL?)n0*)F!Snp0-3nv`-V=e;+Ank8;G6^+b+i+E<-W(DVKjnkHzkrwF0 zOnL0%44LKHwG9gSM1-5o?E9#DOFivcPcn_R$OjuPJe>Hm&}HdJ0aaue;*134$a3q* zSbO@!$|{yUfux!>4R!Srk_ommvbJ*_BjtglDR^xLtYhMp)5%yg)&F7WKv<}{7x-9#fy(GiJR=5dsb{EX=^_U!E z4!GDYQKvd)_JfbeXlcg)av>Mty_eq0KX|9x=xoxnxb#;vV#h6K6L;35cWdS z{zAg}LIQnZ!4&dw*8|}$a?;OR&;c{Z-m_OagGpgAq_XCNFA>~NaR=b#B~tE{8xHlW zN($Tmv6uQLsmHTV{60e6eYz!Vw3T+LMr>M2#m_^b;93a#o*e`B1H|hZE$(!u`RVf&?GNQde8*+w~)|S%!7Cxo$ zT>0JjF}-@45lK*+d=8) zZq69ChrtIsBAX#W9}+PqP80BylX}`xZl+UbO=PD`Vy}vb0&t*WknZa@>8#gw(_!hT zo4!^{IsfS+;&rscuA!gXB6i=w_|kOvKSYlV6Kd2IEy*jk%NUJM#$-$9#02^FetJK7 z?J&G#WpL>WmRy`RYxLa@^vTYW59- zT(%fYBhl^(FEY%=(VMI#a!H|QR>^&RcARok0R1wsf;mXGUibt(4+Nsh7%^3;x2&2Z zec{)p$Gn2NlseA*K8(e1UAU?cBs6SS&qYB)owNpE58!G#p4=Jr?Op3+yDjH>5+ui5 z2b(>0mLvEz3RHOy+A!~RJLqF1M9SK1HjZv7e+uom;@_8mN^$MtP5};GLV5nmH?nJ6`L-x5$84Ji*z> z{+dS*D4~$rrWV8|G2yI-+5xvu2Kg6y!MkK->kjLCDL4uF1_gdWfln}yClm>0kk%cb zk1(@q^7M6fh(FlxOplZiXBiMs(=l-)TE*r*+OJxA@e|QH<0M&K1~oECPSdq7J@8p> zn>;DLpP?5y(h~UE$+c9HdNjBIh?v2QQorxSJ9`;z0Vu(Rsi;oFSsqja&a!bo3Y_It z!&~N5y?3KgnhYkQYxw9hSdc18bgr`q(e;X0&QV?UC3G5G-D5h*_qPPxA}(ufoIS-_(xlgDx*FvmLz&})vj8&rSs zskZx$XK>qVR_hF4yJB-Ls#Q7ODzTdx1g`P#`{KS{^T+t-^08L>Lv_LQ`ImJ<^!bZh zNyZ!gLuN%)UIBB^v+JI0_9G7L_{t04TC5>9rc| z5X1{PR=k9}x(QihVuy!!V1B_?UmHKMn6pOlGq5Lr5bzk+C+WocGDo+x%p6h`Od4^# z{6IIkLx?<{VK+dDm~0$*$mIvS#OnQcpKsC{JGU!F&s5~jwM#RB89J6fGNO+gAw4r@ z(W{-aJ=HPR9!XwwydA3DULF2t9Ba*qiyavuYMd#PdSR~7+&g7pd7Wq;3$_%IzXX-$ zEsHk5*`E&Q7#aTlpw5lh#>7?pl)Lqldhz=MM(@Fw-EqE|Qo-e``#iOjgXGsY;z67E zX;eQ@EIEIHa@q)E}V08$XLg3ZS*(7{DU^I=Ma#yO5PzSAF(e z#&%Wu<>m)rLZP^*1MO{Mu}rjEN*#aRMsM*=iLp_$$JWv7%}hBe-(z1cV@c%Pk|+$h zef=ZEf6GA^hpez;Km$Pvpxy%UFFEM9n%v0V-ujPrJb4Xh7YG-oFFNysokwoRP6)Ta zqM@W;P9ywItKlf4iWVCgg~Ru0jJ>;q(d3NO5i?ai( z_)1i*jx~f_Uw7hF+qDgF;oVnAE#;iqT~PRIvgD1;08})s>MIBra$_nV$;mw2-UL(A z3up0R6Q@}y{C=hblzZQ`8F|;M+{4EYHKpXq_88y2sp#t_OPlZ&oioQwGOOo5wL$Tw z;UbMyx;An@TZE^Ku_E}Q9r3z{b`n#Y^8(7T2tRQ%`HBo|+o26mh?ilXH}GJVeuy2O zowU;kRYfyl-b=uM#np6$WH@=BZn9Pt%HrPHM-FvmVPO|cw0+^CZv=TSwr3*x8pRq! z&N5>H*3&v3Vyx$K`@xJWSo2p=8^hq9fsE#)f*OhxW|yLHaQi`&52zdr^syQZhf%G0 z#wpBA*ja~Y9<5c0K3n=!z#NQ)e4h&QcyHEN@5v9Q2w^}V`t4HxcUwYAK16~_U2ZHN zjX}u-2S?@u@`v7)>Ec_0RCoc~dz}BS^|Jj%-+5qdn?rzrVEZ z;WHx~7aj;2n;THFHx!VOI^`Jv9Md?Iwr9W+Wlf`8U1E9V_nKGE4}9Z@Y^BWx zLu_q#TfPZ5XxH@rh@IHNjipayj(u^yK#rL|WFzsFTEKku@Gw;E%3hIFL=mL01c?qD zX-F6qickw?mKsEnSVR(}um!2cpNiNIC<-5{M!#h1UmSj8kUJf@UQB^9=OGqcUwlFN z@1npgvIbEH-T?lCC$0u+M| zGBlyWs6&5bL3!OeAGB*+an%d;37CA&0wKQ@9!iuGQ>J`S3f;2>)G2DQ$njCiBroY2 zm$1ooI7`9emrtpY3n(1FP@06q@M%beyDub=pOuTy=BikL)M5vUSFaQ%fH~2mWf5Y1 zE6b}Z$rKNbNAqBCmM~incdw0%w?!SOR}Ii?nz%7K;=RI^4k%Dp#=K0XRnKH%Zt*Km>^Y@|*lOpf&Iduw?-OZ&x4x zl|sK+WZnVH#W^t2->a5?KLS9>1pZKr?QLy=t@D5V-Ty0vc|23~KdpfOp`Z%=p_n)s zx?9?r|1ZT^LBHsf4u{?ZBdAm#Y9}0Q;zf%6}nSD!nyQ2ONMX=~!DSy`2-%{Q#lKewy z0;*#ER1DU&num zi*EzI6}bKhXx{n1DgRsidK>udxcyIH-R?hu|Bq4pE$8i^_YcRS=U<0F1!)Li=LiCV P2K=iA3Jq7izd!vyhbVl- literal 0 HcmV?d00001 diff --git a/docs/ADRpy/notebooks/Example from Small Unmanned Fixed-wing Aircraft Design (Keane et al.).ipynb b/docs/ADRpy/notebooks/Example from Small Unmanned Fixed-wing Aircraft Design (Keane et al.).ipynb index c5e6b077..6532cd65 100644 --- a/docs/ADRpy/notebooks/Example from Small Unmanned Fixed-wing Aircraft Design (Keane et al.).ipynb +++ b/docs/ADRpy/notebooks/Example from Small Unmanned Fixed-wing Aircraft Design (Keane et al.).ipynb @@ -218,7 +218,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAGICAYAAAC+3bJKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUxfrA8e9sSYFAKKGDSQABgUAoAamhmYAgigUQC+iVZgG8P/VaroKoV7yWi4oCIooU6dJEJVJCEwktYOgthJqQhEBC6u7O74+zWTfZNEKSzYb5PE8esjvnzJk9CXnPzJkzr5BSoiiKoiiKa9E5uwGKoiiKotw6FcAVRVEUxQWpAK4oiqIoLkgFcEVRFEVxQSqAK4qiKIoLUgFcURRFUVyQCuBKnoQQs4QQb5f0tkrFIIQ4LIToVUJ1+QkhpBDCUMA2HwohJpXE8So6IcQoIcSOYu77kxCif0m3SSkdKoDfYYQQ0UKITCGET673I61/RP0ApJTjpJTvFaXOW9m2rAkh3hRCnBVCpAghLgghltqVhQshnnNm+1yVlLKVlDK8LI4lhKgFPA3Mtr7uZf1d/SnXdm2t74cLIe6y/syzv6QQ4qbd6x7WfboKITYLIZKFENeFEOuEEC3t6jwuhBhq97qbta7c76UUdAFSjM/cWwixxdqm6DzKo4UQaXafJ6yEDj0N+KCE6lJKmQrgd6azwOPZL4QQAYCn85pTOoQQI4GngH5SSi+gI7DJua26fUUJFCUZTG5VKRx7FPCLlDLN7r2rQFchRE2790YCJwCklDFSSq/sL2t5W7v3tgshugBhwBqgPuAPHAR2CiEaW/fZBgTbHaMncCyP9/6QUppK4sNa3QS+A14tYJsH7D5PSEkcVEoZAVQVQnQsifqU0qUC+J1pAVqPJttIYL79BkKIeUKI963f97L2Xv9PCBEnhLgshHimkG1fs9v2ISHE/UKIE0KIRCHEm3nta7+/3etoIcSrQohD1h7UXCFEHSHEr9Ze00YhRPV8PmcQsEFKeRpASnlFSvnNrZ4su8/0phAi3tqmJ+zKvYUQ84UQV4UQ54QQ/xZC6Kxl54QQHazfP2ntvbW0vn5OCLHa+r1OCPG6EOK0ECJBCLFMCFHDWpY9xPwPIUQMsLmANv5LCHEF+L6gOq37PGVtX4IQ4i3r5+p3Cz+X7G2nCCFWCCEWCiFuAKOs52Su9ed/UQjxvhBCb91eL4T4xHouzwADC/kRDAC25novE1gNDM+uExgKLCqkLnv/BeZLKT+XUiZLKROllP8G/gSmWLfZhhags/UAPsrjvW23cNxCSSkjpJQLgDO3W5cQ4mMhxA7rz0QvhPjUeu7PCiFeFI63L8Ip/GeilAMqgN+Z/kS7yr7H+odvGLCwkH3qAt5AA+AfwFcFBM66gId123eAOcCTQAe0P3bv2PVwiuIR4D6gGfAA8CvwJuCD9js8IZ/9/gSetl4AdMwOIMVU13q8BmgXPN8IIZpby75EOzeN0XpmTwPZFzhbgV7W73ui/UEOtnudHZgmAA9Zy+oD14CvcrUhGLgHCC2gjTUAX2BMQXVaLyJmoo1Q1AdqAg0LPw35ehBYAVRDC6I/ACagKdAOCAGyb1eMBgZZ3+8IPFpI3QHA8Tzen8/fF6KhwGHgUlEaK4SoBHQFludRvAzt9w20n08rIUQN60VZR2ApUM3uva7kE8CFECOEEEkFfN1VlPbmY5H1ojFMCNE2j2PrhBBzgDZAiJTyOtq5HwAEAu3Rfj9yOwo41KeUPyqA37mye+H3oQ0JXixk+yxgqpQyS0r5C5ACNC9g2w+klFnAErTAl93LOYz2h7bNLbT1SyllrJTyIrAd2C2lPCClzABWoQUCB1LKhcBLaH/ctwJxQojXb+G4ub0tpcyQUm4F1gND7S6A3rB+vmjgU7TAiPW42QG7B/Ch3etg/g7gY4G3pJQXrJ9rCvBorp7RFCnlzVxDyfYswGRrG9MKqfNR4Gcp5TZr2dvW/Ytrl5RytZTSAlRFCxKTrO2NA/6HtbeM1lOeLqU8L6VMtJ6TglQDknO/KaX8A6hhvZB6mlyjSIWogfb373IeZZfRfmeRUsYAMWg/u7bASeu53Wn3ngewO6+DSCl/lFJWK+Ar5hbabO8JwA/tYm0LsEEIUc2u3Agstn7OB6SUqdb3h6L9X7wgpbyGds87t2S0c66Uc067T6Y43QK0XoM/RfvDl5DrHl8q4FXAtmbr99nBJtauPK2AffOSe98i1yWlXITWUzGi9TYWCSEOSCk33MLxAa5JKW/avT6H1nP1Adysr+3LGli/3wp8IoSoC+jRem+ThTZZ0BuItG7nC6wSQtgHUTNQx+71+ULaeFVKmW73uqA669vXJ6W8KYRIKKT+gti3zRctgFwWQmS/p7Pbpn6u7e3PXV6uAVXyKVsAvAj0Bp4FRhSxvdfQLljqoV3A2qsHxNu9zh5Gj0G7gATYYffebutFUJmRUu60e/mh0OZ79ADWWd9rinZx0UlKmWm3be5zn9fvVBUgqQSbq5QS1QO/Q0kpz6FNZrsf+KmQzUvTTaCS3eu6pXEQ68jBcuAQ0LoYVVQXQlS2e30X2nBtPNqIg2+usovW455Cu9iZAGyTUiYDV9CGuHdYe6yg/SEdkKt35mEddbB9jMI+Zq7XBdV5GWiUvaF1SNl+Qtit/lzsj30eyAB87I5bVUrZylqe49ho56sgh9Bun+RlAfA82iS31Hy2cWysdjG2C3gsj+Kh5JzsmB3Ae/B3AN9u916+97+FEE+InLPhc3/dzhC6PQkIu9dH0W7j/Gp3qwe0c29/q8T+55DtHrTJfEo5pwL4ne0fQJ9cPcuyFgncb72fWBcosWd9hfY87EAhRBXr/cABQCtyDncahBAedl/GAqp8VwjhJrRHkAYBy60jDcuAD6zH8QX+Sc45BVvReonZw+XhuV4DzLLW4Wttey0hxIPF/vCF17kCGCSE6C6EcAOmkvPvQbF/LlLKy2izuz8VQlS1nvsmQojsWwfLgAlCiIbWeRSF3db4hZyzvu2PddZa9lZR22fndWCkEGKC9WdX3Tpxrwvwrt1229Bu0wSjDZ0D/IU2etWbAgK4lHKR/Wz4PL7yHEK3njMPtJEMYf3ddLOW3SW0R9fcrO+/ijYSZN8rR0q5GG2uyEYhRBPr28uAiUKIBtYh93/lcfhgtHkmSjmnAvgdTEp5Wkq518nNWIB2tR+N9kd/aYFb35obaH/AYtCGBP8LjJdS2i9yMRNtGD776/t86rqCNux6CW2S1jgpZfbQ60toPdYzaEOrP6I9ApRtK9qw5LZ8XgN8DqwFwoQQyWgT8Drf2sd1kG+d1rkIL1jbetn62S7Y7Xu7P5en0W4tHLHWvQJtaBq0SY0brPXvp/ARoPloFxN5PuoopdwhpSzS5LXc+6HNj3gY7RycQwvU3aWUJ+22OwHEAZellEnW9yxABNr9/j9u9dhF0BPt9/EXtBGKNLSfA2i/OzPRzutFoD/aSIvDLRAp5Q9oF2ebrbdt5ljrOQQcsNZvQru1ghAiCLhpfZxMKeeElIWNyinKnU1oK44tlFLeziztck9oC4Y8J6Xc6Oy25CaE+A8QJ6Wc7uy2VCTWUalZUsrsUZqVwFzrRFWlnFOT2BRFKfeklG8WvpVSGOsoRm+0XngdYDLakxwASCkfcVLTlGIo1QBuvaJPRhueMUkp1eo+iqIoziPQ7u8vRRuWX4+2VoPigkp1CN0awDtKKeML21ZRFEVRlKJTk9gURVEUxQWVdgCXaDNg9wkhxpTysRRFURTljlHak9i6SSkvCSFqA78LIY5JKXM8M2kN7GMAPDw8Otx1V/7rGujNaVRKvUhqpQaY9c5LnnU1TZJhkjSs4pwBDIvFgk6nBk8K42rnye2mtg5HZuWyfzLE1c6Vs6jzVHTqXBXNiRMn4qWUtYqzb5k9RiaEmAKkSCk/yW+b5s2by+PH88pZYHU+AubeB0+shLv7lXwji2jar8eYu+MMx98bgE4nCt+hhIWHh9OrV68yP66rcbXzFDf7EAC1x97KMvElw9XOlbOo81R06lwVjRBiX3EneJfa5ZEQorIQokr292jZiKJuq1KDu/avKb3g7UpZPW8PssySxNTMwjdWFEVRlFJQmkPoddASKWQf50cp5W+3VaPBQ/vXyQG8TlWtHVeup+Pj5e7UtiiKoih3plIL4FLKM5R0TllbD7xME/84qOf9dwBv3cDbqW1RFEVR7kzlfiW2rKwsLly4QHp6OljMELoMRA04etRpbdJbJHMG18M7M46jRxPL/Pje3t4cdeLndxVFOU8eHh40bNgQo7GgHCaKoijlT7kP4BcuXKBKlSr4+fkhpBmuZEHVBuBV22ltklIiL96gVhV36lp742UpOTmZKlXyS4+sZCvsPEkpSUhI4MKFC/j7+5dhyxRFUW5fuZ/jn56eTs2aNdHupVuba0uh7BxCCAx6QZbZue1Qbo8Qgpo1a2qjO4qiKC6m3AdwwBq8gex/y0EGNaNepwJ4BWD73VIURXExLhHAbYRAW4u/bAJnQkICgYGBBAYGUrduXRo0aGB7Lc1ZZJn/vpAYNWoUK1asKPE2PP7447Rp04b//e9/HDt2jMDAQLp3787p06dL/FiKoiiK6yj398AdCF2Z9cBr1qxJZGQkAFOmTMHLy4tXXnkFgEtJaVy7WbrPgV+5coU//viDc+fOATBt2jQefPBBXnnlFXUPXFEU5Q7nWj1w0HrhTrwHPmfOHIKCgrivR2cmjn6K5JSbDtu8/fbbjBo1CovFwscff0xQUBBt2rRh8uTJedaZnp7OM888Q0BAAO3atWPLli0AhISEEBcXR2BgIO+++y7Tp0/n22+/ZeDAgaX6GRVFUZTyz6V64O+uO8yRc7Eg4sFwsUTqbFm/KpMfaFXk7R9++GFGjx5NUmomr73+JnO+/ZZ/TppoK3/ttde4fv0633//Pb///jsnT54kIiICKSWDBw9m27Zt9OzZM0edX331FQB//fUXx44dIyQkhBMnTrB27VoGDRpkGwWQUuLl5cXYsWNL4JMriqIorsz1euA4d9JRVFQUPXr0oFun9qxfvZzDhw/byt577z2SkpKYPXs2QgjCwsIICwujXbt2tG/fnmPHjnHy5EmHOnfs2MFTTz0FQIsWLfD19eXEiRNl9pkURVEU1+NSPfDJD7SCOD3o3aBmY6e0YdSoUaxevZoWrVrz3y9mc2T/n7ayoKAg9u3bR2JiIjVq1EBKyRtvvOHQY/7qq6+YM2cOAL/88gtllVBGURRFqThcrwcuym4Wel6Sk5OpV68emM38sno5Frvg279/f15//XUGDhxIcnIyoaGhfPfdd6SkpABw8eJF4uLieOGFF4iMjCQyMpL69evTs2dPFi1aBMCJEyeIiYmhefPmTvl8iqIoimtwqR44YJ2F7rwA/t5779G5c2d8fX1p3LQ5mek5J7E99thjJCcnM3jwYH755RdGjBhBly5dAPDy8mLhwoXUrp1zFbnnn3+ecePGERAQgMFgYN68ebi7qyQpiqIoSv7KLB94UeSVD/zo0aPcc889f7+RcEpbE72W83uoJ+OSMeh0+PtULtPjqqVUi6ao58nhd8xJVD7w8k+dp6JT56poymU+8FLj5B64PTe9jkxT+WiLoiiKcmdxvQBO2S3kUpjs5VTL0yiGoiiKcmdwvQDu5IVc7LnpdVikxGxRAVxRFEUpWy4YwMvPELrRoJ0+ldREURRFKWsqgN8GN722qEymWfXAFUVRlFuTFHvltvZ3zcfIkNp9cCengjTqrT1wNZFNURRFKSJpsXBgw3q2L553W/W4aABH64ULfakeKiEhgb59+wJaZjC9Xk+tWrUAiIiIwGg0ohOCTDWEriiKohTBtSuXCJv1BReORt12XS4cwEt/2LqgdKLZsmei2zObzej1pXtxoSiKorgOabFw4Ld1bF88H1NmRonU6Zr3wMFp98FHjRrFihUrbK/bN6lHltlCeHg4vXv3ZsSIEQQEBNgWMXj00Udp0aIFTzzxhHrcTFEU5Q6UeOkiS6a8zpYf5pRY8AZX64H/+jpc2g+mdDBW/juY3466ATBgWvH3F5Bp0gJzREQEUVFR+Pv7Ex4ezoEDBzh8+DD169enW7du7Ny5k+7du99+mxVFUZRyz2Ixs3/9GnYuXYgpK9Oh3C+wAyxbX+z6Xa8HbksnWn56syaLBYtF0qlTJ/z9/W3vd+rUiYYNG6LT6QgMDCQ6Otp5jVQURVHKTMLF8yx55zW2LvzOIXi7V6pM6PhJPPz6lNs6hmv1wAdMg/QbkHgaat4N7l5l3gSDwYDFog3fSynJytR+MCaLhcqVc66Jbp+QRK/XYzKZyq6hiqIoSpmzWMzs+3k1O5ctxJyV5VDeuH0Q/Ua/QJUaPrd9LNcK4OD0e+B+fn7s27ePoUOHsmbNGrKsPyCTWo1NURTljpZwIYbfZk7nyqkTDmXulSvTZ9RY7unRG1FCj0CrAH6LRo8ezYMPPkinTp3o27evrddtUo+SKYqi3JEsZjN71v3EruWLMOcx0tqkY2f6PfcCXtVrlOhxVQAvoilTpti+//PPP23f/+c//yHq4g06de3J4AEhtvd79eqVI5XejBkzyqKZiqIoShmKj4nmt5mfE3vmpEOZh1cV+jwzlhbdgkus121PBfDbJITAaBAqraiiKModxGwysWftSnatWIzF7NjrbhrUhX7PPU/latVLrQ0qgJcAN71OrcamKIpyh7h67iy/fT2duOjTDmUeVarS99lxNO/So1R63fZUAC8BbgYdN9LUDHNFUZSKzGwyEbF6OX/+tDTPXneze7vT99lxVPKuVibtccEAbr2iKUermrkZdJgsFswWiV7n3AQriqIoSsmLiz7Db1//j6vnzjqUeVb1pu+z42nepWwX6nLNAF6OUoqCNoQOkGm24KlTa6AriqJUFGZTFn/+tIyI1cuwmM0O5c279qTPM2OpVNW7zNvmegEcyl8AN1gDuMmCp1EFcEVRlIog9swpfps5nfiYaIeySt7V6PeP57m7c9eyb5iVCy6lSpkH8CtXrjB8+HCaNGlCy5Ytuf/++zlx4gStW7cG4NCB/Ux751+3NBPdz8+P+Pj40mqyoiiKUkymrCx2LFnAorf+mWfwbtEtmFGffu3U4A0u2wMXZRbApZQMGTKEkSNHsmTJEgAiIyOJjY21bdO5UxBvNWzukFZUURRFcS1XTp/kt6//R8KFGIeyytWq0++5F2gadK8TWubIRQN42fXAt2zZgtFoZNy4cbb3cicm2bp1K+9+MI3vF69kypQpnD17lsuXL3PixAk+++wz/vzzT3799VcaNGjAunXrMBqNAHz88cds2bIFgB9//JGmTZuWyWdSFEVRcjJlZrJrxY/sWfcT0uIYX1r27EOvkaPx9KrihNblzaUC+EcRH3Es8RhkpWlvGD1vu84WNVrwr07/yrc8KiqKDh06FFqPTggyrEPop0+fZsuWLRw5coQuXbqwcuVK/vvf/zJkyBDWr1/PQw89BEDVqlWJiIhg/vz5TJo0iZ9//vm2P4+iKIpyay6fPM5vM6eTePG8Q5lX9Rr0G/0iTTp0ckLLCuZSATyn8vMYGYBOQJbZgpSSAQMGYDQaCQgIwGw2079/fwACAgJy9Nwff/xx278vv/yyM5qtKIpyx8rKzOCPZYvY9/NqZB6juq2C+9Hr6efw8Cr7zJdF4VIB3NZTTjwDpkyo3aLUj9mqVStWrFhR6HZCCCxSYpF/pxHV6XQYjUbbajw6nS5HSlH7VXpKe8UeRVEU5W+XThzlt5mfc+3SBYcyrxo1CRnzEv7tOjqhZUXnmrPQKbt74H369CEjI4M5c+bY3tuzZw/nzp3L2SLrAi7mW0grunTpUtu/Xbp0KYHWKoqiKAXJykgnfP63LH7ntTyDd+veIYz69OtyH7zBxXrgNrqyC+BCCFatWsWkSZOYNm0aHh4e+Pn5MX369JxNsnagbyWAZ2Rk0LlzZywWC4sXLy7JZiuKoii5XDh2mLBZn3Pt8iWHsio1axEy5kX8Aguf81ReuGYAL+PnwOvXr8+yZcsc3o+KigK01KE9g4OJunidf77+FnWqeti2SUlJsX1vn5I0+1745MmTS6fRiqIoCgBZ6ensWDKf/b+ty3MZ7jZ9+9PzyWdxr1TJCa0rPhXAS4hOCNz0OttMdEVRFMX5LhyJYsOsz0mKvexQVrVWbULGTMC3TaATWnb7XDeAI7UgLsrPbXw3g07lBVcURSkHMtPT2P7jD0RuyPvx3Lb33U/PJ0bh5ulavW57LhzAAYsF9OUngLsbdCSlZSGlVLPKFUVRnCQm6hBhsz/nelysQ5l37TqEjJ3AXa3bOqFlJcu1A3g5G0Z3M+gxWzIxWyQGvQrgiqIoZSkzLZVti+Zx8Pdf8iwPDB1EjxEjcfO4/UXAygPXDODZKTulY2o3Z3K3ZiXLMFkwlKORAUVRlIru3F+RhM3+ghtX4xzKvOvUJXTcRBq1DHBCy0qPawbwctoDtw/gld2d3BhFUZQ7QEZqKtsWfcehjb85FgpB+/4P0H340xg9PBzLXZxrdhNFdg+8bAJ4fulEczMadAiEw0S2d955h40bN5ZJWxVFUe4U0Qf388MrL+QZvKvVrcewyR/Se9SYChm8wdV74HlkjClpBaUTbdasGQBmsxm9Xq89SmYQZJhyDu1PnTq11NupKIpyp8hIvUn4/LlEbQlzLBSCDvc/SLdhT2J0r5iBO5uL9sCzh9BL/x54fulEzWYzvXv3ZsSIEbYkJa1bt8bNoCfTZOGTTz6xLdwyatQo23rqr7/+Oi1btqRNmza88sorAFy9epVHHnmEoKAggoKC2LlzZ6l/LkVRFFd09sBe5r3yQp7Bu3q9Bgx/97/0evq5Ch+8wcV64Ff+8x8yjh4DJGTeBIM76Iy3Vaf7PS2o++ab+ZYXlE40IiKCqKgo/P39bSuruRt03MwwIfNY7ScxMZFVq1Zx7NgxhBAkJSUBMHHiRF5++WW6d+9OTEwMoaGhHD169LY+l6LcKr1eT0DA35N8Vq9ejZ+f323Xu3fvXubPn88XX3zBlClT8PLysl28ZouOjmbQoEG21Q3LwjvvvEPPnj3p169fmR1TKb70mymEz/+Ww+GOtyOF0NFh0EN0HfoERrc7ZwKSSwVwB07OKNqpUyf8/f1zvOdu0NmykuVWtWpVPDw8eO655xg4cCCDBg0CYOPGjRw5csS23Y0bN0hOTqZKlfKTOF6p+Dw9PYmMjCzxejt27EjHjqWXGEJKiZQSne7WBhTVrS3XcWb/Hn7/5ktSriU6lNWo35DQ8ZOo36z0s1OWNy4VwG09ZSnhciRUqQtV6pXqMQtKJ1q5cmXb9waDAYvFgpt1JvrN1DSH+xMGg4GIiAg2bdrEkiVLmDFjBps3b8ZisbBr1y48PSvGs4lKxbFv3z7++c9/kpKSgo+PD/PmzaNevXrMmTOHb775hszMTJo2bcqCBQuoVKkSy5cv591330Wv1+Pt7c22bdsIDw/nk08+4eeftRWxDh48SJ8+fTh//jyvvfYao0ePznFMs9nM66+/Tnh4OBkZGbzwwguMHTs2xzbR0dEMGDCA3r17s2vXLlavXs2yZctYtmwZGRkZDBkyhHfffReA9957j0WLFtGoUSN8fHzo0KEDr7zyCqNGjWLQoEE8+uijbNq0iVdeeQWTyURQUBAzZ87E3d0dPz8/Ro4cybp168jKyuLVV18tmxOvAJCWkkz4vG84sn2LQ5kQOjoOfpiuj47A4ObmhNY5n4veAxeArkwmseWXTnTr1q05tqtTpw5xcXGkXL9GZkYGv/yy3qGulJQUrl+/zv3338/06dNtvZ2QkBBmzJhh2640ekGKUpi0tDQCAwMJDAxkyJAhZGVl8dJLL7FixQr27dvHs88+y1tvvQXAww8/zJ49ezh48CD33HMPc+fOBbRe7YYNGzh48CBr167N8ziHDh1i/fr17Nq1i6lTp3LpUs7MUHPnzsXb25s9e/awZ88e5syZw9mzZx3qOX78OE8//TQHDhzg+PHjnDx5koiICCIjI9m3bx/btm1j7969rFy5kgMHDvDTTz+xd+9eh3rS09MZNWoUS5cu5a+//sJkMjFz5kxbuY+PD/v372f8+PG2FMBK6Tu1dzc//N/zeQbvmg3v4vH3P6bniFF3bPCGMuiBCyH0wF7gopRyUIlVXEYpRfNLJ/rQQw/l2M5oNPLOO+/Qo1tXatVvRJOmzRzqSk5O5sEHHyQ9PR0pJf/73/8A+OKLL3jhhRdo06YNJpOJnj17MmvWrFL/bIpiL/cQelRUFFFRUdx3332A1jOuV6+erezf//43SUlJpKSkEBoaCkC3bt0YNWoUQ4cO5eGHH87zOA8++CCenp54enrSu3dvIiIiCAz8O5lEWFgYhw4dso18Xb9+nZMnTzrcrvL19eXee++17RMWFka7du0A7WL55MmTtv9z2aNbDzzwgEN7jh8/jr+/v+2pkpEjR/LVV18xadIkANvn6NChg+1CRSk9ack32DLvG47uCHcoEzodnR58jHsfGY7BeHvznyqCshhCnwgcBaqWaK1CV2YrseWXTjT30N+ECROYMGECJ2KTcdPr8PPRhtjnzZtn2yYiIsKhHh8fH3Vlr5Q7UkpatWrFrl27HMpGjRrF6tWradu2LfPmzSM8PByAWbNmsXv3btavX09gYGCeo0m58wTkfi2l5Msvv7RdFOTH/haWlJI33njDYag9+yK5IHlNOLXn7q5NitLr9ZjN5Wv1x4rmZMQfbPz2a1KvJzmU+TTypf/zL1OncVMntKx8KtUhdCFEQ2Ag8G3JV17+Uopm8zDoSDep/+iKa2vevDlXr161BfCsrCwOHz4MaKNJ9erVIysri0WLFtn2OX36NJ07d2bq1Kn4+Phw/vx5h3rXrFlDeno6CQkJhIeHExQUlKM8NDSUmTNnkpWVBcCJEye4efNmgW0NDQ3lu+++IyUlBYCLFy8SFxdH9+7dWbduHenp6aSkpLB+veOtrRYtWhAdHc2pU6cAWLBgAcHBwUU9TUoJSL1xnZ+nf8TaT//jELx1ej33PjKcJ6dNV8E7l4QUzK4AACAASURBVNLugU8HXgNKfjq10JfJPfDicDfqSUrLwmKR6HQqqYnimtzc3FixYgUTJkzg+vXrmEwmJk2aRKtWrXjvvffo3Lkzvr6+BAQEkJycDMCrr77KyZMnkVLSt29f2rZt6zBfpFOnTgwcOJCYmBjefvtt6tevb3sME+C5554jOjqa9u3bI6WkVq1arF69usC2hoSEcPToUbp06QKAl5cXCxcuJCgoiMGDB9O2bVt8fX3p2LEj3t7eOfb18PDg+++/57HHHrNNYrNf90EpXSf+3MHGuTNJu3HdoayWrz+h4ydRx7+JE1pW/onCho+KXbEQg4D7pZTPCyF6Aa/kdQ9cCDEGGANQq1atDrmHqr29vWna1PGqyzP1IkhJWuWGpdH823IzSxKXaqG+lw73UshKlr3ym1Kwop6nU6dOcf264x+PstZgtzYgdrFz2V+YpqSk4OXlVebHLQtpaWl4enqSnp7OxIkT+b//+z/b/e5bVZHPU0kr7Fxlpd7k/I5NXDvtuCw1Oh312t9L3fad0VXwv3W9e/feJ6Us1nOWpdkD7wYMFkLcD3gAVYUQC6WUT9pvJKX8BvgGoHnz5rJXr145Kjl69Gjez0NnuYEpo1w+K23MMhOXmozBzYMqlUp+hqR6RrxoinqePDw8bJOfnCnu+CEA7u7VpsyPHR4eTu7/exXFiBEjOHLkiG22+ZgxY4pdV0U+TyUtv3MlpeT4ru1sXriItOQbDuW1/ZoQOn4itf0al0ErXVupBXAp5RvAGwB2PfAnC9zpVgh9ub0H7mbQIYD0rPLZPkW5k/z444/OboJidTPpGhu//ZpTexwnRur0Bro8MpygBx9Fb3CpJUqcxnXPUjmexKYlNdE7JDVRFEW5E0kpObp9C1vmfUP6zRSH8jqNmxI6fhK17vIr+8a5sDJZyEVKGV6iz4CD9hy4pWwC5AcffECrVq1o06YNgYGB7N69u9B93A06MgrpgTsjzejatWuZNm0aAFOmTOGTTz5xWlsURan4khPjWf3fqfz61WcOwVtvMNB9+NOMeP9TFbyLwYV74HpAasuqitKb6b1r1y5+/vln9u/fj7u7O/Hx8WRmZha6n7tRR3KGiaysLIz5LDjgjLWYBw8ezODBg8tFWxRFqbiklPy1JYyt8+eSker4GGDdps0IHTcRn0a+TmhdxeCaS6lCmaUUvXz5Mj4+PrbFHHx8fKhfvz6grRMdHBxMhw4dCA0N5fLlywD06tWLj9+fwjOP3M/U997Hz88Pi/WRt9TUVBo1akRWVlaONKN79uyha9eutG3blk6dOpGcnIzZbObVV18lKCiINm3aMHv27DzbOH/+fNq0aUPbtm156qmngPxTlM6bN48XX3zRoQ77tvj5+TF58mTat29PQEAAx44ds9V533330b59e8aOHYuvry/x8fElcZoVRalAbsTHcWr9SsJmfeEQvPVGIz2feIbHp36sgvdtcqke+PZlJ4g/bx2CsWSBKQOMkX8H82LwaeRFj6H5P1ISEhLC1KlTadasGf369WPYsGEEBwfb1oles2YNtWrVYunSpbz11lt89913AKTcuM53K9bjW7Myhw5GsnXrVnr37s26desIDQ3N0SvPzMxk2LBhLF26lKCgIG7cuIGnp2eONaEzMjLo1q0bISEh+Pj42PY9fPgwH3zwATt37sTHx4fERC1bz+2mKM1e//nrr7/mk08+4dtvv+Xdd9+lT58+vPHGG/z222988803t3q6FUWpwKSUHNr4G9sWfUdmWppDef1m9xA6fiI16pe/x39dkUsF8JzKZoEULy8v9u3bx/bt29myZQvDhg1j2rRpdOzYMd91ogGGDx8OQEaW2Race/fuzZIlS3j++edzHOP48ePUq1fPtiJV1araqrP5rQltH8A3b97Mo48+anuvRo0aQP4pSovKfv3nn376CYAdO3awatUqAPr370/16tWLXJ+iKBXb9bgrhM3+gpioQw5lBjd3ejz+NIH9B6HTVeznusuSSwXwHD3l9BuQeBp8moFb5fx3KgF6vZ5evXrRq1cvAgIC+OGHH+jQoUO+60QDVK3ihVGvI8NkYfDgwbzxxhskJiayb98++vTpk2NbKaXDetDZ7+e1JrR9IM5v39tNUWq//rPJZLIdS1EUxZ60WDiwYT3bF8/DlJHhUN6wZWtCx06kWt3STf18J3Lde+DZV3GlPBM9O01htsjISHx9fQtcJzqbh1FPepYZLy8vOnXqxMSJExk0aJDD6mAtWrTg0qVL7NmzB9ACtMlkKtKa0H379mXZsmUkJCQA2IbQSyNFaffu3W1JXcLCwrh27dpt16koiuu6dvkiS999gy3zZjsEb53BSN9nxzP07f+o4F1KXKoHnkMZTWJLSUnhpZdeIikpCYPBQNOmTfnmm28KXCc6m4dRR3yGCSklw4YN47HHHrNlbbLn5ubG0qVLeemll2zLPm7cuDHfNaF1ur+vu1q1asVbb71FcHAwer2edu3aMW/evFJJUTp58mQef/xxli5dSnBwMPXq1VMrwinKHchiMbP/l7XsXLIAU5bjUzl3BQRStU0QgaEDndC6O0eprYVeHM2bN5fHjx/P8d7Ro0e55557HDc2ZULcYfBuBJV9HMvLgWupmZxPTKVZnSp4GEvuvo+zllLNyMhAr9djMBjYtWsX48ePL5GefWkp6nnK93esjMXN1u4d1h6rllItr9R5goQL59kwazqXTx53KHPzrETwU/8goE8IW7duvePPVVEIIcrlWuilK3sIvYxygheHh0FrY3qWuUQDuLPExMQwdOhQLBYLbm5uzJkzx9lNUhSljFjMZvas+4ldK37EbL2tZ88/sAP9Rr9IVZ9aTmjdncl1A3j2EHo5TSkK2mIuAkF6Vvm9yLgVd999NwcOHHB2MxRFKWPxMdH8NvNzYs+cdChzr1yZ3iPH0LJnnzwn1Cqlx4UDuLAmNCm/wVEnBO5GnUpqoiiKSzKbTESsWc6fK5diMZscypt07Ey/fzyPV42aTmid4roBHLReeBmth15cHkY9qRmOv/iKoijlWezZ02yY9TlXo884lHlUqUqfZ8bSomtP1et2ItcO4Lry3QMHbSZ6UqoFk8WCQee6T+0pinJnMGVlsfunJUSsWYHF7Pj3tVnnbvR5dhyVq6mFnJzNtQO40LtEDxwgI8uCwV0FcEVRyq8rp07w28zpJFyIcSjzrOpNv3+Mp9m93Z3QMiUvrh1RdPoyyQl+5coVhg8fTpMmTWjZsiX3338/J06cKNK+9jPR7dknD7G3d+9eJkyYcPuNJv/EJYqiKPZMmZls+3EeP/77lTyDd4tuwYz69GsVvMsZF++Bl/49cCklQ4YMYeTIkSxZsgTQVjWLjY2lWbP8k6BkM+oFep0grYgz0Tt27EjHjsV6JFBRFOWWXTpxlA0zPyfx0gWHssrVqtPvuRdoGnSvE1qmFMZlAvinwwaVav3/t/TnPN/fsmULRqORcePG2d4LDAxESsmrr77Kr7/+ihCCf//73wwbNozw8HAmT55MnTp1iIyM5OGHH6a279388M1MLKYMVq9eTZMmTQAt4cjnn39ObGwsn332GYMGDSI8PJxPPvmEn3/+mSlTphATE8OZM2eIiYlh0qRJtt75woUL+eKLL8jMzKRz5858/fXX6PV6vv/+ez788EPq1atHs2bNbGuaK4qi2MvKSGfn0oXs+2UN5LGgV6vgvvR6ejQeXl5OaJ1SFC4TwJ0lKiqKDh06OLz/008/ERkZycGDB4mPjycoKIiePXsCcPDgQY4ePUqNGjVo3Lgxw54cyY8/b+L35d/z5ZdfMn36dACio6PZunUrp0+fpnfv3pw6dcrhOMeOHWPLli0kJyfTvHlzxo8fz/Hjx1m6dCk7d+7EaDTy/PPPs2jRIu677z4mT57Mvn378Pb2pnfv3rRr1650T5CiKC7nwpEoNsz+nKQrlx3KvGr6EDL6RfzbqZHA8k4F8GLasWMHjz/+OHq9njp16hAcHMyePXuoWrUqQUFBttSiTZo04b777sMsJS1atcqxFvrQoUPR6XTcfffdNG7cmGPHjjkcZ+DAgbi7u+Pu7k7t2rWJjY0lPDycffv22dKPpqWlUbt2bXbv3k2vXr2oVUtbCWnYsGFFvlevKErFl5mexvYffyByQ94jjgF9Qwl+8lncK5VuhkelZKgAXohWrVrlOdmsoDXk7YetdTodVSprKT1NZmypOQGH5yfzep7Svq7s1J5SSkaOHMmHH36YY9vVq1erZzIVRcnTub8iCZv9JTeuxjqUVa1Vm5AxE/BtE+iElinF5TIBPM971KkJkBQDtVuCoXTu9fbp04c333yTOXPmMHr0aAD27NlD9erVWbp0KSNHjiQxMZFt27bx8ccf59mLdjPoEUKQYco5Y3758uWMHDmSs2fPcubMGZo3b86ff/5ZaJt69erFiBEjePnll6lduzaJiYkkJyfTuXNnJk6cSEJCAlWrVmX58uW0bdu2ZE6EoiguKSM1lW0Lv+PQpt/yLG8bMpCeI0bi5lmpjFum3C6XCeB5EqWfE1wIwapVq5g0aRLTpk3Dw8MDPz8/pk+fTkpKCm3btkUIwX//+1/q1q2bZwDXCYGHQecQwJs3b05wcDCxsbHMmjULDw+PIrWpRYsWvP/++4SEhGCxWDAajXz11Vfce++9TJkyhS5dulCvXj3at2+POY+FGBRFuTNER+4j7JsZJCdcdSjzrlOX0LETaNSq7LPfKSXDddOJAmQkQ8IpqNkU3Mt3XuoL11K5npZFy3pVb3uY21npRF2NSidadCpNZtG4ynlKv5lC+PxvORy+0bFQCNr3f4Duw5/GWMROQ3G4yrlytjsznSiUSQ+8pHga9STezCTLbMHN4PqpRRVFKZ9O74tg45wZpFxLdCirXq8BoeMm0qBFSye0TClprh3AXSAneDZPN62taVlmFcAVRSlxack32PLDHI5u3+JQJoSODoMeouvQJzC6qbUhKoqKEcBdoAfuYdAjEKRlWvD2dHZrFEWpSE7u/oONc78m9XqSQ1nNhncROm4i9e5u7oSWKaXJtQO4bQi9/Kfr1Om03OBFXVJVURSlMKk3rrPpu1mc2LXdoUzodHR68FHufeRxDEajE1qnlDYXD+DCJTKSZfM06klO157jVs9rK4pSXFJKju/azubvZpGWfMOhvNZdfoSOn0Sdxk2d0DqlrLh2AAeXyAmezdNNz7XUTLLMEjeDCuCKoty6m0nX2Pjt15zas8uhTKfX03nIMDoPeQy9QfW6KzrXTicKoDOU+hB6fulEo6Ojad26dZHr8TT+PZHtdhw6dIhffvml0O3Cw8MZNEhLAnOrqUUjIyPzPcbvv/9Ohw4dCAgIoEOHDmzevNlWlpmZyZgxY2jWrBktWrRg5cqV+R4jJiYGLy8vPvnkE9t7fn5+xMfHA7Bv3z78/f05cOAAKSkpjB07liZNmtCqVSt69uzJ7t27bfutWrUKIUSO5/AtFgsTJkygdevWBAQEEBQUxNmzZ4t8DhSlPJFScmTbZub9c3yewbu2fxOe/HA6XR8boYL3HcJleuBJ6UnEpsbSpFoTDDq7ZpfyEHpB6UQbNWp0S3V5GrMnspnw9iz+f7C//vqLqKgo7r///mLXUZjIyEj27t2b5zF8fHxYt24d9evXJyoqitDQUC5evAjABx98QO3atTlx4gQWi4XERMdHWbK9/PLLDBgwIM+yQ4cO8eijj7J06VLatWvH8OHD8ff35+TJk+h0Os6cOcPRo0dt2y9evJju3buzZMkSpkyZAsDKlSu5dOkShw4dQqfTceHCBSpXVms8K64nOTGejXO+4sz+PQ5leoOBLo+OoOMDD6M3uMyfdKUEuEwPXCIxWUxYZM7VzNCVbgDPL51ojx49cmxnNpt59dVXCQoKok2bNsyePRuAlJQU+vbtS/v27Wnbtg07Nv1KaqaZ6Oho7rnnHkaPHk2rVq0ICQkhLS3N4fjLly+ndevWtG3blp49e5KZmckHH3zA0qVLCQwMZOnSpURERNC1a1fatWtH165dyb0YTkHy2jczM5N33nknxzHstWvXjvr16wPaWvHp6elkZGQA8N133/HGG28A2jrwPj4+eR539erVNG7cmFatWjmUHT16lIceeogFCxbQqVMnTp8+ze7du3n//ffR6bRf2caNGzNw4EDbOd65cydz5861XWQBxMbGUq9ePds+DRs2pHr16kU+N4ribFJK/toSxg//90Kewbte0+Y89dEXdB4yVAXvO5DL/MT1Qo/H5pskJh5GJ+yeozala0PoboeKVa9b/cpUe6BJvuX5pRPNbe7cuXh7e7Nnzx4yMjLo1q0bISEhNGrUiFWrVlG1alXi4+Pp2Kkz3fv2x0tKTp48yeLFi5kzZw5Dhw5l5cqVPPnkkznqnTp1Khs2bKBBgwYkJSXh5ubGW2+9RVRUFDNmzADgxo0bbNu2DYPBwMaNG3nzzTcLHLq216JFizz3nTp1Knv37rUdIz8rV66kXbt2uLu7k5SkPcLy9ttvEx4eTpMmTZgxYwZ16tTJsc/Nmzf56KOP+P3333MMn2d78MEHWbhwId27dwfg8OHDBAYGotfn/fz86tWr6d+/P82aNaNGjRrs37+f9u3bM2TIEPr378/27dvp27cvTz75pEqvqriMG/FxhM3+knOHDjiUGYxudB32JB0GPohOp9aVuFO5TgDP75dUCEBav5w3MSwsLIxDhw7ZMpddv36dkydP0rBhQ9588022bduGTqcj9vIlrsbFYqxiwN/fn8BALftPhw4diI6Odqi3W7dujBo1iqFDh/Lwww/neezr168zcuRITp48iRCCrKysIrf7dvY9fPgw//rXvwgLCwO0TGsXLlygW7dufPbZZ3z22We88sorLFiwIMd+kydP5uWXX8bLyyvPevv168e3335LaGhovkHb3uLFi5k0aRIAw4cPZ/HixbRv354GDRpw/PhxNm/ezObNm+nbty/Lly+nb9++Rf6MilLWpMXCoU2/sXXh92SlO47K1W/ektBxE6lRv4ETWqeUJy4TwHVCR3qfytSq0oiq7lX/LkiJhRuXoG7rvxd2KUH5pRPNTUrJl19+SWhoaI73582bx9WrV9m3bx9GoxFfPz8yMjJI93BMFZrXEPqsWbPYvXs369evJzAwkMjISIdt3n77bXr37s2qVauIjo6+pfWHi7vvhQsXGDJkCPPnz6dJE20Eo2bNmlSqVIkhQ4YA8NhjjzF37lyHfXfv3s2KFSt47bXXSEpKQqfT4eHhYZtkN2PGDMaNG8fzzz/P7NmzadWqFQcPHsRisdiGw7MlJCSwefNmoqKiEEJgNpttyWVAO8cDBgxgwIAB1KlTh9WrV6sArpRbSbFXCJv9BecPO44oGtzc6fH40wT2H6R63QrgQvfA9dZhc3PuR8ZKeT30Pn36kJGRwZw5c2zv7dmzh61bt+bYLjQ0lJkzZ9p6sCdOnODmzZtcv36d2rVrYzQa2bJlCzHnzqHXQVpmrnv5+Th9+jSdO3dm6tSp+Pj4cP78eby8vEhOTrZtc/36dRo00K7G582bd0ufL799q1SpkuMY9pKSkhg4cCAffvgh3bp1s70vhOCBBx4gPDwcgE2bNtGypeOay9u3byc6Opro6GgmTZrEm2++mWOGvE6nY/HixRw/fpx33nmHJk2a0LFjRyZPnmzLw37y5EnWrFnDihUrePrppzl37hzR0dGcP38ef39/duzYQWRkJJcuXQK0GemHDh3C19f3ls6PopQFabGw/9d1/PDqC3kG74YtWzPy4xm0v18NmVcUJouJPy79cVt1uFwAd5zEZh1EkKXzKFl2OtHff//d9gjTlClTbJO4sj333HO0bNmS9u3b07p1a8aOHYvJZOKJJ55g7969dOzYkUWLFtGiRQs8jYYiP0r26quvEhAQQOvWrenZsydt27alR48eHDlyxDbB7LXXXuONN96gW7dut5w+NL99e/funeMY9mbMmMGpU6d47733CAwMJDAwkLi4OAA++ugjpkyZQps2bViwYAGffvopAGvXruWdd94pcrvc3d1Zs2YNa9eu5auvvuLbb7/lypUrNG3alICAAEaPHk39+vVZvHixrcef7ZFHHuHHH3/k6tWrPPDAA7Ru3Zo2bdpgMBhu6VE6RSkL1y5fZOm7b7Bl3mxM1smg2YzuHvR9djxD3/4P1erWc1ILlZKSHbSn/DGF3st6M/b3sbdVn8ukE5VSciThCLUq1aJ2pdp/b+BCKUWzxd5IJ/ZGOq3qV0Wvu/VrKJVOtGhUOtGiU6kfi6Ykz5PFYmb/+jXsXLoQU1amQ7lvm3bcN/pFvGvXyWPv8k/9TmlMFhN7ruwh7FwYm85t4lrGNSoZKhHcKJhQ31D6+fWr+OlEhRDohK7Mh9BLQ6XszGSZZrw8XGYQRFGUEpJw4TwbZk3n8knHRz7dPCsR/NQ/COgTopZcdlF5BW1Pgye9GvUi1DeUbg264WG4/VzsLhPAQRtGt1jyGUJ3gYQm2bJXZEvNNOPloVZMUpQ7hcVsZs+6n9i14kfMeTzx4d+uI/eNfpEqNfNeP0Epv0wWE3tj9xIWHcbGcxv/DtoNexHiF0L3Bt1LJGjbc6kArtPl0QN3oZzg2Qx6He4GPamZrtNmRVFuz9WYaDbMnE7smVMOZe6VK9N75Bha9uyjet0uxGQxsS92HxuiN7ApZhOJ6Yl4GjwJbhhMqJ/W0/Y0lF7+aJcI4NnZu/RCn8cQug4QLjWEDlDZTc/19CyVmczJytMcEKViMptMRKxezp8/LcVidhwpbNLxXvo99zxe1Ws4oXXKrcoO2mHRYWyM2ZgjaGf3tEszaNsr9wHcw8ODhIQEatasiV7oybLkGnYSokwSmpS0Su4GElMzyTBZ8DCqx0KcQUpJQkICHh4lO6ylKNliz55mw8zpXD3nmETHo0pV+jwzlhZde6qL+HLObDHbetr2Qbtnw56E+oWWadC2V+4DeMOGDblw4QJXr14lKT2JDEsGmZVyzdhMvgq6a1D5pnMaWQwms4XYGxlkxBvxcr+1H0N6eroKOkVQlPPk4eFBw4YNy6hFyp3ClJXF7p+WELFmBZY8Hu1sdm93+jwzlsrV1Nr85VV20A47F8bv537PEbRDfEPo0bCHU4K2vXIfwI1GI/7+/gBMi5jG2lNr+WNErofff3gNTJnwjw1OaGHxSCl57sNNdPavyRePB9zSvuHh4WpN7yJQ50lxhiunTvDbzOkkXIhxKKvkXY2+/xhPs87d8thTcTazxcz+uP1aT/vcRhLSE/DQe2hB2y+EHg16UMlYydnNtCkwgAshPIBBQA+gPpAGRAHrpZSHS795OVVxq0JKVgoWaUEn7B6/qlQTrvxV1s25LUIIgvxqEHE2Ud0HV5QKwJSZyR/LF7F33Spk7gWngBbdguk9agyVqno7oXVKfvIL2j0a9iDUL7TcBW17+QZwIcQUYDCwBdgNxAEeQDNgmjW4/5+UsnhpwIqhirEKEklyZjLe7nb/CSrVhNSEsmpGiensX4OfD13mwrU0GtUon78giqIU7uLxo2yY9TnXLl1wKKtcvQb9nnuBph07O6FlSl4KCtohfiH0bNCz3AZtewX1wPdIKafkU/aZEKI2cFfJNyl/2UlMbmTeyBXAfSDtGphNoC/3dwVsgvy1WacRZxNVAFcUF5SVkc7OpQvY98tayOOJhlbBfen19Gg88sm8p5Sd7KCdPXs8Pi3eJYO2vXyjnZRyvRCiFuALnJJSJuUqj0PrlZeZ6u7ahI+k9CQaVWn0d0Glmtq/adfAq1ZZNum2NKtdBW9PI3uiE3mkg5pIpSiu5MKRKDbM/pykK5cdyrxq+hAy+kX82xVrhUylhJgtZg7EHbBNRItPi8dd706PBtrweM+Grhe07RU0hP4c8B/gNOAvhBgjpVxbZi3LQzWPagAkZSTlLKhsDeCp8S4VwHU6QUff6kScTXR2UxRFKaLMtFS2/fgDB8PW51ke0DeU4Cefxb1S5TJumQI5g/bGcxu5mnbVFrRD/EIIbhjs0kHbXkHjzZOAVlLKq0KIxsAiwKkB3NYDzx3As3vgLngfvJN/DTYdi+Nqcga1qrgXvoOiKE5z43w085b/QHL8VYeyqrVqEzJmAr5tAp3QsjubRVq0oB2t9bSzg3b3Bt1tPe3Kxop3QVVQAM+UUl4FkFKeEUI4Pbpk3/e+ln4tZ0El67rBN+PLuEW3z/4++MA2Kl2gopRH6SkphC/4lpPhG/MsDwwdSI/HR+LmWTF6dq7AIi1ExkXaJqLFpcXhpnPT7mn7hhDcKLhCBm17BQXwhkKIL/J7LaWcUHrNylsVtyrohb5C9cDbNPDGy93AH6fjVQBXlHLo1J4/2Tj3a25ec7zVVa1OPULGTaBRy1tby0EpnryGx910brae9p0QtO0VFMBfzfV6X2k2pCh0Qoe3u3eFCuAGvY7O/jXYecr1Rg8UpSJLvXGdzd/P5vgf2xzKhNDRfuCDdBv6BEZ3tSpiabJ/5GtTzCbi0+JtQTv7nraX2505y7+gWeg/lGVDiqqaezXHAG5wA/eqLhnAAbo19WHTsTguXEulYXU1BKcoziSl5Pgf29j8/WzSkm84lNdo0IjQcROp36yFE1p3ZzBZTOyP3W/raSekJ+SYiFZR72nfqoJmoa8D8k3VJKUcXCotKkQ192qO98BB64W74D1w0AI4wB+nEhgapAK4ojhLSmICG+fO5PTePx3KhE5HnXadGPbyvzAYjU5oXcVmn087OzWnqz+nXdoKGkL/xPqvAOYAz5V+c/KXFJtK7NnrVDfW4NzNaMcNXHQ1NoBmdbzw8XJn5+l4hgY1KnwHRVFKlJSSw+EbCZ//LRmpjkmRavk1JnTcRI6eO6+CdwkyWUxEXIkgLDqMzTGbuZZxzZYw5D7f+8r1MqblQUFD6FuzvxdCwfRxggAAIABJREFUpNi/LgrrUqvbAHfrcVZIKScXt6EXjiWydfEJqj/mw8GMSMcNKvvA9YvFrd6phBB0a1qTnacS1LroilLGblyNI+ybLzl36IBDmd5goMujI+j4wMPoDQaOnjvvhBZWLFmWLCIuRxB2TgvaSRlJTsun7eqKuu5ovkPpBcgA+kgpU4QQRmCHEOJXKaXj2FQRGD20pnqL6iSlJzkGOq/acMnxP6Cr6NbEhzWRlzgRm0LzulWc3RxFqfCkxcLB339l24/zyEpPcyivd3dzQsdNpGbDMl0xukLKMmex+8purad9fjPXM65TyVCJ4EbBhPqG0q1BNzwMajLgrSroHngNu5d6IUR1tOF0AKSUBS4fJqWUQIr1pdH6VZwLAa0Cdz0AVUU1TNJESlYKVdzsAp1XHbh5FSxm0OmLexin6Xa3dh9856l4FcAVpZRdu3yRsNlfcuFolEOZwc2d7sOfot2AB9C54N+S8sIkTWy7sI2w6DC2nN/CjcwbVDZWplejXoT4htC1flcVtG9TQT3wfWgBNzto77crk0DjwioXQuit9TQFvpJS7s5jmzHAGIBatWoRHh6eZ10pV7TYnxCjzUD/betv1DL+vWxq/cvXaSYt7Ny4jiy3aoU1rVyqU0mwevdxGpvOFbhdSkpKvudJ+ZurnacGSVqK3CNOaLOrnavikhYLcYf2cTFiJ9Jscij3qt8I314hJFeuxrZt2x3K75TzVFxZMovjacc5kHqAQ6mHSI9Jx0N4EFApgHbe7Wjh2QKj2Qhn4M8zxRqMVewUdA/c/3Yrl1KagUAhRDVglRCitZQyKtc23wDfADRv3lz26tUrz7piz97gXPheWt3VGmKgadumtKvd7u8NjlyHk9/QrU0TqOuaiyoMuHGYJXtiuLdbDzyM+V/5h4eHk995Uv7maucp7riWmffuXm3K/Niudq6KI/78OTbM+pwrp044lLl5etLziWdo07c/QqfLt4474TzdqgxzBn9c/IOwc2GEnw/XRkeNVWhTqQ1Pd36aLvW74KZ3c3YzK6SChtD9pJTRBZQLoIGU0jEBbi5SyiQhRDjQH3AcsyoCo4cW0CqjDS/Hp+V6ZMyrrvZvSizgmgE8uHkt5v0Rze6ziQQ3c52kLIpSnplNJvasWcGulUuw5NHr9gvswH2jX6CqT20ntM41ZZgz2Hlxpy1o38y6SRW3KvS9qy8hfiF0qdeFndt3Etwo2NlNrdAKGkL/WAihA9agDYNfBTzQhsN7A32ByUCeAdyaijTLGrw9gX7AR8VtqJs1gHtI7ZECxwBu/c+XUqYZTktUl8Y1cTfo2HIsTgVwRSkBsWdOsWHW51w9d9ahzL1yZXqPHEPLnn3Ukx9FkG5KZ+fFnWw4t4Gt57eSakrF292bEN8QQvxC6Fy3M0a9esSuLBU0hP6YEKIl8ATwLFAPSAWOAr8AH0gp0wuoux7wg/U+uA5YJqX8ubgNzZ6FbjS7oxO6AgJ4bHEP4XQeRj1dmtRk6wnHTEeKohSdKTOTXSsXs2ftSqTF4lDeNKgLff8xHq/qNfLYW8mWZkpjx8UdhEWHsfXCVtJMaVRzr8YA/wGE+IYQ9P/snXdYVGf6v+8zBWYGZqgzQ2+CClgQNfaumE0xbZNsujExdZNs8s1u9rdpm92U3U12U0w1ieltUza9iBpbNHbE3qnSe2fK+f1xEERARwWGgfe+Li5k3nPOPIPDfM7zvE8JHYtWJUTbXZy0jEyW5d3Ag2dyYVmWM4FRpzzQRbxastDtjU4CdYGUNZzQtMXLB7yMHu2BA8wYYuHRr3dxpLSO2GDRKlAgOF2O7t/DT688T/nRjsFBvcmPWQtuZ/D4ScLr7oJ6Wz1r8teQnp3O6rzVNNgbCPAO4LzY80iLSWNsiBDtvoKrdeBuR1JJaHVqmhscBOuDO3rgoHjhHuyBA0wfooTOV+4rJjb4rPMIBYIBg62pkV8+eY8t338NcseK1aGTpjFj/i0YTH5usK5vU2+rZ3W+UvK1Nn8tDfYGAnWBXBB3AWkxaYyxjkGj8hi5GDB41P+It15DU6OdoMCgLgTc6vEeeHSQD3HBPqzcV8KNk4SACwSukLMzk6WLX6CqqLDDmm9AILMX3smg0ePcYFnfpd5Wz6q8Va2i3ehoJEgXxLxB80iLTmO0dTRqUQffp/EoAffSa2husBOsC+ZgxcGOB/haoHh37xvWzUwfYuH9Ddk0NDvQe4k/IIGgK5rq61nz4VtsT/+h0/VhM9KYdt0CdD4Dc9zkidTZ6liZu5L07HTW5q+lydFEsD6Yi+MvJi0mjVRLqhBtD+JkZWSpJztRluWtJ1vvCbx0ioCbDWbKGstwyk5U0nE1m75WOPxzb5vV7cwYambJL0dYe7CUOUlWd5sjEPRJjmzbTPrrL1FT1jHp02S2MOeWu4gZ0W1pOB5LbXMtP+f+THp2Or/k/0Kzsxmz3sxlCZcxJ3oOoyyjhGh7KCfzwP/d8l0HjAG2o3RlGwFsACb3rGkd8dJraKxtJlgfjN1pp6qpigBdQNsBvhZorAJbI2g9t0XfuNggjDoNP+0qFAIuEJxAQ20Nq959g12rlne6PurcC5l81fV46QbuQIzq5mpW5Srh8V+O/oLNacNisHD5kMtJi04jxZLS3vkReCQnKyObASBJ0sfALbIs72j5eRhwf++Y1x5vvZqqEjvB+iAAShpKThDwFrGrLYSAmN43sJvw0qiYNdTC8j1F2B1ONGrxhyYQABzYuI5lb7xMfVVlh7WA0DDSbr2biMRhbrDM/VQ3V/Nzzs8szV7KuqPrsDvtWA1WrhxyJXNj5jLCPEKIdj/DlT3wocfEG0CW5Z2SJKX0oE1dom3ZAzfrlUztkvoSBgcMbjvAFKZ8ry7waAEHSEsO4cuMo2zKqmDCoCB3myMQuJX6qkqWL3mV/b+u7bAmSSrGXHgJEy6/Gq2Xtxuscx9VTVWsyFlBenY66wvWY3faCfUJ5eqhV5MWk8bw4OFCtPsxrgj4HkmS3gDeRxlici1KM5dex1unobnBQYiP0ja1sO6EjFNTuPK92jPngh/PtMFmvDQqftpVKARcMGCRZZm9v6xixduLaayp7rAeHBnN3NvuISR+cCdn908qGytZkbuCpdlL2XB0A3bZTphPGNcmXsuc6DkMDx4uatwHCK4I+I3A7cA9LT+vBl7pMYtOgpdeg8PuJEgbjIREYf2JAn7MAz/a+8Z1Mz7eGqYmBJO+u4hHL0wSf5CCAUdNeSnLXn+Jw1s3dVhTqdWMu+QKxl1yBWpN/28qUtFYwYocRbQ3FmzELtsJ9w3nuqTrSItJIzkoWXxGDEBOKeCyLDdKkvQq8L0sy/t6waYu8dIr5srNEma9uaMHrjMp3dj6gYCDEkZftqeYXUerGRYumk8IBgayLLNjxVJWvfcmzQ31HdatcfHMve0ezNH9u09CeWM5y3OWszRrKZsKN+GQHUT4RnB98vWkxaSRFChu7Ac6pxRwSZLmAU8DXkBsy/7332RZntfTxp2It14pdWhqsBPiE9JRwEHxwvtBCB1gdqIVlQQ/7SoUAi4YEFQVF7J08Yvk7MjosKbWapl4+TWMueASVOr+WfZU2lDK8uzlpOeks7lwMw7ZQZQxihuH3UhadBpDA4cK0Ra04koI/VHgHGAlgCzLGZIkxfScSV1zzANvbrBj9bFyoOJAx4NMYf3GAw/08eKc2EB+2lXI/6UNcbc5AkGPITudbPvpO9Z+9A62po4zksIGJzL39nsIDItwg3U9S2FdYaunva14GzIyMaYYFgxbQFpMGkMChgjRFnSKKwJul2W5qi+8gY4X8BCfENbmr0WW5fZvblM4HFrhJgu7n98MC+XRr3exv6iGwVaju80RCLqd8qP5LH3tefL3duyiqPH2ZspVN5Ay93xU/ajZSH5tPsuyl7E0eymZJZkAxPvHc/vI25kdPZt4/3gh2oJT4oqA75Qk6WpALUlSAnA3sK5nzeqcNgF3EGIIocHeQFVTFf46/7aDTGFKHbjDDmqP6hTbKecND+Wxb3bxdcZR7p8rvHBB/8HpcLD52/+x7tMPcNhsHdajho1gzi13428NcYN13U9WVRbLcpaRnp3O7jLlZiUxMJG7R93N7OjZxPr17z19QffjisLdhTJStAn4EPgJeLwnjeoK7xYBb2qwExoYCkBhfWFHAZedylQyv3B3mNmtmI3eTBwUzNfbj/J/aYPFXbmgX1CSk8VPrzxP0eGO22BeegPTrlvA8JlzPf79fqjyEEuzl5Kend665TcieAT3jb6P2dGziTRGutlCgSdzUgGXJEkNfC3L8mzOcC54d9IuhG5oqwUfGji07aDWWvCj/ULAAeaNDONPn2eSmVfFyEj/U58gEPRRHHYbG/73KRv+91+cDnuH9bjUscy++U6MQcFusO7skWWZfRX7SM9OJz07nSNVR5CQGGUZxQNjH2B29OzWPhYCwdlyUgGXZdkhSVK9JEl+sixX9ZZRXeGla8tCj/NVPPD82hMyzltrwfOBsb1oXc8xd1gID325k6+3HxUCLvBYCg8d4KdXn6c0J6vDms7XyMz5tzB08nSP87plWWZX2S6WZi9lWfYycmtyUUkqxljHcPXQq5kVNQuzwexuMwX9EFdC6I3ADkmS0oG6Yw/Ksnx3j1nVBSq1Ci+dmqZ6G0G6IPQaPbk1ue0P6kfNXI7hp9cybYiZbzOP8pfzEt1tjkBwWtiaGln36Yds+fZLZNnZYX3wuEnMXHAbPv4BnZzdN3HKTjJLMltFu6CuAI2kYVzoOBYMW8DMqJkE6gLdbaagn+OKgH/X8tUn0PlqaayzIUkSUcaojgKuDwCtAary3GNgDzFvZBjpu4vYeKTc3aYIBC6TuyuTpYsXUVlY0GHN4OfPrJtuZ/C4SW6w7PRxOB0caDzAug3rWJ69nOKGYrQqLRPDJnJnyp1Mj5yOn7fo1yDoPVzpxPZObxjiKt4GLU11yt5ZpDGSQ1WH2h8gSeAfBZXZbrCu55iVaEGvVfP19qPMFTf2gj5OU30dqz94i8xlP3a6njR1JtNvWIjet2+XRtqcNjYVbiI9O50VOSsobyzHu9SbyeGTmRM9h2kR0/D18nW3mYIBSpcCLknSf2VZvkKSpB0oQ0zaIcvyiB61rAt0Phoa65SSk0hjJKvyVuFwOtoPpPeP7ncCbvDSkJZs5fsdBcyc0v97Pws8l0NbNrDsjZepLS/rsGYMMjN74R3Ejeq7+SnNjmZ+LfiV9Ox0fs79maqmKvQaPdMiphFWG8atabdi0BrcbaZAcFIP/Njwkgt6wxBX0floqS5TOjVFGCOwOW0U1xcT2pLUBigeeM6vbrKw57g0NYKvMo6yrVjFHHcbIxCcQH11FT+/vZi9v6zqdH1k2vlMueoGvA19T/wa7Y2sO7qO9Ox0VuaupNZWi6/Wl+mR05kTPYeJYRPRaXSsXLlSiLegz9ClgMuyXNDyvU+5st4+7UPoALk1ue0FPCAamqqgoULZE+8nTI4PJtRPx9o8G39ytzECQQunGvkZEBpO2q13EZE4zA3WdU29rZ41+WtYlr2MVXmraLA34Oftx+zo2cyJnsP40PF4qb3cbaZA0CWuDDOpoS2E7gVogTpZlk09aVhX6Hy0NNXbkJ0yUaYoQBHwc0LPaTvIX3mcypx+JeBqlcRlqRG89PNBCqsaCfHTudskwQCnurSE5W++3OnIT0mlYuy8y5hw2VVovPqGENY217IqbxXp2en8kv8LjY5GAnWBXBB3AbOjZzM2ZCxaldiiEngGriSxtcsykSTpYpThJm7B26BBllsmkhlC0Kg05NTktD/IP1r5XpENoSN738ge5LejI3jx54N8sS2PO6bHu9scwQBFdjrJXP4jqz94i+aGhg7r5pg45t52D9bYQW6wrj1VTVWszF1JenY6646uw+a0YdabuSThEuZEzyHVkto+h0Yg8BBOu1m4LMtfSpL0554wxhV0vsrdcVO9DZ2PgRhTDIerDrc/KKBFwPtZIhtATLAPgwNUfLY5j9unDfK4phcCz6f8aD7pixeRt2dnhzW1VsuEy65izIWXota4bxZBeWM5K3JWsCx7GRsKNmCX7YT6hPK7ob8jLTqNEeYRqCSV2+wTCLoDV0Lolx73owoYQydZ6b2FzqAIeGOdHT8zxPnFsbd87wkH+YO3SQmh90OmhGt4c2cdW7IrGBMjasoEvcOx4SPrP/0Qu625w3rYkCTSbr2LoHD39PcuqS9hec5ylmUvY1PRJpyyk0hjJNcnX8+c6DkkByWLG15Bv8KVW+QLj/u3HcgCLuoRa1zA2+eYgCulZIP8B7EsZxmN9kZ0mpY9YUlSwugV/c8DBxgbouHj/Q4+2pgrBFzQKxRnHeanV5+n+MihDmtanZ6pV89n5JzfIKl616vNq8lrFe3tJduRkYn1i+Xm4TeTFp3G4AAxAEjQf3FlD/zG3jDEVXQ+LRPJWgQ8zj8Op+wkuzqbIYHHjdv0j4Lyjh82/QGdRuKS1HA+3ZzHQ+cnEuDTNxKEBP0Pe3Mzv37xCZu+/gynw9FhPSZlNHMW3okp2NIr9siyzOGqwyzLXsbynOXsKd8DKGM570y5k1lRs4gPELkhgoGBKyH0F0623ts90XU+bSF0gEF+SpLMocpD7QU8IBoO/wyyrHjk/Yxrx0fz/q85fLYlj4VT49xtjqAfkr93N0tfe4Hyox3bEut8jcyYfwuJvTB8RJZldpftZlnOMpZlLyOrOguAFHMK94+5n5lRM8VYTsGAxJUQug5IAj5p+flyYAuQ0VNGnQxvQ4sHXq944NGmaNSSumNL1cA4sNVDTSGYQk+8jMczNMTEmOgAPtiQzU2TY1Gp+t9NisA9NDc2sPajd9n207fKDfAJDJ4whVk33orBr+cm4zmcDjJKMlo97YK6AtSSmrEhY7k28VpmRM3AYugdr18g6Ku4IuAJwAxZlm0AkiS9CiyVZfneHrWsC1RqFV56DQ01ioB7qb2UnuiVJwh4UEv5StnBfingANdNiOaejzNYe7CUqYPFuELB2ZOVsYWlr79ITWlJhzWfgEBm3XQ7CWMn9Mhz2xwtfcdz2vqOe6m8mBg2kTtS7mB6xHT8dWKcrkBwDFcEPAwwAsfGYPm2POY29EYtDbVtWbAJAQnsK9/X/qCgln2wsoMQO6UXres9zh0WQpCPF+//mi0EXHBW2Bsb+PHlZ9m1anmn68NnzWXqNTei8+newR0N9gbWHVWme63MW0lNcw0GjYGpEVOZFT2LKeFT8NH6dOtzCgT9BVcE/B/ANkmSfm75eRrw1x6zyAUMRi8aatoEPDEwkfTsdGqaazB6tfSdMUWA2rvfJrIBeGvUXDE2ktdWHSK/soFwf727TRJ4GLIsc2DDL+z6+C3sDfUd1v2sIaTdchdRw7qvIVJNcw2r81azPGc5a/PXtrYwnRk5k9nRs5kQNgFvtXe3PZ9A0F9xJQv9LUmSfgDGtTz0Z1mWC3vWrJOjN3lRUdj2YZMYlAjA3vK9jA1pmXKkUin74GX9V8ABrhkXxeLVh3lnXRZ/OS/R3eYIPIjainKWv/kKBzet77AmSSpSz7+ISVdcg9b77Fv2ljeWszJ3Jcuyl/Frwa+t3dDmDZrH7OjZjLaOFi1MBYLTxJUsdAmYDcTJsvw3SZKiJEk6R5bljT1vXufojV4cPVDZ+nNioCJce8r2tAk4KPvgpft727xeJSLAwG+GhfDRhhzunpWAr7f7ul8JPANZltm5Mp1V775JU31dh/XgyGjSbrub0PghnZztOoV1hSzPWc7ynOVsKdqCU3YS7hvO1UOvZnb0bNENTSA4S1z5tH8ZcAIzgb8BNcDngNsG+uqNWhrrbDgdTlRqFUH6IKwGK7vLd7c/MCge9v8ETgf0417HN0+J49vMAj7ZlMtNk2PdbY6gD1NZVEj64kXk7NzeYU2l1jDukisYd8nlqDVn5g3nVOewLGcZy7OXk1maCUC8fzwLhy9kdvRshgQMEY1VBIJuwhUBHyfLcqokSdsAZFmukCTJrZ1DDEYvkKGh1oaPn7JXlhiUyJ6yPe0PDIoHp01pqRrYf4UtJdKfsTEBLFl7hBsmRKNRC69G0B6n08G2H75l7SfvYm9q6rDuYwnlt396iODI6NO6rizL7K/Yr3RDy1nGgYoDACQHJXNP6j3MippFrF///dsTCNyJKwJukyRJTUv/c0mSzCgeudvQG5X7h4aaNgFPCkxiVe4q6mx1bVmrraVkh/q1gIPihd/63hZ+3FXIBSPcWiQg6GOU5maz9NUXKDi4r8OaxtubyVdeT7Xe6LJ4O2UnO0p3KOHx7OXk1OQgIZFqTeWBsQ8wM2omYb7iPSgQ9DSuCPgLwP8AiyRJTwC/BR7qUatOgcGkhPeOz0QfaR6JjExmSSYTwlrqVI8vJUuY3dtm9iqzE63EBBl4fc0Rzh8eKsKUAhx2Gxu//Ixfv/gEp8PeYT1q2Ejm3HIX/tYQVq5cedJr2Rw2NhZuZHnOcn7O/ZnShlI0koZxoeOYP2w+MyJnEKwP7qFXIhAIOuOkAi5Jkgo4AvwJmAVIwMWyLO852Xk9zTEPvL66TcCPJcRkFGe0CbiPGXR+UNrR8+hvqFUSN02J4+Evd7LhSDnj44LcbZLAjRQc3MfSV1+gNLfjQB9vgw/Trr+JYdPnnPRGr85Wx5r8NazIXsGa/DXU2mrRa/RMDp/MzKiZTI2YisnL1JMvQyAQnISTCrgsy05Jkv4ty/IEYO/Jju1N2kLobQLu6+VLgn8CW4u3th0oSWBJguI+Y3qPcvnoCF5YfoBFKw4IAR+g2Joa+eWT99n6/dfIcsedrvix45m14HZ8Azt/f5Q2lLIydyUrcla0lnsF6gJJi0ljZuRMxoeNFzXaAkEfwZUQ+lJJki4DvpDlThojuwFvgwaVSmptp3qMFEsK3xz6BrvTjkbV8tLMQ2HX//rtUJPj0WnV3Do1jse/28OW7HJGR4tRowOJnJ2ZLF38AlVFHds0GPz8mbXgNhLGTergdedU57C8ajlLflhCRnEGMjLhvuFcNfQqZkbNJMWcgrofV3EIBJ6KKwJ+H+AD2CVJakQJo8uyLLstdiZJEnqjlvrjPHCAVEsqn+z7hAMVB1qbu2BJhC1vQW0RGEPcYG3vcvW4KF5ZeYgXlh/knQXnuNscQS/QWFfL6g/eYsfynzpdT542i2nX3YTeqPzJyrLM7vLdrMhZwYqcFRysPAjA0MCh3J5yOzMjZ4o52gKBB+BKJzZjbxhyuuhNXtRXnSDg1lQANhZubC/gAMW7B4SAG7w03Dwljn/+uJeM3EpSIsXwh/7MgY3rWL7kVeoqyjusGYPNpC38PTEpo7E77WwsUJLQVuSuoLCuEJWkItWiZI7rj+q5bPZlbngFAoHgTPHYtl2+/t7UlLevZw3xCSHWL5b1Beu5IfkG5UHzMQHfC4Nm9rKV7uG6CdG8tvoQi5Yf4M35buu3I+hB6iorWL7kFQ5sWNdxUZJISTufMZdfweaKbby+9kFW5a2iqqkKb7U3E8ImcGfKnUyLmEaALgCAlcUre/cFCASCs8ZjBdzH35vCI9UdHp8YNpHP939Ok6NJSbbxNYMhSPHABwi+3hpumhTLv9P3szO/imHhfu42SdBNyE4nO1ctY9V7b9JU17ENql9oKL4XjuEraRd//moujY5GTF4mpkVMY2bUTCaGTcSgNbjBcoFA0N14tIA31tpw2JyotW2dxyaGTeSDPR+wrXgb40PHKw9akqBkYGSiH+OGSTG8+csR/vXTPt4Ve+H9grw9O1n13psUHjrQcVElUTJczwehm7Dl/YrVYOWShEuYGTVTDAoRCPoprtSBZ8qyPKyX7HEZH3+llKWuqglTcNsYzTHWMWhUGtYdXdcm4OahsP3jAZGJfgyTTsud0+N54vs9rDtYysR40WTDU6koyGf1B293OjUMoNSviV+GlxEUFc38yAXMippFUlCSSEITCPo5rtSBb5ckKUqW5ZzeMsoVfFsEvLayvYAbtAZSLamszl3NfaPvUx60JkFzDVRmQ0CMG6x1D9dNiOatX47wjx/38tWdHcuHBH2X5oZ6srZv5eDmDexbtxqnw9HhGLvKSWGqgeFzL+G2mNlEm06vj7lAIPBsXAmhhwK7JEnaCLRuusmyPK/HrHKBVg+8suNghplRM/nHxn9wuOowcX5xEDpSWSjIHFACrtOquXfOYP74WSbf7yjk/BGh7jZJcBIctmYaamtY8+Qj5O7KxGHv2P70GPqkKM694U7iYpJ70UKBQNCXcEXAH+txK86Akwn4rKhZ/GPjP1iRs4K44XFgSQZJDQXbIcmt9x29zqWpEby+5jDPLN1HWrIVrZhU1meQnU6Kjhzi0JYNHNq8gWFNypZPVuHWLs+xDIpnxvULiRgqhFsgGOi4Uge+SpKkaCBBluVlkiQZALe3ZfI2aFBrVZ0KeIhPCMODh7Msexk3D78ZtDqlHryg4wzk/o5aJfGnuUO5+d3NfLIpl2vHizCrO7E1N5G7M5NDmzdwaOvG9vXbIeO7PM8UbGHy1TcwdMIUJJW4CRMIBC4IuCRJC4FbgEBgEBAOvIoy3MRtSJKEj793pwIOihf+3NbnyKvJI8IYoYTRDywdUIlsx5iVaGFsTADPLdvPvJQwTDqRkdyb1FVWcHjbJg5t3kj2jm2dzuPuDF+VmoQpM0iYPovwIUmo1G6/bxYIBH0IV0LodwLnABsAZFk+IEmSpUetchFff29quxDw82LP4/mtz/PN4W+4feTtioBnfAA1hWAaWHvBkiTxyAXJzHtpLYuWH+DB85PcbVK/RpZlyvJyFC97ywYKDu5XbhxdQON0klhRT/INC4i86mpUwtsWCARd4IqAN8my3Hwsg1mSJA3QJ4aa+Ph7U3SkqtO1UN9Qzgk9h68OfsWtI25F1ZrItn3ACTjA8Ag/rhwTyVu/ZHGJ/MbTAAAgAElEQVTl2CjiLb7uNqlf4bDbyd+7qzU03tlAkc7QeuuIiIolIHMXAXWNaIOCSPrkczQBAT1ssUAg8HRcEfBVkiT9BdBLkjQHuAP45lQnSZIUCbwLhABOYLEsy8+fjbEnYgzScWhLMU6njErVMSx+0aCL+Mvav7C1aCtjrMMASRHwIed2pxkew/1zh/DdjgL+/u1u3r5xrCgrO0saaqrJytjCoa2byMrYQlN9x85oneEbFMyg1HOITR6O9/fp1Hz6KdrwcHSDB6P28xPiLRAIXMIVAf8zcBOwA7gV+B54w4Xz7MD/ybK8VZIkI7BFkqR0WZa7raepKUiH0ylTV9mEMVDXYX129Gye2PAEXxz4gjFTnoTgBCjI6K6n9ziCfb25Z1YCj3+3h+V7ipmdZHW3SR6FLMuUZB/h8NZNHN62icID+zudud0Z1rh4Bo0eR9zoc7DExFG7fDmFDzxETWkpgfPnY777LkrfO9jDr0AgEPQnXBHw6cAHsiy/fjoXlmW5ACho+XeNJEl7UBLgulHAlQYuNWWNnQq4XqPn4viL+WTfJ9w7+l7M4aPh4LIBmch2jBsmxvDJplwe/XoXE+ODMHh5bDfdXqG5sYHsHRkc2bqJI9s2U9vJ1K/OUGu1RA0b2SLaYzEGKp3wbMXF5N/zB2qWLsV7yBAiXnoR/fDhPfkSBAJBP8WVT+/5wKuSJJUBa1q+1sqyXOHqk0iSFAOMoiURrrswBimiXVPWAAmdj828eujVfLjnQz7Z9wm/jxgL2z+CiiwIjO1OUzwGrVrFk5cO5/JX1/PcsgP85bxEd5vU56goyOfw1s0cydhM3u4dJ22ocjx6kx9xqWMZNGYc0cNT8NK1dQiUZZnKzz6j+F9PIzc1Yb73XoIW3IikFRUBAoHgzJBkF7NjJUkKA34L3A+EybLskusmSZIvsAp4QpblLzpZvwWlTA2z2Tz6v//9r4umg9Mhs+dTGfMwCcuwrj3qxcWLOdJ0hKf9b2Tylj+yO/Feiq3TXX6evkZtbS2+vmeXhPbWzibW5Nt5dIKOaFP/LE9y9ffkdNipPZpHVc4RqrIP01Tl8r0p+iAzftFx+EXH4WMJ7bRGW11UjOmDD/Dav5/mhASqr70Gh7Xj9kX4BuXc/HGuheW7k+54Tw0ExO/JdcTvyjVmzJixRZblMWdyrit14NcCU4DhQCnwIooXfkokSdICn6OE4DuIN4Asy4uBxQBDhgyRp0+f3um16tavp/KL/xH6t8dQ6ds8m5ylawkyBTF9eteepLHIyPwf53Mo1ovJO3xJ8q0lqYvn8QRWrlxJV78nVxl1jo1Z/1nJFznefHHHJNSdJAF6Oif7PdWUl3Jk2xaObNtE9o7t2BobXLqm1ltH1PAU4kaNIXbUGIxBXQ+JkW02yt56m9IXX0Ty9sby97/hf9llXTZiKd6XCUDC9BEu2dKddMd7aiAgfk+uI35XPY8rXvRzwCGU5i0/y7Kc5cqFJSXF+U1gjyzL/zljC1uw5edT/c03WO79QzsBNwbplRD6SRhtHc2E0Am8uXMJl4enYMjbeLbmeDx+Bi0PX5DEPR9n8Pa6LG6a3L+3FJwOBwUH93Nk22YOb9tESdZhl8/1t4YSmzqGuFFjiUgajsaFsHfDjp0UPPwwTXv3YkxLw/rQg2gtfaJ9gkAg6Ce40ko1WJKkZGAq8IQkSQnAPlmWrzvFqZOA64AdkiQdS/3+iyzL35+JoeqW0hp7RQXasLDWx41Bui5rwY/n96N+zzXfX8MHpnAWZq2H5jrw8jkTU/oN80aG8VXGUZ7+aS8zhpiJM/evcFdzbTWZy38ie/tWsndm0FTnWpmXSq0hIjGZuNSxxI4aS2BYuMvP6ayvp2TRi5S/8w6a4GAiXlyEcfbsM30JAoFA0CWuhNBNQBQQDcQAfih13SdFluW1QLfFZdX+SpKao7z9/qTpWC24w4nqJIM6RphHMCNyBm/kr+MiFViOboOYyd1lnkciSRL/uHQ4c55dzf2fbufT2yZ6dCjd1txE/u6dZGVu5UjGVsrzc9nh4rk+AYHEpowhLnWMkoCmN5z289euXk3hY3/Dlp+P/5VXYrn//1Abjad9HYFAIHAFV0Loa4/7elGW5byeNalz1IGBADjKy9o9bgrW43TK1Fa0nwveGX8c+0cuzr+YZwL9+Vf2ugEv4AAWk46/XZTMPR9n8Pqaw9w2bZC7TXIZWZYpz88la/tWjmRsIX/PLuy2ZtdOliRC4wcTO0oJjVti4s54SIi9tJSiJ5+i+vvv8YqLI/r99zCMOaOcFIFAIHAZV0LoIwBamrG4rYWqJlhJFrKXta/D9bcqol1ZXH9KAY80RnLT8Jt4ZfsrXHzkJyZO+1PPGOthzBsZxg87CvnP0v3MHGphsLXveo2NtbXk7MzgSMZWsjK3UltW6vK5OqOJ6JYEtJiU0RhMfmdli+x0KqVhz/wbuaGB4Lt+T9DChai8vM7qugKBQOAKroTQhwHvoUwjkyRJKgFukGV5Z08bdzwqX18krRb7CR/YfhYl1FlZ1ECUCzM6FgxbwI873+PhpgK+qCvGz0ckFkmSxOOXDGPus6u5+6NtfHnnJHTavlFa5rDbKDiwj5yd28nK3HZa3c+QJMIGJxIzchSxI0djiRuEStU9r6vp0CEKHnmUhi1bMIwdS8hjj+Ed178TAQUCQd/ClRD6YuA+WZZ/BpAkaXrLYxN70K4OSJKEOjgYxwkeuMHkhZdOTWVRvUvX0Wl0PJV4I9fueIHHV/2Jf/3mLdETHKXN6tOXj2DB25t56vs9PHbRMLfYITudlORkkbMjg5yd28nbswtbU6PL5xuDzcSMTCV25GiyK6uZPbd7+947m5ooe20xpa+/jspgIPSJx/G79FLxHhIIBL2OKwLuc0y8AWRZXilJklvStzWBgdjL2u+BS5KEv9VAZbFrAg6QnHQFd6x5nBekLaTs/ZBrEq/pblM9kplDrdw0OZY31x5hUnwwackhvfK8lUWF5OzIIHvndnJ3bqehptrlczVe3kQkDSN2ZCrRI1MJDItoFdP8lSu71c66DRspfPRRmrOyMF14IdY/P4AmKKhbn0MgEAhcxRUBPyxJ0sMoYXSAa4EjPWdS16iDg3CUdNzz9LMYKDx86lKyVvT+3KSPYafcyNObnibOL44JYRO60VLP5U/nDmHDkTL++Fkmw8L9CPM/eV7BmVBXWUHOrkxydmwnZ+d2qkuKTuv8oIgoYlJGEzMylYihyWh6eM/ZUVlJ0dNPU/X5F2gjIoh84w18J0/q0ecUCASCU+GKgC8AHgOOdVJbDdzYYxadBE1gEE1793V43N9q4MDmIuw2BxoX925VsVN5cuNirh02gftW3scbc98gOSi5u032OLw1ahZdlcoFL6zhno+38eHC8WhPUp7nCvXVVeTt3kHu7h3k7tpBWV7OaZ3v4x9A1LCRRA0bSfSIUSftftadyLJM9bffUfTUUziqqghaeDPBd9zRrpGQQCAQuIsuBVySJB1wGxCPMkr0/2RZtvWWYZ2hCQ7CXl6OLMvt9hz9rXqQoaqkgaAwF5uRxE3HZ90iXom/lvn73uTW9FtZMncJgwMG94zxHkRssA9PXjqcez7O4Knv9/LIhS5kB3bB//75GIe3bjqtc7z0BiKThxM1LIXo4SMJDI/s9T3m5txcCv/6GHW//IJu5Aii3lqCbsiQXrVBIBAITsbJPPB3ABtK3/PfAInAH3rDqK5QBwaBzYazuhq1X1sJkH9rJnq96wIePRk0ekJyNvF62uvM/3E+N/54I4tmLiLVmtoT5nsUF6WEsy2nkiW/HGFkpB8XpbjejQygrKGMLUVb2N+cfcowj1qrJXxIIlHDUogaNhJrXDwqtXuy4GWbjbK336b0pZeR1GqsDz1EwFW/Q3KTPQKBQNAVJ/tsTZJleTiAJElvAm5vIK4JVhKG7GXl7QQ8IMQHJCg/WsegUS5eTKuDuGlw4Ccif/NP3jn3HW5fdjsLly7k75P+znlx5/XAK/AsHjw/kd0F1TzweSbxFl+Sw7qumy6pL2FL0RY2FW5ic9FmDlcpvcaHav0ZT/vzJEmFNW5QS1g8hbChiWi9vHv0tbhCQ2YmBQ8/QtO+fRjnzMb64INoQ3onkU8gEAhOl5MJeGu4XJZle18okzmW8WsvLWlXc6v1VmMK1lOW71qv61YS5sD+H6HsEBHB8bz3m/e45+d7eGDNA2wp2sIfx/4RnUbXnS/Bo9CqVbx0dSoXLlrLbe9v4ZvfT8bf4IXdaWd/xX4yijPIKMkgsyST/Np8AAwaA6nWVOYNmseYkDFEYuGtu27BEhNHZPIIopJHED40CW9D3+lD76itpeTZ56j48EM0FovoXy4QCDyCkwn4SEmSjtXzSIC+5WcJkGVZNvW4dSegaZmhbC8q7rAWFOZD+dHa07tg/Bzl+4GlEByPv86fN+a+waJti3hr51tsKdrCIxMeGdAhdbPRm39dOYhbPvmcSz/+kaiwEnaX7aLBrkyAs+gtjLSM5KqhVzHaOpqhgUPRqNq/rX6/5OM+JdjHU7NsGYV/fxx7cTEB11yD+Q/3oBYzjAUCQQ9itzkozaulOMv1ktnO6FLAZVnuc5t+GqsSzrQXdyw7Cgr3JWtH2WllohMQDeahioBPuAMArUrLfaPvY1zIOB5b/xg3/HgD8wbN465RdxHi0//DqfW2evaU72F32W52l+1mZ+lOsqqz0IZDsayiqSSaSwZfwijLKEaaRxLiE3LKBLO+KN62wkIKH3+c2mXL8R46lIhFL6Af0ftzuAUCQf9GdspUFtdTdKSaoqxqirOqKc2rxek4+87krpSR9RnUvj6ofHywFXYu4LJTpqKgHnPUafTyTpgDv74KDZWg9299eFL4JL686EsWZy7mnd3v8MORH7g04VLmJ88nwhjRHS/H7dTb6tlXsY9dpbvYXbabXWW7OFJ1BLml5b3FYCEpKImL4y9mpHkkKzO9eXFFDsbwwZwbm+Bm688M2eGg4sOPKHnuOWSHA8v9/0fgDTcguTDjWyAQCE5FXWUTRVltYl2cVU1zowMArU6NJdpEyuworDEmLDEmfv/amT+XRwk4gCYkBHthYYfHg8IVL6/saO3pCXjiPFi3CPb/BCOvbLdk0Br4w+g/cMWQK3hjxxt8fuBz/rvvv0wMn8jlCZczJWIKXuq+P7jC5rSRXZXNwcqDHKg8wIGKAxysPEheTV6rWJv1ZpKDkjk35lySg5NJCkoiWN++3nq0VeZohYNnlu4nMtBw2pnp7qZx714KHnmUxsxMfCZPJuSvj+IV0T9uxgQCQe/T3GinOLuG4uMEu7aiCQCVSiIowpfB54RgiTFhjTEREGJA6saRzR4n4FqrFVtRRw/cz6xHrVGdfiJb+BgwhsGerzsI+DHCfMN4ZMIj3DLiFr448AWfH/icP6z8AwaNgcnhk5keOZ2xIWPdGmKXZZnKpkqyq7PJrcklpyaH7GpFtI9UHcHutAOgltREm6JJDEzkwkEXkhiYSFJQEhbDqYe6SJLEU5cNJ7+ygT9+monVpGN8XN9vJeqsq6Nk0YuUv/ceaj8/wp55BtP554n+5QKBwGUcDifl+XXtvOvygrrWGZ1+Zj2h8f5YY0xYY00ER/q6vp17hnicgGtCQmhau7bD4yq1ioBQA2V5Nad3QZUKkubB5regqQa8u/beQ3xCuCPlDm4ZcQvrj65nRe4Kfs75maXZS1vXR5lHER8QT4wphli/WMJ9wzFoDadnUyc02BsoqS+hqL6IzXWbydqZRVF9EcX1xeTV5pFbnUuNre21qyQVoT6hDPIfxJTwKSQEJJDgn0CsX+xZRQ28NWpeu240v311PTe/s5kPF45jRIT/qU90B7KsJKk9/gT2wkL8r7wSy333titBFAgEghORZZnq0gZFqI/UUJRVRUluLQ6bMglR56vFGmsifrRF8a6jTeh8e38bzuMEXBtixV5aimy3I2nam2+JNnFoa3GHTm2nJHEebHhVSWYbdtkpD9eoNEyJmMKUiCk8PP5h9pTvIaM4g23F29hWso0fsn5od7xeoydQF0iQPghfrS9eai90ah3eam80Kg0O2YHdacfutOOQHdTb66lprmn31eRoam9EqXJdq8FKuG84I+JGEG2KJsoURaQxknDf8B4L7/sbvHj/pnH89tV13LBkI/+9dQIJfWyGuC0/H/9XXiEvcwfeQ4YQ/ux/MIxytUmAQCAYSDTUNLd61cc87KY6JWqp0aowRxsZNi1c8a5jTBiDdH0igudxAq6xhoDTib20tEOTDUu0kd1rj1Jd2oCf+TS83qjx4GOB3V+5JODHo5JUJAclkxyU3DrVrN5WT1Z1FllVipdc2lBKWWMZZQ1l1NpqaWpoosnRRKOjEbvTjkalQS2p0aq0qCU1eo0eo5eREEMIRi8jJi8TJm8TZr0Zi8FC9q5sLph2AT5aH7e9iUL8dHxw8zh+++p6rn1zA5/dNpHIwLOPNJwtss1G+TvvUPLSy2idTiwPPEDgddd2uNkTCAQDE1uzg9Kcmnah8OpSZWSxJEFgmA9xKebWUHhgqA+qs5wH0VN43KeaNkSpBbcVFHQi4EppenFWzekJuEoNyZfAlrc7ZKOfCQatgaSgJJKCzryH+Mlo2t+Er5f7a5Wjg3x4/6ZxXLl4Pde8sYFPb5uA1eS+xjf1W7ZQ+Ne/0nTgIMY5szk8YwbJl17qNnsEAoF7cTplKgra71uX5dchO5WNa99Ab6wxJpKnhhMSayI40oiXrpdk0emE8kNndQnPE/CwMABs+UfhhJBoYLgPaq2KouxqEsZaT+/CI38HG1+DXf+DMW4ZtuaRDAkx8vaN53DN679y1eJf+XDheEL8elfE7RUVFD/zDFWff4EmLJSIl1/GOHMGB7t5HrhAIOi7yLJMbUUTRUfaQuHFOTXYm5QSLi+9BmuMkdS5bSVcPn691MJZlqH8MBRkwNFtcDRD+Wo+zZytE/A8AW8p+7Hl5XZYU6tVBEf4UpJ9Br+UsFEQPAS2fywE/DRJifTnnQXnMP+tTVzx2no+XDiOiICeD6fLskzV/76k+F//wlFbq4z7vP12VAb3h/IFAkHP0lhnoyS7fSi8vroZAJVGIjjCSOKEUKwxRqyxfviZ9d1awtUlsgyVOS1C3fJVkAGNVcq62htChitOY1gKPHbdGT+Vxwm4Sq9HYzbTnNtRwEEJo+9ZX4DTKaM6nf8sSYKUq2DZX6HsEAQN6h6DBwhjYgJ576ZzuH7JRq587Vc+WjieqKCeE9Kmgwcp/Otj1G/ejD41lZBHH0U3RIyCFQj6I/ZmByW5tW2edXY1VcUNrev+VgORiYFYYxXPOjjcF7W2F/atZRmq89uL9dFt0FChrKu0EDJMya0KTVEcRUsiqI/PWB9AAg6gjYzElpvX6Zo11sSOlXmU5ddijjzNzOjhV8CyxxQvfOaD3WDpwGJUVAAfLRzPtW9u4MrF6/lw4Xhig7u3jaqzoYHSV16lbMkS1D4+hD7+d/wuvRRJ1TeTTAQCwenhdDgpL6ijOKumVayP37f28fPCEmNi6IRQrNEmLDFGvA29VMJVXdDeqz66DepKlDWVRhHnxAsVoQ4bBZYk0PRcmN4jBdwrMoK6jZs6XQtLUBLQCg5Wnr6A+4VD/CzY9h5M+9MJd0kCVxgW7seHNysifsVr63nnxnNICuueuTc1K1dS9PfHseXn43fJJVj+eD+awMBuubZAIOh9ZFmmqqSB4myl3ro4u5qSnBrsLfXW3gYNlmgjqWlRrd3MfPx7ad+6trhlr/o4z7q2pQuopAJzIiTMVcLgYalgTVbGVPciHing2ohI7F9/g7O5GZVX+1pnY6AOY6COowcqGTEj8vQvPvZm+Oh3sPc7SL64myweWCSFmfjklvFcv2QjV7y2nteuG82k+OBTn9gFtsJCip54kpr0dLwGDSLq3XfwOeecbrRYIBD0BnVVTceFwZUWpE31LV0itSrMkUaSpoQpSWbRJvws+t4pla0rVcS6YFubaFfntyxKYB4Cg2YoXnVoirKH7eX+XBvPFPDICJBlbPn5eMfGdlgPTfAjd0/F6Td0AUhIA78o2PSGEPCzIMFq5Is7JjJ/ySbmv7WRp387kotHnV7vdNlmo/z9DyhdtAjZ4cB8770E3Tgfyavv958XCAY6jmaZ3L3lLQM9FO/6WJ9wSSURGObDoFFmLC0Z4YFhPqh7o976mGddkAEF25V/Vx+3JRuUANGTWjzrURAyArzdX7bbGR4p4F5RUQDYcnM7FfCweH/2byiiqrgBf+tp3iWp1EoW+vLHoHgvWIZ2h8kDklA/Pf+9bQK3vreZP3ySQUFVI7dNi3Pppqpu40aK/v53mg4cxGfaVEIeegivyDOIqAgEgh7HbnNQmlvbumddnFVDZZHMXjKA9n3CLdFGgqOMaL16YWJ1dYEi0gUZbaJdU9CyKEFQvNLIKyxF8axDR4DOc1ote6aAx8QA0HT4ML5Tp3ZYP7YPfvRA5ekLOEDq9bDyKdj0Opz/77MxdcDjp9fyzoJz+L//buefP+7laGUDj1yYhLaLO21bcTHFTz9D9TffoA0LI+KlF/GdObNPtC0UCATtm6MUt4TCy/JqcbYkmRn8vLBEm/CyNDBuxggs0SZ0Pj2cTyTLUH20vVddkAG1xwZfSRA8GGKnQujINrE+yewLT8AjBVwTGIg6IIDmQ4c7Xfe3GjD4eZG7t5ykyWGn/wQ+wTDiCtj2Pkz7M/iaz9LigY23Rs0LvxtFqJ+O19cc4WBxLS9dk0qgT1soXLbbqfjgA0peWITc3EzQ7bcRfMstqPR6N1ouEAxslKEejcq+dbYi2CU5NdiblSQzL72SZJaSFtWSEW7CN0BJMlu5ciVRST0wrVCWoSqvvVddsL0tG1xSKT09Bs1sEeqRyp51Hw2Dnw0eKeAAXoPiaDrUeRs6SZKISgrkyPbS068HP8akP8C2D5QhJ7MePktrBSqVxIPnJzHYauTBL3cy78W1LL5uDElhJuo3b6bwb3+naf9+ZU73Qw+2RlkEAkHvUVfV1Jpcdsy7bqyzAaDWqDBH+ZI0Kaw1I7zHm6PIMlRmtwj19jaxri9T1iW1UrqVkNZSZ50C1mF9IsGsN/BYAfceFE/1jz92magWlRTE3vWFFGdXExJ7BnsawQlKPd/G12HSPaDrnlKogc7lYyJJsBq57b0tLHj2B56v/AXTmnQ0YaGEL3oB4+zZIlwuEPQCTQ12SrIVkT4WDm9NMpMgMMyX2JRgLNGKWAeG93CSmSxDxZE2r/qYaDdWKuvH6qyHnNe2Z21NBu3AjdJ5sIAPwllVhaOsDE1wxxKlyMRAkCBnV/mZCTjA5Hthz9eweQlM/sNZWiw4xshQXz4xZ1P+8Yuobc3sn3MZ5z31/9D6dm/TF4FAoGC3OSjNq1WywVsSzSqK6kHZtsZk1hM6yK81I9wcaUTr3YNJZk5nW2/wVrHOhKaWdqMqLViTIOmiNrG2JPV6nXVfx2MF3GtQHABNBw91KuA6Xy3WGBM5u8o454KOmeouEZ4KcTNg3Qsw9iaPT3joC9Rv3UrhY3+jad8+AiZM4MMJV7D4sIOPP9zBc79Lces0M4GgP3Asyaw4u5qiFsEuy6/F6VDUWm/ywhpjImGstbXeWufbg0lmTieUHWzvVRdmQlO1sq72Vjzp4Ze1JZhZkkAjykVPhccKuHd8PABNBw7gM35cp8dEJQWy6fss6qubMZjO8M0w62F4fSasfwmm//lMzR3w2EtLKX7m31R9+SWakBDCn38eY9oc/iJJJGzO5ZGvdnHe82v4z5UpTBsskgYFAldoTTLLbtuzbjeBS6fGHG0iZXak4l1HK0lmPbZN5XRA6QEoyCD+wLdw+B9QuAOaa5V1jU7Zox5xRVuCWYfe4AJX8VgB11gsqAMDadyzp8tj4kaZ2fRdFke2l5A85fSaiLQSPhoS58G6RUqXNp8z7yg2EJHtdio+/oSS55/H2dhI0MKFBN9+W7uJYZePiSQl0p/ff7iNG5Zs5LZpg7hvzmC8NKK/uUBwjGPjMkuyayjKrm7dv27tZKZRERzpS+LEUKzRRiwxJvwthp5LMnPYoXRf+wSzwh1gqwcgVOWlhL9Trm5LMAseAmqPlZ0+h8f+JiVJQpeUROPu3V0eExTui59Zz6GtxWcu4AAzH4a938LqZ+A3/zjz6www6jdvpvCJJ2naswfDhPGEPPww3nFxnR6bYDXy5Z2T+Nu3u3h11SHWHCjhuStTSLCKbQvBwKSuShHr4mxlrnVxVjUNNUpGuEolERjuw6BUC5ZoI5bolk5mPXXTa2uE4l3KPnVhpiLYRbvA3qisa32UuurU61vFes2uo0yfMatn7BEAHizgALrkZMrefBNnUxMq744N7iVJYlCqmYz0XBrrbGfeTMA8GEZdq7RXHbNA+VnQJbaCAoqffprq739AExpK+LP/wXjuuacM2+m91Dx16QimD7Hw/77YwfmL1vLnc4cyf2LMmZUCCgQeQmOtjeKctpajJTk17TLCA0J9iB4WhCXahDnaSHC4L5qe6mTWWKV40seLdck+kJWwPN5+iliPuUkJgYelKB3NVCfYs7uo47UF3YpnC3hSEtjtNO3fj3748E6PiRtlYetPORzZXkLixDNo6nKMmY/A7q/ghz/CdV8qf1WCdjgbGylbsoSyxa+DLBN8xx0ELbz5tJuxzE0OITUqgD9/nsnfvt3Nsj1F/POyEUQGDozaTkH/pqnBTklOi1C3eNjVpY2t6/5WA6Hx/opnHWMiOMIXL10PfVTXFLWJ9LHvFVlt675WRaSHnKeIdsgICIgRn399BM8W8ORkABp37e5SwC3RRkzBOvZvLDo7Afc1w4yHFAHf/ZUYdHIcsixTk55O8T//hS0/H2NaGpY//QmviDPftjAbvXnjhjF8vCmXJ77bQ9qzq7l/7hDmTz+VQUgAACAASURBVIxBLbxxgYdga3JQmlujJJe17FlXFtW3rhuDdFiiTSRPCccSbcQc1UOzrWVZEebCzPaede1xXnJArCLWo65r6V42AozW7rdF0G14tIBrw8NQ+/nRsCOTgN9d2ekxkiQxZFwIm77Poqa8EWPgWZQpjVkAW9+Fn/6itOkTzV1o3L+foiefov7XX/FOSCDq7bfwGT++W64tSRJXnRPFtMFmHvpyJ3//djffbD/Kv347gsFib1zQx3DYnEqt9XF71hUFdcgttdY+/t5Yoo0MGReiiHW0Eb1vD5RKOexQuv8EsT6uxlpSg3mo8hkWMqLFsx7uUUM8BAoeLeCSJKFPTaVh85aTHjd0Qiibvsti368FjDnvDGvCQcmevOBZWJIG6Q/Dhc+f+bU8HEdVFSWLXqTio49Q+fpifeghAn53JZKm+99SYf563rxhDF9vP8pj3+zm/BfWsHBKHL+fGY/By6PfwgIPxeFwUn60TindyqmhJLumfa21UYsl2kTcKDOWaGUCl49fxzyds8bWAEW7oXB7m1gfn1ym0bfVWB8Ta0vSgO5e1p/w+E8/w5jR1P78M/aSEjTmzuuHTcF6wgf7s2d9IaN/E3N2NZCRY2HiXfDL80p5WfzAyrKUHQ4qP/2Mkueew1Fdjf+VV2C++240AQE9+rySJHFRSjiT44N54vs9vLzyEF9lHOXhC5KYm2wV7VcFPYbTKVNRWEdJdg0FW5x8tmEzpbm1OOzKQA9vgwZzlJGUOVGtGeE9UmvdUKkklx3vWR+fXKbzU0R67M1tYh2UIMq2+jEe/z9rGD0agPotWzGdO7fL4xInhrLs7T3k7asgcmjg2T3p9L/Avh/h67vg9nWg9z+763kI9Zs2UfjkU0pZ2JgxWB96EN3Q3p2XHuTrzX+uSOGqc6J4+Mud3Pb+FqYNNvPXecnEBotWrIKzQ3bKVBbXtySZtSSa5da2NkZRaSAkVsXw6eGKZx1jxBSs716xlmVlb7ogs71nfXxymTFUEemh57eJtX+0SC4bYHi8gOuSkpB0Ouq3bDmpgA8abeGXzw+SuSLv7AVcq4NLXoE30+CrO+HK9/v1H05zVhbF//43NenLTqssrCcZGxPIt3dN5r1fs/nP0v2kPbuK68bHcPesePwNogWj4NQ4nTJVxfUUZ9dQktPylVuDrVERa7VWhTnSl6SJoS171ia2793IjBmp3WeEww5lB1o865avop1tozEBAuOU2urU6yFkpCLWvpbus0HgsXi8gEteXuhTUqjfsOGkx2m0apKnhLP5hyyqSurxM59lSVL4aJj9GCx9EH59BSbccXbX64M4KispfeUVyj/8CEmrxXzP3QTOn99nZnRr1CpunBTL+SNCeTZ9P2+vO8JnW3K5e1YC102Idrd5gj6E0ylTWVhPSU7LnnVODaW5tdia2sQ6OMKXoeNCMLdkgweG+qA6YfqWtO8sblobq6BwpyLQhZnKv4v3gEOp90btDZahMHguWIcriWUhw0WyrKBLPF7AAXynTKb46WewFRaiDQnp8rhhU8PZ+mM2mT/nMeWKbmjGMuFOyF6nJLRFjFX2x/sBcnMzFR9/TMlLL+OsqcH/skuVfe4ucgzcjcWo46lLR3DDxBie/H4vj3+3h3fXZ3NBpIOpZzoPXuCxOB1OKgpbwuAtCWaleTXYm5U9a42XiuAII0MnhmKONGKJNhIQYugg1mfMsRnWhTvbPOrCTKjMaTvGEKyI87hblBC4dZgywlj0BBecBv1CwH2mTIGnn6F29WoCrrii6+P8vUkYa2X32qOM+U0MeuNZhlolCS5+GV6bCp9cCwuXg1/E2V3TjciyTO3y5RQ9/TS27Bx8Jk7A8sAD6IYMcbdpLjE0xMS7C85h1f4SnvxuDy9vr+fn4rX835zBzEq0iES3fojT4aS8oL4tBJ5TTWluLXZbm1ibI40kTQpr9awDQny676bO1ggle1rC38cEe9dxJVsqpUtZ+BgYfWObV+1r7dfbboLeoV8IuHdCApqQEOrWrDmpgAOM/k00+zYWsi09h4mXxp/9k+v94er/wptz4MMrYcGPHjl2tGHXLor/8U/qN23Ca9AgIl97FZ+pUz1S9KYNNjM5Pph/frycn/Lt3PzuZlIi/bk/bQiT4oM88jUJlNItZUxm2551aV4tjhax1nqrCY70JXlKeKtY+1sN3SfWtcUElG+DX7a3CXbp/rYscC9fpWRrxOWKRx0yQpm05SU6CAp6hn4h4JIk4Tt1KtXffttlX/RjBIT4kDDGyo5V+YyaE3X2Xjgo+1ZXvAPv/xY+vRGu+shjQmG2wkJKnn2Oqq+/Ru3vT8ijj+B/+eU9Us/dm6hVEhPDNPzxyql8tiWPF5Yf4No3NzAuNpDfz4xncnywEPI+jMOu1Fm3hcGrKcuvay3d0urUmCON/P/27jtOruq++/jnTO9lZ7YXlVVBHSRZIEAgYUyRwRRjDLHBToyJ2ys2xDF5HuexnYTHBB7bSYzjuOECwRQbIjumgy2EBUJIoqhXVHa1vc3OzM5OO88fd7apjqTd1c7u7/16zevembkz9+py2O+cc889Z+6llf3N4MM281YmDe17h3Yqa9wM0SYW9G3jrzZCeta1UDbXWA9OAZPMoCdGT2H/lR7E+6EP0fnkk8Reew3v5ZefcNsPfHgyuzc0sfG5A1x88/ThOYDay+Ca78H/fBmeugM++tCYvv8yE4nQ9tOf0f7II5DJELrjM4TuvBOzt/BaD07EajZx65IabjivksfWH+RHr+7ltofWs6DKzxdWTONDs0rlGvlZlkllaTscHdQM3k1rfZRs2hgUxeYwU1zjZd5yo2ZdUuPDX+wcnrCONhsB3bTNaPpu3grNOwY6lpmsxg/0aZdD6Vzeacxw7pWfANcZ3skixDAYuwlzitwXnI85GCTy7LMnDfBgmZtZF5azeXUdcy6pIFg2TPcPL/o0JGPGUKtmK9zw46Nn6DnLsokEHY8+SutPfko2EsF3zTUUf/lvsFUV7rX7fDisZv7yoin8xfk1PL2pnv9cvZe/fmQj00s8fGFFLdfOr8AyXJ2YxHH1hfXgZvDBI5jZXRbC1V4WrKjubwb3h4chrFM9Ro/v5lxQ9z3irQPbeMqMJvDz74SSOca16vAMsAy00nWuXi3hLcaMcRPgymrFe+UVdP3u92TjcUyuE193uuC6WvZsbGbtU3u45osLTrjtKVn6Rcgk4eVvGcsbfwqWERhC8RTpdJquVato+cF/kG5sxH3JMkruvnvUB2I52+wWM7cuqeFji6p4ZnMDP/zTXu564l3+3/M7+dSFk7nlAzX4R2IyiQko2ZOmta6bloNRWg9103IoSkdDjGx2IKyLa7yce3k14Vwz+BkPipLNGj3Am7bmwnqLsd6+D7TR/I7VZYwFPvNqo+m7dLYR2O7QMPyrhRg94ybAAfwf/jCdjz9B5IUXCdxw4tnCXD4bi1dO5o2n97J/cyuT54WH70Auvstoenvx6xBvh1sePWsTBWit6X75ZVr+7d9J7t2LY8F8Kh64H/eSJWfleMYKi9nEdedWcu38Cv64o5mH/vw+9z23g39/ZTc3Lari0xdOZmqx52wfZsGIdfXSeihKy6Hu/rCOtPT0v+/02Siu9jBpXqj/mrU35DizsI6350I6F9R966lYbgMFRVOMWvXcm4xl6RxjOswx1jImxOkYVwHuXLwY29SpdDz+2EkDHGDBimp2rmtk9aM7ufWbAezOYTwdF37JGC1p1efhFyvhll9DcHQHF4mtX0/Ld79Hz7vvYps6lcoHv4/38sul89YgJpPi8tmlXD67lK2Hu/jF2v08vv4Qj6w7wGUzS/jUhZO5eFpYrpPnaK2JtPYMqVW3HuomHkn2b+MLOyiu9jJraTnhag/FNWc4kUcqYfT2btkxtPm7+/DANs6gUZteeJsxWUfpXOPatU2G1xXj17gKcKUUwVs+TtO37yOxbRuO2bNPuL3ZauKy22fx1P0beP23u1lx26zhPaD5N4MrZPRM/8lyuOnnULtiePdxDPFNb9P6gweJvf4GltJSyu/9Z/zXX1/wPctH2pwKP9/52AK+dtVMHl13kP9ad4BXfr6emiIXtyyp5mOLqin2nv3LIaPFuG0rngtqY+Sy1kPdJHNDjSqToqjcRfXsIoqrvYSrPYSrvaf/QzidNHp/N28zOpI1bzNCe3Dzt8lqNH9PWTZQoy6ZA94yua9aTDgj9hddKfVz4BqgWWs9d6T2cyT/ddfR/L1/pf1XD1Nx/7+cdPvSyT7Ou6KGTS8cZNK8MFPPHebRxqZ9EO78Ezz+CfivG+GD34ALvzwit5v0vPMOLQ/+gNjatZhDIUruuYfgrbdgcpzBHOgTUInXwV0fmsEXVtTywtYmHl13gAee38m/vrSLK+aU8Ynza1g6dXzdT55Naxr3deWGGDVq1u2HB27bslhNhKo8zFhS1l+rLqpwY7GeRlN0Jg0d7+c6lW03BkJp3g5teyCbNrZRJiiqNe6jnvtRI7RLZkOotmBu0RRipI1kleyXwA+Ah0dwH0cx+/0EP34z7f/1KOEvfRFbdfVJP7Pkmqkc2t7BHx/eTrjKgy88zGN9h2rhjpeNiU9e/hbseQVu+NGwjdrW8957tPzgB8TWvIY5GKTk775K8NZbT9qRT5yY3WLmIwsq+MiCCvY0d/PrNw/x1KY6nnmvgSlhNx9dWMkNC6uoDIyNseHzlYimaDmiVt3RpNmuNwIDPcHnLa8kXO2luNpLoOw0BkTp61DWH9I7jPXWXQO3aaGMS0sls2HmSmNZco4xDaZVfngKcSIjFuBa6zVKqckj9f0nUvRXn6Hjscdp/fGPqbj33pNub7aauOrOuTzxf9/i+Z9s4cavLsRiG+ZOLnYPfOyXsOlheP5/wQ8vhKvvhwW3nHbTX8+WrbQ++CDRV1/FHAhQ/Ld3U/QXf4HJLdf9htu0Ei/fuHY2X7tqJs+818ATGw7xnRd38d2XdrF0aogbF1Zx9dwy3Paxc5mib7at1roorXVR2nLLWGdv/zaeoJ1wtRdLKM7iZfMIV3vwFp1i57JM2pjqsnWnMT91624jsFt2Qio+sJ2/2qhJ1y43grr4HCieKdephThNY+evzTCylpYQuPlmOh57jKLbbscx8+QTl/jCTi7/9Cye/dFmXvrFNq787Nzh77ikFCz6lHH97r8/B6s+B+88Ch/+rvGHLA9aa6y7d3Pw178mtuY1TH4/xV/5CsFPfhKzR/4QjjSH1cxHF1Xx0UVVHGqP8/Smep5+u46v/uZdvvG7LVw1t4wbz6tiaW0I8yh2fOuNp2irj9JaF6OtzhhitP1wrH9McJNJEShzUTkjQKjSY1yzrvHg9Bj3OK9evfrkl4+SMSOcW3flOpXtNJZteyGbGtjOW26U50WfHmj6Lp4ps2oJMcyU1nrkvtyogf/hRNfAlVJ3AncCFBcXL3ryySeHZ9/RKOFvfot0ZSUdd30l71pu605N09uaohlQvnAEB/bQWcobXmTqvocxZ3qpq/oIB2s+Stp6nFuXsllsW7bgfv4FbPv2kfV6iF12GT3Ll6PHyPSeY000GsXjGflbwbTW7OnM8uf6NOsb0/SkwWeDxWUWlpRZmBE0Ycqj/FW+aZS3+vOzJ9xXMgq9nZDo1CQ6IdExtKJrtoEjAPYAOAIKRxDsPjCZj38Mg8+VNdmFK16XexzCHTPWHb0Dc1RrTPQ4y4i7qoi7qoi5q4m7Kom7qshYxu8PydEqU+OBnKv8rFixYqPWevHpfPasB/hgM2fO1Dt37hy2/Xc89hiN//hPlH/72wRuvCHvz7325C7e+2Mdi1dOZsm1U0a2s1K0BV76Brz7mFFDufguWPLX/RMg6FSKyHPP0fbTn9G7ezfWigraLlnGB+65Z8zMyz1WrV69muXLl4/qPhOpDH/c0cwz7zXwyo4mEqksJV47K+eVc838chbWBI/bstP84/cAKPnr+QAkE2na6gdq1G31UdrqY/1zWCsFgVIXoSoP4SoPoUoP4Sov7oDt5GU2m4Wug7nm7p0c3ryaCmvUqFX3tA9sZ3Ea01wWzzRGJQvPMNaLpo6JAYpG29koU4VKzlV+lFKnHeDjsgm9T+Dmm4k88yxN996L6wOL8+rQBnDxTdNJJTJseHY/Oqs5/7qpIxfinmK44T9h6RfglX8yOrmt+xGZ+Z+h830PHU88RerwYezTp1HxwP34rr6aurVrJbzHKIfVzMp55aycV048meaV7UaYP7b+IL98fT/lfgdXzinjQ7NLWTKlCKvZRDaTpaulh0Q0Sao3w8Yfb6a1buhAKDanhXCVh3MuLCecC+yicveJ+2pobQx20rbHuD2rbW9uuQda90B64PvDVh+U5ybnKJ4J4ZlGcPurZYIOIcaokbyN7DFgORBWStUB39RaPzRS+zvmMZjNVNz/L+y7/gbqv3IXkx55OK+e2cqkWPHJc1BmxcbnD9AbT7Ps49MxjeRY2WXz4BO/oXf1k7T/6Lt0/eIhdMaEqzZM6Xf+Gc/KG1Hyh7SguGwWrl1QwbULKoj2pnl5WyMvvHWY1/9cx7Y/1lGGmUkWK46eLGQ0F3mMMG5LZCmu9jBraRmhSg+hqpN0LOvpzAXzvoGA7gvrRNfAdsoMgRrjrojJl0BxrkYdnsnrb22W2pIQBWYke6HfOlLffSqslZVUPHA/dV/8EofvuYfKf/s3lPnkPcyVSbH81pnYnRbefvEgkdYervjs3OEdrS1Hp9NE16yh/ZFHiL+xDmW347vyMoqmtONofxE2fhYiv4WFt8P0K4Z9/2L49USTtNfHaDscpe1wjPb6GO2Ho8xNZJiLcR9z2m6iMZXmsCVNh0NzrsuNz2Nj+WfnURU84odmb9QY0KQ/oPcN1KoHT8iBMm5PDNUaw4eGao37qUPTjPC2DMP0uUKIMWFcN6H38a5YQenf30PTt+/j8NfuoeJf7kNZTz4YhDIpLrxxGoESF6/+eie/ue8trrxjLsU1wzPlZnL/fjqf/m+6Vq0i3dyMpayM4rvvJvCxm7AEg8ZGHfth46+M3uq7ngNPGbWBJVDrgsrF0rx5liUTadobYrTnQrovsHsGDS1qd1kIVXqYcb5Roy6qcFNU7sbhtpLJat4+2MHLWw+TeqOJtvYIv/rOt5jv7mSBp4vJphZ8iXpUtHHojj1lRiifs3IgoEO1xpzUcv+0EBPChAhwgKLbb0cnkzR/57tkot1UPvAAZn9+E4zMvriCQKmTFx/axm8f2MDS62uZf1n1ad1mlonG6H7pJbqeeor4hg1gMuFZtgz/P3wd74oVR/+wCE6Gy78JK74Ou1+Etx+hctez8NDvwVcJs6+DGVdBzQUTslPRaEn2pGlvjNHZGKejMUZ7Q5y2+ijdbYn+bSw2E0XlbibNDRGqcFNU4SZU6cHly3Uq6+kwfpB1HIC390PnAcwdB1jcsZ/FXYdozvwjKFhu/THZpKKxrYgduph6ZpAJXkVR9WymzVpAzbQ5KPv4mrddCHHqJkyAA4TuuAOT10fjvffy/k0fo+K+b+NanF/nv4rpQW75hyW88vB21v52D7s3NLP8EzMprj75H9JMNEr0T38i8vwLxF57DZ1MYp1UQ/Fdd+G//nqspSUnPwCzxahtnbOStS8/w7Libti6Ct76Gaz7oTFF4uRlxtCtU5cbI1lJ7fyUaK2JR5J0NMbpaIgZy8YYHQ0xYl0DNWqTWREodVE6xcfsiyqMoC534rN1orrrIbINuurhQD28VwedB43Q7u0aukNnEAKTjP4Ps66Bd2vB4oDbNmHyV1GkLex+v50tO1tYs7uFPRuisKGNcv96Lp4WZmltiKW1Icr90qFRiIloQgU4QPDjN+OYOYP6u/+WA5+8Df8NNxD+/Oew1dSc9LMOj5WVn5/HrvVNrP3tbn5z3wbmXlrJ4qsn4/INvbaYPHSI2Nq1RNe8RuzPf0Ynk1hKjAFmfFdfhXPhwtPu2Z6xuGHBh41R3Hq74f3XYO8rsPePsPuF3MEGoOoDUH0+VH8AKhbKQBo52aymu62Hjob4QEg3GoHdG0/3b2d1mAmWuqg6J0gwBEFvjCJ7Cz5Vh6m7DiL10FAHO+qhuwF0ZuiObF7wVxo9uavPN4YMDU42Qjs46egpZvcZt5ERqgXAAVw6o5hLZxgDrNR39vDarhZe3dXCi9ua+M3GOgAmhVxcMMUI8wumhijzSxO6EBPBhAtwAOe55zL1D/9D6w9/SPuvHqbrd7/D+8EP4rv2GjyXXHLCyT+UUsw8v4xJc0OsW7WXLavr2L72MPMWeqh1HiK77V1ib7xB6uBBACwV5QRu+Ti+q67Cee65w9+T3O7tr5kDRken/Wuhbj0cWg97XhrY1l8DpbONCSJK5hjLoqn995yPJ1pr0glNw94uuprjdDbF6WzuyS3jZFIDg6U43YqiQIrpNTGCzjaClnqCaj/u5F5UrBkONsOBI8LZbAdfhdFhbMoy43KGvxJ8VcZr/sphnwO+MuDkliU13LKkhmxWs6Oxmzf2tbFuXxvPbTGGdwWYHHJxwVQjzM+fWiQ1dCHGqQkZ4AAml4uSr36V4O230/7LX9G1ahXdL70EVivO2bNxzJuHtaoSa1k5JqcDZbOhs1my3d1kurtJNzQy/eBBQp1d7MjM4u11C3g346Ci1cyM2nMpvf123BddiG3y5NGdtapoqvFYeJvxvKcT6jZAwzu5aRq3w56XB2Z9AvCUGjXDvtqhv8p4zVNiTNPoLh6zM0AlYim6mmJ0Hu6gq7GLzqY4XS29dLZnSSYVOzEm6FAqi88eIWBrodpbR5B9BNlN0FKHwxSDDNAJdJmMf6+n1Pi3l88zOox5SsFXngvqanCHz+r0lSaTYnaFj9kVPj5z8RQyWc32hgjrcoH+zOYGHn/LCPQKv4OFk4Isyj1mlfuwjuQtkUKIUTFhA7yPtaSE0q/9HSV330XszTeJv/EG8U1v0/X002Tj8eN/UCms5eX4JtWwbEqUnilRdneVsXf7xdRlNKX1PmYesDItnMLpPYu37jgDMP1y49EnnYS23UaYt78PnfuNa7QHXofNvxmYe3kwVwicRUYzvN1nLB1+Y93uM25PMtsHLe3GmJ5mmzE1JNoYWOSYyyykeyGdMJapnv7n2VSCWFTRHTETiVmJdNuIxJ109fjo7C0ikRncByGL19xCwNzATMth/PYG/JbDBBxdeH0ZzO6g8W9whcBVBe7zBoLaU2o83GEwDfNENqPAbFLMrfQzt9LPHcumkslqth2O8Nb+djYe7GDTgQ7+8F4DAA6riflVASPQa4IsnBQ8y0cvhDgdEz7A+yiLBc9FF+G56CLAaILNdnWRampG9ybQvb1gMmHyeDF7PZjDYUy2ocE8BYh19bJzXSO71jey5vFdvPbkbspr/UyaF2LS3BBF5e6zP4+0xQalc4zHkdJJiDZBtBmijQPr3Y0YA293QSJiXP9NRIzng0b0OlVaQ0/WTyRTSiRTQiRTSnemJLdeTTQTJjukmGo8tih+V5SpRS0E/A34g5pAkRl/2I7Z7QPnInBdwevv7mTBB6+ZkL3zzSbFvCo/86r8/BVTADjc2cOmgx1sPGAE+k/X7OM/s8ZQyqUuxUVN7zCvys/8Kj+zy/04h3tGPiHEsJIAPw6lFOZAAHMgcEqfc/vtLLxyEguvnERrXZTdG5o4sLmNN57eyxtP78Xtt1FWG6C81k/ZVD/hGg/msdScabFBoNp45CuTNuZ3ziSNHwCZXkgn0ekEie4E0UiWWEQTjWpikSzR7twykqW7M0M6PfTrnB4L3lInJWEn00JOfGEHvpATb9iBN+jAbM3vfCV3tE7I8D6eioCTioCTa+ZXANCTzLC5vouNBzp4cdNu1uxu5em36wEwKZhe4jV+BFQaPwRml/twWCXUhRgrJMBHUN+Y1UuvryXakeDAljbqd3XSuLeLvZuaATBZFMHSvnuG3QTL3PjCTrwhx4iM+jYcUr0ZerqTxLuT9HSn6OlO5h4p4pEksc5eoh0JYp1JMumhzfFKgctvxx1wEqyyU7PAMSSgfSEnVruExGhw2swsmVLEkilFzOIQl156KU2RXjbXd7G5rpPN9V2s3tnMb3O93c0mxfQSD/Or/MyrCjC3wsfMMi8u29gsp0KMd/J/3ijxBB3MWVbJnGWVAEQ7emnc10XzgQjtDTEa93ax+62mIZ+xuyx4ihx4g3YcHisOtxWHx0pHvWafvwWr3YzFZsJiM2O2moz1I2pIg1vrs1lNJpUlncoOWmb6nycTGZI9aXp70kOXcWOZiBphnU4de7pLq92M02vFE3RQOsWPJ2DHHbQPWbp8tpEdU16cNqUUZX4HZX4HH5pdChiXkhq6ErlQ72JzfRcvb2/myQ11uc/ApCIX55T5OKfcyzllPmaVe6kOuk5roCMhRP4kwM8ST9DOtEUlTFs0MIhLsidNR2OcSFsP3e0Jom0JIu0Jop29tNZFSURT/eF5+K3NI3p8VrsZm9OC3WXB5rDg9NooKnfj9Fpxem25h3XI0irXTMcdpVR/0/uVc8oAI9TrO3vYejjCzsZudjRG2NHQzQvbGumbndhlMzOzbCDQzykzaut+59i8m0GIQiQBPobYnBZKp/gonXL8AVdSyQyrX1rDufMXk+rNkElmSSUzuRp1hnTy2LVjMMZ2t1hNmK0mzBZT/7rFasZsVdgcFmxOCzaHWWrJ4riUUlQFXVQFXf2hDsY19V1NRqBvbzCWz20xplLtU+F3ML3US22xh2klHmqL3Uwr8VDkzmMOcyHEEBLgBcZqM2N1q7yGcBViNDltZhZUB1hQPdDxU2tNc3cv2xsi7GjsZkdDhD0tUda/305PamBwnIDLyrRiz0Cwl7iZVuylMujELE3xQhyTBLgQYsQopSj1OSj1OVg+c+ByUTaraYgk2NMcZU9zlL0txvKVHU39I8oB2C0mpoTdudq6kuT/rgAADEpJREFUh6nFbiaF3EwqchFwWaXWLiY0CXAhxKgzmRSVASeVAWf/WO99OmJJ9rYMhPrelhjv1XXxzOaG/mvsAD6HhclhNzVFLiaH3NSEjOXkkItir13CXYx7EuBCiDEl6Lax2F3E4slFQ15PpDIcao+zvy3OgbYYB9ri7G+Lsbm+i+e2NJLJDqS702pmUshlhHvYzaSQi0lFxrIiIM3yYnyQABdCFASH1cz0Ui/TS4/u/5HKZDnc2cP+tjgH22L9If9+a4zVu1pIDhqPwGxSlPkcVAadVAWcVAaNloC+ZUXAKQPWiIIgAS6EKHhWs8m4Nh5yA0Ob5LNZTVN3gv2tRqjXdfRQ39lDfUcPb77fTsM7PQyqvAMQ9tiPDviAk4buLJFECp9DbocTZ58EuBBiXDOZFOV+J+V+J0trQ0e9n8pkaexK9If64OW2hggvbW8aUoP/P2tfxOuwUBlwUhV0UupzUOZzUOp39K+X+Rz4nBa5Di9GlAS4EGJCs5pNVBe5qC5yHfP9bFbTGuulvqOHl9ZuxF8xpT/k6zp62Higg4546qjPOawmynwOSvpCfVDAl/rs/b3zbRYZc0GcHglwIYQ4AZNJUeJ1UOJ10LXPwvJLa4/aJpHK0BzppTGSoCn3aOxK9D9/51AnjVsTQ2ryfUJuWy7M7UNCvthrJ+yxE/baCXts2C1yXV4MJQEuhBBnyGE1UxNyURM6di0ejEFtOuOpI0LeCP3miBH2m+u7aI0mj/l5r8NCsacv1G2EPXZC7oH1sMduvO+1yQQzE4T8VxZCiFGglCLothF025hVfvzhkpPpLM3dCVq6e2mLJmmN9uYeSVqivbR297KzsZu10Ta6eo5uugdjLHoj1G0DtXi3LVebtw+857Xjtcu1+kIlAS6EEGOIzWLqH2v+ZJLpLG2xXlq7jaBv6Qv77qTxerSXA21xNh7ooD2eHDIQTh+rWRFw2Shy2Qi4rARdxo+M4JHrbpvx3GXF57DKbHNjgAS4EEIUKJvF1N/D/mTSmSzt8WR/2Pc92mMpOuNJ2mNJOuMp9rZE6TiQpCOeGjI4zmAmBYFc4BvBb6PIbQR+33pdUxr3/naCLquxrdOKRSZJGlYS4EIIMQFYzKb+znj50FrT3ZumI2aEubEcut4ZT9EeS1LXEWdLfYr2eHJIR70H335jyHf6HJb+mnzAZcXvNGrzPqcFnyP3/BiveR0WCf9jkAAXQghxFKWUEaQOK5OOvn3+mLTW9KQytMeSvLzmDWpnz++v2XfEkwM/BuJJ2qJJ3m+NEelJEUmkj1vb7+O2mfvD3Qh6Sy7orfgcFmN5nB8EXrtlXDb5S4ALIYQYFkopXDYLLpuFyX4zy6YXn/xDGMEfT2bo6kkRSaSI9KRzwZ4yXutJ514feP9wZ4IdiW4iPSm6e9PHvL4/cFzgsVuOE/4DtXyPw4LHbjzc/UszXrsVt9085loBJMCFEEKcVUop3LnQrODk1/OPlM1qosk0XfFBPwBygd+Vq+EPDv9IIsXB9nh/7T/am85rP3aLCa/DOE63bSDw+8LeYzcPWh/0uiO3fd+63Tws9/VLgAshhChoJtNAc//pSGeydOeCPJZME+tN051IE+vNGOu9xmtHrSfSNHcniLVmctun6Ull8tqn1azw2M8sgiXAhRBCTGgWs6n/Hv0zlc5kiSUzxw38WG+aWHIg8N85k+M+46MVQgghBGD8GPA7Tfid+bUG3HsG+xpbV+SFEEIIkRcJcCGEEKIASYALIYQQBUgCXAghhChAEuBCCCFEAZIAF0IIIQqQBLgQQghRgCTAhRBCiAIkAS6EEEIUIAlwIYQQogBJgAshhBAFSAJcCCGEKEAS4EIIIUQBkgAXQgghCpAEuBBCCFGAJMCFEEKIAiQBLoQQQhQgCXAhhBCiAEmACyGEEAVIAlwIIYQoQBLgQgghRAGSABdCCCEKkAS4EEIIUYBGNMCVUlcppXYqpfYopf5+JPclhBBCTCQjFuBKKTPwH8DVwGzgVqXU7JHanxBCCDGRjGQNfAmwR2u9T2udBB4HrhvB/QkhhBATxkgGeCVwaNDzutxrQgghhDhDlhH8bnWM1/RRGyl1J3Bn7mmvUmrLCB7TeBEGWs/2QRSAwjxPnzsrey3MczX65DzlT85Vfmae7gdHMsDrgOpBz6uAw0dupLX+CfATAKXUBq314hE8pnFBzlN+5DzlT85VfuQ85U/OVX6UUhtO97Mj2YT+FjBdKTVFKWUDbgF+P4L7E0IIISaMEauBa63TSqkvAS8AZuDnWuutI7U/IYQQYiIZySZ0tNbPAs+ewkd+MlLHMs7IecqPnKf8ybnKj5yn/Mm5ys9pnyel9VH9yoQQQggxxslQqkIIIUQBGvUAP9nwqsrw/dz77ymlFo72MY4VeZyr5UqpLqXUO7nHN87GcZ5NSqmfK6Waj3f7oZSnAXmcqwlfngCUUtVKqT8ppbYrpbYqpb58jG0mfLnK8zxJmQKUUg6l1Hql1Lu5c/WPx9jm1MuU1nrUHhid2fYCUwEb8C4w+4htVgLPYdxHfgHw5mge41h55HmulgN/ONvHepbP0yXAQmDLcd6X8pT/uZrw5Sl3HsqBhbl1L7BL/k6d9nmSMmWcBwV4cutW4E3ggiO2OeUyNdo18HyGV70OeFgb1gEBpVT5KB/nWCBD0eZBa70GaD/BJlKecvI4VwLQWjdorTfl1ruB7Rw9iuSEL1d5nicB5MpJNPfUmnsc2QHtlMvUaAd4PsOryhCshnzPw9Jcs8xzSqk5o3NoBUXK06mR8jSIUmoycB5GjWkwKVeDnOA8gZQpwJjgSyn1DtAMvKS1PuMyNaK3kR1DPsOr5jUE6wSQz3nYBEzSWkeVUiuBVcD0ET+ywiLlKX9SngZRSnmAp4CvaK0jR759jI9MyHJ1kvMkZSpHa50BzlVKBYD/VkrN1VoP7o9yymVqtGvg+QyvmtcQrBPASc+D1jrS1yyjjXvurUqp8OgdYkGQ8pQnKU8DlFJWjFB6VGv99DE2kXLFyc+TlKmjaa07gdXAVUe8dcplarQDPJ/hVX8P3J7rkXcB0KW1bhjl4xwLTnqulFJlSimVW1+C8d+zbdSPdGyT8pQnKU+G3Dl4CNiutf7ecTab8OUqn/MkZcqglCrO1bxRSjmBy4EdR2x2ymVqVJvQ9XGGV1VKfS73/o8wRm5bCewB4sBfjuYxjhV5nqubgM8rpdJAD3CLznVnnCiUUo9h9HQNK6XqgG9idBCR8nSEPM7VhC9PORcBtwGbc9csAf43UANSrgbJ5zxJmTKUA79SSpkxfsQ8qbX+w5lmn4zEJoQQQhQgGYlNCCGEKEAS4EIIIUQBkgAXQgghCpAEuBBCCFGAJMCFEEKIAiQBLoQQQhQgCXAhhBCiAEmACyFOSCl1vVLqp0qp3ymlrjjbxyOEMEiACzFOKKW+rpTaqpR6Tyn1jlLq/GNs41RKvZobESovWutVWuvPAp8GPp77HptSao1SarQnRBJC5Mj/fEKMA0qppcA1wEKtdW9uwgjbMTb9K+Dp3MxIp+ofgP8A0FonlVKvYAT6o6d52EKIMyA1cCHGh3KgVWvdC6C1btVaH2smo08AvwNjDmel1A6l1M+UUluUUo8qpS5XSq1VSu3OTT5BbnKF+4HntNabBn3Xqtz3CSHOAhkLXYhxIDcn858BF/Ay8ITW+tUjtrEBB7XWZbnnkzEmTjgP2IoxA967wGeAjwB/qbW+Xin1N8Cncu+/k5t4gVwzfKPWunjE/4FCiKNIE7oQ44DWOqqUWgQsA1YATyil/l5r/ctBm4WBziM++r7WejOAUmor8IrWWiulNgOTc9/9feD7x9hnRimVVEp5tdbdw/6PEkKckAS4EONE7rr2amB1LoA/Bfxy0CY9gOOIj/UOWs8Oep4lv78PdiBxGocrhDhDcg1ciHFAKTVTKTV90EvnAgcGb6O17gDMSqkjQ/x09xkCWrTWqeH4PiHEqZEauBDjgwd4UCkVANIY17bvPMZ2LwIXY1wnP1MrgGeH4XuEEKdBOrEJMYEopc4D7tZa3zYM3/U08L+01jvP/MiEEKdKmtCFmEC01m8DfzqVgVyOJdejfZWEtxBnj9TAhRBCiAIkNXAhhBCiAEmACyGEEAVIAlwIIYQoQBLgQgghRAGSABdCCCEKkAS4EEIIUYAkwIUQQogCJAEuhBBCFKD/D1+wBTcqP88QAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAGICAYAAAC+3bJKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUxfrA8e9sSYFAKKGDSQABgUAoAamhmYAgigUQC+iVZgG8P/VaroKoV7yWi4oCIooU6dJEJVJCEwktYOgthJqQhEBC6u7O74+zWTfZNEKSzYb5PE8esjvnzJk9CXnPzJkzr5BSoiiKoiiKa9E5uwGKoiiKotw6FcAVRVEUxQWpAK4oiqIoLkgFcEVRFEVxQSqAK4qiKIoLUgFcURRFUVyQCuBKnoQQs4QQb5f0tkrFIIQ4LIToVUJ1+QkhpBDCUMA2HwohJpXE8So6IcQoIcSOYu77kxCif0m3SSkdKoDfYYQQ0UKITCGET673I61/RP0ApJTjpJTvFaXOW9m2rAkh3hRCnBVCpAghLgghltqVhQshnnNm+1yVlLKVlDK8LI4lhKgFPA3Mtr7uZf1d/SnXdm2t74cLIe6y/syzv6QQ4qbd6x7WfboKITYLIZKFENeFEOuEEC3t6jwuhBhq97qbta7c76UUdAFSjM/cWwixxdqm6DzKo4UQaXafJ6yEDj0N+KCE6lJKmQrgd6azwOPZL4QQAYCn85pTOoQQI4GngH5SSi+gI7DJua26fUUJFCUZTG5VKRx7FPCLlDLN7r2rQFchRE2790YCJwCklDFSSq/sL2t5W7v3tgshugBhwBqgPuAPHAR2CiEaW/fZBgTbHaMncCyP9/6QUppK4sNa3QS+A14tYJsH7D5PSEkcVEoZAVQVQnQsifqU0qUC+J1pAVqPJttIYL79BkKIeUKI963f97L2Xv9PCBEnhLgshHimkG1fs9v2ISHE/UKIE0KIRCHEm3nta7+/3etoIcSrQohD1h7UXCFEHSHEr9Ze00YhRPV8PmcQsEFKeRpASnlFSvnNrZ4su8/0phAi3tqmJ+zKvYUQ84UQV4UQ54QQ/xZC6Kxl54QQHazfP2ntvbW0vn5OCLHa+r1OCPG6EOK0ECJBCLFMCFHDWpY9xPwPIUQMsLmANv5LCHEF+L6gOq37PGVtX4IQ4i3r5+p3Cz+X7G2nCCFWCCEWCiFuAKOs52Su9ed/UQjxvhBCb91eL4T4xHouzwADC/kRDAC25novE1gNDM+uExgKLCqkLnv/BeZLKT+XUiZLKROllP8G/gSmWLfZhhags/UAPsrjvW23cNxCSSkjpJQLgDO3W5cQ4mMhxA7rz0QvhPjUeu7PCiFeFI63L8Ip/GeilAMqgN+Z/kS7yr7H+odvGLCwkH3qAt5AA+AfwFcFBM66gId123eAOcCTQAe0P3bv2PVwiuIR4D6gGfAA8CvwJuCD9js8IZ/9/gSetl4AdMwOIMVU13q8BmgXPN8IIZpby75EOzeN0XpmTwPZFzhbgV7W73ui/UEOtnudHZgmAA9Zy+oD14CvcrUhGLgHCC2gjTUAX2BMQXVaLyJmoo1Q1AdqAg0LPw35ehBYAVRDC6I/ACagKdAOCAGyb1eMBgZZ3+8IPFpI3QHA8Tzen8/fF6KhwGHgUlEaK4SoBHQFludRvAzt9w20n08rIUQN60VZR2ApUM3uva7kE8CFECOEEEkFfN1VlPbmY5H1ojFMCNE2j2PrhBBzgDZAiJTyOtq5HwAEAu3Rfj9yOwo41KeUPyqA37mye+H3oQ0JXixk+yxgqpQyS0r5C5ACNC9g2w+klFnAErTAl93LOYz2h7bNLbT1SyllrJTyIrAd2C2lPCClzABWoQUCB1LKhcBLaH/ctwJxQojXb+G4ub0tpcyQUm4F1gND7S6A3rB+vmjgU7TAiPW42QG7B/Ch3etg/g7gY4G3pJQXrJ9rCvBorp7RFCnlzVxDyfYswGRrG9MKqfNR4Gcp5TZr2dvW/Ytrl5RytZTSAlRFCxKTrO2NA/6HtbeM1lOeLqU8L6VMtJ6TglQDknO/KaX8A6hhvZB6mlyjSIWogfb373IeZZfRfmeRUsYAMWg/u7bASeu53Wn3ngewO6+DSCl/lFJWK+Ar5hbabO8JwA/tYm0LsEEIUc2u3Agstn7OB6SUqdb3h6L9X7wgpbyGds87t2S0c66Uc067T6Y43QK0XoM/RfvDl5DrHl8q4FXAtmbr99nBJtauPK2AffOSe98i1yWlXITWUzGi9TYWCSEOSCk33MLxAa5JKW/avT6H1nP1Adysr+3LGli/3wp8IoSoC+jRem+ThTZZ0BuItG7nC6wSQtgHUTNQx+71+ULaeFVKmW73uqA669vXJ6W8KYRIKKT+gti3zRctgFwWQmS/p7Pbpn6u7e3PXV6uAVXyKVsAvAj0Bp4FRhSxvdfQLljqoV3A2qsHxNu9zh5Gj0G7gATYYffebutFUJmRUu60e/mh0OZ79ADWWd9rinZx0UlKmWm3be5zn9fvVBUgqQSbq5QS1QO/Q0kpz6FNZrsf+KmQzUvTTaCS3eu6pXEQ68jBcuAQ0LoYVVQXQlS2e30X2nBtPNqIg2+usovW455Cu9iZAGyTUiYDV9CGuHdYe6yg/SEdkKt35mEddbB9jMI+Zq7XBdV5GWiUvaF1SNl+Qtit/lzsj30eyAB87I5bVUrZylqe49ho56sgh9Bun+RlAfA82iS31Hy2cWysdjG2C3gsj+Kh5JzsmB3Ae/B3AN9u916+97+FEE+InLPhc3/dzhC6PQkIu9dH0W7j/Gp3qwe0c29/q8T+55DtHrTJfEo5pwL4ne0fQJ9cPcuyFgncb72fWBcosWd9hfY87EAhRBXr/cABQCtyDncahBAedl/GAqp8VwjhJrRHkAYBy60jDcuAD6zH8QX+Sc45BVvReonZw+XhuV4DzLLW4Wttey0hxIPF/vCF17kCGCSE6C6EcAOmkvPvQbF/LlLKy2izuz8VQlS1nvsmQojsWwfLgAlCiIbWeRSF3db4hZyzvu2PddZa9lZR22fndWCkEGKC9WdX3Tpxrwvwrt1229Bu0wSjDZ0D/IU2etWbAgK4lHKR/Wz4PL7yHEK3njMPtJEMYf3ddLOW3SW0R9fcrO+/ijYSZN8rR0q5GG2uyEYhRBPr28uAiUKIBtYh93/lcfhgtHkmSjmnAvgdTEp5Wkq518nNWIB2tR+N9kd/aYFb35obaH/AYtCGBP8LjJdS2i9yMRNtGD776/t86rqCNux6CW2S1jgpZfbQ60toPdYzaEOrP6I9ApRtK9qw5LZ8XgN8DqwFwoQQyWgT8Drf2sd1kG+d1rkIL1jbetn62S7Y7Xu7P5en0W4tHLHWvQJtaBq0SY0brPXvp/ARoPloFxN5PuoopdwhpSzS5LXc+6HNj3gY7RycQwvU3aWUJ+22OwHEAZellEnW9yxABNr9/j9u9dhF0BPt9/EXtBGKNLSfA2i/OzPRzutFoD/aSIvDLRAp5Q9oF2ebrbdt5ljrOQQcsNZvQru1ghAiCLhpfZxMKeeElIWNyinKnU1oK44tlFLeziztck9oC4Y8J6Xc6Oy25CaE+A8QJ6Wc7uy2VCTWUalZUsrsUZqVwFzrRFWlnFOT2BRFKfeklG8WvpVSGOsoRm+0XngdYDLakxwASCkfcVLTlGIo1QBuvaJPRhueMUkp1eo+iqIoziPQ7u8vRRuWX4+2VoPigkp1CN0awDtKKeML21ZRFEVRlKJTk9gURVEUxQWVdgCXaDNg9wkhxpTysRRFURTljlHak9i6SSkvCSFqA78LIY5JKXM8M2kN7GMAPDw8Otx1V/7rGujNaVRKvUhqpQaY9c5LnnU1TZJhkjSs4pwBDIvFgk6nBk8K42rnye2mtg5HZuWyfzLE1c6Vs6jzVHTqXBXNiRMn4qWUtYqzb5k9RiaEmAKkSCk/yW+b5s2by+PH88pZYHU+AubeB0+shLv7lXwji2jar8eYu+MMx98bgE4nCt+hhIWHh9OrV68yP66rcbXzFDf7EAC1x97KMvElw9XOlbOo81R06lwVjRBiX3EneJfa5ZEQorIQokr292jZiKJuq1KDu/avKb3g7UpZPW8PssySxNTMwjdWFEVRlFJQmkPoddASKWQf50cp5W+3VaPBQ/vXyQG8TlWtHVeup+Pj5e7UtiiKoih3plIL4FLKM5R0TllbD7xME/84qOf9dwBv3cDbqW1RFEVR7kzlfiW2rKwsLly4QHp6OljMELoMRA04etRpbdJbJHMG18M7M46jRxPL/Pje3t4cdeLndxVFOU8eHh40bNgQo7GgHCaKoijlT7kP4BcuXKBKlSr4+fkhpBmuZEHVBuBV22ltklIiL96gVhV36lp742UpOTmZKlXyS4+sZCvsPEkpSUhI4MKFC/j7+5dhyxRFUW5fuZ/jn56eTs2aNdHupVuba0uh7BxCCAx6QZbZue1Qbo8Qgpo1a2qjO4qiKC6m3AdwwBq8gex/y0EGNaNepwJ4BWD73VIURXExLhHAbYRAW4u/bAJnQkICgYGBBAYGUrduXRo0aGB7Lc1ZZJn/vpAYNWoUK1asKPE2PP7447Rp04b//e9/HDt2jMDAQLp3787p06dL/FiKoiiK6yj398AdCF2Z9cBr1qxJZGQkAFOmTMHLy4tXXnkFgEtJaVy7WbrPgV+5coU//viDc+fOATBt2jQefPBBXnnlFXUPXFEU5Q7nWj1w0HrhTrwHPmfOHIKCgrivR2cmjn6K5JSbDtu8/fbbjBo1CovFwscff0xQUBBt2rRh8uTJedaZnp7OM888Q0BAAO3atWPLli0AhISEEBcXR2BgIO+++y7Tp0/n22+/ZeDAgaX6GRVFUZTyz6V64O+uO8yRc7Eg4sFwsUTqbFm/KpMfaFXk7R9++GFGjx5NUmomr73+JnO+/ZZ/TppoK3/ttde4fv0633//Pb///jsnT54kIiICKSWDBw9m27Zt9OzZM0edX331FQB//fUXx44dIyQkhBMnTrB27VoGDRpkGwWQUuLl5cXYsWNL4JMriqIorsz1euA4d9JRVFQUPXr0oFun9qxfvZzDhw/byt577z2SkpKYPXs2QgjCwsIICwujXbt2tG/fnmPHjnHy5EmHOnfs2MFTTz0FQIsWLfD19eXEiRNl9pkURVEU1+NSPfDJD7SCOD3o3aBmY6e0YdSoUaxevZoWrVrz3y9mc2T/n7ayoKAg9u3bR2JiIjVq1EBKyRtvvOHQY/7qq6+YM2cOAL/88gtllVBGURRFqThcrwcuym4Wel6Sk5OpV68emM38sno5Frvg279/f15//XUGDhxIcnIyoaGhfPfdd6SkpABw8eJF4uLieOGFF4iMjCQyMpL69evTs2dPFi1aBMCJEyeIiYmhefPmTvl8iqIoimtwqR44YJ2F7rwA/t5779G5c2d8fX1p3LQ5mek5J7E99thjJCcnM3jwYH755RdGjBhBly5dAPDy8mLhwoXUrp1zFbnnn3+ecePGERAQgMFgYN68ebi7qyQpiqIoSv7KLB94UeSVD/zo0aPcc889f7+RcEpbE72W83uoJ+OSMeh0+PtULtPjqqVUi6ao58nhd8xJVD7w8k+dp6JT56poymU+8FLj5B64PTe9jkxT+WiLoiiKcmdxvQBO2S3kUpjs5VTL0yiGoiiKcmdwvQDu5IVc7LnpdVikxGxRAVxRFEUpWy4YwMvPELrRoJ0+ldREURRFKWsqgN8GN722qEymWfXAFUVRlFuTFHvltvZ3zcfIkNp9cCengjTqrT1wNZFNURRFKSJpsXBgw3q2L553W/W4aABH64ULfakeKiEhgb59+wJaZjC9Xk+tWrUAiIiIwGg0ohOCTDWEriiKohTBtSuXCJv1BReORt12XS4cwEt/2LqgdKLZsmei2zObzej1pXtxoSiKorgOabFw4Ld1bF88H1NmRonU6Zr3wMFp98FHjRrFihUrbK/bN6lHltlCeHg4vXv3ZsSIEQQEBNgWMXj00Udp0aIFTzzxhHrcTFEU5Q6UeOkiS6a8zpYf5pRY8AZX64H/+jpc2g+mdDBW/juY3466ATBgWvH3F5Bp0gJzREQEUVFR+Pv7Ex4ezoEDBzh8+DD169enW7du7Ny5k+7du99+mxVFUZRyz2Ixs3/9GnYuXYgpK9Oh3C+wAyxbX+z6Xa8HbksnWn56syaLBYtF0qlTJ/z9/W3vd+rUiYYNG6LT6QgMDCQ6Otp5jVQURVHKTMLF8yx55zW2LvzOIXi7V6pM6PhJPPz6lNs6hmv1wAdMg/QbkHgaat4N7l5l3gSDwYDFog3fSynJytR+MCaLhcqVc66Jbp+QRK/XYzKZyq6hiqIoSpmzWMzs+3k1O5ctxJyV5VDeuH0Q/Ua/QJUaPrd9LNcK4OD0e+B+fn7s27ePoUOHsmbNGrKsPyCTWo1NURTljpZwIYbfZk7nyqkTDmXulSvTZ9RY7unRG1FCj0CrAH6LRo8ezYMPPkinTp3o27evrddtUo+SKYqi3JEsZjN71v3EruWLMOcx0tqkY2f6PfcCXtVrlOhxVQAvoilTpti+//PPP23f/+c//yHq4g06de3J4AEhtvd79eqVI5XejBkzyqKZiqIoShmKj4nmt5mfE3vmpEOZh1cV+jwzlhbdgkus121PBfDbJITAaBAqraiiKModxGwysWftSnatWIzF7NjrbhrUhX7PPU/latVLrQ0qgJcAN71OrcamKIpyh7h67iy/fT2duOjTDmUeVarS99lxNO/So1R63fZUAC8BbgYdN9LUDHNFUZSKzGwyEbF6OX/+tDTPXneze7vT99lxVPKuVibtccEAbr2iKUermrkZdJgsFswWiV7n3AQriqIoSsmLiz7Db1//j6vnzjqUeVb1pu+z42nepWwX6nLNAF6OUoqCNoQOkGm24KlTa6AriqJUFGZTFn/+tIyI1cuwmM0O5c279qTPM2OpVNW7zNvmegEcyl8AN1gDuMmCp1EFcEVRlIog9swpfps5nfiYaIeySt7V6PeP57m7c9eyb5iVCy6lSpkH8CtXrjB8+HCaNGlCy5Ytuf/++zlx4gStW7cG4NCB/Ux751+3NBPdz8+P+Pj40mqyoiiKUkymrCx2LFnAorf+mWfwbtEtmFGffu3U4A0u2wMXZRbApZQMGTKEkSNHsmTJEgAiIyOJjY21bdO5UxBvNWzukFZUURRFcS1XTp/kt6//R8KFGIeyytWq0++5F2gadK8TWubIRQN42fXAt2zZgtFoZNy4cbb3cicm2bp1K+9+MI3vF69kypQpnD17lsuXL3PixAk+++wz/vzzT3799VcaNGjAunXrMBqNAHz88cds2bIFgB9//JGmTZuWyWdSFEVRcjJlZrJrxY/sWfcT0uIYX1r27EOvkaPx9KrihNblzaUC+EcRH3Es8RhkpWlvGD1vu84WNVrwr07/yrc8KiqKDh06FFqPTggyrEPop0+fZsuWLRw5coQuXbqwcuVK/vvf/zJkyBDWr1/PQw89BEDVqlWJiIhg/vz5TJo0iZ9//vm2P4+iKIpyay6fPM5vM6eTePG8Q5lX9Rr0G/0iTTp0ckLLCuZSATyn8vMYGYBOQJbZgpSSAQMGYDQaCQgIwGw2079/fwACAgJy9Nwff/xx278vv/yyM5qtKIpyx8rKzOCPZYvY9/NqZB6juq2C+9Hr6efw8Cr7zJdF4VIB3NZTTjwDpkyo3aLUj9mqVStWrFhR6HZCCCxSYpF/pxHV6XQYjUbbajw6nS5HSlH7VXpKe8UeRVEU5W+XThzlt5mfc+3SBYcyrxo1CRnzEv7tOjqhZUXnmrPQKbt74H369CEjI4M5c+bY3tuzZw/nzp3L2SLrAi7mW0grunTpUtu/Xbp0KYHWKoqiKAXJykgnfP63LH7ntTyDd+veIYz69OtyH7zBxXrgNrqyC+BCCFatWsWkSZOYNm0aHh4e+Pn5MX369JxNsnagbyWAZ2Rk0LlzZywWC4sXLy7JZiuKoii5XDh2mLBZn3Pt8iWHsio1axEy5kX8Aguf81ReuGYAL+PnwOvXr8+yZcsc3o+KigK01KE9g4OJunidf77+FnWqeti2SUlJsX1vn5I0+1745MmTS6fRiqIoCgBZ6ensWDKf/b+ty3MZ7jZ9+9PzyWdxr1TJCa0rPhXAS4hOCNz0OttMdEVRFMX5LhyJYsOsz0mKvexQVrVWbULGTMC3TaATWnb7XDeAI7UgLsrPbXw3g07lBVcURSkHMtPT2P7jD0RuyPvx3Lb33U/PJ0bh5ulavW57LhzAAYsF9OUngLsbdCSlZSGlVLPKFUVRnCQm6hBhsz/nelysQ5l37TqEjJ3AXa3bOqFlJcu1A3g5G0Z3M+gxWzIxWyQGvQrgiqIoZSkzLZVti+Zx8Pdf8iwPDB1EjxEjcfO4/UXAygPXDODZKTulY2o3Z3K3ZiXLMFkwlKORAUVRlIru3F+RhM3+ghtX4xzKvOvUJXTcRBq1DHBCy0qPawbwctoDtw/gld2d3BhFUZQ7QEZqKtsWfcehjb85FgpB+/4P0H340xg9PBzLXZxrdhNFdg+8bAJ4fulEczMadAiEw0S2d955h40bN5ZJWxVFUe4U0Qf388MrL+QZvKvVrcewyR/Se9SYChm8wdV74HlkjClpBaUTbdasGQBmsxm9Xq89SmYQZJhyDu1PnTq11NupKIpyp8hIvUn4/LlEbQlzLBSCDvc/SLdhT2J0r5iBO5uL9sCzh9BL/x54fulEzWYzvXv3ZsSIEbYkJa1bt8bNoCfTZOGTTz6xLdwyatQo23rqr7/+Oi1btqRNmza88sorAFy9epVHHnmEoKAggoKC2LlzZ6l/LkVRFFd09sBe5r3yQp7Bu3q9Bgx/97/0evq5Ch+8wcV64Ff+8x8yjh4DJGTeBIM76Iy3Vaf7PS2o++ab+ZYXlE40IiKCqKgo/P39bSuruRt03MwwIfNY7ScxMZFVq1Zx7NgxhBAkJSUBMHHiRF5++WW6d+9OTEwMoaGhHD169LY+l6LcKr1eT0DA35N8Vq9ejZ+f323Xu3fvXubPn88XX3zBlClT8PLysl28ZouOjmbQoEG21Q3LwjvvvEPPnj3p169fmR1TKb70mymEz/+Ww+GOtyOF0NFh0EN0HfoERrc7ZwKSSwVwB07OKNqpUyf8/f1zvOdu0NmykuVWtWpVPDw8eO655xg4cCCDBg0CYOPGjRw5csS23Y0bN0hOTqZKlfKTOF6p+Dw9PYmMjCzxejt27EjHjqWXGEJKiZQSne7WBhTVrS3XcWb/Hn7/5ktSriU6lNWo35DQ8ZOo36z0s1OWNy4VwG09ZSnhciRUqQtV6pXqMQtKJ1q5cmXb9waDAYvFgpt1JvrN1DSH+xMGg4GIiAg2bdrEkiVLmDFjBps3b8ZisbBr1y48PSvGs4lKxbFv3z7++c9/kpKSgo+PD/PmzaNevXrMmTOHb775hszMTJo2bcqCBQuoVKkSy5cv591330Wv1+Pt7c22bdsIDw/nk08+4eeftRWxDh48SJ8+fTh//jyvvfYao0ePznFMs9nM66+/Tnh4OBkZGbzwwguMHTs2xzbR0dEMGDCA3r17s2vXLlavXs2yZctYtmwZGRkZDBkyhHfffReA9957j0WLFtGoUSN8fHzo0KEDr7zyCqNGjWLQoEE8+uijbNq0iVdeeQWTyURQUBAzZ87E3d0dPz8/Ro4cybp168jKyuLVV18tmxOvAJCWkkz4vG84sn2LQ5kQOjoOfpiuj47A4ObmhNY5n4veAxeArkwmseWXTnTr1q05tqtTpw5xcXGkXL9GZkYGv/yy3qGulJQUrl+/zv3338/06dNtvZ2QkBBmzJhh2640ekGKUpi0tDQCAwMJDAxkyJAhZGVl8dJLL7FixQr27dvHs88+y1tvvQXAww8/zJ49ezh48CD33HMPc+fOBbRe7YYNGzh48CBr167N8ziHDh1i/fr17Nq1i6lTp3LpUs7MUHPnzsXb25s9e/awZ88e5syZw9mzZx3qOX78OE8//TQHDhzg+PHjnDx5koiICCIjI9m3bx/btm1j7969rFy5kgMHDvDTTz+xd+9eh3rS09MZNWoUS5cu5a+//sJkMjFz5kxbuY+PD/v372f8+PG2FMBK6Tu1dzc//N/zeQbvmg3v4vH3P6bniFF3bPCGMuiBCyH0wF7gopRyUIlVXEYpRfNLJ/rQQw/l2M5oNPLOO+/Qo1tXatVvRJOmzRzqSk5O5sEHHyQ9PR0pJf/73/8A+OKLL3jhhRdo06YNJpOJnj17MmvWrFL/bIpiL/cQelRUFFFRUdx3332A1jOuV6+erezf//43SUlJpKSkEBoaCkC3bt0YNWoUQ4cO5eGHH87zOA8++CCenp54enrSu3dvIiIiCAz8O5lEWFgYhw4dso18Xb9+nZMnTzrcrvL19eXee++17RMWFka7du0A7WL55MmTtv9z2aNbDzzwgEN7jh8/jr+/v+2pkpEjR/LVV18xadIkANvn6NChg+1CRSk9ack32DLvG47uCHcoEzodnR58jHsfGY7BeHvznyqCshhCnwgcBaqWaK1CV2YrseWXTjT30N+ECROYMGECJ2KTcdPr8PPRhtjnzZtn2yYiIsKhHh8fH3Vlr5Q7UkpatWrFrl27HMpGjRrF6tWradu2LfPmzSM8PByAWbNmsXv3btavX09gYGCeo0m58wTkfi2l5Msvv7RdFOTH/haWlJI33njDYag9+yK5IHlNOLXn7q5NitLr9ZjN5Wv1x4rmZMQfbPz2a1KvJzmU+TTypf/zL1OncVMntKx8KtUhdCFEQ2Ag8G3JV17+Uopm8zDoSDep/+iKa2vevDlXr161BfCsrCwOHz4MaKNJ9erVIysri0WLFtn2OX36NJ07d2bq1Kn4+Phw/vx5h3rXrFlDeno6CQkJhIeHExQUlKM8NDSUmTNnkpWVBcCJEye4efNmgW0NDQ3lu+++IyUlBYCLFy8SFxdH9+7dWbduHenp6aSkpLB+veOtrRYtWhAdHc2pU6cAWLBgAcHBwUU9TUoJSL1xnZ+nf8TaT//jELx1ej33PjKcJ6dNV8E7l4QUzK4AACAASURBVNLugU8HXgNKfjq10JfJPfDicDfqSUrLwmKR6HQqqYnimtzc3FixYgUTJkzg+vXrmEwmJk2aRKtWrXjvvffo3Lkzvr6+BAQEkJycDMCrr77KyZMnkVLSt29f2rZt6zBfpFOnTgwcOJCYmBjefvtt6tevb3sME+C5554jOjqa9u3bI6WkVq1arF69usC2hoSEcPToUbp06QKAl5cXCxcuJCgoiMGDB9O2bVt8fX3p2LEj3t7eOfb18PDg+++/57HHHrNNYrNf90EpXSf+3MHGuTNJu3HdoayWrz+h4ydRx7+JE1pW/onCho+KXbEQg4D7pZTPCyF6Aa/kdQ9cCDEGGANQq1atDrmHqr29vWna1PGqyzP1IkhJWuWGpdH823IzSxKXaqG+lw73UshKlr3ym1Kwop6nU6dOcf264x+PstZgtzYgdrFz2V+YpqSk4OXlVebHLQtpaWl4enqSnp7OxIkT+b//+z/b/e5bVZHPU0kr7Fxlpd7k/I5NXDvtuCw1Oh312t9L3fad0VXwv3W9e/feJ6Us1nOWpdkD7wYMFkLcD3gAVYUQC6WUT9pvJKX8BvgGoHnz5rJXr145Kjl69Gjez0NnuYEpo1w+K23MMhOXmozBzYMqlUp+hqR6RrxoinqePDw8bJOfnCnu+CEA7u7VpsyPHR4eTu7/exXFiBEjOHLkiG22+ZgxY4pdV0U+TyUtv3MlpeT4ru1sXriItOQbDuW1/ZoQOn4itf0al0ErXVupBXAp5RvAGwB2PfAnC9zpVgh9ub0H7mbQIYD0rPLZPkW5k/z444/OboJidTPpGhu//ZpTexwnRur0Bro8MpygBx9Fb3CpJUqcxnXPUjmexKYlNdE7JDVRFEW5E0kpObp9C1vmfUP6zRSH8jqNmxI6fhK17vIr+8a5sDJZyEVKGV6iz4CD9hy4pWwC5AcffECrVq1o06YNgYGB7N69u9B93A06MgrpgTsjzejatWuZNm0aAFOmTOGTTz5xWlsURan4khPjWf3fqfz61WcOwVtvMNB9+NOMeP9TFbyLwYV74HpAasuqitKb6b1r1y5+/vln9u/fj7u7O/Hx8WRmZha6n7tRR3KGiaysLIz5LDjgjLWYBw8ezODBg8tFWxRFqbiklPy1JYyt8+eSker4GGDdps0IHTcRn0a+TmhdxeCaS6lCmaUUvXz5Mj4+PrbFHHx8fKhfvz6grRMdHBxMhw4dCA0N5fLlywD06tWLj9+fwjOP3M/U997Hz88Pi/WRt9TUVBo1akRWVlaONKN79uyha9eutG3blk6dOpGcnIzZbObVV18lKCiINm3aMHv27DzbOH/+fNq0aUPbtm156qmngPxTlM6bN48XX3zRoQ77tvj5+TF58mTat29PQEAAx44ds9V533330b59e8aOHYuvry/x8fElcZoVRalAbsTHcWr9SsJmfeEQvPVGIz2feIbHp36sgvdtcqke+PZlJ4g/bx2CsWSBKQOMkX8H82LwaeRFj6H5P1ISEhLC1KlTadasGf369WPYsGEEBwfb1oles2YNtWrVYunSpbz11lt89913AKTcuM53K9bjW7Myhw5GsnXrVnr37s26desIDQ3N0SvPzMxk2LBhLF26lKCgIG7cuIGnp2eONaEzMjLo1q0bISEh+Pj42PY9fPgwH3zwATt37sTHx4fERC1bz+2mKM1e//nrr7/mk08+4dtvv+Xdd9+lT58+vPHGG/z222988803t3q6FUWpwKSUHNr4G9sWfUdmWppDef1m9xA6fiI16pe/x39dkUsF8JzKZoEULy8v9u3bx/bt29myZQvDhg1j2rRpdOzYMd91ogGGDx8OQEaW2Race/fuzZIlS3j++edzHOP48ePUq1fPtiJV1araqrP5rQltH8A3b97Mo48+anuvRo0aQP4pSovKfv3nn376CYAdO3awatUqAPr370/16tWLXJ+iKBXb9bgrhM3+gpioQw5lBjd3ejz+NIH9B6HTVeznusuSSwXwHD3l9BuQeBp8moFb5fx3KgF6vZ5evXrRq1cvAgIC+OGHH+jQoUO+60QDVK3ihVGvI8NkYfDgwbzxxhskJiayb98++vTpk2NbKaXDetDZ7+e1JrR9IM5v39tNUWq//rPJZLIdS1EUxZ60WDiwYT3bF8/DlJHhUN6wZWtCx06kWt3STf18J3Lde+DZV3GlPBM9O01htsjISHx9fQtcJzqbh1FPepYZLy8vOnXqxMSJExk0aJDD6mAtWrTg0qVL7NmzB9ACtMlkKtKa0H379mXZsmUkJCQA2IbQSyNFaffu3W1JXcLCwrh27dpt16koiuu6dvkiS999gy3zZjsEb53BSN9nxzP07f+o4F1KXKoHnkMZTWJLSUnhpZdeIikpCYPBQNOmTfnmm28KXCc6m4dRR3yGCSklw4YN47HHHrNlbbLn5ubG0qVLeemll2zLPm7cuDHfNaF1ur+vu1q1asVbb71FcHAwer2edu3aMW/evFJJUTp58mQef/xxli5dSnBwMPXq1VMrwinKHchiMbP/l7XsXLIAU5bjUzl3BQRStU0QgaEDndC6O0eprYVeHM2bN5fHjx/P8d7Ro0e55557HDc2ZULcYfBuBJV9HMvLgWupmZxPTKVZnSp4GEvuvo+zllLNyMhAr9djMBjYtWsX48ePL5GefWkp6nnK93esjMXN1u4d1h6rllItr9R5goQL59kwazqXTx53KHPzrETwU/8goE8IW7duvePPVVEIIcrlWuilK3sIvYxygheHh0FrY3qWuUQDuLPExMQwdOhQLBYLbm5uzJkzx9lNUhSljFjMZvas+4ldK37EbL2tZ88/sAP9Rr9IVZ9aTmjdncl1A3j2EHo5TSkK2mIuAkF6Vvm9yLgVd999NwcOHHB2MxRFKWPxMdH8NvNzYs+cdChzr1yZ3iPH0LJnnzwn1Cqlx4UDuLAmNCm/wVEnBO5GnUpqoiiKSzKbTESsWc6fK5diMZscypt07Ey/fzyPV42aTmid4roBHLReeBmth15cHkY9qRmOv/iKoijlWezZ02yY9TlXo884lHlUqUqfZ8bSomtP1et2ItcO4Lry3QMHbSZ6UqoFk8WCQee6T+0pinJnMGVlsfunJUSsWYHF7Pj3tVnnbvR5dhyVq6mFnJzNtQO40LtEDxwgI8uCwV0FcEVRyq8rp07w28zpJFyIcSjzrOpNv3+Mp9m93Z3QMiUvrh1RdPoyyQl+5coVhg8fTpMmTWjZsiX3338/J06cKNK+9jPR7dknD7G3d+9eJkyYcPuNJv/EJYqiKPZMmZls+3EeP/77lTyDd4tuwYz69GsVvMsZF++Bl/49cCklQ4YMYeTIkSxZsgTQVjWLjY2lWbP8k6BkM+oFep0grYgz0Tt27EjHjsV6JFBRFOWWXTpxlA0zPyfx0gWHssrVqtPvuRdoGnSvE1qmFMZlAvinwwaVav3/t/TnPN/fsmULRqORcePG2d4LDAxESsmrr77Kr7/+ihCCf//73wwbNozw8HAmT55MnTp1iIyM5OGHH6a279388M1MLKYMVq9eTZMmTQAt4cjnn39ObGwsn332GYMGDSI8PJxPPvmEn3/+mSlTphATE8OZM2eIiYlh0qRJtt75woUL+eKLL8jMzKRz5858/fXX6PV6vv/+ez788EPq1atHs2bNbGuaK4qi2MvKSGfn0oXs+2UN5LGgV6vgvvR6ejQeXl5OaJ1SFC4TwJ0lKiqKDh06OLz/008/ERkZycGDB4mPjycoKIiePXsCcPDgQY4ePUqNGjVo3Lgxw54cyY8/b+L35d/z5ZdfMn36dACio6PZunUrp0+fpnfv3pw6dcrhOMeOHWPLli0kJyfTvHlzxo8fz/Hjx1m6dCk7d+7EaDTy/PPPs2jRIu677z4mT57Mvn378Pb2pnfv3rRr1650T5CiKC7nwpEoNsz+nKQrlx3KvGr6EDL6RfzbqZHA8k4F8GLasWMHjz/+OHq9njp16hAcHMyePXuoWrUqQUFBttSiTZo04b777sMsJS1atcqxFvrQoUPR6XTcfffdNG7cmGPHjjkcZ+DAgbi7u+Pu7k7t2rWJjY0lPDycffv22dKPpqWlUbt2bXbv3k2vXr2oVUtbCWnYsGFFvlevKErFl5mexvYffyByQ94jjgF9Qwl+8lncK5VuhkelZKgAXohWrVrlOdmsoDXk7YetdTodVSprKT1NZmypOQGH5yfzep7Svq7s1J5SSkaOHMmHH36YY9vVq1erZzIVRcnTub8iCZv9JTeuxjqUVa1Vm5AxE/BtE+iElinF5TIBPM971KkJkBQDtVuCoXTu9fbp04c333yTOXPmMHr0aAD27NlD9erVWbp0KSNHjiQxMZFt27bx8ccf59mLdjPoEUKQYco5Y3758uWMHDmSs2fPcubMGZo3b86ff/5ZaJt69erFiBEjePnll6lduzaJiYkkJyfTuXNnJk6cSEJCAlWrVmX58uW0bdu2ZE6EoiguKSM1lW0Lv+PQpt/yLG8bMpCeI0bi5lmpjFum3C6XCeB5EqWfE1wIwapVq5g0aRLTpk3Dw8MDPz8/pk+fTkpKCm3btkUIwX//+1/q1q2bZwDXCYGHQecQwJs3b05wcDCxsbHMmjULDw+PIrWpRYsWvP/++4SEhGCxWDAajXz11Vfce++9TJkyhS5dulCvXj3at2+POY+FGBRFuTNER+4j7JsZJCdcdSjzrlOX0LETaNSq7LPfKSXDddOJAmQkQ8IpqNkU3Mt3XuoL11K5npZFy3pVb3uY21npRF2NSidadCpNZtG4ynlKv5lC+PxvORy+0bFQCNr3f4Duw5/GWMROQ3G4yrlytjsznSiUSQ+8pHga9STezCTLbMHN4PqpRRVFKZ9O74tg45wZpFxLdCirXq8BoeMm0qBFSye0TClprh3AXSAneDZPN62taVlmFcAVRSlxack32PLDHI5u3+JQJoSODoMeouvQJzC6qbUhKoqKEcBdoAfuYdAjEKRlWvD2dHZrFEWpSE7u/oONc78m9XqSQ1nNhncROm4i9e5u7oSWKaXJtQO4bQi9/Kfr1Om03OBFXVJVURSlMKk3rrPpu1mc2LXdoUzodHR68FHufeRxDEajE1qnlDYXD+DCJTKSZfM06klO157jVs9rK4pSXFJKju/azubvZpGWfMOhvNZdfoSOn0Sdxk2d0DqlrLh2AAeXyAmezdNNz7XUTLLMEjeDCuCKoty6m0nX2Pjt15zas8uhTKfX03nIMDoPeQy9QfW6KzrXTicKoDOU+hB6fulEo6Ojad26dZHr8TT+PZHtdhw6dIhffvml0O3Cw8MZNEhLAnOrqUUjIyPzPcbvv/9Ohw4dCAgIoEOHDmzevNlWlpmZyZgxY2jWrBktWrRg5cqV+R4jJiYGLy8vPvnkE9t7fn5+xMfHA7Bv3z78/f05cOAAKSkpjB07liZNmtCqVSt69uzJ7t27bfutWrUKIUSO5/AtFgsTJkygdevWBAQEEBQUxNmzZ4t8DhSlPJFScmTbZub9c3yewbu2fxOe/HA6XR8boYL3HcJleuBJ6UnEpsbSpFoTDDq7ZpfyEHpB6UQbNWp0S3V5GrMnspnw9iz+f7C//vqLqKgo7r///mLXUZjIyEj27t2b5zF8fHxYt24d9evXJyoqitDQUC5evAjABx98QO3atTlx4gQWi4XERMdHWbK9/PLLDBgwIM+yQ4cO8eijj7J06VLatWvH8OHD8ff35+TJk+h0Os6cOcPRo0dt2y9evJju3buzZMkSpkyZAsDKlSu5dOkShw4dQqfTceHCBSpXVms8K64nOTGejXO+4sz+PQ5leoOBLo+OoOMDD6M3uMyfdKUEuEwPXCIxWUxYZM7VzNCVbgDPL51ojx49cmxnNpt59dVXCQoKok2bNsyePRuAlJQU+vbtS/v27Wnbtg07Nv1KaqaZ6Oho7rnnHkaPHk2rVq0ICQkhLS3N4fjLly+ndevWtG3blp49e5KZmckHH3zA0qVLCQwMZOnSpURERNC1a1fatWtH165dyb0YTkHy2jczM5N33nknxzHstWvXjvr16wPaWvHp6elkZGQA8N133/HGG28A2jrwPj4+eR539erVNG7cmFatWjmUHT16lIceeogFCxbQqVMnTp8+ze7du3n//ffR6bRf2caNGzNw4EDbOd65cydz5861XWQBxMbGUq9ePds+DRs2pHr16kU+N4ribFJK/toSxg//90Kewbte0+Y89dEXdB4yVAXvO5DL/MT1Qo/H5pskJh5GJ+yeozala0PoboeKVa9b/cpUe6BJvuX5pRPNbe7cuXh7e7Nnzx4yMjLo1q0bISEhNGrUiFWrVlG1alXi4+Pp2Kkz3fv2x0tKTp48yeLFi5kzZw5Dhw5l5cqVPPnkkznqnTp1Khs2bKBBgwYkJSXh5ubGW2+9RVRUFDNmzADgxo0bbNu2DYPBwMaNG3nzzTcLHLq216JFizz3nTp1Knv37rUdIz8rV66kXbt2uLu7k5SkPcLy9ttvEx4eTpMmTZgxYwZ16tTJsc/Nmzf56KOP+P3333MMn2d78MEHWbhwId27dwfg8OHDBAYGotfn/fz86tWr6d+/P82aNaNGjRrs37+f9u3bM2TIEPr378/27dvp27cvTz75pEqvqriMG/FxhM3+knOHDjiUGYxudB32JB0GPohOp9aVuFO5TgDP75dUCEBav5w3MSwsLIxDhw7ZMpddv36dkydP0rBhQ9588022bduGTqcj9vIlrsbFYqxiwN/fn8BALftPhw4diI6Odqi3W7dujBo1iqFDh/Lwww/neezr168zcuRITp48iRCCrKysIrf7dvY9fPgw//rXvwgLCwO0TGsXLlygW7dufPbZZ3z22We88sorLFiwIMd+kydP5uWXX8bLyyvPevv168e3335LaGhovkHb3uLFi5k0aRIAw4cPZ/HixbRv354GDRpw/PhxNm/ezObNm+nbty/Lly+nb9++Rf6MilLWpMXCoU2/sXXh92SlO47K1W/ektBxE6lRv4ETWqeUJy4TwHVCR3qfytSq0oiq7lX/LkiJhRuXoG7rvxd2KUH5pRPNTUrJl19+SWhoaI73582bx9WrV9m3bx9GoxFfPz8yMjJI93BMFZrXEPqsWbPYvXs369evJzAwkMjISIdt3n77bXr37s2qVauIjo6+pfWHi7vvhQsXGDJkCPPnz6dJE20Eo2bNmlSqVIkhQ4YA8NhjjzF37lyHfXfv3s2KFSt47bXXSEpKQqfT4eHhYZtkN2PGDMaNG8fzzz/P7NmzadWqFQcPHsRisdiGw7MlJCSwefNmoqKiEEJgNpttyWVAO8cDBgxgwIAB1KlTh9WrV6sArpRbSbFXCJv9BecPO44oGtzc6fH40wT2H6R63QrgQvfA9dZhc3PuR8ZKeT30Pn36kJGRwZw5c2zv7dmzh61bt+bYLjQ0lJkzZ9p6sCdOnODmzZtcv36d2rVrYzQa2bJlCzHnzqHXQVpmrnv5+Th9+jSdO3dm6tSp+Pj4cP78eby8vEhOTrZtc/36dRo00K7G582bd0ufL799q1SpkuMY9pKSkhg4cCAffvgh3bp1s70vhOCBBx4gPDwcgE2bNtGypeOay9u3byc6Opro6GgmTZrEm2++mWOGvE6nY/HixRw/fpx33nmHJk2a0LFjRyZPnmzLw37y5EnWrFnDihUrePrppzl37hzR0dGcP38ef39/duzYQWRkJJcuXQK0GemHDh3C19f3ls6PopQFabGw/9d1/PDqC3kG74YtWzPy4xm0v18NmVcUJouJPy79cVt1uFwAd5zEZh1EkKXzKFl2OtHff//d9gjTlClTbJO4sj333HO0bNmS9u3b07p1a8aOHYvJZOKJJ55g7969dOzYkUWLFtGiRQs8jYYiP0r26quvEhAQQOvWrenZsydt27alR48eHDlyxDbB7LXXXuONN96gW7dut5w+NL99e/funeMY9mbMmMGpU6d47733CAwMJDAwkLi4OAA++ugjpkyZQps2bViwYAGffvopAGvXruWdd94pcrvc3d1Zs2YNa9eu5auvvuLbb7/lypUrNG3alICAAEaPHk39+vVZvHixrcef7ZFHHuHHH3/k6tWrPPDAA7Ru3Zo2bdpgMBhu6VE6RSkL1y5fZOm7b7Bl3mxM1smg2YzuHvR9djxD3/4P1erWc1ILlZKSHbSn/DGF3st6M/b3sbdVn8ukE5VSciThCLUq1aJ2pdp/b+BCKUWzxd5IJ/ZGOq3qV0Wvu/VrKJVOtGhUOtGiU6kfi6Ykz5PFYmb/+jXsXLoQU1amQ7lvm3bcN/pFvGvXyWPv8k/9TmlMFhN7ruwh7FwYm85t4lrGNSoZKhHcKJhQ31D6+fWr+OlEhRDohK7Mh9BLQ6XszGSZZrw8XGYQRFGUEpJw4TwbZk3n8knHRz7dPCsR/NQ/COgTopZcdlF5BW1Pgye9GvUi1DeUbg264WG4/VzsLhPAQRtGt1jyGUJ3gYQm2bJXZEvNNOPloVZMUpQ7hcVsZs+6n9i14kfMeTzx4d+uI/eNfpEqNfNeP0Epv0wWE3tj9xIWHcbGcxv/DtoNexHiF0L3Bt1LJGjbc6kArtPl0QN3oZzg2Qx6He4GPamZrtNmRVFuz9WYaDbMnE7smVMOZe6VK9N75Bha9uyjet0uxGQxsS92HxuiN7ApZhOJ6Yl4GjwJbhhMqJ/W0/Y0lF7+aJcI4NnZu/RCn8cQug4QLjWEDlDZTc/19CyVmczJytMcEKViMptMRKxezp8/LcVidhwpbNLxXvo99zxe1Ws4oXXKrcoO2mHRYWyM2ZgjaGf3tEszaNsr9wHcw8ODhIQEatasiV7oybLkGnYSokwSmpS0Su4GElMzyTBZ8DCqx0KcQUpJQkICHh4lO6ylKNliz55mw8zpXD3nmETHo0pV+jwzlhZde6qL+HLObDHbetr2Qbtnw56E+oWWadC2V+4DeMOGDblw4QJXr14lKT2JDEsGmZVyzdhMvgq6a1D5pnMaWQwms4XYGxlkxBvxcr+1H0N6eroKOkVQlPPk4eFBw4YNy6hFyp3ClJXF7p+WELFmBZY8Hu1sdm93+jwzlsrV1Nr85VV20A47F8bv537PEbRDfEPo0bCHU4K2vXIfwI1GI/7+/gBMi5jG2lNr+WNErofff3gNTJnwjw1OaGHxSCl57sNNdPavyRePB9zSvuHh4WpN7yJQ50lxhiunTvDbzOkkXIhxKKvkXY2+/xhPs87d8thTcTazxcz+uP1aT/vcRhLSE/DQe2hB2y+EHg16UMlYydnNtCkwgAshPIBBQA+gPpAGRAHrpZSHS795OVVxq0JKVgoWaUEn7B6/qlQTrvxV1s25LUIIgvxqEHE2Ud0HV5QKwJSZyR/LF7F33Spk7gWngBbdguk9agyVqno7oXVKfvIL2j0a9iDUL7TcBW17+QZwIcQUYDCwBdgNxAEeQDNgmjW4/5+UsnhpwIqhirEKEklyZjLe7nb/CSrVhNSEsmpGiensX4OfD13mwrU0GtUon78giqIU7uLxo2yY9TnXLl1wKKtcvQb9nnuBph07O6FlSl4KCtohfiH0bNCz3AZtewX1wPdIKafkU/aZEKI2cFfJNyl/2UlMbmTeyBXAfSDtGphNoC/3dwVsgvy1WacRZxNVAFcUF5SVkc7OpQvY98tayOOJhlbBfen19Gg88sm8p5Sd7KCdPXs8Pi3eJYO2vXyjnZRyvRCiFuALnJJSJuUqj0PrlZeZ6u7ahI+k9CQaVWn0d0Glmtq/adfAq1ZZNum2NKtdBW9PI3uiE3mkg5pIpSiu5MKRKDbM/pykK5cdyrxq+hAy+kX82xVrhUylhJgtZg7EHbBNRItPi8dd706PBtrweM+Grhe07RU0hP4c8B/gNOAvhBgjpVxbZi3LQzWPagAkZSTlLKhsDeCp8S4VwHU6QUff6kScTXR2UxRFKaLMtFS2/fgDB8PW51ke0DeU4Cefxb1S5TJumQI5g/bGcxu5mnbVFrRD/EIIbhjs0kHbXkHjzZOAVlLKq0KIxsAiwKkB3NYDzx3As3vgLngfvJN/DTYdi+Nqcga1qrgXvoOiKE5z43w085b/QHL8VYeyqrVqEzJmAr5tAp3QsjubRVq0oB2t9bSzg3b3Bt1tPe3Kxop3QVVQAM+UUl4FkFKeEUI4Pbpk3/e+ln4tZ0El67rBN+PLuEW3z/4++MA2Kl2gopRH6SkphC/4lpPhG/MsDwwdSI/HR+LmWTF6dq7AIi1ExkXaJqLFpcXhpnPT7mn7hhDcKLhCBm17BQXwhkKIL/J7LaWcUHrNylsVtyrohb5C9cDbNPDGy93AH6fjVQBXlHLo1J4/2Tj3a25ec7zVVa1OPULGTaBRy1tby0EpnryGx910brae9p0QtO0VFMBfzfV6X2k2pCh0Qoe3u3eFCuAGvY7O/jXYecr1Rg8UpSJLvXGdzd/P5vgf2xzKhNDRfuCDdBv6BEZ3tSpiabJ/5GtTzCbi0+JtQTv7nraX2505y7+gWeg/lGVDiqqaezXHAG5wA/eqLhnAAbo19WHTsTguXEulYXU1BKcoziSl5Pgf29j8/WzSkm84lNdo0IjQcROp36yFE1p3ZzBZTOyP3W/raSekJ+SYiFZR72nfqoJmoa8D8k3VJKUcXCotKkQ192qO98BB64W74D1w0AI4wB+nEhgapAK4ojhLSmICG+fO5PTePx3KhE5HnXadGPbyvzAYjU5oXcVmn087OzWnqz+nXdoKGkL/xPqvAOYAz5V+c/KXFJtK7NnrVDfW4NzNaMcNXHQ1NoBmdbzw8XJn5+l4hgY1KnwHRVFKlJSSw+EbCZ//LRmpjkmRavk1JnTcRI6eO6+CdwkyWUxEXIkgLDqMzTGbuZZxzZYw5D7f+8r1MqblQUFD6FuzvxdCwfRxggAAIABJREFUpNi/LgrrUqvbAHfrcVZIKScXt6EXjiWydfEJqj/mw8GMSMcNKvvA9YvFrd6phBB0a1qTnacS1LroilLGblyNI+ybLzl36IBDmd5goMujI+j4wMPoDQaOnjvvhBZWLFmWLCIuRxB2TgvaSRlJTsun7eqKuu5ovkPpBcgA+kgpU4QQRmCHEOJXKaXj2FQRGD20pnqL6iSlJzkGOq/acMnxP6Cr6NbEhzWRlzgRm0LzulWc3RxFqfCkxcLB339l24/zyEpPcyivd3dzQsdNpGbDMl0xukLKMmex+8purad9fjPXM65TyVCJ4EbBhPqG0q1BNzwMajLgrSroHngNu5d6IUR1tOF0AKSUBS4fJqWUQIr1pdH6VZwLAa0Cdz0AVUU1TNJESlYKVdzsAp1XHbh5FSxm0OmLexin6Xa3dh9856l4FcAVpZRdu3yRsNlfcuFolEOZwc2d7sOfot2AB9C54N+S8sIkTWy7sI2w6DC2nN/CjcwbVDZWplejXoT4htC1flcVtG9TQT3wfWgBNzto77crk0DjwioXQuit9TQFvpJS7s5jmzHAGIBatWoRHh6eZ10pV7TYnxCjzUD/betv1DL+vWxq/cvXaSYt7Ny4jiy3aoU1rVyqU0mwevdxGpvOFbhdSkpKvudJ+ZurnacGSVqK3CNOaLOrnavikhYLcYf2cTFiJ9Jscij3qt8I314hJFeuxrZt2x3K75TzVFxZMovjacc5kHqAQ6mHSI9Jx0N4EFApgHbe7Wjh2QKj2Qhn4M8zxRqMVewUdA/c/3Yrl1KagUAhRDVglRCitZQyKtc23wDfADRv3lz26tUrz7piz97gXPheWt3VGmKgadumtKvd7u8NjlyHk9/QrU0TqOuaiyoMuHGYJXtiuLdbDzyM+V/5h4eHk995Uv7maucp7riWmffuXm3K/Niudq6KI/78OTbM+pwrp044lLl5etLziWdo07c/QqfLt4474TzdqgxzBn9c/IOwc2GEnw/XRkeNVWhTqQ1Pd36aLvW74KZ3c3YzK6SChtD9pJTRBZQLoIGU0jEBbi5SyiQhRDjQH3AcsyoCo4cW0CqjDS/Hp+V6ZMyrrvZvSizgmgE8uHkt5v0Rze6ziQQ3c52kLIpSnplNJvasWcGulUuw5NHr9gvswH2jX6CqT20ntM41ZZgz2Hlxpy1o38y6SRW3KvS9qy8hfiF0qdeFndt3Etwo2NlNrdAKGkL/WAihA9agDYNfBTzQhsN7A32ByUCeAdyaijTLGrw9gX7AR8VtqJs1gHtI7ZECxwBu/c+XUqYZTktUl8Y1cTfo2HIsTgVwRSkBsWdOsWHW51w9d9ahzL1yZXqPHEPLnn3Ukx9FkG5KZ+fFnWw4t4Gt57eSakrF292bEN8QQvxC6Fy3M0a9esSuLBU0hP6YEKIl8ATwLFAPSAWOAr8AH0gp0wuoux7wg/U+uA5YJqX8ubgNzZ6FbjS7oxO6AgJ4bHEP4XQeRj1dmtRk6wnHTEeKohSdKTOTXSsXs2ftSqTF4lDeNKgLff8xHq/qNfLYW8mWZkpjx8UdhEWHsfXCVtJMaVRzr8YA/wGE+IYQ9P/snXdYVGf6v+8zBWYGZqgzQ2+CClgQNfaumE0xbZNsujExdZNs8s1u9rdpm92U3U12U0w1ieltUza9iBpbNHbE3qnSe2fK+f1xEERARwWGgfe+Li5k3nPOPIPDfM7zvE8JHYtWJUTbXZy0jEyW5d3Ag2dyYVmWM4FRpzzQRbxastDtjU4CdYGUNZzQtMXLB7yMHu2BA8wYYuHRr3dxpLSO2GDRKlAgOF2O7t/DT688T/nRjsFBvcmPWQtuZ/D4ScLr7oJ6Wz1r8teQnp3O6rzVNNgbCPAO4LzY80iLSWNsiBDtvoKrdeBuR1JJaHVqmhscBOuDO3rgoHjhHuyBA0wfooTOV+4rJjb4rPMIBYIBg62pkV8+eY8t338NcseK1aGTpjFj/i0YTH5usK5vU2+rZ3W+UvK1Nn8tDfYGAnWBXBB3AWkxaYyxjkGj8hi5GDB41P+It15DU6OdoMCgLgTc6vEeeHSQD3HBPqzcV8KNk4SACwSukLMzk6WLX6CqqLDDmm9AILMX3smg0ePcYFnfpd5Wz6q8Va2i3ehoJEgXxLxB80iLTmO0dTRqUQffp/EoAffSa2husBOsC+ZgxcGOB/haoHh37xvWzUwfYuH9Ddk0NDvQe4k/IIGgK5rq61nz4VtsT/+h0/VhM9KYdt0CdD4Dc9zkidTZ6liZu5L07HTW5q+lydFEsD6Yi+MvJi0mjVRLqhBtD+JkZWSpJztRluWtJ1vvCbx0ioCbDWbKGstwyk5U0nE1m75WOPxzb5vV7cwYambJL0dYe7CUOUlWd5sjEPRJjmzbTPrrL1FT1jHp02S2MOeWu4gZ0W1pOB5LbXMtP+f+THp2Or/k/0Kzsxmz3sxlCZcxJ3oOoyyjhGh7KCfzwP/d8l0HjAG2o3RlGwFsACb3rGkd8dJraKxtJlgfjN1pp6qpigBdQNsBvhZorAJbI2g9t0XfuNggjDoNP+0qFAIuEJxAQ20Nq959g12rlne6PurcC5l81fV46QbuQIzq5mpW5Srh8V+O/oLNacNisHD5kMtJi04jxZLS3vkReCQnKyObASBJ0sfALbIs72j5eRhwf++Y1x5vvZqqEjvB+iAAShpKThDwFrGrLYSAmN43sJvw0qiYNdTC8j1F2B1ONGrxhyYQABzYuI5lb7xMfVVlh7WA0DDSbr2biMRhbrDM/VQ3V/Nzzs8szV7KuqPrsDvtWA1WrhxyJXNj5jLCPEKIdj/DlT3wocfEG0CW5Z2SJKX0oE1dom3ZAzfrlUztkvoSBgcMbjvAFKZ8ry7waAEHSEsO4cuMo2zKqmDCoCB3myMQuJX6qkqWL3mV/b+u7bAmSSrGXHgJEy6/Gq2Xtxuscx9VTVWsyFlBenY66wvWY3faCfUJ5eqhV5MWk8bw4OFCtPsxrgj4HkmS3gDeRxlici1KM5dex1unobnBQYiP0ja1sO6EjFNTuPK92jPngh/PtMFmvDQqftpVKARcMGCRZZm9v6xixduLaayp7rAeHBnN3NvuISR+cCdn908qGytZkbuCpdlL2XB0A3bZTphPGNcmXsuc6DkMDx4uatwHCK4I+I3A7cA9LT+vBl7pMYtOgpdeg8PuJEgbjIREYf2JAn7MAz/a+8Z1Mz7eGqYmBJO+u4hHL0wSf5CCAUdNeSnLXn+Jw1s3dVhTqdWMu+QKxl1yBWpN/28qUtFYwYocRbQ3FmzELtsJ9w3nuqTrSItJIzkoWXxGDEBOKeCyLDdKkvQq8L0sy/t6waYu8dIr5srNEma9uaMHrjMp3dj6gYCDEkZftqeYXUerGRYumk8IBgayLLNjxVJWvfcmzQ31HdatcfHMve0ezNH9u09CeWM5y3OWszRrKZsKN+GQHUT4RnB98vWkxaSRFChu7Ac6pxRwSZLmAU8DXkBsy/7332RZntfTxp2It14pdWhqsBPiE9JRwEHxwvtBCB1gdqIVlQQ/7SoUAi4YEFQVF7J08Yvk7MjosKbWapl4+TWMueASVOr+WfZU2lDK8uzlpOeks7lwMw7ZQZQxihuH3UhadBpDA4cK0Ra04koI/VHgHGAlgCzLGZIkxfScSV1zzANvbrBj9bFyoOJAx4NMYf3GAw/08eKc2EB+2lXI/6UNcbc5AkGPITudbPvpO9Z+9A62po4zksIGJzL39nsIDItwg3U9S2FdYaunva14GzIyMaYYFgxbQFpMGkMChgjRFnSKKwJul2W5qi+8gY4X8BCfENbmr0WW5fZvblM4HFrhJgu7n98MC+XRr3exv6iGwVaju80RCLqd8qP5LH3tefL3duyiqPH2ZspVN5Ay93xU/ajZSH5tPsuyl7E0eymZJZkAxPvHc/vI25kdPZt4/3gh2oJT4oqA75Qk6WpALUlSAnA3sK5nzeqcNgF3EGIIocHeQFVTFf46/7aDTGFKHbjDDmqP6hTbKecND+Wxb3bxdcZR7p8rvHBB/8HpcLD52/+x7tMPcNhsHdajho1gzi13428NcYN13U9WVRbLcpaRnp3O7jLlZiUxMJG7R93N7OjZxPr17z19QffjisLdhTJStAn4EPgJeLwnjeoK7xYBb2qwExoYCkBhfWFHAZedylQyv3B3mNmtmI3eTBwUzNfbj/J/aYPFXbmgX1CSk8VPrzxP0eGO22BeegPTrlvA8JlzPf79fqjyEEuzl5Kend665TcieAT3jb6P2dGziTRGutlCgSdzUgGXJEkNfC3L8mzOcC54d9IuhG5oqwUfGji07aDWWvCj/ULAAeaNDONPn2eSmVfFyEj/U58gEPRRHHYbG/73KRv+91+cDnuH9bjUscy++U6MQcFusO7skWWZfRX7SM9OJz07nSNVR5CQGGUZxQNjH2B29OzWPhYCwdlyUgGXZdkhSVK9JEl+sixX9ZZRXeGla8tCj/NVPPD82hMyzltrwfOBsb1oXc8xd1gID325k6+3HxUCLvBYCg8d4KdXn6c0J6vDms7XyMz5tzB08nSP87plWWZX2S6WZi9lWfYycmtyUUkqxljHcPXQq5kVNQuzwexuMwX9EFdC6I3ADkmS0oG6Yw/Ksnx3j1nVBSq1Ci+dmqZ6G0G6IPQaPbk1ue0P6kfNXI7hp9cybYiZbzOP8pfzEt1tjkBwWtiaGln36Yds+fZLZNnZYX3wuEnMXHAbPv4BnZzdN3HKTjJLMltFu6CuAI2kYVzoOBYMW8DMqJkE6gLdbaagn+OKgH/X8tUn0PlqaayzIUkSUcaojgKuDwCtAary3GNgDzFvZBjpu4vYeKTc3aYIBC6TuyuTpYsXUVlY0GHN4OfPrJtuZ/C4SW6w7PRxOB0caDzAug3rWJ69nOKGYrQqLRPDJnJnyp1Mj5yOn7fo1yDoPVzpxPZObxjiKt4GLU11yt5ZpDGSQ1WH2h8gSeAfBZXZbrCu55iVaEGvVfP19qPMFTf2gj5OU30dqz94i8xlP3a6njR1JtNvWIjet2+XRtqcNjYVbiI9O50VOSsobyzHu9SbyeGTmRM9h2kR0/D18nW3mYIBSpcCLknSf2VZvkKSpB0oQ0zaIcvyiB61rAt0Phoa65SSk0hjJKvyVuFwOtoPpPeP7ncCbvDSkJZs5fsdBcyc0v97Pws8l0NbNrDsjZepLS/rsGYMMjN74R3Ejeq7+SnNjmZ+LfiV9Ox0fs79maqmKvQaPdMiphFWG8atabdi0BrcbaZAcFIP/Njwkgt6wxBX0floqS5TOjVFGCOwOW0U1xcT2pLUBigeeM6vbrKw57g0NYKvMo6yrVjFHHcbIxCcQH11FT+/vZi9v6zqdH1k2vlMueoGvA19T/wa7Y2sO7qO9Ox0VuaupNZWi6/Wl+mR05kTPYeJYRPRaXSsXLlSiLegz9ClgMuyXNDyvU+5st4+7UPoALk1ue0FPCAamqqgoULZE+8nTI4PJtRPx9o8G39ytzECQQunGvkZEBpO2q13EZE4zA3WdU29rZ41+WtYlr2MVXmraLA34Oftx+zo2cyJnsP40PF4qb3cbaZA0CWuDDOpoS2E7gVogTpZlk09aVhX6Hy0NNXbkJ0yUaYoQBHwc0LPaTvIX3mcypx+JeBqlcRlqRG89PNBCqsaCfHTudskwQCnurSE5W++3OnIT0mlYuy8y5hw2VVovPqGENY217IqbxXp2en8kv8LjY5GAnWBXBB3AbOjZzM2ZCxaldiiEngGriSxtcsykSTpYpThJm7B26BBllsmkhlC0Kg05NTktD/IP1r5XpENoSN738ge5LejI3jx54N8sS2PO6bHu9scwQBFdjrJXP4jqz94i+aGhg7r5pg45t52D9bYQW6wrj1VTVWszF1JenY6646uw+a0YdabuSThEuZEzyHVkto+h0Yg8BBOu1m4LMtfSpL0554wxhV0vsrdcVO9DZ2PgRhTDIerDrc/KKBFwPtZIhtATLAPgwNUfLY5j9unDfK4phcCz6f8aD7pixeRt2dnhzW1VsuEy65izIWXota4bxZBeWM5K3JWsCx7GRsKNmCX7YT6hPK7ob8jLTqNEeYRqCSV2+wTCLoDV0Lolx73owoYQydZ6b2FzqAIeGOdHT8zxPnFsbd87wkH+YO3SQmh90OmhGt4c2cdW7IrGBMjasoEvcOx4SPrP/0Qu625w3rYkCTSbr2LoHD39PcuqS9hec5ylmUvY1PRJpyyk0hjJNcnX8+c6DkkByWLG15Bv8KVW+QLj/u3HcgCLuoRa1zA2+eYgCulZIP8B7EsZxmN9kZ0mpY9YUlSwugV/c8DBxgbouHj/Q4+2pgrBFzQKxRnHeanV5+n+MihDmtanZ6pV89n5JzfIKl616vNq8lrFe3tJduRkYn1i+Xm4TeTFp3G4AAxAEjQf3FlD/zG3jDEVXQ+LRPJWgQ8zj8Op+wkuzqbIYHHjdv0j4Lyjh82/QGdRuKS1HA+3ZzHQ+cnEuDTNxKEBP0Pe3Mzv37xCZu+/gynw9FhPSZlNHMW3okp2NIr9siyzOGqwyzLXsbynOXsKd8DKGM570y5k1lRs4gPELkhgoGBKyH0F0623ts90XU+bSF0gEF+SpLMocpD7QU8IBoO/wyyrHjk/Yxrx0fz/q85fLYlj4VT49xtjqAfkr93N0tfe4Hyox3bEut8jcyYfwuJvTB8RJZldpftZlnOMpZlLyOrOguAFHMK94+5n5lRM8VYTsGAxJUQug5IAj5p+flyYAuQ0VNGnQxvQ4sHXq944NGmaNSSumNL1cA4sNVDTSGYQk+8jMczNMTEmOgAPtiQzU2TY1Gp+t9NisA9NDc2sPajd9n207fKDfAJDJ4whVk33orBr+cm4zmcDjJKMlo97YK6AtSSmrEhY7k28VpmRM3AYugdr18g6Ku4IuAJwAxZlm0AkiS9CiyVZfneHrWsC1RqFV56DQ01ioB7qb2UnuiVJwh4UEv5StnBfingANdNiOaejzNYe7CUqYPFuELB2ZOVsYWlr79ITWlJhzWfgEBm3XQ7CWMn9Mhz2xwtfcdz2vqOe6m8mBg2kTtS7mB6xHT8dWKcrkBwDFcEPAwwAsfGYPm2POY29EYtDbVtWbAJAQnsK9/X/qCgln2wsoMQO6UXres9zh0WQpCPF+//mi0EXHBW2Bsb+PHlZ9m1anmn68NnzWXqNTei8+newR0N9gbWHVWme63MW0lNcw0GjYGpEVOZFT2LKeFT8NH6dOtzCgT9BVcE/B/ANkmSfm75eRrw1x6zyAUMRi8aatoEPDEwkfTsdGqaazB6tfSdMUWA2rvfJrIBeGvUXDE2ktdWHSK/soFwf727TRJ4GLIsc2DDL+z6+C3sDfUd1v2sIaTdchdRw7qvIVJNcw2r81azPGc5a/PXtrYwnRk5k9nRs5kQNgFvtXe3PZ9A0F9xJQv9LUmSfgDGtTz0Z1mWC3vWrJOjN3lRUdj2YZMYlAjA3vK9jA1pmXKkUin74GX9V8ABrhkXxeLVh3lnXRZ/OS/R3eYIPIjainKWv/kKBzet77AmSSpSz7+ISVdcg9b77Fv2ljeWszJ3Jcuyl/Frwa+t3dDmDZrH7OjZjLaOFi1MBYLTxJUsdAmYDcTJsvw3SZKiJEk6R5bljT1vXufojV4cPVDZ+nNioCJce8r2tAk4KPvgpft727xeJSLAwG+GhfDRhhzunpWAr7f7ul8JPANZltm5Mp1V775JU31dh/XgyGjSbrub0PghnZztOoV1hSzPWc7ynOVsKdqCU3YS7hvO1UOvZnb0bNENTSA4S1z5tH8ZcAIzgb8BNcDngNsG+uqNWhrrbDgdTlRqFUH6IKwGK7vLd7c/MCge9v8ETgf0417HN0+J49vMAj7ZlMtNk2PdbY6gD1NZVEj64kXk7NzeYU2l1jDukisYd8nlqDVn5g3nVOewLGcZy7OXk1maCUC8fzwLhy9kdvRshgQMEY1VBIJuwhUBHyfLcqokSdsAZFmukCTJrZ1DDEYvkKGh1oaPn7JXlhiUyJ6yPe0PDIoHp01pqRrYf4UtJdKfsTEBLFl7hBsmRKNRC69G0B6n08G2H75l7SfvYm9q6rDuYwnlt396iODI6NO6rizL7K/Yr3RDy1nGgYoDACQHJXNP6j3MippFrF///dsTCNyJKwJukyRJTUv/c0mSzCgeudvQG5X7h4aaNgFPCkxiVe4q6mx1bVmrraVkh/q1gIPihd/63hZ+3FXIBSPcWiQg6GOU5maz9NUXKDi4r8OaxtubyVdeT7Xe6LJ4O2UnO0p3KOHx7OXk1OQgIZFqTeWBsQ8wM2omYb7iPSgQ9DSuCPgLwP8AiyRJTwC/BR7qUatOgcGkhPeOz0QfaR6JjExmSSYTwlrqVI8vJUuY3dtm9iqzE63EBBl4fc0Rzh8eKsKUAhx2Gxu//Ixfv/gEp8PeYT1q2Ejm3HIX/tYQVq5cedJr2Rw2NhZuZHnOcn7O/ZnShlI0koZxoeOYP2w+MyJnEKwP7qFXIhAIOuOkAi5Jkgo4AvwJmAVIwMWyLO852Xk9zTEPvL66TcCPJcRkFGe0CbiPGXR+UNrR8+hvqFUSN02J4+Evd7LhSDnj44LcbZLAjRQc3MfSV1+gNLfjQB9vgw/Trr+JYdPnnPRGr85Wx5r8NazIXsGa/DXU2mrRa/RMDp/MzKiZTI2YisnL1JMvQyAQnISTCrgsy05Jkv4ty/IEYO/Jju1N2kLobQLu6+VLgn8CW4u3th0oSWBJguI+Y3qPcvnoCF5YfoBFKw4IAR+g2Joa+eWT99n6/dfIcsedrvix45m14HZ8Azt/f5Q2lLIydyUrcla0lnsF6gJJi0ljZuRMxoeNFzXaAkEfwZUQ+lJJki4DvpDlThojuwFvgwaVSmptp3qMFEsK3xz6BrvTjkbV8tLMQ2HX//rtUJPj0WnV3Do1jse/28OW7HJGR4tRowOJnJ2ZLF38AlVFHds0GPz8mbXgNhLGTergdedU57C8ajlLflhCRnEGMjLhvuFcNfQqZkbNJMWcgrofV3EIBJ6KKwJ+H+AD2CVJakQJo8uyLLstdiZJEnqjlvrjPHCAVEsqn+z7hAMVB1qbu2BJhC1vQW0RGEPcYG3vcvW4KF5ZeYgXlh/knQXnuNscQS/QWFfL6g/eYsfynzpdT542i2nX3YTeqPzJyrLM7vLdrMhZwYqcFRysPAjA0MCh3J5yOzMjZ4o52gKBB+BKJzZjbxhyuuhNXtRXnSDg1lQANhZubC/gAMW7B4SAG7w03Dwljn/+uJeM3EpSIsXwh/7MgY3rWL7kVeoqyjusGYPNpC38PTEpo7E77WwsUJLQVuSuoLCuEJWkItWiZI7rj+q5bPZlbngFAoHgTPHYtl2+/t7UlLevZw3xCSHWL5b1Beu5IfkG5UHzMQHfC4Nm9rKV7uG6CdG8tvoQi5Yf4M35buu3I+hB6iorWL7kFQ5sWNdxUZJISTufMZdfweaKbby+9kFW5a2iqqkKb7U3E8ImcGfKnUyLmEaALgCAlcUre/cFCASCs8ZjBdzH35vCI9UdHp8YNpHP939Ok6NJSbbxNYMhSPHABwi+3hpumhTLv9P3szO/imHhfu42SdBNyE4nO1ctY9V7b9JU17ENql9oKL4XjuEraRd//moujY5GTF4mpkVMY2bUTCaGTcSgNbjBcoFA0N14tIA31tpw2JyotW2dxyaGTeSDPR+wrXgb40PHKw9akqBkYGSiH+OGSTG8+csR/vXTPt4Ve+H9grw9O1n13psUHjrQcVElUTJczwehm7Dl/YrVYOWShEuYGTVTDAoRCPoprtSBZ8qyPKyX7HEZH3+llKWuqglTcNsYzTHWMWhUGtYdXdcm4OahsP3jAZGJfgyTTsud0+N54vs9rDtYysR40WTDU6koyGf1B293OjUMoNSviV+GlxEUFc38yAXMippFUlCSSEITCPo5rtSBb5ckKUqW5ZzeMsoVfFsEvLayvYAbtAZSLamszl3NfaPvUx60JkFzDVRmQ0CMG6x1D9dNiOatX47wjx/38tWdHcuHBH2X5oZ6srZv5eDmDexbtxqnw9HhGLvKSWGqgeFzL+G2mNlEm06vj7lAIPBsXAmhhwK7JEnaCLRuusmyPK/HrHKBVg+8suNghplRM/nHxn9wuOowcX5xEDpSWSjIHFACrtOquXfOYP74WSbf7yjk/BGh7jZJcBIctmYaamtY8+Qj5O7KxGHv2P70GPqkKM694U7iYpJ70UKBQNCXcEXAH+txK86Akwn4rKhZ/GPjP1iRs4K44XFgSQZJDQXbIcmt9x29zqWpEby+5jDPLN1HWrIVrZhU1meQnU6Kjhzi0JYNHNq8gWFNypZPVuHWLs+xDIpnxvULiRgqhFsgGOi4Uge+SpKkaCBBluVlkiQZALe3ZfI2aFBrVZ0KeIhPCMODh7Msexk3D78ZtDqlHryg4wzk/o5aJfGnuUO5+d3NfLIpl2vHizCrO7E1N5G7M5NDmzdwaOvG9vXbIeO7PM8UbGHy1TcwdMIUJJW4CRMIBC4IuCRJC4FbgEBgEBAOvIoy3MRtSJKEj793pwIOihf+3NbnyKvJI8IYoYTRDywdUIlsx5iVaGFsTADPLdvPvJQwTDqRkdyb1FVWcHjbJg5t3kj2jm2dzuPuDF+VmoQpM0iYPovwIUmo1G6/bxYIBH0IV0LodwLnABsAZFk+IEmSpUetchFff29quxDw82LP4/mtz/PN4W+4feTtioBnfAA1hWAaWHvBkiTxyAXJzHtpLYuWH+DB85PcbVK/RpZlyvJyFC97ywYKDu5XbhxdQON0klhRT/INC4i86mpUwtsWCARd4IqAN8my3Hwsg1mSJA3QJ4aa+Ph7U3SkqtO1UN9Qzgk9h68OfsWtI25F1ZrItn3ACTjA8Ag/rhwTyVu/ZHGJ/MbTAAAgAElEQVTl2CjiLb7uNqlf4bDbyd+7qzU03tlAkc7QeuuIiIolIHMXAXWNaIOCSPrkczQBAT1ssUAg8HRcEfBVkiT9BdBLkjQHuAP45lQnSZIUCbwLhABOYLEsy8+fjbEnYgzScWhLMU6njErVMSx+0aCL+Mvav7C1aCtjrMMASRHwIed2pxkew/1zh/DdjgL+/u1u3r5xrCgrO0saaqrJytjCoa2byMrYQlN9x85oneEbFMyg1HOITR6O9/fp1Hz6KdrwcHSDB6P28xPiLRAIXMIVAf8zcBOwA7gV+B54w4Xz7MD/ybK8VZIkI7BFkqR0WZa7raepKUiH0ylTV9mEMVDXYX129Gye2PAEXxz4gjFTnoTgBCjI6K6n9ziCfb25Z1YCj3+3h+V7ipmdZHW3SR6FLMuUZB/h8NZNHN62icID+zudud0Z1rh4Bo0eR9zoc7DExFG7fDmFDzxETWkpgfPnY777LkrfO9jDr0AgEPQnXBHw6cAHsiy/fjoXlmW5ACho+XeNJEl7UBLgulHAlQYuNWWNnQq4XqPn4viL+WTfJ9w7+l7M4aPh4LIBmch2jBsmxvDJplwe/XoXE+ODMHh5bDfdXqG5sYHsHRkc2bqJI9s2U9vJ1K/OUGu1RA0b2SLaYzEGKp3wbMXF5N/zB2qWLsV7yBAiXnoR/fDhPfkSBAJBP8WVT+/5wKuSJJUBa1q+1sqyXOHqk0iSFAOMoiURrrswBimiXVPWAAmdj828eujVfLjnQz7Z9wm/jxgL2z+CiiwIjO1OUzwGrVrFk5cO5/JX1/PcsgP85bxEd5vU56goyOfw1s0cydhM3u4dJ22ocjx6kx9xqWMZNGYc0cNT8NK1dQiUZZnKzz6j+F9PIzc1Yb73XoIW3IikFRUBAoHgzJBkF7NjJUkKA34L3A+EybLskusmSZIvsAp4QpblLzpZvwWlTA2z2Tz6v//9r4umg9Mhs+dTGfMwCcuwrj3qxcWLOdJ0hKf9b2Tylj+yO/Feiq3TXX6evkZtbS2+vmeXhPbWzibW5Nt5dIKOaFP/LE9y9ffkdNipPZpHVc4RqrIP01Tl8r0p+iAzftFx+EXH4WMJ7bRGW11UjOmDD/Dav5/mhASqr70Gh7Xj9kX4BuXc/HGuheW7k+54Tw0ExO/JdcTvyjVmzJixRZblMWdyrit14NcCU4DhQCnwIooXfkokSdICn6OE4DuIN4Asy4uBxQBDhgyRp0+f3um16tavp/KL/xH6t8dQ6ds8m5ylawkyBTF9eteepLHIyPwf53Mo1ovJO3xJ8q0lqYvn8QRWrlxJV78nVxl1jo1Z/1nJFznefHHHJNSdJAF6Oif7PdWUl3Jk2xaObNtE9o7t2BobXLqm1ltH1PAU4kaNIXbUGIxBXQ+JkW02yt56m9IXX0Ty9sby97/hf9llXTZiKd6XCUDC9BEu2dKddMd7aiAgfk+uI35XPY8rXvRzwCGU5i0/y7Kc5cqFJSXF+U1gjyzL/zljC1uw5edT/c03WO79QzsBNwbplRD6SRhtHc2E0Am8uXMJl4enYMjbeLbmeDx+Bi0PX5DEPR9n8Pa6LG6a3L+3FJwOBwUH93Nk22YOb9tESdZhl8/1t4YSmzqGuFFjiUgajsaFsHfDjp0UPPwwTXv3YkxLw/rQg2gtfaJ9gkAg6Ce40ko1WJKkZGAq8IQkSQnAPlmWrzvFqZOA64AdkiQdS/3+iyzL35+JoeqW0hp7RQXasLDWx41Bui5rwY/n96N+zzXfX8MHpnAWZq2H5jrw8jkTU/oN80aG8VXGUZ7+aS8zhpiJM/evcFdzbTWZy38ie/tWsndm0FTnWpmXSq0hIjGZuNSxxI4aS2BYuMvP6ayvp2TRi5S/8w6a4GAiXlyEcfbsM30JAoFA0CWuhNBNQBQQDcQAfih13SdFluW1QLfFZdX+SpKao7z9/qTpWC24w4nqJIM6RphHMCNyBm/kr+MiFViOboOYyd1lnkciSRL/uHQ4c55dzf2fbufT2yZ6dCjd1txE/u6dZGVu5UjGVsrzc9nh4rk+AYHEpowhLnWMkoCmN5z289euXk3hY3/Dlp+P/5VXYrn//1Abjad9HYFAIHAFV0Loa4/7elGW5byeNalz1IGBADjKy9o9bgrW43TK1Fa0nwveGX8c+0cuzr+YZwL9+Vf2ugEv4AAWk46/XZTMPR9n8Pqaw9w2bZC7TXIZWZYpz88la/tWjmRsIX/PLuy2ZtdOliRC4wcTO0oJjVti4s54SIi9tJSiJ5+i+vvv8YqLI/r99zCMOaOcFIFAIHAZV0LoIwBamrG4rYWqJlhJFrKXta/D9bcqol1ZXH9KAY80RnLT8Jt4ZfsrXHzkJyZO+1PPGOthzBsZxg87CvnP0v3MHGphsLXveo2NtbXk7MzgSMZWsjK3UltW6vK5OqOJ6JYEtJiU0RhMfmdli+x0KqVhz/wbuaGB4Lt+T9DChai8vM7qugKBQOAKroTQhwHvoUwjkyRJKgFukGV5Z08bdzwqX18krRb7CR/YfhYl1FlZ1ECUCzM6FgxbwI873+PhpgK+qCvGz0ckFkmSxOOXDGPus6u5+6NtfHnnJHTavlFa5rDbKDiwj5yd28nK3HZa3c+QJMIGJxIzchSxI0djiRuEStU9r6vp0CEKHnmUhi1bMIwdS8hjj+Ed178TAQUCQd/ClRD6YuA+WZZ/BpAkaXrLYxN70K4OSJKEOjgYxwkeuMHkhZdOTWVRvUvX0Wl0PJV4I9fueIHHV/2Jf/3mLdETHKXN6tOXj2DB25t56vs9PHbRMLfYITudlORkkbMjg5yd28nbswtbU6PL5xuDzcSMTCV25GiyK6uZPbd7+947m5ooe20xpa+/jspgIPSJx/G79FLxHhIIBL2OKwLuc0y8AWRZXilJklvStzWBgdjL2u+BS5KEv9VAZbFrAg6QnHQFd6x5nBekLaTs/ZBrEq/pblM9kplDrdw0OZY31x5hUnwwackhvfK8lUWF5OzIIHvndnJ3bqehptrlczVe3kQkDSN2ZCrRI1MJDItoFdP8lSu71c66DRspfPRRmrOyMF14IdY/P4AmKKhbn0MgEAhcxRUBPyxJ0sMoYXSAa4EjPWdS16iDg3CUdNzz9LMYKDx86lKyVvT+3KSPYafcyNObnibOL44JYRO60VLP5U/nDmHDkTL++Fkmw8L9CPM/eV7BmVBXWUHOrkxydmwnZ+d2qkuKTuv8oIgoYlJGEzMylYihyWh6eM/ZUVlJ0dNPU/X5F2gjIoh84w18J0/q0ecUCASCU+GKgC8AHgOOdVJbDdzYYxadBE1gEE1793V43N9q4MDmIuw2BxoX925VsVN5cuNirh02gftW3scbc98gOSi5u032OLw1ahZdlcoFL6zhno+38eHC8WhPUp7nCvXVVeTt3kHu7h3k7tpBWV7OaZ3v4x9A1LCRRA0bSfSIUSftftadyLJM9bffUfTUUziqqghaeDPBd9zRrpGQQCAQuIsuBVySJB1wGxCPMkr0/2RZtvWWYZ2hCQ7CXl6OLMvt9hz9rXqQoaqkgaAwF5uRxE3HZ90iXom/lvn73uTW9FtZMncJgwMG94zxHkRssA9PXjqcez7O4Knv9/LIhS5kB3bB//75GIe3bjqtc7z0BiKThxM1LIXo4SMJDI/s9T3m5txcCv/6GHW//IJu5Aii3lqCbsiQXrVBIBAITsbJPPB3ABtK3/PfAInAH3rDqK5QBwaBzYazuhq1X1sJkH9rJnq96wIePRk0ekJyNvF62uvM/3E+N/54I4tmLiLVmtoT5nsUF6WEsy2nkiW/HGFkpB8XpbjejQygrKGMLUVb2N+cfcowj1qrJXxIIlHDUogaNhJrXDwqtXuy4GWbjbK336b0pZeR1GqsDz1EwFW/Q3KTPQKBQNAVJ/tsTZJleTiAJElvAm5vIK4JVhKG7GXl7QQ8IMQHJCg/WsegUS5eTKuDuGlw4Ccif/NP3jn3HW5fdjsLly7k75P+znlx5/XAK/AsHjw/kd0F1TzweSbxFl+Sw7qumy6pL2FL0RY2FW5ic9FmDlcpvcaHav0ZT/vzJEmFNW5QS1g8hbChiWi9vHv0tbhCQ2YmBQ8/QtO+fRjnzMb64INoQ3onkU8gEAhOl5MJeGu4XJZle18okzmW8WsvLWlXc6v1VmMK1lOW71qv61YS5sD+H6HsEBHB8bz3m/e45+d7eGDNA2wp2sIfx/4RnUbXnS/Bo9CqVbx0dSoXLlrLbe9v4ZvfT8bf4IXdaWd/xX4yijPIKMkgsyST/Np8AAwaA6nWVOYNmseYkDFEYuGtu27BEhNHZPIIopJHED40CW9D3+lD76itpeTZ56j48EM0FovoXy4QCDyCkwn4SEmSjtXzSIC+5WcJkGVZNvW4dSegaZmhbC8q7rAWFOZD+dHa07tg/Bzl+4GlEByPv86fN+a+waJti3hr51tsKdrCIxMeGdAhdbPRm39dOYhbPvmcSz/+kaiwEnaX7aLBrkyAs+gtjLSM5KqhVzHaOpqhgUPRqNq/rX6/5OM+JdjHU7NsGYV/fxx7cTEB11yD+Q/3oBYzjAUCQQ9itzkozaulOMv1ktnO6FLAZVnuc5t+GqsSzrQXdyw7Cgr3JWtH2WllohMQDeahioBPuAMArUrLfaPvY1zIOB5b/xg3/HgD8wbN465RdxHi0//DqfW2evaU72F32W52l+1mZ+lOsqqz0IZDsayiqSSaSwZfwijLKEaaRxLiE3LKBLO+KN62wkIKH3+c2mXL8R46lIhFL6Af0ftzuAUCQf9GdspUFtdTdKSaoqxqirOqKc2rxek4+87krpSR9RnUvj6ofHywFXYu4LJTpqKgHnPUafTyTpgDv74KDZWg9299eFL4JL686EsWZy7mnd3v8MORH7g04VLmJ88nwhjRHS/H7dTb6tlXsY9dpbvYXbabXWW7OFJ1BLml5b3FYCEpKImL4y9mpHkkKzO9eXFFDsbwwZwbm+Bm688M2eGg4sOPKHnuOWSHA8v9/0fgDTcguTDjWyAQCE5FXWUTRVltYl2cVU1zowMArU6NJdpEyuworDEmLDEmfv/amT+XRwk4gCYkBHthYYfHg8IVL6/saO3pCXjiPFi3CPb/BCOvbLdk0Br4w+g/cMWQK3hjxxt8fuBz/rvvv0wMn8jlCZczJWIKXuq+P7jC5rSRXZXNwcqDHKg8wIGKAxysPEheTV6rWJv1ZpKDkjk35lySg5NJCkoiWN++3nq0VeZohYNnlu4nMtBw2pnp7qZx714KHnmUxsxMfCZPJuSvj+IV0T9uxgQCQe/T3GinOLuG4uMEu7aiCQCVSiIowpfB54RgiTFhjTEREGJA6saRzR4n4FqrFVtRRw/cz6xHrVGdfiJb+BgwhsGerzsI+DHCfMN4ZMIj3DLiFr448AWfH/icP6z8AwaNgcnhk5keOZ2xIWPdGmKXZZnKpkqyq7PJrcklpyaH7GpFtI9UHcHutAOgltREm6JJDEzkwkEXkhiYSFJQEhbDqYe6SJLEU5cNJ7+ygT9+monVpGN8XN9vJeqsq6Nk0YuUv/ceaj8/wp55BtP554n+5QKBwGUcDifl+XXtvOvygrrWGZ1+Zj2h8f5YY0xYY00ER/q6vp17hnicgGtCQmhau7bD4yq1ioBQA2V5Nad3QZUKkubB5regqQa8u/beQ3xCuCPlDm4ZcQvrj65nRe4Kfs75maXZS1vXR5lHER8QT4wphli/WMJ9wzFoDadnUyc02BsoqS+hqL6IzXWbydqZRVF9EcX1xeTV5pFbnUuNre21qyQVoT6hDPIfxJTwKSQEJJDgn0CsX+xZRQ28NWpeu240v311PTe/s5kPF45jRIT/qU90B7KsJKk9/gT2wkL8r7wSy333titBFAgEghORZZnq0gZFqI/UUJRVRUluLQ6bMglR56vFGmsifrRF8a6jTeh8e38bzuMEXBtixV5aimy3I2nam2+JNnFoa3GHTm2nJHEebHhVSWYbdtkpD9eoNEyJmMKUiCk8PP5h9pTvIaM4g23F29hWso0fsn5od7xeoydQF0iQPghfrS9eai90ah3eam80Kg0O2YHdacfutOOQHdTb66lprmn31eRoam9EqXJdq8FKuG84I+JGEG2KJsoURaQxknDf8B4L7/sbvHj/pnH89tV13LBkI/+9dQIJfWyGuC0/H/9XXiEvcwfeQ4YQ/ux/MIxytUmAQCAYSDTUNLd61cc87KY6JWqp0aowRxsZNi1c8a5jTBiDdH0igudxAq6xhoDTib20tEOTDUu0kd1rj1Jd2oCf+TS83qjx4GOB3V+5JODHo5JUJAclkxyU3DrVrN5WT1Z1FllVipdc2lBKWWMZZQ1l1NpqaWpoosnRRKOjEbvTjkalQS2p0aq0qCU1eo0eo5eREEMIRi8jJi8TJm8TZr0Zi8FC9q5sLph2AT5aH7e9iUL8dHxw8zh+++p6rn1zA5/dNpHIwLOPNJwtss1G+TvvUPLSy2idTiwPPEDgddd2uNkTCAQDE1uzg9Kcmnah8OpSZWSxJEFgmA9xKebWUHhgqA+qs5wH0VN43KeaNkSpBbcVFHQi4EppenFWzekJuEoNyZfAlrc7ZKOfCQatgaSgJJKCzryH+Mlo2t+Er5f7a5Wjg3x4/6ZxXLl4Pde8sYFPb5uA1eS+xjf1W7ZQ+Ne/0nTgIMY5szk8YwbJl17qNnsEAoF7cTplKgra71uX5dchO5WNa99Ab6wxJpKnhhMSayI40oiXrpdk0emE8kNndQnPE/CwMABs+UfhhJBoYLgPaq2KouxqEsZaT+/CI38HG1+DXf+DMW4ZtuaRDAkx8vaN53DN679y1eJf+XDheEL8elfE7RUVFD/zDFWff4EmLJSIl1/GOHMGB7t5HrhAIOi7yLJMbUUTRUfaQuHFOTXYm5QSLi+9BmuMkdS5bSVcPn691MJZlqH8MBRkwNFtcDRD+Wo+zZytE/A8AW8p+7Hl5XZYU6tVBEf4UpJ9Br+UsFEQPAS2fywE/DRJifTnnQXnMP+tTVzx2no+XDiOiICeD6fLskzV/76k+F//wlFbq4z7vP12VAb3h/IFAkHP0lhnoyS7fSi8vroZAJVGIjjCSOKEUKwxRqyxfviZ9d1awtUlsgyVOS1C3fJVkAGNVcq62htChitOY1gKPHbdGT+Vxwm4Sq9HYzbTnNtRwEEJo+9ZX4DTKaM6nf8sSYKUq2DZX6HsEAQN6h6DBwhjYgJ576ZzuH7JRq587Vc+WjieqKCeE9Kmgwcp/Otj1G/ejD41lZBHH0U3RIyCFQj6I/ZmByW5tW2edXY1VcUNrev+VgORiYFYYxXPOjjcF7W2F/atZRmq89uL9dFt0FChrKu0EDJMya0KTVEcRUsiqI/PWB9AAg6gjYzElpvX6Zo11sSOlXmU5ddijjzNzOjhV8CyxxQvfOaD3WDpwGJUVAAfLRzPtW9u4MrF6/lw4Xhig7u3jaqzoYHSV16lbMkS1D4+hD7+d/wuvRRJ1TeTTAQCwenhdDgpL6ijOKumVayP37f28fPCEmNi6IRQrNEmLDFGvA29VMJVXdDeqz66DepKlDWVRhHnxAsVoQ4bBZYk0PRcmN4jBdwrMoK6jZs6XQtLUBLQCg5Wnr6A+4VD/CzY9h5M+9MJd0kCVxgW7seHNysifsVr63nnxnNICuueuTc1K1dS9PfHseXn43fJJVj+eD+awMBuubZAIOh9ZFmmqqSB4myl3ro4u5qSnBrsLfXW3gYNlmgjqWlRrd3MfPx7ad+6trhlr/o4z7q2pQuopAJzIiTMVcLgYalgTVbGVPciHing2ohI7F9/g7O5GZVX+1pnY6AOY6COowcqGTEj8vQvPvZm+Oh3sPc7SL64myweWCSFmfjklvFcv2QjV7y2nteuG82k+OBTn9gFtsJCip54kpr0dLwGDSLq3XfwOeecbrRYIBD0BnVVTceFwZUWpE31LV0itSrMkUaSpoQpSWbRJvws+t4pla0rVcS6YFubaFfntyxKYB4Cg2YoXnVoirKH7eX+XBvPFPDICJBlbPn5eMfGdlgPTfAjd0/F6Td0AUhIA78o2PSGEPCzIMFq5Is7JjJ/ySbmv7WRp387kotHnV7vdNlmo/z9DyhdtAjZ4cB8770E3Tgfyavv958XCAY6jmaZ3L3lLQM9FO/6WJ9wSSURGObDoFFmLC0Z4YFhPqh7o976mGddkAEF25V/Vx+3JRuUANGTWjzrURAyArzdX7bbGR4p4F5RUQDYcnM7FfCweH/2byiiqrgBf+tp3iWp1EoW+vLHoHgvWIZ2h8kDklA/Pf+9bQK3vreZP3ySQUFVI7dNi3Pppqpu40aK/v53mg4cxGfaVEIeegivyDOIqAgEgh7HbnNQmlvbumddnFVDZZHMXjKA9n3CLdFGgqOMaL16YWJ1dYEi0gUZbaJdU9CyKEFQvNLIKyxF8axDR4DOc1ote6aAx8QA0HT4ML5Tp3ZYP7YPfvRA5ekLOEDq9bDyKdj0Opz/77MxdcDjp9fyzoJz+L//buefP+7laGUDj1yYhLaLO21bcTHFTz9D9TffoA0LI+KlF/GdObNPtC0UCATtm6MUt4TCy/JqcbYkmRn8vLBEm/CyNDBuxggs0SZ0Pj2cTyTLUH20vVddkAG1xwZfSRA8GGKnQujINrE+yewLT8AjBVwTGIg6IIDmQ4c7Xfe3GjD4eZG7t5ykyWGn/wQ+wTDiCtj2Pkz7M/iaz9LigY23Rs0LvxtFqJ+O19cc4WBxLS9dk0qgT1soXLbbqfjgA0peWITc3EzQ7bcRfMstqPR6N1ouEAxslKEejcq+dbYi2CU5NdiblSQzL72SZJaSFtWSEW7CN0BJMlu5ciVRST0wrVCWoSqvvVddsL0tG1xSKT09Bs1sEeqRyp51Hw2Dnw0eKeAAXoPiaDrUeRs6SZKISgrkyPbS068HP8akP8C2D5QhJ7MePktrBSqVxIPnJzHYauTBL3cy78W1LL5uDElhJuo3b6bwb3+naf9+ZU73Qw+2RlkEAkHvUVfV1Jpcdsy7bqyzAaDWqDBH+ZI0Kaw1I7zHm6PIMlRmtwj19jaxri9T1iW1UrqVkNZSZ50C1mF9IsGsN/BYAfceFE/1jz92magWlRTE3vWFFGdXExJ7BnsawQlKPd/G12HSPaDrnlKogc7lYyJJsBq57b0tLHj2B56v/AXTmnQ0YaGEL3oB4+zZIlwuEPQCTQ12SrIVkT4WDm9NMpMgMMyX2JRgLNGKWAeG93CSmSxDxZE2r/qYaDdWKuvH6qyHnNe2Z21NBu3AjdJ5sIAPwllVhaOsDE1wxxKlyMRAkCBnV/mZCTjA5Hthz9eweQlM/sNZWiw4xshQXz4xZ1P+8Yuobc3sn3MZ5z31/9D6dm/TF4FAoGC3OSjNq1WywVsSzSqK6kHZtsZk1hM6yK81I9wcaUTr3YNJZk5nW2/wVrHOhKaWdqMqLViTIOmiNrG2JPV6nXVfx2MF3GtQHABNBw91KuA6Xy3WGBM5u8o454KOmeouEZ4KcTNg3Qsw9iaPT3joC9Rv3UrhY3+jad8+AiZM4MMJV7D4sIOPP9zBc79Lces0M4GgP3Asyaw4u5qiFsEuy6/F6VDUWm/ywhpjImGstbXeWufbg0lmTieUHWzvVRdmQlO1sq72Vjzp4Ze1JZhZkkAjykVPhccKuHd8PABNBw7gM35cp8dEJQWy6fss6qubMZjO8M0w62F4fSasfwmm//lMzR3w2EtLKX7m31R9+SWakBDCn38eY9oc/iJJJGzO5ZGvdnHe82v4z5UpTBsskgYFAldoTTLLbtuzbjeBS6fGHG0iZXak4l1HK0lmPbZN5XRA6QEoyCD+wLdw+B9QuAOaa5V1jU7Zox5xRVuCWYfe4AJX8VgB11gsqAMDadyzp8tj4kaZ2fRdFke2l5A85fSaiLQSPhoS58G6RUqXNp8z7yg2EJHtdio+/oSS55/H2dhI0MKFBN9+W7uJYZePiSQl0p/ff7iNG5Zs5LZpg7hvzmC8NKK/uUBwjGPjMkuyayjKrm7dv27tZKZRERzpS+LEUKzRRiwxJvwthp5LMnPYoXRf+wSzwh1gqwcgVOWlhL9Trm5LMAseAmqPlZ0+h8f+JiVJQpeUROPu3V0eExTui59Zz6GtxWcu4AAzH4a938LqZ+A3/zjz6www6jdvpvCJJ2naswfDhPGEPPww3nFxnR6bYDXy5Z2T+Nu3u3h11SHWHCjhuStTSLCKbQvBwKSuShHr4mxlrnVxVjUNNUpGuEolERjuw6BUC5ZoI5bolk5mPXXTa2uE4l3KPnVhpiLYRbvA3qisa32UuurU61vFes2uo0yfMatn7BEAHizgALrkZMrefBNnUxMq744N7iVJYlCqmYz0XBrrbGfeTMA8GEZdq7RXHbNA+VnQJbaCAoqffprq739AExpK+LP/wXjuuacM2+m91Dx16QimD7Hw/77YwfmL1vLnc4cyf2LMmZUCCgQeQmOtjeKctpajJTk17TLCA0J9iB4WhCXahDnaSHC4L5qe6mTWWKV40seLdck+kJWwPN5+iliPuUkJgYelKB3NVCfYs7uo47UF3YpnC3hSEtjtNO3fj3748E6PiRtlYetPORzZXkLixDNo6nKMmY/A7q/ghz/CdV8qf1WCdjgbGylbsoSyxa+DLBN8xx0ELbz5tJuxzE0OITUqgD9/nsnfvt3Nsj1F/POyEUQGDozaTkH/pqnBTklOi1C3eNjVpY2t6/5WA6Hx/opnHWMiOMIXL10PfVTXFLWJ9LHvFVlt675WRaSHnKeIdsgICIgRn399BM8W8ORkABp37e5SwC3RRkzBOvZvLDo7Afc1w4yHFAHf/ZUYdHIcsixTk55O8T//hS0/H2NaGpY//QmviDPftjAbvXnjhjF8vCmXJ77bQ9qzq7l/7hDmTz+VQUgAACAASURBVIxBLbxxgYdga3JQmlujJJe17FlXFtW3rhuDdFiiTSRPCccSbcQc1UOzrWVZEebCzPaede1xXnJArCLWo65r6V42AozW7rdF0G14tIBrw8NQ+/nRsCOTgN9d2ekxkiQxZFwIm77Poqa8EWPgWZQpjVkAW9+Fn/6itOkTzV1o3L+foiefov7XX/FOSCDq7bfwGT++W64tSRJXnRPFtMFmHvpyJ3//djffbD/Kv347gsFib1zQx3DYnEqt9XF71hUFdcgttdY+/t5Yoo0MGReiiHW0Eb1vD5RKOexQuv8EsT6uxlpSg3mo8hkWMqLFsx7uUUM8BAoeLeCSJKFPTaVh85aTHjd0Qiibvsti368FjDnvDGvCQcmevOBZWJIG6Q/Dhc+f+bU8HEdVFSWLXqTio49Q+fpifeghAn53JZKm+99SYf563rxhDF9vP8pj3+zm/BfWsHBKHL+fGY/By6PfwgIPxeFwUn60TindyqmhJLumfa21UYsl2kTcKDOWaGUCl49fxzyds8bWAEW7oXB7m1gfn1ym0bfVWB8Ta0vSgO5e1p/w+E8/w5jR1P78M/aSEjTmzuuHTcF6wgf7s2d9IaN/E3N2NZCRY2HiXfDL80p5WfzAyrKUHQ4qP/2Mkueew1Fdjf+VV2C++240AQE9+rySJHFRSjiT44N54vs9vLzyEF9lHOXhC5KYm2wV7VcFPYbTKVNRWEdJdg0FW5x8tmEzpbm1OOzKQA9vgwZzlJGUOVGtGeE9UmvdUKkklx3vWR+fXKbzU0R67M1tYh2UIMq2+jEe/z9rGD0agPotWzGdO7fL4xInhrLs7T3k7asgcmjg2T3p9L/Avh/h67vg9nWg9z+763kI9Zs2UfjkU0pZ2JgxWB96EN3Q3p2XHuTrzX+uSOGqc6J4+Mud3Pb+FqYNNvPXecnEBotWrIKzQ3bKVBbXtySZtSSa5da2NkZRaSAkVsXw6eGKZx1jxBSs716xlmVlb7ogs71nfXxymTFUEemh57eJtX+0SC4bYHi8gOuSkpB0Ouq3bDmpgA8abeGXzw+SuSLv7AVcq4NLXoE30+CrO+HK9/v1H05zVhbF//43NenLTqssrCcZGxPIt3dN5r1fs/nP0v2kPbuK68bHcPesePwNogWj4NQ4nTJVxfUUZ9dQktPylVuDrVERa7VWhTnSl6SJoS171ia2793IjBmp3WeEww5lB1o865avop1tozEBAuOU2urU6yFkpCLWvpbus0HgsXi8gEteXuhTUqjfsOGkx2m0apKnhLP5hyyqSurxM59lSVL4aJj9GCx9EH59BSbccXbX64M4KispfeUVyj/8CEmrxXzP3QTOn99nZnRr1CpunBTL+SNCeTZ9P2+vO8JnW3K5e1YC102Idrd5gj6E0ylTWVhPSU7LnnVODaW5tdia2sQ6OMKXoeNCMLdkgweG+qA6YfqWtO8sblobq6BwpyLQhZnKv4v3gEOp90btDZahMHguWIcriWUhw0WyrKBLPF7AAXynTKb46WewFRaiDQnp8rhhU8PZ+mM2mT/nMeWKbmjGMuFOyF6nJLRFjFX2x/sBcnMzFR9/TMlLL+OsqcH/skuVfe4ucgzcjcWo46lLR3DDxBie/H4vj3+3h3fXZ3NBpIOpZzoPXuCxOB1OKgpbwuAtCWaleTXYm5U9a42XiuAII0MnhmKONGKJNhIQYugg1mfMsRnWhTvbPOrCTKjMaTvGEKyI87hblBC4dZgywlj0BBecBv1CwH2mTIGnn6F29WoCrrii6+P8vUkYa2X32qOM+U0MeuNZhlolCS5+GV6bCp9cCwuXg1/E2V3TjciyTO3y5RQ9/TS27Bx8Jk7A8sAD6IYMcbdpLjE0xMS7C85h1f4SnvxuDy9vr+fn4rX835zBzEq0iES3fojT4aS8oL4tBJ5TTWluLXZbm1ibI40kTQpr9awDQny676bO1ggle1rC38cEe9dxJVsqpUtZ+BgYfWObV+1r7dfbboLeoV8IuHdCApqQEOrWrDmpgAOM/k00+zYWsi09h4mXxp/9k+v94er/wptz4MMrYcGPHjl2tGHXLor/8U/qN23Ca9AgIl97FZ+pUz1S9KYNNjM5Pph/frycn/Lt3PzuZlIi/bk/bQiT4oM88jUJlNItZUxm2551aV4tjhax1nqrCY70JXlKeKtY+1sN3SfWtcUElG+DX7a3CXbp/rYscC9fpWRrxOWKRx0yQpm05SU6CAp6hn4h4JIk4Tt1KtXffttlX/RjBIT4kDDGyo5V+YyaE3X2Xjgo+1ZXvAPv/xY+vRGu+shjQmG2wkJKnn2Oqq+/Ru3vT8ijj+B/+eU9Us/dm6hVEhPDNPzxyql8tiWPF5Yf4No3NzAuNpDfz4xncnywEPI+jMOu1Fm3hcGrKcuvay3d0urUmCON/P/27jtOruq++/jnTO9lZ7YXlVVBHSRZIEAgYUyRwRRjDLHBToyJ2ys2xDF5HuexnYTHBB7bSYzjuOECwRQbIjumgy2EBUJIoqhXVHa1vc3OzM5OO88fd7apjqTd1c7u7/16zevembkz9+py2O+cc889Z+6llf3N4MM281YmDe17h3Yqa9wM0SYW9G3jrzZCeta1UDbXWA9OAZPMoCdGT2H/lR7E+6EP0fnkk8Reew3v5ZefcNsPfHgyuzc0sfG5A1x88/ThOYDay+Ca78H/fBmeugM++tCYvv8yE4nQ9tOf0f7II5DJELrjM4TuvBOzt/BaD07EajZx65IabjivksfWH+RHr+7ltofWs6DKzxdWTONDs0rlGvlZlkllaTscHdQM3k1rfZRs2hgUxeYwU1zjZd5yo2ZdUuPDX+wcnrCONhsB3bTNaPpu3grNOwY6lpmsxg/0aZdD6Vzeacxw7pWfANcZ3skixDAYuwlzitwXnI85GCTy7LMnDfBgmZtZF5azeXUdcy6pIFg2TPcPL/o0JGPGUKtmK9zw46Nn6DnLsokEHY8+SutPfko2EsF3zTUUf/lvsFUV7rX7fDisZv7yoin8xfk1PL2pnv9cvZe/fmQj00s8fGFFLdfOr8AyXJ2YxHH1hfXgZvDBI5jZXRbC1V4WrKjubwb3h4chrFM9Ro/v5lxQ9z3irQPbeMqMJvDz74SSOca16vAMsAy00nWuXi3hLcaMcRPgymrFe+UVdP3u92TjcUyuE193uuC6WvZsbGbtU3u45osLTrjtKVn6Rcgk4eVvGcsbfwqWERhC8RTpdJquVato+cF/kG5sxH3JMkruvnvUB2I52+wWM7cuqeFji6p4ZnMDP/zTXu564l3+3/M7+dSFk7nlAzX4R2IyiQko2ZOmta6bloNRWg9103IoSkdDjGx2IKyLa7yce3k14Vwz+BkPipLNGj3Am7bmwnqLsd6+D7TR/I7VZYwFPvNqo+m7dLYR2O7QMPyrhRg94ybAAfwf/jCdjz9B5IUXCdxw4tnCXD4bi1dO5o2n97J/cyuT54WH70Auvstoenvx6xBvh1sePWsTBWit6X75ZVr+7d9J7t2LY8F8Kh64H/eSJWfleMYKi9nEdedWcu38Cv64o5mH/vw+9z23g39/ZTc3Lari0xdOZmqx52wfZsGIdfXSeihKy6Hu/rCOtPT0v+/02Siu9jBpXqj/mrU35DizsI6350I6F9R966lYbgMFRVOMWvXcm4xl6RxjOswx1jImxOkYVwHuXLwY29SpdDz+2EkDHGDBimp2rmtk9aM7ufWbAezOYTwdF37JGC1p1efhFyvhll9DcHQHF4mtX0/Ld79Hz7vvYps6lcoHv4/38sul89YgJpPi8tmlXD67lK2Hu/jF2v08vv4Qj6w7wGUzS/jUhZO5eFpYrpPnaK2JtPYMqVW3HuomHkn2b+MLOyiu9jJraTnhag/FNWc4kUcqYfT2btkxtPm7+/DANs6gUZteeJsxWUfpXOPatU2G1xXj17gKcKUUwVs+TtO37yOxbRuO2bNPuL3ZauKy22fx1P0beP23u1lx26zhPaD5N4MrZPRM/8lyuOnnULtiePdxDPFNb9P6gweJvf4GltJSyu/9Z/zXX1/wPctH2pwKP9/52AK+dtVMHl13kP9ad4BXfr6emiIXtyyp5mOLqin2nv3LIaPFuG0rngtqY+Sy1kPdJHNDjSqToqjcRfXsIoqrvYSrPYSrvaf/QzidNHp/N28zOpI1bzNCe3Dzt8lqNH9PWTZQoy6ZA94yua9aTDgj9hddKfVz4BqgWWs9d6T2cyT/ddfR/L1/pf1XD1Nx/7+cdPvSyT7Ou6KGTS8cZNK8MFPPHebRxqZ9EO78Ezz+CfivG+GD34ALvzwit5v0vPMOLQ/+gNjatZhDIUruuYfgrbdgcpzBHOgTUInXwV0fmsEXVtTywtYmHl13gAee38m/vrSLK+aU8Ynza1g6dXzdT55Naxr3deWGGDVq1u2HB27bslhNhKo8zFhS1l+rLqpwY7GeRlN0Jg0d7+c6lW03BkJp3g5teyCbNrZRJiiqNe6jnvtRI7RLZkOotmBu0RRipI1kleyXwA+Ah0dwH0cx+/0EP34z7f/1KOEvfRFbdfVJP7Pkmqkc2t7BHx/eTrjKgy88zGN9h2rhjpeNiU9e/hbseQVu+NGwjdrW8957tPzgB8TWvIY5GKTk775K8NZbT9qRT5yY3WLmIwsq+MiCCvY0d/PrNw/x1KY6nnmvgSlhNx9dWMkNC6uoDIyNseHzlYimaDmiVt3RpNmuNwIDPcHnLa8kXO2luNpLoOw0BkTp61DWH9I7jPXWXQO3aaGMS0sls2HmSmNZco4xDaZVfngKcSIjFuBa6zVKqckj9f0nUvRXn6Hjscdp/fGPqbj33pNub7aauOrOuTzxf9/i+Z9s4cavLsRiG+ZOLnYPfOyXsOlheP5/wQ8vhKvvhwW3nHbTX8+WrbQ++CDRV1/FHAhQ/Ld3U/QXf4HJLdf9htu0Ei/fuHY2X7tqJs+818ATGw7xnRd38d2XdrF0aogbF1Zx9dwy3Paxc5mib7at1roorXVR2nLLWGdv/zaeoJ1wtRdLKM7iZfMIV3vwFp1i57JM2pjqsnWnMT91624jsFt2Qio+sJ2/2qhJ1y43grr4HCieKdephThNY+evzTCylpYQuPlmOh57jKLbbscx8+QTl/jCTi7/9Cye/dFmXvrFNq787Nzh77ikFCz6lHH97r8/B6s+B+88Ch/+rvGHLA9aa6y7d3Pw178mtuY1TH4/xV/5CsFPfhKzR/4QjjSH1cxHF1Xx0UVVHGqP8/Smep5+u46v/uZdvvG7LVw1t4wbz6tiaW0I8yh2fOuNp2irj9JaF6OtzhhitP1wrH9McJNJEShzUTkjQKjSY1yzrvHg9Bj3OK9evfrkl4+SMSOcW3flOpXtNJZteyGbGtjOW26U50WfHmj6Lp4ps2oJMcyU1nrkvtyogf/hRNfAlVJ3AncCFBcXL3ryySeHZ9/RKOFvfot0ZSUdd30l71pu605N09uaohlQvnAEB/bQWcobXmTqvocxZ3qpq/oIB2s+Stp6nFuXsllsW7bgfv4FbPv2kfV6iF12GT3Ll6PHyPSeY000GsXjGflbwbTW7OnM8uf6NOsb0/SkwWeDxWUWlpRZmBE0Ycqj/FW+aZS3+vOzJ9xXMgq9nZDo1CQ6IdExtKJrtoEjAPYAOAIKRxDsPjCZj38Mg8+VNdmFK16XexzCHTPWHb0Dc1RrTPQ4y4i7qoi7qoi5q4m7Kom7qshYxu8PydEqU+OBnKv8rFixYqPWevHpfPasB/hgM2fO1Dt37hy2/Xc89hiN//hPlH/72wRuvCHvz7325C7e+2Mdi1dOZsm1U0a2s1K0BV76Brz7mFFDufguWPLX/RMg6FSKyHPP0fbTn9G7ezfWigraLlnGB+65Z8zMyz1WrV69muXLl4/qPhOpDH/c0cwz7zXwyo4mEqksJV47K+eVc838chbWBI/bstP84/cAKPnr+QAkE2na6gdq1G31UdrqY/1zWCsFgVIXoSoP4SoPoUoP4Sov7oDt5GU2m4Wug7nm7p0c3ryaCmvUqFX3tA9sZ3Ea01wWzzRGJQvPMNaLpo6JAYpG29koU4VKzlV+lFKnHeDjsgm9T+Dmm4k88yxN996L6wOL8+rQBnDxTdNJJTJseHY/Oqs5/7qpIxfinmK44T9h6RfglX8yOrmt+xGZ+Z+h830PHU88RerwYezTp1HxwP34rr6aurVrJbzHKIfVzMp55aycV048meaV7UaYP7b+IL98fT/lfgdXzinjQ7NLWTKlCKvZRDaTpaulh0Q0Sao3w8Yfb6a1buhAKDanhXCVh3MuLCecC+yicveJ+2pobQx20rbHuD2rbW9uuQda90B64PvDVh+U5ybnKJ4J4ZlGcPurZYIOIcaokbyN7DFgORBWStUB39RaPzRS+zvmMZjNVNz/L+y7/gbqv3IXkx55OK+e2cqkWPHJc1BmxcbnD9AbT7Ps49MxjeRY2WXz4BO/oXf1k7T/6Lt0/eIhdMaEqzZM6Xf+Gc/KG1Hyh7SguGwWrl1QwbULKoj2pnl5WyMvvHWY1/9cx7Y/1lGGmUkWK46eLGQ0F3mMMG5LZCmu9jBraRmhSg+hqpN0LOvpzAXzvoGA7gvrRNfAdsoMgRrjrojJl0BxrkYdnsnrb22W2pIQBWYke6HfOlLffSqslZVUPHA/dV/8EofvuYfKf/s3lPnkPcyVSbH81pnYnRbefvEgkdYervjs3OEdrS1Hp9NE16yh/ZFHiL+xDmW347vyMoqmtONofxE2fhYiv4WFt8P0K4Z9/2L49USTtNfHaDscpe1wjPb6GO2Ho8xNZJiLcR9z2m6iMZXmsCVNh0NzrsuNz2Nj+WfnURU84odmb9QY0KQ/oPcN1KoHT8iBMm5PDNUaw4eGao37qUPTjPC2DMP0uUKIMWFcN6H38a5YQenf30PTt+/j8NfuoeJf7kNZTz4YhDIpLrxxGoESF6/+eie/ue8trrxjLsU1wzPlZnL/fjqf/m+6Vq0i3dyMpayM4rvvJvCxm7AEg8ZGHfth46+M3uq7ngNPGbWBJVDrgsrF0rx5liUTadobYrTnQrovsHsGDS1qd1kIVXqYcb5Roy6qcFNU7sbhtpLJat4+2MHLWw+TeqOJtvYIv/rOt5jv7mSBp4vJphZ8iXpUtHHojj1lRiifs3IgoEO1xpzUcv+0EBPChAhwgKLbb0cnkzR/57tkot1UPvAAZn9+E4zMvriCQKmTFx/axm8f2MDS62uZf1n1ad1mlonG6H7pJbqeeor4hg1gMuFZtgz/P3wd74oVR/+wCE6Gy78JK74Ou1+Etx+hctez8NDvwVcJs6+DGVdBzQUTslPRaEn2pGlvjNHZGKejMUZ7Q5y2+ijdbYn+bSw2E0XlbibNDRGqcFNU4SZU6cHly3Uq6+kwfpB1HIC390PnAcwdB1jcsZ/FXYdozvwjKFhu/THZpKKxrYgduph6ZpAJXkVR9WymzVpAzbQ5KPv4mrddCHHqJkyAA4TuuAOT10fjvffy/k0fo+K+b+NanF/nv4rpQW75hyW88vB21v52D7s3NLP8EzMprj75H9JMNEr0T38i8vwLxF57DZ1MYp1UQ/Fdd+G//nqspSUnPwCzxahtnbOStS8/w7Libti6Ct76Gaz7oTFF4uRlxtCtU5cbI1lJ7fyUaK2JR5J0NMbpaIgZy8YYHQ0xYl0DNWqTWREodVE6xcfsiyqMoC534rN1orrrIbINuurhQD28VwedB43Q7u0aukNnEAKTjP4Ps66Bd2vB4oDbNmHyV1GkLex+v50tO1tYs7uFPRuisKGNcv96Lp4WZmltiKW1Icr90qFRiIloQgU4QPDjN+OYOYP6u/+WA5+8Df8NNxD+/Oew1dSc9LMOj5WVn5/HrvVNrP3tbn5z3wbmXlrJ4qsn4/INvbaYPHSI2Nq1RNe8RuzPf0Ynk1hKjAFmfFdfhXPhwtPu2Z6xuGHBh41R3Hq74f3XYO8rsPePsPuF3MEGoOoDUH0+VH8AKhbKQBo52aymu62Hjob4QEg3GoHdG0/3b2d1mAmWuqg6J0gwBEFvjCJ7Cz5Vh6m7DiL10FAHO+qhuwF0ZuiObF7wVxo9uavPN4YMDU42Qjs46egpZvcZt5ERqgXAAVw6o5hLZxgDrNR39vDarhZe3dXCi9ua+M3GOgAmhVxcMMUI8wumhijzSxO6EBPBhAtwAOe55zL1D/9D6w9/SPuvHqbrd7/D+8EP4rv2GjyXXHLCyT+UUsw8v4xJc0OsW7WXLavr2L72MPMWeqh1HiK77V1ib7xB6uBBACwV5QRu+Ti+q67Cee65w9+T3O7tr5kDRken/Wuhbj0cWg97XhrY1l8DpbONCSJK5hjLoqn995yPJ1pr0glNw94uuprjdDbF6WzuyS3jZFIDg6U43YqiQIrpNTGCzjaClnqCaj/u5F5UrBkONsOBI8LZbAdfhdFhbMoy43KGvxJ8VcZr/sphnwO+MuDkliU13LKkhmxWs6Oxmzf2tbFuXxvPbTGGdwWYHHJxwVQjzM+fWiQ1dCHGqQkZ4AAml4uSr36V4O230/7LX9G1ahXdL70EVivO2bNxzJuHtaoSa1k5JqcDZbOhs1my3d1kurtJNzQy/eBBQp1d7MjM4u11C3g346Ci1cyM2nMpvf123BddiG3y5NGdtapoqvFYeJvxvKcT6jZAwzu5aRq3w56XB2Z9AvCUGjXDvtqhv8p4zVNiTNPoLh6zM0AlYim6mmJ0Hu6gq7GLzqY4XS29dLZnSSYVOzEm6FAqi88eIWBrodpbR5B9BNlN0FKHwxSDDNAJdJmMf6+n1Pi3l88zOox5SsFXngvqanCHz+r0lSaTYnaFj9kVPj5z8RQyWc32hgjrcoH+zOYGHn/LCPQKv4OFk4Isyj1mlfuwjuQtkUKIUTFhA7yPtaSE0q/9HSV330XszTeJv/EG8U1v0/X002Tj8eN/UCms5eX4JtWwbEqUnilRdneVsXf7xdRlNKX1PmYesDItnMLpPYu37jgDMP1y49EnnYS23UaYt78PnfuNa7QHXofNvxmYe3kwVwicRUYzvN1nLB1+Y93uM25PMtsHLe3GmJ5mmzE1JNoYWOSYyyykeyGdMJapnv7n2VSCWFTRHTETiVmJdNuIxJ109fjo7C0ikRncByGL19xCwNzATMth/PYG/JbDBBxdeH0ZzO6g8W9whcBVBe7zBoLaU2o83GEwDfNENqPAbFLMrfQzt9LPHcumkslqth2O8Nb+djYe7GDTgQ7+8F4DAA6riflVASPQa4IsnBQ8y0cvhDgdEz7A+yiLBc9FF+G56CLAaILNdnWRampG9ybQvb1gMmHyeDF7PZjDYUy2ocE8BYh19bJzXSO71jey5vFdvPbkbspr/UyaF2LS3BBF5e6zP4+0xQalc4zHkdJJiDZBtBmijQPr3Y0YA293QSJiXP9NRIzng0b0OlVaQ0/WTyRTSiRTQiRTSnemJLdeTTQTJjukmGo8tih+V5SpRS0E/A34g5pAkRl/2I7Z7QPnInBdwevv7mTBB6+ZkL3zzSbFvCo/86r8/BVTADjc2cOmgx1sPGAE+k/X7OM/s8ZQyqUuxUVN7zCvys/8Kj+zy/04h3tGPiHEsJIAPw6lFOZAAHMgcEqfc/vtLLxyEguvnERrXZTdG5o4sLmNN57eyxtP78Xtt1FWG6C81k/ZVD/hGg/msdScabFBoNp45CuTNuZ3ziSNHwCZXkgn0ekEie4E0UiWWEQTjWpikSzR7twykqW7M0M6PfTrnB4L3lInJWEn00JOfGEHvpATb9iBN+jAbM3vfCV3tE7I8D6eioCTioCTa+ZXANCTzLC5vouNBzp4cdNu1uxu5em36wEwKZhe4jV+BFQaPwRml/twWCXUhRgrJMBHUN+Y1UuvryXakeDAljbqd3XSuLeLvZuaATBZFMHSvnuG3QTL3PjCTrwhx4iM+jYcUr0ZerqTxLuT9HSn6OlO5h4p4pEksc5eoh0JYp1JMumhzfFKgctvxx1wEqyyU7PAMSSgfSEnVruExGhw2swsmVLEkilFzOIQl156KU2RXjbXd7G5rpPN9V2s3tnMb3O93c0mxfQSD/Or/MyrCjC3wsfMMi8u29gsp0KMd/J/3ijxBB3MWVbJnGWVAEQ7emnc10XzgQjtDTEa93ax+62mIZ+xuyx4ihx4g3YcHisOtxWHx0pHvWafvwWr3YzFZsJiM2O2moz1I2pIg1vrs1lNJpUlncoOWmb6nycTGZI9aXp70kOXcWOZiBphnU4de7pLq92M02vFE3RQOsWPJ2DHHbQPWbp8tpEdU16cNqUUZX4HZX4HH5pdChiXkhq6ErlQ72JzfRcvb2/myQ11uc/ApCIX55T5OKfcyzllPmaVe6kOuk5roCMhRP4kwM8ST9DOtEUlTFs0MIhLsidNR2OcSFsP3e0Jom0JIu0Jop29tNZFSURT/eF5+K3NI3p8VrsZm9OC3WXB5rDg9NooKnfj9Fpxem25h3XI0irXTMcdpVR/0/uVc8oAI9TrO3vYejjCzsZudjRG2NHQzQvbGumbndhlMzOzbCDQzykzaut+59i8m0GIQiQBPobYnBZKp/gonXL8AVdSyQyrX1rDufMXk+rNkElmSSUzuRp1hnTy2LVjMMZ2t1hNmK0mzBZT/7rFasZsVdgcFmxOCzaHWWrJ4riUUlQFXVQFXf2hDsY19V1NRqBvbzCWz20xplLtU+F3ML3US22xh2klHmqL3Uwr8VDkzmMOcyHEEBLgBcZqM2N1q7yGcBViNDltZhZUB1hQPdDxU2tNc3cv2xsi7GjsZkdDhD0tUda/305PamBwnIDLyrRiz0Cwl7iZVuylMujELE3xQhyTBLgQYsQopSj1OSj1OVg+c+ByUTaraYgk2NMcZU9zlL0txvKVHU39I8oB2C0mpoTdudq6kuT/rgAADEpJREFUh6nFbiaF3EwqchFwWaXWLiY0CXAhxKgzmRSVASeVAWf/WO99OmJJ9rYMhPrelhjv1XXxzOaG/mvsAD6HhclhNzVFLiaH3NSEjOXkkItir13CXYx7EuBCiDEl6Lax2F3E4slFQ15PpDIcao+zvy3OgbYYB9ri7G+Lsbm+i+e2NJLJDqS702pmUshlhHvYzaSQi0lFxrIiIM3yYnyQABdCFASH1cz0Ui/TS4/u/5HKZDnc2cP+tjgH22L9If9+a4zVu1pIDhqPwGxSlPkcVAadVAWcVAaNloC+ZUXAKQPWiIIgAS6EKHhWs8m4Nh5yA0Ob5LNZTVN3gv2tRqjXdfRQ39lDfUcPb77fTsM7PQyqvAMQ9tiPDviAk4buLJFECp9DbocTZ58EuBBiXDOZFOV+J+V+J0trQ0e9n8pkaexK9If64OW2hggvbW8aUoP/P2tfxOuwUBlwUhV0UupzUOZzUOp39K+X+Rz4nBa5Di9GlAS4EGJCs5pNVBe5qC5yHfP9bFbTGuulvqOHl9ZuxF8xpT/k6zp62Higg4546qjPOawmynwOSvpCfVDAl/rs/b3zbRYZc0GcHglwIYQ4AZNJUeJ1UOJ10LXPwvJLa4/aJpHK0BzppTGSoCn3aOxK9D9/51AnjVsTQ2ryfUJuWy7M7UNCvthrJ+yxE/baCXts2C1yXV4MJQEuhBBnyGE1UxNyURM6di0ejEFtOuOpI0LeCP3miBH2m+u7aI0mj/l5r8NCsacv1G2EPXZC7oH1sMduvO+1yQQzE4T8VxZCiFGglCLothF025hVfvzhkpPpLM3dCVq6e2mLJmmN9uYeSVqivbR297KzsZu10Ta6eo5uugdjLHoj1G0DtXi3LVebtw+857Xjtcu1+kIlAS6EEGOIzWLqH2v+ZJLpLG2xXlq7jaBv6Qv77qTxerSXA21xNh7ooD2eHDIQTh+rWRFw2Shy2Qi4rARdxo+M4JHrbpvx3GXF57DKbHNjgAS4EEIUKJvF1N/D/mTSmSzt8WR/2Pc92mMpOuNJ2mNJOuMp9rZE6TiQpCOeGjI4zmAmBYFc4BvBb6PIbQR+33pdUxr3/naCLquxrdOKRSZJGlYS4EIIMQFYzKb+znj50FrT3ZumI2aEubEcut4ZT9EeS1LXEWdLfYr2eHJIR70H335jyHf6HJb+mnzAZcXvNGrzPqcFnyP3/BiveR0WCf9jkAAXQghxFKWUEaQOK5OOvn3+mLTW9KQytMeSvLzmDWpnz++v2XfEkwM/BuJJ2qJJ3m+NEelJEUmkj1vb7+O2mfvD3Qh6Sy7orfgcFmN5nB8EXrtlXDb5S4ALIYQYFkopXDYLLpuFyX4zy6YXn/xDGMEfT2bo6kkRSaSI9KRzwZ4yXutJ514feP9wZ4IdiW4iPSm6e9PHvL4/cFzgsVuOE/4DtXyPw4LHbjzc/UszXrsVt9085loBJMCFEEKcVUop3LnQrODk1/OPlM1qosk0XfFBPwBygd+Vq+EPDv9IIsXB9nh/7T/am85rP3aLCa/DOE63bSDw+8LeYzcPWh/0uiO3fd+63Tws9/VLgAshhChoJtNAc//pSGeydOeCPJZME+tN051IE+vNGOu9xmtHrSfSNHcniLVmctun6Ull8tqn1azw2M8sgiXAhRBCTGgWs6n/Hv0zlc5kiSUzxw38WG+aWHIg8N85k+M+46MVQgghBGD8GPA7Tfid+bUG3HsG+xpbV+SFEEIIkRcJcCGEEKIASYALIYQQBUgCXAghhChAEuBCCCFEAZIAF0IIIQqQBLgQQghRgCTAhRBCiAIkAS6EEEIUIAlwIYQQogBJgAshhBAFSAJcCCGEKEAS4EIIIUQBkgAXQgghCpAEuBBCCFGAJMCFEEKIAiQBLoQQQhQgCXAhhBCiAEmACyGEEAVIAlwIIYQoQBLgQgghRAGSABdCCCEKkAS4EEIIUYBGNMCVUlcppXYqpfYopf5+JPclhBBCTCQjFuBKKTPwH8DVwGzgVqXU7JHanxBCCDGRjGQNfAmwR2u9T2udBB4HrhvB/QkhhBATxkgGeCVwaNDzutxrQgghhDhDlhH8bnWM1/RRGyl1J3Bn7mmvUmrLCB7TeBEGWs/2QRSAwjxPnzsrey3MczX65DzlT85Vfmae7gdHMsDrgOpBz6uAw0dupLX+CfATAKXUBq314hE8pnFBzlN+5DzlT85VfuQ85U/OVX6UUhtO97Mj2YT+FjBdKTVFKWUDbgF+P4L7E0IIISaMEauBa63TSqkvAS8AZuDnWuutI7U/IYQQYiIZySZ0tNbPAs+ewkd+MlLHMs7IecqPnKf8ybnKj5yn/Mm5ys9pnyel9VH9yoQQQggxxslQqkIIIUQBGvUAP9nwqsrw/dz77ymlFo72MY4VeZyr5UqpLqXUO7nHN87GcZ5NSqmfK6Waj3f7oZSnAXmcqwlfngCUUtVKqT8ppbYrpbYqpb58jG0mfLnK8zxJmQKUUg6l1Hql1Lu5c/WPx9jm1MuU1nrUHhid2fYCUwEb8C4w+4htVgLPYdxHfgHw5mge41h55HmulgN/ONvHepbP0yXAQmDLcd6X8pT/uZrw5Sl3HsqBhbl1L7BL/k6d9nmSMmWcBwV4cutW4E3ggiO2OeUyNdo18HyGV70OeFgb1gEBpVT5KB/nWCBD0eZBa70GaD/BJlKecvI4VwLQWjdorTfl1ruB7Rw9iuSEL1d5nicB5MpJNPfUmnsc2QHtlMvUaAd4PsOryhCshnzPw9Jcs8xzSqk5o3NoBUXK06mR8jSIUmoycB5GjWkwKVeDnOA8gZQpwJjgSyn1DtAMvKS1PuMyNaK3kR1DPsOr5jUE6wSQz3nYBEzSWkeVUiuBVcD0ET+ywiLlKX9SngZRSnmAp4CvaK0jR759jI9MyHJ1kvMkZSpHa50BzlVKBYD/VkrN1VoP7o9yymVqtGvg+QyvmtcQrBPASc+D1jrS1yyjjXvurUqp8OgdYkGQ8pQnKU8DlFJWjFB6VGv99DE2kXLFyc+TlKmjaa07gdXAVUe8dcplarQDPJ/hVX8P3J7rkXcB0KW1bhjl4xwLTnqulFJlSimVW1+C8d+zbdSPdGyT8pQnKU+G3Dl4CNiutf7ecTab8OUqn/MkZcqglCrO1bxRSjmBy4EdR2x2ymVqVJvQ9XGGV1VKfS73/o8wRm5bCewB4sBfjuYxjhV5nqubgM8rpdJAD3CLznVnnCiUUo9h9HQNK6XqgG9idBCR8nSEPM7VhC9PORcBtwGbc9csAf43UANSrgbJ5zxJmTKUA79SSpkxfsQ8qbX+w5lmn4zEJoQQQhQgGYlNCCGEKEAS4EIIIUQBkgAXQgghCpAEuBBCCFGAJMCFEEKIAiQBLoQQQhQgCXAhhBCiAEmACyFOSCl1vVLqp0qp3ymlrjjbxyOEMEiACzFOKKW+rpTaqpR6Tyn1jlLq/GNs41RKvZobESovWutVWuvPAp8GPp77HptSao1SarQnRBJC5Mj/fEKMA0qppcA1wEKtdW9uwgjbMTb9K+Dp3MxIp+ofgP8A0FonlVKvYAT6o6d52EKIMyA1cCHGh3KgVWvdC6C1btVaH2smo08AvwNjDmel1A6l1M+UUluUUo8qpS5XSq1VSu3OTT5BbnKF+4HntNabBn3Xqtz3CSHOAhkLXYhxIDcn858BF/Ay8ITW+tUjtrEBB7XWZbnnkzEmTjgP2IoxA967wGeAjwB/qbW+Xin1N8Cncu+/k5t4gVwzfKPWunjE/4FCiKNIE7oQ44DWOqqUWgQsA1YATyil/l5r/ctBm4WBziM++r7WejOAUmor8IrWWiulNgOTc9/9feD7x9hnRimVVEp5tdbdw/6PEkKckAS4EONE7rr2amB1LoA/Bfxy0CY9gOOIj/UOWs8Oep4lv78PdiBxGocrhDhDcg1ciHFAKTVTKTV90EvnAgcGb6O17gDMSqkjQ/x09xkCWrTWqeH4PiHEqZEauBDjgwd4UCkVANIY17bvPMZ2LwIXY1wnP1MrgGeH4XuEEKdBOrEJMYEopc4D7tZa3zYM3/U08L+01jvP/MiEEKdKmtCFmEC01m8DfzqVgVyOJdejfZWEtxBnj9TAhRBCiAIkNXAhhBCiAEmACyGEEAVIAlwIIYQoQBLgQgghRAGSABdCCCEKkAS4EEIIUYAkwIUQQogCJAEuhBBCFKD/D1+wBTcqP88QAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -299,7 +299,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGDCAYAAAAs+rl+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xVRdrA8d/cnt7pSAJSBBJCCUWQIgqoqOuqiLoq61pQV8R31VVUQGy4uruugg0La0MUKbb3FQsRRaQX6UUjhJYC6bk3t8z7x725JiGdG1J4vp8PH3LPmZnznCTwnJlzzozSWiOEEEKIlsvQ2AEIIYQQomFJshdCCCFaOEn2QgghRAsnyV4IIYRo4STZCyGEEC2cJHshhBCihZNkL1ocpdQrSqlHA122pVFKxSultFLK1MDHSVNKXdCQx2hqlFJnKaUKlFLGALU3SSn1QyDaEmcmSfai2fAljRKlVGyF7Zt9SSseQGs9WWv9eG3arEtZEVhKqf/1JcQCpZTT97Mt/fxKmXLTlFJPKaV2K6UmlNk+1Pdzr7itoKEvYGqitT6gtQ7VWrsbMw4hSkmyF83Nr8C1pR+UUolAUOOFI+pLa32RLyGGAu8B/yj9rLWeXKboxcAXwEpgRJntw4FdlWz7UWvtqun4jXVBoLzk/15xWskvnGhu3gFuLPP5JuDtsgWUUvOVUk/4vh6plEpXSv1NKZWhlDqilPpzDWUfKFP2D0qpi5VSe5RSx5VS0yqrW7Z+mc9pSqn7lVJblVKFSqk3lFKtfT3afKXU10qpqMpOUikVq5T6TCmV4zvu96UJQinVTin1sVIqUyn1q1JqSpl6A5VSq331jiil5iilLLX5xiqlInwxHlFKHVJKPaGUMiqlrL72epcpG6eUKlZKtfJ9Hu8bYclRSv2olEqqzTFrEVMU0A1YjTfZDy+z+zzgmUq2rayirZlKqUVKqXeVUnnApKrO2VfeqJR6TimVpZT6RSl1V9nbHhVvT/jaf9f3dXyFsqlKqSeVUquAIqCzUqqHUuor38+34qhFjFLqE6VUnlJqLdDlFL+V4gwnyV40Nz8B4Uqpc3z/KV8DvFtDnTZABNAe+Aswt6ok6ytr85WdDswD/gT0x5tIpiulOtch3iuBC/EmrEuB/wWmAbF4//1NqaLe34B0IA5o7aujfQn/U2CLL8bRwFSl1FhfPTdwr6/9Ib79d9Yy1v8CLuBsoC8wBrhFa+0AFlNmRAWYAHyntc5QSvUD3gRuB2KAV4FPlFLWWh63OmOBb3zD4d8BvZRS0b7vwwBgIRBZZtu5VJHsfS4HFgGReEcTKj1nX9lbgfG+7QOAq07xXG4AbgPCgEzgK+B9oBXe7+1LSqlevrJzATvQFrjZ90eIepNkL5qj0t79hXiHcQ/VUN4JzNJaO7XWXwAFQPdqyj6ptXYCH+BNmv/RWudrrbcD24G69Fpf1Fof01ofAr4H1mitN/kS6BK8iaSqONoCnXxxf6+9C1mkAHFa61la6xKt9S94L0gmAmitN2itf9Jau7TWaXgT74gqjuGnlGoNXARM1VoXaq0zgH+Xtos3KZVN9tf5toE3Kb6qtV6jtXZrrf8LOIDBtfkG1eASvEP4aK0PAAfwXnT1AfZqrYuBVWW22YA11bS3Wmu9VGvtAcKp/pwnAM9rrQ9qrY8DT5/iuczXWm/33WIYB6Rprd/y/aw2Ah8DV/kuYq8Epvvi2ob3okSIemvUh1iEqKd38PbeEqgwhF+F7Ar3cIuA0GrKlj5UVez7+1iZ/cXV1K1Mxbq1betZYCawXCkF8JrWejbQCWinlMopU9aI90ICpVQ34F94e6LBeP+Nb6hFnJ0AM3DEdzzwdgYO+r7+FghSSg0CjgLJeC9WSuvepJS6u0x7FqBdLY5bJV9P/ULgf8psLh3KP4DvnIEfymxb47uQqsrBMl/XdM7tKpT/re5nUe2xB1X4OZrw/m7H+b4O5LHFGU6SvWh2tNa/KaV+xfvg1l8aMZRCvAm1VJtANay1zsc7lP8339DuCqXUOrwJ4Fetddcqqr4MbAKu1VrnK6WmUrvh54N4e+OxlT3cprX2KKU+xNu7PwZ85ouxtO6TWusn63CKtZGCt/ebWWbbSry3C34D3vJt+x7vsxu/Uf0QPkDZZT6rPWfgCNCxzOezKuyv68+/4rG/01pfWLGQr2fv8h17VxXHFqJOZBhfNFd/Ac7XWhc2YgybgYt994vbAFMD1bDvgbezlbfLmYf3XrwbWAvkKaX+rpQK8j1E1lspleKrGuYrX6CU6gHcUZvjaa2PAMuBfyqlwpVSBqVUF6VU2VsA7+N9RuJ6fh/CB+9thMlKqUHKK0QpdYlSKuwUvgVQZgi/jJV4b32MwDt8D/Az3lGeUdSc7P1qcc4fAlOUUh18z3g8WKGJzcBEpZRZKVXXe/qfAd2UUjf46puVUilKqXN8I0uLgZlKqWClVE+8FzNC1Jske9Esaa33a63XN3IY7+B9UC4Nb9JYGMC2uwJf432+YDXwktY61ZcILsU7jP4rkAW8jvcBRID78N5Pz8ebhOsS0414h993ACfwPsjWtnSn1noN3t5sO7wPGpZuX4/3vv0cX719wKS6nGwVSl+589Na7wEygCNa6xzfNg/ei6Bw4Mc6HqO6c54HfIn3Z7wRbwIu61G8T8mfAB6j/AVQtXyjImPwPh9wGO+tkWeA0oca/4r3Fs9RYD6/j2IIUS/K+8yPEEI0Hb4HBjcD7XQT+U9KeSdt+hUw1+Y9fiGaEunZCyGaogjgf5pKoheiuWvQZK+UGuebLGKfUqri/a7SMiN9k3FsV0p915DxCCGaB631Hq31gsaOQ4iWosGG8X1PlO7B++pMOrAO7xPCO8qUicR7j22c1vqAUqqV711XIYQQQgRIQ/bsBwL7tNa/aK1L8E5QcnmFMtcBi32TZSCJXgghhAi8hkz27Sk/KUS6b1tZ3YAo37zRG5RSNyKEEEKIgGrISXVUJdsq3jMw4Z1zfDTelctWK6V+8r1e83tDSt2Gd05pbDZb/7POarnzS3g8HgyG2l+DefBwqOQQ4cZwIowRNVeotBE3RdmZWAwmTDGxNZc/BXU9v+amJZ9fSz43aP7nZyn0/pdbElL5rdnmfn41aennt2fPniytdVx96zdksk+n/OxTHfC+T1qxTJZvYpRCpdRKvPNbl0v2WuvXgNcAunfvrnfv3t1gQTe21NRURo4cWac6f/riT7g9bhaMr//zTP+deDkuj4e/fPhpvduojfqcX3PSks+vJZ8bNP/zy3h1KwCtbq986Ybmfn41aennp5Q6pSmTG/IyaB3QVSmVoLxLbE4EPqlQZhlwnlLKpJQKBgYBOxswphZpaLuhbM/ezgn7iXq30aFTZ3LwkH/wQAAjE0II0RQ0WLL3TTrxV7wzUO0EPtRab1dKTVZKTfaV2Qn8H7AV7wxYr/tWeBJ1cG77c9Fo1hypbrGv6iWcNxKUYv9nFa/HhBBCNHcNeoNDa/2F1rqb1rpL6SIZWutXtNavlCnzrNa6p9a6t9b6+YaMp6XqHdObMEsYqw6vqrlwFTpdOA6T20PapnUBjEwIIURT0CJWvXM6naSnp2O32xs7lFMWERHBzp11v5PxbI9ncbqd9apbaug9D+LRmh07dlBmyc+Aqu/5NSabzUaHDh0wm82NHYoQQtRLi0j26enphIWFER8f32BJ6nTJz88nLKzui4WdsJ/gcMFhEiITsJls9Tp2weFwCoqLiGnTDnNISL3aqEl9z6+xaK3Jzs4mPT2dhISExg5HCCHqpUW8p2C324mJiWn2if5UhJpDAShwFtS7DWuE99U9R15uQGJqCZRSxMTEtIhRIyHEmatFJHvgjE70AGajGavRSqGz/su7m4JDMAAl9uLABdYCnOm/W0KI5q/FJPvGlJ2dTXJyMsnJybRp04b27dv7P5eUlJQrO2nSJBYtWhTwGK699louO+8yXnrhJXbs3EFycjJ9+/Zl//79tW5DKYXZaMLp8aA9noDHKIQQonG0iHv2jS0mJobNmzcDMHPmTEJDQ7nvvvtO2/GPHj3Kjz/+yLa92ziQd4CPXv2Iyy+/nMcee6zObVmCg3Hk51GSl4c1MrIBohVCCHG6Sc++gcybN4+UlBT69OnDlVdeSVFR0UllHn30USZNmoTH4+HZZ58lJSWFIUOGMGPGjErbtNvt/PnPfyYxMZG+ffuyYsUKAMaMGUNGRgbnDTyPl599mbkvzOX1119n1KhRdY7bFhnlPVZ+Xp3rCiGEaJpaXM/+sU+3s+NwYBNVz3bhzLi0V53q/PGPf+TWW28F4JFHHuGNN97g7rvv9u9/4IEHyM3N5a233uKrr75i7969rF27lry8PK6//npWrlzJ8OHDy7U5d+5cAH7++Wd27drFmDFj2LNnD5988gnjx49n8+bNHMjzzoDXKbYT999/f53P1WixYEJRUuKoc10hhBBNk/TsG8i2bds477zzSExM5L333mP79u3+fY8//jg5OTm8+uqrKKVYvnw5y5cvp2/fvpx33nns2rWLvXv3ntTmDz/8wA033ABAjx496NSpE3v2lFtGgHBLOB7twelx1jt2q82GG3BWMhohhBCi+WlxPfu69sAbyqRJk1i6dCl9+vRh/vz5pKam+velpKSwYcMGjh8/TnR0NFprHnroIW6//fZy76HPnTuXefPmAfDFF1+gdeWrWZUVaglFoXC4698zt0VGUXi0GHvOCczBwfVuRwghRNMgPfsGkp+fT9u2bXE6nbz33nvl9o0bN44HH3yQSy65hPz8fMaOHcubb75JQYH3HflDhw6RkZHBXXfdxebNm9m8eTPt2rVj+PDh/rb27NnDgQMH6N69e7m2TQYTZqMZu8teq4uDyphDQjAir+AJIURL0eJ69k3F448/zqBBg+jUqROJiYnk5+eX23/11VeTn5/PZZddxhdffMF1113HkCFD8Hg8hIeH8+6779KqVatyde68804mT55MYmIiJpOJ+fPnY7VaTzq21WjFrd043I56z6ZnMVsodpbgdpZgNFvq1YYQQoimQZJ9gM2cOdP/9R133HHS/vnz5/u/vvnmm7n55psBuOeee7jnnnuqnU7WZrOVq18qPj6ebdt+XyzwyVlPsvv4bvJK8uqd7G3hERRnZ2I/cYKQVq3r1YYQQoimQYbxWyCTwUSwOZg8R/3fSrCEh6MAR2H9Z+QTQgjRNEiyb6HCLeE43A4crvo9qKcMBixGI06PW2bTE0KIZk6SfQsVbgkHIK+k/r17a0goGnDknAhQVEIIIRqDJPsWymw0E2QOOqVkb4uKRgH2Cg8XCiGEaF4k2bdg4ZZw7C47Je6SmgtXwmAyYVIGSlzOer/GJ4QQovFJsm/BAjKUHxSEB3D65gAQQgjR/MirdwGQnZ3N6NGjAe8KdEajkbi4OADWrl2LxdI476lbjBZsJht5JXnEBsXWqw1bVDQFRYXYc3OwVPFKoBBCiKZNkn0A1HeJW7fbjdFobNDYwi3hZBRl4HQ7MRvNda5vstkwASUOe+CDE0IIcVrIMH4DmTRpEosWLfJ/Dg0NBSA1NZVRo0Zx3XXXkZiYSGpqKiNHjuSqq66iR48e/OUvfwno/fHSofz8kvo/ZGex2nABLrskfCGEaI5aXs/+fx+Eoz8Hts02iXDR7IA1t3btWrZt20ZCQgKpqals2rSJ7du3065dOwYPHsyqVasYNmxYQI5lNVmxGC3kleQRHRRdrzZsEREUZdix55wgtE3bgMQlhBDi9JGefSMYOHAgCQkJ5T536NABg8FAUlISaWlpAT1euCWcQmdhvZe9NYeGYQAcsuStEEI0Sy2vZx/AHvipMJlMeHwzz2mtKSn5/fW3kJCQcmXLLmZjMBhwuVwBjSXCGkFWcRa5jtx6PainlMJiMuNwOXE7nRjNdb/3L4QQovFIz76BxMfHs2HDBgCWLVuG01m/XnUg2Ew2gkxB5Dpy691GUEQkGrAfzw5cYEIIIU4LSfYN5NZbb+W7775j4MCBrFmz5qTe/OkWaY3E7rJT7KrfGvWWiAgMgL1Q3rcXQojmpuUN4zeyskvc/vTTT/6vn376aQBGjhzJyJEj/dsrfv7nP/9Z5RK3pyLcGs7RoqPkOHIIMgXVub5SCmvpGvclDowWa82VhBBCNAnSsz9DmAwmwixh5Dpy8ej6rWIXFBkFQHG2DOULIURzIsn+DBJpjcTtcVNQUr+heHNYGEbAXixP5QshRHMiyf4MEmoOxWQwkePIqVd9pRRWixWX1jLBjhBCNCOS7M8gSikirBEUlBTg8tTv9T5blG8oX57KF0KIZkOS/Rkm0hqJRtf7NTxLqHco31Fcv6f6hRBCnH6S7M8wNpMNm8lW76F8AKvVhguNSxK+EEI0C5LsA+jo0aNMnDiRLl260LNnTy6++GL27NlD7969AVi/fj1TpkypU5vx8fFkZWUFNM7Sd+7trvrddw+K8s6xL0P5QgjRPMh79gGiteaKK67gpptu4oMPPgBg8+bNHDt2zF9mwIABDBgwoLFC9IuwRnCs6Bg5jhzamNrUub45JMT7VL69GFnhXgghmj7p2QfIihUrMJvNTJ482b8tOTmZjh07+j+npqYyfvx4wDv5zk033cSYMWOIj49n8eLFPPDAAwwePJhx48aVm1732WefZeDAgQwcOJB9+/adcqwmg4lQc+gpvXNvswXhBpyFhaccjxBCiIbV4nr2z6x9hl3HdwW0zR7RPfj7wL9XW2bbtm3079+/Tu3u37+fFStWsGPHDoYMGcLHH3/Mo48+yo033sjnn3/OH/7wBwDCw8NZu3Ytb7/9NlOnTuWzzz6r97mUirRGkl+ST6GzkDBL3fvnQdExFB5Op/jEccyNPBWwEEKI6knPvhFddNFFmM1mEhMTcbvdjBs3DoDExMRyy9xee+21/r9Xr14dkGOHWkIxGoycsJ+oV31TUBAmFA6HvG8vhBBNXYvr2dfUA28ovXr1YtGiRXWqU7q0rcFgwGw2o5Tyfy67zG3p9opfnwqDMhBljSKrOIsSdwkWo6XObViDgigsLqKkIB9LqNy9F0KIpkp69gFy/vnn43A4mDdvnn/bunXr+O2330657YULF/r/HjJkyCm3VyrK5p0g57j9eL3qB0XHAFB8vH71hRBCnB4trmffWJRSLFmyhKlTpzJ79mxsNhvx8fE8//zzp9y2w+Fg0KBBeDweFixYEIBovSxGC+HWcHIcObQKboVB1e3az2SzYVYGHM4StMeDMsi1oxBCNEWS7AOoXbt2fPjhhydt37ZtG1B+OduyS+ECFBT8vjhN2X2l9+5nzJgR0FhLRduiyXPkkevI9ff06yIoLIy8vFzsx7MJio1rgAhFU2I0GklMTPR/Xrp0KfHx8afc7vr163n77bd54YUXmDlzJqGhodx3333lyqSlpTF+/Hj/v6fTYfr06QwfPpwLLrjgtB1TiIYgyf4MF2wKxmqykm3PJtIaWednAoKiY8jPy6U4P0+S/RkgKCiIzZs3B7zdhp6DQmuN1hpDHUefZs2a1UARCXF6ybjrGU4pRYwtBofLQZGr7kvXKqMRm9lCiceD2+FogAhFU7dhwwZGjBhB//79GTt2LEeOHAFg3rx5pKSk0KdPH6688kqKiry/Xx999BG9e/emT58+DB8+HCg/BwXAli1bOP/88+natWu552BKud1u7r//flJSUkhKSuLVV189qUxaWhrnnHMOd955J/369ePgwYM8++yz/jplR8sef/xxbrzxRi688EKuvfZannvuOQAmTZrkf/D2m2++oW/fviQmJnLzzTfj8P2+x8fHM2PGDPr160diYiK7dgX21V8hAkGSvSDCGoFRGev/oJ5v+tyirMxAhiWaoOLiYpKTk0lOTuaKK67A6XRy9913s2jRIjZs2MDNN9/Mww8/DMAf//hH1q1bx5YtWzjnnHN44403AG9v+csvv2TLli188sknlR5n69atfP7556xevZpZs2Zx+PDhcvvfeOMNIiIiWLduHevWrWPevHn8+uuvJ7Wze/dubrzxRjZt2sTu3bvZu3cva9euZfPmzWzYsIGVK1eyfv16Pv74Y+bNm8fixYtZv379Se3Y7XYmTZrEwoUL+fnnn3G5XLz88sv+/bGxsWzcuJE77rjDf6EgRFPSoMP4SqlxwH8AI/C61np2hf0jgWVA6b/SxVprGTc7zQzKQKQtkuzibEqC6/4aniUsDFPGUez2YkK1DtjrgaLpqTiMv23bNrZt28aFF14IeHvcbdu29e975JFHyMnJoaCggLFjxwIwdOhQJk2axIQJE/jjH/9Y6XEuv/xygoKCCAoKYtSoUaxdu5bk5GT//uXLl7N161Z/rzs3N5e9e/eSkJBQrp1OnToxePBgf53ly5fTt29fwPuczN69e8nPz+fyyy/HarUSFhbGpZdeelI8u3fvJiEhgW7dugFw0003MXfuXKZOnQrgP4/+/fuzePHiunxLhTgtGizZK6WMwFzgQiAdWKeU+kRrvaNC0e+11uNPakCcVtG2aLKLszlhP0HrkNZ1rm8LDqGgqJCSvDysERENEKFoirTW9OrVq9LJniZNmsTSpUvp06cP8+fPJzU1FYBXXnmFNWvW8Pnnn5OcnFzpMwAVLxgrftZa8+KLL/ovIKoSUmZ2R601Dz30ELfffnu5Mv/+97+rbaO0bnVK58wwGo3l5sgQoqloyGH8gcA+rfUvWusS4APg8gY8njgFFqOFMEsYJxwn6jVfflBsHAoozpF37s8k3bt3JzMz05/snU4n27dvByA/P5+2bdvidDp57733/HX279/PoEGDmDVrFrGxsRw8ePCkdpctW4bdbic7O5vU1FRSUlLK7R87diwvv/yyfw2JPXv2UFjDOg1jx47lzTff9L/5cujQITIyMhg2bBiffvopJSUlFBQU8Pnnn59Ut0ePHqSlpfnXpnjnnXcYMWJEbb9NQjS6hhzGbw+U/VecDgyqpNwQpdQW4DBwn9Z6e8UCSqnbgNsA4uLi/D2EUhEREeTn5wco7Po7duwYf//739m4cSNWq5WzzjqL2bNn07Vr11rVf+KJJxgyZAijR49u4EgrF6SDyPfkcyz3GKHG0DrXNymFw+UiLzcHZTBWWsbtdjeJn1Vd2e32k37vKlNQUFCrcs1RQUEBbrf7pPN78MEHmTx5sn//VVddxfjx47nhhhvo06cPrVu3pnPnzhw9epTU1FSmT59Oeno6Wmv69evHiRMn2LJliz+xp6Wl0aFDB84991wyMjKYOHEie/bs4ejRoxQWFpKamsrZZ59NSEgI3bt3R2tNZGQkjz/+OKGhv//eli0PYLFY/A/ngfeWxLRp02jfvj1JSUncfPPNtG3blo4dO/pjPXr0KNu3byc2NpZ77rmHiy66CLfbTffu3TnnnHNITU3FbrezatUqIiIi2L17Nzk5OY3yO9A+x9t321HFsVvy7ya0/PM7ZaWvpAT6D3A13vv0pZ9vAF6sUCYcCPV9fTGwt6Z2u3XrpivasWPHSdtON4/HowcPHqxffvll/7ZNmzbplStX+j+7XK4a28nLy2uQ+GrD4/HovSf26n0n9mmPx1Pn+sXZ2frIvj264OiRKss05vmditr+jq1YsaJhA2lELfnc8vPz9YoVK3RhYaHu37+/3rBhQ2OHVGfHXtmij72ypcr9Lfnnp3XLPz9gvT6FnNyQw/jpQMcynzvg7b2XvdDI01oX+L7+AjArpWIbMKYGU9USt263m1GjRnHdddf5F7jp3bu3v8xzzz3nn0Sn9B4neHtLPXv2JCkpyT+5SGZmJldeeSUpKSmkpKSwatWqgJ6DUopoWzR2l71er+FZo6IwAMWFBTWWFaIpue2227jlllvo168fV155Jf369WvskIQIqIYcxl8HdFVKJQCHgInAdWULKKXaAMe01lopNRDvMwTZp3LQo089hWNnYN9ztZ7TgzbTplVbprolbteuXcu2bdtISEgot5pdVY4fP86SJUvYtWsXSilycnIAuOeee7j33nsZNmwYBw4cYOzYsezcubPO51OdSGskmUWZZBZlEhJRt6VrlVLYrDaKHHacRYWYg2XpW9E8vP/++6SmpvpnuBSipWmwZK+1diml/gp8iffVuze11tuVUpN9+18BrgLuUEq5gGJgom+4okUZOHDgSa8EVSc8PBybzcYtt9zCJZdc4p9s5Ouvv2bHjt9fZsjLyyM/P5+wsMCtOGdQBmKCYjhWeIwiZxHB5uA61Q+OiaXocDrF2dmS7IUQoolo0PfsfUPzX1TY9kqZr+cAcwJ5zJp64A2luiVuy77+YzKZ8Hh+f9rdbj95PXiTycTatWv55ptv+OCDD5gzZw7ffvstHo+H1atXExQUFPgTKKN06dus4izOMp9Vp7qmoCDMSmEvcRAmi+MIIUSTIP8TB0hVS9x+99135cq1bt2ajIwMsrOzcTgcfPbZZye1VVBQQG5uLhdffDHPP/+8/z3kMWPGMGfO79dGDTFHOYDRYCTGFkN+ST7FruI61w8KC8cDFGdnBT44IYQQdSbJPkBKl7j96quv6NKlC7169WLmzJm0a9euXDmz2cz06dMZNGgQ48ePp0ePHie1lZ+fz/jx40lKSmLEiBH+ST9eeOEF1q9fT1JSEj179uSVV145qW6gRNuiMSgDWcV1T9hBMbEYgKL8vMAHJoQQos5k1bsAqmqJ21tvvbXc5ylTpjBlypSTys2fP99/D37t2rUn7Y+NjWXhwoWBC7gaRoORaFs0WcVZ2IPs2Ey2WtdVBgM2WxBF9mJK8vOxBPCZAiGEEHUnPXtRpZigmHr37kPivDPqFR2XoXwhhGhskuxFlUwGE1G2KHIduZS4S+pU12ixYjGacLhcuEvqVlcIIURgSbIX1YoJikEpRWZx3ZevDYmOQQNFmRmBD0wIIUStSbIX1TIbzERZo8i11713bwkPx4Si2F6M9tR9cR0hhBCBIcle1CgmKAYU9bp3HxwWhgewHz+liRGFEEKcAkn2okYWo4VIayQ5jpw69+6DYuO8r+Hl5TZMcEIIIWokyT5AnnzySXr16kVSUhLJycmsWbOmzm3YC524HOVnC54+fTpff/11oNHX1eYAACAASURBVMKslU8++YTZs2cDMHPmTJ577jniguKY8/QcPv784zq1pQwGbFYbTq1xFsgCOUII0RjkPfsAWL16NZ999pl/HfusrCxK6vAEusvlwmQyYS9w4nKW3zdr1qwAR1uzyy67jMsuu6zcNrPRzMxZM8ksyqTYWUyQufZT9obEtaI4/QCF2VkYo2MCHa4QQogaSM8+AI4cOUJsbCxWqxXwTn5TOnPehg0bGDFiBP3792fs2LEcOXIEgJEjRzJt2jRGjBjBk08+SXx8PEaLQrshP6+Ajh074nQ6mTRpkn/O/XXr1nHuuefSp08fBg4cSH5+Pm63m/vvv5+UlBSSkpJ49dVXK43x7bffJikpiT59+nDDDTcAVS+ZO3/+fP7617+e1Mb9d9zP1599zdGio8THxzNjxgz69etHYmIiu3bt8rd54YUX0q9fP26//XY6derEifx8LEYjDpcT7XYH8DsvhBCiNlpcz/77D/eQdTCww8WxHUM5b0K3KvePGTOGWbNm0a1bNy644AKuueYaRowYgdPp5O6772bZsmXExcWxcOFCHn74Yd58800AcnJy/HPnb9y4kZ/WrqJPj4EsXbKMsWPHYjab/ccoKSnhmmuuYeHChaSkpJCXl0dQUBBvvPEGERERrFu3DofDwdChQxkzZky5Vfa2b9/Ok08+yapVq4iNjeX48eNA3ZfMVUoRbgmnyFmERhMbG8vGjRt56aWXeO6553j99dd57LHHOP/883nooYf4v//7P1577TUAgqNicGRl4M7LhcjI+v8whBBC1FmLS/aNITQ0lA0bNvD999+zYsUKrrnmGmbPns2AAQPYtm0bF154IQBut5u2bdv6611zzTXlvl60+CP6PDyQDz9cyJSpd5c7xu7du2nbti0pKSmAdxlcgOXLl7N161Z/7z83N5e9e/eWS/bffvstV111FbGxsQBER0cDVS+ZW50QcwgWowW3x80VV1wBQP/+/Vm8eDEAP/zwA0uWLAFg3LhxREVFAWCNiMCUlYmzxIGW1fCEEOK0anHJvroeeEMyGo2MHDmSkSNHkpiYyH//+1/69+9Pr169WL16daV1yi59e9lll/HQQw9x35SH2LR5E+eff365slprlFIntaG15sUXX2Ts2LFVxlZV3fosmWtQBloHt0ajseNdntdoNOJyufzHqkpIRAS5uTkUZWYQ0rpNrY8phBDi1Ej3KgB2797N3r17/Z83b95Mp06d6N69O5mZmf5k73Q62b59e6VthIaGMnDgQB6Z+SAXnj8WPOWTc48ePTh8+DDr1q0DvCvjuVwuxo4dy8svv4zT6X2yb8+ePRQWFparO3r0aD788EOys73vupcO49d3ydwwSxgKRVZxFm5P+Xvww4YN8y8GtHz5ck6cOOHfZ4uJxaihqCC/2osCIYQQgdXievaNoaCggLvvvpucnBxMJhNnn302r732GhaLhUWLFjFlyhRyc3NxuVxMnTqVXr16VdrONddcw9VXX82SDz6nxOEiyGzx77NYLCxcuJC7776b4uJigoKC+Prrr7nllltIS0ujX79+aK2Ji4tj6dKl5drt1asXDz/8MCNGjMBoNNK3b1/mz5/PCy+8wF133UVSUhIul4vhw4fXatlcpRRGgxGXx8Vx+/Fy+2bMmMG1117LwoULGTFiBG3btiXMt+qdUgqzzYbdYac4K4vguLi6fquFEELUg2puPazu3bvr3bt3l9u2c+dOzjnnnEaKKLDy8vIoyVVYgkyEx9Z+eL0xHMg7QKGzkK5RXTEZvNeNDocDo9GIyWRi9erV3HHHHeVGDPLy8rBnHsMAxHQ+u9LbC01RbX/HUlNTGTlyZMMH1Aha8rlB8z+/jFe3AtDq9qRK9zf386tJSz8/pdQGrfWA+taXnn0T4+39miixu6q8195UtA5uzf6c/RwrOkb70PYAHDhwgAkTJuDxeLBYLMybN69cHaUUwcEhFBQV4jhxApvvYUEhhBANR5J9E2SxGXEUOXG7PJjMxsYOp0pWk5XooGiyi7OJskYRbA6ma9eubNq0qdp6wa1aU5T2C4U5xyXZCyHEaSAP6DVBZpv3GqzE3vQnoIkLisNsMHO48HCtH7ozGI3YbEE4tcYhc+YLIUSDk2TfBBlNCoPRgNPuauxQamQ0GGkT0gaHy0G2vfYr24W0ao0CCrPrvpKeEEKIupFk3wQppbDYjJTY3c3iFbUwSxihllAyizJxup01VwCMZjM2i4USjwdnoSyQI4QQDUmSfRNlsZnQHo2rxNPYodRIKUXbkLZoNEeLjta6XmnvviAzs+GCE0IIIck+kI4ePcrEiRPp0qULPXv25OKLL2bPnj21b0Br0N7kbrZ5H8z7882/L4RT1vr165kyZUpA4q5q4Zu6sBgtxAXFkefII7+k+il3S5msNqwmMw63C1dx8SkdXwghRNUk2QeI1porrriCkSNHsn//fnbs2MFTTz3FsWPHat9I9j6Cir09Y6PJgNFswOOqfBh/wIABvPDCC4EIPWBigmKwGC0cKTyCR9duRCK0VSsUkH+s9iMCQggh6kaSfYCsWLECs9nM5MmT/duSk5MZNmwY999/P7179yYxMZGFCxcC3gkgRowYwYQJE+jWrRsPPvgg7y3+X84ddyWJiYns378fi9WEx6P56quvOO+88+jWrRufffaZv/748eMBmDlzJjfffDMjR46kc+fO5S4C3n33XQYOHEhycjK33347bt8Ss2+99RbdunVjxIgR/qVtT5VBGWgb0han20lWce0evDMFBft7984K0/wKIYQIjBb3nv2K+a+R8dsvAW2zVafOjJp0W7Vltm3bRv/+/U/avnjxYjZv3syWLVvIysoiJSWF4cOHA7BlyxZ27txJdHQ0nTt35pab/sTaz9/hPwu+4sUXX2T2k8+Chl9/TeO7775j//79jBo1in379p10nF27drFixQry8/Pp3r07d9xxB/v27WPhwoWsWrUKs9nMnXfeyXvvvceFF17IjBkz2LBhAxEREYwaNYq+ffsG5HsVagklwhpBVnEW4ZZwbCZbzXVat8Fx6CD5GceITugckDiEEEL8rsUl+6bmhx9+4Nprr8VoNNK6dWtGjBjBunXrCA8PJyUlxb/kbZcuXRhz0cVoILFbAiu+/xGL7779FZf9EYPBQNeuXencuTO7du066TiXXHIJVqsVq9VKq1atOHbsGN988w0bNmzwL4tbXFxMq1atWLNmDSNHjiTONzf9NddcU7dnC2rQJqQNBc4CDhUcIiEiAYOqfgDJZLNhM1sodpZQkp+PxTeXvhBCiMBoccm+ph54Q+nVq1elD9JV9+qc1Wr1f20wGLAGheAxWDG47bhcLgxGA8qocFe4b1/ZFLpl2ypdclZrzU033cTTTz9druzSpUsbdBpek8FEu5B2HMw/SGZxJq2DW9dYJ7RNG+wHD1CQlUG0JHshhAgouWcfIOeffz4Oh6PcXPDr1q0jKiqKhQsX4na7yczMZOXKlQwcOLDKdlymYHDZvU/mAwaDYumyxbhdbvbv388vv/xC9+7daxXT6NGjWbRoERkZGYB3advffvuNQYMGkZqaSnZ2Nk6nk48++ugUzrxy4dZwIq2RZBVlUeQsqrG80WIlyGKlxOORWfWEECLAWlzPvrEopViyZAlTp05l9uzZ2Gw24uPjef755ykoKKBPnz4opfjHP/5BmzZtKh2KB3AbfSvdae+DdAajokvnrowYMYKMzAxeeeUVbLaa74MD9OzZkyeeeIIxY8bg8Xgwm83MnTuXwYMHM3PmTIYMGULbtm3p16+f/8G9QCo7nN8lskuNw/khbdpSfCCNgqxMrOERAY9HCCHOVLLEbROTn5dLWEEahMRARAc8Hk1WegFBoWbComuX5JuSgpICfsv7jZigGNqEtCE/P9+/vn1l8g+lU2gvJjImFltk1GmMtHqyxG3LPjdo/ucnS9y27PM71SVuZRi/qVEGsIaAwzsxjcGgfKvguZrF1LkVhVpCibJFkV2cTaGz5lfrQlq3wQAUZGc3y/MVQoimSJJ9U2QN8963d5d4Pwab8Lg9uJxNf+rcyrQObo3FaOFQwaEaJ9sxmEwEBQXjQmM/fvw0RSiEEC2bJPumyOIb5nZ4F4ixBPmWvC1q+qvgVcZoMNI+tD1Ot5MTrhM1lvf37nOOS+9eCCECQJJ9U2QOAmX0D+UbjQbMViOO4uaZ7AGCzcHEBcdR6CnkhL36hG8wGgkJDccNFMk0ukIIccok2TdFSnmH8h35/lfwrMEmXCVu3M10KB8gLigOq8HKkcIj2F32assGt2qFCSgsLMDjar4XOUII0RRIsm+qrGHgcYLLAfw+lN+ce/dKKWJNsRiVkYP5B3F7qn7dTylFWEwcHiD/yOHTF6QQQrRAkuwDpKrlbdPS0ujdu3fdG7SW3rf3DuWbzEaMZgOOYmetqm/evJkvvviixnJlF9Sp61K31R3jq6++on///iQmJtK/f3++/fZbAIzKSJwljmn3TKNrt6706NGDjz/+uNI2rJGRZBw5Rrse5/CPp57yb4+Pjycry7vQzoYNG0hISGDTpk0UFBRw++2306VLF3r16sXw4cNZs2aNv96SJUtQSpWb48Dj8TBlyhT/QkUpKSn8+uuvtf4eCCFEcyCT6gRA6fK2N910Ex988AHgTYTHjh2jY8eO9WvUZAWjxZvsQ71z2FuDTBTlleBxezAYq79O27x5M+vXr+fiiy+u3/FrobpjxMbG8umnn9KuXTu2bdvG2LFjOXToEAD/efY/dGjbgZk/zfROpVvNBHszn3uO84cPx16Qf9K+rVu3ctVVV7Fw4UL69u3LxIkTSUhIYO/evRgMBn755Rd27tzpL79gwQKGDRvGBx98wMyZMwFYuHAhhw8fZuvWrRgMBtLT0wkJCTm1b4wQQjQx0rMPgKqWtz3vvPPKlXO73dx///2kpKSQlJTEq6++CkBBQQGjR4+mX79+DB48mGXLlgGQdiyHcwZfwK233EKvXr244upLKbYXnzSU/9FHH9G7d2/69OnD8OHDKSkpYfr06SxcuJDk5GQWLlzI2rVrOffcc+nbty/nnnsuFScmqk5ldSs7Rll9+/alXbt2gHfdALvdjsPhvSXx5ptv8vijjxNiDiGjOIPQyNBKj7t06VK6dO1K7x49cGuNIyfHv2/nzp384Q9/4J133mHgwIHs37+fNWvW8MQTT2AweH+tO3fuzCWXXOL/Hq9atYo33njDf0EGcOTIEdq2beuv06FDB6Kims5kPkIIEQgtrmef8+l+Sg4Hdl10S7sQIi/tUuX+qpa3reiNN94gIiKCdevW4XA4GDp0KGPGjKFjx44sWbKE8PBw0tLSuOCCC7jsssvAEsreXw+w4P2/MO/115kwYQJffPkp1117HUGhFn+7s2bN4ssvv6R9+/bk5ORgsViYNWsW69evZ86cOQDk5eWxcuVKTCYTX3/9NdOmTaty+LyiHj16VFq34jGq8vHHH9O3b1+sVqt/nv7p06ezInUFrTu2ZsY/ZjCw60CMBqO/TmFhIc888wxfffUVz/7jHyhnCfnZmVgivNPoXn755bz77rsMGzYMgO3bt5OcnIzRaDw5ALwXDuPGjaNbt25ER0ezceNG+vXrx4QJExg2bBjff/89o0eP5k9/+lPAlvsVQoimQnr2p9Hy5ct5++23SU5OZtCgQWRnZ7N371601kybNo2kpCQuu+wyDh06xLFjx8AcQkLHdiT3SACgf//+HD6aTkmxG+35/f3zoUOHMmnSJObNm1flHPe5ublcffXV9O7dm3vvvZft27fXOu5Tqbt9+3b+/ve/+0cx3G436enpDB06lE0bNzFy2EiefvRp0gvSy71TP2PGDO69915CQ0NRBgMWixUXUJRxDIALLriA119/vdZz+i9YsICJEycCMHHiRBYsWAB4e/K7d+/m6aefxmAwMHr0aL755ptan58QQjQHLa5nX10PvKFUtbxtRVprXnzxRcaOHVtu+/z588nMzGTDhg3Y7XYSExOx2+1gNGG1Wb337cPaYDQa0cqD1poSuwtrsBmAV155hTVr1vD555+TnJzM5s2bTzr2o48+yqhRo1iyZAlpaWl1mkO6vnXT09O54oorePvtt+nSxftziY6OJjg4mCuuuAKA6ydez/y35lNQUsDRoqO0DWkLwJo1a1i0aBEPPPAAOTk5GAwGDGhuvvEGAObMmcPkyZO58847efXVV+nVqxdbtmzB4/H4h+RLZWdn8+2337Jt2zaUUrjdbv+iREoprFYrF110ERdddBGtW7dm6dKljB49utbfHyGEaOoatGevlBqnlNqtlNqnlHqwmnIpSim3UuqqhoynoVS1vO13331XrtzYsWN5+eWXcTq9T9Tv2bOHwsJCcnNzadWqFWazmZUrV/Lbb7/9XkkZoaQQfK+pGU0KpVS5+/b79+9n0KBBzJo1i9jYWA4ePEhYWBj5+b8/1Jabm0v79u0B78VFXVRVt+IxysrJyeGSSy7h6aefZujQob+fjlJceumlpKamAvDNN9+Q2CuR6KBojhcf57jdO0Xu999/T1paGmlpaUydOpVp06Yx9d578QAetwuDwcCCBQvYvXs306dPp0uXLgwYMIAZM2b4Rwj27t3LsmXLWLRoETfeeCO//fYbaWlpHDx4kISEBH744Qc2btzI4cPeV/s8Hg9bt26lU6dOdfr+CCFEU9dgyV4pZQTmAhcBPYFrlVI9qyj3DPBlQ8XS0EqXt/3qq6/8r33NnDnT/4BaqVtuuYWePXvSr18/evfuze23347L5eL6669n/fr1DBgwgA8//JAePXqUadwAaCgp8B/LEmSipMzCOPfffz+JiYn07t2b4cOH06dPH0aNGsWOHTv8D8898MADPPTQQwwdOrTOy9lWVbfiMcqaM2cO+/bt4/HHHyc5OZnk5GT//fpnnnmGmTNnkpSUxDvvvMM///lP2gS3YfXXq3n4kYerXDDHFhmF1WhEaygpKMBqtbJs2TI++eQT5s6dy+uvv87Ro0c5++yzSUxM5NZbb6Vdu3YsWLDAP5JQ6sorr+T9998nIyODSy+9lN69e5OUlITJZKrT64dCCNEcNNgSt0qpIcBMrfVY3+eHALTWT1coNxVwAinAZ1rrasfDW/wStxWXgPV44NjPEBQFkWcBYC90kpdVTGTrYCy25nUnprolbt0eN7/k/oJbu+kc0RmL0XJymRIHWQcPYEQR07kLSqmGDhmQJW6hZZ8bNP/zkyVuW/b5neoStw2ZKdoDB8t8TgcGlS2glGoPXAGcjzfZV0opdRtwG0BcXJx/CLhURERElcPJzY3b7T7pXGzGYIzFORQaIkEpf4++ILcIs/P0JLtAqez8yooxxnDMeYy0nDRam1tjUCcPPlktVuwlDnLTD2I8TWve2+32k37vKlNQUFCrcs1RSz43aP7n1z7H+29lRxXn0NzPryYt/fxOVUMm+8qyUMVhhOeBv2ut3dX10LTWrwGvgbdnX/HqbefOnVX2FpubSnu+JhecSCPMqvwz63mKi3C7PISGhpy23m0gVNezL2UpsXAg7wA55NAxtONJCV+HhuL6ZT+OEgexFgtGq7UhQwbAZrPV6pW8lty7aMnnBs3//DJ2e3v2XUdKz16crCEf0EsHyk4f1wGoOMn5AOADpVQacBXwklLqDw0YU/NkDQcU2HN/3xRiwu3y4Cqp2/335iDUEkrb0LYUlBRwuODwScvcKqUIb90GDeQdOdQ4QQohRDPSkMl+HdBVKZWglLIAE4FPyhbQWidoreO11vHAIuBOrfXS+hysRa97bjB6E35xTplV8MwopbAXNN+FcaoTZYuiVXArch25HC06etLP1xIaSpDFisPtxn48u0FjadG/W0KIM0KDJXuttQv4K96n7HcCH2qttyulJiulJldfu25sNhvZ2dkt+z/loAjvKnhO70TyBoP3qXx7kbPcBDstSWxQLDFBMRwvPk5WcdZJ+8PatcMA5J84jqeObxjUltaa7OxsbDZbg7QvhBCnQ4M+yq21/gL4osK2V6ooO6m+x+nQoQPp6elkZmbWt4kmw263V55YPB7Iy4RjdrBFAuByuinOc3LkuBmzpfJpYpuaKs+vChpNrj2Xo66jRFojCTYHl9vvLCyguKiIg8cyCIqKDnS4gPdiskOHDg3SthBCnA7N672tKpjNZhISEho7jIBITU2t+kGwt6dBbjr8dT0ohcej+e9Dq2jVKZxL7qzHMrqNoNrzq4LT42TKt1P48fCP/HPEP7mg0wXl9i/683UcKMxlwl330WHEqECGK4QQLYLMjd+cnHMpZO+DTO88AwaDovvANhzYlk1RXkkjB9dwzAYz/xzxT3rH9ubvK//Oj4d/LLd/7KzZmD2a/5vzL1xFgV0ESQghWgJJ9s1Jj/GAgp2f+jd1H9wGj0ezd92xxovrNAg2B/PS6JeIj4hnyrdTWH14tX9fWMezGHnRH8g1aFZMn9aIUQohRNMkyb45CWsDHQfCzt9faohpH0rcWWHsXnO0EQM7PSKsEbw+5nXOCj+Lu7+9u1zCT/zLbcSHRPDzgX389lWznXlZCCEahCT75uacS+HoVjiR5t/UfVAbMg/kk32ooPHiOk2ibFG8MeaNShP+uCeexerRfPnai5QUynC+EEKUkmTf3PQY7/1752f+TV1TWmMwKHb/1PJ793Bywv/pyE8AhLRrx6g/XEO+Ab59+P5GjlIIIZoOSfbNTXQCtEksd98+ONzCWb1j2L32KJ4W+s59RVG2KP+Q/l+/+as/4ff80010CY9h++Hf+PXzT2toRQghzgyS7Jujcy6Dg2sg//eefPdBbSjKLSF91/FGDOz0irZF+xP+XV/fxbcHvgVgzFPPEuTRLH/rFRw5OY0cpRBCND5J9s3ROZcCGnZ97t+UkBSLNdjErtVnxlB+qWhbNG+OeZMe0T24N/VeluxdQnBcKy6YcAMFRsWXD/5PY4cohBCNTpJ9cxTXA2LOLvdUvtFs4OwBrfl1cyYlxS1zvvyqRNoimTdmHoPbDmb6j9N5a9tbdJtwLefEtWfviQy2zHu5sUMUQohGJcm+OVIKel4Ov64sN5TfY3AbXE4P+zZmNGJwjSPYHMyc8+cwLn4c/9rwL/614V9c+Mw/idSK7778lOPbf27sEIUQotFIsm+u+lwH2gNbPvBvap0QTlTbEH5OTW/ZiwJVwWw0M/u82VzT/Rre2vYWj2/+Bxff/whawSezHsHtcDR2iEII0Sgk2TdXsWfDWUNg07v+ZW+VUiSN6kDWwQKO7s9t5AAbh9Fg5OFBDzO5z2SW7FvCrNz5DBo6kmzcfDPtvsYOTwghGkWNyV4p1UopdYVS6i6l1M1KqYFKKblIaAqSr4fsvZC+zr+p+6A2WINNbPk2vREDa1xKKe5KvotHBz/K6sOreSZhNWeFhPPzwV/Y89HCxg5PCCFOuyqTtlJqlFLqS+Bz4CKgLdATeAT4WSn1mFIq/PSEKSrV6w9gDvb27n3MViPnDG3HL5szyT9ub8TgGt+E7hN4+YKXOVZ4jDfOSyfEo1m+8L/k/ZbW2KEJIcRpVV0P/WLgVq11itb6Nq31I1rr+7TWlwF9gE3AhaclSlE5axj0ugK2LYaS36eHTRzRHrRm28pDjRhc0zCk3RDevfhdVHgIPyRl4lSKT6f9DbfT2dihCSHEaVNlstda36+1PlDFPpfWeqnW+uOGC03USvL1UJJfbka98NggEvrEseP7w7hK3I0YXNPQObIz71/yPsaUnhyPyOaoy8GSqXfgdp1ZrygKIc5c1Q3j/6m6e/NKqS5KqWENE5aotU7nQlRCuaF8gKRRHbAXOtnTwpe+ra0oWxTzxszDc9P5WDzZ/JZ1lMWP/E0SvhDijFDdMH4MsEkp9abv4bwJSqkblVKzlFLfAf8AJJM0NqWg7/WQ9j0c/9W/uV23SGLah7L12zPzNbzKWIwWnhj2JDEP307rvCwO/LqfBY/dh9slQ/pCiJatumH8/wD9gAVAHDDa9/kQcIPW+kqt9d7TEqWoXp9rAQVbFvg3KaVIOr8D2YcKOLxH5ocvpZTiuuRJ9Hr6MbpkZHFszz5enzkFl9zDF0K0YNW+Qqe1dmutv9Jaz9Ra3661nqq1frWqe/mikUR0gC6jYPP74PH4N3dLaY0txMzWFWfua3hV6Zs8lpTpM+iZnknB3oP8+5E/U1xcWHNFIYRohuR9+ZYi+XrIPQi/fuffZLIY6XleO37dkkleVnEjBtc0tR91Ef0n3UziwQxU2gmeve86dv6yqbHDEkKIgJNk31L0GA+2CNj8XrnNvYe3B6XY9p28hleZuFtuo2fKufT7LQPbcSfLHn2YBYufb+ywhBAioCTZtxRmGyRe7X0Fr/j3e/Rh0Ta69I1jx6rDlNjlyfOKlFK0e+pJ4uPacEFaNp5QI4cXfs1TM27gRF5WY4cnhBABUd2rdf9T3Z/TGaSopeTrwWWHnz8qv/mCs3AUuaR3XwVDSAgdXn6FUIOZq36xYxnQCfOu48y59yZ+3PBlY4cnhBCnrLqefZjvzwDgDqC9789kvNPmiqamXV9omwxrXyv3oF7rhHDO6hXDpuUHpHdfBUuH9nR8aS6ejEwu3ZRDvztuRLlh1bMv8MLc/8FeIs88CCGar+pevXtMa/0YEAv001r/TWv9N6A/0OF0BSjqQCkY8lfI2gP7vi63K2V8PPZCp/TuqxHUpw/tnplN8caN9PhsPbc+9yqOsyNwrtzDP+6ZwIZtKxs7RCGEqJfa3LM/Cygp87kEiG+QaMSp6/UHCGsHq+eU29wmIYKzekWz6Svp3VcnfNw44u69l7zPPsPw/hIeeeJ9Ot0wHlOhm2+eeIY5rzxAidPR2GEKIUSd1CbZvwOsVUrNVErNANYAbzdsWKLejGYYdLv3FbyjP5fblXJJAvYC6d3XJOa2W4m43d6J6QAAIABJREFU8o9kvfQSucuWcdX4yUx67iVKOofjWLGD2fdczcbt3zd2mEIIUWs1Jnut9ZPAn4ETQA7wZ631Uw0dmDgF/W8Ccwisnltuc5vOEZzVU3r3NVFK0XbGDIIHDeLwI49S+NNPtGsVzyNPLaDDdWMx5bv4+vHZ/Ps/Uygszm/scIUQoka1ffUuGMjzTaGbrpRKaMCYxKkKioJ+N8DPiyDvSLldKeN9vXtZ/rZaymKhwwv/wRofT/qdd1H88zYArrn8bm58bi7OblF4fvyFf/11Iv+74v1Gjvb/2bvvsKiu9IHj3zvDDDPMMMMMvQkDIgqCdOy9xthi1Nhikk1Mb5u2Kb/NbnrbJLuJrumaakzRxMQSTYLGSrGjYgMUEJHepcz9/TGE1YiIUarn8zw8zMy9c+dcQd57z3nPewRBEJp30WDf0HX/GPB4w0sq4NMLv0PoEOLvAGsdJL13zsseAUZ8Q8zsWnec2jNi+dvmKI1GfN9/H6XJxIn58zlzzLbQkI+7hSef+ZSQO2YBsH/R5zz/9znk5GW0Y2sFQRAurCV39lOAiUAFgCzLOdim5AkdmdkCva6F5A+h5tya77HjLVSVibH7llC5u9Htg/dBoeD4rX+hNje3cdu4YbN48K3PUfQPQHWoiCV/vYutKd9QW1fTzBEFQRAurq7eyt6sEj7YlM7tnyRf9vFaEuxrZNsaqTKAJEm6y/5UoW30uweqis5ZDQ/AM9B2d79zXaa4u28Btb8/3d57F2tpGcdvvZW6oqLGbXoHIw/e/x9G/f0Jap3tUSem8+I9U1m/6et2bLEgCJ1NdW09iemFLPj1CDd+mEjEM+uY8PYmnv1hP/tPll728VsS7JdJkvQO4CRJ0m3AeuC9i7xH6Ah848E7GrYuPKfIDvzv7n7vBrEiXktoQkLwWbiA2uMnOHHHHVgrzu0tiQwZwFNvfAODQ1FUW9n91mKee2ImRzL3tVOLBUHoyMrP1LHx0GleW5vG9EVbCf/nT0x/Zyuvrk0jt6SKyZFe/GdmJNseH8Fvjw6/7M+za26jJEkS8CXQEygFgoG/y7K87rI/WWh9kgT97oavb4HDayF4XOMmz0DbvPsdazLp1d8TrV7djg3tHHRxcXi//i+y7rufrHvvxee//0Vhb9+4XaFQEB06jqibHmfxh/+kbsshvvnbY2j6B3HTTX/H6Ghux9YLgtCeCitqSMooJDG9kKSMQlJzSqm3yigVEr29DMzr50esv5lYfzMm3ZX/e9xssJdlWZYkaYUsy9GACPCdUa9JYPS1TcM7K9gD9J/anS+fSyJpZTqDZwa3UwM7F8eRI/F8/nlOPvEEWffci8+Ct1Goz/2PadA5cd+9b3Bk4j6WvvM8dpuO8HbSHDxH92fOjEdQq+wvcHRBELqKnOKqxuCemF7I4bxyANR2CiJ9nbhraCBxFjNR3Uzo7JsNxVdESz5hmyRJsbIsJ7V6a4QrT2lny8z/6Uk4vg269W3c5Oylp/cgL/b9lkPoEG+cvfTt2NDOw2nKZKiv4+RT/0f2vffh/dZ/zgv4AN39evPUC1+wYfv3bPj0Q4pWbuPlhKmEXDeBKWNvQ6EQi04KQlcgyzLp+RW2wN4Q4LOKbOtp6O3tiPYzMTnSm3iLmTAfI/Z2yjZvY0uC/TDgdkmSMrFl5EvYbvrDW7VlwpUTczNs/jf88hzc9MM5m2InWDiUdIrNXx1mwn0R2EZuhItxuv565HoruU8/TfYDD+Lz5htITQR8gCHxExkUey0r1rzPvuXfk7FkJc+tXs2AmTcyov91bdxyQRAuV71V5mBuKUmNwb2I/HJbGW1nnZpYfzO3DLAQZzHTy9OAUtH+f1dbEuzHXXwXoUNT62DQQ7DmMTi2AQKGNG7S6tXEjrew6avDZO4rwD/MpR0b2rmYZkwHaz25/3yG7Icewvv11y+4r0Kh4Lpr5nPtqHl89tW/qF67iV3//pDNX33G0Jk3MThuQhu2XBCES1FTZ2VvdklDl3wByZlFlDVUIfV20jIoyIU4i228PdBV1yFvmi4Y7CVJMsiyXAqIeqBdQfRNsOU/8MuzYBlsS95r0HuoN/s2ZrP56yP4hphRKkX3ckuZZs5Erqvn1PPPk/3QwzBpYrP7q1X23DzrCUonFfPZF69wZuMukv71Dgm+Sxg5+zb6R45po5YLgnAhlTV17DxezPb0QpLSC9l5oojqWtuMpkBXHdeGexFnMRHrb8bH5NDOrW2Z5u7sPweuBVKwzbE/+1JFBgJasV3ClabSwJBHYeX9cPgn6PG/oKJUKhhwfXd+XLCHfQnZ9Bnh244N7XzMc+eAtZ5TL76E8dQprIMGNTmGfzaDzok7b32BkhmFfPLZS9Rs2sfWl97iZ/8PGDH9L/SPFkFfENpK3ukiNm1OIk12ZntONfuyS6izyigkCPEyMDOuG/EWMzH+Zlz0nTPB9oLBXpblaxu+izr4XUXEbNj0hm3svvsoOCtBzK+3M74hZpJ+TKdHvLuYineJzPPmgdKOU889R9Ydd+Lz9lsoHC5+xW90NHPPHa9QODOPzz59mZqtB9j6ylus936XftfdwIj+U0UinyBcYenHT7J1cxIZqXupyT6CvvI0EpDgMRZDryjmDw4gzmIm2s+Eo0bV3s29Ii46Zi9J0uCmXpdleeOVb47QqpQqGPo4LL8dDnwPoZMbN0mSxIDrxVS8y2GeM5tDx4/Dp59y/Nbb8H1nEUrHllWWNhvduPfuf1E4J4+lX75O9aY97HlrCVuWfkrkpMlcO2KeCPqC8CdYrVYOHM4gcWsyWQdSsZ48iv5MMQAKSYVs9sUuJIZekRHc3i8Sva5zdMtfqpYk6D1y1mMNEIeta//yS/oIbS9sGvz2Ovz6AvSaAIr/TQE5eypeyCBvXHzEVLxLVd2/HyFRUWQ/8gjH592E7wfvY2cytfj9ZqMbd81/ifI5JSz9+k2qfk3k8Pvf8NzX3+I/YhDTJt6NViMqVgvChdTX1bNjTxo7ElPIPbQfxaljONTZKl4qlRrqXfzQdB9KWHQk8TFh2NtfHb2YFw32siyfkyYsSZIv8EpLDi5J0ljg34ASeF+W5Zf+sH0S8CxgBeqAB2RZ3tSypgt/ikIJw56Ar+bB3q+gzw3nbI6bEMCRHXn8+skBpj4ajUIk610yw9gxKLQasu67n8y5c+n2wYeo3N0u6Rh6ByO33vg01TdU8dWKt0lfv4HT32zk9R8TMPYNZdr0B3B39m6lMxCEzqP6TA3bk/eS8Mt2Er5ZibogE/v6agAUKj2yRwD6HiHExEcT0TsYZTvMce8I/kzZniyg98V2kiRJCSwARjW8J0mSpO9lWd5/1m4/A983VOoLB5ZhK80rtKZeE8EjDBJehN5Tbd37DTR6FYNm9OCn91PZ/XMWkaO7tWNDOy/9kCH4vvsuWXfeSebs2fi+9y72lktPf9Gotcyd/gjW6x9iTcLnJP+wnDMJB1j823zo7cG4qbcRHtz34gcShC6ivKKSTVt2cmDnLorT09AWnUAl1+IIlNubsPqG4hzSm/i+MQQH+YnhrwYtGbN/i4YV77AtnBMB7G7BseOAI7IsH2s4zlJgEtAY7GVZLj9rf91ZnyO0JoUChj0FX8yAnZ/aiu6cpXu0G4eTTrF95TEsES44uXXNMazWpouPo9uSxZyYfzuZM2fhu+i/aCMi/tSxFAoF1wyfwzXD55C8L4Gfvv4Qu725rNv9HCu87Akfcw3jR85FZXd1dEkKV4/8wmI2bU7m8O49lGceQleagxKrbYqYgytyUAxeoWGo1HD9dc1Pfb2ateTO/uyFdOuAL2RZ3tyC93kDJ856ngXE/3EnSZKmAC8CbsD4FhxXuBJ6jLGtivfr89D7OtAYGzdJksSQmcF8/s/t/PrJQSY/GInUASpAdUbasDD8l37B8dvmk3nTzXi//i8ch19euktM76HE9B7KidyjrPhmIVVJBzn60XJeXvYt5r5hXHfd3Xi4iOmTQud0IiePLZsSObZvL2eyjqCryEOBjIwCHD2g92ACwsMZ0D8WN9f/5cMkJCS0X6M7Acm2VH0rHFiSpgFjZFm+teH5XCBOluV7L7D/YGwr6o1sYtt8YD6Aq6tr9LJly1qlzR1BeXk5en3bJMbpy44QnfIw2d7XciTo1vO2Fx2VyUmS8YyRMHe/MsG+Lc+vPVzo/KTSUkwLFmJ3/DhlM2dSNXjQFfvMuroa9hz6heJ9qRgLZOoVMmU+GrxDY+nRLe6KdWNerT+7zsJ7u+3nnB1vbXJ7Rz2/3NPFpB89TtnJbFSF2RhqbJnytZIdZXp3lK7euPr60t3ijVZ74Z6rjnp+V8qwYcNSZFmO+bPvv2iwlyRpL013rzdbI1+SpH7AP2RZHtPw/HFsb3ixmc9KB2JlWc6/0D7BwcFyWlpas23uzBISEhg6dGjbfeAPD0LKErjjN3APPWeTLMt89+Yu8jJLmfV0PHqT5rI/rs3Pr401d37WykqyHnyQig0bcb7jdlzvv/+Kl9VM2vMrv/zwKXLqSVR1CioM4Na3D5Mn3XHZd/tX88+uM8h7Zw8Abrc3vWxJRzg/q9XK7n2HSN6ewsm0VMhNR1drK9Jao1Bzxtkfc/eehEVH0jc2HK2m5QVsOsL5tSZJki4r2LekG391w/dPGr7PBiqBJRd5XxIQJEmSBcgGbgBmnb2DJEndgaMNCXpRgBooaGHbhSth+P9B6nJY9ahtkZyzgo8kSQyb05Olz2wn4fM0xt8V3iFrPncWCgcHfBcsIPef/6Rg0TvUZufg+dyzKOyvXEWu2PBhxIYPo6SskO9Wv0/5xs1U/LSbj9ffQY3FQNiQUYwZNhONWnvFPlMQLqSmtpaklFR2JaVw+sgBVKcz0dTbVoNT2DlQ72ZB1yOEyNgooiN6YWfX+ku9Xq1a8i87QJblAWc9/5skSZtlWX6muTfJslwnSdI9wFpsU+8+lGU5VZKkOxq2LwKmAjdKklQLVAEz5NYaVxCa5mCGEX+33eHv+wbCrj9ns9FVS/ykADZ/fYTDSafoEefRTg3tGiQ7OzyeeQaVtzen3/w3tceP4/P2W9i5ul7RzzE6mrlx+qMwHZL3JfDLD5+hSM3myIffkvrZ19j18mbg6OvpGzlKZCsLV0xFZTVbtu9k/45dFB47iKbwOGprLQAKtRGrT09MPXsT2zea0J4B4nevDbUk2OskSRr4+/x3SZL6Y8ucvyhZllcBq/7w2qKzHr8MvNzy5gqtImoepCyGn56CHmPB/txxr/DhvhxJyWPj0kN4dnfC0Xz53flXM0mScLnjDtSWAHL+9jfSp8/Ad8HbaEJCWuXzfk/oq66pYu2vX7B3wzrYk8PWXW+x3vAW5ugQxo67ke5+F51RKwjnKCwuY/OWZNJ27aYs4xAOpdnYyfUASFoXrAFReISG0a9/LAH+oi5Ee2pJsP8L8KEkSUZsY/clwC2t2iqhbSmUcM1r8MEo2PgqjPrnuZsVEiNvDmHZ80ms+zCVyQ9GimI7V4BhzGjUvj6cuOtuMmbPwevllzCMHt1qn6dRa5k05hYmjbmF00Un+WH1R5RvS+TMr/tZ8etjVHqq8e/bl2vH3YzZeGlFgISrQ05uPps3J3F07x6qThxGX36qIVNeAr0H9BqAX1gYAwbE4enu3N7NFc7Skgp6KUAfSZIM2BL6Slq/WUKb842DiDmwdQFEzgGXoHM2O7k5MGRWMOs/2k/SjxnETxSLHl4JmpAQ/Jd9Sda995J93/3UPHA/zrff3uq5Ea4mT26e9QTMgoPHdvHT6o+p2pHG6eW/8d53G6m1GAiK78/Y4bMxOppbtS1Cx3UkPYttW5LI3L+P2uyjOFbZcqclSQlGbxQRIwiOiGBg/2icjC1bB0JoHy0pquMOvAB4ybI8TpKkEKCfLMsftHrrhLY18mk4sBJWPQJzl5+TrAcQHO9B1sFCkldn4B1swie45TXfhQtTubnh9/HHnHzyKU6/+W+qU1PxfPFFlG00jahnQAQ9747AarWyKflHtq5fgXTwJFlH17Jo6RpquukJjIvH4CAu8Loyq9XK3v1HSN6eQs7BVOTcdHQ1tns7hUKFbO6GXVg8vaMi6Nc3EgetGM7rTFrSjb8Y+Ah4suH5IeBLQAT7rkbvZqubv+axJpP1AAbN6EHusVLWfZjKDU/FoXUUFduuBIW9PV6vvoImNJS8117jzPXT8HnrP9gHBV38zVeqDQoFg+MmMDhuArV1NWzY9j07fluLlJbDyWW/kKX4mZ2/fIZfbCxjRswWtfk7udq6OpJ37mdX0g7yDh9AmZeOtq4SAIVSS52rP9qgkUTERhIb3RuVyJTv1Fry03ORZXnZWfPk6yRJqm/ldgntJfZW2Pc1/PgQ+A+0Vaw6i1pjx+hbQ/n65WR+XnKA8XeL6XhXiiRJON98E5rQELIf/CvpM27A67lnMVxzTZu3RWWnZuTA6xk58Hrq6+vYlLyKX374ElVWMae/2cjH326gyluDb3Q0o0bMxMf90uv+C22rpraOXzYmsi9lJwVHD6IpyERtrQFAoXLE6hmEsWco0XHR9OkdJDLlu5iWBPsKSZKcaSisI0lSX2xJekJXpLSDyf+FRQNh5f0wc+l53fmuvo4MmBrEb18eYvfPJ4gYKRbLuZJ0cXFYvv2G7PsfIPuvD1G1ew9uDz+EpFJd/M2tQKm0Y0j8ROQqA4MHD2bbznVs3fA9UmoGhd9tYel3m6l0scMpJJDY/mOJ7zNSBIoOoKS0nM1bd3Bg5y5KM9LQFmejkusAUGjM1PtH4BoSSny/GIK7+7Vza4XW1pJg/1fgeyBQkqTNgCtwfv+u0HW4BMHIf8Cav8Guz2wJe38QNtSbrIOFbF1+FM9AJ9wthjZvZlemcnfH7+MlnHr5FQqXLKFq3z68X3sVladnu7ZLoVDQP3oM/aPHYLVaSdm3ga2/raRy/1FqNqaxZeMhftH8G0WgKz1i+jFy0DSR4NdGamtrKSkp46NnXqXy+GF0ZbkosWJFQtK5UeYVSp9+/ek3IBZfLzHb4mrTbLBvWKZ2SMNXMLYSuWmyLNe2QduE9hR3Oxz4AdY8DpYh4HRuqVVJkhh+Yy+WPZ/E6kV7mPZELDrjlasEJ4CkVuPxf0+hjYgg9+mnOTZ5Cl4vvnDZC+lcKQqForFiH0DWqXR+3fA1mbt2IKXlkZG6knc++Z5qDw0eYSEMGjyFXt2j2rnVXUf68ZNs3ZxERupearKPMNFgW1ZEyv0NDF5I4UPp3qcPAwfE4GwydvlyskLzmg32sizXS5I0SZblN4DUNmqT0BEoFDB5ASzsD9/fA3NXnNedr9GpuOaucL55NYVV/93LlIcisVMp26nBXZdxwrVow3qT9de/knXX3ZjmzsXtkYdRqDtWcqSPu4W50x+B6VBdU8Vv239gz/ZfIO0EZWt3smrtTr52BHWAO937xDGo3wTczF7t3exOwWq1cuBwBolbk8k6kIr15FH0Z2wLxigkFbLZF8nRjINez10vLEWvE8tSC+dqSTf+ZkmS3saWgV/x+4uyLO9otVYJHYPJH8Y8Zyulm/yBLXnvD1x89Iy6KYTV7+wl4dM0RtzUSyTstQK1vz/+S5eS9+prFH3yCZUpyfi8/jpqf//2blqTNGotowZNY9SgaQAcOLaD3zZ+R0XqfuR9J8nYvZJjH39PlYsSffduhEYNZGDceHRaMVcboL6unh170tiRmEzuoQMoTh3Doc7251ep1FDv4oem+1DCoiOJjwnD3l7duBCOCPRCU1oS7Ps3fD+7Fr4MdIy+RKF1Rd9sm3v/0/9B4HAwnz/XOiDSlbgJFhJXpuPsrSdytEjYaw0KtRqPJ59A168vOY8/Qfp1U3F/8kmM103p8BdYvQKi6BVg68KvPlPJlpS17E3ZQNWhDOq3p7NvWwa7Fn3CGQ8NLr2CiIwdTlz4cJTKq2O6V/WZGrYn72Vv8g7yjxxEXZCJfX01AAqVHtkjAH2PEGLio4noHYzSTvSgCZemJRX0hrVFQ4QOSpJg4tuwsB8svwNu+hGU52eFx1zjT0F2BVuWH8Hk6YB/mEs7NPbq4Dh8OAErlpPz6GOcfPJJyn75Bc9n/omdc+coT6qxd2B4/ykM7z8FgKLSfH7btpK0nVvhaA5VP+9jy8/7SFC9SZ2XHpegQMIiBhHTZ1iXWa2vvKKSTVt2cmDnLorTD6ItykLVkAol2Zuw+obiHNKb+L4xBAf5idkNwmW7Oi6bhctj9IYJb8DXt8D6f8CY58/bRZIkRszrRcnpStZ9kMrUx2Iwe7ZovSThT1B5etJt8UcULl7C6Tff5NjESXg++yyOwzvftbnJ4MLE0TfD6JsByMw5zOatK8nctxtOFFC5fi/b1+9ls3IBZ9ztcQr0p1effvSLHo3ewdjOrW+Z/MJiNm1O5vDuPZRnHkJXmoMSKzIgObgiB8Xg1Tucfv1i8O/WvjMuhK5JBHuhZXpPhePbYOvb4BsPIRPP20Vlr+SaO8P56sUkfly4h6mPRONg6FhJZF2JpFTi/Jdb0A0cSM6jj5J11104TZuG+98eQ6HrvBdafl5B+E39q20BbODEySNsTVpDRupuyMyl5rc09vx2iJ3SYqpc7NAH+BDUO4a4qJF4uPg2f/A2ciInjy2bEjm2by/VWUfQV+Q1LBijsBWq6j0YS1g4AwfE4uYqyk4LrU8Ee6HlRj8H2Snw3d3gHgrOgeft4mjWcM2d4Xz3xk5+eHs3kx+MRK0Vv2atSRPcA/+vlpH/n/9Q8MGHVGzdiudzz6Lr27e9m3ZF+Hp2x3fiPdBwfXm66CRbk9ZweF8yHMuiPjGDw9szOfzBN1Q6gtLLCbfuQYSG9SMydFCrd/3LskzakeNs35rEiQOp1OccRV9dCIBCsgMnH5TBo+kV0Yf+/aIwGtpmzQNBONsF/wpLkrQb2ARsATbLspzRVo0SOig7e5i2BN4ZBF/OhVvXg/r8zF+PACNjbw9j1cI9rFq0h2vv6SOm5LUyhVqN28MPox86lJwnn+T4TTfjNGMGbo883GYL6rQVV5PnOd3+pRXFbN+xjkP7k6k8loGcUUhJWhJbfkxio+LfVLuq0Hfzwq9nONERQ7H49Lysz7darezed4jk7SmcTEuF3HR0tWUAKBT21Dn7oYocSFh0JH1jw9FqRP0Jof01d8s1G1sm/ijgaUmSdNgC/xZgiyzL29ugfUJH4+QL170Pn11vq58/eeF58+8B/Ho7M3xeL9Z/tJ91H+5nzG29USg6dsZ4V+AQE0PAihWc/s9bFC5ZQvmGDXg+80/0gwe3d9NajUHndM40P6vVytHjqezYlcDxtL1w4hT1KZlkJh0n85MfqNLKyO56nPx8sQSHExk+BG/XC5eLramtJSkllV1JKZw+cgDV6Uw09VUAKOwcqHezoOsRQmRcNDF9eolMeaFDumCwl2V5H7APeBdAkiQX4AbgAeA1QPxGX62CRsKQR2HDy9CtL0TPa3K34HgPqstr2fTVYTZ8dpChcy7vjkpoGYVWi/tjj2IYM5qcJ5/ixPzbMU6ejPvfHkPp5NTezWt1CoWCIP8wgvzDGl+rqq4geW8CB/Ztp/roEeTcUmoyDpK24SBpLKNSZ6VWr2LnmsU4KB2g3p6KaivlVWdQlZ5CbbVlyivURqw+PTH17E1s32hCewaITHmhU2iuG18JRGK7ux8ABALZwPvA1jZpndBxDXkMTiTCqkfAIwy8my6D2meEL1XlNaSszkTjqIauH2s6DG1EBJbl35L/3/9S8O57lG/caLsImDixw8/Lv9K0Gh2DYsczKHZ842sFRadI2buBQ/t3UHIsg7riEk5VZ2NVyMiAjBJJ0oCfCefuPRnUbzj9QmJQSCK4C51Pc934pcABYAHwN1mW09umSUKnoFDC1Pfh3aHwxQ1w68/n1c//XfzEAKrLa9mxJhP3PhIMbdOWXtUUajVu99+PYcwYcp/+BzmP/Y3ib5fj8fTT2AdcncvSFlbUkJRRSGJ6IUkZXqTm6KlXDELhDKHe9gT4lOBoOEWVlMnhkoNklO7EKqfwWfJnaHdpCXIKooe5Bz1MPQg2BRNkCsJRLSr/CR1bc8H+VqBfw/ebJUlKwnZHv1WW5ey2aJzQwelcYPZX8MFo+Hw63LIGNOfPe5YkicEzg6mpquNwch4pazKIHuvf9u29iml69sTvi88pXraMvH+9TvqkSTjfdhvOt89HYd+1E8hyiqtIyihke3ohSemFHM4rB0BtpyDS14m7hgYSZzFTkbmPsSPPr1NQXVfN0ZKjHCo8RFpRGoeKDvFTxk98fejrxn28dF70MPcgyCmIQKdAujt1x9/oj72ya//bCp1Hc2P2XwBfAEiS5ADEYevOf1GSJLUsy2IBZAHcesGMT+DTqbBsni34N1FhT6GQGHlzCHmn89i24hjWepnY8VfnnWV7kRQKTDfcgOOIEZx6+RXyFy6k5McfcH/8cRy7yGposiyTnl9BYnohiQ1371lFtmQ6vb0d0X4mJkd6E28xE+ZjxP6sZLqE7KaHNjR2GkKdQwl1Dj3nc05VnuJQ0SEOFR0irTCNtKI0fsv6jXq5HgCFpMDX0ZdAYyCBTv/7shgt4iJAaHMXW+JWB8Tzv3H7WOAEsLn1myZ0GgFDYcK/bfPvf/wrTPhPkxn6CqUC73gJD093ElemY7XKxF1ruerGj9ubnasr3q+9inHKZE49+xxZd9yJfsgQ3J94HLVf57qGr7fKHMwtJakxuBeRX34GAGedmlh/M7cMsBBnMdPL04DyCs0IkSQJD50HHjoPBvv8b6ZDTX0NGaUZHCs+xpHiIxwrsX3fkLXhvIsAi9GCv8Eff4M/fgY//I3+OGucxf8HoVU0l6C3E+gGJGObbvcvYJssy+Vt1DahM4mcA0UZsPFVMFlg0F+b3E1SSAy/sRcKhUTyjxnI9TLxkwLEH7h2oB8wAN3331H4yafkL1wkp8nBAAAgAElEQVTIsWsnYL7pJlzuuL3DVuCrqbOyN7uYxPQiEtMLSM4soqy6DgBvJy2DglyIs5iJ9TcT6Kpr898rtVJND5NtPP9stfW1ZJRmcLTkKEeLbV/pJelsyd5CjbWmcT+9So+fwc8W/A3++Bv9G5/rVB3zZyJ0Ds3d2d8P/CbLstxWjRE6uWFP2gL+z/8Ep24Qdn2TuykUEsPm9ERSSKSsycRaL9PvukAR8NuBpFbj/JdbMEy4ltOvv0HBe+9R8t13uD30VwwTJiC187Syypo6dh4vZnt6IYnpBew6UUx1rRWAQFcd14Z7EWcxEetvxsfUcZd2VSlVBJmCCDIFnfN6vbWe3MpcMksySS9NJ7M0k8zSTHbl7WJ1+mps8wJsXLWujcH/996Abo7d8NJ7obHTtPUpCZ1Mc8F+FvCmJEmHgDXAGlmWc9umWUKnJEkwaQGUZMOKO0HrBN1HNr2rQmLorGAUSomd645TXVnb8FxMa2oPKjc3vF56EdMNM8h97nlyHvsbhR9/gttjj6KLi2uzdhRX1pCcUdQ43r4vu4Q6q4xCghAvAzPjuhFvMRPjb8ZF3/nHvZUKJd56b7z13vT37n/Otuq6ak6UnSCjNIPM0kwySjLIKM1gfeZ6is8Un7Ovm9aNpwvnY6+05+tdm/Bx9MFH74O33htXB1cxXVBoNtjfI8tynSRJPYFxwGJJkozAr9iC/2ZZbhiEEoTf2dnDzM9hyQRYOtuWsGdpunqbpJAYfEMPNDoVyasyqCypYcxtvVHZi3pN7UUbEYH/si8p/fFH8l5/g+M3zkM/fDhuDz/cKp93qrS6YQqcLbgfzLWVnVUrFYT7GJk/OIA4i5loPxOOmvMTP7syjZ2myd4AgOLqYjJKM8gqzyKrzPYlHZUoqylj0e5F5/QIqBVqvB290dZo2bxts+1CoOFiwMfRRwwPXCWaC/aJQJQsyweBg8AbkiRpgWHANOB1IKb1myh0OloTzP0OFo+Hz2fA3OW2SntNkCSJ+IkB6Jzs2fhFGite38H4u/uI1fLakaRQYJwwAcdRoyhc8jEF777LsYkTcRwwgLrevbFzcflTx5VlmeOFlbZM+YaEusyCSgAc1Eqi/UyMD/Mk1mImwtcJjVhP4YKcNE5EaCKIcItofC0vdQ8AyXOSySnPIas8i+yy7MYLgoO5B/nh2A+U156bdmVQG/DUeeKp88RD54Gn3vOc565aV5QK8bPo7JoL9ucNoMqyXAWsavgShAvTOcO87+GjcfDp9XDjd+ATfcHdew/2RmdU89P7qXz7agoT7uuD0bXjjsFeDRQaDS63z8fp+qmcfvtt5C+XcWT0GJxvmof55ptROjZfSMZqlTmUV0ZSesMc94xCTpXaMuWdHFTE+puZ29ePWH8zoV4G7MQQzhWhVqrxN9qS+86WkJDAkCFDKK0ptfUGNFwEnKw4SW5FLjkVOaTkpVBWU3bO+5SSEncH9yYvBH7/clQ5ipybDq65YO8qSVLTKdWALMuvt0J7hK5E7wbzVjYE/Ckw74dmd7f0cWXSg5H8uGAP37ySwvi7+uBuMbRRY4ULsXN2xvPppzkSHIxl23byF/6Xos+/wHn+fEyzZzUW5amtt5KaU0piekFD13wRJVW2mvIeBg3xFmdiLWbiLWa6u+rFwkjtQJIkjPZGjPZGQl1Cm9ynoraC3IpcTlactH2Vn2x8vitvF2sr1lIn153zHq2dFjcHN9wc3HDVuuLu4I6rg2vja7+/rlaKHrv20lywVwJ6mrjDF4QWM3jZAv6H4+DjSehC/9Hs7h4BRqY+Gs3Kt3ax/PUdDJvTk+B4j7Zpq9Cseg8PfN58g6p9t3L6zTfJe+UVcj9czIFR0/jeI5KkrDKqam1pPBYXHWNC3YmzOBNvMeNj0oo7v05Cp9I1FgBqSr21noLqgsYegdyKXPIq8xq/9pzeQ15l3jlTCn9nsjc1eRHg5uCGi9YFZ40zzlpncVHQCpoL9idlWX6mzVoidF1O3Wxd+ovHE7HrSYgIBZ8Lp3s4uTtw/WMxrHl3H+s/2k/+iTL6TQkUmfrtrLJW5teDeSRmKUmMvhmrIoy5e1cR+sUCPBydGTF6Gi7TryO2uytuBjEVrKtSKpSNgbqPa58m95FlmdKaUk5VnuJ05elzLgbyKvPIq8rjYOFBCqoKzkkm/J1BbcBZ64yL1gUXjQvOWufG586ahte1Lpg0JuwUzdaGExpc0pi9IPxpzoFw82rq3h2LaslEuOEzCDy/DvnvtI5qJj4QweavjrBr/QkKsssZfWtvNLqrKyO7PZ0uO9OYJZ+YXsiBk5XIJGGnkAjzMRI3ZRTGB6Zjzt6P5t1FOH+zCNX2H1DfeQfyxIlIKvGzulqdPVzwxwJDZ6uz1pFflU9+VT4FVQWNj/Or8imoLqCgqoDUglQKqguoqK04/3OQMGlMOGudkaokftzwIyaNCZO9yfZdY8KsMeNk74RJY8LJ3umqvTho7qxHtFkrhKuD2cLOyBfpf/Q128I5U9+HkEkX3F2pVDD4hh64+OrZ8EUaX72YxDV3huPsrW/DRl8dZFkmq6jqnOB+LN/2x1WjUhDVzcSk7iqmD40iopsTDuqz/nSEeCCPHEb5hg3kv72Ak08+Rf6id3CefxtOkyYhqUWXrNA0O4VdY5LfxVTWVjZeADReGFTbLhJOV50mszKTA4UHKKwuPC/J8GwGtQGzxnzeRcE5j896rrXTXslTbjfNLYRT2JYNEa4ONfZmuPlH+Gw6fHWTraZ+1I3NvidkgBdmTx2rF+3l61dSGDYnmB6xYhz/csiyzJG88sbiNUnpheSUVANg0NgR629meqwvcRYzvb2MqO0UJCQk0L9709PuJEnCcehQ9EOGUJ6QQP6CheT+39/JX7AQ51tuxmnaNBTarvFHU2gfDioHHFQO+Do2vZR2QkICQxsWdKq11lJcXUzRmSKKqhu+Gh4XVhdSfKaYouoijpcdZ0/+Hoqri89LOvydRqnBYG+w9VSobb0VBrWhseeiycdqIzpV25drbs7V2Z8htC+tCW5cAV/Ohe/vhaoiGHB/s2/xCDAy7fFY1r63j3Uf7CfrYBGDZvRApRbzf1uirt7KgZNlbE8vICnDlilfWGFLoHJ1tCfO38ztFjNxFjPB7o5/OlNekiQchw1DP3QoFZu3ULBoEadeeJH8Re9gnjcP06yZF52yJwiXS6VQ4ergiquDa4v2/z3H4PeLgMLqwsYLhOLqYkprSik5U0JJTQmZpZmUnimlpKaEM/VnLnhMpaRsvAAw2BsaLxR+vxgw2BtwVDuiV+lxVDue81iv0l/x2gYi2AvtQ62DmUth+e2w7u9QfBzGvtTk8ri/05vsmfxQJEkr00lZm0nusVLG3BoquvWbUF1bz56sksZ13FMyCqmosWXK+5q1DAt2I95iJtZixt/Z4YrfgUiShH7gAPQDB1CZkkL+onc4/cYbFLz7Lk7TpmGeOweVt/cV/UxB+LPOzjHwM7R85cfquur/XQg0XAyUnik993GNbVt+VT7HSo5RcqbkvMJGTXGwc2i8CHBUX/4Fsgj2QvuxU9vG7Z18YfO/oeAITFtsu/O/AKVSQd/JgXj3MLFu8X6+eimZQdODCBno1aG6zNpa+Zk6UjKLbEu9pheyK6uYmjrbgjE93PVMifIm1t925+5pbNvudIfoaLq99y5VqakUfvgRhZ98QuEnn+A4ehTON92Etk/TGd2C0NFp7DRo7DS4Obhd0vtqrbWU1ZRRXlNOWW3Z/x7XNDyuPfdxec3lLzYrgr3QvhRKGPUMuATDyvvh/ZEwa5kte78ZviFmZjwZy8+L95PwWRpZB4sYMjMYjf7qyAAvrKg5J5kuNacEqwxKhURvLwPz+tkq08X6mzHpOkaCnDY0FO9/vYbbww9R+OmnFC/7irLVa9BGRWG+aR6OI0YgKcWwjND1qRQqzBozZo25xe/5gA8u6zNFsBc6hsjZYA6AL2fDe8Nh+scQMKTZt+iM9ky4N4IdP2WSuDKdnMPFDJ3TE0v4n6vd3pHlFFc1dsknpRdyOM92pa+2UxDp68Tdw7oTZzET1c2Ezr5j/7dWeXri/sgjuNx5FyXffkvhxx+Tfd/9qHx8MN94I8brrkOpF4uzCMKV1LH/KghXF79+cNsv8PkN8MkUGPcyxN5qWzr3AiSFRPRYf/x6O7P+owOsWriHnn09GDg9CHuHznmXL8sy6fkVjYvFJKYXklVUBYDe3o5oPxOTI72Jt5gJ8zFib9c574aVeh3mG+dimj2LsvU/U7h4MadeeIHTb72F0/RpmOfMQeXp2d7NFIQuQQR7oWMx+cNffoJvboVVD0PmFpj4H7BvPkHFxceRaY/HkLwqg5Q1mWSlFTFsTk+6hTq3TbsvQ71V5mBu6VlLvRaRX27L8nXWqYn1N3PLAAtxFjO9PA0ou1hNeUmpxDBmNIYxo6natYuCJUso/GgxhYuXoB82FNOMG9AN6I+kEBUUBeHPEsFe6Hg0Blum/uY34JfnIHcPTFsCHr2bfZvSTkH8xAD8w134efF+Vr61m579Pel/XSBafccYtwaoqbOyN7uYxPQiEtMLSM4soqzaNsfX20nLoCAX4iy28fZA1441V7e1aSMi8ImIoCYrm+KlX1D87XLK1/+MytcXp+nTcLruOuycO/4FnCB0NCLYCx2TQgGDHgLfePj6Fnh/BFzzKkTObbZbH8Dd38D0J2NJ+iGdXetOkLE7n/5Tu9Ozn0e7BM7Kmjp2ZBY3dMkXsOtEMdW1tkz5QFcd14Z7EWcxEetvxscklvUFUPt44/bww7jcdx9l69ZRvPRLTv/rdU7/5y0Mo0bhdMMMHGJjr6oLIUG4HCLYCx2b/0C4Y5OtW//7e23d+te8BvbNz623UynpN6U7PeI8SPgsjV8+PsDBrScZOjsYk0frJn8VV9aQnFHUON6+L7uEOquMQoIQLwMz47oRbzET42/GRW/fqm3p7BRqNcbx4zGOH8+Zo0cp+vJLSlZ8R+mqVagDAzHNmIFx0kSURmN7N1UQOjQR7IWOT+8Gc5fDxlch4SU4vhUmL7Il9F2Es7ee6x6OYv/mHLYuP8rSZxOJGuNH1Bg/VPZXJrHtVGl143j7L3sryVqzDgC1UkG4j5H5gwOIs5iJ9jPhqOmcSYMdgX1gIB5PPIHbgw9SumYtxUuXcuqFF8h7/XUM48bhdN0UtDEx4m5fEJrQqsFekqSxwL8BJfC+LMsv/WH7bOCxhqflwJ2yLO9uzTYJnZRCCUP/BpbBsPwO+GgcDLgPhj0Jds3fHUsKidBB3lj6uLL5m8Mkr8rgwJaT9JsSSI9Yd6RLSHiTZZnjhZWNU+ASMwrJLKgEwEGtxOIoMaNfELEWMxG+TmhUnTNTviNTaLU4TZmM05TJVB84QNGXX1L6/UpKli9H5eODcdIkjJMnofZtuoa6IFyNWi3YS5KkBBYAo4AsIEmSpO9lWd5/1m7pwBBZloskSRoHvAvEt1abhC7Arz/cuRnWPmmrund4PVz3DniEXfStDgY1o24OpfcgbzZ9dZj1H+1nb0IWA6cF4RHQdDew1SpzKK+MpHTbHPfE9ELyymyZ8k4OKmL9zcztaytgE+plYNNvGxk6NOiKnrJwYZpevfD8xz9wf/RRytavp2TFCvIXLiR/wQIcYmIwTpmM45gxKPWipLJwdWvNO/s44Igsy8cAJElaCkwCGoO9LMtbztp/G+DTiu0Rugp7R9t0vJ7jbeP47w6DoY/BgAeara3/O8/uTlz/WAxp23PZuuIo37ySQlCsO/2mBKIxqtmXXdJYnS4po4iSqloAPAwa+gY4E2sxE28x091V/6cXjBGuLIWDA8aJEzFOnEjtyZOUfPc9JStWcPLJp8h99jkcR43COHkSur59RZU+4aokybLcOgeWpOuBsbIs39rwfC4QL8vyPRfY/2Gg5+/7/2HbfGA+gKura/SyZctapc0dQXl5OfoufBdypc/PrraUHocW4XZ6M+U6Pw71uJNSY68Wv7/6jJWju2SsGSDLsEdTz2Z1LVUKcHeQ6GFSEmxW0MOkxFUrXXQ8uCv//DrduckyqvR0NNu2oUlORlFZRb2TE9Xx8VTHxVLn5XXOzI5Od35/4L3dVocgO97a5PbOfn4X09XPb9iwYSmyLMf82fe3ZrCfBoz5Q7CPk2X53ib2HQYsBAbKslzQ3HGDg4PltLS01mhyh3D2msxdUaud38FVsOoRKM2C6Jth5NNNLqhTWl1LSkaRbcw9o5A9WcXU1ssYZIlxaPEtkVGoFPQa4sWA8QGotZfW+dWVf36d+dysZ85Q/uuvFC9fTsWmzVBfj7p7IIZx4zCMuwb7AEunPj+AvHf2AOB2e3iT2zv7+V1MVz8/SZIuK9i3Zjd+FnB2howPkPPHnSRJCgfeB8ZdLNALwgX1vMaWvJfwImxbCAd/hLEvctrvWpIyixoXjDmQW4osg51CIszHyC0DLcT5m4nxM2N0UFF4soLE74+xf30Wx7aeInqcH6GDvVGpRddvZ6awt8cwdiyGsWOpy8+n9KefKFu1mvy3F5D/1tvY9+qFQ3AwNd27o/YRo4lC19OawT4JCJIkyQJkAzcAs87eQZKkbsC3wFxZlg+1YluEq4Cs1pEV+ySH7IbQI/n/8P3mLxyuD+Gturmk21mI6mbi/hFBxPmbiejmhIP6/F9/s6eOsbeHcSqjlG0rjrL56yPsWJtJ5Cg/Qgd7odaI2aqdnZ2LC+ZZszDPmkXtqVOUrVlD6arVOK5YwdEVK9CEhzfc8Y9F5eHR3s0VhCui1f5yybJcJ0nSPcBabFPvPpRlOVWSpDsati8C/g44AwsbxkLrLqebQri6yLLMkbzyxuI1SemF5JRUA+Ck+QcPmzdzfenHrLJ7EmvEXJQj/g/0ri06tru/gUkPRJJzuIikHzPY8q0t6PcZ6Uv4UJ9L7t4XOiaVuzvmefMwz5vHxq+/IbS4iNJVq8l7+WXyXn4ZbVQUhrFj0A8fgdrHu72bKwh/Wqv+xZJleRWw6g+vLTrr8a3AeQl5gtCUunorB06WsT29gKQMW6Z8YUUNAK6O9sT5m7ndYibOYibY3RGFYhxUPQQbXkGZ+C6kfgtDHoH4Oy46N/93XkEmJj1gIvdYCUk/ZrD9u2PsWnecsKE+hA31wcHQcWruC5fH6uKM8/VTcb71VmoyMihdvZrSVas59cKLnHrhRex79cJx5AgcR47EvkcPUbxH6FTE7YnQYVXX1rMnq4TE9AISM4pIySikoqYeAF+zlmHBbsRbzMRazPg7OzT9x1drgrEvQswt8NNTsO7vkPyhrRhP76m2Yj0t4BFgZMK9fcjLLCV5VQbJqzLYue44Pft6EDGyG07uoqZ9V6L298flzjtxufNOajIzKVv/M2U//9w4xq/y8cFxxAgcR41EGxkppvMJHZ4I9kKHUX6mjpTMIltluvRCdmUVU1Nnm0bUw13PlChvYv1td+6eRu2lHdwlCGZ9CUd+hvVPw7e3waY3bEG/5/iLLq7zOzc/A9fcGU5RbgW71p/g4NZcUjflYAl3IXJUN1prdovQftR+fjj/5Rac/3ILdfn5lP36K2Xr11P0+ecULlmC0mxGP2wojiNHouvXD4VG095NFoTziGAvtJvCipqz1nAvJDWnBKsMSoVEby8D8/rZKtPF+psx6a5Qd3n3ERAwDPavgF+fhy9ng3c0DP8/CBzW4sOYPHQMm9OT+IkB7E3IYu+GLNJ356MxgYf9SYJi3LATGfxdjp2LC6Zp0zBNm0Z9eQUVm36z3fWv/YmSb75F0mjQxcejGzIY/eAhYpxf6DBEsBfaTE5xFVtz6vhp+V6S0gs5nFcOgNpOQaSvE3cP606cxUxUNxM6+1b81VQooPd10Gsi7P7CtrjOJ5OhW38Y/BAEjmjxnb6DQU38xACixviRtj2XbT/aVtjb8s0RQgZ6EjrIG4PLJfZCCJ2CUq9rnM4n19RQkZhE+YYNjV+neBZ190D0g4egHzwYh6hIJLXI8RDahwj2QquQZZn0/IrG+e2JGYVkFVUBoLfPIdrPxORIb+ItZsJ8jNjbtcNdsNIOouZC+HRIWWyrtf/pVPCKhEEPQfB424VBC6jslfQe7M3p+kP08Ipgb0IWO9edYOdPx/ELcyFkoBd+oWYUypYdT+hcJLUa/cAB6AcOQH7icWoyMqjYuJHyDRsp+uQTCj/8EIVOh65/f/RDBqMbNBiVu1t7N1u4iohgL1wR9VaZg7ml53TL55fbMuXNOjVx/mZuGWBBUXCMuROGo+xINeXt7CH+doi+CXYvtY3lfzkHXHvBoL9C6JQW1dwHkCQJ72AT3sEmygqrSd2Yzf4tJ8nYk4/OyZ5e/T3p1d9T3O13YZIkYW+xYG+xYJ43D2tFBRXbt1OesIHyjRspW2dbAtm+Z090/fuj69cPh5hoFFrxOyG0HhHshT+lps7K3uxiEtOLSEwvIDmziLLqOgC8nbQMCnJtTKYLdNU1ZsonJGR2rEB/Njt7iJ4HEbMhdTn89i9bIt/6f0DcfNu2JkrwXoijWUPfyYHETrCQuaeA1E05JK/OIHl1Br49TfTq74Wlj4sY2+/iFDodjsOH4zh8OLIsc+bQYco3bKBi8+bGu35JpUIbFWUL/v37ownpJTL8hStKBHuhRSpr6tiRWdxQwKaAnceLOdOQKR/oquPacC/iLCZi/c34mDr5NDSlHYRPs03NO/wTbFtgy+Df8LLtQqDvneAc2PLDKRUERLoSEOlKWWE1B7ac5MCWHH76IBW1RklgtBs9+3rgGeiE1FEvhIQrQpIkNME90AT3wGX+bVgrK6lM2UHFli1UbN3K6Tfe4PQbb6A0GnHo27ch+PdD7et78YMLQjNEsBeaVFxZQ3JGUWN1un3ZJdRZZRQShHgZmBXfjXiLmRh/My76lhWo6XQUCggea/vK3Qvb/gs7lkDS+xA0CmL+Yvvewrn6YLvbj7vWQuw1/mQfLiZt20mOJOdxYPNJHJ01BMd7EBTjjtlL14onJnQUCgcH9IMGoh80EIC6/Hwqtm23Bf8tWyhbuxYAlY8PDnFxOMTFoouNReUtsvyFSyOCvQDAqdLqxmS6pIxCDuaWAaBWKgj3MTJ/cABxFjPRfiYcNS0bv+5SPMJg8kIY8TQkfwApS+CLGWD0hah5tkQ/x5bXUZcUEj7BJnyCTQy+oZ5ju06Ttj2XlNW2gj3O3jq6x7gTFOOG0bWT95QILWbn4oLx2vEYrx2PLMvUpGdQsXULldu2Uf7LL5R8+y0AKm9vW/CPjcUhLk5M8RMuSgT7q5AsyxwvrLQt89qQKZ9ZUAmAg1pJtJ+J8WGexFrMRPg6oVGJscNGju4w7AkY/AikrbZV4/v1OdjwEgRfg9kuAuoH2oYCWkhlryQ43oPgeA8qSs5wdEceR5Lz2P7dMbZ/dww3P0cCo9wIiHAVlfquIpIkYR9gwT7Agnn2bGSrlTOHj1CZmEhlUhLlCQmULF8OgMrLC03svSgMjtScOIHKx0eU8xXOIYL9VcBqlTmUV0ZSeiHbG+7e88rOAODkoCLW38yceD/iLGZCvAyoxPSwi1OqIGSi7avgqG3q3s5PCa/6HtLfhT4zoM8scOt5SYfVGe0JH+ZL+DBfygqrOZKcx5GUU2xdfpSty49i8nDA0scVSx8X3P0NYoz/KiIpFI3j/ea5c2zB/8gRKpOSqExMor6kmLqCfI6Ougc7V1e0UVE4REWijYpC0/PSfg+FrkcE+y6ott7KvuySxilwSRlFlFTVAuBh0NA3wJlYi5l4i5nurnoUImBcHudAGP0sDP8/9i3/F73r9sCWt23z9r2joc9M2/Q9ncslHdbRrCFydDciR3ejrLCa9N35pO8+za51x9mxNhMHgxr/Pi4E9HHFJ9iEUiUu0q4mkkKBpkcPND16YJ49m7x3diNXVWMc8Xcqd+ykaseOxjF/SavF5OtL3q5dOERFoY2IQGkwtPMZCG1JBPsuoLq2np3HixuK1xSwI7OYqlrbgjEWFx1jQt2JszgT52/G16wV3XutxU5Nvms/GPo4lOfBnmWw6zNY9TCsfgwChkLY9bZa/BrjJR3a0awhfJgP4cN8qK6oJXNfAem78zmceIr9v+WgslfSLdSZgAgXuoU6o9FdhXkVVz3JFtRnzsQ0cyYAtadOUbVjB5U7dpK3YQMF771PQX09SBL2QUFooyLR9olA2ycctb8/UguLSAmdjwj2nVBpdS0pGUW2MfeMQvZkFVNbLyNJEOzuyPQYH+IszsT6m3AziEU52oXeDfrfA/3uhlOpsO8b2Pc1rLgTlPa2LP7QKRA0GjSXdoel0akax/jrauvJOlhE+p580nfnc3RHHpIEbv4GuoWY8Q1xxt3fUVTuu0qp3N1RjRuHYdw4Dg7oz+DYWKr27qUyJYWqHTspXfkDxUu/BEDh6Ig2LAxNn3C04eFo+/TBzmxu5zMQ/r+9Ow+u7CzzO/597i7dq721WN1S76sxXgDbYDxpxgPYBDAJyQQySUjIxKECNZAJNWFChYJkktQkTKhJZRLjIU4INQwDNQNjwNhkgDaJ1zamu9373q3e1a1Wa7m6m+6bP94j6Uot9aLF6nv0+1S9dc55z7nnvm8f3X7es73vfFGwrwK9g/nxS/KvHOtj37kBnINYxLhjRQMff+dq7l3VzFtXNtNQqzO6W4oZdLzJp4e+AKde9YF/z1/A/h9ANOEH5tn8Adj4Pki33NTuY/Eoq+5Yxqo7lrH1o47zxwc4sfsSPfv6ePXp42z/4XESqSgrNjXTtaWZrs3NNLSqp7alKpJOk77/ftL33w+AGx2lcPQoI7t2MbJzFyO7dnHpq09A2fehEV+xIgj8PvgnN23SqH5VSsH+FuOco6cvO6nb2aMXhwFIxSPc093Epx9az72rmrmru5HahA5h1TCDrrf59N5/B6e2w77vw96n4NCzYBFY+SKWRG4AABqxSURBVABsfAQ2PHxTHfeAf52vY00DHWsauO+Da8gNFzm1/zI9+/o4ufcSR3f0AlDfWkP3Zh/8V2xsIlGjv6GlyqJRkuvXk1y/nsYPfxiAcjZLbs+e8QZA9rXXGHj6af+BaJTkunWktmwhdfvtfrp5k7r6rQL6ld9C/s339/K9X4zQ9+zPAKhLxbh3VTO//rYu7l3dzJs6G0jEdDk2FCJR6L7fp/f8Hpzd6QP//h/Cs//Kp5Z1PuhveC90v/2G++cfk0rHWfeWNta9pQ3nHP3ns/Ts66Nnbx/7Xz7H7p+fxgyWddXRub7Rp3WNpDK6OrSURWpr/fv7b3vbeF7x/AVGdu0kt2cPub17Gfr5z8df+yMSIbl2zZQGwGYiaXUMdStRsL+FjJbLrG2M8Ol7N/G2Vc1s7Ki7dfuRl/ljBp13+fTQv4bLJ3w3vQefgVeegBf/KyQy/qx/zVaf2jbf8DC8/iuMpo40TR1p3vyuLkZLZc4dvcKp/Zc5c6if3c+dZudPegBo7kxPBP/1jaQbQtpDotyweHsb8Xe/m/p3vxvwVyBL58+T27uX3G7fABh+4UWu/OVT/gNmJFavntwA2LKZaF3dItZiaVOwv4V86dE3sW3bRba+Y9ViF0UWU9NKuPef+JQfgmPPwZGfwtFt/nI/QLptIvCv+WvQsOKmviIai7B8QxPLN/iBfUaLZc6fGODMoX7OHurnwEvn2P3caQAaWmvoXN/IlZLj8qZhGttq9X7/EmdmxDs6iHd0UPervzqeX7xwwTcA9uwht3cf2VdfZeAHPxhfH1/ZTWrjJpIbN5DcsIHUxo2+AyC9BbDgFOxFbmXJjH9Vb9Nf98v9PT74H90GR38Gr3/b57esnwj+qx64qdH5AKLxCJ3r/GV8HoHyaJmLp4Y4c6ifM4f6Obqzl/yw45uvvEyyNkbbqnraV9XTvtqnmkxi/uosVSve1ka8rY26rVvH80qXLgUNgL3k9u4lf+CAH+bXOQCstpbk+nWkNmwkuXEjqaAhEG24uddT5doU7EWqSWMX3P33fHIOLuwNAv822PFN2P7HfrvWzdB9H3QFqXnNTV32j0QjtK2sp21lPXf9Wjeu7Hj2+9voXraR88cHOH9sgF/86PjY/9fUt9ZMCv6tK+rUyY8AEGtpIfPgg2QefHA8r5zNkj9yhPyBA+QOHCR/8CCDP/4x/d/5zsTnOjpIbvSdBiU3bPRXA1avxuJ6pmQ2FOxFqpUZtN/u09s/CaWCf8L/xAvQ8xLs/q7vxhcg3ToR+Lvu888HxG78XrxFjFSDseWBTrY80AlAIVei9+Qg548NcP64vwVwaPt5ACIxo6Uzw7KuDK1ddSzrqmPZigzxpMZZEP8QYM0dd1Bzxx3jec45Shd6yR88QP7gQXIHDpA/cJBLL7wIRd8DKPE4yTVrSK5dQ2LtWpJBSqxcuUg1qR4K9iJhEUv4S/irHvDL5TL07veBv+cVOPmSf7cffMc+nXf71wBvu8vPN632w/reoEQqNum+P8DQ5dx48O89OcixHRfZ9/xZv9Kgqb3WB/6gEdDaVaen/wUIngNobyPe3jbpKoArFskfO0b+wMGgIXCIkdd3M/CjZ8ZvBRCN0rJsGT13vInk2nW+MbBmLck1q4nUavAoULAXCa9IBNq3+PTWj/u8oQvQ87JPJ1+Gl78KowW/LlkPHW/2Z/233ekbAS3rbqoBkGlKkWlKsfaeNsCfrQ1dznOxZ5Dek4P09gxx9vDEFQCATHOSZcszNHdmaO5M07I8TVN7WrcBBACLx8fHAID3j+eXR0YoHD9O/vAR8kePcPqllygcPcbQtuegVBrfLt7ZSWLdWpJr1pJct9Y3AtauWXLPBCjYiywlmTbfW9/mD/jl0SJc2Adnd/h3/c/sgO1fg1LOr09koOMOuO0u2q8k4GwTLNsA8RvrRMXMqGtOUdecYvWdreP5I0MFLvYM0dszyMWTg1w6M8zJPX2Uy8FDWxGjsa2G5s40zZ0ZWjrTNHemaWir1cBNAkCkpobU5s2kNm8GYO+dd3L31q24QoHCyZPkjxwlf+QwhSNHyR85QvblV3D5/Pjno42NJFatmpxWryLR3R3KToIU7EWWsmgcbnuzT2NGS3DxgA/8Y42A177O5mIW9v+h7+mveY1/1791s5+2bfE9/t1gxz81mQRdm333vRNfW6b/Qpa+M8P0nRnm0ukhLvYMceSXvTB2tTYWobG9lsb2Wpo6Jk8TKf13JmCJBMl160iuWwe8ZzzfjY5SPH2a/OEjFI4fH0/DL7zAle99b9I+Yh0dQQNg5URDYOVKEitWVO0Dgvp1iMhk0djEg393/4bPK4/yyo++yb2rMv5KwFja/0Nwvh91InF/1t+2Gdo2+fmWdb5hcANXAqKxCC2dGVo6M5Pyi4VRLp+daABcPp+lt2eQo7+8MH7LFiDdmLy6EdBWS6Y5pasBgkWjJLq7SXR3X7WuPDxM4eTJSY2A/PHjDPzoGcpXrkxsGI2SWLGCxKpVxLu7SXR1Ee9aQaK7m/iKFUSSt24HVAr2InJ9kSjZdBfcvtWP1jemmIOLB4Pgv9dPT73iR/ir1NDlz/yb1/oGQMs6v9y40jcuriGeiI6/BlhptFimvzdL//ksl8/5af/5LAdfOU9hZOKebSRq1C+roX5ZDQ1tNTQsq6Gh1c/Xt9To2QAhkk5PuiVQqXT5ctAAOOGnJ05QOHaM7PbtlLPZSdvG2tuDBkAXie4u4iuCaVcX0aamRR1eXMFeRGYvnrr6NgD4nv/6jsClw3BpbHrYNwJyFWdKkTg0rQrSSh/8K6epxhn7B4jGp78S4JxjZLDI5XPDXLkwwpXeEa70ZrnSO8LZI/0Uc6MTGxtkmpI0tNYwXCzzavaYf8agJUWmOUWmManhgZe4WFMTsaYmau++e1K+c47Rvj6KPT0UglQ82UPhVA/Dzz/Ple9emLR9JJ32jYCuLuLdwXT5cuKdncQ7Oxf8OQEFexGZf8lM8ET/nZPznYNs30TwH0uXj/srApUNAfBvCExtADSsgPrlPqWXXdUYMDNq6xPU1icmvRbov96RGyoGDYARrlzIcuXiCAO9IwyehpePHpu8r4iRbkxQ15yivqWGupbU+AOHvkGQJBZX3wFLkZkRa2kh1tJCzV13XbW+nMtRPHXKNwJ6eij0nKJ48iT5o0cZeu45XKEwaftoS4sP/GMNgOWdFcvL51xeBXsReeOYQbrFp+77rl4/0g/9J6D/pB8QqP+En1467McHKE6+bEo0AfWdE8F/bL4hmK/r9A2CSDT4eqOmLkFNXYKONZNfvdq2bRvvfMeDDPblfLqUmzR/+uBlhvvzk54TAKipT1AfNAIyTUnSjRMp05gk3ZDUrYIlKJJKVTwoOJkrlyn19lI8fYbi6dM+nfHz+f37GfrpT69qDMyVgr2I3DpqGn2aekUA/FWB4V64cgoGzsDA6SCdgSunfd8BA2egXJz8OYtA7TKoa4dMO2Q6/CuImfaKvHaipSyxeGR8dMDpjI6WGb6cn9wgCBoFvScHObbrIqPF8lWfS6XjFY2AxERDIGgMpBuT1GTiGmBoibBIhHh7O/H2drjn7qvWu3KZ0UuXxhsBhdOn4bHH5vSdCvYiUh3MgiDdBsvvmX6bchmyF30j4MppGDzrOxIaOj+Rzu+F4QtQLk366IMALyagtmXGFK1tpr62hfq6Fmhvgdrb/HMLAecc+WyJ4f48w/15hoLp8JXCeN7FnkGyg4Xx1wnHRKJGbUOC2vqkvw1RF6cmuB1RUzd5mqyNLerDXrKwLBIh1tpKrLV14haBgr2ISCASmWgQdF59xjSuXIaRyzB0LmgEXODIzhdYe1sTZC/55wqyl+Dc677xMHJ55n3F074xkG7BUo2kUg2kUg20pOoh1QCtjbAimE81QKqJ0Xg92UINw9lYRUPAT7ODBQb7clw4PsDIUBFXdld9ZSRqUxoAcVZeHCEaNQ68fI6aTJzUWErHNSaBKNiLyBIUiUw8O9B+OwA9lztYWzE06ySjJcj1Bw2BKWl4bP6if8Bw4LSf5gagNDLt7qJAHVBnEf8QYqoBUvX+7YNlGehMQyKNi6fJuQay5QaypTpGirWMFFJk80myuRIjI45sf56+U2VaRgEcz//PvVd/XyyCxcuc+7+vjDcAaioaA2MNg5qx5XSceCqqqwchomAvInI90Zh/0C+97OY+VypAfiAI/v2+AZC74lO+Yr4yf+A0FIahMIwVs9QUhqhxZVqu9T01cCH/H3BE+LsdT5CzZnLWQo5GRsoN5Fw9A7kE5ZFmcoO19JVqGCmmyBcTOKYP6GaOZNKRSEIqBcmUkayJkKyJ+lQbJVkb9ykdJ5lOkswkSWZSJGtTWDzpH4xUg2Huylc/B3KzFOxFRBZKLAGxWTQSKjnnxyooDENhaLwh4OezE/PbbsPKZZruesRvX8r5To9Kp6F0hP7eczRmkkGeT66QI1+IkivGGRnNkCvXkSvXk3N15MsZ8i5NPp8mP+LnB8sZ8i5DvpymfM3wUSZhIz5FxlKeeDRPIponEcmRiBaC+TyJWCFYLhCPl/x8rEg8NkokEvEPWUaifjppPjo+f/vFS3D+a9co0zUaHddrkJRH/XFwZXCjwTRIk9ZNt748efl668slv89yyT9sWi5N9FI5Bwr2IiK3MjPf3XC85tqNhtd2+el73z/t6h3btrF1ym0KA1JAyjkaR4v+tkMp7xsDo0WfykU/MuJoyU/LRVypSDGXJZ8tUsiVyWdHyeXK5Ecc+Rzk845C3igUjEIxRaFQS64YZbAYpZCPUSjFKI7eWB/z8UiBRCxPIuIbB/FonnikQNwKxCJ54pE8cSvgSq2c64NYpODXR4p+WysSj+SIRYpBfoGIVQbPq5+JmMS5oEERXKWY2vCY1OiIz7B+SrrW+kjUdzYViUIk5sebiMTgS797Q/9eM1GwFxFZ6syCqxCJG9scSARptsplRzFXopAbpTASTHMlCiMlihXzhZFgvmLbkcIoxXyQCmVK+dHrf2GFSMyIJ6PEE1E/TUaJJcZShFjcp2giOj4/sS5KNB4Zn69cF40HecE+ovHIPD73oGAvIiJVJhKx8Xv+c+XKjp/9dBv33/sApcqGQJAq8ybmyxTzJYr58nhebqhAqVimVCwzWhj184Uyo6XZX0YfC/qRWIRozIjGIpNTfJq8YLtIfCJvrhTsRUSkqlnEiMR8N8kLwZUdpVKZ0UKZUnGU0qSpbyyMFifmK6ejhbL/bKlMueinoyUXTH0q5opX5Y1tVy6WKU/z+uXNUrAXERG5BouYv+SfiAJv/Hj2ruz41Ffntg912CwiInILm49ulBXsRUREQm5Bg72ZPWxmB8zssJl9bpr1m8zsRTPLm9lnF7IsIiIiS9WC3bM3syjwR8C7gVPAdjN7yjlX2ZdjH/BbwIcWqhwiIiJL3UKe2d8LHHbOHXXOFYBvAY9WbuCcu+Cc2w4Up9uBiIiIzJ05N/dH+qfdsdnfAh52zv1msPz3gfucc5+aZtsvAkPOuS/PsK/HgMcAWltb3/Ltb397Qcp8KxgaGiKTySx2MRaM6le9wlw3qP76LX/Zn7udvm/6d8KrvX7XE/b6vetd7/qFc+6ts/38Qr56N93jg7NqWTjnngCeANi4caOb2uVjmGybpkvLMFH9qleY6wbVX78LB3x3ueu3vnna9dVev+sJe/3maiEv458CuiqWVwBnFvD7REREZBoLGey3A+vNbLWZJYCPAE8t4PeJiIjINBbsMr5zrmRmnwKeBaLAk865PWb2iWD942bWAbwK1ANlM/sMsMU5N7BQ5RIREVlqFrS7XOfc08DTU/Ier5g/h7+8LyIiIgtEPeiJiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhNyCBnsze9jMDpjZYTP73DTrzcz+S7B+l5nds5DlERERWYoWLNibWRT4I+ARYAvwUTPbMmWzR4D1QXoM+O8LVR4REZGlaiHP7O8FDjvnjjrnCsC3gEenbPMo8L+d9xLQaGa3LWCZRERElpyFDPbLgZ6K5VNB3s1uIyIiInMQW8B92zR5bhbbYGaP4S/zA+TNbPccy3YrWwZcXOxCLCDVr3qFuW4Qlvp9YsY14ajfzMJev41z+fBCBvtTQFfF8grgzCy2wTn3BPAEgJm96px76/wW9dah+lW3MNcvzHUD1a/aLYX6zeXzC3kZfzuw3sxWm1kC+Ajw1JRtngL+QfBU/v3AFefc2QUsk4iIyJKzYGf2zrmSmX0KeBaIAk865/aY2SeC9Y8DTwPvAw4DWeAfLVR5RERElqqFvIyPc+5pfECvzHu8Yt4Bn7zJ3T4xD0W7lal+1S3M9Qtz3UD1q3aq3zWYj7ciIiISVuouV0REJOSqKthfr/vdamJmXWb2MzPbZ2Z7zOzTQf4Xzey0me0I0vsWu6yzZWbHzez1oB6vBnnNZvZ/zOxQMG1a7HLOhpltrDhGO8xswMw+U83Hz8yeNLMLla+2Xut4mdnvBr/FA2b23sUp9Y2boX7/ycz2B911f9fMGoP8VWY2UnEcH595z7eGGeo3499jNR2/Ger2ZxX1Om5mO4L8ajx2M8WD+fv9OeeqIuEf8jsCrAESwE5gy2KXaw71uQ24J5ivAw7iuxX+IvDZxS7fPNXxOLBsSt5/BD4XzH8O+P3FLuc81DMKnANWVvPxA34FuAfYfb3jFfyt7gSSwOrgtxld7DrMon7vAWLB/O9X1G9V5XbVkGao37R/j9V2/Kar25T1fwB8oYqP3UzxYN5+f9V0Zn8j3e9WDefcWefca8H8ILCPpdF74KPA14P5rwMfWsSyzJeHgCPOuROLXZC5cM79HOibkj3T8XoU+JZzLu+cO4Z/o+beN6SgszRd/ZxzP3bOlYLFl/B9fVSlGY7fTKrq+F2rbmZmwK8Df/qGFmoeXSMezNvvr5qCfWi71jWzVcDdwMtB1qeCy4pPVutl7oADfmxmvwh6QQRod0FfCsG0bdFKN38+wuT/aMJy/GDm4xXG3+PHgR9VLK82s1+a2XNm9uBiFWoeTPf3GKbj9yBw3jl3qCKvao/dlHgwb7+/agr2N9S1brUxswzw58BnnHMD+JH/1gJ3AWfxl6eq1QPOuXvwoxt+0sx+ZbELNN/Mdxj1QeA7QVaYjt+1hOr3aGafB0rAnwRZZ4Fu59zdwG8D3zSz+sUq3xzM9PcYpuP3USY3tqv22E0TD2bcdJq8ax6/agr2N9S1bjUxszj+wP6Jc+4vAJxz551zo865MvDH3MKX1q7HOXcmmF4Avouvy3kLRjYMphcWr4Tz4hHgNefceQjX8QvMdLxC83s0s48B7wd+wwU3RIPLo5eC+V/g74luWLxSzs41/h5DcfzMLAb8TeDPxvKq9dhNFw+Yx99fNQX7G+l+t2oE95n+B7DPOfefK/Irh/j9G0BVDvpjZmkzqxubxz8ItRt/zD4WbPYx4C8Xp4TzZtJZRViOX4WZjtdTwEfMLGlmq4H1wCuLUL45MbOHgX8JfNA5l63IbzWzaDC/Bl+/o4tTytm7xt9jKI4f8GvAfufcqbGMajx2M8UD5vP3t9hPId7kE4vvwz+leAT4/GKXZ451eSf+sssuYEeQ3gd8A3g9yH8KuG2xyzrL+q3BPy26E9gzdryAFuAnwKFg2rzYZZ1DHWuBS0BDRV7VHj98o+UsUMSfOfzjax0v4PPBb/EA8Mhil3+W9TuMv/c59ht8PNj2w8Hf7U7gNeADi13+WdZvxr/Hajp+09UtyP9fwCembFuNx26meDBvvz/1oCciIhJy1XQZX0RERGZBwV5ERCTkFOxFRERCTsFeREQk5BTsRUREQk7BXkREJOQU7EVCyMy+YmafqVh+1sy+VrH8B2b22xXLz5jZcjN7f9Cn+E4z22tm/3SG/X/IzL4QzFcOo7rbzD54nbL9VQjGDBCpKgr2IuH0AvAOADOLAMuA2yvWvwN4PlhfAzTju+J8At8JyZ34wTi2zbD/3wH+W8XyV5xzdwF/G3gy+M6ZfAP4ZzdZHxGZAwV7kXB6niDY44P8bmDQzJrMLAlsBn4ZrN+KD+p1QAzfKyDO9zF+YOqOzWwDkHfOXZy6zjm3Dz+gzDIz+14w4uGeilEPwffk9tG5V1FEblRssQsgIvPPOXfGzEpm1o0P+i/ih8B8O3AF2OWcKwSbPwJ8zznXZ2ZPASfM7CfAD4A/dX4QlUoP4LshvYqZ3QeUgV7g48E+a4DtZvbnzrlLzrnLQZ/eLS4YsEREFpbO7EXCa+zsfizYv1ix/ELFdg8A/w/AOfebwEP4QTU+Czw5zX5vwwfzSv/czHYAXwb+jvP9cP+Wme0EXsKP0LW+YvsLQOdcKiciN05n9iLhNXbf/g78Zfwe4F8AAwRBPBgVrKfiLB/n3OvA62b2DeAY8A+n7HcEaJiS9xXn3JfHFsxsK35Esrc757Jmtg1IVWyfCvYjIm8AndmLhNfz+HHa+5wf07wPaMRfyn8x2OYR4BkAM8sEQXrMXcCJafa7D1h3ne9uAC4HgX4TcP/YimA4zw7g+M1WSERmR8FeJLxexz+F/9KUvCsVD9c9TBDsAQN+x8wOBJfkv8TVZ/UAPwfuDoL2TJ4BYma2C/i3U8rwFuAl51zpJusjIrOkIW5FlqjgqfznnXNvncVn/xD4vnPur2b52aeccz+52c+KyOzozF5kiQperbvpQB/490DtLD+7W4Fe5I2lM3sREZGQ05m9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjI/X8MtN8sxbJ9hAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGDCAYAAAAs+rl+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xVRdrA8d/cnt7pSAJSBBJCCUWQIgqoqOuqiLoq61pQV8R31VVUQGy4uruugg0La0MUKbb3FQsRRaQX6UUjhJYC6bk3t8z7x725JiGdG1J4vp8PH3LPmZnznCTwnJlzzozSWiOEEEKIlsvQ2AEIIYQQomFJshdCCCFaOEn2QgghRAsnyV4IIYRo4STZCyGEEC2cJHshhBCihZNkL1ocpdQrSqlHA122pVFKxSultFLK1MDHSVNKXdCQx2hqlFJnKaUKlFLGALU3SSn1QyDaEmcmSfai2fAljRKlVGyF7Zt9SSseQGs9WWv9eG3arEtZEVhKqf/1JcQCpZTT97Mt/fxKmXLTlFJPKaV2K6UmlNk+1Pdzr7itoKEvYGqitT6gtQ7VWrsbMw4hSkmyF83Nr8C1pR+UUolAUOOFI+pLa32RLyGGAu8B/yj9rLWeXKboxcAXwEpgRJntw4FdlWz7UWvtqun4jXVBoLzk/15xWskvnGhu3gFuLPP5JuDtsgWUUvOVUk/4vh6plEpXSv1NKZWhlDqilPpzDWUfKFP2D0qpi5VSe5RSx5VS0yqrW7Z+mc9pSqn7lVJblVKFSqk3lFKtfT3afKXU10qpqMpOUikVq5T6TCmV4zvu96UJQinVTin1sVIqUyn1q1JqSpl6A5VSq331jiil5iilLLX5xiqlInwxHlFKHVJKPaGUMiqlrL72epcpG6eUKlZKtfJ9Hu8bYclRSv2olEqqzTFrEVMU0A1YjTfZDy+z+zzgmUq2rayirZlKqUVKqXeVUnnApKrO2VfeqJR6TimVpZT6RSl1V9nbHhVvT/jaf9f3dXyFsqlKqSeVUquAIqCzUqqHUuor38+34qhFjFLqE6VUnlJqLdDlFL+V4gwnyV40Nz8B4Uqpc3z/KV8DvFtDnTZABNAe+Aswt6ok6ytr85WdDswD/gT0x5tIpiulOtch3iuBC/EmrEuB/wWmAbF4//1NqaLe34B0IA5o7aujfQn/U2CLL8bRwFSl1FhfPTdwr6/9Ib79d9Yy1v8CLuBsoC8wBrhFa+0AFlNmRAWYAHyntc5QSvUD3gRuB2KAV4FPlFLWWh63OmOBb3zD4d8BvZRS0b7vwwBgIRBZZtu5VJHsfS4HFgGReEcTKj1nX9lbgfG+7QOAq07xXG4AbgPCgEzgK+B9oBXe7+1LSqlevrJzATvQFrjZ90eIepNkL5qj0t79hXiHcQ/VUN4JzNJaO7XWXwAFQPdqyj6ptXYCH+BNmv/RWudrrbcD24G69Fpf1Fof01ofAr4H1mitN/kS6BK8iaSqONoCnXxxf6+9C1mkAHFa61la6xKt9S94L0gmAmitN2itf9Jau7TWaXgT74gqjuGnlGoNXARM1VoXaq0zgH+Xtos3KZVN9tf5toE3Kb6qtV6jtXZrrf8LOIDBtfkG1eASvEP4aK0PAAfwXnT1AfZqrYuBVWW22YA11bS3Wmu9VGvtAcKp/pwnAM9rrQ9qrY8DT5/iuczXWm/33WIYB6Rprd/y/aw2Ah8DV/kuYq8Epvvi2ob3okSIemvUh1iEqKd38PbeEqgwhF+F7Ar3cIuA0GrKlj5UVez7+1iZ/cXV1K1Mxbq1betZYCawXCkF8JrWejbQCWinlMopU9aI90ICpVQ34F94e6LBeP+Nb6hFnJ0AM3DEdzzwdgYO+r7+FghSSg0CjgLJeC9WSuvepJS6u0x7FqBdLY5bJV9P/ULgf8psLh3KP4DvnIEfymxb47uQqsrBMl/XdM7tKpT/re5nUe2xB1X4OZrw/m7H+b4O5LHFGU6SvWh2tNa/KaV+xfvg1l8aMZRCvAm1VJtANay1zsc7lP8339DuCqXUOrwJ4Fetddcqqr4MbAKu1VrnK6WmUrvh54N4e+OxlT3cprX2KKU+xNu7PwZ85ouxtO6TWusn63CKtZGCt/ebWWbbSry3C34D3vJt+x7vsxu/Uf0QPkDZZT6rPWfgCNCxzOezKuyv68+/4rG/01pfWLGQr2fv8h17VxXHFqJOZBhfNFd/Ac7XWhc2YgybgYt994vbAFMD1bDvgbezlbfLmYf3XrwbWAvkKaX+rpQK8j1E1lspleKrGuYrX6CU6gHcUZvjaa2PAMuBfyqlwpVSBqVUF6VU2VsA7+N9RuJ6fh/CB+9thMlKqUHKK0QpdYlSKuwUvgVQZgi/jJV4b32MwDt8D/Az3lGeUdSc7P1qcc4fAlOUUh18z3g8WKGJzcBEpZRZKVXXe/qfAd2UUjf46puVUilKqXN8I0uLgZlKqWClVE+8FzNC1Jske9Esaa33a63XN3IY7+B9UC4Nb9JYGMC2uwJf432+YDXwktY61ZcILsU7jP4rkAW8jvcBRID78N5Pz8ebhOsS0414h993ACfwPsjWtnSn1noN3t5sO7wPGpZuX4/3vv0cX719wKS6nGwVSl+589Na7wEygCNa6xzfNg/ei6Bw4Mc6HqO6c54HfIn3Z7wRbwIu61G8T8mfAB6j/AVQtXyjImPwPh9wGO+tkWeA0oca/4r3Fs9RYD6/j2IIUS/K+8yPEEI0Hb4HBjcD7XQT+U9KeSdt+hUw1+Y9fiGaEunZCyGaogjgf5pKoheiuWvQZK+UGuebLGKfUqri/a7SMiN9k3FsV0p915DxCCGaB631Hq31gsaOQ4iWosGG8X1PlO7B++pMOrAO7xPCO8qUicR7j22c1vqAUqqV711XIYQQQgRIQ/bsBwL7tNa/aK1L8E5QcnmFMtcBi32TZSCJXgghhAi8hkz27Sk/KUS6b1tZ3YAo37zRG5RSNyKEEEKIgGrISXVUJdsq3jMw4Z1zfDTelctWK6V+8r1e83tDSt2Gd05pbDZb/7POarnzS3g8HgyG2l+DefBwqOQQ4cZwIowRNVeotBE3RdmZWAwmTDGxNZc/BXU9v+amJZ9fSz43aP7nZyn0/pdbElL5rdnmfn41aennt2fPniytdVx96zdksk+n/OxTHfC+T1qxTJZvYpRCpdRKvPNbl0v2WuvXgNcAunfvrnfv3t1gQTe21NRURo4cWac6f/riT7g9bhaMr//zTP+deDkuj4e/fPhpvduojfqcX3PSks+vJZ8bNP/zy3h1KwCtbq986Ybmfn41aennp5Q6pSmTG/IyaB3QVSmVoLxLbE4EPqlQZhlwnlLKpJQKBgYBOxswphZpaLuhbM/ezgn7iXq30aFTZ3LwkH/wQAAjE0II0RQ0WLL3TTrxV7wzUO0EPtRab1dKTVZKTfaV2Qn8H7AV7wxYr/tWeBJ1cG77c9Fo1hypbrGv6iWcNxKUYv9nFa/HhBBCNHcNeoNDa/2F1rqb1rpL6SIZWutXtNavlCnzrNa6p9a6t9b6+YaMp6XqHdObMEsYqw6vqrlwFTpdOA6T20PapnUBjEwIIURT0CJWvXM6naSnp2O32xs7lFMWERHBzp11v5PxbI9ncbqd9apbaug9D+LRmh07dlBmyc+Aqu/5NSabzUaHDh0wm82NHYoQQtRLi0j26enphIWFER8f32BJ6nTJz88nLKzui4WdsJ/gcMFhEiITsJls9Tp2weFwCoqLiGnTDnNISL3aqEl9z6+xaK3Jzs4mPT2dhISExg5HCCHqpUW8p2C324mJiWn2if5UhJpDAShwFtS7DWuE99U9R15uQGJqCZRSxMTEtIhRIyHEmatFJHvgjE70AGajGavRSqGz/su7m4JDMAAl9uLABdYCnOm/W0KI5q/FJPvGlJ2dTXJyMsnJybRp04b27dv7P5eUlJQrO2nSJBYtWhTwGK699louO+8yXnrhJXbs3EFycjJ9+/Zl//79tW5DKYXZaMLp8aA9noDHKIQQonG0iHv2jS0mJobNmzcDMHPmTEJDQ7nvvvtO2/GPHj3Kjz/+yLa92ziQd4CPXv2Iyy+/nMcee6zObVmCg3Hk51GSl4c1MrIBohVCCHG6Sc++gcybN4+UlBT69OnDlVdeSVFR0UllHn30USZNmoTH4+HZZ58lJSWFIUOGMGPGjErbtNvt/PnPfyYxMZG+ffuyYsUKAMaMGUNGRgbnDTyPl599mbkvzOX1119n1KhRdY7bFhnlPVZ+Xp3rCiGEaJpaXM/+sU+3s+NwYBNVz3bhzLi0V53q/PGPf+TWW28F4JFHHuGNN97g7rvv9u9/4IEHyM3N5a233uKrr75i7969rF27lry8PK6//npWrlzJ8OHDy7U5d+5cAH7++Wd27drFmDFj2LNnD5988gnjx49n8+bNHMjzzoDXKbYT999/f53P1WixYEJRUuKoc10hhBBNk/TsG8i2bds477zzSExM5L333mP79u3+fY8//jg5OTm8+uqrKKVYvnw5y5cvp2/fvpx33nns2rWLvXv3ntTmDz/8wA033ABAjx496NSpE3v2lFtGgHBLOB7twelx1jt2q82GG3BWMhohhBCi+WlxPfu69sAbyqRJk1i6dCl9+vRh/vz5pKam+velpKSwYcMGjh8/TnR0NFprHnroIW6//fZy76HPnTuXefPmAfDFF1+gdeWrWZUVaglFoXC4698zt0VGUXi0GHvOCczBwfVuRwghRNMgPfsGkp+fT9u2bXE6nbz33nvl9o0bN44HH3yQSy65hPz8fMaOHcubb75JQYH3HflDhw6RkZHBXXfdxebNm9m8eTPt2rVj+PDh/rb27NnDgQMH6N69e7m2TQYTZqMZu8teq4uDyphDQjAir+AJIURL0eJ69k3F448/zqBBg+jUqROJiYnk5+eX23/11VeTn5/PZZddxhdffMF1113HkCFD8Hg8hIeH8+6779KqVatyde68804mT55MYmIiJpOJ+fPnY7VaTzq21WjFrd043I56z6ZnMVsodpbgdpZgNFvq1YYQQoimQZJ9gM2cOdP/9R133HHS/vnz5/u/vvnmm7n55psBuOeee7jnnnuqnU7WZrOVq18qPj6ebdt+XyzwyVlPsvv4bvJK8uqd7G3hERRnZ2I/cYKQVq3r1YYQQoimQYbxWyCTwUSwOZg8R/3fSrCEh6MAR2H9Z+QTQgjRNEiyb6HCLeE43A4crvo9qKcMBixGI06PW2bTE0KIZk6SfQsVbgkHIK+k/r17a0goGnDknAhQVEIIIRqDJPsWymw0E2QOOqVkb4uKRgH2Cg8XCiGEaF4k2bdg4ZZw7C47Je6SmgtXwmAyYVIGSlzOer/GJ4QQovFJsm/BAjKUHxSEB3D65gAQQgjR/MirdwGQnZ3N6NGjAe8KdEajkbi4OADWrl2LxdI476lbjBZsJht5JXnEBsXWqw1bVDQFRYXYc3OwVPFKoBBCiKZNkn0A1HeJW7fbjdFobNDYwi3hZBRl4HQ7MRvNda5vstkwASUOe+CDE0IIcVrIMH4DmTRpEosWLfJ/Dg0NBSA1NZVRo0Zx3XXXkZiYSGpqKiNHjuSqq66iR48e/OUvfwno/fHSofz8kvo/ZGex2nABLrskfCGEaI5aXs/+fx+Eoz8Hts02iXDR7IA1t3btWrZt20ZCQgKpqals2rSJ7du3065dOwYPHsyqVasYNmxYQI5lNVmxGC3kleQRHRRdrzZsEREUZdix55wgtE3bgMQlhBDi9JGefSMYOHAgCQkJ5T536NABg8FAUlISaWlpAT1euCWcQmdhvZe9NYeGYQAcsuStEEI0Sy2vZx/AHvipMJlMeHwzz2mtKSn5/fW3kJCQcmXLLmZjMBhwuVwBjSXCGkFWcRa5jtx6PainlMJiMuNwOXE7nRjNdb/3L4QQovFIz76BxMfHs2HDBgCWLVuG01m/XnUg2Ew2gkxB5Dpy691GUEQkGrAfzw5cYEIIIU4LSfYN5NZbb+W7775j4MCBrFmz5qTe/OkWaY3E7rJT7KrfGvWWiAgMgL1Q3rcXQojmpuUN4zeyskvc/vTTT/6vn376aQBGjhzJyJEj/dsrfv7nP/9Z5RK3pyLcGs7RoqPkOHIIMgXVub5SCmvpGvclDowWa82VhBBCNAnSsz9DmAwmwixh5Dpy8ej6rWIXFBkFQHG2DOULIURzIsn+DBJpjcTtcVNQUr+heHNYGEbAXixP5QshRHMiyf4MEmoOxWQwkePIqVd9pRRWixWX1jLBjhBCNCOS7M8gSikirBEUlBTg8tTv9T5blG8oX57KF0KIZkOS/Rkm0hqJRtf7NTxLqHco31Fcv6f6hRBCnH6S7M8wNpMNm8lW76F8AKvVhguNSxK+EEI0C5LsA+jo0aNMnDiRLl260LNnTy6++GL27NlD7969AVi/fj1TpkypU5vx8fFkZWUFNM7Sd+7trvrddw+K8s6xL0P5QgjRPMh79gGiteaKK67gpptu4oMPPgBg8+bNHDt2zF9mwIABDBgwoLFC9IuwRnCs6Bg5jhzamNrUub45JMT7VL69GFnhXgghmj7p2QfIihUrMJvNTJ482b8tOTmZjh07+j+npqYyfvx4wDv5zk033cSYMWOIj49n8eLFPPDAAwwePJhx48aVm1732WefZeDAgQwcOJB9+/adcqwmg4lQc+gpvXNvswXhBpyFhaccjxBCiIbV4nr2z6x9hl3HdwW0zR7RPfj7wL9XW2bbtm3079+/Tu3u37+fFStWsGPHDoYMGcLHH3/Mo48+yo033sjnn3/OH/7wBwDCw8NZu3Ytb7/9NlOnTuWzzz6r97mUirRGkl+ST6GzkDBL3fvnQdExFB5Op/jEccyNPBWwEEKI6knPvhFddNFFmM1mEhMTcbvdjBs3DoDExMRyy9xee+21/r9Xr14dkGOHWkIxGoycsJ+oV31TUBAmFA6HvG8vhBBNXYvr2dfUA28ovXr1YtGiRXWqU7q0rcFgwGw2o5Tyfy67zG3p9opfnwqDMhBljSKrOIsSdwkWo6XObViDgigsLqKkIB9LqNy9F0KIpkp69gFy/vnn43A4mDdvnn/bunXr+O2330657YULF/r/HjJkyCm3VyrK5p0g57j9eL3qB0XHAFB8vH71hRBCnB4trmffWJRSLFmyhKlTpzJ79mxsNhvx8fE8//zzp9y2w+Fg0KBBeDweFixYEIBovSxGC+HWcHIcObQKboVB1e3az2SzYVYGHM4StMeDMsi1oxBCNEWS7AOoXbt2fPjhhydt37ZtG1B+OduyS+ECFBT8vjhN2X2l9+5nzJgR0FhLRduiyXPkkevI9ff06yIoLIy8vFzsx7MJio1rgAhFU2I0GklMTPR/Xrp0KfHx8afc7vr163n77bd54YUXmDlzJqGhodx3333lyqSlpTF+/Hj/v6fTYfr06QwfPpwLLrjgtB1TiIYgyf4MF2wKxmqykm3PJtIaWednAoKiY8jPy6U4P0+S/RkgKCiIzZs3B7zdhp6DQmuN1hpDHUefZs2a1UARCXF6ybjrGU4pRYwtBofLQZGr7kvXKqMRm9lCiceD2+FogAhFU7dhwwZGjBhB//79GTt2LEeOHAFg3rx5pKSk0KdPH6688kqKiry/Xx999BG9e/emT58+DB8+HCg/BwXAli1bOP/88+natWu552BKud1u7r//flJSUkhKSuLVV189qUxaWhrnnHMOd955J/369ePgwYM8++yz/jplR8sef/xxbrzxRi688EKuvfZannvuOQAmTZrkf/D2m2++oW/fviQmJnLzzTfj8P2+x8fHM2PGDPr160diYiK7dgX21V8hAkGSvSDCGoFRGev/oJ5v+tyirMxAhiWaoOLiYpKTk0lOTuaKK67A6XRy9913s2jRIjZs2MDNN9/Mww8/DMAf//hH1q1bx5YtWzjnnHN44403AG9v+csvv2TLli188sknlR5n69atfP7556xevZpZs2Zx+PDhcvvfeOMNIiIiWLduHevWrWPevHn8+uuvJ7Wze/dubrzxRjZt2sTu3bvZu3cva9euZfPmzWzYsIGVK1eyfv16Pv74Y+bNm8fixYtZv379Se3Y7XYmTZrEwoUL+fnnn3G5XLz88sv+/bGxsWzcuJE77rjDf6EgRFPSoMP4SqlxwH8AI/C61np2hf0jgWVA6b/SxVprGTc7zQzKQKQtkuzibEqC6/4aniUsDFPGUez2YkK1DtjrgaLpqTiMv23bNrZt28aFF14IeHvcbdu29e975JFHyMnJoaCggLFjxwIwdOhQJk2axIQJE/jjH/9Y6XEuv/xygoKCCAoKYtSoUaxdu5bk5GT//uXLl7N161Z/rzs3N5e9e/eSkJBQrp1OnToxePBgf53ly5fTt29fwPuczN69e8nPz+fyyy/HarUSFhbGpZdeelI8u3fvJiEhgW7dugFw0003MXfuXKZOnQrgP4/+/fuzePHiunxLhTgtGizZK6WMwFzgQiAdWKeU+kRrvaNC0e+11uNPakCcVtG2aLKLszlhP0HrkNZ1rm8LDqGgqJCSvDysERENEKFoirTW9OrVq9LJniZNmsTSpUvp06cP8+fPJzU1FYBXXnmFNWvW8Pnnn5OcnFzpMwAVLxgrftZa8+KLL/ovIKoSUmZ2R601Dz30ELfffnu5Mv/+97+rbaO0bnVK58wwGo3l5sgQoqloyGH8gcA+rfUvWusS4APg8gY8njgFFqOFMEsYJxwn6jVfflBsHAoozpF37s8k3bt3JzMz05/snU4n27dvByA/P5+2bdvidDp57733/HX279/PoEGDmDVrFrGxsRw8ePCkdpctW4bdbic7O5vU1FRSUlLK7R87diwvv/yyfw2JPXv2UFjDOg1jx47lzTff9L/5cujQITIyMhg2bBiffvopJSUlFBQU8Pnnn59Ut0ePHqSlpfnXpnjnnXcYMWJEbb9NQjS6hhzGbw+U/VecDgyqpNwQpdQW4DBwn9Z6e8UCSqnbgNsA4uLi/D2EUhEREeTn5wco7Po7duwYf//739m4cSNWq5WzzjqL2bNn07Vr11rVf+KJJxgyZAijR49u4EgrF6SDyPfkcyz3GKHG0DrXNymFw+UiLzcHZTBWWsbtdjeJn1Vd2e32k37vKlNQUFCrcs1RQUEBbrf7pPN78MEHmTx5sn//VVddxfjx47nhhhvo06cPrVu3pnPnzhw9epTU1FSmT59Oeno6Wmv69evHiRMn2LJliz+xp6Wl0aFDB84991wyMjKYOHEie/bs4ejRoxQWFpKamsrZZ59NSEgI3bt3R2tNZGQkjz/+OKGhv//eli0PYLFY/A/ngfeWxLRp02jfvj1JSUncfPPNtG3blo4dO/pjPXr0KNu3byc2NpZ77rmHiy66CLfbTffu3TnnnHNITU3FbrezatUqIiIi2L17Nzk5OY3yO9A+x9t321HFsVvy7ya0/PM7ZaWvpAT6D3A13vv0pZ9vAF6sUCYcCPV9fTGwt6Z2u3XrpivasWPHSdtON4/HowcPHqxffvll/7ZNmzbplStX+j+7XK4a28nLy2uQ+GrD4/HovSf26n0n9mmPx1Pn+sXZ2frIvj264OiRKss05vmditr+jq1YsaJhA2lELfnc8vPz9YoVK3RhYaHu37+/3rBhQ2OHVGfHXtmij72ypcr9Lfnnp3XLPz9gvT6FnNyQw/jpQMcynzvg7b2XvdDI01oX+L7+AjArpWIbMKYGU9USt263m1GjRnHdddf5F7jp3bu3v8xzzz3nn0Sn9B4neHtLPXv2JCkpyT+5SGZmJldeeSUpKSmkpKSwatWqgJ6DUopoWzR2l71er+FZo6IwAMWFBTWWFaIpue2227jlllvo168fV155Jf369WvskIQIqIYcxl8HdFVKJQCHgInAdWULKKXaAMe01lopNRDvMwTZp3LQo089hWNnYN9ztZ7TgzbTplVbprolbteuXcu2bdtISEgot5pdVY4fP86SJUvYtWsXSilycnIAuOeee7j33nsZNmwYBw4cYOzYsezcubPO51OdSGskmUWZZBZlEhJRt6VrlVLYrDaKHHacRYWYg2XpW9E8vP/++6SmpvpnuBSipWmwZK+1diml/gp8iffVuze11tuVUpN9+18BrgLuUEq5gGJgom+4okUZOHDgSa8EVSc8PBybzcYtt9zCJZdc4p9s5Ouvv2bHjt9fZsjLyyM/P5+wsMCtOGdQBmKCYjhWeIwiZxHB5uA61Q+OiaXocDrF2dmS7IUQoolo0PfsfUPzX1TY9kqZr+cAcwJ5zJp64A2luiVuy77+YzKZ8Hh+f9rdbj95PXiTycTatWv55ptv+OCDD5gzZw7ffvstHo+H1atXExQUFPgTKKN06dus4izOMp9Vp7qmoCDMSmEvcRAmi+MIIUSTIP8TB0hVS9x+99135cq1bt2ajIwMsrOzcTgcfPbZZye1VVBQQG5uLhdffDHPP/+8/z3kMWPGMGfO79dGDTFHOYDRYCTGFkN+ST7FruI61w8KC8cDFGdnBT44IYQQdSbJPkBKl7j96quv6NKlC7169WLmzJm0a9euXDmz2cz06dMZNGgQ48ePp0ePHie1lZ+fz/jx40lKSmLEiBH+ST9eeOEF1q9fT1JSEj179uSVV145qW6gRNuiMSgDWcV1T9hBMbEYgKL8vMAHJoQQos5k1bsAqmqJ21tvvbXc5ylTpjBlypSTys2fP99/D37t2rUn7Y+NjWXhwoWBC7gaRoORaFs0WcVZ2IPs2Ey2WtdVBgM2WxBF9mJK8vOxBPCZAiGEEHUnPXtRpZigmHr37kPivDPqFR2XoXwhhGhskuxFlUwGE1G2KHIduZS4S+pU12ixYjGacLhcuEvqVlcIIURgSbIX1YoJikEpRWZx3ZevDYmOQQNFmRmBD0wIIUStSbIX1TIbzERZo8i11713bwkPx4Si2F6M9tR9cR0hhBCBIcle1CgmKAYU9bp3HxwWhgewHz+liRGFEEKcAkn2okYWo4VIayQ5jpw69+6DYuO8r+Hl5TZMcEIIIWokyT5AnnzySXr16kVSUhLJycmsWbOmzm3YC524HOVnC54+fTpff/11oNHX1eYAACAASURBVMKslU8++YTZs2cDMHPmTJ577jniguKY8/QcPv784zq1pQwGbFYbTq1xFsgCOUII0RjkPfsAWL16NZ999pl/HfusrCxK6vAEusvlwmQyYS9w4nKW3zdr1qwAR1uzyy67jMsuu6zcNrPRzMxZM8ksyqTYWUyQufZT9obEtaI4/QCF2VkYo2MCHa4QQogaSM8+AI4cOUJsbCxWqxXwTn5TOnPehg0bGDFiBP3792fs2LEcOXIEgJEjRzJt2jRGjBjBk08+SXx8PEaLQrshP6+Ajh074nQ6mTRpkn/O/XXr1nHuuefSp08fBg4cSH5+Pm63m/vvv5+UlBSSkpJ49dVXK43x7bffJikpiT59+nDDDTcAVS+ZO3/+fP7617+e1Mb9d9zP1599zdGio8THxzNjxgz69etHYmIiu3bt8rd54YUX0q9fP26//XY6derEifx8LEYjDpcT7XYH8DsvhBCiNlpcz/77D/eQdTCww8WxHUM5b0K3KvePGTOGWbNm0a1bNy644AKuueYaRowYgdPp5O6772bZsmXExcWxcOFCHn74Yd58800AcnJy/HPnb9y4kZ/WrqJPj4EsXbKMsWPHYjab/ccoKSnhmmuuYeHChaSkpJCXl0dQUBBvvPEGERERrFu3DofDwdChQxkzZky5Vfa2b9/Ok08+yapVq4iNjeX48eNA3ZfMVUoRbgmnyFmERhMbG8vGjRt56aWXeO6553j99dd57LHHOP/883nooYf4v//7P1577TUAgqNicGRl4M7LhcjI+v8whBBC1FmLS/aNITQ0lA0bNvD999+zYsUKrrnmGmbPns2AAQPYtm0bF154IQBut5u2bdv6611zzTXlvl60+CP6PDyQDz9cyJSpd5c7xu7du2nbti0pKSmAdxlcgOXLl7N161Z/7z83N5e9e/eWS/bffvstV111FbGxsQBER0cDVS+ZW50QcwgWowW3x80VV1wBQP/+/Vm8eDEAP/zwA0uWLAFg3LhxREVFAWCNiMCUlYmzxIGW1fCEEOK0anHJvroeeEMyGo2MHDmSkSNHkpiYyH//+1/69+9Pr169WL16daV1yi59e9lll/HQQw9x35SH2LR5E+eff365slprlFIntaG15sUXX2Ts2LFVxlZV3fosmWtQBloHt0ajseNdntdoNOJyufzHqkpIRAS5uTkUZWYQ0rpNrY8phBDi1Ej3KgB2797N3r17/Z83b95Mp06d6N69O5mZmf5k73Q62b59e6VthIaGMnDgQB6Z+SAXnj8WPOWTc48ePTh8+DDr1q0DvCvjuVwuxo4dy8svv4zT6X2yb8+ePRQWFparO3r0aD788EOys73vupcO49d3ydwwSxgKRVZxFm5P+Xvww4YN8y8GtHz5ck6cOOHfZ4uJxaihqCC/2osCIYQQgdXievaNoaCggLvvvpucnBxMJhNnn302r732GhaLhUWLFjFlyhRyc3NxuVxMnTqVXr16VdrONddcw9VXX82SDz6nxOEiyGzx77NYLCxcuJC7776b4uJigoKC+Prrr7nllltIS0ujX79+aK2Ji4tj6dKl5drt1asXDz/8MCNGjMBoNNK3b1/mz5/PCy+8wF133UVSUhIul4vhw4fXatlcpRRGgxGXx8Vx+/Fy+2bMmMG1117LwoULGTFiBG3btiXMt+qdUgqzzYbdYac4K4vguLi6fquFEELUg2puPazu3bvr3bt3l9u2c+dOzjnnnEaKKLDy8vIoyVVYgkyEx9Z+eL0xHMg7QKGzkK5RXTEZvNeNDocDo9GIyWRi9erV3HHHHeVGDPLy8rBnHsMAxHQ+u9LbC01RbX/HUlNTGTlyZMMH1Aha8rlB8z+/jFe3AtDq9qRK9zf386tJSz8/pdQGrfWA+taXnn0T4+39miixu6q8195UtA5uzf6c/RwrOkb70PYAHDhwgAkTJuDxeLBYLMybN69cHaUUwcEhFBQV4jhxApvvYUEhhBANR5J9E2SxGXEUOXG7PJjMxsYOp0pWk5XooGiyi7OJskYRbA6ma9eubNq0qdp6wa1aU5T2C4U5xyXZCyHEaSAP6DVBZpv3GqzE3vQnoIkLisNsMHO48HCtH7ozGI3YbEE4tcYhc+YLIUSDk2TfBBlNCoPRgNPuauxQamQ0GGkT0gaHy0G2vfYr24W0ao0CCrPrvpKeEEKIupFk3wQppbDYjJTY3c3iFbUwSxihllAyizJxup01VwCMZjM2i4USjwdnoSyQI4QQDUmSfRNlsZnQHo2rxNPYodRIKUXbkLZoNEeLjta6XmnvviAzs+GCE0IIIck+kI4ePcrEiRPp0qULPXv25OKLL2bPnj21b0Br0N7kbrZ5H8z7882/L4RT1vr165kyZUpA4q5q4Zu6sBgtxAXFkefII7+k+il3S5msNqwmMw63C1dx8SkdXwghRNUk2QeI1porrriCkSNHsn//fnbs2MFTTz3FsWPHat9I9j6Cir09Y6PJgNFswOOqfBh/wIABvPDCC4EIPWBigmKwGC0cKTyCR9duRCK0VSsUkH+s9iMCQggh6kaSfYCsWLECs9nM5MmT/duSk5MZNmwY999/P7179yYxMZGFCxcC3gkgRowYwYQJE+jWrRsPPvgg7y3+X84ddyWJiYns378fi9WEx6P56quvOO+88+jWrRufffaZv/748eMBmDlzJjfffDMjR46kc+fO5S4C3n33XQYOHEhycjK33347bt8Ss2+99RbdunVjxIgR/qVtT5VBGWgb0han20lWce0evDMFBft7984K0/wKIYQIjBb3nv2K+a+R8dsvAW2zVafOjJp0W7Vltm3bRv/+/U/avnjxYjZv3syWLVvIysoiJSWF4cOHA7BlyxZ27txJdHQ0nTt35pab/sTaz9/hPwu+4sUXX2T2k8+Chl9/TeO7775j//79jBo1in379p10nF27drFixQry8/Pp3r07d9xxB/v27WPhwoWsWrUKs9nMnXfeyXvvvceFF17IjBkz2LBhAxEREYwaNYq+ffsG5HsVagklwhpBVnEW4ZZwbCZbzXVat8Fx6CD5GceITugckDiEEEL8rsUl+6bmhx9+4Nprr8VoNNK6dWtGjBjBunXrCA8PJyUlxb/kbZcuXRhz0cVoILFbAiu+/xGL7779FZf9EYPBQNeuXencuTO7du066TiXXHIJVqsVq9VKq1atOHbsGN988w0bNmzwL4tbXFxMq1atWLNmDSNHjiTONzf9NddcU7dnC2rQJqQNBc4CDhUcIiEiAYOqfgDJZLNhM1sodpZQkp+PxTeXvhBCiMBoccm+ph54Q+nVq1elD9JV9+qc1Wr1f20wGLAGheAxWDG47bhcLgxGA8qocFe4b1/ZFLpl2ypdclZrzU033cTTTz9druzSpUsbdBpek8FEu5B2HMw/SGZxJq2DW9dYJ7RNG+wHD1CQlUG0JHshhAgouWcfIOeffz4Oh6PcXPDr1q0jKiqKhQsX4na7yczMZOXKlQwcOLDKdlymYHDZvU/mAwaDYumyxbhdbvbv388vv/xC9+7daxXT6NGjWbRoERkZGYB3advffvuNQYMGkZqaSnZ2Nk6nk48++ugUzrxy4dZwIq2RZBVlUeQsqrG80WIlyGKlxOORWfWEECLAWlzPvrEopViyZAlTp05l9uzZ2Gw24uPjef755ykoKKBPnz4opfjHP/5BmzZtKh2KB3AbfSvdae+DdAajokvnrowYMYKMzAxeeeUVbLaa74MD9OzZkyeeeIIxY8bg8Xgwm83MnTuXwYMHM3PmTIYMGULbtm3p16+f/8G9QCo7nN8lskuNw/khbdpSfCCNgqxMrOERAY9HCCHOVLLEbROTn5dLWEEahMRARAc8Hk1WegFBoWbComuX5JuSgpICfsv7jZigGNqEtCE/P9+/vn1l8g+lU2gvJjImFltk1GmMtHqyxG3LPjdo/ucnS9y27PM71SVuZRi/qVEGsIaAwzsxjcGgfKvguZrF1LkVhVpCibJFkV2cTaGz5lfrQlq3wQAUZGc3y/MVQoimSJJ9U2QN8963d5d4Pwab8Lg9uJxNf+rcyrQObo3FaOFQwaEaJ9sxmEwEBQXjQmM/fvw0RSiEEC2bJPumyOIb5nZ4F4ixBPmWvC1q+qvgVcZoMNI+tD1Ot5MTrhM1lvf37nOOS+9eCCECQJJ9U2QOAmX0D+UbjQbMViOO4uaZ7AGCzcHEBcdR6CnkhL36hG8wGgkJDccNFMk0ukIIccok2TdFSnmH8h35/lfwrMEmXCVu3M10KB8gLigOq8HKkcIj2F32assGt2qFCSgsLMDjar4XOUII0RRIsm+qrGHgcYLLAfw+lN+ce/dKKWJNsRiVkYP5B3F7qn7dTylFWEwcHiD/yOHTF6QQQrRAkuwDpKrlbdPS0ujdu3fdG7SW3rf3DuWbzEaMZgOOYmetqm/evJkvvviixnJlF9Sp61K31R3jq6++on///iQmJtK/f3++/fZbAIzKSJwljmn3TKNrt6706NGDjz/+uNI2rJGRZBw5Rrse5/CPp57yb4+Pjycry7vQzoYNG0hISGDTpk0UFBRw++2306VLF3r16sXw4cNZs2aNv96SJUtQSpWb48Dj8TBlyhT/QkUpKSn8+uuvtf4eCCFEcyCT6gRA6fK2N910Ex988AHgTYTHjh2jY8eO9WvUZAWjxZvsQ71z2FuDTBTlleBxezAYq79O27x5M+vXr+fiiy+u3/FrobpjxMbG8umnn9KuXTu2bdvG2LFjOXToEAD/efY/dGjbgZk/zfROpVvNBHszn3uO84cPx16Qf9K+rVu3ctVVV7Fw4UL69u3LxIkTSUhIYO/evRgMBn755Rd27tzpL79gwQKGDRvGBx98wMyZMwFYuHAhhw8fZuvWrRgMBtLT0wkJCTm1b4wQQjQx0rMPgKqWtz3vvPPKlXO73dx///2kpKSQlJTEq6++CkBBQQGjR4+mX79+DB48mGXLlgGQdiyHcwZfwK233EKvXr244upLKbYXnzSU/9FHH9G7d2/69OnD8OHDKSkpYfr06SxcuJDk5GQWLlzI2rVrOffcc+nbty/nnnsuFScmqk5ldSs7Rll9+/alXbt2gHfdALvdjsPhvSXx5ptv8vijjxNiDiGjOIPQyNBKj7t06VK6dO1K7x49cGuNIyfHv2/nzp384Q9/4J133mHgwIHs37+fNWvW8MQTT2AweH+tO3fuzCWXXOL/Hq9atYo33njDf0EGcOTIEdq2beuv06FDB6Kims5kPkIIEQgtrmef8+l+Sg4Hdl10S7sQIi/tUuX+qpa3reiNN94gIiKCdevW4XA4GDp0KGPGjKFjx44sWbKE8PBw0tLSuOCCC7jsssvAEsreXw+w4P2/MO/115kwYQJffPkp1117HUGhFn+7s2bN4ssvv6R9+/bk5ORgsViYNWsW69evZ86cOQDk5eWxcuVKTCYTX3/9NdOmTaty+LyiHj16VFq34jGq8vHHH9O3b1+sVqt/nv7p06ezInUFrTu2ZsY/ZjCw60CMBqO/TmFhIc888wxfffUVz/7jHyhnCfnZmVgivNPoXn755bz77rsMGzYMgO3bt5OcnIzRaDw5ALwXDuPGjaNbt25ER0ezceNG+vXrx4QJExg2bBjff/89o0eP5k9/+lPAlvsVQoimQnr2p9Hy5ct5++23SU5OZtCgQWRnZ7N371601kybNo2kpCQuu+wyDh06xLFjx8AcQkLHdiT3SACgf//+HD6aTkmxG+35/f3zoUOHMmnSJObNm1flHPe5ublcffXV9O7dm3vvvZft27fXOu5Tqbt9+3b+/ve/+0cx3G436enpDB06lE0bNzFy2EiefvRp0gvSy71TP2PGDO69915CQ0NRBgMWixUXUJRxDIALLriA119/vdZz+i9YsICJEycCMHHiRBYsWAB4e/K7d+/m6aefxmAwMHr0aL755ptan58QQjQHLa5nX10PvKFUtbxtRVprXnzxRcaOHVtu+/z588nMzGTDhg3Y7XYSExOx2+1gNGG1Wb337cPaYDQa0cqD1poSuwtrsBmAV155hTVr1vD555+TnJzM5s2bTzr2o48+yqhRo1iyZAlpaWl1mkO6vnXT09O54oorePvtt+nSxftziY6OJjg4mCuuuAKA6ydez/y35lNQUsDRoqO0DWkLwJo1a1i0aBEPPPAAOTk5GAwGDGhuvvEGAObMmcPkyZO58847efXVV+nVqxdbtmzB4/H4h+RLZWdn8+2337Jt2zaUUrjdbv+iREoprFYrF110ERdddBGtW7dm6dKljB49utbfHyGEaOoatGevlBqnlNqtlNqnlHqwmnIpSim3UuqqhoynoVS1vO13331XrtzYsWN5+eWXcTq9T9Tv2bOHwsJCcnNzadWqFWazmZUrV/Lbb7/9XkkZoaQQfK+pGU0KpVS5+/b79+9n0KBBzJo1i9jYWA4ePEhYWBj5+b8/1Jabm0v79u0B78VFXVRVt+IxysrJyeGSSy7h6aefZujQob+fjlJceumlpKamAvDNN9+Q2CuR6KBojhcf57jdO0Xu999/T1paGmlpaUydOpVp06Yx9d578QAetwuDwcCCBQvYvXs306dPp0uXLgwYMIAZM2b4Rwj27t3LsmXLWLRoETfeeCO//fYbaWlpHDx4kISEBH744Qc2btzI4cPeV/s8Hg9bt26lU6dOdfr+CCFEU9dgyV4pZQTmAhcBPYFrlVI9qyj3DPBlQ8XS0EqXt/3qq6/8r33NnDnT/4BaqVtuuYWePXvSr18/evfuze23347L5eL6669n/fr1DBgwgA8//JAePXqUadwAaCgp8B/LEmSipMzCOPfffz+JiYn07t2b4cOH06dPH0aNGsWOHTv8D8898MADPPTQQwwdOrTOy9lWVbfiMcqaM2cO+/bt4/HHHyc5OZnk5GT//fpnnnmGmTNnkpSUxDvvvMM///lP2gS3YfXXq3n4kYerXDDHFhmF1WhEaygpKMBqtbJs2TI++eQT5s6dy+uvv87Ro0c5++yzSUxM5NZbb6Vdu3YsWLDAP5JQ6sorr+T9998nIyODSy+9lN69e5OUlITJZKrT64dCCNEcNNgSt0qpIcBMrfVY3+eHALTWT1coNxVwAinAZ1rrasfDW/wStxWXgPV44NjPEBQFkWcBYC90kpdVTGTrYCy25nUnprolbt0eN7/k/oJbu+kc0RmL0XJymRIHWQcPYEQR07kLSqmGDhmQJW6hZZ8bNP/zkyVuW/b5neoStw2ZKdoDB8t8TgcGlS2glGoPXAGcjzfZV0opdRtwG0BcXJx/CLhURERElcPJzY3b7T7pXGzGYIzFORQaIkEpf4++ILcIs/P0JLtAqez8yooxxnDMeYy0nDRam1tjUCcPPlktVuwlDnLTD2I8TWve2+32k37vKlNQUFCrcs1RSz43aP7n1z7H+29lRxXn0NzPryYt/fxOVUMm+8qyUMVhhOeBv2ut3dX10LTWrwGvgbdnX/HqbefOnVX2FpubSnu+JhecSCPMqvwz63mKi3C7PISGhpy23m0gVNezL2UpsXAg7wA55NAxtONJCV+HhuL6ZT+OEgexFgtGq7UhQwbAZrPV6pW8lty7aMnnBs3//DJ2e3v2XUdKz16crCEf0EsHyk4f1wGoOMn5AOADpVQacBXwklLqDw0YU/NkDQcU2HN/3xRiwu3y4Cqp2/335iDUEkrb0LYUlBRwuODwScvcKqUIb90GDeQdOdQ4QQohRDPSkMl+HdBVKZWglLIAE4FPyhbQWidoreO11vHAIuBOrfXS+hysRa97bjB6E35xTplV8MwopbAXNN+FcaoTZYuiVXArch25HC06etLP1xIaSpDFisPtxn48u0FjadG/W0KIM0KDJXuttQv4K96n7HcCH2qttyulJiulJldfu25sNhvZ2dkt+z/loAjvKnhO70TyBoP3qXx7kbPcBDstSWxQLDFBMRwvPk5WcdZJ+8PatcMA5J84jqeObxjUltaa7OxsbDZbg7QvhBCnQ4M+yq21/gL4osK2V6ooO6m+x+nQoQPp6elkZmbWt4kmw263V55YPB7Iy4RjdrBFAuByuinOc3LkuBmzpfJpYpuaKs+vChpNrj2Xo66jRFojCTYHl9vvLCyguKiIg8cyCIqKDnS4gPdiskOHDg3SthBCnA7N672tKpjNZhISEho7jIBITU2t+kGwt6dBbjr8dT0ohcej+e9Dq2jVKZxL7qzHMrqNoNrzq4LT42TKt1P48fCP/HPEP7mg0wXl9i/683UcKMxlwl330WHEqECGK4QQLYLMjd+cnHMpZO+DTO88AwaDovvANhzYlk1RXkkjB9dwzAYz/xzxT3rH9ubvK//Oj4d/LLd/7KzZmD2a/5vzL1xFgV0ESQghWgJJ9s1Jj/GAgp2f+jd1H9wGj0ezd92xxovrNAg2B/PS6JeIj4hnyrdTWH14tX9fWMezGHnRH8g1aFZMn9aIUQohRNMkyb45CWsDHQfCzt9faohpH0rcWWHsXnO0EQM7PSKsEbw+5nXOCj+Lu7+9u1zCT/zLbcSHRPDzgX389lWznXlZCCEahCT75uacS+HoVjiR5t/UfVAbMg/kk32ooPHiOk2ibFG8MeaNShP+uCeexerRfPnai5QUynC+EEKUkmTf3PQY7/1752f+TV1TWmMwKHb/1PJ793Bywv/pyE8AhLRrx6g/XEO+Ab59+P5GjlIIIZoOSfbNTXQCtEksd98+ONzCWb1j2L32KJ4W+s59RVG2KP+Q/l+/+as/4ff80010CY9h++Hf+PXzT2toRQghzgyS7Jujcy6Dg2sg//eefPdBbSjKLSF91/FGDOz0irZF+xP+XV/fxbcHvgVgzFPPEuTRLH/rFRw5OY0cpRBCND5J9s3ROZcCGnZ97t+UkBSLNdjErtVnxlB+qWhbNG+OeZMe0T24N/VeluxdQnBcKy6YcAMFRsWXD/5PY4cohBCNTpJ9cxTXA2LOLvdUvtFs4OwBrfl1cyYlxS1zvvyqRNoimTdmHoPbDmb6j9N5a9tbdJtwLefEtWfviQy2zHu5sUMUQohGJcm+OVIKel4Ov64sN5TfY3AbXE4P+zZmNGJwjSPYHMyc8+cwLn4c/9rwL/614V9c+Mw/idSK7778lOPbf27sEIUQotFIsm+u+lwH2gNbPvBvap0QTlTbEH5OTW/ZiwJVwWw0M/u82VzT/Rre2vYWj2/+Bxff/whawSezHsHtcDR2iEII0Sgk2TdXsWfDWUNg07v+ZW+VUiSN6kDWwQKO7s9t5AAbh9Fg5OFBDzO5z2SW7FvCrNz5DBo6kmzcfDPtvsYOTwghGkWNyV4p1UopdYVS6i6l1M1KqYFKKblIaAqSr4fsvZC+zr+p+6A2WINNbPk2vREDa1xKKe5KvotHBz/K6sOreSZhNWeFhPPzwV/Y89HCxg5PCCFOuyqTtlJqlFLqS+Bz4CKgLdATeAT4WSn1mFIq/PSEKSrV6w9gDvb27n3MViPnDG3HL5szyT9ub8TgGt+E7hN4+YKXOVZ4jDfOSyfEo1m+8L/k/ZbW2KEJIcRpVV0P/WLgVq11itb6Nq31I1rr+7TWlwF9gE3AhaclSlE5axj0ugK2LYaS36eHTRzRHrRm28pDjRhc0zCk3RDevfhdVHgIPyRl4lSKT6f9DbfT2dihCSHEaVNlstda36+1PlDFPpfWeqnW+uOGC03USvL1UJJfbka98NggEvrEseP7w7hK3I0YXNPQObIz71/yPsaUnhyPyOaoy8GSqXfgdp1ZrygKIc5c1Q3j/6m6e/NKqS5KqWENE5aotU7nQlRCuaF8gKRRHbAXOtnTwpe+ra0oWxTzxszDc9P5WDzZ/JZ1lMWP/E0SvhDijFDdMH4MsEkp9abv4bwJSqkblVKzlFLfAf8AJJM0NqWg7/WQ9j0c/9W/uV23SGLah7L12zPzNbzKWIwWnhj2JDEP307rvCwO/LqfBY/dh9slQ/pCiJatumH8/wD9gAVAHDDa9/kQcIPW+kqt9d7TEqWoXp9rAQVbFvg3KaVIOr8D2YcKOLxH5ocvpZTiuuRJ9Hr6MbpkZHFszz5enzkFl9zDF0K0YNW+Qqe1dmutv9Jaz9Ra3661nqq1frWqe/mikUR0gC6jYPP74PH4N3dLaY0txMzWFWfua3hV6Zs8lpTpM+iZnknB3oP8+5E/U1xcWHNFIYRohuR9+ZYi+XrIPQi/fuffZLIY6XleO37dkkleVnEjBtc0tR91Ef0n3UziwQxU2gmeve86dv6yqbHDEkKIgJNk31L0GA+2CNj8XrnNvYe3B6XY9p28hleZuFtuo2fKufT7LQPbcSfLHn2YBYufb+ywhBAioCTZtxRmGyRe7X0Fr/j3e/Rh0Ta69I1jx6rDlNjlyfOKlFK0e+pJ4uPacEFaNp5QI4cXfs1TM27gRF5WY4cnhBABUd2rdf9T3Z/TGaSopeTrwWWHnz8qv/mCs3AUuaR3XwVDSAgdXn6FUIOZq36xYxnQCfOu48y59yZ+3PBlY4cnhBCnrLqefZjvzwDgDqC9789kvNPmiqamXV9omwxrXyv3oF7rhHDO6hXDpuUHpHdfBUuH9nR8aS6ejEwu3ZRDvztuRLlh1bMv8MLc/8FeIs88CCGar+pevXtMa/0YEAv001r/TWv9N6A/0OF0BSjqQCkY8lfI2gP7vi63K2V8PPZCp/TuqxHUpw/tnplN8caN9PhsPbc+9yqOsyNwrtzDP+6ZwIZtKxs7RCGEqJfa3LM/Cygp87kEiG+QaMSp6/UHCGsHq+eU29wmIYKzekWz6Svp3VcnfNw44u69l7zPPsPw/hIeeeJ9Ot0wHlOhm2+eeIY5rzxAidPR2GEKIUSd1CbZvwOsVUrNVErNANYAbzdsWKLejGYYdLv3FbyjP5fblXJJAvYC6d3XJOa2W4m43d6J6QAAIABJREFU8o9kvfQSucuWcdX4yUx67iVKOofjWLGD2fdczcbt3zd2mEIIUWs1Jnut9ZPAn4ETQA7wZ631Uw0dmDgF/W8Ccwisnltuc5vOEZzVU3r3NVFK0XbGDIIHDeLwI49S+NNPtGsVzyNPLaDDdWMx5bv4+vHZ/Ps/Uygszm/scIUQoka1ffUuGMjzTaGbrpRKaMCYxKkKioJ+N8DPiyDvSLldKeN9vXtZ/rZaymKhwwv/wRofT/qdd1H88zYArrn8bm58bi7OblF4fvyFf/11Iv+74v1Gjvb/2bvvsKiu9IHj3zvDDDPMMMMMvQkDIgqCdOy9xthi1Nhikk1Mb5u2Kb/NbnrbJLuJrumaakzRxMQSTYLGSrGjYgMUEJHepcz9/TGE1YiIUarn8zw8zMy9c+dcQd57z3nPewRBEJp30WDf0HX/GPB4w0sq4NMLv0PoEOLvAGsdJL13zsseAUZ8Q8zsWnec2jNi+dvmKI1GfN9/H6XJxIn58zlzzLbQkI+7hSef+ZSQO2YBsH/R5zz/9znk5GW0Y2sFQRAurCV39lOAiUAFgCzLOdim5AkdmdkCva6F5A+h5tya77HjLVSVibH7llC5u9Htg/dBoeD4rX+hNje3cdu4YbN48K3PUfQPQHWoiCV/vYutKd9QW1fTzBEFQRAurq7eyt6sEj7YlM7tnyRf9vFaEuxrZNsaqTKAJEm6y/5UoW30uweqis5ZDQ/AM9B2d79zXaa4u28Btb8/3d57F2tpGcdvvZW6oqLGbXoHIw/e/x9G/f0Jap3tUSem8+I9U1m/6et2bLEgCJ1NdW09iemFLPj1CDd+mEjEM+uY8PYmnv1hP/tPll728VsS7JdJkvQO4CRJ0m3AeuC9i7xH6Ah848E7GrYuPKfIDvzv7n7vBrEiXktoQkLwWbiA2uMnOHHHHVgrzu0tiQwZwFNvfAODQ1FUW9n91mKee2ImRzL3tVOLBUHoyMrP1LHx0GleW5vG9EVbCf/nT0x/Zyuvrk0jt6SKyZFe/GdmJNseH8Fvjw6/7M+za26jJEkS8CXQEygFgoG/y7K87rI/WWh9kgT97oavb4HDayF4XOMmz0DbvPsdazLp1d8TrV7djg3tHHRxcXi//i+y7rufrHvvxee//0Vhb9+4XaFQEB06jqibHmfxh/+kbsshvvnbY2j6B3HTTX/H6Ghux9YLgtCeCitqSMooJDG9kKSMQlJzSqm3yigVEr29DMzr50esv5lYfzMm3ZX/e9xssJdlWZYkaYUsy9GACPCdUa9JYPS1TcM7K9gD9J/anS+fSyJpZTqDZwa3UwM7F8eRI/F8/nlOPvEEWffci8+Ct1Goz/2PadA5cd+9b3Bk4j6WvvM8dpuO8HbSHDxH92fOjEdQq+wvcHRBELqKnOKqxuCemF7I4bxyANR2CiJ9nbhraCBxFjNR3Uzo7JsNxVdESz5hmyRJsbIsJ7V6a4QrT2lny8z/6Uk4vg269W3c5Oylp/cgL/b9lkPoEG+cvfTt2NDOw2nKZKiv4+RT/0f2vffh/dZ/zgv4AN39evPUC1+wYfv3bPj0Q4pWbuPlhKmEXDeBKWNvQ6EQi04KQlcgyzLp+RW2wN4Q4LOKbOtp6O3tiPYzMTnSm3iLmTAfI/Z2yjZvY0uC/TDgdkmSMrFl5EvYbvrDW7VlwpUTczNs/jf88hzc9MM5m2InWDiUdIrNXx1mwn0R2EZuhItxuv565HoruU8/TfYDD+Lz5htITQR8gCHxExkUey0r1rzPvuXfk7FkJc+tXs2AmTcyov91bdxyQRAuV71V5mBuKUmNwb2I/HJbGW1nnZpYfzO3DLAQZzHTy9OAUtH+f1dbEuzHXXwXoUNT62DQQ7DmMTi2AQKGNG7S6tXEjrew6avDZO4rwD/MpR0b2rmYZkwHaz25/3yG7Icewvv11y+4r0Kh4Lpr5nPtqHl89tW/qF67iV3//pDNX33G0Jk3MThuQhu2XBCES1FTZ2VvdklDl3wByZlFlDVUIfV20jIoyIU4i228PdBV1yFvmi4Y7CVJMsiyXAqIeqBdQfRNsOU/8MuzYBlsS95r0HuoN/s2ZrP56yP4hphRKkX3ckuZZs5Erqvn1PPPk/3QwzBpYrP7q1X23DzrCUonFfPZF69wZuMukv71Dgm+Sxg5+zb6R45po5YLgnAhlTV17DxezPb0QpLSC9l5oojqWtuMpkBXHdeGexFnMRHrb8bH5NDOrW2Z5u7sPweuBVKwzbE/+1JFBgJasV3ClabSwJBHYeX9cPgn6PG/oKJUKhhwfXd+XLCHfQnZ9Bnh244N7XzMc+eAtZ5TL76E8dQprIMGNTmGfzaDzok7b32BkhmFfPLZS9Rs2sfWl97iZ/8PGDH9L/SPFkFfENpK3ukiNm1OIk12ZntONfuyS6izyigkCPEyMDOuG/EWMzH+Zlz0nTPB9oLBXpblaxu+izr4XUXEbNj0hm3svvsoOCtBzK+3M74hZpJ+TKdHvLuYineJzPPmgdKOU889R9Ydd+Lz9lsoHC5+xW90NHPPHa9QODOPzz59mZqtB9j6ylus936XftfdwIj+U0UinyBcYenHT7J1cxIZqXupyT6CvvI0EpDgMRZDryjmDw4gzmIm2s+Eo0bV3s29Ii46Zi9J0uCmXpdleeOVb47QqpQqGPo4LL8dDnwPoZMbN0mSxIDrxVS8y2GeM5tDx4/Dp59y/Nbb8H1nEUrHllWWNhvduPfuf1E4J4+lX75O9aY97HlrCVuWfkrkpMlcO2KeCPqC8CdYrVYOHM4gcWsyWQdSsZ48iv5MMQAKSYVs9sUuJIZekRHc3i8Sva5zdMtfqpYk6D1y1mMNEIeta//yS/oIbS9sGvz2Ovz6AvSaAIr/TQE5eypeyCBvXHzEVLxLVd2/HyFRUWQ/8gjH592E7wfvY2cytfj9ZqMbd81/ifI5JSz9+k2qfk3k8Pvf8NzX3+I/YhDTJt6NViMqVgvChdTX1bNjTxo7ElPIPbQfxaljONTZKl4qlRrqXfzQdB9KWHQk8TFh2NtfHb2YFw32siyfkyYsSZIv8EpLDi5J0ljg34ASeF+W5Zf+sH0S8CxgBeqAB2RZ3tSypgt/ikIJw56Ar+bB3q+gzw3nbI6bEMCRHXn8+skBpj4ajUIk610yw9gxKLQasu67n8y5c+n2wYeo3N0u6Rh6ByO33vg01TdU8dWKt0lfv4HT32zk9R8TMPYNZdr0B3B39m6lMxCEzqP6TA3bk/eS8Mt2Er5ZibogE/v6agAUKj2yRwD6HiHExEcT0TsYZTvMce8I/kzZniyg98V2kiRJCSwARjW8J0mSpO9lWd5/1m4/A983VOoLB5ZhK80rtKZeE8EjDBJehN5Tbd37DTR6FYNm9OCn91PZ/XMWkaO7tWNDOy/9kCH4vvsuWXfeSebs2fi+9y72lktPf9Gotcyd/gjW6x9iTcLnJP+wnDMJB1j823zo7cG4qbcRHtz34gcShC6ivKKSTVt2cmDnLorT09AWnUAl1+IIlNubsPqG4hzSm/i+MQQH+YnhrwYtGbN/i4YV77AtnBMB7G7BseOAI7IsH2s4zlJgEtAY7GVZLj9rf91ZnyO0JoUChj0FX8yAnZ/aiu6cpXu0G4eTTrF95TEsES44uXXNMazWpouPo9uSxZyYfzuZM2fhu+i/aCMi/tSxFAoF1wyfwzXD55C8L4Gfvv4Qu725rNv9HCu87Akfcw3jR85FZXd1dEkKV4/8wmI2bU7m8O49lGceQleagxKrbYqYgytyUAxeoWGo1HD9dc1Pfb2ateTO/uyFdOuAL2RZ3tyC93kDJ856ngXE/3EnSZKmAC8CbsD4FhxXuBJ6jLGtivfr89D7OtAYGzdJksSQmcF8/s/t/PrJQSY/GInUASpAdUbasDD8l37B8dvmk3nTzXi//i8ch19euktM76HE9B7KidyjrPhmIVVJBzn60XJeXvYt5r5hXHfd3Xi4iOmTQud0IiePLZsSObZvL2eyjqCryEOBjIwCHD2g92ACwsMZ0D8WN9f/5cMkJCS0X6M7Acm2VH0rHFiSpgFjZFm+teH5XCBOluV7L7D/YGwr6o1sYtt8YD6Aq6tr9LJly1qlzR1BeXk5en3bJMbpy44QnfIw2d7XciTo1vO2Fx2VyUmS8YyRMHe/MsG+Lc+vPVzo/KTSUkwLFmJ3/DhlM2dSNXjQFfvMuroa9hz6heJ9qRgLZOoVMmU+GrxDY+nRLe6KdWNerT+7zsJ7u+3nnB1vbXJ7Rz2/3NPFpB89TtnJbFSF2RhqbJnytZIdZXp3lK7euPr60t3ijVZ74Z6rjnp+V8qwYcNSZFmO+bPvv2iwlyRpL013rzdbI1+SpH7AP2RZHtPw/HFsb3ixmc9KB2JlWc6/0D7BwcFyWlpas23uzBISEhg6dGjbfeAPD0LKErjjN3APPWeTLMt89+Yu8jJLmfV0PHqT5rI/rs3Pr401d37WykqyHnyQig0bcb7jdlzvv/+Kl9VM2vMrv/zwKXLqSVR1CioM4Na3D5Mn3XHZd/tX88+uM8h7Zw8Abrc3vWxJRzg/q9XK7n2HSN6ewsm0VMhNR1drK9Jao1Bzxtkfc/eehEVH0jc2HK2m5QVsOsL5tSZJki4r2LekG391w/dPGr7PBiqBJRd5XxIQJEmSBcgGbgBmnb2DJEndgaMNCXpRgBooaGHbhSth+P9B6nJY9ahtkZyzgo8kSQyb05Olz2wn4fM0xt8V3iFrPncWCgcHfBcsIPef/6Rg0TvUZufg+dyzKOyvXEWu2PBhxIYPo6SskO9Wv0/5xs1U/LSbj9ffQY3FQNiQUYwZNhONWnvFPlMQLqSmtpaklFR2JaVw+sgBVKcz0dTbVoNT2DlQ72ZB1yOEyNgooiN6YWfX+ku9Xq1a8i87QJblAWc9/5skSZtlWX6muTfJslwnSdI9wFpsU+8+lGU5VZKkOxq2LwKmAjdKklQLVAEz5NYaVxCa5mCGEX+33eHv+wbCrj9ns9FVS/ykADZ/fYTDSafoEefRTg3tGiQ7OzyeeQaVtzen3/w3tceP4/P2W9i5ul7RzzE6mrlx+qMwHZL3JfDLD5+hSM3myIffkvrZ19j18mbg6OvpGzlKZCsLV0xFZTVbtu9k/45dFB47iKbwOGprLQAKtRGrT09MPXsT2zea0J4B4nevDbUk2OskSRr4+/x3SZL6Y8ucvyhZllcBq/7w2qKzHr8MvNzy5gqtImoepCyGn56CHmPB/txxr/DhvhxJyWPj0kN4dnfC0Xz53flXM0mScLnjDtSWAHL+9jfSp8/Ad8HbaEJCWuXzfk/oq66pYu2vX7B3wzrYk8PWXW+x3vAW5ugQxo67ke5+F51RKwjnKCwuY/OWZNJ27aYs4xAOpdnYyfUASFoXrAFReISG0a9/LAH+oi5Ee2pJsP8L8KEkSUZsY/clwC2t2iqhbSmUcM1r8MEo2PgqjPrnuZsVEiNvDmHZ80ms+zCVyQ9GimI7V4BhzGjUvj6cuOtuMmbPwevllzCMHt1qn6dRa5k05hYmjbmF00Un+WH1R5RvS+TMr/tZ8etjVHqq8e/bl2vH3YzZeGlFgISrQ05uPps3J3F07x6qThxGX36qIVNeAr0H9BqAX1gYAwbE4enu3N7NFc7Skgp6KUAfSZIM2BL6Slq/WUKb842DiDmwdQFEzgGXoHM2O7k5MGRWMOs/2k/SjxnETxSLHl4JmpAQ/Jd9Sda995J93/3UPHA/zrff3uq5Ea4mT26e9QTMgoPHdvHT6o+p2pHG6eW/8d53G6m1GAiK78/Y4bMxOppbtS1Cx3UkPYttW5LI3L+P2uyjOFbZcqclSQlGbxQRIwiOiGBg/2icjC1bB0JoHy0pquMOvAB4ybI8TpKkEKCfLMsftHrrhLY18mk4sBJWPQJzl5+TrAcQHO9B1sFCkldn4B1swie45TXfhQtTubnh9/HHnHzyKU6/+W+qU1PxfPFFlG00jahnQAQ9747AarWyKflHtq5fgXTwJFlH17Jo6RpquukJjIvH4CAu8Loyq9XK3v1HSN6eQs7BVOTcdHQ1tns7hUKFbO6GXVg8vaMi6Nc3EgetGM7rTFrSjb8Y+Ah4suH5IeBLQAT7rkbvZqubv+axJpP1AAbN6EHusVLWfZjKDU/FoXUUFduuBIW9PV6vvoImNJS8117jzPXT8HnrP9gHBV38zVeqDQoFg+MmMDhuArV1NWzY9j07fluLlJbDyWW/kKX4mZ2/fIZfbCxjRswWtfk7udq6OpJ37mdX0g7yDh9AmZeOtq4SAIVSS52rP9qgkUTERhIb3RuVyJTv1Fry03ORZXnZWfPk6yRJqm/ldgntJfZW2Pc1/PgQ+A+0Vaw6i1pjx+hbQ/n65WR+XnKA8XeL6XhXiiRJON98E5rQELIf/CvpM27A67lnMVxzTZu3RWWnZuTA6xk58Hrq6+vYlLyKX374ElVWMae/2cjH326gyluDb3Q0o0bMxMf90uv+C22rpraOXzYmsi9lJwVHD6IpyERtrQFAoXLE6hmEsWco0XHR9OkdJDLlu5iWBPsKSZKcaSisI0lSX2xJekJXpLSDyf+FRQNh5f0wc+l53fmuvo4MmBrEb18eYvfPJ4gYKRbLuZJ0cXFYvv2G7PsfIPuvD1G1ew9uDz+EpFJd/M2tQKm0Y0j8ROQqA4MHD2bbznVs3fA9UmoGhd9tYel3m6l0scMpJJDY/mOJ7zNSBIoOoKS0nM1bd3Bg5y5KM9LQFmejkusAUGjM1PtH4BoSSny/GIK7+7Vza4XW1pJg/1fgeyBQkqTNgCtwfv+u0HW4BMHIf8Cav8Guz2wJe38QNtSbrIOFbF1+FM9AJ9wthjZvZlemcnfH7+MlnHr5FQqXLKFq3z68X3sVladnu7ZLoVDQP3oM/aPHYLVaSdm3ga2/raRy/1FqNqaxZeMhftH8G0WgKz1i+jFy0DSR4NdGamtrKSkp46NnXqXy+GF0ZbkosWJFQtK5UeYVSp9+/ek3IBZfLzHb4mrTbLBvWKZ2SMNXMLYSuWmyLNe2QduE9hR3Oxz4AdY8DpYh4HRuqVVJkhh+Yy+WPZ/E6kV7mPZELDrjlasEJ4CkVuPxf0+hjYgg9+mnOTZ5Cl4vvnDZC+lcKQqForFiH0DWqXR+3fA1mbt2IKXlkZG6knc++Z5qDw0eYSEMGjyFXt2j2rnVXUf68ZNs3ZxERupearKPMNFgW1ZEyv0NDF5I4UPp3qcPAwfE4GwydvlyskLzmg32sizXS5I0SZblN4DUNmqT0BEoFDB5ASzsD9/fA3NXnNedr9GpuOaucL55NYVV/93LlIcisVMp26nBXZdxwrVow3qT9de/knXX3ZjmzsXtkYdRqDtWcqSPu4W50x+B6VBdU8Vv239gz/ZfIO0EZWt3smrtTr52BHWAO937xDGo3wTczF7t3exOwWq1cuBwBolbk8k6kIr15FH0Z2wLxigkFbLZF8nRjINez10vLEWvE8tSC+dqSTf+ZkmS3saWgV/x+4uyLO9otVYJHYPJH8Y8Zyulm/yBLXnvD1x89Iy6KYTV7+wl4dM0RtzUSyTstQK1vz/+S5eS9+prFH3yCZUpyfi8/jpqf//2blqTNGotowZNY9SgaQAcOLaD3zZ+R0XqfuR9J8nYvZJjH39PlYsSffduhEYNZGDceHRaMVcboL6unh170tiRmEzuoQMoTh3Doc7251ep1FDv4oem+1DCoiOJjwnD3l7duBCOCPRCU1oS7Ps3fD+7Fr4MdIy+RKF1Rd9sm3v/0/9B4HAwnz/XOiDSlbgJFhJXpuPsrSdytEjYaw0KtRqPJ59A168vOY8/Qfp1U3F/8kmM103p8BdYvQKi6BVg68KvPlPJlpS17E3ZQNWhDOq3p7NvWwa7Fn3CGQ8NLr2CiIwdTlz4cJTKq2O6V/WZGrYn72Vv8g7yjxxEXZCJfX01AAqVHtkjAH2PEGLio4noHYzSTvSgCZemJRX0hrVFQ4QOSpJg4tuwsB8svwNu+hGU52eFx1zjT0F2BVuWH8Hk6YB/mEs7NPbq4Dh8OAErlpPz6GOcfPJJyn75Bc9n/omdc+coT6qxd2B4/ykM7z8FgKLSfH7btpK0nVvhaA5VP+9jy8/7SFC9SZ2XHpegQMIiBhHTZ1iXWa2vvKKSTVt2cmDnLorTD6ItykLVkAol2Zuw+obiHNKb+L4xBAf5idkNwmW7Oi6bhctj9IYJb8DXt8D6f8CY58/bRZIkRszrRcnpStZ9kMrUx2Iwe7ZovSThT1B5etJt8UcULl7C6Tff5NjESXg++yyOwzvftbnJ4MLE0TfD6JsByMw5zOatK8nctxtOFFC5fi/b1+9ls3IBZ9ztcQr0p1effvSLHo3ewdjOrW+Z/MJiNm1O5vDuPZRnHkJXmoMSKzIgObgiB8Xg1Tucfv1i8O/WvjMuhK5JBHuhZXpPhePbYOvb4BsPIRPP20Vlr+SaO8P56sUkfly4h6mPRONg6FhJZF2JpFTi/Jdb0A0cSM6jj5J11104TZuG+98eQ6HrvBdafl5B+E39q20BbODEySNsTVpDRupuyMyl5rc09vx2iJ3SYqpc7NAH+BDUO4a4qJF4uPg2f/A2ciInjy2bEjm2by/VWUfQV+Q1LBijsBWq6j0YS1g4AwfE4uYqyk4LrU8Ee6HlRj8H2Snw3d3gHgrOgeft4mjWcM2d4Xz3xk5+eHs3kx+MRK0Vv2atSRPcA/+vlpH/n/9Q8MGHVGzdiudzz6Lr27e9m3ZF+Hp2x3fiPdBwfXm66CRbk9ZweF8yHMuiPjGDw9szOfzBN1Q6gtLLCbfuQYSG9SMydFCrd/3LskzakeNs35rEiQOp1OccRV9dCIBCsgMnH5TBo+kV0Yf+/aIwGtpmzQNBONsF/wpLkrQb2ARsATbLspzRVo0SOig7e5i2BN4ZBF/OhVvXg/r8zF+PACNjbw9j1cI9rFq0h2vv6SOm5LUyhVqN28MPox86lJwnn+T4TTfjNGMGbo883GYL6rQVV5PnOd3+pRXFbN+xjkP7k6k8loGcUUhJWhJbfkxio+LfVLuq0Hfzwq9nONERQ7H49Lysz7darezed4jk7SmcTEuF3HR0tWUAKBT21Dn7oYocSFh0JH1jw9FqRP0Jof01d8s1G1sm/ijgaUmSdNgC/xZgiyzL29ugfUJH4+QL170Pn11vq58/eeF58+8B/Ho7M3xeL9Z/tJ91H+5nzG29USg6dsZ4V+AQE0PAihWc/s9bFC5ZQvmGDXg+80/0gwe3d9NajUHndM40P6vVytHjqezYlcDxtL1w4hT1KZlkJh0n85MfqNLKyO56nPx8sQSHExk+BG/XC5eLramtJSkllV1JKZw+cgDV6Uw09VUAKOwcqHezoOsRQmRcNDF9eolMeaFDumCwl2V5H7APeBdAkiQX4AbgAeA1QPxGX62CRsKQR2HDy9CtL0TPa3K34HgPqstr2fTVYTZ8dpChcy7vjkpoGYVWi/tjj2IYM5qcJ5/ixPzbMU6ejPvfHkPp5NTezWt1CoWCIP8wgvzDGl+rqq4geW8CB/Ztp/roEeTcUmoyDpK24SBpLKNSZ6VWr2LnmsU4KB2g3p6KaivlVWdQlZ5CbbVlyivURqw+PTH17E1s32hCewaITHmhU2iuG18JRGK7ux8ABALZwPvA1jZpndBxDXkMTiTCqkfAIwy8my6D2meEL1XlNaSszkTjqIauH2s6DG1EBJbl35L/3/9S8O57lG/caLsImDixw8/Lv9K0Gh2DYsczKHZ842sFRadI2buBQ/t3UHIsg7riEk5VZ2NVyMiAjBJJ0oCfCefuPRnUbzj9QmJQSCK4C51Pc934pcABYAHwN1mW09umSUKnoFDC1Pfh3aHwxQ1w68/n1c//XfzEAKrLa9mxJhP3PhIMbdOWXtUUajVu99+PYcwYcp/+BzmP/Y3ib5fj8fTT2AdcncvSFlbUkJRRSGJ6IUkZXqTm6KlXDELhDKHe9gT4lOBoOEWVlMnhkoNklO7EKqfwWfJnaHdpCXIKooe5Bz1MPQg2BRNkCsJRLSr/CR1bc8H+VqBfw/ebJUlKwnZHv1WW5ey2aJzQwelcYPZX8MFo+Hw63LIGNOfPe5YkicEzg6mpquNwch4pazKIHuvf9u29iml69sTvi88pXraMvH+9TvqkSTjfdhvOt89HYd+1E8hyiqtIyihke3ohSemFHM4rB0BtpyDS14m7hgYSZzFTkbmPsSPPr1NQXVfN0ZKjHCo8RFpRGoeKDvFTxk98fejrxn28dF70MPcgyCmIQKdAujt1x9/oj72ya//bCp1Hc2P2XwBfAEiS5ADEYevOf1GSJLUsy2IBZAHcesGMT+DTqbBsni34N1FhT6GQGHlzCHmn89i24hjWepnY8VfnnWV7kRQKTDfcgOOIEZx6+RXyFy6k5McfcH/8cRy7yGposiyTnl9BYnohiQ1371lFtmQ6vb0d0X4mJkd6E28xE+ZjxP6sZLqE7KaHNjR2GkKdQwl1Dj3nc05VnuJQ0SEOFR0irTCNtKI0fsv6jXq5HgCFpMDX0ZdAYyCBTv/7shgt4iJAaHMXW+JWB8Tzv3H7WOAEsLn1myZ0GgFDYcK/bfPvf/wrTPhPkxn6CqUC73gJD093ElemY7XKxF1ruerGj9ubnasr3q+9inHKZE49+xxZd9yJfsgQ3J94HLVf57qGr7fKHMwtJakxuBeRX34GAGedmlh/M7cMsBBnMdPL04DyCs0IkSQJD50HHjoPBvv8b6ZDTX0NGaUZHCs+xpHiIxwrsX3fkLXhvIsAi9GCv8Eff4M/fgY//I3+OGucxf8HoVU0l6C3E+gGJGObbvcvYJssy+Vt1DahM4mcA0UZsPFVMFlg0F+b3E1SSAy/sRcKhUTyjxnI9TLxkwLEH7h2oB8wAN3331H4yafkL1wkp8nBAAAgAElEQVTIsWsnYL7pJlzuuL3DVuCrqbOyN7uYxPQiEtMLSM4soqy6DgBvJy2DglyIs5iJ9TcT6Kpr898rtVJND5NtPP9stfW1ZJRmcLTkKEeLbV/pJelsyd5CjbWmcT+9So+fwc8W/A3++Bv9G5/rVB3zZyJ0Ds3d2d8P/CbLstxWjRE6uWFP2gL+z/8Ep24Qdn2TuykUEsPm9ERSSKSsycRaL9PvukAR8NuBpFbj/JdbMEy4ltOvv0HBe+9R8t13uD30VwwTJiC187Syypo6dh4vZnt6IYnpBew6UUx1rRWAQFcd14Z7EWcxEetvxsfUcZd2VSlVBJmCCDIFnfN6vbWe3MpcMksySS9NJ7M0k8zSTHbl7WJ1+mps8wJsXLWujcH/996Abo7d8NJ7obHTtPUpCZ1Mc8F+FvCmJEmHgDXAGlmWc9umWUKnJEkwaQGUZMOKO0HrBN1HNr2rQmLorGAUSomd645TXVnb8FxMa2oPKjc3vF56EdMNM8h97nlyHvsbhR9/gttjj6KLi2uzdhRX1pCcUdQ43r4vu4Q6q4xCghAvAzPjuhFvMRPjb8ZF3/nHvZUKJd56b7z13vT37n/Otuq6ak6UnSCjNIPM0kwySjLIKM1gfeZ6is8Un7Ovm9aNpwvnY6+05+tdm/Bx9MFH74O33htXB1cxXVBoNtjfI8tynSRJPYFxwGJJkozAr9iC/2ZZbhiEEoTf2dnDzM9hyQRYOtuWsGdpunqbpJAYfEMPNDoVyasyqCypYcxtvVHZi3pN7UUbEYH/si8p/fFH8l5/g+M3zkM/fDhuDz/cKp93qrS6YQqcLbgfzLWVnVUrFYT7GJk/OIA4i5loPxOOmvMTP7syjZ2myd4AgOLqYjJKM8gqzyKrzPYlHZUoqylj0e5F5/QIqBVqvB290dZo2bxts+1CoOFiwMfRRwwPXCWaC/aJQJQsyweBg8AbkiRpgWHANOB1IKb1myh0OloTzP0OFo+Hz2fA3OW2SntNkCSJ+IkB6Jzs2fhFGite38H4u/uI1fLakaRQYJwwAcdRoyhc8jEF777LsYkTcRwwgLrevbFzcflTx5VlmeOFlbZM+YaEusyCSgAc1Eqi/UyMD/Mk1mImwtcJjVhP4YKcNE5EaCKIcItofC0vdQ8AyXOSySnPIas8i+yy7MYLgoO5B/nh2A+U156bdmVQG/DUeeKp88RD54Gn3vOc565aV5QK8bPo7JoL9ucNoMqyXAWsavgShAvTOcO87+GjcfDp9XDjd+ATfcHdew/2RmdU89P7qXz7agoT7uuD0bXjjsFeDRQaDS63z8fp+qmcfvtt5C+XcWT0GJxvmof55ptROjZfSMZqlTmUV0ZSesMc94xCTpXaMuWdHFTE+puZ29ePWH8zoV4G7MQQzhWhVqrxN9qS+86WkJDAkCFDKK0ptfUGNFwEnKw4SW5FLjkVOaTkpVBWU3bO+5SSEncH9yYvBH7/clQ5ipybDq65YO8qSVLTKdWALMuvt0J7hK5E7wbzVjYE/Ckw74dmd7f0cWXSg5H8uGAP37ySwvi7+uBuMbRRY4ULsXN2xvPppzkSHIxl23byF/6Xos+/wHn+fEyzZzUW5amtt5KaU0piekFD13wRJVW2mvIeBg3xFmdiLWbiLWa6u+rFwkjtQJIkjPZGjPZGQl1Cm9ynoraC3IpcTlactH2Vn2x8vitvF2sr1lIn153zHq2dFjcHN9wc3HDVuuLu4I6rg2vja7+/rlaKHrv20lywVwJ6mrjDF4QWM3jZAv6H4+DjSehC/9Hs7h4BRqY+Gs3Kt3ax/PUdDJvTk+B4j7Zpq9Cseg8PfN58g6p9t3L6zTfJe+UVcj9czIFR0/jeI5KkrDKqam1pPBYXHWNC3YmzOBNvMeNj0oo7v05Cp9I1FgBqSr21noLqgsYegdyKXPIq8xq/9pzeQ15l3jlTCn9nsjc1eRHg5uCGi9YFZ40zzlpncVHQCpoL9idlWX6mzVoidF1O3Wxd+ovHE7HrSYgIBZ8Lp3s4uTtw/WMxrHl3H+s/2k/+iTL6TQkUmfrtrLJW5teDeSRmKUmMvhmrIoy5e1cR+sUCPBydGTF6Gi7TryO2uytuBjEVrKtSKpSNgbqPa58m95FlmdKaUk5VnuJ05elzLgbyKvPIq8rjYOFBCqoKzkkm/J1BbcBZ64yL1gUXjQvOWufG586ahte1Lpg0JuwUzdaGExpc0pi9IPxpzoFw82rq3h2LaslEuOEzCDy/DvnvtI5qJj4QweavjrBr/QkKsssZfWtvNLqrKyO7PZ0uO9OYJZ+YXsiBk5XIJGGnkAjzMRI3ZRTGB6Zjzt6P5t1FOH+zCNX2H1DfeQfyxIlIKvGzulqdPVzwxwJDZ6uz1pFflU9+VT4FVQWNj/Or8imoLqCgqoDUglQKqguoqK04/3OQMGlMOGudkaokftzwIyaNCZO9yfZdY8KsMeNk74RJY8LJ3umqvTho7qxHtFkrhKuD2cLOyBfpf/Q128I5U9+HkEkX3F2pVDD4hh64+OrZ8EUaX72YxDV3huPsrW/DRl8dZFkmq6jqnOB+LN/2x1WjUhDVzcSk7iqmD40iopsTDuqz/nSEeCCPHEb5hg3kv72Ak08+Rf6id3CefxtOkyYhqUWXrNA0O4VdY5LfxVTWVjZeADReGFTbLhJOV50mszKTA4UHKKwuPC/J8GwGtQGzxnzeRcE5j896rrXTXslTbjfNLYRT2JYNEa4ONfZmuPlH+Gw6fHWTraZ+1I3NvidkgBdmTx2rF+3l61dSGDYnmB6xYhz/csiyzJG88sbiNUnpheSUVANg0NgR629meqwvcRYzvb2MqO0UJCQk0L9709PuJEnCcehQ9EOGUJ6QQP6CheT+39/JX7AQ51tuxmnaNBTarvFHU2gfDioHHFQO+Do2vZR2QkICQxsWdKq11lJcXUzRmSKKqhu+Gh4XVhdSfKaYouoijpcdZ0/+Hoqri89LOvydRqnBYG+w9VSobb0VBrWhseeiycdqIzpV25drbs7V2Z8htC+tCW5cAV/Ohe/vhaoiGHB/s2/xCDAy7fFY1r63j3Uf7CfrYBGDZvRApRbzf1uirt7KgZNlbE8vICnDlilfWGFLoHJ1tCfO38ztFjNxFjPB7o5/OlNekiQchw1DP3QoFZu3ULBoEadeeJH8Re9gnjcP06yZF52yJwiXS6VQ4ergiquDa4v2/z3H4PeLgMLqwsYLhOLqYkprSik5U0JJTQmZpZmUnimlpKaEM/VnLnhMpaRsvAAw2BsaLxR+vxgw2BtwVDuiV+lxVDue81iv0l/x2gYi2AvtQ62DmUth+e2w7u9QfBzGvtTk8ri/05vsmfxQJEkr00lZm0nusVLG3BoquvWbUF1bz56sksZ13FMyCqmosWXK+5q1DAt2I95iJtZixt/Z4YrfgUiShH7gAPQDB1CZkkL+onc4/cYbFLz7Lk7TpmGeOweVt/cV/UxB+LPOzjHwM7R85cfquur/XQg0XAyUnik993GNbVt+VT7HSo5RcqbkvMJGTXGwc2i8CHBUX/4Fsgj2QvuxU9vG7Z18YfO/oeAITFtsu/O/AKVSQd/JgXj3MLFu8X6+eimZQdODCBno1aG6zNpa+Zk6UjKLbEu9pheyK6uYmjrbgjE93PVMifIm1t925+5pbNvudIfoaLq99y5VqakUfvgRhZ98QuEnn+A4ehTON92Etk/TGd2C0NFp7DRo7DS4Obhd0vtqrbWU1ZRRXlNOWW3Z/x7XNDyuPfdxec3lLzYrgr3QvhRKGPUMuATDyvvh/ZEwa5kte78ZviFmZjwZy8+L95PwWRpZB4sYMjMYjf7qyAAvrKg5J5kuNacEqwxKhURvLwPz+tkq08X6mzHpOkaCnDY0FO9/vYbbww9R+OmnFC/7irLVa9BGRWG+aR6OI0YgKcWwjND1qRQqzBozZo25xe/5gA8u6zNFsBc6hsjZYA6AL2fDe8Nh+scQMKTZt+iM9ky4N4IdP2WSuDKdnMPFDJ3TE0v4n6vd3pHlFFc1dsknpRdyOM92pa+2UxDp68Tdw7oTZzET1c2Ezr5j/7dWeXri/sgjuNx5FyXffkvhxx+Tfd/9qHx8MN94I8brrkOpF4uzCMKV1LH/KghXF79+cNsv8PkN8MkUGPcyxN5qWzr3AiSFRPRYf/x6O7P+owOsWriHnn09GDg9CHuHznmXL8sy6fkVjYvFJKYXklVUBYDe3o5oPxOTI72Jt5gJ8zFib9c574aVeh3mG+dimj2LsvU/U7h4MadeeIHTb72F0/RpmOfMQeXp2d7NFIQuQQR7oWMx+cNffoJvboVVD0PmFpj4H7BvPkHFxceRaY/HkLwqg5Q1mWSlFTFsTk+6hTq3TbsvQ71V5mBu6VlLvRaRX27L8nXWqYn1N3PLAAtxFjO9PA0ou1hNeUmpxDBmNIYxo6natYuCJUso/GgxhYuXoB82FNOMG9AN6I+kEBUUBeHPEsFe6Hg0Blum/uY34JfnIHcPTFsCHr2bfZvSTkH8xAD8w134efF+Vr61m579Pel/XSBafccYtwaoqbOyN7uYxPQiEtMLSM4soqzaNsfX20nLoCAX4iy28fZA1441V7e1aSMi8ImIoCYrm+KlX1D87XLK1/+MytcXp+nTcLruOuycO/4FnCB0NCLYCx2TQgGDHgLfePj6Fnh/BFzzKkTObbZbH8Dd38D0J2NJ+iGdXetOkLE7n/5Tu9Ozn0e7BM7Kmjp2ZBY3dMkXsOtEMdW1tkz5QFcd14Z7EWcxEetvxscklvUFUPt44/bww7jcdx9l69ZRvPRLTv/rdU7/5y0Mo0bhdMMMHGJjr6oLIUG4HCLYCx2b/0C4Y5OtW//7e23d+te8BvbNz623UynpN6U7PeI8SPgsjV8+PsDBrScZOjsYk0frJn8VV9aQnFHUON6+L7uEOquMQoIQLwMz47oRbzET42/GRW/fqm3p7BRqNcbx4zGOH8+Zo0cp+vJLSlZ8R+mqVagDAzHNmIFx0kSURmN7N1UQOjQR7IWOT+8Gc5fDxlch4SU4vhUmL7Il9F2Es7ee6x6OYv/mHLYuP8rSZxOJGuNH1Bg/VPZXJrHtVGl143j7L3sryVqzDgC1UkG4j5H5gwOIs5iJ9jPhqOmcSYMdgX1gIB5PPIHbgw9SumYtxUuXcuqFF8h7/XUM48bhdN0UtDEx4m5fEJrQqsFekqSxwL8BJfC+LMsv/WH7bOCxhqflwJ2yLO9uzTYJnZRCCUP/BpbBsPwO+GgcDLgPhj0Jds3fHUsKidBB3lj6uLL5m8Mkr8rgwJaT9JsSSI9Yd6RLSHiTZZnjhZWNU+ASMwrJLKgEwEGtxOIoMaNfELEWMxG+TmhUnTNTviNTaLU4TZmM05TJVB84QNGXX1L6/UpKli9H5eODcdIkjJMnofZtuoa6IFyNWi3YS5KkBBYAo4AsIEmSpO9lWd5/1m7pwBBZloskSRoHvAvEt1abhC7Arz/cuRnWPmmrund4PVz3DniEXfStDgY1o24OpfcgbzZ9dZj1H+1nb0IWA6cF4RHQdDew1SpzKK+MpHTbHPfE9ELyymyZ8k4OKmL9zcztaytgE+plYNNvGxk6NOiKnrJwYZpevfD8xz9wf/RRytavp2TFCvIXLiR/wQIcYmIwTpmM45gxKPWipLJwdWvNO/s44Igsy8cAJElaCkwCGoO9LMtbztp/G+DTiu0Rugp7R9t0vJ7jbeP47w6DoY/BgAeara3/O8/uTlz/WAxp23PZuuIo37ySQlCsO/2mBKIxqtmXXdJYnS4po4iSqloAPAwa+gY4E2sxE28x091V/6cXjBGuLIWDA8aJEzFOnEjtyZOUfPc9JStWcPLJp8h99jkcR43COHkSur59RZU+4aokybLcOgeWpOuBsbIs39rwfC4QL8vyPRfY/2Gg5+/7/2HbfGA+gKura/SyZctapc0dQXl5OfoufBdypc/PrraUHocW4XZ6M+U6Pw71uJNSY68Wv7/6jJWju2SsGSDLsEdTz2Z1LVUKcHeQ6GFSEmxW0MOkxFUrXXQ8uCv//DrduckyqvR0NNu2oUlORlFZRb2TE9Xx8VTHxVLn5XXOzI5Od35/4L3dVocgO97a5PbOfn4X09XPb9iwYSmyLMf82fe3ZrCfBoz5Q7CPk2X53ib2HQYsBAbKslzQ3HGDg4PltLS01mhyh3D2msxdUaud38FVsOoRKM2C6Jth5NNNLqhTWl1LSkaRbcw9o5A9WcXU1ssYZIlxaPEtkVGoFPQa4sWA8QGotZfW+dWVf36d+dysZ85Q/uuvFC9fTsWmzVBfj7p7IIZx4zCMuwb7AEunPj+AvHf2AOB2e3iT2zv7+V1MVz8/SZIuK9i3Zjd+FnB2howPkPPHnSRJCgfeB8ZdLNALwgX1vMaWvJfwImxbCAd/hLEvctrvWpIyixoXjDmQW4osg51CIszHyC0DLcT5m4nxM2N0UFF4soLE74+xf30Wx7aeInqcH6GDvVGpRddvZ6awt8cwdiyGsWOpy8+n9KefKFu1mvy3F5D/1tvY9+qFQ3AwNd27o/YRo4lC19OawT4JCJIkyQJkAzcAs87eQZKkbsC3wFxZlg+1YluEq4Cs1pEV+ySH7IbQI/n/8P3mLxyuD+Gturmk21mI6mbi/hFBxPmbiejmhIP6/F9/s6eOsbeHcSqjlG0rjrL56yPsWJtJ5Cg/Qgd7odaI2aqdnZ2LC+ZZszDPmkXtqVOUrVlD6arVOK5YwdEVK9CEhzfc8Y9F5eHR3s0VhCui1f5yybJcJ0nSPcBabFPvPpRlOVWSpDsati8C/g44AwsbxkLrLqebQri6yLLMkbzyxuI1SemF5JRUA+Ck+QcPmzdzfenHrLJ7EmvEXJQj/g/0ri06tru/gUkPRJJzuIikHzPY8q0t6PcZ6Uv4UJ9L7t4XOiaVuzvmefMwz5vHxq+/IbS4iNJVq8l7+WXyXn4ZbVQUhrFj0A8fgdrHu72bKwh/Wqv+xZJleRWw6g+vLTrr8a3AeQl5gtCUunorB06WsT29gKQMW6Z8YUUNAK6O9sT5m7ndYibOYibY3RGFYhxUPQQbXkGZ+C6kfgtDHoH4Oy46N/93XkEmJj1gIvdYCUk/ZrD9u2PsWnecsKE+hA31wcHQcWruC5fH6uKM8/VTcb71VmoyMihdvZrSVas59cKLnHrhRex79cJx5AgcR47EvkcPUbxH6FTE7YnQYVXX1rMnq4TE9AISM4pIySikoqYeAF+zlmHBbsRbzMRazPg7OzT9x1drgrEvQswt8NNTsO7vkPyhrRhP76m2Yj0t4BFgZMK9fcjLLCV5VQbJqzLYue44Pft6EDGyG07uoqZ9V6L298flzjtxufNOajIzKVv/M2U//9w4xq/y8cFxxAgcR41EGxkppvMJHZ4I9kKHUX6mjpTMIltluvRCdmUVU1Nnm0bUw13PlChvYv1td+6eRu2lHdwlCGZ9CUd+hvVPw7e3waY3bEG/5/iLLq7zOzc/A9fcGU5RbgW71p/g4NZcUjflYAl3IXJUN1prdovQftR+fjj/5Rac/3ILdfn5lP36K2Xr11P0+ecULlmC0mxGP2wojiNHouvXD4VG095NFoTziGAvtJvCipqz1nAvJDWnBKsMSoVEby8D8/rZKtPF+psx6a5Qd3n3ERAwDPavgF+fhy9ng3c0DP8/CBzW4sOYPHQMm9OT+IkB7E3IYu+GLNJ356MxgYf9SYJi3LATGfxdjp2LC6Zp0zBNm0Z9eQUVm36z3fWv/YmSb75F0mjQxcejGzIY/eAhYpxf6DBEsBfaTE5xFVtz6vhp+V6S0gs5nFcOgNpOQaSvE3cP606cxUxUNxM6+1b81VQooPd10Gsi7P7CtrjOJ5OhW38Y/BAEjmjxnb6DQU38xACixviRtj2XbT/aVtjb8s0RQgZ6EjrIG4PLJfZCCJ2CUq9rnM4n19RQkZhE+YYNjV+neBZ190D0g4egHzwYh6hIJLXI8RDahwj2QquQZZn0/IrG+e2JGYVkFVUBoLfPIdrPxORIb+ItZsJ8jNjbtcNdsNIOouZC+HRIWWyrtf/pVPCKhEEPQfB424VBC6jslfQe7M3p+kP08Ipgb0IWO9edYOdPx/ELcyFkoBd+oWYUypYdT+hcJLUa/cAB6AcOQH7icWoyMqjYuJHyDRsp+uQTCj/8EIVOh65/f/RDBqMbNBiVu1t7N1u4iohgL1wR9VaZg7ml53TL55fbMuXNOjVx/mZuGWBBUXCMuROGo+xINeXt7CH+doi+CXYvtY3lfzkHXHvBoL9C6JQW1dwHkCQJ72AT3sEmygqrSd2Yzf4tJ8nYk4/OyZ5e/T3p1d9T3O13YZIkYW+xYG+xYJ43D2tFBRXbt1OesIHyjRspW2dbAtm+Z090/fuj69cPh5hoFFrxOyG0HhHshT+lps7K3uxiEtOLSEwvIDmziLLqOgC8nbQMCnJtTKYLdNU1ZsonJGR2rEB/Njt7iJ4HEbMhdTn89i9bIt/6f0DcfNu2JkrwXoijWUPfyYHETrCQuaeA1E05JK/OIHl1Br49TfTq74Wlj4sY2+/iFDodjsOH4zh8OLIsc+bQYco3bKBi8+bGu35JpUIbFWUL/v37ownpJTL8hStKBHuhRSpr6tiRWdxQwKaAnceLOdOQKR/oquPacC/iLCZi/c34mDr5NDSlHYRPs03NO/wTbFtgy+Df8LLtQqDvneAc2PLDKRUERLoSEOlKWWE1B7ac5MCWHH76IBW1RklgtBs9+3rgGeiE1FEvhIQrQpIkNME90AT3wGX+bVgrK6lM2UHFli1UbN3K6Tfe4PQbb6A0GnHo27ch+PdD7et78YMLQjNEsBeaVFxZQ3JGUWN1un3ZJdRZZRQShHgZmBXfjXiLmRh/My76lhWo6XQUCggea/vK3Qvb/gs7lkDS+xA0CmL+Yvvewrn6YLvbj7vWQuw1/mQfLiZt20mOJOdxYPNJHJ01BMd7EBTjjtlL14onJnQUCgcH9IMGoh80EIC6/Hwqtm23Bf8tWyhbuxYAlY8PDnFxOMTFoouNReUtsvyFSyOCvQDAqdLqxmS6pIxCDuaWAaBWKgj3MTJ/cABxFjPRfiYcNS0bv+5SPMJg8kIY8TQkfwApS+CLGWD0hah5tkQ/x5bXUZcUEj7BJnyCTQy+oZ5ju06Ttj2XlNW2gj3O3jq6x7gTFOOG0bWT95QILWbn4oLx2vEYrx2PLMvUpGdQsXULldu2Uf7LL5R8+y0AKm9vW/CPjcUhLk5M8RMuSgT7q5AsyxwvrLQt89qQKZ9ZUAmAg1pJtJ+J8WGexFrMRPg6oVGJscNGju4w7AkY/AikrbZV4/v1OdjwEgRfg9kuAuoH2oYCWkhlryQ43oPgeA8qSs5wdEceR5Lz2P7dMbZ/dww3P0cCo9wIiHAVlfquIpIkYR9gwT7Agnn2bGSrlTOHj1CZmEhlUhLlCQmULF8OgMrLC03svSgMjtScOIHKx0eU8xXOIYL9VcBqlTmUV0ZSeiHbG+7e88rOAODkoCLW38yceD/iLGZCvAyoxPSwi1OqIGSi7avgqG3q3s5PCa/6HtLfhT4zoM8scOt5SYfVGe0JH+ZL+DBfygqrOZKcx5GUU2xdfpSty49i8nDA0scVSx8X3P0NYoz/KiIpFI3j/ea5c2zB/8gRKpOSqExMor6kmLqCfI6Ougc7V1e0UVE4REWijYpC0/PSfg+FrkcE+y6ott7KvuySxilwSRlFlFTVAuBh0NA3wJlYi5l4i5nurnoUImBcHudAGP0sDP8/9i3/F73r9sCWt23z9r2joc9M2/Q9ncslHdbRrCFydDciR3ejrLCa9N35pO8+za51x9mxNhMHgxr/Pi4E9HHFJ9iEUiUu0q4mkkKBpkcPND16YJ49m7x3diNXVWMc8Xcqd+ykaseOxjF/SavF5OtL3q5dOERFoY2IQGkwtPMZCG1JBPsuoLq2np3HixuK1xSwI7OYqlrbgjEWFx1jQt2JszgT52/G16wV3XutxU5Nvms/GPo4lOfBnmWw6zNY9TCsfgwChkLY9bZa/BrjJR3a0awhfJgP4cN8qK6oJXNfAem78zmceIr9v+WgslfSLdSZgAgXuoU6o9FdhXkVVz3JFtRnzsQ0cyYAtadOUbVjB5U7dpK3YQMF771PQX09SBL2QUFooyLR9olA2ycctb8/UguLSAmdjwj2nVBpdS0pGUW2MfeMQvZkFVNbLyNJEOzuyPQYH+IszsT6m3AziEU52oXeDfrfA/3uhlOpsO8b2Pc1rLgTlPa2LP7QKRA0GjSXdoel0akax/jrauvJOlhE+p580nfnc3RHHpIEbv4GuoWY8Q1xxt3fUVTuu0qp3N1RjRuHYdw4Dg7oz+DYWKr27qUyJYWqHTspXfkDxUu/BEDh6Ig2LAxNn3C04eFo+/TBzmxu5zMQ/r+9Ow+u7CzzO/597i7dq721WN1S76sxXgDbYDxpxgPYBDAJyQQySUjIxKECNZAJNWFChYJkktQkTKhJZRLjIU4INQwDNQNjwNhkgDaJ1zamu9373q3e1a1Wa7m6m+6bP94j6Uot9aLF6nv0+1S9dc55z7nnvm8f3X7es73vfFGwrwK9g/nxS/KvHOtj37kBnINYxLhjRQMff+dq7l3VzFtXNtNQqzO6W4oZdLzJp4e+AKde9YF/z1/A/h9ANOEH5tn8Adj4Pki33NTuY/Eoq+5Yxqo7lrH1o47zxwc4sfsSPfv6ePXp42z/4XESqSgrNjXTtaWZrs3NNLSqp7alKpJOk77/ftL33w+AGx2lcPQoI7t2MbJzFyO7dnHpq09A2fehEV+xIgj8PvgnN23SqH5VSsH+FuOco6cvO6nb2aMXhwFIxSPc093Epx9az72rmrmru5HahA5h1TCDrrf59N5/B6e2w77vw96n4NCzYBFY+SKWRG4AABqxSURBVABsfAQ2PHxTHfeAf52vY00DHWsauO+Da8gNFzm1/zI9+/o4ufcSR3f0AlDfWkP3Zh/8V2xsIlGjv6GlyqJRkuvXk1y/nsYPfxiAcjZLbs+e8QZA9rXXGHj6af+BaJTkunWktmwhdfvtfrp5k7r6rQL6ld9C/s339/K9X4zQ9+zPAKhLxbh3VTO//rYu7l3dzJs6G0jEdDk2FCJR6L7fp/f8Hpzd6QP//h/Cs//Kp5Z1PuhveC90v/2G++cfk0rHWfeWNta9pQ3nHP3ns/Ts66Nnbx/7Xz7H7p+fxgyWddXRub7Rp3WNpDK6OrSURWpr/fv7b3vbeF7x/AVGdu0kt2cPub17Gfr5z8df+yMSIbl2zZQGwGYiaXUMdStRsL+FjJbLrG2M8Ol7N/G2Vc1s7Ki7dfuRl/ljBp13+fTQv4bLJ3w3vQefgVeegBf/KyQy/qx/zVaf2jbf8DC8/iuMpo40TR1p3vyuLkZLZc4dvcKp/Zc5c6if3c+dZudPegBo7kxPBP/1jaQbQtpDotyweHsb8Xe/m/p3vxvwVyBL58+T27uX3G7fABh+4UWu/OVT/gNmJFavntwA2LKZaF3dItZiaVOwv4V86dE3sW3bRba+Y9ViF0UWU9NKuPef+JQfgmPPwZGfwtFt/nI/QLptIvCv+WvQsOKmviIai7B8QxPLN/iBfUaLZc6fGODMoX7OHurnwEvn2P3caQAaWmvoXN/IlZLj8qZhGttq9X7/EmdmxDs6iHd0UPervzqeX7xwwTcA9uwht3cf2VdfZeAHPxhfH1/ZTWrjJpIbN5DcsIHUxo2+AyC9BbDgFOxFbmXJjH9Vb9Nf98v9PT74H90GR38Gr3/b57esnwj+qx64qdH5AKLxCJ3r/GV8HoHyaJmLp4Y4c6ifM4f6Obqzl/yw45uvvEyyNkbbqnraV9XTvtqnmkxi/uosVSve1ka8rY26rVvH80qXLgUNgL3k9u4lf+CAH+bXOQCstpbk+nWkNmwkuXEjqaAhEG24uddT5doU7EWqSWMX3P33fHIOLuwNAv822PFN2P7HfrvWzdB9H3QFqXnNTV32j0QjtK2sp21lPXf9Wjeu7Hj2+9voXraR88cHOH9sgF/86PjY/9fUt9ZMCv6tK+rUyY8AEGtpIfPgg2QefHA8r5zNkj9yhPyBA+QOHCR/8CCDP/4x/d/5zsTnOjpIbvSdBiU3bPRXA1avxuJ6pmQ2FOxFqpUZtN/u09s/CaWCf8L/xAvQ8xLs/q7vxhcg3ToR+Lvu888HxG78XrxFjFSDseWBTrY80AlAIVei9+Qg548NcP64vwVwaPt5ACIxo6Uzw7KuDK1ddSzrqmPZigzxpMZZEP8QYM0dd1Bzxx3jec45Shd6yR88QP7gQXIHDpA/cJBLL7wIRd8DKPE4yTVrSK5dQ2LtWpJBSqxcuUg1qR4K9iJhEUv4S/irHvDL5TL07veBv+cVOPmSf7cffMc+nXf71wBvu8vPN632w/reoEQqNum+P8DQ5dx48O89OcixHRfZ9/xZv9Kgqb3WB/6gEdDaVaen/wUIngNobyPe3jbpKoArFskfO0b+wMGgIXCIkdd3M/CjZ8ZvBRCN0rJsGT13vInk2nW+MbBmLck1q4nUavAoULAXCa9IBNq3+PTWj/u8oQvQ87JPJ1+Gl78KowW/LlkPHW/2Z/233ekbAS3rbqoBkGlKkWlKsfaeNsCfrQ1dznOxZ5Dek4P09gxx9vDEFQCATHOSZcszNHdmaO5M07I8TVN7WrcBBACLx8fHAID3j+eXR0YoHD9O/vAR8kePcPqllygcPcbQtuegVBrfLt7ZSWLdWpJr1pJct9Y3AtauWXLPBCjYiywlmTbfW9/mD/jl0SJc2Adnd/h3/c/sgO1fg1LOr09koOMOuO0u2q8k4GwTLNsA8RvrRMXMqGtOUdecYvWdreP5I0MFLvYM0dszyMWTg1w6M8zJPX2Uy8FDWxGjsa2G5s40zZ0ZWjrTNHemaWir1cBNAkCkpobU5s2kNm8GYO+dd3L31q24QoHCyZPkjxwlf+QwhSNHyR85QvblV3D5/Pjno42NJFatmpxWryLR3R3KToIU7EWWsmgcbnuzT2NGS3DxgA/8Y42A177O5mIW9v+h7+mveY1/1791s5+2bfE9/t1gxz81mQRdm333vRNfW6b/Qpa+M8P0nRnm0ukhLvYMceSXvTB2tTYWobG9lsb2Wpo6Jk8TKf13JmCJBMl160iuWwe8ZzzfjY5SPH2a/OEjFI4fH0/DL7zAle99b9I+Yh0dQQNg5URDYOVKEitWVO0Dgvp1iMhk0djEg393/4bPK4/yyo++yb2rMv5KwFja/0Nwvh91InF/1t+2Gdo2+fmWdb5hcANXAqKxCC2dGVo6M5Pyi4VRLp+daABcPp+lt2eQo7+8MH7LFiDdmLy6EdBWS6Y5pasBgkWjJLq7SXR3X7WuPDxM4eTJSY2A/PHjDPzoGcpXrkxsGI2SWLGCxKpVxLu7SXR1Ee9aQaK7m/iKFUSSt24HVAr2InJ9kSjZdBfcvtWP1jemmIOLB4Pgv9dPT73iR/ir1NDlz/yb1/oGQMs6v9y40jcuriGeiI6/BlhptFimvzdL//ksl8/5af/5LAdfOU9hZOKebSRq1C+roX5ZDQ1tNTQsq6Gh1c/Xt9To2QAhkk5PuiVQqXT5ctAAOOGnJ05QOHaM7PbtlLPZSdvG2tuDBkAXie4u4iuCaVcX0aamRR1eXMFeRGYvnrr6NgD4nv/6jsClw3BpbHrYNwJyFWdKkTg0rQrSSh/8K6epxhn7B4jGp78S4JxjZLDI5XPDXLkwwpXeEa70ZrnSO8LZI/0Uc6MTGxtkmpI0tNYwXCzzavaYf8agJUWmOUWmManhgZe4WFMTsaYmau++e1K+c47Rvj6KPT0UglQ82UPhVA/Dzz/Ple9emLR9JJ32jYCuLuLdwXT5cuKdncQ7Oxf8OQEFexGZf8lM8ET/nZPznYNs30TwH0uXj/srApUNAfBvCExtADSsgPrlPqWXXdUYMDNq6xPU1icmvRbov96RGyoGDYARrlzIcuXiCAO9IwyehpePHpu8r4iRbkxQ15yivqWGupbU+AOHvkGQJBZX3wFLkZkRa2kh1tJCzV13XbW+nMtRPHXKNwJ6eij0nKJ48iT5o0cZeu45XKEwaftoS4sP/GMNgOWdFcvL51xeBXsReeOYQbrFp+77rl4/0g/9J6D/pB8QqP+En1467McHKE6+bEo0AfWdE8F/bL4hmK/r9A2CSDT4eqOmLkFNXYKONZNfvdq2bRvvfMeDDPblfLqUmzR/+uBlhvvzk54TAKipT1AfNAIyTUnSjRMp05gk3ZDUrYIlKJJKVTwoOJkrlyn19lI8fYbi6dM+nfHz+f37GfrpT69qDMyVgr2I3DpqGn2aekUA/FWB4V64cgoGzsDA6SCdgSunfd8BA2egXJz8OYtA7TKoa4dMO2Q6/CuImfaKvHaipSyxeGR8dMDpjI6WGb6cn9wgCBoFvScHObbrIqPF8lWfS6XjFY2AxERDIGgMpBuT1GTiGmBoibBIhHh7O/H2drjn7qvWu3KZ0UuXxhsBhdOn4bHH5vSdCvYiUh3MgiDdBsvvmX6bchmyF30j4MppGDzrOxIaOj+Rzu+F4QtQLk366IMALyagtmXGFK1tpr62hfq6Fmhvgdrb/HMLAecc+WyJ4f48w/15hoLp8JXCeN7FnkGyg4Xx1wnHRKJGbUOC2vqkvw1RF6cmuB1RUzd5mqyNLerDXrKwLBIh1tpKrLV14haBgr2ISCASmWgQdF59xjSuXIaRyzB0LmgEXODIzhdYe1sTZC/55wqyl+Dc677xMHJ55n3F074xkG7BUo2kUg2kUg20pOoh1QCtjbAimE81QKqJ0Xg92UINw9lYRUPAT7ODBQb7clw4PsDIUBFXdld9ZSRqUxoAcVZeHCEaNQ68fI6aTJzUWErHNSaBKNiLyBIUiUw8O9B+OwA9lztYWzE06ySjJcj1Bw2BKWl4bP6if8Bw4LSf5gagNDLt7qJAHVBnEf8QYqoBUvX+7YNlGehMQyKNi6fJuQay5QaypTpGirWMFFJk80myuRIjI45sf56+U2VaRgEcz//PvVd/XyyCxcuc+7+vjDcAaioaA2MNg5qx5XSceCqqqwchomAvInI90Zh/0C+97OY+VypAfiAI/v2+AZC74lO+Yr4yf+A0FIahMIwVs9QUhqhxZVqu9T01cCH/H3BE+LsdT5CzZnLWQo5GRsoN5Fw9A7kE5ZFmcoO19JVqGCmmyBcTOKYP6GaOZNKRSEIqBcmUkayJkKyJ+lQbJVkb9ykdJ5lOkswkSWZSJGtTWDzpH4xUg2Huylc/B3KzFOxFRBZKLAGxWTQSKjnnxyooDENhaLwh4OezE/PbbsPKZZruesRvX8r5To9Kp6F0hP7eczRmkkGeT66QI1+IkivGGRnNkCvXkSvXk3N15MsZ8i5NPp8mP+LnB8sZ8i5DvpymfM3wUSZhIz5FxlKeeDRPIponEcmRiBaC+TyJWCFYLhCPl/x8rEg8NkokEvEPWUaifjppPjo+f/vFS3D+a9co0zUaHddrkJRH/XFwZXCjwTRIk9ZNt748efl668slv89yyT9sWi5N9FI5Bwr2IiK3MjPf3XC85tqNhtd2+el73z/t6h3btrF1ym0KA1JAyjkaR4v+tkMp7xsDo0WfykU/MuJoyU/LRVypSDGXJZ8tUsiVyWdHyeXK5Ecc+Rzk845C3igUjEIxRaFQS64YZbAYpZCPUSjFKI7eWB/z8UiBRCxPIuIbB/FonnikQNwKxCJ54pE8cSvgSq2c64NYpODXR4p+WysSj+SIRYpBfoGIVQbPq5+JmMS5oEERXKWY2vCY1OiIz7B+SrrW+kjUdzYViUIk5sebiMTgS797Q/9eM1GwFxFZ6syCqxCJG9scSARptsplRzFXopAbpTASTHMlCiMlihXzhZFgvmLbkcIoxXyQCmVK+dHrf2GFSMyIJ6PEE1E/TUaJJcZShFjcp2giOj4/sS5KNB4Zn69cF40HecE+ovHIPD73oGAvIiJVJhKx8Xv+c+XKjp/9dBv33/sApcqGQJAq8ybmyxTzJYr58nhebqhAqVimVCwzWhj184Uyo6XZX0YfC/qRWIRozIjGIpNTfJq8YLtIfCJvrhTsRUSkqlnEiMR8N8kLwZUdpVKZ0UKZUnGU0qSpbyyMFifmK6ejhbL/bKlMueinoyUXTH0q5opX5Y1tVy6WKU/z+uXNUrAXERG5BouYv+SfiAJv/Hj2ruz41Ffntg912CwiInILm49ulBXsRUREQm5Bg72ZPWxmB8zssJl9bpr1m8zsRTPLm9lnF7IsIiIiS9WC3bM3syjwR8C7gVPAdjN7yjlX2ZdjH/BbwIcWqhwiIiJL3UKe2d8LHHbOHXXOFYBvAY9WbuCcu+Cc2w4Up9uBiIiIzJ05N/dH+qfdsdnfAh52zv1msPz3gfucc5+aZtsvAkPOuS/PsK/HgMcAWltb3/Ltb397Qcp8KxgaGiKTySx2MRaM6le9wlw3qP76LX/Zn7udvm/6d8KrvX7XE/b6vetd7/qFc+6ts/38Qr56N93jg7NqWTjnngCeANi4caOb2uVjmGybpkvLMFH9qleY6wbVX78LB3x3ueu3vnna9dVev+sJe/3maiEv458CuiqWVwBnFvD7REREZBoLGey3A+vNbLWZJYCPAE8t4PeJiIjINBbsMr5zrmRmnwKeBaLAk865PWb2iWD942bWAbwK1ANlM/sMsMU5N7BQ5RIREVlqFrS7XOfc08DTU/Ier5g/h7+8LyIiIgtEPeiJiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjIKdiLiIiEnIK9iIhIyCnYi4iIhNyCBnsze9jMDpjZYTP73DTrzcz+S7B+l5nds5DlERERWYoWLNibWRT4I+ARYAvwUTPbMmWzR4D1QXoM+O8LVR4REZGlaiHP7O8FDjvnjjrnCsC3gEenbPMo8L+d9xLQaGa3LWCZRERElpyFDPbLgZ6K5VNB3s1uIyIiInMQW8B92zR5bhbbYGaP4S/zA+TNbPccy3YrWwZcXOxCLCDVr3qFuW4Qlvp9YsY14ajfzMJev41z+fBCBvtTQFfF8grgzCy2wTn3BPAEgJm96px76/wW9dah+lW3MNcvzHUD1a/aLYX6zeXzC3kZfzuw3sxWm1kC+Ajw1JRtngL+QfBU/v3AFefc2QUsk4iIyJKzYGf2zrmSmX0KeBaIAk865/aY2SeC9Y8DTwPvAw4DWeAfLVR5RERElqqFvIyPc+5pfECvzHu8Yt4Bn7zJ3T4xD0W7lal+1S3M9Qtz3UD1q3aq3zWYj7ciIiISVuouV0REJOSqKthfr/vdamJmXWb2MzPbZ2Z7zOzTQf4Xzey0me0I0vsWu6yzZWbHzez1oB6vBnnNZvZ/zOxQMG1a7HLOhpltrDhGO8xswMw+U83Hz8yeNLMLla+2Xut4mdnvBr/FA2b23sUp9Y2boX7/ycz2B911f9fMGoP8VWY2UnEcH595z7eGGeo3499jNR2/Ger2ZxX1Om5mO4L8ajx2M8WD+fv9OeeqIuEf8jsCrAESwE5gy2KXaw71uQ24J5ivAw7iuxX+IvDZxS7fPNXxOLBsSt5/BD4XzH8O+P3FLuc81DMKnANWVvPxA34FuAfYfb3jFfyt7gSSwOrgtxld7DrMon7vAWLB/O9X1G9V5XbVkGao37R/j9V2/Kar25T1fwB8oYqP3UzxYN5+f9V0Zn8j3e9WDefcWefca8H8ILCPpdF74KPA14P5rwMfWsSyzJeHgCPOuROLXZC5cM79HOibkj3T8XoU+JZzLu+cO4Z/o+beN6SgszRd/ZxzP3bOlYLFl/B9fVSlGY7fTKrq+F2rbmZmwK8Df/qGFmoeXSMezNvvr5qCfWi71jWzVcDdwMtB1qeCy4pPVutl7oADfmxmvwh6QQRod0FfCsG0bdFKN38+wuT/aMJy/GDm4xXG3+PHgR9VLK82s1+a2XNm9uBiFWoeTPf3GKbj9yBw3jl3qCKvao/dlHgwb7+/agr2N9S1brUxswzw58BnnHMD+JH/1gJ3AWfxl6eq1QPOuXvwoxt+0sx+ZbELNN/Mdxj1QeA7QVaYjt+1hOr3aGafB0rAnwRZZ4Fu59zdwG8D3zSz+sUq3xzM9PcYpuP3USY3tqv22E0TD2bcdJq8ax6/agr2N9S1bjUxszj+wP6Jc+4vAJxz551zo865MvDH3MKX1q7HOXcmmF4Avouvy3kLRjYMphcWr4Tz4hHgNefceQjX8QvMdLxC83s0s48B7wd+wwU3RIPLo5eC+V/g74luWLxSzs41/h5DcfzMLAb8TeDPxvKq9dhNFw+Yx99fNQX7G+l+t2oE95n+B7DPOfefK/Irh/j9G0BVDvpjZmkzqxubxz8ItRt/zD4WbPYx4C8Xp4TzZtJZRViOX4WZjtdTwEfMLGlmq4H1wCuLUL45MbOHgX8JfNA5l63IbzWzaDC/Bl+/o4tTytm7xt9jKI4f8GvAfufcqbGMajx2M8UD5vP3t9hPId7kE4vvwz+leAT4/GKXZ451eSf+sssuYEeQ3gd8A3g9yH8KuG2xyzrL+q3BPy26E9gzdryAFuAnwKFg2rzYZZ1DHWuBS0BDRV7VHj98o+UsUMSfOfzjax0v4PPBb/EA8Mhil3+W9TuMv/c59ht8PNj2w8Hf7U7gNeADi13+WdZvxr/Hajp+09UtyP9fwCembFuNx26meDBvvz/1oCciIhJy1XQZX0RERGZBwV5ERCTkFOxFRERCTsFeREQk5BTsRUREQk7BXkREJOQU7EVCyMy+YmafqVh+1sy+VrH8B2b22xXLz5jZcjN7f9Cn+E4z22tm/3SG/X/IzL4QzFcOo7rbzD54nbL9VQjGDBCpKgr2IuH0AvAOADOLAMuA2yvWvwN4PlhfAzTju+J8At8JyZ34wTi2zbD/3wH+W8XyV5xzdwF/G3gy+M6ZfAP4ZzdZHxGZAwV7kXB6niDY44P8bmDQzJrMLAlsBn4ZrN+KD+p1QAzfKyDO9zF+YOqOzWwDkHfOXZy6zjm3Dz+gzDIz+14w4uGeilEPwffk9tG5V1FEblRssQsgIvPPOXfGzEpm1o0P+i/ih8B8O3AF2OWcKwSbPwJ8zznXZ2ZPASfM7CfAD4A/dX4QlUoP4LshvYqZ3QeUgV7g48E+a4DtZvbnzrlLzrnLQZ/eLS4YsEREFpbO7EXCa+zsfizYv1ix/ELFdg8A/w/AOfebwEP4QTU+Czw5zX5vwwfzSv/czHYAXwb+jvP9cP+Wme0EXsKP0LW+YvsLQOdcKiciN05n9iLhNXbf/g78Zfwe4F8AAwRBPBgVrKfiLB/n3OvA62b2DeAY8A+n7HcEaJiS9xXn3JfHFsxsK35Esrc757Jmtg1IVWyfCvYjIm8AndmLhNfz+HHa+5wf07wPaMRfyn8x2OYR4BkAM8sEQXrMXcCJafa7D1h3ne9uAC4HgX4TcP/YimA4zw7g+M1WSERmR8FeJLxexz+F/9KUvCsVD9c9TBDsAQN+x8wOBJfkv8TVZ/UAPwfuDoL2TJ4BYma2C/i3U8rwFuAl51zpJusjIrOkIW5FlqjgqfznnXNvncVn/xD4vnPur2b52aeccz+52c+KyOzozF5kiQperbvpQB/490DtLD+7W4Fe5I2lM3sREZGQ05m9iIhIyCnYi4iIhJyCvYiISMgp2IuIiIScgr2IiEjI/X8MtN8sxbJ9hAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -350,7 +350,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAGJCAYAAABvvYFhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVfr48c8zLZMOIaErIApICISqqEhTiiJWBHV/yu6qi+6K+F0rShH7WtaCuyiyupbVIC6IqCugBGx0I4I0QUCkJySkT5I5vz9mEmbSkSQzGZ7365UXueeee+9zZ4acOeeeIsYYlFJKKRXaLIEOQCmllFL1Twt8pZRS6hSgBb5SSil1CtACXymllDoFaIGvlFJKnQK0wFdKKaVOAVrgq5MiIrNEZEpd51WhQUQ2icigOjpXexExImKrJs8TIjKpLq4X6kRkvIh89RuP/a+IjKjrmFT90gJfVUpEdomIS0Tiy6Wnef/otgcwxkwwxjxSm3OeSN6GJiKTReRnEckRkb0ikuKzL1VEbg5kfI2VMSbRGJPaENcSkQTgRuAV7/Yg72f1v+Xy9fCmp4rI6d73vPTHiEiuz/YA7zHnicgXIpItIlki8pGIdPU551YRudZn+3zvucqn5VT3heU33PNgEVnmjWlXJft3iUi+z/0srqNLPwk8VkfnUg1EC3xVnZ+B60o3RCQJCA9cOPVDRG4C/h9wkTEmCugDfB7YqE5ebQqWuix8TlQ9XHs88IkxJt8n7TBwnog080m7CdgGYIzZY4yJKv3x7u/hk/aliPQHFgMfAq2BDsD3wNcicob3mBXAQJ9rXAhsqSTtG2NMcV3crFcu8C/gnmryXOZzP8Pq4qLGmNVAjIj0qYvzqYahBb6qzlt4akylbgLe9M0gIm+IyKPe3wd5a8d/FZFDIrJfRH5fQ957ffJeISKXiMg2EckQkcmVHet7vM/2LhG5R0Q2eGtoc0SkhYh86q2VLRWRplXcZ1/gM2PMDgBjzAFjzKsn+mL53NNkETnijekGn/2xIvKmiBwWkd0i8pCIWLz7dotIb+/vv/PWDrt6t28WkQXe3y0icr+I7BCRdBGZKyJx3n2lTd5/FJE9wBfVxHifiBwAXq/unN5j/p83vnQRedB7XxedwPtSmne6iMwTkbdF5Bgw3vuazPG+/7+KyKMiYvXmt4rIM97XcidwaQ1vwUhgebk0F7AAGFd6TuBa4J0azuXrb8CbxpgXjDHZxpgMY8xDwEpgujfPCjwFeqkBwFOVpK04gevWyBiz2hjzFrDzZM8lIk+LyFfe98QqIs96X/ufReQvUvFxSio1vycqiGiBr6qzEs+3+LO9fyjHAm/XcExLIBZoA/wReLmagrYl4PTmnQrMBn4H9Mbzx3GqTw2qNq4GLgY6AZcBnwKTgXg8n/WJVRy3ErjR+4WhT2mB8xu19F6vDZ4vSK+KSGfvvpfwvDZn4Kn53QiUfiFaDgzy/n4hnj/gA322SwuyicAV3n2tgaPAy+ViGAicDQyvJsY4oB1wa3Xn9H7p+CeeFpDWQDOgbc0vQ5UuB+YBTfAUuv8GioEzgZ7AMKD08cktwChveh/gmhrOnQRsrST9TY5/cR0ObAL21SZYEYkAzgPer2T3XDyfN/C8P4kiEuf9EtcHSAGa+KSdRxUFvohcLyKZ1fycXpt4q/CO90vmYhHpUcm1LSIyG+gODDPGZOF57UcCyUAvPJ+P8jYDFc6ngpcW+KompbX8i/E0Uf5aQ/4iYIYxpsgY8wmQA3SuJu9jxpgi4D08BWVpLWoTnj/M3U8g1peMMQeNMb8CXwKrjDHfGWMKgfl4Co4KjDFvA3fgKQyWA4dE5P4TuG55U4wxhcaY5cDHwLU+X5ge8N7fLuBZPAUp3uuWFvADgCd8tgdyvMD/E/CgMWav976mA9eUq3lNN8bklmva9uUGpnljzK/hnNcAi4wxK7z7pniP/62+NcYsMMa4gRg8hcokb7yHgL/jrY3jqYk/b4z5xRiT4X1NqtMEyC6faIz5BojzfvG6kXKtVDWIw/N3cn8l+/bj+cxijNkD7MHz3vUAtntf26990pzAqsouYoz5jzGmSTU/e04gZl83AO3xfLlbBnwmIk189tuBd733eZkxJs+bfi2e/4t7jTFH8TyzLy8bz2uuGomAPb9TjcZbeGolHajdH8r0cs8o84CoavKWeH8vLZwO+uzPr+bYypQ/ttbnMsa8g6cmZMdTm3lHRL4zxnx2AtcHOGqMyfXZ3o2nZhwPOLzbvvvaeH9fDjwjIi0BK57a4TTxdI6MBdK8+doB80XEt9AtAVr4bP9SQ4yHjTEFPtvVnbO17/mMMbkikl7D+avjG1s7PAXOfhEpTbP45GldLr/va1eZo0B0FfveAv4CDAb+AFxfy3iP4vmC0wrPF15frYAjPtulzfp78HzhBPjKJ22V90tTgzHGfO2z+YR4+qsMAD7ypp2J58tIP2OMyydv+de+ss9UNJBZh+GqeqY1fFUtY8xuPJ33LgH+W0P2+pQLRPhst6yPi3hbJt4HNgDdfsMpmopIpM/26Xiaj4/gadFoV27fr97r/oTny9FEYIUxJhs4gKfJ/StvjRg8f3hHlqv9Ob2tGmW3UdNtltuu7pz7gdNKM3qbuH07wJ3o++J77V+AQiDe57oxxphE736/a+N5vaqzAc/jnMq8BdyOp1NfXhV5Kgbr+fL2LTCmkt3X4t+5s7TAH8DxAv9Ln7Qqn9+LyA3iP1qg/M/JNOn7MoD4bG/G81jpU59HT+B57X0f3fi+D6XOxtN5UTUSWuCr2vgjMKRczbWhpQGXeJ+HtgTqbKy1eMYjXyoi0d7nmSOBRPybX20i4vT5sVdzyodFxCGeIV2jgPe9LRlzgce812kH/B/+fSKW46mFljbfp5bbBpjlPUc7b+wJInL5b775ms85DxglIheIiAOYgf/fjd/8vhhj9uPp/f6siMR4X/uOIlL6KGMuMFFE2nr7gdT0mOUT/HvF+17rZ+++B2sbn4/7gZtEZKL3vWvq7ajYH3jYJ98KPI+NBuJpygf4AU/r2GCqKfCNMe/4jhao5KfSJn3va+bE01Ii3s+mw7vvdPEMBXR40+/B09LkW+vHGPMunr4uS0Wkozd5LnCniLTxPgK4r5LLD8TTT0Y1ElrgqxoZY3YYY9YGOIy38NQmduEpJFKqzX1ijuH5g7cHTxPl34DbjDG+k5L8E89jgdKf16s41wE8zcD78HRKm2CMKW0KvgNPjXgnnqbe/+AZUlVqOZ5m0hVVbAO8ACwEFotINp4Oh+ec2O1WUOU5vX0p/uyNdb/33vb6HHuy78uNeB51/Og99zw8TeXg6cT5mff866m5helNPF8+Kh06aoz5yhhTq8565Y/D07/jKjyvwW48BfsFxpjtPvm2AYeA/caYTG+aG1iNp7/CNyd67Vq4EM/n8RM8LSD5eN4H8Hx2/onndf0VGIGnJafCIxljzL/xfJn7wvsYabb3PBuA77znL8bzqAcR6QvkeofnqUZCjKmp9U8pVRvimVHubWPMyfRiD3rimeDlZmPM0kDHUp6IPA4cMsY8H+hYQom31WuWMaa0FegDYI63Y65qJLTTnlIqZBhjJtecS9XE20oyGE8tvwUwDc9IFwCMMVcHKDR1Euq9Sd87gcN3IrKokn0iIi+KyE/imTClV33Ho5RSqkaCp3/CUTxN+pvxzJWhGrGGqOHfiefDElPJvpHAWd6fc/A8bzrZ55FKBYTxzBkf0s35AMaY9oGOQdUv70iGvoGOQ9Wteq3hi0hbPFMvvlZFlsvxTFlpjDEr8cxK1aqKvEoppZT6jeq7Sf954F6qnpmrDf4TOuzl+EQkSimllKoj9dakLyKj8PSWXSdVr4ctlaRVGDYgIrfimYAEp9PZ+/TT62oOiuDjdruxWDzfw7JLsjlacpQ29jZYT2p695OXn3EEU1JSth0W0wRrWNgJn8f3/kJRKN9fKN8bhO79OXI9f2YLwktC8v5Kher7V2rbtm1HjDEJJ3OO+nyGfz4wWkQuwTOHdIyIvG2M+Z1Pnr34z+DUlkoWtTCelcteBejcubPZurWy9TFCQ2pqKoMGDQJgU/omxi0ax9MDn2ZE+xEBjeuL11/hu/99VLbd/aIRXHzLX074PL73F4pC+f5C+d4gdO/v0CsbAPixc0ZI3l+pUH3/SolITVNL16jevg4ZYx4wxrT1dvAZB3xRrrAHz2QfN3p7658LZHln31JAp6adCLeF8/2hwM9e2SG5t9/2z9+tQ+dwUEqpxqPB2z9EZIKITPBufoJn1rGf8MzsdHtDxxPM7BY73eK7kXYorebM9axtYhI2x/Em/Oz0wxzc+VMAI1JKKXUiGqTAN8akGmNGeX+fZYyZ5f3dGGP+bIzpaIxJCoLpW4NOckIyWzK2kF9c1UqnDcPuCKtQy9++uj5mClVKKVUfQmKmvaKiIvbu3UtBQUHNmYNcbGwsmzdvLtseYB9A4tmJbN2ylTDriXeSq0vth4ykRd/zy7YtVqtfrLVR/v4aA6fTSdu2bbHbq1svRymlgltIFPh79+4lOjqa9u3b47OudqOUnZ1NdPTxJb2L3cVszdhK84jmJEScVAfNk+YuKeHw7p/9nt03O+107I7afxEpf3/BzhhDeno6e/fupUOHDoEORymlfrOQGMNQUFBAs2bNGn1hXxmbxYbD6gh4kz54avSOcP+FyApzcwIUTcMQEZo1axYSrUdKqVNbSBT4QEgW9qUi7BHkFecFRa/4sMgov+2C3NwARdJwQvmzpZQ6dYRMgR9I6enpJCcnk5ycTMuWLWnTpk3Ztsvl8ss7fvx45s2bd0Lnj7BFUOIuwVXiqjLPddddR/fu3fn73//Oli1bSE5OpmfPnuzYseM33VNVwiIi/baLCwspLiqq02sopZSqeyHxDD/QmjVrRlqaZ+jc9OnTiYqK4u67766z84fbPM3oecV5hNkqPi8/cOAA33zzDbt3e+ZlePLJJ7n88st5+OGH6yyGUlabDUd4OK78448YCnNzsDVpWufXUkopVXe0hl9PZs+eTd++fenRowdXX301eXl5FfJMmTKF8ePH43a7efrpp+nbty/9+/dn2rRpfvnCrGFYxUpGTga///3vSUpKomfPnixbtgyAYcOGcejQIZKTk3n44Yd5/vnnee211xg8eHC93FvFZv3Qfo6vlFKhIORq+A9/tIkf9x2r03N2bR3DtMsST+iYq666iltuuQWAhx56iDlz5nDHHXeU7b/33nvJysri9ddfZ8mSJWzfvp3Vq1dz7NgxbrjhBlasWMGFF14IeJ4hRzoimfn8TAB++OEHtmzZwrBhw9i2bRsLFy5k1KhRZa0Mxpg6b2Xw5YyIJJvDZdtFBQWUFBdjtYXcx0kppUKG1vDrycaNGxkwYABJSUm88847bNq0qWzfI488QmZmJq+88goiwuLFi1m8eDE9e/ZkwIABbNmyhe3bt/udL9IeydqVaxl7/VgAunTpQrt27di2bVuD3heA1W7HHub0Swv13vpKKdXYhVyV7ERr4vVl/PjxLFiwgB49evDGG2+Qmppatq9v376sW7eOjIwM4uLiMMbwwAMP8Kc//clvnPrLL7/M7NmzAVjw0QIwBMXwPABnVCRFhceHqhXk5hIR2ySAESmllKqO1vDrSXZ2Nq1ataKoqIh33nnHb9+IESO4//77ufTSS8nOzmb48OH861//IifHU0v+9ddfOXToEH/+859JS0sjLS2N9qe1p995/XjvP+8BsG3bNvbs2UPnzp0b/N4AwiL8n+O7CvJw+yyfq5RSKriEXA0/WDzyyCOcc845tGvXjqSkJLKzs/32jxkzhuzsbEaPHs0nn3zC9ddfT//+/XG73cTExPD222/TvHlzv2NumXALf73jryQlJWGz2XjjjTcI+w1r0tcFm8OBzeGguHTYoYHC3FzCY2ICEo9SSqnqSTBM5nIiOnfubLZu3eqXtnnzZs4+++wARVS3qpt69ljhMX7J/oX2se2JtEdWmqch5WSkk3M0o2w7LCKSpq1aV3tMY5tat1RtP2OhvCZ3KN8bhO79HXplAwA/ds4IyfsrFarvXykRWWeM6XMy59Am/UaktJDPcQVHB7nyw/Nc+Xm43dqsr5RSwUgL/EbEarESbg8ntyg4prO1ORxYfVaQM8ZQWMl8A0oppQJPC/xGJsoeRX5xPsXu4kCHgojgLFfLL8zJriK3UkqpQNICv5GJsnsK2GCp5Zdv1i/M0976SikVjLTAb2TCbeFYxBI0Bb49LAxbuWZ9nWpXKaWCjxb4jYyIEGmPJMeVExTL5YoIzij/XvcF2dqsr5RSwUbH4deB9PR0hg4dCnhWrrNarSQkJACwevVqHA5HnV4vyh5Ftisbl9tFmDUw4/B9OaOj/YbnuQryKSkq8uvQp5RSKrC0wK8Dv3V53JKSEqxW6wlfL9IRCbme4Xlh4YEv8G12B3ank6KC41Pt5udkE9U0LoBRKaWU8qVN+vVk/PjxzJs3r2w7KsrTuS01NZXBgwdz/fXXk5SUVDZZxDXXXEOXLl344x//WGNTvcPiwG61B81zfIDw8s36OdlB8chBKaWUR+jV8D+9Hw78ULfnbJkEI5+ss9OtXr2ajRs30qFDB1JTU/nuu+/YtGkTrVu35txzz+Xrr7/mggsuqPJ4ESHKHkVWYRZu48Yigf/eFhYVhaQfKSvki10uil2FFVbVU0opFRiBLylOQf369aNDhw5+223btsVisdC9e3d27dpV4zmi7FG4jZuC4oIa8zYEq9WGIzzCL0077ymlVPAIvRp+HdbET4bNZsPtdgOeoWqu0kVmgMhI/3nwfRfAsVgsFBfXPKlOhN1TuOYU5ZT9HmjO6GgK844/ZsjPzSaqWTwiEsColFJKgdbw60379u1Zt24dAB9++CFFRUV1en6bxUa4LZycouAZ8x4WEYlYjn+k3MUluPLzAxiRUkqpUlrg15NbbrmF5cuX069fP1atWlWhVl8XohxR5BflUxIkC9ZYLJYKU+0W5BwLUDRKKaV8hV6TfoBNnz697PeVK1eW/f7EE08AMGjQIL8lHMtvP/vss7VePjbKHsVhDpNTlENsWOxJxV1XnFHR5GcfL+QLcnOJdruxWPS7pVJKBZL+FW7Ewm3h2Cw2jrmCpxbtCA/Hajv+PdK43X7P9ZVSSgWGFviNmIgQ7Ygmx5WD27gDHQ6gU+0qpVSw0gK/kYtxxOA27qCahKd8gV+Yn0tJLUYeKKWUqj9a4DdyEfYILGLhWGHwNOvbHA5svusHGM/Me0oppQKn3gp8EXGKyGoR+V5ENonIw5XkGSQiWSKS5v2ZWl/xhCqLWIhxxJDtyg6qZv3w6Bi/tPxjx3SqXaWUCqD67KVfCAwxxuSIiB34SkQ+NcasLJfvS2PMqHqMI+RFO6LJLMwkryiPKEdUzQc0AGdUNDkZ6cen2i1yUVSgY/KVUipQ6q2GbzxKZ4Wxe39Cuop34MABxo0bR8eOHenatSuXXHIJ27Zto1u3bgCsXbuWiRMnntA527dvz5EjR6rNE+WI8jTrB1FvfavNRli5uQfyjgVPfEopdaqp13H4ImIF1gFnAi8bY1ZVkq2/iHwP7APuNsZsqs+Y6osxhiuvvJKbbrqJ9957D4C0tDQOHjxYlqdPnz706dOnzq9tEQtRjiiyXZ4V6oJlKtvwmFgKco7PBFiYm0O4MzyAESml1KmrXgt8Y0wJkCwiTYD5ItLNGLPRJ8t6oJ232f8SYAFwVvnziMitwK0ACQkJpKam+u2PjY0lO8BDv5YvX47FYuGGG24oi6Vjx47s3r0bt9tNdnY2X375JS+++CLvv/8+jz/+OLt37+bAgQPs2LGDxx9/nDVr1rB48WJat27N3LlzsdvtGGN47LHHWLFiBQBz5syhY8eOFa5vL7FT7C4m/Vg6YZawCvsDwRiDxWrFXVJStu3KzyO7EU7CU1BQUOFzV5mcnJxa5WuMQvneIHTvr02m5/9bqN5fqVC/v7rQIDPtGWMyRSQVGAFs9Ek/5vP7JyLyDxGJN8YcKXf8q8CrAJ07dza+M9MBbN68uWx2uqdWP8WWjC11Gn+XuC7c1+++avPs3LmTfv36VZglLyoqCovFQnR0NBEREdhsNqKjowkLC2PPnj0sW7aMH3/8kf79+/PBBx/wyCOPcOONN7JixQquuOIKRIT4+HjWrVvHm2++yUMPPcSiRYsqXD/CHUHG0QyKbcXER8bX6f2fDKu7mOz09LJtd2EBUS1aBk0rRG05nU569uxZY77U1FTKfz5DRSjfG4Tu/R3augGAqCh3SN5fqVB9/+pSffbST/DW7BGRcOAiYEu5PC3F+5dfRPp540kvf65QNXLkSOx2O0lJSZSUlDBixAgAkpKS/JbIve6668r+/fbbbys9l9ViJdIeyTFXcPWGd0bF+BXu7uJiigqCY0lfpZQ6ldRnDb8V8G/vc3wLMNcYs0hEJgAYY2YB1wC3iUgxkA+MMydZWtVUE68viYmJzJs374SOKV0W12KxYLfbywrG8kvk+haY1dWMYxwx7MvZR0FJAeG24HhWXtp5z/dZft6xLBzhwRGfUkqdKuqzl/4GY0xPY0x3Y0w3Y8wMb/osb2GPMWamMSbRGNPDGHOuMeab+oqnvg0ZMoTCwkJmz55dlrZmzRp279590udOSUkp+7d///5V5ot2eB4nBNMkPADh0f4L+xTm5pQ911dKKdUwdLW8OiIizJ8/n0mTJvHkk0/idDpp3749zz///Emfu7CwkHPOOQe32827775bZT6bxUakPZJsVzYtIluc9HXriiM8HKvdTklREeDpvJeffYzIJk0DHJlSSp06tMCvQ6W968vbuNHTT9F3KVzfZXTB08O0lO++0mf506ZNq1UM0Y5oDuQeoLC4kDBbcPTWFxEiYmL8Ou/lZx8jIrZJo+u8p5RSjVXjGx+lqhXj8ExpG0yT8EDFznvFLpd23lNKqQakBX6IsVvthNvDg67At9pshEX4z7yXfywrQNEopdSpRwv8EBTjiKGguICC4uCqQYfH+HfeK8jN0WVzlVKqgWiBH4KahDVBEDILMwMdih9HeDgWq7Vs2xijtXyllGogWuCHIJvFRpQjiqzCrKCahEdEsIVH+KXlHcvCuINjWV+llAplWuCHqCZhTSh2F5NTlFNz5gZkc4YjPnPpu0tKyM8J7DoISil1KtACvw5VtTxubU2dOpVly5bVSSxRjiisFmvQNeuLxUJETIxfWl5WZlC1RCilVCjScfh1pLrlcTt16gRASUkJVp9n2OXNmDGjzlb9s4iF2LBYjhYcpdhdjM0SPG91REwTcjOPfxEpdrlw5ecTFhFRzVFKKaVOhtbw68iyZcuw2+1MmDChLC05OZmSkhIGDx7M9ddfX7YoTrdu3cryPPPMM2UT7YwfP54FCxYAcP/999O1a1e6d+/O3XffDcDhw4e5+uqr6du3L3379uXrr7+uNqYmYU0wxgTdVLtWux1nVJRfWl7W0QBFo5RSp4bgqfbVkQOPP07h5rpdHjfs7C60nDy52jwbN26kd+/ele5bvXo1GzdupEOHDn6r4FUlIyOD+fPns2XLFkSETG9t+M477+Suu+7iggsuYM+ePQwfPpzNmzdXeZ5wWzhOm5PMwkziwuNqvG5Dioht4regTmFeHsUuFzaHI4BRKaVU6Aq5Aj8Y9evXjw4dOtQ6f0xMDE6nk5tvvplLL72UUaNGAbB06VJ+/PHHsnzHjh0jOzub6OjoKs/VJKwJB3IPUFBcgNPm/O03UcccznDsTqffbHt5WZnEJDQPYFRKKRW6Qq7Ar6kmXl+qWx43MvL4DHM2mw23zzC0gkqml7XZbKxevZrPP/+c9957j5kzZ/LFF1/gdrv59ttvCT+BpWVjw2I5mHuQzMJMWtpansAd1b+I2CZkFRwo287PPkZUXDO/sfpKKaXqhj7DryNVLY+7fPlyv3wtWrTg0KFDpKenU1hYyKJFiyqcKycnh6ysLC655BKef/550tLSABg2bBgzZ84sy1eaXp1gHZMP4IyMwmo7/p3TGEOeTsSjlFL1Qgv8OlK6PO6SJUvo2LEjiYmJTJ8+ndatW/vls9vtTJ06lXPOOYdRo0bRpUuXCufKzs5m1KhRdO/enYEDB/L3v/8dgBdffJG1a9fSvXt3unbtyqxZs2oVW7COyRcRImKb+KXlHcvCGJ2IRyml6lrINekHUlXL495yyy1+2xMnTmTixIkV8r3xxhtlz+RXr15dYX98fDwpKSknHJfvmPxoR9XP+wMhPDqGnKMZZbPtuYuLKcjJITw6poYjlVJKnQit4Z8CSsfkZ7uyKXYH12I1FquV8HKdDnMzjwbd4wellGrstMA/RTQNa4oxhqzC4HtGXr5Zv9jlojAvN0DRKKVUaNIC/xThtDlx2pwcLQy+2rPN7sAZVa6WfzQj6OJUSqnGTAv8U0icM47C4kJyi4Kv9hzZtKnfdlFhIa78vABFo5RSoUcL/FNIbFgsVouVjIKMQIdSgd0RhjPSf7rdHK3lK6VUndEC/xRiEQtxzjiyXdkUlhQGOpwKKtTyCwpw5ecHKBqllAotWuDXkccee4zExES6d+9OcnIyq1atqpPzTp06laVLl9bJucDTeU9Eqq3lL1y4kCeffBKA6dOn88wzz9RLLOXZw5yERUT6peVmBl9rhFJKNUY6Dr8OfPvttyxatIj169cTFhbGkSNHcLlctT6+uLgYm63yt2LGjBl1FSYAdqudGEcMmQWZNA9vjtVScRrb0aNHM3r06HqPpTKRTeP8eui78vNx5efjOIHphJVSSlWkNfw6sH//fuLj4wkLCwM8E+SUzrC3bt06Bg4cSO/evRk+fDj79+8HYNCgQUyePJmBAwfy2GOP0b59+7I59vPy8jjttNMoKipi/PjxZXP0r1mzhvPOO48ePXrQr18/srOzKSkp4Z577qFv3750796dV155pdIY33zzTbp3706PHj24d8K9uI2bn/b+VOlyu2+88QZ/+ctfKpzDN5b27dszbdo0evXqRVJSElu2eFYoPHz4MBdffDG9evXiT3/6E+3atePIkSO1fi0dTieOiAi/tByt5fp8vpQAACAASURBVCul1EkLuRr+l3O3ceSXup1CNv60KAZc26nK/cOGDWPGjBl06tSJiy66iLFjxzJw4ECKioq44447+PDDD0lISCAlJYUHH3yQf/3rXwBkZmaWzbW/fv16li9fTp8+ffjoo48YPnw4dru97Boul4uxY8eSkpJC3759OXbsGOHh4cyZM4fY2FjWrFlDYWEh559/PsOGDfNbnW/Tpk089thjfP3118THx5ORkUGmNZM7/+9O7p10LwMGDKjVcrsVXpf4eNavX88//vEPnnnmGV577TUefvhhhgwZwgMPPMD//vc/Xn311RN9uYlqEkdG3vEe+q68PFwFBTicwbPan1JKNTYhV+AHQlRUFOvWrePLL79k2bJljB07lieffJI+ffqwceNGLr74YgBKSkpo1apV2XFjx471+z0lJYU+ffrw3nvvcfvtt/tdY+vWrbRq1Yq+ffsCniV0ARYvXsyGDRvKat5ZWVls377dr8D/4osvuOaaa4iPjwcgLi4Oa6GVb5Z/w5+3/xmLeBp6Spfbra2rrroKgN69e/Pf//4XgK+++or58+cDMGLECJqW64hXG47wcBzh4X4d9nIzM3C0bF3NUUoppaoTcgV+dTXx+mS1Whk0aBCDBg0iKSmJf//73/Tu3ZvExES+/fbbSo/xXTZ39OjRPPDAAzzwwAOsW7eOIUOG+OU1xiAiFc5hjOGll15i+PDhVcZW2bHRjmjcbjdzP5tLl5YVF/CpjdJHGFarleLi4rJr1YXIJnG48n8t2y7MzaWosAB7mNbylVLqt9Bn+HVg69atbN++vWw7LS2Ndu3a0blzZw4fPlxW4BcVFbFp06ZKzxEVFUW/fv247777GDVqFNZya8J36dKFffv2sWbNGsCzol5xcTHDhw/nn//8J0VFRQBs27aN3Fz/iXWGDh3K3LlzSU9PByAjIwOLWBgydAizZ82moLigLO6TdcEFF5QtILR48WKOHj36m87jCA/HXq4JPycj/aTjU0qpU1XI1fADIScnhzvuuIPMzExsNhtnnnkmr776Kg6Hg3nz5jFx4kSysrIoLi5m0qRJJCYmVnqesWPHMmbMGFJTUyvsczgcpKSkcMcdd5Cfn094eDhLly7l5ptvZteuXfTq1QtjDAkJCSxYsMDv2MTERB588EEGDhyI1WqlZ8+evPHGG7w882V+f+vv6ZXcC9xw4YUX1nrJ3apMmzaN6667jpSUFAYOHEirVq2Ijj7xFfpEhKimcRzdv68srTAvD1d+Ho7wiGqOVEopVRlpbDOZde7c2WzdutUvbfPmzZx99tkBiqhulS6P21D25ewjszCTTk07YbOc/Pe/wsJCrFYrNpuNb7/9lttuu82v5eBE7s8Yw9H9v/o9y7c7ncS1blvp4436VNvPWGpqKoMGDar/gAIglO8NQvf+Dr2yAYAfO2eE5P2VCtX3r5SIrDPG9DmZc9RbDV9EnMAKIMx7nXnGmGnl8gjwAnAJkAeMN8asr6+YVEVxzjiOFhwloyCD5hHNT/p8e/bs4dprr8XtduNwOJg9e/ZvPpeIEBXXjIxf95alFRUUUJiXW2EaXqWUUtWrzyb9QmCIMSZHROzAVyLyqTFmpU+ekcBZ3p9zgH96/1UNxGlzEuOIIT0/nWbOZpVOxHMizjrrLL777rs6ig4cznCckZEU+PRLyMlIJywissFr+Uop1ZjVW6c941E6IN7u/Sn//OBy4E1v3pVAExFphWpQCREJuI2b9ILg7BQXFdfMb7vY5SI/+1iAolFKqcapXjvtiYgVWAecCbxsjCk/wXwb4Bef7b3etP3lznMrcCtAQkJChU5tsbGxJzR+PJiVlJQE5F7CLeGk56cTVhxWNi6/PvzW+7M5wykuOP4sPzsjnWKkwWr5BQUFlXamLC8nJ6dW+RqjUL43CN37a5Pp+f8cqvdXKtTvry7Ua4FvjCkBkkWkCTBfRLoZYzb6ZKnsr3WFXoTGmFeBV8HTaa98x4zNmzc3aEe3+tTQnfZK2Ypt7MzcSaGtsE6e5Vflt95fhNPJkV92l43zNyUlWN0lRDY58Yl9fgun00nPnj1rzBfKHYdC+d4gdO/v0FZPp72oKHdI3l+pUH3/6lKDjMM3xmQCqcCIcrv2Aqf5bLcF9qEaXLgtnGhHNBn5GZS4SwIdTgVWu52ImFi/tNzMo7hLgi9WpZQKRvVW4ItIgrdmj4iEAxcBW8plWwjcKB7nAlnGmP00UgcOHGDcuHF07NiRrl27cskll7Bt27aTOqfvgjW+1q5dy8SJE0/q3KVKF8tJiEigxJRUu3RuIEU0bYpYjn9k3SUl5GVlBjAipZRqPOqzSb8V8G/vc3wLMNcYs0hEJgAYY2YBn+AZkvcTnmF5v6/HeOqVMYYrr7ySm266iffeew/wzFx38OBBOnWq++l++/TpQ58+JzUks4LSWn56fjpxzriT7rFf16xWG5FNmpCTcfwLSW7mUcKjY7D6LDSklFKqonor8I0xG4AKDz29BX3p7wb4c11d89mxo+rqVJX6a8qiKvctW7YMu93OhAkTytKSk5MxxnDPPffw6aefIiI89NBDjB07ltTUVKZNm0aLFi1IS0vjqquuIikpieeeew6Xy8WCBQvo2LEjAEuXLuWFF17g4MGDPPfcc4waNYrU1FSeeeYZFi1axPTp09mzZw87d+5kz549TJo0qaz2//bbb/Piiy/icrk455xz+Mc//oHVauX111/niSeeoFWrVnTq1KlsXvyE8AR2unaSUZBBQkRCPb6av01EbFPysrLKmvKNMWRnpNOkRcsAR6aUUsFN59KvIxs3bqR3794V0v/73/+SlpbG999/z9KlS7nnnnvYv9/z1OL777/nhRde4IcffuCtt95i27ZtpKamcvPNN/PSSy+VnWPXrl0sX76cjz/+mAkTJlBQUFDhOlu2bOGzzz5j9erVPPzwwxQVFbF582ZSUlL4+uuvSUtLw2q18s4777B//36mTZvG119/zZIlS/jxxx/LzhNuDyfKEUV6QXpQPsu3WCwVhukV5GT7zcanlFKqIi3w69lXX33Fddddh9VqpUWLFgwcOLBsAZy+ffvSqlUrwsLC6NixI8OGDQMgKSmJXbt2lZ3j2muvxWKxcNZZZ3HGGWewZUv5rhBw6aWXEhYWRnx8PM2bN+fgwYN8/vnnrFu3jr59+5KcnMznn3/Ozp07WbVqFYMGDSIhIQGHw+G3TC94avkl7uB9lh8eHYPd2yJR6lj64TpbqU8ppUKRFvh1JDExkXXr1lVIr64QCvMptCwWS9m2xWIpW24WqDDWvLKx577nKl2u1hjDTTfdRFpaGmlpaWzdupXp06dXeY5SEfaIoK7liwjRzfwfNxQXFupkPEopVY2QWi2vumfs9W3IkCFMnjyZ2bNnc8sttwCwZs0amjZtSkpKCjfddBMZGRmsWLGCp59+utJaelXef/99brrpJn7++Wd27txJ586dWblyZY3HDR06lMsvv5y77rqL5s2bk5GRQXZ2Nueccw533nkn6enpxMTE8P7779OjRw+/Y5tHNGdn5k4O5x+mZWTwPR93hIfjjIqmIOf4JD45Gek4I6OwWIOrs6FSSgWDkCrwA0lEmD9/PpMmTeLJJ5/E6XTSvn17nn/+eXJycujRowciwt/+9jdatmx5QgV+586dGThwIAcPHmTWrFk4y60TX5WuXbvy6KOPMmzYMNxuN3a7nZdffplzzz2X6dOn079/f1q1akWvXr0oKTeePdwWTpOwJmQUZBDnjMNhdZzQ69EQouOaUZibU9aK4i4pIedoBjHxwdfZUCmlAk2Xxw0ygZpprzJFJUX8lPkTUY4oTos+reYDaqGu7y/naLrfMD0E4tuejs0RVvVBv4Eujxva9wahe3+6PG5oqIvlcfUZvqqS3WqnWXgzjhUeI68oL9DhVCoitqn/GHwDx9KPaAc+pZQqRwt8Va1mzmbYLDYO5B4IykLUYrEQHRfvl+bKy6MwL7eKI5RS6tSkBb6qltVipUVEC/KL88lyZQU6nEqFRUbiCA/3S8s+chi32x2giJRSKvhoga9qFBsWi9Pm5FDuIdwm+ArRsmF6PiMNS4qLyclID1xQSikVZLTAVzUSEVpGtqTIXUR6fnAWovawMCJj/ZfKzcvKpKiSWQmVUupUpAW+qpVIeyTRjmiO5B+hyF0U6HAqFdk0rsIiOllHDgVl3wOllGpoWuDXkaqWxt21axfdunVr8HjS0tL45JNPasyXmprKqFGeRYdKl8mtSovIFhgMh3IP1XiNJUuW0Lt3b5KSkujduzdffPFF2T6Xy8Wtt95Kp06d6NKlCx988EGV19yzZw9RUVE888wzZWnt27fnyJEjAKxbt44OHTrw3XffkZeXxwMPz+DcwUMZOOISrrjuelavWk1e1lEA5s+fj4j4zYHgdruZOHEi3bp1Iykpib59+/Lzzz/X9LIppVSjoxPv1IHqlsY97bS6Gb9+otLS0li7di2XXHJJnZ0zzBpGM2czjuQfoYmzSbXXiI+P56OPPqJ169Zs3LiR4cOH8+uvvwLw2GOP0bx5c7Zt24bb7SYjo+o5+++66y5GjhxZ6b4NGzZwzTXXkJKSQs+ePRk3bhwdOnRg/aqVuPJy2b1nD9t37CAnI4OwyCjeffddLrjgAt57772yKYZTUlLYt28fGzZswGKxsHfvXiIjI0/+xVJKqSCjNfw6UNXSuAMGDPDLV1JSwj333EPfvn3p3r07r7zyCgA5OTkMHTqUXr16ce655/Lhhx8CnlXyzj77bG655RYSExMZNmwY+ZWsCvf+++/TrVs3evTowYUXXojL5WLq1KmkpKSQnJxMSkoKq1ev5rzzzqNnz56cd955lJ+8qDq+x1558ZX8svMXdmXsqnANXz179qR169aAZ52BgoICCgsLAfjXv/7FAw88AHiG1cXH+w+rK7VgwQLOOOMMEhMTK+zbvHkzV1xxBW+99Rb9+vVjx44drFq1ikcffZTYhOZYrFbanX46Fw0ejDGGfbt38fXXXzNnzpyyL2UA+/fvp1WrVlgsnv8Kbdu2pWnTphWup5RSjV3I1fAzP9qBa1/djsF2tI6kyWUdq9xf1dK45c2ZM4fY2FjWrFlDYWEh559/PsOGDeO0005j/vz5xMTEsGvXLi666CJGjx4NwPbt23n33XeZPXs21157LR988AG/+93v/M47Y8YMPvvsM9q0aUNmZiYOh4MZM2awdu1aZs6cCcCxY8dYsWIFNpuNpUuXMnny5Gqb0n116dLF79iXnniJx2c/zl8f/Cvbf9hedo2qfPDBB/Ts2ZOwsDAOHfI8DpgyZQqpqal07NiRmTNn0qJFC79jcnNzeeqpp1iyZIlfc36pyy+/nLfffpsLLrgAgE2bNpGcnIzVO49+dLN4sg4dLMu/8MOFXDR0CJ06dSIuLo7169fTq1cvrr32Wi644AK+/PJLhg4dyu9+9zt69uxZq9dFKaUaE63hN6DFixfz5ptvkpyczDnnnEN6ejrbt2/HGMPkyZPp3r07o0eP5tdff+XgQU9h1aFDB5KTkwHo3bu337K5pc4//3zGjx/P7NmzK8yJXyorK4sxY8bQrVs37rrrLjZt2lTruMsfu3XzVpqENSHHlUOxu7jaYzdt2sR9991X1ppRUlLC3r17Of/881m/fj39+/fn7rvvrnDctGnTuOuuu4iKiqr0vBdddBGvvfZalffrjIr2G5u/YNEiRl18MSUlxYwbN453330X8NTot27dyhNPPIHFYmHo0KF8/vnntXpdlFKqMQm5Gn51NfH6kpiYyLx582rMZ4zhpZdeYvjw4X7pb7zxBocPH2bdunUUFBSQlJREgXc4Wfllbytr0p81axarVq3i448/Jjk5mbS0tAp5pkyZwuDBg5k/fz67du06oTmnKzu2RWQLLGIhrygPY0yly+3u3buXK6+8kjfffJOOHT3vS1xcHBEREVx55ZUAjBkzhjlz5lQ4dtWqVcybN497772XzMxMLBYLTqezrFPhzJkzmTBhArfffjuvvPIKiYmJfP/997jdbiwWCyJCTHxz0vfuIT0jg6+/XcmWbdv56+QHMVC2kJGIEBYWxsiRIxk5ciQtWrRgwYIFDB06tNavj1JKNQZaw68DQ4YMobCwkNmzZ5elrVmzhuXLl/vlGz58OP/85z8pKvIMa9u2bRu5ublkZWXRvHlz7HY7K1asYPfu3Sd0/R07dnDOOecwY8YM4uPj+eWXX4iOjiY7+/jSsVlZWbRp0wbwfME4EZUda7PYaNOsDVnHssgoqNjpLjMzk0svvZQnnniC888/vyxdRLjssstITU0F4PPPP6dr164Vjv/yyy/ZtWsXu3btYtKkSUyePNlvBIHFYuHdd99l69atTJ06lY4dO9KnTx+mTZtWNgzv5927WfbtShb97zOuufIK1q5IZXXqF2z7cRMdOnTgq6++Yv369ezbtw/w9NjfsGED7dq1O6HXRymlGgMt8OtA6dK4S5YsoWPHjiQmJjJ9+vSyTmulbr75Zrp27UqvXr3o1q0bf/rTnyguLuaGG25g7dq19OnTh7lz59KlS5cTuv4999xDUlIS3bp148ILL6RHjx4MHjyYH3/8saxD3b333ssDDzzA+eefX2UzeFWqOvbSYZeya/suzu93Pu+8+47fMTNnzuSnn37ikUceITk5meTk5LLn90899RTTp0+ne/fuvPXWWzz77LMALFy4kKlTp9Y6rrCwMD788EMWLlzIyy+/zGuvvcaBAwc488wzSUpK4pZbbuGMszrx4cefMPLii8uOyz5ymCuvuIL//Oc/HDp0iMsuu4xu3brRvXt3bDZbtUMTlVKqsdLlcYNMMC2PWxuuEpdnCV27Zwndypr2fQXi/opdLtL37vGbgMcRHkHTVq1rjLeULo8b2vcGoXt/ujxuaNDlcVXAOawOmkc0J9uVzTHXsUCHUymbw0FU+RX18vPIPxaciwEppVR90AJfnbRmzmaE28PZl7MPV4kr0OFUKiI2tuKKeulHKHYFZ7xKKVXXtMBXJ01EaBvVFoBfc34NyrnrRYTYhBaI5fhH3hhD1uGDQRmvUkrVtZAp8PWPdmA5rA5aRbYiryiPI/lHAh1Opax2OzHNEvzSigoKyM08Wu1x+tlSSoWCkCjwnU4n6enp+oc5wGLDYokJi+Fw3mHyiyrOFxAMnNHRhJWbKz/3aAaugsrjNcaQnp6O0+lsiPCUUqrehMTEO23btmXv3r0cPnw40KGctIKCgkZduLiNm8N5hzksh4kPj8ci/t8pg+H+3G43uUczMG53Wdru/QeIatLUr8m/lNPppG3btg0ZolJK1blqC3wRaQuMAwYArYF8YCPwMfCpMcZdzeENxm6306FDh0CHUSdSU1Mb/Vzuaw6s4Y+f/ZGrzrqK6edN99sXLPf305qVfPjMo35pZ/btz+i/Tq71UD2llGpMqmzSF5HXgX8BLuAp4DrgdmApMAL4SkQubIggVePSt2Vf/tDtD3yw/QM+3x2c89Kf2fdceo0c7Zf205pvSftsUYAiUkqp+lVdDf9ZY8zGStI3Av8VEQdwev2EpRq7Pyf/mW/3f8u0b6dxdrOzaR3VuuaDGtiAG37Pr1t/5ODOn8rSlr81h9adzqbFGWcGMDKllKp71XXaO1NEEqraaYxxGWN+qmq/OrXZrXb+duHfKHGXMGnZJAqKCwIdUgU2u51Rd96HIzyiLK2kuJhFLzxFYV5eACNTSqm6V12B/zsgTUS2i8gbInKriCQ2VGCq8WsX044nBzzJ5ozNPLLykaAcRdGkZSuG/ekOv7TMA/tZMntmUMarlFK/VZUFvjHmGmNMG+BiYDHQHXhTRA6LyCc1nVhEThORZSKyWUQ2icidleQZJCJZIpLm/an9yimqURh42kBu63EbC3csJGVrSqDDqVTn/gPocfFIv7St36xgw9L/BSgipZSqezWOwzfG7ALWA98BacAhILy6Y7yKgb8aY84GzgX+LCIV10GFL40xyd6fGbWOXDUaE3pM4MK2F/LU6qfYWbAz0OFUauCNN5Nwenu/tGVvvMK+bVsCE5BSStWx6nrpTxaRj0RkJfAA4ABmAt2NMYNrOrExZr8xZr3392xgM9CmbsJWjYlFLDwx4AlaR7VmzpE5HM4LvvkS7I4wRt11P/aw43MElBQXs/C5x8k5mhHAyJRSqm5UuTyuiGwBcoBFwDfAKmPMb1peTETaAyuAbsaYYz7pg4APgL3APuBuY8ymSo6/FbgVICEhoffcuXN/SxiNQk5ODlFRUYEOo17sc+3jmf3P0DasLRNbTMQmwTfvU8ZPW/h5if/QvMiWrek0eiwWq7XG40P5/Qvle4PQvb82qzz1uq2Jx0Ly/kqF6vtXavDgwSe9PG6Vf3GNMV1EJA44DxgE3C8iUcD3wDfGmNdrcwHvMR8Ak3wLe6/1QDtjTI6IXAIsAM6qJJZXgVcBOnfubEJ5zeNQX9P5wMcHeP3I63zj/IYp504JvkluBg1iRYSTNR/OK0vKPbCPkp2bGXLLX2o8PJTfv1C+Nwjd+zu0dQMAUVHukLy/UqH6/tWlap/hG2MyjDGLgKl4mvXfBwYDr9Xm5CJix1PYv2OM+W8l5z9mjMnx/v4JYBeR+PL5VOjoFdmLP3T7A+9ve583Nr0R6HAqdcG4/0f7Hr380jYs/R8bPtdOfEqpxqu6Z/ijReRJEfkST0e9Z4B44K9Ay5pOLJ6q2xxgszHmuSrytPTmQ0T6eeNJP+G7UI3Knb3uZET7ETy37jn+93PwFaIWi5VLJt5DbAv/j/nnc2axb9vmAEWllFInp7oa/njgCHAv0NIYM8AYc58x5kNjTG16XZ0P/D9giM+wu0tEZIKITPDmuQbYKCLfAy8C44wOfg55FrHw6AWP0qt5LyZ/NZm1B9YGOqQKwqOiufzuh7CFhZWluUuKWfjcE2RnBOfyv0opVZ3qxuFfZYx5BmhijHH57vMpsKtkjPnKGCPGmO4+w+4+McbMMsbM8uaZaYxJNMb0MMaca4z55qTvSDUKYdYwXhzyIm2i2jBx2UR2ZgbfcL2E09sz4rZJfmm5RzOY/9SMKpfTVUqpYFXjOHxgiogMKd0QkfuAy+svJHWqiA2L5Z8X/RO7xc5tS2/jSH7w1Zw79x9A38uv8Us7vGsnH7/wN9zukgBFpZRSJ642Bf5o4HERGSAijwH9vGlKnbS20W35x9B/cLTwKLcvvZ28ouCbw/6Ccf+PM3r380vbuX4Ny96YrdPvKqUajdrMtHcETwH/MtAauMYYU1TfgalTR2J8Ik9f+DRbj25l4rKJQbfQjsVi5dKJ99C8Q0e/9LTPFvHdpwsDFJVSSp2Y6nrpZ4vIMRE5BvwEdALGAKVpStWZgacN5JHzH2H1/tX8X+r/4Spx1XxQA3I4w7ny3qlEN/NfQHLZm6/x05qVAYpKKaVqr7pOe9HGmBifH6cxJqo0vSGDVKeG0R1HM6X/FL789UvuWX4PRe7gakiKimvGlfdNxRHus5SEMXz80tMc2LE9cIEppVQtVFfDb1/dgeLRtq4DOtUVZBl2bQi+zmsNZUynMdzf736++OULHvzyQUqCrGNcQrsOXDbpfsRy/L9OcWEh8596mKMH9gUwMqWUql51z/CfFpEPRORGEUkUkeYicrqIDBGRR4CvgbMbKM5TxuGNhi/e2oy7xB3oUALmhrNv4K7ed/Hprk+Z+s1U3Ca4Xov2yb0Z+ofb/NLysjKZ9+gUXLk5AYpKKaWqV12T/hhgCtAZT4e9L4EPgZuBrcAQY8yShgjyVBLbTsjPLmLv1qOBDiWg/tDtD9yefDsLdyzk0ZWPBl2h3+PikfS57Cq/tGOHD7J90Tzyc7IDFJVSSlWt2uXKjDE/Ag82UCwKiGoFjnAb21cf5PSuzQIdTkBN6D4BV4mL1354jSJ3EdP7T8dqqXnFuoZy4fXjycvK5McVX5SlFWQcYf5TDzPmwUexO53VHK2UUg2rNuPwVQOyWIWOPRPYkXaYYldwPb9uaCLCxJ4Tua3HbSz4aQH3rLiHopLg6cgnFgvD/jSxwhj9/du2sPC5xykpDp5YlVJKC/wgdFa/FhQVlLDrB11HSES4Pfl27u5zN0t2L+GOZXeQXxw809pabTZGTbqPtmd380vf9f16Pp35nM7Gp5QKGlrgB6E2nZoSEeNg+5qDgQ4laNyUeBPT+0/nm1+/YcKSCWS7guc5ud0RxhX3TiGh/Rl+6Vu//ZKlr/0D4w6u/gdKqVNTdcPyelX305BBnmosFuGsPi3YtfEIhXnaLFzq6k5X87cL/8aGwxu4efHNHC0Ino6NYRGRXP3Aw4TFNvFL/+Hzz/j8X7N0Cl6lVMBVV8N/1vvzMrAKeBWY7f39xfoP7dR2Vr8WuIsNO76rzUrEp44RHUbwwpAX2JG5gxs/vZFfsn8JdEhlIps05axRY4hqGueX/v2ST/jidS30lVKBVd2wvMHGmMHAbqCXMaaPMaY30BPPVLuqHjVvF01sQrg261fiwrYXMuuiWWQUZPC7T37H94e/D3RIZcJiYrlmymNElKvpp332Mcv+/aoW+kqpgKnNM/wuxpgfSjeMMRuB5PoL6dQWk7UFNryPiHBWvxbs3XqU3KzCQIcVdPq07MPbl7xNhC2CP372RxbvWhzokMo0a3Ma1059vEKh/92nH7H8rde00FdKBURtCvzNIvKaiAwSkYEiMhvYXN+Bnara/PoxfHI3FLvo1LcFGPhp7aFAhxWUOsR24J1L36FLXBf+uvyvvL7x9aApTJu1PZ0xDz1KeLT/shPrPv6QFe8ET5xKqVNHbQr83wObgDuBScCP3jRVDw62GAQFmfDTEpq2jCTh9Gi2rT4Q6LCCVpwzjteGvcawdsN4bt1zPLLyEYrdxYEOC4D409szZurjOMsV+ms/+q+neV977yulGlCNBb4xpgCYPuHmSAAAIABJREFUBdxvjLnSGPN3b5qqB0ebJkNEPGxIAaBTvxYc2p1N5sG8AEcWvJw2J08PfJo/dPsD7297nwlLJpBRkBHosABIOL09Yx56FGdUtF/6d59+xOJXX9Jx+kqpBlNjgS8io4E04H/e7WQRWVjfgZ2qjMUK3a6Grf+DgizO7N0CBLZp571qWcTCXb3vYsZ5M/ju0HeMWzSOTembAh0WAM3bn8GYKY9VKPQ3LlvCxy88rTPyKaUaRG2a9KcB/YBMAGNMGtC+HmNS3cdCSSH8uJCopmG06dSE7WsO6nPfWrjyrCt5c+SbGAw3fnIjC35aEOiQAE+hf+20Jyp05Nu28isWPvs4RS7tmKmUql+1KfCLjTFZ9R6JOq5NL4g743izft+WZB7M4/Ce4JldLpglxieSMiqFns17MuXrKTy68tGgmIM/4fT2jHv4KaKbJfil71y/hvlPPowrXx/bKKXqT20K/I0icj1gFZGzROQl4Jt6juvUJuKp5e/6CrJ+5YyeCVhswpaV2nmvtuKcccy6eBa/T/w9KVtT+MNnf+BAbuBfv6at2jBuxlM0adnKL/2XTRt4/9GHyDum362VUvWjNgX+HUAiUAj8B8jC01tf1aekMYCBjfNwRtrp2LM5W7/dj6sgOHqgNwY2i43/6/N/PD3wabYd3cbVC6/m8z2fBzosYuKbM+7hvxF/enu/9AM/bePdKXeTeWB/YAJTSoW0agt8EbECC40xDxpj+np/HtJe+g2gWUdo0wc2zAWg++C2uApK2LYq8LXUxmZE+xHMvWwubaPbMmnZJB5d+SgFxYH9CEc2acq1056g5Zmd/NIzD+znP1Pu5sBP2wIUmVIqVFVb4BtjSoA8EYltoHiUr+5j4eBGOLiJFh1iSDg9mg2pv2rnvd+gXUw73h75Njd1vYmUrSlc/8n17MjcEdCYwqOiGfPQo5ye5D9xZf6xLFJmPMDO79YEKDKlVCiqTZN+AfCDiMwRkRdLf+o7MAV0uwrEChvm/n/27js8juJ84Ph3rklXdHcqp95tFTfZKu5NrrhgG4xpwZRAaCEJCSEJCRCSX0JJCCSQEEpoptuAC25g3Au4yVXuRcWSZfV26tLt74+VZQsJW8aSVTyf59nndLt7u7M+S+/s7Mw7CCEYkBxMcU4F2UdLOrtk3ZJeq+fRwY/y6sRXKawq5JZlt7DgyIJOrUAZjCZmP/YUfUaPa7a+vqaGxX//C/vXdp2UwZIkdW9tCfjLgSeBjUDKeYvU0cw+0HsC7P8MXC6iBvvibtazf11WZ5esWxsVNIrPZ35Ogl8Cf9n6Fx5c/WCndujT6vRMfegRhsya02y94nKx6vWX2bLgA5mVT5Kky9aWTHvzWluuROEk1Gb9sizI/AadXkvfUYGk7c2nvEh2o7gcPkYfXp34Ko8PfZxdebuYvWQ2i48v7rS7fSEEo390F+PvfkAdpXGerZ9/wrJ//Y26GvmdS5L0w31vwBdCLGh83S+E2Pfd5coV8SoXMw0MlqYx+f3GBAKQujG7M0vVI2iEhltib+HzGZ8T7RXNk1ue5Gdrf0ZeZedNVhR/zbXMfOT36PSGZuuPbtvC/D89RnlRQSeVTJKk7u5Cd/gPN75eC8xoZZGuBIMJ+syAA0ugrhqrt5GIgQ4Obj5NfZ3Mw94eQqwhvH3N2/xu8O/YnrOd65Zc16l3+1FDRjDnyacxWpv3lc09eZwP//AIZ04c65RySZLUvX1vwFcUJafxNaO15WIHFkKECCHWCSEOCSEOCCEebmUf0dgJ8Hhjy0HC5V1ODzXgRqgphWNfqW+Tg6h21slpc9uRRmiY23cun874lN723jy55UnuWXUPJ0tPdkp5gmL6cNvTL+ITEtZsfUVxEfP/9BhHvt3cKeWSJKn7asvkOeVCiLLGpVoI0SCEKGvDseuBXyuK0gcYBjwkhOj7nX2mAlGNy33Aq5dY/qtDxFjwCIAUtetEUIwnngFm9q3LkkP02lm4LZx3p7zLH4f/kcNFh5nzxRxe2fMKNQ1XPte9zdePW//yPJEJg5utr6+tYdm/nmPTx/PkbHuSJLVZWzrteSiKYm1c3IEbgP+04XM5iqLsavy5HDgEBH1nt1nAe4pqK2AXQgQgNafVQdI9cGIN5B9FCEFcchD5meXkprWl7iVdCo3QcGP0jXxx3RdMCpvEa3tf44YvbmBrztYrXhaD0cSs3zxB0ozZLbZtX/wpC5/9E1Xl8v+AJEkX15Zhec0oirIYGH8pnxFChAPxwLbvbAoCTp33PouWlQIJIPEu0Bpg++sARA/1x+CuZf96OUSvo/gYffjbmL/x+qTXURSFe1fdy6MbHuW08/QVLYdGo2Xs3Lu55oGH0Wh1zbZl7NvNB7//Jbknj1/RMkmS1P2IizUJCyHOv7XQAEnAWEVRhrfpBEJYgA3A04qiLPzOtuXAs4qibG58vwb4raIoKd/Z7z7UJn8cDkfiggUL2nLqbsnpdGKxWFrdFnP4JXzzvuHb4W9Rr7eQs8tF8XGImiHQG0Wrn+lqLnR9XVmtq5bVZatZXbYagAnWCUy0TsRN49Zsv46+PmdONidXfUFdZUWz9UKrJXTMJHxi+3fcubvpd9dWPfX6grap93VH+pX1yOs7q6d+f2eNGzcuRVGUpMs5hu7iuzTrkV8PpKM2xV+UEEIPfA58+N1g3ygLCDnvfTDQ4vZJUZQ3gDcAYmJilOTk5Lacvltav34933t9MZ7w+hhGmdNhxM8o6VvJR09txVQRzMipUVeymD/YBa+vi5vMZHKcOfwz5Z+sTF/J7rrdPJL4CFMjpiIax85fietzTpnKsn89R/bhg03rlIYGMtZ9iU0L4+68D53BcIEj/DDd+btri556fXlH1FHUFourR17fWT31+2tPbXmG/+PzlnsVRXlaUZSLdg8X6l/At4BDiqK8+D27fQHc0dhbfxhQenZ0gNSKgIEQOgK2vwGuBuy+JqKH+pO6IZvKstrOLt1VIcASwN/H/p15U+bh5e7F7zb9jttX3s7uvN1XrAwWTy9ufPIZ4qe2HB27b/WXfPT4IxSdlo96JElqri299F++0HKBj44EbgfGCyH2NC7ThBAPCCEeaNxnBXASOA78D/jp5V5Qjzf0fijJgKNfApA0NZyGBoVdqy46UlJqRwl+CXw8/WP+POLPnHae5o6Vd/DztT8np/bK1Fe1Oh3j77qfaT/7NTpD88cK+ZnpfPDYLzm4ce0VKYskSd1DW5r03YG+wPzG9zei5tLfc6EPNT6Xv+CDZUXtQPBQG8ognRV7LViDYdtrEDsdu5+JmCF+HNiQTfykUMw2t4sfQ2oXWo2W2VGzmRI+hQ8PfcjbqW+zoW4DB7cc5KFBD+Fv9u/wMvQZPQ7vkDCWvvgsJbnnKht1NdWsfOVFMlP3Mv7uBzC4Gzu8LJIkdW1t6aUfBYxTFOXfiqL8G5gADJI59TuJVgdDfgJpGyH3AACJ09S7/N1fZ3Zy4a5OJr2Je+PuZeXslSR7JLP85HKmL5zO8zuep6Cq41Ph+oZHMve5l4gZMabFtgMb1vDh739FXnrnJBCSJKnraEvADwQ8zntvaVwndZaEO0FnhG3qED2777m7/IrSK58gRlLZ3e3M9prNsuuXMSViCh8c+oCpn0/lHzv+QWFVYYee281kYvovfsOk+37eIg9/0eksPnr8EXYsXShn3ZOkq1hbAv5zwG4hxLtCiHeBXcAzHVoq6cJMXhB3kzqhTmURcN5d/ip5l9/ZAi2BPD3q6abEPe8fep+pC6fyws4XOjTwCyGIm3ANP3rmRbyCQppta6ivZ+MHb/PpXx6nrECmZJakq1Fbeum/AwwFFjUuw2VTfhcw9H6or4Zd6ldh9zURM9SP1I3yLr+rCLOG8czoZ1gyawkTQifw3sH3mLpwKn/b/jfOVJzpsPM6QsOZ+8w/6Zc8scW2Uwf3895vfs6hzes77PySJHVNbemlL4CJwEBFUZYABiHEkA4vmXRhfv0gYgxsfxMa6gFInBqOS97ldznhtnCeHf0si2ctZmLoRD4+/DFTP5/KE5uf4GRJxzxb17u7M+XBX3LtLx/D3dw8GUlNZQUr/v0Plr30d6qc5R1yfkmSup62NOn/FxgO3Nr4vhx4pcNKJLXd0AehLAtSPwPkXX5XF2GL4JnRz7Bi9gpujr2Zr9K/YtaSWTy89mH25u/tkHPGDB/FHf/4D2Fx8S22HflmI+8+8iDHdnzbIeeWJKlraUvAH6ooykNANYCiKMVA+6fxki5d9BTwGwDrn4OGOgCSpjXe5X8l7/K7qkBLII8NeYyv5nzFAwMfYGfuTuaumMvcFXP5Mv1L6l317Xo+Dy8fbvj9nxl3571o9fpm2ypLS/jiH0+z/OXnqSwrbdfzSpLUtbQl4NcJIbSAAiCEcACyq29XoNHAuD9AcRrs/RgAm8NEzDB/UjdmU5pf1ckFlC7Ey92LhwY9xKo5q3hsyGMUVRfxmw2/YerCqbyT+g6lNe0XgIVGQ8K0Wcx99l84wiNbbD+8ZQPzHn2Io1s3t9s5JUnqWtoS8F9G7aznK4R4GtiM7KXfdcRMhcAE2PA81KvpdYfOiERoBVs+O9bJhZPawqw3c1uf21h63VJeHvcyoR6hvJjyIpM+m8Rft/6Vo8VH2+1cPiFh3Pb0CwyfcysarbbZtsrSEpb+8zm+ePEZnMVF7XZOSZK6hgsGfCGEBkgDfgs8C+QA1ymK8ukVKJvUFkLA+MehNBN2vweAxdONpKlhpO0tIPNgx47/ltqPVqNlXOg43rrmLT6d8SmTwyaz6NgibvjiBu5ceSfLTy6ntuHy50zQ6vSMuPE2bnvmn63e7R/b9g3v/OoB9qxaIcftS1IPcsGAryiKC3hBUZTDiqK8oijKfxRFOXSFyia1Va8JEDIMNv4D6tRm/EETQrE5jGxecIyGevlHu7uJ9Yrlr6P+ypob1/Bo0qMUVBXw2KbHmPTZJP6V8i9OlZ+67HP4hkdy29MvMuKm29Bom2fZrq2qZM1b/+Xjp35LQWb6ZZ9LkqTO15Ym/VVCiBvE2fk/pa7n7F1+eQ7sfAcArV7DqJuiKD5Tyf71cua07srubufOfney9PqlvD7xdQY5BvHOgXeYtnAa93x1D8tOLqO6vvoHH1+r0zH8hluZ+9y/8ItsOcVyztHDvP/Yw2z6eB6uurrLuRRJkjpZWwL+I8CnQI0QokwIUS6EKOvgckmXKmIMhI+GzS9CbQUA4QN8COvvzfZlaXKYXjenERpGBI3gpfEvseqGVfw8/uecdp7m95t+z/gF4/nr1r9yoPAA6nxUl84RGs6Pnv4H4+68F/13JtpxNTSwffGnHJj/Dsd2fPuDzyFJUudqS6Y9D0VRNIqiGBRFsTa+t16JwkmXaPwTUJEP2//XtGrUjVE01LnYukROntJT+Jn9uC/uPpbPXs5bk99iTMgYFh9fzC3LbuH6Jdfz5v43f1AmP41GS8K0Wdz1wn/plTS0xfba8jK++MfTLHz2KYpOy1YjSepu2nKHL3UXocPU5/lbXoIaNYOa3c/EwAkhHP4mh9w02TDTk2iEhiEBQ3hu9HOsvWktTw57Eg+DBy/teonJn03mnq/uYfHxxThrnZd0XKuPg+t+8yQzf/0HLF7eLban793FvEd/xsaP3qW2Wg79lKTuQgb8nmb841BVBFtfa1qVNC0ck9XAxvlHUVyyObYnshqs3BRzE+9Pe58V16/gwYEPklORw5NbnmTs/LE8vPZhlp9cTkVdRZuPGTVkBHe98CqJ02chNM3/VLga6tmx5DPe+dUDHNy4Vvbml6RuQAb8niYoEWKmwTcvg1OdFc3grmPE7F7kpZdx6NucTi6g1NFCrCE8OOhBll+/nPenvs+NMTeSWpDKY5seY8wnYy4p+LuZTCTfcS93/P3fWAJDWmx3FhWy8pUX+fDxX5N1+EBHXI4kSe3kouPwhRCpV6owUjuZ9H/q8Lyvn2paFT3En4DeNr75/DjOYtmB72oghGCQ7yAeG/IYX9/4NfOmzPvBwd8nJIzomTcx/eHfttrMn3vyGPOf+h1LX3yWktyOmwlQkqQfri3j8PcKIUKvUHmk9uATBSN+Dns/ggx1YhShEYy/vQ8NdS7WfXBI9rS+ymiEhgS/hKbg/97U9743+H9fSl8hBLEjxvDjf77G4Flz0Op0LfY5um0L7z7yABs+eFvOxCdJXUzL39iWAoADQojtQNNtgKIoMzusVNLlG/Mo7FsAKx6F+zaAVofdz8Tw2b3ZNP8oh7bk0HdUYGeXUuoEGqEh3jeeeN94fjv4t+zN38tX6V/xdfrXrD21Fq3QEu8bz9jgsYwJGUOENYLz03AY3I2M+dFdxI2/ho0fvcOxbd80O35DfT07ly5k/9qvGDLrRuKnzkBvcLvSlylJ0ne0JeD/ucNLIbU/gxmmPAML7oCdb8HQ+wEYMDaIk3vy2PzpMYJjPbH6GC9yIKkn+27w31+wnw2nNrAxayMvpLzACykvEOIRwtjgsdiqbIxsGIleq864Z/cPYOYjfyDrUCrr33uT3JPHmx27pqKCTR+9y+4vlzJ8zo/onzyxRf5+SZKunLaMw98ApAP6xp93ALs6uFxSe+gzE3qNh7V/berAd7ZpHwFr3z8ke+1LTTRCw0DHQH6R8As+m/kZq25YxRNDnyDcGs6CIwt4Je8VRs8fzSPrH2Hx8cUUVqnzNAT36c9tT7/I1IceafX5vrOokK/f+HfTbHyyR78kdY6L3uELIe4F7gO8gF5AEPAaMKFjiyZdNiFg6vPw32Hw9R/henWontXHyKg5Uaz74DD7N2QRN65l72tJCrAEcHPszdwcezOVdZW89fVbFHkWsfHURr7O+BqBoI93H4YHDGdY4DDiR44kaugIdq1cyo4ln1FT2bwjYNHpLJb+8zkcYRGMuGkuvRKHIDN2S9KV05Ym/YeAIcA2AEVRjgkhfDu0VFL78emtduDb/CIk3AlhwwHoMzKAE7vz+XbhCUL7emP3M3VyQaWuzKQ3McA0gOThySjDFA4XHWZD1ga+Pf0t8w7M463Ut3DTupHgm8Cw3sMY9effULJhL3u+WkbDd3Lw52ekseT5v+DfK4oRN80lfGCCDPySdAW0JeDXKIpSe/YXUgihA2Q7cHfSSgc+IQTjb4/l4//bxpp5B7n+0UQ0GvlHV7o4IdQ7+z7efXhg4ANU1FWQkpvCt6e/ZWvOVv6Z8k8A7G52ht+SQOQBQeXuEy1Ghpw5cYyFzz5FQHQsSdOvo/fg4fIZvyR1oLYE/A1CiD8ARiHEJOCnwNKOLZbUrgxmmPIsLLgdtr8Bw38KgNnuxuibo1n9zkF2LE9j6IyWc6NL0sWY9WbGBI9hTPAYAPIr89mas1VdTm9lpX8ettE6hqcF4H+qZbehnKOHWXr0OSzePgycOJW4Cddgstmv9GVIUo/XloD/GHAPsB+4H1gBvNmRhZI6QJ8ZEHUNrPkz9J4IjmgAoof4kXW4iJ3L0/ELtxI+wKeTCyp1dw6Tgxm9ZjCj1wwURSGtNI1vc75lx5kdrD26h14HNITltnyE5CwsYMv899n6+cfEDB9N7KhkAnrH4G6xdMJVSFLP05aAnwx8qCjK/y62o9SFCQEzX4b/DoeF98JPVoNWjxCCsbfGUJDlZPU7B7npD4PlUD2p3QghiLRHEmmP5LY+t6EkN1YA9qwiY+UG3NJbJudpqK/n4KZ1HNy0DgDPwGACekcTEBVLQO9ofELDW036I0nShbXlt+Yu4DUhRCGwqXHZrChKcUcWTOoAHv4w4yW1aX/D39TpdAGdQcuU+wbw6bM7WPn6fm74TSI6g3yWKrW/pgpA8gOQ/AD5mel8s2wBJ775BqWuvtXPFJ/Oovh0Fgc3rgVAZ3DDL7I3AVEx6tI7Bg9v2TIlSRdz0YCvKModAEKIQGAO8AoQ2JbPSl1Q35kw6DbY9AJETYaQIQDYHEYm3tWX5f/dx8ZPjjL+jj6dXFDpauAIDWfWT39L9Z1ODqxfzZ6vllOSe+EJnupra8g+fIDs8ybrMXt64RfRC7/I3vhG9MYvshcWT2/Z+1+SztOWcfhzgdHAAKAA+A/qXb7UXU15DtI3wcL74IHN4KY+Iw2P8yFpWjg7V6TjH2mTqXelK8bdbCFx+nUkTJ1J+t5dHN+xlezUvRTl5rRpSFBFcREni4s4uWtH0zqTzY5fRC+1AtBYGfDwcchKgHTVastd+r+AE6jJdtYpipLeoSWSOp67Fa5/Hd6ZBl/9QX2232jwtRHkppex8ZOj+IRY8A2zdmJBpauN0GiIiE8iIj4JgNrqKrJ3bCNt0eecPnKIEjcdNfq2NS5WlpaQtieFtD0pTevcPaz4RfTCERaBIzQcn9BwvIJC0On1HXI9ktSVtKVJ30cI0Q8YAzwthIgCjiiKcvuFPieEeBu4FshTFKV/K9uTgSVAWuOqhYqi/N8lll/6ocJGwMiHYcu/IHoKxE4DQKMRTLq7LwueUZ/nz/ldEmabnPhE6hwGdyMRo5OJGJ1Mg9NJ8YJPyf7wAwqdpZQF+VPu70thWXGL5D7fp7q8jIx9u8nYt7tpnUarxTMgCJe7CWNJPo6wcByhEVi85CMBqWdpS5O+FQgFwoBwwAa0JRn2u6jN/+9dYJ9NiqJc24ZjSR1h3B/g+Br44ucQnAQWNYGi0WJg6v0DWPTCLpa/so/rHonH4C67bEidS2ux4HP3j/G+fS5lX35J4dvvULP2W4TDBzFjOlUxURQW5pGbdoL89DTqa2vadFxXQwOFWZkAbD5+uGm9u9mCT1g4PiFheAeF4hUUgndwCCabXVYEpG6pLX/FN5+3/EdRlKy2HFhRlI1CiPAfXjSpw+nc4Ib/wRvj4NO74I4l0DgTmm+YlWvu7c+KV/fz1f9SmfbTOLTai861JEkdTuj12GbMwHrttVRu3Urh2+9Q8fY83HQ6YidPYvitt+IWH09xTja5J4+Tl3aC3LQT5KWfpK66qs3nqa5wknUwlayDqc3Wu1s88A4OwTsoFO/gELyC1VfZSVDq6trSpB8HIITwoP1T6g4XQuwFTgOPKopy4GIfkNqZbx+Y+W9Y+BP1ef6055s2hQ/wYeyt0az/8AgbPjrCuLmx8g+a1GUIITAPH455+HBq09Mp/mQ+JQsXUrZiJW5RvbHfeiuxM2fSb6w6z5ficlGUk01+RhoFmenkZ6SRn5lOeUH+JZ232llO9uGDZB8+2Gy9wWjCKygYz4AgPAMC8fQPbPrZYJRzVUidT3w3v3WLHYToD7yPOlueAPKBOxVFSb3gB9XPhgPLvucZvhVwKYriFEJMA15SFCXqe45zH+qMfTgcjsQFCxZc7NTdltPpxNIJmcV6HX+bkKwlHI75BWcCmk+EmLffRf4BcPQX+Pa/vIDfWdd3pfTk6+sW11Zbi/vOnZjWb0CfmYnLzY3qoUOpGjuG+qCgVj9SX1NNVWEBJTlZuJzlVBXmU1WUj6uN/QLaQmcy427zxM3mibvdjpvNC3ebHTebHY2uYzsMBm1TW+aO9Cvr+t/fZegW/z8vw7hx41IURUm6nGO0JeB/AzyuKMq6xvfJwDOKooy46MEvEPBb2TcdSFIUpeBC+8XExChHjhy52OG6rfXr15OcnHzlT9xQDx/MhsytcPdKCEps2qQoCmvfO8Thb88w7vZY+o784cP1Ou36rpCefH3d7dqq9u2j+KOPKVuxAqW2FmNSIp633op10iSEwdBi//OvT3G5KM3PIz8zjaKsUxRmn6IwK5Oi7Kw29w1oEyHw8PZRWwLOaxGw+fphdfiid3O/7FPkvb4PgIMxRd3q+7tU3e3/56USQlx2wG/LM3zz2WAPoCjKeiGE+XJOCiCE8AdyFUVRhBBDAA1QeLnHlX4grQ7mvANvJMMnc+H+DU2d+IQQJM+NpaK0lvUfHsFscyOsv3fnlleSLsIYF4cxLg7f3/2W0oWLKP7kE07/+lFyvb2xzZyJffb1uEW12qiI0Giw+/lj9/OHwcOb1isuF2UFeRRmqRWAwuxTjRWCTGqr2t4/4NwBFcoL8ikvyCdz/54Wm002OzaHH1ZfP2xnF4c/Nl8/PHwcMsWwdEna8r/lpBDiSdRmfYC5nBtK972EEB+j5uH3EUJkAU8BegBFUV5Dzdr3oBCiHqgCblEu1twgdSyzN9zyIbw1GRbcqXbi06l3Qlqthin39WfRC7tY+fp+pj8YR0hfr04usCRdnM7TE+977sbrx3dRsWULxfPnU/T++xS98w7ucXHYZ1+Pddq0Nh1LaDTYfP2x+foTmTC4ab2iKJQXFlCck03JmdMU52RTnHOa4pzTlOadwdXQ8IPKXllaQmVpCTnHW7ZqCqHB4u3drBJgdfg2Vgz8MXt6otHIFNnSOW0J+HcDfwYWNr7fCPz4Yh9SFOXWi2z/D+qwPakrCYiDWf+Bz++Br34P019o2mRw1zHz4UEs+ecelr+6j+k/jSOkjwz6UvcgNBoso0djGT2a+sJCSpcupXThIs786c/kPvsc1rgBVBgMmIYNQ2gubUSKEAKrjwOrj4OwAYOabXM1NFCan0tJTmNF4MzppspAWUEe/MD7HEVxNbUOZNGyS5XQaLB4ejPCNhOdTk9W4U52VZXh4ePA6u3Aw9sHo9UmO+JeRb434Ash3IEHgN6oU+P+WlGU9uvFInVdA+ZAzl745mWwh6oJehoZLQZm/aox6P9XBn2pe9J5e+N911143Xkn1akHKF20kIbFi8m8+x50gQHYr7sO2/XXYwgJuexzabRa9fm8f2BTBsGz6mtrKc07Q1FOdlOFoDTvDKV5uZQV5KO42pLypHWKy0V5YT61+kpqgdyjO8ndu7PZPlq9Hg8vHzy8GxcfR+PP6qvZ0wujh1VWCnqIC93hzwPqUPPmTwX6AL+8EoWSuoCJf4aybPj6j2Dyhvi5TZvOBf3datB/KI6QWBn0pe5HCIFxQH9FJerhAAAgAElEQVSMA/pzePhwEurqKFm4iIJXX6Pgv69iGjIE26yZeEyahNba/mmmdQYD3sGheAeHttjmamigvLCA0rxcSvPPUJaXq/6cl0tpfi4VxUWXff6GujpKcnMuOGGRVqfD7OmF2e6JxdMbs6cXFk+vpleLpxdmL2/czRZZMejiLhTw+yqKMgBACPEWsP3KFEnqEjQauO41qCqGL36hBv2YqU2bjRYDs34Zz5J/7WbFK/uYJoO+1N3p9VgnTcI6bRp1OTmULllCyaJF5Dz+BGf+9GfMY8Zgu3Y6luRkNEZjhxdHo9U2ddSDuBbb62prKMvPoyw/r7Ei0FgpyM+lLD+PqvKydilHQ31903kuRKvXY7afVwk4u9jsmOx2zDZPjFYbJptdzl3QSS4U8Jua7xVFqZc1t6uQzgA3vQ/zZqiZ+G5fDGHneiwbPZoH/SkPDCCsn+y9L3V/+oAAfB54AO/776c6NZWyZcsoW7ES55o1aEwmLBMmYLt2OuYRIxCdFLz0Bje8g0LwDmr9sUNdbQ3OwgKcH2fQUFdHYMhIvK0WygsL1Gf/hQXUVlW2W3ka6uooy8+lLD/3ovu6mc2YbJ5qZaBxOVsxMFkb39vV1/YYmiipLhTwBwohzlYRBWBsfC8ARVEUOY3a1cDNArd9Cm9PgY9uhh+vAP9zaRXOBv0vXt7Dilf2Me6OWGKHBXRigSWp/ahN/gMwDhiA729/S+WOnZQtX07ZqlWULV2K1m7H45prsF07HWNi4iV39utIeoMbngFB1JnV0c4BMcNbjFOvqaxoCv7qkn/eayEVJUU/bLjhRdRUVFBTUUHx6Ytnate7GzFZrRg9zlusVowetmbrqooKqCwtwd3igUYrRye05nsDvqIo8l9MUpl94PaF8NY18MENcM9X4BnetNnoYeD6RxJY+fp+1rx7iIqSGhKuCZPP86QeRWi1mIcNxTxsKP5PPoFz8xbKli+n9IsvKJk/H52/P9YpU/CYPBnjoIFdKvh/HzeTGbdQMz6h4d+7T21VJc7iYipKinAWF1FRVKi+lhTjLC6korgIZ1ERdTXVHVLGuuoqSqurKM27eMvBwfnvAurER0arFXeP71QUWlQWPHC3eOButlwVlQSZtUFqG3uoGvTfnqI28d+5tFnQNxh1XPuzgayZd4iti09SUVzDqJuj0Whk0Jd6HmEw4DF+HB7jx+GqrKR87TrKli+n+MMPKXr3XXQOB5aJE7BOnowpKanTmv3bg8Fowstowiuw9dTEZ6kVAzX4VxQX4iwppqK4kMrSUioa8wlUlpZQVVaGovzw0QdtUV3hpLrCCTmn2/wZg9HUFPzdLRb157Ov5nPv7X4BOMIiOrD0HUcGfKntfPvA7Yvg/evh7alq0Pfp3bRZq9Mw6cd9MdsM7Fl9isqyWibe3RedvufXnKWrl8ZkwnbtdGzXTqehvBznho2Uf/01pYuXUPLxJ2htNizjx+MxeRLmESPQuLl1dpE7xLmKQfAF93O5GqgqK2usAJRSWVrcrEJQUVpCZUkJlaXFVJaV/uCkRZeqtqqS2qrKi/ZBiBo+ipm/fOyKlKm9yYAvXZqgBLhrObw3C96ZCnd+oVYEGgmNYOScKMx2N7Z8dpzKl/Yw9f4BGD1a5i6XpJ5G6+HRFPxdVVVUbNlC+ddfU756NaWLFqExm7GMHYvH5ElYRo9GY77sLOXdjkajxWz3xGz3vOi+iqKod+vlZVSdXcrO+/m8dYW5ZxAN9VQ7yzu0/F9kr+QvH3yO1WDF6mZt/tr4s81gw8PggUVvwWKwNP3sYfDArDej03RO6JUBX7p0/v3VznvzZsK709Xe+wHNhw0NmhiK2ebGmnmHWPDsDqY9EIcj1KOTCixJV57GaMRj4kQ8Jk5Eqa2lYtt2NfivWUPZihUIgwHT8GF4JCdjGTsWfeAPn5SqpxJCYLR4YLR44Blw4UcKZyfPcTU0UF3hbKwYlF64olBeRo3TSXVlRZszHg4MSSQ2JpCy2rKmJceZw5HaI5TWlFJZf/GRD0ad8VxlQK9WAs6vGFgMFvW1sZJgMbTPLIAy4Es/jCPmXNCfdy3MXQTBic12iRrsh83XyMrX9rPw+RTG3R7bSYWVpM4lDAYso0dhGT0K/6f+SNWuXZSvXk35uvWc2fB/ALjFxGBJTsaSPBZjXBziKuhE1hE0Wi0mqw2T1Qa0LVOi4nJRU1lJtbO8aamqcFLtLFcrBBXlVDudVDnL6ZOUTOzgMd97rDpXHeW15ZTXluOsc+KsVZfyunL157Pr6pzn9qlzkluZ27RfVX37j4wAGfCly+HdSw36781Um/hv/Qgimv8i+IZZufH3g/nqf6l8/fZBvGPANdqFRtv1ezBLUkcQWi2mwYMxDR6M72OPUZuWjnP9epzr11P45psUvv46Wk9PLGPGYBmXjHnkSLQesnWsIwmNprGDngW4vGHFeo0eL3cvvNx/eCKyelc9FXUVTZWD8tpyBjP44h+8CBnwpcvjGQY/XgnvXQfvz4aZL8OgHzXbxWQ1MPOXg9jy2XH2r8ti6b/3cs1P+uNu6b49lyWpPQghcIuMwC0yAu+7f0xDaSnOzZtxrt9A+fr1lC5ZAjodpqQkLKNHYx41CrfoKDnktYfTaXTY3GzY3Gzte9x2PZp0dbIGwj2rYMHtsPhBKEqDcX+A8/4oabUaxtwcTWFFNjm7Spn/9HYm3d2PwCh7JxZckroWrc2Gbfp0bNOno9TXU7V3L8716ylft46855+H559H53BgHjmycRmBzkumtJbaRgZ8qX0Y7XDb57D8V7Dx71CcBjP/A/rmaTE9IwUjJySw6s0DLH5xF4nTwhk8LVw28UvSdwidDlNiIqbERHx//WvqcnKo2LIF55YtlK9bR+nixSAE7n37qsF/1EhMgwYhDHJEjNQ6GfCl9qMzqEHeKxLW/B+UZsHNH4K5eX593zArNz0+mE2fHGXn8nSyDhUz6e6+WH06fkISSequ9AEB2OfMwT5nDkpDA9UHDqgVgM1bKHzrLQrfeAONyYRp6FDMI0ZgHj4MQ69enV1sqQuRAV9qX0LA6F+rWfgWPQhvToCbP2iWfx/A4K5jwl19CennxYYPjzD/6R0k3xZDVJJf55RbkroRodVijIvDGBeHz4MP0lBeTuW2bTi3bKFi8xac69YBoPXxwTTiV2isVrT2IhRFkc//r2Iy4Esdo/8NYAuB+berQX/6ixB/W4vdogf74x9hY9VbB1j15gHS9xUw6qYojBbZLClJbaX18Gga8w9Qm5VF5bZtVGzdRn25k/qiInw+eIHjr76KeegQTEOHYR46BH3Qhce2Sz2LDPhSxwkZAvdvhM/vgSU/hVNb0ZivbbGb1cfI9Y8mkLIyg5QV6Zw6VMSYW2LoleCQdyOS9AMYgoMxBAdjv+EG8l7fi1JdTW7orQQVF+PctJnSJV8AoA8OxjRsKKakJExJSeiDguTvXBdxprSa7elFbE8rZHtaUbscUwZ8qWN5+KmZ+NY/A5teIN6yGeKj1Of859FqNQy5NoLIQQ7WvneIr/6XSmS8gzG3RGO29czc45J0ZQiEu5GqgWMITk5GURRqjh2jctt2KrZtpfzr1ZR+9jkAOj8/TImJGBMTMCUl4RYV1S1m/evuFEXhRH4FO9KLmpZTRWryHYubjsSwi6chbgsZ8KWOp9XBhD9CyFDcF9wNryfDda9AnxktdvUJtjDnd4nsWX2K7UvT+PjINkbdFEXMUH955yFJ7UAIgXt0NO7R0XjdPlfNMnfsOJUpO6namUJlSgplK1YAoLFaMcXHY0xKxJSYhLF/PzkKoB3UN7g4cLqsKbjvTC+msKIWAG+zgcHhXtw1IoIh4V70CfBAp9Xw3j2Xf14Z8KUrJ/oaUhJfZNipV2H+XBh0G0x5FtybJ5fQaDUkXBNGxEAf1r1/mDXvHuLQlhzG3BKNd1D75JSWJEklNBrcY6Jxj4mGH/0IRVGoy86mKiWFysYKgHPDBnVfNzfcB/THNGgQxsZF5+PTyVfQ9VXVNrD7VDE70orZkV7ErsxiKmvVWQBDvUwkx/gyJMKTweFeRPiYO+zmRgZ86YqqNvrB3avUsfqbXoC0jXDdf1uk5AXw9Ddz/a8TOPRNDt8uOsH8p3cwYGwQQ2ZE4GaSWfokqSMIIZr6ANhmzQKgvqiIypQUtQVgz24K570Hb74FgD4oqCn4GwcNwj02BqG/un8/iytq2ZmhBvftaUWkZpdS71IQAmL9rdyYGMzgCC8Gh3vhZ3W/+AHbiQz40pWnM8D4JyDqGlh0P8ybAcMegglPgr75WHyhEfQdFUhkvINtX5xk//osju3MZfj1vYgdFoDQyGZ+SepoOi8vrJMmYZ00CQBXTQ3VBw5StXcvVXv2ULlzJ2XLlwONrQD9+2McNFCtBAwYgM7Pr0c/kssuqWJHWhHb04vYkVbEsTwnAAathoEhNu4dE8mQcC8SwjyxGTuvMiQDvtR5QgbDA5vg66dg6ytwfLV6tx+c1GJXd7OesbfG0HdkIBs/OcLa9w6TuvE0I2b3Iii6fTq0SJLUNho3N0wJ8ZgS4pvW1eXkULVnT+Oyl+L33qforbcB0Dp8MPYfgPuA/hgHDMC9f390nt3z99blUjie72R7WmMHu7QiTpdWA+DhpiMhzJPr4oMYHO5FXLANd33XmfVQBnypcxnMMP0fEDMVlvwM3pwISXernfyMLfPsO0I9mP1oIke2n2Hr4pMsfnE34QO8GXZ9L7wD5fN9Seos+oAA9AEBWKdOBdRWgJpDh6jan0p16n6q9qfiXL++ad55fXCwWgForAi49+2H1mLuxCtoXW29i9TTpexoDPA7M4opqawDwOHhxpBwL+4L92RwhBex/la0XbjVUQZ8qWvoPQF+th3WPg3bX4dDS9UOff1vaDYJD6jN/LHDAuid4Mu+dVmkfJnB/L9sJ3Z4AENmRGDxvHLPxCRJap3Gza3puf5ZDU4n1akHmioA1Xv3Ub7yS3WjEBjCw3Hv0wf3vn1w69MH9z59rvjkQBU19ezKLG5qot9zqoTqOhcAET5mJvf1Y3C4F0MivAj1MnWrRxUy4Etdh5sHTH0OBt4Cy36pJuzZ/QFMfwG8W+YE1xm0JFwTRt+Rgez8Mp3967M4uiOXAWODiJ8chskqhw9JUleitVgwDxuKedjQpnX1hYVUp6aqFYBDh6jcs7tpWCCouQGaVwL6og8KbLdAm1Naxc70YlIyitmZUcTB02W4FNAI6Bto5dYhoQwJ9yIp3AuHR/fOCSIDvtT1BA6Cn6yBHW+pk/D8dzgM/ymMegTcrS12d7foGTUnirjkYLYvS2PvmlOkbsim39gg4ieFysQ9ktSF6by9sYwdi2Xs2KZ19cXF1Bw+TPXBQ1QfPkz1oYM4N24El3qnrbFacY+NbVYRoKHhoudqcCkczS1nZ2PT/M70YrJL1AQ3Rr2WQSF2HhrXm6RwLxJC7Xi496zRBjLgS12TRgtD71OT86z+E2z+J+x6H8b9ARLuVJP5fIfVx8jEu/qSNDWclJXp7FubReqGbPqPDiL+Ghn4Jam70Hl6ohs+HPPw4U3rXFVV1Bw9SvWhQ00VgeJPPkGpqQHAV6cjLTYWt9gY3KOicIuOxhUewf4KLTszStiZUczujGLKa+rV/T3cSAr35J5RESSFe9InwIq+h0/TLQO+1LVZA2D26zD0flj1BCx/BLa/AZOfhqiJrX7E7mdiwl19SZzWGPjXZ5G6KZvYYf4MmhiK3c90hS9CkqTLpTEaMQ4ciHHgwKZ1Sn09tWlpVB86xLFVq9AXl1Hx1Wq0jamCATQGM75Wf0b6hzIuKgr/+H70GzGIkOCrb64OGfCl7iEoAe5aDoeXwaon4cMbIDIZxj2hDu9rhd3XxIQ7+5I0LZxdX2Vy+NszHNh8msiBDuInh+IfaWv1c5IkdX0ul8Kxgip2FhlIqQplk2Ma+RYFQsCvoYJxhnKSXEVElOeSlJtJ/YltKKnrYBFUAMcDA3CPisYtOgq3KHUx9OqFpgenDu6wgC+EeBu4FshTFKV/K9sF8BIwDagE7lIUZVdHlUfqAYRQm/ijroEd/1Mz9b01EaImq039gfGtfszmMDFubixDZ0ayb536fP/knnz8I23ETwolPM4bTQ9vypOk7q6qtoG9WSVq57r0IlIyiimrVpvnfSxuhFk13D8+mqRwL/oGWDHomv9OKy4XdadPU3P0GDXHGpejR3F+8w3UqcPs0GoxhIXh1qsXhl6RuEVGYoiIxC0yAo256w0ZvFQdeYf/LvAf4L3v2T4ViGpchgKvNr5K0oXpDDD8IfVZ/vY34JuX4Y1kiJkO434P/gNa/ZjJamDYrF4kXBPG4W9z2LP6FCtf34/Fy43+Y4LoOzIQo0fPrd1LUneSX15DSoY6sczOjOKm9LQAUb4WpscFkBjmxeBwT0K9TGzYsIHk0ZHfezyh0TSlDPYYP65pvVJXR21Ghto/4NixpgpB+dq1zToC6vz9cYuMwBDZC0NkhFoZiIxE5+g+jwY6LOArirJRCBF+gV1mAe8piqIAW4UQdiFEgKIoOR1VJqmHcbPA6Edg8E9g22vwzX/gtVFq4B/1SwgZ0urHDO464saF0H9MEOn7Ctm3Pouti0+yfVkaUUl+DBgbjF9Ey9EAkiR1DJdL4US+s6nnfEpGEemFlQAYdBoGBdu5d0wkSWGeJIZ5Yje1X8Vc6PW49e6NW+/enP9br9TWUnvqFDUnTlB7Mo3atJPUnDhJ6cKFuCorm/bTWCwYIiObKgBNlYKQ4C43p4BQGrMedcjB1YC/7Hua9JcBzymKsrnx/Rrgd4qi7Gxl3/uA+wAcDkfiggULOqzMnc3pdGKx9NyMcR15fbo6J8FZSwnKXo6+vpwSW19Ohcym0DsRxIWb7KtLFYqPK5Skgase3D3BM1JgCwOtoe219578/fXka4Oee31B29T/+0f6lXWZ66uuVzhZ6uJ4SQPHi9XXSrV1Hg8DRNm1RHlqibJrCLNp0Lche90V+/4UBU1JKbozOWjP5KI7cwbtmTPqa2npud00Ghq8vWnwddDg60u9ry8Nvr40OBw0eHuD9tJS7o4bNy5FUZSWeccvQWd22mvtG2y19qEoyhvAGwAxMTFKcnJyBxarc61fvx55fZfjWqhxwu73sX/zH+ypfwVHHxj5MPSfDboLD82rrarnyDa1c19OipO8fRp6JTjoOzKQwCj7RZvuevL315OvDXru9eUd2QeAxeLqlOtTFIVTRVWkZBaxK0N9Bn/4jJrcRgiI9vVgVoKd+FBPksI8f/D0sF3h+2twOqk9qbYE1GakU5uRQW1GBnXbtjdrFUCnwxAUhD48DEPY2SUcQ3gY+oAAxCVWBtqqMwN+FhBy3vtg4HQnlUXqSdwsMOxBtak/9XPY8hIsfgC+/iMk3gVJPwZrYKsfNRh1DEgOpv/YIPIzyzm4JYdj289wdFsuNoeRmGH+RA/xx+Ywtvp5SbraVdc1kJpdSkpGMbsyi0nJKKHAqY6Vt7jpGBRi52fjo0gM82RQiL1TZ49rb1qLBWNcHMa4uGbrFUWhoaCgqQJQm55BbWYmtRkZVG7fgVJVdW5nvV7taxAWhiEsFH1QMPqQ4HYpX2cG/C+AnwkhPkHtrFcqn99L7UqrV9P0xt0MJ9bA9v/Bxudh84tqb/8h90Ho8Ba5+kGdE9w3zIpvmJWRc3pzclceh77JYfvSNLYvTcM/0kbMUD96J/rhbuk5f7Ak6VLlllWTklHcFOBTs0upa1Aba8O9TYyJ8iGh8dl7tJ9Hl55cpqMIIdA5HOgcDkxJzVvlFUWhPi+/qUWg7rxKQcW2bc0rA5epI4flfQwkAz5CiCzgKUAPoCjKa8AK1CF5x1GH5f24o8oiXeWEgN4T1aXopJqyd/f7cGAR+PWH+Nsh7iYwtT5Jh96gJWZYADHDAigvqubYjlyObDvDho+Psmn+MUL7edE7yY+IOJ8rfGGSdGXVNbg4nFNOSkYRKZkl7Mo4l5rWTadhYLCdu0dFkBjqSUKYJz4Wmd3yYoQQ6P180fv5Yh7SvKOxoig0FBZSl5UF8a0PO74UHdlL/9aLbFeAhzrq/JLUKq9IuOZpGPc47F8AO9+BL3+nNvf3uRYS7oDwMaBpvZOfh5c7CdeEET85lMJsJ0e2nuF4Sh7p+wvR6ARmP4UjxjNExPlgMMq8VlL3VlRRy+7M4qY7+H1ZpVTVqUPV/K3uJIZ7qgE+zLPVse/S5RFCoPPxQefTPjcT8i+SdHUymNTn+Yl3Qc4+9Y5/33z1mb89DAbeqt71tzJLH6i/iD7BHvjM8WDE7N7kppdxfGceB749xep3DqLVaQjp40nEQAfhcT5y5j6py3O5FI7nO881z2cUc7KgAgCdRtAv0MotQ0JICFWb5wPtsh9LdyMDviQFxEHA8zDpL2rq3l3zYMPfYMNzEJQIA25Se/hbfFv9uNAI/CNt+EfaqHNkERuawImUPE7uySd9fyEI8I+wETHQh4iBPnj6d/+MXVL3V1pVx95TJezKLGZXZgm7M4spb8xc52U2kBDqyY1JISSE2okLtmM0dEzPcenKkQFfks7Su8OAOepSmq3e7e9foDb5f/UHNXd/v+shdvr3Pu8XQhDQy0ZALxsjb+xNYbaTtL0FnNyTz7eLTvDtohNYfdwJ7edNaD9vgqLtGNzlr6HU0RROlbv4eHsmuxsD/PE8J6B2cYnx82DGwMCmu/dwb1O3yR4ntZ38SyNJrbEFwchfqEveYTXw7/8MvvgZLH0YIsZA31kQey1YHK0eoqnZP9iDwdMjKC+qJn1fAZkHCjm89QypG7LRaAUBvW2E9vUmtJ8X3kEW+YdWumyFzhr2NN69D8kpw1lTz5NpVcB+PE164kM9mTUwkPhQTwaG2HrcvO9S62TAl6SL8Y2FCX+E8U9Czl44uAQOLoZlv1Sn6w0dATFTIGbaBQ/j4eXOgORgBiQH01DnIudECZkHi8g8UNR092+yGgjt60VoP29C+njJIX/SRZ3tOb8rs5jdmcXsPlVCRmNaWq1GkKjzwGFx476Ien40eThh8u79qiUDviS1lRAQOEhdJvwRcg+ogf/wclj1BKx6giHGIKidDdFTIWQoaFv/FdPqNQTHehEc68WI2VBRUkPmwSJOHSwkbX8Bh7eeAQGOEA8Co+zq0tsuKwASZ0qrmwL77ky153xNvQsAXw83EkI9+dGQUOJDPRkQZKP8nQMAjAisIdxH9h+5msmAL0k/hBDg319dxj8BxRlw9Euqt36Eaetr8M2/wd2mPvfvNQF6TwDb92fLMtvd6DMigD4jAnC5FPIzysk8WEj2kWJSN2azd80pALwCzQRF2QlorASYbXKcc09WXdfAgdOl7M4saVyKOV1aDYBBq6F/kJW5w8KID1VT0wba3FvcvZd3RsGlLkkGfElqD55hMPR+9lXFkDwsAU6sheNfw/G16iMAAEesGvwjxkDoMDDaWz2URiPwi7DiF2Fl8PQIGupc5GaUcfpYCaePlXBo6xn2b8gGwO5nIrC3jcBoTwJ62/DwavkHX+oeFEUhq7iqsWm+hN2nSjh4+lzWumBPI4nhXvwkxE58qJ2+gVbcdLLnvNR2MuBLUntzt0K/69RFUSD/MBxfDcfXwI43YesrqGP1BkD4aAgfqab4/Z6e/1q9hsDeapM+U6GhwUVBppPsY8XkHCvh+K58Dm5Rs1KbrIamyoJfuJoaWCYA6poqaurZl1XK7lPFTXfwZ3POG/Va4oJt3DMqsvHu3Y6vh3snl1jq7uRfAknqSEKAbx91GfFzqKuCrJ2QsQXSNzevAPj1V4N/WONi9m71kFqtpimoMzkMl0uhMNtJzvFSctNLyU0rI21vQeP5wSvAjF+4ur9vuBXvQDMarcyIdiU1uBSO5ZWzJ7OEvVlqcD+aW46rcX7QSB8zY6J9SAj1JD7UToyfBzr5HUntTAZ8SbqS9EaIGK0uAPU1kJ2iBv/0zZAyD7a9pm7z7as2/QclqQmAfKJbTfmr0QgcIR44QjxQJ52E6oo6ctPLyE0rIy9drQAc+kZtBdAZNDhCPfANteITasEn2APPABNaGWDaTU5pFXsyS9iTVcKezBL2Z5dSWaumpLUZ9QwMsTO5rx/xYZ4MCrbjaZaZGKWOJwO+JHUmnRuEjVCXsb+F+lo4vetcBWD/Z7DzbXVfgwcExavB/2wlwBrQ6mHdzXrC+nkT1k9tJVAUhbKCKnLT1EpAbnoZBzZlU1+n9u7W6ATegRZ8QtQKgCPEgnewRSYFagNnTT37Tp0L7nuzSsgtU5vmDVoNfQKt3JQUwsAQG4NCZFIbqfPI32ZJ6kp0BvWuPnQYjHkUXC4oPKY+BshOUZdv/g0uNQUqHoEQnNhYCUhUHwu00hdACIHNYcLmMBE9xB9Qc6eX5FZSkFVOQaaTgqxytSWgsT8AAmwOY2PyIAtlRer+VocRzVU4xSlAfYOLI7nl7Dl1Lrgfy3OiNDbNR/iYGdHLh4HBNgaFetInwEN2rJO6DBnwJakr02jAEaMu8bep6+qq4Mx+NfifrQgcWnruM9YgNfD791df/fqrkwBptN85tMArwIxXgJnoweo6RVGoKKml4FQ5BVnl5J9ykp9ZxoldeQB8uHkrWr0GT3+T+tlAc9Or1duI6EEVAUVRyC6pYs+pEvaeKmHPKbVpvrqxVcTLbGBgsI3pAwIZFGpnYLANu0k2zUtdlwz4ktTd6I0QMkRdzqosUh8FnElVEwLlpqojAxT1uTE6o9px0L8/+A0Av37q+++0BgghsHi6YfF0Izzu3JSctdX1rF6+iYiAGIpOV1CUU8HpYyUc3Z7btI9Or8GzsQJh9zM1LTZfI/puMPFKRZ3CpmP5TcF9z6nSpl7zBp2G/oFWfjQkjIEhNuJDPAnxMsqmealbkQFfknoCkxf0nqguZ9XXqEMCz6SqFYDcVDi0DHa9d0BYQx0AABr4SURBVN7nfNTOgI5o9dUnBnyiwBbSrIOgwV2HyVvQZ0Rgs9PWVtVTlKNWAM5WBLKOFHNk25lm+1m83LD7NlYCfE3Y/dVXD2/3Tnk8UFvv4siZcvacUjPW7T1Vwon8SmA7AL0cZsZGOxjU+Nw9xt9DzvUudXsy4EtST6Vzg4CB6nKWokB5jloJKDgCBUch/6iaHKiq+LzPGsGnd2MFIBp8euNRVgRVA8Ho2bSbwahrmhr4fLXV9ZTmV1GSW6kueZWU5FZxdHsutVX1TftpdAKrtxGbw4jVx4jVxx2rz7n3erfLbxlwuRTSCyvYm1XC3lOl7MsqIfV0GbWN6Wh9LG4MCrEz0F7L7DEJxIXYsMrJZKQeSAZ8SbqaCAHWQHWJntx8W0VBYwXgCBQcUysEWdsh9TMAEgF2PQrudvCKAM8I8Aw/97NXhNqJUKPB4K47b6jgOYqiUFVe11gBUJey/CpKC6rIOV5CbXVDs/2NVgO2xkqA1WHE6m3Ew8sNi5c7Fk83dHpti+PnlFazL6uEvVlqcN+XVdo0z7tRr6V/kJU7h4cxKESdKS7IrjbNr1+/nlFRPkhSTyUDviRJKrOPuoSNaL6+tpL/b+/eg+O67sOOf393XwAWuwuSAEk8KFIUaT5AUtbDkiy/KNlJJUWx3NhNbKe24rTVqBN16mY8U7du00xnOlOnk3TixI6suJ44Gcex0yiSkqFruxorbhTLo1gPkqAoiRQpkwD4AEns4rmv++sf5+5isVzwBSyxi/19Zu7c19ndc3F28Tv33HvP4cIxDv7ob9jVH4fzx+DCMRh5GV57Zu6JAYBQzHUznNrgxg7o2hAsu3VJ9tGRjNKRjLqeAyuoKtmpAumxGTKlqVwZSPPmi6fLd8OXtCUi0BFmOgxniwWOz2Q5lc+T8ZSZCNzQm+DDN/dx80AXezak2NLTaR3amJZlAd8Yc2nRDlg3yFjPWbh77/x9xQKkT7gKQKkicOE4pE/Cqf0wdXZ+evEg0esqA6kBVxFI9kNiPZLopS2xnrYN61m3KXlRNtJTOV4+PMbhty7wsxMTnDszjU7PkJwRkr6wRj3WqQfMDSjkTRToPDtJ9Hie4VUTpIOWgXgqRrwrRkcqSnsi2rKPGZrWYgHfGHPtQmHXlL/6Rripxv78DKSHXaUgfcJVBNIn3fLwS+5xwmLuopdpvIeZWA/nvTWcLKR4Y7qTw1NxTmsX5zRFJLmWgcEb2H7DRvYMdLGrP0lnLEx2usDE+VkmL2SZPD/rls/PMnE+y8nXLzA1nr2olUDEXTrwPZ+poVfpSMWIp6Ju3hUsJ2N0JCPWJbFpahbwjTH1Eynd/Lel9n7fpzh1jhNvH+Vnbx/l3OjbTJ87SShzim7Os05OsMU7wB2k8SIVkToLHAV+1uGeNIh3Q7yHtngPbfFueuLdsKoHBtx24r3Q0Y0vYabSOabSWabTOabGs0xn3PqJt0aZHM9y+niGmck8VFUMEGhPRImnosRTMdoTEdoTUdo7o7Qn3XJHIuq2d0YJRaxyYBqLBXxjzHWjqvzs/LS7oe6Eu6Hu4Eipn/kuErFudg/cy549XaQGUqze0MWaVBviF2DyDEyegqlz7lJBeRpz88lT7tHDqbM1Ww0AvFiKRHwNifZV7ubD9lVumOK+Lo5wni27boP2VRQjKWb8JFO5ONOzMaYmYSqTY3o86+bpHOeGJ5mZyFMM7vavFm0LuQpBqWJQURloT7p5WzxCW2eEtniEcNSz5/pNXVnAN8bUxdwd82kODqd59aTrqW58Og9ALOwxWNHP/J6BLm5cE699PT0UgVS/my7/wZDNzFUEqufTYzAz7h5DvHDMzWfTbFEfjrpxC0JAZzC5DTFXMShVElZ1QSyBRhPkQ11M+6uY9ZNMFzuZyXcwk2tjJhtiZhZmZgpkzuQ5dSzN7GQB9aubDoKPCHvE4mFXCShPYWLz1iO0dYaJdQQVhY6ItSSYK2YB3xizaKrKqcwsB06mOTAcTCfTnJtyZ9ohT3jHugT3Da5nz0AXewZSbFufIFKPa+Ii0JZy05paNxbU4Pv8/bP7eO/tu1wFYGYcZsfnlmcuzF/PDEN2AslOEs1OEC1mL/8ZHaCpJNnIOqa9dcx4PWTpYlZTzPqdbip2kC20MTseY/xslNlcmNnZEL6/8Jl/OOIRbQ8T6wi7eXuYaMXy+vOziCeMH1eOHxgr74+1uzSRWMhaFlqEBXxjzFU7HQT3/cPu7H3/ybluaEOesHVtJ/duX8vugRS7+1Ps6E3SFmng7nU9j0Kk0/UrsGrT1b++kIXsJOQmILvwJLlJ2rIZ2rITkE1D/hTkptzNjflp0CmQGQhlXTNDG2gC8tpGVjuZ9RNB5SBBVhNu7sfJ5TvIjneSG+9kVjvJ+HGyfjs5v52OeBsAw8eU4Rf2X5R1EZ9opEgsUiQa9YnFfKJRiMUgEhU3xYRozCMSTNFYiEhbmGhbmEgsQqQjTLQtgheJIOEIeBHwwq5lxgtXLEdqDvFsrg8L+MaYSzozMcvB4TTPHMnxZ8df5MBwmjMTLrh7AlvWdvKBd/Swuz/J7oEudvYmaW+CvvOXVDjmpviapXm/YgEKM5CbRvJTRPMzRHPTJPLTrmJQWUkoZN1UzEJhDArD87adPnw/6iu/2PMtYrEk2ZxHLh8imw+Ty0fIFqLkijE3n46Tnewgo3Gyfgd5bSev7fg1Q0UhmGbLWzwKRGSGiMwQ9WbnliVY9mbdspcl7OUJe3kiXo6wFAiHgmWvSDiUJ+wViISKhEM5wp66gZm8kHu0U4K555XXb5mYgKOr3HrJRS0Xcol9tbZfKn3FuvqAustJ6lfMS9v9qu26wPbq9FRsXzwL+MaYsrHJbLlZvnTt/VTG/UMX4Ka107x3S3f5zH1nX5KOqP0bWXKhMIQSEEtcPu1lyFf3I8Bb2/4de/fuXTihqutEqbICUcyjxTx+vkBuOkd+Nkc+WyQ3kyc/WyA3WySf8922WZ98TsnnQuRzcXK5OPmckM/DdN4jnxdy+RD5gofvX/1ZftgrEA4VgoqAqxC45Rxhr4CfnyQ+7tKFvCIhr0BYgrlXICSFYLlI2MsH60XCkq+RpoBHZZCtuu9i3rOdGlQ6ggkJKiIRV0mo3F5OJ3Pzmtur0wMcvuq/2UV/w0W/gzGmKZ2bzJavtZeuu4+mg+AusLk7zl2bV7N7oIvd/SnOH32V+z70gWXOtakbEdfsHopArHNuM+7qQnswLYVi0aeQ8ynkiuSzxbnlXLCcrViu2j5vPVdkNlukkPeZmJ0iPBOhmPcp5H38Yu2bI6+UeEIo4hEOplDYK6/PzUNue1jwwh6h0Nw8FPbccljwQvPnobA3t23e6zxCker0Hl5IgK8s+u9uAd+YFnBhKjfvZroDw2mGx2fK+zd3x3nXptXsGUixqz/FYF+SRNUAMs+9bTd2maURCnmE2j1i7UsXgp577jn27n1fed33lWLBp5j3g0qAqxiU1ws+xZyrHJTSFSrSltPkq/f5FAuuojIzmXf7i4pfcO/jF93n+gXFX+CJjOViAd+YFWZsMsvB4TRDIxkOBkH+5IW54L5pTQe33NDFw3dvZHd/F4P9SRsdzqw4nid40RCRZbyfRH11FYCiX64EzKsUlOc+xbxL5xdK88qKhMJXF58fC/jGNKnSo3AHhzNBgE9zcDhTvuYOsHFNBzcPdPHP79rInv4Ug/0pUu0W3I25HsQTQsGlgUZQ14AvIvcBv4+7BPQ1Vf3vVfv3Ak8Dx4JNT6rqf61nnoxpRqrKifMzHBxxN9IdHMkwNDz3nLsI3NTTyV2bVwdN8u6GOgvuxpiSugV8EQkBXwZ+DjgJvCgiz6jqoaqk/09VH6xXPoxpNkVfOTY2FZyxu7P2oZE0mWBM97AnbF2X4N7ta9nVn2JXf5Lt65PEY9ZgZ4xZWD3/Q9wBHFHVtwBE5C+Ah4DqgG9MyyoUfY6cnSw3yx8cTnNoNBP0LQ/RsMeO9QkevLmPXX0uuL9jXaKxO7ExxjQk0eqxIpfqjUU+Btynqv8yWP8UcKeqPlaRZi/wV7gWgBHgc6o6VOO9HgEeAejp6bntO9/5Tl3y3AgmJyfp7Oy8fMIm1crHl/eV4Qmf4xmft4PpxIRPPnjcNxaCGxIeG5Nu2pQK0RsXwg0yVnsrl10z6/+Ju378+mBmRR5fyUotv5J77rnnp6p6+2Leo55n+LX+S1XXLl4CNqrqpIg8ADwFbL3oRapPAE8AbNu2TS/ZeUSTc4+W7F3ubNRNqxzfdK7Aa6MT85rl3zg9QSF4TCfRFmZX3yo+uCdZvuZ+Y3ecUIME91papexWmjOvu+50Ozv9FXl8JSu1/JZSPQP+SWBDxfoA7iy+TFUzFcv7ROQrItKtqmN1zJcxSyozm+dQ8Ajcs/tn+W8v/R1Hz05SegR3dTzKrv4Ue7f1uGvufSk2rG63AUuMMddVPQP+i8BWEbkRGAY+DnyyMoGIrAdOq6qKyB2AB5yrY56MuWaqyulMlkOjaYaGMxwaddPb56bLaVbFhNs2d/DA7t7yDXXrk20W3I0xy65uAV9VCyLyGPA93GN5X1fVIRF5NNj/OPAx4F+LSAGYAT6u9bqpwJirUCj6HBubckF9JMPQiAvu54PH4MB1YDPYl+Sf3TZQbpYf+umP2bv3XcuYc2OMqa2uz/Go6j5gX9W2xyuW/xD4w3rmwZjLKV1vLwX3Q6MZDo9myBbc3XTRkMe29Ql+bsc6dvYlGexLsr03Sac9BmeMaSL2H8u0lLMTWQ6NuufaS8H92NhUefCrVHuEwb4kn7prIzv7kuzsS3JTTyeRUGP0lGWMMdfKAr5ZkXxfOX7u4ib5s8E47gADq9rZ2ZvkoZv7y8G9L2XX240xK5MFfNP0ZvNF3jg94YJ6ENhfq+i8ptQz3fu39rjA3uumVId1O2uMaR0W8E1TuTCVu6hJ/ujZKYql59tjYXb0Jfnl2zeUg/vWdZ3EwtYznTGmtVnANw2pNFjModH0vCb50fTcSHC9qTZ29ia5b3B9ENxTDKxqx2vgzmuMMWa5WMA3yy5X8Hnj9Py75F8byTCRdYPFeAJb1nZy542rg7vkU+zoTbI6Hl3mnBtjTPOwgG+uq6m88sJb5+adtR85M0G+6Jrk2yMhdvQm+Mgt/eUm+W3rbbAYY4xZLAv4pi5UlZH0rDtjH8m43ulGMpy8MAPPvgBATyLGzt4ke7f1MBgE941rGrs/eWOMaVYW8M2i5Ys+b52dmncj3aHRDOPTeQBE4MbuOO/c0MVdPQUefM872dmXZG2ibZlzbowxrcMCvrkqk9kCh4OAXupP/vXTE+SCXuliYY/t6xPcv6u33CS/fX2CeNAr3XPPPcfebWuX8xCMMaYlWcA3NakqZyayc2fsI+5RuOOVA8V0RBjsS/Frd28qN8nf2B0nbL3SGWNMw7GAbyj6yrGxoEk+CO6vjWYYm5wbKOaG1W6gmI/eOlDulc5GgTPGmOZhAb/FzOaLHD41UT5jHxrJcPhUhtm8a5KPhIR3rEtw7/a1rke6vhTbexMk26xXOmOMaWYW8Few8elc+fG30tn7vF7p2sLs7E3yiTtuYLAvxWAwUEw0bE3yxhiz0ljAXwFKj8ANDafLz7YfGskwPD5TTrM+2cZg31yvdIN9rlc6a5I3xpjWYAG/yRSKPm8F19tLd8lXPwK3uTvObRtX8el3byzfKb+mM7bMOTfGGLOcLOA3sJlckddOZeZGgRtJc/jUBNkFHoEb7HOPwHVErViNMcbMZ5GhwfzDSIEnv/UyQyNpjo1NEVxuJ9UeYbAvyafu2shgv2uS32yPwBljjLlCFvAbzOHzRY5OXmBHb5IH9/S559v7kvR32fV2Y4wx184CfoN5eGeUD957z3JnwxhjzApj7cENxgaOMcYYUw8W8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQF1Dfgicp+IvC4iR0Tk8zX2i4h8Kdi/X0RurWd+jDHGmFZVt4AvIiHgy8D9wE7gEyKysyrZ/cDWYHoE+KN65ccYY4xpZfU8w78DOKKqb6lqDvgL4KGqNA8Bf6rOC0CXiPTWMU/GGGNMS6pnwO8HTlSsnwy2XW0aY4wxxixSuI7vXWucV72GNIjII7gmf4CsiBxcZN4aWTcwttyZqCM7vua1ko8N7Pia3Uo/vm2LfYN6BvyTwIaK9QFg5BrSoKpPAE8AiMg/qurtS5vVxmHH19xW8vGt5GMDO75m1wrHt9j3qGeT/ovAVhG5UUSiwMeBZ6rSPAN8Orhb/y4graqjdcyTMcYY05LqdoavqgUReQz4HhACvq6qQyLyaLD/cWAf8ABwBJgGPlOv/BhjjDGtrJ5N+qjqPlxQr9z2eMWyAr9xlW/7xBJkrZHZ8TW3lXx8K/nYwI6v2dnxXYa4mGuMMcaYlcy61jXGGGNaQMMG/JXcLa+IbBCRH4rIayIyJCL/tkaavSKSFpFXgum3liOv10pEjovIgSDvF91d2qzlJyLbKsrkFRHJiMhnq9I0VdmJyNdF5Ezl464islpEfiAibwbzVQu89pK/00awwPH9DxE5HHz3/lpEuhZ47SW/x41ggeP7bREZrvgOPrDAa5u1/L5dcWzHReSVBV7b0OW3UCyo2+9PVRtuwt3kdxTYDESBV4GdVWkeAL6Le5b/LuAny53vqzi+XuDWYDkBvFHj+PYCf7vceV3EMR4Hui+xv2nLr+IYQsApYGMzlx3wfuBW4GDFtt8BPh8sfx744gLHf8nfaSNMCxzfzwPhYPmLtY4v2HfJ73EjTAsc328Dn7vM65q2/Kr2/y7wW81YfgvFgnr9/hr1DH9Fd8urqqOq+lKwPAG8Ruv1MNi05Vfhg8BRVX17uTOyGKr6I+B81eaHgG8Ey98APlLjpVfyO112tY5PVb+vqoVg9QVcHyBNaYHyuxJNW34lIiLALwPfuq6ZWiKXiAV1+f01asBvmW55RWQTcAvwkxq73y0ir4rId0Vk8LpmbPEU+L6I/FRcT4nVVkL5fZyF/9E0c9kBrNOgT4xgvrZGmpVQhgC/jmttquVy3+NG9lhwyeLrCzQJr4Tyex9wWlXfXGB/05RfVSyoy++vUQP+knXL28hEpBP4K+Czqpqp2v0Srqn4ZuAPgKeud/4W6T2qeituRMTfEJH3V+1v6vIT15nUh4G/rLG72cvuSjV1GQKIyBeAAvDNBZJc7nvcqP4IuAl4JzCKa/au1vTlB3yCS5/dN0X5XSYWLPiyGtsuWX6NGvCXrFveRiUiEVwBf1NVn6zer6oZVZ0MlvcBERHpvs7ZvGaqOhLMzwB/jWt+qtTU5Yf7B/KSqp6u3tHsZRc4XbrEEszP1EjT1GUoIg8DDwK/qsFF0WpX8D1uSKp6WlWLquoDf0ztfDd7+YWBXwK+vVCaZii/BWJBXX5/jRrwV3S3vMF1p/8FvKaqv7dAmvVBOkTkDlxZnbt+ubx2IhIXkURpGXeDVPWAR01bfoEFzyyauewqPAM8HCw/DDxdI82V/E4bkojcB/x74MOqOr1Amiv5Hjekqvth/im189205Rf4EHBYVU/W2tkM5XeJWFCf399y36V4ibsXH8DdsXgU+EKw7VHg0WBZgC8H+w8Aty93nq/i2N6La3rZD7wSTA9UHd9jwBDuzssXgLuXO99XcXybg3y/GhzDSiu/DlwAT1Vsa9qyw1VcRoE87qzhXwBrgGeBN4P56iBtH7Cv4rUX/U4bbVrg+I7grn+Wfn+PVx/fQt/jRpsWOL4/C35X+3FBoHcllV+w/U9Kv7mKtE1VfpeIBXX5/VlPe8YYY0wLaNQmfWOMMcYsIQv4xhhjTAuwgG+MMca0AAv4xhhjTAuwgG+MMca0AAv4xhhjTAuwgG+MMca0AAv4xphlJSIfEZE/FpGnReTnlzs/xqxUFvCNaTIi8j9F5LMV698Tka9VrP+uiPxmsPxVEXlPsPwFERkKRlB7RUTurPHe7SLydyISEpFNInLVXZFWfuaVUNWnVPVfAb8G/IqIREXkR0Ff6caYJWIB35jm8w/A3QAi4gHdQOUQvHcDzwfLdwIviMi7cQPF3Kqqe3D9kFcOrVny68CTqlpcRP7uxHUpfLX+E/BldWN7Pwv8yiLyYIypYgHfmObzPEHAxwX6g8CEiKwSkRiwA3hZRHYAbwTBuxcYU9UsgKqOaTCSWJVfpcZAHSKyWUReFpF3Bev/WUQOi8gPRORbIvK5YHv5M4MWgsMi8jUROSgi3xSRD4nI8yLyZjCwEMEASl8EvquqLwUf+VSQF2PMErGAb0yTCQJ1QURuwAX+HwM/Ad4N3A7sD86S7wf+T/Cy7wMbROQNEfmKiHyg+n2DEbc2q+rxqu3bcMN3fkZVXxSR24GPArfghie9vSJ55WcCbAF+H9gDbAc+iRsw5HPAfwzS/Btci8PHROTRYNtB4F1X83cxxlyaXSMzpjmVzvLvBn4P6A+W07gmf4B/AnwGQFUnReQ24H3APcC3ReTzqvonFe/ZDYxXfU4P7oz/o6o6FGx7L/C0qs4AiMjfVKQvf2bgmKoeCNINAc+qqorIAWBTkLcvAV+q/NCghSAnIglVnbjiv4oxZkF2hm9Mcypdx9+NOxt+AXeGfzfwvIh0AF2VzfaqWlTV51T1v+CG8P1o1XvOAG1V29K4a/2VN+FJrQzV+kwgW7HsV6z7XP6EIwbMXiaNMeYKWcA3pjk9j7sJ73wQyM8DXbig/2PcWfwPS4lFZJuIbK14/TuBtyvfUFUvACERqQz6OeAjwKdF5JPBtr8HflFE2kSkE/iFYPu8z1wMEVkDnFXV/FK8nzHGmvSNaVYHcE3wf161rVNVx0TkfuB/V+zrBP5ARLqAAnAEeKTG+34f12T/f0sbVHVKRB4EfiAiU6r6tIg8A7yKqzT8I64loPozF+MeYN8SvZcxBhBVXe48GGOWmIi8BNx5tWfIInIL8Juq+qnLpOsM7gvoAH6Eqzx87Vo+c4H3fxL4D6r6+mLfyxjj2Bm+MSuQqt56ja97WUR+KCKhyzyL/4SI7MRd8/9G8DjdNX1mteBpgacs2BuztOwM3xhjjGkBdtOeMcYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wL+PxpetF/yiM7NAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAGJCAYAAABvvYFhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVfr48c8zLZMOIaErIApICISqqEhTiiJWBHV/yu6qi+6K+F0rShH7WtaCuyiyupbVIC6IqCugBGx0I4I0QUCkJySkT5I5vz9mEmbSkSQzGZ7365UXueeee+9zZ4acOeeeIsYYlFJKKRXaLIEOQCmllFL1Twt8pZRS6hSgBb5SSil1CtACXymllDoFaIGvlFJKnQK0wFdKKaVOAVrgq5MiIrNEZEpd51WhQUQ2icigOjpXexExImKrJs8TIjKpLq4X6kRkvIh89RuP/a+IjKjrmFT90gJfVUpEdomIS0Tiy6Wnef/otgcwxkwwxjxSm3OeSN6GJiKTReRnEckRkb0ikuKzL1VEbg5kfI2VMSbRGJPaENcSkQTgRuAV7/Yg72f1v+Xy9fCmp4rI6d73vPTHiEiuz/YA7zHnicgXIpItIlki8pGIdPU551YRudZn+3zvucqn5VT3heU33PNgEVnmjWlXJft3iUi+z/0srqNLPwk8VkfnUg1EC3xVnZ+B60o3RCQJCA9cOPVDRG4C/h9wkTEmCugDfB7YqE5ebQqWuix8TlQ9XHs88IkxJt8n7TBwnog080m7CdgGYIzZY4yJKv3x7u/hk/aliPQHFgMfAq2BDsD3wNcicob3mBXAQJ9rXAhsqSTtG2NMcV3crFcu8C/gnmryXOZzP8Pq4qLGmNVAjIj0qYvzqYahBb6qzlt4akylbgLe9M0gIm+IyKPe3wd5a8d/FZFDIrJfRH5fQ957ffJeISKXiMg2EckQkcmVHet7vM/2LhG5R0Q2eGtoc0SkhYh86q2VLRWRplXcZ1/gM2PMDgBjzAFjzKsn+mL53NNkETnijekGn/2xIvKmiBwWkd0i8pCIWLz7dotIb+/vv/PWDrt6t28WkQXe3y0icr+I7BCRdBGZKyJx3n2lTd5/FJE9wBfVxHifiBwAXq/unN5j/p83vnQRedB7XxedwPtSmne6iMwTkbdF5Bgw3vuazPG+/7+KyKMiYvXmt4rIM97XcidwaQ1vwUhgebk0F7AAGFd6TuBa4J0azuXrb8CbxpgXjDHZxpgMY8xDwEpgujfPCjwFeqkBwFOVpK04gevWyBiz2hjzFrDzZM8lIk+LyFfe98QqIs96X/ufReQvUvFxSio1vycqiGiBr6qzEs+3+LO9fyjHAm/XcExLIBZoA/wReLmagrYl4PTmnQrMBn4H9Mbzx3GqTw2qNq4GLgY6AZcBnwKTgXg8n/WJVRy3ErjR+4WhT2mB8xu19F6vDZ4vSK+KSGfvvpfwvDZn4Kn53QiUfiFaDgzy/n4hnj/gA322SwuyicAV3n2tgaPAy+ViGAicDQyvJsY4oB1wa3Xn9H7p+CeeFpDWQDOgbc0vQ5UuB+YBTfAUuv8GioEzgZ7AMKD08cktwChveh/gmhrOnQRsrST9TY5/cR0ObAL21SZYEYkAzgPer2T3XDyfN/C8P4kiEuf9EtcHSAGa+KSdRxUFvohcLyKZ1fycXpt4q/CO90vmYhHpUcm1LSIyG+gODDPGZOF57UcCyUAvPJ+P8jYDFc6ngpcW+KompbX8i/E0Uf5aQ/4iYIYxpsgY8wmQA3SuJu9jxpgi4D08BWVpLWoTnj/M3U8g1peMMQeNMb8CXwKrjDHfGWMKgfl4Co4KjDFvA3fgKQyWA4dE5P4TuG55U4wxhcaY5cDHwLU+X5ge8N7fLuBZPAUp3uuWFvADgCd8tgdyvMD/E/CgMWav976mA9eUq3lNN8bklmva9uUGpnljzK/hnNcAi4wxK7z7pniP/62+NcYsMMa4gRg8hcokb7yHgL/jrY3jqYk/b4z5xRiT4X1NqtMEyC6faIz5BojzfvG6kXKtVDWIw/N3cn8l+/bj+cxijNkD7MHz3vUAtntf26990pzAqsouYoz5jzGmSTU/e04gZl83AO3xfLlbBnwmIk189tuBd733eZkxJs+bfi2e/4t7jTFH8TyzLy8bz2uuGomAPb9TjcZbeGolHajdH8r0cs8o84CoavKWeH8vLZwO+uzPr+bYypQ/ttbnMsa8g6cmZMdTm3lHRL4zxnx2AtcHOGqMyfXZ3o2nZhwPOLzbvvvaeH9fDjwjIi0BK57a4TTxdI6MBdK8+doB80XEt9AtAVr4bP9SQ4yHjTEFPtvVnbO17/mMMbkikl7D+avjG1s7PAXOfhEpTbP45GldLr/va1eZo0B0FfveAv4CDAb+AFxfy3iP4vmC0wrPF15frYAjPtulzfp78HzhBPjKJ22V90tTgzHGfO2z+YR4+qsMAD7ypp2J58tIP2OMyydv+de+ss9UNJBZh+GqeqY1fFUtY8xuPJ33LgH+W0P2+pQLRPhst6yPi3hbJt4HNgDdfsMpmopIpM/26Xiaj4/gadFoV27fr97r/oTny9FEYIUxJhs4gKfJ/StvjRg8f3hHlqv9Ob2tGmW3UdNtltuu7pz7gdNKM3qbuH07wJ3o++J77V+AQiDe57oxxphE736/a+N5vaqzAc/jnMq8BdyOp1NfXhV5Kgbr+fL2LTCmkt3X4t+5s7TAH8DxAv9Ln7Qqn9+LyA3iP1qg/M/JNOn7MoD4bG/G81jpU59HT+B57X0f3fi+D6XOxtN5UTUSWuCr2vgjMKRczbWhpQGXeJ+HtgTqbKy1eMYjXyoi0d7nmSOBRPybX20i4vT5sVdzyodFxCGeIV2jgPe9LRlzgce812kH/B/+fSKW46mFljbfp5bbBpjlPUc7b+wJInL5b775ms85DxglIheIiAOYgf/fjd/8vhhj9uPp/f6siMR4X/uOIlL6KGMuMFFE2nr7gdT0mOUT/HvF+17rZ+++B2sbn4/7gZtEZKL3vWvq7ajYH3jYJ98KPI+NBuJpygf4AU/r2GCqKfCNMe/4jhao5KfSJn3va+bE01Ii3s+mw7vvdPEMBXR40+/B09LkW+vHGPMunr4uS0Wkozd5LnCniLTxPgK4r5LLD8TTT0Y1ElrgqxoZY3YYY9YGOIy38NQmduEpJFKqzX1ijuH5g7cHTxPl34DbjDG+k5L8E89jgdKf16s41wE8zcD78HRKm2CMKW0KvgNPjXgnnqbe/+AZUlVqOZ5m0hVVbAO8ACwEFotINp4Oh+ec2O1WUOU5vX0p/uyNdb/33vb6HHuy78uNeB51/Og99zw8TeXg6cT5mff866m5helNPF8+Kh06aoz5yhhTq8565Y/D07/jKjyvwW48BfsFxpjtPvm2AYeA/caYTG+aG1iNp7/CNyd67Vq4EM/n8RM8LSD5eN4H8Hx2/onndf0VGIGnJafCIxljzL/xfJn7wvsYabb3PBuA77znL8bzqAcR6QvkeofnqUZCjKmp9U8pVRvimVHubWPMyfRiD3rimeDlZmPM0kDHUp6IPA4cMsY8H+hYQom31WuWMaa0FegDYI63Y65qJLTTnlIqZBhjJtecS9XE20oyGE8tvwUwDc9IFwCMMVcHKDR1Euq9Sd87gcN3IrKokn0iIi+KyE/imTClV33Ho5RSqkaCp3/CUTxN+pvxzJWhGrGGqOHfiefDElPJvpHAWd6fc/A8bzrZ55FKBYTxzBkf0s35AMaY9oGOQdUv70iGvoGOQ9Wteq3hi0hbPFMvvlZFlsvxTFlpjDEr8cxK1aqKvEoppZT6jeq7Sf954F6qnpmrDf4TOuzl+EQkSimllKoj9dakLyKj8PSWXSdVr4ctlaRVGDYgIrfimYAEp9PZ+/TT62oOiuDjdruxWDzfw7JLsjlacpQ29jZYT2p695OXn3EEU1JSth0W0wRrWNgJn8f3/kJRKN9fKN8bhO79OXI9f2YLwktC8v5Kher7V2rbtm1HjDEJJ3OO+nyGfz4wWkQuwTOHdIyIvG2M+Z1Pnr34z+DUlkoWtTCelcteBejcubPZurWy9TFCQ2pqKoMGDQJgU/omxi0ax9MDn2ZE+xEBjeuL11/hu/99VLbd/aIRXHzLX074PL73F4pC+f5C+d4gdO/v0CsbAPixc0ZI3l+pUH3/SolITVNL16jevg4ZYx4wxrT1dvAZB3xRrrAHz2QfN3p7658LZHln31JAp6adCLeF8/2hwM9e2SG5t9/2z9+tQ+dwUEqpxqPB2z9EZIKITPBufoJn1rGf8MzsdHtDxxPM7BY73eK7kXYorebM9axtYhI2x/Em/Oz0wxzc+VMAI1JKKXUiGqTAN8akGmNGeX+fZYyZ5f3dGGP+bIzpaIxJCoLpW4NOckIyWzK2kF9c1UqnDcPuCKtQy9++uj5mClVKKVUfQmKmvaKiIvbu3UtBQUHNmYNcbGwsmzdvLtseYB9A4tmJbN2ylTDriXeSq0vth4ykRd/zy7YtVqtfrLVR/v4aA6fTSdu2bbHbq1svRymlgltIFPh79+4lOjqa9u3b47OudqOUnZ1NdPTxJb2L3cVszdhK84jmJEScVAfNk+YuKeHw7p/9nt03O+107I7afxEpf3/BzhhDeno6e/fupUOHDoEORymlfrOQGMNQUFBAs2bNGn1hXxmbxYbD6gh4kz54avSOcP+FyApzcwIUTcMQEZo1axYSrUdKqVNbSBT4QEgW9qUi7BHkFecFRa/4sMgov+2C3NwARdJwQvmzpZQ6dYRMgR9I6enpJCcnk5ycTMuWLWnTpk3Ztsvl8ss7fvx45s2bd0Lnj7BFUOIuwVXiqjLPddddR/fu3fn73//Oli1bSE5OpmfPnuzYseM33VNVwiIi/baLCwspLiqq02sopZSqeyHxDD/QmjVrRlqaZ+jc9OnTiYqK4u67766z84fbPM3oecV5hNkqPi8/cOAA33zzDbt3e+ZlePLJJ7n88st5+OGH6yyGUlabDUd4OK78448YCnNzsDVpWufXUkopVXe0hl9PZs+eTd++fenRowdXX301eXl5FfJMmTKF8ePH43a7efrpp+nbty/9+/dn2rRpfvnCrGFYxUpGTga///3vSUpKomfPnixbtgyAYcOGcejQIZKTk3n44Yd5/vnnee211xg8eHC93FvFZv3Qfo6vlFKhIORq+A9/tIkf9x2r03N2bR3DtMsST+iYq666iltuuQWAhx56iDlz5nDHHXeU7b/33nvJysri9ddfZ8mSJWzfvp3Vq1dz7NgxbrjhBlasWMGFF14IeJ4hRzoimfn8TAB++OEHtmzZwrBhw9i2bRsLFy5k1KhRZa0Mxpg6b2Xw5YyIJJvDZdtFBQWUFBdjtYXcx0kppUKG1vDrycaNGxkwYABJSUm88847bNq0qWzfI488QmZmJq+88goiwuLFi1m8eDE9e/ZkwIABbNmyhe3bt/udL9IeydqVaxl7/VgAunTpQrt27di2bVuD3heA1W7HHub0Swv13vpKKdXYhVyV7ERr4vVl/PjxLFiwgB49evDGG2+Qmppatq9v376sW7eOjIwM4uLiMMbwwAMP8Kc//clvnPrLL7/M7NmzAVjw0QIwBMXwPABnVCRFhceHqhXk5hIR2ySAESmllKqO1vDrSXZ2Nq1ataKoqIh33nnHb9+IESO4//77ufTSS8nOzmb48OH861//IifHU0v+9ddfOXToEH/+859JS0sjLS2N9qe1p995/XjvP+8BsG3bNvbs2UPnzp0b/N4AwiL8n+O7CvJw+yyfq5RSKriEXA0/WDzyyCOcc845tGvXjqSkJLKzs/32jxkzhuzsbEaPHs0nn3zC9ddfT//+/XG73cTExPD222/TvHlzv2NumXALf73jryQlJWGz2XjjjTcI+w1r0tcFm8OBzeGguHTYoYHC3FzCY2ICEo9SSqnqSTBM5nIiOnfubLZu3eqXtnnzZs4+++wARVS3qpt69ljhMX7J/oX2se2JtEdWmqch5WSkk3M0o2w7LCKSpq1aV3tMY5tat1RtP2OhvCZ3KN8bhO79HXplAwA/ds4IyfsrFarvXykRWWeM6XMy59Am/UaktJDPcQVHB7nyw/Nc+Xm43dqsr5RSwUgL/EbEarESbg8ntyg4prO1ORxYfVaQM8ZQWMl8A0oppQJPC/xGJsoeRX5xPsXu4kCHgojgLFfLL8zJriK3UkqpQNICv5GJsnsK2GCp5Zdv1i/M0976SikVjLTAb2TCbeFYxBI0Bb49LAxbuWZ9nWpXKaWCjxb4jYyIEGmPJMeVExTL5YoIzij/XvcF2dqsr5RSwUbH4deB9PR0hg4dCnhWrrNarSQkJACwevVqHA5HnV4vyh5Ftisbl9tFmDUw4/B9OaOj/YbnuQryKSkq8uvQp5RSKrC0wK8Dv3V53JKSEqxW6wlfL9IRCbme4Xlh4YEv8G12B3ank6KC41Pt5udkE9U0LoBRKaWU8qVN+vVk/PjxzJs3r2w7KsrTuS01NZXBgwdz/fXXk5SUVDZZxDXXXEOXLl344x//WGNTvcPiwG61B81zfIDw8s36OdlB8chBKaWUR+jV8D+9Hw78ULfnbJkEI5+ss9OtXr2ajRs30qFDB1JTU/nuu+/YtGkTrVu35txzz+Xrr7/mggsuqPJ4ESHKHkVWYRZu48Yigf/eFhYVhaQfKSvki10uil2FFVbVU0opFRiBLylOQf369aNDhw5+223btsVisdC9e3d27dpV4zmi7FG4jZuC4oIa8zYEq9WGIzzCL0077ymlVPAIvRp+HdbET4bNZsPtdgOeoWqu0kVmgMhI/3nwfRfAsVgsFBfXPKlOhN1TuOYU5ZT9HmjO6GgK844/ZsjPzSaqWTwiEsColFJKgdbw60379u1Zt24dAB9++CFFRUV1en6bxUa4LZycouAZ8x4WEYlYjn+k3MUluPLzAxiRUkqpUlrg15NbbrmF5cuX069fP1atWlWhVl8XohxR5BflUxIkC9ZYLJYKU+0W5BwLUDRKKaV8hV6TfoBNnz697PeVK1eW/f7EE08AMGjQIL8lHMtvP/vss7VePjbKHsVhDpNTlENsWOxJxV1XnFHR5GcfL+QLcnOJdruxWPS7pVJKBZL+FW7Ewm3h2Cw2jrmCpxbtCA/Hajv+PdK43X7P9ZVSSgWGFviNmIgQ7Ygmx5WD27gDHQ6gU+0qpVSw0gK/kYtxxOA27qCahKd8gV+Yn0tJLUYeKKWUqj9a4DdyEfYILGLhWGHwNOvbHA5svusHGM/Me0oppQKn3gp8EXGKyGoR+V5ENonIw5XkGSQiWSKS5v2ZWl/xhCqLWIhxxJDtyg6qZv3w6Bi/tPxjx3SqXaWUCqD67KVfCAwxxuSIiB34SkQ+NcasLJfvS2PMqHqMI+RFO6LJLMwkryiPKEdUzQc0AGdUNDkZ6cen2i1yUVSgY/KVUipQ6q2GbzxKZ4Wxe39Cuop34MABxo0bR8eOHenatSuXXHIJ27Zto1u3bgCsXbuWiRMnntA527dvz5EjR6rNE+WI8jTrB1FvfavNRli5uQfyjgVPfEopdaqp13H4ImIF1gFnAi8bY1ZVkq2/iHwP7APuNsZsqs+Y6osxhiuvvJKbbrqJ9957D4C0tDQOHjxYlqdPnz706dOnzq9tEQtRjiiyXZ4V6oJlKtvwmFgKco7PBFiYm0O4MzyAESml1KmrXgt8Y0wJkCwiTYD5ItLNGLPRJ8t6oJ232f8SYAFwVvnziMitwK0ACQkJpKam+u2PjY0lO8BDv5YvX47FYuGGG24oi6Vjx47s3r0bt9tNdnY2X375JS+++CLvv/8+jz/+OLt37+bAgQPs2LGDxx9/nDVr1rB48WJat27N3LlzsdvtGGN47LHHWLFiBQBz5syhY8eOFa5vL7FT7C4m/Vg6YZawCvsDwRiDxWrFXVJStu3KzyO7EU7CU1BQUOFzV5mcnJxa5WuMQvneIHTvr02m5/9bqN5fqVC/v7rQIDPtGWMyRSQVGAFs9Ek/5vP7JyLyDxGJN8YcKXf8q8CrAJ07dza+M9MBbN68uWx2uqdWP8WWjC11Gn+XuC7c1+++avPs3LmTfv36VZglLyoqCovFQnR0NBEREdhsNqKjowkLC2PPnj0sW7aMH3/8kf79+/PBBx/wyCOPcOONN7JixQquuOIKRIT4+HjWrVvHm2++yUMPPcSiRYsqXD/CHUHG0QyKbcXER8bX6f2fDKu7mOz09LJtd2EBUS1aBk0rRG05nU569uxZY77U1FTKfz5DRSjfG4Tu/R3augGAqCh3SN5fqVB9/+pSffbST/DW7BGRcOAiYEu5PC3F+5dfRPp540kvf65QNXLkSOx2O0lJSZSUlDBixAgAkpKS/JbIve6668r+/fbbbys9l9ViJdIeyTFXcPWGd0bF+BXu7uJiigqCY0lfpZQ6ldRnDb8V8G/vc3wLMNcYs0hEJgAYY2YB1wC3iUgxkA+MMydZWtVUE68viYmJzJs374SOKV0W12KxYLfbywrG8kvk+haY1dWMYxwx7MvZR0FJAeG24HhWXtp5z/dZft6xLBzhwRGfUkqdKuqzl/4GY0xPY0x3Y0w3Y8wMb/osb2GPMWamMSbRGNPDGHOuMeab+oqnvg0ZMoTCwkJmz55dlrZmzRp279590udOSUkp+7d///5V5ot2eB4nBNMkPADh0f4L+xTm5pQ911dKKdUwdLW8OiIizJ8/n0mTJvHkk0/idDpp3749zz///Emfu7CwkHPOOQe32827775bZT6bxUakPZJsVzYtIluc9HXriiM8HKvdTklREeDpvJeffYzIJk0DHJlSSp06tMCvQ6W968vbuNHTT9F3KVzfZXTB08O0lO++0mf506ZNq1UM0Y5oDuQeoLC4kDBbcPTWFxEiYmL8Ou/lZx8jIrZJo+u8p5RSjVXjGx+lqhXj8ExpG0yT8EDFznvFLpd23lNKqQakBX6IsVvthNvDg67At9pshEX4z7yXfywrQNEopdSpRwv8EBTjiKGguICC4uCqQYfH+HfeK8jN0WVzlVKqgWiBH4KahDVBEDILMwMdih9HeDgWq7Vs2xijtXyllGogWuCHIJvFRpQjiqzCrKCahEdEsIVH+KXlHcvCuINjWV+llAplWuCHqCZhTSh2F5NTlFNz5gZkc4YjPnPpu0tKyM8J7DoISil1KtACvw5VtTxubU2dOpVly5bVSSxRjiisFmvQNeuLxUJETIxfWl5WZlC1RCilVCjScfh1pLrlcTt16gRASUkJVp9n2OXNmDGjzlb9s4iF2LBYjhYcpdhdjM0SPG91REwTcjOPfxEpdrlw5ecTFhFRzVFKKaVOhtbw68iyZcuw2+1MmDChLC05OZmSkhIGDx7M9ddfX7YoTrdu3cryPPPMM2UT7YwfP54FCxYAcP/999O1a1e6d+/O3XffDcDhw4e5+uqr6du3L3379uXrr7+uNqYmYU0wxgTdVLtWux1nVJRfWl7W0QBFo5RSp4bgqfbVkQOPP07h5rpdHjfs7C60nDy52jwbN26kd+/ele5bvXo1GzdupEOHDn6r4FUlIyOD+fPns2XLFkSETG9t+M477+Suu+7iggsuYM+ePQwfPpzNmzdXeZ5wWzhOm5PMwkziwuNqvG5Dioht4regTmFeHsUuFzaHI4BRKaVU6Aq5Aj8Y9evXjw4dOtQ6f0xMDE6nk5tvvplLL72UUaNGAbB06VJ+/PHHsnzHjh0jOzub6OjoKs/VJKwJB3IPUFBcgNPm/O03UcccznDsTqffbHt5WZnEJDQPYFRKKRW6Qq7Ar6kmXl+qWx43MvL4DHM2mw23zzC0gkqml7XZbKxevZrPP/+c9957j5kzZ/LFF1/gdrv59ttvCT+BpWVjw2I5mHuQzMJMWtpansAd1b+I2CZkFRwo287PPkZUXDO/sfpKKaXqhj7DryNVLY+7fPlyv3wtWrTg0KFDpKenU1hYyKJFiyqcKycnh6ysLC655BKef/550tLSABg2bBgzZ84sy1eaXp1gHZMP4IyMwmo7/p3TGEOeTsSjlFL1Qgv8OlK6PO6SJUvo2LEjiYmJTJ8+ndatW/vls9vtTJ06lXPOOYdRo0bRpUuXCufKzs5m1KhRdO/enYEDB/L3v/8dgBdffJG1a9fSvXt3unbtyqxZs2oVW7COyRcRImKb+KXlHcvCGJ2IRyml6lrINekHUlXL495yyy1+2xMnTmTixIkV8r3xxhtlz+RXr15dYX98fDwpKSknHJfvmPxoR9XP+wMhPDqGnKMZZbPtuYuLKcjJITw6poYjlVJKnQit4Z8CSsfkZ7uyKXYH12I1FquV8HKdDnMzjwbd4wellGrstMA/RTQNa4oxhqzC4HtGXr5Zv9jlojAvN0DRKKVUaNIC/xThtDlx2pwcLQy+2rPN7sAZVa6WfzQj6OJUSqnGTAv8U0icM47C4kJyi4Kv9hzZtKnfdlFhIa78vABFo5RSoUcL/FNIbFgsVouVjIKMQIdSgd0RhjPSf7rdHK3lK6VUndEC/xRiEQtxzjiyXdkUlhQGOpwKKtTyCwpw5ecHKBqllAotWuDXkccee4zExES6d+9OcnIyq1atqpPzTp06laVLl9bJucDTeU9Eqq3lL1y4kCeffBKA6dOn88wzz9RLLOXZw5yERUT6peVmBl9rhFJKNUY6Dr8OfPvttyxatIj169cTFhbGkSNHcLlctT6+uLgYm63yt2LGjBl1FSYAdqudGEcMmQWZNA9vjtVScRrb0aNHM3r06HqPpTKRTeP8eui78vNx5efjOIHphJVSSlWkNfw6sH//fuLj4wkLCwM8E+SUzrC3bt06Bg4cSO/evRk+fDj79+8HYNCgQUyePJmBAwfy2GOP0b59+7I59vPy8jjttNMoKipi/PjxZXP0r1mzhvPOO48ePXrQr18/srOzKSkp4Z577qFv3750796dV155pdIY33zzTbp3706PHj24d8K9uI2bn/b+VOlyu2+88QZ/+ctfKpzDN5b27dszbdo0evXqRVJSElu2eFYoPHz4MBdffDG9evXiT3/6E+3atePIkSO1fi0dTieOiAi/tByt5fp8vpQAACAASURBVCul1EkLuRr+l3O3ceSXup1CNv60KAZc26nK/cOGDWPGjBl06tSJiy66iLFjxzJw4ECKioq44447+PDDD0lISCAlJYUHH3yQf/3rXwBkZmaWzbW/fv16li9fTp8+ffjoo48YPnw4dru97Boul4uxY8eSkpJC3759OXbsGOHh4cyZM4fY2FjWrFlDYWEh559/PsOGDfNbnW/Tpk089thjfP3118THx5ORkUGmNZM7/+9O7p10LwMGDKjVcrsVXpf4eNavX88//vEPnnnmGV577TUefvhhhgwZwgMPPMD//vc/Xn311RN9uYlqEkdG3vEe+q68PFwFBTicwbPan1JKNTYhV+AHQlRUFOvWrePLL79k2bJljB07lieffJI+ffqwceNGLr74YgBKSkpo1apV2XFjx471+z0lJYU+ffrw3nvvcfvtt/tdY+vWrbRq1Yq+ffsCniV0ARYvXsyGDRvKat5ZWVls377dr8D/4osvuOaaa4iPjwcgLi4Oa6GVb5Z/w5+3/xmLeBp6Spfbra2rrroKgN69e/Pf//4XgK+++or58+cDMGLECJqW64hXG47wcBzh4X4d9nIzM3C0bF3NUUoppaoTcgV+dTXx+mS1Whk0aBCDBg0iKSmJf//73/Tu3ZvExES+/fbbSo/xXTZ39OjRPPDAAzzwwAOsW7eOIUOG+OU1xiAiFc5hjOGll15i+PDhVcZW2bHRjmjcbjdzP5tLl5YVF/CpjdJHGFarleLi4rJr1YXIJnG48n8t2y7MzaWosAB7mNbylVLqt9Bn+HVg69atbN++vWw7LS2Ndu3a0blzZw4fPlxW4BcVFbFp06ZKzxEVFUW/fv247777GDVqFNZya8J36dKFffv2sWbNGsCzol5xcTHDhw/nn//8J0VFRQBs27aN3Fz/iXWGDh3K3LlzSU9PByAjIwOLWBgydAizZ82moLigLO6TdcEFF5QtILR48WKOHj36m87jCA/HXq4JPycj/aTjU0qpU1XI1fADIScnhzvuuIPMzExsNhtnnnkmr776Kg6Hg3nz5jFx4kSysrIoLi5m0qRJJCYmVnqesWPHMmbMGFJTUyvsczgcpKSkcMcdd5Cfn094eDhLly7l5ptvZteuXfTq1QtjDAkJCSxYsMDv2MTERB588EEGDhyI1WqlZ8+evPHGG7w882V+f+vv6ZXcC9xw4YUX1nrJ3apMmzaN6667jpSUFAYOHEirVq2Ijj7xFfpEhKimcRzdv68srTAvD1d+Ho7wiGqOVEopVRlpbDOZde7c2WzdutUvbfPmzZx99tkBiqhulS6P21D25ewjszCTTk07YbOc/Pe/wsJCrFYrNpuNb7/9lttuu82v5eBE7s8Yw9H9v/o9y7c7ncS1blvp4436VNvPWGpqKoMGDar/gAIglO8NQvf+Dr2yAYAfO2eE5P2VCtX3r5SIrDPG9DmZc9RbDV9EnMAKIMx7nXnGmGnl8gjwAnAJkAeMN8asr6+YVEVxzjiOFhwloyCD5hHNT/p8e/bs4dprr8XtduNwOJg9e/ZvPpeIEBXXjIxf95alFRUUUJiXW2EaXqWUUtWrzyb9QmCIMSZHROzAVyLyqTFmpU+ekcBZ3p9zgH96/1UNxGlzEuOIIT0/nWbOZpVOxHMizjrrLL777rs6ig4cznCckZEU+PRLyMlIJywissFr+Uop1ZjVW6c941E6IN7u/Sn//OBy4E1v3pVAExFphWpQCREJuI2b9ILg7BQXFdfMb7vY5SI/+1iAolFKqcapXjvtiYgVWAecCbxsjCk/wXwb4Bef7b3etP3lznMrcCtAQkJChU5tsbGxJzR+PJiVlJQE5F7CLeGk56cTVhxWNi6/PvzW+7M5wykuOP4sPzsjnWKkwWr5BQUFlXamLC8nJ6dW+RqjUL43CN37a5Pp+f8cqvdXKtTvry7Ua4FvjCkBkkWkCTBfRLoZYzb6ZKnsr3WFXoTGmFeBV8HTaa98x4zNmzc3aEe3+tTQnfZK2Ypt7MzcSaGtsE6e5Vflt95fhNPJkV92l43zNyUlWN0lRDY58Yl9fgun00nPnj1rzBfKHYdC+d4gdO/v0FZPp72oKHdI3l+pUH3/6lKDjMM3xmQCqcCIcrv2Aqf5bLcF9qEaXLgtnGhHNBn5GZS4SwIdTgVWu52ImFi/tNzMo7hLgi9WpZQKRvVW4ItIgrdmj4iEAxcBW8plWwjcKB7nAlnGmP00UgcOHGDcuHF07NiRrl27cskll7Bt27aTOqfvgjW+1q5dy8SJE0/q3KVKF8tJiEigxJRUu3RuIEU0bYpYjn9k3SUl5GVlBjAipZRqPOqzSb8V8G/vc3wLMNcYs0hEJgAYY2YBn+AZkvcTnmF5v6/HeOqVMYYrr7ySm266iffeew/wzFx38OBBOnWq++l++/TpQ58+JzUks4LSWn56fjpxzriT7rFf16xWG5FNmpCTcfwLSW7mUcKjY7D6LDSklFKqonor8I0xG4AKDz29BX3p7wb4c11d89mxo+rqVJX6a8qiKvctW7YMu93OhAkTytKSk5MxxnDPPffw6aefIiI89NBDjB07ltTUVKZNm0aLFi1IS0vjqquuIikpieeeew6Xy8WCBQvo2LEjAEuXLuWFF17g4MGDPPfcc4waNYrU1FSeeeYZFi1axPTp09mzZw87d+5kz549TJo0qaz2//bbb/Piiy/icrk455xz+Mc//oHVauX111/niSeeoFWrVnTq1KlsXvyE8AR2unaSUZBBQkRCPb6av01EbFPysrLKmvKNMWRnpNOkRcsAR6aUUsFN59KvIxs3bqR3794V0v/73/+SlpbG999/z9KlS7nnnnvYv9/z1OL777/nhRde4IcffuCtt95i27ZtpKamcvPNN/PSSy+VnWPXrl0sX76cjz/+mAkTJlBQUFDhOlu2bOGzzz5j9erVPPzwwxQVFbF582ZSUlL4+uuvSUtLw2q18s4777B//36mTZvG119/zZIlS/jxxx/LzhNuDyfKEUV6QXpQPsu3WCwVhukV5GT7zcanlFKqIi3w69lXX33Fddddh9VqpUWLFgwcOLBsAZy+ffvSqlUrwsLC6NixI8OGDQMgKSmJXbt2lZ3j2muvxWKxcNZZZ3HGGWewZUv5rhBw6aWXEhYWRnx8PM2bN+fgwYN8/vnnrFu3jr59+5KcnMznn3/Ozp07WbVqFYMGDSIhIQGHw+G3TC94avkl7uB9lh8eHYPd2yJR6lj64TpbqU8ppUKRFvh1JDExkXXr1lVIr64QCvMptCwWS9m2xWIpW24WqDDWvLKx577nKl2u1hjDTTfdRFpaGmlpaWzdupXp06dXeY5SEfaIoK7liwjRzfwfNxQXFupkPEopVY2QWi2vumfs9W3IkCFMnjyZ2bNnc8sttwCwZs0amjZtSkpKCjfddBMZGRmsWLGCp59+utJaelXef/99brrpJn7++Wd27txJ586dWblyZY3HDR06lMsvv5y77rqL5s2bk5GRQXZ2Nueccw533nkn6enpxMTE8P7779OjRw+/Y5tHNGdn5k4O5x+mZWTwPR93hIfjjIqmIOf4JD45Gek4I6OwWIOrs6FSSgWDkCrwA0lEmD9/PpMmTeLJJ5/E6XTSvn17nn/+eXJycujRowciwt/+9jdatmx5QgV+586dGThwIAcPHmTWrFk4y60TX5WuXbvy6KOPMmzYMNxuN3a7nZdffplzzz2X6dOn079/f1q1akWvXr0oKTeePdwWTpOwJmQUZBDnjMNhdZzQ69EQouOaUZibU9aK4i4pIedoBjHxwdfZUCmlAk2Xxw0ygZpprzJFJUX8lPkTUY4oTos+reYDaqGu7y/naLrfMD0E4tuejs0RVvVBv4Eujxva9wahe3+6PG5oqIvlcfUZvqqS3WqnWXgzjhUeI68oL9DhVCoitqn/GHwDx9KPaAc+pZQqRwt8Va1mzmbYLDYO5B4IykLUYrEQHRfvl+bKy6MwL7eKI5RS6tSkBb6qltVipUVEC/KL88lyZQU6nEqFRUbiCA/3S8s+chi32x2giJRSKvhoga9qFBsWi9Pm5FDuIdwm+ArRsmF6PiMNS4qLyclID1xQSikVZLTAVzUSEVpGtqTIXUR6fnAWovawMCJj/ZfKzcvKpKiSWQmVUupUpAW+qpVIeyTRjmiO5B+hyF0U6HAqFdk0rsIiOllHDgVl3wOllGpoWuDXkaqWxt21axfdunVr8HjS0tL45JNPasyXmprKqFGeRYdKl8mtSovIFhgMh3IP1XiNJUuW0Lt3b5KSkujduzdffPFF2T6Xy8Wtt95Kp06d6NKlCx988EGV19yzZw9RUVE888wzZWnt27fnyJEjAKxbt44OHTrw3XffkZeXxwMPz+DcwUMZOOISrrjuelavWk1e1lEA5s+fj4j4zYHgdruZOHEi3bp1Iykpib59+/Lzzz/X9LIppVSjoxPv1IHqlsY97bS6Gb9+otLS0li7di2XXHJJnZ0zzBpGM2czjuQfoYmzSbXXiI+P56OPPqJ169Zs3LiR4cOH8+uvvwLw2GOP0bx5c7Zt24bb7SYjo+o5+++66y5GjhxZ6b4NGzZwzTXXkJKSQs+ePRk3bhwdOnRg/aqVuPJy2b1nD9t37CAnI4OwyCjeffddLrjgAt57772yKYZTUlLYt28fGzZswGKxsHfvXiIjI0/+xVJKqSCjNfw6UNXSuAMGDPDLV1JSwj333EPfvn3p3r07r7zyCgA5OTkMHTqUXr16ce655/Lhhx8CnlXyzj77bG655RYSExMZNmwY+ZWsCvf+++/TrVs3evTowYUXXojL5WLq1KmkpKSQnJxMSkoKq1ev5rzzzqNnz56cd955lJ+8qDq+x1558ZX8svMXdmXsqnANXz179qR169aAZ52BgoICCgsLAfjXv/7FAw88AHiG1cXH+w+rK7VgwQLOOOMMEhMTK+zbvHkzV1xxBW+99Rb9+vVjx44drFq1ikcffZTYhOZYrFbanX46Fw0ejDGGfbt38fXXXzNnzpyyL2UA+/fvp1WrVlgsnv8Kbdu2pWnTphWup5RSjV3I1fAzP9qBa1/djsF2tI6kyWUdq9xf1dK45c2ZM4fY2FjWrFlDYWEh559/PsOGDeO0005j/vz5xMTEsGvXLi666CJGjx4NwPbt23n33XeZPXs21157LR988AG/+93v/M47Y8YMPvvsM9q0aUNmZiYOh4MZM2awdu1aZs6cCcCxY8dYsWIFNpuNpUuXMnny5Gqb0n116dLF79iXnniJx2c/zl8f/Cvbf9hedo2qfPDBB/Ts2ZOwsDAOHfI8DpgyZQqpqal07NiRmTNn0qJFC79jcnNzeeqpp1iyZIlfc36pyy+/nLfffpsLLrgAgE2bNpGcnIzVO49+dLN4sg4dLMu/8MOFXDR0CJ06dSIuLo7169fTq1cvrr32Wi644AK+/PJLhg4dyu9+9zt69uxZq9dFKaUaE63hN6DFixfz5ptvkpyczDnnnEN6ejrbt2/HGMPkyZPp3r07o0eP5tdff+XgQU9h1aFDB5KTkwHo3bu337K5pc4//3zGjx/P7NmzK8yJXyorK4sxY8bQrVs37rrrLjZt2lTruMsfu3XzVpqENSHHlUOxu7jaYzdt2sR9991X1ppRUlLC3r17Of/881m/fj39+/fn7rvvrnDctGnTuOuuu4iKiqr0vBdddBGvvfZalffrjIr2G5u/YNEiRl18MSUlxYwbN453330X8NTot27dyhNPPIHFYmHo0KF8/vnntXpdlFKqMQm5Gn51NfH6kpiYyLx582rMZ4zhpZdeYvjw4X7pb7zxBocPH2bdunUUFBSQlJREgXc4Wfllbytr0p81axarVq3i448/Jjk5mbS0tAp5pkyZwuDBg5k/fz67du06oTmnKzu2RWQLLGIhrygPY0yly+3u3buXK6+8kjfffJOOHT3vS1xcHBEREVx55ZUAjBkzhjlz5lQ4dtWqVcybN497772XzMxMLBYLTqezrFPhzJkzmTBhArfffjuvvPIKiYmJfP/997jdbiwWCyJCTHxz0vfuIT0jg6+/XcmWbdv56+QHMVC2kJGIEBYWxsiRIxk5ciQtWrRgwYIFDB06tNavj1JKNQZaw68DQ4YMobCwkNmzZ5elrVmzhuXLl/vlGz58OP/85z8pKvIMa9u2bRu5ublkZWXRvHlz7HY7K1asYPfu3Sd0/R07dnDOOecwY8YM4uPj+eWXX4iOjiY7+/jSsVlZWbRp0wbwfME4EZUda7PYaNOsDVnHssgoqNjpLjMzk0svvZQnnniC888/vyxdRLjssstITU0F4PPPP6dr164Vjv/yyy/ZtWsXu3btYtKkSUyePNlvBIHFYuHdd99l69atTJ06lY4dO9KnTx+mTZtWNgzv5927WfbtShb97zOuufIK1q5IZXXqF2z7cRMdOnTgq6++Yv369ezbtw/w9NjfsGED7dq1O6HXRymlGgMt8OtA6dK4S5YsoWPHjiQmJjJ9+vSyTmulbr75Zrp27UqvXr3o1q0bf/rTnyguLuaGG25g7dq19OnTh7lz59KlS5cTuv4999xDUlIS3bp148ILL6RHjx4MHjyYH3/8saxD3b333ssDDzzA+eefX2UzeFWqOvbSYZeya/suzu93Pu+8+47fMTNnzuSnn37ikUceITk5meTk5LLn90899RTTp0+ne/fuvPXWWzz77LMALFy4kKlTp9Y6rrCwMD788EMWLlzIyy+/zGuvvcaBAwc488wzSUpK4pZbbuGMszrx4cefMPLii8uOyz5ymCuvuIL//Oc/HDp0iMsuu4xu3brRvXt3bDZbtUMTlVKqsdLlcYNMMC2PWxuuEpdnCV27Zwndypr2fQXi/opdLtL37vGbgMcRHkHTVq1rjLeULo8b2vcGoXt/ujxuaNDlcVXAOawOmkc0J9uVzTHXsUCHUymbw0FU+RX18vPIPxaciwEppVR90AJfnbRmzmaE28PZl7MPV4kr0OFUKiI2tuKKeulHKHYFZ7xKKVXXtMBXJ01EaBvVFoBfc34NyrnrRYTYhBaI5fhH3hhD1uGDQRmvUkrVtZAp8PWPdmA5rA5aRbYiryiPI/lHAh1Opax2OzHNEvzSigoKyM08Wu1x+tlSSoWCkCjwnU4n6enp+oc5wGLDYokJi+Fw3mHyiyrOFxAMnNHRhJWbKz/3aAaugsrjNcaQnp6O0+lsiPCUUqrehMTEO23btmXv3r0cPnw40KGctIKCgkZduLiNm8N5hzksh4kPj8ci/t8pg+H+3G43uUczMG53Wdru/QeIatLUr8m/lNPppG3btg0ZolJK1blqC3wRaQuMAwYArYF8YCPwMfCpMcZdzeENxm6306FDh0CHUSdSU1Mb/Vzuaw6s4Y+f/ZGrzrqK6edN99sXLPf305qVfPjMo35pZ/btz+i/Tq71UD2llGpMqmzSF5HXgX8BLuAp4DrgdmApMAL4SkQubIggVePSt2Vf/tDtD3yw/QM+3x2c89Kf2fdceo0c7Zf205pvSftsUYAiUkqp+lVdDf9ZY8zGStI3Av8VEQdwev2EpRq7Pyf/mW/3f8u0b6dxdrOzaR3VuuaDGtiAG37Pr1t/5ODOn8rSlr81h9adzqbFGWcGMDKllKp71XXaO1NEEqraaYxxGWN+qmq/OrXZrXb+duHfKHGXMGnZJAqKCwIdUgU2u51Rd96HIzyiLK2kuJhFLzxFYV5eACNTSqm6V12B/zsgTUS2i8gbInKriCQ2VGCq8WsX044nBzzJ5ozNPLLykaAcRdGkZSuG/ekOv7TMA/tZMntmUMarlFK/VZUFvjHmGmNMG+BiYDHQHXhTRA6LyCc1nVhEThORZSKyWUQ2icidleQZJCJZIpLm/an9yimqURh42kBu63EbC3csJGVrSqDDqVTn/gPocfFIv7St36xgw9L/BSgipZSqezWOwzfG7ALWA98BacAhILy6Y7yKgb8aY84GzgX+LCIV10GFL40xyd6fGbWOXDUaE3pM4MK2F/LU6qfYWbAz0OFUauCNN5Nwenu/tGVvvMK+bVsCE5BSStWx6nrpTxaRj0RkJfAA4ABmAt2NMYNrOrExZr8xZr3392xgM9CmbsJWjYlFLDwx4AlaR7VmzpE5HM4LvvkS7I4wRt11P/aw43MElBQXs/C5x8k5mhHAyJRSqm5UuTyuiGwBcoBFwDfAKmPMb1peTETaAyuAbsaYYz7pg4APgL3APuBuY8ymSo6/FbgVICEhoffcuXN/SxiNQk5ODlFRUYEOo17sc+3jmf3P0DasLRNbTMQmwTfvU8ZPW/h5if/QvMiWrek0eiwWq7XG40P5/Qvle4PQvb82qzz1uq2Jx0Ly/kqF6vtXavDgwSe9PG6Vf3GNMV1EJA44DxgE3C8iUcD3wDfGmNdrcwHvMR8Ak3wLe6/1QDtjTI6IXAIsAM6qJJZXgVcBOnfubEJ5zeNQX9P5wMcHeP3I63zj/IYp504JvkluBg1iRYSTNR/OK0vKPbCPkp2bGXLLX2o8PJTfv1C+Nwjd+zu0dQMAUVHukLy/UqH6/tWlap/hG2MyjDGLgKl4mvXfBwYDr9Xm5CJix1PYv2OM+W8l5z9mjMnx/v4JYBeR+PL5VOjoFdmLP3T7A+9ve583Nr0R6HAqdcG4/0f7Hr380jYs/R8bPtdOfEqpxqu6Z/ijReRJEfkST0e9Z4B44K9Ay5pOLJ6q2xxgszHmuSrytPTmQ0T6eeNJP+G7UI3Knb3uZET7ETy37jn+93PwFaIWi5VLJt5DbAv/j/nnc2axb9vmAEWllFInp7oa/njgCHAv0NIYM8AYc58x5kNjTG16XZ0P/D9giM+wu0tEZIKITPDmuQbYKCLfAy8C44wOfg55FrHw6AWP0qt5LyZ/NZm1B9YGOqQKwqOiufzuh7CFhZWluUuKWfjcE2RnBOfyv0opVZ3qxuFfZYx5BmhijHH57vMpsKtkjPnKGCPGmO4+w+4+McbMMsbM8uaZaYxJNMb0MMaca4z55qTvSDUKYdYwXhzyIm2i2jBx2UR2ZgbfcL2E09sz4rZJfmm5RzOY/9SMKpfTVUqpYFXjOHxgiogMKd0QkfuAy+svJHWqiA2L5Z8X/RO7xc5tS2/jSH7w1Zw79x9A38uv8Us7vGsnH7/wN9zukgBFpZRSJ642Bf5o4HERGSAijwH9vGlKnbS20W35x9B/cLTwKLcvvZ28ouCbw/6Ccf+PM3r380vbuX4Ny96YrdPvKqUajdrMtHcETwH/MtAauMYYU1TfgalTR2J8Ik9f+DRbj25l4rKJQbfQjsVi5dKJ99C8Q0e/9LTPFvHdpwsDFJVSSp2Y6nrpZ4vIMRE5BvwEdALGAKVpStWZgacN5JHzH2H1/tX8X+r/4Spx1XxQA3I4w7ny3qlEN/NfQHLZm6/x05qVAYpKKaVqr7pOe9HGmBifH6cxJqo0vSGDVKeG0R1HM6X/FL789UvuWX4PRe7gakiKimvGlfdNxRHus5SEMXz80tMc2LE9cIEppVQtVFfDb1/dgeLRtq4DOtUVZBl2bQi+zmsNZUynMdzf736++OULHvzyQUqCrGNcQrsOXDbpfsRy/L9OcWEh8596mKMH9gUwMqWUql51z/CfFpEPRORGEUkUkeYicrqIDBGRR4CvgbMbKM5TxuGNhi/e2oy7xB3oUALmhrNv4K7ed/Hprk+Z+s1U3Ca4Xov2yb0Z+ofb/NLysjKZ9+gUXLk5AYpKKaWqV12T/hhgCtAZT4e9L4EPgZuBrcAQY8yShgjyVBLbTsjPLmLv1qOBDiWg/tDtD9yefDsLdyzk0ZWPBl2h3+PikfS57Cq/tGOHD7J90Tzyc7IDFJVSSlWt2uXKjDE/Ag82UCwKiGoFjnAb21cf5PSuzQIdTkBN6D4BV4mL1354jSJ3EdP7T8dqqXnFuoZy4fXjycvK5McVX5SlFWQcYf5TDzPmwUexO53VHK2UUg2rNuPwVQOyWIWOPRPYkXaYYldwPb9uaCLCxJ4Tua3HbSz4aQH3rLiHopLg6cgnFgvD/jSxwhj9/du2sPC5xykpDp5YlVJKC/wgdFa/FhQVlLDrB11HSES4Pfl27u5zN0t2L+GOZXeQXxw809pabTZGTbqPtmd380vf9f16Pp35nM7Gp5QKGlrgB6E2nZoSEeNg+5qDgQ4laNyUeBPT+0/nm1+/YcKSCWS7guc5ud0RxhX3TiGh/Rl+6Vu//ZKlr/0D4w6u/gdKqVNTdcPyelX305BBnmosFuGsPi3YtfEIhXnaLFzq6k5X87cL/8aGwxu4efHNHC0Ino6NYRGRXP3Aw4TFNvFL/+Hzz/j8X7N0Cl6lVMBVV8N/1vvzMrAKeBWY7f39xfoP7dR2Vr8WuIsNO76rzUrEp44RHUbwwpAX2JG5gxs/vZFfsn8JdEhlIps05axRY4hqGueX/v2ST/jidS30lVKBVd2wvMHGmMHAbqCXMaaPMaY30BPPVLuqHjVvF01sQrg261fiwrYXMuuiWWQUZPC7T37H94e/D3RIZcJiYrlmymNElKvpp332Mcv+/aoW+kqpgKnNM/wuxpgfSjeMMRuB5PoL6dQWk7UFNryPiHBWvxbs3XqU3KzCQIcVdPq07MPbl7xNhC2CP372RxbvWhzokMo0a3Ma1059vEKh/92nH7H8rde00FdKBURtCvzNIvKaiAwSkYEiMhvYXN+Bnara/PoxfHI3FLvo1LcFGPhp7aFAhxWUOsR24J1L36FLXBf+uvyvvL7x9aApTJu1PZ0xDz1KeLT/shPrPv6QFe8ET5xKqVNHbQr83wObgDuBScCP3jRVDw62GAQFmfDTEpq2jCTh9Gi2rT4Q6LCCVpwzjteGvcawdsN4bt1zPLLyEYrdxYEOC4D409szZurjOMsV+ms/+q+neV977yulGlCNBb4xpgCYPuHmSAAAIABJREFUBdxvjLnSGPN3b5qqB0ebJkNEPGxIAaBTvxYc2p1N5sG8AEcWvJw2J08PfJo/dPsD7297nwlLJpBRkBHosABIOL09Yx56FGdUtF/6d59+xOJXX9Jx+kqpBlNjgS8io4E04H/e7WQRWVjfgZ2qjMUK3a6Grf+DgizO7N0CBLZp571qWcTCXb3vYsZ5M/ju0HeMWzSOTembAh0WAM3bn8GYKY9VKPQ3LlvCxy88rTPyKaUaRG2a9KcB/YBMAGNMGtC+HmNS3cdCSSH8uJCopmG06dSE7WsO6nPfWrjyrCt5c+SbGAw3fnIjC35aEOiQAE+hf+20Jyp05Nu28isWPvs4RS7tmKmUql+1KfCLjTFZ9R6JOq5NL4g743izft+WZB7M4/Ce4JldLpglxieSMiqFns17MuXrKTy68tGgmIM/4fT2jHv4KaKbJfil71y/hvlPPowrXx/bKKXqT20K/I0icj1gFZGzROQl4Jt6juvUJuKp5e/6CrJ+5YyeCVhswpaV2nmvtuKcccy6eBa/T/w9KVtT+MNnf+BAbuBfv6at2jBuxlM0adnKL/2XTRt4/9GHyDum362VUvWjNgX+HUAiUAj8B8jC01tf1aekMYCBjfNwRtrp2LM5W7/dj6sgOHqgNwY2i43/6/N/PD3wabYd3cbVC6/m8z2fBzosYuKbM+7hvxF/enu/9AM/bePdKXeTeWB/YAJTSoW0agt8EbECC40xDxpj+np/HtJe+g2gWUdo0wc2zAWg++C2uApK2LYq8LXUxmZE+xHMvWwubaPbMmnZJB5d+SgFxYH9CEc2acq1056g5Zmd/NIzD+znP1Pu5sBP2wIUmVIqVFVb4BtjSoA8EYltoHiUr+5j4eBGOLiJFh1iSDg9mg2pv2rnvd+gXUw73h75Njd1vYmUrSlc/8n17MjcEdCYwqOiGfPQo5ye5D9xZf6xLFJmPMDO79YEKDKlVCiqTZN+AfCDiMwRkRdLf+o7MAV0uwrEChvm/n/27js8juJ84Ph3rklXdHcqp95tFTfZKu5NrrhgG4xpwZRAaCEJCSEJCRCSX0JJCCSQEEpoptuAC25g3Au4yVXuRcWSZfV26tLt74+VZQsJW8aSVTyf59nndLt7u7M+S+/s7Mw7CCEYkBxMcU4F2UdLOrtk3ZJeq+fRwY/y6sRXKawq5JZlt7DgyIJOrUAZjCZmP/YUfUaPa7a+vqaGxX//C/vXdp2UwZIkdW9tCfjLgSeBjUDKeYvU0cw+0HsC7P8MXC6iBvvibtazf11WZ5esWxsVNIrPZ35Ogl8Cf9n6Fx5c/WCndujT6vRMfegRhsya02y94nKx6vWX2bLgA5mVT5Kky9aWTHvzWluuROEk1Gb9sizI/AadXkvfUYGk7c2nvEh2o7gcPkYfXp34Ko8PfZxdebuYvWQ2i48v7rS7fSEEo390F+PvfkAdpXGerZ9/wrJ//Y26GvmdS5L0w31vwBdCLGh83S+E2Pfd5coV8SoXMw0MlqYx+f3GBAKQujG7M0vVI2iEhltib+HzGZ8T7RXNk1ue5Gdrf0ZeZedNVhR/zbXMfOT36PSGZuuPbtvC/D89RnlRQSeVTJKk7u5Cd/gPN75eC8xoZZGuBIMJ+syAA0ugrhqrt5GIgQ4Obj5NfZ3Mw94eQqwhvH3N2/xu8O/YnrOd65Zc16l3+1FDRjDnyacxWpv3lc09eZwP//AIZ04c65RySZLUvX1vwFcUJafxNaO15WIHFkKECCHWCSEOCSEOCCEebmUf0dgJ8Hhjy0HC5V1ODzXgRqgphWNfqW+Tg6h21slpc9uRRmiY23cun874lN723jy55UnuWXUPJ0tPdkp5gmL6cNvTL+ITEtZsfUVxEfP/9BhHvt3cKeWSJKn7asvkOeVCiLLGpVoI0SCEKGvDseuBXyuK0gcYBjwkhOj7nX2mAlGNy33Aq5dY/qtDxFjwCIAUtetEUIwnngFm9q3LkkP02lm4LZx3p7zLH4f/kcNFh5nzxRxe2fMKNQ1XPte9zdePW//yPJEJg5utr6+tYdm/nmPTx/PkbHuSJLVZWzrteSiKYm1c3IEbgP+04XM5iqLsavy5HDgEBH1nt1nAe4pqK2AXQgQgNafVQdI9cGIN5B9FCEFcchD5meXkprWl7iVdCo3QcGP0jXxx3RdMCpvEa3tf44YvbmBrztYrXhaD0cSs3zxB0ozZLbZtX/wpC5/9E1Xl8v+AJEkX15Zhec0oirIYGH8pnxFChAPxwLbvbAoCTp33PouWlQIJIPEu0Bpg++sARA/1x+CuZf96OUSvo/gYffjbmL/x+qTXURSFe1fdy6MbHuW08/QVLYdGo2Xs3Lu55oGH0Wh1zbZl7NvNB7//Jbknj1/RMkmS1P2IizUJCyHOv7XQAEnAWEVRhrfpBEJYgA3A04qiLPzOtuXAs4qibG58vwb4raIoKd/Z7z7UJn8cDkfiggUL2nLqbsnpdGKxWFrdFnP4JXzzvuHb4W9Rr7eQs8tF8XGImiHQG0Wrn+lqLnR9XVmtq5bVZatZXbYagAnWCUy0TsRN49Zsv46+PmdONidXfUFdZUWz9UKrJXTMJHxi+3fcubvpd9dWPfX6grap93VH+pX1yOs7q6d+f2eNGzcuRVGUpMs5hu7iuzTrkV8PpKM2xV+UEEIPfA58+N1g3ygLCDnvfTDQ4vZJUZQ3gDcAYmJilOTk5Lacvltav34933t9MZ7w+hhGmdNhxM8o6VvJR09txVQRzMipUVeymD/YBa+vi5vMZHKcOfwz5Z+sTF/J7rrdPJL4CFMjpiIax85fietzTpnKsn89R/bhg03rlIYGMtZ9iU0L4+68D53BcIEj/DDd+btri556fXlH1FHUFourR17fWT31+2tPbXmG/+PzlnsVRXlaUZSLdg8X6l/At4BDiqK8+D27fQHc0dhbfxhQenZ0gNSKgIEQOgK2vwGuBuy+JqKH+pO6IZvKstrOLt1VIcASwN/H/p15U+bh5e7F7zb9jttX3s7uvN1XrAwWTy9ufPIZ4qe2HB27b/WXfPT4IxSdlo96JElqri299F++0HKBj44EbgfGCyH2NC7ThBAPCCEeaNxnBXASOA78D/jp5V5Qjzf0fijJgKNfApA0NZyGBoVdqy46UlJqRwl+CXw8/WP+POLPnHae5o6Vd/DztT8np/bK1Fe1Oh3j77qfaT/7NTpD88cK+ZnpfPDYLzm4ce0VKYskSd1DW5r03YG+wPzG9zei5tLfc6EPNT6Xv+CDZUXtQPBQG8ognRV7LViDYdtrEDsdu5+JmCF+HNiQTfykUMw2t4sfQ2oXWo2W2VGzmRI+hQ8PfcjbqW+zoW4DB7cc5KFBD+Fv9u/wMvQZPQ7vkDCWvvgsJbnnKht1NdWsfOVFMlP3Mv7uBzC4Gzu8LJIkdW1t6aUfBYxTFOXfiqL8G5gADJI59TuJVgdDfgJpGyH3AACJ09S7/N1fZ3Zy4a5OJr2Je+PuZeXslSR7JLP85HKmL5zO8zuep6Cq41Ph+oZHMve5l4gZMabFtgMb1vDh739FXnrnJBCSJKnraEvADwQ8zntvaVwndZaEO0FnhG3qED2777m7/IrSK58gRlLZ3e3M9prNsuuXMSViCh8c+oCpn0/lHzv+QWFVYYee281kYvovfsOk+37eIg9/0eksPnr8EXYsXShn3ZOkq1hbAv5zwG4hxLtCiHeBXcAzHVoq6cJMXhB3kzqhTmURcN5d/ip5l9/ZAi2BPD3q6abEPe8fep+pC6fyws4XOjTwCyGIm3ANP3rmRbyCQppta6ivZ+MHb/PpXx6nrECmZJakq1Fbeum/AwwFFjUuw2VTfhcw9H6or4Zd6ldh9zURM9SP1I3yLr+rCLOG8czoZ1gyawkTQifw3sH3mLpwKn/b/jfOVJzpsPM6QsOZ+8w/6Zc8scW2Uwf3895vfs6hzes77PySJHVNbemlL4CJwEBFUZYABiHEkA4vmXRhfv0gYgxsfxMa6gFInBqOS97ldznhtnCeHf0si2ctZmLoRD4+/DFTP5/KE5uf4GRJxzxb17u7M+XBX3LtLx/D3dw8GUlNZQUr/v0Plr30d6qc5R1yfkmSup62NOn/FxgO3Nr4vhx4pcNKJLXd0AehLAtSPwPkXX5XF2GL4JnRz7Bi9gpujr2Zr9K/YtaSWTy89mH25u/tkHPGDB/FHf/4D2Fx8S22HflmI+8+8iDHdnzbIeeWJKlraUvAH6ooykNANYCiKMVA+6fxki5d9BTwGwDrn4OGOgCSpjXe5X8l7/K7qkBLII8NeYyv5nzFAwMfYGfuTuaumMvcFXP5Mv1L6l317Xo+Dy8fbvj9nxl3571o9fpm2ypLS/jiH0+z/OXnqSwrbdfzSpLUtbQl4NcJIbSAAiCEcACyq29XoNHAuD9AcRrs/RgAm8NEzDB/UjdmU5pf1ckFlC7Ey92LhwY9xKo5q3hsyGMUVRfxmw2/YerCqbyT+g6lNe0XgIVGQ8K0Wcx99l84wiNbbD+8ZQPzHn2Io1s3t9s5JUnqWtoS8F9G7aznK4R4GtiM7KXfdcRMhcAE2PA81KvpdYfOiERoBVs+O9bJhZPawqw3c1uf21h63VJeHvcyoR6hvJjyIpM+m8Rft/6Vo8VH2+1cPiFh3Pb0CwyfcysarbbZtsrSEpb+8zm+ePEZnMVF7XZOSZK6hgsGfCGEBkgDfgs8C+QA1ymK8ukVKJvUFkLA+MehNBN2vweAxdONpKlhpO0tIPNgx47/ltqPVqNlXOg43rrmLT6d8SmTwyaz6NgibvjiBu5ceSfLTy6ntuHy50zQ6vSMuPE2bnvmn63e7R/b9g3v/OoB9qxaIcftS1IPcsGAryiKC3hBUZTDiqK8oijKfxRFOXSFyia1Va8JEDIMNv4D6tRm/EETQrE5jGxecIyGevlHu7uJ9Yrlr6P+ypob1/Bo0qMUVBXw2KbHmPTZJP6V8i9OlZ+67HP4hkdy29MvMuKm29Bom2fZrq2qZM1b/+Xjp35LQWb6ZZ9LkqTO15Ym/VVCiBvE2fk/pa7n7F1+eQ7sfAcArV7DqJuiKD5Tyf71cua07srubufOfney9PqlvD7xdQY5BvHOgXeYtnAa93x1D8tOLqO6vvoHH1+r0zH8hluZ+9y/8ItsOcVyztHDvP/Yw2z6eB6uurrLuRRJkjpZWwL+I8CnQI0QokwIUS6EKOvgckmXKmIMhI+GzS9CbQUA4QN8COvvzfZlaXKYXjenERpGBI3gpfEvseqGVfw8/uecdp7m95t+z/gF4/nr1r9yoPAA6nxUl84RGs6Pnv4H4+68F/13JtpxNTSwffGnHJj/Dsd2fPuDzyFJUudqS6Y9D0VRNIqiGBRFsTa+t16JwkmXaPwTUJEP2//XtGrUjVE01LnYukROntJT+Jn9uC/uPpbPXs5bk99iTMgYFh9fzC3LbuH6Jdfz5v43f1AmP41GS8K0Wdz1wn/plTS0xfba8jK++MfTLHz2KYpOy1YjSepu2nKHL3UXocPU5/lbXoIaNYOa3c/EwAkhHP4mh9w02TDTk2iEhiEBQ3hu9HOsvWktTw57Eg+DBy/teonJn03mnq/uYfHxxThrnZd0XKuPg+t+8yQzf/0HLF7eLban793FvEd/xsaP3qW2Wg79lKTuQgb8nmb841BVBFtfa1qVNC0ck9XAxvlHUVyyObYnshqs3BRzE+9Pe58V16/gwYEPklORw5NbnmTs/LE8vPZhlp9cTkVdRZuPGTVkBHe98CqJ02chNM3/VLga6tmx5DPe+dUDHNy4Vvbml6RuQAb8niYoEWKmwTcvg1OdFc3grmPE7F7kpZdx6NucTi6g1NFCrCE8OOhBll+/nPenvs+NMTeSWpDKY5seY8wnYy4p+LuZTCTfcS93/P3fWAJDWmx3FhWy8pUX+fDxX5N1+EBHXI4kSe3kouPwhRCpV6owUjuZ9H/q8Lyvn2paFT3En4DeNr75/DjOYtmB72oghGCQ7yAeG/IYX9/4NfOmzPvBwd8nJIzomTcx/eHfttrMn3vyGPOf+h1LX3yWktyOmwlQkqQfri3j8PcKIUKvUHmk9uATBSN+Dns/ggx1YhShEYy/vQ8NdS7WfXBI9rS+ymiEhgS/hKbg/97U9743+H9fSl8hBLEjxvDjf77G4Flz0Op0LfY5um0L7z7yABs+eFvOxCdJXUzL39iWAoADQojtQNNtgKIoMzusVNLlG/Mo7FsAKx6F+zaAVofdz8Tw2b3ZNP8oh7bk0HdUYGeXUuoEGqEh3jeeeN94fjv4t+zN38tX6V/xdfrXrD21Fq3QEu8bz9jgsYwJGUOENYLz03AY3I2M+dFdxI2/ho0fvcOxbd80O35DfT07ly5k/9qvGDLrRuKnzkBvcLvSlylJ0ne0JeD/ucNLIbU/gxmmPAML7oCdb8HQ+wEYMDaIk3vy2PzpMYJjPbH6GC9yIKkn+27w31+wnw2nNrAxayMvpLzACykvEOIRwtjgsdiqbIxsGIleq864Z/cPYOYjfyDrUCrr33uT3JPHmx27pqKCTR+9y+4vlzJ8zo/onzyxRf5+SZKunLaMw98ApAP6xp93ALs6uFxSe+gzE3qNh7V/berAd7ZpHwFr3z8ke+1LTTRCw0DHQH6R8As+m/kZq25YxRNDnyDcGs6CIwt4Je8VRs8fzSPrH2Hx8cUUVqnzNAT36c9tT7/I1IceafX5vrOokK/f+HfTbHyyR78kdY6L3uELIe4F7gO8gF5AEPAaMKFjiyZdNiFg6vPw32Hw9R/henWontXHyKg5Uaz74DD7N2QRN65l72tJCrAEcHPszdwcezOVdZW89fVbFHkWsfHURr7O+BqBoI93H4YHDGdY4DDiR44kaugIdq1cyo4ln1FT2bwjYNHpLJb+8zkcYRGMuGkuvRKHIDN2S9KV05Ym/YeAIcA2AEVRjgkhfDu0VFL78emtduDb/CIk3AlhwwHoMzKAE7vz+XbhCUL7emP3M3VyQaWuzKQ3McA0gOThySjDFA4XHWZD1ga+Pf0t8w7M463Ut3DTupHgm8Cw3sMY9effULJhL3u+WkbDd3Lw52ekseT5v+DfK4oRN80lfGCCDPySdAW0JeDXKIpSe/YXUgihA2Q7cHfSSgc+IQTjb4/l4//bxpp5B7n+0UQ0GvlHV7o4IdQ7+z7efXhg4ANU1FWQkpvCt6e/ZWvOVv6Z8k8A7G52ht+SQOQBQeXuEy1Ghpw5cYyFzz5FQHQsSdOvo/fg4fIZvyR1oLYE/A1CiD8ARiHEJOCnwNKOLZbUrgxmmPIsLLgdtr8Bw38KgNnuxuibo1n9zkF2LE9j6IyWc6NL0sWY9WbGBI9hTPAYAPIr89mas1VdTm9lpX8ettE6hqcF4H+qZbehnKOHWXr0OSzePgycOJW4Cddgstmv9GVIUo/XloD/GHAPsB+4H1gBvNmRhZI6QJ8ZEHUNrPkz9J4IjmgAoof4kXW4iJ3L0/ELtxI+wKeTCyp1dw6Tgxm9ZjCj1wwURSGtNI1vc75lx5kdrD26h14HNITltnyE5CwsYMv899n6+cfEDB9N7KhkAnrH4G6xdMJVSFLP05aAnwx8qCjK/y62o9SFCQEzX4b/DoeF98JPVoNWjxCCsbfGUJDlZPU7B7npD4PlUD2p3QghiLRHEmmP5LY+t6EkN1YA9qwiY+UG3NJbJudpqK/n4KZ1HNy0DgDPwGACekcTEBVLQO9ofELDW036I0nShbXlt+Yu4DUhRCGwqXHZrChKcUcWTOoAHv4w4yW1aX/D39TpdAGdQcuU+wbw6bM7WPn6fm74TSI6g3yWKrW/pgpA8gOQ/AD5mel8s2wBJ775BqWuvtXPFJ/Oovh0Fgc3rgVAZ3DDL7I3AVEx6tI7Bg9v2TIlSRdz0YCvKModAEKIQGAO8AoQ2JbPSl1Q35kw6DbY9AJETYaQIQDYHEYm3tWX5f/dx8ZPjjL+jj6dXFDpauAIDWfWT39L9Z1ODqxfzZ6vllOSe+EJnupra8g+fIDs8ybrMXt64RfRC7/I3vhG9MYvshcWT2/Z+1+SztOWcfhzgdHAAKAA+A/qXb7UXU15DtI3wcL74IHN4KY+Iw2P8yFpWjg7V6TjH2mTqXelK8bdbCFx+nUkTJ1J+t5dHN+xlezUvRTl5rRpSFBFcREni4s4uWtH0zqTzY5fRC+1AtBYGfDwcchKgHTVastd+r+AE6jJdtYpipLeoSWSOp67Fa5/Hd6ZBl/9QX2232jwtRHkppex8ZOj+IRY8A2zdmJBpauN0GiIiE8iIj4JgNrqKrJ3bCNt0eecPnKIEjcdNfq2NS5WlpaQtieFtD0pTevcPaz4RfTCERaBIzQcn9BwvIJC0On1HXI9ktSVtKVJ30cI0Q8YAzwthIgCjiiKcvuFPieEeBu4FshTFKV/K9uTgSVAWuOqhYqi/N8lll/6ocJGwMiHYcu/IHoKxE4DQKMRTLq7LwueUZ/nz/ldEmabnPhE6hwGdyMRo5OJGJ1Mg9NJ8YJPyf7wAwqdpZQF+VPu70thWXGL5D7fp7q8jIx9u8nYt7tpnUarxTMgCJe7CWNJPo6wcByhEVi85CMBqWdpS5O+FQgFwoBwwAa0JRn2u6jN/+9dYJ9NiqJc24ZjSR1h3B/g+Br44ucQnAQWNYGi0WJg6v0DWPTCLpa/so/rHonH4C67bEidS2ux4HP3j/G+fS5lX35J4dvvULP2W4TDBzFjOlUxURQW5pGbdoL89DTqa2vadFxXQwOFWZkAbD5+uGm9u9mCT1g4PiFheAeF4hUUgndwCCabXVYEpG6pLX/FN5+3/EdRlKy2HFhRlI1CiPAfXjSpw+nc4Ib/wRvj4NO74I4l0DgTmm+YlWvu7c+KV/fz1f9SmfbTOLTai861JEkdTuj12GbMwHrttVRu3Urh2+9Q8fY83HQ6YidPYvitt+IWH09xTja5J4+Tl3aC3LQT5KWfpK66qs3nqa5wknUwlayDqc3Wu1s88A4OwTsoFO/gELyC1VfZSVDq6trSpB8HIITwoP1T6g4XQuwFTgOPKopy4GIfkNqZbx+Y+W9Y+BP1ef6055s2hQ/wYeyt0az/8AgbPjrCuLmx8g+a1GUIITAPH455+HBq09Mp/mQ+JQsXUrZiJW5RvbHfeiuxM2fSb6w6z5ficlGUk01+RhoFmenkZ6SRn5lOeUH+JZ232llO9uGDZB8+2Gy9wWjCKygYz4AgPAMC8fQPbPrZYJRzVUidT3w3v3WLHYToD7yPOlueAPKBOxVFSb3gB9XPhgPLvucZvhVwKYriFEJMA15SFCXqe45zH+qMfTgcjsQFCxZc7NTdltPpxNIJmcV6HX+bkKwlHI75BWcCmk+EmLffRf4BcPQX+Pa/vIDfWdd3pfTk6+sW11Zbi/vOnZjWb0CfmYnLzY3qoUOpGjuG+qCgVj9SX1NNVWEBJTlZuJzlVBXmU1WUj6uN/QLaQmcy427zxM3mibvdjpvNC3ebHTebHY2uYzsMBm1TW+aO9Cvr+t/fZegW/z8vw7hx41IURUm6nGO0JeB/AzyuKMq6xvfJwDOKooy46MEvEPBb2TcdSFIUpeBC+8XExChHjhy52OG6rfXr15OcnHzlT9xQDx/MhsytcPdKCEps2qQoCmvfO8Thb88w7vZY+o784cP1Ou36rpCefH3d7dqq9u2j+KOPKVuxAqW2FmNSIp633op10iSEwdBi//OvT3G5KM3PIz8zjaKsUxRmn6IwK5Oi7Kw29w1oEyHw8PZRWwLOaxGw+fphdfiid3O/7FPkvb4PgIMxRd3q+7tU3e3/56USQlx2wG/LM3zz2WAPoCjKeiGE+XJOCiCE8AdyFUVRhBBDAA1QeLnHlX4grQ7mvANvJMMnc+H+DU2d+IQQJM+NpaK0lvUfHsFscyOsv3fnlleSLsIYF4cxLg7f3/2W0oWLKP7kE07/+lFyvb2xzZyJffb1uEW12qiI0Giw+/lj9/OHwcOb1isuF2UFeRRmqRWAwuxTjRWCTGqr2t4/4NwBFcoL8ikvyCdz/54Wm002OzaHH1ZfP2xnF4c/Nl8/PHwcMsWwdEna8r/lpBDiSdRmfYC5nBtK972EEB+j5uH3EUJkAU8BegBFUV5Dzdr3oBCiHqgCblEu1twgdSyzN9zyIbw1GRbcqXbi06l3Qlqthin39WfRC7tY+fp+pj8YR0hfr04usCRdnM7TE+977sbrx3dRsWULxfPnU/T++xS98w7ucXHYZ1+Pddq0Nh1LaDTYfP2x+foTmTC4ab2iKJQXFlCck03JmdMU52RTnHOa4pzTlOadwdXQ8IPKXllaQmVpCTnHW7ZqCqHB4u3drBJgdfg2Vgz8MXt6otHIFNnSOW0J+HcDfwYWNr7fCPz4Yh9SFOXWi2z/D+qwPakrCYiDWf+Bz++Br34P019o2mRw1zHz4UEs+ecelr+6j+k/jSOkjwz6UvcgNBoso0djGT2a+sJCSpcupXThIs786c/kPvsc1rgBVBgMmIYNQ2gubUSKEAKrjwOrj4OwAYOabXM1NFCan0tJTmNF4MzppspAWUEe/MD7HEVxNbUOZNGyS5XQaLB4ejPCNhOdTk9W4U52VZXh4ePA6u3Aw9sHo9UmO+JeRb434Ash3IEHgN6oU+P+WlGU9uvFInVdA+ZAzl745mWwh6oJehoZLQZm/aox6P9XBn2pe9J5e+N911143Xkn1akHKF20kIbFi8m8+x50gQHYr7sO2/XXYwgJuexzabRa9fm8f2BTBsGz6mtrKc07Q1FOdlOFoDTvDKV5uZQV5KO42pLypHWKy0V5YT61+kpqgdyjO8ndu7PZPlq9Hg8vHzy8GxcfR+PP6qvZ0wujh1VWCnqIC93hzwPqUPPmTwX6AL+8EoWSuoCJf4aybPj6j2Dyhvi5TZvOBf3datB/KI6QWBn0pe5HCIFxQH9FJerhAAAgAElEQVSMA/pzePhwEurqKFm4iIJXX6Pgv69iGjIE26yZeEyahNba/mmmdQYD3sGheAeHttjmamigvLCA0rxcSvPPUJaXq/6cl0tpfi4VxUWXff6GujpKcnMuOGGRVqfD7OmF2e6JxdMbs6cXFk+vpleLpxdmL2/czRZZMejiLhTw+yqKMgBACPEWsP3KFEnqEjQauO41qCqGL36hBv2YqU2bjRYDs34Zz5J/7WbFK/uYJoO+1N3p9VgnTcI6bRp1OTmULllCyaJF5Dz+BGf+9GfMY8Zgu3Y6luRkNEZjhxdHo9U2ddSDuBbb62prKMvPoyw/r7Ei0FgpyM+lLD+PqvKydilHQ31903kuRKvXY7afVwk4u9jsmOx2zDZPjFYbJptdzl3QSS4U8Jua7xVFqZc1t6uQzgA3vQ/zZqiZ+G5fDGHneiwbPZoH/SkPDCCsn+y9L3V/+oAAfB54AO/776c6NZWyZcsoW7ES55o1aEwmLBMmYLt2OuYRIxCdFLz0Bje8g0LwDmr9sUNdbQ3OwgKcH2fQUFdHYMhIvK0WygsL1Gf/hQXUVlW2W3ka6uooy8+lLD/3ovu6mc2YbJ5qZaBxOVsxMFkb39vV1/YYmiipLhTwBwohzlYRBWBsfC8ARVEUOY3a1cDNArd9Cm9PgY9uhh+vAP9zaRXOBv0vXt7Dilf2Me6OWGKHBXRigSWp/ahN/gMwDhiA729/S+WOnZQtX07ZqlWULV2K1m7H45prsF07HWNi4iV39utIeoMbngFB1JnV0c4BMcNbjFOvqaxoCv7qkn/eayEVJUU/bLjhRdRUVFBTUUHx6Ytnate7GzFZrRg9zlusVowetmbrqooKqCwtwd3igUYrRye05nsDvqIo8l9MUpl94PaF8NY18MENcM9X4BnetNnoYeD6RxJY+fp+1rx7iIqSGhKuCZPP86QeRWi1mIcNxTxsKP5PPoFz8xbKli+n9IsvKJk/H52/P9YpU/CYPBnjoIFdKvh/HzeTGbdQMz6h4d+7T21VJc7iYipKinAWF1FRVKi+lhTjLC6korgIZ1ERdTXVHVLGuuoqSqurKM27eMvBwfnvAurER0arFXeP71QUWlQWPHC3eOButlwVlQSZtUFqG3uoGvTfnqI28d+5tFnQNxh1XPuzgayZd4iti09SUVzDqJuj0Whk0Jd6HmEw4DF+HB7jx+GqrKR87TrKli+n+MMPKXr3XXQOB5aJE7BOnowpKanTmv3bg8Fowstowiuw9dTEZ6kVAzX4VxQX4iwppqK4kMrSUioa8wlUlpZQVVaGovzw0QdtUV3hpLrCCTmn2/wZg9HUFPzdLRb157Ov5nPv7X4BOMIiOrD0HUcGfKntfPvA7Yvg/evh7alq0Pfp3bRZq9Mw6cd9MdsM7Fl9isqyWibe3RedvufXnKWrl8ZkwnbtdGzXTqehvBznho2Uf/01pYuXUPLxJ2htNizjx+MxeRLmESPQuLl1dpE7xLmKQfAF93O5GqgqK2usAJRSWVrcrEJQUVpCZUkJlaXFVJaV/uCkRZeqtqqS2qrKi/ZBiBo+ipm/fOyKlKm9yYAvXZqgBLhrObw3C96ZCnd+oVYEGgmNYOScKMx2N7Z8dpzKl/Yw9f4BGD1a5i6XpJ5G6+HRFPxdVVVUbNlC+ddfU756NaWLFqExm7GMHYvH5ElYRo9GY77sLOXdjkajxWz3xGz3vOi+iqKod+vlZVSdXcrO+/m8dYW5ZxAN9VQ7yzu0/F9kr+QvH3yO1WDF6mZt/tr4s81gw8PggUVvwWKwNP3sYfDArDej03RO6JUBX7p0/v3VznvzZsK709Xe+wHNhw0NmhiK2ebGmnmHWPDsDqY9EIcj1KOTCixJV57GaMRj4kQ8Jk5Eqa2lYtt2NfivWUPZihUIgwHT8GF4JCdjGTsWfeAPn5SqpxJCYLR4YLR44Blw4UcKZyfPcTU0UF3hbKwYlF64olBeRo3TSXVlRZszHg4MSSQ2JpCy2rKmJceZw5HaI5TWlFJZf/GRD0ad8VxlQK9WAs6vGFgMFvW1sZJgMbTPLIAy4Es/jCPmXNCfdy3MXQTBic12iRrsh83XyMrX9rPw+RTG3R7bSYWVpM4lDAYso0dhGT0K/6f+SNWuXZSvXk35uvWc2fB/ALjFxGBJTsaSPBZjXBziKuhE1hE0Wi0mqw2T1Qa0LVOi4nJRU1lJtbO8aamqcFLtLFcrBBXlVDudVDnL6ZOUTOzgMd97rDpXHeW15ZTXluOsc+KsVZfyunL157Pr6pzn9qlzkluZ27RfVX37j4wAGfCly+HdSw36781Um/hv/Qgimv8i+IZZufH3g/nqf6l8/fZBvGPANdqFRtv1ezBLUkcQWi2mwYMxDR6M72OPUZuWjnP9epzr11P45psUvv46Wk9PLGPGYBmXjHnkSLQesnWsIwmNprGDngW4vGHFeo0eL3cvvNx/eCKyelc9FXUVTZWD8tpyBjP44h+8CBnwpcvjGQY/XgnvXQfvz4aZL8OgHzXbxWQ1MPOXg9jy2XH2r8ti6b/3cs1P+uNu6b49lyWpPQghcIuMwC0yAu+7f0xDaSnOzZtxrt9A+fr1lC5ZAjodpqQkLKNHYx41CrfoKDnktYfTaXTY3GzY3Gzte9x2PZp0dbIGwj2rYMHtsPhBKEqDcX+A8/4oabUaxtwcTWFFNjm7Spn/9HYm3d2PwCh7JxZckroWrc2Gbfp0bNOno9TXU7V3L8716ylft46855+H559H53BgHjmycRmBzkumtJbaRgZ8qX0Y7XDb57D8V7Dx71CcBjP/A/rmaTE9IwUjJySw6s0DLH5xF4nTwhk8LVw28UvSdwidDlNiIqbERHx//WvqcnKo2LIF55YtlK9bR+nixSAE7n37qsF/1EhMgwYhDHJEjNQ6GfCl9qMzqEHeKxLW/B+UZsHNH4K5eX593zArNz0+mE2fHGXn8nSyDhUz6e6+WH06fkISSequ9AEB2OfMwT5nDkpDA9UHDqgVgM1bKHzrLQrfeAONyYRp6FDMI0ZgHj4MQ69enV1sqQuRAV9qX0LA6F+rWfgWPQhvToCbP2iWfx/A4K5jwl19CennxYYPjzD/6R0k3xZDVJJf55RbkroRodVijIvDGBeHz4MP0lBeTuW2bTi3bKFi8xac69YBoPXxwTTiV2isVrT2IhRFkc//r2Iy4Esdo/8NYAuB+berQX/6ixB/W4vdogf74x9hY9VbB1j15gHS9xUw6qYojBbZLClJbaX18Gga8w9Qm5VF5bZtVGzdRn25k/qiInw+eIHjr76KeegQTEOHYR46BH3Qhce2Sz2LDPhSxwkZAvdvhM/vgSU/hVNb0ZivbbGb1cfI9Y8mkLIyg5QV6Zw6VMSYW2LoleCQdyOS9AMYgoMxBAdjv+EG8l7fi1JdTW7orQQVF+PctJnSJV8AoA8OxjRsKKakJExJSeiDguTvXBdxprSa7elFbE8rZHtaUbscUwZ8qWN5+KmZ+NY/A5teIN6yGeKj1Of859FqNQy5NoLIQQ7WvneIr/6XSmS8gzG3RGO29czc45J0ZQiEu5GqgWMITk5GURRqjh2jctt2KrZtpfzr1ZR+9jkAOj8/TImJGBMTMCUl4RYV1S1m/evuFEXhRH4FO9KLmpZTRWryHYubjsSwi6chbgsZ8KWOp9XBhD9CyFDcF9wNryfDda9AnxktdvUJtjDnd4nsWX2K7UvT+PjINkbdFEXMUH955yFJ7UAIgXt0NO7R0XjdPlfNMnfsOJUpO6namUJlSgplK1YAoLFaMcXHY0xKxJSYhLF/PzkKoB3UN7g4cLqsKbjvTC+msKIWAG+zgcHhXtw1IoIh4V70CfBAp9Xw3j2Xf14Z8KUrJ/oaUhJfZNipV2H+XBh0G0x5FtybJ5fQaDUkXBNGxEAf1r1/mDXvHuLQlhzG3BKNd1D75JSWJEklNBrcY6Jxj4mGH/0IRVGoy86mKiWFysYKgHPDBnVfNzfcB/THNGgQxsZF5+PTyVfQ9VXVNrD7VDE70orZkV7ErsxiKmvVWQBDvUwkx/gyJMKTweFeRPiYO+zmRgZ86YqqNvrB3avUsfqbXoC0jXDdf1uk5AXw9Ddz/a8TOPRNDt8uOsH8p3cwYGwQQ2ZE4GaSWfokqSMIIZr6ANhmzQKgvqiIypQUtQVgz24K570Hb74FgD4oqCn4GwcNwj02BqG/un8/iytq2ZmhBvftaUWkZpdS71IQAmL9rdyYGMzgCC8Gh3vhZ3W/+AHbiQz40pWnM8D4JyDqGlh0P8ybAcMegglPgr75WHyhEfQdFUhkvINtX5xk//osju3MZfj1vYgdFoDQyGZ+SepoOi8vrJMmYZ00CQBXTQ3VBw5StXcvVXv2ULlzJ2XLlwONrQD9+2McNFCtBAwYgM7Pr0c/kssuqWJHWhHb04vYkVbEsTwnAAathoEhNu4dE8mQcC8SwjyxGTuvMiQDvtR5QgbDA5vg66dg6ytwfLV6tx+c1GJXd7OesbfG0HdkIBs/OcLa9w6TuvE0I2b3Iii6fTq0SJLUNho3N0wJ8ZgS4pvW1eXkULVnT+Oyl+L33qforbcB0Dp8MPYfgPuA/hgHDMC9f390nt3z99blUjie72R7WmMHu7QiTpdWA+DhpiMhzJPr4oMYHO5FXLANd33XmfVQBnypcxnMMP0fEDMVlvwM3pwISXernfyMLfPsO0I9mP1oIke2n2Hr4pMsfnE34QO8GXZ9L7wD5fN9Seos+oAA9AEBWKdOBdRWgJpDh6jan0p16n6q9qfiXL++ad55fXCwWgForAi49+2H1mLuxCtoXW29i9TTpexoDPA7M4opqawDwOHhxpBwL+4L92RwhBex/la0XbjVUQZ8qWvoPQF+th3WPg3bX4dDS9UOff1vaDYJD6jN/LHDAuid4Mu+dVmkfJnB/L9sJ3Z4AENmRGDxvHLPxCRJap3Gza3puf5ZDU4n1akHmioA1Xv3Ub7yS3WjEBjCw3Hv0wf3vn1w69MH9z59rvjkQBU19ezKLG5qot9zqoTqOhcAET5mJvf1Y3C4F0MivAj1MnWrRxUy4Etdh5sHTH0OBt4Cy36pJuzZ/QFMfwG8W+YE1xm0JFwTRt+Rgez8Mp3967M4uiOXAWODiJ8chskqhw9JUleitVgwDxuKedjQpnX1hYVUp6aqFYBDh6jcs7tpWCCouQGaVwL6og8KbLdAm1Naxc70YlIyitmZUcTB02W4FNAI6Bto5dYhoQwJ9yIp3AuHR/fOCSIDvtT1BA6Cn6yBHW+pk/D8dzgM/ymMegTcrS12d7foGTUnirjkYLYvS2PvmlOkbsim39gg4ieFysQ9ktSF6by9sYwdi2Xs2KZ19cXF1Bw+TPXBQ1QfPkz1oYM4N24El3qnrbFacY+NbVYRoKHhoudqcCkczS1nZ2PT/M70YrJL1AQ3Rr2WQSF2HhrXm6RwLxJC7Xi496zRBjLgS12TRgtD71OT86z+E2z+J+x6H8b9ARLuVJP5fIfVx8jEu/qSNDWclJXp7FubReqGbPqPDiL+Ghn4Jam70Hl6ohs+HPPw4U3rXFVV1Bw9SvWhQ00VgeJPPkGpqQHAV6cjLTYWt9gY3KOicIuOxhUewf4KLTszStiZUczujGLKa+rV/T3cSAr35J5RESSFe9InwIq+h0/TLQO+1LVZA2D26zD0flj1BCx/BLa/AZOfhqiJrX7E7mdiwl19SZzWGPjXZ5G6KZvYYf4MmhiK3c90hS9CkqTLpTEaMQ4ciHHgwKZ1Sn09tWlpVB86xLFVq9AXl1Hx1Wq0jamCATQGM75Wf0b6hzIuKgr/+H70GzGIkOCrb64OGfCl7iEoAe5aDoeXwaon4cMbIDIZxj2hDu9rhd3XxIQ7+5I0LZxdX2Vy+NszHNh8msiBDuInh+IfaWv1c5IkdX0ul8Kxgip2FhlIqQplk2Ma+RYFQsCvoYJxhnKSXEVElOeSlJtJ/YltKKnrYBFUAMcDA3CPisYtOgq3KHUx9OqFpgenDu6wgC+EeBu4FshTFKV/K9sF8BIwDagE7lIUZVdHlUfqAYRQm/ijroEd/1Mz9b01EaImq039gfGtfszmMDFubixDZ0ayb536fP/knnz8I23ETwolPM4bTQ9vypOk7q6qtoG9WSVq57r0IlIyiimrVpvnfSxuhFk13D8+mqRwL/oGWDHomv9OKy4XdadPU3P0GDXHGpejR3F+8w3UqcPs0GoxhIXh1qsXhl6RuEVGYoiIxC0yAo256w0ZvFQdeYf/LvAf4L3v2T4ViGpchgKvNr5K0oXpDDD8IfVZ/vY34JuX4Y1kiJkO434P/gNa/ZjJamDYrF4kXBPG4W9z2LP6FCtf34/Fy43+Y4LoOzIQo0fPrd1LUneSX15DSoY6sczOjOKm9LQAUb4WpscFkBjmxeBwT0K9TGzYsIHk0ZHfezyh0TSlDPYYP65pvVJXR21Ghto/4NixpgpB+dq1zToC6vz9cYuMwBDZC0NkhFoZiIxE5+g+jwY6LOArirJRCBF+gV1mAe8piqIAW4UQdiFEgKIoOR1VJqmHcbPA6Edg8E9g22vwzX/gtVFq4B/1SwgZ0urHDO464saF0H9MEOn7Ctm3Pouti0+yfVkaUUl+DBgbjF9Ey9EAkiR1DJdL4US+s6nnfEpGEemFlQAYdBoGBdu5d0wkSWGeJIZ5Yje1X8Vc6PW49e6NW+/enP9br9TWUnvqFDUnTlB7Mo3atJPUnDhJ6cKFuCorm/bTWCwYIiObKgBNlYKQ4C43p4BQGrMedcjB1YC/7Hua9JcBzymKsrnx/Rrgd4qi7Gxl3/uA+wAcDkfiggULOqzMnc3pdGKx9NyMcR15fbo6J8FZSwnKXo6+vpwSW19Ohcym0DsRxIWb7KtLFYqPK5Skgase3D3BM1JgCwOtoe219578/fXka4Oee31B29T/+0f6lXWZ66uuVzhZ6uJ4SQPHi9XXSrV1Hg8DRNm1RHlqibJrCLNp0Lche90V+/4UBU1JKbozOWjP5KI7cwbtmTPqa2npud00Ghq8vWnwddDg60u9ry8Nvr40OBw0eHuD9tJS7o4bNy5FUZSWeccvQWd22mvtG2y19qEoyhvAGwAxMTFKcnJyBxarc61fvx55fZfjWqhxwu73sX/zH+ypfwVHHxj5MPSfDboLD82rrarnyDa1c19OipO8fRp6JTjoOzKQwCj7RZvuevL315OvDXru9eUd2QeAxeLqlOtTFIVTRVWkZBaxK0N9Bn/4jJrcRgiI9vVgVoKd+FBPksI8f/D0sF3h+2twOqk9qbYE1GakU5uRQW1GBnXbtjdrFUCnwxAUhD48DEPY2SUcQ3gY+oAAxCVWBtqqMwN+FhBy3vtg4HQnlUXqSdwsMOxBtak/9XPY8hIsfgC+/iMk3gVJPwZrYKsfNRh1DEgOpv/YIPIzyzm4JYdj289wdFsuNoeRmGH+RA/xx+Ywtvp5SbraVdc1kJpdSkpGMbsyi0nJKKHAqY6Vt7jpGBRi52fjo0gM82RQiL1TZ49rb1qLBWNcHMa4uGbrFUWhoaCgqQJQm55BbWYmtRkZVG7fgVJVdW5nvV7taxAWhiEsFH1QMPqQ4HYpX2cG/C+AnwkhPkHtrFcqn99L7UqrV9P0xt0MJ9bA9v/Bxudh84tqb/8h90Ho8Ba5+kGdE9w3zIpvmJWRc3pzclceh77JYfvSNLYvTcM/0kbMUD96J/rhbuk5f7Ak6VLlllWTklHcFOBTs0upa1Aba8O9TYyJ8iGh8dl7tJ9Hl55cpqMIIdA5HOgcDkxJzVvlFUWhPi+/qUWg7rxKQcW2bc0rA5epI4flfQwkAz5CiCzgKUAPoCjKa8AK1CF5x1GH5f24o8oiXeWEgN4T1aXopJqyd/f7cGAR+PWH+Nsh7iYwtT5Jh96gJWZYADHDAigvqubYjlyObDvDho+Psmn+MUL7edE7yY+IOJ8rfGGSdGXVNbg4nFNOSkYRKZkl7Mo4l5rWTadhYLCdu0dFkBjqSUKYJz4Wmd3yYoQQ6P180fv5Yh7SvKOxoig0FBZSl5UF8a0PO74UHdlL/9aLbFeAhzrq/JLUKq9IuOZpGPc47F8AO9+BL3+nNvf3uRYS7oDwMaBpvZOfh5c7CdeEET85lMJsJ0e2nuF4Sh7p+wvR6ARmP4UjxjNExPlgMMq8VlL3VlRRy+7M4qY7+H1ZpVTVqUPV/K3uJIZ7qgE+zLPVse/S5RFCoPPxQefTPjcT8i+SdHUymNTn+Yl3Qc4+9Y5/33z1mb89DAbeqt71tzJLH6i/iD7BHvjM8WDE7N7kppdxfGceB749xep3DqLVaQjp40nEQAfhcT5y5j6py3O5FI7nO881z2cUc7KgAgCdRtAv0MotQ0JICFWb5wPtsh9LdyMDviQFxEHA8zDpL2rq3l3zYMPfYMNzEJQIA25Se/hbfFv9uNAI/CNt+EfaqHNkERuawImUPE7uySd9fyEI8I+wETHQh4iBPnj6d/+MXVL3V1pVx95TJezKLGZXZgm7M4spb8xc52U2kBDqyY1JISSE2okLtmM0dEzPcenKkQFfks7Su8OAOepSmq3e7e9foDb5f/UHNXd/v+shdvr3Pu8XQhDQy0ZALxsjb+xNYbaTtL0FnNyTz7eLTvDtohNYfdwJ7edNaD9vgqLtGNzlr6HU0RROlbv4eHsmuxsD/PE8J6B2cYnx82DGwMCmu/dwb1O3yR4ntZ38SyNJrbEFwchfqEveYTXw7/8MvvgZLH0YIsZA31kQey1YHK0eoqnZP9iDwdMjKC+qJn1fAZkHCjm89QypG7LRaAUBvW2E9vUmtJ8X3kEW+YdWumyFzhr2NN69D8kpw1lTz5NpVcB+PE164kM9mTUwkPhQTwaG2HrcvO9S62TAl6SL8Y2FCX+E8U9Czl44uAQOLoZlv1Sn6w0dATFTIGbaBQ/j4eXOgORgBiQH01DnIudECZkHi8g8UNR092+yGgjt60VoP29C+njJIX/SRZ3tOb8rs5jdmcXsPlVCRmNaWq1GkKjzwGFx476Ien40eThh8u79qiUDviS1lRAQOEhdJvwRcg+ogf/wclj1BKx6giHGIKidDdFTIWQoaFv/FdPqNQTHehEc68WI2VBRUkPmwSJOHSwkbX8Bh7eeAQGOEA8Co+zq0tsuKwASZ0qrmwL77ky153xNvQsAXw83EkI9+dGQUOJDPRkQZKP8nQMAjAisIdxH9h+5msmAL0k/hBDg319dxj8BxRlw9Euqt36Eaetr8M2/wd2mPvfvNQF6TwDb92fLMtvd6DMigD4jAnC5FPIzysk8WEj2kWJSN2azd80pALwCzQRF2QlorASYbXKcc09WXdfAgdOl7M4saVyKOV1aDYBBq6F/kJW5w8KID1VT0wba3FvcvZd3RsGlLkkGfElqD55hMPR+9lXFkDwsAU6sheNfw/G16iMAAEesGvwjxkDoMDDaWz2URiPwi7DiF2Fl8PQIGupc5GaUcfpYCaePlXBo6xn2b8gGwO5nIrC3jcBoTwJ62/DwavkHX+oeFEUhq7iqsWm+hN2nSjh4+lzWumBPI4nhXvwkxE58qJ2+gVbcdLLnvNR2MuBLUntzt0K/69RFUSD/MBxfDcfXwI43YesrqGP1BkD4aAgfqab4/Z6e/1q9hsDeapM+U6GhwUVBppPsY8XkHCvh+K58Dm5Rs1KbrIamyoJfuJoaWCYA6poqaurZl1XK7lPFTXfwZ3POG/Va4oJt3DMqsvHu3Y6vh3snl1jq7uRfAknqSEKAbx91GfFzqKuCrJ2QsQXSNzevAPj1V4N/WONi9m71kFqtpimoMzkMl0uhMNtJzvFSctNLyU0rI21vQeP5wSvAjF+4ur9vuBXvQDMarcyIdiU1uBSO5ZWzJ7OEvVlqcD+aW46rcX7QSB8zY6J9SAj1JD7UToyfBzr5HUntTAZ8SbqS9EaIGK0uAPU1kJ2iBv/0zZAyD7a9pm7z7as2/QclqQmAfKJbTfmr0QgcIR44QjxQJ52E6oo6ctPLyE0rIy9drQAc+kZtBdAZNDhCPfANteITasEn2APPABNaGWDaTU5pFXsyS9iTVcKezBL2Z5dSWaumpLUZ9QwMsTO5rx/xYZ4MCrbjaZaZGKWOJwO+JHUmnRuEjVCXsb+F+lo4vetcBWD/Z7DzbXVfgwcExavB/2wlwBrQ6mHdzXrC+nkT1k9tJVAUhbKCKnLT1EpAbnoZBzZlU1+n9u7W6ATegRZ8QtQKgCPEgnewRSYFagNnTT37Tp0L7nuzSsgtU5vmDVoNfQKt3JQUwsAQG4NCZFIbqfPI32ZJ6kp0BvWuPnQYjHkUXC4oPKY+BshOUZdv/g0uNQUqHoEQnNhYCUhUHwu00hdACIHNYcLmMBE9xB9Qc6eX5FZSkFVOQaaTgqxytSWgsT8AAmwOY2PyIAtlRer+VocRzVU4xSlAfYOLI7nl7Dl1Lrgfy3OiNDbNR/iYGdHLh4HBNgaFetInwEN2rJO6DBnwJakr02jAEaMu8bep6+qq4Mx+NfifrQgcWnruM9YgNfD791df/fqrkwBptN85tMArwIxXgJnoweo6RVGoKKml4FQ5BVnl5J9ykp9ZxoldeQB8uHkrWr0GT3+T+tlAc9Or1duI6EEVAUVRyC6pYs+pEvaeKmHPKbVpvrqxVcTLbGBgsI3pAwIZFGpnYLANu0k2zUtdlwz4ktTd6I0QMkRdzqosUh8FnElVEwLlpqojAxT1uTE6o9px0L8/+A0Av37q+++0BgghsHi6YfF0Izzu3JSctdX1rF6+iYiAGIpOV1CUU8HpYyUc3Z7btI9Or8GzsQJh9zM1LTZfI/puMPFKRZ3CpmP5TcF9z6nSpl7zBp2G/oFWfjQkjIEhNuJDPAnxMsqmealbkQFfknoCkxf0nqguZ9XXqEMCz6SqFYDcVDi0DHa9d0BYQx0AABr4SURBVN7nfNTOgI5o9dUnBnyiwBbSrIOgwV2HyVvQZ0Rgs9PWVtVTlKNWAM5WBLKOFHNk25lm+1m83LD7NlYCfE3Y/dVXD2/3Tnk8UFvv4siZcvacUjPW7T1Vwon8SmA7AL0cZsZGOxjU+Nw9xt9DzvUudXsy4EtST6Vzg4CB6nKWokB5jloJKDgCBUch/6iaHKiq+LzPGsGnd2MFIBp8euNRVgRVA8Ho2bSbwahrmhr4fLXV9ZTmV1GSW6kueZWU5FZxdHsutVX1TftpdAKrtxGbw4jVx4jVxx2rz7n3erfLbxlwuRTSCyvYm1XC3lOl7MsqIfV0GbWN6Wh9LG4MCrEz0F7L7DEJxIXYsMrJZKQeSAZ8SbqaCAHWQHWJntx8W0VBYwXgCBQcUysEWdsh9TMAEgF2PQrudvCKAM8I8Aw/97NXhNqJUKPB4K47b6jgOYqiUFVe11gBUJey/CpKC6rIOV5CbXVDs/2NVgO2xkqA1WHE6m3Ew8sNi5c7Fk83dHpti+PnlFazL6uEvVlqcN+XVdo0z7tRr6V/kJU7h4cxKESdKS7IrjbNr1+/nlFRPkhSTyUDviRJKrOPuoSNaL6+tpL/b+/eg+O67sOOf393XwAWuwuSAEk8KFIUaT5AUtbDkiy/KNlJJUWx3NhNbKe24rTVqBN16mY8U7du00xnOlOnk3TixI6suJ44Gcex0yiSkqFruxorbhTLo1gPkqAoiRQpkwD4AEns4rmv++sf5+5isVzwBSyxi/19Zu7c19ndc3F28Tv33HvP4cIxDv7ob9jVH4fzx+DCMRh5GV57Zu6JAYBQzHUznNrgxg7o2hAsu3VJ9tGRjNKRjLqeAyuoKtmpAumxGTKlqVwZSPPmi6fLd8OXtCUi0BFmOgxniwWOz2Q5lc+T8ZSZCNzQm+DDN/dx80AXezak2NLTaR3amJZlAd8Yc2nRDlg3yFjPWbh77/x9xQKkT7gKQKkicOE4pE/Cqf0wdXZ+evEg0esqA6kBVxFI9kNiPZLopS2xnrYN61m3KXlRNtJTOV4+PMbhty7wsxMTnDszjU7PkJwRkr6wRj3WqQfMDSjkTRToPDtJ9Hie4VUTpIOWgXgqRrwrRkcqSnsi2rKPGZrWYgHfGHPtQmHXlL/6Rripxv78DKSHXaUgfcJVBNIn3fLwS+5xwmLuopdpvIeZWA/nvTWcLKR4Y7qTw1NxTmsX5zRFJLmWgcEb2H7DRvYMdLGrP0lnLEx2usDE+VkmL2SZPD/rls/PMnE+y8nXLzA1nr2olUDEXTrwPZ+poVfpSMWIp6Ju3hUsJ2N0JCPWJbFpahbwjTH1Eynd/Lel9n7fpzh1jhNvH+Vnbx/l3OjbTJ87SShzim7Os05OsMU7wB2k8SIVkToLHAV+1uGeNIh3Q7yHtngPbfFueuLdsKoHBtx24r3Q0Y0vYabSOabSWabTOabGs0xn3PqJt0aZHM9y+niGmck8VFUMEGhPRImnosRTMdoTEdoTUdo7o7Qn3XJHIuq2d0YJRaxyYBqLBXxjzHWjqvzs/LS7oe6Eu6Hu4Eipn/kuErFudg/cy549XaQGUqze0MWaVBviF2DyDEyegqlz7lJBeRpz88lT7tHDqbM1Ww0AvFiKRHwNifZV7ubD9lVumOK+Lo5wni27boP2VRQjKWb8JFO5ONOzMaYmYSqTY3o86+bpHOeGJ5mZyFMM7vavFm0LuQpBqWJQURloT7p5WzxCW2eEtniEcNSz5/pNXVnAN8bUxdwd82kODqd59aTrqW58Og9ALOwxWNHP/J6BLm5cE699PT0UgVS/my7/wZDNzFUEqufTYzAz7h5DvHDMzWfTbFEfjrpxC0JAZzC5DTFXMShVElZ1QSyBRhPkQ11M+6uY9ZNMFzuZyXcwk2tjJhtiZhZmZgpkzuQ5dSzN7GQB9aubDoKPCHvE4mFXCShPYWLz1iO0dYaJdQQVhY6ItSSYK2YB3xizaKrKqcwsB06mOTAcTCfTnJtyZ9ohT3jHugT3Da5nz0AXewZSbFufIFKPa+Ii0JZy05paNxbU4Pv8/bP7eO/tu1wFYGYcZsfnlmcuzF/PDEN2AslOEs1OEC1mL/8ZHaCpJNnIOqa9dcx4PWTpYlZTzPqdbip2kC20MTseY/xslNlcmNnZEL6/8Jl/OOIRbQ8T6wi7eXuYaMXy+vOziCeMH1eOHxgr74+1uzSRWMhaFlqEBXxjzFU7HQT3/cPu7H3/ybluaEOesHVtJ/duX8vugRS7+1Ps6E3SFmng7nU9j0Kk0/UrsGrT1b++kIXsJOQmILvwJLlJ2rIZ2rITkE1D/hTkptzNjflp0CmQGQhlXTNDG2gC8tpGVjuZ9RNB5SBBVhNu7sfJ5TvIjneSG+9kVjvJ+HGyfjs5v52OeBsAw8eU4Rf2X5R1EZ9opEgsUiQa9YnFfKJRiMUgEhU3xYRozCMSTNFYiEhbmGhbmEgsQqQjTLQtgheJIOEIeBHwwq5lxgtXLEdqDvFsrg8L+MaYSzozMcvB4TTPHMnxZ8df5MBwmjMTLrh7AlvWdvKBd/Swuz/J7oEudvYmaW+CvvOXVDjmpviapXm/YgEKM5CbRvJTRPMzRHPTJPLTrmJQWUkoZN1UzEJhDArD87adPnw/6iu/2PMtYrEk2ZxHLh8imw+Ty0fIFqLkijE3n46Tnewgo3Gyfgd5bSev7fg1Q0UhmGbLWzwKRGSGiMwQ9WbnliVY9mbdspcl7OUJe3kiXo6wFAiHgmWvSDiUJ+wViISKhEM5wp66gZm8kHu0U4K555XXb5mYgKOr3HrJRS0Xcol9tbZfKn3FuvqAustJ6lfMS9v9qu26wPbq9FRsXzwL+MaYsrHJbLlZvnTt/VTG/UMX4Ka107x3S3f5zH1nX5KOqP0bWXKhMIQSEEtcPu1lyFf3I8Bb2/4de/fuXTihqutEqbICUcyjxTx+vkBuOkd+Nkc+WyQ3kyc/WyA3WySf8922WZ98TsnnQuRzcXK5OPmckM/DdN4jnxdy+RD5gofvX/1ZftgrEA4VgoqAqxC45Rxhr4CfnyQ+7tKFvCIhr0BYgrlXICSFYLlI2MsH60XCkq+RpoBHZZCtuu9i3rOdGlQ6ggkJKiIRV0mo3F5OJ3Pzmtur0wMcvuq/2UV/w0W/gzGmKZ2bzJavtZeuu4+mg+AusLk7zl2bV7N7oIvd/SnOH32V+z70gWXOtakbEdfsHopArHNuM+7qQnswLYVi0aeQ8ynkiuSzxbnlXLCcrViu2j5vPVdkNlukkPeZmJ0iPBOhmPcp5H38Yu2bI6+UeEIo4hEOplDYK6/PzUNue1jwwh6h0Nw8FPbccljwQvPnobA3t23e6zxCker0Hl5IgK8s+u9uAd+YFnBhKjfvZroDw2mGx2fK+zd3x3nXptXsGUixqz/FYF+SRNUAMs+9bTd2maURCnmE2j1i7UsXgp577jn27n1fed33lWLBp5j3g0qAqxiU1ws+xZyrHJTSFSrSltPkq/f5FAuuojIzmXf7i4pfcO/jF93n+gXFX+CJjOViAd+YFWZsMsvB4TRDIxkOBkH+5IW54L5pTQe33NDFw3dvZHd/F4P9SRsdzqw4nid40RCRZbyfRH11FYCiX64EzKsUlOc+xbxL5xdK88qKhMJXF58fC/jGNKnSo3AHhzNBgE9zcDhTvuYOsHFNBzcPdPHP79rInv4Ug/0pUu0W3I25HsQTQsGlgUZQ14AvIvcBv4+7BPQ1Vf3vVfv3Ak8Dx4JNT6rqf61nnoxpRqrKifMzHBxxN9IdHMkwNDz3nLsI3NTTyV2bVwdN8u6GOgvuxpiSugV8EQkBXwZ+DjgJvCgiz6jqoaqk/09VH6xXPoxpNkVfOTY2FZyxu7P2oZE0mWBM97AnbF2X4N7ta9nVn2JXf5Lt65PEY9ZgZ4xZWD3/Q9wBHFHVtwBE5C+Ah4DqgG9MyyoUfY6cnSw3yx8cTnNoNBP0LQ/RsMeO9QkevLmPXX0uuL9jXaKxO7ExxjQk0eqxIpfqjUU+Btynqv8yWP8UcKeqPlaRZi/wV7gWgBHgc6o6VOO9HgEeAejp6bntO9/5Tl3y3AgmJyfp7Oy8fMIm1crHl/eV4Qmf4xmft4PpxIRPPnjcNxaCGxIeG5Nu2pQK0RsXwg0yVnsrl10z6/+Ju378+mBmRR5fyUotv5J77rnnp6p6+2Leo55n+LX+S1XXLl4CNqrqpIg8ADwFbL3oRapPAE8AbNu2TS/ZeUSTc4+W7F3ubNRNqxzfdK7Aa6MT85rl3zg9QSF4TCfRFmZX3yo+uCdZvuZ+Y3ecUIME91papexWmjOvu+50Ozv9FXl8JSu1/JZSPQP+SWBDxfoA7iy+TFUzFcv7ROQrItKtqmN1zJcxSyozm+dQ8Ajcs/tn+W8v/R1Hz05SegR3dTzKrv4Ue7f1uGvufSk2rG63AUuMMddVPQP+i8BWEbkRGAY+DnyyMoGIrAdOq6qKyB2AB5yrY56MuWaqyulMlkOjaYaGMxwaddPb56bLaVbFhNs2d/DA7t7yDXXrk20W3I0xy65uAV9VCyLyGPA93GN5X1fVIRF5NNj/OPAx4F+LSAGYAT6u9bqpwJirUCj6HBubckF9JMPQiAvu54PH4MB1YDPYl+Sf3TZQbpYf+umP2bv3XcuYc2OMqa2uz/Go6j5gX9W2xyuW/xD4w3rmwZjLKV1vLwX3Q6MZDo9myBbc3XTRkMe29Ql+bsc6dvYlGexLsr03Sac9BmeMaSL2H8u0lLMTWQ6NuufaS8H92NhUefCrVHuEwb4kn7prIzv7kuzsS3JTTyeRUGP0lGWMMdfKAr5ZkXxfOX7u4ib5s8E47gADq9rZ2ZvkoZv7y8G9L2XX240xK5MFfNP0ZvNF3jg94YJ6ENhfq+i8ptQz3fu39rjA3uumVId1O2uMaR0W8E1TuTCVu6hJ/ujZKYql59tjYXb0Jfnl2zeUg/vWdZ3EwtYznTGmtVnANw2pNFjModH0vCb50fTcSHC9qTZ29ia5b3B9ENxTDKxqx2vgzmuMMWa5WMA3yy5X8Hnj9Py75F8byTCRdYPFeAJb1nZy542rg7vkU+zoTbI6Hl3mnBtjTPOwgG+uq6m88sJb5+adtR85M0G+6Jrk2yMhdvQm+Mgt/eUm+W3rbbAYY4xZLAv4pi5UlZH0rDtjH8m43ulGMpy8MAPPvgBATyLGzt4ke7f1MBgE941rGrs/eWOMaVYW8M2i5Ys+b52dmncj3aHRDOPTeQBE4MbuOO/c0MVdPQUefM872dmXZG2ibZlzbowxrcMCvrkqk9kCh4OAXupP/vXTE+SCXuliYY/t6xPcv6u33CS/fX2CeNAr3XPPPcfebWuX8xCMMaYlWcA3NakqZyayc2fsI+5RuOOVA8V0RBjsS/Frd28qN8nf2B0nbL3SGWNMw7GAbyj6yrGxoEk+CO6vjWYYm5wbKOaG1W6gmI/eOlDulc5GgTPGmOZhAb/FzOaLHD41UT5jHxrJcPhUhtm8a5KPhIR3rEtw7/a1rke6vhTbexMk26xXOmOMaWYW8Few8elc+fG30tn7vF7p2sLs7E3yiTtuYLAvxWAwUEw0bE3yxhiz0ljAXwFKj8ANDafLz7YfGskwPD5TTrM+2cZg31yvdIN9rlc6a5I3xpjWYAG/yRSKPm8F19tLd8lXPwK3uTvObRtX8el3byzfKb+mM7bMOTfGGLOcLOA3sJlckddOZeZGgRtJc/jUBNkFHoEb7HOPwHVErViNMcbMZ5GhwfzDSIEnv/UyQyNpjo1NEVxuJ9UeYbAvyafu2shgv2uS32yPwBljjLlCFvAbzOHzRY5OXmBHb5IH9/S559v7kvR32fV2Y4wx184CfoN5eGeUD957z3JnwxhjzApj7cENxgaOMcYYUw8W8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQEW8I0xxpgWYAHfGGOMaQF1Dfgicp+IvC4iR0Tk8zX2i4h8Kdi/X0RurWd+jDHGmFZVt4AvIiHgy8D9wE7gEyKysyrZ/cDWYHoE+KN65ccYY4xpZfU8w78DOKKqb6lqDvgL4KGqNA8Bf6rOC0CXiPTWMU/GGGNMS6pnwO8HTlSsnwy2XW0aY4wxxixSuI7vXWucV72GNIjII7gmf4CsiBxcZN4aWTcwttyZqCM7vua1ko8N7Pia3Uo/vm2LfYN6BvyTwIaK9QFg5BrSoKpPAE8AiMg/qurtS5vVxmHH19xW8vGt5GMDO75m1wrHt9j3qGeT/ovAVhG5UUSiwMeBZ6rSPAN8Orhb/y4graqjdcyTMcYY05LqdoavqgUReQz4HhACvq6qQyLyaLD/cWAf8ABwBJgGPlOv/BhjjDGtrJ5N+qjqPlxQr9z2eMWyAr9xlW/7xBJkrZHZ8TW3lXx8K/nYwI6v2dnxXYa4mGuMMcaYlcy61jXGGGNaQMMG/JXcLa+IbBCRH4rIayIyJCL/tkaavSKSFpFXgum3liOv10pEjovIgSDvF91d2qzlJyLbKsrkFRHJiMhnq9I0VdmJyNdF5Ezl464islpEfiAibwbzVQu89pK/00awwPH9DxE5HHz3/lpEuhZ47SW/x41ggeP7bREZrvgOPrDAa5u1/L5dcWzHReSVBV7b0OW3UCyo2+9PVRtuwt3kdxTYDESBV4GdVWkeAL6Le5b/LuAny53vqzi+XuDWYDkBvFHj+PYCf7vceV3EMR4Hui+xv2nLr+IYQsApYGMzlx3wfuBW4GDFtt8BPh8sfx744gLHf8nfaSNMCxzfzwPhYPmLtY4v2HfJ73EjTAsc328Dn7vM65q2/Kr2/y7wW81YfgvFgnr9/hr1DH9Fd8urqqOq+lKwPAG8Ruv1MNi05Vfhg8BRVX17uTOyGKr6I+B81eaHgG8Ey98APlLjpVfyO112tY5PVb+vqoVg9QVcHyBNaYHyuxJNW34lIiLALwPfuq6ZWiKXiAV1+f01asBvmW55RWQTcAvwkxq73y0ir4rId0Vk8LpmbPEU+L6I/FRcT4nVVkL5fZyF/9E0c9kBrNOgT4xgvrZGmpVQhgC/jmttquVy3+NG9lhwyeLrCzQJr4Tyex9wWlXfXGB/05RfVSyoy++vUQP+knXL28hEpBP4K+Czqpqp2v0Srqn4ZuAPgKeud/4W6T2qeituRMTfEJH3V+1v6vIT15nUh4G/rLG72cvuSjV1GQKIyBeAAvDNBZJc7nvcqP4IuAl4JzCKa/au1vTlB3yCS5/dN0X5XSYWLPiyGtsuWX6NGvCXrFveRiUiEVwBf1NVn6zer6oZVZ0MlvcBERHpvs7ZvGaqOhLMzwB/jWt+qtTU5Yf7B/KSqp6u3tHsZRc4XbrEEszP1EjT1GUoIg8DDwK/qsFF0WpX8D1uSKp6WlWLquoDf0ztfDd7+YWBXwK+vVCaZii/BWJBXX5/jRrwV3S3vMF1p/8FvKaqv7dAmvVBOkTkDlxZnbt+ubx2IhIXkURpGXeDVPWAR01bfoEFzyyauewqPAM8HCw/DDxdI82V/E4bkojcB/x74MOqOr1Amiv5Hjekqvth/im189205Rf4EHBYVU/W2tkM5XeJWFCf399y36V4ibsXH8DdsXgU+EKw7VHg0WBZgC8H+w8Aty93nq/i2N6La3rZD7wSTA9UHd9jwBDuzssXgLuXO99XcXybg3y/GhzDSiu/DlwAT1Vsa9qyw1VcRoE87qzhXwBrgGeBN4P56iBtH7Cv4rUX/U4bbVrg+I7grn+Wfn+PVx/fQt/jRpsWOL4/C35X+3FBoHcllV+w/U9Kv7mKtE1VfpeIBXX5/VlPe8YYY0wLaNQmfWOMMcYsIQv4xhhjTAuwgG+MMca0AAv4xhhjTAuwgG+MMca0AAv4xhhjTAuwgG+MMca0AAv4xphlJSIfEZE/FpGnReTnlzs/xqxUFvCNaTIi8j9F5LMV698Tka9VrP+uiPxmsPxVEXlPsPwFERkKRlB7RUTurPHe7SLydyISEpFNInLVXZFWfuaVUNWnVPVfAb8G/IqIREXkR0Ff6caYJWIB35jm8w/A3QAi4gHdQOUQvHcDzwfLdwIviMi7cQPF3Kqqe3D9kFcOrVny68CTqlpcRP7uxHUpfLX+E/BldWN7Pwv8yiLyYIypYgHfmObzPEHAxwX6g8CEiKwSkRiwA3hZRHYAbwTBuxcYU9UsgKqOaTCSWJVfpcZAHSKyWUReFpF3Bev/WUQOi8gPRORbIvK5YHv5M4MWgsMi8jUROSgi3xSRD4nI8yLyZjCwEMEASl8EvquqLwUf+VSQF2PMErGAb0yTCQJ1QURuwAX+HwM/Ad4N3A7sD86S7wf+T/Cy7wMbROQNEfmKiHyg+n2DEbc2q+rxqu3bcMN3fkZVXxSR24GPArfghie9vSJ55WcCbAF+H9gDbAc+iRsw5HPAfwzS/Btci8PHROTRYNtB4F1X83cxxlyaXSMzpjmVzvLvBn4P6A+W07gmf4B/AnwGQFUnReQ24H3APcC3ReTzqvonFe/ZDYxXfU4P7oz/o6o6FGx7L/C0qs4AiMjfVKQvf2bgmKoeCNINAc+qqorIAWBTkLcvAV+q/NCghSAnIglVnbjiv4oxZkF2hm9Mcypdx9+NOxt+AXeGfzfwvIh0AF2VzfaqWlTV51T1v+CG8P1o1XvOAG1V29K4a/2VN+FJrQzV+kwgW7HsV6z7XP6EIwbMXiaNMeYKWcA3pjk9j7sJ73wQyM8DXbig/2PcWfwPS4lFZJuIbK14/TuBtyvfUFUvACERqQz6OeAjwKdF5JPBtr8HflFE2kSkE/iFYPu8z1wMEVkDnFXV/FK8nzHGmvSNaVYHcE3wf161rVNVx0TkfuB/V+zrBP5ARLqAAnAEeKTG+34f12T/f0sbVHVKRB4EfiAiU6r6tIg8A7yKqzT8I64loPozF+MeYN8SvZcxBhBVXe48GGOWmIi8BNx5tWfIInIL8Juq+qnLpOsM7gvoAH6Eqzx87Vo+c4H3fxL4D6r6+mLfyxjj2Bm+MSuQqt56ja97WUR+KCKhyzyL/4SI7MRd8/9G8DjdNX1mteBpgacs2BuztOwM3xhjjGkBdtOeMcYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wIs4BtjjDEtwAK+McYY0wL+PxpetF/yiM7NAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -400,9 +400,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python (adrpy)", "language": "python", - "name": "python3" + "name": "adrpy" }, "language_info": { "codemirror_mode": { @@ -414,7 +414,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.12.3" } }, "nbformat": 4, From 0ac02b11d059c39f943b244470aa9dedb6cfa488 Mon Sep 17 00:00:00 2001 From: Delpoo Date: Tue, 8 Apr 2025 19:30:46 -0300 Subject: [PATCH 2/9] Second commit --- ADRpy/analisis/Modulos/config_and_loading.py | 41 +++-- .../analisis/Modulos/correlation_analysis.py | 70 +++++--- .../Modulos/correlation_imputation.py | 6 +- ADRpy/analisis/Modulos/data_processing.py | 168 +++++++++++------- ADRpy/analisis/Modulos/imputation_loop.py | 151 +++++++++++----- .../analisis/Modulos/similarity_imputation.py | 3 +- 6 files changed, 281 insertions(+), 158 deletions(-) diff --git a/ADRpy/analisis/Modulos/config_and_loading.py b/ADRpy/analisis/Modulos/config_and_loading.py index de1dced2..0cf27d97 100644 --- a/ADRpy/analisis/Modulos/config_and_loading.py +++ b/ADRpy/analisis/Modulos/config_and_loading.py @@ -4,32 +4,35 @@ from openpyxl import load_workbook - def configurar_entorno(max_rows=20, max_columns=10): """ Configura el entorno para mostrar más datos en la consola. :param max_rows: Número máximo de filas para mostrar en consola. :param max_columns: Número máximo de columnas para mostrar en consola. """ - pd.set_option('display.max_rows', max_rows) - pd.set_option('display.max_columns', max_columns) + pd.set_option("display.max_rows", max_rows) + pd.set_option("display.max_columns", max_columns) -def cargar_datos(ruta_archivo='Datos_aeronaves.xlsx'): +def cargar_datos(ruta_archivo=None): """ Carga los datos desde un archivo Excel y realiza validaciones. Devuelve el DataFrame cargado y la ruta utilizada. """ # Solicitar al usuario la ruta del archivo si no se proporciona if ruta_archivo is None: - ruta_archivo = input("Ingrese la ruta del archivo Excel original (o presione Enter para usar 'C:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsx'): ").strip() + ruta_archivo = input( + r"Ingrese la ruta del archivo Excel original (o presione Enter para usar 'C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\data\Datos_aeronaves.xlsx'): " + ).strip() if not ruta_archivo: - ruta_archivo = "C:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsxC:/Users/delpi/OneDrive/Tesis/ADRpy-VTOL/ADRpy/analisis/data/Datos_aeronaves.xlsx" # Asignar valor predeterminado - + ruta_archivo = r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\data\Datos_aeronaves.xlsx" # Asignar valor predeterminado + # Validar el formato del archivo - if not ruta_archivo.endswith(('.xlsx', '.xlsm')): - raise ValueError("El archivo debe estar en formato .xlsx o .xlsm compatible con openpyxl.") - + if not ruta_archivo.endswith((".xlsx", ".xlsm")): + raise ValueError( + "El archivo debe estar en formato .xlsx o .xlsm compatible con openpyxl." + ) + # Mostrar mensaje de carga print(f"=== Cargando datos desde el archivo: {ruta_archivo} ===") @@ -39,24 +42,28 @@ def cargar_datos(ruta_archivo='Datos_aeronaves.xlsx'): # Validaciones adicionales if df.empty: - raise ValueError("El archivo cargado está vacío. Verifica el archivo de origen.") - + raise ValueError("El archivo cargado está vacío.") + # Manejar índices nulos if df.index.isnull().any(): - print("Advertencia: El índice contiene valores nulos. Se reemplazarán por 'indice_desconocido'.") + print( + "Advertencia: Índices nulos encontrados. Reemplazando por 'indice_desconocido'." + ) df.index = df.index.fillna("indice_desconocido") # Manejar columnas nulas if df.columns.isnull().any(): - print("Advertencia: Algunas columnas contienen valores nulos. Se reemplazarán por 'columna_desconocida'.") + print( + "Advertencia: Columnas nulas encontradas. Reemplazando por 'columna_desconocida'." + ) df.columns = df.columns.fillna("columna_desconocida") # Mostrar información básica del DataFrame cargado print("\n=== Resumen inicial del DataFrame cargado ===") print(df.info()) - #print("\n=== Vista previa de índices y columnas ===") - #print(f"Primeros índices: {df.index.tolist()[:10]}") - #print(f"Primeras columnas: {df.columns.tolist()[:10]}") + # print("\n=== Vista previa de índices y columnas ===") + # print(f"Primeros índices: {df.index.tolist()[:10]}") + # print(f"Primeras columnas: {df.columns.tolist()[:10]}") return df, ruta_archivo except FileNotFoundError: diff --git a/ADRpy/analisis/Modulos/correlation_analysis.py b/ADRpy/analisis/Modulos/correlation_analysis.py index 093a34da..89ebd64b 100644 --- a/ADRpy/analisis/Modulos/correlation_analysis.py +++ b/ADRpy/analisis/Modulos/correlation_analysis.py @@ -1,16 +1,18 @@ import pandas as pd import seaborn as sns import matplotlib.pyplot as plt -from sklearn.metrics import r2_score -from sklearn.linear_model import LinearRegression import numpy as np from .html_utils import convertir_a_html from .user_interaction import solicitar_umbral - - -def calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados, valor_por_defecto=0.7): +def calcular_correlaciones_y_generar_heatmap_con_resumen( + df_procesado, + parametros_seleccionados, + umbral=None, + valor_por_defecto=0.7, + devolver_tabla=False, +): """ Calcula las correlaciones completas y filtradas entre variables seleccionadas, genera tablas en HTML con un resumen agregado, y crea un heatmap. @@ -20,6 +22,7 @@ def calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametro :param devolver_tabla: Si True, retorna la tabla completa de correlaciones. :return: Tabla completa de correlaciones (opcional). """ + def agregar_resumen_a_tabla(tabla, titulo): """ Agrega un resumen al final de una tabla HTML indicando: @@ -30,35 +33,45 @@ def agregar_resumen_a_tabla(tabla, titulo): total_valores = tabla.size valores_numericos = tabla.count().sum() valores_nan = total_valores - valores_numericos - - resumen = pd.DataFrame({ - "Resumen": ["Total de valores", "Valores numéricos", "Valores NaN"], - "Cantidad": [total_valores, valores_numericos, valores_nan] - }) - + + resumen = pd.DataFrame( + { + "Resumen": ["Total de valores", "Valores numéricos", "Valores NaN"], + "Cantidad": [total_valores, valores_numericos, valores_nan], + } + ) + convertir_a_html(tabla, titulo=titulo, mostrar=True) convertir_a_html(resumen, titulo="Resumen de la Tabla", mostrar=True) try: - # === Paso 1: Solicitar umbral al usuario === - umbral = solicitar_umbral(valor_por_defecto) + # === Paso 1: Obtener umbral desde el argumento o pedirlo al usuario === + if umbral is None: + umbral = solicitar_umbral(valor_por_defecto) print(f"\nUmbral seleccionado para correlaciones significativas: {umbral}") # === Validación de parámetros seleccionados === - parametros_no_encontrados = [v for v in parametros_seleccionados if v not in df_procesado.index] + parametros_no_encontrados = [ + v for v in parametros_seleccionados if v not in df_procesado.index + ] if parametros_no_encontrados: - raise ValueError(f"Los siguientes parámetros no se encontraron en los datos procesados: {', '.join(parametros_no_encontrados)}") + raise ValueError( + f"Los siguientes parámetros no se encontraron en los datos procesados: {', '.join(parametros_no_encontrados)}" + ) # === Tabla completa (sin filtrar) === print("\n=== Cálculo de tabla completa ===") tabla_completa = df_procesado.transpose().corr() - agregar_resumen_a_tabla(tabla_completa.round(3), "Tabla de Correlaciones con todos los parametros(tabla_completa)") + agregar_resumen_a_tabla( + tabla_completa.round(3), + "Tabla de Correlaciones con todos los parametros(tabla_completa)", + ) # Filtrar correlaciones por el umbral tabla_completa_significativa = tabla_completa[ (tabla_completa.abs() >= umbral) & (tabla_completa != 1) ] - #agregar_resumen_a_tabla(tabla_completa_significativa.round(3), f"Tabla de Correlaciones Significativas (Umbral >= {umbral})") + # agregar_resumen_a_tabla(tabla_completa_significativa.round(3), f"Tabla de Correlaciones Significativas (Umbral >= {umbral})") # === Filtrar datos seleccionados === print("\n=== Filtrando datos seleccionados ===") @@ -68,7 +81,10 @@ def agregar_resumen_a_tabla(tabla, titulo): # Tabla filtrada print("\n=== Cálculo de correlaciones filtradas ===") tabla_filtrada = datos_filtrados.corr() - agregar_resumen_a_tabla(tabla_filtrada.round(3), "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)") + agregar_resumen_a_tabla( + tabla_filtrada.round(3), + "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)", + ) # Filtrar correlaciones por el umbral para la tabla filtrada tabla_filtrada_significativa = tabla_filtrada[ @@ -76,12 +92,14 @@ def agregar_resumen_a_tabla(tabla, titulo): ] agregar_resumen_a_tabla( tabla_filtrada_significativa.round(3), - f"Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= {umbral})" + f"Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= {umbral})", ) # Preparar datos para el heatmap print("\n=== Preparando datos para el heatmap ===") - heatmap_data = datos_filtrados.dropna(thresh=2) # Excluir variables con menos de 2 valores válidos + heatmap_data = datos_filtrados.dropna( + thresh=2 + ) # Excluir variables con menos de 2 valores válidos heatmap_correlaciones = heatmap_data.corr() # Generar heatmap @@ -95,14 +113,18 @@ def agregar_resumen_a_tabla(tabla, titulo): center=0, linewidths=0.5, vmin=-1, - vmax=1 + vmax=1, + ) + plt.title( + f"Heatmap de Correlaciones de Variables Seleccionadas (Umbral >= {umbral})" ) - plt.title(f"Heatmap de Correlaciones de Variables Seleccionadas (Umbral >= {umbral})") plt.show() except ValueError as e: print(f"Error: {e}. Por favor verifica los parámetros seleccionados.") except KeyError as e: - print(f"Error: {e}. Asegúrate de que las variables seleccionadas existen en los datos.") + print( + f"Error: {e}. Asegúrate de que las variables seleccionadas existen en los datos." + ) - return tabla_completa \ No newline at end of file + return tabla_completa diff --git a/ADRpy/analisis/Modulos/correlation_imputation.py b/ADRpy/analisis/Modulos/correlation_imputation.py index 05ce634f..252e460a 100644 --- a/ADRpy/analisis/Modulos/correlation_imputation.py +++ b/ADRpy/analisis/Modulos/correlation_imputation.py @@ -2,6 +2,7 @@ import numpy as np from sklearn.linear_model import LinearRegression from .html_utils import convertir_a_html +from .correlation_analysis import calcular_correlaciones_y_generar_heatmap_con_resumen @@ -32,7 +33,10 @@ def Imputacion_por_correlacion( """ # Cargar datos simulados df = df_correlacion.copy() - + + if tabla_completa is None or tabla_completa.empty: + raise ValueError("La tabla de correlaciones completa no fue proporcionada o está vacía.") + # Mostrar df en formato HTML print("\n=== DataFrame inicial ===") convertir_a_html(df, titulo="DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())", mostrar=True) diff --git a/ADRpy/analisis/Modulos/data_processing.py b/ADRpy/analisis/Modulos/data_processing.py index eed26b63..560cd863 100644 --- a/ADRpy/analisis/Modulos/data_processing.py +++ b/ADRpy/analisis/Modulos/data_processing.py @@ -2,29 +2,26 @@ import numpy as np import tkinter as tk from tkinter import simpledialog +from Modulos.html_utils import convertir_a_html - -def procesar_datos_y_manejar_duplicados(df): +def procesar_datos_y_manejar_duplicados(df, respuesta_global=None): """ Limpia un DataFrame preservando la estructura original y maneja duplicados en índices y columnas. Incluye interacción para gestionar duplicados según las elecciones del usuario. :param df: DataFrame a procesar. :return: DataFrame limpio y procesado. """ - import tkinter as tk - from tkinter import simpledialog - try: print("=== Inicio del procesamiento de datos ===") - + # Paso 1: Limpieza inicial de encabezados - df.columns = df.columns.str.strip().str.replace('\xa0', ' ', regex=True) - df.index = df.index.astype(str).str.strip().str.replace('\xa0', ' ', regex=True) + df.columns = df.columns.str.strip().str.replace("\xa0", " ", regex=True) + df.index = df.index.astype(str).str.strip().str.replace("\xa0", " ", regex=True) # Paso 2: Eliminar filas y columnas completamente vacías - df.dropna(how='all', inplace=True) # Filas vacías - df.dropna(how='all', axis=1, inplace=True) # Columnas vacías + df.dropna(how="all", inplace=True) # Filas vacías + df.dropna(how="all", axis=1, inplace=True) # Columnas vacías # Paso 3: Manejo de duplicados print("\n=== Comprobación de duplicados ===") @@ -38,41 +35,40 @@ def procesar_datos_y_manejar_duplicados(df): print(f"Columnas duplicadas: {duplicados_columna}") # Crear ventana emergente para interacción - root = tk.Tk() - root.withdraw() - - # Preguntar manejo global de duplicados - respuesta_global = simpledialog.askstring( - "Manejo global de duplicados", - "Se encontraron duplicados. ¿Deseas aplicar una acción global a todos?\n" - "[1] Eliminar todos los duplicados\n" - "[2] Conservar el primero en todos\n" - "[3] Conservar el último en todos\n" - "[4] Procesar duplicados uno por uno" - ) + if respuesta_global is None: + root = tk.Tk() + root.withdraw() + respuesta_global = simpledialog.askstring( + "Manejo global de duplicados", + "Se encontraron duplicados. ¿Deseas aplicar una acción global a todos?\n" + "[1] Eliminar todos los duplicados\n" + "[2] Conservar el primero en todos\n" + "[3] Conservar el último en todos\n" + "[4] Procesar duplicados uno por uno", + ) # Aplicar acción global si corresponde - if respuesta_global in ['1', '2', '3']: - if respuesta_global == '1': + if respuesta_global in ["1", "2", "3"]: + if respuesta_global == "1": print("Eliminando todos los duplicados...") if duplicados_fila: df = df.loc[~df.index.duplicated(keep=False)] if duplicados_columna: df = df.loc[:, ~df.columns.duplicated(keep=False)] - elif respuesta_global == '2': + elif respuesta_global == "2": print("Conservando el primero en todos los duplicados...") if duplicados_fila: - df = df.loc[~df.index.duplicated(keep='first')] + df = df.loc[~df.index.duplicated(keep="first")] if duplicados_columna: - df = df.loc[:, ~df.columns.duplicated(keep='first')] + df = df.loc[:, ~df.columns.duplicated(keep="first")] - elif respuesta_global == '3': + elif respuesta_global == "3": print("Conservando el último en todos los duplicados...") if duplicados_fila: - df = df.loc[~df.index.duplicated(keep='last')] + df = df.loc[~df.index.duplicated(keep="last")] if duplicados_columna: - df = df.loc[:, ~df.columns.duplicated(keep='last')] + df = df.loc[:, ~df.columns.duplicated(keep="last")] else: # Procesar duplicados uno por uno si respuesta_global es '4' for duplicado in duplicados_fila + duplicados_columna: @@ -82,39 +78,41 @@ def procesar_datos_y_manejar_duplicados(df): f"{tipo} duplicado '{duplicado}' encontrado. Opciones:\n" "[1] Eliminar\n" "[2] Conservar el primero\n" - "[3] Conservar el último" + "[3] Conservar el último", ) # Realizar la acción según la elección del usuario - if respuesta == '1': + if respuesta == "1": if tipo == "Índice": df = df[df.index != duplicado] else: df = df.loc[:, df.columns != duplicado] - elif respuesta == '2': + elif respuesta == "2": if tipo == "Índice": - df = df.loc[~df.index.duplicated(keep='first')] + df = df.loc[~df.index.duplicated(keep="first")] else: - df = df.loc[:, ~df.columns.duplicated(keep='first')] - elif respuesta == '3': + df = df.loc[:, ~df.columns.duplicated(keep="first")] + elif respuesta == "3": if tipo == "Índice": - df = df.loc[~df.index.duplicated(keep='last')] + df = df.loc[~df.index.duplicated(keep="last")] else: - df = df.loc[:, ~df.columns.duplicated(keep='last')] + df = df.loc[:, ~df.columns.duplicated(keep="last")] # Paso 4: Convertir valores internos a numéricos print("\n=== Convirtiendo valores a numéricos donde sea posible ===") for col in df.columns: try: - df.loc[:, col] = pd.to_numeric(df[col], errors='coerce') + df.loc[:, col] = pd.to_numeric(df[col], errors="coerce") except Exception as e: - print(f"Advertencia: No se pudo convertir la columna '{col}' a numérico. Error: {e}") + print( + f"Advertencia: No se pudo convertir la columna '{col}' a numérico. Error: {e}" + ) print("=== Procesamiento completado ===") return df except Exception as e: raise ValueError(f"Error durante el procesamiento y manejo de duplicados: {e}") - + def mostrar_celdas_faltantes_con_seleccion(df): """ @@ -124,31 +122,43 @@ def mostrar_celdas_faltantes_con_seleccion(df): :param df: DataFrame procesado. :return: DataFrame con los detalles de las celdas faltantes (si las hay). """ - def seleccionar_columna(df): + + def seleccionar_columna(df, columna_numero=None): """ Permite al usuario seleccionar una columna específica para validar. - Si no selecciona ninguna, retorna la primera columna como predeterminada. + Si no se selecciona ninguna, retorna la primera columna como predeterminada. + :param df: DataFrame a analizar + :param columna_numero: (opcional) número de columna a seleccionar automáticamente (modo debug) """ - # Crear un diccionario para asociar números con las columnas columnas_dict = {i + 1: col for i, col in enumerate(df.columns)} - opciones_texto = "\n".join([f"{num}: {col}" for num, col in columnas_dict.items()]) + + if columna_numero is not None: + if columna_numero not in columnas_dict: + raise ValueError("Número de columna predefinido fuera de rango.") + return columnas_dict[columna_numero] + + opciones_texto = "\n".join( + [f"{num}: {col}" for num, col in columnas_dict.items()] + ) try: - # Solicitar al usuario seleccionar una columna - columna_numero = simpledialog.askstring( + seleccion_usuario = simpledialog.askstring( "Selección de columna", - f"Selecciona el número correspondiente a la columna que deseas validar:\n\n{opciones_texto}" + f"Selecciona el número correspondiente a la columna que deseas validar:\n\n{opciones_texto}", ) - if not columna_numero: # Si no se selecciona nada, usar la primera columna - print("No se seleccionó ninguna columna. Usando la primera columna como predeterminada.") + + if not seleccion_usuario: + print( + "No se seleccionó ninguna columna. Usando la primera columna como predeterminada." + ) return df.columns[0] - columna_numero = int(columna_numero) + seleccion_usuario = int(seleccion_usuario) - if columna_numero not in columnas_dict: + if seleccion_usuario not in columnas_dict: raise ValueError("Número ingresado fuera del rango válido.") - return columnas_dict[columna_numero] + return columnas_dict[seleccion_usuario] except ValueError as e: print(f"Error: {e}. Finalizando la ejecución.") @@ -162,7 +172,7 @@ def indice_a_columna_excel(indice): """ etiqueta = "" while indice >= 0: - etiqueta = chr(indice % 26 + ord('A')) + etiqueta + etiqueta = chr(indice % 26 + ord("A")) + etiqueta indice = indice // 26 - 1 return etiqueta @@ -171,26 +181,34 @@ def indice_a_columna_excel(indice): columna_prueba = seleccionar_columna(df) # Identificar celdas faltantes en la columna seleccionada - print(f"\n=== Analizando celdas faltantes en la columna: '{columna_prueba}' ===") + print( + f"\n=== Analizando celdas faltantes en la columna: '{columna_prueba}' ===" + ) missing_indices = df[df[columna_prueba].isna()].index.tolist() if not missing_indices: - print(f"No se encontraron valores faltantes en la columna '{columna_prueba}'.") + print( + f"No se encontraron valores faltantes en la columna '{columna_prueba}'." + ) return pd.DataFrame() # Devuelve un DataFrame vacío si no hay faltantes # Crear un DataFrame para almacenar los resultados resultados = [] for idx in missing_indices: - fila_excel = df.index.get_loc(idx) + 2 # +2 para ajustarse al formato Excel (encabezado en fila 1) + fila_excel = ( + df.index.get_loc(idx) + 2 + ) # +2 para ajustarse al formato Excel (encabezado en fila 1) columna_excel = indice_a_columna_excel(df.columns.get_loc(columna_prueba)) celda_excel = f"{columna_excel}{fila_excel}" - resultados.append({ - "Índice": idx, - "Celda": celda_excel, - "Columna": columna_prueba, - "Valor Actual": "NaN" - }) + resultados.append( + { + "Índice": idx, + "Celda": celda_excel, + "Columna": columna_prueba, + "Valor Actual": "NaN", + } + ) # Convertir resultados a DataFrame df_resultados = pd.DataFrame(resultados) @@ -202,11 +220,13 @@ def indice_a_columna_excel(indice): raise -def generar_resumen_faltantes(df, titulo="Resumen de Valores Faltantes por Columna", ancho="50%", alto="300px"): +def generar_resumen_faltantes( + df, titulo="Resumen de Valores Faltantes por Columna", ancho="50%", alto="300px" +): """ Genera un resumen de los valores faltantes por columna en un DataFrame. También genera una tabla HTML con la sumatoria total de los valores faltantes de todas las columnas. - + :param df: DataFrame a analizar. :param titulo: Título opcional para mostrar en la tabla HTML. :param ancho: Ancho del contenedor HTML. @@ -222,13 +242,23 @@ def generar_resumen_faltantes(df, titulo="Resumen de Valores Faltantes por Colum # Calcular la sumatoria total de los valores faltantes total_faltantes = faltantes_por_columna.sum() - resumen_total = pd.DataFrame({"Resumen": ["Total de Valores Faltantes"], "Cantidad": [total_faltantes]}) + resumen_total = pd.DataFrame( + {"Resumen": ["Total de Valores Faltantes"], "Cantidad": [total_faltantes]} + ) # Mostrar el resumen por columna como una tabla HTML - convertir_a_html(resumen_faltantes, titulo=titulo, ancho=ancho, alto=alto, mostrar=True) + convertir_a_html( + resumen_faltantes, titulo=titulo, ancho=ancho, alto=alto, mostrar=True + ) # Mostrar la sumatoria total como una tabla HTML - convertir_a_html(resumen_total, titulo="Sumatoria Total de Valores Faltantes", ancho=ancho, alto="100px", mostrar=True) + convertir_a_html( + resumen_total, + titulo="Sumatoria Total de Valores Faltantes", + ancho=ancho, + alto="100px", + mostrar=True, + ) # Retornar ambos DataFrames para su posible uso posterior - return resumen_faltantes, resumen_total \ No newline at end of file + return resumen_faltantes, resumen_total diff --git a/ADRpy/analisis/Modulos/imputation_loop.py b/ADRpy/analisis/Modulos/imputation_loop.py index 77349906..be466cee 100644 --- a/ADRpy/analisis/Modulos/imputation_loop.py +++ b/ADRpy/analisis/Modulos/imputation_loop.py @@ -5,56 +5,105 @@ from .data_processing import generar_resumen_faltantes - - -def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza=0.05, max_iteraciones=7): +def bucle_imputacion_similitud_correlacion( + df_procesado, + parametros_preseleccionados, + tabla_completa, + reduccion_confianza=0.05, + max_iteraciones=7, +): """ Realiza un bucle alternando imputaciones por similitud y correlación, consolidando los resultados. Ahora se evita actualizar los DataFrames inmediatamente, y se eligen las imputaciones finales al final de cada iteración. - + Retorna: df_procesado_base (pd.DataFrame): DataFrame con imputaciones realizadas. df_resumen (pd.DataFrame): Detalle consolidado de imputaciones realizadas. """ df_procesado_base = df_procesado.copy() # Copia base del DataFrame original - df_filtrado_base = df_filtrado.copy() # Copia base del DataFrame original + df_filtrado_base = df_filtrado.copy() # Copia base del DataFrame original - convertir_a_html(df_procesado_base, titulo="df_procesado_base", ancho="100%", alto="400px", mostrar=True) - convertir_a_html(df_filtrado_base, titulo="df_filtrado_base", ancho="100%", alto="400px", mostrar=True) - resumen_imputaciones = [] # Lista para consolidar detalles de todas las imputaciones finales + convertir_a_html( + df_procesado_base, + titulo="df_procesado_base", + ancho="100%", + alto="400px", + mostrar=True, + ) + convertir_a_html( + df_filtrado_base, + titulo="df_filtrado_base", + ancho="100%", + alto="400px", + mostrar=True, + ) + resumen_imputaciones = ( + [] + ) # Lista para consolidar detalles de todas las imputaciones finales # Configuración inicial para imputaciones por similitud print("\n=== Configuración Inicial ===") try: - rango_min = float(input("Ingrese el rango mínimo de MTOW (1-200, predeterminado 85): ") or 85) / 100 - rango_max = float(input("Ingrese el rango máximo de MTOW (1-200, predeterminado 115): ") or 115) / 100 - nivel_confianza_min = float(input("Ingrese el nivel mínimo de confianza (0-1, predeterminado 0.5): ") or 0.5) + rango_min = ( + float( + input("Ingrese el rango mínimo de MTOW (1-200, predeterminado 85): ") + or 85 + ) + / 100 + ) + rango_max = ( + float( + input("Ingrese el rango máximo de MTOW (1-200, predeterminado 115): ") + or 115 + ) + / 100 + ) + nivel_confianza_min = float( + input("Ingrese el nivel mínimo de confianza (0-1, predeterminado 0.5): ") + or 0.5 + ) if not (0.01 <= rango_min <= 2.00 and 0.01 <= rango_max <= 2.00): raise ValueError("Los rangos deben estar entre 1% y 200%.") if rango_min >= rango_max: - raise ValueError("El rango mínimo no puede ser mayor o igual al rango máximo.") + raise ValueError( + "El rango mínimo no puede ser mayor o igual al rango máximo." + ) if not (0 <= nivel_confianza_min <= 1): raise ValueError("El nivel de confianza debe estar entre 0 y 1.") except ValueError as e: - print(f"Error: {e}. Usando valores predeterminados (85% mínimo, 115% máximo, 0.5 confianza mínima).") + print( + f"Error: {e}. Usando valores predeterminados (85% mínimo, 115% máximo, 0.5 confianza mínima)." + ) rango_min, rango_max, nivel_confianza_min = 0.85, 1.15, 0.5 - print(f"\nValores configurados: Rango MTOW [{rango_min*100:.0f}% - {rango_max*100:.0f}%], Confianza Mínima: {nivel_confianza_min:.2f}") + print( + f"\nValores configurados: Rango MTOW [{rango_min*100:.0f}% - {rango_max*100:.0f}%], Confianza Mínima: {nivel_confianza_min:.2f}" + ) # Configuración inicial para imputaciones por correlación try: - umbral_correlacion = float(input("Ingrese el umbral mínimo de correlación (0-1, predeterminado 0.7): ") or 0.7) - nivel_confianza_min_correlacion = float(input("Ingrese el nivel mínimo de confianza para correlación (0-1, predeterminado 0.5): ") or 0.5) + umbral_correlacion = float( + input("Ingrese el umbral mínimo de correlación (0-1, predeterminado 0.7): ") + or 0.7 + ) + nivel_confianza_min_correlacion = float( + input( + "Ingrese el nivel mínimo de confianza para correlación (0-1, predeterminado 0.5): " + ) + or 0.5 + ) if not (0 <= umbral_correlacion <= 1): raise ValueError("El umbral de correlación debe estar entre 0 y 1.") if not (0 <= nivel_confianza_min_correlacion <= 1): raise ValueError("El nivel de confianza debe estar entre 0 y 1.") except ValueError as e: - print(f"Error: {e}. Usando valores predeterminados (umbral = 0.7, confianza mínima = 0.5).") + print( + f"Error: {e}. Usando valores predeterminados (umbral = 0.7, confianza mínima = 0.5)." + ) umbral_correlacion, nivel_confianza_min_correlacion = 0.7, 0.5 # Definir valores predeterminados para correlación @@ -65,13 +114,14 @@ def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccion max_lineas_consola = 40000000 for iteracion in range(1, max_iteraciones + 1): - print("\n" + "="*80) + print("\n" + "=" * 80) print(f"\033[1m=== INICIO DE ITERACIÓN {iteracion} ===\033[0m") - print("="*80) + print("=" * 80) print(f"\n=== Iteración {iteracion}: Resumen antes de imputaciones ===") resumen_antes, total_faltantes_antes = generar_resumen_faltantes( - df_procesado_base, titulo=f"Resumen de Valores Faltantes Antes de Iteración {iteracion}" + df_procesado_base, + titulo=f"Resumen de Valores Faltantes Antes de Iteración {iteracion}", ) # Crear copias independientes para cada método @@ -79,15 +129,15 @@ def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccion df_correlacion = df_procesado_base.copy() # Imputación por similitud (no actualiza todavía) - print("\n" + "-"*80) + print("\n" + "-" * 80) print(f"\033[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN {iteracion} ***\033[0m") - print("-"*80) + print("-" * 80) df_resultado_final, reporte_similitud = imputacion_similitud_con_rango( df_filtrado=df_similitud, df_procesado=df_procesado_base, rango_min=rango_min, rango_max=rango_max, - nivel_confianza_min=nivel_confianza_min + nivel_confianza_min=nivel_confianza_min, ) if reporte_similitud and len(reporte_similitud) > 0: @@ -97,14 +147,20 @@ def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccion for registro in reporte_similitud: registro["Iteración"] = iteracion registro["Método"] = "Similitud" - registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** (iteracion - 1) + registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** ( + iteracion - 1 + ) else: - print("\033[1mNo se realizaron imputaciones por similitud en esta iteración.\033[0m") + print( + "\033[1mNo se realizaron imputaciones por similitud en esta iteración.\033[0m" + ) # Imputación por correlación (no actualiza todavía) - print("\n" + "-"*80) - print(f"\033[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN {iteracion} ***\033[0m") - print("-"*80) + print("\n" + "-" * 80) + print( + f"\033[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN {iteracion} ***\033[0m" + ) + print("-" * 80) df_correlacion_final, reporte_correlacion = Imputacion_por_correlacion( df_correlacion, parametros_preseleccionados, @@ -113,7 +169,7 @@ def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccion max_lineas_consola=max_lineas_consola, umbral_correlacion=umbral_correlacion, nivel_confianza_min_correlacion=nivel_confianza_min_correlacion, - reduccion_confianza=reduccion_confianza + reduccion_confianza=reduccion_confianza, ) if reporte_correlacion and len(reporte_correlacion) > 0: @@ -121,9 +177,13 @@ def bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccion for registro in reporte_correlacion: registro["Iteración"] = iteracion registro["Método"] = "Correlación" - registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** (iteracion - 1) + registro["Nivel de Confianza"] *= (1 - reduccion_confianza) ** ( + iteracion - 1 + ) else: - print("\033[1mNo se realizaron imputaciones por correlación en esta iteración.\033[0m") + print( + "\033[1mNo se realizaron imputaciones por correlación en esta iteración.\033[0m" + ) # Combinar las imputaciones de similitud y correlación imputaciones_candidatas = {} @@ -162,41 +222,40 @@ def registrar_imputacion(regs): df_procesado_base.loc[parametro, aeronave] = valor df_filtrado_base.loc[parametro, aeronave] = valor resumen_imputaciones.append(imp) - print(f"Imputación final aplicada: {parametro} - {aeronave} = {valor} ({metodo})") + print( + f"Imputación final aplicada: {parametro} - {aeronave} = {valor} ({metodo})" + ) print(f"\n=== Iteración {iteracion}: Resumen después de imputaciones ===") resumen_despues, total_faltantes_despues = generar_resumen_faltantes( - df_filtrado_base, titulo=f"Resumen de Valores Faltantes Después de Iteración {iteracion}" + df_filtrado_base, + titulo=f"Resumen de Valores Faltantes Después de Iteración {iteracion}", ) # Verificar condición de salida - no_similitud = (reporte_similitud is None or len(reporte_similitud) == 0) - no_correlacion = (reporte_correlacion is None or len(reporte_correlacion) == 0) + no_similitud = reporte_similitud is None or len(reporte_similitud) == 0 + no_correlacion = reporte_correlacion is None or len(reporte_correlacion) == 0 if no_similitud and no_correlacion: print("\033[1mNo se realizaron nuevas imputaciones. Finalizando...\033[0m") # Retornar resultados actuales antes de salir return df_procesado_base, pd.DataFrame(resumen_imputaciones) - print("\n" + "="*80) + print("\n" + "=" * 80) print(f"\033[1m=== FIN DE ITERACIÓN {iteracion} ===\033[0m") - print("="*80) + print("=" * 80) # Si se terminan las iteraciones sin break: df_resumen = pd.DataFrame(resumen_imputaciones) - print("\n" + "="*80) + print("\n" + "=" * 80) print("\033[1m=== RESUMEN FINAL ===\033[0m") - print("="*80) + print("=" * 80) convertir_a_html( - df_procesado_base, - titulo="DataFrame Procesado Final (df_procesado_base)" - ) - convertir_a_html( - df_resumen, - titulo="Resumen Final de Imputaciones (df_resumen)" + df_procesado_base, titulo="DataFrame Procesado Final (df_procesado_base)" ) + convertir_a_html(df_resumen, titulo="Resumen Final de Imputaciones (df_resumen)") print(f"\033[1mTotal de iteraciones realizadas: {iteracion}\033[0m") print(f"\033[1mTotal de valores imputados: {len(resumen_imputaciones)}\033[0m") - return df_procesado_base, df_resumen \ No newline at end of file + return df_procesado_base, df_resumen diff --git a/ADRpy/analisis/Modulos/similarity_imputation.py b/ADRpy/analisis/Modulos/similarity_imputation.py index 28706356..3095f961 100644 --- a/ADRpy/analisis/Modulos/similarity_imputation.py +++ b/ADRpy/analisis/Modulos/similarity_imputation.py @@ -8,7 +8,7 @@ -def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min, rango_max, nivel_confianza_min): +def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min=0.85, rango_max=1.15, nivel_confianza_min=0.7): """ Ajusta el rango de similitud e imputa valores faltantes en los parámetros de df_filtrado. @@ -17,6 +17,7 @@ def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min, rango_m :param df_procesado: DataFrame procesado con todos los datos. :return: Nuevo DataFrame con los valores imputados. """ + print(f"Rango mínimo: {rango_min}, Rango máximo: {rango_max}, Confianza mínima: {nivel_confianza_min}") # Crear una copia para mantener intacto el DataFrame original df_resultado_por_similitud = df_filtrado.copy() From 6fd500e518e59806ac3a8194bfb56808c6af1063 Mon Sep 17 00:00:00 2001 From: Delpoo Date: Thu, 10 Apr 2025 19:53:02 -0300 Subject: [PATCH 3/9] automated for debugging --- .vscode/launch.json | 23 + ADRpy/analisis/Modulos/config_and_loading.py | 24 +- .../analisis/Modulos/correlation_analysis.py | 39 +- .../Modulos/correlation_imputation.py | 14 +- ADRpy/analisis/Modulos/data_processing.py | 127 +- ADRpy/analisis/Modulos/excel_export.py | 2 +- ADRpy/analisis/Modulos/imputation_loop.py | 96 +- ADRpy/analisis/Modulos/imputation_utils.py | 34 + .../analisis/Modulos/similarity_imputation.py | 45 +- ADRpy/analisis/Modulos/user_interaction.py | 132 +- ADRpy/analisis/Results/Datos_imputados.xlsx | Bin 0 -> 50391 bytes ADRpy/analisis/aaa.ipynb | 33004 +++++++++++++++- ADRpy/analisis/archivo_imputaciones.xlsx | Bin 0 -> 50353 bytes ADRpy/analisis/main.py | 102 +- 14 files changed, 33323 insertions(+), 319 deletions(-) create mode 100644 ADRpy/analisis/Modulos/imputation_utils.py create mode 100644 ADRpy/analisis/Results/Datos_imputados.xlsx create mode 100644 ADRpy/analisis/archivo_imputaciones.xlsx diff --git a/.vscode/launch.json b/.vscode/launch.json index 85b64e34..040e905e 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -32,6 +32,29 @@ "request": "launch", "program": "${workspaceFolder}/custom_script.py", "args": ["--custom-arg", "value"], "console": "integratedTerminal" + }, + { + "name": "🚀 Debug ADRpy automatizado", + "type": "debugpy", + "request": "launch", + "program": "${workspaceFolder}/ADRpy/analisis/main.py", + "console": "integratedTerminal", + "justMyCode": false, + "args": [ + "--ruta_archivo", "${workspaceFolder}/ADRpy/analisis/Data/Datos_aeronaves.xlsx", + "--archivo_destino", "${workspaceFolder}/ADRpy/analisis/Results/archivo_salida.xlsx", + "--debug_mode", + "--umbral_heat_map", "0.7", + "--nivel_confianza_min_similitud", "0.5", + "--rango_min", "0.85", + "--rango_max", "1.15", + "--parametros", "4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 25", + "--columna", "Stalker XE", + "--umbral_correlacion", "0.5", + "--nivel_confianza_min_correlacion", "0.5" + ] + } + ] } \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/config_and_loading.py b/ADRpy/analisis/Modulos/config_and_loading.py index 0cf27d97..9efb2c11 100644 --- a/ADRpy/analisis/Modulos/config_and_loading.py +++ b/ADRpy/analisis/Modulos/config_and_loading.py @@ -1,7 +1,7 @@ import pandas as pd import tkinter as tk from tkinter import simpledialog, messagebox -from openpyxl import load_workbook +import sys def configurar_entorno(max_rows=20, max_columns=10): @@ -12,20 +12,26 @@ def configurar_entorno(max_rows=20, max_columns=10): """ pd.set_option("display.max_rows", max_rows) pd.set_option("display.max_columns", max_columns) - + def cargar_datos(ruta_archivo=None): """ Carga los datos desde un archivo Excel y realiza validaciones. Devuelve el DataFrame cargado y la ruta utilizada. """ - # Solicitar al usuario la ruta del archivo si no se proporciona - if ruta_archivo is None: - ruta_archivo = input( - r"Ingrese la ruta del archivo Excel original (o presione Enter para usar 'C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\data\Datos_aeronaves.xlsx'): " - ).strip() - if not ruta_archivo: - ruta_archivo = r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\data\Datos_aeronaves.xlsx" # Asignar valor predeterminado +# Detectar si se está ejecutando en modo debug + modo_debug = "--debug_mode" in sys.argv + + if not ruta_archivo: + if modo_debug: + ruta_archivo = r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\Data\Datos_aeronaves.xlsx" + print(f"DEBUG MODE ACTIVADO: usando ruta predeterminada: {ruta_archivo}") + else: + ruta_archivo = input( + r"Ingrese la ruta del archivo Excel original (o presione Enter para usar la predeterminada): " + ).strip() or r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\Data\Datos_aeronaves.xlsx" + + print(f"DEBUG: ruta_archivo antes de validar: '{ruta_archivo}'") # Validar el formato del archivo if not ruta_archivo.endswith((".xlsx", ".xlsm")): diff --git a/ADRpy/analisis/Modulos/correlation_analysis.py b/ADRpy/analisis/Modulos/correlation_analysis.py index 89ebd64b..b7690c6e 100644 --- a/ADRpy/analisis/Modulos/correlation_analysis.py +++ b/ADRpy/analisis/Modulos/correlation_analysis.py @@ -6,13 +6,8 @@ from .user_interaction import solicitar_umbral -def calcular_correlaciones_y_generar_heatmap_con_resumen( - df_procesado, - parametros_seleccionados, - umbral=None, - valor_por_defecto=0.7, - devolver_tabla=False, -): +def calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados, umbral_heat_map=None, devolver_tabla=False): + valor_por_defecto = 0.7 """ Calcula las correlaciones completas y filtradas entre variables seleccionadas, genera tablas en HTML con un resumen agregado, y crea un heatmap. @@ -45,10 +40,11 @@ def agregar_resumen_a_tabla(tabla, titulo): convertir_a_html(resumen, titulo="Resumen de la Tabla", mostrar=True) try: - # === Paso 1: Obtener umbral desde el argumento o pedirlo al usuario === - if umbral is None: - umbral = solicitar_umbral(valor_por_defecto) - print(f"\nUmbral seleccionado para correlaciones significativas: {umbral}") + # === Paso 1: Obtener umbral_heat_map desde el argumento o pedirlo al usuario === + if umbral_heat_map is None: + umbral_heat_map = solicitar_umbral(valor_por_defecto) + + print(f"\nUmbral seleccionado para correlaciones significativas: {umbral_heat_map}") # === Validación de parámetros seleccionados === parametros_no_encontrados = [ @@ -67,11 +63,11 @@ def agregar_resumen_a_tabla(tabla, titulo): "Tabla de Correlaciones con todos los parametros(tabla_completa)", ) - # Filtrar correlaciones por el umbral + # Filtrar correlaciones por el umbral_heat_map tabla_completa_significativa = tabla_completa[ - (tabla_completa.abs() >= umbral) & (tabla_completa != 1) + (tabla_completa.abs() >= umbral_heat_map) & (tabla_completa != 1) ] - # agregar_resumen_a_tabla(tabla_completa_significativa.round(3), f"Tabla de Correlaciones Significativas (Umbral >= {umbral})") + # agregar_resumen_a_tabla(tabla_completa_significativa.round(3), f"Tabla de Correlaciones Significativas (Umbral >= {umbral_heat_map})") # === Filtrar datos seleccionados === print("\n=== Filtrando datos seleccionados ===") @@ -86,13 +82,13 @@ def agregar_resumen_a_tabla(tabla, titulo): "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)", ) - # Filtrar correlaciones por el umbral para la tabla filtrada + # Filtrar correlaciones por el umbral_heat_map para la tabla filtrada tabla_filtrada_significativa = tabla_filtrada[ - (tabla_filtrada.abs() >= umbral) & (tabla_filtrada != 1) + (tabla_filtrada.abs() >= umbral_heat_map) & (tabla_filtrada != 1) ] agregar_resumen_a_tabla( tabla_filtrada_significativa.round(3), - f"Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= {umbral})", + f"Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= {umbral_heat_map})", ) # Preparar datos para el heatmap @@ -116,7 +112,7 @@ def agregar_resumen_a_tabla(tabla, titulo): vmax=1, ) plt.title( - f"Heatmap de Correlaciones de Variables Seleccionadas (Umbral >= {umbral})" + f"Heatmap de Correlaciones de Variables Seleccionadas (Umbral >= {umbral_heat_map})" ) plt.show() @@ -127,4 +123,9 @@ def agregar_resumen_a_tabla(tabla, titulo): f"Error: {e}. Asegúrate de que las variables seleccionadas existen en los datos." ) - return tabla_completa + if devolver_tabla: + return tabla_completa + else: + return None + + diff --git a/ADRpy/analisis/Modulos/correlation_imputation.py b/ADRpy/analisis/Modulos/correlation_imputation.py index 252e460a..9dbe7dba 100644 --- a/ADRpy/analisis/Modulos/correlation_imputation.py +++ b/ADRpy/analisis/Modulos/correlation_imputation.py @@ -11,11 +11,11 @@ def Imputacion_por_correlacion( df_correlacion, parametros_preseleccionados, tabla_completa, + parametros_seleccionados, min_datos_validos=5, max_lineas_consola=250, umbral_correlacion=0.7, nivel_confianza_min_correlacion=0.5, - reduccion_confianza=0.05 ): # Lógica de la función """ @@ -55,7 +55,13 @@ def Imputacion_por_correlacion( # === PASO 1: CÁLCULO DE CORRELACIONES === print("\n=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===") - tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen(df, parametros_seleccionados, valor_por_defecto=0.7) + tabla_completa = tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen( + df, + parametros_seleccionados, + umbral_heat_map=umbral_correlacion, + devolver_tabla=True +) + correlaciones = tabla_completa.copy() indices_validos = df.index @@ -75,7 +81,7 @@ def Imputacion_por_correlacion( # Mostrar correlaciones aceptables en HTML convertir_a_html( datos_procesados=correlaciones_aceptables, - titulo="Tabla de correlaciones con filtro de umbral", + titulo="Tabla de correlaciones con filtro de umbral de correlación", mostrar=True ) #print("Parámetros disponibles en el índice del DataFrame:") @@ -199,7 +205,7 @@ def evaluar_confianza(puntaje): else: print("La columna 'Nivel de Confianza' no está presente en df_reporte.") # Maneja el caso sin filtro, por ejemplo: - return df_procesado, [] + return df, [] # Resumen de imputaciones diff --git a/ADRpy/analisis/Modulos/data_processing.py b/ADRpy/analisis/Modulos/data_processing.py index 560cd863..5d5fcd99 100644 --- a/ADRpy/analisis/Modulos/data_processing.py +++ b/ADRpy/analisis/Modulos/data_processing.py @@ -114,110 +114,47 @@ def procesar_datos_y_manejar_duplicados(df, respuesta_global=None): raise ValueError(f"Error durante el procesamiento y manejo de duplicados: {e}") -def mostrar_celdas_faltantes_con_seleccion(df): +def mostrar_celdas_faltantes_con_seleccion(df, columna_seleccionada=None, debug_mode=False): """ - Permite al usuario seleccionar una columna para analizar y muestra las celdas faltantes. - Si el usuario no selecciona ninguna columna, utiliza una columna predeterminada. - Maneja columnas con más de 26 posiciones generando etiquetas en formato Excel. - :param df: DataFrame procesado. - :return: DataFrame con los detalles de las celdas faltantes (si las hay). - """ - - def seleccionar_columna(df, columna_numero=None): - """ - Permite al usuario seleccionar una columna específica para validar. - Si no se selecciona ninguna, retorna la primera columna como predeterminada. - :param df: DataFrame a analizar - :param columna_numero: (opcional) número de columna a seleccionar automáticamente (modo debug) - """ - columnas_dict = {i + 1: col for i, col in enumerate(df.columns)} - - if columna_numero is not None: - if columna_numero not in columnas_dict: - raise ValueError("Número de columna predefinido fuera de rango.") - return columnas_dict[columna_numero] - - opciones_texto = "\n".join( - [f"{num}: {col}" for num, col in columnas_dict.items()] - ) - - try: - seleccion_usuario = simpledialog.askstring( - "Selección de columna", - f"Selecciona el número correspondiente a la columna que deseas validar:\n\n{opciones_texto}", - ) - - if not seleccion_usuario: - print( - "No se seleccionó ninguna columna. Usando la primera columna como predeterminada." - ) - return df.columns[0] - - seleccion_usuario = int(seleccion_usuario) - - if seleccion_usuario not in columnas_dict: - raise ValueError("Número ingresado fuera del rango válido.") + Muestra las celdas faltantes de una columna específica elegida por el usuario o automáticamente. - return columnas_dict[seleccion_usuario] - - except ValueError as e: - print(f"Error: {e}. Finalizando la ejecución.") - exit() - - def indice_a_columna_excel(indice): - """ - Convierte un índice numérico de columna en una etiqueta al estilo Excel (A, B, ..., Z, AA, AB, ...). - :param indice: Índice numérico de la columna (0 para A, 1 para B, ..., 25 para Z, 26 para AA, etc.). - :return: Etiqueta de columna en formato Excel. - """ - etiqueta = "" - while indice >= 0: - etiqueta = chr(indice % 26 + ord("A")) + etiqueta - indice = indice // 26 - 1 - return etiqueta - - try: - # Selección de columna - columna_prueba = seleccionar_columna(df) + :param df: DataFrame a analizar. + :param columna_seleccionada: Nombre de la columna a analizar. Si None, se pedirá al usuario o se usará el modo automático. + :param debug_mode: Si True, selecciona automáticamente la primera columna con datos faltantes si no se pasa ninguna. + :return: DataFrame con las celdas faltantes de la columna seleccionada. + """ + columnas_con_nulos = df.columns[df.isnull().any()].tolist() - # Identificar celdas faltantes en la columna seleccionada - print( - f"\n=== Analizando celdas faltantes en la columna: '{columna_prueba}' ===" - ) - missing_indices = df[df[columna_prueba].isna()].index.tolist() + if not columnas_con_nulos: + print("✅ No hay columnas con valores faltantes.") + return pd.DataFrame() - if not missing_indices: - print( - f"No se encontraron valores faltantes en la columna '{columna_prueba}'." - ) - return pd.DataFrame() # Devuelve un DataFrame vacío si no hay faltantes + if debug_mode and not columna_seleccionada: + columna_seleccionada = columnas_con_nulos[0] + print(f"[DEBUG] Seleccionando automáticamente la primera columna con nulos: '{columna_seleccionada}'") - # Crear un DataFrame para almacenar los resultados - resultados = [] + elif not columna_seleccionada: + print("\n=== Columnas con datos faltantes ===") + for i, col in enumerate(columnas_con_nulos, start=1): + print(f"{i}. {col}") - for idx in missing_indices: - fila_excel = ( - df.index.get_loc(idx) + 2 - ) # +2 para ajustarse al formato Excel (encabezado en fila 1) - columna_excel = indice_a_columna_excel(df.columns.get_loc(columna_prueba)) - celda_excel = f"{columna_excel}{fila_excel}" - resultados.append( - { - "Índice": idx, - "Celda": celda_excel, - "Columna": columna_prueba, - "Valor Actual": "NaN", - } - ) + seleccion = input("Selecciona el número de la columna a analizar (presiona Enter para seleccionar la primera): ").strip() - # Convertir resultados a DataFrame - df_resultados = pd.DataFrame(resultados) + if not seleccion.isdigit(): + print("🔁 Entrada inválida o vacía. Seleccionando la primera columna por defecto.") + columna_seleccionada = columnas_con_nulos[0] + else: + seleccion = int(seleccion) - 1 + if 0 <= seleccion < len(columnas_con_nulos): + columna_seleccionada = columnas_con_nulos[seleccion] + else: + print("🔁 Número fuera de rango. Seleccionando la primera columna por defecto.") + columna_seleccionada = columnas_con_nulos[0] - return df_resultados + print(f"\n=== Analizando celdas faltantes en la columna: '{columna_seleccionada}' ===") + celdas_faltantes = df[df[columna_seleccionada].isnull()][[columna_seleccionada]] - except Exception as e: - print(f"Error al analizar celdas faltantes: {e}") - raise + return celdas_faltantes def generar_resumen_faltantes( diff --git a/ADRpy/analisis/Modulos/excel_export.py b/ADRpy/analisis/Modulos/excel_export.py index 05216195..510ba196 100644 --- a/ADRpy/analisis/Modulos/excel_export.py +++ b/ADRpy/analisis/Modulos/excel_export.py @@ -6,7 +6,7 @@ -def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputaciones, archivo_destino="archivo_imputaciones.xlsx"): +def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputaciones, archivo_destino= r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\Results\Datos_imputados.xlsx"): """ Exporta el DataFrame procesado a un archivo Excel manteniendo el formato original. Agrega colores y comentarios a las celdas imputadas por similitud y correlación. diff --git a/ADRpy/analisis/Modulos/imputation_loop.py b/ADRpy/analisis/Modulos/imputation_loop.py index be466cee..a0331d94 100644 --- a/ADRpy/analisis/Modulos/imputation_loop.py +++ b/ADRpy/analisis/Modulos/imputation_loop.py @@ -4,14 +4,22 @@ from .html_utils import convertir_a_html from .data_processing import generar_resumen_faltantes - def bucle_imputacion_similitud_correlacion( df_procesado, + df_filtrado, parametros_preseleccionados, tabla_completa, + parametros_seleccionados, + umbral_correlacion=0.7, + rango_min=0.85, + rango_max=1.15, + nivel_confianza_min_similitud=0.7, + max_iteraciones=10, reduccion_confianza=0.05, - max_iteraciones=7, + nivel_confianza_min_correlacion=None, + debug_mode=False ): + """ Realiza un bucle alternando imputaciones por similitud y correlación, consolidando los resultados. Ahora se evita actualizar los DataFrames inmediatamente, y se eligen las imputaciones finales @@ -45,72 +53,38 @@ def bucle_imputacion_similitud_correlacion( # Configuración inicial para imputaciones por similitud print("\n=== Configuración Inicial ===") - try: - rango_min = ( - float( - input("Ingrese el rango mínimo de MTOW (1-200, predeterminado 85): ") - or 85 - ) - / 100 - ) - rango_max = ( - float( - input("Ingrese el rango máximo de MTOW (1-200, predeterminado 115): ") - or 115 - ) - / 100 - ) - nivel_confianza_min = float( - input("Ingrese el nivel mínimo de confianza (0-1, predeterminado 0.5): ") - or 0.5 - ) + + from Modulos.user_interaction import ( + solicitar_rango_min, + solicitar_rango_max, + solicitar_confianza_min_similitud, + ) + + rango_min = rango_min if debug_mode else solicitar_rango_min() + rango_max = rango_max if debug_mode else solicitar_rango_max() + nivel_confianza_min_similitud = nivel_confianza_min_similitud if debug_mode else solicitar_confianza_min_similitud() - if not (0.01 <= rango_min <= 2.00 and 0.01 <= rango_max <= 2.00): - raise ValueError("Los rangos deben estar entre 1% y 200%.") - if rango_min >= rango_max: - raise ValueError( - "El rango mínimo no puede ser mayor o igual al rango máximo." - ) - if not (0 <= nivel_confianza_min <= 1): - raise ValueError("El nivel de confianza debe estar entre 0 y 1.") - except ValueError as e: - print( - f"Error: {e}. Usando valores predeterminados (85% mínimo, 115% máximo, 0.5 confianza mínima)." - ) - rango_min, rango_max, nivel_confianza_min = 0.85, 1.15, 0.5 print( - f"\nValores configurados: Rango MTOW [{rango_min*100:.0f}% - {rango_max*100:.0f}%], Confianza Mínima: {nivel_confianza_min:.2f}" + f"\nValores configurados: Rango MTOW [{rango_min*100:.0f}% - {rango_max*100:.0f}%], Confianza Mínima: {nivel_confianza_min_similitud:.2f}" ) # Configuración inicial para imputaciones por correlación - try: - umbral_correlacion = float( - input("Ingrese el umbral mínimo de correlación (0-1, predeterminado 0.7): ") - or 0.7 - ) - nivel_confianza_min_correlacion = float( - input( - "Ingrese el nivel mínimo de confianza para correlación (0-1, predeterminado 0.5): " - ) - or 0.5 - ) + from Modulos.user_interaction import ( + solicitar_umbral_correlacion, + solicitar_confianza_min_correlacion, + ) - if not (0 <= umbral_correlacion <= 1): - raise ValueError("El umbral de correlación debe estar entre 0 y 1.") - if not (0 <= nivel_confianza_min_correlacion <= 1): - raise ValueError("El nivel de confianza debe estar entre 0 y 1.") - except ValueError as e: - print( - f"Error: {e}. Usando valores predeterminados (umbral = 0.7, confianza mínima = 0.5)." - ) - umbral_correlacion, nivel_confianza_min_correlacion = 0.7, 0.5 + umbral_correlacion = ( + umbral_correlacion if debug_mode and umbral_correlacion is not None else solicitar_umbral_correlacion() + ) + nivel_confianza_min_correlacion = ( + nivel_confianza_min_correlacion if debug_mode and nivel_confianza_min_correlacion is not None + else solicitar_confianza_min_correlacion() + ) # Definir valores predeterminados para correlación min_datos_validos = 5 # Cantidad mínima de datos requeridos por parámetro - umbral_correlacion = 0.7 - nivel_confianza_min_correlacion = 0.5 - reduccion_confianza = 0.05 max_lineas_consola = 40000000 for iteracion in range(1, max_iteraciones + 1): @@ -137,7 +111,7 @@ def bucle_imputacion_similitud_correlacion( df_procesado=df_procesado_base, rango_min=rango_min, rango_max=rango_max, - nivel_confianza_min=nivel_confianza_min, + nivel_confianza_min_similitud=nivel_confianza_min_similitud, ) if reporte_similitud and len(reporte_similitud) > 0: @@ -165,11 +139,11 @@ def bucle_imputacion_similitud_correlacion( df_correlacion, parametros_preseleccionados, tabla_completa, + parametros_seleccionados, min_datos_validos=min_datos_validos, max_lineas_consola=max_lineas_consola, umbral_correlacion=umbral_correlacion, - nivel_confianza_min_correlacion=nivel_confianza_min_correlacion, - reduccion_confianza=reduccion_confianza, + nivel_confianza_min_correlacion=nivel_confianza_min_correlacion, ) if reporte_correlacion and len(reporte_correlacion) > 0: diff --git a/ADRpy/analisis/Modulos/imputation_utils.py b/ADRpy/analisis/Modulos/imputation_utils.py new file mode 100644 index 00000000..a141d073 --- /dev/null +++ b/ADRpy/analisis/Modulos/imputation_utils.py @@ -0,0 +1,34 @@ +import pandas as pd +from .html_utils import convertir_a_html + +def imprimir_detalles_imputacion(numero_valor_imputado, parametro, aeronave, mtow_actual, rango_min, rango_max, candidatas_validas, detalles_ajustes, valores_ajustados, valor_imputado, confianza, calculos_confianza): + """ + Imprime un resumen claro y organizado del proceso de imputación en consola. + """ + negrita = "\033[1m" + reset = "\033[0m" + + print(f"\n{negrita}======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #{numero_valor_imputado} ========================{reset}") + print(f"{negrita}Parámetro:{reset} {parametro}") + print(f"{negrita}Aeronave a imputar:{reset} {aeronave}") + print(f"{negrita}MTOW actual:{reset} {mtow_actual} kg") + print(f"{negrita}Rango Similitud:{reset} {rango_min*100:.0f}% - {rango_max*100:.0f}%") + print(f"{negrita}Candidatas dentro del rango:{reset} {', '.join(candidatas_validas.index)}") + + print("\nAeronaves Válidas para el Cálculo:") + print("-----------------------------------------------------------------------------------------------") + print("Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado") + print("------------|----------------|------------------------------|-------------------|----------------|---------------") + for detalle in detalles_ajustes: + print(f"{detalle['Aeronave']:12}| {detalle['MTOW Candidata']:14}| {detalle['Relación MTOW']:<30.3f}| {detalle['Ajuste Individual']:<19.4f}| {detalle['Valor Original']:<16.2f}| {detalle['Valor Ajustado']:<13.2f}") + print("-----------------------------------------------------------------------------------------------") + + print("\nCálculo del Valor Final:") + print(f"{negrita}- Se tomó la mediana de los valores ajustados {valores_ajustados} = {valor_imputado:.2f}{reset}") + print(f"{negrita}- Nivel de Confianza calculado:{reset} {confianza:.2f}") + print(f"{negrita}- Valor Imputado Final:{reset} {valor_imputado:.2f}") + + print("\nDetalle del Cálculo de Confianza:") + for key, value in calculos_confianza.items(): + print(f"{negrita}- {key}:{reset} {value:.2f}") + print(f"{negrita}============================================================================================{reset}\n") diff --git a/ADRpy/analisis/Modulos/similarity_imputation.py b/ADRpy/analisis/Modulos/similarity_imputation.py index 3095f961..960468e1 100644 --- a/ADRpy/analisis/Modulos/similarity_imputation.py +++ b/ADRpy/analisis/Modulos/similarity_imputation.py @@ -2,13 +2,13 @@ import numpy as np from sklearn.metrics import r2_score from .html_utils import convertir_a_html -from .imputation_loop import imprimir_detalles_imputacion # si la función está ahí, si no corregimos +from .imputation_utils import imprimir_detalles_imputacion -def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min=0.85, rango_max=1.15, nivel_confianza_min=0.7): +def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min=0.85, rango_max=1.15, nivel_confianza_min_similitud=0.7): """ Ajusta el rango de similitud e imputa valores faltantes en los parámetros de df_filtrado. @@ -17,7 +17,7 @@ def imputacion_similitud_con_rango(df_filtrado, df_procesado, rango_min=0.85, ra :param df_procesado: DataFrame procesado con todos los datos. :return: Nuevo DataFrame con los valores imputados. """ - print(f"Rango mínimo: {rango_min}, Rango máximo: {rango_max}, Confianza mínima: {nivel_confianza_min}") + print(f"Rango mínimo: {rango_min}, Rango máximo: {rango_max}, Confianza mínima: {nivel_confianza_min_similitud}") # Crear una copia para mantener intacto el DataFrame original df_resultado_por_similitud = df_filtrado.copy() @@ -209,7 +209,7 @@ def imputar_por_similitud(datos, parametro, aeronave, rango_min, rango_max, nume ) # Verificar si se realizó una imputación válida - if valor_imputado is not None and confianza is not None and confianza >= nivel_confianza_min: + if valor_imputado is not None and confianza is not None and confianza >= nivel_confianza_min_similitud: # Incrementar el contador SOLO aquí numero_valor_imputado += 1 # Asignar el valor imputado al DataFrame @@ -222,8 +222,8 @@ def imputar_por_similitud(datos, parametro, aeronave, rango_min, rango_max, nume "Nivel de Confianza": confianza }) - elif confianza is not None and confianza < nivel_confianza_min: - print(f"Imputación descartada por baja confianza: {confianza:.3f} < {nivel_confianza_min}.") + elif confianza is not None and confianza < nivel_confianza_min_similitud: + print(f"Imputación descartada por baja confianza: {confianza:.3f} < {nivel_confianza_min_similitud}.") else: print(f"No se pudo imputar: {parametro} para {aeronave}.") @@ -234,7 +234,7 @@ def imputar_por_similitud(datos, parametro, aeronave, rango_min, rango_max, nume if reporte_imputaciones: df_reporte = pd.DataFrame(reporte_imputaciones) #print("Contenido de reporte_imputaciones:", reporte_imputaciones) - df_reporte = df_reporte[df_reporte["Nivel de Confianza"] >= nivel_confianza_min] + df_reporte = df_reporte[df_reporte["Nivel de Confianza"] >= nivel_confianza_min_similitud] convertir_a_html(df_reporte, titulo="Reporte Final de Imputaciones", mostrar=True) else: print("No se realizaron imputaciones con el nivel de confianza aceptable.") @@ -263,34 +263,3 @@ def imputar_por_similitud(datos, parametro, aeronave, rango_min, rango_max, nume # Retornar DataFrame imputado y lista de diccionarios return df_resultado_final, reporte_imputaciones -def imprimir_detalles_imputacion(numero_valor_imputado, parametro, aeronave, mtow_actual, rango_min, rango_max, candidatas_validas, detalles_ajustes, valores_ajustados, valor_imputado, confianza, calculos_confianza): - """ - Imprime un resumen claro y organizado del proceso de imputación en consola. - """ - negrita = "\033[1m" - reset = "\033[0m" - - print(f"\n{negrita}======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #{numero_valor_imputado} ========================{reset}") - print(f"{negrita}Parámetro:{reset} {parametro}") - print(f"{negrita}Aeronave a imputar:{reset} {aeronave}") - print(f"{negrita}MTOW actual:{reset} {mtow_actual} kg") - print(f"{negrita}Rango Similitud:{reset} {rango_min*100:.0f}% - {rango_max*100:.0f}%") - print(f"{negrita}Candidatas dentro del rango:{reset} {', '.join(candidatas_validas.index)}") - - print("\nAeronaves Válidas para el Cálculo:") - print("-----------------------------------------------------------------------------------------------") - print("Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado") - print("------------|----------------|------------------------------|-------------------|----------------|---------------") - for detalle in detalles_ajustes: - print(f"{detalle['Aeronave']:12}| {detalle['MTOW Candidata']:14}| {detalle['Relación MTOW']:<30.3f}| {detalle['Ajuste Individual']:<19.4f}| {detalle['Valor Original']:<16.2f}| {detalle['Valor Ajustado']:<13.2f}") - print("-----------------------------------------------------------------------------------------------") - - print("\nCálculo del Valor Final:") - print(f"{negrita}- Se tomó la mediana de los valores ajustados {valores_ajustados} = {valor_imputado:.2f}{reset}") - print(f"{negrita}- Nivel de Confianza calculado:{reset} {confianza:.2f}") - print(f"{negrita}- Valor Imputado Final:{reset} {valor_imputado:.2f}") - - print("\nDetalle del Cálculo de Confianza:") - for key, value in calculos_confianza.items(): - print(f"{negrita}- {key}:{reset} {value:.2f}") - print(f"{negrita}============================================================================================{reset}\n") diff --git a/ADRpy/analisis/Modulos/user_interaction.py b/ADRpy/analisis/Modulos/user_interaction.py index 3af78070..35fb8b0a 100644 --- a/ADRpy/analisis/Modulos/user_interaction.py +++ b/ADRpy/analisis/Modulos/user_interaction.py @@ -1,54 +1,44 @@ -from tkinter import simpledialog - - - -def seleccionar_parametros_por_indices(elementos, predeterminados): - """ - Permite seleccionar parámetros desde los índices usando números en lugar de nombres. - :param elementos: Lista de nombres de parámetros disponibles (índices). - :param predeterminados: Lista de parámetros preseleccionados por defecto. - :return: Lista de parámetros seleccionados válidos. - """ +def seleccionar_parametros_por_indices(parametros_disponibles, parametros_preseleccionados, entrada_indices=None): print("\n=== Selección de Parámetros ===") print("Parámetros disponibles:") - for i, elem in enumerate(elementos, 1): - print(f"{i}. {elem}") + for i, parametro in enumerate(parametros_disponibles, 1): + print(f"{i}. {parametro}") - # Mostrar preseleccionados - preseleccion_indices = [elementos.index(param) + 1 for param in predeterminados if param in elementos] - print("\nPreseleccionados: ", ", ".join([f"{i}" for i in preseleccion_indices])) + print(f"\nPreseleccionados: {', '.join(str(parametros_disponibles.index(p) + 1) for p in parametros_preseleccionados)}") - # Entrada del usuario - seleccion = input("\nIngresa los números separados por coma (o presiona Enter para usar los preseleccionados): ") + if entrada_indices is None: + indices = input("Ingresa los números separados por coma (o presiona Enter para usar los preseleccionados): ") + else: + indices = entrada_indices - # Manejar casos según la entrada del usuario - if seleccion.strip(): # Si el usuario ingresó algo + if not indices.strip(): + seleccionados = parametros_preseleccionados + else: try: - indices_seleccionados = [int(num.strip()) - 1 for num in seleccion.split(",")] - except ValueError: - print("⚠️ Entrada inválida. Usando parámetros preseleccionados.") - indices_seleccionados = [i - 1 for i in preseleccion_indices] - else: # Si el usuario presiona Enter sin ingresar nada - indices_seleccionados = [i - 1 for i in preseleccion_indices] - - # Construir la lista de seleccionados a partir de los índices válidos - seleccionados = [elementos[i] for i in indices_seleccionados if 0 <= i < len(elementos)] + indices = [int(i.strip()) - 1 for i in indices.split(",")] + seleccionados = [parametros_disponibles[i] for i in indices] + except Exception as e: + print(f"Error al interpretar los índices: {e}") + seleccionados = parametros_preseleccionados - # Validar parámetros seleccionados contra elementos disponibles - seleccionados_validos = [p for p in seleccionados if p in elementos] - if len(seleccionados) > len(seleccionados_validos): - print(f"⚠️ Algunos parámetros seleccionados no son válidos y fueron eliminados: {set(seleccionados) - set(seleccionados_validos)}") + print("Parámetros seleccionados después de filtrar:") + print(seleccionados) + return seleccionados - # Retornar solo los parámetros válidos - return seleccionados_validos -def solicitar_umbral(valor_por_defecto=0.7): +def solicitar_umbral(valor_por_defecto=0.7, umbral_manual=None): """ Solicita al usuario ingresar un umbral para las correlaciones significativas. Si el usuario no proporciona un valor válido, se usa el valor por defecto. :param valor_por_defecto: Valor predeterminado del umbral si el usuario no ingresa ninguno. :return: Umbral de correlación como flotante. """ + if umbral_manual is not None: + if not (0 < umbral_manual < 1): + print(f"⚠️ El umbral_manual ({umbral_manual}) está fuera de rango. Se usará el valor por defecto ({valor_por_defecto})") + return valor_por_defecto + return umbral_manual + try: umbral = float(input(f"Ingrese el umbral mínimo de correlación significativa (por defecto {valor_por_defecto}): ") or valor_por_defecto) if not (0 < umbral < 1): @@ -56,4 +46,72 @@ def solicitar_umbral(valor_por_defecto=0.7): return umbral except ValueError as e: print(f"Valor inválido: {e}. Se usará el umbral por defecto de {valor_por_defecto}.") - return valor_por_defecto \ No newline at end of file + return valor_por_defecto + +def solicitar_rango_min(valor_por_defecto=0.85, valor=None): + try: + if valor is None: + valor = input(f"Ingrese el rango mínimo de MTOW (0-2, predeterminado {valor_por_defecto * 100:.0f}): ") + valor = float(valor) / 100 if valor else valor_por_defecto + if not (0.01 <= valor <= 2.00): + raise ValueError + return valor + except ValueError: + print("Valor inválido. Usando el valor predeterminado.") + return valor_por_defecto + + +def solicitar_rango_max(valor_por_defecto=1.15, valor=None): + try: + if valor is None: + valor = input(f"Ingrese el rango máximo de MTOW (0-2, predeterminado {valor_por_defecto * 100:.0f}): ") + valor = float(valor) / 100 if valor else valor_por_defecto + if not (0.01 <= valor <= 2.00): + raise ValueError + return valor + except ValueError: + print("Valor inválido. Usando el valor predeterminado.") + return valor_por_defecto + + +def solicitar_confianza_min_similitud(valor_por_defecto=0.5, valor=None): + try: + if valor is None: + valor = input(f"Ingrese el nivel mínimo de confianza (0-1, predeterminado {valor_por_defecto}): ") + valor = float(valor) if valor else valor_por_defecto + if not (0 <= valor <= 1): + raise ValueError + return valor + except ValueError: + print("Valor inválido. Usando el valor predeterminado.") + return valor_por_defecto + +def solicitar_umbral_correlacion(valor_por_defecto=0.7): + """ + Solicita al usuario el umbral mínimo de correlación. + Si no se proporciona, se utiliza un valor predeterminado. + """ + try: + valor = input(f"Ingrese el umbral mínimo de correlación (0-1, predeterminado {valor_por_defecto}): ") + umbral = float(valor) if valor else valor_por_defecto + if not 0 <= umbral <= 1: + raise ValueError("El umbral de correlación debe estar entre 0 y 1.") + return umbral + except ValueError: + print("Entrada inválida. Usando el valor predeterminado.") + return valor_por_defecto + +def solicitar_confianza_min_correlacion(valor_por_defecto=0.5): + """ + Solicita al usuario el nivel mínimo de confianza para correlación. + Si no se proporciona, se utiliza un valor predeterminado. + """ + try: + valor = input(f"Ingrese el nivel mínimo de confianza para correlación (0-1, predeterminado {valor_por_defecto}): ") + confianza = float(valor) if valor else valor_por_defecto + if not 0 <= confianza <= 1: + raise ValueError("El nivel de confianza debe estar entre 0 y 1.") + return confianza + except ValueError: + print("Entrada inválida. Usando el valor predeterminado.") + return valor_por_defecto diff --git a/ADRpy/analisis/Results/Datos_imputados.xlsx b/ADRpy/analisis/Results/Datos_imputados.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..338876317d2cbec21f06b09eca2ebc108a2e351e GIT binary patch literal 50391 zcmcG$bx_>P)-Fs!u;6YX5Zv9}2@u@f-3JDj;O_1g+$Bhm2@u@f-Q9JNkL+W6zvtYy z&aL|HAH)2nr>dv>S!+E@x)<`&knb=cARu5Ns58Sf#d~EwC%%3fetn_5zKrdR2qkKd3)`NFbVN9loq4OBJ(52wfP1Z>^h`tbAU zLy5^7QpC>bw`^FLdl3a^NFMkH2Xe!5w>&DDmVF~?@Q}X|euV7Gvzh%G$b`T-w9#0- zKSeKY1{_TicB$o7An)2xXXUP;AS_$@@E&E?os2&mU79PI2I?hTX%JH>YiGdj(HIH@ z^8;J{FI&hCQ66xB3H3|VDi zVziKS6FaT&Ii`lPdR{);&y%Xk8+)nqqjd{X>g3!o43%|jes8mnoUC}!owIC(s}Vji zu;(<78g+^~PIC>5c>Z9k)%Lt#BMLi5oIq*X^38{2tV3rah*kXZxdnI(5%X3E9`DOp z$kw~e+BX?DYB11dQYWoxie9U`UQAntBz`N&qg5jJUvLSVP-A8iF}`rFFC%TkBO^Z1@9{tg}91OD=AuN4zHe21!ns?bFIb5MBDQtdoJ*LJTjkjdxm zfoy5wLp0~0eZWSLqAHsBIqo@ZahYp-61e(9AowXU^Vt;o_~Pgq`LE#l%UJiNLPJ3G z5kWwpzk=s#&ERBiVq@~Rzf8a3JJuKu$LGKRVLu3jH1n`Dm_4Fyyz{W$wc^mIm6eKG zs5w$7$HkRg(LsMp#&xYo`K=&X*p4q@LJ$(M?J63Mw0@s(oP*^VXFiQI-C9^`7XIe* zLt9byiif*ogtkK=MJYf9$GUg-kTP@0p&sVOWD_2wldor3jpuC{w;1G^t?lA49M3wqq|>a{Ltvo z=3X^ZR&iAT@!?(dM6Hln+eQn#HBtf}o|DVrvZY4X?v+~OnGM7JXa%5vu|_<13S zOa5lhX1z_eZgTqC!^+bJUe9Ggr?GNfNxsjVcV3uBx8i_7t;H{bv&ArggRfDqigwK^ zAv3)43%{yZ4c5Ac_SKshZfqJn61MC(R3wO9BXQ(+VmwYCgx6#ohRB?FFpEx=*Lm(8 zCyS=??|3`7_RDEvv~=JINg;)bN=~o6WM`)wFZwXrKE*HHMeFOW;AG_+bkLLpHzL`O~b=)8ib39lU2u zFtWKQ=?|f(F}jZ(ZxPXBARU-Pg+fZmeMJQEzVcyO{=|12`qG3nF5@a8SjhN>Vf4g8 z`&NWWX$qqCqd1;@vg6EpXH&*uzxMt1&_<0LfN5~k*1*#|ZE@A!-i|#mrieVz`!j2r z2SRIPFDdzZG9ypn5TPUbf;1f$3!eT_Y@APX zkj%)hbpXXA23q>2ijpa&J%g@=_Qu8$BuNq{`j}~-Pe#RZaJ8w=u2LAI+(n2BBzFo^ ztemPuf|y#ol7~qMs4y~9Vt7(6d20tLyhHL!Vp$@)cyCHG1Vaq#dlO^d&ANP^fEHM5 z8e4XuRG?U#Y5WA43Q3Ba3OAWVq`eyL$lm$uTPqzgT}uNLo4AA-`;4$hFiKGLSqzF3 zxD;-*Xz9y?CalKxd#3pvycr`li(XN*gc&yIUd58YBYxb=xBM-ak-u1a9RkE+ckt2q zjNR=AaFzCDu)fqQONrH543pXpz=9HI+EAWAI08W8HCef=Z#Tt*8o8?eXq~{f(o5yRuioMKP#~)y zHBW0FX8+PrTNrM3{?RvntGtw}%DKdC0m0dA+8gY^}ptsuz&z9EyA>y5yo;>DBuCIT3i)Q1(*vyCn^*A`Z^m+xAY_ZQ>) zWD4Vp@jg$L*-7LbWnhID`ikX0a$`A<(AaZ+%2*2VuAop)x3DsTNIRpo2YaJE4axQ< ztDzkAaq?aCIL1{!sgePEl$L4^R*-k{5HqGCum*ueojajIATJE|m-)MzEEmY|*`4l)P-CEg{-9W* zI`cs>7XIWrCdb6IA&n)2){GWLoka*Xg%p3P+1Ztw7)4`L!v0RFbvzt$&(kC)aFw<` zmK7c;#@zr5Y#;0yr7}Giii-I7+kYONC{js*`hup-@bErK*0TR4&Kr zCF@*-CXbq0VMRsb!sFUUQE%+hXBa3oS$Rz3+$L*=XDnR2@HH zjxul|R;dBXDwQlhoaA>MbYJER=!EWySrCmxM8B9YL!59A(3@6;tI6V6w(Vi-a`q3Z;XYNB73n z>o)Pam!HDHRC6|JUX3$W36>_S49#p5xvS<$2et(h&WFe1qc#HSb9k!lk2+}_+rV?Z zzk0G6tARjrb_fUo;eT5U-* z=af>@DkeL`Z_r3x`7eW`;@&_x(}N9XtZhzq02eYhl2~h0fnQrt z?g|Fj)6<3?pDtnFefanh0_Sc!`g&*bCV%%hf&qDO`exRJ(50m}n}MP6GJ3_orA=MH zy-cuK%kJZn&e`nn)Ao(SW^*{-Rdwr-3A0)b7<`iHhHSodZ4MQV``8? zMn2g&tZ3AJIX`SUYMB(cdIU$eJPBw&-wft^oL;vrpD{uBfpoK;XdhwhzF*JM7;P>; zJw(+CDD86Bncc9Htb&ceN25IgGl#*?OFHhLb{c5sT~I^kGXwGq&c}=3>jx#+xp2Kz zla)X|b+?}6=gkQLC(A}}r`8soc`fKM&N~>F_Dcbe%%4ZIF1}5t-u8?*6&Y%AVp)rZ+ruya+Sf_vYCz_pI+{o<*TH?>d&< zx32+549*2AAu6hIBFB&kOHRtMQh#T@$jMy4w2rWD3~090p&4j(8aL z7#hJZcs?H{6v10fwTlKxj0T7F~|n3YPO?= zxocIO(mz0p?{WyQ3~#l3cIgG&@Qn*K$M%y8P{e#SRy*v*y& z-V(m-3Ou`9P6jG8QQ{`ObZg-l`2a^Bp42&hq=RIS&jX%R ze!2DTk5r=Z{jSDy>b-d~gAZ+M)ul-3e8rcd=d5dAi7h^=v+U6$XL?!{(N%e(UR{)v zEO`5a&Lwd$&Y{I=H`^QeIoe@D&R+36iKh{~MUQZKnYIqI;AvLJ{_Ggf9T9K9O<{7N zvKW!B;FqpIKPbN`TG}TcPfDF_RBS=q{hdwvn=MWlC7c!vTS`k+gt)(FXgVIHgWNiFk5UfrRhARRGO1H4{|M`1i1{Cem*{*LX>^2#e^sj5+5|8s; zUVh2gHcGrSch+z}9w(22pt@e}-AalKl(^=%0==Q@-m2AEG&L~Jsvyp?4Sgp7R)kM8 zmHQeX1+g)e2O8K!#!q!NDL7Z;nBq9BRw#?>iN<;D%MF{*=MYkQ$K4pDPCW}?|!4IRWKLCY|0)A<{)s*ZFy4Bpy$fm1(?c_t zs}TejnYG-pg19;L~ViTcUbyOKhSBDeeaool%?xUX?6g2wDr?Uw9R5o!By{O@G*Nb=&@w=7||P#>)6?7?tZ`F>=}f#ggp3E zo9v8yc&y_pF$;fsLBBNY^Cah!3)=F24!=(J-0?bp%Hd#rd6><~ZP8apszS*iFEkg~ zRu|dkuq;NiDMqs@z7R)D9S<5(7umsQGZw?IHAK{~o07ktk{<}<4w@hDsx=BW0gW3> zgE$f_GouY;uc|ZV47lu^)Q8PQhSf!eUnjz}DaN!az7|LPUW0n7ug>AFzC33DT-~d7 z9}jY`337j(Phde_U`GBW5)V%lAMY0)UaNvgm$^unx=0s?r8$O;Ifj+_l{jK#K4PR1 zV&rOZu4H|#WO;5sJ{xN!J8L8xt5<%I>3EQ7O^~VG6pBJUS)RI*(9^TH4HYI%w=|=B z8D2yJam0oSPMZp@I3_JkyrQZ?Yh_*|b@}I#a!Oszajj`pWtD}}p2gC36)iUVqr|v~ z4L0016$No%L4|v3#e>%OY54`qUyGKlDq2!c66bGYR&w4(&@xx)e(!6Qa^Kk>7O3pX zvTYkS^Es)C47Pi@==RY+Rn%qT2&ikmvyqZ%d2gjg*=?%~aOPlQ2?x4lhA)>GA8#}+ zS*AI&FSdmr3cLO)dNE1FPnIChmT9zX_M`XOozfgAia&x_`ei%QzE^ zF#-THhDB)PZ8LS>v|yBs!4h0qT@db06b<3k5Z&xnPS}^=0yUXnvSW|Rj)c3r? zJKe(xAJ;3L%_4D)rcq75lh{P2az6v|APpSV?rOZCc{0kAL!6nPj70&%o$6L}2v$bw zFkL@zX1c2RgAf_5Lk#jy=bm*{8h$OCh2ceNxh>I%F5U(7m zGPP_E4}@u?a+Fb;Vy+A+4}Dn~QXHaPDKAY?ajV0_dSgs;Vza`R(gyoQ@3#@7-vSRp z!8-@Mc6x-n$8lp~TL^uLRQv`BN(42Oe-P`F~Z%j!~Ix(`v(TnXE_Xm?$Bn8{nY!Ex#8jh`>yoPx#jE z@N2iC6=3Bbz?z~ao;Amt($X|g%8;cBM4Vsh#r2zy{&^*#|4c%`hMgL0r^|x8N;=fV zXSYA{WcSj*{TQ_~o_;#RAT!7@e$VdV=!U-%5f0MFV55ZzGMTAHV=I3bggG-7ftTi+ z+mENIAVR}fuikYav*pgaeA6z!QI2)32LCv%?sJ2PK?p>!(ob>hR2=E~yNGrJBwfM- z=5eelUfCT1Uw;mzOMF~f1RTtO!`@L%6*SBk0lQ^eqa6aW98wj+gc;BiEyN?YIZPxZ<^~IE&7VRXfLFnm>rv><{KVGqi>e^g`k!Hm> z;i92aliH-L#K?FbM`cu;O6{cl@+j~J0DCCm;zy;~%ovN~h-r6-h7j&Sp%cPDzm+6~ zoLfYBiiO;+`$>ymYHjQBzT07)X=-?!AqUElZGu_9yD3Tkm(YQl!sP$~{{bW8b=ETY zL0nfV6gZJA1?*VG+P-3GekvW~sco8UI=`HdinRL#RP`R!AD#>HkRhdM&Yp!Ki{~Z8 zE)MAU1XNlWRZ~Xm=;9~B1meNpY2Kx-we;>C#d}R3IWByWO!MMSzh0iSbnskDXMAIl zTTJ&??=q@AV8YbLCOE?7NTt@J??D%1<*yC1^@C^@vYEdRQP36^Kyv1e9WdqC&NwANhMtN_DXgy!Uyb>0?7O<_F{yd^i=F6Q`Ybt(IKJos=qc_1vv> znetUzDU0K&;o9sC#v@`#H`c|K$xwB1wHRzbL^_?WQUK)x8FbIQRPU8ELWI@V49A^` zBpmhsawR2_9Acqw{46zP6%5ZTxT{t=^GX{`WERney93CLgzK2N_B+g{W8_{eJ-3}eZ1@6fFvm<_UGV(w#ZJ{=-=p!Z$*a6E2;oM`-I{(1S;kh9Eg@`$$ji&PQO)=hsS63kk8+&T5sgEax`&2M{Yu^l zVumekX6l|md6#*m?<6G$n%ugida9rN##tb6JX3bv)#w8RnqCvTXijtKbQO2vL6wPj zk8B+$EX+<^scs)9;5GMXZcoXf?|m@MbWxF~FdR9M$_$nhk9AYe44Q{jcAuU&P)WZn za4K`GRZMz0@GPCI%2EyYnkltcP`=$;Ytzv#({eIjh*WQxlUA|boeIphe|PXBnoq`3 ze)Osp^}H8%(Kp+Ut>J7E2VtY?!gcnp?2(!s-$L8rm)>S+qI+afiYw>sd1H|iQV8f| zdP^M1M?8R!xpx0H!ku3y<0c}mF#I&#_`?Z#5RcJZ=LimknIb5963R-YwQmc)*}5U7 zf44H>u&9&x{!#3ck5>gkZEEL?lz|rCVxi7KjZJ_+E^QJZa6%;)0}P84j$wHEX4Y*s ztT8Al(Xk<{@?ok4BvWE1h4LD2&$WRX42wXOlb5U0M|N_PdW1)(5L-b+9B9H?nQczx zvP3Q6al4KsWFyQB{6agHKWsT^JERT z@mZ-|>6n3BbWc5Uqr3H!J#zhy3zw1ETLjs%NJ@pz%zY|?Bk#E2w@QiBAi2Op1ub}o zM6(cFyF-!;K*_2D{p0U~m52a>m_t8pydh;kjt%!(Q- zduV_trRyM}+))`y>y2D~XvVOR#oqA)74KFx zyKT6w#dV?DLpSs8@p7^Bm1%$+JO-=MV-C5r*lB6Wf4^lPUO{eQpm3<^t-tO`j z*&66yc70np*@*}{f1<6A>f=gZ7IiOd1ukI7>RWTbuV0n8wB(yU#D7l$)4wipf97Hu zdt@mQZ~*P6qpRV8z;-O|m-*ux9=vnl93Vx&mkUU~Jv?QX3vW7*gHq#Mb6Xoaip+Ig z0)M{$345`{|LzFIBQ*Q&3Z-%LQpD4(%&42f|1MfEN;S}Pi&>2$zr4=*e3+WE>`p4F z?tvdG7LF|0JN}y)y3|R%WE^X5LU!x0U#7IIx$zw{c5^G5*S1+uuv~|!?!tn)eYzTl z)ZZBYV4iWiJnw`4@k1?EyD!?Rio$;AjUoCL9?@gvN=wd|gg`)Tj3ZD{;c49L{o;G8^vE_S^9yH< z>qPwUMw*f;5tV!X9p#pVd3v3wYRs31?stnm!1)2q?yM6ov%31kw}-kK-4}c+*fpA} z1axKeR=^5+5%;uDV`j%ww*hWuHQ6BtsgdtkfX&p}f(N~@PO_5;c8X75v!iH;D<(xf zE9J9=FEoU86yM(qdF9Z23!alxz4MKH;!NNOr&G8WH?mUZvwNlTP`cWCD*-H#t!n4h zD&M`WXLl1<8Y5P7o}+j1o8pq08nWX1wGMyI9TSCSvkMq2 z-vCBZrFmiv{%U(iVgrvqpsxhpHKXFZ7{#Q2UBcKhC6Wm6YorV*G#7Sc&6P|Wqm?mF zBWIP1kMsjV@v30f&}HKP2trDSBn}#%Ab#2r8_DXaT5$7TH%etB|%RG!gq|)?=17SLJ#~itZtyCPPbQD#DLuNMlg3q8fNe+<<1< z)~(j5>7}F;S}mo<60E;Nn%TZ*o#-9@ZMSaPBAnEs;Q*0#v#5Kg?7Vjc3JjSSAD>{> z{+A471iG2~chvNznY`~Wg!Z1Im6{D=8Cl5o9pKNHn){KnilC?E!3~cGkXs1XvF2K& zjq%D@=Isy)7F*mut}!)Wl33l9S4Pd??%&$D>zZZU*tpk>RI6QXPj>1pS^T#1?rl<1>Ksen1h!3 z8YXmBYv=PsYB0^veOyGd@0zjtz6(`C0(4>yeYN%0W$oVfTEY%Jp=^m0aX>f2^~ng? z{-)m$a!p|tIu-dbQ6YG!vR9?B5WZwB34OSd3VR3xrKNyYUBXpR%SB4UK7%r6FR3@` zGn19YQjnutCM(`IXf|yiQ9C+#c_k`=O0{+(rLhCcJWs@*zQq`p`^dfBq>U-_)0V;E z+76b@x%~r7E=P;(5u?8@_>$Z_lo=G(ZxBTMUAr>Q_KE5{c)Fb z1c|T^e{2s041aKvA;?*Aa@TDbZ?RF7F@ld)fAov>E)%0*h+Oc{Cgd0>4ds3nSh9b5 zrD)@sJL-<=O&r@WCU&B1Ae;;A=XK>G)uVQ?*Zgm z!gX}H`$=P-(&n9HY@6@xZpz?P86D$>@}NW>Dn_%g5sE5Ce^Ef59C(AS=RKd!>MwRr zmR@e`mWYffWe`<#ln=YdcsDJYXvhyG#Fko+A}3TG-3Tf z1J6p*vNB(^O_~yP^ZUNkzel_8U9^X(qsy$vJP7{qM9m3ei2uc0smmlDcTA>*jHE73@5X^m9xg><`_5zuL*{#=&~Fa-cxDW+m3f0r)h~kSr2!( zyzUDAnfhYT@6E`Q9T-&ccf7bAsZKAxY9k&MAp(Fgf6t0O|L3eI2LE5_85HjdO1Kvz z)^#+wxgtyb<3?d+ZZ}>JyM6INY6-3?qY`>){pKg`FXnH_V4y~+66lnTE1vvj48EJ^ zUX-9C(V`}PeS@sK`(~9t|pNeRFd$}=FG=J6MdYd@)|a|POLws7UUl$qt z{#|^&v*S2hPyo5UB8z>P2NRKbjX&xlOM0m}q`4+J8^dLb zLB2-H80#0L_gUynTJ3#*2kT;6MN42OzQLQ9&;G$;=)@$p*IAy%Uz=?7gvHshqJ6W} z!YuQ60*h%4I@TIg%k^E4os<6$xF7*CG5^r3?NLWbu3^40FTyQoB92#g*B2>d`xc-S zlm1(y^5BxkBBU(`WEASY<^=kwU?@)l!ib^Yjf={d7m~B8OmeB!0VB)5>y2@jV^vt` zewQ@ow}>Be)KNM-3q))ZqU=+-Sn4r7zzzULl-DUN#6fRbS{Kz~7x-yTeAV*u(}vvo z5M$-1{jZ2-?oJ+LgTPJrb?HAdZb=Edn2^8iRp{@`T|yRLaHQXVqAbBmIKY3%?elpX(+&A=@K2en z)S9TNoa5tl*6(-KD>nr2vTKo~nObnITnOq&CfJmf4$f}?^rpo-W1BSzhC!ASyhyUG z7Hrbqgqd^FR2c@I7?Q*OMc6=F<^#E*=^>W|>LRl;*zDbmV9tBE^rO$vT4tHHoodF$ENv&Hz&b;Yr3^x0Er_FXrUrteEI& z;czlN0j5T8CmibWsM<>LsK}H_FnwAaZ^=H($29TS)t$erKaaeO6~3GKg!8X;9RI?6 zPj!e=-u7p=Ut!-nFE#&y;k5Dxbpeq~bBtK0nD8gS z)jh$X+6_4MX~XYcnhos2GVZJgI-xiJVYInxT#?v{s-oMX)vlOXJxkBVrd8oRU66Xa z<_}ztjR~laDRx`EQdf@g@O)eF;1?`10Tm~GD@yZxeF7+a%Drze`C{Y4R$+PR0eO38 zxbs!wW>3M5Ob>F=(SudiP)?Alf`5Yd|19S0zUwxa)xE0Z=gz&;rA#wU?=@<5vNjF? z*FztcsJdPd5eGL#O}&dNiA#*ZAZ{&E3#~)L8Oc-B>u2u7&UDjC?u8LVfQhaE9J|jQ9Z=NeyuF%UB!=SS+cz= z6gQ>FQG>7Py<{#$g7(}tZ%;K`kPMS`kb!8Z23yF`+Cqy<<7>(cnD3a(^G6-yw3T$6@<$E+ecZF|%`hu`BbC$IF%(ZIsc<*ji9?zZ535D4;V#<>GZH0V9 z;zv|DsRU+l#1W9(9z6r0p{c79rqnkh^A~~QO+IMZ3*4AEb?6?KEHw7mp;V_bWbaZ_ z61$au`q1*-K*f-dNb_seQ7mNX0b@JbxkL;&#V_)*Q-?SQMDPS_>))t_!a?&oq5&BI-M~b9ZXzSaFrR0zC~lN6 zOzA?J2b4L%1j^9oR_>Q`@Z9=?5I|pkCb2dLv^HGNhe3D#>-dk%P?0PC*Epb;&i+7i z%^y2qzQ=a6vLPBQuYZcgwlbFNctuu4;CCHaOXuH|Tt2xwL zdJ2)-=%qCmjXrS9B-lHR6ztb+WD$R^xxb1EovY5v;&uh!$a3K{k{`;4wlUq=>THEE zbM2)@B{gXD!oBSZtH)(lQa3YS?S5Po?6o%1bjx97=b_H~*rfxDsR2M<#UFN|JHu+2@ro^BQ2-|l6J_s)@i88P0k`aAnlFBx)ll>Grr z6w03t642!WlywaL1HnpX@S&BKb<&iU2@3;N;2cMv&|7eS!eOz@9Zw#tT(02b&mt=( zpS`PoWVfXbwRNWlFAB4uVrbTnVU?MOv(<~?Lmg7i2@37PhGF~vWE+RpqMQ?#GlH?H z3HRf}ILhzk6znjVxW{h#Yq+vP?rVq($*%qepLHCXuDXMIK_Ah2OdP-5ACX;qE zfw@~Pfw^cnzFVbcVgZ0veJb3JeWkU$(s6oZ-^zf|+6S6sZw=i**6=VIVBIr?(m*LbRnq?6YxV2Vb#hsFd8||P!1%3tpJ)G$o)d0`tF5lW`4R-CT&H*%hyJqv{}pPt zr26wTo97m8437^E84)nYrqT@eDWngSf&7(v7fdo2sFl<{?0{9|9Xn_`oz0P#WyI&^ zv$)gL!qX3@Jm5Gx;-mU;n~j`h9K8ta-iQJH#Xn>wwQ{8V@ms* zI(55Y%lU>yi$jSzw@rNAYOdS&#q#;+;moCPbTNW|DP0q(&93o#+@A0*E%e$8w3M9{ z-JRZgz(QSLhAm?jz2WvkH~{$2SQBrNa#uJ%Bs-VAtf=!{KCe|~Efv(TFBPp>-rX?p zJllG)jPuw$KX0A3-k(@(;+?>(E>@2&YT0cUXYTFQr~jO_$1c=yHDAJ9@RfyD>)Lk? zDcfAx(|^!UK}Ku7_|)ATuHUcu$K|A7w(1<7EOPn84K`fA@3n*()ERa{56N=URQQQC zG8r^-la}lJkg-(%0fzeXY5qU7_f_TLtJSRGba`#y=rQ$8TsB8;R~P1j>Sku_v7bFb zTFt%B#HU+~Kq}}HB&0u8@k6znBy_3;`E0`RhTL2_t~~A>Q^k5NWvL`fybqGo({_?6|I6<_=x7!U%3y_PTMk)I=16IjO0R$F`)jy8L}-n&R9 zQa6zbm~bqSuwFTGFFtR*?DaqG;B@;wo*l3HpL-%O zH`ZLME}ntOtsU+uTn;vK+xNdkDhKBJ>eBz=$>3)U!>XmGJUa!sz*CWwCIC~V2xQV zI?tQ9qD4}Pu4C@LEuNQ8OU8CKywGC7sL*5Hi)+35pXzk`ZyDn=1i-a&uCMn`*E7HI z2=uA+R(pJ+Q6lSi>t1zVeLiiT%zpCl*$)zcLG~fpuysCMd)tcMGdmTQcDf55^Kik{ z=65{h-FTEkjnhV6nqJN3y&g2{&_fmwy-%-s^4>kR-K@BoJ!S4QOQ(?g0ZQ{ECf@w` zaYWk6tCWlj`Vo6Vam0(&WFe zApq#phG$!2@B?`Ajt`$Zp#_ z0jKSG$Kc5qT-bvnLBYx0J&qfN*5)UZ;i0RKPLYW{_iKI!irpd2%~vKv@ApvB>k#ht z>k#$pP?osgG@V|6ul|M;DonnK`m=lx=I?Xt1)%z~$EPHLmCQudjco6iv(Spp3o||5 zyQU^1X@-ch3@!^Aj$S(@%5?J|ZUmr1GDuYDiC>!}-a0tj(Q9wQ%x z9m_QoBZbtE0cB;= zJYiC4KwsR4I#L+Aeg$d3T-=97QW*OA+P_VZfgyv+p-HuIRYplJwiH4otVo?_7#2oG zt)fs88s^1KL@ySiD3bI+!*W1TI%%PHDz>1K_S(3FK^js6Z(!o{hr62MFQO*Y)GP|0 z;>fs+C8IRr{FAnd$+)Z~qqO26ldUyM2Y*i>8}==vEJ8M{iTeqQD2q4>EuL7kfS9_l zSUpb>Gcm1rt_adlF@ToMxIea_koLQA37s^7#=(H1T+%}=YfM2dZR9Us!teo6<-$B> zbWCE6IFY2S6f!Pz$tcaZuB5FdGA{f6q=Fy6Cs_Yx9@b}B5Hh(~`X#I{?EmGS3PUnf z!}|KEh$#wTB}+oWsHl^QmBk9ksc-hbHeq~{Leu~lmrzO5X;=;_N+kWLor*7Lr$scj zpp+(YSnJJWMola!9uf`woU|1~#$_srq#2i=v{g;UWh;rKU29T8Fa0_JCsi78)TmaS z+GtiIGuMWbQbIqf8w8YZlDba3z0+eJD(UMQnQM7C(C1lbz8V7xfYDw<3 zQ^^Isw1_4aq)3nI%H(;>n2D*yDE)CCYDs%(`-P+dQ*j>}NPFq}eWe>{r%hfbK%x+H z6lMA(AzD$TsFAFwp;uJfE@`AQz&ImmSF}AsbgRGs&oB$%)V{cERU z$Rv`|YNz4~8fbyWB{b4}8V7?Df=NNOtY|RawAAPdsbK?OltYXqku>6rlD2YQGb2eP zt+>skt)FCCNe6$O;1%J>+NvRO4JLfazo06uu`l&E_5CmOAFei*vj3AbU?}cGJ*fm; zzkxJhDegm)@t~qk5?<|ApQ2KdX6;l`!RyxR6iyQ7DJe`z{-QI^R1`Xrf5_m!5uy+~ z+W%&6|6K5^HL!1-SQYh)yZzht-2NYJ57h;RPlla3Wd8GC=tPJ5v)cavBZ?MiQbHl^ zrGeKsA)h3^@iSV?gqT`MAvIJgCQ|gjmR^&`wMDIh!jO2}Uzjq#)0E`DHH!Z$JhPw* z`^D7^+2azzic|6oL#0%dE%OWsG1>7$|4X*~ztI-d+e)D{Yh|>$*l)_B-58kC%B6XV z=$PQ*>iN$Je^#ykztD6^oiNU~`Zsl%ok;wz-42>DiNgQF(f=ZO*)UU*6P&JT=q{KQ#>hi@8^AyVU$9r~l^X{#SPU z*97(xpYU~T1>9FEH%^v*y0&TFwLBHAAcdM^ds8`pZzEl>Ni&v4x3;7Wo|_N(==h9o zugAgHnYUz*jG}kTNiIE`J$iPJ%d>i`P{*|GOY^TiF@dWoP4F3fbjz!n#~pIcAU5lj zw6<(pN1vxdhGdHU?r7V9d;5#>vC-&*`qaA(x62Giyo=3AC+eK%o@hx<5| zkKo0=gx2GmeN&XzFSgPRet%(qga7q(=J4#&57h41=y>Y}<1P3W4>adX7!yOz;JgMy zTD&h!(D(G!lg*;dfL#;Y;|y|Q-k{6521bCWjeyMfps-b711wN@THC(@#J=jAREO0s# z4Hke>xH4#4tRR&20q-@#+o3C6QXY{*AfuDL&Kmz;En_{fKY3O9VG`jf3v6@#wIFWAu8(^Y$ ze(jJ~*0Gyp#CW1fa?_b52OHX=!yz6c#z2Jj_D9;Kw{W*BcrF%#ujeEe0uev0p`ucS zItq;N@$(PlRg}XvUJl%AkT*suwNvI!cqf`<{5 ztSQOG+;)T93Z&L2xHd!8#{t4_q*kLcv zCf`G-r%pW`+eD+g5K1&h;G|MDw-HK86Ewx7|NQXu4)H4uvv2eYbAQbhe`>+3zj=+G z6U08Of%`&fZX3>7vMM${mHB?S4P;@wE$uN4E&&&3qJ8yH+(Q26#G=p+N+)^CJi4+d z({{!to|#`sF`eI)6q9A9qPWQQJR33KiYZ0`dJ3HgJg(c5Y=pUG&J z9~&q1wDyVbn-l4ue@afCwTy!PhgKz{^xX}=YE{lFgOL1NgQ_0D#QM)|s`S4}L zZ8D+=zDP~CY?2mK>%2ij^H{4+#=JETp(s)5Wp9XYc=68k7Hpxu#=>eItdLyV_t%h=qho1;3;UxFoa}Rz$@@kq?-JCnOs^Blc7Yl6$}Wg~EdegJ_h8Y=QUJw)@LRB4ju)2zgB$Y499q*+{sgzn3^NqJ zsQGWW?_oyis=aKFFwWnMn|IMcPkt;DBV;-w{0zw*^07{WP>A6PfEf@yUFzYwR;VE7 ziJfVC5=%cClFj~3$hY7WiflgvE#Mw$T+WkV{5jY?EytkT`y=}YkOfXc*!*s^ROE%g zw}80sKB(0*Uun-VdQ*nMO`EP2HCjQW(q?Sq)fn&9Khs6euSA#0AWd&k?b1cx2ZKK~ z%EFzferg@sqxK3`97v-G@f# zDs%M^IO>0Z=U|t^uq8+a40b;6>Pt@WE;&x$ z;-0`e(K{-HdswLrUU2MFSbQbj6Ay&Vy&LYl%m`!NWymgmixLuMDF1lT>wIhRGTwmP zlYDJi_j0}5+qJ&G3kE-JVWVdW_ExMyx28PuMCHyQ}wP2v-l$geSasqr~)bg1S>I7)2eoEyx) z1=%$oc64gagW9Egbsy_CZN?6+@*9!)tsAp>VSw1-ZI?glYa$u^ixM|)n6F1Tt+O?6 zx^m5{w2P0p8?az@>z0AT-d?+5y~hrXC;9|Sgdd$3L5t~19MNs(?CYW#yz(pGpB63h zFT$4NH!jI$zZf&Dou3Y#TyVc!*!ff`M@ft<*ASMs=`2-}k6fIMFSDIEGaSPlx&d9! zjUMR}!-@=3MIZ8R8hxgYE;|4|I=rXIi`U!9Mle{5)6aK$o6&XIOFFzsa;6M7?LKxe zUe{4##P=iWJn5TqR)^tW|I_~4*bqHW&+6OYFh@(-i)4PVbk-A@iciUv4s&V<*(Mxc z^ttHc5i`&^RZ*vB(q-P7J#}JX>}p<`H>xR=0__<|`p)AB_#}BpAZ4OEo2z_tL`g8W zt9Fj@!~gN=!zig^kxh$$*bGyY^i0RY@&Cu%Jx9mY_I<;zVl`@vrj2bUZEV}-#CBub zc4OOWY}>Z2XVUi6bzblN+<(05UGG}W%9@>7T{C-*ec(68_p@Ucui&)pel(p3cOD@$ zuS+MjFlA6`O^6!%Cpk$`vc-sT{%AV1)zx3u&2Q7(-V2$ZS*=OG)YPrhUmc<;9ISCG zOlqoNT=-T7+@s*)X8u9>dV-3~sb*0j)kOYw?Evm-OXJwBjXgIgEiYL zQwk|MA~%W`ScZG4_6e!Vpl6IBMaSe;@@9VmR_3gEvk6IDB+>l(BxLw9X#Ol8S^X^a z2?@eVN32I}e8Fdy5`>kF(2m~Fz-Lwxgq4q2kKXu(&#d*|R`1M~g0QL)+OZoe_{@$_ zfQzMujy7Ep0Um6`h1Eg3RHnx;1Rt;OkI{lho$rk*En=o3uuy~u>98YbimUFgLaSV6 zOwj6`ztcjv6S!Gxt@NP{>AvOm2G*vsDM(->4FiOPW#%%*UaF<_8Dogi&AHG#xpT9Y)sy3sX{GV*<)$BC^ZLdc%b*b0aVdK7*0=jtW`UMqrkF1|#c*|8F(Z-f&^d zoe0c^&tR0jqsp~BW)!%$4jk|j0U1&V(KMMVFoM0~VNpGcn{>We_5(N(LcQm3h9A3Q zr^Q*F%q%)QLm_pH8*Vnl@?!Yr=dhAs82K9Kxaog%j6AJ{m|$q1OeV7x)mh|U8Npr3 zI~f4~c0P%%q>0U;L~4hwv}lr=irR?fkt*b^Z>L6jztiXrNBe`{rNWwU;jI}(Q+4g* z2#igs9qcgl40js`B&>wFpT{R8Oy6(X^XzRXQ+=p&fuV_qM)y0VvYQ*h4F|lhFqpBod<%miV49}+sRxD*uv6>q z6O6_z5d0ZTBnby~XK_X!f?z2orI)=A@$LgINYKxP`pC@H5D zo@-fpCM^A!7yvzbjl_^kHvk{ZOa+jDZ!4ALdDr0s0}qWs$U_B)3v1Ky5nmdxJO6*TPBUSt#PcU{wrbcoQLO`V`b zJ+Bir-TGzIm@Bu(mP2tnzC8+KnIy`iADzN*3t6A)TTVv+7LlR3DVEzQk8Rh5@QbO_ zw3#%Rqu&zaylyk=Elztyg}H9}&W%j!_>&VOywbLgJgv;(90L*q49W#fAracE7k})O zN{5ybsVXFvU)HW&NmF_inZaJI53vC37NB`BV%p8qj?*7DH5$4d4KIoYGff_3j-I^} zGj@)kuHFZ6?YItO#UfbHK$04t?v@-qTUf=sC&YKMDP7PsHH_l4LNm@7w6jxQe>RYg zP0Z!7lFD+O+}I-iXxin^#K;ekJ$CT$8CsZNrcRKkt6C1a^Xwq$GxU6MlBbQclpdRi zUY(>nS9g}U`e8|Rc+U?7HftG{^;;bgmSZA-4$Hj&q$)UupW2ERO1n>5MW}VqG1rXW z`5Tmm_Y8fx96^U`t;yv`3=1l}yevbe5;L{j_uh%GW_v}!nHLn7Kt9yi*ajfRTmXzu z!;{y&zHKvy)RhGr)oD-c9{>m|kB7RLoiE3bSUVx+Pp>?18i)WpXk^t5gqpG5!8EQp zq_;C}`Z*LIoh{ZvXv-90lACr)Ef_YvgUR@#h6gp*d(k!n3?MOhhR9fZp)iC(05n}y z%HSB{ApkMm57Q?$+?*+$HRl=T(+k4rAY)A=c0E1U>cpuH1#wL%(Uo$&Hh{!#m^9N zJnB?uDYnlgJ?z*kEA}6y@IJxx3_2N_w3DUrhBE{706*&>NESX`tjvfINwoRrtjMg~ zJ~ZG|GC7OKW{4!3LnJ}j(H(%rcQ+SVL!=e;N>@Fk#^0|mgJ+t^0O z;PNmCG*c8({YOoGtb=8ol$leOfwsF87X?a08ZEe@M~l+xMu;CNO#%t-KG~2yvebn> znlCwFg>!UPUV}A?=wU+IX^XkOFAh1unpn`Z!wORQ>E6^>e~%2K{<+~GnbZpU)0;Xj zA2jwcBhA+=l)Frn+V`;}zcz{d-02M5OT3FoMm3HQXVm+y&WbByKlz|wFS$_RSf^tz zd9k9RrfAZ=g$3S+6SG!}5JT#~9!>`{CDuo`kZj#-xVo$+IC&mo`#46k1iD5XD$&h& z^?*6t2_7+iy>q+37|~Hrmc1e&MNxIQa5Zt$EP=j4p7;p!(QvXbd%LJee`=JL_Hv-! zQIDOy;%Sx)xg{YxPw#D0Ce;Kj#%_G@di1WjAQ*bfbex#dfo1jYg}407-JU@nU>_CV10 znk2bh0HJVH0Q)Azj#fRGWrGU7X_(+QFu_Z?>8Cc_>tDFnfl!0x;>hQbk&R&V1T{uF z7`mS-!!*p`8<;`h({63J&%bb=GaC8r)Z=G-kv1&?`V7cX)sSt~kYdkK3L(&g{zH>& zI4?|g5npLh7f@+3$7_V$}%vQ4b;I||SW+qQxPQPGAE^GyvZee+t+ zZWfz!C-H(^nW7bE5&<-iQ+P{-dUjtp%-I`r45zytIY+EHHx3Z?I(4x!spqw%>PiPN z7VD&)Hpj|~SA%FpHZ9!?`U|;_&dQ55zfPCt8Y^hQR1DzjkrCy-v6Kxfa94Q=TTH)W zW(c$ZD;z}ciVK``UZ9n)vhmz=_UZprbIo&4>SGFb?b_Gorawz`wW1M{*n4UlH?vWNMNs-jf|r?xhe#Y6M-G7X?+)9*Yzl#JezH^2V5 z`@M(fE9dJ4B9XOls7U86Csj)dS(-6CobBt)m@Cg~$Lxy5Qp!Q^`qP-wQrqgw`vj-d zM%2EN=Y6+|&A^r3@=m#!9J&LtlSlsaM?H|Ar&wJw&fkU zCP+e9dgb_M;uRQN`&evAyy*e9;|5GG<*D~gzTd4B$d%`AJr98-Qs8MrfQ-p@`F=o` zf6^=Dq9!h2D7e{&EXYighy9L2kl={M;*$8>ry4&Mm06gM9w7k(LNr7tBQ2HV%&-hq zurVL?G}aJyY2^gJ>`UpD_|;nJ`P97zR1j6l@A}u7N zmYhffQKWF6*v+)3$ZTUp3s7k68ye3Rd{SmbXoT~pi7yWPZn$$f%0FW6w2HKVr@+V{ zTsev)j|<=8eHUxV4uY4qd!0(PPzw&gN~KrnU-1TGu*#+8fe~fpP<(fI0|>9}2fGT1 zq8dZ9QNBqEua&mT?48SA&`EQ=5dVRZ2~?*tb%n6WrCBmJ$6OKk`>DVl4B{ct$Qv3C zJI?hST=VgCT1CF*D1iLu#dn$TuFK}jP@}nIiJ->e-vYiHUBC0at>>DszyPAcmo_}e z7>QD7Z0P(n4P+2wA_e|7P)G*J_k)XG1ZG?njPXP}+cg-nau+ty>T-&Pb$w^CY|XN| zkE>*zc%(twfn;ujI(a=AgS(fJVP_XIqQ3;I-Gn_Qa!581Z^l{SCtSv#Got_GRvYPuF-25=f-L)kb4aB{0|k zPlESehStg}z;Ad$@DlGMeID)4GL77FL znEdj#^l|-Kd_jLMAe|^Mnj+4+*yiwYGg+xaNwxWv=EDSb0^(B@=JIxbj_P`ELy*#8 zsqJlpGYg9JF_etrx(ruQuu-8Zi@9pW(0ulU@HNboSku;G6oVr1iBe(m-JM?Iabh_L z)|8No#$cmDQ{!=jq#b|ku|jKc_nfZu9(SFO1e$lM!wknL!>3W5}N^$1F>Ep*Gw|NJg zn1@G1H%(kGyf#3Orw0t8*U&#a0l* z$Vk6z)>bq4HNh7N(NOsBhq%CCN~-VK)7WYo0>NFzD5Wr}!>EBef-tyKh4YfbWa}|b z9c9c1ZY<}8qZwpoAr9i$kHfx)dJRuk$1!5~5$kIbMci~j`Gw)ERq_W$jmb3ZdB%>$ zC$@cL-+PttCqkKa0eXpc(Nck6LnN6~u+5{ghiNge2cRTPdxn?!!}n74^e078#&kw7 zY2zi~a)H`YBsQ^fu_bFwi<=XZ1$2jcg{muP0@YUTvvs8q?!C-TX%nU2GrqSVwB)&) zA)gL{>TRRnd)^?j&(J^d48P-(2#yT78CR*25ianQy$J9K`m4IuXlYD{<8w0;~Im{iGH8N|w=cL*C5spOv7VJWj{ ztOyClP5Z~dtT$%pl`kqrNKCXtS$&F1fgN(a)N)j0arZn(G4VAr>*H=k%5%D&8-K!6 zmxdeROHwiZ{oLNS0&QS?TyBJxbT2;oVqhW*QS*C$YMlE=)C)@djMlUP&=eLQ`ilWC zKxW92vk!!`x}pG;do<=H5PcHCx_hLR!}dWOjkR#5h9=ZnqdE{?!*x{oamw}{Dv-(N z?mehh>Nu*OI>j1M$i4?YKh)zs+mdMN#Qy8H*8YHw~-VUQrc)!hz!P2mn zkS@V6vfVh|4Nri61p79@#WOrGL3=*@fZ+{Z3Rn;1`k}6wK+N-yjg;NgtiZev$GWfa z{B-hT$qw!kH~Qm~R*)1LP36^;VSJW%(`?1E`-uxrF&ouSrS7jcAV~@r1e{qptY*kz zD>(fT#ldBKQ};(4`ouZT6PUaF&`O?#H>U+*Que}V{12mS^BcJgXG!(sSRXC5cfd&l z3k%yZ1FP{a+wtu+7B^O@IQ?Ceg39G0L1^l{qqVKGVe~6u(jZ{C9A;w=NRPZE^eI#( z#vs>UPHSy$Hu99(U-HNo)88(Q$f_4V!*-+MN(jrTt@}MR$O&E6ufgX?@jnJ1(H~xV zT3pi9z`=*G0K-O##xgnT{;6GOtr1c|g#~#)a~TsAAHDv$sHQ>BO(0p*LBl#voUcwd z3ampi&lG(kT@JXCO&E|vijq^4(eA8>3X~I0e(XGZqie=7-@xDRL>E<*^-wje#&I0h z*q@u)pIhpa*Pz0X$q`MgKr+o{?5JnMUeVPll24r7=WCTJAx{Z7Z4h*T^`;jBiz%O& z$2-@GY1xZElarNa`nJavGqx&?%`G`_0rj5zntMsa;T`Yrv;vbQ+UAJpJJw5|dzo=l zf|#0D%1kVB&K%%m5-ZBt5%T)=cU{_vRZxY}y-Fa*Q|5Ae%_qa9No)dq>gi{j zxbYD_B_3qR!%{!O2h|;=&}RdNuS|R4jEJ{zyN(b9H!*V?sn}fF@ND*l6+Gs%?qHG= ziZxZIOD(8_SQ=H$G-$C~%p7rKU|n;$b_1Sduz!B4OvGead2IjnbA@KJ+Im4PK#<5X zG$24G-(hH8!Fd=R1ykLFeWhpQk9+jg0ETN9L=Dae=$s<`JzQNIBxiWkkdD#RIBP^Y$yq1?Xld^2>0! z=RiwjF&K2Y+skOWafVk|mb|mYRk7oWlPY?<@QwIoJW53_J=DHh@@xe=jL3maA*hlZ z_Y_IaP(NS7M=Cv_B0}Y$?`{)uF`(z6r~x^g`o&#bZx54@Re} zhf5D3q>T}A7I@V&mk&6ZcI)wcE2LnfqWRnq1A0=8vBSFflfp{-Temx~c0Z9RF_-Vt zoJFQV=JE2u=4cLHh}mn32>i7Pm3rTfr7<@eNynh{8>kP0sj(BtZ7ciDyM?i~oHGr$ zxq%qeFFgVnj>$f-e*B2|`(nx@`R7R=NXZ(If=qh`8ZE6isXs4siBdlgd?d0=+=Ofh z(Q&UWLoP)6^!S7k8Bua10BM@~+B=S#$x(W`S-Mu#yW3s9FDx=)36#Qt$B{h~ZYKIS^56<)ZKUsj#z=*~dDP^_$GCV$-(k*KQ|P48 zX>4a^^Q{ec>8JpG;yrwGH{P#?3kPtdT|kLfemzv%?lv3CQsR}|KSzc)bqqbgIrF=J ziZ~lxkc4b2jIS5PU&Icp7nkS_}yy!cy7JEoIP@F@xM zv)*A5Mv{~rVaet~`!mbVPePp)NL6d6@^OudrxT2UljmczZ0K;qSA92}MVI3(XdwIM zrFJ1r+XZQC3Lu&)mmu5hQVPNPPsjQ41)$i(g~T!R)8$=CQ^@`G#)|sn7y-H+Re;hM zQS*Bx+-cA{;I#Um(1ZJe!ss8ivd1?HD&AgVb`TteotG!N8= zn9tjJorB&2O28~#!Z3cP_4P7I>}5f%If1gle9;e8J{P&jDq)%u<#M0+v{igvK39^r zz>&CTdu)ZOGiMaA(!@*esRoR@%QAp)U&_I{nZF5i@}%Z+=7U~Z`1)AD9PY*~J^1Zu ze8oKwr;*Vn=N959Ux7*Rk4?Tw)~azl>g(sanh3E_h%cQ{?y$}cc4uFfiHpV5uyJPX z{L!@=6UG%U)UxnI|9=!Mf593rqn+mi3k@wkD0Pl7|UXks(=yOJDj zY0f{|PdPr_JVJsg#9)mVfeIHbMLKcpNRqJ87_wT2q*bAY-d_AIT2xUa&#&$AmSZ-_ zNG?S~u{Kg%#lVC1F&j`!2Y2Yr+_yeaRSs;$?R7K7sf-}PTCT9pAjj;cMYyct2$DE$Au9S&@_Cu~&GcC`t|& zzDo(r`koFh`wmFVk#Hdc(Ljzs3Epony?++J(bPETBwH>_0@04XaP`&uUwhYk1gERI z3#M8`0!XDlyfi7xu@Ga9r4mHIEqt~4<_{;x?^RWeIhr#WZ$4=F_r6jf47Q0^85Tga#DHI z3>h}zvtZe3y?&nwz>}(MwL!lJFGiOv@)288@AjL}!~NMwN?XZ(h9Kke#{j|!*Q(aX z@qhK+PfYsJ9c*tFL;v7Z7BGRjW9c^!UL-Oge`5t9TA!u22ri2bJ|$V|?qQ@CB2n#* zn@|8DI_0Hjd^S$6-0S}<$AgsJzWG^~lv$BG;LxNy1i~%n zU*yX_U!yUEXmys}JUBjPy$UmMi~&M&@Ip-1b(Tmx()8(d2@g7hG3FV+G9SEo=FEb# z2x3!0jFmJ6stnRUcATm)Zj|xR?Di%!!NO<2RYp4f`9_uFJ4I*)0jHa2 zTADch;w=(RI!OQ@--hseqjH`tjUkpB6t*zZfv;~!+=U-B8`HfJ1?d`myoH2vqX>c*^< zo?*>&;4FNUO~e3?fDREcApqhJs5N~zZp2x{fQx|cQ)H@RTmh@LVnWZDOpIPR9ZL2a zi!qzitNf}B=`*D>U^n4igg^Yjw3#!{oRs z5)2_ktGu?9xFX5ZXJZnG{I-<25Gm5pVn?EcUF$WCX(a#oT19QuYB&(b3wze`7Oo=( z)Ir!W3>0I8Py`)`@;3?(2bX3|51QoFi^$eJFHeDYZ3ry#u5zjjGJAF~mjhJUTqVbl zFy_s**S=`iKh3c}0ii!${U11Q7>2K9S%cSU=gITFi(yEek`Fxx%;uV5&7?h0&Q57E z+B!e=+r;ept6C{cAkJI(mNZ?1WgV;c$Ekgnm7(^a>f5yZ;?!}s3hFlT!{CPr?#B(p z6knaao8`)l9QUIc0?2BK(qIoPpm!-D>O5VQR+z`UUymMDH49@xVGN>GwI4urn-D-n zEbo;e(;Ly_db%e8nx4Qa%Iqw3i?u}qG(t>xUZt=%xqg>xEAZo~<$2qU zV7yDqVq6@5K-{9iwOow2l~sL8&9wB|r|Ir$xKneRtlCK%V`_FplIYNe0Xxw9lEGSF z%ti*zO2#N0ez;SG@u+QuRBIIJ(gEvTi?-TDK?rreGBbEKObw32S3cii$>mErmqsRD zyB7e)OL765X4E%Q6eU8u>H#XVcSVABO2s7erz0C2dlI0^CEtE^x|~+w#){y^9!-DD z5K`*=ZcCsTfE9gLB6&l}7B+k8_vJQ3Q+IzkTxGa%nlqR{ET;ICC2tt1y9(OIzvk4e zLE|J_l`ay-3XFV;&EEre@KYG}Y%-Zcx@$>kvh?ovGsLDQ3SCqudJ_`N>M|(K12V*( zygVr_cvV6D1IDtc^S6o}v!6bqWFi?JNcswfLvl$^9T+2$VZ z&s5D(uDR+~W#tz*gW#r2%jlcYr}Vp%H7n?~tx`K2)v*U$IWk>* z{Q18>oEMAoFKT1w{bzHdj17{G15%QXLKQT<%|5C?SszzzDP4t!D>z2s3Mi<1z=p9i zs{9Mw`^TmXcNNws(!}e_Cns&L!#gMKFGs1o6{^S3%NUz6_s=tsk{$XMz`N)OuQ%*d zmFOv$#|~Z>v#yWMnjAhF;+@+W6U+FnvOAkq5~>|{iTU3FvQbC7oiZm&N+&hrGOuiJ z8_R9GA}?*Ks$!g}Z}^(fj9BZhpTe$&h`8JqLNG&B=I30>ZLHH1iyH!Uo$#oIZkFbx{>YXW}t*45~}yR_cn0X zRSTnS%=&l9)nfBalLZ;>#S8MQsv{*LqDlpRWk4D^!{~<>T&4{cGC?z(%v`my4IA=m zw1er3GG@jKI7s&ngP4Rly6pqVUqu8T0tX1PbPY5Nxm*th1rUtFbeO3&Pz(c4(bBdL za~c?c(zllB5GrH^#k8REa+~Usa+{mwB$TnT4h9*D^_2uuvQxm#sP{U~r3|UH5YD#; zcxz<29-5OQFeXhnjg;k^h(c4E<>~y*W+5|pkgVT7mcgU)k{Mf0Zw#kiI;Jzes~d8e*17Ql7a z*~YTD>QPdTXVpfE*FLYU)3_=Qn~|r4>6ea-Sq>~FJJa$@wQsAAR1-64ok#oQZE8!Q z4Asw!%ALFR2zH&Q3&@CJi79nG!$)8LZ~ef}9^4~|1yhC7pU~LIquCWfd}^YyFDh_} zw9}w2?uxSno(#pspBQCWYNEhAwhLhl2ItsYv>S^h_Nvd`eyM?*tp&I8n0Rkd{`aEh zcfFdcF5p~qyM*~xvthMspJB!x40uDB{lAOZzw6doipC#&@;*K-8O){1PaQRlVp&zx z-zu|y4%i#L*=y>1x&R#C@?YeByFP7`=V0x}x)13tY;6vYMvXd_bm8e+YlC zzGl?URGyqItgR(#?<}mR-@xC!M0QK;HhYawhyCM!HGlbuS1Lp#{Mqkn?0uI)&8Ywg z$A#{pF*KJfw@+)wLexw1qvK#xUay{K~&)!R8YA(i4}mpu|hX1%G3Y)Lm8`*sEO10==5(ic<9n^_bcN z|6?*scpr-Yxdc5nUyJ`<{`tvdm8sBol>Qz|TcO49!+<2^KfmREY0efV#%`r{ zpv(=ATKdnLpIeezR^E%d`V-!05&zh{<`rJ6ql|B;g|~$nnz)V&aPcQJt8XkWjVQ@2 zjj;5Njv_7mET?%J%$rwgN*RC95Tv57`M+OFkZBLLm)dvPJF2lmmY@!ISkx@qU&X*> zNDwLx3m$!suo_>l{&IMUt8s?TxiDG}eLJ;(jjx__m4zE99Mf@yOkJ+hc3jpq04m ztqny;h8}EcLyVuzU>nHq+ZO1m{ha@Go{Y^?5BZH(i?H+*Qj3CXn!E1T@pMg_nl)n= z_r8gxE;xLvK#?P+ndcE{pm zDnAq@S24NX8XX5;ICUto1g`sX1Fm2etkKcM|6}IiZMl@6-sQPoB6~Om0cYB4c{iV& z4*V8unzVfZd-}E2y|tR&VN=Of}}ChwdlKnOWl@m+fI2GoJ=dWYKBlQO@9#p!sEujw*-F<}Us*wA+ z#4fW1|A!W+;|?#AX^?A#k|sr#14Z#oD*nvJDbX!3{X=r5dis=w`i>K=o!X@PNY>|h zQ&SavSc|7MR;Q(^3%7HMR(2-SdKUhr;2$EBRNMIaW^VWDv0`qv*vZkGMXy$y&~y)B zm9H_K-(Q)DlA1Q-oJb!RMLU6#AM|6RsI@@c1N^FP=PQa_1127~cMl8PXs?zj6*vwK z22YXH>WEFQ0fE!4+;Bf8U9TCor|=Pse3+58g_OWdj0=Zj1s6;z2Mh-B2054OmZU3aw1G{BAhlH|0R{yokRbv%Mj>Y63hiN#*P)k$TlEt zc=k(b#h-tGx?o1xv7#8+R!JMK`;uz4je&eRp-Q44e%}_&D!b<|gImdy9d~|A_71z0 zST#!}jSS^c_Lnk}7bwInlaMiX#z+KTOF15s9YPlWPi3TcOd*D#oGv;$zIJ^(gX^b- zArqAyLH0L#=8qV~Z@i;7>K~#^@Jcqus4!!DtmzNRK~n=O#g})#eHWL8A}>Bi_7k_jU!CiIPoESv(PD?gbPl0GTH zzbiExJ^0Mlf+4EERGpfXI~Q7-za)x$Sie{wan)Xx6IUmAKymFe?*R2zN$QZ`2VaqZJHg6=4uxY zHQIAg#kHPO6T1frNy-T6d-pHn$^5HP5xBkBJ^z1-@y5lV?#g>^MaexrSdwkd+kOmcFH_Zzu&I>e=YxZv4@Q1HIQseEgk$bB z<>(s6IZ8+aU2 zQ&f|_4;>nRTHLM0T0Wb7Jg9A2o{T+RfBhhhQK(8EcXN(Ws7@dEaE`&&98hU}B~IEO z410`~hH{wm^l+6ZkCF5Q!P5$)FnYPLF6zp@-y0X9T;gqt{&a~Z>t7g+d zE1bZW^F*wh*ATlG`BgKXIAQ5xB>-V|froEFHjbCd2W@aY8aeVko!GzwwvNcEF9*zX zIO3{~Y-z-~qp+nfh5zX|YB(=4hvK?8E9RCu;^L zZC%dVimRFAh63B1z*pTZaPv9q>ZV98GuW{6RnH}%)m4>tODzkL2bvA+Do++}mTaYP z!{R=y#Fta}7k792tY*~J$(xu9yZM_}S}PBW$({9&XVYb*?95Arljo&pQyvdWbBb>E zRx6B4%H1wnCe25jCGt5b=i3OXnBk z`KU{CfV|Y|og`9Eeh&drJ#JPwZxmc~79fY$eIcFkK#;}bFiTLG9DFE@b34^6N}i8+ zVyR6~@GzkCvRRpCEB^zs9pZTU_sA}VPIhnGVHN%G>0;gsp>n1GJrRra4w~&IvtXNP z(cOYIrwG1+&qE*9ZO$k#a?Sy?YKPy)PXR2-`um4?vt+iMmbQ{A(eq|ERVYN7p5=&h zZ0Z`~yc9!b-sj@46#xO|RsNChhfp{tcu~Dql$KT<)VHw3Kc8;qG}sz|7}xf2g0(g6 zl4JhjH>z`f@*AUVp1W-rs5~pms|F6Ytr!M_@PZs~ig8{Uf7KEE$cE`1RodN_K?4@y z=d%GG90qd;8Eyp{3ItyVy0tJW6YnF4xoco(Oq~S zTxjkQZ!UoTMyL%M(BB|K|2pU&v5s5|Lhi}i- zU1|^L(>>8Gum711Xa9(g_P_KuX#VAIbRBS8B?=fAn0JgO18lOqA5Dx{5Wc(W~*j$;Pl~#xq#0Q6g%p%cqyibLik^Le84rK`~ zUj$8N->-1LePcpl*1+3nsz@G%gfD6QmV=8z*0xL`=|Y^?F^OPkrvSY}mSP`~F>5}3 z0;U9ZgULs^9?XJ&=PizkS7CVip?|hB7ySH`!npzU@=IXd^Dh6(aqs;$A)uz3$IB zW4?fN3cgXPmYvrV?=)Q(^0UFH*GiI!kF(Qki0sH`)avspOLQ(aRu$SuX^i($c=F#4 zk`bh5O3|(>T+;N^req0<<$OZauG+;geIoSs@e zFpVY7?W&iLZMu;@Rz)wRJTC~LxUFP4JS?It|3|C(U@4XTzw$SJ_9g%JH|YLHf8+GO z`5S0Jf1}VF=x@aT^f%%(VSf1=B+{NheF+KeDOCpf&NDJi@#C60kTw( zktbRI$$fX=#oxGn@i(|?Ab|cxr&c(V3d{O*abd?Cfp>l$Ljb+^AO6O-MVDXx#@Ju} z27nH8SnAQM8HePE98-go%V#{Ir?>uh##BW@{+{8yWc%7mh+pz z{#%D$r;}H~T2}|!@r=W>;9MiriFDknD|N4JdxDGbIB?NTYCARNw5xWo-#)ufqHbwk3?)d%Uk7a&5qtgpRajwF3s{rNsk}#qY57aztMy0xaTl+0hS&^B7?hJ(IO;SO8k7HC0exFLUH|kqjA;db`x~tP;cqy-_#09{f5YX)-{Ah~Zx|T^{SDGh zZnEk+pueFSjeiIWx6xNj$%e&#^KXA60InyV4Cd9VZ_DeDNs%vdG<|X+|dOd;R7|-78AiS8D88x2k2Ejg`$uYgzWxGcmfh%$OfmV~!Op z!u8nTdsqhT3X#;$2TOY_hvcG1DX>{GN9}91C24A#^Ih-5)YY@^X+jX5KGp<0ns%R= zQ92}XG@{OUZuy3e>M6@{LYI`#RIjGm-%1le|CnBF8zz}M&GH-j(RX{-xzg3_e0&=% zXwy3k??x2zRO2c>zL*o%`Ow*lGL6;zBrV5T>=tGBfG>KS)s{FJ*d`#C)Xhew%Piu& za4ygGLB7S3Fr&FemRJ56XOF-n^x2H0EH^=Lp%X>!MBea0xRRu1je`HJapyDuCl+Vi z_gjI}HAQ2eeq0yt<+NjNi5(wG^KozvqU0iFBN2+^qReVD(YWfmwZ>rvj|v&b?DU>h zuES~9@W~nprRjX&p&FCzrf21ORPuCnqH0k0lEFcebZtq}4WW1FgZ_f&;)0jza%ZXO zOhEi}q0Y3t!=1)vwEJg`HM$U^r4Tk8CWP0xd-RCZ2txgdcVJEg93YtZGy|N#4X2+Z zWgOTQPVweGtDpImfXR1AO>n*GkYKjYW4mj8B7f#nXp)lC2I^9qp>7BE@i|_n#-69* zf|Xhsb6&d(8uePbN`50DMN}d7QkL!A8S}oFb`*g@-WkII?%6B1>^Led#h6g-vwNo{ z89`j9!6!|06UUz@c~Z3tWF|)QNfXPG6tzUauPuZYEz?xQNMZ%C!V&BUzBWN+?MHT?%mszzMg~Fn37gWu;^fo8l)c0fm?J?x zRoYAn4SoM_t-O`Qz#oSugL7OHHAWL&v>ZUyhh44&=|+b|n1)qTfIx8-oDlv@*TKc9PsB8 zQ&1UO96UCSPpl2U~~eNPm7akX(X;3gsu`9 z6at^A{e$Su5(y1Y*F4wK*Nw+o&8XsX)cFhm4(%-)g0|WaBQ@f9Jx!GqsYs+OQow+B zKiwEY#bBct@5TH?hRGP|90AoF!QvdPDkqnTs zJ%W%wy5S7v_*mO`b;&*H`p1L)avebtWD&z~Sh+0cNI&OLea_MM%0hqr$?;uM3hNub z@=tvncMtFBqh9ATq-Z+AVUymQnknzOHT4WQXOezrS z?O$3~Ce)%}tf^Vl>Tjem?i1|MlIA=3Lt+I6HY58V5nyPc;NM3C z5qL`1lbp})hUw2Ael-L2(DDEFr7Fw~fxTkfP!Nlq7L}b=OK035hDH-EC7T&n>1*7s zGY&E)$3oQYHOHdYb=X_OzLoe5CC2<->`*bw^($R*Ywphm=zG?+2Je~Rs}5ZcX5-lJ zF|X=rH8v8NB*WI(|e zP<7WC#f@g~g>;TRbldD!;zDs35KZLPc^!_=^Cod*1&NZtX6T4;cvc~`0_IJ!OcpnG zr-lI?kwL0MZ4vhMSa8y=LPIxaGaqY$?{WA#fGf1ZMT^NR1Cz(&yNO?j&e-OGYkN{~ zH1quDL4UTjT00a531KVIU#!(y z#H%a%OpunEL<*K+KQrPj38G(0eZ^J+-lY$*f(cf8C}O_heOO@>1rm|?XDE(}ZqD=Q zi2>dn9r(Hj%`>n)>ghunIGg#!3Y$^MYaW3SI)ty8W_u|@73X@}0316Co~r8AoBs@T^S%eG4COexQeI{{Dzb`5Bs~;Vm%rm z3{nz?lr8(NgwPsbg@nBhHQlM#wMguvVy(%=cSEXvWO>WDR=A!p~OY*aIJJRP6H07}!1OxuXrHB*NWcKyV>P758%*W)$ot!~CmA zfM^B^VihG>HWk`+V*4?a8YzBEEA zwbMwlu}Jm%2tn>i0|LqLuj69xBHv}u?p_E{C-Vt?RoAzGv+EB3q)+iGDfJnrq*- zXhecb(yt+H{#b{W=u@wgITblwCO}c|%kEhrIwZG|vQuZ8M{RH-Nb9!%0=rPg^O42# zu@WB4_!FcDv`-=#c}B?NbmS4k9d2RbYw?YnjLc2sOpj0}inDhS!k*%elvnS@{KD{o z7loqOBtPV6-Cm9_lLDON`wgR}SbdiW(K-+n(T4d;)dWC(m8qcYX3(RMkURlD-B)RW z_gugxm{5%io{)eo{g?#@CX55QM_|xND=;!J5`SjhBrYd3#b~Z`!fQq6iTP0nBD~d| zRRmKj(BD-fJ+)_5E1dglGNvqHWox{5_{VgCJw}E>k8|r5e$XUMnlx!_+iYyxwr!^|8{24X+jbh; zw$T{hwCA3C?wj9vzsWO`Jd;`ftu@G3T;n9G=@e( z3i|o78S1E5P@=NXhy{L;4YL*=sgl?#>nmso*#hQpviyc0^_yRpz}40;ZKBI#-2&;c z2*fju8I435PUaXS<}}@e^uJ|OQT^7M4L(jkK8G>4jEf_dEk%AVHT5`yJyUR{@wmFs zEr)jGMLg@zu6;k3xL(nO@wlD8NZxsI(D@C5{Ej^}SC1er8`DcI6pA?#6umqs@?e|? zjok!W@|ijTINqo4lz8xsGUb_Y=}De;0inB4U}(WU<~qZ?G)8O*-41u?tRGc*erH-h z3Ru9w&doHXMyV?4pafv!t{k>o)pXTTUd#Lf@BaigLqIBEy#I9bkqy+M7ZM+|6c49t zg-O9Dp3?9vTLI_lCJc0` z+;JFI{)R&kAv3I;Dmk&z8FhtL$}Z1k_^n#s@=x^}AVY@Zb5MI5OQ%7pPdX@EBTx6; z^8OTylUvCQNNm%3OQzrV$VLL%2ePF=p52e6`nk!+EJEgK5Y=hH0oe6Eqp z%M3JZ2^y5I!ey@8p8vCxIL~ z9|*zE&pRx(c z;ow~^bj1C1${(>TE-$)}!FbDy)0aZ1D&^IiSp3Rz(w7MJ!G%pi>#ZQ_O&Vy}^q}#4 z_(=OP5%gbfpkR-YpnSv7U_HqpDwEYoxJC1!sXJMvS5H{#ya(X{@fmMm{Ag6LA8O3D z#EAa(mYtt<8l%Ovu^KLDKOh>tYXDwVrW^ zNG2GJjz`W~74EHXsX1w9Lqj-orPwGS&yV!%% z9n*Xk8x|oJLgnq9k2I)goOUApd1hWmbg8`?r{5CtUh9YiV|xZz9_n2-I1Ht0Ol$9J z@1pXrBg6akZaR&-_(JzN;1eor=|9O`(kC+_U;9IBub6(dOlm&+YQ&3riiNc|4?Z-h z+bU6@+Y14yPH9|&`(WE$aJgN;sc-G5iz*g873S` z8==zO;km^Am1`~8=q#pVS9}l$1;eX`d)vi{0V@A_I-}sct+jPHg`0}n$k`odV4Xhb z?0z~UgDFk=fpm21!`3{&0hj#c8G39-YK6#ShH4y6l4#w&8f zG=yy={y~x#Ov1Foc6Qccz3wri=Md?wk@JG%7gT+3QJ1+UUS|$r*>|7 zwI_X$Rw{3?Nou51s=m=RVREUWEvusY6x9w{EwX*fq2!kEQf;Wmm=*`j<+9ao zBeI1Rcn8MuYs!|}38RmQiv`xEYD{@^!L9K_`BnPF7$pi{>+Kg;>F&Z5*)WzLPELD+ zs>F=-*?**mvj?%2_TbnK(Naw;+NAy=xHE&mcfaUW^`*o>OVjJ=@JgZ@SJr_&%l{n zFZ5V9jx)%5N??H>F9jR2&jl}o#R9p&wj1RHB6M0nW6O)O$F-HkA~zdy@f${t+;#4Z z#bc9^!itTNX>@}8)D$rl)|8!)+L)+#Vy#A0g80-F0hPy;ouFE|=!kc%J24gilpVjC zmFP(N&nY;v#xeeyLH^~EVg8z*{HcRIYmu^)ACm^JEO(DBcQH&^iKr~6rtqkYb9d8f z9YjaKOq&R)IH#sasFZVeQ);0_MvSNE38|QKcN1z?$|w!mRSnx!Q$+Vu6$=jpnl<}s zp8Q8*U|4P|q?g;w=Q`Tku*Fu?Nzbmmj5&g9e3zjDY|})d`tuO;Z3_TK?E;F5;jGp5;TX_ zd`m2)+COlL*)2R-z>DnVqq9a>zQZiiP?jy{49VI5QDZ}xYtb|V7862HHAoexVURvJ zf8j|k-X@OAxD&g}h&lji&Yi~*Y$qD(*n1?Gz|T25cFz6w3vmo2Siq}5D)FP{?3q>Y zAkz^}RdwXlen-uoyXsYugnnjm7l9MT6=AgFh%w97v94C-wk!O4sBA3EB;3dJk69a% zTYyt~n4>w~!n$QUn`MVdL}?S4uEB|bw0jpl)@)3j*Fl^oIcu6wt4SrRH{Y<0Fc_vJ zTK#5ASLR%gUy4tb1s9n;MhiyT(}k}n@uxHqBmAmrqe&_>m`TtAx|kdGPy@Ogf_1KU z9kQ!l7A4d&*0)z=ZC>|DmT^X3AIPq`L0@6*>)%crv==HYSPn))F4 z`SA&fw@}LLAQe16O~t`H4pc8eY2XAL`$DgHCEm@pv{tO|a=Ikm8HeQJ4etvM-k$pj zB#bcAq9Cgh4{BJ;qW6p9mKj$(6EY|ikSc2RJzs3|wU?uFS z=F>Nm{9!mttTX0QeylJGs;5L|v;?K6xghFEZEP|pHpWGZC3Xff>{?nH+`JduLIt%g zgz+{CJ?i2LI50J%xHA#gM!rxvUKUU}4z7mA#4yd`wbZ~mJS(%^RB8ZY&AU!keU^~h zM?Y8yVe^vW#MIyau`*7@M+sTF_@x)W=JRV{FdEpY} zGL)+O`)I+X#8-37Y(sE~L((5qUBX%mnxhV=va4TSvWZ*+jP)kF8dcsuMH8dgKRqR!vXfK;r})&Ayj^0kcb^BH0iqcxS&QZ)yJj`|9uJM4K0v z4y5#D7mJ?e_vt^dy?kI<3%qt;&idhDhL?H*^k#Q0NtxD1Zc0djQ^2F!=27j%6*cDP z{YLwpxNj`D*1%cj-r`c~r}?<|xn!dVphE2TwHO2SUz#LczC{}msti5*A?-I=ymtHW zBd5p$b{nM7J-ER1f_rlpU**st0RsYR;skICvokwC8^y*d9Aq1V} zAaNpn%BE#VaC?}+4$0K9XEOJQDtSHyM|74;1p9;M!_)OTJy1(tMTPZEN%>)h`2)>c zO2yLy2$+MQ@k7c<1kEL!>WT6mcH@pkLl7aQGQya&gh8D{?W2r0(PiWF0)Il7vd9LD z`_tyM`3W@93H0~$?aF10udVIT*$~gOlMMBf_Gt|VJ|-EASWAPFz?`|6tktJ63_A@z zYm6d-bn!^L_NZ+F(sNa-Q%%I*aP^SBbkYlNQ7|WdM|>4eCL!8 z=9CX;lWKtC#?6ZOQRIvBU1$?x1@VF(3emH(0^?;PN3VH+nd?g|{r41^q0FXFegK|d zr(ysvt`FJ=kR)DQZ`9g2)LL3UYEc{;rGoL8iT(CGSb=LsG*HW(d>$OR2@Nv$PRYwf zzzTq!@o6{Kca=UY8%IVII|xErXC5GXh!1eiVn3=dzV3|C-V~E)Kd@%YBGBa&HuPU#BiWB^Xg3NnQjy&m&mhxFw zK(hjccIhh^0h|k%{#wA|CM8)s52WlN>F-OGlL!o*sna2@^TVYGtt>lT5|0lELgQ?5 zTz9)t{`6vi6kL0V6r&lrL-uQs1Beg00|=2oL5V;?=;00dk7S-q@RafolGdLj5y$cB z#iDV95CE3f!^VS>m&uSVs>x!`DCB^cko%NuQcz;b-Xq2D^pn9A@)F7LDY%LKzLdBb ze1u?VIf-axIiMtVg1SCHAtrT}jWHnH*3qZ0Q9JlvC^~>B6S2v!pzNo4pO9>soN z8O}hNJo(_6?eLkT*kGhrJ>DQ-P%;}z5Hbt%!`_cAKv3Pvz)%|TK!TfinSh99@<0L? zJ2VcMY>mH^F#CG*z%ZsRo1`osOTvxQfA>(CkqRT0xqxK!N!`jtcB-L|AJr`UuvtQ4$5q&^bM;dTmG zF=Zq-Rwy1aI8q}tZB$4QTIz1DjBNse@c)$}kX;nS3zsG3`Dp0rxI zK?1%XI>vfCzR?lQCYRFu6OW`sIz_(|)I~VU0g{4Lts^4Tdc3czx-j zt!R05?di;-HFmaqyE*Ib+1gZbyGvJsQ_TPTW4U=T(Q?J&Y;PbapPboa(vw-4ukoRM z1=~nD)N|d@zOE2wdG%IClX>XUwu2^BdrhI`@z9RgSlg*}b#1lbCE{UrE336+P4N^K zwhGs3OnP9^;%;`cu?$vJepPEsYedM;h}wWBN}B4>T5!m-WES^lheB)P6e_qyfm z%6XifeH+&CrHbO-$etBpH9)!LDF1X!zTb;Wal{Pe(7HBs{z=~J==JV!sd?%0oCc-p zER{^noiuW`dhMlgwf1h3Uh6u)nF`1Gboue{_^763=;wx9oTY1>$x%V>VQL;h*w_pu z;9$J^U#|*CGTF&9Ftn#`Ey{pUo^Bd<&#IJW>wWPlNa+|kW9+0%NUG}U?YPhs( zdAUv<-?i2veQRIhHW=#D?x1Np+Wj;;FX_1Q`Z9pm)Yw7Y1d8}}2P9cXp`REx)W_{* z2cgzxlbMadlWNDnHqp^x3!&CwlX++Ras5VkNugy&1*blht?6C_!x_8fVkYva2`6uK z#euu{wRP&({%QVX0Yz1k7y2ENpUAf{N>(8e4=E%}$B0rbp*iTS6`=GwAFkk|cCjCt znVH4V0+e!t%crlxNz$7{w! z4#O8#C)g|9bUYQE=ZhB7^yd@uh`tPQqM@IhS0@SNW-D!q!KFGi>rG2XT|C=4%N)#P z=VNVT2qQ^X!9`e29}1=kbzPbjVcm9Jea=ngj|NzifoK}EW>Fy1Px4dfjmSyG2&n=> z*a95IKCl1f2tSt>1&tHBN-;JP%FO5B} zv@tzB{zwkwDmYms7+NL~$6rb#x0IogO^MjZ^n=y&f zdAm3qqByXA^dber3^#&!`5(SM*^xgFC6o8lK&*Gtz96ibT_~|QfDuHfn8{$0q1cf} zL=C2mAI6N@HRanIjixI|moC{2YRl!Y#CD=mI+8}jjesEulZLR1+Cz@)PO*`Xr71{{ zp5q0J`fW)d>sQVgYkfads4_6?w?DUMz(q{u-TxZ)Y7$$?#M?utL(L=o0hu+I=^@Sj zM0Lz4U+$6om+z4xYP@5zSN(Sslk@e31YFkGZ=KK)090tlk5cq`h9j%V1lF3_Gb9) zLwFsck$V!p`jrZ7jKV+BQI9_YMzQh~p{%^}n0~BGj(#|HY0w9wgskA=dE=PBgrM=o zyLcwmd+eFVA8-qldzs`J#y;%RXa(97e5ePBJwv5b1abS(Rf;RANGnqtd(&RI#R{

Y~w&Z3~5C5(a3sKM@kCj8SjiNe04k*8(bVo$_v~N zMHmcJ&~{sAqef%UbWOkU^2o)CYlqWtA`OxmI>F3m?>m}kEH$VgLCTyG$KD}SwGj&m zG4{%A)KQ$EE%7oSETj;Ee9%@IAyRZv^dpy_Xl|j#fRDhpqw}TPk&gLefQ#1+Z78zo zr9_MZlqH(SK7j!{fq5q_=_BA^T}N_Zd*T%U1uKOhA1ln!Um*X|Heoj`e`F(N(;_Kl zm%mgVdo&uNUP>mA(Jy|T zO0+VJ&No>WeRe{mDjQK4+|21-yy)F&$R=a0wR)8^q_oDglIQJ!bldZ<=T^9keOuax zHU>@Kzn)~?JUhN`Ftl&r#EjK+#3<3DOeY$>cJ6(3R_DIy*xGu?vRZa~Gdyl5XI7lH z>|;N))NCjSKU2Rw+vw!>lZ0l(zVMQy{Y1EgxnurTy;U}kD#9xjlsxL zOUad)SS`xNFXVk+q^9DZlcUuc)U@i1uay+{op$eD=0M8GVq&o@@1ml2aVUzVnbZ4m$Cxr*wC_pW9co zkf}wQ-Fmc(!m@c4;MA1E19O@0uQG5ClSReEyu*DkhFKr|Xx_*o+R(Emb@`W5U9U+9 zUmUkgMZo=Pcm(P1S>o2d^Rje+5w~}DDc^q>nvjS|Y|MeTAOIUMu|eYOqf@hU;0H3A z%Z3~@N%u#Og8P03<)&L}QStH-1Zvq!c-3DBM_((HO`$XO*H{ccc{~dcuxkEfVq)|ureWVuUNAR?4bq=37Ll97?83* zFyoCir-t(bA@zosnRhtItvpASi~tCufiEO=VvlV>(w&x;!@v<;Y5C`pkKhLsRgXBm zJ!Pl{BQ3gSl7yg)jCP!J8^EP8=oU{<+4$(0co-4_J$>6D``L#0HuDY0?EureqaUblL8yqCxo2jQb_1bxcM4P`=GeBt zSfWaL+83OCs2l;($I^+08I%XPy~(@(QjSJ^SAqS!mkWXda zA%e6z{Ip4XXr1un0@sOzT75-&orOZ^#VUlLf#k*RJ2^C>#EaD)(q+NlJI8-wt@g3y zwh~{Eh|Jo5c42hA**TfCdmQ|c+JlhmGJ0|p6_V6h4qs#*F(~20iV!RJ#_K0YxnZ0i zeWpjHAPRHb-U&)xjE{a{Z!fCBm5hiv%5UfO>R&S6C}td+Hfdqap7TOg7OA>eYG;-qdK=L)SZ&KvB1R#>%CL6&_0 zM_JMz|7(TC{JX+RSJI44`R#TMZH)p4YAb?m+ARIFXY9nJ#be=+-~W?=#77w36|Z$d za>1b5WiHYt$o;gmZ`WO|yIV3SK=A3PRL24GBC4E?R_TbHHk?~Xab|?uzPd$x(JhWd zKn38vg%~bcJM-=Kr zh9cEuG3Qp2e=t>%Y>Ay+@O&b#q(hTISlLEbO7kQsqKpF`=Or^}%(`+m<_Os~IU1O* z#8|ny{X(5Vk`w$zf~9Pf+ibkCN=$faCZ>j>#SfKi*4u3>*0q`WBR9I>WN)bNgm0Qg zR4nk03#N0#!K=^Syk^y(*_khRK;-2K|i^S-~^qVDPEoy zJv-S9sVqyA2EXJm<|&wu#hF-N;nS+X3!=O*^Wgz;;8?>1r@jxG2wZ~(c=Id64cIg| zxXzC^ZQJYd5a#@zF$WXf`(dJd6C!ju(4{SUh#NN@?!ccv$ZkG!QG1N1whXijr*;OW z;l4~9!9!94UqTbbRdTu+T5;yq93K0p4~JJ2UL&a*&_r;_i5kQ%NeXgSZH&c)e_M{D z^5jPx)<71)aueACb>C3Umw-__DhX@Tm7X4(p2>dlm-c6ZJ|*{7V7L23XJWQg5$B~% zhVeqc?K|Pv?IpUj7wEMhxzZF&WyfB3aWETdNL9MsF6Uz0+yDGAj<8jZ{isd6oCX0F zBgHY$XwKtVh*e6~T*@ZC)qNrc20N^u-#F;hQJyLeDC?Yj(ZVME2Uc@ikFs{Pw8~Cy z=`6@NVn0TaUFdb5!BUKJe%|e2hPY$9b`GEBJ+4EpRc4s|BG_Zvc{^T02he}2zVIb= z&oKlL&_n?c5MXoOZ_k7F4z3o4_P_Q0H2v6a>nq}bc7Sbrebp|86GYOY5%Kg`ZMsw} z?9;3_khDiuf3CrLk@O@=i2+8Gs))tJX|6cHx!b`N`+%3IaJ7w4>J?L$G)34*7qw*d z=z>c8?jywX%1WyQ!v##{C9ymeT{Z zE6_#{UnvFxJy@6uy-tjS=rmUMM0agKz}>BmGUYkyC7d^xjNdi!MxUGe&JzjiO=#^;Eiyl zGyC$<2x7I$Kt?Rp9eNAf+}_#32$OpA3?^x8l|OZL35v#H#q^iQn!Wo6M@j0l>hD_7r)aD87FUEB(_)FR zrD7r~a{Y0G%{YO&sJPr80csefuFhr|gVT-P!DUU4wE7*cP#CpX_+pm8<>(74E87R% z16Q9QzGb2}L|m5-cn-c34Z#eh`JdvK@fGl(X9@0)zHkJ594)-Q;CUM=4sY+4N%(f! z_N}AgjB05GbRA8teEZ&$;ah^8Q@}O{qr+QFZfkQj5K?VEJ7s-Rou*IL@u&ZAR#VI#h-`WH5KC$ z4Kt>4TrsJxDT{j+J?fQi%?_O{;!4a8ot&_v@>i6n$@t@I_YUJS2sw0|hh+**b#+4a zFTcJRWg8%@>mOO>dh+cWXS@2oY7IfRlKBkJ@ShfFflN!#+|3+4fr^Tt*J;t^Y}Z-l zB839BQ zL=h;+tY;9!PtR-m`B*Q7d2d%E!drtlR12ef!Fv$;jhtfcQe5k`k!WnB_|D7n8vadd zLl7{DagKcMx2zXxd=R~HWm)fH0G<7d&GjX&cZ9MpKDA|@1x@hD-48`0?lNqxBssdF zkrvzwW%3d2eE7wK(Z1o}!@<$#1Afq*Qe0u@CuyS3v#)m&^#Kh>idwzeB9@d$oq-O1 zP9NB+2X>KWNVNEW2}zH-W+KVDyHIigO&g&8zzv?^i~|A-t>FuZ!x6z41pC#&ti>3b zI62zyV2k9iJ>OG;3;H3r2b$B^nSDi#A8Q*Rxw0 zYvUh5RulpqEKzNJ8@xAlM3|5H>G=hpy73$EhLlj^!bRPzy4r;9oFJkPg-3aw;Ie3r zRF2Oy6199oOM>9Cz91@6tbV@r+!>BW^udc~qUTp*-Tv+o3pb-narHIVwVZmPO@s+H zu(mhw3dv6kJD}EH5yj${w$Sca(F3>#c*uT;&JD@jqe@p09Pu%7}f126R03C!X@oyoj}ViWxzBU{6UlaR60 zn72kezoTor!=ic=COcS}fM*%eZyAQTiLUC1UfA9sxnp{O;RtDyNF&SBRHk0ch8`ii z|Kd9mjnpxR=$iWsl8NQCb!UL4Kd?8#TVZecui29U-c`9em*@7cpJ_pMx5*% z_JOfG*Ln=z9s~G3Lwih^XxfXbJ8_RsBY1k)UW?!-XDLk~O-3|H2%4E5NA|Q`Q7!0@ zT?Y#euFq5hk26Wy1xzLGNA%Ng!AypXfU{@Oqk8RIzt@XCxZm4YU`BfNUAv?%1u1k) zo3H1xVZZTN`%kHxf6J5%sLcAoSw>4u^7hVhr9t>Oq!Z8^Kn8S*0UJty{_++3$3i6? zVDbh+2hCFfZ>TL%)C)pax=_jg{ZnJ`eok_4w0`f+ZTLbbuE`hiw~P#`3RuQWCrtb0 zJd1wXUX4X1rZS*vb26O_+iVqbCUG9BEXJsbUkh-Qd)GvRR6SO64HEXxqBl^{$IbS& zhR#rkzku({dr}C*_|+C|y&1&cMpwq6W>V5CN>82(m@e{vUjM?4$`%&1p}dLCl?Zi; ztKiC5ZO^^V)7PtYSwDEYo+w1*eCSB0%?qBI7lb6Xu6zLd&+bn|lmPGmz|fBbFkJ!r zSNG?)QG%YewfUb(@z`a6eIIn7w&29Cuk2D=R=k**CRKTzQYt~WYE=hGC6ws!2+SUj zLtk5)XpK(9@X0)L3$>R6SEhXqL^+iEAHzoshBU0R2lt5-hC6c5Exse|koR>t415m( zv2VPnik=Ti@uka2=%6sOpu49$m+Vrj2Ke zes(%TjQXR`LS&Ad+jwbzKS1fiT9!~i7AQLpjtUg6j}H+7R}FHK97q;lKolsu4zA3L z4BxX>1Yut>^d(jMY=4tR>UiL4HV(p=9iL}q_66ZTvjR2897q|U{$7BAF9IMd)cLKg z8~{${wG~`#4DB_4e+5RBhOD}2;a=iN=R=aF62y>f$lB^LA3@6*@Q~Mb=$6-=^~7@V zKjsPGC$bFvRDbT5qkmjs>omxT@3K`3+|WYhm-XFCQiTX45BQY=;dW!c*Qj#ATFKkN zZP1+pM0~^77cC_uPkJvGuw%(zA*;q9#Yrj=JFlsq$0XHcF9wBOIHp9*EpzxnYTzHn zsUjBSJQGEHQYb)~u3!RGj_xB|x|kgWVn>mXf{V6UkWrDBEF2Jt0 ziP%%A=&f2aa;i95weE_eJ>J;;HYL!-O_$35VT z6(0m=Cs}eXrq|=w=PWjK)*UaT0{{6rnk|W_zTL+pukofmZesxz%`RK7>H28Sw>%%{ zW_Xchp;wH-o-zJO(Yzv<%KLS?2XGm2U=Tzg zL_nT@1R_rlQ4<=F6p07ijRKx^{wp;|4rOa(qb?futqqD`-e5}=*-H2?F*zf$OjlNJB3E$`nLZ(tbN=@!`&W|WD`rj09;5^@d&8mN;yf=IP zhZ67q|IMmDM$qr$^xoX{AKG!?`;`5ktojqPKh^Df;CqX~zk&5W55ez&|JV<{r@Y@4 z`wvAu@n0!__Q<}cykAEDhhmfSuarNF>hCGLi%6}+v<^M|g zGkN)*@_y#$Z;Cf?WYr(aKl4EEMc;Q1{}Ih=`j5`yd%^eJt$zd~n*TTEe|Ns#3%_r- u{}J|W{UiKeTJiUs_l@2^oba}PZ31P)!2p#b5D*gJrxeg>K\n", @@ -58,7 +59,7 @@ "dtypes: object(37)\n", "memory usage: 15.4+ KB\n", "None\n", - "Datos cargados correctamente desde: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\data\\Datos_aeronaves.xlsx\n", + "Datos cargados correctamente desde: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Data\\Datos_aeronaves.xlsx\n", "\n", "=== Validando datos cargados ===\n", "\n", @@ -4491,6 +4492,8 @@ "\n", "Preseleccionados: 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 25\n", "Parámetros seleccionados después de filtrar:\n", + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n", + "Parámetros seleccionados después de filtrar:\n", "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" ] }, @@ -5148,7 +5151,47 @@ "output_type": "stream", "text": [ "\n", - "=== Analizando celdas faltantes en la columna: 'Aerosonde® Mk. 4.7 Fixed Wing' ===\n" + "=== Columnas con datos faltantes ===\n", + "1. Stalker XE\n", + "2. Stalker VXE30\n", + "3. Aerosonde® Mk. 4.7 Fixed Wing\n", + "4. Aerosonde® Mk. 4.7 VTOL\n", + "5. Aerosonde® Mk. 4.8 Fixed wing\n", + "6. Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "7. AAI Aerosonde\n", + "8. Fulmar X\n", + "9. Orbiter 4\n", + "10. Orbiter 3\n", + "11. Mantis\n", + "12. ScanEagle\n", + "13. Integrator\n", + "14. Integrator VTOL\n", + "15. Integrator Extended Range (ER)\n", + "16. ScanEagle 3\n", + "17. RQNan21A Blackjack\n", + "18. DeltaQuad Evo\n", + "19. DeltaQuad Pro #MAP\n", + "20. DeltaQuad Pro #CARGO\n", + "21. V21\n", + "22. V25\n", + "23. V32\n", + "24. V35\n", + "25. V39\n", + "26. Volitation VT370\n", + "27. Skyeye 2600\n", + "28. Skyeye 2930 VTOL\n", + "29. Skyeye 3600\n", + "30. Skyeye 3600 VTOL\n", + "31. Skyeye 5000\n", + "32. Skyeye 5000 VTOL\n", + "33. Skyeye 5000 VTOL octo\n", + "34. Volitation VT510\n", + "35. Ascend\n", + "36. Transition\n", + "37. Reach\n", + "🔁 Entrada inválida o vacía. Seleccionando la primera columna por defecto.\n", + "\n", + "=== Analizando celdas faltantes en la columna: 'Stalker XE' ===\n" ] }, { @@ -5190,32 +5233,12 @@ " \n", " \n", " \n", - " Índice\n", - " Celda\n", - " Columna\n", - " Valor Actual\n", + " Stalker XE\n", " \n", " \n", " \n", " \n", - " 0\n", - " Alcance de la aeronave\n", - " C8\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " NaN\n", - " \n", - " \n", - " 1\n", - " Velocidad de pérdida (KCAS)\n", - " C11\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " NaN\n", - " \n", - " \n", - " 2\n", - " Empty weight\n", - " C15\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", + " Velocidad de pérdida (KCAS)\n", " NaN\n", " \n", " \n", @@ -5538,6 +5561,8 @@ "name": "stdout", "output_type": "stream", "text": [ + "\n", + "=== Calculando correlaciones y generando heatmap ===\n", "\n", "=== Calculando correlaciones y generando heatmap ===\n", "\n", @@ -9356,15 +9381,32924 @@ "output_type": "display_data" }, { - "ename": "NameError", - "evalue": "name 'df_filtrado' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "File \u001b[1;32m~\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\main.py:126\u001b[0m\n\u001b[0;32m 117\u001b[0m tabla_completa \u001b[38;5;241m=\u001b[39m calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados)\n\u001b[0;32m 119\u001b[0m \u001b[38;5;66;03m# Paso 10: Ajustar rango e imputar valores faltantes\u001b[39;00m\n\u001b[0;32m 120\u001b[0m \u001b[38;5;66;03m#print(\"\\n=== Paso 8: Imputación con ajuste de rango ===\")\u001b[39;00m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;66;03m#imputacion_similitud_con_rango(df_filtrado, df_procesado)\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 124\u001b[0m \n\u001b[0;32m 125\u001b[0m \u001b[38;5;66;03m# Paso 10: Llamar a la función principal\u001b[39;00m\n\u001b[1;32m--> 126\u001b[0m df_procesado_actualizado, resumen_imputaciones \u001b[38;5;241m=\u001b[39m bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.05\u001b[39m, max_iteraciones\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m7\u001b[39m)\n\u001b[0;32m 128\u001b[0m \u001b[38;5;66;03m# Paso 11: Exportar resultados a Excel\u001b[39;00m\n\u001b[0;32m 129\u001b[0m archivo_destino \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIngrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32m~\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\config_and_loading.py:1022\u001b[0m, in \u001b[0;36mbucle_imputacion_similitud_correlacion\u001b[1;34m(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza, max_iteraciones)\u001b[0m\n\u001b[0;32m 1011\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1012\u001b[0m \u001b[38;5;124;03mRealiza un bucle alternando imputaciones por similitud y correlación, consolidando los resultados.\u001b[39;00m\n\u001b[0;32m 1013\u001b[0m \u001b[38;5;124;03mAhora se evita actualizar los DataFrames inmediatamente, y se eligen las imputaciones finales\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1018\u001b[0m \u001b[38;5;124;03m df_resumen (pd.DataFrame): Detalle consolidado de imputaciones realizadas.\u001b[39;00m\n\u001b[0;32m 1019\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1021\u001b[0m df_procesado_base \u001b[38;5;241m=\u001b[39m df_procesado\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;66;03m# Copia base del DataFrame original\u001b[39;00m\n\u001b[1;32m-> 1022\u001b[0m df_filtrado_base \u001b[38;5;241m=\u001b[39m df_filtrado\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;66;03m# Copia base del DataFrame original\u001b[39;00m\n\u001b[0;32m 1024\u001b[0m convertir_a_html(df_procesado_base, titulo\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf_procesado_base\u001b[39m\u001b[38;5;124m\"\u001b[39m, ancho\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m100\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\"\u001b[39m, alto\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m400px\u001b[39m\u001b[38;5;124m\"\u001b[39m, mostrar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 1025\u001b[0m convertir_a_html(df_filtrado_base, titulo\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf_filtrado_base\u001b[39m\u001b[38;5;124m\"\u001b[39m, ancho\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m100\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124m\"\u001b[39m, alto\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m400px\u001b[39m\u001b[38;5;124m\"\u001b[39m, mostrar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", - "\u001b[1;31mNameError\u001b[0m: name 'df_filtrado' is not defined" + "data": { + "text/html": [ + "\n", + " \n", + "

df_procesado_base

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia/PesoNaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia(W)NaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia(HP)NaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
DespegueNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
EmpresaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
kjbkNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

df_filtrado_base

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Configuración Inicial ===\n", + "\n", + "Valores configurados: Rango MTOW [85% - 115%], Confianza Mínima: 0.50\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 1: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Antes de Iteración 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE33.000
1Stalker VXE3034.000
2Aerosonde® Mk. 4.7 Fixed Wing33.000
3Aerosonde® Mk. 4.7 VTOL32.000
4Aerosonde® Mk. 4.8 Fixed wing36.000
5Aerosonde® Mk. 4.8 VTOL FTUAS44.000
6AAI Aerosonde34.000
7Fulmar X42.000
8Orbiter 443.000
9Orbiter 343.000
10Mantis42.000
11ScanEagle41.000
12Integrator41.000
13Integrator VTOL45.000
14Integrator Extended Range (ER)43.000
15ScanEagle 341.000
16RQNan21A Blackjack39.000
17DeltaQuad Evo34.000
18DeltaQuad Pro #MAP38.000
19DeltaQuad Pro #CARGO38.000
20V2132.000
21V2532.000
22V3233.000
23V3538.000
24V3940.000
25Volitation VT37037.000
26Skyeye 260039.000
27Skyeye 2930 VTOL37.000
28Skyeye 360039.000
29Skyeye 3600 VTOL35.000
30Skyeye 500034.000
31Skyeye 5000 VTOL37.000
32Skyeye 5000 VTOL octo38.000
33Volitation VT51035.000
34Ascend35.000
35Transition35.000
36Reach35.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes1387.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 1 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "Rango mínimo: 0.85, Rango máximo: 1.15, Confianza mínima: 0.5\n", + "\n", + "=== Verificación de 'df_resultado_por_similitud' ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Datos Filtrados por aeronaves seleccionadas antes de imputar(df_resultado_por_similitud)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #0 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 36.09 | 35.80 \n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 30.63 | 31.20 \n", + "Volitation VT510| 100.0| 1.075 | 0.0188 | 32.81 | 33.43 \n", + "Reach | 91.0| 0.978 | -0.0054 | 27.34 | 27.20 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [35.803064717345336, 31.201619674835236, 33.430306794466325, 27.19703938863795] = 32.32\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 32.32\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #1 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", + "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, V25, Skyeye 2600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 1.038 | 0.0095 | 16.88 | 17.04 \n", + "V25 | 12.5| 0.954 | -0.0115 | 21.88 | 21.62 \n", + "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 36.09 | 37.40 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [17.041451525056257, 21.624760478782665, 37.402903766342334] = 21.62\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 21.62\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #2 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", + "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing, RQNan21A Blackjack\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 27.34 | 27.16 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 27.34 | 27.27 \n", + "RQNan21A Blackjack| 61.0| 1.109 | 0.0273 | 33.80 | 34.72 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [27.157613705003314, 27.26947572941752, 34.718989390850375] = 27.27\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.96\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 27.27\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.96\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Advertencia: Ponderación del modelo (-0.016) fuera de rango. Revisar lógica previa.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #3 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle 3, V35, Skyeye 2930 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle 3 | 36.3| 1.134 | 0.0336 | 25.70 | 26.57 \n", + "V35 | 32.0| 1.000 | 0.0000 | 27.34 | 27.34 \n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 26.25 | 25.43 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [26.566881229546517, 27.344050412360318, 25.429966883495094] = 26.57\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.55\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 26.57\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.55\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.55\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #4 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 0.997 | -0.0007 | 30.95 | 30.93 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [30.93282942341402] = 30.93\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 30.93\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #5 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator Extended Range (ER)\n", + "\u001b[1mMTOW actual:\u001b[0m 74.8 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 1.000 | 0.0000 | 30.95 | 30.95 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [30.953465066791882] = 30.95\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 30.95\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #6 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39, Skyeye 2930 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle | 26.5| 0.946 | -0.0134 | 30.63 | 30.22 \n", + "V35 | 32.0| 1.143 | 0.0357 | 27.34 | 28.32 \n", + "V39 | 24.0| 0.857 | -0.0357 | 27.34 | 26.37 \n", + "Skyeye 2930 VTOL| 28.0| 1.000 | 0.0000 | 26.25 | 26.25 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [30.21517570565815, 28.32062364137318, 26.36747718334745, 26.250288395865905] = 27.34\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 27.34\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.81\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.88\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #7 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 36.09 | 35.19 \n", + "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 30.63 | 30.63 \n", + "Volitation VT510| 100.0| 1.000 | 0.0000 | 32.81 | 32.81 \n", + "Reach | 91.0| 0.910 | -0.0225 | 27.34 | 26.73 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [35.19179288070773, 30.625336461843556, 32.812860494832385, 26.72880927808221] = 31.72\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 31.72\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #8 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", + "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing, RQNan21A Blackjack\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 9700.00 | 9633.86 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 18200.00 | 18150.36 \n", + "RQNan21A Blackjack| 61.0| 1.109 | 0.0273 | 20.00 | 20.55 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [9633.863636363636, 18150.363636363636, 20.545454545454547] = 9633.86\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 9633.86\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #9 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle 3, V35\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle 3 | 36.3| 1.134 | 0.0336 | 20.00 | 20.67 \n", + "V35 | 32.0| 1.000 | 0.0000 | 16000.00 | 16000.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [20.671875, 16000.0] = 8010.34\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 8010.34\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #10 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Mantis\n", + "\u001b[1mMTOW actual:\u001b[0m 6.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Pro #MAP, DeltaQuad Pro #CARGO\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "DeltaQuad Pro #MAP| 6.2| 0.954 | -0.0115 | 13.12 | 12.97 \n", + "DeltaQuad Pro #CARGO| 6.2| 0.954 | -0.0115 | 13.12 | 12.97 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.97158076923077, 12.97158076923077] = 12.97\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.97\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #11 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 0.997 | -0.0007 | 19500.00 | 19487.00 \n", + "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 19500.00 | 19487.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [19487.0, 19487.0] = 19487.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 19487.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #12 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", + "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 0.907 | -0.0233 | 12000.00 | 11720.00 \n", + "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 15000.00 | 14525.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [11720.0, 14524.999999999998] = 13122.50\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 13122.50\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.93\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #13 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2930 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle | 26.5| 0.946 | -0.0134 | 19500.00 | 19238.84 \n", + "V35 | 32.0| 1.143 | 0.0357 | 16000.00 | 16571.43 \n", + "V39 | 24.0| 0.857 | -0.0357 | 16000.00 | 15428.57 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [19238.839285714286, 16571.42857142857, 15428.57142857143] = 16571.43\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.90\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 16571.43\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.91\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.90\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.90\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #14 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle | 26.5| 0.946 | -0.0134 | 19500.00 | 19238.84 \n", + "V35 | 32.0| 1.143 | 0.0357 | 16000.00 | 16571.43 \n", + "V39 | 24.0| 0.857 | -0.0357 | 16000.00 | 15428.57 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [19238.839285714286, 16571.42857142857, 15428.57142857143] = 16571.43\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.90\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 16571.43\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.91\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.90\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.90\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #15 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing, ScanEagle 3, Volitation VT370\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 14700.00 | 14902.12 \n", + "ScanEagle 3 | 36.3| 0.907 | -0.0231 | 20.00 | 19.54 \n", + "Volitation VT370| 40.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14902.124999999998, 19.537499999999998, 17000.0] = 14902.12\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 14902.12\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #16 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", + "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.033 | 0.0083 | 15000.00 | 15125.00 \n", + "Volitation VT510| 100.0| 1.111 | 0.0278 | 17000.00 | 17472.22 \n", + "Reach | 91.0| 1.011 | 0.0028 | 16000.00 | 16044.44 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15125.0, 17472.22222222222, 16044.444444444443] = 16044.44\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.92\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 16044.44\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.88\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.92\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #17 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 15000.00 | 14737.50 \n", + "Volitation VT510| 100.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 16000.00 | 15640.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14737.5, 17000.0, 15640.0] = 15640.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.93\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 15640.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.90\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.93\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #18 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 15000.00 | 14737.50 \n", + "Volitation VT510| 100.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 16000.00 | 15640.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14737.5, 17000.0, 15640.0] = 15640.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.93\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 15640.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.90\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.93\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #19 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 2.62 | 2.59 \n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 2.62 | 2.66 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 2.62 | 2.66 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.593911290322581, 2.664206989247312, 2.664206989247312] = 2.66\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 2.66\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.56\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #20 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 1.16 | 1.16 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.15767579628992] = 1.16\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.16\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #21 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", + "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 1.55 | 1.54 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 1.55 | 1.55 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5394318181818183, 1.5457727272727273] = 1.54\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.54\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #22 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 1.00 | 0.97 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 1.33 | 1.29 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.96875, 1.2884375000000001] = 1.13\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.13\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para Mantis.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #23 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", + "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 1.00 | 1.01 \n", + "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 1.33 | 1.35 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.0141509433962264, 1.348820754716981] = 1.18\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.18\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para Integrator Extended Range (ER).\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #24 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", + "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 1.32 | 1.35 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.3536363636363637] = 1.35\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.35\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #25 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", + "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 1.55 | 1.50 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 1.55 | 1.51 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5023565573770492, 1.5080737704918032] = 1.51\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.51\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Imputación descartada por baja confianza: 0.475 < 0.5.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para DeltaQuad Pro #CARGO.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para V32.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #25 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m V35\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 1.00 | 0.97 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 1.33 | 1.29 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.96875, 1.2884375000000001] = 1.13\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.13\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Área del ala'.\n", + "No se pudo imputar: Área del ala para V39.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #26 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing, Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 1.55 | 1.57 \n", + "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 1.32 | 1.32 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5713125, 1.32] = 1.45\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.87\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.45\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.98\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.87\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #27 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 2.62 | 2.55 \n", + "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 2.62 | 2.62 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 2.62 | 2.62 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.5496250000000003, 2.615, 2.615] = 2.62\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 2.62\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.58\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #28 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Ascend\n", + "\u001b[1mMTOW actual:\u001b[0m 9.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo, V21\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "DeltaQuad Evo| 10.0| 1.053 | 0.0132 | 0.84 | 0.85 \n", + "V21 | 10.0| 1.053 | 0.0132 | 0.80 | 0.81 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.8510526315789473, 0.8105263157894737] = 0.83\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.76\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.83\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.71\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.85\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.76\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #29 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", + "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 1.16 | 1.19 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.1897828403221333] = 1.19\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.19\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #30 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Área del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", + "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.989 | -0.0027 | 2.62 | 2.61 \n", + "Skyeye 5000 VTOL| 100.0| 1.099 | 0.0247 | 2.62 | 2.68 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.099 | 0.0247 | 2.62 | 2.68 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.6078159340659344, 2.6796565934065932, 2.6796565934065932] = 2.68\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 2.68\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.56\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #31 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 15.33 | 15.32 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15.318411644882964] = 15.32\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 15.32\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #32 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", + "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 12.50 | 12.41 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 12.50 | 12.47 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.414772727272728, 12.465909090909093] = 12.44\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.44\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 3'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Orbiter 3.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Mantis.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para ScanEagle.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Integrator Extended Range (ER).\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle 3'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para ScanEagle 3.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #33 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", + "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 12.50 | 12.12 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 12.50 | 12.16 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.11577868852459, 12.161885245901642] = 12.14\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.14\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Imputación descartada por baja confianza: 0.475 < 0.5.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Evo'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Evo.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Pro #CARGO.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V21'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para V21.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #33 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m V25\n", + "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 1.088 | 0.0220 | 15.30 | 15.64 \n", + "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 14.75 | 14.93 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15.637882845188285, 14.93143859649123] = 15.28\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 15.28\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.03\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para V32.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V35'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para V35.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para V39.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #34 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 12.50 | 12.67 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.671875000000002] = 12.67\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Advertencia: Ponderación del modelo (-1.312) fuera de rango. Revisar lógica previa.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #35 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", + "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 0.907 | -0.0233 | 15.30 | 14.94 \n", + "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 14.75 | 14.29 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14.944225941422594, 14.28716374269006] = 14.62\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 14.62\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.54\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Imputación descartada por baja confianza: 0.478 < 0.5.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 2930 VTOL'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Skyeye 2930 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 3600'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Skyeye 3600.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #35 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 12.50 | 12.67 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.671875000000002] = 12.67\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #36 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", + "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.033 | 0.0083 | 12.50 | 12.60 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.604166666666668] = 12.60\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.60\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.78\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #37 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #38 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #39 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Ascend'para el parametro 'Relación de aspecto del ala'.\n", + "No se pudo imputar: Relación de aspecto del ala para Ascend.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #40 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", + "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 15.33 | 15.74 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15.743253313648973] = 15.74\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 15.74\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #41 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", + "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", + "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.022 | 0.0055 | 12.50 | 12.57 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.568681318681321] = 12.57\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.57\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #42 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 3.50 | 3.47 \n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 3.50 | 3.57 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 3.50 | 3.57 \n", + "Volitation VT510| 100.0| 1.075 | 0.0188 | 2.90 | 2.96 \n", + "Reach | 91.0| 0.978 | -0.0054 | 4.71 | 4.69 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [3.471774193548387, 3.5658602150537635, 3.5658602150537635, 2.9596639784946235, 4.6866666666666665] = 3.57\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 3.57\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #43 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 0.997 | -0.0007 | 2.50 | 2.50 \n", + "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 2.50 | 2.50 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.498333333333333, 2.498333333333333] = 2.50\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 2.50\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #44 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", + "\u001b[1mAeronave a imputar:\u001b[0m V39\n", + "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V32\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "ScanEagle | 26.5| 1.104 | 0.0260 | 1.71 | 1.75 \n", + "V32 | 23.5| 0.979 | -0.0052 | 1.00 | 0.99 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.75453125, 0.9947916666666666] = 1.37\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.37\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #45 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 300.00 | 296.09 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [296.09004739336496] = 296.09\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 296.09\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #46 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 53.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 4, RQNan21A Blackjack\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 4 | 55.0| 1.028 | 0.0070 | 150.00 | 151.05 \n", + "RQNan21A Blackjack| 61.0| 1.140 | 0.0350 | 92.60 | 95.85 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [151.05140186915887, 95.84532710280374] = 123.45\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 123.45\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #47 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 Fixed wing\n", + "\u001b[1mMTOW actual:\u001b[0m 54.4 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 4, RQNan21A Blackjack\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 4 | 55.0| 1.011 | 0.0028 | 150.00 | 150.41 \n", + "RQNan21A Blackjack| 61.0| 1.121 | 0.0303 | 92.60 | 95.41 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [150.41360294117646, 95.40863970588234] = 122.91\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 122.91\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #48 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 800.00 | 815.05 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [815.0537634408602] = 815.05\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 815.05\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Alcance de la aeronave'.\n", + "No se pudo imputar: Alcance de la aeronave para ScanEagle.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #49 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator\n", + "\u001b[1mMTOW actual:\u001b[0m 74.8 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator Extended Range (ER)| 74.8| 1.000 | 0.0000 | 500.00 | 500.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [500.0] = 500.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 500.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #50 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 500.00 | 499.67 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [499.66666666666663] = 499.67\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 499.67\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #51 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", + "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3, Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 3 | 32.0| 0.882 | -0.0296 | 50.00 | 48.52 \n", + "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 300.00 | 307.64 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [48.519283746556475, 307.6446280991736] = 178.08\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 178.08\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #52 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m V21\n", + "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "DeltaQuad Evo| 10.0| 1.000 | 0.0000 | 270.00 | 270.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [270.0] = 270.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 270.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #53 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m V25\n", + "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 1.088 | 0.0220 | 370.00 | 378.14 \n", + "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 3270.00 | 3309.24 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [378.14, 3309.2400000000002] = 1843.69\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1843.69\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #54 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m V32\n", + "\u001b[1mMTOW actual:\u001b[0m 23.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Fulmar X\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Fulmar X | 20.0| 0.851 | -0.0372 | 800.00 | 770.21 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [770.2127659574468] = 770.21\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 770.21\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.86\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #55 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m V35\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 3 | 32.0| 1.000 | 0.0000 | 50.00 | 50.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [50.0] = 50.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 50.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Alcance de la aeronave'.\n", + "No se pudo imputar: Alcance de la aeronave para V39.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #56 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 300.00 | 300.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [300.0] = 300.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 300.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #57 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", + "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 0.907 | -0.0233 | 370.00 | 361.37 \n", + "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 3270.00 | 3166.45 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [361.3666666666667, 3166.45] = 1763.91\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1763.91\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #58 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2930 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 3 | 32.0| 1.143 | 0.0357 | 50.00 | 51.79 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [51.78571428571428] = 51.79\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 51.79\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.87\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #59 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 3 | 32.0| 1.143 | 0.0357 | 50.00 | 51.79 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [51.78571428571428] = 51.79\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 51.79\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.87\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #60 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", + "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 VTOL| 100.0| 1.111 | 0.0278 | 800.00 | 822.22 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [822.2222222222222] = 822.22\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 822.22\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #61 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 800.00 | 800.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [800.0] = 800.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 800.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #62 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 800.00 | 800.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [800.0] = 800.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 800.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #63 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Ascend\n", + "\u001b[1mMTOW actual:\u001b[0m 9.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "DeltaQuad Evo| 10.0| 1.053 | 0.0132 | 270.00 | 273.55 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [273.55263157894734] = 273.55\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 273.55\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #64 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", + "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Fulmar X\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 433.00 | 444.78 \n", + "Fulmar X | 20.0| 1.111 | 0.0278 | 800.00 | 822.22 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [444.7754831111111, 822.2222222222222] = 633.50\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 633.50\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #65 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", + "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 VTOL| 100.0| 1.099 | 0.0247 | 800.00 | 819.78 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [819.7802197802197] = 819.78\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 819.78\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #66 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Autonomía de la aeronave\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 14.00 | 13.76 \n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 8.00 | 7.80 \n", + "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 8.00 | 8.00 \n", + "Volitation VT510| 100.0| 1.000 | 0.0000 | 5.00 | 5.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 20.00 | 19.55 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [13.755, 7.8, 8.0, 5.0, 19.55] = 8.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 8.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #67 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 42.00 | 41.66 \n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 42.00 | 42.79 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 38.00 | 38.72 \n", + "Volitation VT510| 100.0| 1.075 | 0.0188 | 50.00 | 50.94 \n", + "Reach | 91.0| 0.978 | -0.0054 | 35.00 | 34.81 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [41.66129032258065, 42.79032258064516, 38.71505376344086, 50.94086021505376, 34.81182795698925] = 41.66\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 41.66\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #68 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 0.997 | -0.0007 | 46.30 | 46.27 \n", + "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 46.30 | 46.27 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [46.26913333333333, 46.26913333333333] = 46.27\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 46.27\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #69 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Evo\n", + "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V21, Ascend\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V21 | 10.0| 1.000 | 0.0000 | 33.00 | 33.00 \n", + "Ascend | 9.5| 0.950 | -0.0125 | 30.00 | 29.62 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [33.0, 29.625] = 31.31\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 31.31\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #70 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Pro #MAP\n", + "\u001b[1mMTOW actual:\u001b[0m 6.2 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Mantis\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Mantis | 6.5| 1.048 | 0.0121 | 25.60 | 25.91 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [25.909677419354843] = 25.91\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 25.91\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #71 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Pro #CARGO\n", + "\u001b[1mMTOW actual:\u001b[0m 6.2 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Mantis\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Mantis | 6.5| 1.048 | 0.0121 | 25.60 | 25.91 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [25.909677419354843] = 25.91\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 25.91\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #72 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", + "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 0.907 | -0.0233 | 20.00 | 19.53 \n", + "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 30.85 | 29.87 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [19.533333333333335, 29.86894348051936] = 24.70\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 24.70\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #73 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", + "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3, ScanEagle, V35, V39, Skyeye 2930 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Orbiter 3 | 32.0| 1.143 | 0.0357 | 36.00 | 37.29 \n", + "ScanEagle | 26.5| 0.946 | -0.0134 | 41.20 | 40.65 \n", + "V35 | 32.0| 1.143 | 0.0357 | 33.00 | 34.18 \n", + "V39 | 24.0| 0.857 | -0.0357 | 33.00 | 31.82 \n", + "Skyeye 2930 VTOL| 28.0| 1.000 | 0.0000 | 30.00 | 30.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [37.28571428571428, 40.64821428571429, 34.17857142857142, 31.821428571428573, 30.0] = 34.18\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 34.18\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.93\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #74 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Stalker XE\n", + "\u001b[1mMTOW actual:\u001b[0m 13.6 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V25, Skyeye 2600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V25 | 12.5| 0.919 | -0.0202 | 15.50 | 15.19 \n", + "Skyeye 2600 | 15.0| 1.103 | 0.0257 | 10.00 | 10.26 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15.18658088235294, 10.257352941176471] = 12.72\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.72\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #75 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Stalker VXE30\n", + "\u001b[1mMTOW actual:\u001b[0m 19.958047999999998 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Transition\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Transition | 18.0| 0.902 | -0.0245 | 13.00 | 12.68 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.68114837683525] = 12.68\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.68\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #76 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 24.00 | 23.69 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [23.687203791469194] = 23.69\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 23.69\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.7 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.8 Fixed wing.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #77 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 15.00 | 14.88 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 24.00 | 24.45 \n", + "Volitation VT510| 100.0| 1.075 | 0.0188 | 25.00 | 25.47 \n", + "Reach | 91.0| 0.978 | -0.0054 | 13.00 | 12.93 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14.879032258064516, 24.451612903225808, 25.47043010752688, 12.93010752688172] = 19.67\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 19.67\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #78 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", + "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V25, Skyeye 2600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V25 | 12.5| 0.954 | -0.0115 | 15.50 | 15.32 \n", + "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 10.00 | 10.36 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [15.322519083969466, 10.36259541984733] = 12.84\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.84\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #79 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Transition\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Transition | 18.0| 0.900 | -0.0250 | 13.00 | 12.67 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [12.674999999999999] = 12.67\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Orbiter 4.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #80 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 18.00 | 17.44 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 12.50 | 12.11 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4375, 12.109375] = 14.77\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 14.77\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Mantis.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #81 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", + "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V32, Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V32 | 23.5| 0.887 | -0.0283 | 17.00 | 16.52 \n", + "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 18.00 | 18.25 \n", + "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 12.50 | 12.68 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [16.5188679245283, 18.254716981132074, 12.67688679245283] = 16.52\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 16.52\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator Extended Range (ER).\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #82 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", + "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 24.00 | 24.61 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [24.611570247933887] = 24.61\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 24.61\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para RQNan21A Blackjack.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #83 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Evo\n", + "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V21, Ascend\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V21 | 10.0| 1.000 | 0.0000 | 14.00 | 14.00 \n", + "Ascend | 9.5| 0.950 | -0.0125 | 13.00 | 12.84 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14.0, 12.8375] = 13.42\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 13.42\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #CARGO.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #84 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m V35\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 18.00 | 17.44 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 12.50 | 12.11 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4375, 12.109375] = 14.77\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 14.77\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #85 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m V39\n", + "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V32\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V32 | 23.5| 0.979 | -0.0052 | 17.00 | 16.91 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [16.911458333333332] = 16.91\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 16.91\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #86 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 24.00 | 24.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [24.0] = 24.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 24.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #87 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 15.00 | 14.62 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 24.00 | 24.00 \n", + "Volitation VT510| 100.0| 1.000 | 0.0000 | 25.00 | 25.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 13.00 | 12.71 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [14.625, 24.0, 25.0, 12.7075] = 19.31\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 19.31\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #88 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m envergadura\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 5.00 | 4.96 \n", + "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 5.00 | 5.09 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 5.00 | 5.09 \n", + "Volitation VT510| 100.0| 1.075 | 0.0188 | 5.10 | 5.20 \n", + "Reach | 91.0| 0.978 | -0.0054 | 6.00 | 5.97 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [4.959677419354839, 5.094086021505376, 5.094086021505376, 5.195967741935483, 5.967741935483871] = 5.09\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 5.09\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.96\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #89 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m envergadura\n", + "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Integrator | 74.8| 0.997 | -0.0007 | 4.80 | 4.80 \n", + "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 4.80 | 4.80 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [4.796799999999999, 4.796799999999999] = 4.80\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 4.80\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 VTOL FTUAS'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Aerosonde® Mk. 4.8 VTOL FTUAS.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #90 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 0.32 | 0.32 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.318028178521024] = 0.32\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.32\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #91 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", + "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 0.35 | 0.35 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 0.35 | 0.35 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.34959999999999997, 0.35104] = 0.35\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.35\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 3'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Orbiter 3.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Mantis.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para ScanEagle.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Integrator Extended Range (ER).\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle 3'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para ScanEagle 3.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #92 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", + "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 0.35 | 0.34 \n", + "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 0.35 | 0.34 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.34118032786885244, 0.3424786885245901] = 0.34\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.34\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Imputación descartada por baja confianza: 0.475 < 0.5.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Evo'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para DeltaQuad Evo.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para DeltaQuad Pro #CARGO.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V21'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para V21.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #92 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m V25\n", + "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 1.088 | 0.0220 | 0.24 | 0.24 \n", + "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 0.20 | 0.20 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.244258, 0.19891034482758618] = 0.22\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.22\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.96\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para V32.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V35'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para V35.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para V39.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #93 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 0.35 | 0.36 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.35683999999999994] = 0.36\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.36\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #94 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", + "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 0.907 | -0.0233 | 0.24 | 0.23 \n", + "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 0.20 | 0.19 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.23342333333333332, 0.19032758620689652] = 0.21\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.21\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.92\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 2930 VTOL'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Skyeye 2930 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 3600'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Skyeye 3600.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #95 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 0.35 | 0.36 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.35683999999999994] = 0.36\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.36\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Skyeye 5000.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000 VTOL'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Skyeye 5000 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000 VTOL octo'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Skyeye 5000 VTOL octo.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Volitation VT510'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Volitation VT510.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Ascend'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Ascend.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #96 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Cuerda\n", + "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", + "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 0.32 | 0.33 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [0.3268483894678044] = 0.33\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 0.33\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Reach'para el parametro 'Cuerda'.\n", + "No se pudo imputar: Cuerda para Reach.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #97 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m payload\n", + "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", + "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, V25, Skyeye 2600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker XE | 13.6| 1.038 | 0.0095 | 2.49 | 2.52 \n", + "V25 | 12.5| 0.954 | -0.0115 | 2.20 | 2.17 \n", + "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 4.00 | 4.15 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.518560923664122, 2.174809160305344, 4.145038167938932] = 2.52\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 2.52\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #98 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m payload\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Transition\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 2.49 | 2.49 \n", + "Transition | 18.0| 0.900 | -0.0250 | 1.50 | 1.46 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [2.4934477499536, 1.4625] = 1.98\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.98\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #99 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m payload\n", + "\u001b[1mAeronave a imputar:\u001b[0m Mantis\n", + "\u001b[1mMTOW actual:\u001b[0m 6.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Pro #MAP, DeltaQuad Pro #CARGO\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "DeltaQuad Pro #MAP| 6.2| 0.954 | -0.0115 | 1.20 | 1.19 \n", + "DeltaQuad Pro #CARGO| 6.2| 0.954 | -0.0115 | 1.20 | 1.19 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [1.1861538461538461, 1.1861538461538461] = 1.19\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 1.19\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #100 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", + "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 11.00 | 10.86 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [10.856635071090047] = 10.86\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 10.86\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Aerosonde® Mk. 4.7 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Aerosonde® Mk. 4.8 Fixed wing.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #101 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 32.00 | 31.74 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 35.00 | 35.66 \n", + "Reach | 91.0| 0.978 | -0.0054 | 31.00 | 30.83 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [31.741935483870968, 35.65860215053763, 30.833333333333332] = 31.74\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 31.74\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.96\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.94\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #102 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", + "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Transition\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 17.46 | 17.45 \n", + "Transition | 18.0| 0.900 | -0.0250 | 5.80 | 5.65 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4541342496752, 5.654999999999999] = 11.55\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 11.55\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Orbiter 4.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #103 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 7.10 | 6.88 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 11.50 | 11.14 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [6.878125, 11.140625] = 9.01\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 9.01\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Mantis.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #104 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", + "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V32, Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V32 | 23.5| 0.887 | -0.0283 | 6.45 | 6.27 \n", + "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 7.10 | 7.20 \n", + "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 11.50 | 11.66 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [6.267452830188679, 7.200471698113207, 11.662735849056602] = 7.20\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 7.20\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para Integrator Extended Range (ER).\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #105 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", + "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 11.00 | 11.28 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [11.280303030303031] = 11.28\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 11.28\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para RQNan21A Blackjack.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Empty weight'.\n", + "No se pudo imputar: Empty weight para DeltaQuad Pro #CARGO.\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #106 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m V35\n", + "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 7.10 | 6.88 \n", + "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 11.50 | 11.14 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [6.878125, 11.140625] = 9.01\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 9.01\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #107 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m V39\n", + "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m V32\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "V32 | 23.5| 0.979 | -0.0052 | 6.45 | 6.42 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [6.41640625] = 6.42\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 6.42\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #108 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", + "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 11.00 | 11.00 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [11.0] = 11.00\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 11.00\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #109 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 32.00 | 31.20 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 35.00 | 35.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 31.00 | 30.30 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [31.2, 35.0, 30.302500000000002] = 31.20\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.91\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 31.20\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.87\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.91\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #110 ========================\u001b[0m\n", + "\u001b[1mParámetro:\u001b[0m Empty weight\n", + "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", + "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", + "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", + "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", + "\n", + "Aeronaves Válidas para el Cálculo:\n", + "-----------------------------------------------------------------------------------------------\n", + "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", + "------------|----------------|------------------------------|-------------------|----------------|---------------\n", + "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 32.00 | 31.20 \n", + "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 35.00 | 35.00 \n", + "Reach | 91.0| 0.910 | -0.0225 | 31.00 | 30.30 \n", + "-----------------------------------------------------------------------------------------------\n", + "\n", + "Cálculo del Valor Final:\n", + "\u001b[1m- Se tomó la mediana de los valores ajustados [31.2, 35.0, 30.302500000000002] = 31.20\u001b[0m\n", + "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.91\n", + "\u001b[1m- Valor Imputado Final:\u001b[0m 31.20\n", + "\n", + "Detalle del Cálculo de Confianza:\n", + "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", + "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", + "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.87\n", + "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", + "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.91\n", + "\u001b[1m============================================================================================\u001b[0m\n", + "\n", + "\n", + "=== Generando reporte final ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Reporte Final de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
0Aerosonde® Mk. 4.8 VTOL FTUASVelocidad a la que se realiza el crucero (KTAS)32.3161.000
1AAI AerosondeVelocidad a la que se realiza el crucero (KTAS)21.6250.953
2Orbiter 4Velocidad a la que se realiza el crucero (KTAS)27.2690.959
3Orbiter 3Velocidad a la que se realiza el crucero (KTAS)26.5670.551
4Integrator VTOLVelocidad a la que se realiza el crucero (KTAS)30.9330.621
5Integrator Extended Range (ER)Velocidad a la que se realiza el crucero (KTAS)30.9530.622
6Skyeye 3600Velocidad a la que se realiza el crucero (KTAS)27.3440.972
7Skyeye 5000 VTOL octoVelocidad a la que se realiza el crucero (KTAS)31.7191.000
8Orbiter 4Techo de servicio máximo9633.8640.972
9Orbiter 3Techo de servicio máximo8010.3360.855
10MantisTecho de servicio máximo12.9720.509
11Integrator VTOLTecho de servicio máximo19487.0000.532
12Skyeye 2600Techo de servicio máximo13122.5000.809
13Skyeye 2930 VTOLTecho de servicio máximo16571.4290.901
14Skyeye 3600Techo de servicio máximo16571.4290.901
15Skyeye 3600 VTOLTecho de servicio máximo14902.1250.972
16Skyeye 5000Techo de servicio máximo16044.4440.922
17Skyeye 5000 VTOLTecho de servicio máximo15640.0000.930
18Skyeye 5000 VTOL octoTecho de servicio máximo15640.0000.930
19Aerosonde® Mk. 4.8 VTOL FTUASÁrea del ala2.6640.565
20Fulmar XÁrea del ala1.1580.621
21Orbiter 4Área del ala1.5430.523
22Orbiter 3Área del ala1.1290.809
23ScanEagleÁrea del ala1.1810.856
24ScanEagle 3Área del ala1.3540.577
25V35Área del ala1.1290.809
26Volitation VT370Área del ala1.4460.869
27Volitation VT510Área del ala2.6150.581
28AscendÁrea del ala0.8310.758
29TransitionÁrea del ala1.1900.574
30ReachÁrea del ala2.6800.560
31Fulmar XRelación de aspecto del ala15.3180.621
32Orbiter 4Relación de aspecto del ala12.4400.523
33V25Relación de aspecto del ala15.2850.510
34Volitation VT370Relación de aspecto del ala12.6720.597
35Skyeye 3600 VTOLRelación de aspecto del ala12.6720.597
36Skyeye 5000Relación de aspecto del ala12.6040.607
37Skyeye 5000 VTOLRelación de aspecto del ala12.2810.591
38Skyeye 5000 VTOL octoRelación de aspecto del ala12.2810.591
39Volitation VT510Relación de aspecto del ala12.2810.591
40TransitionRelación de aspecto del ala15.7430.574
41ReachRelación de aspecto del ala12.5690.612
42Aerosonde® Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5661.000
43Integrator VTOLLongitud del fuselaje2.4980.532
44V39Longitud del fuselaje1.3750.854
45Aerosonde® Mk. 4.7 Fixed WingAlcance de la aeronave296.0900.599
46Aerosonde® Mk. 4.7 VTOLAlcance de la aeronave123.4480.844
47Aerosonde® Mk. 4.8 Fixed wingAlcance de la aeronave122.9110.854
48Aerosonde® Mk. 4.8 VTOL FTUASAlcance de la aeronave815.0540.588
49IntegratorAlcance de la aeronave500.0000.622
50Integrator VTOLAlcance de la aeronave499.6670.621
51ScanEagle 3Alcance de la aeronave178.0820.833
52V21Alcance de la aeronave270.0000.622
53V25Alcance de la aeronave1843.6900.854
54V32Alcance de la aeronave770.2130.558
55V35Alcance de la aeronave50.0000.622
56Volitation VT370Alcance de la aeronave300.0000.622
57Skyeye 2600Alcance de la aeronave1763.9080.832
58Skyeye 2930 VTOLAlcance de la aeronave51.7860.560
59Skyeye 3600Alcance de la aeronave51.7860.560
60Skyeye 5000Alcance de la aeronave822.2220.573
61Skyeye 5000 VTOL octoAlcance de la aeronave800.0000.622
62Volitation VT510Alcance de la aeronave800.0000.622
63AscendAlcance de la aeronave273.5530.598
64TransitionAlcance de la aeronave633.4990.830
65ReachAlcance de la aeronave819.7800.578
66Skyeye 5000 VTOL octoAutonomía de la aeronave8.0001.000
67Aerosonde® Mk. 4.8 VTOL FTUASVelocidad máxima (KIAS)41.6611.000
68Integrator VTOLVelocidad máxima (KIAS)46.2690.532
69DeltaQuad EvoVelocidad máxima (KIAS)31.3120.865
70DeltaQuad Pro #MAPVelocidad máxima (KIAS)25.9100.600
71DeltaQuad Pro #CARGOVelocidad máxima (KIAS)25.9100.600
72Skyeye 2600Velocidad máxima (KIAS)24.7010.826
73Skyeye 3600Velocidad máxima (KIAS)34.1791.000
74Stalker XEVelocidad de pérdida (KCAS)12.7220.838
75Stalker VXE30Velocidad de pérdida (KCAS)12.6810.579
76Aerosonde® Mk. 4.7 Fixed WingVelocidad de pérdida (KCAS)23.6870.599
77Aerosonde® Mk. 4.8 VTOL FTUASVelocidad de pérdida (KCAS)19.6651.000
78AAI AerosondeVelocidad de pérdida (KCAS)12.8430.837
79Fulmar XVelocidad de pérdida (KCAS)12.6750.578
80Orbiter 3Velocidad de pérdida (KCAS)14.7730.815
81ScanEagleVelocidad de pérdida (KCAS)16.5190.949
82ScanEagle 3Velocidad de pérdida (KCAS)24.6120.577
83DeltaQuad EvoVelocidad de pérdida (KCAS)13.4190.857
84V35Velocidad de pérdida (KCAS)14.7730.815
85V39Velocidad de pérdida (KCAS)16.9110.613
86Volitation VT370Velocidad de pérdida (KCAS)24.0000.622
87Skyeye 5000 VTOLVelocidad de pérdida (KCAS)19.3121.000
88Aerosonde® Mk. 4.8 VTOL FTUASenvergadura5.0941.000
89Integrator VTOLenvergadura4.7970.532
90Fulmar XCuerda0.3180.621
91Orbiter 4Cuerda0.3500.523
92V25Cuerda0.2220.841
93Volitation VT370Cuerda0.3570.597
94Skyeye 2600Cuerda0.2120.806
95Skyeye 3600 VTOLCuerda0.3570.597
96TransitionCuerda0.3270.574
97AAI Aerosondepayload2.5190.952
98Fulmar Xpayload1.9780.862
99Mantispayload1.1860.509
100Aerosonde® Mk. 4.7 Fixed WingEmpty weight10.8570.599
101Aerosonde® Mk. 4.8 VTOL FTUASEmpty weight31.7420.951
102Fulmar XEmpty weight11.5550.863
103Orbiter 3Empty weight9.0090.820
104ScanEagleEmpty weight7.2000.955
105ScanEagle 3Empty weight11.2800.577
106V35Empty weight9.0090.820
107V39Empty weight6.4160.613
108Volitation VT370Empty weight11.0000.622
109Skyeye 5000 VTOLEmpty weight31.2000.912
110Volitation VT510Empty weight31.2000.912
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 1 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia/PesoNaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia(W)NaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia(HP)NaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
DespegueNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
EmpresaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
kjbkNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecio
Distancia de carrera requerida para despegue1.0000.0630.467nan-0.5050.363nan0.2600.4250.168nan-0.0680.316-0.3080.145nan0.229nan0.389nan0.357nannan-0.018-0.240-0.156
Altitud a la que se realiza el crucero0.0631.000nan-0.038nan0.301-0.3510.081nan-0.095-0.952-0.2800.128nan0.1360.761-0.183nannannan0.0600.038-0.325nannannan
Velocidad a la que se realiza el crucero (KTAS)0.467nan1.0000.0410.1280.587-0.9990.5350.9360.6630.4070.3360.8150.2570.4720.8460.696-0.6941.0000.7230.426-0.8550.3590.4910.461-0.296
Techo de servicio máximonan-0.0380.0411.000-0.502-0.152-0.3140.0820.3690.1370.4630.079-0.111-0.0710.0570.0170.087-0.8750.0410.579-0.138-0.961-0.120nan0.515-0.257
Velocidad de pérdida limpia (KCAS)-0.505nan0.128-0.5021.0000.097nan0.260nan0.546nan0.4010.4461.0000.505nan0.536nan0.128nan0.038nannan0.0681.0000.163
Área del ala0.3630.3010.587-0.1520.0971.000-0.8310.8670.9840.977-0.3010.0810.7370.4230.8410.9840.899-1.0000.6750.9230.941nan0.5951.0001.0000.899
Relación de aspecto del alanan-0.351-0.999-0.314nan-0.8311.000-0.790-0.996-0.823-0.998-0.305-0.859nan-0.349-0.744-0.888nan-0.999nan0.622nan-0.298nannannan
Longitud del fuselaje0.2600.0810.5350.0820.2600.867-0.7901.0000.9380.7860.1290.3890.2560.1800.6930.9950.599-0.6170.5760.9400.880-0.7180.6760.9290.036-0.210
Ancho del fuselaje0.425nan0.9360.369nan0.984-0.9960.9381.0000.9860.982-0.0900.940nan0.6710.7600.868nan0.944nan0.955nan0.323nan1.000nan
Peso máximo al despegue (MTOW)0.168-0.0950.6630.1370.5460.977-0.8230.7860.9861.000-0.0510.4340.6780.5390.7910.8580.875-0.4010.7080.9790.947-0.4640.5140.9760.7580.052
Alcance de la aeronavenan-0.9520.4070.463nan-0.301-0.9980.1290.982-0.0511.0000.578-0.062nan-0.107-0.7550.554-1.0000.407nan-0.059-1.0000.5081.000nan1.000
Autonomía de la aeronave-0.068-0.2800.3360.0790.4010.081-0.3050.389-0.0900.4340.5781.0000.297-0.1640.532-0.2010.461-0.5940.3360.6340.428-0.7150.802-0.113-0.7320.011
Velocidad máxima (KIAS)0.3160.1280.815-0.1110.4460.737-0.8590.2560.9400.678-0.0620.2971.0000.5390.4000.5120.715-0.9270.7750.8570.517nan0.0940.7050.9100.015
Velocidad de pérdida (KCAS)-0.308nan0.257-0.0711.0000.423nan0.180nan0.539nan-0.1640.5391.0000.401nan0.627nan0.417nan0.321nannan0.2301.0000.160
envergadura0.1450.1360.4720.0570.5050.841-0.3490.6930.6710.791-0.1070.5320.4000.4011.0000.8850.734-0.2580.5010.9360.924-0.4520.6480.2970.0850.032
Cuerdanan0.7610.8460.017nan0.984-0.7440.9950.7600.858-0.755-0.2010.512nan0.8851.0000.776nan0.846nan0.971nan0.354nannannan
payload0.229-0.1830.6960.0870.5360.899-0.8880.5990.8680.8750.5540.4610.7150.6270.7340.7761.000-0.0240.6940.5590.778-0.1420.5460.7110.846-0.008
duracion en VTOLnannan-0.694-0.875nan-1.000nan-0.617nan-0.401-1.000-0.594-0.927nan-0.258nan-0.0241.000-0.694-0.402-0.3151.000nannannannan
Crucero KIAS0.389nan1.0000.0410.1280.675-0.9990.5760.9440.7080.4070.3360.7750.4170.5010.8460.694-0.6941.0000.7230.583-0.8550.3590.5810.461-0.243
RTF (Including fuel & Batteries)nannan0.7230.579nan0.923nan0.940nan0.979nan0.6340.857nan0.936nan0.559-0.4020.7231.0000.996-0.402nannannannan
Empty weight0.3570.0600.426-0.1380.0380.9410.6220.8800.9550.947-0.0590.4280.5170.3210.9240.9710.778-0.3150.5830.9961.000-0.3190.8320.995nan-0.029
Maximum Crosswindnan0.038-0.855-0.961nannannan-0.718nan-0.464-1.000-0.715nannan-0.452nan-0.1421.000-0.855-0.402-0.3191.000nannannannan
Rango de comunicaciónnan-0.3250.359-0.120nan0.595-0.2980.6760.3230.5140.5080.8020.094nan0.6480.3540.546nan0.359nan0.832nan1.000nannannan
Capacidad combustible-0.018nan0.491nan0.0681.000nan0.929nan0.9761.000-0.1130.7050.2300.297nan0.711nan0.581nan0.995nannan1.0000.3770.817
Consumo-0.240nan0.4610.5151.0001.000nan0.0361.0000.758nan-0.7320.9101.0000.085nan0.846nan0.461nannannannan0.3771.0000.998
Precio-0.156nan-0.296-0.2570.1630.899nan-0.210nan0.0521.0000.0110.0150.1600.032nan-0.008nan-0.243nan-0.029nannan0.8170.9981.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores676.000
1Valores numéricos532.000
2Valores NaN144.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)1.0000.0410.587-0.9990.5350.6630.4070.3360.8150.2570.4720.8460.6960.426
Techo de servicio máximo0.0411.000-0.152-0.3140.0820.1370.4630.079-0.111-0.0710.0570.0170.087-0.138
Área del ala0.587-0.1521.000-0.8310.8670.977-0.3010.0810.7370.4230.8410.9840.8990.941
Relación de aspecto del ala-0.999-0.314-0.8311.000-0.790-0.823-0.998-0.305-0.859nan-0.349-0.744-0.8880.622
Longitud del fuselaje0.5350.0820.867-0.7901.0000.7860.1290.3890.2560.1800.6930.9950.5990.880
Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.7861.000-0.0510.4340.6780.5390.7910.8580.8750.947
Alcance de la aeronave0.4070.463-0.301-0.9980.129-0.0511.0000.578-0.062nan-0.107-0.7550.554-0.059
Autonomía de la aeronave0.3360.0790.081-0.3050.3890.4340.5781.0000.297-0.1640.532-0.2010.4610.428
Velocidad máxima (KIAS)0.815-0.1110.737-0.8590.2560.678-0.0620.2971.0000.5390.4000.5120.7150.517
Velocidad de pérdida (KCAS)0.257-0.0710.423nan0.1800.539nan-0.1640.5391.0000.401nan0.6270.321
envergadura0.4720.0570.841-0.3490.6930.791-0.1070.5320.4000.4011.0000.8850.7340.924
Cuerda0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nan0.8851.0000.7760.971
payload0.6960.0870.899-0.8880.5990.8750.5540.4610.7150.6270.7340.7761.0000.778
Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.9240.9710.7781.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos190.000
2Valores NaN6.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannan0.846nannan
Techo de servicio máximonannannannannannannannannannannannannannan
Área del alanannannan-0.8310.8670.977nannan0.737nan0.8410.9840.8990.941
Relación de aspecto del ala-0.999nan-0.831nan-0.790-0.823-0.998nan-0.859nannan-0.744-0.888nan
Longitud del fuselajenannan0.867-0.790nan0.786nannannannannan0.995nan0.880
Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannan0.7910.8580.8750.947
Alcance de la aeronavenannannan-0.998nannannannannannannan-0.755nannan
Autonomía de la aeronavenannannannannannannannannannannannannannan
Velocidad máxima (KIAS)0.815nan0.737-0.859nannannannannannannannan0.715nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannan
envergaduranannan0.841nannan0.791nannannannannan0.8850.7340.924
Cuerda0.846nan0.984-0.7440.9950.858-0.755nannannan0.885nan0.7760.971
payloadnannan0.899-0.888nan0.875nannan0.715nan0.7340.776nan0.778
Empty weightnannan0.941nan0.8800.947nannannannan0.9240.9710.778nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos64.000
2Valores NaN132.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUy/8H8PfS3Q3SjaCoKBZgIIiCLXahXrv72t2i99oBtmJgYBcWqBioKAoiiEp3557fH8jCsruEgvi738/Lh+dxZ+fMmbNnzuzZORMshmEYEEIIIYQQQgghhBBCeAg1dgYIIYQQQgghhBBCCPlTUeMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYSQ38rX1xcsFgvPnz/n+37Pnj2hr6/foHkICgrC8uXLkZGR0aD7aQzLly8Hi8Wq93TfvHmD0aNHw8DAABISEpCRkUGLFi2wceNGpKWl1fv+fkVgYCBYLBYCAwMbJP2YmBiwWCz4+vo2SPqNbdSoUfV2Ddra2kJbWxulpaUC47Rv3x4qKiooKir65f39yrmvqW6qrD4/o9piGAanTp1Cx44doaamBgkJCejo6MDFxQUHDhz4qTSdnJzg5ORUvxmto4aqs+obi8XC8uXLf/t+Hz58CHFxcXz58oUTpq+vj549e/KN//z583qvn+pybdSH/y9lolxOTg5mzJgBLS0tSEhIoHnz5jh16lSttnVycgKLxRL4l5CQAAAoLi6GkZERvL29G/BICCHVocYzQggh/3OCgoKwYsWK/2TjWUPYv38/WrZsiZCQEMydOxfXr1+Hv78/BgwYgD179sDLy6uxs/hbaWpqIjg4GD169GjsrPzxvLy8EBcXhxs3bvB9PyIiAkFBQRg+fDjExMR+eX8tWrRAcHAwWrRo8ctp/WkWLlyIwYMHw8LCAgcOHMC1a9ewevVqqKur4+LFi42dvZ82duxYBAcHN3Y2/kgMw2DGjBkYN24c9PT0Gjs7RIC+ffvi8OHDWLZsGa5duwY7OzsMHjwYJ06cqHHbXbt2ITg4mOvvzp07EBUVhb29PTQ0NAAAoqKiWLp0KVauXInU1NSGPiRCCB8ijZ0BQgghhPy5goODMXHiRDg7O+PChQsQFxfnvOfs7IzZs2fj+vXr9bKvvLw8SElJ8YSXlpaipKSEa9+NSVxcHPb29o2djf8Xhg4dirlz5+LQoUNwc3Pjef/QoUMAgDFjxvzSfoqLi8FisSAnJ/efPDf5+fnw9vbGiBEjsG/fPq73Ro0aBTab3Ug5+3U6OjrQ0dFp7Gz8ka5fv46XL1/WqhHmTyaobv9V8fHxkJaWhpycXL2nXVtXr17FrVu3cOLECQwePBgA0KlTJ3z58gVz586Fp6cnhIWFBW5vaWnJE3b48GEUFxdj7NixXOGDBw/GrFmzsHfvXixatKh+D4QQUiPqeUYIIeSPxzAMdu3ahebNm0NSUhKKioro378/Pn/+zBXv1q1b6NWrF3R0dCAhIQFjY2P89ddfSElJ4cRZvnw55s6dCwAwMDDgDI0oH+ZVPhwmICAAtra2kJSUhIWFBQICAgCUDV+xsLCAtLQ0WrduzTOM5fnz5xg0aBD09fUhKSkJfX19DB48mGvITXk6LBYLt27dwujRo6GkpARpaWm4u7vzHJcgV65cQfPmzSEuLg4DAwNs3rz5lz4/ftauXQsWi4V9+/bxbbwSExODh4cH5zWbzcbGjRthbm4OcXFxqKmpYcSIEfj27RvXdk5OTmjatCkePHiAdu3aQUpKCmPGjOEMidy4cSNWr14NAwMDiIuL4969ewDKPl8PDw8oKSlBQkICtra28PPzq/E4anteAOD79+8YP348mjRpAjExMWhpaaF///5ITEwEIHjY5qNHj9ClSxfIyspCSkoK7dq1w5UrV7jilJ/3e/fuYeLEiVBRUYGysjL69u2LuLg4nrycPn0abdu2hbS0NGRkZODi4oJXr15xxfn8+TMGDRoELS0tiIuLQ11dHV26dEFoaGiNn4uvry/MzMwgLi4OCwsLHDlyhG+8oqIirF69mnNeVVVVMXr0aCQnJ1ebvqKiIvr06YPLly/z9JYoLS3F0aNHYWdnB2tra3z69AmjR4+GiYkJpKSkoK2tDXd3d7x9+5Zru/KhmUePHsXs2bOhra0NcXFxfPr0ie+wzbqcewBIT0//qWuyttfZq1ev0LNnT6ipqUFcXBxaWlro0aMHzzVSWW5uLgoLC6Gpqcn3fSEh7lv6nz1fdd32xIkTaNu2LWRkZCAjI4PmzZvj4MGDXHGuX7+OLl26QF5eHlJSUrCwsMC6des47/MbolfXeiQkJAQdO3aElJQUDA0NsX79eq4GxYKCAsyePRvNmzeHvLw8lJSU0LZtW7499rKysjBu3DgoKytDRkYGrq6uiIiI4IlX2/LKZrOxevVqmJmZQVJSEgoKCrCxscH27durOQtldu/eDTs7O5iZmdUYtzqjRo2CjIwMPnz4ABcXF0hLS0NTUxPr168HADx58gQdOnSAtLQ0TE1NcfjwYb7p1ObaEFS3A2X1Wbdu3aCpqcn5bl2wYAFyc3N/6rhu3LgBdXV19O/fH+fPn0dBQcFPpfMr/P39ISMjgwEDBnCFjx49GnFxcXj69Gmd0zx48CBkZGTg6enJFS4mJgZPT0/s27cPDMP8Ur4JIXVHjWeEEEIaRXlvoqp//G4I//rrL8yYMQNdu3bFhQsXsGvXLrx79w7t2rXjNGgAQFRUFNq2bYvdu3fj5s2bWLp0KZ4+fYoOHTqguLgYQNkQoalTpwIAzp8/zxkmUXmY1+vXr7Fw4ULMnz8f58+fh7y8PPr27Ytly5bhwIEDWLt2LY4fP47MzEz07NkT+fn5nG1jYmJgZmYGb29v3LhxAxs2bEB8fDzs7Oy4GvHKeXl5QUhICCdOnIC3tzeePXsGJyenGoeU3rlzB7169YKsrCxOnTqFTZs2wc/PDz4+Pj/9+fE7R3fv3kXLli3RpEmTavNTbuLEiZg/fz6cnZ1x6dIlrFq1CtevX0e7du14jj8+Ph7Dhg3DkCFDcPXqVUyaNInz3o4dO3D37l1s3rwZ165dg7m5Oe7du4f27dsjIyMDe/bswcWLF9G8eXN4enrWOL9Pbc/L9+/fYWdnB39/f8yaNQvXrl2Dt7c35OXlkZ6eLjD9+/fvo3PnzsjMzMTBgwdx8uRJyMrKwt3dHadPn+aJP3bsWIiKiuLEiRPYuHEjAgMDMWzYMK44a9euxeDBg2FpaQk/Pz8cPXoU2dnZ6NixI96/f8+J5+bmhhcvXmDjxo24desWdu/eDVtb2xrLkK+vL0aPHg0LCwucO3cOixcvxqpVq3D37l2ueGw2G7169cL69esxZMgQXLlyBevXr8etW7fg5OTEVf758fLyQlFREY4dO8YVfuPGDcTFxXGG/cbFxUFZWRnr16/H9evXsXPnToiIiKBNmzb4+PEjT7oLFy5EbGws9uzZg8uXL0NNTY3v/n/XNVmb6yw3NxfOzs5ITEzEzp07cevWLXh7e0NXVxfZ2dkC01ZRUYGxsTF27dqFrVu34sOHDwJ/PP/K+arLtkuXLsXQoUOhpaUFX19f+Pv7Y+TIkVyNkgcPHoSbmxvYbDbnPE2bNq3ahkKgbvVIQkIChg4dimHDhuHSpUvo3r07Fi5cyFXeCgsLkZaWhjlz5uDChQs4efIkOnTogL59+3I1GDMMg969e3MaZv39/WFvb4/u3bvz5LG25XXjxo1Yvnw5Bg8ejCtXruD06dPw8vKqsTwVFRXh9u3b6NSpU7Xxaqu4uBh9+/ZFjx49cPHiRc7ntGjRIowcORJjxoyBv78/zMzMMGrUKLx48YInjdpeG4Lq9sjISLi5ueHgwYO4fv06ZsyYAT8/P7i7u//UMfXp0wc7duxAeno6Bg4cCHV1dYwaNQo3btyodp5FhmH43n/w+6tJWFgYLCwsICLCPaDLxsaG835dREZG4uHDhxg0aBBkZGR43ndycsKXL1/qnC4hpB4whBBCyG/k4+PDAKj2T09PjxM/ODiYAcBs2bKFK52vX78ykpKSzLx58/juh81mM8XFxcyXL18YAMzFixc5723atIkBwERHR/Nsp6enx0hKSjLfvn3jhIWGhjIAGE1NTSY3N5cTfuHCBQYAc+nSJYHHW1JSwuTk5DDS0tLM9u3beT6HPn36cMV//PgxA4BZvXq1wDQZhmHatGnDaGlpMfn5+ZywrKwsRklJian89f6znx/DMExCQgIDgBk0aFC1eSkXHh7OAGAmTZrEFf706VMGALNo0SJOmKOjIwOAuXPnDlfc6OhoBgBjZGTEFBUVcb1nbm7O2NraMsXFxVzhPXv2ZDQ1NZnS0lKGYRjm3r17DADm3r17AvMq6LyMGTOGERUVZd6/fy9w2/I8+vj4cMLs7e0ZNTU1Jjs7m2sfTZs2ZXR0dBg2m80wTMV5r/oZbdy4kQHAxMfHMwzDMLGxsYyIiAgzdepUrnjZ2dmMhoYGM3DgQIZhGCYlJYUBwHh7ewvMLz+lpaWMlpYW06JFC07eGIZhYmJiGFFRUa5r8OTJkwwA5ty5c1xphISEMACYXbt2VbsvNpvNGBgYMDY2Nlzh/fr1Y6SkpJjMzEy+25WUlDBFRUWMiYkJM3PmTE54+fl1cHDg2eZXzn1drsmRI0f+VD31/PlzBgBz4cIFgfkT5NmzZ4yuri6nnpSVlWV69uzJHDlyhOsc1uV8OTo6Mo6OjnXe9vPnz4ywsDAzdOhQgfnNzs5m5OTkmA4dOnDlr6ply5Zx1Vk/U488ffqUK66lpSXj4uIicJ8lJSVMcXEx4+Xlxdja2nLCr127xgDgKhcMwzBr1qxhADDLli2rNk1+5bVnz55M8+bNBW4nSPnxnjp1iuc9PT09pkePHny3Kz9XleunkSNH8pzX4uJiRlVVlQHAvHz5khOemprKCAsLM7NmzeKE1eXaEFS3V1X+HX3//n0GAPP69WvOe1XLRG0kJCQw//zzD9O+fXuGxWIxampqzOTJk5lHjx7xlL/a3IeU/9XExMSEb1mLi4tjADBr166t03HMnz+fAcAEBwfzfT8yMpIBwOzevbtO6RJCfh31PCOEENIojhw5gpCQEJ6/Dh06cMULCAgAi8XCsGHDuJ4Ga2hooFmzZlzDs5KSkjBhwgQ0adIEIiIiEBUV5UyyHB4eXuu8NW/eHNra2pzXFhYWAMqe+Faet6U8vHJPi5ycHMyfPx/GxsYQERGBiIgIZGRkkJubyzcPQ4cO5Xrdrl076OnpcYYp8pObm4uQkBD07dsXEhISnPDynk6V1eXz+1XleR41ahRXeOvWrWFhYYE7d+5whSsqKqJz58580/Lw8ICoqCjn9adPn/DhwwfO51X5WNzc3BAfH8+3d1K52p6Xa9euoVOnTpxzWxu5ubl4+vQp+vfvz9VTQFhYGMOHD8e3b9948lZ5qCtQ0UuhvCzduHEDJSUlGDFiBNexSkhIwNHRkXPelJSUYGRkhE2bNmHr1q149epVrea/+vjxI+Li4jBkyBCuIXN6enpo164dV9yAgAAoKCjA3d2dKy/NmzeHhoZGjWWIxWJh9OjRePPmDac3S2pqKi5fvox+/fpx5isqKSnB2rVrYWlpCTExMYiIiEBMTAyRkZF8r51+/frVeJzA77kma3udGRsbQ1FREfPnz8eePXu4ehDWxM7ODp8+fcL169exaNEitG3bFnfu3MGIESPg4eHB6Yn2K+erttveunULpaWlmDx5ssC0goKCkJWVhUmTJtVp5cS61iMaGhpo3bo1V5iNjQ3PsNwzZ86gffv2kJGR4Xw/HDx4kKsMlO+7ahkYMmQITz5rW15bt26N169fY9KkSbhx4waysrJq9TmUD+MW1KOyrlgsFte8gyIiIjA2NoampiZsbW054UpKSlBTU+M7rLm214aguv3z588YMmQINDQ0ICwsDFFRUTg6OgKo23c0P+rq6pgyZQoePXqEL1++YN68eZye5wYGBlxDQ93d3fnef/D7q43qynddyn5JSQkOHz4MKysrgXM3lpeH79+/1zpdQkj9oAUDCCGENAoLCwu0atWKJ1xeXh5fv37lvE5MTATDMFBXV+ebjqGhIYCy4UbdunVDXFwclixZAmtra0hLS4PNZsPe3r7GoWWVKSkpcb0uXwVQUHjleVaGDBmCO3fuYMmSJbCzs4OcnBznRwu/PJSvpFU1rLrVtNLT08FmswVuW1ltPz9+VFRUICUlhejoaIFxKivPM795mbS0tHh+jAmav4nfe+XD3ubMmYM5c+bw3YbfELxytT0vycnJdZ68PD09HQzDCDxuADznU1lZmet1+Xxy5XkpP147Ozu++yyf44rFYuHOnTtYuXIlNm7ciNmzZ0NJSQlDhw7FmjVrICsry3f78vwIKkMxMTGc14mJicjIyBC4GmZ1n3u50aNHY/ny5fDx8UHLli1x/PhxFBUVca3UOmvWLOzcuRPz58+Ho6MjFBUVISQkhLFjx/K9dqorP5X9jmuytteZvLw87t+/jzVr1mDRokVIT0+HpqYmxo0bh8WLF3M1GPMjKioKFxcXuLi4ACg7j/3790dAQACuXbsGNze3Xzpftd22fP6z6q6V2sThp671SNVrCSi7niqf2/Pnz2PgwIEYMGAA5s6dCw0NDYiIiGD37t2cRSvK9y0iIsKTJr8yUdvyunDhQkhLS+PYsWPYs2cPhIWF4eDggA0bNvD9DixXnkblByTlREREBA5LLB9qWLUsSUlJ8aQlJibG871WHs5v/rDaXhv8zl1OTg46duwICQkJrF69GqamppCSksLXr1/Rt2/fOn1H1yQzMxMZGRnIzMwEAM65KaekpAR5efl62ZeysjLfuiEtLY2zr9q6evUqEhISMH/+fIFxys9hfX5ehJDaocYzQgghfzQVFRWwWCw8fPiQ74T15WFhYWF4/fo1fH19MXLkSM77nz59+m15zczMREBAAJYtW4YFCxZwwsvn2+EnISGBb5ixsbHA/SgqKoLFYgnctrLafn78CAsLo0uXLrh27Rq+fftW44/g8h+c8fHxPHHj4uKgoqLCFVaXp/Xl2y5cuBB9+/blu42gSbXrcl5UVVVrnI+pqvIfZvHx8TzvlfceqXrsNSmPf/bsWU7vSUH09PQ4k7RHRETAz88Py5cvR1FREfbs2cN3m/JzVdsypKysLHBVVUENdJXp6OigW7duOHHiBLZs2QIfHx8YGxvDwcGBE+fYsWMYMWIE1q5dy7VtSkoKFBQUeNKsTY+O33VN1uU6s7a2xqlTp8AwDN68eQNfX1+sXLkSkpKSXHmsDWVlZcyYMQOBgYEICwuDm5vbL52v2m6rqqoKAPj27ZvA+RArx6mLutYjtXHs2DEYGBjg9OnTXOWmsLCQZ98lJSVITU3lakDjVyZqW15FREQwa9YszJo1CxkZGbh9+zYWLVoEFxcXfP36VeAqlOXHya+cqqurC+x5VB4uqCH3V9T22uB3bd69exdxcXEIDAzk9DYDUOPcb7UVERGB06dP49SpU3j//j2MjY0xePBgDBkyBObm5lxxDx8+jNGjR9cqXaaGifmtra1x8uRJlJSUcM17Vr5wRNOmTWt9DAcPHoSYmBiGDx8uME55efiZ64AQ8mto2CYhhJA/Ws+ePcEwDL5//45WrVrx/FlbWwOouFmv+sN17969PGlW7eVTX1gsFhiG4cnDgQMHBPYSOH78ONfroKAgfPnyBU5OTgL3U77SZ9XVxbKzs3H58mWuuLX9/ARZuHAhGIbBuHHjUFRUxPN+cXExZ5/lw3SqTgwfEhKC8PBwdOnSpdp9VcfMzAwmJiZ4/fo13+No1aqVwEaBupyX7t274969e9UOAa1KWloabdq0wfnz57nKFJvNxrFjx6CjowNTU9M6HC3g4uICERERREVFCTxefkxNTbF48WJYW1vj5cuXAtM3MzODpqYmTp48yfXj8MuXLwgKCuKK27NnT6SmpqK0tJRvPmq7EqCXlxfS09OxdOlShIaGYvTo0Vw/slksFs85unLlyi8NT/pd1+TPXGcsFgvNmjXDtm3boKCgUO35Ki4uFtjzrXy4W3kvx185X7Xdtlu3bhAWFsbu3bsFptWuXTvIy8tjz549dVoZsCHqERaLBTExMa7ylpCQwLPaZvnk/FXLwIkTJ/imWdfyqqCggP79+2Py5MlIS0vj6uFZVfnQ8aioKJ73unbtirCwML7Dfv38/CAjI4M2bdoITPtn/cy1Ua4u39G1lZSUhA0bNsDW1hZmZmbYs2cPunXrhmfPniEyMhIrV67kaTgD6nfYZp8+fZCTk4Nz585xhR8+fBhaWlq1Pg8JCQm4evUqevfuzbc3Zbny1U0tLS1rlS4hpP5QzzNCCCF/tPbt22P8+PEYPXo0nj9/DgcHB0hLSyM+Ph6PHj2CtbU1Jk6cCHNzcxgZGWHBggVgGAZKSkq4fPkybt26xZNm+Q/Z7du3Y+TIkRAVFYWZmVmtetBUR05ODg4ODti0aRNUVFSgr6+P+/fv4+DBg3x7zgDA8+fPMXbsWAwYMABfv37F33//DW1tba6VJ/lZtWoVXF1d4ezsjNmzZ6O0tBQbNmyAtLQ0V0+F2n5+gpSvXjpp0iS0bNkSEydOhJWVFYqLi/Hq1Svs27cPTZs2hbu7O8zMzDB+/Hj8888/EBISQvfu3RETE4MlS5agSZMmmDlz5k99ruX27t2L7t27w8XFBaNGjYK2tjbS0tIQHh6Oly9f4syZM3y3q8t5WblyJa5duwYHBwcsWrQI1tbWyMjIwPXr1zFr1iy+P8QAYN26dXB2dkanTp0wZ84ciImJYdeuXQgLC8PJkyfrNO8NAOjr62PlypX4+++/8fnzZ7i6ukJRURGJiYl49uwZpKWlsWLFCrx58wZTpkzBgAEDYGJiAjExMdy9exdv3ryptheTkJAQVq1ahbFjx6JPnz4YN24cMjIysHz5cp6hWYMGDcLx48fh5uaG6dOno3Xr1hAVFcW3b99w79499OrVC3369KnxmDw8PKCiooJNmzZBWFiYq4coUNZw4+vrC3Nzc9jY2ODFixfYtGlTnYf9Vfa7rsnaXmcBAQHYtWsXevfuDUNDQzAMg/PnzyMjIwPOzs4C08/MzIS+vj4GDBiArl27okmTJsjJyUFgYCC2b98OCwsLTo/MXzlftd1WX18fixYtwqpVq5Cfn4/BgwdDXl4e79+/R0pKClasWAEZGRls2bIFY8eORdeuXTFu3Dioq6vj06dPeP36Nf7991++eWiIeqRnz544f/48Jk2ahP79++Pr169YtWoVNDU1ERkZyYnXrVs3ODg4YN68ecjNzUWrVq3w+PFjHD16lG+atSmv7u7uaNq0KVq1agVVVVV8+fIF3t7e0NPTg4mJicA86+jowNDQEE+ePMG0adO43ps+fTqOHDkCJycnTj2Vnp6O06dP4+zZs9i6desvf5/x87PfV0BZY6qioiImTJiAZcuWQVRUFMePH8fr169/Oj9Xr17F+vXr0a9fP2zevBmdOnXiGp4piLKycrUNVHXRvXt3ODs7Y+LEicjKyoKxsTFOnjyJ69ev49ixYxAWFubE9fLywuHDhxEVFcXTo/jw4cMoKSnB2LFjq93fkydPOEN/CSG/2e9eoYAQQsj/tvJVrkJCQvi+36NHD65V7ModOnSIadOmDSMtLc1ISkoyRkZGzIgRI5jnz59z4rx//55xdnZmZGVlGUVFRWbAgAFMbGws31XSFi5cyGhpaTFCQkJcq/MJWsUMADN58mSusPJVFzdt2sQJ+/btG9OvXz9GUVGRkZWVZVxdXZmwsDBGT0+PGTlyJM/ncPPmTWb48OGMgoICIykpybi5uTGRkZE1fIplLl26xNjY2DBiYmKMrq4us379eoGrlNXm86tOaGgoM3LkSEZXV5cRExNjpKWlGVtbW2bp0qVMUlISJ15paSmzYcMGxtTUlBEVFWVUVFSYYcOGMV+/fuVKz9HRkbGysuLZD7/PtLLXr18zAwcOZNTU1BhRUVFGQ0OD6dy5M7Nnzx5OHH4rLtb2vDBM2QqJY8aMYTQ0NBhRUVFGS0uLGThwIJOYmMiVx8qr2TEMwzx8+JDp3Lkz5zO2t7dnLl++zBVHUPkXtErkhQsXmE6dOjFycnKMuLg4o6enx/Tv35+5ffs2wzAMk5iYyIwaNYoxNzdnpKWlGRkZGcbGxobZtm0bU1JSwvczrOzAgQOMiYkJIyYmxpiamjKHDh3iWUmSYcpW5tu8eTPTrFkzRkJCgpGRkWHMzc2Zv/76q9bllWEYZubMmQwAxs3Njee99PR0xsvLi1FTU2OkpKSYDh06MA8fPuRZEbL8szpz5gxPGr9y7utyTfL7jBim5uvsw4cPzODBgxkjIyNGUlKSkZeXZ1q3bs34+vpW+7kVFhYymzdvZrp3787o6uoy4uLijISEBGNhYcHMmzePSU1N5Ypf2/NV9bOty7YMwzBHjhxh7OzsOPFsbW15rourV68yjo6OjLS0NCMlJcVYWloyGzZs4LzPr8761XqE3/lZv349o6+vz4iLizMWFhbM/v37+e47IyODGTNmDKOgoMBISUkxzs7OzIcPH3i+R2pbXrds2cK0a9eOUVFR4dTVXl5eTExMDE++q1qyZAmjqKjIFBQU8LyXkJDATJw4kdHV1WVEREQYWVlZpkOHDnyvi5EjRzLS0tI84YI+v6rfg3W5NgSlyTAMExQUxLRt25aRkpJiVFVVmbFjxzIvX77kqU9ru9pmSkoKU1hYWGO8hpadnc1MmzaN0dDQYMTExBgbGxvm5MmTPPHKVz3lt9K3qakpo6+vX+3KtAzDMB07dmTc3d3rK+uEkDpgMUwd+lETQgghpF74+vpi9OjRCAkJqXbSaEIIIf+b4uLiYGBggCNHjsDT07Oxs0MaWVRUFExMTHDjxo1qe6oSQhoGzXlGCCGEEEIIIX8YLS0tzJgxA2vWrAGbzW7s7JBGtnr1anTp0oUazghpJDTnGSGEEEIIIYT8gRYvXgwpKSl8//5d4Mqm5L+vpKQERkZGWLhwYWNnhZD/WTRskxBCCCGEEEIIIYQQAWjYJiGEEEIIIYQQQgipdw8ePIC7uzu0tLTAYrFw4cKFGre5f/8+WrZsCQkJCRgaGmLPnj08cc6dOwdLS0uIi4vD0tIS/v7+DZD7CtR4RgghhBBCCCGEEELqXW5uLpo1a4Z///23VvGjo6Ph5uaGjh074tWrV1i0aBGmTZuGc+fOceIEBwfD09MTw4cPx+vXrzF8+HAMHDgQT58+bajDoGGbhBBCCCGEEEIIIaRhsVgs+Pv7o3fv3gLjzJ8/H5cuXUJ4eDgnbMKECXj9+jWCg4MBAJ6ensjKysK1a9c4cVxdXaGoqIiTJ082SN6p5xkhhBBCCCGEEEIIqVFhYSGysrK4/goLC+st/eDgYHTr1o0rzMXFBc+fP0dxcXG1cYKCguotH1XRapuEEEIIIYQQQgghf5D2Oyc0dhb4ck7WwIoVK7jCli1bhuXLl9dL+gkJCVBXV+cKU1dXR0lJCVJSUqCpqSkwTkJCQr3kgR9qPCOEkHr0p37J/azHk/cgLiOpsbNR77QU1LD6lk9jZ6NeLXYejXTnPo2djXqleMsfW+43TNf7xjLbcTDmX9nV2NmoVxt6TMKxF9cbOxv1alhLV1wKe9jY2ahXHk07YuiJ5Y2djXp3fMhyBH560djZqFdOxi2xN/hCY2ejXv3VtjcGHl3c2NmoV37DV2PGRe/Gzka98u41A0dCrjZ2NurVCDu3xs7Cf87ChQsxa9YsrjBxcfF63QeLxeJ6XT7bWOVwfnGqhtUnajwjhBBCCCGEEEIIITUSFxev98ayyjQ0NHh6kCUlJUFERATKysrVxqnaG60+0ZxnhBBCCCGEEEIIIX8Q1h/6r6G1bdsWt27d4gq7efMmWrVqBVFR0WrjtGvXrsHyRT3PCCGEEEIIIYQQQki9y8nJwadPnzivo6OjERoaCiUlJejq6mLhwoX4/v07jhw5AqBsZc1///0Xs2bNwrhx4xAcHIyDBw9yraI5ffp0ODg4YMOGDejVqxcuXryI27dv49GjRw12HNTzjBBCCCGEEEIIIYTUu+fPn8PW1ha2trYAgFmzZsHW1hZLly4FAMTHxyM2NpYT38DAAFevXkVgYCCaN2+OVatWYceOHejXrx8nTrt27XDq1Cn4+PjAxsYGvr6+OH36NNq0adNgx0E9zwghhBBCCCGEEEL+IEINOPn97+Tk5MSZ8J8fX19fnjBHR0e8fPmy2nT79++P/v37/2r2ao16nhFCCCGEEEIIIYQQIgA1nhFCCCGEEEIIIYQQIgAN2ySEEEIIIYQQQgj5g7D+I8M2/yuo5xkhhBBCCCGEEEIIIQJQ4xkhhBBCCCGEEEIIIQLQsE1CCCGEEEIIIYSQP8h/ZbXN/wrqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8ICDdv8k1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBattvlHoZ5nhBBCCCGEEEIIIYQIQI1nhBBCCCGEEEIIIYQI8Nsbz/T19eHt7f1b02OxWLhw4cIv7Wf58uVo3rz5L6VRVWBgIFgsFjIyMuo1XcKt6ufs6+sLBQWFRs3TqFGj0Lt370bNw58gNTUVampqiImJaeyscPn333/h4eHR2NkghBBCCCGE/I8SYrH+yL//VbWe88zd3R35+fm4ffs2z3vBwcFo164dXrx4gRYtWtRrBmsSEhICaWnp37pP8v+bp6cn3NzcGjsbBMC6devg7u4OfX19AEBMTAwMDAzw6tUrTmN1dnY23N3dkZCQgI8fP1abXnR0NPT19REUFISOHTvC2dkZ169f54l37tw5bNy4ER8+fACbzYauri5cXV2xZcsWAMC4ceOwZs0aPHr0CB06dKjXY/4VzTSNMcS2G8zVdKEirYAFV3fjYfTrxs4WAODCWX+cPnYSqamp0DfQx5SZ02Bj20xg/NCXr7DL+1/ERMdARUUZg4YPgUff3nzj3r15G6uWrEB7hw5YvWkdJ/z1q1CcPnYSER8+IjUlFas2rkEHR4f6PjQuHx+8xLs7T5GfmQMFTRW06tcV6sZN+MZNiPiCWztO8oR7LB4HeQ1lAAC7tBRhN4MR9TQMeRnZkFdXgm2vTtC2NGzQ4/hZoh3sId6jG4RNjCAkL4esCTNRGhXT2Nni8S7wGd7cCEJeZjYUtdTQ1tMVmiZ6fOPGfYxGwJbDPOEDV0yGgqYqT/inZ29x98A56DUzg8vkwfWed0Hs9azgaGgLWXEpJOak4fK7x4hJjxcYX1hICF1N7GCrZQpZcSlkFuTg7qcXeP7tAyeOhIgYXMzaoKmGISRFxZGen42A94/xMTn2dxwSnt96iOCAu8jOyIKqtgZcRvSFrrlRjdt9/fgZh1f9A7Ummhi/bh4nPOlbPO6fuYr46G/ITElDt+F90Ka7UwMeAa+g6/cQePEGstMzoN5ECx6jB8HQ0pRv3OjwSFw5ehbJ3xNQVFQERRVl2HdzgIN7N77xQx89w/Ft+2Bl1xyjFkxpyMPg0tXEDj0s2kFBUhbfM5Nw9MX1astIO31r9LRoDw1ZZeQVF+BN3CeceHUTOUX5AIBORi3QwaAZmiioAQCi0+Jx+vUdfE79/luOp1xgwC3cPB+AzLQMaOlqY+D4ETBpas437svHz/Dg6m18/fwFJcUl0NTThvuQfrBqyf09l5eTiwtH/PAqKAR5OblQUVdF/7FDYW1n+zsOCaF3gvH82n3kZmRDWVsdTkPcoWNmUON23yNj4LduL1S01TF81QxOuN+6vfj28TNPfAMbc/SZNbo+sy5QN9PW8LDqCAVJGXzLSILv86v4kPRFYPwOBs3gYdkBmnLKyCsqRGhcJI6+uMYpf46Gtpjcvh/PdkOPL0cxu6TBjqM67fVt0Nm4JeQkpJGQnQr/t/fxOS2Ob9whtt3QWteSJzw+KxUb7h1t6KwK9PzWIzy5eg85P+pz52G9a1efR3zG0dU7oaqjgXFr53LCP4S8weNLt5CemAJ2KRuK6iqwd3OCdQe7hjwMQqpV68YzLy8v9O3bF1++fIGeHvcN6KFDh9C8efPf3nAGAKqqvDe25L+hqKgIYmJi9Z6upKQkJCUl6z3dxtRQn1VtFBcXQ1RUtM7b5efn4+DBg7h69arAOMnJyejevTsA4Pbt2xARqaiy7OzsMH78eIwbN44TVl4fHDp0CFOnTsWBAwcQGxsLXV1dTpzbt29j0KBBWLt2LTw8PMBisfD+/XvcuXOHE0dcXBxDhgzBP//880c1nkmKiuNT6jdc/RCEtd0nNHZ2OO7euoOd23ZgxrxZaGpjjcv+lzB/5lz4njoKdQ11nvjxcXFYOHMeevRyx98rliDszVt4b9wKeQUFOHZ24oqbEJ+A3Tt2waY5b0NcQX4BjEyM4drTDcsWLG6ow+OIeRGO5+duo7WnC9QMtRHxKBR3d/nBY/FYSCvJC9yu15LxEJWsuD7FZaQ4/w+9/ACfQ96h7ZDukFNXRlz4Z9zffx6us4ZBqYlGgx7Pz2BJiKPk3QcUPQiC9KzJjZ0dvqJCwhB8+jo6DOkBdWNdhD94jms7jmHg8smQUVYQuN3AVVMgJiHOeS0hy/tgLjs1A0/P3oSGiS7Pew3JRtMY7pYdcCHsAb6kJ6CNriXGtO6JrfdPIqMgh+82Q21dICsuibNv7iE1LxPSYpIQFqoYcCDMEsLYNh7IKcrHsZc3kFmQAwUJGRSWFP+WY3oX/BI3jvjDbcwA6Jga4OWdIJzYsAcTNy2EvIqSwO0K8vJxcfcxGFiZIjcrm+u9ksIiKKqpwKKNLW4d82/oQ+AR+vgZLvmcQp9xQ6FvbownNx/g4JrtmOO9EoqqyjzxxcTF0b57Z2jq6UBMQhzR4ZE4t/coxMTFYd/NkStuelIqAg6fgYGFye86HACAva4Vhrdwhc/zK4hIjkVn41aY5zQM867sRGpeJk98U1VdTLTvg2Mvb+Dl949QlJLDGLueGNvGA94PTwMALNT1EfwlDEeef0URuwQ9LdpjQafhmH9lJ9Lzs3nSbAghD4Lht/8IhkwaAyMLUzy4fgf/LNuA5bs3QUlNhSd+5LsPsLC1Ru+RnpCUlkLQ7fvYuXIzFmxdBV0jfQBASXEJvBevg6y8HP5aNB2KKkpIT06F+G+65/z49DUCT1xGlxG9oWWihzf3nsJ/6yGMXDsLcsqKArcrzMvH9X2noWtphLxM7vrEfepwsEtKOa/zc3NxdMl2mNpZN9hxVNZWrylGtXLDgWeX8TEpFl1N7bCo8wjMvLSDb/kzU9XDlHb9cPjFVTz/9hFKknIYZ++BCW37YPP9E5x4eUUFmH7Rm2vbxmo4s9UyRR9rR5x9fRfRaXFop2+Dv9r2xrq7R5HB53o4/zYQl98/4rwWYglhXqeheB0X+Rtzze39k1e4dewCXEf1RxNTA7y8G4RTm/bhrw0LIK8iuOwV5OXj0p4TMLAyQU4m97FKSkuhvYczVLTUISwijMhX73B53ylIycnCyIZ/IzchDa3WwzZ79uwJNTU1+Pr6coXn5eXh9OnT8PLyAgAEBQXBwcEBkpKSaNKkCaZNm4bc3FyB6cbGxqJXr16QkZGBnJwcBg4ciMTERK44ly5dQqtWrSAhIQEVFRX07duX817VYZuRkZFwcHCAhIQELC0tcevWLZ59zp8/H6amppCSkoKhoSGWLFmC4mLum8X169dDXV0dsrKy8PLyQkFBQbWfT2lpKby8vGBgYABJSUmYmZlh+/bt1W5TVWpqKgYPHgwdHR1ISUnB2toaJ0/y9lqoytfXF7q6upCSkkKfPn2wZcsWrmGJ/IYIzpgxA05OTpzXDMNg48aNMDQ0hKSkJJo1a4azZ89Wu99du3bBxMQEEhISUFdXR//+/X8pPX19faxevRqjRo2CvLw8p1GkpjJ17NgxtGrVCrKystDQ0MCQIUOQlJRU7edV+fPR19cHi8Xi+StXm/JS1ffv3+Hp6QlFRUUoKyujV69edR6a+PjxYzg6OkJKSgqKiopwcXFBeno6AMDJyQlTpkzBrFmzoKKiAmdnZ8TExIDFYiE0NJSTRkZGBlgsFgIDAzlh7969Q48ePSAnJwdZWVl07NgRUVFRnPd9fHxgYWEBCQkJmJubY9euXZz3yvfh5+cHJycnSEhI4NixY2Cz2Vi5ciV0dHQgLi6O5s2b8+3xVdm1a9cgIiKCtm3b8n3/69ev6NixI2RlZXHv3j3o6OhAQ0OD8ycsLMw555XDcnNz4efnh4kTJ6Jnz548dVZAQAA6dOiAuXPnwszMDKampujduzf++ecfrngeHh64cOEC8vPzqz2O3+lJ7Dvsf3oJ9z+HNnZWuJw5eRpuHj3Qo5c79Az0MWXWNKipq+HSOf4/Xi+dvwg1DXVMmTUNegb66NHLHd3de8Dv+CmueKWlpVizdCVGjR8DTW1NnnTatLOH14RxcOjkyPNeQ3h/9xmM2zaDSbtmkNdQgV3/rpBSlMPHh6+q3U5CVgqScjKcP6FKDRifn72Ddbe20LYygqyKAsw6toCmhQHe3w1p6MP5KUW376PgmB9KXv4ZPR75eXMrGGYdWsC8Y0soaqqinWd3yCjK4/3959VuJykrDSl5Wc5f5fMEAGw2G3cPnENLj06Qq+bHQEPoaNAMIV/DEfI1HEk56bj8/jEyC3Jgr9eUb3xT1SYwVNbCoZAr+JT6Den52fiWmYQv6QmcOK2aWEBKVBxHnl/Dl/QEZOTnICY9AfHZqb/lmJ5cDYStkz1sO7Xl9DqTU1bE89uPq93uyoHTsGrXEjom+jzvaRnpoevQXmjargWERX7/gvIPLt+CXecOaNPVAeo6Wug1ZhAUlBURfCOQb3xtQ13YdmwDDV1tKKmpoKVjW5g1t0J0OPePYHYpGye270c3Tw8oqf/eh8bdzdsi8PNLBEa9RFxWCo69vI7UvEx0NWnFN76xsg6SczNwI+IpknMzEJEci7ufnsNQSYsTZ1fQedyODMGXjATEZ6XgwLNLEGKxYKXx+3rc3va/ivbdnNDBpRM0dbXhOX4EFFWUcf8q7wgbAPAcPwIu/d2hb2oEdW1N9Bk5CGpaGnjz9CUnzuNbgcjNzsGkJbNgbGkGZTVVGFuZo4kh/16v9e3FjYdo6mAHa8fWUNZSR6ehHpBVksfru0+q3e6273mY2zeHphFvPiVlpCCtIMv5iw2LhKiYKExb2zTUYXDpadkedz+9wN1PL/A9KxmHn19FSl4mupm15hvfVFUHSbkZuPbhCZJz0vEx+QtuR4TAUFmbKx4DBpkFOVx/jcXJuAWefnmHJ7HvkJiTDv+w+8jIz0EHff6fcUFJEbIL8zh/ugrqkBSVwNPYd7855xWeXgtEc6c2sO1kDxVtdXQb3gdyygp4eaf6+vzaoTOwatsC2sb6PO/pWRrD3M4GKtrqUFRXQWtXR6g10cRXPj0h/8v4/Ub9E/7+V9W68UxERAQjRoyAr68vGIbhhJ85cwZFRUUYOnQo3r59CxcXF/Tt2xdv3rzB6dOn8ejRI0yZwr9rOcMw6N27N9LS0nD//n3cunULUVFR8PT05MS5cuUK+vbtix49euDVq1e4c+cOWrXi/4XNZrPRt29fCAsL48mTJ9izZw/mz5/PE09WVha+vr54//49tm/fjv3792Pbtm2c9/38/LBs2TKsWbMGz58/h6amJlcDgqB96+jowM/PD+/fv8fSpUuxaNEi+Pn5VbtdZQUFBWjZsiUCAgIQFhaG8ePHY/jw4Xj69KnAbZ4+fYoxY8Zg0qRJCA0NRadOnbB69epa77Pc4sWL4ePjg927d+Pdu3eYOXMmhg0bhvv37/ON//z5c0ybNg0rV67Ex48fcf36dTg4OPx0euU2bdqEpk2b4sWLF1iyZEmtylRRURFWrVqF169f48KFC4iOjsaoUaNqfewhISGIj49HfHw8vn37Bnt7e3Ts2JHzfk3lpaq8vDx06tQJMjIyePDgAR49egQZGRm4urqiqKioVnkKDQ1Fly5dYGVlheDgYDx69Aju7u4oLa14+nf48GGIiIjg8ePH2Lt3b63S/f79O6dx+e7du3jx4gXGjBmDkpKyp2379+/H33//jTVr1iA8PBxr167FkiVLcPgw95Cm+fPnY9q0aQgPD4eLiwu2b9+OLVu2YPPmzXjz5g1cXFzg4eGByEjBT8EePHgg8Fr++PEj2rdvD3Nzc1y/fh2ysrK1Oj4AOH36NMzMzGBmZoZhw4bBx8eHq87S0NDAu3fvEBYWVm06rVq1QnFxMZ49e1brff8vKi4uRsSHCLRqw30j26q1HcLe8v+M3799h1atubvd29m3xsfwD5yyCABHDvpCQVEBPTx61n/G66i0pBRpXxOgaaHPFa5loY/k6OqHGgVs8MHZRf/g1o6TSIjgHmpSWlICIVHuH/kioiJIivpaL/n+X1NaUoKU2DjoWHIPFdGxNEJiDZ/p+VV7cXTOZgRsPYy4D9E8778MuA9JWWmYd/i9veyFWULQlldFZDJ3/iOSv0JPkbdnJwBYqhvgW2YSHA1tsajLCMxxHIIeFu0gIiRcKY4+vmQkonfTjljcdRRmOniik1ELsNDwN8WlJSWIj/4KQxszrnAjazN8i+D97MuFBj5BelIKHPu5NnQW66ykuATfo77AtLkVV7hpMyt8+RglYCtu3z/HIuZjFAytuId53jpzGdJysmjdtaOALRuGsJAwDJS08DaeO/9vE6JgosJ/uHpkylcoScmhmVZZDzk5CWm0bmKJ0Gp6xYgLi0KYJYTcwt/zsKqkuASxn6JhacvdOGHZwhpR4RG1SoPNZqMgvwDSlXqovnn6AobmJjixywdzhk7AiknzcPX0BbBL2fWaf35KS0qQGPMdek25eybqNTVF3CfBQxzDHoYgIzkNbXt3rdV+3j58DrM2zSAq3vCjHYSFhGGopIXX8Z+4wt/EfYKZKv/evx+TY6EsJQdbrbJrSF5CGvZ6Vnj1nXvaDwkRMezsMwe7+87F/E7DoK/I+4DudxBmCUFHXg0fkrnP0YekL9BXql2e2uhZISI59rf12qyqrD7/BoOm3PW5YVMzfIuMEbjd6/tPkZ6YAoe+LjXug2EYRIdFIC0huVZDQQlpKHV6LDdmzBhs2rQJgYGB6NSpE4Cy4VF9+/aFoqIipk+fjiFDhmDGjBkAABMTE+zYsQOOjo7YvXs3JCQkuNK7ffs23rx5g+joaDRpUvYlfPToUVhZWSEkJAR2dnZYs2YNBg0ahBUrVnC2a9aM/zw6t2/fRnh4OGJiYqCjowMAWLt2LWfYV7nFiyuG9+jr62P27Nk4ffo05s0rmzfD29sbY8aMwdixYwEAq1evxu3bt6vtfSYqKsqVRwMDAwQFBcHPzw8DBw4U/KFWoq2tjTlz5nBeT506FdevX8eZM2fQpk0bvtts374dLi4uWLBgAQDA1NQUQUFBNfb6qSw3Nxdbt27F3bt3Ob2ADA0N8ejRI+zduxeOjry9OmJjYyEtLY2ePXtCVlYWenp6sLW1/en0ynXu3JnrMxgxYkSNZWrMmDGc+IaGhtixYwdat26NnJwcyMjI1Hj8lYf+Tp8+HfHx8QgJqej1UVN5qerUqVMQEhLCgQMHOC3zPj4+UFBQQGBgILp14z+XSWUbN25Eq1atuBptray4b8iNjY2xceNGzuva9GzbuXMn5OXlcerUKc5QS1PTipv0VatWYcuWLZzenQYGBnj//j327t2LkSNHcuLNmDGDqwfo5s2bMX/+fAwaNAgAsGHDBty7dw/e3t7YuXMn37zExMRAS0uL73sjRoxAu3btcO7cOQgLC/ONI8jBgwcxbNgwAICrqytycnJw584ddO1admM4depUPHz4ENbW1tDT04O9vT26deuGoUOHQly8YsiWtLQ0FBQUEBMTw7fMFhYWorCwkCus8vb/KzIzMsEuLYWiEndPHEVlRaQ/SeO7TVpqKhSVuRvbFJUUUVpaisyMDCirqODt6ze4eukKDhw71GB5r4vCnDwwbIZnKJ+ErDQKsvj3rpaUl4H9YFco6WqAXVyKzyFhuPXPSXSbPgTqxmU3/loWhgi/GwJ14yaQVVFE/McYfH0TydXgS2qv4Md5kpTjPk+SctLIy+Lfs0BKXhYdh7tDVVcTpSWliHzyGgHbDsN99ihomuoDABI+xeLjo5fot+T3D5eWEpOAsJAQZ76ecjmFeZAV59+AoSQpB31FTZSUluLI8+uQFpNA76YOkBQVx9k398riSMnBSFIWoXGR8Hl2BSrS8ujV1AFCLCHc+VR9L71flZedC4bNhrS8HFe4tLwsz9CdcqnxSbh76jJGLpsOoTp+L/wOudk5YLPZkK1yTDIKcsjO4B1eVtnqcXORk5UNNrsUzgM90KZrxcPI6A+RCLnzCDO3LG2QfFdHVlwKwkJCyCzgruMy83Mhr8n//ioy5St2BZ3H1Pb9ISosAhEhYbz49gGHnwueomFQ865Iy89GWMLv6VFS9lmzIafAPdxeVkEeWenVn6tyt/yvoKigEC072nPCkhOSkJr4Hm2c2mPq8nlIikvAyd2+YJey0XNI32pS+3X52Xll15Qc93mRkpNBnoBrKj0hBY/OXIfnogm1uqbiP39F6rcEdBvTv8a49UFOXArCQsI8vcIyC3KhIMG//EUkf8WOR2cww8GTU/5Cvobj0LMATpy4rGTsCjqP2IxESIqKw828LVa5jsPcgJ1I+E09b8tJi5cNp88uyOMKzy7Mg5yElICtKsiJS8FCTR9HX1xrqCzWqLw+l5HnftAtLS+LnIwsvtukJSTj3ukADF8ytdqyV5CXjx1Tl6O0pAQsISG4juoPQ2szgfEJaWh1ajwzNzdHu3btcOjQIXTq1AlRUVF4+PAhbt68CQB48eIFPn36hOPHj3O2YRgGbDYb0dHRsLCw4EovPDwcTZo04TScAYClpSUUFBQQHh4OOzs7hIaGcs1pVJ3w8HDo6upyGs4A8B0SdvbsWXh7e+PTp0/IyclBSUkJ5OTkuNKZMIH7Brlt27a4d+9etfvfs2cPDhw4gC9fviA/Px9FRUV1WqGztLQU69evx+nTp/H9+3fOj/PqFkQIDw9Hnz59ePJal8az9+/fo6CgAM7OzlzhRUVFnAaxqpydnaGnpwdDQ0O4urrC1dUVffr0gZSU1E+lV65qT6TalKlXr15h+fLlCA0NRVpaGtjssid8sbGxsLTknVBTkH379uHgwYN4/PgxV4NaTeWlqvI8V+0tVVBQwDU8sjqhoaEYMGBAtXEE9dqqKd2OHTvynaMsOTkZX79+hZeXF9c1V1JSAnl57hvMyvvOyspCXFwc2rdvzxWnffv2eP1a8NCu/Px8ngb1cr169YK/vz/OnTtX68ZnoKzH2rNnz3D+/HkAZT1mPT09cejQIU7jmbS0NK5cuYKoqCjcu3cPT548wezZs7F9+3YEBwdDSqriZkVSUhJ5eXl897Vu3TquBnMAWLZsGfA/Og0jTxduBkA13bqr9m4pbyxisVjIy83D2mWrMWfRPMg38sq4VfH0ymEAQR115NWVIa9eMc+RqqE2ctOz8P72M07jmV3/rgg+eQ2XVu0HWICsiiKM7G0Q9eRNAx1B7Yl1doDUjIrvwpxFq1ASFt6IOao93vIlOK6ChgoUNCrmOFI3aoKc9Cy8vhkETVN9FBUU4t7B8+g43IPvPGi/C0+DKosFQYdVfj2eCr2NgpKyHs8B4UEY1sIFF8IeoIRdChZYyC3Kx7k3gWDA4HtWMuQkpOFg2LzBG884+azyWtDlxGaz4b/zCBz7d4eyptpvyNkv4KkLq6kkfpi0eh4KCwoRG/EZV4+dg4qGGmw7tkFBfgFObj+I/hNHQFqu9j2w6xtTpaSxWICgwqctp4oRLbvDP+w+3sRHQUFSBkOad8OY1j2x/+klnvg9LdqjrZ41Vt/x/f1zTtW2AFbxLDAIAcfPY9KSWVwNcAybgayCHIZNHQshYSHomRgiIy0dN89dafDGMw5+38V8DorNZuPq3pNo29sZihq1u3EJe/AMyjoa0DTk32jfUPjV34LqPm15VYy264Gzb+7hdVwkFCVlMaylK8bZ98Ke4LKpJCJTviEy5Rtnm49JsdjQYxK6m9vDJ+RKAxxB3bFY1X9vlWuta4X84kKe3qGNokrZK7sN5F/2Luw8io79XGusz8UlxDF2zRwUFRYh5l0Ebh+/AEVVZehZGtdnzv9oQr+hNzipvTpPCOHl5YUpU6Zg586d8PHxgZ6eHrp06QKg7GL466+/MG3aNJ7tKk/YXY5hGL4XVeXwukzszu9JfdX0nzx5wunJ5uLiwumFU77K3s/y8/PDzJkzsWXLFrRt2xaysrLYtGlTtUMuq9qyZQu2bdsGb29vWFtbQ1paGjNmzKh2qF9teicICQnxxKs8Z1d5Y9OVK1egrc09J4CgnjSysrJ4+fIlAgMDcfPmTSxduhTLly9HSEjIT6VXrmpDYU1lKjc3F926dUO3bt1w7NgxqKqqIjY2Fi4uLrUeIgkAgYGBmDp1Kk6ePMnVs/FnygubzUbLli25GvzK1XaBi9qU+6qfVfn8PJXPddW52apLt/y87d+/n6enY9XeX/wadKtea4Ku73IqKiqcOdyqWrRoEWxsbDB06FAwDMM1lLs6Bw8eRElJCVe5YxgGoqKiSE9Ph6JiRe8oIyMjGBkZYezYsfj7779hamqK06dPY/ToitWj0tLSBJ6zhQsXYtasWVxh4uLiuHVgeq3y+l8hryAPIWFhpKVy9zJLT0vn6Y1WTklZmSd+RnoGhIWFIScvj5jP0UiIj8eiOQs47zM/ymeXdk444ncc2jrcdUtDE5eRAkuIhfxs7ifgBTm5dWpQUdXXxueQinlJJGSl0Gl8P5QWl6AwNx+S8jJ4dTGw2ontf5ei4Gco+VAxhImdwr8n4Z9E4sd5qtrLrCA7F1JyNfdELqdmoINPT8saMLOS05CdmoEbOysmmy6vZ/dPWAHPlVMhpyZ4gvtflVdUgFI2G7Li3L0QZMQkkVPIv3E/uzAXmQW5nIYzAEjOSYcQiwV5CRmk5mUiuzAXpQybq2EkKScdchLSEGYJoZRpuKFmUrLSYAkJISeTu1dCXmY2pOV5G4mK8gsQ//krEmK+45rvOQA/zgHDYPWwmRi6cCIMrPivaPm7SMuWzWdYtZdZTmY2ZBUEP3ADwJnHTFNPB9mZWbjldwm2HdsgNSEJ6Ukp8FlXMSdnedmbP2A85v6zGioaDdeYmF2Yh1I2m6eXj5yEtMA5ojysOiAiJRZXwoMAAF8zEuFTcgXLnMfgzOu7XAtcuJm3g4dVR6y7ewRfMxL5ptcQZOTK5jSs2sssOzOTpzdaVSEPgnFkxz78tWA6LGy5J82XV1KAsLAwhIQrZsXRbKKNrPQMlBSXQES0zj+7ak1SVgosISHkVulllpedAyl53rqvKL8QidHfkPQlDnePXQRQcU1tG7MQ/eZ4QbdSA0VxYRE+Pn2Ndn1qHj1RX7IK81DKLoWCJHf+5aspf32aOuJjcixnQv3YjEQUPL2MVa7jcCr0FjLyebdjwCAq9Ts0ZHkX9WhouYX5ZfW7RNX6XQrZAur3ytroWuL5t/AGra9rwqnPM2pbnxciPvorEr58x43DZQ+7y8ve2hGzMWT+BOhblQ0/ZgkJQelH466GnjZSvici6PLt/6nGM/JnqXMtPnDgQEyfPh0nTpzA4cOHMW7cOM4P5BYtWuDdu3cwNq5dgba0tERsbCy+fv3K6X32/v17ZGZmcnqp2djY4M6dO1w/aGtKLy4ujjMcLDg4mCvO48ePoaenh7///psT9uUL9zhzCwsLPHnyBCNGjOCEPXlS/WSbDx8+RLt27TBp0iROWG17GVVOo1evXpwhZ2w2G5GRkTw99iqztLTkyVvV16qqqjzzO4WGhnJ6H1laWkJcXByxsbHVDqmsSkREBF27dkXXrl2xbNkyKCgo4O7du3B2dv6p9PipqUy9ffsWKSkpWL9+PacMPX9etyfmnz59Qr9+/bBo0SKuoYhA7coLvzyfPn0aampq1fZQq055ua/as6k65Y088fHxnB5+lRcPKE/38OHDfFfIVFdXh7a2Nj5//oyhQ4fWer9ycnLQ0tLCo0ePuOa9CwoKQuvW/Cd0BQBbW1scO3ZM4PuLFy+GiIgIhg4dCjabjcGDB1ebj5KSEhw5cgRbtmzhGRrbr18/HD9+XOD8i/r6+pCSkuJaiCIqKgoFBQUCe0uKi4v/Tw7TrEpUVBSm5qZ4/iwEHZ0qzv+LZyFo78B/pVJLaysEP+SeRPb502cwszCHiIgIdPV0cegE9zx7B/fsR15eHqbOmg419d/f80RYRBhKTTQQ/yEGus0qhgzEf4iBjnXtV79L+5YISXnexjZhURFIKciCXVqK2NCP0GshuN7/bfILwM5PqDneH0RYRAQqulr4/j4KBrYVn+G38CjoN6v96lypX+M5PzgVNFTQf9lErvdDLtxFcWER2nm6Qlrp5+r52ipl2PiemQwT1SZ4l1gxH5iJig7eJ8bw3SYmLQHWmkYQExZBUWlZbx4VaXmwGTbnR2dMegKaa5mgciciFWkFZBXkNvgPMWEREWgaNMHntx9hblfxwOpz2EeYtuRdxU9cUgJ/beCew/b5rUeIeReJ/jNGQ4HPSpa/m4ioCLSN9BD5+j2s21TMixfx5j2s7JrXOh2GYVBSXHbO1LQ1MXsb933A9RP+KCwoQK8xg6Gg3HCNtgBQyi5FdFocmmoY4fm3D5xwaw0jvKj0ujIxYVGwq5QfzutKD9R6WLRDbysHbLh3DNFpcfWf+WqIiIpA19gA4a/ewrZdxfyb4a/C0My+pcDtngUG4cj2vRg7bwqsW/PeGxhZmiIkMAhsNpvzQDPxezzklRQatOEMKLum1PW1EfsuEiYtKxYS+fIuEka2vKMwxCXFMWL1TK6w13eDEfs+Cu5ThkFelbtsRTx7g9LiUli0q34ESX0qZZfic1ocbDSNEfK1otezjaYxQr7x7wUtLizKU3+Vl7/q5nPUU9T4rQ245UoZNr5lJsFMVZer95iZmi7C4qsfxmysrANVGUU8qTQktTGU1ec6iA6LgLldxTyC0WERMG3Ju6iNuKQ4xq3jnvrmxe3H+PI+En2njYKCavX1Wnn9SEhjqHNNLiMjA09PTyxatAiZmZlcE7PPnz8f9vb2mDx5MsaNGwdpaWmEh4fj1q1bPCvZAUDXrl05vUu8vb1RUlKCSZMmwdHRkTMsbNmyZejSpQuMjIwwaNAglJSU4Nq1a3znm+ratSvMzMwwYsQIbNmyBVlZWVyNHkDZPFGxsbE4deoU7OzscOXKFfj7c68IN336dIwcORKtWrVChw4dcPz4cbx79w6GhoJXATI2NsaRI0dw48YNGBgY4OjRowgJCYGBgUGtP1tjY2OcO3cOQUFBUFRUxNatW5GQkFBt49m0adPQrl07bNy4Eb1798bNmzd5hmx27twZmzZtwpEjR9C2bVscO3YMYWFhnEYBWVlZzJkzBzNnzgSbzUaHDh2QlZWFoKAgyMjIcM11VS4gIACfP3+Gg4MDFBUVcfXqVbDZbJiZmf1UeoLUVKZ0dXUhJiaGf/75BxMmTEBYWBhWrVpV6/Tz8/Ph7u6O5s2bY/z48UhIqPihqKGhUavyUtXQoUOxadMm9OrVi7MCZWxsLM6fP4+5c+dyDSsWZOHChbC2tsakSZMwYcIEiImJ4d69exgwYABUVHiXUAfKepXZ29tj/fr10NfXR0pKCtd8bQAwZcoU/PPPPxg0aBAWLlwIeXl5PHnyBK1bt4aZmRmWL1+OadOmQU5ODt27d0dhYSGeP3+O9PR0nl5Wlc2dOxfLli2DkZERmjdvDh8fH4SGhvLtfVfOxcUFCxcu5OkRVtmCBQsgLCyM4cOHg81mV9uoFxAQgPT0dHh5efEMM+3fvz8OHjyIKVOmYPny5cjLy4Obmxv09PSQkZGBHTt2oLi4mGuo8cOHD2FoaAgjoz9nYlJJUXHoyFf0hNOSU4GJig6yCnKRmMO/F9/vMGCwJ9YtXw0zc3NYWVsh4MIlJCYmwb1vbwDA/p17kJycgkXLy8qjR99euHDmPHZ6/4Oevdzx7u07XL10BYtXLQMAiImLw8CIu76VkS1ryKgcnp+Xh+/fKibrj4+Lx6eISMjKyUFdg/9E6r/CsnNrPD5yGcq6GlA10EbE41DkpmXBtGNZXfryYiDyM7PRfoQ7ACD8XgikleShoKkCdmkpPj97h9jQj3AcWzHUPjkmDvkZ2VDUUUdeRjbeXH0EhmFg1ZX/PJeNjSUrAyE1FbB+/GgX+tEDkJ2WASY9oxFzVsHGuS3uHToPFT0tqBs1QfiDF8hJy4SFY9l9xbPzt5GbkYVOY8oelry9HQxZZQUoaqmhtLQUn568QfTLcDhPKBsyLiIqCiVt7vIkLlU25LxqeEN5GP0ans274FtGEmIzEtG6iSUUJGXxJLbswZirmT3kJKTh9/oOACA0LgJdTFphQLPOuBURAmkxCbiZt8Pzrx9Qwi5beObJl3dor28Nd6sOCIp5CxVpBXQyboHHMW9/yzHZuznhwq5j0DLUhbaJPl7dDUJmSjpadimbAuDOqcvITstE70nDwBISgloT7jkypeVkISImyhVeWlKC5G8JnP9np2UiIeYbxCTEOb0XGpKDuzNO7TgIHSN96JkZ4umtB8hISUPbbk4AgKvHziEzLQODp5WtUP/42l0oqihB9cdqwjEfIvHg0k20794ZACAqJgoNXe5ethLSZT1UqoY3lGsfgjGxbV9Ep8UhMuUrOhu3hLKUPO5Elj2o9GzWBYpScpwhca++R8CrjTu6GLfCm/goKErKYFhLV3xK+YaMHxOa97Roj/42nbAz6BySczMg/6NnW0FJEQpLaj9q4Fd07eMGny27oGdiCENzEzy8fhdpySlwcCsbTePvewoZqWkYPbvsofizwCD4bN0Nz/EjYGBmgsy0DACAmLgYJH+cE0c3Z9y7fBOn9x5BZw8XJH1PwDW/i+js/nsWuGjp0hHX9p2Gur4ONI118TbwGbJTM9CsU9m8bA/PXENOeha6j/cES0gIKjoaXNtLyspARFSEJxwoW1jAuIUlJGV+79D1gPePMbV9f3xO/Y6I5K/oatoKKtLyuBVRNjfxYFtnKEnKYWdQWY/U598+4K+2veFs2pozbHNkKzdEpnzlTKjf36YTIpO/Ij47lTPnmb6SJg4+u/xbj61c4KeXGNrSBV8zEhGTFo+2+tZQlJTF45iy3s89LdpDXlIax1/e5NqujZ4VYtLif/s8bfy06e6Ei7uPQ9OwCXSM9fHqXhAyU9PRoks7AMC90wHITs+Ex4ShP+pz7sUQpOVkICwqwhX++NJtaBo0gaK6MkpLShEVGo63j0LgOqr6aW3+a/6XV7b8E/3UYxAvLy8cPHgQ3bp14xqOaWNjg/v37+Pvv/9Gx44dwTAMjIyMBA65YrFYuHDhAqZOnQoHBwcICQnB1dWVq6HNyckJZ86cwapVq7B+/XrIyclx9W6pTEhICP7+/vDy8kLr1q2hr6+PHTt2wNW14kurV69emDlzJqZMmYLCwkL06NEDS5YswfLlyzlxPD09ERUVhfnz56OgoAD9+vXDxIkTcePGDYGfyYQJExAaGgpPT0+wWCwMHjwYkyZNwrVrtZ/AccmSJYiOjoaLiwukpKQwfvx49O7dG5mZgicvtbe3x4EDB7Bs2TIsX74cXbt2xeLFi7kakFxcXLBkyRLMmzcPBQUFGDNmDEaMGIG3bytukFetWgU1NTWsW7cOnz9/hoKCAlq0aIFFixbx3a+CggLOnz+P5cuXo6CgACYmJjh58iRnUvu6pidITWVKVVUVvr6+WLRoEXbs2IEWLVpg8+bN8PDwqFX6iYmJ+PDhAz58+MAzeT3DMLUqL1VJSUnhwYMHmD9/Pvr27Yvs7Gxoa2ujS5cute6JZmpqips3b2LRokVo3bo1JCUl0aZNmxp7Xx06dAhjxoxBq1atYGZmho0bN3L1wlJWVsbdu3cxd+5cODo6QlhYGM2bN+fMVzZ27FhISUlh06ZNmDdvHqSlpWFtbc1ZsEGQadOmISsrC7Nnz0ZSUhIsLS1x6dIlmJgI7pFjbW2NVq1awc/PD3/99ZfAeHPnzoWwsDBGjhwJNpuN4cOH84138OBBdO3alafhDCjrebZ27Vq8fPkSjo6O2LlzJ0aMGIHExEQoKirC1tYWN2/ehJlZRY+ikydP1nq+xd/FXFUP//apaMSc1qHsBuJqeDDW3D0saLMG19m5C7Iys3DkkC/SUlKhb2iA9ds2QkOz7AY8NTUVSYkVT3Q1tbSwbttG7PL+BxfP+kNZRQVTZ0+HY2enOu33Y/hHzJxUMaR7l/e/AACXHq5YsPRvQZv9NP2WFijMzceba4+Rn5ULBU0VdJ40ADJKZWUuPysHuWkVwxbYJaV46X8XeZk5EBYVKYs/cQC0rSoaZNnFJQgNeIDslAyIiotB28oQ7Uf0hJgU//kAG5toWztIz634zGUWly3wkn/kFAqOnm6sbHExsmuKgtw8vLxyH3mZOVDSUkP3qUMh+2MobF5mNnLSKr5XS0tK8eTsTeRmZENEVASKWmpwnToEutaNOwywsjfxnyAlJo4uJq0gJy6NhJxU+IQEcIYgyYpLcQ1tKiotwYGnl9DLqiOmduiPvKJCvIn/hBsfK6aSyCzIwYGnl+Fu2R4zOnoiqyAXj6PfIDDq1W85Jqu2LZCfk4sH528gJyMTqjqaGDzvL06vg5yMLGSl1u2hQHZ6JvYv2sR5HXzlLoKv3IWehTFGLJlar/nnp3n71sjLzsXtM5eRlZ4JDV0teC2aDkW1sp5xWemZyEip+KHLMAyuHj+PtKQUCAsLQ1ldFd2H9oV9t1/rtV+fnsS+g4y4FPo0dYSCpAy+ZSZhU+BxpOSVXUMKkrJQlqr43n0QHQoJUTF0M22NoS1ckFdUgHeJ0TgVeosTp6uJHUSFRTCjI/fvg3NvA3H+beBvOCrAzqEtcrNycOXkeWSmZUBLTwdTVsyDslpZI2tmWgbSkivO1cPrd8AuLcXJ3T44uduHE962iwNGzSqbG1JJVRnTVy3Amf3HsHLyAigoK6Kzhytc+9funvRXmbVphvycPDy5eAe5mVlQ1tZAn1mjIadS9oAyNyMb2akZdU43PSEZ3yNi0G+OVz3nuGbBX8IgKy6FfjadoCgpi68ZiVh39yhScjMAAIqSslCRVuDEv//5FSRFxeFq1gYjWroit6gA7xI+49jLit9w0mISGG/fGwqSMsgrLkB0WjyW3TiAqNTqV85uKK/iIiAlJgEXM3vIiUshPjsVe59c5DT2yUlIQ1GS+/eDhIgYmmka43zY/cbIMg9Le1vkZefikf8N5GRkQVVHE4Pmjoe8SkV9nplSt/q8uLAI133PIjstEyJiolDWUkOvicNgaf/7ej8SUhWLoSW9/nN8fX0xY8YMZGRkNHZWCKnW1atXMWfOHISFhXGGOPwJwsLC0KVLF0RERPBtjKtO+52/fzW+hvR48h7EZSQ1djbqnZaCGlbf8qk54v8ji51HI925T80R/x9RvOWPLfdPNnY26tVsx8GYf2VXzRH/H9nQYxKOvaj9QkX/Hwxr6YpLYQ8bOxv1yqNpRww9sbyxs1Hvjg9ZjsBPLxo7G/XKybgl9gZfaOxs1Ku/2vbGwKOLa474/4jf8NWYcdG7sbNRr7x7zcCREMGr4/5/NMLOrbGz8NO6HxA88qcxXRu7tbGz0CgadgA+IYRUw83NDZGRkfj+/TvXqruNLS4uDkeOHKlzwxkhhBBCCCGE1AcW68/pXECo8YwQ0simT//zVqesuuAAIYQQQgghhJD/XdSU+R80atQoGrJJCCGEEEIIIYQQUg+o5xkhhBBCCCGEEELIH0SIVtv8o1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmD0GqbfxbqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8KiYZt/FOp5RgghhBBCCCGEEEKIANR4RgghhBBCCCGEEEKIADRskxBCCCGEEEIIIeQPQsM2/yzU84wQQgghhBBCCCGEEAGo8YwQQgghhBBCCCGEEAFo2CYhhBBCCCGEEELIH0QINGzzT0I9zwghhBBCCCGEEEIIEYAazwghhBBCCCGEEEIIEYCGbRJCCCGEEEIIIYT8QWi1zT8Li2EYprEzQQghhBBCCCGEEELK9D/yd2Nnga+zI9Y0dhYaBfU8I4SQehSXkdTYWahXWgpqaL9zQmNno949nrwH2R8iGjsb9UrW3BRZt+81djbqlVzXTohO+d7Y2ahXBiraeBcf1djZqFdWmkbY/+RiY2ejXo2z7/WfLHvZ0TGNnY16J2ugj+y4uMbORr2S1dLC1/SExs5GvWqiqIGkrNTGzka9UpNTxueUb42djXplqKKD7MhPjZ2NeiVrYtzYWSD/EdR4RgghhBBCCCGEEPIHEaJhm38UWjCAEEIIIYQQQgghhBABqPGMEEIIIYQQQgghhBABaNgmIYQQQgghhBBCyB+EVtv8s1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmDCNFqm38U6nlGCCGEEEIIIYQQQogA1HhGCCGEEEIIIYQQQogANGyTEEIIIYQQQggh5A/ComGbfxTqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIeSPkZeXh1WrVuHLly+NnRVCCCGEEEIIaTSsP/Tf/ypqPCP/L/n6+kJBQeG37MvJyQkzZsz4LfuqT3X9jPT19eHt7d1g+amNqVOnIi4uDnp6enXa7v/rOSKEEEIIIYQQ8uejBQNIg2HVMMHhyJEj4evr+3sy8z/I09MTbm5utY4fEhICaWnpBsxR9U6ePInExERcvHixztueP38eoqKiDZCrhnHhrD9OHzuJ1NRU6BvoY8rMabCxbSYwfujLV9jl/S9iomOgoqKMQcOHwKNvb75x7968jVVLVqC9Qwes3rSOE/76VShOHzuJiA8fkZqSilUb16CDo0N9H1qdNdM0xhDbbjBX04WKtAIWXN2Nh9GvGztbAjEMg32nTsL/xg1k5+bAytQU8/+aACNdwQ2+UbFfsOfEcXyIikJ8UhJmeY3FEI9eXHH2njyB/adOcoUpKyjgxuGjDXIclTEMg/1XA+D/+BGy8/Jgpa+PeQMHw0hLS+A2d0NfwffGNXxNTkZJaSmaqKphWJeucGtjz4nzMjISR2/fxIevsUjJzMSm8RPg1Kx5vef/8vmLOHviNNJSU6FnoI8J0yajaXMbgfHfvHqNff/swpfoGCirqGDAEE/06OPBFcf/9FkE+F9CcmIS5BTk0dHJAaMnjIOYuBgA4NSRE3h8/yG+fYmFmLg4LK2tMGbiODTR06334yt37UIALp46h/TUNDQx0MOYKeNhadOUb9y01DQc3rUfURGfEP8tDm59PeA19S+BaT+6cx9bV21A6/b2WLBmaUMdAo9Xd4IQcvU+cjOzoaKljk5DPaBjZlDjdt8jYnBq3R6o6Khj5KqZXO8V5Obj0bnriHwehoK8fMirKMFpcA8YNrNokGOo7/I3d8pMvH3FWwfatW2DVZvL6vS83Dwc2X8IQQ8eISM9A0amxpgwYwrMLMzr/wB/YBgG+44dg/+1q8jOyYGVmTnmT54MI319gdtExcRgz9Ej+BD5CfFJiZj1118Y0qcvV5yXb9/i6NkzCI+MREpaGjYvXQandu0aJv+HD8M/IADZ2dmwsrDA/OnTYWRQfXm7c/8+9vj44FtcHHS0tDDJywudOnbkvO8+aBDiExN5thvQqxfm/3iod/fBA5y/fBnhERHIzMrC8f37YWZs/MvHdPGsP84cP4XU1DToG+hj0swpsG4u+F7i9ctQ7Nm+EzHRMVBWUYbnsMFw71vxXXQj4Bo2rV7Ps93V+zchJi4OABja2xOJCQk8cTz69ca0uTN5wuvK/8w5nDx2AqkpqdA3NMC0WdPRzLa5wPivXrzCv947EPM5GsoqKhgyYih69+vDeT866jMO7j2Ajx8+ICE+AVNnTsfAIZ5caQzw6IuEeN5j6tO/L2bNn/PLxwQAAecv4uwJP0498de0STXWE/v/2c2pJ/oP8USPPu5ccfxPn8OVSt9THZwcMHrCWM731Mh+Q5CUwFs2e/b1wOTZ0+vluCpjGAb7TpyA/43rZXWEqRnmT5wIo2oeiEd9+YI9x4/hw6dPZfdH48ZhSK/eAuP7+Plh55HDGOzRC7PHj6/3YyCkJtR4RhpMfHw85/+nT5/G0qVL8fHjR06YpKRkY2Tr/73S0lKwWCwICVXfcVRSUrJOn7GqquqvZu2XDB48GIMHD/6pbZWUlOo5Nw3n7q072LltB2bMm4WmNta47H8J82fOhe+po1DXUOeJHx8Xh4Uz56FHL3f8vWIJwt68hffGrZBXUIBjZyeuuAnxCdi9Yxds+Nw8F+QXwMjEGK493bBsweKGOrw6kxQVx6fUb7j6IQhru09o7OzU6PD5czhx8QKWTZ8BXS1tHPQ7jclLl+Lcrt2QlpLiu01BYSF01DXQtV0HbD10QGDahrq62LVyNee1cA3XeH05cusmTty9g6XDR0JXTQ2Hrl/DlH+34+zSFZCWkOC7jbyUFEa7dIe+hgZEhUXwMOwNVh47AkVZWbS1tAIA5BcVwlRHB+5t22H+/r0Nkvf7t+9h7/admDx7OqxsmuLqhctYPGcB9h3zgRqf6ykhLh5L5ixEd3c3zFu6CO/ehGHnlu2QV1BAh05ljcl3b9zGoT37MWvhPFhYW+F77FdsWbMRAPDX9MkAgLehr+HetxdMLczALmXDd99B/D1zHvYd94FEA3y3Pbp7Hz7/7sO4GZNgYW2JG5euYfW8pdh+eA9U1dV44pcUFUNOQR79hg1CwBn/atNOSkiE7+4DsLSxqvd8V+fD01DcO34ZXUf0hrapPl7fe4pzWw5i9LrZkFNWFLhdYV4+ru47BT1LY+RmZXO9V1pSgjOb9kNKTgYeU4ZDRkke2WkZEJMQb5BjaIjyt3TtChQXl3C2ycrMxKRR49CxkyMnzHv9ZsR8jsbcpQuhrKKCOzduYeH0udh3/BBUGui7/PAZP5zwP49ls2ZDV0cHB0+ewORFC3HuwMHq6z4NTXTt6ICte/nXAfkFBTAxMIS7czfMW72qQfIOAIdPncKJM2ewbP586DZpgoNHj2Ly3Lk4d+SIwPy/efcOi1auxIQxY9CpY0fce/gQC1aswMEdO9DU0hIAcGTPHpSy2ZxtoqKjMXnOHHRxcuI6xmZNm6KrkxNWb95cL8dz79Zd7Pb+F9PmzoSVTVNcuXAZC2fOx8GThwXcS8Tj71nz4darJxYs/xvv3oRhx6ZtkFdQgEPnirIlJS0NXz/uhzblDWcAsNNnL9jsUs7r6KhozJ82Gw5V7kd+xp2bt7Fj63bMmj8H1s1scOn8BcydPhtH/Y5DXUODJ37c9zjMmzEb7r09sGTlMrx9/QZbN2yGgqICnDp3AgAUFBRAU1sLTl074Z+tO/jud9/hg2CXVpzD6KjPmDllOjp17fzLxwSU1xO7MHn2NFjaNMXVCwFYMmch9h47JLCeWDpnEVzd3TB36UK8fxOGnVt2QF5Bnut7ymfPfsxcOBeW1lb4FvsNWznfU5MAANsP7AK7Utn88jkai2bM46pL6tPhc2dx4oI/ls2cWXZ/dPo0Ji9ZjHN79tZQR2iga/sO2Hpgf7Xpv4uIgP+N6zDRr/kBy39JTZ1RyO9FwzZJg9HQ0OD8ycvLg8VicYU9ePAALVu2hISEBAwNDbFixQqUlFTcMGZkZGD8+PFQV1eHhIQEmjZtioCAAK593LhxAxYWFpCRkYGrqytXgx2bzcbKlSuho6MDcXFxNG/eHNevX682z7m5uRgxYgRkZGSgqamJLVu28MQpKirCvHnzoK2tDWlpabRp0waBgYHVprt8+XLo6upCXFwcWlpamDZtWq3TKx9+GRAQAEtLS4iLi2P//v2QkJBARkYG136mTZsGR0dHru0qu3TpElq1agUJCQmoqKigb9+KJ8BVh23GxsaiV69ekJGRgZycHAYOHIhEPk9Xy8XExIDFYsHPzw8dO3aEpKQk7OzsEBERgZCQELRq1YpznpKTkznbhYSEwNnZGSoqKpCXl4ejoyNevnzJeT8wMBBiYmJ4+PAhJ2zLli1QUVHhnO+qwzb19fWxevVqzrnU09PDxYsXkZyczDkma2trPH/+nOsYzp07BysrK4iLi0NfX5/v+f9VZ06ehptHD/To5Q49A31MmTUNaupquHSO/w/cS+cvQk1DHVNmTYOegT569HJHd/ce8Dt+iiteaWkp1ixdiVHjx0BTW5MnnTbt7OE1YRwcGuim6Wc9iX2H/U8v4f7n0MbOSo0YhsHJy5cwesBAdG7bDsZ6elgxYyYKigpx/cF9gdtZmZhi+ugxcHFwgFg1PSRFhIWhoqjI+VOUl2+Iw+DCMAxO3ruD0S7d0bm5LYy1tLF8+EgUFBXhRsgzgdu1NDVDp+a2MNDQhI6qKgZ36gJjbW2ERkVx4rS3aoqJ7r3Qubltg+X//OkzcOnZHd09ekBXXw8TZkyBqpoaAvwv8Y1/5cJlqKmrYcKMKdDV10N3jx7o1qM7zp7048QJD3sHK+um6NStCzQ0NdCyjR2cnDsj4kMEJ86arRvQrYcr9A0NYGhihFmL5iEpMQmRHyP47faXXT7jjy5u3eDc0xU6errwmvoXlNVUcePiFb7x1TTV4TV1Ajq5dIFUNT2KS0tL4b16EwaNHgZ1Td56oyE9v/4Q1g52sHFqA2UtdXQe6gFZJQWE3nlS7XY3fc/Doq0tNI15e/m9fRCCgpw89J42Etqm+pBXUYSOqQHUdAX3ovwVDVH+ZOXkoKSsxPl7FfICEuISnAaOwsJCPLr/AF6T/4J182bQ0tHGcK9R0NDUELjfX8UwDE76X8DoQYPQuUMHGOvrY8XsOSgoLMT1e/cEbmdlZobp48bBxclJYN3X3s4Ok0aNQucOHRok78CP/J89i9HDhqGzgwOMDQywYsECFBQU4Prt2wK3O3n2LNq0aoXRQ4dCX1cXo4cOResWLXDi3DlOHEUFBagoKXH+HgUHQ0dLCy2bVTzE6tGtG8aNHInWLVvW2zGdO+kHV3c3uPXqCT0DfUyaORVqaqq4fJ5/7/2A8xehpq6GSTOnQs9AH269esLV3Q1nTnDfS7BYLCgpK3P9VaagqMD13tPHwdDS0UazFs1/+ZhOnziFHr3c4d7bA/oG+pg2ewbU1NXgf5b//dHF8/5Q11DHtNkzoG+gD/feHujh0ROnjp3gxLGwssTk6VPQtZszxMT4l0FFRUUoqyhz/oIePYa2jjaat6if7y7/02fRrWd3uHLqiclQVVPDFf/LfONX1BOToauvB1ePHujWwxXnKtUTH8Lew/LH95S6pgZatmkFJ+dOiPxQ0Umh7FxV1CVPHz+BprYWrKsZ6fCzGIbByYsXMdrTE53btS+rI2bNKqsj7ldzf2RqiuljvODi6Fjt/VFefj6WbN6Ev6dOhayMTL3nn5DaosYz0ihu3LiBYcOGYdq0aXj//j327t0LX19frFmzBkBZw1f37t0RFBSEY8eO4f3791i/fj2EhYU5aeTl5WHz5s04evQoHjx4gNjYWMyZU9G9evv27diyZQs2b96MN2/ewMXFBR4eHoiMjBSYr7lz5+LevXvw9/fHzZs3ERgYiBcvXnDFGT16NB4/foxTp07hzZs3GDBgAFxdXQWme/bsWWzbtg179+5FZGQkLly4AGtr6zqll5eXh3Xr1uHAgQN49+4dhg0bBgUFBZyrdANXWloKPz8/DB06lG8+rly5gr59+6JHjx549eoV7ty5g1atWvGNyzAMevfujbS0NNy/fx+3bt1CVFQUPD09+cavbNmyZVi8eDFevnwJERERDB48GPPmzcP27dvx8OFDREVFYenSimFBWVlZGDFiBB4+fIjg4GAYGhrCzc0N2dllPQrKG8aGDx+OzMxMvH79Gn///Tf2798PzWp+7G3btg3t27fHq1ev0KNHDwwfPhwjRozAsGHD8PLlSxgbG2PEiBFgGAYA8OLFCwwcOBCDBg3C27dvsXz5cixZsqRehxYXFxcj4kMEWrVpzRXeqrUdwt6G8d3m/dt3aNXajivMzr41PoZ/4GpsPnLQFwqKCujh0bPe8ku4fU9MRGp6OuxtK26oxURF0cKqKd58+PDL6cfGxcF11Eh4jPPCwk0b8Y3P0Jj69j01BalZWbC3qBjSJiYqihbGJngT/blWaTAMg2cfPuBLYiJa1MNQpNoqLi5G5McItGjNXY+1aN0K4WHv+G4THvaOJ37LNq0Q+eEj53qyamaNyI8R+Pg+HAAQ/z0OIcFP0bpdG4F5ycvNBVDW8FHfiouLEfXxE5rZteAKb25niw/vwn8p7TNHTkJOQR5de7j8Ujp1VVpSgsSY79BvasoVrt/UBHGfYgRu9/ZBCDKSUtGud1e+70e9eg8tYz3cOeKPXVNXwmfRFjy5fJer90V9aajyV9WNgGtw7NqJ06OxtKQU7FI2xMTEuOKJiYvj3Rv+3yO/6ntCAlLT02DfoqLxR0xMDC2srfEm/H2D7LM+fY+PR2paGuwr3fOIiYmhRbNmePOO/7kCgDfv36NNlfskezs7gdsUFxfj6q1b8OjevUF7ixQXFyPiYwRateG+N2jZxg7vBd1LhL1DyyrxW7WxQ0Q4d9nLz8/HkN4DMci9P/6evaDaBwLFxcW4ff0WXHv++vGW3R99ROsq90d2bVoj7M1bvtu8exsGuyrxW9u3wYf3HwReT7XJx81rN+Dm0bNezqHgeqIl3guoJz6EvUeL1twNrS3a2CHyQwTnuCybNcWnjxH4+L7s3qPse+oZWrez50mvPB/3bt5Gtx6uDVI2vycm/Lg/qvieEhMVRYumTfEm/Ne+pwBgw+7daG9nhzYN+DCOkNqgYZukUaxZswYLFizAyJEjAQCGhoZYtWoV5s2bh2XLluH27dt49uwZwsPDYWpqyolTWXFxMfbs2QMjIyMAwJQpU7By5UrO+5s3b8b8+fMxaNAgAMCGDRtw7949eHt7Y+fOnTx5ysnJwcGDB3HkyBE4OzsDAA4fPgwdHR1OnKioKJw8eRLfvn2D1o/5gObMmYPr16/Dx8cHa9eu5Uk3NjYWGhoa6Nq1K0RFRaGrq4vWrVvXKb3i4mLs2rULzSo9yfT09MSJEyfg5eUFALhz5w7S09MxYMAAgZ/5oEGDsGLFCk5Y5fQqu337Nt68eYPo6Gg0adIEAHD06FFYWVkhJCQEdnZ2fLcrz7+LS9kPsenTp2Pw4MG4c+cO2rdvDwDw8vLiapDq0qUL1/YHDhyAgoIC7t+/j549yxqCVq9ejdu3b2P8+PF49+4dhg8fjj59+qA6bm5u+Ouvsjl+li5dit27d8POzo7z+cyfPx9t27ZFYmIiNDQ0sHXrVnTp0gVLliwBAJiamuL9+/fYtGkTRo0axZN+YWEhCgsLucLExasfGpSZkQl2aSkUlbiHJCkqKyL9SRrfbdJSU6GozH1zqKikiNLSUmRmZEBZRQVvX7/B1UtXcODYoWr3T35Nano6AEBZXoErXFlBAfFJSb+UdlNTU6yYMRN6WtpIzcjAwTOn4TV/Lk7/sxMKDdAgUy41KwsAoCTLvQ8lOTkkpPEvk+Vy8vPhtmgBikqKISwkhPmeg9HGwrLB8lpVVkYm2KVs3utJURFpqfzznp6WDkXFKvE511MmlFWU4dS1MzLTMzB74nQwDIPS0lL07OMBz+FD+KbJMAz27tgFKxtr6BvW/3CS7MwssNlsKCgqcIXLKyoiIy39p9MNf/sOt6/cwNYD//5iDusuPzsXDJsNKXnuHgRS8rLIzczmu016QjIenrmGQX9PhFClB2mVZSanITY8ChZtbdF31hhkJKbg9pELYJeWol1v53o9hoYqf5V9fB+OmM/RmLmw4sGglLQULJpa4oTvUejq6UJBSRGBt+/i4/twaOlo19PRcUtNLzse5Sp5V1ZURHzir9V9v0NqWnX5F9yjPjUtje82qQLqxsBHj5CTkwN3V9dfzHH1Ku4luKesUFQSXPbSUtN4y6qSElfZa6Kvi3mLF8DA2BB5ubk4f/ocZoyfgr1HD0FHV4cnzcf3HyInJwfdenSvh2PKQCm/Y1JWEnhMqalpaK1c9TMoO6aMjAyoqKjUOR8PAx8gJycHbj1rP2dwdQTVEwqKikgXWE+kQUFAPZGVkQklzvdUJuZU+p7q0ccDA4fzn/4k+MFj5OTkwNmtYR6UcO6Pqox4Kbs/SuazRe3duH8fH6I+4cg2719K5/8rIRb1dfqTUOMZaRQvXrxASEgIp6cZUNZzqqCgAHl5eQgNDYWOjg6n4YwfKSkpTsMZAGhqaiLpxw/YrKwsxMXFcRpsyrVv3x6vX/OfjDwqKgpFRUVo27YtJ0xJSQlmZmac1y9fvgTDMDz5KiwshHKVru3lBgwYAG9vbxgaGsLV1RVubm5wd3eHiIhIrdMTExODjQ33xKJDhw5F27ZtERcXBy0tLRw/fhxubm48N+blQkNDMW7cOL7vVRUeHo4mTZpwGs4AwNLSEgoKCggPD6+28axyPtXVy+ZyqNzTTl1dnXOeACA1NRWrV69GYGAgkpKSUFpairy8PMTGxnId/7Fjx2BjYwM9Pb1arQpam3wAQFJSEjQ0NBAeHo5evbgncW/fvj28vb1RWlrK1esRANatW8fVEAmU9bobP2NSjXnjeerHAKjmSWDVJaHLe8uxWCzk5eZh7bLVmLNoHuR/0wq0/yuuBQZi7e6KhnbvJWU9JqueP4ZhfvlJbvuWFU+ljQHYmJuj91/jEHDvLoZVM3luXV179hTrTlYMadk2qWwOL37HVBMpcXEcX/g38goLEfLxA7adPwttFRW0NDWrcdt6VTXvqOF88BxreXBZ+OuXoTh15Dgmz54OcysLxH37jj3bd0LR5yiGjh7Ok9zOrTsQHfUZW3bzn0+nvvDWG8xPLxefn5eH7Ws2Y9LcaZBTaPjhwYLwPSY+547NZiNgz0m06+MMJQ3Bc3oxbAZSsjLoNrofhISEoGGgg5yMLIRcvV/vjWcc9Vz+KrsecA36hgYws+Re7GDukoXYtm4ThvYeCCFhIRibmsDJuQuiIgT3rK+La3fvYu2O7ZzX3ivL5iKrmsOyuq9edlmvrt26hbVbt3Jee68rW2iBp57jE8aDX30vIOrFq1fRrk0bqP5Eo83P4HP51LHsMVzBlk2tYNm0Yu5DKxtrTBw5DhfOnMMUPhPMX7t8Fa3tW0NFtf6Olyf7NZQxnvsjMHzDayvg0mW0aWtf73MH8r/tq+a+T9B38o/wNy9DcfrIcUyePQ1mVhaI+xaHvdt34oSPEobw+Z66EXANrexbQ7meztW1e/ewdmfFgxfvZcsF5Lva29saJSQnY8v+ffh35SqIV+ltS0hjoMYz0ijYbDZWrFjBNedWOQkJiVpNdF91dUUWi8Xzg68uP3Jr82ORzWZDWFgYL1684GlMkREwBr9Jkyb4+PEjbt26hdu3b2PSpEnYtGkT7t+/X+v0JCUlefLdunVrGBkZ4dSpU5g4cSL8/f3h4+MjMO91WTxA0OdUm0aCyuelPG7VsMpDaEaPHo3U1FRs374denp6EBcXh7W1NYqKirjSDQoKAgCkpaUhLS2txpVBa5MPAJy88Du26srEwoULMWvWLK4wcXFxpOZnCtxGXkEeQsLCPE9R09PSeZ5KllNSVuaJn5GeAWFhYcjJyyPmczQS4uOxaM6Cinz/OKYu7ZxwxO84tBuoN8J/nUPr1mhqVtGwXVRcDABIyUiHSqWn42mZmVCq54ZLSQkJGOnp42tcXL2m62DTDE0rTbZb9GMISGpWJlQqzbGWnp0N5Rp6vAkJCaGJWtlk9WZNmiAmMQG+N2/8tsYzOQV5CAkL8Ty9z0jPEHg9KSopIj2tavz0H9dT2fEe2e+Dzi7O6O7RAwBgYGSIgoIC7NiwFYNHDuVarGXX1h148igIm3d6Q1WtYSZql5WXg5CQENKr9DLLzMiAvJLCT6WZ8D0eSQmJWLuw4gFAeX3Xv3NP/Ht0PzT4zJ1YXyRlpcESEkJuBncvs7ysHEjJ8X6XFuUXIjH6G5K+xOHO0YsV+WUYbBm9AAPmjoWupTGkFWQhJCzMdY6UNNWQm5mN0pISCIvU321vQ5W/cgUFBbh/+x5GjB3Fk46WjjY27fRGQX4+cnPzoKyijLVLVkJdk3dS9Z/hYG+PpuYV13FR0Y+6Lz0dKpUe7KVlZEBJwAO7xuTQvj1nQn8AnPuJlLQ07vynp1ebf2UlJZ5eZmkZGXwXKYpPSMCzly+xscpDtYYg6F4iI726ewklPmU1nXMvwY+QkBBMLczw/es3nvcS4xPwKuQFlq2vn0Ue5BUUICzw/oj/olDKykpIS03lCstIKzsm+Z94KJAQH48Xz55j9UbeUSQ/q7yeSEutUn+np0NBYD2hxKeeyOD7PeVa6XuqsCAfOzZsw6Aq31OJCYkIff4Si9cur7fjcmjTBk0rdS7g3B+lV70/yoCSws/XER8+fUJaRgaGz6hovC1ls/HqXRj8Ai4jyP8Cz+8nQhoSNZ6RRtGiRQt8/PgRxgLmx7GxscG3b98QERFRbe8zQeTk5KClpYVHjx7BwcGBEx4UFMQZMlmVsbExREVF8eTJE+jqlk1EnJ6ejoiICM4k/La2tigtLUVSUhI6VlqqvCaSkpLw8PCAh4cHJk+eDHNzc7x9+/an0ys3ZMgQHD9+HDo6OhASEkKPHj0ExrWxscGdO3cwevToGtO1tLREbGwsvn79yul99v79e2RmZsLCwqKGrevm3r172L17N+c8ffnyBSkpKVxxoqKiMHPmTOzfvx9+fn4YMWIE7ty5U+OKo3VhaWmJR48ecYUFBQXB1NSU7xezuLg4/2Ga+YL3ISoqClNzUzx/FoKOThXl8sWzELR34D9ZsqW1FYIfPuYKe/70GcwszCEiIgJdPV0cOnGY6/2De/YjLy8PU2dNhxqflfhI7UhLSXGtEMUwDJQVFfE0NBTmhmW9XouLi/HyXRimjhhZr/suKi5GzLevsLWs32GQ0hISXCtoMgwDZTk5PP0QDrMmZfVecUkJXn6KxNRe1Q+NrophGBSVFNdrfqsjKioKEzNTvAp5gfaOFfXnq5AXsO/Qju82Fk2t8PRxMFfYy2fPYWJuBpEfDSuFhQU8dYuQkBAYhuE0MDEMg11bdyDowSNs/HcbNLQarqFJVFQURmbGeP38Few7VhzX6+ev0Lo9//ltaqKt2wTbDu3iCjt58Ajy8/MxZspfUFZr2J4zwiIiUNfXRsy7SJi0asoJj3kXCWNb3lU/xSXFMXIN98OK0DvB+Br+Ce5ThkNetezHmraJPsKfhIJhs8H6cQ7TE1MgrSBbrw1nQMOVv3IP7gSiuLgInV34z+8GABKSkpCQlER2VjZePAuB16S/fuGIKvCv+5Tw9NVLmP+4bysuLsbLt28xdYxXveyzPvHNv5ISnj5/DnMTEwA/8v/6NaaOHy8wHRtLSzx98QJDK02H8fT5c9hY8ZbRS9evQ1FBAR0qjV5oKKKiojA1M8WLZ8/Rgete4jnaCbqXaGqF4EdBXGHPn4bA1IK37JVjGAZRkZ9gYGTI8971gGtQUFSAvYA5tuqq7P7IDCFPn3EtbBTyLAQdHPjfH1tZN8XjKvdHz54+g7mlucBjqs7Vy1egoKiItu35X78/g7ueqDg3L0NeoG2H9ny3MW9qKaCeMK30PVUIlhD3A18hIWGu76lyt65ch7yiAlq3rZ9zBVRzf/TqFcyNKt0fhYVh6qiaf3cIYtesGU79yz3Vzsrt3tDT0cHIfv3/JxrOaLXNPws1npFGsXTpUvTs2RNNmjTBgAEDICQkhDdv3uDt27dYvXo1HB0d4eDggH79+mHr1q0wNjbGhw8fwGKx4FrLuSTmzp2LZcuWwcjICM2bN4ePjw9CQ0Nx/PhxvvFlZGTg5eWFuXPnQllZGerq6vj777+5fkSZmppi6NChGDFiBLZs2QJbW1ukpKTg7t27sLa2hpsb7xwJvr6+KC0tRZs2bSAlJYWjR49CUlISenp6UFZWrnN6lQ0dOhQrVqzAmjVr0L9/f0hU+lFc1bJly9ClSxcYGRlh0KBBKCkpwbVr1zBv3jyeuF27doWNjQ2GDh0Kb29vlJSUYNKkSXB0dBS4yMDPMjIywuHDh9GyZUtkZmZizpw5XL3kSktLMXz4cHTr1g2jR49G9+7dYW1tjS1btmDu3Ln1lo/Zs2fDzs4Oq1atgqenJ4KDg/Hvv/9i165dNW9cBwMGe2Ld8tUwMzeHlbUVAi5cQmJiEtz79gYA7N+5B8nJKVi0fDEAwKNvL1w4cx47vf9Bz17uePf2Ha5euoLFq5YBKJskuuqNrYxsWc+NyuH5eXn4/u0753V8XDw+RURCVk6O77L2v4ukqDh05Ct67GjJqcBERQdZBblIzPn5+ZwaAovFwmB3D/icPQNdTS000dKCz1k/SIiJw9Wh4mZ/6batUFNWxpQfDWrFxcX4/PXrj/+XIDk1FR8/f4aUpASaaJbNdejtcxAd7VpDQ1UV6RmZOHjmNHLz8tCzcxfejNT3MXXqAp8b19FEVQ1N1NTge+M6JMTE4GJX8aBh2WEfqCooYMqPBjWfG9dhqasLbVVVlJSU4vG7MFx5+gQLBlXMC5ZXUICvlVbWjUtNwcevXyEvLQ0NAT0J6qqv5wBsWrUOJuZmsGhqiWsXA5CUmIgefdwBAId270dqSgrmLlkIAOjR2x2Xzl3A3h270N2jB8LD3uNGwDUs+HG9AUCb9m3hf+osjEyNYW5ZNmzzyH4f2Hdox7lR37llO+7duoNl61dDUkqK01tCWka6xrkPf4b7gD7YsXYLjM1MYGZljpuXryMlMRndPMq+I47t80FqSiqmL6qYGys6smzl04L8fGRlZiI6MgoioqJooq8LMXEx6Bnqc+1D+kdv56rhDaWVa0dc3XsaGgY60DLWxZt7T5GdmoFmnct+4D3wu4ac9Ey4/TUILCEhqOpw96qSkpOGsKgIV3izzm3x8vZj3D1+CbbO7ZGekIKnl++ihTP/H6m/qiHKX7kbAdfQrmMHvr2Cnj8NARgGOrpNEPftOw7s3Asd3Sbo1qNh5tpisVgY3Kc3fE6dgq6WNppoa8Pn1ElIiIvDtVMnTrylmzZCTVkFU8aMAfCj7vsxBUNxSTGSU1LxMSqqrO7TKusRnZefz9XD9ntCAj5GRUFeVhYaavXz8IfFYmFw//7wOX4cujo6aKKjA59jxyAhIQHXrhWNk0vXroWaqiqm/JjiYlC/fhg/fTp8T56EU/v2CHz8GE9fvMDBHdxDtNlsNi5fv46eLi4Q4fNjPjMrCwlJSUj+8WDwy4/PRPnHCp0/o9/ggdiwYg1MLcxg2dQKVy4GICkxCe59PAAAB3btQ0pyMhYs+xsA0LNvL1w864/d3v/CrVdPvA97h+uXr2LRyooFnI4c8IVFU0toN9FBXm4u/P3OISriE6bNmclzvDeuXIOzm2u9Nkp7DhmE1ctWwtzSAlbWTXHJ/yKSEhLRu19vAMCef3cjJTkZi1eU5blX3z4473cO/2zbDvfevfDubRiuXLyMZWsqev8VFxcj5nP0j/+XIDk5GZEfIyApJQWdJhXzuLHZbFy9fAXde3T/qYa36vTx7I/Nq9bDxNz0Rz1xBcmJSXD7UU/47D6A1JQUzFlSNoKgR293XD53Eft27ILrj3riZsA1zF/+NyfNNu3b4nwN31Plx3XrynV07d4NwiIN19DEYrEwuFcv+Jzxg67Wj/ujM35ldYRjpfujLVvK7o9+zCVcdn9UXkeU3x9FQUpCEk20tCAtJQVjfX2ufUmIS0BBVo4nnJDfgRrPSKNwcXFBQEAAVq5ciY0bN0JUVBTm5uYYO3YsJ865c+cwZ84cDB48GLm5uTA2Nsb69etrvY9p06YhKysLs2fPRlJSEiwtLXHp0iWY/HjqyM+mTZuQk5MDDw8PyMrKYvbs2cjM5B6G5+Pjg9WrV2P27Nn4/v07lJWV0bZtW4ENXQoKCli/fj1mzZqF0tJSWFtb4/Lly5w5zeqaXmUmJiaws7NDSEhIjfOAOTk54cyZM1i1ahXWr18POTk5rl55lbFYLFy4cAFTp06Fg4MDhISE4Orqin/++afGPNWVj48Pxo8fD1tbW+jq6mLt2rVcq6auWbMGMTExuHy5bElvDQ0NHDhwAAMHDoSzszOaN29eL/lo0aIF/Pz8sHTpUqxatQqamppYuXIl38UCfkVn5y7IyszCkUO+SEtJhb6hAdZv2wiNH8NtUlNTkVRpAmNNLS2s27YRu7z/wcWz/lBWUcHU2dPh2NmpTvv9GP4RMydN47ze5V02V4VLD1csWPq3oM0anLmqHv7tU9GjZFqHsif8V8ODsebuYUGbNZqRffuhsKgI6/fuRnZODpqamuLfFSu5nsAmpCRDqNIT4eS0NAydWTHk4OgFfxy94I8WTZti35qyuXgSU1Lx9+bNyMjOgqKcHJqamcFn42Zo1tOPx+qMcO6GwuIibDh9Etl5ebDSN8A/U6Zx9VBLSE/jevpZUFSIDadPIikjA+KiotBT18DKUWPQrdLcbeGxXzBh+zbO623nzgIAerSxx/IRo+ol745dOyErKwvHfY4gPTUNeob6WLV5HdQ1yq6ntNQ0JFWa0FxDSxOrNq/D3h07EXD+IpRUlDFxxhR06FRRFw4ZORwsFguH9x1CanIK5BUV0KZ9W4waX9HDJsD/EgBg3hTuH5WzFs1rkAaMDp0dkZ2VDb/DJ5CelgZdA338vWEF1H40fKenpiMlkXtS5tnjpnL+HxXxCQ9vB0JVXQ17T/vWe/5+hnmb5sjPyUPwxdvIzciCirYG+s4aA3mVsiE+uZlZyErLqFOacsoKGDB3HO6duIzDi7dBRkEOLbp1QOseTvV/AGiY8gcA32K/4t2bt1i7bSPf/ebl5MJnz36kJKdARk4WHRw7YtRfXvX+o7+ykQMGorCwCOv//RfZOdloam6Of9eu4677kpK5JrdOTk3F0MkV84AePXcWR8+dRQtrG+zbtAkA8D4iAhPmVzzE27ZvLwCgZ1dnLK90L/DL+R80CIWFhVjv7Y3s7Gw0tbDAv5s2Vcl/EtcD02ZNm2LN0qXYffAg9hw6BB0tLaxbupRrSCgAPHvxAgmJifDozn/i/AdBQVixYQPn9aJVZUMdx40cib9+8h6jk3NnZGVm4tjBI0hLLbuXWLt1A2foblpKKpISKsqeppYm1mzdgN3e/+LSuQtQVlHG5FnT4NC5omEjJycH29ZvRnpqGqRlpGFkaoJte3bA3Ip7xMHLkBdISkhEd/f6mVS/XJduXZGVmQnfA4eQmpIKAyNDbPTeDI0fK6unpqQiMaHi/khLWwsbvbfgn23b4X/mPFRUVTB9zkw4da5o0E1JTsGYYaM4r08dO4FTx06geQtb/LO3okfT82chSExIhFsDrFju2LUTsrOycMLnKNJS06BvqI+Vm9dxHlympaby1BMrN6/Fvh27cPn8JSirKGNClXpi8MhhYLFYOLLPp9L3lD1GjufuCfoq5CWSEpMarGG9spH9+pfVEbt3ld0fmZnh35WruK+xZD73R9Mq7k2Pnj+Po+fPo0VTa+yrw28+Qn4XFlObiZ4IIYTUSlzGn7/yWF1oKaih/c4JjZ2Nevd48h5kf4ho7GzUK1lzU2TdvtfY2ahXcl07ITrle80R/x8xUNHGu/ioxs5GvbLSNML+JxcbOxv1apx9r/9k2cuOjmnsbNQ7WQN9ZNfz/JCNTVZLC1/TExo7G/WqiaIGkrJSa474/4ianDI+p/DOCff/maGKDrIjPzV2NuqVrAn/aYL+Pxjrt66xs8DXgYELGzsLjYLWPiWEEEIIIYQQQgghRABqPCOEEEIIIYQQQgghRACa84wQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhJD/Y+++w5uq3gCOf5N07z0ohRYKbSl77703gvADWQoqojhwIE4UBVEZooKKbJG9lL33KqPMslpKGd17jyS/PwopaROGtrTq+3mePE9ze+7NOcnNSfLe95wjhBDCCAmeCSGEEEIIIYQQQohSMWfOHHx9fbGwsKBBgwYcPHjQaNmRI0eiUCiK3YKCgnRlFi1aZLBMdnZ2qbVBgmdCCCGEEEIIIYQQ5Yih4FB5uD2plStX8uabb/Lhhx9y5swZWrVqRbdu3YiMjDRY/rvvviMqKkp3u3XrFk5OTjz77LN65ezs7PTKRUVFYWFh8Zee68chwTMhhBBCCCGEEEIIUeJmzJjBqFGjGD16NIGBgcyaNQtvb2/mzp1rsLy9vT0eHh6628mTJ0lKSuL555/XK6dQKPTKeXh4lGo7JHgmhBBCCCGEEEIIIR4pJyeH1NRUvVtOTo7Bsrm5uZw6dYrOnTvrbe/cuTNHjhx5rMebP38+HTt2pHLlynrb09PTqVy5MhUrVqRnz56cOXPmrzXoMUnwTAghhBBCCCGEEKIcUaIol7epU6dib2+vd5s6darBNsTHx6NWq3F3d9fb7u7uTnR09COfg6ioKLZu3cro0aP1tgcEBLBo0SL++OMPli9fjoWFBS1atODatWt//Ql/BJNSO7IQQgghhBBCCCGE+NeYOHEi48eP19tmbm7+0H2KzpWm1Wofa/60RYsW4eDgQN++ffW2N23alKZNm+rut2jRgvr16/P9998ze/bsRx73r5DgmRBCCCGEEEIIIYR4JHNz80cGy+5zcXFBpVIVyzKLjY0tlo1WlFarZcGCBQwbNgwzM7OHllUqlTRq1KhUM89k2KYQQgghhBBCCCFEOVLWq2qWxGqbZmZmNGjQgJ07d+pt37lzJ82bN3/ovvv37+f69euMGjXqkY+j1WoJCQnB09Pzier3JCTzTAghhBBCCCGEEEKUuPHjxzNs2DAaNmxIs2bN+OWXX4iMjGTMmDFAwTDQO3fusGTJEr395s+fT5MmTahZs2axY3722Wc0bdqUatWqkZqayuzZswkJCeHHH38stXZI8EwIIYQQQgghhBBClLhBgwaRkJDA559/TlRUFDVr1mTLli261TOjoqKIjIzU2yclJYW1a9fy3XffGTxmcnIyL730EtHR0djb21OvXj0OHDhA48aNS60dEjwTQgghhBBCCCGEKEeUTzhEsjwbO3YsY8eONfi/RYsWFdtmb29PZmam0ePNnDmTmTNnllT1HovMeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjjzpypaidEnmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5okCGbZYnknkmhBBCCCGEEEIIIYQRCq1Wqy3rSgghhBBCCCGEEEKIAuPWzyjrKhj0fb/xZV2FMiHDNoUQogR9sXNhWVehRH3U6XnSLl8t62qUONuA6rT4cUxZV6NEHX71J5JfeK2sq1GiHBb8QP/FH5R1NUrU2hFTaD1nbFlXo0QdGDuH1D0HyroaJcqufWtuxN8p62qUKF8XL15Z+01ZV6PEze3/LkuCt5R1NUrU8EbdGfTbx2VdjRK1cujkf2Xf13PBu2VdjRK16YVv6PTLG2VdjRK186XvyroKf5lSVtssV2TYphBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMybLN8kcwzIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEiQzbLE8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJHVNssXyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJHMMyGEEEIIIYQQQgghjJDgmRD/EdnZ2XzxxRfExMSUdVWEEEIIIYQQQoh/DBm2KcR/xMcff0xqairu7u5lXRUhhBBCCCGEEA+hUEiuU3kir4YQ/wE5OTk4Ozsze/bssq6KEEIIIYQQQgjxjyLBMyH+A8zNzXn//fcxNzcv66oUs2/fPhQKBcnJyY+9j4+PD7Nmzfpbj6tQKNiwYcPfOoYQQgghhBBCiH8/GbYpxH/AkSNHaNWqFZ06dWLbtm1lXR1RxJUDp7m4+zhZKek4eLrQsH9H3P28DZaNvnqTnbOXF9ve+6MXsfdwBkCjVnNhx1HCjl8gMzkNe3cn6vVph1eNKqXajqK0Wi2/rFjO+u3bSctIJ6h6dSa8PIaqlSob3Scs8iY//b6My2FhRMXGMn7UaIb07qNX5uflvzNvhf5z4OzgwPbFS0ulHU+qjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62o9lEWf7pi1aYHCyhJ1+E0yf1uJ5m70Q/cx79QWs3atUDo5ok3PIPfkGbLX/AH5+QCYtW2JebtWKF2cAFDfiSb7z63kn79U6u3p4t+EPkGtcLSy5VZyLAtPbCY0NsJo+Va+dehbszWeds5k5mZz5u41Fp/cQnpOFgCfdRlNTY/i759Tty8zZfeS0mqGnr5BrRlcryNOVvZEJEbx/eHVnIsKM1q+X83WPFOrLR62TsSkJbH09Da2XzmuV+bZ2u3oE9Qad1tHUrIz2Bd2ml+ObSRXnV/azTFKq9Uyb/OfrD90gLTMTIJ8fHnvf0OoWsHL6D57zpxm0bYt3IqLJV+txtvNjaEdO9O9SbNSr++f6zay5veVJCYkUNnXhzGvv0rNurWNlj935iy/fD+HmzcicHZx4dkhg+jRr7demfUr17Bp/R/ExcRi52BPq7ateX7Mi5iZmwFwPuQsa35fybXL10hMSOCTqZ/TvHXLUmtj6yp16VS9EfYWNkSlxrP67B6uJ9wxWHZ4g24086lZbPvd1Hgm71xYbHvDigGMatKLkLvX+PnohpKu+kOd3HmIY1v2kp6ciquXB52G9qVSQNVH7nfrajhLv/gR14oevDjlXd32M3uPcv5gMHG3C/pOD9+KtB3YA6+qxj/zSlrn6o3pVaMlDpY23E6OZfHJrVyOu2m0fEuf2vQOaoWHrROZeTmcvXuNpae2kZ6bVaxs88q1eKPVQIJvhfLt/t9Lsxl6/gt9X/eAZjxTqy1OlrZEJscw7/gfXIy5YbR8j8Dm9AxsjpuNE3EZSaw6u4c91089xRoX16tGS56t3R5nKzsikqKZe3QdF6LDjZbvXaMlfYJa4W7rRGx6Er+f2cmua8EGy7atWo8PO4zkcMQ5Ju2YX1pNKJcUyGqb5YkEz4T4D1iwYAHjxo3j119/JTIykkqVKhktq9VqUavVmJhI9/A0RJwK5eTaXTQe1AW3Kl5cPRTCnjmr6P3RaKyd7I3u1+fjlzC1NNPdN7ex0v0d8ucBwoMv0mxIN+zcnbkbGs7+eevoOn4oTt4epdqeBy1et5bfN27g0zfepFIFL+avWsmrn3zC2jlzsbayMrhPdk4OFd096Ni8JTMW/Gr02FUqVWLO51/o7quU5SeR2tLUnOsJt9ly+QhTuo0p6+o8knm3jph3bkfm/N9Qx8Ri0bMrNu+MI/WDzyE7x+A+pk0bYjGgD5kLlqG+Ho7Sww2rUcMAyF6xDgBNUjJZazaiiY0HwKxFE6zHvUTapK8eGZj7O5r71OL5Rj2Yd/wPLsfepHP1xnzYcQRvbpxFfEZKsfIBbpUZ1/JZFgVv5uTtyzhZ2fFy076Mbf4MX+9dBsA3e5dholTp9rG1sGJ6r3EcjbhQau14UHu/BoxrOYAZB1ZwITqc3jVa8nXPVxm+fDKx6UnFyvcJasVLTfvwzb7fCY2NINDNh/faPkdadiZHbp4HoFO1RrzUtC/T9i7lQnQ43g7uTGxf8Br+cHjtU2mXIUt2bOP33Tv5ZPjzVHJzZ8HWzbw2eyZrJn2BtYWFwX3sra15vlt3fNw9MTVRcfD8OT5fsghHW1ua1SgeyCkp+3ft5efvfuTVt98gqHZNtmz4k4/eeZ9ffluIm0fx+UWj70bx8TsT6darO+998gEXz13gx+nfYe/gQMt2rQHYs30XC36ax/iJ7xFYK4g7kbeY/uXXALz8xqsAZGdl4+tXlU7du/LFh5NKrX0ADSr682yd9qw4s5OwhDu08q3Dqy0H8PmOBSRlpRUrv+rsbjZcOKC7r1Qq+LDDSE7fvlKsrJOVHc/Uasu1uFul2gZDLh07w87fNtB15AC8q/tyes8RVnzzCy9Pex97F0ej+2VnZvHHT7/jG1SN9BT99t8MvU6NZvWpWN0XE1MTjm7aw/JpP/HSVxOwc3Io5RZBs8o1GdGgG/ODN3ElNpKO1Roysf0wxv/5PQmZxfs+f9dKvNq8P4tPbeXUvb7vxSa9eblpX6Yf0L9A5WJtz9D6XQiNiSj1djzov9D3tfKtw4tNejP36HouxUTQLaApkzqPYuy6b4nLSC5WvltAM0Y06Mb3h9dwNf4W/i7evNZyAOk5mZy4FfrU6w/Qpko9XmnWj+8PreZizA16BDZnSrcxjFo1lbiM4q9Tz8AWvNC4FzMPrOBKXCQBbpV4q9X/SM/J5FjkRb2ybjaOvNSkL+eirj+t5ghhVPn5tSGEKBUZGRmsWrWKV155hZ49e7Jo0SK9/98fNrl9+3YaNmyIubk5Bw8eRKvV8vXXX1OlShUsLS2pU6cOa9as0e2nVqsZNWoUvr6+WFpa4u/vz3fffffI+mzZsoXq1atjaWlJu3btiIiIKFbmyJEjtG7dGktLS7y9vXn99dfJyMh47DYHBwfTqVMnXFxcsLe3p02bNpw+ffqh+0yYMIHq1atjZWVFlSpV+Pjjj8nLy3vsx/yrLu05gV+zOlRrXgd7DxcaDeiIlaMdVw6eeeh+FrZWWNrZ6G7KB4JH4ScuUqtzM7yCqmLr4oB/q/p4BvpyaY/hK3qlQavVsvzPP3j+2YG0b9Ycv8qV+ezNt8jOzWHbgf1G9wuqVp03nn+BLq1bY2ZqarSciUqFi6Oj7uZobzzQ+LQdi7zIvON/sD88pKyr8ljMO7Uje9N28k6fRXMnisz5S1GYmWLWpKHRfUyq+pJ/LZy84yfRJCSSf/EyucdPYuJTGJjPP3uB/POX0MTEoomJJXvdn2izczCp6luq7elVoyV7rp9i97WT3EmJY2HwZhIyUuji38Rg+equ3sRlJLHl8lFi05O4HHuTHVdPUNW5MNMpPTeL5Ox03a22px85+Xm6H2OlbWCd9mwOPcLm0CPcTIrm+8NriEtPpm/N1gbLd/Fvwh8XD7Hn+imiUhPYc/0Um0OPMKR+J12ZIA9fLkSHsevaSaLTEgm+Fcruayfxd316WTJFabValu/ZzfNdu9O+Xn38vLyYNOJ5snNz2R583Oh+Dar7065ufXw9Pano6sbg9h3x86pIyPXS/bG1buVquvTsRrfePajkU5kxb76Gq5sbm9b/YbD85g1/4ubuxpg3X6OST2W69e5B5x7dWLN8la5M6IWLBNWqSbvOHfDw9KBBk0a07dSeq5ev6so0ataEkS+NomVbw69/SepQrSFHIs5zOOI80WmJrD63l6TMNFpXqWuwfHZ+Lqk5GbpbZUcPrMwsOHpTP9CsQMHzjXqwKfSwwaB2aTu+dR912zahXrumuHi503lYP+ycHTi9+/BD99u6YDVBzerj5edT7H99xw6jYaeWeFT2wqWCOz1GD0Kr0RJx8VoptUJfj8Dm7Ak7zZ7rp7iTGsfiU1tJyEylc/XGBstXc/EmNiOZbVeOEZeRzJW4SHZdC6aKs36Wp0KhYFyLZ1l9bg8x6YlPoyk6/4W+r2/N1uy8GsyOqye4nRLLvON/EJ+RTPcAw5mz7avWZ+uVYxy8cZaYtEQO3DjLzqvB9K/d7inXvFD/2m3ZduUYW68cIzI5hrlH1xOXnkSvGi0Mlu9YrRGbQw+zP/wM0WkJ7As7w7YrxxhUt6NeOaVCwcT2w1lyaivRqQlPoylCPJQEz4T4l1u5ciX+/v74+/szdOhQFi5ciFarLVbuvffeY+rUqYSGhlK7dm0++ugjFi5cyNy5c7l48SJvvfUWQ4cOZf/+gsCHRqOhYsWKrFq1ikuXLvHJJ5/wwQcfsGrVqmLHvu/WrVs888wzdO/enZCQEEaPHs3777+vV+b8+fN06dKFZ555hnPnzrFy5UoOHTrEa6+99thtTktLY8SIERw8eJBjx45RrVo1unfvTlpa8avk99na2rJo0SIuXbrEd999x7x585g5c+ZjP+Zfoc5Xk3grGs9AH73tFQJ9iLtheEjMfZumLWTNB9+zc/Zyoq/qD8lQ5+ejNNXPHDQxNSE27Old3b8TE0NCUhJN69XTbTMzNaV+UE3OXb78t48fefcuXUeOoPeLo5j4zdfcji69TKZ/M6WrM0oHe/IvPvCa5OeTf+U6Jn7Gh/nmXwvHxMcblW9l3XFMawWRd+6i4R0UCkwbN0BhbkZ+mPGhKH+XiVJFVecKhNzV/7F69u51oz+MrsRG4mxlT32v6gDYW9jQrHJNThnIlLmvQ7WGHI44R05+6QfYTZQqqrtWIrhIRkHwrVBquht+jUyVJuSq9euWo84j0M1Hl6V5LiqM6q6VCHQreF487ZxpWrkmx24+nWw6Q+7Ex5OQmkLTGkG6bWamptSvVp1zYcaHaT1Iq9Vy4nIoN2OiqV+temlVlby8PK5duUr9xvpB5vqNGxJ6wfD7IPTCxWLlGzRpyLXLV8i/N9w5qE4trl25ypVLBa931J27BB89TuPmhoO/pUmlUFLJwYNLRbKNQmMjigVYjGnuU4vLsTdJzEzV294jsDnpOVkciXg6AegHqfPzibpxG9+a/nrbq9T05/a1CKP7nd1/nKSYeFo/0+WxHicvJxeNWoOljeFM65KkUqqo4lShWHbO2ajrVHc1PA3E1bhInK3sqFuhGgD2FtY0qRTEmTv6fd+AWu1Izc5gb9jDL0KWtP9C32eiVOHn7MWZu1f1tp+5c5UAN8OfWaYqE/KKDC/Nzc+juos3qjJYmdFEqaK6i3exz8xTt68Q5G74YpmpyqTYENmc/Dz8XSvptWFo/a4kZ6Wz7cqxkq/4P4RSoSiXt/8qGZclxL/c/PnzGTp0KABdu3YlPT2d3bt307Gj/tWdzz//nE6dCq7MZWRkMGPGDPbs2UOzZgVXvqpUqcKhQ4f4+eefadOmDaampnz22We6/X19fTly5AirVq1i4MCBBusyd+5cqlSpwsyZM1EoFPj7+3P+/HmmTZumK/PNN98wZMgQ3nzzTQCqVavG7NmzadOmDXPnzsXCyLCdB7Vv317v/s8//4yjoyP79++nZ8+eBvf56KOPdH/7+Pjw9ttvs3LlSt577z2D5XNycsjJ0R/S9qQLMuSkZ6LVaLGwtdbbbmFrTXaq4Uw7S3sbmg7uilMlDzR5asKDL7Dz++V0fmMI7n4FWT8VAqsQuicYdz9vbF0ciboSwa1z1wwGTUtLQlJBmr6zvYPedmcHB6JiY//WsWtWr85nb75F5QpeJCQnM3/1SkZNeJeV3/+Ig53d3zr2f43i3vOlSdUPLGtS01A6OxndL+/EKbJsbbCZ+BagQGGiImfPAXK27NQrp/SqgO2Hb4OpCeTkkPHDvFIdsmlrboVKqSIlK11ve3J2Gg6W1QzucyUuklkHVzG+zWBMVSaYKFWciLzE/ON/Gizv51KRyo4ezDmyrsTrb4i9hQ0mSlWxIXKJmak4eRs+30/cukTPwBYcvHGWq3G38HetRPeAZpiqTHCwsCEhM5U910/hYGnLD/3eRoECE5WK9RcOsOzMjqfRLIMSUgsykJxs9dvlZGdHdMLDsw7SszLpPvE9cvPyUSkVTBj8HE0Ca5RaXVOTU9CoNTg66Q/xc3R0JDHBcHZOUmISjo5Fyjs5olarSUlOwdnFmbYd25OSlMzbr7yhm0ahZ7/eDBo2pNTaYoyNuSUqpZK0bP3Po7TsDOzdrY3sVcjOwpog9yosOLFJb3sVZy+a+9Tiy92LS7S+jyszLQOtRoONva3edmt7W9KTUw3ukxgdx96Vmxj28TiUKpXBMkXtXbkJW0d7fINKL4h7n52Rvi8lKx2HCrYG97kaf4vvD6/hzVaDdH1f8K1QFgZv1pXxd61Eu6r1mbBlTqnW35D/Qt9nZ26NykAbk7LSqW9l+HU7fecKnas35ujNC4Ql3MHPuSIdqzfCVGWCnYW1weHUpcne4n4b9N87SVlpOBppw6nbl+kW0JQjEee4Fn+b6i7edPVviqnKBHsLGxKzUgly96Wrf1PGrP36aTRDiMciwTMh/sWuXLnCiRMnWLeu4EeeiYkJgwYNYsGCBcWCZw0bFl4Nv3TpEtnZ2bpg2n25ubnUeyCT6KeffuLXX3/l5s2bZGVlkZubS926dY3WJzQ0lKZNm6J44IrF/eDcfadOneL69essW7ZMt02r1aLRaLhx4waBgYGPbHdsbCyffPIJe/bsISYmBrVaTWZmJpGRkUb3WbNmDbNmzeL69eukp6eTn5+P3UMCMVOnTtULHgJ8+umnmLR48rT/YpOBasHY/KD27s7Yuzvr7rtW8SIjKZVLu07ogmeNBnTk6PKt/DF5HijA1sWRqk1rE3bs3BPX7XFt3bePKXN/1N2f9fEnAHqvNRS8lkW3PakWDQrPVT+gdkAAfV9+kU179zC0T9+/dex/O9OmDbEaPlh3P33W3II/DAVWHxJsNfGvhkXPLmQtXUl++E1U7i5YDh6AJiWVnD8LFyXRRMeQNmkqCisrTBvUxWr0MNKnfVeqATQALfp1f9iEuxXt3RjVuCerz+4h5O41HC1tGd6gKy8362swQNbBryE3k6K5Hn+7xOv9MEWD3wqFolg771t8citOVnb89Mx7oICkzDS2XT7GkPqdUWs1ANStUI1hDbow48AKQmMi8LJ35fWWz5LQoBtLTm0t9fYAbD1xjKm//6a7P3PsOACKdhFarYGNRViZW7Dsg0/IzMkm+MplZq5ZhZeLKw2q+z90v7+taB/HI/q4Yn3i/c0F28+eDmHFkmW8+vYbBAQFcvf2HX767kccFy7lueeHlWjVH1fxs8z4ufegZpVrkpWXzdkHMkHNTUx5vlF3lp3eToaBSemfqmKvXfHPLCjItN/w41Ja9e+Ks6fbYx366KbdXDx6hqEfvoqJmfEpCEpa0VdFoVAYvXDmZe/KyIbdWXt+L2fvXsfR0pbn6ndhdJPe/HxsAxYmZrzWYgC/HN9IWk5m6VfeiH9j31dMkeYoFMY/gleE7MLR0pbpvcahAJKz0tl97SQDardDc6+NZaFofRUKQ31Hgd9Ob8fRypbZfcejoCDQtuPqcQbV7YhGq8HS1JwJ7YYx8+AKUnMef9oWIUqbBM+E+BebP38++fn5eHkVDq/QarWYmpqSlKR/BdzauvAqskZT8OG7efNmvX2hMLtq1apVvPXWW0yfPp1mzZpha2vLN998w/HjxueleZzMJ41Gw8svv8zrr79e7H8PW+jgQSNHjiQuLo5Zs2ZRuXJlzM3NadasGbm5uQbLHzt2jP/973989tlndOnSBXt7e1asWMH06dONPsbEiRMZP3683jZzc3O+OfD4K1CZ21ihUCrIStO/UpydnlEsG+1hXH28CA8uHCZkYWtFu5f6o87LJycjC0t7G85s3IeNs8NjH/NJtW7cmJr+hVfXc+/NFxefnISLU2EGU2JKCk4OJVsPSwsLqlb24dbduyV63H+jvJDzpIVHFG64tzCI0t4OdUrhVWOlnS3aVONXry369SD3yAlyDx4FQHPnLpiZYzViMDmbthd+i1ardQsGqCMiUflWwrxjW7KWrCjZht2TlpOJWqPGwVL/are9hQ3JRTIy7numVhsux95k48WDANxMiiY7P5cvu73M72d2kvzAVXwzlSktfGuzMmRXqdTfkJTsdPI1apys9IP5jpa2JGUafo1y1XlM2/sb3+7/HSdLOxIyU+hVoyUZuVmkZBX8EBnVuBc7rpxgc+gRAMIT72Jhas67bYaw9NS2xwqO/F2ta9elpk/h8Kvce8NgE1JTcXkgazUpLRVn24dnlSqVSrzdCgIb/t6ViIiKYtG2LaUWPLNzsEepUpJUJMssOSm5WDbafY5OjiQlFi2fhEqlws6+oH1L5i2kfZdOdOvdAwDfqlXIzs5m9rQZDB7xnN78lqUtPScLtUaDnYX+55GthRWp2Y8OpjT3qcXxyEu6oAWAq7UjLtYOvNL8Gd22+wGrH/q9zaQd84k3MEl6SbKytUahVBbLMstMScPavnimTG5WDlE3bhF98w7bFxcE1LVaLWi1TBn+NkMmjMEnqDCz9djmvRz+YxdD3n8F90oVSrUt96Xq+j4bve12FtakZBvu+/oGteZqXCR/XiqY5y0yOYbsE7l83uVFVp7dhb2FDW42jrzX9jndPvdfq9+HTOKtP74jxsCk/SXl39z33Zeak4Faoy6WoeVgYaP32fOgXHU+3x1azQ+H1+JgaUtSVipd/JuSmZv9WO/LkpaSXdCGoq+Tg4UtyQ95nabvX86sAytxtLIlMTOV7gHNycjNJiU7gyrOFfC0c2Zylxd1+9w/97aNnsHzK78kKu2/MQfa373gLEqWBM+E+JfKz89nyZIlTJ8+nc6dO+v9r3///ixbtszoPGI1atTA3NycyMhI2rRpY7DMwYMHad68OWPHjtVtC3vEnDQ1atRgw4YNetuOHdOfx6B+/fpcvHgRPz+/hx7rYQ4ePMicOXPo3r07UDDXWnx8vNHyhw8fpnLlynz44Ye6bTdvGl/aHQoCZU86TLMolYkKJ28Poi5HUKlO4Q+8qMsRVKxleIiZIYm3Y7C0Lx5sU5maYOVgi0atJjLkCpXrPzpr76+ytrLSW0FTq9Xi7OjI8ZAQAqpUBQrmCDp98QLjho8o0cfOzcsj4vYt6tUovSFa/xrZOWiKrKCpSU7BpEYA6sh7mVQqFSb+fmSt3mj8OGZmxS8zazVGMyYLKVCU4kq++Ro1YQl3qePpx4nIS7rttSv4EXzrksF9zE1MUWv0r9bfv3pftDktfGphqlKxP/zhC3qUpHyNmqtxkTT0DuTgjbO67Q0rBnAo4uHZpGqNRrdaWwe/hhyJuKD7YWhhYlbsgoZGo0GheHjWQ0mytrDQW0FTq9XibGfP8dBL+HsXXCzJy8/n9LWrjOvX/4mOrUVLbn7+owv+RaamplTzr86Z4FO0aNNKt/1M8CmatmxucJ/AmkEcP3xUb9vpEyepFuCvW+E6Jye7WIBMqVSi1Wqf6tB7ALVWQ2RyNIFulfWyxwruP3wxhmou3rjZOBab0yw6LYHJOxfqbesV1BILEzNWn91DUqbhYZMlSWVigqdvRW5cuEpAo9q67TcuXKV6g+Krs5pbmvPiVP0pHE7tOszNS9d45vWROLgWXiA6umkPhzfuZPCEl6lQ5fEu+JUEtUZNeOJdantU1ZsjrLZHVU7eNjzPqOG+r+AcU6Dgbko87/z5vd7/B9XtiIWJGYtPbiG+lF+rf3Pfd1++Rs31hDvUrVBNb1GNuhWqczzSyByi96i1Gt0qqq1963DiVuhTDfzdl69RczX+FvW9/Dn8wOtSv6L/I+c0VGs1ugVD2lWtz/HIi2jREpkcw4urv9IrO7JRd6xMLZhzZJ3BVUiFeBokeCbEv9SmTZtISkpi1KhR2BdZiXDAgAHMnz/faPDM1taWd955h7feeguNRkPLli1JTU3lyJEj2NjYMGLECPz8/FiyZAnbt2/H19eXpUuXEhwcjK+v8ZX0xowZw/Tp0xk/fjwvv/wyp06dKrb654QJE2jatCmvvvoqL774ItbW1oSGhrJz506+//57wwcuws/Pj6VLl9KwYUNSU1N59913sbS0fGj5yMhIVqxYQaNGjdi8eTPr169/rMf6u2q0b8zhJX/iXMkDV18vrh4OISMxleqtCobHnt64j6yUNFoM7wVA6N5grJ3scfB0QaNWE37iIpEhV2gzup/umHERd8lKTsOxojuZyWmc23IIrVZLUMenN+G0QqFgcK/eLFyzmkqeFfCuUIGFa1ZhYWZO19aFAdlPZs7AzdmZ1+4F1PLy8gi/deve3/nEJSRwJTwcK0sLvD0LruDPWjifVo0a4+HqSlJyCvNXryQjM5Oe7Ts8tfY9jKWpORXtXXX3K9i5UM2lIqnZGaV6lf6vytm5F4uendHExqKOicOiRxe0uXnkHj+pK2M1ehiapBSy1xasIph/9gLmnduhjryNOjwCpZsrFn17khdyXvfLw+KZXuSdv4Q2MQksLDBr0gCTgGpkzCjduXP+vHSI11s+S1jCHa7ERdKpeiNcrO3ZceUEAM/V74yTlR3fHypYPfjkrcuMad6PLv5NCLlzFQdLW15o3JOrcbeKzR3TvlpDTkSGkp7zdIebrTq7hw87jOBK7E0uxtygV40WuNk6svFCQbbcS0374GLtwJR7c0hVtHcj0N2H0Jgb2JpbMbBOB3ydPZmyp3COqSM3zzOwTnuuxt/SDV0a1aQnhyPO635AP20KhYLB7TuwcNsWvN3c8HZ1Z9G2LViYmdGlUWH/9emi+bg6OPJa34LspYXbtlCjsg9eLq7kq/M5fOE8m48d4/3Bzxl7qBLxzKBn+WbyVKoF+BNYswZbN24iNiaGHv0K+usFc+eREB/Pux9PBKBH3178sXYDP8+eQ7fePQi9cIntm7by/qTCOTebtGjG+hVrqFrdj4AaBcM2l8xbSNOWzVHdm2srKzOLu7cLF5WJvhtF2NXr2NrZ4ubhXqJt3H3tJCMb9eBmUjQ3Eu/S0rcOjlZ2umBGn6BWOFjasvjkFr39WvjU4kbCXe6m6l+4yteoi23Lyi0I6BfdXpqadGvLxrnL8KziTUU/H87sPUJKQhL1OxQEPveu3ERaUgq9xzyHQqnEzdtTb39rOxtUpiZ6249u2s3+NVvpO3YY9i5Ousw2MwtzzCz+3sW2x7E59AivNe9PWOJdrsXdokO1hrhY27PzWkHfN7huJ5ys7PjxyFqgYEL3l5r2oVO1RpyNKhi2OaJhN67FF/Z9t1L05yi9P9S26PbS8l/o+zZcOMD41v/jevxtQmNv0tW/Ca42Dmy5XBBoH9GgG87W9sw4UJCxXcHOhequlbgaF4mNmSV9a7amsqMHMw+ufOp1v2/tuX1MaDeUq/GRhMZE0D2wOW42jmwKLchqfKFRT1ys7fl6X8GULF72rgS4VuZy7E1szC3pX7sdPk6euv/nqfOJSIrSe4yMe5+7RbcL8TRJ8EyIf6n58+fTsWPHYoEzKMg8mzJlCqdPG185afLkybi5uTF16lTCw8NxcHCgfv36fPDBB0BBICwkJIRBgwYV/OAZPJixY8eydavx+SIqVarE2rVreeutt5gzZw6NGzdmypQpvPDCC7oytWvXZv/+/Xz44Ye0atUKrVZL1apVGTRo0GO3fcGCBbz00kvUq1ePSpUqMWXKFN555x2j5fv06cNbb73Fa6+9Rk5ODj169ODjjz9m0qRJj/2Yf5VPg0ByMrI4t/UwWakZOHi60H7ss9g4FbxuWanpZCQWXt3V5Ks5vX4PmSnpqExNCsq/8ixeQVULy+TlE7LpAGnxyZiam+EVVIUWw3tiZvXoxRZK0ohn+pOTm8tXP88lLT2dmtWr88Nnn+tlqEXHx6FUFub3xCUm8txbb+juL92wnqUb1lO/Zk1++XIqADHxCXz47bckp6XiaGdHTX9/Fn79LZ5ujzcXTWkLcK3MD/0Kh/S+3vJZALaEHuXLB77Alxc5W3ehMDPDcuggFNZWqMMjSJ/+AzyQoaZ0cgJN4Y+K7D+3odVqsejXE6WjPdq0dPLOXiB7beEk+wp7W6xfHI7C3g5tVjbq23fImDGH/Et/f7XVhzkScR5bcyuerdMeR0tbIpNjmLJ7se5KtaOlLS7WDrrye8NOY2FqTreApoxo2I2M3GzOR4Xx2+ntesf1tHOmhrsPn+1YUKr1N2TP9VPYmVszomF3nK3tuJEQxYRNc4hJLxgC6Gxlh7tN4VBBlVLJoDodqOTgTr5GzZk7Vxm77lui0wqHDC45uRWtVsvoJr1wtXYgOSudIxHnmXf8j6fevgcN79yVnLw8pi3/nbTMDIJ8q/D9uLf0MtSiExP1hrJk5+QwbfkyYpOTMDc1pbKHJ58/P4rODRuVal3bdGxHamoqyxYuISkhkcpVfJj87VTcPTwASExIJDamMMjgUcGTyd9O5efZP7Jp3UacXJx55c3XaNmuta7MkBHDUCgULP5lAQlx8dg7OtCkRTNGvjRKV+bq5StMGFfYx/zyfcHchR27deGdjyaUaBtP3b6CtZklPQKbY2dhTVRqPD8eXqtbPdPewganIkPOLEzMqOdVnVVn95RoXUpSjab1yEzL4ND67aQnp+Ja0ZP/vfsS9i4FWWTpyamkxD/ZxY5Tuw6jzlezdvYive2t+nWhdf+uJVV1o47evICtuRX9a7XF0dKWW8kxfLV3qS6zx8HSBmfrwu+E+8PPYGlqRhf/pgxr0JWM3GwuxtxgWZG+ryz9F/q+gzfOYmtuxf/qdsTJyo6bSdFM2jG/8DPLyg7XBz6zlAol/Wq2xsveFbVGzbmoMN7d9COxZXhxbn/4GewsrBlavwtOVvZEJEbx4dafdXVytrLD7cHXSaFkQO12VHRwQ61RE3L3Gm9snKV7XUWh//LKluWRQvu0c8CFEOJf7Isiw1H+6T7q9Dxpl68+uuA/jG1AdVr8OKasq1GiDr/6E8kvGM4m/adyWPAD/Rd/UNbVKFFrR0yh9Zyxjy74D3Jg7BxS9xwo62qUKLv2rbkRf+fRBf9BfF28eGXtN2VdjRI3t/+7LAne8uiC/yDDG3Vn0G8fl3U1StTKoZP/lX1fzwXvlnU1StSmF76h0y9vPLrgP8jOl74r6yr8ZR9v+6Wsq2DQ5K4vlXUVysTTm3VUCCGEEEIIIYQQQoh/GBm2KYQQQgghhBBCCFGOKB69EpN4iiTzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUchqm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCNKGbZZrkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli+SeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjiiRYZvliWSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SKZZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAzbLF8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEKrVarLetKCCGEEEIIIYQQQogCX+1ZUtZVMOj99sPLugplQuY8E0KIEpTUqV9ZV6FEOe5cT+quvWVdjRJn17EdyS+8VtbVKFEOC36gxY9jyroaJerwqz+RPGZ8WVejRDn8NIPkUePKuholymH+9//Ovm/3/rKuRomy69CG5OH/rj4CwGHJT2VdhVKRumVHWVehRNl170zyWx+UdTVKlMPMKST/b1RZV6NEOayYzyfb5pV1NUrU511fLOsqiH8JGbYphBBCCCGEEEIIIYQRknkmhBBCCCGEEEIIUY4okNU2yxPJPBNCCCGEEEIIIYQQwggJngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYQoR5QKGbZZnkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKheQ6lSfyagghhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUI0pktc3yRDLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRhUKGbZYnknkmhBBCCCGEEEIIIYQREjwT/wknT55k5syZaDSasq6KEEIIIYQQQggh/kEkeCbKREREBAqFgpCQkBI7pkKhYMOGDcW2x8fHM3DgQGrWrIlSWfKn/KRJk6hbt26JH/e/ZOTIkfTt2/exy+/btw+FQkFycvJffsxFixbh4ODwl/cXQgghhBBCiNKiVCjK5e2/SuY8E09s5MiRLF68GACVSkWFChXo0aMHU6ZMwdHRsczqFRUVVezxtVotw4cP55NPPqFTp05lVLN/B4VCwfr1658oyCVKh2nLppj36IyqWlWU9nakjnkLdVhEWVerGK1Wy7wtm1h/+BBpmZkE+fjw3sDBVK1Qweg+e0LOsGj7Vm7FxZGvVuPt6sbQDh3p3qSprszpa9dYumsHl29FEp+SwjcvjaFtnbpPoUUFLPp0x6xNCxRWlqjDb5L520o0d6Mfuo95p7aYtWuF0skRbXoGuSfPkL3mD8jPB8CsbUvM27VC6eIEgPpONNl/biX//KVSb8/jqOPpx5B6nQlwq4SLtQPvb5nLwRtny7paD2XRswtmLZuisLJCHXGTzOVr0UTFGC1vM34sJtX9im3PO3+JjB9/Lbhjbo5l726Y1q2JwtYW9a3bZK3agPrmrdJqhh6L3t30z71lqx597nVsi1m7lg+ceyFkry0898y7d8K0fh1Unu5oc/NQh90ga/VGNDGxT6NJT+Sf0vcVpdVqmbf5T9YfPnivL/TlvUFDHt4Xnjl9ry+MLegL3dwY2qET3Zs0e4o112fRrydmbVuisLZCHRZB5pLlaO5EPXQf8y7tMWvfGqWzE9q0dHKDz5C9ej3k5evKKBwdsBzYD5M6QShMzdBEx5A5fynqiMjSbtK/jlarZd72raw/epi0rCyCKlXmvf4DqerpaXSfPedCWLRzB7fi48nXqPF2cWVo2/Z0b9RYV+aXbVuYt32r3n5OtrZs/3xKqbXlQRZdOmDWrBEKS0vUkbfIXPsHmmjjfZTNq6Mx8atSbHvepctkzFtSbLt5hzZY9uxCzv7DZG3YXKJ1N8ZiQG/M2rdBYWOF+no4mQuWobl996H7mHfriFmndihd7r2fjp8ke/nawveThQWWA/ti2qg+Cntb1BGRZC1ajjo8otTb08g7kJa+dbAxtyQuPYmtl49xM8n455NKoaStX33qVPDDxtyK1OwM9oed4cydqwA0qOhP3QrVcbMt+G13NyWeXdeCuZMSV+ptEcIYCZ6Jv6Rr164sXLiQ/Px8Ll26xAsvvEBycjLLly8vszp5eHgU26ZQKNiyZUsZ1EaI0qOwMCf/4mVyDxzBevyrZV0do5bs3MHve3bzybARVHJzY8G2rbz2w3es+eQzrC0sDO5jb2XF81264ePhganKhIMXzvH5b0twtLWlWY0gALJyc6hesSK9mjVnwryfn2aTMO/WEfPO7cic/xvqmFgsenbF5p1xpH7wOWTnGNzHtGlDLAb0IXPBMtTXw1F6uGE1ahgA2SvWAaBJSiZrzUY0sfEAmLVogvW4l0ib9NUjgyNPg6WpOdcTbrPl8hGmdBtT1tV5JPPO7THv0IbMxctRx8Zh0a0TNm+MIfXTryDH8OuU8dMiMFHp7iusrbD96B3yThcGCa2GDURVwZOMhb+jTUnFrEkDbN4cQ+pnX6NNTindNt0/9xYsu3fudcHm7ddI/XCy8XOvSUMsBvQmc+Ey1NdvFJx7LwwFIHtlwblnUt2P3L0Hyb9xE5QqLJ/pic3br5L60ZeQm1uqbXpS/5S+r6glO7fz+55dfDJsJJXc3VmwdTOvfT+TNZ9ONt4XWlvzfNfu+Lh7YGqi4uD583y+dDGOtna6vvBpMu/RGfOuHcictxh1VCwWfbph894bpE741Pj516wxFs/2I3P+EtTX7vV9L44AIPv31QAorKyw/ehd8kKvkPHtD2hT01C6uaDNzHxqbfs3WbJnF7/v28snQ56jkqsbC3Zu57WffmDNxI8f8rlrzfOduuDj7o6pSsXBixf5fMWygs/dgEBduSoenvz4ymu6+yrl08k+MW/fGvO2Lcj8fS3quHgsOrXDZswLpE6dATmG+6iMhctAVaQ/f2cceSEXipVVeXth1qwR6kcEgkuSee9umHfvTObcBaijYrB4pic2H7xN6vgPITvb4D6mLZpgMXgAmT8vRH31OkpPD6zGvABA9pKVAFi9PAJVRS8yfvwVbVIyZq2aYvPR26S+/THapORSa09Njyp0C2zGpkuHiUyKoZF3AEMbdOWHQ6tJyc4wuM/Auh2wMbdkw4UDJGamYm1mqZfR5ONUgXNR17kVGkO+Rk1L3zoMb9iNHw6tIS1H+od/ojlz5vDNN98QFRVFUFAQs2bNolWrVgbL7tu3j3bt2hXbHhoaSkBAgO7+2rVr+fjjjwkLC6Nq1ap8+eWX9OvXr9TaIMM2xV9ibm6Oh4cHFStWpHPnzgwaNIgdO3bolVm4cCGBgYFYWFgQEBDAnDlzjB5PrVYzatQofH19sbS0xN/fn++++65YuQULFhAUFIS5uTmenp689lrhh3jRYZvnz5+nffv2WFpa4uzszEsvvUR6erru//eHCn777bd4enri7OzMq6++Sl5e3kPb/tVXX+Hu7o6trS2jRo0i28CH3JO0HWDbtm20bNkSBwcHnJ2d6dmzJ2FhYbr/5+bm8tprr+Hp6YmFhQU+Pj5MnTpVr+1z586lW7duWFpa4uvry+rVq/Ue486dOwwaNAhHR0ecnZ3p06cPERERj/X8+vj4ANCvXz8UCoXuPsDcuXOpWrUqZmZm+Pv7s3Tp0oe2Va1WM378eF1b33vvPbRarV4ZrVbL119/TZUqVbC0tKROnTqsWbPmocctasaMGdSqVQtra2u8vb0ZO3as3utfVFhYGH369MHd3R0bGxsaNWrErl27nugxn5bcXfvJ/m0V+afLb+aPVqtl+d7dPN+lG+3r1sOvgheTho0gOzeX7cEnjO7XoLo/7erWw9fDk4qurgxu1wE/Ly9CHng/tAiqySu9+tC+br2n0RQ95p3akb1pO3mnz6K5E0Xm/KUozEwxa9LQ6D4mVX3JvxZO3vGTaBISC378Hz+JiU8lXZn8sxfIP38JTUwsmphYstf9iTY7B5Oqvk+jWY90LPIi847/wf7wkLKuymMx79Ca7K27yAs5j+ZuNJmLf0dhZoZZ4/pG99FmZqJNTdPdTAP9ITeP3FP33memppjWq03Wuj9RXw9HExdP9qbtaOITMW/dvPTb1LEt2Zt3PHDu/fZ45971cPKOn3rg3Duld+5lzJpL7uHjaO5Go7l9h8wFy1A6O6Hy8S71Nj2pf0LfV5RWq2X5nl0837U77evVL+gLhz9/ry88bnQ/XV/o6UlFVzcGt7/fF15/irUvZN6lA9l/bCXvZAiaO3fJ/GVxwXuqWWOj+5j4VSH/Whh5R4PRxCeQfyGU3GPBmPgWnn/mPTujSUwk69clqMMjCspduqK7kCAen1arZfn+fTzfqTPta9fFz7MCk4YMJTs3j+2nTxrdr4FfNdrVroOvuwcVXVwZ3KYtfp4VCAkP0yunUipxsbPT3RxtbEu7SQCYt2lO9s595J2/WJCV+Pvqgr6vfl2j+2gzs9CmpetuptX9IC+P3LPn9QuamWE1dBBZq9ajzcoq3YY8wLxbR7I3bCYv+HRBvztnPgpzM8xaNDG6j0n1quRfvU7e4eNo4hLIP3eR3CPHManiU1DA1BTTxg3I+n0N6stXC75LrPkDTWw85p2KByFKUnOfWpy+fYXTt68Qn5HM1svHSM1Op1GlGgbL+7lUxMfJk99ObSc84S7JWencSYnjVnJhNuHac3sJvhVKdFoi8RkpbLxwEIVCQRVnr1JtS3mjUCjK5e1JrVy5kjfffJMPP/yQM2fO0KpVK7p160Zk5MMzjK9cuUJUVJTuVq1aNd3/jh49yqBBgxg2bBhnz55l2LBhDBw4kOPHjX+2/l0SPBN/W3h4ONu2bcPU1FS3bd68eXz44Yd8+eWXhIaGMmXKFD7++GPdcM+iNBoNFStWZNWqVVy6dIlPPvmEDz74gFWrVunKzJ07l1dffZWXXnqJ8+fP88cff+DnV3yIDUBmZiZdu3bF0dGR4OBgVq9eza5du/SCbQB79+4lLCyMvXv3snjxYhYtWsSiRYuMtnXVqlV8+umnfPnll5w8eRJPT89igbEnbTtARkYG48ePJzg4mN27d6NUKunXr59ugYPZs2fzxx9/sGrVKq5cucJvv/2mF8AC+Pjjj+nfvz9nz55l6NChDB48mNDQUN3z0a5dO2xsbDhw4ACHDh3CxsaGrl27knsvs+Bhz29wcDBQEBSMiorS3V+/fj1vvPEGb7/9NhcuXODll1/m+eefZ+/evUbbOn36dBYsWMD8+fM5dOgQiYmJrF+/Xq/MRx99xMKFC5k7dy4XL17krbfeYujQoezfv9/ocYtSKpXMnj2bCxcusHjxYvbs2cN7771ntHx6ejrdu3dn165dnDlzhi5dutCrV69HdurCsDsJ8SSkptI0sPCqtZmpKfX9qnHuRvhjHUOr1XLi8mVuxsRQ38h7/WlSujqjdLAn/+Llwo35+eRfuW5weIiuyLVwTHy8UflW1h3HtFYQeecuGt5BocC0cQMU5mbkh90oySb8JyhdnFDa25EfeqVwY76a/GthhT8yHoNZiybknjxTmH2lVKJQqfSGmwFo8/Iw8SvdIKfS5SHn3kMCrPnXwzCp/MC55+KMaa0axs89QGFVkJ2izZAr+yWhsC8s/BFpZmpK/WrVORf+JH1h6L2+sNqjdyhhSleXgvPvQmjhxvx88q9cw6TaQ/q+q9cx8amE6t77TunqgmmdmuSdLcz+Ma1Xh/wbkVi99iJ2P3yNzeQPMGvbsrSa8q92JyGBhLRUmvoXZmWYmZhS38+Pczce77NEq9Vy4uoVbsbFUr+q/ufurfg4un36IX0mf8oHSxZyO770A5xKZ0eUdnbkX7lWuFGtJv/6Db0g7KOYNWlI7plzkKt/gdxqQG/yQi+TfzXMyJ4lT+nmgtLRgfwH++H8fPJDr2BSvarR/fIvX8fEtzKqe32+0s0F03q1yDt9rqCASnXvM0q/jdrcPEwCSu87lEqhxNPOhbD4O3rbr8ffoZKDu8F9Atwqczclnpa+tXmn7RBebzWQLv5NMFGqDJYHMFWZoFIoycoznOkqyrcZM2YwatQoRo8eTWBgILNmzcLb25u5c+c+dD83Nzc8PDx0N9UDGaWzZs2iU6dOTJw4kYCAACZOnEiHDh2YNWtWqbVDhm2Kv2TTpk3Y2NigVqt1mVczZszQ/X/y5MlMnz6dZ555BgBfX18uXbrEzz//zIgRI4odz9TUlM8++0x339fXlyNHjrBq1SoGDhwIwBdffMHbb7/NG2+8oSvXqFEjg/VbtmwZWVlZLFmyBGtrawB++OEHevXqxbRp03B3L+jMHR0d+eGHH1CpVAQEBNCjRw92797Niy++aPC4s2bN4oUXXmD06NG6Ou3atUsv++xJ2w7Qv39/vfvz58/Hzc2NS5cuUbNmTSIjI6lWrRotW7ZEoVBQuXLlYsd49tlndfWaPHkyO3fu5Pvvv2fOnDmsWLECpVLJr7/+qrtasHDhQhwcHNi3bx+dO3d+6PPr6uoKgIODg97w2G+//ZaRI0cyduxYAMaPH8+xY8f49ttvDaba3n8OJ06cqGvzTz/9xPbt23X/z8jIYMaMGezZs4dmzQrmdqlSpQqHDh3i559/pk2bNgaPW9Sbb76p+9vX15fJkyfzyiuvGM0CrFOnDnXq1NHd/+KLL1i/fj1//PFHsaArQE5ODjlFhn+Zm5s/Vt3+CxJSUwFwsrXT2+5kZ0d0YuJD903PyqL7B++Tm5+HSqlkwqDBNAk0fPXyaVLYFbRFk5qmt12TmobS2cnofnknTpFla4PNxLcABQoTFTl7DpCzZadeOaVXBWw/fBtMTSAnh4wf5pWLIZv/NA99nZweb15OlU8lVF6eZC5dWbgxJ4f8sBtY9OhERnRMQXZao/qofCqVepaMwv5+m1L1tj/63DtNlo0NNu+/ie7c23uQnK07je5jOegZ8q+GPXIuK/F4ElKM9IW2dkQnJjx03/SsTLp/MIHcvHt94f+GlElfqDv/UoqcfympunkaDck7fpIsOxtsPnoH3fm3ez85mwo/85WuLpi3b03Otl1k/LkNVRUfLIcORJuXR97h0sse+DdKSDNyrtnYEp30GJ+7kz4iNz+/4FwbMJAmDwThgipX5rMhw6jk6kZCWioLdm5n1OwZrJzwIQ73vmeXBoVtQXabJk1/5IAmPR2lo8NjHUNVqSKqCh5k3huqfp9pvdqovCqQOfPho0NKmsLBHjD2fnI2ul/e0RMF76fP3i84jokJOTv2kvPHvbnosrPJv3odi2d6knEnCm1yCqYtmqDy833o/HB/l5WZBSqlkvRc/QsuGblZ2JhbGtzH0dKWSo7u5GvULD+zEytTC3oGtcDS1JwNFw4Y3KdT9UakZmcQnnDH4P/F02Xsd5Ch30K5ubmcOnWK999/X297586dOXLkyEMfp169emRnZ1OjRg0++ugjvd+XR48e5a233tIr36VLFwmeifKnXbt2zJ07l8zMTH799VeuXr3KuHHjAIiLi+PWrVuMGjVKLwiVn5+Pvb290WP+9NNP/Prrr9y8eZOsrCxyc3N1q1jGxsZy9+5dOnTo8Fj1Cw0NpU6dOrrAGUCLFi3QaDRcuXJFFzwLCgrSi2B7enpy/vz5Ysd78LhjxujP99OsWTNdptVfbXtYWBgff/wxx44dIz4+XpdxFhkZSc2aNRk5ciSdOnXC39+frl270rNnTzp37lysHkXv31/N9NSpU1y/fh1bW/0U++zsbMLCwp74+X3w+XjppZf0trVo0cLgkFuAlJQUoqKi9OpqYmJCw4YNdUM3L126RHZ2drEFHnJzc6lX7/GH6e3du5cpU6Zw6dIlUlNTyc/PJzs7m4yMDL3z4r6MjAw+++wzNm3axN27d8nPzycrK8to5tnUqVP1Ar4An376KW8YLP3XmbVvjdWbhedc+geT9a/+lxNbTxxn6vLfdfdnji2Yj6hoanfRIbqGWJmbs2zih2Tm5BB85TIz163By8WFBtX9S7bSj2DatCFWwwfr7qfPund1zFAbHtIuE/9qWPTsQtbSleSH30Tl7oLl4AFoUlLJ+XObrpwmOoa0SVNRWFlh2qAuVqOHkT7tOwmgPYJp4/pYDXlWdz/9/uT+RV+TJxhmYNa8Ceo7UcUmLM9c+DtWw/+H/bRJaNVq1LfukBd8BlWlkh1GYtqkIVbD/6e7n/7dTwV/FD3NFIpHnHt+Befeb6vID49A5eaK5eD+aHp20Qtg3Gf53LOoKlYg7atZJdCKv+ef0vcVVdAX/qa7P/PeHFFFTz8t2keek1bmFiyb+PG9vjCUmWtX4+XiWup9oWmzxlg9P0R3P336jwV/GHpPPaRLNwmojkWvbmQtXk5+2A1U7m5YDh2IJjmFnI335qNVKlDfuEn2mo0AqG/eQuXliXmHNhI8e4Stp4KZumqF7v7MFwveL0XPqsc718xZ9s77ZObmEHz1CjM3rMfL2YUG9zIdWwQWzrPnRwVq+/jS98vP2Bx8nOfati+ZBgGm9etgNbCv7n66gcn9Czz83HuQWZOGqO9Go468Xbi3gz2W/XqS/tMC3eIppcW0RROsXhyuu58+7d535GJ99yP68xr+WPTrSdb838i/Ho7Kww3LEYPRJPckZ90mADJ//BWrl5/Hfu70gs+oGzfJO3xcl338tBlrzv3vhmvO7SEnvyBTbtvlYwyq25FNlw6Tr1HrlW/pW5tanlVZeGJzsf/925XXlS2N/Q6aNGlSsbLx8fGo1Wrd7+/73N3diY42/B3X09OTX375hQYNGpCTk8PSpUvp0KED+/bto3Xr1gBER0c/0TFLggTPxF9ibW2tG9I3e/Zs2rVrx2effcbkyZN1gZ958+bRpIn+2P0HA1UPWrVqFW+99RbTp0+nWbNm2Nra8s033+jGLFtaGr5yYYxWqzU6HvvB7Q8ONb3/v/v1/yv+StsBevXqhbe3N/PmzaNChQpoNBpq1qypG1JZv359bty4wdatW9m1axcDBw6kY8eOj5wH7H5bNRoNDRo0YNmyZcXKuLq6olT+9RHchoIjf2Us/H33n8PNmzfj5aX/g/RxM7tu3rxJ9+7dGTNmDJMnT8bJyYlDhw4xatQoo3Pavfvuu2zfvp1vv/0WPz8/LC0tGTBggO41KGrixImMHz++WP0ye/7PYPm/KvfoCfIvX9Xd18Q//OpxWWlduw41fQqHj+Xe+zKakJqCywOB46S0NJzt7Irt/yClUom3mxsA/t7eRMREs2jH9qcePMsLOU/agytUmRR8ZCrt7VA/cMVYaWeLtkiW04Ms+vUg98gJcg8eBUBz5y6YmWM1YnBBAOP+t0u1WpfBpI6IROVbCfOObclassLYoQWQd/YiaTceCHLdm/RfaW+H+oHXRWlr89DXScfUFLNGdcl6ILB5nyY+gfQZP4KZGQoLc7SpaViNHlbi78u8s+dJ+yyicIOxc+8RbbLo25Pcow+ee1FgbobV8MHkbN6h98vGcsgATOvWIn3ad6U6sfTj+qf0fUUZ7wtTcbF30G1PSkvD2fYJ+8LoaBZt31rqfWHembOkPThk3PTe+edgb6DvSy26u45F/17kHjlO7v7DAAUrCZqbYfX80IJsGa0WbXJKsYna1XejMW1ofH5CUaB1UC1qvuOju68719JS9T9309NxfsT8ZEqlEu97owz8vSoSERPDol07dMGzoizNzfHzrMCtuJJd+TDvYihp3z6wevH9vs/WRr8/t7FG+5B5bHVMTTGrV5usbfpz2JpUrIDS1gbbBxYeUahUqKr4YNayKSnvfvLQQNaTyDt1lrTrDwQZHnw/PbDQjNLeFm3KQ95PA/uSe/AouXsPAqC5dQfMzbF6cTg56zeDVosmJo70z78GczMUlpZok1OweuPlUs2OzszNRq3RYGNmpbfd2sySjFzD88il5WSSmp2hC5wBxKUno1QosLOwJjGz8Hlo4VOLVlXqsjh4CzHp/4zPgf8CY7+DHuZJfjP6+/vj71/4WdesWTNu3brFt99+qwuePekxS4IEz0SJ+PTTT+nWrRuvvPIKFSpUwMvLi/DwcJ577rnH2v/gwYM0b95cN/wP0Jsw39bWFh8fH3bv3m10OOCDatSoweLFi/WyjA4fPoxSqaR69epP2LpCgYGBHDt2jOHDC68gHTt2TPe3u7v7E7c9ISGB0NBQfv75Z92KI4cOHSpWzs7OjkGDBjFo0CAGDBhA165dSUxMxMnJSVePovW6n6lVv359Vq5ciZubG3ZGAhePen5NTU1Rq/Wv9gQGBnLo0CG9xz1y5AiBD8xz9SB7e3s8PT05duyYruPLz8/n1KlT1K9f8EW5Ro0amJubExkZ+dhDNIs6efIk+fn5TJ8+XRcYfHD+PEMOHjzIyJEjdSu0pKenF1tQ4UHGUpNLfJagrGw0WeU/88jawkJvJS+tVouznR3HL4fi710wL0lefj6nr19jXJ8nWwVHq9WSm//whTxKRXYOmiKryGmSUzCpEVB4BVulwsTfj6zVG40fx8ys+JdwraZ4ekAxChQm8jH9SDk5aOKKvE4pqZgEVkd9697wDpUKk2pVyVq/6ZGHM2tYF0xMyDt+ynih3Fy0ubkorCwxrRFA1ro//0YDDDB67vkXP/fW/GH8OGamxc89jbbYuWc55FlM69cm/evZaOIfPpTwqfmH9H1FGe0LQy/p94XXrjKu7zNPdOyCvrB0s2SAe+efflBEk5yCSVAg6pv3AhsqFSb+1chatd7AAe4xMys43/QOpN/35V8LQ+Wpnzmg9HBHk1BOzsNyzOC5ZmvH8StX8K9YsOBHwefudcb16v1Ex9by8HMtNz+PiJgY6lYxPkfXX5KTiyZHP0CiSU3FxN+vMMiqUmHi50vWn8WzZ4syq1sLTFTknTyjtz3vWhip9zPA7rEa3B9NbBzZuw+UWOAMgOxsNEUWF9MkJWNSq0ZhdrNKhUmgP1m/P+SiuKHvEhqN4azCnFy0ObkorK0wrV2TrN9XFy9TQtRaDVGp8VR18SI0NkK3vaqLF5djbxrcJzIphiCPKpipTMhVF5xnLtb2aLQaUh9YnbOFT23aVK3HkpNbuZsqi4iUJ8Z+Bxni4uKCSqUqlhEWGxtbLHPsYZo2bcpvvxVmdnt4ePztYz4p+VYuSkTbtm0JCgpiypQp/PDDD0yaNInXX38dOzs7unXrRk5ODidPniQpKalYlBrAz8+PJUuWsH37dnx9fVm6dCnBwcH4+hZevZ00aRJjxozBzc2Nbt26kZaWxuHDh3XDRR/03HPP8emnnzJixAgmTZpEXFwc48aNY9iwYX/rDfXGG28wYsQIGjZsSMuWLVm2bBkXL16kSpXCCXOftO33V7/85Zdf8PT0JDIystiY8JkzZ+Lp6UndunVRKpWsXr0aDw8PHBwcdGVWr16tV68TJ04wf/583fPxzTff0KdPHz7//HMqVqxIZGQk69at491336VixYqPfH7vB9datGiBubk5jo6OvPvuuwwcOJD69evToUMH/vzzT9atW/fQVSrfeOMNvvrqK6pVq0ZgYCAzZswgOTlZ939bW1veeecd3nrrLTQaDS1btiQ1NZUjR45gY2NjdN64B1WtWpX8/Hy+//57evXqxeHDh/npp58euo+fnx/r1q2jV69eKBQKPv7447+VhViaFLY2KN1cUNyb60hZsSBDT5OYXC4yRqDgStDgdh1YuH0b3q5ueLu5sWj7NizMzOjSqHB1tk8XL8TVwYHX7gXUFm7fRo1KlfBydSU/X83hixfYfPwY7/+vcAhRZna23tXuuwnxXLl1C3trazycjM+/UxJydu7FomdnNLGxqGPisOjRBW1uHrnHC1cysxo9DE1SCtlrC4Ia+WcvYN65HerI26jDI1C6uWLRtyd5Ied1X4QtnulF3vlLaBOTwMICsyYNMAmoRsaMpzsXizGWpuZUtHfV3a9g50I1l4qkZmcQk55UhjUzLGf3ASy6dkQTG486Ng6Lrh3R5uaSe+K0rozVyMFoklPJ3rBZb1+z5k3IC7lgcMJ8kxr+gAJNTCxKNxcsn+mFOiaW3CPGV5AtKTm79mHRozOamLiCNnXvXPzcGzUMTVIy2feCefrn3k2Ubi5Y9O1BXsgF3blnOXQgZk0akP79PLTZ2SjsCjJUtFnZxSaeLmv/hL6vKIVCweD2HVm4fSvebu4FfeG2rff6wsIM9U8XLSjoC+8F1BZu20qNypXv9YX59/rCo7w/+PEuzJW0nO27sejVFU1MLOroWCx6dy14Tx0tPPetXhpZcP6t3gBAfsh5zLt2QH3zFuqwGyjd3bDo35u8M+d051/Ott3YfPwe5r26knf8FKqqPpi3a0nmguKZ8uLhFAoFg9u0ZeGuHXi7uuLt6sqiXTuwMDOlS/3CVXk/XbYEV3sHXutZEFBbuGsHNbwr4eXsQr46n8Ohl9gcfIL3nx2k22fWxvW0CqqJh6MjSenpzN+xnYzsbHo2alKsHiUtZ/8RLDq2RROXgDouAYuObQv6vtMhujJWQwqmQsjevENvX7OmDck7H4o2s0gGVE4umugY/W25uWgzMotvLwU5W3dh0bcHmugY1FGxWPTrjjYnl9wHhipbjR2FJjGJ7BUFc7Xlnz6LeffOqG9Eor4ejtLDDYuBfck7FaJ7P5nUDgKFAs3daJQeblg+9yzqqGhy9x0u1fYciTjPM7Xb6lbMbOgdgL2FDcGRBUPtO1ZvhJ25NevO7wPgfNR12latR99abdh77RRWZhZ09m/C6dtXdcMyW/rWpn21hqw5u4fkrDRszApGIeWq83QBt/+C0syielrMzMxo0KABO3fu1CUpAOzcuZM+ffo89nHOnDmDp6en7n6zZs3YuXOn3rxnO3bsoHnz0lsBXYJnosSMHz+e559/ngkTJjB69GisrKz45ptveO+997C2tqZWrVp6k7g/aMyYMYSEhDBo0KCCD//Bgxk7dixbt27VlRkxYgTZ2dnMnDmTd955BxcXFwYMGGDweFZWVmzfvp033niDRo0aYWVlRf/+/fUWNfgrBg0aRFhYGBMmTCA7O5v+/fvzyiuv6E14/6RtVyqVrFixgtdff52aNWvi7+/P7Nmzadu2ra6MjY0N06ZN49q1a6hUKho1asSWLVv0hlt+9tlnrFixgrFjx+Lh4cGyZcuoUaOG7vk4cOAAEyZM4JlnniEtLQ0vLy86dOigy0R71PM7ffp0xo8fz7x58/Dy8iIiIoK+ffvy3Xff8c033/D666/j6+vLwoUL9epe1Ntvv01UVBQjR45EqVTywgsv0K9fP1JSClPXJ0+ejJubG1OnTiU8PBwHBwfq16/PBx988FivU926dZkxYwbTpk1j4sSJtG7dmqlTp+plyBU1c+ZMXnjhBZo3b46LiwsTJkwg9SHDUcqSabNGWL/7uu5+wWTMkLVkBdkPTnBexoZ36kxOXi7TVi4nLTOTIB9fvn/tdb0r5dFJiXpfDLJzc5i2cjmxycmYm5pS2d2Dz0e+QOcGhV/8QyNvMua7mbr7M9cWXKnt0aQpk4aPLNU25WzdhcLMDMuhg1BYW6EOjyB9+g/wQJaQ0slJL9si+89taLVaLPr1ROlojzYtnbyzF8heW5itpLC3xfrF4Sjs7dBmZaO+fYeMGXPIv3SZ8iDAtTI/9CsM/r/esmCOsS2hR/lyj/GVhMtKzo49KMxMsRzcH4WVJeobkaTP/hlyHnydHItdxVe6uWJSrUrhHGNFKCwtsOjbA6WDA9rMTPLOnCNrw5aCq/+lLGfrLhSmplgOHVh47s34sci5p9+m7E3b0VIwfFPv3FtXmIFn3q4g49l2gv6MjZkLftP7IVce/FP6vqKGd+pCTm4u01YsK+wLx71ZvC9UFukLV/xObHLSA33hKDo3NLxQUmnL2byjoO8bMRiFlRXq8Bukfz1b//xzdtI//zZuKej7BvRG6ehQcP6dOaeb3wxAfeMmGbN/wvLZvlj06YEmPp6sZavJO1r6Ael/o+HtO5KTl8e0NatIy8okqLIP3495tci5llTkczeXaWtWEZty73PXzZ3Phw6nc70GujKxKcl8tHQRyRkZONrYULOyDwveHI9nKV+wAsjZc6Cg7xvQG4WlJeqbt0n/aSHkFE6roXR0KN6fuzpjUsWH9LkLSr2OTyrnj60Fn1EvDEVhbY36ejjpU2bAAxlqSpci76d1m9BqwWJQX5ROjmhT08g7dZbsBxZCUFhZYjG4f8H/0zMKFixasR7UpTtP2IXocCxNzWnrVx9bcyti0xL57dQ2UrILhtbamlthb1k433CuOp/FJ7fQI7A5LzfvR1ZuNheiw9l9rfBiUKNKNTBRqvhfPf05kPdeP8Xe66cR/yzjx49n2LBhNGzYkGbNmvHLL78QGRmpm0t84sSJ3LlzhyVLCuY5nDVrFj4+PgQFBZGbm8tvv/3G2rVrWbt2re6Yb7zxBq1bt2batGn06dOHjRs3smvXLoMjuEqKQvs4szcLIco1hULB+vXr6du3b1lX5T8vqdOTDUks7xx3rid1196yrkaJs+vYjuQXiq+i+k/msOAHWvw45tEF/0EOv/oTyWOKZ+z+kzn8NIPkUcUzpv/JHOZ//+/s+3bvL+tqlCi7Dm1IHv7v6iMAHJY8PLP8nyp1y45HF/oHsevemeS3Hu8i6D+Fw8wpJP9vVFlXo0Q5rJjPJ9vmlXU1StTnXV98dKFyas6RtY8uVAbGNu//xPvMmTOHr7/+mqioKGrWrMnMmTN10/iMHDmSiIgI9u3bB8DXX3/NL7/8wp07d7C0tCQoKIiJEyfSvXt3vWOuWbOGjz76iPDwcKpWrcqXX37JM8882ZQIT0Iyz4QQQgghhBBCCCHKESV/fVG38mbs2LF685s/aNGiRXr333vvPd57771HHnPAgAFGR6KVhn/PqyGEEEIIIYQQQgghRAmTzDMh/gVk9LUQQgghhBBCCFE6JHgmhBBCCCGEEEIIUY78G1bb/DeRYZtCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YhShm2WK5J5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKJBhm+WJZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKWW2zXJHMMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCnDNssVyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEdktc3yRTLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRJTJsszxRaLVabVlXQgghhBBCCCGEEEIUWBK8payrYNDwRt3LugplQjLPhBCiBE3fv7ysq1Ci3m4zmBvxd8q6GiXO18WL/os/KOtqlKi1I6aQPGZ8WVejRDn8NIMWP44p62qUqMOv/sTzK78s62qUqIWDPiQ0Orysq1GiAj2qsPLMzrKuRokaVK8T+66fKutqlLi2fg04dSu0rKtRohp4B/LWH9+VdTVK1Mzeb/wr+/PPdy4o62qUqE86vUDfRe+XdTVK1IaRX5V1FcS/hATPhBBCCCGEEEIIIcoRWW2zfJEFA4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKERm2Wb5I5pkQQgghhBBCCCGEEEZI8EwIIYQQQgghhBBCCCNk2KYQQgghhBBCCCFEOaKUYZvlimSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjCmTYZnkimWdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5Yistlm+SOaZEEIIIYQQQgghhBBGSPBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDmikGGb5YpkngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRzDMhnqKIiAgUCgUhISGlcnyFQsGGDRueaJ+2bdvy5ptvPnb5RYsW4eDg8NAyly9fpmnTplhYWFC3bt0nqs9f9aTtKO3XQgghhBBCCCHEv4Nknon/jJEjR5KcnPzEwaWS5O3tTVRUFC4uLgDs27ePdu3akZSU9MiA1D/Jp59+irW1NVeuXMHGxqasq2NQ0deiLF3cd4Jz24+QmZKGYwU3mg3qime1ygbL3r1yg03TFxfbPvCzV3HwdC22/fqJ8+z5dS2V6/jT5dXBJV73+/5ct5E1v68kMSGByr4+jHn9VWrWrW20/LkzZ/nl+zncvBGBs4sLzw4ZRI9+vfXKrF+5hk3r/yAuJhY7B3tatW3N82NexMzcDIAVS37n8P6D3L4ZiZm5OTVqBfHCKy/iXblSqbWzi38T+gS1wtHKllvJsSw8sZnQ2Aij5Vv51qFvzdZ42jmTmZvNmbvXWHxyC+k5WQB81mU0NT2qFNvv1O3LTNm9pLSaUYxFzy6YtWyKwsoKdcRNMpevRRMVY7S8zfixmFT3K7Y97/wlMn78teCOuTmWvbthWrcmCltb1Lduk7VqA+qbt0qrGU+sjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62oZ1M6vAd38m+JgacOdlDh+P7OTa/GGn8tRjXvS0rdOse13UuL4aNsvAKgUSnoENqeFb20cLW2JSktg9dk9XIgOL9V2PGjL+k1sWLGGpMREvH0qM+q1lwmqU9Ng2cSERBb+OI+wq9eIun2XHv17M3rcGL0yRw8cZs1vK4m6cxd1fj6eFb3oM/AZ2nXp8DSaA8CJHQc49Odu0pNTcK3oSbfh/fEJLP5eAbh5OYwdv28k/m40eTl5OLg60bBDC5r3aK8ro85Xc2DjDkL2HyctKRlnT3c6D+lDtbo1nlaT2LdpJzvWbSIlMZkKlbwY+NJwqtUMMFj29OETHNiyi1vhN8nPy8ezshe9hvQnqIH++ZiZnsGGJas4cySYzPQMXNxdGTD6OWo1qvc0mgTAzo1b2LR6A8kJSXj5eDN87CgCagUZLJuUkMiynxZy41oY0Xei6NKvB8PHji5WbuvaP9j15zbiY+OxtbelSavmDBo9DDMzs9JuDgAtfGrTrmp97CysiU5LYMOFA4Qn3jVaXqVU0aV6YxpUDMDO3Irk7HR2Xg3mxK1LACgVSjpWa0gj70DsLWyITU9i06XDXI67+VTaA9CvZhuG1OuEs5U9NxLvMvvQas5GXTda/pmabehfqy2eds7EpCWy+NRWtl05rvu/SqlkeP2udAtohou1A5HJMcw9uo7jkZeeRnMMunrgNJd2nyArJR0HTxca9O+Am5+30fLqvHzObz3CjeCLZKdlYOVgS80uzajazPj3rtLWzb8pfWu2Lvh+lBTD/BObuPSQ70etq9SlX802VLBzJiM3mzN3rrLo5BbScjJ1ZXrVaEFX/6a4WDuQlpPBkYgLLD29jTx1/lNokRDFSfBMiKdIpVLh4eFR1tUodWFhYfTo0YPKlQ0HgMqD8vJahAVf4OjKbbQc0gN3v0qEHjjJ1tm/MXDSq9g4Oxjdb+Dk1zCzMNfdt7C1LlYmLSGZ42t24FGt9IJJAPt37eXn737k1bffIKh2TbZs+JOP3nmfX35biJuHe7Hy0Xej+PidiXTr1Z33PvmAi+cu8OP077B3cKBlu9YA7Nm+iwU/zWP8xPcIrBXEnchbTP/yawBefuNVAM6HnKXXM32oHuiPRq1h0S/z+fCt9/hl2UIsLC1LvJ3NfWrxfKMezDv+B5djb9K5emM+7DiCNzfOIj4jpVj5ALfKjGv5LIuCN3Py9mWcrOx4uWlfxjZ/hq/3LgPgm73LMFGqdPvYWlgxvdc4jkZcKPH6G2PeuT3mHdqQuXg56tg4LLp1wuaNMaR++hXk5BjcJ+OnRWBSWG+FtRW2H71D3unCwJPVsIGoKniSsfB3tCmpmDVpgM2bY0j97Gu0ycWfr7JgaWrO9YTbbLl8hCndxjx6hzLS2DuQIXU7sfT0Nq7F3aKtX33Gt/4fH277mcTM1GLlfz+zk9Xn9uruqxRKPu8ymuBbobptz9RqQ7PKtVh0cjNRqQnU9KjCuBYD+HL3YiKTjQdOS8qhPftZ8MPPvPzWqwTUrMH2P7cwecLHfL/4Z1zd3YqVz8vNw97BnmeH/o8/Vq83eEwbW1ueHToIr0remJiacPLoCb6fNgMHRwfqNW5Q2k3i/JFTbF28lp6jBlHJvwrBuw7x21dzeG36Rzi4OBUrb2ZuRpMurfGo5IWpuRmRV8L449cVmJmb0bBjSwB2r/yTs4eC6fPSEFwquHP9bCjLp8/jxc/H4+lr/Md1SQk+cJRV85YwZOwLVA2szoFtu/n+02lMmvsNTm7FLz5du3iZwHq16DtiEJbWVhzZtZ8fP/+W92dMplJVHwDy8/KZ9dFUbO3tePmDN3B0cSIpLgHzUui3jTm69xBL5i7ghddfpnpQALs3b2faxMl8M/97XNyLX4jKz8vD1sGePkOeZevaPwwe89Du/az4dSkvvfMa1YMCiLp9l5++mQ3AsLGjSrU9AHUrVKNvzdasObeXG4l3aV65Fi817cNXe38jOSvN4D4jGnTD1tyKlSG7iMtIxtbcCqWicGBS94BmNKgYwKqzu4lNT8TfrTLPN+7J7IOruJMaV+pt6uDXgDdaPsv0/cs5Fx1G36BWfNvrNYb+/hkx6UnFyvcNas2YZn2Ztvc3QmNvEujmw/vthpKWk8nhiPMAvNSkD12qN2Havt+4mRRNY+8aTO02hpfXfmP0gkRpijgVyqm1u2k0qDOuVby4diiEvXNW0/Oj0Vg72Rnc59CCjWSlZdD0uW7YujqSnZaBVqN5yjUv1MKnNi807snPxzZyOTaCLv5N+LjT84zbMMPg96NAt8q80XIgC4I3EXwrFGcrO8Y068erzfvz1d6lQEFwbViDrvxwaA2X4yKpYOfC6y2fBWBB8Kan2r6ypESGbZYnMmxTiHv2799P48aNMTc3x9PTk/fff5/8/MIrG23btuX111/nvffew8nJCQ8PDyZNmqR3jMuXL9OyZUssLCyoUaMGu3bt0htK+eBQwYiICNq1aweAo6MjCoWCkSNHAuDj48OsWbP0jl23bl29x7t27RqtW7fWPdbOnTsf2caMjAyGDx+OjY0Nnp6eTJ8+vViZ3Nxc3nvvPby8vLC2tqZJkybs27fvkce+T6FQcOrUKT7//HMUCgWTJk1i3759KBQKkpOTdeVCQkJQKBREREQAcPPmTXr16oWjoyPW1tYEBQWxZcsWXflLly7RvXt3bGxscHd3Z9iwYcTHxxutx2+//UbDhg2xtbXFw8ODIUOGEBsbq/u/oWGbT/oYJeHczqP4t6xPQKsGOHq60nxQN2wc7bm0/+RD97O0tcbK3lZ3Uyr1u3ONRsOeX9fSoHc77FwcS7MJrFu5mi49u9Gtdw8q+VRmzJuv4ermxqb1hn9gbN7wJ27ubox58zUq+VSmW+8edO7RjTXLV+nKhF64SFCtmrTr3AEPTw8aNGlE207tuXr5qq7MlzOm0blHV3yq+FKlWlXGf/AesTGxXLty1dDD/m29arRkz/VT7L52kjspcSwM3kxCRgpd/JsYLF/d1Zu4jCS2XD5KbHoSl2NvsuPqCao6e+nKpOdmkZydrrvV9vQjJz+PIzfPl0obDDHv0JrsrbvICzmP5m40mYt/R2Fmhlnj+kb30WZmok1N091MA/0hN4/cU/eCZ6ammNarTda6P1FfD0cTF0/2pu1o4hMxb938KbXs0Y5FXmTe8T/YHx5S1lV5qM7+TThwI4QD4SFEpSWw/MxOErNSaV/V8GuUlZdDanaG7ubj5ImVmSWHHsiqa+ZTi02hhzkXFUZcRjJ7w05zITqcrkbO55K2cdV6OnbvTKeeXfH2qcTocWNwcXVl28bNBsu7e7oz+vUxtOvaESub4hcLAGrVq03T1i3w9qmEp1cFeg3oi08VXy6dv1iaTdE5snkP9ds1o0H75rh6edB9xADsnB0J3nnQYHlPX29qt2iIm7cnjm7O1GnVGL/agdy8HKYrc/bQCVr37Uz1ekE4ubvQuHMr/OoEcnjznqfSpl3rt9Cic1tadmmHZyUvBr00HEcXZ/Zv2WWw/KCXhtNlQC98qlfF3cuTfiP+h1sFD84dP60rc3jnPjLS0hn78Xj8avjj7OaKX1AA3lWe3gW3LWs30rZrR9p174RXZW+Gjx2Ns5sLu/7cZrC8q4c7I14dTevO7bCytjJY5tqlK1SvGUCLDm1w9XCndsN6NG/XivCrxrOkSlLbqvU5HnmR45EXiU1PYsPFAyRnpdPCp5bB8gGulfFzqci84xu5Gn+LpKw0IpNjiEiK0pVp6B3ArmvBhMZGkJCZypGI81yJvUlbP+OfDyVpUN2ObAo9zJ+hh7mZFM13h1YTm5ZEv5ptDJbv6t+EjRcPsvv6Ke6mxrP7+kk2hR7muXpd9MosObWVozcvcDc1ng0XD3A88hKD63Z8Km0q6vKeYKo2q41f8zrYe7jQcEBHrBxtuXrwjMHydy+FE3P9Fu1eeRbPAB9snO1x8amAa5WKT7nmhfoEtWTXtZPsuhbM7ZQ45p/YRHxGCl39mxosX921EnHpSWwOPUJsehKhsTfZceUEfi6F34/8XStxOeYmB26cJTY9iZC71zgYflavjBBPmwTPhADu3LlD9+7dadSoEWfPnmXu3LnMnz+fL774Qq/c4sWLsba25vjx43z99dd8/vnnuqCVRqOhb9++WFlZcfz4cX755Rc+/PBDo4/p7e3N2rVrAbhy5QpRUVF89913j1VfjUbDM888g0ql4tixY/z0009MmDDhkfu9++677N27l/Xr17Njxw727dvHqVOn9Mo8//zzHD58mBUrVnDu3DmeffZZunbtyrVr1x6rblFRUQQFBfH2228TFRXFO++881j7vfrqq+Tk5HDgwAHOnz/PtGnTdEM+o6KiaNOmDXXr1uXkyZNs27aNmJgYBg4caPR4ubm5TJ48mbNnz7JhwwZu3LihC04aq/eTPsbfpc7PJz7yLhVrVNXbXrFGVWLCHn71c93kn1n6zrdsmrGYu5dvFPv/6U37sbS1JqBl6X7BzcvL49qVq9Rv3FBve/3GDQm9YPgHa+iFi8XKN2jSkGuXr+gC1kF1anHtylWuXCrIlIm6c5fgo8dp3Nz4D/vMjAwAbO0MX6n9O0yUKqo6VyDkrv774Ozd6/i7Gv7BdyU2Emcre+p7VQfA3sKGZpVrcur2FaOP06FaQw5HnCMnP6/kKv8QShcnlPZ25Ic+UKd8NfnXwjCp4vPYxzFr0YTck2cgN/fegZUoVCrI0x9aoc3Lw8TPtwRq/t+hUirxcfTkYrT++/xidDhVXR7vx1Jr37pcirlBwgNZaqZKVbGhL7nqfKq5ln42U15eHmFXr1G3kX7/VLdRfS5fKJmhU1qtlrOnznDn1m2CahseClqS8vPzibpxi6q1A/W2+9UOJPJq8T7akKgbt7h1NRyfGtUKj5uXj4mpqV45UzNTIh8IsJWW/Lx8Iq/foEY9/aFgNerXIiz08S5SaDQasrOysX4gO/rc8VNUCajG73MW8s5zY/hs7HtsWbkBjfrpZM7k5+Vx42oYtRvW1dteq0Fdrl66/JeP618zkBtXw7h+7yJPzN1oQk6cpl6Tho/Y8+9TKZRUtHfjSmyk3vYrcTfxcfQ0uE+QRxVuJcfQ3q8hn3YaxcT2w+ldoyWmD2RDmyhV5GvUevvlqfOp4lSh5BtRhIlShb9rJU5EhuptP3Er1OB0BwCmKhNyi3x+5uTnUcPdB9W9i4ymKhNy1cXL1PY0PLy6NKnz1STeisYzUP9z0TPQl/gbdwzuc/v8dZwreXBp13HWffgjf3z2C6fX7SE/9+l8byiq4PuRV7HvRyF3rxHgZvj70eXYmzhb29PAyx+49/3IpyYnbxe+/0JjI6jq4kW1e59z7jZO1K/or1dGiKdNhm0KAcyZMwdvb29++OEHFAoFAQEB3L17lwkTJvDJJ5/osnpq167Np59+CkC1atX44Ycf2L17N506dWLHjh2EhYWxb98+3XDAL7/8kk6dOhl8TJVKhZNTwTAONze3J5rzbNeuXYSGhhIREUHFigUfKlOmTKFbt25G90lPT2f+/PksWbJEV6fFixfr9oeC4ZbLly/n9u3bVKhQ8MXonXfeYdu2bSxcuJApU6Y8sm4eHh6YmJhgY2PzRMMiIyMj6d+/P7VqFVwhrVKl8IvR3LlzqV+/vt7jL1iwAG9vb65evUr16tWLHe+FF17Q/V2lShVmz55N48aNSU9PNzgP25M+Rk5ODjlFhrSZm5vzJLLTM9FqtFja6WdRWNpZk5mabnAfK3tbWg3rhWslT9T5aq4dO8ummYvp9fZIPKv7ABB9PZIrh07T/+PSH4aWmpyCRq3B0Uk/u83R0ZHEhESD+yQlJuHoWKS8kyNqtZqU5BScXZxp27E9KUnJvP3KG2i1WtRqNT379WbQsCEGj6nVavl59hyCatfCp0rJB2dsza1QKVWkZOm/LsnZaThYVjO4z5W4SGYdXMX4NoMxVZlgolRxIvIS84//abC8n0tFKjt6MOfIuhKvvzGKe4FGTar+kB5NahpKp8fLWFT5VELl5Unm0pWFG3NyyA+7gUWPTmRExxRkpzWqj8qnEprY0s3m/LexNbNCpVSSmq1/7qVkZ1DT4tFzStpb2FDLsyo/H9ugt/1CdDhd/JtwNS6S2PQkAt19qedVHeVTWNkrLSUVjVqDQ5FzzN7RgaTE4kOxnkRGegajBgwlLzcPpUrJy2++WixIVxoyU9PRaDTY2Nvqbbe2tyU9ufjQ2gd9O/YjMlLT0ajVtBvQnQbtC7Mz/WoHcmTLHnwC/XB0dyH8whUunzyHRqMtlXY8KD01DY1Gg52Dvd52Wwd7UpMeb+j1zvWbyc3OoUGrwgyUuOhYEmIu0aRtC8ZNeo/Yu9Esn7sIjVpDzyHPlGgbDElLKWiXvaOD3nZ7R3tS/sb517xdK9KSU/jszQ/g3udWx15d6T24/9+s8aNZm1miUir15osCSMvJws7CcKams7Udvk4VyFOrWRi8CWszSwbUboeVmQUrQgoyCy/HRtK2Sj3CEu6QkJFMNddK1PSo8lT6CQcLG0yUKhKz9N8/SVmpOFsZvkh24tYletZoyYEbZ7kSF0mAayV6BDbHVGWCg4UNCZmpHI+8xP/qdiTk7nXupMTRsGIArXzroFQ+/eFxOfe+B1rY6mczWthak5WaYXCf9PhkYsNuozQxofWL/cjJyCJ45Q5yMrNpNrT706i2nvvfj4oODU7JSsPRsvj3cyj4fjTjwAreaTtE9/3oeOQl5h0rHLFw6MY57M1tmNJtDAqFAhOliq2Xj7Lu/P5SbU95o1BIrlN5IsEzIYDQ0FCaNWumtxxwixYtSE9P5/bt21SqVDBnVO3a+ldfPT09dUMBr1y5gre3t17AqHHjxqVW30qVKukFvpo1a/bQfcLCwsjNzdUr5+TkhL+/v+7+6dOn0Wq1BgNFzs7OJVR7w15//XVeeeUVduzYQceOHenfv7/u+T516hR79+41GPQKCwszGDw7c+YMkyZNIiQkhMTERDT35oKIjIykRo3iEy0/6WNMnTqVzz77TG/bp59+im07f56Uosh8BtqH/CZy8HDBwaNwnhn3qt6kJ6VydscRPKv7kJudw97562g1rLfBedBKTZEv0lq0D19eu2h57f3NBdvPng5hxZJlvPr2GwQEBXL39h1++u5HHBcu5bnnhxU73I8zZnMjLJzpc2f/vXY8ghb9F6foa/egivZujGrck9Vn9xBy9xqOlrYMb9CVl5v1NRgg6+DXkJtJ0VyPv13i9b7PtHF9rIY8q7uffn9y/6In3RP8MDJr3gT1nSjUEfoZD5kLf8dq+P+wnzYJrVqN+tYd8oLPoKokQy7+iqLdQsG59+gASkvf2mTmZXP6jn7G4+9ndjKyYXemdBuDFohNT+LQjbMGFxooPUXPs0f0G4/B0sqSmb/+SFZWFudOh7BgzjzcK3hSq95Tmki7WPUf3aZRk94kNzuHW9ci2Ll8I04ertRuUZCt1H3kADb+spzZ4yejUChwdHehXtumnNl3rHTqb0jxl8lAO4s7se8Im5atY+zH4/UCcFqNFlsHO4aOG41SpaRytSokJyaxY+3mpxI80zHYrr9+/l0KOc+G39fwwusvUzWgGjF3o1ny46+sc17JM0MH/a2qPq6in1FQcHHJECUKtMBvp7eRnV+QNbzh4gFGNuzB2nN7ydOoWX9hP4PqdGBi+2FotZCQmcKJW5do7P30FqwoXn+F0Z5vYfAWnKzs+KX/BFBAUmYaWy4fZWj9LqjvHee7g6uY0G4ovw+ZhBYtd1Pi2Hz5CD0CynJKgSLnnVZr9FTUagv6lBYje2FmWXDRVv1Mew7O30CjgZ0wMTM1vOPTplAYPB+h4PvRi016szJkN2fuXsXR0paRDbvzSrN+/HCkYFROTY8qDKjTjp+PbeRaXCQedi6MbtyLpNpprDr3dIatC1GUBM+EoPCDqOg2QG+7aZGhEwqFQheUMXSMv0qpVBb7spCXV5iObeiL0KMe29iXpwdpNBpUKhWnTp1CpVLp/e/vrJp5P3PvwTo82B6A0aNH06VLFzZv3syOHTuYOnUq06dPZ9y4cWg0Gnr16sW0adOKHdvTs/hwhIyMDDp37kznzp357bffcHV1JTIyki5dupB7f1hZEU/6GBMnTmT8+PF628zNzfnh2ONnDVnYWKFQKoplmWWnZWBl9/jPt5tvRa4fPwdAalwiaQnJbP/xd93/7z/v88Z8xqDPx2HnVnzi6r/KzsEepUpJUpEss+Sk5GLZaPc5OjmSlFi0fBIqlQo7+4KryUvmLaR9l050690DAN+qVcjOzmb2tBkMHvGc3hxvc2bM5tihI3z74yxc3YpP9FwS0nIyUWvUOFjqZ5XYW9iQnGU4S/CZWm24HHuTjRcL5ju6mRRNdn4uX3Z7md/P7NS7SmumMqWFb21WhhieR6ik5J29SNqNB4Jc9yb9V9rboX4g+0xpa4M21fAE03pMTTFrVJcsA/MEaeITSJ/xI5iZobAwR5uahtXoYWjiDWckCsPScjNRazTYF8kys7OwIiXbcGbCg1r51uFIxHnURSaTTsvJ5PvDazBRqrAxtyI5K41na7cjPiO5JKtvkK29HUqVkuQi/UBKUgoORbKBnpRSqcSzYkHmdJVqVbl98xZrl60s9eCZlZ0NSqWS9GT9901GSjrWRbLRinK8N/G+eyUv0lPS2Ltmiy54Zm1ny5B3XiIvN4+s9AxsHe3Z+ftGHNxK94IWgI1dwXyaRbPM0lJSimWjFRV84ChLZv/Cy++/QWA9/Tm37J0cUKlUKFWF/bintxepScn3hqmW7s8T23vzhKYkJuttT0lOKZaN9iRWL/qdlh3b0q57QXZ/pSo+5GRn8+vMOfQd8myxuUlLUkZuFmqNBjtz/YtmtuaWxbLR7kvNySAlO10XOAOISUtEqVBgb2lLfEYyGblZLAjehIlShbWZBSnZGfQMbGFwoZKSlpydTr5GjbOV/rnmaGlr9PFz1XlM3bOUr/ctw8nSjoTMFHrXaEVGbpYuczw5O52JW3/CTGWCnYUN8RnJvNKsH1FpTz8r2vze98DsNP2+PDs90+gFUEs7GyztbXSBMwB7D2fQQmZyWol+x3scf+X70YDabQmNjWDDxQNAwfejn49tYGr3V1h2ZgdJWWkMqdeJfWGn2XUtTy5RrwABAABJREFUuKBMcgwWJqaMbf4Mq8/tNRqYE6I0SR6gEECNGjU4cuSIXnDnyJEj2Nra4uX1eFkSAQEBREZGEhNTuEpZcHDwQ/e5v3S5Wq0/n4SrqytRUYUTtqampnLjRuGcKTVq1CAyMpK7dwuXHz969OhDH8vPzw9TU1OOHSu8Wp2UlMTVq4XzltSrVw+1Wk1sbCx+fn56t7+zMqWra0FA48E2PThR/33e3t6MGTOGdevW8fbbbzNv3jwA6tevz8WLF/Hx8SlWL2vr4l8uLl++THx8PF999RWtWrUiICBAb7EAQ570MczNzbGzs9O7PemwTZWJCS6VKnDnkv7cNbdDw3Cv+vjzDiXcisLKvuCHtYOHCwM+fYX+H4/R3SrX9qeCvy/9Px5jdOWmv8rU1JRq/tU5E6w/d96Z4FME1gwyuE9gzaBi5U+fOEm1AH9MTAp+NOXkZBf7oXE/qHz/farVavlx+ncc3n+QabOn41HB8LwuJSFfoyYs4S51isyJUruCH1fibhrcx9zEtFjQWqMtCGAUDXW38KmFqUrF/nDDEwSXmJwcNHHxhbeoGDQpqZgEPpBZqVJhUq0q+eERjzycWcO6YGJC3vFTxgvl5qJNTUNhZYlpjQDyzj69lUT/DdQaDRFJUQR56A9HruHuS9gjshT9XSvhbuvEwQcWCigqX6MmOSsNlUJJg4oBnLlTOgtuPMjU1JSq1asRclL/fA85eZqAmiWb0aLVaotdrCkNJiYmePp6E3Zefz6esPOXqVT9CYaSa7Woi8wVCAXznNk5OaBRa7h0IoSABqWfSWdiakIlP19Cz+gvYBJ65gJVAw0Px4KCjLPFM39i9LuvUqtxvWL/r1qjOnFRMbqLjwAxd6Kwd3Io9cAZgImpKb7Vq3L+VIje9gunQqheI+AvHzcnJ6fY0L+Czy0enlJeAtRaDbdTYqnuqr+6dnXXSnoLADzoRmIU9ubWmKkKLwy72Tii0WpIKTIEL1+jJiU7A6VCSe0KfpyPDi/5RhSRr1FzJS6SRt768wg28g7kwiMeX63REJeRjEarpWO1hhyOOF8s2JKrzic+IxmVUknbqvUe2k+WFpWJCidvD6IuR+htj7ocgYuv4d8frlW8yEpJJy+nMOiZGpuEQqHAyuHhgfrSUPD96A51K+h/P6pbwY/LsUa+H6nMDHw/0hYpY+g7VEHa61MYNVxuKBWKcnn7r5LgmfhPSUlJISQkRO8WGRnJ2LFjuXXrFuPGjePy5cts3LiRTz/9lPHjxz/2lcJOnTpRtWpVRowYwblz5zh8+LBuwQBjWWGVK1dGoVCwadMm4uLiSE8vuELTvn17li5dysGDB7lw4QIjRozQywTr2LEj/v7+DB8+nLNnz3Lw4MGHLk4ABZljo0aN4t1332X37t1cuHCBkSNH6rWvevXqPPfccwwfPpx169Zx48YNgoODmTZtmt7Kl0/Kz88Pb29vJk2axNWrV9m8eXOxlT7ffPNNtm/fzo0bNzh9+jR79uwhMLDgC9Orr75KYmIigwcP5sSJE4SHh7Njxw5eeOGFYoFHgEqVKmFmZsb3339PeHg4f/zxB5MnT35oHZ/0MUpK7U7NuHzoNJcPnSYpKo4jK7eRnphCYJuCrIMT63axd0FhNtv5XUeJOBNKSkwCiXdjObFuFzdOhxLUrmCIsImpKU5e7no3cysLTM3NcPJyR2VS8j9Mnhn0LNv+3ML2TVuJjLjJz9/9SGxMDD369QJgwdx5fDN5qq58j769iImO4efZc4iMuMn2TVvZvmkrAwYXLs7QpEUzNq//g3279hB9N4rTJ06yZN5CmrZsrnsv/Dj9O/bs2MWESR9haWVFYkIiiQmJxeaiKyl/XjpEh2oNae/XAC97V0Y26o6LtT07rpwA4Ln6nRnXcoCu/Mlbl2lSOYgu/k1wt3HE37USoxr34mpcwapmD2pfrSEnIkNJz8kqlbo/TM7uA1h07Yhp3VooK3hgNWIw2txcck8Uro5nNXIwFn17FNvXrHkT8kIuoM0ontlgUsMfkxoBKJ2dMAmsjs1bY1HHxJJ75ESptudJWJqaU82lom5C4gp2LlRzqYi7TemuUPukdlw5TmvfurTyrYOnrTP/q9sRZyt79oYVvEYDarVldJNexfZrXaUuYQl3uJMSV+x/VZwq0MDLH1drB6q5eDO+zf9QKBRsufzwCzElpc/AfuzavJ1dm7dzKyKS+T/8THxsHF16F8zZs/SXhcz68lu9fcKvhRF+LYzsrGxSk1MIvxbGrYjCH2drfltJSPBpou9GcfvmLTauXMe+7btp26n9U2lT8x7tOb3nCKf3HiXuTjRbF68lJT6RRh1bAbBz+UbW/rhEV/749v1cPnWehKhYEqJiOb3vKIc37aZ2q0a6MreuRXDpRAiJMfFEhF5nydQf0Wq1tOz9dFYG7NivO4d27OXwjn1ERd5h1S9LSYyLp3X3DgCsX7SChdPn6Mqf2HeEhTPmMmDUUHz9q5GSmExKYjJZD/QRbbp3Ij0tnZU/LyHmThTnT5xh66qNtO3R+am0CaB7/z7s3bqLfVt3cefmLZbOmU98bDwdehWsyrji16XM+WqW3j4R18OJuB5OdnY2qcmpRFwP5/bNwsV96jdtxK4/t3Fk70Fio2I4fyqE1Yt+p0GzRiiLZPOXhn1hp2laOYjG3jVws3Gkb1BrHC1tORJREPzsEdicIfUKn+NTt6+QkZfN4HqdcLdxoopTBXrVaMnxyEvk3VskoJKDO7U8q+JsZUcVpwq83LQvShTsuf7wFcFLysqQXfSq0YIegc2p7OjB6y2exd3WkfX3MpbGNO3LRx1G6sp727vRuXpjKtq7Eejmw2edR1HFuQI/H9uoK1PD3Yc2VepSwc6FOp5+zOj1OgoULDu946m0qaiA9o0IO3KWsKPnSImO59Ta3WQmplKtVV0Azmzcz5Elm3TlfRrVwNzakmO/bSElKp6Y67c4s34vVZrVKrMhmxsvHqJjtUZ08GtIRXtXXmjUExdrB7ZfOQ7A0PpdeKNl4Xe84NuhNK1ck67+TXC3cSLArTKjm/Tialyk7vtR8O3LdPVvSkvf2rjZOFLH048h9ToRfOtSsUCbEE+LDNsU/yn79u2jXj39q6AjRoxg0aJFbNmyhXfffZc6derg5OTEqFGj+Oijjx772CqVig0bNjB69GgaNWpElSpV+Oabb+jVqxcWFhYG9/Hy8uKzzz7j/fff5/nnn2f48OEsWrSIiRMnEh4eTs+ePbG3t2fy5Ml6mWdKpZL169czatQoGjdujI+PD7Nnz6Zr164PreM333xDeno6vXv3xtbWlrfffpuUFP3hGAsXLuSLL77g7bff5s6dOzg7O9OsWTO6d//rk5CampqyfPlyXnnlFerUqUOjRo344osvePbZwrmX1Go1r776Krdv38bOzo6uXbsyc+ZMACpUqMDhw4eZMGECXbp0IScnh8qVK9O1a1eDwU1XV1cWLVrEBx98wOzZs6lfvz7ffvstvXv3NlrHJ32MklK1UU2yMzI5vXk/mSnpOFVwo9u457B1dgAgMyWN9MTC10idr+bYmh1kJKdhYmqCYwU3uo4bQqVaxrMASlubju1ITU1l2cIlJCUkUrmKD5O/nYr7vWzFxIREYmMKM/88Kngy+dup/Dz7Rzat24iTizOvvPkaLdu11pUZMmIYCoWCxb8sICEuHntHB5q0aMbIl0bpymxaXzCx7HuvvaVXn/EfvEfnHg9/L/wVRyLOY2tuxbN12uNoaUtkcgxTdi8m7t4wN0dLW1z+z959R0VxvQ0c/y69914UEAUEe+9d7JrE3o2JMRqNMZpE/RljjJqiiSaxx967xl6xN+wNG4pYQJDe675/oIsrLGoEIXmfzzl7Djt77+y9u8PM7DPPvWNsoSofEHweA119WnvXpl/11iSlp3IlLJgV5/eordfRzJry9m5M3Luo0Nv8OtL2HkShp4thjw9QGBmSdS+UxN/nwQtBSC0ryzyZE1p2tuiU9SBx5tx816swNMCgU1u0LCxQJieTceEyKVt2wkvDB4uTt21p/nwvd/j18Po5+6SdQSeZfHBpcTUrjzMPgjDWN6KDb33MDUx4FBfJb0fXqO6eaW5okmdok6GuPtVcvFl1If8fhLraOrxXoRF2JpakZqZzOewOC079TUpG0QSfX1a/aSPi4xJYu2wVMVHRlHJ3Y/xP32PnYA/k7DciX8oYHvnRZ6q/g2/e5sj+Q9g62LFgbc53lZaayrzfZhEV+RQ9fT2cS7nyxf9GU79po3fSpwp1q5GSmMShjbtIiI3HztWR3t8MwcI2ZxhVQkw8cS8MW1Yqlexf/TcxkVFoaWlhZW9Dix4dqd68nqpMZkYGB9ZuJybiKXoG+pSt7MsHQ/tiaGyU5/2LQo2GdUiKT2TH6k3ERcfiVNqFzyZ+hfWzIfJx0bFER0apyh/dfYDsrCxWz1nM6jmLVcvrNGtI/5E5N7GxsrXm80nfsH7BCr4f+g0W1pY07dCKVp01H6MLW50m9UmMj2fTirXERsfg4laKr6aMx9beDoDY6GiiItSDzmMH5+4r7t0K5sTBI9jY2/L7ypws+fd6d0WhULB+8Uqin0ZjZm5G1To16Pphr3fSp4uPb2OsZ4i/Vy3M9I0IS4hi/qmtqmCEmb4xli8MrUvPymDuyc28X6ExIxt2JykjlYuPb7Mr6ISqjK62Dm2862BtZE5aZgZBESGsPL9HbahnUTpw5xxmBiYMqN4Wa2Mz7kY9ZtS2P3mSkPN/ZG1kjr1p7jBFLS0telRuTikLBzKzszj/6CaDN/5CeELuNqqnrcvHtTriZGZDSkYaJ+9fZdK+xSSmv/uLVwBu1XxIT0rhyq7jpMQnYeFoQ+MhXTCxytmnp8YnkhT9wp2S9fVo+lk3zq7fx66fl6JvbEipqt5UategWNoPcDzkMmb6RnSr3Czn/CgmnEn7l6jOj6yMzLA1sVCVP3jnHIY6+rTxrsuAGm1JSk/lclgwy87tUpVZd+kgSqWSXlVaYmVkTnxqEoEPglh5YQ9CFBeF8nUmQhJC/CPHjx+nfv363LlzhzJlyhR3c8QLbt68ibe3N7dv38bTs/BuTz798OpCW1dJ8GWjHtx7mv/t0v/N3G2c+WDp2OJuRqHa2G8KsYNHvrrgv4jF3F+pN6vo7xr7Lh0fOpcBaycXdzMK1eJu4wh6B8O43iUfBw/WXthX3M0oVN2qtODQnQKGWP9LNfasxrkHQcXdjEJVzdWHL/6eWdzNKFS/dfj8P7k//35f8Vz4KirftviQTku+Ke5mFKot/X8s7ib8Y1uvHinuJuSro1/DVxf6D5LMMyEK0ebNmzExMaFs2bLcuXOHzz//nHr16kngrISJjo5mw4YNmJmZ4er6+nOLCSGEEEIIIYT4/0eCZ0IUooSEBL766isePHiAjY0NzZs3zzO3lyh+AwcO5Ny5c8yZM+eNJ/kXQgghhBBCCPH/iwTPhChEffv2pW/fvsXdDPEKmzdvLu4mCCGEEEIIIYRGijz3ZxfFSe62KYQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCaClk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIQoZtliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgsiwzZJFMs+EEEIIIYQQQgghhNBAgmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShAtZNhmSSKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliNxts2SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkRLhm2WKJJ5JoQQQgghhBBCCCGEBgqlUqks7kYIIYQQQgghhBBCiBz7bp4u7ibkq4VXreJuQrGQYZtCCFGIvt4xu7ibUKh+ajuEa2HBxd2MQufrWIaGs4cUdzMK1ZEhs4kdOKy4m1GoLBb+wYC1k4u7GYVqcbdx1Js1uLibUaiOD51LQkREcTejUJna2bEkcEdxN6NQ9a/RllHb/ijuZhS6ae2HMf3w6uJuRqH6slEP+q2ZVNzNKFRLu4+n87Jxxd2MQrWh72Q6LfmmuJtRqLb0/5Fm84YXdzMK1YFPfi/uJvxjcrfNkkWGbQohhBBCCCGEEEIIoYEEz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIApk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIltxts0SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBCiBFEoFCXy8U/Mnj0bd3d3DAwMqFatGkePHtVYdtOmTbRo0QJbW1vMzMyoU6cOe/bsUSuzZMmSfNuWmpr6j9r3OiR4JoQQQgghhBBCCCEK3dq1axkxYgTjxo3jwoULNGjQgNatWxMaGppv+SNHjtCiRQt27tzJuXPnaNKkCe3bt+fChQtq5czMzAgLC1N7GBgYFFk/5IYBQgghhBBCCCGEEOKV0tLSSEtLU1umr6+Pvr5+vuV//fVXBg4cyEcffQTAjBkz2LNnD3PmzGHq1Kl5ys+YMUPt+ZQpU9i6dSvbtm2jSpUqquUKhQIHB4e37M3rk8wzIYQQQgghhBBCiBJES6EokY+pU6dibm6u9sgvCAaQnp7OuXPnaNmypdryli1bcuLEidf6HLKzs0lISMDKykpteWJiIqVLl8bFxYV27drlyUwrbJJ5JoQQQgghhBBCCCFeacyYMYwcOVJtmaass6dPn5KVlYW9vb3acnt7e8LDw1/r/aZPn05SUhJdu3ZVLfP29mbJkiVUqFCB+Ph4Zs6cSb169bh06RJly5Z9wx69HgmeCSGEEEIIIYQQQohXKmiIpiYv32hAqVS+1s0HVq9ezXfffcfWrVuxs7NTLa9duza1a9dWPa9Xrx5Vq1bljz/+4Pfff3+jtr0uCZ4JIYQQQgghhBBClCAK/tmdLUsSGxsbtLW182SZRURE5MlGe9natWsZOHAg69evp3nz5gWW1dLSokaNGty+ffut26zxPYpszUIIIYQQQgghhBDi/yU9PT2qVavGvn371Jbv27ePunXraqy3evVq+vfvz6pVq2jbtu0r30epVHLx4kUcHR3fus2aSOaZEEIIIYQQQgghhCh0I0eOpE+fPlSvXp06deowf/58QkNDGTx4MJAzh9qjR49YtmwZkBM469u3LzNnzqR27dqqrDVDQ0PMzc0BmDhxIrVr16Zs2bLEx8fz+++/c/HiRWbNmlVk/ZDgmRBCCCGEEEIIIUQJolD8NwYKduvWjaioKL7//nvCwsLw8/Nj586dlC5dGoCwsDBCQ0NV5efNm0dmZiZDhw5l6NChquX9+vVjyZIlAMTGxjJo0CDCw8MxNzenSpUqHDlyhJo1axZZPyR4Jv6RJ0+eMG/ePIYNG4alpWVxN0cIIYQQQgghhBAl0JAhQxgyZEi+rz0PiD136NChV67vt99+47fffiuElr2+/0YoU7xTSqWSPn36oK+v/8aBMzc3N2bMmFE0DXtLCoWCLVu2vFGdxo0bM2LEiCJpz79Vnz59mDJlSnE3462MGjWK4cOHF3czhBBCCCGEEEKUAJJ59g7079+fpUuXAqCjo4Orqyvvv/8+EydOxNjYuJhb9+amTp2Kh4cHX3/99RvXDQwM/Ff2Wbyey5cvs2PHDmbPnq1a1rhxYw4fPszUqVP55ptv1Mq3adOGXbt2MWHCBPr374+7u3uB658wYQLfffcdAEuXLmXWrFlcu3YNLS0tqlSpwldffUW7du0ASExMxNLSkhUrVtCtWzfVOrp168a6deu4c+cOZcqUUS0vU6YM3bp1Y8qUKXz11VeUKVOGL7744pVtKgy1S/vSyKMKpvpGPEmMZtu144TEhGksr62lRfOyNajiVA5TfSPiUhM5eOccZx/eUJUx0NHD36sWfg4eGOrqE5OSwPbrx7kZGapxvYVp15btbF2zkZioaFzdS/PhZ4MoX9Ev37LRUdEsnb2A4Ft3CHv4mDbvd2DgsE80rvvYgcP8OuknatarzTeTvy2qLuSrk29DelRpjpWROSHRYfxxfD2Xw4I1ln/PryHvV2iMg6kVTxJiWH5+N3tunlYr06ViEzr6NsTe1JK41CQOBZ9n/qmtpGdlFnV3VAw6tEavUT0URoZk3b1P8sp1ZD8OL7COfvPG6DWpj5aVJcrEJNLPXiR149+QmdNu/TYt0K1aCW1He5TpGWQF3yNl/Vayn0QUeX+aeFajtVdtLAxNeBQXyaoL+7j99EG+ZQfWbEd990p5lj+Ki+R/u+cDoK3Qoq1PXeq5V8TS0JSwhCjWXzrI1fC7RdqPf6KSoyc9q7TE264UNsYWfLNzDkfvXSruZgE5F9/mL17M5r//JiEhAd/y5fl65EjKvGI/e+DQIeb+9RcPHz/GxcmJIYMG0aRhQ9Xr8xYtYsHixWp1rK2s2LN1q+r5wcOH2bR1K0G3bhEXF8fKRYvwKlu2cDsInNt3nNM7A0iMjcfW2YHmvTvh6u3xynoPb91jxQ+zsHVxYOCUUarlNwMvc+Lv/cQ8eUp2VjaW9jbUbNOYCvWrF3rbNalbugKNPatgqm/Mk4Rotl47yr3oxxrLa2tp0aJcTao5e2Gqb0xsaiIHbgcS+CBIVaaBeyXquFXA0tCUpPQULofdYWfQSTKzs95FlwC4dugMl/ecIDkuAUsnO+p0a4Vj2dL5ln188x7bpy/Ns7zrxKFYONrmWX7nzBUO/rWR0pW88B/ao9DbrklTz2q08a6DuaEpj+MiWXlhD7ci89/3fVSrAw007PvG7poL5Oz72pWvR333ilgYmhEeH8W6Swe4Eq75uFfY/L1q0aF8fSyNTHkQG8GSwB0ERdzXWL6BeyU6+jbA0cya5PQ0Ljy+xbJzu0hMS1GVMdI1oGeVFtQq5YuxvgERCTEsPbeLC49uvYsu0dqrNp38Gub0KeYJC89s53pEiMbyDT0q855fI5zMrElKT+XCo1ssObuThLRkVZn25evRyqs2NsYWJKQlcSLkKsvP7ybjHZ1LdChfn66VmmFtZEZITDizT2zkSgHHyI6+Dejo2wAHUysiEmNYeX4v+24Hql73L1eTr5r0zlOv1V8j31mfSgItxb//bpv/JRI8e0datWrF4sWLycjI4OjRo3z00UckJSUxZ86c4m7aGxs7duw/rmtrm/cEQ/x3/Pnnn3Tp0gVTU1O15a6urixevFgtePb48WMOHjyouiOKq6srYWG5AaNp06axe/du9u/fr1pmYmIC5GSG/fnnn/zwww906tSJjIwMVqxYQceOHZk5cyafffYZJiYmVK9enYCAALXg2eHDh3F1dSUgIEAVPHv48CF3796lSZMmANjZ2dGyZUvmzp3LTz/9VMifkrqKjp60L1+fLVePcD8mnFqlyvNhzXb8eng1samJ+dbpVcUfU31DNlwOICo5DmM9Q7S1chOJtRVafFSrA4npKaw4v4e41EQsDExIy8wo0r48d+zgYRb/OZ+PRwzBp0J59vy9ix+++paZS+dia2+Xp3xmegZmFuZ80Ls729dvLnDdEeFPWDLnL8pX9C2q5mvU1LMaw+p35tcja7gafpcO5evzc7uh9F09iYjEmDzlO/o2YFDtjvxyaBVBESH42LnxVeNeJKQmc+L+FQBalK3BoNqd+ClgOVfD7+JqYc+Ypn0A+PP4xnfSL/3WzdFv2YTkRSvJehKBQTt/TL78jPhxkyA1Ld86urWqY9C5A8mLV5J15x5aDnYYfZhzkpu6dhMAOuU8SQ84Sua9+6CljeH77TD5cijx/5sM6elF1p+arj70rNyC5ed3czvyAY09qzKyYXfG7Z5HdHJ8nvKrLuxj/eUA1XNthRbf+3+k9kP//QqNqFO6AkvO7iAsPgo/Bw+G1evM5ANLCY19UmR9+ScMdfW5E/WQnTdOMKX14OJujpqlq1axau1aJowdSylXVxYuXcrQL75g46pVGBsZ5Vvn8tWrjP3uOwYPHEiThg0JOHKEb779loWzZuHnm7sf8HB3Z/YLwzde3CcCpKSkUKlCBZo3acIPP/9cJP27fuoC+1dswb//B7iUc+fCwROs/WU+H//0NeY2mjP1U5NT2DZ3FW6+ZUmKS1B7zcDYiLodmmPtZI+2jjZ3Llxnx/w1GJuZ4FHRu0j68aJKTmXp4NeATVcOERIdRu3SfnxUqz2/HFpJbEr+x6g+1Vpjqm/EuksHeZoUi4m+kdoPwCrO5WjjU5d1lw4QEh2GrYkF3So3B+Dva8eKvE8AwYFXObl2N/V7tsXesxRBR86y6/cVdP1uKCbWFhrrdZ30GXoG+qrnBqZ5LwgnRMVyesNeHMqWKoqma1TTtTy9qviz7NxObj19SJMyVfmyYU/G7JqT775v5fk9rL90QPVcS6HFD60GcebBddWyDyo2oW5pPxYF7iAs/ikVHMswvH4XJu1fQmhswRdYCkNdtwr0r96Gv05v40bkfVqUrcHYZv344u+ZPE2Ky1Pe2640n9XrzNKzOzn78AZWRmYMqtWRT+u8zy+HVgKgo6XNty0GEJeaxLTDq4hKjsfG2JyUjPyPd4WtnltFPqzZjnmntnIjIgR/r1qMbzGAYVt+zbdPPnal+bx+VxYFbifwQRDWRmYMrvMeQ+t+wI8By4Gc4Fqfaq3489gGbkSG4mRmw/D6XQBYFLi9yPvUuEwVhtR9n9+Predq+F3ala/H1Daf8uG6KfmeH7UvX5+BNdvz65HV3IwIxduuNCMbdicxPYWT96+qyiWmpdB/7Q9qdf8/Bc5EySPDNt8RfX19HBwccHV1pWfPnvTq1Us1RFCpVPLzzz/j4eGBoaEhlSpVYsOGDaq6MTEx9OrVC1tbWwwNDSlbtiyLX7jCeuXKFZo2bYqhoSHW1tYMGjSIxMT8T2ggZwyxQqFgz549VKlSBUNDQ5o2bUpERAS7du3Cx8cHMzMzevToQXJy7hWN3bt3U79+fSwsLLC2tqZdu3YEB+deeVq2bBkmJibcvn1btWzYsGGUK1eOpKQkIO+wTYVCwbx582jXrh1GRkb4+Phw8uRJ7ty5Q+PGjTE2NqZOnTpq7wMwZ84cypQpg56eHl5eXixfvrzAzz8wMJAWLVpgY2ODubk5jRo14vz58wXWeVlSUhJ9+/bFxMQER0dHpk+fnqdMeno6X331Fc7OzhgbG1OrVi21Mdv379+nffv2WFpaYmxsjK+vLzt37gRyv5cdO3ZQqVIlDAwMqFWrFleuXFF7jxMnTtCwYUMMDQ1xdXVl+PDhqs8XciZcbNu2LYaGhri7u7Nq1Sq1zz0kJASFQsHFixdVdWJjY1EoFGptvX79Om3atMHExAR7e3v69OnD06dPNX4+2dnZrF+/ng4dOuR5rV27dkRFRXH8+HHVsiVLltCyZUvs7HKCKdra2jg4OKgeJiYm6Ojo5Fl26tQppk+fzi+//MKoUaPw9PTEx8eHyZMnM2LECEaOHMmDBzlXWZs0aaLWp6CgIFJSUhgyZIja8oCAAHR1dalXr55qWYcOHVi9erXG/haWBu6VCHwQROCDICISY9h2/ThxqYnULp1/llY5W1c8rJ1YFLiDO1EPiUlJ4GFcBPdjck9iq7v6YKSrz7Kzu7gfE05sSiIhMeGEJUQVeX8Atq3fTLM2LWnRrhUupUsxcNgnWNvZsmfrjnzL2znaM3DYYJr4N8OogMzUrKwsZvzwC90H9Ma+CG9DrUnXSk3ZEXSCHUEnuB8Tzh/HNxCZGEsnv4b5lvf3qsXf145x8M45wuKjOHjnHDuCTtCzagtVGV8Hd66GB7P/9lnCE6IJfBDEgdtn8bLNP/uhKOg3b0zqjr1knL9E9qMwkheuQKGni14tzZktOmXcybxzl4zT58iOiibz2g3ST59Dxy33x2LSjDmkHz9N9uNwsh8+InnRSrSsrdB2cy3S/rT0qsWRexc5cvciYQlRrL6wj+iUeJqWqZpv+ZSMNOJTk1QPNytHjPQMOfZCtlYdtwpsDzrO5bBgIpNiCQg+z9Xwu7TyqlWkffknToVeY8Hpvzl892JxN0WNUqlk9bp1DOjbl6aNGuHp4cHEceNITUtj90u3r3/R6vXrqVW9OgP69MGtdGkG9OlDzWrVWLV+vVo5HW1tbKytVY+Xp5Vo26oVHw8YQM3qRZexdWbXYSo1rkXlJrWxcbanRZ/3MLO24MKB4wXW271oPeXrVMXZM+//fenynnjVqIiNsz2W9jbUaNUQO1dHHty8V1TdUNPIozJnQq9zJvQ6EYkx/H3tKLEpidQpXSHf8l62pShj7cxfp//m9tMHxKQk8CD2idoxys3SkZDoMC48ukVMSgK3Ih9w8dFtXMzt30mfAC7vO4lX/ap4N6iGpaMtdbu1xsTSnOuHzxZYz9DUGCNzU9VD66UgbXZ2Ngf/2ki1Dk0wKyBgWhRaedfmyN0LHL57kbD4p6y6sJfo5Hiaeea/zadkpBGXmqR6uFs5YaRnyNG7ufu+um4V2Hb9OJfD7hCZFMvBO+e4En6X1t6130mf2vvU4+Cdcxy4c5ZHcZEsObuTqKQ4WpbLf99bzsaVyKQYdt44SURiDDci7rPv9hnKWDupyjT1rIaJviE/B6zgZmQoT5NiuRFxX20bLUodfeuz//ZZ9t8O5GFcJAvPbOdpUhytvPL/TMvZliIyMYYdQSeISIwhKOI+e2+ewdPGWVXGy7YUN57c58i9S0QkxnDx8W2O3r2kVqYoda7QhF03TrHzxklCY58w+8QmIhJjaF++fr7lW5Stwfag4xwKvkBYQhQBwefZdfMU3So1e6mkkpiUBLWHEMVJgmfFxNDQkIyMnCyQ//3vfyxevJg5c+Zw7do1vvjiC3r37s3hw4cBGD9+PNevX2fXrl0EBQUxZ84cbGxsAEhOTqZVq1ZYWloSGBjI+vXr2b9/P5999tkr2/Ddd9/x559/cuLECR48eEDXrl2ZMWMGq1atYseOHezbt48//vhDVT4hIYEvvviCwMBA9u/fj1Kp5L333iM7OxuAvn370qZNG3r16kVmZia7d+9m3rx5rFy5ssChmpMmTaJv375cvHgRb29vevbsySeffMKYMWM4ezbnJObF/mzevJnPP/+cL7/8kqtXr/LJJ58wYMAAAgICNL0FCQkJ9OvXj6NHj3Lq1CnKli1LmzZtSEh4/Z3w6NGjCQgIYPPmzezdu5dDhw5x7tw5tTIDBgzg+PHjrFmzhsuXL9OlSxdatWqlCigOHTqUtLQ0jhw5wpUrV/jpp59U2VQvvs+0adMIDAzEzs6ODh06qLaVK1eu4O/vz/vvv8/ly5dZu3Ytx44dU/t8+vbty+PHjzl06BAbN25k/vz5RES82TCpsLAwGjVqROXKlTl79iy7d+/myZMndO3aVWOdy5cvExsbS/V8fpjo6enRq1cvtaDvkiVL+PDDD9+oXZBz62ITExM++STvsL4vv/ySjIwMNm7Mydhp0qQJN2/eVGW0BQQE0KBBA5o2bZoneFarVi2MXsh8qFmzJg8ePOD+fc1DA96WtkILZ3Nbbr80pOJW5ANKW+b/I6K8vTsP4yJo5FGFsc36MqpRT9r61EVHS/uFMm7cj31CJ78G/K95f75o2I0mZaqioOhTvzMyMgi+eYdKNdQDFZVrVOHGtSANtV7P+mWrMbMwp3lb/7dazz+ho6VNOdtSatlIAIEPgvCzz39Ilq6WDulZ6tl+aVkZ+Ni5qbJiLocFU862FD52OT+aHc2sqV3aj1MvXHktSlo21mhZmJN5LXfIL5mZZN68g04ZzUPpMu8Eo1PaFW330qr16FYoT8blaxrrKIwMAFAmJWss87a0tbRws3TkWrh6YOFa+F3K2Li81joaulfm+pN7RL2QqaGrpZ3nand6ViZlbYs2EPhf8igsjKjoaGrXqKFapqenR9XKlbl8VfP2fvnqVWq9UAegds2aeeqEPnxIq06d6NC1K2MmTODhY83DCotCVmYm4fce4u5XTm25u58XD2+HaKx3+fAZYp5E0eD9lq98D6VSScjVW0SHR1LqNYaCvq2cY5Qdt14a7n8rMhQ3q/wvYPg6uPMgNoImZaoxvvkAvm7Sm3bl66kdo+5FP8bFwg5Xi5zjnJWRGd52pQkqYNhaYcrKzORp6GNcypdRW+5SvgxPgvMf4vjcpknzWD5qGtt/XcrjG3kDmOe3H8bQ1Bjv+vkH64vK833fy0PJr4YH4/m6+z6Pylx/cpeo5NzsJ10tbTKy1fd9GVkZ72Tfp6OljYe1E5ce31FbfinsDl62+Wf13YwMxdrInCrOOf+H5gbG1C7lx/mHucMxq7t4cyvyAR/V6sBfXcbwa/vhvO/X6J0Mj9PR0qaMtTMXH99WW37x8W287fK/aHYj4j7WxuZUc/YCwNzAhDpufmpTdQRFhFDGxpmyz75rexMrqrp4qZUpKjnnR6553uvcwxv42ud/HqGrrUP6S6Mh0jIz8LYrrZY1bKirz6qe37Gm1/dMbjUIT+vX25b/SxQKRYl8/H8lwzaLwZkzZ1i1ahXNmjUjKSmJX3/9lYMHD1KnTh0APDw8OHbsGPPmzaNRo0aEhoZSpUoVVVDCzc1Nta6VK1eSkpLCsmXLVAGqP//8k/bt2/PTTz9hb6/5Kt4PP/ygyrQZOHAgY8aMITg4GA+PnBOyzp07ExAQoJrbrEuXLmr1Fy1ahIODA9evX8fPLydLZt68eVSsWJHhw4ezadMmJkyYQI2XTnpfNmDAAFVQ5uuvv6ZOnTqMHz8ef/+cH8iff/45AwYMUJWfNm0a/fv3V92tY+TIkZw6dYpp06apht29rGnTpmrP582bh6WlJYcPH1bNkVWQxMREFi5cyLJly2jRIidrZOnSpbi45O7Eg4ODWb16NQ8fPsTJKecK16hRo9i9ezeLFy9mypQphIaG8sEHH1ChQs4V2+ef9YsmTJiQ5z02b95M165d+eWXX+jZs6fqJgVly5bl999/p1GjRsyZM4eQkBD2799PYGCganv566+/KPuG87rMmTOHqlWrqk38v2jRIlxdXbl16xblypXLUyckJARtbW1VJtnLBg4cSP369Zk5cybnzp0jLi6Otm3bquYwe123bt1SZR2+zMnJCXNzc27dyjlJqlevHrq6uhw6dIgePXpw6NAhGjVqRNWqVYmLi+P27duULVuWQ4cO0bu3+rwKzs7Oqn49v43yi9LS0khLU0/x19fXz1OuIEZ6BmhraZGYnqK2PDEtGVP9/E9MrQzNcLN0JDMri2Vnd2OsZ0Anv4YY6uqz4dnQMysjM8oYmnLx8W0Wn9mBjbE5Hf0aoqXQ4sCdgq+qv62EuHiys7OxsLRQW25uaUlsdN7U/dcVdOUa+3fs4de//nzLFv4z5gYm6Ghp57nqGZ0cj5WrWb51zjy4Tjufehy9d4lbkQ/wsi1FG+866GrrYGFgQlRyPAfvnMPC0JQ/3/sSBQp0tLXZfPUIKy/sfRfdQmGe0/bsePUhPdnxCWhZW2msl3HmPCkmJph8MwJQoNDRJi3gKGm7NGcQGXZ7n8xbwWQ/0jyf39sy1TNCW0uL+JeGPMelJuFnYKKhVi5zAxMqOJZh3qktasuvht/F36sWtyJDiUiMwcfenSrO5WQukjcQFZWT+Wptpb5dWVtaEhauOeMjKjo6bx0rK6Kio1XP/cqXZ+K4cZR2dSUqJoaFS5cy8NNPWbtsGRbm5oXYC82SE5JQZmdjbK4+bYGxuSlJsflfqIsOjyRg7XZ6j/8MLW3tfMtAzrDOP4dNJCszE4WWFv79P8C9glehtj8/z6cEeHFeJYCEtBRM9fMfZmtlZI67lSOZ2ZksObsTYz0D3q/QGCNdA9Y9GyJ48fFtjPUMGVrvAxSAtpY2J0IuE3DnXL7rLGypickos5UYmqlf2DU0MyY5Pv+RG0bmpjTo0x7bUo5kZWZx+9Qltv+2lPZf9sexnBsA4XdCuXnsPB+Mf/fDpZ/v++JSk9SWx6UlYf6a+76Kjp7MPak+dcKV8Lu08qrNzYhQIhKjKW/vThVnr3ey7zPVN0JbS5u4l/fnKYlYOOXfp5uRocw8uo6RDbujq62DjpY2gQ+CWHhmm6qMvakVfiYWHL17iSkHluJoZs1HtTqgpaWlOo8q6j7FvnQuEZeSgKVh3nPr53369cgaRjXuqerT6dDrLDj1t6rMsXuXMdc3YUrrwSgUCnS0tNl14ySbrhwu0v5AToBSO5/zo5iUBKyMTPOtc/ZhEG2863A85Aq3nz6gnI0rrb1qoautg7mBCdHJ8YTGRvDzoZXcjXqs2o/M7DiCQRt+4lF8ZJH3S4j8SPDsHdm+fTsmJiZkZmaSkZFBx44d+eOPP7h+/TqpqamqYMlz6enpVKlSBYBPP/2UDz74gPPnz9OyZUs6depE3bp1gZxhaJUqVVLL7KpXrx7Z2dncvHmzwOBZxYoVVX/b29tjZGSkFsyxt7fnzJkzquehoaFMmjSJ06dP8/TpU1XGWWhoqCp4ZmlpycKFC/H396du3bp5Joh/nXYAquDS82WpqanEx8djZmZGUFAQgwYNUltHvXr1mDlzpsb3iIiI4Ntvv+XgwYM8efKErKwskpOTCQ19vcnTg4ODSU9PVwU4AaysrPDyyj15PX/+PEqlMk9gKS0tDWtrawCGDx/Op59+yt69e2nevDkffPCBWv+BfN8jKCgn2+XcuXPcuXOHlStXqsoolUqys7O5d+8et27dQkdHh6pVc694enp6vvFdUc+dO0dAQECerLjnn0V+wbOUlBT09fU1Xo2oWLEiZcuWZcOGDQQEBNCnTx90dXXfqF2vQ6lUqtpgZGREzZo1VcGzw4cPM3r0aHR0dKhXrx6HDh1CX1+fe/fu5QmwGhoaAqgNXX7R1KlTmThxotqyCRMmQI38g4evarMahQJl/kVVfVtzcT+pmTnzRm0POkHvqv5suXqEzOwsFChISk9h4+VDKFHyKD4SMwNjGnpULvLg2cvtVFEq/3HmW0pyMjMnT2PI6OGYWbybH8KavPxdKRQKlBq+raVnd2FlZMbc978CBcQkJ7D7xil6Vm1JljJn/1nZqSx9qvnz65E1BD0JwdncluH1uxBVrTXLzu0q9Pbr1qqOUd/uqueJM+c+69hLBRUKeHm7fIGOlycG7fxJWbGOzLshaNvZYtjjA7Lb+ZO2fU+e8oa9uqDt4kTCjzMKoRevlqc7KPJZmld994okZ6Ry/tFNteWrLuyjf/U2TGk9GCUQkRjDsXuX8r3RgMixa+9epkybpno+49n8kS/vBV7cZ2v00usv16lXO3e4kydQ0deXTt27s33XLnp378479XJbUeZZBjnD+7bOWkGDD1ph7VjwcUPfQJ8PJ39JRlo6Idduc2DlVixsrSld3rNQm/66Cvq6nn8vq87vVR2j/r52jL7VW7PpyiEys7MoY+1Ms7LV2XTlEKExT1QXeJqnJrP/hQnDi9rLx6QCdnlYONhg4WCjem5fxpXEmHgu7T2BYzk30lPTCFi4iQZ9OuQ7D9q78vLxSIHmY9SLGrhXIjkjlXOP1LOHVp7fw4Aa7fixzaeqfd/Rexdp4F65EFtdsPzOkTRxMbflw5rtWH/5IJce3cbCyJS+1VozqHZH5jwLDCoUCuJSk5h3agvZSiV3ox9jaWhGR98GRR4806iAcwkXczs+rtWBtRcPcOHxLSwNTelfvQ2f1nmPP0/kjLTwc/Cgc6UmzDu1lduRoTiY2fBRzfbEVExg3eWD76gTeY+8mv6nlp/bg6WhGX92GolCkRNo23PrDN0rN1f9vgyKCFHLRr0afo+5H4ymk19DZp14N3PCCvEyCZ69I02aNGHOnDno6uri5OSkChrcu5eT8r1jxw5Vpstzz7NYWrduzf3799mxYwf79++nWbNmDB06lGnTphV40vmqk9EXAxcKhSJPIEOhUKh2YJAzb5W7uzsLFizAycmJ7Oxs3NzcSH9p4ucjR46gra3N48ePSUpKwsws/6wMTe3QtOzFtrzct1edfPfv35/IyEhmzJhB6dKl0dfXp06dOnnarkmeA3c+srOz0dbW5ty5c2i/dAX5eRDqo48+wt/fnx07drB3716mTp3K9OnTGTZsWIHrfvEz+OSTTxg+fHieMqVKleLmzZt5lr/c/ufzc7y47Pmw0Bf78jx78WWOGuaasrGxITk5mfT09HyzwgA+/PBDZs2axfXr19UCs2+iXLlyHDt2LN/3efz4MfHx8WqZdk2aNGHt2rVcu3aNlJQUVWCxUaNGBAQEoKenh4GBAbVrq881Ef0sq0HTTS7GjBnDyJEj1Zbp6+vz7f6Fr92X5PRUsrKz81zBN9EzJDEt/6BdQlrO3CTPf5QARCbGoKVQYG5gQlRyHAlpSWQps9VOxCISYzAzMEZboaUK3BQFU3MztLS0iHkpyywuNhZzK4t/tM7wR2FEhD9hypjcYOXz7bdz03b8uXwBDs5FOwdaXGoimdlZWBmp788sDU2JSc4/qyQ9K4OfAlYw7fAqrAzNiEqOo335+iSlpxCXkpMdMLBme/bePMOOoBMA3I1+jIGuPqMb9WT5ud2v9aPnTWRcukLCxJDcBTo5pwFa5mZkxeVmn2mZmqCM1zys3aBTO9JPniH96EmAnGwyfT2M+vYgbcdetV+hhj07o1u5Aok/zUQZE1uo/XlZQnoyWdnZeTItzAyM8mRk5KeBeyVOhFwhK1v9fyQhLZk/jm9AR0sbE30jYlMS6FKxCU+TYguz+f8pDevXx698edXz9GfHmafR0aqpJwCiY2OxstKc5WhtZaXKWlPViYnBqoCLQoaGhpTx8ODBw4f/tPlvzMjUGIWWFkmx6lmcyXGJGJvnvRCVnpJG+L0HPLn/iL1Lc26yoVQqQankx76j6P71J7j55hzLFFpaWDnkHIvsSzsT9egJJ7cdKPLgWVJ6isZj1MvZaM8lpCYRl5qodoyKSIxGS6HAwtCEp0lx+HvV5vzDm5wJzZmYPjwhCj1tXTpXasKB24GFvNfLy8DECIWWIk+WWWpCEkZmr87Ses7O3YU7py8DEB8ZTUJULHtmrVK9/vw4tWDwRLp9PwwzO83b+dt6vu+zeHnfp29E/Ovs+zwqcSLkcr77vt+PrUP32b4vJiWBrpWavZN9X0JaMlnZWVgYqmcvmRsYa7xZxXt+jbgZcV9144n7sU9YkPk3P7QaxOqL+4lNSSAmOYEsZRbZLxynHsVFYmlkio6WdpHe8VVzn0w09qlzxcYERYSw5dqRnD7FhDPv1BamtvmUlRf2EpOSQM8qLTgUfF4VfL4f+wQDHV2G1H2f9ZcDCv1c4kVxqUlkZWdhafjy+ZGJxjnK0rMymHZ4Fb8dXYOloRnRyXG09alHUnqqxmO1EiU3I0NxMf//dfM5rXcw5Yp4fTLn2TtibGyMp6cnpUuXVgsMlS9fHn19fUJDQ/H09FR7uLrmDtuytbWlf//+rFixghkzZjB//nxV/YsXL6pNGH/8+HG0tLTyzQ76p6Kiorhy5QqjR4+mVq1auLq6EhISkqfciRMn+Pnnn9m2bRtmZmavDAr9Ez4+Phw7pn43phMnTuDj46OxztGjRxk+fDht2rTB19cXfX39Aie/f5mnpye6urqcOnVKtSwmJkY1PBCgSpUqZGVlERERkee7dHBwUJVzdXVl8ODBbNq0iS+//JIFCxaovVd+7+HtnXNHrapVq3Lt2rU86/f09ERPTw9vb28yMzO5cOGCah137twhNjZW9fx5MOjFO1u+ePOAF9/Hzc0tz/tomr+ucuXKQM6NBjTp2bMnV65cwc/Pj/Iv/Kh6E927dycxMZF58+bleW3atGno6urywQcfqJY1adKE27dvs2rVKurXr68KbDZq1IhDhw5x6NAh6tSpg4GBgdq6rl69iq6uLr6++d/VUV9fHzMzM7XHmw7bzFJm8yguMs/cIWVtXLgfk/8d/EKiwzEzMEJPO/fah42xOdnKbNXQhpCYcKyNzNUOtzbGFsSnJhVp4AxyAt9lvDy5dPaC2vJLZy/g7av5f7QgzqVc+W3RbKb/9afqUaNuLfyqVGT6X39ibWfz6pW8pczsLG5FhlLdVb0P1V28ufpE863YAbKys4lMiiVbqaSZZ3VOhFxVncga6OjlCc5nZ2ejUBSc3fGPpaaRHfE09/E4nOzYOHTKvzAETFsbHS9PMoMLmJBcTzdvmka2Mk9akWHPLuhWrUTiL3+Q/bTob1iRlZ1NSEwYvg7q86yUt3cn+GnBgRQv21LYm1px9IUbBbwsMzuL2JQEtBVaVHPx5sKjWxrL/n9nbGSEq4uL6uHh5oa1lRWnA3MzizIyMjh/8SIV/fK/QQpART8/Tp9Vz5g9HRhYYJ309HRC7t/H5lnW97ugraODg7sL966qbxP3rt7CpaxbnvL6hvp8NHU0Ayd/qXpUaVoHK0c7Bk7+Eqcymu/UqERJVkbR33Eu5xgVQbmXjlHlbEsREp3/8Ot70WGYGRijp517rmtrbEG2MlsVHNDT1snzYz5bmf0sE6zofyhq6+hgU8qJR9fVb0b1MCgY+zKvP5dX1IMwjJ4FRi0cbOg84VM+GD9Y9Shd0QsnL3c+GD8YY6uCLyS/rdx9n/p0IL4OHtx5xb7P2640DqbWBd5kJCM7i5hn+77qLt55snOLQmZ2FnejHlPRST1IXNHRk5uR+Y8c0dfRJfvlbetZQPD5lnUz8j4OptZqmYeOZtZEJ8cXaeAMcvoUHPWIyi/1qbKTJzci8p9jV187n/OEl57ra+tqKKMomnOJF+ScHz2gmov6UPJqLt5ce1LwjU2ysrN5+uz8qEmZqpy6f7XAQF8Za2e1+UiFeNck86yYmZqaMmrUKL744guys7OpX78+8fHxnDhxAhMTE/r168e3335LtWrV8PX1JS0tje3bt6sCRb169WLChAn069eP7777jsjISIYNG0afPn0KHLL5piwsLLCysmLu3Lk4ODhw//591VxozyUkJNCnTx+GDRtG69atKVWqFNWrV6ddu3Z55kt7G6NHj6Zr165UrVqVZs2asW3bNjZt2sT+/fs11vH09GT58uVUr16d+Ph4Ro8erRqW9zpMTEwYOHAgo0ePxtraGnt7e8aNG6d2l6Vy5crRq1cv+vbty/Tp06lSpQpPnz7l4MGDVKhQgTZt2jBixAhat25NuXLliImJ4eDBg3mCft9//73ae9jY2NCpUycgZ0642rVrM3ToUD7++GOMjY0JCgpS3dzB29ub5s2bM2jQIFWm45dffomhoaEqe83Q0JDatWvz448/4ubmxtOnT/nf//6n1oahQ4eyYMECevTowejRo7GxseHOnTusWbOGBQsW5Mmsg5ygXNWqVTl27JgqkPYyS0tLwsLC3mq4Zp06dfj8888ZPXo06enpdOrUiYyMDFasWMHMmTOZMWOGWuC5bt266Ovr88cffzBu3DjV8ho1ahAXF8fGjRsZPXp0nvc5evQoDRo0eKPt5J84eu8S3So342FsBKGxT6jpWh4LQ1NOheZMht3KqzZmBsYvzBVzi2Zlq9OlUlP23QrEWM+ANt51Ofvghuqk79T9a9Rzq0B73/qcCLmCjbEFTTyrcjzkisZ2FKb2Xd7j9ynT8fQqi5evN3u37ebpk0hadmgDwIr5i4l6GsXnY0ep6ty7nfMjJjUlhfi4OO7dDkZHVxdXt1Lo6etR2sNN7T2Mn2Vzvry8KK27dJBxzfpxM+I+157co335etiZWrL16lEABtXuiI2xBVMOLAVyhlr42LsR9OQepvpGdK3UDHdrR6YcXKpa54n7V+haqSm3nj5QDdscWKsdx0Ou5Dk5Lipp+w9h0LYl2U8iyYqIxKBNS5TpGaSfzg1YGA3sQ3ZMLKmbcuaNybx0Ff2WTcgKfUjW3fto2dlg0KktGRevqoJqhr27olerGol/LECZmorCLOdKuzIlFV7Kdi1Me2+e5uNaHQmJDuPO04c0KlMFayNzAoJz7rDcuUJjLIxM+ev0NrV6DT0qExz1iEdxeedS8bBywtLQlNDYJ1gYmtLJrwEKhYKdN04WWT/+KUNdfbUr805mNpS1cSE+NYknif983sG3pVAo6NG1K4tXrKCUqyuuLi4sXr4cA319Wr0wdcW3P/yAnY0Nnw3OmTeqe+fODBo2jCUrV9K4fn0OHTvG6bNnWThrlqrOjFmzaFC3Lg729sTExLBw2TKSkpJo17q1qkxcfDzhT54Q+ezC2f1n0zZYW1kVWpCtZutGbJuzCkcPV5w93bgYcJL4qBiqNMuZauPQ2u0kxMTTfnBPFFpa2LqqZ8wam5mgo6ujtvzE3/txdHfFwt6G7MxMgi8GcfXYWfz7dy6UNr/K4bsX6VGlBQ9ic+7qXLu0LxaGJqqbmrT2roO5gQlrLubMd3jh0S1alKtBt8rN2HvzNMZ6hrQrX48zoUGqY9T1J/do6FGFR3GRhMY8wdrYnFbetbkWfq9IM2ReVLFFHQIWbcKmtBP2ZVwJOnKOxOg4fBrlzBd7ZtN+kmLjafLh+wBc2X8SU2sLLJ3syMrK4s6py9w7H0SLwTlz9uro6mLlrH7erf/sJikvLy8qu2+c4pPanbgX/Zg7UY9o8mzfd/DZXHJdKjbF0tCU+ae3qtVr6FGZO08fat73GZkRGhOOpZEpnfwa5ez7nmVLF7VtQccZVq8zd6MecTMylBZla2BjbM7eWzmjF3pWaYm1kRl/HN8AwNmHNxhc5z1alqvJxce3sTQ0ZUCNttyOfKDKgtpz8wytveswoGZbdgWdxNHMhvcrNH5n+/Ot144xokFX7jx9xM3I+7QsVwsbYwv23DwNQO+q/lgbmTPz2DoAAh8GMaTu+7TyqsWFR7exNDJlYM123IoMVfUp8OENOpSvz93ox9yKfICjqTU9q7Qg8MH1d3IuseFKAN806cOtyAdcf3KPtj51sTOxZNv1nGSHgTXbY2Nszk8BK4Cc4bXedqUJenIfE31DulRsgruVo+p1gD7VWhH0JIRHcZEY6Rnwnl8jPK1d+P3Y+nzbIMS7IMGzEmDSpEnY2dkxdepU7t69i4WFBVWrVmXs2LFAzt2oxowZQ0hICIaGhjRo0IA1a9YAOXM67dmzh88//5waNWpgZGTEBx98wK+//lqobdTW1mbt2rUMHz4cPz8/vLy8+P3332ncuLGqzOeff46xsbFqknlfX19++uknBg8eTN26dfMMS/2nOnXqxMyZM/nll18YPnw47u7uLF68WK0tL1u0aBGDBg2iSpUqlCpViilTpjBq1CiN5fPzyy+/kJiYSIcOHTA1NeXLL78kLi5OrczixYv54Ycf+PLLL3n06BHW1tbUqVOHNm1yggZZWVkMHTqUhw8fYmZmRqtWrfjtt9/U1vHjjz/y+eefc/v2bSpVqsTff/+tGp5YsWJFDh8+zLhx42jQoAFKpZIyZcrQrVs3Vf1ly5YxcOBAGjZsiIODA1OnTuXatWtqmVWLFi3iww8/pHr16nh5efHzzz/TsmXunb6cnJw4fvw4X3/9Nf7+/qSlpVG6dGlatWqV57bsLxo0aBBLliwp8G6vFhYWr/6wX2HGjBlUrFiROXPmMH78eBQKBVWrVmXLli20b99erezzIZmHDx9W20Z0dXWpU6cOBw4cyPdGE6tXr84zp1lRuBx2ByM9fZqVrY6ZvjHhiVEsDtyuukJvqm+EhWHuMIz0rEz+Ov03HX0bMKx+Z5LT07gcdkd10gU5Qwz/Or2N9uXrMaJBN+JTkzh+7zKHgi/kef+iUL9pIxLiE1i3dBUx0dGUcndj3E8TsXPI+QERExXD0yfqJ+lffpybpRp86w5H9x/C1t6OeWuXvJM2v46Dd85hpm9Mv+ptsDY2415UGF9vn82TxJwhvtZGZtib5A4l09bSolulZpSysCczO4sLj24xZNM0whNyJzpfdnYXSqWSj2q1x9bYgtiURE6EXGHB6b/zvH9RSdu1H4WuLoa9u6IwNiLrbgiJv86C1NwbYmhZWaplmqVu34OSnOGbWpbmKBMSybh0ldRN21Vl9Js0AMD068/V3i950QrSj5+mqJx5EISxvhEdfOtjbmDCo7hIfju6RnW12tzQBGsj9bnzDHX1qebizSoNN2rQ1dbhvQqNsDOxJDUzncthd1hw6m9SMtLyLV+cvG1L8+d7uUPKh9fPuXi1M+gkk18I3BaHfj17kpaWxo/Tp5OQmIifjw9//vorxi/c6Tj8yRO1ycgrVajA5AkTmPPXX8z96y9cnJ2ZOnEifi9kBT+JiGDcxInExsVhaWGBn68vi+fOxfGFrO8jx44xcepU1fOxz25W8/GAAXzyD+78nJ/ytauQkpDM8c17SYyNx9bFka6jP8bcJme4XmJsAvFP3yyAmZGWzp4lG0mIjkVHTxdrJ3vaf9qL8rWrFEqbX+XS49sY6xrQolzNnGNUQhQLT29T/Wg3MzDGUu0YlcG8U1t5z68hnzfsRnJ6Kpce32HXC4GJ/c+GZrbyro25gQmJ6SlcD7+nVqaolanhR2pSMud3HCY5LhErJztaD+uFqbUFAMlxCSRG557jZWVmcWrDXpJiE9DR1cHSyY5Ww3pSqkLhjfJ4W2ceXMdE35COfg2xeLbv+/XIatXdM80NTbAyVs+AM9TVp7qLDyvP552rEnL2fR9UaIytiSVpmelcfnyH+Se3kPyO9n0nQq5gqm9E54pNVBcwphxYpho2amloio1x7v78UPAFDHX1ae1dm37VW5OUnsrV8LusOJfbv6jkOCbtW0z/Gm2Y3mEY0cnx7Aw6oRoWWdSOh1zGTN+IbpWb5fQpJpxJ+5cQ+axPVkZm2JpYqMofvHMOQx192njXZUCNtiSlp3I5LFhtXtR1lw6iVCrpVaUlVkbmxKcmEfggiJUX8v9eC9uh4AuY6RvTp5o/VkbmhESHMWbXXCKeXbCxNjLD7oXzIy2FFp0rNsXV3I7M7CwuPb7NsC2/qc6nIGd4+MiG3bE0MiMpPYU7Tx/yxbaZGrMO/6v+P9/ZsiRSKF9nMichRJE7dOgQTZo0ISYmplACTM89fPgQV1dX1Xx5RSk1NRUvLy/WrFmjduODf5sdO3YwevRoLl++jI7Om11j+HrH7CJqVfH4qe0QroUFv7rgv4yvYxkazh5S3M0oVEeGzCZ2YOEPlS9OFgv/YMDaycXdjEK1uNs46s1693fjK0rHh84lISKiuJtRqEzt7FgSuKO4m1Go+tdoy6htfxR3MwrdtPbDmH54dXE3o1B92agH/dZMKu5mFKql3cfTedm4Vxf8F9nQdzKdlrz65mj/Jlv6/0izeXnnVv43O/DJ78XdhH/szP1rxd2EfNUsnf+0Nv91knkmxH/MwYMHSUxMpEKFCoSFhfHVV1/h5uZGw4YNi/y9DQwMWLZs2RvNJ1cSJSUlsXjx4jcOnAkhhBBCCCGE+O+RX4ZC/MdkZGQwduxY7t69i6mpKXXr1mXlypVvNc/Ym2jUqNE7eZ+i1LVr1+JughBCCCGEEOL/MRm2WbJI8EyIEqJx48Z57pTzT/j7++Pv718ILRJCCCGEEEIIIYTmmb+FEEIIIYQQQgghhPh/TjLPhBBCCCGEEEIIIUoQLRm2WaJI5pkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFECaJAhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCyN02SxbJPBNCCCGEEEIIIYQQQgMJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoQRQybLNEkcwzIYQQQgghhBBCCCE0kOCZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiBJEhm2WLJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAwmeCSGEEEIIIYQQQgihgcx5JoQQQgghhBBCCFGCaCFznpUkknkmhBBCCCGEEEIIIYQGCqVSqSzuRgghhBBCCCGEEEKIHFcf3ynuJuTLz8mzuJtQLGTYphBCFKIV53YXdxMKVe9qrVhwamtxN6PQfVy7I/EHjxR3MwqVWdOGxLR4r7ibUags920mKPxucTejUPk4eJAQEVHczShUpnZ21Js1uLibUaiOD53LlANLi7sZhWpss34khD8p7mYUOlMH++JuQpFICLlf3E0oVKZupYn9/Jvibkahspj5I78ErCjuZhSq0U16/+f2E//mfYRCIcM2SxIZtimEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmipZBcp5JEvg0hhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkShkLttliSSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJn4j/h0KFDKBQKYmNji7sphc7NzY0ZM2b84/ohISEoFAouXrxYaG0SQgghhBBCCCH+v5Bhm+Jf48SJEzRo0IAWLVqwe/fu4m6OEIXm7L6jnNx+kITYeGydHfDv+z6lvMu8st6Dm3dZOukP7FwdGTT1K9XyiIdhHF6/k7B7D4l7Gk3LPu9Rq3XjIuxBXhcOnCBw52GS4hKwcbKnSa8OuHi5v7Leo1shrJk6FxsXe/pN+kLttdSkFI5t3M3ts1dJTU7B3MaKxj3a4lHJp6i68UpKpZIFO7ax+dgREpKT8XVz56vuPSnj5KyxzsEL51myeycPIiPIzMrC1c6O3s1b0qZWnXfY8n9Gt35t9Nu2RLtsGbTMzYgf/AVZwSHF3aw8dm7ezpY1G4iJjsbVrTQDP/sE30p++ZaNjopm8awFBN+6TdjDx7T9oAMfDRusVubkkeNsWLGWsEePycrMxNHFmY5d36eJf7Mi64NSqWT+4sVs/vtvEhIS8C1fnq9HjqSMe8H/RwcOHWLuX3/x8PFjXJycGDJoEE0aNlS9Pm/RIhYsXqxWx9rKij1bt6qeHzx8mE1btxJ06xZxcXGsXLQIr7JlC7eDb6CSoyc9q7TE264UNsYWfLNzDkfvXSq29hTkxuFzXNt/iuS4RCwcbanZpTn2nqXyLRt+6z57ZqzMs7zTt4Mwd7BRPb9+8Aw3j5wnKSYefWNDSlf1plrHJmjrFs1pvFKpZP6SxWzeti132xvxxau3vcOHmLtwYe6299HHatseQERkJH/Mm8uJ06dJTUujtKsr47/6Gh8vLzIzM5n91wKOnzrFo7AwTIyNqVmtOsM++QRbGxsN7ypepFQqmb9iOZt37iQhMRFfb2++HvoZZdzcNNYJDglh7rJl3Lhzm7AnTxj5yWB6vv++WpnzVy6zfP16gm7f5ml0NNMmTKBx3XpF3JtcBq2ao1e3JgpDQ7LuPyB5wxaywyM0ljf5bBA6ZT3yLM+4doOk+UtU6zRo3Vzt9ez4BOLHTy7Utufn+qGzXN53kpS4BCycbKnTxR+HsvnvJx7fDGHnb8vzLO/83adYPNtP3DpxiSPL/s5Tpv8fY9D5l+0n5i1exIIlS9TqWFtZsWfzFtXzqOho/pg3l1OBgSQkJlK1UiVGf/45pVxcC7OLJYICGbZZkkjwTPxrLFq0iGHDhvHXX38RGhpKqVL5H2TEv0dGRga6urrF3Yxide3kefYs20ybD7vgUs6d8wdOsOqnuXz6yxjMbaw01ktNTmHrnBW4+5YjKT5B7bXMtHQs7WzwqVWFfSs2F3UX8rhx+iIBK7fRvG8nnMu5cSngNBunL2TA1C8xs7bUWC8tOYWd89dQurxnnj5lZWay/pcFGJmZ0OGzPphYmZMQHYuegX5Rd6dAy/buZtWBfXzbdwCl7OxZtGsHn/3+Gxu++wFjA4N865gbGzOgdRvc7B3R1dHm6JXLfL9sCZamptQpn3+Ap6RQGOiTee0G6UdOYDxyaHE3J1/HDh5m0Z/z+OSLoXj7lWfPtp1M+no8fyydh629XZ7yGekZmFuY06V3d/5en///i4mpKV16d8O5lCs6ujqcPXmGP376FQtLC6rUrFYk/Vi6ahWr1q5lwtixlHJ1ZeHSpQz94gs2rlqFsZFRvnUuX73K2O++Y/DAgTRp2JCAI0f45ttvWThrFn6+vqpyHu7uzP7tN9VzbS31gQgpKSlUqlCB5k2a8MPPPxdJ/96Eoa4+d6IesvPGCaa0HvzqCsXk3tnrBG7YR63urbDzcOHWsQvsn7WWjuMHYWJlrrFepwmfqO3L9E1zv9+7Z65ybksA9fq0w87Dmbgn0Rxfvh2Amp1bFEk/lq5exap165gwZgylXFxZuHwZQ78cycYVKwve9iZOZPCHA2nSoAEBR4/yzXcTWPjnLPzKlwcgPiGBgZ8NpXrlKsz8+WesLCx5+PgxpiYmAKSmpnLj1m0+6tuPsp6eJCQkMP3PPxg5dgzL5y8okr7+1yxdt45VmzYx4ctRlHJxZuGqVQwd8w0bFy7S+N2lpqXh4uhA84YN+HXevHzLpKSmUtbDg/Yt/flq0vdF2YU89Js1Qr9JfZJXricr8ikGLZtiMuQj4idPg7T0fOskLVoO2tqq5wpjI0y/+pyMi1fUymWFhZM466/cBdnKIunDi4LPXuPU+j3U7dEG+zIu3Dh6nt1/rqLzhE8L3E90mTgE3Rf2Ewam6t+nroE+XSYOUVtWVIEzKLr9BDw7Rk3/VfVc+4XvUqlUMmrcOHR0tJk+eQrGxsasXLeWISNHsn7pMgwNDYusz0LIsE3xr5CUlMS6dev49NNPadeuHUteuiKRn+PHj9OoUSOMjIywtLTE39+fmJgYAHbv3k39+vWxsLDA2tqadu3aERwcrKr7fKjjpk2baNKkCUZGRlSqVImTJ0++9nsolUp+/vlnPDw8MDQ0pFKlSmzYsKHANkdERNC+fXsMDQ1xd3dn5cq8V6Tj4uIYNGgQdnZ2mJmZ0bRpUy5dev0r8FlZWQwcOBB3d3cMDQ3x8vJi5syZhVJn8eLF+Pj4YGBggLe3N7Nnz1a99vwzXbduHY0bN8bAwIAVK1aQnZ3N999/j4uLC/r6+lSuXFkts/B1vouoqCh69OiBi4sLRkZGVKhQgdWrV6tenzdvHs7OzmRnZ6u1t0OHDvTr10/1fNu2bVSrVg0DAwM8PDyYOHEimZmZr/3Z/hOndh6iSuPaVGlSR5V1ZmZtydn9xwust+OvtfjWrYZLWbc8rzmVKU3zXh3xq1sVbZ13f43k7O6jVGhYg4qNa2HtZE/TXh0wtbLg4oFTBdbbu2QTPnWq4JhPlsaVI4GkJibTaXg/nMu5YW5jiUs5d+xKORVVN15JqVSy+uABBrRqQ9MqVfF0dua7fgNITU9nT+BpjfWqlfOiSeWquDs64mJrR4+mzfF0duHinTvvsPX/TPr+w6SuWEfm+ZKZ9QOwdd1mmrdpSYt2rXB1K8VHwwZjY2vL7q078i1v72jPR8MH06RVc4xMjPMtU6FKRWo3rIerWykcnZ1o37kTbh7uXL9yrUj6oFQqWb1uHQP69qVpo0Z4engwcdw4UtPS2L1vn8Z6q9evp1b16gzo0we30qUZ0KcPNatVY9X69WrldLS1sbG2Vj0sLdWD2m1bteLjAQOoWb16kfTvTZ0KvcaC039z+O7F4m5Kga4fPINn3UqUq1cZC0cbanZpgbGFGTePnC+wnqGpMYbmJqqH1gvBzIh7j7Ar44JHDV9MrC1wLu+Be/XyRN0PK5I+KJVKVq9fz4A+fWja8Nm2N2Zszra3v4Btb8N6alWrzoDevXO2vd6982x7S1etxN7WjgljxuDnUx4nR0dqVquGi3NOpq6JiQmzf/2VFk2b4laqFBV8fRk9/HOCbt4k/MmTIunvf4lSqWT1ls0M6N6DpvXr4+nmzsRRo3O+u4CDGuv5ennx+ceD8G/cBD0NFzTr1ajJkP4DaFq/flE1XyP9RvVI3RtAxuVrZIc9IXnFOhS6uuhVq6yxjjI5BWVCouqh61UWMjJIv3hZvWBWtlo5ZVJS0XYGuLr/FOXqVcG7fhUsHW2p09UfY0szgg6fLbCegakxRuYmqofWSxc9FArUXjcyNymyPhTlfgLyOUZZWKheC334kCvXr/HNyC/x9fHBrVQpvvliJCkpKew5cKCouiwEIMEz8S+xdu1avLy88PLyonfv3ixevBilUvPVoYsXL9KsWTN8fX05efIkx44do3379mRlZQE5wbiRI0cSGBjIgQMH0NLS4r333ssTXBk3bhyjRo3i4sWLlCtXjh49eqiCKa96j//9738sXryYOXPmcO3aNb744gt69+7N4cOHNba7f//+hISEcPDgQTZs2MDs2bOJiMhNS1cqlbRt25bw8HB27tzJuXPnqFq1Ks2aNSM6Ovq1Psvs7GxcXFxYt24d169f59tvv2Xs2LGsW7fureosWLCAcePGMXnyZIKCgpgyZQrjx49n6dKlauv6+uuvGT58OEFBQfj7+zNz5kymT5/OtGnTuHz5Mv7+/nTo0IHbt2+/9neRmppKtWrV2L59O1evXmXQoEH06dOH06dzAhhdunTh6dOnBAQEqNYXExPDnj176NWrFwB79uyhd+/eDB8+nOvXrzNv3jyWLFnC5MlFl76flZlJ2L0HeFT0UltepoIXD2/d01jv4qFTxEQ8pdEHrYqsbf9UVmYmT0Ie4eZXTm25m19ZHt8J0VjvypFAYiOiqNupeb6vB1+4jpNnaQ4s28zsYd+zeOx0Tm07mOd/9l169PQpUfFx1C6fm9Gjp6tL1bLluPxCML4gSqWSMzeCuP8knKply726gihQRkYGwbduU7lGVbXllWtU5cbV64XyHkqlkkvnLvDowUN8KxZNpuCjsDCioqOpXaOGapmenh5VK1fm8tWrGutdvnqVWi/UAahds2aeOqEPH9KqUyc6dO3KmAkTePj4ceF24P+hrMwsokLDcPJRHyrm5ONO5N2HBdbdNnUh676ZyZ6ZKwm7GaL2mn0ZF6JCw4kMyfmOEp7G8OhqMC5+noXa/udU2171l7a9SpUK3vauXcu77dWoyeVruXWOHD+Oj7cXX3/7LS06dqDnwIFs3ratwPYkJiWhUCgwMSm6QMB/xaPw8JzvrlpuNqyenh5VK1Tk8vXC2f+9a1rWVmiZm5F544VzwqwsMoPvoeNe+rXXo1e7BunnL0F6hvr6bW0w+34spt9+hVG/HmhZa874LwxZmVk8DQ3D5aX9hItPGZ68Yj+xefICVn71Gzt/W87jl/YTABlp6awZ+zurvpnBnllreBpaNAF2KNr9BDw7Rr3/Hh26dWXMxO/UjlEZ6TnZhvp6eqpl2tra6OjocPHKS8HR/wCFQlEiH/9fybBN8a+wcOFCevfuDUCrVq1ITEzkwIEDNG+e/w/tn3/+merVq6tlPvm+MGTlgw8+yLN+Ozs7rl+/jp9f7o+hUaNG0bZtWwAmTpyIr68vd+7cwdvbu8D3SEpK4tdff+XgwYPUqZMzj5GHhwfHjh1j3rx5NGrUKE+bb926xa5duzh16hS1atVStcvHJ3c+p4CAAK5cuUJERAT6+jmp29OmTWPLli1s2LCBQYMGveqjRFdXl4kTJ6qeu7u7c+LECdatW0fXrl3/cZ1JkyYxffp03n82T4a7u7sqCPVidteIESNUZZ63/+uvv6Z79+4A/PTTTwQEBDBjxgxmzZqlKlfQd+Hs7MyoUaNUZYcNG8bu3btZv349tWrVwsrKilatWrFq1SqaNcuZo2j9+vVYWVmpnk+ePJlvvvlG1VYPDw8mTZrEV199xYQJE/J8JmlpaaSlpakte/6dvK7khCSU2dkYm5upLTc2NyUxLiHfOlFhERxcs41+Ez5H64U09pIi5VmfXr7iaWRuSpKGPsWER3J0/S66j/tUY5/iIqMJDQrGp04V3h/5IbFPnrJ/2Rays7Ko26lohi69SlR8HABWpurfn5WZGeFRUQXWTUxJps2Yr0jPyERbS8HXPXpRy6d8gXXEqyXExZOdlY2FlXomlbmlBTHRMW+17qTEJAZ27k1GegZa2lp8MmJoniBdYYl6tv1YW6n/kLO2tCQsPFxzvejovHWsrIh64eKKX/nyTBw3jtKurkTFxLBw6VIGfvopa5ctw8Jc85AhUbC0xGSU2UoMTdWzFw3MjEmJzz+bxdDchDo9W2NdypGszEzunr7K3t9X4T+it2r+I/fqvqQmJLN7+jKUSlBmZ+PVoCoV/OsWST+iojVte1aEPXnFtvdSBqO1paXatvcoLIyNW7fSq0tXBvTuzbUbQUz7fSa6urq0a5X3YlBaWhp/zp9Hq+bNMTHOPytU5Hr+Wef9HiwIi9A8P1hJpjDNOZfITlA/f8hOSEDLUvM0EC/SLuWCtpMDyavVR39k3g8la+U6siIi0TI1zRkOOuJTEqb+hjI5uXA68JLU5/sJM/Xt2dDMmJT4xHzrGJmbUL9XW2xKO5KVmcWdU5fZOWM5bUf2xbFsTgDRwsGahv06YOVsR0ZKOlcPnmbbL0t4/3+DMLe3LvR+FOV+ws+nPBPHjqW0y7Nj1PJlDBw6hLVLlmJhbo5b6dI4Ojjw5/z5jB01CkMDA1auW0tUdDRPX3HuJcTbkuCZKPFu3rzJmTNn2LRpEwA6Ojp069aNRYsWaQyeXbx4kS5dumhcZ3BwMOPHj+fUqVM8ffpUlb0SGhqqFjyrWLGi6m9HR0cgZ2ilt7d3ge9x/fp1UlNTadFC/Ud9eno6VapUybdOUFAQOjo6VH9hmIy3tzcWL6Qqnzt3jsTERKyt1Q+EKSkpasNOX2Xu3Ln89ddf3L9/n5SUFNLT06lcufI/rhMZGcmDBw8YOHAgH3/8sapOZmYm5i/9GHuxf/Hx8Tx+/Jh69dQnna1Xr16eoagFfRdZWVn8+OOPrF27lkePHqkCW8YvnGz36tWLQYMGMXv2bPT19Vm5ciXdu3dXzaNw7tw5AgMD1TLNsrKySE1NJTk5GaOX5m+YOnWqWkARYMKECXi2r13g55ifl6/fKPNZBjkZgJtnLaNR59ZYO+adu6kkyXNVSqnM90pVdnY22+eupu57LbBysNW4PmW2EiNTE1oO+AAtLS0c3F1IjI0ncOfhdxY823XmFFNXrVA9/23IMCBnqIRaW5X5LHyJkb4BK8d+S3JaKoE3b/DbhnU429hSrZxXgfXeJb2mDTEakTu/VOLYSWReDSrGFr2JvP9Vb3ul1NDIkN/+mkVKSgqXz19k0ewF2Ds5UqFKxVdXfoVde/cyZdo01fMZP/0E5NMLDf9Hal56/eU69Wrn7qM8gYq+vnTq3p3tu3bR+9lFDPEWXneHDpjbW6v9sLXzcCEpJp5r+0+rgmfht+5zec8JanVvha2bE/GRMQSu38elnceo1Obth9Dt2reXKdOnq57P+PHZtpdnv/YPtr2X/u+ys7Mp7+XF0GcX+rzLlePuvRA2bt2aJ3iWmZnJ2O8nkp2dzddfjHzTbv2/sOvgAaa8MIXGjEk/APntN/49k47rVquMUbf3VM8T5y3RUFJBzj/Xq+nVrkHW43CyQtUzuzKDbqn+zg57QmLIfczGf4VezaqkHTr2hi1/Q/nspzXtKCwcbFQ3BgCw93AhMSaeK/tOqoJndh4u2Hm45JYp48rmKQu4diiQut3efpTCu9xP5HuM6tmD7bt307tbN3R0dPj5+0lM+vknmrZri7a2NjWrVaPus8QDIYqSBM9Eibdw4UIyMzNxds69e51SqURXV5eYmJg8c7UAr5wssn379ri6urJgwQKcnJzIzs7Gz8+P9HT1iUdfnMz++Y79eaCtoPd4XmbHjh1q7QbN2UnPh6EWdNDJzs7G0dGRQ4cO5XntxSBbQdatW8cXX3zB9OnTqVOnDqampvzyyy+qIY7/pM7z/i5YsECVNfec9kuZRMb5XD1+uc/5HXwL+i6mT5/Ob7/9xowZM6hQoQLGxsaMGDFC7fts37492dnZ7Nixgxo1anD06FF+/TV3MtLs7GwmTpyolhX3nEE+E7+PGTOGkSPVT+j19fVZfzUgT1lNjEyNUWhpkRgXr7Y8OS4BY3PTPOXTU1IJu/uA8JBH7FqyEXi23SiV/ND7C3qN+RR33+Id+mf4rE9JsepXiZPjEzEyyzvsJj0ljSf3HhJx/zEHlufc7e95n6YP+IYuoz+iVHlPjC1M0dLWVpvjw8rRjqS4BLIyM9/J3G4NK1bGzy13qEV6Zs7wj6j4eGzMLVTLYxLisX4pG+1lWlpauNrlBEC9XEsREhbGkt07S1TwLP3kGTJvvPDj4unrDQ0vTqbmZmhpaxH70jD2uJg4LCwt3mrdWlpaOLrkzLHnUbYMD+8/YOPKtYUSPGtYv77aZMnpGTnb1tPoaGxeuMtgdGwsVlaahxVZW1mpstZUdWJisCogQ8PQ0JAyHh48eFjwkCFRMH0TIxRaijxZZqkJSXmy0Qpi6+7M3TO5Q5gubDtMmZp+lKtXGQBLZzsy0zI4uWonFVvVQ6H1dkGRhvXq4+eTz7YXFY2N9YvbXsHb0csZjgDRMbFqdWysrXF/6a6P7qVLc/CI+nQWmZmZfDNhAo/Dwpjz2wzJOtOgYe06+Hl5q56rvruYGGxeuMgaHRuL1Vvu/96VjKvXSbj/IHeBTs45pJapKVkv3EhIy9QEZUL+mVpqdHXRq1qJlF2a5+FSSc8gKywcLduiu7OrwfP9RJx621MTkvNkoxXEzt2ZO2euaHxdoaXAtrQT8RGFc9x+l/uJlxkaGlLGXf0Y5ePlxaqFi0hMTCQjMxNLCwv6Df6E8l4l5xyqsGj9Px4iWRJJ8EyUaJmZmSxbtozp06fTsmVLtdc++OADVq5cyWeffZanXsWKFTlw4ECezCDIGQ4TFBTEvHnzaNCgAQDHjr35FaaC3qN8+fLo6+sTGhqa7xDN/Pj4+JCZmcnZs2epWbMmkJN1FxsbqypTtWpVwsPD0dHRwa2A244X5OjRo9StW5chQ3LvyPOqrLVX1bG3t8fZ2Zm7d++q5hB7HWZmZjg5OXHs2DEavnCb6hMnTqg+g9dx9OhROnbsqBram52dze3bt9WGvBoaGvL++++zcuVK7ty5Q7ly5aj2wrwgVatW5ebNm3h6vt48Mvr6+m88TPNl2jo6OLq7cvfKTbxrVFItv3v1JuWqVcj7noYGfPLT12rLzu47Rsi123QeMQAL28JPzX9T2jo62Ls5E3LtNmWr52Zxhly7jWcV3zzl9Q316TdZPQh58cBJHgTdof1nfTC3zQkUOJd1I+jURZTZ2SieBdBinjzF2ML0nd0UwdjAQO0OmkqlEmszc04HXcfLNSdLJCMzk/O3bzHsvQ80rSZfSpSkF/HNKd5YSirZKZqHX5REurq6lClXlotnL1C7YW5G68Wz56lVv06hvpdSqSQjI+PVBV+DsZGR2t3JlEol1lZWnA4MxLtcTkA8IyOD8xcvMmyw5rtNVvTz4/TZs/Tq1k217HRgIBX9NM/Nlp6eTsj9+1Sp+PZBwP/PtHW0sS7lSFjQPUpXzv0B9/jGPVwrvv5FjeiH4Ri+MOw9Mz0zz8Wk5wEzJcq3zijSuO2dPau+7V26xLBPPtG4noq+vpw+G0ivF6Z/OB0YSEXf3G2vkl8F7oc+UKt3/+EDHO3tVc+fB85CHz1k3oyZMpS4ABq/u/Pn8X52LpORkcH5K5cZNnBgcTXzzaSlk52mfgEgOy4eHS9Psh49m/dKWxudMu6kbNv1ytXpVakIOtpkBF549Xtra6Ntb0dmcMg/aPjr0dbRxqaUI4+C7uJWJTfw+SjoLqUrvf5+IupBOEb5XGR9TqlUEvUwHCvnwhml8C73Ey9LT08nJDT/Y9TzuRBDHz4g6OZNPv23bOfiX0uCZ6JE2759OzExMQwcODDP8L/OnTuzcOHCfINnY8aMoUKFCgwZMoTBgwejp6dHQEAAXbp0wcrKCmtra+bPn4+joyOhoaF88803b9y2gt7DxsaGUaNG8cUXX5CdnU39+vWJj4/nxIkTmJiYqM0B9pyXlxetWrXi448/Zv78+ejo6DBixAi1DLfmzZtTp04dOnXqxE8//YSXlxePHz9m586ddOrUSW1IpCaenp4sW7aMPXv24O7uzvLlywkMDMTd3f2t6nz33XcMHz4cMzMzWrduTVpaGmfPniUmJiZPhtaLRo8ezYQJEyhTpgyVK1dm8eLFXLx4Md87jRbUvo0bN3LixAksLS359ddfCQ8PVwueQc7Qzfbt23Pt2jVVoO25b7/9lnbt2uHq6kqXLl3Q0tLi8uXLXLlyhR9++OG12/KmardpzJbZK3DyKIVzWTcuHDxB3NMYqjXL+eF/YM02EqLj6DSkNwotLexc1e8uaWxmio6ertryrMxMIh+Gq/5OiI4jPOQhegb6BQ6NLCzVWzVg57y1OLi74ORZissBp0mIiqVS05xU/CPrdpEYE0ebT7qj0NLC1sVBrb6RmTHaujpqyys1rcP5/cc5uPJvqrSoR0z4U05vO0jVFupDft8lhUJBj6bNWLx7J652drja2rNk904M9PTwr5GbgTlhyUJsLSz5rFNOVuPi3TspX9oNZxtbMrMyOX71CjtOneKbHq8feC4uClMTtOxsUDybVFnLJSezNjs6FmVMbDG2LFfHru8xY/I0PL3K4uXrw97tu3gaEYl/hzYALJ+/mKjIKEaMy50n8e7tnIsBqSmpxMfGcfd2MLq6Ori65QyJ2bBiLZ5eZXFwdiQzI5NzpwI5tOcAg0fmPf4UBoVCQY+uXVm8YgWlXF1xdXFh8fLlGOjr0+qF6QC+/eEH7Gxs+OxZQK17584MGjaMJStX0rh+fQ4dO8bps2dZ+ML8kTNmzaJB3bo42NsTExPDwmXLSEpKol3r1qoycfHxhD95QuTTpwDcDw0FcrIGbKzffZDeUFcfF/PcfZeTmQ1lbVyIT03iSeLbzWVXmMo3rcmxpX9jXdoRW3dnbh2/QFJMPF4NcubGO7clgOTYBBr07wDk3J3TxMocCydbsjKzuHvmKvcv3KTxx7kZ0K4VPLl+8AxWrvbYuDmTEBnDxe1HcK1QNs/d9gqDQqGgR5cuLF65glIuLjnb3ooVOdte8xe2vcmTsbO14bNBOT+Uu3fuzKDhw1myaiWN69Xn0PFjnD53loV/5m57Pbt04cOhQ1i0fDktmjThWlAQm7dtY9yzOUszMzP56tvx3Lx1i99+/ImsrCzVHEbmZmZqGegiL4VCQY9O77F4zWpKOTvh6uzM4tVrcr67Jk1V5b79+WfsbKz57MOcQENGRgZ3n/2PZ2RkEBn1lJvBwRgZGOD6bPREckoKD16YtP1ReDg3g4MxNzXFwa5op5FIO3wcgxZNyH4aRVbkUwxaNEGZkUH6uYuqMka9upIdF0fq9j1qdfVqVyfjyvV85zAz6NiGjKtBKGNiUZiaYNCyKQoDfdLPnCvS/vg1r83hxVuwKe2EnYczN49eIDEmDu+GORd0AzcfICk2gcYDOgFw9cBpTKzNsXS0JTsrizunrxBy4QbNPumsWuf57Yexc3fBzM6KjNQ0rgWcIerBE+p2b51fE95aUe4nZsyeRYO69XCwtyMmJjb3GPXC0O79AQFYWFjgYG/PnbvBTP/jDxrVr0/tGq9/4V2If0KCZ6JEW7hwIc2bN88TOIOczLMpU6Zw/nzeW8CXK1eOvXv3MnbsWGrWrImhoSG1atWiR48eaGlpsWbNGoYPH46fnx9eXl78/vvvNG7c+I3aVtB7QM4E+nZ2dkydOpW7d+9iYWFB1apVGTt2rMZ1Ll68mI8++ohGjRphb2/PDz/8wPjx41WvKxQKdu7cybhx4/jwww+JjIzEwcGBhg0bYv/ClduCDB48mIsXL9KtW7ecg1+PHgwZMoRduzRfwXudOh999BFGRkb88ssvfPXVVxgbG1OhQgVGjBhRYHuGDx9OfHw8X375JREREZQvX56///6bsmXLvlZ/AMaPH8+9e/fw9/fHyMiIQYMG0alTJ+Li4tTKNW3aFCsrK27evEnPnj3VXvP392f79u18//33/Pzzz+jq6uLt7c1HH3302u34J3zrVCUlMYkjm/aQGBuHrYsjPb76BItnGVeJsfHER73Zj8OEmDgWjP1F9fzkjoOc3HGQ0j6e9B0/rFDbnx/vWpVJSUzm5Nb9JMXGY+PswPsjP8TcJictPykunvjo2Ddap5m1BV1Gf0zAqm0s/d9vmFiYUbVlfWq2bVz4HXgDfVu2Ii0jg59WryIhOQlfdw/+GPaFWoZaeHS0WuZIaloaP61eSURsDPq6upR2cOT7AQNpWb1Gfm9RoujWqYHx6OGq5yb/y/nRm7JsDanL1xZXs9TUb9qI+LgE1i5bRUxUNKXc3Rj/0/fYOeTsI6Ojool8afLskR/lBsGCb97myP5D2DrYsWBtzt2C01JTmffbLKIin6Knr4dzKVe++N9o6jd9vczif6Jfz56kpaXx4/TpJCQm4ufjw5+//qp29T/8yRO1IR2VKlRg8oQJzPnrL+b+9Rcuzs5MnTgRvxdumPMkIoJxEycSGxeHpYUFfr6+LJ47F0eH3GD1kWPHmDh1qur52O++A+DjAQP45MMPi6zPmnjblubP93IvwgyvnzPf6M6gk0w+uFRTtXfOvXp50pJSuLTzGCnxiVg42tJsSDdMrHPOYVLiE0mKyR2mn52ZxdnNB0mOTUBbVwcLRxuaDemqdifNiq3rg0LBhW1HSI5NwMDECJcKnlTt0LjI+tGvx7Nt77dfc7e9adPVt72IJ2i9MGS0kl8FJn87gTkL/2LuwoW4ODkx9bvv1IYj+/r4MO2Hyfw5fx5/LVuKk4MDX342jNYtckYWRERGcuT4cQB6DlTfzubOmEl1DXPGilz9unYlLT2NH//8k4SEBPy8vflz6lT17y4yQu27i4yKoteQT1XPl2/YwPING6hasSLzf8mZi/H6rVsM/mq0qsxv8+YB0K5FC74blbu8KKQdOIxCVxfDzh1RGBmSdf8BiXMWQlru1BxalhbPJhzNpWVrg04ZdxJn/5XverUszDHu1wOFsRHKxCQy7z8g4dfZRX4hqEx1X9ISU7iw4wjJ8YlYOtni/1kPTK0tAEiOSyQxOnc/kZWZxZmN+0mKTUBHVwcLJ1v8h3bHtULueXJ6chrHVu4gOT4RPUN9rF0daDeqH3buzi+/faEpqv3Ek8hIxn3/wjGqfHkWz1E/Rj2NiuK3WX8S9WyIclt/fz7qmzcx4b/g//OdLUsihVKpfL3ZFoUQQrzSinO7i7sJhap3tVYsOLW1uJtR6D6u3ZH4g0eKuxmFyqxpQ2JavPfqgv8ilvs2ExR+t7ibUah8HDxI+Jfe+U4TUzs76s3SPJz03+j40LlMOVByAnOFYWyzfiSEPynuZhQ6U4fXu3j4b5MQcr+4m1CoTN1KE/v5m4/0KMksZv7ILwErXl3wX2R0k97/uf3Ev3kf8SCmZE6f4Wrp8OpC/0GFn+8thBBCCCGEEEIIIcR/hAzbFEIIIYQQQgghhChB3vamMKJwSeaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmiJXfbLFEk80wIIYQQQgghhBBCCA0keCaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiBFHIsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmikLttliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQRWL27Nm4u7tjYGBAtWrVOHr0aIHlDx8+TLVq1TAwMMDDw4O5c+fmKbNx40bKly+Pvr4+5cuXZ/PmzUXVfECCZ0IIIYQQQgghhBAlii7aJfLxptauXcuIESMYN24cFy5coEGDBrRu3ZrQ0NB8y9+7d482bdrQoEEDLly4wNixYxk+fDgbN25UlTl58iTdunWjT58+XLp0iT59+tC1a1dOnz79jz/vV5HgmRBCCCGEEEIIIYQodL/++isDBw7ko48+wsfHhxkzZuDq6sqcOXPyLT937lxKlSrFjBkz8PHx4aOPPuLDDz9k2rRpqjIzZsygRYsWjBkzBm9vb8aMGUOzZs2YMWNGkfVDgmdCCCGEEEIIIYQQ4pXS0tKIj49Xe6SlpeVbNj09nXPnztGyZUu15S1btuTEiRP51jl58mSe8v7+/pw9e5aMjIwCy2haZ2GQu20KIUQh6l2tVXE3odB9XLtjcTehSJg1bVjcTSh0lvuKdq6H4uDj4FHcTSh0pnZ2xd2EQnd8aN65SP7txjbrV9xNKHSmDvbF3QTxmkzdShd3Ewqdxcwfi7sJhW50k97F3YRCJ/uJkkNbWTLvtjl16lQmTpyotmzChAl89913eco+ffqUrKws7O3Vtyt7e3vCw8PzXX94eHi+5TMzM3n69CmOjo4ay2haZ2GQ4JkQQhSiv68WPPnlv00Hvwbce/qouJtR6NxtnP9z/XK3cSb+wOHibkahMmvWiLUX9hV3MwpVtyotWBK4o7ibUaj612jLlANLi7sZhWpss37UmzW4uJtRqI4PncvuoJPF3YxC18qnDglBN4u7GYXK1MeL6YdXF3czCtWXjXqQcPFycTejUJlWrsiCU1uLuxmF6uPaHVkWuLO4m1Go+tZoU9xN+M8ZM2YMI0eOVFumr69fYB2FQj0QqFQq8yx7VfmXl7/pOt+WBM+EEEIIIYQQQgghxCvp6+u/Mlj2nI2NDdra2nkywiIiIvJkjj3n4OCQb3kdHR2sra0LLKNpnYVB5jwTQgghhBBCCCGEKEmys0vm4w3o6elRrVo19u1TH0mwb98+6tatm2+dOnXq5Cm/d+9eqlevjq6uboFlNK2zMEjmmRBCCCGEEEIIIYQodCNHjqRPnz5Ur16dOnXqMH/+fEJDQxk8OGd6hDFjxvDo0SOWLVsGwODBg/nzzz8ZOXIkH3/8MSdPnmThwoWsXp07nP3zzz+nYcOG/PTTT3Ts2JGtW7eyf/9+jh07VmT9kOCZEEIIIYQQQgghhCh03bp1Iyoqiu+//56wsDD8/PzYuXMnpUvn3BglLCyM0NBQVXl3d3d27tzJF198waxZs3BycuL333/ngw8+UJWpW7cua9as4X//+x/jx4+nTJkyrF27llq1ahVZPyR4JoQQQgghhBBCCFGSPJsk/79gyJAhDBkyJN/XlixZkmdZo0aNOH/+fIHr7Ny5M507dy6M5r0WmfNMCCGEEEIIIYQQQggNJHgmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQoiT5Dw3b/C+QzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIkiRbhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKLOLuwXiBZJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKOVumyWJZJ4JIYQQQgghhBBCCKGBBM+EKEQ3b95k6tSppKWlFXdThBBCCCGEEEIIUQgkeCZEIUlISOC9997D3d0dfX39Qluvm5sbM2bM+Mf1Q0JCUCgUXLx4sdDaJIQQQgghhBCiCGUrS+bj/ymZ80wUiRMnTtCgQQNatGjB7t2737j+d999x5YtW/5VAZ9+/frx0Ucf0b179+JuiviXObE7gENb95AQE4u9qxMdBnTHo3y5fMveC7rNjuUbiHwUTnp6OpY21tRu2ZCG7VvmW/7isTOs/G0+vjUq0/+bz4qsD9s2bWXDqrVER0VR2t2NwcOH4le5osbyly9cYv4fs7l/LwRrGxu69OxG2/c6qF4f/dkXXLlwKU+9GnVqMWnaVACSk5JZtmARJ44cIzYmljLlPBk84jO8fLxLZJ8ANq/dwPbNfxP5JAIzC3MaNG7IgMEfo6evB8CVi5fYsGott2/cJjoqim+nfk/dhvULpT+vS6lUsmDHNjYfP0pCcjK+bu581a0nZZycNNY5eOE8S/bs4kFkBJlZWbja2dG7WQva1KrzDlue68zeIxzbdoDE2DhsXRxp3fcD3Hw88y17/0Ywe1dt5enjcDLSMrCwtaJ6s3rUbdtUVSYrM4sjW/dy8fBpEmJisXa0p2XPjpStXP5ddYlz+45zemcAibHx2Do70Lx3J1y9PV5Z7+Gte6z4YRa2Lg4MnDJKtfxm4GVO/L2fmCdPyc7KxtLehpptGlOhfvWi7IaaG4fPcW3/KZLjErFwtKVml+bYe5bKt2z4rfvsmbEyz/JO3w7C3MFG9fz6wTPcPHKepJh49I0NKV3Vm2odm6CtW7JOeSs5etKzSku87UphY2zBNzvncPRe3n1eSXV05wEObtlFfEwsDq7OvD+wJ2V8vfItG3z9FtuWrePJozAy0tKxtLWmrn8TmnTwf8etVqdUKpm/ZjWb9+4lISkR37Ll+PqTwZQplf82CBAcGsrcVSu5ERxMWGQEIz8cSM8OHfOUi4iK4o9lSzhx/jypaWmUdnJm/GfD8PHMfz9UWK4dOsPlPSdIjkvA0smOOt1a4Vi2dL5lH9+8x/bpS/Ms7zpxKBaOtgDcO3+dC7uOEh8RTXZWNuZ2VlRoUZdydSoVaT9eRalUMn/DejYf2E9CYiK+Zcvy9YcfUcbVVWOdzQf2s+PIYYIfPADAx92DIT164OdZ9l01W+XCgRME7jxMUlwCNk72NOnVARcv91fWe3QrhDVT52LjYk+/SV+ovZaalMKxjbu5ffYqqckpmNtY0bhHWzwq+RRVN9Sc3XeMUy8co1r07kQp7zKvrPfg1l2WPztGfTxltGr5jcDLHP97n9oxqnabxlSoX6MouyFEgUrWmYT4z1i0aBHDhg3jr7/+IjQ0lFIFnIj8V2zatKm4m/Cvk5GRga6ubnE3o1hdPH6Gvxev4b2Pe+Hm7cmpvUdYOHkmo2Z8j6WtdZ7yevr61GvdFMfSLugZ6HMv6DYb5y1HT1+f2i0bqZWNiYhi+9L1uPsU7Ynh4f0BzJs5i6Fffo5vRT92btnG/0Z9w/wVi7FzsM9TPvxxGONHjaF1+zZ89e1Yrl2+yqzpMzG3sKB+k4YAfDtlIhkZmao68XFxDOn/MQ2a5PZxxo/TCLl7j9HfjsHaxoYDe/Yx5vPRzF+5CBtb2xLXp4N79rNo7gJGjvkKnwq+PAp9wPTJPwPwyedDAUhNScXdswwt2rTih3HfvVUf/qll+/aw6uB+vu3Tn1L29izatYPP/viNDRMmYWxgkG8dc2NjBrRqg5u9A7o62hy9coXvly/F0tSMOuV932n7r5w4x66lG2k3sBulvDwI3H+MFT/O5rPp/8PCxipPeT19PWr5N8ShlDO6+nqE3gzm77/WoKevR/XmOYHLA2u3celYIB0H9cTGyZ47l4JYPX0BH38/Ekd3zT/WCsv1UxfYv2IL/v0/wKWcOxcOnmDtL/P5+KevMbex1FgvNTmFbXNX4eZblqS4BLXXDIyNqNuhOdZO9mjraHPnwnV2zF+DsZkJHhULJwBdkHtnrxO4YR+1urfCzsOFW8cusH/WWjqOH4SJlbnGep0mfIKeQW52t76pkervu2eucm5LAPX6tMPOw5m4J9EcX74dgJqdWxRdZ/4BQ1197kQ9ZOeNE0xpPbi4m/NGzh87zeZFq+jySV/cvctyYk8Acyf9ypg/pmCVz3FL30CfBm2a4+Tmip6+HneDbrNuzhL09fWp69/43XfgmaWbN7Hq761MGP45pZycWbh+HUMnfMvG2bMxNjTKt05qWhouDg40r1ePXxctzLdMfGIiA7/5muoVKjBz/ASszM15GB6OqbFxUXaH4MCrnFy7m/o922LvWYqgI2fZ9fsKun43FBNrC431uk76TO1/ysA0t536xoZUadMQCwcbtLW1uX/lFoeXbsHQzBhX36INBBZk6d9bWbVjOxM+HUopR0cWbtrI0MmT2PjbTIwNDfOtc+7aNfzr1qeiVzn0dfVY+vdWPpv8A+um/4qdVd7ttqjcOH2RgJXbaN63E87l3LgUcJqN0xcyYOqXmFlr3p+nJaewc/4aSpf3JClefX+elZnJ+l8WYGRmQofP+mBiZU5CdKza91qUrp+6wL4VW2jVvzOu5dw5f/AEa36Zzyc/ffPKY9Tfc1fh7luWxJeOUYbGRtTr0AKbZ8eo2xeusW3+GozMTCnzDo5RQuRHhm2KQpeUlMS6dev49NNPadeuHUuWLFF7fcmSJVhYWKgt27JlCwqFQvX6xIkTuXTpEgqFAoVCoVpHaGgoHTt2xMTEBDMzM7p27cqTJ09U6/nuu++oXLkyy5cvx83NDXNzc7p3705CQu4OOS0tjeHDh2NnZ4eBgQH169cnMDBQ9fqhQ4dQKBTs2bOHKlWqYGhoSNOmTYmIiGDXrl34+PhgZmZGjx49SE5OVtVr3LgxI0aMUD1fsWIF1atXx9TUFAcHB3r27ElERESBn11ERATt27fH0NAQd3d3Vq7Me5U9Li6OQYMGYWdnh5mZGU2bNuXSpde/Wp2VlcXAgQNxd3fH0NAQLy8vZs6cWSh1Fi9ejI+PDwYGBnh7ezN79mzVa8+Hj65bt47GjRtjYGDAihUryM7O5vvvv8fFxQV9fX0qV66slq34vN6mTZto0qQJRkZGVKpUiZMnT6rKREVF0aNHD1xcXDAyMqJChQqsXr1a9fq8efNwdnYmOztbrb0dOnSgX79+qufbtm2jWrVqGBgY4OHhwcSJE8nMzKQoHdm2jxpN61OreUPsXZzo+GF3LKwtObnnUL7lnT1KUaVBLRxKOWNlZ0O1RnXwquzLvaDbauWys7JZNXMBLbt1wMr+7QJJr7Jp7Xr827WmdYe2lHIrzeARn2FrZ8f2zX/nW37Hlm3Y2dsxeMRnlHIrTesObWnZtjUbVq9TlTE1M8PK2kr1uBB4DgN9Axo2zQmepaWlcezwEQYO/YQKlSvh5OJMn4H9cXB00Pi+xd2noKvX8K3gR5OWzXBwdKBarRo0btGUWzduqcrUqFOL/oMGUr9xw7fuwz+hVCpZfXA/A1q1oWmVqng6OfNd3wGkpqezJ/C0xnrVynnRpHIV3B0dcbG1o0fTZng6O3Mx+M47bH2OEzsOUrVJHao1rYutswNt+nXGzNqSwH1H8y3v6O5KxXrVsXN1xNLOmkoNauJZ0Yf7N4JVZS4dO0PDTi0pV8UXK3sbarZsgGclH47vOPhO+nRm12EqNa5F5Sa1sXG2p0Wf9zCztuDCgeMF1tu9aD3l61TF2TNv5knp8p541aiIjbM9lvY21GjVEDtXRx7cvFdU3VBz/eAZPOtWoly9ylg42lCzSwuMLcy4eeR8gfUMTY0xNDdRPbS0ck9lI+49wq6MCx41fDGxtsC5vAfu1csTdT+sqLvzxk6FXmPB6b85fPdicTfljR3auofazRtSp0UjHFydeP+jXljaWHF8d/7/Dy4epanWsDaOpZyxtrelRuO6eFepQPD1m++45bmUSiWrt/3NgC5daVqnLp6lSzPx8xGkpqWx+8gRjfV8y5bl8/4D8G/QED2d/C/+Ld20EXsbGyYM/xy/cuVwsrenZqVKuDg6FlV3ALi87yRe9avi3aAalo621O3WGhNLc64fPltgPUNTY4zMTVWPF/+nnLzcca/ig6WjLWZ2VlRoVhsrZ3vC74QWaV8KolQqWb1zBwPee5+mtWrhWaoUE4d+lvPdHTumsd4Pwz+ni78/Xm7uuDk7879PPkGpVHLmytV32Ho4u/soFRrWoGLjWlg72dO0VwdMrSy4eOBUgfX2LtmET50qOOaTnXvlSCCpicl0Gt4P53JumNtY4lLOHbtSmjPGC9PpXYeo3LgWVZ4do1o+O0adf8Uxatei9fjWqYqzp1ue10qX98T7hWNUzVaNnh2j7hZRL0oopbJkPv6fkuCZKHRr167Fy8sLLy8vevfuzeLFi1G+wT9Zt27d+PLLL/H19SUsLIywsDC6deuGUqmkU6dOREdHc/jwYfbt20dwcDDdunVTqx8cHMyWLVvYvn0727dv5/Dhw/z444+q17/66is2btzI0qVLOX/+PJ6envj7+xMdHa22nu+++44///yTEydO8ODBA7p27cqMGTNYtWoVO3bsYN++ffzxxx8a+5Gens6kSZO4dOkSW7Zs4d69e/Tv37/Avvfv35+QkBAOHjzIhg0bmD17tlrATalU0rZtW8LDw9m5cyfnzp2jatWqNGvWLE/7NcnOzsbFxYV169Zx/fp1vv32W8aOHcu6deveqs6CBQsYN24ckydPJigoiClTpjB+/HiWLlUfEvD1118zfPhwgoKC8Pf3Z+bMmUyfPp1p06Zx+fJl/P396dChA7dvqweDxo0bx6hRo7h48SLlypWjR48eqsBWamoq1apVY/v27Vy9epVBgwbRp08fTp/O+bHfpUsXnj59SkBAgGp9MTEx7Nmzh169egGwZ88eevfuzfDhw7l+/Trz5s1jyZIlTJ48+bU+138iMyOTR8H3KVdZPTOnXCVf7t8M1lBL3aO7oYTcDMbDV32Y57712zA2M6Vm8waF1t78ZGRkcPvmLarWVB/qVbVmdYKuXsu3TtDVa3nKV6tVnds3bmoMVu7ZvotGzZtg8OyKclZmFtlZ2ejp6amV09PX59rltzsRLqo++VaqwO2bt7h5PQiAsEePCTx5mpp1a71VewvTo6inRMXHU9sndziinq4uVcuW4/Ld1zthVSqVnLkRxP0nT6j6jofDZGZmEnbvAWUqqg9T8azoQ+it1wsKhd17wINbd3Ern9v2zIxMdF7KktXV0yX0xuv9n76NrMxMwu89xN1P/X/c3c+Lh7dDNNa7fPgMMU+iaPB+/kO6X6RUKgm5eovo8EhKvcZQ0LeVlZlFVGgYTj7q7+Xk407k3YcF1t02dSHrvpnJnpkrCbsZovaafRkXokLDiQx5DEDC0xgeXQ3Gxa/4MmT+azIzMnkQHIJXZT+15V6V/bh34/WC5Q/v3ufejdt4+hVf9sijJ0+IiomhduXKqmV6urpU9fPl8o2gt1r3kTNn8PH05Ouff6RFvz70/OJzNu/d85YtLlhWZiZPQx/jUl59mJxL+TI8CX5QYN1Nk+axfNQ0tv+6lMc3NO8nlUolj4LuEvckSuNQ0HfhUUQEUbGx1K6YO3RUT1eXquXLc/nW6wdkU9PSyczMxNzEpCiama+szEyehDzC7aX9uZtfWR7fCdFY78qRQGIjoqjbqXm+rwdfuI6TZ2kOLNvM7GHfs3jsdE5tO5jnonFRyMrMJOzeQ9z91Idte7ziGHXp8Glinjyl4fuvHr6tVCq5pzpGvXooqBBFRYZtikK3cOFCevfuDUCrVq1ITEzkwIEDNG+e/w7/ZYaGhpiYmKCjo4ODg4Nq+b59+7h8+TL37t3D9dmcBsuXL8fX15fAwEBq1MgZA5+dnc2SJUswNTUFoE+fPhw4cIDJkyeTlJTEnDlzWLJkCa1btwZygj779u1j4cKFjB6dO9b+hx9+oF69egAMHDiQMWPGEBwcjIdHzsl+586dCQgI4Ouvv863Hx9++KHqbw8PD37//Xdq1qxJYmIiJvkcqG/dusWuXbs4deoUtWrVUn2WPj65PwIDAgK4cuUKERERqpsSTJs2jS1btrBhwwYGDRr0ys9XV1eXiRMnqp67u7tz4sQJ1q1bR9euXf9xnUmTJjF9+nTef/99VZnnQagXs7tGjBihKvO8/V9//bVqrriffvqJgIAAZsyYwaxZs1TlRo0aRdu2bQGYOHEivr6+3LlzB29vb5ydnRk1Kncun2HDhrF7927Wr19PrVq1sLKyolWrVqxatYpmzZoBsH79eqysrFTPJ0+ezDfffKNqq4eHB5MmTeKrr75iwoQJeT6TtLS0PHdVfdMbRSQlJJKdnY2puZnachMLMxJi4wqs+8PHo0mMTyA7O4sWXTtQq3luptK9G7cJPHCML6Z/+0bt+SfiY+Ny5qKwUk/Lt7S0JDoq/4BuTHQMlpYvlbeyJCsri7jYOKxt1IdP3LweRMjde3wxJvc7NjI2wsevPKuWLKdU6VJYWFlyaP9Bbl4PwsnFuUT2qXHzpsTFxPLlp5+jVCrJysqi3Xsd6Nan51u1tzBFxcUDYGWqvk1amZoRHh1VYN3ElGTajP2a9IwMtLW0+Lp7T2r5vLs5wQCS43P+p0zMTdWWG5ubkhgbX2DdaUP+R1J8ItlZWTTp3IZqTeuqXvOs6MOJnQdx8/HE0t6Gu1dvcuPsZbLfwaS5yQlJKLOzMc6nT0mxCfnWiQ6PJGDtdnqP/wwtbW2N605NTuHPYRPJysxEoaWFf/8PcK+Q/7xVhSktMRllthJDU/VhbAZmxqTEJ+Vbx9DchDo9W2NdypGszEzunr7K3t9X4T+iNw5lczIx3Kv7kvp/7N11dBRX+8Dxb4y4u4cQBYK7hECB4BSneJGW4qUt0PalQGmpUFpeatAWL+7u7u4EC4RgAeKuu78/AptsshugJCRvf8/nnD0nO3tn9t7dyczsM8+9NymV7TMW5d4cVyjwb1yDoNAGGrcpXl1KUhIKhQILK/VjhLmlBUlxRZ+3vhj0IckJueet1j3epn6LJkWWL0kx8XEA2BboCWFracWjp09fa9sPHkexZvs2enfoyLtdu3Hl5k1++OtPDAwMaNe02Ys38A+kP/+fslD/nzK2MCU1MVnjOiaW5jTu2x57D2dysnO4efwCm39aSPuPBuDs56Uql5mazt/jZ5CTlYOurg4Ne7UtFKR7k2Li4wGwtVTv3m1racmjp9EvvZ1fli7B3saGOkFBxVm9IqU9O56bWKr/DjCxNC/Utf65uKinHFq1jZ6ff6D1eJ7wNJbIsHAC61en89iBxD+OZvei9Shycmjwdsl2WX9+jnqV8+7zc1TfiSNfeI6aNXKy6hzVakBXvN/AOUoIbSR4JorV9evXOXnypGr8L319fXr06MG8efNeOnimTVhYGO7u7qrAGUDFihWxsrIiLCxMFTzz8vJSBc4AnJ2dVdlb4eHhZGVlqYJikBsYqlOnDmFh6ncaq1TJGxjc0dERExMTVeDs+bKTJ09qre+5c+eYPHky58+fJzY2VnX3JzIykooVC/+gDAsLQ19fn1q18rJXAgIC1Lq4njlzhuTkZGxt1YMLaWlphIe/fAbE7Nmz+euvv7h79y5paWlkZmZSLd/d11dd5+nTp9y7d49BgwYxZMgQ1TrZ2dlYFri4yd++xMREHj58qPZ9ADRs2LBQV9T834fzs64PT548ISAggJycHL799ltWrFjBgwcPVIEt03zji/Tu3Zv33nuP3377DUNDQ5YsWULPnj3Re3bSPnPmDKdOnVLLNMvJySE9PZ3U1FRMTNTHP/nmm2/UAooAkyZNokbXt4r8HDV61mVZRakEdDQWfW7YV+PISM8g8sZttv69BjsnB6o3rkt6WjrL/juXrh/0w9TCvMhtFKsCbVCiVHXFfqnyyueLC6+zffM2vLzL419RPZvok4mf8tM30+n9dnd09XTx8fMlpMVbhN+4WWgb/0gxt+nC2fMsX7SE4R+NJqBSIA/vP2D2f3/Fev5ier/bt3jq/Iq2nTzBN8v+Vj3/6YMRz+qsXk6JsvDCAkwMjVjy6URSMzI4dT2Mn9aswtXOnpp+pXChW6iqL/jugEGTx5CZnsG9mxHsWrYBGyd7qjTMPV61GdCVDX8sY9bYqejo6GDtaEf1kHqc2190N5tipWF/1PSdKBQKNvz6N427tMLW2aHITRoaGTLw64/Iysgk4spN9izZgJW9LZ4V31CmVsHqF3Hos3S0xdIx79zn4O1GSlwiV3afUAXPom7c5eKOo9Tt2Qp7LxcSn8ZxatUuLmw9TNU2b3bijX8/DV9e0f9ijJ72GRlp6UTcCGfT4lXYOTtSM7heidUwv20H9jPt97yhJGb+J/fmkg4F/69eeKh7IYVSScUKPgzv2w+AAO8K3I6MZM32bSUWPHuuUHuKiO9bOdlhlW+yDccK7iTHJXJh51G14JmBUTm6TBxKVkYmD8PucHzVDizsrXF5iQHui8O2Q4eY9ucc1fOZEz4FCl8vKF98mlJZuGEDO44cZs6kKRgWyGB/Ewqdj5Saz1EKhYLNs5fRoFMLbJy0D8GhVCgxMTej5btd0NXVxam8G8nxiZzaeqDEg2cqhc5Rmq/pFAoF639d/NLnqMFff0xmRiYRV26we8l6rN/kOaosUJZ89qB4eRI8E8Vq7ty5ZGdn4+qal/mhVCoxMDAgLi43M0NXV7dQN86srKwXblup5cRScHnBAeh1dHRUgavn71v4hFt42/m3o6OjU+R2C0pJSaFly5a0bNmSv//+G3t7eyIjIwkNDSUzM1Nr+zTVLT+FQoGzszP79+8v9FrBceS0WblyJR9++CEzZsygfv36mJubM336dFUXx3+yzvPP4c8//1RlzT2nV+COkqmGAXP/yfeR/31nzJjBTz/9xMyZMwkKCsLU1JQxY8aofdbt27dHoVCwZcsWateuzaFDh/jxxx9VrysUCqZMmaKWFfeckYZB0j/99FPGjh2rtszQ0JAdN7UHVAsyNc8dr6dglllyQhLmBe7qF/R8HDNnTzeSEhLZtXIj1RvXJSbqCXFPopn/TV6X4uf71vhu7/HJz19h51T0xcqrsLCyRFdPl7gCGVnxcfGFMrees7axJi62YPk49PT0sCiQhZeens6B3fvoN3hAoe24uLky/deZpKelkZKSiq2dLdMmfomjs1OhsmWhTYv+nE+z0Ba07pCbQVm+gjfp6enM+u5H3unfW22cmTcluEpVKnvl/QDKfNbFNCYxETtLK9XyuKQkbM2L3id1dXVxd8jdt/zd3YmIimLBjm1vNHhmYpH7P5VcICMrJSG5UOZWQdYOuT8iHT1cSU5IYt/qrargmamFOb0+fo+szCzSklMwt7Zk19INWDmU/CDTJuam6OjqklLgDn5qQjKmloWzmDPTMoi6c4/Hdx+wc2HujSzlszFKvu33MT3Hv49XpdwuqTq6uqofZI6ersQ8eMyxTXtK/IeJoZkJOro6hbLM0pNSCmWjFcW+vCu3T+Z10z636QAV6lTGr2E1AKxdHcjOyOLY0q1UadUQHd3XjIoITM1zx8RKLHDeSkpIwtxK+0QPALbPzlsuXu4kxSeyffn6NxY8C65Th8p+eV3lMp9NSBMdH4edTd5EIrEJ8di85PWUNnbW1pQvMOtjeTc39h47+lrbLYrRs/+pgllm6UkpmFi8fLdEh/Ju3DpxUW2Zjq4uls+OdXbuzsRFPeX8tsNvLHgWXKsWlX3zjkl53108dvkyvmMTE7DJd97SZvGmjcxfv5bf/vMFvp5vtvupsep4rn6OSk1M1vg9ZaZl8PjOfZ7cfciexRuAvOP5jHcn0O2TwXhU9MHUyhxdPT216wgbZwdSEpLIyc5GT7/kfvI/P0cVzDJLTUjSeN7NTMvg0Z17RN19wI4C56hp/T6i1/ihGs9RTp6uRD94zNFNu/9/Bc9EmSLBM1FssrOzWbRoETNmzKBlS/UxVrp06cKSJUsYMWIE9vb2JCUlkZKSogqknD9/Xq18uXLlyMnJUVtWsWJFIiMjuXfvnir77OrVqyQkJKh1bSyKj48P5cqV4/Dhw/TqldtVKisri9OnT6sN9v+6rl27RnR0NN9++62qrqdPFz1ga2BgINnZ2Zw+fZo6deoAuZl88c/S0wFq1KhBVFQU+vr6eHl5/aO6HTp0iAYNGjBs2DDVshdlrb1oHUdHR1xdXbl9+7ZqDLGXYWFhgYuLC4cPHyY4OK/b4dGjR1Wfwcs4dOgQHTt2VHUXVigU3Lx5U22/MDY2pnPnzixZsoRbt27h5+dHzZo1Va/XqFGD69ev4/OS08gbGhq+cjfNgvQN9HGt4MnNC1cJqltDtfzGxatUql3tpbejVCrJfnYx6eDqzEc/qWfEbV+6joz0dDoOfAcr28KzDb4OAwMDfP39OHfqDA2b5I2vdu7UGeo10txVKrByJU4cOaa27OzJ0/gG+KNf4ALv4J79ZGVl0ixUe+aqkbExRsbGJCUmcebkKQYNe/81WlRybcrISC8UIHt+M+FVxoUsTqZGRmozaCqVSmwtLDgRdhV/99xsnqzsbM7evMHItwsHlouiVCpVwbg3RV9fH+fy7oRfukbFOnnj4YRfukZArVfomqNUkpNVuO4G5QwwsLEiJzuHqyfPU6leDQ0rFy89fX2cyrtx5/IN/GvnZeDeuXwDv5qFZzI1NDZk8DefqC07s/sId6/eovOo/ljaaz8GKNHc7uKmp6+HrYczj8Lu4FktL7j68Nod3Kv4FbGmutj7URjnCyBmZ2YXuvHyPGCmRFkoK0e8On0DfdwreHH9/BWq1ss7h14/f4WgutVffkNKJdkvceO0uJgam6jNoKlUKrG1tubE+fMEeOd2QczKyuLs5SuMzDfUxD9RNSCQuw8eqC27+/AhzvbFd+OqID19few8XHhwNZzy1fOufe6HheNV9eXHlou596hQl8JClLnjXL0ppsbGajNoKpVKbK2sOHHxIgHlcwN4WdlZnL16lZG9+hS5rUUbNzB37Rp++ew/VKzw5rue6unr4+jlSsSVm/jWyhs3MOLKTXyqaz6e9/9a/Ubt+T3HuBd2i/Yj+qqO566+XoQdP49SoUDn2XVG3ONoTK3MSzRwBrltcn52jgoodI6qXKi8obEhQ74Zp7Ys9xx1k86jBmBVxDkKUF3vClEaJHgmis3mzZuJi4tj0KBBhbrqde3alblz5zJixAjq1q2LiYkJn332GSNHjuTkyZOFZuT08vLizp07nD9/Hjc3N8zNzWnevDlVqlShd+/ezJw5k+zsbIYNG0aTJk3UugIWxdTUlA8++IBPPvkEGxsbPDw8+P7770lNTWXQoEHF9VHg4eFBuXLl+Pnnnxk6dCiXL19m6tSpRa7j7+9Pq1atGDJkCH/88Qf6+vqMGTMG43wXDM2bN6d+/fq8/fbbfPfdd/j7+/Pw4UO2bt3K22+//VKfg4+PD4sWLWLHjh2UL1+exYsXc+rUKcqX134H8WXWmTx5MqNGjcLCwoLWrVuTkZHB6dOniYuLK5Shld8nn3zCpEmTqFChAtWqVWP+/PmcP39e40yjRdVvzZo1HD16FGtra3788UeioqIKBVV79+5N+/btuXLliirQ9twXX3xBu3btcHd3p1u3bujq6nLx4kUuXbrEV1999dJ1eVXB7VuwfNZc3Cp44envzYldB4mPjqV+yxAAtv69hoTYeN4Zlbt/Htm2F2s7G+xdc7uuRly7ycGNO2nYOrcriEE5A5w81Mf8MjLN/cFQcHlx6dyjG9OnfoNvgD+BlSuybcNmnjx+TNtO7QGY9/ufxERH88nE3K4Wbd9uz8Y165kz6zdad2hL2OWr7Ni8jQmT/1No2zs2b6NB40ZYWBbOaDh94hQolbh5uPPw/gP++nUObh7utGzbqky2qW7D+qxbvpoKfj4EVMzttrnoz/nUa9RAlaGZlprGw/t5P7qiHj4i/MYtzC3McXByfO12vYiOjg7vNGvO/B3bcHdwxN3BgQXbt2FUrhyhtfOySictmIe9lRUjngXU5m/fRkVPT1zt7cnOzubIlctsOXGMCe+8fDC9uDRo24y1vy7C1dsDd7/ynN59hIToWGo/mzxj17INJMYm0GV4bpeqEzsOYGlng71L7ud793o4RzbvoW6rvPGY7t2MICkuHidPNxJj49m3eitKpZJGHV5vOIKXVad1Ezb9vhRnb3dcfbw4v+8YiTFxVH8rN5i7f8VmkuISaT+0Fzq6uti7q8/qZ2phhr6Bvtryoxt341zeHStHOxTZ2YSfD+Py4dOEDuj6RtpUsVkdDi/ciK2nM/blXblx5BwpcYn4N84NSJ5Zv4/U+CQaD+gA5M7OaWZjiZWLPTnZOdw+eZm7564TMiQvqOse5MPVvSexcXfEzsuVpKdxnN98EPcg31LJ7CyKsYEhbpZ53bBcLOzwtXMjMT2Fx8lxpVizFwvpGMrfM//Aw8cLL38fju7cT1x0DA1DmwKwafEqEmLi6DMmdxzWQ1t3Y21ni4Nb7v53O+wmezdsJ7jtm/n/0URHR4d32ndg/urVeLi44O7swvzVqzAyNKRVvpt5X8z8CQdbG0b0zQ2oZWVlcfte7gD8WdnZPI2N5frt25gYG+HunDuzYa8OHRk4YRzzVq2kRaNGXLlxk3U7d/D5sOEl2qYqLeqzb95a7DxdcKzgTtjBMyTHJhDYJPfa8OTa3aTEJ9J0YO7/zKXdxzC3tcLaxYGcnBxuHb/InbNhtBiaN/7tuW2HsPd0wcLeGkV2DpGXb3Lj2AUa925bom0pio6ODu+0acv89WvxcHbC3cmZ+evX5n53jfK6Z3/xy8842NgwolfueWjhhg3MXrmcr0aNxtnBnuhn496ZGBlhYmSs8b1KQq1Wjdk6ZwVO5d1w8fHg4r4TJMXEU7VZbhbmwZXbSI5LoM37PXOP527q2fQmFqboGeirLa/arD5ndx9h75KNVG/RkLioaE5s2kuNFurDopSUuq1D2PD7Epy93XHz8eLcvqMkxMRR49k5at+KzSTFJdBhaG90dHVx0HCO0jPQV1t+5Nk5ytrRlpzsHMLPh3Hp8ClaDej2RtpUZryBsVXFy5PgmSg2c+fOpXnz5oUCZ5CbeTZt2jTOnj1LjRo1+Pvvv/nkk0/4448/aN68OZMnT1Yb7L5Lly6sXbuWpk2bEh8fz/z58xkwYADr169n5MiRBAcHo6urS6tWrYqc8VKTb7/9FoVCQd++fUlKSqJWrVrs2LGj0GDfr8Pe3p4FCxbw2WefMWvWLGrUqMEPP/xAhw4dilxv/vz5DB48mCZNmuDo6MhXX33FxIkTVa/r6OiwdetWPv/8cwYOHMjTp09xcnIiODgYR8eX+2E9dOhQzp8/T48ePXIvQN55h2HDhrFt27bXWmfw4MGYmJgwffp0xo0bh6mpKUFBQS/M6Bs1ahSJiYl89NFHPHnyhIoVK7Jx40Z8fV9+lr6JEydy584dQkNDMTEx4b333uPtt98mIUG9W0mzZs2wsbHh+vXrqszD50JDQ9m8eTNffvkl33//PQYGBgQEBDB48OCXrsc/Ua1hHVKTUti9ahOJcQk4ebgw6LPRWD/rIpEYl0B8dN5A7Uqlkq1L1hL7JBo9PT1sHe1p3bsz9VqW3sDLTZo3JTExkSXzFxEXE4untxdTf/gGx2cTfsTGxPLkcd6ssU4uzkz94RvmzPqVzWs3YGNnywdjRtCoabDadu9H3uPKxUtM++l7je+bmpzC/Nl/Ev00GjMLcxo1acyA9wcVyl4rK23q1b8vOjo6LPxjHjFPo7G0tqJuw/oMeC8vcH/j2nXGj8wLNv/x8+8ANG8dysf/0Tw5SXHr1yKUjMxMvlu+hKTUVCp5lefnkWPUMtSi4mLVusClZ2bw3fKlPImPw9DAAE9HJ74cMIiWtWq/kTrnF9SgJmnJKexfs42k+EQc3J3pM2GY6m52UlwiCdF5XWyVSiW7l20k7mkMurq62Dja0eKdjtRqnvejIzsriz0rNhP3JJpyRob4VqtEl+H9MDY1KfT+JaFiveqkJaVyZN1OkuMTsXdzpvsnQ7C0y21TcnwSidGvFnDJyshkx4I1JMXGo1/OAFsXR9p/0JuK9V4he+g1lK9VkYyUNC5sPUxaYjJWzva8NawHZra51xBpicmkxOV1A1Jk53B63V5S45PQM9DHytmOt4Z1V5tJs0rrRqCjw7lNB0mNT8LIzAS3IB9qdAh5I216FQH2nvzSKe9/fVSj3B+EW8OO8fXehdpWKxNqNKpLSmIyO1ZsICEuAWcPV96fOBabZ12fE2PjiXua77ylULLp79XEPn6Krp4edk4OtO/bjQahIaXUglz9O3UmIyODb+fMJik5mcp+fvwyeYpahlrU06fo5stmfBobS++xY1TPF69fx+L166hRqTJ/fD0NgEq+vvww4TN+WbyIv1auwMXRkY8GDaZ1k5ASbU+F2pVJT0nl7JYDpCYkY+PiQOuRvTG3tQJyu9Elx+ZdF+Vk53B89U5S4pPQN9DH2sWBViN74RGUl/2ZnZHJ4aVbSIlLRN9AHysnO5oN6kyF2oUzit6k/h06kpGZybdz/yIpJYXKPj788tl/1DLUomKi0c13nlq9awdZ2dmM/3GG2raGdO3G+900T5hVEgLqViMtOZVjG3KDmXauTnQeOxBLu9zfISkJiSTGxr/SNi1srej2yRD2Ld3Ewv/8hJmVBTVaNqJO25Dib4AGFetVJzUphcPrdqjOUT0/eS/fOSqRhH9wjtq+YDVJsQnPzlEOdPygzxs7RwmhiY6ytPqKCCHEv9DGy4dKuwrFqkPlxtyJfvDigv9jytu5/uvaVd7OlcQ9B0q7GsXK4q0mrDi3q7SrUax6VG/BglNbSrsaxWpA7bZM21O2Az6v6rO3+tPw16GlXY1idWT4bLaHHXtxwf8xrQLrkxR2vbSrUazMA/2ZcWBZaVejWH3U5B2Szl98ccH/IebVqvDn8Q2lXY1iNaReRxad2lra1ShW/Wq3Ke0q/GNJ98vmtar5a85s/79KMs+EEEIIIYQQQgghyhLJcypTytYAEEIIIYQQQgghhBBClCESPBNCCCGEEEIIIYQQQgvptimEEEIIIYQQQghRlki3zTJFMs+EEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKForRrIPKRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskRm2yxTJPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRSLfNskQyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEplts0yRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskSpKO0aiHwk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFHIbJtliY5SKfOfCiGEEEIIIYQQQpQVSddvlnYVNDL39y3tKpQKyTwTQohi1Hvp5NKuQrFa0msySXciSrsaxc68vBcfrJle2tUoVr93+YT4fkNLuxrFymrRbPbfOlPa1ShWIT41+XjTz6VdjWL1Q/uRJEU9Lu1qFCtzJ0e2hx0r7WoUq1aB9Wn467/rGAFwZPhsfti/pLSrUaw+DunN0rM7SrsaxapXjVBmHVpZ2tUoVqMad2fkuh9LuxrF6udOY5l5cEVpV6NYjQnuUdpVEP8SEjwTQgghhBBCCCGEKEukk2CZIhMGCCGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbSQbptCCCGEEEIIIYQQZYlCum2WJZJ5JoQQQgghhBBCCCGEFhI8E+Jf5vHjx3z55ZfExcWVdlWEEEIIIYQQQoj/eRI8E/+TvLy8mDlz5hvdno6ODuvXr3+t95k8eTLVqlV7rW0URalU0rdvXwwNDbG2tn6ldYv7M31VwcHBLF26tNTeP7+PP/6YUaNGlXY1hBBCCCGEEP9fKRVl8/H/lATPxBvVvn17mjdvrvG1Y8eOoaOjw9mzZ99wreDUqVO89957b/x9i9s333yDt7c348ePf+V1S/Mz2Lx5M1FRUfTs2VO1rGAwT6lU8tFHH2Fubs7evXsBCAkJYcyYMYW2t3TpUvT09Bg6dKjG95szZw5Vq1bF1NQUKysrqlevznfffad6fdy4ccyfP587d+4UTwOFEEIIIYQQQvzPkgkDxBs1aNAgOnfuzN27d/H09FR7bd68eVSrVo0aNWq88XrZ29u/8fcsCZ999tk/Xrc0P4NZs2bx7rvvoqurOZ6fk5PDkCFD2LRpE3v37qV27dpFbm/evHmMGzeO33//nR9//BETExPVa3PnzmXs2LHMmjWLJk2akJGRwcWLF7l69aqqjIODAy1btmT27NlqQbWS0ty3Nm0DG2BlbM6DhCcsPrOd608jtZZv4BVEu8CGOJnbkpqVzsWHt1h6bifJmWkANK1Qg0blq+Ju5QDAndhHrLiwh9sxD0q8LfkplUr++Ptv1m3bSlJyMpX8Axg/fDgVvLy0rhMeEcHsxYu4dvMWj548Zuz779OrU2e1MmcvXWLx6lWE3bxJdGwsP3wxiZAGDUq4NbmCvavRwq82lkZmPEqMZtWFvdzS8rn2q9ma+l6VCy1/mBjN1F3zCy2v5RbAoLrtOf/wJnOOrS/uqhfJqFM7yoU0QsfUhJzwCFIXLUPx4FGR6xiGNqNcs2B0bW1QJiWTeeoc6avWQVa2qoyOtRXG3TuhX7USOgblUEQ9JnXuYnIitO/fxWH/5l3sXLuZhNh4XDxc6f5eP3wrB2gse/bISQ5u3c2923fJzsrG2dOV9r26UKlmVbVyqckprF+0knNHT5GanIKdoz1dB/cmqHb1Em3Lcw08gwjxqY65oSmPk2LZcOUQd2Ifai2vp6tLC7861HT1x9zQlPj0ZPbcPMWpe2GqMo3LV6W+VxDWxuakZKZx8dEttoYdI1uRUyJtUCqV/LFgPus2bSIpKYlKFSsyfsyHVChfvsj19hzYz+y5c7n/8CFuLi4MGzyEpsHBamWePH3Kz3Nmc/TECdIzMvB0d2fiuPEE+vuTnZ3Nb3/9yZHjx3nw6BFmpqbUqVmLke+/j72dXYm0Nb9DW/ewd/02EuPicXJ3pfOgXlSo5K+xbPjVG2xatJLHDx6RlZGJtb0tDUKb0rRDaInX83VVdfahV/WWBDh4YGdqxYStv3PozoXSrpZWV/ef4sLOY6QlJGHt4kC97i1x9vXUWPbh9Qi2/Lio0PJuU4Zh5VR4Hwo/dZm9f63Fs6o/LYf1KPa6v6xTOw9xdPMekuITcXBzIrRfFzwDKrxwvcjrt1nw5Swc3J0Z+u2r35AtTpf2neDcjsOkxidj4+JAo56tcfHz0lj2wbU7rP9hXqHlvaaOwto59zo35sFjTm7Yy9O7D0mKiadRj9ZUbfFmriGea1y+Km/51sLCyJRHiTGsvbSfcC3XEn1qhFLXs1Kh5Y8So5m2J3efdDK3pW1gA9ytHLA1tWTNxX3sDz9Xkk0o5PK+k5zfcZjUhGSsXexp2KOI7+n6HTb+UPg6qOeXI1Xf09WDp7l+7DyxD58AYO/pQt1OzXEs71ZibRDiRSTzTLxR7dq1w8HBgQULFqgtT01NZcWKFQwaNAiAo0ePEhwcjLGxMe7u7owaNYqUlBSt242MjKRjx46YmZlhYWFB9+7defz4sVqZjRs3UqtWLYyMjLCzs6Nz57wf5AWznG7evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTi/x89u/fj46ODjt27KB69eoYGxvTrFkznjx5wrZt2wgMDMTCwoJ33nmH1NRU1Xrbt2+nUaNGWFlZYWtrS7t27QgPD1e9vmjRIszMzLh586Zq2ciRI/Hz81N9rgU/Ax0dHebMmUO7du0wMTEhMDCQY8eOcevWLUJCQjA1NaV+/fpq7xMeHk7Hjh1xdHTEzMyM2rVrs3v37iLbHB0dze7du+nQoYPG1zMyMujWrRu7du3i4MGDLwycRUREcPToUSZMmEBAQACrV69We33Tpk10796dQYMG4ePjQ6VKlXjnnXeYOnWqWrkOHTqwbNmyIt+rONTzqETfGq3YcOUQn2+bzbUnkYwL6YOtiaXG8n72HnxQrxMHws8xfsuvzDq8Cm9bVwbXzfv8Ah29OHb3Ml/vXsiknXOJTklgQtO+WBubl3h78lu4aiVL161l3LDhLJz1M7Y21gz/7FNS8u27BaVnZODm5MyIgQOxtbbRWCYtPR3f8t6MGza8pKquUU03f7pVbcb2a8eZtmcht6LvM7xRV62f68oLexi/+TfV49Otv5OckcbZ+9cLlbUxsaBzUAg3n94r6WYUYti2JYat3iJt8XKSJn2LIiEBs3GjwchQ6zoG9etg1K0T6eu3kDRhCqlzF1Oubk2MunVSldExMcH8P5+gzMkh5YdfSPp0CmnLVqMs4vsvDqcOHmPln4to0+Nt/jNrGj6VA/h50nfEPonWWP7mlWsEVg9i5JRxfPbfr/CvUpFfv/yByPAIVZnsrGxm/ucbYh4/5f3PRvPlHz/Qd9RgrGw176PFraqLLx0qN2b3zdP8dHA5t2MfMrhue6yMzbSu07dma3zt3Fl5YS/f7VvMkrM7eJKcNxZmdVc/2gQ2YNeNk3y/729WXthDVRdf2gTWL7F2LFy2lKUrVzJuzBgWzvkDWxsbhn80tshjwsXLl/lsyhTatAxl2dx5tGkZyoTJk7ic74ZHYlISg0YMR19Pn/9+/z2rFi5izLDhmJvlfj7p6elcu3GTwf368/effzF96ldE3r/H2M8+LbG2Pnf28AnWzVtKy27t+eTHL6lQ0Y/ZU38k9mmMxvKGRoY0btOcUV9/xqc/T6Nltw5sXbKGozv2l3hdX5exgSG3Yu7z48HlpV2VFwo/dYVjK3dQvU0jOv3nPZx8PNj+81KSYxOKXK/bl8Pp/f1Y1cPCofAxICkmnhOrd+Hk41FS1X8pl4+dZfuitTR+uyXvfzMOD/8KLPn2dxKiY4tcLz01jfW/Lca7st8bqql2N09e4vDybdRq04TuX3yAs58nm/67mKSY+CLX6/3VaAbMGKd6WDraql7LzszCwt6a+l1aYGKp/RhaUmq4+tG5Sgg7rp/gu31/Ex7zgA8adNJ6LbH64j4+2zpb9Zi47Q9SMtM49yDvmr6cnj7RqQlsvHKYhPTkN9UUlVunLnFkxTZqtG1Cty8+wNnXky2z/n7h9/TO1FH0/+ET1SP/9/TwegS+darQ8aN36TxhCOY2lmz+aRHJcYkl3JoyRqksm4//pyR4Jt4ofX19+vXrx4IFC1Dm+8dbtWoVmZmZ9O7dm0uXLhEaGkrnzp25ePEiK1as4PDhw4wYMULjNpVKJW+//TaxsbEcOHCAXbt2ER4eTo8eeXf6tmzZQufOnWnbti3nzp1jz5491KpVS+P2FAoFnTt3Rk9Pj+PHjzN79myN3SDNzc1ZsGABV69e5b///S9//vknP/30k+r1lStXMmnSJL7++mtOnz6Ns7Mzv/3220t9TpMnT+aXX37h6NGj3Lt3j+7duzNz5kyWLl3Kli1b2LVrFz///LOqfFJSEh9++CGnTp1i9+7dKJVKOnXqhEKR2ye9X79+tGnTht69e5Odnc327duZM2cOS5YswdTUVGs9pk6dSr9+/Th//jwBAQH06tWL999/n08//ZTTp08DqH0vycnJtGnTht27d3Pu3DlCQ0Np3749kZHas0wOHz6sCs4VlJycTNu2bbly5QpHjhzRWKagefPm0bZtWywtLenTpw9z585Ve93JyYnjx49z9+7dIrdTp04d7t2798Jyr6t1QH323z7L/vCzPEyM5u+z24lJTaC5r+b908fWjacp8ey4cYKnKfHceBrJ3lun8bZxUZX57ehadt88xd34KB4lRvPXyY3o6uhQycm7RNuSn1KpZNm69bzbsyfNGjXCx8uLKR99THpGBtv37dO6XiV/f0YPGUJoSAjlDAw0lmlYuzbDBgygWaNGJVV9jd7yrcXRiEscibhEVFIsqy7uIy41iWDvahrLp2dnkpiRonp4WjthUs6IY3cvq5XTQYd3a7dlc9gRolOK/uFWEgxD3yJ94zayTp9H8eAhqX8sRKdcOcrVr6N1HX0fb7JvhpN17BSK6BiyL4eRefwU+uXzfiwatmuJIjaWtL8WkXM7Irfc1esotASxisvudVtp2DKERqFNcfZwpcd7/bC2s+XAVs2B/B7v9SO0a3u8/Crg6OpMp/49cXBx4uKJvCEEjuzaT0pSMsMmjsWnoj+2Dvb4VArA3Vtzlkpxa+JdjZORVzkZeZUnyXFsvHKI+LRk6nsGaSzvb+9BBVtX/jqxkZvR94hLS+Je/GPuxkWpynhZOxMR+4hzD24Ql5bEjaf3OP/gJm6WjiXSBqVSybJVq3i3b1+aBTfBx9ubKZ9+lntM2F34BtVzy1avom7NWrzbpw9enp6826cPdWrWZOmqVaoyC5cuwdHegUmffkrlwIq4ODtTp2ZN3FxdATAzM+O3H3+kRbNmeHl4EFSpEp+MGk3Y9etEFbjRVtz2b9hBvebB1G/RBCd3FzoP7o21nQ1Htu/VWN7N25OawfVw9nDF1tGe2iENCKgeRPjVwkH3suZ45BX+PLGRA7fPl3ZVXujS7mP4N6xOQKMaWDvbU79HKGbWllw9cLrI9YzNTTGxNFM9CmbMKxQK9s1dR432IZjbv9rYs8Xt+JZ9VG9ajxrNGmDv6kSr/l2wtLXm1K7DRa63+a8VVG5YCzdfrzdT0SKc33WUwEY1qBhcCxsXBxr3bIO5tQWX958scj1jC1NMLc1Vj/zfk2N5Nxp2a4VvnSro6b/5TlhNfWpyLOIyx+5e5nFSLGsv7ScuLYlG5atqLJ+enUlSRqrq4WHtiLGBEcfzXUtExj9mw+WDnH1wneyckskcLsqFXUcJaFSDio1rYu1sT6OebTCztuDKgVNFrmdsYYqJpbnqkf97aj6kK5Wb1sHOwxlrZ3ua9OuIUqnkQdjtkm6OEFpJ8Ey8cQMHDiQiIoL9+/erls2bN4/OnTtjbW3N9OnT6dWrF2PGjMHX15cGDRowa9YsFi1apDFza/fu3Vy8eJGlS5dSs2ZN6taty+LFizlw4ACnTuUetL/++mt69uzJlClTCAwMpGrVqlq7OO7evZuwsDAWL15MtWrVCA4OZtq0aYXK/ec//6FBgwZ4eXnRvn17PvroI1auXKl6febMmQwcOJDBgwfj7+/PV199RcWKFV/qM/rqq69o2LAh1atXZ9CgQRw4cIDff/+d6tWr07hxY7p27cq+fAGIbt260aVLF3x9falevTrz5s3j0qVLal0R58yZw6NHjxg1ahQDBgxg0qRJL8zievfdd+nevTt+fn6MHz+eiIgIevfuTWhoKIGBgYwePVrte6xatSrvv/8+QUFB+Pr68tVXX+Ht7c3GjRu1vkdERASOjo4au2xOnTqV8+fPc+jQITw8XnwHV6FQsGDBAvr06QNAz549Vdlyz02aNAkrKyu8vLzw9/dnwIABrFy5UhVofM712Y+uiIiIF77vP6Wnq0d5GxcuPQpXW34pKhxfO3eN69yMvoeNiQVVXXwBsDAypY57Rc4/vKmxPIChngF6OrqkZKQVX+Vf4EFUFDFxsdSrUVO1rFy5ctQICuJi2NUi1iyb9HR08bBy4urjCLXlYU8i8LZ1faltNPAK4tqTu8Smqt81bRvYgOSMNI5GXCqu6r40XXs7dK0syb6c15WP7Gyyr99E31d7sDX7xi30vTzQ8/ZSbcegamWyLuRdzBtUr0r2nUhMRgzB4pfvMZv6GeVCSjbgmZ2VTeStO1SsXkVtecUaQYSH3XipbSgUCtLT0jE1z7uxcPHEGbwDfFn623w+7j2UKcPGsXXFehQ5JT9orp6OLq6WDtwo0JX7xtNIvGycNa5Tyak89+Kf0LRCTSY2f5fxTfvQrmJD9HX1VGXuxD7EzcoBd6vcYJmNiQUBDp6EPYkokXY8ePSImNhY6tXKO++UK1eOGlWrcvHyZa3rXbxyhboFzlX1atfh4pW8dQ4eOUJggD/jv/iCFh070GvQINZt2lRkfZJTUtDR0cHMrOQyT7KzsrkXHoF/NfXu2/7VKnPn2i0ta6m7f/sud67dxEdLt2Px6nKyc4iOfIRrRfXui64VvXkcXnT279qv/uDvT35ky4+LeHi98Lio5zYfxMjchIBGb6Y7tzY52dk8vHOPClXU9xvvKgHcv6F9PNdz+48T9ziakC6tSrqKL5STnc3Tuw/xqOSjtty9kg9RL/ieVnz5G/M/+o71P8zn/rWyE2zR09HF3cqRa0/Ub8xee3yX8rYuWtZSV8+zMtef3CUuLakkqvjKcr+nR7gX+H/K/Z6KHqJh1Ze/s/Dj79k4Yz4PXvA9ZWdmocjJwdDU+LXrLMQ/JWOeiTcuICCABg0aMG/ePJo2bUp4eDiHDh1i586dAJw5c4Zbt26xZMkS1TpKpRKFQsGdO3cKZR+FhYXh7u6Ou3tesKFixYpYWVkRFhZG7dq1OX/+PEOGDHmp+oWFheHh4YGbW16f+vr1C3djWb16NTNnzuTWrVskJyeTnZ2NhYWF2nYKDlhfv359taCXNlWq5P3wc3R0VHUNzb/s5Mm8u26RkZFMnTqVEydOEB0drQoERUZGUrly7kW7tbU1c+fOJTQ0lAYNGjBhwoRXrgdAUFCQ2rL09HQSExOxsLAgJSWFKVOmsHnzZh4+fEh2djZpaWlFZp6lpaVhZGSk8bWWLVuye/dupk2b9lIzge7cuZOUlBRat24NgJ2dHS1btmTevHmqAKizszPHjh3j8uXLHDhwgKNHj9K/f3/++usvtm/frgriGRvnnpxTtXQnysjIICMjQ22ZoaH2bm6amBuaoKerS0K6epfkhLQULJ01/6C7GX2P346uZWTDrhjo6aOvq8eZ+9dYeHqr1vfpWa05sWlJXI56cxeQMXG53UJsC8z6amttzaPHT95YPYqLmaExerq6JBX4rpLSU7B01J69+ZyFkSmVHL2Zd3Kz2nJvW1caeAXx9Z6FxVrfl6VjmXvMUiSoB/QUCYno2mnvkph14jRpFmaY/edjQAcdfT0y9hwgY/MOVRldezsMmwWTsX03KZu2o+fthXGf7iizssg6cqJE2pOcmIRCocDCSr3bs7mVJYlxL5fVt2vdFjLTM6jZuJ5q2dOoJ8Q8vkrdkIaMnDyOJw+jWPb7AhQ5Ctr16lzE1l6fabln+16G+rEoKSMNc0MTjevYmFhS3saZbEU2C05vxbScEZ2DQjAxMGLlhT0AnH94E9Nyxgxv2AUdcoP5RyMusu/WmRJpR0xsbjdFWxv1/crW2oZHj6M0rfJsvViNx5GY2LyuZw8ePWLNhg307tadd/v04cq1MH6Y9V8MDAxo16pwECAjI4Nf/phDq+bNMSsi+/p1pSQ93x8t1JabW1qQ9IL98YtBH5KckIRCkUPrHm9Tv0WTEqvn/zfpyakoFUpMLNS/e2NzU9ISNQ8RYmJpRuM+7bDzdCYnK5ubJy6x5afFtBvbH2e/3AzUqFuRXD9yjs4T3y/xNrxIamIKSoUCM0v1roBmluaEJ2gOusQ8esKeZZt4d/JodPX0NJZ5k3K/JwXGFurXQ8YWZqRqaYOJlRkh/Tri4OlCTnY2149dYMOMBXT6ZKDW8bfeJNPn1xIZBa4lMlKx0HI8z8/C0JSKjuWLvOZ7055/TyYFvydzU1ITNHchNbE0p0nfDtg/+55uHL/Axh8X0vHjd7V+T8fX7MLUygK3im+uF0VZoFT8/+0iWRZJ8EyUikGDBjFixAh+/fVX5s+fj6enJ2+99RaQe9f//fffZ9SoUYXW05R9pFQq0dHRKXL580DIy1Bq6MddcPvHjx9XZbKFhoZiaWnJ8uXLmTFjxku/T1EM8nVX09HRUXv+fFn+TKl27dpRvnx5/vzzT1xcXFAoFHh5eZGZmam23sGDB9HT0+Phw4ekpKSoBfteph7alj2vyyeffMKOHTv44Ycf8PHxwdjYmK5duxaqR352dnbExcVpfO2tt95i1KhRdOzYkZycHLWuqprMmzeP2NhYtQkCFAoF586dY+rUqejluxisXLkylStXZvjw4Rw+fJjGjRtz4MABmjZtCkDssx9m2iZS+Oabb5gyZYraskmTJsE/GCJEifo+p6MDaDlXulrY069ma9ZdPsDFR+FYGZvRq1pLBtZpx58nCmf4tQtsSH3PIL7as4AsRbaGLRaPbXv3Mm3Wf1XPZ36ZO4Zcwf/M3P/LEqtGidNwdCj0/WlS37MyaVnpXMiXIWiob8C7tduw5OwOUjLfTFagQf06mLzbS/U8ecavuX8UPO7p6GjdBwH0A/wwat+atIXLyA6/g56jA8Z9uqOITyBjw7OLel0dcu7cJX31BgBy7t5Dz9UZw7ealFjwLK/+BZ4rNSzT4OT+o2xespZhE8eqBeCUCiXmVhb0GTkYXT1dPH29iY+NY+eaLSUePNOmqP+j58fmpWd3kp6de/zdeOUw/Wq1Zu2l/WQrcqhg68pbvrVYe2k/kXGPsTO1pGPlYJqnp7L7ZtFdbV7Gtl07mZbvnDjz2+801lvbObxAg9TXQX0dhUJBRX9/hj+bMTrAz4/bdyJYs2FDoeBZdnY2n305BYVCwfgPx75qs/4hDTvkC5o8etpnZKSlE3EjnE2LV2Hn7EjN4HpFryRKjJWTndrEAI4V3EmJTeDirmM4+3mSmZ7Bvnnrady3HUZmLw6CvDkF/neUmvc9hULB2l8WEdK1NbbODm+obi+n0OFBqdR6ALR2ssfaKe+6zamCB8mxCZzbcbhMBM+e+6fhkLqeFUnLyuDiw5fLXH2jNHwl2o7t1k52WOf7f3r+PZ3feUTj93Ru+yFunbxEx0/eRV/LkB5CvAkSPBOlonv37owePZqlS5eycOFChgwZojrA1qhRgytXruDj4/OCreSqWLEikZGR3Lt3T5V9dvXqVRISElRZalWqVGHPnj28++67L729hw8f4uKSm0J97NgxtTJHjhzB09OTzz//XLWs4NhYgYGBHD9+nH79+qmWHT9+/KXa9CpiYmK4dOkSv/32G3Xr1gXgwIEDhcodPXqU77//nk2bNjFhwgRGjhzJwoXFm+1y6NAhBgwYQKdOuYOGJycnv7DbY/Xq1YmKiiIuLg7rAtkFAC1atGDz5s20b98ehULBL7/8ovFkHBMTw4YNG1i+fDmVKuXNSqRQKGjcuDHbtm2jXbt2GuvwvDtt/kkpLl++jIGBgdq28vv0008ZO1b9h5ehoSED13xTZHvzS8pIJUehwMpI/W6dhZGp1gFfO1RqxI3oSLaEHQXgXvxj5mdvYVKLgay6sJf4fOu1CWhAh0qN+WbvIu7Fl+y4PsH16lE5IG/2uMzM3MkzouPisLPNGwA2Nj4eGw3fc1mXnJFGjkKBhZF6poK5kQmJ6S8eAL+BVxAnIq+So8wLetubWmNnasUHDfKCL8/37V86fcTknXOJTokvngY8k3XuAknh+brsGOReBuhaWZKTL/tM18IcZaL2QXmNurQn8+gJMg8cAUBx/yEYlsPk3T5kbNwGSiXK+ARyCszYmfMwCoNaJTejsplF7pgpBbPMkhISCmWjFXTq4DEWzfqD9yeMJrC6+lhiljZW6OnpoauX173c2d2VxLh4srOy0TcoucuplMzcfa9glplZOeNC2WjPJaWnkJCerAqcATxJjkVXRwcrYzOiUxII9a/H2fvXORmZ2406KimGcnoGdK3alD03T/3jH3fPBTdsROXAvKEKMp9NqBMdE4udbd6Pptj4uCKPCbY2NmpZZgCxcerHETtbW8oXmMW3vKcnew+qnwuzs7OZMGkSDx894vefZpZo1hmAqfmz/TG+4P6YhPkL9kdbx9wAgIuXO0nxiWxfvl6CZ8XEyMwEHV0dUgtkmaUlpWBs8fL7hIO3G7dO5Ha3T3oaR3JMPDt+zZss4fnN2L8+mEr3L4djYf9mJhgBMLEwRUdXl+QCWcUpicmYWRQemD4zLZ2HtyN5FHGfrQtyJ1pSPhsY/MveY+j76TDKv+EJBHK/J91C2UtpSSmFspyK4ujtxo3jZWPW15Tn1xKGBa4lDE1I1HI8z6+eZ2VO3VO/lihtRX1Pr/L/5OjtrvF7Or/jMGe3HqL92P7Yujm9dn2FeB0SPBOlwszMjB49evDZZ5+RkJDAgAEDVK+NHz+eevXqMXz4cIYMGYKpqSlhYWGFBsl/rnnz5lSpUoXevXszc+ZMsrOzGTZsGE2aNFFNCjBp0iTeeustKlSoQM+ePcnOzmbbtm2MGzdO4/b8/f3p168fM2bMIDExUS1IBuDj40NkZCTLly+ndu3abNmyhXXr1qmVGT16NP3796dWrVo0atSIJUuWcOXKFbXul8XBysoKGxsbZs+ejZOTE3fv3i00wUFSUhJ9+/Zl5MiRtG7dGg8PD2rVqkW7du3o1q1bsdXFx8eHtWvX0r59e3R0dJg4cWKhscQKql69Ovb29hw5ckRrcKtZs2Zs2bKFdu3aoVQq+fXXXwsF0BYvXoytrS3dunUrNH5au3btmDt3Lu3ateODDz7AxcWFZs2a4ebmxqNHj/jqq6+wt7dX65576NAhGjdurDVr0dDQ8JW7aRaUo8jhTuxDKjtV4PT9a6rlQU4VOJPveX7l9AxQFLhoUj3P95m0DWzA25WC+W7f39yJffha9XwZpiYmmObL+FMqldha23Di3FkCngXCs7KyOHvpEiMHDirx+hS3HKWCyPgoAh081bLHcp8XfQfY184dBzPrQmOaRSXFMHWX+lTt7Ss1wki/HKsu7CUuVXvw6h9Lz0CR/lRtkSI+Af1KgeTcfTaGjJ4e+v6+pK1cp2EDz5QrBwW7EigUanees2+Go+esPvi8rpMjihjNswwWB30DfTx8yhN27hLVG+SNkxV27jJV69XUut7J/UdZ9N85DB43gqA6hccqqlDRj1P7j6JQKFTHl8cPHmFpY1WigTPI3fceJDzBz95dreu1n72H1q7Yd2IfUcXFh3J6BmTm5Aat7E2tUCgVxKfl/sApp6dfKGtSoVSggw65X+Trhc80HhNsbDhx+jQBfrk/wrOysjh74QIj39feza1KpUqcOH2K3t27q5adOHWKKpXyxhGrWjmIu5HqYyDdvX8PZ8e8/e954CzywX3mzPwvVpZFB6+Kg76BPu4VvLh+/ora/nf9/BWC6r7CmFhKJdkFZvMW/5yevh52Hs48CLtN+ep5Y4I9CLuNZ1X/ItZUF3MvCuNnszVaOtnR5Qv1oTpOb9hHVnoG9Xu0wtS65Pe3/PT09XEp787ti9cJrJ03EP3tS9fwr1l4ohFDYyM++F59OI9TOw9z5+oNuo8ZiJW9baF1Spqevj72ni7cuxqOd428QPy9q+GUr/byYwBG33uEidWbnW1cmxylgnvxjwlw8ODio7xrB38Hz0Lj3xbkY+eGg5k1f0VoHyOyNOR+T87cD1P/nu5fDcfrVb6nyEeYFOhmfG7HYc5uOUDb0f1w8Hq58WX/df4fz2xZFsmEAaLUDBo0iLi4OJo3b67WHbNKlSocOHCAmzdv0rhxY6pXr87EiRNxdtY8MLKOjg7r16/H2tqa4OBgmjdvjre3NytWrFCVCQkJYdWqVWzcuJFq1arRrFkzTpzQ3G1IV1eXdevWkZGRQZ06dRg8eDBff/21WpmOHTvy4YcfMmLECKpVq8bRo0eZOHGiWpkePXrwxRdfMH78eGrWrMndu3f54IMP/unHpZWenh4rVqzg7NmzVK5cmbFjxxbqPjp69GhMTU1V435VqlSJ7777jqFDh/LgwYNiq8tPP/2EtbU1DRo0oH379oSGhlKjRtFZJnp6egwcOFBtjDtNQkJC2Lp1K4sXL+aDDz4o1L123rx5dOrUSePEA126dGHz5s08fvyY5s2bc/z4cbp164afnx9dunTByMiIPXv2YJsvQ2rZsmUvPU7e69h27RhNK9SgiXd1XCzs6FMjFFsTS/bczJ3xq0fVtxhav5Oq/LkHN6jlHshbPrWwN7XGz86dfjVbcyv6PvHPBo9tF9iQblWa8ceJDTxNicfSyAxLIzMM9cuVeHue09HR4Z1ObzN/+XL2HTnCrYgIJs/4ASNDQ1o96xoL8MX07/ll3jzV86ysLK6Hh3M9PJys7CyeRsdwPTycew/z9tPUtDRVGcidnOB6eDhRT0p2LLU9N0/TsHwV6ntWxsnchq5VmmJtYsGhO7l3SjtWakz/Wm0KrdfQK4g7MQ95mKg+y2S2IoeHidFqj7TMDNKzM3mYGP3G7ixn7NiDUftWGNSshq6rCybv9UeZmUnmsbxxFU3eG4BRt7fz6n7+EoZvBWNQtxa6drboVwrEqEsHss5dVF3oZWzfg14Fbwzbt0LXwR6D+rUxbNqIjN2FM2OLU/NObTi8cx9Hdu7nUeQDVv6xmNin0QS3yR0aYN2C5cyfkTfz8cn9R5n/4+90HdSH8v6+JMTGkxAbT1pKXhZAkzYtSE5KZsWcRTx+8IhLJ8+xbeUGQtq2LNG2PHfg9nnqeFSitnsgDmbWdKjUCCtjM9Vsa60D6tOzWgtV+XMPbpCamU6Pam/haGaNt40L7So25GRkGNmK3JnYrj6+Q33PIKq5+GJjbIGvnTutAupxJerOS3VFflU6Ojq8060b85f8zb6DB7l1+zaTv/km95jQPK/uX3z9Nb/8MUf1vGfXrpw4fZoFS5cQcfcuC5Yu4cSZ0/TKd+OnV7duXLp6hXmLF3Pv/n2279rFuk2b6PYsCzo7O5txX0wk7Po1vvrPRHJycoiOiSE6JoasEg5KhXQM5fjuAxzffZCoew9ZO3cpcdExNAzNPQ5uWryKv2f+oSp/aOtuLp88x5OHUTx5GMXxPYfYu2E7tUIalGg9i4OxgSG+dm742uWOGetiYYevnRuOZmUv2zioeX2uHz7L9SPniHv0lGMrd5Acm0BgcG6Q8+S6Peybv15V/tLu40Scv0bC4xhiHz7h5Lo93DkbRqWQ3CC9voE+Nq4Oao9yJkYYGBli4+qAnv6bH0OsXtumnN13jHP7jvH0QRTbF60lITqOWs1zJ27ZvWwj635bDICOri4O7i5qD1NLM/QNDHBwd6Gc0evdLPynqrVowNVDZ7h6+AyxD59wePlWkmITqBSSOxv0sTU72T13tar8hV1HuX3uKvGPY4h58Jhja3YSfuYqQU3rqsrkZGfzNPIRTyMfkZOdQ3J8Ik8jHxH/uORu7OS379YZ6nsFUc+zEo7mNnQOaoKNiTmHn11LtK/YiL41C4/VWN+zMndiH/EoqXA9cyeWscfV0h59XT0sjc1xtbTHztSqpJsDQNUWDQg7dJaww2eJe/SUIyu25X5PTXL/P46v3cWeuWtU5S/sPsqdc2HEP44h9sETjq/dxe2zVwlqlvc9ndt+iJPr9xDS/20s7KxITUgiNSGJrPSMQu8vxJsimWei1NSvX1/j+GIAtWvXVk0goEnBroAeHh5s2LChyPfr3LkznTtrHpum4Pb8/Pw4dOiQ2rKCdf3+++/5/vvv1ZaNGTNG7flnn31WaFbP7777TmsdQ0JCCr3PgAED1DLzACZPnszkyZNVz5s3b642s2bB+s7LF5x4btSoUWrjyhX8DArWw8vLq9CygvX18vJi7969amWGDx9e6L0LGjNmDJUqVeLu3bt4enpqrA9AcHAwSUl5g8Tmn+nz4sWLWrffuXNn1Q+kLl260KVLlyLrs2XLFvT09OjatesL6/66jkdewczQhE6Vm2BlbMb9hCdM37+E6NTcbj5WxubYmuTdsT545zxGBuVo6VeH3jVCSc1M58rjOyw/v0tVprlvbQz09BnTuIfae625tJ+1l/aXeJue69+tOxkZmXz7yy8kJSdROSCAX6Z9o5aNEvXkKbo6eQHPpzEx9B4+TPV88ZrVLF6zmhpBVfhj+nQArt64wdDxeVmjPz37od2ueQsmf/xxibXnzP3rmJYzpm1gAyyMTHmUGM2vR9aoZs+0NDLDxkT9rqmRfjmqu/qx8sJeTZssEzK27ESnXDmM+7+DjokJObfvkPz9LMh3gapra6N29zN9w1aUSiVGXTuga22FMimZrHMXVeObAeTcuUvKrNkYd3sbo45tUURHk7ZkFVn5gnIloXZwfVISk9mybC0JsfG4eLoxYso4bB1yu8ElxMYT+zTvx8eh7XtQ5OSw7Pf5LPs9LxOw/lvBDBibm0liY2/L6KkTWPXn33w5fAJWttY069CKVl07lGhbnrvw8CamBka08KuDhaEpUUkxzD2xSTXbmoWRKdbGed2YMnOymHN8A50qBzM6uAepmelceHiLbdfyhiDY/axrZquAelgamZGcmcbVqDtqZYpb/3d6kZGRwbc//UhScjKVAwP55YcZBY4Jj9HVzUthrFo5iK+/mMTvc/9i9ty5uLm48M3kyVTON3t1pcBAfvgqN+j216KFuDg58dGIkbRukRvcfPL0KQeP5HYx7jVooFqdZs/8L7Wql9zMiDUa1SUlMZkdKzaQEJeAs4cr708ci41DbtfVxNh44vLtj0qFkk1/ryb28VN09fSwc3Kgfd9uNAgNKbE6FpcAe09+6ZQ3nMGoRrkBzq1hx/h6b+lMiqJNhdqVyEhJ5eyWg6QmJGPj4kCrEb0wt7UCIDUhmZTYvO62ipwcTqzeRUp8EvoG+li52BM64h08gnxLqQUvVrl+DdKSUjiwdgfJ8Qk4uDvTe/xQrJ51H02OTyQhWvOYs2WFb50g0lNSOb1pPykJSdi6ONJ+dF8s8n1PSTF531NOdg5HVu4gJT4RfQMDbFwdaDuqL15V8rqcpsQnsfLLvBso53cc4fyO3LG2Oo0r+cz4sw9uYFrOmFb+9Z5dS8Tw+9F1quO5pZEp1saFryWqufiy5tJ+jdu0NDZjQrO+qufNfWvR3LcWN5/eY9bhVSXVFBWf2kGkJ6dxZnPu92Tj4kDbUX3y/p/ik0jO//+UncPRVXnfk7WLPW1G9cEzKO97urL/FIrsHHbOXqH2XrXah1C7Q7MSb5MQmugotUUvhBDiDdqwYQM2NjY0bty4tKvCypUr8fT0VI0h9yp6L51c/BUqRUt6TSbpTkRpV6PYmZf34oM100u7GsXq9y6fEN9v6IsL/g+xWjSb/SU0+2NpCfGpycebip785H/ND+1HkhRVsuMqvmnmTo5sDyu5QGJpaBVYn4a//ruOEQBHhs/mh/1FZ6//r/k4pDdLz+54ccH/Ib1qhDLr0MrSrkaxGtW4OyPX/Vja1ShWP3cay8yDK15c8H/ImOAeLy5URiWeKpvXQBa1tQ+F8W8mmWdCiDKhY8eOpV0Fle75xtYRQgghhBBCCPH/m4x5JoQQQgghhBBCCCGEFpJ5JoQQQgghhBBCCFGWFJzZXJQqyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCiFIVFxdH3759sbS0xNLSkr59+xIfH6+1fFZWFuPHjycoKAhTU1NcXFzo168fDx8+VCsXEhKCjo6O2qNnz56vVDcJngkhhBBCCCGEEEKUJUpl2XyUoF69enH+/Hm2b9/O9u3bOX/+PH379tVaPjU1lbNnzzJx4kTOnj3L2rVruXHjBh06dChUdsiQITx69Ej1mDNnzivVTcY8E0IIIYQQQgghhBClJiwsjO3bt3P8+HHq1q0LwJ9//kn9+vW5fv06/v7+hdaxtLRk165dast+/vln6tSpQ2RkJB4eHqrlJiYmODk5/eP6SeaZEEIIIYQQQgghhHihjIwMEhMT1R4ZGRmvvd1jx45haWmpCpwB1KtXD0tLS44ePfrS20lISEBHRwcrKyu15UuWLMHOzo5KlSrx8ccfk5SU9Er1k+CZEEIIIYQQQgghRFmiUJbJxzfffKMak+z545tvvnnt5kZFReHg4FBouYODA1FRUS+1jfT0dCZMmECvXr2wsLBQLe/duzfLli1j//79TJw4kTVr1tC5c+dXqp902xRCCCGEEEIIIYQQL/Tpp58yduxYtWWGhoZay0+ePJkpU6YUuc1Tp04BoKOjU+g1pVKpcXlBWVlZ9OzZE4VCwW+//ab22pAhQ1R/V65cGV9fX2rVqsXZs2epUaPGC7cNEjwTQgghhBBCCCGEEC/B0NCwyGBZQSNGjHjhzJZeXl5cvHiRx48fF3rt6dOnODo6Frl+VlYW3bt3586dO+zdu1ct60yTGjVqYGBgwM2bNyV4JoQQQgghhBBCCPE/Sako7RoUCzs7O+zs7F5Yrn79+iQkJHDy5Enq1KkDwIkTJ0hISKBBgwZa13seOLt58yb79u3D1tb2he915coVsrKycHZ2ful2yJhnQgghhBBCCCGEEKLUBAYG0qpVK4YMGcLx48c5fvw4Q4YMoV27dmozbQYEBLBu3ToAsrOz6dq1K6dPn2bJkiXk5OQQFRVFVFQUmZmZAISHh/Pll19y+vRpIiIi2Lp1K926daN69eo0bNjwpesnwTMhhBBCCCGEEEIIUaqWLFlCUFAQLVu2pGXLllSpUoXFixerlbl+/ToJCQkA3L9/n40bN3L//n2qVauGs7Oz6vF8hs5y5cqxZ88eQkND8ff3Z9SoUbRs2ZLdu3ejp6f30nWTbptCCCGEEEIIIYQQZYlSWdo1eONsbGz4+++/iyyjzPe5eHl5qT3XxN3dnQMHDrx23STzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIsUfz/67ZZlknmmRBCCCGEEEIIIYQQWkjwTAghhBBCCCGEEEIILaTbphBCCCGEEEIIIURZolSUdg1EPpJ5JoQQQgghhBBCCCGEFjpKpVJGoRNCCCGEEEIIIYQoIxIPHC7tKmhk0aRRaVehVEi3TSGEKEb7b50p7SoUqxCfmiQ9fFja1Sh25i4uLDq1tbSrUaz61W5T2lUoEWfuhZV2FYpVTfdAZhxYVtrVKFYfNXmntKtQIpLCrpd2FYqVeaA/P+xfUtrVKHYfh/Sm4a9DS7saxerI8NksPbujtKtRrHrVCC3tKpSIidv/KO0qFKuprd5j85WyGbD5p9pV+h8O9EieU5ki3TaFEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKFdNssSyTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS5SK0q6ByEcyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEoXMtlmWSOaZEEIIIYQQQgghhBBaSPBMCCGEEEIIIYQQQggtpNumEEIIIYQQQgghRFmilG6bZYlkngkhhBBCCCGEEEIIoYUEz4QQQgghhBBCCCGE0EK6bQohhBBCCCGEEEKUJdJts0yRzDMh/octWLCAbdu2lXY1hBBCCCGEEEKIfy0JnokS4+XlxcyZM9/o9nR0dFi/fv1rvc/kyZOpVq3aK62zf/9+dHR0iI+Pf633fhVr167l+++/p169ev9o/QEDBvD222+rnoeEhDBmzJgi1ymu73Tv3r0EBASgUChee1sl4cmTJ9jb2/PgwYPSrooQQgghhBBCiFIm3TZFIe3btyctLY3du3cXeu3YsWM0aNCAM2fOUKNGjTdar1OnTmFqavpG37Osun37Nv/5z3/Ytm0b1tbWxbLNtWvXYmBgUCzbepFx48bx+eefo6ubG79fsGABY8aMUQs+hoWF0aJFC+rUqcOyZcswNDRk3759TJ8+nRMnTpCWloaXlxetW7dm7NixuLq6qr2Hv78/d+7c4c6dO4Veu337Np9//jkHDhwgNjYWOzs7atasyfTp0/Hz88PBwYG+ffsyadIk/vrrrxL/PPZv3sXOtZtJiI3HxcOV7u/1w7dygMayZ4+c5ODW3dy7fZfsrGycPV1p36sLlWpWVSuXmpzC+kUrOXf0FKnJKdg52tN1cG+CalcvkTYolUr+WLiQdZs3k5SURKXAQMaPHk2F8uWLXG/PgQPMnj+f+w8f4ubiwrBBg2jauLHq9fY9e/Lo8eNC63Xr2JHxz4K9ew8eZO2mTYTduEFCYiJL/vwTfx+fYm3fc6d3Heb41n0kxydi7+pEiz5v4xFQ4YXr3btxm8Vf/Yq9mxNDpn2iWn5u3zEuHTrF0/tRADiVdyOke1tcK3iWSP3/v9i1YSubV60nPiYOVy93+g0bREBQJY1l42JiWTJ7PnduhhP14BGhndrSb9jgQuW2rdnI7k3biX4SjbmlOXUbN6DH4L6UK1eupJsDwJX9J7m44yipCUlYuzhQv0crnH017ycPr99h84yFhZZ3nzIcK2f7QstvnbzE3r/W4FnVn9Dh7xR73f+/USqV/LF8Get27iQpJZlKvn6Mf38oFTw8tK4THhnJ7KVLuBYezqOnTxg7cBC9OnQsVO5JTAw/L1rA0bNnSc/IwNPFlYkjRhJYQsc8gKv7T3Fh5zHSnu179bq3LGLfi2DLj4sKLe82ZRhWTnaFloefuszev9biWdWflsN6FHvdX1dVZx96VW9JgIMHdqZWTNj6O4fuXCjtar20UzsPcXTzHpLiE3FwcyK0Xxc8X+KcFXn9Ngu+nIWDuzNDvx3/Bmr6/0sd94o0Kl8FM0MTniTHse3aMe7GRWktr6ejS1OfmlR18cHM0ITE9BQOhJ/j7IPrAFR09CLYuzo2Jhbo6egSk5rAkYhLXHh48001iSPb9rJ/ww4S4+Jxcnel48CeeFf001j2dthNtixazZMHj8jMzMTa3pb6LZvQpH1LVZnjuw5wev8xoiJzb2S7VfCkTe/OePh6v5H2lBllNNHg/ysJnolCBg0aROfOnbl79y6enuoXR/PmzaNatWpvPHAGYG9f+IL//ytvb2+uXr36UmWzsrJeKihmY2PzutV6KUePHuXmzZt069ZNa5lTp07RunVrOnbsyB9//IGenh5z5sxh2LBh9O/fnzVr1uDl5UVkZCSLFi1ixowZ/Pjjj6r1Dx8+THp6Ot26dWPBggV8/vnnqtcyMzNp0aIFAQEBrF27FmdnZ+7fv8/WrVtJSEhQlXv33XepU6cO06dPL7YApca2HjzGyj8X0WvYQCoE+nFw+x5+nvQdk3+fjo1D4R8aN69cI7B6EG/374GxqQlHdx/g1y9/YMKPU/Go4AVAdlY2M//zDeaWFrz/2Wis7WyIexqDobFxibVj4fLlLF21iknjx+Ph7s7cxYsZ/sknrFm0CFMTE43rXLxyhc++/JKhAwfStHFj9h06xIQpU5g7axaVK1YEYNHs2eTku3AIv3OH4R9/zFshIaplaenpVK1cmeYhIXz1ww8l1sarx8+x6+/1tBrQFXe/8pzde5Tl0//g/e8mYGmnfR9JT01j4+yllK/kS3JCktprd8NuUbF+Ddz8yqNvoM+xzXtZ9t1s3vt2PBY2ViXWln+zY/sOs+j3eQwc9T5+lQLYs2UH3306lelzf8bOsfB5JDsrC3MrSzr26sa2NRs1bvPwngMs/2sx7308Ar9KATy6/5DZ02cB0HfYoBJtD+QGGI6t2E6jXm1x9PEg7OBpts36m+6Th2Nma6V1ve5TR1DOyFD13Mi88A2opJh4TqzeiZOv9sCOeDUL161l6cYNTBo1Gg8XV+auWsnwSV+w5rffMDXWfDxMz8jAzcmJ5g0b8uO8uRrLJCYnM2jCeGoFBfHfiZOwsbTkflQU5iV4YzH81BWOrdxBw15tcKzgzrWDZ9n+81K6TR6GmY2l1vW6fTm8wL5XuN25+94unHzK7r5nbGDIrZj7bL12lGmth5Z2dV7J5WNn2b5oLW0HdsPd35szu4+w5NvfGf7DZ1jaab/mS09NY/1vi/Gu7FfonCVeX2Unb1oH1mfz1cNExj2mlnsgfWu25ufDK0lIT9G4To9qzTEzNGbd5YPEpiZgWs4YXZ28DmSpWRkcCD9HdEo82Yoc/B086VS5CSmZadyKvl/ibTp3+CQb5i+n85A+lA/04diOA/z51UzG/Xcq1va2hcqXMyxHwzbNcPF0o5yRIXfCbrJ69iLKGRpSv2UTAG5dvk71RnXwCvBB38CAfeu3MWfKj4z771QsbUvuulyIoki3TVFIu3btcHBwYMGCBWrLU1NTWbFiBYMG5f5QOHr0KMHBwRgbG+Pu7s6oUaNISdF80AeIjIykY8eOmJmZYWFhQffu3XlcIKNk48aN1KpVCyMjI+zs7OjcubPqtYJdBm/evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTX/gZbd26FT8/P4yNjWnatCkRERGFyrzq5/O8u+icOXNwd3fHxMSEbt26FeoKOn/+fAIDAzEyMiIgIIDffvtN9VpERAQ6OjqsXLmSkJAQjIyM+Pvvv8nJyWHs2LFYWVlha2vLuHHjUBYYgLJgt80nT57Qvn17jI2NKV++PEuWLClU5x9//JGgoCBMTU1xd3dn2LBhJCcnF/nZLV++nJYtW2JkZKTx9b1799KsWTPeffdd5s6di56eHvfv32fUqFGMGjWKefPmERISgpeXF8HBwfz111988cUXatuYO3cuvXr1om/fvsybN0+trVevXuX27dv89ttv1KtXD09PTxo2bMjXX39N7dq1VeWCgoJwcnJi3bp1Rbbnde1et5WGLUNoFNoUZw9XerzXD2s7Ww5sLZz5CdDjvX6Edm2Pl18FHF2d6dS/Jw4uTlw8cVZV5siu/aQkJTNs4lh8Kvpj62CPT6UA3L1LJptJqVSybPVq3u3Th2bBwfiUL8+UCRNIT09nu4YM1ueWrV5N3Vq1eLd3b7w8PHi3d2/q1KjB0jVrVGWsrayws7FRPQ4fO4abiws1q+Zl2rVt2ZIh/ftTp2bNEmnfcye27adaSF2qN62HnasjLft2wsLWirN7jhS53rZ5q6hUvwauPl6FXnt7WF9qtWiEk6crdi6OtB3cA6VCScSVN3e3+N9m65oNhLRqTtM2LXD1dKffsMHYOtixe9N2jeXtnRzpP3wwwS2bYmKqObBx8+p1/CoH0PCtJtg7OVKlVnUaNG3M7Ru3SrIpKhd3HcO/UQ0CGtfE2tmeBj1aY2ZtydUDp4tcz9jcFBNLc9XjebbvcwqFgr1/raFmh6ZYFBEAFi9PqVSybNNG3u3WnWb1G+Dj6cmU0WNIz8hg+8GDWter5OvL6AHvEto4mHL6mm94LVy7Bkc7OyaNGk1lPz9cHB2pU7Uqbs7OJdUcLu0+hn/D6gQ0qoG1sz31e4S+wr5npnpo2vf2zV1HjfYhmNuX3X3veOQV/jyxkQO3z5d2VV7Z8S37qN60HjWaNcDe1YlW/btgaWvNqV2Hi1xv818rqNywFm6+Xm+mov/PNPCqwtn71zlz/zpPU+LZdu0YienJ1PGoqLG8j50bXjbOLD6zndsxD4hPS+ZBwlPuxef9hoqIfUTYkwiepsQTl5bE8buXeZwUi6eV0xtp08FNO6nzVmPqtQjG0c2Ftwe9g5WtDUd37NdY3s3bkxqN6+Lk4YqNgx01m9THv1pl7oTdUJXp8+F7NGzdDNfyHji6OdP9gwEolUpuXgx7I20SQhMJnolC9PX16devHwsWLFALOqxatYrMzEx69+7NpUuXCA0NpXPnzly8eJEVK1Zw+PBhRowYoXGbSqWSt99+m9jYWA4cOMCuXbsIDw+nR4+8FP0tW7bQuXNn2rZty7lz59izZw+1atXSuD2FQkHnzp3R09Pj+PHjzJ49m/HjC6eVm5ubs2DBAq5evcp///tf/vzzT3766SfV6ytXrmTSpEl8/fXXnD59GmdnZ7VglCb37t2jc+fOtGnThvPnzzN48GAmTJigVuZVP5/nbt26xcqVK9m0aRPbt2/n/PnzDB8+XPX6n3/+yeeff87XX39NWFgY06ZNY+LEiSxcqN49Z/z48YwaNYqwsDBCQ0OZMWMG8+bNY+7cuRw+fJjY2NgXBoUGDBhAREQEe/fuZfXq1fz22288efJErYyuri6zZs3i8uXLLFy4kL179zJu3Lgit3vw4EGt3+u6deto27Ytn3/+OdOnT1ctf77vadu2lZWV6u+kpCRWrVpFnz59aNGiBSkpKezfv1/1ur29Pbq6uqxevZqcnJwi61qnTh0OHTpUZJnXkZ2VTeStO1SsXkVtecUaQYTnu4AoikKhID0tHdN8GSUXT5zBO8CXpb/N5+PeQ5kybBxbV6xHkVMyqd8PHj0iJjaWevm+13LlylGjalUuXrmidb2LV69St8C+UK92ba3rZGVlsXXXLjq0bo2Ojk7xVP4l5WRn8+jOfcpX9ldb7l3Zn/s3I7Sud+HACeIeRxPcOfSl3icrIxNFjgJjM81BHFG07Kws7twIp0qtamrLg2pW48bVa/94u/6VA7lzI5xb13L/Lx8/jOL8ybNUr6v5WFaccrKziY58iFtF9a5WbhUr8Dj8XpHrrp06h8Uf/8DmHxfy8NqdQq+f3XwAY3NTAhq9+Wzyf6sHjx8TExdHvXxjp5YzMKBG5UpcvPZ6P/oOnjxJoI8P47//lhb9+9Lrw9Gs27njNWusXU52DtGRj3AtsO+5VvR+8b731R/8/cmPbPlxEQ+vF973zm0+iJG5CQGNSmYogf/vcrKzeXjnHhWqqA8B4V0lgPs3Cn8fz53bf5y4x9GEdGlV0lX8f0lPRxcXC7tC2WC3ou/jbuWocZ0AB08eJjylUfmqfBLSm9GNuxPqXxd9XT2t7+Nt44KdqSURcY+Ktf6aZGdlcz/8Lv5V1YdG8K9WkYhrL3eD6f7tu0Rcv4V3RX+tZTIzM8jJycFEQwb1v5pSWTYf/09Jt02h0cCBA5k+fTr79++nadOmQG6Xzc6dO2Ntbc3o0aPp1auXKlPJ19eXWbNm0aRJE37//fdCWUW7d+/m4sWL3LlzB3d3dwAWL15MpUqVOHXqFLVr1+brr7+mZ8+eTJkyRbVe1XzZJQW3FxYWRkREBG5ubgBMmzaN1q1bq5X7z3/+o/rby8uLjz76iBUrVqiCMDNnzmTgwIEMHpw7vs1XX33F7t27i8w++/333/H29uann35CR0cHf39/Ll26xHfffacqM3369Ff6fJ5LT09n4cKFqjb9/PPPtG3blhkzZuDk5MTUqVOZMWOGKiOvfPnyXL16lTlz5tC/f3/VdsaMGaOWtTdz5kw+/fRTunTpAsDs2bPZsUP7BfeNGzfYtm0bx48fp27dukBuNldgYKBaufyZauXLl2fq1Kl88MEHRQYgIyIicHFxKbQ8OTmZbt268dlnnxUKRt68eRMLCwucX+Lu+vLly/H19aVSpdyTeM+ePZk7d65qP3Z1dWXWrFmMGzeOKVOmUKtWLZo2bUrv3r3x9lYfR8HV1ZVz585pfJ+MjAwyMjLUlhkaGmosq01yYhIKhQILK/WuL+ZWliTGJWhZS92udVvITM+gZuO8iSOeRj0h5vFV6oY0ZOTkcTx5GMWy3xegyFHQrlfnIrb2z8TExgJgW6B7q621tcbxyvKvp2md59sraP/hwyQnJ9O+1Zu/qE9NSkGpUGBmaa623NTSnOT4RI3rxEY9Zd+KzfSdOBJdPe0XufntW7EZc2tLylfSPE6IKFpSQu7/lKW1ldpyS2tLEmLj/vF2GzRtTFJ8AlPGfAZKJTk5OTRv34oO73R5zRq/WHpyKkqFEmML9R8MxhampCZqzvQ1sTSncd/22Hs4k5Odw83jF9j800LafzQAZz8vAKJuRXL98Fm6TPzf6opW1sXE5+5ntvlu6gDYWlrx6OnT19r2g8dRrNm+jd4dOvJu125cuXmTH/76EwMDA9o1bfZa29bk+b5nUnDfMzclLVFzJr2JpRmN+7TDztOZnKxsbp64xJafFtNubH+c/XKzn6NuRXL9yDk6T3y/2OsscqUmaj5nmVmaE66lK2bMoyfsWbaJdyePfulzlng1JuWM0NPVJTkzTW15cmYa5oaab5rZGFvgYe1EtiKHped2YmJgRPtKjTA2MGL95QOqcob6BnwS0gd9XT0USgWbrx4hPKbkJ75KSco975pZWagtN7O0JCn+cpHrfjn442fXwjmEdu9IvRbBWstuWbwGSxtrfKtoztAT4k2Q4JnQKCAggAYNGjBv3jyaNm1KeHg4hw4dYufOnQCcOXOGW7duqXXlUyqVKBQK7ty5UyjIEhYWhru7uypwBlCxYkWsrKwICwujdu3anD9/niFDhrxU/cLCwvDw8FAFmQDq169fqNzq1auZOXMmt27dIjk5mezsbCwsLNS2M3So+g+H+vXrs2/fviLfu169emqZLwXf+1U/n+c0tUmhUHD9+nX09PS4d+8egwYNUvucsrOzsbRUD77kz+xKSEjg0aNHanXU19enVq1ahbpu5m/j8zLPBQQEqGV4Aezbt49p06Zx9epVEhMTyc7OJj09nZSUFK2TO6SlpWkMHhobG9OoUSP+/PNP3nnnHbXPSKlUvnSm0dy5c+nTp4/qeZ8+fQgODiY+Pl5V/+HDh9OvXz/27dvHiRMnWLVqFdOmTWPjxo20aNFCrU6pqaka3+ebb75RC/QCTJo0iZA+7V+qnmoKNk2pYZkGJ/cfZfOStQybOFYtAKdUKDG3sqDPyMHo6uni6etNfGwcO9dsKZbg2bZdu5iWb4y5md98k9uMAt+RUsOyQgquo1RqbfqGrVtpULcu9naFx4J7Y16yjQqFgvW/LqZxl1bYOju81KaPbd7DlWPn6PP5cPTLvZnJO/61NP5P/fNsxavnL7F+6WoGjnqfCgG+PH4YxaJf/2Kt7Qo693kzg5zrUPB/RXtZKyc7tcHZHSu4kxyXyIWdR3H28yIzPYN9c9fSuG8HjeOgiZe37cB+pv2ed8No5n9yhxEo9H3xWrsgAAqlkooVfBjetx8AAd4VuB0ZyZrt20okePZPaNr3UmITuLjrGM5+nrn73rz1NO7bDiPJsH0DCp9jNZ1kFQoFa39ZREjX1i99zhKvQ/0AroOO1mP682uMVRf3kpGdO/TM9mvH6FGtBZuvHiZbkduLIjM7i9+OrqGcngHeti60CqhHbFoiEbEln32WW8+CS5QvPOgN/3o8mekZ3L0RzpbFa7B1dqBG47qFyu1dt41zh08w7MtxGMj1kShFEjwTWg0aNIgRI0bw66+/Mn/+fDw9PXnrrbeA3JPs+++/z6hRowqt56FhNiltwY/8y41fYTBzTUGfgts/fvy4KpMtNDQUS0tLli9fzowZM176fV72vQt61c9Hm+dt0tHRQfFs0PQ///xTlQ32nF6BO4SvOyvp8zYWFfi4e/cubdq0YejQoUydOhUbGxsOHz7MoEGDCo0rl5+dnR1xcYUzQPT09Fi/fj1dunShadOm7N27l4rPBo338/NTBQGLyj67evUqJ06c4NSpU2rdeHNycli2bBkffPCBapm5uTkdOnSgQ4cOfPXVV4SGhvLVV1+pBc9iY2O1TlTx6aefMnbsWLVlhoaGHLtX9F22/MwscscgKphllpSQUCgbraBTB4+xaNYfvD9hNIHVg9Res7SxQk9PD129vJ75zu6uJMbFk52Vjb7B6x36gxs2VA3oD7mTMABEx8ZiZ5s3MGxsXBw2RUy2YGtjUyjLLDY+XuPkFY+iojh59izfFwhYvikm5qbo6OoWyjJLTUjCtMCdfYDMtAwe3blH1N0H7Fi4Fnj2f6VUMq3fR/QaPxSvSr6q8se37OPIxt30mvABjh6FMzPFyzF/Nq5XQmy82vKE+IRC2WivYtWCpTRqHkLTNrnHBw9vLzLS0/nrp994u1e3QuM5FScjMxN0dHUKZZmlJ6VgYmH20ttxKO/GrRMXAUh8GktSTDw7fl2qev35cf/PoVPo8eVILBzezCQy/+uC69Shsl9epmhmVjYA0fFx2OU7lsUmxGNT4AbUq7KztqZ8vpuQAOXd3Nh77OhrbVebvH1PPcssLSmlUCZkURy83bh14hIASU/jSI6JZ8evy1WvP9/3/vpgKt2/HI6Fvex7r8vE4tk5K0H9nJWSmIyZhaZzVjoPb0fyKOI+WxesBvLOWV/2HkPfT4dRvrJkRL+u1Mx0chQKzMqpB45NyxmRnKn5Zm1SRiqJ6SmqwBnA0+R4dHV0sDAyJTY19ztWgurvqKQY7E2tCfauVuLBM1Pz3PNuUpz6vpackIi5pYWWtXLZPpvEx9nTjaT4RHau2FAoeLZv/Xb2rNnC0Mkf4+Llrmkz/27/j7tIlkUSPBNade/endGjR7N06VIWLlzIkCFDVMGUGjVqcOXKFXxecmr0ihUrEhkZyb1791TZZ1evXiUhIUGVYVSlShX27NnDu++++9Lbe/jwoaoL4LFjx9TKHDlyBE9PT7WZFu/evatWJjAwkOPHj9OvXz/VsuPHj7/wvdevX6+2rOA6r/r5PKepTbq6uvj5+eHo6Iirqyu3b9+md+/eL71NS0tLnJ2dOX78OMHBuenQ2dnZnDlzRuusqYGBgWRnZ3P69Gnq1KkDwPXr19UmLzh9+jTZ2dnMmDFD9cNx5cqVL6xP9erVtc4UamhoyNq1a+natStNmzZlz549VK5cma5duzJhwgS+//57tTHrnnueVTZ37lyCg4P59ddf1V5fvHgxc+fOVQue5aejo0NAQABHj6r/ALl8+TIh+WZ1LFjXV+2mWZC+gT4ePuUJO3eJ6g3yJisIO3eZqvW0D35/cv9RFv13DoPHjSCoTuHxYipU9OPU/qMoFArVd/P4wSMsbaxeO3AGYGpiojaDplKpxNbGhhOnTxPgmxsQysrK4uyFC4x87z2t26lSsSInzpyhd76ZV0+cPk2VSpUKld24fTvWVlY00pBh+ibo6evjXN6NO5dvEFA7b4y6O5dv4FezcqHyhsaGDPlGfYy+M7uPcPfqTTqPGoBVvh+Hxzbv5ciGXbwz/n1cvMvurHP/C/QNDCjvV4FLZ85Tu1FeV+bLZ85Ts0Hhu9kvKyMjA11d9ZsJurq6ude0JXxhq6evj52HCw+uhlO+el5G7v2wcLyqBhSxprqYe48wscwNtlk52dF1kvrx8NT6vWRlZNKgRytMbYr+wSPymBqbqM2gqVQqsbW25sT58wR4544VlpWVxdnLVxiZb3iFf6JqQCB3H6h3w7r78CHO9iWTKaSnr4edhzMPwm5TvnrevvYg7DaeVbWPTVRQzL0ojJ/te5ZOdnT5Qj3j//SGfWSlZ1C/RytMrYu+cSRejp6+Pi7l3bl98TqBtfOGQLl96Rr+NYMKlTc0NuKD79WHzDi18zB3rt6g+5iBWGmYMVG8uhylgoeJ0VSwcyXsSYRqeQU7N67le55fZFwUlZy8KaenT2ZObnDe1tQShVJBopbZOSE36auocdGKi76BPm4VPLlx4QpB9fJ+V9y4cJVKGq5RtVLmjp+W377129m9ejPvTfwQdw2TLgnxpknwTGhlZmZGjx49+Oyzz0hISGDAgAGq18aPH0+9evUYPnw4Q4YMwdTUlLCwMHbt2sXPP/9caFvNmzenSpUq9O7dm5kzZ5Kdnc2wYcNo0qSJqmvgpEmTeOutt6hQoQI9e/YkOzubbdu2aRwkvnnz5vj7+9OvXz9mzJhBYmKiWpAMwMfHh8jISJYvX07t2rXZsmVLoUHyR48eTf/+/alVqxaNGjViyZIlXLlypdDYV/kNHTqUGTNmMHbsWN5//33OnDlTaGbSV/18njMyMqJ///788MMPJCYmMmrUKLp3746TU+5sOZMnT2bUqFFYWFjQunVrMjIyOH36NHFxcYWyoAq289tvv8XX15fAwEB+/PHHQrN45ufv70+rVq0YMmQIf/zxB/r6+owZM0YtO7BChQpkZ2fz888/0759e44cOcLs2bO1bvO50NDQQhMc5FeuXDnWrFlD9+7dadasGXv27CEoKIiffvqJESNGkJiYSL9+/fDy8uL+/fssWrQIMzMzvv32WxYvXsyXX35J5crqwYzBgwfz/fffc+HCBZRKJZMmTaJv375UrFiRcuXKceDAAebNm6eWrZaamsqZM2eYNm3aC9v0Opp3asP8Gb/h6euNd4Avh7bvJfZpNMFtcrM81y1YTnxMLO9+NAzIDZzN//F3erzXj/L+vqoMm3KG5TB+NlNgkzYt2LdpJyvmLKJZh1CePIhi28oNNGtfMmOF6ejo8E7XrsxfsgQPNzfc3dyY//ffGBkZ0ap5c1W5L6ZNw8HenhHPuh337NKF90aPZsGyZYQ0bMj+I0c4ceYMc2fNUtu+QqFg0/bttAsNRV/DOCwJiYlEPXnC0+hoAO5GRgK5mW12GrLY/qm6rUPY8PsSnL3dcfPx4ty+oyTExFHjrQZA7nhlSXEJdBjaGx1dXRzc1bMkTS3M0DPQV1t+bPMeDqzextvD+mJpZ6PKbCtnZEg5o9cLzv5/1aZLR377bibefj74VvRn75adRD+J5q32uZM2LP9rMbHRMQybMEa1TsSt20DuuJOJ8YlE3LqNvoEBbp65N3tq1KvNtjUb8fTxxifAj8cPH7FqwVJq1q/9RsYGqtKiPvvmrcXO0wXHCu6EHTxDcmwCgU1yz58n1+4mJT6RpgNzu2Vf2n0Mc1srrF0cyMnJ4dbxi9w5G0aLod2B3CCjjav64NSGJrnd6QsuF69GR0eHd9p3YP7q1Xi4uODu7ML81aswMjSkVXDeeD5fzPwJB1sbRvTNDahlZWVx+17uIPxZ2dk8jY3l+u3bmBgb4e6ce0OtV4eODJwwjnmrVtKiUSOu3LjJup07+HzY8MIVKSZBzeuzf/467D2dcfB249qhs7n7XnDuDZ6T6/aQEp9E03ffBuDS7uOY21lh7Wyfu++duMSds2E0fz/3Jom+gT42rurBvnKqfa/sdRc0NjDEzTIvA93Fwg5fOzcS01N4nPzPx1F8E+q1bcq6Xxfj4u2Om195zuw5SkJ0HLWaNwJg97KNJMUl0GlY32fnLPWsZ1NLM/QNDAotF6/naMRFulRpysOEaO7FP6aWeyCWRmacjMydUKSFX20sDE1Zc2k/ABcf3SKkQg06BYWw9+ZpTMoZEepfl7P3r6u6bAZ7V+NBwlNiU5gnmD4AAQAASURBVBPR09XFz96Dai5+bLpacpNe5RfcviXLZv2Fm48XXv4VOL7zIHHRsdRv2QSALX+vISEmjl6jc8eYPrxtL9Z2Nji45l4P3Qm7yf6NO2jUJq/7+d5129i+bD19PhyCtYOdqpeGoZEhhsaax44WoqRJ8EwUadCgQcydO5eWLVuqdTesUqUKBw4c4PPPP6dx48YolUoqVKigNntmfjo6Oqxfv56RI0cSHByMrq4urVq1UgskhYSEsGrVKqZOncq3336LhYWFKlOqIF1dXdatW8egQYOoU6cOXl5ezJo1i1b5BhLv2LEjH374ISNGjCAjI4O2bdsyceJEJk+erCrTo0cPwsPDGT9+POnp6XTp0oUPPvigyMH0PTw8WLNmDR9++CG//fYbderUYdq0aQwcOPAffz7P+fj4qGbyjI2NpU2bNmqD7w8ePBgTExOmT5/OuHHjMDU1JSgoSG3gfk0++ugjHj16xIABA9DV1WXgwIF06tSJhATtg9LPnz+fwYMH06RJExwdHfnqq6+YOHGi6vVq1arx448/8t133/Hpp58SHBzMN998o5bFp0mfPn0YP348169fx99f851rAwMDVq5cyTvvvKMKoA0bNgw/Pz9++OEHOnXqRFpaGl5eXrRr146xY8eyceNGYmJi6NSpU6Ht+fr6EhQUxNy5c/niiy/w8vJiypQpREREoKOjo3r+4YcfqtbZsGEDHh4eNG7cuMj2vK7awfVJSUxmy7K1JMTG4+Lpxogp47B1yL1YT4iNJ/ZpjKr8oe17UOTksOz3+Sz7fb5qef23ghkwNvduvo29LaOnTmDVn3/z5fAJWNla06xDK1p17VBi7ejfsycZGRl8O3MmSUlJVA4M5Jfp09Uy1KKePFHr3la1cmW+/uILfp87l9nz5uHm4sI3X3yh1iUU4OSZM0Q9fkyHAhOCPHfw6FGm5Juw47OpUwEY0r8/7+cL+r+uivWqk5qUwuF1O0iOT8TezZmen7yHpV1ugC45PpGE6Ff7MXVm9xFysnNYM2uB2vLGnUIJltnO/pH6TRuRnJjI2r9XEB8bh5uXB+OmTcTeMfeHeXxsLDFP1Adu/2xo3s2HOzfCObr3IHaO9sxa8icAnfp0R0dHh1XzlxAbHYuFpQU16tem+8CXzwJ+HRVqVyY9JZWzWw6QmpCMjYsDrUf2xtzWCsjtPpwcm3c8z8nO4fjqnaTEJ6FvoI+1iwOtRvbCI0i6Xb0J/Tt1zj0ezplNUnIylf38+GXyFLUMtainT9HNNzTC09hYeo8do3q+eP06Fq9fR41Klfnj69ybOJV8fflhwmf8sngRf61cgYujIx8NGkzrJiEl1pYKtSuRkZLK2S0HVfteqxG98u17yaTk2/cUOTmcWL1Lte9ZudgTOuIdPIJ8tbxD2RZg78kvnfKOD6Ma5QYBt4Yd4+u92m8ElgWV69cgLSmFA2t3kByfgIO7M73HD1VlPv+Tc5Z4fZejbmNiYESITw3MDU14nBTL4jPbSEjP7ZpvZmiCpXFel/zMnGwWnN5C28CGDG3QmbTMdC5H3Wb3zVOqMgZ6+rSv2AgLI1OycrKJToln9cW9XI66/UbaVL1RHVKTktm1chOJcQk4e7gy+PPR2Djkjn+YGBdPfHTeMB1KhZKtf68h9kk0unp62Dra07ZPF+o9C7YBHN2+j5zsbBZO/13tvVp270Boz45vpF1lgkK6bZYlOsqXGcBJCFHiJk+ezPr16zl//nxpV6XEjRs3joSEBObMmVPaVdGqTp06jBkzhl69er3SevtvnSmhGpWOEJ+aJD18WNrVKHbmLi4sOrW1tKtRrPrVblPaVSgRZ+6FlXYVilVN90BmHFhW2tUoVh81eae0q1AiksKul3YVipV5oD8/7F/y4oL/Yz4O6U3DX/9ds8YeGT6bpWe138j9X9SrRmhpV6FETNz+R2lXoVhNbfUem68cLu1qFKt2lRqVdhX+scSN20q7ChpZdNB8Q/vfruRGuBVCCC0+//xzPD09ycnJKe2qaPTkyRO6du3KO+/8O38QCiGEEEIIIYR4edJtUwjxxllaWvLZZ5+VdjW0cnBw0DjWnhBCCCGEEEK8EUpFaddA5COZZ0KUEZMnT/5/0WVTCCGEEEIIIYT4XyLBMyGEEEIIIYQQQgghtJBum0IIIYQQQgghhBBlicy2WaZI5pkQQgghhBBCCCGEEFpI8EwIIYQQQgghhBBCCC2k26YQQgghhBBCCCFEWaKUbptliWSeCSGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbTQUSolF1AIIYQQQgghhBCirEhctqa0q6CRxTtdSrsKpULGPBNCiGI059j60q5CsXq//tvci4sq7WoUO3drJ3r8PbG0q1GsVvSZSuLWnaVdjWJl0aYlH278b2lXo1j91GE0/ZdPLe1qFKuFPSeSFHG3tKtRrMy9PJlxYFlpV6NYfdTkHZae3VHa1Sh2vWqE/uva1atGKA1/HVra1ShWR4bPpuP88aVdjWK14d3v+GDN9NKuRrH6vcsntPrzw9KuRrHaPuSn0q6C+JeQbptCCCGEEEIIIYQQQmghmWdCCCGEEEIIIYQQZYhSqSjtKoh8JPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRKku7BiIfyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCCKGFdNsUQgghhBBCCCGEKEsU0m2zLJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRGbbLFMk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFEqSrsGIh/JPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoSxQy22ZZIplnQgghhBBCCCGEEEJoIcEzIYQQQgghhBBCCCG0kOCZEOJ/VkhICGPGjCntagghhBBCCCFE8VIqy+bj/ykZ80wIIUrZ+T3HOL3tACnxSdi6OhLSqz1u/uVfuN6DmxGs/GYOdq6O9J06RrV85TdzuH/9dqHy5asE0Gnsu8VZdZUNq9exaslyYmJi8SrvxbAPRxBUrarW8hfOnmf2f38l4k4Etna29OjzDu07d1S9vmPzNqZ/9W2h9bYe2Ek5Q0MAer/dg8dRUYXKdOjyNqM++bAYWlVYS786tK/YCCtjM+7HP2Hh6W1ce3pXa/lGXlXoUKkxTuY2pGZlcOHhTRaf2U5yZlqhsg08gxjduDun7oXxw4GlJVJ/TZRKJX/u2Ma6Y0dISkujkocn47p0p4Kzs9Z19l48z4JdO7kXHU22Igd3O3v6hDSjTe06qjJ/bN/Knzu2qa1nY27Oji+nlVhbnmvoVYWmFWpgYWRKVFIM6y8f5HbsQ63l9XT1CPWrQ023ACwMTYhPT2bXjVOcvHcVAF0dXZr71qK2eyCWRmY8SY5j89UjRX73xa2ZT03aBNTH0tichwlPWXJuBzee3tNYdnDdDjQuX/j/70HCUz7bNhsAPR1d2lVsSKPyVbAytiAqMYaVF/ZwKSq8RNuRn1Kp5I+/F7Nu61aSkpOpFBDA+OEjqODlpXWd8IgIZi9axLVbN3n0+DFj3x9Kr86d1cqcvXSRxatWEXbzJtGxsfwwaRIhDRqWcGtyXdl/kos7jpKakIS1iwP1e7TC2ddTY9mH1++wecbCQsu7TxmOlbM9AHfOXuXctkMkPolFkaPA0sGGoBYN8Kuv/fj6JpzaeYijm/eQFJ+Ig5sTof264BlQ4YXrRV6/zYIvZ+Hg7szQb8e/gZq+vH9jmzSp6uxDr+otCXDwwM7Uiglbf+fQnQulXS2tWgfUo1PlJlgbmxMZ/5i5Jzdx9XGE1vJNvKvRKagJLhZ2pGSmc+7BDeaf2kJSRiqQe+zrWqUpTX1qYmtiwYPEpyw8vY1zD268oRZBsHc1WvjVxtLIjEeJ0ay6sJdbMQ80lu1XszX1vSoXWv4wMZqpu+YDUM3Fl1YB9bA3tUJPV5cnyfHsvnmKk5FXS7Qd+bULbEjXqk2xMbbgblwUs4+v50pU4WvR59pXbEj7io1xNLfmaXI8y87vYs/N06rXW/nXo7lfbTytnQC4FX2f+ae2cONpZIm3RQhtJHgmhCgxmZmZlCtXrrSrUaSsrCwMDAxK7f2vn7jA/qWbeKvf27j4enJx3wnW/TiP/tPGYmFrrXW9jNQ0tv+xAo+KFUhNSFZ7rf3Iviiyc1TP01JSWDzxv/jVDiqRNuzbtZffZ/7CqE8+pFKVymxZv4lPPxzP3GULcXRyLFT+0cNHfD52PG06tmPC5M+5cvEys6b/hKWVFcHNmqjKmZiasmDlYrV1nwfOAH6dPweFIq+dd8LvMH7URwQ3Cyn+RgL1PSvTv2Zr5p7azPUnkTT3rcWnzfoydtPPxKQmFCrvb+/B8AZdWHhmG2fuX8PGxIIhdTvwfr23mXFwmVpZO1NL+tQIJayIHwQlZdHe3Szdv48vevXGw96Bebt2MGL2L6z+dCKmRkYa17E0MeXdFqF4OTpioKfHoStX+HL5EqzNzakfEKgq5+3kzK8fjFA919PVKfH2VHPx5e3Kway+uI87sQ9p4BnEe/U68u2+v4lPS9K4Tv+arTE3NGHF+d08TYnH3NAEXZ285Pw2AfWp6RbAygt7eJIci7+DJ+/WacesQyt5kPi0xNtUx70ivauHsujMVm5E36dphRp8FNyLT7f9TmxqYqHyS87uYNWFParnujq6fNXqPVUwEKBLlaY08KzMvFNbeJQYTZBzBUY16sbU3QuIjC8clC4JC1euZOnatUz66GM83FyZu3Qpwz+dwJq58zA1MdG4TnpGBm7OTjQPbsyPc+ZoLJOWno6vtzftW4YybuqXJdkENeGnLnNsxXYa9WqLo48HYQdPs23W33SfPBwzWyut63WfOoJyRnnHNiNzU9XfhqbGVG8TjJWTHXp6ety9dIMDC9djbGGKeyWfkmyOVpePnWX7orW0HdgNd39vzuw+wpJvf2f4D59haWejdb301DTW/7YY78p+JCdo/l8sLf/GNmljbGDIrZj7bL12lGmth5Z2dYrUqHwVBtVpz5xj6wl7cpdQ/7p80WIgI9b9SHRKfKHygQ5ejG7cg3knN3HyXhi2JpZ80KATIxp24Zu9udcTvWuGEuJdnV+PruF+/FOqu/rxabN+jN/yG3eKuMlSXGq6+dOtajOWn9tFeMwDGpevyvBGXfly5zziNJyjVl7Yw/rLB1XPdXV1+PytAZy9f121LCUznW3XjvM4KYZshYIgZ2/61WxNUkbqG7muCPauxvv13+bXI6u58vgObQIa8FWr93hv1bc81fA9tQ1swIDa7fjvoRXceHoPf3sPRjfuTnJGGicirwBQxcWH/bfOcvXxHTJzsulWtRnTWg/l/dXfabzmEv8ecXFxjBo1io0bNwLQoUMHfv75Z6ysrLSuM2DAABYuVL8ZVbduXY4fP656npGRwccff8yyZctIS0vjrbfe4rfffsPNze2l6ybdNoX4l1AqlXz//fd4e3tjbGxM1apVWb16NQD79+9HR0eHPXv2UKtWLUxMTGjQoAHXr+eeeK9fv46Ojg7Xrl1T2+aPP/6Il5cXymfpuVevXqVNmzaYmZnh6OhI3759iY6OVpUPCQlhxIgRjB07Fjs7O1q0aAHAxo0b8fX1xdjYmKZNm7Jw4UJ0dHSIj48HICYmhnfeeQc3NzdMTEwICgpi2TL14EJKSgr9+vXDzMwMZ2dnZsyYUegz0NHRYf369WrLrKysWLBgAQARERHo6OiwcuVKQkJCMDIy4u+//36p9y8pZ3YconJwbYKa1MHWxZGmvTtgbmPJhb3Hi1xv94K1BNSrhnOFwhkNxmYmmFqZqx6Rl29iUM4AvzpVSqQNa5atpFX7NrTp2A7P8l4M+3AkDg72bFq7QWP5zWs34ODowLAPR+JZ3os2HdvRqn0bVi1drlZOR0cHG1tbtUd+VtZWaq+dOHIMFzdXqtaoViLtbBvYgL3hZ9l760zuneoz24hJTaSlXx2N5X3t3HmSEs/268d5mhLP9aeR7L55Cm9b10LtHNmwG6su7uVxcmyJ1F0bpVLJsgP7ebdFS5pVqYaPswuTe/UhPTOLHWdPa12vpo8vTatUpbyjE2529rzTJAQfZxfO31bPWtLT1cXOwkL1sDYzL+kmEVKhBicir3Ai8gpPkuNYf+Ug8WnJNPTSHDwOsPfEx86NP09s4Eb0PeLSkoiMf0xE3CNVmVruAey+eYqwJxHEpCZyNOIS15/cJcSnRom3B6BVQD0O3j7HgdvneZQYzdJzO4lNTeQtn1oay6dlZZCQnqJ6lLdxwaScMYdu52WXNPAKYtPVI1x8dIunKfHsvXWG/2PvvsOjKtoGDv92N733RkiBQEIIvSX03jsIAqIIigVsqK/9tX32gl2xgCgCUqQ3QXoPJdQkJIGQ3ntPdvf7I7Bhk11ATeHV576uvXRnZ87OcE7OOTvnmZlzaZcZERTaKG3SarWsWL+O+++exsDevQnw8+f1Z56lrLyc7Xt2Gy3XNjCQJx6cy7D+AzAz8uCjV7fuPDrrfgb27t1Q1Tfo7M4jBPbuTFCfLjh6utJz6ghsHO25uM/43xKApa01Vva2updSWXN77hXoj3+nNjh6umLn5kS7QaE4NXMnLbbpoi+ObtlDpwGhdB7YE9dmHgy/bxL2zo6E7zx403Kbv/+VkF5d8W7l1zgV/RP+iW0y5mjCBb47tpF9lyOauiq3NK5tH3bFhLMzJpyk/Ax+OL6JrOJ8o+epQDef6sjgyMNkFOUSmRHPjuhjBLjU/Dge0LIza87u4WRSNOlFOWyPPsrp5EuMD+nTKG0a1Korh+PPcSj+HGmFOaw+u4fckkL6tuhoMH9ZVQUF5cW6l6+jB1ZmFhy5el6XJyYrkTMpMaQV5pBVnMee2FMk52cSUOt+o6FMbNefHdHH2B59jMS8DBYdXU9mUR6jgw1H/A5q1ZVtkYfZfzmCtMJs9l0+zY7oY0zpMFCX5/09y9gceYjLOSkk5Wfw6YFfUSgUdGzWqlHadMfQaO/MVwOaPn06ERERbN++ne3btxMREcHMmTNvWW748OGkpqbqXlu3btX7/Mknn2TdunWsXLmSgwcPUlRUxOjRo1Gr1Ua2WJd0ngnxD/Hyyy+zZMkSvv76ay5cuMBTTz3FPffcw759+3R5XnrpJT766CNOnDiBiYkJs2fPBiAwMJAuXbrwyy+/6G1z+fLlTJ8+HYVCQWpqKv369aNjx46cOHGC7du3k56ezpQpU/TKLF26FBMTEw4dOsSiRYuIj49n8uTJjB8/noiICB566CFeeuklvTJlZWV06dKFzZs3c/78eebOncvMmTM5duyYLs+zzz7Lnj17WLduHb///jt79+7l5MmTf+nf6rnnnuPxxx8nMjKSYcOG3db3NwR1VRXp8cn4hujfCPiGtCYl1vhwsPMHwsnLzCFs/ODb+p5zB04Q2KMDpub1HwVYWVnJpehLdO3RTS+9S49uXDx33mCZi+cv0KVW/q49unEpMpqqqipdWmlpKdPHT+HuMZN56enniYk2PqSisrKSXdt3Mnz0CBSK+o9uUilVtHDy4mxqrF76mdRYWrs2N1jmUmYCzlZ2dPSq3r/2Ftb08GnL6eRovXyT2w2goKyYPXGn6r3et5KcnU12YQGhgUG6NDMTUzoHBHD2ypXb2oZWq+X4pWiuZmbQuaV+JExiViYjXn2JcW++yos/LSHphs72hqBSKPG2dyM6Q79jITrzKn6OhoehtvVoQWJeOgMDuvLqkDm8MPBexgb3xlSp0uUxUaqo0ujfXFWqq2jh5FX/jahFpVTi5+jJ+VrDX86nxen9ILyZvi06cjH9st7TelOlikpNlV6+SnUlrYwcz/UtOS2N7JwcQrt00aWZmZnRuV17zl5svKFG9UVdVUVWQgrewfrD/LyDW5IeZ3h47XW/vbmIn5/5kM0fLyUlyvjfnVarJTnyMvnp2UaHgjY0dVUVKVcSadk+SC+9Rfsgki4Zr/vpvUfJTc+i/6ThDV3FP+2f2KZ/AhOlipbOzYhIjtFLj0i5RJCb4eM/KuMqLtb2dPEOBMDewoaefu04kVjzcNhEqaJCrX/uq1BX0sbNr34bYIBKocTHwaPOsNPIjPg6D9aM6enXjqiMqwajjq8LdPXB3daRmKykv1Pd22KiVNHKxZtTte5tTiVH08bdz2AZU6WJwX3Q2tUHlcJw94S5iRkmSqVu+K34Z4qMjGT79u18//33hIWFERYWxnfffcfmzZt1QR/GmJub4+HhoXs5OdVEDefn5/PDDz/w0UcfMXjwYDp16sSyZcs4d+4cu3btuu36ybBNIf4BiouL+fjjj9m9ezdhYWEAtGjRgoMHD7Jo0SLmzp0LwFtvvUW/ftXD4p5//nlGjRpFWVkZFhYWzJgxgy+++II333wTgEuXLnHy5El++uknAL7++ms6d+7M22/XzFe0ePFimjdvzqVLl2jdujUAAQEBvP/++7o8zz//PIGBgXzwwQdAdUfd+fPneeutt3R5mjVrxjPPPKN7/9hjj7F9+3ZWr15Njx49KCoq4ocffuCnn37SRbMtXbr0T4XZ3ujJJ59kYq05cm72/YaUl5dTXl6ul2Z+w5DC21FaWIJWo8HazkYv3crOhhIjwz9y07I4uHo7U198GKVKZTDPjVIvJ5KdlMbQ2ZP/VN1uV35ePhq1Gkcn/WEtjk6O5GQbjqLKyc7B0cmxVn4n1Go1+Xn5OLs409zPh/+8/Dz+AS0oKS7mt1/X8uTc+Sz6eTHePnX3+6F9BygqKmLoqBH117gb2JlboVKqyC/VHyKbX1qEg5fhaKpLWYl8fmgNT/aZiqnKBBOlivDESJaEb9HlCXT1YUDLzjy39asGqfetZBdW33w72drppTvZ2JKWe/MouKLSUka+9jIVVVWolEqemzyFHjd0wrX19eX16TPxcXUju7CAxTt3MOezj/n1uZdwsLa+yZb/OmszS1QGbq4Ly0uxszD8nc7Wdvg7eVGpVrMkfDPWZpZMbj8AKzMLVkZU31BFZSTQv0Un4rKTyS7Oo5WrDyEeLVA2QEdtbbZmVqiUSvLLivXS88uLsbewMVKqhr2FDe09A/jmyDq99HNplxkeGEp0RgIZRTkEu/vTqVlgo7QJIDun+vhydtQ/Fzg7OpCakdEodahPZUUlaDVaLO30jzNLO2tKCooMlrGyt6XPzDG4+niirlITc/QMmxcuZczTs/Bs7afLV1FSxrLnPkJdqUapVNBr+qg6nXSNpaSgGK1Gg429/nnPxt6WOCPXrezUDP5YsYn7X3vitq5bje2f2KZ/guvX3bwy/b+fvNIiHC0NX3ejMq7y8b6VPNt/hu66eyzhAt8erYmEP518iXFt+3Ah/TJpBTm09wqgh0+w3lD9hmJjfu0aVet8XlhWjL37ra+LdhbWtHVvweLjm+t8ZmFixjujHsFUqUKj1bLi9E6iMhp+Xk47C2tUShW5Jfp/K7mlhThZ2hksczIpiuFBoRy+eo7YrCRauTRnaOsemKpMsLewIae0bsfg7G6jyS7Ob9S56YRxxn4H/dnfQrUdOXIEe3t7vd9foaGh2Nvbc/jwYQIDA42W3bt3L25ubjg4ONCvXz/eeust3NzcADh58iSVlZUMHTpUl9/Ly4uQkBAOHz7MsGHDbqt+0nkmxD/AxYsXKSsr03UsXVdRUUGnTp1079u3rxm253ltMvCMjAx8fHy4++67efbZZzl69CihoaH88ssvdOzYkeDgYKD6pLNnzx5sbOr+WIuLi9N1nnXtqj+MKDo6mm7d9KOMunfXH+amVqt59913+fXXX0lOTtadkK2v/cCOi4ujoqJC1zEI4OTkdNMT6M3UruOtvt+Qd955h9dff10v7dVXX8VzWMc/X6HaP1a1AHV/wGo0GrYuWkHY+CE4erje1qbP7z+Os7cHni0aNpqkThO03DwCrNZn14cGX08ODmlLcEhb3edt27fjkfseZP3qtcx/+ok6m9u2aSvdQ7vj4ury1xpwm2oHqisUCl3da2tm78qsriNZe24PZ1JicbS0ZUbnYTzQYyyLjq7HwsSM+b0m8+2xDY32JHXbyXDeWVUzPHbhg9Xz3dTeU1q0dXdqLVbm5vzyzPOUVJQTfimahevX0czZhS4B1ZF2vdrU7L8AvGjv58/4t15nS/gxZvQfaGyz9UJbZ09hdD8pUaAFlp3aTllVBQDrL+xnVtdRrD27h0qNmnXn9zG1wyBeGDgTrRayS/I5nniR7s2DG7IZ+vWv1SYFCoPtrK2PfwdKKss4maw/LP+XUzu4v9to3h35CFogoyiXA1ci6OPfsR5rXWPb7j94+9NPde8/efP/AAPHnra6bf+ratf9ZouSOXi44OBRc85yb9mcotwCzvx+WK/zzNTCjEmvPExleQUpkVc4unoHdq6OeN3GwjINx8A53MBu02g0/PbFT/SfPAJnT7dGqttf9U9s0/++2uduhYG065rbu/Fg6Fh+jdjFqeRLOFnaMavbSB7pOZEvDlVPZfL9sU3M6zWJLyc8A2hJK8zhj5gTDGpleBh8Q6hb+9s7n4f5hlBaWcaZlJg6n5VXVfD2rqWYm5gR6ObD5PYDyCrOJybr5pGv9cfAfjLSpuWnd+JoZccn455EQXVH286Y40zpMAi1VlMn/+T2A+nfshP/2fIllbUi1v7xDPx73AmM/Q567bXX/tZ209LSdB1eN3JzcyPNwCJh140YMYK77roLX19frly5wiuvvMLAgQM5efIk5ubmpKWlYWZmhmOtB3bu7u433W5t0nkmxD+ARlN9Yt2yZQvNmumHfZubmxMXVz0P0Y0T41/v2Lhe1tPTkwEDBrB8+XJCQ0NZsWIFDz30kN53jBkzhvfee6/O93vesCpf7Q4nrVZbpxOl9k3PRx99xMKFC/nkk09o164d1tbWPPnkk1RUVBjMb4yhjozKyso6+WrX8Vbfb8gLL7zAggUL9NLMzc358dQ2IyXqsrS1QqFUUlzryXZJYRFW9nU7KStKy0m/kkTG1RR2L6t+iqq9tmT0wtkvMOmZOfgE1wybqyyvIPrYGXpOGFpnW/XF3sEepUpVJ8osLze3TnTZdU7OTuQayK9SqbCztzdYRqlU0rpNIMmJdYcgpKemcTr8JK++++ZfbMWtFZSXoNaocbDU3y92FtbklxmOKhnfti+XMhPYdPEQAAl56ZQdr+CNYQ/y65ld2FvY4GbjyH/6z9CVuf63snz6azy18VPSi3LrtR1927Yj5Bk/3fuKa8NkswsLcLnh3z63qAjnW8xPplQqae5a3Ykb2Myb+PR0ftz1u67zrDZLc3MCPL1IzGy4CfaLK0pRazTYmev/jduaWxrtoCwoLya/rEjXcQaQXpiDUqHA3tKWrOI8iitKWRy+GROlCmszC/LLihndptdNh83Ul8KKEtQaDQ61oszszK0oqBW9YEifFh04HH8WtUb/BrywvITPDq7CVKnCxtyK3NJCpnQYZHAS7vrQNzSMkBsiEyuunZuzcnNxuWE+w5y8PJwcHRqkDg3JwsYKhVJRJ8qsrLAYK7tbRwhe5+bvTeyxs3ppCqUSe7fqfyOX5p7kpmUSse1gk3SeWdlZo1AqKcrXP/aLC4qwsat7zqgoLSPlcgKp8Uls/bG68+L6deuNGU8y84VH8Q9p3Sh1N+af2KZ/guvX3dpRZvaWNnWi0a6b1H4AkenxrLs2wf7V3DTKjlTw7qhH+OXUDnJLCykoL+ad3T9hqjLB1tyKnJIC7u06gvTC+r3eGlJUfu0aVSsS2tbCioKyWz9E6+nXjmMJFw12MGlBNzl/Un4GnrbODA/qQczBhu08Kygrrt5PVvpRZg6WtgYXQIDqIZoL96/kswOrcLSyJaekgBFBYRRXlNW5rk1q15+7Ow7mha1fcyUn1eD2ROMz9jvImNdee61OZ1tt4eHhgOGH74Z+T95o6tSpuv8PCQmha9eu+Pr6smXLljqjjf7MdmuTzjMh/gGCg4MxNzcnISFBNyzzRtc7z25lxowZPPfcc0ybNo24uDjuvvtu3WedO3dm7dq1+Pn5YWJy+6eOoKCgOhM2njihP3nygQMHGDduHPfccw9Q3VEXExNDmzbVq/YFBARgamrK0aNH8fHxAapXYrl06ZJee11dXUlNrbmwxsTEUFJy65uRW32/IfURmqwyMcHdrxkJF2Jo1aVmGfKrF2Jo2aluRIu5pTn3/t9Temlndh8h4WIcY+bfg72r/tDJS8fPoq5U06ZnJxqKqakprQNbc/L4CXr376tLP3n8BD37Gp6sOzikLUcOHtZLO3EsnNZtAo0eW1qtlriYWPxbtqjz2fbN23BwdCC0Z8NNdK7WqLmck0J7j5aEJ0bq0tt7tOREUpTBMuYmpnU6LDTXI+xQkJKfxTObPtf7fGrHwViYmLH0xFayGqBjxtrCQm8FTa1Wi7OtHceiown0ro5OrKyq4lRsLI+NGfuntq1Fq+uMM6SiqpL49HQ6tmi44WZqrYak/Axau/pwLq3mvNfa1afOnGHXXclJpYNnK8xUplSoqzt03Gwc0Wg15Ne68a/SqMkvK0apUNLeK6DOXDwNQa3REJ+bSluPFpy8YU6Zth4tbjl8JcjNFw9bZz67vNponkqNmtzSQlQKJV29g/RW5KxP1lZWeitoarVanJ2cOHbqFEEB1Z3+lZWVnDp3lsfmzGmQOjQklYkJLj5eJF+Mw79TzbUjKTIOvw5BNympLzsx1eDDEz3a6nm6moLKxAQv/+ZcPhtNm24ddOmXz0UR2KXuohzmlhY88v7zemnhvx/kysVLTHlyNg6uznXKNLZ/Ypv+Cao0auKyk+ng1Yqj11ZghOoVlY8lGD5PmZuYotHWvu5Wv6/987hSXUVOSQEqhZKeviEcvHKWhqbWakjIS6ONm69e9Fj1+9iblKxehMjNxpHD8edu+/tMlA0/pLhKoyYmK4lOzVrr1a1Ts9YcvWp47tvr1FoNWcXVc3H2a9mJ4wkX9KLVJrcfwLROQ3hp26JGjKATt+PP/g6aP3++3u9KQ/z8/Dh79izp6el1PsvMzMTd3f22v8/T0xNfX19iYqr/zjw8PKioqCA3N1cv+iwjI4OePXve9nal80yIfwBbW1ueeeYZnnrqKTQaDb1796agoIDDhw9jY2ODr+/tTSw8ceJEHnnkER555BEGDBigF8U2b948vvvuO6ZNm8azzz6Li4sLsbGxrFy5ku+++w6VkTk/HnroIT7++GOee+455syZQ0REhG71y+s9/QEBAaxdu5bDhw/j6OjIxx9/TFpamq7zysbGhjlz5vDss8/i7OyMu7s7L730kt6KZAADBw7kiy++IDQ0FI1Gw3PPPacXbWfMrb6/IXUZ1odt3/6Ku583ngE+nNt7nMLsPDoMqO4IOrB6G0W5BYyYOxWFUomLt4deeUtbG0xMTeqkQ/XCAgGdg7G0aZj5pa6bNG0K773+Fq3bBBIc0pYtGzaTkZ7BmAnVnS/ff/UtWZmZPP9q9UIRoyeOY8OadXz9yReMHDeai+cvsH3TVl5847+6bf70/Y+0CQmmWXNvSoqLWbdqLXGXYnn8Gf3OQ41Gw44t2xgycjiqP9Gp+1dsiTzM/J6TiMtJISYzkUGtuuJibc/OmOMATOs4BCcrO748vBaAk0nRzA0dx5BW3TiTWj1s876uI4i5tqIjQGK+/txOxRWlBtMbikKhYFq//izZ9TvNXV1p7urKj7t+x8LMlGGda4awvPrLT7jaOzB/dPU+XbLrd4Kb+9DM2YUqdRWHIi+yJfw4z99V8+Tvkw3r6NM2BA9HR3KLivjh9x0Ul5UxupvheQTry964U8zoPIzEaytm9vRth6Olre6mflSbnthb2LD89O9A9X4a0ro70zoNYXvUUazNLBgT3JtjCRepvLZIgI+DO/aWNqTkZ2JvYcOwwFCUKNgde/NVFOvL9qijPBQ6nis5KcRmJzOgZSecrezZHVu9aMpd7QfiaGnLt8f0V7jt26IjsVlJJOfXjfZr4eSFo5UdCblpOFrZMj6kHwqFgq2Rh+vkbQgKhYJp4yewZOUKfJp50bxZM5asWImFuTnDB9QM6/3v++/j5uLM/NnVHWqVlZVcTkjQ/X9mdhbRcXFYWVjQ/No1q6S0lMSUFN02ktPSiI6Lw97WFg8Dw0HqS/shYexZ/Bsuvl64t2xO5P6TFOXk06Zf9d/S8d92UZxXwIDZ1U/Bz+06gq2zA45ebqjVamKPnuXKqUiGPFyzEM/pbQdw9fXCztURTZWahPMxXDpyhj4zRjVYO24ldNQA1n35M14tmuPd2p+TfxwmPyuXroOrH5jsWrGRwtx8Jjw6E4VSiVtz/YU1rO1tMDE1rZPelP6JbTLG0tQcb/uaqR+87Fxo5eJNQVlxvUc7/10bLhzgyT5Tic1OIjojgWGB3XGxdmB7VPWK5DO7DMfZyo5PDqwCIDwxknm9JjE8MJTTyZdwtLLlge5juJSZQM61625rl+Y4WdtxJTsVZ2s77u44BIVCwbrz+4zWoz79EXOCWd1GcTU3jSs5KfT274CjlR0HrlSvhjyubR8cLG1ZekL/wXMvv3ZcyU4hpaDuwjvDAntwNTeNrOI8VEoVIR4tCPVty4rTOxulTb+d28uz/WcQk5lIZEY8I4J64mbjyJZr15P7u43C2dqeD/cuB6qntQh09SEq4yo25lZMbNcPP0dPPrr2OVQP1by36wje2/0z6YU5ugjE0spyvUjxfzzNnTls889ycXHBxeXWU6uEhYWRn5/P8ePHddP8HDt2jPz8/D/VyZWdnU1iYqJudFSXLl0wNTVl586dusXuUlNTOX/+vN5c3bcinWdC/EO8+eabuLm58c4773D58mUcHBzo3LkzL774om5o5q3Y2dkxZswYVq9ezeLFi/U+8/Ly4tChQzz33HMMGzaM8vJyfH19GT58eJ1OrBv5+/uzZs0ann76aT799FPCwsJ46aWXeOSRR3RPLF555RWuXLnCsGHDsLKyYu7cuYwfP578/JqV4T744AOKiooYO3Ystra2PP3003qfQ/Xwy/vvv5++ffvi5eXFp59+elsrct7O9zeUwB4dKC0q4eiGPyjOL8C5mQcTFtyPnUv1U5HivEIKs/P+9HZz0zJJvhTPpGcaPoJjwJCBFOTns+yHn8jJzsavhT9vf/we7p7VHXo5WdlkpNV0Bnl6efLWx+/x9SdfsHHtepxdnJm34HH6DqyJIiwqKmLhux+Sm52DtY01LVu3YuE3nxHUVr9D81T4STLS0hkxZmSDt/PI1fPYmlsxqV1/HC1tScxL5909P+uemjpY2uBsXTP0cd/l01iamjEsMJSZXYZTXFHGhfQr/HJqR4PX9c+4d+BgyisreW/NKgpLS2jr68fnD8/Ti1BLy83VC2svq6jgvTWryMjPw9zUFF83d964516GdqpZOTEjP4+Xf/6RvOJiHG1sCPH1Y/GTC/CstbhEfYtIicHazJJhgT2wM7citTCbb49u0HVY2plb6w0DqlBX8s2RdUxs158Ffe+muLKMiJQYtt3QiWSqMmFkUBjOVvaUV1USmRHPL6d2NNoN/PHEi9iYWzIupC8OFjYk52fy8f4VutUz7S1tcLLWHzJjaWpOV+82Ro83U5UJk9r1x9XGkfKqCs6mxPLtkfWUVJYbzN8Q7psyhfKKct794gsKCwsJCQrii3fe0YtQS8vMQKmsOfYys7OZ8egjuvc/r1nDz2vW0Ll9e7794EMALl66xMP/eVaXZ+GiRQCMHjKE156pSa9vLbuFUFZcwqkt+yjJL8LJy40Rj83A1tkBgJL8Qopyaq4r6io1R9f8TnFeISamJjh6uTH8sen4tKsZ8ldVXsHB5Vsozi3AxNQEBw8XBs6ZSMtuIbW/vtGEhHWmtLCYfb/toCgvH7fmnsx47mEcrkU/F+UVkJ91Z3XC3Mo/sU3GBLn68sWEmuFWj/e+C4CtkUd4a/fSpqqWQQevnMXW3IqpHQbhZGXH1dw03ti5RDc80dHSFhdrB13+3bEnsTQ1Z1SbnszuPoriijLOpsay9ETNlBqmKhPu6TwMdxsnyqoqOJkUxSf7V1JcUdYobTqZFI21mSWj2vTEzsKa1IIsvjy0VjcNgL2FDU5W+kNVLUzM6NSsNavO7Da4TXOVKdM6DcHB0oZKdRVphTksCd/CyaSbr05YX/ZfjsDO3JoZnYfhaGXH1ZxUXtn+LRnXOmOdrOxws66J9lEqFExs1x9vBzfUGjVnUmJZUGuqijHBvTBTmfDKkPv1vmvZye0su8Puo0T9adOmDcOHD+fBBx9k0bVr99y5cxk9erTeXNdBQUG88847TJgwgaKiIl577TUmTZqEp6cn8fHxvPjii7i4uDBhwgQA7O3tmTNnDk8//TTOzs44OTnxzDPP0K5dOwYPHnzb9VNob3cyISGEqCdvvfUW33zzDYmJ/7wQ7EVH1jd1FerVQ2HjScy9/Yk0/1c0d/Rg6rJXmroa9erXe96kYOvvTV2NemU3cihPbfz01hn/hywc+wT3rWy4+fmawtK7X6EwvuFXdWtMtn6+fLRvRVNXo1493W8ay/+BPzqndx72j2vX9M7D6PXlw01djXp1aN43jFvyXFNXo15tuP89Hln7QVNXo159PelZhn/31K0z/g/Z/uDCpq7CX5a/aElTV8Eg+4fuv3WmvygnJ4fHH3+cjRs3AjB27Fi++OILHBwcdHkUCgVLlixh1qxZlJaWMn78eE6fPk1eXp5uHu8333yT5s1rFkwrKyvj2WefZfny5ZSWljJo0CC++uorvTy3IpFnQogG99VXX9GtWzecnZ05dOgQH3zwAfPnz2/qagkhhBBCCCHEnelfGOfk5OTEsmXLbprnxvgvS0tLduy49QMUCwsLPv/8cz7//PNb5jVGOs+EEA0uJiaG//u//yMnJwcfHx+efvppXnjhhaaulhBCCCGEEEIIcUvSeSaEaHALFy5k4cL/3ZBpIYQQQgghhBD/XtJ5JoQQQgghhBBCCHEn0fz7hm3eyYwvkSeEEEIIIYQQQgghxL+cdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJP8C1fbvJNJ5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIO4lW09Q1EDeQyDMhhBBCCCGEEEIIIYyQzjMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQdxKNrLZ5J5HIMyGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eq0M27yTSOSZEEIIIYQQQgghhBBGSOeZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiDuJDNu8o0jkmRBCCCGEEEIIIYQQRkjnmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQog7iUbT1DUQN1BotTKQVgghhBBCCCGEEOJOkf/xl01dBYPsF8xr6io0CYk8E0KIejTl55ebugr1atXM/yOjILupq1Hv3Oyc6fvVo01djXq1/9GvyHvqxaauRr1yWPg2vb58uKmrUa8OzfuGyT+91NTVqFdr7n2LvCeeb+pq1CuHT9+lMOJsU1ejXtl2bM9nB1Y1dTXq3eN9pjR1FRrEuCXPNXUV6tWG+9/7R57PZ696u6mrUa8WT3mRfl//szpG9j1yZ3ZAif890nkmhBBCCCGEEEIIcSeRQYJ3FFkwQAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRIZt3lEk8kwIIYQQQgghhBBCCCOk80wIIYQQQgghhBBCCCNk2KYQQgghhBBCCCHEnUQjwzbvJBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOJOotU0dQ3EDSTyTAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRCurbd5JJPJMCCGEEEIIIYQQQggjpPNMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghxJ1EI8M27yQSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiKrbd5RJPJMCPGvs3fvXhQKBXl5eU1dFSGEEEIIIYQQdziJPBNCNIq0tDTeeusttmzZQnJyMm5ubnTs2JEnn3ySQYMGNXX1mtTQ1t0Z27YPDpY2JOVl8OOJrURlXDWav7d/B8YG98bTzpmSinIiUmL4+eQ2iipKAejXohPzek2qU27GL69RqalqkDasW72WFcuWk52VjV8Lfx5f8AQdOnU0mv/0ydN88clnxF++grOLC9PvncH4SRN0n1+Ju8wPi74nOiqKtNQ0HnvqCaZMn6q3jbvGTiQtNa3OtidMnsiC556pt7bdaHzbvkzrNBgnK3vic1L5/NBqzqbGGc0/IaQvE9v1x8PWifTCXH4+tZ0d0cf08tzVfgDj2vbF3daR/LJi9sad4tujG6hQN8y+MsRi2CDMwrqhsLREnZBIydqNaNIyjOa3mfcAJgEt6qRXXoyi+Luf6qSbD+qH5ehhlO87ROn6LfVad0MmhPRjeqchOFvZcyUnhc8OruZMaqzR/BND+jGpXX887ZxJL8xh6cltbL9hP6mUSu7tPJwRQWG4WDuQkJfO10d+41jCxQZvy3XDAnswNrg3jla2JOZl8GP4FiJvcp7o49+BcW376M4Tp1Mu8dPJbRSVl+ryWJlaML3TEHr4tMXa3IKMwlyWntzG6eRLjdEkACyGD8asZ/fqY+9qIiVr1t/82Js/F5NWBo69C1EUf/ujbpsWIwbrfa4pKKTglbfqte63S6vV8u2a1az7YxeFRUW0bdWK52Y/QMvmzY2WWffHLrbs30dcYiIAbfxb8Oi0aYQEtGqsauuc23OM0zsOUpJXhJOXG73vHoFXaz+DeZOjrrD+w8V10qe/+TiOnq4AZCenc3zDbjKvplCYnUfvqSPoMKRnQzbhX2NEUCgTQvrhaGlLQl46PxzfxMX0eKP5+7XoyIR2/fCyc6G4oozTyZdYEr6FwvISAFQKJZPbD2BAQBecrexILshk6YnGPUfcrg6eAUzvNJQgNx9crB14fuvXHLhypqmrZdCAlp0ZHhiKg6UNyfmZrIjYRUxWosG8s7uNprd/+zrpyfmZvLLjO937Ia26MaBlZ5ys7CiqKOVEUhRrzu6hSqNusHbcaHzbPtzd8dr9UW4qXxxac9P7o/Ft+zKxXb/q+6OiXJad3M6OS8d1n38y9gk6NWtdp9yRq+d5fuvXDdIGIW5FOs+EEA0uPj6eXr164eDgwPvvv0/79u2prKxkx44dzJs3j6ioqAb53oqKCszMzBpk2/UlzDeEWV1H8v3xTURnJDC4dTdeHHgvT238jOyS/Dr5A119md9zEktPbuVEUjROlnY8GDqWh8Mm8OG+5bp8JRVlPLHhE72yDdVx9sfvu/js409Z8NwztOvQno2/refZJ57m51W/4O7hUSd/SnIK/3nyacaMH8srb7zKuTNn+fi9D3FwdKD/wAEAlJWV4dnMi/6DB/D5x58Z/N5vl/6ARq3Rvb8Sd5mn5j/BgMEDG6SdAwO68FjvyXy8fyXn0y4zNrg374+ex70r3iSjKLdO/nFt+zA3dBwf7F1OZEY8bdz8+E//GRSWlXD46jmg+mZ3buh43tvzM+fTLtPcwZ0XBs4E4ItDaxukHbWZD+yLef9elCxfizozC4shA7B5eDYF73wM5RUGyxQv+QVUKt17hbUVts88RmXE+Tp5Vc2bYRbWDXVyaoO14UaDArrwRO+7+GjfCs6mxTG+bR8+HDOfe5a/TrqB/TS+bV8eDhvPe3uWEZlxlTZufjw/4B4Ky0s4FF+9n+b2GMew1j14b+8yruam0b15MO+MeJiH1n5g9AdPferp1676PHFsE1GZVxnSqhsvDrqPpzZ+SlZx3fNEkJsv83tNZumJrZxIisLJyo65PcbxSNhEPtj7CwAmShX/HXI/+WXFfLhvOdklBbhY21NaWd7g7bnOfFA/zAf0puSX1dXH3tCB2Dz6AAVvfWj82Fv8c91j7z9PUBlxTi+fOjWNoi+/r0lowhXLlm7cwPItm3n1kXn4eHryw29rmffWm6xd+CnWlpYGy5y8cIFhPXvTPrA15qZmLN24gflv/R+rPvoYNyfnRqt7zPFzHFy5jX4zRuMR4MOF/SfY9OnPTH/jMWydHYyWm/F/T2Bqaa57b2lrrfv/qopK7FwdCejaloO/bmvI6v+r9PZvz5zuY1h0ZD2RGVcZFtiD/w6Zzfx1H5NVnFcnfxs3P57oM5XFxzdxPDESZyt7Huk5gfm9JvHO7p8BmNFlGP1bdOLLw2tJysukU7PWvDDwXp7b8hVXclIauYU3Z2lqTmx2ElujDvP2iIebujpGdWvehmkdh/Dzqe3EZiXRv2UnnuozlZd3fEtOSUGd/CsidrLm3B7de5VCyetD53AiqebeOdSnLZPbD2Bx+GZis5LxsHViTvfRAKyM2NXgbRrQsjPze01m4YFfOZ8ax5i2vXlv1DzuW3mz+6OxfLB3OVEZV2nj7sez/aZTWF7C4avV9xGv7PgOU2VNV4WdhTU/THmBvXGnG7w9dxSN5tZ5RKORYZtCiAb36KOPolAoOH78OJMnT6Z169a0bduWBQsWcPToUeLj41EoFEREROjK5OXloVAo2Lt3ry7t4sWLjBw5EhsbG9zd3Zk5cyZZWVm6z/v378/8+fNZsGABLi4uDBkyBICtW7fSunVrLC0tGTBgAPHx8Xr1y87OZtq0aXh7e2NlZUW7du1YsWJFQ/6T6IwO7sXu2JPsjj157YnuVrJK8hka2N1g/tau3mQU57Et6iiZRblEZ15l16VwWjg308unRUt+WZHeq6H8unwlo8aNYcz4sfj5+/H400/i5u7GujXrDObf8Ns63D3cefzpJ/Hz92PM+LGMGjualctqOv/atA1m3hPzGTx0CGZmpga34+joiLOLs+51+OAhmnk3o2PnTg3SzikdBrIl8jBbIg9zNTeNzw+tIbMoj/EhfQ3mHxbYg40XDrI79iSpBdnsjj3JlsjDTO88RJenrYc/59Pi2BVzgrTCHMITI/kj5gSBrr4N0gZDzPv1pGznXirPXUCTlk7J8tUozEwx69zRaBltSSnawiLdy7R1AFRWUnFGvwMDMzOs7plK6ap1aEtLDW+snk3tOJjNkYfYFHmIq7lpfHpwNRmFuUwI6Wcw//DAHmy4cIA/Yk+SUpDFH7En2Bx5iBmdhunl+enkNo5cPU9KQRbrL+znWMJFpnUcbHCb9W1Mm+rzxB+xJ0jOz+THE1vJLs5naOseBvO3dmlOZnEuW6OOkFGUS1TGVXbGHKels5cuz8CALtiYW/L+nmVEZyaQVZxHVMZVrubWjeZsKOb9elH2+x4qz15Ak5pOybJVKExNMevS0WiZOsdeYKvqYy/irH5GtUYvn7a4uGEbY6y+Wi0rtm7h/gkTGdijBwE+Prw+bz5l5eVsP3jQaLn/e/wJ7ho2jEA/f/yaNePlhx5Cq9Vy/FzdDuqGFLHzMG16dya4b1ecvNzoc/dIbB3tOL/3+E3LWdpZY21vq3splTU/Odz9vel113BadW+PykSe49eXcW37sCsmnJ0x4STlZ/DD8U1kFeczIijUYP5ANx8yinLZHHmYjKJcIjPi2RF9jAAXb12eAS07s+bsHk4mRZNelMP26KOcTr7E+JA+jdWs23Y04QLfHdvIvssRTV2VmxrWujsHrpzhwJUzpBZmsyJiFzmlBQxo2dlg/tLKcgrKinUvP0dPrMwsOXhDVF1L52bEZCVxLOEi2SX5XEi/wrGEi/g5ejZKm6Z0GMTWqCPV90d56XxxaC2ZRbmMa2v4OBnaujsbLx5iT9wpUguv3R9FHWZap6G6PIXlJeSUFuheXZsHUV5Vwd64U43SJiEMkc4zIUSDysnJYfv27cybNw9ra+s6nzs4ONzWdlJTU+nXrx8dO3bkxIkTbN++nfT0dKZMmaKXb+nSpZiYmHDo0CEWLVpEYmIiEydOZOTIkURERPDAAw/w/PPP65UpKyujS5cubN68mfPnzzN37lxmzpzJsWP6w+vqm0qpooWTV53hZGdTYgl09TFYJjozAWcrOzp5VYey21tYE+rbltPJ0Xr5LEzM+HLCM3w98VmeG3BPg91AVVZWcikqmu499Dv7uvXozvmz5wyWuXDuPN1q5e8e2oOoi1FUVf216LjKykp+37aDkWNHo1Ao/tI2bsZEqaK1qw/hiZF66eGJkYS41x1CBmCqNKFCXamXVq6upI2bH6prPyTPpsbR2tWHNm7VnWWeds6E+oZw9Grj/EBWOjuitLOjKjqmJlGtpir2Cib+ho9BQ8x6dKXi9Fmo0G+v1eSxVEZGUXXJ+NCN+mSiVBHo6sPxBP39dDwxkhAPI/tJZUJFVa39VFVJsHvNfjJVGdiXVZW09wyox9obZqJU0cLZizMp+ueJM6m3Ok/Y64a82FtYE+oTwqmkmqFWXb2DuJSZyAM9xvL9XS/w8ZjHmRjSD2UD/P0YonR2QmlvR1VUrWMv7gom/rffeWwW2o2KU2fqHHtKVxfs3ngR2//+B6v7pqF0dqqvqv8pyRkZZOflEdq+gy7NzNSUzsHBnL0UfZOS+srKK6iqqsLexqYhqmmQuqqKzKsp+LTVP86btw0gLe7mEZe/vvEVS55+j/UfLiEp6nJDVlNQfZ5o6dyMiOQYvfSIlEsEuRn+e4rKuIqLtT1dvAMBsLewoadfO04k1kQ0mShVdaYQqLh2HRN/nkqpxNfRkwvp+n8TF9KuEODsbaSUvj4tOnAx/QrZN0SpxWQl4efogb9T9b2eq7UD7TxbcvYm0xXUl+r7o+aG74/+5HW3jZuv7rpb26igMHbHnqSsynBUshCNQR73CCEaVGxsLFqtlqCgoL+1na+//prOnTvz9ttv69IWL15M8+bNuXTpEq1bV/9IDAgI4P3339flefHFF2nRogULFy5EoVAQGBjIuXPneO+993R5mjVrxjPP1MyR9dhjj7F9+3ZWr15Njx6GIzvKy8spL9cf3mRubm4wrzF25laolKo6UWH5ZcU4WBj+gXQpM5HPDq7myb5TMVWZYKJUEZ4YyeLjm3V5Ugoy+erwbyTkpWNpas7IoDDeHP4gz27+krTC7D9Vx1vJz8tDrVbj6KT/w9TR2Ymc7ByDZbKzc+he64eso5MTarWavLw8XFxc/nQ9DuzdT1FRESNHj/zTZW+HvYUNJkoVuaWFeuk5JQU4NbczWOZ44kVGt+nFgStnuJSZSKCrDyODwjBVmeBgYUN2SQG7Y0/iYGnLFxOeRoECE5WKdef388vp3xukHbUpbG0B0BTqH4OaoiKUjg63tQ2VjzcqLw9Kfv1NL920U3tUzbwoWfhVvdT1djhc2085pfpDX3JLC3C2usl+Cu7N/itniM5MIMjVh1Fteurtp2MJF7m742AiUmJJzs+kq3cQffw7oFQ2fEeTrbHzRGkRDl6GzxPRmQl8emAVC/rerXee+OH4Jl0ed1snQmwcOHD5DG//sRRPO2ce6DEWpVLJmrN7DG63Pilsq+uuKdT/m9IUFqJ0dLytbeiOvRVr9NKrriag/mUV6oxMlLa21cNBn3yEwncWoi0pqZ8G3KbsawvTONvb66U729uTmplloIRhXyz/BVcnJ7q3a1ef1bupsqIStBoNlnb6x5mlnQ0l+YUGy1g52ND/3nG4+Xqhrqoi+sgZNnz0IxOenW10njTx912/n8irdZ7IKy3C0dLWYJmojKt8vG8lz/afoTtPHEu4wLdHN+jynE6+xLi2fbiQfpm0ghzaewXQwycYpULiL/4KWzMrVEol+WX6kbAF5cXYW9R9wFybvYU17Txa6u0jqL6O2Zpb8cKAe0FR3aG1O/YkW6OO1Gv9Ddfp2nW3pPZ1txAnI9fd8MRIRrfpycErZ7iUpX9/ZG9hU2dbQW6+tHBuxnvXph34V5HVNu8o0nkmhGhQ2msn/b8bDXTy5En27NmDjYGn7nFxcbrOs65du+p9FhkZSWhoqN73h4WF6eVRq9W8++67/PrrryQnJ+s6xgxFyl33zjvv8Prrr+ulvfrqq9DyTzfN4HXR2KWymb0r93cbxZqzeziTEoOjpS33dBnOg6Hj+OZI9TDJmKwkYrKSdGWiMxJ4b9SjjAgKZUl4w0zWXmf3arV1027Mj/6H2mstrp1+uzZv3ESPsFBcXF3/Uvnbpa21sxQKha7utS09sQ0nKzu+mfgfUEBuSSHbo44yvfNQ1NrqOSw6erViZpdhfLx/JZHp8TSzd+Xx3neR3WUEP52s/7mATDt3wGrKeN37IgOT+1dTGD8IazHr0RV1ShrqhJpjTuFgj+WE0RR9sxj+YjTh31F7P4HCaHOWhG/FycqObyc9p9tPW6OOcE/nYaivbefTA6t4bsA9LJ/+Glq0pORnsiXqMKOCGm+S8zptuskfmLe9K7O7j2b12d2cSY7BwcqWe7uMYG7oOL6+dp5QKBTklxWz6Oh6NFotl3NScLS0Y1zbPg3SeWbapSNWU2sWBSla9KORnApu9+AzC+1W59gDqIqsibDTpKZTFH8Vu1f+g1n3zpTvNT5Usj5sO3CAt79bpHv/yfMvAHWvgVrtTXehnqUbNrDj0EEWvfo65k0wj6eh87uxyjt6uOLoUXMe9mjpQ1FOPqd3HJTOs0ZQ5xplIO265vZuPBg6ll8jdnEq+RJOlnbM6jaSR3pO5ItD1R3S3x/bxLxek/hywjOAlrTCHP6IOcGgVl0NblP8Nbd71uvl156SyjJOpehHrQa6+jC6TU9+PrWdyzkpuNs4Mq3jEPKDi9h08VCD1Pl2GDv2lp7YhpOlHV9PfLbm/ij6KNM7DUWjrTvH16ignlzOTr7pYlpCNAbpPBNCNKhWrVqhUCiIjIxk/PjxBvNcnwvlxotsZaV+OLdGo2HMmDF6EWPXeXrWDEms3eFl7MJ9o48++oiFCxfyySef0K5dO6ytrXnyySepqDAeGv7CCy+wYMECvTRzc3Nmrnrzlt93XUF5CWqNGgdL/Q5Bewtro3OUTQjpR3RmApsuVv8ATMhLp+zYJt4c/iArI3aSV1q3nBYtcdnJeNjW/yTT9g4OqFSqOlFmuTm5daLRrnN2diInWz8CLi8nF5VKhb2DvcEyN5OWmsrJ4yf4v/ffvnXmvyi/rIgqjbrOU1RHS1tySwxHYFSoK3lvzzI+3LccJ0s7skvyGRPcm+KKUvJLq586z+k+ht+jj7Ml8jAAl3NSsDA159l+0/n55HajHXN/VeWFSAo/vGG41bX5hpS2NqgLatqhtLFGW3Qb8+SZmmLWqT2l2/UnJDbx9kJpa4Ptgnm6NIVKhaqFH2a9Q8l/9r8N8jQ179p+crbSP44cLW0NTsQM1fvpnd0/8/7eX3T7aWxwn2v7qUi33Re2fYOZygQ7CxuyivN4JGwCqYW3Hzn0VxXqzhP60SP2FtYG/97h2nki4yobL1SfJ67mpfNd1Ub+b/hcVkTsIq+0kNySQtRaNZob9kNyfiaOVraYKFX1vkJb5fmLFF698dirnvRfaWurf+zZ2qAtvM1jr3MHSrftvHXeikrUqWkoXf98VOuf1bdrV0Ja1QxzrKis7jzOysvD5YaIupyCfJzsHW65vZ83bWTJ+t/46uX/0sq38eZCBLCwsUKhVFKSr78/SguLsbK7/eGj7i28uXT0zlz18J/i+v1E7Sgze0ubOtFo101qP4DI9HjWnd8PwNXcNMqOVPDuqEf45dQOcksLKSgv5p3dP2GqMsHW3IqckgLu7TqC9MK6k8CLWyusKEGt0dSJMrM1t6ag7NbzMvbx78CRq+dR15pEfkJIPw5fPa9bXTQ5PxMzlSn3dR3J5ouH6vlOQt9N749Kb3J/tHcZH+43fn90nbmJKQMDurA4fLPBbQnRmCTmVgjRoJycnBg2bBhffvklxQYmbM7Ly8P1WrRQamrNanw3Lh4A0LlzZy5cuICfnx8BAQF6r5tFiAUHB3P06FG9tNrvDxw4wLhx47jnnnvo0KEDLVq0ICZGf96Q2szNzbGzs9N7/dlhm2qNmss5KXXmTWrvGUB0ZoLh71WZ1ukQvP6U7mZRW76OHuQZuYn5O0xNTWkdFEj4Mf3Jo8OPhxPS3vDworbtQgg/Hq6XdvzYcYKCgzD5C5NHb920BQdHR8J6NVwUUJVGzaXMBLo2b6OX3tU7iPPpN5/PR63RkFmch0arZVBAVw7Hn9d1ilmYmNXdnxoNCsXtR6X8KeUVaLJyal5pGWgKCjAJvOEYVKkwCfCn6orhY/BGZh3bgYmKyhP6q19VxsRR8N6nFH74he5VlZBE5akzFH74RYMNQ6jSqInOTKBbrf3UrXkbzqfd/n4a3Korh+LP1em8rFBXkVWch0qppH/LTrofKg2pSqPmcnYK7b3+xHnCxBQNdY8rQHeWiM68ioets955w9POmZySgnrvOAOuHXvZNa+0DDT5Bo69lv5UXbl1dIFZp/bVx174bay8plKhcndDU1D/58DarC0tae7hqXu18PbG2cGBY2drFjSorKrk1MWLtG8deNNt/bRxA9+vXcPnL7xEcMu/ENb8N6lMTHD19SLxov6chYkX4/Bo2fy2t5OVmIqVg+Ghg6J+VGnUxGUn08GrlV56R69WRqN1zE1M65zjau4n9FWqq8gpKUClUNLTN4RjCRfqre7/JmqNhqu5qQS7++ult3X3JzY7yUipaoGuPrjbOnHgct3rjpnKpM6+1Gq11fuxgeexrL4/SqSrt/70LF29g/7UdXdgQBeOXD1fpx0DWnbBVGXCzkvhRrbyD6fV3pmvfynpPBNCNLivvvoKtVpN9+7dWbt2LTExMURGRvLZZ58RFhaGpaUloaGhvPvuu1y8eJH9+/fz8ssv621j3rx55OTkMG3aNI4fP87ly5f5/fffmT17Nmq18R96Dz/8MHFxcSxYsIDo6GiWL1/Ojz/+qJcnICCAnTt3cvjwYSIjI3nooYdIS2ucFec2XzzEoIAuDGjZmWZ2rtzXdQQu1va6m4RpnYYwr+ckXf4TSVF09wlmSOvuuNk4Eujqw/3dRhGTlah7wje5/QA6eAbgZuOIr6MHj4RNwM/Jk98v3Xx1tL9q6vS72bxhE1s2bib+SjyfffwpGWnpjJ80HoBvvvia/3v1DV3+cRMnkJ6axucLPyX+SjxbNm5my4ZN3H3PdF2eyspKYqIvERN9icrKKjIzM4mJvkRSov7NpUajYeumLYwYNeIvdbz9GavO7GZ0m56MDArD19GD+b0m4WbryIbzBwCYGzqOFwfdp8vvbe/GkNbd8bZ3pY2bL68OmY2/syffHauZq+Tw1XOMC+nDwIAueNo609U7iDk9RnMo/pxeRFBDKt93GIvB/TFtF4zSwx2raZPRVlRScSpCl8dq+mQsRg2tU9YstCuV5yLRltRaSbO8Ak1aut6Ligq0xSXV/9+Afo3YxZjgXoxq0xNfRw8e73UX7raOrLtQHV3xcOh4Xh40S5e/ub0bQ1t3x9vejTZufrw+dA4tnL1YdMOcMsHufvRr0REvOxc6eAbw8ZjHUaDgl1ONMzfdpsjq88TAgC40s3dlVteRuFjb6/6mp3caymO9Juvyn0iKoodPW4becJ6Y3X00MZk154kd0cexNbfi/u6j8LR1pnOzQCa268/26IZdKOVG5fsOYTFkAKbt26L0dMdqxl1oKyupOBmhy2M1YwoWo4fVKVt97F00OIeZxbiRqFr6o3RyROXbHOvZ96CwMKfi+MmGbI5BCoWCaSNHsWT9b+w5fozYhARe++pLLMzNGd67ty7ff7/4nC+W18zns3TDBr7+dSX/feRRPN1cycrLJSsvl5Kyxlm19rqOQ3py8cBJLh48SU5KBgdXbqUwJ5+2/asXfTmy9nd2/VAz59yZnYe5fPoieenZZCenc2Tt78SdvEi7ATXzh6qrqshMSCUzIRV1lZqivAIyE1LJS6/fOTn/bTZcOMCQ1t0Y1Kor3vZuzOk+GhdrB7ZHVT8wnNllOE/2qVlkKTwxklDfEIYHhuJu40SQmy8P9hjLpcwEcq6dJ1q7NCfUty3uNk4Eu/vx6tA5KBQK1p3f1yRtvBlLU3NauXjT6tpqoV52LrRy8cbd5vbmUGwsOy4dp69/R3r7t8fT1pm7Ow7GycpOt4rkpHb9eaD7mDrl+vh3IC47meSCzDqfnUmNZUDLznRvHoyLtT3B7n6MD+lLRErMbY3A+LtWnfmDUdfvjxzcmddzEm62Trro5wd7jOXFgffq8nvbuzGkVTea2bsS5ObLfwffj7+TJ98d21hn26PahHHwyhkKyptmxWQhbiTDNoUQDc7f359Tp07x1ltv8fTTT5OamoqrqytdunTh66+/Bqon/589ezZdu3YlMDCQ999/n6FDa36se3l5cejQIZ577jmGDRtGeXk5vr6+DB8+XDfs0xAfHx/Wrl3LU089xVdffUX37t15++23mT17ti7PK6+8wpUrVxg2bBhWVlbMnTuX8ePHk5+f33D/KNccuXoeW3MrJrUfgKOlLYl56byz+2eyivOA6rB3F2sHXf59l09jaWrO8MAe3NtlOMUVZVxIu8yyUzt0eazNLJgbOh4HSxtKKsu4kpPKqzu+Jy47uUHaMGjoYAry8/nx+8VkZ2Xj37IF73/yIR7XhtNmZ2WTfkOHiVczL97/5CM+X/gp61b/hourC0888xT9Bw7Q5cnKzGL2PbN071cuW87KZcvp2LkTny/6Upd+4ng46WnpjBw7ukHadqPdsSexM7fmvq4jcba240p2Ks9t/or0ouohq85Wdno36SqlkqkdBuHj4E6VRs3p5Es8+tuHpBXWDHH96cQ2tFotD/QYg6u1A3mlRRyOP2fwBrKhlO/ej8LUFMvJY1FYWqK+mkTRN0ugvGbYstLRoc6TRqWrMyYt/Cj6enGj1fV2/BF7EjsLG+7vOgpnazsuZ6fwzKYvSC+8vp/scbetGVKsVCqZ1nEwPg4eVGnUnEqO5uG1H+gtrmGmMuXBHuPwsnOhtLKcI1fP8+bOJRRVNE5HxuH4c9iaWzH52nkiIS+dt//4qdZ5omao6t646vPEiKBQ7us6guKKMs6nXWbZyZrzRHZJPm/uXMKsbiP5aOxj5JQUsDXyMOuvdTI2hvI/9l079sahsLJEfTWRoq9/uI1jzwWTlv4UffW9we0qHeyxvm8aCmsrtEXFVF1NpPDjr9Dm5jVga4y7b+w4yisqePeH7yksLiYkIIAvXnwZa0tLXZ607Cy9BSjW7NxBZVUVz338kd62Hpx8Fw/dpb/KdENq1b0dZcUlnNi0l+L8Qpy93BnzxEzsnB0AKMkvojC75lqprlJzaNUOivMKMDE1xamZG6Men4lf+9a6PMV5hax6o2YhkYgdh4jYcQiv1n5M+M+cxmraP87BK2exNbdiaodBOFnZcTU3jTd2LiHTyP3E7tiTWJqaM6pNT2Z3H0VxRRlnU2NZeqJmvk1TlQn3dB6Gu40TZVUVnEyK4pP9KymuKGvk1t1akKsvX0yomU7j8d53AbA18ghv7V7aVNWqIzwxEhszS8YG98bewobk/Ew+OfCrbvVMewubOkMgLU3N6eIdxIoIw8PUN108iFarZUJIXxwtbSksL+FMaixrz+1t4NZU2xN3CnsLa+7tMqL6/ignlee23Hh/ZI/bjfdHCgVTOwyi+fX7o5RLzFv3kd79EVR3srX3DODpTZ83SjuEuBWFtjG6o4UQ4l9iys8v3zrT/5BVM/+PjIJ/XjSAm50zfb96tKmrUa/2P/oVeU+92NTVqFcOC9+m15cPN3U16tWhed8w+aeXmroa9WrNvW+R98TzTV2NeuXw6bsURpy9dcb/IbYd2/PZgVVNXY1693ifxutMbEzjljzX1FWoVxvuf+8feT6fvarh5lttCounvEi/r+fdOuP/kH2PfHnrTHeo/FffaeoqGGT/+gtNXYUmIcM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQuY8E0IIIYQQQgghhLiDyAxbdxaJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5Fhm3cUiTwTQgghhBBCCCGEEMII6TwTQgghhBBCCCGEEMIIGbYphBBCCCGEEEIIcSfRyLDNO4lEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g1TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9HKapt3Eok8E0IIIYQQQgghhBDCCOk8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCHEn0ciwzTuJRJ4JIYQQQgghhBBCCGGEdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJPIapt3FIk8E0IIIYQQQgghhBDCCIVWK92ZQgghhBBCCCGEEHeKvP+82tRVMMjh/debugpNQoZtCiFEPXpywydNXYV69cm4J7mcldTU1ah3LVy8Gb342aauRr3aPPsD8u6e09TVqFcOK3/gjZ2Lm7oa9eq/Q2Yz/sfnm7oa9Wr9rHf5YM+ypq5GvXp2wD18d3RDU1ejXj0YOo7H1n3c1NWod59PWMAr279t6mrUqzeHz+WRtR80dTXq1deTnmX2qrebuhr1avGUF+n15cNNXY16dWjeN//I/fQ/S6tp6hqIG8iwTSGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eo1MT38nkcgzIYQQQgghhBBCCCGMkM4zIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEHcSrQzbvJNI5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEZI55kQQgghhBBCCCHEnUSrvTNfDSg3N5eZM2dib2+Pvb09M2fOJC8v76ZlFAqFwdcHH3ygy9O/f/86n999991/qm4y55kQQgghhBBCCCGEaFLTp08nKSmJ7du3AzB37lxmzpzJpk2bjJZJTU3Ve79t2zbmzJnDpEmT9NIffPBB3njjDd17S0vLP1U36TwTQgghhBBCCCGEELdUXl5OeXm5Xpq5uTnm5uZ/a7uRkZFs376do0eP0qNHDwC+++47wsLCiI6OJjAw0GA5Dw8PvfcbNmxgwIABtGjRQi/dysqqTt4/Q4ZtCiGEEEIIIYQQQtxJNJo78vXOO+/ohlVef73zzjt/u7lHjhzB3t5e13EGEBoair29PYcPH76tbaSnp7NlyxbmzJlT57NffvkFFxcX2rZtyzPPPENhYeGfqp9EngkhhBBCCCGEEEKIW3rhhRdYsGCBXtrfjToDSEtLw83NrU66m5sbaWlpt7WNpUuXYmtry8SJE/XSZ8yYgb+/Px4eHpw/f54XXniBM2fOsHPnztuun3SeCSGEEEIIIYQQQohb+rNDNF977TVef/31m+YJDw8Hqif/r02r1RpMN2Tx4sXMmDEDCwsLvfQHH3xQ9/8hISG0atWKrl27curUKTp37nxb25bOMyGEEEIIIYQQQog7SQOvbNlY5s+ff8uVLf38/Dh79izp6el1PsvMzMTd3f2W33PgwAGio6P59ddfb5m3c+fOmJqaEhMTI51nQgghhBBCCCGEEKLpuLi44OLicst8YWFh5Ofnc/z4cbp37w7AsWPHyM/Pp2fPnrcs/8MPP9ClSxc6dOhwy7wXLlygsrIST0/PWzfgGlkwQAghhBBCCCGEEEI0mTZt2jB8+HAefPBBjh49ytGjR3nwwQcZPXq03kqbQUFBrFu3Tq9sQUEBq1ev5oEHHqiz3bi4ON544w1OnDhBfHw8W7du5a677qJTp0706tXrtusnnWdCCCGEEEIIIYQQdxKN9s58NaBffvmFdu3aMXToUIYOHUr79u35+eef9fJER0eTn5+vl7Zy5Uq0Wi3Tpk2rs00zMzP++OMPhg0bRmBgII8//jhDhw5l165dqFSq266bDNsUQgghhBBCCCGEEE3KycmJZcuW3TSP1sBccHPnzmXu3LkG8zdv3px9+/b97bpJ5JkQ4n+KQqFg/fr1/5jvEUIIIYQQQghxZ5PIMyGEuAP18mvPwIAu2FlYk1aYzbpz+7ick2Iw7/ROQ+nuE1wnPbUgm/f2/GygRP3b/NsG1ixfRU52Nr7+fjz0+KOEdGxvNP/Z02f47vOvuXolHmcXFyZPn8qoCWP08qz7dS1b1m0kMz0DOwd7evfvy/0PP4CZuRkA902aTkZa3RV5Rk8cy7ynn6jfBhoxMiiMie3642RpS0JeOt8d28iF9CtG849q05PRbXriZuNEZnEuq87sZnfsyUap681YTB6L2cB+KGysUMdepmTxL2iSDB9v15mPGIzZkAEoXZzQFhZRcewEZSvWQmXVtY1aYDllPKbdOqOwt0Udn0DpjytQX45v+AbVcmn/KS7+cZzS/CIcPF3oMmkQbgHNjeZXV1ZxbtthroRfoKywGCsHW0KGhdEyzPgx3dBGBIYyPqQvjla2JOam88PxzVzMiDeav2+LjkwI6YeXnTPFFWWcTr7Ejye2UlheosszJrgXwwNDcbF2oLC8mMPx5/n51HYq1VWN0CK4uPcEZ3ceoTS/EAcvV8LuGoZHKx+DeVOi49m6sO75bPJrj+DgUT0J8aXDZ9j/08Y6eWZ9/gImpo1zy3v6j8OEb91HcX4hLl7uDJgxFu9A/1uWS74Uz8p3vsHF25373nxK77Oy4lIOrt1OzInzlJWUYu/iRP9po2jRoU1DNUNPH/8ODGrVFTsLa1ILsvnt3F7ispMN5r2n8zB6+Latk55akMXbf/wEgIetM6Pa9KS5gxvO1vasPbuHvXGnG7IJBnVvHkxv//bYmFuRUZTLtqgjXM1NM5pfpVAyIKALHbwCsDG3oqCsmH1xpzmVHA1AsLsffVt0wsnKDpVCSXZJPofiz3EmJaaxmkTfFh0Z0rob9hY2pBZksfrMbmKN7Kt7u4wgzC+kTnpKQRZv7lwCQEevVgwPCsXV2gGVUklGUR67YsI5nnCxQdtxowEtOzM8MBQHSxuS8zNZEbGLmKxEg3lndxtNb/+65+nk/Exe2fGd7v2QVt0Y0LIzTlZ2FFWUciIpijVn91ClUTdYO/6KDp4BTO80lCA3H1ysHXh+69ccuHKmqatl0L95PzWof8hqm/8U0nkmhBB3mE5erZnQrh9rzuzmSk4KPf3a81DYeN7Z/TN5pYV18v92bi+bLh7UvVcqlPxnwIxGu2Hft2sPiz79inlPP05w+xC2rt/MK8+8wKJli3HzqLusdFpKKv995kWGjxnJs/99gYtnz/PlR59h72BP7wF9Adi9YxdLvvmOp154luB2bUlKSOLjt94H4KEnHgXg0++/QqPR6LZ79fIVXnzyP/QZ0K8RWl39g/LBHmP5+sg6LqbHMyIolNeGzuHR3z4kszivTv4RQWHc12UEnx9aw6WsRAJdmjO/92SKyks4nhjZKHU2xHzsCMxHDqXk68WoU9OxmDgamxefpmDBS1BWZrCMaa8eWEybTMmiJagvxaL09MDq4dkAlP1UvTy41UP3ofJuRvGX36PNzcOsTyg2Lz9NwdOvoM3Na6zmEX8ykpNr/6Db1KG4tmhGzMEI9ny1mtEvP4C1k53BMgcXb6C0sJjQGSOwdXWkrLAY7Q3HWmPr5dee2d1Hs+joBqIy4hkW2INXhtzPY+s/Jqs4v07+Nm6+PNF7CovDNxOeGImzlR0Ph01gXs9JvHutQ71vi47M7DKcLw6uISozAS87Fx7vfRcAi8M3N3ib4k5c4OjqHfScNhL3lt5EHTjF9i+WM/nVR7Bxsjda7q7XH8XUwlz33sLWSu9zUwtz7nr9Ub20xuo4izoWwZ5fNjH43vE0a+3HmT3HWPvRD9z/ztPYOTsaLVdeUsrWb1fiGxxAcYH+OV5dVcXqD77Dys6GsfNnYuNkT2FOHmY3/Bs0pM7NWjOxfX9WRfzB5ZwUevm155GeE3hr11JyDVyP1pzdw4YLB3TvVQolzw+ayenkmuuRmcqErJJ8TidfYmL7xjlf1xbi0YIRbcLYfPEgCbnpdG3ehpldRvD5wVXklxUbLDO142BszC1Zd34/OSX5WJtZolTUDOIpqSxnX9xpsorzqNKoCXTzZUJIP4orSonNSmrwNnXxDuSuDgNZeXoncdnJ9PHvwLzek3nj98UG99WqM3+w/vx+3XulUsFLg2ZxKilal1ZcUca2qKOkF2ZTpdHQzrMF93YZQWF5CZHp8Q3epm7N2zCt4xB+PrWd2Kwk+rfsxFN9pvLyjm/JKSmok39FxE7WnNuje69SKHl96BxOJEXp0kJ92jK5/QAWh28mNisZD1sn5nQfDcDKiF0N3qY/w9LUnNjsJLZGHebtEQ83dXWM+rfvJ/HvIcM2hRD1pn///syfP5/58+fj4OCAs7MzL7/8sm5c+rJly+jatSu2trZ4eHgwffp0MjIygOqx6wEBAXz44Yd62zx//jxKpZK4uDiD33nu3DkGDhyIpaUlzs7OzJ07l6KiIt3n4eHhDBkyBBcXF+zt7enXrx+nTp3S20ZMTAx9+/bFwsKC4OBgdu7cWZ//LH9a/4DOHLt6gaMJF0gvymXd+X3klRbR289w1EtZVQWF5SW6l4+DO5amFhxLuNAo9V336xqGjh7B8LGj8PHz5eEn5+Hq5saWdZsM5t+yfhNu7m48/OQ8fPx8GT52FENHDWftilW6PFHnLxLcLoQBQwfh7ulBlx5d6T9kADFRNTf1Do4OODk76V7HDh3Fs5kX7Trdennq+jA+pC87L4Xz+6XjJOVn8N2xjWQV5zEyKMxg/oEtO7Mt+igHrpwhvTCH/VfOsPNSOJPaD2iU+hpjPmIwZeu3UBl+Ck1SMiVf/YDC3AyzXj2MljFp3ZKqS7FUHjqGJjObqrMXqDh8DJMWftUZTE0x7d6F0uVrUEddQpOeQdmajWgysjAf0rjtjdodTsuw9gT07IC9hwtdJw/GytGWSwcMR7qkXLxMemwiAx65C88gP2yc7XHx88K1hXej1vtG49r2ZlfMCXbFhJOUn8kPxzeTVZzP8MBQg/lbu/qQWZTLlsjDZBTlEplxld+jjxPg0kyXJ9DVh6j0q+y/coaMolwiUmI4cPmMXp6GdH7XUVr36kRQ7044eroSNmUY1o52RO47cdNyFrbWWNnb6F5Kpf6trEKB3udW9jYN2Qw9J7YfoF3fbrTv3wNnL3cGzhiLrZMDEX8cvWm533/8jTZhnfAMqBt1d25/OGVFJYx//D6atfbD3sUR79b+uPl4NVQz9AwI6MKR+PMcuXqe9MIcfju3l9zSQnr7Gz7P1rkeOVZfj45ePa/Lk5CXzobz+zmVHE2VumkiSHr6tedUUjQnk6LJLM5jW9QRCsqKDEZxAwS4eOPn5MnPJ7dzOTuZvNIikvMzScyriX6Oz0klMiOezOI8cksLOXrt38zXwaNR2jSoVVcOx5/jUPw50gpzWH12D7klhfRt0dFg/rKqCgrKi3UvX0cPrMwsOHLDvorJSuRMSgxphTlkFeexJ/YUyfmZBDg3znliWOvuHLhyhgNXzpBamM2KiF3klBYwoGVng/lLK8spKCvWvfwcPbEys+TgDdFaLZ2bEZOVxLGEi2SX5HMh/QrHEi7i5+jZKG36M44mXOC7YxvZdzmiqatyU//2/ST+PaTzTAhRr5YuXYqJiQnHjh3js88+Y+HChXz//fcAVFRU8Oabb3LmzBnWr1/PlStXmDVrFlA9x9js2bNZsmSJ3vYWL15Mnz59aNmyZZ3vKikpYfjw4Tg6OhIeHs7q1avZtWsX8+fP1+UpLCzkvvvu48CBAxw9epRWrVoxcuRICgurn8JqNBomTpyISqXi6NGjfPPNNzz33HMN9K9zayqFEm97N6Iyr+qlR2Vcxc/p9m4Yevi25VJmgsEnzfWtsrKSmOhLdO7eVS+9c/cuXDxvuPMu6vxFOnfvop+/Rzdioi5RVVU9XCy4Qwix0ZeIvlj9FDI1OYXwI8fp3tNwZ0FlZSV7ft/F0FHDUSgUf7dZt2SiVBHg3IzTKZf00k8nXyLIzddgGVOVSZ3hcBVVlbR2aY5K0TSXY6WbC0pHB6rO3rCvqqqoiozGpHXdvzldlqhYTPx9UbX0123HtFM7Kk+drc6gUqFQqaCyUq+ctqISk6CAem+HMeoqNTmJaXi20R8259nGn6wrhocyJZ2LxdnHg4u7jvHbS1+y8fVvOfXbbqoqKg3mb2gmShUtnZsRUSuSNCIlxuixFpVxFWdre7o0q17W3d7ChjC/EL2n+pEZ8bR0aUYrl+pOQXcbJzp7B+rlaSjqKjVZCal4t2mhl+7dpiXpl28eobPure/45T8L2brwZ1Ki4+t8XllewcoXP2P585+w48uVZCWk1mfVjVJXVZEen4xfSGu9dL+QVqTE1q3ndef2h5OXkU3P8YMNfh53+iJeAb788dM6vnrsDZa8+BFHN+3Wi7ptKCqFkuYO7kRl1LoepV/F3/n2Ou9CfUOIzrjaKNej26VSKPGyc6kTDRablURzh7rR0gBBbr6k5GfS278Dz/afwRN9pjAssAcmSuOrtLVw8sLF2p743IY/BlUKJT4OHlysFQ0WmRFPi9vs6Orp146ojKsGI4WuC3T1wd3WkZhGiKRTKZX4OnpyIf2yXvqFtCsEON/ew4w+LTpwMf0K2Te0KSYrCT9HD/yv3VO5WjvQzrMlZ1Nj66/y/yKynxqYVnNnvv6lZNimEKJeNW/enIULF6JQKAgMDOTcuXMsXLiQBx98kNmzZ+vytWjRgs8++4zu3btTVFSEjY0N999/P//97385fvw43bt3p7KykmXLlvHBBx8Y/K5ffvmF0tJSfvrpJ6ytrQH44osvGDNmDO+99x7u7u4MHDhQr8yiRYtwdHRk3759jB49ml27dhEZGUl8fDze3tUX+bfffpsRI0bctJ3l5eWUl5frpZmb//1hNNbmlqiUSgrLSvTSC8tLsLOwMlKqhp25FW3c/Pj55La/XZfbUZCXj0atwdFJf0iSg6Mjudk5Bsvk5uTg4Kif39HJEbVaTUFePk4uzvQfPJD83HyeeeQJtFotarWaURPGMmVm3eWnAY7sP0RRURFDRg6rn4bdgp25NSqlqs4PwtzSIjpb2Roscyo5mqGtu3Pk6nnispMJcPZmcOtumKpMsLOwbpIflwqH6uFxmnz9H0ua/AKULs5Gy1UeOU6pnQ02rz9fvR0TE8p/30P5xmvHXVkZVZdisZg4muLkVLR5+Zj26oEqwB9NWkbDNMaA8qIStBptnaF9FrbWlBYYHppVlJVHRlwSShMT+j44gfLiUsJ//Z3ykjLC7hnZGNXWY2tuhUqpqjNkO7+0EEfL1gbLRGcm8PH+lTzTfzqmKhNMlCqOJVzku6M184EdvHIWe3Mb3h7xMAqFAhOlim1RR/jt3N9fjepWyq7tF0s7a710SztrSguKDJaxsreh94xRuPh6oq5SE3v0LFs/+ZlRC+7Fs1V1J6KDhzN97xuLUzM3KksrOL/7GJs++JGJL8/F3t348VwfSq8N7a0d6WZlb0txvuG/7dy0TA6s3sbdLz2CUmW4EyY/M4eEyDjahHVi4oLZ5KVnseun9WjUanqOH1Lv7biR7npUrv+3Ulhegp357VyPrAl292fpia0NVcW/xMrMApVSSVFFqV56UUUptkba5WRph4+jB1UaNctP/46VqQVj2vbG0tSC9edr/mbMTUx5tv89mChVaLQaNl88ZHR+uPpko7t3qLWvyoqxd7c2UqqGnYU1bd1bsPh43SHbFiZmvDPqEUyVKjRaLStO76zTodoQbM2sUCmVdYbRFpQXY29x6zbZW1jTzqMl3x7doJd+PPEituZWvDDgXlBUP6DYHXuSrVFH6rX+/xayn8S/iXSeCSHqVWhoqF7kT1hYGB999BFqtZqzZ8/y2muvERERQU5Oju7JeUJCAsHBwXh6ejJq1CgWL15M9+7d2bx5M2VlZdx1110GvysyMpIOHTroOs4AevXqhUajITo6Gnd3dzIyMvjvf//L7t27SU9PR61WU1JSQkJCgm4bPj4+uo6z63W+lXfeeYfXX39dL+3VV1+FTg63/W/1ZygUtzdnaHeftpRWlnMu1fAw14ZSO9hLCzeNAKv9mW7J6WvpZ09F8OtPvzDv6ccJbNuGlKQUFn36JcuXODH9/pl1trdj8za6hnbH2dXlb7XjT6u1T262n1ZG7MLR0paPxjyGAsgrLeKPmBNMbj8ATSM9xTPt1QOrB+/VvS9679Pq/6lT6ZsfcCbBgVhMGE3pD8uoir2MysMNy/umockbTflv1T++Sr78HquH7sf+64/QqtWor1yl8tAxVP6Go6UaVu0DVFvnmK35SItCoaDXrDGYWVZ3iKsnDuTAD+vpNmUIJmamDVzX26RQoK19AF7jbe/Ggz3G8mvEH5xOuYSjpS2zuo7kkbAJfHF4LVA959PkDgNYdHQDMZkJeNi58ED3MeS2L2TV2d2N1oYbVZ8HDO8YBw8X3cIAAO4tvCnKLeDcziO6zjO3Ft643TC81r1lc9a9/R0X9obTc+rw+q+/AXXOe9eOp9o0Gg2bv1lBzwlDcPJwNbo9rUaLla0NQ++fhFKpxMPfm6K8AsK37mvwzjNdHf5iuR6+wZRWlnM25U6NFNFvmQKF0dPe9X24+uxuyquqo1C3Rx1haschbL54UDeBeUVVJV8dXouZypQWzl4MDwolp7SA+JzGiYCsW33j54kbhfmGUFpZZnCu1PKqCt7etRRzEzMC3XyY3H4AWcX5RieDb2gKbu+Y7OXXnpLKMk6lROulB7r6MLpNT34+tZ3LOSm42zgyreMQ8oOL2HTxUIPU+d9I9pP4J5LOMyFEoygrK2Po0KEMHTqUZcuW4erqSkJCAsOGDaOiokKX74EHHmDmzJksXLiQJUuWMHXqVKysDD8J1hr5UQI1N7qzZs0iMzOTTz75BF9fX8zNzQkLC9N9p9bAnfLtDPt74YUXWLBggV6aubk5z23/+pZlb6a4vBS1RoNtrSgzGzMrvVXyjOnhE8yJpEjUjdQZY+dgj1KlJCc7Vy89PzcXh1rRaNc5OjmRm6MflZaXm4dKpcLOvnoC95++W8LAYUMYPnYUAP4tW1BeVspn7y3k7vtm6M1zlJ6WTsSJU7z89mv12LKbKygvRq1R41gryszBwsbgog4AFeoqPj24mi8OrcXB0pbc0gKGBYZSUlFGQdmt9219qDx5hsLYGzp9r02krnSwR51XM/G80t4Wbb7xoTsWU8ZTceAIFXuqJwbXJCaDuTlWD95L+botoNWiSc+k6I33wdwMhaUl2rx8rJ54CE1GVsM0zgBzGysUSgVlhfpPxMuKSrCwNfxE3NLOBkt7G13HGYC9hzNooSSvEDs3pwatc22F5SWoNWocLPWPNXsLG/JKDUdpTW7fn8iMeNZfqJ4M/GpuGouOruedkY/wy+nfyS0tZHqnIeyNO8WumPDqPHnpWJiY8mjPiaw+u+e2fnD/VRbX9ktpvn79ywpL6kSj3YybfzNij58z+rlCqcDV14uCDMNRsPXJ0tYahVJJcZ7+339JQRFWdnXnXasoLSf9ShIZV1P44+fqiAutVgtaLR/d/zx3PfsAPsEBWDvYolSp9M55Tp5uFOcXoq6qQmXScLfy169Hdub6+8TW3IqC27gehfqGEJ54sdGuR7erpKIMtUaDjZn+ddbazIKiCsPtKiwvoaCsWNdxBpBZlIdSocDOwlo31FELuv9PK8zG1dqRvi06NnjnWdH1fVUr0sfWwuq2ri89/dpxLMHwvtKCbhGcpPwMPG2dGR7Ug5iDDdt5VlhRglqjqRO9ZGtuTYGRRR1u1Me/A0eunkdda4jzhJB+HL56XrdqZXJ+JmYqU+7rOpLNFw814Jnvn0n2UwPT/Gta+j9B5jwTQtSro0eP1nnfqlUroqKiyMrK4t1336VPnz4EBQXpFgu40ciRI7G2tubrr79m27ZtekM9awsODiYiIoLi4pqL86FDh1AqlbRuXT2c6cCBAzz++OOMHDmStm3bYm5uTlZWlt42EhISSElJ0aUdOXLrkHBzc3Ps7Oz0XvUxbFOt1ZCUn0Ggq/7E0YFuPre8+Q5w9sbVxpGjVxtnoQAAU1NTWgW25nT4Sb30U+EnCQ5pa7BMUEgwp2rnP36CVkGtMbn2Q7C8vByFUr8TU6lUodVq63R47tyyHXtHB7qHGZ4PrSFUadTEZifT0auVXnpHr9a3HM6i1mrILslHo9XS178DxxMjG7SjQk9ZGZr0jJpXUgqa3DxM2t0wSbZKhUmbQKou3SR60cysbmSaRlM3BBGgvAJtXj4KaytM24dQedLwRP0NQWWiwqm5B6lR8XrpqVHxuPgbngfItUUzSvOLqCyv6dQvyMhFoVBg5WB4SG5DqtKoictOpqOX/lxxHb0CjB5r5iqzOn8nmlrvzVWmRvIojEbl1ReViQoXH0+SI/XnyEmOvIz7n1iYITsxDSt74/tEq9WSnZTWKIsGqExMcPdrRvwF/cid+AsxeAX41clvbmnOfW8t4N43n9S9OgwIxcnTlXvffBKPltXXgGat/MjLyNZb7TU3PQtrB9sG7TiD6nNVYl46QW61r0e+XMlOMVKqWoCLN242jhyJP3/TfE1BrdWQUpBFy1qLY7R08dZbAOBGCblp2FpYY6aq+Td3trZHo9XctINAcW24WUNTazUk5KXRptY8iG3cfLl8i2GjrVya42bjyOF44x3RtTVKmzQaruamEuyuP2dlW3d/YrNvPuda9dxsThy4fKbOZ2YqkzrXXK1WWx3z2ghzpv7TyH4S/ybSeSaEqFeJiYksWLCA6OhoVqxYweeff84TTzyBj48PZmZmfP7551y+fJmNGzfy5ptv1imvUqmYNWsWL7zwAgEBATcdQjljxgwsLCy47777OH/+PHv27OGxxx5j5syZuLtXT/obEBDAzz//TGRkJMeOHWPGjBlYWlrqtjF48GACAwO59957OXPmDAcOHOCll16q/3+YP2Fv7ClCfUPo4ROMu40j40P64mhpy6H46snYR7fpxYzOQ+uU6+HblvicVNIKsxu1vhOmTmbHpq3s2LyNhPirLPr0KzLTMxg5YQwAS77+ng/ffFeXf9T4MWSkZfDtZ1+REH+VHZu38fvmbUyaNqWmLb3C2LJuE3t37SYtJZVTx0/w03dLCO3dE9UNcwNpNBp2btnO4BFDUZk0/M38jdaf38/Q1t0Z0qob3vZuPNB9DK42Drr5OO7rMoIFfe/W5feyc6F/y8542bnQ2qU5/+k/A19HD35qpPnpjCnftguL8aMw7dYJpXczrB6djba8gopDx3R5rB6dg8XdE3Xvq06dwXxwf0zDuqN0dcGkXTAWU8ZTeTJC16lm0r4tJh1CdJ/bvPIs6tQ0KvY27nCLoIHdiDt8hrgjZ8lPy+Lk2j8oySmgVZ+OAJzesI/DP9XM8+PXLRhza0uOLttKfmoW6bGJnF63hxZh7ZpsyOaGCwcZ3KobgwK64m3vyuxuo3GxdmBHdPU+uqfzMJ7oXfP3E54USahvCMMDe+Bu40SQmy8P9Bijt5BIeFIUwwND6e3fHjcbRzp4BjC90xDCEy/W6WhrCCGDQ4k+dJroQxHkpmZydNXvFOXmE9S3ejGR8HV/sHfJel3+838cIz4iivz0bHJTMghf9wfxp6MI7l+zWMmpzftIuhBHQWYu2YlpHPh5E9mJ6QT16VL76xtE1+F9OLfvOOf2h5Odks6eXzZSmJ1Hh4HVHfv7V21j66KVACiUSly9PfReVnbWqExNcPX2wMzcDIAOA8MoLSpm9y8byUnLJC4ikmObdtNpUM9GadOe2JOE+bUj1Lct7rZOTGzXDycrW92qeGOCezOzS90hsWG+IVzJSSXVwPVIpVDSzN6VZvaumChV2Fva0szeFRdrh4Zujs7h+LN08Q6ic7NAXK0dGBEUhr2FDccTIgEY0robk9r11+U/mxpLaUUZE9r1x9XaAV9HD4YF9uBUUrRuyGbfFh1p6dwMR0tbXKzt6enXjo5erQ0OhWwIf8ScoJd/e8J8Q/CwdWJy+wE4WtnpInfGte3DfV3rztvYy68dV7JTSCmoGxU8LLAHQW6+uFjb427rxKBWXQn1bcvxhIsN3h6AHZeO09e/I7392+Np68zdHQfjZGXH3rjqVdMntevPA93H1CnXx78DcdnJJBdk1vnsTGosA1p2pnvzYFys7Ql292N8SF8iUmIMjkZoSpam5rRy8dYt7OJl50IrF2/cbQxH9jeVf/t+Ev8eMmxTCFGv7r33XkpLS+nevTsqlYrHHnuMuXPnolAo+PHHH3nxxRf57LPP6Ny5Mx9++CFjx46ts405c+bw9ttv3zTqDMDKyoodO3bwxBNP0K1bN6ysrJg0aRIff/yxLs/ixYuZO3cunTp1wsfHh7fffptnnnlG97lSqWTdunXMmTOH7t274+fnx2effcbw4Y0zP44hp1MuYWVmwbDAUOzMrUgtzGbR0Q26H712FtY4WtrplbEwMaODZwC/3TBxcWPpN3gAhQUFLF/yMznZOfi18OOND9/B3aO6AzMnO5uM9JooQw8vT9748G2+/ewrNv22EWcXZx5+cj69B/TV5Zl23z0oFAp++nYJ2ZlZ2Ds60KNXKPfNnaP33afDT5GRnsHQUY2/vw5cOYOtuZXuJvFqbhqv/f6DbniLo5Udrjf8GFQqlEwI6Usze1fUGjVnU+N4dvOXZBTlGv6CRlK+cRsKM1MsZ9+Dwtoadexlit7+GMrKdHmULk56kWZlv21GqwWLqeNROjmiLSik8uQZyn79TZdHYWWJxbRJ1Z8XFVN5/CSlK9eBWt2o7fPr0oaK4lLObTtEaUExDp4u9H/0LmycqhdLKCsoojinZoiqqbkZA+dP5cTqnWx7fynm1pb4dA6iw+g+jVrvGx2KP4uduRVTOw7C0dKWhNw03tz1o+5Yc7Kyw9XGQZd/d+xJLE3MGRnUk/u7jaK4ooyzqXF6HbWrzuxGq9Uyo9NQnKzsKSgrJjwxkl9O72iUNrXs2pbyolJOb9lPSUERjl6uDJs/DVvn6naU5BdRdMN+UVepOb52F8V5hZiYmuDg5cqweXfTvF1N9GdFSTkHf9lCSUERZpbmODf3YPQz9+FmJMqwvgX16EhpUQlHNuyiOK8Al2YeTFwwG3uX6h+6xfkFFOTk/alt2jk7cNezD7Jn+SaWvrwQGwc7Og/tTfdR/eu/AQacSr6EtZklwwNDsbOwJrUgm68Pr9Ndj+wtrHGsNaTYwsSMjl6tWHtur8Ft2lva8PzAmrkrB7fqyuBWXYnJTOSzg6sbqil6zqddxsrUgv4BnbE1tyK9MIefT24jv6x6KLGNuRX2ljURixXqKn48sYVRbXrxcM+JlFaUcT7tsm7YM1SvqDwmuDd2FtZUqqvIKs5jzdndnE+7XOf7G8LJpGiszSwZ1abntX2VxZeH1uqGkdpb2OBkVXdfdWrWmlVnDM9zaK4yZVqnIThY2lCpriKtMIcl4Vs4mRRtMH99C0+MxMbMkrHBvbG3sCE5P5NPDvyqW5Wxuk3690OWpuZ08Q5iRcROg9vcdPEgWq2WCdceTBaWl3AmNdbo8dqUglx9+WJCzRQhj/eungN4a+QR3tq9tKmqVce/fT81KOkovKMotNJ1K4SoJ/3796djx4588sknf2s7hw4don///iQlJekiyP5XPLnhk6auQr36ZNyTXG6EJekbWwsXb0Yvfrapq1GvNs/+gLy759w64/8Qh5U/8MbOxU1djXr13yGzGf/j801djXq1fta7fLBnWVNXo149O+Aevqu1+tv/ugdDx/HYuo9vnfF/zOcTFvDK9m+buhr16s3hc3lkreGVxv9XfT3pWWaverupq1GvFk95kV5fPtzU1ahXh+Z984/cT/+r8h56qqmrYJDDooVNXYUmIZFnQog7Rnl5OYmJibzyyitMmTLlf67jTAghhBBCCCHEP4/MeSaEuGOsWLGCwMBA8vPzef/995u6OkIIIYQQQgjRNK6twnzHvf6lJPJMCFFv9u7d+7fKz5o1i1mzZtVLXYQQQgghhBBCiPogkWdCCCGEEEIIIYQQQhghkWdCCCGEEEIIIYQQdxKNpqlrIG4gkWdCCCGEEEIIIYQQQhghnWdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQggh7iT/4pUt70QSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiLDNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k6ikWGbdxKJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9FqmroG4gYSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEy55kQQgghhBBCCCHEnUSrbeoaiBtI5JkQQgghhBBCCCGEEEYotFrpzhRCCCGEEEIIIYS4U+Td+3BTV8Egh5++aeoqNAkZtimEEPXop/CtTV2FenVvt5EUxsQ2dTXqnW2rAIZ8+0RTV6Ne7Zz7Kf/d/l1TV6NevTH8Qcb/+HxTV6NerZ/1LoMWPd7U1ahXfzz0GYVp6U1djXpl6+H+jzyff7L/16auRr17su9UNl842NTVqFej2/Zm+HdPNXU16tX2BxfS7+t5TV2NerXvkS+Zvertpq5GvVo85UV6fXlndtj8VYfm/Q939GgkzulOIsM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQtxJZHr6O4pEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g0TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5HVNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k4iwzbvKBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOIOotXIsM07iUSeCSGEEEIIIYQQQghhhHSeCSGEEEIIIYQQQghhhAzbFEIIIYQQQgghhLiTaDVNXQNxA4k8E0IIIYQQQgghhBDCCOk8E0L8T5s1axbjx4//U2X8/Pz45JNPGqQ+QgghhBBCCCH+WWTYphD/Q2bNmsXSpUvrpA8bNozt27c3+Hfn5eWxfv36Bv2eP+vTTz9Fq63flWji4+Px9/fn9OnTdOzYsV63bciJnQc5unUPRXkFuDbzYMg94/EJannLcomXLvPz/32Jq7cHD779rC49KvwshzbuJDc9C41ag6O7C6Ej+9Oud7eGbEYdWq2Wb5cvZ92O7RQWFdG2dSDPPfIILX19jZaJu3qVb35ZRlRsLKkZGSx48EGmjxtvNP+SVav48qelTBs7jqfnzm2AVugbE9ybu9oPxNnKjvjcNL4+8hvn0y4bzT82uDfj2vbB3daJjKJclp/eya6YcIN5+7fsxEuDZnEo/iyv/f5DQzWhjm7N29DbvwM25pZkFuWyLeooV3PTjOZXKZT0D+hMB68AbMytKCgrZl/caU4nXwKgi3cgHb1a42brCEBKfha7YsJJzs9slPYAjAgMZXxIXxytbEnMTeeH45u5mBFvNH/fFh2ZENIPLztniivKOJ18iR9PbKWwvESXZ0xwL4YHhuJi7UBheTGH48/z86ntVKqrGqFF1cfSlA6DdMfeV4fXcu4mx964tn0Y17YPHteOvV9O/c7OG469Ya27858B99QpN/z7BQ3WJq1Wy7c/LmHdpk0UFhbSNjiY5558ipb+/jct98e+vXzzww8kpaTg7eXFow88yIC+fXWfL1qymO9+/FGvjLOTEzvWrde9z87J4fNF33A0PJzCoiI6d+jAs088gY938/ps4j/yfH5+z3EidhykJL8IRy9Xek0dgVdrP4N5k6OvsPHDJXXS737jMRw9XQG4uP8E0UciyEnJAMDV14seEwbj7u/dYG0w5NC23ezdsIOC3Dw8mjdj3Oy7aRHc2mDey5ExbPlpDRnJqVRUVODo6kzY0H70GzNUl+fozn2c2HuEtIRkALxb+jJyxkR8WrVolPYAjG7Ti8kdBuBkacfV3DS+ObqeCzc5T4wJ7sWY4D642zqSWZTHioid/BFzQvf58MBQBrfuhq+jBwCxWUksCd/CpcyEBm/LdePb9uHujoNxsrInPjeVLw6t4Wxq3E3y92Viu3542DqRXpTLspPb2XHpuO7zT8Y+QadmdffzkavneX7r1w3ShtoGtOzM8MBQHCxtSM7PZEXELmKyEg3mnd1tNL3929dJT87P5JUd3+neD2nVjQEtO+NkZUdRRSknkqJYc3YPVRp1g7Xjr+jgGcD0TkMJcvPBxdqB57d+zYErZ5q6Wneuev6NI/4e6TwT4n/M8OHDWbJE/8bU3Ny8iWrT9Ozt7Zu6Cn/LxaOn2blsPcNnTaZ5a39O7T7Myg++5aH3nsfexdFoubKSUjZ+sxz/tq0oyi/U+8zS2opeY4fg4uWOykRFzOkLbPp2JVZ2trRsH9TQTdJZunYNy9ev49WnnsLHqxk//Por8155mbXfLMLayspgmbLycrw9PBjcqzcff/+dwTzXXbh0iXU7ttPK7+Y/vOtLvxadeCRsAp8fXM2F9CuMatOTt0c8zJxV75BZnFsn/+g2vZjdfQwL968kOjOBIDcfnupzN0XlJRxNuKCX183Gkbk9xnM2NbZR2nJdiEcLRrQJY/PFQyTkptOteRD3dBnOFwdXk19WbLDMlI6DsDG3ZP35/eSUFGBtZolSodB97ufkxdnUWBIj06nSqOnt34F7u47gi4Nr9DqjGkovv/bM7j6aRUc3EJURz7DAHrwy5H4eW/8xWcX5dfK3cfPlid5TWBy+mfDESJyt7Hg4bALzek7i3T0/A9WdazO7DOeLg2uIykzAy86Fx3vfBcDi8M0N3qb+LTvxaM+JfHZwNefTLjM6uBfvjHyE2aveJqOo7rE3Jrg3c7qP4eP9K4jOSCDIzZcFfe+mqKKUI1fP6/IVlZcy69f/0yvbkJ2BS1csZ/mqVbz6wgv4eDfnh59/Yt7TC1i77Bej54Sz58/z4uuv8/DsOQzo04c9Bw7w/Guv8sMXXxISHKzL18Lfn68++lj3XqVS6f5fq9XyzEsvYWKi4qO33sba2ppfVv3KowsWsHrpT1haWtZL+/6J5/PY8HMc+nUbfWaMxjPAhwv7wtny2TLufn0+ts4ORstNe/NxzCxr7k0sbK11/58SHU+r7u3xaNkclakJETsOsnnhT0x9fT42jnYN2Ryd0wePs2HJSiY+eA/+bQI4smMf3/3fJ/zn0zdxdHWuk9/M3IxeIwfi5euNmYU5VyJjWPPNT5iZmxM2tB8Aseej6dS7O35BAZiYmrJn/TYWvf4x//n0Teydje//+tK3RUceChvPl4fWcCH9CiODevJ/w+cyd/W7ZBbn1ck/qk1PZnUbzacHfuVSZiKBrj480WcKReWlHLt2jWrvFcDe2FNcTL9ChbqKuzoM5O0RD/PQmvfILql7Pq1vA1p2Zn6vySw88CvnU+MY07Y3742ax30r3zR47hvXtg9zQ8fywd7lRGVcpY27H8/2m05heQmHr537XtnxHabKmp/AdhbW/DDlBfbGnW7w9kD1A6tpHYfw86ntxGYl0b9lJ57qM5WXd3xLTklBnfwrInay5twe3XuVQsnrQ+dwIilKlxbq05bJ7QewOHwzsVnJeNg6Maf7aABWRuxq+Eb9CZam5sRmJ7E16jBvj3i4qasjxJ8iwzaF+B9jbm6Oh4eH3svRseamTKFQsGjRIkaPHo2VlRVt2rThyJEjxMbG0r9/f6ytrQkLCyMuruap3WuvvUbHjh1ZtGgRzZs3x8rKirvuuou8vDzd50uXLmXDhg0oFAoUCgV79+5l4MCBzJ8/X69+2dnZmJubs3v37jp1z8/PR6VScfLkSaD6B42TkxPdutU8QV+xYgWenp6698nJyUydOhVHR0ecnZ0ZN24c8fHxus9rD9ssLCxkxowZWFtb4+npycKFC+nfvz9PPvmkXl1KSkqYPXs2tra2+Pj48O233+o+878WBdGpUycUCgX9+/e/+U75G45t20vH/j3oNCAUl2buDJ05ATtnB079ceim5bYtXk3bsM40C/Cr85lvcABB3drj0swdR3cXug/vh1tzTxKjjT99rm9arZYVGzZw/9SpDOzZiwA/P15fsICy8nK279tntFzb1q15YvYchvXrh5mpqdF8JaWlvPLhB7z02GPY2tg0RBPqmNS+P9ujj7It+igJeel8fWQdmUW5jAnuZTD/4Fbd2BJ5iH2XT5NWmM3euNNsjz7K1I6D9fIpFQpeGHgvP53cRlpBdmM0RaenXztOJUVzKimarOI8tkUdpaCsiG4+wQbzB7h44+fkybKTO7icnUJeaRHJ+Zkk5mXo8qw9u4fwxEjSCnPIKs5nw/kDKBQKWjg3a5Q2jWvbm10xJ9gVE05SfiY/HN9MVnE+wwNDDeZv7epDZlEuWyIPk1GUS2TGVX6PPk6AS019A119iEq/yv4rZ8goyiUiJYYDl8/o5WlIk9sNYFvUUbZGHSEhL52vDv9GRlEuY4J7G8w/pFU3NkceYm/caVILs9kTd4pt0UeZ2mFQrZxacksL9V4NRavVsmL1au6fOZOBffsR0KIFr7/wYvU5YddOo+VWrFlNjy5duf+ee/Dz9eX+e+6he5cuLF+9Wi+fiUqFi7Oz7uXo4KD7LCEpiXMXL/D8gqdp26YNfj4+PP/UAkpLS9nxxx/11sZ/4vn8zM7DBPXuTHCfLjh6utL77pHYONpxYZ/hCNrrLO2ssbK31b2UypqfHIMfnEzIgO64+Hji6OlKv3vHodVqSY5svGvU/k2/031QH0KH9MXd24vxc6bh4OzE4R17Deb3buFL5z498PBphpObC136hRHYMYQrkZd0ee55ai69Rgykmb8P7t6eTHlkFlqtlpizkY3Spont+rMj+hjbo4+RmJfBoqPrySzKY7SRa9SgVl3ZFnmY/ZcjSCvMZt/l0+yIPsaUDgN1ed7fs4zNkYe4nJNCUn4Gnx74FYVCQcdmrRqlTVM6DGJr1BG2RB7mal46XxxaS2ZRLuPa9jGYf2jr7my8eIg9cadILcxmd+xJtkQdZlqnmgjBwvISckoLdK+uzYMor6pgb9ypRmnTsNbdOXDlDAeunCG1MJsVEbvIKS1gQMvOBvOXVpZTUFase/k5emJlZsnBG6K1Wjo3IyYriWMJF8kuyedC+hWOJVzEz9HT4Dab0tGEC3x3bCP7Lkc0dVWE+NOk80yIf6A333yTe++9l4iICIKCgpg+fToPPfQQL7zwAidOVIfj1+70io2NZdWqVWzatInt27cTERHBvHnzAHjmmWeYMmUKw4cPJzU1ldTUVHr27MkDDzzA8uXLKS8v123nl19+wcvLiwEDBtSpl729PR07dmTv3r0AnD17VvffgoLqp2179+6lX7/qp7glJSUMGDAAGxsb9u/fz8GDB7GxsWH48OFUVFQYbPuCBQs4dOgQGzduZOfOnRw4cIBTp+reEH300Ud07dqV06dP8+ijj/LII48QFVX9FO/48erw/l27dpGamspvv/12e//wf5K6qorUK0n4hwTqpbcICSQpJt5ouTP7jpGbnkXficNu+R1arZYr5y+Rk5Z5W0OH6ktyehrZubmEdqq5GTQzNaVzSAhnI//+D4n3vv6aXt260aNjp7+9rdtholTR2qU5J5Oi9dJPJkXT1t1w5JupyoSKWlE85VWVBLr6oFLUXH7v6TycvNIitkcfrf+K34RKocTTzoW4rGS99NisZHwc3A2WCXLzJSU/i97+7Xmm/3Qe7zOFYYE9MFGqDOaH6n8HlUJJaWW50Tz1xUSpoqVzMyJSYvTSI1JiCHIzPFw4KuMqztb2dGlW/Xdob2FDmF+I3lP9yIx4Wro0o5VL9bAydxsnOnsH6uVpKCZKFa1dm9f5rpNJUTc/9qoq9dLKqyoJcvNFdUMnhqWpOcunv8bKGW/w1vC5BDg33LC55NRUsnNyCO1a87DEzMyMzh06cPb8eaPlzl64QI9u+kMUQ7t15+wF/TIJSUkMnziBsVOn8MLrr5GUkqL7rPLa9cLczEyXplKpMDExIeLc2b/Vruv+iedzdVUVmVdTaR6s/13N2waQFnfzYXur3/iapc+8z8aPlpAcdfNOsaqKSjRqNebW9RMBeCtVlVUkxV0lsENbvfTAjsHER91e9G/S5avER8fSIjjQaJ6KinLUajVWN0TdNRQTpYpWLt6cSta/Rp1KjqaNu5/BMqbKuteoCnUlrWtdo25kbmKGiVLZKFHE18994Yn69wzhiZGEeBgeCmvs3Nem1rnvRqOCwtgde5KyKsP3lfVJpVTi6+jJhXT9v4kLaVdu+/zbp0UHLqZfIfuGKLWYrCT8HD3wd6ruLHO1dqCdZ8tGj2YXDUCjvTNf/1IybFOI/zGbN2/GplakzXPPPccrr7yie3///fczZcoU3WdhYWG88sorDBtWfXP+xBNPcP/99+tto6ysjKVLl+LtXX3x/vzzzxk1ahQfffQRHh4eWFpaUl5ejoeHh67MpEmTeOyxx9iwYYPu+5YsWcKsWbNQ3DCM60b9+/dn7969PP300+zdu5dBgwZx+fJlDh48yMiRI9m7dy9PPfUUACtXrkSpVPL999/rtrdkyRIcHBzYu3cvQ4cO1dt2YWEhS5cuZfny5QwaNEiX38vLq049Ro4cyaOPPqr7N1q4cCF79+4lKCgIV9fqeVmcnZ312nuj8vJyvU5D+PPDZ0sKi9FqNNjY2+qlW9vbUpRXN3QfICctkz2/bmbmK4+hVBnvsCgrKeWzx15DXVWFQqlk+KzJtGhn/Ca/vmXnVg+ncL4h+uP6+9SMvzf31Y59+4iKi+WnhZ/8re38GfYW1qiUKnJL9fdLbmkhjla2BsucTIpiRFAoh+PPEpOVRGuX5gwPDMVUZYK9hQ05pQW0dfdneGAoD699vzGaocfKzAKVUklRhf6PoOKKUmzMDf+IdbS0xcfRnSqNmhWn/5+9+46K4mrDAP4svTcBCyJVEBQVBLsCKmrQ2EsUBYm9gdjzGUvsxt6xYW+IxqixK6AoNqoCAlLEAoogvbPz/UHYuIIKCzLM+v7O4Rz2zhCfG5bZ2bv3vvcGFKTl0L9lF8hLy+L8szuV/oyDiQ2yCnIRn/am0uO1SVlWAZISksj4bAZVZn421OUrr2UUnZqETXdOYa7daEhLSkFKQhIPkyKx78EFwTkBCeFQlVXC6p+mgMfjQUpCEleeB+Lc0y/Poqwt/z33hPv0MT8bGl947j15HQXHFp1wL/EpYj+8gommLn4y7fDfcy8vC0kZ7/Gn33HEp72FoowchljYYevAWZjksw5vsmq/Pl1aetmsygYaGkLtDdQ1kPzuyzX20tLT0UBdeMlbA3V1pKWnCx63MjPHH//7H/Sa6iLt40ccOHoE46dPw+lDh6Gmqgp9PT00btQIO/buxf/mzoW8nByOe59GWno6PqTVzmxPcbyeF+TkgeHzoaAifM8hr6yIvMycSn9GQVUZtmMHQEuvCUpLShDzIAwXNh3GwLmuX6yT9uDsDSiqqaCped3UBsvNzgafz4eSmvASUSVVVWRnfHkgFwCWT5iLnKxs8Pml6DNiIDo6dP/iuf8cPQtVDXU0b135TN7apFJ+ncir5DohX/lS2KDXz9G3RUfcf/kULz68RnNNXfQ26SD0GvW5X236Iy03U1Dj8ntSlVOClIRkhaWMZde+yvv0+FUU+pt1RkBCGGI+lC1FdWzRSeja96kW2nowbKCDdX7Hv1s/PqUsowBJCYkKZRGyCnOhKvftQVZVOUVYNDLC3gd/C7U/ehUJZVkF/GbvDPDKBh5vvwjC5eeBtZqfkB8dDZ4RwjH29vbYvVu4oKnGZ29GWrf+r7Bow4ZlM0gsLCyE2goKCpCVlQUVlbIbkGbNmgkGzgCgU6dO4PP5iI6O/uIAkqysLMaMGQMvLy+MGDECoaGhCAsL++qmAnZ2djhw4AD4fD78/f3Rs2dPNGvWDP7+/rCyskJMTIxg5llQUBBevHgBZWXhNyMFBQVCy07LxcfHo7i4GO3btxe0qaqqwtS04puMT/8f8Xg8NGrUCO/fv69w3pesWbMGf/zxh1Db0qVLYdiv/Rd+4is+G2hk/s30OT6fj/M7j6Lb0L5o0Fj7q/9JWTlZTFg1F0WFRUiMiMHN4+ehrtUAeubG1c9XBVd8fbF65w7B4y1LlwGo2A+GqdDdaklJTcXGfXuxY/kKoVkkdeXzuq08XtnvqzLHgq9BXUEZ2wbNBg9lN/zXYx5iZNte4DN8yEvLYoH9WGy+ewpZhZXXF2PLl+rTlv8+fcJvo/DfT/evPi9binop8l6FwsRdDVrDorERDj76h92ixTwemC/8ppqqamNihwE4HXoLIW9joC6vjHHWjpjaaTB23D8LoKw23LA29tjz4G/EpiahkYomJrT/GR9bZ8M7vOIS9e/j8/y8L/6ejgZdg7q8CnYMmg0er+y5dy3mEX5p2wt8Ph9A2Wy6qE82UXiWkgDPofMwqFV37Py33zVx5cZ1rN64UfB4y9p1Zak/+/tnGOaLH7YIVLhGCv9Ml47/Lck1BtC6ZUsMGj0Kl65exZiRIyElJYU/l6/Aij/XoUf/fpCUlET7du3QuUMH0TpXrazcu55XUMmv50u/M/VGmlBvpCl43MioGXLSMxF6/V6lg2chV+/ixaOnGDjPFVJfWar/PVTswrdfoKavWoCigkK8jInDP0fPokFjbVh1q/g8uv3XFYQEPMS05fMhLVOX/RK+KPCAL177ToTcgLqCCrYMnCV4jboR+wgj2vREKcOvcP6w1j1gZ2SJ+f/srLONUr7kSxtFHX5yBRryKtg9ZB7AAz7mZeNq9AOMtuwNfiV96teiM+LT3uD5+5ffO/JXlf2evq2LfmvkFRcg+K3wDENTrWbob9YZR4OvIj79LRoqqWNUWwdkmufgYuTXl40TQqqOBs8I4RhFRUUYG3/9hln6kxvQ8hvcytrK30RVpvycb72pmTBhAtq2bYvXr1/Dy8sLPXv2hN5XdlPs3r07srOzERwcjLt372LFihXQ1dXF6tWr0bZtW2hra8PMzEyQr127djh+vOInguWzwz5VfjNVccCm4i2J9Gc36Twe76v/Pz7322+/Yfbs2UJtsrKyOB1e9fo5CsqK4ElIVJiVkJeZDUXVijNKivILkZzwCikv3+Da4bKlpAzDAAyD1c5zMHrBFOi3LKtDwpOQgEajsv9HjfR08OHNO9y/ePO7vdnq3qEDWn0ySFlUXDaw8uHjR2h+MribnpkBDTXRCyc/f/EC6RkZGDvLXdBWyucjJOIZvC9dxP2/zgsVCq8tmQW5KOWXVvi0W01OGRl5ldeJKiotxkb/k9hy5zTUFZSRnpcFxxadkVtUgMyCXBg2aILGKg2wos9Ewc+UP3evTtgE19OrkJz9/Wqg5RUVoJTPh5KMcKF2RRl55BblV/oz2YV5yCrIFQycAUBqTgYkeDyoyCkKfarfRd8C3Qzb4vDjy3iXk17Zf67WZRfmoZRfCjV54b8fVTklZORXPlNmWGs7RL1PxPmIsplzLz+mYM+D81jjOBXHQ67jY342Rls6wC8uWLBT6suMd5CTksa0zkNwJtz3i29Oa0P5c0/9s9kj6vJKX6xRVlRajA3+J7D57imoy6sgPS8T/cy6CJ57lWHAIDo1CU1VK15bRdG9S1e0Mvtvxo3gmpCWDs0G/w2upGd8hIb6l68JDTQ0hGaZAUD6x4yv/oy8vDyMDAzx6vVrQZuZqSlOHPBCTk4OiktKoK6mBpcpk2FeyYcrohCn63k5OSUF8CQkKswyy8/OhbxK1ZciNjTURcyDirvphV4LQPDlu/h5tgsaNK38Q7rvQVG5rAZb9kfh31VOZhaUVb++YUGDhmW/h8Z6TZGdkYXrp/+uMHjme/4qbp39B1OWzUUT/drdzfVLssqvE5+/Rskrf/U6sfnOKWy76y14jfqpRSfkFhUg67PrxFALO/zSthd+u7wbCenJ360fn8osyEFJJa+76t/o0zq/Y9hw5wQ05FWQlpeJn827IrcoH5n5wn2SlZJGD+N2dbLpS7nsojyU8vkVZpkpyypW+H9emW4GbRD48hlKP7tfHdzKFvdfPhPsWvkmMxUyktJwsXbEpch73/EVinx3lQz6EvbQ4BkhBACQlJSEt2/fCpY4BgYGQkJCAiYmZUudZGRkUFpaceaIhYUFrK2tsW/fPpw4cQLbt2//6r9TXvdsx44d4PF4MDc3R5MmTRASEoJLly4JZp0BgJWVFU6fPg1tbW3BDLmvMTIygrS0NB49egRd3bIb1qysLMTGxgr9d79F5t8ZTZX1t5ysrGyNdzmVlJJCY4OmSHgWgxY2/82ES3gWA5N2rSr+m/KymLhmvlBb0M17eBkZiyFu46CmpVHhZz5VUvz9PilWVFAQ2i2PYRg0UFfHw5AQtDAqq5dTXFyM4GfPMHOc65f+M99k06YNTu3YKdS2fOsW6DVtCpehw77LwBkAlPBLEfPhFax0THEv8b8aSVZNTXE/8elXf7aU4Qt2ebQ3ssLDpAgwYJCU8Q4Tz6wVOnecjSMUpOWw6/65SndHq02lDB/JWR9gpKkjNAPJSFPni5/CJ318h5aNDCHzST03TUVV8Bm+0I1/F/3WsDWyxJEnV/A268N37cenSviliEt7g7ZNjAW7xQH493FkpT8jKymDUkb4b53/2YC7rKR0hUH4snN4ZbMPv+M7kxJ+KWJSX6FdU+HnXrumLXDvW889Ph8f/n0e2RtZ4cHLZ18d6DNqoFNrb4wrvSZoaODhkydo8e/rSnFxMYLDwjBz8uQv/ndat2yJh08ew+nf0gAA8PDxY7RuWfEaWa6oqAiJSS9h+ckM43LlZQ+SXr9CVHQ0po4fX+2+VUacruflJKWkoKXXGK+j4mBo9d9A6OvIOOi3rfpOnx+SkqHw2QBiyLUABP/jj37uztDWr5uNN8pJSUuhqZEeYsIiYNHxv7qcMWGRaNm+GnU0mYq/B9/zV3HT5xImLfaAbiUbQHwvJfxSxH54DUsdE6HXJEsdEzx4+fWlqJ++RtkaWeLRv69R5Ya1tscoSwcsurIHsR9efZ8OVKL82mfdtIVgUAgArJu2QEDi12sVlvL5gtfQHsbtEFjJtc/eqB2kJaVwI+brm1/UplI+Hy8/JsO8oQGCP1n62rKhAULefn0prKlWMzRU1sDdexUHomUkpSr0j2GYskmj3/tFipAfCA2eEcIxhYWFSEkRrg8jJSUFTU3NL/xE1cjJycHFxQUbNmxAVlYW3NzcMGLECMGSTX19fVy7dg3R0dFo0KABVFVVBbO3JkyYgBkzZkBBQQGDBw/+5r9lZ2eHrVu3YvDgweDxeFBXV4e5uTlOnz6Nbdu2Cc5zcnLC+vXrMXDgQCxfvhxNmzZFUlISzp07h3nz5gktMwUAZWVluLi4YN68edDQ0IC2tjaWLl0KCQmJby8L+oS2tjbk5eVx9epVNG3aFHJyclBVVa3yz1dHh5/s8Pfu42hsqIumxvoI8b2PzLSPsOrZGQDge/oSsj9mYsAUJ/AkJKCtK7xzkqKKEiSlpYTa7124icYGulBv2AClJaWIC43C04DH6Dtu+HfpQ2V4PB5GDRyIg2e80axJE+g2aYKDZ7whJyuLvp8MZC7ZuBHaDRpgxrhxAMreTMe/KitEXVxSgtS0NETHx0FBTh66TZpAUUEBxvr6Qv+WnKwc1JRVKrTXtrPhflhgPwYxH5IQ9S4Rjmadoa2kjktRZUsifrXpD01FVfz5b+0UHVUttNDSw/P3L6EkK4+hre2hr9FYcLy4tASJH4UHKnILy2Z8fd7+vdxPfIohre0EO2Za67aAqpwSHieVFWjuZWIDFVlFnHvqBwB4mvwCdkaWGGRhC9/YICjIyKG3aQcEv44RLMvsatAaPZpbwyfsNjLys6EkU1Y/rai0uEJx6u/h74gAzOo2Ai8+vEF06kv0NukATUU1XIt+CAAYY9UHDRRUsTXAGwDw+HUUpnUegr6mHRDyJhbqCsoY374/YlKTBLMbHr9+jgHmXRGf/hYxqa/QWLkBRls64PGryAoDbd+Dz1NfLLQfi5jUV4h8l4B+/z73LkYGAADGt/8ZmoqqWOd7DADQVFULLbT1EPWu7Lk3vLU9DDQaC44DwNh2fRH1LhFvMlOhICOHwa1sYdygKbYFnKk0Q03xeDyMGj4cB48fQ7OmTaHbtCkOHjtWdk3o5SA4b8mqVdDW0sSMSWUDar8MG4ZJbm44dOI47Lp0hd+9ADwMeoIDnwyib9m1E906d0Gjhtr4+DEDB44cQW5uLvr37Ss456avL9TU1NCoYUO8iI/Dxu3bYdu1KzraiLDU/gvE8XrexqEzbh04By09HTQy0kXknSfITs9ES9uyTRwenLuB3I9Z6Dl+KAAg7OZ9qDRQh3oTbfBLShHzMAzxwZHoM/UXwX8z5OpdPPr7NnpNGAYVTTXkZZb9nUnLykBarmYfSlVV95974+S2/WhqrA99UyM8uH4HHz+ko1Pvstenf46dRWbaR4x2nwAACLhyG+qaGtDWKfvdJETFwu/CNXR1/G9nytt/XcHVk+cxxmMi1LU1kfWxbEBKVk4WsvJy371P5576YZ6dE2JTXyHqfSJ+alF2nfgn6j4AwNWmHxooqmKD3wkAZa9RplrN/n2NUsAQC1voqzfGxn+PA2VLNZ2tf8K620fxLjsd6v/O6s0vLqyTAvveYbewqKcLolOTEJESj/7mXaGtrIELEWXXvokdBkBLUQ2rbx8BULYM30xbD5HvE6Esq4ARrXvAQKMx1vx7/FP9zDohICGszssmXIt5hIntByDxYzLiPryBrZElNBRUBLt9DrWwg7q8MvY/uij0c90M2iAu7U2lNSnDkl+gt0l7JH18h/j0N9BWUsegVt0R+jb2i0tc2SIvLSs0w7mJiiaaazZFVkEu3uV8ZDEZId9Gg2eEcMzVq1fRuLHwDbepqalgp0hRGRsbY8iQIXB0dER6ejocHR2xa9cuwfGJEyfCz88P1tbWyMnJga+vL+zs7AAAo0aNwqxZszB69GjIyX37BtHe3h6bNm0S/DwA2NraIjQ0VGiGmIKCAu7cuYMFCxZgyJAhyM7Oho6ODnr27PnFmWibNm3ClClT0L9/f6ioqGD+/Pl49epVlXKVk5KSwrZt27B8+XIsWbIE3bp1E+wQWtvMO1oiLzsXAX9dQ05GFrSaNsYv8yZBVbNs1kFORhYyP1TvZqK4sAhXD/kgOz0TUjLSaNBEGwOnjoF5x7rZmbKcy9BhKCwswtrdu5Cdk4NWpqbYsXyF0GyUlNRUSEj8N7CZmp4OJzc3weOj587h6LlzsGplgb1rhWdp1TX/+BCoyClijFUfaCioIjE9GYuu7MH7f2/2GiioQFvpv6VkkjwJDGttj6Zq2ijllyL0bSzc/95SZ0sYq+JZSjzkpWVhZ2wFZVkFvM9Ox7Ggq8gsKFumpSyrAFX5/5aXFJWW4PCTy+hn1hmTOw9GflEBnqXE41bsE8E5Ns3MISUhiV8sHYT+Ld8XQfB9UXHn29p2LzEcKrIKGNm2J9TllZH0MQUrbh4SzELQUFCBlpKa4PzbL4IgLyULxxad4WrTD7lFBQhPjsORoCuCc7zDboNhGDhZ9oaGgiqyCnLx+FUUjodc++79AQC/uBCoyCpibLv/nnu/XfH84nNPgieBYa17QFdVGyX8UoS9jcXM85uFnntKMvKY3f0XqCuoILcoHy8+vIbHxa2ITv36Loo14TJqNAoLC7F286aya4KZGXZs2Ch8TXj/Tuia0KaVBVYtWYrdB/bD88ABNG3SBGuWLUMr8/9mQr1LTcWi5X8gIzMT6mpqaGVujoO7PdH4k3qdH9LSsHnnDqR9/AjNBg3Qr08fTHB2qdX+ieP13NjGAgU5+Qi65IfczGxoNNFGP7cxUG6gBgDIy8hGTnqm4Hx+SSnun7mG3IwsSElLQ72JFhzdxkDP4r8NOyL8HoNfUorrnqeF/i3rn+1gM6AH6oJl1/bIy87BDe+LyPqYicbNdDBhkTs0tMs+iMz6mIGMD//9vTB8BpePnUX6+w+QkJREg4Za6DdmKDr2/u+e5f5VX5SWlODweuG6tL1HDECfXwZ+9z7diQ+FiqwinKz6QF1BBS/Tk7H46l7BdUJDQQXaip9eJ3gYYmEneI0Ke/sCsy9sFRrA+Nm8C2QkpbDYQXjG+LGgqzgW/P2vf75xwVCVU4Rzu5/QQFEFCenJWPDPLsG1rIGC6mevuzyMbNMTumplG9uEvI3B9L82IiVb+HW3qao2Wjc2xpyLX18t8T08fhUFJRl5DDDvClU5JbzJTMWWu6cFu2eqyilVWKoqLy2Ldk1b4GTojUr/mxcjA8AwDAa36g51eWVkF+YhLPkFzj71+869qb4WWnrYMfi/siduXcs+CLgcFYhVtw+zFav+qmeDnz86HlPfhqMJIXVu2bJlOH/+PEJDQ0X6+VevXkFfXx+PHz+GlZXVt3+gDuXm5kJHRwcbN27E+FpanvM1Rx5f/u7/Rl1ytnFEdqz4bXWu3NwYDnvdv30ih9yYtBVLru5jO0atWt53IgYdWsh2jFp1ftxa9Nzj9u0TOeTW5G3ITnnHdoxapdyooVhez7fcOf3tEzlmVveRuPTvTCRx0b9lV/Td58F2jFp1deJm2O6eznaMWuU/dSd+9V7Ndoxa5TXif+iycwrbMWrVvemebEcQ2ceBo9mOUCn1v098+yQxRDPPCCEiKy4uRnJyMhYuXIiOHTvWi4GzkJAQPH/+HO3bt0dmZiaWL18OABg48Pt/6ksIIYQQQgghRPzQ4BkhRGT37t2Dvb09TExM4OPjw3YcgQ0bNiA6OhoyMjJo164d7t69W+OacIQQQgghhBBSZ/i0SLA+ocEzQgiWLVuGZcuWVfvn7Ozs6l0hUktLSwQFBbEdgxBCCCGEEEKImJBgOwAhhBBCCCGEEEIIIfUVzTwjhBBCCCGEEEIIqU/q2QqfHx3NPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QnDZzsB+QTNPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QmfdtusT2jmGSGEEEIIIYQQQgghX0CDZ4QQQgghhBBCCCGEfAEt2ySEEEIIIYQQQgipTxhatlmf0MwzQgghhBBCCCGEEEK+gAbPCCGEEEIIIYQQQgj5Alq2SQghhBBCCCGEEFKf0LLNeoVmnhFCCCGEEEIIIYQQ8gU0eEYIIYQQQgghhBBCWLVq1Sp07twZCgoKUFNTq9LPMAyDZcuWoUmTJpCXl4ednR0iIiKEziksLMTMmTOhqakJRUVFDBgwAK9fv65WNho8I4QQQgghhBBCCKlP+Pz6+fUdFRUVYfjw4Zg6dWqVf+bPP//Epk2bsGPHDjx+/BiNGjWCg4MDsrOzBefMmjULf/31F06dOoWAgADk5OSgf//+KC0trfK/QzXPCCGEEEIIIYQQQgir/vjjDwDAoUOHqnQ+wzDYsmULFi1ahCFDhgAADh8+jIYNG+LEiROYPHkyMjMzceDAARw9ehS9evUCABw7dgy6urq4efMm+vTpU6V/i2aeEUIIIYQQQgghhJBvKiwsRFZWltBXYWEhK1kSEhKQkpKC3r17C9pkZWVha2uL+/fvAwCCgoJQXFwsdE6TJk3QqlUrwTlVwhBCCOGUgoICZunSpUxBQQHbUWoN9YkbqE/cIY79oj5xA/WJG6hP3CGO/RLHPv1Ili5dygAQ+lq6dGmt/hsHDx5kVFVVv3nevXv3GADMmzdvhNonTpzI9O7dm2EYhjl+/DgjIyNT4WcdHByYSZMmVTkTj2Fo/1NCCOGSrKwsqKqqIjMzEyoqKmzHqRXUJ26gPnGHOPaL+sQN1CduoD5xhzj2Sxz79CMpLCysMNNMVlYWsrKylZ6/bNkywXLML3n8+DGsra0Fjw8dOoRZs2YhIyPjqz93//59dOnSBW/fvkXjxo0F7RMnTsSrV69w9epVnDhxAq6urhUyOzg4wMjICJ6enl/9N8pRzTNCCCGEEEIIIYQQ8k1fGyirzIwZM/DLL7989Rx9fX2RsjRq1AgAkJKSIjR49v79ezRs2FBwTlFRET5+/Ah1dXWhczp37lzlf4sGzwghhBBCCCGEEEJIrdPU1ISmpuZ3+W8bGBigUaNGuHHjBiwtLQGU7djp7++PdevWAQDatWsHaWlp3LhxAyNGjAAAJCcn49mzZ/jzzz+r/G/R4BkhhBBCCCGEEEIIYVVSUhLS09ORlJSE0tJShIaGAgCMjY2hpKQEAGjRogXWrFmDwYMHg8fjYdasWVi9ejWaN2+O5s2bY/Xq1VBQUMDo0aMBAKqqqhg/fjzmzJmDBg0aQENDA3PnzoWFhYVg982qoMEzQgjhGFlZWSxdurRa06XrO+oTN1CfuEMc+0V94gbqEzdQn7hDHPsljn0itWPJkiU4fPiw4HH5bDJfX1/Y2dkBAKKjo5GZmSk4Z/78+cjPz8e0adPw8eNHdOjQAdevX4eysrLgnM2bN0NKSgojRoxAfn4+evbsiUOHDkFSUrLK2WjDAEIIIYQQQgghhBBCvkCC7QCEEEIIIYQQQgghhNRXNHhGCCGEEEIIIYQQQsgX0OAZIYQQQgghhBBCCCFfQINnhBBCCCGEEEIIIYR8AQ2eEUIIYRXDMKC9a0hde/HiBa5du4b8/HwAoOdgPVdQUMB2hFonjn0ihJDK9OjRAxkZGRXas7Ky0KNHj7oPRIgIaLdNQgip5woLC/Ho0SMkJiYiLy8PWlpasLS0hIGBAdvRauTIkSNYv349YmNjAQAmJiaYN28exo4dy3Iy0ZSWlmLz5s3w9vZGUlISioqKhI6np6ezlKzmXr9+jQsXLlTar02bNrGUSjRpaWkYOXIkbt++DR6Ph9jYWBgaGmL8+PFQU1PDxo0b2Y4oslevXgldJ1q2bAlZWVm2Y4mMz+dj1apV8PT0xLt37xATEwNDQ0MsXrwY+vr6GD9+PNsRq00c+wSI13MvMzMTf/31F+7evVvhdbdPnz7o3Lkz2xEJ4RwJCQmkpKRAW1tbqP39+/fQ0dFBcXExS8kIqToptgMQQgip3P3797F9+3acP38eRUVFUFNTg7y8PNLT01FYWAhDQ0NMmjQJU6ZMgbKyMttxq2XTpk1YvHgxZsyYgS5duoBhGNy7dw9TpkzBhw8f4OHhwXbEavvjjz+wf/9+zJ49G4sXL8aiRYuQmJiI8+fPY8mSJWzHE9mtW7cwYMAAGBgYIDo6Gq1atUJiYiIYhoGVlRXb8arNw8MDUlJSSEpKgpmZmaB95MiR8PDw4Nzg2cuXL+Hp6YmTJ0/i1atXQjPoZGRk0K1bN0yaNAlDhw6FhAS3FhysXLkShw8fxp9//omJEycK2i0sLLB582ZODjSJU5/E7bmXnJyMJUuW4Pjx42jUqBHat2+Ptm3bCl53fX19sWHDBujp6WHp0qUYOXIk25FF8vjxY5w5c6bSD0POnTvHUqqaEcc+iYvw8HDB95GRkUhJSRE8Li0txdWrV6Gjo8NGNEKqjyGEEFLvDBgwgGncuDEzZ84cxt/fn8nNzRU6HhcXxxw6dIjp06cP06hRI+b69essJRWNvr4+c/jw4Qrthw4dYvT19VlIVHOGhobMpUuXGIZhGCUlJebFixcMwzDM1q1bmVGjRrEZrUZsbGyYxYsXMwxT1q+4uDgmOzubGTBgALNr1y6W01Vfw4YNmdDQUIZh/usPwzBMfHw8o6ioyGa0anNzc2OUlZWZoUOHMocPH2aioqKYrKwspri4mHn37h1z69YtZtmyZYypqSnTsmVL5tGjR2xHrhYjIyPm5s2bDMMI/66ioqIYNTU1NqOJTFz6JI7PPS0tLWbOnDnM06dPv3hOXl4ec+LECaZ9+/bM+vXr6zBd7Th58iQjLS3N9OvXj5GRkWH69+/PmJqaMqqqqsy4cePYjicScerT33//XeUvruDxeIyEhAQjISHB8Hi8Cl8KCgrMgQMH2I5JSJXQzDNCCKmHevfujTNnzkBGRqbS44aGhjA0NISLiwsiIiLw9u3bOk5YM8nJyZUufencuTOSk5NZSFRzKSkpsLCwAAAoKSkhMzMTANC/f38sXryYzWg1EhUVhZMnTwIApKSkkJ+fDyUlJSxfvhwDBw7E1KlTWU5YPbm5uVBQUKjQ/uHDB84tM5ORkUFcXBy0tLQqHNPW1kaPHj3Qo0cPLF26FJcvX8bLly9hY2PDQlLRvHnzBsbGxhXa+Xw+Z5f4iEufxPG5FxERUWl/PiUvL49Ro0Zh1KhRSE1NraNktWf16tXYvHkzpk+fDmVlZWzduhUGBgaYPHkyGjduzHY8kYhTnwYNGiT0mMfjCc3o5PF4gu9LS0vrKlaNJCQkgGEYGBoa4tGjR0J/YzIyMtDW1oakpCSLCQmpuvo/h5oQQn5A06dP/+LA2edatmwJBweH75yodhkbG8Pb27tC++nTp9G8eXMWEtVc06ZNBQN/xsbGuH79OoCy5SRcG5T5lKKiIgoLCwEATZo0QVxcnODYhw8f2Iolsu7du+PIkSOCxzweD3w+H+vXr4e9vT2Lyapv/fr133yzX87R0RHDhg37zolqV8uWLXH37t0K7WfOnIGlpSULiWpOXPokjs+9qvZH1PPrg7i4OPTr1w8AICsri9zcXPB4PHh4eGDv3r0spxONOPWJz+cLvq5fv462bdviypUryMjIQGZmJi5fvgwrKytcvXqV7ahVpqenB319ffD5fFhbW0NPT0/w1bhxYxo4I5xCM88IIYRDCgoKcPr0aeTm5sLBwYGzA01//PEHRo4ciTt37qBLly7g8XgICAjArVu3Kh1U44LBgwfj1q1b6NChA9zd3TFq1CgcOHAASUlJnKzhVq5jx464d+8ezM3N0a9fP8yZMwdPnz7FuXPn0LFjR7bjVdv69ethZ2eHJ0+eoKioCPPnz0dERATS09Nx7949tuNV2++//44ePXqgc+fOkJOTYztOrVq6dCnGjh2LN2/egM/n49y5c4iOjsaRI0dw6dIltuOJRBz79Dl/f3/k5uaiU6dOUFdXZztOtbx48QKZmZlo166doO3WrVtYuXIlcnNzMWjQIPzvf/9jMWHNaGhoIDs7GwCgo6ODZ8+ewcLCAhkZGcjLy2M5nWjEsU8AMGvWLHh6eqJr166Ctj59+kBBQQGTJk1CVFQUi+lEExMTAz8/P7x//x58Pl/oGJdrw5IfB+22SQgh9dS8efNQVFSErVu3AgCKiorQoUMHREREQEFBASUlJbhx4wY6derEclLRBAUFYfPmzYiKigLDMDA3N8ecOXM4Nfviax48eID79+/D2NgYAwYMYDuOyOLj45GTk4PWrVsjLy8Pc+fORUBAAIyNjbF582bo6emxHbHaUlJSsHv3bgQFBYHP58PKygrTp0/n3BIfADAyMkJCQgJkZGTQoUMH2Nvbo0ePHujYsWOVZ6/WZ9euXcPq1auFfldLlixB79692Y4mMnHp0/r165GTk4M//vgDAMAwDH766SfBrFttbW3cunULLVu2ZDNmtQwePBitWrXCihUrAJQtOWvZsiW6deuGFi1awMvLCytWrMCsWbPYDSqi0aNHw9raGrNnz8aqVauwdetWDBw4EDdu3ICVlRUni+uLY5+AsiXCjx49EpSDKBceHo4OHTogPz+fpWSi2bdvH6ZOnQpNTU00atRIaAkqj8dDcHAwi+kIqRoaPCOEkHqqVatWWL16tWDg5eDBg5gzZw5CQkLQrFkz/Prrr3j//j3++ecflpMSQtj05s0b3L59G35+fvDz80NCQgLk5eXRqVMn2Nvbw97evtIag4TUhJWVFRYsWCDYdfLMmTNwcXHBjRs3YGZmBmdnZygoKHBqNrGuri68vb0FH0qtXLkSPj4+CA0NBQAcOHAA27dvFzzmmvT0dBQUFKBJkybg8/nYsGGD4MOQxYsXc26mICCefQLKSgxIS0vj2LFjgg92UlJSMHbsWBQVFcHf35/lhNWjp6eHadOmYcGCBWxHIURkNHhGCCH1lIqKCoKDgwXFpUeNGgVlZWVBDY/Q0FA4OjpybrOAT71//77S6futW7dmKVH1XLhwocrncnn2GdeFh4ejVatWkJCQQHh4+FfPVVJSgq6uLqSlpesoXe179eoVfH194efnh7NnzyI3NxclJSVsx6o2V1dXjBkzBj169BCapcBl4tQndXV13L9/H2ZmZgDK+lZSUoKjR48CKJt9O3z4cLx69YrNmNUiLy+PmJgY6OrqAgB69uyJzp07C2aixcXFoV27dsjIyGAxpWhKSkpw/Phx9OnTB40aNWI7DvmGFy9eYPDgwYiOjkazZs0AAElJSTAxMcH58+cr3XikPlNRUUFoaCgMDQ3ZjkKIyKjmGSGE1FMSEhJCuyw9ePBAaNdGNTU1fPz4kY1oNRYUFAQXFxfBks1P8Xg8zuwi9fnOWF/CpT4BZW+Kq/rGPj09/Tunqbm2bdsiJSUF2traaNu2bYUdzD6nqqoKT09PwYwaLomLi4Ofn59gJlppaSnnNkIol5aWhn79+qFBgwb45ZdfMGbMGM4v6xanPhUXFwtthhIYGAh3d3fB4yZNmnBuUxENDQ0kJydDV1cXfD4fT548EapZWVRU9NVrR30mJSWFqVOncrJW1ueysrKqfK6Kisp3TPL9GBsbIzw8HDdu3MDz588F5S169erFyYH34cOH4/r165gyZQrbUQgRGQ2eEUJIPdWiRQtcvHgRs2fPRkREBJKSkoTeBL98+RINGzZkMaHoXF1dYWJiggMHDqBhw4acvBEEUGHGnLjYsmUL2xFqVUJCgmBnvISEhK+eW1hYiDNnzggtR6vPEhIS4OvrK5hplpmZiS5dusDW1hYzZsyAjY0NpKS4ebt34cIFZGRkwNvbGydOnMCWLVtgamqKMWPGYPTo0dDX12c7YrWJU5+MjY1x584dGBoaIikpCTExMbC1tRUcf/36NRo0aMBiwuqztbXFihUrsGvXLpw5cwZ8Pl/odTcyMpJTv6PPdejQASEhIZysVfkpNTW1Kt83cOmDq8/xeDz07t2bc/UQy23btk3wffky2gcPHsDCwqLC7G43N7e6jkdItdGyTUIIqafOnj2LUaNGoVu3boiIiICNjQ0uXrwoOL5gwQIkJCRwqp5MOWVlZYSEhHBu2QH5MXz8+BHjx4/nRKFpCQkJNGvWDNOmTYO9vT2srKwgKSnJdqzv4vXr1zh58iS8vLwQGxvLyaWon+Nyn/bs2YM5c+Zg5MiRePDgAdTU1IR2rF25ciUePnwo9LpV3yUkJMDBwQEJCQmQkJDAtm3bMHXqVMHxQYMGwcDAAJs3b2YxpejOnDmDhQsXwsPDA+3atYOioqLQca6UTPi03ldiYiIWLlyIcePGCWrVBQYG4vDhw1izZg1cXFzYilljubm58Pf3R1JSEoqKioSOcWGwycDAoErn8Xg8xMfHf+c0hNQcDZ4RQkg9dvPmTfzzzz9o1KgRZs6cCQUFBcGxP/74A3Z2dkKf9HPFoEGDMHbsWAwdOpTtKLWK6ze635Kfn4/i4mKhNq4uicnLy6v098SVN4/lRo4ciTt37qCgoADdunWDra0t7O3tYWlpydkZnZUpLi7GP//8g2PHjuGff/6BhoYG3rx5w3asGhGHPh04cACXLl1Co0aNsHTpUqFaWtOmTUOvXr0wZMgQFhNWX3FxMSIjI6GlpYUmTZoIHQsLC4Ouri40NDRYSlczEhISFdrKl7FzrbxAuZ49e2LChAkYNWqUUPuJEyewd+9e+Pn5sROshkJCQuDo6Ii8vDzk5uZCQ0MDHz58gIKCArS1tWmwiRAW0OAZIYRwWGhoKNq2bct2jGr78OEDXFxc0L59e7Rq1arC9H0uFtcX1xvd3NxcLFiwAN7e3khLS6twnGtvtlJTU+Hq6oorV65Uepxr/Sn3/PlzwdJNf39/FBQUoGvXrrC1tYWdnR1sbGzYjigSX19fnDhxAmfPnkVpaSmGDBkCJycn9OjRo9KBAC4Qxz59SWpqqmDJtDh4+vQpDhw4wNml7S9fvvzqcS4u51RQUEBYWBiaN28u1B4TE4O2bdsiLy+PpWQ1Y2dnBxMTE+zevRtqamoICwuDtLQ0xowZA3d3d84NShMiDmjwjBBCOCYzMxPHjx/HgQMHEBoaysk3+xcuXMDYsWORnZ1d4RhXP/0W1xvd6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di2cnJzYjlgtTk5OSExMxJYtW2Bvb4+//voL7969w8qVK7Fx40b069eP7Yi1IjIyEidOnMD27ds5u9tm06ZNkZaWhj59+sDJyQk///wz5OTk2I5VI+LYp88xDIMrV64IZqUVFhayHalGsrKycPLkSRw4cABPnjxB69atERoaynYs8i9TU1P0798fGzduFGqfM2cOLl26hOjoaJaS1YyamhoePnwIU1NTqKmpITAwEGZmZnj48CFcXFzw/PlztiNWy+zZsytt5/F4kJOTg7GxMQYOHMjZWZ3kx0CDZ4QQwhG3b9+Gl5cXzp07Bz09PQwdOhRDhw7l5E5t+vr66N+/PxYvXszZTQ8+J243uuWaNWuGI0eOwM7ODioqKggODoaxsTGOHj2KkydP4vLly2xHrJbGjRvj77//Rvv27aGiooInT57AxMQEFy5cwJ9//omAgAC2I4rs3bt38PPzg5+fH3x9fRETEwNZWVl07NgRvr6+bMertr1792L48OFQV1dnO0qtEcc+lYuPj4eXlxcOHz6MnJwc9OvXD0OHDsXgwYPZjiYSf39/HDhwAGfPnkVBQQHmzZuHCRMmcLpW55EjR7563NnZuY6S1J7Lly9j6NChMDIyQseOHQGU7U4eFxeHs2fPwtHRkeWEotHS0sK9e/dgYmICU1NTbNu2DX369MHz589hZWXFuRl19vb2CA4ORmlpKUxNTcEwDGJjYyEpKYkWLVogOjoaPB4PAQEBMDc3ZzsuIZXi5vZLhBDyg3j9+jUOHToELy8v5ObmYsSIESguLsbZs2c5fXORlpYGDw8PsRk4AwBpaWlBjamGDRsiKSkJZmZmUFVVRVJSEsvpRJeeni4o+quiooL09HQAQNeuXYUKaXNFbm4utLW1AQAaGhpITU2FiYkJLCwsEBwczHK66jtz5oxguWZ0dDSkpKTQvn17jBgxAvb29ujcuTNkZWXZjimSSZMmsR2h1olbnwoKCuDj44P9+/fjwYMHcHBwQHJyMkJDQ9GqVSu241VbcnIyDh48KHjNHTVqFPz9/dGpUyc4OztzeuAMANzd3YUeFxcXIy8vDzIyMlBQUODk4JmjoyNiY2Oxe/duREVFgWEYDBw4EFOmTIGuri7b8URmaWkp+HDH3t4eS5YswYcPH3D06FFYWFiwHa/aymeVHTx4UFArNSsrC+PHj0fXrl0xceJEjB49Gh4eHrh27RrLaQmpHA2eEUJIPeXo6IiAgAD0798f27dvR9++fSEpKQlPT0+2o9XYkCFD4OvrCyMjI7aj1Bpxu9EtZ2hoiMTEROjp6cHc3Bze3t5o3749Ll68CDU1NbbjVZupqSmio6Ohr6+Ptm3bYs+ePdDX14enpycaN27Mdrxqc3JygrW1NQYPHgx7e3t06dIF8vLybMeqNY8fP8aZM2cq3dyBC7uhVkZc+jRt2jScOnUKpqamGDNmDM6ePYsGDRpAWlqas7XbDAwMMHz4cOzcuRMODg6c7ceXfPz4sUJbbGwspk6dinnz5rGQqGaKi4vRu3dv7NmzB6tWrWI7Tq1avXq1oLTFihUr4OLigqlTp8LY2BgHDx5kOV31rV+/Hjdu3BDaZEhFRQXLli1D79694e7ujiVLlqB3794spiTk62jwjBBC6qnr16/Dzc0NU6dOrVAIl+tMTEzw22+/ISAgABYWFhU2DODizpTidqNbztXVFWFhYbC1tcVvv/2Gfv36Yfv27SgpKcGmTZvYjldts2bNQnJyMgBg6dKl6NOnD44fPw4ZGRkcOnSI3XAi+PjxIxQVFdmO8V2cOnUKzs7O6N27N27cuIHevXsjNjYWKSkpnF0KKE592rt3LxYsWICFCxdCWVmZ7Ti1Qk9PDwEBAWjWrBn09PTQokULtiN9d82bN8fatWsxZswYzpUXkJaWxrNnz8RqZ+Fy1tbWgu+1tLQ4VyLhc5mZmXj//n2FVROpqanIysoCUFb+4vMPFAipT6jmGSGE1FOBgYHw8vKCt7c3WrRogbFjx2LkyJFo0qQJwsLCOL1ss3wZYGV4PB5nd6b8ESQlJeHJkycwMjJCmzZt2I5TY3l5eXj+/DmaNWsGTU1NtuOI7M2bNzh79ixiYmLA4/HQvHlzDB06FDo6OmxHE1nr1q0xefJkTJ8+HcrKyggLC4OBgQEmT56Mxo0b448//mA7YrWJU59OnDiBgwcPIjAwEP369cPYsWPRt29fyMvLc/o16t69ezhw4ADOnDkDExMTjBkzBvPnz0d4eDjMzMzYjvddhISEwNbWVjCIwSVz5syBtLQ01q5dy3aU7yI1NVVQD8zU1JSzr1NOTk4IDAzExo0bYWNjAx6Ph0ePHmHu3Lno3Lkzjh49ilOnTmHDhg148uQJ23EJqRQNnhFCSD2Xl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9VWw+7SeEiG7Xrl2YPXs2ioqKoKqqCoZhkJWVBRkZGWzatAnTpk1jO6JIFBUVERERAX19fWhqasLX1xcWFhaIiopCjx49BDMIuUQc+5SYmIiDBw/i0KFDyMvLQ3p6Ok6fPo1hw4axHa1GcnJycPLkSXh5eeHhw4ewtbXF6NGjMWjQIGhpabEdTyQXLlwQeswwDJKTk7Fjxw7o6uriypUrLCUT3cyZM3HkyBEYGxvD2tq6wkxcLs6QBsrqc86cORNHjx4V7EAuKSkJZ2dnbN++HQoKCiwnrJ6cnBx4eHjgyJEjgt2fpaSk4OLigs2bN0NRUVGwi23btm3ZC0rIV9DgGSGE1FNJSUnQ1dUVWo4QHR2NAwcO4OjRo8jIyICDg0OFm2FCiLDZs2dX+VyuvdH6559/MHDgQMyaNQtz5swR1G1LTk7G+vXrsX37dvz999+c3HFOV1cXly9fhoWFBdq0aYOFCxdi1KhRCAwMRN++fZGZmcl2xGoTxz6VYxgG165dg5eXFy5cuABNTU0MGTIE27ZtYztajUVFRQlee9PT01FcXMx2JJF8XsONx+NBS0sLPXr0wMaNGzlZ99He3v6Lx3g8Hm7fvl2HaWrP5MmTcfPmTezYsQNdunQBAAQEBMDNzQ0ODg7YvXs3ywlFk5OTg/j4eDAMAyMjIygpKbEdiZAqo8EzQgippyQlJZGcnCzYGfBTpaWluHjxouBNChfMnj0bK1asgKKi4jcHM7g2gEHqt6+9ufoUF99o2draolu3bli5cmWlx3///XfcvXsX/v7+dZys5kaPHg1ra2vMnj0bq1atwtatWzFw4EDcuHEDVlZWnCquX04c+1SZ9PR0HDlyBAcPHkRYWBjbcWpNSUkJLly4gCFDhrAdhYg5TU1N+Pj4wM7OTqjd19cXI0aMQGpqKjvBCPmB0eAZIYTUUxISEkhJSal08IyL7O3t8ddff0FNTU1sPykmpK6pqKjg8ePHMDU1rfR4dHQ0rK2tBZtZcEl6ejoKCgrQpEkT8Pl8bNiwAQEBATA2NsbixYuhrq7OdsRqE8c+iZO3b99i06ZNWLJkidCugEBZwfOVK1di7ty5aNiwIUsJyZe8ePECcXFx6N69O+Tl5cEwDKc3ElBQUEBQUFCFOnsRERFo3749cnNzWUpWdUOGDMGhQ4egoqLyzQFncfnggIg3GjwjhJB6StwGzwipT8TljZaSkhLCw8NhaGhY6fH4+Hi0bt0aOTk5dZyMiLuqLIfm8XjYuHFjHaSpHXPnzkVWVhb27t1b6fEpU6ZAVVUV69atq+NkohPnZesAkJaWhhEjRsDX1xc8Hg+xsbEwNDTE+PHjoaamxqnn36d69uyJBg0a4MiRI5CTkwMA5Ofnw8XFBenp6bh58ybLCb/N1dUV27Ztg7KyMlxdXb96Lpd3JSc/Dim2AxBCCPmy/fv3f7MehJubWx2lqT3v3r374if34eHhaN26dR0nEk11avlw6fdUnR3XPp+dUd996Y3WhAkTOPlGq2XLlvj777/h4eFR6fHz58+jZcuWdZyq9vD5fLx48QLv378Hn88XOta9e3eWUtWMuPQpJCSE7Qi17urVq/D09PzicWdnZ0ycOJFTg2ef/56CgoJQWloqmK0aExMDSUlJtGvXjo14Nebh4QFpaWkkJSUJzdIaOXIkPDw8OHdNL7d161b07dsXTZs2RZs2bcDj8RAaGgo5OTlcu3aN7XhV8umAGA2OEXFAM88IIaSekpCQQNOmTSEpKfnFc3g8HuLj4+swVe3Q1tbG/v37MWDAAKH2DRs2YPHixcjPz2cpWfUYGBhU6Tyu/Z4kJCS+OQurfKZW+S5gXOHs7Iz3799j//79MDMzQ1hYGAwNDXH9+nV4eHggIiKC7YjVcvjwYUydOhUbNmzApEmTICVV9rloSUkJ9uzZg3nz5mHXrl0YN24cu0FF8ODBA4wePRovX77E57erXHzuAeLZJ3GiqKiIqKgoNGvWrNLj5QM0XFgyV5lNmzbBz88Phw8fFiwR/vjxI1xdXdGtWzfMmTOH5YTV16hRI1y7dg1t2rSBsrKy4JqekJAACwsLTs+6zc/Px7Fjx/D8+XMwDANzc3M4OTlBXl6e7WgiKSkpgZ+fH+Li4jB69GgoKyvj7du3UFFRoY0DCCfQzDNCCKnHnjx5IpbLNhcsWICRI0cKtihPT0/H2LFjERERgdOnT7Mdr8oSEhLYjvBd+Pr6sh3hu7l+/TquXbuGpk2bCrU3b94cL1++ZCmV6FxcXPD06VPMmDEDv/32G4yMjAAAcXFxyMnJgZubGycHzoCyJXLW1tb4559/0LhxY04uq/2cOPXJz8+vQjHzz02bNg27du2qm0C1QF5eHomJiV8cPEtMTOTswAUAbNy4EdevXxeqraeuro6VK1eid+/enBw8y83NhYKCQoX2Dx8+QFZWloVEtUdeXh4TJ05kO0atePnyJfr27YukpCQUFhbCwcEBysrK+PPPP1FQUPDVGZ+E1Bc0eEYIIaTOzZkzB7169cKYMWPQunVrpKeno2PHjggPD+d8IeaioiIkJCTAyMhIMAuIa2xtbdmO8N2I4xutDRs2YNiwYTh58iRiY2MBlC3/++WXX9CxY0eW04kuNjYWPj4+MDY2ZjtKrRGnPg0cOBC+vr6wsrKq9Pj06dNx/PhxTg2edejQAUePHv3i8tkjR46gffv2dZyq9mRlZeHdu3cVlnK/f/+ek5uKAGXXuiNHjmDFihUAymZw8vl8rF+/vso7LdcX1dk9/fOZ+/Wdu7s7rK2tERYWhgYNGgjaBw8ejAkTJrCYjJCq4+ZdPSGEEADA8ePH4eTkxHYMkRgaGqJly5Y4e/YsAGDEiBGcHjjLy8vDzJkzcfjwYQBldWQMDQ3h5uaGJk2aYOHChSwnFN3du3exZ88exMfH48yZM9DR0cHRo0dhYGCArl27sh2vWsTpjRYALF++HHPnzkXHjh05PVBWmQ4dOuDFixdiMdBUTpz6NGHCBPz000+4e/cuTExMhI7NmDEDR44cweXLl1lKJ5q5c+fCwcEBqqqqmDdvnuA16d27d/jzzz9x6NAhXL9+neWUohs8eDBcXV2xceNGwfXiwYMHmDdv3jd3Q6yv1q9fDzs7Ozx58gRFRUWYP38+IiIikJ6ejnv37rEdr1oGDRpUpfO4uMQ7ICAA9+7dg4yMjFC7np4e3rx5w1IqQqqJIYQQUi+1aNGCefv27RePHz9+nJGWlq7DRLUnICCA0dfXZ9q1a8dERkYy+/btY5SVlZnhw4cz6enpbMcTiZubG9OuXTvm7t27jKKiIhMXF8cwDMP8/fffTNu2bVlOJzofHx9GXl6emTBhAiMrKyvo186dO5mffvqJ5XTVFxERwWhpaTF9+/ZlZGRkmGHDhjFmZmZMw4YNmRcvXrAdr9okJCSYd+/esR3juzh37hxjbm7OHDx4kHny5AkTFhYm9MVF4tYnV1dXplmzZszr168FbTNnzmQUFRUZPz8/FpOJztPTk5GVlWUkJCQYNTU1Rl1dnZGQkGBkZWWZXbt2sR2vRnJzc5mpU6cK+ichIcHIyMgwU6dOZXJyctiOJ7Lk5GRmyZIlTL9+/ZiffvqJWbRo0Vfvn0jdU1dXZyIiIhiGYRglJSXBvcTdu3cZbW1tNqMRUmW0YQAhhNRTdnZ2yM/Px+3bt6GoqCh07NSpU3B2dsa6deu+uMtefSYrKwsPDw+sWLEC0tLSAMpqNI0dOxZJSUl4/fo1ywmrT09PD6dPn0bHjh2Fiha/ePECVlZW1drBsj6xtLSEh4cHnJ2dhfoVGhqKvn37IiUlhe2I1ZaSkoLdu3cjKCgIfD4fVlZWmD59Oho3bsx2tGqTkJBASkqKWNZGlJCQqNDG4/E4u1kFIH594vP5GDZsGKKionD37l2sWrUKe/fuxaVLlzg5k7O4uBjS0tJ48+YNvL298eLFCzAMAxMTEwwbNgxNmzbFs2fP0KpVK7aj1khubi7i4uLAMAyMjY0r3GMQ9iUkJFR5UyIuGDlyJFRVVbF3714oKysjPDwcWlpaGDhwIJo1a0a7cRJOoMEzQgipp3JycmBnZwc1NTVcuXJFMMjk7e2NMWPGYPXq1Zg7dy7LKUXj7+9faV0tPp+PVatWYfHixSykqhkFBQU8e/YMhoaGQoNMYWFh6N69OzIzM9mOKBIFBQVERkZCX19fqF/x8fEwNzdHQUEB2xF/aBISEnj37h20tLTYjlLrvrWBg56eXh0lqT3i2KeioiL069cPYWFhyM3NxYULF9CzZ0+2Y4lk2LBhOHPmzBc3cnj27Bl69uyJd+/e1XEy8iV37tz56vEv1a+r7yQlJdG9e3eMHz8ew4YNg5ycHNuRauTt27ewt7eHpKQkYmNjYW1tjdjYWGhqauLOnTti+QEQET80eEYIIfVYamoqunfvDnNzc/j4+MDHxwdOTk5YsWIFFixYwHY88glbW1sMGzYMM2fOFHyqamBggBkzZuDFixe4evUq2xFFYmRkhD179qBXr15Cg2dHjhzB2rVrERkZyXbEarl69SqUlJQEtdp27tyJffv2wdzcHDt37hTahY4LJCQk0KpVq29uThEcHFxHiciPYtu2bYLvs7OzsWLFCvTp06fCwJmbm1tdRxOZrq4ufvrpJ+zdu7fCsYiICPTo0QPdu3fHmTNnWEhXOx4/fowzZ84gKSkJRUVFQsfOnTvHUirRfWk2ZzmuzeYs9+zZM3h5eeH48eMoLCzEyJEjMX78eE5vWJGfn4+TJ08iODhYMOvbycmJ0zvYkh8LDZ4RQkg99+rVK3Tt2hXGxsYICAjAkiVLsGjRIrZj1Vhubi78/f0rvYHn0putcvfv30ffvn3h5OSEQ4cOYfLkyYiIiEBgYCD8/f3Rrl07tiOK5M8//8Thw4fh5eUFBwcHXL58GS9fvoSHhweWLFmCGTNmsB2xWiwsLLBu3To4Ojri6dOnsLa2xpw5c3D79m2YmZlxbumIhIQE5syZAyUlpa+et3Tp0jpKVLvi4uKwZcsWREVFgcfjwczMDO7u7jAyMmI7msjEpU9VWVLG4/EQHx9fB2lqR1RUlGC2z9q1a4Xa7e3t0blzZ5w5cwaSkpIsphRdecmH3r1748aNG+jduzdiY2ORkpKCwYMHc+76B6DCrO7i4mKEhIRg8eLFWLVqFWdnQZYrKSnBxYsXcejQIVy5cgXNmzfH+PHjMXbsWLGccUxIfUaDZ4QQUk+Fh4cLvn/+/DmcnZ0xaNAg/O9//xM6r3Xr1nUdrdpevXoFXV1dweOQkBA4OjoiNzcX+fn5UFdXx4cPH6CgoABtbW1Ovdn61NOnT7FhwwahWloLFiyAhYUF29FqZNGiRdi8ebNgiaasrCzmzp0r2LGSS5SUlPDs2TPo6+tj2bJlePbsGXx8fBAcHAxHR0fO1XAT55pn165dw4ABA9C2bVt06dIFDMPg/v37CAsLw8WLF+Hg4MB2xGoTxz6Jm8ePH6Nnz55YvHgx5s2bh+fPn8Pe3h7t27fHuXPnODtwBpTdL0yePBnTp08XzCQ2MDDA5MmT0bhxY/zxxx9sR6w1d+7cgYeHB4KCgtiOUisKCwuxa9cu/PbbbygqKoK0tDRGjhyJdevWcaJeZ5MmTWBnZyf4+nyHXkK4gAbPCCGknpKQkBAqJF1+uf78ey4sSVi5ciWSk5OxY8cO8Hg82NnZwcjICHv37kXTpk0RFhaG/Px8jBkzBh4eHhgyZAjbkcln8vLyEBkZCT6fD3Nz82/OdKqvNDQ0EBAQAHNzc3Tt2hXOzs6YNGkSEhMTYW5ujry8PLYjVoukpCSSk5PFcvDM0tISffr0EZoBBAALFy7E9evXObkUVRz7JI5u376N/v37Y/78+di3bx+srKxw7tw5Qe1RrlJUVERERAT09fWhqakJX19fWFhYICoqCj169EBycjLbEWtNVFQUbGxskJOTw3aUGnny5Am8vLxw6tQpKCoqwsXFBePHj8fbt2+xZMkSZGdn49GjR2zH/KaTJ0/C398ffn5+iImJQcOGDWFraws7OzvY2trCzMyM7YiEfBMNnhFCSD31rcLS5bhQYDo/Px8zZsxAamoqLly4ADU1NTx48AAtWrRA06ZNERgYCF1dXTx48ADjxo3D8+fP2Y5cJdXZQVNFReU7JiFVNWDAABQVFaFLly5YsWIFEhISoKOjg+vXr2PGjBmIiYlhO2K1iPPMMzk5OTx9+hTNmzcXao+JiUHr1q05uVmFuPTp1KlT+OWXX6p07qtXr5CUlIQuXbp851S16/z58xg+fDh69+6N8+fPc37gDCir6Xb58mVYWFigTZs2WLhwIUaNGoXAwED07duXkxvbfDpLHwAYhkFycjLWrl2L4uJi3Lt3j6VkNbNp0yYcPHgQ0dHRcHR0xIQJE+Do6ChU4+3Fixdo0aIFSkpKWExafe/evYOvry8uXbqE06dPg8/nc+KDYEK+Xl2WEEIIa7gwKFZV8vLyOHDgAE6dOgUAkJaWFtwAamtr4+XLl9DV1YWamhqSkpLYjFotampqX9yV7XNcujGszsw/rhWY3rFjB6ZNmwYfHx/s3r0bOjo6AIArV66gb9++LKervoSEBLGte6OlpYXQ0NAKA02hoaGcHSwUlz7t3r0by5Ytg6urKwYMGFBh1khmZibu3buHY8eO4ebNmzhw4ABLSatHXV29wjX97t27aNiwoVBbenp6XcaqNd26dcONGzdgYWGBESNGwN3dHbdv38aNGzc4Wxusbdu2QjPyy3Xs2BFeXl4spaq53bt349dff4WrqysaNWpU6TnNmjXjzN8WULaLfEBAgGAGWkhICCwsLCrdfZ2Q+ogGzwghpB5KSkpCs2bNqnz+mzdvBIMA9Vn5TAVLS0s8fvwYJiYmsLW1xW+//YapU6fi8OHDnKoP5uvrK/g+MTERCxcuxLhx49CpUycAQGBgIA4fPow1a9awFVEkqqqqgu8ZhsFff/0FVVVVWFtbAwCCgoKQkZHByeW1zZo1w6VLlyq0b968mYU0NXf48OEqnbdkyZLvnKT2TZw4EZMmTUJ8fDw6d+4MHo+HgIAArFu3DnPmzGE7nkjEpU/+/v64dOkStm/fjv/9739QVFREw4YNIScnh48fPyIlJQVaWlpwdXXFs2fPODMwuGXLFrYjfFc7duwQzG787bffIC0tjYCAAAwZMgSLFy9mOZ1oEhIShB5LSEhAS0sLcnJyLCWqHbGxsd88R0ZGBi4uLnWQpuY6dOiA8PBwtGrVCnZ2dvjf//6Hbt26QU1Nje1ohFQZLdskhJB6qGHDhhgwYAAmTpz4xW3JMzMz4e3tja1bt2Ly5MmYOXNmHacU3ZMnT5CVlYUePXogPT0d48aNg5+fH4yMjHDo0CG0adOG7YjV1rNnT0yYMAGjRo0Saj9x4gT27t0LPz8/doLV0IIFC5Ceng5PT09BoezS0lJMmzYNKioqWL9+PcsJq+dbMxurM2hdH0hISKBJkybQ1tauMPOiHI/H42QtLYZhsGXLFmzcuBFv374FUFZ0et68eXBzc6vyrM/6RBz7lJaWhoCAACQmJiI/Px+ampqwtLSEpaWl0BIzQmrT7du3MWPGDDx48KBCWYTMzEx07twZnp6e6NatG0sJa0deXl6lu5JzYbOoT2loaIDH46FXr16CTQOozhnhGho8I4SQeig9PR2rV6+Gl5cXpKWlYW1tjSZNmgg+1Y+MjERERASsra3x+++/46effmI78g9PQUEBYWFhldYyatu2LecK0ZfT0tJCQEAATE1Nhdqjo6PRuXNnpKWlsZRMNOUbcXwJl5bXAoCjoyN8fX3Rp08f/Prrr+jXrx+ndwMsV1JSguPHj6NPnz5o1KgRsrOzAQDKysosJxOdOPbpR1a+mQ+XfKlOJ4/Hg6ysLGRkZOo4kegGDBgAe3t7eHh4VHp827Zt8PX1xV9//VXHyWpHamoqxo0bh6tXr1Z6nGuvVUBZfTo/Pz/4+/vj7t27kJCQgK2tLezt7TFlyhS24xHyTfRxECGE1EMaGhrYsGED3r59i927d8PExAQfPnwQTON3cnJCUFAQ7t27RwNn9YSuri48PT0rtO/Zswe6urosJKodJSUliIqKqtAeFRUFPp/PQqKaCQkJQXBwsODr4cOH8PT0hImJCc6cOcN2vGq7fPky4uPj0aFDB8ybNw9NmzbFggULEB0dzXa0GpGSksLUqVNRWFgIoGyAieuDTOLYJ3FiZmaGEydOVJjh87nY2FhMnToV69atq6NktUdNTQ3q6uoVvtTU1CAvLw89PT0sXbqUE9f2sLCwr9ap7N27N4KCguowUe2aNWsWMjIy8ODBA8jLy+Pq1as4fPgwmjdvjgsXLrAdTyStW7eGm5sbzp49iytXruCnn37CuXPnMH36dLajEVIlVPOMEELqMTk5OQwZMoSTtaW+Ji0tDUuWLIGvry/ev39f4Uadi8WYN2/ejKFDh+LatWvo2LEjAODBgweIi4vD2bNnWU4nOldXV/z666948eKFUL/Wrl0LV1dXltNVX2VLgstndq5fv56Tf2uNGzfGb7/9ht9++w137tzBwYMHYWNjAwsLC9y8eRPy8vJsRxRJhw4dEBISIlabp4hjn8TFzp07sWDBAkyfPh29e/eudMZ3QEAAIiMjMWPGDEybNo3tyNV26NAhLFq0COPGjUP79u3BMAweP36Mw4cP4/fff0dqaio2bNgAWVlZ/O9//2M77le9e/fuqzugSklJITU1tQ4T1a7bt2/j77//ho2NDSQkJKCnpwcHBweoqKhgzZo16NevH9sRqyUkJAR+fn7w8/PD3bt3kZ2djTZt2sDd3R329vZsxyOkSmjwjBBCSJ0bM2YM4uLiMH78eDRs2JBzS18q4+joiNjYWOzevRtRUVFgGAYDBw7ElClTOD3zbMOGDWjUqBE2b96M5ORkAGWDNfPnz+dUgfNvMTExwePHj9mOUWM2NjZITExEZGQkQkJCUFxczNnBs2nTpmHOnDl4/fo12rVrB0VFRaHjXKv5A4hnn8RFjx498PjxY9y/fx+nT5/GiRMnKtRxc3Z2xpgxYzhb5Pzw4cPYuHEjRowYIWgbMGAALCwssGfPHty6dQvNmjXDqlWr6v3gmY6ODp4+fQpjY+NKj4eHh6Nx48Z1nKr25ObmCjba0NDQQGpqKkxMTGBhYcHJGpY2NjawtLSEra0tJk6ciO7du1eoVUdIfUc1zwghhNQ5ZWVlBAQEcHJjgB9Zeb0cLt/wfl7zh2EYJCcnY9myZXj+/DlCQ0PZCVZDgYGB8PLygre3N0xMTODq6orRo0dz9k0+gEqLzfN4PEGtKS7W/BHHPhHu+FJtztjYWLRp0wZ5eXlISEhAy5Yt632dzpkzZ8LPzw+PHz+usLNmfn4+2rdvD3t7e2zbto2lhDVjY2ODlStXok+fPhg0aJBgxtm2bdvg4+ODuLg4tiNWS1ZWFqfvHQgBaOYZIYQQFrRo0QL5+flsxyDVJA43vmpqahVmOjIMA11dXZw6dYqlVKL7888/cfDgQaSlpcHJyQkBAQGwsLBgO1atSEhIYDtCrRPHPhHuaNq0KQ4cOIC1a9cKtR84cEAwQzotLQ3q6upsxKuW33//HefOnYOJiQlmzJgBU1NT8Hg8REVFYefOnSgtLcWiRYvYjimyWbNmCWZ7L126FH369MGxY8cgIyODw4cPs5yu+sTh/oEQmnlGCCGkzj1+/BgLFy7EkiVL0KpVqwp1S+gmi3wv/v7+Qo8lJCSgpaUFY2NjSElx7zNFCQkJNGvWDP379//qTnmbNm2qw1TkR/P69WtcuHABSUlJFQru03Ov/rhw4QKGDx+OFi1awMbGBjweD48fP8bz58/h4+OD/v37Y/fu3YiNjeXE7+3ly5eYOnUqrl27hvK3tDweD3369MGuXbugr6/PbsBawjAM8vPz8fz5czRr1gyamppsRyLkh0SDZ4QQQupcbGwsRo0ahZCQEKF2WrpEvgcrKyvcunUL6urqWL58OebOnQsFBQW2Y9UKOzu7b9YM5PF4uH37dh0lql1Hjx6Fp6cnEhISEBgYCD09PWzZsgUGBgYYOHAg2/FEIm59unXrFgYMGAADAwNER0ejVatWSExMBMMwsLKy4uxzT1y9fPkSnp6eiI6OBsMwaNGiBSZPnszpgaaPHz/ixYsXYBgGzZs358TMuao4cOAANm/eLNhpvXnz5pg1axYmTJjAcjJCfkw0eEYIIRwQFxeHLVu2ICoqCjweD2ZmZnB3d4eRkRHb0UTSvn17SElJwd3dvdINA2xtbVlKRsSRvLw8YmNj0bRpU0hKSiIlJQVaWlpsxyLfsHv3bixZsgSzZs3CqlWr8OzZMxgaGuLQoUM4fPgwfH192Y5YbeLYp/bt26Nv375Yvnw5lJWVERYWBm1tbTg5OaFv376YOnUq2xEJgOLiYvTu3Rt79uyBiYkJ23HINyxevBibN2/GzJkz0alTJwBltS137NgBd3d3rFy5kuWEhPx4aPCMEELquWvXrmHAgAFo27YtunTpAoZhcP/+fYSFheHixYtwcHBgO2K1KSgoICQkBKampmxHIT+ATp06QUlJCV27dsUff/yBuXPnQklJqdJzlyxZUsfpyJeYm5tj9erVGDRokGBQxtDQEM+ePYOdnR0+fPjAdsRqE8c+KSsrIzQ0FEZGRlBXV0dAQABatmyJsLAwDBw4EImJiWxHJP/S0tLC/fv3K2wYQOofTU1NbN++HaNGjRJqP3nyJGbOnMm5a4Wfnx/s7OzYjkFIjXCvuAchhPxgFi5cCA8PjwoFfhcuXIgFCxZwcvDM2toar169ErvBMx8fH3h7e1da94eLW8uX8/f3x4YNG4RmPs6bNw/dunVjO1qVHDp0CEuXLsWlS5fA4/Fw5cqVSuub8Xg8Tg2erV27FjNnzoSiouI3z3348CE+fPiAfv361UGy2pGQkABLS8sK7bKyssjNzWUhUc2JY58UFRVRWFgIAGjSpAni4uLQsmVLAODcG/zK5Ofno7i4WKiNq3U5nZ2dK90wgNQ/paWlsLa2rtDerl07lJSUsJCoZvr27QsdHR24urrCxcVFsEEFIVxCg2eEEFLPRUVFwdvbu0L7r7/+ii1bttR9oFowc+ZMuLu7Y968ebCwsKiwYUDr1q1ZSia6bdu2YdGiRXBxccHff/8NV1dXxMXF4fHjx5g+fTrb8UR27NgxuLq6YsiQIXBzcxPMfOzZsycOHTqE0aNHsx3xm0xNTQU7aUpISODWrVvQ1tZmOVXNRUZGQk9PD8OHD8eAAQNgbW0tWI5aUlKCyMhIBAQE4NixY0hOTsaRI0dYTlw9BgYGCA0NhZ6enlD7lStXYG5uzlKqmhHHPnXs2BH37t2Dubk5+vXrhzlz5uDp06c4d+4cOnbsyHY8keTl5WH+/Pnw9vZGWlpaheNcrctZVFSE/fv348aNG7C2tq4w8M6FTQJ+FGPGjMHu3bsr/E727t0LJycnllKJ7u3btzh27BgOHTqEZcuWoWfPnhg/fjwGDRr01c1uCKlPaNkmIYTUc7q6uti0aROGDx8u1O7t7Y25c+ciKSmJpWSik5CQqNDG4/E4vWFAixYtsHTpUowaNUpoOdaSJUuQnp6OHTt2sB1RJGZmZpg0aRI8PDyE2jdt2oR9+/YhKiqKpWQEAMLDw7Fz506cOXMGmZmZkJSUhKysLPLy8gAAlpaWmDRpElxcXCArK8ty2uo5ePAgFi9ejI0bN2L8+PHYv38/4uLisGbNGuzfvx+//PIL2xGrTRz7FB8fj5ycHLRu3Rp5eXmYO3cuAgICYGxsjM2bN1cYKOSC6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di0nBy8AwN7e/ovHuLyxiDiaOXMmjhw5Al1dXcEg9IMHD/Dq1Ss4OzsLfejItUHP0NBQeHl54eTJk+Dz+XBycsL48ePRpk0btqMR8lU0eEYIIfXc8uXLsXnzZixcuBCdO3cGj8dDQEAA1q1bhzlz5uD3339nO2K1vXz58qvHufhmS0FBAVFRUdDT04O2tjZu3LiBNm3aIDY2Fh07dqx09gIXyMrKIiIiAsbGxkLtL168QKtWrVBQUMBSMvIphmEQHh6OxMRE5OfnQ1NTE23btoWmpibb0Wpk3759WLlyJV69egUA0NHRwbJlyzB+/HiWk4lOHPskbpo1a4YjR47Azs4OKioqCA4OhrGxMY4ePYqTJ0/i8uXLbEckYu5rA52f4uqg59u3b7F3716sXbsWUlJSKCgoQKdOneDp6SlY9k1IfUODZ4QQUs8xDIMtW7Zg48aNePv2LYCyujLz5s2Dm5tbhZ0qCTsMDQ3h4+MDKysr2NjYYMKECZg8eTKuX7+OX375Benp6WxHFImxsTHmzZuHyZMnC7Xv2bMHGzZsQGxsLEvJyI/kw4cP4PP5YrHctpw49iknJwd8Pl+ojYv1wZSUlBAREQE9PT00bdoU586dQ/v27ZGQkAALCwvk5OSwHbFGXrx4gbi4OHTv3h3y8vKCWd+EfE/FxcX4+++/4eXlJVg6PH78eIwaNQrp6elYsGABQkNDERkZyXZUQipFNc8IIaQeKykpwfHjxzFq1Ch4eHggOzsbQNnuZqR+6dGjBy5evAgrKyuMHz8eHh4e8PHxwZMnTzBkyBC244lszpw5cHNzQ2hoqNDMx0OHDmHr1q1sxyM/CK7PoKuMuPQpISEBM2bMgJ+fn9BMVC4vwzc0NERiYiL09PRgbm4Ob29vtG/fHhcvXoSamhrb8USWlpaGESNGwNfXFzweD7GxsTA0NMSECROgpqaGjRs3sh2RiKmZM2fi5MmTAMrquf35559o1aqV4LiioiLWrl0LfX19lhIS8m0084wQQuq5T5cDkvqLz+eDz+cLdnH09vYW1P2ZMmUKpwvi/vXXX9i4caOgvln5bpsDBw5kORkRd+K4g6249alz584AAHd3dzRs2LDCDCZbW1s2YtXI5s2bISkpCTc3N/j6+qJfv34oLS1FSUkJNm3aBHd3d7YjisTZ2Rnv37/H/v37YWZmJqjNef36dXh4eCAiIoLtiERM9ezZExMmTMDQoUO/eD9UUlKCe/fucfKaQX4MNHhGCCH1nL29Pdzd3TFo0CC2oxBCSJ35dAfbffv2VdjBdtWqVWxHrDZx7JOSkhKCgoJgamrKdpTvJikpCU+ePIGRkRGni5o3atQI165dQ5s2bYQ2thGX5aik/rpz5w46d+4s+ICxXElJCe7fv4/u3buzlIyQqqNlm4QQUs9NmzYNc+bMwevXr9GuXbsKW8u3bt2apWTkc3fv3sWePXsQFxcHHx8f6Ojo4OjRozAwMEDXrl3ZjicSQ0NDPH78GA0aNBBqz8jIgJWVFeLj41lKVnXq6upVrufD1dp04mjXrl3Yu3cvRo0ahcOHD2P+/PlCO9hykTj2ycbGBq9evRLrwbNmzZqhWbNmbMeosdzcXCgoKFRo//DhA+d24yXcYm9vj+Tk5Ao1HjMzM2Fvb8/J5d3kx0ODZ4QQUs+NHDkSAODm5iZo4/F4nK4nUy4oKAhRUVHg8XgwMzODlZUV25FEdvbsWYwdOxZOTk4ICQlBYWEhACA7OxurV6/m7O5siYmJlT7HCgsL8ebNGxYSVd+WLVvYjlBnxKkQeFJSkmBJoLy8vKDm49ixY9GxY0fs2LGDzXgiEcc+7d+/H1OmTMGbN2/QqlUrSEtLCx3nygc827Ztq/K5n74ec0n37t1x5MgRrFixAkDZvQSfz8f69eurvLsjIaL40mtRWlpahQ+FCamvaPCMEELquYSEBLYj1Lr379/jl19+gZ+fH9TU1MAwjODTx1OnTkFLS4vtiNW2cuVKeHp6wtnZGadOnRK0d+7cGcuXL2cxmWguXLgg+P7atWtQVVUVPC4tLcWtW7c4U9jXxcWF7QjfXVpaGkaOHInbt2+LTSHwRo0aIS0tDXp6etDT08ODBw/Qpk0bJCQkgKtVR8SxT6mpqYiLi4Orq6ugjYsf8GzevFnocWpqKvLy8gQbBGRkZEBBQQHa2tqcHTxbv3497Ozs8OTJExQVFWH+/PmIiIhAeno67t27x3Y8IobKN0zi8XgYN26c0AzH0tJShIeHCz5QIKS+o8EzQgip58Rxo4CZM2ciKysLERERMDMzAwBERkbCxcUFbm5ugh2ZuCQ6OrrSmh0qKirIyMio+0A1VF5jj8fjVRh8kpaWhr6+PicHZAAgLi4OBw8eRFxcHLZu3QptbW1cvXoVurq6aNmyJdvxROLh4QEpKSkkJSUJ/qaAspmrHh4enPxdieMOtuLYp19//RWWlpY4efJkpRsGcMWnH1SdOHECu3btwoEDBwTLUaOjozFx4kRMnjyZrYg1Zm5ujvDwcOzevRuSkpLIzc3FkCFDMH36dDRu3JjteEQMlX/wxjAMlJWVIS8vLzgmIyODjh07YuLEiWzFI6RaaMMAQgjhgKNHj8LT0xMJCQkIDAyEnp4etmzZAgMDA07ueKiqqoqbN2/CxsZGqP3Ro0fo3bs3JwebjIyMsGfPHvTq1UuoEPORI0ewdu1aREZGsh1RJAYGBnj8+DE0NTXZjlIr/P398dNPP6FLly64c+cOoqKiYGhoiD///BOPHj2Cj48P2xFFIo6FwMVxB1tx7JOioiLCwsJgbGzMdpRaY2RkBB8fH1haWgq1BwUFYdiwYWI5I5yQ7+mPP/7A3LlzaYkm4TQJtgMQQgj5ut27d2P27NlwdHRERkaGYAmMmpoaZ2s58fn8CnVxgLIZTXw+n4VENTd58mS4u7vj4cOH4PF4ePv2LY4fP465c+di2rRpbMcTWUJCgtgMnAHAwoULsXLlSty4cUNooMLe3h6BgYEsJqsZcSwELiEhIbQz24gRI7Bt2za4ublxcpAJEM8+9ejRA2FhYWzHqFXJyckoLi6u0F5aWop3796xkKh2GBgYYPHixYiOjmY7CvnBLF26FIqKinj//j3u3r2LgIAAvH//nu1YhFQLDZ4RQkg9t337duzbtw+LFi2CpKSkoN3a2hpPnz5lMZnoevToAXd3d7x9+1bQ9ubNG3h4eKBnz54sJhPd/PnzMWjQINjb2yMnJwfdu3fHhAkTMHnyZMyYMYPteCJzc3OrtJD2jh07MGvWrLoPVENPnz7F4MGDK7RraWkhLS2NhUS1o7wQeDkqBE7qys8//wwPDw8sW7YMZ8+exYULF4S+uKhnz56YOHEinjx5IqhF9+TJE0yePBm9evViOZ3oZs6ciatXr8LMzAzt2rXDli1bkJyczHYs8gPIysrC2LFjoaOjA1tbW3Tv3h06OjoYM2YMMjMz2Y5HSJXQsk1CCKnn5OXl8fz5c+jp6Qktx4qNjUXr1q2Rn5/PdsRqe/XqFQYOHIhnz55BV1cXPB4PSUlJsLCwwN9//42mTZuyHbFaSktLERAQAAsLC8jJySEyMhJ8Ph/m5uZQUlJiO16N6Ojo4MKFC2jXrp1Qe3BwMAYMGIDXr1+zlEw0TZs2hbe3Nzp37iz09/TXX39h7ty5iIuLYzuiSCIjI2FnZ4d27drh9u3bGDBggFAhcCMjI7YjEjElIfHlz+K5tGHAp1JTU+Hi4oKrV68KZkmXlJSgT58+OHToELS1tVlOWDMxMTE4fvw4Tp06hfj4eNjb22PMmDFwdnZmOxoRUyNGjEBoaCi2b9+OTp06gcfj4f79+3B3d0fr1q3h7e3NdkRCvokGzwghpJ4zNzfHmjVrMHDgQKE3+9u2bcPhw4cRFBTEdkSR3bhxA8+fPwfDMDA3N+f0J/pycnKIioqCgYEB21FqlZycHJ49e1ahntGLFy/QqlUrFBQUsJRMNPPnz0dgYCDOnDkDExMTBAcH4927d3B2doazszOWLl3KdkSRpaSkYPfu3QgKCgKfz4eVlRUVAiekBmJiYgSvUWZmZjAxMWE7Uq178OABpk6divDwcE4OdBJuUFRUxLVr19C1a1eh9rt376Jv377Izc1lKRkhVUe7bRJCSD03b948TJ8+HQUFBWAYBo8ePcLJkyexZs0a7N+/n+14NeLg4AAHBwe2Y9QKCwsLxMfHi93gmbGxMa5evVph6emVK1dgaGjIUirRrVq1CuPGjYOOjo5g0La0tBSjR4/G77//zna8GmnUqBH++OMPtmMQIjZMTEzEcsAMKNug58SJEzh9+jQyMzMxbNgwtiMRMdagQQPBzpufUlVVhbq6OguJCKk+mnlGCCEcsG/fPqxcuRKvXr0CULaUbtmyZRg/fjzLyapu27ZtmDRpEuTk5CqtofUpNze3OkpVe65fv44FCxZgxYoVaNeuXYUdpVRUVFhKVjNeXl6YMWMG5s2bhx49egAAbt26hY0bN2LLli2c3WI+Li4OISEh4PP5sLS0RPPmzdmOVCN37tz56vHu3bvXURLyIxDH6/ns2bOxYsUKKCoqYvbs2V89d9OmTXWUqnaVL9c8ceIEEhMTYW9vDycnJwwZMgTKyspsxyNibO/evThz5gyOHDkimA2dkpICFxcXDBkyBJMnT2Y5ISHfRoNnhBDCIR8+fACfz+dkvRUDAwM8efIEDRo0+OrsLB6Ph/j4+DpMVjs+rfvD4/EE3zMMw9m6P+V2796NVatWCTZ40NfXx7Jly6g+Tj1SWd2pT5+HXH3++fj4wNvbG0lJSSgqKhI6FhwczFKqmhGHPonj9dze3h5//fUX1NTUvrrJBo/Hw+3bt+swWe2RkJCAtbU1Ro8ejV9++QWNGjViOxL5QVhaWuLFixcoLCxEs2bNAABJSUmQlZWt8OEVV66D5MdDyzYJIaSeS0hIQElJCZo3bw5NTU1Be2xsLKSlpaGvr89euGpISEio9Htx4evry3aE72bq1KmYOnUqUlNTIS8vz7lNEL41i+RTXJ1R8vHjR6HHxcXFCAkJweLFi7Fq1SqWUtXMtm3bsGjRIri4uODvv/+Gq6sr4uLi8PjxY0yfPp3teCIRlz6J4/X802u4uF7Pnz9/LrbLUEn9NmjQILYjEFJjNPOMEELqOVtbW/z6669wcXERaj927Bj2798PPz8/doKRKgsNDUXbtm3ZjiGykpIS+Pn5IS4uDqNHj4aysjLevn0LFRUVTgykfT6LJCgoCKWlpTA1NQVQtpRJUlJSsFOlOLlz5w48PDw4ubFIixYtsHTpUowaNUpos5QlS5YgPT0dO3bsYDtitYljn/Lz8yEvL1/pseTkZNqwoh4qKirC+/fvwefzhdrLZwQRQgipiAbPCCGknlNRUUFwcHClux1aW1sjIyODnWA1MGzYMFhbW2PhwoVC7evXr8ejR49w5swZlpLVnszMTBw/fhz79+9HWFgYZ5fNvXz5En379kVSUhIKCwsRExMDQ0NDzJo1CwUFBfD09GQ7YrVs2rQJfn5+OHz4sKBI8cePH+Hq6opu3bphzpw5LCesXVFRUbCxsUFOTg7bUapNQUEBUVFR0NPTg7a2Nm7cuIE2bdogNjYWHTt2RFpaGtsRq00c+9SiRQucOHECVlZWQu0+Pj6CGatcMGTIkCqfe+7cue+Y5PuJjY3Fr7/+ivv37wu1i0N5AcIdOTk5FQZuuVoXlvxYKhbIIIQQUq/weDxkZ2dXaM/MzOTsja6/vz/69etXob1v377fLHxe392+fRtjxoxB48aNsX37djg6OuLJkydsxxKZu7s7rK2t8fHjR6HZJYMHD8atW7dYTCaajRs3Ys2aNUK7e6mrq2PlypXYuHEji8lqJjw8XOgrLCwMV69exdSpU9GmTRu244mkUaNGgsEkPT09PHjwAEDZMkGufvYrjn1ycHBA586dsXbtWjAMg5ycHIwbNw4uLi5YsmQJ2/GqTFVVVfCloqKCW7duCV27g4KCcOvWrUp3DOSKcePGQUJCApcuXUJQUBCCg4MRHByMkJAQqjNFvquEhAT069cPioqKgh021dXVoaamRrttEs6gmmeEEFLPdevWDWvWrMHJkychKSkJoKz495o1a9C1a1eW04kmJycHMjIyFdqlpaWRlZXFQqKqS01NhZaWllDb69evcejQIXh5eSE3NxcjRoxAcXExzp49C3Nzc5aS1o6AgADcu3evwu9LT08Pb968YSmV6LKysvDu3Tu0bNnVrS96AABheElEQVRSqP39+/eVDlJzRdu2bcHj8SoMwHTs2BFeXl4spaqZHj164OLFi7CyssL48ePh4eEBHx8fPHnypFqzhOoTcezT9u3b0a9fP7i6uuKff/4RLOl+/Pgxp65/Bw8eFHy/YMECjBgxAp6enkKvu9OmTeP0DJnQ0FAEBQWhRYsWbEchPxgnJycAZTt4N2zYUGhDG0K4ggbPCCGknvvzzz/RvXt3mJqaolu3bgCAu3fvIisri7P1mVq1aoXTp09XmJVw6tSpev9ma+/evXj9+jW2bdsGaWlpODo6IiAgAP3798f27dvRt29fSEpKcm4545fw+fxKZzi+fv0aysrKLCSqmcGDB8PV1RUbN25Ex44dAQAPHjzAvHnzODt4AVQs2i4hIQEtLS3IycmxlKjm9u7dK1jaM2XKFGhoaCAgIAA///wzpkyZwnI60YhjnwCgd+/eGDJkCHbv3g0pKSlcvHix3l/Lv8bLywsBAQGCgTMAkJSUxOzZs9G5c2esX7+exXSiMzc3x4cPH9iOQX5A4eHhCAoKEtQaJYSLqOYZIYRwwNu3b7Fjxw6EhYVBXl4erVu3xowZM6ChocF2NJFcuHABQ4cOxejRo9GjRw8AwK1bt3Dy5EmcOXOmXu/KVFhYiMWLF0NTUxPz58+HlJQU3NzcMHXqVKHt1qWlpREWFsbpN5AAMHLkSKiqqmLv3r1QVlZGeHg4tLS0MHDgQDRr1kxotgYX5OXlYe7cufDy8kJxcTEAQEpKCuPHj8f69euhqKjIckJCuKV8I5GUlBTs378f/v7+2LBhA9zc3LBq1SpIS0uzHbHa1NXVcfDgwQqvRefPn4erq2uF3W254vbt2/j999+xevVqWFhYVPjdcHlWHanf7O3tsWjRIvTq1YvtKISIjAbPCCGEsOKff/7B6tWrERoaKhgQXLp0KWxtbdmOViVFRUWQkZFBYGAgvLy84O3tjRYtWmDs2LEYOXIkmjRpIhaDZ2/fvoW9vT0kJSURGxsLa2trxMbGQlNTE3fu3IG2tjbbEUWSm5uLuLg4MAwDY2Njzg+abdu2rdJ2Ho8HOTk5GBsbo3v37kIzaeqj8PDwKp/bunXr75ik9ohjnz6lrKyMfv36wdPTE2pqagCA+/fvw9nZGcrKyggJCWE3oAhmz56NQ4cO4X//+5/QDNW1a9fC2dkZmzZtYjmhaCQk/it3/emyOdowgHxvcXFxmDJlCsaMGYNWrVpVGLjl4rWP/Hho8IwQQuq5bxXQ7969ex0lIV+Tl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9lZPLGz+Vn5+PkydPIjg4GHw+H1ZWVnBychLaQICwy8DAAKmpqcjLy4O6ujoYhkFGRgYUFBSgpKSE9+/fw9DQEL6+vtDV1WU77hdJSEhUWrvtc1x6oy+OffrU0aNHMXbs2Art2dnZmDVrFg4cOMBCqprh8/nYsGEDtm7diuTkZABA48aN4e7ujjlz5tT7Qegv8ff3/+pxrnx4RbjnwYMHGD16NBITEwVt5ddFrl77yI+HBs8IIaSe+/ST4nKffmJMNxz1T3R0NA4cOICjR48iIyMDDg4OuHDhAtuxiBg7efIk9u7di/3798PIyAgA8OLFC0yePBmTJk1Cly5d8Msvv6BRo0bw8fFhOe2XvXz5ssrn6unpfccktUcc+yTOSkpKcPz4cfTp0weNGjUSbGIjLksa7969iz179iAuLg4+Pj7Q0dHB0aNHYWBgwNlNiEj9Z25uDjMzM8yfP7/SDQPo2ke4gAbPCCGknsvMzBR6XFxcjJCQECxevBirVq1Cz549WUpWPRoaGoiJiYGmpibU1dW/utNSenp6HSb7fkpLS3Hx4kV4eXlxevAsOjoa27dvR1RUFHg8Hlq0aIEZM2bQjm31iJGREc6ePYu2bdsKtYeEhGDo0KGIj4/H/fv3MXToUMFMGkJqU2RkJJKSklBUVCRo4/F4+Pnnn1lMJRoFBQVERUWJ3Rv6s2fPYuzYsXBycsLRo0cRGRkJQ0ND7Nq1C5cuXcLly5fZjkjElKKiIsLCwmBsbMx2FEJERrttEkJIPaeqqlqhzcHBAbKysvDw8EBQUBALqapv8+bNguWLmzdv/iG2KZeUlMSgQYPq9QYI3+Lj44NRo0bB2toanTp1AlC2/MLCwgInTpzA8OHDWU5IACA5ORklJSUV2ktKSpCSkgIAaNKkCbKzs+s6GhEzmZmZQq9L8fHxGDJkCMLDw4WWp5Zf47k4O7pDhw4ICQkRu8GzlStXwtPTE87Ozjh16pSgvXPnzli+fDmLyYi469GjBw2eEc6jwTNCCOEoLS0tREdHsx2jylxcXATfjxs3jr0gpFrmz5+P3377rcIbq6VLl2LBggU0eFZP2NvbY/Lkydi/fz8sLS0BlM06mzp1qmBH26dPn8LAwIDNmEQMbNu2DXJycpg3bx4AwN3dHbq6urh27Rratm2Lhw8fIiEhAXPnzuVsYf1p06Zhzpw5eP36Ndq1a1dhQxGuFjePjo6utE6qiooKMjIy6j4Q+WH8/PPP8PDwwNOnTyvd6XXAgAEsJSOk6mjZJiGE1HOf79TGMAySk5Oxdu1aFBcX4969eywlE529vT3GjBmDYcOGVTqzjtQfCgoKCA8Pr/BpcWxsLNq0aYO8vDyWklVddZbMcvUGPiUlBWPHjsWtW7cEb0pKSkrQs2dPHD16FA0bNoSvry+Ki4vRu3dvltMSLnv//j3Gjh0LY2Nj7Ny5E5qamrh16xbatGkDHR0dPHr0CDo6Orh16xbmzp3Lyd02v1RrlOvFzY2MjLBnzx706tULysrKCAsLg6GhIY4cOYK1a9ciMjKS7YhETFX2N1WOy39T5MdCM88IIaSea9u2baU7tXXs2BFeXl4spaoZCwsL/P7775gxYwYcHR0xduxYODo6QkZGhu1o5DN2dna4e/duhcGzgIAAdOvWjaVU1fP5stnP/57EYQOORo0a4caNG3j+/DliYmLAMAxatGgBU1NTwTn29vYsJiTiQltbG9euXcOaNWsAlP3NlC/J19TUxNu3b6GjowN9fX1OzY7+VEJCAtsRvovJkyfD3d0dXl5e4PF4ePv2LQIDAzF37lwsWbKE7XhEjPH5fLYjEFJjNPOMEELquc93apOQkICWlhbk5ORYSlQ7+Hw+bt68iRMnTuCvv/6CpKQkhg0bBicnJ9ja2rIdj/zL09MTS5YswYgRI9CxY0cAZTXPzpw5gz/++ANNmjQRnMuFWVs3b97EggULsHr1anTq1Ak8Hg/379/H77//jtWrV8PBwYHtiDVSVFSEhIQEGBkZQUqK+5+RZmRkwMfHB3FxcZg3bx40NDQQHByMhg0bQkdHh+14IhG3PnXr1g2zZ8/G4MGDMWnSJKSmpmLevHnw9PREcHAwnj17xnZE8olFixZh8+bNKCgoAADIyspi7ty5WLFiBcvJCCGkfqPBM0IIqcfKl1jt2bMHJiYmbMf5bgoKCnDx4kWsWrUKT58+5ezsH3H0taUWn+LKsotWrVrB09MTXbt2FWq/e/cuJk2ahKioKJaS1UxeXh5mzpyJw4cPAwBiYmJgaGgINzc3NGnSBAsXLmQ5YfWFh4ejV69eUFVVRWJiIqKjo2FoaIjFixfj5cuXOHLkCNsRq00c+3Tt2jVkZ2dj2LBhePXqFfr164dnz55BQ0MD3t7egpp7XHP06FF4enoiISEBgYGB0NPTw5YtW2BgYICBAweyHa9G8vLyEBkZCT6fD3NzcygpKbEdiYgpR0dHnDx5UlCiY9WqVZg+fTrU1NQAAGlpaejWrRstGSacULU7YkIIIayQlpbGs2fPxHpnypSUFHh6emLdunUIDw+HtbU125HIJ/h8fpW+uDBwBgBxcXGV1tkrH8zgqt9++w1hYWHw8/MTmpXaq1cvnD59msVkops9ezbGjRuH2NhYoT799NNPuHPnDovJRCeOferTpw+GDRsGANDV1UV4eDg+fPiA9+/fc2bg7Nq1a8jMzBQ83r17N2bPng1HR0dkZGQIrm9qamrYsmULSylrj4KCAqytrdG+fXsaOCPf1bVr11BYWCh4vG7dOqSnpwsel5SUcHZ5N/nx0OAZIYTUc87Ozjhw4ADbMWpVVlYWDh48CAcHB+jq6mL37t34+eefERMTg4cPH7Idj3wDl3dls7GxwaxZs5CcnCxoS0lJwZw5c9C+fXsWk9XM+fPnsWPHDnTt2lVosN3c3BxxcXEsJhPd48ePMXny5ArtOjo6SElJYSFRzYljnyqjoaFR5Vmr9UFKSgq6dOmC169fAwC2b9+Offv2YdGiRZCUlBScZ21tjadPn7IVkxDO+XyRGy16I1zG/WIYhBAi5oqKirB//37cuHED1tbWUFRUFDq+adMmlpKJrmHDhlBXV8eIESOwevVq2NjYsB2JfMG6deugr6+PkSNHAgCGDx+Os2fPonHjxrh8+TLatGnDcsLq8fLywuDBg6Gnp4dmzZoBAJKSkmBiYoLz58+zG64GUlNToa2tXaE9NzeXszNX5eTkkJWVVaE9OjoaWlpaLCSqOXHsU0FBAbZv3w5fX1+8f/++QmHw4OBglpJVnYuLC5SVldG3b188e/YMCQkJsLS0rHCerKwscnNzWUhICCGEbTR4Rggh9dyzZ89gZWUFoKyO0ae4+KaYYRhs3boVY8aMgYKCAttxyDfs2bMHx44dAwDcuHEDN2/exNWrV+Ht7Y158+bh+vXrLCesHmNjY4SHhwt2pmQYBubm5ujVqxcn/57K2djY4J9//sHMmTMB/Hdt2LdvHzp16sRmNJENHDgQy5cvh7e3N4CyPiUlJWHhwoUYOnQoy+lEI459+vXXX3Hjxg0MGzYM7du35+zf0ZAhQwQDZgYGBggNDYWenp7QOVeuXIG5uTkb8QjhJB6PV+GawNVrBCG0YQAhhJA6xefzIScnh4iICDRv3pztOOQb5OXlERMTA11dXbi7u6OgoAB79uxBTEwMOnTogI8fP7IdkQC4f/8++vbtCycnJxw6dAiTJ09GREQEAgMD4e/vj3bt2rEdsdqysrLg6OiIiIgIZGdno0mTJkhJSUGnTp1w+fLlCrNwuUAc+6SqqorLly+jS5cubEepNQcPHsTixYuxceNGjB8/Hvv370dcXBzWrFmD/fv345dffmE7IiGcICEhgZ9++gmysrIAgIsXL6JHjx6Ca11hYSGuXr3Kmbqp5MdGM88IIaSey8zMRGlpKTQ0NITa09PTISUlBRUVFZaSiUZCQgLNmzdHWloaDZ5xgLq6Ol69egVdXV1cvXoVK1euBFA2g5CLN7vLly//6vElS5bUUZLa1blzZ9y7dw8bNmyAkZERrl+/DisrKwQGBsLCwoLteCJRUVFBQEAAbt++jeDgYPD5fFhZWaFXr15sRxOZOPZJR0cHysrKbMeoVa6urigpKcH8+fORl5eH0aNHQ0dHB1u3bqWBM0KqwcXFRejxmDFjKpzj7OxcV3EIqRGaeUYIIfXcTz/9hJ9//hnTpk0Tavf09MSFCxdw+fJllpKJ7p9//sHatWuxe/dutGrViu045CtmzJiBS5cuoXnz5ggJCUFiYiKUlJRw+vRprFu3jhP1jD71eR2j4uJiJCQkQEpKCkZGRpzrDyFsu3LlCrZt2wZPT88KyxzFwYcPH8Dn8yutKUgIIeTHQYNnhBBSz2loaODevXswMzMTan/+/Dm6dOmCtLQ0lpKJTl1dHXl5eSgpKYGMjAzk5eWFjn+6jTlhV3FxMbZu3YpXr15h3LhxgsGnLVu2QElJCRMmTGA5Yc1lZWVh3LhxGDx4MMaOHct2HJGVlpbir7/+QlRUFHg8HszMzDBw4EBISXFnocG2bduqfK6bm9t3TFJ7xLFPn0pNTcWIESNw584dKCgoQFpaWug4l6/n79+/R3R0NHg8HkxNTTm7qQMhhJCao8EzQgip5xQVFfHgwYMKS6+ePn2KDh06IC8vj6Vkojt8+PBXj38+zZ+Q7+3Zs2fo378/EhMT2Y4ikmfPnmHgwIFISUmBqakpgLINRrS0tHDhwgXOLN00MDAQepyamoq8vDyoqakBADIyMqCgoABtbW3Ex8ezkLD6xLFPn+rVqxeSkpIwfvx4NGzYsEIxcC5ez7OysjB9+nScPHlSsHuopKQkRo4ciZ07d0JVVZXlhIQQQuoaDZ4RQkg9Z2dnBwsLC2zfvl2offr06QgPD8fdu3dZSkZ+JJGRkUhKSkJRUZFQ+4ABA1hKVLsCAgLw888/c3YDhI4dO0JbWxuHDx+Guro6AODjx48YN24c3r9/j8DAQJYTVt+JEyewa9cuHDhwQDAgGB0djYkTJ2Ly5MlwcnJiOWH1iWOfFBQUEBgYiDZt2rAdpdaMGDECoaGh2L59Ozp16gQej4f79+/D3d0drVu3FuyWSggh5MdBg2eEEFLP3bt3D7169YKNjQ169uwJALh16xYeP36M69evo1u3biwnFE1cXBwOHjyIuLg4bN26Fdra2rh69Sp0dXXRsmVLtuORf8XHx2Pw4MF4+vQpeDweym8bymeXcG3TgM+X0DEMg+TkZBw9ehTdu3fHyZMnWUpWM/Ly8njy5EmFv51nz57BxsYG+fn5LCUTnZGREXx8fCrUqQsKCsKwYcOQkJDAUjLRiWOfrKyssGvXLnTs2JHtKLVGUVER165dQ9euXYXa7969i759+yI3N5elZIQQQtgiwXYAQgghX9elSxcEBgZCV1cX3t7euHjxIoyNjREeHs7ZgTN/f39YWFjg4cOHOHfuHHJycgAA4eHhWLp0KcvpyKfc3d1hYGCAd+/eQUFBAREREbhz5w6sra3h5+fHdrxq27x5s9DXtm3b4OfnBxcXF+zdu5fteCIzNTXFu3fvKrS/f/8exsbGLCSqueTkZBQXF1doLy0trbSvXCCOfVq7di3mzJkDPz8/pKWlISsrS+iLixo0aFDp0kxVVVXBzE5CCCE/Fpp5RgghpM516tQJw4cPx+zZs6GsrIywsDAYGhri8ePHGDRoEN68ecN2RPIvTU1N3L59G61bt4aqqioePXoEU1NT3L59G3PmzEFISAjbEQmAy5cvY/78+Vi2bJlgBtCDBw+wfPlyrF27VmgGjYqKClsxq+Xnn39GUlISDhw4gHbt2oHH4+HJkyeYOHEidHV1ceHCBbYjVps49klCouyz+M9rnTEMAx6Px7nZqQCwd+9enDlzBkeOHEHjxo0BACkpKXBxccGQIUMwefJklhMSQgipazR4RgghpM4pKSnh6dOnMDAwEBo8S0xMRIsWLVBQUMB2RPIvdXV1BAUFwdDQEEZGRti/fz/s7e0RFxcHCwsLzm1Y8euvv2Lr1q1QVlYWas/NzcXMmTPh5eXFUrKaKR/AAP4bxPh8iS3XBjNSU1Ph4uKCq1evCnZwLCkpQZ8+fXDo0CFoa2uznLD6xLFP/v7+Xz1ua2tbR0lqj6WlJV68eIHCwkI0a9YMAJCUlARZWVk0b95c6Nzg4GA2IhJCCKlj3Nm7nBBCiNhQU1NDcnJyhV3oQkJCoKOjw1IqUplWrVohPDwchoaG6NChA/7880/IyMhg7969MDQ0ZDtetR0+fBhr166tMHiWn5+PI0eOcHbwzNfXl+0ItU5LSwuXL19GbGwsoqKiwDAMzMzMYGJiwnY0kYljn7g4OPYtgwYNYjsCIYSQeoZmnhFCCKlz8+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM9U9q0euXbuG3NxcDBkyBPHx8ejfvz+eP3+OBg0a4PTp0+jRowfbEaskKysLDMNAXV0dsbGx0NLSEhwrLS3FxYsXsXDhQrx9+5bFlIQQQgghpD6iwTNCCCF1rri4GOPGjcOpU6fAMAykpKRQWlqK0aNH49ChQ5CUlGQ7IvmK9PR0qKurV6hxVJ9JSEh8NS+Px8Mff/yBRYsW1WGq2nP16lUoKSkJapvt3LkT+/btg7m5OXbu3ElFzgkhhBBCaoAGzwghhLAmPj4ewcHB4PP5sLS0rFBLhpDa4u/vD4Zh0KNHD5w9exYaGhqCYzIyMtDT00OTJk1YTFgzFhYWWLduHRwdHfH06VNYW1tjzpw5uH37NszMzHDw4EG2IxJCCCGEcBYNnhFCSD00ZMiQKp977ty575ikbpSWluLp06fQ09OjGTLku3r58iWaNWvGqVlzVaGkpIRnz55BX18fy5Ytw7Nnz+Dj44Pg4GA4OjoiJSWF7YiEEEIIIZxFGwYQQkg9pKqqynaE72rWrFmwsLDA+PHjUVpaCltbW9y/fx8KCgq4dOkS7Ozs2I5IxEh4eDhatWoFCQkJZGZm4unTp188t3Xr1nWYrPbIyMgIdj69efMmnJ2dAQAaGhrIyspiMxohhBBCCOfRzDNCCCF1rmnTpjh//jysra1x/vx5TJs2DX5+fjhy5Ah8fX1x7949tiMSMSIhIYGUlBRoa2sLap9VdvvD4/FQWlrKQsKaGzBgAIqKitClSxesWLECCQkJ0NHRwfXr1zFjxgzExMSwHVEkd+/exZ49exAXFwcfHx/o6Ojg6NGjMDAwENR346K8vDwkJSWhqKhIqJ0rg7eWlpZVnr0ZHBz8ndN8P0VFRUhISICRkRGkpGjOASGE/Mgk2A5ACCHk20pKSnDz5k3s2bMH2dnZAIC3b98iJyeH5WSi+fDhAxo1agQAuHz5MkaMGAETExOMHz/+q7OCCBFFQkKCYHfNhIQExMfHIyEhocJXfHw8y0lFt2PHDkhJScHHxwe7d++Gjo4OAODKlSvo27cvy+lEc/bsWfTp0wfy8vIICQlBYWEhACA7OxurV69mOZ1oUlNT0b9/fygrK6Nly5awtLQU+uKKQYMGYeDAgRg4cCD69OmDuLg4yMrKws7ODnZ2dpCTk0NcXBz69OnDdlSR5OXlYfz48VBQUEDLli2RlJQEAHBzc8PatWtZTkcIIYQNNPOMEELquZcvX6Jv375ISkpCYWEhYmJiYGhoiFmzZqGgoACenp5sR6w2PT097Nu3Dz179oSBgQF27dqF/v37IyIiAl27dsXHjx/Zjkg+cfToUXh6eiIhIQGBgYHQ09PDli1bYGBggIEDB7Idj4gpS0tLeHh4wNnZGcrKyggLC4OhoSFCQ0PRt29fTtZxc3JyQmJiIrZs2QJ7e3v89ddfePfuHVauXImNGzeiX79+bEestgkTJqBx48ZYsWKFUPvSpUvx6tUreHl5sZRMdO7u7rh37x62bNmCvn37Ijw8HIaGhrhw4QKWLl2KkJAQtiMSQgipYzT/mBBC6jl3d3dYW1sjLCwMDRo0ELQPHjwYEyZMYDGZ6FxdXTFixAg0btwYPB4PDg4OAICHDx+iRYsWLKcjn9q9ezeWLFmCWbNmYdWqVYJljWpqatiyZQvnBs8uXLhQaTuPx4OcnByMjY1hYGBQx6lqR1xcHA4ePIi4uDhs3boV2trauHr1KnR1ddGyZUu241VbdHQ0unfvXqFdRUUFGRkZdR+oFty+fRt///03bGxsICEhAT09PTg4OEBFRQVr1qzh5ODZmTNn8OTJkwrtY8aMgbW1NScHz86fP4/Tp0+jY8eOQstTzc3NERcXx2IyQgghbKHBM0IIqecCAgJw7949yMjICLXr6enhzZs3LKWqmWXLlqFVq1Z49eoVhg8fDllZWQCApKQkFi5cyHI68qnt27dj3759GDRokNByJWtra8ydO5fFZKIZNGhQpTXPytt4PB66du2K8+fPc2rnV39/f/z000/o0qUL7ty5g1WrVkFbWxvh4eHYv38/fHx82I5YbY0bN8aLFy+gr68v1B4QEABDQ0N2QtVQbm4utLW1AZRt5pCamgoTExNYWFhwtjaYvLw8AgIC0Lx5c6H2gIAAyMnJsZSqZlJTUwW/p0/l5uaK3U69hBBCqoZqnhFCSD3H5/MrLWL++vVrKCsrs5CodgwbNgweHh5o2rSpoM3FxYVzM5nEXUJCQqW1mGRlZZGbm8tCopq5ceMGbGxscOPGDWRmZiIzMxM3btxA+/btcenSJdy5cwdpaWmcGxhcuHAhVq5ciRs3bggNtNvb2yMwMJDFZKKbPHky3N3d8fDhQ/B4PLx9+xbHjx/H3LlzMW3aNLbjicTU1BTR0dEAgLZt22LPnj148+YNPD090bhxY5bTiWbWrFmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDg8PD7bjicTGxgb//POP4HH5gNm+ffvQqVMntmIRQghhEc08I4SQes7BwQFbtmzB3r17AZTdxOfk5GDp0qVwdHRkOR0RdwYGBggNDYWenp5Q+5UrV2Bubs5SKtG5u7tj79696Ny5s6CtZ8+ekJOTw6RJkxAREYEtW7bg119/ZTFl9T19+hQnTpyo0K6lpYW0tDQWEtXc/PnzkZmZCXt7exQUFKB79+6QlZXF3LlzMWPGDLbjiWTWrFlITk4GUFYTrE+fPjh+/DhkZGRw6NAhdsOJaOHChTA0NMTWrVsFz0EzMzMcOnQII0aMYDmdaNasWYO+ffsiMjISJSUl2Lp1KyIiIhAYGAh/f3+24xFCCGEBDZ4RQkg9t3nzZtjb28Pc3BwFBQUYPXo0YmNjoampiZMnT7Idj4i5efPmYfr06SgoKADDMHj06BFOnjyJNWvWYP/+/WzHq7a4uDioqKhUaFdRURHsttm8eXN8+PChrqPViJqaGpKTkyvUawsJCRHsvMlFq1atwqJFixAZGQk+nw9zc3MoKSmxHavKiouLIS0tLXjs5OQk+N7S0hKJiYl4/vw5mjVrBk1NTTYi1ooRI0ZwdqCsMp07d8a9e/ewYcMGGBkZ4fr167CyskJgYCAsLCzYjkcIIYQFtNsmIYRwQH5+Pk6dOoWgoCDw+XxYWVnByckJ8vLybEcjP4B9+/Zh5cqVePXqFQBAR0cHy5Ytw/jx41lOVn1du3aFsrIyjhw5Ai0tLQBl9Y2cnZ2Rm5uLO3fu4ObNm5g2bRpiYmJYTlt18+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM5YuXcp2xGrLzMxEaWkpNDQ0hNrT09MhJSVV6SBofbN27VoYGhqK1cASIYQQ8iOiwTNCCCGEVMmHDx/A5/MrLaTNFdHR0Rg4cCASEhKgq6sLHo+HpKQkGBr+v707j6q62v8//jogChjiXM6C5EChgpqpZU44ZDlfKk1N9NpwFXMqu6Vm5fDNGb1KpjjmgJpmV0scSRJSERxREy3MOQ1UkFQ4vz+68ZPQUlP2OYfnYy3Xgn3OH0/XNb3nzf7s7a0vvvhCVatW1erVq3X58mV1797ddO4du379ul555RUtXbpUVqtVBQoUUGZmprp27ap58+bJ2dnZdOJda9OmjZ5//vlc55uFhYVpzZo1WrdunaGyO3fkyBF17NhRffv21YABAzRo0KA/ff+kSZPyqOz+yczM1OTJkxUREaHk5GRdu3Ytx+sXL140VHZ3Ll26dMfvtYfBLQDg/mJ4BgAwIikpSXPnzlVSUpKmTp2q0qVL6+uvv1aFChX02GOPmc6DA7NarVq/fr2OHDkiq9Wq6tWrKzAwUE5O9n+PUlJSkuLj45WVlSV/f/9cNyDak+LFi+vbb79VjRo1cqwfOnRIjRo1spuz3C5fvqxXXnlFK1euVNOmTW/7PovFos2bN+dh2f0xYsQIzZ49W4MGDdLw4cP17rvv6ocfftDq1as1YsQIhYSEmE68I05OTnd8k+atLvEBADg2hmcAgDwXFRWlNm3aqFGjRvrmm2+UmJgob29vffzxx9qxY4dWrFhhOjFf8/f3v+MPkbt3737ANcivChcurNjY2FxnTO3bt0/169dXenq6oTLcrEqVKgoNDVXbtm3l4eGhhISE7LXY2NhbXmRhi26+COCHH37QsGHD9Morr2TfrhkTE6P58+dr7Nix6tmzp6lMAIAhDM8AAHmuQYMG+sc//qFBgwbJw8NDe/bskbe3t3bu3KkOHTro5MmTphPztVGjRmV/nZGRoRkzZsjX1zf7Q2RsbKwOHDigN954Q2PHjjWVec82bdqkTZs26dy5c8rKysrxWnh4uKGqu/dXjwDezB4fB2zSpIn8/Pw0bdq0HOv/+te/tHfvXm3bts1QGW5WuHBhJSYmqmLFiipTpozWrl2rgIAAHTt2TP7+/kpNTTWdeNeaN2+uPn366KWXXsqxvnjxYs2aNUtbt241EwYAMIbbNgEAeW7fvn233I1QqlQpu3kUy5HdfLh8nz59FBISog8//DDXe36/QMCejBo1Sh988IHq1q2rMmXK3PEOO1sUHx+f4/u4uDhlZmaqWrVqkn47b8vZ2Vl16tQxkfe3jR49Wi1atNCePXvUvHlzSb8NPnfu3KnIyEjDdfcmIyND06ZN05YtW245vLXHnZzly5fX6dOnVbFiRfn4+GTfTLlz504VKlTIdN49iYmJUVhYWK71unXrqk+fPgaKAACmMTwDAOS5okWL6vTp0/Ly8sqxHh8fr3Llyhmqwq0sX75cu3btyrX+8ssvq27duna1U0v67bD5efPm2dVlALezZcuW7K8nTZokDw8PzZ8/X8WKFZMk/fLLL+rVq5eefvppU4l/S6NGjRQTE6Px48crIiJCbm5uqlmzpubMmWO3Z7kFBwdrw4YN6tKli5544gm7Ht7+rmPHjtq0aZPq16+vAQMG6KWXXtKcOXOUnJysgQMHms67JxUqVFBYWJgmTpyYY/2TTz5RhQoVDFUBAEzisU0AsHGOcpPZzd566y3FxMRo+fLlqlq1qnbv3q2zZ8+qR48e6tGjR46dTzDrkUce0dixY9WrV68c63PnztWwYcN09uxZQ2X3pkSJEtqxY4eqVKliOuW+KleunCIjI3NdtrF//361bNlSp06dMlSGm3l6emrdunVq1KiR6ZQHJjY2Vtu3b5ePj4/atWtnOueerFu3Tp07d1aVKlX05JNPSvrt95WUlKSVK1fq2WefNVwIAMhr7DwDABs3atSoP73JzB6NHj1ar7zyisqVKyer1SpfX19lZmaqa9eueu+990zn4SZvvvmmXn/9dcXFxeX4EBkeHm6Xf/769OmjxYsXa/jw4aZT7qtLly7p7NmzuYZn586d0+XLlw1V/X1ZWVk6evToLR9xbNy4saGqe1euXDl5eHiYznignnzyyey/K+zVs88+q++//14zZ85UYmKirFar2rdvr9dee42dZwCQT7HzDABsnKPcZHYrSUlJio+PV1ZWlvz9/e32USxHFxERoalTpyoxMVGSVKNGDQ0YMEBBQUGGy+7egAEDtGDBAtWsWVM1a9aUi4tLjtft8WB9SerRo4eioqI0ceLEHEPOoUOHqnHjxpo/f77hwrsXGxurrl276scff9Qf/++qxWJRZmamobJ799VXXyk0NFRhYWGqVKmS6Zx7tmbNmjt+r73uPgMA4GYMzwDAxjniTWaAKU2bNr3taxaLRZs3b87DmvsnPT1dQ4YMUXh4uK5fvy5JKlCggHr37q3x48ercOHChgvvXu3atVW1alWNGjXqlpc7eHp6Giq7d+fPn1dQUJC++eYbubu75xre2stj+E5OTjm+t1gstxxwSrLLIScAAH/EY5sAYOMc5SazQYMG3fF77XX3D2zfzYfsOxJ3d3fNmDFD48ePV1JSkqxWq3x8fOxyaPa777//XitWrJCPj4/plPvmpZde0smTJzVmzBg9/PDDdnthwM2P0G7cuFFvv/22xowZowYNGshisWj79u167733NGbMGIOVAADcPwzPAMDGOcpNZvHx8Tm+j4uLU2ZmpqpVqyZJOnLkiJydnVWnTh0TeciHfvrpJ1ksFoe64bVw4cKqWbOm6Yz7on79+jp69KhDDc+2b9+umJgY1apVy3TKffPmm28qLCxMTz31VPZaq1at5O7urr59+2Y/7g0AgD1jeAYANm7cuHHZX3fp0kUVKlTQt99+a3c3md2842fSpEny8PDQ/PnzVaxYMUnSL7/8ol69eunpp582lYh8ICsrSx999JEmTpyoK1euSJI8PDw0ePBgvfvuu7keR4M5/fv31+DBg3XmzBn5+fnlesTRHoeE1atX19WrV01n3FdJSUm3fITW09NTP/zwQ94HAQDwAHDmGQAgz5UrV06RkZG5bgbcv3+/WrZsqVOnThkqg6N75513NGfOHI0aNUqNGjWS1WrVt99+q/fff1///Oc/NXr0aNOJ+J9bDTJ/P1vLXi8MiIyM1KhRozR69OhbDgSLFCliqOzeNW7cWC4uLlq0aJHKlCkjSTpz5oy6d++ua9euKSoqynAhAAB/H8MzALBxzs7Oaty4sVauXKnixYtnr589e1Zly5a1yw+QHh4e+uKLL9SsWbMc65s3b1b79u11+fJlQ2VwdGXLllVYWFiuXZtffPGF3njjDZ08edJQGf7oxx9//NPX7fG2yt8Hgn8868yeB4JHjx5Vx44ddfjwYVWsWFGSlJycrKpVq2r16tV289itv7//HZ9Bt3v37gdcAwCwNTy2CQA2zmq16tdff1XdunW1Zs0aPf744zles0cdO3ZUr169NHHiRD355JOSpNjYWA0dOlSdOnUyXIebZWZmat68edq0aZPOnTuX46BwSXZ3O+XFixdVvXr1XOvVq1e3m5sO8wt7HI79FUe8sMLHx0d79+7Vhg0bdOjQIVmtVvn6+qpFixZ2dSFChw4dsr/OyMjQjBkz5OvrqwYNGkj67d+oAwcO6I033jBUCAAwiZ1nAGDjnJ2d9dNPP2ncuHGaO3euFi5cqPbt29v1zrP09HQNGTJE4eHhun79uiSpQIEC6t27t8aPH2/XNwQ6mn79+mnevHlq27atypQpk+vD8OTJkw2V3Zv69eurfv36Cg0NzbHev39/7dy5U7GxsYbK7t6aNWvu+L32dD7iHx08eFDJycm6du1ajnV7/j3BtvXp00dlypTRhx9+mGN95MiROnHihMLDww2VAQBMYXgGADbOyclJZ86cUenSpTVr1iyFhITovffeU58+fVSuXDm7HJ79Li0tTUlJSbJarfLx8WFoZoNKliypBQsW6NlnnzWdcl9ERUWpbdu2qlixoho0aCCLxaLt27frxIkTWrdunV1dWHGnlxvY6+OAx44dU8eOHbVv377ss86k///Ioz3+niQpJSVFc+bMUWJioiwWi3x9fRUcHHzLQ/dtVWhoqPr27StXV9dcg+g/CgkJyaOq+8fT01O7du3So48+mmP9+++/V926dZWammqoDABgCsMzALBxNw/PJGnr1q3q0qWL/P39tXnzZrv9AAn7ULZsWW3dulVVq1Y1nXLfnDp1Sv/5z39yPGL2xhtvqGzZsqbTcJPnn39ezs7O+vTTT+Xt7a0dO3bowoULGjx4sCZMmGBXg87f7dq1S61atZKbm5ueeOIJWa1W7dq1S1evXlVkZKQCAgJMJ94RLy8v7dq1SyVKlJCXl9dt32exWHTs2LE8LLs/HnnkEY0dO1a9evXKsT537lwNGzZMZ8+eNVQGADCF4RkA2LibP6T87ujRo3r++ed15MgRhmd4oCZOnKhjx45p+vTpdnV+0d06ceKERo4cyeNYNqRkyZLavHmzatasKU9PT+3YsUPVqlXT5s2bNXjwYMXHx5tOvGtPP/20fHx89Omnn6pAgd+OHr5x44b69OmjY8eO6ZtvvjFcCEkaN26c3n//ffXp0yfHuZzh4eEaMWKEhg0bZrgQAJDXGJ4BgJ3KyMjQ2bNnHfJQbdiOjh07asuWLSpevLgee+wxubi45Hj9888/N1R2f+3Zs0cBAQF2PYxOS0tTVFTULc8Hs8dH54oVK6a4uDh5e3urSpUqmj17tpo2baqkpCT5+fkpPT3ddOJdc3NzU3x8fK5LKw4ePKi6deva5e/JUUVERGjq1KlKTEyUJNWoUUMDBgxQUFCQ4TIAgAnctgkAdsrV1ZXBGR64okWLqmPHjqYz8Bfi4+P17LPPKj09XWlpaSpevLh+/vlnubu7q3Tp0nY5PHv88ce1d+9eeXt7q379+vr4449VsGBBzZo1S97e3qbz7kmRIkWUnJyca3h24sQJeXh4GKr6e7p06aK6devm2o01fvx47dixQ8uXLzdU9vcEBQUxKAMAZGPnGQDYoOLFi+vIkSMqWbKkihUr9qePy128eDEPywDHZO87z5o0aaKqVatq5syZKlq0qPbs2SMXFxe9/PLLGjBggDp16mQ68a6tX79eaWlp6tSpk44dO6bnnntOhw4dUokSJbRs2TI1a9bMdOJdCwkJ0apVqzRhwgQ1bNhQFotF0dHRGjp0qDp37qwpU6aYTrxrpUqV0ubNm+Xn55djfd++fWrRogXngwEAHAI7zwDABk2ePDl7F4I9fpi6E0lJSZoyZUr2jXO/PxJTpUoV02m4hfPnz+vw4cOyWCyqWrWqSpUqZToJN0lISNAnn3wiZ2dnOTs769dff5W3t7c+/vhj9ezZ0y6HZ61atcr+2tvbWwcPHtTFixf/8gcKtmzChAmyWCzq0aOHbty4IUlycXHR66+/rnHjxhmuuzdXrlxRwYIFc627uLjo0qVLBor+vszMTE2ePFkRERG3fAyaH1oBQP7D8AwAbFDPnj1v+bWjWL9+vdq1a6fatWurUaNGslqt2r59ux577DF9+eWXCgwMNJ2I/0lLS1P//v21YMECZWVlSZKcnZ3Vo0cPTZs2Te7u7oYL78xfDY9SUlLyJuQBcXFxyR4oPfzww0pOTlaNGjXk6emp5ORkw3X3JjU1VZmZmSpevHj2WvHixXXx4kUVKFBARYoUMVh3bwoWLKipU6dq7NixSkpKktVqlY+Pj938d3Qrjz/+uJYtW6YRI0bkWF+6dKl8fX0NVf09o0aN0uzZszVo0CANHz5c7777rn744QetXr061+8TAJA/8NgmANigu/lpvT1+gPT391erVq1y7bQYNmyYIiMjtXv3bkNlmDJlivz8/NS8eXNJ0quvvqqNGzdq+vTpatSokSQpOjpaISEhCgwM1MyZM03m3rFevXrd0fvmzp37gEsejJYtW+qVV15R165d9dprryk+Pl4hISFauHChfvnlF3333XemE+9amzZt9Pzzz+uNN97IsR4WFqY1a9Zo3bp1hspwszVr1qhz587q2rVr9qO0mzZt0pIlS7R8+XJ16NDBbOA9qFKlikJDQ9W2bVt5eHgoISEhey02NlaLFy82nQgAyGMMzwDABjk5Of3lY0lWq1UWi8Uuz2hydXXVvn379Oijj+ZYP3LkiGrWrKmMjAxDZYiLi1NQUJDef/99de/eXSVLltSKFSvUpEmTHO/bsmWLgoKCdP78eTOhyGHXrl26fPmymjZtqvPnz6tnz56Kjo6Wj4+P5s6dq1q1aplOvGvFixfXt99+qxo1auRYP3TokBo1aqQLFy4YKrt3aWlpGjdunDZt2qRz585l7+b83bFjxwyV/T1r167VmDFjlJCQIDc3N9WsWVMjR47UM888YzrtnhQuXFiJiYmqWLGiypQpo7Vr1yogIEDHjh2Tv7+/UlNTTScCAPIYj20CgA3asmWL6YQHqlSpUkpISMg1PEtISFDp0qUNVUGS6tSpo++++049e/ZU9+7dlZ6erocffjjX+0qXLq309HQDhbiVunXrZn9dqlQph9iV9euvv2afC3az69ev6+rVqwaK/r4+ffooKipK3bt3V5kyZez27LY/atu2rdq2bWs6474pX768Tp8+rYoVK8rHx0eRkZEKCAjQzp07VahQIdN5AAADGJ4BgA2y15/W36l//vOf6tu3r44dO5bjxrn/+7//0+DBg03n5XslS5bU2rVrJUkNGjTQyJEjtWDBArm6ukqSrl69qlGjRqlBgwYmM+Hg6tWrp1mzZmnatGk51sPCwlSnTh1DVX/PV199pbVr12Y/Au1I4uLisi+A8fX1lb+/v+mke9axY0dt2rRJ9evX14ABA/TSSy9pzpw5Sk5O1sCBA03nAQAM4LFNALAT6enpt7z1q2bNmoaK7p3VatWUKVM0ceJEnTp1SpJUtmxZDR06VCEhIQ6zG8MR7N+/X61bt1ZGRoZq1aoli8WihIQEubq6av369XrsscdMJ8JBffvtt2rRooXq1auXfQbfpk2btHPnTkVGRurpp582XHj3vLy8tG7dulyPotqzc+fO6cUXX9TWrVtVtGhRWa1WpaamqmnTplq6dKlD3MwbGxur7du3y8fHR+3atTOdAwAwgOEZANi48+fPq1evXvrqq69u+bo9nnl2s8uXL0uSPDw8DJfgdq5evapFixbp0KFDslqt8vX1Vbdu3eTm5mY6DQ4uISFB48ePz3GW1jvvvJPrkW97sWjRIn3xxReaP3++Xd+webMXXnhBSUlJWrhwYfZQ8ODBg+rZs6d8fHy0ZMkSw4UAAPx9DM8AwMZ169ZNP/zwg6ZMmaKmTZtq1apVOnv2rD766CNNnDjRoc6ZAQBH5u/vr6SkJFmtVlWuXFkuLi45XrfHm4Y9PT21ceNG1atXL8f6jh071LJlS6WkpJgJu0tr1qy54/ey+wwA8h/OPAMAG7d582Z98cUXqlevnpycnFSpUiUFBgaqSJEiGjt2rF0Oz86ePashQ4Zk3zj3x5/j2PtuOnu3Zs0atWnTRi4uLn/5gZIPkbifLl26dMfvLVKkyAMseTA6dOhgOuG+y8rKyjUElCQXF5dct4nasj/+b2OxWHL92/T7kQL8GwUA+Q87zwDAxhUpUkR79+5V5cqVVblyZX322Wdq1KiRjh8/rscee8wubzxs06aNkpOT1a9fv1veONe+fXtDZZAkJycnnTlzRqVLl5aTk9Nt32exWPgQaUOioqI0YcKE7EPba9SooaFDh9rV2WBOTk5/eeah1Wrlz54Nad++vVJSUrRkyRKVLVtWknTy5El169ZNxYoV06pVqwwX3r2NGzfq7bff1pgxY9SgQQNZLBZt375d7733nsaMGaPAwEDTiQCAPMbOMwCwcdWqVdPhw4dVuXJl1a5dW5988okqV66ssLAwlSlTxnTePYmOjta2bdtUu3Zt0ym4hZt3i9jTzpH8bNGiRerVq5c6deqkkJAQWa1Wbd++Xc2bN9e8efPUtWtX04l3ZMuWLaYT8oQj3Uw5ffp0tW/fXpUrV1aFChVksViUnJwsPz8/LVq0yHTePXnzzTcVFhamp556KnutVatWcnd3V9++fZWYmGiwDgBgAjvPAMDGffbZZ7p+/bpeeeUVxcfHq1WrVrpw4YIKFiyoefPm6YUXXjCdeNd8fX312Wef2fUHRsCW1KhRQ3379tXAgQNzrE+aNEmffvqpw33YT0hIsMvhuyPfTLlhw4Ycl4q0aNHCdNI9c3Nz044dO+Tn55djfe/evapfv76uXr1qqAwAYArDMwCwM+np6Tp06JAqVqyokiVLms65J5GRkZo4cWL2LjrYrpCQEPn4+CgkJCTH+vTp03X06FFNmTLFTBhyKFSokA4cOCAfH58c60ePHtXjjz+ujIwMQ2X3T2pqqj777DPNnj1be/bsscvHNrmZ0j40btxYLi4uWrRoUfYO7zNnzqh79+66du2aoqKiDBcCAPIawzMAsBPXrl3T8ePHVaVKFRUoYH9P3RcrVizHWUZpaWm6ceOG3N3dcx02ffHixbzOw22UK1dOa9asUZ06dXKs7969W+3atdNPP/1kqAw38/Hx0dChQ/Xqq6/mWP/kk080YcIEff/994bK/r7NmzcrPDxcn3/+uSpVqqTOnTurc+fOdrlz1VFupgwNDb3j9/5x8G4Pjh49qo4dO+rw4cOqWLGiJCk5OVlVq1bV6tWrcw2pAQCOz/4+fQFAPpOenq7+/ftr/vz5kqQjR47I29tbISEhKlu2rIYNG2a48M6wQ8k+XbhwQZ6enrnWixQpop9//tlAEW5l8ODBCgkJUUJCgho2bCiLxaLo6GjNmzdPU6dONZ1313766SfNmzdP4eHhSktLU1BQkK5fv66VK1fK19fXdN49c5SbKSdPnnxH77NYLHY5PPPx8dHevXtv+SjqX11oAQBwTOw8AwAbN2DAAH377beaMmWKWrdurb1798rb21tr1qzRyJEjFR8fbzoRDuzxxx/Xa6+9pn79+uVYnzZtmmbOnKmDBw8aKsMfrVq1ShMnTsw+3+z32zbt7fbaZ599VtHR0XruuefUrVs3tW7dWs7OznJxcdGePXvsenjmiDdTAgCQH7DzDABs3OrVq7Vs2TI9+eSTOX7i7evrq6SkJINl927dunVydnZWq1atcqxHRkYqMzNTbdq0MVSGPxo0aJD69eun8+fPq1mzZpKkTZs2aeLEiewmtDEdO3ZUx44dTWf8bZGRkQoJCdHrr7+uRx991HTOfeWIN1P+zt6PFggNDVXfvn3l6ur6l4+l2uNuOgDA32N//7IBQD5z/vx5lS5dOtd6Wlqa3T4+MmzYMI0bNy7XelZWloYNG8bwzIYEBwfr119/1ejRo/Xhhx9KkipXrqyZM2eqR48ehutwK1euXMn1CGCRIkUM1dy9bdu2KTw8XHXr1lX16tXVvXt3u7xV+FYqVKig3bt3O9TNlI5ytMDkyZPVrVs3ubq6/uljqfb6KCoA4O/hsU0AsHHPPPOMunTpov79+8vDw0N79+6Vl5eX+vXrp6NHj+rrr782nXjX3NzclJiYmOumzR9++EGPPfaY0tLSzIThT50/f15ubm566KGHTKfgD44fP65+/fpp69atOW7WtFqtslgsdnkzZXp6upYuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6754sWLBAL7zwggoVKpRj/dq1a1q6dKldDqQ5WgAAkB8wPAMAG7d9+3a1bt1a3bp107x58/Tqq6/qwIEDiomJUVRUVK5bEO3BI488osWLF2c/Bvi7jRs3qmvXrjp37pyhMsA+NWzYUNJvg4yHH344167UZ555xkTWfXP48GHNmTNHCxcuVEpKigIDA7VmzRrTWXfN2dlZp0+fzrWb+MKFCypdurRdDjkrVaqUfbSAh4eH9uzZI29vbx09elQBAQG6dOmS6UQAAP42HtsEABvXsGFDbd++XePHj1eVKlUUGRmpgIAAxcTEyM/Pz3TePWnXrp3efPNNrVq1SlWqVJEkHT16VIMHD1a7du0M1+GPVqxYoYiICCUnJ+vatWs5Xtu9e7ehKtxs7969iouLU7Vq1UynPBDVqlXTxx9/rLFjx+rLL79UeHi46aR78vtOwD/66aefbnmrrT1wxKMFunTporp16+Z65HT8+PHasWOHli9fbqgMAGCKk+kAAMDtXb9+Xb169ZK7u7vmz5+v/fv36+DBg1q0aJHdDs6k3z6AFC5cWNWrV5eXl5e8vLxUo0YNlShRQhMmTDCdh5uEhoaqV69eKl26tOLj4/XEE0+oRIkSOnbsGGfT2ZB69erpxIkTpjMeOGdnZ3Xo0MHudp35+/srICBAFotFzZs3V0BAQPavWrVq6emnn7bbc8/q1auntWvXZn//+8Ds008/VYMGDUxl/S1RUVFq27ZtrvXWrVvrm2++MVAEADCNnWcAYMNcXFy0atUqDR8+3HTKfeXp6ant27drw4YN2rNnj9zc3FSzZk01btzYdBr+YMaMGZo1a5ZeeuklzZ8/X2+99Za8vb01YsQIXbx40XQe/mf27Nl67bXXdPLkST3++ONycXHJ8XrNmjUNlUGSOnToIElKSEhQq1atcpwbWLBgQVWuXFmdO3c2VPf3jB07Vq1bt9bBgwd148YNTZ06NcfRAvboypUrKliwYK51FxcXHkMFgHyKM88AwMb16tVLfn5+GjRokOmUByIjI0OFChWy28d7HJ27u7sSExNVqVIllS5dWhs2bFCtWrX0/fff68knn9SFCxdMJ0JSbGysunbtqh9++CF7zWKx2PWFAY5o/vz5euGFF+Tq6mo65W9LSEhQ7dq1JUn79u3ThAkTFBcXp6ysLAUEBOjtt9+22x3S9erV0/PPP68RI0bkWH///ff15ZdfKi4uzlAZAMAUdp4BgI3z8fHRhx9+qO3bt6tOnToqXLhwjtdDQkIMld27rKwsjR49WmFhYTp79qyOHDkib29vDR8+XJUrV1bv3r1NJ+J/HnnkEV24cEGVKlVSpUqVFBsbq1q1aun48ePi52+2Izg4WP7+/lqyZMktLwyAbejZs6fphPsmICBA/v7+6tOnj7p27ar58+ebTrpvhg8frs6dOyspKSn7YptNmzZpyZIlnHcGAPkUO88AwMZ5eXnd9jWLxaJjx47lYc398cEHH2j+/Pn64IMP9M9//lP79++Xt7e3IiIiNHnyZMXExJhOxP/06dNHFSpU0MiRIxUWFqZBgwapUaNG2rVrlzp16qQ5c+aYToSkwoULa8+ePfLx8TGdgj/h5OT0p4NNe9ohGBMTo/DwcEVEROj69evq3LmzgoOD1bRpU9Np98XatWs1ZswYJSQkZB8tMHLkSLu/uRYAcG8YngEA8pyPj48++eQTNW/eXB4eHtqzZ4+8vb116NAhNWjQQL/88ovpRPxPVlaWsrKyVKDAb5vVIyIiFB0dLR8fH7322mu3PBcIee/555/XK6+8YrfnZuUXq1evzjE8u379uuLj4zV//nyNGjXKLnfdXr16VREREZo7d662bdumypUrKzg4WD179lT58uVN5wEAcF8wPAMA5Dk3NzcdOnRIlSpVyjE8O3jwoJ544glduXLFdCJgV2bNmqWPPvpIwcHB8vPzy3VhQLt27QyV4U4sXrxYy5Yt0xdffGE65W9JSkrS3LlztWDBAp0+fVqBgYFat26d6ax7FhcXp8TERFksFvn6+srf3990EgDAEIZnAIA8V7duXb355pt6+eWXcwzPRo0apY0bN2rbtm2mE/O1vXv33vF7ucXRNjg5Od32NS4MsH1JSUmqWbOm0tLSTKf8bVeuXNFnn32mf//730pJSbHLP3vnzp3Tiy++qK1bt6po0aKyWq1KTU1V06ZNtXTpUpUqVcp0IgAgj3FhAAAgzwQHB2vq1KkaOXKkunfvrpMnTyorK0uff/65Dh8+rAULFui///2v6cx8r3bt2tk3Nf4ZhjK2Iysry3QC7tHVq1c1bdo0u3/EMSoqSuHh4Vq5cqWcnZ0VFBRkl4+hSlL//v116dIlHThwQDVq1JAkHTx4UD179lRISIiWLFliuBAAkNfYeQYAyDPOzs46ffq0SpcurfXr12vMmDGKi4tTVlaWAgICNGLECLVs2dJ0Zr73448/3vF7K1Wq9ABLAMdSrFixHGeeWa1WXb58We7u7lq0aJHdPV574sQJzZs3T/PmzdPx48fVsGFD9e7dW0FBQbluhrYnnp6e2rhxo+rVq5djfceOHWrZsqVSUlLMhAEAjGHnGQAgz9z885pWrVqpVatWBmtwOwzE7ENoaKj69u0rV1dXhYaG/ul7Q0JC8qgKf2bKlCk5vndyclKpUqVUv359FStWzEzUPQoMDNSWLVtUqlQp9ejRQ8HBwapWrZrprPsiKysr17mBkuTi4sIuTwDIp9h5BgB2YNu2bfrkk0+UlJSkFStWqFy5clq4cKG8vLz01FNPmc67Y05OTjp79iznxdiZhQsXKiwsTMePH1dMTIwqVaqkKVOmyMvLS+3btzedl295eXlp165dKlGihLy8vG77PovFomPHjuVhGe5FQkKCateubTrjjrVr1069e/fWc889J2dnZ9M591X79u2VkpKiJUuWqGzZspKkkydPqlu3bipWrJhWrVpluBAAkNduf7osAMAmrFy5Uq1atZKbm5vi4+P166+/SpIuX76sMWPGGK67e1WrVlXx4sX/9Bdsx8yZMzVo0CA9++yzOQ7/Llq0aK5dNMhbx48fV4kSJbK/vt0vBme2KzU1VTNmzFBAQIDq1KljOueurFmzRu3bt3e4wZkkTZ8+XZcvX1blypVVpUoV+fj4yMvLS5cvX9a0adNM5wEADGDnGQDYOH9/fw0cOFA9evTIcTNlQkKCWrdurTNnzphOvGNOTk6aMmWKPD09//R9PXv2zKMi/BVfX1+NGTNGHTp0yPHnb//+/WrSpIl+/vln04nQb4fOu7m53fK106dPq0yZMnlchD+zefNmhYeH6/PPP1elSpXUuXNnde7cWf7+/qbTcJMNGzbo0KFDslqt8vX1VYsWLUwnAQAM4cwzALBxhw8fVuPGjXOtFylSxC4PLX7xxRdVunRp0xm4Q8ePH7/lB/pChQopLS3NQBFuxd/fX4sXL1ZAQECO9RUrVuj111/X+fPnDZXhdz/99JPmzZun8PBwpaWlKSgoSNevX9fKlSvl6+trOg+3EBgYqMDAQNMZAAAbwPAMAGxcmTJldPToUVWuXDnHenR0tLy9vc1E3aObb5mDffDy8lJCQkKuSwS++uorPvDbkMDAQDVs2FDvv/++3n77baWlpalfv35avny5xo0bZzov33v22WcVHR2t5557TtOmTVPr1q3l7OyssLAw02n4n7+6dONmXMABAPkPwzMAsHGvvvqqBgwYoPDwcFksFp06dUoxMTEaMmSIRowYYTrvrnBSgP0ZOnSo/vWvfykjI0NWq1U7duzQkiVLNHbsWM2ePdt0Hv5n2rRpatu2rXr16qW1a9fq1KlTKlKkiHbu3MmQ0wZERkYqJCREr7/+uh599FHTObiFyZMn39H7LBYLwzMAyIcYngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3TeXcnKyjKdgLvUq1cv3bhxQ2+99ZbS09PVtWtXlStXTlOnTtWLL75oOg83admypTp16qSZM2eqQIEC+vLLLxmc2Yht27YpPDxcdevWVfXq1dW9e3e98MILprNwk+PHj5tOAADYMC4MAAA7kZ6eroMHDyorK0u+vr566KGHTCchn/n555+VlZWVfWbdyZMnVa5cOcNVkKSkpCR17dpVZ86c0ezZsxUVFaUJEyYoJCREo0ePlouLi+lE6Le/x5cuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6D39w7do1HT9+XFWqVFGBAuw5AID8jOEZANiZS5cuafPmzapWrZpq1KhhOgf50JkzZzR69GjNnj1bV69eNZ0DSR4eHmrbtq3CwsJUtGhRSdL27duzb+mNj483G4hcDh8+rDlz5mjhwoVKSUlRYGCg1qxZYzoL+m3I2b9/f82fP1+SdOTIEXl7eyskJERly5bVsGHDDBcCAPKak+kAAMCfCwoK0vTp0yVJV69eVb169RQUFKSaNWtq5cqVhuvgqFJSUtStWzeVKlVKZcuWVWhoqLKysjRixAh5e3srNjZW4eHhpjPxPzNmzNDSpUuzB2eS1LBhQ8XHx+e6gRO2oVq1avr444/1008/acmSJaZzcJN33nlHe/bs0datW+Xq6pq93qJFCy1btsxgGQDAFHaeAYCNe+SRR7R+/XrVqlVLixcv1siRI7Vnzx7Nnz9fs2bNYkcJHog33nhDX375pV544QV9/fXXSkxMVKtWrZSRkaGRI0fqmWeeMZ0IAA9EpUqVtGzZMj355JPy8PDQnj175O3traNHjyogIECXLl0ynQgAyGM8vA8ANi41NVXFixeXJH399dfq3Lmz3N3d1bZtWw0dOtRwHRzV2rVrNXfuXLVo0UJvvPGGfHx8VLVqVU2ZMsV0Gv7EwYMHlZycrGvXrmWvWSwWPf/88warAPty/vz57LMdb5aWliaLxWKgCABgGsMzALBxFSpUUExMjIoXL66vv/5aS5culST98ssvOR4nAe6nU6dOZd/U6O3tLVdXV/Xp08dwFX6XmpoqT0/P7O+PHTumTp06ae/evbJYLPr9wYLfP+hnZmYa6QTsUb169bR27Vr1799f0v//7+jTTz9VgwYNTKYBAAxheAYANu7NN99Ut27d9NBDD6lSpUpq0qSJJOmbb76Rn5+f2Tg4rKysrBw3NDo7O6tw4cIGi3Cz0NBQubq6Zu8+HTBggCpUqKD169erdu3a+u6773T8+HENGTJEkyZNMlwL2JexY8eqdevWOnjwoG7cuKGpU6fqwIEDiomJUVRUlOk8AIABnHkGAHYgLi5OycnJCgwM1EMPPSTpt8fqihYtqkaNGhmugyNycnJSmzZtVKhQIUnSl19+qWbNmuUaoH3++ecm8vK9c+fOqXv37vLx8dF//vMflSxZUps2bVKtWrVUrlw57dixQ+XKldOmTZs0ZMgQzkYE7kBCQoJq164tSdq3b58mTJiguLg4ZWVlKSAgQG+//TY/tAKAfIrhGQAAyKVXr1539L65c+c+4BL8mbFjx+qdd95RsWLFFBcXJ29vb9WqVUuzZ89WvXr1lJSUJD8/P6Wnp5tOBWyek5OT/P391adPH3Xt2jXHo9EAgPyN4RkAAICde/rppzVo0CB17NhRffv21fnz5zV06FCFhYVp9+7d2r9/v+lEwObFxMQoPDxcERERun79ujp37qzg4GA1bdrUdBoAwDCGZwAAAHZu/fr1unz5srp06aITJ06obdu22r9/v4oXL66IiAg1a9bMdCJgN65evaqIiAjNnTtX27ZtU+XKlRUcHKyePXuqfPnypvMAAAYwPAMAAHBAFy9eVNGiReXk5GQ6BbBbSUlJmjt3rhYsWKDTp08rMDBQ69atM50FAMhjDM8AAAAA4DauXLmizz77TP/+97+VkpKizMxM00kAgDxWwHQAAOCvbdu2TZ988omSkpK0YsUKlStXTgsXLpSXl5eeeuop03kADMvIyNC0adO0ZcsWnTt3TllZWTle3717t6EywH5FRUUpPDxcK1eulLOzs4KCgtS7d2/TWQAAAxieAYCNW7lypbp3765u3bopPj5ev/76qyTp8uXLGjNmDI+PAFBwcLA2bNigLl266IknnpDFYjGdBNilEydOaN68eZo3b56OHz+uhg0batq0aQoKClLhwoVN5wEADOGxTQCwcf7+/ho4cKB69OghDw8P7dmzR97e3kpISFDr1q115swZ04kADPP09NS6devUqFEj0ymA3QoMDNSWLVtUqlQp9ejRQ8HBwapWrZrpLACADWDnGQDYuMOHD6tx48a51osUKaKUlJS8DwJgc8qVKycPDw/TGYBdc3Nz08qVK/Xcc8/J2dnZdA4AwIZw/RIA2LgyZcro6NGjudajo6Pl7e1toAiArZk4caLefvtt/fjjj6ZTALu1Zs0atW/fnsEZACAXdp4BgI179dVXNWDAAIWHh8tisejUqVOKiYnRkCFDNGLECNN5AGxA3bp1lZGRIW9vb7m7u8vFxSXH6xcvXjRUBgAAYP8YngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3QeABvw0ksv6eTJkxozZowefvhhLgwAAAC4j7gwAADsRHp6ug4ePKisrCz5+vrqoYceMp0EwEa4u7srJiZGtWrVMp0CAADgcNh5BgB2wt3dXXXr1jWdAcAGVa9eXVevXjWdAQAA4JDYeQYANq5p06Z/+gjW5s2b87AGgC2KjIzUqFGjNHr0aPn5+eU686xIkSKGygAAAOwfO88AwMbVrl07x/fXr19XQkKC9u/fr549e5qJAmBTWrduLUlq3rx5jnWr1SqLxaLMzEwTWQAAAA6B4RkA2LjJkyffcv3999/XlStX8rgGgC3asmWL6QQAAACHxWObAGCnjh49qieeeEIXL140nQIAAAAADsvJdAAA4N7ExMTI1dXVdAYAAAAAODQe2wQAG9epU6cc31utVp0+fVq7du3S8OHDDVUBAAAAQP7A8AwAbJynp2eO752cnFStWjV98MEHatmypaEqAAAAAMgfOPMMAAAAAAAAuA12ngEAADiI8+fP6/Dhw7JYLKpatapKlSplOgkAAMDuMTwDABtXrFgxWSyWO3ovN28C+VNaWpr69++vhQsXKjMzU5Lk7OysHj16aNq0aXJ3dzdcCAAAYL8YngGAjRs+fLg++ugjtWrVSg0aNJD0202b69ev1/Dhw1W8eHHDhQBMGzRokKKiorRmzRo1atRIkhQdHa2QkBANHjxYM2fONFwIAABgvzjzDABsXOfOndW0aVP169cvx/r06dO1ceNGrV692kwYAJtRsmRJrVixQk2aNMmxvmXLFgUFBen8+fNmwgAAAByAk+kAAMCfW79+vVq3bp1rvVWrVtq4caOBIgC2Jj09XQ8//HCu9dKlSys9Pd1AEQAAgONgeAYANq5EiRJatWpVrvXVq1erRIkSBooA2JoGDRpo5MiRysjIyF67evWqRo0alf24NwAAAO4NZ54BgI0bNWqUevfura1bt2Z/CI6NjdXXX3+t2bNnG64DYAumTp2q1q1bq3z58qpVq5YsFosSEhLk6uqq9evXm84DAACwa5x5BgB24LvvvlNoaKgSExNltVrl6+urkJAQ1a9f33QaABtx9epVLVq0SIcOHcr+e6Jbt25yc3MznQYAAGDXGJ4BAAAAAAAAt8GZZwAAAHZu/vz5Wrt2bfb3b731looWLaqGDRvqxx9/NFgGAABg/xieAQAA2LkxY8ZkP54ZExOj6dOn6+OPP1bJkiU1cOBAw3UAAAD2jcc2AQAA7Jy7u7sOHTqkihUr6u2339bp06e1YMECHThwQE2aNNH58+dNJwIAANgtdp4BAADYuYceekgXLlyQJEVGRqpFixaSJFdXV129etVkGgAAgN0rYDoAAAAAf09gYKD69Okjf39/HTlyRG3btpUkHThwQJUrVzYbBwAAYOcYngGAHdi5c6eWL1+u5ORkXbt2Lcdrn3/+uaEqALbiP//5j9577z2dOHFCK1euVIkSJSRJcXFxeumllwzXAQAA2DfOPAMAG7d06VL16NFDLVu21IYNG9SyZUt9//33OnPmjDp27Ki5c+eaTgQAAAAAh8WZZwBg48aMGaPJkyfrv//9rwoWLKipU6cqMTFRQUFBqlixouk8ADZi27Ztevnll9WwYUOdPHlSkrRw4UJFR0cbLgMAALBvDM8AwMYlJSVln19UqFAhpaWlyWKxaODAgZo1a5bhOgC2YOXKlWrVqpXc3Ny0e/du/frrr5Kky5cva8yYMYbrAAAA7BvDMwCwccWLF9fly5clSeXKldP+/fslSSkpKUpPTzeZBsBGfPTRRwoLC9Onn34qFxeX7PWGDRtq9+7dBssAAADsHxcGAICNe/rpp7Vhwwb5+fkpKChIAwYM0ObNm7VhwwY1b97cdB4AG3D48GE1btw413qRIkWUkpKS90EAAAAOhOEZANi46dOnKyMjQ5L0zjvvyMXFRdHR0erUqZOGDx9uuA6ALShTpoyOHj2qypUr51iPjo6Wt7e3mSgAAAAHwW2bAAAAdu7jjz/W/PnzFR4ersDAQK1bt04//vijBg4cqBEjRqhfv36mEwEAAOwWwzMAsEGXLl264/cWKVLkAZYAsBfvvvuuJk+enL1TtVChQhoyZIg+/PBDw2UAAAD2jeEZANggJycnWSyWP32P1WqVxWJRZmZmHlUBsHXp6ek6ePCgsrKy5Ovrq4ceesh0EgAAgN3jzDMAsEFbtmwxnQDADqSnp2vo0KFavXq1rl+/rhYtWig0NFQlS5Y0nQYAAOAw2HkGAABgp4YOHaoZM2aoW7ducnV11ZIlS9SkSRMtX77cdBoAAIDDYHgGAABgp6pUqaLRo0frxRdflCTt2LFDjRo1UkZGhpydnQ3XAQAAOAaGZwAAAHaqYMGCOn78uMqVK5e95ubmpiNHjqhChQoGywAAAByHk+kAAAAA3JvMzEwVLFgwx1qBAgV048YNQ0UAAACOhwsDAAAA7JTVatUrr7yiQoUKZa9lZGTotddeU+HChbPXPv/8cxN5AAAADoHhGQAAgJ3q2bNnrrWXX37ZQAkAAIDj4swzALADK1asUEREhJKTk3Xt2rUcr+3evdtQFQAAAAA4Ps48AwAbFxoaql69eql06dKKj4/XE088oRIlSujYsWNq06aN6TwAAAAAcGjsPAMAG1e9enWNHDlSL730kjw8PLRnzx55e3trxIgRunjxoqZPn246EQAAAAAcFjvPAMDGJScnq2HDhpIkNzc3Xb58WZLUvXt3LVmyxGQaAAAAADg8hmcAYOMeeeQRXbhwQZJUqVIlxcbGSpKOHz8uNg8DAAAAwIPF8AwAbFyzZs305ZdfSpJ69+6tgQMHKjAwUC+88II6duxouA4AAAAAHBtnngGAjcvKylJWVpYKFCggSYqIiFB0dLR8fHz02muvqWDBgoYLAQAAAMBxMTwDAAAAAAAAboPHNgEAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALiNAqYDAAC5+fv7y2Kx3NF7d+/e/YBrAAAAACD/YngGADaoQ4cO2V9nZGRoxowZ8vX1VYMGDSRJsbGxOnDggN544w1DhQAAAACQP1isVqvVdAQA4Pb69OmjMmXK6MMPP8yxPnLkSJ04cULh4eGGygAAAADA8TE8AwAb5+npqV27dunRRx/Nsf7999+rbt26Sk1NNVQGAAAAAI6PCwMAwMa5ubkpOjo613p0dLRcXV0NFAEAAABA/sGZZwBg49588029/vrriouL05NPPinptzPPwsPDNWLECMN1AAAAAODYeGwTAOxARESEpk6dqsTERElSjRo1NGDAAAUFBRkuAwAAAADHxvAMAAAAAAAAuA3OPAMAAAAAAABugzPPAMDGZWZmavLkyYqIiFBycrKuXbuW4/WLFy8aKgMAAAAAx8fOMwCwcaNGjdKkSZMUFBSk1NRUDRo0SJ06dZKTk5Pef/9903kAAAAA4NA48wwAbFyVKlUUGhqqtm3bysPDQwkJCdlrsbGxWrx4selEAAAAAHBY7DwDABt35swZ+fn5SZIeeughpaamSpKee+45rV271mQaAAAAADg8hmcAYOPKly+v06dPS5J8fHwUGRkpSdq5c6cKFSpkMg0AAAAAHB7DMwCwcR07dtSmTZskSQMGDNDw4cP16KOPqkePHgoODjZcBwAAAACOjTPPAMDOxMbGavv27fLx8VG7du1M5wAAAACAQ2N4BgAAAAAAANxGAdMBAIDc1qxZc8fvZfcZAAAAADw47DwDABvk5JTzSEqLxaI//nVtsVgkSZmZmXnWBQAAAAD5DRcGAIANysrKyv4VGRmp2rVr66uvvlJKSopSU1P11VdfKSAgQF9//bXpVAAAAABwaOw8AwAb9/jjjyssLExPPfVUjvVt27apb9++SkxMNFQGAAAAAI6PnWcAYOOSkpLk6emZa93T01M//PBD3gcBAAAAQD7CzjMAsHGNGzeWi4uLFi1apDJlykiSzpw5o+7du+vatWuKiooyXAgAAAAAjovhGQDYuKNHj6pjx446fPiwKlasKElKTk5W1apVtXr1avn4+BguBAAAAADHxfAMAOyA1WrVhg0bdOjQIVmtVvn6+qpFixbZN24CAAAAAB4MhmcAAAAAAADAbRQwHQAAyC00NFR9+/aVq6urQkND//S9ISEheVQFAAAAAPkPO88AwAZ5eXlp165dKlGihLy8vG77PovFomPHjuVhGQAAAADkLwzPAAAAAAAAgNtwMh0AAAAAAAAA2CqGZwBg47p06aJx48blWh8/frz+8Y9/GCgCAAAAgPyDxzYBwMaVKlVKmzdvlp+fX471ffv2qUWLFjp79qyhMgAAAABwfOw8AwAbd+XKFRUsWDDXuouLiy5dumSgCAAAAADyD4ZnAGDjHn/8cS1btizX+tKlS+Xr62ugCAAAAADyjwKmAwAAf2748OHq3LmzkpKS1KxZM0nSpk2btGTJEi1fvtxwHQAAAAA4Ns48AwA7sHbtWo0ZM0YJCQlyc3NTzZo1NXLkSD3zzDOm0wAAAADAoTE8AwAAAAAAAG6DxzYBwE7ExcUpMTFRFotFvr6+8vf3N50EAAAAAA6P4RkA2Lhz587pxRdf1NatW1W0aFFZrValpqaqadOmWrp0qUqVKmU6EQAAAAAcFrdtAoCN69+/vy5duqQDBw7o4sWL+uWXX7R//35dunRJISEhpvMAAAAAwKFx5hkA2DhPT09t3LhR9erVy7G+Y8cOtWzZUikpKWbCAAAAACAfYOcZANi4rKwsubi45Fp3cXFRVlaWgSIAAAAAyD8YngGAjWvWrJkGDBigU6dOZa+dPHlSAwcOVPPmzQ2WAQAAAIDj47FNALBxJ06cUPv27bV//35VqFBBFotFycnJ8vPz0xdffKHy5cubTgQAAAAAh8XwDADsxIYNG3To0CFZrVb5+vqqRYsWppMAAAAAwOExPAMAAAAAAABuo4DpAABAbqGhoXf83pCQkAdYAgAAAAD5GzvPAMAGeXl53dH7LBaLjh079oBrAAAAACD/YngGAAAAAAAA3IaT6QAAwJ25du2aDh8+rBs3bphOAQAAAIB8g+EZANi49PR09e7dW+7u7nrssceUnJws6bezzsaNG2e4DgAAAAAcG8MzALBx77zzjvbs2aOtW7fK1dU1e71FixZatmyZwTIAAAAAcHzctgkANm716tVatmyZnnzySVkslux1X19fJSUlGSwDAAAAAMfHzjMAsHHnz59X6dKlc62npaXlGKYBAAAAAO4/hmcAYOPq1auntWvXZn//+8Ds008/VYMGDUxlAQAAAEC+wGObAGDjxo4dq9atW+vgwYO6ceOGpk6dqgMHDigmJkZRUVGm8wAAAADAobHzDABsVEJCgiSpYcOG+vbbb5Wenq4qVaooMjJSDz/8sGJiYlSnTh2zkQAAAADg4CxWq9VqOgIAkJuTk5P8/f3Vp08fde3aVZ6enqaTAAAAACDfYecZANiob7/9VgEBARo2bJjKlCmj7t27a8uWLaazAAAAACBfYecZANi4q1evKiIiQnPnztW2bdtUuXJlBQcHq2fPnipfvrzpPAAAAABwaAzPAMCOJCUlae7cuVqwYIFOnz6twMBArVu3znQWAAAAADgshmcAYGeuXLmizz77TP/+97+VkpKizMxM00kAAAAA4LAKmA4AANyZqKgohYeHa+XKlXJ2dlZQUJB69+5tOgsAAAAAHBo7zwDAhp04cULz5s3TvHnzdPz4cTVs2FC9e/dWUFCQChcubDoPAAAAABweO88AwEYFBgZqy5YtKlWqlHr06KHg4GBVq1bNdBYAAAAA5CsMzwDARrm5uWnlypV67rnn5OzsbDoHAAAAAPIlHtsEAAAAAAAAbsPJdAAAAAAAAABgqxieAQAAAAAAALfB8AwAAAAAAAC4DYZnAAAAAAAAwG0wPAMAAAAAAABug+EZAAAAAAAAcBsMzwAAAAAAAIDb+H/ijI1qDMKIFQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de correlaciones con filtro de umbral de correlación

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecio
Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan
Altitud a la que se realiza el cruceronannannannannannannannannannan-0.952nannannannan0.761nannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannan-0.999nan0.936nannannan0.815nannan0.846nannan1.0000.723nan-0.855nannannannan
Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nannannannan
Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannan
Área del alanannannannannannan-0.8310.8670.9840.977nannan0.737nan0.8410.9840.899nannan0.9230.941nannan1.000nan0.899
Relación de aspecto del alanannan-0.999nannan-0.831nan-0.790-0.996-0.823-0.998nan-0.859nannan-0.744-0.888nan-0.999nannannannannannannan
Longitud del fuselajenannannannannan0.867-0.790nan0.9380.786nannannannannan0.995nannannan0.9400.880-0.718nan0.929nannan
Ancho del fuselajenannan0.936nannan0.984-0.9960.938nan0.9860.982nan0.940nannan0.7600.868nan0.944nan0.955nannannannannan
Peso máximo al despegue (MTOW)nannannannannan0.977-0.8230.7860.986nannannannannan0.7910.8580.875nan0.7080.9790.947nannan0.9760.758nan
Alcance de la aeronavenan-0.952nannannannan-0.998nan0.982nannannannannannan-0.755nannannannannannannannannannan
Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nan
Velocidad máxima (KIAS)nannan0.815nannan0.737-0.859nan0.940nannannannannannannan0.715-0.9270.7750.857nannannan0.7050.910nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannan
envergaduranannannannannan0.841nannannan0.791nannannannannan0.8850.734nannan0.9360.924nannannannannan
Cuerdanan0.7610.846nannan0.984-0.7440.9950.7600.858-0.755nannannan0.885nan0.776nan0.846nan0.971nannannannannan
payloadnannannannannan0.899-0.888nan0.8680.875nannan0.715nan0.7340.776nannannannan0.778nannan0.7110.846nan
duracion en VTOLnannannan-0.875nannannannannannannannan-0.927nannannannannannannannannannannannannan
Crucero KIASnannan1.000nannannan-0.999nan0.9440.708nannan0.775nannan0.846nannannan0.723nan-0.855nannannannan
RTF (Including fuel & Batteries)nannan0.723nannan0.923nan0.940nan0.979nannan0.857nan0.936nannannan0.723nan0.996nannannannannan
Empty weightnannannannannan0.941nan0.8800.9550.947nannannannan0.9240.9710.778nannan0.996nannan0.8320.995nannan
Maximum Crosswindnannan-0.855-0.961nannannan-0.718nannannan-0.715nannannannannannan-0.855nannannannannannannan
Rango de comunicaciónnannannannannannannannannannannan0.802nannannannannannannannan0.832nannannannannan
Capacidad combustiblenannannannannan1.000nan0.929nan0.976nannan0.705nannannan0.711nannannan0.995nannannannan0.817
Consumonannannannannannannannannan0.758nan-0.7320.910nannannan0.846nannannannannannannannan0.998
Precionannannannannan0.899nannannannannannannannannannannannannannannannannan0.8170.998nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", + "Ecuación de regresión: y = -3.588x + 72.195\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 27.34\n", + "\tR²: 0.9951683800002252, Desviación Estándar: 0.3316703651380593, Varianza: 0.1100052311108136, Incertidumbre: 0.19148997459468003\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.723) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [27.344, 27.344, 27.344, 18.091, 21.875, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.104x + 21.164\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 28.443\n", + "\tR²: 0.5234387684031696, Desviación Estándar: 2.436503148855875, Varianza: 5.936547594384592, Incertidumbre: 0.9209116286426334\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Relación de aspecto del ala: 27.34', 'RTF (Including fuel & Batteries): 28.443']\n", + "**Mediana calculada:** 27.892\n", + "\n", + "--- Imputación para aeronave: **AAI Aerosonde** ---\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892]\n", + "Ecuación de regresión: y = -3.686x + 73.696\n", + "Valor del parámetro correlacionado para la aeronave: 14.754\n", + "Predicción obtenida: 19.306\n", + "\tR²: 0.9955392528843181, Desviación Estándar: 0.3471824284258566, Varianza: 0.12053563860767504, Incertidumbre: 0.1735912142129283\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.607x + 4.971\n", + "Valor del parámetro correlacionado para la aeronave: 30.846\n", + "Predicción obtenida: 23.695\n", + "\tR²: 0.6883167394784258, Desviación Estándar: 3.20056844074234, Varianza: 10.243638343875855, Incertidumbre: 0.7342607576358634\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", + "Ecuación de regresión: y = 77.731x + -2.949\n", + "Valor del parámetro correlacionado para la aeronave: 0.197\n", + "Predicción obtenida: 12.33\n", + "\tR²: 0.5951449532870101, Desviación Estándar: 3.036057989288316, Varianza: 9.217648114321413, Incertidumbre: 1.7528688973909234\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Relación de aspecto del ala: 19.306', 'Velocidad máxima (KIAS): 23.695', 'Cuerda: 12.33']\n", + "**Mediana calculada:** 19.306\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.625x + 4.123\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 26.611\n", + "\tR²: 0.6860861539695317, Desviación Estándar: 3.2600537047404123, Varianza: 10.627950157791688, Incertidumbre: 0.728970169409959\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad máxima (KIAS): 26.611']\n", + "**Mediana calculada:** 26.611\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.625x + 4.123\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 26.611\n", + "\tR²: 0.6861096464084044, Desviación Estándar: 3.181486648407253, Varianza: 10.121857293993614, Incertidumbre: 0.6942573042294092\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad máxima (KIAS): 26.611']\n", + "**Mediana calculada:** 26.611\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Maximum Crosswind (r = -0.855) ---\n", + "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Reach']\n", + "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [18.091, 17.5, 21.875, 27.344]\n", + "Ecuación de regresión: y = -0.209x + 27.721\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 21.463\n", + "\tR²: 0.755405189129301, Desviación Estándar: 1.9401971688154946, Varianza: 3.764365053879661, Incertidumbre: 0.9700985844077473\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Maximum Crosswind: 21.463']\n", + "**Mediana calculada:** 21.463\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.625x + 4.123\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 33.045\n", + "\tR²: 0.6861096464084044, Desviación Estándar: 3.181486648407253, Varianza: 10.121857293993614, Incertidumbre: 0.6942573042294092\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad máxima (KIAS): 33.045']\n", + "**Mediana calculada:** 33.045\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 36.094, 30.625]\n", + "Ecuación de regresión: y = 93.547x + -1.195\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 33.885\n", + "\tR²: 0.9095474448825779, Desviación Estándar: 2.2440186570446126, Varianza: 5.035619733164306, Incertidumbre: 1.0035556519859081\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", + "Ecuación de regresión: y = 0.625x + 4.123\n", + "Valor del parámetro correlacionado para la aeronave: 38.0\n", + "Predicción obtenida: 27.86\n", + "\tR²: 0.7045474134573646, Desviación Estándar: 3.108339246562038, Varianza: 9.661772871717856, Incertidumbre: 0.6627001540432849\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 1.0) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 33.0, 24.0, 30.0]\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 36.094, 26.25, 32.813]\n", + "Ecuación de regresión: y = 1.094x + 0.0\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 38.282\n", + "\tR²: 1.0, Desviación Estándar: 3.3158330576972436e-15, Varianza: 1.0994748866517852e-29, Incertidumbre: 8.289582644243109e-16\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "Valores imputados: ['Ancho del fuselaje: 33.885', 'Velocidad máxima (KIAS): 27.86', 'Crucero KIAS: 38.282']\n", + "**Mediana calculada:** 33.885\n", + "\n", + "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Orbiter 4'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Orbiter 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Maximum Crosswind (r = -0.961) ---\n", + "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0, 15.0]\n", + "Valores para Techo de servicio máximo: [13.0, 13.123, 10000.0, 13000.0, 16000.0]\n", + "Ecuación de regresión: y = -395.696x + 18884.7\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 7013.834\n", + "\tR²: 0.9093584510325812, Desviación Estándar: 1998.8363831923273, Varianza: 3995346.886773384, Incertidumbre: 893.9068057435724\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Maximum Crosswind: 7013.834']\n", + "**Mediana calculada:** 7013.834\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 2600'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 2930 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 3600'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 3600 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 5000** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000 VTOL octo'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Imputación para el parámetro: **Área del ala** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", + "Ecuación de regresión: y = -0.219x + 4.203\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 1.468\n", + "\tR²: 0.4921072065029338, Desviación Estándar: 0.2579064700616838, Varianza: 0.06651574729967821, Incertidumbre: 0.1289532350308419\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.022x + 0.512\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 2.528\n", + "\tR²: 0.9424993971942859, Desviación Estándar: 0.1480022127547218, Varianza: 0.02190465498029394, Incertidumbre: 0.038214007013392295\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.084x + 0.605\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 2.503\n", + "\tR²: 0.8079809975569326, Desviación Estándar: 0.2933466953816814, Varianza: 0.08605228369135297, Incertidumbre: 0.07574179105854881\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Relación de aspecto del ala: 1.468', 'Peso máximo al despegue (MTOW): 2.528', 'payload: 2.503']\n", + "**Mediana calculada:** 2.503\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.546x + 0.007\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.662\n", + "\tR²: 0.6801892039390519, Desviación Estándar: 0.30468415865316995, Varianza: 0.09283243653419003, Incertidumbre: 0.08795474050811117\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.022x + 0.514\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.945\n", + "\tR²: 0.9537986325795035, Desviación Estándar: 0.14339927817107342, Varianza: 0.020563352979984892, Incertidumbre: 0.035849819542768356\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.082x + -1.305\n", + "Valor del parámetro correlacionado para la aeronave: 41.7\n", + "Predicción obtenida: 2.11\n", + "\tR²: 0.4361157359439931, Desviación Estándar: 0.5418933308069339, Varianza: 0.29364838197303306, Incertidumbre: 0.17136171742050005\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.46x + -0.446\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.935\n", + "\tR²: 0.606437991532139, Desviación Estándar: 0.33799470646338436, Varianza: 0.11424042159726937, Incertidumbre: 0.09757066738065176\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Longitud del fuselaje: 0.662', 'Peso máximo al despegue (MTOW): 0.945', 'Velocidad máxima (KIAS): 2.11', 'envergadura: 0.935']\n", + "**Mediana calculada:** 0.94\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.521x + 0.078\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.703\n", + "\tR²: 0.6641973297028555, Desviación Estándar: 0.30126149307901384, Varianza: 0.09075848721219672, Incertidumbre: 0.08355490466301725\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.022x + 0.513\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 1.701\n", + "\tR²: 0.9548206367081808, Desviación Estándar: 0.1391232519560287, Varianza: 0.01935527923482064, Incertidumbre: 0.033742344870242656\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.057x + -0.607\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 1.456\n", + "\tR²: 0.2635152280829376, Desviación Estándar: 0.5971883487670894, Varianza: 0.3566339239031628, Incertidumbre: 0.18005906200293956\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.46x + -0.445\n", + "Valor del parámetro correlacionado para la aeronave: 5.2\n", + "Predicción obtenida: 1.948\n", + "\tR²: 0.6098226097328528, Desviación Estándar: 0.32473761841891496, Varianza: 0.10545452081638883, Incertidumbre: 0.09006601032934286\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.084x + 0.605\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 1.608\n", + "\tR²: 0.8352230239464027, Desviación Estándar: 0.2840317214888726, Varianza: 0.08067401881193251, Incertidumbre: 0.07100793037221816\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 0.703', 'Peso máximo al despegue (MTOW): 1.701', 'Velocidad máxima (KIAS): 1.456', 'envergadura: 1.948', 'payload: 1.608']\n", + "**Mediana calculada:** 1.608\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.45x + 0.279\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.819\n", + "\tR²: 0.49444751735768744, Desviación Estándar: 0.36781526151231503, Varianza: 0.1352880666013727, Incertidumbre: 0.09830276358612447\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.512\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 1.2\n", + "\tR²: 0.9541873450036837, Desviación Estándar: 0.1368279656080401, Varianza: 0.018721892172435, Incertidumbre: 0.03225066077913495\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.058x + -0.629\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 1.472\n", + "\tR²: 0.2740142010052371, Desviación Estándar: 0.5732623728312028, Varianza: 0.328629748104061, Incertidumbre: 0.1654865926351893\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.417x + -0.317\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 1.516\n", + "\tR²: 0.6121745707536088, Desviación Estándar: 0.3221549155644233, Varianza: 0.10378378962232071, Incertidumbre: 0.08609952282194\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.084x + 0.605\n", + "Valor del parámetro correlacionado para la aeronave: 5.5\n", + "Predicción obtenida: 1.065\n", + "\tR²: 0.8355353911029019, Desviación Estándar: 0.27555125326306473, Varianza: 0.07592849317484565, Incertidumbre: 0.06683099543970229\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 0.819', 'Peso máximo al despegue (MTOW): 1.2', 'Velocidad máxima (KIAS): 1.472', 'envergadura: 1.516', 'payload: 1.065']\n", + "**Mediana calculada:** 1.2\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.423x + 0.354\n", + "Valor del parámetro correlacionado para la aeronave: 1.48\n", + "Predicción obtenida: 0.981\n", + "\tR²: 0.46052122430771714, Desviación Estándar: 0.36722158071804406, Varianza: 0.13485168934505895, Incertidumbre: 0.09481620443259649\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.512\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 0.651\n", + "\tR²: 0.9543119129686386, Desviación Estándar: 0.13317860331268058, Varianza: 0.017736540380316333, Incertidumbre: 0.03055326701483504\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.057x + -0.594\n", + "Valor del parámetro correlacionado para la aeronave: 25.6\n", + "Predicción obtenida: 0.857\n", + "\tR²: 0.26284243485241887, Desviación Estándar: 0.5554395050127472, Varianza: 0.30851304372880556, Incertidumbre: 0.1540512012109075\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.398x + -0.27\n", + "Valor del parámetro correlacionado para la aeronave: 2.1\n", + "Predicción obtenida: 0.565\n", + "\tR²: 0.5889263637114722, Desviación Estándar: 0.32055372387545367, Varianza: 0.10275468989042061, Incertidumbre: 0.08276661560896019\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Longitud del fuselaje: 0.981', 'Peso máximo al despegue (MTOW): 0.651', 'Velocidad máxima (KIAS): 0.857', 'envergadura: 0.565']\n", + "**Mediana calculada:** 0.754\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.432x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 1.71\n", + "Predicción obtenida: 1.063\n", + "\tR²: 0.46837090280435856, Desviación Estándar: 0.35970679644924114, Varianza: 0.1293889794117758, Incertidumbre: 0.08992669911231028\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.524\n", + "Valor del parámetro correlacionado para la aeronave: 26.5\n", + "Predicción obtenida: 1.088\n", + "\tR²: 0.9550142996680715, Desviación Estándar: 0.1316020238299309, Varianza: 0.0173190926761337, Incertidumbre: 0.029427107126027266\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.058x + -0.649\n", + "Valor del parámetro correlacionado para la aeronave: 41.2\n", + "Predicción obtenida: 1.746\n", + "\tR²: 0.29571820868524923, Desviación Estándar: 0.5358228587115724, Varianza: 0.2871061359178417, Incertidumbre: 0.14320468266432035\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.381x + -0.202\n", + "Valor del parámetro correlacionado para la aeronave: 3.1\n", + "Predicción obtenida: 0.98\n", + "\tR²: 0.5966556307390867, Desviación Estándar: 0.31331578218830264, Varianza: 0.0981667793682679, Incertidumbre: 0.07832894554707566\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.083x + 0.619\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 1.034\n", + "\tR²: 0.8350524298607005, Desviación Estándar: 0.2695310649903611, Varianza: 0.07264699499483826, Incertidumbre: 0.0635290812650388\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.063', 'Peso máximo al despegue (MTOW): 1.088', 'Velocidad máxima (KIAS): 1.746', 'envergadura: 0.98', 'payload: 1.034']\n", + "**Mediana calculada:** 1.063\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.432x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 1.404\n", + "\tR²: 0.4688208790784759, Desviación Estándar: 0.34896686225957346, Varianza: 0.1217778709552921, Incertidumbre: 0.08463689605509357\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.522\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 2.117\n", + "\tR²: 0.9552685671013039, Desviación Estándar: 0.1285440575853638, Varianza: 0.016523574740509323, Incertidumbre: 0.028050613048652005\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.049x + -0.376\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 1.872\n", + "\tR²: 0.23291649773094203, Desviación Estándar: 0.5418077102312508, Varianza: 0.29355559486603106, Incertidumbre: 0.13989414923816057\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.38x + -0.191\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 1.631\n", + "\tR²: 0.5953583197437493, Desviación Estándar: 0.30457832800349305, Varianza: 0.09276795788940341, Incertidumbre: 0.07387109515484842\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.083x + 0.622\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 2.113\n", + "\tR²: 0.8382132873731523, Desviación Estándar: 0.26242037008429453, Varianza: 0.06886445063517811, Incertidumbre: 0.060203361785472836\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.404', 'Peso máximo al despegue (MTOW): 2.117', 'Velocidad máxima (KIAS): 1.872', 'envergadura: 1.631', 'payload: 2.113']\n", + "**Mediana calculada:** 1.872\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.53\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 2.091\n", + "\tR²: 0.9505024269111185, Desviación Estándar: 0.13477094387403904, Varianza: 0.018163207312699377, Incertidumbre: 0.02873326177786689\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.081x + 0.628\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 2.088\n", + "\tR²: 0.8352123461571666, Desviación Estándar: 0.2607982244843819, Varianza: 0.06801571389420606, Incertidumbre: 0.05831625583583279\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Peso máximo al despegue (MTOW): 2.091', 'payload: 2.088']\n", + "**Mediana calculada:** 2.09\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.46x + 0.297\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 1.447\n", + "\tR²: 0.48817664948956896, Desviación Estándar: 0.3550488365774619, Varianza: 0.12605967635500923, Incertidumbre: 0.08368581333210588\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.53\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 2.087\n", + "\tR²: 0.9537268168880683, Desviación Estándar: 0.13180876658609073, Varianza: 0.017373550948946544, Incertidumbre: 0.027484027732284446\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.049x + -0.376\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 1.872\n", + "\tR²: 0.2800468648798645, Desviación Estándar: 0.5246030655173786, Varianza: 0.27520837635023104, Incertidumbre: 0.13115076637934464\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.397x + -0.238\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 1.666\n", + "\tR²: 0.6331001883328717, Desviación Estándar: 0.30060886965213346, Varianza: 0.09036569251353338, Incertidumbre: 0.07085419007194885\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.081x + 0.628\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 2.088\n", + "\tR²: 0.8421455166049525, Desviación Estándar: 0.2545135233705542, Varianza: 0.06477713357849366, Incertidumbre: 0.055539404106451286\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.447', 'Peso máximo al despegue (MTOW): 2.087', 'Velocidad máxima (KIAS): 1.872', 'envergadura: 1.666', 'payload: 2.088']\n", + "**Mediana calculada:** 1.872\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.46x + 0.297\n", + "Valor del parámetro correlacionado para la aeronave: 2.4\n", + "Predicción obtenida: 1.401\n", + "\tR²: 0.48817664948956896, Desviación Estándar: 0.3550488365774619, Varianza: 0.12605967635500923, Incertidumbre: 0.08368581333210588\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.53\n", + "Valor del parámetro correlacionado para la aeronave: 36.3\n", + "Predicción obtenida: 1.286\n", + "\tR²: 0.9537268168880683, Desviación Estándar: 0.13180876658609073, Varianza: 0.017373550948946544, Incertidumbre: 0.027484027732284446\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.049x + -0.376\n", + "Valor del parámetro correlacionado para la aeronave: 41.2\n", + "Predicción obtenida: 1.625\n", + "\tR²: 0.2800468648798645, Desviación Estándar: 0.5246030655173786, Varianza: 0.27520837635023104, Incertidumbre: 0.13115076637934464\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.397x + -0.238\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 1.349\n", + "\tR²: 0.6331001883328717, Desviación Estándar: 0.30060886965213346, Varianza: 0.09036569251353338, Incertidumbre: 0.07085419007194885\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.081x + 0.628\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 1.326\n", + "\tR²: 0.8421455166049525, Desviación Estándar: 0.2545135233705542, Varianza: 0.06477713357849366, Incertidumbre: 0.055539404106451286\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.401', 'Peso máximo al despegue (MTOW): 1.286', 'Velocidad máxima (KIAS): 1.625', 'envergadura: 1.349', 'payload: 1.326']\n", + "**Mediana calculada:** 1.349\n", + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.458x + 0.299\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 1.443\n", + "\tR²: 0.49146211696239317, Desviación Estándar: 0.3457725283158643, Varianza: 0.11955864133794519, Incertidumbre: 0.0793256583358636\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.533\n", + "Valor del parámetro correlacionado para la aeronave: 61.0\n", + "Predicción obtenida: 1.802\n", + "\tR²: 0.9532832420705458, Desviación Estándar: 0.12965091612376284, Varianza: 0.016809360051730986, Incertidumbre: 0.026464882432299938\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.31\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 1.828\n", + "\tR²: 0.2696364235152151, Desviación Estándar: 0.5128023719074978, Varianza: 0.2629662726339556, Incertidumbre: 0.12437284379069904\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.397x + -0.238\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 1.666\n", + "\tR²: 0.6358629871775192, Desviación Estándar: 0.2925911882905274, Varianza: 0.08560960346526285, Incertidumbre: 0.06712502218573105\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.081x + 0.63\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 2.064\n", + "\tR²: 0.8424950545541062, Desviación Estándar: 0.24870967530649968, Varianza: 0.0618565025910645, Incertidumbre: 0.05302508093991701\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.443', 'Peso máximo al despegue (MTOW): 1.802', 'Velocidad máxima (KIAS): 1.828', 'envergadura: 1.666', 'payload: 2.064']\n", + "**Mediana calculada:** 1.802\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.476x + 0.281\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 0.709\n", + "\tR²: 0.5067722199589602, Desviación Estándar: 0.34569438035947625, Varianza: 0.11950460461212224, Incertidumbre: 0.0772996133923457\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.533\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 0.662\n", + "\tR²: 0.9542933408598602, Desviación Estándar: 0.12703143691612878, Varianza: 0.016136985964976404, Incertidumbre: 0.025406287383225756\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.405x + -0.261\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 0.691\n", + "\tR²: 0.6610034143057635, Desviación Estándar: 0.2865934213089743, Varianza: 0.08213578913758324, Incertidumbre: 0.06408423719511033\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.08x + 0.635\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.73\n", + "\tR²: 0.8368924216256921, Desviación Estándar: 0.24881616391859884, Varianza: 0.061909483427167046, Incertidumbre: 0.05188175662741571\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 0.709', 'Peso máximo al despegue (MTOW): 0.662', 'envergadura: 0.691', 'payload: 0.73']\n", + "**Mediana calculada:** 0.7\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.477x + 0.279\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 0.708\n", + "\tR²: 0.530038527273323, Desviación Estándar: 0.3373686112553851, Varianza: 0.11381757986038715, Incertidumbre: 0.0736198665799968\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.537\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 0.666\n", + "\tR²: 0.9563099090104202, Desviación Estándar: 0.12476254599075952, Varianza: 0.015565692882096385, Incertidumbre: 0.024467948329707695\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.405x + -0.259\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 0.692\n", + "\tR²: 0.676989457910925, Desviación Estándar: 0.2796931909209141, Varianza: 0.0782282810475229, Incertidumbre: 0.0610340580361345\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.08x + 0.631\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.727\n", + "\tR²: 0.8477300129544219, Desviación Estándar: 0.24364789703392117, Varianza: 0.05936429772905225, Incertidumbre: 0.04973441871960682\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 0.708', 'Peso máximo al despegue (MTOW): 0.666', 'envergadura: 0.692', 'payload: 0.727']\n", + "**Mediana calculada:** 0.7\n", + "\n", + "--- Imputación para aeronave: **V32** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.477x + 0.279\n", + "Valor del parámetro correlacionado para la aeronave: 1.0\n", + "Predicción obtenida: 0.756\n", + "\tR²: 0.530038527273323, Desviación Estándar: 0.3373686112553851, Varianza: 0.11381757986038715, Incertidumbre: 0.0736198665799968\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.537\n", + "Valor del parámetro correlacionado para la aeronave: 23.5\n", + "Predicción obtenida: 1.025\n", + "\tR²: 0.9563099090104202, Desviación Estándar: 0.12476254599075952, Varianza: 0.015565692882096385, Incertidumbre: 0.024467948329707695\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.3\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 1.213\n", + "\tR²: 0.2987388890678494, Desviación Estándar: 0.49838437168601263, Varianza: 0.24838698194086156, Incertidumbre: 0.1174703229521921\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.405x + -0.259\n", + "Valor del parámetro correlacionado para la aeronave: 3.2\n", + "Predicción obtenida: 1.036\n", + "\tR²: 0.676989457910925, Desviación Estándar: 0.2796931909209141, Varianza: 0.0782282810475229, Incertidumbre: 0.0610340580361345\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.08x + 0.631\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 1.03\n", + "\tR²: 0.8477300129544219, Desviación Estándar: 0.24364789703392117, Varianza: 0.05936429772905225, Incertidumbre: 0.04973441871960682\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", + "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.063x + 0.414\n", + "Valor del parámetro correlacionado para la aeronave: 6.45\n", + "Predicción obtenida: 0.818\n", + "\tR²: 0.8862827411226012, Desviación Estándar: 0.22697772477286166, Varianza: 0.05151888754306494, Incertidumbre: 0.06552282524883024\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Precio (r = 0.899) ---\n", + "Aeronaves utilizadas: ['V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Precio: [3999.0, 4679.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", + "Valores para Área del ala: [0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.0x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 69999.0\n", + "Predicción obtenida: 11.824\n", + "\tR²: 0.8076686704270842, Desviación Estándar: 0.35422576262319455, Varianza: 0.12547589090598377, Incertidumbre: 0.11807525420773152\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 0.756', 'Peso máximo al despegue (MTOW): 1.025', 'Velocidad máxima (KIAS): 1.213', 'envergadura: 1.036', 'payload: 1.03', 'Empty weight: 0.818', 'Precio: 11.824']\n", + "**Mediana calculada:** 1.03\n", + "\n", + "--- Imputación para aeronave: **V35** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.459x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 1.88\n", + "Predicción obtenida: 1.188\n", + "\tR²: 0.5187592344985992, Desviación Estándar: 0.33423029414950794, Varianza: 0.11170988952726661, Incertidumbre: 0.07125813814042148\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.538\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 1.201\n", + "\tR²: 0.9567615844762626, Desviación Estándar: 0.12243454518963205, Varianza: 0.014990217855792052, Incertidumbre: 0.023562539207781154\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.324\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 1.203\n", + "\tR²: 0.3019978039605754, Desviación Estándar: 0.4868033988346396, Varianza: 0.23697754911695715, Incertidumbre: 0.1116803589943326\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.405x + -0.26\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 1.157\n", + "\tR²: 0.678309022659344, Desviación Estándar: 0.27326502283958154, Varianza: 0.07467377270751702, Incertidumbre: 0.058260298624331026\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.08x + 0.631\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 1.429\n", + "\tR²: 0.850762300542554, Desviación Estándar: 0.23872521083313977, Varianza: 0.05698972628732704, Incertidumbre: 0.047745042166627956\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Precio (r = 0.899) ---\n", + "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Precio: [3999.0, 4679.0, 69999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", + "Valores para Área del ala: [0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.0x + 1.468\n", + "Valor del parámetro correlacionado para la aeronave: 7999.0\n", + "Predicción obtenida: 1.471\n", + "\tR²: 5.510644397854758e-05, Desviación Estándar: 0.7803061547023157, Varianza: 0.6088776950663142, Incertidumbre: 0.24675447211070242\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Longitud del fuselaje: 1.188', 'Peso máximo al despegue (MTOW): 1.201', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 1.157', 'payload: 1.429', 'Precio: 1.471']\n", + "**Mediana calculada:** 1.202\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.538\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 1.035\n", + "\tR²: 0.9568416510162402, Desviación Estándar: 0.12022845817986676, Varianza: 0.014454882156307969, Incertidumbre: 0.022721042918332626\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.324\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 1.203\n", + "\tR²: 0.30291737528467566, Desviación Estándar: 0.474477281198844, Varianza: 0.2251286903738469, Incertidumbre: 0.10609634545398981\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.405x + -0.257\n", + "Valor del parámetro correlacionado para la aeronave: 3.9\n", + "Predicción obtenida: 1.32\n", + "\tR²: 0.6779800432691134, Desviación Estándar: 0.26741850007254947, Varianza: 0.07151265418105215, Incertidumbre: 0.05576061185064946\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.08x + 0.622\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 1.021\n", + "\tR²: 0.8465859657242829, Desviación Estándar: 0.23811937696573565, Varianza: 0.05670083768655011, Incertidumbre: 0.0466990519120324\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Precio (r = 0.899) ---\n", + "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", + "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.0x + 1.439\n", + "Valor del parámetro correlacionado para la aeronave: 8999.0\n", + "Predicción obtenida: 1.445\n", + "\tR²: 0.00029183893894446644, Desviación Estándar: 0.7479568811282364, Varianza: 0.5594394960270789, Incertidumbre: 0.22551748491516507\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Peso máximo al despegue (MTOW): 1.035', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 1.32', 'payload: 1.021', 'Precio: 1.445']\n", + "**Mediana calculada:** 1.203\n", + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.459x + 0.326\n", + "Valor del parámetro correlacionado para la aeronave: 2.02\n", + "Predicción obtenida: 1.253\n", + "\tR²: 0.5188052941313532, Desviación Estándar: 0.3268966538966882, Varianza: 0.10686142232885117, Incertidumbre: 0.06816266424448632\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.548\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 1.373\n", + "\tR²: 0.9540497205736983, Desviación Estándar: 0.12200219933246954, Varianza: 0.014884536641959632, Incertidumbre: 0.022655239663387023\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.324\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 1.203\n", + "\tR²: 0.3037289741090303, Desviación Estándar: 0.46304242133609924, Varianza: 0.21440828395679767, Incertidumbre: 0.10104414027372904\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.403x + -0.255\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 2.362\n", + "\tR²: 0.6754640443421005, Desviación Estándar: 0.262831271883581, Varianza: 0.06908027747994087, Incertidumbre: 0.053650208713457374\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.079x + 0.636\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 2.06\n", + "\tR²: 0.8442705988266823, Desviación Estándar: 0.23612835689484077, Varianza: 0.05575660092985729, Incertidumbre: 0.04544292347218011\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Capacidad combustible (r = 1.0) ---\n", + "Aeronaves utilizadas: ['Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Capacidad combustible: [11.5, 11.5, 28.0]\n", + "Valores para Área del ala: [1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.078x + 0.426\n", + "Valor del parámetro correlacionado para la aeronave: 13.0\n", + "Predicción obtenida: 1.442\n", + "\tR²: 0.9999549326242733, Desviación Estándar: 0.004082482904638634, Varianza: 1.6666666666666698e-05, Incertidumbre: 0.002357022603955161\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Precio (r = 0.899) ---\n", + "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 8999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", + "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.0x + 1.415\n", + "Valor del parámetro correlacionado para la aeronave: 8999.0\n", + "Predicción obtenida: 1.424\n", + "\tR²: 0.0005527163843784821, Desviación Estándar: 0.7192113906007205, Varianza: 0.5172650243698221, Incertidumbre: 0.20761844498378554\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Longitud del fuselaje: 1.253', 'Peso máximo al despegue (MTOW): 1.373', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 2.362', 'payload: 2.06', 'Capacidad combustible: 1.442', 'Precio: 1.424']\n", + "**Mediana calculada:** 1.424\n", + "\n", + "--- Imputación para aeronave: **Volitation VT510** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.461x + 0.329\n", + "Valor del parámetro correlacionado para la aeronave: 2.905\n", + "Predicción obtenida: 1.668\n", + "\tR²: 0.5190019194394964, Desviación Estándar: 0.32183760586109134, Varianza: 0.10357944454639917, Incertidumbre: 0.06569482619988655\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.021x + 0.549\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 2.612\n", + "\tR²: 0.9538216857828705, Desviación Estándar: 0.12030701287802409, Varianza: 0.014473777347633054, Incertidumbre: 0.02196495492645277\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.046x + -0.299\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 1.993\n", + "\tR²: 0.2984442398036834, Desviación Estándar: 0.45473235019931246, Varianza: 0.20678151031779013, Incertidumbre: 0.09694926281256372\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.313x + 0.036\n", + "Valor del parámetro correlacionado para la aeronave: 5.1\n", + "Predicción obtenida: 1.632\n", + "\tR²: 0.5619559117531061, Desviación Estándar: 0.30093688814319053, Varianza: 0.09056301064530718, Incertidumbre: 0.06018737762863811\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.076x + 0.65\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 2.539\n", + "\tR²: 0.8057229726084794, Desviación Estándar: 0.25898874198312066, Varianza: 0.06707516847399946, Incertidumbre: 0.04894427168948646\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Capacidad combustible (r = 1.0) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0]\n", + "Valores para Área del ala: [1.424, 1.33, 1.32, 2.615]\n", + "Ecuación de regresión: y = 0.078x + 0.417\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 2.378\n", + "\tR²: 0.9997609226468374, Desviación Estándar: 0.008439335502332609, Varianza: 7.122238372093159e-05, Incertidumbre: 0.004219667751166304\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Precio (r = 0.899) ---\n", + "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 8999.0, 8999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", + "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.0x + 1.415\n", + "Valor del parámetro correlacionado para la aeronave: 16599.0\n", + "Predicción obtenida: 1.431\n", + "\tR²: 0.0005545122547352399, Desviación Estándar: 0.69099596127085, Varianza: 0.4774754184926259, Incertidumbre: 0.19164779765389064\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Longitud del fuselaje: 1.668', 'Peso máximo al despegue (MTOW): 2.612', 'Velocidad máxima (KIAS): 1.993', 'envergadura: 1.632', 'payload: 2.539', 'Capacidad combustible: 2.378', 'Precio: 1.431']\n", + "**Mediana calculada:** 1.993\n", + "\n", + "--- Imputación para aeronave: **Ascend** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", + "Ecuación de regresión: y = 0.485x + 0.296\n", + "Valor del parámetro correlacionado para la aeronave: 1.562\n", + "Predicción obtenida: 1.054\n", + "\tR²: 0.5551210410771654, Desviación Estándar: 0.32120350506612844, Varianza: 0.10317169166676639, Incertidumbre: 0.06424070101322568\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993]\n", + "Ecuación de regresión: y = 0.019x + 0.589\n", + "Valor del parámetro correlacionado para la aeronave: 9.5\n", + "Predicción obtenida: 0.771\n", + "\tR²: 0.9237785089671043, Desviación Estándar: 0.15544994346429547, Varianza: 0.02416468492305266, Incertidumbre: 0.027919634045949875\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993]\n", + "Ecuación de regresión: y = 0.046x + -0.299\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 1.076\n", + "\tR²: 0.3456241929431657, Desviación Estándar: 0.44473701805432836, Varianza: 0.197791015227856, Incertidumbre: 0.09273407872908897\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", + "Ecuación de regresión: y = 0.329x + -0.009\n", + "Valor del parámetro correlacionado para la aeronave: 2.0\n", + "Predicción obtenida: 0.649\n", + "\tR²: 0.58926011492781, Desviación Estándar: 0.3026438405729111, Varianza: 0.09159329423672163, Incertidumbre: 0.05935334033653606\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", + "Ecuación de regresión: y = 0.071x + 0.685\n", + "Valor del parámetro correlacionado para la aeronave: 0.6\n", + "Predicción obtenida: 0.727\n", + "\tR²: 0.7863972465064352, Desviación Estándar: 0.27091760618201804, Varianza: 0.07339634933939503, Incertidumbre: 0.0503081364980872\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8]\n", + "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84]\n", + "Ecuación de regresión: y = 0.025x + 0.682\n", + "Valor del parámetro correlacionado para la aeronave: 8.9\n", + "Predicción obtenida: 0.904\n", + "\tR²: 0.9483245120012642, Desviación Estándar: 0.12030916806448211, Varianza: 0.014474295920367803, Incertidumbre: 0.05380389562172576\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", + "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Ecuación de regresión: y = 0.062x + 0.442\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.627\n", + "\tR²: 0.8795539331981305, Desviación Estándar: 0.22504777591475647, Varianza: 0.05064650144417845, Incertidumbre: 0.0624170227299834\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.054', 'Peso máximo al despegue (MTOW): 0.771', 'Velocidad máxima (KIAS): 1.076', 'envergadura: 0.649', 'payload: 0.727', 'RTF (Including fuel & Batteries): 0.904', 'Empty weight: 0.627']\n", + "**Mediana calculada:** 0.771\n", + "\n", + "--- Imputación para aeronave: **Transition** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", + "Ecuación de regresión: y = 0.492x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 2.3\n", + "Predicción obtenida: 1.404\n", + "\tR²: 0.5564924093650789, Desviación Estándar: 0.31959359329400444, Varianza: 0.10214006487457353, Incertidumbre: 0.0626774603317448\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771]\n", + "Ecuación de regresión: y = 0.019x + 0.589\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.933\n", + "\tR²: 0.9262301602367577, Desviación Estándar: 0.15300176981950134, Varianza: 0.023409541567899674, Incertidumbre: 0.02704714724322816\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771]\n", + "Ecuación de regresión: y = 0.047x + -0.36\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 1.056\n", + "\tR²: 0.36011776983130794, Desviación Estándar: 0.43951432810167035, Varianza: 0.19317284460666273, Incertidumbre: 0.08971548654094016\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", + "Ecuación de regresión: y = 0.323x + 0.017\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.986\n", + "\tR²: 0.600080995980541, Desviación Estándar: 0.29780984654529935, Varianza: 0.08869070469933475, Incertidumbre: 0.05731353169008324\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", + "Ecuación de regresión: y = 0.07x + 0.689\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 0.795\n", + "\tR²: 0.7955552594057932, Desviación Estándar: 0.26647289638938826, Varianza: 0.07100780451014965, Incertidumbre: 0.04865107210540163\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9]\n", + "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771]\n", + "Ecuación de regresión: y = 0.026x + 0.624\n", + "Valor del parámetro correlacionado para la aeronave: 16.5\n", + "Predicción obtenida: 1.054\n", + "\tR²: 0.9575373795814451, Desviación Estándar: 0.11811377037897985, Varianza: 0.01395086275313838, Incertidumbre: 0.04821974483745979\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0]\n", + "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771]\n", + "Ecuación de regresión: y = 0.061x + 0.463\n", + "Valor del parámetro correlacionado para la aeronave: 5.8\n", + "Predicción obtenida: 0.816\n", + "\tR²: 0.8799346208461828, Desviación Estándar: 0.21981540136860422, Varianza: 0.04831881067884058, Incertidumbre: 0.0587481371612512\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 1.404', 'Peso máximo al despegue (MTOW): 0.933', 'Velocidad máxima (KIAS): 1.056', 'envergadura: 0.986', 'payload: 0.795', 'RTF (Including fuel & Batteries): 1.054', 'Empty weight: 0.816']\n", + "**Mediana calculada:** 0.986\n", + "\n", + "--- Imputación para aeronave: **Reach** ---\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.48x + 0.28\n", + "Valor del parámetro correlacionado para la aeronave: 4.712\n", + "Predicción obtenida: 2.54\n", + "\tR²: 0.5321565310192382, Desviación Estándar: 0.3232764059484733, Varianza: 0.1045076346429621, Incertidumbre: 0.06221457333233526\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.019x + 0.592\n", + "Valor del parámetro correlacionado para la aeronave: 91.0\n", + "Predicción obtenida: 2.329\n", + "\tR²: 0.9268130919795654, Desviación Estándar: 0.15093208149961143, Varianza: 0.02278049322580535, Incertidumbre: 0.026273902955966707\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.047x + -0.373\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 1.289\n", + "\tR²: 0.36780246644034287, Desviación Estándar: 0.4308491629268742, Varianza: 0.18563100119478818, Incertidumbre: 0.08616983258537483\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.323x + 0.017\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 1.954\n", + "\tR²: 0.6029729846601317, Desviación Estándar: 0.2924434664063362, Varianza: 0.0855231810437539, Incertidumbre: 0.05526662033263126\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.069x + 0.705\n", + "Valor del parámetro correlacionado para la aeronave: 7.0\n", + "Predicción obtenida: 1.191\n", + "\tR²: 0.7961115317688139, Desviación Estándar: 0.26421267929509595, Varianza: 0.06980833990029324, Incertidumbre: 0.047453998064099126\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9, 16.5]\n", + "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.026x + 0.605\n", + "Valor del parámetro correlacionado para la aeronave: 84.0\n", + "Predicción obtenida: 2.82\n", + "\tR²: 0.9596137014057883, Desviación Estándar: 0.11174694285275365, Varianza: 0.01248737923693659, Incertidumbre: 0.04223637436573326\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8]\n", + "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986]\n", + "Ecuación de regresión: y = 0.06x + 0.482\n", + "Valor del parámetro correlacionado para la aeronave: 31.0\n", + "Predicción obtenida: 2.346\n", + "\tR²: 0.8758975698949775, Desviación Estándar: 0.21647900912469786, Varianza: 0.046863161391611015, Incertidumbre: 0.05589463980956255\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Longitud del fuselaje: 2.54', 'Peso máximo al despegue (MTOW): 2.329', 'Velocidad máxima (KIAS): 1.289', 'envergadura: 1.954', 'payload: 1.191', 'RTF (Including fuel & Batteries): 2.82', 'Empty weight: 2.346']\n", + "**Mediana calculada:** 2.329\n", + "\n", + "=== Imputación para el parámetro: **Relación de aspecto del ala** ===\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", + "Ecuación de regresión: y = -0.27x + 19.967\n", + "Valor del parámetro correlacionado para la aeronave: 30.407\n", + "Predicción obtenida: 11.753\n", + "\tR²: 0.9958397104049683, Desviación Estándar: 0.08406165080066717, Varianza: 0.007066361135333309, Incertidumbre: 0.03759351309822828\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", + "Ecuación de regresión: y = -1.556x + 16.146\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 14.684\n", + "\tR²: 0.6391425255554871, Desviación Estándar: 0.7828958406065879, Varianza: 0.6129258972390959, Incertidumbre: 0.3501216637796341\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", + "Ecuación de regresión: y = -1.519x + 18.038\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 16.214\n", + "\tR²: 0.4138028760447283, Desviación Estándar: 0.8884554790463566, Varianza: 0.789353138247491, Incertidumbre: 0.4442277395231783\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754]\n", + "Ecuación de regresión: y = -0.04x + 15.296\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.489\n", + "\tR²: 0.6775655448926923, Desviación Estándar: 0.7447916715878835, Varianza: 0.5547146340666738, Incertidumbre: 0.28150479165337583\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", + "Ecuación de regresión: y = -0.176x + 19.272\n", + "Valor del parámetro correlacionado para la aeronave: 41.7\n", + "Predicción obtenida: 11.946\n", + "\tR²: 0.6228198639466289, Desviación Estándar: 0.7126696016612697, Varianza: 0.5078979611320329, Incertidumbre: 0.35633480083063485\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", + "Ecuación de regresión: y = -0.303x + 20.091\n", + "Valor del parámetro correlacionado para la aeronave: 27.8\n", + "Predicción obtenida: 11.659\n", + "\tR²: 0.9951683800002252, Desviación Estándar: 0.0922049930648979, Varianza: 0.00850176074609787, Incertidumbre: 0.05323457756664639\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 11.753', 'Área del ala: 14.684', 'Longitud del fuselaje: 16.214', 'Peso máximo al despegue (MTOW): 14.489', 'Velocidad máxima (KIAS): 11.946', 'Crucero KIAS: 11.659']\n", + "**Mediana calculada:** 13.218\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", + "Ecuación de regresión: y = -0.211x + 18.836\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 13.222\n", + "\tR²: 0.86788574295378, Desviación Estándar: 0.44779548895963533, Varianza: 0.2005207999325989, Incertidumbre: 0.1828117428452008\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", + "Ecuación de regresión: y = -1.355x + 15.647\n", + "Valor del parámetro correlacionado para la aeronave: 1.608\n", + "Predicción obtenida: 13.469\n", + "\tR²: 0.4774673753859955, Desviación Estándar: 0.8905567020216546, Varianza: 0.793091239515686, Incertidumbre: 0.3635682511614764\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", + "Ecuación de regresión: y = -0.157x + 14.552\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.364\n", + "\tR²: 0.0074891649212437406, Desviación Estándar: 1.1481791111587527, Varianza: 1.3183152713013033, Incertidumbre: 0.5134813085792517\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218]\n", + "Ecuación de regresión: y = -0.036x + 14.967\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 12.99\n", + "\tR²: 0.5739892405979949, Desviación Estándar: 0.8056365874036895, Varianza: 0.6490503109634626, Incertidumbre: 0.28483554706256875\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", + "Ecuación de regresión: y = -0.122x + 17.914\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 13.511\n", + "\tR²: 0.6167320222408146, Desviación Estándar: 0.7134988554846888, Varianza: 0.5090806167779609, Incertidumbre: 0.3190863885464126\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5]\n", + "Ecuación de regresión: y = -0.158x + 15.309\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 13.417\n", + "\tR²: 0.7878676953385522, Desviación Estándar: 0.6109489630792406, Varianza: 0.3732586354875993, Incertidumbre: 0.24941886973776978\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.222', 'Área del ala: 13.469', 'Longitud del fuselaje: 14.364', 'Peso máximo al despegue (MTOW): 12.99', 'Velocidad máxima (KIAS): 13.511', 'payload: 13.417']\n", + "**Mediana calculada:** 13.443\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = -0.208x + 18.787\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 13.263\n", + "\tR²: 0.866540858244522, Desviación Estándar: 0.42137143710599334, Varianza: 0.17755388800877012, Incertidumbre: 0.1592634331669075\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = -1.358x + 15.647\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.018\n", + "\tR²: 0.48897119697787084, Desviación Estándar: 0.8245435883924694, Varianza: 0.67987212915913, Incertidumbre: 0.31164818285989687\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = 0.102x + 13.89\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.012\n", + "\tR²: 0.003963308805261412, Desviación Estándar: 1.089046175187781, Varianza: 1.1860215716911349, Incertidumbre: 0.44460123925662026\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = -0.035x + 14.97\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 13.857\n", + "\tR²: 0.5601880164889009, Desviación Estándar: 0.7722572050409231, Varianza: 0.5963811907376184, Incertidumbre: 0.25741906834697437\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = 0.0x + 14.293\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 14.299\n", + "\tR²: 0.021248458324993225, Desviación Estándar: 0.896822690408026, Varianza: 0.8042909380306901, Incertidumbre: 0.4010712999033189\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", + "Ecuación de regresión: y = -0.123x + 17.936\n", + "Valor del parámetro correlacionado para la aeronave: 36.0\n", + "Predicción obtenida: 13.495\n", + "\tR²: 0.6432306766680158, Desviación Estándar: 0.6517820231226291, Varianza: 0.4248198056658274, Incertidumbre: 0.2660888966948914\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443]\n", + "Ecuación de regresión: y = -0.158x + 15.313\n", + "Valor del parámetro correlacionado para la aeronave: 5.5\n", + "Predicción obtenida: 14.446\n", + "\tR²: 0.787811738102038, Desviación Estándar: 0.565704012619775, Varianza: 0.3200210298941146, Incertidumbre: 0.21381601900903846\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.263', 'Área del ala: 14.018', 'Longitud del fuselaje: 14.012', 'Peso máximo al despegue (MTOW): 13.857', 'Alcance de la aeronave: 14.299', 'Velocidad máxima (KIAS): 13.495', 'payload: 14.446']\n", + "**Mediana calculada:** 14.012\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = -0.198x + 18.646\n", + "Valor del parámetro correlacionado para la aeronave: 18.266\n", + "Predicción obtenida: 15.033\n", + "\tR²: 0.8162307529020697, Desviación Estándar: 0.463001126334729, Varianza: 0.2143700429872277, Incertidumbre: 0.16369561806414812\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = -1.357x + 15.646\n", + "Valor del parámetro correlacionado para la aeronave: 0.754\n", + "Predicción obtenida: 14.623\n", + "\tR²: 0.4900269781864812, Desviación Estándar: 0.7712927169798122, Varianza: 0.5948924552661006, Incertidumbre: 0.2726931552281109\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = 0.102x + 13.89\n", + "Valor del parámetro correlacionado para la aeronave: 1.48\n", + "Predicción obtenida: 14.041\n", + "\tR²: 0.0046993987852630426, Desviación Estándar: 1.008260850059533, Varianza: 1.0165899417627717, Incertidumbre: 0.3810867808485868\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 14.767\n", + "\tR²: 0.5649822868921843, Desviación Estándar: 0.7340836887623863, Varianza: 0.538878862106992, Incertidumbre: 0.23213764496672915\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = 0.0x + 14.219\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 14.223\n", + "\tR²: 0.03697239299019073, Desviación Estándar: 0.8249333692250005, Varianza: 0.680515063660911, Incertidumbre: 0.3367776377327012\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Ecuación de regresión: y = -0.117x + 17.798\n", + "Valor del parámetro correlacionado para la aeronave: 25.6\n", + "Predicción obtenida: 14.81\n", + "\tR²: 0.6133897598737705, Desviación Estándar: 0.6283946045669089, Varianza: 0.3948797790488017, Incertidumbre: 0.23751083555697344\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218]\n", + "Ecuación de regresión: y = -0.214x + 18.598\n", + "Valor del parámetro correlacionado para la aeronave: 16.7\n", + "Predicción obtenida: 15.024\n", + "\tR²: 0.8546770471425846, Desviación Estándar: 0.4778243263623709, Varianza: 0.2283160868636535, Incertidumbre: 0.23891216318118544\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 15.033', 'Área del ala: 14.623', 'Longitud del fuselaje: 14.041', 'Peso máximo al despegue (MTOW): 14.767', 'Alcance de la aeronave: 14.223', 'Velocidad máxima (KIAS): 14.81', 'Crucero KIAS: 15.024']\n", + "**Mediana calculada:** 14.767\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = -0.192x + 18.474\n", + "Valor del parámetro correlacionado para la aeronave: 30.625\n", + "Predicción obtenida: 12.602\n", + "\tR²: 0.8235797866498076, Desviación Estándar: 0.4433751181910776, Varianza: 0.19658149543095202, Incertidumbre: 0.14779170606369255\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = -1.383x + 15.694\n", + "Valor del parámetro correlacionado para la aeronave: 1.063\n", + "Predicción obtenida: 14.224\n", + "\tR²: 0.5237760149013296, Desviación Estándar: 0.7284550833069877, Varianza: 0.5306468083957905, Incertidumbre: 0.24281836110232924\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = 0.031x + 14.11\n", + "Valor del parámetro correlacionado para la aeronave: 1.71\n", + "Predicción obtenida: 14.162\n", + "\tR²: 0.00041867860015110114, Desviación Estándar: 0.9721354662815678, Varianza: 0.9450473648024812, Incertidumbre: 0.34370179021982145\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valor del parámetro correlacionado para la aeronave: 26.5\n", + "Predicción obtenida: 14.067\n", + "\tR²: 0.6041711076219263, Desviación Estándar: 0.6999213418164504, Varianza: 0.48988988473014045, Incertidumbre: 0.21103422486975046\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = -0.116x + 17.772\n", + "Valor del parámetro correlacionado para la aeronave: 41.2\n", + "Predicción obtenida: 12.99\n", + "\tR²: 0.6343488080766746, Desviación Estándar: 0.5879646533380922, Varianza: 0.3457024335749829, Incertidumbre: 0.2078768967366813\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012]\n", + "Ecuación de regresión: y = -0.151x + 15.186\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 14.43\n", + "\tR²: 0.779730301455002, Desviación Estándar: 0.5464452282253737, Varianza: 0.29860238745028067, Incertidumbre: 0.19319756321259615\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767]\n", + "Ecuación de regresión: y = -0.207x + 18.409\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 12.607\n", + "\tR²: 0.8557406648350283, Desviación Estándar: 0.43818596791937064, Varianza: 0.19200694248143574, Incertidumbre: 0.19596272221085095\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.602', 'Área del ala: 14.224', 'Longitud del fuselaje: 14.162', 'Peso máximo al despegue (MTOW): 14.067', 'Velocidad máxima (KIAS): 12.99', 'payload: 14.43', 'Crucero KIAS: 12.607']\n", + "**Mediana calculada:** 14.067\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Ecuación de regresión: y = -0.157x + 17.776\n", + "Valor del parámetro correlacionado para la aeronave: 30.953\n", + "Predicción obtenida: 12.923\n", + "\tR²: 0.6641740677951478, Desviación Estándar: 0.5805266763901159, Varianza: 0.3370112220005544, Incertidumbre: 0.18357865398802614\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Ecuación de regresión: y = -1.374x + 15.667\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 13.095\n", + "\tR²: 0.5219103690121566, Desviación Estándar: 0.6926593947898028, Varianza: 0.47977703719057585, Incertidumbre: 0.2190381330249543\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Ecuación de regresión: y = 0.033x + 14.095\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 14.178\n", + "\tR²: 0.000490016744001398, Desviación Estándar: 0.9170252395244427, Varianza: 0.8409352899248614, Incertidumbre: 0.3056750798414809\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 12.376\n", + "\tR²: 0.6075184827366995, Desviación Estándar: 0.6701236710904337, Varianza: 0.4490657345557197, Incertidumbre: 0.19344804094720108\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Ecuación de regresión: y = -0.094x + 17.194\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 12.823\n", + "\tR²: 0.526405227591237, Desviación Estándar: 0.6312351449660243, Varianza: 0.39845780824027766, Incertidumbre: 0.21041171498867475\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067]\n", + "Ecuación de regresión: y = -0.146x + 15.095\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 12.462\n", + "\tR²: 0.7754905637643377, Desviación Estándar: 0.5266918070184679, Varianza: 0.27740425958037895, Incertidumbre: 0.1755639356728226\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067]\n", + "Ecuación de regresión: y = -0.155x + 17.54\n", + "Valor del parámetro correlacionado para la aeronave: 28.3\n", + "Predicción obtenida: 13.14\n", + "\tR²: 0.663687056459504, Desviación Estándar: 0.6116803288548116, Varianza: 0.3741528247079305, Incertidumbre: 0.24971744856535041\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.923', 'Área del ala: 13.095', 'Longitud del fuselaje: 14.178', 'Peso máximo al despegue (MTOW): 12.376', 'Velocidad máxima (KIAS): 12.823', 'payload: 12.462', 'Crucero KIAS: 13.14']\n", + "**Mediana calculada:** 12.923\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.157x + 17.776\n", + "Valor del parámetro correlacionado para la aeronave: 21.463\n", + "Predicción obtenida: 14.411\n", + "\tR²: 0.6955131309495535, Desviación Estándar: 0.5535104680562337, Varianza: 0.3063738382478309, Incertidumbre: 0.16688968546150232\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -1.406x + 15.693\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 12.754\n", + "\tR²: 0.5643813137066285, Desviación Estándar: 0.6620561206988881, Varianza: 0.4383183069548606, Incertidumbre: 0.1996174311378599\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.033x + 14.943\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 12.498\n", + "\tR²: 0.608454130768421, Desviación Estándar: 0.6573629374382771, Varianza: 0.4321260315174802, Incertidumbre: 0.18231967519410266\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.139x + 15.064\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 12.555\n", + "\tR²: 0.7681447903007532, Desviación Estándar: 0.516359328939539, Varianza: 0.266626956582891, Incertidumbre: 0.16328715705250396\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.411', 'Área del ala: 12.754', 'Peso máximo al despegue (MTOW): 12.498', 'payload: 12.555']\n", + "**Mediana calculada:** 12.654\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", + "Ecuación de regresión: y = -0.14x + 17.225\n", + "Valor del parámetro correlacionado para la aeronave: 33.045\n", + "Predicción obtenida: 12.59\n", + "\tR²: 0.510023026717956, Desviación Estándar: 0.7136489244448807, Varianza: 0.509294787361335, Incertidumbre: 0.2060126993175694\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", + "Ecuación de regresión: y = -1.426x + 15.711\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 13.042\n", + "\tR²: 0.6128293293992375, Desviación Estándar: 0.6343778425999941, Varianza: 0.40243524718182283, Incertidumbre: 0.18312910909652033\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.175x + 14.359\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 13.92\n", + "\tR²: 0.013083522010913673, Desviación Estándar: 0.93913737855047, Varianza: 0.8819790157906487, Incertidumbre: 0.29698131520192456\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", + "Ecuación de regresión: y = -0.032x + 14.931\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 12.534\n", + "\tR²: 0.6320455971220006, Desviación Estándar: 0.6345600288026622, Varianza: 0.40266643015403547, Incertidumbre: 0.16959330136578327\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Ecuación de regresión: y = 0.0x + 14.332\n", + "Valor del parámetro correlacionado para la aeronave: 500.0\n", + "Predicción obtenida: 14.381\n", + "\tR²: 0.017282284063206976, Desviación Estándar: 0.7854344289958513, Varianza: 0.6169072422520389, Incertidumbre: 0.2968663100387202\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.092x + 17.137\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 12.859\n", + "\tR²: 0.5980072707351919, Desviación Estándar: 0.5993741728944746, Varianza: 0.3592493991329355, Incertidumbre: 0.18953875570260967\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654]\n", + "Ecuación de regresión: y = -0.138x + 15.058\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 12.572\n", + "\tR²: 0.7800961130119188, Desviación Estándar: 0.4930778276036819, Varianza: 0.24312574407436624, Incertidumbre: 0.14866855878226887\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.59', 'Área del ala: 13.042', 'Longitud del fuselaje: 13.92', 'Peso máximo al despegue (MTOW): 12.534', 'Alcance de la aeronave: 14.381', 'Velocidad máxima (KIAS): 12.859', 'payload: 12.572']\n", + "**Mediana calculada:** 12.859\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", + "Ecuación de regresión: y = -0.135x + 17.109\n", + "Valor del parámetro correlacionado para la aeronave: 25.703\n", + "Predicción obtenida: 13.643\n", + "\tR²: 0.535314561075031, Desviación Estándar: 0.6887523223637181, Varianza: 0.4743797615614151, Incertidumbre: 0.19102552418286836\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", + "Ecuación de regresión: y = -1.448x + 15.728\n", + "Valor del parámetro correlacionado para la aeronave: 1.349\n", + "Predicción obtenida: 13.774\n", + "\tR²: 0.6339313870790875, Desviación Estándar: 0.6113146322958206, Varianza: 0.37370557965897433, Incertidumbre: 0.16954817324492275\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859]\n", + "Ecuación de regresión: y = -0.322x + 14.544\n", + "Valor del parámetro correlacionado para la aeronave: 2.4\n", + "Predicción obtenida: 13.772\n", + "\tR²: 0.042345280621575165, Desviación Estándar: 0.9416884437522549, Varianza: 0.8867771250965437, Incertidumbre: 0.2839297488490841\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", + "Ecuación de regresión: y = -0.031x + 14.911\n", + "Valor del parámetro correlacionado para la aeronave: 36.3\n", + "Predicción obtenida: 13.783\n", + "\tR²: 0.6385049587577492, Desviación Estándar: 0.6178453553338438, Varianza: 0.3817328831076036, Incertidumbre: 0.15952698478263871\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859]\n", + "Ecuación de regresión: y = -0.092x + 17.137\n", + "Valor del parámetro correlacionado para la aeronave: 41.2\n", + "Predicción obtenida: 13.33\n", + "\tR²: 0.6473061906505011, Desviación Estándar: 0.5714808508233791, Varianza: 0.32659036285781323, Incertidumbre: 0.17230795973220137\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859]\n", + "Ecuación de regresión: y = -0.135x + 15.044\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 13.883\n", + "\tR²: 0.7797023232836269, Desviación Estándar: 0.4782732644237212, Varianza: 0.22874531546252275, Incertidumbre: 0.13806559898061826\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923]\n", + "Ecuación de regresión: y = -0.161x + 17.637\n", + "Valor del parámetro correlacionado para la aeronave: 23.5\n", + "Predicción obtenida: 13.85\n", + "\tR²: 0.7175450779766854, Desviación Estándar: 0.5704794589847608, Varianza: 0.3254468131235454, Incertidumbre: 0.21562096807776418\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.643', 'Área del ala: 13.774', 'Longitud del fuselaje: 13.772', 'Peso máximo al despegue (MTOW): 13.783', 'Velocidad máxima (KIAS): 13.33', 'payload: 13.883', 'Crucero KIAS: 13.85']\n", + "**Mediana calculada:** 13.774\n", + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", + "Ecuación de regresión: y = -0.135x + 17.114\n", + "Valor del parámetro correlacionado para la aeronave: 33.797\n", + "Predicción obtenida: 12.563\n", + "\tR²: 0.5342243863228833, Desviación Estándar: 0.6645511147608912, Varianza: 0.44162818412994326, Incertidumbre: 0.17760875624528186\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", + "Ecuación de regresión: y = -1.448x + 15.728\n", + "Valor del parámetro correlacionado para la aeronave: 1.802\n", + "Predicción obtenida: 13.119\n", + "\tR²: 0.6340136541211301, Desviación Estándar: 0.5890775326049247, Varianza: 0.3470123394199061, Incertidumbre: 0.15743759294669885\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774]\n", + "Ecuación de regresión: y = -0.322x + 14.544\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 13.74\n", + "\tR²: 0.04429674165169528, Desviación Estándar: 0.9015982192102218, Varianza: 0.8128793488830431, Incertidumbre: 0.2602689872809544\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", + "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valor del parámetro correlacionado para la aeronave: 61.0\n", + "Predicción obtenida: 13.014\n", + "\tR²: 0.6395237688067317, Desviación Estándar: 0.598229831780838, Varianza: 0.35787893163252976, Incertidumbre: 0.1495574579452095\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859]\n", + "Ecuación de regresión: y = 0.0x + 14.115\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 14.128\n", + "\tR²: 0.022722235303102134, Desviación Estándar: 0.889761474449699, Varianza: 0.7916754814149023, Incertidumbre: 0.31457818611096156\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774]\n", + "Ecuación de regresión: y = -0.089x + 17.059\n", + "Valor del parámetro correlacionado para la aeronave: 46.3\n", + "Predicción obtenida: 12.932\n", + "\tR²: 0.6311618765895944, Desviación Estándar: 0.5601049538041426, Varianza: 0.3137175592759407, Incertidumbre: 0.16168837292663232\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774]\n", + "Ecuación de regresión: y = -0.134x + 15.028\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 12.649\n", + "\tR²: 0.7813316684515454, Desviación Estándar: 0.4604041822404213, Varianza: 0.21197201102447108, Incertidumbre: 0.12769314511583893\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774]\n", + "Ecuación de regresión: y = -0.161x + 17.634\n", + "Valor del parámetro correlacionado para la aeronave: 30.9\n", + "Predicción obtenida: 12.645\n", + "\tR²: 0.7186963836121465, Desviación Estándar: 0.5342166106536912, Varianza: 0.28538738709831746, Incertidumbre: 0.18887409400785932\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.563', 'Área del ala: 13.119', 'Longitud del fuselaje: 13.74', 'Peso máximo al despegue (MTOW): 13.014', 'Alcance de la aeronave: 14.128', 'Velocidad máxima (KIAS): 12.932', 'payload: 12.649', 'Crucero KIAS: 12.645']\n", + "**Mediana calculada:** 12.973\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.128x + 16.957\n", + "Valor del parámetro correlacionado para la aeronave: 18.091\n", + "Predicción obtenida: 14.65\n", + "\tR²: 0.5421915391164227, Desviación Estándar: 0.6489139037011813, Varianza: 0.42108925441670597, Incertidumbre: 0.16754884947714124\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -1.461x + 15.737\n", + "Valor del parámetro correlacionado para la aeronave: 0.84\n", + "Predicción obtenida: 14.509\n", + "\tR²: 0.6465018935699594, Desviación Estándar: 0.5702151055687861, Varianza: 0.3251452666188218, Incertidumbre: 0.14722890717492082\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.403x + 14.649\n", + "Valor del parámetro correlacionado para la aeronave: 0.75\n", + "Predicción obtenida: 14.347\n", + "\tR²: 0.06842483962479096, Desviación Estándar: 0.8886738964344558, Varianza: 0.7897412942039979, Incertidumbre: 0.2464737923662158\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.031x + 14.911\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 14.599\n", + "\tR²: 0.6468495695110492, Desviación Estándar: 0.5804480353649806, Varianza: 0.3369199217590657, Incertidumbre: 0.14077932705835708\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973]\n", + "Ecuación de regresión: y = 0.0x + 13.94\n", + "Valor del parámetro correlacionado para la aeronave: 270.0\n", + "Predicción obtenida: 13.997\n", + "\tR²: 0.04703203479609108, Desviación Estándar: 0.9111851551421984, Varianza: 0.8302583869515122, Incertidumbre: 0.30372838504739946\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.131x + 15.014\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 14.62\n", + "\tR²: 0.7771803589437556, Desviación Estándar: 0.45102082932177623, Varianza: 0.20341978848210282, Incertidumbre: 0.1205403869729095\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.153x + 17.471\n", + "Valor del parámetro correlacionado para la aeronave: 16.54\n", + "Predicción obtenida: 14.941\n", + "\tR²: 0.7387286606060905, Desviación Estándar: 0.5118777159980322, Varianza: 0.26201879613536216, Incertidumbre: 0.1706259053326774\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.65', 'Área del ala: 14.509', 'Longitud del fuselaje: 14.347', 'Peso máximo al despegue (MTOW): 14.599', 'Alcance de la aeronave: 13.997', 'payload: 14.62', 'Crucero KIAS: 14.941']\n", + "**Mediana calculada:** 14.599\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 14.717\n", + "\tR²: 0.5673252249031574, Desviación Estándar: 0.6284176728117805, Varianza: 0.39490877150217396, Incertidumbre: 0.15710441820294513\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -1.472x + 15.757\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 14.727\n", + "\tR²: 0.6655463732035445, Desviación Estándar: 0.5525041655219294, Varianza: 0.3052608529190835, Incertidumbre: 0.13812604138048235\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -0.452x + 14.76\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 14.353\n", + "\tR²: 0.10767788693788138, Desviación Estándar: 0.8582189379484234, Varianza: 0.7365397454533199, Incertidumbre: 0.22936865918885752\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 14.717\n", + "\tR²: 0.668742738945738, Desviación Estándar: 0.5640940957956807, Varianza: 0.3182021489115466, Incertidumbre: 0.1329582534548066\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599]\n", + "Ecuación de regresión: y = 0.0x + 14.014\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 14.033\n", + "\tR²: 0.03658191201096572, Desviación Estándar: 0.8828624043127778, Varianza: 0.7794460249489389, Incertidumbre: 0.2791856058160841\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -0.131x + 15.009\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.852\n", + "\tR²: 0.7989376635956842, Desviación Estándar: 0.43575473105263046, Varianza: 0.1898821856347503, Incertidumbre: 0.11251138775986198\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599]\n", + "Ecuación de regresión: y = -0.146x + 17.287\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 14.945\n", + "\tR²: 0.7422196460742506, Desviación Estándar: 0.4948955953255141, Varianza: 0.244921650272595, Incertidumbre: 0.15649972852136038\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.717', 'Área del ala: 14.727', 'Longitud del fuselaje: 14.353', 'Peso máximo al despegue (MTOW): 14.717', 'Alcance de la aeronave: 14.033', 'payload: 14.852', 'Crucero KIAS: 14.945']\n", + "**Mediana calculada:** 14.717\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 14.717\n", + "\tR²: 0.5929127107679053, Desviación Estándar: 0.6096546936267196, Varianza: 0.37167884546108937, Incertidumbre: 0.14786298217509053\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 14.726\n", + "\tR²: 0.685319780926233, Desviación Estándar: 0.5360124441675181, Varianza: 0.28730934030243677, Incertidumbre: 0.13000211317342153\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.501x + 14.874\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 14.424\n", + "\tR²: 0.14520304942233875, Desviación Estándar: 0.8333946066823736, Varianza: 0.6945465704472683, Incertidumbre: 0.2151815621666609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 14.717\n", + "\tR²: 0.6901941411051212, Desviación Estándar: 0.5490488826768337, Varianza: 0.3014546755686795, Incertidumbre: 0.12596045235011777\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = 0.0x + 14.096\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 14.111\n", + "\tR²: 0.0237018252029767, Desviación Estándar: 0.8638914663706774, Varianza: 0.7463084656680793, Incertidumbre: 0.2604730775946788\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.129x + 14.981\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.826\n", + "\tR²: 0.8169712264348787, Desviación Estándar: 0.4230085386335259, Varianza: 0.17893622375687118, Incertidumbre: 0.10575213465838147\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.143x + 17.182\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 14.9\n", + "\tR²: 0.7519794290280211, Desviación Estándar: 0.4758638703382313, Varianza: 0.22644642309328103, Incertidumbre: 0.14347835538165868\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.717', 'Área del ala: 14.726', 'Longitud del fuselaje: 14.424', 'Peso máximo al despegue (MTOW): 14.717', 'Alcance de la aeronave: 14.111', 'payload: 14.826', 'Crucero KIAS: 14.9']\n", + "**Mediana calculada:** 14.717\n", + "\n", + "--- Imputación para aeronave: **V21** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valor del parámetro correlacionado para la aeronave: 19.688\n", + "Predicción obtenida: 14.439\n", + "\tR²: 0.5929127107679053, Desviación Estándar: 0.6096546936267196, Varianza: 0.37167884546108937, Incertidumbre: 0.14786298217509053\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valor del parámetro correlacionado para la aeronave: 0.8\n", + "Predicción obtenida: 14.578\n", + "\tR²: 0.685319780926233, Desviación Estándar: 0.5360124441675181, Varianza: 0.28730934030243677, Incertidumbre: 0.13000211317342153\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.501x + 14.874\n", + "Valor del parámetro correlacionado para la aeronave: 0.93\n", + "Predicción obtenida: 14.409\n", + "\tR²: 0.14520304942233875, Desviación Estándar: 0.8333946066823736, Varianza: 0.6945465704472683, Incertidumbre: 0.2151815621666609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 14.599\n", + "\tR²: 0.6901941411051212, Desviación Estándar: 0.5490488826768337, Varianza: 0.3014546755686795, Incertidumbre: 0.12596045235011777\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973]\n", + "Ecuación de regresión: y = -0.089x + 17.046\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.119\n", + "\tR²: 0.6582796109191538, Desviación Estándar: 0.5382312625669818, Varianza: 0.2896928920044473, Incertidumbre: 0.14927849348022884\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.129x + 14.981\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 14.787\n", + "\tR²: 0.8169712264348787, Desviación Estándar: 0.4230085386335259, Varianza: 0.17893622375687118, Incertidumbre: 0.10575213465838147\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = -0.143x + 17.182\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 14.615\n", + "\tR²: 0.7519794290280211, Desviación Estándar: 0.4758638703382313, Varianza: 0.22644642309328103, Incertidumbre: 0.14347835538165868\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.439', 'Área del ala: 14.578', 'Longitud del fuselaje: 14.409', 'Peso máximo al despegue (MTOW): 14.599', 'Velocidad máxima (KIAS): 14.119', 'payload: 14.787', 'Crucero KIAS: 14.615']\n", + "**Mediana calculada:** 14.578\n", + "\n", + "--- Imputación para aeronave: **V25** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -0.128x + 16.971\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 14.173\n", + "\tR²: 0.606745390877248, Desviación Estándar: 0.5932915224926394, Varianza: 0.351994830661634, Incertidumbre: 0.13984015292501215\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valor del parámetro correlacionado para la aeronave: 0.52\n", + "Predicción obtenida: 14.99\n", + "\tR²: 0.6968457130521275, Desviación Estándar: 0.5209104729685736, Varianza: 0.2713477208483431, Incertidumbre: 0.12277977594239006\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -0.519x + 14.918\n", + "Valor del parámetro correlacionado para la aeronave: 0.93\n", + "Predicción obtenida: 14.435\n", + "\tR²: 0.16853217384488628, Desviación Estándar: 0.807864743048595, Varianza: 0.6526454430609725, Incertidumbre: 0.20196618576214875\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -0.031x + 14.908\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 14.519\n", + "\tR²: 0.703248032143867, Desviación Estándar: 0.5351650687571093, Varianza: 0.2864016508178016, Incertidumbre: 0.11966654729242453\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578]\n", + "Ecuación de regresión: y = -0.09x + 17.131\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.156\n", + "\tR²: 0.6564776133589556, Desviación Estándar: 0.5318209559369983, Varianza: 0.28283352917374266, Incertidumbre: 0.14213512915877488\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -0.127x + 14.946\n", + "Valor del parámetro correlacionado para la aeronave: 2.2\n", + "Predicción obtenida: 14.666\n", + "\tR²: 0.8258810341686761, Desviación Estándar: 0.41302279972648664, Varianza: 0.1705878330939055, Incertidumbre: 0.10017274288591961\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Ecuación de regresión: y = -0.142x + 17.171\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.326\n", + "\tR²: 0.7588352909196386, Desviación Estándar: 0.4557148035481193, Varianza: 0.20767598217290095, Incertidumbre: 0.13155353225110206\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.173', 'Área del ala: 14.99', 'Longitud del fuselaje: 14.435', 'Peso máximo al despegue (MTOW): 14.519', 'Velocidad máxima (KIAS): 14.156', 'payload: 14.666', 'Crucero KIAS: 14.326']\n", + "**Mediana calculada:** 14.435\n", + "\n", + "--- Imputación para aeronave: **V32** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.129x + 17.012\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 14.189\n", + "\tR²: 0.6110785668236963, Desviación Estándar: 0.5803950706423994, Varianza: 0.3368584380259958, Incertidumbre: 0.13315176106628257\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -1.399x + 15.635\n", + "Valor del parámetro correlacionado para la aeronave: 1.03\n", + "Predicción obtenida: 14.194\n", + "\tR²: 0.6872612258181625, Desviación Estándar: 0.5204555466744641, Varianza: 0.2708739760642153, Incertidumbre: 0.11940069118732659\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.519x + 14.918\n", + "Valor del parámetro correlacionado para la aeronave: 1.0\n", + "Predicción obtenida: 14.399\n", + "\tR²: 0.18078496325464366, Desviación Estándar: 0.7837439261959693, Varianza: 0.614254541849073, Incertidumbre: 0.19008582300836904\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.031x + 14.898\n", + "Valor del parámetro correlacionado para la aeronave: 23.5\n", + "Predicción obtenida: 14.171\n", + "\tR²: 0.7106634123093627, Desviación Estándar: 0.5225600649328873, Varianza: 0.27306902146266343, Incertidumbre: 0.11403195489123787\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.091x + 17.178\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.177\n", + "\tR²: 0.6583687729951575, Desviación Estándar: 0.5184390004821812, Varianza: 0.26877899722096305, Incertidumbre: 0.1338603743261271\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.125x + 14.913\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 14.287\n", + "\tR²: 0.8297829718090136, Desviación Estándar: 0.4046033990551174, Varianza: 0.16370391052695454, Incertidumbre: 0.09536593572100009\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Ecuación de regresión: y = -0.143x + 17.19\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.335\n", + "\tR²: 0.760755459593193, Desviación Estándar: 0.43879195181776326, Varianza: 0.19253837698004228, Incertidumbre: 0.12169899088768228\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.189', 'Área del ala: 14.194', 'Longitud del fuselaje: 14.399', 'Peso máximo al despegue (MTOW): 14.171', 'Velocidad máxima (KIAS): 14.177', 'payload: 14.287', 'Crucero KIAS: 14.335']\n", + "**Mediana calculada:** 14.194\n", + "\n", + "--- Imputación para aeronave: **V35** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.129x + 17.012\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 13.484\n", + "\tR²: 0.6135185471717993, Desviación Estándar: 0.5657000289670463, Varianza: 0.320016522773317, Incertidumbre: 0.12649437196439156\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -1.399x + 15.635\n", + "Valor del parámetro correlacionado para la aeronave: 1.202\n", + "Predicción obtenida: 13.953\n", + "\tR²: 0.6892242356314006, Desviación Estándar: 0.5072773180656356, Varianza: 0.25733027742386405, Incertidumbre: 0.11343065666385432\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.503x + 14.88\n", + "Valor del parámetro correlacionado para la aeronave: 1.88\n", + "Predicción obtenida: 13.934\n", + "\tR²: 0.17980664787964395, Desviación Estándar: 0.7630256503950571, Varianza: 0.5822081431607998, Incertidumbre: 0.1798468705378736\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.031x + 14.9\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 13.909\n", + "\tR²: 0.7135650005961087, Desviación Estándar: 0.5105679278629256, Varianza: 0.26067960896224157, Incertidumbre: 0.10885344796857536\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.091x + 17.181\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.178\n", + "\tR²: 0.6602446946044866, Desviación Estándar: 0.5019934524987022, Varianza: 0.25199742635156674, Incertidumbre: 0.12549836312467555\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.125x + 14.903\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 13.656\n", + "\tR²: 0.8320650835497453, Desviación Estándar: 0.394342588657032, Varianza: 0.1555060772287291, Incertidumbre: 0.09046839437317004\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Ecuación de regresión: y = -0.142x + 17.168\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 13.613\n", + "\tR²: 0.7592272998904299, Desviación Estándar: 0.4243796984927565, Varianza: 0.18009812849280288, Incertidumbre: 0.11342024526159432\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.484', 'Área del ala: 13.953', 'Longitud del fuselaje: 13.934', 'Peso máximo al despegue (MTOW): 13.909', 'Velocidad máxima (KIAS): 14.178', 'payload: 13.656', 'Crucero KIAS: 13.613']\n", + "**Mediana calculada:** 13.909\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.127x + 16.984\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 13.51\n", + "\tR²: 0.6032988200454845, Desviación Estándar: 0.5593319783823425, Varianza: 0.3128522620411053, Incertidumbre: 0.12205624426411849\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -1.399x + 15.632\n", + "Valor del parámetro correlacionado para la aeronave: 1.203\n", + "Predicción obtenida: 13.95\n", + "\tR²: 0.6891267288117411, Desviación Estándar: 0.4951418045804114, Varianza: 0.24516540664314632, Incertidumbre: 0.10804879996317941\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.031x + 14.9\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 14.157\n", + "\tR²: 0.713892022390023, Desviación Estándar: 0.4993452842769774, Varianza: 0.24934571292965538, Incertidumbre: 0.10412068936317738\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.09x + 17.141\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.161\n", + "\tR²: 0.6545775391356355, Desviación Estándar: 0.49107571880076345, Varianza: 0.2411553615956865, Incertidumbre: 0.11910335639950966\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.125x + 14.915\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 14.292\n", + "\tR²: 0.8291128061127491, Desviación Estándar: 0.38828624580477394, Varianza: 0.15076620868116533, Incertidumbre: 0.0868234440347667\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.14x + 17.137\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 13.64\n", + "\tR²: 0.7524328660064801, Desviación Estándar: 0.4163959134902486, Varianza: 0.1733855567713786, Incertidumbre: 0.10751296255843715\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.51', 'Área del ala: 13.95', 'Peso máximo al despegue (MTOW): 14.157', 'Velocidad máxima (KIAS): 14.161', 'payload: 14.292', 'Crucero KIAS: 13.64']\n", + "**Mediana calculada:** 14.054\n", + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -0.125x + 16.949\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 13.542\n", + "\tR²: 0.5871778945845514, Desviación Estándar: 0.5579448935987363, Varianza: 0.3113025042929052, Incertidumbre: 0.11895425100220543\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -1.4x + 15.638\n", + "Valor del parámetro correlacionado para la aeronave: 1.424\n", + "Predicción obtenida: 13.645\n", + "\tR²: 0.6890363238184001, Desviación Estándar: 0.4842444656090505, Varianza: 0.2344927024729949, Incertidumbre: 0.10324126695908932\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Ecuación de regresión: y = -0.504x + 14.879\n", + "Valor del parámetro correlacionado para la aeronave: 2.02\n", + "Predicción obtenida: 13.862\n", + "\tR²: 0.18057230208723418, Desviación Estándar: 0.7426949723818971, Varianza: 0.5515958220013469, Incertidumbre: 0.1703859121309695\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -0.031x + 14.893\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 13.657\n", + "\tR²: 0.7145635232521227, Desviación Estándar: 0.4892582472099815, Varianza: 0.2393736324629834, Incertidumbre: 0.09986942150941053\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -0.09x + 17.126\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.154\n", + "\tR²: 0.6540169951205086, Desviación Estándar: 0.47786020803476664, Varianza: 0.22835037842303046, Incertidumbre: 0.11263273118686595\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -0.124x + 14.893\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 12.67\n", + "\tR²: 0.8273716345066311, Desviación Estándar: 0.38222671429420746, Varianza: 0.1460972611201457, Incertidumbre: 0.08340870718511739\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Ecuación de regresión: y = -0.137x + 17.097\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 13.675\n", + "\tR²: 0.7375431593293715, Desviación Estándar: 0.41513917051541654, Varianza: 0.1723405308962281, Incertidumbre: 0.10378479262885414\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.542', 'Área del ala: 13.645', 'Longitud del fuselaje: 13.862', 'Peso máximo al despegue (MTOW): 13.657', 'Velocidad máxima (KIAS): 14.154', 'payload: 12.67', 'Crucero KIAS: 13.675']\n", + "**Mediana calculada:** 13.657\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -0.124x + 16.942\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 12.462\n", + "\tR²: 0.5876976210919462, Desviación Estándar: 0.5461828235331814, Varianza: 0.29831567672267834, Incertidumbre: 0.11388699141705999\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -1.399x + 15.638\n", + "Valor del parámetro correlacionado para la aeronave: 0.88\n", + "Predicción obtenida: 14.407\n", + "\tR²: 0.6899904903283296, Desviación Estándar: 0.4736064692670731, Varianza: 0.22430308773162308, Incertidumbre: 0.09875377543286375\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657]\n", + "Ecuación de regresión: y = -0.51x + 14.88\n", + "Valor del parámetro correlacionado para la aeronave: 2.05\n", + "Predicción obtenida: 13.834\n", + "\tR²: 0.18539329015630057, Desviación Estándar: 0.725250008930158, Varianza: 0.5259875754531943, Incertidumbre: 0.16217083206501628\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -0.031x + 14.893\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 14.429\n", + "\tR²: 0.714747401512647, Desviación Estándar: 0.4793732254945338, Varianza: 0.22979868932103314, Incertidumbre: 0.09587464509890677\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -0.116x + 14.861\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 14.398\n", + "\tR²: 0.7784792227330228, Desviación Estándar: 0.42305623788558205, Varianza: 0.17897658041390221, Incertidumbre: 0.09019589297591563\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -0.137x + 17.098\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 12.578\n", + "\tR²: 0.7417224511187792, Desviación Estándar: 0.40276642319311073, Varianza: 0.16222079165177197, Incertidumbre: 0.09768520619278931\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.462', 'Área del ala: 14.407', 'Longitud del fuselaje: 13.834', 'Peso máximo al despegue (MTOW): 14.429', 'payload: 14.398', 'Crucero KIAS: 12.578']\n", + "**Mediana calculada:** 14.116\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Ecuación de regresión: y = -0.1x + 16.412\n", + "Valor del parámetro correlacionado para la aeronave: 26.25\n", + "Predicción obtenida: 13.779\n", + "\tR²: 0.45776737032064685, Desviación Estándar: 0.6141620658053559, Varianza: 0.37719504307430235, Incertidumbre: 0.12536530671639556\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Ecuación de regresión: y = -1.382x + 15.604\n", + "Valor del parámetro correlacionado para la aeronave: 1.0\n", + "Predicción obtenida: 14.223\n", + "\tR²: 0.686240688916129, Desviación Estándar: 0.4671845538323762, Varianza: 0.21826140733955643, Incertidumbre: 0.0953636477165951\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116]\n", + "Ecuación de regresión: y = -0.501x + 14.877\n", + "Valor del parámetro correlacionado para la aeronave: 2.03\n", + "Predicción obtenida: 13.861\n", + "\tR²: 0.1804114233108679, Desviación Estándar: 0.7102825050039291, Varianza: 0.5045012369146565, Incertidumbre: 0.1549963497134931\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Ecuación de regresión: y = -0.03x + 14.866\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 14.013\n", + "\tR²: 0.7118496958649173, Desviación Estándar: 0.47380475199318356, Varianza: 0.2244909430113222, Incertidumbre: 0.09292075677100896\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Ecuación de regresión: y = -0.089x + 17.061\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 14.392\n", + "\tR²: 0.6368881023118692, Desviación Estándar: 0.47811022561640054, Varianza: 0.2285893878389654, Incertidumbre: 0.10968600828080638\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Ecuación de regresión: y = -0.114x + 14.834\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 14.148\n", + "\tR²: 0.776389170737342, Desviación Estándar: 0.41760392510378513, Varianza: 0.17439303826208777, Incertidumbre: 0.0870764377509503\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Ecuación de regresión: y = -0.107x + 16.512\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 13.932\n", + "\tR²: 0.5759571817973563, Desviación Estándar: 0.5016106192563546, Varianza: 0.25161321335074355, Incertidumbre: 0.11823075679711727\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.779', 'Área del ala: 14.223', 'Longitud del fuselaje: 13.861', 'Peso máximo al despegue (MTOW): 14.013', 'Velocidad máxima (KIAS): 14.392', 'payload: 14.148', 'Crucero KIAS: 13.932']\n", + "**Mediana calculada:** 14.013\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -1.374x + 15.586\n", + "Valor del parámetro correlacionado para la aeronave: 1.33\n", + "Predicción obtenida: 13.759\n", + "\tR²: 0.684015300708086, Desviación Estándar: 0.45956965580498865, Varianza: 0.21120426853671576, Incertidumbre: 0.09191393116099773\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -0.496x + 14.877\n", + "Valor del parámetro correlacionado para la aeronave: 2.488\n", + "Predicción obtenida: 13.641\n", + "\tR²: 0.17871439167546932, Desviación Estándar: 0.6946713690287201, Varianza: 0.4825683109482361, Incertidumbre: 0.14810443350865574\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -0.03x + 14.866\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 14.013\n", + "\tR²: 0.7125790322691798, Desviación Estándar: 0.4649478109590719, Varianza: 0.21617646691563286, Incertidumbre: 0.08947924793878247\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -0.114x + 14.824\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 13.686\n", + "\tR²: 0.7764391254855179, Desviación Estándar: 0.4096931753354857, Varianza: 0.16784849791647305, Incertidumbre: 0.08362826922271187\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Área del ala: 13.759', 'Longitud del fuselaje: 13.641', 'Peso máximo al despegue (MTOW): 14.013', 'payload: 13.686']\n", + "**Mediana calculada:** 13.722\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -0.1x + 16.413\n", + "Valor del parámetro correlacionado para la aeronave: 32.813\n", + "Predicción obtenida: 13.132\n", + "\tR²: 0.45509872448190547, Desviación Estándar: 0.6034999397625862, Varianza: 0.36421217729344524, Incertidumbre: 0.12069998795251724\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", + "Ecuación de regresión: y = -1.374x + 15.585\n", + "Valor del parámetro correlacionado para la aeronave: 1.32\n", + "Predicción obtenida: 13.771\n", + "\tR²: 0.6844716239481952, Desviación Estándar: 0.45070169488409495, Varianza: 0.2031320177713958, Incertidumbre: 0.08838987450089776\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722]\n", + "Ecuación de regresión: y = -0.491x + 14.87\n", + "Valor del parámetro correlacionado para la aeronave: 2.42\n", + "Predicción obtenida: 13.682\n", + "\tR²: 0.18314058790644772, Desviación Estándar: 0.6795903299866143, Varianza: 0.4618430166113153, Incertidumbre: 0.14170437945601297\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", + "Ecuación de regresión: y = -0.03x + 14.851\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 13.637\n", + "\tR²: 0.7086441586316434, Desviación Estándar: 0.4597355870860578, Varianza: 0.2113568100333622, Incertidumbre: 0.08688185944828475\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717]\n", + "Ecuación de regresión: y = 0.0x + 14.096\n", + "Valor del parámetro correlacionado para la aeronave: 300.0\n", + "Predicción obtenida: 14.141\n", + "\tR²: 0.0237018252029767, Desviación Estándar: 0.8638914663706774, Varianza: 0.7463084656680793, Incertidumbre: 0.2604730775946788\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013]\n", + "Ecuación de regresión: y = -0.087x + 16.976\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 14.103\n", + "\tR²: 0.6259343281303104, Desviación Estándar: 0.47309816529550813, Varianza: 0.22382187400597592, Incertidumbre: 0.1057879657631188\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", + "Ecuación de regresión: y = -0.114x + 14.826\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 13.687\n", + "\tR²: 0.7763699681724744, Desviación Estándar: 0.40147919692479167, Varianza: 0.16118554556337567, Incertidumbre: 0.08029583938495834\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Ecuación de regresión: y = -0.107x + 16.512\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 13.292\n", + "\tR²: 0.5754628990444985, Desviación Estándar: 0.48856755387819806, Varianza: 0.23869825470252598, Incertidumbre: 0.11208508391831203\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.132', 'Área del ala: 13.771', 'Longitud del fuselaje: 13.682', 'Peso máximo al despegue (MTOW): 13.637', 'Alcance de la aeronave: 14.141', 'Velocidad máxima (KIAS): 14.103', 'payload: 13.687', 'Crucero KIAS: 13.292']\n", + "**Mediana calculada:** 13.684\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684]\n", + "Ecuación de regresión: y = -0.095x + 16.308\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 12.878\n", + "\tR²: 0.4401977193966343, Desviación Estándar: 0.6005761559399635, Varianza: 0.36069171908362335, Incertidumbre: 0.11778267455909297\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", + "Ecuación de regresión: y = -1.375x + 15.584\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 11.987\n", + "\tR²: 0.6847809364305605, Desviación Estándar: 0.4425842972237917, Varianza: 0.19588086014907763, Incertidumbre: 0.08517538771375249\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684]\n", + "Ecuación de regresión: y = -0.491x + 14.87\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 13.153\n", + "\tR²: 0.18887857116834583, Desviación Estándar: 0.6652816445821408, Varianza: 0.44259966661791794, Incertidumbre: 0.13580004703882315\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", + "Ecuación de regresión: y = -38.708x + 23.253\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 8.737\n", + "\tR²: 0.9845301318279952, Desviación Estándar: 0.16498762115286075, Varianza: 0.02722091513367991, Incertidumbre: 0.09525564748556016\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", + "Ecuación de regresión: y = -0.03x + 14.852\n", + "Valor del parámetro correlacionado para la aeronave: 90.0\n", + "Predicción obtenida: 12.123\n", + "\tR²: 0.7086905843429328, Desviación Estándar: 0.4518198530718025, Varianza: 0.20414117962982523, Incertidumbre: 0.08390084041127426\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684]\n", + "Ecuación de regresión: y = -0.086x + 16.93\n", + "Valor del parámetro correlacionado para la aeronave: 42.0\n", + "Predicción obtenida: 13.305\n", + "\tR²: 0.6139919598950958, Desviación Estándar: 0.4702102654821254, Varianza: 0.22109769376477087, Incertidumbre: 0.10260829210081529\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", + "Ecuación de regresión: y = -0.114x + 14.826\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 12.548\n", + "\tR²: 0.7763982091486223, Desviación Estándar: 0.39368317088871674, Varianza: 0.15498643904099454, Incertidumbre: 0.07720762194364038\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684]\n", + "Ecuación de regresión: y = -0.103x + 16.426\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 13.035\n", + "\tR²: 0.5683584083709616, Desviación Estándar: 0.4831583112495382, Varianza: 0.2334419537295056, Incertidumbre: 0.10803748278479687\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.878', 'Área del ala: 11.987', 'Longitud del fuselaje: 13.153', 'Ancho del fuselaje: 8.737', 'Peso máximo al despegue (MTOW): 12.123', 'Velocidad máxima (KIAS): 13.305', 'payload: 12.548', 'Crucero KIAS: 13.035']\n", + "**Mediana calculada:** 12.713\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.097x + 16.349\n", + "Valor del parámetro correlacionado para la aeronave: 30.625\n", + "Predicción obtenida: 13.383\n", + "\tR²: 0.47992913317978514, Desviación Estándar: 0.590075692205931, Varianza: 0.34818932253230866, Incertidumbre: 0.11356011991244967\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", + "Ecuación de regresión: y = -1.253x + 15.452\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 12.175\n", + "\tR²: 0.6860448617033243, Desviación Estándar: 0.4503815543594209, Varianza: 0.202843544507208, Incertidumbre: 0.08511411342326757\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.545x + 14.955\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 13.046\n", + "\tR²: 0.2643820653371962, Desviación Estándar: 0.6563198967362653, Varianza: 0.43075580685190196, Incertidumbre: 0.13126397934725306\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.713]\n", + "Ecuación de regresión: y = -16.3x + 18.292\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 12.179\n", + "\tR²: 0.700384799125958, Desviación Estándar: 0.742124944233944, Varianza: 0.5507494328542346, Incertidumbre: 0.371062472116972\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.029x + 14.809\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 11.945\n", + "\tR²: 0.7105088370955781, Desviación Estándar: 0.45476821765148717, Varianza: 0.20681413178591043, Incertidumbre: 0.08302893708137953\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684]\n", + "Ecuación de regresión: y = 0.0x + 14.051\n", + "Valor del parámetro correlacionado para la aeronave: 800.0\n", + "Predicción obtenida: 14.182\n", + "\tR²: 0.027074923206067303, Desviación Estándar: 0.8366422137567701, Varianza: 0.699970193839829, Incertidumbre: 0.24151780366393782\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.09x + 17.04\n", + "Valor del parámetro correlacionado para la aeronave: 42.0\n", + "Predicción obtenida: 13.251\n", + "\tR²: 0.6306274945350463, Desviación Estándar: 0.47489583792466356, Varianza: 0.22552605687816832, Incertidumbre: 0.10124813283983614\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.112x + 14.818\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 12.006\n", + "\tR²: 0.7868817244212251, Desviación Estándar: 0.3874643871417889, Varianza: 0.15012865130316205, Incertidumbre: 0.07456755607256839\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713]\n", + "Ecuación de regresión: y = -0.107x + 16.516\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 13.514\n", + "\tR²: 0.6195025656212503, Desviación Estándar: 0.4757969201229366, Varianza: 0.22638270919847214, Incertidumbre: 0.10382740009001022\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.383', 'Área del ala: 12.175', 'Longitud del fuselaje: 13.046', 'Ancho del fuselaje: 12.179', 'Peso máximo al despegue (MTOW): 11.945', 'Alcance de la aeronave: 14.182', 'Velocidad máxima (KIAS): 13.251', 'payload: 12.006', 'Crucero KIAS: 13.514']\n", + "**Mediana calculada:** 13.046\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.098x + 16.379\n", + "Valor del parámetro correlacionado para la aeronave: 33.885\n", + "Predicción obtenida: 13.042\n", + "\tR²: 0.4912217506212547, Desviación Estándar: 0.5827288503285376, Varianza: 0.33957291300521925, Incertidumbre: 0.11012540141084928\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -1.137x + 15.327\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 12.354\n", + "\tR²: 0.6639527907853231, Desviación Estándar: 0.4654542390243011, Varianza: 0.21664764862569122, Incertidumbre: 0.08643268232155993\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.545x + 14.955\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 13.046\n", + "\tR²: 0.30031202594013184, Desviación Estándar: 0.643574609531079, Varianza: 0.4141882780330809, Incertidumbre: 0.12621536509430112\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.713, 13.046]\n", + "Ecuación de regresión: y = -13.682x + 17.712\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 12.582\n", + "\tR²: 0.6751786720121111, Desviación Estándar: 0.7218724853677485, Varianza: 0.5210998851310104, Incertidumbre: 0.3228311896738016\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.026x + 14.728\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 12.163\n", + "\tR²: 0.672459148806959, Desviación Estándar: 0.48114314921165147, Varianza: 0.2314987300333055, Incertidumbre: 0.08641586063227229\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.091x + 17.075\n", + "Valor del parámetro correlacionado para la aeronave: 38.0\n", + "Predicción obtenida: 13.6\n", + "\tR²: 0.6449500428703554, Desviación Estándar: 0.4662598472902855, Varianza: 0.21739824519516038, Incertidumbre: 0.09722189885607506\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.102x + 14.742\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 13.216\n", + "\tR²: 0.7459460023089699, Desviación Estándar: 0.41981136981986106, Varianza: 0.17624158623002814, Incertidumbre: 0.0793368915786228\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046]\n", + "Ecuación de regresión: y = -0.11x + 16.561\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 12.711\n", + "\tR²: 0.6278560933803895, Desviación Estándar: 0.47470648197778126, Varianza: 0.22534624403172154, Incertidumbre: 0.10120776201631464\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.042', 'Área del ala: 12.354', 'Longitud del fuselaje: 13.046', 'Ancho del fuselaje: 12.582', 'Peso máximo al despegue (MTOW): 12.163', 'Velocidad máxima (KIAS): 13.6', 'payload: 13.216', 'Crucero KIAS: 12.711']\n", + "**Mediana calculada:** 12.876\n", + "\n", + "--- Imputación para aeronave: **Volitation VT510** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.1x + 16.407\n", + "Valor del parámetro correlacionado para la aeronave: 32.813\n", + "Predicción obtenida: 13.134\n", + "\tR²: 0.5120481249262255, Desviación Estándar: 0.5733507354534118, Varianza: 0.32873106584496814, Incertidumbre: 0.1064685587140827\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -1.079x + 15.265\n", + "Valor del parámetro correlacionado para la aeronave: 1.993\n", + "Predicción obtenida: 13.114\n", + "\tR²: 0.6668961846597724, Desviación Estándar: 0.46579848190753764, Varianza: 0.21696822574736668, Incertidumbre: 0.08504277859747346\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.56x + 14.977\n", + "Valor del parámetro correlacionado para la aeronave: 2.905\n", + "Predicción obtenida: 13.351\n", + "\tR²: 0.3416103143456418, Desviación Estándar: 0.632254792757014, Varianza: 0.3997461229642147, Incertidumbre: 0.12167749159823103\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.024x + 14.684\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 12.281\n", + "\tR²: 0.6638393025961682, Desviación Estándar: 0.4873610039590521, Varianza: 0.23752074817997518, Incertidumbre: 0.08615406769633238\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.093x + 17.103\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 12.449\n", + "\tR²: 0.632488199457406, Desviación Estándar: 0.4786898436308466, Varianza: 0.2291439663953244, Incertidumbre: 0.09771215516235353\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.103x + 14.741\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 12.172\n", + "\tR²: 0.7481817504133035, Desviación Estándar: 0.41708148056338223, Varianza: 0.173956961428943, Incertidumbre: 0.07745008658060275\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876]\n", + "Ecuación de regresión: y = -0.108x + 16.515\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 13.281\n", + "\tR²: 0.6540354444609318, Desviación Estándar: 0.4653103999726643, Varianza: 0.21651376832272087, Incertidumbre: 0.09702392540496321\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.134', 'Área del ala: 13.114', 'Longitud del fuselaje: 13.351', 'Peso máximo al despegue (MTOW): 12.281', 'Velocidad máxima (KIAS): 12.449', 'payload: 12.172', 'Crucero KIAS: 13.281']\n", + "**Mediana calculada:** 13.114\n", + "\n", + "--- Imputación para aeronave: **Ascend** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.1x + 16.409\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 14.225\n", + "\tR²: 0.5225539026607045, Desviación Estándar: 0.5637250248651999, Varianza: 0.31778590365927023, Incertidumbre: 0.10292163744961022\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -1.079x + 15.265\n", + "Valor del parámetro correlacionado para la aeronave: 0.771\n", + "Predicción obtenida: 14.433\n", + "\tR²: 0.6740457304881754, Desviación Estándar: 0.4582240184158411, Varianza: 0.20996925105316108, Incertidumbre: 0.08229946322349961\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.571x + 14.991\n", + "Valor del parámetro correlacionado para la aeronave: 1.562\n", + "Predicción obtenida: 14.1\n", + "\tR²: 0.3593175354516496, Desviación Estándar: 0.6223578212520778, Varianza: 0.3873292576736333, Incertidumbre: 0.11761457296635622\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.022x + 14.64\n", + "Valor del parámetro correlacionado para la aeronave: 9.5\n", + "Predicción obtenida: 14.427\n", + "\tR²: 0.6427542977157497, Desviación Estándar: 0.4983661335008928, Varianza: 0.24836880302062972, Incertidumbre: 0.08675440832753979\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.086x + 16.872\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 14.293\n", + "\tR²: 0.6198077286916189, Desviación Estándar: 0.4840831085935595, Varianza: 0.23433645602560393, Incertidumbre: 0.0968166217187119\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.095x + 14.682\n", + "Valor del parámetro correlacionado para la aeronave: 0.6\n", + "Predicción obtenida: 14.626\n", + "\tR²: 0.7144699709998399, Desviación Estándar: 0.4395959045047289, Varianza: 0.19324455925733075, Incertidumbre: 0.08025886436137562\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Ecuación de regresión: y = -0.109x + 16.535\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.357\n", + "\tR²: 0.6656187134909644, Desviación Estándar: 0.45668281214871304, Varianza: 0.20855919091205674, Incertidumbre: 0.0932199886719708\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.225', 'Área del ala: 14.433', 'Longitud del fuselaje: 14.1', 'Peso máximo al despegue (MTOW): 14.427', 'Velocidad máxima (KIAS): 14.293', 'payload: 14.626', 'Crucero KIAS: 14.357']\n", + "**Mediana calculada:** 14.357\n", + "\n", + "--- Imputación para aeronave: **Transition** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.1x + 16.428\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 14.232\n", + "\tR²: 0.5298654936239107, Desviación Estándar: 0.5550399694090079, Varianza: 0.30806936764155246, Incertidumbre: 0.09968812134263677\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -1.075x + 15.258\n", + "Valor del parámetro correlacionado para la aeronave: 0.986\n", + "Predicción obtenida: 14.197\n", + "\tR²: 0.6793546401299544, Desviación Estándar: 0.45119534421783186, Varianza: 0.2035772386438478, Incertidumbre: 0.07976082188405685\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.577x + 15.013\n", + "Valor del parámetro correlacionado para la aeronave: 2.3\n", + "Predicción obtenida: 13.686\n", + "\tR²: 0.3655687526307442, Desviación Estándar: 0.6133106646584037, Varianza: 0.37614997138373285, Incertidumbre: 0.11388893128133473\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.022x + 14.635\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 14.233\n", + "\tR²: 0.6493187979493635, Desviación Estándar: 0.4911193487224634, Varianza: 0.2411982146895766, Incertidumbre: 0.08422627344201288\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.086x + 16.884\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 14.297\n", + "\tR²: 0.6276324914013882, Desviación Estándar: 0.4748361245225159, Varianza: 0.22546934515156222, Incertidumbre: 0.09312302556534931\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.093x + 14.657\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 14.517\n", + "\tR²: 0.7184307080462207, Desviación Estándar: 0.43488206123514683, Varianza: 0.18912240718412998, Incertidumbre: 0.07810712395416497\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Ecuación de regresión: y = -0.109x + 16.535\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.357\n", + "\tR²: 0.670906735462538, Desviación Estándar: 0.44745594752331586, Varianza: 0.20021682497398838, Incertidumbre: 0.08949118950466317\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.232', 'Área del ala: 14.197', 'Longitud del fuselaje: 13.686', 'Peso máximo al despegue (MTOW): 14.233', 'Velocidad máxima (KIAS): 14.297', 'payload: 14.517', 'Crucero KIAS: 14.357']\n", + "**Mediana calculada:** 14.233\n", + "\n", + "--- Imputación para aeronave: **Reach** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.1x + 16.428\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 13.683\n", + "\tR²: 0.5344512568573817, Desviación Estándar: 0.5462986887260068, Varianza: 0.2984422573037545, Incertidumbre: 0.09657287683786958\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = -0.831) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -1.077x + 15.26\n", + "Valor del parámetro correlacionado para la aeronave: 2.329\n", + "Predicción obtenida: 12.753\n", + "\tR²: 0.6824488751728104, Desviación Estándar: 0.444348541369244, Varianza: 0.19744562621697476, Incertidumbre: 0.07735115250889142\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.569x + 15.015\n", + "Valor del parámetro correlacionado para la aeronave: 4.712\n", + "Predicción obtenida: 12.334\n", + "\tR²: 0.3541273256305937, Desviación Estándar: 0.6109197380467731, Varianza: 0.3732229263351379, Incertidumbre: 0.11153817378445491\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.022x + 14.635\n", + "Valor del parámetro correlacionado para la aeronave: 91.0\n", + "Predicción obtenida: 12.602\n", + "\tR²: 0.6533839808972084, Desviación Estándar: 0.4840525196077455, Varianza: 0.2343068417386068, Incertidumbre: 0.08181980929170896\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.086x + 16.872\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 13.864\n", + "\tR²: 0.6317983869828936, Desviación Estándar: 0.46611492225485973, Varianza: 0.21726312074865395, Incertidumbre: 0.08970385861238159\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.092x + 14.633\n", + "Valor del parámetro correlacionado para la aeronave: 7.0\n", + "Predicción obtenida: 13.991\n", + "\tR²: 0.7193105569936625, Desviación Estándar: 0.4307419939368637, Varianza: 0.18553866534070512, Incertidumbre: 0.07614514621364275\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = -0.999) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Ecuación de regresión: y = -0.108x + 16.516\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 13.808\n", + "\tR²: 0.6725895092170291, Desviación Estándar: 0.4393983706690954, Varianza: 0.19307092814665575, Incertidumbre: 0.08617311024163819\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.683', 'Área del ala: 12.753', 'Longitud del fuselaje: 12.334', 'Peso máximo al despegue (MTOW): 12.602', 'Velocidad máxima (KIAS): 13.864', 'payload: 13.991', 'Crucero KIAS: 13.808']\n", + "**Mediana calculada:** 13.683\n", + "\n", + "=== Imputación para el parámetro: **Longitud del fuselaje** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 1.343x + 0.345\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 3.707\n", + "\tR²: 0.6086218910264541, Desviación Estándar: 0.5492734618495684, Varianza: 0.3017013358922092, Incertidumbre: 0.10380292727296299\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = -0.648x + 11.093\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 2.991\n", + "\tR²: 0.281158048672818, Desviación Estándar: 0.7756999486858921, Varianza: 0.6017104103912956, Incertidumbre: 0.13931982356588346\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 0.025x + 1.186\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 3.482\n", + "\tR²: 0.5830919989131762, Desviación Estándar: 0.5850219632837886, Varianza: 0.3422506975244185, Incertidumbre: 0.10507304640788168\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.94) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Longitud del fuselaje: [3.0, 3.0, 3.0, 0.75, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 0.044x + 1.202\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 4.329\n", + "\tR²: 0.8836944979649586, Desviación Estándar: 0.39788597040864104, Varianza: 0.15831324544802597, Incertidumbre: 0.150386761123267\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Área del ala: 3.707', 'Relación de aspecto del ala: 2.991', 'Peso máximo al despegue (MTOW): 3.482', 'RTF (Including fuel & Batteries): 4.329']\n", + "**Mediana calculada:** 3.594\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 1.328x + 0.361\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 3.135\n", + "\tR²: 0.6482130318947588, Desviación Estándar: 0.5400425508620562, Varianza: 0.29164595674159655, Incertidumbre: 0.10028338411232726\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = -0.69x + 11.683\n", + "Valor del parámetro correlacionado para la aeronave: 12.654\n", + "Predicción obtenida: 2.958\n", + "\tR²: 0.3242880012094823, Desviación Estándar: 0.7699928935334471, Varianza: 0.5928890560920104, Incertidumbre: 0.13611679912073793\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 0.025x + 1.181\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 3.049\n", + "\tR²: 0.6148826876335616, Desviación Estándar: 0.5761037227120962, Varianza: 0.3318954993227359, Incertidumbre: 0.10184171224913441\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Maximum Crosswind (r = -0.718) ---\n", + "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0, 15.0]\n", + "Valores para Longitud del fuselaje: [0.75, 0.9, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = -0.062x + 3.771\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 1.922\n", + "\tR²: 0.46781484146630226, Desviación Estándar: 1.0520768032800647, Varianza: 1.1068656, Incertidumbre: 0.47050304993697967\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 3.135', 'Relación de aspecto del ala: 2.958', 'Peso máximo al despegue (MTOW): 3.049', 'Maximum Crosswind: 1.922']\n", + "**Mediana calculada:** 3.004\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.867) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 1.317x + 0.37\n", + "Valor del parámetro correlacionado para la aeronave: 1.203\n", + "Predicción obtenida: 1.954\n", + "\tR²: 0.6599199989051069, Desviación Estándar: 0.5314530046626257, Varianza: 0.2824422961649329, Incertidumbre: 0.09702959963587277\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = -0.692x + 11.72\n", + "Valor del parámetro correlacionado para la aeronave: 14.054\n", + "Predicción obtenida: 1.993\n", + "\tR²: 0.3405258074673375, Desviación Estándar: 0.758274848598365, Varianza: 0.5749807460168733, Incertidumbre: 0.13199870821416507\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 0.025x + 1.181\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 1.778\n", + "\tR²: 0.6242739779894806, Desviación Estándar: 0.5673572653887533, Varianza: 0.32189426658940423, Incertidumbre: 0.09876422284830895\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Área del ala: 1.954', 'Relación de aspecto del ala: 1.993', 'Peso máximo al despegue (MTOW): 1.778']\n", + "**Mediana calculada:** 1.954\n", + "\n", + "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Imputación para el parámetro: **Alcance de la aeronave** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.978x + 36149.4\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 280.964\n", + "\tR²: 0.936732753505972, Desviación Estándar: 214.69795555899483, Varianza: 46095.21212121212, Incertidumbre: 61.97796121822399\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 118.915x + -1120.395\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 366.039\n", + "\tR²: 0.01562311222731727, Desviación Estándar: 816.7749459018694, Varianza: 667121.3122530016, Incertidumbre: 226.53261138180895\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 280.964', 'Relación de aspecto del ala: 366.039']\n", + "**Mediana calculada:** 323.501\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.971x + 36110.407\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 284.508\n", + "\tR²: 0.9368275882693853, Desviación Estándar: 206.58415814438524, Varianza: 42677.01439622437, Incertidumbre: 57.29613652985713\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 124.04x + -1194.892\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 355.606\n", + "\tR²: 0.020800876574606608, Desviación Estándar: 787.1259997898155, Varianza: 619567.3395451166, Incertidumbre: 210.3682722453848\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 284.508', 'Relación de aspecto del ala: 355.606']\n", + "**Mediana calculada:** 320.057\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.966x + 36080.328\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 287.243\n", + "\tR²: 0.9369459484148608, Desviación Estándar: 199.27864216054778, Varianza: 39711.97722135165, Incertidumbre: 53.25945739044961\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 127.479x + -1244.887\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 348.604\n", + "\tR²: 0.02541188671800909, Desviación Estándar: 760.4804439476538, Varianza: 578330.5056268207, Incertidumbre: 196.3552063017124\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 800.0]\n", + "Ecuación de regresión: y = 2097.004x + -112.685\n", + "Valor del parámetro correlacionado para la aeronave: 0.277\n", + "Predicción obtenida: 468.185\n", + "\tR²: 0.5286444916758515, Desviación Estándar: 123.60775336921141, Varianza: 15278.876692983793, Incertidumbre: 55.279067815917074\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0]\n", + "Ecuación de regresión: y = -14120.22x + 5060.052\n", + "Valor del parámetro correlacionado para la aeronave: 0.352\n", + "Predicción obtenida: 89.735\n", + "\tR²: 0.582808463771481, Desviación Estándar: 751.8715055818252, Varianza: 565310.7609058806, Incertidumbre: 336.2471593652147\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 287.243', 'Relación de aspecto del ala: 348.604', 'Ancho del fuselaje: 468.185', 'Cuerda: 89.735']\n", + "**Mediana calculada:** 317.924\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.961x + 36056.221\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 289.434\n", + "\tR²: 0.9370683744644833, Desviación Estándar: 192.6727401288566, Varianza: 37122.7847887619, Incertidumbre: 49.74788758581407\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 129.959x + -1280.934\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 343.556\n", + "\tR²: 0.029508936760294757, Desviación Estándar: 736.3653975548689, Varianza: 542233.99871614, Incertidumbre: 184.09134938871722\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 289.434', 'Relación de aspecto del ala: 343.556']\n", + "**Mediana calculada:** 316.495\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.958x + 36036.377\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 291.238\n", + "\tR²: 0.9371872042106679, Desviación Estándar: 186.6690299794889, Varianza: 34845.32675348333, Incertidumbre: 46.667257494872224\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 131.837x + -1308.237\n", + "Valor del parámetro correlacionado para la aeronave: 14.067\n", + "Predicción obtenida: 546.322\n", + "\tR²: 0.03315730870908751, Desviación Estándar: 714.4052565199124, Varianza: 510374.87054328184, Incertidumbre: 173.26872541929876\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 291.238', 'Relación de aspecto del ala: 546.322']\n", + "**Mediana calculada:** 418.78\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.942x + 35948.692\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 299.21\n", + "\tR²: 0.9354925794506871, Desviación Estándar: 183.555632392381, Varianza: 33692.67018296691, Incertidumbre: 44.51878003122549\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 129.193x + -1279.073\n", + "Valor del parámetro correlacionado para la aeronave: 12.923\n", + "Predicción obtenida: 390.493\n", + "\tR²: 0.03207230824276419, Desviación Estándar: 694.8866935211308, Varianza: 482867.5168327301, Incertidumbre: 163.78636438169661\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 299.21', 'Relación de aspecto del ala: 390.493']\n", + "**Mediana calculada:** 344.852\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.936x + 35919.159\n", + "Valor del parámetro correlacionado para la aeronave: 5000.0\n", + "Predicción obtenida: 6238.105\n", + "\tR²: 0.9353863278088558, Desviación Estándar: 178.6890627548751, Varianza: 31929.78114821569, Incertidumbre: 42.11741599928025\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 131.099x + -1307.522\n", + "Valor del parámetro correlacionado para la aeronave: 12.654\n", + "Predicción obtenida: 351.406\n", + "\tR²: 0.034068577542197054, Desviación Estándar: 676.4273006220689, Varianza: 457553.8930268587, Incertidumbre: 155.183065582295\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 6238.105', 'Relación de aspecto del ala: 351.406']\n", + "**Mediana calculada:** 3294.755\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -3.54x + 21578.882\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 336.12\n", + "\tR²: 0.8611383209194157, Desviación Estándar: 346.9605684495537, Varianza: 120381.63605883742, Incertidumbre: 79.59821343500164\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = -19.565x + 891.271\n", + "Valor del parámetro correlacionado para la aeronave: 13.774\n", + "Predicción obtenida: 621.78\n", + "\tR²: 0.0004364512856569469, Desviación Estándar: 908.1994401400673, Varianza: 824826.2230707316, Incertidumbre: 203.07956852804415\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 336.12', 'Relación de aspecto del ala: 621.78']\n", + "**Mediana calculada:** 478.95\n", + "\n", + "--- Imputación para aeronave: **V21** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -3.531x + 21530.226\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 343.967\n", + "\tR²: 0.8601185501470221, Desviación Estándar: 339.5976064847731, Varianza: 115326.53433018681, Incertidumbre: 75.93633330961761\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = -20.697x + 899.894\n", + "Valor del parámetro correlacionado para la aeronave: 14.578\n", + "Predicción obtenida: 598.169\n", + "\tR²: 0.0004884279001442504, Desviación Estándar: 886.8330331916383, Varianza: 786472.8287598814, Incertidumbre: 193.52283349466512\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 343.967', 'Relación de aspecto del ala: 598.169']\n", + "**Mediana calculada:** 471.068\n", + "\n", + "--- Imputación para aeronave: **V25** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 300.0]\n", + "Ecuación de regresión: y = -3.523x + 21489.183\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 350.587\n", + "\tR²: 0.8593439743794986, Desviación Estándar: 332.51164306024987, Varianza: 110563.99277062701, Incertidumbre: 72.55998922751108\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 300.0, 800.0]\n", + "Ecuación de regresión: y = -26.566x + 974.331\n", + "Valor del parámetro correlacionado para la aeronave: 14.435\n", + "Predicción obtenida: 590.85\n", + "\tR²: 0.0008406961271735236, Desviación Estándar: 866.829936711758, Varianza: 751394.1391797104, Incertidumbre: 184.80876346543525\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 350.587', 'Relación de aspecto del ala: 590.85']\n", + "**Mediana calculada:** 470.718\n", + "\n", + "--- Imputación para aeronave: **V32** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 300.0]\n", + "Ecuación de regresión: y = -3.516x + 21452.311\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 356.534\n", + "\tR²: 0.8586543866843019, Desviación Estándar: 325.82488395990157, Varianza: 106161.85500748333, Incertidumbre: 69.46609866673465\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 300.0, 800.0]\n", + "Ecuación de regresión: y = -30.914x + 1028.68\n", + "Valor del parámetro correlacionado para la aeronave: 14.194\n", + "Predicción obtenida: 589.888\n", + "\tR²: 0.0011695676261578303, Desviación Estándar: 848.1204843005861, Varianza: 719308.3558902608, Incertidumbre: 176.8453458337392\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 356.534', 'Relación de aspecto del ala: 589.888']\n", + "**Mediana calculada:** 473.211\n", + "\n", + "--- Imputación para aeronave: **V35** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 300.0]\n", + "Ecuación de regresión: y = -3.509x + 21418.189\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 362.038\n", + "\tR²: 0.8579938416630444, Desviación Estándar: 319.5466969999151, Varianza: 102110.09156355557, Incertidumbre: 66.63009228881091\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 300.0, 800.0]\n", + "Ecuación de regresión: y = -33.601x + 1060.685\n", + "Valor del parámetro correlacionado para la aeronave: 13.909\n", + "Predicción obtenida: 593.334\n", + "\tR²: 0.0013961398337015707, Desviación Estándar: 830.5869011959195, Varianza: 689874.6004382401, Incertidumbre: 169.54284124745584\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 362.038', 'Relación de aspecto del ala: 593.334']\n", + "**Mediana calculada:** 477.686\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 300.0]\n", + "Ecuación de regresión: y = -3.503x + 21385.89\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 367.247\n", + "\tR²: 0.857327553569526, Desviación Estándar: 313.6680914974852, Varianza: 98387.67162367476, Incertidumbre: 64.02723106345546\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 300.0, 800.0]\n", + "Ecuación de regresión: y = -34.612x + 1069.947\n", + "Valor del parámetro correlacionado para la aeronave: 14.054\n", + "Predicción obtenida: 583.507\n", + "\tR²: 0.001482621639041004, Desviación Estándar: 814.1206017478742, Varianza: 662792.3541903207, Incertidumbre: 162.82412034957483\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 367.247', 'Relación de aspecto del ala: 583.507']\n", + "**Mediana calculada:** 475.377\n", + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 300.0]\n", + "Ecuación de regresión: y = -3.498x + 21356.994\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 371.908\n", + "\tR²: 0.8567535916512802, Desviación Estándar: 308.05792801553093, Varianza: 94899.68701322205, Incertidumbre: 61.611585603106185\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 300.0, 800.0]\n", + "Ecuación de regresión: y = -36.248x + 1088.263\n", + "Valor del parámetro correlacionado para la aeronave: 13.657\n", + "Predicción obtenida: 593.228\n", + "\tR²: 0.0016327181254005563, Desviación Estándar: 798.5803788241736, Varianza: 637730.6214429607, Incertidumbre: 156.61449749218386\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 371.908', 'Relación de aspecto del ala: 593.228']\n", + "**Mediana calculada:** 482.568\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 300.0]\n", + "Ecuación de regresión: y = -3.492x + 21328.643\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 376.481\n", + "\tR²: 0.8561269585544401, Desviación Estándar: 302.82209622289093, Varianza: 91701.22196082582, Incertidumbre: 59.38829914567665\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 300.0, 800.0]\n", + "Ecuación de regresión: y = -35.81x + 1078.147\n", + "Valor del parámetro correlacionado para la aeronave: 14.116\n", + "Predicción obtenida: 572.657\n", + "\tR²: 0.0015929682850825966, Desviación Estándar: 783.9308450787514, Varianza: 614547.5698658854, Incertidumbre: 150.86756147742264\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 376.481', 'Relación de aspecto del ala: 572.657']\n", + "**Mediana calculada:** 474.569\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 300.0]\n", + "Ecuación de regresión: y = -3.487x + 21304.51\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 380.373\n", + "\tR²: 0.8556590461143002, Desviación Estándar: 297.7366014374206, Varianza: 88647.08383550543, Incertidumbre: 57.2994356624997\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 300.0, 800.0]\n", + "Ecuación de regresión: y = -37.527x + 1098.259\n", + "Valor del parámetro correlacionado para la aeronave: 14.013\n", + "Predicción obtenida: 572.395\n", + "\tR²: 0.0017597629068930587, Desviación Estándar: 770.0185720471395, Varianza: 592928.6012975158, Incertidumbre: 145.51983189555736\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 380.373', 'Relación de aspecto del ala: 572.395']\n", + "**Mediana calculada:** 476.384\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 300.0]\n", + "Ecuación de regresión: y = -3.483x + 21281.79\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 384.038\n", + "\tR²: 0.8552047822769252, Desviación Estándar: 292.9125600732201, Varianza: 85797.76784864777, Incertidumbre: 55.355270702929126\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 300.0, 800.0]\n", + "Ecuación de regresión: y = -38.687x + 1110.907\n", + "Valor del parámetro correlacionado para la aeronave: 13.722\n", + "Predicción obtenida: 580.05\n", + "\tR²: 0.0018749021692411327, Desviación Estándar: 756.8280680927438, Varianza: 572788.7246529949, Incertidumbre: 140.5394440463669\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 384.038', 'Relación de aspecto del ala: 580.05']\n", + "**Mediana calculada:** 482.044\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0]\n", + "Ecuación de regresión: y = -3.479x + 21259.45\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 387.641\n", + "\tR²: 0.8547134757322701, Desviación Estándar: 288.37174235566516, Varianza: 83158.26178924213, Incertidumbre: 53.54928821744092\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 800.0]\n", + "Ecuación de regresión: y = -38.509x + 1105.191\n", + "Valor del parámetro correlacionado para la aeronave: 12.713\n", + "Predicción obtenida: 615.631\n", + "\tR²: 0.0018568156686025183, Desviación Estándar: 744.3152856692884, Varianza: 554005.2444809544, Incertidumbre: 135.89275728565698\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 800.0]\n", + "Ecuación de regresión: y = 2039.363x + -122.195\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 642.567\n", + "\tR²: 0.4608128378817138, Desviación Estándar: 125.92632805453587, Varianza: 15857.440097298588, Incertidumbre: 51.409208152655864\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 387.641', 'Relación de aspecto del ala: 615.631', 'Ancho del fuselaje: 642.567']\n", + "**Mediana calculada:** 615.631\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631]\n", + "Ecuación de regresión: y = -3.469x + 21209.325\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 395.726\n", + "\tR²: 0.8517129591346262, Desviación Estándar: 286.4568510267121, Varianza: 82057.52750013994, Incertidumbre: 52.29962635307571\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0]\n", + "Ecuación de regresión: y = -38.509x + 1105.19\n", + "Valor del parámetro correlacionado para la aeronave: 12.876\n", + "Predicción obtenida: 609.354\n", + "\tR²: 0.0019510827495129446, Desviación Estándar: 732.2117914662525, Varianza: 536134.1075622188, Incertidumbre: 131.5091199538622\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375, 0.375]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 615.631, 800.0]\n", + "Ecuación de regresión: y = 1955.637x + -102.217\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 631.147\n", + "\tR²: 0.5379529179260039, Desviación Estándar: 116.84090594745173, Varianza: 13651.797302621262, Incertidumbre: 44.16171144234927\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 395.726', 'Relación de aspecto del ala: 609.354', 'Ancho del fuselaje: 631.147']\n", + "**Mediana calculada:** 609.354\n", + "\n", + "--- Imputación para aeronave: **Volitation VT510** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354]\n", + "Ecuación de regresión: y = -3.46x + 21163.965\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 403.042\n", + "\tR²: 0.8490722687449495, Desviación Estándar: 284.3101426544714, Varianza: 80832.2572162059, Incertidumbre: 51.0636090407318\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354]\n", + "Ecuación de regresión: y = -38.509x + 1105.19\n", + "Valor del parámetro correlacionado para la aeronave: 13.114\n", + "Predicción obtenida: 600.189\n", + "\tR²: 0.002013297608376652, Desviación Estándar: 720.6801764312006, Varianza: 519379.91670090647, Incertidumbre: 127.39945995530485\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 403.042', 'Relación de aspecto del ala: 600.189']\n", + "**Mediana calculada:** 501.616\n", + "\n", + "--- Imputación para aeronave: **Ascend** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616]\n", + "Ecuación de regresión: y = -3.456x + 21143.728\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 406.306\n", + "\tR²: 0.848548280437885, Desviación Estándar: 280.35664298808086, Varianza: 78599.84726754623, Incertidumbre: 49.56052085189198\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616]\n", + "Ecuación de regresión: y = -36.069x + 1068.826\n", + "Valor del parámetro correlacionado para la aeronave: 14.357\n", + "Predicción obtenida: 550.983\n", + "\tR²: 0.00179166089086924, Desviación Estándar: 709.8750011918696, Varianza: 503922.5173171569, Incertidumbre: 123.57337622902887\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 406.306', 'Relación de aspecto del ala: 550.983']\n", + "**Mediana calculada:** 478.644\n", + "\n", + "--- Imputación para aeronave: **Transition** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616, 478.644]\n", + "Ecuación de regresión: y = -3.453x + 21129.353\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 408.624\n", + "\tR²: 0.8483145072965955, Desviación Estándar: 276.3539789058695, Varianza: 76371.52165710577, Incertidumbre: 48.10705286196413\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644]\n", + "Ecuación de regresión: y = -38.096x + 1094.475\n", + "Valor del parámetro correlacionado para la aeronave: 14.233\n", + "Predicción obtenida: 552.251\n", + "\tR²: 0.0020361613553377955, Desviación Estándar: 699.4625257506076, Varianza: 489247.82492941944, Incertidumbre: 119.95683352643485\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 408.624', 'Relación de aspecto del ala: 552.251']\n", + "**Mediana calculada:** 480.438\n", + "\n", + "--- Imputación para aeronave: **Reach** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616, 478.644, 480.438]\n", + "Ecuación de regresión: y = -3.451x + 21115.526\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 410.855\n", + "\tR²: 0.8480781165196773, Desviación Estándar: 272.52939729083585, Varianza: 74272.27238770625, Incertidumbre: 46.73840604511903\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644, 480.438]\n", + "Ecuación de regresión: y = -39.663x + 1113.914\n", + "Valor del parámetro correlacionado para la aeronave: 13.683\n", + "Predicción obtenida: 571.205\n", + "\tR²: 0.002231863535378964, Desviación Estándar: 689.5003938693345, Varianza: 475410.79314596736, Incertidumbre: 116.54683830313121\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 410.855', 'Relación de aspecto del ala: 571.205']\n", + "**Mediana calculada:** 491.03\n", + "\n", + "=== Imputación para el parámetro: **Autonomía de la aeronave** ===\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Autonomía de la aeronave' para la aeronave 'Skyeye 5000 VTOL octo'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Imputación para el parámetro: **Velocidad máxima (KIAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.072x + 7.262\n", + "Valor del parámetro correlacionado para la aeronave: 27.892\n", + "Predicción obtenida: 37.163\n", + "\tR²: 0.6785150773380106, Desviación Estándar: 4.266538520956066, Varianza: 18.20335095080197, Incertidumbre: 0.8896347797490924\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.786x + 25.969\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 42.955\n", + "\tR²: 0.32230308247682127, Desviación Estándar: 5.586912076398391, Varianza: 31.213586549406177, Incertidumbre: 1.0956836037800992\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -7.338x + 136.927\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 45.197\n", + "\tR²: 0.6301640775969515, Desviación Estándar: 4.242607000059795, Varianza: 17.99971415695638, Incertidumbre: 0.8017773594814295\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.629x + 28.996\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 43.264\n", + "\tR²: 0.4900615381264627, Desviación Estándar: 4.799869922083653, Varianza: 23.03875126892334, Incertidumbre: 0.9797693450697835\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.067x + 30.152\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 34.84\n", + "\tR²: 0.733701886636262, Desviación Estándar: 0.9740665033476542, Varianza: 0.9488055529439255, Incertidumbre: 0.39766098478979256\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 37.163', 'Área del ala: 42.955', 'Relación de aspecto del ala: 45.197', 'payload: 43.264', 'RTF (Including fuel & Batteries): 34.84']\n", + "**Mediana calculada:** 42.955\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.078x + 7.331\n", + "Valor del parámetro correlacionado para la aeronave: 21.463\n", + "Predicción obtenida: 30.477\n", + "\tR²: 0.6650554114482713, Desviación Estándar: 4.333938589551439, Varianza: 18.78302369800311, Incertidumbre: 0.8846615100798704\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.786x + 25.969\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 40.152\n", + "\tR²: 0.3552344429430916, Desviación Estándar: 5.48247460485476, Varianza: 30.057527792877355, Incertidumbre: 1.0551027296460609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -7.178x + 134.644\n", + "Valor del parámetro correlacionado para la aeronave: 12.654\n", + "Predicción obtenida: 43.812\n", + "\tR²: 0.6405623970503131, Desviación Estándar: 4.186974758785706, Varianza: 17.530757630708617, Incertidumbre: 0.7775016937714918\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.626x + 29.01\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 40.28\n", + "\tR²: 0.5133079427191782, Desviación Estándar: 4.703245083983008, Varianza: 22.12051432001033, Incertidumbre: 0.9406490167966016\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 30.477', 'Área del ala: 40.152', 'Relación de aspecto del ala: 43.812', 'payload: 40.28']\n", + "**Mediana calculada:** 40.216\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.013x + 9.471\n", + "Valor del parámetro correlacionado para la aeronave: 18.091\n", + "Predicción obtenida: 27.799\n", + "\tR²: 0.6038420321629009, Desviación Estándar: 4.640881006314369, Varianza: 21.537776514769465, Incertidumbre: 0.9281762012628738\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.79x + 25.965\n", + "Valor del parámetro correlacionado para la aeronave: 0.84\n", + "Predicción obtenida: 31.669\n", + "\tR²: 0.3670434992715419, Desviación Estándar: 5.3836956297320535, Varianza: 28.98417863359601, Incertidumbre: 1.0174228407668775\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.974x + 131.719\n", + "Valor del parámetro correlacionado para la aeronave: 14.599\n", + "Predicción obtenida: 29.911\n", + "\tR²: 0.6369164293284615, Desviación Estándar: 4.163774471385446, Varianza: 17.337017848561153, Incertidumbre: 0.760197734113986\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.626x + 29.011\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 30.888\n", + "\tR²: 0.5208842290733458, Desviación Estándar: 4.611927331533329, Varianza: 21.26987371134414, Incertidumbre: 0.904473363798475\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.065x + 9.368\n", + "Valor del parámetro correlacionado para la aeronave: 16.54\n", + "Predicción obtenida: 26.99\n", + "\tR²: 0.6084339451187571, Desviación Estándar: 4.787548453222305, Varianza: 22.920620191951283, Incertidumbre: 1.0705283786979045\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 42.955, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.119x + 29.159\n", + "Valor del parámetro correlacionado para la aeronave: 6.8\n", + "Predicción obtenida: 29.971\n", + "\tR²: 0.5655356424763149, Desviación Estándar: 2.661463952850547, Varianza: 7.0833903723228575, Incertidumbre: 1.0059388203722117\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.799', 'Área del ala: 31.669', 'Relación de aspecto del ala: 29.911', 'payload: 30.888', 'Crucero KIAS: 26.99', 'RTF (Including fuel & Batteries): 29.971']\n", + "**Mediana calculada:** 29.941\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.993x + 10.098\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 27.468\n", + "\tR²: 0.61316433334016, Desviación Estándar: 4.56779675046761, Varianza: 20.864767153582456, Incertidumbre: 0.8958186447984638\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.879x + 25.784\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 30.599\n", + "\tR²: 0.3790835645732169, Desviación Estándar: 5.299182924288052, Varianza: 28.081339665066075, Incertidumbre: 0.9840335651877286\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.972x + 131.702\n", + "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Predicción obtenida: 29.09\n", + "\tR²: 0.6458059150589619, Desviación Estándar: 4.096069672218646, Varianza: 16.777786759669365, Incertidumbre: 0.7356758306015428\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.631x + 28.924\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 29.681\n", + "\tR²: 0.5346940437266139, Desviación Estándar: 4.529105693357664, Varianza: 20.51279838160481, Incertidumbre: 0.8716267970827714\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.031x + 10.348\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 26.848\n", + "\tR²: 0.6135394527933391, Desviación Estándar: 4.710154634609254, Varianza: 22.185556681931036, Incertidumbre: 1.0278400070497131\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.468', 'Área del ala: 30.599', 'Relación de aspecto del ala: 29.09', 'payload: 29.681', 'Crucero KIAS: 26.848']\n", + "**Mediana calculada:** 29.09\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.978x + 10.544\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 27.656\n", + "\tR²: 0.6252054405389704, Desviación Estándar: 4.492004783483308, Varianza: 20.178106974836926, Incertidumbre: 0.8644867236483915\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.969x + 25.611\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 30.489\n", + "\tR²: 0.3944990966454992, Desviación Estándar: 5.216865762262041, Varianza: 27.215688381461913, Incertidumbre: 0.9524650191557678\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.972x + 131.702\n", + "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Predicción obtenida: 29.09\n", + "\tR²: 0.6561408230541541, Desviación Estándar: 4.031560606462846, Varianza: 16.25348092358307, Incertidumbre: 0.712685960898607\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.634x + 28.868\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 29.629\n", + "\tR²: 0.5509617835923953, Desviación Estándar: 4.448771765099154, Varianza: 19.791570217943438, Incertidumbre: 0.8407388378670155\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.007x + 11.03\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 27.147\n", + "\tR²: 0.6229712190050097, Desviación Estándar: 4.623329335321638, Varianza: 21.375174142845616, Incertidumbre: 0.9856971262384814\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.656', 'Área del ala: 30.489', 'Relación de aspecto del ala: 29.09', 'payload: 29.629', 'Crucero KIAS: 27.147']\n", + "**Mediana calculada:** 29.09\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.978x + 10.544\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 45.837\n", + "\tR²: 0.6252054405389704, Desviación Estándar: 4.492004783483308, Varianza: 20.178106974836926, Incertidumbre: 0.8644867236483915\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.969x + 25.611\n", + "Valor del parámetro correlacionado para la aeronave: 0.88\n", + "Predicción obtenida: 31.744\n", + "\tR²: 0.3944990966454992, Desviación Estándar: 5.216865762262041, Varianza: 27.215688381461913, Incertidumbre: 0.9524650191557678\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.972x + 131.702\n", + "Valor del parámetro correlacionado para la aeronave: 14.116\n", + "Predicción obtenida: 33.28\n", + "\tR²: 0.6561408230541541, Desviación Estándar: 4.031560606462846, Varianza: 16.25348092358307, Incertidumbre: 0.712685960898607\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.634x + 28.868\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 31.404\n", + "\tR²: 0.5509617835923953, Desviación Estándar: 4.448771765099154, Varianza: 19.791570217943438, Incertidumbre: 0.8407388378670155\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.007x + 11.03\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 44.27\n", + "\tR²: 0.6229712190050097, Desviación Estándar: 4.623329335321638, Varianza: 21.375174142845616, Incertidumbre: 0.9856971262384814\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 45.837', 'Área del ala: 31.744', 'Relación de aspecto del ala: 33.28', 'payload: 31.404', 'Crucero KIAS: 44.27']\n", + "**Mediana calculada:** 33.28\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.906x + 25.745\n", + "Valor del parámetro correlacionado para la aeronave: 1.33\n", + "Predicción obtenida: 34.93\n", + "\tR²: 0.3942174961747027, Desviación Estándar: 5.139063743940044, Varianza: 26.409976164279065, Incertidumbre: 0.9230030958652002\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.972x + 131.702\n", + "Valor del parámetro correlacionado para la aeronave: 13.722\n", + "Predicción obtenida: 36.028\n", + "\tR²: 0.6573526772786173, Desviación Estándar: 3.9700064488669455, Varianza: 15.760951204045135, Incertidumbre: 0.6910894167477619\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.627x + 29.005\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 35.274\n", + "\tR²: 0.5501540266725506, Desviación Estándar: 4.384458563749019, Varianza: 19.223476897232118, Incertidumbre: 0.8141735157186453\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Capacidad combustible (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [33.0, 33.0, 42.0, 38.0, 50.0]\n", + "Ecuación de regresión: y = 0.607x + 26.384\n", + "Valor del parámetro correlacionado para la aeronave: 11.5\n", + "Predicción obtenida: 33.369\n", + "\tR²: 0.487882729041738, Desviación Estándar: 4.5575735331497516, Varianza: 20.77147651006711, Incertidumbre: 2.038208846515347\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 34.93', 'Relación de aspecto del ala: 36.028', 'payload: 35.274', 'Capacidad combustible: 33.369']\n", + "**Mediana calculada:** 35.102\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Stalker XE** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker XE'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Stalker VXE30** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker VXE30'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 Fixed Wing'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 Fixed wing'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 VTOL FTUAS'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **AAI Aerosonde** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'AAI Aerosonde'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQNan21A Blackjack'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Evo'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **V35** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V35'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **V39** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V39'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Volitation VT370'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Imputación para el parámetro: **envergadura** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 1.904x + 1.375\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 6.14\n", + "\tR²: 0.6550202920419386, Desviación Estándar: 0.6922900390325586, Varianza: 0.47926549814370145, Incertidumbre: 0.1285550329147554\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.032x + 2.598\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 5.614\n", + "\tR²: 0.6048248274212248, Desviación Estándar: 0.7257069176330723, Varianza: 0.5266505303004948, Incertidumbre: 0.12828807065308317\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.114x + 2.88\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 5.476\n", + "\tR²: 0.5142554083484681, Desviación Estándar: 0.8073085344120734, Varianza: 0.6517470697345699, Incertidumbre: 0.1499134313108701\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para envergadura: [4.4, 4.4, 4.4, 2.69, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.048x + 2.326\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 5.674\n", + "\tR²: 0.8762967968830506, Desviación Estándar: 0.44130001156979004, Varianza: 0.1947457002114968, Incertidumbre: 0.16679572631194156\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Área del ala: 6.14', 'Peso máximo al despegue (MTOW): 5.614', 'payload: 5.476', 'RTF (Including fuel & Batteries): 5.674']\n", + "**Mediana calculada:** 5.644\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 1.835x + 1.446\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 5.281\n", + "\tR²: 0.6787677993689816, Desviación Estándar: 0.6854337532513997, Varianza: 0.46981943009630067, Incertidumbre: 0.12514250944374053\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.032x + 2.596\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 5.033\n", + "\tR²: 0.6331651979245666, Desviación Estándar: 0.7146435397246005, Varianza: 0.5107153888701067, Incertidumbre: 0.12440347223914108\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.116x + 2.873\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 4.954\n", + "\tR²: 0.5454308932616603, Desviación Estándar: 0.794258196699784, Varianza: 0.6308460830247928, Incertidumbre: 0.14501104360528233\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Área del ala: 5.281', 'Peso máximo al despegue (MTOW): 5.033', 'payload: 4.954']\n", + "**Mediana calculada:** 5.033\n", + "\n", + "=== Imputación para el parámetro: **Cuerda** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.0x + -0.975\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.5584422980021864, Desviación Estándar: 0.04101181707874288, Varianza: 0.0016819691401002662, Incertidumbre: 0.02050590853937144\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.009x + 0.094\n", + "Valor del parámetro correlacionado para la aeronave: 27.892\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.37089288437785595, Desviación Estándar: 0.04895280456579205, Varianza: 0.0023963770748566308, Incertidumbre: 0.024476402282896024\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.167x + 0.103\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 0.521\n", + "\tR²: 0.9567278474032922, Desviación Estándar: 0.012838655021740699, Varianza: 0.00016483106276726767, Incertidumbre: 0.006419327510870349\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = -0.031x + 0.725\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 0.338\n", + "\tR²: 0.33955370790059436, Desviación Estándar: 0.050157286426532284, Varianza: 0.0025157533816731995, Incertidumbre: 0.025078643213266142\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.125x + -0.016\n", + "Valor del parámetro correlacionado para la aeronave: 3.594\n", + "Predicción obtenida: 0.432\n", + "\tR²: 0.9863480800941506, Desviación Estándar: 0.007211276455846646, Varianza: 5.2002508122648166e-05, Incertidumbre: 0.003605638227923323\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.003x + 0.204\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 0.481\n", + "\tR²: 0.736966419457739, Desviación Estándar: 0.03164979554992154, Varianza: 0.0010017095583518332, Incertidumbre: 0.012920974926786248\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", + "Ecuación de regresión: y = -0.0x + 0.338\n", + "Valor del parámetro correlacionado para la aeronave: 316.495\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.5966603871244396, Desviación Estándar: 0.0391922998443847, Varianza: 0.0015360363670921572, Incertidumbre: 0.01600018941081718\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.074x + -0.018\n", + "Valor del parámetro correlacionado para la aeronave: 5.644\n", + "Predicción obtenida: 0.402\n", + "\tR²: 0.8190779024483189, Desviación Estándar: 0.026251920869893277, Varianza: 0.0006891633493591382, Incertidumbre: 0.013125960434946638\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 0.394\n", + "\tR²: 0.6020929401336428, Desviación Estándar: 0.027642283534153083, Varianza: 0.0007640958389825106, Incertidumbre: 0.012362005007137885\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.521', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.481', 'Alcance de la aeronave: 0.325', 'envergadura: 0.402', 'payload: 0.394']\n", + "**Mediana calculada:** 0.394\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.0x + -1.225\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.326\n", + "\tR²: 0.5082545132230825, Desviación Estándar: 0.05085224756183586, Varianza: 0.002585951082090241, Incertidumbre: 0.022741816471382584\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.012x + 0.047\n", + "Valor del parámetro correlacionado para la aeronave: 30.407\n", + "Predicción obtenida: 0.4\n", + "\tR²: 0.5916034080971878, Desviación Estándar: 0.0463426661702313, Varianza: 0.0021476427077655007, Incertidumbre: 0.020725070363043403\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.1x + 0.166\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.8603589273995997, Desviación Estándar: 0.027098580959037145, Varianza: 0.0007343330899934905, Incertidumbre: 0.0121188538236377\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = -0.041x + 0.884\n", + "Valor del parámetro correlacionado para la aeronave: 13.218\n", + "Predicción obtenida: 0.336\n", + "\tR²: 0.5556998392410524, Desviación Estándar: 0.048336833461136076, Varianza: 0.0023364494690496043, Incertidumbre: 0.02161688908723734\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.108x + 0.02\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.15\n", + "\tR²: 0.9729483577129217, Desviación Estándar: 0.011927152694253538, Varianza: 0.00014225697139203943, Incertidumbre: 0.005333984840474135\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.002x + 0.229\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.7196970118630204, Desviación Estándar: 0.034754348458380345, Varianza: 0.0012078647367665242, Incertidumbre: 0.013135908999850775\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = -0.0x + 0.352\n", + "Valor del parámetro correlacionado para la aeronave: 800.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.561672057764841, Desviación Estándar: 0.04346051474042987, Varianza: 0.001888816341503122, Incertidumbre: 0.016426530550576326\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.072x + -0.01\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.207\n", + "\tR²: 0.8941942208767555, Desviación Estándar: 0.023588192102840765, Varianza: 0.0005564028066805194, Incertidumbre: 0.010548960201655131\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352]\n", + "Ecuación de regresión: y = 0.008x + 0.145\n", + "Valor del parámetro correlacionado para la aeronave: 27.8\n", + "Predicción obtenida: 0.378\n", + "\tR²: 0.5951449532870101, Desviación Estándar: 0.03013201386753742, Varianza: 0.0009079382597134674, Incertidumbre: 0.017396726317648267\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.4', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.15', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.313', 'envergadura: 0.207', 'Crucero KIAS: 0.378']\n", + "**Mediana calculada:** 0.313\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.0x + -1.197\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.5059374879835691, Desviación Estándar: 0.04665619290169541, Varianza: 0.0021768003360802136, Incertidumbre: 0.019047310991669373\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.008x + 0.114\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 0.329\n", + "\tR²: 0.4394712393952719, Desviación Estándar: 0.04969552664305181, Varianza: 0.002469645368330272, Incertidumbre: 0.020288113795727262\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.093x + 0.184\n", + "Valor del parámetro correlacionado para la aeronave: 1.608\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.779679530445362, Desviación Estándar: 0.031156292404129815, Varianza: 0.0009707145563716373, Incertidumbre: 0.012719503111178239\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = -0.04x + 0.855\n", + "Valor del parámetro correlacionado para la aeronave: 13.443\n", + "Predicción obtenida: 0.322\n", + "\tR²: 0.5431294809153299, Desviación Estándar: 0.04486574816022439, Varianza: 0.0020129353579766787, Incertidumbre: 0.01831636498679382\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.058x + 0.165\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.235\n", + "\tR²: 0.4883148244734046, Desviación Estándar: 0.047480989850069766, Varianza: 0.002254444397142428, Incertidumbre: 0.019384032935823015\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.002x + 0.24\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.6707432653466199, Desviación Estándar: 0.035236075624649296, Varianza: 0.0012415810254260045, Incertidumbre: 0.012457834008295764\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = -0.0x + 0.352\n", + "Valor del parámetro correlacionado para la aeronave: 150.0\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.5617138568209437, Desviación Estándar: 0.04065360565285314, Varianza: 0.0016527156525776928, Incertidumbre: 0.014373220118408109\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", + "Ecuación de regresión: y = 0.053x + 0.087\n", + "Valor del parámetro correlacionado para la aeronave: 5.2\n", + "Predicción obtenida: 0.361\n", + "\tR²: 0.6218579555553649, Desviación Estándar: 0.040817446367584644, Varianza: 0.0016660639279706489, Incertidumbre: 0.01666365270066685\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.7240526671985225, Desviación Estándar: 0.02523396237425335, Varianza: 0.0006367528571052337, Incertidumbre: 0.010301722000918372\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.323', 'Velocidad a la que se realiza el crucero (KTAS): 0.329', 'Área del ala: 0.334', 'Relación de aspecto del ala: 0.322', 'Longitud del fuselaje: 0.235', 'Peso máximo al despegue (MTOW): 0.346', 'Alcance de la aeronave: 0.344', 'envergadura: 0.361', 'payload: 0.335']\n", + "**Mediana calculada:** 0.334\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.0x + -1.217\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.518160981799697, Desviación Estándar: 0.04335452050989663, Varianza: 0.001879614448643048, Incertidumbre: 0.016386468497090814\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.008x + 0.113\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 0.33\n", + "\tR²: 0.45672010492785353, Desviación Estándar: 0.046035749855102136, Varianza: 0.0021192902647215366, Incertidumbre: 0.017399877933568286\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.093x + 0.184\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.296\n", + "\tR²: 0.7867060876798443, Desviación Estándar: 0.028845138922881017, Varianza: 0.0008320420394803054, Incertidumbre: 0.010902437731864672\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = -0.04x + 0.865\n", + "Valor del parámetro correlacionado para la aeronave: 14.012\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.5529769564137459, Desviación Estándar: 0.041758833679074646, Varianza: 0.001743800190236619, Incertidumbre: 0.015783355564991417\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.038x + 0.223\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.269\n", + "\tR²: 0.2664980716684373, Desviación Estándar: 0.05349140864008716, Varianza: 0.0028613307983007914, Incertidumbre: 0.020217852077171767\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.002x + 0.24\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.6702878820787533, Desviación Estándar: 0.033427806129933846, Varianza: 0.0011174182226604426, Incertidumbre: 0.011142602043311281\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = -0.0x + 0.35\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 0.348\n", + "\tR²: 0.5635487874211478, Desviación Estándar: 0.038459910779187215, Varianza: 0.0014791647371430407, Incertidumbre: 0.012819970259729072\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", + "Ecuación de regresión: y = 0.049x + 0.099\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.6143266200258906, Desviación Estándar: 0.03878762933713736, Varianza: 0.0015044801895951585, Incertidumbre: 0.014660345881688361\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334]\n", + "Ecuación de regresión: y = 0.005x + 0.269\n", + "Valor del parámetro correlacionado para la aeronave: 5.5\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.7239573172494923, Desviación Estándar: 0.02336635054679909, Varianza: 0.0005459863378758981, Incertidumbre: 0.008831650370569787\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.325', 'Velocidad a la que se realiza el crucero (KTAS): 0.33', 'Área del ala: 0.296', 'Relación de aspecto del ala: 0.301', 'Longitud del fuselaje: 0.269', 'Peso máximo al despegue (MTOW): 0.301', 'Alcance de la aeronave: 0.348', 'envergadura: 0.315', 'payload: 0.299']\n", + "**Mediana calculada:** 0.301\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.0x + -1.179\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.322\n", + "\tR²: 0.5005474478510711, Desviación Estándar: 0.04131034033551268, Varianza: 0.001706544218635886, Incertidumbre: 0.014605410892182586\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.008x + 0.119\n", + "Valor del parámetro correlacionado para la aeronave: 18.266\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.43089375042529565, Desviación Estándar: 0.04409692764157503, Varianza: 0.0019445390274263038, Incertidumbre: 0.015590618282425106\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.093x + 0.185\n", + "Valor del parámetro correlacionado para la aeronave: 0.754\n", + "Predicción obtenida: 0.255\n", + "\tR²: 0.7861394448447504, Desviación Estándar: 0.027031926600075157, Varianza: 0.0007307250557118509, Incertidumbre: 0.009557229303725078\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = -0.04x + 0.865\n", + "Valor del parámetro correlacionado para la aeronave: 14.767\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.553435246087135, Desviación Estándar: 0.03906194604657353, Varianza: 0.0015258356289454217, Incertidumbre: 0.013810483467937597\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.033x + 0.237\n", + "Valor del parámetro correlacionado para la aeronave: 1.48\n", + "Predicción obtenida: 0.286\n", + "\tR²: 0.2386332689505225, Desviación Estándar: 0.05100451268256031, Varianza: 0.002601460313985455, Incertidumbre: 0.01803281839447683\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.002x + 0.24\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 0.252\n", + "\tR²: 0.6726769802088182, Desviación Estándar: 0.03171272006589414, Varianza: 0.0010056966139777646, Incertidumbre: 0.010028442620755052\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = -0.0x + 0.343\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.342\n", + "\tR²: 0.5063410592901572, Desviación Estándar: 0.03894562904032464, Varianza: 0.001516762021346578, Incertidumbre: 0.012315689267542349\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.049x + 0.099\n", + "Valor del parámetro correlacionado para la aeronave: 2.1\n", + "Predicción obtenida: 0.201\n", + "\tR²: 0.6088855002504914, Desviación Estándar: 0.036556416184119006, Varianza: 0.0013363715642265182, Incertidumbre: 0.012924644889834101\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313]\n", + "Ecuación de regresión: y = 0.005x + 0.208\n", + "Valor del parámetro correlacionado para la aeronave: 16.7\n", + "Predicción obtenida: 0.285\n", + "\tR²: 0.37218727831824217, Desviación Estándar: 0.03267385114997177, Varianza: 0.0010675805489705115, Incertidumbre: 0.016336925574985884\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.322', 'Velocidad a la que se realiza el crucero (KTAS): 0.261', 'Área del ala: 0.255', 'Relación de aspecto del ala: 0.27', 'Longitud del fuselaje: 0.286', 'Peso máximo al despegue (MTOW): 0.252', 'Alcance de la aeronave: 0.342', 'envergadura: 0.201', 'Crucero KIAS: 0.285']\n", + "**Mediana calculada:** 0.27\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.0x + -1.108\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.4389240659793703, Desviación Estándar: 0.042140017620528936, Varianza: 0.001775781085058489, Incertidumbre: 0.014046672540176311\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.008x + 0.125\n", + "Valor del parámetro correlacionado para la aeronave: 30.625\n", + "Predicción obtenida: 0.356\n", + "\tR²: 0.4515433062124382, Desviación Estándar: 0.04166343402845906, Varianza: 0.0017358417350437604, Incertidumbre: 0.013887811342819687\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.09x + 0.19\n", + "Valor del parámetro correlacionado para la aeronave: 1.063\n", + "Predicción obtenida: 0.286\n", + "\tR²: 0.7885748390015039, Desviación Estándar: 0.025867962774747247, Varianza: 0.0006691514981157094, Incertidumbre: 0.008622654258249082\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = -0.04x + 0.865\n", + "Valor del parámetro correlacionado para la aeronave: 14.067\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.5714606764166177, Desviación Estándar: 0.03682809308680053, Varianza: 0.0013563084404100449, Incertidumbre: 0.01227603102893351\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.035x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 1.71\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.26160299392487774, Desviación Estándar: 0.04834247216917272, Varianza: 0.0023369946154272393, Incertidumbre: 0.01611415738972424\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.002x + 0.244\n", + "Valor del parámetro correlacionado para la aeronave: 26.5\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.683688240941903, Desviación Estándar: 0.03060819392233029, Varianza: 0.000936861535186977, Incertidumbre: 0.00922871770461874\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = -0.0x + 0.334\n", + "Valor del parámetro correlacionado para la aeronave: 418.78\n", + "Predicción obtenida: 0.317\n", + "\tR²: 0.39569557326663285, Desviación Estándar: 0.042306580420532675, Varianza: 0.0017898467468789986, Incertidumbre: 0.012755913947082096\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", + "Ecuación de regresión: y = 0.037x + 0.154\n", + "Valor del parámetro correlacionado para la aeronave: 3.1\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.5307410102435243, Desviación Estándar: 0.03853809056250838, Varianza: 0.0014851844242040975, Incertidumbre: 0.012846030187502792\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.297\n", + "\tR²: 0.7420743779557686, Desviación Estándar: 0.02186230804623738, Varianza: 0.0004779605131085757, Incertidumbre: 0.0077294931359418355\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27]\n", + "Ecuación de regresión: y = 0.005x + 0.196\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 0.338\n", + "\tR²: 0.4325324299944552, Desviación Estándar: 0.02977768882484922, Varianza: 0.0008867107517495501, Incertidumbre: 0.013316987285039737\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.315', 'Velocidad a la que se realiza el crucero (KTAS): 0.356', 'Área del ala: 0.286', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.292', 'Peso máximo al despegue (MTOW): 0.293', 'Alcance de la aeronave: 0.317', 'envergadura: 0.268', 'payload: 0.297', 'Crucero KIAS: 0.338']\n", + "**Mediana calculada:** 0.298\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.0x + -1.087\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.43003046301994163, Desviación Estándar: 0.040303167474752155, Varianza: 0.0016243453084979203, Incertidumbre: 0.012744980613943357\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.006x + 0.152\n", + "Valor del parámetro correlacionado para la aeronave: 30.953\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.3626732282190418, Desviación Estándar: 0.042618134717395714, Varianza: 0.0018163054067900897, Incertidumbre: 0.013477037533486688\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.09x + 0.192\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 0.36\n", + "\tR²: 0.78420367371009, Desviación Estándar: 0.02479906919480939, Varianza: 0.0006149938329289441, Incertidumbre: 0.007842154250771557\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = -0.04x + 0.865\n", + "Valor del parámetro correlacionado para la aeronave: 12.923\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.5716670205992819, Desviación Estándar: 0.03493848859723169, Varianza: 0.0012206979854588887, Incertidumbre: 0.011048520197107344\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.034x + 0.233\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.2607143040447977, Desviación Estándar: 0.045900721121043486, Varianza: 0.0021068761994318076, Incertidumbre: 0.014515082498669469\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.002x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 0.381\n", + "\tR²: 0.6843844359896646, Desviación Estándar: 0.029343086738118862, Varianza: 0.000861016739320767, Incertidumbre: 0.008470619513553731\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = -0.0x + 0.332\n", + "Valor del parámetro correlacionado para la aeronave: 344.852\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.38810758348194185, Desviación Estándar: 0.040856779150680644, Varianza: 0.0016692764025674925, Incertidumbre: 0.01179433622043328\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.035x + 0.165\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.5045938666189362, Desviación Estándar: 0.03757457234940652, Varianza: 0.0014118484872407847, Incertidumbre: 0.011882123073090872\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.368\n", + "\tR²: 0.7571933066563912, Desviación Estándar: 0.02061381414434731, Varianza: 0.0004249293335776932, Incertidumbre: 0.006871271381449103\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298]\n", + "Ecuación de regresión: y = 0.004x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 28.3\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.3103699929495912, Desviación Estándar: 0.029966938700525643, Varianza: 0.0008980174150810615, Incertidumbre: 0.01223395149492497\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.344', 'Área del ala: 0.36', 'Relación de aspecto del ala: 0.345', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.319', 'envergadura: 0.332', 'payload: 0.368', 'Crucero KIAS: 0.323']\n", + "**Mediana calculada:** 0.338\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.0x + -1.114\n", + "Valor del parámetro correlacionado para la aeronave: 5000.0\n", + "Predicción obtenida: 0.077\n", + "\tR²: 0.4346058124858284, Desviación Estándar: 0.03907455742847307, Varianza: 0.0015268210382310403, Incertidumbre: 0.011781422349039958\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.006x + 0.155\n", + "Valor del parámetro correlacionado para la aeronave: 21.463\n", + "Predicción obtenida: 0.285\n", + "\tR²: 0.3877365879710747, Desviación Estándar: 0.040661889117598014, Varianza: 0.0016533892266118358, Incertidumbre: 0.012260020860918912\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.086x + 0.195\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 0.374\n", + "\tR²: 0.7800260398164971, Desviación Estándar: 0.024372721993982313, Varianza: 0.0005940295773959491, Incertidumbre: 0.007348652179425639\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = -0.04x + 0.857\n", + "Valor del parámetro correlacionado para la aeronave: 12.654\n", + "Predicción obtenida: 0.354\n", + "\tR²: 0.5878792449550165, Desviación Estándar: 0.03336035330709108, Varianza: 0.0011129131727739424, Incertidumbre: 0.010058524981210274\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.036x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 3.004\n", + "Predicción obtenida: 0.34\n", + "\tR²: 0.2807426506714811, Desviación Estándar: 0.044071776010299636, Varianza: 0.0019423214407020225, Incertidumbre: 0.01328814044279547\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.002x + 0.249\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 0.371\n", + "\tR²: 0.6495168189859627, Desviación Estándar: 0.030035459570872714, Varianza: 0.0009021288316335293, Incertidumbre: 0.008330337658839016\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = -0.0x + 0.334\n", + "Valor del parámetro correlacionado para la aeronave: 3294.755\n", + "Predicción obtenida: 0.204\n", + "\tR²: 0.3910118106632742, Desviación Estándar: 0.03959178893133063, Varianza: 0.0015675097507830348, Incertidumbre: 0.01098078654455848\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.035x + 0.164\n", + "Valor del parámetro correlacionado para la aeronave: 5.033\n", + "Predicción obtenida: 0.341\n", + "\tR²: 0.5236198578383562, Desviación Estándar: 0.03586701404683303, Varianza: 0.0012864426966357181, Incertidumbre: 0.010814311631250163\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.005x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.362\n", + "\tR²: 0.713775236159582, Desviación Estándar: 0.02131006366987268, Varianza: 0.00045411881361402743, Incertidumbre: 0.006738833828000416\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.077', 'Velocidad a la que se realiza el crucero (KTAS): 0.285', 'Área del ala: 0.374', 'Relación de aspecto del ala: 0.354', 'Longitud del fuselaje: 0.34', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.204', 'envergadura: 0.341', 'payload: 0.362']\n", + "**Mediana calculada:** 0.341\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.0x + 0.183\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.015512130588261508, Desviación Estándar: 0.0503497708973624, Varianza: 0.002535099429416882, Incertidumbre: 0.014534726890614086\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.006x + 0.172\n", + "Valor del parámetro correlacionado para la aeronave: 33.045\n", + "Predicción obtenida: 0.355\n", + "\tR²: 0.3206948627028712, Desviación Estándar: 0.041823922738469466, Varianza: 0.0017492405132334633, Incertidumbre: 0.01207352652581073\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.079x + 0.201\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 0.349\n", + "\tR²: 0.7610795576292256, Desviación Estándar: 0.02480384274196969, Varianza: 0.0006152306147683624, Incertidumbre: 0.007160252642006673\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 12.859\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.5993334622949501, Desviación Estándar: 0.03212061490919684, Varianza: 0.0010317339021449184, Incertidumbre: 0.009272422832180553\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.036x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 0.322\n", + "\tR²: 0.3085407372763075, Desviación Estándar: 0.04219642069079446, Varianza: 0.001780537919114507, Incertidumbre: 0.012181057422334439\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.002x + 0.251\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 0.365\n", + "\tR²: 0.6361662614209418, Desviación Estándar: 0.029827965241118803, Varianza: 0.0008897075104253915, Incertidumbre: 0.00797185903406204\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = -0.0x + 0.327\n", + "Valor del parámetro correlacionado para la aeronave: 500.0\n", + "Predicción obtenida: 0.318\n", + "\tR²: 0.12689970642513138, Desviación Estándar: 0.04620662103794288, Varianza: 0.002135051827744066, Incertidumbre: 0.01234923892317737\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.035x + 0.164\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.5420506031887378, Desviación Estándar: 0.0343400608030557, Varianza: 0.0011792397759575624, Incertidumbre: 0.009913121674316162\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.005x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.358\n", + "\tR²: 0.6939116284562865, Desviación Estándar: 0.021115874286876224, Varianza: 0.00044588014689916043, Incertidumbre: 0.006366675648171076\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.355', 'Área del ala: 0.349', 'Relación de aspecto del ala: 0.344', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.365', 'Alcance de la aeronave: 0.318', 'envergadura: 0.333', 'payload: 0.358']\n", + "**Mediana calculada:** 0.344\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.0x + 0.165\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.02067125389564617, Desviación Estándar: 0.04917798086065571, Varianza: 0.002418473801531019, Incertidumbre: 0.013639517816683143\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.005x + 0.177\n", + "Valor del parámetro correlacionado para la aeronave: 25.703\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.34315816593670323, Desviación Estándar: 0.04027512016870371, Varianza: 0.0016220853046035242, Incertidumbre: 0.011170308530287316\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valor del parámetro correlacionado para la aeronave: 1.349\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.7692709885882784, Desviación Estándar: 0.023870281740101265, Varianza: 0.0005697903503518118, Incertidumbre: 0.0066204249825928384\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 13.774\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.61434850961859, Desviación Estándar: 0.030860570433120724, Varianza: 0.000952374807457605, Incertidumbre: 0.008559182237437285\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.037x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 2.4\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.3208426833611422, Desviación Estándar: 0.04095355757307659, Varianza: 0.0016771938778912987, Incertidumbre: 0.011358473210953401\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valor del parámetro correlacionado para la aeronave: 36.3\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.6342327638509584, Desviación Estándar: 0.02924076794795075, Varianza: 0.0008550225101859038, Incertidumbre: 0.007549933819515259\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = -0.0x + 0.329\n", + "Valor del parámetro correlacionado para la aeronave: 478.95\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.1300366441647196, Desviación Estándar: 0.045095878725376695, Varianza: 0.0020336382780138827, Incertidumbre: 0.011643705819064886\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.036x + 0.163\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 0.305\n", + "\tR²: 0.5556874366655828, Desviación Estándar: 0.0331246073597043, Varianza: 0.0010972396127345763, Incertidumbre: 0.009187113101155824\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344]\n", + "Ecuación de regresión: y = 0.005x + 0.274\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.6868798679185576, Desviación Estándar: 0.020578680684602713, Varianza: 0.00042348209871884076, Incertidumbre: 0.005940553416411365\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valor del parámetro correlacionado para la aeronave: 23.5\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.39462657346290686, Desviación Estándar: 0.028144814550039556, Varianza: 0.0007921305860561183, Incertidumbre: 0.01063773999934813\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.314', 'Área del ala: 0.308', 'Relación de aspecto del ala: 0.308', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.306', 'Alcance de la aeronave: 0.32', 'envergadura: 0.305', 'payload: 0.313', 'Crucero KIAS: 0.308']\n", + "**Mediana calculada:** 0.31\n", + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.0x + 0.166\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.02032631380959693, Desviación Estándar: 0.04739774340606181, Varianza: 0.0022465460799868755, Incertidumbre: 0.012667579766550504\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.005x + 0.177\n", + "Valor del parámetro correlacionado para la aeronave: 33.797\n", + "Predicción obtenida: 0.356\n", + "\tR²: 0.34279456368656225, Desviación Estándar: 0.03882107144365238, Varianza: 0.0015070755880331622, Incertidumbre: 0.010375367766401489\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valor del parámetro correlacionado para la aeronave: 1.802\n", + "Predicción obtenida: 0.343\n", + "\tR²: 0.7691040437079356, Desviación Estándar: 0.023010449764320217, Varianza: 0.0005294807983563044, Incertidumbre: 0.0061498013809756745\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 12.973\n", + "Predicción obtenida: 0.339\n", + "\tR²: 0.6142874133845568, Desviación Estándar: 0.029740539979987123, Varianza: 0.0008844997183012125, Incertidumbre: 0.007948493650197468\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.037x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.3177456232267585, Desviación Estándar: 0.039553972672793015, Varianza: 0.0015645167542000567, Incertidumbre: 0.010571243859100757\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valor del parámetro correlacionado para la aeronave: 61.0\n", + "Predicción obtenida: 0.342\n", + "\tR²: 0.6340700925234075, Desviación Estándar: 0.028333016378777862, Varianza: 0.0008027598171200946, Incertidumbre: 0.007083254094694466\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = -0.0x + 0.328\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 0.326\n", + "\tR²: 0.12800904485497755, Desviación Estándar: 0.04373708652402515, Varianza: 0.0019129327376100622, Incertidumbre: 0.010934271631006288\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.036x + 0.163\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.5550912173963352, Desviación Estándar: 0.03194128864413451, Varianza: 0.0010202459202479162, Incertidumbre: 0.008536668471314606\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.005x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 0.355\n", + "\tR²: 0.6934350662495181, Desviación Estándar: 0.019790488440900297, Varianza: 0.00039166343272940834, Incertidumbre: 0.005488893910780262\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31]\n", + "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valor del parámetro correlacionado para la aeronave: 30.9\n", + "Predicción obtenida: 0.338\n", + "\tR²: 0.39635942215753095, Desviación Estándar: 0.026334104723749873, Varianza: 0.0006934850716014253, Incertidumbre: 0.009310512013320114\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.356', 'Área del ala: 0.343', 'Relación de aspecto del ala: 0.339', 'Longitud del fuselaje: 0.323', 'Peso máximo al despegue (MTOW): 0.342', 'Alcance de la aeronave: 0.326', 'envergadura: 0.334', 'payload: 0.355', 'Crucero KIAS: 0.338']\n", + "**Mediana calculada:** 0.338\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.0x + 0.166\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.02032631380959693, Desviación Estándar: 0.04739774340606181, Varianza: 0.0022465460799868755, Incertidumbre: 0.012667579766550504\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = 0.005x + 0.184\n", + "Valor del parámetro correlacionado para la aeronave: 18.091\n", + "Predicción obtenida: 0.274\n", + "\tR²: 0.3487363165953775, Desviación Estándar: 0.037739302980328356, Varianza: 0.0014242549894410209, Incertidumbre: 0.00974424612935251\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valor del parámetro correlacionado para la aeronave: 0.84\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.7732658196981622, Desviación Estándar: 0.02226762719794307, Varianza: 0.0004958472210265739, Incertidumbre: 0.005749476619812589\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = -0.038x + 0.838\n", + "Valor del parámetro correlacionado para la aeronave: 14.599\n", + "Predicción obtenida: 0.277\n", + "\tR²: 0.622452460235022, Desviación Estándar: 0.02873434266164246, Varianza: 0.0008256624481966859, Incertidumbre: 0.007419175372850569\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.037x + 0.232\n", + "Valor del parámetro correlacionado para la aeronave: 0.75\n", + "Predicción obtenida: 0.259\n", + "\tR²: 0.3177456232267585, Desviación Estándar: 0.039553972672793015, Varianza: 0.0015645167542000567, Incertidumbre: 0.010571243859100757\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.6384849427043453, Desviación Estándar: 0.027500732010490584, Varianza: 0.0007562902611128215, Incertidumbre: 0.0066699072271210235\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = -0.0x + 0.329\n", + "Valor del parámetro correlacionado para la aeronave: 270.0\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.135868427381171, Desviación Estándar: 0.04251782061135894, Varianza: 0.001807765069539699, Incertidumbre: 0.01031208619715862\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", + "Ecuación de regresión: y = 0.036x + 0.163\n", + "Valor del parámetro correlacionado para la aeronave: 2.69\n", + "Predicción obtenida: 0.259\n", + "\tR²: 0.5550912173963352, Desviación Estándar: 0.03194128864413451, Varianza: 0.0010202459202479162, Incertidumbre: 0.008536668471314606\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.274\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.287\n", + "\tR²: 0.6800173021314551, Desviación Estándar: 0.0195304404540393, Varianza: 0.00038143810432877473, Incertidumbre: 0.005219729770843197\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valor del parámetro correlacionado para la aeronave: 16.54\n", + "Predicción obtenida: 0.28\n", + "\tR²: 0.45458778022246527, Desviación Estándar: 0.02482812939297037, Varianza: 0.0006164360091540792, Incertidumbre: 0.008276043130990124\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.274', 'Área del ala: 0.268', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.259', 'Peso máximo al despegue (MTOW): 0.268', 'Alcance de la aeronave: 0.324', 'envergadura: 0.259', 'payload: 0.287', 'Crucero KIAS: 0.28']\n", + "**Mediana calculada:** 0.276\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", + "Ecuación de regresión: y = 0.0x + 0.184\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.0147264484768026, Desviación Estándar: 0.04671466282025224, Varianza: 0.002182259722409857, Incertidumbre: 0.012061674075102113\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.3724780157591121, Desviación Estándar: 0.03654331382237015, Varianza: 0.0013354137851202294, Incertidumbre: 0.009135828455592538\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = 0.077x + 0.204\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 0.258\n", + "\tR²: 0.7798191830856929, Desviación Estándar: 0.021646276131902738, Varianza: 0.0004685612703785822, Incertidumbre: 0.0054115690329756844\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.6362481550089567, Desviación Estándar: 0.02782249399108439, Varianza: 0.000774091171883927, Incertidumbre: 0.006955623497771097\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", + "Ecuación de regresión: y = 0.034x + 0.238\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.33427169926483846, Desviación Estándar: 0.03839930074605216, Varianza: 0.0014745062977857622, Incertidumbre: 0.009914656819698003\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = 0.001x + 0.254\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 0.263\n", + "\tR²: 0.6523551364390465, Desviación Estándar: 0.02678966328890024, Varianza: 0.0007176860591326491, Incertidumbre: 0.006314384192428556\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = -0.0x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.11453431205818987, Desviación Estándar: 0.042754833055918345, Varianza: 0.0018279757496394483, Incertidumbre: 0.010077410794112875\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", + "Ecuación de regresión: y = 0.034x + 0.17\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 0.251\n", + "\tR²: 0.5630614192360759, Desviación Estándar: 0.03110892493285136, Varianza: 0.000967765210477781, Incertidumbre: 0.00803228987889\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = 0.005x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.277\n", + "\tR²: 0.7184184742433418, Desviación Estándar: 0.019057576632793602, Varianza: 0.0003631912271148008, Incertidumbre: 0.004920645127858749\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276]\n", + "Ecuación de regresión: y = 0.004x + 0.211\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 0.277\n", + "\tR²: 0.49980090608872974, Desviación Estándar: 0.023585011510380487, Varianza: 0.0005562527679447801, Incertidumbre: 0.0074582355014090294\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.31', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.258', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.268', 'Peso máximo al despegue (MTOW): 0.263', 'Alcance de la aeronave: 0.324', 'envergadura: 0.251', 'payload: 0.277', 'Crucero KIAS: 0.277']\n", + "**Mediana calculada:** 0.272\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.0x + 0.201\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.010249079511174597, Desviación Estándar: 0.04616981560043625, Varianza: 0.0021316518725782866, Incertidumbre: 0.011542453900109063\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.3967685182755928, Desviación Estándar: 0.03545237044618538, Varianza: 0.0012568705702535586, Incertidumbre: 0.008598462825185189\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.075x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 0.26\n", + "\tR²: 0.7836164664637315, Desviación Estándar: 0.021233196730497346, Varianza: 0.0004508486433960032, Incertidumbre: 0.005149806640550596\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.6503309577441012, Desviación Estándar: 0.026991801495547467, Varianza: 0.0007285573479750386, Incertidumbre: 0.006546473446579232\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.034x + 0.239\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 0.269\n", + "\tR²: 0.35785791364325414, Desviación Estándar: 0.037188678863664754, Varianza: 0.0013829978356247857, Incertidumbre: 0.009297169715916188\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.001x + 0.256\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 0.265\n", + "\tR²: 0.6662199673897068, Desviación Estándar: 0.02614021892802073, Varianza: 0.0006833110456048533, Incertidumbre: 0.005996977508909025\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.0x + 0.322\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.08980696350170814, Desviación Estándar: 0.04316639678565242, Varianza: 0.0018633378114563837, Incertidumbre: 0.009903050597128307\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.032x + 0.179\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 0.255\n", + "\tR²: 0.5680260142996714, Desviación Estándar: 0.030501695390844595, Varianza: 0.0009303534217158704, Incertidumbre: 0.007625423847711149\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.276\n", + "\tR²: 0.7521146796518272, Desviación Estándar: 0.018488012959664887, Varianza: 0.00034180662319673684, Incertidumbre: 0.004622003239916222\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 0.276\n", + "\tR²: 0.5394259957381201, Desviación Estándar: 0.02253063800021863, Varianza: 0.0005076296486968957, Incertidumbre: 0.0067932429576407745\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.26', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.269', 'Peso máximo al despegue (MTOW): 0.265', 'Alcance de la aeronave: 0.32', 'envergadura: 0.255', 'payload: 0.276', 'Crucero KIAS: 0.276']\n", + "**Mediana calculada:** 0.272\n", + "\n", + "--- Imputación para aeronave: **V21** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.0x + 0.201\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.010249079511174597, Desviación Estándar: 0.04616981560043625, Varianza: 0.0021316518725782866, Incertidumbre: 0.011542453900109063\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valor del parámetro correlacionado para la aeronave: 19.688\n", + "Predicción obtenida: 0.282\n", + "\tR²: 0.3967685182755928, Desviación Estándar: 0.03545237044618538, Varianza: 0.0012568705702535586, Incertidumbre: 0.008598462825185189\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.075x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 0.8\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.7836164664637315, Desviación Estándar: 0.021233196730497346, Varianza: 0.0004508486433960032, Incertidumbre: 0.005149806640550596\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.578\n", + "Predicción obtenida: 0.277\n", + "\tR²: 0.6503309577441012, Desviación Estándar: 0.026991801495547467, Varianza: 0.0007285573479750386, Incertidumbre: 0.006546473446579232\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.034x + 0.239\n", + "Valor del parámetro correlacionado para la aeronave: 0.93\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.35785791364325414, Desviación Estándar: 0.037188678863664754, Varianza: 0.0013829978356247857, Incertidumbre: 0.009297169715916188\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.001x + 0.256\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.6662199673897068, Desviación Estándar: 0.02614021892802073, Varianza: 0.0006833110456048533, Incertidumbre: 0.005996977508909025\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.0x + 0.322\n", + "Valor del parámetro correlacionado para la aeronave: 471.068\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.08980696350170814, Desviación Estándar: 0.04316639678565242, Varianza: 0.0018633378114563837, Incertidumbre: 0.009903050597128307\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.032x + 0.179\n", + "Valor del parámetro correlacionado para la aeronave: 2.15\n", + "Predicción obtenida: 0.248\n", + "\tR²: 0.5680260142996714, Desviación Estándar: 0.030501695390844595, Varianza: 0.0009303534217158704, Incertidumbre: 0.007625423847711149\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.7521146796518272, Desviación Estándar: 0.018488012959664887, Varianza: 0.00034180662319673684, Incertidumbre: 0.004622003239916222\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.285\n", + "\tR²: 0.5394259957381201, Desviación Estándar: 0.02253063800021863, Varianza: 0.0005076296486968957, Incertidumbre: 0.0067932429576407745\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.282', 'Área del ala: 0.268', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.315', 'envergadura: 0.248', 'payload: 0.278', 'Crucero KIAS: 0.285']\n", + "**Mediana calculada:** 0.278\n", + "\n", + "--- Imputación para aeronave: **V25** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.0x + 0.213\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.007624668273402024, Desviación Estándar: 0.04532987951030284, Varianza: 0.0020547979764185733, Incertidumbre: 0.010994110659852962\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.005x + 0.184\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.41034339711447, Desviación Estándar: 0.03446795427732797, Varianza: 0.0011880398720639715, Incertidumbre: 0.008124174734375492\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.074x + 0.209\n", + "Valor del parámetro correlacionado para la aeronave: 0.52\n", + "Predicción obtenida: 0.248\n", + "\tR²: 0.7859555597017408, Desviación Estándar: 0.020766719698698297, Varianza: 0.0004312566470443038, Incertidumbre: 0.004894762773983275\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = -0.038x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.435\n", + "Predicción obtenida: 0.283\n", + "\tR²: 0.6584792308147298, Desviación Estándar: 0.02623158211259663, Varianza: 0.0006880959001298995, Incertidumbre: 0.006182843197689607\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.033x + 0.24\n", + "Valor del parámetro correlacionado para la aeronave: 0.93\n", + "Predicción obtenida: 0.271\n", + "\tR²: 0.3698412259519205, Desviación Estándar: 0.03612198254213046, Varianza: 0.001304797622773978, Incertidumbre: 0.008760867613407119\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.001x + 0.257\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 0.274\n", + "\tR²: 0.6742199186237361, Desviación Estándar: 0.025535772267198973, Varianza: 0.0006520756652822481, Incertidumbre: 0.005709972264741082\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = -0.0x + 0.32\n", + "Valor del parámetro correlacionado para la aeronave: 470.718\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.08349677643343056, Desviación Estándar: 0.04283055788146815, Varianza: 0.0018344566884377933, Incertidumbre: 0.009577203893720215\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.03x + 0.189\n", + "Valor del parámetro correlacionado para la aeronave: 2.45\n", + "Predicción obtenida: 0.263\n", + "\tR²: 0.5567962058793969, Desviación Estándar: 0.03029342092653269, Varianza: 0.0009176913514320887, Incertidumbre: 0.007347233778905335\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 2.2\n", + "Predicción obtenida: 0.281\n", + "\tR²: 0.7713758958351147, Desviación Estándar: 0.017936323591463472, Varianza: 0.00032171170397768915, Incertidumbre: 0.004350197453109518\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.5559821413548826, Desviación Estándar: 0.021644010407351307, Varianza: 0.0004684631865135317, Incertidumbre: 0.00624808761751367\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278]\n", + "Ecuación de regresión: y = 0.002x + 0.247\n", + "Valor del parámetro correlacionado para la aeronave: 3.45\n", + "Predicción obtenida: 0.253\n", + "\tR²: 0.037864541216720005, Desviación Estándar: 0.04025536882356717, Varianza: 0.001620494719121424, Incertidumbre: 0.018002748229764387\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.248', 'Relación de aspecto del ala: 0.283', 'Longitud del fuselaje: 0.271', 'Peso máximo al despegue (MTOW): 0.274', 'Alcance de la aeronave: 0.313', 'envergadura: 0.263', 'payload: 0.281', 'Crucero KIAS: 0.292', 'Empty weight: 0.253']\n", + "**Mediana calculada:** 0.281\n", + "\n", + "--- Imputación para aeronave: **V32** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.0x + 0.222\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.005879006239630669, Desviación Estándar: 0.044414071195000175, Varianza: 0.0019726097201145446, Incertidumbre: 0.010468496974028912\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.005x + 0.182\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.41638810258008374, Desviación Estándar: 0.03365333043822183, Varianza: 0.0011325466495841479, Incertidumbre: 0.007720603499673174\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valor del parámetro correlacionado para la aeronave: 1.03\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.764143155594072, Desviación Estándar: 0.021393912896673372, Varianza: 0.0004576995090304473, Incertidumbre: 0.004908100227553197\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 14.194\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.663976576642759, Desviación Estándar: 0.02553587580427515, Varianza: 0.000652080953091365, Incertidumbre: 0.0058583316876653045\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.033x + 0.242\n", + "Valor del parámetro correlacionado para la aeronave: 1.0\n", + "Predicción obtenida: 0.275\n", + "\tR²: 0.3766225687592737, Desviación Estándar: 0.03517033453390517, Varianza: 0.0012369524312268022, Incertidumbre: 0.00828972734850792\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valor del parámetro correlacionado para la aeronave: 23.5\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.6799609284870747, Desviación Estándar: 0.02496000967487211, Varianza: 0.0006230020829697093, Incertidumbre: 0.0054467206515205506\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = -0.0x + 0.318\n", + "Valor del parámetro correlacionado para la aeronave: 473.211\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.07878328572710314, Desviación Estándar: 0.04234714665946332, Varianza: 0.0017932808301980953, Incertidumbre: 0.00924090500154224\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.029x + 0.194\n", + "Valor del parámetro correlacionado para la aeronave: 3.2\n", + "Predicción obtenida: 0.287\n", + "\tR²: 0.5552407456896347, Desviación Estándar: 0.02970731891220461, Varianza: 0.0008825247969514297, Incertidumbre: 0.007002082217897084\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.294\n", + "\tR²: 0.7842231008826372, Desviación Estándar: 0.017431002224719133, Varianza: 0.00030383983855816337, Incertidumbre: 0.004108526625325565\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.5586324629674886, Desviación Estándar: 0.021009020466072784, Varianza: 0.00044137894094386517, Incertidumbre: 0.005826853887515214\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", + "Valor del parámetro correlacionado para la aeronave: 6.45\n", + "Predicción obtenida: 0.264\n", + "\tR²: 0.009256571042910555, Desviación Estándar: 0.03798189451706237, Varianza: 0.0014426243111052524, Incertidumbre: 0.015506043505169485\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.304', 'Velocidad a la que se realiza el crucero (KTAS): 0.292', 'Área del ala: 0.288', 'Relación de aspecto del ala: 0.292', 'Longitud del fuselaje: 0.275', 'Peso máximo al despegue (MTOW): 0.29', 'Alcance de la aeronave: 0.311', 'envergadura: 0.287', 'payload: 0.294', 'Crucero KIAS: 0.291', 'Empty weight: 0.264']\n", + "**Mediana calculada:** 0.291\n", + "\n", + "--- Imputación para aeronave: **V35** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.0x + 0.227\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.00512115327712892, Desviación Estándar: 0.043329805954573745, Varianza: 0.0018774720840610147, Incertidumbre: 0.009940539231537572\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.005x + 0.182\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.4192571699084816, Desviación Estándar: 0.032802224457642644, Varianza: 0.0010759859293695694, Incertidumbre: 0.007334800370049512\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valor del parámetro correlacionado para la aeronave: 1.202\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.7651489951552293, Desviación Estándar: 0.02085967698747946, Varianza: 0.0004351261240219801, Incertidumbre: 0.00466436557326921\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 13.909\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.6656139724811423, Desviación Estándar: 0.02489060361542516, Varianza: 0.000619542148340216, Incertidumbre: 0.005565708168509269\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 1.88\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.37241241226406685, Desviación Estándar: 0.03441429034951141, Varianza: 0.0011843433802604744, Incertidumbre: 0.007895179676167752\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 0.302\n", + "\tR²: 0.682451786672694, Desviación Estándar: 0.024387054383523732, Varianza: 0.0005947284215049441, Incertidumbre: 0.005199337464370489\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = -0.0x + 0.317\n", + "Valor del parámetro correlacionado para la aeronave: 477.686\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.0764508060932585, Desviación Estándar: 0.04158957925260002, Varianza: 0.0017296931024082978, Incertidumbre: 0.008866928089582757\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.029x + 0.195\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 0.296\n", + "\tR²: 0.5565499378750433, Desviación Estándar: 0.028928372807546923, Varianza: 0.0008368507532924203, Incertidumbre: 0.00663662387732458\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 0.317\n", + "\tR²: 0.7895139994440685, Desviación Estándar: 0.0169782050018478, Varianza: 0.0002882594450847696, Incertidumbre: 0.003895067360303755\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.5604899238980319, Desviación Estándar: 0.020244967299597776, Varianza: 0.0004098587009617832, Incertidumbre: 0.005410695102966922\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.32', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.303', 'Longitud del fuselaje: 0.304', 'Peso máximo al despegue (MTOW): 0.302', 'Alcance de la aeronave: 0.31', 'envergadura: 0.296', 'payload: 0.317', 'Crucero KIAS: 0.313']\n", + "**Mediana calculada:** 0.304\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.0x + 0.227\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.4130031365050483, Desviación Estándar: 0.03218362230740495, Varianza: 0.0010357855448256935, Incertidumbre: 0.00702304216007393\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valor del parámetro correlacionado para la aeronave: 1.203\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.7648474342748249, Desviación Estándar: 0.0203700405430836, Varianza: 0.0004149385517268696, Incertidumbre: 0.004445107271333332\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 14.054\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.6655940393757499, Desviación Estándar: 0.024291483455634172, Varianza: 0.0005900761684753486, Incertidumbre: 0.005300836270391003\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 1.954\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.3724510383824907, Desviación Estándar: 0.03354292212178016, Varianza: 0.0011251276244678085, Incertidumbre: 0.007500425402828191\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.6824856544856703, Desviación Estándar: 0.02385554248252102, Varianza: 0.0005690869071353651, Incertidumbre: 0.004974224462756526\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = -0.0x + 0.317\n", + "Valor del parámetro correlacionado para la aeronave: 475.377\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.07597157149437128, Desviación Estándar: 0.04069586533624133, Varianza: 0.001656153455465489, Incertidumbre: 0.008485674515131983\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.029x + 0.195\n", + "Valor del parámetro correlacionado para la aeronave: 3.9\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.5548768238027968, Desviación Estándar: 0.02824991788942962, Varianza: 0.0007980578607595157, Incertidumbre: 0.006316873675955201\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.7844930543930171, Desviación Estándar: 0.016790498176847062, Varianza: 0.0002819208290267045, Incertidumbre: 0.0037544695299516315\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.5561091968076497, Desviación Estándar: 0.019679701564958057, Varianza: 0.00038729065368581255, Incertidumbre: 0.005081277094627639\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.306', 'Peso máximo al despegue (MTOW): 0.291', 'Alcance de la aeronave: 0.31', 'envergadura: 0.308', 'payload: 0.293', 'Crucero KIAS: 0.312']\n", + "**Mediana calculada:** 0.304\n", + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.0x + 0.227\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.4130031365050483, Desviación Estándar: 0.03218362230740495, Varianza: 0.0010357855448256935, Incertidumbre: 0.00702304216007393\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valor del parámetro correlacionado para la aeronave: 1.424\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.764585109854175, Desviación Estándar: 0.019912811825215336, Varianza: 0.0003965200747864357, Incertidumbre: 0.00424542574579038\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 13.657\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.6645264748338366, Desviación Estándar: 0.023770852184850387, Varianza: 0.0005650534135940064, Incertidumbre: 0.00506796271419343\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 2.02\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.37232112301089393, Desviación Estándar: 0.032738858426763454, Varianza: 0.0010718328510876604, Incertidumbre: 0.007144204614623162\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.6786409596766527, Desviación Estándar: 0.023499467179320575, Varianza: 0.0005522249577119649, Incertidumbre: 0.004796808651384641\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = -0.0x + 0.316\n", + "Valor del parámetro correlacionado para la aeronave: 482.568\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.0755252570158883, Desviación Estándar: 0.03985752064225148, Varianza: 0.0015886219517475032, Incertidumbre: 0.00813588233216365\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = 0.029x + 0.195\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 0.383\n", + "\tR²: 0.5544873995856561, Desviación Estándar: 0.027581937552100175, Varianza: 0.0007607632791279538, Incertidumbre: 0.006018872221240193\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.354\n", + "\tR²: 0.7813065689753644, Desviación Estándar: 0.016547337226329974, Varianza: 0.0002738143692818858, Incertidumbre: 0.003610925018553225\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.5561091968076497, Desviación Estándar: 0.019679701564958057, Varianza: 0.00038729065368581255, Incertidumbre: 0.005081277094627639\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.316', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.313', 'Alcance de la aeronave: 0.31', 'envergadura: 0.383', 'payload: 0.354', 'Crucero KIAS: 0.312']\n", + "**Mediana calculada:** 0.313\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Ecuación de regresión: y = 0.0x + 0.227\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 0.362\n", + "\tR²: 0.41332607845278324, Desviación Estándar: 0.03146617256189972, Varianza: 0.0009901200156952508, Incertidumbre: 0.006708610531166274\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valor del parámetro correlacionado para la aeronave: 0.88\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.7647651611026156, Desviación Estándar: 0.019487043559427698, Varianza: 0.00037974486668703253, Incertidumbre: 0.004063329469498759\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.116\n", + "Predicción obtenida: 0.295\n", + "\tR²: 0.6651927379024003, Desviación Estándar: 0.023248373246514756, Varianza: 0.000540486858609263, Incertidumbre: 0.004847620925277197\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 2.05\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.3735742379948259, Desviación Estándar: 0.03200010007033279, Varianza: 0.0010240064045113127, Incertidumbre: 0.006822444258446171\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 0.279\n", + "\tR²: 0.6788110572536825, Desviación Estándar: 0.023024764599624735, Varianza: 0.0005301397848681324, Incertidumbre: 0.004604952919924947\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = -0.0x + 0.317\n", + "Valor del parámetro correlacionado para la aeronave: 474.569\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.07577157816533575, Desviación Estándar: 0.039057511178466925, Varianza: 0.001525489179456069, Incertidumbre: 0.007811502235693385\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.023x + 0.215\n", + "Valor del parámetro correlacionado para la aeronave: 2.6\n", + "Predicción obtenida: 0.274\n", + "\tR²: 0.456917343395016, Desviación Estándar: 0.02979541908647188, Varianza: 0.0008877669985384927, Incertidumbre: 0.006352404693351432\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 0.289\n", + "\tR²: 0.7248069548381981, Desviación Estándar: 0.018136863954327922, Varianza: 0.0003289458340977995, Incertidumbre: 0.0038667923875069623\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313]\n", + "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.5625917571382832, Desviación Estándar: 0.01905614616302398, Varianza: 0.00036313670658653355, Incertidumbre: 0.004764036540755995\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291]\n", + "Ecuación de regresión: y = 0.0x + 0.265\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 0.268\n", + "\tR²: 0.003649740403420809, Desviación Estándar: 0.03643263340678523, Varianza: 0.0013273367769532033, Incertidumbre: 0.013770241085933945\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.362', 'Área del ala: 0.278', 'Relación de aspecto del ala: 0.295', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.279', 'Alcance de la aeronave: 0.31', 'envergadura: 0.274', 'payload: 0.289', 'Crucero KIAS: 0.346', 'Empty weight: 0.268']\n", + "**Mediana calculada:** 0.295\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295]\n", + "Ecuación de regresión: y = 0.0x + 0.23\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.004769951987118937, Desviación Estándar: 0.04125452439215927, Varianza: 0.0017019357828232645, Incertidumbre: 0.009002475275546283\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valor del parámetro correlacionado para la aeronave: 26.25\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.31968876592912787, Desviación Estándar: 0.03317908352641865, Varianza: 0.0011008515836530652, Incertidumbre: 0.006918317160461927\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.069x + 0.219\n", + "Valor del parámetro correlacionado para la aeronave: 1.0\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.7583363925473515, Desviación Estándar: 0.01935863479576612, Varianza: 0.0003747567411558467, Incertidumbre: 0.003951564780542887\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 14.013\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.6659813449336012, Desviación Estándar: 0.02275906736360552, Varianza: 0.000517975147261134, Incertidumbre: 0.0046456751718719266\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.031x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 2.03\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.36900063185025456, Desviación Estándar: 0.03143801363195717, Varianza: 0.0009883487011231248, Incertidumbre: 0.006555278991585878\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.001x + 0.26\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.674546027930947, Desviación Estándar: 0.022774473008881708, Varianza: 0.0005186766208322815, Incertidumbre: 0.00446644162631077\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = -0.0x + 0.316\n", + "Valor del parámetro correlacionado para la aeronave: 476.384\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.074422965024465, Desviación Estándar: 0.03840695118941138, Varianza: 0.0014750938996658278, Incertidumbre: 0.00753222282970824\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.022x + 0.219\n", + "Valor del parámetro correlacionado para la aeronave: 2.93\n", + "Predicción obtenida: 0.284\n", + "\tR²: 0.44716444549394097, Desviación Estándar: 0.029426500593546755, Varianza: 0.0008659189371820075, Incertidumbre: 0.006135849529013565\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.7276037635441446, Desviación Estándar: 0.01777586747096132, Varianza: 0.00031598146434518075, Incertidumbre: 0.0037065245900637154\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295]\n", + "Ecuación de regresión: y = 0.003x + 0.226\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.41805913592782484, Desviación Estándar: 0.021338848229013108, Varianza: 0.00045534644374085583, Incertidumbre: 0.005175430892779141\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295]\n", + "Ecuación de regresión: y = 0.0x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 7.1\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.001017512275129695, Desviación Estándar: 0.03522803474762737, Varianza: 0.001241014432180041, Incertidumbre: 0.012454991128961318\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.309', 'Área del ala: 0.288', 'Relación de aspecto del ala: 0.299', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.298', 'Alcance de la aeronave: 0.309', 'envergadura: 0.284', 'payload: 0.298', 'Crucero KIAS: 0.304', 'Empty weight: 0.272']\n", + "**Mediana calculada:** 0.299\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.0x + 0.231\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.0046024842532983445, Desviación Estándar: 0.040314820357117226, Varianza: 0.0016252847404266335, Incertidumbre: 0.008595148579885139\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 1.33\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.7551997675782928, Desviación Estándar: 0.0190968572628113, Varianza: 0.0003646899573161887, Incertidumbre: 0.0038193714525622596\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 13.722\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.6662095809690938, Desviación Estándar: 0.022299386888745724, Varianza: 0.0004972626556139646, Incertidumbre: 0.004459877377749145\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.031x + 0.244\n", + "Valor del parámetro correlacionado para la aeronave: 2.488\n", + "Predicción obtenida: 0.322\n", + "\tR²: 0.3669311075827396, Desviación Estándar: 0.030832212553008696, Varianza: 0.0009506253309139069, Incertidumbre: 0.006293599032992129\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.001x + 0.26\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.6751025711511651, Desviación Estándar: 0.0223500545446565, Varianza: 0.0004995249381491208, Incertidumbre: 0.00430127000258675\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = -0.0x + 0.315\n", + "Valor del parámetro correlacionado para la aeronave: 482.044\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.07362847696573804, Desviación Estándar: 0.03773966564722344, Varianza: 0.001424282363164217, Incertidumbre: 0.007263002040183641\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.022x + 0.221\n", + "Valor del parámetro correlacionado para la aeronave: 3.6\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.44117112031756955, Desviación Estándar: 0.02896800757279921, Varianza: 0.0008391454627377525, Incertidumbre: 0.0059130697848697586\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.7298053627667499, Desviación Estándar: 0.01740232203287305, Varianza: 0.0003028408121358188, Incertidumbre: 0.0035522341100110203\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.0x + 0.274\n", + "Valor del parámetro correlacionado para la aeronave: 11.5\n", + "Predicción obtenida: 0.275\n", + "\tR²: 0.000345064333019951, Desviación Estándar: 0.03430275891623664, Varianza: 0.0011766792692654523, Incertidumbre: 0.01143425297207888\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Área del ala: 0.311', 'Relación de aspecto del ala: 0.311', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.298', 'Alcance de la aeronave: 0.309', 'envergadura: 0.299', 'payload: 0.315', 'Empty weight: 0.275']\n", + "**Mediana calculada:** 0.309\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.0x + 0.229\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.004885808051522722, Desviación Estándar: 0.03944852241805123, Varianza: 0.0015561859209674905, Incertidumbre: 0.008225585537417332\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valor del parámetro correlacionado para la aeronave: 32.813\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.3176237816578882, Desviación Estándar: 0.03254110628346504, Varianza: 0.0010589235981517682, Incertidumbre: 0.006642425505013738\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 1.32\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.7552867180720797, Desviación Estándar: 0.018728748952686985, Varianza: 0.0003507660373327738, Incertidumbre: 0.003673009860574284\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 13.684\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.6663591073897637, Desviación Estándar: 0.021868532210116903, Varianza: 0.0004782327010249204, Incertidumbre: 0.004288772018193017\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.031x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 2.42\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.3631026056008778, Desviación Estándar: 0.03031715002312391, Varianza: 0.0009191295855246022, Incertidumbre: 0.006063430004624782\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.001x + 0.261\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.6721978753808997, Desviación Estándar: 0.02204574905530395, Varianza: 0.00048601505140943494, Incertidumbre: 0.004166254961890813\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = -0.0x + 0.315\n", + "Valor del parámetro correlacionado para la aeronave: 300.0\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.07367366337637671, Desviación Estándar: 0.037059621839270106, Varianza: 0.0013734155708697057, Incertidumbre: 0.007003610219200486\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.022x + 0.221\n", + "Valor del parámetro correlacionado para la aeronave: 3.6\n", + "Predicción obtenida: 0.3\n", + "\tR²: 0.43919899422207664, Desviación Estándar: 0.02844841198320688, Varianza: 0.0008093121443662688, Incertidumbre: 0.005689682396641376\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.7285836979639178, Desviación Estándar: 0.017095423279435584, Varianza: 0.0002922534971030681, Incertidumbre: 0.003419084655887117\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299]\n", + "Ecuación de regresión: y = 0.003x + 0.226\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.41660766587250275, Desviación Estándar: 0.020763504630057248, Varianza: 0.0004311231245224087, Incertidumbre: 0.004894004975037253\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309]\n", + "Ecuación de regresión: y = 0.001x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 11.0\n", + "Predicción obtenida: 0.281\n", + "\tR²: 0.00958847480002567, Desviación Estándar: 0.03395743305078767, Varianza: 0.0011531072593987265, Incertidumbre: 0.010738283193316921\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.334', 'Área del ala: 0.31', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.319', 'Peso máximo al despegue (MTOW): 0.314', 'Alcance de la aeronave: 0.311', 'envergadura: 0.3', 'payload: 0.315', 'Crucero KIAS: 0.323', 'Empty weight: 0.281']\n", + "**Mediana calculada:** 0.312\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.0x + 0.227\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.005277507804714032, Desviación Estándar: 0.03865833333585721, Varianza: 0.0014944667363062491, Incertidumbre: 0.007891099248272937\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312]\n", + "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.3066672465334307, Desviación Estándar: 0.032165160212105026, Varianza: 0.0010345975314703841, Incertidumbre: 0.006433032042421005\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 0.398\n", + "\tR²: 0.7555609689379138, Desviación Estándar: 0.018382843455420142, Varianza: 0.0003379289335064831, Incertidumbre: 0.003537779872485856\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = -0.039x + 0.839\n", + "Valor del parámetro correlacionado para la aeronave: 12.713\n", + "Predicción obtenida: 0.349\n", + "\tR²: 0.6668851212909376, Desviación Estándar: 0.0214597386033369, Varianza: 0.00046052038092354804, Incertidumbre: 0.004129928619791854\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.03x + 0.245\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 0.352\n", + "\tR²: 0.36315238206647993, Desviación Estándar: 0.02976054264839433, Varianza: 0.0008856898987268976, Incertidumbre: 0.005836522603818192\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352]\n", + "Ecuación de regresión: y = 0.883x + 0.101\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 0.432\n", + "\tR²: 0.40209852192250706, Desviación Estándar: 0.03661787969369935, Varianza: 0.001340869113262239, Incertidumbre: 0.02114134269831065\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.001x + 0.261\n", + "Valor del parámetro correlacionado para la aeronave: 90.0\n", + "Predicción obtenida: 0.381\n", + "\tR²: 0.67222934329996, Desviación Estándar: 0.021666156030378594, Varianza: 0.00046942231713271076, Incertidumbre: 0.004023304171057925\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = -0.0x + 0.315\n", + "Valor del parámetro correlacionado para la aeronave: 615.631\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.07408169434278955, Desviación Estándar: 0.03641523910867908, Varianza: 0.0013260696393422703, Incertidumbre: 0.006762140141084367\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.022x + 0.222\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.33\n", + "\tR²: 0.4363264574290574, Desviación Estándar: 0.027998638079495427, Varianza: 0.0007839237343065714, Incertidumbre: 0.005490984689283431\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.358\n", + "\tR²: 0.7282681597919514, Desviación Estándar: 0.016773711285579456, Varianza: 0.00028135739029197564, Incertidumbre: 0.0032895954292515833\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312]\n", + "Ecuación de regresión: y = 0.003x + 0.228\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 0.331\n", + "\tR²: 0.4160144196233093, Desviación Estándar: 0.020338026156813578, Varianza: 0.00041363530795523323, Incertidumbre: 0.004665863196244067\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312]\n", + "Ecuación de regresión: y = 0.001x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.02251377090831741, Desviación Estándar: 0.033563109667469955, Varianza: 0.0011264823305506154, Incertidumbre: 0.010119658324049803\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.304', 'Velocidad a la que se realiza el crucero (KTAS): 0.344', 'Área del ala: 0.398', 'Relación de aspecto del ala: 0.349', 'Longitud del fuselaje: 0.352', 'Ancho del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.307', 'envergadura: 0.33', 'payload: 0.358', 'Crucero KIAS: 0.331', 'Empty weight: 0.311']\n", + "**Mediana calculada:** 0.346\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.0x + 0.215\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.305\n", + "\tR²: 0.0069178491819321675, Desviación Estándar: 0.03877743810622532, Varianza: 0.0015036897060821354, Incertidumbre: 0.007755487621245063\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valor del parámetro correlacionado para la aeronave: 30.625\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.3363378708178395, Desviación Estándar: 0.03154190924564428, Varianza: 0.0009948920388604602, Incertidumbre: 0.006185877336135111\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.059x + 0.229\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 0.385\n", + "\tR²: 0.7140844954505441, Desviación Estándar: 0.019953273741700576, Varianza: 0.00039813313301123777, Incertidumbre: 0.003770814297295355\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = -0.038x + 0.836\n", + "Valor del parámetro correlacionado para la aeronave: 13.046\n", + "Predicción obtenida: 0.336\n", + "\tR²: 0.6808265849574946, Desviación Estándar: 0.021081847262580024, Varianza: 0.00044444428400275285, Incertidumbre: 0.003984094645331039\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.03x + 0.246\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 0.351\n", + "\tR²: 0.3920963576822901, Desviación Estándar: 0.02922109638467694, Varianza: 0.0008538724739225799, Incertidumbre: 0.0056236026212364105\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.346]\n", + "Ecuación de regresión: y = 0.4x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 0.358\n", + "\tR²: 0.38245795781242664, Desviación Estándar: 0.0353855035263058, Varianza: 0.0012521338598102006, Incertidumbre: 0.0176927517631529\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.001x + 0.263\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 0.387\n", + "\tR²: 0.6598630268437224, Desviación Estándar: 0.02206649940336974, Varianza: 0.0004869303959189171, Incertidumbre: 0.004028773162799966\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = -0.0x + 0.317\n", + "Valor del parámetro correlacionado para la aeronave: 800.0\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.07051034083815089, Desviación Estándar: 0.03647781384637196, Varianza: 0.0013306309030105662, Incertidumbre: 0.0066599071640440705\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.022x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.4566675873516166, Desviación Estándar: 0.027625614100153503, Varianza: 0.0007631745544106001, Incertidumbre: 0.005316551912417449\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.377\n", + "\tR²: 0.7340964250736124, Desviación Estándar: 0.01659158262598554, Varianza: 0.0002752806140349053, Incertidumbre: 0.0031930515651315567\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.003x + 0.224\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 0.317\n", + "\tR²: 0.4797563623056019, Desviación Estándar: 0.02006710184638167, Varianza: 0.0004026885765130546, Incertidumbre: 0.004487140383992096\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.305', 'Velocidad a la que se realiza el crucero (KTAS): 0.324', 'Área del ala: 0.385', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.351', 'Ancho del fuselaje: 0.358', 'Peso máximo al despegue (MTOW): 0.387', 'Alcance de la aeronave: 0.306', 'envergadura: 0.332', 'payload: 0.377', 'Crucero KIAS: 0.317']\n", + "**Mediana calculada:** 0.336\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.0x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.008204928681858958, Desviación Estándar: 0.038476561679856074, Varianza: 0.001480445798703769, Incertidumbre: 0.007545874570059327\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 33.885\n", + "Predicción obtenida: 0.337\n", + "\tR²: 0.3474595488240295, Desviación Estándar: 0.03103314635842597, Varianza: 0.000963056172903487, Incertidumbre: 0.005972331801279429\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.053x + 0.236\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 0.375\n", + "\tR²: 0.6729975157002732, Desviación Estándar: 0.021200760020167443, Varianza: 0.0004494722254327303, Incertidumbre: 0.003936882301555514\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = -0.038x + 0.836\n", + "Valor del parámetro correlacionado para la aeronave: 12.876\n", + "Predicción obtenida: 0.343\n", + "\tR²: 0.6878032793029674, Desviación Estándar: 0.020715244926136148, Varianza: 0.00042912137234980943, Incertidumbre: 0.0038467244119793098\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.029x + 0.248\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 0.348\n", + "\tR²: 0.4021070843542891, Desviación Estándar: 0.02880802670233707, Varianza: 0.0008299024024825657, Incertidumbre: 0.005444205315492288\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.335x + 0.222\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 0.348\n", + "\tR²: 0.3819496237120672, Desviación Estándar: 0.032423341688487206, Varianza: 0.0010512730862483922, Incertidumbre: 0.01450015921463204\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.001x + 0.267\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 0.377\n", + "\tR²: 0.61787092141232, Desviación Estándar: 0.023196525022263995, Varianza: 0.0005380787731085197, Incertidumbre: 0.004166218882595367\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = -0.0x + 0.317\n", + "Valor del parámetro correlacionado para la aeronave: 609.354\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.0654907654203285, Desviación Estándar: 0.03627518909145652, Varianza: 0.0013158893436209262, Incertidumbre: 0.006515216292849419\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.022x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.46936427126981495, Desviación Estándar: 0.027139388088225875, Varianza: 0.0007365463858033365, Incertidumbre: 0.005128862258279595\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.004x + 0.276\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.6901097817245, Desviación Estándar: 0.01772848171904924, Varianza: 0.00031429906406266314, Incertidumbre: 0.0033503681250970823\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336]\n", + "Ecuación de regresión: y = 0.003x + 0.222\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 0.342\n", + "\tR²: 0.4932580403474792, Desviación Estándar: 0.019996932601760886, Varianza: 0.00039987731347936734, Incertidumbre: 0.004363688443547595\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Ecuación de regresión: y = 0.002x + 0.263\n", + "Valor del parámetro correlacionado para la aeronave: 35.0\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.23082193042213683, Desviación Estándar: 0.03253007300095766, Varianza: 0.0010582056494476341, Incertidumbre: 0.00939062320193054\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.337', 'Área del ala: 0.375', 'Relación de aspecto del ala: 0.343', 'Longitud del fuselaje: 0.348', 'Ancho del fuselaje: 0.348', 'Peso máximo al despegue (MTOW): 0.377', 'Alcance de la aeronave: 0.309', 'envergadura: 0.332', 'payload: 0.332', 'Crucero KIAS: 0.342', 'Empty weight: 0.344']\n", + "**Mediana calculada:** 0.342\n", + "\n", + "--- Imputación para aeronave: **Volitation VT510** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.0x + 0.199\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.009671200460906637, Desviación Estándar: 0.038341789857909814, Varianza: 0.0014700928495081159, Incertidumbre: 0.007378880898558765\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 32.813\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.3657078235083421, Desviación Estándar: 0.030486197686657987, Varianza: 0.0009294082493899907, Incertidumbre: 0.005761349821346404\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.049x + 0.24\n", + "Valor del parámetro correlacionado para la aeronave: 1.993\n", + "Predicción obtenida: 0.339\n", + "\tR²: 0.6607991636850806, Desviación Estándar: 0.021542829923793395, Varianza: 0.00046409352112548814, Incertidumbre: 0.003933164633919647\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = -0.038x + 0.835\n", + "Valor del parámetro correlacionado para la aeronave: 13.114\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.6968007721860683, Desviación Estándar: 0.020367528893078666, Varianza: 0.00041483623321039427, Incertidumbre: 0.003718585005125804\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.028x + 0.249\n", + "Valor del parámetro correlacionado para la aeronave: 2.905\n", + "Predicción obtenida: 0.331\n", + "\tR²: 0.41997296733972356, Desviación Estándar: 0.028328973372175076, Varianza: 0.0008025307323214044, Incertidumbre: 0.005260558290554748\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.001x + 0.269\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 0.371\n", + "\tR²: 0.6038191426117239, Desviación Estándar: 0.02351157571063262, Varianza: 0.0005527941923968098, Incertidumbre: 0.004156298655342311\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = -0.0x + 0.318\n", + "Valor del parámetro correlacionado para la aeronave: 501.616\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.06342608491681201, Desviación Estándar: 0.03614981016848977, Varianza: 0.0013068087752178463, Incertidumbre: 0.006390443977186381\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.023x + 0.219\n", + "Valor del parámetro correlacionado para la aeronave: 5.1\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.4836792530977432, Desviación Estándar: 0.026728002730142274, Varianza: 0.0007143861299424928, Incertidumbre: 0.004963265505770935\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.004x + 0.276\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.37\n", + "\tR²: 0.6941742799016253, Desviación Estándar: 0.01751465394968648, Varianza: 0.00030676310297726825, Incertidumbre: 0.0032523895882410683\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.003x + 0.222\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.5326016124134147, Desviación Estándar: 0.019537228035800464, Varianza: 0.0003817032793228677, Incertidumbre: 0.004165351012835574\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.334', 'Área del ala: 0.339', 'Relación de aspecto del ala: 0.334', 'Longitud del fuselaje: 0.331', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.312', 'envergadura: 0.335', 'payload: 0.37', 'Crucero KIAS: 0.325']\n", + "**Mediana calculada:** 0.334\n", + "\n", + "--- Imputación para aeronave: **Ascend** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", + "Ecuación de regresión: y = 0.0x + 0.199\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.009671200460906637, Desviación Estándar: 0.038341789857909814, Varianza: 0.0014700928495081159, Incertidumbre: 0.007378880898558765\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.3754279357663507, Desviación Estándar: 0.02995609491552544, Varianza: 0.0008973676225879692, Incertidumbre: 0.005562707175802361\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.049x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 0.771\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.6655989150459374, Desviación Estándar: 0.021207046925550192, Varianza: 0.00044973883930248784, Incertidumbre: 0.0038088980681594306\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = -0.038x + 0.836\n", + "Valor del parámetro correlacionado para la aeronave: 14.357\n", + "Predicción obtenida: 0.286\n", + "\tR²: 0.7014972579081873, Desviación Estándar: 0.02003643818748548, Varianza: 0.0004014588552409264, Incertidumbre: 0.003598650532204136\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.028x + 0.248\n", + "Valor del parámetro correlacionado para la aeronave: 1.562\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.4296493321511522, Desviación Estándar: 0.027858702470545647, Varianza: 0.0007761073033423862, Incertidumbre: 0.005086279921980917\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.001x + 0.271\n", + "Valor del parámetro correlacionado para la aeronave: 9.5\n", + "Predicción obtenida: 0.28\n", + "\tR²: 0.582320619650718, Desviación Estándar: 0.023909852818436363, Varianza: 0.0005716810617992893, Incertidumbre: 0.0041621711328791375\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = -0.0x + 0.319\n", + "Valor del parámetro correlacionado para la aeronave: 478.644\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.06366520088212502, Desviación Estándar: 0.03579900590384107, Varianza: 0.0012815688237032483, Incertidumbre: 0.006231807033284842\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.023x + 0.219\n", + "Valor del parámetro correlacionado para la aeronave: 2.0\n", + "Predicción obtenida: 0.265\n", + "\tR²: 0.4924880946399838, Desviación Estándar: 0.026279253552868982, Varianza: 0.000690599167295977, Incertidumbre: 0.004797913321768041\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.003x + 0.278\n", + "Valor del parámetro correlacionado para la aeronave: 0.6\n", + "Predicción obtenida: 0.28\n", + "\tR²: 0.6596231201497137, Desviación Estándar: 0.018262602460999124, Varianza: 0.0003335226486484913, Incertidumbre: 0.0033342797755461936\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Ecuación de regresión: y = 0.003x + 0.221\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.5479865342925803, Desviación Estándar: 0.019192420183738294, Varianza: 0.0003683489925091651, Incertidumbre: 0.004001896248949366\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342]\n", + "Ecuación de regresión: y = 0.002x + 0.263\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.3428931453094083, Desviación Estándar: 0.031257301972751485, Varianza: 0.000977018926615774, Incertidumbre: 0.008669215768878245\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.278', 'Relación de aspecto del ala: 0.286', 'Longitud del fuselaje: 0.293', 'Peso máximo al despegue (MTOW): 0.28', 'Alcance de la aeronave: 0.313', 'envergadura: 0.265', 'payload: 0.28', 'Crucero KIAS: 0.291', 'Empty weight: 0.27']\n", + "**Mediana calculada:** 0.286\n", + "\n", + "--- Imputación para aeronave: **Transition** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286]\n", + "Ecuación de regresión: y = 0.0x + 0.204\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.008560595514286895, Desviación Estándar: 0.03787184264181916, Varianza: 0.0014342764650867124, Incertidumbre: 0.0071571055230017794\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valor del parámetro correlacionado para la aeronave: 21.875\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.38249062220586694, Desviación Estándar: 0.029467308778454444, Varianza: 0.0008683222866447784, Incertidumbre: 0.0053799699089765\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.049x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 0.986\n", + "Predicción obtenida: 0.289\n", + "\tR²: 0.6683533020403162, Desviación Estándar: 0.020914188913517928, Varianza: 0.00043740329791031626, Incertidumbre: 0.00369714120094126\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = -0.038x + 0.836\n", + "Valor del parámetro correlacionado para la aeronave: 14.233\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.7051191690209833, Desviación Estándar: 0.019720887637784245, Varianza: 0.0003889134092221115, Incertidumbre: 0.003486193344923798\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.029x + 0.248\n", + "Valor del parámetro correlacionado para la aeronave: 2.3\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.4350653976176332, Desviación Estándar: 0.027431632448403815, Varianza: 0.000752494458784321, Incertidumbre: 0.004926866630983046\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.001x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.5874164948558036, Desviación Estándar: 0.023575730786020113, Varianza: 0.0005558150820948966, Incertidumbre: 0.004043204473503137\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = -0.0x + 0.318\n", + "Valor del parámetro correlacionado para la aeronave: 480.438\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.06137710301442201, Desviación Estándar: 0.035559431175592925, Varianza: 0.0012644731455317298, Incertidumbre: 0.006098392135086606\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.022x + 0.224\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.289\n", + "\tR²: 0.4884294242049745, Desviación Estándar: 0.026103896782224575, Varianza: 0.0006814134272170345, Incertidumbre: 0.004688398265647203\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.003x + 0.279\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 0.284\n", + "\tR²: 0.6689077573598308, Desviación Estándar: 0.017992987405351088, Varianza: 0.00032374759576912293, Incertidumbre: 0.0032316359373020394\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Ecuación de regresión: y = 0.004x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.5566215944971976, Desviación Estándar: 0.018811661715774402, Varianza: 0.00035387861650873226, Incertidumbre: 0.0038399143681247003\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286]\n", + "Ecuación de regresión: y = 0.002x + 0.265\n", + "Valor del parámetro correlacionado para la aeronave: 5.8\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.33191540406967635, Desviación Estándar: 0.030388935680947273, Varianza: 0.0009234874118207502, Incertidumbre: 0.008121784690486755\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.291', 'Longitud del fuselaje: 0.314', 'Peso máximo al despegue (MTOW): 0.288', 'Alcance de la aeronave: 0.312', 'envergadura: 0.289', 'payload: 0.284', 'Crucero KIAS: 0.29', 'Empty weight: 0.278']\n", + "**Mediana calculada:** 0.29\n", + "\n", + "--- Imputación para aeronave: **Reach** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.0x + 0.208\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.0077920393265346055, Desviación Estándar: 0.03734493173285593, Varianza: 0.0013946439261316697, Incertidumbre: 0.006934779727331597\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valor del parámetro correlacionado para la aeronave: 27.344\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.38722452002086527, Desviación Estándar: 0.028988626049815485, Varianza: 0.0008403404402560409, Incertidumbre: 0.005206510937018345\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.049x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 2.329\n", + "Predicción obtenida: 0.355\n", + "\tR²: 0.6708663750067654, Desviación Estándar: 0.02059524463122736, Varianza: 0.00042416410142009946, Incertidumbre: 0.0035851719092382297\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = -0.038x + 0.836\n", + "Valor del parámetro correlacionado para la aeronave: 13.683\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.7073494265597657, Desviación Estándar: 0.01942028138024239, Varianza: 0.00037714732888778933, Incertidumbre: 0.0033806370606726797\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.028x + 0.248\n", + "Valor del parámetro correlacionado para la aeronave: 4.712\n", + "Predicción obtenida: 0.381\n", + "\tR²: 0.4260780462787932, Desviación Estándar: 0.027309060641999183, Varianza: 0.0007457847931483888, Incertidumbre: 0.004827605491948068\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.001x + 0.272\n", + "Valor del parámetro correlacionado para la aeronave: 91.0\n", + "Predicción obtenida: 0.357\n", + "\tR²: 0.5911374094922912, Desviación Estándar: 0.02323782088030035, Varianza: 0.0005399963192649228, Incertidumbre: 0.003927908637521\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644, 480.438]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = -0.0x + 0.318\n", + "Valor del parámetro correlacionado para la aeronave: 491.03\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.059744190947153664, Desviación Estándar: 0.03523949892053134, Varianza: 0.0012418222841701293, Incertidumbre: 0.005956562489437605\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.022x + 0.224\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 0.354\n", + "\tR²: 0.491966702458294, Desviación Estándar: 0.025693687153767065, Varianza: 0.0006601655595556547, Incertidumbre: 0.004542045105028593\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.003x + 0.279\n", + "Valor del parámetro correlacionado para la aeronave: 7.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.6746565418595589, Desviación Estándar: 0.01774066062848476, Varianza: 0.0003147310395350693, Incertidumbre: 0.0031361353582826925\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.004x + 0.22\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.5621478971519628, Desviación Estándar: 0.018431786174629827, Varianza: 0.0003397307415872752, Incertidumbre: 0.0036863572349259653\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Empty weight (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29]\n", + "Ecuación de regresión: y = 0.002x + 0.267\n", + "Valor del parámetro correlacionado para la aeronave: 31.0\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.32516791212624563, Desviación Estándar: 0.029506663193114138, Varianza: 0.0008706431727918767, Incertidumbre: 0.007618587676605494\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.312', 'Área del ala: 0.355', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.381', 'Peso máximo al despegue (MTOW): 0.357', 'Alcance de la aeronave: 0.311', 'envergadura: 0.354', 'payload: 0.303', 'Crucero KIAS: 0.308', 'Empty weight: 0.333']\n", + "**Mediana calculada:** 0.312\n", + "\n", + "=== Imputación para el parámetro: **payload** ===\n", + "\n", + "--- Imputación para aeronave: **AAI Aerosonde** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 10.406x + -4.881\n", + "Valor del parámetro correlacionado para la aeronave: 0.57\n", + "Predicción obtenida: 1.05\n", + "\tR²: 0.7012035885121172, Desviación Estándar: 4.05696673307922, Varianza: 16.458979073311475, Incertidumbre: 0.7171771720021375\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = -7.847x + 117.681\n", + "Valor del parámetro correlacionado para la aeronave: 14.754\n", + "Predicción obtenida: 1.896\n", + "\tR²: 0.7149957845485787, Desviación Estándar: 3.9667001777935313, Varianza: 15.734710300507235, Incertidumbre: 0.6905138688293478\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.204x + 1.036\n", + "Valor del parámetro correlacionado para la aeronave: 13.1\n", + "Predicción obtenida: 3.714\n", + "\tR²: 0.7186101745846443, Desviación Estándar: 3.7341950529878645, Varianza: 13.944212693759042, Incertidumbre: 0.6706812303187741\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.878x + -20.785\n", + "Valor del parámetro correlacionado para la aeronave: 30.846\n", + "Predicción obtenida: 6.284\n", + "\tR²: 0.5501898082120762, Desviación Estándar: 5.100088235913723, Varianza: 26.01090001410555, Incertidumbre: 0.9311444573588917\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 4.794x + -9.245\n", + "Valor del parámetro correlacionado para la aeronave: 2.9\n", + "Predicción obtenida: 4.659\n", + "\tR²: 0.5558518681245512, Desviación Estándar: 5.025362155962813, Varianza: 25.25426479858321, Incertidumbre: 0.9025816878156258\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 198.875x + -52.199\n", + "Valor del parámetro correlacionado para la aeronave: 0.197\n", + "Predicción obtenida: -13.11\n", + "\tR²: 0.6722158191575872, Desviación Estándar: 4.2540023843702155, Varianza: 18.096536286227476, Incertidumbre: 0.7405267635011167\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Empty weight (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Empty weight: [10.886, 17.463, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Valores para payload: [2.495, 2.495, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.388x + 1.17\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 5.053\n", + "\tR²: 0.6045881019855628, Desviación Estándar: 3.3770579595870056, Varianza: 11.404520462409948, Incertidumbre: 0.8719526157771782\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 1.05', 'Relación de aspecto del ala: 1.896', 'Peso máximo al despegue (MTOW): 3.714', 'Velocidad máxima (KIAS): 6.284', 'envergadura: 4.659', 'Cuerda: -13.11', 'Empty weight: 5.053']\n", + "**Mediana calculada:** 3.714\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 10.219x + -4.535\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 5.071\n", + "\tR²: 0.7043549197034407, Desviación Estándar: 4.019442149271862, Varianza: 16.155915191343205, Incertidumbre: 0.699695067594778\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = -7.761x + 116.556\n", + "Valor del parámetro correlacionado para la aeronave: 13.218\n", + "Predicción obtenida: 13.965\n", + "\tR²: 0.7200402040647889, Desviación Estándar: 3.9193674746851532, Varianza: 15.361441401619876, Incertidumbre: 0.6721659765620716\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.204x + 1.036\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 5.125\n", + "\tR²: 0.7248470361708765, Desviación Estándar: 3.675385156868235, Varianza: 13.508456051327343, Incertidumbre: 0.649722441973478\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.887x + -21.192\n", + "Valor del parámetro correlacionado para la aeronave: 41.7\n", + "Predicción obtenida: 15.784\n", + "\tR²: 0.5574907931449841, Desviación Estándar: 5.037319182991233, Varianza: 25.374584551331463, Incertidumbre: 0.9047292332664074\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 4.819x + -9.371\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 5.085\n", + "\tR²: 0.5654022085753986, Desviación Estándar: 4.9488715578269735, Varianza: 24.491329695868778, Incertidumbre: 0.8748451594401715\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 155.509x + -38.199\n", + "Valor del parámetro correlacionado para la aeronave: 0.313\n", + "Predicción obtenida: 10.475\n", + "\tR²: 0.5775590357480013, Desviación Estándar: 4.814499686360729, Varianza: 23.179407229967552, Incertidumbre: 0.8256798843799175\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 5.071', 'Relación de aspecto del ala: 13.965', 'Peso máximo al despegue (MTOW): 5.125', 'Velocidad máxima (KIAS): 15.784', 'envergadura: 5.085', 'Cuerda: 10.475']\n", + "**Mediana calculada:** 7.8\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.899) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 10.116x + -4.31\n", + "Valor del parámetro correlacionado para la aeronave: 0.754\n", + "Predicción obtenida: 3.318\n", + "\tR²: 0.7011908920545251, Desviación Estándar: 3.986164457115577, Varianza: 15.889507079171521, Incertidumbre: 0.6836215645406782\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = -7.633x + 114.627\n", + "Valor del parámetro correlacionado para la aeronave: 14.767\n", + "Predicción obtenida: 1.904\n", + "\tR²: 0.701365229774406, Desviación Estándar: 3.9958441696300517, Varianza: 15.96677062796648, Incertidumbre: 0.6754209402389949\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.202x + 1.199\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 2.515\n", + "\tR²: 0.7210133339229867, Desviación Estándar: 3.6477290781179126, Varianza: 13.305927427346957, Incertidumbre: 0.6349881274802048\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.849x + -20.097\n", + "Valor del parámetro correlacionado para la aeronave: 25.6\n", + "Predicción obtenida: 1.635\n", + "\tR²: 0.5252245995470497, Desviación Estándar: 5.143299088683377, Varianza: 26.453525515651258, Incertidumbre: 0.9092154158196514\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 4.759x + -9.051\n", + "Valor del parámetro correlacionado para la aeronave: 2.1\n", + "Predicción obtenida: 0.943\n", + "\tR²: 0.5626551847696982, Desviación Estándar: 4.894993387759511, Varianza: 23.960960266209337, Incertidumbre: 0.852108974859816\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 155.416x + -38.247\n", + "Valor del parámetro correlacionado para la aeronave: 0.27\n", + "Predicción obtenida: 3.715\n", + "\tR²: 0.5751366916639009, Desviación Estándar: 4.766098029962729, Varianza: 22.715690431214608, Incertidumbre: 0.8056176056952402\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 3.318', 'Relación de aspecto del ala: 1.904', 'Peso máximo al despegue (MTOW): 2.515', 'Velocidad máxima (KIAS): 1.635', 'envergadura: 0.943', 'Cuerda: 3.715']\n", + "**Mediana calculada:** 2.21\n", + "\n", + "=== Imputación para el parámetro: **Empty weight** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.994x + -5.988\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 17.253\n", + "\tR²: 0.8989608005826268, Desviación Estándar: 3.3152777023765134, Varianza: 10.991066243874894, Incertidumbre: 0.8288194255941284\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.792x + -6.58\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 19.796\n", + "\tR²: 0.77484990052306, Desviación Estándar: 4.948926867225632, Varianza: 24.491877137147704, Incertidumbre: 1.237231716806408\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.325x + 1.819\n", + "Valor del parámetro correlacionado para la aeronave: 42.2\n", + "Predicción obtenida: 15.517\n", + "\tR²: 0.8966456395362715, Desviación Estándar: 3.3530448803440964, Varianza: 11.242909969601754, Incertidumbre: 0.8382612200860241\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.55x + -17.327\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 20.292\n", + "\tR²: 0.854653857560669, Desviación Estándar: 3.9762778085330774, Varianza: 15.810785210632615, Incertidumbre: 0.9940694521332694\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 168.652x + -36.821\n", + "Valor del parámetro correlacionado para la aeronave: 0.352\n", + "Predicción obtenida: 22.545\n", + "\tR²: 0.3232917045220116, Desviación Estándar: 8.579771360926884, Varianza: 73.61247660578115, Incertidumbre: 2.144942840231721\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.551x + 3.249\n", + "Valor del parámetro correlacionado para la aeronave: 14.5\n", + "Predicción obtenida: 25.745\n", + "\tR²: 0.6053918907187015, Desviación Estándar: 6.551759806427765, Varianza: 42.92555656112239, Incertidumbre: 1.6379399516069413\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 10.0, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.074x + 2.821\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 13.161\n", + "\tR²: 0.6929626692113744, Desviación Estándar: 2.790886287308021, Varianza: 7.78904626868395, Incertidumbre: 1.1393745556725372\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 17.253', 'Longitud del fuselaje: 19.796', 'Peso máximo al despegue (MTOW): 15.517', 'envergadura: 20.292', 'Cuerda: 22.545', 'payload: 25.745', 'Rango de comunicación: 13.161']\n", + "**Mediana calculada:** 19.796\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.104x + -5.974\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 17.436\n", + "\tR²: 0.8985057224718374, Desviación Estándar: 3.270696585516228, Varianza: 10.697456154507513, Incertidumbre: 0.7932604406723784\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.792x + -6.58\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 19.796\n", + "\tR²: 0.7812972847516897, Desviación Estándar: 4.801164285068728, Varianza: 23.051178492219506, Incertidumbre: 1.1644533807812627\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", + "Ecuación de regresión: y = 113.452x + -9.6\n", + "Valor del parámetro correlacionado para la aeronave: 0.277\n", + "Predicción obtenida: 21.827\n", + "\tR²: 0.9023931014122297, Desviación Estándar: 2.838256825639311, Varianza: 8.055701808288138, Incertidumbre: 1.2693070399464534\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.327x + 1.985\n", + "Valor del parámetro correlacionado para la aeronave: 53.5\n", + "Predicción obtenida: 19.49\n", + "\tR²: 0.8900447434647047, Desviación Estándar: 3.404297276853743, Varianza: 11.58923994919381, Incertidumbre: 0.8256633678512089\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.53x + -17.284\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 20.246\n", + "\tR²: 0.8586914485406882, Desviación Estándar: 3.859257009089604, Varianza: 14.893864662207235, Incertidumbre: 0.9360073108753961\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 161.947x + -35.001\n", + "Valor del parámetro correlacionado para la aeronave: 0.352\n", + "Predicción obtenida: 22.004\n", + "\tR²: 0.3392826165393894, Desviación Estándar: 8.345019309965002, Varianza: 69.63934728368875, Incertidumbre: 2.02396447428263\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.457x + 3.507\n", + "Valor del parámetro correlacionado para la aeronave: 11.3\n", + "Predicción obtenida: 19.967\n", + "\tR²: 0.600650247472835, Desviación Estándar: 6.487781114213371, Varianza: 42.091303785943694, Incertidumbre: 1.5735180476346566\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Empty weight: [19.796, 4.8, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.356x + 2.621\n", + "Valor del parámetro correlacionado para la aeronave: 42.2\n", + "Predicción obtenida: 17.662\n", + "\tR²: 0.8796352899520189, Desviación Estándar: 3.766112128353929, Varianza: 14.18360056333456, Incertidumbre: 1.6842565459771597\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.09x + 2.413\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 14.967\n", + "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.49', 'envergadura: 20.246', 'Cuerda: 22.004', 'payload: 19.967', 'RTF (Including fuel & Batteries): 17.662', 'Rango de comunicación: 14.967']\n", + "**Mediana calculada:** 19.796\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.104x + -5.974\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 17.436\n", + "\tR²: 0.8985057224718374, Desviación Estándar: 3.270696585516228, Varianza: 10.697456154507513, Incertidumbre: 0.7932604406723784\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.792x + -6.58\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 19.796\n", + "\tR²: 0.7812972847516897, Desviación Estándar: 4.801164285068728, Varianza: 23.051178492219506, Incertidumbre: 1.1644533807812627\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", + "Ecuación de regresión: y = 113.452x + -9.6\n", + "Valor del parámetro correlacionado para la aeronave: 0.277\n", + "Predicción obtenida: 21.827\n", + "\tR²: 0.9023931014122297, Desviación Estándar: 2.838256825639311, Varianza: 8.055701808288138, Incertidumbre: 1.2693070399464534\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.328x + 1.989\n", + "Valor del parámetro correlacionado para la aeronave: 54.4\n", + "Predicción obtenida: 19.809\n", + "\tR²: 0.8927270391262186, Desviación Estándar: 3.309108053534251, Varianza: 10.95019610996524, Incertidumbre: 0.7799642481110287\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.53x + -17.284\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 20.246\n", + "\tR²: 0.8586914485406882, Desviación Estándar: 3.859257009089604, Varianza: 14.893864662207235, Incertidumbre: 0.9360073108753961\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 161.947x + -35.001\n", + "Valor del parámetro correlacionado para la aeronave: 0.352\n", + "Predicción obtenida: 22.004\n", + "\tR²: 0.3392826165393894, Desviación Estándar: 8.345019309965002, Varianza: 69.63934728368875, Incertidumbre: 2.02396447428263\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.455x + 3.508\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 29.263\n", + "\tR²: 0.6105487089694287, Desviación Estándar: 6.305105946732535, Varianza: 39.75436099952198, Incertidumbre: 1.4861277236780677\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Empty weight: [19.796, 19.796, 4.8, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.362x + 2.802\n", + "Valor del parámetro correlacionado para la aeronave: 36.7\n", + "Predicción obtenida: 16.09\n", + "\tR²: 0.8814477024665971, Desviación Estándar: 3.525541028723161, Varianza: 12.429439545210364, Incertidumbre: 1.4392960979364398\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.09x + 2.413\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 14.967\n", + "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.809', 'envergadura: 20.246', 'Cuerda: 22.004', 'payload: 29.263', 'RTF (Including fuel & Batteries): 16.09', 'Rango de comunicación: 14.967']\n", + "**Mediana calculada:** 19.809\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.199x + -5.963\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 32.08\n", + "\tR²: 0.8981760566509686, Desviación Estándar: 3.2241182006984137, Varianza: 10.394938172074777, Incertidumbre: 0.7599319476869396\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.793x + -6.581\n", + "Valor del parámetro correlacionado para la aeronave: 3.594\n", + "Predicción obtenida: 25.02\n", + "\tR²: 0.7867457415163526, Desviación Estándar: 4.665893862545674, Varianza: 21.770565536541387, Incertidumbre: 1.0997617301675797\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.328x + 1.989\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 32.453\n", + "\tR²: 0.8950667903037404, Desviación Estándar: 3.220849267243446, Varianza: 10.373870002302642, Incertidumbre: 0.7389134983311162\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.513x + -17.25\n", + "Valor del parámetro correlacionado para la aeronave: 5.644\n", + "Predicción obtenida: 30.798\n", + "\tR²: 0.8621171121245332, Desviación Estándar: 3.751813006995635, Varianza: 14.076100839461628, Incertidumbre: 0.8843108063301686\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 157.473x + -33.787\n", + "Valor del parámetro correlacionado para la aeronave: 0.394\n", + "Predicción obtenida: 28.257\n", + "\tR²: 0.35355225050821804, Desviación Estándar: 8.123678231024497, Varianza: 65.9941480012213, Incertidumbre: 1.9147693217783197\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.302x + 4.121\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 33.679\n", + "\tR²: 0.5820027961619212, Desviación Estándar: 6.42836622157291, Varianza: 41.32389227865957, Incertidumbre: 1.4747683543108792\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", + "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Empty weight: [19.796, 19.796, 19.809, 4.8, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.366x + 3.198\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 28.95\n", + "\tR²: 0.8686932854431193, Desviación Estándar: 3.5123478434354816, Varianza: 12.336587373285877, Incertidumbre: 1.3275427016691874\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 32.08', 'Longitud del fuselaje: 25.02', 'Peso máximo al despegue (MTOW): 32.453', 'envergadura: 30.798', 'Cuerda: 28.257', 'payload: 33.679', 'RTF (Including fuel & Batteries): 28.95']\n", + "**Mediana calculada:** 30.798\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.024x + -5.798\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 8.325\n", + "\tR²: 0.9115417035933906, Desviación Estándar: 3.1489544926591027, Varianza: 9.915914396837946, Incertidumbre: 0.7224197058583904\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 9.152x + -7.113\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 3.87\n", + "\tR²: 0.8024007898945031, Desviación Estándar: 4.706409380156019, Varianza: 22.15028925362057, Incertidumbre: 1.0797243618437888\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.323x + 2.09\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 8.545\n", + "\tR²: 0.9077472362486133, Desviación Estándar: 3.1564995773900493, Varianza: 9.963489582063561, Incertidumbre: 0.7058147625993508\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.513x + -17.25\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 8.289\n", + "\tR²: 0.8810383235111052, Desviación Estándar: 3.6517466273004446, Varianza: 13.335253430000172, Incertidumbre: 0.8377681324114802\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 164.068x + -35.656\n", + "Valor del parámetro correlacionado para la aeronave: 0.313\n", + "Predicción obtenida: 15.697\n", + "\tR²: 0.4401012275044295, Desviación Estándar: 7.922310441477786, Varianza: 62.76300273114796, Incertidumbre: 1.8175026638820404\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.254x + 4.367\n", + "Valor del parámetro correlacionado para la aeronave: 7.8\n", + "Predicción obtenida: 14.145\n", + "\tR²: 0.6338082409254504, Desviación Estándar: 6.288836818337574, Varianza: 39.54946852767826, Incertidumbre: 1.406226662520631\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 8.325', 'Longitud del fuselaje: 3.87', 'Peso máximo al despegue (MTOW): 8.545', 'envergadura: 8.289', 'Cuerda: 15.697', 'payload: 14.145']\n", + "**Mediana calculada:** 8.435\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.019x + -5.786\n", + "Valor del parámetro correlacionado para la aeronave: 1.608\n", + "Predicción obtenida: 18.365\n", + "\tR²: 0.9128101315191424, Desviación Estándar: 3.069313976161959, Varianza: 9.420688284263136, Incertidumbre: 0.6863194694988309\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.927x + -6.373\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 4.34\n", + "\tR²: 0.7965950223618128, Desviación Estándar: 4.688016094166544, Varianza: 21.977494899164537, Incertidumbre: 1.0482722666169448\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.323x + 2.081\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 19.838\n", + "\tR²: 0.909185787337549, Desviación Estándar: 3.080516387452075, Varianza: 9.489581213360784, Incertidumbre: 0.6722237869071928\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.51x + -17.23\n", + "Valor del parámetro correlacionado para la aeronave: 5.2\n", + "Predicción obtenida: 27.02\n", + "\tR²: 0.882742078622475, Desviación Estándar: 3.5594213516060673, Varianza: 12.669480358269164, Incertidumbre: 0.7959108102755347\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 162.214x + -35.455\n", + "Valor del parámetro correlacionado para la aeronave: 0.334\n", + "Predicción obtenida: 18.724\n", + "\tR²: 0.4250328821813467, Desviación Estándar: 7.881879841341832, Varianza: 62.124029833350754, Incertidumbre: 1.7624419115725594\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.255x + 4.083\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 19.144\n", + "\tR²: 0.6253889798074073, Desviación Estándar: 6.256578342524824, Varianza: 39.14477255615067, Incertidumbre: 1.3652973260019692\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.099x + 2.179\n", + "Valor del parámetro correlacionado para la aeronave: 150.0\n", + "Predicción obtenida: 16.991\n", + "\tR²: 0.7177783310839329, Desviación Estándar: 3.4856268169459126, Varianza: 12.149594307012496, Incertidumbre: 1.2323551794740677\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 18.365', 'Longitud del fuselaje: 4.34', 'Peso máximo al despegue (MTOW): 19.838', 'envergadura: 27.02', 'Cuerda: 18.724', 'payload: 19.144', 'Rango de comunicación: 16.991']\n", + "**Mediana calculada:** 18.724\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.031x + -5.784\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 12.253\n", + "\tR²: 0.9136497392693784, Desviación Estándar: 2.996311656277053, Varianza: 8.977883541541738, Incertidumbre: 0.6538488081222905\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.282x + -4.258\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 5.68\n", + "\tR²: 0.7127494541740498, Desviación Estándar: 5.464942394654294, Varianza: 29.865595376889807, Incertidumbre: 1.192548199622692\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.322x + 2.067\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 12.368\n", + "\tR²: 0.9094761068700505, Desviación Estándar: 3.0184944982890896, Varianza: 9.111309036201503, Incertidumbre: 0.6435451893507028\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.083x + -16.034\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 19.531\n", + "\tR²: 0.8563105110981454, Desviación Estándar: 3.8651616084856775, Varianza: 14.93947425971159, Incertidumbre: 0.8434474116248993\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 162.214x + -35.455\n", + "Valor del parámetro correlacionado para la aeronave: 0.301\n", + "Predicción obtenida: 13.371\n", + "\tR²: 0.4309374492611131, Desviación Estándar: 7.691927112179356, Varianza: 59.16574269907985, Incertidumbre: 1.6785161062688088\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.253x + 4.079\n", + "Valor del parámetro correlacionado para la aeronave: 5.5\n", + "Predicción obtenida: 10.972\n", + "\tR²: 0.6286868594150173, Desviación Estándar: 6.113345437183864, Varianza: 37.37299243433677, Incertidumbre: 1.3033696265369021\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.102x + 2.062\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 7.156\n", + "\tR²: 0.7467331385836531, Desviación Estándar: 3.326478501613054, Varianza: 11.065459221693828, Incertidumbre: 1.1088261672043513\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 12.253', 'Longitud del fuselaje: 5.68', 'Peso máximo al despegue (MTOW): 12.368', 'envergadura: 19.531', 'Cuerda: 13.371', 'payload: 10.972', 'Rango de comunicación: 7.156']\n", + "**Mediana calculada:** 12.253\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.031x + -5.784\n", + "Valor del parámetro correlacionado para la aeronave: 0.754\n", + "Predicción obtenida: 5.549\n", + "\tR²: 0.913778739631991, Desviación Estándar: 2.9274217216946905, Varianza: 8.569797936649906, Incertidumbre: 0.6241284081402825\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.012x + -3.374\n", + "Valor del parámetro correlacionado para la aeronave: 1.48\n", + "Predicción obtenida: 8.484\n", + "\tR²: 0.695106219357537, Desviación Estándar: 5.50493747043158, Varianza: 30.304336553361637, Incertidumbre: 1.1736566121888548\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.322x + 2.061\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 4.154\n", + "\tR²: 0.9096439599147235, Desviación Estándar: 2.952238871692774, Varianza: 8.715714355533823, Incertidumbre: 0.6155843584875383\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.922x + -15.761\n", + "Valor del parámetro correlacionado para la aeronave: 2.1\n", + "Predicción obtenida: 0.876\n", + "\tR²: 0.8337456079246974, Desviación Estándar: 4.065038574534986, Varianza: 16.524538612457434, Incertidumbre: 0.8666691361040485\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 162.348x + -35.547\n", + "Valor del parámetro correlacionado para la aeronave: 0.27\n", + "Predicción obtenida: 8.287\n", + "\tR²: 0.43124218687960514, Desviación Estándar: 7.518683358339971, Varianza: 56.530599442978435, Incertidumbre: 1.6029886780490887\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.25x + 4.165\n", + "Valor del parámetro correlacionado para la aeronave: 2.21\n", + "Predicción obtenida: 6.926\n", + "\tR²: 0.6286967759718571, Desviación Estándar: 5.984629370732705, Varianza: 35.81578870503653, Incertidumbre: 1.2478814865870902\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.095x + 3.264\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 5.627\n", + "\tR²: 0.6914792906735672, Desviación Estándar: 3.4830980292244655, Varianza: 12.131971881187356, Incertidumbre: 1.1014523085993035\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 5.549', 'Longitud del fuselaje: 8.484', 'Peso máximo al despegue (MTOW): 4.154', 'envergadura: 0.876', 'Cuerda: 8.287', 'payload: 6.926', 'Rango de comunicación: 5.627']\n", + "**Mediana calculada:** 5.627\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.026x + -5.775\n", + "Valor del parámetro correlacionado para la aeronave: 1.063\n", + "Predicción obtenida: 10.198\n", + "\tR²: 0.9163529546189084, Desviación Estándar: 2.863117876012014, Varianza: 8.197443971939547, Incertidumbre: 0.5970013462929816\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.091x + -3.666\n", + "Valor del parámetro correlacionado para la aeronave: 1.71\n", + "Predicción obtenida: 10.169\n", + "\tR²: 0.7008193572895111, Desviación Estándar: 5.414778194269882, Varianza: 29.319822893140607, Incertidumbre: 1.12905930242721\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.32x + 2.202\n", + "Valor del parámetro correlacionado para la aeronave: 26.5\n", + "Predicción obtenida: 10.676\n", + "\tR²: 0.9116020723584356, Desviación Estándar: 2.90434700702091, Varianza: 8.435231537191319, Incertidumbre: 0.5928473502650619\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.684x + -14.677\n", + "Valor del parámetro correlacionado para la aeronave: 3.1\n", + "Predicción obtenida: 9.144\n", + "\tR²: 0.8299304395789938, Desviación Estándar: 4.0825096549566275, Varianza: 16.66688508281408, Incertidumbre: 0.8512621085856318\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 164.778x + -36.401\n", + "Valor del parámetro correlacionado para la aeronave: 0.298\n", + "Predicción obtenida: 12.703\n", + "\tR²: 0.44533403577557296, Desviación Estándar: 7.372752999831995, Varianza: 54.35748679653168, Incertidumbre: 1.5373252717475088\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.257x + 4.049\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 10.336\n", + "\tR²: 0.6396223521327932, Desviación Estándar: 5.8641677511942225, Varianza: 34.38846341414631, Incertidumbre: 1.1970182297091787\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.095x + 3.264\n", + "Valor del parámetro correlacionado para la aeronave: 101.86\n", + "Predicción obtenida: 12.891\n", + "\tR²: 0.7190956882541144, Desviación Estándar: 3.321003665545642, Varianza: 11.029065346567588, Incertidumbre: 1.0013202805463481\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 10.198', 'Longitud del fuselaje: 10.169', 'Peso máximo al despegue (MTOW): 10.676', 'envergadura: 9.144', 'Cuerda: 12.703', 'payload: 10.336', 'Rango de comunicación: 12.891']\n", + "**Mediana calculada:** 10.336\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.023x + -5.765\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 22.358\n", + "\tR²: 0.9167346130104, Desviación Estándar: 2.8029703167934756, Varianza: 7.856642596825316, Incertidumbre: 0.5721539200259446\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.088x + -3.653\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 16.567\n", + "\tR²: 0.702201492451173, Desviación Estándar: 5.300874285112574, Varianza: 28.099268186567745, Incertidumbre: 1.0820364324305303\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.32x + 2.183\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 26.113\n", + "\tR²: 0.9120249989617861, Desviación Estándar: 2.846441429999798, Varianza: 8.102228814419295, Incertidumbre: 0.5692882859999596\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.663x + -14.551\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 22.234\n", + "\tR²: 0.8301280134060601, Desviación Estándar: 4.003567260287771, Varianza: 16.02855080764813, Incertidumbre: 0.8172247448847872\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 165.132x + -36.607\n", + "Valor del parámetro correlacionado para la aeronave: 0.338\n", + "Predicción obtenida: 19.208\n", + "\tR²: 0.44554931519439944, Desviación Estándar: 7.232987396297254, Varianza: 52.316106674994934, Incertidumbre: 1.476427369742511\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.257x + 4.049\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 26.683\n", + "\tR²: 0.6415415848013848, Desviación Estándar: 5.74568750261759, Varianza: 33.01292487773596, Incertidumbre: 1.149137500523518\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.094x + 3.136\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 11.799\n", + "\tR²: 0.7062398188700879, Desviación Estándar: 3.2566903822374726, Varianza: 10.606032245758056, Incertidumbre: 0.9401255344260351\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 22.358', 'Longitud del fuselaje: 16.567', 'Peso máximo al despegue (MTOW): 26.113', 'envergadura: 22.234', 'Cuerda: 19.208', 'payload: 26.683', 'Rango de comunicación: 11.799']\n", + "**Mediana calculada:** 22.234\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.016x + -5.76\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 25.622\n", + "\tR²: 0.9193277412989592, Desviación Estándar: 2.7464421762175815, Varianza: 7.542944627306766, Incertidumbre: 0.5492884352435163\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.172x + -3.606\n", + "Valor del parámetro correlacionado para la aeronave: 3.004\n", + "Predicción obtenida: 20.942\n", + "\tR²: 0.6983801297433365, Desviación Estándar: 5.310535615782573, Varianza: 28.201788526495196, Incertidumbre: 1.0621071231565147\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.313x + 2.281\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 25.783\n", + "\tR²: 0.9088807177212644, Desviación Estándar: 2.882816344795206, Varianza: 8.310630077818393, Incertidumbre: 0.5653667998544224\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.663x + -14.551\n", + "Valor del parámetro correlacionado para la aeronave: 5.033\n", + "Predicción obtenida: 24.019\n", + "\tR²: 0.835430712623076, Desviación Estándar: 3.922678776357705, Varianza: 15.387408782487181, Incertidumbre: 0.7845357552715411\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 167.757x + -37.286\n", + "Valor del parámetro correlacionado para la aeronave: 0.341\n", + "Predicción obtenida: 19.919\n", + "\tR²: 0.45920799755943364, Desviación Estándar: 7.110882159300929, Varianza: 50.56464508346425, Incertidumbre: 1.4221764318601857\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.215x + 4.222\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 26.093\n", + "\tR²: 0.6447227222524704, Desviación Estándar: 5.692401793705153, Varianza: 32.403438180977645, Incertidumbre: 1.1163718394351212\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 25.622', 'Longitud del fuselaje: 20.942', 'Peso máximo al despegue (MTOW): 25.783', 'envergadura: 24.019', 'Cuerda: 19.919', 'payload: 26.093']\n", + "**Mediana calculada:** 24.82\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.956x + -5.711\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 22.286\n", + "\tR²: 0.9228857881228267, Desviación Estándar: 2.697264613869004, Varianza: 7.275236397229909, Incertidumbre: 0.5289771115169755\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.3x + -3.735\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 17.015\n", + "\tR²: 0.7068456492535431, Desviación Estándar: 5.25901627247607, Varianza: 27.657252154168102, Incertidumbre: 1.031377945986826\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.312x + 2.303\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 25.631\n", + "\tR²: 0.912609810603614, Desviación Estándar: 2.834428027141342, Varianza: 8.033982241044361, Incertidumbre: 0.5454859281562245\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.693x + -14.63\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 22.295\n", + "\tR²: 0.8429342446881969, Desviación Estándar: 3.8494359348535636, Varianza: 14.818157016541928, Incertidumbre: 0.7549364980055233\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 172.075x + -38.42\n", + "Valor del parámetro correlacionado para la aeronave: 0.344\n", + "Predicción obtenida: 20.773\n", + "\tR²: 0.4755347143919866, Desviación Estándar: 7.034200066776385, Varianza: 49.479970579436895, Incertidumbre: 1.3795201308849407\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.204x + 4.266\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 25.944\n", + "\tR²: 0.6600077706694365, Desviación Estándar: 5.590730903029895, Varianza: 31.256272030093463, Incertidumbre: 1.0759366639436898\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 22.286', 'Longitud del fuselaje: 17.015', 'Peso máximo al despegue (MTOW): 25.631', 'envergadura: 22.295', 'Cuerda: 20.773', 'payload: 25.944']\n", + "**Mediana calculada:** 22.29\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.956x + -5.712\n", + "Valor del parámetro correlacionado para la aeronave: 1.349\n", + "Predicción obtenida: 14.464\n", + "\tR²: 0.9247777030959305, Desviación Estándar: 2.6468441167859273, Varianza: 7.005783778564275, Incertidumbre: 0.5093853877764442\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.366x + -3.684\n", + "Valor del parámetro correlacionado para la aeronave: 2.4\n", + "Predicción obtenida: 16.395\n", + "\tR²: 0.7034262913324543, Desviación Estándar: 5.255588982695431, Varianza: 27.6212155550296, Incertidumbre: 1.0114385713030796\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.373\n", + "Valor del parámetro correlacionado para la aeronave: 36.3\n", + "Predicción obtenida: 13.524\n", + "\tR²: 0.9106032203613208, Desviación Estándar: 2.8482011972816106, Varianza: 8.1122500601964, Incertidumbre: 0.5382594322773969\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.692x + -14.629\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 16.14\n", + "\tR²: 0.8467876896895489, Desviación Estándar: 3.7774776218534605, Varianza: 14.269337183603675, Incertidumbre: 0.7269759072782942\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 173.426x + -38.78\n", + "Valor del parámetro correlacionado para la aeronave: 0.31\n", + "Predicción obtenida: 14.982\n", + "\tR²: 0.4875507277051119, Desviación Estándar: 6.908448268587538, Varianza: 47.726657479750145, Incertidumbre: 1.329531489183873\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.177x + 4.379\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 14.499\n", + "\tR²: 0.6631553407358013, Desviación Estándar: 5.528719549623086, Varianza: 30.566739858384498, Incertidumbre: 1.044829785494551\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 14.464', 'Longitud del fuselaje: 16.395', 'Peso máximo al despegue (MTOW): 13.524', 'envergadura: 16.14', 'Cuerda: 14.982', 'payload: 14.499']\n", + "**Mediana calculada:** 14.74\n", + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.956x + -5.701\n", + "Valor del parámetro correlacionado para la aeronave: 1.802\n", + "Predicción obtenida: 21.249\n", + "\tR²: 0.9247492382330068, Desviación Estándar: 2.59965345007093, Varianza: 6.758198060465689, Incertidumbre: 0.4912883231313392\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.353x + -3.713\n", + "Valor del parámetro correlacionado para la aeronave: 2.5\n", + "Predicción obtenida: 17.168\n", + "\tR²: 0.7023810376902668, Desviación Estándar: 5.16999718239943, Varianza: 26.728870866018045, Incertidumbre: 0.9770376302523951\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.423\n", + "Valor del parámetro correlacionado para la aeronave: 61.0\n", + "Predicción obtenida: 21.149\n", + "\tR²: 0.9100414966060446, Desviación Estándar: 2.8074428350263565, Varianza: 7.881735271940825, Incertidumbre: 0.5213290466629605\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.685x + -14.651\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 22.237\n", + "\tR²: 0.8460378541791183, Desviación Estándar: 3.7184931434823216, Varianza: 13.827191258125037, Incertidumbre: 0.7027291506823602\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 173.412x + -38.784\n", + "Valor del parámetro correlacionado para la aeronave: 0.338\n", + "Predicción obtenida: 19.829\n", + "\tR²: 0.48753313542114285, Desviación Estándar: 6.784110329613901, Varianza: 46.024152964374025, Incertidumbre: 1.2820763427844863\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.177x + 4.387\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 25.215\n", + "\tR²: 0.6631333634856997, Desviación Estándar: 5.432738626672287, Varianza: 29.514648985737086, Incertidumbre: 1.0088342365074427\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.095x + 3.847\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 12.606\n", + "\tR²: 0.5786689229639067, Desviación Estándar: 4.18551671444084, Varianza: 17.51855016686364, Incertidumbre: 1.160853471402155\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 21.249', 'Longitud del fuselaje: 17.168', 'Peso máximo al despegue (MTOW): 21.149', 'envergadura: 22.237', 'Cuerda: 19.829', 'payload: 25.215', 'Rango de comunicación: 12.606']\n", + "**Mediana calculada:** 21.149\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 4.767\n", + "\tR²: 0.9259690891919676, Desviación Estándar: 2.554502626662271, Varianza: 6.525483669624441, Incertidumbre: 0.4743592291322177\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.399x + -3.679\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 3.88\n", + "\tR²: 0.7012558792426988, Desviación Estándar: 5.131560941639433, Varianza: 26.332917697759388, Incertidumbre: 0.9529069444338854\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.423\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 4.326\n", + "\tR²: 0.9114139885923979, Desviación Estándar: 2.760255561189478, Varianza: 7.61901076307744, Incertidumbre: 0.5039514117808528\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.657x + -14.58\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 3.413\n", + "\tR²: 0.8481057631774891, Desviación Estándar: 3.659067788491134, Varianza: 13.388777080773398, Incertidumbre: 0.6794718303966184\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 174.337x + -39.024\n", + "Valor del parámetro correlacionado para la aeronave: 0.272\n", + "Predicción obtenida: 8.395\n", + "\tR²: 0.49522154420699915, Desviación Estándar: 6.670374425052742, Varianza: 44.493894970397704, Incertidumbre: 1.2386574346277268\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.15x + 4.498\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 5.878\n", + "\tR²: 0.6624428309267374, Desviación Estándar: 5.388158809639675, Varianza: 29.032255357897643, Incertidumbre: 0.9837387078199448\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.095x + 4.388\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 9.156\n", + "\tR²: 0.518357595351121, Desviación Estándar: 4.594228397572152, Varianza: 21.106934569058385, Incertidumbre: 1.2278591871644609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 4.767', 'Longitud del fuselaje: 3.88', 'Peso máximo al despegue (MTOW): 4.326', 'envergadura: 3.413', 'Cuerda: 8.395', 'payload: 5.878', 'Rango de comunicación: 9.156']\n", + "**Mediana calculada:** 4.767\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 4.767\n", + "\tR²: 0.9286912161672043, Desviación Estándar: 2.5115667515700397, Varianza: 6.3079675475920824, Incertidumbre: 0.4585472548382948\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.358x + -3.56\n", + "Valor del parámetro correlacionado para la aeronave: 0.9\n", + "Predicción obtenida: 3.962\n", + "\tR²: 0.7119717257129345, Desviación Estándar: 5.047667874355293, Varianza: 25.47895096979848, Incertidumbre: 0.9215738525261822\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 4.359\n", + "\tR²: 0.9146821995211808, Desviación Estándar: 2.7164377856628272, Varianza: 7.379034243376764, Incertidumbre: 0.4878866289309157\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 3.53\n", + "\tR²: 0.8530601734425255, Desviación Estándar: 3.605312977255013, Varianza: 12.998281663963407, Incertidumbre: 0.6582370815028935\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 177.343x + -40.07\n", + "Valor del parámetro correlacionado para la aeronave: 0.272\n", + "Predicción obtenida: 8.167\n", + "\tR²: 0.5091333952756019, Desviación Estándar: 6.589537801021175, Varianza: 43.42200843108698, Incertidumbre: 1.203079499050762\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.156x + 4.406\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 5.794\n", + "\tR²: 0.6747265207014675, Desviación Estándar: 5.304009156303675, Varianza: 28.132513130153214, Incertidumbre: 0.952628166470701\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.1x + 3.711\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 6.705\n", + "\tR²: 0.5369948479446686, Desviación Estándar: 4.566261608746338, Varianza: 20.850745079510695, Incertidumbre: 1.17900367767339\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 4.767', 'Longitud del fuselaje: 3.962', 'Peso máximo al despegue (MTOW): 4.359', 'envergadura: 3.53', 'Cuerda: 8.167', 'payload: 5.794', 'Rango de comunicación: 6.705']\n", + "**Mediana calculada:** 4.767\n", + "\n", + "--- Imputación para aeronave: **V35** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valor del parámetro correlacionado para la aeronave: 1.202\n", + "Predicción obtenida: 12.273\n", + "\tR²: 0.9286912161672043, Desviación Estándar: 2.5115667515700397, Varianza: 6.3079675475920824, Incertidumbre: 0.4585472548382948\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.358x + -3.56\n", + "Valor del parámetro correlacionado para la aeronave: 1.88\n", + "Predicción obtenida: 12.153\n", + "\tR²: 0.7119717257129345, Desviación Estándar: 5.047667874355293, Varianza: 25.47895096979848, Incertidumbre: 0.9215738525261822\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 12.265\n", + "\tR²: 0.9146821995211808, Desviación Estándar: 2.7164377856628272, Varianza: 7.379034243376764, Incertidumbre: 0.4878866289309157\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 12.278\n", + "\tR²: 0.8530601734425255, Desviación Estándar: 3.605312977255013, Varianza: 12.998281663963407, Incertidumbre: 0.6582370815028935\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 177.343x + -40.07\n", + "Valor del parámetro correlacionado para la aeronave: 0.304\n", + "Predicción obtenida: 13.842\n", + "\tR²: 0.5091333952756019, Desviación Estándar: 6.589537801021175, Varianza: 43.42200843108698, Incertidumbre: 1.203079499050762\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.156x + 4.406\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 15.967\n", + "\tR²: 0.6747265207014675, Desviación Estándar: 5.304009156303675, Varianza: 28.132513130153214, Incertidumbre: 0.952628166470701\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 4.767, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.102x + 3.372\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 6.444\n", + "\tR²: 0.5669527647105395, Desviación Estándar: 4.444173630434083, Varianza: 19.750679257445654, Incertidumbre: 1.1110434076085207\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 12.273', 'Longitud del fuselaje: 12.153', 'Peso máximo al despegue (MTOW): 12.265', 'envergadura: 12.278', 'Cuerda: 13.842', 'payload: 15.967', 'Rango de comunicación: 6.444']\n", + "**Mediana calculada:** 12.273\n", + "\n", + "--- Imputación para aeronave: **V39** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valor del parámetro correlacionado para la aeronave: 1.203\n", + "Predicción obtenida: 12.288\n", + "\tR²: 0.9288175658243848, Desviación Estándar: 2.470725546458319, Varianza: 6.104484725921759, Incertidumbre: 0.4437554079969149\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.357x + -3.554\n", + "Valor del parámetro correlacionado para la aeronave: 1.954\n", + "Predicción obtenida: 12.775\n", + "\tR²: 0.7124768203038293, Desviación Estándar: 4.965631866447997, Varianza: 24.657499833083815, Incertidumbre: 0.8918538111271705\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 9.814\n", + "\tR²: 0.9148561084451423, Desviación Estándar: 2.6736569224974254, Varianza: 7.148441339218403, Incertidumbre: 0.47264023511607123\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valor del parámetro correlacionado para la aeronave: 3.9\n", + "Predicción obtenida: 15.321\n", + "\tR²: 0.8533205216960276, Desviación Estándar: 3.5466862107514427, Varianza: 12.578983077534426, Incertidumbre: 0.6370036480762108\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 177.47x + -40.16\n", + "Valor del parámetro correlacionado para la aeronave: 0.304\n", + "Predicción obtenida: 13.791\n", + "\tR²: 0.5091069267607173, Desviación Estándar: 6.488309232157318, Varianza: 42.098156692097895, Incertidumbre: 1.1653347392847273\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.153x + 4.318\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 10.083\n", + "\tR²: 0.6704748222680529, Desviación Estándar: 5.259848463722186, Varianza: 27.666005861320635, Incertidumbre: 0.9298186291779004\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = 0.832) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 4.767, 2.65, 3.45, 6.45, 12.273]\n", + "Ecuación de regresión: y = 0.095x + 4.271\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 7.135\n", + "\tR²: 0.5259965377098035, Desviación Estándar: 4.511169408629526, Varianza: 20.35064943335487, Incertidumbre: 1.0941192921667469\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 12.288', 'Longitud del fuselaje: 12.775', 'Peso máximo al despegue (MTOW): 9.814', 'envergadura: 15.321', 'Cuerda: 13.791', 'payload: 10.083', 'Rango de comunicación: 7.135']\n", + "**Mediana calculada:** 12.288\n", + "\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valor del parámetro correlacionado para la aeronave: 1.424\n", + "Predicción obtenida: 15.592\n", + "\tR²: 0.9289339624984088, Desviación Estándar: 2.4318140515483493, Varianza: 5.913719581307998, Incertidumbre: 0.4298880516086425\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.36x + -3.576\n", + "Valor del parámetro correlacionado para la aeronave: 2.02\n", + "Predicción obtenida: 13.311\n", + "\tR²: 0.7128606994643418, Desviación Estándar: 4.888162469550296, Varianza: 23.894132328720048, Incertidumbre: 0.8641132074401486\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.305x + 2.59\n", + "Valor del parámetro correlacionado para la aeronave: 40.0\n", + "Predicción obtenida: 14.79\n", + "\tR²: 0.9128312102468352, Desviación Estándar: 2.6664750643886856, Varianza: 7.110089269006646, Incertidumbre: 0.4641737288731009\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.598x + -14.407\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 34.979\n", + "\tR²: 0.8502155711682761, Desviación Estándar: 3.5304709885139887, Varianza: 12.46422540073894, Incertidumbre: 0.6241049941901538\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 177.588x + -40.243\n", + "Valor del parámetro correlacionado para la aeronave: 0.313\n", + "Predicción obtenida: 15.342\n", + "\tR²: 0.5090877540596378, Desviación Estándar: 6.391477230982371, Varianza: 40.85098119416608, Incertidumbre: 1.129864222956763\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.147x + 4.438\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 25.083\n", + "\tR²: 0.6693635088936598, Desviación Estándar: 5.193168453194595, Varianza: 26.968998583255537, Incertidumbre: 0.9040145913151921\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 15.592', 'Longitud del fuselaje: 13.311', 'Peso máximo al despegue (MTOW): 14.79', 'envergadura: 34.979', 'Cuerda: 15.342', 'payload: 25.083']\n", + "**Mediana calculada:** 15.467\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.951x + -5.702\n", + "Valor del parámetro correlacionado para la aeronave: 2.615\n", + "Predicción obtenida: 33.395\n", + "\tR²: 0.928961023163967, Desviación Estándar: 2.394780806275851, Varianza: 5.734975110107215, Incertidumbre: 0.41687782928419626\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.351x + -3.491\n", + "Valor del parámetro correlacionado para la aeronave: 3.5\n", + "Predicción obtenida: 25.737\n", + "\tR²: 0.7113023376551475, Desviación Estándar: 4.827686425855041, Varianza: 23.306556226385016, Incertidumbre: 0.8403923367019864\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375, 0.375]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 32.0, 35.0]\n", + "Ecuación de regresión: y = 114.066x + -10.111\n", + "Valor del parámetro correlacionado para la aeronave: 0.375\n", + "Predicción obtenida: 32.663\n", + "\tR²: 0.8963698345140692, Desviación Estándar: 2.697515152995758, Varianza: 7.276588000641728, Incertidumbre: 1.1012559497108843\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.305x + 2.609\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 33.112\n", + "\tR²: 0.9126951112649697, Desviación Estándar: 2.6294562235715246, Varianza: 6.914040031679023, Incertidumbre: 0.45094802203668083\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 6.49x + -10.713\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 21.735\n", + "\tR²: 0.7330823891778183, Desviación Estándar: 4.642009599703794, Varianza: 21.548253123742178, Incertidumbre: 0.8080701500402837\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 177.604x + -40.244\n", + "Valor del parámetro correlacionado para la aeronave: 0.336\n", + "Predicción obtenida: 19.431\n", + "\tR²: 0.5093083046494281, Desviación Estándar: 6.293928048096407, Varianza: 39.61353027461465, Incertidumbre: 1.0956322413664432\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.088x + 4.692\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 31.883\n", + "\tR²: 0.6380380391473043, Desviación Estándar: 5.353997072660648, Varianza: 28.665284654058784, Incertidumbre: 0.9182029228184352\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Capacidad combustible (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0]\n", + "Valores para Empty weight: [15.467, 11.5, 11.0, 32.0, 35.0]\n", + "Ecuación de regresión: y = 1.31x + -3.112\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 33.57\n", + "\tR²: 0.98508534505441, Desviación Estándar: 1.2666533895780039, Varianza: 1.6044108093294462, Incertidumbre: 0.566464616605388\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Área del ala: 33.395', 'Longitud del fuselaje: 25.737', 'Ancho del fuselaje: 32.663', 'Peso máximo al despegue (MTOW): 33.112', 'envergadura: 21.735', 'Cuerda: 19.431', 'payload: 31.883', 'Capacidad combustible: 33.57']\n", + "**Mediana calculada:** 32.273\n", + "\n", + "--- Imputación para aeronave: **Volitation VT510** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.941) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 0.771, 0.986, 2.329]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.841x + -5.584\n", + "Valor del parámetro correlacionado para la aeronave: 1.993\n", + "Predicción obtenida: 23.995\n", + "\tR²: 0.9360251057500628, Desviación Estándar: 2.3659573340086495, Varianza: 5.597754106349317, Incertidumbre: 0.4057583352900256\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.649x + -3.948\n", + "Valor del parámetro correlacionado para la aeronave: 2.905\n", + "Predicción obtenida: 21.176\n", + "\tR²: 0.7283975003859964, Desviación Estándar: 4.874936932144367, Varianza: 23.765010092385136, Incertidumbre: 0.8360447865217215\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.303x + 2.653\n", + "Valor del parámetro correlacionado para la aeronave: 100.0\n", + "Predicción obtenida: 32.99\n", + "\tR²: 0.9213940860587302, Desviación Estándar: 2.5949358780767224, Varianza: 6.733692211329811, Incertidumbre: 0.4386242196208442\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.924) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 2.0, 3.0, 6.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 6.733x + -11.353\n", + "Valor del parámetro correlacionado para la aeronave: 5.1\n", + "Predicción obtenida: 22.986\n", + "\tR²: 0.7256919483141002, Desviación Estándar: 4.899157460266217, Varianza: 24.001743820482126, Incertidumbre: 0.8401985728260232\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Cuerda (r = 0.971) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 185.703x + -42.364\n", + "Valor del parámetro correlacionado para la aeronave: 0.334\n", + "Predicción obtenida: 19.661\n", + "\tR²: 0.5077463639535145, Desviación Estándar: 6.562912085594877, Varianza: 43.07181504324729, Incertidumbre: 1.1255301370941933\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.091x + 4.669\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 31.949\n", + "\tR²: 0.674893773503893, Desviación Estándar: 5.277298544902269, Varianza: 27.849879932027605, Incertidumbre: 0.8920262637393525\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Capacidad combustible (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 28.0]\n", + "Valores para Empty weight: [15.467, 11.5, 11.0, 32.0, 32.273, 35.0]\n", + "Ecuación de regresión: y = 1.283x + -2.79\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 29.289\n", + "\tR²: 0.9857968254239403, Desviación Estándar: 1.2345889100883332, Varianza: 1.5242097769130982, Incertidumbre: 0.504018811969206\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Área del ala: 23.995', 'Longitud del fuselaje: 21.176', 'Peso máximo al despegue (MTOW): 32.99', 'envergadura: 22.986', 'Cuerda: 19.661', 'payload: 31.949', 'Capacidad combustible: 29.289']\n", + "**Mediana calculada:** 23.995\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Reporte Final de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
8Aerosonde® Mk. 4.8 VTOL FTUASÁrea del ala2.5030.804
9Fulmar XÁrea del ala0.9400.804
10Orbiter 4Área del ala1.6080.804
11Orbiter 3Área del ala1.2000.804
12MantisÁrea del ala0.7540.804
13ScanEagleÁrea del ala1.0630.804
14IntegratorÁrea del ala1.8720.804
15Integrator VTOLÁrea del ala2.0900.804
16Integrator Extended Range (ER)Área del ala1.8720.804
17ScanEagle 3Área del ala1.3490.804
18RQNan21A BlackjackÁrea del ala1.8020.804
19DeltaQuad Pro #MAPÁrea del ala0.7000.804
20DeltaQuad Pro #CARGOÁrea del ala0.7000.804
21V32Área del ala1.0300.804
29Fulmar XRelación de aspecto del ala13.2180.963
30Orbiter 4Relación de aspecto del ala13.4430.752
31Orbiter 3Relación de aspecto del ala14.0120.752
32MantisRelación de aspecto del ala14.7670.752
33ScanEagleRelación de aspecto del ala14.0670.777
34IntegratorRelación de aspecto del ala12.9230.631
35Integrator VTOLRelación de aspecto del ala12.6540.676
36Integrator Extended Range (ER)Relación de aspecto del ala12.8590.676
37ScanEagle 3Relación de aspecto del ala13.7740.676
38RQNan21A BlackjackRelación de aspecto del ala12.9730.695
39DeltaQuad EvoRelación de aspecto del ala14.5990.716
40DeltaQuad Pro #MAPRelación de aspecto del ala14.7170.726
41DeltaQuad Pro #CARGORelación de aspecto del ala14.7170.740
42V21Relación de aspecto del ala14.5780.740
43V25Relación de aspecto del ala14.4350.752
44V32Relación de aspecto del ala14.1940.761
45V35Relación de aspecto del ala13.9090.767
46V39Relación de aspecto del ala14.0530.768
47Volitation VT370Relación de aspecto del ala13.6570.764
48Skyeye 2600Relación de aspecto del ala14.1160.771
49Skyeye 2930 VTOLRelación de aspecto del ala14.0130.669
50Skyeye 3600Relación de aspecto del ala13.7230.675
51Skyeye 3600 VTOLRelación de aspecto del ala13.6840.675
52Skyeye 5000Relación de aspecto del ala12.7130.675
53Skyeye 5000 VTOLRelación de aspecto del ala13.0460.699
54Skyeye 5000 VTOL octoRelación de aspecto del ala12.8770.703
55Volitation VT510Relación de aspecto del ala13.1140.718
56AscendRelación de aspecto del ala14.3570.726
57TransitionRelación de aspecto del ala14.2330.732
58ReachRelación de aspecto del ala13.6830.736
59Aerosonde® Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5950.831
60Integrator VTOLLongitud del fuselaje3.0030.831
61V39Longitud del fuselaje1.9540.831
92Aerosonde® Mk. 4.8 VTOL FTUASenvergadura5.6440.805
93Integrator VTOLenvergadura5.0330.805
94Aerosonde® Mk. 4.8 VTOL FTUASCuerda0.3940.827
95Fulmar XCuerda0.3130.827
96Orbiter 4Cuerda0.3340.737
97Orbiter 3Cuerda0.3010.737
98MantisCuerda0.2700.737
99ScanEagleCuerda0.2970.763
100IntegratorCuerda0.3380.714
101Integrator VTOLCuerda0.3410.749
102Integrator Extended Range (ER)Cuerda0.3440.749
103ScanEagle 3Cuerda0.3100.749
104RQNan21A BlackjackCuerda0.3390.750
105DeltaQuad EvoCuerda0.2760.774
106DeltaQuad Pro #MAPCuerda0.2720.793
107DeltaQuad Pro #CARGOCuerda0.2720.809
108V21Cuerda0.2780.809
109V25Cuerda0.2810.602
110V32Cuerda0.2910.591
111V35Cuerda0.3030.590
112V39Cuerda0.3040.590
113Volitation VT370Cuerda0.3130.590
114Skyeye 2600Cuerda0.2950.590
115Skyeye 2930 VTOLCuerda0.2990.590
116Skyeye 3600Cuerda0.3090.590
117Skyeye 3600 VTOLCuerda0.3120.594
118Skyeye 5000Cuerda0.3460.599
119Skyeye 5000 VTOLCuerda0.3360.683
120Skyeye 5000 VTOL octoCuerda0.3430.683
121Volitation VT510Cuerda0.3340.728
122AscendCuerda0.2860.728
123TransitionCuerda0.2900.724
124ReachCuerda0.3120.722
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveCantidad de Valores Imputados
0Aerosonde® Mk. 4.8 VTOL FTUAS4.000
1Ascend2.000
2DeltaQuad Evo2.000
3DeltaQuad Pro #CARGO3.000
4DeltaQuad Pro #MAP3.000
5Fulmar X3.000
6Integrator3.000
7Integrator Extended Range (ER)3.000
8Integrator VTOL5.000
9Mantis3.000
10Orbiter 33.000
11Orbiter 43.000
12RQNan21A Blackjack3.000
13Reach2.000
14ScanEagle3.000
15ScanEagle 33.000
16Skyeye 26002.000
17Skyeye 2930 VTOL2.000
18Skyeye 36002.000
19Skyeye 3600 VTOL2.000
20Skyeye 50002.000
21Skyeye 5000 VTOL2.000
22Skyeye 5000 VTOL octo2.000
23Transition2.000
24V212.000
25V252.000
26V323.000
27V352.000
28V393.000
29Volitation VT3702.000
30Volitation VT5102.000
TotalTotal80.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 32.31596323465078 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - AAI Aerosonde = 21.624760478782665 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 4 = 27.26947572941752 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 3 = 26.566881229546517 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator VTOL = 30.93282942341402 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator Extended Range (ER) = 30.953465066791882 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 3600 = 27.344050412360318 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 5000 VTOL octo = 31.71909847833797 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 4 = 9633.863636363636 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 3 = 8010.3359375 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Mantis = 12.97158076923077 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Integrator VTOL = 19487.0 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2600 = 13122.5 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2930 VTOL = 16571.42857142857 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 = 16571.42857142857 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 VTOL = 14902.124999999998 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 = 16044.444444444443 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL = 15640.0 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL octo = 15640.0 (Similitud)\n", + "Imputación final aplicada: Área del ala - Aerosonde® Mk. 4.8 VTOL FTUAS = 2.503 (Correlación)\n", + "Imputación final aplicada: Área del ala - Fulmar X = 0.94 (Correlación)\n", + "Imputación final aplicada: Área del ala - Orbiter 4 = 1.608 (Correlación)\n", + "Imputación final aplicada: Área del ala - Orbiter 3 = 1.12859375 (Similitud)\n", + "Imputación final aplicada: Área del ala - ScanEagle = 1.1814858490566036 (Similitud)\n", + "Imputación final aplicada: Área del ala - ScanEagle 3 = 1.349 (Correlación)\n", + "Imputación final aplicada: Área del ala - V35 = 1.12859375 (Similitud)\n", + "Imputación final aplicada: Área del ala - Volitation VT370 = 1.4456562499999999 (Similitud)\n", + "Imputación final aplicada: Área del ala - Volitation VT510 = 2.615 (Similitud)\n", + "Imputación final aplicada: Área del ala - Ascend = 0.8307894736842105 (Similitud)\n", + "Imputación final aplicada: Área del ala - Transition = 1.1897828403221333 (Similitud)\n", + "Imputación final aplicada: Área del ala - Reach = 2.6796565934065932 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Fulmar X = 13.217500000000001 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Orbiter 4 = 13.443 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V25 = 14.435 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Volitation VT370 = 13.657 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 VTOL = 13.6845 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 = 12.713000000000001 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL = 13.046 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL octo = 12.8765 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Volitation VT510 = 13.114 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Transition = 14.233 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Reach = 13.683 (Correlación)\n", + "Imputación final aplicada: Longitud del fuselaje - Aerosonde® Mk. 4.8 VTOL FTUAS = 3.5658602150537635 (Similitud)\n", + "Imputación final aplicada: Longitud del fuselaje - Integrator VTOL = 3.0035 (Correlación)\n", + "Imputación final aplicada: Longitud del fuselaje - V39 = 1.3746614583333334 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.7 Fixed Wing = 296.09004739336496 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.7 VTOL = 123.4483644859813 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.8 Fixed wing = 122.9111213235294 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.8 VTOL FTUAS = 815.0537634408602 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Integrator = 500.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Integrator VTOL = 499.66666666666663 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - ScanEagle 3 = 178.08195592286503 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V21 = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V25 = 1843.69 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V32 = 770.2127659574468 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V35 = 50.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT370 = 300.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 2600 = 1763.9083333333333 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 2930 VTOL = 51.78571428571428 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 3600 = 51.78571428571428 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 = 822.2222222222222 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 VTOL octo = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT510 = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Ascend = 273.55263157894734 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Transition = 633.4988526666666 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Reach = 819.7802197802197 (Similitud)\n", + "Imputación final aplicada: Autonomía de la aeronave - Skyeye 5000 VTOL octo = 8.0 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 41.66129032258065 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Integrator VTOL = 46.26913333333333 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Evo = 31.3125 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #MAP = 25.909677419354843 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #CARGO = 25.909677419354843 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 2600 = 24.701138406926347 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 3600 = 34.17857142857142 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker XE = 12.721966911764707 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker VXE30 = 12.68114837683525 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde® Mk. 4.7 Fixed Wing = 23.687203791469194 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 19.66532258064516 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - AAI Aerosonde = 12.842557251908397 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Fulmar X = 12.674999999999999 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 3 = 14.7734375 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle = 16.5188679245283 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle 3 = 24.611570247933887 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Evo = 13.41875 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V35 = 14.7734375 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V39 = 16.911458333333332 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Skyeye 5000 VTOL = 19.3125 (Similitud)\n", + "Imputación final aplicada: envergadura - Aerosonde® Mk. 4.8 VTOL FTUAS = 5.094086021505376 (Similitud)\n", + "Imputación final aplicada: envergadura - Integrator VTOL = 5.033 (Correlación)\n", + "Imputación final aplicada: Cuerda - Fulmar X = 0.313 (Correlación)\n", + "Imputación final aplicada: Cuerda - Orbiter 4 = 0.334 (Correlación)\n", + "Imputación final aplicada: Cuerda - V25 = 0.22158417241379308 (Similitud)\n", + "Imputación final aplicada: Cuerda - Volitation VT370 = 0.35683999999999994 (Similitud)\n", + "Imputación final aplicada: Cuerda - Skyeye 2600 = 0.2118754597701149 (Similitud)\n", + "Imputación final aplicada: Cuerda - Skyeye 3600 VTOL = 0.35683999999999994 (Similitud)\n", + "Imputación final aplicada: Cuerda - Transition = 0.29 (Correlación)\n", + "Imputación final aplicada: payload - AAI Aerosonde = 2.518560923664122 (Similitud)\n", + "Imputación final aplicada: payload - Fulmar X = 1.9779738749767999 (Similitud)\n", + "Imputación final aplicada: payload - Mantis = 1.1861538461538461 (Similitud)\n", + "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.7 Fixed Wing = 10.856635071090047 (Similitud)\n", + "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.8 VTOL FTUAS = 31.741935483870968 (Similitud)\n", + "Imputación final aplicada: Empty weight - Fulmar X = 11.5545671248376 (Similitud)\n", + "Imputación final aplicada: Empty weight - Orbiter 3 = 9.009375 (Similitud)\n", + "Imputación final aplicada: Empty weight - ScanEagle = 7.200471698113207 (Similitud)\n", + "Imputación final aplicada: Empty weight - ScanEagle 3 = 11.280303030303031 (Similitud)\n", + "Imputación final aplicada: Empty weight - V35 = 9.009375 (Similitud)\n", + "Imputación final aplicada: Empty weight - V39 = 6.41640625 (Similitud)\n", + "Imputación final aplicada: Empty weight - Volitation VT370 = 11.0 (Similitud)\n", + "Imputación final aplicada: Empty weight - Skyeye 5000 VTOL = 31.2 (Similitud)\n", + "Imputación final aplicada: Empty weight - Volitation VT510 = 31.2 (Similitud)\n", + "Imputación final aplicada: Área del ala - Mantis = 0.754 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator = 1.872 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator VTOL = 2.0895 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator Extended Range (ER) = 1.872 (Correlación)\n", + "Imputación final aplicada: Área del ala - RQNan21A Blackjack = 1.802 (Correlación)\n", + "Imputación final aplicada: Área del ala - DeltaQuad Pro #MAP = 0.7 (Correlación)\n", + "Imputación final aplicada: Área del ala - DeltaQuad Pro #CARGO = 0.7 (Correlación)\n", + "Imputación final aplicada: Área del ala - V32 = 1.03 (Correlación)\n", + "Imputación final aplicada: Área del ala - V39 = 1.203 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Orbiter 3 = 14.012 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Mantis = 14.767 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - ScanEagle = 14.067 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator = 12.923 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator VTOL = 12.654499999999999 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator Extended Range (ER) = 12.859 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - ScanEagle 3 = 13.774 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - RQNan21A Blackjack = 12.972999999999999 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Evo = 14.599 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #MAP = 14.717 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #CARGO = 14.717 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V21 = 14.578 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V32 = 14.194 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V35 = 13.909 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V39 = 14.0535 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2600 = 14.116 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2930 VTOL = 14.013 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 = 13.7225 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Ascend = 14.357 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - ScanEagle = 418.78 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - V39 = 475.37699999999995 (Correlación)\n", + "Imputación final aplicada: Cuerda - Aerosonde® Mk. 4.8 VTOL FTUAS = 0.394 (Correlación)\n", + "Imputación final aplicada: Cuerda - Orbiter 3 = 0.301 (Correlación)\n", + "Imputación final aplicada: Cuerda - Mantis = 0.27 (Correlación)\n", + "Imputación final aplicada: Cuerda - ScanEagle = 0.2975 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator = 0.33799999999999997 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator VTOL = 0.341 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator Extended Range (ER) = 0.344 (Correlación)\n", + "Imputación final aplicada: Cuerda - ScanEagle 3 = 0.3105 (Correlación)\n", + "Imputación final aplicada: Cuerda - RQNan21A Blackjack = 0.3385 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Evo = 0.2755 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Pro #MAP = 0.272 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Pro #CARGO = 0.272 (Correlación)\n", + "Imputación final aplicada: Cuerda - V21 = 0.2775 (Correlación)\n", + "Imputación final aplicada: Cuerda - V32 = 0.291 (Correlación)\n", + "Imputación final aplicada: Cuerda - V35 = 0.3035 (Correlación)\n", + "Imputación final aplicada: Cuerda - V39 = 0.3045 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 2930 VTOL = 0.299 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 3600 = 0.309 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 = 0.3465 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL = 0.336 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL octo = 0.3425 (Correlación)\n", + "Imputación final aplicada: Cuerda - Volitation VT510 = 0.334 (Correlación)\n", + "Imputación final aplicada: Cuerda - Ascend = 0.286 (Correlación)\n", + "Imputación final aplicada: Cuerda - Reach = 0.312 (Correlación)\n", + "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.7 VTOL = 19.796 (Correlación)\n", + "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.8 Fixed wing = 19.809 (Correlación)\n", + "Imputación final aplicada: Empty weight - Orbiter 4 = 18.724 (Correlación)\n", + "Imputación final aplicada: Empty weight - Mantis = 5.627 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator = 22.234 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator VTOL = 24.8205 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator Extended Range (ER) = 22.2905 (Correlación)\n", + "Imputación final aplicada: Empty weight - RQNan21A Blackjack = 21.149 (Correlación)\n", + "Imputación final aplicada: Empty weight - DeltaQuad Pro #MAP = 4.767 (Correlación)\n", + "Imputación final aplicada: Empty weight - DeltaQuad Pro #CARGO = 4.767 (Correlación)\n", + "\n", + "=== Iteración 1: Resumen después de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Después de Iteración 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE0.000
1Stalker VXE300.000
2Aerosonde® Mk. 4.7 Fixed Wing0.000
3Aerosonde® Mk. 4.7 VTOL1.000
4Aerosonde® Mk. 4.8 Fixed wing1.000
5Aerosonde® Mk. 4.8 VTOL FTUAS0.000
6AAI Aerosonde0.000
7Fulmar X0.000
8Orbiter 41.000
9Orbiter 30.000
10Mantis1.000
11ScanEagle0.000
12Integrator1.000
13Integrator VTOL1.000
14Integrator Extended Range (ER)1.000
15ScanEagle 30.000
16RQNan21A Blackjack1.000
17DeltaQuad Evo0.000
18DeltaQuad Pro #MAP1.000
19DeltaQuad Pro #CARGO1.000
20V210.000
21V250.000
22V320.000
23V350.000
24V390.000
25Volitation VT3700.000
26Skyeye 26000.000
27Skyeye 2930 VTOL0.000
28Skyeye 36000.000
29Skyeye 3600 VTOL0.000
30Skyeye 50000.000
31Skyeye 5000 VTOL0.000
32Skyeye 5000 VTOL octo0.000
33Volitation VT5100.000
34Ascend0.000
35Transition0.000
36Reach0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes10.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "================================================================================\n", + "\u001b[1m=== FIN DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 2 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 2: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Antes de Iteración 2

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE32.000
1Stalker VXE3033.000
2Aerosonde® Mk. 4.7 Fixed Wing30.000
3Aerosonde® Mk. 4.7 VTOL30.000
4Aerosonde® Mk. 4.8 Fixed wing34.000
5Aerosonde® Mk. 4.8 VTOL FTUAS35.000
6AAI Aerosonde31.000
7Fulmar X36.000
8Orbiter 437.000
9Orbiter 336.000
10Mantis36.000
11ScanEagle35.000
12Integrator36.000
13Integrator VTOL35.000
14Integrator Extended Range (ER)38.000
15ScanEagle 335.000
16RQNan21A Blackjack35.000
17DeltaQuad Evo30.000
18DeltaQuad Pro #MAP33.000
19DeltaQuad Pro #CARGO33.000
20V2129.000
21V2529.000
22V3229.000
23V3532.000
24V3933.000
25Volitation VT37031.000
26Skyeye 260034.000
27Skyeye 2930 VTOL33.000
28Skyeye 360033.000
29Skyeye 3600 VTOL32.000
30Skyeye 500030.000
31Skyeye 5000 VTOL32.000
32Skyeye 5000 VTOL octo32.000
33Volitation VT51030.000
34Ascend31.000
35Transition31.000
36Reach31.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes1212.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "Rango mínimo: 0.85, Rango máximo: 1.15, Confianza mínima: 0.5\n", + "\n", + "=== Verificación de 'df_resultado_por_similitud' ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Datos Filtrados por aeronaves seleccionadas antes de imputar(df_resultado_por_similitud)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440532.31596321.6247630.40658427.26947626.56688118.26582630.62533630.95346530.93282930.95346525.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.25028827.3440532.8128636.09414730.62533631.71909832.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429633.8636368010.33593812.97158119500.019500.019487.019500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.013122.516571.42857116571.42857114902.12516044.44444415640.015640.017000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.552.5030.570.941.6081.1285940.7541.1814861.8722.08951.8721.3491.8020.840.70.70.80.521.031.1285941.2031.4456560.881.01.331.322.6152.6152.6152.6150.8307891.1897832.679657
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44314.01214.76714.06712.92312.654512.85913.77412.97314.59914.71714.71714.57814.43514.19413.90914.053513.65714.11614.01313.722513.684512.71313.04612.876513.11414.35714.23313.683
Longitud del fuselaje2.12.59083.03.03.03.565861.71.21.21.21.481.712.53.00352.52.42.50.750.90.90.930.931.01.881.3746612.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0296.090047123.448364122.911121815.0537633270.0800.0150.050.025.0418.78500.0499.666667500.0178.08195692.6270.0100.0100.0270.01843.69770.21276650.0475.377300.01763.90833351.78571451.785714300.0822.222222800.0800.0800.0273.552632633.498853819.78022
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.08.05.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388641.6612930.84572541.736.036.025.641.246.346.26913346.341.246.331.312525.90967725.90967733.033.033.033.033.033.024.70113830.034.17857133.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)12.72196712.68114823.687204NaNNaN19.66532312.84255712.675NaN14.773438NaN16.518868NaNNaNNaN24.61157NaN13.41875NaNNaN14.015.517.014.77343816.91145824.010.018.012.524.015.019.312524.025.013.013.013.0
envergadura3.6574.87684.44.44.45.0940862.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3130.3340.3010.270.29750.3380.3410.3440.31050.33850.27550.2720.2720.27750.2215840.2910.30350.30450.356840.2118750.2990.3090.356840.34650.3360.34250.3340.2860.290.312
payload2.4947562.49475614.511.317.722.72.5185611.97797412.05.51.1861545.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.46329210.85663519.79619.80931.74193510.011.55456718.7249.0093755.6277.20047222.23424.820522.290511.28030321.1494.84.7674.7672.653.456.459.0093756.41640611.06.57.111.511.032.031.235.031.23.05.831.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.7 VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.8 Fixed wing.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Orbiter 4.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Mantis.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator VTOL.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator Extended Range (ER).\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para RQNan21A Blackjack.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #MAP.\n", + "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Velocidad de pérdida (KCAS)'.\n", + "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #CARGO.\n", + "\n", + "=== Generando reporte final ===\n", + "No se realizaron imputaciones con el nivel de confianza aceptable.\n", + "No se realizaron imputaciones con éxito.\n", + "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440532.31596321.6247630.40658427.26947626.56688118.26582630.62533630.95346530.93282930.95346525.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.25028827.3440532.8128636.09414730.62533631.71909832.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429633.8636368010.33593812.97158119500.019500.019487.019500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.013122.516571.42857116571.42857114902.12516044.44444415640.015640.017000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
Área del ala0.871.1582831.551.551.552.5030.570.941.6081.1285940.7541.1814861.8722.08951.8721.3491.8020.840.70.70.80.521.031.1285941.2031.4456560.881.01.331.322.6152.6152.6152.6150.8307891.1897832.679657
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44314.01214.76714.06712.92312.654512.85913.77412.97314.59914.71714.71714.57814.43514.19413.90914.053513.65714.11614.01313.722513.684512.71313.04612.876513.11414.35714.23313.683
Longitud del fuselaje2.12.59083.03.03.03.565861.71.21.21.21.481.712.53.00352.52.42.50.750.90.90.930.931.01.881.3746612.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0296.090047123.448364122.911121815.0537633270.0800.0150.050.025.0418.78500.0499.666667500.0178.08195692.6270.0100.0100.0270.01843.69770.21276650.0475.377300.01763.90833351.78571451.785714300.0822.222222800.0800.0800.0273.552632633.498853819.78022
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.08.05.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388641.6612930.84572541.736.036.025.641.246.346.26913346.341.246.331.312525.90967725.90967733.033.033.033.033.033.024.70113830.034.17857133.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)12.72196712.68114823.687204NaNNaN19.66532312.84255712.675NaN14.773438NaN16.518868NaNNaNNaN24.61157NaN13.41875NaNNaN14.015.517.014.77343816.91145824.010.018.012.524.015.019.312524.025.013.013.013.0
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.45.0940862.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3130.3340.3010.270.29750.3380.3410.3440.31050.33850.27550.2720.2720.27750.2215840.2910.30350.30450.356840.2118750.2990.3090.356840.34650.3360.34250.3340.2860.290.312
payload2.4947562.49475614.511.317.722.72.5185611.97797412.05.51.1861545.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.46329210.85663519.79619.80931.74193510.011.55456718.7249.0093755.6277.20047222.23424.820522.290511.28030321.1494.84.7674.7672.653.456.459.0093756.41640611.06.57.111.511.032.031.235.031.23.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia/PesoNaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia(W)NaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia(HP)NaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
DespegueNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
EmpresaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
kjbkNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecio
Distancia de carrera requerida para despegue1.0000.0630.3460.058-0.5050.230-0.2490.2270.4250.168-0.014-0.0690.207-0.2350.1130.1510.229nan0.389nan0.209nannan-0.018-0.240-0.156
Altitud a la que se realiza el crucero0.0631.000-0.056-0.125nan-0.0590.108-0.096nan-0.095-0.324-0.281-0.1970.170-0.0840.079-0.101nannannan-0.1270.038-0.325nannannan
Velocidad a la que se realiza el crucero (KTAS)0.346-0.0561.0000.1660.1390.672-0.7850.5550.9320.7020.1020.2720.7030.3690.5310.5420.708-0.6940.9820.7970.608-0.6020.3050.5950.461-0.272
Techo de servicio máximo0.058-0.1250.1661.000-0.1660.187-0.1290.1780.5530.2040.1470.0840.158-0.0020.1250.0950.200-0.8750.1440.5790.118-0.798-0.036-0.0900.469-0.138
Velocidad de pérdida limpia (KCAS)-0.505nan0.139-0.1661.0000.439-0.3700.260nan0.546-0.2890.4010.5931.0000.5050.6530.536nan0.128nan0.411nannan0.0681.0000.163
Área del ala0.230-0.0590.6720.1870.4391.000-0.7460.8460.9840.979-0.0490.3460.6840.4620.8090.7230.845-0.4430.6720.9860.949-0.5430.5130.9920.6870.048
Relación de aspecto del ala-0.2490.108-0.785-0.129-0.370-0.7461.000-0.626-0.676-0.7890.108-0.444-0.740-0.572-0.618-0.779-0.8280.521-0.765-0.495-0.6960.429-0.416-0.9700.3020.025
Longitud del fuselaje0.227-0.0960.5550.1780.2600.846-0.6261.0000.9380.8080.0430.3930.3970.3120.7040.5770.665-0.6170.5640.9250.832-0.6960.6820.9290.036-0.186
Ancho del fuselaje0.425nan0.9320.553nan0.984-0.6760.9381.0000.9860.721-0.1940.9400.5470.6710.5360.868nan0.944nan0.882nan0.323nan1.000nan
Peso máximo al despegue (MTOW)0.168-0.0950.7020.2040.5460.979-0.7890.8080.9861.0000.0130.3930.7360.5120.8020.7070.884-0.4010.7080.9790.958-0.4640.5140.9760.7580.052
Alcance de la aeronave-0.014-0.3240.1020.147-0.289-0.0490.1080.0430.7210.0131.0000.2000.001-0.227-0.095-0.492-0.074-0.5780.3320.6240.073-0.7860.1750.9660.6680.037
Autonomía de la aeronave-0.069-0.2810.2720.0840.4010.346-0.4440.393-0.1940.3930.2001.0000.4220.2030.5300.3180.380-0.5940.3010.6340.384-0.7150.802-0.093-0.7320.021
Velocidad máxima (KIAS)0.207-0.1970.7030.1580.5930.684-0.7400.3970.9400.7360.0010.4221.0000.5150.5310.5930.732-0.2020.6640.7840.632-0.3390.1840.7420.9100.114
Velocidad de pérdida (KCAS)-0.2350.1700.369-0.0021.0000.462-0.5720.3120.5470.512-0.2270.2030.5151.0000.4930.6340.6540.5850.3940.1740.3571.0000.0890.0420.3540.136
envergadura0.113-0.0840.5310.1250.5050.809-0.6180.7040.6710.802-0.0950.5300.5310.4931.0000.7190.770-0.2580.5010.9340.793-0.4140.6480.2970.0850.032
Cuerda0.1510.0790.5420.0950.6530.723-0.7790.5770.5360.707-0.4920.3180.5930.6340.7191.0000.754-0.4890.5000.5910.642-0.4810.4120.014-0.9220.075
payload0.229-0.1010.7080.2000.5360.845-0.8280.6650.8680.884-0.0740.3800.7320.6540.7700.7541.000-0.0240.6710.5590.808-0.1420.4750.7110.846-0.008
duracion en VTOLnannan-0.694-0.875nan-0.4430.521-0.617nan-0.401-0.578-0.594-0.2020.585-0.258-0.489-0.0241.000-0.694-0.402-0.3151.000nannannannan
Crucero KIAS0.389nan0.9820.1440.1280.672-0.7650.5640.9440.7080.3320.3010.6640.3940.5010.5000.671-0.6941.0000.7230.620-0.8550.3590.5810.461-0.243
RTF (Including fuel & Batteries)nannan0.7970.579nan0.986-0.4950.925nan0.9790.6240.6340.7840.1740.9340.5910.559-0.4020.7231.0000.973-0.402nannannannan
Empty weight0.209-0.1270.6080.1180.4110.949-0.6960.8320.8820.9580.0730.3840.6320.3570.7930.6420.808-0.3150.6200.9731.000-0.3860.7210.9890.6170.028
Maximum Crosswindnan0.038-0.602-0.798nan-0.5430.429-0.696nan-0.464-0.786-0.715-0.3391.000-0.414-0.481-0.1421.000-0.855-0.402-0.3861.000nannannannan
Rango de comunicaciónnan-0.3250.305-0.036nan0.513-0.4160.6820.3230.5140.1750.8020.1840.0890.6480.4120.475nan0.359nan0.721nan1.000nannannan
Capacidad combustible-0.018nan0.595-0.0900.0680.992-0.9700.929nan0.9760.966-0.0930.7420.0420.2970.0140.711nan0.581nan0.989nannan1.0000.3770.817
Consumo-0.240nan0.4610.4691.0000.6870.3020.0361.0000.7580.668-0.7320.9100.3540.085-0.9220.846nan0.461nan0.617nannan0.3771.0000.998
Precio-0.156nan-0.272-0.1380.1630.0480.025-0.186nan0.0520.0370.0210.1140.1360.0320.075-0.008nan-0.243nan0.028nannan0.8170.9981.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores676.000
1Valores numéricos602.000
2Valores NaN74.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)1.0000.1660.672-0.7850.5550.7020.1020.2720.7030.3690.5310.5420.7080.608
Techo de servicio máximo0.1661.0000.187-0.1290.1780.2040.1470.0840.158-0.0020.1250.0950.2000.118
Área del ala0.6720.1871.000-0.7460.8460.979-0.0490.3460.6840.4620.8090.7230.8450.949
Relación de aspecto del ala-0.785-0.129-0.7461.000-0.626-0.7890.108-0.444-0.740-0.572-0.618-0.779-0.828-0.696
Longitud del fuselaje0.5550.1780.846-0.6261.0000.8080.0430.3930.3970.3120.7040.5770.6650.832
Peso máximo al despegue (MTOW)0.7020.2040.979-0.7890.8081.0000.0130.3930.7360.5120.8020.7070.8840.958
Alcance de la aeronave0.1020.147-0.0490.1080.0430.0131.0000.2000.001-0.227-0.095-0.492-0.0740.073
Autonomía de la aeronave0.2720.0840.346-0.4440.3930.3930.2001.0000.4220.2030.5300.3180.3800.384
Velocidad máxima (KIAS)0.7030.1580.684-0.7400.3970.7360.0010.4221.0000.5150.5310.5930.7320.632
Velocidad de pérdida (KCAS)0.369-0.0020.462-0.5720.3120.512-0.2270.2030.5151.0000.4930.6340.6540.357
envergadura0.5310.1250.809-0.6180.7040.802-0.0950.5300.5310.4931.0000.7190.7700.793
Cuerda0.5420.0950.723-0.7790.5770.707-0.4920.3180.5930.6340.7191.0000.7540.642
payload0.7080.2000.845-0.8280.6650.884-0.0740.3800.7320.6540.7700.7541.0000.808
Empty weight0.6080.1180.949-0.6960.8320.9580.0730.3840.6320.3570.7930.6420.8081.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos196.000
2Valores NaN0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)nannannan-0.785nan0.702nannan0.703nannannan0.708nan
Techo de servicio máximonannannannannannannannannannannannannannan
Área del alanannannan-0.7460.8460.979nannannannan0.8090.7230.8450.949
Relación de aspecto del ala-0.785nan-0.746nannan-0.789nannan-0.740nannan-0.779-0.828nan
Longitud del fuselajenannan0.846nannan0.808nannannannan0.704nannan0.832
Peso máximo al despegue (MTOW)0.702nan0.979-0.7890.808nannannan0.736nan0.8020.7070.8840.958
Alcance de la aeronavenannannannannannannannannannannannannannan
Autonomía de la aeronavenannannannannannannannannannannannannannan
Velocidad máxima (KIAS)0.703nannan-0.740nan0.736nannannannannannan0.732nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannan
envergaduranannan0.809nan0.7040.802nannannannannan0.7190.7700.793
Cuerdanannan0.723-0.779nan0.707nannannannan0.719nan0.754nan
payload0.708nan0.845-0.828nan0.884nannan0.732nan0.7700.754nan0.808
Empty weightnannan0.949nan0.8320.958nannannannan0.793nan0.808nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores196.000
1Valores numéricos58.000
2Valores NaN138.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUSx8H8O/S3d1dAoKCYoIFimIrdmF3e+3uQr0qXgu7scUWC1QMLDBAERUQ6a7d8/6BrCy7S+givPf+Pj77PHJ2zuzMzpw5u7MTLIZhGBBCCCGEEEIIIYQQQviI1XYCCCGEEEIIIYQQQgipq6jzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCyB8VGBgIFouFx48fC3y+U6dOMDExqdE0hIaGYtGiRUhPT6/R16kNixYtAovFEnm8L168wNChQ2FqagoZGRkoKCigQYMGWLNmDVJTU0X+er8jJCQELBYLISEhNRJ/bGwsWCwWAgMDayT+2jZkyBCRXYPOzs7Q19cHm80WGqZZs2bQ0NBAYWHhb7/e75R9ZW1TWaJ8j6qKYRgcPXoULVq0gJaWFmRkZGBgYAAvLy/s2rXrl+L08PCAh4eHaBNaTTXVZokai8XCokWL/vjr3r17F9LS0vj06RP3mImJCTp16iQw/OPHj0XePlXn2hCF/5c6USo7OxuTJ0+Gnp4eZGRk4OTkhKNHj1bpXA8PD7BYLKGPxMREAEBRURHMzc3h7+9fgzkhhFSEOs8IIYT854SGhmLx4sX/ys6zmrBz5040bNgQ4eHhmDFjBi5fvozTp0+jV69eCAgIgJ+fX20n8Y/S1dVFWFgYOnbsWNtJqfP8/PwQHx+PK1euCHz+3bt3CA0NxcCBAyElJfXbr9egQQOEhYWhQYMGvx1XXTN79mz07dsXtra22LVrF4KDg7Fs2TJoa2vj7NmztZ28XzZ8+HCEhYXVdjLqJIZhMHnyZIwYMQLGxsa1nRwiRPfu3bFv3z4sXLgQwcHBcHV1Rd++fXH48OFKz922bRvCwsJ4Hjdu3ICkpCTc3Nygo6MDAJCUlMSCBQuwZMkSpKSk1HSWCCECSNR2AgghhBBSd4WFhWHMmDFo164dzpw5A2lpae5z7dq1w7Rp03D58mWRvFZubi7k5OT4jrPZbBQXF/O8dm2SlpaGm5tbbSfj/0L//v0xY8YM7NmzB97e3nzP79mzBwAwbNiw33qdoqIisFgsKCkp/SvLJi8vD/7+/hg0aBD++ecfnueGDBkCDodTSyn7fQYGBjAwMKjtZNRJly9fxtOnT6vUCVOXCWvbf1dCQgLk5eWhpKQk8rir6tKlS7h27RoOHz6Mvn37AgBatWqFT58+YcaMGfD19YW4uLjQ8+3s7PiO7du3D0VFRRg+fDjP8b59+2Lq1KnYsWMH5syZI9qMEEIqRSPPCCGE1HkMw2Dbtm1wcnKCrKwsVFVV0bNnT3z48IEn3LVr19ClSxcYGBhARkYGFhYWGDVqFJKTk7lhFi1ahBkzZgAATE1NuVMjSqd5lU6HuXDhApydnSErKwtbW1tcuHABQMn0FVtbW8jLy6NRo0Z801geP36MPn36wMTEBLKysjAxMUHfvn15ptyUxsNisXDt2jUMHToUampqkJeXh4+PD1++hLl48SKcnJwgLS0NU1NTrFu37rfeP0FWrFgBFouFf/75R2DnlZSUFDp37sz9m8PhYM2aNbCxsYG0tDS0tLQwaNAgfPnyhec8Dw8P2Nvb486dO2jatCnk5OQwbNgw7pTINWvWYNmyZTA1NYW0tDRu3boFoOT97dy5M9TU1CAjIwNnZ2ccP3680nxUtVwA4OvXrxg5ciQMDQ0hJSUFPT099OzZE9++fQMgfNrmvXv30KZNGygqKkJOTg5NmzbFxYsXecKUlvutW7cwZswYaGhoQF1dHd27d0d8fDxfWo4dO4YmTZpAXl4eCgoK8PLywrNnz3jCfPjwAX369IGenh6kpaWhra2NNm3aICIiotL3JTAwENbW1pCWloatrS32798vMFxhYSGWLVvGLVdNTU0MHToU379/rzB+VVVVdOvWDefPn+cbLcFms3HgwAG4urrCwcEB0dHRGDp0KCwtLSEnJwd9fX34+Pjg5cuXPOeVTs08cOAApk2bBn19fUhLSyM6OlrgtM3qlD0ApKWl/dI1WdXr7NmzZ+jUqRO0tLQgLS0NPT09dOzYke8aKSsnJwcFBQXQ1dUV+LyYGO9H+l8tr+qee/jwYTRp0gQKCgpQUFCAk5MTdu/ezRPm8uXLaNOmDZSVlSEnJwdbW1usXLmS+7ygKXrVbUfCw8PRokULyMnJwczMDKtWreLpUMzPz8e0adPg5OQEZWVlqKmpoUmTJgJH7GVmZmLEiBFQV1eHgoIC2rdvj3fv3vGFq2p95XA4WLZsGaytrSErKwsVFRU4Ojpi06ZNFZRCie3bt8PV1RXW1taVhq3IkCFDoKCggDdv3sDLywvy8vLQ1dXFqlWrAAAPHjxA8+bNIS8vDysrK+zbt09gPFW5NoS17UBJe+bp6QldXV3uvfWvv/5CTk7OL+XrypUr0NbWRs+ePREUFIT8/Pxfiud3nD59GgoKCujVqxfP8aFDhyI+Ph4PHz6sdpy7d++GgoICfH19eY5LSUnB19cX//zzDxiG+a10E0KqjzrPCCGE1IrS0UTlH4I+EI4aNQqTJ09G27ZtcebMGWzbtg2vX79G06ZNuR0aABATE4MmTZpg+/btuHr1KhYsWICHDx+iefPmKCoqAlAyRWjChAkAgKCgIO40ibLTvJ4/f47Zs2dj1qxZCAoKgrKyMrp3746FCxdi165dWLFiBQ4dOoSMjAx06tQJeXl53HNjY2NhbW0Nf39/XLlyBatXr0ZCQgJcXV15OvFK+fn5QUxMDIcPH4a/vz8ePXoEDw+PSqeU3rhxA126dIGioiKOHj2KtWvX4vjx49i7d+8vv3+CyujmzZto2LAhDA0NK0xPqTFjxmDWrFlo164dzp07h6VLl+Ly5cto2rQpX/4TEhIwYMAA9OvXD5cuXcLYsWO5z23evBk3b97EunXrEBwcDBsbG9y6dQvNmjVDeno6AgICcPbsWTg5OcHX17fS9X2qWi5fv36Fq6srTp8+jalTpyI4OBj+/v5QVlZGWlqa0Phv376N1q1bIyMjA7t378aRI0egqKgIHx8fHDt2jC/88OHDISkpicOHD2PNmjUICQnBgAEDeMKsWLECffv2hZ2dHY4fP44DBw4gKysLLVq0QGRkJDect7c3njx5gjVr1uDatWvYvn07nJ2dK61DgYGBGDp0KGxtbXHq1CnMmzcPS5cuxc2bN3nCcTgcdOnSBatWrUK/fv1w8eJFrFq1CteuXYOHhwdP/RfEz88PhYWFOHjwIM/xK1euID4+njvtNz4+Hurq6li1ahUuX76MrVu3QkJCAo0bN8bbt2/54p09ezbi4uIQEBCA8+fPQ0tLS+Dr/6lrsirXWU5ODtq1a4dv375h69atuHbtGvz9/WFkZISsrCyhcWtoaMDCwgLbtm3Dhg0b8ObNG6Ffnn+nvKpz7oIFC9C/f3/o6ekhMDAQp0+fxuDBg3k6JXfv3g1vb29wOBxuOU2cOLHCjkKgeu1IYmIi+vfvjwEDBuDcuXPo0KEDZs+ezVPfCgoKkJqaiunTp+PMmTM4cuQImjdvju7du/N0GDMMg65du3I7Zk+fPg03Nzd06NCBL41Vra9r1qzBokWL0LdvX1y8eBHHjh2Dn59fpfWpsLAQ169fR6tWrSoMV1VFRUXo3r07OnbsiLNnz3Lfpzlz5mDw4MEYNmwYTp8+DWtrawwZMgRPnjzhi6Oq14awtv39+/fw9vbG7t27cfnyZUyePBnHjx+Hj4/PL+WpW7du2Lx5M9LS0tC7d29oa2tjyJAhuHLlSoXrLDIMI/Dzh6BHZV69egVbW1tISPBO6HJ0dOQ+Xx3v37/H3bt30adPHygoKPA97+HhgU+fPlU7XkKICDCEEELIH7R3714GQIUPY2NjbviwsDAGALN+/XqeeD5//szIysoyM2fOFPg6HA6HKSoqYj59+sQAYM6ePct9bu3atQwA5uPHj3znGRsbM7KyssyXL1+4xyIiIhgAjK6uLpOTk8M9fubMGQYAc+7cOaH5LS4uZrKzsxl5eXlm06ZNfO9Dt27deMLfv3+fAcAsW7ZMaJwMwzCNGzdm9PT0mLy8PO6xzMxMRk1NjSl7e//V949hGCYxMZEBwPTp06fCtJSKiopiADBjx47lOf7w4UMGADNnzhzuMXd3dwYAc+PGDZ6wHz9+ZAAw5ubmTGFhIc9zNjY2jLOzM1NUVMRzvFOnToyuri7DZrMZhmGYW7duMQCYW7duCU2rsHIZNmwYIykpyURGRgo9tzSNe/fu5R5zc3NjtLS0mKysLJ7XsLe3ZwwMDBgOh8MwzM9yL/8erVmzhgHAJCQkMAzDMHFxcYyEhAQzYcIEnnBZWVmMjo4O07t3b4ZhGCY5OZkBwPj7+wtNryBsNpvR09NjGjRowE0bwzBMbGwsIykpyXMNHjlyhAHAnDp1iieO8PBwBgCzbdu2Cl+Lw+EwpqamjKOjI8/xHj16MHJyckxGRobA84qLi5nCwkLG0tKSmTJlCvd4afm2bNmS75zfKfvqXJODBw/+pXbq8ePHDADmzJkzQtMnzKNHjxgjIyNuO6moqMh06tSJ2b9/P08ZVqe83N3dGXd392qf++HDB0ZcXJzp37+/0PRmZWUxSkpKTPPmzXnSV97ChQt52qxfaUcePnzIE9bOzo7x8vIS+prFxcVMUVER4+fnxzg7O3OPBwcHMwB46gXDMMzy5csZAMzChQsrjFNQfe3UqRPj5OQk9DxhSvN79OhRvueMjY2Zjh07CjyvtKzKtk+DBw/mK9eioiJGU1OTAcA8ffqUezwlJYURFxdnpk6dyj1WnWtDWNteXuk9+vbt2wwA5vnz59znyteJqkhMTGS2bNnCNGvWjGGxWIyWlhYzbtw45t69e3z1ryqfQ0oflbG0tBRY1+Lj4xkAzIoVK6qVj1mzZjEAmLCwMIHPv3//ngHAbN++vVrxEkJ+H408I4QQUiv279+P8PBwvkfz5s15wl24cAEsFgsDBgzg+TVYR0cH9evX55melZSUhNGjR8PQ0BASEhKQlJTkLrIcFRVV5bQ5OTlBX1+f+7etrS2Akl98y67bUnq87EiL7OxszJo1CxYWFpCQkICEhAQUFBSQk5MjMA39+/fn+btp06YwNjbmTlMUJCcnB+Hh4ejevTtkZGS4x0tHOpVVnffvd5WmeciQITzHGzVqBFtbW9y4cYPnuKqqKlq3bi0wrs6dO0NSUpL7d3R0NN68ecN9v8rmxdvbGwkJCQJHJ5WqarkEBwejVatW3LKtipycHDx8+BA9e/bkGSkgLi6OgQMH4suXL3xpKzvVFfg5SqG0Ll25cgXFxcUYNGgQT15lZGTg7u7OLTc1NTWYm5tj7dq12LBhA549e1al9a/evn2L+Ph49OvXj2fKnLGxMZo2bcoT9sKFC1BRUYGPjw9PWpycnKCjo1NpHWKxWBg6dChevHjBHc2SkpKC8+fPo0ePHtz1ioqLi7FixQrY2dlBSkoKEhISkJKSwvv37wVeOz169Kg0n8CfuSarep1ZWFhAVVUVs2bNQkBAAM8Iwsq4uroiOjoaly9fxpw5c9CkSRPcuHEDgwYNQufOnbkj0X6nvKp67rVr18BmszFu3DihcYWGhiIzMxNjx46t1s6J1W1HdHR00KhRI55jjo6OfNNyT5w4gWbNmkFBQYF7f9i9ezdPHSh97fJ1oF+/fnzprGp9bdSoEZ4/f46xY8fiypUryMzMrNL7UDqNW9iIyupisVg86w5KSEjAwsICurq6cHZ25h5XU1ODlpaWwGnNVb02hLXtHz58QL9+/aCjowNxcXFISkrC3d0dQPXu0YJoa2tj/PjxuHfvHj59+oSZM2dyR56bmpryTA318fER+PlD0KMqKqrf1an7xcXF2LdvH+rVqyd07cbS+vD169cqx0sIEQ3aMIAQQkitsLW1hYuLC99xZWVlfP78mfv3t2/fwDAMtLW1BcZjZmYGoGS6kaenJ+Lj4zF//nw4ODhAXl4eHA4Hbm5ulU4tK0tNTY3n79JdAIUdL7vOSr9+/XDjxg3Mnz8frq6uUFJS4n5pEZSG0p20yh+raDettLQ0cDgcoeeWVdX3TxANDQ3Iycnh48ePQsOUVZpmQesy6enp8X0ZE7Z+k6DnSqe9TZ8+HdOnTxd4jqApeKWqWi7fv3+v9uLlaWlpYBhGaL4B8JWnuro6z9+l68mVpqU0v66urgJfs3SNKxaLhRs3bmDJkiVYs2YNpk2bBjU1NfTv3x/Lly+HoqKiwPNL0yOsDsXGxnL//vbtG9LT04XuhlnR+15q6NChWLRoEfbu3YuGDRvi0KFDKCws5NmpderUqdi6dStmzZoFd3d3qKqqQkxMDMOHDxd47VRUf8r6E9dkVa8zZWVl3L59G8uXL8ecOXOQlpYGXV1djBgxAvPmzePpMBZEUlISXl5e8PLyAlBSjj179sSFCxcQHBwMb2/v3yqvqp5buv5ZRddKVcIIUt12pPy1BJRcT2XLNigoCL1790avXr0wY8YM6OjoQEJCAtu3b+duWlH62hISEnxxCqoTVa2vs2fPhry8PA4ePIiAgACIi4ujZcuWWL16tcB7YKnSOMr+QFJKQkJC6LTE0qmG5euSnJwcX1xSUlJ897XS44LWD6vqtSGo7LKzs9GiRQvIyMhg2bJlsLKygpycHD5//ozu3btX6x5dmYyMDKSnpyMjIwMAuGVTSk1NDcrKyiJ5LXV1dYFtQ2pqKve1qurSpUtITEzErFmzhIYpLUNRvl+EkKqhzjNCCCF1moaGBlgsFu7evStwwfrSY69evcLz588RGBiIwYMHc5+Pjo7+Y2nNyMjAhQsXsHDhQvz111/c46Xr7QiSmJgo8JiFhYXQ11FVVQWLxRJ6bllVff8EERcXR5s2bRAcHIwvX75U+iW49AtnQkICX9j4+HhoaGjwHKvOr/Wl586ePRvdu3cXeI6wRbWrUy6ampqVrsdUXukXs4SEBL7nSkePlM97ZUrDnzx5kjt6UhhjY2PuIu3v3r3D8ePHsWjRIhQWFiIgIEDgOaVlVdU6pK6uLnRXVWEddGUZGBjA09MThw8fxvr167F3715YWFigZcuW3DAHDx7EoEGDsGLFCp5zk5OToaKiwhdnVUZ0/KlrsjrXmYODA44ePQqGYfDixQsEBgZiyZIlkJWV5UljVairq2Py5MkICQnBq1ev4O3t/VvlVdVzNTU1AQBfvnwRuh5i2TDVUd12pCoOHjwIU1NTHDt2jKfeFBQU8L12cXExUlJSeDrQBNWJqtZXCQkJTJ06FVOnTkV6ejquX7+OOXPmwMvLC58/fxa6C2VpPgXVU21tbaEjj0qPC+vI/R1VvTYEXZs3b95EfHw8QkJCuKPNAFS69ltVvXv3DseOHcPRo0cRGRkJCwsL9O3bF/369YONjQ1P2H379mHo0KFVipepZGF+BwcHHDlyBMXFxTzrnpVuHGFvb1/lPOzevRtSUlIYOHCg0DCl9eFXrgNCyO+haZuEEELqtE6dOoFhGHz9+hUuLi58DwcHBwA/P6yX/+K6Y8cOvjjLj/IRFRaLBYZh+NKwa9cuoaMEDh06xPN3aGgoPn36BA8PD6GvU7rTZ/ndxbKysnD+/HmesFV9/4SZPXs2GIbBiBEjUFhYyPd8UVER9zVLp+mUXxg+PDwcUVFRaNOmTYWvVRFra2tYWlri+fPnAvPh4uIitFOgOuXSoUMH3Lp1q8IpoOXJy8ujcePGCAoK4qlTHA4HBw8ehIGBAaysrKqRW8DLywsSEhKIiYkRml9BrKysMG/ePDg4OODp06dC47e2toauri6OHDnC8+Xw06dPCA0N5QnbqVMnpKSkgM1mC0xHVXcC9PPzQ1paGhYsWICIiAgMHTqU50s2i8XiK6OLFy/+1vSkP3VN/sp1xmKxUL9+fWzcuBEqKioVlldRUZHQkW+l091KRzn+TnlV9VxPT0+Ii4tj+/btQuNq2rQplJWVERAQUK2dAWuiHWGxWJCSkuKpb4mJiXy7bZYuzl++Dhw+fFhgnNWtryoqKujZsyfGjRuH1NRUnhGe5ZVOHY+JieF7rm3btnj16pXAab/Hjx+HgoICGjduLDTuX/Ur10ap6tyjqyopKQmrV6+Gs7MzrK2tERAQAE9PTzx69Ajv37/HkiVL+DrOANFO2+zWrRuys7Nx6tQpnuP79u2Dnp5elcshMTERly5dQteuXQWOpixVurupnZ1dleIlhIgOjTwjhBBSpzVr1gwjR47E0KFD8fjxY7Rs2RLy8vJISEjAvXv34ODggDFjxsDGxgbm5ub466+/wDAM1NTUcP78eVy7do0vztIvsps2bcLgwYMhKSkJa2vrKo2gqYiSkhJatmyJtWvXQkNDAyYmJrh9+zZ2794tcOQMADx+/BjDhw9Hr1698PnzZ8ydOxf6+vo8O08KsnTpUrRv3x7t2rXDtGnTwGazsXr1asjLy/OMVKjq+ydM6e6lY8eORcOGDTFmzBjUq1cPRUVFePbsGf755x/Y29vDx8cH1tbWGDlyJLZs2QIxMTF06NABsbGxmD9/PgwNDTFlypRfel9L7dixAx06dICXlxeGDBkCfX19pKamIioqCk+fPsWJEycEnledclmyZAmCg4PRsmVLzJkzBw4ODkhPT8fly5cxdepUgV/EAGDlypVo164dWrVqhenTp0NKSgrbtm3Dq1evcOTIkWqtewMAJiYmWLJkCebOnYsPHz6gffv2UFVVxbdv3/Do0SPIy8tj8eLFePHiBcaPH49evXrB0tISUlJSuHnzJl68eFHhKCYxMTEsXboUw4cPR7du3TBixAikp6dj0aJFfFOz+vTpg0OHDsHb2xuTJk1Co0aNICkpiS9fvuDWrVvo0qULunXrVmmeOnfuDA0NDaxduxbi4uI8I0SBko6bwMBA2NjYwNHREU+ePMHatWurPe2vrD91TVb1Ortw4QK2bduGrl27wszMDAzDICgoCOnp6WjXrp3Q+DMyMmBiYoJevXqhbdu2MDQ0RHZ2NkJCQrBp0ybY2tpyR2T+TnlV9VwTExPMmTMHS5cuRV5eHvr27QtlZWVERkYiOTkZixcvhoKCAtavX4/hw4ejbdu2GDFiBLS1tREdHY3nz5/j77//FpiGmmhHOnXqhKCgIIwdOxY9e/bE58+fsXTpUujq6uL9+/fccJ6enmjZsiVmzpyJnJwcuLi44P79+zhw4IDAOKtSX318fGBvbw8XFxdoamri06dP8Pf3h7GxMSwtLYWm2cDAAGZmZnjw4AEmTpzI89ykSZOwf/9+eHh4cNuptLQ0HDt2DCdPnsSGDRt++34myK/er4CSzlRVVVWMHj0aCxcuhKSkJA4dOoTnz5//cnouXbqEVatWoUePHli3bh1atWrFMz1TGHV19Qo7qKqjQ4cOaNeuHcaMGYPMzExYWFjgyJEjuHz5Mg4ePAhxcXFuWD8/P+zbtw8xMTF8I4r37duH4uJiDB8+vMLXe/DgAXfqLyHkD/vTOxQQQgj5byvd5So8PFzg8x07duTZxa7Unj17mMaNGzPy8vKMrKwsY25uzgwaNIh5/PgxN0xkZCTTrl07RlFRkVFVVWV69erFxMXFCdwlbfbs2Yyenh4jJibGszufsF3MADDjxo3jOVa66+LatWu5x758+cL06NGDUVVVZRQVFZn27dszr169YoyNjZnBgwfzvQ9Xr15lBg4cyKioqDCysrKMt7c38/79+0rexRLnzp1jHB0dGSkpKcbIyIhZtWqV0F3KqvL+VSQiIoIZPHgwY2RkxEhJSTHy8vKMs7Mzs2DBAiYpKYkbjs1mM6tXr2asrKwYSUlJRkNDgxkwYADz+fNnnvjc3d2ZevXq8b2OoPe0rOfPnzO9e/dmtLS0GElJSUZHR4dp3bo1ExAQwA0jaMfFqpYLw5TskDhs2DBGR0eHkZSUZPT09JjevXsz375940lj2d3sGIZh7t69y7Ru3Zr7Hru5uTHnz5/nCSOs/gvbJfLMmTNMq1atGCUlJUZaWpoxNjZmevbsyVy/fp1hGIb59u0bM2TIEMbGxoaRl5dnFBQUGEdHR2bjxo1McXGxwPewrF27djGWlpaMlJQUY2VlxezZs4dvJ0mGKdmZb926dUz9+vUZGRkZRkFBgbGxsWFGjRpV5frKMAwzZcoUBgDj7e3N91xaWhrj5+fHaGlpMXJyckzz5s2Zu3fv8u0IWfpenThxgi+O3yn76lyTgt4jhqn8Onvz5g3Tt29fxtzcnJGVlWWUlZWZRo0aMYGBgRW+bwUFBcy6deuYDh06MEZGRoy0tDQjIyPD2NraMjNnzmRSUlJ4wle1vMq/t9U5l2EYZv/+/Yyrqys3nLOzM991cenSJcbd3Z2Rl5dn5OTkGDs7O2b16tXc5wW1Wb/bjggqn1WrVjEmJiaMtLQ0Y2try+zcuVPga6enpzPDhg1jVFRUGDk5OaZdu3bMmzdv+O4jVa2v69evZ5o2bcpoaGhw22o/Pz8mNjaWL93lzZ8/n1FVVWXy8/P5nktMTGTGjBnDGBkZMRISEoyioiLTvHlzgdfF4MGDGXl5eb7jwt6/8vfB6lwbwuJkGIYJDQ1lmjRpwsjJyTGamprM8OHDmadPn/K1p1XdbTM5OZkpKCioNFxNy8rKYiZOnMjo6OgwUlJSjKOjI3PkyBG+cKW7ngra6dvKyooxMTGpcGdahmGYFi1aMD4+PqJKOiGkGlgMU41x1IQQQggRicDAQAwdOhTh4eEVLhpNCCHkvyk+Ph6mpqbYv38/fH19azs5pJbFxMTA0tISV65cqXCkKiGkZtCaZ4QQQgghhBBSx+jp6WHy5MlYvnw5OBxObSeH1LJly5ahTZs21HFGSC2hNc8IIYQQQgghpA6aN28e5OTk8PXrV6E7m5J/v+LiYpibm2P27Nm1nRRC/rNo2iYhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYQQInJ37tyBj48P9PT0wGKxcObMmUrPuX37Nho2bAgZGRmYmZkhICCAL8ypU6dgZ2cHaWlp2NnZ4fTp0zWQ+p+o84wQQgghhBBCCCGEiFxOTg7q16+Pv//+u0rhP378CG9vb7Ro0QLPnj3DnDlzMHHiRJw6dYobJiwsDL6+vhg4cCCeP3+OgQMHonfv3nj48GFNZYOmbRJCCCGEEEIIIYSQmsVisXD69Gl07dpVaJhZs2bh3LlziIqK4h4bPXo0nj9/jrCwMACAr68vMjMzERwczA3Tvn17qKqq4siRIzWSdhp5RgghhBBCCCGEEEIqVVBQgMzMTJ5HQUGByOIPCwuDp6cnzzEvLy88fvwYRUVFFYYJDQ0VWTrKo902CSGEEEIIIYQQQuqQZltH13YSBGr3XQeLFy/mObZw4UIsWrRIJPEnJiZCW1ub55i2tjaKi4uRnJwMXV1doWESExNFkgZBqPOMEEJEqK7e5H7V/XEBiPjytraTIXJOBtaYfn5LbSdDpNb5TED62Gm1nQyRUtm2HqtvHqjtZIjUrNYDMfmsf20nQ6T8u0zG+6S42k6GSFlqGeHGu/DaToZItbFyxaQzG2s7GSK3qesUnHh+o7aTIVK96rfBxttHazsZIjXFvQ/WhRyq7WSI1HSP/v+6a2pT1ylYfHV3bSdDpBZ6+tV2Ev51Zs+ejalTp/Ick5aWFulrsFgsnr9LVxsre1xQmPLHRIk6zwghhBBCCCGEEEJIpaSlpUXeWVaWjo4O3wiypKQkSEhIQF1dvcIw5UejiRKteUYIIYQQQgghhBBSh7Dq6L+a1qRJE1y7do3n2NWrV+Hi4gJJSckKwzRt2rTG0kUjzwghhBBCCCGEEEKIyGVnZyM6Opr798ePHxEREQE1NTUYGRlh9uzZ+Pr1K/bv3w+gZGfNv//+G1OnTsWIESMQFhaG3bt38+yiOWnSJLRs2RKrV69Gly5dcPbsWVy/fh337t2rsXzQyDNCCCGEEEIIIYQQInKPHz+Gs7MznJ2dAQBTp06Fs7MzFixYAABISEhAXNzPtVNNTU1x6dIlhISEwMnJCUuXLsXmzZvRo0cPbpimTZvi6NGj2Lt3LxwdHREYGIhjx46hcePGNZYPGnlGCCGEEEIIIYQQUoeI1eDi93+Sh4cHd8F/QQIDA/mOubu74+nTpxXG27NnT/Ts2fN3k1dlNPKMEEIIIYQQQgghhBAhqPOMEEIIIYQQQgghhBAhaNomIYQQQgghhBBCSB3C+pdM2/y3oJFnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIYQIQdM2CSGEEEIIIYQQQuqQf8tum/8WNPKMEEIIIYQQQgghhBAhqPOMEEIIIYQQQgghhBAhaNomIYQQQgghhBBCSB3CAk3brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoRFu23WKTTyjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIf5455mJiQn8/f3/aHwsFgtnzpz5rddZtGgRnJycfiuO8kJCQsBisZCeni7SeAmv8u9zYGAgVFRUajVNQ4YMQdeuXWs1DXVBSkoKtLS0EBsbW9tJ4fH333+jc+fOtZ0MQgghhBBCyH+UGItVJx//VVVe88zHxwd5eXm4fv0633NhYWFo2rQpnjx5ggYNGog0gZUJDw+HvLz8H31N8v/N19cX3t7etZ0MAmDlypXw8fGBiYkJACA2NhampqZ49uwZt7M6KysLPj4+SExMxNu3byuM7+PHjzAxMUFoaChatGiBdu3a4fLly3zhTp06hTVr1uDNmzfgcDgwMjJC+/btsX79egDAiBEjsHz5cty7dw/NmzcXaZ5/R31dC/Rz9oSNlhE05FXw16XtuPvxeW0nS6ArZy/h/PEgpKekwcDECIPHDoetYz2BYdNSUnEgYA8+vItB4td4tO/WCUPGjeAJs3jqHEQ+f8V3rnNjF/y1YkGN5EGQpsYO8LBwhqK0PL5lpeLs67v4mBovNLy4mBjaWTVCQ31rKErLIz0/GzfehyP8cxQAYEyTbjDXMOA7L+pbLHY/Ol9j+ShPpqMnpJq5gSUnB3bsJ+QeCwIn4ZvQ8AqTx0DCyoLveNGrSORs213yh5gYZDp6QtK1AcSUlMDJzERhWDgKLl8HGKamsgIAiLr9GC+vhSEvIxsquppo3MsTOpZGAsMmvItF8MaDfMe7LxwNFR0N7t8Fufl4cvYWPkW8RWFuHhQ0VNCoRzsY2vO/D39CMxNHtLZoCCUZeSRmpeD0y9v4IKQu9nP2RCMjO77jCZkpWH3rQE0ntVounj6HoCMnkJqSAiMTE4yYOAb29R0Ehk1NTsHurTsQ/fY94r98hU/Prhg5cewfTjGv2xev4XrQJWSkpUPXSB+9RgyART0bgWGfhYbjbvANfPnwCcVFRdA1MkDHft1h18CRG2bj7GV4/+oN37n1XOpj3MIZNZaPyjQ3dURrCxdu/Qt6eRsfUr4KDNuvgScaG/G3/wmZKVh1c39NJ1Woh1du4+6568hOz4CWgS68h/SCia3g6zn2TTSuHjqD71+/oaigECqaanBt2xzNOrXhhtm1aCNiI9/znWvlXA+DZo+rsXyU9SrkEZ5fuY/cjGyo6mmimW8H6FoaCwz79e1HnF8fyHfcd/F4qOpqAgA+PI3Es+C7yEhKBYfNhrKWOuq3awqrJvVrMhs8IkPC8fxqGPIysqCqpwW33p5C8xT/NhYXN/DXqV6Lx/K056Viwl/h5q4gGNe3hudYX5GnXRhRXz86iurwtm0CAxUtqMspI+hlCG7HPKvJLPB5d+cZom48Ql5mNpR1NdCwe2toWRgKDc8uKsary6H4GB6J/KwcyKkoop6nG8yblLR/6QnJeHnxHlI/JyInNRMNureGTSuXP5UdQgSqcueZn58funfvjk+fPsHYmLfB2rNnD5ycnP54xxkAaGpq/vHXJH9GYWEhpKSkRB6vrKwsZGVlRR5vbaqp96oqioqKICkpWe3z8vLysHv3bly6dElomO/fv6NDhw4AgOvXr0NC4meT5erqipEjR2LEiJ+dLKXtwZ49ezBhwgTs2rULcXFxMDL6+aX5+vXr6NOnD1asWIHOnTuDxWIhMjISN27c4IaRlpZGv379sGXLljrVeSYrKY3olC+49CYUKzqMru3kCBV66y72bdsFv4mjYW1vi+sXLmPl7MXYsGcrNLT52+yioiIoKSujW/9euHTqrMA4py2ajeLiYu7fWZlZmDliItxaNquxfJRXX88Sne1bIOhlCGJTE+BmbI/hjX2wNuQQ0vOyBZ4zsGEHKErL4fjzm0jOSYeCtBzPL3aBjy9BQkyc+7ecpAymuvfF83j+L2A1RbpdK0i3dkfugaNgf/sOmQ5toTBhFDIXrwYKCgSek/NPIFDmemTJy0FxzjQUPX3xM17PVpBq0RS5+4+AE58IcWNDyA30BZOfj8Jbd2ssPx8ev8bDE1fRpE8HaJsb4s3dp7i69Qi6LxgNBTVloef1WDQGkjLS3L9lFOW4/2cXs3Fl8yHIKMqj9cgekFdRRHZaJk/4P8lZzwrdHNxx8vlNfEyNR1MTR4xq0hUrbx5Ael4WX/iglyE4H3mP+7cYSwwzW/X/o/WsKu7cCMHOzdsxZuoE2DnUQ/C5i1g0Yw62HdgNLW0tvvBFRUVQUlFG70H9cPb4qVpIMa/Hdx/g5K6D6DN6CMzsrHDv8k1sXbQW87euhpoW/xf36NdvYONkj84De0FOQR5h129j+9L1mLluMQzNTQAAI+dM5mn7cjKzsWLiHDRo1vhPZYuPs74Vujl44MTzm/iYEo+mpg4Y3aQrVt7YjzRB9e9FCM6/5q1/s1oPQET8uz+ZbB4vQx/jUuBJ+AzvAyNrM4Rfv4f9K7Zi4sb5UNFQ4wsvJS2Nxl7u0DHWh5S0ND69icbZnUcgJSMN17YlnxP6TR8Jdpmyys3KwdYZK2Df5M98P4oOf4XQY5fRol9H6FgYIfLOY1zcfBC+i8ZBUV1F6Hl9lk6AFE/b93NQgrS8LBp4t4SKjgbExMXx6eVb3Np3BrJK8jCsV/M/HMSEv0bY8Sto1s+7pD2/8xSXtxxGr0VjK2zPey0ZVy5PcnxhslLS8fDkNehYCP5hpabUxPUjJS6B5JwMPPv6Dt0cPP5ENnh8ehKFp0E34NK7HTTNDBB9PwIh20+i41w/yKspCTzn3t5zyM/KgVu/9lDQVEV+Vi4YDof7PLuwCAoayjB0tsbToJt/KiuEVKjK0zY7deoELS0tBAYG8hzPzc3FsWPH4OfnBwAIDQ1Fy5YtISsrC0NDQ0ycOBE5OTlC442Li0OXLl2goKAAJSUl9O7dG9++8f7afe7cObi4uEBGRgYaGhro3r0797ny0zbfv3+Pli1bQkZGBnZ2drh27Rrfa86aNQtWVlaQk5ODmZkZ5s+fj6KiIp4wq1atgra2NhQVFeHn54f8/PwK3x82mw0/Pz+YmppCVlYW1tbW2LRpU4XnlJeSkoK+ffvCwMAAcnJycHBwwJEjRyo9LzAwEEZGRpCTk0O3bt2wfv16nmmJgqYITp48GR4eHty/GYbBmjVrYGZmBllZWdSvXx8nT56s8HW3bdsGS0tLyMjIQFtbGz179vyt+ExMTLBs2TIMGTIEysrK3E6RyurUwYMH4eLiAkVFRejo6KBfv35ISkqq8P0q+/6YmJiAxWLxPUpVpb6U9/XrV/j6+kJVVRXq6uro0qVLtacm3r9/H+7u7pCTk4Oqqiq8vLyQlpYGAPDw8MD48eMxdepUaGhooF27doiNjQWLxUJERAQ3jvT0dLBYLISEhHCPvX79Gh07doSSkhIUFRXRokULxMTEcJ/fu3cvbG1tISMjAxsbG2zbto37XOlrHD9+HB4eHpCRkcHBgwfB4XCwZMkSGBgYQFpaGk5OTgJHfJUVHBwMCQkJNGnSRODznz9/RosWLaCoqIhbt27BwMAAOjo63Ie4uDi3zMsey8nJwfHjxzFmzBh06tSJr826cOECmjdvjhkzZsDa2hpWVlbo2rUrtmzZwhOuc+fOOHPmDPLy8irMx5/0IO41dj48h9sfImo7KRW6ePIsWndoizYdPWFgbIgh40ZAXUsDV88L7ijV0tHGkPEj4O7ZGnJCRhIrKClCRU2V+3jx5BmkZaTh5v7nOs/czZzwKC4Sj+IikZSdhnOv7yI9LxtNjAWPirHWNIK5uj52PTyH98mfkZaXhc/p3/ApLZEbJq+oAFkFudyHlaYhitjFeJEQ/aeyBenWLZF/+TqKIl6Ck5CI3P1HwJKSgpSrs9BzmNw8MJlZ3IekjRVQWITCpz9HQkqYmqDoxSsUv4oCJzUNRc9eoCjqHSSM+EfaidKrGw9h1dQJ1s2doaKrAbfenpBXVcKbO08qPE9GUR5yygrch5jYz49I70MjUJCTh7aje0Hb3BAK6irQsTCCuoF2jeZFGA+LBnj46TUexL3Gt+w0nH51G+l52Whu4igwfH5xIU89M1LRhqykDB7Gvf7DKa/YmWOn0K5je3j5eMPQxBgjJ46FhpYmLp0WPApTW1cHoyaNQ5v27YS2HX/SzTPBaNrOA828WkHXUB+9RgyEioY67gTfEBi+14iB8OzRCSZW5tDS00GXQb7Q0tXBy0c/R4zIKypAWVWF+3gT8QpS0lJo0LzRn8oWHw/zBnjw6RUefHqFb9mpOP3yNtLystDMtIr1T/VH/ftUe/Xv/oWbaNi6KVzaNIOWgS46DukFZQ0VPLp6R2B4PVND1G/uCm1DPahqqcOpZWNY1rdFbNTPtlpOQR6KKsrcR8yLN5CUloK925/pPHtxLRQ2zZ1h26IhVHVLRp0pqCoh8nZ4hefJKspDTlmR+yjb9ulbm8LU2RaquppQ1lKDY5smUNfXRkL0p5rODgDg5fUwWDdzhk3zBlDV1UQTXy8oqCoj8vbjCs+TraA9BwAOh4Nbu0+jgY8HFDVVazILfGri+olL/4Zzr+/i2dd3KOYUC4ynJr259RhmTRxh0bQ+lHXU0bBHG8ipKuL9PcGj3+IjPyAp+jM8RveEjo0JFNSVoWGiC00zfW4YdWNdOHdtBZOGthCXEBcYz3+BoO+odeHxX1XlzjMJCQkMGjQIgYGBYMpMtzhx4gQKCwvRv39/vHz5El5eXujevTtevHiBY8eO4d69exg/frzAOBmGQdeuXZGamorbt2/j2rVriImJga/vz2GzFy9eRPfu3dGxY0c8e/YMN27cgIuL4CGbHA4H3bt3h7i4OB48eICAgADMmjWLL5yioiICAwMRGRmJTZs2YefOndi4cSP3+ePHj2PhwoVYvnw5Hj9+DF1dXZ4OBGGvbWBggOPHjyMyMhILFizAnDlzcPz48QrPKys/Px8NGzbEhQsX8OrVK4wcORIDBw7Ew4cPhZ7z8OFDDBs2DGPHjkVERARatWqFZcuWVfk1S82bNw979+7F9u3b8fr1a0yZMgUDBgzA7du3BYZ//PgxJk6ciCVLluDt27e4fPkyWrZs+cvxlVq7di3s7e3x5MkTzJ8/v0p1qrCwEEuXLsXz589x5swZfPz4EUOGDKly3sPDw5GQkICEhAR8+fIFbm5uaNGiBff5yupLebm5uWjVqhUUFBRw584d3Lt3DwoKCmjfvj0KCwurlKaIiAi0adMG9erVQ1hYGO7duwcfHx+w2WxumH379kFCQgL379/Hjh07qhTv169fuZ3LN2/exJMnTzBs2DDur9o7d+7E3LlzsXz5ckRFRWHFihWYP38+9u3bxxPPrFmzMHHiRERFRcHLywubNm3C+vXrsW7dOrx48QJeXl7o3Lkz3r8XPqrhzp07Qq/lt2/folmzZrCxscHly5ehqKhYpfwBwLFjx2BtbQ1ra2sMGDAAe/fu5WmzdHR08Pr1a7x6xT8FsCwXFxcUFRXh0aNHVX5tAhQXFeHDu2g4uvB2vNRv6Ix3r/mnHv2qW8HX0bRVC8jIyogszoqIs8Sgr6yFd9/jeI6/+x4HEzVdgefU0zHF5/QktDJviPlth2JWqwHoZNeMZ6RZeY2M7BAR/w6F7D/z4VdMXQ1iykoojiozAqSYjeL3MZAwM6lyPFJNG6PwyTOgTBtXHPMRktaWEPsx4kZMXxcS5qYoEmE9KI9dzEZKXAL07Mx4juvbmiHpw5cKzz27YieOzPJHsP9BJLyN5Xku7sU7aJkZIPToZRyeuRFBS3bgefA9cMr8Sv6niLPEYKCshTffeb+8vkn6JLQultfYuB7efY8TOMqhthQVFSH63Ts4N2rIc9zZtSHevKpbnXyCFBcVIy76I2yd7XmO2zrb40NU1Ub4cTgc5OflQ05ReEdg6LUQNGzZBNIyf6btK0+cJQZDFW28TeKtf2+T4mCqplelONyM7Wu1/hUXFyP+Qxws6tvyHLdwtEXc2w9ViiP+42fEvf0IUztLoWGe3AyFQ9OGPCOgagq7uBjf4xJgaMc7GszAzhyJMZ8rPPfk0gDsn74W5zcE4uubj0LDMQyDL1EfkP4tGbqWJqJIdoXYxWwkxyVA386c57i+nRm+VZKnoGX/4OCMDbi4YT/i3/Ln6dmFO5BRlINNc+E/EtWEf8P1Ux67mI3Uz4nQtTHhOa5jY4rkj4Knon59GQ01Qx1EXX+E0/O24fySnXh6+haKCysenEBIbavytE0AGDZsGNauXYuQkBC0atUKQMn0qO7du0NVVRWTJk1Cv379MHnyZACApaUlNm/eDHd3d2zfvh0y5W70169fx4sXL/Dx40cYGpbMiT5w4ADq1auH8PBwuLq6Yvny5ejTpw8WL17MPa9+fcHz7K9fv46oqCjExsbCwKDkl+0VK1Zwp32VmjdvHvf/JiYmmDZtGo4dO4aZM2cCAPz9/TFs2DAMHz4cALBs2TJcv369wtFnkpKSPGk0NTVFaGgojh8/jt69ewt/U8vQ19fH9OnTuX9PmDABly9fxokTJ9C4seDh+Zs2bYKXlxf++usvAICVlRVCQ0MrHfVTVk5ODjZs2ICbN29yRwGZmZnh3r172LFjB9zd3fnOiYuLg7y8PDp16gRFRUUYGxvD2dn5l+Mr1bp1a573YNCgQZXWqWHDhnHDm5mZYfPmzWjUqBGys7OhoKBQaf7LTv2dNGkSEhISEB7+81e6yupLeUePHoWYmBh27drF7Znfu3cvVFRUEBISAk9Pz0rTtGbNGri4uPB02tarx7vegYWFBdasWcP9uyoj27Zu3QplZWUcPXqUO9XSysqK+/zSpUuxfv167uhOU1NTREZGYseOHRg8eDA33OTJk3lGgK5btw6zZs1Cnz59AACrV6/GrVu34O/vj61btwpMS2xsLPT0BH9QGDRoEJo2bYpTp05BXLx6vzbt3r0bAwYMAAC0b98e2dnZuHHjBtq2bQug5Lq6e/cuHBwcYGxsDDc3N3h6eqJ///6Qlv75AVdeXh4qKiqIjY0VWGcLCgpQUG5KW9nz/6syMzLB4XCgrKrCc1xZVRnpqekieY3oN+/w+eMnjJ4+QSTxVYW8lCzExcSQVZDLczyrIA+K0vzTQQBATU4Zpmq6KOYUI/DxJchLyaC7gwfkJGVw/Dn/SBRDFW3oKmng+PM/Nz2BpVwynYKTxfshnJOVBTE1/qlLgogbG0JcXxe5B4/xHC+4ehMsWRkoLphVssYZi4X888Eoelxz67AUZOeC4TCQLdf5IKsoj9wMwVNr5ZQU0ay/N9SNdMEpZiP64UsEbzoI7ykDofNjXZ2s5HQkvI2FWSN7eI7rg8ykVIQduwwOhwPnji0FxltT5KV/1MX88nUxF0oygutiWUrScrDVMsGBJ8E1lcRfkpmRAQ6bA1VV3lEgqqqqeJqaVkupqrrszCxwOBwoqvBOJVNSUUZmFTeGunHmEgoLCtCwueDPfLHvYhD/6QsGTBwh8Pk/obT+ZfK1hTlQlBa8DlVZStLysNUywf7HtVf/cjOzweFwoKDM+8OcvLISstMzKzx3zeg5yMnMBofNRuteHeHSRvDo5y/Rsfj2OR7dxgwQWborkp9dMuVNVom37ZNTUsDnTMFtn7yyIloO9IGmkR7YxWy8e/Ac5zfuQ+dpQ6BnZcINV5CbjwOz1oNTVAyWmBha9OsIw3IdWjUh/0d7LqfE357nZQqe1SSnrIAWAzpBw1gX7KJivH/4Ehc3HkCnqYOha1VSPxOj4/D2/jN0nz+qxvNQ3r/h+imvIKeknGT47rtySBBSTtkpGfj+4QvEJcXRYng3FOTk4vHxayjMzYdb/w4CzyGkLqhW55mNjQ2aNm2KPXv2oFWrVoiJicHdu3dx9epVAMCTJ08QHR2NQ4cOcc9hGAYcDgcfP36ErS3vLzxRUVEwNDTkdpwBgJ2dHVRUVBAVFQVXV1dERETwrGlUkaioKBgZGXE7zgAInBJ28uRJ+Pv7Izo6GtnZ2SguLoaSkhJPPKNH864n1KRJE9y6davC1w8ICMCuXbvw6dMn5OXlobCwsFo7dLLZbKxatQrHjh3D169fuV/OK9oQISoqCt26deNLa3U6zyIjI5Gfn4927drxHC8sLOR2iJXXrl07GBsbw8zMDO3bt0f79u3RrVs3yMnJ/VJ8pcqPRKpKnXr27BkWLVqEiIgIpKamckcCxMXFwc6Of4FkYf755x/s3r0b9+/f5+lQq6y+lFea5vKjpfLz83mmR1YkIiICvXr1qjCMsFFblcXbokULgWuUff/+HZ8/f4afnx/PNVdcXAxlZd4vA2VfOzMzE/Hx8WjWjPcDZLNmzfD8ufDF7PPy8vg61Et16dIFp0+fxqlTp6rc+QyUjFh79OgRgoKCAJSMmPX19cWePXu4nWfy8vK4ePEiYmJicOvWLTx48ADTpk3Dpk2bEBYWBjm5n18+ZWVlkZubK/C1Vq5cydNhDgALFy4EaBlGAAALvEO6GQCiGuV989I1GJoaw8LGqvLANayiPJV2nh9+ehX5xSUjss69vodBLh0Q9DIExRw2T/hGRnZIyEzG53ThC/X/LknXBpDr+3OKffb2XSX/4VvAn1XlRf2lmjYG+2sC2J94RwJINnSCVKOGyN17COyERIgb6EO2Zxdw0jNR9LDiKTe/q/yUAkbAsVLKOupQ1lHn/q1lZoCctEy8vPaA23nGMCVfDJr17wgxMTFoGOsiNyMLL689+OOdZ8KwqlhkjYzqIa+oAC8TqnY/+uP4yo75v5oiwlf3GP72UJDw26G4ePg0Rs+bwtcBVyr0agj0jA1gYlXzHReV4qtrVSujRkZ2P+rfn5uaLhRfvWIqvVENXzIVhfkF+PzuI64ePgs1HU3Ub+7KF+7xzVBoG+rBwMJEdOmtkvL1jxFa/1R0NHgW0dcxN0ROWgaeXw3l6TyTkpFCr/mjUVRQiK9RHxB64goUNVWhb21aIzn4HeXzpG1uiJzUDLy4FgZdK2MU5hfg1p4zaDGwE2QUKv+xocb8G66f8splgYHwto9hStr1poN9ICVb8sMzpxsbd/ecgUuvtpCQqv5ayv9WYlWsG+TPqFbnGVCyccD48eOxdetW7N27F8bGxmjTpmSnGQ6Hg1GjRmHixIl855VdsLtU6YVT0fHqLOzOCPjUWD7+Bw8ecEeyeXl5cUfhlO6y96uOHz+OKVOmYP369WjSpAkUFRWxdu3aCqdclrd+/Xps3LgR/v7+cHBwgLy8PCZPnlzhVD9BeS5PTEyML1zZNbtKO5suXrwIfX19nnDCRtIoKiri6dOnCAkJwdWrV7FgwQIsWrQI4eHhvxRfqfIdhZXVqZycHHh6esLT0xMHDx6EpqYm4uLi4OXlVeUpkgAQEhKCCRMm4MiRIzwjG3+lvnA4HDRs2JCnw69UVTe4qEq9L/9ela7nULasy6/NVlG8peW2c+dOvpGO5Ud/CerQ5f/CUPEXHg0NDe4abuXNmTMHjo6O6N+/PxiG4ZnKXZHdu3ejuLiYp94xDANJSUmkpaXxjGgwNzeHubk5hg8fjrlz58LKygrHjh3D0KFDuWFSU1OFltns2bMxdepUnmPS0tK4tmtSldL6b6WkrAQxMTGklyvbzLQMvtFov6IgvwChIXfRe3C/346rOnIK88DmcPhGmSlIyfKNRiuVlZ+DjPxsbscZACRlp0KMxYKKrAKSczK4xyXFJeCkZ4krb6t+z/gVRS9eIyu2zHSRH4v+iykpgZ35c/SZmKICmKwqTAmRlISUixPyLlzhe0q2uw/yr9xE0ZMIAAAnPhFiaqqQ8WpTY51n0gpyYImxkFtupEV+Vg7fiIyKaJrqI+bRS+7fcsoKYImJ8aybo6yjgbzMbLCL2X90PZacgh91UaZ8XZQTWhfLamxkh8dfosBm/vyU04ooKStDTFwMaampPMfT09KhIoK2o6YpKJWsFZWZls5zPCsjQ2hnWKnHdx/g4OZdGP7XBNg42QsMU5hfgMd3H6BT/x6iSvIvKa1/5Uc5KkpXrf65GdfD48+1W//klErWwCo/yiwnI4tvNFp5pRs/6BjpIzsjC7dOXOTrPCssKMTL+4/RxreTaBNeARkFObDExJBXru3Lq2bbp2VqgPcPX/AcY4mJQVmr5AcGDUNdpCUm41nw3RrvPJPhtue8o5eqnSczA0Q/LGnPs76nITslHVe2HuU+X/q5edeYpei9ZByUNKs26vpX/Buun/Kk5UvKKb9cOeVn5UJGSXAHpaySPGSVFbgdZwCgpKMOMEBuehaUtGquDAj5HVVe86xU7969IS4ujsOHD2Pfvn0YOnQo9wtygwYN8Pr1a1hYWPA9BO0EaGdnh7i4OHz+/PPX6sjISGRkZHBHqTk6OvLsgleR0vji439u1R4WFsYT5v79+zA2NsbcuXPh4uICS0tLfPrEO+/c1tYWDx484DlW/u/y7t69i6ZNm2Ls2LFwdnaGhYVFlUcZlY2jS5cuGDBgAOrXrw8zM7MK14wCSvJcWVo1NTWRkJDAc6zsovJ2dnaQlpZGXFwcX7mVHRVYnoSEBNq2bYs1a9bgxYsXiI2Nxc2bN385PkEqq1Nv3rxBcnIyVq1ahRYtWsDGxqbCzQIEiY6ORo8ePTBnzhyeqYhA1eqLoDS/f/8eWlpafGkuP4JLmOrU+1KlnTxly7psOZfGe/fuXYEbHmhra0NfXx8fPnzgS7epqfAPSEpKStDT08O9e/d4joeGhvKNNi3L2dkZkZGRQp+fN28eli5div79+1dp44zi4mLs378f69evR0REBPfx/PlzGBsbC+zMLGViYgI5OTmejShiYmKQn58vdLSktLQ0lJSUeB40bROQkJSEmZUFXvzoMCn14kkErOrZ/Hb8YSH3UFxYhBZtPX47rupgMxx8zUiClSZvG2alaYTY1ASB53xMTYCSjDykxH/+gqoprwIOw+HbnbO+rgUkxMTx9Mtb0Se+rIICcL6n/HwkfAMnIxMStmVG8YmLQ8LSHMUfYiuNTqqhEyAhgaJHAhbjl5QEyn/AZziiG4IogLiEONSNdBEfxbvGTXzUR2iZVX2jgtTPiZBT+jntX8vMAFnf08Bwfv44kZmUClllhT++kDGb4eBLRhKsNXl/lLTWEl4XS1moG0BTQRUPanGhdmEkJSVhYWWFiPCnPMcjwp/Cxr6ekLPqDglJCRhZmCLqGe96mm8iXsHMVvi6WOG3Q3HAfweGTh8Lhwo26Xhy7yGKi4rRyOPPbZIiCJvh4HP6N1hr8k4xs9Y0wsfUeCFnlbDQKK1/Fa85WtMkJCSgZ2aE6BdRPMejX7yBkbWZkLMEYBienVBLvQp7AnZxMZxa/LlNHcQlJKBppIvPkbzfPb5GfYCOedU/e6d8ToRcJR2IYBiwi9kVhxEBcQlxaBjp4msU7zp0X6M+QLuaeZJVLmnPlXU00GPBaHSfN4r7MHa0hp6VCbrPGwV51ap9Tv9V/4brpzxxCXGoGeog8U0sz/HEt7HQMNUXeI6mmT7yMrJRVPDzx8WspFSwWCzIqVR9nWNC/rRqjzxTUFCAr68v5syZg4yMDJ6F2WfNmgU3NzeMGzcOI0aMgLy8PKKionDt2jW+newAoG3bttzRJf7+/iguLsbYsWPh7u7OnRa2cOFCtGnTBubm5ujTpw+Ki4sRHBwscL2ptm3bwtraGoMGDcL69euRmZmJuXPn8oSxsLBAXFwcjh49CldXV1y8eBGnT5/mCTNp0iQMHjwYLi4uaN68OQ4dOoTXr1/DzEz4DdXCwgL79+/HlStXYGpqigMHDiA8PLzCTgdBcZw6dQqhoaFQVVXFhg0bkJiYWGEHxMSJE9G0aVOsWbMGXbt2xdWrV/mmbLZu3Rpr167F/v370aRJExw8eBCvXr3idgooKipi+vTpmDJlCjgcDpo3b47MzEyEhoZCQUGBZ62rUhcuXMCHDx/QsmVLqKqq4tKlS+BwOLC2tv6l+ISprE4ZGRlBSkoKW7ZswejRo/Hq1SssXbq0yvHn5eXBx8cHTk5OGDlyJBITf+6Cp6OjU6X6Ul7//v2xdu1adOnShbsDZVxcHIKCgjBjxgyeacXCzJ49Gw4ODhg7dixGjx4NKSkp3Lp1C7169YKGBv9290DJqDI3NzesWrUKJiYmSE5O5lmvDQDGjx+PLVu2oE+fPpg9ezaUlZXx4MEDNGrUCNbW1li0aBEmTpwIJSUldOjQAQUFBXj8+DHS0tL4RlmVNWPGDCxcuBDm5uZwcnLC3r17ERERUWGHlZeXF2bPns03Iqysv/76C+Li4hg4cCA4HA769+8vNL4LFy4gLS0Nfn5+fJ2UPXv2xO7duzF+/HgsWrQIubm58Pb2hrGxMdLT07F582YUFRXxTDW+e/cuzMzMYG5eB6bH/CArKQ0D5Z8j4fSUNGCpYYDM/Bx8y647awJ17NkFf6/aCHMrC1ja2eDGxStITvqOdj4l61gc3rUPqcmpGP/XFO45sdElH47z8/KRmZGJ2OgPkJCQgIEJbwfBreBrcGnmBkVl4VOna8rtDxHo69wOn9OT8CktEW7G9aAiq8D9INvBpgmUZRRwNKJkl+dnX9+hnZUrfJ3a4Orbh5CXkkUnu2Z4FBclYMpmPbxK/IDcoop3dq4JBTfvQMarDThJ38FOSoZM+zZgCgtRGP5zbTK5wX3BSc9A/lneHVOlmjZC0fNXYHL4fzEvfhkJmfZtwUlLByc+EeKG+pBu7Y7CsJrdhMO+TWPcCTwLDWNdaJka4O29p8hOy4BNi5Id7x6fuYmc9Cy4D+kCAHh94yEU1FWgoqcJTjEbMY9eIvbZG7Qe+XN6q03LhogMeYwHJ67AzsMVmUmpeH75Puxa8U/X+hNCop+if0MvfE7/htjUBDQxcYCqrCLux5aMGOlk2wzKsvI49PQqz3mNjeshNjUBiVkptZHsSnX17YENy1bDwsYKtvVscfncJXxPSoJ315IRPIEBu5GSnIxp835uBvXhfcn0pfy8PGSkZ+DD+2hISEjCyLTy9YNErXXXDti3YTuMLc1gamOB+5dvIe17Clp0KJmhcWbfMaSnpGHI1JKlQcJvh2Lfxh3oNWIATG0skPFj1JqUlBRk5XlHbIReC0F9t4ZQUKr9L5YhMU8xoGF7xP2of01NHKAqp4j7H3/UP7tmUJZRwKGnvCNS3YztEZuagIQ6UP+adWqNk1v2Qd/MGIZWpnh8/T4yktPg2q5kw6irh88gMzUdPccPAQA8uHwbKhqq0NDXAQB8ehODe+evw62DB1/cT26Gwta1PuQUK193V5Qc2zXFzT1B0DLWg7a5ISLvPEZWagbs3EvaqYdB15CTnoXWw0p+KH5xPQyK6ipQ1dMCh83G+wfP8eFpJDxH/xzt/zT4DjSN9aGsqQp2MRtxr97jXdhztOj/Z0bVObRtgpC9p6FprAstMwO8ufsU2akZsG1ZsrHIo9M3kJOehVZDuwIAXl5/AEUNFajqaoLNLlnD8uPTKLQdVbIUioSkBNT0tXheQ0quZAmR8sdrSk1cP+IsMegolYwOlGCJQ1lGAfrKmigoLuQZ5V5TbFq5IOzARagZ6UDDVB/R9yOQm5oJy+ZOAICIc7eRm56NpoM6AgCMXezw6nIYHhwMhqN3MxTk5OHZmRCYuTlwp2yyi9nITEwGAHCK2cjLyELal2+QkJb64zuk1qb/p2UL/guq3XkGlEzd3L17Nzw9PXmmYzo6OuL27duYO3cuWrRoAYZhYG5uLnTKFYvFwpkzZzBhwgS0bNkSYmJiaN++PU9Hm4eHB06cOIGlS5di1apVUFJS4tnVsSwxMTGcPn0afn5+aNSoEUxMTLB582a0b9+eG6ZLly6YMmUKxo8fj4KCAnTs2BHz58/HokWLuGF8fX0RExODWbNmIT8/Hz169MCYMWNw5Qr/tJRSo0ePRkREBHx9fcFisdC3b1+MHTsWwcFVX9Bx/vz5+PjxI7y8vCAnJ4eRI0eia9euyMgQ3ui5ublh165dWLhwIRYtWoS2bdtyR+yU8vLywvz58zFz5kzk5+dj2LBhGDRoEF6+/DklZenSpdDS0sLKlSvx4cMHqKiooEGDBpgzZ47A11VRUUFQUBAWLVqE/Px8WFpa4siRI9xF7asbnzCV1SlNTU0EBgZizpw52Lx5Mxo0aIB169ahc+fOVYr/27dvePPmDd68ecO3eD3DMFWqL+XJycnhzp07mDVrFrp3746srCzo6+ujTZs2Fa6VVpaVlRWuXr2KOXPmoFGjRpCVlUXjxo3Rt2/fCs/bs2cPhg0bBhcXF1hbW2PNmjU8GxSoq6vj5s2bmDFjBtzd3SEuLg4nJyfuemXDhw+HnJwc1q5di5kzZ0JeXh4ODg7cDRuEmThxIjIzMzFt2jQkJSXBzs4O586dg6Wl8F/bHRwc4OLiguPHj2PUKOGLts6YMQPi4uIYPHgwOBwOBg4cKDDc7t270bZtW4Gj+3r06IEVK1bg6dOncHd3x9atWzFo0CB8+/YNqqqqcHZ2xtWrV2Ftbc0958iRI1Veb/FPsdE0xt/dfnZiTmxe8mHwUlQYlt/cJ+y0P65pqxbIyszCqQPHkJaaCkMTY/y1cgE0tUs+mKanpCEl6TvPObNGTeb+/8O7aNy/cRua2lr4+/Au7vH4z1/x5lUk5q7mXWvuT3ke/x7ykjJoZ9UIStLySMxKwe6H57k7XinJyENV9ueXpUJ2EXY8OItu9i0xqaUvcgvz8Tw+GsFveEdEa8irwExdDzvCzvzJ7HAVXLsFlpQkZPv0AEtOFuzYOGRv+QcosyGGmKoKwOGd/i+mpQEJCzNkbxa822/u8dOQ9WkPOd/uYCkqgpORgcJ7Yci/dK0mswMzl3ooyMlDxMW7yM3MhqquJjzH9YGCukpJujKykZP6877KZrPxKOg6ctOzIC4pAVVdTbQb1weG9j93rVNQU0b7if3w8MQ1nFn2D+RUFFGvlSscvJrWaF6EeRb/DnJSMvCydoOStBwSslKw48HZcnWR934jIyGF+roWCHpV8a7XtallGw9kZWbiaOBBpKakwtjUBIvWLIeWjjYAIC0lBd+/8Y4unzhsDPf/0W/f4/a1m9DS0caeEwf/aNoBwKWFG3Iys3Dp6GlkpqZD19gAYxfOgPqPqX6ZqelI+57MDX/v8k1w2GwcC9iHYwE/23C31i0waMrP++K3rwmIiXyHCUv4d5CvDc++voO8lAy8bBpDWVq+pP6FneGtf3K8nXzc+vcy5M8nWACHpi7IzcrBrVOXkJWWCW1DXQycPRaqmiUdEFlpmUhP/vmjFMNwcPXIWaQlpUBMTAxqOprw7N8Vrm2b88SbHP8Nn97EYMi8P7ehTSkLV3vk5+Ti8cXbyM3IgpqeFrwn9Ifij7YvJyMbWWXbvmI2wk5eRU56JiQkJaGqp4kOE/rD2OHnSOTigiLcPXwBOWklYVR0NNDarwcsXAVPLxY1c9d6KMjJxdOLd5CbkQ01PS20H9+Pm6fy7TmHzcbDkyWdhBKSElDR04TX+L4wchD+efRPq4nrR1lWATNb/dycoo2lC9pYuuB98mf8fe9kTWWFy7ihLQpy8vHqcijyMnOgrKsBjzE9Ia9W8pk8LyMHuWk/p0lLSkuh1bjeeHLyOi6v3Q9peVkYOVvDsVMLbpi8jGwEr/7ZLkbdCEfUjXBoWRii7aSKvw8RUlNYTFUWzSL/VwIDAzF58mSkV3F3J0Jqy6VLlzB9+nS8evWKZy2h2vbq1Su0adMG7969q/JU21LNto6uPND/kfvjAhBR01MJa4GTgTWmn+cfEf3/bJ3PBKSPnVbbyRAplW3rsfrmgdpOhkjNaj0Qk8/613YyRMq/y2S8T4qr7WSIlKWWEW68C6884P+RNlaumHRmY20nQ+Q2dZ2CEwJ2MP5/1qt+G2y8fbTygP9Hprj3wboQ4TMS/h9N9+j/r7umNnWdgsVXd9d2MkRqoadfbSfhl3XYJXzmT20KHr6htpNQK35p5BkhhIiCt7c33r9/j69fv1Z7PbyaFB8fj/3791e744wQQgghhBBCRIHFqjuDCwh1nhFCatmkSXVvd8qyU10JIYQQQgghhPy3UVfmv9CQIUNoyiYhhBBCCCGEEEKICNDIM0IIIYQQQgghhJA6RIx226xTaOQZIYQQQgghhBBCCCFCUOcZIYQQQgghhBBCCCFC0LRNQgghhBBCCCGEkDqEBZq2WZfQyDNCCCGEEEIIIYQQQoSgzjNCCCGEEEIIIYQQQoSgaZuEEEIIIYQQQgghdQjttlm30MgzQgghhBBCCCGEEEKEoM4zQgghhBBCCCGEEEKEoGmbhBBCCCGEEEIIIXUIi6Zt1ik08owQQgghhBBCCCGEECGo84wQQgghhBBCCCGEECFo2iYhhBBCCCGEEEJIHULTNusWGnlGCCGEEEIIIYQQQogQ1HlGCCGEEEIIIYQQQogQNG2TEEIIIYQQQgghpA4RA03brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoR226xbWAzDMLWdCEIIIYQQQgghhBBSouf+ubWdBIFODlpe20moFTTyjBBCRCjiy9vaToJIORlYo9nW0bWdDJG7Py4ATz5H1XYyRKqhoS2yoj/UdjJEStHCDE8/v6ntZIhUA0MbPIx9VdvJEKnGJvZ4FR9d28kQKXs9C3xM/lrbyRApUw19PP/6rraTIXL19a2QlZlZ28kQKUUlJUQl/rvac1sdM0R//1zbyRApC01DPPr0uraTIVKNjOvhzbePtZ0MkbLRNq3tJJB/Ceo8I4QQQgghhBBCCKlDxGjaZp1CGwYQQgghhBBCCCGEECIEdZ4RQgghhBBCCCGEECIETdskhBBCCCGEEEIIqUNot826hUaeEUIIIYQQQgghhBAiBHWeEUIIIYQQQgghhBAiBE3bJIQQQgghhBBCCKlDWKBpm3UJjTwjhBBCCCGEEEIIIUQI6jwjhBBCCCGEEEIIIUQImrZJCCGEEEIIIYQQUoeI0W6bdQqNPCOEEEIIIYQQQgghRAjqPCOEEEIIIYQQQgghRAiatkkIIYQQQgghhBBSh7Bo2madQiPPCCGEEEIIIYQQQggRgjrPCCGEEEIIIYQQQggRgqZtEkIIIYQQQgghhNQhtNtm3UIjzwghhBBCCCGEEEIIEYI6zwghhBBCCCGEEEIIEYI6zwghdUZubi6WLl2KT58+1XZSCCGEEEIIIaTWsOrov/8q6jwj/5cCAwOhoqLyR17Lw8MDkydP/iOvJUrVfY9MTEzg7+9fY+mpigkTJiA+Ph7GxsbVOu//tYwIIYQQQgghhNR9tGEAqTGsShY4HDx4MAIDA/9MYv6DfH194e3tXeXw4eHhkJeXr8EUVezIkSP49u0bzp49W+1zg4KCICkpWQOp+jOunL2E88eDkJ6SBgMTIwweOxy2jvUEhk1LScWBgD348C4GiV/j0b5bJwwZN4InzOKpcxD5/BXfuc6NXfDXigU1kodfVV/XAv2cPWGjZQQNeRX8dWk77n58XtvJEura2Uu4cOIM0lPSoG9iiEFj/WDjILysDgXsxcf3MUj8mgCvbh0xaOxwnjDFxcU4d+QU7ly9ibTkVOga6qPv8EGo36jBn8gOAIBhGPxz+BBOXw5GVnY26llbY9aYcTCvoBM75tMnBBw8gDfR75GQlISpI0aiX9duPGFOXryAk5cuIuHbNwCAmbExhvfth2YurjWaHwC4evYSLpw4zb2mKiungwF78fF99I9y6oTB5coJAC6dOofr54ORnJQMRWVFNG7RFH2GD4KUlFRNZ0eg6+cv49KJs8hITYO+sSH6jx4Kawc7gWHD7z3AzQtXEPchFkVFRdA3NkS3Ab3h6OL8h1PN6/KZCzh7LAhpKakwNDHC0PEjYedoLzBsWkoqArftwof30Uj4Eg/v7p0xbPxInjA3L1/D1tX+fOceuXK6xsrpfNBZnDx8DKkpKTA2NcHoieNg7+QoNPyLZ8/xz5Zt+PQxFuoaGujVzxcdu3XmCXP62ElcOH0O378lQUlFGS08WmLo6BGQkubPw9H9hxG4Yxe69uqO0ZPHizx/AHDl7EWcO/bzHjVk3IgK71H7t+/m3qM6dPPBkPEj+MLlZGfjyO4DeHQ3DDlZ2dDS1cbA0X5o4OYikjQzDIN/du7E6dOnkZWVhXr16mHWzJkwNzev8LwbN28iICAAX758gYGBAcaOGYNWrVrxhDlx4gQOHDyI5ORkmJmZYdrUqXB2LrmWiouLsW37dty/fx9fv36FgoICGjVqhAnjx0NTU5MbR1BQEC5fuYK3b98iJycHt27ehKKi4m/n+9LpCzhz9CTSUlNhaGIMv/GjUK++4GsqNSUVe7fuRMy790j4Eo+OPTpj+ITRPGHC7tzHyYPHkPA1HuziYuga6KNL7+5o5dXmt9MqyIWgswg6cgKpKSkwMjHByEljYV/fQWj4l8+eY+eWAMTFxkJNXR09+/vCu6sP9/ni4mIcP3AEN4KvIiU5GQaGhhgyZjhc3BpxwxzavQ+H9x7giVdFTRWHzp0QfQaFuH4uGBfLtOcDxgyrsD2/cf4ytz03MDZEt4G+td6eXzp9HqePlNQ9IxNj+E0YLbzuJadg77adiH5bUvc69eiC4RN5697V88G4deU6Pn0omY1ibm2BgSOGwsrOusbzQogwNPKM1JiEhATuw9/fH0pKSjzHNm3aVNtJ/L/EZrPB4XAqDScrKwstLa0qx6upqQk5ObnfSdpv6du3Ly5cuABxcfFqn6umpiaSD521IfTWXezbtgvd+vXGqh3+sHGww8rZi5H87bvA8EVFRVBSVka3/r1gbG4iMMy0RbOx48Q+7mPd7r8hJiYGt5bNajAnv0ZWUhrRKV+w4c7R2k5KpcJu3cP+7XvQtV8vrAjYABsHO6yevVRoWRUXFUFRRRld+vWCkZmJwDAn9h7CjQtXMHj8CKzZvQVtOnlhw6JViH3/oQZzwmvfyRM4fDoIM0ePxb6Nm6Cuqopx8+YgJzdX6Dn5Bfkw0NHB+CFDoa6qKjCMloYGxg8Ziv2bNmP/ps1wcayPaUuXIKaGp2WH3bqL/dt3o2u/XlgZsBHWDnZYNXtJheWkpKKErhWU070bITi6az96DOyD9Xv+xqhpExB2+x6O7tpfgzkR7kHIfRwK2IvOfXtgybZ1sLK3xbp5y5GcJDiPb19Gwr5BfUxbOhdL/l4DO0d7bFy4CrHRf66elXf/5h3s3boTPQb4Yt3OzbB1tMfyWQvx/VuSwPBFRUVQUlFGj/6+MDE3FRqvnLwcdp06wPOoqY6z29dvYcemregzqD+27v0H9o4OmDf9LyQlfhMYPjE+AfOnz4a9owO27v0HvgP7Ybv/37h36w43zM0r17EnYCcGDBuMfw4HYspf03H7Rgj2Buzki+9t1BsEn7sAUwuzGskfUHKPCty6C93798bqfzbB1qEeVvy1CMmVlFP3Ab1hLKSciouKsGzGfHxPTMLURX/Bf18ARk0bDzVNdZGle9/+/Th8+DBmzpiBfYGBUFdXx7jx45GTkyP0nBcvXmDOnDnw7tABRw4fhneHDvhr9my8evXzx6irV69i/YYNGDZ0KA4dPAhnJydMnDQJiYmJAID8/Hy8efMGw/38cPDAAaxdswZxcXGYOm0az2vl5+ejaZMmGDpkiMjyfO/mbez5ewd6DeyDDTv/hp1jPSydNV/4NVVYBGUVZfQa0EfoNaWgqIheA3yxeusG+O/ZhjYd2mHL6g149uiJyNJd6s6NW9i5eTt8B/XD5j0BsK/vgIXTZ1d4PS2cMRf29R2weU8AfAf1ww7/rbgf8vN62v/PXlw+ewGjp4zH9gO70aFrJyyfswgx797zxGVsaoIDZ49zH9v28V9vNeVByD0cDNiLLv16YOn29bB2sMXaucsqaM9fw75hfUxfNhdLt66FbX17bFiwslbb87s3bmP3lh3oNagPNu7aCjtHeyyZOa/i9lxZGb0G9oWJkPbr5bMXaNHGA8s2rcaa7Ruhqa2FRdPnIOV7ck1mpc5hsVh18vFfRZ1npMbo6OhwH8rKymCxWDzH7ty5g4YNG0JGRgZmZmZYvHgxiouLueenp6dj5MiR0NbWhoyMDOzt7XHhwgWe17hy5QpsbW2hoKCA9u3bIyEhgfsch8PBkiVLYGBgAGlpaTg5OeHy5csVpjknJweDBg2CgoICdHV1sX79er4whYWFmDlzJvT19SEvL4/GjRsjJCSkwngXLVoEIyMjSEtLQ09PDxMnTqxyfKXTLy9cuAA7OztIS0tj586dkJGRQXp6Os/rTJw4Ee7u7jznlXXu3Dm4uLhARkYGGhoa6N69O/e58tM24+Li0KVLFygoKEBJSQm9e/fGt2+CP8AAQGxsLFgsFo4fP44WLVpAVlYWrq6uePfuHcLDw+Hi4sItp+/ff34gCA8PR7t27aChoQFlZWW4u7vj6dOn3OdDQkIgJSWFu3fvco+tX78eGhoa3PIuP23TxMQEy5Yt45alsbExzp49i+/fv3Pz5ODggMePH/Pk4dSpU6hXrx6kpaVhYmIisPxF7eLJs2jdoS3adPSEgbEhhowbAXUtDVw9f0lgeC0dbQwZPwLunq0hJ2SkoIKSIlTUVLmPF0+eQVpGGm7uda/z7EHca+x8eA63P0TUdlIqdenUWXi0b4tW3u2gb2yIQWOHQ11LA9fPC25XNHW0MXjccLT0bAU5ecEd03evh6BLv55wbuwCbT0dtOvcAY4uTrh4svojMH8FwzA4cvYMhvr2QetmzWBhYoLFU6chv6AAl2+HCD2vnpU1JvkNh5e7B6SEjPps2dgNzV0bwVjfAMb6Bhg3eAjkZGTw8s2bGspNiYunzqJV+7Zo7e0JfWNDDP5RTtfOBwsMX1JOI9CygmvqfeRbWNnbolkbd2jqaMPRxRlNW7XEh3cxNZkVoS4HnYe7V2t4dGgLfSMDDBgzDGqa6rh54YrA8APGDEPH3l1hZm0BHX099BrWHzp6Ooh48Fhg+D/h/InTaO3tibYdvWBgbIRh40dCXUsDV84Jb/v8JoyCh1cboeVUggVVNTWeR00JOnYCXp06oEPnjjAyMcboyeOhqaWFC6fPCQx/8cx5aGlrYfTk8TAyMUaHzh3h2bEDTh45zg0T9eo16jnYo5VnG+jo6qBhY1d4tGuNd2/e8cSVl5uHNYtXYNKsaVCowR+PLpw4g9Yd2qFNR6+Se9T4EdDQ0sDVc4KvJy0dbQwdP/LHPUpwu3cz+DqyM7MxY+lc2NjbQVNHCzYO9SrsFK0OhmFw5MgRDB06FK1bt4aFhQUWL1qE/Px8XL4i+BoBSkbAN27UCEOHDoWJiQmGDh2KRq6uOHzkCDfMocOH0aVLF3Tt2hWmpqaYNm0atLW1cfLkSQCAgoICtm3dinbt2sHExAQODg6YMX06oqKiuB1sANCvXz8MGTIE9g7CR1VV19njp9HW2xPtOrWHoYkRhk8YDQ1NTVw+e1FgeG1dbQyfOBqt2reFnILga8rB2RFuLZvB0MQIuvp68OnZFSZmpoh8+Vpk6S51+ugpeHZqDy8fbxiZGGPkpLHQ0NLCpTPnBYa/dOYCNLW1MHLSWBiZGMPLxxvtOrZH0JGfI8ZuXbmO3gP7wbVJY+jq66Fjt85o0NgFQUdP8sQlJi4ONXU17kNZVUXk+RMm+NR5uLdvA48O7X60535Q11THjfPC2nM/dOrdDWbWltDR10PvYQOgo6+LZ7XYnp89HoS2Hb3g2alDSd2bWFL3gs9cEBheW1cHIyaNQev2bSEvpJ2YtmAWvLv5wMzSHAbGhhg3YxI4HAbPn0TUYE4IqRh1npFaceXKFQwYMAATJ05EZGQkduzYgcDAQCxfvhxAScdXhw4dEBoaioMHDyIyMhKrVq3iGZWUm5uLdevW4cCBA7hz5w7i4uIwffp07vObNm3C+vXrsW7dOrx48QJeXl7o3Lkz3r9/z5eeUjNmzMCtW7dw+vRpXL16FSEhIXjyhPfXtaFDh+L+/fs4evQoXrx4gV69eqF9+/ZC4z158iQ2btyIHTt24P379zhz5gwcynxYqkp8ubm5WLlyJXbt2oXXr19jwIABUFFRwalTp7hh2Gw2jh8/jv79+wtMx8WLF9G9e3d07NgRz549w40bN+DiInh6BMMw6Nq1K1JTU3H79m1cu3YNMTEx8PX1FfrelVq4cCHmzZuHp0+fQkJCAn379sXMmTOxadMm3L17FzExMViw4OfUwczMTAwaNAh3795FWFgYzMzM4O3tjaysLAA/O8YGDhyIjIwMPH/+HHPnzsXOnTuhq6srNB0bN25Es2bN8OzZM3Ts2BEDBw7EoEGDMGDAADx9+hQWFhYYNGgQGIYBADx58gS9e/dGnz598PLlSyxatAjz58+v0anFxUVF+PAumm+off2Gznj3WnQdDLeCr6NpqxaQkZURWZz/NcVFRfj4LgaOLk48xx0aOuFd5K+XVXFhMSSleDufpKSl8fZV5C/HWR1fExORkpYGtwY/p4lKSUqhgb0DXkSJLg1sNhtXbocgLz8fjrY2Iou3PGHl5Pib5WRtb4uP72IQ/aMD41t8IiIePYFz44a/k9xfUlxUhNj3MbBv6MRz3KFhfbyPfFulODgcDvLy8iGvqFADKaxcUVERYt5Fw6l82+fSAG9fRf1W3Pl5eRjVZwhG9BqEFbMX4cP7mungLCoqwvu379CgEe99tEEjF0S9EtyxEPXqNV/4ho1d8P7NW+6Ph/XqO+D923d4G1nyPiR8jUd42EM0atqY57yt6zehUZPGaOBac3Ww9B5Vv1w5Obo44+3rXy+nJ6EPYVnPBrs3BWBEj4GYNmwcgg4dB4fN/t0kAwC+fv2KlJQUuLm5cY9JSUmhQYMGePHihdDzXrx8icZlzgEAtyZNuOcUFRXhzZs3cGvMWxZujRtXGG92djZYLBYUFGrueiu5pt7DyZV3yr+TawO8EdH9hGEYPH/yDF8/f0E9IdOrf1VRURGi372Ds2u568m1IaKEpP/N60i++t+gkQvev3nHvZ6KigohWW66s5SUNCJf8C5tEf/lKwZ28cWwXgOweuEyJHyN/90sVUlpe+7QoD7PcfuGTnhfxXsWh8NBfm4eFGq1PRdW936vPS+roKAA7OJiKCr9f840If8OtOYZqRXLly/HX3/9hcGDBwMAzMzMsHTpUsycORMLFy7E9evX8ejRI0RFRcHKyoobpqyioiIEBARw168YP348lixZwn1+3bp1mDVrFvr06QMAWL16NW7dugV/f39s3bqVL03Z2dnYvXs39u/fj3bt2gEA9u3bBwMDA26YmJgYHDlyBF++fIGenh4AYPr06bh8+TL27t2LFStW8MUbFxcHHR0dtG3bFpKSkjAyMkKjRo2qFV9RURG2bduG+vV/3lx9fX1x+PBh+Pn5AQBu3LiBtLQ09OrVS+h73qdPHyxevJh7rGx8ZV2/fh0vXrzAx48fYWhoCAA4cOAA6tWrh/DwcLi6Cl+zaPr06fDy8gIATJo0CX379sWNGzfQrFnJqCc/Pz+eDqk2bXjXzdi1axdUVFRw+/ZtdOrUCQCwbNkyXL9+HSNHjsTr168xcOBAdOvGu75Sed7e3hg1ahQAYMGCBdi+fTtcXV2578+sWbPQpEkTfPv2DTo6OtiwYQPatGmD+fPnAwCsrKwQGRmJtWvXYoiAaRUFBQUoKCjgOSYtLV1hmsrLzMgEh8Ph+4VTWVUZ6anp1YpLmOg37/D54yeMnj5BJPH9V2VlZAktq4zUtF+O19HFCZdOnoONQz1o6+ng9bMXeBL6sEpTs0UhJa0k7eoqvFMv1VVUkPBd8HSL6oiO/Yih06aisLAQsrKyWDtvPsyMqrchSHUIv6ZUfqucmrZqicz0TCyaPBtgGLDZbLT16YAufXv+ZoqrLyvzR11UUeY5rqSigoy09CrFEXzqHAry89G4lkajZgkpJxVVFaSn/Xo5GRgZYvxfU2BsaoLc3FxcPHUOcyfMwPpdW6BnoP+bqeaVmZ4BDpsDVTXea0dVVRWpKakCz0lLTYNquWnOqmqqYLPZyEjPgLqGOjzatkZGWjqmjZkE5kdd69StM3wH9uOeE3L9JqLfvcfmXdtFmqfyKrqefuce9S0hEd+fvUDzth6YvXIhEr7EY/fmAHDYbPQc1Pf3Eg0gJSUFAKBebtShupoaEsqM/hJ0nqBzSuNLT08Hm82GWrkwaurqSP4RpryCggL8vXUr2nt51WjnWVZGJjhsDlTK1UdlVRWk/UbbBwA52Tnw6zkARYVFEBMXw6jJ4/g6Sn5XZkaGwPSrqKkiTdj1lJIKlcb84dlsNjLTM6CmoY4GjVxw5uhJ2Nd3gK6+Hp4/eYaH90LBLnOPtbazxbR5M6FvaIC01DQc23cI08dMwvYDu6CkrFz+ZUWqtD1XEvTZoqrt+cmS9rxRy6aiT2AVZJbWPVUBZZcquOx+xf6APVDTVEf9hrW7ttufJsaisU51CXWekVrx5MkThIeHc0eaASUjE/Lz85Gbm4uIiAgYGBhwO84EkZOT41n4VVdXF0lJJV/2MjMzER8fz+2wKdWsWTM8fy54MfKYmBgUFhaiSZMm3GNqamqwtv65MOXTp0/BMAxfugoKCqCuLnitjl69esHf3x9mZmZo3749vL294ePjAwkJiSrHJyUlBUdH3gWI+/fvjyZNmiA+Ph56eno4dOgQvL29+T6Yl4qIiMCIEfyL9goSFRUFQ0NDbscZANjZ2UFFRQVRUVEVdp6VTae2tjYA8Iy009bW5pYTUPJhddmyZQgJCUFSUhLYbDZyc3MRFxfHk/+DBw/C0dERxsbGVdoVtCrpAICkpCTo6OggKioKXbp04YmjWbNm8Pf3B5vN5luLbeXKlTwdkUDJqLuuw6v/wb/8ls8MAFEtJ3Dz0jUYmhrDwkb4tUSqoXy5/GZhDRo3HDs3bMX0YePBAqCtpwN3rza4feXG76RSqOBbN7Hi7y3cv/0XldTh8utXMOCvl7/CWN8Ah7dsRVZONm7ev49FG9bjn9VrarQDDQBfmTAM81trdERGvMSZwycwbOIoWNhY4Vt8AvZt3YUgdVV0H1D5iNwaUT4/DFOlEgu7dRenDxzH5EWzoKRSs18MK8Nf70pq3q+ysrOBld3PkY029naYMXIigoPOw6/cYtQiIyAPFdY1vrpZerjk+POnETi6/xDGTZsEm3q2iP/yFQGbtkJ17wH0HzoQ378lIcB/K1ZsXCNwA4GawJcfhvmtexTDMFBSVcaoqeMgJi4OMysLpKWk4tyxoF/qPDt37hzPiHb/jRsFppupyjVShbZDYLwC3pDi4mLMmTsXHA4Hs2bNquyVRYT/JvW76xPJysli466tyMvLw4unEdizbSe09XTh4Cx8Y4xfVdX39mf4cgd+XlAAgFGTxmHzmg0Y3X8YwAJ09fTQ1tsL1y/9nBLp0uTn5gEm5oCtvR38fAfhRvA1dOvzZ34g4c931e7BYbfuIujAMUxZ/NcfnWoqCH8z8ft1r1TQ4RO4eyMEyzf/uXaPEEGo84zUCg6Hg8WLF/OsuVVKRkYGsrKylcZRfndFFovFnYJX9lhZFTXk5c8VhMPhQFxcHE+ePOHrTBH2i6KhoSHevn2La9eu4fr16xg7dizWrl2L27dvVzk+WVlZvnQ3atQI5ubmOHr0KMaMGYPTp09j7969QtNelfe0lLD3qSo3wrLlUhq2/LGyo2qGDh2KlJQUbNq0CcbGxpCWloaDgwMKCwt54g0NDQUApKamIjU1tdKdQauSDgDctAjKW0V1Yvbs2Zg6dSrPMWlpaUR9j60wXWUpKStBTEyMb6RFZlqGSD4EFeQXIDTkLnoP7ld5YFIhRWVFiImJIaPcaIuM9N8rKyUVZUxbMgeFhYXIzsyCqroaju7aD00d7d9LsBAtG7vB3vpn50JhUREAIDktFRplRlOkpqdDTQR1UFJSEoY/RtXaWVoh8t07HDl7FnMnTKzkzF9Tek2VH2WWmZ7B98t+dRwPPIwWbT3Q2tsTAGBkZoL8/ALs2rgVXfv1gpjYn/tlWFHpR10sNyohM6PyPD4IuY/dG7dh/NzpsG8geOTxn6BY2vaVK6eMtAyoiPALoJiYGCxsrGpkCpaSijLExMX4RsWkp6XzjUYrpSpgJEZ6WhrExcWhpKwEANi/cy9ae7VDh84dAQCm5mbIz8/H5tUb0Hdwf7x/+w7paWkY7zeKGweHzcGriBc4F3QG529d+aWNdwTmUVg5/Wa7p6KmCgkJCYiVSae+kQHSU9NQXFQEiWrunt26dWtYlPkxtfTzQ3JKCjQ0NLjHU9PSoCbkh04AUFdX544y4znnR9uooqICcXFxvjBpqal8I9aKi4vx1+zZiI+Px/Zt22p01Bnw45oSF0N6ufolimtKTEwMugYl7biZpTm+fPqMU4eOibTzTElZ8PWUkZbONxqtlKq6GtJSeOtmelo6z/WkrKqC+SuXoLCgEJmZmVDXUMfe7bugrasjNC0ysrIwMTNF/Jcvv5mrynHbc4H3rIp/3HgQcg+7NmzFhHm1254r/ah75Uc4ZqSl841G+xWnj5zEyYNHsXjDSpiY19zmKIRUBY0DJLWiQYMGePv2LSwsLPgeYmJicHR0xJcvX/Du3bvKIxNASUkJenp6uHfvHs/x0NBQ2NraCjzHwsICkpKSePDgAfdYWloaTxqcnZ3BZrORlJTEl24dHeE3YllZWXTu3BmbN29GSEgIwsLC8PLly1+Or1S/fv1w6NAhnD9/HmJiYujYsaPQsI6Ojrhxo2qjWezs7BAXF4fPnz9zj0VGRiIjI0Po+/erbt26hTFjxqBly5YwNjZGQUEBkpN5d9KJiYnBlClTsHPnTri5uWHQoEEin9ZmZ2cnsL5YWVkJ/CIiLS0NJSUlnkd1p21KSErCzMoCL8otfvriSQSs6v3+ulBhIfdQXFiEFm09fjuu/zoJSUmYWpnjZbmyevUkgmeky6+SkpKCmoY62Gw2Ht0NQ8OmjSo/6RfIy8nBUE+P+zAzMoK6qioePnvGDVNUVISnr17C0dZO5K/PgEHRjw67mlBaTi+e8I4wfvmb5VRYUABWuQ4yMTGxkkEOVfjhRZQkJCVhYmmOV0958/jq6QtY2lkLOatkhMLO9X9jzF+T4VQLa7WVJSkpCXMrCzx//Izn+Isnz2BtL7p7DMMw+Bj9oUY2DZCUlISltRWehfOui/os/Als7esJPMfWvh5f+KePHsPSxhoSEiW/ZxcU5PN1xpbUNQYMw8CpYQMEHNiNbYE7uQ9LG2u08myDbYE7RdZxBpS9R5UvpwhY1/v1crK2t0Pi1wSe+3jCl3ioqqtVu+MMKPmxsXS0vKGhIczMzKCuro6HDx9ywxQVFeHp06d8o/jLcnRw4DkHAB4+eMA9R1JSEjY2NvxhHj3iibe04ywuLg7btm7l27ypJpRcU5aIKHdNRTx+Cht70bblDCP6dlxSUhIWVgKup8dPYCsk/Tb17PDscfnr7zEsbay411MpKWkpaGhqgM1mI/T2Xbi1ED7FsaiwEJ8/xUG1go5WURHenj+HZQX3rLBbd/HPur8x5q8pcGoseP3iP6W07pVvzyMeP4PNb7bnQUdO4Pj+w1i4dhks/6MzKGp7V03abZMXjTwjtWLBggXo1KkTDA0N0atXya/2L168wMuXL7Fs2TK4u7ujZcuW6NGjBzZs2AALCwu8efMGLBYL7du3r9JrzJgxAwsXLoS5uTmcnJywd+9eRERE4NChQwLDKygowM/PDzNmzIC6ujq0tbUxd+5cng+xVlZW6N+/PwYNGoT169fD2dkZycnJuHnzJhwcHODt7c0Xb2BgINhsNho3bgw5OTkcOHAAsrKyMDY2hrq6erXjK6t///5YvHgxli9fjp49e0JGRviC8AsXLkSbNm1gbm6OPn36oLi4GMHBwZg5cyZf2LZt28LR0RH9+/eHv78/iouLMXbsWLi7uwvdZOBXmZubY9++fWjYsCEyMjIwffp0nlFybDYbAwcOhKenJ4YOHYoOHTrAwcEB69evx4wZM0SWjmnTpsHV1RVLly6Fr68vwsLC8Pfff2Pbtm0iew1BOvbsgr9XbYS5lQUs7Wxw4+IVJCd9RzufDgCAw7v2ITU5FeP/msI9p3Q78vy8fGRmZCI2+gMkJCRgYGLEE/et4GtwaeYGxR+/wNZFspLSMFDW5P6tp6QBSw0DZObn4Fv2763TImrePbpg22p/mFlZwNLOGjcvXkVyUjLa+JSs8Xd01wGkJqdg7F+Tuedwyyo/H5npP8pKUhIGxiVToqOj3iE1OQXG5qZIS0nBqf1HweEw8PGteE0/UWGxWOjbpSv2Hj8GIz09GOrpY+/xY5CRlkZ7dw9uuAXr10FLXR3jhwwFUPJF9MOPqdVFxcX4npKCtzExkJOV5Y4027ovEE0bukBbUxO5ebm4cvs2nrx8ic1LltZonjr26IKtP8rJys76xzWVjLY+JfeOI7v2Iy05BWMFXVP5echKz/hRThIwMC65phq4ueLSqbMwsTCFhY01EuMTcCLwEBo2ceUZPfOntO/ugx1rN8PUyhwWttYIuXQNKUnJaN2xZGTc8T0HkZacilEzS0b4hd26i3/WbkH/McNgbmPFHUkkJS1Vyc6VNcenVzdsXrke5taWsK5ng2sXLiP523d4+pTc9w7uDETq9xRMnDONe87H6JLF//Pz8pCZnoGP0TGQkJCE4Y+27/i+w7C0tYaugR7ycnNx6dR5xEZ/wIhJY2okD919e2Ht0pWwtLGGrb0dgs9eQNK3b+jYzQcAsGf7TqQkJ2PG/NkAgI5dfXDu1Bns2LwNHTp3RNSrSFy5EIy/Fs3jxtm4WROcPnoS5lYWsLErmba5f+deuDVvCnFxccjJy8HEjHdXShlZGSgpKfEdF4VOvbpiy8oNMLO2hJWdDa7/KCfuPWrnPqQmp2D87J8jsXnvURl89yjPzh1w+fQFBP69E+27dULi13icPnwCHbp1EkmaWSwW+vbti71798LoR4fa3sBAyMjIoP2PNVkBYMHChdDS1MT48eMBAH369MHIUaMQuG8fPNzdEXL7Nh4+eoTdu3Zxz+nfrx8WLFwIWzs7ODo4IOj0aSQmJqJHjx4ASjrOZs6ahbdv3mDjxo1gs9ncHwSVlZW5I+CTk5ORkpKCLz9+pIyOjoacnBx3h/pf0aV3N/gvXwcLa0tY17PF1QvBSE76Dq/OJdfUgX/2IuV7CibP/bm5VumGGvl5+chMz8CH9zGQlJSAoUnJ1PqTB4/BwtoSOvq6KC4qxpMH4Qi5cgOjp47/pTRWpFufHli/dDUsbaxgY2+Hy+cu4vu3JHh3LbmeAgN2IeV7MqbN/wsA4N21Ey4EncXOLdvh5eONN68icfXCZcxcNIcb55vXUUhJToaZhTlSklNweM9+cDgc9Oj3c7r9rr93oHEzN2hqayE9LR3H9h1Cbk4u2nbwFHkeBenQwwcBazbD1MoCFnbWuHXxKlKSktGmU8nrH9t9EGkpKRg9cxKAkvZ8x5rNGDBmGCxs60Z73qV3d/gvX8ute1fOByM5KQntu5T8qL9/xx6kJKdgytyfn9tL615eXj4yftQ9CUkJGP2oe0GHT+DQ7v2YNn8WtHS0uaMSZWRlIStX9dk0hIgSdZ6RWuHl5YULFy5gyZIlWLNmDffXvOHDh3PDnDp1CtOnT0ffvn2Rk5MDCwsLrFq1qsqvMXHiRGRmZmLatGlISkqCnZ0dzp07B0tLS6HnrF27FtnZ2ejcuTMUFRUxbdo0ZGRk8ITZu3cvli1bhmnTpuHr169QV1dHkyZNhHZ0qaioYNWqVZg6dSrYbDYcHBxw/vx57ppm1Y2vLEtLS7i6uiI8PLzSdcA8PDxw4sQJLF26FKtWrYKSkhJatmwpMCyLxcKZM2cwYcIEtGzZEmJiYmjfvj22bNkiMPzv2Lt3L0aOHAlnZ2cYGRlhxYoVPLumLl++HLGxsTh/vmSrch0dHezatQu9e/dGu3bt4OTkJJJ0NGjQAMePH8eCBQuwdOlS6OrqYsmSJQI3CxClpq1aICszC6cOHENaaioMTYzx18oF0NTWAgCkp6QhJek7zzmzRk3m/v/Du2jcv3Ebmtpa+Pvwzw/48Z+/4s2rSMxdzbsuW11jo2mMv7v9/NI1sXnJhg6XosKw/Oa+2kqWQE1aNUd2ZiaCDh5DemoaDEyMMHPF/J9llZrKV1ZzRv/M28d3MQi9eQca2prYfGgngJJfuE/sPYSkhG+QlpWBU6OGGDtrCuRreIpPWYN79kJBYSFWbduKrOxs2Ftb4++lyyEv93P7+MTvSRAr80vj99RU9J/488vTgaBTOBB0Cg0cHPDPqjUASjYjWLB+LZJTU6EgLw9LE1NsXrIUbs6iXWi6vCY/rqmSciq5pmatKHNNpaYhOYl3dOvs0T870j6+i8H9m3egoa2FLT/KqduA3gCLheN7DyE1ORVKykpo0MQVvsMG1GhehHHzaIbsrCycPXSipC4aG2HasjnQKJPHlO8/83jr0jWw2Wzs/3sn9v+9k3u8eTsPjKylzUSatW6JrMxMnNh/BGmpqTAyMcacVYuhpVOSh7SUVCSXu56mj/g53TfmXTTu3giBprYWAo6WLFmQk52NgA1bkJ6aBjl5eZhamGPpptWwtBU+Iu93uLdthczMTBzaux9pKakwNjPB0nUrof1j5HhqSiqSvv1c41NHTxdL163Ejs1bcSHoLNQ01DFm8ng0b/XzXtxv8ECwWCzs+2cPUr4nQ1lVBY2bNcGQkX41kofKlNyjMnFq/1HuPWr2yoXQLC2nVP5ymjlyEvf/H95F496Pe9TWI7sBABpampi3Zgn2bduFGcMnQE1DHR26+6Brnx4iS/fgQYNQUFCAVatXIysrC/b16uHvLVt4lnxITEzkadfq16+P5cuXY/v27QgICICBgQFWrlgBe/ufO0t6enoiIyMDu3btQnJyMszNzbHJ35+7+3dSUhLu3LkDAOhXbvfzgIAAuDQsGfV5KigIO3f+vBZHjBwJAFi4YAF8fHx+Kc/NW7sjMyMLx/YfRlpKKoxMTTB/9RJo/VgGIDUlFd+TeDeCmTr8Zzse8/Y97lwPgaaOFnYeK7n/FuTnY8fGrUj5ngwpaSnoGxliyrwZaN7a/ZfSWJGWbVohMyMTRwIPIjUlFcamJli8dgVv+stdT4vXLsfOLdtxIegc1DXUMWryODTz+Hk9FRUW4sDOvUiMT4CsrCxc3Bph2vxZPDtTpnz/jjWLViAzIwPKKsqwrmeLDTu2cF+3prl5NEd2ZhbOHDrObc+nL5vL256XuWfdvHgVbDYb+/7eiX087XkrjJpRO+15izbuyMrMxLF9h5CakgZjU2MsWL2U+x6mpaQi+Rtv3ZviN477/5K6dwtaOlrYeXw/ACD4zHkUFxVh9YJlPOf1GdIffYcNrOEcESIYi6nKQk+EEEKqJOLL29pOgkg5GVij2dYaWmi7Ft0fF4Ann0W3hXpd0NDQFlk/Rnz8WyhamOHp5ze1nQyRamBog4exr2o7GSLV2MQer+KjazsZImWvZ4GPyV9rOxkiZaqhj+dff205jLqsvr4VsjIzazsZIqWopISoxH9Xe26rY4bo758rD/h/xELTEI8+va7tZIhUI+N6ePPtY20nQ6RstEU/KvdPGX58ZW0nQaBdvWfXdhJqBa15RgghhBBCCCGEEEKIENR5RgghhBBCCCGEEEKIELTmGSGEEEIIIYQQQkgd8l/e2bIuopFnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIaRGbNu2DaamppCRkUHDhg1x9+5doWGHDBkCFovF96hXrx43TGBgoMAw+fn5NZYH6jwjhBBCCCGEEEIIqUMEdQ7VhUd1HTt2DJMnT8bcuXPx7NkztGjRAh06dEBcXJzA8Js2bUJCQgL38fnzZ6ipqaFXr1484ZSUlHjCJSQkQEZG5pfe66qgzjNCCCGEEEIIIYQQInIbNmyAn58fhg8fDltbW/j7+8PQ0BDbt28XGF5ZWRk6Ojrcx+PHj5GWloahQ4fyhGOxWDzhdHR0ajQf1HlGCCGEEEIIIYQQQipVUFCAzMxMnkdBQYHAsIWFhXjy5Ak8PT15jnt6eiI0NLRKr7d79260bdsWxsbGPMezs7NhbGwMAwMDdOrUCc+ePfu1DFURdZ4RQgghhBBCCCGE1CFiYNXJx8qVK6GsrMzzWLlypcA8JCcng81mQ1tbm+e4trY2EhMTK30PEhISEBwcjOHDh/Mct7GxQWBgIM6dO4cjR45ARkYGzZo1w/v373/9Da+ERI3FTAghhBBCCCGEEEL+NWbPno2pU6fyHJOWlq7wnPJrpTEMU6X10wIDA6GiooKuXbvyHHdzc4Obmxv372bNmqFBgwbYsmULNm/eXGm8v4I6zwghhBBCCCGEEEJIpaSlpSvtLCuloaEBcXFxvlFmSUlJfKPRymMYBnv27MHAgQMhJSVVYVgxMTG4urrW6MgzmrZJCCGEEEIIIYQQUofU9q6aothtU0pKCg0bNsS1a9d4jl+7dg1Nmzat8Nzbt28jOjoafn5+lb4OwzCIiIiArq5utdJXHTTyjBBCCCGEEEIIIYSI3NSpUzFw4EC4uLigSZMm+OeffxAXF4fRo0cDKJkG+vXrV+zfv5/nvN27d6Nx48awt7fni3Px4sVwc3ODpaUlMjMzsXnzZkRERGDr1q01lg/qPCOEEEIIIYQQQgghIufr64uUlBQsWbIECQkJsLe3x6VLl7i7ZyYkJCAuLo7nnIyMDJw6dQqbNm0SGGd6ejpGjhyJxMREKCsrw9nZGXfu3EGjRo1qLB/UeUYIIYQQQgghhBBSh4hVc4pkXTZ27FiMHTtW4HOBgYF8x5SVlZGbmys0vo0bN2Ljxo2iSl6V0JpnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIYQIQdM2CSGEEEIIIYQQQuqQ6u5sSWoWjTwjhBBCCCGEEEIIIUQI6jwjhBBCCCGEEEIIIUQImrZJCCGEEEIIIYQQUoewQNM26xIaeUYIIYQQQgghhBBCiBAshmGY2k4EIYQQQgghhBBCCCkx4fSG2k6CQFu6Ta3tJNQKmrZJCCEiNP38ltpOgkit85mAJ5+jajsZItfQ0BbNto6u7WSI1P1xAUifMqe2kyFSKhtXoPeBebWdDJE6PnAZWm4bW9vJEKk7Y7chKymptpMhUopaWjjz8nZtJ0Okujq4Y9q5zbWdDJFb33kidj44W9vJEKkRbl0w8Mji2k6GSB3ouxDjT6+v7WSI1N/dpv0r71Ftdkys7WSI1I1R/7/tnhjttlmn0LRNQgghhBBCCCGEEEKEoM4zQgghhBBCCCGEEEKEoGmbhBBCCCGEEEIIIXUIi6Zt1ik08owQQgghhBBCCCGEECGo84wQQgghhBBCCCGEECFo2iYhhBBCCCGEEEJIHULTNusWGnlGCCGEEEIIIYQQQogQ1HlGCCGEEEIIIYQQQogQNG2TEEIIIYQQQgghpA4RA03brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoR226xbaOQZIYQQQgghhBBCCCFCUOcZIYQQQgghhBBCCCFC0LRNQgghhBBCCCGEkDpEjKZt1ik08owQQgghhBBCCCGEECGo84yQ/4j8/HwsW7YM3759q+2kEEIIIYQQQggh/zdo2iYh/xHz589HZmYmtLW1azsphBBCCCGEEEIqwGLRWKe6hEqDkP+AgoICqKurY/PmzbWdFEL+x95dhzd1vQEc/yaVpO6lhTqF4lLc3cdgg8EM2ZgwmAFzgxnMGIxtMIHBkGFDhru7eylSSgstdfcm+f0RSBuaFNhq2+/9PE+ep7k59+acJD333HPfc44QQgghhBBC/KtI55kQ/wdUKhXvvPMOKpWqsrNSwq5du1AoFKSmpt73PgEBAUyfPv0fva9CoWD16tX/6BhCCCGEEEIIIf77ZNimEP8HDhw4QIcOHejRowebNm2q7OyIu7T1b0jn4KY4qOyIy0jmr/N7uZYcYza9hVJJj9otaVYjBAeVHam5mWy/fJSj0WEAvNTmEWq6+5TYLywukjlH1pZbOYrb+tcG1i1fTWpSCjUCfBk+ZhR1GtY3mTYlKZlFP83l2uWr3LoZS69H+jF8zHNGaQoLC1mzeAV7tuwgJTEZb98aPPHccBq3DK2I4jyQxt7BPNm0J3U8/XC3c+adDbPYe+10ZWerVOpe3bBu0wKFjQ2aqGiyV6xBeyvebHr7sc9hGRxUYnvBhYtk/TrfcEx1725Gr2vTM0ifOKVsM29Cz9otebh+B5xt7LmRGs+8Yxu4GH/dbPr2gY15uF57vB3dyM7P41TMZRYc30hmfg4AnYKaMrbdoBL7PbVoEgXawnIrR3ED63fkiabdcbV1IjI5lu/3L+dM7FWz6R9p0JFHG3bGy8GVuIwUFpzYxObww0ZpHmvUhQH1O1LNwYW03Cx2XT3BL4f+Il9TPmXS6XT8Mncuq9asISMjg/r16vH2+PHUDAwsdb/tu3bx0+zZ3IiJwad6dca88AJdOnY0mXbuggX8+MsvPPHYY0x49VXD9qTkZL6fNYtDR4+SkZlJaOPGvPn66/j5+pZpGQ9u2sXuNZvJSEmjmm91+o8cSmC9WibTXgu7zMaFK0m4eYv8/Hxc3F1p1aMjHfr3MKQ5tvMAy3+cV2Lfz/74EStrqzLNuzltAxrSuWYojmo7bmUk89e5Pfc4R1nQs3ZLQn1CcLxzjrp0lCPRFwxpOgQ1oW1AQ1xsHMjKz+F0zBU2hB2gUKupiCIBcHL7AY5u2E1WWgbu1avR5amH8Qkp/bcIcPNSJEum/IS7TzVGfDrO6LXcrBz2rdjE5WPnyM3Owcndlc5P9COocd3yKoaRbsHN6Ve3LU42DtxMi2fhic1cSogym76tf0P61W1LNQc3cgpyORN7hcUntxrqvhqOHgxq1JkAl+p42Duz0EQ9Ut46BDamW60WOKntiE1PYsXZnVxNumky7dOhvWjt36DE9tj0RD7f/jug/z239K1HdUd3AKJS41h7YR/XU26VXyHuUtbnqOLaBjTk9Q5DORp9ga93/VGexTDycL32DGncDTdbRyJTbjHzwArO3oowm35A/Q4MqN8BLwdX4jNTWHRiC1svHzW83qt2S97q8nSJ/XrPHk9BOZ2jqiIFstpmVSKdZ0L8H/jtt9945ZVXmD17NlFRUfj5+ZlNq9Pp0Gg0WFpK9VARGlevxcMNOrDy7C4ik2Np7d+A51r15+tdi0jNyTS5z7BmfXBQ2bLs9A4Ss1KxV9kaLWU979gGLJUWhue2VmrGd3qC0zGXy7s4ABzcuY/5s37j2VdfpHb9Omxfv5kv3/2Ur+d8j3s1jxLpCwsKcHB2YsCTj7FxxRqTx1w+dxH7tu3mufFjqO7rw5ljJ/l20hd8/N0XBNQq2YlTmWysVFxJusGGiweY3Gd0ZWfnnlRdO6Lq3I7sP1agSUhE3aML9qOfJX3Kt5CXb3KfrLmLwKLoN6aws8XhjVcoOHXOKJ0mNo7MWXOKNmh15VKG4tr4N2Bk877MPrKW8PgoutduwXtdhzNuzQySstNKpA/x8OfltoP4/fgGjt0Ix9XGkedbP8zoNo/wze6iC4/s/Fxe+2u60b4V1XHWNbgZr7QfzLd7lnDuVgQP12vPVw+NZfjiT4nPTCmRfkD9DrzQegBf7/qDsPhI6noG8Fbnp8jIzebA9bMA9KjVghdaD+TLnQs4dysCX+dqvNt1GAA/7F9RLuX4/Y8/+GPpUia+9x5+vr7M+f13xo4bx4o//sDO1tbkPmfOneO9SZMYPWoUXTp2ZOeePbzz0UfM+fFHGtQ37pA/HxbGqrVrqVWzptF2nU7HG++9h6WlJVOnTMHOzo5FS5cyZtw4li9YgI2NTZmU7/T+o6ydt5SBzz2Jf51gDm/dw2+TZzB+2iRcPNxKpLdWqWjbpwte/j5Yq6yJvHiFlT8vxFqtolWPos5Bla2aN7/71Gjfiuo4a1K9FgMadGTlmV1cS46hjX8Dnm/9MF/tXGj2HDX8zjnq1HbDOcqi2DkqtEYI/eq2ZempbUQmx+Jh78LjTbsDsOb83gop18XDp9i5aC3dhw+kRu0ATu88zIqpc3hmygQc3VzM7peXncOGX5bgXy+YrPQMo9c0hYUs//pXbB3tefjlYdi7OpGRnIq1umKi/lv51efp0N7MO7aey4nRdAluxpudnuKdDT+SlJ1eIn1td19ebD2QRSc3c/LmJVxsHHimxUOMatmf7/YtA8Da0or4zFSORF3gqdBeFVKO4kJrhDCoUReWntpORPJN2gc0YkzbR/ls2zxScjJKpP/zzE7+KvYbslAoebfbcE7evGTYVsvdl+M3LrI8OYZCjYbutVswtu0gPt/+O2m5pn/TZam8zlEA7nbODAvtzYW4yHIvR3GdazZlTNtHmbFvOeduRfBQvXZM6fsSzy6bbPIc1b9ee0a17M+3exYTHh9FHU9/xnd8nMz8HA5eL2pHZOblMHLpZ0b7/j91nImqR4ZtCvEfl5WVxbJly3jppZd46KGHmDdvntHrd4ZNbt68mebNm6NSqdi7dy86nY6vvvqKoKAgbGxsaNy4MX/++adhP41Gw6hRowgMDMTGxoaQkBC+++67e+Znw4YN1K5dGxsbG7p06UJkZGSJNAcOHKBjx47Y2Njg6+vLq6++SlZW1n2X+ejRo/To0QN3d3ecnJzo1KkTJ06cKHWft99+m9q1a2Nra0tQUBAffvghBQUF9/2ef1enoCYcibrAkagLxGemsOb8XlJzMmnj39Bk+hAPP2q61WD24TVcTowmJSeD6NQ4ozumOQV5ZORlGx61PXwp0BRyJvZKuZcHYMOKv+jcuztd+vaghr8vw8c8h5unO9vWmo569PCqxoixz9GxZxds7UxfQO/dtosBTw6maavmVKvuRY+H+9CoeRPW//lXeRblbzkUdZ5fD69hd8Spys7KfVF1akvu1l0UnD2P9lYc2X8sR2FthXVoE7P76LJz0GVkGh5WtYOhoID802eNE2o1Rul0D/B//Hc9VK8dO64cZ8eV49xMT+D3YxtIzE6jZ0hLk+lre/gQn5XKxouHSMhMITzhOtsuHSXIrYZROh060nIzjR4VZUjjrqwPO8D6sANcT7nF9/v/JCEzlYENTEdf9QppxZrz+9hx5Tix6UnsuHKc9WEHeDK0KKKpvlcg525dZdvlY9zKSOZodBjbLx8jxMO/XMqg0+lYvGwZzwwfTtdOnQgOCuLj998nNy+PTVu3mt1v8fLltGrenGeGDSPA359nhg2jZbNm/LF8uVG67OxsPvzkE95/6y0cHByMXouKjubs+fO8M2EC9evWJcDPj3fGjycnJ4fN27aVWRn3rt1Ki67tadm9A9V8vHn4maE4ublwaMtuk+lrBPnRpH1LvHyr4+rpTmjH1tRuXJ9rYcY3OhQocHBxMnpUlI41m3Ik6jyHo84Tn5nCX7fPUW0DGplMH+LhT033Gvx6+C+jc1RksXOUv6sXkcmxnLx5iZScDC4lRHHy5iV8nT0rqlgc27SXhh1b0KhzK9yqV6PrUw/j4OrMqe2HSt1vy7yV1G3TFO/gkjchz+45Sm5mNgNfHUGN2gE4ubvgUzsQT7/q5VUMI31CWrM74iS7I04Sk57IohObScpOo1utFibTB7v7kJCVypZLR0jISuVSYjQ7rhwn0LUov9eSY1hyaiuHos5ToKm4qMA7ugY342DkWQ5eP0tcRjIrzu4iJSeDDoGNTabPLcw3av/4uXhhY6U26pD5/dgG9l47zc20BOIyk/njxBYUCgUhHuZvLJel8jpHKRQKXm3/GMvO7CA+M7kiimIwuGEXNl48xIaLB4lKjWPmgZXEZ6bQv157k+l71GrBurD97Lp6ktiMJHZePcHG8EMMbdztrpQ6UnIyjB5CVCbpPBPiP27p0qWEhIQQEhLC008/zdy5c9HpSkZ/vPXWW0yZMoWwsDAaNWrEBx98wNy5c5k1axbnz59n3LhxPP300+zerb8I0Gq1+Pj4sGzZMi5cuMBHH33Ee++9x7Jly8zmJTo6mkcffZS+ffty6tQpnnvuOd555x2jNGfPnqVXr148+uijnDlzhqVLl7Jv3z5efvnl+y5zRkYGI0aMYO/evRw6dIhatWrRt29fMjLMn3QdHByYN28eFy5c4LvvvuPXX39l2rRp9/2ef4eFQkkNJ88SQyouJUQR4Optcp/6XoFEp8bTpWYzPuz+DG93eZqH6rUzijS7W0u/epyKuVRuQ7GKKywo4NqlqzRq3sRoe8NmTbh04eLfP25+YYlIC2uVivBzF8zsIe6H0s0FpaMjheHFLtY1GgqvXMMy8P4vJKxbNSf/5BnIN+5wVrq74zjpHRw+eAPbYY+jLCWioyxYKC0Icq3O6bs6is/EXDF7YRSeEIWbrSNNq9cGwEltR2v/+py8GW6UTm1pzY+PvMGsR9/k7S5PE+Bi+n+0rFkqLajt4WcYln3H0egwGlQzHXVppbQkX2P8XeRpCqjrGYCFUt/0OxN7ldoeftT11HeWeTu60dq/AYeunytxvLJwMzaWpORkWrcoupC3trYmtEkTzpwz/55nzp2jVQvji//WLVuW2OfLadNo16YNrZo3L3GMOzdCVNbWhm0WFhZYWlpy6syZv1WeuxUWFHIzIopajesZba/duB7Xw80Pry3uZkQU1y9dJahebaPt+bl5TBn9Dp+/8BZzJ3/PzQjzw/DKkoVCiY+TJ+Hxxu8XnhBl9vevP0fF0TW4GR/1eJZ3ug6jf732Rueoa0kx+Dh74uusX/3b1daRup4BhFVQtIymsJC4yJsENDD+nAMa1CLmivk8nN1zlNT4JNoO7G7y9asnL1A92J/t81cx85VPmPveVA6t3YFWqy3L7JtkoVQS4Fqds7eMf2vnbkVQy8Q0DgCXE6NxtXWksXcwAI5qO1r61eVUBUWp34uFQomvczXC7hrOGBZ3nUC3++uQbOPfgPD466V2ulhbWmKhVJJdkPuP8ns/yvMcNbhhF9Jzs9h55Xj5ZN4M/TnKl2M3jNt4x29cpH4108OgrSwsyS+86xxVWEAdT3/DOQr0kfx/PDmJJU99wue9XyDYzfRv+b9MqVBUycf/KxmXJcR/3Jw5c3j6af2cAb179yYzM5Pt27fTvbtx4++TTz6hRw99VEJWVhbffvstO3bsoE2bNgAEBQWxb98+fv75Zzp16oSVlRUff/yxYf/AwEAOHDjAsmXLGDJkiMm8zJo1i6CgIKZNm6a/yxcSwtmzZ/nyyy8Nab7++muefPJJXn/9dQBq1arFjBkz6NSpE7NmzUKtVt+zzF27djV6/vPPP+Pi4sLu3bt56KGHTO7zwQcfGP4OCAhgwoQJLF26lLfeestk+ry8PPLy8oy2PeiCDHbWNlgolWTkZRttz8jLwUFlOgLL1daJQFdvCrWFzDu2ATtrNY827IytlZplp7eXSO/rXA1vR3eWnd7xQHn7uzLSMtBqtTi5OBttd3JxIi25ZOj+/WrUvAkb/lxDnYb1qVbdi/Mnz3D8wOEKuSj5L1PcjtDRZhhHUWkzM1He9R2aY+Hng0V1L7KXrjTaXng9Gs0fy9EkJKJ0sNcPB311NBlfTkeXXXKelrLgqLLFQmlRIiosLTcLZ7W9yX0uJUQzY99yXu84FCsLSyyVFhyNDuO3I+sMaWLSE5h5YCVRqXHYWKnoW6cNn/Z+njfX/citjKRyKcsdTmp7LJUWJS7+krPTcfV1NLnPkegLPFS3HXuvneZSQjQhHn70rdMGKwtLnNX2JGWns+PKcZxtHPjhkQkoUGBpYcGqc3tYdHJLuZQjKUn/Obm5uhptd3NxIfaW+bmGkpKTS+7j6kpSclFkxeZt27h46RLzf/nF5DEC/P3x9vLih59/5r0338RGrWbR0qUkJSeTmFQ23192RiZarRZ7J+PvxN7JkYzUkkPmivv8hbfISs9Eq9XQ/bH+tOzewfCaRw0vHnt5JF5+NcjLzmXfhu3M+uBLXp/6Ee7e1cok7+bcOUdl3nWOyszLxkFt+hzlZudEoGt1CjUa5h5dj521mkGNumBrrWLpKf056lTMZexVNrzcfjAK9B0K+6+dYUcFXfTnZGSh02qxdTKuE2ydHMhKM93JknIrgb3LN/L4+y+htDB9syotIZmosKvUbdOUR8c/S2pcItvmr0ar0dB2YA+T+5QVB5UtFkol6SXqvkyc1DVN7nM58QazDq5kbLvBhrrv+I2LLDi+sVzzer/sVebaSFk4qgLuub+jyo561QKZd2x9qekG1O9IWk5mqXOOlZXyOkeFePjRNbgZb63/sVzzb4qT2g4LE+eolJwMXG0dTO5z7EYYfeu0YX/kWS4nRlPb3Zc+Ia2wsrDESW1PcnY6UanxfLVrERFJMYa27ncDXueFP7/kZnpCRRRNiBKk80yI/7Dw8HCOHDnCypX6i1pLS0uGDh3Kb7/9VqLzrHmxu/UXLlwgNzfX0Jl2R35+Pk2bNjU8/+mnn5g9ezbXr18nJyeH/Px8mjRpYjY/YWFhtG7dGkWxOxZ3OufuOH78OFeuXGHRokWGbTqdDq1Wy7Vr16hb996T7sbHx/PRRx+xY8cO4uLi0Gg0ZGdnExVl/m79n3/+yfTp07ly5QqZmZkUFhbi6Gj6whRgypQpRp2HABMnToRmJee1eVCl3dC589n9cWILuYX6+ajWnN/H8OZ9WHl2V4nJllv61SM2PZHo1Lh/nK8HcncZdJResHsYPvY5fv32R9549mUUQLXqXnTq1Y3dm0t2GArzrEIbYztkoOF55u3J/UtS6L+z+2DdqjmamFtoom4YbS+8WDTHjDY2jszIKBzffwPrFqHk7d7/gDl/MCaCa80Wp4aTB8+06MefZ3ZyOuYyLjYOPN2sN8+3HsBPB1cB+ovMy4lF5QuPj+LLfmPoU6c1c4+WfmFWVu6OGFYoFOjMlOr3YxtxtXXkp0ffAgWkZGew6eIhngztiUan73BuUr0Ww5r14ts9SwiLi6SGkwevtn+MpGZ9mF8GF88bt2xh8jffGJ5Pv32TpETVoNMZnRNMuuv14vvciotj6owZ/PDtt2ZvYFhaWvLVZ5/x6Rdf0LVvXywsLGjZrBltW7d+sELdh5JF0d1zuueXPn2LvNxcoi5dY9Oilbh7e9KkvX4Il3/tIPxrF0UY+tepyYy3PmP/hp0MGPV4mebdHJO/MlP/ZBRNbr3oxOZi56i9DG/elxVn9Oeomm416FarBSvP7OJ6yi3c7ZwY2KAT6XlZbLt01ORxy0OJ352Z36JWq2XdT4tp+0gPXL1Kzttp2F2rw9bBnp7PDEKpVOIV6ENmajpHN+wu984zQx7u+loUKMzWfdUd3RkW2ofV5/Zw9tYVnNUOPN60B8+0eIjZR0zPP1o57qr7SilTca3965NTkMeZGPNTVnSv1YJmPiF8t3dZhS5WUZbnKLWlNa+0f4yfD60u0dFYse4ugcJcNcGC45txsXHkh4HjUSj0HW2bLx3h8SbdDTdFw+IjCYuPNOxz7tY1fhr0JgMbdOTHA+UzL6cQ9yKdZ0L8h82ZM4fCwkJq1CiaF0Gn02FlZUVKSgouLkVDqOzs7Ax/3zlxrV+/3mhfKIquWrZsGePGjWPq1Km0adMGBwcHvv76aw4fNr8Kk6nhonfTarW8+OKLvFpslbQ7SlvooLiRI0eSkJDA9OnT8ff3R6VS0aZNG/LzTU9+fujQIR5//HE+/vhjevXqhZOTE0uWLGHq1Klm3+Pdd99l/PjxRttUKhXvbzEd+WBKVn4OGq22RJSZvbWN2QZQRm4WabmZhosSgPjMZJQKBc429iRmFU02a2VhSZPqtSp0ZSwHJweUSiVpyalG29NS00pEoz0IR2cnJnzyHvn5+WSmZ+Di5sqS2fPx8CrfyIv/moLzYWR8E1204fbCIEoHezTFJr9W2tuhy7yPOb2srLBu2oicTfcxb1R+AZrYWyg93B802/ctPS8bjVaDs43xHXwntZ3ZOcoeadCJ8IQo1l7YB+hXXss9vJZPez/PklNbTU6KrkPH1aSbeDn8887ye0nLzaRQq8HV1rgz38XGgZRs01Ey+ZoCvty5kG92/4GrjSNJ2Wn0r9eerPwc0nL0886NatmfLeFHWB92AICI5BjUVire7PQkC45vMtsxd786tm9Pg3pFQxjzbw+dTExOxt296DeQnJqK612RZcW5uboaotYM+6Sk4Hr7/HUxPJzklBSGPVe0Qq9Go+Hk6dMsW7mSA9u3Y2FhQd2QEP6YO5fMzEwKCgpwcXFhxAsvUK9OnX9UzjtsHexRKpUloswy0zKwdzZ/IwbAtZr+8/D29yEzLZ2ty9YaOs/uplQq8akZQGJs+d8QMXuOUtmSkWc6ejQ9r+Q5Ki7D+BzVu05rjt+4yOGo8wDcykjC2tKKxxp1Zfulo//wl3dvNg52KJRKslKN/3+y0zOxdSwZ/ZOfk0fctRvEX49h+wL9PJs6nQ50OqY+8w6PvfkcfvWCsXN2QGlhgbLYsDNXb0+y0jLQFBZiUY4LMWXkZaPRanG6q+5zVNuViEa7o3+99lxOjGLDRX0dEE08eUfz+bDHsyw/s6NC53U0JTPvzu/Pzmi7/vd37/kzW/s34Ej0BcMNg7t1C25Oz9ot+WH/n8SkJ5ZJnu+lPM5RTmp7PO1deLvYypR3OoEXP/Uxr//1HXHlOAdaWm4WGq0GF5u7z1H2ZofL5msK+Gb3H0zbuwQXG0eSs9PoV7cdWfm5pOWa/m516AhPiMLHyXwH9n/RPW8uiQolnWdC/EcVFhYyf/58pk6dSs+ePY1eGzRoEIsWLTI7j1i9evVQqVRERUXRqVMnk2n27t1L27ZtGTNmjGHb1aulz+tSr149Vq9ebbTt0CHjyXlDQ0M5f/48wcHBpR6rNHv37mXmzJn07dsX0M+1lphovmG0f/9+/P39ef/99w3brl8vPXxfpVI98DDNu2l0Wm6mxVPbw5dzxZbzru3hZ/S8uGvJsTSqHoy1hZVhTiMPO2e0Om2Ji/zG3sFYKi04cSPc1KHKhaWVFYG1a3L2+ClatC+K6jh3/BTN2rb6x8e3trbG1d2NwsJCjuw9SKtO7f7xMf+v5OWjzTNuRGvT07EMCUZzM1a/wcICy+BActZuvufhrJs0BEsLCo6dvPd7W1hgUc2TwojyGxqj0WqISI6hkXew0RxhjbyDOXojzOQ+KgurEhdX2tvPS1si3t/Fq0IiOgu1Gi4lRNHcty57r502bG/uU4d9kaXP16XRaknISgX0F4oHIs8ZOsXUltYlbmhotVoUCn301H3c6yiVna2t0QqaOp0ON1dXDh89Sp3a+rl7CgoKOHHqFK+MNr8qbaMGDTh87BhPDR1q2Hb46FEaNWgAQIvmzVny++9G+3wyZQr+fn6MeOopLO4aYmdvr79ojYqOJiw8nJeKdbr9E5ZWltQI8uPymQs0aFUUoX35TBj1Wpie3NwUnU6HpsD8/JQ6nY7YyGi8/GqYTVNWNDotN9LiS5yTanv4cd7MOSoyOYbG3nedo+xdjM5RVhZWJX57RdGECu477PVvsrC0pFpADSLPX6ZW8wZFeT9/meCm9UukV9moGPG58c2yU9sPEh12hf4vD8PJQ9/5W6NWAGGHTqHTalHc7kBLiUvEztmhXDvOQP+/HpkcQwOvII4Xm3uqgVcQJ26abgOoLK3QaO+u+/SffVW4XtfotESnxlHH099owaM6nv6cvccCSLXcffC0d+Fg5FmTr3er1ZzeIa35cf8KoiowMr88zlExaYlMWDvD6PXHm3RHbali3rH1JJpYwbMs6c9R0TTzCWF/sXNSM5867Dfz+d+h0WpJvH2O6lIzlEPXz5V646amWw2uJceWSb6F+Duk80yI/6h169aRkpLCqFGjcHIyXplr8ODBzJkzx2znmYODA2+88Qbjxo1Dq9XSvn170tPTOXDgAPb29owYMYLg4GDmz5/P5s2bCQwMZMGCBRw9epTAQNOTgwKMHj2aqVOnMn78eF588UWOHz9eYvXPt99+m9atWzN27Fief/557OzsCAsLY+vWrXz//ff3Vfbg4GAWLFhA8+bNSU9P580338TGxqbU9FFRUSxZsoQWLVqwfv16Vq1adV/v9U/tjjjFE017EJ0az/WUW7T2r4+zjb1h0u4+ddrgpLZnySn9anQnb16iR+0WDG3SjS3hh7GztuGheu04EhVmYshmfc7diqiQSXCL6ztoADO/nE5Q7WBq1Qthx/otJMYn0q2/fpn7JbMXkJyYxJh3XjfsE3lFfyGWm5tLemo6kVcisLSywsffF4ArYZdITkzCv2YgKUlJrJi/BK1WR/+hj1Ro2e6HjZXK6M5odUd3arn7kJ6bRZyJJdsrW97uA6i7d0abkIQmIQl1987o8gvIP3HKkMb2ycFo09LJXW88H5Z16+YUnA0zOYeZ+uE+FJy/iC4lFYW9HeqeXVCoVeQfLX3l239q3YX9vNJuMBFJN7mUEE332s1xt3Ni6+3hYE807YGrjaNh2MexGxd5sc1AetRuaRgSM6J5X8NKgQCDG3XhckI0sRlJhjnPAly9mXNkbbmW5Y5lp3fwfrcRhMdf53zcNfrXa4engwt/ndsLwAutB+Bu58zk7fpOJB8nT+pWCyAs7hoOKluGNO5GoJs3k3cUdTIduH6WIY27cikx2jBsc1Srh9gfedZwAV2WFAoFTwwZwtyFC/Hz9cXXx4e5CxagVqnoXWyKgI8++wxPd3devt2h9vjgwbzwyivMW7SIzu3bs2vfPg4fO8acH/Vz+9jZ2hIcZLxwglqtxtnJyWj7tp07cXZ2xqtaNa5cvcrUGTPo1KEDrVuajvD6Ozr078HS73/DJ8gfv5CaHNm6h9TEZFr31N+E2rhoJelJqQx99VkADmzcibOHK541vAC4FnaFPWu30K5P0bydW5etxa92EO7enuRl57J/w3ZiIqMZ+NyTZZbv0uy5epInQntyIzWeyJRYWvs3wMXG3tAp0bduW5zUdiw+qT9HnbhxiR61W/J40+5svngYO2s1/eu140jUBcM56kLcNToFNeVmWgJRqXG42znRu05rzt+K+McRj/eree8ObPh5KV6BPlQP9uPMzsNkJKXSuKv+ps+eZRvJTEmj74uPo1Aq8fDxMtrf1tEOCytLo+2Nu7bhxLb97Fi0hqY92pFyK5HDa3cQ2qNibvJsDD/E6NaPcC05hiuJN+hSsxlutk5sv3wMgCGNu+Fi48DPh1YD+vbEsy370y24OWdir+Bs48DTob24mnjD0NFpoVRSw1F/PrNUWuBi44ifczVyC/OJr4Dz2Y4rxxnevA9RqXFcS46hXUAjXG0dDDcSHq7XHicbexYcN17Nu41/Q64lxxBrYk7K7rVa0K9uW34/toGk7DRDZGVeYUGJhVbKQ3mco6JT443eIys/1+T28vLn2Z2802UYlxKiuRB3jX512+Jp72KIlhvVsj/udk58uXMhAD5OHtTx9Ccs7jr2Khsea9SFQFdvw+sAw5r1JiwukptpCdhaq3mkQSeC3XyYsW+5yTwIURGk80yI/6g5c+bQvXv3Eh1noI88mzx5MidOmL+I/fTTT/H09GTKlClERETg7OxMaGgo7733HqDvCDt16hRDhw7VXxQ98QRjxoxh40bzc+X4+fmxYsUKxo0bx8yZM2nZsiWTJ0/m2WefNaRp1KgRu3fv5v3336dDhw7odDpq1qzJ0GJRB/fy22+/8cILL9C0aVP8/PyYPHkyb7zxhtn0AwYMYNy4cbz88svk5eXRr18/PvzwQyZNmnTf7/l3nY65jJ2Vmh61W+KosuNWRhJzDq81NIgc1Xa4FAvvz9cU8POhv3ikQUde6ziU7PxcTsdcYePFg0bHdbdzJsitOj8fXF3uZbhbmy7tyUxPZ+XCpaQmp+AT4Mdbkz/Eo5onAKnJySTFG0/2+t7oorv61y5d5cCOPbhX82DGol8BKMjPZ/ncRcTHxqGyUdOkZTPGvD0OO3vTE+xWpjoe/vzwSFF5Xm3/GAAbwg7y+Y7fze1WafJ27EFhZYXN4IdR2NiguX6DzJ/mQl7RsCuli3OJUCSlhxuWQQFkzvrN5HGVTk7YDRuKws4WXWYWhdejyZj+E7qU1HIsDRy8fg4HlS2DGnXBxcaB6NQ4puxYYLi77WLjgLudsyH97oiT2Fip6B3SiuHNepOVn8v5WxEsPFEUeWdnreaF1gNxtrEnuyCXa8mxTNw8m6tJN8u1LHfsuHIcR5UdI5r3xc3OkWtJsby9bqZhKI6brSPV7IuG4VsolQxt3A0/52oUajWcvHmJMSu/4VZGUdTh/GMb0el0PNeqPx52zqTmZHIg8iy/Hi6/uY5GPPkkeXl5fDF1KhmZmTSoW5cfvv3WKELtVlyc0UpejRs25POJE5k1ezY/zZ6NT40aTPn4YxrULxkhVJrEpCSm/fADScnJuLu50a93b54bMaLMygbQuF0LsjOy2P7netJT0vDyq84z772Ci4d+eG9GShqpiUXfgU6nY9OiVSTHJ6K0UOJWzYM+Tz1Kqx4dDWlys7JZ+dMCMlLTUdvaUD3Ql9GfvIlvLfM3qsrSqZjL2Fqr6RGiP0fFZiQx+9CaonOUyhZnm6JJwfM1Bfx8cDWPNOzE6x2Hkl2Qy6mYy2wMKzpHbbt0BHQ6+tTV3xzKzMvhQtw1NtweQlwR6rRqQk5mNgf/2kZWajruNbx4dPyzOLnr/4+y0tJJv2v6gXtxdHPmsTefZ+cfa/n9g2nYOzsS2rM9Lft1LvsCmHA46jz21jYMrN8JZxt7bqTF883uRSTdjjxyVtvjZlvUJtx77TRqSxXda7fgiaY9yc7P5UL8NZaeKhqG72LjwOd9iiJD+9VtS7+6bQmLizTqjC8vJ26GY2etpk9IaxzVdsSmJzHzwEqjNpLrXcMF1ZbWNKleiz/P7jR5zA6BjbGysOS5Vg8bbd8QdoANd7WlykN5nKMq266rJ3FU2TGsWS9cbZ2ITI7l3Y0/GTpY3Wwd8Sx2jlIqlAxu1BVfJ08KtRpOx1zmldXTjIaX2lvbML7j47jYOpKVn8OVxBuMW/sd4QkVs9pwVfH/vLJlVaTQ3c8kREIIIe7LG2vvLzru3+Kb/q9wPNr0UIJ/s2a+dWn3o/mhYv9G+8f+ROq49yo7G2XKedpkhiz44N4J/0WWDfuMjjPH3Dvhv8ieMTPJiK+YCIeK4uDpyeqzuys7G2VqYMNOTFgz494J/2WmPvwqvx76q7KzUaaebz2AYYs/vnfCf5EFT0zk5VXm55L9N/rhkQn/yXNUt59Lzjv8b7b9xX9vvffhpvufS7kifdr7hcrOQqVQ3juJEEIIIYQQQgghhBD/n2TYphBCCCGEEEIIIUQVUtrCRaLiSeSZEEIIIYQQQgghhBBmSOeZEEIIIYQQQgghhBBmyLBNIYQQQgghhBBCiCpEIattVikSeSaEEEIIIYQQQgghhBnSeSaEEEIIIYQQQgghhBkybFMIIYQQQgghhBCiClHKsM0qRSLPhBBCCCGEEEIIIYQwQzrPhBBCCCGEEEIIIYQwQ4ZtCiGEEEIIIYQQQlQhstpm1SKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqECUybLMqkcgzIYQQQgghhBBCCCHMkM4zIYQQQgghhBBCCCHMkGGbQgghhBBCCCGEEFWIrLZZtUjkmRBCCCGEEEIIIYQQZkjnmRBCCCGEEEIIIYQQZsiwTSGEEEIIIYQQQogqRIZtVi0SeSaEEEIIIYQQQgghhBnSeSaEEEIIIYQQQgghhBkKnU6nq+xMCCGEEEIIIYQQQgi9L3bMr+wsmPRO1+GVnYVKIXOeCSFEGUodM6Gys1CmnGdOJeNKRGVno8w5BAeROu69ys5GmXKeNpl2P46u7GyUqf1jfyLt86mVnY0y5fT+hP9kPXE5Pqqys1Gmann6kfbH8srORplyevIxUse/X9nZKHPO335O2rc/VnY2ypTT+LGkTf62srNRppzeG0/q2DcrOxtlyvnHr0kd9UplZ6NMOc/5ntR3P67sbJQp5ykTKzsL4j9Chm0KIYQQQgghhBBCCGGGRJ4JIYQQQgghhBBCVCEKZLXNqkQiz4QQQgghhBBCCCGEMEM6z4QQQgghhBBCCCGEMEOGbQohhBBCCCGEEEJUIUqFDNusSiTyTAghhBBCCCGEEEIIM6TzTAghhBBCCCGEEEIIM2TYphBCCCGEEEIIIUQVopBhm1WKRJ4JIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEIUCol1qkrk2xBCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhSiR1TarEok8E0IIIYQQQgghhBDCDOk8E0IIIYQQQgghhBDCDBm2KYQQQgghhBBCCFGFKBQybLMqkcgzIYQQQgghhBBCCCHMkM4z8X/h2LFjTJs2Da1WW9lZEUIIIYQQQgghxL+IdJ6JShEZGYlCoeDUqVNldkyFQsHq1atLbE9MTGTIkCE0aNAApbLsf/KTJk2iSZMmZX7c/ycjR45k4MCB951+165dKBQKUlNT//Z7zps3D2dn57+9vxBCCCGEEEKUF6VCUSUf/69kzjPxwEaOHMnvv/8OgIWFBdWrV6dfv35MnjwZFxeXSstXbGxsiffX6XQMHz6cjz76iB49elRSzv4bFAoFq1ateqBOLvFg1P16Yt2uNQpbWzSR18leuhJtbJzZ9Pavv4Rl7eAS2wvOXSBr5hz9E6USdb+eWLUIRenoiDY9nfyDR8nbtA10uvIqCqD///vlj0Ws2rSRjMxM6oeE8PZLY6np7292n6vXr/PTwgVcvHKZ2Ph4xj//Ak8OfMQozZ/r1/HnhvXExuk/myB/f5574knaNW9RruW5Q92rG9ZtWqCwsUETFU32ijVob8WbTW8/9jksg4NKbC+4cJGsX+cbjqnu3c3odW16BukTp5Rt5v+mxt7BPNm0J3U8/XC3c+adDbPYe+10ZWerVKoObbBu2giFWoUm5hY5m7ajTUy6x04q1J3bY1UnGIVajTY1jdxtuym8eg0A69DGWIc2RunsCIAmIYm8fQcpvBpZzqXRK5c6QqXCpn9vrBo3QOHggObGTXKWr0ZzPbq8imGwftUaVi5eTnJSEn4BATz/6ks0aNzQZNrkxCTm/PgzV8IvE3PjJv0HD+SFV8cYpbl+LZJFc37nSvhl4m/F8fwrLzFgyKPlXo676XQ6ft29g9XHj5GRm0P9Gj682bc/NT2r3df+W86d4YMVy+gYUpdvHn/KZJp5e3czc8dWHm/VhvG9+5Vl9s1S9+qKdesWKGxt0FyPJnvFWrRxpdR9Y0aZqfvCyZo9v8R2VbeO2PTrRd6e/eSs3lCmeTdH1aYF1g3r6+uJ2DhyduxBm5RsNr1VvTrY3lVXA6R99xNoNAA4jBqG0smxRJq8U2fJ3bGn7DJvhqpDG6ybNEShVqOJiSVn8477rPvaYRVSrO7bvsdQ96natMAypBYWbq7oCgvR3Ighd+detMkp5V4eAHXfHli3a3W77osie9mq0uu+10ZjWbtmie0F58LImvWb/olSibpvj9vtIwd9++jQMfI2bS/39hGA+uE+WHdqp/9/irhO9qJlaGNulbqPqntnrLu0R+nqgi4zi/xjp8hdsQYKCwGw7tweVef2KN1dAdDE3CJ3zSYKz10o9/KYo+7WCeuWzVDYqNFE3yT7rw1o4xPMprd/fgSWQQElthdcvETW74vLMadC3Jt0nom/pXfv3sydO5fCwkIuXLjAs88+S2pqKosXV16l5uXlVWKbQqFgw4aKaYAJ8U+oenRB1bUT2QuWoIlLQN2nO/avvEj6x19CXp7JfbJ+mQeWRdW4ws4Wh/cmUHDiTNFxe3bBukNbsucvRhtzCwt/X2yHDUWXm0v+zr3lWqbf/1zOH6tWMnHcBPxq1GDO0sWM/eA9Vvz8K3a2tib3yc3LxcfLi+7t2/Ptr7+YTOPp7s7LI5/Bt3p1ANZt28aETz9h0YwfSu2YKwuqrh1RdW5H9h8r0CQkou7RBfvRz5I+5VvIyze5T9bcRWBhYXiusLPF4Y1XKDh1ziidJjaOzFlzijZoy7/xfr9srFRcSbrBhosHmNxndGVn556s27RA1aoZ2Ws3oU1OQdWuNXZPDibjp98gv8D0Tkoldk8ORpedre8USM9A6eiILr/oe9VmZOgvGFNSAbBqVA/bxwaSOXvBvS9O/6HyqiNsnx6ChbcXWb8vRpeWhnXLZti/+iLpn3yFLi293MqzZ/sufp0xi5fGv0K9hvXZuGY9k958j5kL5uBZzbNE+oKCAhydnRgy/En+WrbC5DHzcvPw8vamXeeOzP7+p3LL+73M37+XxQcP8NHAR/Fzc+e3Pbt4ZcE8lr/8OnYqVan7xqamMGPLJpr4ma/LLty8waoTRwmuVrLdU15UXTug6tSO7MXF675nSP9imvm6b94fxnWfrS0Ob7xMwemzJdJa+NbAunULNDGx5VaGu1m3aIoqtAnZm7ejTUlF1ao5doMeJmPuIigwU08Aurw8Mub+YbzxdscZQOYfy0FRNNJB6e6K/eABFFy6UuZluJt16xaoWoaSvW7z7bqvFXZPDCLj57ml131PDNLXfSvX3a77HIzqPgs/X/KPn0ITGwdKBepO7fXH/WUeFBSWa5lUPTqj6tqR7AVL0cQnoO7dHfuXnyf9k6/N132//l6y7nt3HAUni7WPenTGukMbsucvQRsbh4W/D7ZPD0GXk0v+rn3lW6Y+3VH17EL2b4vQxMWjfqgX9hNeJv39TyHXdJmsWjVHPfhhsucuQnPlGkovT2yffRqA3KUrAdCmpJKzYo2hc8q6bSvsXnmejI+/vGfHXHlQdWyHqn0bsv9cjSYxCXWXjtiPGkb61B8g30y9sXBpyXrj1dEUnK28DkBRNmbOnMnXX39NbGws9evXZ/r06XTo0MFk2l27dtGlS5cS28PCwqhTp47h+YoVK/jwww+5evUqNWvW5PPPP+eRRx4psV9ZkWGb4m9RqVR4eXnh4+NDz549GTp0KFu2bDFKM3fuXOrWrYtaraZOnTrMnDnT7PE0Gg2jRo0iMDAQGxsbQkJC+O6770qk++2336hfvz4qlQpvb29efvllw2t3D9s8e/YsXbt2xcbGBjc3N1544QUyMzMNr98ZKvjNN9/g7e2Nm5sbY8eOpaCUBhPAF198QbVq1XBwcGDUqFHk5uaWSPMgZQfYtGkT7du3x9nZGTc3Nx566CGuXr1qeD0/P5+XX34Zb29v1Go1AQEBTJlSFJGiUCiYNWsWffr0wcbGhsDAQJYvX270Hjdv3mTo0KG4uLjg5ubGgAEDiIyMvK/PNyAgAIBHHnkEhUJheA4wa9YsatasibW1NSEhISxYsKDUsmo0GsaPH28o61tvvYXurjt8Op2Or776iqCgIGxsbGjcuDF//vlnqce927fffkvDhg2xs7PD19eXMWPGGH3/d7t69SoDBgygWrVq2Nvb06JFC7Zt2/ZA7/lPqLp2JHfTNgpOnUUbe4vs+YtRWFtj3aKp2X102Tno0jMMD6s6tSG/gPwTRRFBloEBFJw5R+G5MLTJKRScPENB2CUs/XzKtTw6nY7Ff63mmaGP07VdO4IDAvh4/ARy8/LYtHuX2f3q1w7htVHP0atTZ6ytrEym6diqNe1btMS/hg/+NXwYO2Iktmo1Zy9eLKfSFFF1akvu1l0UnD2P9lYc2X8sR2FthXVoE7P76LJz0GVkGh5WtYOhoID8uy8gtRqjdLqsrPItzAM4FHWeXw+vYXfEqcrOyn1RtQwld/9hCsOvoE1IImftJhRWlljXr2t2H+smDVDYqMle/heaGzHo0jPQ3LhpdIe88HIEhVevoU1OQZucQt6u/ejy87Go4V3+ZSqPOsLKEqsmDclZvQ7NlQi0CUnkrt+CNjEZVce25Vqe1UtX0KNfb3r174tvgD8vvDoGd08PNqxaazJ9NW8vXnxtLN1698DWzs5kmtp1Q3h27At06t4FK2vT9Ud50+l0LDl8gJEdOtGlbn1qelZj4sBB5BYUsPls6dGaGq2Wj1Yu5/nOXanh4moyTXZ+Hh+uXM77/QfiqFaXRxFMUnVsR+62XRScvYD2VjzZf/x5u+5rbHafEnVfyJ26z/jGAdbW2D41hJxlq9Fl55RzSYqomjYm98gxCq9EoE1KJmfzNhSWlljXqV36jjrQZWcbPYxezsk1es0qKABNahqaGzHlWBo9Vcum5O4/Uqzu23y77qtjdh/rxrfrvj/XFKv7YtDGJxrSZC9dqf/uE5PQxieSs34zSidHLLzuL5ryH5WpSwdyN2+n4PQ5tLFxZC9Y8jfqvlom2kf+FJw5T+H5i7fbR2cpCLuMpX/5to9AH0GWu34LBSdOo70ZS/achfr/p1bNze5jWTOQwisRFBw+jjYpmcLzF8k/fBzLAD9DmsLT5yg8ewFtXALauARyV61Dl5dnMpKrIqjatSJ3514Kzl9EG5dA9vLVKKyssG5iOsIYbv//ZGYZHla1gvT1xv9p55lCoaiSjwe1dOlSXn/9dd5//31OnjxJhw4d6NOnD1FRUaXuFx4eTmxsrOFRq1Ytw2sHDx5k6NChDBs2jNOnTzNs2DCGDBnC4cOHHzh/90s6z8Q/FhERwaZNm7AqdqH766+/8v777/P5558TFhbG5MmT+fDDDw3DPe+m1Wrx8fFh2bJlXLhwgY8++oj33nuPZcuWGdLMmjWLsWPH8sILL3D27FnWrFlDcHDJ4SgA2dnZ9O7dGxcXF44ePcry5cvZtm2bUWcbwM6dO7l69So7d+7k999/Z968ecybN89sWZctW8bEiRP5/PPPOXbsGN7e3iU6xh607ABZWVmMHz+eo0ePsn37dpRKJY888ohhgYMZM2awZs0ali1bRnh4OAsXLjTqwAL48MMPGTRoEKdPn+bpp5/miSeeICwszPB5dOnSBXt7e/bs2cO+ffuwt7end+/e5N++81Pa53v06FFA3ykYGxtreL5q1Spee+01JkyYwLlz53jxxRd55pln2Llzp9myTp06ld9++405c+awb98+kpOTWbVqlVGaDz74gLlz5zJr1izOnz/PuHHjePrpp9m9e7fZ495NqVQyY8YMzp07x++//86OHTt46623zKbPzMykb9++bNu2jZMnT9KrVy/69+9/z0q9LCjdXFE6OVIYdqloY6GGwstXH6jBY922FfnHTxrdzSu8eg2rkFooPd3171XDG8uagRScL9+Oppu3bpGUkkLr0NCi/FlZE9qgIWfCyq4BpNFo2Lx7Fzm5uTSqa/7ioCwo3VxQOjpSGH65eAYovHINy0A/8zvexbpVc/JPnikRBaB0d8dx0js4fPAGtsMeR+lWecPg/80Uzk4o7e0pjLhetFGjoTDqBhY+1c3uZ1mrJpobMdj07obDa6Oxf34EqrYtwVwjUaHAql4ICisrNDfL96K43OoIpQUKC4sSkSO6ggIsawaWQc5NKygo4MqlSzRt2cxoe9MWzbh47ny5vW9FiElNISkzk9Y1i9on1paWhAYEcOZG6eeTObt34mxnx4BQ8xfQX21YS7taIbQMMt3+KQ9KVxeUjg4UhheLnNJoKLwaaXThfi/WrZqRf/JsibrPdlB/CsLCKbx81cyeZU/h5IjS3o7CyGLDkzVaCm/EYFH9HhF91lY4PDcch+dHYDuwH0oPd/NplUqs6tam4FxY2WS8FIa671pk0cY7dV+Ne9R9N2Ox6dUVh9dexP754aXXfYDidgSlzsQN5LJktu67EoFl4P1Hmlu3aUn+8VNGv73Cq5FYhQTf1T4KoOBc+baPlO5uKJ2dKCzeDisspDD8Sqn1buGVq1j6+2Jxu9xKdzesGtaj4IyZOlOhwKplKApr6wqbWqA4pYuzvt4o/n+t0VB4LfKBOiitmzcl/8y5UqNBRdX37bffMmrUKJ577jnq1q3L9OnT8fX1ZdasWaXu5+npiZeXl+FhUSwqcfr06fTo0YN3332XOnXq8O6779KtWzemT59ebuWQYZvib1m3bh329vZoNBpD5NW3335reP3TTz9l6tSpPPqofq6RwMBALly4wM8//8yIESNKHM/KyoqPP/7Y8DwwMJADBw6wbNkyhgwZAsBnn33GhAkTeO211wzpWrQwPcfRokWLyMnJYf78+djdvkP9ww8/0L9/f7788kuqVdPfKXNxceGHH37AwsKCOnXq0K9fP7Zv387zzz9v8rjTp0/n2Wef5bnnnjPkadu2bUbRZw9adoBBgwYZPZ8zZw6enp5cuHCBBg0aEBUVRa1atWjfvj0KhQJ/E0PTHnvsMUO+Pv30U7Zu3cr333/PzJkzWbJkCUqlktmzZxvuFsydOxdnZ2d27dpFz549S/18PTw8AHB2djYaHvvNN98wcuRIxozRzzszfvx4Dh06xDfffGMy1PbOZ/juu+8ayvzTTz+xefNmw+tZWVl8++237NixgzZt2gAQFBTEvn37+Pnnn+nUqZPJ497t9ddfN/wdGBjIp59+yksvvWQ2CrBx48Y0blx0B/2zzz5j1apVrFmzpkSnK0BeXh55dw0XUN1jOI45ittzo2gzMoy2azMyULqajj64m4W/LxY1vMleuNQ4n1t2oLBR4/DR2/o5PBQKctdupODYyb+V1/uVlKKfB8XN2bgDyM3ZmdgE83Pk3K8rkdd4ZsJ48vPzsbGx4esPPiSolGFOZUHh4ACANsM4glGbmYnSxfm+jmHh54NFdS+ybw+xuKPwejSaP5ajSUhE6WCvHxL16mgyvpxeoZEY/wXK23X+3ZF7uqxsFI4l5yEy7OfsjDLAUT8nztKVWLi6oO7VDZRK8vYdKkrn4Y79yCf0Q4Ly88n+cw3aRPNzJJWFcqsj8vIojIhE3ac7Wbfi9BEaLZpiEeCHNiHR/MH+ofS0NLQabYl5Sl1cXDhRQXMolZek2xHOrvb2Rttd7eyJTUs1u9/pqOusOXmchaPHmk2z5dwZwmNjmfd8xQ6dVjiaqfsyHrDu8/Yie6nxzTKrJg2x8KlO9rTSL6DKmvL21AElosaysw3lNUWbkkLO5u1oEpJQqKxRNW2E/eOPkrlgKdrUtBLprYKDUKhU5J8v/84zpd3tMmXdVaasbEMdYnI/FyeUTr4UnLtI1tJV+rqvZ9cSdV9x6m6dKIy+gTahfIerm/3tpWegdL2/G0yGum+R8YiMvK079e2jD98s1j7aRMHxU2WSd3MM9Xm68bB4bXoGSjfz9XnBkRPk2Ntj/87rgAKFpQV5O/eSt3GrUTplDW8c3psAVpaQl0fWj7PRxlb8kE2Fg74O1Gbe3WbKQunsdF/HsPCpjoVXNbJXrCnz/Il/xtx1kKlrofz8fI4fP84777xjtL1nz54cOHCg1Pdp2rQpubm51KtXjw8++MDo+vLgwYOMGzfOKH2vXr2k80xUPV26dGHWrFlkZ2cze/ZsLl26xCuvvAJAQkIC0dHRjBo1yqgTqrCwECcn85XlTz/9xOzZs7l+/To5OTnk5+cbVrGMj48nJiaGbt1KTtJqSlhYGI0bNzZ0nAG0a9cOrVZLeHi4ofOsfv36Rj3Y3t7enD1bci6O4scdPdq40dqmTRtDpNXfLfvVq1f58MMPOXToEImJiYaIs6ioKBo0aMDIkSPp0aMHISEh9O7dm4ceeoiePXuWyMfdz++sZnr8+HGuXLmCg4NxgzA3N5erV68+8Odb/PN44YUXjLa1a9fO5JBbgLS0NGJjY43yamlpSfPmzQ1DNy9cuEBubm6JBR7y8/Np2tR8iP7ddu7cyeTJk7lw4QLp6ekUFhaSm5tLVlaW0e/ijqysLD7++GPWrVtHTEwMhYWF5OTkmI08mzJlilGHL8DEiRN5/T7yZtUiFNsnBhueZ86arf+jxAS1ivuetNa6bSs0N2NLTPJt1awJ1i2b6efIiL2FhU8NbAYPQJuaTsHhY/d17PuxcecOJv/wveH59En6z+bu0G4doOCfr9LjX8OHP77/kYysTHbs38+kb6fyy5dflWkHmlVoY2yHDDQ8z/y15ATXegp9we6DdavmaGJuoYm6YbS98GLRXXVtbByZkVE4vv8G1i1Cydu9/wFz/v/Fqn4dbPoW1RdZd12cGyvli1LoLzJzNmwFnQ7trXgU9vao2jQ3uoDUJiWTOXsBCrUKy5Ba2PTvTdbCpWXagVaRdUT2vD+wHTYUpykT0Wk0aKJvUnDsJBa+Nf5JEe5PifpB97eGg1SmTWdOMWVd0YXdtCeHASXrOZ1OZ7buy8rL46NVy3mv/0CcbU0PSY1LS+XbTeuZ8fRIVJblOyTVKrQxto8NMDzPvDO5v4mf3/1WftatmqGJNa77FM5O2DzyEJk/zzVMeF5erOrUxqZ7Z8PzrNXrTCe8R5k0sXH6eb9uy74Zi/3TQ7Fu2ohcE/OIWjWoS+G16yU6tMqCVf062PTpbnietWy1/o8S2b/XOUqhr/s2Fq/77FC1bm6y80zdqysWnu5kLlhq4lj/jFWLptg+UXRDOXPm7cn9767nHqCesG7b0kz7qDHWLUPJnvcHmtg4LHyqYzPoYbRp6RQcPv63y3A3q1bNsR3+uOF55ne352Ms8f9Uen1uGRKM+qFe5CxcRmFEJBaeHtg8MQjtQ73IW1d0E1p7K56Mj79AYWODVbMm2I56mswvZ5R7B5pVk4bYDnzI8Dzz9z/MpHyA7655KJpbcRUy5LmqqqorW5q7Dpo0aVKJtImJiWg0GsP19x3VqlXj1i3Tv0tvb29++eUXmjVrRl5eHgsWLKBbt27s2rWLjh07AnDr1q0HOmZZkM4z8bfY2dkZhvTNmDGDLl268PHHH/Ppp58aOn5+/fVXWrVqZbRf8Y6q4pYtW8a4ceOYOnUqbdq0wcHBga+//towZtnGxuaB8qfTmW+AF99uddecSgqFwpD/v+PvlB2gf//++Pr68uuvv1K9enW0Wi0NGjQwDKkMDQ3l2rVrbNy4kW3btjFkyBC6d+9+z3nA7pRVq9XSrFkzFi1aVCKNh4cHSuXfH8FdonOklM/+ftz5DNevX0+NGsYXb/cb2XX9+nX69u3L6NGj+fTTT3F1dWXfvn2MGjXK7Jx2b775Jps3b+abb74hODgYGxsbBg8ebPgO7vbuu+8yfvz4EvnLGffePfNXcOY8GZHFhpTdntRW6eiIJr0oskTpYI/urkgTk6yssG7ehJxijac7bB7tT+7mHYY7qdqYWyhvR9SUZedZx1ataRBSNGwy//bnnJiSjHuxyJjk1FRc7zNSoTRWVlaGBQPq1arNhUuXWPzXX7z/yqv/+Nh3FJwPI+ObYo3tO9+Tg73x92Rvh66U+fSKZRrrpo3I2XQfc+nlF6CJvVX6cCABQMHlq2hmF2so3a5rFXZ26DKLos8UdralXsDqMrPQabVGFy/apCSU9vagVMKdc4NWa1gwQBMbh2V1L6xbhJK7sezmSKzIOkKbmETmtJlgbY1CrUKXnoHtqGGlrjj4Tzk6OaG0UJKSbPweqSmpOJdB/VCROoTUpb6Pr+F5/u1OoKTMDNyL3bBKyc7C1d50x9jNlGRiU1OZsHihYZv29u+wzScfsfzl17gSH0dyVhYjfimK0NLotJy8fp3lRw6z74NJWPyDc3lxBefDyIgqVvdZ3Pn92aPJKF732aPLuM+6r0nJus/SpzpKB3scxhWtmqqwsMAiKADrdq1Je2tima16WHD1GppbxVZnvFNP2BrXCwobW3RZDxbtq4mLMxlJo3BwwNLPh+y1m/5epu+h4PJVNDEm6j57W6PIW4WdTalzaOqystBpNMZ1X2JyyboPUPfsglWtmmQuWHp/3/0DKjhzgYzIYjctDXWfQ8m6L/0+675mjclZt6XESzaPPETulp0UHNfPg2ZoH/XsWqadZwWnz5LxcWTRhjtlcnJEU2xRlnuVST3wIfIPHiF/70F9fm/Ggsoa2+FPkLd+S9H3p9EY5qvTXI/GItAfVfdO5JRDZ2dxBRfCyYgudmPwTr1hb4+m2G9FaW97n20mS6wb1ydn664yzqkoC+aug0rzINeMISEhhISEGJ63adOG6OhovvnmG0Pn2YMesyxI55koExMnTqRPnz689NJLVK9enRo1ahAREcFTT5leYv1ue/fupW3btobhf4DRhPkODg4EBASwfft2s8MBi6tXrx6///67UZTR/v37USqV1K59j4lgS1G3bl0OHTrE8OHDDdsOHSq6K1etWrUHLntSUhJhYWH8/PPPhhVH9u0rucqPo6MjQ4cOZejQoQwePJjevXuTnJyM6+2OCVP5uhOpFRoaytKlS/H09MTRzLCle32+VlZWaIqtJgX6z2Pfvn1G73vgwAHq1jU9KbeTkxPe3t4cOnTIUPEVFhZy/PhxQm/PjVWvXj1UKhVRUVH3PUTzbseOHaOwsJCpU6caOgaLz59nyt69exk5cqRhhZbMzMwSCyoUZy40+b6a3Hl5aBOMQ521aelY1q2N5sZN/QYLCyxr1STH3N3xYqybNQFLSwqOmGjsWVmB7q4OYZ32ge7a3g87W1ujFTR1Oh1uLi4cPnmSOrfn/ikoKODEubO88syzZfreoI9YuddiHw8sLx9tnvHFvTY9HcuQYDQ3b68IZ2GBZXAgOWtLdkrczbpJQ7C0uL8hsxYWWFTzNJ63S5iWX4A2P9VokzYzE8tAf/Ljbg8RViqx9PMhd4f5FWYLb8SUmFRb6eqiHy50j5sqilJujvwtFVlH3JGfjy4/Xx+tUDeEnFX3Pu7fZWVlRXDt2pw6eoK2Hdsbtp86eoJW7ct3oYKyZqdSGa2gqdPpcLO353DEVUK89R38BZpCTkRG8nL3niaP4e/uzuKXXjHaNmvHNrLz85jQux/VnJxwsbMvkeaTv1YS4O7O8HYdy6zjDDBT92VgWfuuuq9mgMkO2btZN2mgr/vuGg5XcPkq6V8ZR6rbPj4IbXwCuTv2lFnHmf7NCkoMq9RmZmHp70v+nSHKSiWWPtXJvd05cb+UHu4mI0+tG9RBl51DYUTk38116Uqt+24vdHKn7itlde3C6Jsl6z63knWfumdXrEKCyVq4rPxW4jVX99WpXRR9ZGGBZXAQOX9tuOfhrJs11td9R0+UfNHKquRvTFv27SNy89DetYKmNjUNy3ohRZGYFhZYhgST82cpwxOtTeVXd+9ALgUozCzAVKby89EmGd9w1qZnYFkrCM2dqDcLJZaBAfd1E9G6YX2wsKTg1Jl7phUVz9x1kCnu7u5YWFiUiAiLj48vETlWmtatW7NwYdFNJi8vr398zAclnWeiTHTu3Jn69eszefJkfvjhByZNmsSrr76Ko6Mjffr0IS8vj2PHjpGSklKilxogODiY+fPns3nzZgIDA1mwYAFHjx4lMLBo4sxJkyYxevRoPD096dOnDxkZGezfv98wXLS4p556iokTJzJixAgmTZpEQkICr7zyCsOGDftH/1CvvfYaI0aMoHnz5rRv355FixZx/vx5goKCjPL5IGW/s/rlL7/8gre3N1FRUSXGhE+bNg1vb2+aNGmCUqlk+fLleHl54ezsbEizfPlyo3wdOXKEOXPmGD6Pr7/+mgEDBvDJJ5/g4+NDVFQUK1eu5M0338THx+een++dzrV27dqhUqlwcXHhzTffZMiQIYSGhtKtWzfWrl3LypUrS12l8rXXXuOLL76gVq1a1K1bl2+//ZbU1FTD6w4ODrzxxhuMGzcOrVZL+/btSU9P58CBA9jb25udN664mjVrUlhYyPfff0///v3Zv38/P/30U6n7BAcHs3LlSvr3749CoeDDDz/8R1GIDypvxx7UvbqhjU9AE5+Iunc3dPn55B8t6mixHfEE2tQ0cu9qMFq3bUnB6XMmo2oKz15A3bs72pRUtDG3sPCtgaprJ/IPHinX8igUCp4YMJC5y5biV706vtVrMHfZUtQqFb07dTak+2jqN3i6ufHyyGcAfQdbxO2hsgWFhSQkJRF+9Sq2NjaGSLMff59H22bNqebhQXZONpt37+b42bPM+OTTci0TQN7uA6i7d0abkIQmIQl1987o8gvIP3HKkMb2ycFo09LJXW98p9u6dXMKzoaZnMNM/XAfCs5fRJeSisLeDnXPLijUKvJNNfgrgY2VCh8nD8Pz6o7u1HL3IT03i7jMqjdHVd6RE6jbtUSbol8VU9W2FbqCQqN5h2z690abkUneLv3Nivzjp1E1b4q6Z1fyj51E6eqMqm0r8ot1dqo6t9evtpmegcLaGqv6IVj4+5K3ZGWJPJR5mcqpjrCsGwIK0MYloPRwx+aRh9DExZd7HTFw6CC+/exLguvUpm79umxas4GE+Hj63h72M++nOSQlJjLhg7cN+0Rc1k9Yn5uTQ1pqGhGXr2BpaYXf7Qm0CwoKiL4dsVdYUEBSQiIRl6+gtrGhuk8FDENFX/c93qot8/buxtfVDT83N+bu3Y3ayopeDYvm1Zy46k88HRwZ270nKksranoat00cbq+keWe7lYVliTQ2VlY42diW2F4e8vbsR929E9rEJDQJicXqvqLVC22fGIw23UTd16o5BedM1H15+Whv3TUHZn4+uuzsktvLQd7J06hbNkObmoo2JQ1Vq2boCgvJLzaM3qZ3N7SZWYbhi6rWLfTDT1PTUFjr5zyz8HDXd/bdxbp+XfIvXCzbTsB7lenISdRtW6JNTkWbUrzuK5qcvkTdd+JO3ddFX/e5uKBq29KoblH36op1/Tpk/blG38l+Z361vPxyH3Kbt3Mv6l5d0SYkoolPQN3LRN03/HF93bdmo9G+1m1aUHD6vOn20bkw/XGTU9DGxt1uH3Uk/+DRci0PQN62Xaj79UQbl6AvU9+e+v+nYiMCbEcNQ5uSSu5K/QrEhafPoerZBU3UDTQR11F6uqMe2I+CU+cMvzH1o/0pOHsBXXIKqFVYt2yGZUgtsqaZnu+33Mu5/zDqzh3QJiajSUpC3bkDuoIC8k8VTZFj+9hAtOkZ5G7ebrSvdfOmFFy4+H8/7+u/bSoDU6ytrWnWrBlbt241BCkAbN26lQEDBpSyp7GTJ0/i7V20unmbNm3YunWr0bxnW7ZsoW3b8rsJJ51nosyMHz+eZ555hrfffpvnnnsOW1tbvv76a9566y3s7Oxo2LCh0STuxY0ePZpTp04xdOhQ/UX3E08wZswYNm4sOgmOGDGC3Nxcpk2bxhtvvIG7uzuDBw82eTxbW1s2b97Ma6+9RosWLbC1tWXQoEFGixr8HUOHDuXq1au8/fbb5ObmMmjQIF566SWjCe8ftOxKpZIlS5bw6quv0qBBA0JCQpgxYwadO3c2pLG3t+fLL7/k8uXLWFhY0KJFCzZs2GA03PLjjz9myZIljBkzBi8vLxYtWkS9evUMn8eePXt4++23efTRR8nIyKBGjRp069bNEIl2r8936tSpjB8/nl9//ZUaNWoQGRnJwIED+e677/j666959dVXCQwMZO7cuUZ5v9uECROIjY1l5MiRKJVKnn32WR555BHS0oruCH/66ad4enoyZcoUIiIicHZ2JjQ0lPfeu/eQSIAmTZrw7bff8uWXX/Luu+/SsWNHpkyZYhQhd7dp06bx7LPP0rZtW9zd3Xn77bdJTy+nO6sm5G3dicLaCpvHB6GwtUETGUXm979Asck4lS7O+ruMxSg93bEMDiJzxs8mj5u9bBU2/XtjO/RRFA4OaNPSyN93kNwNW02mL0sjBj9GXn4+X8z8kYzMTBqEhPDDp58bRajdSog3ms8hITmZp14tWqBhwcoVLFi5gtCGDfnli68A/WIEH039msTkZOzt7KgVEMiMTz6lddOilT3LS96OPSisrLAZ/DAKGxs012+Q+dNcyCu626p0cS5xsaT0cMMyKIDMWb+ZPK7SyQm7YUP1Qwszsyi8Hk3G9J/Q3R4eWNnqePjzwyNFnf+vtn8MgA1hB/l8h/mVhCtL/sGjKCwtsendDYVajeZmLFmL/zRaaU3p5Gj0PekyMsha/CfqHp2xf3442oxM8o+eIK/YhZTSzhbbh/ugsLdDl5ePNj6B7CUrKbxW/hGC5VVHKGzUqAf0RensjC47m4KTZ8hZs/Ge0Xb/VMdunclIT2fJvIUkJyXjHxjApK8+x9NL3xGUkpREQpxxB8qrz75k+PtK+GV2b92Bp1c1fluuvxOdnJhklGblkuWsXLKcBk0a8cX3U8u1PMUNb9eBvMICvtqwhoycXOr7+PD9sJFGEWpxaalVdi4bU/J27NXXfYMeRmGjRhN1Qz9XmVHd52S+7vvJdN1XmfKPntTXE107oVCr0NyKI2vFGqNV/ZQODkZlUqissenRRT/cMz8PTXwiWctWobmrs8/S3xelo0OFrLJZXP6hoyisLLHp3VVf98XcImvJCuO6z9Hhrrovk6wlK1B374z9c3fqvpNGdZ+qWRMA7J8eYvR+2Ws3UXC27FbQNiVv6y79b2/oI0V13w+/lqz77v7t3an7vv/F5HGzl63G5qFe2D7+KAp7e7Rp6eTvO1SmQ/DNydu4TV+mp4egsLNFExFJ5rc/QrEINaWri1GZctdtRod++KbSxQldRiYFp8+Ru7IoSljh6IDdc8NQODmiy8lFcyOGrGkzKbwQXu5lMiVvz37973FAX32bKfoGmb8tMFoVXulsot5wd8Uy0J/MOQsqOsuinIwfP55hw4bRvHlz2rRpwy+//EJUVJRhLvF3332XmzdvMn++fo7N6dOnExAQQP369cnPz2fhwoWsWLGCFStWGI752muv0bFjR7788ksGDBjAX3/9xbZt20yO4CorCp2uAm+HCCHKhUKhYNWqVQwcOLCys/J/L3XMhMrOQplynjmVjCsRlZ2NMucQHETqfcxP92/iPG0y7X6s2FX4ytv+sT+R9nnFdXpUBKf3J/wn64nL8aYXV/m3quXpR9ofy++d8F/E6cnHSB3/fmVno8w5f/s5ad/+WNnZKFNO48eSNvmf3fCtapzeG0/q2DcrOxtlyvnHr0kdVXIEzL+Z85zvSX3343sn/BdxnjKxsrPwt808sOLeiSrBmLaD7p3oLjNnzuSrr74iNjaWBg0aMG3aNMM0PiNHjiQyMpJdu3YB8NVXX/HLL79w8+ZNbGxsqF+/Pu+++y59+/Y1Ouaff/7JBx98QEREBDVr1uTzzz/n0Ucf/cflM0ciz4QQQgghhBBCCCGqECVlOJ9lJRszZozR/ObFzZs3z+j5W2+9xVtvvXXPYw4ePNjsSLTy8N/5NoQQQgghhBBCCCGEKGMSeSbEf4CMvhZCCCGEEEIIIcqHdJ4JIYQQQgghhBBCVCH/hdU2/0tk2KYQQgghhBBCCCGEEGZI55kQQgghhBBCCCGEEGbIsE0hhBBCCCGEEEKIKkQpwzarFIk8E0IIIYQQQgghhBDCDOk8E0IIIYQQQgghhBDCDBm2KYQQQgghhBBCCFGFKJBhm1WJRJ4JIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEIUstpmlSKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqEKUM26xSJPJMCCGEEEIIIYQQQggzpPNMCCGEEEIIIYQQQggzZNimEEIIIYQQQgghRBUiq21WLRJ5JoQQQgghhBBCCCGEGdJ5JoQQQgghhBBCCCGEGTJsUwghhBBCCCGEEKIKUSLDNqsShU6n01V2JoQQQgghhBBCCCGE3vyjGyo7CyYNb9G3srNQKSTyTAghytCXOxZUdhbK1Ntdh3Ei+mJlZ6PMhfrWYciCDyo7G2Vq2bDPSPt8amVno0w5vT+Bdj+OruxslKn9Y39i2OKPKzsbZWrBExOJSY2v7GyUqerOniw+saWys1Gmngjt+Z8rE+jLtSHsQGVno0z1rduW11ZPq+xslKnvBo5j8vbfKzsbZeq9biN4a90PlZ2NMvXVQy/z+MKPKjsbZWrJ059UdhbEf4R0ngkhhBBCCCGEEEJUIbLaZtUiCwYIIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEJk2GbVIpFnQgghhBBCCCGEEEKYIZ1nQgghhBBCCCGEEEKYIcM2hRBCCCGEEEIIIaoQpQzbrFIk8kwIIYQQQgghhBBCCDOk80wIIYQQQgghhBBCCDNk2KYQQgghhBBCCCFEFaJAhm1WJRJ5JoQQQgghhBBCCCGEGdJ5JoQQQgghhBBCCCGEGTJsUwghhBBCCCGEEKIKkdU2qxaJPBNCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhShk2GaVIpFnQgghhBBCCCGEEEKYIZ1nQgghhBBCCCGEEEKYIcM2hRBCCCGEEEIIIaoQGbZZtUjkmRAVKDIyEoVCwalTp8rl+AqFgtWrVz/QPp07d+b111+/7/Tz5s3D2dm51DQXL16kdevWqNVqmjRp8kD5+bsetBzl/V0IIYQQQgghhPhvkMgz8X9j5MiRpKamPnDnUlny9fUlNjYWd3d3AHbt2kWXLl1ISUm5Z4fUv8nEiROxs7MjPDwce3v7ys6OSXd/F5UpbPcxzm49SE5aJs7eHrR6rCdetfxMpo29FMnGaQtLbH904micvYrKkpedy/G/dnL9VDj52TnYuzvTclAPfBsEl1s5itvy1wbWLV9FalIKPgF+DB8zijoN65tMm5KUzMKf5nLt8hVu3Yyl1yMPMWLMcyXSbVixhm1rN5IYn4iDkwOtOrTl8eeGY21tXd7FMehZuyUP1++As409N1LjmXdsAxfjr5tN3z6wMQ/Xa4+3oxvZ+XmcirnMguMbyczPAaBTUFPGthtUYr+nFk2iQFtYbuW4m6pDG6ybNkKhVqGJuUXOpu1oE5PusZMKdef2WNUJRqFWo01NI3fbbgqvXgPAOrQx1qGNUTo7AqBJSCJv30EKr0aWc2nuX2PvYJ5s2pM6nn642znzzoZZ7L12urKzZVK34Ob0q9sWJxsHbqbFs/DEZi4lRJlN39a/If3qtqWagxs5Bbmcib3C4pNbDb+9Go4eDGrUmQCX6njYO7PwxCY2hx8u1zKs/nMVSxcuJikpiYDAAF4e9yqNmjY2m/7UiZPMnP4DkdcicXd34/FhT/LwowNNpt2xZRuffvgx7Tq257Ovpxi2/7ViFWtWruZWzC0AAoICGT5qJK3ati7Tst1xZMseDqzbTkZqOp4+3vQe/ij+dUzXu9cvXmXb4r9IjImjIK8AJw8XmndrR5u+XQ1pNIUa9v61hdN7jpCekoq7tyfdnxhArSb1yiX/9+tByllcVHgEcz/5Dk9fb1764p0KyKl5+zbsYOfqjaSnpOLlW4OBo56kZv3aJtNGXLjE2vnLib8ZS0FePi4ebrTp1ZnOD/cypImNusmmP1YRfTWSlIQkBj77BJ0e7llRxTGpfWAjugY3x1Ftx62MJFae3U1E0k2TaZ8M7Ukrv5Ln6dj0JL7YMb+8s2rWxd3HOb/tENm320gtH+tOtWDTbaRbl66zefqiEtsHfvQCTsXaSBd2HCF8zwmyUtJR2dngH1qHZgO6YGFVMZfGbfwb0KlmKA4qW+IykllzYS+RybFm01solXSv1ZLQGrVxUNmRlpvJ9ivHOBYdZkijtrSmd53WNPCqiY2ViuTsdNaH7S+1jVKWetRuQf967W+3jxKYf2wjFxPMv3e7gEY8XL89Xg6uZBfkcTrmMguPbzaco1r41mVgg454ObhiobTgVnoS68MOVNlztPj/IJ1nQlQgCwsLvLy8Kjsb5e7q1av069cPf3//ys6KWVXlu4g4dp7Dy7fQ5vE+VKvpy8W9J9jy42Ie/Wg09q5OZvcbNOklrNQqw3O1g63hb02hhs0zFqF2sKPrC4Owc3YgMyXdKH15OrhzL/NnzeHZV18kpH5dtq3fzBfvfsI3c37AvZpHifSFBQU4Ojsy8MnH2LBijclj7tu+iyWz5/PiG69Qu34dYm/EMOvr7wAYbqKjrTy08W/AyOZ9mX1kLeHxUXSv3YL3ug5n3JoZJGWnlUgf4uHPy20H8fvxDRy7EY6rjSPPt36Y0W0e4ZvdfxjSZefn8tpf0432rciOM+s2LVC1akb22k1ok1NQtWuN3ZODyfjpN8gvML2TUondk4PRZWeTvWIt2vQMlI6O6PLzDUm0GRnk7tyLNiUVAKtG9bB9bCCZsxfcu2OugthYqbiSdIMNFw8wuc/oys6OWa386vN0aG/mHVvP5cRougQ3481OT/HOhh9Jyk4vkb62uy8vth7IopObOXnzEi42DjzT4iFGtezPd/uWAWBtaUV8ZipHoi7wVGivEscoazu2bufHaTN4/a3xNGjUkLWr1vD2uDeZt2QB1byqlUgfGxPDu+Peot+A/rz/8YecO3OW6V99i5OzM526djZKeyv2FrNmzKRRk5IdcR6enjw/ZjQ1fGsAsHn9Jj54811+WfAbgUGBZVrGcwePs2n+Svo9OwS/kCCObdvPwi9mMfab93F2dy2R3lplTcueHanmVwMrtTVRFyNYN2cJVioVzbu1A2DHsnWc2XeU/s8/gXv1alw9E8bSb2cz6uNxeAf6lmn+79eDlvOO3OwcVs1cQFCD2mSmZVRgjks6ue8wq3/7g8EvDiOwTi0ObN7FL59+yzvff46Lh1uJ9NZqFR36dsM7wBeVSkVE2CWWz/oda5WKtr06A1CQl4eblweN27Vg9W+LK7hEJTWtUZtHGnZm+ekdXEuKoW1gQ0a3GciU7fNJySn5+a88s4u15/cZnisVSt7u+jSnYi5VZLaNXDt2gaN/bqXV473xDPLh0r6TbPtxKQM+fKHUNtLAiS9iXazNoyrWRoo4co7jq3fSbthDeAbVIC0umf0L1gHQcnCP8ivMbY29g+lfvwOrz+4mMiWWVn71GdWyP1N3/UFqbqbJfZ4O7Y29ypblZ3aQlJWGvcoGpaJoAJmFQsnzrQeQmZfDguMbScvNwlltT15hvsnjlbU2/g0Y0awPc46u07eParXgna5PM2HtD2baR36Mbfso849v5PiNcFxtHXmuVX9eaD2Ab/csASArP4fV5/ZwMy0BjVZDaI0QRrcZSFpuFmdir1RIuaoCJTJssyqRYZtC3LZ7925atmyJSqXC29ubd955h8LCogvYzp078+qrr/LWW2/h6uqKl5cXkyZNMjrGxYsXad++PWq1mnr16rFt2zajoZTFhwpGRkbSpUsXAFxcXFAoFIwcORKAgIAApk+fbnTsJk2aGL3f5cuX6dixo+G9tm7des8yZmVlMXz4cOzt7fH29mbq1Kkl0uTn5/PWW29Ro0YN7OzsaNWqFbt27brnse9QKBQcP36cTz75BIVCwaRJk9i1axcKhYLU1FRDulOnTqFQKIiMjATg+vXr9O/fHxcXF+zs7Khfvz4bNmwwpL9w4QJ9+/bF3t6eatWqMWzYMBITE83mY+HChTRv3hwHBwe8vLx48skniY+PN7xuatjmg75HWTi3/TC12zYhpH1TnL3daT2kJ3Yujlzcc7zU/dQOdtg62RseSmVRdX75wCnysnLoPvoxqtX0xd7NGa9gP9x8Sl6glof1K/6iS+/udO3bkxr+vowY8xxunu5sXbvRZHoPr2qMGPs8HXt2xdbOzmSayxfCqd2gLu26dcLDqxqNmjelbZeORFy6Wp5FMfJQvXbsuHKcHVeOczM9gd+PbSAxO42eIS1Npq/t4UN8ViobLx4iITOF8ITrbLt0lCC3GkbpdOhIy800elQkVctQcvcfpjD8CtqEJHLWbkJhZYl1/bpm97Fu0gCFjZrs5X+huRGDLj0DzY2baOMTDGkKL0dQePUa2uQUtMkp5O3ajy4/H4sa3hVRrPtyKOo8vx5ew+6IU5WdlVL1CWnN7oiT7I44SUx6IotObCYpO41utVqYTB/s7kNCVipbLh0hISuVS4nR7LhynEDX6oY015JjWHJqK4eizlOg0ZR7GZYvXkrfh/vRb0B//AMDeHn8q3hW82TNilUm069Z+ReeXtV4efyr+AcG0G9Af/r078eyRUuM0mk0Gj7/6BNGvvAs3iZ+W207tKN1uzb4+vnh6+fHcy+9gI2tDRfOnS/zMh5cv5PQLm1o1rUtHjW86DNiEE5uLhzbus9keu9AXxq2a46nrzcuHm407tCCmo3qEHWxqF47vfcIHQb2pHbT+rhWc6dFjw7UbFyHA+t3lHn+79eDlvOOtbOX0LBdM3xqlW2n5d+x668ttOrekdY9OlHNtzqPPPckzu6u7N9k+nP1CfIntGNrvP1q4FrNnead2xLStAERF4o6lvxqBfHwyKGEdmiFpWXlxyd0rhnKoevnOHT9HHGZyaw6u5uUnAzaBTYymT63MJ+MvGzDw8+lGjZWag5fL/v/lft1YccRgts2pna7Jjh7u9PysR7YOTsSvudEqfvZONhh42RveBRvI8Vfu4lnTR+CWtTH3s2ZGvWCCGxej6Tr5iO/ylKHoCYcjbrAkegLxGemsPbCPlJzMmkd0NBk+toefgS51eC3I2u5kniDlJwMolPjuZ5yy5CmhW9dbK3U/H5sA9dTbpGak0FkSiyxGRVzo6pf3bbsvHqCnVdOEJOeyPzjG0nKTqdHbdPnqFruviRkpbIp/DAJWamEJ0Sx7fIxahZrH12Ii+RodBgx6YnEZaawMfwQUalx1PE0HXUoREWQzjMhgJs3b9K3b19atGjB6dOnmTVrFnPmzOGzzz4zSvf7779jZ2fH4cOH+eqrr/jkk08MnVZarZaBAwdia2vL4cOH+eWXX3j//ffNvqevry8rVqwAIDw8nNjYWL777rv7yq9Wq+XRRx/FwsKCQ4cO8dNPP/H222/fc78333yTnTt3smrVKrZs2cKuXbs4fty4k+aZZ55h//79LFmyhDNnzvDYY4/Ru3dvLl++fF95i42NpX79+kyYMIHY2FjeeOON+9pv7Nix5OXlsWfPHs6ePcuXX35pGPIZGxtLp06daNKkCceOHWPTpk3ExcUxZMgQs8fLz8/n008/5fTp06xevZpr164ZOifN5ftB3+Of0hRqSIqKpXq9IKPtNeoGER9xo9R9/5r8K4vfns7G6QuJDY80ei3qzCU8g3w4sGQTf7w1jZWf/MzpjfvQarVlXYQSCgsKuHbpKo2aNzHa3qhZEy5duPi3jxvSoC7XLl3lykX9hUpczC1OHTlO01bN/kl275uF0oIg1+qcvutu55mYK4R4mG7IhSdE4WbrSNPq+mFATmo7WvvX5+TNcKN0aktrfnzkDWY9+iZvd3maAJeK61xSODuhtLenMKLY0AqNhsKoG1j4VDe7n2WtmmhuxGDTuxsOr43G/vkRqNq2BHMT2yoUWNULQWFlheZmTBmX4r/NQqkkwLU6Z28ZdxSfuxVBLXcfk/tcTozG1daRxt76YXSOajta+tXlVMz91eNlraCggEsXL9G8lXFHc/OWLTh39pzJfS6cPU/zlsYXXi1atyQ87KLRja35c+bh7OJMv4cfumc+NBoNO7ZsIzcnl/oNTA8j/7sKCwuJuRZNzUZ1jLbXbFSH6EvX7usYsdeiib50Df+6RcMfNYWFWFpZGaWzsrIiKjzin2f6b/i75Ty56xApcYl0GtSnvLN4T4UFhdy4GklIE+PfQEiT+kRevL8bMjcirhN58QrBDULKI4v/mIVCia9zNcLvGrIXHh9l1Ilemtb+DbiUEGUySq0iGNpIdY3bSNXrBpJwjzbS2ilzWPbOd2z+blGJNlK1mj4kRd0iIVJ/LspITOHmuav4VMC0FhYKJTWcPLmUGG20/XJiNAEupkdD1KsWyI3UeDrXDOX97iN5s/PT9KvbDkulRVEar0Cup9zikQad+LDHs4zv+ARdgpuhqICoJQulBYGu3pyJNf7fORN7hdpm2keXEqJwtXWkSfVagL591MqvPidumo9ybOAVhLejO2FxFTMMVQhTKv+2iBBVwMyZM/H19eWHH35AoVBQp04dYmJiePvtt/noo48Md6waNWrExIkTAahVqxY//PAD27dvp0ePHmzZsoWrV6+ya9cuw3DAzz//nB49TIeAW1hY4OqqH97g6en5QHOebdu2jbCwMCIjI/Hx0V88TZ48mT59zDdKMzMzmTNnDvPnzzfk6ffffzfsD/rhlosXL+bGjRtUr65vXL3xxhts2rSJuXPnMnny5HvmzcvLC0tLS+zt7R9oWGRUVBSDBg2iYUP9nbegoKLG0qxZswgNDTV6/99++w1fX18uXbpE7dol5yh59tlnDX8HBQUxY8YMWrZsSWZmpsl52B70PfLy8sjLyzPaplI92LDIvMxsdFodNg7G0VY2DnZkp5mOPrJ1dKDdU31x8/NGW6jhyuGzbPxuIX3HDcOrln6YbEZiKrHhkQS1bEDPsY+THp/MwaWb0Gq1NO3X8YHy+KDS09LRarU4uTgbbXdycSYtOeVvH7dtl46kp6Yz6fV3QadDo9HQvX8fBjwx+B/m+P44qmyxUFqUiAq7MzTClEsJ0czYt5zXOw7FysISS6UFR6PD+O3IOkOamPQEZh5YSVRqHDZWKvrWacOnvZ/nzXU/cqsC7hgrb0f66bKyjLbrsrJRODqa38/ZGWWAIwXnwshauhILVxfUvbqBUknevkNF6TzcsR/5BFhaQn4+2X+uQZuYXD6F+Y9yUNlioVSSXuK3l4mTuqbJfS4n3mDWwZWMbTfY8Ns7fuMiC46bjv4sb2mpaWg1GlxcXYy2u7i5kHLI9O8hOSkJFzfjzjYXVxc0Gg1pqam4ubtz9vQZNqxZz+yFv5X6/hFXrjL2uZfIz8/HxsaGT778nIAyHrKZnZ6FTqvFzsnBaLudkwOZaSWH1hY3deyHZKdnotVo6Dy4L826tjW8VrNRXQ6u34F/nZq4VHPn2rlLXDx+Fp1WV6b5v19/p5xJsfFsW7yGZya9joWFhck0FSkrIwOtVouDs3Ed5+DkRHqK6c7cOyaNGk9mWgZarYbeQwfSuken8szq32anstHXG3nZRtsz8rJwUN17Sg1HlR11PQOYf6xy6gww30ZSO9qRk55lch8bJ3vaPNkHNz9vNIWFRBw+x5YZf9Dr9acNc8kGNq9PbkY2m6bOR6cDnVZLSIdQGvZqa/KYZcnOWv+9ZJb4XrJxUNma3MfN1pEAV28KtRrmH9uAnbUNAxt0wtZKxfIz+khJV1snaro5cPLmJX47shZ3O2cGNuiEhULJtstHy7VMhvZRzl3nqJwsnKubaR8lRvPD/j95rcMQwznqWHQY846uN0pnY6Vi1qNvYGlhiVan5bcj60rcSPqvUygk1qkqkc4zIYCwsDDatGljtBxwu3btyMzM5MaNG/j56U+4jRoZh7p7e3sbhgKGh4fj6+tr1GHUsqXp4VxlkV8/Pz+jjq82bdqUus/Vq1fJz883Sufq6kpISNFd0xMnTqDT6Ux2FLm5lZwDpCy9+uqrvPTSS2zZsoXu3bszaNAgw+d9/Phxdu7cabLT6+rVqyY7z06ePMmkSZM4deoUycnJhqirqKgo6tUrOdHyg77HlClT+Pjjj422TZw4EZuOpi9mS3P3MtQ6E9vucPJyw8mr6LvwDPIhKyWds1sPGTrPdDodagc72j3VD6VSibu/N9lpGZzdeqjcO88M7i6TTvePltu+cOosq/9YzrOvvkhwndrExcTy+4+zWenmwqNPD/2nub1vOhPXq+YuYWs4efBMi378eWYnp2Mu42LjwNPNevN86wH8dFA/VO1y4g0uJxbdQQ+Pj+LLfmPoU6c1c+9qRJYFq/p1sOlb1KGftdT0kDm9Ui7OFfoOtpwNW0GnQ3srHoW9Pao2zY06z7RJyWTOXoBCrcIypBY2/XuTtXCpdKD9DXf/9hQozH5D1R3dGRbah9Xn9nD21hWc1Q483rQHz7R4iNlHTM8rWBFK1AH6ys58ekrWI3eOk52VzeSJn/HGe2/hdI+bT77+fsxe8BuZmZns2bGLLz75nOmzvi/zDjRTedaXsfR9np34Gvm5+dy4fI1tS9bgWs2dhu2aA9BnxCDW/LqYHyZ8BgoFrtXcadqpNSd3Hyr9oOXsfsup1WpZ8cPvdB7cF3dvzwrJ2/0qGZWjK+3nCMArk98lLyeX65ciWLdgOe7enoR2LJ/FJ8pEiUri/s7DLf3qkVOQx9mqMLdUya/JbDGcqrnhVK1kG+n8tsOGzrNbl65zZvMBWj3eG4+A6qQnpHB0+VZOb9hH477ty6cMdylZn5s/496pNxef3ELu7TnM1l3Yx9PN+rDq3G4KtRoUKMjMz2HFmZ3o0HEzLQFHlR2dajYt986zO0z91HSmGk3o20cjmvdlxdldnIm5grONA0+F9uS5Vv35+dBfhnS5Bfm8vX4WaitrGngFMaxZb+IzU7gQF1lexRCiVNJ5JgSmL+yLN9LvsLpr6IRCoTB0yvzTzoHilEpliRNOQUHRxN2mTkb3em9zJ7DitFotFhYWHD9+vMTd4X+yauadyL3ieSheHoDnnnuOXr16sX79erZs2cKUKVOYOnUqr7zyClqtlv79+/Pll1+WOLa3d8khbllZWfTs2ZOePXuycOFCPDw8iIqKolevXuTnm5489UHf491332X8+PFG21QqFdP3LzN5fFNU9rYolAqy043v1uVmZGHjaHruL1M8Amtw9chZw3NbJ3sUSqXRHB9OXu7kpGeiKdRgYVl+d/4dnRxRKpUloszSU9NwvCsa7UEsm/cHHbp3pmtf/cplfkEB5ObmMXvajwx88jGjspaH9LxsNFoNzjbG/wdOajuzc5Q90qAT4QlRrL2gnwcoKjWO3MNr+bT38yw5tZXUnJL76dBxNekmXg7l01ldcPkqmtlF86Rw+/9cYWeHLrPoTr7CzhZdVvbduxflM1MffVL8CkCblITS3h6USrgzRFirNSwYoImNw7K6F9YtQsnduK3sCvUfl5GXjUarxemu356j2q5ENNod/eu153JiFBsuHgAgmnjyjubzYY9nWX5mR4XPq+fk7ITSwoLkJONO05TklBLRaHe4urmVSJ+akoqFhQWOTk5ERlzjVmws771RtGKj7vbvrlvbzsxftogaPvr5c6ysrKjhq7/ZFFK3DhfDLrJi6Z9MePfNMiujraMdCqWyRPRVVnoG9qVEcQK4eOpXAazmV53MtAx2rdho6Dyzc3TgiQkvUJBfQE5mFg4uTmxbvMbkpPYV4UHLmZeTS0xEFLGRN9gwbzlwuy2g0/HxU68x7N0xBFXw0Ec7BweUSiXpqcYTmWekpePgbH4SegC324veVA/wJSM1jU1L/qqSnWdZeTlotFoc1cbRTA4qWzLyzNftd7T2r8+x6DA0uvKf7sGcO22ku6PMcjOySkSjlcYjsAYRR4oiCk+u3U3Nlg2o3a4JAC41PCnMK+DgHxto1LsdCmX5DXXMytd/Lw53fS/2KtsS0Wh3pOdmk5abaeg4A4jPTEGpUOBsY09iVhoZeVlotFp0xbqw4jOTcVTbYaFQluv3WHr7yHSE4MD6HbiUEMW6C/sBffso70g+H/d6jqWntxvaRzp0xGXqzwPXU25Rw8mDAfU7SueZqDQSBygEUK9ePQ4cOGDUuXPgwAEcHByoUaNGKXsWqVOnDlFRUcTFxRm2HT1a+t0ea2trQD8PS3EeHh7ExhZNXJqens61a0VzidSrV4+oqChiYormDjp48GCp7xUcHIyVlRWHDhXdrU5JSeHSpaL5BZo2bYpGoyE+Pp7g4GCjxz9ZmdLDQ9/YLF6m4hP13+Hr68vo0aNZuXIlEyZM4NdffwUgNDSU8+fPExAQUCJfdiYmmL948SKJiYl88cUXdOjQgTp16hgtFmDKg76HSqXC0dHR6PGgwzYtLC1w8/MmJsx4npiYsGt4Bpmey8iU5Ohb2DoWNVo8g3zISEgxGtaTHp+MjZN9uXacAVhaWRFYuyZnjhsvJX72+Clq16tjZq97y8/LQ3FXB5m+kxnT4WBlTKPVEJEcQyNv4zlRGnkHE54QZXIflYVViU5r7e0GbGnzkPi7eJFaXnPM5BegTUkteiQmoc3MxDKw2DAepRJLPx80N8zPTVZ4IwblXZ2hSlcXtBmZRR1nZiiqwLCtfxONVktkcgwNvIzn/WngFWQUtVicytIKbYnf3p0bQuWTz9JYWVlRu05tjh0xPiceP3KUBg0bmNynXsP6HL8r/bHDRwipWwdLS0v8/P347Y/fmb3gN8OjbYd2NGnWlNkLfsOzmvkoJ51OR0FB2a5CZ2lpSfVAX66eMZ7b8erZcHxrP1iEW2FBydV2raytcHR1RqvRcuHIKUKam55cvLw9aDlVNmpe+updRn/xtuHRvFs73Kp7MvqLt/EJDqignBextLLEp2YAl04ZT4R/6dQFAuo8QPS4Tj/PZ1Wk0WmJTo0jxMN4iGaIhx/XkkufdzLY3QcPexcOXS99CGt5u9NGir27jXTxGh4P0ka6cQsbp6I2UmF+YYkbznc6zHSlRVyXAY1Oy820eGq5G6+UW8vdl8hiCwAUdz0lFke1HdYWRTfw3e2c0eq0hk6myORY3OycjFoW7vbOpOdmlXsHqEar4VpyLA29jP93GnrV5JKZ9pG1pan20e1zVCntIwVg9X/WhlAqFFXy8f9KOs/E/5W0tDROnTpl9IiKimLMmDFER0fzyiuvcPHiRf766y8mTpzI+PHj7zuipUePHtSsWZMRI0Zw5swZ9u/fb1gwwFxUmL+/PwqFgnXr1pGQkEBmpv4k2LVrVxYsWMDevXs5d+4cI0aMMIoE6969OyEhIQwfPpzTp0+zd+/eUhcnAH3k2KhRo3jzzTfZvn07586dY+TIkUblq127Nk899RTDhw9n5cqVXLt2jaNHj/Ll8ITttAABAABJREFUl18arXz5oIKDg/H19WXSpElcunSJ9evXl1jp8/XXX2fz5s1cu3aNEydOsGPHDurW1a/2N3bsWJKTk3niiSc4cuQIERERbNmyhWeffbZExyOAn58f1tbWfP/990RERLBmzRo+/fTTUvP4oO9RVhp0a8Wl/Se5dOAUqbGJHF6+hcyUNOp0CAXg2Ood7J5XFMJ+fvthrp8KJy0+mZSYBI6t3kHkyYvU7Vw0sXadjs3Izcrh0PLNpMUlEX32Mqc37adup+blVo7i+g0awM6NW9m5cRs3r0czf+ZsEuMT6d6/NwCLZ89n5hfTjPaJvBJB5JUIcnNzyEhNI/JKBDeuFzW6Qlu3YNvajRzYuYf42DjOHD/F8nmLaNamBcoKakitu7CfbsHN6FIzlBqOHoxo3gd3Oye2XtJf4D/RtAdj2w4ypD924yIt/erRo3ZLPO1dCPHw45kW/bicGG2YgHlwoy409g7G094FfxcvXmrzCAGu3my5dKRCygSQd+QE6nYtsQwJRunhhk3/3ugKCsk/H2ZIY9O/N6rORcNZ8o+fRmFjg7pnV5SuLlgGB6Jq24r846cMaVSd22PhWwOFkyNKD3dUndth4e9Lwfm/v3BEWbOxUlHL3ccw8X51R3dquftQzd50NFRl2Rh+iM5BoXQMakJ1R3eeatoLN1sntl8+BsCQxt14sfVAQ/qTNy/R3Lcu3YKb42HnTC13X4Y1683VxBuGiy0LpRI/52r4OVfDUmmBi40jfs7V8Cynsj/2xFA2/LWODWvWc/1aJD9Om0FcXDz9H9Xn+9cff2LypKJFeh5+dABxt+L4cfr3XL8WyYY169mwZj1DnnocAGuVisCaQUYPewd7bG1tCawZZIgU/3Xmz5w5eZpbMbFEXLnK7Fm/cPrEKbr36lnmZWzTrwsndh7kxM6DJNy8xab5K0hLTKZ5d/3/zrbFa1g5c74h/ZEtewg/fpak2HiSYuM5uesQB9Ztp1H7ovr8xpVILhw5RXJcItcvXmHhFzPR6XS069+9zPN/vx6knEqlkmq+1Y0edk4OWFpZUc23OtbqB7vpVFY6D+jJoW17OLxtD3HRMayas5iUxCTa9tKvgr5uwXIWTf/VkH7fhu2cO3KKhJhbJMTc4vD2vez8axPNOxdNhVFYUMjNiChuRkShKdSQlpzCzYgoEmLjSrx/Rdh19QStAxrQyq8+1exdeaRBJ1xsHdh/7QygX0H6qdBeJfZr7d+AyOSKW6mxNPW6tuTygVNcPnCa1NhEjvy5layUdEJut5GOr97J3nlFQ9Ev7DhC1Klw0m+3kY6v3sn1k+HU6VS0uJBvw2DC957g2rHzZCSmEhN2jVPr9uDbsFa5R7ED7I04RUu/ejT3rYunvQv967XH2cbe0FnZu04bhjYp+v8+efMS2fm5DGncDU97FwJdq9OvbjuORodRqNW3Tw9eP4edtZqH63fE3c6ZOp7+dA1uzoHIM+VeHoD1YQfoGhxK55pNqe7ozvBmvXG3czIMGX28SXfGtH3UkP7EjXBa+NWjR60WeNq7UNvDj5Et+hpWEwUYUL8DDb1q4mnvQnVHd/rWbUuHoCbsvXbaZB6EqAgybFP8X9m1axdNmzY12jZixAjmzZvHhg0bePPNN2ncuDGurq6MGjWKDz744L6PbWFhwerVq3nuuedo0aIFQUFBfP311/Tv3x+1Wm1ynxo1avDxxx/zzjvv8MwzzzB8+HDmzZvHu+++S0REBA899BBOTk58+umnRpFnSqWSVatWMWrUKFq2bElAQAAzZsygd+/epebx66+/JjMzk4cffhgHBwcmTJhAWprxsIW5c+fy2WefMWHCBG7evImbmxtt2rShb9++9/1Z3M3KyorFixfz0ksv0bhxY1q0aMFnn33GY489Zkij0WgYO3YsN27cwNHRkd69ezNtmr6DpXr16uzfv5+3336bXr16kZeXh7+/P7179zbZ0PHw8GDevHm89957zJgxg9DQUL755hsefvhhs3l80PcoK0HN65OXlcOp9XvJTs/ExduDnmMfx97NGYDstEyykou+I41Gw5GV28hOzcDCyhIXbw96jH0c32KrRNm7OtH71Sc5vHwrqz/7BVtnB+p3aVEhk+ECtOnSgYz0DFYuXEpqcjK+Af68PfkjPG5HgqQmp5AYn2i0z7ujxxn+vnbpKvt37MG9miffL9JfvDzy9BBQKFg2dxHJick4OjkS2qYFQ599ukLKBPrGqYPKlkGNuuBi40B0ahxTdiwgMSsVABcbB9ztnA3pd0ecxMZKRe+QVgxv1pus/FzO34pg4YnNhjR21mpeaD0QZxt7sgtyuZYcy8TNs7madLPCypV/8CgKS0tsendDoVajuRlL1uI/Ib8ookLp5GgU4afLyCBr8Z+oe3TG/vnhaDMyyT96gryDRZFCSjtbbB/ug8LeDl1ePtr4BLKXrKTwWtVZKauOhz8/PFI0/PrV9vo6aUPYQT7f8XtlZauEw1Hnsbe2YWD9Tjjb2HMjLZ5vdi8iKVtfNzir7XGzLRputvfaadSWKrrXbsETTXuSnZ/LhfhrLD1VNFzWxcaBz/uMNjzvV7ct/eq2JSwuksnlUPauPbqRnpbO/N/mkZyYREBQIF9M+wovb31Uc1JSEvHFIre9q1dnyrSvmDn9e/76cxVu7u68MuE1OnXt/EDvm5KcwuSPPyM5MQk7ezuCgmvy5fRvaN6qxb13fkAN2jQjOyOL3Ss3kZmajqevN0+9/RLOHvrFgTJS00hLLBrSrtPq2LZkLakJSSiVSlyqudP9iYdp1q2dIU1hfgE7lq0nJT4Ra5WKWk3r8ciY4djYmZ5cvCI8aDmroqbtW5GVnsXmpWtIT0nD268GL3w4DtfbQ2jTk9NISSjqPNJqdaxf+CfJcQkoLSxw8/LgoWGDadOrsyFNenIq34yfaHi+c/Umdq7eRM36Ibz8edHw4opy8uYl7KzV9KrTCieVHbEZSfx8cLWhc8JRbYeLrfHCD2pLaxp7B7Py7K4Kz68pgc3rkZeVw+kN+8hJz8TZ24NuY4Zi76av73LSM8lKKRpCrC3UcGzVDkMbydnbnW5jhhitpNmoT3tQKDi5dg/ZqRmo7W3xaRhM6MOdK6RMp2OvYGutpnutFjiq7LiVkcRvR9YZIs4dVbY42xR9L/maAn499BcDGnTk1Q5DyM7P5UzMFTaFF40kScvN5NdDa+hfvz3jOj5Oem4W+66dZteVExVSpoPXz2GvsmFQw8442zgQnRrPFzsXkpilP0fp20dF56jdEadQW6noGdKKp5v10reP4q7xx4kthjQqS2uebfkQbraO5GsKiElP5Mf9KzhYyRGR4v+bQnc/EyEJIf6W/fv30759e65cuULNmg8+kbwoP+Hh4dSpU4fLly8THFx2y5N/uWNBmR2rKni76zBORFedSKGyEupbhyEL7r9z/N9g2bDPSPt86r0T/os4vT+Bdj+OvnfCf5H9Y39i2OKP753wX2TBExOJSS19aPy/TXVnTxYXu5D7L3gitOd/rkygL9eGsAOVnY0y1bduW15bPe3eCf9Fvhs4jsnbq85NibLwXrcRvLXuh8rORpn66qGXeXzhR5WdjTK15OlPKjsLf9tf5/ZUdhZMGtCgghYgq2Ik8kyIMrRq1Srs7e2pVasWV65c4bXXXqNdu3bScVbFJCcn8+eff+Lo6Iivr++9dxBCCCGEEEII8X9LOs+EKEMZGRm89dZbREdH4+7uTvfu3UvM7SUq36hRozh+/DizZs164En+hRBCCCGEEEL8f5HOMyHK0PDhwxk+fHhlZ0Pcw6pVqyo7C0IIIYQQQghhVmmrj4qKJ6ttCiGEEEIIIYQQQghhhnSeCSGEEEIIIYQQQghhhgzbFEIIIYQQQgghhKhClAoZtlmVSOSZEEIIIYQQQgghhBBmSOeZEEIIIYQQQgghhBBmyLBNIYQQQgghhBBCiCpEIcM2qxSJPBNCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhciwzapFIs+EEEIIIYQQQgghhDBDOs+EEEIIIYQQQgghhDBDhm0KIYQQQgghhBBCVCFKZNhmVSKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqEFlts2qRyDMhhBBCCCGEEEIIIcyQzjMhhBBCCCGEEEIIIcyQYZtCCCGEEEIIIYQQVYhShm1WKRJ5JoQQQgghhBBCCCGEGQqdTqer7EwIIYQQQgghhBBCCL2t4YcrOwsm9QhpVdlZqBQybFMIIcrQ639Nr+wslKnpA17ncOS5ys5GmWsV0ICOM//H3l1HR3G1ARz+xd09xJEkBA0a3F1LgWItBUqR4lagLQ4VoEDRUtzdXQLF3QkuQQIhbsTz/RHYsNldrAlJ+73POXsOmb0z+96dYebunffe6ZXXYeSov3vNJqrXoLwOI0dZzp5Cp1Vj8jqMHLWs3Sgqz+qR12HkqGO95/IiNiKvw8hRdmbWrDq/N6/DyFHt/OvRc8NveR1GjpvTaggzjqzN6zByVN+qbfhy1di8DiNHLW33E/02/57XYeSo6S0G0HzRsLwOI0dt+foXas3tk9dh5KiDPf7I6xA+mjxtM3+RYZtCCCGEEEIIIYQQQmggnWdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQggh8hEtZNhmfiKZZ0IIIYQQQgghhBBCaCCdZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCHyEW152ma+IplnQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEPmIlpZWvnx9jNmzZ+Pp6YmhoSFlypThyJEjGstu3LiRunXrYmdnh7m5OQEBAezZs0epzOLFi9XGlpiY+FHxvQ/pPBNCCCGEEEIIIYQQOW7NmjX079+fkSNHcuHCBapWrUrDhg0JDg5WW/7vv/+mbt267Ny5k3PnzlGzZk2aNm3KhQsXlMqZm5sTEhKi9DI0NMy1esgDA4QQQgghhBBCCCHEOyUlJZGUlKS0zMDAAAMDA7Xlp06dSteuXenWrRsA06ZNY8+ePcyZM4dJkyaplJ82bZrS3xMnTmTLli1s27aN0qVLK5ZraWnh6Oj4D2vz/iTzTAghhBBCCCGEECIf0dbSypevSZMmYWFhofRS1wkGkJyczLlz56hXr57S8nr16nH8+PH3+h7S09OJjY3F2tpaaXlcXBzu7u64uLjQpEkTlcy0nCaZZ0IIIYQQQgghhBDinYYPH87AgQOVlmnKOgsLCyMtLQ0HBwel5Q4ODjx79uy9Pm/KlCnEx8fTpk0bxTIfHx8WL15M8eLFiYmJYfr06VSuXJlLly5RuHDhD6zR+5HOMyGEEEIIIYQQQgjxTm8boqlJ9gcNZGRkvNfDB1atWsXo0aPZsmUL9vb2iuUVK1akYsWKir8rV66Mv78/f/zxBzNmzPig2N6XdJ4JIYQQQgghhBBC5CNafNyTLfMTW1tbdHR0VLLMQkNDVbLRsluzZg1du3Zl3bp11KlT561ltbW1KVeuHLdv3/7HMWv8jFzbshBCCCGEEEIIIYT4v6Svr0+ZMmXYt2+f0vJ9+/ZRqVIljeutWrWKzp07s3LlSho3bvzOz8nIyODixYs4OTn945g1kcwzIYQQQgghhBBCCJHjBg4cSKdOnShbtiwBAQH8+eefBAcH06NHDyBzDrUnT56wdOlSILPj7Msvv2T69OlUrFhRkbVmZGSEhYUFAGPGjKFixYoULlyYmJgYZsyYwcWLF5k1a1au1UM6z4QQQgghhBBCCCHyES2t/8ZAwbZt2xIeHs7YsWMJCQmhWLFi7Ny5E3d3dwBCQkIIDg5WlJ83bx6pqan07t2b3r17K5Z/9dVXLF68GICoqCi6d+/Os2fPsLCwoHTp0vz999+UL18+1+ohnWfiozx//px58+bRp08frKys8jocIYQQQgghhBBC5EO9evWiV69eat973SH22qFDh965vd9//53ff/89ByJ7f/+NrkzxSWVkZNCpUycMDAw+uOPMw8ODadOm5U5g/5CWlhabN2/+oHVq1KhB//79cyWef6tOnToxceLEvA7jHxk8eDB9+/bN6zCEEEIIIYQQQuQDknn2CXTu3JklS5YAoKuri6urK5999hljxozBxMQkj6P7cJMmTcLLy4thw4Z98Lpnzpz5V9ZZvJ/Lly+zY8cOZs+erVhWo0YNDh8+zKRJk/j++++Vyjdq1Ihdu3YxatQoOnfujKen51u3P2rUKEaPHg3AkiVLmDVrFteuXUNbW5vSpUszdOhQmjRpAkBcXBxWVlYsX76ctm3bKrbRtm1b1q5dy507dyhYsKBiecGCBWnbti0TJ05k6NChFCxYkAEDBrwzptxS2aMEtQqVwdzQhGex4Wy6cph7EU/Vlm1fuh7l3YqqLA+JCeeXwGW5Hep7279tNzvXbSE6IpIC7q506PE13sVV4wY4c/QkB7fvIfjeA1JSUijg7krLjm0oUbb0J45aWQu/arQrXQdrYwseRITwx7F1XA65q7F8y2LV+Kx4DRzNrHkeG8my87vZc/OUUpnWJWrS3K8aDmZWRCfGc+juef48uYXktNTcro6CYeN66FeuiJaxMWkPHpKwZiPpIc81ljft3xPdIoVUlqdcvU787AWZfxgYYNS0AXoli6FlZkba4ye8XLeZtIePcqsaCrULlaWxbyUsjMx4Eh3K8vN7uPUiWGP5Su7FaexbCQczG16mJHI55A6rLuwjLvklAAXM7WhVogYeVs7YmVqyXM1+zC9KOhWifel6+Ni7YWtiyfc753Dk/qW8DguAjes2sGrZCsLDwvHw8qTfoP6ULF1KY/kL587zx+8zeHDvPjZ2tnTo1IEWn3+meP/e3XssmDufmzdu8CzkGX0H9qNN+y+UtrFp/UY2r99ISEgIAJ5eXnTu1oWAygG5UsfTe//m+PYDxEbFYO/iRIMvP8PdR/X/CsDDG3fZv2oLYU+fk5KUgoWdFWVrVyagUS1FmbTUNI5s2culv08TExmFrZM9ddo1p3Ap9efO3FDNqxR1i5TDwtCUkJgw1l06yJ3wJ2rLflmmIQEexVSWP40JY9y+RSrLy7r40LVCUy4+vc28E5tzOvS3uhJ4igt7jpIQFYe1sz1VvmiIcxEPtWWf3LjP5skLVZa3H9cXKyc7AMKfPOf0loO8ePiU2PAoqrRtSMm6mifD/hRqFypLI98Axblwxfm9bz0XBrgXy3YuvMvqN86FeaGKZwlqFSqraA9tvHKYexqOv/b+9ajg5qeyPCQmnJ8PZs6l5GhmQyPfAFws7bExtmDjlUMcvnshN6ugoqFPRVoWq46VkRnBUc9ZcHob158/0Fi+ulcpWhavjrO5LfHJiVx4cotFZ3YQm5SgKNO0aBUa+lTE1sSS2KR4jj+4wtJzu0n5RG2JZn5VaVuyNjbG5jyIDGHWsY1ceaa5fdTcryotilXD0cya0LhIlp/fy75bp5XKmOgb0bV8E6p6lsTMwJiQ2HDmntjEqeDruV2dfENb69//tM3/Euk8+0QaNGjAokWLSElJ4ciRI3Tr1o34+HjmzJmT16F9sBEjRnz0unZ2djkYichvZs6cSevWrTEzM1Na7urqyqJFi5Q6z54+fcrBgwcVT0RxdXVV/LgBmDx5Mrt372b//v2KZaampkBmZtjMmTMZP348LVq0ICUlheXLl9O8eXOmT5/Od999h6mpKWXLliUwMFCp8+zw4cO4uroSGBio6Dx7/Pgx9+7do2bNmgDY29tTr1495s6dyy+//JLD39K7lXYuQsvi1Vl/6SD3I55SyaME3wa0YNLBZUS9jFUpv/HKIbZdP6r4W1tLm6E1O3Dpae49qvlDnTx0jBVzF/HVd99Q2M+HwB17mfzDBCbNn4atvep54eaV6xTzL0nrrztgbGrMkT2B/D7qZ0ZNn4RHIa88qAHUKlSGPlU+Z+rfq7n67B7Nilbh1ya9+XLVOELjIlXKN/erSveKzfnt0EqCQh/ga+/B0BodiE1M4PjDKwDULVyO7hVb8EvgMq4+u4erpQPDa3UCYOaxDZ+kXgZ1a2JQqzoJy1aT9vwFhg3rYNrnW2LG/AJJSWrXif9zMehmNSG0TIwxGzGIlPOXFcuMO7ZBx8mR+CWryIiORr98GUz7fkvM2F/JiI7JtfpUcPOjo38DFp/dwe2wR9QsVIYh1Tvw/c5ZhCeofm4RW1e+rdiCFRf2cOHJLayMzPi6XBO6lm/K9KNrAdDX1SM0LorTwdfp4F8/12LPCUZ6BtwJf8zOG8eZ2LBHXoejcGDvfmZMmcag74dQvGQJtmzcxOC+A1m2biWOjo4q5Z8+ecqQfoNo2rIZP40bzZVLl5ny829YWllRo3bmuTopMRFnF2dq1qnFH1Onq/1cO3s7enzXiwKuLgDs2r6T4YOGsnDFErwK5uy55OqJc+xeupHGXdrg5u3F2f3HWP7zHHpPHomlrbVKeX0DfcrXq4aDWwH0DPUJvnGP7QtWo2dgQNnalQE4uHY7l4+eoek37bB1duDu5SDWTP2LrmMG4OTpmqPxq1PGxZvWJWux+sI+7oY/oapnSXpX+ZyxexcSqeZ6tPbSATZf/Vvxt7a2FiNrd+b845sqZa2NzfmseA1uv8j9DvXsbp++wtHVu6jeoQmOhdy49vdZtk1fRvuxfTCzsdS4Xofx/dAzMlD8bWSWdUM4NTkFczsrCpX14+iaXbkZ/nup4FaUDv71WXJ256tzoT+Dq7dn+M7Z7zgX7uXCk1tYG5nRuVxjupRvyoxX58JPrXSBIrQsXoN1lw5yP/wplTyL0yOgBZMOLFV7/G28fIht15TbQ8NqdeTi01uKZfo6uoTFR3PhyS1aFq/xKaqhpIpnCbqWb8q8E5sJCn1Ife8K/FS3C99tmkpYfJRKeV97D/pVbcvC09s4/SgIG2MLelZqyXeVWzHpYOYN0upepfiyTAP+OLaeG6EPcTa3pV/VNgAsOL091+tUo6A/vSt9xvQja7n67B5Ni1bm58Y9+XrNBLXto2ZFq9CtQlOmHF7NzdCH+Ni7M6h6O+KSEjjx8CoAuto6/NakN1Ev4xi9bwFhcVHYmVqRkKK+XSLEpyDDNj8RAwMDHB0dcXV1pX379nTo0EExRDAjI4Nff/0VLy8vjIyMKFmyJOvXr1esGxkZSYcOHbCzs8PIyIjChQuzaFHW3bsrV65Qq1YtjIyMsLGxoXv37sTFxWmM5dChQ2hpabFnzx5Kly6NkZERtWrVIjQ0lF27duHr64u5uTnt2rUjISHrjsbu3bupUqUKlpaW2NjY0KRJE+7ezbqjsHTpUkxNTbl9O+sHe58+fShSpAjx8fGA6rBNLS0t5s2bR5MmTTA2NsbX15cTJ05w584datSogYmJCQEBAUqfAzBnzhwKFiyIvr4+3t7eLFv29uyaM2fOULduXWxtbbGwsKB69eqcP3/+retkFx8fz5dffompqSlOTk5MmTJFpUxycjJDhw6lQIECmJiYUKFCBaUx2w8fPqRp06ZYWVlhYmKCn58fO3fuBLL2y44dOyhZsiSGhoZUqFCBK1euKH3G8ePHqVatGkZGRri6utK3b1/F9wuZEy42btwYIyMjPD09WblypdL3/uDBA7S0tLh48aJinaioKLS0tJRivX79Oo0aNcLU1BQHBwc6depEWFiYxu8nPT2ddevW0axZM5X3mjRpQnh4OMeOHVMsW7x4MfXq1cPe3h4AHR0dHB0dFS9TU1N0dXVVlp08eZIpU6bw22+/MXjwYAoVKoSvry8TJkygf//+DBw4kEePMhviNWvWVKpTUFAQL1++pFevXkrLAwMD0dPTo3LlyoplzZo1Y9WqVRrrm5tqFPLn1MNrnAy+xvO4SDZdPUzUyziqeJRQWz4xNZnYpATFy83SASM9Q04FX/vEkWu2e+M2qtevRY2GdSjg5kLHnl2wtrPh4PY9ast37NmFxm1a4OVdCMcCzrTu0gFHZ0cunjz7iSPP0qZkLXYEHWdH0HEeRj7jj2PreREXRYti1dSWr+9dga3XjnLwzjlCYsI5eOccO4KO096/rqKMn6MnV5/dZf/tszyLjeDMoyAO3D6Lt537p6oWBrWqkbh7PykXr5Ae8oyEpavQ0tdHv5zmLL+MhJdkxMQqXno+RSA5heTzrzKc9HTRK1Wcl5u3k3bnHukvwkncsZf0sAgMquVuJkZD74ocvneBw/cu8DQmjBXn9xCeEE3twuXUli9k68KL+Cj23jrNi/goboU94uCdc3haOyvK3I94yuqL+zgZfI2UtLRcjf+fOhl8jfmntnL43sW8DkXJ6hWraNK8KU1bNMPD04N+gwZg72DP5vUb1ZbfvGETDo4O9Bs0AA9PD5q2aEbjZk1YtXylooyvX1F69+tDnfp10dPXU7udKtWqElClEm7ubri5u/Ft7x4YGRtx/crVHK/jiR2B+NcMoEytStgVcKThV62wsLHi7L6jass7ebpSvHJZ7F2dsLKzoWTVchQs4UPwjaw2z6Ujp6naoh5FSvth7WBLubpVKVjSh+M7DuZ4/OrULlyW4w+ucOzBFZ7FRrDuciCRCbFU8yqltnxiajIxSfGKl7uVI8b6hoofxK9pocXX5RqzPegYYfHRn6Amyi7uO45vFX+KViuLtbM9Vb9ohJmVOVcPnX7rekbmJphYmCle2tpZP6UcPF2o3LoBhcuXQEc37/MTGngHZDsX7iUiIZpahcuqLV/w1blw363ThL06FwbeOYentdMnjjxLjYL+nHx4lZMPr/I8LoJNVw4T+TKWyp7v2R6yetUeepjVHgqOes7Wa0e48OQWqemfLsP7teZ+Vdl/+wz7bp/hcXQoC05vIyw+moY+FdWW97Z3IzQuku1BxwmNiyQo9AF7bp6ikK3LG2XcCQp9yN/3LhIaF8nFp7f5+95FCtq4qN1mTmtdoia7bpxg540TBEc9Z9bxjYTGRdKsaBW15esWKcf268c4dPc8IbHhBN49z64bJ/iiVB1FmYY+FTE3MObHPX9y7dl9nsdFcvXZPY1Zh0J8CtJ5lkeMjIxISUkB4IcffmDRokXMmTOHa9euMWDAADp27Mjhw4cB+PHHH7l+/Tq7du0iKCiIOXPmYGtrC0BCQgINGjTAysqKM2fOsG7dOvbv38933333zhhGjx7NzJkzOX78OI8ePaJNmzZMmzaNlStXsmPHDvbt28cff/yhKB8bG8uAAQM4c+YM+/fvJyMjg5YtW5Keng7Al19+SaNGjejQoQOpqans3r2befPmsWLFircO1Rw3bhxffvklFy9exMfHh/bt2/Ptt98yfPhwzp7N/KH8Zn02bdpEv379GDRoEFevXuXbb7/l66+/JjAwUONnxMbG8tVXX3HkyBFOnjxJ4cKFadSoEbGxqnetNBkyZAiBgYFs2rSJvXv3cujQIc6dO6dU5uuvv+bYsWOsXr2ay5cv07p1axo0aKDoUOzduzdJSUn8/fffXLlyhV9++UWRTfXm50yePJkzZ85gb29Ps2bNFMfKlStXqF+/Pp999hmXL19mzZo1HD16VOn7+fLLL3n69CmHDh1iw4YN/Pnnn4SGhr53PSGzA6569eqUKlWKs2fPsnv3bp4/f06bNm00rnP58mWioqIoW1a1Uaavr0+HDh2UOn0XL15Mly5dPiguyHx0sampKd9++63Ke4MGDSIlJYUNGzIzdmrWrMnNmzcVGW2BgYFUrVqVWrVqqXSeVahQAWNjY8Wy8uXL8+jRIx4+fPjBMf4TOlrauFjYc+OF8ufeCH2Ix3s2YCu4+3HrRbDau7J5ITUlhQe371KsTCml5cXLlOT2ddVsBHXS09N5+TIREzPTdxfOBbraOhSxc+PMoyCl5WceBVHMQX32ip62LslpKUrLktJS8LX3QOfVD67LIXcpYueGr31mZ5mTuQ0V3Ytx8mHO/7BXR9vGGm0Lc1KDsu7Kk5pG6u276Hp5vPd29CtVIPncBUhOfrVhHbR0dCBF+YdJRkoKugVzbyi0jrY2HtbOKkNFrj67R2Fb9T8iboc9wtrYnJJOmUPrzA1NKO/my8V8lLn5b5eSksKtGzcpV1H5CVjlKlbg6uUrate5duUq5SpWUFpWPqACN64HkZr6cT9409LS2L9nH4kvE/ErUfyjtqFJamoqT+8/omAJH6XlBUv48OjW/ffaRsj9Rzy6dR9336xhnmmpqejqKXcM6unpEXzz3j8P+h10tLRxs3RUGU4WFPoAL5sC77WNSh7FuRH6kIhsmU6NfSsRl/SS4w/U7//clJaayouHT3HzUx5O6+pXiGd3354Ft2bsbBYN+oXNkxfx+Ebu74OPlXkudOJqtnPhlWf3KGyrPmPx9bmwxBvnwnJuRfMsi11HSxtXSwduhiq3h26GBivd3Hibiu7F8lV7SFdbh4I2Bbj4RPk7vfj0Fj726m+a3Qh9iK2JBWVcvAGwMDSlkkdxzj66oSgT9PwBBW0KKK5zDqbWlHHx4dzjG2q3mZMy20euSvEAnH18Az9H9dd7PR1dlakpklJT8LF3V7SPKnkU59rzB/Sr0ob1X05gQZvhtC9d7/9uGKOWlla+fP2/yvvbIv+HTp8+zcqVK6lduzbx8fFMnTqVgwcPEhCQOf+Gl5cXR48eZd68eVSvXp3g4GBKly6t6JTw8PBQbGvFihW8fPmSpUuXKjqoZs6cSdOmTfnll19wcHDQGMf48eMVmTZdu3Zl+PDh3L17Fy+vzB+Cn3/+OYGBgYq5zVq3bq20/sKFC3F0dOT69esUK5Y5v8W8efMoUaIEffv2ZePGjYwaNYpy5dTf7X/t66+/VnTKDBs2jICAAH788Ufq188cGtOvXz++/vprRfnJkyfTuXNnxdM6Bg4cyMmTJ5k8ebJi2F12tWrVUvp73rx5WFlZcfjwYcUcWW8TFxfHggULWLp0KXXrZmaNLFmyBBeXrB9jd+/eZdWqVTx+/Bhn58yL+uDBg9m9ezeLFi1i4sSJBAcH06pVK4oXz2y0v/6u3zRq1CiVz9i0aRNt2rTht99+o3379oqHFBQuXJgZM2ZQvXp15syZw4MHD9i/fz9nzpxRHC9//fUXhQsXfmcd3zRnzhz8/f2VJv5fuHAhrq6u3Lp1iyJFiqis8+DBA3R0dBSZZNl17dqVKlWqMH36dM6dO0d0dDSNGzdWzGH2vm7duqXIOszO2dkZCwsLbt3K7AioXLkyenp6HDp0iHbt2nHo0CGqV6+Ov78/0dHR3L59m8KFC3Po0CE6duyotK0CBQoo6vX6McpvSkpKIinbkDYDAwOVch/KxMAIHW1tYhMTlJbHJiVgbmisYa0s5gbG+Np7sOxc3g8ZeS02Jpb09HQsLC2UlptbWhIdGfVe29i1YStJiYlUqF753YVzgYWhKbraOioN8IiEGKxdzdWuc/rRdZr4VubI/UvcevEIbzs3GvkEoKeji6WhKeEJMRy8cw5LIzNmthyEFlro6uiw6erfrLiw91NUCy2LzNjTs91ISI+NRdtadZiZOjrurugUcCJh+ZqshUlJpN57gGHDOsQ/e56ZnVauNDoebqS/0JzB+k+ZGRijo61NTKJy9nV0YhwWhgXVrnM77DFzTmykd+XP0dPRRVdbh3OPb+Sr/0P/dtFRUaSlpWGd7ZiytrYiPCxC7Trh4eFUsLbKVt6atLQ0oqKiFDcR38fdO3fo8XV3kpOTMTIyYuJvP+PplbOduAkx8WSkp2NioTxtgYmFGXHvGKY8pfePJMTEkZ6WRo3PG1GmVlZ2ZsESvpzYcRB3n4JYOdhy/+otbpy7QkZ6Ro7Gr46p4noUr7Q8NjEeC4d3z19rbmiCn4MXC7MNG/OyKUAlj+JMOLAkR+N9X4lxCWSkp2NkrnwzxsjclIRo9Z0sxpam1PiyOfbuzqSlpnLzxCW2TFlMyyFdNM6Tlpdenwujs+27mMR4LAzV77s7YY+Ze2ITvSu3UpwLzz++ybJzuz9FyCpet4dikrK3h+IxM3h3dra5gQm+9h4sPZt/zuXmBsboaOsQle0aFfUyDisjM7Xr3Ah9yNTDqxlSo4Niv5wKvsafJ7coyhy5fwlzQxMmNeqJlpYWuto67Aw6wYYrh3KxNpksDE3QUdM+ikyI1dg+OvPoBo18Ajh6/zK3wx5RxM6VBj4V0dPRxcLQlIiEGJzMbCntbM3+22cZvnMuLhZ29K3aBh1t7Tw7JoWQzrNPZPv27ZiampKamkpKSgrNmzfnjz/+4Pr16yQmJio6S15LTk6mdOnMITM9e/akVatWnD9/nnr16tGiRQsqVcpsWAUFBVGyZEmlzK7KlSuTnp7OzZs339p5VqJEVsqzg4MDxsbGSp05Dg4OnD6dlb4eHBzMuHHjOHXqFGFhYYqMs+DgYEXnmZWVFQsWLKB+/fpUqlRJZYL494kDUHQuvV6WmJhITEwM5ubmBAUF0b17d6VtVK5cmenT1c93AhAaGspPP/3EwYMHef78OWlpaSQkJBAcrHnS1DfdvXuX5ORkRQcnZDbivb29FX+fP3+ejIwMlY6lpKQkbGxsAOjbty89e/Zk79691KlTh1atWinVH1D7GUFBmdku586d486dO6xYsUJRJiMjg/T0dO7fv8+tW7fQ1dXF399f8X6hQoU++Kmo586dIzAwUCUr7vV3oa7z7OXLlxgYGGi8G1GiRAkKFy7M+vXrCQwMpFOnTujpqR9m809kZGQoYjA2NqZ8+fKKzrPDhw8zZMgQdHV1qVy5MocOHcLAwID79++rdLAaGRkBKA1dftOkSZMYM2aM0rJRo0ZBacscrxOAlhZkvMdvpfJufrxMSeLKWyaxzzPZj42MDN7n3tWJwCNsWraW/qOHYZ6tA+5Ty8i2E7S0tMhA/Y5ZcnYX1sbmzP1sKGhlNiR33zhJe/96pGVknj9LORemU5n6TP17NUHPH1DAwo6+VVoTXqYhS3Oh80avnD/G7T5X/B0356/XFctW8j0PODKzztKehKg8CCBh8UqMO7XFYtIoMtLSSHv0hJSzF9Bxfb+MlX8ie+haaGnYS+Bsbksn/4Zsvvo3V57dwdLQjC9K1+Xrck346/TWXI/1/0n260NGhupp4e3lM/ei1nudObK4ubuzaOUS4mLjOHQwkAmjx/HHn7NzvANNbWwZ8K5wu4zqR3JiMo9v32f/6q1YO9hSvHLmDbCGX7Vi6/xVzBw0HrS0sHawpXT1ilw4fDLHY9dE9f+O5vPemwLci/EyJVEpc8lAV4+vyzVixfk9xOfhJPSg5th7ywFp5WiHlWPW/JyOBd2Ii4jmwp6j+bLzTEHNbnrbubCjfwO2XP2bK8/uYmloRtvSdehcrjELTm/L1TDfSiXg9/v/X96t6Kv20J0cD+mfUmlLqFn2mquFPd9UbMaai/s5/+QW1kbmdC7XiJ6VPmPmscxpfoo5etG6RC3mndjMrbBHOJnZ0K1CMyJfxrL20oHcrg6Ayjnhbe3WZed2Y21sxqyWg9DSgsiXsey5eYp2pesqfl9qaWkR+TKWqX+vIj0jg9thj7AxsaBtydrSeSbyjHSefSI1a9Zkzpw56Onp4ezsrOg0uH8/M5V/x44dikyX115nsTRs2JCHDx+yY8cO9u/fT+3atenduzeTJ09W6ijI7l0plW92XGhpaal0ZGhpaSlOYJA5b5Wnpyfz58/H2dmZ9PR0PDw8SH49TOeVv//+Gx0dHZ4+fUp8fDzm5urvOmiKQ9OyN2NR16B+W307d+7MixcvmDZtGu7u7hgYGBAQEKASuyaaLmhvSk9PR0dHh3PnzqGjo6P03utOqG7dulG/fn127NjB3r17mTRpElOmTKFPnz5v3fab38G3335L3759Vcq4ublx86b6IXBvxv96fo43l70eFvpmXV5nL2b3eoL/7GxtbUlISCA5OVltVhhAly5dmDVrFtevX1fqmP0QRYoU4ejRo2o/5+nTp8TExChl2tWsWZM1a9Zw7do1Xr58qehYrF69OoGBgejr62NoaEjFispzTUREZGZDaHrIxfDhwxk4cKDSMgMDA4bt/mcPAYlPeklaejpm2bLMTPWNlZ6qpEkFt6KcfRyk6JzJD8zMM+eFyZ5lFhMdjbmV5VvXPXnoGAt+n813IwdTzL9k7gX5DtGJcaSmp2FtrHw+szIyIzJBfaZCcloKvwQuZ/LhlVgbmROeEE3TolWIT35J9MvMbICu5Zuy9+ZpdgQdB+BexFMM9QwYUr09y87tfq8fqB8i5fI1Yh+8MQTm1bw82ubmpMVk1UPbzJSM9xnWrqeHftlSvFQzd116WDhxv88GfX20DA3IiInFuGsn0sPVZxrlhNikBNLS07EwUu74Nzc0UclGe61p0SrcDgtm543MffCIUJLOJPNj3S6su3yQaA3rifdnYWmJjo4O4eHhSssjIyOxtlGf4WhjY0N4tmMlMjISHR0dlSzWd9HT08PFNXOomk9RX4KuB7Fu1RqGjnz3Db73ZWxugpa2tkqWWXxMLKbvaAdZ2Wdm0Tm4ORMXHcuhDbsUnWcm5ma0G9SdlOQUXsbFY2Zlwf5VW7Gys8mx2DWJe3U9Ms+WqWRmaExM4ruvR5U8inMq+LrS9cjOxApbE0t6Vsp6aurrNs7MloMYvXeB2knTc5KhqTFa2tokRCv/334ZG4+x+ftPDeDg5cKtk/njSbbZZZ0Llfdd5rkwXu06mefCR+y8cQLIOhf+UPdr1l8O/OTnwnjF8afcHjIzeL/2UEV3P84+yl/toZikBNLS01SyzCyMTFWy0V5rVaImQc8fsOnVgzgeRj4j8UQyPzfuyYrze4h8GUv70vU4dPc8+26fUZQx0NWnd+XPWHfpYI63Jd4UnRhPWnoa1kbK5zlLIzMiX6rPuk1OS+G3QyuZ+vdqrIzMiUiIpolv5cz20avjMyIhmtT0dNLf+L0SHPkcGxMLdLV1SE3P3/OP5hTtD7xZJHKXzHn2iZiYmFCoUCHc3d2VOoaKFi2KgYEBwcHBFCpUSOnl6po1J4GdnR2dO3dm+fLlTJs2jT///FOx/sWLF5UmjD927Bja2tpqs4M+Vnh4OFeuXGHIkCFUqFABV1dXHjx4oFLu+PHj/Prrr2zbtg1zc/N3dgp9DF9fX44eVZ589/jx4/j6+mpc58iRI/Tt25dGjRrh5+eHgYHBWye/z65QoULo6elx8mTWnd7IyEjF8ECA0qVLk5aWRmhoqMq+fPNJYq6urvTo0YONGzcyaNAg5s+fr/RZ6j7DxydzDhV/f3+uXbumsv1ChQqhr6+Pj48PqampXLiQ9cjtO3fuEBUVpfj7dWfQm0+2fPPhAW9+joeHh8rnaJq/rlSpUkDmgwY0ad++PVeuXKFYsWIULVpUY7m3+eKLL4iLi2PevHkq702ePBk9PT1atWqlWFazZk1u377NypUrqVKliqJjs3r16hw6dIhDhw4REBCAoaGh0rauXr2Knp4efn6qjzyHzI4yc3NzpVdODNtMy0jncXQo3nZuSsu97d14EBGiYa1MhWxcsDO14uTD/POgAABdPT08Chfk6nnlHxlXz1+mcFFvDWtlZpzNnzKTnt/3p1SFMrkd5lulpqdx60UwZV2VzzNlXXy4+vzt896kpafzIj6K9IwMahcqy/EHVxUNWUNdfZXO+fT0dLS03p6R89GSkkh/EZ71CnlOenQMur5vXC90dNAtXJDUew/euTn9MqVAV5eU0+c0F0pOJiMmFi0jI/R8vUm5lHvHZ1p6Og8inlLMUXlIfDFHL26HPVa7joGunlLjHFD8/X88rUeO0tPTo4iPN2dOnVFafvbUaYppmHvMr3gxzp5Svsly5uRpfIr6ovtPJ2PPyFC5afRP6erq4uzpyt3LyvP+3L1yE9ciH5bhlpqiOqebnr4e5taWpKelc/30RbzL5uycbeqkZaQTHPVMMSfja7727u+ctLuwrSv2plYqc5o9iw1n3L5FTDywRPG6HHKHWy+CmXhgCZFqngKZ03R0dbFzd+bRdeUM7UfX7+JY8P2fYBr2KARjS/VD7fJa5rkwRMO5UP28bvq6eqrXozw8F6ZlpPMo6rnKA3S87dy4H/H0resWsn3dHvo084e+r9T0NO6GP6Gks/J0KqWcC3Mj29xurxno6ql0fqW/6hDUeqNMutoyWrm+7zLbR48o46o832OZAt5ce/b2+R7T0tMJe9U+qlnIn5MPrynqevXZfQpY2Cpl87pY2hEWH/1/03Em8h/JPMtjZmZmDB48mAEDBpCenk6VKlWIiYnh+PHjmJqa8tVXX/HTTz9RpkwZ/Pz8SEpKYvv27YqOog4dOjBq1Ci++uorRo8ezYsXL+jTpw+dOnV665DND2VpaYm1tTVz587F0dGRhw8fKuZCey02NpZOnTrRp08fGjZsiJubG2XLlqVJkyYq86X9E0OGDKFNmzb4+/tTu3Zttm3bxsaNG9m/f7/GdQoVKsSyZcsoW7YsMTExDBkyRDEs732YmprStWtXhgwZgo2NDQ4ODowcOVLpKUtFihShQ4cOfPnll0yZMoXSpUsTFhbGwYMHKV68OI0aNaJ///40bNiQIkWKEBkZycGDB1U6/caOHav0Gba2trRo0QLInBOuYsWK9O7dm2+++QYTExOCgoIUD3fw8fGhTp06dO/eXZHpOGjQIIyMjBR3do2MjKhYsSI///wzHh4ehIWF8cMPPyjF0Lt3b+bPn0+7du0YMmQItra23Llzh9WrVzN//nyVzDrI7JTz9/fn6NGjio607KysrAgJCflHwzUDAgLo168fQ4YMITk5mRYtWpCSksLy5cuZPn0606ZNU+p4rlSpEgYGBvzxxx+MHDlSsbxcuXJER0ezYcMGhgwZovI5R44coWrVqh90nOSUQ3fO06FMfR5FPedBRAgBHsWxMjLj2IPLADTxrYyFkQkrzivPi1XB3Y8HESE8iw1Xt9k81eCzpsz7bQaeRQpSyNebQzv3ER4aRq3G9QBYu3A5kWERfDs0M6vyROAR/vztDzr07EJBnyJERWQ+6lzfQB/jtzyAJDetvXSQkbW/4mboQ649v0/TopWxN7Niy9UjAHSv2BxbE0smvprHx8XCHl8HD4Ke38fMwJg2JWvjaePExINZ8/wcf3iFNiVrcSvskWLYZtcKTTj24IpKh05uSTr4N4b1a5Me+oK00DAMG9QmIzmZ5DNZnfDGX7UjPSqaxC07ldbVr1SelEtXyYhXzQLQ9fUGLUh//gJtO1uMWjYh7XkoySc+Luv0fe26eZIeFVtyP+Ipd8IeU7NgGWyMLThwO/MBNG1K1sbKyIx5JzcDcOHJLbqUb0rtQmW5HHIHSyMzOvrX527YY6JeZmYC6GhrU8A888aDrrYOVkbmuFk6kJiaTGhcZK7W50MZ6RngYpGVMetsbkthWxdiEuN5noexftGhHeN+GoOPrw/FShRn68bNPH/2nBatWgIwd+ZsXoS+4MexowBo0aolG9eu54+p02nasjlXL19h+5ZtjJ4wVrHNlJQUHty7/+rfqbx48YLbN29hZGykyDSbN2sOFSsFYO/gQEJCPPv37OfCuQtMmfF7jtcxoHFNNs5ahrOXG65FPDl34BjRYRGUrZP5xLn9q7YSExnFZ72+BOD03r+xsLHC1jmzvRZ88x7Htx+gfP3qim0+vvOAmIgoHN1diI2M4tD6XWRkZFC5aR3VAHLBgdtn6VyuMQ8jn3E/4ilVPEtiZWzOkfuZN0Oa+1XF0siMJWeVzw2VPYpzP/wpT2OUb1SmpqepLHuZnDl/aPblualU3UrsX7ABOw9nHL1cuf73WWIjovGrkflQixMb9hIfFUOdrpnD3C/tO46ZrSXWzg6kpaZy6+Ql7p67ToOeXyi2mZaaSsTTF6/+nUZcVAwvgkPQM9DH0iH3MwWz233zBN9WbMn9iBDuhD2mRkF/bIwtOHg782ZH65K1sDIyU8ydlXkubEKtQmW4EnIXSyMzOvjX427YE8W58FM7dPc8Hcs0IPhVe6iSR3GsjM04dv9Ve6hoZSwMTVlxXjn7uaJ7MR5EhBCipj2ko6WNo3nm/tDV0sHC0JQCFnYkpSZ/kie/brl2hP5V23In/DE3Q4Op710eWxNLdt/IvHneqUwDbIzNmXZkLZD5YKLelVvRwLsiF57cwsrYjG7lm3LrRTARr+YZO/MoiOZ+Vbkf/pSbL4JxMrelg389zjy6/knaEusuBzK8ViduhgZz/fl9mhStjIOZNduuZyY7dCvfFFsTS34OXAaAi4UdPq+eEGpmYMznJWriYe3Mz4HLFdvceu0ILYtV47vKrdh09TAFLOxpX7oem64ezvX6CKGJdJ7lA+PGjcPe3p5JkyZx7949LC0t8ff3Z8SIEUDmkwqHDx/OgwcPMDIyomrVqqxevRrInNNpz5499OvXj3LlymFsbEyrVq2YOnVqjsaoo6PDmjVr6Nu3L8WKFcPb25sZM2ZQo0YNRZl+/fphYmKimGTez8+PX375hR49elCpUiWVYakfq0WLFkyfPp3ffvuNvn374unpyaJFi5RiyW7hwoV0796d0qVL4+bmxsSJExk8ePAHfe5vv/1GXFwczZo1w8zMjEGDBhEdrXyRXbRoEePHj2fQoEE8efIEGxsbAgICaNSoEZD5pK/evXvz+PFjzM3NadCgAb//rtyA//nnn+nXrx+3b9+mZMmSbN26VTE8sUSJEhw+fJiRI0dStWpVMjIyKFiwIG3btlWsv3TpUrp27Uq1atVwdHRk0qRJXLt2TSmzauHChXTp0oWyZcvi7e3Nr7/+Sr169RTvOzs7c+zYMYYNG0b9+vVJSkrC3d2dBg0aKHUYZte9e3cWL1781qe9WlpavvvLfodp06ZRokQJ5syZw48//oiWlhb+/v5s3ryZpk2bKpV9PSTz8OHDSseInp4eAQEBHDhwQO2DJlatWqUyp9mncuHpLYz1DanvnfmY7pDYcOad3KKYjNXc0ASrbOnxhrr6lHQqxMZ82qioWKMycbGxbFmxjqiISFzc3Rg0fgS2DpkPmIiKiCT8jYnkA3fuIy0tjaUz57N0ZlZ2ZpW6Neg+OOczWt/HwTvnMDcw4auyjbAxMed+eAjDts/meVzm0DIbY3McTLPmF9TR1qZtydq4WTqQmp7GhSe36LVxMs9is4aiLT2b+UO4W4Wm2JlYEvUyjuMPrjD/1KebaytpXyBa+noYfdEKLWMj0h4EE/fHn/DGAzG0rSwh2wTl2va26BbyIm6GahYogJaRIYbNG6FtaUlGQgIpFy7zcusuSM/dITSngq9hqm9EC7/qWBqZ8jg6lMmHVxCekHm+tjQ0xcY4a9jfkfuXMNQ1oE6RcrQrXY+E5ESuh95nzcWsGzJWRmZMaNhD8Xdj30o09q1E0PMHSp2h+YGPnTszW2YNKe9bJfPm1c6gE0zIw1hr16tDdHQ0i/9aSHhYOJ4Fvfht+hQcX00FEB4WzvNnzxXlnQs489v0KfwxdTob123A1s6W/oMHUKN21vk67EUYX3f4SvH3qmUrWbVsJaX8SzPzz9kARIRHMO6nMYSHhWNiakrBwgWZMuN3lSd/5oRiAWVIiI3n8MbdxEXFYO/qRIdhPbG0yxyaGhsVTXRYVgdmRnoG+1dvI+pFONra2lg52FKnXTPK1M56MEpqcgoH1+4gMjQMfQMDCpcuSsteX2Jk8u4HyOSEc49vYqJvRGPfSpgbmhASE8asYxsUT8+0MDTF2lg5+8pQV5/SBYqw9tLBTxLjxyhcvjiJ8Qmc3XaI+OhYbJwdaNqvE+Y2lgAkRMcRG57VxktLTePY2j3ER8Wgq6eHdQF7GvfthEeJrKzd+KhY1o6drfj74p5jXNxzDOciHrQc2vVTVU3hVPB1TPWNae5XTXEunHJ4pcZz4dH7lzDS1Vc5F669+GnmzFLnwpNbmOgbUt+nAhYGJpntoRObldtDao6/kk6F2HjlkNptWhiZMrRm1kOiahcuS+3CZbkd9oiZR9fnVlUUjt6/jJmBMW1L1sba2JyHkc8Yu28RL14NV7YyMsPWxFJR/uCdcxjpGdDYtxJdyjcmPjmRyyF3WPLGgxDWXjpIBtDBvx7WxhbEJMZz5tF1lp9XnVIhNxy6ex5zQxO+LNsAa2NzHkSEMHznHMUNG2sTC+zNstpH2lratC5ZC1eLzPbRxae36btpKs/faB+9iI9i6I5Z9Kr0GX+1Hk5YfBQbrxxm9cV9n6RO+cX/85Mt8yOtjPeZzEkIkesOHTpEzZo1iYyMzJEOptceP36Mq6urYr683JSYmIi3tzerV69WevDBv82OHTsYMmQIly9f/uDhQf23TMudoPLItOb9OfUgfw17yAkVPIpRbXavvA4jR/3dazZRvQbldRg5ynL2FDqtyptO7NyyrN0oKs/q8e6C/yLHes/lRWzuzWWXF+zMrFl1/tM89fZTaedfj54bfsvrMHLcnFZDmPEqS+e/om/VNny5auy7C/6LLG33E/0253zGZ16a3mIAzRcNe3fBf5EtX/9Crbl5c5Mytxzs8Udeh/DRTuezqVheK++uflqb/zrJPBPiP+bgwYPExcVRvHhxQkJCGDp0KB4eHlSrVi3XP9vQ0JClS5d+0Hxy+VF8fDyLFi365/PqCCGEEEIIIYT415NfhkL8x6SkpDBixAju3buHmZkZlSpVYsWKFf9onrEPUb169XcXyufatGmT1yEIIYQQQggh/o/JsM38RTrPhMgnatSoofKUo49Rv3596tevnwMRCSGEEEIIIYQQQvPM30IIIYQQQgghhBBC/J+TzDMhhBBCCCGEEEKIfERbhm3mK5J5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECIf0UKGbeYnknkmhBBCCCGEEEIIIYQG0nkmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQIh+Rp23mL5J5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECIf0ZJhm/mKZJ4JIYQQQgghhBBCCKGBdJ4JIYQQQgghhBBCCKGBDNsUQgghhBBCCCGEyEdk2Gb+IplnQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIHOeCSGEEEIIIYQQQuQj2sicZ/mJZJ4JIYQQQgghhBBCCKGBVkZGRkZeByGEEEIIIYQQQgghMl19eievQ1CrmHOhvA4hT8iwTSGEyEG3Q4PzOoQcVdjeLd9euP+JYs6FiA0NzeswcpSZvf1/8vh7GvXf2k/Olva8iI3I6zBylJ2ZNZVn9cjrMHLUsd5zOf3wWl6HkaPKu/sRFRud12HkOEszC2LOnMvrMHKUebkyxAY/yuswcpSZmyvRfy3L6zBylEW3TsQ+fZrXYeQoM2dnHoT/t+rkYeOc1yF8NC0tGbaZn8iwTSGEEEIIIYQQQgghNJDOMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBD5iLYM28xXJPNMCCGEEEIIIYQQQggNpPNMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRD4iT9vMXyTzTAghhBBCCCGEEEIIDaTzTAghhBBCCCGEEEIIDWTYphBCCCGEEEIIIUQ+ooUM28xPJPNMCCGEEEIIIYQQQggNpPNMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRD6irSW5TvmJ7A0hhBBCCCGEEEIIITSQzjMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQ+YiWljxtMz+RzDMhhBBCCCGEEEIIITSQzjMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQ+Yi2DNvMVyTzTAghhBBCCCGEEEIIDaTzTPwnHDp0CC0tLaKiovI6lBzn4eHBtGnTPnr9Bw8eoKWlxcWLF3MsJiGEEEIIIYQQ4v+FDNsU/xrHjx+natWq1K1bl927d+d1OELkqh2btrJx1ToiwsNx8/Dgm749KVayuNqyEWHhLJg1jzs3b/P08ROaft6C7n17feKIle3evJ0tazYSGR6Bq4cbX3/XnaIliqktGxkeweLZf3Hv9h1CHj+l0WfN6PJdd6UyB3fvY9Yv01TWXbVnE/r6+rlRBTIyMvhz0SI2bd1KbGwsfkWLMmzgQAp6er51vQOHDjH3r794/PQpLs7O9OrenZrVqqktu2jZMmb9+SftWrdmUN++iuXhERH8MWcOJ8+cITYuDv+SJRnSvz9urq45WkfI+WPt4f0HrFiwhDs3bxP67Dnf9OlJ8zaf5Xjcr21ev4k1y1cRHh6Oh6cH3w3oS4nSJTWWv3j+ArOnzeTB/QfY2trwRaf2NPushdqyB/fuZ9yPY6hcrQrjf5ukWL5lwya2btzMs6fPAPDw8uTLrp2pUKlijtVr47oNrFq2gvCwcDy8POk3qD8lS5fSWP7CufP88fsMHty7j42dLR06daDF51nf+72791gwdz43b9zgWcgz+g7sR5v2XyhtY9P6jWxev5GQkBAAPL286NytCwGVA3KsXh+jpFMh2peuh4+9G7Ymlny/cw5H7l/K05g+xP6tu9ixbgvREZEUcHelY88ueBcvqrbsmaMnObBtN8H3HpCSkoKLuystO7WlRNnSuRbf+nXrWb5sGeFh4Xh6eTFg0ABKl9b8eefPnWfa79O4f+8etna2dOrUic8+b6VU5uCBg8ybO48njx9TwMWFnr16UKNmTcX7F86fZ/my5dwIukFYWBi/Tv6V6jVqKN5PTU1l7uw5HD92nCdPnmBqakq58uXo3ec77OzscqTeGRkZzN+4gU2BB4mNj8evYCGGdv6agi4uGtfZFHiQnUeOcPfxIwB8PD3p3aYtfgULKcqs37+PDQf2E/IiDAAvlwJ0bfkZlUuWypG4s9fhz2VL2bRjJ7Fxsfj5+DCsT18Keni8db0DR/5m7uLFPA4JwcXJiV5fd6FmlSqK9+MTEpi7eDGBx44SGRWFd6FCDOrVCz9vH0WZ0b/+yvZ9e5W2W8zHh8V/zMzxOs4//jebL10gNikRPydnhtRpSEHb9zsO9gZd44ftm6hWqAiTW7ZRLI9PTmLe0cMcun2DyIQEitg7MqhWPYo6Oedo/K/r8OeSJWzavj2zPeHry7B+/d7dnjh8mLmLFmW1J7p2pWbVqor3m37xBSHPn6us17p5c4b176+yfMKUKWzavp2BvXvT/vPP/1Gdtm3YzLqVa4gID8fd04Me/b6jeKkSGstfvnCReTNm8/D+A2xsbWnd4QuatGymeH9I7/5cvqB6Xi8fUIFxU37O/MyNW9ixaSvPQzKvve6eHnTo8iXlAir8o7rkZ1rIsM38RDLPxL/GwoUL6dOnD0ePHiU4ODivwxE5ICUlJa9DyJf+PnCI+TPm0KZTO2YsmINfyWKMHjKC0OehasunpKRgbmlBmy/b41nI6xNHq+rYwb9ZNGs+rTq2ZfL8GfiWKMaEYaN48Y74W3Voi0dBzQ1JYxNj/tqwTOmVWx1nAEtWrmTlmjUMHTCAJfPnY2NtTe8BA4hPSNC4zuWrVxkxejSN6tdn1aJFNKpfn+9/+omr166plL0WFMSmbdsoXLCg0vKMjAwGjxjBk5AQpkyaxIqFC3F0dKTXgAG8fPkyR+uYG8daUmISjk5OfPVtV6ysrXM03uwO7jvArN9n0PHrTsxfuoASpUoybMAQnj9T/TEBEPL0KcMHDKVEqZLMX7qADp078ceU6Rw+eEil7LOQZ8yZMZsSpVQ74uzs7fmmVw/mLpnP3CXzKV3Wnx+GDOf+vfs5Uq8De/czY8o0vuzSmYUrllCydEkG9x3Is2fP1JZ/+uQpQ/oNomTpkixcsYQvv/6KaZN/59CBQEWZpMREnF2c6fFdL2xsbNRux87ejh7f9eKvpYv4a+ki/MuWYfigody7ey9H6vWxjPQMuBP+mKl/r87TOD7GyUNHWT53Ec3bt2LcnCl4F/flt5HjCQt9obb8zSvXKFamJIPHj2TcrN/wLVmMqT9N4sGd3NkH+/bu4/cpU/m6y9csXbGMUqVLMaBv/7cca08Y0K8/pUqXYumKZXT+ujNTJk/h4IGDijJXLl/mhxEjadioIctXraBho4aM+H4EV69eVZR5+TKRwoULM3joELWfk5iYyM0bN+nSrQtLly/j599+ITj4EYMHDsqxui/dvo2Vu3Yx5KvOLB47HhtLC777eSLxbznPngu6Tr2ASswZ+QMLR4/B0caW7375mdCICEUZe2trvmv7BUvGjWfJuPGULerH4KlTuPv4cY7F/tqSNWtYuWEDQ7/7jiUzZ2Vep4YNe/t16vp1RowfT6M6dVg1dx6N6tTh+/HjuBoUpCgzfuoUTp0/x9hh37P6z/lUKFOGXkOHEhoWprStSuXKsXvNWsVr+oSJOV7HpadPsOrsKYbUacDijl2wMTGlz9oVxCcnvXPdkOgoZhzaTykX1RtPE3bv4NSDe4xu1JyVnbtTwcOT3mtXEBobk+N1WLJ6NSvXrWNo374smTs3cz8NGfL2/XTtGiPGjqVR3bqs+usvGtWty/djxnD1+nVFmaVz57J7wwbFa9bkyQDUfqMj+rVDR49yLSgIO1vbf1yfQ/sPMnf6LNp91ZHZi+dTrGQJfhg0jFAN195nT0P4YdBwipUswezF8/niyw7M+f0PjgQeVpT5cdJYVm3boHjNW74QbR1tqtbKqoudvR1den7DHwvn8sfCuZQsU5rRw37gQQ5de4V4F+k8E/8K8fHxrF27lp49e9KkSRMWL178znWOHTtG9erVMTY2xsrKivr16xMZGQnA7t27qVKlCpaWltjY2NCkSRPu3r2rWPf1UMeNGzdSs2ZNjI2NKVmyJCdOnHjvz8jIyODXX3/Fy8sLIyMjSpYsyfr1698ac2hoKE2bNsXIyAhPT09WrFihUiY6Opru3btjb2+Pubk5tWrV4tKl978Dn5aWRteuXfH09MTIyAhvb2+mT5+eI+ssWrQIX19fDA0N8fHxYfbs2Yr3Xn+na9eupUaNGhgaGrJ8+XLS09MZO3YsLi4uGBgYUKpUKaXMwvfZF+Hh4bRr1w4XFxeMjY0pXrw4q1atUrw/b948ChQoQHp6ulK8zZo146uvvlL8vW3bNsqUKYOhoSFeXl6MGTOG1NTU9/5uc8rmNRuo27gB9Zs2wtXDne59e2Frb8fOTdvUlndwcuTbfr2p3aAuxiYmnzhaVdvWbaJWo3rUaVwfF3c3unzXHRt7W/Zs3am2vL2jA137fEuN+rXfEb8WVtbWSq/ckpGRwaq1a/n6yy+pVb06hby8GDNyJIlJSezet0/jeqvWraNC2bJ83akTHu7ufN2pE+XLlGHlunVK5RISEvhx7FhGDh2KmZmZ0nvBjx5x5do1vh80CD9fXzzc3Ph+4EBevnzJnv37c7SeuXGsFfH1pkvv7lSvUxM9fb0cjTe7davW0KhZYxo3b4q7pwffDeyLvYM9WzdsUlt+68Yt2Ds68N3Avrh7etC4eVMaNm3M2hXKnTJpaWlM+Gksnbt3wamAk8p2KlWtTMXKAbi6ueHq5ka3nt0xMjbi+lXVTtKPsXrFKpo0b0rTFs3w8PSg36AB2DvYs3n9RrXlN2/YhIOjA/0GDcDD04OmLZrRuFkTVi1fqSjj61eU3v36UKd+XY37pUq1qgRUqYSbuxtu7m5827tHZr2uXFVb/lM5GXyN+ae2cvjexTyN42Ps2rCN6g1qU6NhXQq4udCxZ1ds7Gw4sG2P2vIde3alSZuWeHkXxrGAM226dMSxgBMXTp7NlfhWrVhJs+bNaN6iBZ6engwcNBAHBwc2rN+gtvzGDRtxdHRk4KCBeHp60rxFC5o2a8qK5csVZVavWk35CuXp/HVnPDw86Px1Z8qVL8fqlVn/zypVrkSPXj2pWaumuo/B1NSUP2bPpE7durh7uFO8eHEGDxnMjaAbGjv2PkRGRgardu/m6+bNqVWuPIVcXRn9bU8Sk5PZc/y4xvXG9/qO1nXr4u3ugYdzAUZ2+4aM9AzOXMv6P1LNvwyVS5XG3ckJdycnerVpi7GhIVfv3P7HcavUYdNGvm7XnlpVq1LI05MxQ4aSmJTI7oMHNa63auMGKpQpw9ft2uPh5sbX7dpTvnRpVm7MPL8kJiVx8MgR+n7zDf4lSuBaoADffvkVBRydWL9tq9K29PT0sLW2VrwszM1zvI6rz52mc8Uq1CziQ0E7e0Y1bEZiagp7rr/9vJSWns5POzbzTeVqFLCwUnovMSWFwFtB9KleG39Xd1ytrOleuTrOFpZsuHgux+uwav16vu7YkVrVqmXup++/JzExkd1vuaavWr8+sz3RoUPmfurQgfL+/qzckPV/08rSUun7P3riBC7OzpQpqXzTJ/TFC36dPp1xI0eiq6Pzj+u0cfU66jdtRMNmjXHzcKdn/++ws7dn+6atastv37QVewd7evb/DjcPdxo2a0y9Jg3ZsHKtooy5uTnWNtaK1/kz5zA0MKRareqKMhWrVKJ8pYq4uLni4ubK1z26YWhkxI1r19V9rBA5TjrPxL/CmjVr8Pb2xtvbm44dO7Jo0SIyMjI0lr948SK1a9fGz8+PEydOcPToUZo2bUpaWhqQ2Rk3cOBAzpw5w4EDB9DW1qZly5YqnSsjR45k8ODBXLx4kSJFitCuXTtFZ8q7PuOHH35g0aJFzJkzh2vXrjFgwAA6duzI4cOH0aRz5848ePCAgwcPsn79embPnk1oaFYGSEZGBo0bN+bZs2fs3LmTc+fO4e/vT+3atYl4467n26Snp+Pi4sLatWu5fv06P/30EyNGjGDt2rX/aJ358+czcuRIJkyYQFBQEBMnTuTHH39kyZIlStsaNmwYffv2JSgoiPr16zN9+nSmTJnC5MmTuXz5MvXr16dZs2bcvq3cyHzbvkhMTKRMmTJs376dq1ev0r17dzp16sSpU6cAaN26NWFhYQQGZmVhREZGsmfPHjp06ADAnj176NixI3379uX69evMmzePxYsXM2HChPf6XnNKSkoKd27donT5MkrLS5crw40c+mGem1JSUrh76w6lsg0xKlnWn5tXgzSs9X4SX77k2y86803rL5k4fDT3bt9990of6UlICOEREVQsV06xTF9fH/9Spbh8VXOD/fLVq1R4Yx2AiuXLq6zzy++/UzkggAply6ps43VGpsEbWXU6Ojro6upy8fLlj6qPOv+FY+3WjVuUrVBeaXnZ8uW4qqGz5/qVa5Qtr7x/ylUsz82gG0od5UsXLMbSypLGzZq8M460tDQO7t1P4stE/Ir5fURNlGXW6yblKirXq1zFCly9fEXtOteuXKVcReVhK+UDKnDjetBH3wBIS0tj/559mfUqoX4Yr3i71JQUHty+S3F/5R+yxcqU4vb1G++1jfT0dBITXmJqZprj8aWkpHDjxg0qZD92KlbgioZzzZUrVyifrXzFgIoEvXGsXbl8hQoVspWpWFHjNt9XXFwcWlpamJr+8+/iyYtQwqOjqFg8a5iZvp4e/j6+XL596723k5iURGpaKuYaYkpLT2fvieO8TEqieOHC/zjuNz159uo6VTbrHK6vr49/iRJcvq75HH75+nUqlFE+71csW1axTlpaGmnp6ejrKWd2GxjoczHbtezcpUvUbf05n3X+ivFTpxDx6gZyTnkaHUV4fBwVPbIynfV1dfF3defy07dn8i04fgRLIxOal1AdgpyWkU5aRgb6usozGBno6nLpyaOcCf4VRXvijeu9vr4+/iVLcllNVvprl69fV2kjVCxXTuM6KSkp7Ny3j2YNG6L1xhMa09PT+WnSJDq1bfvOYaLvIyUlhds3b1GmvHJsZcqX1XijJejqdZXyZSuU49aNmxqvUXu27aR6nZoYGhmpfT8tLY1D+w6SlJiIbw5ce/MrLS2tfPn6fyVznol/hQULFtCxY0cAGjRoQFxcHAcOHKBOnTpqy//666+ULVtWKfPJzy/rxNqqlfLcHAsWLMDe3p7r169TrFjWvEyDBw+mcePGAIwZMwY/Pz/u3LmDj4/PWz8jPj6eqVOncvDgQQICMueK8fLy4ujRo8ybN4/q1auT3a1bt9i1axcnT55UNDoXLFiAr6+vokxgYCBXrlwhNDQUAwMDACZPnszmzZtZv3493bt3V9ludnp6eowZM0bxt6enJ8ePH2ft2rW0adPmo9cZN24cU6ZM4bPPPlOUed0J9WZ2V//+/RVlXsc/bNgwvvgic+6dX375hcDAQKZNm8asWbMU5d62LwoUKMDgwYMVZfv06cPu3btZt24dFSpUwNramgYNGrBy5Upq164NwLp167C2tlb8PWHCBL7//ntFrF5eXowbN46hQ4cyatQole8kKSmJpCTlIQOv98k/ERMdTXpaOlZWyndJraysOB+Rs43S3BAbHUN6ejoWVpZKyy2tLIn6B41qFzdXvvt+AO6eHiQkJLBjw1ZG9hnClL/+wNmlwD+MWlV4eDgANtmy22ysrAh5S9ZDeESE6jrW1oS/0bm9Z/9+bty6xdI//1S7DQ93d5wcHZk5bx4jhgzByNCQFWvWEB4RQdiruHLCv/1Yi46KJj0tDSvrbPHbWBF5Uv3NhIjwcKxslDulrKytSEtLIzoqChtbW65cuszOrTv4a/nCt37+vTt36d2tJ8nJyRgZGTH2lwl4eP3zHybRUVGkpaVhne04sra2IjxMfb3Cw8OpkO17sLa2Ji0tjaioKGw/YJjO3Tt36PF1d0W9Jv72M545UK//R7ExsaSnp2Oe7XxoYWVBdGTUe21j1/qtJCUmUr5apRyPL0pxrCkP47WxtuZkmPpzTXh4uMo5ztraRulYCw8Px9omWxkba8V59WMkJSUxa+ZM6jeonyOdZ+FR0ZlxWVgoLbe2MOdZtqGJbzNzzWrsrKwp76c8p+edR8F0GT2K5JQUjAwN+a3/ALwKaJ5L7WOEvzpP21gq/9+3sbJSOw+WYr3ISGysVNcJf3WNNjE2pkTRovy1Yjmebm5YW1mxJzCQqzdu4Fog63pbqXw56lSvhqO9A0+fPWPu4sX0GDqE5bNm59iUCuHxcQBYZ8t0tjY2ISQmWuN6lx4/YuuViyz/6hu175voG1Dc2YWFJ47gaWOLtbEJe4OucS3kCa5WOZvV/vr6r+47f+t+iohQv5803Cw/dPQocXFxNG3QQGn5klWr0NHR4Ytsv30+VkxUZtvBMts1x9LaikgNbYfIiAi15TOvvdHY2Cqfg25cD+LBvfsMGKE6rPv+3Xv0795bcY36adJY3D09/lmlhHhPknkm8r2bN29y+vRpReeKrq4ubdu2ZeFCzT9sXmeFaXL37l3at2+Pl5cX5ubmeL66E5N9LrUSJbLuSDo5ZQ7deZ0J9rbPuH79OomJidStWxdTU1PFa+nSpUrDQ98UFBSErq4uZd+4y+Tj44OlpaXi73PnzhEXF4eNjY3Sdu/fv69xu+rMnTuXsmXLYmdnh6mpKfPnz3/nPHJvW+fFixc8evSIrl27KsU1fvx4lbjerF9MTAxPnz6lcuXKSmUqV65MUJByltLb9kVaWhoTJkygRIkSiu9m7969SnXq0KEDGzZsUHR4rVixgi+++AKdV+nr586dY+zYsUrxf/PNN4SEhJCgZk6KSZMmYWFhofSaNGmSSrmPlu2uTgYZ/6o7PdljzSAD/sGkp0WK+lC9bi08CnlRtEQxBo36HmcXZ3ZtVD+88EPt2ruXqvXqKV6v74Rmjzgj4z32Q/a6v7HOs+fPmTJjBuN+/FFjZ6uuri6/jh9P8KNH1GrUiCp163LuwgUqVayIdg4Mt3hnvP/yYy3zUNMcf/bJd19nMWtpaZEQn8DEUeMZPGIoFm+ce9VxdXfjr2ULmb1gLs0/a87PYyfk6LwrKv+HMt5aLTXlX9XrA//fubm7s2jlEuYtmk+Lz1syYfS4HJvL7f+V2n35HvvlROARNi5bQ++Rg1RuSOQklf9C7zrPaTzWlAplK6Pm/+p7Sk1N5YcRI8lIz2DIsKEftY1dx45SrevXilfqq1ECqud4dUvVW7p9G3tPHOfX/gOUMoUB3J2cWTFhEgtHj6VV7TqMnjeXe0/+2Zxnuw4coGrTJoqX4jr1lmuOZuqOySxjh30PGdCw3RdUatSQ1Zs30aBWLXS0s3461qtRkyoVKlLI05NqAQHMmDiR4MePOfoq6/9j7L5+herTflG8Ul+NCFHZT2Ro3EvxyUn8tHMzI+o3xtLYWONnjWnUjIwMaDxnOlWmTmLN+TPU9y2mVMePsWvfPqo2bKh4adxPapapULdvNRTdsnMnlSpUUJrTLOjmTVZv2MDoYcNy/Lquei19R3nVE4365WRmnXl4eeJT1FflPRc3V2Yv+Yvpf86mScvmTB7/Mw/vP/ig2IX4WJJ5JvK9BQsWkJqaSoE37nZlZGSgp6dHZGSkStYEgJGGFN/XmjZtiqurK/Pnz8fZ2Zn09HSKFStGcnKyUjk9vax5YV6f3F8P7XzbZ7wus2PHDqW4QXN2UsZbLiJvbtfJyYlDhw6pvGf5jh96r61du5YBAwYwZcoUAgICMDMz47ffflMMcfyYdV7Xd/78+SpDNXSy/dg3UTNP0vs0/N62L6ZMmcLvv//OtGnTKF68OCYmJvTv319pfzZt2pT09HR27NhBuXLlOHLkCFOnTlW8n56ezpgxY5Sy4l4zNDRUWTZ8+HAGDhyotMzAwIDgaM13Ed+HuYUF2jraRGa7sxgVGYVlLv54yilmFuZoa2sTle3uY3RkdI7Gr62tTSGfIoQ8eZoj26tWpQrFimY9/S751dDJsIgIpaydiKgolYygN9lYq2ZXRERGYv3qPHXj5k0iIiPp1K2b4v20tDQuXLrE2o0bOX7gADo6Ovh6e7Ny0SLi4uJISUnBysqKr7p3p6iPDznl336sWVhaoK2jQ0S4cvyREZEq2WivWdvYqJSPioxCR0cHcwsLHty7z7OQEEYM/l7xfsar80ztSjVYunYFBV5lOurp6VHANTOTxNvXhxtBN9iwZj2DhqufAP3962WJjo6OynEUGRmpks3zmo2NDeHZv4fISHR0dLCwtFC7jiZ6enq4vHqqq09RX4KuB7Fu1RqGjvz+HWuK7MzMzdDW1iY62/kwJioac6u375eTh47y19RZ9PlhMMWyDfvMKZYajrWIdx5r2Y/NiFfHmqWiTET2MhERbz13apKamsqI74fz9OlTZs+Z/dFZZ9X8y1DsjSdiJr/q0AiPjsb2jXZkZEwMNhbv/j+zbMd2Fm3dwqzvR1DYzU3lfT1dXVwdHQEo6uXF9Xt3Wb17NyO6dlMp+951CAig2BvXAMV1KjIC2zceAhIRFaW45qiTmWWmfL6IiIpUWsfF2Zk/p07l5cuXxCckYGtjw/Dx43B+VSd1bG1scLJ3IPjJkw+u22tVCxXBzymr3Zz8qpMzPD4eW9Os+UEjExJUstFeexIZSUh0NIM2rlEsS3/Vxg6YPIF1XXviYmWNi5U189p9ycvkZOKTk7A1NWPE1o04W1h+dPwA1SpXVm5PvGqLhkVk20+RkW/fT9my1kFzGyTk2TNOnz/Pr2+MEgG4cOUKEVFRNGnbVrEsLT2daXPmsGr9erat/vCHsJhbqm87REdqvvZaWVsTqfHaqzxPXmJiIof2B/Jlt85qt6Wnp6e4Dhfx9eZm0A02r91Av2E59zCR/ET7X3Qz8/+BdJ6JfC01NZWlS5cyZcoU6tWrp/Req1atWLFiBd99953KeiVKlODAgQNKQw1fCw8PJygoiHnz5lH11eOejx49+sGxve0zihYtmtmREhysdoimOr6+vqSmpnL27FnKl88cVnTz5k2ioqIUZfz9/Xn27Bm6urp4vOMx5JocOXKESpUq0atXL8Wyd2WtvWsdBwcHChQowL179xRziL0Pc3NznJ2dOXr0KNWqVVMsP378uOI7eB9HjhyhefPmiqG96enp3L59W2nIq5GREZ999hkrVqzgzp07FClShDJvzPnh7+/PzZs3KVSokMr21TEwMMiRYZrZ6enpUahIES6eOU+lalmPjb945jwVquT8sJ2cpqenR8Eihbh09gIVqmbFe/ncBcpVrphjn5ORkcH9O/dyLFXfxNgYkzfuUGdkZGBjbc2pM2fwKVIEyJzn4/zFi/Tp0UPjdkoUK8aps2fp8EZD9dSZM5R4NRy8XNmyrM42D+DYSZNwd3Pjqw4dVDqbX/9QDH70iKCbN+nZ7eN/eGX3XzjWivgU4ezpM1StkXX+OHf6DJXfqM+bihb348SRY0rLzp46jbevD7q6uri5u7FwpfL+WTB3PgkJCfQZ2A97B3uN8WRkZJCSkqzx/feVWS9vzpw6Q/WaNZTirFK9qtp1/IoX4/gR5evYmZOn8Snqi67uP2zqZWTIk5E/kq6eHh6FC3L1/CXKVsk6/109fwn/AM3XuBOBR5g/ZRa9hg+gVAXVeRFzip6eHj4+Ppw+dZoaNbMm7j996jTVqldTu07x4sU5ku1YO3XyFL5vHGvFSxTn1KnTtOvQPqvMqVMUfyOD/H287jh7FPyI2fPmvDMb9G1MjIwweeOmZ0ZGBjYWlpy6egXvV+2plNRUzt8Iok/bdm/d1rLt21iwZTN/DPueol7v94TrjIysDruPpfE6de48PoUy51NLSUnh/OXL9OmmfrgiQImiRTl17jwdWn2uWHbq3DlKFFWdN8rIyAgjIyNiYmM5cfYsfb/RvN2omGievwjFVkPH6/sw0TfARD+rbZWRkYGNiSmnHtzD2yGz4y4lLY3zjx7yXbVaarfhbmPLqs7K05jMOXqIhORkBtWqh4O5cueokb4+Rvr6xCS+5OSDu/SprnnkynvVQdN+OnsWn8Jv7KdLl+jzlulWMvfTOTq0bq1YdursWUr4qe6nrbt3Y2VpSZVXU8W81qhuXcpnm9+uz9ChNKpbV2V45/vS09OjsHcRzp8+S+U3rknnz5wjoGpltev4FivKqWPKD107d/osRXy8Va5Rfx84REpKMrUb1H2/gOQaJT4h6TwT+dr27duJjIyka9euWGS7E/j555+zYMECtZ1nw4cPp3jx4vTq1YsePXqgr69PYGAgrVu3xtraGhsbG/7880+cnJwIDg7m++8//I762z7D1taWwYMHM2DAANLT06lSpQoxMTEcP34cU1NTpTnAXvP29qZBgwZ88803/Pnnn+jq6tK/f3+lDLc6deoQEBBAixYt+OWXX/D29ubp06fs3LmTFi1aKA2J1KRQoUIsXbqUPXv24OnpybJlyzhz5oxi6OrHrjN69Gj69u2Lubk5DRs2JCkpibNnzxIZGamSofWmIUOGMGrUKAoWLEipUqVYtGgRFy9eVPuk0bfFt2HDBo4fP46VlRVTp07l2bNnSp1nkDl0s2nTply7dk3R0fbaTz/9RJMmTXB1daV169Zoa2tz+fJlrly5wvjx4987lpzQom0rpo7/hUI+RfD182X31p28CA2lUYvMycsXz11AeFgYg34Ypljn3u07QOak+tFR0dy7fQddXT3cPN0/aewATVu3ZMakKRT0Loy3nw/7tu8m7PkL6jVtBMDy+YuJeBFO3xFZdwnv37mriD8mKpr7d+6iq6uHq0fmHf21S1ZS2NcbJxdnXiYksHPDNh7cucc3/XrmSh20tLRo16YNi5Yvx83VFVcXFxYtW4ahgQEN6mY16H4aPx57W1u+e9Wh9sXnn9O9Tx8Wr1hBjSpVOHT0KKfOnmXBq/n7TIyNKZTtx5ahoSGWFhZKy/cHBmJpaYmjgwN37t5lyowZVK9alYof0Kn8PnLjWEtJSeHRg4dA5oTp4S/CuHf7DoZGRjk+P13rdm2ZNHo83j4++BX3Y/vmrTx/HkrTz1oAMH/WXF68CGPE6B8AaPZZczav28isaX/QpHlTrl25xs6tO/hhXOa8hvoGBngWVN4/rydqf3P5/NnzqBBQEXsHexISEji47wCXzl/kl2mTc6ReX3Rox7ifxuDj60OxEsXZunEzz589p0WrlgDMnTmbF6Ev+HFsZtwtWrVk49r1/DF1Ok1bNufq5Sts37KN0RPGKraZkpKiGFaakpLKixcvuH3zFkbGRopMs3mz5lCxUgD2Dg4kJMSzf89+Lpy7wJQZv+dIvT6WkZ4BLhZ2ir+dzW0pbOtCTGI8z+Py9/x8DVs1Ze6vM/AsUohCRb0J3LGX8NAwajfJvCG4ZsFyIsPD6TG0H5DZcTbv1xl07NmFQr5FFFm8+gb6ufI05XYd2jP6p1H4+PpSvERxNm/cxPNnz/isVWYW9qyZs3gRGsrosZk3Cj9r9Rnr1q5j2tTfad6yBVcuX2Hrlq2Mm5B1nWz7xRf06P4tSxcvoVqN6vx96DCnT53mzwXzFWUSEhJ4/ChrGOPTJ0+5dfMW5hbmODo6kpqayvdDv+fmzRtM+X0q6WlphL+ai8zcwkIpG/1jaGlp0a5BAxZt3YKrgyOujo4s3roFQ3196lfKunkwau5s7Kys+a5t5tQhS7dvY+76dYzv9R1OtnaEvbrBaWxoiPGrLPVZa1ZTqWQpHGxsSEh8yd4TJzgfdJ0ZQ3M2e1NLS4t2LT9j0aqVuBUogGuBAixatRJDA0Ma1MrqWPrpl58zr1Ovst6+aPkZ3QcOYPHq1dSoVIlDx49z6vx5Fvw+TbHOiTNnyCADdxdXHj19yow//8Td1ZVm9TM7XBJevuTPpUupVbUqttbWPH3+jNkLF2JpYUHNyupvXnxsHb8oU57Fp47hamWNm5U1i04dw1BXj/pFs+aZG7VjC/ZmZvSuVgsDXV0K2inf6DAzyNw3by4/cT+z3eFmZc3jqEhmHDqAu7UNTYvlbKanlpYW7T7/nEUrVuDm4pLZnli+HENDQxq8MXfzTxMnYm9nx3evOii/aNWK7v36sXjVKmpUrsyhY8c4de4cC2bMUNp+eno623bvpkn9+ipP0rS0sMAy2+8nXR0dbKyt8VCTMfm+PvuiNb+NnUQRX298i/mxc8t2Qp8/p3GLpgAsnDOfsBcvGPrTCACatGzG1g2bmTd9Fg2bNyHo6jX2bNvJ92N+UNn27u07qVS1CuZqMkAXzp1PuYoVsHOw52VCAof2HeTyhUuMn/rLR9dFiA8hnWciX1uwYAF16tRR6TiDzMyziRMncv78eZX3ihQpwt69exkxYgTly5fHyMiIChUq0K5dO7S1tVm9ejV9+/alWLFieHt7M2PGDGrUqPFBsb3tMyBzAn17e3smTZrEvXv3sLS0xN/fnxEjRmjc5qJFi+jWrRvVq1fHwcGB8ePH8+OPPyre19LSYufOnYwcOZIuXbrw4sULHB0dqVatGg4ODu8Vd48ePbh48SJt27bNvKC3a0evXr3YtWvXP1qnW7duGBsb89tvvzF06FBMTEwoXrw4/fv3f2s8ffv2JSYmhkGDBhEaGkrRokXZunUrhT/gqVQ//vgj9+/fp379+hgbG9O9e3datGhBdLTyZLK1atXC2tqamzdv0r59e6X36tevz/bt2xk7diy//vqr4o58txzM9Hlf1WrXIDYmhtWLlxMRHoG7pwejf52AvWPmPo4MD+fF81Cldfp2yepEunPzNof3HcTe0YGF65Z/0tgBKteqRmxMDOuWriIyIgI3D3dG/DwGe8fMRmtkeARhoS+U1hn8TV/Fv+/eusORA4ewc7Bn7upFAMTHxTF36h9ERURibGKCZ6GCjJv+C4V9vXOtHl+1b09SUhI/T5lCbFwcxXx9mTl1qtId5WfPnyul1JcsXpwJo0Yx56+/mPvXX7gUKMCkMWMopuZO8duEhYfz+8yZhL8a5tG4QQO6qel0/6dy41iLCAtXKrNx9To2rl5HsVIl+PmPKTkaf626tYmJjmHpwsVEhIXj4eXJz7//iqNTZoZCeHg4oW9MyOzk7Myk339l9rQ/2LJ+Eza2tvQZ1I/qtWp80OdGRkQyccx4IsLCMTE1watQQX6ZNpmyFcq9e+X3ULteHaKjo1n810LCw8LxLOjFb9On4PhqvsfwsHCeP8uql3MBZ36bPoU/pk5n47oN2NrZ0n/wAGrUzsomCnsRxtcdso6hVctWsmrZSkr5l2bmn5kPvokIj2DcT2MIDwvHxNSUgoULMmXG7ypP/vzUfOzcmdky6yZM3yqZmRg7g04w4eASTavlCxVrVCEuJpbNK9YSFRGJi7sbg8ePxPZVFmNURCThoVkT1B/csZe0tDSWzJzPkplZnU1V6tbk2yF9cjy+uvXqEh0dzcK/FhAWFoZXwYL8Pv13xdyi4WFh2Y61Avw+fRrTpv7O+nXrsbWzZdDgQdSqndVZU6JkCcZNGM+8OXOZN3ceLi4uTJg0UemBTEHXg+jVI+s8Me1Vx03jJo35afQoQkNDOfL33wB0aq98s2v23DmUKaucTfMxvmzSlKTkZH5ZvIjYhHj8Chbkj2HDlTLUnoWFo6WVNQfW+v37SElNZdiMaUrb+qblZ3R/lckVERPDqLmzCYuKwtTYmEKurswY+j0Viuf8U2u/atuWpOQkfv5jBrGxsRTz8WXmzz8rX6dCQ9F+ow4l/fyYMPIH5ixexNwli3FxcmbSyB8o9sYNx7iEeGYuWEBoWBjmZmbUqlKV3l2+VmQJaWtrc+f+PXbs30dsXBy21taULVmKiSN/UPrsnPBl+QCSUlP4df9uYhNf4udUgD9at1fKUHseG/3Bw9vikpKY/fdBQuNiMTc0olYRH3pWraHSAZUTvvrii8z2xLRpmfvJ15eZv/2mup/emG+tZLFiTPjpJ+YsWMDchQtxcXZm0k8/KQ0JBTh97hzPnj+nWcOGOR63JjXq1CI2OoYVC5dmth28PBg/+WccXl17I7K1HRydnRg/ZRLzps9m28YtWNva0HNAH6rWVB6d8zj4EdcuXWHitN/Ufm5URCS/jZ1IRHjEq7agF+On/qLyJM//kn/THLT/D7QyMt41vZ8QQoj3dTv07Q9e+LcpbO/G1ad38jqMHFfMuRCxoaHvLvgvYmZv/588/p5G/bf2k7OlPS9i1T8t7d/KzsyayrM0D2f+NzrWey6nH17L6zByVHl3P6JiNT+h8N/K0syCmDPn8jqMHGVergyxwY/yOowcZebmSvRfy/I6jBxl0a0TsU9zZu7V/MLM2ZkH4f+tOnnYOOd1CB/tUaTmJ7znJVcrzfMf/pfJ0zaFEEIIIYQQQgghhNBAhm0KIYQQQgghhBBC5CNayLDN/EQyz4QQQgghhBBCCCGE0EA6z4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEELkIx/6FFmRuyTzTAghhBBCCCGEEEIIDaTzTAghhBBCCCGEEEIIDWTYphBCCCGEEEIIIUQ+oiXDNvMVyTwTQgghhBBCCCGEEEID6TwTQgghhBBCCCGEEEIDGbYphBBCCCGEEEIIkY/I0zbzF8k8E0IIIYQQQgghhBBCA+k8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCJGPaCHDNvMTyTwTQgghhBBCCCGEEEID6TwTQgghhBBCCCGEEEIDGbYphBBCCCGEEEIIkY9oydM28xXJPBNCCCGEEEIIIYQQQgPpPBNCCCGEEEIIIYQQuWL27Nl4enpiaGhImTJlOHLkyFvLHz58mDJlymBoaIiXlxdz585VKbNhwwaKFi2KgYEBRYsWZdOmTbkVPiCdZ0IIIYQQQgghhBD5ih46+fL1odasWUP//v0ZOXIkFy5coGrVqjRs2JDg4GC15e/fv0+jRo2oWrUqFy5cYMSIEfTt25cNGzYoypw4cYK2bdvSqVMnLl26RKdOnWjTpg2nTp366O/7XaTzTAghhBBCCCGEEELkuKlTp9K1a1e6deuGr68v06ZNw9XVlTlz5qgtP3fuXNzc3Jg2bRq+vr5069aNLl26MHnyZEWZadOmUbduXYYPH46Pjw/Dhw+ndu3aTJs2LdfqIZ1nQgghhBBCCCGEEOKdkpKSiImJUXolJSWpLZucnMy5c+eoV6+e0vJ69epx/PhxteucOHFCpXz9+vU5e/YsKSkpby2jaZs5QZ62KYQQOaiwvVteh5DjijkXyusQcoWZvX1eh5Dj/ovHn7Plf28/2ZlZ53UIOe5Yb9W5SP7tyrv75XUIOc7SzCKvQ8gV5uXK5HUIOc7MzTWvQ8hxFt065XUIOc7M2TmvQ8hxHjb/vTr9W+lk5M+nbU6aNIkxY8YoLRs1ahSjR49WKRsWFkZaWhoODg5Kyx0cHHj27Jna7T979kxt+dTUVMLCwnByctJYRtM2c4J0ngkhRA46cOtMXoeQo2oXKcf9sCd5HUaO87QtwOYrh/M6jBzVonh1oleuy+swcpRF+9asOr83r8PIUe386/0n63T64bW8DiNHlXf3o/KsHnkdRo461nsuS8/szOswctyX5Rr9J4+/3w+vzuswctSA6l+w4/qxvA4jRzUuWpm1F/fndRg5qk2pOqy5sC+vw8hRbUvXzesQ/nOGDx/OwIEDlZYZGBi8dR0tLeWOwIyMDJVl7yqfffmHbvOfks4zIYQQQgghhBBCCPFOBgYG7+wse83W1hYdHR2VjLDQ0FCVzLHXHB0d1ZbX1dXFxsbmrWU0bTMnyJxnQgghhBBCCCGEEPlJenr+fH0AfX19ypQpw759yhmN+/bto1KlSmrXCQgIUCm/d+9eypYti56e3lvLaNpmTpDMMyGEEEIIIYQQQgiR4wYOHEinTp0oW7YsAQEB/PnnnwQHB9OjR+b0CMOHD+fJkycsXboUgB49ejBz5kwGDhzIN998w4kTJ1iwYAGrVq1SbLNfv35Uq1aNX375hebNm7Nlyxb279/P0aNHc60e0nkmhBBCCCGEEEIIIXJc27ZtCQ8PZ+zYsYSEhFCsWDF27tyJu7s7ACEhIQQHByvKe3p6snPnTgYMGMCsWbNwdnZmxowZtGrVSlGmUqVKrF69mh9++IEff/yRggULsmbNGipUqJBr9ZDOMyGEEEIIIYQQQoj85NUk+f8FvXr1olevXmrfW7x4scqy6tWrc/78+bdu8/PPP+fzzz/PifDei8x5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECI/+Q8N2/wvkMwzIYQQQgghhBBCCCE0kM4zIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEEPlJugzbzE8k80wIIYQQQgghhBBCCA2k80wIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFEfpKRntcRiDdI5pkQQgghhBBCCCGEEBpI55kQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKI/CRDnraZn0jmmRBCCCGEEEIIIYQQGkjnmRA56ObNm0yaNImkpKS8DkUIIYQQQgghhBA5QDrPhMghsbGxtGzZEk9PTwwMDHJsux4eHkybNu2j13/w4AFaWlpcvHgxx2ISQgghhBBCCJGL0jPy5+v/lMx5JnLF8ePHqVq1KnXr1mX37t0fvP7o0aPZvHnzv6rD56uvvqJbt2588cUXeR2K+Jc5vGMf+zfuJDoyCie3ArT+piOF/HzUlr1w/AxHdh3g8b2HpKak4OTmQuP2n1HUv4SizO/Dx3P76g2Vdf3KlqT3qCG5UodtG7ewfuUaIsLDcff0oEff3hQrVUJj+csXLvHnH7N5eP8BNra2tG7flsYtmymV2bRmPds3beXF81DMLS2oWqMaX/f4Bn0DfZXtrV66ksXz/qJF68/o0f+7HK/fayd2H+Lw1j3ERkbj4OpM085t8SxaWG3Z+0G32bV8Iy+ePCM5ORkrW2sq1K1G1aZ1FWXOBh5n3azFKuuOXzkLPX293KqGkoyMDOYfPsjmc2eJTXyJXwEXhjRqSkF7h/daf+/Vy/ywYS3VvH2Z/EUHtWUWHznM7IP7+KJCAAMbNM7J8NU6vfdvjm8/QGxUDPYuTjT48jPcfQqpLfvwxl32r9pC2NPnpCSlYGFnRdnalQloVEtRJi01jSNb9nLp79PEREZh62RPnXbNKVyqaK7X5bX/Yp3U2b91FzvWbSE6IpIC7q507NkF7+LqYzpz9CQHtu0m+N4DUlJScHF3pWWntpQoW/oTR/3hSjoVon3pevjYu2FrYsn3O+dw5P6lvA5LrbP7jnJyZyBxUTHYFXCkbscWuPkUfOd6j27dY9n4Wdi5OPLNxKxrz4XAE1w5coYXj58B4OjpQo02jSlQ0D3X6vA+/gvH3tVDp7m05xgJ0XFYOdtRuW1DnAqr/16f3LzPtimLVZa3HfMdVk52ANw7f50Lu44QHRpBeloaFvY2lKxbiSIBJXOzGkqO7TpI4ObdxERG4ehagBZd2+FVtIjasveu32L7svWEPg4hOTkZazsbAurVoHqzeooyJ/Ye5uyh4zwLfgKAS0F3GnVohXsRr09SH4BTe/7m6Lb9xEVFY+/iRMOvPsfDV9P5/A57V2zhxdPnpCQlY2lnTbk6VajUuJZSueM7DnJ63xGiwyIxNjfBr0Jp6rZr/snaEqf3/s3RbQeIi4rGzsWJhl+2ekud7rJ35RbCnj4jJSkFSztrytaurFqnnYGceV0ns8w61WnX7JPVSYjspPNM5IqFCxfSp08f/vrrL4KDg3Fzc8vrkHLdxo0b8zqEf52UlBT09P6/L4Bnj5xk/V/L+aJHZ7yKFuHo7oPMGv0bP876BWt7W5Xyd67dwKdUMZp1ao2xqQkn9h9mzrgpDJ08BteCHgB0H9Gf1NRUxTrxMXFM7DsC/8oVcqUOh/cHMm/6LHoP6odfiWLs3LyNHwZ/z5/LF2HvqNoB8+xpCD8OHk7Dpo0Y+tMIrl2+yqwp07GwtKRKzWoAHNyzn4Vz5zNw+FB8i/vxJPgRUyb8CsC3/Xorbe9m0A12bd2OZ6HcbfheOnaGbYvX0KJbe9x9CnFq398snDiDgb+PxsrORqW8voEBlRrWxNHdBX0DfR7cuMPGecvRNzSgQt1qinIGxoYMmT5Oad1P2TBceuwIq04c56cWn+FmY8vCvw/RZ9li1n3XH5N3ZNGGREUyY+9uSrlp/tF7/cljNp0/QyEHx5wOXa2rJ86xe+lGGndpg5u3F2f3H2P5z3PoPXkklrbWKuX1DfQpX68aDm4F0DPUJ/jGPbYvWI2egQFla1cG4ODa7Vw+eoam37TD1tmBu5eDWDP1L7qOGYCTp6vUKYecPHSU5XMX0bnPNxT28yVwxx5+Gzmen/+ajq29nUr5m1euUaxMSdp06YCxqQl/7znI1J8mMXrGz3jk8vngnzLSM+BO+GN23jjOxIY98jocja6fvMC+5Ztp0PlzXIt4cv7gcVb/9iff/vI9FrZWGtdLTHjJ1rkr8fQrTFx0rNJ7D4PuUDTAH5cinujq6XJi+0FW/TKX7j8Pw9zaMpdrpN5/4di7c+Yqx9fspmr7xjgWcuP632fZMWM5bUf3xszGUuN6X4zrg75h1rne0MxE8W8DEyP8G1XD0tEWbR0dHl65SeCSzRiZm+Dqp75jJCddOHqazQtX0ap7Jzx9CnF87yH+HPc7w2aMV3/dNTSgSqNaOLu7om9owL3rt1k/dwn6hvoE1KsBwN1rN/GvWgEPn0Lo6ukRuGkX88ZMYeiM8VjaaD6mc8qV4+fYtWQ9Tbq2xc27IGf3H2XZpFn0mfqj2vO5noEBFRpUx8HNGX0DAx7evMvW+avQM9CnXJ0qAFw6cpp9q7bQokdH3Ip4ER4SysY5ywBo9NXnn6hOG17VyYsz+4+y/OfZfDflB43XqAr1q+HoVgA9A32Cb95l61+r0TfQp+zrOh09w/5VW2jxbQdcX9Vp09zMOjX8qlWu10kIdWTYpshx8fHxrF27lp49e9KkSRMWL16s9P7ixYuxtLRUWrZ582a0tLQU748ZM4ZLly6hpaWFlpaWYhvBwcE0b94cU1NTzM3NadOmDc+fP1dsZ/To0ZQqVYply5bh4eGBhYUFX3zxBbGxWQ23pKQk+vbti729PYaGhlSpUoUzZ84o3j906BBaWlrs2bOH0qVLY2RkRK1atQgNDWXXrl34+vpibm5Ou3btSEhIUKxXo0YN+vfvr/h7+fLllC1bFjMzMxwdHWnfvj2hoaFv/e5CQ0Np2rQpRkZGeHp6smLFCpUy0dHRdO/eHXt7e8zNzalVqxaXLr3/3eq0tDS6du2Kp6cnRkZGeHt7M3369BxZZ9GiRfj6+mJoaIiPjw+zZ89WvPd6+OjatWupUaMGhoaGLF++nPT0dMaOHYuLiwsGBgaUKlVKKVvx9XobN26kZs2aGBsbU7JkSU6cOKEoEx4eTrt27XBxccHY2JjixYuzatUqxfvz5s2jQIECpKenK8XbrFkzvvrqK8Xf27Zto0yZMhgaGuLl5cWYMWOUOqFyw8HNu6hUtwaV69fEybUArb/phKWtDX/vOqC2fOtvOlGvVRM8ihTE3tmR5l+2xd7JkSunLyjKmJiZYmFlqXjduHgVfQN9/KuUz5U6bFyzjvpNGtKwWWPcPNzp0f877Ozt2b5pq9ryOzZvw97Bnh79v8PNw52GzRpTr3FD1q9aqygTdPUafsWLUbNebRydHClToRw16tbi1o1bStt6mfCSX8dMpN+wQZiameVK/V47sm0f5WpVoXydqji4ONHs67ZY2Fhxcu9hteULeLlRqkp5HF2dsba3xb9aRYqU9ON+0G2lclpoYWZlofT6VDIyMlh96jidq1anpq8fBe0dGNWiFYkpKey58vbzSlp6Oj9tXMc3NWpRwEq1cQyQkJzEjxvXMbJpC8wNDXOjCipO7AjEv2YAZWpVwq6AIw2/aoWFjRVn9x1VW97J05Xilcti7+qElZ0NJauWo2AJH4Jv3FWUuXTkNFVb1KNIaT+sHWwpV7cqBUv6cHzHQalTDtq1YRvVG9SmRsO6FHBzoWPPrtjY2XBg2x615Tv27EqTNi3x8i6MYwFn2nTpiGMBJy6cPPuJI/9wJ4OvMf/UVg7fu5jXobzVqV2HKFWjAqVrVsS2gAP1OrXE3MaS8weOvXW9XQvX4RfgT4FCHirvtejVibJ1q+DoXgBbZwcad2tLRnoGD67dVt3QJ/JfOPYu7zuOT5XS+FYtg5VTZtaZqZU51w+feet6RmYmGFuYKV7a2lk/Dwt4e+JZ2hcrJzss7K0pUTsAmwIOhNx5mNvVAeDw1j1UqF2VinWr4eDqTMuu7bG0sebY7kC15V283PGvWhFHtwJY29tStkYA3qWKce961rHVcUB3KjesRQFPNxxcnGjTqzMZGRncvnz9k9Tp+I4D+NcKoGztyti7ONKo8+eY21hxeu8RteWdPV0pUbksDq7OWNnbUKpqeQqV8OXhjTuKMo9u38fN24uSVcphZW9DoZK+FK9Uhqf3gj9RnQ4qXaMafZVZpzP71NfJ6VWd7F2dsLK3oaSiTlnXqEe37uNaxIsSSnUqy5NPVKd8IyMjf77+T0nnmchxa9aswdvbG29vbzp27MiiRYvI+ID/ZG3btmXQoEH4+fkREhJCSEgIbdu2JSMjgxYtWhAREcHhw4fZt28fd+/epW3btkrr3717l82bN7N9+3a2b9/O4cOH+fnnnxXvDx06lA0bNrBkyRLOnz9PoUKFqF+/PhEREUrbGT16NDNnzuT48eM8evSINm3aMG3aNFauXMmOHTvYt28ff/zxh8Z6JCcnM27cOC5dusTmzZu5f/8+nTt3fmvdO3fuzIMHDzh48CDr169n9uzZSh1uGRkZNG7cmGfPnrFz507OnTuHv78/tWvXVolfk/T0dFxcXFi7di3Xr1/np59+YsSIEaxdu/YfrTN//nxGjhzJhAkTCAoKYuLEifz4448sWbJEaVvDhg2jb9++BAUFUb9+faZPn86UKVOYPHkyly9fpn79+jRr1ozbt5Ub0SNHjmTw4MFcvHiRIkWK0K5dO0XHVmJiImXKlGH79u1cvXqV7t2706lTJ06dOgVA69atCQsLIzAwq7EVGRnJnj176NAhc5jZnj176NixI3379uX69evMmzePxYsXM2HChPf6Xj9GakoqwXfu41u6mNJy39LFuBf0fj8i0tPTSXyZiPEbd4qzO77vEGWqBWCQC50XKSkp3L55C//yZZWW+5cvS9DVa2rXCbp6TaV8mQpluX3jpmKf+pUszu2bt7h5PQiAkCdPOXPiFOUrKWfPzZoynfIBFfAvVyanqqRWakoqT+4FU7ik8hCeIiWL8vDmXQ1rKXtyL5iHt+6qDDdJTkxiUo/vmdB9KIsm/vFJG4ZPoyIJj4ujYsGsDAJ9XV38PTy4/PjtcSw4HIiliQnN/ctqLPPrzm1ULuxNea/cz1AASE1N5en9RxQsoTzsuWAJHx7duv9e2wi5/4hHt+7j/sZwk7TUVHSzZcnq6ekRfPPePw/6Hf6LdVInNSWFB7fvUtxfeThYsTKluH1ddRi6Ounp6SQmvMTUzDQ3Qvy/k5aaSsj9x3gW81Za7lXMm8e3H2hc79LhU0Q+D6PaZ/Xf63NSkpJJT0vHyNT4n4T70f4Lx15aaiovgkNwLap8rnUpWpBndx+9dd314+aydPBvbJu6mCc3NJ9TMjIyeBx0j6jnYTgV9siJsN8qNSWVx3cfUqSUn9Jy71J+PHij4+htHt97yIObdyjo562xTHJyEmlpaRibam5H5ZTU1FSe3ntEoRK+SssLlfTl0a33O/c+vf+IR7fu4eGbNWWEm3dBnt57xOM7DwCIeB7GrQvXKJKtfZkbUlNTCbn/iILZ61TCl+APukbdw+ONaTDcfbwIua+mTv5+GrYiRO6TYZsixy1YsICOHTsC0KBBA+Li4jhw4AB16tR5r/WNjIwwNTVFV1cXR8esYT779u3j8uXL3L9/H1fXzCEly5Ytw8/PjzNnzlCuXDkgswGzePFizF5loXTq1IkDBw4wYcIE4uPjmTNnDosXL6Zhw4ZAZqfPvn37WLBgAUOGZM3JMX78eCpXzhze0rVrV4YPH87du3fx8spMx//8888JDAxk2LBhauvRpUsXxb+9vLyYMWMG5cuXJy4uDlNT1cbVrVu32LVrFydPnqRChQqK79LXN+tiFBgYyJUrVwgNDVU8lGDy5Mls3ryZ9evX071793d+v3p6eowZM0bxt6enJ8ePH2ft2rW0adPmo9cZN24cU6ZM4bPPPlOUed0J9WZ2V//+/RVlXsc/bNgwxVxxv/zyC4GBgUybNo1Zs2Ypyg0ePJjGjTPnShozZgx+fn7cuXMHHx8fChQowODBgxVl+/Tpw+7du1m3bh0VKlTA2tqaBg0asHLlSmrXrg3AunXrsLa2Vvw9YcIEvv/+e0WsXl5ejBs3jqFDhzJq1CiV7yQpKUnlqaof+qCIuJhY0tPTMbNUzjQyt7QgJirqvbZxYPNOkpOSKFNF/ZDMB7fu8vThYzr2/eaDYntfMVHRpKelY2WtPNTBysqKiHD1HbqREZFYWWUrb21FWloa0VHR2NjaUKNOLaIjoxjUsx8ZGRmkpaXRpGUz2nZqr1jn0P6D3Ll1mxl/zcn5imWTEBtHeno6phbmSstNLcyJjYp567oTug8lPiaO9PQ06rRuSvk6VRXv2RVwpPV3nXF0K0BSQiJHdx5gzg+/0H/KT9g6vd+cY/9EeFwcANbZzknWJqaEREdpXO9S8EO2XjjH8h69NZbZe/UyN0NCWPzNpxuSlhATT0Z6OiYWylmIJhZmxEW/fT9N6f0jCTFxpKelUePzRpSpVUnxXsESvpzYcRB3n4JYOdhy/+otbpy7QsYnmDT3v1gndWJfnQ/NrSyVlltYWRAdGfVe29i1fitJiYmUr1bp3YXFOyXEZh57puqOPQ3nvYhnLwhcs51OP/ZBW0fnvT4ncM12zKws8PRTP49VbvsvHHuJcQlkpKdjZK7cAWRsbsqjmDi165hYmFGtU1Ps3JxJS03j1slLbPt9Cc0Gdca5iIeiXFJCIsuGTSE9JRUtbW2qtm+Ma9F3z3n3T8XHqm8jmVmaExsV/dZ1x3QbRFx0LOnpadRv25yKb0yVkN2OpeuxsLaiSMnc75RJiNHUljB7Z1vit54jM9sSaWnUbN1YMQQfoETlsiTExPHXT1PJIIP0tHTK161KtRb13rLFnJFVp/c/T7w2udcPWXXKdo0qXqks8TFxLBj1u6JO5epWpVrz3K+TEJpI55nIUTdv3uT06dOK+b90dXVp27YtCxcufO/OM02CgoJwdXVVdJwBFC1aFEtLS4KCghSdZx4eHoqOMwAnJydF9tbdu3dJSUlRdIpBZsdQ+fLlCQoKUvq8EiWyJjt3cHDA2NhY0XH2etnp06c1xnvhwgVGjx7NxYsXiYiIUAwZDA4OpmhR1Qlog4KC0NXVpWzZrCwOHx8fpSGu586dIy4uDhsb5XkeXr58yd2775f9AjB37lz++usvHj58yMuXL0lOTqZUqVIfvc6LFy949OgRXbt25ZtvsjppUlNTsbBQbvS8Wb+YmBiePn2qtD8AKleurDIU9c394eTkBGQOc/Xx8SEtLY2ff/6ZNWvW8OTJE0XHlolJViOyQ4cOdO/endmzZ2NgYMCKFSv44osv0HnVuD937hxnzpxRyjRLS0sjMTGRhIQEjI2V74hPmjRJqUMRYNSoUVRt/+GTob8esvxaRkbmUL53OXP4ODtWbqLHDwNUGpevHd97CGd3FzyK5HJDN3sdyFCp11vLZ7xenLn80vmLrF66gt6D+uHj58vTx0+YO30WVouW0eHrTrx4HsrcabOY+Puvah8gkFtUq5Txzj3Vc9xQkhITCb51n90rNmLrZE+pV0No3Yt4KU1S7O5TkBlDx3NsZyDNu+b8w0d2X77IpO1Zw2l/b98JUD3eMjIyNB6D8UlJ/LRpHSOatsDSWP2d+ufRUUzdvYMZHTtjoPvp5zVUiT0D3rWjuozqR3JiMo9v32f/6q1YO9hSvHLm+arhV63YOn8VMweNBy0trB1sKV29IhcOn8ydCqjxX6yTOh97PjwReISNy9YwYMz3WGTrBBH/kMr5XXU/QebNy82zllG1VQNsnOzfa9Mnth/g2okLdBzZG908ngT8v3Hsvf+53NLRFkvHrLlVHQu6Eh8ZzaW9x5U6z/QN9Wn9Yw9SkpJ5EnSP4+v2YGZnRQFvz1ypQXbZo8/IeEf7AvhuwvckJSbx8OZddixbj62TPf5VK6qUO7hpF+ePnqb3uKGfdhL67KfzDPX/p97UbcwAkhKTeHz7AXtXbsHG0Y4Sr87n96/d4vCm3TTp2haXwh5EPHvBzsXrMd2wi5qtGuZWLZSpax+9o05dR/cnOTGJR7cfsG/VFqyz1envTXsy61TInfBnYexasp5DlubU+FR1yg8y0t9dRnwy0nkmctSCBQtITU2lQIECimUZGRno6ekRGZmZbaKtra0yjDMlJeWd29Z0scy+PPsE9FpaWoqOq9efq9pAUt32m9vR0tJ663azi4+Pp169etSrV4/ly5djZ2dHcHAw9evXJzk5WWP91MX2pvT0dJycnDh06JDKe9nnkdNk7dq1DBgwgClTphAQEICZmRm//fabYojjx6zz+nuYP3++ImvuNZ1sd57f7NB67WP2x5ufO2XKFH7//XemTZtG8eLFMTExoX///krfddOmTUlPT2fHjh2UK1eOI0eOMHXqVMX76enpjBkzRikr7jVDNcMdhw8fzsCBA5WWGRgYcPThZZWympiaZ84tEpPtznZsdLTGzrDXzh45yfIZf9Ht+z74lFKflp+cmMTZIydp0iH3JlY1t7RAW0ebyGxZZlGRUSrZaK9ZWVsRGZG9fCQ6OjqYv7obu3T+ImrVr0vDZpmdkZ4FvUhMTGTGL1Np91UHbt+8RVRkJN91/VaxjfS0dK5evMzWjZvZFrhH5dj7J4zNTNHW1la5MxwXHYuppbmGtTJZO2T+OHFydyEuOoZ9a7cpOs+y09bWxqWgB2Ehz9W+/09V9fbFzyXrBkTyq2Gy4XGx2L5x0yEyIR5rDUNYnkRGEBIVxaBVyxXL0l+dvwLG/sS67/pxJ/Q5EfHxfPVnVlZgWkY6Fx4+ZN3pUxz9YTQ62jk/c4Sxucn/2Lvv6Ciqt4Hj3/Teey8kJJTQa+i9d+mCIKA0UVFBRQQFuyiiIIh06b33ANJ7T+iEHiC9l83u+0dgw7K7ATTt5/t8ztlzYObO7HN3JzOzd557LwaGhloZWWnJKVjbFvw9OTyZoMPN15PUpBT2rt6qbmiysrWh9wdvkZOdQ0ZqGjYOduxaukHngNWF7b9YJ11snpwPk+ITNJYnJyZh+4JxAI/sPcCfP03nnc8+pOJzXe/EP2dp8+TYe+68l56UopUJCZCdkcWDm3eIuXWP7QvyHqKqnoyP83X/D+gzdij+FfK7ZR3ZvIeDG3bR5+NhuPl6Fm1lCvBfOPbMrS0xMDQk47kss4yUNK1stIK4Bnhz9ajmfYyBoSF2rnnnBWcfDxJiYjm9dX+RN55Z2Ty5R3ouyyw1KUUrc+t5Tm55kzx4Prnubl+2XqvxbM+6bexatYlhX3yIp3/xTJJiaZt3L/H831RacopW5tbznp7P3X29SE1MJmLlZnVD0+4Vm6jcsJY6G83d14vsrGw2/LGERl1aaYxjV9jy66Q5MUhaUqrO88Sz8q9RXqQmpbBn1ZZn6rSZyg1qqbPR3Hy9yMnKYsPspTQs4joJoY80nolCo1AoWLhwIVOmTKFlS82U2m7durF48WJGjhyJi4sLKSkppKWlqRtSzpw5o1He1NSU3NxcjWXly5fn9u3b3LlzR519FhkZSVJSkkbXxoIEBQVhamrKgQMH6NMnr/tXTk4OJ06c0Bjs/9+6dOkSsbGxfPvtt+pYT5woeBDZcuXKoVAoOHHiBLVq5f2wvnz5MonPdN+rVq0aMTExGBsb4+/v/49i279/P+Hh4QwfPly97EVZay/axs3NDS8vL27cuKEeQ+xl2Nra4unpyYEDB2jYMD+l/tChQ+rP4GXs37+fTp06qbsLK5VKrl69qnFcWFhY0LVrVxYvXsy1a9coW7Ys1avnj5NVrVo1Ll++TFDQy43NZGZm9srdNJ9nbGKMb1AAUacvUKVuTfXyS2cuUKm2/jG8ju87xF/TZjPwwxGE1ayqt9zJA0dR5Cio1bie3jL/lomJCcEhZTl9/CT1GuV3Rzx9/CR16uvuvlKuYgWOHjyssezUsRMEh4ZgbJx3WcrKytS6MXra8K5SqahSvRozF83RWD/lq+/x8fOhx+u9C7XhDPK+K69AX66ei6Ri7fzP/Oq5KMrXfPkfTCqVitwc/ZNQqFQqHkTfwd3XS2+Zf8PKzExjBk2VSoWTtTVHb1wnxCPvx2tOroJT0dGMbK67a4SfszNLh72jsez3iF2kZ2fxQet2uNnZ4WBlrVXmy/Vr8Hd2pn+9hkXScAZ52c6eAT5cP3eJcs98L9fPXya0etgr7Uuh43syMTXBxNGeXEUukcfOUKGO/r+/wvJfrJMuxiYm+AeX4cKps9Son/8j98Kps1Srq/96cHjPfmZPmc7wT96nSm394++JV2dkbIxHgDc3L1whtGZ+9vfNC1coW137oY2ZhRlDvhmjsezkroPcirxK11EDsHfJn1jk8KYIDq7fSe+xb+MZWLIzsv8Xjj0jY2NcfD24E3mdgKr59z73om7gX1n/eF/Pi7sTg+ULGjxQqchV5BZcphAYmxjjXcaPK2cjqVQn/57oytmLVKj18ucplUqlde6LWLuVXas28dbno/EJKp4MOnhyPg/MO5+Xr1VFvfz6uUuE1qikf8PnqMgb5+6pnKxsDAx03TP924hfzNjYGI8AH66fv0T5Ws9eoy4RWuMVrlHP3R/lZGdrPUg3KKY6CaGPNJ6JQrNp0yYSEhIYNGiQVle91157jTlz5jBy5Ehq166NpaUln376Ke+88w7Hjh3TmpHT39+fmzdvcubMGby9vbGxsaF58+ZUqlSJvn37MnXqVBQKBcOHD6dRo0YaXQELYmVlxbBhw/joo49wdHTE19eX77//nvT0dAYNGlRYHwW+vr6Ympry66+/MnToUC5cuMCkSZMK3CYkJITWrVszZMgQ/vjjD4yNjXnvvfewsLBQl2nevDl169alc+fOfPfdd4SEhHD//n22bNlC586dX+pzCAoKYuHChWzfvp2AgAAWLVrE8ePHCQjQf/PwMttMnDiRUaNGYWtrS5s2bcjKyuLEiRMkJCRoZWg966OPPmLChAmUKVOGKlWqMG/ePM6cOaNzptGC4lu9ejWHDh3CwcGBn376iZiYGK1G1b59+9KhQwcuXryobmh76vPPP6d9+/b4+PjQvXt3DA0NOXfuHOfPn2fy5MkvHcuratq5DQt++h2/4EACQoM4uG0PCY/jaNAmbyy2dQuWkxiXwIDReeNGHd93iAU/z6L7kNcJCA1Sj8diamqKhZVm19JDO/dSuU51rG2LdhbKrj2788OkbwgODaFcxfJsXb+JRw8f0q5LBwDm/j6buNhYPhr/CQDtOndgw+p1zJo2gzYd2xF1IZLtm7by8cTP1PusXa8ua5etokzZIELL53XbXDh7HnXqh2NkZISllSX+gZrHrLmFOba2tlrLC0uDDi1Y/utcvAP98A0pw7Gdf5MYG0+dlo0A2Lp4DclxifQclTfe4aGte7B3ccTVK2/sxptR1/h74w7qtWmq3ufOFRvxLRuIs4crWemZHNyym/vRd+g8uI92AEXAwMCAXrXDmb9/Hz6OTvg6OTFv/z7MTUxoFZZ/Ezxh7SpcbWwZ0bwlZsYmlHHVHI/N5kl25tPlJkbGWmUsTEyws7DUWl7Y6rZrwprpi/AM9MWnbAAndx8kKTaeGs3rA7Br6QaSExLpOrw/AMd2/I2dkwPOnnlx3b58g0ObdlOrVSP1Pu9eiyY5PhF3P29SEhLZu2orKpWKeh3+3XAE/5/rpEubbh2Y+f00AsoGEVQ+hD2bdxD3KJZm7fMacpfP+YuEuDiGjnkXyGu8mPX9NF4f9iZB5cqS+CRzyNTMFEsdWc6liYWJGd52Lur/e9o6E+zsTXJmGg9TEwrYsnjVbtOY9b8vxiPQB+8gf07vOURSXALVmuU9HNmzfBMpCUl0HNoXA0NDXH08NLa3srXGyMRYY/nhTbvZt2ornYf3w87ZUZ2FY2puhqn5v3so9U/9F469Si3CiZi7Blc/T9zK+BD59wlS4pMo3yjv4dzRNTtJS0yh6Zt5Gfbndh3GxskeB09XlLm5XD1ylhunImk5NH8irlNb/8bFzws7FwdyFbncvnCVK4fP0qBv+2KpU6OOrVjyy2x8yvjjH1KGwzv3kRAbT3irxgBsWrSK5PgE+rybN2TIgS27cXBxwtUr73i7GXWFveu3U79tM/U+I9ZuZeuStbw++i0cXZ1JTsjLbDMzN8PMouhnhQ5v14zVvy3As4wvPsGBnNh9gKTYeGq1yDuf71iynuT4RF4bmTcG79Ht+7BzdsTlyfn81qXrHNy4izqtG6v3GVI9jEObI/Dw98Yn2J+4mMfsXr6R0BphxZKhFd6uKWumL8TryTXqxK68a1TNJ2O87ly6nuT4JLqN6K+7Tpevc3DTbmq3zr9GhVSryOEte/AI8MY7KK9OESs2EVq9eOpUapTQOKRCN2k8E4Vmzpw5NG/eXKvhDPIyz77++mtOnTpFtWrV+Ouvv/joo4/4448/aN68ORMnTtQY7L5bt26sWbOGJk2akJiYyLx58xgwYADr1q3jnXfeoWHDhhgaGtK6desCZ7zU5dtvv0WpVNKvXz9SUlKoUaMG27dv1xrA/N9wcXFh/vz5fPrpp0ybNo1q1arx448/0rFjxwK3mzdvHoMHD6ZRo0a4ubkxefJkxo8fr15vYGDAli1bGDduHG+++SaPHz/G3d2dhg0b4ub2cj9Ihw4dypkzZ+jZsycGBgb07t2b4cOHs3Xr1n+1zeDBg7G0tOSHH35gzJgxWFlZERYW9sKMvlGjRpGcnMwHH3zAo0ePKF++PBs2bCA4OLjA7Z41fvx4bt68SatWrbC0tOStt96ic+fOJCVppvo3bdoUR0dHLl++rM48fKpVq1Zs2rSJL7/8ku+//x4TExNCQ0MZPHjwS8fxT9RoUIe05BS2LFtLcnwiHn7eDJ/wEU5PUtmT4xNJeByrLn9gWwTK3FyWz1zA8pn5M5nWadqA/u/nd2F8eO8B1yOv8M6Xuie0KEyNmjchOTmZxfMWkhAXj1+gP5N+/Aa3JxN+xMfF8+hh/qyx7p4eTPrxG2ZNm86mNetxdHZi2Hsjqd8kP/uwzxv9MDAwYMEfc4l7HIudgz2169VlwFuF18j9qirXq0l6Shq7V20mOSEJd19PBn76jrqbW0pCEomx+d1RVSoV2xavJf5RLIZGhji5udCmb1dqPzNwcWZaOmtmLiIlMRlzSws8A3wY+uVH+AQX35Pw/vUakKXI4fstG0jJyKSCtze/9hugkaH2MCkRwxeMXVJaVKxbnfSUNPat2UZqYjKuPh70HTtMnfWSkphEUmx+44RKqWLXso0kPo7D0NAQBzdnmvfuSPVnBmNWZOcQsWIzCY9iMTUzI7hqeboM76/VYC11+nfqNK5PanIK6xavIDE+AW8/Xz6cPA5nt7zxsxLjE4h7lH8+jNi8g9zcXBb8NpsFv81WL6/foglvf/SO1v5Lk1AXP37rkv9gaVT97gBsiTrMVxEL9G1W7MrXqUp6ShoH1m4nNTEZF28Pen30FnbOecdeamKyxrH3Mk7uOkiuIpfV0+ZrLG/QpRUNu7UurNBfyX/h2AuqWZHMtHRObN5HelIKjp6utH2nLzZO9kBeN7qU+Pz7olxFLodX7SAtMRljExMcPF1o805f/MLyJ25QZOWwf8km0hLyyti7O9N0UDeCahb9LI4AVevXIj0llR0rNpCckISHrxdDPnsPxyf3SCkJSSQ81rzubl60mvhHjzE0MsLJ3YV2/V6jbsv8RpmDWyPIVShY8P0Mjfdq2bMjrXt1LvI6hYXnnc/3rt5KSkIybj4e9Pt4OPZP7iVSE5NIitM8n+9csp6EJ+dzRzcXWvbppH54AtCoa97fze7lG0mOT8LK1pqQ6mE079WhyOvztE4ZqU/q9OQa9frHw/OvUQnJJD13f7Rr6YZn6uRMi96dqNE8/xrVqGtrDAwM2L180zN1qkiznsVTJyF0MVA9P/iUEEKIf2z3leMlHUKhala2Jjdj75V0GIUuwNmLdef3lXQYhapzWCOSlqws6TAKlV2f7iw9taOkwyhUvau1/E/W6ditiyUdRqGq5VeBetOLb6bY4nBwxEwWHt9S0mEUuv412/4nj7+f9y0r6TAK1fuNerE58mBJh1Go2pWvx4ozu0o6jELVo0pzlp/eWdJhFKqeVVuUdAj/WMrd0nkPbuNdNMOLlHaSeSaEEEIIIYQQQghRmkieU6ny/6jDsBBCCCGEEEIIIYQQr0Yaz4QQQgghhBBCCCGE0EO6bQohhBBCCCGEEEKUJtJts1SRzDMhhBBCCCGEEEIIIfSQxjMhhBBCCCGEEEIIIfSQbptCCCGEEEIIIYQQpYlSWdIRiGdI5pkQQgghhBBCCCGEEHpI45kQQgghhBBCCCGEEHpIt00hhBBCCCGEEEKI0kRm2yxVJPNMCCGEEEIIIYQQQgg9pPFMCCGEEEIIIYQQQgg9pNumEEIIIYQQQgghRGmilG6bpYlkngkhhBBCCCGEEEIIoYc0ngkhhBBCCCGEEEIIoYd02xRCCCGEEEIIIYQoTWS2zVJFMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCYqZUlHIJ4hmWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOlzLZZmhioVDL/qRBCCCGEEEIIIURpkXL5akmHoJNNSHBJh1AiJPNMCCEK0bvrfi7pEArVL53f5+y9KyUdRqGr7FWWDzZMK+kwCtWUjqNIHD2upMMoVPY/fcXSUztKOoxC1btaS4at/qGkwyhUv3f7iMSUpJIOo1DZ29ix8PiWkg6jUPWv2ZZ604eWdBiF7uCImUzbv6KkwyhUoxr0YMq+pSUdRqH6oFFvJu+cV9JhFKrPWgxkxJofSzqMQjW964eM3/ZHSYdRqCa1fqukQxD/EdJ4JoQQQgghhBBCCFGaSCfBUkUmDBBCCCGEEEIIIYQQQg9pPBNCCCGEEEIIIYQQQg/ptimEEEIIIYQQQghRmki3zVJFMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCZKZUlHIJ4hmWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOZbbNUkcwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJdNssVSTzTAghhBBCCCGEEEIIPaTxTAghhBBCCCGEEEIIPaTbphBCCCGEEEIIIURpopRum6WJZJ4JIYQQQgghhBBCCKGHNJ4J8R/z8OFDvvzySxISEko6FCGEEEIIIYQQ4n+eNJ6J/0n+/v5MnTq1WPdnYGDAunXr/tX7TJw4kSpVqvyrfRREpVLRr18/zMzMcHBweKVtC/szfVUNGzZkyZIlJfb+z/rwww8ZNWpUSYchhBBCCCGE+P9KpSydr/+npPFMFKsOHTrQvHlznesOHz6MgYEBp06dKuao4Pjx47z11lvF/r6F7ZtvviEwMJCxY8e+8rYl+Rls2rSJmJgYevXqpV72fGOeSqXigw8+wMbGhoiICAAaN27Me++9p7W/JUuWYGRkxNChQ3W+36xZs6hcuTJWVlbY29tTtWpVvvvuO/X6MWPGMG/ePG7evFk4FRRCCCGEEEII8T9LJgwQxWrQoEF07dqVW7du4efnp7Fu7ty5VKlShWrVqhV7XC4uLsX+nkXh008//cfbluRnMG3aNAYOHIihoe72/NzcXIYMGcLGjRuJiIigZs2aBe5v7ty5jBkzht9//52ffvoJS0tL9bo5c+YwevRopk2bRqNGjcjKyuLcuXNERkaqy7i6utKyZUtmzpyp0ahWnOoHVKJpUA1sza2ISYljzfl93Ii7p7Nsn2otqe1bQWv5g+Q4vo1YWNSh6rR9/WY2LF9DYlwC3v6+DBgxhHKVtGMESIiLZ+Hvc7hx5Tox9+7TpksHBowcolUuLTWVpXMWcWz/YdJSUnH1cKPf0EFUq1OjqKujFu4fRuMy1Z58L/Gsv/A3N+Pv6y1vZGhEy7K1qOYdgq2ZFYmZqey+cpxjd/KPtwaBVQj3D8PBwoa07AzO3r/GlqhDKJS5xVElAMxbNcW0Tk0MLC3IvXWH9NUbUT58pLe89fBBGAcFai3PibxM2p/ax5xZs4ZYtGtF1t8HyVi3pVBjfxnHdvzNoU27SUlMxtXbg9b9u+IXGvTC7W5fvsG8L3/B1ceDYd9+XAyR6tcwsAotytbEztyaB8mxrDwbwTU954T+1dtQ17+i1vL7ybFM2jlPa3kN71AG1e7AmftXmXV4XaHEu2rlKv5atIi42DgCAgN5/4P3qVq1qt7yp06eYurPU7l54wbOLs7069ePrq910ygTsTuCWTNnce/uXby8vRk2fCiNmzRRrz996hR/LfqLS1GXiI2N5fsfv6dR48bq9QqFgpkzfufQwUPcu3cPa2trataqyYh3RhbaNfDEzgMc2bKH1MRkXLzcafF6Z3xDy7xwuztXbrBo8nRcvN0Z8vVH+XXac5jz+4/z+G4MAO4B3jTu0Q6vMn76dlViKnsE0adqS0JdfXG2sufjLb+z/+bZkg5Lr/N7jnJ6+wHSE1Nx9HSlfq82eJb111n23qWbrPtxrtbyPpNG4eCRd+zE3XvIsfURPL51n5S4ROr3bEPlFuFFWQUtF/ce49z2Q6QnpeDg6Urdnq3xCNZ9rNy/fJNNUxZoLe/xxQjsn9Tp5qlITm/dT/KjeJS5SuxcHQlrEU7ZupWLtB7Puvz3KS7uPkpGUir2Hs7U6NYctyAfnWVjrtxi57SlWss7fjYEO3cnAJS5uVzYcZjrRy+QnpiCnZsjVTs1wau89jWtqDQIrELz4JrYmVvxIDmWVef2cF3P+bxf9dbU8dM+nz9IjmXyrvkAVPYMplVIbVys7DEyNOJxagK7r57QuNcoarV8ylM/oBLWZpY8Sk1g66XD3EqI0VveyMCQJkHVqewZhLWZJcmZaey7fppT9y4DUN7Nn4aBVXG0tMXIwJC49CQORp/n7P2rxVUlIbRI5pkoVu3bt8fV1ZX58+drLE9PT2f58uUMGjQIgEOHDtGwYUMsLCzw8fFh1KhRpKWl6d3v7du36dSpE9bW1tja2tKjRw8ePnyoUWbDhg3UqFEDc3NznJ2d6dq1q3rd81lOV69epWHDhpibm1O+fHl27typ9Z5jx46lbNmyWFpaEhgYyPjx48nJydEo8+233+Lm5oaNjQ2DBg0iMzOzwM9n7969GBgYsH37dqpWrYqFhQVNmzbl0aNHbN26lXLlymFra0vv3r1JT09Xb7dt2zbq16+Pvb09Tk5OtG/fnuvXr6vXL1y4EGtra65ezb/gvPPOO5QtW1b9uT7/GRgYGDBr1izat2+PpaUl5cqV4/Dhw1y7do3GjRtjZWVF3bp1Nd7n+vXrdOrUCTc3t7wfJTVrsmvXrgLrHBsby65du+jYsaPO9VlZWXTv3p2dO3fy999/v7DhLDo6mkOHDvHxxx8TGhrKqlWrNNZv3LiRHj16MGjQIIKCgqhQoQK9e/dm0qRJGuU6duzI0qXaN2DFoapXWbqENWbHlWP8sGcx1+PuMbRuZxwsbHSWX3NuL59tnaV+fb5tNmnZGZy5f6WYI89zaM9+5k//k659e/DdH79QLqwCX388kVg9jTE5OTnY2tvR9fUe+JUJ0FlGkZPD5I/G8zjmEaMnfszUBTN5+4OROLo4FWVVNFTxDKZTxYbsvnqCn/Yt5WbcPYbU6Yi9hbXebfpXb0Owsw8rzuzm24iF/HVyG49S49Xrq3mF0K5cODsuH+W7iEUsP7ObKl7BtC1XfD+4zJo2wKxRPTLWbCTl5xkoU1KxHjoQzEz1bpM2fwlJE75Rv5K/+wVVbi45Z89rlTXy8cK0Tk1y7z8oymrodeHwSbYtXEODzq0Y+s1YfEPK8Ne3v5MYG1/gdpnpGaydsYjAimWLKVL9qnuH0L1yU7ZdOsLXuxdwLfYuI+q/pvecsOLsbsZumqF+fbLld1KzMjh197JWWUdLW7qGNebq4zuFFu/OHTv5ecpPDHxzIAsXL6JK1Sq8P+o9YmJ0/5C6f+8e77/7HlWqVmHh4kUMGDiAKT9OIWJ3hLrM+XPn+OzTcbRp24a/li6mTds2fPrxp1y4cEFdJiMjk+DgYD4c85GutyEzM5PLly7z5uA3WfjXIr794Ttu377Dh6M/KJR6Rx45zc6/1lGvYwsGT/4Qn5BAlv3wB0mxBY9BmpmewYaZSwioEKy17lbUNcrXrUbfcSN4Y+K72Do5sPS7mSTHJxZKzIXJwsSMa3F3+envZSUdygtdPXaeA8u2UqNtI3p8PgyPsn5s/GURKXGJBW7Xd/K7DJgyRv2yc8u/Bimyc7B1caButxZY2um/LhSV68cvcHj5Nqq2bUDX8UNxD/Zl67S/SH1BnXpMGsnrP3ygftk+UyczKwuqtm1Ip48H89rnwyhbryr7FqzjzsVrRVybPNEnozixehdhrcJp//FAXMv4EDFjBWnxSQVu12n8W7z29Uj1y8Y1fyiTMxv/5sqBM9Tq3oKOnw0huH5V9s1eQ/wd/Q09hamaVwivVWrC9stH+CZiIdfi7jGiXje95/OVZyP4ZPMM9Wvc1pl55/N7+fd46dmZbL98hB/3LeHr3fM5fOsCr1dvTTlX/2KpU0X3QNqUq8u+G6f5/dAabiXE0K96G+zMrfRu07NKcwKdPFl74W9+2b+cFWd38zgtUb0+PSeLfddPM/vIen47uIpT967QpWIjgpy9i6FGpYhKVTpf/09J45koVsbGxvTv35/58+ejeuYPb+XKlWRnZ9O3b1/Onz9Pq1at6Nq1K+fOnWP58uUcOHCAkSNH6tynSqWic+fOxMfHs2/fPnbu3Mn169fp2bOnuszmzZvp2rUr7dq14/Tp0+zevZsaNXRnqyiVSrp27YqRkRFHjhxh5syZOrtB2tjYMH/+fCIjI/nll1+YPXs2P//8s3r9ihUrmDBhAl999RUnTpzAw8ODGTNmvNTnNHHiRH777TcOHTrEnTt36NGjB1OnTmXJkiVs3ryZnTt38uuvv6rLp6Sk8P7773P8+HF27dqFSqWiS5cuKJV5fdL79+9P27Zt6du3LwqFgm3btjFr1iwWL16MlZX+C9ukSZPo378/Z86cITQ0lD59+vD222/zySefcOLECQCN7yU1NZW2bduya9cuTp8+TatWrejQoQO3b9/W+x4HDhxQN849LzU1lXbt2nHx4kUOHjyos8zz5s6dS7t27bCzs+P1119nzpw5Guvd3d05cuQIt27dKnA/tWrV4s6dOy8sVxQal6nGkVsXOHLrAg9T41l7fh8JGSnUC6iks3ymIpuUrHT1y9fBDQsTc47euljMkefZtHIdTdu0oFm7Vnj7+TBg5BCcXZ3ZsWGrzvKu7m4MHPkWjVo2xdLKUmeZiK27SE1O5aNJ4witWB4Xd1dCwyrgr6exrSg0LFOVY7cvcvT2RR6lJrD+4n4SM1IJ99f9vYS4+FHG2YvZR9dzNfYOCRkp3El8SPQzT2L9HN2Jjn/A6XtXSMhI4crj25y+dwUfe9fiqhZmDeuRuWsvOecjUcY8In3JKgxMTTCtpj+zQJWegSolVf0yCQmCnByyz17QLGhqimXfHmSsWIcqPaOIa6Lb4c17qNakLtWbhuPi5U6bN7ph5+TAiZ0HCtxu45/LCKtXHe/g4jvG9GkWXIND0ec5GH2emJR4Vp7bQ0J6Cg0Dq+gsn6nIJjkrTf3yc3DH0tScw7c0vx8DDBhYsx2bog4Sm1bwj9FXsXTxEjp26kinzp0JCAhg9AejcXNzY/Wq1TrLr1m9Bnd3d0Z/MJqAgAA6de5Mh44dWPzXX+oyy5Yuo1btWgwYOAB/f38GDBxAzVo1WbYkv6EmvF44Q4cPo0nTJrreBmtra36d8RvNW7TAz9+PsLAwPvzoQy5FXdLbsPcqjm7dS5XGtanapA7OXm607NcFWyd7Tu0+WOB2W+eupELdangF+Wut6zy8HzVa1MfdzwtnTzfaDe6JSqki+mLpy744cvsis49uYN+NMyUdygud2XmIcvWrUb5hDRw9XWnQqy02DrZc2HuswO0sbK2wsrNRv57NmHcL8KZe99YE16qEkXHxd+45t/MwIfWrEdqgOg4eLoT3bIO1gx2R+04UuJ2FjRWWdjbq17N18gwJIKBqORw8XLB1dSSsWR0cvdyIuab/vq4wRUYcI6huZYLDK2Pn7kzN15pj6WDL5f2nC9zO3MYSC1tr9evZOt04dpGwlnXxqlAGG2d7QhpUw6NcAJERx4u6OkDe+fxw9HkORZ/nYUo8q5+czxsUeD5PV7987fPO50ei88/nV2PvcPb+NR6mxBOblsTe66e4l/yYMs5exVKncP9KnLp7mZN3L/M4LZGtlw6TnJlKLd/yOssHOXvj7+jBopPbuBF3j8SMVO4lPeZOYn7iQ3T8A6IeRfM4LZGEjJS8e+KUePzs3YulTkLoIo1noti9+eabREdHs3fvXvWyuXPn0rVrVxwcHPjhhx/o06cP7733HsHBwYSHhzNt2jQWLlyoM3Nr165dnDt3jiVLllC9enVq167NokWL2LdvH8eP510Iv/rqK3r16sUXX3xBuXLlqFy5st4ujrt27SIqKopFixZRpUoVGjZsyNdff61V7rPPPiM8PBx/f386dOjABx98wIoVK9Trp06dyptvvsngwYMJCQlh8uTJlC+v+yLyvMmTJ1OvXj2qVq3KoEGD2LdvH7///jtVq1alQYMGvPbaa+zZs0ddvnv37nTr1o3g4GCqVq3K3LlzOX/+vEZXxFmzZvHgwQNGjRrFgAEDmDBhwguzuAYOHEiPHj0oW7YsY8eOJTo6mr59+9KqVSvKlSvHu+++q/E9Vq5cmbfffpuwsDCCg4OZPHkygYGBbNiwQe97REdH4+bmprPL5qRJkzhz5gz79+/H19f3hZ+bUqlk/vz5vP766wD06tVLnS331IQJE7C3t8ff35+QkBAGDBjAihUr1A2NT3l5eanjK05GBob42Ltx+ZFmo93lR7cJcPR8qX3U8avIlce3SchIKYoQC6TIyeHGlWtUrqHZPatSjapcvhj1j/d78tBRgiuEMueXmQzp1o8P3hzBmsUrUOYWT9dGIwNDvO1cufxI8wfD5ce38Xfw0LlNBfcA7iQ+pGlQdT5v8SYfN+1Hh/L1MTY0Upe5GXcfb3tXfOzdgLwsoHKu/kQ9jC6yujzL0NEBQ1sbFJefySLIzUVxPRpj/xf/zT1lWrs62afPQ7Zm9q1ltw7kRF1GcfW6ni2LlkKh4P7NO5SpFKqxvEylUO5c0T+m4em9R0h4GEujbm2KOsQXMjIwxNfencjnjomoR9EEOr3cD6Nw/zAuPbpFfHqyxvJ25cJJzcrgULR2xuA/lZOTw6VLl6hdp7bG8lp1anP+3Dmd25w/f55az5WvU7cOUZFRKBSKvDLnzlO79nNl6tTRu8+XlZqaioGBAdbW/y5TKFeh4MHNuwRUDNFYHlgxhLtXo/Vud3bfURIextKwa6uXep+crGyUuUosrHU/aBAvlqtQ8PjWfXwraHbd9qkQRMz1gjMwl385g3kffMe6H+dx99KNogzzleQqFMTevo93ec0uwt7ly/DwBXVaM2kWiz78kU0/LeD+Jf3nRZVKxb2oGyQ9jNPbFbQw5Spyib8Tg0c5f43lnuX8eXxTdxfHpzZ9N49Vn/7KzmlLibmieT+Vq1BgaKLZuGlsYsyjF3xOheHpPV7Uo2iN5VGPogl8yXu8cP8wLj+6RXxGst4yIS6+uFk7ci327r8J96UYGRjiaeus9V7XYu+q722eF+rqx/2kx9QPqMxHjfvyboMetAqprXF/9LxAR0+creyITiiZLHYhQMY8EyUgNDSU8PBw5s6dS5MmTbh+/Tr79+9nx44dAJw8eZJr166xePFi9TYqlQqlUsnNmze1so+ioqLw8fHBxyd//IPy5ctjb29PVFQUNWvW5MyZMwwZoj2Gki5RUVH4+vri7Z2fFly3bl2tcqtWrWLq1Klcu3aN1NRUFAoFtra2Gvt5fsD6unXrajR66VOpUn4mi5ubm7pr6LPLjh3Lfzp6+/ZtJk2axNGjR4mNjVU3BN2+fZuKFfPGSXBwcGDOnDm0atWK8PBwPv74xeP3PB8HQFhYmMayzMxMkpOTsbW1JS0tjS+++IJNmzZx//59FAoFGRkZBWaeZWRkYG5urnNdy5Yt2bVrF19//fVLzQS6Y8cO0tLSaNMm7wevs7MzLVu2ZO7cueoGUA8PDw4fPsyFCxfYt28fhw4d4o033uDPP/9k27Zt6kY8CwsLAI3usc/KysoiKytLY5mZmdkLY3wRKzMLjAwNSc7SfN+UrDRszF58s2prZkU5V38WntCd5VXUkpOSUSqV2DnYayy3c7An8V90M3r4IIbHp89Rv3ljPvlmAg/u3mfOtJkoc3N5rX/vfxf0S7AyzfteUp/7XlKz0rEx1/0j1snKjgBHTxS5ucw7vhkrU3O6VWqCpakZy8/sBuDM/atYm1kwsv5rGJA3RtrBm+eIuHayqKsEgIFtXjcRZUqqxnJlSiqGz32H+hj5emPk4U768rUay02qhGHk7Un6z78XSqz/RHpyGiqlEis7ze4wVnY2pCbp/uER9+ARu5ZuYODE9zAy0n8jX1ysn5wTUjI1hy5IyUzDzk1/5vBTtuZWVHALZO6xTRrLA528CPcP46vd2mMe/RuJiYnk5ubi6KjZpdrJ0ZEjsXE6t4mLi8PJ0VFjmaOjE7m5uSQmJuLs7ExcXByOTs+VcXIkLk73Pl9GVlYW03/7jVatW/3rxrP0lLxjzVrXsZao+1iLj3nMnuWb6Df+HQxf8ljbs3wTNg52BFQo+e7E/6syU9NRKZVY2Gp+5xa21qQn6X7oZGlvTeP+nXD18yRXoeDy4bOsnzKfLh+9qXectOKUVycVFraa5wQLWyvSk1N1bmNpZ0ODfh1w8fUgV5HL1SNn2fTzAjp8MACPZ+qUnZ7JX2OnkJuTi6GhAfX6tNNqpCsKWU/qZG6jWSdzGysyk3UP5WJhZ02d3q1x9HVHmZPLjeMX2PnrUlq+2we3oLwHQp7lAomKOI5bkA82zg48uBzNnXNXNXrEFJWn5/PkzOfv8dKxLaCL41O25laUdwtg/vHNWuvMjU35uu1QjA2NUKpULD+zi0uPir73hKWped79UbZmdnlqdgY2ZrrvjxwtbPF1cEehzGXJ6R1YmpjToUJ9LEzMWXdhn7qcmbEJHzV+/UmdlGyKPKh3bLj/KpXy/28XydJIGs9EiRg0aBAjR45k+vTpzJs3Dz8/P5o1awbkZQ+9/fbbjBo1Sms7XdlHKpUKAwODApc/bQh5Gbouns/v/8iRI+pMtlatWmFnZ8eyZcuYMmXKS79PQUxMTDTe+9n/P132bKZU+/btCQgIYPbs2Xh6eqJUKvH39yc7O1tju7///hsjIyPu379PWlqaRmPfy8Shb9nTWD766CO2b9/Ojz/+SFBQEBYWFrz22mtacTzL2dmZhATd48E0a9aMUaNG0alTJ3JzczW6quoyd+5c4uPjNSYIUCqVnD59mkmTJmn8EK5YsSIVK1ZkxIgRHDhwgAYNGrBv3z6aPBl8Oj4+bzwkfYNIf/PNN3zxxRcayyZMmABV7AqM8aVpHYbax7gutXzLk5GTxfkHxTMeiT5af5MqFTr+TF+aSqXC1sGOt0ePwNDIiMCyQSTExbNh+ZpiaTxTx6E7OJ1lDZ58Z4tPbSdTkfc3sOHifvrXaMvqc3tRKHMp4+RFs+CarDm3l1sJMThb2dG5YiOSs9LYdaXwu5CYVKuMZfdO6v+nPh3c//kqGOhaqJtp7erkPogh93b+U2cDezssurQnddY8eJI5VJIMnv/7UaHzT0qpVLL6twU0fq0tzh7F13X2Zei4MqF6ie+orl9FMnIyNQZZNjM2YWDNtiw+tZ207KLpTqt9CtB9rda3wdNrsebS58voONe8JIVCwWefjkOlVPHR2DH/aB86PV8PdMeoVCpZN30RDbq1xuklj7XDm3Zz8fBpXh83AmNTkxdvIAqk9bXkHVA6yzq4u+Dgnn8/4F7Gl9T4JE5vP1AqGs+eev5cV1B7kL27M/buzur/u5XxITUhmbM7Dmk0npmYm9Jt/FBysrK5H3WTIyu3Y+vigGdI8XRpf9nzN4Cdm5PGOHQugV6kJSQTueuYuvGs5mvNObx0KxsmzQYDsHF2oEydSlw/8u+yWF+N9hfzMufzOr4VtM7nT2Upsvlm90LMjE0IcfGja1hjYtOSuBpb9Bl1eTTjN8BA7/H39Jy48lwEWYq8jPVtlw7Ts0oLNkUeUE+YlK3IYcah1ZgamRDo5Enr0DrEZyQTHS/ZZ6JkSOOZKBE9evTg3XffZcmSJSxYsIAhQ4aoT6TVqlXj4sWLBAW9eCY0yMsyu337Nnfu3FFnn0VGRpKUlKTOUqtUqRK7d+9m4MCBL72/+/fv4+mZl0J9+PBhjTIHDx7Ez8+PcePGqZc9PzZWuXLlOHLkCP3791cvO3LkyEvV6VXExcVx/vx5ZsyYoe7Ssm/fPq1yhw4d4vvvv2fjxo18/PHHvPPOOyxYULgZB/v372fAgAF06dIFyOsO86Juj1WrViUmJoaEhAQcHBy01rdo0YJNmzbRoUMHlEolv/32m84fInFxcaxfv55ly5ZRoUL+rI5KpZIGDRqwdetW2rdvrzOGp91pn52U4sKFC5iYmGjs61mffPIJo0eP1lhmZmbGmK0vN66dPmlZGeQqldg+l81kY2ZJSpbuLLhn1fGrwIk7UeSqlC8sWxRs7WwxNDQkMV6zQTQpMUkrG+1V2Ds6YGxsrJGd4eXrTWJ8AoqcHIxNivaHZFp23vfy/FNUazNLUrJ0Nz4kZ6WRlJmqbjgDeJgSj6GBAfYW1sSmJdE6tA4n717i6O288eliUuIwNTahe6Wm7L5y/CWbr15ezsUoUm4/cyNtlHcbYGhrTW5KfsaFobU1qhTd2QoaTEwwrVKJjG2aE4MYe3tiaGONzfvD1csMjIwwCvTHtF4dksZMKJYBZy1trTAwNNTKMktLTsFax8ODrIxM7t+4zYPou2yZvxJ40oijUvFF33fp98lwAp/rllfUUtXnBM2sBBtzS63sBV3C/cM4ejtS45zgYuWAs5U9w8LzJ855el79rcsHTNwxh9hnBm5+Ffb29hgZGWllhMUnJGhljj3l5OSkVT4hIR4jIyPs7O3VZeKfLxMfj6Oj7n0WRKFQ8OnHn3D//n1m/D7jX2edAVjaPDnWnssyS09K0cp8BMjOyOLBzTvE3LrH9gVrgPxj7ev+H9Bn7FD8n5lA4MjmPRzcsIs+Hw/DzffluncJ3cytLTEwNCQ9SfMcl5GShqXtyx8LboHeXDlSOmYTzauTgVaWWeYr1sk1wJtrRzUbkQwMDbFzzWuQcvbxICHmMWe2HijyxjOzJ3XKeO5alJmappWNVhAXfy9uHM8fA9bcxpImb3UjN0dBVloGFnbWnF6/F2sn+8IKXS+953MzS1Je4nxe1z+MY8+dz59SgXrA/btJj3GzdaRlSK0ibzxLz84kV6nE2lTz/sjK1JzUbN11SslKJzkzTd1wBvA4NRFDAwNsza3UQwyoQP3vmJQ4XKwcaBhYRRrPRImRxjNRIqytrenZsyeffvopSUlJDBgwQL1u7Nix1KlThxEjRjBkyBCsrKyIiorSGiT/qebNm1OpUiX69u3L1KlTUSgUDB8+nEaNGqknBZgwYQLNmjWjTJky9OrVC4VCwdatWxkzRvtpc/PmzQkJCaF///5MmTKF5ORkjUYygKCgIG7fvs2yZcuoWbMmmzdvZu1azS5L7777Lm+88QY1atSgfv36LF68mIsXL2p0vywM9vb2ODo6MnPmTNzd3bl165bWBAcpKSn069ePd955hzZt2uDr60uNGjVo37493bt3L7RYgoKCWLNmDR06dMDAwIDx48drjSX2vKpVq+Li4sLBgwf1Nm41bdqUzZs30759e1QqFdOnT9dqQFu0aBFOTk50795da/y09u3bM2fOHNq3b8+wYcPw9PSkadOmeHt78+DBAyZPnoyLi4tG99z9+/fToEEDvVmLZmZmhdJN83m5KiV3Eh8S4uLHuQf540SFuPhyPqbgcaOCnL1xsXbgyK2NhR7XyzI2MSGwbBDnTp6mVoP8z/PcyTPUDK9dwJYFC6lYnoO796FUKtXf74O793FwcizyhjPI+17uJj2irIsvF2Lyx7kp6+LLxRjd495Ex9+nskcQpkYmZOfm3SC6WDugVClJzMj7MWBiZKKV7ZqfoWPAy2Z/vbSsbJRZmrNMKpNTMC4bRO69JzejRkYYl/EnY9P2F+7OtEpFMDYi5+QZjeU5V6+T/P0vGssse3VD+egxmRF/F9tMTcbGxngG+HD93CXK1cyfAOH6+cuEVg/TKm9mYc6w7z/RWHZ8x35uRl6hx3uDcCjG2V2fylUpuZ0YQzlXP41sg7z/F5xhGuzsg6u1g9aYZjEpcUzaOU9jWYcK9TE3NmXl2QgS0vWPpfMiJiYmhIaGcuzoMRo3yR+4/9jRYzRs1FDnNmFhYezfrzmBw9EjRylXvhzGTwZeD6sUxtGjx+jdt09+maNHCauke8IOfZ42nN25fYcZs35XN879W0bGxngEeHPzwhVCa+bHdPPCFcpWr6hV3szCjCHfaN6DnNx1kFuRV+k6agD2LvmNgoc3RXBw/U56j30bz8CXH4tQ6GZkbIyLnyd3Iq8TWC1/LNo7kdcJqBJawJaaYu88wNJe9wyJxc3I2BhnX0/uRV4noGr+8CZ3o67jX/nl6xR358GLZwpV5Y0bVtSMjI1w9HHnwaVofCvnP7R4cCka7zDtmWn1ib/7EAs77cY2IxNjLO1tUObmcvvMZfyqvXhSqn/r6T1eqKu/xvk71NWfcy/oMaA+nz838Ys+BhhgbFj0P/VzVUruJ8dSxtlLYyy3Ms7eXHpubLenbifEUME9EFMjY7Jz844lJys7lColyZm6u+RCXmJoQeOi/Sf9P57ZsjSSCQNEiRk0aBAJCQk0b95coztmpUqV2LdvH1evXqVBgwZUrVqV8ePH4+Ghe1BuAwMD1q1bh4ODAw0bNqR58+YEBgayfPlydZnGjRuzcuVKNmzYQJUqVWjatClHjx7VuT9DQ0PWrl1LVlYWtWrVYvDgwXz11VcaZTp16sT777/PyJEjqVKlCocOHWL8+PEaZXr27Mnnn3/O2LFjqV69Ordu3WLYsGH/9OPSy8jIiOXLl3Pq1CkqVqzI6NGjtbqPvvvuu1hZWanH/apQoQLfffcdQ4cO5d69whs74Oeff8bBwYHw8HA6dOhAq1atqFat2gvjf/PNNzXGuNOlcePGbNmyhUWLFjFs2DCtBoe5c+fSpUsXnRMPdOvWjU2bNvHw4UOaN2/OkSNH6N69O2XLlqVbt26Ym5uze/dunJzyfxgvXbr0pcfJK2x7r5+ijn9FavtWwM3akS4VG+FgacPBm3lPg9uXr0ffatqDS9fxq0h0/AMepPzzMYAKQ/vundm9ZScRW3dy99Yd5k+fTezDx7TokDcW3ZLZC/jtm580tom+doPoazfIzMgkOSmJ6Gs3uBudP1Zey45tSElOYf5vs7l/5x6njhxn7ZKVtOrUttjq9ff109T2q0Atn/K4WjvQsUIDHCysOfykYaJtuXB6V22hLn/q7hXSczLpVbU5btaOBDp60qF8PY7djlR3SYh8eJNw/0pU8QzG0dKWsi4+tA6tw8WYGy/VhaMwZP19EPPmjTAJK4+huyuWvbuhys4h+1R+RoVl79cwb9dSa1vT2jXIuRClPZNmVjbKmEcaL7KzUaWn5/27GNVt14RTew5zas9hHt+LYdvC1STFxlOjeX0Adi3dwJoZed1XDQ0NcfPx1HhZ2dlgbGKCm48npuaF32D+MnZfPUG9gErU9auIu40jr1VqgoOlLftv5n1HnSo04I0a2n8L9fzDuBl3n/vJsRrLFcpc7ifHarwysrPIVGRzPzn2X2eu9u7bh/Xr1rNh/QZu3rzJz1N+4mFMDF275WW6Tf9tOhM/n6Au37VbV2IePGDqTz9z8+ZNNqzfwIb1G+j7ZPIXgJ69enHs6FEWzl9AdHQ0C+cv4NjRY/Tq00tdJj09nSuXr3Dl8hUA7t+7z5XLV9QzaSoUCj4e8zFRUVF8MflLlLm5xMXGEhcbS06O5mQX/0TtNo05s/cIZ/YdJfbeQ3b+tZakuASqNQsH8sYr2zAz71pnYGiIq4+HxsvK1hojE2NcfTzUx9rhTbvZt2oL7Yf0ws7ZkdTEZFITk8nOzNIbR0mxMDEj2NmbYOe8MWM9bZ0JdvbGzVo7q7ykVWkRTuT+k0QeOEn8/UccWLaFlPgkKjSuBcDh1TvYNWeVuvzZnYe4cTqSxIdxxN17yOHVO7h+MpKwJvkPhXIVCh7ffsDj2w/IVeSSmpjM49sPSHxYPNfkSi3qcunAKS4dOEXCg8ccWr6N1PgkyjXKe5B8bM0u9sxdoy5/ftdhok9HkfQwjvj7jzi2Zhc3T0VRoUktdZnTW/dzN/I6yY/jSXzwmHM7D3Hl8FmCa79ao/U/Vb5pLa4dOsu1w2dJionl+OpdpMUnU7ZB3qREp9bv5eDC/AeGUXuOc/vsFZIf5cV7av1ebp+5TGjD6uoyj6Pvc/vMZVJiE3l47Q67p69ApVJRofk/f8D3KnZfPUG4fxh1/SriZuNIt7DGOFracOBG3vm8Y4UG9K+uPVlNuH9Fbsbf58Fz53OAlmVrEerqh5OlHW7WjjQNqk5t3/IcvxOpVbYoHIo+R3XvUKp5heBiZU+b0LrYmVtz7HbeRFEtytakW1hjdflzD66RkZ1Jl7DGuFjZ4+fgTquQ2py6e1l9f9QwsAplnLxwsLDB2cqOcP8wqniW1dllVYjiIplnosTUrVtX7+CcNWvWVE8goMvzXQF9fX1Zv359ge/XtWtXunbtqnPd8/srW7Ys+/fv11j2fKzff/8933//vcay9957T+P/n376qdasnt99953eGBs3bqz1PgMGDNDIzAOYOHEiEydOVP+/efPmGjNrPh/v3Llztd5r1KhRGuPKPf8ZPB+Hv7+/1rLn4/X39yciIkKjzIgRI7Te+3nvvfceFSpU4NatW/j5+emMB6Bhw4akPNO17NmZPs8VMONa165d1T+MunXrRrdu3QqMZ/PmzRgZGfHaa6+9MPaicPreFaxMzWkVWhs7MysepMQx6/A69eyZtuZWOFhqPu02NzalskcQa87vLf6AnxPepAEpycmsXriMhPh4fPz9+OSbCbi4543rkxAfT+yjxxrbjHnrXfW/b1y5xoHd+3Bxc2X60jkAOLu68Nn3X7Jgxp98NPgdHJ2daNO1A517FfxdFqYz969iaWpOi5Ba2D75Xv48siH/ezGzxN4i/3vJzs1h1uF1dAlrxHsNe5Kek8mZ+1fZGpXfDXzXlWOgUtGmXN6NZmpWBpEPb7Il6lCx1SsrYj8GJiZYdOuIgYU5ubfv5o1VlpXf3dTQwU7r6aehixPGgf6kztQ+v5QmFetWJz0ljX1rtpGamIyrjwd9xw5TZ/akJCaRFKt73MXS4uTdy1iZWtCuXDi25lY8SI5l+sHV6u4sdubWOOo4J1T1KsuKsxG6dlmkWrRsQVJSEnP/nENsbCyBZcrw8y8/qx+CxcXG8jDmobq8p5cXP/8ylak//cyqlatwdnHmgw8/oGmzpuoylSpXYtJXk5n1+0xmzZyFt7c3X33ztXpSHICoyCiGD81/SDX156kAtGvfjs8nTuDRo0fs//tvAPr1yW+YA5gx83eq16jOv1G+TlXSU9I4sHY7qYnJuHh70Oujt7BzzjvWUhOTX/lYO7nrILmKXFZPm6+xvEGXVjTs1vpfxVvYQl38+K1L/nAGo+rnZbZviTrMVxGFO0zEvxVcK4zMtHRObNxLWlIKTp5udHi3H7ZPuu6lJ6WSEpekLp+ryOXgiu2kJSZjbGKCo5cr7Ub1w79S/sQNaYkprPgyf+iGM9sPcmb7QTzL+tNlzKAir1OZmhXJTEvn1OZ9pCel4ujpSpt3+mKjrlMKqfGadTqyagdpiSkYmxjj4OlK63f64BuWXydFVjYHlmwmLSEZYxNj7N2daTqoK2VqamdTFgX/6uXISsvg3NaDZCSnYe/hTNPh3bF2zBtfNiM5lbT4/ExZpSKXU2sjSE9KxcjEOK/8sO54Vcif4ECZo+DMpr9JiU3ExMwUrwqB1OvfHlNL3ZNXFbZT9y5jZWZBm9C66vP5jINr1LNn2plb4WCpOayAubEpVTzLsvKc7vO5qbEJPas0x97CmpxcBQ9T4pl/fAun7l0u8voAXIi5gaWJOY2DqmFjZsnDlHgWndxKUmZelr21mSV2FvkZjdm5Cuaf2Ey7cvUYGt6VjOxMLsTcYNfV/LFeTYyM6VC+PrbmVuTkKohNS2TVuQiN7H8hipuBqjimFhFCiBdYv349jo6ONGjQoKRDYcWKFfj5+anHkHsV7677uQgiKjm/dH6fs/eulHQYha6yV1k+2DCtpMMoVFM6jiJx9LgXF/wfYv/TVyw9pf9Byv+i3tVaMmz1DyUdRqH6vdtHJKYkvbjg/xB7GzsWHt9S0mEUqv4121Jv+tAXF/wfc3DETKbtX1HSYRSqUQ16MGXf0pIOo1B90Kg3k5/rLv6/7rMWAxmx5seSDqNQTe/6IeO3/VHSYRSqSa3fKukQ/rHk48Uz+/qrsq357x42/a+SzDMhRKnQqVOnFxcqJj169CjpEIQQQgghhBBClBIy5pkQQgghhBBCCCGEEHpI5pkQQgghhBBCCCFEaaKUEbZKE8k8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBAlKiEhgX79+mFnZ4ednR39+vUjMTFRb/mcnBzGjh1LWFgYVlZWeHp60r9/f+7fv69RrnHjxhgYGGi8evXq9UqxSeOZEEIIIYQQQgghRGmiUpXOVxHq06cPZ86cYdu2bWzbto0zZ87Qr18/veXT09M5deoU48eP59SpU6xZs4YrV67QsWNHrbJDhgzhwYMH6tesWbNeKTYZ80wIIYQQQgghhBBClJioqCi2bdvGkSNHqF27NgCzZ8+mbt26XL58mZCQEK1t7Ozs2Llzp8ayX3/9lVq1anH79m18fX3Vyy0tLXF3d//H8UnmmRBCCCGEEEIIIYR4oaysLJKTkzVeWVlZ/3q/hw8fxs7OTt1wBlCnTh3s7Ow4dOjQS+8nKSkJAwMD7O3tNZYvXrwYZ2dnKlSowIcffkhKSsorxSeNZ0IIIYQQQgghhBCliVJVKl/ffPONekyyp69vvvnmX1c3JiYGV1dXreWurq7ExMS81D4yMzP5+OOP6dOnD7a2turlffv2ZenSpezdu5fx48ezevVqunbt+krxSbdNIYQQQgghhBBCCPFCn3zyCaNHj9ZYZmZmprf8xIkT+eKLLwrc5/HjxwEwMDDQWqdSqXQuf15OTg69evVCqVQyY8YMjXVDhgxR/7tixYoEBwdTo0YNTp06RbVq1V64b5DGMyGEEEIIIYQQQgjxEszMzApsLHveyJEjXzizpb+/P+fOnePhw4da6x4/foybm1uB2+fk5NCjRw9u3rxJRESERtaZLtWqVcPExISrV69K45kQQgghhBBCCCHE/ySVsqQjKBTOzs44Ozu/sFzdunVJSkri2LFj1KpVC4CjR4+SlJREeHi43u2eNpxdvXqVPXv24OTk9ML3unjxIjk5OXh4eLx0PWTMMyGEEEIIIYQQQghRYsqVK0fr1q0ZMmQIR44c4ciRIwwZMoT27dtrzLQZGhrK2rVrAVAoFLz22mucOHGCxYsXk5ubS0xMDDExMWRnZwNw/fp1vvzyS06cOEF0dDRbtmyhe/fuVK1alXr16r10fNJ4JoQQQgghhBBCCCFK1OLFiwkLC6Nly5a0bNmSSpUqsWjRIo0yly9fJikpCYC7d++yYcMG7t69S5UqVfDw8FC/ns7QaWpqyu7du2nVqhUhISGMGjWKli1bsmvXLoyMjF46Num2KYQQQgghhBBCCFGaqFQlHUGxc3R05K+//iqwjOqZz8Xf31/j/7r4+Piwb9++fx2bZJ4JIYQQQgghhBBCCKGHNJ4JIYQQQgghhBBCCKGHdNsUQgghhBBCCCGEKE2U//+6bZZmknkmhBBCCCGEEEIIIYQe0ngmhBBCCCGEEEIIIYQe0m1TCCGEEEIIIYQQojRRKUs6AvEMyTwTQgghhBBCCCGEEEIPA5VKJaPQCSGEEEIIIYQQQpQSyfsOlHQIOtk2ql/SIZQI6bYphBCFaOXZ3SUdQqHqXrkZKcnJJR1GobOxtWX2kfUlHUahGlKnE0k/TS/pMAqV3egRbIk6VNJhFKq25cKZtn9FSYdRqEY16EHy8ZMlHUahsq1ZnWO3LpZ0GIWqll+F/9yxB3nHX73pQ0s6jEJ1cMRMph9cVdJhFKoR9V5j3NZZJR1Gofqqzdt8vPn3kg6jUH3bbhhrzu0t6TAKVddKjUs6hH9O8pxKFem2KYQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0UUq3zdJEMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCYy22apIplnQgghhBBCCCGEEELoIY1nQgghhBBCCCGEEELoId02hRBCCCGEEEIIIUoTlbKkIxDPkMwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJUmbbLE0k80wIIYQQQgghhBBCCD2k8UwIIYQQQgghhBBCCD2k26YQQgghhBBCCCFEaaKSbpuliWSeCSGEEEIIIYQQQgihhzSeCSGEEEIIIYQQQgihh3TbFEIIIYQQQgghhChNpNtmqSKZZ0L8D5s/fz5bt24t6TCEEEIIIYQQQoj/LGk8E0XG39+fqVOnFuv+DAwMWLdu3b96n4kTJ1KlSpVX2mbv3r0YGBiQmJj4r977VaxZs4bvv/+eOnXq/KPtBwwYQOfOndX/b9y4Me+9916B2xTWdxoREUFoaChKpfJf76soPHr0CBcXF+7du1fSoQghhBBCCCGEKGHSbVNo6dChAxkZGezatUtr3eHDhwkPD+fkyZNUq1atWOM6fvw4VlZWxfqepdWNGzf47LPP2Lp1Kw4ODoWyzzVr1mBiYlIo+3qRMWPGMG7cOAwN89rv58+fz3vvvafR+BgVFUWLFi2oVasWS5cuxczMjD179vDDDz9w9OhRMjIy8Pf3p02bNowePRovLy+N9wgJCeHmzZvcvHlTa92NGzcYN24c+/btIz4+HmdnZ6pXr84PP/xA2bJlcXV1pV+/fkyYMIE///yzyD+Po9v3sX/DLlITk3D19qDtgO74lwvSWTb60jV2LF7H43sPycnKxt7FkZrN61OvfTN1mT8n/kx05FWtbctWrUD/T0YUSswqlYo/Zs9m7dq1pKSkUKFCBcaOGUOZMmUK3G53RAQzZ87k7t27eHt7M3zYMJo0aaJRZuXKlSz66y9iY2MJDAzkg9GjqVq1KgAKhYIZv//OwYMHuXfvHtbW1tSqVYt3Ro7ExcVFvY81a9awbft2Ll++TFpaGnsiIrCxsfnX9T69+xDHt+wjLSkFZ083mvTtiHdIwAu3u3clmmXfzMTZ2403Jr2vsS4zLYMDq7dx9cQFMtMzsHN2pHHvdgRWLvev431ZZnVrYhpWAQNzM3IfPCQj4m+UcfF6y5uUD8WydTOt5Um/zITcXABsBvXD0M5Wq0zWmfNkRvxdeMHrcGBLBHvWbSU5IRF3Hy86D+pDmQpldZa9EXmFjQtX8ujeA3KysnFwcaJuq8Y07thKXebB7XtsW7KWO9ejSXgcR+c3e9OoY8sircPzzu85yuntB0hPTMXR05X6vdrgWdZfZ9l7l26y7se5Wsv7TBqFg0fe30ncvYccWx/B41v3SYlLpH7PNlRuEV6UVdCiUqmYvWY1a/dEkJKWRoUyQYwZMJAy3t56t1m7J4It+/dz/e4dAEIDAhjRoycVyuSfM1ft2snq3bt48DgWgEBvLwZ16Uq9ylWKtD767Nqwlc0r15MUn4CXnw+vD3uTkLDyOsseP3CE3Ru3cftGNDk5OXj7+dClX08q1ahazFHn+y8eey+rskcQfaq2JNTVF2crez7e8jv7b54t6bD0OhdxhFPbDpCWmIKjlysNe7fDS8939az7V2+x+rs/cfJypc8X76iX5ypyObFlH1EHT5OWkIyDuzPh3VvhH6b7fFoUavuWp35AZWzMLHmUmsDmqEPcSojRW97I0JCmZapT2SsYGzNLkjJT2Xf9NCfvXgagvFsAjctUxdHSFiMDQ+LSkzhw8xxn7mvfNxWVOn4VaBhYBRszSx6mJrDp4kGiEx7oLW9kaEiz4BpU9SyrrtOea6c4cfcSANW9Q+heuanWdp9t/QOFMrfI6vGsw9v3sn/9DlISk3D19qT9wB4ElAvWWTY66hrbFq/h0b2YJ9ddR2q1aEj99s01ymWkpbNj6TouHj1NRlo6Dq7OtO3/GqHVwoqjSqVDKU00+P9KGs+ElkGDBtG1a1du3bqFn5+fxrq5c+dSpUqVYm84AzR+GP9/FxgYSGRk5EuVzcnJealGMUdHx38b1ks5dOgQV69epXv37nrLHD9+nDZt2tCpUyf++OMPjIyMmDVrFsOHD+eNN95g9erV+Pv7c/v2bRYuXMiUKVP46aef1NsfOHCAzMxMunfvzvz58xk3bpx6XXZ2Ni1atCA0NJQ1a9bg4eHB3bt32bJlC0lJSepyAwcOpFatWvzwww+F1kCpy/lDJ9gyfxUdBvfCNySQ47sOsPDr6Yz6eTz2ztrfiamZGbVbNcLdzwtTMzNuXbrG+tlLMTU3o2bz+gD0+fAtchUK9TbpKWlM/+hrKtYtvL/bBQsXsmTJEiZ8/jm+vr7MmTuXESNHsnrVKr2N3OfOnePTTz9l6Ntv06RJE/bs2cPHn3zCnD//pGLFigDs2LGDKT/9xMdjx1K5cmXWrFnDqHffZeWKFbi7u5OZmcmlS5cYPGgQwcHBpKSkMOWnnxj9wQcsWrhQ/V6ZmZmE161LeN26/DZ9eqHU+dLRM+xZvJHm/TvjVdafs3uOsnrKHAZ+8wG2TvqPkaz0DLb8sQy/8kGkJadorMtVKFj5w2wsba3pOLIf1o52pMQnYmpuVigxvwzTmlUxq1aF9O27USYkYla7BlbdOpIybzHk5OjdTpWVRcq8JZoLc/Nv0lOXrASD/AR3Q2dHrF/rRM6Va4Veh2edPnCUdXOX8Nrb/QgIDebQ9r38MeknPv71KxxcnLTKm5qb0aBtMzz8fTAzM+NG1BVW/r4AUzMzwls1BiAnKwsndxcq16vJurlLizR+Xa4eO8+BZVtp1Lc97kG+XPz7BBt/WUSfL9/Bxsle73Z9J7+LiUX+sWRhk/+3qcjOwdbFgaAaFTiwvGS6/y/ctJElW7fy+dtv4+vuwdz1axn57des+mEKVhYWOrc5GRVJy7rhVCobjJmJCQs3bWLkd9+y/NvvcX1yHXN1dGRkz154u7kDsHn/33z40xT++uqbAhvmisKRvQf4a+Y8BrwzhOAK5dizeTs/jJvMt3/+grOr9n3N5fMXqVi9Mj3e7IultRV/b4/gp8+/YeK0b/EPCizW2OG/e+y9LAsTM67F3WXLpUN83WZoSYdToCvHzvH30i007tcBzyA/Luw9zoafF/D65HcL/K6y0jPZ8ecqfMoFkp6cqrHuyNqdXDp8hmYDuuDg7sKti1fZ/Ntiun/6Nq5+nkVcIwhzL0PbcuFsvHiAWwkx1PQtzxs12vLL/hUkZabq3KZ3lRZYmVmw9vw+4tKTsDa1wPCZa1FGTiZ7r5/icWoiuSolIS6+dA1rTGp2Btdi7xZ5nSp5lKF9+Xqsv7Cf6IQH1PatwMBa7fhp3zK9depbtSXWZpasPreHuPRkrEwtMDQ00CiTmZPFj/s0r0/F1XB27uBxNs9bQachffALKcPRnX8z/6tfef/nidi76LiXNTelTuvGePh5Y2pmSvSla6z9YzGmZqbUatEwL/YcBXMmTcXa1oY+H7yNnZMDSbEJmFkU3/2REM+TbptCS/v27XF1dWX+/Pkay9PT01m+fDmDBg0C8hpBGjZsiIWFBT4+PowaNYq0tDS9+719+zadOnXC2toaW1tbevTowcOHDzXKbNiwgRo1amBubo6zszNdu3ZVr3u+y+DVq1dp2LAh5ubmlC9fnp07d2q959ixYylbtiyWlpYEBgYyfvx4cp77Mfjtt9/i5uaGjY0NgwYNIjMz84Wf0ZYtWyhbtiwWFhY0adKE6OhorTKv+vk87S46a9YsfHx8sLS0pHv37lpdQefNm0e5cuUwNzcnNDSUGTNmqNdFR0djYGDAihUraNy4Mebm5vz111/k5uYyevRo7O3tcXJyYsyYMaieG4Dy+W6bjx49okOHDlhYWBAQEMDixYu1Yv7pp58ICwvDysoKHx8fhg8fTmqq7gv/U8uWLaNly5aYm5vrXB8REUHTpk0ZOHAgc+bMwcjIiLt37zJq1ChGjRrF3Llzady4Mf7+/jRs2JA///yTzz//XGMfc+bMoU+fPvTr14+5c+dq1DUyMpIbN24wY8YM6tSpg5+fH/Xq1eOrr76iZs2a6nJhYWG4u7uzdu3aAuvzbx3cFEH1puHUaFYPV28P2g3ojp2zPcd26M7M8QzwoXL9mrj5eOLg6kSVhrUJrlyO6Kj8BglLayts7O3Ur+vnLmFiZkrFOoXTeKZSqVi6dCkDBw6kadOmBAUF8cXEiWRmZrJt+3a92y1dupTatWoxcOBA/P398xooa9ZkydL8m73FS5bQqVMnOnfuTEBAAB988AFubm6sWrUKAGtra2ZMn06LFi3w9/cnLCyMjz78kKioKGJi8p9E9+nThwEDBlAxrPCeTp7Ytp+whjWp1Lg2Tp5uNO3bERtHe87sPlLgdjvmr6Fc3ap4BPlqrTv/93EyU9PpPOoNvMr6Y+fsgHfZAFx9i/5HyVNmVSuTeewEims3UMbFk7F9FwbGxpiGviCzQAWq9HSNl8bqjEyNdSaB/uQmJpF7934R1gb2rt9B7eYNqdOiEW4+nnQZ3Ad7Z0cObovQWd470I9qDevg4euFo5szNRqHE1K1Ijcir6jL+AYH0nFAT6o1qI2xcfE/dzyz8xDl6lejfMMaOHq60qBXW2wcbLmw91iB21nYWmFlZ6N+Pc32BXAL8KZe99YE16qEUQnUSaVSsXTbNgZ26kTTmrUI8vFh4tvDyMzOZvuhQ3q3mzx8JN1btCDEzx9/Ty/GDR6CSqni+MUL6jINq1WnXpWq+Hl44OfhwfAePbE0N+fCteLLLHlq6+qNNGrdjMZtWuDl683rwwbh5OLE7o26z5WvDxtE+x5dCAwJxt3Lkx5vvo67lwenj5wo5sjz/BePvVdx5PZFZh/dwL4bZ0o6lBc6vf0gFRpUp2LDmjh6utKwTzusHe04t+dogdtFLFxHSO1KuJfRvkZdOnSGGu0a418pBDtXRyo1qY1fxWBObz9QVNXQUC8gjJN3L3Hi7iUepyWyJeoQSZmp1PbVnbkZ7OyDv6MHC09s5XrcPRIzUrmb9Jjbifm/N27GPyDyYTSP0xKJT0/m8K0LPEyJw9/BvVjqVD+gMifuXOL4nSgepyayKfIgSZmp1PGroLN8WRcfApw8mXd8M9fi7pGQkcLdpEfcTtD8DaUCUrMyNF7FZf+mXdRoWo+azerj6u1Bh4E9sXN24MiOfTrLewb4UqV+rSf3ss5UbViHspXLc/OZe9mTew6SkZpGvzHD8Q8NwsHFCf9yQXj4+xRXtYTQIo1nQouxsTH9+/dn/vz5Go0OK1euJDs7m759+3L+/HlatWpF165dOXfuHMuXL+fAgQOMHDlS5z5VKhWdO3cmPj6effv2sXPnTq5fv07Pnj3VZTZv3kzXrl1p164dp0+fZvfu3dSoUUPn/pRKJV27dsXIyIgjR44wc+ZMxo4dq1XOxsaG+fPnExkZyS+//MLs2bP5+eef1etXrFjBhAkT+Oqrrzhx4gQeHh4ajVG63Llzh65du9K2bVvOnDnD4MGD+fjjjzXKvOrn89S1a9dYsWIFGzduZNu2bZw5c4YRI/K72c2ePZtx48bx1VdfERUVxddff8348eNZsGCBxn7Gjh3LqFGjiIqKolWrVkyZMoW5c+cyZ84cDhw4QHx8/AsbhQYMGEB0dDQRERGsWrWKGTNm8OjRI40yhoaGTJs2jQsXLrBgwQIiIiIYM2ZMgfv9+++/9X6va9eupV27dowbN44ffvhBvfzpsadv3/b29up/p6SksHLlSl5//XVatGhBWloae/fuVa93cXHB0NCQVatWkZtb8BO5WrVqsX///gLL/BsKhYL7N24T9Fz3vKBK5bh9+cZL7eP+zTvcvnyTgPK6U+MBTkYcIiy8eqFlM927d4+4uDiN8fZMTU2pVq0a586d07vdufPnqf3cGH116tZVb5OTk8OlS5eoU7u2ZpnatQvcb2pqKgYGBlhbW/+T6ryUXIWCh9H38K+o2aDkXzGY+9ei9W53/u/jJD6KI7xzc53rr5+OxDPIj90L1zLjnS+Z9+kUjmyMKLbxAA3sbDG0tkIRfSd/Ya4Sxd37GHm+4IeEqQk2g/tjM+QNLDu3w9DFWX9ZQ0NMypUl50JU4QSuhyJHwd3r0YRU0fwRElKlAtGXrr/UPu7euEX0pWsEVQwpihBfWa5CweNb9/GtoNmV26dCEDHX7+jZKs/yL2cw74PvWPfjPO5eerlzSnG59/gRcUmJ1AmrpF5mamJCtdBynLt6pYAtNWVmZaHIVWCr5+8/V6lkx+FDZGRlERas/zxZFBQ5OURfvU5YtcoayytWr8LVyEsvtQ+lUklmegbWNkV3ftPnv3rs/RflKhQ80vFd+VYI4sG123q3i9x/kqRH8dTupN3l7+l+jU00GziNTUy4f/XWvw/6BYwMDPG0ddHKBrsWexdfBzed25Rz9eNe0mMaBFRmbJPXeb9hT1qH1MHY0Ejv+wQ6eeFsZc/NeP3dJguLkYEhXnYuXH2s+fdz9fEd/PQ03pVz8+du0mMaBVbhk2b9+KBRb9qWq6tVJ1MjE8Y2eZ1PmvbjjRpt8LQt4JpciBQ5efeywZU1GzSDK5Xn9uWXu+7ev3mbW5dvEPjM8AqRJ87hWzaQ9X8u4avBHzJ19BfsWbMFZe7/s26MKlXpfP0/Vbof94gS8+abb/LDDz+wd+9e9XhEc+fOpWvXrjg4OPDuu+/Sp08fdaZScHAw06ZNo1GjRvz+++9aWUW7du3i3Llz3Lx5Ex+fvCcGixYtokKFChw/fpyaNWvy1Vdf0atXL7744gv1dpUra95wPru/qKgooqOj8X7SBePrr7+mTZs2GuU+++wz9b/9/f354IMPWL58uboRZurUqbz55psMHjwYgMmTJ7Nr164Cs89+//13AgMD+fnnnzEwMCAkJITz58/z3Xffqcv88MMPr/T5PJWZmcmCBQvUdfr1119p164dU6ZMwd3dnUmTJjFlyhR1Rl5AQACRkZHMmjWLN954Q72f9957TyNrb+rUqXzyySd069YNgJkzZ7K9gAyhK1eusHXrVo4cOULtJw0Zc+bMoVw5zUaeZzPVAgICmDRpEsOGDSuwATI6OhpPT+2smtTUVLp3786nn36q1Rh59epVbG1t8fDw0Lvfp5YtW0ZwcDAVKuT9eO7Vqxdz5sxRH8deXl5MmzaNMWPG8MUXX1CjRg2aNGlC3759CQzU7BLj5eXF6dOndb5PVlYWWVlZGsvMzF6tcSo9ORWlUom1neZYXFZ2tqQmJhe47fdDPyUtORVlbi5Nu7ejRrN6OsvdvRbNwzv36TLs9VeKrSBxcXEAOD3X1dfJ0ZEHMfrHIYmLi9O5zdP9JSYmkpubq9WF2NHJidgnZZ6XlZXFb9On07pVqyJtPMtISUOlVGJpp/kelnY2pCWl6NwmIeYx+1dupde4YRga6b5xT3ocz+2o65SrW5Wuo98k8WEsuxauQ5mbS3jnFoVej+cZWloCaGeNpadjYKt/jDhlQgIZ23eT+zgOAzNTzKpWwrpXV1IXLUeZmKRV3iQoEAMzM7IvFm3jWVpKCkqlEht7zbHWbOzsSE64oGerPBMHjSY1KQWlMpfWPTtTp0Wjogz1pWWmpqNSKrGw1Tz2LGytSddz7FnaW9O4fydc/TzJVSi4fPgs66fMp8tHb+odq6q4xT05Thzt7DSWO9rZEhMb+9L7+W35MlwcHKlVoaLG8mt3bvPmxAlk5+RgYW7OD++9T6BX8XbZTEnOOx5tHew1lts52JGUkPhS+9i6agNZmZnUalj8Y4L9V4+9/6KMlHTd1yhba9KTdPcISHwYy8HV23nt47f0XqN8KwZzesdBvEL8sXNx5E7UDW6ciSqWBzyWpuYYGRpqZVClZmVgbWqpcxsHS1v8HNxRKHNZfGo7lqbmdCzfAEtTM9acz8+CMjM2ZWyT1zE2NESpUrEx8gDX44p+kqindUrJ1rzmpmRlUNZMd50cLWzxd3BHkatg0YntWJma07liAyxNzFh1bi8Aj1ITWXkugofJ8ZgZm1IvIIyh4Z355e+VxKVrX5MLU3rKk3vZ56671vY2pLzgXvabt8eq72Wb9ehAzWb11esSHj7mxoU4qtSvzYBP3iE25hHr/1yKMldJs+7ti6QuQryINJ4JnUJDQwkPD2fu3Lk0adKE69evs3//fnbs2AHAyZMnuXbtmkZXPpVKhVKp5ObNm1qNLFFRUfj4+KgbzgDKly+Pvb09UVFR1KxZkzNnzjBkyJCXii8qKgpfX191IxNA3bp1tcqtWrWKqVOncu3aNVJTU1EoFNja2mrsZ+hQzTEs6taty549ewp87zp16mBgYKCxzbNe9fN5SledlEolly9fxsjIiDt37jBo0CCNz0mhUGD33I+PZzO7kpKSePDggUaMxsbG1KhRQ6vr5rN1fFrmqdDQUI0ML4A9e/bw9ddfExkZSXJyMgqFgszMTNLS0vSOe5WRkaGz8dDCwoL69esze/ZsevfurfEZqVQqjc+7IHPmzOH11/Mbil5//XUaNmxIYmKiOv4RI0bQv39/9uzZw9GjR1m5ciVff/01GzZsoEWL/AYLCwsL0p9rVHjqm2++0WjoBZgwYQIVujR4qTg1aNVNpWOZpsFfjiY7M4s7V26yY8l6HN1dqFy/pla5ExGHcPPxxDvI/9XjemLr1q18/c036v9PfZK9+fx3olKpeOG3pGub55bp3K+Oz0OhUPDpuHEolUqdmadFQSsOPbEplUo2zVxKeJcWOLrrH69RpVRhaWNNy4HdMDQ0xD3Am9TEZI5v2VckjWcmoWWxaN5Y/f+0dZt0FzSAvE4guuU+eEjug/wuI+n3HmD9ek9Mq1Yic492tqZJxXIobt5Clab776mwGWgdiaoX/UnxztefkJWRya0rN9i0aCXOHq5Ua/jPZjMuCtqnCf3nCQd3FxyeOe7cy/iSGp/E6e0HSqwBY+vBA3wzd476/z9/mPcQS1e1tJfqtnDTRnYcPsTMceMxMzXVWOfn4cnir74hJT2diOPHmDhrJrM+G1/sDWig65ym6xjVdnjPftYsWs77X3yM3XMNcMXpf/3Y+/9F1zVKu5RSqWTbrBXU6dQMB3f9GUoNe7cnYsFaFn06FQwMsHNxpFy9akQdPFW4YRfg+SuRQQHXp6d1XXE2gixFNgBbLh2md9UWbLh4QD0GWLYim98OrsLMyIRAJy/ahNYlPj25WLLPAK3wDQxApbdOeZVadma3uk6bog7Rt1or1l3Yj0KZy53Eh9x5pmvqrYQHvFO/O+H+FdkYebBo6vAiL76V5e0vPyI7M4vbV2+wbfFanNxdqFK/FgBKlQorWxu6vP06hkaGeJXxIzk+kf0bdkjjmSgx0ngm9Bo0aBAjR45k+vTpzJs3Dz8/P5o1y5tdTalU8vbbbzNq1Cit7Xx9tcdM0Pfj99nlFnoGB9ZFV6PP8/s/cuSIOpOtVatW2NnZsWzZMqZMmfLS7/Oy7/28V/189HlaJwMDA/VTvtmzZ6uzwZ4yeu6J4b+dlfRpHQtqsLp16xZt27Zl6NChTJo0CUdHRw4cOMCgQYO0xpV7lrOzMwkJCVrLjYyMWLduHd26daNJkyZERERQvnxeCnjZsmXVjYAFZZ9FRkZy9OhRjh8/rtGYkpuby9KlSxk2bJh6mY2NDR07dqRjx45MnjyZVq1aMXnyZI3Gs/j4eL0TVXzyySeMHj1aY5mZmRkbLr38OCCWttYYGhpqZZmlJaVoZaM9z9E172bX3deL1KQU9qzcrNV4lp2VzfmDJ2jW89/dZDRs2FA9oD/kTboAEBsXh7Nz/k13fEICjk7aA7I/5eTkpM4y09jmSaaZvb09RkZGWmUS4uO1MtYUCgUff/IJ9+/f5/cZM4o06wzyBrs2MDQkLVEz2yI9ORVLW+33zs7I4uHNuzy6dZ/di9YDT/6uVCqmDPyY7h8Nxrd8EFb2NhgaGWmMB+To4UpaUgq5CkWhjweUc/0muTHPjJPy5NxhYGmp0bBlYGGJKu3VxkvJffgQQ3s7reUGNjYY+3qTvnHbPwv6FVjZ5I2tlPxc9ltKUjI2OmJ7lpNb3t+6p78PKYlJbFu2vlQ0nplbW2JgaKiVPZKRkqbz2NPHLdCbK0dKbpbAhtWqU/GZGTGzn0xqEpeUhPMzk7IkJCfjZFfwdwWwaPMm5m1Yz/SPPyVYx3XVxNgYH/e8blDlAwOJvHGdZdu28emgwf+2Ki/NxjbveEyK17zmJScmYetQcB2P7D3Anz9N553PPqRiNd1Z+EXtv3Ls/X9gYfP0u3ruGpWSppU5CJCTmcWj6Hs8vv2AvYvzHqI8vUb9Ong8nT8YgE+5MljaWtH+nddR5OSQmZqOlb0th1Ztx9a56CZSUseenUmuUomNmebvAytTC1KzdV+fUjLTSc5MUzcyATxOTcDQwAA7cyvi0vPut1RA/JN/P0iJw9XankaBVYu88Sy/TppZZtamFnrHKEvJSifpuTo9UtfJWmdmmQq4m/QIZyv7wgxfJ0sb3feyqUkpWOuYcftZjm5P7mX9vEhNSmb3ik3qxjNbezsMjY0wNMq/P3L19iAlMRlFjnZ34v+s/8ddJEsjGfNM6NWjRw+MjIxYsmQJCxYsYODAgerGlGrVqnHx4kWCgoK0XqbPPf2FvCyz27dvc+dOfh//yMhIkpKS1BlGlSpVYvfu3S8V29P93b+fP/D04cOHNcocPHgQPz8/xo0bR40aNQgODubWLc0xGsqVK8eRI5qDfT//f13v/aJtXvXzeUpXnQwNDSlbtixubm54eXlx48YNrX0GBATo3aednR0eHh4aMSoUCk6ePKl3m3LlyqFQKDhxIn+A4suXL2tMXnDixAkUCgVTpkyhTp06lC1bViN2fapWrap3plAzMzPWrFlDrVq1aNKkCRcu5HWzeu211zA1NeX777/Xud3TuObMmUPDhg05e/YsZ86cUb/GjBnDnDlzdG4LeY2EoaGhWhM6XLhwgapVq+qN1dbWVuP1qt02jY2N8Qz05do5za5s185dwjfkFWZVU6lQPDO7pjr+wyfJVSio0qDWK8X1vKcTQjx9BQYG4uTkxNGj+YMQ5+TkcOrUKSpVqqR3P5XCwjS2ATh65Ih6GxMTE0JDQ7XLHDumsd+nDWe3b99mxvTpWhmRRcHI2Bg3fy+iL2oOOB598SqeOrL6zCzMeOOr0fSf9J76VblJHRw9XOg/6T31wMxewf4kPopD9UwXmISHsVjZ2xTNQNo5OSgTk/JfcfEoU9Mw9ntmAF5DQ4y9Pcm9r78Lri6GLs46M8tMK4aiSs9AcSP6Xwb/YsYmxniX8efKmYsay6+cicQ/tMzL70iVN15VaWBkbIyLnyd3IjXHjrkTeR33Mi8/cHLsnQdY2hfcKF+UrCws8HF3V78CvbxwsrPn6IXz6jI5CgWnLkVRKbjgySoWbdrInHVrmTZmLOUDX+5cqVLlN9gVF2MTE/yDy3DhlGbD0YVTZwkuH6p3u8N79vPHj78x7OP3qVJb9xihxeG/cuz9f2BkbIyrnye3IzVnM7598ZrOyWpMzc3o++Uo+kwcqX6FNa6Jg7szfSaOxD1Q8/s1NjHB2sEOZa6SaycvElhVdw+KwpSrUnI/+TFBTprZokHO3lqD5T91O/EhNuaWmBrlXz+drexQqpQkZeqftAsMMCpgXLTCkqtSci/pMUEu2nW6laD7mnsr/gG2z9XJxcr+SZ30T9LlYetMSlZBdS4cxiZ597JXte5lo/ANefnrrkqFxr2sX2gZ4mIea3QRjr3/EBsHu/8/DWei1JEjT+hlbW1Nz549+fTTT0lKSmLAgAHqdWPHjqVOnTqMGDGCIUOGYGVlRVRUFDt37uTXX3/V2lfz5s2pVKkSffv2ZerUqSgUCoYPH06jRo3UXQMnTJhAs2bNKFOmDL169UKhULB161adg8Q3b96ckJAQ+vfvz5QpU0hOTmbcuHEaZYKCgrh9+zbLli2jZs2abN68WWuQ/HfffZc33niDGjVqUL9+fRYvXszFixe1xr561tChQ5kyZQqjR4/m7bff5uTJk1ozk77q5/OUubk5b7zxBj/++CPJycmMGjWKHj164P7k6fnEiRMZNWoUtra2tGnThqysLE6cOEFCQoJWFtTz9fz2228JDg6mXLly/PTTT1qzeD4rJCSE1q1bM2TIEP744w+MjY157733NLIDy5Qpg0Kh4Ndff6VDhw4cPHiQmTNn6t3nU61atdKa4OBZpqamrF69mh49etC0aVN2795NWFgYP//8MyNHjiQ5OZn+/fvj7+/P3bt3WbhwIdbW1nz77bcsWrSIL7/8UiNLCmDw4MF8//33nD17FpVKxYQJE+jXrx/ly5fH1NSUffv2MXfuXI1stfT0dE6ePMnXX3/9wjr9G/XaN2XVrwvwCvTDp2wAJ3YdJCk2gZot8rp/7liyjuT4RF4bOQCAI9v2Ye/sgLNX3jFx69J1DmzcRZ02jbX2fTLiEOVqVsaykAeaNjAwoHfv3sybNw/fJw1q8+bPx9zcnNatWqnLfT5hAq4uLuqJMnr16sVbb7/N/AULaNyoEXv37ePosWPM+fNP9TZ9+/Th8wkTKFe+PJXCwlizdi0xMTHq8foUCgVjxo7l8qVL/Pzzz+Tm5hL7ZHwkOzs7TExMAIiNjSUuLo67Txrsr127hqWlJe7u7lrdnF9WjdYN2DJrOe4B3ngG+XJuz1FS4hKp3DQvO+nvFVtJTUii7du9MDA0xMVbc/BfS1srjEyMNZZXblqXU7sOErF4A1Vb1CMhJpajGyOo1kL3GHZFIev0WcxrVUeZmIgyIQmz2tVRKRRkX8oftN2idTOUqWlkHchrhDerU5PcBzHkJiZhYJo35pmRizOZEdqzxJpWKEd25KVie3rauFNLFk+djU+QP/4hQRzasY+E2DjCW+WNe7hp0UqS4hLp+15e9/cDW3Zj7+yE25Pv5UbUVfas30aDds3U+1TkKHh4J+/hQK4il6T4BO7duI2phRkuHroHri5MVVqEs2vOalz8PXEP9CHy7xOkxCdRoXFew/jh1TtIS0ym+aDXADi78xA2zvY4erqRq1Bw5chZrp+MpPWwXup95ioUxN9/rK5TamIyj28/wMTMFHs3/RmkhcXAwIDerVszb8N6fNzyGtTmb1iPuakprcLzx/eaMHMGLg6OjOyZF/vCTRuZuWolk4ePxMPZhdgn1zJLc3MsnwwJMH35MsIrV8HNyYn0zAx2HD7MqahIpo35WCuOotamWwdmfj+NgLJBBJUPYc/mHcQ9iqVZ+5YALJ/zFwlxcQwd8y6Q13A26/tpvD7sTYLKlSXxSdaaqZkplv8yq/yf+C8ee6/CwsQMb7v8DHRPW2eCnb1JzkzjYap2Fn1JqtqqHjtmr8LV3wuPMr5c2Hec1Pgkwp58VwdXbSctIZmWQ7pjYGiIk7fmucvCxhojE2ON5THX75CamIyLjwepickcXb8blVJF9Tb/YIiKf+DgzfO8VrkJ95IfczvhITV9ymFnbs2x23kPYVuWrYWtuRWrzuUNt3L2/lUal6lG17DG7L52AisTC1qH1uHk3cvqLpsNA6twL+kx8enJGBkaEeLiQ1WvYDZcLJ4ZRA/cPEuPKs24l/iYW4kx1PYpj72FDUdv5z30aRVSGztzK+Jq3XEAAQAASURBVFaczZsh+sz9qzQNrsFrlZuy68pxrEzNaRNalxN3Lqnr1Cy4BrcTHhKXloiZiSn1/MPwtHVi/YWim/TqWQ3aN2fFr/PwLuOHb9lAju3aT2JsPLVbNgRg2+K1JMcn0uOdgQAc3rYHe2dHXJ7cy0Zfusb+DTsIb9NEvc/aLRtxaOseNs1bTt02TYl78Ii9a7cS3kb35BZCFAdpPBMFGjRoEHPmzKFly5Ya3Q0rVarEvn37GDduHA0aNEClUlGmTBmN2TOfZWBgwLp163jnnXdo2LAhhoaGtG7dWqMhqXHjxqxcuZJJkybx7bffYmtrS8OGDXXuz9DQkLVr1zJo0CBq1aqFv78/06ZNo3Xr1uoynTp14v3332fkyJFkZWXRrl07xo8fz8SJE9VlevbsyfXr1xk7diyZmZl069aNYcOGFTiYvq+vL6tXr+b9999nxowZ1KpVi6+//po333zzH38+TwUFBaln8oyPj6dt27Yag+8PHjwYS0tLfvjhB8aMGYOVlRVhYWEaA/fr8sEHH/DgwQMGDBiAoaEhb775Jl26dCEpSf8govPmzWPw4ME0atQINzc3Jk+ezPjx49Xrq1Spwk8//cR3333HJ598QsOGDfnmm2/o379/gbG8/vrrjB07lsuXLxMSons2OxMTE1asWEHv3r3VDWjDhw+nbNmy/Pjjj3Tp0oWMjAz8/f1p3749o0ePZsOGDcTFxdGlSxet/QUHBxMWFsacOXP4/PPP8ff354svviA6OhoDAwP1/99//331NuvXr8fX15cGDYr2BjEsvAbpKWnsWb2FlIRk3Hw86PfJcBxc8n5ApCQkkxibf4OuUinZsXQ9CY/iMDQ0xNHdhZZ9O1OzeX2N/cbef8itS9cZ8Nk7RRL3G/37k5WVxbfffUdKSgoVK1Tgt19/1egyHBMTg+EzXX8rV67MV199xe+//87MmTPx9vbmm6+/1mjsbNmyJUlJSfz555/ExsZSpkwZfpk6Vd1d99GjR/z9d14DTZ++fTVimjlzJjWqVwdg9Zo1zJ49W71uyFtvATDh88/p0KHDP6pzaO0qZKSmc3j9LtISk3H2cqfr6Dexe9J9JS0pmeT4xFfap62TPd0/GsKeJRtZ8NnPWNvbUq1lfWq1a/yPYvwnso+fxsDYGIumjTAwNyM35iFpqzfAM5lXhjY2Go1fBmamWLRoktfdMzuL3EexpK1YS26M5oy8xn4+GNraFPksm8+qWr82aclpbF++geSEJDx8vXhr/Pvqrs7J8UkkPM7vGqxUqtj81yriHz7G0MgIJ3cX2vd7jbqtGqvLJMcn8uPoCer/71m3jT3rtlGmQggjvyr6BpngWmFkpqVzYuNe0pJScPJ0o8O7/bB1sgcgPSmVlLj883muIpeDK7aTlpiMsYkJjl6utBvVD/9K+RldaYkprPgy//pyZvtBzmw/iGdZf7qMGVTkdQLo374DWdnZfDd/HinpaVQoU4Zfx36C1TMPamJi4zAwyO8osWrXTnIUCsZOm6qxryFduvJWt7wGnPjkZCbMnEFsYiLWlpYE+fgwbczH1A4LK5Z6PatO4/qkJqewbvEKEuMT8Pbz5cPJ43B2cwUgMT6BuEf5EyREbN5Bbm4uC36bzYLf8s9h9Vs04e2PiuZ8XpD/6rH3skJd/PitS/7DyVH1uwOwJeowX0XofxBYEsrWqkRmajrHNuzJ+6683Oj4Xn91F8v0pBRS4l9t8HiFQsHhNTtJfpyAibkp/mFlaTm4O2aWLz/Uyr9xPuY6lqZmNClTHRtzSx6mxLPwxFYSn2Rc2ZhZYmee/4AwO1fBvOOb6VC+HsPDu5KencWFmOvsvHJcXcbUyISOFRpgZ25FTq6Cx2mJrDy7h/MxLzcz5L917sF1LE3NaRZcHRszK2JS45l/fDOJGXl1sjWzxN5Cs05zjm6kY4X6jKzfjfTsLM4/uMb2y8fUZSyMTeka1ggbM0syFdncT37MrMPruZv0SOv9i0KlejVJS01j96rNpCQk4ebjyYBPRz5zL5tEYmy8urxKpWL7knXEP4rF0NAQJ3cXWvftSq0W+ffc9s6OvPnZu2xesJJpH36JraM94W2b0qhTa633/09TSrfN0sRA9TIDOAkhitzEiRNZt24dZ86cKelQityYMWNISkpi1qxZJR2KXrVq1eK9996jT58+r7TdyrMv1/X4f0X3ys1ISS54tqT/RTa2tsw+sr6kwyhUQ+p0Iumn6SUdRqGyGz2CLVGHSjqMQtW2XDjT9q8o6TAK1agGPUg+rn8ogP9FtjWrc+zWxRcX/B9Sy6/Cf+7Yg7zjr970oS8u+D/k4IiZTD+4qqTDKFQj6r3GuK2l977vn/iqzdt8vPn3kg6jUH3bbhhrnszi+V/RtVLjkg7hH0vesLWkQ9DJtmObkg6hRMiYZ0KIYjdu3Dj8/PzIzc0t6VB0evToEa+99hq9e/cu6VCEEEIIIYQQQpQw6bYphCh2dnZ2fPrppyUdhl6urq46x9oTQgghhBBCiGKhUr64jCg2knkmRCkxceLE/xddNoUQQgghhBBCiP8l0ngmhBBCCCGEEEIIIYQe0m1TCCGEEEIIIYQQojSR2TZLFck8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBBCD+m2KYQQQgghhBBCCFGaqKTbZmkimWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShPptlmqSOaZEEIIIYQQQgghhBB6SOOZEEIIIYQQQgghhBB6SLdNIYQQQgghhBBCiNJEqSzpCMQzJPNMCCGEEEIIIYQQQgg9pPFMCCGEEEIIIYQQQgg9pNumEEIIIYQQQgghRGkis22WKpJ5JoQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0kW6bpYpkngkhhBBCCCGEEEIIoYc0ngkhhBBCCCGEEEIIoYeBSiW5gEIIIYQQQgghhBClRfLS1SUdgk62vbuVdAglQsY8E0KIQvTzvmUlHUKher9RL6JibpR0GIWunHsg/ZZ+UdJhFKpFvSeQ9PVPJR1GobL7dDTvrvu5pMMoVL90fp/+S78s6TAK1cLen5Ny+05Jh1GobHx9/pPn8yn7lpZ0GIXug0a9mX5wVUmHUahG1HuNetOHlnQYhergiJmMXDulpMMoVL91+YDBK74p6TAK1Z89PuGNZZNKOoxCtaDX+JIOQfxHSLdNIYQQQgghhBBCCCH0kMwzIYQQQgghhBBCiFJEpVKWdAjiGZJ5JoQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0UalKOgLxDMk8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBBCD+m2KYQQQgghhBBCCFGaKKXbZmkimWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOZbbNUkcwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJSlnSEYhnSOaZEEIIIYQQQgghhBB6SOOZEEIIIYQQQgghhBB6SLdNIYQQQgghhBBCiNJEKbNtliaSeSaEEEIIIYQQQgghhB7SeCaEEEIIIYQQQgghhB7SeCaE+J/VuHFj3nvvvZIOQwghhBBCCCEKl0pVOl//T8mYZ0IIUcIu7D3G2e0HSU9KxcHThXo92+AR7Kez7L3LN9k4Zb7W8p5fjMTBwwWAG6ciOb11P0mP4lHm5mLn6kTlFuGUrVu5KKuhYcvaTaxbtoqE+Hh8/P0YNPJtKlSuqLNsfFw886bP5vqVqzy4e5923Toy+J2hGmUO/32QVX8t58G9++QqFHh4e9GpR1eatGpWHNVRaxZUg3blwrGzsOFe0iP+OrWdK49v6y0f7hdGu3LhuNk4kZGTybkH11h6eiep2RkAeNm60K1SY/wdPHGxtuevU9vYfvlocVVHzaxBXUyrhGFgbk7u/QdkbI9AGRv3go3MMG9cD5OQIAzMzVEmJpG5+28U12/mra5bE+OQYIycHFEpFOTevU/mnv0o4xOKoUaa6gdUomlQDWzNrYhJiWPN+X3ciLuns2yfai2p7VtBa/mD5Di+jVhY1KG+tGZBNWhbrq76WFx8akeBx2Jdv4rPHYvXWfbMsVgcVCoVfyxayNrNW0hJTaFCaChj3xlFGX//Arfbvf9vZs6fz90HD/D28GD4wDdpUr++en1aejoz589nz8EDJCQmEhIUxAfDh1MhJFRdZuL337Np5w6N/VYMDWX+r78Vah3/i+fzi3uPcW77IdKTUnDwdKVuz9Z663T/8k02TVmgtbzHFyOwf1Knm0/qlPwoHmWuEjtXR8KKuU4A5yKOcGrbAdISU3D0cqVh73Z4lfV/4Xb3r95i9Xd/4uTlSp8v3lEvz1XkcmLLPqIOniYtIRkHd2fCu7fCP6xsEdbi1VX2CKJP1ZaEuvribGXPx1t+Z//NsyUdll4NAirTLLgmduZWPEiOY/X5PVzXc/5+vVor6vhp32s8SI7lq915x2W4fxi1fMrjaesMwO3Eh2yMPMCthJiiq8RzGpepRquQ2thbWHM/6THLzuziauxdnWUH1mxHvYBKWsvvJT1mwvY/AfiocR9CXLX/Js/dv8a0AysLN3g9mgZVp21o3jXpftJjFp/ezpXHd3SWHVy7Iw0CtP/e7yU95tOtMwEwMjCkffl61A+ohL2FLTHJcaw4u5vzMdeLtB5CFEQaz4QQRSY7OxtTU9OSDqNAOTk5mJiYlNj7Xzt+gUPLt9GgTzvcg3yJ/PsEm6f9Rc+JI7Bxste7Xa9J72Bqbqb+v7mNlfrfZlYWVGvbEHt3ZwyNjLh1/jJ7FqzDwtYKnwpBRVkdAA5E7GPub7N4+/0RhFYsz/aNW5g0djy/LpiFi5urVvmc7Bzs7O3o/novNqxcq3Of1jY2dH+9J16+PhibGHPi8DF+/e4n7B3sqVqrelFXCYDavhV4vVpr5p/YzNXYOzQJqs5Hjfry8ZbpxKUna5Uv6+zD23U6s/j0dk7fu4KDhQ0Da7ZnUK0O/HJgBQCmxiY8Sk3k2O1I+lZrVSz1eJ5pnZqY1apG+qbtKOMTMKtXG6ve3UiZNQ+yc3RvZGiIVe9uqNLTSV+zCWVyCoa2Nqiys9VFjHx9yD55htwHD8HQAPNG9fP2+8d8yFEUT+WAql5l6RLWmJVnI7gZd5/wgDCG1u3MN7sXkpCRolV+zbm9bLx4QP1/QwNDxjZ9nTP3rxRbzC9S27c8fau1YsGJLU+OxWp82KgPn2yZ8YJjcQen713B0cKGATXb8WatDkx7ciwWhwXLl7Nk9WomfPgRvt7ezFmymBFjx7J63jysLC11bnMuMpJPJ09m6IABNKlXnz0HD/Dx5EnM+XkqFcuVA2DyT1O4Hh3Nl2M/xsXJiS27dzF8zBhWzpmLq7Ozel/hNWvy+Ycfqf9vYly4t8H/xfP59eMXOLx8G/X7tMMtyJeov0+wddpf9Jg4AusC6tRj0sgC61T1SZ2MjIy4df4K+4qxTgBXjp3j76VbaNyvA55BflzYe5wNPy/g9cnvFvhdZaVnsuPPVfiUCyQ9OVVj3ZG1O7l0+AzNBnTBwd2FWxevsvm3xXT/9G1c/TyLuEYvz8LEjGtxd9ly6RBftxn64g1KUDWvELpVasLyM7u5EX+P+v6VGB7elcm75us8f686t4f1F/er/29kYMgnzfpz+l7++TvY2YeTdy+xMv4+itxcmpetyYjwbny1ewFJmala+yxsNX3K0atKcxaf2s612Ls0LFOVdxv05PPts4nXcf5edmYXq8/v1ajThJaDOHn3knrZjENrMDI0Uv/f2tSCCS0HceKZMkWplk95+lZtxcKTW7gSe5cmZarxQcM+fLL1d511WnxqOyvP7lb/39DAkMmt3+LYnUj1sm6VmhDuV5G5xzfzIDmWMI8yjKrfnUm75nM7sfgaOkXxS0hIYNSoUWzYsAGAjh078uuvv2Jvb693mwEDBrBggeaDm9q1a3PkyBH1/7Oysvjwww9ZunQpGRkZNGvWjBkzZuDt7f3SsUm3TSH+I1QqFd9//z2BgYFYWFhQuXJlVq1aBcDevXsxMDBg9+7d1KhRA0tLS8LDw7l8+TIAly9fxsDAgEuXNC+yP/30E/7+/qiepOdGRkbStm1brK2tcXNzo1+/fsTGxqrLN27cmJEjRzJ69GicnZ1p0aIFABs2bCA4OBgLCwuaNGnCggULMDAwIDExEYC4uDh69+6Nt7c3lpaWhIWFsXTpUo1Y0tLS6N+/P9bW1nh4eDBlyhStz8DAwIB169ZpLLO3t2f+/PkAREdHY2BgwIoVK2jcuDHm5ub89ddfL/X+ReXczkOE1q9KuQbVcfDIy1KwdrAlct/xArezsLHC0s5G/TI0zD+de4UEEFC1HA4eLti5OlKpWV2cvNx4cO1WUVcHgPUr1tK8bUtatG+Nj78vg98ZirOLC9vWb9ZZ3s3DjcGjhtKkdXMsra10lgmrWok6Devh4++Lh5cnHV7rjH9gAJHnLxZlVTS0CanDvhun2XfjNPeTY1l8ajtx6Uk0C66ps3yQszeP0xLZceUYj9MSuRJ7h4hrJwlwzP8RdTP+PsvO7OTI7Yvk5OYWV1U0mNWqSubBYyguX0P5OI6MjdsxMDHGtEKo3m1MK1fEwMKc9FUbyL17H1VyCrl376N8lH8+SF++hpzzkShj41A+iiVj83YM7WwxcncrjmqpNS5TjSO3LnDk1gUepsaz9vw+EjJSdD7JB8hUZJOSla5++Tq4YWFiztFbxXesvUjrkLrPHYs7iE9PomlwDZ3lyzw5FndeOUbsk2Nxz7WTBDh6FFvMKpWKpWvXMLB3H5o2aEBQQABffDSGzKxMtkVE6N1u6ZrV1K5enYG9++Dv68vA3n2oVbUqS9asASAzK4uI/fsZNWQI1SpVwsfLi7f7v4GXuwerNm7Q2JeJiQnOjo7ql52tbaHW8b94Pj+38zAh9asR+qRO4T3bYO1gR+S+EwVuV1CdPJ+pk62rI2HN6uDo5UbMNf2Zk4Xt9PaDVGhQnYoNa+Lo6UrDPu2wdrTj3J6CM38jFq4jpHYl3Mv4aq27dOgMNdo1xr9SSN531aQ2fhWDOb39gI49lZwjty8y++gG9t04U9KhvFDToOocjj7P4VvneZgSz+rze0nISNGZtQS6zt/uWJiYc/jWBXWZBSe2sP/mWe4lPeZhajxLTu3AwMCAEBft77QotChbiwM3z7L/5lkepMSx/MwuEjKSaVymqs7yGTlZJGemqV9+Du5Ymppz4OY5dZm07EyNMuXdAsjOzeHEneJpPGsdWoe/b5xm340zPEiOZcnpHcSnJ9MsSPc1KSMni6TMNPUrwNETS1ML9t/Iz4AM9w9jY+RBzj24xuO0RCKuneR8zA3ahNYpljqVGkpV6XwVoT59+nDmzBm2bdvGtm3bOHPmDP369Xvhdq1bt+bBgwfq15YtWzTWv/fee6xdu5Zly5Zx4MABUlNTad++PbmvcP8tjWdC/Ed89tlnzJs3j99//52LFy/y/vvv8/rrr7Nv3z51mXHjxjFlyhROnDiBsbExb7755v+xd9fhUR1tA4d/u5GNuxMnIYKHEIK7S2lpoS1Qo6UC9fajrm/lrVE32lJKsUKB4hQLxSU4BElISIi7++73R2DDJrshtLHyPvd17QU7O+fsTI7tmfPMDABBQUH06NGDRYsW6axz8eLF3H333SgUClJTUxk4cCDdunXj8OHDbNq0ifT0dCZPnqyzzIIFCzA2NmbPnj189913JCQkcPvttzNx4kSOHTvGww8/zMsvv6yzTFlZGT169GDdunWcOnWKmTNnMn36dA4cqP0R+/zzz7Njxw5WrVrFn3/+SVRUFNHR0X/rbzVnzhyeeOIJYmJiGDlyZKO+vzlUV1WRmZiKV6juk3bP0PakxekPdb9qxdvf8stzH7L2k59JPhtvMJ9Go+FyzEXy0rNwD/RtimI3qLKykrjzF+jWM0wnvVvPMM6eOmNgqRuj0Wg4Hn2U5KTLdOyivytoUzNSKvF18KjXXeBU2kUCnfQ/sbqQlYSDhQ1d3Wu2r42ZJRHeIRxLudDs5W0shZ0tSisrquITahOrq6lKvIxRO8OREsaB7alOTsV85BCsn3wYq4fuQdUnAhQKw9+lqolC0ZSVNVXxr8tIocTLzpVzGboNDecyEnUaMRsS6dOJ85mJeqMcWkPNvujOqTr74sm0iwQ6eeld5uq+2OWafbGndyjHW3BfTE5LJTsnh8jw2khRU1NTwrp04cQZww2TJ86coVcP3ejSyPBw7TLV1dVUq9WYmuhGOatUphw7dUonLfr4cYbfcTu33Xcv//nkY3Jym64L8c14Pq+uqiIrMQXP0PY66Z6h7Um/Tp1Wvv0dC5/7iHWfLCDlOnVKjrlIfnq2wa6gTa26qoqMSyl414ly8+4YQGoDDXhndkWTn5FDr1uGGFyvsYluNKOxiQkpF1qmofNmc/X8HVPn/B2Tfgk/x8adv3v7dOJcxqUGz9+mxsYYKZWUVDb/tclIqcTH3o3T6brHxOm0eNo7Ni76pb9/V2LSE/RGdF3Vz68LBxPPUFFtIHq8CRkplfjau3Mq7aJO+qm0OAIM/D6qa4B/N86kXyS7JF+bZqI0olKtG6VeWV1JoLP+65y4OcTExLBp0yZ++OEHevfuTe/evZk3bx7r1q3TBn0YolKpcHNz074cHBy0n+Xn5/Pjjz/y8ccfM2zYMLp3786vv/7KyZMn2bp1a6PLJ902hbgJFBcX88knn7B9+3Z69+4NgL+/P7t37+a7775j5syZALzzzjsMHDgQgBdeeIGxY8dSVlaGmZkZU6dO5csvv+Ttt98G4Pz580RHR/PLLzVj/HzzzTeEhYXx7rvvar/3p59+wsvLi/Pnz9OhQ82YHgEBAXzwwQfaPC+88AJBQUF8+OGHQE1D3alTp3jnnXe0edq1a8dzzz2nff/444+zadMmli9fTq9evSgqKuLHH3/kl19+0UazLViw4IbCbK/11FNPcdttt+mkNfT9+pSXl1NeXq6TplKp9OY1pKyoBI1ajbmNbrSVhY0VSQX6uw5Y2lozYPp4nL09qK6q5vz+46ydu4AJz96HxzVjtZSXlLFwzseoK6tQKJX0v3ssXnVugJpDYX4B6mo1dg72Oum29nbk/sOxroqLiplx+zQqKypRGil5+KlZ9Rrpmou1ygIjpZKCOl068suKsDXT/3e9kHWZb/atZFbf2zExMsZYaUT05bMsjN7YEkVuFKVlTVc5TXGJTrqmuASFreGoHKW9LUpbLypPnaV42SqMHOwxGzEElErKd+/Xu4zZ0IFUJV1GnXmdsdSakKXKvGa7levWr7C8GGvV9W/UbVSWhLj48svhtrPNru6L+WXFOukFZcXYmumP3IzNusy3+1Yxq+8k7b545PI5FkZvaokiA5B95fh3tNM9Nzja25Oanm54udxcHO3rL5N9peHL0sKCLqGh/LDoV/y8vXGwt2fzjh2cOnsWr3bttMv0iejJsIEDcHNxJSUtjW9//plH/u95fv3q6yYZXuBmPJ/X1ElTr07mNpb1uixeZWFrTf/p43H2dqe6qpoL+4+zbu4Cxj97H+7X1KmipIxf53xMdWU1SqWCvnePrddI11xKC2u2lYWtlW7Zbawoyddfr7z0LPb8vpnbX5iJ0shIbx7vToEc/XMP7YJ8sXV2ICnmIhePxaBWq5u8Dv8LrK6cvwv1nL9tVL7XXd5GZUmoqx8/H9Yf9X7VLR0HkF9axNmM5m/ktDK9+luizvm73PD5+1q2ZpZ0cmvPvP1/GMzj5+COp50LCw5vMJinKVmb6r8m5ZcXY2tmZWCpWrZmVnRxD+DbfbrDdpxMu8iooEjOZSSSUZRDqKsf3dsFoWzgIZ1oOYbug270Xqiuffv2YWtrq3P/FRkZia2tLXv37iUoKMjgslFRUbi4uGBnZ8fAgQN55513cHGpGS4mOjqayspKRowYoc3v4eFBp06d2Lt3LyNHNm7oFGk8E+ImcObMGcrKyrQNS1dVVFTQvXttGHiXLrXdlNzda7rrZGRk4O3tzZ133snzzz/P/v37iYyMZNGiRXTr1o3Q0FCg5qSzY8cOrKzqXwjj4uK0jWfh4boh2ufOnaNnT91ubRERETrvq6uref/991m2bBnJycnaE7KlpaV2/RUVFdqGQQAHB4cGT6ANqVvG632/Pu+99x5vvvmmTtrrr7+O7WDDXd0M0/0hoNFoUKD/x4GdmxN2brVj+Li196I4N5/jf+7VudkyNTPljlcfobK8guSYi+xdvhlrZ3vaBfn9jfL9HXXLr0HxD3/wmFuYM/eHrygtLeXEkWP89PU8XD3c6dxdf/e75lB3giEFCgwFr3vYODE9bDSrT/3FybRY7MysubP7cO7vOY4fDq4xsFTzMukYjPnoYdr3xb+trvlPvUoo9KTpfq4pLqF04xbQaFCnZaCwskQVGa638cxs5BCMXJwoWrjsH9bgb9JXv0aI8A6ltLKck6mxTV6kf0zP9mloX5wWNoo/Tv3FybQ47MysmdJ9GPf1HMuPB9c2S/E2btvGu5/O1b7/9D81D0zqngc0msacG+ouo5vy1pwXeOujjxh9150YKZUEBQYyasgQzl6ojawbMWiw9v8Bfn6EdujAuGlT2X3gAEP697+xyt1QWf/95/O65W9oorW6dXJt70VRbgHH/9yr03hmYmbKpCt1SomJZ//yzdg42+PRYtcoqHce0Gj0Bs+q1Wo2ffcbkbcMxf6autU14K5xbF+wioUvfQoKBbbODoT0DSNmz5GmLfb/HN0drqHr7rUifTpSWlnOiRTD5+9hgT3p4RnEZ7t+o0rdckMn1C1/Y+vUx7cLJZVlHG1gDM5+fl25nJdBfE7qPyrjjdLo3U7Xr1V/v66UVJYRnazbxXTRkc3c33Mc7495FA2QUZTLrvhj9Pfr1oSl/hfQtM3Gd0P3QW+88cY/Wm9aWpq2wetaLi4upKUZHutu9OjR3HHHHfj4+BAfH8+rr77KkCFDiI6ORqVSkZaWhqmpKfZ1Hsa5uro2uN66pPFMiJvA1aea69evp901T9qh5ilAXFxN955rB8a/erNydVl3d3cGDx7M4sWLiYyMZMmSJTz88MM63zF+/Hj++9//1vv+qw1xQL0GJ303Rpo6v7w//vhj5s6dy6effkrnzp2xtLTkqaeeouLK4ON18xuiUCjq5a2srB+yXreM1/t+fV588UWeeeYZnTSVSsXX+/UPeK+PmZUFCqWS0jpP8EsLi+s96W+Ii58nFw6c0ElTKJXYujgC4OTlTm5aFkc37mr2my1rWxuURkrycnJ00vNz87Gzt/tH61Yqlbh71nTV8A9sz+VLSfy+aFmLNJ4VlpdQrVZja67beGxjZlkvGu2q8aH9uJCVyIazewFIIoPyQxW8OvwBlp/Y3iIDE9dVeSGO6pRrfiRciaBQWFmgKa59aqywNNd5X5emuBhNdbXOXbQ6KwellRUolXBNpIXZiMGYBLanaOEyNIUtW+fi8lKq1WpszHQHo7dWWdSLZtAn0qcjh5NiqG5DP15r90Xdc0TNvqh/m9Xsi0lsOLsPqN0XXxl+PytO7GiWfXFA7950Cq59mFBx5VyclZuDk6OjNj0nLw+HOj9mr1UTZaZ7PsnJy9VZxtPDg+8/+YTS0lKKS0pwcnTkxf+8jYebm8H1Ojk64u7iSmKy/ln7btTNeD6vqZOiXpRZWWExFjbXjyi5ysXPk9jr1imTYxt3t0jjmbl1zbYqydftyldSWIy5nnpVlpWTkZBMZmIqUYvWAVd+l2g0fPHgq0x89j68QtpjYWPJuMenUVVZSVlRCZZ2NuxdsRkbJ8P7tzCs6Mr521qle/xYqSwoLDd8fboq0qcTB5POGDx/Dw0IZ0SHCL7cs4KUgiy9eZpaUcWV83edKDNrlYXB8/e1+vl1Yf+lU1QbiGY0NTKmp1eIzqQJza3wSp3s6kSZ2TSyTv39u7I34US9OhWWl/D57t8wURphpbIgt7SQyV2HklWc15TFF3+TofsgQ9544416jW11HTpUMz6ovgdq13vQNmXKFO3/O3XqRHh4OD4+Pqxfv75eb6MbWW9dMuaZEDeB0NBQVCoViYmJBAQE6Ly8vBo/NsDUqVNZtmwZ+/btIy4ujjvvvFP7WVhYGKdPn8bX17fedzQUoRUcHKw9GV51+LDuQMO7du3illtuYdq0aXTt2hV/f38uXBMxEBAQgImJic6MKbm5uZw/r/vkzdnZmdTU2idtFy5coKTk+jfI1/t+fVQqFTY2NjqvGw1VNjI2xtnbnaQzumMXJcdcxK1947dbdlIaFrbWDWfSaKiuav6nqiYmJrTvEMixw0d10o8dPkJwp9Am/S6NRqO3cbQ5VKvVJOSk0MnNXye9k5u/wenlVcYmqOs05l5932q9DioqUefm1b6yslEXFWHsd00XRqUSY29PqpNTDK6mKikZZZ3GUKWjPerCojoNZ0MwCQqkeNFyNPmGx2dpLtUaNUl56QQ563bRDHL2Jj7HcP2gZsIHZyt79l861WC+llazL6Ya2Bf1j0NlamxS78FCc++LlhYWeLVrp335+/jg6ODAgejaKJzKykqOnDhBl9COBtfTJTRUZxmAA9HRepcxNzfHydGRgsJC9h0+zMA+fQyuN68gn/TMDJwcHQzmuRE34/ncyNgYJ28PkuvU6XJMHK43VKfUel0k69HUjBnWEoyMjXHx8SDxjG5EUuLpWNwD6g8ab2qmYupbT3D3G7O1r86DemLv5sTdb8zGzV/3b2FsYoKVvS3qajWx0afx7x7SrPW5WV09fwe76J6/g118iM9u+Pwd6OSJi5U9+xJO6v18aGA4o4Ij+XrvShLzDHcbb2rVajWXctMIddVtJA519SMuW/9viauCnL1xtXbQGVS/rnCvEEyMjNnfghPcVKvVJOSm0rHONamjmz+xBn4fXRXs4oObtWODk1dUqqvJLS3ESKEk3DOYI8kNj3slWsaN3gfNnj2bmJiYBl+dOnXCzc2NdD1DOWRmZuLq2vgJp9zd3fHx8dHez7m5uVFRUUFunbFOMzIybmi9EnkmxE3A2tqa5557jqeffhq1Wk2/fv0oKChg7969WFlZ4ePTuEF4b7vtNh599FEeffRRBg8erBPFNmvWLObNm8ddd93F888/j5OTE7GxsSxdupR58+ZhZGAMkIcffphPPvmEOXPmMGPGDI4dO6ad/fJqS39AQAC///47e/fuxd7enk8++YS0tDRCQmp+cFpZWTFjxgyef/55HB0dcXV15eWXX9aZvQtgyJAhfPnll0RGRqJWq5kzZ45OtJ0h1/v+5tRleB+2/7QSFx8PXNt7ceavwxTm5BM6sKar64GVWyjOK2TIAzVPTU5s3Ye1ox32Hi6oq2vGk7l45AwjHql94nJk4184+7TD1tme6qpqEk9d4Py+4/SfOq7Z6wNwy+Rb+fSdjwgICiSoYwh/rttIVkYmIyeMAWDh9/PJzszmqZdrx5m7eKHm5qystIyCvHwuXojDxMQYL9+afXfFr8sICArErZ07VZVVRO8/RNTmbTzyzOwWqRPAxnP7eSTyVuJzUojNuszg9j1wtLBl24WaxuDJXYdib27Nd/tXA3A0+TwPRIxnaEA4J1JjsTO3ZlrYSOKyLpNXWhPJYaRU0s7GGQBjpRH25jZ427lSVlVBRlHTDWbekPKDRzHrE4E6Jw91bi6qPr3QVFZRcbq2C4X5+FGoC4soj6qZNa7iyHFU4d0xGzGYisNHUdrbo+oTQcWh2kZTs5FDMO0YTPGKNWgqKlBcHV+tvAJa6CYZICruCNN6jCIxL52EnFT6+HbG3sKaPVdmKhsX2hdbMysWHdmss1ykTycSclJJLWy5Mdoaa9O5fTwceSvxOanEZl1mUPswHC1s2X6hZhKVO7oOwd7cmu+vjItTsy+OY0hAD06mxmFnbs3UsBHEZSVr98XmplAouOvW25i/ZDHeVxrU5i9ZjJnKjFFDagdgf+2/7+Pi5MTsGQ8CcOettzHzmaf5eelSBvXpQ9TevRw4coQf536qXWbfoUNo0ODj6UVSSgqff/89Pl5eTBg5CoCS0lK+/+UXhvTvj5ODAynpaXz900/Y2doyuG+/JqvjzXg+7zK8Nzt+WonTlTrF/BVNUU4+IQNrhj84uHIrxXkFDL5Sp5PX1Km6uprY/SeIPxLD8EdqJxc6unEXzj4e2Djbo9ap09gWqRNA95F9+XPeClx82+He3ptTOw9RlJNP50E1w0rsWbGZ4twCRjx0BwqlEkdP3Zsrc2srjEyMddLT4pIoyivA2cudorwCDvyxDY1aQ4/RTdkt+J8zN1Hhaeusfe9h40SgkycFZcWkt9B1p7G2x0ZzT/hoEvPSic9Joa9vFxwsrNkVX9OANCG0H7bmVvXGb+zt05n4nBS95+9hgT0ZG9KHBYc3kF2Sj7Wq5tpUXlXZIgPsbzl/kBkR40nITeViVjID2nfDwcKGqLia6+dtnQdiZ27NTwfX6SzXz68rcdnJDUbJ9fPrytHk8xRXlDZrHeradHY/D0dOrPl9lJ3M4Pbda65JsVeuSV2uXJMO6I7VNsC/G7FZl0nOz6y3Tn8HD+wtbEjMTcPewpqJnQaiUCjYELO3RerUZtwkYyY6OTnh5GS42/tVvXv3Jj8/n4MHD2qH+Tlw4AD5+fn0aeCBWF3Z2dkkJSVpe0f16NEDExMTtmzZop3sLjU1lVOnTumM1X090ngmxE3i7bffxsXFhffee4+LFy9iZ2dHWFgYL730UqMHq7WxsWH8+PEsX76cn376SeczDw8P9uzZw5w5cxg5ciTl5eX4+PgwatSoeo1Y1/Lz82PFihU8++yzfPbZZ/Tu3ZuXX36ZRx99VPuE4tVXXyU+Pp6RI0diYWHBzJkzmThxIvn5tbPufPjhhxQVFTFhwgSsra159tlndT6Hmu6X999/PwMGDMDDw4PPPvusUTNyNub7m0tAz06UFZdweP1OSvILcfBwYczjU7F2tAOgOL+IwpzaclRXVbNvxZ8U5xVgbGKCvYczox+fik/nDto8VeWV7Fq8juLcmjx2bk4MmTGJgJ4tMzNlvyEDKcgvZNkvi8nNzsHbz5dX//sWLm41Nxk52TlkZmToLPPMg7WNYHHnLvDX1iic3VyYt2wBAOVlZXw39yuyM7MwVZnSztuLp195nn5DBrZInQAOJJ7GytSciR0HYmduxeX8DD7auUg7O5SdmRWOFrba/Lvij2NmrGJYh57c1X0EJRVlnMmIZ9mx2ll97M2teWf0I9r3Y0P6MDakDzHpCby7fUGL1Kti/yEUJsaYjxqCwsyM6pQ0ipf+DhW1NxFKG2udLpqawiKKl/6O2bBBWD14D+rCIioOHaV8X22UqapHNwCspunOyFuydhOVJ5tm5tXGOJp8HktTM0YG98JWZUlqYTbf7VutnX3NxswSewvdSB8zY1O6ugew8mRUi5XzRhxIPIOVqQW3dByg3Rc/3rnY4L64O/445sam9fbF345ta9Fy3ztlCuUV5bz/xecUFhbSKTiEL99/H0uL2m61aRkZKBW115SuHTvyzsuv8M3P8/l2wc94unvw3suv0OmahxtFJcV8+eOPZGRlYWNtzZB+/Zn1wP0YG9f8zFUqlcTGX2T91i0UFhXh5OBAeNduvPvyKzrf/U/djOfz9lfqdGT9Tkryi3DwcGH0NXUqyS+kqE6d9q/4k+K8QoxNjLH3cGHU43fjrVOnCnYvXn+lTsZX6nQb7VuoTgAdIrpQVlTCwTU7KM4vxLGdKxOeukfbxbIkv1BnWzVGVVUV+1ZuoSAzFxMzU3w7d2DEg3egsjBvjir8bcHOPnx5a213qyf63QHAhph9vNNC153GOpJ8DktTM0YHRWJjZklqQTZf712pc/52MNed3MbM2JRuHoGsOLlD7zr7+3XFxMiYB3tN0EnfELNX27W9OR1KisHS1JzxVx7cpORn8tmu37SzZ9qaWeFooVsncxMVYZ5BLD22xeB6Xa0c6ODsxSc7lzRr+fU5mHQGK5U5t3QagJ2ZFcn5mXzy1xLtNcnW3AoHy/p1CvcMqffg6ioTI2MmdR6Es5U95VUVnEiJ5ft9qympLNebX9wcQkJCGDVqFA899BDfffcdADNnzmTcuHE6Y10HBwfz3nvvceutt1JUVMQbb7zBpEmTcHd3JyEhgZdeegknJyduvfVWAGxtbZkxYwbPPvssjo6OODg48Nxzz9G5c2eGDRumtyz6KDSNHUxICCGayDvvvMO3335LUlLDU93/G83dubS1i9Cknh54JzF1ph+/GYS4+TN9ScNjL/zbLLzrdfLf/aS1i9GkbF96hidXz71+xn+RzyY+zT1L3mrtYjSpX+56jcLEm+t8bu3tdVOezz9uhRvr5vbswLv4as+K1i5Gk5rV93b6fvXI9TP+i+yZ9S2zV33c2sVoUl/e+iwP/vZeaxejSf0w+UXuXfp2axejSS2489XWLsLflv/d/NYugl62D9/fbOvOycnhiSeeYM2amsm1JkyYwJdffomdnZ02j0KhYP78+dx3332UlpYyceJEjh49Sl5ennYc77fffltn+KKysjKef/55Fi9eTGlpKUOHDuXrr7++oSGOJPJMCNHsvv76a3r27ImjoyN79uzhww8/ZPbslutuJ4QQQgghhBD/Kv+DcU4ODg78+uuvDea5Nv7L3NyczZv1RzBey8zMjC+++IIvvvjib5dNGs+EEM3uwoUL/Oc//yEnJwdvb2+effZZXnzxxdYulhBCCCGEEEIIcV3SeCaEaHZz585l7tybq+uVEEIIIYQQQoj/DdJ4JoQQQgghhBBCCNGWqP/3um22ZYanyBNCCCGEEEIIIYQQ4n+cNJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEv+B2fbbMsk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEW6JRt3YJxDUk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEW6KW2TbbEok8E0IIIYQQQgghhBDCAGk8E0IIIYQQQgghhBDCAOm2KYQQQgghhBBCCNGWaKTbZlsikWdCCCGEEEIIIYQQQhggjWdCCCGEEEIIIYQQQhgg3TaFEEIIIYQQQggh2hLpttmmSOSZEEIIIYQQQgghhBAGSOOZEEIIIYQQQgghhBAGSLdNIYQQQgghhBBCiLZErW7tEohrKDQa6UgrhBBCCCGEEEII0Vbkf/JVaxdBL9tnZrV2EVqFRJ4JIUQT+ihqUWsXoUk9N2gqsZlJrV2MJhfg7MXsVR+3djGa1Je3PkverOdbuxhNyu6rD3l324LWLkaTemnovTy5em5rF6NJfTbxafJ/WNjaxWhStg9OZ/2ZPa1djCY1NrQv/9kyv7WL0eReGX4/L2/8rrWL0aTeGf3wTXmN6vvVI61djCa1Z9a3zFzx39YuRpP6/vY5vLTh29YuRpN6d8zNtd+J1iONZ0IIIYQQQgghhBBtiXQSbFNkwgAhhBBCCCGEEEIIIQyQxjMhhBBCCCGEEEIIIQyQbptCCCGEEEIIIYQQbYl022xTJPJMCCGEEEIIIYQQQggDpPFMCCGEEEIIIYQQQggDpNumEEIIIYQQQgghRFuilm6bbYlEngkhhBBCCCGEEEIIYYA0ngkhhBBCCCGEEEIIYYB02xRCCCGEEEIIIYRoSzTq1i6BuIZEngkhhBBCCCGEEEIIYYA0ngkhhBBCCCGEEEIIYYB02xRCCCGEEEIIIYRoSzQy22ZbIpFnQgghhBBCCCGEEEIYII1nQgghhBBCCCGEEEIYIN02hRBCCCGEEEIIIdoStXTbbEsk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEWyKzbbYpEnkmhPifExUVhUKhIC8vr7WLIoQQQgghhBCijZPIMyFEi0hLS+Odd95h/fr1JCcn4+LiQrdu3XjqqacYOnRoaxevVZ2JOsTxP/dRml+IvYcLkZNH4B7oozdvyrkE1n/yS730O958DDs3p3rpcYdOsf2Hlfh0DWLEY1OavOxXrVv5ByuXLCcnOxtvX19mPvkYnbp2Npj/5NHjzPviWxITEnBwdOT2qVMYM3G89vOqqip+W7iEbRv/JDsrC08vL+579EHCIyO0eRb9uIDF8xfqrNfOwZ5Fa5Y3fQWv6O/XlaGBPbE1syS1IJvfT+4gLjtZb95pYSOJ9OlULz21IIt3ti0AoI9vZyK8QvGwqdl2iXnprD2zm0u5ac1WB33MxgzHtG8vFBYWVCckUvLbKtSp6QbzWz35CMYd2tdLrzwVQ/E3P9W8USoxGzMck55hKG2sURcUULH/MOWbtjX7k9SzO6M5vXU/JflF2Lk7E3HHMFwDvPXmTTt/ic2fLqqXPvG1mdhec0yd2X6Qc38doTi3AJWlOT5hwfS4ZTBGJi3zU6qfXxeGBIRjY2ZJWmE2K0/u5KKBfe/usBH08u5YLz21IJv3t9ecP9ysHRkT0htPOxccLWxZeTKKnXFHm7MK9Wg0Gubt/YvVx49SWF5GR3cPnh82mvZOzo1a/s+Y07yybhUDAjrw0a2TtenFFeV8t3snURfOkltSQgcXN54dMoJQd4/mqorWno3b2bF6EwW5ebh5tWPijLvwD+2gN+/FM+dZt3AFGZdTqaiowMHZkd4jBjFwwghtnn1/7uRw1F7SEmu2tWd7H8ZMnYRPB/9mr8tV5/46wultByjNL8LO3YnwScNwDfDSmzft/CW2fL6kXvqEVx7C1s0RAHV1Naf+3EfcgVOU5BVi6+pA91sG0y605eoE0Ms7lH5+XbFWWZBRlMv6mL0NnnuNlEqGtO9B13aBWKssyC8rYmfcUaIvnwMg1NWPQe2742Bhg5FCSXZJPrvjT3As5UJLVemmvUY1Rlf3AO7uPoJgF2+cLO14YcM37Io/3trF0mugf3dGBkVga2ZFSkEWy45vIzbrst6894WPoY9v/d9TKflZvLHlRwB6+3Ti/p5j6+V5bOVHVKmrm7bwBvTy7kh//2uOpzN7SLje8RQQTrd2gVib1hxPUXFHtMfTtbq4t+fO7sM5kxbPr0c2N2c1hGiQNJ4JIZpdQkICffv2xc7Ojg8++IAuXbpQWVnJ5s2bmTVrFmfPnm2W762oqMDU1LRZ1t1U4g6dZt9vm+l79xhc23tx9q8jbPpiMXe88RhWDrYGl7vjrVmYmqm0782sLerlKczO48CKLbgZaDRoKn9t28G8z7/hsWefIKRzRzb9sZ7Xn3uRbxb+iIuba738aSmpvP78y4waP4bnXnuBmJOn+frjz7G1s6XvoAEA/PL9fKL+3Mrjc57B09uLIwcP885Lb/DRt5/RvkOgdl0+fr7859MPtO+NlM0XUB3WLohJXQaz7Ng2LuYk08+3C4/1uY3/bP2Z3NLCevlXnNjBH6d31ZZNoeTFofdwNPm8Ni3QyYvoy2dZnpNCVXU1wzr0ZFafSbyzbQH5ZUXNVpdrqYYPQjVkACULl1GdkYnZqGFYzX6Igrc+hPJyvcsUz1sAxrU/IRSWFli/+DSVR0/orNe0f29KflmKOjUdIx9PLKZNRlNaRkXU7marT/zhMxxasYVed47Cxd+T87uPsvWrZdzy6swGj6mJrz+sc0yprjmmLh48RfTqHfSdPg4X/3bkp+ewZ+E6ACJuH95sdbmqe7sO3Np5EMuPbyc+O4U+fp15pPdE3tv2i959b+WJKNaerv0bKxVK5gyZxrGU2n3P1MiYrOJ8jiaf59bOg5q9Dvr8cnAfSw4f4LXRE/C2d+Cn/bt5/LdFLH/wUSxNVQ0um5qfx+dRW+nmWb8R551N64nLyuCNMbfgbGXNxjMnmfXbIpY98DAu1jbNVR2O7j7I6p+WMGnmdPyCA9j7ZxTfvz2XOZ//B3tnx3r5Tc1U9BszBA8fL0zNVFw8c4EV3y7A1MyU3iMGARB3+hxh/XvhGxyAsYkJO1Zt5Ls3P+b/Pv8Pdo72zVaXqxKiYzj8+1YipozExb8d53cfY/vXvzHhlQexbOB4uuXVmZiY115/VVa1x9OxtX9x8dBpet89GhtXR1JiLrJz3kpGPTMNBy+3Zq3PVZ3d2jMmpA9rT9c0BPX0DuXe8DF8tus3g+feu7oNx1JlzqqTO8kuycfK1BylovaaU1pZRlTcETKL8qjWqAly9ua2zoMoqig12DDSlG7Wa1RjmZuoiM2+zIaze3l39COtXRyDwj2DmdJtKIuP/ElsdjID/LvxRL87eGPzD+To2U7Ljm1l5cmd2vdKpZLXht1PdLLub+fSynJe3TRPJ62lGs46u7dnbGgf1pzaxaXcNCK8Q7m351g+/WuZ4eOp+3CsTC1YeSKK7JKCK8eTol4+OzMrRgf3Jj4npbmr0Tap1a1dAnEN6bYphGh2jz32GAqFgoMHD3L77bfToUMHOnbsyDPPPMP+/ftJSEhAoVBw7Ngx7TJ5eXkoFAqioqK0aWfOnGHMmDFYWVnh6urK9OnTycrK0n4+aNAgZs+ezTPPPIOTkxPDh9fc1G7YsIEOHTpgbm7O4MGDSUhI0ClfdnY2d911F56enlhYWNC5c2eWLKn/5Lw5nNy6j6C+3QnuF4a9uzO9p4zEyt6WMzsPN7icubUlFrZW2peyTqORWq1mx4+rCBs/CGvn5r3BWrX0d0aMG8XI8WPw9vVh5pOP4eTiwobVa/Xm37B6Hc6uLsx88jG8fX0YOX4Mw8eOYuWS2oixHZu3Mnn63fTs3Qv3dh6MvXUCYb3CWbl0hc66lEZGODg6aF+29nbNVs8hAT3Yl3CSfZdOkl6Yw+8no8gtLaS/X1e9+cuqKigsL9G+vO3dMDcxY9+lU9o8Cw5vYFf8cZLzM0kvymHxkT9RKBQEOTdvg+e1VIP7U7Z5G5XHT6FOTadk4VIUpqaY9uxucBlNSSmagkLtyyQ4ECoqqThS+5Tf2M+HyhOnqTp9FnVOLpVHT1IZcwFjH89mrc+Z7QcJ6NOVDn27YefuRMQdw7G0s+HcX0caXM7c2hJzWyvt69pjKiM+GZf2nvj37IiVox3tQv3xCw8l+1Jqs9blqkHtw9h/6RT7L50ivSiHVSd3kltaSF+/Lnrz19/3XDE3MePApdPaPIl56aw5vYujyeepUle1SD2updFoWBp9kPsi+zG4QzDtnV14ffQEyqoq2XzmVIPLVqvVvLZ+NQ/1HUA7W93zW1llJTvOx/D4wKGEefngZe/AzL4D8bC14/dj0c1ZJXau2Uyvof2JHD4AVy8Pbp1xN3aODuzZtENvfk9/H8L6R+Lm3Q4HFyfCB/UmqFsnLp6pjVSa9vRM+o4eQjs/b1w93Zn82H1oNBounDjTrHW56sz2gwT07kpgn67YujnR8/ZhWNjbcG5Xw1GKZtYWmNtYaV/XHk8XD56m84jetOvYHmsnO4L6h+Ee4seZ7Yeauzpaff06E335LIcvnyWzOI8NMXvJLyuil3eo3vyBTl74Orjzy+GNxGUnk1daxOX8TBLzaiN043NSOZOeQGZxHjklBey7dIr0wmx87VumQfBmvUY11v7E08w7sIadF4+1dlEaNLxDT3bHn2B3wgnSCrP57fg2cksKGdhe/zW3tKqCgvJi7cvX3g0LUzP2JJzUyafRaHTyFZQXt0R1gJrI6Oik2uNp/dXjycfw8eTn4MGCwxuuHE+FXM7P0DmeABQomNxtKFsvHCanpH7DohAtTRrPhBDNKicnh02bNjFr1iwsLS3rfW5nZ9eo9aSmpjJw4EC6devG4cOH2bRpE+np6UyePFkn34IFCzA2NmbPnj189913JCUlcdtttzFmzBiOHTvGgw8+yAsvvKCzTFlZGT169GDdunWcOnWKmTNnMn36dA4cOPC3690Y1VXVZCWm0i5Ut/tbu1B/0uOSGlx25X++59fnP2H9J7+Qci6+3udH1/2FmbUFwf0MN4A0hcrKSmLPn6d7z3Cd9LCePYg5pf/m7uzpM4T17KGbPyKcC2fPU1VVdWW9FZiodKMGTU1VnDmhe1OdcjmZ6bdM4YE7pvHf1/9DanLzPJk0UijxsnMlJuOSTnpM+iX8HBvXFay3TyfOZVzSGwFwlamxMUZKJSWVZf+ovI2ldHRAaWtDVUxtpAFV1VTFXsTYT3/XYX1Me0dQEX0MKiprVxOXgElQAEqXmu4+ynbuGLf3pfJU80SaQs0xlZ2YikeIbvcvjxA/Mi82HPmx9r0f+e2Fz9j82SJSzyXofOba3pPsxDQyE2r2r8KsXJJPxeHZKaBJy6/P1X3vXJ1971xGIn4Ojdv3In06cT4zscF9r6Wl5OeRXVxEpG/ttjI1NibMy4cTKQ1vqx/37sLO3JJbutQ/v1Vr1FRrNJga63auUBkbczy54fPqP1FVWcXluEt06KbbXTaoW0cSzsY2ah2XL14i4Vws7TsGGcxTUVFOdXU1Flb1r6dNrbqqmpykNNxDfHXSPUJ8yYzX3xXwqnX/nc+Kl75gy+dLSDuvu+9WV1WhrNPd2djEmIzrXPeaipFCiYeNc71osNisy3jb14+WBghx8SE5P5P+fl2ZM3gaTw+YwqigSIyVRga/x9+xHU6WdsTnNH8j+816jbrZGCmUeNu5cSZd93fbmfR42ju2a9Q6+vp24WxGAjklBTrpKmNT3hv9CP8d8xiz+07Cy86lycrdkKvH04Us3eM3NvMyPnb6G45DXH1Jzs9kgH835gyZzjMD72R0cP3jaUhgD4oryoi+3Hy/G4S4EdJtUwjRrGJjY9FoNAQHB/+j9XzzzTeEhYXx7rvvatN++uknvLy8OH/+PB061IwpExAQwAcf1Hbje+mll/D392fu3Lk1T0uDgjh58iT//e9/tXnatWvHc889p33/+OOPs2nTJpYvX06vXr30lqe8vJzyOl3aVKqGuxnVVVZUgkatwcJG9ybI3NqS0gL9TwwtbK3oP20cTj7uVFdWceHASdbPXci4Z+7FvUNNY0dabCLn9hzltlcfvqHy/B0F+fmoq9XYOehGf9g52JObnaN3mdzsHOx61c9fXV1NQV4+Dk6OhEWEs3rpCjp17Yx7Ow+ORx/lwO69VF8Tvh4UGsKzr/wf7bw8yc3JZdmCRTz36JN8s/AHbGwNdyf6O6xU5hgplRSWl+ikF5YXY6Pyve7yNipLQl39+Pnw+gbz3dJxAPmlRZytcwPUXBQ21gCoC3W7VagLClE6NC5i0cjHC6N27pQs0h1rrnzLDhTmZli/+nzNGGcKBWVrN1EZfaxJyq5P+ZVjytxa95gyszF8TJnbWtH77tE4ertTXVXFxQOn+PPzxYx8ahpugTXRFX7hHSkrLGHTx7+g0YBGrSaofxidR/ZptrpcZXll3yvQs+9Zq67fwGmjsiTExZdfDm9sriL+LdnFNfucQ52HKg4WlqQW5Btc7vjlJNacPMav9z6k93NLUxWdPTz5ad8u/BydcLCw5M+Y05xOTcbL3qHpKlBHcWEharUaazvdc4+1nQ2FeYbrA/Dmg89SlF+IWl3NyCm3EDl8gMG8639Zga2DPR261h/TrqldPZ7M6h5P1paUNXA8Rd41CgdvN9SV1Vw8dIotXyxhxJN3a8cd9AjxJ2b7IVwDvLB2sif1XAJJJy6gaaFZ5SxMzTBSKikqL9VJLyovxcq0/hAIAPYWNvjYu1GlrmbRkc1YmJoxIbQ/FqYqnS51KmNT5gyehrFSiVqjYe2Z3QbHHGtKN+s16mZjpbLQez4vKC/Gxuz6DeK2ZpZ0cvPnh4O6kf1phTn8fHg9yfmZmJmoGBoQzpxB03hr63wyinKbtA51GTqeCitKCFTpHxvRwcK69niKrjmebunYH3MTM1aejALA296NcM9gvti9Qu86/mfIbJttijSeCSGa1dUfwwo94xjciOjoaHbs2IGVlVW9z+Li4rSNZ+HhuhFQMTExREZG6nx/7969dfJUV1fz/vvvs2zZMpKTk7UNY/oi5a567733ePPNN3XSXn/9dawGBRpYomnYuTnpTAzg2t6L4px8TmzZh3sHHyrKytnx02r6Tx+HmZX+m4DmUHf7ajSaBrd5vY+u/ji48sHDT87i8w8+4ZGpD4AC3D08GDZmJFs31A4UG967dvIA3/YQ0imUGVPuYdvGLdx65+3/rEIG6f6IUaCgMT9rIn06UlpZzokUwxEowwJ70sMziM92/dZs45SY9OyOxV2TtO+Lvr4yuH/dH2c3cLya9omgOjmV6ku6T51NenTFNCKMkp8XU52ajpGnB+aTJqDOL6DyQPN2n6Pe/qUn7QpbV0dsXWvHo3Lx96Q4t4DTWw9oG8/Szl/ixOa99LpzFM6+HhRk5nJo+RaOb9hN1zH9mqcOddXb0Rq3jSK8QymtLOdkauOin5rLpjMnee/PDdr3cyfdCejbVBqDNSuuKOe1Dat5aeRY7CwMn9/eHDOBtzetY+w3n2GkUBDk6s7IkE6cy2j+Qc7rn9oaPhcCzH7nBcrLyrl0Lo71C1fg5O5CWP/Ievm2r9rIkd0HmfX2/2FiatKEpW6Yom6tbuB4cvZvR3FuAWe2HtQ2nvW8fRj7lmxkzdvzQAHWTva0j+xC3P4T+lfaTOoeUjWbSf8Z/eom/O34dsqrKgDYcHYfd3UfzprTu7Xn7IqqCr7cswKVkQn+ju0YHdybnJKCFok+q/Hvvkb9z9DU306N2VC9fTpTWlnGsWvGpQOIz0nRGRMsLusyrwy7j8Htw1h2fFuTFPl66h1PKPSkXvsZLDu2rfZ4itnLXWEjWHN6F0qFksldh7Dq1E6JchRtijSeCSGaVWBgIAqFgpiYGCZOnKg3z9WxUK596lxZWamTR61WM378eJ2Isavc3d21/6/b4NWYJ9kff/wxc+fO5dNPP6Vz585YWlry1FNPUVFRYXCZF198kWeeeUYnTaVS8cW+xj8hM7OyQKFUUFLnCX5pYTHmNo3vkuPi70nsgZqxLwozcynKzmPzV0u1n1/9G/zw6NtMfmsWNs5NF31hY2uL0khZL8osPzevXjTaVfaODuRm6z4JzcvNw8jICBvbmsG8be3tePW9t6gor6CgoABHJ0fmf/MDru6Gx44xMzfH19+PlMtNPzBzUXkp1Wo11ird7WKlsqCwEeOKRPp04mDSGao1+gd+HRoQzogOEXy5ZwUpBVl68zSFyhNnKExIrE240rVNaWNNdUFtVx2ltRWagkZ08TMxwbRHV0rX/VnvI/Nbx1H25w4qo2vGQVOnpKF0sMdsxJBmazxTXTmm6kaZlRUW14tGa4izXzsuHqztInx07U7aR3SiQ99uANi3c6GqvJJ9izfQZVRfFMp/9nCgIcVX9j0bM93GImuVRb0oE30ifTpyOCnG4L7XUvoHdKCje223pIrqmpvv7OJinKystem5JSX1otGuSs7NJTU/n2dXLtOmqa+c33p/9A7LZzyKp70DnvYOfHfXPZRWVFBcUY6TlTUvrVmJh61dM9SshqW1NUqlkoI6UWZF+YVY2TY8SYGja83soh4+nhTlF7B56R/1Gs92rN7E1hXrePTN5/Dw1R/N0dS0x1OdyNSyouJ60WgNcfZtx8VDtePtmVlbMHjmJKorqygvLsXc1oqjf0Rh5WjXVEVvUElF2ZXzublOuqWpOUUVpXqXKSwroaCsWHujD5BZlItSocDWzJLsK13oNKDtTpdamI2LlR0D/bs3e+PZzXKNutkVlZdcOZ/rbidrlUWjxijr69uZ/Ymnr3s+1wAJOWm4WjdftO1Vho4nK1PzetFoVxWW1z+eMrTHkxWmRsY4WNgwvcdo7edXH0K8PWomc/9aWq/bqhAtQRrPhBDNysHBgZEjR/LVV1/xxBNP1GvcysvLw9m55sYhNTWV7t1rxrC5dvIAgLCwMH7//Xd8fX0xNm78qSs0NJTVq1frpO3fv1/n/a5du7jllluYNm0aUNNQd+HCBUJCQgyuV6VS3XA3zbqMjI1w8nYnOeYift1ru7Umx1zEp6vhMW/qyk5Kw9y2JiLP1s2JSa/pzjJ1+I8dVJaV03vKKCztm7Y7o4mJCQEdOnD0UDR9BtZG4Bw9HE1kP/1d2oI7hnJw7z6dtKOHDhMY3KHetjVVmeLk7ERVVRV7d+6i/5CBBstSWVFB0qVEOnatP6X7P1WtUZOUl06wiw8nrongCXbxuW5ET6CTJy5W9uyrM7jvVUMDwxkVFMlXe36vN1hukysvR52p291YnV+AcXAHqi9feWptZIRxgD+lf2zQswJdpj26grExlYf0DMZvYlI/ok2tvqGothtlZGyEo7c7qTHx+HSrPYZSzsbj1aVDo9eTc7n2mAKoqqiqFz10tcGsJlKq+ep0dd8LcvbhRGqcNj3I2ZuTaXENLAkBTp44W9mz/5L+yTtakqWpSmcGTY1Gg6OlFQcSLhLkWtMoXlldzZGkS8weMETvOnwcnVhy30ydtG92R1FSUcGzQ0bgaqN7fjM3NcXc1JSCslL2J8Tx+MChTVyrWsYmxni29+H88TN0iawd0/H88dN0jGj82JMajYaqSt0JHLav2sjWFeuY+dozeAX4NVmZr8fI2AgHLzdSzybgfc01KfVsAp6dGx9lnXM5HXPb+o1tRibGWNhZo66uJvHYOXzCDF9zm1K1Rk1KQSYBjp6cSU/Qpgc4eRJzzftrJeal08ndH1MjYyqqa7aPk6Utao2a/LKGGj0UGDUwLlpTuWmuUTe5ao2axLw0Ql19OZZSOzFIiKsvx695r08HZy9crR34Zt+qRn2Xl50LyfmZ/6i8jaE9npy86hxP7TiTkaB3mUu5aXqOJ7srx1NNY/1nfy3TWWZ4hwhUxiasO7OH/NK2NdNrs5Jum22KNJ4JIZrd119/TZ8+fYiIiOCtt96iS5cuVFVVsWXLFr755htt18r3338fX19fsrKyeOWVV3TWMWvWLObNm8ddd93F888/j5OTE7GxsSxdupR58+ZhZKT/x+kjjzzCxx9/zDPPPMPDDz9MdHQ0P//8s06egIAAfv/9d/bu3Yu9vT2ffPIJaWlpDTaeNZXOw3oTNX8Vzj7uuPh7cnbXEYpy8gkZUHPzdXDVNorzChl8/0QATm7dj7WTHfbuzlRXVxN74CTxR2IY9vAdQM0NnEM73UFiTS3MAOqlN5Vb75zEx2//l8DgDgR3CmXTmvVkpmcwZuJ4AH7+9geyM7N49tWaiRrGTBzHupV/MO+Lbxg5fgxnT53hz3Wb+L83XtKu8+zpGLKzsvAPaE92VjaLf/oFtVrNpLunaPP88OV39OobibOrC3m5eSxbsIiS4hKGjR7RLPXcHhvNPeGjScxLJz4nhb6+XXCwsGZXfE1k1YTQftiaW7EwepPOcr19OhOfk0JqYXa9dQ4L7MnYkD4sOLyB7JJ8rFU10UXlVZVUVFfWy98cynfswmzkENSZWVRnZGI2ciiaigoqDtXOpmdxz52o8/IpW6M7bpZp755UHj+Nprh+BFTVqZia9ebkok5Nx8irHaohA6jY17wz6oUOiWD3gjU4+rjj7NeO83uOUpxbQFD/MACiV++gJK+Q/vdNAGpmE7RysMXOw5nqqmouHjzFpaPnGPTQbdp1enUO4Mz2gzh4ueLk247CzFyOrfsLr86B9Wa6bQ5RcUeY1mMUiXnpJOSk0se3M/YW1uyJr+nmNi60L7ZmViw6sllnuUifTiTkpOrd94wUStxsarrXGSuMsDWzop2tM+VVFWQVNzxGV1NQKBTc2SOCnw/swcveAW97B+Yf2IOZsQkjQztp872+/g9crK2ZNWAIKmNj2jvrnsesVTXnt2vT98XXNCp62ztwOS+Xz6O24ePgyPhO+mcdbCoDJ4xk8Wfz8Grvi29Qe/Zt2UluVg59Rg4CYN3CFRTk5HL3kzXjte3esA17Z0dc2tVET8fHnCfqj830G1PbyLd91UY2Ll7FtGdm4uDiREFuzbZRmalQmZs1a32g5nja88taHL3drhxPxyjOKaBD/5oGwSN/RFGaX0jfe2rO9zE7DmHpYIuduxPq6mouHjxN4rFzDHzwVu06MxNSKM0rxN7TlZK8Qk5s2I1Go6HjMP1jjDaHPfEnub3rYJILMknMTaenVwi2ZlYcTKyZ6GZEhwhszCxZcaJmptTjKRcY1D6M2zoPYlvsYSxNzBkVHEn05XPaLowD/LuRnJ9JTkkBRkojgpy96N4ukDWnd7dInW7Wa1RjmZuo8LR11r73sHEi0MmTgrJi0pt53K8bseX8IR6IGMel3DTislMY4N8VBwsb7Syht3YagJ25NfMP6Y4/18+3CxezU/RG/o0L6cvFnBQyinIwM1YxNKAHXnYuLD66pSWqxO74E9zRdQjJ+Rk1x5N3KLbm1hy8dOV4CorARqV7PA0O6MGkLoPZduEwFiZmjA6JJDqp9niqu81Kr0SptaVtKf73SOOZEKLZ+fn5ceTIEd555x2effZZUlNTcXZ2pkePHnzzzTdAzeD/DzzwAOHh4QQFBfHBBx8wYkRtI4iHhwd79uxhzpw5jBw5kvLycnx8fBg1alSDN6/e3t78/vvvPP3003z99ddERETw7rvv8sADD2jzvPrqq8THxzNy5EgsLCyYOXMmEydOJD+/+W8g2/fsSHlxCUfW/0VJfhEOHi6Mmn031le6r5TkF1GcU1sOdXU1B1ZsoTivEGMTY+w8nBk5+y68byAKoKkNGDqYgvwClvz8KznZOfj4+fLmh+/i4lYza1lOdg6Z6Rna/G4e7rz54TvM++Ib1q1cg6OTIw8/NYu+g2oHya6sqGDhvPmkpaRibm5OeGQEz746Byvr2mig7MxMPnjjXQry87G1syWoYwiffPeF9nub2pHkc1iamjE6KBIbM0tSC7L5eu9K7cxkNmaWOJjrds8yMzalm0cgK07u0LvO/n5dMTEy5sFeE3TSN8TsZcPZfXqXaWrlW6JQmJhgPuVWFBbmVCckUvTlPLhmQgylvV29p59KFyeMA/wp+uJ7vest+W015uNGYnHnbSisrFDnF1Cxez9lG7c2Z3XwCw+lvLiU4xt2U1pQhJ27M0Mfm4KVY01UUmlBEcW5td091FXVHF61nZK8QoxMjLFzd2LoY5N1ZtLsMrofKBQcXfsXJXmFmFlZ4Nk5gLAJg5q1LlcdTT6PpakZI4N7YauyJLUwm+/2rdbZ9+wtrHWWMTM2pat7gHbw5bpsza34v8HTtO+HBoYzNDCcC1lJfNlCAzTfE9Gb8qpKPti6icKyUjq6t+OLO+7WiVBLL8xHeYPRikXl5Xz913YyigqxMTNnSIdgHu0/CGMDD1maSvd+EZQUFvHnb2soyM3H3bsdD73yFA5XZpwtzM0nN7O2i7tGo2H9wt/JychEaWSEo5szY6ffTu8RtRG2ezZup7qqigUffK3zXSOmTGDUnRObtT4Avj1CKC8u5cTGPZQWFGPn7sSQx+7AyuGa4ylH93g6smo7JflF2uNpyKN30K5j7azS6soqjq37i8KsPExUprTr6E/fe8ZpH/S0hJNpcViYqhjcvgfWZhakF+bwy+GN5F2JerFWWWBrVnu9qaiuYv6h9YwP7ctjfW6jpKKcU2lxbDlf+zDA1MiECR37Y2tmSWV1FZnFeSw/vuO6EaJN5Wa9RjVWsLMPX95aO5zGE/1qHipuiNnHO9sXtFax6jl8+SyWpuaMDemLrZklKQVZfLF7ubYboq2ZFQ4WutvJ3NiUsHZBLDUwfpmFqYrpYSOxMbOktLKcpLwMPoxaTEJuy4y1dzI1DgsTM4YEhGOtsiC9KIcFhzZcczxZYmdee42qqK5i/sF1jOvYj8f61hxPJ1Pj2HL+YIuUV4i/S6FpqalthBDif8BHUYtauwhN6rlBU4nNTLp+xn+ZAGcvZq/6uLWL0aS+vPVZ8mY939rFaFJ2X33Iu9vazk1PU3hp6L08uXpuaxejSX028Wnyf1jY2sVoUrYPTmf9mT2tXYwmNTa0L//ZMr+1i9HkXhl+Py9v/K61i9Gk3hn98E15jer71SPXz/gvsmfWt8xcUX8s3n+z72+fw0sbvm3tYjSpd8f8e/e7/Nffa+0i6GX75outXYRW0fx9DYQQQgghhBBCCCGE+JeSxjMhhBBCCCGEEEIIIQyQMc+EEEIIIYQQQggh2hAZYattkcgzIYQQQgghhBBCCCEMkMYzIYQQQgghhBBCCCEMkG6bQgghhBBCCCGEEG2JdNtsUyTyTAghhBBCCCGEEEIIA6TxTAghhBBCCCGEEEIIA6TbphBCCCGEEEIIIURbopZum22JRJ4JIYQQQgghhBBCCGGANJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEs06tYugbiGRJ4JIYQQQgghhBBCCGGANJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEs0MttmWyKRZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBCGCDdNoUQQgghhBBCCCHaErV022xLJPJMCCGEEEIIIYQQQggDpPFMCCGEEEIIIYQQQggDpNumEEIIIYQQQgghRFsis222KRJ5JoQQQgghhBBCCCGEAQqNRpozhRBCCCGEEEIIIdqKvP97vbWLoJfdB2+2dhFahXTbFEKIJvTk6rmtXYQm9dnEpzl46XRrF6PJRfh0ZPLCV1q7GE3qt+n/IW/G461djCZl9+MX/N+6L1u7GE3qg3GzuWX+nNYuRpP64/7/UpiS0trFaFLWHh78dmxraxejSU3uNoxZKz9q7WI0ua9ue44X1n/T2sVoUu+PfZQHf3uvtYvRpH6Y/CIzV/y3tYvRpL6/fQ59v3qktYvRpPbM+pbpS26uhpGFd7XNBqhG0ahbuwTiGtJtUwghhBBCCCGEEEIIA6TxTAghhBBCCCGEEEIIA6TbphBCCCGEEEIIIURbopbh6dsSiTwTQgghhBBCCCGEEMIAaTwTQgghhBBCCCGEEMIA6bYphBBCCCGEEEII0ZZopNtmWyKRZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBtiUbTNl/NKDc3l+nTp2Nra4utrS3Tp08nLy+vwWUUCoXe14cffqjNM2jQoHqf33nnnTdUNhnzTAghhBBCCCGEEEK0qrvvvpvLly+zadMmAGbOnMn06dNZu3atwWVSU1N13m/cuJEZM2YwadIknfSHHnqIt956S/ve3Nz8hsomjWdCCCGEEEIIIYQQ4rrKy8spLy/XSVOpVKhUqn+03piYGDZt2sT+/fvp1asXAPPmzaN3796cO3eOoKAgvcu5ubnpvP/jjz8YPHgw/v7+OukWFhb18t4I6bYphBBCCCGEEEII0Zao1W3y9d5772m7VV59vffee/+4uvv27cPW1lbbcAYQGRmJra0te/fubdQ60tPTWb9+PTNmzKj32aJFi3BycqJjx44899xzFBYW3lD5JPJMCCGEEEIIIYQQQlzXiy++yDPPPKOT9k+jzgDS0tJwcXGpl+7i4kJaWlqj1rFgwQKsra257bbbdNKnTp2Kn58fbm5unDp1ihdffJHjx4+zZcuWRpdPGs+EEEIIIYQQQgghxHXdaBfNN954gzfffLPBPIcOHQJqBv+vS6PR6E3X56effmLq1KmYmZnppD/00EPa/3fq1InAwEDCw8M5cuQIYWFhjVq3NJ4JIYQQQgghhBBCtCXNPLNlS5k9e/Z1Z7b09fXlxIkTpKen1/ssMzMTV1fX637Prl27OHfuHMuWLbtu3rCwMExMTLhw4YI0ngkhhBBCCCGEEEKI1uPk5ISTk9N18/Xu3Zv8/HwOHjxIREQEAAcOHCA/P58+ffpcd/kff/yRHj160LVr1+vmPX36NJWVlbi7u1+/AlfIhAFCCCGEEEIIIYQQotWEhIQwatQoHnroIfbv38/+/ft56KGHGDdunM5Mm8HBwaxatUpn2YKCApYvX86DDz5Yb71xcXG89dZbHD58mISEBDZs2MAdd9xB9+7d6du3b6PLJ41nQgghhBBCCCGEEG2JWtM2X81o0aJFdO7cmREjRjBixAi6dOnCwoULdfKcO3eO/Px8nbSlS5ei0Wi466676q3T1NSUbdu2MXLkSIKCgnjiiScYMWIEW7duxcjIqNFlk26bQgghhBBCCCGEEKJVOTg48OuvvzaYR6NnLLiZM2cyc+ZMvfm9vLzYuXPnPy6bRJ4JIf5VFAoFq1evvmm+RwghhBBCCCFE2yaRZ0II0cr6+XVhSEA4NmaWpBVms/LkTi5mJ+vNe3fYCHp5d6yXnlqQzfvbfwHAzdqRMSG98bRzwdHClpUno9gZd7Q5q9AoW9dsZP3yP8jPyaWdjxfTHn2AoM6hevMe2r2fbWs3kXgxgcrKSjx9vLh1+hS6hHdv4VLrGtEhggkd+2NnbsXlvAx+PryBsxmXDObv59eVCaH9cLdxpKSinGMpF1gYvZGiitJ6efv4duap/lM4lHSGD6MWN2c16jGbMBrTgX1RWJhTffESJYt+Q52S1uAyqmGDMB3cD6WDPZqiYioOH6Ps9zVQVQWA6aB+qAb1Q+nkAEB1ShplazZRdepMs9ent08nBrYPw1plQXphDmvO7CIhJ9VgfiOlkmGBEYS164C1ypL8siK2xR7mcFKMNo+ZsSmjgiPp5NYecxMVOSUFrI/Z0+D2b0qjgyO5tdNA7M2tScxL58eDazmTnmAw/0D/btzaeSAeNk4UV5RxNPk88w+tp7C8RJtnfGg/RgdH4mRpR2F5MXsTTvJL9CYqq6uapQ4ajYbvFyxg1bp1FBYW0jEkhDlPPkl7P78Gl9u2cyffzp/P5ZQUPD08eGzGDAb3719bjzvvJFXP7Fx33HILc556ql76Ox9/zKp163hm1izuvv32f1yvax3Y/Be7126lKC8fF093Rt97O74hAXrzXjoby5+L/iAzJZ3K8grsnB3oOawffcYO0cm3d/12Dm7ZRX5WLhY2lnTs1Z3hd92CialJk5bdkP7+3RgW2BNbM0tSC7JYcWIHcQauUdN7jCLSp1O99NSCLP6z9WcAunoEMjKoF86WdhgpjcgsymXbhcMcTGr+c8O1In06MsC/W815oiiXdaf3kJDb8HliaGA43T06YK2yIL+siB2xRzh8+SwAPTyDuKPrkHrLvbLxe6rU1c1Wj2sNah/GyKBe2JlbkZKfydJjW7mQdVlv3vt7jqWvX5d66cn5mby++QcAnh90N0EuPvXynEiJ5fPdy5u28AYM9O/OyKAIbM2sSCnIYtnxbcQaqNN94WPo49u5XnpKfhZvbPkRqLk+3N9zbL08j638qMW2U2N1dQ/g7u4jCHbxxsnSjhc2fMOu+OOtXSy9hgaEMzakD7bm1iTnZ/Drkc2cz0w0mL+PT2fGhvTB1dqR0soyTqTGsuToFu3vo3Y2zkzqMghfew+crez49cgmNp870FLVaTtuktk2bxbSeCaEEK2oe7sO3Np5EMuPbyc+O4U+fp15pPdE3tv2C7mlhfXyrzwRxdrTu7XvlQolc4ZM41jKeW2aqZExWcX5HE0+z62dB7VENa5rf9Rufv12Pvc9/hCBHUPYsX4zH778H97/4TOcXJzr5T938jSdenRl8gNTsbCy5K/N2/nktfd44/P38Q3wb4Ua1Pzgvi98DD8cXMu5jESGdejJS0Pu4ek1n5Ndkl8vf5CzD7P7TGJB9AYOXz6Hg7kND0VO4JHet/LRTt3GMSdLO6aHjWqwMaS5qEYPQzViMCU/LaI6PQOzcSOxenY2BS+/DWXlepcx6RWO2e0TKJm/iOrYeJRuLlg8MA2AsmUrAVDn5lH6+xrUGZkAmPbpheXjD1H45n+v2zD3T3R1D2B8x/6sPrmThNxUenl3ZEbEeD6OWkxeWZHeZaaFjcJKZcHyE9vJLs7HSmWOUlEbnG+kUPJQ5C0UlZeyMHoj+WXF2JlZUV5V0Wz1uFY/vy7MiBjPd/tWE5NxiZFBvXht+APMXvUJWcV59fKHuPjyZP8p/HRwLQeTYnC0sOXRPrcyu+8k3tteM27IQP9u3NNjFF/sWcHZjEt42DjxZP/JAPx4cF2z1GPB0qUsXr6c1+fMwdvLix8XLmTW88/z+y+/YGlhoXeZE6dP89Jbb/HIAw8wuH9/duzaxQtvvsmPn39Op9Caxvdfvv2WarVau0xcfDyznnuOoYMG1Vtf1O7dnI6JwbkRs37dqJN7o9m4YAXjZkzBO6g9h7fuZuF7X/H4J69id6UR+VomKhW9Rg3E1dsDU5WKS+fiWDNvCSYqU3oO6wfA8V0H2bLkDyY+Mg3vDv5kp2aw8puabTjm3qZt+NMnrF0Qt3cZzLJjW4nLTqafX1dm9Z3E21vm671GLT++nT9O/aV9r1QqeXHIvRxJrr1GlVSUsfncftIKc6hWV9PJrT3TeoyisLyEmIyEZq8TQBf39owL7csfp3ZpzxP3R4zlk51LyTdwnpjafQRWKgt+P7GD7JICLE3NUSoVOnnKKsv5aOcSnbSWapDp6RXCnd2GsejIZmKzLjOgfXee7D+F1zbPI6ekoF7+pce28vvJKO17I4WS10fMIPpKYyDA13tXYqSsHQ/IytSc10fM0DYYNrdwz2CmdBvK4iN/EpudzAD/bjzR7w7e2PwDOXr2v2XHtrLyZG3XLKVSyWvD7ic6Wbe8pZXlvLppnk5aW2s4AzA3URGbfZkNZ/fy7uhHWrs4BvXy7si0sFH8fHg9F7KSGBzQg+cHTuWFDV+RrWff6+DkxcORE1l0dDNHk89jb27N/T3HMSNiPJ/t/g0AU2MTMoryOJh4hqlhI1u6SkLoJd02hRBNZtCgQcyePZvZs2djZ2eHo6Mjr7zyirZf+q+//kp4eDjW1ta4ublx9913k5GRAdREJAQEBPDRRx/prPPUqVMolUri4uL0fufJkycZMmQI5ubmODo6MnPmTIqKan/4Hjp0iOHDh+Pk5IStrS0DBw7kyJEjOuu4cOECAwYMwMzMjNDQULZs2dKUf5YGDWofxv5Lp9h/6RTpRTmsOrmT3NJCvU+DAcqqKigsL9G+vO1dMTcx48Cl09o8iXnprDm9i6PJ56lSN08EyY3a+PtaBo4ayqDRw2nn7cm0R2fg6OzItrWb9eaf9ugMxk2+Ff+gQNzaeTD5gWm4tXPn6P7DLVzyWuNC+7I9NprtsdEkF2Sy4PAGskryGREUoTd/B2dPMorz2Hh2P5lFuZzLvMTW84fwd2ynk0+hUPBEvzv47cR2MopyWqIqOlTDBlG2/k8qjxxHnZxKyY+/ojA1wbRXuMFljNv7URV7kcoD0aizc6g6fZaKA9EY+3pr81QdP0XVyTOo0zNRp2dStmodmvJyjP19m7U+/f27cSjxDAeTzpBRlMvaM7vJKy0iUk80AkAHZ2/8Hdvx08G1xGZdJre0kKS8DC7l1jbw9fQKwcLEjAWHN3ApN4280kISclNJLcxu1rpcdUvH/my9cIgtFw5xOT+DHw+uJas4n9HBkXrzB7l4k1GUy7qYvWQU5RKTkcDmcwcIcPK8Jo8PMRmX+OviMTKKcjmWcoG/Lh6jvaOn3nX+UxqNhiUrVnD/tGkMGTCAAD8/3nzhBcrKyti0davB5ZasWEGv8HDunzoVX29v7p86lYiwMBb//rs2j72dHU4ODtrX7n378PTwoEedqeozMjP54LPPePvllzG+gQGCG2vv+m2EDelN+NC+uHi6Mea+27FxtOfgn7v05vfw86JL33BcvTywd3GkW/8IArqEcOlsrDZP0oV4vIP86dqvJ/YujgR0DaFznx6kXDQc0dGUhgaGsy/hJHsTTpJemMPvJ3aQW1JIf/9uevOXVVVQUF6ifXnbuWFhasb+hFPaPBeykjieEkt6YQ5ZxflExR0huSCT9k7t9K6zOfTz68rhpLMcSoohsyiPdWf2kF9WRKRP/chugA7OXvg5ejD/0Hpis5PJLS3kcn4Gibm6EY8aoKi8VOfVUoZ3iGB3/HF2xR8ntTCbZce2kltawKD2+iO2SyvLKSgr1r587Gu21e74E9o8xRVlOnlCXf2oqK7kcFLLNJ4N79CT3fEn2J1wgrTCbH47vo3ckkIGGqpTVQUF5cXal++VOu1JOKmTT6PR6OQrKC9uiercsP2Jp5l3YA07Lx5r7aI0aHRQJDsvHmXnxaOkFGSx6MhmskvyGRrYU2/+ACdPMovz+PP8QTKL8ziflcT22Gj8HDy0eeJzUlh6bAv7E09TWd32GjbF/yZpPBNCNKkFCxZgbGzMgQMH+Pzzz5k7dy4//FAT/l9RUcHbb7/N8ePHWb16NfHx8dx3331ATQPCAw88wPz583XW99NPP9G/f3/at29f77tKSkoYNWoU9vb2HDp0iOXLl7N161Zmz56tzVNYWMi9997Lrl272L9/P4GBgYwZM4bCwponlmq1mttuuw0jIyP279/Pt99+y5w5c5rpr6PLSKHEy86Vc3W6fZ3LSNT5AdGQSJ9OnM9M1BsB0FZUVVaScCGOzmG6N7KdenTjwpnG/QBXq9WUlZRiZW3VHEW8LiOlEf4OHhxPjdVJP5ESS5Czt95lzmUm4mhhQ3ePDgDYmlkS6dORo8nndPLd3nkwBWXF7IiNbp7CN0Dp5IjSzpaq09dsh6oqqs7FYtzecFe6qtg4jH28MPLz0a7HpHMolSdO619AocAkIgyFqSlVcQlNWANdRgol7WxdOJ+VpJN+ISsJX3s3vcuEuvpxOS+DQe3DeHnYfTw/aBpjQ/pifE20RaibH5dy07i100BeHf4Azwy4i8EBPVCg0LvOpmSsNKK9YzuOJV/QST+Wcp5gPd2pAM5mXMLJ0pYenjXTutuaWdHHt7PODW9MegLtHdsReKVBzdXKgR6ewTpRJ00pOTWV7JwcIsNrG2VNTU0J69qVE6cN7DfAiTNn6BWu25Ab2bOnwWUqKyvZsGULE0aPRqGo3T5qtZrX3nuP6VOmXLeb6N9RVVVFysUkArqE6KQHdA0h6fzFRq0jJT6JpPMX8Q0J1KZ5B7Un5WISl2MTAMhJz+L80dN06F6/a2RTu3qNqhsNFpORgH8jr1F9fDtzLuMSOaX1o0+uCnL2xtXKwWBXvKZWc55w5kJmnfNEZhI+Bs4TIa6+XM7PZKB/N14cOp1nB97FmJDeOucJAFMjE+YMnsaLQ6Zzb/hoPGyaPsJRHyOlEh97N06nx+ukn06Lb3SDeH//rsSkJ+iNUruqn18XDiaeoaK68h+VtzGMFEq87dw4U6dOZ9Ljae/YuIbWvr5dOJtRv04qY1PeG/0I/x3zGLP7TsLLzqXJyv2/xkipxNfBg5Npug+5T6Vd1F5f6rqQlYSDhQ1d3Wu6tNuYWRLhHcKxlAt68/9P06jb5ut/lHTbFEI0KS8vL+bOnYtCoSAoKIiTJ08yd+5cHnroIR544AFtPn9/fz7//HMiIiIoKirCysqK+++/n9dee42DBw8SERFBZWUlv/76Kx9++KHe71q0aBGlpaX88ssvWFpaAvDll18yfvx4/vvf/+Lq6sqQIbrjj3z33XfY29uzc+dOxo0bx9atW4mJiSEhIQFPz5qL/Lvvvsvo0aMbrGd5eTnl5bpd2lQq1Q39rSxV5hgplRRcMwYRQGF5MdYq/TfF17JRWRLi4ssvhzfe0Pe2tMKCQtRqNTb2djrptva25OfmNWodG1esobysjIgBfZq+gI1go7LASGlUrzvP1e57+pzPTOLz3ct5asAUTIyMMVYacSgphp+u6RIX5OzNkIAe/N/6r5q1/IYobG0AUBfo3lioCwpROtbvZnZV5cEjlFpZYfXCU4AChbER5Tt2Ub5RN2pT2c4d65eeBRNjKC+n+KsfUKc2X5dNS9OaY6qo3jFVgrVKf7dARwsbfB3cqVJX88vhDViamjOx00AsTFQsP7EdAAcLW9o7WnM0+Tw/HVyLk6UdEzsNxEihZOuFQ81WH6jd9+p2Oc0rLcLe3FrvMmczLvHJzqU8P2iqdt87kHia7/f/oc2zK/44NmaWvDfmURQKBcZKIzbE7NPpxtWUsnNqoiod7e110h3t7fWOV3btcvqWubq+uqJ276aoqIjxo0bppC9YsgQjIyPunDTp7xT/ukoKilCr1VhdOaausrK1pjDPcGMEwIePvkxxQRHq6moG3zGW8KF9tZ916RtOSUERP7z2CRo0qKvVRAzvz4CJI5qlHteyunqNKqt/PNmYWV53eRszS0Jd/fj50Pp6n5kZm/LumEcwVhqh1mhYdmxri40faGFqhpFSSWFF3XqV0sHAecLB3AZfezeqqqtYeHgzlqZmTOzUHwsTFStORAGQUZTH8hPbSS/IQWVsSl+/zjzSZyKf/bVcb9f+pmRlanFlW+lGUBWUF2PbiG1la2ZJJ7f2zLvmHFGXn4M7nnYuLDi84R+XtzGsVBZ6fyMVlBc3av+rqZM/Pxxcq5OeVpjDz4fXk5yfiZmJiqEB4cwZNI23ts4noyi3Sevwv8D66naq9/uoCFuz+g++AS5kXeabfSuZ1fd27TUq+vJZFka37d+zQkjjmRCiSUVGRuo87e/duzcff/wx1dXVnDhxgjfeeINjx46Rk5OD+soYNYmJiYSGhuLu7s7YsWP56aefiIiIYN26dZSVlXHHHXfo/a6YmBi6du2qbTgD6Nu3L2q1mnPnzuHq6kpGRgavvfYa27dvJz09nerqakpKSkhMTNSuw9vbW9twdrXM1/Pee+/x5ptv6qS9/vrr0M228X+sq+qNBdq4aJYI71BKK8s5WScaqq26dr+AmjFQGxO5s2/HLlYuXMbTb76AbZ0GuJamb9xWQ0O5trN15v6eY1lxYgfHUy5gb27NtB6jeCjyFr7dtwozY1Me73cH3+1frTOIe3My6RWOxT13at8XffZtzX/qVkKhaHCQWuOgAMzGjaT019+oupiAkYsz5ndNQj1uJOXrarviqtMyKHzzfRTm5pj06IbFjGkU/ffzZm1Ag/pFV2B4O13dL5cc/ZOyK2OYrTuzm2k9RrPq1E6q1NUoUFBUUcrvJ3agQUNyfiY2KksGtu/e7I1nV9Wdll2hJ+0qL1sXHoqcwLJjWzmSfB4Hcxvu6zmGR/vcxpd7VgDQyc2fO7oM4bt9qzmflYS7tSMP9ppAbmkhvx3f9o/Lu3HLFt795BPt+0/fe6+m3HXPA3rS6ql37tAYPHP8sWEDfXr10hnTLObcOZb+/ju/fv/99b/rn6qzeo3m+vV78M2nKS8r5/KFBP5c/AeObs506VsTbRd/+jw7V21i3IwpeAb6kpOWyYafV2D1+0YGT2r4IU/Tqb+faQweUbUivTtSWlnGcT3RJOVVFby37RdUxiYEOftwW+dBZBXnc6FO1GizqnueUBiu19VtuPTYNu1Yh+ti9jI1bCSrT+2iSl1NUl46SXm1DcGXclN5vN8d9PHtxNoze5qnDnXUO5WjaMSWgj6+XSipLOPoNeOn1tXPryuX8zKIb2DylWZR79ynMHxCv0Zvn86UVpZxLFm3TvE5KcTnpGjfx2Vd5pVh9zG4fRjLmuDc97+q/nXX8L7nYePE9LDRrD71FyfTYrEzs+bO7sO5v+c4fji4ptnLKsTfJY1nQogWUVZWxogRIxgxYgS//vorzs7OJCYmMnLkSCoqagfdfvDBB5k+fTpz585l/vz5TJkyBQsDA0lrNBqDNyVX0++77z4yMzP59NNP8fHxQaVS0bt3b+136rv5bMzN1Ysvvsgzzzyjk6ZSqfi/jV9fd9mristLqVarsTHTrZ+1yqJRjSmRPh05nBRDdRsPn7a2sUapVJKfo/tEtyAvHxv7hhsb90ft5odPvuLxV56jU51uny2poLyEanU1dua6UWa2ZpYGB5e+tdNAzmUmsvZMzQQPiXnplB1Yy9ujHmLpsS3YmlnhYmXPnMHTtMtoG3KmvslTf3xGehOPgVZ5/CSFbybUJhjX/AxQ2tpQnV8bHaO0tkJTYLgrsNnEcVTsO0jFrn0AqJNTQWWKxT13Ub7+z9pf0dXVqDOyav57KQkjPx9UwwZSunBZk9brquKKmmPKus4xZaWyqBeNdlVBWQn5ZUXahjOAjKJclAoFduZWZBXnU1heTLVarXNjnVGUg42ZJUYKZbMeg1f3vbpRZrbmVgYnQJjUZTAx6QmsujJw+6XcNMr2VfD+2EdZdGQzuaWF3N19BFFxR9hypfHvUm4aKmNTZvW9jeXHtzeqcaQhA/r21Q7oD2jPuVk5OTg5OmrTc3JzcagTWXYtRweHelFmOXl5ODjUj4xMTUvj4JEjfFDnwcbRkyfJyctj3JQp2rRqtZpPv/mGJStWsHbp0hurnB4WNlYolUqK6kSZFRcUYmWrP0LwKnuXmoY+N+92FOUVsH35em3j2bbf1tF1QIQ2Gs3Nux0V5RWs+X4xA28diVLZfCOwFGmvUbpRPtYqCwrLrn+N6u3bmYOJZ/QeHxog88pkF5fzM3G1cWBEUESLNJ6VVJTVnCfqRJlZmZobHKOssLyE/LJinUlCrp4nbM2s9EaWaYDL+Rk4Wdo1ZfH1KqoooVqtrhdlZq2yqBeNpk8/vy7sv3RKZ+KNa5kaGdPTK4Q/Tusfv685FJWXGNz/GjNGWV/fzuxPPH3d87MGSMhJw9XacLS1MKzwynayrfP7yMbMsl402lXjQ/txISuRDWf3ApBEBuWHKnh1+AMsP7Hd4O+q/0lqmW2zLZExz4QQTWr//v313gcGBnL27FmysrJ4//336d+/P8HBwdrJAq41ZswYLC0t+eabb9i4caNOV8+6QkNDOXbsGMXFtT+i9uzZg1KppEOHmnGmdu3axRNPPMGYMWPo2LEjKpWKrKwsnXUkJiaSklL7FHLfvn3XradKpcLGxkbndaPdNqs1apLy0gly1u2iGeTsrfNUVJ8AJ0+crezZf+lUg/naAmMTE3wD23PqiO706qeOHCcwNNjgcvt27OL7j77k0ReeplsDg9e3hGp1NRdzUuhyZXyOq7q4B3DOwFTsKiOTeo2z6is/4hUoSMnP4tm1n/N/67/SvqIvn+V0Wjz/t/4rspqjm09ZOeqMrNpXShrqvHyMQ4Nq8xgZYRwUQFVcvOH1mJrUf8ys1lw/aFIBChOTv13866nWqEnOzyDQyUsnPdDJi4Rc/dFul3JTsTGzxNSotlxOlnaoNWrySmt+wCfkpOJoaatTPScrOwrKipu98bpKXU1cdjJdPQJ10rt5BBrs5qYyNqnX+FW779XmUevNo6gb6PW3WFpY4NWunfbl7+uLo4MDBw7XTvpRWVnJkePH6dJR/yDtAF1CQzkQrTse4IHDh/Uus2bTJuzt7OhXJ3p4zPDhLPnxRxb98IP25ezkxPQpU/jigw/+YU1rGBsb4+HvRdwJ3THj4k6cxatD42cI1gDVVbUTvVSWV6BQ6P5cVyqVDQWGNpmr16hgF1+d9GAXXy5e5xoV6OSFi5U9ext5jVKgwFjZMs/0a84TmQQ4647HFODkqTNRyLUu5aRiY2aBqVFtGZ2vnCcautF3t3GisAUGo69Wq7mUm0aoq+54fqGufsRlNzyWXJCzN67WDuy6eNxgnnCvEEyMjNl/yfD4hE2tWqMmMS+NUFdfnfQQV1/ispMbXLaDsxeu1g46kx80xMvOhfxSabD5O6rVahJyUujkpnue6+TmzwUD4xiqjE1Q1/t9VPO+uYODhfgnpPFMCNGkkpKSeOaZZzh37hxLlizhiy++4Mknn8Tb2xtTU1O++OILLl68yJo1a3j77bfrLW9kZMR9993Hiy++SEBAQINdKKdOnYqZmRn33nsvp06dYseOHTz++ONMnz4dV1dXAAICAli4cCExMTEcOHCAqVOnYm5url3HsGHDCAoK4p577uH48ePs2rWLl19+uen/MAZExR0h0rcTvbw74mrlwK2dBmJvYc2eKz/4xoX21TtFd6RPJxJy9M/2d3Uw5Ha2zhgrjLA1s6KdrTNOln+jS2kTGT1pPFGbtrFz0zaSEy/z6zc/kZ2RxdBxNeP2LPvxV7794DNt/n07dvHdB59z98x7CQjpQF5OLnk5uZQUt96MWOvO7GFoQA8Gtw+jnY0z94aPxsnSli3nayJ37uo+nFl9asdTOnz5LBHeoQzvEIGLlT1Bzt7c33MsF7KSyC0tpFJdRVJehs6ruKKMsqpykvIyqFa3zOxS5VujMBs7ApPuXVC2c8figWloKiqpOFDbyGExYzpmt43Xvq86fgrVoH6YRIShdHLEODQIs4ljqTx2StuoZnbbeIwC26N0dEDZzh2zW8dhHBRIxf7m7ea46+IxIrxDCfcKwcXKnvGh/bAzt9I2NI8K7s2UbsO0+Y8mn6ekoozJXYfiYmWPn4MHY0P6cigphqor22DfpVNYmpoxoeMAnCztCHbxYUhAOHsTGndj9k/9cXoXwzv0ZGhgOJ62LsyIGIeTpR2bztY8rJjeYxRP9Z+szX8oKYZIn06MCorE1cqBYBcfHuo1gfOZieRcmVzkUFIMo4Mi6e/XFRcre7p6BDI1bASHks7Uu6lpCgqFgrtuv535ixaxY9cuYuPjeeP99zEzM2PUsNrt8dq77/LlvHna93dOmsSBQ4f4eckSEhIT+XnJEg5ER3N3nbHL1Go1azdtYtzIkfVm0rSztSXAz0/nZWxkhKODA77e+if8+Dv6jB1K9Pa9RO/YS8blNDYsWEF+Vg4Rw/sB8OfiP1jx5QJt/gObd3I2+iTZqRlkp2ZwZMc+9qzdStd+tTP4BvXozKEtuzix5zC5GVnEnohh27K1BId3btaos6u2XThMH9/O9PbphKu1A5M6D8LBwprdVxpaJnTszz096ncf7ePbificFFILsup9NqJDBMEuPjha2OJq5cCQgB708g7lUNKZZq/PVbvjj9PTK4Rwz2CcrewYF9IHO3NrDiTWNA6NDOrF5K61Y6YeS7lASUU5t3cdcuU84c7o4N4cTjqrPU8MDQwn0MkLB3Nr3G0cub3LIDxsHNl/qWXqteX8Qfr7daWvXxfcrR2Z0m0oDhY2RMUdBeC2zgN5IGJcveX6+XUlLjuZFD3b6to8R5PPU1zRcrOHAmw5f4h+fl3p69sZN2tHJncdgoOFjXb2yVs7DeD+nmPrl9e3CxezU/TWaVxIX0Jd/XCytMXT1oV7e4zGy86lTc5oaW6iItDJUzvwvoeNE4FOnrhaGY7WbQ0bz+1nkH8YA/y74WHjxNTuI3G0sGXbhZrfEZO7DuXhyIna/EeTzxPuFcLQgHCcLe0IdPJieo9RxGVd1j60MlIq8bZzxdvOFWOlEfbmNnjbueLSxuou/rdIt00hRJO65557KC0tJSIiAiMjIx5//HFmzpyJQqHg559/5qWXXuLzzz8nLCyMjz76iAkTJtRbx4wZM3j33XcbjDoDsLCwYPPmzTz55JP07NkTCwsLJk2axCfXjLPz008/MXPmTLp37463tzfvvvsuzz33nPZzpVLJqlWrmDFjBhEREfj6+vL5558zqs5g083laPJ5LE3NGBncC1uVJamF2Xy3b7V29kwbM0vsLXS7/JgZm9LVPYCVJ6P0rtPW3Ir/u6Yr4NDAcIYGhnMhK4kvd69orqo0KHJQP4oKClm96DfycnLx9PHmuf+8jJNrzQxXeTm5ZGfU/sjdvv5PqqurWfDlPBZ8WXsj3W/4YB5+/vEWLz/UNKBYqyyY1GUw9ubWJOWl8972hWRd6Xpkb26t0z1n58WjmJuoGBXUi3t6jKK4oozTaRf59chm/V/QSso3bkVhYoL5tMkoLC2ovphA0SdfQVnthBhKB3udSLOydZvRUNN9U2lvi6awiMrjpyhbWTsZgsLGGssHp6OwtUFTWkb15RSK535N1Rnd2Uab2vHUWCxMzRgW2BMblSVphdn8dHAdeVePKZUFdtd0gayormTe/j+4pdMAnug/mZKKMk6kxLLpXG0UbX5ZEfP2r2F8x348PeBOCsqK2R1/nKjYI81al6t2x5/AWmXBlK41N8OXctN4a8t8bbe3uvve9thozE1UjA3pwwMRYymuKONEaiwLrplc5Lfj29EAU8NG4GBhS0FZMYeSzjTr/nnvnXdSXl7O+59+SmFhIZ1CQvjyww+xvKZrflpGhk6jUNdOnXjntdf45scf+fann/D08OC9117T6RIKcDA6mrT0dCZcZ7KX5tS5Tw9KCouJ+n0jhbkFuHq5M/2Fx7BzrummWpSXT352bfd1jVrDlsV/kJuZjVKpxMHVmRF330L4sH7aPANvq7kWbVu2loKcfCxtrAjq0Zlhd46nJRxJPoelypzRwb2xMbMktSCLr/es1M6eaWtmib2F7iQJZsamdPPooJ1woy5TYxOmdBuGnbkVldVVpBfm8POhDRxJbt5zw7VOpMZhYWrG0MAeWKssSSvK4edD67U37jXnidpuaBXVVfx4YC0TOvZjdr9JlFTUjDe6+dxBbR5zY1Nu6zwQa5UFZVUVpBRk8t2+P7icXz/KvjkcSorB0tSc8aF9sTWzIiU/k892/aadadLWzArHOtvK3ERFmGcQS49t0bdKoGYm3g7OXnyyc0mzll+fw5fPYmlqztiQvtiaWZJSkMUXu5fr1Mmhbp2MTQlrF8RSA+OXWZiqmB42EhszS0orax5WfRi1mITcFh7LrRGCnX348tbaIUKe6FczBvCGmH28s32BocVa3IHE01iZmjOx40DszK24nJ/BRzsXabsz25lZ4WhR+wB3V/xxzIxVDOvQk7u6j6CkoowzGfEsO7ZVm8fe3Jp3Rj+ifT82pA9jQ/oQk57Au22o7s2uJcKMRaMpNIZGmxVCiBs0aNAgunXrxqeffvqP1rNnzx4GDRrE5cuXtRFk/xZPrp7b2kVoUp9NfJqDLdhNo6VE+HRk8sJXWrsYTeq36f8hb0brNCw2F7sfv+D/1n3Z2sVoUh+Mm80t8+e0djGa1B/3/5fClIa78f3bWHt48Ns1N3I3g8ndhjFr5UetXYwm99Vtz/HC+m9auxhN6v2xj/Lgb++1djGa1A+TX2Tmiv+2djGa1Pe3z6HvV49cP+O/yJ5Z3zJ9yZvXz/gvsvCu11u7CH9b3sNPt3YR9LL77ua632ksiTwTQrQZ5eXlJCUl8eqrrzJ58uR/XcOZEEIIIYQQQoibj4x5JoRoM5YsWUJQUBD5+fl80ESDOAshhBBCCCHEv45G0zZf/6Mk8kwI0WSioqL+0fL33Xcf9913X5OURQghhBBCCCGEaAoSeSaEEEIIIYQQQgghhAESeSaEEEIIIYQQQgjRlqjVrV0CcQ2JPBNCCCGEEEIIIYQQwgBpPBNCCCGEEEIIIYQQwgDptimEEEIIIYQQQgjRlvwPz2zZFknkmRBCCCGEEEIIIYQQBkjjmRBCCCGEEEIIIYQQBki3TSGEEEIIIYQQQoi2RLpttikSeSaEEEIIIYQQQgghhAHSeCaEEEIIIYQQQgghhAHSbVMIIYQQQgghhBCiLVFLt822RCLPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQLptCiGEEEIIIYQQQrQlGnVrl0BcQyLPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQMY8E0IIIYQQQgghhGhLNJrWLoG4hkSeCSGEEEIIIYQQQghhgEKjkeZMIYQQQgghhBBCiLYi755HWrsIetn98m1rF6FVSLdNIYRoQm/++WNrF6FJvT5iBmfT41u7GE0u2NWPod890drFaFLbHv6cvBffbO1iNCm7917nzl9fa+1iNKml095iyLePt3YxmtT2R74gITultYvRpHwdPVh2dEtrF6NJTek+nFc3fd/axWhyb4+aycoTUa1djCZ1W5dB3Lv07dYuRpNacOervLTh5rrhfnfMI0xfcnNddxfe9Tp9v2qbDTZ/155Z/+L9Ti1xTm2JdNsUQgghhBBCCCGEEMIAaTwTQgghhBBCCCGEEMIA6bYphBBCCCGEEEII0ZbI8PRtikSeCSGEEEIIIYQQQghhgDSeCSGEEEIIIYQQQghhgHTbFEIIIYQQQgghhGhL1OrWLoG4hkSeCSGEEEIIIYQQQghhgDSeCSGEEEIIIYQQQghhgHTbFEIIIYQQQgghhGhLZLbNNkUiz4QQQgghhBBCCCGEMEAaz4QQQgghhBBCCCGEMEC6bQohhBBCCCGEEEK0JdJts02RyDMhhBBCCCGEEEIIIQyQxjMhhBBCCCGEEEIIIQyQbptCCCGEEEIIIYQQbYhGLd022xKJPBNCCCGEEEIIIYQQwgBpPBNCCCGEEEIIIYQQwgDptimEEEIIIYQQQgjRlmjUrV0CcQ2JPBNCCCGEEEIIIYQQwgBpPBNC/Kvdd999TJw48YaW8fX15dNPP22W8gghhBBCCCGEuLlIt00h/kXuu+8+FixYUC995MiRbNq0qdm/Oy8vj9WrVzfr99yozz77DI2maWeiSUhIwM/Pj6NHj9KtW7cmXbc+5/86Ssy2g5QWFGHr7kSP24bgEuBlMH91ZRWnNu0l/tAZygqLsbCzpuOISNr37gJAXmoWJ9fvJicpjeKcAsJuG0Lw4PBmr8e1Nqxay6olK8jNycHb14cZjz9Cx66d9ObNycpm/tfziD13gdTLKYybdAsPPvGITp4/125kx+atXLp4CYD2QQFMf+h+OoQGNXtdrjUhtB+Tuw7F0cKGhNw0vt77OyfTLhrMf0vH/tzSsT9u1g5kFOWy6MifbLlwSPv5yA4R/N/gafWWG/XDM1RWVzVLHRrDbOhATCN6oDA3ozopmZI/NqDOyDSY3+qhezH2962XXnn2PMULljRjSfUb3qEn40P7YWduxeW8TH45vJGzmZcM5u/r24UJHfvhZu1ASWU5x1Mu8Gv0ZooqSgHo6RXCxE4DcLN2wEhpRFpBNutj9rIr/nhLVYkJHfszRbvvpfLVnpWcTIszmP+Wjv21Zc4oyuXXI3+y5fxBnTyWpubMiBhHf7+uWKssSC3M5tt9qziQeKZZ6rD299UsX7yMnOxsfPx8eeTJ2XTu1sVg/hNHj/Hd519zKT4BRycn7ph6J+NunaD9/PlZT3HiaP1tENG7F29//H7Nd678g/Wr1pCemgaAj58vUx+4h569ezVx7Woc/PMvdq/dRlFePs6e7oy+ZxK+IQF68146G8efi/8gKyWNyvJK7JwdCB/alz5jh+jk27thB4e27CI/KxcLa0s69urOsLsmYGJq0ix1qCvCK5R+fl2wUlmQUZTLxrP7uJSbZjC/kULJ4IAedPUIwEplQUFZMTvjjnIk+RwAoa6+DPDvjoOFDUYKJdkl+exJOMnxlAstUp+r9m2OYtcff1KYl4+Lpwfj7p+MX0ig3rwJMbFsWrSSjOQ0KssrsHd2IGL4APqNG6aTr7S4hD+XrOb0gaOUFpdg7+LEmHtuJzisc0tUiSEBPRgT3Btbc2tS8jNZdHQz5zOT9OZ9sNcE+vt1rZeenJ/JSxu/BWq25bjQvvTz64KduQ1pBdn8dnxbg+eeptbLuyP9/WvOURlFuaw/s4eEhvY/pZIhAeF0axeItakF+WVFRMUdIfryuXp5u7i3587uwzmTFs+vRzY3ZzV0DA0IZ2xIH2zNrUnOz+DXI5s5n5loMH8fn86MDemDq7UjpZVlnEiNZcnRLdprVDsbZyZ1GYSvvQfOVnb8emQTm88daKnq3JCu7gHc3X0EwS7eOFna8cKGb1r0Wvqv08T3OOKfkcYzIf5lRo0axfz583XSVCpVK5Wm9dna2rZ2Ef6RS9ExHFm5jfDJw3H29yR2zzGivlnB2JdnYOlgo3eZ3fPXUFZYTOTdo7BytqessASNunZMhOqKSqycbPHqHsSRldtbqipau7bt5McvvuPhZ2YR0qkjm9ds4K3/e4Uvf/keZ1eXevkrKyuxsbXljul3sWb5Kr3rPHn0BP2HDuKhJ0MxNTVl5ZLlvPHcS3yx4DscnZ2au0oADGrfncf63Mbnu5dzKu0i40L78t6YR3ngt3fJKMqtl398aD9mRIznk7+WcC4jkWAXH54ZcCdFFaXsu3RKm6+ovJT7lv1HZ9nWbDhTDeiLql9vSlaspjorG7PBA7CaMZ2Cj7+Eigq9yxT/ugyMjLTvFRYWWD/xCJUnm6cRpiG9fTpxb4/R/HhoHecyEhkW2JMXhkzj2bVfkl2SXy9/kLM3s/rcxi/RG4m+fA4HCxse7DWemZG38MlfSwEorihl9am/SM7PpFpdTVi7IB7pPZH8smJOpMY2e50GtQ9jVp/b+GzXb5xKu8j40L68P/ZR7l/2jt59b0JoPx7sNZ6Pdy7lXMYlgl18eHbgXRSVl2j3PWOlER+Om0VeaRFvbPmRrKI8nK3sKaksb5Y6RG3dzreffcXs556iY5dOrF+9lleencO8RT/j4uZaL39aSiqvPPsioyeMZc7rL3P6xCm+/OhTbO1s6T94IACvvvcWVZW1x0pBfj6P3vsg/YcM0qY5uzjzwKMP4eHZDoAtGzbzxpxX+Orn7/H192vSOp7cG83GBb8zbsYUvIP8ObR1N7++/zWzP34FOyeHevlNVab0GjkAN+92mKhMSTwXx5oflmKqMiV8WD8Aju8+xNYlfzDx4al4dfAnOzWDVd8uBGD0vZOatPz6dHLzZ3RIb9ad2U1ibjrhXiFM7zGaL3b/Rn5Zsd5lpnQbhpXKnFWn/iKnJB9LU3OUitrOLiWV5eyMO0pWcR5V6mqCXHy4tdNAiitKic263Ox1Ajix5xDr5//GLQ/djU9Qew5s+Yuf3/mCp+e+gZ2znm1lZkrkqEG4+3hiqjIl4Wwsq75fhKnKlIjhAwCoqqzix7c/xcrGmruffRhbR3vys3JRmbfMb7QIr1Cmdh/JL9EbOJ91mcHtw3h2wN28uPEbckoK6uVfdGQzy49v075XKpT8Z9RMDibVnrcndRlMH59O/HRoPakFWXR2b88T/e7g7a0/k5hnuAGrqXR2b8/Y0D6sObWLS7lpRHiHcm/PsXz61zLyy4r0LnNX9+FYmVqw8kQU2SUFWJmao1Qo6uWzM7NidHBv4nNSmrsaOnp5d2Ra2Ch+PryeC1lJDA7owfMDp/LChq/I1rOdOjh58XDkRBYd3czR5PPYm1tzf89xzIgYz2e7fwPA1NiEjKI8DiaeYWrYyBatz40yN1ERm32ZDWf38u7oR66/gBBtiHTbFOJfRqVS4ebmpvOyt7fXfq5QKPjuu+8YN24cFhYWhISEsG/fPmJjYxk0aBCWlpb07t2buLjap4ZvvPEG3bp147vvvsPLywsLCwvuuOMO8vLytJ8vWLCAP/74A4VCgUKhICoqiiFDhjB79myd8mVnZ6NSqdi+vX6jTX5+PkZGRkRHRwOg0WhwcHCgZ8+e2jxLlizB3d1d+z45OZkpU6Zgb2+Po6Mjt9xyCwkJCdrP63bbLCwsZOrUqVhaWuLu7s7cuXMZNGgQTz31lE5ZSkpKeOCBB7C2tsbb25vvv/9e+5mfX80NVffu3VEoFAwaNKjhjfIPnN1xGP/eXQjo0xVbN0d6TBqKhb01F3Yf1Zs/5cxFMmKTGPTI7bgF+2LlaIuTrzvO/u20eRx93Ok+cTC+PUIwMjbSu57m9MdvKxk2diQjxo3Gy9ebB594BCdnZzauXqc3v6u7Gw89+ShDRg3D0tJCb55nX5vDmFvH4x/YHk8fL2Y9/yRqtYbj0ceasSa6bu88mI1n97Ph7D4S89L5eu9KMopyGR/aT2/+4YE9WRezh6i4o6QWZrMj7ggbz+1nStehdXJqyC0t1Hm1JlXfXpTt2EXl6bOo0zMpWb4ahYkJpt0MR05oSsvQFBVrXyaB/lBZSUUrNJ6NDenDjrgj7Ig9QkpBFr9EbyS7pIDhHXrqzR/o5EVmcR6bzh0gsziPc5mJbL1wmPaOtcfUmfQEDiXFkFKQRXpRLhvP7ScxL51gF+8WqdMdXQaz8ew+7b731ZV9b4Khfa9DT9ad2UNU3JHafe/sPu7sVhslMzo4EhuVBa9u/p7TafGkF+VyKu0iF7OTm6UOK5cuZ+T4MYyeMBZvXx8efWo2zi4urFu1Rm/+davW4OLqwqNPzcbb14fRE8YyYtxofl/8mzaPjY0NDo4O2teRQ9GYqcwYMGSgNk9kvz5E9InE09sLT28v7n/kQczMzTl7uun3zb3rtxM2uDc9hvTBuZ0bY+69HRtHew5t2aU3v7ufF136huPi5Y69iyNd+0cQ0CWES2drr89J5+Px6uBPl349sXdxJKBrCJ37hJN80XCUSlPq49uFI5fPEX35HJnFeWw8u4+CsiIivEP15g9w8sTXwZ2F0Zu4mJ1MXmkRyfmZJOWla/Mk5KQSk5FAZnEeuaWF7L90ivTCHHzs3FqkTgC71m0lfEhfeg7th4unO+Pvn4Ktkz37/9ypN7+Hnzfd+kXg6uWBvYsT3QdE0qFrKPExtY3n0Tv2UFpUzPT/ewzf4ADsnR3xDQnA3ddwJHlTGhUcyV8Xj7Lz4jFSC7JYfPRPckoKGBqgP/K8tLKc/LJi7cvPwQMLU3N2XayNAurj25m1Z/ZwIjWWzOI8tsdGczLtIqODI1ukTv38uhCddJbDl8+SWZzH+pi95JcV0ctH//4X6OSFn4MHCw5vIC47mbzSQi7nZ5B4zf4HoEDB5G5D2XrhMDklLXvNHR0Uyc6LR9l58SgpBVksOrKZ7JJ8hgbqv0YFOHmSWZzHn+cPklmcx/msJLbHRuPn4KHNE5+TwtJjW9ifeJrK6uqWqsrfsj/xNPMOrGHnxWOtXRQhbpg0nglxE3r77be55557OHbsGMHBwdx99908/PDDvPjiixw+fBigXqNXbGwsv/32G2vXrmXTpk0cO3aMWbNmAfDcc88xefJkRo0aRWpqKqmpqfTp04cHH3yQxYsXU15eG6mwaNEiPDw8GDx4cL1y2dra0q1bN6KiogA4ceKE9t+CgpqnbVFRUQwcWHPjU1JSwuDBg7GysuKvv/5i9+7dWFlZMWrUKCoMRMA888wz7NmzhzVr1rBlyxZ27drFkSNH6uX7+OOPCQ8P5+jRozz22GM8+uijnD17FoCDB2u6Nm3dupXU1FRWrlzZuD/8DaquqiYnKQ33YF+ddLdgP7Li9d/AJp+MxcHLjZitB1n1ytesfWseR1btoKqislnKeKMqKyuJO3+Bbj3DdNK79Qzj7KmYJvue8vJyqquqsLaxbrJ1NsRYaUQHZy8OXz6rkx59+SwdXfVHr5gYGVNRpbtdyqsqCXbxwUhZe/k1N1Gx+O43WDr1Ld4ZNZMAR8+mr0AjKe3tUNpYU3Xhmi451dVUxSdg7NP4cpmGd6fixCmobNn90khphJ+DOydSdbsUnUiNpYOz/oau85mJOFjY0M2jpruWrZklvbw7ciT5vMHv6eTmj7uNEzHphruCNhXtvpeku+8dvnyWjm4N7Ht1ohfr7nt9fDtzOj2BJ/tNZsU97/Dj5Be5u/sIvREa/1RlZSUXzp2nR4TuTXyPiHDOnDyld5mYU2fq5Q/v1ZPzZ89RVaU/MnPz2g0MHDYYM3NzvZ9XV1cTtWU75WVlhHTq+DdqYlhVVRWp8Um07xKikx7QJYTE8/GNWkdqfBJJ5y/iG1rbddAn2J/U+CQuxyYAkJOexfmjp+kQ1rTl18dIocTDxqleNFhs1mW87OpHCwIEu/iQkp9JP7+uPD9oKk/2n8zIoF4YKw0/yPF38MDJ0paE3NQmLb8hVZVVpFxMJLCrbgNMYJdQEs81rjtiSnwil85dxL9jB23amcMn8O7gzx8/LOadB5/j02feZMfKDairm3+2PCOlEl97d07VGUbgVFocAU6NO3cP8O/GmfSLOhG6JkojKtW6x1tldSWBzs3fIFiz/zlzIUu322ls5mWDDa0hrr4k52cywL8bc4ZM55mBdzI6OLLe/jcksAfFFWVE17mmNzcjpRJfB4963V5PpV0k0MB2upCVhIOFDV3da7p/25hZEuEdwrEW7uYsWola0zZf/6Ok26YQ/zLr1q3DyspKJ23OnDm8+uqr2vf3338/kydP1n7Wu3dvXn31VUaOrAnlfvLJJ7n//vt11lFWVsaCBQvw9Ky5eH/xxReMHTuWjz/+GDc3N8zNzSkvL8fNrfYHy6RJk3j88cf5448/tN83f/587rvvPhQGbsAGDRpEVFQUzz77LFFRUQwdOpSLFy+ye/duxowZQ1RUFE8//TQAS5cuRalU8sMPP2jXN3/+fOzs7IiKimLEiBE66y4sLGTBggUsXryYoUOHavN7eHhQ15gxY3jssce0f6O5c+cSFRVFcHAwzs7OADg6OurU91rl5eU6jYZw491ny4tL0Kg1mFlb6qSbW1uQWqC/O0xRdj6ZFy9jZGJE/wdvpby4hMO/baGipIzIqaNv6PubQ0F+AepqNXbXREMC2DnYk5uT02Tf88u3P+Hg7EjXHt2bbJ0NsTWzxEhpVC8qLLe0EAcL/Q14hy/HMCa4N3sSTnIhK4kOTl6MDuqFiZExtmZW5JQUkJiXwQdRi7iYnYKlqRm3dR7EZ7c8xcwV/yW5wPAYY81FYV1zblEX6XaHURcVo7RrXBdpI08PjNxcKfldf0RRc7JRWWCkNCK/VLf8+aXF2HlY6V3mfFYSX+5ZwZP9J2NiZIyx0ojDSf/P3n1HRXV1bQB/Zui9CIgiIEWaooLYC6CiBI29RFGwd0XseY0l9sTesWHvaIwauwKKYlSqIiJSxALSpHfmfn/wMXEEFQbkcsf9W4u14MxFnyPjMLPnnH0icejxPyLXKcjIYfegeZCWkoaAEcD70eU66fvzxfteXjY09Svf2v34zQu4WHREQFx42X1PWx/OFh1E7nuNVLRg01gTt6Kf4NcrXmiipo1ZXYdBis/H0aDa7aGZlZFZ9rigWdnjQsVtpwDwMT290utLS0uRmZGJBloNRG578TwS8bFx8Pzf/Ap/VlxMLGZPmo6ioiIoKChg6doVMDRqWrNJfSYvKwcCgQDKaqKPB0pqKsjJqLgV61Mbpv2G3KwcCEpL4TjEBW26dxLeZt3JDrlZOTiwbDMYMBCUCtDWqSu69e/1lT+xdijKykOKzxf2VSqXU5QPFbnKVwlrKqjCQEMXJYJSnAi5AUUZefzcvAsUZORx4dl/q7rkpGUw32EUpPlSEDACXH5+HzHfadXj5/Ky//9npS76/0dZXQXZ3/hZrZ28UPiz6jHsZ7Tt8d/qz48fUhD7LA2tu7THmF9nIjUpGX/vPwlBqQA9hvb9LnMppyKrCCk+v8JW2szCXKjJV/7Y9yk1eWW0bGQKr0DR1glPk2LhbN4BUckJSM5Jh1VDI9jomX+XIvvnhPe/QtH7X3ZRHprJVV6801RUgeH/3/+OB12Hoqw8+jfvCgUZeZx/6gcAMNDQhV0TC2wP8PnOM6hIRa7s55T12ZbTzIIcqMmbVPo90alvsTvwPKZ3HiL8HRX09gWOBl2ti8iEkE9Q8YwQjnF0dMTu3btFxjQ1RftztGz5XwPmhg3L3h22trYWGSsoKEBWVhZUVcuePBoYGAgLZwDQsWNHCAQCREVFfbGAJCcnh1GjRsHb2xvDhg1DaGgowsLCvnqogIODAw4cOACBQAB/f3/06NEDBgYG8Pf3h62tLV6+fClceRYUFIRXr15BRUX0xUhBQYHIttNysbGxKC4uRrt27YRjampqMDev2FT+038jHo8HXV1dJCcnfzH359auXYvff/9dZGzZsmXgdRLj3djPnoMyKNtSUBmGYcDj8dDJ/WfI/n8fFcHAUtzzvgC7oT0hXUcNpL/l8+fV5blrw/kTZ3Hvth9Wb/sTsnKytfJnVt3n77bxvtjL9WjQdWgoqGLHgDng8coKbddfPsIvrXtC8P896iKT4xGZHC/8nmdJcfAaPB8DWnTDzgfnvs8UPiHT2hqKA/57UZdz+MQXrqz6z07WzhalSR9Q+rZu+8h8qsKPhIcvHiyip6YNdzsXnHvqh/D3r6CuoAJX216Y0P5n7Hn4t/C6guIiLPxnN+RlZNFC1xij2zgjOecjnn+I/17TEMF8Nise78t9hI8GXYOmogp2Dpz7330v6l+MsHES3vd4PB4+5mdj092TEDAMolPfoIGSGoa36lHrxTNh5s/uR9/qg1zhMeP/v6Gyx5Lrl66gqbERLKwsK9zWxEAfuw7vR252DgL87mLDqnVYv3NLrRfQysJ9PvDtx77xy2ejqKAQb6LjcfPk39DU1UbLzmWr7uIiXuLuX9fRd/xwNDE1RFpSKq4e9oGfuiocBtfVGyaf3fe+8rhXPtez4XdQ+P8rb6+9CMTw1k64/DwAJYKyLWVFJcXY9eAcZKVkYNygMZwtOiA9Pwvx6XWz+qxSTMXfXZ+bvGI+igoKkRAdi2vH/0IDXW207lL2nEPAMFBSVcHAyaPAl+JDz8QQWekZuHfxxncvnpWr8DgBXoWxynQ1aoW84gIEvRNdiXU8+DrGtu2LdS5TwQBIzvmIe3Gh6GrUuhZTf13F37q8SkY/vQ04HXobhSVlOxSuRD7ACNteuBhxD3weH8Nadcdfz/yRV1zwHVN/3ef/f8p+TpVrrKqF0bY/4cKzu3ia9Arq8ir4xcYJY9v2xf5Hdf8mFSE/MiqeEcIxSkpKMDWt/OSucjIy/xVQyp/IVjYmEHx5K0H5Nd960j9hwgS0bt0ab9++hbe3N3r06AFDQ8MvXt+tWzdkZ2cjODgY9+7dw8qVK6Gvr481a9agdevW0NHRgaWlpTBfmzZtcPz48Qp/TvnqsE8xX3hhVdmL5k//Pcq/52v/Hp/79ddfMWfOHJExOTk5rPM/VuU/Q05JETw+DwWfrTIryM6DvGrl7+orqCpBQU1ZWDgDAFXdBgAD5GVkQ1WnYqPjuqSqpgq+FL/CapLMjxkVVqOJ46+TPvA5dgq/b1qLpibGNf7zqiqzIBelglJoKIiuVNBQUP5ij7Ki0mJs8D+BzfdOQUNBFel5mehj2Rm5RQVfbLTNgEFUSgKaqFW8f38Pxc+jkP3mky1ZUmVPC/jKyijN/u+dcb6yIpicypszi5CRhmyr5si/6VfLSasmqzAPpYJSqCuIrrRQk1f64r/5gOZd8TIlAZef3wcAJGR8QOGjIvzeewJOh91Gxv+vYmPA4ENO2erJ1x+ToKemjf7Nu3334ln5fU/zs/ueuoIKPuZXvkqmqLQY6/1OYNPd/+57fS07I7coX/jvkJ6XiRKBAIJPHh8TPn5AAyU1SPOlhEWO2qCqrvb/jwuiq08zP36Ehmbljwsampr4mCZ6fcbHDEhJSUFVTfTfoqCgAH63fOE2YUylf5aMjAz0/v/AADNLc0RFvsCFM+fgsXCumDOqSFFVGXw+HzkZoo8HuZk5UFL7+vZyDZ2yQ08aGughJzMbvj5XhMWz22f+Qauu7YSr0Roa6KG4sBAX951Et4G9wed/vw4seUUFKBUIoCwr+vtISVYeOUV5lX5PdmEesgpyhYUzAEjJyQCfx4OqvJKwcT0DCD9Pyk6DtpIGuhm3rpPimaJK+c9K9P9PTmY2lNUqX81ZTrNh2c9K11APOZlZuH3msrB4pqquBr60FPhS//1MdJo0QnZGFkqKSyAt8/1edmUX5aFUIID6Z6vMVP//tNNv6WrcCg/iw1H62fOg7MI8bAs4Axm+FJTlFPExPxvDWvVAam5GbcavVPn9T0VOdBu2sqxChdVon+Ytu//919ojOecj+Dwe1OSVISslDU1FVYxu81/hufw540rnSdh891SlhyvUluzCsp+T2me/o1TllSqsRiv3s1UXRKcm4MqLBwCAN0hG4eMiLHEah7Phd754cAKREMz33/ZNqo56nhFCAAAJCQl4//6/lSKBgYHg8/kwMyvr5yErK4vSSpqQWltbw87ODvv27cOJEycwbty4r/495X3PduzYAR6PBysrK3Tt2hUhISG4fPmycNUZANja2iI6Oho6OjowNTUV+ajslE0TExPIyMgIe5YBQFZWFqKjq9cXQla2bDVTZfMtJycnB1VVVZGP6m7blJKWgqa+LpJexIuMJ0XFQ8tIr9Lv0TbWQ35mDooL/3timJ2cDh6PB0X1uun/9TUyMjIwMWuGsCeiBx6EPgmBRYuKK0Kq4/zJszhz5ASWrV+FZhZm3/6GWlQiKMXLlDdo00R0FWObJhaI+PD1fkalAgFSczMgYBg4mtji4etnX10JYNJAr9ITt76LoiII0j7+95GcAkFWNqSbfVKYlOJD2qgpSl5/+xQ8WevmgJQ0ikPDv2PoLysVlCIuPRHWuqLbX6x1TfAypfIG67LSMhUK7OUFpS+tAC27DZCR+v4Hcgjve/oWIuNt9MwRkVSN+56pLR6+jhDe954lxUFPTUtkjk3UtZGam1mrhTOg7HGhmbkZgh89ERkPfhwEK+sWlX6PZQsrBD8OEhkLevQEZhbmkJYWLULcve2H4uIi9HB2qloghkFxLffjk5aWRiMjfcQ8FV25E/P0BQzMqnGqJ8Og9JMTRIuLiiq8IcTj87+5aq82lDICvM9KhYmW6O8jE60mIgcAfCrhYxJU5JUgK/Xfz6iBkhoEjOCrRRweD1/ti1abpGWk0djYANHhon04X4VHwsC88q1zlWEYiPTfM7QwQVpSisgbcanvP0BFQ+27Fs6Asv/r8R8T0VxX9E2l5rrG3zzB1ELHELoqDb7awL1YUIqP+dmQ4vFh18QCwe+iaiP2V5Xd/1JgqiW6ot9USw+vv3DS5+uPSVCRVxS5/2kpqUPACJBZkIOU3AxsvXsaOwLOCj9efIhHXNo77Ag4W2HLf63PSSBAfPp7tPjs59RC1xjRX/g5yUnLiLzJAXzyO+r7754lhHyCimeEcExhYSGSkpJEPlJTU2v858rLy8Pd3R1hYWG4d+8eZs2ahWHDhgm3bDZt2hTh4eGIiopCamqqyAuPCRMmYN26dSgtLcXAgQO/+Xc5ODjg2LFjsLe3B4/Hg4aGBqysrHD69GmRky1dXV2hpaWF/v374969e4iLi4O/vz88PDzw9m3FJxkqKipwd3fH/Pnz4evri4iICIwbNw58Pr9aWwZ1dHSgoKCAa9eu4cOHD8jMzPz2N4nJwtEOMYHhiAkMR2ZSGoLO3UZeehaadWkNAAi96I8HR/7rvWRoZwU5JQU8PHYVmYmpSH71BiEX/GDcwVq4ZbO0pBQf337Ax7cfICgpRX5mNj6+/YDslMp7C9W2/sMG4ebla7j1z3W8iU/A/u17kJqcDOf+fQAAR/Z4Y/Pq9SLfExsdg9joGOTnFyAzIxOx0TFIiP+vGfv5E2dxfP8RzFw4Bzq6DfExLR0f09KRn1f5u8/fg89TX7hYdISzeQcYqDfE1I4DoaOsgUvPAwAA49v9jIWOo4TXN1HTRs9mdtBT1Ya5tgF+6+EOI81GOPDov1NHR7dxhl0TCzRSaQCTBnqYZz8Spg2aCP9MNhTe/xfyDl0hY2UBfkNtKA4ZAKa4GEWhT4XXKA4dAPnen58aWnZQQPHzF2Dq8OfyuX8iH6C7qS0cTGzQWFULbm2coaWkhlvRjwEAv7TuiWmdBgmvD34bhbYGVnBq1hY6yhow0zbAmLYueJX6VriqsH/zrrDWNYGOsgYaq2rBxbITuhq3xr24sEoz1Laz4aL3vWmdBqGhiqbwfjKh3c9Y5DhaeL3wvqemDQsdQ/zWcwyaajbG/keXhNdcjLgHVTklzOg8GE3UtNHeoDlG2vTC3xF3v8scBv0yFNcuXcH1y1eQEP8aXlt3IvnDB/QZ8DMAwHv3Pvy5Yo3w+r4D++FD0gfs2boTCfGvcf3yFVy/dAWDRw6r8Gdfu3wFnbp2gWolb6p4e+3D09BwJCUmIS4mFge99iM8JAyOvXpWuLamOvXpjuA7DxDsG4iUd0m4evgcMlPT0bZnVwDAzZN/49zOI8Lr/73ujxdBT5GWmIy0xGQE+wXi/uXbaNn1v1P3zG1b4PGtADx98AQfk1PxKjwSd85chkUb6++66qzcg/hwtGliAVs9c2grqeMni45Qk1fGo4SywpOTWVsMtnYQXh+e+Ar5RQUYaO0AbSV1GGroord5ewS/jRIWZbsZt4ZJAz1oKKhAS0kNnZpao3VjM4TVYQP0rn174sntADy5cx/JbxNx+dAZZKSmo32vbgCAa8f/wpntB4XXB17zReSTMKQmfkBq4gc88b2PexdvwKbrf20i2veyR152Di4fPI2U9x/wIugp/P66io69HepkTtdePIS9sQ26GrVCI1UtjLRxQgNFNdx5VVaEHtqyOya171/h+7oZt8ar1Ld4l1mxz6axZmO0aWIBbSV1mGnrY67DSPB4PFyJfPDd5wMAAXHhsNO3QJsmZfc/F8tOUFNQwaPXZafl9jJvhyEt/zugKux9NPKKCjG4pSN0lDXQVKMRfrLsgKA3Zfe/EkEpPuR8FPnILylCYUkxPuR8RGkdrPK5GvUQDsa26GbcGo1VteBq0xsNFNVwO7rszYVhrXpgcocBwutD3r2Enb4lepjaQVtJHc209DG6jTNiUt8KV0ZL8fkwUG8IA/WGkOZLQUNBFQbqDaGjXPMV/7VNQUYOzbSaCA9IaKyqhWZaTdCwHmYl5HO0bZMQjrl27RoaNWokMmZubi48KVJcpqamGDRoEFxcXJCeng4XFxfs2rVLePvEiRPh5+cHOzs75OTkwNfXV1joGjFiBGbPno2RI0dCXl7+m3+Xo6MjNm3aJFIos7e3R2hoqMjKM0VFRdy9excLFy7EoEGDkJ2dDT09PfTo0UPYq+1zmzZtwpQpU9C3b1+oqqpiwYIFePPmTZVylZOWlsa2bduwYsUKLF26FF27dhWeEFrbDNtYojC3AM+uPUB+Vi7UGmnBYeoQKGmWvQjMz8xF3sf/ViHJyMnCcfowBPncwrX1RyCnpAADG3O07NtVeE1+Zg6u/nFY+HXk7ceIvP0YOqb66Okx4rvM41Nde9gjOysLpw8fR3raRxgaGWLpHyuho1vWf+9jWjpSP4j2l/McP134eUxUNO7e8oWOrg72nSl7oXn1wiWUFBfjj6WrRL7vlzGuGDFuNOqCX0wIVOWUMLpNb2gqqiE+PRG/XvVCck5ZUbKBoqrIE1U+j48hLbtDX00HJYJShL2PxswLm4Vb/4Cy7Sdzuv0CDUVV5Bbl41XqW3he2oqoL6ySqguFd++DJyMNhf4u4CkooPTNW+R4HwU+OeGWr65WoWkLX0sT0kaGyDlwtK4jiwh8/QzKcgoYbO0AdQUVvMlIxjrfY0jNLSuCl79gL+cfGwp5GTn0Mm+PUW16I7eoABEf4nAi+IbwGjlpWYxr1xcNFFVRVFqM91mp2Hn/HAJfV35SZG3ziwmGqrwS3OycoamoWnbfu7IbH/7/vqeppAYdFdH73tBW3aGv1hAlglKEvo/GrL824UP2f/e9lNwMLPhnJ6Z1GoT9Q39Fam4Gzj/1x6nQm99lDg49uyM7MwvHvY8gPS0dhsZNsWrDOjRsVPYGTXpaGlI+eVzQbdwIqzauxZ6tu3Dp/N/Q1GqAqZ4z0dXRXuTPfZvwBhFhT7Fmi2hBvlxG+kesX7EG6WnpUFRSgpGpMVZt+qPCSZ61wbpTG+Tn5MLv3FVkZ2RBR78RRi2aBnXtsu302R+zkJn638+AYRjcOnkRH1PSwOfzodlQC04j+sOuZ2fhNfaDnMHj8XD79GVkpWdCSVUZ5m1aoMfwn2s9f2WeJcVCUUYeDqa2UJFTxIfsdBwNuircKqYspyiyBa2otASHnvyDPpadMaXTIOQXFeBZUqyweA2UnQb7s1UXqMorobi0BKm5GfAJv1PhpMjvqWXntsjNycVtn3+Q/TETDfUbY8z/ZkBDu+wgiuyPmcj47Gd1/cQFpCengs/no4GuNpxdB6Gd03+/e9W1NDHuNw/8c/gsts1bAVVNdXRy6Q77/s51MqdHb55DWU4B/Vt0g7q8Mt5lpmDT3ZPC0zPVFJShqST63ElBRg52TSxxPPh6pX+mjJQ0Bls7QFtZA4UlRQh//wp7Ay8gr7iw0utr29PEGCjKyKO7qV3Z/S8nHYcfX0HG/9//VOSUoK7w36r7otISHHx0GX2bd8G0zoOQV1SIp4kxuPny0Zf+ijr3b0IElGUVMKC5PdQVlPE2Mxkb/I8Lf07q8spooPjf76h7cWGQl5ZDT7O2GGHTC3lFBXieHIfTobeE12goqGD1T1OEX/ex7IQ+lp0Q+SEea+7893ywPrDQNsSOgf+1PZnVZSgA4EpkIFbXs6z1Ql0sMyZVxmO+1EGXEPLDWL58OS5cuIDQ0FCxvv/Nmzdo2rQpHj9+DFtb29oNV0O5ubnQ09PDxo0bMX78+O/+9/1+48B3/zvq0rJe4/HiG9sSuciioRF67JnFdoxadXvyNmT8+vu3L+QQ9bXL8MuxpWzHqFWnRq1Ad6+ZbMeoVXembEd8GnsHRHwPTRs0xumQ71NIZMtwGycsubaX7Ri1bqXzJJwP92M7Rq0a1NIB7qdWsh2jVh3+ZQn+d8WL7Ri1ao3LFIw+KVm/d4+OWIbOO6d8+0IOuT+du/e7j/1Hsh2hUhp/f+mAKclGK88IIWIrLi5GYmIiFi1ahA4dOtSLwllISAhevHiBdu3aITMzEytWrAAA9O9fcasCIYQQQgghhBDyLVQ8I4SI7f79+3B0dISZmRl8fHzYjiO0YcMGREVFQVZWFm3atMG9e/egpaXFdixCCCGEEEIIqRoBbRKsT6h4RgjB8uXLsXz58mp/n4ODQ4VT6thmY2ODoKCgb19ICCGEEEIIIYRUAZ22SQghhBBCCCGEEELIF9DKM0IIIYQQQgghhJD6pJ7t8PnR0cozQgghhBBCCCGEEEK+gIpnhBBCCCGEEEIIIYR8AW3bJIQQQgghhBBCCKlPGAHbCcgnaOUZIYQQQgghhBBCCCFfQMUzQgghhBBCCCGEEEK+gLZtEkIIIYQQQgghhNQnAjptsz6hlWeEEEIIIYQQQgghhHwBFc8IIYQQQgghhBBCCPkC2rZJCCGEEEIIIYQQUp8wtG2zPqGVZ4QQQgghhBBCCCGEfAEVzwghhBBCCCGEEEII+QLatkkIIYQQQgghhBBSn9C2zXqFVp4RQgghhBBCCCGEEPIFVDwjhBBCCCGEEEIIIaxavXo1OnXqBEVFRairq1fpexiGwfLly9G4cWMoKCjAwcEBERERItcUFhZi5syZ0NLSgpKSEvr164e3b99WKxsVzwghhBBCCCGEEELqE4Ggfn58R0VFRRg6dCimTp1a5e/5888/sWnTJuzYsQOPHz+Grq4unJyckJ2dLbxm9uzZ+Ouvv3Dq1CkEBAQgJycHffv2RWlpaZX/Hup5RgghhBBCCCGEEEJY9fvvvwMADh06VKXrGYbBli1bsHjxYgwaNAgAcPjwYTRs2BAnTpzA5MmTkZmZiQMHDuDo0aPo2bMnAODYsWPQ19fHrVu30Lt37yr9XbTyjBBCCCGEEEIIIYR8U2FhIbKyskQ+CgsLWckSFxeHpKQk9OrVSzgmJycHe3t7PHjwAAAQFBSE4uJikWsaN26MFi1aCK+pEoYQQginFBQUMMuWLWMKCgrYjlJraE7cQHPiDkmcF82JG2hO3EBz4g5JnJckzulHsmzZMgaAyMeyZctq9e84ePAgo6am9s3r7t+/zwBg3r17JzI+ceJEplevXgzDMMzx48cZWVnZCt/r5OTETJo0qcqZeAxD558SQgiXZGVlQU1NDZmZmVBVVWU7Tq2gOXEDzYk7JHFeNCduoDlxA82JOyRxXpI4px9JYWFhhZVmcnJykJOTq/T65cuXC7djfsnjx49hZ2cn/PrQoUOYPXs2MjIyvvp9Dx48QOfOnfH+/Xs0atRIOD5x4kS8efMG165dw4kTJzB27NgKmZ2cnGBiYgIvL6+v/h3lqOcZIYQQQgghhBBCCPmmrxXKKjNjxgz88ssvX72madOmYmXR1dUFACQlJYkUz5KTk9GwYUPhNUVFRfj48SM0NDRErunUqVOV/y4qnhFCCCGEEEIIIYSQWqelpQUtLa3v8mcbGRlBV1cXN2/ehI2NDYCyEzv9/f3xxx9/AADatGkDGRkZ3Lx5E8OGDQMAJCYm4tmzZ/jzzz+r/HdR8YwQQgghhBBCCCGEsCohIQHp6elISEhAaWkpQkNDAQCmpqZQVlYGAFhYWGDt2rUYOHAgeDweZs+ejTVr1qBZs2Zo1qwZ1qxZA0VFRYwcORIAoKamhvHjx2Pu3Llo0KABNDU1MW/ePFhbWwtP36wKKp4RQgjHyMnJYdmyZdVaLl3f0Zy4gebEHZI4L5oTN9CcuIHmxB2SOC9JnBOpHUuXLsXhw4eFX5evJvP19YWDgwMAICoqCpmZmcJrFixYgPz8fEybNg0fP35E+/btcePGDaioqAiv2bx5M6SlpTFs2DDk5+ejR48eOHToEKSkpKqcjQ4MIIQQQgghhBBCCCHkC/hsByCEEEIIIYQQQgghpL6i4hkhhBBCCCGEEEIIIV9AxTNCCCGEEEIIIYQQQr6AimeEEEIIIYQQQgghhHwBFc8IIYSwimEY0Nk1pK69evUK169fR35+PgDQfbCeKygoYDtCrZPEORFCSGW6d++OjIyMCuNZWVno3r173QciRAx02iYhhNRzhYWFePToEeLj45GXlwdtbW3Y2NjAyMiI7Wg1cuTIEaxfvx7R0dEAADMzM8yfPx+jR49mOZl4SktLsXnzZpw5cwYJCQkoKioSuT09PZ2lZDX39u1bXLx4sdJ5bdq0iaVU4klLS8Pw4cNx584d8Hg8REdHw9jYGOPHj4e6ujo2btzIdkSxvXnzRuRxonnz5pCTk2M7ltgEAgFWr14NLy8vfPjwAS9fvoSxsTGWLFmCpk2bYvz48WxHrDZJnBMgWfe9zMxM/PXXX7h3716F37u9e/dGp06d2I5ICOfw+XwkJSVBR0dHZDw5ORl6enooLi5mKRkhVSfNdgBCCCGVe/DgAbZv344LFy6gqKgI6urqUFBQQHp6OgoLC2FsbIxJkyZhypQpUFFRYTtutWzatAlLlizBjBkz0LlzZzAMg/v372PKlClITU2Fp6cn2xGr7ffff8f+/fsxZ84cLFmyBIsXL0Z8fDwuXLiApUuXsh1PbLdv30a/fv1gZGSEqKgotGjRAvHx8WAYBra2tmzHqzZPT09IS0sjISEBlpaWwvHhw4fD09OTc8Wz169fw8vLCydPnsSbN29EVtDJysqia9eumDRpEgYPHgw+n1sbDlatWoXDhw/jzz//xMSJE4Xj1tbW2Lx5MycLTZI0J0m77yUmJmLp0qU4fvw4dHV10a5dO7Ru3Vr4e9fX1xcbNmyAoaEhli1bhuHDh7MdWSyPHz/G2bNnK30z5Pz58yylqhlJnJOkCA8PF37+/PlzJCUlCb8uLS3FtWvXoKenx0Y0QqqPIYQQUu/069ePadSoETN37lzG39+fyc3NFbk9JiaGOXToENO7d29GV1eXuXHjBktJxdO0aVPm8OHDFcYPHTrENG3alIVENWdsbMxcvnyZYRiGUVZWZl69esUwDMNs3bqVGTFiBJvRaqRt27bMkiVLGIYpm1dMTAyTnZ3N9OvXj9m1axfL6aqvYcOGTGhoKMMw/82HYRgmNjaWUVJSYjNatc2aNYtRUVFhBg8ezBw+fJiJjIxksrKymOLiYubDhw/M7du3meXLlzPm5uZM8+bNmUePHrEduVpMTEyYW7duMQwj+rOKjIxk1NXV2YwmNkmZkyTe97S1tZm5c+cyT58+/eI1eXl5zIkTJ5h27dox69evr8N0tePkyZOMjIwM06dPH0ZWVpbp27cvY25uzqipqTFjxoxhO55YJGlOf//9d5U/uILH4zF8Pp/h8/kMj8er8KGoqMgcOHCA7ZiEVAmtPCOEkHqoV69eOHv2LGRlZSu93djYGMbGxnB3d0dERATev39fxwlrJjExsdKtL506dUJiYiILiWouKSkJ1tbWAABlZWVkZmYCAPr27YslS5awGa1GIiMjcfLkSQCAtLQ08vPzoaysjBUrVqB///6YOnUqywmrJzc3F4qKihXGU1NTObfNTFZWFjExMdDW1q5wm46ODrp3747u3btj2bJluHLlCl6/fo22bduykFQ87969g6mpaYVxgUDA2S0+kjInSbzvRUREVDqfTykoKGDEiBEYMWIEUlJS6ihZ7VmzZg02b96M6dOnQ0VFBVu3boWRkREmT56MRo0asR1PLJI0pwEDBoh8zePxRFZ08ng84eelpaV1FatG4uLiwDAMjI2N8ejRI5H/Y7KystDR0YGUlBSLCQmpuvq/hpoQQn5A06dP/2Lh7HPNmzeHk5PTd05Uu0xNTXHmzJkK46dPn0azZs1YSFRzTZo0ERb+TE1NcePGDQBl20m4VpT5lJKSEgoLCwEAjRs3RkxMjPC21NRUtmKJrVu3bjhy5Ijwax6PB4FAgPXr18PR0ZHFZNW3fv36b77YL+fi4oIhQ4Z850S1q3nz5rh3716F8bNnz8LGxoaFRDUnKXOSxPteVecj7vX1QUxMDPr06QMAkJOTQ25uLng8Hjw9PbF3716W04lHkuYkEAiEHzdu3EDr1q1x9epVZGRkIDMzE1euXIGtrS2uXbvGdtQqMzQ0RNOmTSEQCGBnZwdDQ0PhR6NGjahwRjiFVp4RQgiHFBQU4PTp08jNzYWTkxNnC02///47hg8fjrt376Jz587g8XgICAjA7du3Ky2qccHAgQNx+/ZttG/fHh4eHhgxYgQOHDiAhIQETvZwK9ehQwfcv38fVlZW6NOnD+bOnYunT5/i/Pnz6NChA9vxqm39+vVwcHDAkydPUFRUhAULFiAiIgLp6em4f/8+2/Gq7bfffkP37t3RqVMnyMvLsx2nVi1btgyjR4/Gu3fvIBAIcP78eURFReHIkSO4fPky2/HEIolz+py/vz9yc3PRsWNHaGhosB2nWl69eoXMzEy0adNGOHb79m2sWrUKubm5GDBgAP73v/+xmLBmNDU1kZ2dDQDQ09PDs2fPYG1tjYyMDOTl5bGcTjySOCcAmD17Nry8vNClSxfhWO/evaGoqIhJkyYhMjKSxXTiefnyJfz8/JCcnAyBQCByG5d7w5IfB522SQgh9dT8+fNRVFSErVu3AgCKiorQvn17REREQFFRESUlJbh58yY6duzIclLxBAUFYfPmzYiMjATDMLCyssLcuXM5tfriax4+fIgHDx7A1NQU/fr1YzuO2GJjY5GTk4OWLVsiLy8P8+bNQ0BAAExNTbF582YYGhqyHbHakpKSsHv3bgQFBUEgEMDW1hbTp0/n3BYfADAxMUFcXBxkZWXRvn17ODo6onv37ujQoUOVV6/WZ9evX8eaNWtEflZLly5Fr1692I4mNkmZ0/r165GTk4Pff/8dAMAwDH766SfhqlsdHR3cvn0bzZs3ZzNmtQwcOBAtWrTAypUrAZRtOWvevDm6du0KCwsLeHt7Y+XKlZg9eza7QcU0cuRI2NnZYc6cOVi9ejW2bt2K/v374+bNm7C1teVkc31JnBNQtkX40aNHwnYQ5cLDw9G+fXvk5+ezlEw8+/btw9SpU6GlpQVdXV2RLag8Hg/BwcEspiOkaqh4Rggh9VSLFi2wZs0aYeHl4MGDmDt3LkJCQmBgYIBx48YhOTkZ//zzD8tJCSFsevfuHe7cuQM/Pz/4+fkhLi4OCgoK6NixIxwdHeHo6Fhpj0FCasLW1hYLFy4Unjp59uxZuLu74+bNm7C0tISbmxsUFRU5tZpYX18fZ86cEb4ptWrVKvj4+CA0NBQAcODAAWzfvl34Ndekp6ejoKAAjRs3hkAgwIYNG4RvhixZsoRzKwUByZwTUNZiQEZGBseOHRO+sZOUlITRo0ejqKgI/v7+LCesHkNDQ0ybNg0LFy5kOwohYqPiGSGE1FOqqqoIDg4WNpceMWIEVFRUhD08QkND4eLiwrnDAj6VnJxc6fL9li1bspSoei5evFjla7m8+ozrwsPD0aJFC/D5fISHh3/1WmVlZejr60NGRqaO0tW+N2/ewNfXF35+fjh37hxyc3NRUlLCdqxqGzt2LEaNGoXu3buLrFLgMkmak4aGBh48eABLS0sAZXMrKSnB0aNHAZStvh06dCjevHnDZsxqUVBQwMuXL6Gvrw8A6NGjBzp16iRciRYTE4M2bdogIyODxZTiKSkpwfHjx9G7d2/o6uqyHYd8w6tXrzBw4EBERUXBwMAAAJCQkAAzMzNcuHCh0oNH6jNVVVWEhobC2NiY7SiEiI16nhFCSD3F5/NFTll6+PChyKmN6urq+PjxIxvRaiwoKAju7u7CLZuf4vF4nDlF6vOTsb6ES3MCyl4UV/WFfXp6+ndOU3OtW7dGUlISdHR00Lp16wonmH1OTU0NXl5ewhU1XBITEwM/Pz/hSrTS0lLOHYRQLi0tDX369EGDBg3wyy+/YNSoUZzf1i1JcyouLhY5DCUwMBAeHh7Crxs3bsy5Q0U0NTWRmJgIfX19CAQCPHnyRKRnZVFR0VcfO+ozaWlpTJ06lZO9sj6XlZVV5WtVVVW/Y5Lvx9TUFOHh4bh58yZevHghbG/Rs2dPThbehw4dihs3bmDKlClsRyFEbFQ8I4SQesrCwgKXLl3CnDlzEBERgYSEBJEXwa9fv0bDhg1ZTCi+sWPHwszMDAcOHEDDhg05+UQQQIUVc5Jiy5YtbEeoVXFxccKT8eLi4r56bWFhIc6ePSuyHa0+i4uLg6+vr3ClWWZmJjp37gx7e3vMmDEDbdu2hbQ0N5/uXbx4ERkZGThz5gxOnDiBLVu2wNzcHKNGjcLIkSPRtGlTtiNWmyTNydTUFHfv3oWxsTESEhLw8uVL2NvbC29/+/YtGjRowGLC6rO3t8fKlSuxa9cunD17FgKBQOT37vPnzzn1M/pc+/btERISwslelZ9SV1ev8vMGLr1x9Tkej4devXpxrh9iuW3btgk/L99G+/DhQ1hbW1dY3T1r1qy6jkdItdG2TUIIqafOnTuHESNGoGvXroiIiEDbtm1x6dIl4e0LFy5EXFwcp/rJlFNRUUFISAjnth2QH8PHjx8xfvx4TjSa5vP5MDAwwLRp0+Do6AhbW1tISUmxHeu7ePv2LU6ePAlvb29ER0dzcivq57g8pz179mDu3LkYPnw4Hj58CHV1dZETa1etWoV///1X5PdWfRcXFwcnJyfExcWBz+dj27ZtmDp1qvD2AQMGwMjICJs3b2YxpfjOnj2LRYsWwdPTE23atIGSkpLI7VxpmfBpv6/4+HgsWrQIY8aMEfaqCwwMxOHDh7F27Vq4u7uzFbPGcnNz4e/vj4SEBBQVFYncxoVik5GRUZWu4/F4iI2N/c5pCKk5Kp4RQkg9duvWLfzzzz/Q1dXFzJkzoaioKLzt999/h4ODg8g7/VwxYMAAjB49GoMHD2Y7Sq3i+hPdb8nPz0dxcbHIGFe3xOTl5VX6c+LKi8dyw4cPx927d1FQUICuXbvC3t4ejo6OsLGx4eyKzsoUFxfjn3/+wbFjx/DPP/9AU1MT7969YztWjUjCnA4cOIDLly9DV1cXy5YtE+mlNW3aNPTs2RODBg1iMWH1FRcX4/nz59DW1kbjxo1FbgsLC4O+vj40NTVZSlczfD6/wlj5NnautRco16NHD0yYMAEjRowQGT9x4gT27t0LPz8/doLVUEhICFxcXJCXl4fc3FxoamoiNTUVioqK0NHRoWITISyg4hkhhHBYaGgoWrduzXaMaktNTYW7uzvatWuHFi1aVFi+z8Xm+pL6RDc3NxcLFy7EmTNnkJaWVuF2rr3YSklJwdixY3H16tVKb+fafMq9ePFCuHXT398fBQUF6NKlC+zt7eHg4IC2bduyHVEsvr6+OHHiBM6dO4fS0lIMGjQIrq6u6N69e6WFAC6QxDl9SUpKinDLtCR4+vQpDhw4wNmt7a9fv/7q7VzczqmoqIiwsDA0a9ZMZPzly5do3bo18vLyWEpWMw4ODjAzM8Pu3buhrq6OsLAwyMjIYNSoUfDw8OBcUZoQSUDFM0II4ZjMzEwcP34cBw4cQGhoKCdf7F+8eBGjR49GdnZ2hdu4+u63pD7RnT59Onx9fbFixQq4ublh586dePfuHfbs2YN169bB1dWV7YjV4urqivj4eGzZsgWOjo7466+/8OHDB6xatQobN25Enz592I5YK54/f44TJ05g+/btnD1ts0mTJkhLS0Pv3r3h6uqKn3/+GfLy8mzHqhFJnNPnGIbB1atXhavSCgsL2Y5UI1lZWTh58iQOHDiAJ0+eoGXLlggNDWU7Fvl/5ubm6Nu3LzZu3CgyPnfuXFy+fBlRUVEsJasZdXV1/PvvvzA3N4e6ujoCAwNhaWmJf//9F+7u7njx4gXbEatlzpw5lY7zeDzIy8vD1NQU/fv35+yqTvJjoOIZIYRwxJ07d+Dt7Y3z58/D0NAQgwcPxuDBgzl5UlvTpk3Rt29fLFmyhLOHHnxO0p7oljMwMMCRI0fg4OAAVVVVBAcHw9TUFEePHsXJkydx5coVtiNWS6NGjfD333+jXbt2UFVVxZMnT2BmZoaLFy/izz//REBAANsRxfbhwwf4+fnBz88Pvr6+ePnyJeTk5NChQwf4+vqyHa/a9u7di6FDh0JDQ4PtKLVGEudULjY2Ft7e3jh8+DBycnLQp08fDB48GAMHDmQ7mlj8/f1x4MABnDt3DgUFBZg/fz4mTJjA6V6dR44c+ertbm5udZSk9ly5cgWDBw+GiYkJOnToAKDsdPKYmBicO3cOLi4uLCcUj7a2Nu7fvw8zMzOYm5tj27Zt6N27N168eAFbW1vOrahzdHREcHAwSktLYW5uDoZhEB0dDSkpKVhYWCAqKgo8Hg8BAQGwsrJiOy4hleLm8UuEEPKDePv2LQ4dOgRvb2/k5uZi2LBhKC4uxrlz5zj95CItLQ2enp4SUzgDABkZGWGPqYYNGyIhIQGWlpZQU1NDQkICy+nEl56eLmz6q6qqivT0dABAly5dRBppc0Vubi50dHQAAJqamkhJSYGZmRmsra0RHBzMcrrqO3v2rHC7ZlRUFKSlpdGuXTsMGzYMjo6O6NSpE+Tk5NiOKZZJkyaxHaHWSdqcCgoK4OPjg/379+Phw4dwcnJCYmIiQkND0aJFC7bjVVtiYiIOHjwo/J07YsQI+Pv7o2PHjnBzc+N04QwAPDw8RL4uLi5GXl4eZGVloaioyMnimYuLC6Kjo7F7925ERkaCYRj0798fU6ZMgb6+PtvxxGZjYyN8c8fR0RFLly5Famoqjh49Cmtra7bjVVv5qrKDBw8Ke6VmZWVh/Pjx6NKlCyZOnIiRI0fC09MT169fZzktIZWj4hkhhNRTLi4uCAgIQN++fbF9+3Y4OztDSkoKXl5ebEersUGDBsHX1xcmJiZsR6k1kvZEt5yxsTHi4+NhaGgIKysrnDlzBu3atcOlS5egrq7OdrxqMzc3R1RUFJo2bYrWrVtjz549aNq0Kby8vNCoUSO241Wbq6sr7OzsMHDgQDg6OqJz585QUFBgO1atefz4Mc6ePVvp4Q5cOA21MpIyp2nTpuHUqVMwNzfHqFGjcO7cOTRo0AAyMjKc7d1mZGSEoUOHYufOnXBycuLsPL7k48ePFcaio6MxdepUzJ8/n4VENVNcXIxevXphz549WL16NdtxatWaNWuErS1WrlwJd3d3TJ06Faampjh48CDL6apv/fr1uHnzpsghQ6qqqli+fDl69eoFDw8PLF26FL169WIxJSFfR8UzQgipp27cuIFZs2Zh6tSpFRrhcp2ZmRl+/fVXBAQEwNrausKBAVw8mVLSnuiWGzt2LMLCwmBvb49ff/0Vffr0wfbt21FSUoJNmzaxHa/aZs+ejcTERADAsmXL0Lt3bxw/fhyysrI4dOgQu+HE8PHjRygpKbEd47s4deoU3Nzc0KtXL9y8eRO9evVCdHQ0kpKSOLsVUJLmtHfvXixcuBCLFi2CiooK23FqhaGhIQICAmBgYABDQ0NYWFiwHem7a9asGdatW4dRo0Zxrr2AjIwMnj17JlEnC5ezs7MTfq6trc25Fgmfy8zMRHJycoVdEykpKcjKygJQ1v7i8zcUCKlPqOcZIYTUU4GBgfD29saZM2dgYWGB0aNHY/jw4WjcuDHCwsI4vW2zfBtgZXg8HmdPpvwRJCQk4MmTJzAxMUGrVq3YjlNjeXl5ePHiBQwMDKClpcV2HLG9e/cO586dw8uXL8Hj8dCsWTMMHjwYenp6bEcTW8uWLTF58mRMnz4dKioqCAsLg5GRESZPnoxGjRrh999/ZztitUnSnE6cOIGDBw8iMDAQffr0wejRo+Hs7AwFBQVO/466f/8+Dhw4gLNnz8LMzAyjRo3CggULEB4eDktLS7bjfRchISGwt7cXFjG4ZO7cuZCRkcG6devYjvJdpKSkCPuBmZubc/b3lKurKwIDA7Fx40a0bdsWPB4Pjx49wrx589CpUyccPXoUp06dwoYNG/DkyRO24xJSKSqeEUJIPZeXl4dTp07B29sbjx49QmlpKTZt2oRx48ZJzLv9hBDx7dq1C3PmzEFRURHU1NTAMAyysrIgKyuLTZs2Ydq0aWxHFIuSkhIiIiLQtGlTaGlpwdfXF9bW1oiMjET37t2FKwi5RBLnFB8fj4MHD+LQoUPIy8tDeno6Tp8+jSFDhrAdrUZycnJw8uRJeHt7499//4W9vT1GjhyJAQMGQFtbm+14Yrl48aLI1wzDIDExETt27IC+vj6uXr3KUjLxzZw5E0eOHIGpqSns7OwqrMTl4gppoKw/58yZM3H06FHhCeRSUlJwc3PD9u3boaioyHLC6snJyYGnpyeOHDkiPP1ZWloa7u7u2Lx5M5SUlISn2LZu3Zq9oIR8BRXPCCGknkpISIC+vr7IdoSoqCgcOHAAR48eRUZGBpycnCo8GSaEiJozZ06Vr+XaC61//vkH/fv3x+zZszF37lxh37bExESsX78e27dvx99//83JE+f09fVx5coVWFtbo1WrVli0aBFGjBiBwMBAODs7IzMzk+2I1SaJcyrHMAyuX78Ob29vXLx4EVpaWhg0aBC2bdvGdrQai4yMFP7uTU9PR3FxMduRxPJ5DzcejwdtbW10794dGzdu5GTfR0dHxy/exuPxcOfOnTpMU3smT56MW7duYceOHejcuTMAICAgALNmzYKTkxN2797NckLx5OTkIDY2FgzDwMTEBMrKymxHIqTKqHhGCCH1lJSUFBITE4UnA36qtLQUly5dEr5I4YI5c+Zg5cqVUFJS+mYxg2sFDFK/fe3F1ae4+ELL3t4eXbt2xapVqyq9/bfffsO9e/fg7+9fx8lqbuTIkbCzs8OcOXOwevVqbN26Ff3798fNmzdha2vLqeb65SRxTpVJT0/HkSNHcPDgQYSFhbEdp9aUlJTg4sWLGDRoENtRiITT0tKCj48PHBwcRMZ9fX0xbNgwpKSksBOMkB8YFc8IIaSe4vP5SEpKqrR4xkWOjo7466+/oK6uLrHvFBNS11RVVfH48WOYm5tXentUVBTs7OyEh1lwSXp6OgoKCtC4cWMIBAJs2LABAQEBMDU1xZIlS6ChocF2xGqTxDlJkvfv32PTpk1YunSpyKmAQFnD81WrVmHevHlo2LAhSwnJl7x69QoxMTHo1q0bFBQUwDAMpw8SUFRURFBQUIU+exEREWjXrh1yc3NZSlZ1gwYNwqFDh6CqqvrNgrOkvHFAJBsVzwghpJ6StOIZIfWJpLzQUlZWRnh4OIyNjSu9PTY2Fi1btkROTk4dJyOSrirboXk8HjZu3FgHaWrHvHnzkJWVhb1791Z6+5QpU6CmpoY//vijjpOJT5K3rQNAWloahg0bBl9fX/B4PERHR8PY2Bjjx4+Huro6p+5/n+rRowcaNGiAI0eOQF5eHgCQn58Pd3d3pKen49atWywn/LaxY8di27ZtUFFRwdixY796LZdPJSc/Dmm2AxBCCPmy/fv3f7MfxKxZs+ooTe358OHDF9+5Dw8PR8uWLes4kXiq08uHSz+n6py49vnqjPruSy+0JkyYwMkXWs2bN8fff/8NT0/PSm+/cOECmjdvXsepao9AIMCrV6+QnJwMgUAgclu3bt1YSlUzkjKnkJAQtiPUumvXrsHLy+uLt7u5uWHixImcKp59/nMKCgpCaWmpcLXqy5cvISUlhTZt2rARr8Y8PT0hIyODhIQEkVVaw4cPh6enJ+ce08tt3boVzs7OaNKkCVq1agUej4fQ0FDIy8vj+vXrbMerkk8LYlQcI5KAVp4RQkg9xefz0aRJE0hJSX3xGh6Ph9jY2DpMVTt0dHSwf/9+9OvXT2R8w4YNWLJkCfLz81lKVj1GRkZVuo5rPyc+n//NVVjlK7XKTwHjCjc3NyQnJ2P//v2wtLREWFgYjI2NcePGDXh6eiIiIoLtiNVy+PBhTJ06FRs2bMCkSZMgLV32vmhJSQn27NmD+fPnY9euXRgzZgy7QcXw8OFDjBw5Eq9fv8bnT1e5eN8DJHNOkkRJSQmRkZEwMDCo9PbyAg0XtsxVZtOmTfDz88Phw4eFW4Q/fvyIsWPHomvXrpg7dy7LCatPV1cX169fR6tWraCioiJ8TI+Li4O1tTWnV93m5+fj2LFjePHiBRiGgZWVFVxdXaGgoMB2NLGUlJTAz88PMTExGDlyJFRUVPD+/XuoqqrSwQGEE2jlGSGE1GNPnjyRyG2bCxcuxPDhw4VHlKenp2P06NGIiIjA6dOn2Y5XZXFxcWxH+C58fX3ZjvDd3LhxA9evX0eTJk1Exps1a4bXr1+zlEp87u7uePr0KWbMmIFff/0VJiYmAICYmBjk5ORg1qxZnCycAWVb5Ozs7PDPP/+gUaNGnNxW+zlJmpOfn1+FZuafmzZtGnbt2lU3gWqBgoIC4uPjv1g8i4+P52zhAgA2btyIGzduiPTW09DQwKpVq9CrVy9OFs9yc3OhqKhYYTw1NRVycnIsJKo9CgoKmDhxItsxasXr16/h7OyMhIQEFBYWwsnJCSoqKvjzzz9RUFDw1RWfhNQXVDwjhBBS5+bOnYuePXti1KhRaNmyJdLT09GhQweEh4dzvhFzUVER4uLiYGJiIlwFxDX29vZsR/huJPGF1oYNGzBkyBCcPHkS0dHRAMq2//3yyy/o0KEDy+nEFx0dDR8fH5iamrIdpdZI0pz69+8PX19f2NraVnr79OnTcfz4cU4Vz9q3b4+jR49+cfvskSNH0K5duzpOVXuysrLw4cOHClu5k5OTOXmoCFD2WHfkyBGsXLkSQNkKToFAgPXr11f5pOX6ojqnp3++cr++8/DwgJ2dHcLCwtCgQQPh+MCBAzFhwgQWkxFSddx8Vk8IIQQAcPz4cbi6urIdQyzGxsZo3rw5zp07BwAYNmwYpwtneXl5mDlzJg4fPgygrI+MsbExZs2ahcaNG2PRokUsJxTfvXv3sGfPHsTGxuLs2bPQ09PD0aNHYWRkhC5durAdr1ok6YUWAKxYsQLz5s1Dhw4dOF0oq0z79u3x6tUriSg0lZOkOU2YMAE//fQT7t27BzMzM5HbZsyYgSNHjuDKlSsspRPPvHnz4OTkBDU1NcyfP1/4O+nDhw/4888/cejQIdy4cYPllOIbOHAgxo4di40bNwofLx4+fIj58+d/8zTE+mr9+vVwcHDAkydPUFRUhAULFiAiIgLp6em4f/8+2/GqZcCAAVW6jotbvAMCAnD//n3IysqKjBsaGuLdu3cspSKkmhhCCCH1koWFBfP+/fsv3n78+HFGRkamDhPVnoCAAKZp06ZMmzZtmOfPnzP79u1jVFRUmKFDhzLp6elsxxPLrFmzmDZt2jD37t1jlJSUmJiYGIZhGObvv/9mWrduzXI68fn4+DAKCgrMhAkTGDk5OeG8du7cyfz0008sp6u+iIgIRltbm3F2dmZkZWWZIUOGMJaWlkzDhg2ZV69esR2v2vh8PvPhwwe2Y3wX58+fZ6ysrJiDBw8yT548YcLCwkQ+uEjS5jR27FjGwMCAefv2rXBs5syZjJKSEuPn58diMvF5eXkxcnJyDJ/PZ9TV1RkNDQ2Gz+czcnJyzK5du9iOVyO5ubnM1KlThfPj8/mMrKwsM3XqVCYnJ4fteGJLTExkli5dyvTp04f56aefmMWLF3/1+ROpexoaGkxERATDMAyjrKwsfC5x7949RkdHh81ohFQZHRhACCH1lIODA/Lz83Hnzh0oKSmJ3Hbq1Cm4ubnhjz/++OIpe/WZnJwcPD09sXLlSsjIyAAo69E0evRoJCQk4O3btywnrD5DQ0OcPn0aHTp0EGla/OrVK9ja2lbrBMv6xMbGBp6ennBzcxOZV2hoKJydnZGUlMR2xGpLSkrC7t27ERQUBIFAAFtbW0yfPh2NGjViO1q18fl8JCUlSWRvRD6fX2GMx+Nx9rAKQPLmJBAIMGTIEERGRuLevXtYvXo19u7di8uXL3NyJWdxcTFkZGTw7t07nDlzBq9evQLDMDAzM8OQIUPQpEkTPHv2DC1atGA7ao3k5uYiJiYGDMPA1NS0wnMMwr64uLgqH0rEBcOHD4eamhr27t0LFRUVhIeHQ1tbG/3794eBgQGdxkk4gYpnhBBST+Xk5MDBwQHq6uq4evWqsMh05swZjBo1CmvWrMG8efNYTikef3//SvtqCQQCrF69GkuWLGEhVc0oKiri2bNnMDY2FikyhYWFoVu3bsjMzGQ7olgUFRXx/PlzNG3aVGResbGxsLKyQkFBAdsRf2h8Ph8fPnyAtrY221Fq3bcOcDA0NKyjJLVHEudUVFSEPn36ICwsDLm5ubh48SJ69OjBdiyxDBkyBGfPnv3iQQ7Pnj1Djx498OHDhzpORr7k7t27X739S/3r6jspKSl069YN48ePx5AhQyAvL892pBp5//49HB0dISUlhejoaNjZ2SE6OhpaWlq4e/euRL4BRCQPFc8IIaQeS0lJQbdu3WBlZQUfHx/4+PjA1dUVK1euxMKFC9mORz5hb2+PIUOGYObMmcJ3VY2MjDBjxgy8evUK165dYzuiWExMTLBnzx707NlTpHh25MgRrFu3Ds+fP2c7YrVcu3YNysrKwl5tO3fuxL59+2BlZYWdO3eKnELHBXw+Hy1atPjm4RTBwcF1lIj8KLZt2yb8PDs7GytXrkTv3r0rFM5mzZpV19HEpq+vj59++gl79+6tcFtERAS6d++Obt264ezZsyykqx2PHz/G2bNnkZCQgKKiIpHbzp8/z1Iq8X1pNWc5rq3mLPfs2TN4e3vj+PHjKCwsxPDhwzF+/HhOH1iRn5+PkydPIjg4WLjq29XVldMn2JIfCxXPCCGknnvz5g26dOkCU1NTBAQEYOnSpVi8eDHbsWosNzcX/v7+lT6B59KLrXIPHjyAs7MzXF1dcejQIUyePBkREREIDAyEv78/2rRpw3ZEsfz55584fPgwvL294eTkhCtXruD169fw9PTE0qVLMWPGDLYjVou1tTX++OMPuLi44OnTp7Czs8PcuXNx584dWFpacm7rCJ/Px9y5c6GsrPzV65YtW1ZHiWpXTEwMtmzZgsjISPB4PFhaWsLDwwMmJiZsRxObpMypKlvKeDweYmNj6yBN7YiMjBSu9lm3bp3IuKOjIzp16oSzZ89CSkqKxZTiK2/50KtXL9y8eRO9evVCdHQ0kpKSMHDgQM49/gGosKq7uLgYISEhWLJkCVavXs3ZVZDlSkpKcOnSJRw6dAhXr15Fs2bNMH78eIwePVoiVxwTUp9R8YwQQuqp8PBw4ecvXryAm5sbBgwYgP/9738i17Vs2bKuo1XbmzdvoK+vL/w6JCQELi4uyM3NRX5+PjQ0NJCamgpFRUXo6Ohw6sXWp54+fYoNGzaI9NJauHAhrK2t2Y5WI4sXL8bmzZuFWzTl5OQwb9484YmVXKKsrIxnz56hadOmWL58OZ49ewYfHx8EBwfDxcWFcz3cJLnn2fXr19GvXz+0bt0anTt3BsMwePDgAcLCwnDp0iU4OTmxHbHaJHFOkubx48fo0aMHlixZgvnz5+PFixdwdHREu3btcP78ec4WzoCy5wuTJ0/G9OnThSuJjYyMMHnyZDRq1Ai///472xFrzd27d+Hp6YmgoCC2o9SKwsJC7Nq1C7/++iuKioogIyOD4cOH448//uBEv87GjRvDwcFB+PH5Cb2EcAEVzwghpJ7i8/kijaTLH64//5wLWxJWrVqFxMRE7NixAzweDw4ODjAxMcHevXvRpEkThIWFIT8/H6NGjYKnpycGDRrEdmTymby8PDx//hwCgQBWVlbfXOlUX2lqaiIgIABWVlbo0qUL3NzcMGnSJMTHx8PKygp5eXlsR6wWKSkpJCYmSmTxzMbGBr179xZZAQQAixYtwo0bNzi5FVUS5ySJ7ty5g759+2LBggXYt28fbG1tcf78eWHvUa5SUlJCREQEmjZtCi0tLfj6+sLa2hqRkZHo3r07EhMT2Y5YayIjI9G2bVvk5OSwHaVGnjx5Am9vb5w6dQpKSkpwd3fH+PHj8f79eyxduhTZ2dl49OgR2zG/6eTJk/D394efnx9evnyJhg0bwt7eHg4ODrC3t4elpSXbEQn5JiqeEUJIPfWtxtLluNBgOj8/HzNmzEBKSgouXrwIdXV1PHz4EBYWFmjSpAkCAwOhr6+Phw8fYsyYMXjx4gXbkaukOidoqqqqfsckpKr69euHoqIidO7cGStXrkRcXBz09PRw48YNzJgxAy9fvmQ7YrVI8sozeXl5PH36FM2aNRMZf/nyJVq2bMnJwyokZU6nTp3CL7/8UqVr37x5g4SEBHTu3Pk7p6pdFy5cwNChQ9GrVy9cuHCB84UzoKyn25UrV2BtbY1WrVph0aJFGDFiBAIDA+Hs7MzJg20+XaUPAAzDIDExEevWrUNxcTHu37/PUrKa2bRpEw4ePIioqCi4uLhgwoQJcHFxEenx9urVK1hYWKCkpITFpNX34cMH+Pr64vLlyzh9+jQEAgEn3ggm5OvdZQkhhLCGC0WxqlJQUMCBAwdw6tQpAICMjIzwCaCOjg5ev34NfX19qKurIyEhgc2o1aKurv7FU9k+x6UnhtVZ+ce1BtM7duzAtGnT4OPjg927d0NPTw8AcPXqVTg7O7Ocrvri4uIktu+NtrY2QkNDKxSaQkNDOVsslJQ57d69G8uXL8fYsWPRr1+/CqtGMjMzcf/+fRw7dgy3bt3CgQMHWEpaPRoaGhUe0+/du4eGDRuKjKWnp9dlrFrTtWtX3Lx5E9bW1hg2bBg8PDxw584d3Lx5k7O9wVq3bi2yIr9chw4d4O3tzVKqmtu9ezfGjRuHsWPHQldXt9JrDAwMOPN/Cyg7RT4gIEC4Ai0kJATW1taVnr5OSH1ExTNCCKmHEhISYGBgUOXr3717JywC1GflKxVsbGzw+PFjmJmZwd7eHr/++iumTp2Kw4cPc6o/mK+vr/Dz+Ph4LFq0CGPGjEHHjh0BAIGBgTh8+DDWrl3LVkSxqKmpCT9nGAZ//fUX1NTUYGdnBwAICgpCRkYGJ7fXGhgY4PLlyxXGN2/ezEKamjt8+HCVrlu6dOl3TlL7Jk6ciEmTJiE2NhadOnUCj8dDQEAA/vjjD8ydO5fteGKRlDn5+/vj8uXL2L59O/73v/9BSUkJDRs2hLy8PD5+/IikpCRoa2tj7NixePbsGWcKg1u2bGE7wne1Y8cO4erGX3/9FTIyMggICMCgQYOwZMkSltOJJy4uTuRrPp8PbW1tyMvLs5SodkRHR3/zGllZWbi7u9dBmppr3749wsPD0aJFCzg4OOB///sfunbtCnV1dbajEVJltG2TEELqoYYNG6Jfv36YOHHiF48lz8zMxJkzZ7B161ZMnjwZM2fOrOOU4nvy5AmysrLQvXt3pKenY8yYMfDz84OJiQkOHTqEVq1asR2x2nr06IEJEyZgxIgRIuMnTpzA3r174efnx06wGlq4cCHS09Ph5eUlbJRdWlqKadOmQVVVFevXr2c5YfV8a2VjdYrW9QGfz0fjxo2ho6NTYeVFOR6Px8leWgzDYMuWLdi4cSPev38PoKzp9Pz58zFr1qwqr/qsTyRxTmlpaQgICEB8fDzy8/OhpaUFGxsb2NjYiGwxI6Q23blzBzNmzMDDhw8rtEXIzMxEp06d4OXlha5du7KUsHbk5eVVeio5Fw6L+pSmpiZ4PB569uwpPDSA+pwRrqHiGSGE1EPp6elYs2YNvL29ISMjAzs7OzRu3Fj4rv7z588REREBOzs7/Pbbb/jpp5/YjvzDU1RURFhYWKW9jFq3bs25RvTltLW1ERAQAHNzc5HxqKgodOrUCWlpaSwlE0/5QRxfwqXttQDg4uICX19f9O7dG+PGjUOfPn04fRpguZKSEhw/fhy9e/eGrq4usrOzAQAqKiosJxOfJM7pR1Z+mA+XfKlPJ4/Hg5ycHGRlZes4kfj69esHR0dHeHp6Vnr7tm3b4Ovri7/++quOk9WOlJQUjBkzBteuXav0dq79rgLK+tP5+fnB398f9+7dA5/Ph729PRwdHTFlyhS24xHyTfR2ECGE1EOamprYsGED3r9/j927d8PMzAypqanCZfyurq4ICgrC/fv3qXBWT+jr68PLy6vC+J49e6Cvr89CotpRUlKCyMjICuORkZEQCAQsJKqZkJAQBAcHCz/+/fdfeHl5wczMDGfPnmU7XrVduXIFsbGxaN++PebPn48mTZpg4cKFiIqKYjtajUhLS2Pq1KkoLCwEUFZg4nqRSRLnJEksLS1x4sSJCit8PhcdHY2pU6fijz/+qKNktUddXR0aGhoVPtTV1aGgoABDQ0MsW7aME4/tYWFhX+1T2atXLwQFBdVhoto1e/ZsZGRk4OHDh1BQUMC1a9dw+PBhNGvWDBcvXmQ7nlhatmyJWbNm4dy5c7h69Sp++uknnD9/HtOnT2c7GiFVQj3PCCGkHpOXl8egQYM42Vvqa9LS0rB06VL4+voiOTm5whN1LjZj3rx5MwYPHozr16+jQ4cOAICHDx8iJiYG586dYzmd+MaOHYtx48bh1atXIvNat24dxo4dy3K66qtsS3D5ys7169dz8v9ao0aN8Ouvv+LXX3/F3bt3cfDgQbRt2xbW1ta4desWFBQU2I4olvbt2yMkJESiDk+RxDlJip07d2LhwoWYPn06evXqVemK74CAADx//hwzZszAtGnT2I5cbYcOHcLixYsxZswYtGvXDgzD4PHjxzh8+DB+++03pKSkYMOGDZCTk8P//vc/tuN+1YcPH756Aqq0tDRSUlLqMFHtunPnDv7++2+0bdsWfD4fhoaGcHJygqqqKtauXYs+ffqwHbFaQkJC4OfnBz8/P9y7dw/Z2dlo1aoVPDw84OjoyHY8QqqEimeEEELq3KhRoxATE4Px48ejYcOGnNv6UhkXFxdER0dj9+7diIyMBMMw6N+/P6ZMmcLplWcbNmyArq4uNm/ejMTERABlxZoFCxZwqsH5t5iZmeHx48dsx6ixtm3bIj4+Hs+fP0dISAiKi4s5WzybNm0a5s6di7dv36JNmzZQUlISuZ1rPX8AyZyTpOjevTseP36MBw8e4PTp0zhx4kSFPm5ubm4YNWoUZ5ucHz58GBs3bsSwYcOEY/369YO1tTX27NmD27dvw8DAAKtXr673xTM9PT08ffoUpqamld4eHh6ORo0a1XGq2pObmys8aENTUxMpKSkwMzODtbU1J3tYtm3bFjY2NrC3t8fEiRPRrVu3Cr3qCKnvqOcZIYSQOqeiooKAgABOHgzwIyvvl8PlJ7yf9/xhGAaJiYlYvnw5Xrx4gdDQUHaC1VBgYCC8vb1x5swZmJmZYezYsRg5ciRnX+QDqLTZPI/HE/aa4mLPH0mcE+GOL/XmjI6ORqtWrZCXl4e4uDg0b9683vfpnDlzJvz8/PD48eMKJ2vm5+ejXbt2cHR0xLZt21hKWDNt27bFqlWr0Lt3bwwYMEC44mzbtm3w8fFBTEwM2xGrJSsri9PPHQgBaOUZIYQQFlhYWCA/P5/tGKSaJOGJr7q6eoWVjgzDQF9fH6dOnWIplfj+/PNPHDx4EGlpaXB1dUVAQACsra3ZjlUr4uLi2I5Q6yRxToQ7mjRpggMHDmDdunUi4wcOHBCukE5LS4OGhgYb8arlt99+w/nz52FmZoYZM2bA3NwcPB4PkZGR2LlzJ0pLS7F48WK2Y4pt9uzZwtXey5YtQ+/evXHs2DHIysri8OHDLKerPkl4/kAIrTwjhBBS5x4/foxFixZh6dKlaNGiRYW+JfQki3wv/v7+Il/z+Xxoa2vD1NQU0tLce0+Rz+fDwMAAffv2/epJeZs2barDVORH8/btW1y8eBEJCQkVGu7Tfa/+uHjxIoYOHQoLCwu0bdsWPB4Pjx8/xosXL+Dj44O+ffti9+7diI6O5sTP7fXr15g6dSquX7+O8pe0PB4PvXv3xq5du9C0aVN2A9YShmGQn5+PFy9ewMDAAFpaWmxHIuSHRMUzQgghdS46OhojRoxASEiIyDhtXSLfg62tLW7fvg0NDQ2sWLEC8+bNg6KiItuxaoWDg8M3ewbyeDzcuXOnjhLVrqNHj8LLywtxcXEIDAyEoaEhtmzZAiMjI/Tv35/teGKRtDndvn0b/fr1g5GREaKiotCiRQvEx8eDYRjY2tpy9r4nqV6/fg0vLy9ERUWBYRhYWFhg8uTJnC40ffz4Ea9evQLDMGjWrBknVs5VxYEDB7B582bhSevNmjXD7NmzMWHCBJaTEfJjouIZIYRwQExMDLZs2YLIyEjweDxYWlrCw8MDJiYmbEcTS7t27SAtLQ0PD49KDwywt7dnKRmRRAoKCoiOjkaTJk0gJSWFpKQkaGtrsx2LfMPu3buxdOlSzJ49G6tXr8azZ89gbGyMQ4cO4fDhw/D19WU7YrVJ4pzatWsHZ2dnrFixAioqKggLC4OOjg5cXV3h7OyMqVOnsh2RACguLkavXr2wZ88emJmZsR2HfMOSJUuwefNmzJw5Ex07dgRQ1ttyx44d8PDwwKpVq1hOSMiPh4pnhBBSz12/fh39+vVD69at0blzZzAMgwcPHiAsLAyXLl2Ck5MT2xGrTVFRESEhITA3N2c7CvkBdOzYEcrKyujSpQt+//13zJs3D8rKypVeu3Tp0jpOR77EysoKa9aswYABA4RFGWNjYzx79gwODg5ITU1lO2K1SeKcVFRUEBoaChMTE2hoaCAgIADNmzdHWFgY+vfvj/j4eLYjkv+nra2NBw8eVDgwgNQ/Wlpa2L59O0aMGCEyfvLkScycOZNzjxV+fn5wcHBgOwYhNcK95h6EEPKDWbRoETw9PSs0+F20aBEWLlzIyeKZnZ0d3rx5I3HFMx8fH5w5c6bSvj9cPFq+nL+/PzZs2CCy8nH+/Pno2rUr29Gq5NChQ1i2bBkuX74MHo+Hq1evVtrfjMfjcap4tm7dOsycORNKSkrfvPbff/9Famoq+vTpUwfJakdcXBxsbGwqjMvJySE3N5eFRDUniXNSUlJCYWEhAKBx48aIiYlB8+bNAYBzL/Ark5+fj+LiYpExrvbldHNzq/TAAFL/lJaWws7OrsJ4mzZtUFJSwkKimnF2doaenh7Gjh0Ld3d34QEVhHAJFc8IIaSei4yMxJkzZyqMjxs3Dlu2bKn7QLVg5syZ8PDwwPz582FtbV3hwICWLVuylEx827Ztw+LFi+Hu7o6///4bY8eORUxMDB4/fozp06ezHU9sx44dw9ixYzFo0CDMmjVLuPKxR48eOHToEEaOHMl2xG8yNzcXnqTJ5/Nx+/Zt6OjosJyq5p4/fw5DQ0MMHToU/fr1g52dnXA7aklJCZ4/f46AgAAcO3YMiYmJOHLkCMuJq8fIyAihoaEwNDQUGb969SqsrKxYSlUzkjinDh064P79+7CyskKfPn0wd+5cPH36FOfPn0eHDh3YjieWvLw8LFiwAGfOnEFaWlqF27nal7OoqAj79+/HzZs3YWdnV6HwzoVDAn4Uo0aNwu7duyv8TPbu3QtXV1eWUonv/fv3OHbsGA4dOoTly5ejR48eGD9+PAYMGPDVw24IqU9o2yYhhNRz+vr62LRpE4YOHSoyfubMGcybNw8JCQksJRMfn8+vMMbj8Th9YICFhQWWLVuGESNGiGzHWrp0KdLT07Fjxw62I4rF0tISkyZNgqenp8j4pk2bsG/fPkRGRrKUjABAeHg4du7cibNnzyIzMxNSUlKQk5NDXl4eAMDGxgaTJk2Cu7s75OTkWE5bPQcPHsSSJUuwceNGjB8/Hvv370dMTAzWrl2L/fv345dffmE7YrVJ4pxiY2ORk5ODli1bIi8vD/PmzUNAQABMTU2xefPmCoVCLpg+fTp8fX2xYsUKuLm5YefOnXj37h327NmDdevWcbJ4AQCOjo5fvI3LB4tIopkzZ+LIkSPQ19cXFqEfPnyIN2/ewM3NTeRNR64VPUNDQ+Ht7Y2TJ09CIBDA1dUV48ePR6tWrdiORshXUfGMEELquRUrVmDz5s1YtGgROnXqBB6Ph4CAAPzxxx+YO3cufvvtN7YjVtvr16+/ejsXX2wpKioiMjIShoaG0NHRwc2bN9GqVStER0ejQ4cOla5e4AI5OTlERETA1NRUZPzVq1do0aIFCgoKWEpGPsUwDMLDwxEfH4/8/HxoaWmhdevW0NLSYjtajezbtw+rVq3CmzdvAAB6enpYvnw5xo8fz3Iy8UninCSNgYEBjhw5AgcHB6iqqiI4OBimpqY4evQoTp48iStXrrAdkUi4rxU6P8XVouf79++xd+9erFu3DtLS0igoKEDHjh3h5eUl3PZNSH1DxTNCCKnnGIbBli1bsHHjRrx//x5AWV+Z+fPnY9asWRVOqiTsMDY2ho+PD2xtbdG2bVtMmDABkydPxo0bN/DLL78gPT2d7YhiMTU1xfz58zF58mSR8T179mDDhg2Ijo5mKRn5kaSmpkIgEEjEdttykjinnJwcCAQCkTEu9gdTVlZGREQEDA0N0aRJE5w/fx7t2rVDXFwcrK2tkZOTw3bEGnn16hViYmLQrVs3KCgoCFd9E/I9FRcX4++//4a3t7dw6/D48eMxYsQIpKenY+HChQgNDcXz58/ZjkpIpajnGSGE1GMlJSU4fvw4RowYAU9PT2RnZwMoO92M1C/du3fHpUuXYGtri/Hjx8PT0xM+Pj548uQJBg0axHY8sc2dOxezZs1CaGioyMrHQ4cOYevWrWzHIz8Irq+gq4ykzCkuLg4zZsyAn5+fyEpULm/DNzY2Rnx8PAwNDWFlZYUzZ86gXbt2uHTpEtTV1dmOJ7a0tDQMGzYMvr6+4PF4iI6OhrGxMSZMmAB1dXVs3LiR7YhEQs2cORMnT54EUNbP7c8//0SLFi2EtyspKWHdunVo2rQpSwkJ+TZaeUYIIfXcp9sBSf0lEAggEAiEpzieOXNG2PdnypQpnG6I+9dff2Hjxo3C/mblp23279+f5WRE0kniCbaSNqdOnToBADw8PNCwYcMKK5js7e3ZiFUjmzdvhpSUFGbNmgVfX1/06dMHpaWlKCkpwaZNm+Dh4cF2RLG4ubkhOTkZ+/fvh6WlpbA3540bN+Dp6YmIiAi2IxIJ1aNHD0yYMAGDBw/+4vOhkpIS3L9/n5OPGeTHQMUzQgip5xwdHeHh4YEBAwawHYUQQurMpyfY7tu3r8IJtqtXr2Y7YrVJ4pyUlZURFBQEc3NztqN8NwkJCXjy5AlMTEw43dRcV1cX169fR6tWrUQOtpGU7aik/rp79y46deokfIOxXElJCR48eIBu3bqxlIyQqqNtm4QQUs9NmzYNc+fOxdu3b9GmTZsKR8u3bNmSpWTkc/fu3cOePXsQExMDHx8f6Onp4ejRozAyMkKXLl3YjicWY2NjPH78GA0aNBAZz8jIgK2tLWJjY1lKVnUaGhpV7ufD1d50kmjXrl3Yu3cvRowYgcOHD2PBggUiJ9hykSTOqW3btnjz5o1EF88MDAxgYGDAdoway83NhaKiYoXx1NRUzp3GS7jF0dERiYmJFXo8ZmZmwtHRkZPbu8mPh4pnhBBSzw0fPhwAMGvWLOEYj8fjdD+ZckFBQYiMjASPx4OlpSVsbW3ZjiS2c+fOYfTo0XB1dUVISAgKCwsBANnZ2VizZg1nT2eLj4+v9D5WWFiId+/esZCo+rZs2cJ2hDojSY3AExIShFsCFRQUhD0fR48ejQ4dOmDHjh1sxhOLJM5p//79mDJlCt69e4cWLVpARkZG5HauvMGzbdu2Kl/76e9jLunWrRuOHDmClStXAih7LiEQCLB+/foqn+5IiDi+9LsoLS2twpvChNRXVDwjhJB6Li4uju0ItS45ORm//PIL/Pz8oK6uDoZhhO8+njp1Ctra2mxHrLZVq1bBy8sLbm5uOHXqlHC8U6dOWLFiBYvJxHPx4kXh59evX4eamprw69LSUty+fZszjX3d3d3ZjvDdpaWlYfjw4bhz547ENALX1dVFWloaDA0NYWhoiIcPH6JVq1aIi4sDV7uOSOKcUlJSEBMTg7FjxwrHuPgGz+bNm0W+TklJQV5envCAgIyMDCgqKkJHR4ezxbP169fDwcEBT548QVFRERYsWICIiAikp6fj/v37bMcjEqj8wCQej4cxY8aIrHAsLS1FeHi48A0FQuo7Kp4RQkg9J4kHBcycORNZWVmIiIiApaUlAOD58+dwd3fHrFmzhCcycUlUVFSlPTtUVVWRkZFR94FqqLzHHo/Hq1B8kpGRQdOmTTlZkAGAmJgYHDx4EDExMdi6dSt0dHRw7do16Ovro3nz5mzHE4unpyekpaWRkJAg/D8FlK1c9fT05OTPShJPsJXEOY0bNw42NjY4efJkpQcGcMWnb1SdOHECu3btwoEDB4TbUaOiojBx4kRMnjyZrYg1ZmVlhfDwcOzevRtSUlLIzc3FoEGDMH36dDRq1IjteEQClb/xxjAMVFRUoKCgILxNVlYWHTp0wMSJE9mKR0i10IEBhBDCAUePHoWXlxfi4uIQGBgIQ0NDbNmyBUZGRpw88VBNTQ23bt1C27ZtRcYfPXqEXr16cbLYZGJigj179qBnz54ijZiPHDmCdevW4fnz52xHFIuRkREeP34MLS0ttqPUCn9/f/z000/o3Lkz7t69i8jISBgbG+PPP//Eo0eP4OPjw3ZEsUhiI3BJPMFWEuekpKSEsLAwmJqash2l1piYmMDHxwc2NjYi40FBQRgyZIhErggn5Hv6/fffMW/ePNqiSTiNz3YAQgghX7d7927MmTMHLi4uyMjIEG6BUVdX52wvJ4FAUKEvDlC2okkgELCQqOYmT54MDw8P/Pvvv+DxeHj//j2OHz+OefPmYdq0aWzHE1tcXJzEFM4AYNGiRVi1ahVu3rwpUqhwdHREYGAgi8lqRhIbgfP5fJGT2YYNG4Zt27Zh1qxZnCwyAZI5p+7duyMsLIztGLUqMTERxcXFFcZLS0vx4cMHFhLVDiMjIyxZsgRRUVFsRyE/mGXLlkFJSQnJycm4d+8eAgICkJyczHYsQqqFimeEEFLPbd++Hfv27cPixYshJSUlHLezs8PTp09ZTCa+7t27w8PDA+/fvxeOvXv3Dp6enujRoweLycS3YMECDBgwAI6OjsjJyUG3bt0wYcIETJ48GTNmzGA7nthmzZpVaSPtHTt2YPbs2XUfqIaePn2KgQMHVhjX1tZGWloaC4lqR3kj8HLUCJzUlZ9//hmenp5Yvnw5zp07h4sXL4p8cFGPHj0wceJEPHnyRNiL7smTJ5g8eTJ69uzJcjrxzZw5E9euXYOlpSXatGmDLVu2IDExke1Y5AeQlZWF0aNHQ09PD/b29ujWrRv09PQwatQoZGZmsh2PkCqhbZuEEFLPKSgo4MWLFzA0NBTZjhUdHY2WLVsiPz+f7YjV9ubNG/Tv3x/Pnj2Dvr4+eDweEhISYG1tjb///htNmjRhO2K1lJaWIiAgANbW1pCXl8fz588hEAhgZWUFZWVltuPViJ6eHi5evIg2bdqIjAcHB6Nfv354+/YtS8nE06RJE5w5cwadOnUS+f/0119/Yd68eYiJiWE7olieP38OBwcHtGnTBnfu3EG/fv1EGoGbmJiwHZFIKD7/y+/Fc+nAgE+lpKTA3d0d165dE66SLikpQe/evXHo0CHo6OiwnLBmXr58iePHj+PUqVOIjY2Fo6MjRo0aBTc3N7ajEQk1bNgwhIaGYvv27ejYsSN4PB4ePHgADw8PtGzZEmfOnGE7IiHfRMUzQgip56ysrLB27Vr0799f5MX+tm3bcPjwYQQFBbEdUWw3b97EixcvwDAMrKysOP2Ovry8PCIjI2FkZMR2lFolLy+PZ8+eVehn9OrVK7Ro0QIFBQUsJRPPggULEBgYiLNnz8LMzAzBwcH48OED3Nzc4ObmhmXLlrEdUWxJSUnYvXs3goKCIBAIYGtrS43ACamBly9fCn9HWVpawszMjO1Ite7hw4eYOnUqwsPDOVnoJNygpKSE69evo0uXLiLj9+7dg7OzM3Jzc1lKRkjV0WmbhBBSz82fPx/Tp09HQUEBGIbBo0ePcPLkSaxduxb79+9nO16NODk5wcnJie0YtcLa2hqxsbESVzwzNTXFtWvXKmw9vXr1KoyNjVlKJb7Vq1djzJgx0NPTExZtS0tLMXLkSPz2229sx6sRXV1d/P7772zHIERimJmZSWTBDCg7oOfEiRM4ffo0MjMzMWTIELYjEQnWoEED4cmbn1JTU4OGhgYLiQipPlp5RgghHLBv3z6sWrUKb968AVC2lW758uUYP348y8mqbtu2bZg0aRLk5eUr7aH1qVmzZtVRqtpz48YNLFy4ECtXrkSbNm0qnCilqqrKUrKa8fb2xowZMzB//nx0794dAHD79m1s3LgRW7Zs4ewR8zExMQgJCYFAIICNjQ2aNWvGdqQauXv37ldv79atWx0lIT8CSXw8nzNnDlauXAklJSXMmTPnq9du2rSpjlLVrvLtmidOnEB8fDwcHR3h6uqKQYMGQUVFhe14RILt3bsXZ8+exZEjR4SroZOSkuDu7o5BgwZh8uTJLCck5NuoeEYIIRySmpoKgUDAyX4rRkZGePLkCRo0aPDV1Vk8Hg+xsbF1mKx2fNr3h8fjCT9nGIazfX/K7d69G6tXrxYe8NC0aVMsX76c+uPUI5X1nfr0fsjV+5+Pjw/OnDmDhIQEFBUVidwWHBzMUqqakYQ5SeLjuaOjI/766y+oq6t/9ZANHo+HO3fu1GGy2sPn82FnZ4eRI0fil19+ga6uLtuRyA/CxsYGr169QmFhIQwMDAAACQkJkJOTq/DmFVceB8mPh7ZtEkJIPRcXF4eSkhI0a9YMWlpawvHo6GjIyMigadOm7IWrhri4uEo/lxS+vr5sR/hupk6diqlTpyIlJQUKCgqcOwThW6tIPsXVFSUfP34U+bq++WH7AABlBklEQVS4uBghISFYsmQJVq9ezVKqmtm2bRsWL14Md3d3/P333xg7dixiYmLw+PFjTJ8+ne14YpGUOUni4/mnj+GS+nj+4sULid2GSuq3AQMGsB2BkBqjlWeEEFLP2dvbY9y4cXB3dxcZP3bsGPbv3w8/Pz92gpEqCw0NRevWrdmOIbaSkhL4+fkhJiYGI0eOhIqKCt6/fw9VVVVOFNI+X0USFBSE0tJSmJubAyjbyiQlJSU8qVKS3L17F56enpw8WMTCwgLLli3DiBEjRA5LWbp0KdLT07Fjxw62I1abJM4pPz8fCgoKld6WmJhIB1bUQ0VFRUhOToZAIBAZL18RRAghpCIqnhFCSD2nqqqK4ODgSk87tLOzQ0ZGBjvBamDIkCGws7PDokWLRMbXr1+PR48e4ezZsywlqz2ZmZk4fvw49u/fj7CwMM5um3v9+jWcnZ2RkJCAwsJCvHz5EsbGxpg9ezYKCgrg5eXFdsRq2bRpE/z8/HD48GFhk+KPHz9i7Nix6Nq1K+bOnctywtoVGRmJtm3bIicnh+0o1aaoqIjIyEgYGhpCR0cHN2/eRKtWrRAdHY0OHTogLS2N7YjVJolzsrCwwIkTJ2Braysy7uPjI1yxygWDBg2q8rXnz5//jkm+n+joaIwbNw4PHjwQGZeE9gKEO3JycioUbrnaF5b8WCo2yCCEEFKv8Hg8ZGdnVxjPzMzk7BNdf39/9OnTp8K4s7PzNxuf13d37tzBqFGj0KhRI2zfvh0uLi548uQJ27HE5uHhATs7O3z8+FFkdcnAgQNx+/ZtFpOJZ+PGjVi7dq3I6V4aGhpYtWoVNm7cyGKymgkPDxf5CAsLw7Vr1zB16lS0atWK7Xhi0dXVFRaTDA0N8fDhQwBl2wS5+t6vJM7JyckJnTp1wrp168AwDHJycjBmzBi4u7tj6dKlbMerMjU1NeGHqqoqbt++LfLYHRQUhNu3b1d6YiBXjBkzBnw+H5cvX0ZQUBCCg4MRHByMkJAQ6jNFvqu4uDj06dMHSkpKwhM2NTQ0oK6uTqdtEs6gnmeEEFLPde3aFWvXrsXJkychJSUFoKz599q1a9GlSxeW04knJycHsrKyFcZlZGSQlZXFQqKqS0lJgba2tsjY27dvcejQIXh7eyM3NxfDhg1DcXExzp07BysrK5aS1o6AgADcv3+/ws/L0NAQ7969YymV+LKysvDhwwc0b95cZDw5ObnSIjVXtG7dGjwer0IBpkOHDvD29mYpVc10794dly5dgq2tLcaPHw9PT0/4+PjgyZMn1VolVJ9I4py2b9+OPn36YOzYsfjnn3+EW7ofP37Mqce/gwcPCj9fuHAhhg0bBi8vL5Hfu9OmTeP0CpnQ0FAEBQXBwsKC7SjkB+Pq6gqg7ATvhg0bihxoQwhXUPGMEELquT///BPdunWDubk5unbtCgC4d+8esrKyONufqUWLFjh9+nSFVQmnTp2q9y+29u7di7dv32Lbtm2QkZGBi4sLAgIC0LdvX2zfvh3Ozs6QkpLi3HbGLxEIBJWucHz79i1UVFRYSFQzAwcOxNixY7Fx40Z06NABAPDw4UPMnz+fs8ULoGLTdj6fD21tbcjLy7OUqOb27t0r3NozZcoUaGpqIiAgAD///DOmTJnCcjrxSOKcAKBXr14YNGgQdu/eDWlpaVy6dKneP5Z/jbe3NwICAoSFMwCQkpLCnDlz0KlTJ6xfv57FdOKzsrJCamoq2zHIDyg8PBxBQUHCXqOEcBH1PCOEEA54//49duzYgbCwMCgoKKBly5aYMWMGNDU12Y4mlosXL2Lw4MEYOXIkunfvDgC4ffs2Tp48ibNnz9brU5kKCwuxZMkSaGlpYcGCBZCWlsasWbMwdepUkePWZWRkEBYWxukXkAAwfPhwqKmpYe/evVBRUUF4eDi0tbXRv39/GBgYiKzW4IK8vDzMmzcP3t7eKC4uBgBIS0tj/PjxWL9+PZSUlFhOSAi3lB8kkpSUhP3798Pf3x8bNmzArFmzsHr1asjIyLAdsdo0NDRw8ODBCr+LLly4gLFjx1Y43ZYr7ty5g99++w1r1qyBtbV1hZ8Nl1fVkfrN0dERixcvRs+ePdmOQojYqHhGCCGEFf/88w/WrFmD0NBQYUFw2bJlsLe3ZztalRQVFUFWVhaBgYHw9vbGmTNnYGFhgdGjR2P48OFo3LixRBTP3r9/D0dHR0hJSSE6Ohp2dnaIjo6GlpYW7t69Cx0dHbYjiiU3NxcxMTFgGAampqacL5pt27at0nEejwd5eXmYmpqiW7duIitp6qPw8PAqX9uyZcvvmKT2SOKcPqWiooI+ffrAy8sL6urqAIAHDx7Azc0NKioqCAkJYTegGObMmYNDhw7hf//7n8gK1XXr1sHNzQ2bNm1iOaF4+Pz/2l1/um2ODgwg31tMTAymTJmCUaNGoUWLFhUKt1x87CM/HiqeEUJIPfetBvrdunWroyTka/Ly8nDq1Cl4e3vj0aNHKC0txaZNmzBu3DhObm/8VH5+Pk6ePIng4GAIBALY2trC1dVV5AABwi4jIyOkpKQgLy8PGhoaYBgGGRkZUFRUhLKyMpKTk2FsbAxfX1/o6+uzHfeL+Hx+pb3bPselF/qSOKdPHT16FKNHj64wnp2djdmzZ+PAgQMspKoZgUCADRs2YOvWrUhMTAQANGrUCB4eHpg7d269L0J/ib+//1dv58qbV4R7Hj58iJEjRyI+Pl44Vv64yNXHPvLjoeIZIYTUc5++U1zu03eM6QlH/RMVFYUDBw7g6NGjyMjIgJOTEy5evMh2LCLBTp48ib1792L//v0wMTEBALx69QqTJ0/GpEmT0LlzZ/zyyy/Q1dWFj48Py2m/7PXr11W+1tDQ8DsmqT2SOCdJVlJSguPHj6N3797Q1dUVHmIjKVsa7927hz179iAmJgY+Pj7Q09PD0aNHYWRkxNlDiEj9Z2VlBUtLSyxYsKDSAwPosY9wARXPCCGknsvMzBT5uri4GCEhIViyZAlWr16NHj16sJSsejQ1NfHy5UtoaWlBQ0Pjqyctpaen12Gy76e0tBSXLl2Ct7c3p4tnUVFR2L59OyIjI8Hj8WBhYYEZM2bQiW31iImJCc6dO4fWrVuLjIeEhGDw4MGIjY3FgwcPMHjwYOFKGkJq0/Pnz5GQkICioiLhGI/Hw88//8xiKvEoKioiMjJS4l7Qnzt3DqNHj4arqyuOHj2K58+fw9jYGLt27cLly5dx5coVtiMSCaWkpISwsDCYmpqyHYUQsdFpm4QQUs+pqalVGHNycoKcnBw8PT0RFBTEQqrq27x5s3D74ubNm3+IY8qlpKQwYMCAen0Awrf4+PhgxIgRsLOzQ8eOHQGUbb+wtrbGiRMnMHToUJYTEgBITExESUlJhfGSkhIkJSUBABo3bozs7Oy6jkYkTGZmpsjvpdjYWAwaNAjh4eEi21PLH+O5uDq6ffv2CAkJkbji2apVq+Dl5QU3NzecOnVKON6pUyesWLGCxWRE0nXv3p2KZ4TzqHhGCCEcpa2tjaioKLZjVJm7u7vw8zFjxrAXhFTLggUL8Ouvv1Z4YbVs2TIsXLiQimf1hKOjIyZPnoz9+/fDxsYGQNmqs6lTpwpPtH369CmMjIzYjEkkwLZt2yAvL4/58+cDADw8PKCvr4/r16+jdevW+PfffxEXF4d58+ZxtrH+tGnTMHfuXLx9+xZt2rSpcKAIV5ubR0VFVdonVVVVFRkZGXUfiPwwfv75Z3h6euLp06eVnvTar18/lpIRUnW0bZMQQuq5z09qYxgGiYmJWLduHYqLi3H//n2WkonP0dERo0aNwpAhQypdWUfqD0VFRYSHh1d4tzg6OhqtWrVCXl4eS8mqrjpbZrn6BD4pKQmjR4/G7du3hS9KSkpK0KNHDxw9ehQNGzaEr68viouL0atXL5bTEi5LTk7G6NGjYWpqip07d0JLSwu3b99Gq1atoKenh0ePHkFPTw+3b9/GvHnzOHna5pd6jXK9ubmJiQn27NmDnj17QkVFBWFhYTA2NsaRI0ewbt06PH/+nO2IREJV9n+qHJf/T5EfC608I4SQeq5169aVntTWoUMHeHt7s5SqZqytrfHbb79hxowZcHFxwejRo+Hi4gJZWVm2o5HPODg44N69exWKZwEBAejatStLqarn822zn/9/koQDOHR1dXHz5k28ePECL1++BMMwsLCwgLm5ufAaR0dHFhMSSaGjo4Pr169j7dq1AMr+z5RvydfS0sL79++hp6eHpk2bcmp19Kfi4uLYjvBdTJ48GR4eHvD29gaPx8P79+8RGBiIefPmYenSpWzHIxJMIBCwHYGQGqOVZ4QQUs99flIbn8+HtrY25OXlWUpUOwQCAW7duoUTJ07gr7/+gpSUFIYMGQJXV1fY29uzHY/8Py8vLyxduhTDhg1Dhw4dAJT1PDt79ix+//13NG7cWHgtF1Zt3bp1CwsXLsSaNWvQsWNH8Hg8PHjwAL/99hvWrFkDJycntiPWSFFREeLi4mBiYgJpae6/R5qRkQEfHx/ExMRg/vz50NTURHBwMBo2bAg9PT2244lF0ubUtWtXzJkzBwMHDsSkSZOQkpKC+fPnw8vLC8HBwXj27BnbEcknFi9ejM2bN6OgoAAAICcnh3nz5mHlypUsJyOEkPqNimeEEFKPlW+x2rNnD8zMzNiO890UFBTg0qVLWL16NZ4+fcrZ1T+S6GtbLT7FlW0XLVq0gJeXF7p06SIyfu/ePUyaNAmRkZEsJauZvLw8zJw5E4cPHwYAvHz5EsbGxpg1axYaN26MRYsWsZyw+sLDw9GzZ0+oqakhPj4eUVFRMDY2xpIlS/D69WscOXKE7YjVJolzun79OrKzszFkyBC8efMGffr0wbNnz6CpqYkzZ84Ie+5xzdGjR+Hl5YW4uDgEBgbC0NAQW7ZsgZGREfr37892vBrJy8vD8+fPIRAIYGVlBWVlZbYjEQnl4uKCkydPClt0rF69GtOnT4e6ujoAIC0tDV27dqUtw4QTqvaMmBBCCCtkZGTw7NkziT6ZMikpCV5eXvjjjz8QHh4OOzs7tiORTwgEgip9cKFwBgAxMTGV9tkrL2Zw1a+//oqwsDD4+fmJrErt2bMnTp8+zWIy8c2ZMwdjxoxBdHS0yJx++ukn3L17l8Vk4pPEOfXu3RtDhgwBAOjr6yM8PBypqalITk7mTOHs+vXryMzMFH69e/duzJkzBy4uLsjIyBA+vqmrq2PLli0spaw9ioqKsLOzQ7t27ahwRr6r69evo7CwUPj1H3/8gfT0dOHXJSUlnN3eTX48VDwjhJB6zs3NDQcOHGA7Rq3KysrCwYMH4eTkBH19fezevRs///wzXr58iX///ZfteOQbuHwqW9u2bTF79mwkJiYKx5KSkjB37ly0a9eOxWQ1c+HCBezYsQNdunQRKbZbWVkhJiaGxWTie/z4MSZPnlxhXE9PD0lJSSwkqjlJnFNlNDU1q7xqtT5ISkpC586d8fbtWwDA9u3bsW/fPixevBhSUlLC6+zs7PD06VO2YhLCOZ9vcqNNb4TLuN8MgxBCJFxRURH279+Pmzdvws7ODkpKSiK3b9q0iaVk4mvYsCE0NDQwbNgwrFmzBm3btmU7EvmCP/74A02bNsXw4cMBAEOHDsW5c+fQqFEjXLlyBa1atWI5YfV4e3tj4MCBMDQ0hIGBAQAgISEBZmZmuHDhArvhaiAlJQU6OjoVxnNzczm7clVeXh5ZWVkVxqOioqCtrc1CopqTxDkVFBRg+/bt8PX1RXJycoXG4MHBwSwlqzp3d3eoqKjA2dkZz549Q1xcHGxsbCpcJycnh9zcXBYSEkIIYRsVzwghpJ579uwZbG1tAZT1MfoUF18UMwyDrVu3YtSoUVBUVGQ7DvmGPXv24NixYwCAmzdv4tatW7h27RrOnDmD+fPn48aNGywnrB5TU1OEh4cLT6ZkGAZWVlbo2bMnJ/8/lWvbti3++ecfzJw5E8B/jw379u1Dx44d2Ywmtv79+2PFihU4c+YMgLI5JSQkYNGiRRg8eDDL6cQjiXMaN24cbt68iSFDhqBdu3ac/X80aNAgYcHMyMgIoaGhMDQ0FLnm6tWrsLKyYiMeIZzE4/EqPCZw9TGCEDowgBBCSJ0SCASQl5dHREQEmjVrxnYc8g0KCgp4+fIl9PX14eHhgYKCAuzZswcvX75E+/bt8fHjR7YjEgAPHjyAs7MzXF1dcejQIUyePBkREREIDAyEv78/2rRpw3bEasvKyoKLiwsiIiKQnZ2Nxo0bIykpCR07dsSVK1cqrMLlAkmck5qaGq5cuYLOnTuzHaXWHDx4EEuWLMHGjRsxfvx47N+/HzExMVi7di3279+PX375he2IhHACn8/HTz/9BDk5OQDApUuX0L17d+FjXWFhIa5du8aZvqnkx0YrzwghpJ7LzMxEaWkpNDU1RcbT09MhLS0NVVVVlpKJh8/no1mzZkhLS6PiGQdoaGjgzZs30NfXx7Vr17Bq1SoAZSsIufhkd8WKFV+9fenSpXWUpHZ16tQJ9+/fx4YNG2BiYoIbN27A1tYWgYGBsLa2ZjueWFRVVREQEIA7d+4gODgYAoEAtra26NmzJ9vRxCaJc9LT04OKigrbMWrV2LFjUVJSggULFiAvLw8jR46Enp4etm7dSoUzQqrB3d1d5OtRo0ZVuMbNza2u4hBSI7TyjBBC6rmffvoJP//8M6ZNmyYy7uXlhYsXL+LKlSssJRPfP//8g3Xr1mH37t1o0aIF23HIV8yYMQOXL19Gs2bNEBISgvj4eCgrK+P06dP4448/ONHP6FOf9zEqLi5GXFwcpKWlYWJiwrn5EMK2q1evYtu2bfDy8qqwzVESpKamQiAQVNpTkBBCyI+DimeEEFLPaWpq4v79+7C0tBQZf/HiBTp37oy0tDSWkolPQ0MDeXl5KCkpgaysLBQUFERu//QYc8Ku4uJibN26FW/evMGYMWOExactW7ZAWVkZEyZMYDlhzWVlZWHMmDEYOHAgRo8ezXYcsZWWluKvv/5CZGQkeDweLC0t0b9/f0hLc2ejwbZt26p87axZs75jktojiXP6VEpKCoYNG4a7d+9CUVERMjIyIrdz+fE8OTkZUVFR4PF4MDc35+yhDoQQQmqOimeEEFLPKSkp4eHDhxW2Xj19+hTt27dHXl4eS8nEd/jw4a/e/vkyf0K+t2fPnqFv376Ij49nO4pYnj17hv79+yMpKQnm5uYAyg4Y0dbWxsWLFzmzddPIyEjk65SUFOTl5UFdXR0AkJGRAUVFRejo6CA2NpaFhNUniXP6VM+ePZGQkIDx48ejYcOGFZqBc/HxPCsrC9OnT8fJkyeFp4dKSUlh+PDh2LlzJ9TU1FhOSAghpK5R8YwQQuo5BwcHWFtbY/v27SLj06dPR3h4OO7du8dSMvIjef78ORISElBUVCQy3q9fP5YS1a6AgAD8/PPPnD0AoUOHDtDR0cHhw4ehoaEBAPj48SPGjBmD5ORkBAYGspyw+k6cOIFdu3bhwIEDwoJgVFQUJk6ciMmTJ8PV1ZXlhNUniXNSVFREYGAgWrVqxXaUWjNs2DCEhoZi+/bt6NixI3g8Hh48eAAPDw+0bNlSeFoqIYSQHwcVzwghpJ67f/8+evbsibZt26JHjx4AgNu3b+Px48e4ceMGunbtynJC8cTExODgwYOIiYnB1q1boaOjg2vXrkFfXx/NmzdnOx75f7GxsRg4cCCePn0KHo+H8qcN5atLuHZowOdb6BiGQWJiIo4ePYpu3brh5MmTLCWrGQUFBTx58qTC/51nz56hbdu2yM/PZymZ+ExMTODj41OhT11QUBCGDBmCuLg4lpKJTxLnZGtri127dqFDhw5sR6k1SkpKuH79Orp06SIyfu/ePTg7OyM3N5elZIQQQtjCZzsAIYSQr+vcuTMCAwOhr6+PM2fO4NKlSzA1NUV4eDhnC2f+/v6wtrbGv//+i/PnzyMnJwcAEB4ejmXLlrGcjnzKw8MDRkZG+PDhAxQVFREREYG7d+/Czs4Ofn5+bMerts2bN4t8bNu2DX5+fnB3d8fevXvZjic2c3NzfPjwocJ4cnIyTE1NWUhUc4mJiSguLq4wXlpaWulcuUAS57Ru3TrMnTsXfn5+SEtLQ1ZWlsgHFzVo0KDSrZlqamrClZ2EEEJ+LLTyjBBCSJ3r2LEjhg4dijlz5kBFRQVhYWEwNjbG48ePMWDAALx7947tiOT/aWlp4c6dO2jZsiXU1NTw6NEjmJub486dO5g7dy5CQkLYjkgAXLlyBQsWLMDy5cuFK4AePnyIFStWYN26dSIraFRVVdmKWS0///wzEhIScODAAbRp0wY8Hg9PnjzBxIkToa+vj4sXL7IdsdokcU58ftl78Z/3OmMYBjwej3OrUwFg7969OHv2LI4cOYJGjRoBAJKSkuDu7o5BgwZh8uTJLCckhBBS16h4RgghpM4pKyvj6dOnMDIyEimexcfHw8LCAgUFBWxHJP9PQ0MDQUFBMDY2homJCfbv3w9HR0fExMTA2tqacwdWjBs3Dlu3boWKiorIeG5uLmbOnAlvb2+WktVMeQED+K+I8fkWW64VM1JSUuDu7o5r164JT3AsKSlB7969cejQIejo6LCcsPokcU7+/v5fvd3e3r6OktQeGxsbvHr1CoWFhTAwMAAAJCQkQE5ODs2aNRO5Njg4mI2IhBBC6hh3zi4nhBAiMdTV1ZGYmFjhFLqQkBDo6emxlIpUpkWLFggPD4exsTHat2+PP//8E7Kysti7dy+MjY3Zjldthw8fxrp16yoUz/Lz83HkyBHOFs98fX3ZjlDrtLW1ceXKFURHRyMyMhIMw8DS0hJmZmZsRxObJM6Ji8WxbxkwYADbEQghhNQztPKMEEJInVuwYAECAwNx9uxZmJmZITg4GB8+fICbmxvc3Nyo71k9cv36deTm5mLQoEGIjY1F37598eLFCzRo0ACnT59G9+7d2Y5YJVlZWWAYBhoaGoiOjoa2trbwttLSUly6dAmLFi3C+/fvWUxJCCGEEELqIyqeEUIIqXPFxcUYM2YMTp06BYZhIC0tjdLSUowcORKHDh2ClJQU2xHJV6Snp0NDQ6NCj6P6jM/nfzUvj8fD77//jsWLF9dhqtpz7do1KCsrC3ub7dy5E/v27YOVlRV27txJTc4JIYQQQmqAimeEEEJYExsbi+DgYAgEAtjY2FToJUNIbfH39wfDMOjevTvOnTsHTU1N4W2ysrIwNDRE48aNWUxYM9bW1vjjjz/g4uKCp0+fws7ODnPnzsWdO3dgaWmJgwcPsh2REEIIIYSzqHhGCCH10KBBg6p87fnz579jkrpRWlqKp0+fwtDQkFbIkO/q9evXMDAw4NSquapQVlbGs2fP0LRpUyxfvhzPnj2Dj48PgoOD4eLigqSkJLYjEkIIIYRwFh0YQAgh9ZCamhrbEb6r2bNnw9raGuPHj0dpaSns7e3x4MEDKCoq4vLly3BwcGA7IpEg4eHhaNGiBfh8PjIzM/H06dMvXtuyZcs6TFZ7ZGVlhSef3rp1C25ubgAATU1NZGVlsRmNEEIIIYTzaOUZIYSQOtekSRNcuHABdnZ2uHDhAqZNmwY/Pz8cOXIEvr6+uH//PtsRiQTh8/lISkqCjo6OsPdZZU9/eDweSktLWUhYc/369UNRURE6d+6MlStXIi4uDnp6erhx4wZmzJiBly9fsh1RLPfu3cOePXsQExMDHx8f6Onp4ejRozAyMhL2d+OivLw8JCQkoKioSGScK8VbGxubKq/eDA4O/s5pvp+ioiLExcXBxMQE0tK05oAQQn5kfLYDEEII+baSkhLcunULe/bsQXZ2NgDg/fv3yMnJYTmZeFJTU6GrqwsAuHLlCoYNGwYzMzOMHz/+q6uCCBFHXFyc8HTNuLg4xMbGIi4ursJHbGwsy0nFt2PHDkhLS8PHxwe7d++Gnp4eAODq1atwdnZmOZ14zp07h969e0NBQQEhISEoLCwEAGRnZ2PNmjUspxNPSkoK+vbtCxUVFTRv3hw2NjYiH1wxYMAA9O/fH/3790fv3r0RExMDOTk5ODg4wMHBAfLy8oiJiUHv3r3ZjiqWvLw8jB8/HoqKimjevDkSEhIAALNmzcK6detYTkcIIYQNtPKMEELqudevX8PZ2RkJCQkoLCzEy5cvYWxsjNmzZ6OgoABeXl5sR6w2Q0ND7Nu3Dz169ICRkRF27dqFvn37IiIiAl26dMHHjx/Zjkg+cfToUXh5eSEuLg6BgYEwNDTEli1bYGRkhP79+7Mdj0goGxsbeHp6ws3NDSoqKggLC4OxsTFCQ0Ph7OzMyT5urq6uiI+Px5YtW+Do6Ii//voLHz58wKpVq7Bx40b06dOH7YjVNmHCBDRq1AgrV64UGV+2bBnevHkDb29vlpKJz8PDA/fv38eWLVvg7OyM8PBwGBsb4+LFi1i2bBlCQkLYjkgIIaSO0fpjQgip5zw8PGBnZ4ewsDA0aNBAOD5w4EBMmDCBxWTiGzt2LIYNG4ZGjRqBx+PByckJAPDvv//CwsKC5XTkU7t378bSpUsxe/ZsrF69WritUV1dHVu2bOFc8ezixYuVjvN4PMjLy8PU1BRGRkZ1nKp2xMTE4ODBg4iJicHWrVuho6ODa9euQV9fH82bN2c7XrVFRUWhW7duFcZVVVWRkZFR94FqwZ07d/D333+jbdu24PP5MDQ0hJOTE1RVVbF27VpOFs/Onj2LJ0+eVBgfNWoU7OzsOFk8u3DhAk6fPo0OHTqIbE+1srJCTEwMi8kIIYSwhYpnhBBSzwUEBOD+/fuQlZUVGTc0NMS7d+9YSlUzy5cvR4sWLfDmzRsMHToUcnJyAAApKSksWrSI5XTkU9u3b8e+ffswYMAAke1KdnZ2mDdvHovJxDNgwIBKe56Vj/F4PHTp0gUXLlzg1Mmv/v7++Omnn9C5c2fcvXsXq1evho6ODsLDw7F//374+PiwHbHaGjVqhFevXqFp06Yi4wEBATA2NmYnVA3l5uZCR0cHQNlhDikpKTAzM4O1tTVne4MpKCggICAAzZo1ExkPCAiAvLw8S6lqJiUlRfhz+lRubq7EndRLCCGkaqjnGSGE1HMCgaDSJuZv376FiooKC4lqx5AhQ+Dp6YkmTZoIx9zd3Tm3kknSxcXFVdqLSU5ODrm5uSwkqpmbN2+ibdu2uHnzJjIzM5GZmYmbN2+iXbt2uHz5Mu7evYu0tDTOFQYXLVqEVatW4ebNmyKFdkdHRwQGBrKYTHyTJ0+Gh4cH/v33X/B4PLx//x7Hjx/HvHnzMG3aNLbjicXc3BxRUVEAgNatW2PPnj149+4dvLy80KhRI5bTiWf27NmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDk9PT7bjiaVt27b4559/hF+XF8z27duHjh07shWLEEIIi2jlGSGE1HNOTk7YsmUL9u7dC6DsSXxOTg6WLVsGFxcXltMRSWdkZITQ0FAYGhqKjF+9ehVWVlYspRKfh4cH9u7di06dOgnHevToAXl5eUyaNAkRERHYsmULxo0bx2LK6nv69ClOnDhRYVxbWxtpaWksJKq5BQsWIDMzE46OjigoKEC3bt0gJyeHefPmYcaMGWzHE8vs2bORmJgIoKwnWO/evXH8+HHIysri0KFD7IYT06JFi2BsbIytW7cK74OWlpY4dOgQhg0bxnI68axduxbOzs54/vw5SkpKsHXrVkRERCAwMBD+/v5sxyOEEMICKp4RQkg9t3nzZjg6OsLKygoFBQUYOXIkoqOjoaWlhZMnT7Idj0i4+fPnY/r06SgoKADDMHj06BFOnjyJtWvXYv/+/WzHq7aYmBioqqpWGFdVVRWettmsWTOkpqbWdbQaUVdXR2JiYoV+bSEhIcKTN7lo9erVWLx4MZ4/fw6BQAArKysoKyuzHavKiouLISMjI/za1dVV+LmNjQ3i4+Px4sULGBgYQEtLi42ItWLYsGGcLZRVplOnTrh//z42bNgAExMT3LhxA7a2tggMDIS1tTXb8QghhLCATtskhBAOyM/Px6lTpxAUFASBQABbW1u4urpCQUGB7WjkB7Bv3z6sWrUKb968AQDo6elh+fLlGD9+PMvJqq9Lly5QUVHBkSNHoK2tDaCsv5Gbmxtyc3Nx9+5d3Lp1C9OmTfu/9u49vuf6///4/b0Z2zRzLmeb5bAMW+RUIuaQIofPCjmNjw4fJqfSp5DK4RvC+LCkOeYwRPpQ5riMLcxGGDI0OUcbNgvb+/dHn/azRiH2fL/fu10vF5fL9ny//7i5fMTn/djz9Xzq8OHDhmvv3JtvvqmYmBgtW7ZMVatW1e7du3X27Fn16NFDPXr00KhRo0wn3rXU1FRlZmaqePHiOdYvXryoAgUK3HIIamvGjx8vb29vhxosAQCQHzE8AwAAd+Tnn39WVlbWLQ/StheHDh1S+/btdezYMVWoUEEWi0XJycny9vbWl19+qapVq2rVqlW6fPmyunfvbjr3jl2/fl29evXSkiVLZLVaVaBAAWVmZqpr166aO3eunJ2dTSfetTZt2uj555/Pdb5ZWFiYVq9erbVr1xoqu3OHDx9Whw4d1K9fPw0cOFCDBw/+0/d//PHHeVR2/2RmZmry5MmKiIhQcnKyrl27luP1ixcvGiq7O5cuXbrj99rD4BYAcH8xPAMAGJGUlKQ5c+YoKSlJU6dOVenSpfXNN9+oQoUKeuyxx0znwYFZrVatW7dOhw8fltVqVfXq1RUYGCgnJ/u/RykpKUnx8fHKysqSv79/rhsQ7Unx4sW1bds21ahRI8f6wYMH1bhxY7s5y+3y5cvq1auXVqxYoWbNmt32fRaLRZs2bcrDsvtj5MiRmj17tgYPHqwRI0bonXfe0fHjx7Vq1SqNHDlSISEhphPviJOT0x3fpHmrS3wAAI6N4RkAIM9FRUWpTZs2aty4sb799lslJibK29tbH330kXbs2KHly5ebTszX/P397/hD5O7dux9wDfKrwoULKzY2NtcZU99//73q16+v9PR0Q2W4WZUqVRQaGqq2bdvKw8NDCQkJ2WuxsbG3vMjCFt18EcDx48c1fPhw9erVK/t2zZiYGM2bN0/jxo1Tz549TWUCAAxheAYAyHMNGzbUP/7xDw0ePFgeHh7as2ePvL29tXPnTr3wwgs6efKk6cR8bfTo0dlfZ2RkaMaMGfL19c3+EBkbG6v9+/fr9ddf17hx40xl3rONGzdq48aNOnfunLKysnK8Fh4ebqjq7v3VI4A3s8fHAZs2bSo/Pz9NmzYtx/q//vUv7d27V1u3bjVUhpsVLlxYiYmJqlixosqUKaM1a9YoICBAR48elb+/v1JTU00n3rXmzZurb9++6tKlS471RYsWadasWdqyZYuZMACAMdy2CQDIc99///0tdyOUKlXKbh7FcmQ3Hy7ft29fhYSE6IMPPsj1nt8vELAno0eP1vvvv6+6deuqTJkyd7zDzhbFx8fn+D4uLk6ZmZmqVq2apN/O23J2dtbjjz9uIu9vGzNmjFq0aKE9e/aoefPmkn4bfO7cuVORkZGG6+5NRkaGpk2bps2bN99yeGuPOznLly+v06dPq2LFivLx8cm+mXLnzp0qVKiQ6bx7EhMTo7CwsFzrdevWVd++fQ0UAQBMY3gGAMhzRYsW1enTp+Xl5ZVjPT4+XuXKlTNUhVtZtmyZdu3alWv95ZdfVt26de1qp5b022Hzc+fOtavLAG5n8+bN2V9//PHH8vDw0Lx581SsWDFJ0i+//KLevXvrqaeeMpX4tzRu3FgxMTGaMGGCIiIi5Obmplq1aumzzz6z27PcgoODtX79enXu3FlPPPGEXQ9vf9ehQwdt3LhR9evX18CBA9WlSxd99tlnSk5O1qBBg0zn3ZMKFSooLCxMkyZNyrH+ySefqEKFCoaqAAAm8dgmANg4R7nJ7GZvvvmmYmJitGzZMlWtWlW7d+/W2bNn1aNHD/Xo0SPHzieY9cgjj2jcuHHq3bt3jvU5c+Zo+PDhOnv2rKGye1OiRAnt2LFDVapUMZ1yX5UrV06RkZG5LtvYt2+fWrZsqVOnThkqw808PT21du1aNW7c2HTKAxMbG6vt27fLx8dH7dq1M51zT9auXatOnTqpSpUqatCggaTffl9JSUlasWKFnn32WcOFAIC8xs4zALBxo0eP/tObzOzRmDFj1KtXL5UrV05Wq1W+vr7KzMxU165d9e6775rOw03eeOMNvfbaa4qLi8vxITI8PNwu//z17dtXixYt0ogRI0yn3FeXLl3S2bNncw3Pzp07p8uXLxuq+vuysrJ05MiRWz7i2KRJE0NV965cuXLy8PAwnfFANWjQIPvvCnv17LPP6ocfftDMmTOVmJgoq9Wq9u3b69VXX2XnGQDkU+w8AwAb5yg3md1KUlKS4uPjlZWVJX9/f7t9FMvRRUREaOrUqUpMTJQk1ahRQwMHDlRQUJDhsrs3cOBAzZ8/X7Vq1VKtWrXk4uKS43V7PFhfknr06KGoqChNmjQpx5Bz2LBhatKkiebNm2e48O7Fxsaqa9eu+vHHH/XH/7tqsViUmZlpqOzeff311woNDVVYWJgqVapkOueerV69+o7fa6+7zwAAuBnDMwCwcY54kxlgSrNmzW77msVi0aZNm/Kw5v5JT0/X0KFDFR4eruvXr0uSChQooD59+mjChAkqXLiw4cK7V6dOHVWtWlWjR4++5eUOnp6ehsru3fnz5xUUFKRvv/1W7u7uuYa39vIYvpOTU47vLRbLLQeckuxyyAkAwB/x2CYA2DhHucls8ODBd/xee939A9t38yH7jsTd3V0zZszQhAkTlJSUJKvVKh8fH7scmv3uhx9+0PLly+Xj42M65b7p0qWLTp48qbFjx+rhhx+22wsDbn6EdsOGDXrrrbc0duxYNWzYUBaLRdu3b9e7776rsWPHGqwEAOD+YXgGADbOUW4yi4+Pz/F9XFycMjMzVa1aNUnS4cOH5ezsrMcff9xEHvKhn376SRaLxaFueC1cuLBq1aplOuO+qF+/vo4cOeJQw7Pt27crJiZGtWvXNp1y37zxxhsKCwvTk08+mb3WqlUrubu7q1+/ftmPewMAYM8YngGAjRs/fnz21507d1aFChW0bds2u7vJ7OYdPx9//LE8PDw0b948FStWTJL0yy+/qHfv3nrqqadMJSIfyMrK0ocffqhJkybpypUrkiQPDw8NGTJE77zzTq7H0WDOgAEDNGTIEJ05c0Z+fn65HnG0xyFh9erVdfXqVdMZ91VSUtItH6H19PTU8ePH8z4IAIAHgDPPAAB5rly5coqMjMx1M+C+ffvUsmVLnTp1ylAZHN3bb7+tzz77TKNHj1bjxo1ltVq1bds2vffee/rnP/+pMWPGmE7E/9xqkPn72Vr2emFAZGSkRo8erTFjxtxyIFikSBFDZfeuSZMmcnFx0cKFC1WmTBlJ0pkzZ9S9e3ddu3ZNUVFRhgsBAPj7GJ4BgI1zdnZWkyZNtGLFChUvXjx7/ezZsypbtqxdfoD08PDQl19+qWeeeSbH+qZNm9S+fXtdvnzZUBkcXdmyZRUWFpZr1+aXX36p119/XSdPnjRUhj/68ccf//R1e7yt8veB4B/POrPngeCRI0fUoUMHHTp0SBUrVpQkJScnq2rVqlq1apXdPHbr7+9/x2fQ7d69+wHXAABsDY9tAoCNs1qt+vXXX1W3bl2tXr1aNWvWzPGaPerQoYN69+6tSZMmqUGDBpKk2NhYDRs2TB07djRch5tlZmZq7ty52rhxo86dO5fjoHBJdnc75cWLF1W9evVc69WrV7ebmw7zC3scjv0VR7ywwsfHR3v37tX69et18OBBWa1W+fr6qkWLFnZ1IcILL7yQ/XVGRoZmzJghX19fNWzYUNJv/0bt379fr7/+uqFCAIBJ7DwDABvn7Oysn376SePHj9ecOXO0YMECtW/f3q53nqWnp2vo0KEKDw/X9evXJUkFChRQnz59NGHCBLu+IdDR9O/fX3PnzlXbtm1VpkyZXB+GJ0+ebKjs3tSvX1/169dXaGhojvUBAwZo586dio2NNVR291avXn3H77Wn8xH/6MCBA0pOTta1a9dyrNvz7wm2rW/fvipTpow++OCDHOujRo3SiRMnFB4ebqgMAGAKwzMAsHFOTk46c+aMSpcurVmzZikkJETvvvuu+vbtq3Llytnl8Ox3aWlpSkpKktVqlY+PD0MzG1SyZEnNnz9fzz77rOmU+yIqKkpt27ZVxYoV1bBhQ1ksFm3fvl0nTpzQ2rVr7erCiju93MBeHwc8evSoOnTooO+//z77rDPp/z/yaI+/J0lKSUnRZ599psTERFksFvn6+io4OPiWh+7bqtDQUPXr10+urq65BtF/FBISkkdV94+np6d27dqlRx99NMf6Dz/8oLp16yo1NdVQGQDAFIZnAGDjbh6eSdKWLVvUuXNn+fv7a9OmTXb7ARL2oWzZstqyZYuqVq1qOuW+OXXqlP7zn//keMTs9ddfV9myZU2n4SbPP/+8nJ2d9emnn8rb21s7duzQhQsXNGTIEE2cONGuBp2/27Vrl1q1aiU3Nzc98cQTslqt2rVrl65evarIyEgFBASYTrwjXl5e2rVrl0qUKCEvL6/bvs9isejo0aN5WHZ/PPLIIxo3bpx69+6dY33OnDkaPny4zp49a6gMAGAKwzMAsHE3f0j53ZEjR/T888/r8OHDDM/wQE2aNElHjx7V9OnT7er8ort14sQJjRo1isexbEjJkiW1adMm1apVS56entqxY4eqVaumTZs2aciQIYqPjzedeNeeeuop+fj46NNPP1WBAr8dPXzjxg317dtXR48e1bfffmu4EJI0fvx4vffee+rbt2+OcznDw8M1cuRIDR8+3HAhACCvMTwDADuVkZGhs2fPOuSh2rAdHTp00ObNm1W8eHE99thjcnFxyfH6F198Yajs/tqzZ48CAgLsehidlpamqKioW54PZo+PzhUrVkxxcXHy9vZWlSpVNHv2bDVr1kxJSUny8/NTenq66cS75ubmpvj4+FyXVhw4cEB169a1y9+To4qIiNDUqVOVmJgoSapRo4YGDhyooKAgw2UAABO4bRMA7JSrqyuDMzxwRYsWVYcOHUxn4C/Ex8fr2WefVXp6utLS0lS8eHH9/PPPcnd3V+nSpe1yeFazZk3t3btX3t7eql+/vj766CMVLFhQs2bNkre3t+m8e1KkSBElJyfnGp6dOHFCHh4ehqr+ns6dO6tu3bq5dmNNmDBBO3bs0LJlywyV/T1BQUEMygAA2dh5BgA2qHjx4jp8+LBKliypYsWK/enjchcvXszDMsAx2fvOs6ZNm6pq1aqaOXOmihYtqj179sjFxUUvv/yyBg4cqI4dO5pOvGvr1q1TWlqaOnbsqKNHj+q5557TwYMHVaJECS1dulTPPPOM6cS7FhISopUrV2rixIlq1KiRLBaLoqOjNWzYMHXq1ElTpkwxnXjXSpUqpU2bNsnPzy/H+vfff68WLVpwPhgAwCGw8wwAbNDkyZOzdyHY44epO5GUlKQpU6Zk3zj3+yMxVapUMZ2GWzh//rwOHToki8WiqlWrqlSpUqaTcJOEhAR98skncnZ2lrOzs3799Vd5e3vro48+Us+ePe1yeNaqVavsr729vXXgwAFdvHjxL3+gYMsmTpwoi8WiHj166MaNG5IkFxcXvfbaaxo/frzhuntz5coVFSxYMNe6i4uLLl26ZKDo78vMzNTkyZMVERFxy8eg+aEVAOQ/DM8AwAb17Nnzll87inXr1qldu3aqU6eOGjduLKvVqu3bt+uxxx7TV199pcDAQNOJ+J+0tDQNGDBA8+fPV1ZWliTJ2dlZPXr00LRp0+Tu7m648M781fAoJSUlb0IeEBcXl+yB0sMPP6zk5GTVqFFDnp6eSk5ONlx3b1JTU5WZmanixYtnrxUvXlwXL15UgQIFVKRIEYN196ZgwYKaOnWqxo0bp6SkJFmtVvn4+NjNf0e3UrNmTS1dulQjR47Msb5kyRL5+voaqvp7Ro8erdmzZ2vw4MEaMWKE3nnnHR0/flyrVq3K9fsEAOQPPLYJADbobn5ab48fIP39/dWqVatcOy2GDx+uyMhI7d6921AZpkyZIj8/PzVv3lyS9Morr2jDhg2aPn26GjduLEmKjo5WSEiIAgMDNXPmTJO5d6x379539L45c+Y84JIHo2XLlurVq5e6du2qV199VfHx8QoJCdGCBQv0yy+/6LvvvjOdeNfatGmj559/Xq+//nqO9bCwMK1evVpr1641VIabrV69Wp06dVLXrl2zH6XduHGjFi9erGXLlumFF14wG3gPqlSpotDQULVt21YeHh5KSEjIXouNjdWiRYtMJwIA8hjDMwCwQU5OTn/5WJLVapXFYrHLM5pcXV31/fff69FHH82xfvjwYdWqVUsZGRmGyhAXF6egoCC999576t69u0qWLKnly5eradOmOd63efNmBQUF6fz582ZCkcOuXbt0+fJlNWvWTOfPn1fPnj0VHR0tHx8fzZkzR7Vr1zadeNeKFy+ubdu2qUaNGjnWDx48qMaNG+vChQuGyu5dWlqaxo8fr40bN+rcuXPZuzl/d/ToUUNlf8+aNWs0duxYJSQkyM3NTbVq1dKoUaP09NNPm067J4ULF1ZiYqIqVqyoMmXKaM2aNQoICNDRo0fl7++v1NRU04kAgDzGY5sAYIM2b95sOuGBKlWqlBISEnINzxISElS6dGlDVZCkxx9/XN9995169uyp7t27Kz09XQ8//HCu95UuXVrp6ekGCnErdevWzf66VKlSDrEr69dff80+F+xm169f19WrVw0U/X19+/ZVVFSUunfvrjJlytjt2W1/1LZtW7Vt29Z0xn1Tvnx5nT59WhUrVpSPj48iIyMVEBCgnTt3qlChQqbzAAAGMDwDABtkrz+tv1P//Oc/1a9fPx09ejTHjXP/93//pyFDhpjOy/dKliypNWvWSJIaNmyoUaNGaf78+XJ1dZUkXb16VaNHj1bDhg1NZsLB1atXT7NmzdK0adNyrIeFhenxxx83VPX3fP3111qzZk32I9COJC4uLvsCGF9fX/n7+5tOumcdOnTQxo0bVb9+fQ0cOFBdunTRZ599puTkZA0aNMh0HgDAAB7bBAA7kZ6efstbv2rVqmWo6N5ZrVZNmTJFkyZN0qlTpyRJZcuW1bBhwxQSEuIwuzEcwb59+9S6dWtlZGSodu3aslgsSkhIkKurq9atW6fHHnvMdCIc1LZt29SiRQvVq1cv+wy+jRs3aufOnYqMjNRTTz1luPDueXl5ae3atbkeRbVn586d00svvaQtW7aoaNGislqtSk1NVbNmzbRkyRKHuJk3NjZW27dvl4+Pj9q1a2c6BwBgAMMzALBx58+fV+/evfX111/f8nV7PPPsZpcvX5YkeXh4GC7B7Vy9elULFy7UwYMHZbVa5evrq27dusnNzc10GhxcQkKCJkyYkOMsrbfffjvXI9/2YuHChfryyy81b948u75h82YvvviikpKStGDBguyh4IEDB9SzZ0/5+Pho8eLFhgsBAPj7GJ4BgI3r1q2bjh8/rilTpqhZs2ZauXKlzp49qw8//FCTJk1yqHNmAMCR+fv7KykpSVarVZUrV5aLi0uO1+3xpmFPT09t2LBB9erVy7G+Y8cOtWzZUikpKWbC7tLq1avv+L3sPgOA/IczzwDAxm3atElffvml6tWrJycnJ1WqVEmBgYEqUqSIxo0bZ5fDs7Nnz2ro0KHZN8798ec49r6bzt6tXr1abdq0kYuLy19+oORDJO6nS5cu3fF7ixQp8gBLHowXXnjBdMJ9l5WVlWsIKEkuLi65bhO1ZX/838ZiseT6t+n3IwX4NwoA8h92ngGAjStSpIj27t2rypUrq3Llyvr888/VuHFjHTt2TI899phd3njYpk0bJScnq3///re8ca59+/aGyiBJTk5OOnPmjEqXLi0nJ6fbvs9isfAh0oZERUVp4sSJ2Ye216hRQ8OGDbOrs8GcnJz+8sxDq9XKnz0b0r59e6WkpGjx4sUqW7asJOnkyZPq1q2bihUrppUrVxouvHsbNmzQW2+9pbFjx6phw4ayWCzavn273n33XY0dO1aBgYGmEwEAeYydZwBg46pVq6ZDhw6pcuXKqlOnjj755BNVrlxZYWFhKlOmjOm8exIdHa2tW7eqTp06plNwCzfvFrGnnSP52cKFC9W7d2917NhRISEhslqt2r59u5o3b665c+eqa9euphPvyObNm00n5AlHuply+vTpat++vSpXrqwKFSrIYrEoOTlZfn5+Wrhwoem8e/LGG28oLCxMTz75ZPZaq1at5O7urn79+ikxMdFgHQDABHaeAYCN+/zzz3X9+nX16tVL8fHxatWqlS5cuKCCBQtq7ty5evHFF00n3jVfX199/vnndv2BEbAlNWrUUL9+/TRo0KAc6x9//LE+/fRTh/uwn5CQYJfDd0e+mXL9+vU5LhVp0aKF6aR75ubmph07dsjPzy/H+t69e1W/fn1dvXrVUBkAwBSGZwBgZ9LT03Xw4EFVrFhRJUuWNJ1zTyIjIzVp0qTsXXSwXSEhIfLx8VFISEiO9enTp+vIkSOaMmWKmTDkUKhQIe3fv18+Pj451o8cOaKaNWsqIyPDUNn9k5qaqs8//1yzZ8/Wnj177PKxTW6mtA9NmjSRi4uLFi5cmL3D+8yZM+revbuuXbumqKgow4UAgLzG8AwA7MS1a9d07NgxValSRQUK2N9T98WKFctxllFaWppu3Lghd3f3XIdNX7x4Ma/zcBvlypXT6tWr9fjjj+dY3717t9q1a6effvrJUBlu5uPjo2HDhumVV17Jsf7JJ59o4sSJ+uGHHwyV/X2bNm1SeHi4vvjiC1WqVEmdOnVSp06d7HLnqqPcTBkaGnrH7/3j4N0eHDlyRB06dNChQ4dUsWJFSVJycrKqVq2qVatW5RpSAwAcn/19+gKAfCY9PV0DBgzQvHnzJEmHDx+Wt7e3QkJCVLZsWQ0fPtxw4Z1hh5J9unDhgjw9PXOtFylSRD///LOBItzKkCFDFBISooSEBDVq1EgWi0XR0dGaO3eupk6dajrvrv3000+aO3euwsPDlZaWpqCgIF2/fl0rVqyQr6+v6bx75ig3U06ePPmO3mexWOxyeObj46O9e/fe8lHUv7rQAgDgmNh5BgA2buDAgdq2bZumTJmi1q1ba+/evfL29tbq1as1atQoxcfHm06EA6tZs6ZeffVV9e/fP8f6tGnTNHPmTB04cMBQGf5o5cqVmjRpUvb5Zr/ftmlvt9c+++yzio6O1nPPPadu3bqpdevWcnZ2louLi/bs2WPXwzNHvJkSAID8gJ1nAGDjVq1apaVLl6pBgwY5fuLt6+urpKQkg2X3bu3atXJ2dlarVq1yrEdGRiozM1Nt2rQxVIY/Gjx4sPr376/z58/rmWeekSRt3LhRkyZNYjehjenQoYM6dOhgOuNvi4yMVEhIiF577TU9+uijpnPuK0e8mfJ39n60QGhoqPr16ydXV9e/fCzVHnfTAQD+Hvv7lw0A8pnz58+rdOnSudbT0tLs9vGR4cOHa/z48bnWs7KyNHz4cIZnNiQ4OFi//vqrxowZow8++ECSVLlyZc2cOVM9evQwXIdbuXLlSq5HAIsUKWKo5u5t3bpV4eHhqlu3rqpXr67u3bvb5a3Ct1KhQgXt3r3boW6mdJSjBSZPnqxu3brJ1dX1Tx9LtddHUQEAfw+PbQKAjXv66afVuXNnDRgwQB4eHtq7d6+8vLzUv39/HTlyRN98843pxLvm5uamxMTEXDdtHj9+XI899pjS0tLMhOFPnT9/Xm5ubnrooYdMp+APjh07pv79+2vLli05bta0Wq2yWCx2eTNlenq6lixZovDwcO3YsUOZmZn6+OOPFRwcLA8PD9N592T+/Pl68cUXVahQoRzr165d05IlS+xyIM3RAgCA/IDhGQDYuO3bt6t169bq1q2b5s6dq1deeUX79+9XTEyMoqKict2CaA8eeeQRLVq0KPsxwN9t2LBBXbt21blz5wyVAfapUaNGkn4bZDz88MO5dqU+/fTTJrLum0OHDumzzz7TggULlJKSosDAQK1evdp01l1zdnbW6dOnc+0mvnDhgkqXLm2XQ85KlSplHy3g4eGhPXv2yNvbW0eOHFFAQIAuXbpkOhEAgL+NxzYBwMY1atRI27dv14QJE1SlShVFRkYqICBAMTEx8vPzM513T9q1a6c33nhDK1euVJUqVSRJR44c0ZAhQ9SuXTvDdfij5cuXKyIiQsnJybp27VqO13bv3m2oCjfbu3ev4uLiVK1aNdMpD0S1atX00Ucfady4cfrqq68UHh5uOume/L4T8I9++umnW95qaw8c8WiBzp07q27durkeOZ0wYYJ27NihZcuWGSoDAJjiZDoAAHB7169fV+/eveXu7q558+Zp3759OnDggBYuXGi3gzPptw8ghQsXVvXq1eXl5SUvLy/VqFFDJUqU0MSJE03n4SahoaHq3bu3Spcurfj4eD3xxBMqUaKEjh49ytl0NqRevXo6ceKE6YwHztnZWS+88ILd7Trz9/dXQECALBaLmjdvroCAgOxftWvX1lNPPWW3557Vq1dPa9asyf7+94HZp59+qoYNG5rK+luioqLUtm3bXOutW7fWt99+a6AIAGAaO88AwIa5uLho5cqVGjFihOmU+8rT01Pbt2/X+vXrtWfPHrm5ualWrVpq0qSJ6TT8wYwZMzRr1ix16dJF8+bN05tvvilvb2+NHDlSFy9eNJ2H/5k9e7ZeffVVnTx5UjVr1pSLi0uO12vVqmWoDJL0wgsvSJISEhLUqlWrHOcGFixYUJUrV1anTp0M1f0948aNU+vWrXXgwAHduHFDU6dOzXG0gD26cuWKChYsmGvdxcWFx1ABIJ/izDMAsHG9e/eWn5+fBg8ebDrlgcjIyFChQoXs9vEeR+fu7q7ExERVqlRJpUuX1vr161W7dm398MMPatCggS5cuGA6EZJiY2PVtWtXHT9+PHvNYrHY9YUBjmjevHl68cUX5erqajrlb0tISFCdOnUkSd9//70mTpyouLg4ZWVlKSAgQG+99Zbd7pCuV6+enn/+eY0cOTLH+nvvvaevvvpKcXFxhsoAAKaw8wwAbJyPj48++OADbd++XY8//rgKFy6c4/WQkBBDZfcuKytLY8aMUVhYmM6ePavDhw/L29tbI0aMUOXKldWnTx/TififRx55RBcuXFClSpVUqVIlxcbGqnbt2jp27Jj4+ZvtCA4Olr+/vxYvXnzLCwNgG3r27Gk64b4JCAiQv7+/+vbtq65du2revHmmk+6bESNGqFOnTkpKSsq+2Gbjxo1avHgx550BQD7FzjMAsHFeXl63fc1isejo0aN5WHN/vP/++5o3b57ef/99/fOf/9S+ffvk7e2tiIgITZ48WTExMaYT8T99+/ZVhQoVNGrUKIWFhWnw4MFq3Lixdu3apY4dO+qzzz4znQhJhQsX1p49e+Tj42M6BX/CycnpTweb9rRDMCYmRuHh4YqIiND169fVqVMnBQcHq1mzZqbT7os1a9Zo7NixSkhIyD5aYNSoUXZ/cy0A4N4wPAMA5DkfHx998sknat68uTw8PLRnzx55e3vr4MGDatiwoX755RfTififrKwsZWVlqUCB3zarR0REKDo6Wj4+Pnr11VdveS4Q8t7zzz+vXr162e25WfnFqlWrcgzPrl+/rvj4eM2bN0+jR4+2y123V69eVUREhObMmaOtW7eqcuXKCg4OVs+ePVW+fHnTeQAA3BcMzwAAec7NzU0HDx5UpUqVcgzPDhw4oCeeeEJXrlwxnQjYlVmzZunDDz9UcHCw/Pz8cl0Y0K5dO0NluBOLFi3S0qVL9eWXX5pO+VuSkpI0Z84czZ8/X6dPn1ZgYKDWrl1rOuuexcXFKTExURaLRb6+vvL39zedBAAwhOEZACDP1a1bV2+88YZefvnlHMOz0aNHa8OGDdq6davpxHxt7969d/xebnG0DU5OTrd9jQsDbF9SUpJq1aqltLQ00yl/25UrV/T555/r3//+t1JSUuzyz965c+f00ksvacuWLSpatKisVqtSU1PVrFkzLVmyRKVKlTKdCADIY1wYAADIM8HBwZo6dapGjRql7t276+TJk8rKytIXX3yhQ4cOaf78+frvf/9rOjPfq1OnTvZNjX+GoYztyMrKMp2Ae3T16lVNmzbN7h9xjIqKUnh4uFasWCFnZ2cFBQXZ5WOokjRgwABdunRJ+/fvV40aNSRJBw4cUM+ePRUSEqLFixcbLgQA5DV2ngEA8oyzs7NOnz6t0qVLa926dRo7dqzi4uKUlZWlgIAAjRw5Ui1btjSdme/9+OOPd/zeSpUqPcASwLEUK1Ysx5lnVqtVly9flru7uxYuXGh3j9eeOHFCc+fO1dy5c3Xs2DE1atRIffr0UVBQUK6boe2Jp6enNmzYoHr16uVY37Fjh1q2bKmUlBQzYQAAY9h5BgDIMzf/vKZVq1Zq1aqVwRrcDgMx+xAaGqp+/frJ1dVVoaGhf/rekJCQPKrCn5kyZUqO752cnFSqVCnVr19fxYoVMxN1jwIDA7V582aVKlVKPXr0UHBwsKpVq2Y6677IysrKdW6gJLm4uLDLEwDyKXaeAYAd2Lp1qz755BMlJSVp+fLlKleunBYsWCAvLy89+eSTpvPumJOTk86ePct5MXZmwYIFCgsL07FjxxQTE6NKlSppypQp8vLyUvv27U3n5VteXl7atWuXSpQoIS8vr9u+z2Kx6OjRo3lYhnuRkJCgOnXqmM64Y+3atVOfPn303HPPydnZ2XTOfdW+fXulpKRo8eLFKlu2rCTp5MmT6tatm4oVK6aVK1caLgQA5LXbny4LALAJK1asUKtWreTm5qb4+Hj9+uuvkqTLly9r7NixhuvuXtWqVVW8ePE//QXbMXPmTA0ePFjPPvtsjsO/ixYtmmsXDfLWsWPHVKJEieyvb/eLwZntSk1N1YwZMxQQEKDHH3/cdM5dWb16tdq3b+9wgzNJmj59ui5fvqzKlSurSpUq8vHxkZeXly5fvqxp06aZzgMAGMDOMwCwcf7+/ho0aJB69OiR42bKhIQEtW7dWmfOnDGdeMecnJw0ZcoUeXp6/un7evbsmUdF+Cu+vr4aO3asXnjhhRx//vbt26emTZvq559/Np0I/XbovJub2y1fO336tMqUKZPHRfgzmzZtUnh4uL744gtVqlRJnTp1UqdOneTv7286DTdZv369Dh48KKvVKl9fX7Vo0cJ0EgDAEM48AwAbd+jQITVp0iTXepEiRezy0OKXXnpJpUuXNp2BO3Ts2LFbfqAvVKiQ0tLSDBThVvz9/bVo0SIFBATkWF++fLlee+01nT9/3lAZfvfTTz9p7ty5Cg8PV1pamoKCgnT9+nWtWLFCvr6+pvNwC4GBgQoMDDSdAQCwAQzPAMDGlSlTRkeOHFHlypVzrEdHR8vb29tM1D26+ZY52AcvLy8lJCTkukTg66+/5gO/DQkMDFSjRo303nvv6a233lJaWpr69++vZcuWafz48abz8r1nn31W0dHReu655zRt2jS1bt1azs7OCgsLM52G//mrSzduxgUcAJD/MDwDABv3yiuvaODAgQoPD5fFYtGpU6cUExOjoUOHauTIkabz7gonBdifYcOG6V//+pcyMjJktVq1Y8cOLV68WOPGjdPs2bNN5+F/pk2bprZt26p3795as2aNTp06pSJFimjnzp0MOW1AZGSkQkJC9Nprr+nRRx81nYNbmDx58h29z2KxMDwDgHyI4RkA2Lg333xTqampatasmTIyMtSkSRMVKlRIQ4cOVf/+/U3n3ZWsrCzTCbhLvXv31o0bN/Tmm28qPT1dXbt2Vbly5TR16lS99NJLpvNwk5YtW6pjx46aOXOmChQooK+++orBmY3YunWrwsPDVbduXVWvXl3du3fXiy++aDoLNzl27JjpBACADePCAACwE+np6Tpw4ICysrLk6+urhx56yHQS8pmff/5ZWVlZ2WfWnTx5UuXKlTNcBUlKSkpS165ddebMGc2ePVtRUVGaOHGiQkJCNGbMGLm4uJhOhH77e3zJkiUKDw/Xjh07lJmZqY8//ljBwcHy8PAwnYc/uHbtmo4dO6YqVaqoQAH2HABAfsbwDADszKVLl7Rp0yZVq1ZNNWrUMJ2DfOjMmTMaM2aMZs+eratXr5rOgSQPDw+1bdtWYWFhKlq0qCRp+/bt2bf0xsfHmw1ELocOHdJnn32mBQsWKCUlRYGBgVq9erXpLOi3IeeAAQM0b948SdLhw4fl7e2tkJAQlS1bVsOHDzdcCADIa06mAwAAfy4oKEjTp0+XJF29elX16tVTUFCQatWqpRUrVhiug6NKSUlRt27dVKpUKZUtW1ahoaHKysrSyJEj5e3trdjYWIWHh5vOxP/MmDFDS5YsyR6cSVKjRo0UHx+f6wZO2IZq1arpo48+0k8//aTFixebzsFN3n77be3Zs0dbtmyRq6tr9nqLFi20dOlSg2UAAFPYeQYANu6RRx7RunXrVLt2bS1atEijRo3Snj17NG/ePM2aNYsdJXggXn/9dX311Vd68cUX9c033ygxMVGtWrVSRkaGRo0apaefftp0IgA8EJUqVdLSpUvVoEEDeXh4aM+ePfL29taRI0cUEBCgS5cumU4EAOQxHt4HABuXmpqq4sWLS5K++eYbderUSe7u7mrbtq2GDRtmuA6Oas2aNZozZ45atGih119/XT4+PqpataqmTJliOg1/4sCBA0pOTta1a9ey1ywWi55//nmDVYB9OX/+fPbZjjdLS0uTxWIxUAQAMI3hGQDYuAoVKigmJkbFixfXN998oyVLlkiSfvnllxyPkwD306lTp7JvavT29parq6v69u1ruAq/S01NlaenZ/b3R48eVceOHbV3715ZLBb9/mDB7x/0MzMzjXQC9qhevXpas2aNBgwYIOn//3f06aefqmHDhibTAACGMDwDABv3xhtvqFu3bnrooYdUqVIlNW3aVJL07bffys/Pz2wcHFZWVlaOGxqdnZ1VuHBhg0W4WWhoqFxdXbN3nw4cOFAVKlTQunXrVKdOHX333Xc6duyYhg4dqo8//thwLWBfxo0bp9atW+vAgQO6ceOGpk6dqv379ysmJkZRUVGm8wAABnDmGQDYgbi4OCUnJyswMFAPPfSQpN8eqytatKgaN25suA6OyMnJSW3atFGhQoUkSV999ZWeeeaZXAO0L774wkRevnfu3Dl1795dPj4++s9//qOSJUtq48aNql27tsqVK6cdO3aoXLly2rhxo4YOHcrZiMAdSEhIUJ06dSRJ33//vSZOnKi4uDhlZWUpICBAb731Fj+0AoB8iuEZAADIpXfv3nf0vjlz5jzgEvyZcePG6e2331axYsUUFxcnb29v1a5dW7Nnz1a9evWUlJQkPz8/paenm04FbJ6Tk5P8/f3Vt29fde3aNcej0QCA/I3hGQAAgJ176qmnNHjwYHXo0EH9+vXT+fPnNWzYMIWFhWn37t3at2+f6UTA5sXExCg8PFwRERG6fv26OnXqpODgYDVr1sx0GgDAMIZnAAAAdm7dunW6fPmyOnfurBMnTqht27bat2+fihcvroiICD3zzDOmEwG7cfXqVUVERGjOnDnaunWrKleurODgYPXs2VPly5c3nQcAMIDhGQAAgAO6ePGiihYtKicnJ9MpgN1KSkrSnDlzNH/+fJ0+fVqBgYFau3at6SwAQB5jeAYAAAAAt3HlyhV9/vnn+ve//62UlBRlZmaaTgIA5LECpgMAAH9t69at+uSTT5SUlKTly5erXLlyWrBggby8vPTkk0+azgNgWEZGhqZNm6bNmzfr3LlzysrKyvH67t27DZUB9isqKkrh4eFasWKFnJ2dFRQUpD59+pjOAgAYwPAMAGzcihUr1L17d3Xr1k3x8fH69ddfJUmXL1/W2LFjeXwEgIKDg7V+/Xp17txZTzzxhCwWi+kkwC6dOHFCc+fO1dy5c3Xs2DE1atRI06ZNU1BQkAoXLmw6DwBgCI9tAoCN8/f316BBg9SjRw95eHhoz5498vb2VkJCglq3bq0zZ86YTgRgmKenp9auXavGjRubTgHsVmBgoDZv3qxSpUqpR48eCg4OVrVq1UxnAQBsADvPAMDGHTp0SE2aNMm1XqRIEaWkpOR9EACbU65cOXl4eJjOAOyam5ubVqxYoeeee07Ozs6mcwAANoTrlwDAxpUpU0ZHjhzJtR4dHS1vb28DRQBszaRJk/TWW2/pxx9/NJ0C2K3Vq1erffv2DM4AALmw8wwAbNwrr7yigQMHKjw8XBaLRadOnVJMTIyGDh2qkSNHms4DYAPq1q2rjIwMeXt7y93dXS4uLjlev3jxoqEyAAAA+8fwDABs3JtvvqnU1FQ1a9ZMGRkZatKkiQoVKqShQ4eqf//+pvMA2IAuXbro5MmTGjt2rB5++GEuDAAAALiPuDAAAOxEenq6Dhw4oKysLPn6+uqhhx4ynQTARri7uysmJka1a9c2nQIAAOBw2HkGAHbC3d1ddevWNZ0BwAZVr15dV69eNZ0BAADgkNh5BgA2rlmzZn/6CNamTZvysAaALYqMjNTo0aM1ZswY+fn55TrzrEiRIobKAAAA7B87zwDAxtWpUyfH99evX1dCQoL27dunnj17mokCYFNat24tSWrevHmOdavVKovFoszMTBNZAAAADoHhGQDYuMmTJ99y/b333tOVK1fyuAaALdq8ebPpBAAAAIfFY5sAYKeOHDmiJ554QhcvXjSdAgAAAAAOy8l0AADg3sTExMjV1dV0BgAAAAA4NB7bBAAb17FjxxzfW61WnT59Wrt27dKIESMMVQEAAABA/sDwDABsnKenZ47vnZycVK1aNb3//vtq2bKloSoAAAAAyB848wwAAAAAAAC4DXaeAQAAOIjz58/r0KFDslgsqlq1qkqVKmU6CQAAwO4xPAMAG1esWDFZLJY7ei83bwL5U1pamgYMGKAFCxYoMzNTkuTs7KwePXpo2rRpcnd3N1wIAABgvxieAYCNGzFihD788EO1atVKDRs2lPTbTZvr1q3TiBEjVLx4ccOFAEwbPHiwoqKitHr1ajVu3FiSFB0drZCQEA0ZMkQzZ840XAgAAGC/OPMMAGxcp06d1KxZM/Xv3z/H+vTp07VhwwatWrXKTBgAm1GyZEktX75cTZs2zbG+efNmBQUF6fz582bCAAAAHICT6QAAwJ9bt26dWrdunWu9VatW2rBhg4EiALYmPT1dDz/8cK710qVLKz093UARAACA42B4BgA2rkSJElq5cmWu9VWrVqlEiRIGigDYmoYNG2rUqFHKyMjIXrt69apGjx6d/bg3AAAA7g1nngGAjRs9erT69OmjLVu2ZH8Ijo2N1TfffKPZs2cbrgNgC6ZOnarWrVurfPnyql27tiwWixISEuTq6qp169aZzgMAALBrnHkGAHbgu+++U2hoqBITE2W1WuXr66uQkBDVr1/fdBoAG3H16lUtXLhQBw8ezP57olu3bnJzczOdBgAAYNcYngEAAAAAAAC3wZlnAAAAdm7evHlas2ZN9vdvvvmmihYtqkaNGunHH380WAYAAGD/GJ4BAADYubFjx2Y/nhkTE6Pp06fro48+UsmSJTVo0CDDdQAAAPaNxzYBAADsnLu7uw4ePKiKFSvqrbfe0unTpzV//nzt379fTZs21fnz500nAgAA2C12ngEAANi5hx56SBcuXJAkRUZGqkWLFpIkV1dXXb161WQaAACA3StgOgAAAAB/T2BgoPr27St/f38dPnxYbdu2lSTt379flStXNhsHAABg5xieAYAd2Llzp5YtW6bk5GRdu3Ytx2tffPGFoSoAtuI///mP3n33XZ04cUIrVqxQiRIlJElxcXHq0qWL4ToAAAD7xplnAGDjlixZoh49eqhly5Zav369WrZsqR9++EFnzpxRhw4dNGfOHNOJAAAAAOCwOPMMAGzc2LFjNXnyZP33v/9VwYIFNXXqVCUmJiooKEgVK1Y0nQfARmzdulUvv/yyGjVqpJMnT0qSFixYoOjoaMNlAAAA9o3hGQDYuKSkpOzziwoVKqS0tDRZLBYNGjRIs2bNMlwHwBasWLFCrVq1kpubm3bv3q1ff/1VknT58mWNHTvWcB0AAIB9Y3gGADauePHiunz5siSpXLly2rdvnyQpJSVF6enpJtMA2IgPP/xQYWFh+vTTT+Xi4pK93qhRI+3evdtgGQAAgP3jwgAAsHFPPfWU1q9fLz8/PwUFBWngwIHatGmT1q9fr+bNm5vOA2ADDh06pCZNmuRaL1KkiFJSUvI+CAAAwIEwPAMAGzd9+nRlZGRIkt5++225uLgoOjpaHTt21IgRIwzXAbAFZcqU0ZEjR1S5cuUc69HR0fL29jYTBQAA4CC4bRMAAMDOffTRR5o3b57Cw8MVGBiotWvX6scff9SgQYM0cuRI9e/f33QiAACA3WJ4BgA26NKlS3f83iJFijzAEgD24p133tHkyZOzd6oWKlRIQ4cO1QcffGC4DAAAwL4xPAMAG+Tk5CSLxfKn77FarbJYLMrMzMyjKgC2Lj09XQcOHFBWVpZ8fX310EMPmU4CAACwe5x5BgA2aPPmzaYTANiB9PR0DRs2TKtWrdL169fVokULhYaGqmTJkqbTAAAAHAY7zwAAAOzUsGHDNGPGDHXr1k2urq5avHixmjZtqmXLlplOAwAAcBgMzwAAAOxUlSpVNGbMGL300kuSpB07dqhx48bKyMiQs7Oz4ToAAADHwPAMAADAThUsWFDHjh1TuXLlstfc3Nx0+PBhVahQwWAZAACA43AyHQAAAIB7k5mZqYIFC+ZYK1CggG7cuGGoCAAAwPFwYQAAAICdslqt6tWrlwoVKpS9lpGRoVdffVWFCxfOXvviiy9M5AEAADgEhmcAAAB2qmfPnrnWXn75ZQMlAAAAjoszzwDADixfvlwRERFKTk7WtWvXcry2e/duQ1UAAAAA4Pg48wwAbFxoaKh69+6t0qVLKz4+Xk888YRKlCiho0ePqk2bNqbzAAAAAMChsfMMAGxc9erVNWrUKHXp0kUeHh7as2ePvL29NXLkSF28eFHTp083nQgAAAAADoudZwBg45KTk9WoUSNJkpubmy5fvixJ6t69uxYvXmwyDQAAAAAcHsMzALBxjzzyiC5cuCBJqlSpkmJjYyVJx44dE5uHAQAAAODBYngGADbumWee0VdffSVJ6tOnjwYNGqTAwEC9+OKL6tChg+E6AAAAAHBsnHkGADYuKytLWVlZKlCggCQpIiJC0dHR8vHx0auvvqqCBQsaLgQAAAAAx8XwDAAAAAAAALgNHtsEAAAAAAAAboPhGQAAAAAAAHAbDM8AAAAAAACA22B4BgAAAAAAANwGwzMAAAAAAADgNgqYDgAA5Obv7y+LxXJH7929e/cDrgEAAACA/IvhGQDYoBdeeCH764yMDM2YMUO+vr5q2LChJCk2Nlb79+/X66+/bqgQAAAAAPIHi9VqtZqOAADcXt++fVWmTBl98MEHOdZHjRqlEydOKDw83FAZAAAAADg+hmcAYOM8PT21a9cuPfrooznWf/jhB9WtW1epqamGygAAAADA8XFhAADYODc3N0VHR+daj46Olqurq4EiAAAAAMg/OPMMAGzcG2+8oddee01xcXFq0KCBpN/OPAsPD9fIkSMN1wEAAACAY+OxTQCwAxEREZo6daoSExMlSTVq1NDAgQMVFBRkuAwAAAAAHBvDMwAAAAAAAOA2OPMMAAAAAAAAuA3OPAMAG5eZmanJkycrIiJCycnJunbtWo7XL168aKgMAAAAABwfO88AwMaNHj1aH3/8sYKCgpSamqrBgwerY8eOcnJy0nvvvWc6DwAAAAAcGmeeAYCNq1KlikJDQ9W2bVt5eHgoISEhey02NlaLFi0ynQgAAAAADoudZwBg486cOSM/Pz9J0kMPPaTU1FRJ0nPPPac1a9aYTAMAAAAAh8fwDABsXPny5XX69GlJko+PjyIjIyVJO3fuVKFChUymAQAAAIDDY3gGADauQ4cO2rhxoyRp4MCBGjFihB599FH16NFDwcHBhusAAAAAwLFx5hkA2JnY2Fht375dPj4+ateunekcAAAAAHBoDM8AAAAAAACA2yhgOgAAkNvq1avv+L3sPgMAAACAB4edZwBgg5ycch5JabFY9Me/ri0WiyQpMzMzz7oAAAAAIL/hwgAAsEFZWVnZvyIjI1WnTh19/fXXSklJUWpqqr7++msFBATom2++MZ0KAAAAAA6NnWcAYONq1qypsLAwPfnkkznWt27dqn79+ikxMdFQGQAAAAA4PnaeAYCNS0pKkqenZ651T09PHT9+PO+DAAAAACAfYecZANi4Jk2ayMXFRQsXLlSZMmUkSWfOnFH37t117do1RUVFGS4EAAAAAMfF8AwAbNyRI0fUoUMHHTp0SBUrVpQkJScnq2rVqlq1apV8fHwMFwIAAACA42J4BgB2wGq1av369Tp48KCsVqt8fX3VokWL7Bs3AQAAAAAPBsMzAAAAAAAA4DYKmA4AAOQWGhqqfv36ydXVVaGhoX/63pCQkDyqAgAAAID8h51nAGCDvLy8tGvXLpUoUUJeXl63fZ/FYtHRo0fzsAwAAAAA8heGZwAAAAAAAMBtOJkOAAAAAAAAAGwVwzMAsHGdO3fW+PHjc61PmDBB//jHPwwUAQAAAED+wWObAGDjSpUqpU2bNsnPzy/H+vfff68WLVro7NmzhsoAAAAAwPGx8wwAbNyVK1dUsGDBXOsuLi66dOmSgSIAAAAAyD8YngGAjatZs6aWLl2aa33JkiXy9fU1UAQAAAAA+UcB0wEAgD83YsQIderUSUlJSXrmmWckSRs3btTixYu1bNkyw3UAAAAA4Ng48wwA7MCaNWs0duxYJSQkyM3NTbVq1dKoUaP09NNPm04DAAAAAIfG8AwAAAAAAAC4DR7bBAA7ERcXp8TERFksFvn6+srf3990EgAAAAA4PIZnAGDjzp07p5deeklbtmxR0aJFZbValZqaqmbNmmnJkiUqVaqU6UQAAAAAcFjctgkANm7AgAG6dOmS9u/fr4sXL+qXX37Rvn37dOnSJYWEhJjOAwAAAACHxplnAGDjPD09tWHDBtWrVy/H+o4dO9SyZUulpKSYCQMAAACAfICdZwBg47KysuTi4pJr3cXFRVlZWQaKAAAAACD/YHgGADbumWee0cCBA3Xq1KnstZMnT2rQoEFq3ry5wTIAAAAAcHw8tgkANu7EiRNq37699u3bpwoVKshisSg5OVl+fn768ssvVb58edOJAAAAAOCwGJ4BgJ1Yv369Dh48KKvVKl9fX7Vo0cJ0EgAAAAA4PIZnAAAAAAAAwG0UMB0AAMgtNDT0jt8bEhLyAEsAAAAAIH9j5xkA2CAvL687ep/FYtHRo0cfcA0AAAAA5F8MzwAAAAAAAIDbcDIdAAC4M9euXdOhQ4d048YN0ykAAAAAkG8wPAMAG5eenq4+ffrI3d1djz32mJKTkyX9dtbZ+PHjDdcBAAAAgGNjeAYANu7tt9/Wnj17tGXLFrm6umavt2jRQkuXLjVYBgAAAACOj9s2AcDGrVq1SkuXLlWDBg1ksViy1319fZWUlGSwDAAAAAAcHzvPAMDGnT9/XqVLl861npaWlmOYBgAAAAC4/xieAYCNq1evntasWZP9/e8Ds08//VQNGzY0lQUAAAAA+QKPbQKAjRs3bpxat26tAwcO6MaNG5o6dar279+vmJgYRUVFmc4DAAAAAIfGzjMAsFEJCQmSpEaNGmnbtm1KT09XlSpVFBkZqYcfflgxMTF6/PHHzUYCAAAAgIOzWK1Wq+kIAEBuTk5O8vf3V9++fdW1a1d5enqaTgIAAACAfIedZwBgo7Zt26aAgAANHz5cZcqUUffu3bV582bTWQAAAACQr7DzDABs3NWrVxUREaE5c+Zo69atqly5soKDg9WzZ0+VL1/edB4AAAAAODSGZwBgR5KSkjRnzhzNnz9fp0+fVmBgoNauXWs6CwAAAAAcFsMzALAzV65c0eeff65///vfSklJUWZmpukkAAAAAHBYBUwHAADuTFRUlMLDw7VixQo5OzsrKChIffr0MZ0FAAAAAA6NnWcAYMNOnDihuXPnau7cuTp27JgaNWqkPn36KCgoSIULFzadBwAAAAAOj51nAGCjAgMDtXnzZpUqVUo9evRQcHCwqlWrZjoLAAAAAPIVhmcAYKPc3Ny0YsUKPffcc3J2djadAwAAAAD5Eo9tAgAAAAAAALfhZDoAAAAAAAAAsFUMzwAAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALgNhmcAAAAAAADAbfw/n8iQoRNPW00AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de correlaciones con filtro de umbral de correlación

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecio
Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan
Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannan-0.785nan0.9320.702nannan0.703nannannan0.708nan0.9820.797nannannannannannan
Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.798nannannannan
Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannan
Área del alanannannannannannan-0.7460.8460.9840.979nannannannan0.8090.7230.845nannan0.9860.949nannan0.992nannan
Relación de aspecto del alanannan-0.785nannan-0.746nannannan-0.789nannan-0.740nannan-0.779-0.828nan-0.765nannannannan-0.970nannan
Longitud del fuselajenannannannannan0.846nannan0.9380.808nannannannan0.704nannannannan0.9250.832nannan0.929nannan
Ancho del fuselajenannan0.932nannan0.984nan0.938nan0.9860.721nan0.940nannannan0.868nan0.944nan0.882nannannannannan
Peso máximo al despegue (MTOW)nannan0.702nannan0.979-0.7890.8080.986nannannan0.736nan0.8020.7070.884nan0.7080.9790.958nannan0.9760.758nan
Alcance de la aeronavenannannannannannannannan0.721nannannannannannannannannannannannan-0.786nan0.966nannan
Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nan
Velocidad máxima (KIAS)nannan0.703nannannan-0.740nan0.9400.736nannannannannannan0.732nannan0.784nannannan0.7420.910nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannan
envergaduranannannannannan0.809nan0.704nan0.802nannannannannan0.7190.770nannan0.9340.793nannannannannan
Cuerdanannannannannan0.723-0.779nannan0.707nannannannan0.719nan0.754nannannannannannannan-0.922nan
payloadnannan0.708nannan0.845-0.828nan0.8680.884nannan0.732nan0.7700.754nannannannan0.808nannan0.7110.846nan
duracion en VTOLnannannan-0.875nannannannannannannannannannannannannannannannannannannannannannan
Crucero KIASnannan0.982nannannan-0.765nan0.9440.708nannannannannannannannannan0.723nan-0.855nannannannan
RTF (Including fuel & Batteries)nannan0.797nannan0.986nan0.925nan0.979nannan0.784nan0.934nannannan0.723nan0.973nannannannannan
Empty weightnannannannannan0.949nan0.8320.8820.958nannannannan0.793nan0.808nannan0.973nannan0.7210.989nannan
Maximum Crosswindnannannan-0.798nannannannannannan-0.786-0.715nannannannannannan-0.855nannannannannannannan
Rango de comunicaciónnannannannannannannannannannannan0.802nannannannannannannannan0.721nannannannannan
Capacidad combustiblenannannannannan0.992-0.9700.929nan0.9760.966nan0.742nannannan0.711nannannan0.989nannannannan0.817
Consumonannannannannannannannannan0.758nan-0.7320.910nannan-0.9220.846nannannannannannannannan0.998
Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Velocidad a la que se realiza el crucero (KTAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Techo de servicio máximo: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Área del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 Fixed wing'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQNan21A Blackjack'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== envergadura: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Cuerda: No hay valores faltantes para imputar. ===\n", + "\n", + "=== payload: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Empty weight: No hay valores faltantes para imputar. ===\n", + "La columna 'Nivel de Confianza' no está presente en df_reporte.\n", + "\u001b[1mNo se realizaron imputaciones por correlación en esta iteración.\u001b[0m\n", + "\n", + "=== Iteración 2: Resumen después de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Después de Iteración 2

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE0.000
1Stalker VXE300.000
2Aerosonde® Mk. 4.7 Fixed Wing0.000
3Aerosonde® Mk. 4.7 VTOL1.000
4Aerosonde® Mk. 4.8 Fixed wing1.000
5Aerosonde® Mk. 4.8 VTOL FTUAS0.000
6AAI Aerosonde0.000
7Fulmar X0.000
8Orbiter 41.000
9Orbiter 30.000
10Mantis1.000
11ScanEagle0.000
12Integrator1.000
13Integrator VTOL1.000
14Integrator Extended Range (ER)1.000
15ScanEagle 30.000
16RQNan21A Blackjack1.000
17DeltaQuad Evo0.000
18DeltaQuad Pro #MAP1.000
19DeltaQuad Pro #CARGO1.000
20V210.000
21V250.000
22V320.000
23V350.000
24V390.000
25Volitation VT3700.000
26Skyeye 26000.000
27Skyeye 2930 VTOL0.000
28Skyeye 36000.000
29Skyeye 3600 VTOL0.000
30Skyeye 50000.000
31Skyeye 5000 VTOL0.000
32Skyeye 5000 VTOL octo0.000
33Volitation VT5100.000
34Ascend0.000
35Transition0.000
36Reach0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes10.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1mNo se realizaron nuevas imputaciones. Finalizando...\u001b[0m\n", + "=== Exportando datos al archivo: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx ===\n", + "Exportación completada. El archivo se guardó como 'C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx'.\n", + "\n", + "=== Flujo completado. Verifique el archivo generado. ===\n", + "✅ Script finalizado.\n" ] } ], diff --git a/ADRpy/analisis/archivo_imputaciones.xlsx b/ADRpy/analisis/archivo_imputaciones.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..a4c49d13a6427269538ad5ebd58f20e95fd29abf GIT binary patch literal 50353 zcmcG$byS>LwmwXPC1`M$1b27$0KwgZyA|%i-Q6v?YXOA>2yVgMg1dVGKhoVZ-90n+ zuDNS{-yg+Wb!xFWXUnsnz2A2uFAWKW4gmr22ExKIR8zc9=40Z^r;(S}yO)=dt)V=? z*3N-J-_DNS)!IsCOa{J-5dmhcL(v(S8bvX1z6;PJ8|16WB$BUSg{90W z4iF`K$1$|hh-q(dSTS*aN%~$!s{vJFY}h+%8gl|L&*|zE2_1~TZyB5s-xv{iSwyRPAl_kb*1c(%c?5i&?TMgU_qKYtLWCsy`J5 z0-~Q70s`$td#+Xtj%LQz#=rk$`lY`kjgfFX4)hMJdx4N<9+pN^Fv?FT533zZ4vkt_ zsi=jTLxpl29LW_OwAW-@SBjKh3zCIx`4T1sAradyqu-L&?-7l2usmVUr;(;x2}{kw zUw^!BE6QH+aCa|jw%g-0*o}E3>9$lmxPuQL%ef|k8?7~SB-Alg9iz-iXwYjoQM)aw znN08fG!N~m8%X-$&8DFnA+TJ&WY29e>6N3QTa=t6f*}e0hw>b%-fQ_ak{@_Xpr4#< zJYB4f@)0ERJP#7=^P(M*c>rhWJc?Lqck+1E<8GTR#y0Pnm0HEuBUtW)ZT6CZF!cdyFm z9%$d@UNuuzaajO?4^=%;D`eXC69jLCl)#7U=yI@Zq0zl_sRlf?X1JR?on~8E?z(w+ zS_tBjzuvW8Z@%o={319(1_2y=K)ov3 zHOqv|@XAm8s$w;m>mJ&duVT2dXmCl`vg1&YAa)GJk)gzR9Px$MWbB8@9Cp)hhBAx%7uiHV+=J&aMxR8j>5&%0f-83#? z;74Bos=V*Fvx(Y8eV(s3%KBE*&X}Wp?uOJDo^LOl_7lYqKoktw{BCEDvp$dDIS5;L z&zN9jGf~nOp{O5pgq^Pu(PAL&nL~v_O2~ah1aZIcVOV^_a~S^AgfuSWDj`_N_=;id z*j)QYgh^=%qLok_*Dl#%X1%K^<6uDhZfp2wjT?YzXv0R|(=2Uq)y~eAJus$-Jkk3j zYnlf_Yh)iOIUJdxr*MeSA$>ubj*B^Q(K6#T|8rIhx!!l5v(`nYu zCpk!_tP%-g0(m8mkPuLzXQssPq+IaU4pDfA_VwPu{Z;K519%{ij(?wGKpAwHQIr_>-*PMx({@qMrby12~+kNVUOT1k8|;wA9NAMU^cb58z^#xqIJ0JM>2q9BFPKZThX(2-& zE38?*MWjHQe98UBSfKSTHB~I`C?RYl0zl$5S-Je#c8Uija#bB{mB6>sN9Dn<-sx~( zAgdrXPiq%u_uN@q7;bt-=o`OTUdmNw@f58hGp@^DW;|+-VJs#SS! zF}`1>FuoY~<5ZcgMBZTrW_Y2mSU#8=(|MG}j`MxSQiz95@0%_}VfU0B(d-unWFRvBAmSJAi4S3k;3_D43bFq4UyZ0l~F|68Lizn*V@yN zY_GB!%Td6SP|@S)mjk3q`s`6!syUcJ-pRwv7>Z6c2rTN{2^9i)VQ;>hLDgirK!(pQ z4JNi+?8RAfXJ>64%233Qhd`C)m@Ws@dOF&!Jsvxg=~spJv_*=-D1-1_DFU11S=e++5M@)qEOY*Im19GCcRSiGf*m* zWA%b{E<%$>O|7t^0=NKPBNX+HFYDpsY1+2&#_m zF~%6U5UbPxWtB=6u16LnM{d)AF&ds_*{xUDVu1?tL)*vQ0uNU0uGZPtwrwrZNd?!< zUnJP&4nFf>$m%U8(=3!dl*@|y8!ZW=(>iph?s1fj$W~01H$IR77tIsWyepLUXTa{j z)vGq~y611g!BlhBYF@w@%LEJKRfc9ZiriJRq+~8b8JJUZH%vf0;Zv)O{t|c+or~4##>0W)6a%mUP@Z+G${%cRCuoo*0myu?f$EukMxJ%!TW% z8m|QMsk`+iKW$71I9dR`9a}*<^I9-JIB#KH+Ajn=GQSS{JYJQ1%pWGP&lN<3*U+x--juzGH=(c@l-*xb0ka z-?{=EGB^|Yi@-&BtS>jq4K3IC4C|u9%?oc+tMQh#T@kUJxZ3#nWC~cj90Xr<9P%*g zF#sQ)aeeT?=wVoQp7il!LEikXi!}0VegXowWseD!z6|WNZnuvt z(jhR8;j;6hTa(A&n)!|OJE~0v07YN0psO=(R_6C3eqz7MKw5(5Tx>^<7-aocHJh=* z+_kDM>6VT~s2rk8gBvZM9eM#bJVS#gKr_5M*3-cj_)Rj~`uO)@Q|$J*Z}C74+u5?f z8=~hOfhU)X$v}lBN}QzU9xZG`AEz-_R+Q*`p+$X9jXf_NB99x`RS@-0ro&8q#Golt z-kCVwIO~iy=GM$_T5?0g@px!36%;u~Bd|VL8Q|C5?5y*=-P~`jCUuU$bdc=vc}~Zb zpKiPdB9&--8`OACyf=<#@L+5#yA>&&FZojRoOSIgvBbx8mOXmqOirpIx+{;>tBZ1y z1#epDToQ-k>_Lt@+1|)c(e@K^c8X_7Jiv!ddW4IMv~}18Pt!W~Cx>|MhS-i5Yq<-$QdqKQZSm*WV#yyn=37vD)lRmiY;}@qx2CG z92m<(_302SEi=9%ZMTH$^C28q;`a-7n-uG_OjP4o&V6FFD#T@HLB#t&kgsKRDoG)t z5XeGZs>+QMN;|qM)i5z2s65G3>lCriEsjV)vSXazf0*PmeV8PdvJ7+VEKt+DzSO=Y z6~4%u&^3gu+R2F4O^Z-wpiUP?FzSAsXXg;#5e5^I8B9OP9mK{s%w^zKVuQ9VP~LzU z)WB5kudjn}ps!BU4TH`8y&A>2B7(`vPk)j(K017mG@_Y&;#3AWx2A}*Nlk3(mjMk> zi7E5VsBozL#wz_ei;RK|i;5VoikcYiEi@FJ%hR#BepBxRo1a)s&6VGD4e0WD9d~6S z#WrhuC8&ZXD$8MZEa=|Cr;4nWeTJoMH#ODWBq>Yd%EqhG%3bo3+Yk;uAzd#;Xr?l4mM)l1%#SIBr8% zOL|R`7olfLhJs$l>x_L~Fox<}=Jfj7@iYu@U|$!+x> z>b56cJT1De$u8?QPX|8t@Q-9S7kcF#n=B{cC$Md~ce5QZh|AF30N21ZRwgk#>ONfR z4h4}!Gm%7fkwgxQ{s?xXUR>tY;`cNQF&LKp?)gEbML~-6Q%u8Agh>QEv=5O;WlwFn z$_JhZ4tc>_-;svg^1Cg>@hp0AE!q`CD$GPG)I};dEQ%u|U17Uh#=G}>k;)##gQvsU zr^4B$Jo1C?$Aj)`g6?gneh@GGAfEZL7Kw{1j)&Wei~I8X`DP;d>LU3Z7H0U?X84w7 zU~xp5JVY4-M46T1T=V)|^YYw1JT}&FcGhq<))!$Rd2}c}X>j{D92U|g-zatc#v@x%ALX~Yr^{Qf_)Yq^o!3e!- zV7DTSxs=9wdc%5pwX`B=LX~7ib)#ZIabF+|>&qn!#%H5gx2saIZIuZYIol_Df@{YE zYyJlZA8TIEhh&B)NRQ<6u;%v}BR#fC77HrsAYm%!{J1($XsSjz=s^2Wmdp~XV@q|i zzHa_lM;oh)g#VGDY^jNt`Od0EWeCG@kEduxkw4Q2c8%P*uCc&;w%2`i+;Mg55U`&q zN086IXrSACFo356MPt0xUR1dr!a}R9*JtBZi5i*V` z`;ze%fZ4AiR0#vHg4>W)&tw~BbkV-cF|}zXhgC7+rfsv}rZr!6KrH;;XZyTF+jXOv z{M4O)f-Ar_*yS~Y>KI)fp^t&U!Zh4fO&v7NI7}~Ouh&-%6U0Skh1siVsjrUL&5b?N zQ%x9j#botGUjzZqtMB@zw3h6cUunv07*{4w9Bsx7mo2SUysmgWg6%_?Cd!!!Fl?UA zR#kO)uvJ5hsqECG(7@!}B+0IxH8!HJlpY+sGD;HQWo&!0oe%fq$7_$n z^+CT|zSdX=C@8PQFkcPR^40AR&@MNZ*{`r*iEW)86{lXahW!FUS#_pm*06?|u4?um zC&u#Mpzxy8QAd8JFXiTaP-K8C6^-dScRv-p=^=Hx!5l(&h~Tj*Hnnki@o*vORU`?& z?N*`|9_iQ4R_62X+nq~2Dym**^`(~m+x(;NhP|N*1zukeag{Xp^Lk#Sx!scM6CS%s zyBzyG0H@boSff`wf!^kt?V+Q<`ShX1Qxk14bbhfu7b9(5P-3w@8Dn{Mkjc~!1O%Cx zA7QwfzPUZPssLGtiO%?Ef$k#itf6(&1ip z%NKMvoP+2N!e$TC#a$5a?5utpB*SDCq%TVB5}x^*+Fu)b^HWTnU?m)YEe3Lu#rH1t z8BlDy7X4Ven|j3k;MMsG64|T-X4w*nAwP{X^85rK z#*8ABmJ9)jbYHPMyHqp4G}Dw}DiQR#Fk#k-uP!Jn)q$Nxd>C#}o}<7}URGC{+ilR$ zsOOUh_pHMz#&E)xwcMCiHrtSP0y@a|vr9g&^b8B0q=}Sr6x$Iw7)P0q1inZ^M}730 zwC_jk^N5y^gg7yAopZ^(5BcjwN1VkvqMfc@*GI z*0&Tjs=ZlTL*_sas5TXGYNJg_OeiQWu{7JmRZSEbXJBF+Rpl^`}akd z_~e#q5z9YnT|s{C-Hn3_B`(~S6YptM;zt%r1V~FSyp*DHIyFnGdO1zYc3c*#rq<2Q z3BuL;&hNct84jD3m)&%A+ayTTwE zmK;1E27RYYBWlvhu_a9Wv+CPiblt6C$f}4bp2|u1MY7j$M903N*9OCV`dqtm*Fe~j zbb)!F-jzMiQ%gtaa`;XaxSX33>E!rf`dy|3+@4xC$7)gR2BvzdrTJBJ2B@qVt9`A( z5pj00Tt3bAW&o_5)w4~h$Zvy@nELxQFVDS2d}$D2gc zbfk74X%lhgQv+aBwP0t~#%eqCenL;x;Fr5l&~sDudCMZSoYaW8qqX~=f_?Ts^$OL* z3#^SPHl^`DzE&31hNVi4ZV0I+EJAiq!FE zi6Ig0)OvC?&>LAF`6)-PQ8!no$*j>mx1l1*M8~$)M$n{qH;3tE#_{2E>%4(cRVKv`2kSng~>u5>^@;o?t1<8u@xJU5d(i!{r1I znNCE0<;-EK9C2cr>m)ile@H&TvQ;rzX!qI>r17Rmu5FQkZ8E#OVaerXi?YC^s&>2W z$^<2jcZcVL3ojKQ2kPMz*|d5!&G)2k@Y~@M7Ao69Z+IO>C78gFhVZsz8Bg#25;>g^ zIppTK6@u@k!E@5!??u5)1ldGChqMT2_;J4bKmqEhH%XG4TX2js8^Uc>J2iULYBQ#9 zYC=9yHeaTb@}#n%E^V4C0d%Lv)P07NN^$<-dOsNhQ7)O@_c{48{5^s@6lBSMdVmoeKWXLX8? zCyYo!+jD7i*Okq1Zi^$2lDIhl9MR9Yf56+jZT4%YN(kGJ=2x0iRbR9^q!Ww>4wY6d zskiD#dJ&Wk-Y^v{OpiM60Rk#+XBo)np2~()XQ;0o$GFl9D$vz$2C0)yN?JmuYxm7G zoHWWTop2^55q$YAi`prMdBPt>mB*||Q%Z(Z)?X_Mi03$@6?(?+!-5^PQOq;Re>w!- zqsNV*?#C(iBkx1%yyyGwUE76hb=a5Ns$ms6$bqYszwfqD1^#3eJEHecgZ&}6;lUeG zbSLrh0hKRXP4)p*(ww|?o$F?nrdtc=SG$5D1)oD|e;B|ll^jX)*V+-G<%u@X9x=vY zRC^&5;qS3$%AmMC%a-%}zCZHYEs_5c)Mg841X<7u%lkYvI;kA0{0*7B;6S{th-@uk1r zjykiSo+cHb(vrpn#X_-nDP~%BsYS|{T_LMQDp{vu`x!@oj$JQO;F^Ap=v`*USKf=i zS0L>D)4x~~Qa_teh-ZF zB78PkY5`@wKpLH%2YTlM%l zwWS7R^cYMtcR!op=&NS({szHHL;yj|fuA<=<~^K?I~u2|$mio=Vvg6%O#L!~HgJGn z@GHbRj+$m(;^#*Wr%9>);uJDyX+@GUQ$=cuQ)=Mp@8HLFt@5zX1X3!Z_eZT+YA8iV ztzW6TJYAPEZB(kKyD(hjQ^OAq$};X%mYHp}TPU@+960tV0?`d0Jy5YteYG(*ExP)t z1RP(t&Hh0_9~=q)#YywSnjw9giTsvAj#Q6-QeV&DnI=a+e++K`h0V*1IhzwT8or?M zc_=GC*C|&$`a?r}8vmH(%v?K}pZ=l#D-RO`o@n1!!k*klghXGSrUUw)E2U+8ijplh z;Js$jPe%gnBtq0ajTZz^wd{GH5oHlZoSU>QKdo2Yx&WouN(ndq+KWL1IK}*)Ek<{K z%N8{F&zv=o?kB$~@^HL3e&I`lBJdvDLL>59R+Ny&LJN6ocPPo~;0HQor54tv7Z>$>$br?nS3KaQQ+%|pf5_Cat_qQFZ> z6zH=7vwpovohD)+K(td{yMHrB-I{uTMgNbaG0{%#vI&>ke-}nKR+YP3deIi`^(BhCVV)xihe=$rgVU|#}m$v4PBIlu!KquPdPq^{TElOJ1t{> zJw#>=#g3Fc$YaUj$vrmOHixA7*RV<2U`HF=ntn^LXjg^=_#Kt5xMpE6s)<3cf&g&#h(uJfO97qaZgaZ;yKoZQrFz|!G2XJ{F9->KMc_n1Fx zJS^OIvzp9c?pF~U{e$f)HEmd^x@jBxuN?fIi3(^fzWv8MWJYYqefQh!El1*6JOIsDaJTE6LNeP{aIE36nn1wC3ByF@gt-{i%;?ZwLzrjrBqEtrs zLNYxd>mW@tn8E5BqOee9+zvatQU`Ilp;2b!L=r2unjueO8zsh69L&-_+9odX&KGU8 z%|97UUvKcewc(FDh|Qq?h`5q64ODQrj`?!GZ6-kpopo0{n=)kETo{cllZ8#|N5AF+ zbVawtxZk!4D0VwqE6JEeQK;^0oBuiG?UF6}-`dB2Ko%rGCgwj?)LYHV=odAsuF)Ex zE)~g|^o&EeF@Zh+#`E}Xf|GjK{D?Z}AcY{dGB-^z8kp?BB*GR<7+rwQq8z_%Z}(HC zOym4v_q(ptI>JW&M+-vUwql2P1s{V-llI9%IQwjiN}eNig$Rwj`N$ua;)34cqZ?HV z$gDnzjM2!RC+qedZXq{o*2gy-R9$lJ-rna);L9lMIaQcuxc*e)-xCC}slPVCzw7W% zR_JC!(K{@ry6ov%Zpk^$mXU=x+0N}}Lm%d6hDy!~kCqnncBDIi+(4LxDYqo$hxR8k zW^z_Mw3w*;>5qFV(;umFaZ7F&GeHbOetzGV-O?kUk#Ag{g4xNckvg0H+y_Oa{6~%8 z&qset`++>8s)J8OITyb{SCs=JBtd>|)cCGd!Zm?P#Gm!9SrQrR2x^+?TbcR*6HQ?y zy6G3UYYZ^a5}u@cb;qu0h7bJIHfWZFGv9S}^OE`Ji!Qmvdwfn+wS3yn8}$on93zpB zUz(aN3_RP%+beACj}N1IwN8EGE()dkUt3-{z+Xt;|73Br=3%kXTZ4=zJa0z-W*k2@ z{!g2=Jvq}>9W)R-W+Piu<%(Vu}0g9P@UcL8^69@3qAa zjY~8Vcil5XHIH+J7PNKy+y679Pcfl~DAk38(4c?C^Gi`+jb2XSx86eTlR3cqLn8kN za^;c4@gtIj8CS~yDK`L>z*t0XzARZ=Y%p7x-1yGH%c0U6u8&}|R!!J6?H~}SjW=>- z)5b*m91djc?UH?>&{Ly=Cypt@Z?-&3Z358N;&MZs2tnaBY3(xt98rVj(#h5Z_n}2 z%b@ChtqDQUCI#JHcpy+`)DR*4^Bj7&3AT7bii&?fLS>tW3!d^MO)_0;oaZL<^NA0* z%5ywrOz%=j_FPF%gaAJ5RZm@89q7Sxc0VYFHAPGUjylC_^EF13tdn34CtS= zdkA#ro9l?Z^pmj5u#?x;m7V`dM;rl0Y;QT1lNUdGYkHd?ca z&qn|xK4{Kv>MG1`qVA`Sy4N`f+zy=%L0L)0OZQu9WmlLHm;33H2Weod_Ec+rAWvkG z#HVvvdR941H~*uz~2sC82k|@Ls*c71?G=;WoUh`2hrCOL}Sp z+5@f30}$nC%HGvW^Sh2vLUKu7Ql4+_re$#H8xdwyiyr zOM2zaB8Olcouj<>Gm|{M)gmU{jw@jpKFVD&-;C7@WkSgUL&u> zTP#a|(cqCQi=C%-s7$~i3{cA|`#j-3WJD;>M6&60O>?)o1 z0YK(Jm=naww@*Y`iRQPoRkPBz`kpSCo6}tGi9|B>tFXrr9zJ!~jln(L0!xANv1B)= zZR7aCZFqMW`!&-VQbZ?+MW!_v8gcpC?q~Im9KHDuPR-6(p0BRO+x9GYS`eOzBV`%H zeEgyg$FwJxJejp#YEosjM8=yX zftvJJ8K0T_m-#D>`A*tu>>r7p-pWA?*=`iZ?H2CTcF?h+3FV5xTi1j&s*7mVD^y4M zA)-4*<+w7v(MGeb4)n9WWOe?538I`6>Ew5hfJDb9&-C%d^Zg6G%U!cZrA%V_?2l0` zgl7HYHC}lh;>-tXaxzCWBsC6#FR7##=R1OQg8nnhsnRwtuiVc6z{r3tb+h}^l znFnKpvJ7rolaD)I&t9n&>hcqQ1Eqv_?My}oNu=s6_5t=+o1={nCy|S59aejJV)66H znqwGMD|mdidjNq2M^ru)u!j#;<$(YQZ*>{h1<&@WeibR9gDqimOq*`m?RK+Yy$N(R zqmB>8^BszOZgRj{3Ky@Kve9##g&EVNh&`ChS+XIN)vm@@53ZVX;M=vp|KWLYWxqp5 zA53#{Y1(KvaYl+HMuZ>s(in`^-dD>fwu<5K}l=*2RZd(1pj;FNi z4O-mAdK?!Dxha+xk$o_?U?=;!v~XSI7C)zL00Vj5q#kn+|CT6Ufa586#Jr;d`2d5% zbh@(_?_ZhPA1vdvzo1eDm67fHDjwp=#l&(e2RDh0F^jilaC|*dWYzkK7*TdB-Sg`y z^po{v$-6@a_QPaH63Ts6`DLLVnTvDD3Sgn%`!{TD)ggePXE( zKjs|l%}2fV^t}|1qP3P-|3U<$c;~6o>7WD2#na=aal87|eAOgzsSKNL`z0ejEnHQ^ z{07@c7g2{oS){@CS^M7MM1ya0kOx`YUkv3xgbWw#W*YJA>t^$xz9wH;DbZ zKFuxtxRN);_+HV0!^u`pV#(uSJKGo-V~Fx+q*hhfAPJi}d<`TgiwdmY0a zd6z8SGC9&h+XM!HkwGmgJjQdtAY{}h=Mpm=I znH;Np*4o{VYcEdg=5bJg-+)Gt>5O)Zd)!qIj~odS=J_$OX2H3PWbd?uNAQUV;X>$x z8vj>L7Zh3zniar~bM_qKL6GgXx#MMmGuEp=$cMzIjM)r3RZZw{8^bOer;q9&$MmUc z#~b+nRHD3i6z1ouIn-9y1ypV7Z-d9ZnI|0$HHfAa73=iiJ8vK$`cZ6UK!0BmVTl0$ z&pW$yXw7!fEuVee7ckjUE{^^7ZccY{7Q7c~tI{Z1mTi5|F87*1KRgV*7Vw#t76E&( z4XroEz%xS5n@EA#w)n#*c?i)m;E|!(^$PJ*jib`)!Sckz&kMYu#>+Nd{Ju3ITBXI% zQTG*gZH+*!RG2G0Y&hhHmYq5xFkT0hY2H}7%X9sFU-Sd|aU8XZouv1mO_PM#?v7*Q z9bc<^i->dB$>VM~2;v59IkQpqEf5D$@n`R|L=(>TPL4AY^9HkaG%w!N*7;uD^H14I ze>IM#Rm@9lm_C=@HYZmy&uf9IRXpz>@edo+oUKhNck zXZ$%_)Sj;OpSco^Zz;Duu(G{WR^C(|T62y=9p71+D1Vv@bI;x&)LQ|&fiY#tZP$&` zHoxw9BM#o(-JNqrVre~)-vX{72`VMjI>RpY?p9$)38!(8>neeow})hMK*^|}MW>hn zmnV^?ft3YUgfJu$gq+95&gf2IleV}MeR3|JYvb%w{-f0{9!VGPn6fDS8)4N#skn=< zj;r>^Rfi&hhnuGfL?0x=C-Lvghclhft`refB^Ye0V>h`s$IMNh+beG0@3KFTHWN0L zy*vuGpFHN*LFgTF&SCiQIJ&spt94YhY8*4hE|=x#!*(Ys+RMkAkvwy+EDfNXdDNt^ zw&um3eduIrk)C~{3N8!m^R5CRITySFyxi??A>}+S%m%eL%{;<5Z$IR%HDx;%QnK3c z^TIg5g8UCs6VFH8pZ4;1=(-+pT=+ZCT^qus;=+a0Nh{UFpDnRBwOP}vT=d&k#ICOB zEnePHwA^CT!$$6#JYM!!;-b2q`yoL�n&5vaWQ6#&3StrSqfp_T2w=yc>I{e{hmD z2S-G<$T;siK>z9bb8WV0R1{eu)9E&mnvja!NgdhYS_MAh>fksfll$XH_dVo|Oe9m3 ztes<6J_|mXJ9IkdP3t#uS#E~v(7F+LtDmeFuhTg@el5|yEU^r}EGeJAPUnq;D${Cz z1KIg~?*o$fQ1u4;ePDWcdY&^u(z9+zX5+*d{E^T7V>d-3+)%dH+1kd>D7rSrO2GEl ziY0uX9;Yc$A$aIAN_8Ipi3-50e~=UT>QFyAbSsLW($jO|ey8!Kz1+`4(6E%8qMayk zQR9;WLY-7_qw+Ct$Zhp&5#ljYSoL2R1@)(_3pb&bq4z5~!s)yemsV8Mmr^fOXTpE{ z_4e)LnALjTI|j8;z$Dg#npj#qCECMJ@Gkj-Xvur&C|Wk-5;AFPjs1Q_ zwIui2spJA*T0~=WQY5gtGI<^|Mq+C5yMZ|TTGBq+0U>F?R2+UIX&>EyuXH2rwDF4o zBnmMlQCS+X%}w-JG^K#A%A!5!7}Cn6d5UNl4~~M`VeblpXt`>q5(<)N8;naxq;)j* z2Nd;^U}{+t3Sv1=4HZ&D29=df@`OpH0sV3Kb)>L#0}9fBxj1|vDJ=bbt#a}&0U78r zD1AE>^JS)ETB-QA+0GSqy- zp?wjs{?#msa(64lFM|ZmASxyytT-jlAXG|4*&@#%8!2Q6C2uN*Od=_*b}Fu*k=Dtm zghrZAV}EEuFe#{(6&2Q-mKseVHEi&ca)^;6l17|i(q;}BmxUyfR@_F?<~K5}r2X0# z0m1QkTzM%mBzZGxCFRm305dVP_>-71IkjjlX)x^olQiH* z9DW07Fx`N?G+-@`PTJ}30y5A?#OKva^2<{q|E|@7a!0b?O#R>Z3e^0^g#X3={~16p zN1vy>8MI13tBd`c&wvu*E5H6`ga5*aiNtuJ|BG+_x#5=p$Fsj_m^8|7{kP+_{{M8m z5RiWsIUdG$E7HG(9zDian%}|TpUU{3(S)pDJnz4@-cs8=>-@{3*Cc;OF9rR&*#9yp z{%`smd;OwM8YVo+zu|H;Tzcexi!A>aZwc|3C6-~Q4xRs~NS$X87Dh&`qEHeV=A}Gm zMfzW2^Z!kopikzt;|>4jE|z;zr9+A$N%$HTgNo8g3$;_R1(mc{MkNf=kQ%sy6Cd$! zYl=UK8dFoVD7>wWrTkyg&Oh_k3y9XC+*BH+SvivYi}{@Q#9QKiLyP|gZv0+!@xP$x zKVi6AGSh{9>~A1Cdk&iW1y29XpZj0Y?N0%mdohvpKq5X{HG3DE&#k(2 z;N>SJ+hEap_>P38$A?}JJgV%mDd4<-@pG+`P#LpR1@A$B%>ZHr|(-QP(R?@L;#q}BmXcd>;c4S2k*xd1Sl{^%GIkeSjc?(;K z)$w@FWM)%$sg~V1_GIPhre4`70NZzK5A*=vodbBDv28YdYP>I1eVu_W@4!wDKF#f* ziyd8KzEz*nedgo=Z5^A|0zCGH$6W!NRh$RNW!vE9yLn{pjvB1_NA<@N#I#r#2On>L z)vul4?A0~zvC+T|FYOi~yMT0Ke#?&29iUz~zTMfF?T;u{*Q*^4^=MZ0`wKiPQQX$2 z3p~dUh%4YbMD~0);)@;NTv+2Rq@oY)2hI5t#jGIVb^Nw)T}2@>^~AR=<4hx-H2sY5y5>?*Xh3dgS4>a#?(AL6~!eT?!KZm{t!({5E_lsY$W}F~=M39j#*`Lqwcbp&`#Y>W?nD(Q;dC?+!k}v zv0+YzBlym3MhN#nb4=roENzx8}b`m+^yJpEU*MdMC`vj%s9W zt@CmXG2+8%gun(s6e-yr+Pphj_ODsPLTj>q8VqM-U_;Yvnp zAmXzk-2%gLmPmlO2{lbY_VQ8WPOL0s)Rr0M;0UW~lNezild3+Ish)lM!Jn*e8nJ>8 zAa;4w^ChJ3-*k9`16(mAa;BhG6nu*u0m+34qd4ORSZ0R{yYN3jq)%wKV1aLXQBDMQ zA2-BUebdm$`e=0Vieoh|gRm_I-@6JKL9i+FVQdm}*?on%efw-3$@jo!6HDU*`FC?O z52mVMznEI}Wh(wk`eupCdo}_mi)oM z2JJ245n>EPXx~7jZ90g%UBPp)@ZoAsav>1${Td1iRj7l&C?7xnU|vP}8{oy@od!8D zQmLIXcfwmye>|oLLk_MKy+T#}+i6@;)}|UCXpmp6u)`P0`jzT-_&2dT#o5nSzKyh9 z88I85{DcV4&8T%c`rqVhm@>y2q%jmS$Qx))z~0LH3&sxwJ7ZSD%9@s-Ln|2a@(Ynq zZo0Gc9Aqgvayq4qt4ya2eNr`Tl;iL!Intx+*GJ%}e|7e8mzT)uOL5gnH`KlOG$Xbmu~eW(b^A zs%F+gNoj&681x_SAE6Mx&@lT(uP_hPT=J(D%=(+v=s7~{z0r4HD9vrdK227|!lN?V z3%7X*0!%E9KEO4?i|}|_9bVwA4*GqlC6~0 zTFbXU`tD6hF#8S7+nv5C6bB+%dM({~W^rnBZp_kGboY`MSQN8|H5AmL|DY@*6`Al` z_I@lf$U5xn%8exs@`rV1VMV6JL)v{lj`4XFJdS186tek+IrRc(wx6>+?@I0R_&B#| zaRRo#kEu=o+P9Itbh>ORzd(fsm(d6%r#(V+c{U(m=4=90kCkR$=1kr=tErC^ixtAh zsrNMh9T*sL)kVg#R>Ic5mA1m7HCXMZ%Bg9uC*#;qY$nKU13%=!M~RJznCzMP5<2fy z))8haAYdAOh6_YGEfdIsyBPW>t>Vm7p(mI^(~wS9k2~tE-lFDW<{D-fn8K{=bg-`_ zyp8SKU$nFkcxO-aHCQgki%WpP4Vf^9)?|!7!R;c$^qpVS{8t<}*fF|lFPlU3vsdG0 z-E=UMgk@qxOs7O2A-O{c>m-PT7#;x_0nyW?9`+3!1t-vC zdl{$!cSz%Mo&@7h!R~1}`sLn)?D!q#*a>0tJJC{+=K@~?;u?HVs%O5?o}u@pj65`L zxK`9?1(8advW-`x!>NCyi=JPJE|Wo;-lW>0i@pnfcn_3)d#w7tb$FNBD_C(jbuA_? zlg>VrwBwVK;u$nE^UhO3<|ev>5$855PMc}4K@_rtl{nFSZi<6g|K245H&DpXkVRIY zT4aY^^N>5U{pG3z_Q$#@ih7sT;A5m0xhvedwCvrFO5`eYc^^3DzmIEgo5Qf>McdeZ zC)K8rNVbfLyg5-x&r7iU5d8hf_U{;bi958H!UF*zDfU0kYBT@(*CTChi*dhZweP4? zQj#*uGu2(PkmpmW@_79zPCZ*Bg<|ZGl~32iCP+y3UuLzpp$q8`^3;q9Pws0se$8qV zzYUtqk;3-5iNH)v`}lmN!~y}w#zyk_WmtRUdh$4b<1mt;Y|H)T02KZ3I5~E61GM9wm=lc<)ta zj?T>SRjFQITXt&LJl$UDfOSrTvmS2keQvuSZ9919qh(j;k+XTfJ&ZlnWe0))GdwPJ z?2V({RVS2B4!QWz#>hW9%{IAx4t2qcbGBJ&quuShw8>ds=b2|WBPP??i_$x@E_-v~ z&sGl-^}J8x0&j`f)8*P>9bV?b=Xg5gEccoDr0i` z{E6FV<%px~LJx@`#Wo4l{W7$j0p2|RS>ws<(TEIwpx7<*p+j9M&}csB&Q`s~Izjd= z`X=$g`}(YN{)pzdhHF6Yev`rNJX!g%V8Ug<=tEKj#U*bq+FAV2)PS*+6OP=faoxO; z)Pdk61;ZKVPx7pfP!zN%88x$46ey0AiEcWKyHmPLTBJc57Tw)lvVd;^K6^htd%xd!&pH2` zKOAeUDPxTp_q^kp*Y%sX=&Av1G&63u^;&f)yrBm#uR3T^n#94wBW&(hgIfb-Y0HUi z7bUr`R5|YP4?)kJn#_0=FRs+2om#pt+hF(M#pjyd)Ys{hx83RO9L}e$K!mnjUs^S_ za4tF5`|EJd4bI;0JNKhG)jI*)jIIXm7Wb-;);&E4~vpvkPJc^Qb6Low(1V`l8{g(LV9(1;p&;qTy=MU;Tq9C3G3U` z6{BuPuuxm{_%>&W%dl2oZaYul$#q1G*|d_@HA6G~&75>-r){$A1=r|<4yNa<9#q(G z5B#$RNIBBbjA4XHA74_7flssAR4X^EfBY^Ld>or8m<)G z5x4G4%&sjOuJT_ZWTN5f(E?e z3Sq4)4ZByiI;~mlE}SjqPAtEa@v05zF6L&+;c~A@SY)bcT;SrRccy&B8xJ$Q*sOFp z>IsIY&}YJ)ruMDNF?6=G zh`mAEv+XLyjq5O=#A5F-6NUc5f$3ShK`({`;)?Ohk0ETIevB6IZNgwOH>&gH_{UKi zPdM8`gkg%5Wy%uvqA;0mfAba&!%!aSJ<)A2YUrisU(W7^2nxZ3>puKt)3(u17>xO@ zarn~pq1kk9Z@j=a=W2}9}Kxo!VI%L`NJIes&^4t#t@;M0|5|}9t(X4h?Nncye zesRWzEg=D=b1f(zPBigeFHRyvcpioJYm0bTdLwQ`Nv!S1rKAfU$8Bx&UzYK(G6#Jq zJ%DmL(f}f}5|8S~%qtLiTev`v8RWm09p$K>GPt$rOUt(eH!HguS_3Rv)y+!?V#V`U zmLFvS4UU|rTy@U(FLLyN3Ws-oDMj1qZ!Qtv5^ifwVPzoNFu;hr-S3nyKCErhAV`S~ z*;=`EEc_tz+GLngNjWlS?e?;e4M?e&-^>+hDe4+jCYTRJw6QEh6wRA)5krobsIZF_ z3AHFi589Y%5Jj$2ZFIXm?)+&S`O`KBOekD3qm@GohcGIr(s_N`{>NEgqWzNW#A}Ds zDCEX>%-Aj8yJ!Sq1xWFB(3kuQ=(iwf9Pv$KWj)YSZql0!$W6aB1P0rua%UFU1UTB! zzO0H#eQjG&d*_E*?%-I26nBp8b|00tC-^zPA-vWx)U?4Ok%V(EXuqk+@k;BCsY}Ws zTdJ9HtA{2S)AiTc;H4;=fozV%$c`A#<E21^OGIY7+oLJrOVxIu-m)$Fk6{p(7~d^S#k3Vi<-k4b6$() zmR9vc0MIbEl%7`F#KxVui8B>*cKs72btC3MkZ$VsAYr)8<>vToU?;&}lDR?@=I*?V znl)m~+CsN%53>v_ac?sZge&;zSiG&Kdj$Y_jKe*j_e#-e* zm*3L;k`(`4K^(O=4KZ5%NMB3wNWaUK6jYdLp0SXoM|%a_6-2(T*a}WF7pz?4O|10N zM6au?32Wo#>>i@8(9pT@7)#tIN_=kM!e%+qm%Yt6LWp(YKReFMbNU8tQRZ z2Z1uFht0nl3Fn$9kJM0_&c>b7@WwG8P$WAlN;V~bO)E6XcX^N(7?)xMi!_9JKZyMy zS@g4%Q!>}-h9>jrMrRalKJ)28I=0ctZ9ezyyfb}&0Nu>6P^cH7QA5%#?X^(o=Wgk+ zmlq8m$@&}Ya8BoF;oIVnW^OZnEi5kQ%Z^uJg4BkM{o4mecPx(;^cpP-NBDcI7xzuu zdwwlb}l54BoFg;@&!If_y2xc+Ab^2hu81BcLGN7Y z0$s84Ttdu4XysMNV$lzRyv}UvFd-{NeOV2YVqDAOdnF6z?{?)AhR8HS+oeT}rsNj2 zKP+k&i%RRplsM;=Zb5JZ3?GcL_qkHu`!rJw7u!^?$#phbsqixdq`9=}J1(br;x-Cw zp|j#2H-V~^51$Toe3;s7oDMBRC+of3ZIt)^|EosK!J-Du2A<8amyLnNbth3?F}XzbsZ4N{H^35Dnaut2X2jK5 zdAuy(qP2X-^ZN|(M3(_h4#J$SoT|!Z*kN;FOH~ah6MN&We1p2NLy|);HSHcIsy%E- zqdzf#Zh(qjkB<-KIeAOsIeBZEs#~K1)eKz^wf5$lky5RL&#ryI0Ac-u;4P)UB_40+ z!b*$JD^YAuUN?tcTXrpu%U@U0cAf^DV?h-)IM$eEbBiMP=LZ>ceh;0XPJ_Fl?nFL^ zti%Y))5@a}_OX%~43u~Cl(e^*)N~TW3aau|x4STHW z7)P78$)f9~J|$OT1O$uF6RsY>6lr{^rz~<5S}e<*jdO0QGF9F@peWMtt1m8cR9r0k zIy>piDPPOz($r|Gymf%7Eh8guk=e)k*^rfg97~l9o#->ApD1wi2T{h2W& z)Q(4k-`R4T=8h#`U)(Or5-3TvU#j=ey1Gb8D|}k~09-P^K{PjuM)_v-5HVGt+(-rM z)@K=s?koc7H?wl#-=waj>dZDr9MLw?v-V&Fq)7_BjYtge0($D)Wgj++Qx01E?HO zt}S-*-AWcrwkMI~YoExuk61APjTeedVOCj;$+ zr)ttWMp9}xF-1tgBB-SFJ?m3NX&k4}Z5sDu#qlc`RM`q&Z-Zl98HmSp2mw$M`BOeS zlM_;MGxXr1ewKFRQdultpK=_ZXv14E;aGb3;rl7VsfgPMU=D5+-1J@0E3p#q-{ndSYjU<7y>}2BQ!f`8dz0L{w z@1$>OY4|_(7{LxRG#`IAgk$zEC^P9H4XMD%phk4M8JUSf6z0eQ!4iy!PP-;GDowEo zZxtfi!<-FjBw9>sB>Hj;#Efdx*`!yEF*ZKqQOhIb7#KCVIBU{MNh=DzO(fq&E&lvi z;RmWrcq-tS;5NZ0FWqm`jQHV5(1e zTD(DIoFs7+(jdxd z%vEJs1bx-xKcmlrPNG77D+h=pfSNYqxXbQ`W=S?&9Ag(XDIC5X#B1|f<(W_l6;v&; z@6L5AUE3czn!vm~1wy=D%LjbNJS*P-=h5Ohz?5Dzm@o~f9a!2JZ%F*r^dXK}ig;qS zpnEn?U@w`(DnTycaIYk-adROOPL=#Pxg_n^FT;?d6kBi$fS8B&ActBDaDg}{JsfVS zGEyUUI8Q(+A{+$u+m4T8|?ki5gD-dnjfi) zf>l~&=Zn@%6e5N7JMybnan~ty=VDY|=qp9%1YR0mP=-A84o<`5Nfa9_{5wT)B;_u z^oP^5Kxv3LUbIkK3s&7bwUMMox67=x>6}0}e1t`>xnFqkz&oTix_1!OD&*gF*-Z?z z*{?YFc`F)fVCQBm0hdOe4)3Rt8P85p2a8hVDh$alL^pS5_UnR-VL=Ilph7wyUNz_o zduG+95hZYH09Bc1Z{A=sNPnE6xMh&{^Pd&h`X%of3K|o5muZS4N6Jt#Z}Hv4&hFP( zX&9r| zg`C|IY@6ig%w$}v#5$i$KhV>Hekiqo0P(~*)-X@iAH6BUP|+&V(zxn;9@H9Xc!%lNINrzQHtaag+6JeCq9SM>q#m=hCmNd^GC&VBfk3jwB6? zRm-JcCmZibt?tl8R$tdvwWYQOFT=Qf6morc84lz4Iac`Fk=sWc<-$AI90`+-g63|Q zvSX#4CKZObz#jQZeS)0%Q$ z^Qrsy8&QH%#{t!iS9_%Ssc5u)de4o773j@x|I88gsN5}VND zHJHtJlee9;tTwSuR&TKv*)$cOVIs!oVoJ00hPl&^j}?ocfq6$qVg-S-;=lDkg+ES; z`4|@|aPIrkSbr7~Lpr0$AwY?{%TgxoMFA5@&cs- zX(Qwp#dHt@kl@4npvlpDm!`$pH&-q_ZAa)kpFN7`Gdov{wwPV6=K(oQ8{);_DxY-z zIq1YI{WS&nr1Lxl_zRTyJ^G_aIqTbXr}%lwk}lGma|*m{hAj;ACPt?6F^Z=E6~4D) z!X%Tad~An=$qq^!k&rN^AbA7fqwkO>CAO$ey3yK3m&A7P3N^tJ!fd4amv9i|;zM$2 z_#~E$o6I2=&Tf>fCFaJxwh9Ba&+G&fl;Nmucy?yZX*MQhdTy${=JluDb=r6|GNZeh z8J^kuoGf!qWK*Gb{=Fd`(!ShEhWj;T0nfP1yL|;Op>`>DS_Rz${-agI3xOff;y+U65hFRGg3?@RYtbOa%_@)YIv$>cY4yf`!h}od{(l2N>_Jk)hbVgj^3T0shr2!eGUH;f@%Gu7w@y+V*oJGLMo^ z(tG7c#)mmBri@qr5q)}`#1#bpd7D?Vl2^yQ+V%pe2XyyFkI>U!^Ek4=zaWtjK}qAU zBut9(NDyi;=&@{B!xpum5_J|>I)6UTM!79eTxCmtgX3dtFsW#XUG9}&6@sFa%`KNx z9ahH@m3OIimHCQmf*8rtKlQAVj{sS;gT z-xWpiz52Y|{&_J{X!Vf#{i!awffs2-Q{$0&0&l;%F&1=1J*YQ0Zh^leM$31t%1d4C4Hy&zX;#tc7#ZgLYV^l0BOWzq^)X~giW}&_IyecG7Bn^FdEmhQr3-FWfO>TKiehXyYu{P57&HShl9cpD~!Tbol|S@l|RCYK6? zj`{_}7O$L2n9+TCkyf!kE_n%gJo9i>_ow9GydBl#5(ACO61R8*%G5G=;= zCoV^>evIx>kla2m{TDm(*Ba~z%aB8XFe5Y0*2aMtm5?+pB4JjBlBO#x?=5J!xwX|V zNY}yf-%AP^`%-8G>SA_oveQMoJ6(mJx)@gyYcc@i#^gAUO6$sQ{P!=XsUsRR38I}7 z!+gixGffI4Nxj8*WlEv7Qzjq<;!#KOWz27`dhKfUh~R-5_?jN}KOzKJiYtm3BX^*+ zv3WhB6UK$AB!H%`*|HDQ@Q42v=z+962AK*!A5VgR069;Xp}-M!5ym-J1pGl2IeHQA z#xWXcO#>@BVW&~&aRg_97c=Rpm2nXUoiip^&2_t*y!5BYWtw2WoWIh1zl$dL^&Pmm zw^B*0+UgKIUYtEfj4vN68BAuh<|ohk$t+o$7Vr*}Jw^$RZTG5Ro^?!;XPf4C!9VCY z%rJZ&Z`AZ3C%o2Id`Hi~1~;Yy8D6#0?xi>qbusz$`18mN5%PEde;>JV7 z%sVjUD+TOIbk*lSz2Ei&M6;jsaIr1p7^4 zpFmK+j2?R1-}Iyf-h(xj_hHwmV;GcjB38HryOk2!bu>ZS?w~plC~bE2opJQZ5sUJ{ z`VtmaTejp|D@R#h7(Xd75G*oWl4+zg!ASY#ilESB+n?eU_@ugn0Ln{mQ=X=*;1`dB zx@g2iNj_|miwstc3|()$`2oJzQ=<3h7#gz(cf+8@WhR&dplH)2D={ zYyFiE$P#vXx6&OILQr*UdJumLG>KHrT@g=;LC(Fedc=XMhvrKM=vDq(ut}cfSH}`c z%88Tc_S}B6>NP3JzGmLza-!mGx=K-|_P?6{WUiZl4TQHb0SOaQ3}_iaV;Djy`J<$8l$t7v9a?F6u!YCU2D z)}KaC*IEC)pAlG*8bD*OO$57ghXB>+sTv&ubm8XDQ2yq${a&S?|6KTX_U36O_q)CP zlZ%=V^bmL%cz6Rs7%m?tOTaZZBB{@=@gTN&`kg zHj_*hs4--lJCHm#h7YkYTWWr#L;9umLX_3B1`d}+Er~Iwnm?-)B!u_7=9|%+^x&HN znP&}K+%!+j>_B7~=;V^zgb^|Bf@yy;G(?=kuLh|p#|0qh?6C&&@%$#gnRmeW&-07i z9P#gIi>Qc>i-Q&p69iJSkErAi){>SlnSJS@Bl(;K;VhpG4dvt+AB5nT5Rj6C9)lui z)p03g&zZ`y6scBhb+$3JV<@FRO%vkOE*0a{l*;CxZcsd>nPh4#*=mTkqADRZRH|9J zvLfsJ9Z4QES97i5A+EWFPjx!#J_pKNS(nAo=^3cKwU2Dxze%>^DfVLZP5f=ozd|?9 zwBzp)e>7Fxc#N2NZ&4=i3y8>bKvrNpgEhcRb zUtGs2-9MK$AV-f;x!_XT5pOFym!?I%@!evG544;6tYBsw!kaVO00Ou*O!NFzr6m304Y{Q#(AaPho;!@Qp`jY)Hi9%K5gl+o!% zOQxNAmhXw4{cDBy4AOvDlYa<9-lO?Xd$ng;v6vnrAjH~bkn61)>q`#Rk%X;$iW_=uF6WHV`Dx`A; z(%{M0f0T{Usvwn_&QCt{hD{j57iVfmNM3m@VuR)&u&a2Ro4@WcX7D%>Y~*vl-rbik z!iFrXcI7ay-6%;tSkocywFY!=85#AVB7f;odjs=F-2Q)>mi&&D75;#LC+V6zV)$tf z8&pF*On$w&RUrckt{UT#JT+Hn$u8ebUH%yQteM0SdkJG65+;14MZDlkx+5t{=D}K70gLwVFo4y;_|A= zL2_R}gCPm$fm%k8iIV<_!l9ce>b`e6Y%P^|UNsRnvZAdrNTIR>3=Nf+$Jd>--(Mdr z!F2)V7kOs8>mR0@#Or1`ZluKHQWPxyT*!hq{Kp;mgd#?%@6+hG(|bQ$v@!LR#Os7f z6Erx_nla;^-IETNB}2FayKUjt{&hIZ>@oS4C18|M+8k?IeVr?=-F7B=U8OH&6sLwy zysGKjr4Pb@iBX=X&`Sag4%bUH>-pj7(~vMMvX4Fi$lQ{VbWfl{47dAQzsAm2(EG<1yZa$L;J|GCgYvipZk(I4P&Lt>O=VY#$x8=rL&w$FbJBTM;3iN0ky(wn~8JizIEoXDy>Z zDbRZT(FH61cg((>1g4IF&xA0}QK_BE>86v^p&*M_=-OJ3x({_?7^#sFElaob zMfg-xO(i|tL+_m*H8&yc$FB3#@(7->tB=a&^ucLG_bC_J?{*3|r!(3xwFHxXPu$EDSNeC4ANJsuzW?3^_@qW%=B)?W5b)AU|L}*4A_CTH@?;IDAh zXysj+qZ2Q`6q}Ei7npBY(SytJ;Fg(>Ya3wIklc;g%FcvCqF%`cFigAto`#)uE~pRi ztAOnr{9btMbuJ`6aA@0s9{35_#*tj~-=Trws|Dzm!apgmPkrzk@841k%zI_<2E^XD zN6c37@g)qugIu8Bl1){j&p+@<1{+5=yh%P3rah_ANfy>ajGR3La~qFZ{Y^Ugvh}({$ce)fI1-6qwp-H)9I-qX=E8 z1N1hDU35TTXRaJgaLz`03ZSm$d)%62S?C==^C%rI>pKln-O@+`3QE6+6=1hyU;N{} z+JW6|`Q?yGV+7not2-1|*Mf+p^(e{_UN@8*=MuUW>}~blV8u)_eShJ_I!+JpI=0Hm zerV`ndcn}hJgw_&Uc>yG!2Sb<22LhE%LJ!z8{r$H`eWS=hdQ;ny@CG4syL%qUOR3r z9xn$j&z*hvVY`eR-;i3H+zxvG>p+o@r<%Vz29M@)vPKf?O!@1=hzb`enp zvP*axMAImFT;*sK#j^_hS1jRK&J4l!2A7hIRX0fV5Hd)NqwFYA$1tqyr!$r)dKhAIcE%S9|b)1;#?9+wBIPt?`i&Q`H0iw`|YftWlY zDT8CG=t~+OU23zvo6K9T<}o4;9oP25k&@cx-ehrv9}VDw2^jagD>CA_xVYO{A9i6uHofwT27=zW z4`rcYjtVcI9pb0O=Z7+A+b4i{{RM%NYl5n8@wshz!TGwh2sonh&PIh8E$Eb-i+SR@ zyKg#W^a<&Y|2X?KYO{!?Hg_>ra9nJ?VKJ{jxNvTMS$p`2h^)pqn;I~Rie(%kiEN&w zjRjF!AcFc0ZdMx&!fo4NKZhDl#yZfO@EpB|j4i0~{uS#p@2>q4f-t5T9JBxlg{4&B z!z%HH1&lySRYJ-_q1hGuN!ZP5*chpcbtLxC%=AuA70e9T|N2eoNXZO1LvKB_%x*_0Ag%w+y zA?ikXv*xVb!xp!m&Jio8p3S+HGfn;B_@bt@^bZFsN4H50_-4~PkuqtY>`4wyHY>}j z6RpoHu5=@8nKzev+LGct$tH3Q*UpTIXUwf2)tl0-e%2qw6A>E`rr%M`68X;H~A^$UE@&p2@0Fs4u zOat3kF^9JDT0E@mh388wF9C2tmKVnE7g`2hu8xjCLRW?Fx7Y8;G8Vex?{W!+!tt{1 zf3;j>IOEZb05mH$)<6tRt6$8l8XNu6579g7RHp1yWcZSm8{LewOcG@Md+K&! z)i`TX5QRAl7!~`v$)}&vvQ9r?KQa<`?0MZci0XRy=RFhE{NgGf}7ALD8F(hJoEZ0K9i|Nh_l5 zMOR@-hn`DChr+d@QwF|vW~ z;zv>JAJduO)lZj}N9M4$^-VW`n+_3Ac8_-abReSiahII$z)?zkr=1pqlMSIM?9kX% zVz5ULX?bIFNrmOz_wE50N^)ft(S{#lx+qE`)6^({3+foK1lB24bmhN?VV}EB(5o%L zZ2u#J#oM671Q~T0U3z%n;|j`}D$`*t*0AOoAMy^-9%rA1gIu8P>ad;{3*r*|mKN-% z*>0a(<+)qC-J-MJmF0D=cFqVb2hAU4*l~o?YKzyp>bzzs6$ejTdgy9&(ApJbIgUAw zdGpJ^M9Iffy}FO0RV6Z@RrQ*vjLqjVk|qr+Cb(J~udHM7Veihd!;_9R%z{AcKe{{E z!|F5R;k%ZOx3|?TmseBHUemchi>Idc>(nepc4AoJt(|_*7%1hAo9262J-SpEZ;mM4 z?#yY!!gP4u>KE(1_HQzHIHDF!ZtIPlj(%PZtIbvLejAGSP|3bk3U`eP_on7={WaHo za3`>KIKpF3Kbu>vs>2<-4<&+pNYnZ3B)WQjZo$a$}JD%WSfpG(Q&I=Y^s%$~=+e0lcEe%A1yr4rh)wOg@kuw&iJu>9`9Rya^yRFxHah3ap8LUja#Uaw7m5$z=c!B*1iD(} zL*K$Dc00F&L!|)P6zaRB%~q$AV-umZIWOmGl#Zrqr~40U4O>S^CKH)Xy*AQQPU{&h zen{D@Cvt(OV^wXgF_||vkkCWuyjp?Q0IpOsFU+<}lG6v0W_TnAb)$Ld<{{UWDktu^ z9Bf!8EZU@_g}Anr?QZAOUAT^jtPaOR=|!Mbb!*iS_6o4e=@M9b?sb8-jH^zokw$PN zru)@2_AI)|uJx`Q#N0GR9FAQ&eLh|at*XBbbAso2y;c7eg>{Mcy7KCBtjT9{=qB_{ z`I4XqOQ+_;!Hg`g(C*#V$w9Ffv*QvP6<*!YFY7n7EwObTj-AZMy>D!67VkP5>IC`2 z$O2Z?Mfb8TLMKgu?xK=>4f*LK992I%$LVgz*r*!+b-J}>6R@25k>3u;6a7pBn z9PPEYVlkpG&9k-NK+KUDXK6!0fMB|iw~9LmuS2miZ5W>f7+Gs?Z+Ya@tb`>>QQ4{& zF+zz{?fMublys_oeV7uUQ9hv0PE0z_s}Q8cJ$e%6G*Y3ZELry&bq55@4nj`3M{Iy5dFrlHbMY(x~VR70c~VZSZd-ZI=@~ zvjF524zebJVvKB=f(5e{k3t63e-J0)daB92V+vd+jI#JoU<*aRoale6)A(KJuiy7~ z_hm=ycr0!^k8(v^c{Smya!pbRO5h~TnUgT3mr*B>n!HP$j*a1lGcplKeN!CxOos%E zX((W3kG%y6B1_p5@xzoRYAt47)UPlC=<*~s6JmcA%)+wExVrio|dr7!vqh$n72 zk8)I8`A0%oC#__;F{A3^#oRnfRk|Mvx>1u0Zdf+clemW?BJmQxr+AiJ60_yd;`|Gk ze85&u>&a>j{_%?-+NX*sJ}-z$vI~h93FV1b$;+mS16A7mOLF6BdE`J8KG!W!drT3b<#O3==Yb+LIE;;{*A$4 zHxLET^i}?a$^3b%Xh4HbREs^a`;HiJ>^ztyruJ3ktigTw-p0|l#5UqQGKxI+AB<7RcSILJq8woEIWRXHn0o=t%>nA41NF0k`WHa` z9N_vna6KEiegRx31a|6uLi)DaPV*y1iCmUzTF80q&90AzFKJ5!&(oLvr!OPVUk;zX z9P><{q#rur;TRoxk>A&ADGgnYl5-4f41wOTIF)YjYayf!Q*En#!2M)@I93E(olFit z?$^z+n59bg`7m-sr5M+tD25aTsVB`yW!~+P#~GYywdS|mj<1+K33HeCBs@)RIQZqn zln!i{0gGp2^p{#0sai|yTIqE|LtfmMX(u%ftZGgV7gJ7)H!AKfbZBj@Auiv2w)S02 z9sqTayh(SL6^dk6o)q~HrwLkzU^@x7Im!=s>a+wLAJb|ydsatr&fFIO)e)L*b9qho zHEt(XYXhbYi+B4%eLZ*gJ6pH63&5P}DkrBDQlkSCcqphvFH5{5R?z!y=gBQL0}fyg zkt$U-J@=?A+6oswUYT4SIxoOkxtV)8wk%o=3IVNOK1@KGp}~^e10e@PAY(v8Mu4&$ z>fxb@iQDK(+ndwuyNQe?&$ZRhwF?HG(<;$%{z5Gn{SvNF8<#Upcpv42fb`RHDZhJ*Bm#|?+q zrqz!dPQuGYo;Dm`7u7y)K!_+ef80QRa=lv*+7N}5qU>h3kE_P3+` zjEuKda=S;;TUVfKdjC~jZEnGBTybtsXz8wrHRR$K%D$13tL>d?@sZBX5%hI!P3^<+ z)^{uSI=HP)O|JzHP3j1vr=nRM_O<#4yg#dX;W;7#8~^V>##1$~L$tW%9NjzrD~_%Y zW^=I@*5=A`E5Brsdy9HW$Qs}0MhV5j$K`_F+4W^Ui*;X=!}}mtRE_%eP$chGhE=Sx zF!{t{yQt_vaK%Nd8pCE0DvA@*c-GgLZj~->KgVHpqo}Dep>we+wqQdEo2(9otrn{= zhbhUO;#Ie3;bNj8)HR1w8m#;?b4JaBuj41?9BM{;2Lv-zj=Z*xvg&bjR@b#?WI8@o zNV8m8+R{QaLsoug(l1ragRN_WV%`m*@lFV#`z?Q3TyfFb#FZvG*~o8lG=?zy*2@dk z-m*iD{S0K(~Y=1HJeQ{s1O+hRV95OH+K4P!YsM%nDD?xb$%UP!ZWxoz70 zgNoqB#3jKHHdybAnH7c?zZ?PE?a_-JaEo+(4iYjV956sa1{EgXU{LfLN;&L=2(_!gTjq^-&F>jLV-}^u*hXTr$$Q5k!9}>FEZyhk2T#IQ=V%tn zd!(vp%wNBZ2ow=by|p8u?LPrURK1^|WSVVNJRI`TB~=k5LA*-E_es zut6%4tQ4bL;feO! zJl+x9R($2DWp(sxvOD7BL&al_b!#LPa?8*+k^Yjp9$iMRWU-hGCfqWCJ?gjo8n7oP zc0jhVl-V7vs<90(%DdXQ#q@`HF*L8`To>R1+R{H-6{@XV-v3I-cz0PFzcH2*5qwhSxq1N`OSDI*GR^nW;8b>VAQkfMe`VCSTEn2UnPnMcq@~= zfosr;%*!#!R>ctMVKU`t_OiPktAY^m74r=TrK>R>(>%nz%$Eq{Qd(M+x&0D&`yR*r z)!@L5OP|~Ei!j~GeZ3^s;hER`BlIau0xQc6FCBZsN(p%0V_JOc(w^0;-Nprb_%e~{ zvrX@25AV8?Q2gG#L}{TNjJ4Kv^>*9dEuv;7@Y+P+9kR-`rc5M&oG?v_qRUy46pVWLN?vT5oaK5=XbFyu2cr2dzDwr=yqyYQH>ZcmJ8S&s5R|2UcN z{HCfuFBi*MxRqk^Q|qZV@eX_DKM{XZ3pi$2D?Y~&qc`%_6LW0+ffBvXASv3H(A(>M zEAJRB|1&CU*o4D#7_JK&&(*y9Pa(sMQS`Tv!TAp%!|hSXkOK)B9*;tXz>|<+Y6cQA zC^rPC>KZ^ohDIFm0UZ2#e;F+o4)^tc3K>OiA0d=rU%a?h_!m0mWMyk+XKY{qVyB)y z7$1d%cafbm^+t`2oPA>u@{yg11Sru}P1PyVeGDPy zhWFY)J+R13s>rK%bxC2=JKLK4Y*6p5UmOE@1})F1xBM!SCV0ay}W?1P`q5&`VdWSrf(03yM3r*lWkSos8Q` zz~4~z48Qj9Je{SO9z?@Et5_~(xH>XvyhW@^Y{R|2@0;`L&p=Yf>&N^iISLyBU?a=nmtCkacf?&6fGhGBlMKs(~f`v&@C;*LE zXF`|PWhsz%qRM&ANZ&>gwLYoKaTvSlCttS<#gJL|;83@o6_aDSt&JA(i5eQ-&G0p> z;~nAtuJYUBVCp27VHii7^t>x2B}kE1BvNSws|Q49QH1y}PMkOp2%rtNu`c=~)cKcX z2^=2sdckpn%uvvLP=<3PZDWMox!Legv(XXJ{VCe#D848VV0iVlA;}&oOrQ&T=+1QD zacb(5BLElQ0p$@(6UkT*I9PqlRH8Qd=PFUU5u{Z7cB5_8G-G}){jfJFR&i2FM zX%-WLAlA$;j+He9vz$M!Yhw0aC2eJoRw`2T8!P%PRD<4|BmWxSM(l3=Ltbhud5l;z z;&tX{6QpnM3Zh^)ucIhoFkn1zg?1GPYI}?rANn}ba2;6&Hfr_g5T1&z?50H=Ic#@suo zyd2?KJqw7Uy3}~gch)=D4aP+;36znu3)>I!A<>H350pAc#NqoWIA4%|TTr~yWXSME zh!K0O8gDat$#6gS#VC8AFgbhM`O@7k(>46c|2+4Ddi4kO50{89zl11czNpW8g;w<9 z=@-B6<-dY2`o5>cr`buaR@${pHb{oyyud}>{~_-SY|MhI!HLqi!?W}aHJX!w^l3<~0d*C5NzVrbE;S8z) zqerUaP6zMOSsQ&J`9I{o~!4pBB#f5q%tO}6`l;wRm?C@*kR84m^FP((GlAPyV zL^-`S2S{r(l2yzgfyY;RYn5N=_pt7L-K88D=!-#&=n^^$77U4Dt_+D5;M?tsjHT&! z2OM6SH_e<3ewK)T{aOLGmh6E}z%CzSVmNerfhj$2ayGyi13ppd-B%7yLG}PAHkA7@ zwbWi*TkRtZh8X=lK9spNS+mf2;4IE|5&&ItTu0go)khn|Wai;&a+sN=&G8pgsT-l_(4{;CQrr zx#@02+0#_co<2~blU)$?ohm<3MHZaE6qcY2AFvI z#rEd~+obSaAnvs!VlG=fKSNI}RjPB3Jqb7+ga3 zoJoBY|J|jERP(??b!nx_Qn#sB1mc0_^+e@VN%#!bHzbn12WVFt88&dmYQZVLDI5(WqrMB5kBEn zI8}Z*)&o8qhJlM*Op9^S5koRWNvuYFZ2{Uqe*0Nh4my@PZDjrIQtW}q=0VqEz{>89 z3-hj_bmou@MKXtdUuGGRH^-|{r|k1{1?>GovR)Al_Cms|>`+(hDf)!*vvk`jL9#=M zyzKhSOmRp!CIvFVtwTS581{a9Q>Q%ceuc<@eKn!nM7c;1?EFfoUe&#uh+n!)cIJZ! z1*}j`pT~~qvqIYRx`AZ+h3nft|rY8VhC|VyyiR!(g1f=2&Ls>p};~U{@wix%C z1RrAB0xGFTY2H`)ie$di?FBWOFWiG@P${%9r-lVLLVf-QsTxPv(bya6@1^kWsdWbw z`B29>Z{9*XKHS2KhT(^rs=wh5R8QAnX|wx*H{ZXJSc0CPkFussDa;qiOVWLz6V)e~ zMC7IE#O=9xvKIc6LU~p+AF9X-E=mXq--K_JPva#xb$U>IdP){{GnN=%WW4tQdjq}{ z1V8^`NlxNHwk_62G^Dpz(F zh-PHDaO@K8Vl-!}54y(sp6G}&u8 zbjwQ38D;Ugpxk$9 zCFw(fK4}OLd{qD_7hj4QWVH`~nkHS|uYF(D@8Z?t`licsLkz?O8JYav;_E|4WtP41 z&MMqdnj8nWsesPTwDebUhsQ|9NS2Q;gYOed0zyW=Z7_~Dj3n}QTlIEFC#-#5h0CwWlDnmNvRs;X<@loD5%%OGD9; zYDc7dkZqN~U*)NP=1&G$6Y#(kgNy3gnF<0`viC7L^g14(H10HF$k z0)ocP{Cw=>iQlVT2C2Y17c?FDc_-Wr(weOyT*%cZ@C7mJd~lD_DxRswYcuP`MI6moD1$F2{O-`EPxfeQz1@-div* zWR?GOF2??QE>@bmuCgnI8ev!(5*24eYNc&C-pkH{kAQ9Ggm=`5>CrmZ!r)Eb`Qgz1 z0Q|tD_=5A+#;cKmzz(5q(U8?2TnqTrtd?f@<)h7o(8zfEP4M-5fvGa(N9#k9$pa$Y zTDO}4OOdK!S3fXF?bp2WaS75uDD1!u5Y$-PGfb%BW47=Fa_2jkp^{@pMw2 z2iV=sv&Li`*6j;>V$uJZ^NcgvoTJRVU*N&-f4IM|zV&47&Cy zzX?fgLMjx{X@jPM7#D&rVy-XLq=$iZI_bW3FTHl3tmmY^5uS&p5{)iwe{#MhK39H2 za9#h=B)e9hoqe6tZj&P~%^h1P|GLW1Zi zKA&Mpe6X2FoXd;P4pU;dRQs~!^gD;h-~#>RB13Uykv2^>UX1Gnmym&be zr!|{Ai`tYeU!}%2n_xCe51=W$KRS@Nz8P8}9$IWa>7XDPfhHw2Z^PfBARnQmkdKM& zBpqyha?#T@pJFOYO(A}ZbenRYL=o;Q$i;o;=Rh5DVN;0wBpIfF0(>U_;6o*3P|5eKvAVkCJ^#5a&)FwfY2fd5pKYhj?4hf2;-%js4i}NF6peiW^=qN}};#l)gG3d{`i0Cj% z%O1te<=s0!88f>*76?vw>3rz!;xu9@Q7ZOySdEzlGkSb(=4F)h!chG*Tir zQgRp-_&NsGuA@q{>LPspbos}EkMw)Wn6huCg9eDFz1ZO)J@6&9u^Gf{5%ga&Y8VcW zJd%eij#o$$h9nxT(AIz8SL$gh*RjPE9~Lw_k(bzYE8kTs4oMCzI4jV)gW(8~78 z60`5646|d8!kzG&^GCx=$L7UsmeNQ1ROM|4{yL$_g+h(~rIE+@uFGa)6E(?pQOLxS z$b2U7aO$CHM>T6iSUptolygs-^dx=8X-IQ0w`tHDbvsr$1#u1qmH_Ubo8DZmtWp9CE{TDl#ByN~i$^$@gEDIP8Zk*`B>tSPrX+Gr4* z^!x}=zddU@&FMQ>FyCe*^~QV$WP~66sI@j$tXX#w`+i=jws3hFyY!=5w9)mjTT$cY zs+>;#_O4&m&eM!y8(;SGwdz42^b^s6-QBule}mzw6KHquuIHoYHZTzUsr;@sQcOy2 zh)HK3wc-iW3#}ZYgfptt$ts=DIQ$ZgY?@}Xp!>1xw+y4~ixG2ocrOnhBDc*X2Kl_@TEUf< z0Hf3PzIrCU$@V=MWEFdWZF3d#s=Wj{XL+A0;*`GiQP>F0Yy({!=y(PsvPt}8WA6_v zt!*<`HfYS2ip%a*2jDE#sBHF7jf|({{fTVswltO(Sx6L~;QRa;!oCleLT1}J;y=F;Oi$BCP(FucF$2z<2ag5pnljjnEjA z$9}!`^!821$Zov^w?hcJu2tJ33R6X2^yOh4RvqysXUHa;^Ydg3{_`&T#Ywi+r=x58WihxN0sQF~3kgBH_S{VI1dk8pm`%e-m-R^7 zLnGR!$r4Rh&JgGtqg368kU(D8d*o0nmHb>O*;^X;0>`ar_cNT!Ubuz#Gh2l8V_*1% zE70PuObZ(A-gF=RdSJ(9II%By;mMwuW@ZeU$neUB>c7_8^=+OFR(^c<>cUK%M6}(j2rj(O0Y*ec?eos0T z8(W#ba-I=mDAO-kQ$Of7ay}EMBR+gnkznhQZ=B6YdjBNmv&j_GnQLy+`3Vgt=CC8> z0;^x>g#ofb_u=tTr~f$nyfgjfs{XmFfJsSM(=EMz{QMpjIcYe+{5)T_&cj#glMBb! zry(&7S;=Z-C@s{4>I4C^aj)<$SOfO)#Wi8bK$AOuakx z=HUBInA|XxEHGKJ0tt~RKpeEfmbSvCzQT9*lCMwX%Xf`)=xuzBC~-TVaYr0kT9^4aT;8=t4W?K}1SUB^w1KT;fkk*BSSX zohUjUovGr!c$gyhyqI%AIN3Tv&Bx$>;2Q|Uqc<{93YyUh zSPQ_V=`7(w@a(!b@{W-5=rbhoGD$=dXw+lN6P9E0&eLI=HFBlhh-n}|+Q8B!24_6= zQ?ks}4mvD*Au2TqtpLUE>*P?ba1KmP5l#+00Rrv8_VD=!DF773x$Ir&^tK5(QjK>3x9D2g34MqbzZTc<61YK#9M9lRY5sto*iH zJ8R;WQw@YrD@xae*Of=#qN#KnQ`Ju8I97w85H78}VUMr8WJltK6~#R^%5EBU;T#bA zPR(r0N0KQO42IUpk;&$4SUqp;a9x1}ZwR2W>x9T-<}X4ki)YP~f}5+nnT?MoS{nz7 z#p;kRfGLd+@}UaPsp6m)UIh5T&?p5#v{MFE34RI%-#qXpMDIgVT6DqqofWGT7@uQs z|LqikviTGN%7CWPn`6Ri00iP}D*p+{$?+Or?kKf_1tJX!#8!uqXQ?Kt0z4J0cdcgFZ`hq5 zj7FBxa{12%aA}HmJoIf4T4=@wY`eR*RuHXk-YV&HjemFUXUZ|$QtN&Mx=>mgdh~2= zZMHwhKP-Lw&{Msoeuj+PNbE4JIJ#}*Z%iSES!F5>|1Ci(1`XlhbOkA#%J0tUW&e2sy` z7ldycV0o>a>h?suXYS$pe9y6`dIlS=B69n^evKa*Y-O_IUIXV-i4sU!!G1TqkV&^PP( zK!?dX2cR>VR8dHl&<4fu&HY(=+4S8pX^99H4pX#LupIh3x0pIDIo+nd+ALWj#8kFz zrz=GNBphVX8*!-+CRbubOIB9W$zr(g`^-#GXNE($jXm|~fMisqgSpHPDmI^)J4?y3 zgNvHO1rK;Gj*^F+rsZmuT~diCQlUn0E7i>NeaO;O3qpd655e* zYH+(jk;QA-DB;s!xzNTZj^)k(lc!ud%Ums{^3)V-)?CI6Rf@S&2C(VfspC^8p)e$= zWB8<9;U@Rzd1pN!ee-W64>d9~7SB zD6cD8kP9(wP~&Bn{EUlz0xRw+t4bHkBch5Q%ERFvO5~D@ za5P2E11(!Rga1PUfmHUR@SN_TE7!~eak=IYhbr6jn?ojp2&eKlZ4fEv*!1cUJ_R3Z zh~?Fpm0D76`Wn9Rz#JfO85qn=NiwD9Un?tY2?z0*RI<*#AXwmoTphBeEM)bVbaE>^ z-PC$aExu0~@}@&@RuqUVWp;p~{K2eMh2I8Y60!9W9y+FW=ScTG#-#S6h2xZwf&$_b z$vI8j=1d78v@C`~Aap2}Bow5$^RCfOv)-8XmTAZLV=o86JpuFCTsY8KZ8pINQ8>~m zjF94F*ngd0nV$Eo7Zl1>4QTzk2huv|7#?zEDwlp7!lK{i<#!F%^G zv9j;Z>HF`?CU>&G+GS?%18P(Wr?R{TjVf=g;xi*)c%Wkrc>FCpO?b#$A7KZbIOXK8 zNmeR@4)jVy=s6&!-h~cmFe|Zp-h8kdc9Edg+DXI{;>rsY!TpqrX*J!`V$!fk&1}gm zf6)iZw<}<~q~2@VckK|t5;E`bdXDSs`N@5|xof)seu}<3UbP8*9>vtP=g==tU7?%) zZ{Hq1IIR1;n4k2~a;Y!a5Ay--_1nwi&UJ5ryDv+D|E-JyyLAHheFFy8gY|z7Ih=o# zQJJgp#S+-zhQr_Hv6SAPj7el$u*)z~;{LEowq0XfAEPIvZcjO!Aln;O5zaEH9A@}A zBK!=4`PkeVI+5*s{Jelq2gy zE(H7RZ4A+NjPP^S5{f3LhE|h<$F6qfQZ?jRVLt6CD@m74$Dq~nT0{NNWB=~?3q&nV zateX{T~brOXL2I{wvO~r&C~Ji8Y7aVecJB+&+~o{te^*9S-fPm2gB9;{LDb3+S|QE z1J_5L%>c5e8ohN4#{LraI4*a0-K8_Q(H#Bm%g$a*-M8LfVrVAndhon}Fh;Y8X6C*m zfwS2_R*Q%c?^})XsgVz#ExLzSosCUU@)J~(2I&#|W_R8K@2+I7+%lf;9BG^{Kec8S zsP=d#d>!#7%1KQHTmR93_2GldHw5JAhAr*ngKpdW^J?BS?~^6aKFm74>k;HxgIK^* z$TD2Bn^D^48Oz;1Qs0IFCZiPSEE>bg_eCOVC_0*P5hYyrSNX)iENK~;ptxYX37*GL zrWcy{Ufd6J#(?!4?`taZXZLT`QqZBz!s4v=+^JhpBHaB@lzpE*YTmyYpOs6_=qN_D zBZC^Xa>5W8X3=qR1Atk4DS{ib$_v9yM2R|w_c3m4aba1&?+3kIpdNOY&o)I`SgDb{0Bb}%2LUa`=V)FcNV zlIhYy2I_HB(ddOvgK36=v)?!h=y^VnGw#UP1jRwzs`57~i9xWNg}^ap3_6!*-WeFU zjUKbq)FD;FLLbpJJ`xQL)?%AYb{pHslS8tzy9j*Q0k28MwfhNQM2cHTf+r_7IJ_Hk zD3H0l5gdVFRR~Fo3Lzm=n3VsyJ@$!(V~l*t_c5Ce6(ZQuz%4kdq6T{91Cc~91RW|) zFanP8z{LKqr!FeLpk}ee-dzYpS@uUpVcK**F}Qun6gzh#+GEQHxR#&4X_y2vB```t98-n3y(zqfO1|P4JE*E;dG~hg z@?&B7iIA|S3ZxwvhMzbsF@QGn9vZdp`g}6>To@91aTy$AE=ZJOR!Q;Ts3H+J?6A1F zoVE!ZN08`7tr(^PR8F-)G2+Zd0OrgCoB>o?vFi+SgW*b(feH!SDlKxz2-+&Yy<#S5 z%GD-+#oFkoftk+)o5Q>%J(QPJQcJE#UhLjCd#7_Qk7ETngJ>mQQ>Vv?F_{B(sFk+y zV{#rmXelZ$BBA2+JC;q_~%^uF`sfS?Ksv0GGgDVbwDoGL|X1 zb9Rn=#m@}23EHbQE-psCFr3#~ch`fPthJ1rsC+-$W9F+m>hq+!sNB0p94Y|nbH=3t z8_dQ;uifXhC`8&1gFIg;!v3Ef7T50%D^Ei|CHuD@HJmLvBKU9dybCsYXM@wHR^9$9 zKtR}AGdWm9k&VD@a$51omUThuPPjwRc>~uUd-lI6VS%CMffNkks#4kl9S(Wu15N_p zFj8&EcSDRTMU%SSDZt91hbr*A4E9*%WGs2O{AWyf4&zEn!YqT2BUtFS1i|;uK7G%# z9Zla0XD2v!G5Ct_LENtnUnttXD-9RgMA;(-(G=bcPsqs@%Iw&KVs&DGXU*n2jm&$W z%!scz14m7+qH6Sm`x891KDVuqhU$a0mV9^0(n`Qj+6ERJCA5uQT#eiSs!IA)@EH*r zvyKl}o|gPEyH>}e3k`T1SGVsN^QnrX-^p>;P6^q}bTrCH&Mzi6({+bp(<}w~d`t1} z;(`^z6`vc54Vewe)k{nP-}A!vGTnwpWSYGs#Pz}ya}yCe^vi$FI<0LSn(W+RK!vZL zNIn{&RT7_NQL!c|HDKkVS)^9x?$iUwPvD

2p=3|IWz6njQjmE-~*QASL+&kC3Z z<4B>j>p^$@V!MG_fQB|IcrkRoo{8Zq8=Q8tGQOXnD6^u#Re@al#tL)eV#NzTz4~+l(n*P(|7- zWldgOpmAq9InH-Il_3CtKB0#xMc^a#4bpE%yG#yI=eYWPud(97^ul7%&oIR>4umt> zAT>Uhw=7mRYxSvthBSE3WI`dc?wK)WHY*N(PE2&w6m_Z-Gt8|IIE;UfaN)l{gf>cU^^g z%)RI%N$&^y@3Hz~i&6Xr1`Ld^5)2Hqm+!YLL030#J9F3H?foq8#O0V1CCD(``Bz&b zxnTp}z-Ma<)-$V`RGeB(oC0RaD-!bo-3HRt zZ!KEJ4apu`ir9%xzfrHgk5kXD4`iO2vJ>AmaxJK{{VwP&RJIcL{U;*SDABE=8!%ck&$WK5#T^lK+KPSmsXbe72Vqs<~b5l^= z^7r%{RoULe08YuQnYBoviBM-u)Hk4pW+EAcSlRKvQRbfdM7m8HHF(t8qYy*a%r4U` zGL3E_>f~&FT`Ct;t?Ce0Rl_YeUqenkocq=nNy8eyhlWn>z)dnMeyfuErPgIz!$b#s za<(GwVV1&r{mKrFax%)pZtiW&owb2(oi~M6d-S~>4*_1nY50n4w2(R~9BF2vYIKEd zbetn&QdKqEo=|e_x|XJ9DcK~)DMkC4o{8#U@-(6@6AqAc^<*jzgFQ*U*2vQ#+%rd} zGmcGkq8l>jr6pbKX*bCPTYOY%j&*`AWsY~uHJc*gwB)n8-t%Mc@%@AQl*2jeTLTv7 z_Xj+j*67onv-_b(6!i4t0EMvg$i55Tl^^^w?F@Dq*$UNrkqsjZ^*JGhc<*|Cy^DAz z>v$&PekOxGw_*wVu$%};f zRV{-X_|Qjto!sl)FL@WG={eIHG1f-ETq`jnqZZ($RCpzVdq<`YEm0I~|E1(7<}Lmw zTn}0Qlxb{OQ*0!bKtvo_A`7Ls%OA{2${c+XI^Pq9s}|UE7EZBiNlgRoS!0e!524Jy zx~Svt0lQFA54>@&i@mYw7s#mxSN+>kPKOsSR>m}k7tc;vi4{As7N`M9Eqm6f`4s#{ zToX!V_8*Mo4!?5#Dl0O<*fzDPEeVKU%ZoX{dGw`tdszlStBUL>)Q*~IqqD7Yw@pYb zI$v=+0VJreC5y9iup(-Kw81Ic*nrh9MOM04V0g2bA?dPA-W=jFH=_w-m&sDBd^05b z)WiLr<9_Jgfy8cD*pE!Yh1(1=^|*n)jF;uaRU6eMi`1twst^*S7-abJRW|#j!+b%d&Y-4enYB92NL9ZpWpxtd=5!7}b#K=AnFEBQ*|Kf@jS@q&eiw117apBN>`& zzLUd|HrpBU3Js>B7h{C~sssEX8Y*>tE(cG)OfXs?$zyTKM;0OyPgfW*USDbl^T`Wk zJrTh`lY@bK19O&g7{bO8ucFt!@YW+}Z5`ak5v!tCU-;I;M#GYw%afq(;A?bH9D(p$ z^g!){7mP?)U2`jPvxI2&echnPN27vsgV0@y@(rhry;Qu!0;9r!kl;r+=wqrx3uxO; z@CUfLbw$Q{2jm}|x8_Hx$a73c=o#4fQEd|Q9~{@LeFRD9UGb7_E<&1Eq-Pj9mhT0u zcg!A@-_A0M9q9;t>Ec-~O*+A+uRd{Fxv!)BP94CPBex=L0C5VmgXuivM z1RxKcx$KGTBe)*9<49OzkrI=x4_U?h^Zq1B znsPH!$`)=}RdZzk8;eddCvXqy6v-5Aysl6d9jctf3J70Exl*eqG8+9jS$FwDqP|RJ z)erB{>GRPU>Y0;bj8y%wC7Wp}*T~cm?cAf6@e5ws(Kkdyd@!Ucgn8R9M~|7{$$jZj z;pf$dk~p;aUN9V!Nam45nWgFRluEvv{wsACi_WK-%~rL~M_oeaZ5VQrmK{Ed&sY+ocY(L!dSOeSiFyE5Y}Hc>?TJfiT^0{ek6OQ2l|D zHqr^kKanEN_^^X6q96@*Q^2Psy&Gb!l%`<1NLw#Ao%Tu|u8mE6bxhwjn{)-v0YI&8 zn^!5a_Mu%BcEu_GMAy`od$9s~Ev@@3fZAKL|MaRihx3RFH=*j>zYb@ZgC&jPPJ^5E zJPi32Ouds$yhmuDD zSMC|6z7eBNWI7B|Bd3@~AMymiFSGkT+!dI$#m(6PvT%#l3?=^Xm+gW%@9`m+;(k^|!$Lc%yygMNT6D) z$~i8}K41SJPArlXccQ;ZDv^uzNUayl-|Q>7E;Ti2@!CFmxt^^+7kKE;V=j%JUlxa> zbZmHl`foYt{E!`f9AqF!1=3p}|0M_gR+F1JI@;e%Y48>=EaPld9a}dEV zv}!CJP|%9J)oDD+tft3BMdR{+9OvxmWVSe!A*Bf@sW4oR*jNZYlIGVOd5oJh8`pCz z8at#=o9HjbwTr^oqaFU}HX0QJ;o4F9q!zqS9lgu$VuVhnZD?|4uK1HEy`F&jOctz8 zE};rtr*j=C&)<`D&3=6oQgrtPT1Pc^ZWkQ!iXvrmD+nD!r{)sMjnb6HPkJgJzc10; z{M=P?#LQ(5hH!x80PW6yeOA%^GVk!=U2PdG&w)Rqjo^PgaqsEdFAHI}R9wRFdVmXN`Q=W$)rf z=B6C9!qqX%SoadK;PJKHp_z`~W|*y4hqHNh^;5!JT3I=SlI)zj8Ja-fN$i=4zr?VI zP_oUMLG-pwgqa$+-Mq8l3Dy2p+|D$#XC$XRrKEu-gWatx8rpFX;|Hz)2Mg4o<1(qU z%shd+jyUZU&!@L3HRQ;c4w{FvQtVe_o#@LR?>qj%5+w=<#=Kb`_-;>3Er3i^rO%7w zr!^#<=;X|LKzZM{I#Y5(l!ho|e~0(qwO+ozlZr`$6}6(&2GWoQfJEU#_1Nbe!}G(hObREXS4*idmVBhb8%xh< z|6LT=#kOFYpc^0%GzUfl6@@Oq(ZLPmK;BTz+sWKj|MyKWr7`aCi5cZNje0pIb3R=L z!-=N14gV3cj*SF!Yma4p+tWm*gcP<^j5LFL{Il-UhzjfD2Je7baoR^`oroO+Y=Cme zL8dlL1a0__Y#5&#*MknNOP&Uiej&3@*&ERiB5I8sp2$~(bS()3L|Mj2c-vC@=j9X-!U|>R|fB8-R8_*U!32Ip&!0Xk= zf2A;P6!O#cmR3-*+F4g6zH_s6XC zHRZKw``?rxaPg3TEvkQ|yf&Erhr$u||1GLN=F_j!^x9DNA6jh0>zw^ZQT<8TpYHZG z@U^Ys-@vxutmxOke=HAQQ(o_q{f9!4@voFWduCr#UazSCLlG+eSIVFD_1BcwizNS0 znn0?Uf4NWoESbEfyw+U)Lou!USIQqf=4;ApCD7lLAaH}mKa_t|La&3q77+gl>fiZa z;^OOouLZ7u0$OzaZ_57`zg`D^J#POKSg+?#;QwP3f6aM4=>5a7?ETjvP)QaF)H#BI QVSxT>KtjVs-|tWV58I-5tN;K2 literal 0 HcmV?d00001 diff --git a/ADRpy/analisis/main.py b/ADRpy/analisis/main.py index 970231f1..6ca8e8a4 100644 --- a/ADRpy/analisis/main.py +++ b/ADRpy/analisis/main.py @@ -1,3 +1,38 @@ +# 🛠 Watch: +# df_procesado +# df_filtrado +# parametros_seleccionados +# df_resultado_final +# resumen_imputaciones +# df_procesado.shape +# df_filtrado.isnull().sum() + + +import argparse + +# ===================== # +# ARGUMENT PARSER # +# ===================== # +parser = argparse.ArgumentParser(description="Ejecución del script ADRpy con parámetros opcionales") +parser.add_argument("--ruta_archivo", type=str, help="Ruta del archivo Excel original", default=None) +parser.add_argument("--archivo_destino", type=str, help="Ruta para guardar el archivo Excel exportado", default=None) +parser.add_argument("--debug_mode", action="store_true") +parser.add_argument("--umbral_heat_map", type=float, help="Umbral mínimo de correlación significativa", default=None) +parser.add_argument("--nivel_confianza_min_similitud", type=float, help="Nivel de confianza mínimo para imputaciones", default=None) +parser.add_argument("--rango_min", type=float, help="Rango mínimo de MTOW para imputación por similitud", default=None) +parser.add_argument("--rango_max", type=float, help="Rango máximo de MTOW para imputación por similitud", default=None) +parser.add_argument("--parametros", type=str, help="Parámetros seleccionados como lista de índices (ej. '4,5,6')", default=None) +parser.add_argument("--columna", type=str, help="Nombre de la columna para analizar celdas faltantes", default=None) +parser.add_argument("--umbral_correlacion", type=float, help="Umbral mínimo de correlación significativa", default=None) +parser.add_argument("--nivel_confianza_min_correlacion", type=float, help="Nivel de confianza mínimo correlacion para imputaciones", default=None) + + +args = parser.parse_args() + + +# Ahora args.ruta_archivo, args.archivo_destino, etc. están disponibles + + # ===================== # # IMPORTACIONES # # ===================== # @@ -24,26 +59,24 @@ # IMPORTAR MÓDULOS # # ===================== # -from ADRpy.analisis.Modulos.config_and_loading import configurar_entorno, cargar_datos -from ADRpy.analisis.Modulos.data_processing import procesar_datos_y_manejar_duplicados -from ADRpy.analisis.Modulos.user_interaction import seleccionar_parametros_por_indices, solicitar_umbral -from ADRpy.analisis.Modulos.correlation_analysis import calcular_correlaciones_y_generar_heatmap_con_resumen -from ADRpy.analisis.Modulos.similarity_imputation import imputacion_similitud_con_rango, imprimir_detalles_imputacion -from ADRpy.analisis.Modulos.correlation_imputation import Imputacion_por_correlacion -from ADRpy.analisis.Modulos.imputation_loop import bucle_imputacion_similitud_correlacion -from ADRpy.analisis.Modulos.excel_export import exportar_excel_con_imputaciones -from ADRpy.analisis.Modulos.html_utils import convertir_a_html - +from Modulos.config_and_loading import configurar_entorno, cargar_datos +from Modulos.data_processing import procesar_datos_y_manejar_duplicados +from Modulos.user_interaction import seleccionar_parametros_por_indices, solicitar_umbral +from Modulos.correlation_analysis import calcular_correlaciones_y_generar_heatmap_con_resumen +from Modulos.similarity_imputation import imputacion_similitud_con_rango, imprimir_detalles_imputacion +from Modulos.correlation_imputation import Imputacion_por_correlacion +from Modulos.imputation_loop import bucle_imputacion_similitud_correlacion +from Modulos.excel_export import exportar_excel_con_imputaciones +from Modulos.html_utils import convertir_a_html +from Modulos.data_processing import mostrar_celdas_faltantes_con_seleccion, generar_resumen_faltantes -# Solicitar la ruta del archivo al usuario -archivo_origen = input("Ingrese la ruta del archivo Excel original: ") # Paso 1: Configurar entorno configurar_entorno(max_rows=20, max_columns=10) # Paso 2: Cargar datos try: - df_inicial, ruta_archivo = cargar_datos(archivo_origen) # Aquí se valida la entrada + df_inicial, ruta_archivo = cargar_datos(ruta_archivo=args.ruta_archivo) print(f"Datos cargados correctamente desde: {ruta_archivo}") except ValueError as e: print(f"Error al cargar datos: {e}") @@ -80,7 +113,7 @@ else: print("\n❌ Los encabezados fueron modificados durante el procesamiento.") -# Paso 5: Mostr en HTML +# Paso 5: Mostrar en HTML print("\n=== Mostrando datos procesados en formato HTML ===") convertir_a_html(df_procesado, titulo="Datos Procesados", mostrar=True) @@ -115,7 +148,7 @@ #print("Parámetros preseleccionados válidos:") #print(parametros_preseleccionados) -parametros_seleccionados = seleccionar_parametros_por_indices(parametros_disponibles, parametros_preseleccionados) +parametros_seleccionados = seleccionar_parametros_por_indices(parametros_disponibles, parametros_preseleccionados, args.parametros) # Imprimir parámetros seleccionados después de filtrar print("Parámetros seleccionados después de filtrar:") print(parametros_seleccionados) @@ -134,7 +167,11 @@ # Paso 7: Mostrar celdas faltantes con selección de columna # Analizar celdas faltantes en la columna seleccionada -df_celdas_faltantes = mostrar_celdas_faltantes_con_seleccion(df_filtrado) +df_celdas_faltantes = mostrar_celdas_faltantes_con_seleccion( + df_filtrado, + columna_seleccionada=args.columna, + debug_mode=args.debug_mode +) # Verificar si hay celdas faltantes if df_celdas_faltantes.empty: @@ -149,23 +186,48 @@ # Paso 9: Calculando correlaciones y generando heatmap print("\n=== Calculando correlaciones y generando heatmap ===") -tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen(df_procesado, parametros_seleccionados) +# Paso 9: Calculando correlaciones y generando heatmap +print("\n=== Calculando correlaciones y generando heatmap ===") +tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen( + df_procesado, + parametros_seleccionados, + umbral_heat_map=args.umbral_heat_map if args.debug_mode else None, + devolver_tabla=True +) # Paso 10: Ajustar rango e imputar valores faltantes #print("\n=== Paso 8: Imputación con ajuste de rango ===") #imputacion_similitud_con_rango(df_filtrado, df_procesado) #Paso 11: Ajustar rango e imputar valores faltantes por correlación -#Imputacion_por_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, umbral_correlacion=0.7, min_datos_validos=5, max_lineas_consola=250) +#Imputacion_por_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, parametros_seleccionados, umbral_correlacion=0.7, min_datos_validos=5, max_lineas_consola=250) # Paso 10: Llamar a la función principal -df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, reduccion_confianza=0.05, max_iteraciones=7) +df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion( + df_procesado=df_procesado, + df_filtrado=df_filtrado, + parametros_preseleccionados=parametros_preseleccionados, + tabla_completa=tabla_completa, + parametros_seleccionados=parametros_seleccionados, + rango_min=args.rango_min if args.debug_mode else None, + rango_max=args.rango_max if args.debug_mode else None, + nivel_confianza_min_similitud=args.nivel_confianza_min_similitud if args.debug_mode else None, + umbral_correlacion=args.umbral_correlacion if args.debug_mode else None, + nivel_confianza_min_correlacion=args.nivel_confianza_min_similitud if args.debug_mode else None, + debug_mode=args.debug_mode +) + + # Paso 11: Exportar resultados a Excel -archivo_destino = input("Ingrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): ") +archivo_destino = args.archivo_destino +if not archivo_destino: + archivo_destino = input("Ingrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): ") + exportar_excel_con_imputaciones( archivo_origen=ruta_archivo, df_procesado=df_procesado_actualizado, resumen_imputaciones=resumen_imputaciones ) print("\n=== Flujo completado. Verifique el archivo generado. ===") +print("✅ Script finalizado.") From f21b46719bf795c34399b43202ed3b77137ae162 Mon Sep 17 00:00:00 2001 From: Delpoo <157638420+Delpoo@users.noreply.github.com> Date: Wed, 16 Apr 2025 18:41:05 -0300 Subject: [PATCH 4/9] =?UTF-8?q?Agregado=20Diagrama=20sin=20t=C3=ADtulo.dra?= =?UTF-8?q?wio?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- "ADRpy/analisis/Diagrama sin t\303\255tulo.drawio" | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 "ADRpy/analisis/Diagrama sin t\303\255tulo.drawio" diff --git "a/ADRpy/analisis/Diagrama sin t\303\255tulo.drawio" "b/ADRpy/analisis/Diagrama sin t\303\255tulo.drawio" new file mode 100644 index 00000000..24353d76 --- /dev/null +++ "b/ADRpy/analisis/Diagrama sin t\303\255tulo.drawio" @@ -0,0 +1,10 @@ + + + + + + + + + + From 7ac73bd8a1c01dcfb09a838dd2b0fee22a87d91e Mon Sep 17 00:00:00 2001 From: Delpoo Date: Fri, 25 Apr 2025 16:49:34 -0300 Subject: [PATCH 5/9] Imputacion en excel ,imputacion_por_similitud nueva sin finalizar --- .vscode/launch.json | 2 +- ADRpy/analisis/Data/Datos_aeronaves.xlsx | Bin 65069 -> 75687 bytes .../analisis/Modulos/correlation_analysis.py | 6 +- .../Modulos/imputacion_similitud_flexible.py | 251 +++ ADRpy/analisis/Modulos/imputation_loop.py | 42 +- ..._imputados.xlsx => Datos_imputados11.xlsx} | Bin 50391 -> 50392 bytes ADRpy/analisis/Results/archivo_salida.xlsx | Bin 0 -> 60204 bytes ADRpy/analisis/flujo_datos_adrpy.md | 51 + ADRpy/analisis/inicial.drawio | 1391 +++++++++++++++++ ADRpy/analisis/main.py | 30 +- archivo_imputaciones.xlsx | Bin 50354 -> 0 bytes 11 files changed, 1751 insertions(+), 22 deletions(-) create mode 100644 ADRpy/analisis/Modulos/imputacion_similitud_flexible.py rename ADRpy/analisis/Results/{Datos_imputados.xlsx => Datos_imputados11.xlsx} (92%) create mode 100644 ADRpy/analisis/Results/archivo_salida.xlsx create mode 100644 ADRpy/analisis/flujo_datos_adrpy.md create mode 100644 ADRpy/analisis/inicial.drawio delete mode 100644 archivo_imputaciones.xlsx diff --git a/.vscode/launch.json b/.vscode/launch.json index 040e905e..610a5016 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -48,7 +48,7 @@ "--nivel_confianza_min_similitud", "0.5", "--rango_min", "0.85", "--rango_max", "1.15", - "--parametros", "4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 25", + "--parametros", "3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19, 20, 25", "--columna", "Stalker XE", "--umbral_correlacion", "0.5", "--nivel_confianza_min_correlacion", "0.5" diff --git a/ADRpy/analisis/Data/Datos_aeronaves.xlsx b/ADRpy/analisis/Data/Datos_aeronaves.xlsx index f8349ad5c952e52fa9581cdcfa4b8d544b46237c..3d9e9464c40a2869d6f029d6742353fc90d8e36e 100644 GIT binary patch delta 62004 zcmb5VbzD?$*FH)kA)s`ZNH>CXcXvukNh#eMl$MY#>6Ff)o1sHGM!KZC2RP&R>G%De z-+9g-vza~f8TPf;y4JPgzIQnkv1lBLNKFwD2@ehh?im~$95vkZ$k*mGcsMvmjA|lU z1YpT=kpr(itIi|LSCFpo-JCLR4xwv{J#)PeoCRfAu!W%rTX4g1IEGCrIvUNS^B3v3 z^M{+A8`70ByZCadYcEyM6Ks!d@j*mU+v@wcHvhs;P*~A-&7Sroz*KtL6>HP9y4} z?Un2Mc8bl9NF)^Hx?hq#^a_*t@DxK|w6iLgZ>KT$4nk!-&;$QD|sRcfwBtuTzo`BR*Nc-8*Wc)kQVEgrBy^-+w>R63|g? z=qjhn*Fbi)MB~xOdZ9jI1Mf+4m-Nj+OmOkIh1;W!JveqMf~_vIVU^-K#ZTcac9&N^ z4*seud`s`7)=p*smDKb5k+X@JR_lBucaVh*O(w!jY`Qrbqm=b0L3bQA3oJXdggXsO zh;c<)_OlPo!Wz>9k6u45fn#Ei`eVMAs5 z&?)aNk)Mg}(--jhOO6J(4+02rHcW0-rH-KUx6WO7PVlv$LFpOj^#i7|0;%nEsy-t; z>Bjle*zE{7)K4>y6+iCO-E1}0fogHP)%38Z`^Kl1R}xWPdhzpgYXQcFSi$Mq+4TyW zyOGec%VQW^b|OZeM#)!J#ch0tu)Jn^VD=uMNMNMLStq+$pR8MgELD) zE5Wk-rE55D%XRR)J*S*R9H~4U;o1@`;3Z{ucHQ|#O6V#h^}G-<%twdYjY#bI^ycY| z4*#oG(glfms?iNy`^6v+c?X8|E7)f$5**Izt>R}S`OK1 za`j9px!~@Uo`mDyrKq{blbJJBdqII4B(q!LV|)nOW!Zf8!!v0U&5c$XfgG4xKjSXy z7vVZ$bk@9Zq@pX~1K8!ui*3SzTw*8upXdC)ObXTmGPKFUVjOongmLjMQ0l(mbtZ0d zHYM{(X%`b-rs$z5uvj6FZY*>s@yE;PG%?GdNz$NsneNHph z$CuqC(*W{i&(Rz&A?M>Aj|p8xa>0+(d3jUsdHpoAZ{^A!8FZkm!W@grc5xn>Fc%eX zZDDR%3wBIw8)wi(_(2Twe6){F>&=oFLy+e3paRS(nL@{VeOKS zy!t5CBl2hyqyGZ$u%ikDthNN3nUi`StX;bDvG|(>mr&Wvol+m2F31j1FpbLfPhpEI zF4hL01|9OCy%XhjAQUVllxZivGqx%8Z+1Q$c{fJub25{R0lmD6OH~w8KF77h`fwS1}1L1W0%rn1X zbd6T7=g0!m#I0{0VxJ^e@%Rhy`-+lxzUW2I49aInT1++sUc3NhsC9^6?-`V=VXa%I zA!lZc91d_FChpr22*0)Z-4vbbrD(l1t~;!~XGi>7Qt(kUx*`V^++PWQXek}E_$*Ge zo3EFZRg*@%5mA-pgwPeZSQI#FhGN5F8oB(rrG4jp|~bk`ogCv+r&`d(}rB z$mO4ECPLSf%qzKLJR_ypume!k|AX>d*VU1G~r-tI|8>w!|{V(gQE? z!@=#A!^085#mC;_$DcfZ2G~J3@IpGUuP7ti`$4|p@i+~elQmsL1xs7CG?etYpe=cY zc-MoD;{g@27%?>RO>;$oaj$WoSISP;mTRp6lM*_NITfm8#f>9U^(uqcPS;;ve5y0k z?nBoXSHQ|1JRI%Ep32Y~_eL}&d!;2nM{2PbzGK@S7-y?HtG1@Z251jrwwKfw*&(yo zeIDw@@CAM+Drx1@DNVn@Ox^k1qjBbdmS{_jj&7yau^eWQWpjVPWL!9pWhcD5D{lni zCXbOJyi@2(oaW+VOD>pGXeo0(h;+CyjI+>q9{M?jl@y>)>N>fxz@{H?uN z7UxKR>zmTf1<{#Ce3IzcOTvLs1a!6$n{bDx<>+WMRuvT&&VV#Jp)Z;hRVC^ectwz&USOO(f*{L zjRbX5Fsl?0lC@uf9vdL5AB32#hEBhp+BUtHWIO`l+qeK1t;!ygzMCK^qXnGPKB1Sk z2e0K{%9uI7Mrqtw4#-Y@{z}ZxNsYme6!&{?&{M%{Az(14=ObPQ{w2iO6@9;^+{x$> z0}k%#30BfQJ=JB{R&F*{7d|O0eGat4J}66YcB;crJGyTNN^O$~O%K|Ok4`ggulW)f z70jg=ZgjGQb`;%EDUlQLOi<)wr(-&x5BqZ_p(g$hXSe-MqEFYMPQW9PAM|7x@VlL3 zzc3L6c$zOnFDNf#DE;p`I-qywqWz-4{Z6t8<M0DAJ2yPcfne>40<>Hn}* zRQW{X(l&c@bK9S#;UvGub}9CxF~t7<>3T;d?{T9D03J`LREcLiw9q1Gvxse!4!9+Q zZQYwicr-W(4~(vb3)%^wSj4 z6~~bQd^JhNrZ+2N^;0&A3fJ4oh3J;i9 zKaf7{y085E%pvuS}SLT<^ts~1ko0Sya1 zN7ic7-gU-w<-7{ku4dL(+IgqIQ5^4-$*%( zI4??wxZ~7^7Ju;)mF2#C4-{sOPJd1HexvDRwYQ|C{8F$fpEnQdHRvGD$U}8B!hKN3 zC{FRn%PXDF4m2NUAPen9g>k`Co9q~NwK(~Or1&WmtUyXrnU7iap@~R zbnlj?Jws>tgkE~}B0=xvwBAcRee)k9c8Wjju7}uc_f+Z%$|_gJvt^SnDzolCZA=|w zw>+F)?`&DszI6aroB-&lXpG6@_0#Ry8oP<;tB%L>9h1kqOGq-d32=Kk-0^s}1pyxW zkKMgT}v!ofuMozr@Q3Rxsn9x>Kn&U3R zv!m(7%f<=Y-VEbf_2V~s+mfQ^IRm~oAtM_q<>DQU+DC#d4U~ppAt-||uZ$n1VhECpuBPh=?-T-bETJ|t9 zM{|A&;X1AdNJiaDmmNL4)fO*-mbG;yfLUz65& zUAz3X?AnR3N2Yvgzju`PO-?@iL9LmB4h<4DO8<#H~y5_q7vh(o46JFqf zfXAUUTpg_i6|(hg!j5}vy=`prN#h^iJ&aV+obL--`JZ!lgpW8K6A2vqZ+pbvK9F;( zz7+LH^Ia2`CV2U1%ePqXT}iB7WuxKebeakYy41Fvm4iYX zE_5~kcUH%l4abHFJ2yzVamF|#xw&-q{cM;p-9l}C^&F`JV})B@Bcy`QXVj6_@dSn6 z%ug}x@g?{oY1#5O<5t_SYx6;6R($w~|5Z{`hP?`K)keiV$iE6@RdUHiik=9;| zNQ5ohc~*x7b6SEoI0j0{^#u0W9>0TxAAAI+QXbwdayd1sCT=G7JWP{Q9-Zr+K41Eo>de5TRY^+sLb z?ws;*_x_|dhR=2^eCZ*WKcNz{LVTUz)sZ-jJdwoED!YTi%Qq&5;^V@M;WGz(rppS= z^{t7$c4ll84kXJmWliW*|OMp{9QatZCN^N2nwkS4Dko%WP zAxe=`?;)x0e9moO-w1qq7;dNpZg18ga~+Sj8%+)w(j{;63f zEvfP60hQs&L4Yeca$DB{6sRnowULTyr7o7fxcXwnY}Ao8YK1jCHzhbs0x0vN!*Ael zdqm0*i+kh)qwbPxlh#kqpd{E2>_6poH9>CR_%&{ zeMx=Mc&D6<>|}RcB_I25jmE~)vCfp{#VK&zxk8y#Kg$aa*1vnxeu5z0ycT@u@1;of z@!onUFuR|xrv8t_OE$t zfV}VpJH;fpXWe`+6G&iI%$P}v1x~}*D7pw^9=`Uwo)WctuCw`9kVhf#30$71X&6t@ zR9Z#pVE^<5Dwhr>ekms(k1(=<%wI^cQhnHE5F`+9pT(&UEH2NJ%b4MGM!j8>oQBVh z#&P>x?4n*9x#AgE%q+D;wTGoH|Jls1m?aKAB$4EW3k}w}4)B3!B>e4&q5R#p6xp^z zv{}kXywQ%D(Ow%bTfxx{T<~$?zV%O9wugHcqYY9nFM+nD0<^u7W$@2_eL+Dk&3>!B z-h#zEoE2Fui=J{~RqInn3ON&`$z-;+2cl!?H|<6CbdKNfZw&AnR|x0vc4Zt^P+AW> z1xVoz5a%eN7k~g*7t|PzXb<_t_|2bSw~XzbL}y}R9RTn>l6lTO9KreQ(XJtbebmC$ zh*(7#p2DfWT-cl`Idf|BAI0rP<8X$Za65#_mm2wxtA9Z%q{deA{#3q0h}2HP~}o7rK{Wi!W1#AvqRZ>^SW29zHYzl4U0PAHtu(MLy&F23!o zq7I4Tu#Ysu#Y{J!XXzgyRB*vGG@a+_KQI>Dc8D?~#e|s8WA$7Sxp!94hGcLYM9zG} z2zkc|D@Q#r^Pb<>GE0;+Tq^mTkX!4xEQZ8<3O;iHf-f8@ezuR|uQxPFJn*6pWnFDs zY$5Q%0rC?FVh^_r!jWsixXRc7jn0X%dUS5{rSA@otQ)|TIm)(0*l4TtX;s0!Sc+G! zcy3*#IWor?k0Xxa5TkF!rz`)0Hp=k?ug9w3pd5|rZ%7d)@)>+LmS^<}|L5@**6jK0KlM7t0f5JH_>2x|~i&@l<~AYMtOmDr#rQkOq1gLecKHSlOd zEBxv+<@C&}4JSWaa?2tW9!8FB+*V=Ux5t7J(I`G_e5KV?+^bTRGKx?8qtO^V_H}RG z`^JY@KgN@D=F)|vSg8E0=Cxm7r3G%Rx_&_4+2iqBAeqPs>|9fgZ4V9cG4nry98;5l z3n9Hg>^fa2%HnrD?%b)e>h9%_pO-dyf1C9`TWng5DZG6x($}D0P2t&9+h8HQ}F+tvrc-GJhyo87Q=tIB^tcgS#Jfuy^m1 zY7>&nuC0gml~6VzvI~r#zZ8U$5uxzht_PT5r3eqa2#Mmf|7@oDxNrV=ZWW0$yu5>% zZTZ|Ejg6>tD%tCfJMt84Q#uJ;TFo_ks-b|oS{=xfq@PvWnup#l)KaeG1rz(9k`Ym7 zcE%ENB=5os!Rn!pT~*8>OB@H$X45|IF>_ikM!{k;0p8<8y2W$8b1JB`HSQ8Tg~84a zs==;VtkG&@84+PiKKd;>G3_j7UzwQ~*3qSPA2d45RIlUPYs|*4ifVw64CGz^=0WO= zUtep?x2IUG&c3}Pzx2Fz>_sEc>l4SuRjG;|N+{?rvrJv+_&COHeMHFe?)$rabOt-n z!-F3VRrdV>qqOb_36``5Er^TrEJ?wP;=Xe88(-rSnU&OD!lT)+3z-UDQbLl z-3F5{UF$HGM?`*a1T2lb=ushZC%_+aDrO73u%mh)kn2F5{84^YnxTfSZB9s!Tp_=h zNssJFGgm&!mLc!SIyPi3R6Xag4>P01B(<1F>M10WAze9>vuu|OszTm&NVTYQotd8x z@-noTN9h3(fqJThL&!M}!p!I~^V(XB>FL%5J-wQLl?|f-?d*i5Utqe$Oa795)TfH_ zwfnfU*qA&w_E09QV0Q%Y!Su$M5^1@NSWi|`DwfZS*gG}}bo`lpSJh_^&o7Bv<|L}e zb%dFOZpyuzWrynbb`3@Mkgk`xI5Q5L%*&foQpTz-JV-*{{JiL^)pazN#3VJFC+c}k z#0##{k4^>7?f$N=2<6Q_=-X}O)k=IsAaE6V$RX!JfSD|&pxHceDK#Nxi~0QXmIlG? zC=&1D2sO!=Pl(@`6DZSG`_5SFDATt4p!jHE@(ckNZ>(7vQ^D2U91!S5K`bCwV{wMQvwo);*KMx88@FBb)!3eNndB=C zOj+N7@${FbD(7EGR__;1BcYps-)|AD+yhA2NzCWfEE9g@@LDRGE1hGSutG1qer+Lm zUdIl!fGtl#xThq`?q}6E2_*i;F1L!BY-S~pv(Yk}XT9kQI9-X1gc0`?o&w2Ks^j?c z1MMGW=*xTnsK-v)2;1thsf)bTZmSwPng}-w^q%sOk>=I$ktUujlKx4D<%Pkdbp6JeXluC%HJb-31F zzJ%`~AOg7(A;ay{A#4Nx=Y(GQuY|5@_f|cXBuCX0Z@qT;BFXUO*F4E`XU=q|Xz_|) zZ}lD{c)Q3xO!cc(-=_!uBHQdl2@s*hX%-d5O1uWO(_l4WC*OYxb8=M1=JdD!KBkjD z{o9ZtLuYF;v&-X5vJaRls@3l|?L`x)oO0^u|Ni?#)8;j_!dykkr5kUeY;yn;-~Y$y zr5T31==#j&Bz(^A)t#OQ$5D)sV?*?OC&XRBq~)#B#H%iP7gHpY)IstvKLzSl7B~@> zRkytD3~!Ach+GA9p*lECNc8IJ%F#rnoWE26y5*P!?>mmGO9dSBVt`NQh9y3dt$J^` z*j$j4&)S4l!#%~CbKsnDSc_%owguTms_bn!1*gVDAlgh~`?fkCZLhHlYjrw#F1Q>C zvgi<6VxPUQZ6h(Cf7a7S#M@QH7&5AWY{uKP@S2~A9nsKqISC7+zC*3hj%Dh3hy$m6 zsF@F@VAWnROD@n)_NRig-`|Hf6jywK)7cobXG>?b?dWmsYB z@ETk>ha)%@Zk4!dJBTC*+>9G1`Q=?6bR&Fvb~U4W(Yth|%}#YfsCt1cSxHY(ZxieH z<=CSL`}v*LT~4>_p}*hm;Rs5&&d#r%zkJF_8X9y{9o zH7)PV6e`fhmCvqQt8aV9#9k@M>Tld825rapTTW^^ncBsu^A}*|y^||@%GRe$Xa_bv z6iyZCjDCmiqTeWy7G1m^iFL&~a*=05`Y3QGJ@&o(&hAb=%!)MHI6)Hv=|HkQ& zA>!?;LJLvmv=1@+OLAZK=n#S8o9!`ygeoofb(=KW?VTVqYs?nYdHfznBKLld4-3@c zldk-IfpJB~{M*=g!k0swK=uJ6is_@+8olLKk#_vJWFp;@Ua53T1sF;BlOm(WUhoZd zPV3hzeCn>l+)GIW6VKF4x-{h|!{IAVd%f;SY|ROHV<7iO^8xv5zvEw`aB-Bt#aKmQ zPuru^x#z;n*-0hm#x7>A=tP}y-_)+Al_ReE8*;S^`n2=mild)jt)9eHs%cWp=E?qq zac>oVNI9qd7c)alh}k?v57u%I-IB9D1*a%Irl7?{*FLO~ z*zcmBnNXjTq|mzeTV9IDAPuDidKJI@!liQU-S$!Xu_w#36!Ox^t(Mg)$M)4T(q<(G zCtBbiMFek86@LgThy8Aq+6I?U-T%g$lJKeHq*I_VZogj9`kW+S+tWKQ!^p<1<~Mu!Na% zgr@Pxc}l>lAM} zu;Am#p0!qt9_613X}|l9C&X;|{%T=?{UtrtIhRF;=kDYZFO!b74it6HHYs*gs)Cpn z`)bLw!|Jbujq0=?z%PI@bkaNNWh#I=$^LJJS)hA8!!&Tn_949uj$$K3?^Y8r>Xx~5 zD$~CUs@&x(Uahf1HtYfK+~ld*?tN^vF7<2QA9?{By^HwXpZE8MgX~?nSRvnEXYq=n z=ikp56C>9=IQiq*)Do0Zwm3LjS(2O1|10!dSPb1dm(fQQcC8{AuJF?^1gY(Jxt;@V z57bU}2lV#;v%=smCE4xYeyA7;)}^>QI~>zn&T?9X~ruQ1LpUfPO#E;CuM<1iNij^QsAG&tn((a z*0fljB?5I-v4$LS*vFWmVhWniqxFmtx&IRip6|TOdw+i{2G0nAZ|jVERhWrvOP)`~Ml}djhMi+k}uTzxY zGN6a?EQbA)czQB|2>R3pECPUFI#Sz6Se5$%Xkg@~n-7R^_t|6P?_^%z1- z)3g3P)c;w@I{mGZ?KvWn;mj|lQJuNG0eAyMbV%@|vlnI5kv4|B8~Sj94{B9i&T-{z zrax~zQxIXad#vsYFAqcjt4tubR2m(1{XV?D6;jJ{mh>8B@wj;(*6Y87J7NVaf zY`0>9Sm;?+;3{YM0@Ygc6j6GA(J`UQOXF+nN9bG4ZRp$cb-xYQlCtmkc4v>uFo18r z9FnqoDFTLW{_~&=p|NM7mkcnm80GSBkI^gi1sc@b>< zBcgyK7#>fZgc@lH5U$}V6Sjvkwd!88&IlFhH z9v@f`D-3Gn*fN8(n5M zT$ED78sb*@W2b-hiu7k@KYYk@&c8P=@oE+{z|PAn-xoNiw9nbhHc4b0`OUG6VSR}O z{6|?n9Za6Npu;aHGb+qg968uc&9Uh(Xo{( zpm_awOPxoz>}3Jz$>8(B;q0yYhk-&1Vq5R(A282(`>T*cSUK&3&FnBC2~~hB#;!*W zC?)x?jA6PmHK8K1Ft{VcUnMpt-`!i0((qTp=tgvPk*8#KLdTxhu~l2Zqv$MOqe6{H z?|ZJ-p51C&^6VTH{d>3MKo%v%q+g6Z^kn_y+hLh~a?xHc%8K|hLsh@puoEqc``J$w zit6|71S9k9-sUF4_3?l;=)5VTwJJW@{cK3Z7&1tDAL?*e>fwI2tRgb+MR~XxpWzFN zXLmoFQE6Wo^bkx`$5E=K-wtmR?@z~99&fi`Z~FU>(%+EqKj>iorY)C)$b`clp zf>kH)JN=6nw+9-c{TJ+8^MjItUhnB+4mZOygzDq1-Oqlh7+1Y_PZ^k0FJLRovS`Vg-w7E`LJd}u;#qh5wjm$+kXF#ko?i7}^GAkIZTyb=S+|Pu;vlo2mjk`i!De|z zYi<0s`&pODKY`S2HZFJ_8J?A{&j9UrR`e@}??2$zlDp_12VA=$2*{%Z?jtJX=uC`> zX5)XrKio(Bkkg*)=O@N4FUBEXZ{F$!E(Fn@6!?MdY0=YlH?yEVzhozL-`D@mMX?z| zpm=)svuTygg~9){i~HHE%JRaXkKnB-{okl<@*mtbkftZB_xN^!xC@{2^V#ARl?)|66 zkOE&Kz%SCTM9h~}@R#SE+gze2oa6SS?f;eB%3G#tZ%K<2J-%OaCGBV4b&?RumicAt znC#rhwSDvFUwON3l;fARVfX_56w;BW)-j5I2CHA5cy)Q;cy;UGw7*jd*DX1+M^P+9 zV~Tp$^(uYoL6|`74pDwaYBmr2eS$E2%yyWUpxHcs zzfyq-$3cV{A7+aMku-LZSWErhmtSz3=v$Cmf=SpV?|F5@MDc{HoEbMMBPh~38o|0r z_|F3fkrgS&{QX7pY~Xz>*1yOrJ0LD8=E;KI_w@kL39_N%XbMQhy zT}KXIy&&4AW$lN|99MW)^KImu2U_YYdZ>4i+WG(LihsxME@+zec3db}U}tOq)@a+^ z){mR>lGpV86hyi<9lzqF9Qdz(Lc^PI(_*_DQ;pf6Vq9rC8V{eqlS+wqK7!7pp<~+R zVVdr9ZYCtcHA`d;-hQ!sZR)ZkJJu=W1Sl8VyVct4c*3wbm=~#F8TsEPV0go>e{UDL zo(ituw^ABlMS>O!u#T$Z!0GgF|k!_#z4%be=|l&DY&3Q=#%;D@04Ok0*dioLv;1sgM% zVa>Kcl_#(JDDK*-yXLFANqvN!OBjqpGTb7^2mhTG^gfm26kpE=wNl zk`+aXggJnw8^lNFOVm8nB&Uj}fR0x9XCJ)*3^g`UQSW>o?_cP{_K*#`yif?wrgTgS zCExN$)z5htPye%$Fapy&$|p%9_kA9jH1oe$rEE3cT_#~+fsufKfES<0ZlEEh;T>|{ z;=LboAITZw6<##{vYw$A3@oS1)+-AvbM_`a+&?qWKb7MIfOz+u=j!A4r3T6XqY9`P zbLtAfg?V&FD^FCBC;;Pxg>uT#^d1dX!?bCGi%dPkMUG$H-;m;4N&n{hLGd%2l7;i0-enhAtaVAam)Z7mVPvoiH#B&F9g3{#Tna2&>B1u6n#J+9~!!jI^9y^jF{$?VJ39-NL6vT~p|T^yi1^ ze3P}9Eb_N-P1FNhlh+i%-*n^bV8ODE{juqexPRqp=gb{KHBX60*+zr>N@RV7i0VI z?}8b{S+|m1)~ns5=lj-1tt)(Lis>zdn=`QM6GKzs!Zs(e(Tmn<+60T}XwJH`ulwsp z)Eq0Y5ZO#`fLkT{;_l;V5xGJ}ry;wG_4Uj@s&VX&;UTF9K^@_L2FU+;ob#vDj_;9B zrzzd!b?<8Z$093(9{d9eiJ~b?#+|oN4SJ03;MwN<17Pf5{S&E3I&4jk`gj`_Ev@h; z=MLx9^2-Pu6~CwNEyB-?Px+$geicfKDxB1-?e;+8gXb@JVqt4FYCJ4ufKyYX&!?CbR|pQ|PO^#AgG?YHjDhD8wkZ+2aO4h7Te zWV;oB;02}2<~p_v8q12&BRtUbh-kD7ht$}LT)YWoP+!JjqcBl9@Kkb~+(IfKNpFmYtcS{kjFgVxtG9xG;W@FTw(~rMk3J54WYCOW0I(O>Zsg zO*L%JB{;Io>izfLH`8Kkp(>@ax)A0`ob*yH8Qp?6*<}o`baW6)$L-G!l8J!M!}kqLZ=z7C zSO^;#V_)euM!`bNB?_|a91GFQarOxc+7)69GG4apBkjvqYYxZPsO*GZWgK_2Eek>p zeL#kl%gpu1s)oNtl)qfC@&v=SBQq$|+L9UdiooVxZHV33wQGZ>^} zPYMQU+Y5q0y7s7GcP)E*uzM2NIkvErXDNS|O?jFktVm%!nRjb9zKpI&2r$rM;4eUV zrGPJIM9wfHFqv|(vnQ77;4ugB4t*Tu4cu9XjGTuK@6%L@E|(XhjTHNLQghc4WF zpBWTru1Nvp3Oz~vfD6|^d|810sshVXL;VOm1FyTngy+*_ewfs?M+6rN`Nu_E6luZ5MQkQ8iD|_CGOBJ8SXC_WEoaAX zZ~9H0=w2>c`6>&dS!D8b+7NoWfhsumet1&&6b8f-1|;*->h!o%0>+WC1 zwCenTdqpwGs2$Kt+tdVu&Z~=BcN*Ee3H9lf}!sd4yKKV^N9(e;Tlp&BWcIeJ6y$$|C>Y`T2*QTEDWwFP)$E5hie?r6Sm;CBt0FCU*bzodBdxE!Gl4aue}4i0cmw-eG`g?g z8nKXZt+7dqk%r02sF4;j$rD#t&7+)e%cNX8vdO6NU*q_HXKF$sr|w@=jYZ$t0|JWV zf?eD?HS_y#BUoO?E-S|_RJE4LnUS~$*}hV?uuYSj(n_;R9n{TFH)J}p&-thb2K^Tv zi@=NF*!^3ih%##2X)?hvYB($4Q%Ng0R?HibpWriAy18}g<^!95PV~2Zr3qZLj|&Iv z%S?3gIi3r4|HpkZbEUsyzI;!J-tb>3M84eVGx^xRxqx1J$Sx6GEF$5%2C`giTskw1 zEWWVM-u=PAuM5CVlK4$x!ASEhj9lry49prSA>{u_R{UM7)*()f#iXJ7|3aSruNMae zo5PGvD$De}6mj{j#+ng8{p^3@rZ)kgWdOv-$=&5F2;8bT5p`E}3n($8+>W6ul< z5WdmS!N{kPzquXZkn=awKfnZoS;M&k%O(QYbeXEmvO5&Ij`5DbE6mCNr!v5V!B^Uf z)KFMj0ix05{$FSm9%CjGqsAgigt8YjU(Tys10H5@&5}Q!cL9Uc>?^QtA`%||az4K< zDv$ITpU^RoJ+Nc^RyDSp=iu3tTw32GPi)~2o>8v&$^rZM%py5kL#DZk|8HH6r2*5v zf&mq)W{kJWB@ z$LOHAwU}sb$P9`yhcJOM%puI6FXn&pVPyY_H>gY6`h_Oz-c3jveG2&B?v9em zq$zOt@m~oeEX=;afc_O5q4FWFyb-(Ll}Lf6@b4C4`W;!%?dE8B3rQ#TbRQW zm2bn(uP8vnZ_AkAdwj`w$C|0r8fw^w+cjgN36A(a_+ zCCjlt2Is>56Ke`%Fs-8zeK@txb*c2~-fDJ;m}47fR8@b3{*B-OkX zY=Zw)b>y^ic$KO9Q~=wxJo@475xj^{$L8pVU-q*W9l{QaOVW@s5v+cXso@Tcadp|` zL5R8h5A%~(Z}^>p#uSJhM?^;_o^brr;KPdG^Cv!219+C~w2YN_(vHa5xJH=Lp)Y%1 zc8+tyd1WKe>&0??Q%A>_V;|f#8nDY#mEMQ#D*-52rR z00K+(LBRT5an+vWNXaYWWH^Zw>Ul)EXUv}FWL;6TbTzL`xakK|*bM9{-|0)qaU+FY zF%o>oYnmk+m`xC?J>7hDgA-BvDo#^`wFc)5vx`!#gkh%Xd$EF{yf)r?UVSg(&LGKn z`PJ7q2~7+0IlPQn8EUVzUudTDAmb%2KUHt-BC8qg%;UzKfOSS1V;F|Kuly($? zQc7^+Hu^~}XnOfv!Vr_Jc$vwy1D_W%A&eY;KgW9)5gb00vmqU}1N*XYmaUJ;wLt5= z%+XJ_61hz?C(AM{eKzOQLo)aZ{}k7VUCer01^geS1I)-yU7tSA3LI&JJ}~Y#`M>pr z;&1_tG`Ka?gd7xFy?T=7AreC)Bx_33U;7>;I6fXp%4O9~1arSF>MogiCgGSwb*J`f z{70X3sw7pv3CFV*~PsGQ*q>++lUzXMb1UB-*(@8OJvRquG+r?+$exZ5Kr;1IfIG7SMvJF3=-X1k*XT| zWM52vDOYZ{p!xg0S1Q8keBnGi6|nU!p-+h=t@L+>iaMl##biXX8;FS{X3J32vooN{ zf1%0FDNP2F4pH|E{~B`dNb%C&C!wV4=qAegz3t=JWm8!fqKG7KbFu~kzy4Qf;^|S9U zs2IMOGsv4!swvG2n|lgkHyvl{MMf~@Xc$RMy+it89sk4B+;TT^aLa`~ z<_dez!Dp$>K6L-ly}`gkcf+=)UFJ{{@N;<*a{MT>u8VVhZ$-v;eB80*dT7a~w32Pm zS~_ag`tC&So+&q?yeTO9P&6@iukBkP3l4U7*ds>#1=c25i5dJ&}$|Uf9FIN=~uACm> z9}j|Z$e;kaW=?rBI1k1@p5RZHI%_ccbOsp1$=_&bXB>IYjT6msqF1r4&Npd3`B(?Q zYtX|RF{0s`uC%9KyZ5!TgSzahX_$6xeZLXyaMOv_Bq>-=`MYNfW|pt;&Kwp@@U@${V$7?d}Xkzp;8{wE@9ID8B3#Rx>3} zhn(XVNsTK{muN2l2LZqj?ryGa^JDbR}@eNf4QWu1xJ%HF?_NJcn}93szA z2ta_&OcJ%Ql5MSS?yFT>^mKBk)UUd*NCUT@ud2isNwVb3y;+fj%BfZt#pVw%5q|R4 zFdR?tRPCUCH2r~&Rq_1$N6e3HVB*4+kLH*}F;YR=_%tNVV-q0EahIJD(yRhVKxd+u zQI8v`dY|@(Wz)|3u8(Cuh)iplh#NJ$?0Yif26M#&?E1}LBBa&P1j3u0xWuAF_6z{N zL~80gxJ#iT#Z4D1LVVlj{DgkE7B0{M_nXGP-N^n{ZZ{OO0eeq|T`7LTpVS@InQPgL zf$2VBc`1VqUDU+Rg0SXWfX4fAizCsizQDM}~bu#^?6_?IvFl{V1~V zBDGh_a9gIt!!g=Bm!4yqnf^!MpVib;Ylhv_CMdSxDMDv0tlFc$fM)-w3css)<@nmE zO~dCPjNC_Jats)Q-YXNpkJ8{Ek+>lt0!t>KLfI9&^Fd7de)+_M*mY^*VM&r4}`WW<;A>4^K zM&q5t`U&(6v;ko3!$@Q!VEZwDhP(fSu@5Jajfd@L2W@msKoHhK8Q7m`Z=RGZ|I|HB zg3BN*YuAfO{6qH@!h~;9h`nYTO{%|6adSGLDA3c6Z|~vn&Dk~RS(Ox@01Y}HI65p& z@R%NR^9`X?@~qEfKg;611b>IcDIUpVZl2+{i|{d@$v&3mdkLP7{S!RF$J|0gHEcij z8QY7pcB#NaYQ@w;T*cIbH?vKCAOko%PmIPRiS>FszXxc;3#0Lm#QH3rAIK2S&IhCM zL1O(H`o<9MBXkt75U^0D{1&lK#sKqJ-!L06^+dy3l+|pG6lfuN`JR2$~uSs`u(XS ztDC>a_mrrmF(rRGM0i5>i4eaCSx7KKkik)fAlO*j9fpvu$B1&^x>7wJQF&lKy6{yoN zNr>o!KeM5TqBDGbU$oNWOI(m`&g`#7R^d%hu)e9;6&~yhMiq4cctqYl&U3%@3vm;9 zE8dDGI*}Pn4maw7EHaO!DDsx@5ApYG8a@9TGni>E3q;_x3%dV<6Pl=lA*smQlVOgx zInGS}*vl!RGVJz?LsmIRq;HlGKYAM1+ALZ1w9)zN*ooEPiLh;@f5On<@a*$AJ7lX4 zo{4Z|D*I~lke#+Pe=WiX+F&W#L#_AzJV65O%jJjm$+%^YMLFK zXhY2bfGyc<-JFq#aYGw!OW*@4xAx~{+saY@3p-FGF19<7uB`<&^PE<+N%>c2(Wa3K zW7^X;P>yooMaR?A0Mt8BJYD40GTKYA^M7|che*6ZIS%b){x+^0;%CQGkz!*Mz1+g< zpcykl3vcjKK2OU0zG$gvVt7}X2x+LF-Rg@3u%I=^easA_*^*PlBmtqdQc^|;`zX0| zAilt>Ivto>F?rM^5xtrxMK+l?zCW28LPpw;#sD!h9>mshwMSJd3S!tCVu-k;U+`q+ zXKwB;s`yAE_!(nP*BB1(8)0C6t*;UtV`w0%?jj;dy*SQCn_{|eS}t~uq4%S|KD)tt z009(cio`LRBZhRS2}#4e6D5^-^iFL;->;N?5By#eX+|7f)gZ65=T;XTWvWa^!Ec=SMy(0iSJuHap+cFI`}yc0Y8_{z9QPvy-~DP~XX z{ww-A(cvgT^;j&BC-3H4Hr~x5e4gt|)=OGiqE<=be6b+BKsuwOSG#mZv9FR4e*r)2 znVs^PY7IXX26UKYRD)$;m$1Qdun*V{(y&r*YA+7WJ$a52tOlJC8-My*BR1yyf)L$* z`kEushEcM~W9Ct^DXxG`;wTGbM3IhdPg!caSFvrBW||Z^%YBQ`pI%IA?M7RQUrwQ1*0k<=Aj1!goeQeqvpkh`Wv880#811H|-Bk z2Mz)+&&{h4jpV0Onl|7m`A_i66CmXEXKTPd%<%asOZeq#ONp%g?)DE0+4K2UaMtq< z@K|xH|6I7H0L)oETkjc;4-9Xk0k=I_9S_z76*YEwYxeb?0j&#mJi5G90FTR2rl*UN zaN&tT-qMI}o5m_pt?sA@l8(c!hR`4SEN{sjkIKn7!)43*8a+uSCOuVNH-;=w;&_M2 z4pPHKpyu5sgGT#wqSQbILzqsBuqosz=F0prMx$oZ&XwQ0Df~&XWu-6YzMw*YeREl5 zdhF>v|7q~Ckks2JN#+g;;Pe|P!?kdUq|r=fujDs*j z!$pAR-Nqk!vTr&NyTS#?HN18Q8d{Ci;chzZ;qh}!&5hVt7Db6--keR{k2Z}C8pvCp z=S>ao^OANiMWTAbHW3zkx4ytIcmXmW7lsbcL_^`qBW{GzcK35dV0GN{gSZ>m(V3yc zBXLcL#rIbuInlO91J|##73yy*ExLCrrH{`z3_xR|aO)6Rmg-&hB;>|Zn}_V%!|TvY z)-nfOhFwA|E_ENcAToGVN{0=Q-h;?c)33&o2{|z%9;e ziyYFY5*~cu$pAMK0CfPDTt{R*r(_RT(H&o(&U$rjqs!PM?yqh-W^6eTAo96EHlx2j z-VW9I2G4c_R!l;BRa~ds7m6IGH@X3e9ZLk9j$sp?c98;Z*k|AAbP-w&F8Ib%%3CML zFMJvnNNXR;TLUwje1qi|3f5;{_@YybTTDqghLiO^#N`_TPZtbAv)H?^+-z;{bS}t@ z!^b^?6jrE?-e1qi6Lq9=8%`zbL=RNnH~2g)RcZ?hxDOZLRwnz5<+)kmYZVnrn(vCZ zgm#YftPhU~B^=P+4?_LBINw#24^~&CaW&B-t;~M5>3gcu5989vVwJms~TOb&}7Q6sk>pc-gU6 zwgoe#g1SvsusqpD4Hp>Yy0%mfFA1O1&vK9vx}}<;<)>JW`pz3|bS6G0gOQPUP$Q ziDp6^NN%qj;ZL64iMSkEfLUt7YtwJ+jH>G}AJ?NnT+glLrGOl4%V$$q)mx1}w&>Rr zMeMo>fH{Kod5?#Tc~D!N=X<)ho9=hUp076wqlJAQMwQ53?vw3zZnG#WB@WP@neVjQ zpPrTb=MNK6ejVPes<~7!w#4HJX23_OBAtlq%~Y&N64V>aJq;`Eyd8Ufr_r{A_5w3d zA~;kj2t+VFhF;Ct?Q>mtIj=N^YsDoc@Q5V=*_x*ts~JK33|2fikyJQU%#OMmaFq|vUVKzin+2jB@2cc1@j)o+v=`MXWVnWk)2g<6B}2? zlU4=N2}Nzce-vL)IuMKhPi81*~Woo!v$ zHp9P=AyEF z36u9YYLU6yRufcmBP=hFE{TWk^_VNkiYcxsbh@7A<3Fu8BP`bIkGXQZ>qS1y99*cm zxA8b}{>>$dklC}~%m-4;YV)nZbGr5y0$Gk#)W0_iwbmE0Whk~)pPRM&wTbJ2#I;|K zz@8QS2if}Q*y6Gbu$P2ea+-C8mlIbi`Tbh+Aht&lK0Yw&l;R<^#&rYC5WK>B3{_WY zo`laqd=F(ne!Fh5#gHS#@62^OpP=mnVF^>X`Qd0_i;Vl^v-I`MEoPbuIz%T%9spq>^EP2InmE} zYY6mjU(uZ~O-?glCxM<>&m$3j-M{tdx;TNgg%{A95%6)x5N_oR#(FK77$^5sR0jKc ziAyb>D_fhJ&gjQ0SNQ#Q$vN%Us^5+Uu^I#R*Bja%$en9_L(rAz_|4ILF=naEHV{9l zW}+CaWJ`7a0X78R2zbGG&T+^{Gy1i|I;V=AR=88-#fqo|ur-vlPWDcY^jd3bFMoOY zBW2b;y8o_7YGL~5i5xqh^_h3HykTe5Zg#N@{;N=xKiLsh(Qqr9!_w;?J#)p3q%~w6 zj?-byqeNq%{Vo{mA{V_UMvwhb_Le?Jc75wX6#9}YQ9vYL{?#8#k-*UmmG(qXId|2T zoceA*-YJSP%*B@68xgPbRdjm#=eJzy$!RGFsgCpMJ-Ed6+hCmFaui(e{zZrRq#o$( zMTA|Bh8ZmRm0tcbra|R*o)7G)Aa>mX^9Ktyl3r}HhMFeSQqBnvL`vJqJ7HC*o2rRl zeZ0$r0S0CcqoYl%?gpB4UW%15+`NAx#3*B!M_#uj_ZC7CPSlw&9|)7My?z0b0D^h>QO z+FSi&(3E`uiLrVvrePGi`ksG9L9rDA9YOgakcS1hh)K{q)7qHRD}3i2TJ(E(Cxy!I zIG@_XOzgS?CJJ8RJMOxQp$V1=nQ~*`Iv;?pz15U$YQ0kFkUYP>@>Ncdip2JDCbx9{~YtmnLHceL32)!~-)Uy`(xbr!!5KSH%~= z%y!(5oJ@!+pN&p6^mxdx?y8jV zC<{08;OvSF?mCcyo~_9p0w3TjVZT=g zZr##@3Zolp=wG9b#T=i%YL+JU-LE48Cg!Cm*FPx9AelcBRNstxq<2M*b$&6JVc-_{ zHcXTm-L{qaiZqlk(|y^{L(^#LK~<@z7m_%hXNjXRbUu4P09#L=4PiPOK$6gm_&xlT zAMAkgHha3&`cwW!xQlkqp~m~HIe*^`nNf<*R_!R*OPxOy#hZ+|(Fn#G@xoYSfbAt~ zL<@c-s&BL4xx(!9?L_TVpx@o=id1sQr>>{+Vqtr%+NP2zsM2aDGWscmf(*?`*BiT_ z)lG;#P_apCvNs;NFoR}Diy9baQ$YGMi0#YG3`r#*zpoYC1HTDo;?Y7fbU*n zsfGQNMA_8v1qp_9Ep=;1+jsf~n7xZdXnY+^!gu_WZ6~{R<*WJF*c+e6Pf2P`qt0)- zTVC_n7+t=`9Z&W*L;_Uj+%g1Xggpn9h-dQ9v4 zI@otch3!H+^aAFF;XHQ58un&`SQ%dHH5Cl)WxiWBI0MHECQ*)cMOz(e!+^zS!1l9H zdvW}aHX)_0{tTy^^W+Hr8M|FQ?&{gsktN9f$O5L(LsthowW&m5pO(K!n4z0?_9<{u zceEn2pB1r3l4W*n*!V_wJ5w4>S4rz=eSjUU^55d)?EUzR#qItvWv$!s@lzCEnP|w7 z$&LH@t$MmRL`s0HMEGEfUJEc~jS-+Z?4Ue0+;DI4Bdcx9352g;ZKVlCKwtHQ%|OaM z%xkrGuSs`hUUtfv zRBpmqBU65(wcC%WwNKlm14rTt#<*?-T%AwdlaVKL6@O;$-oF}aS$+T>s50E@lILAk z)d?ESEVg1>DbLdzI?6R|)#2A5qnHQfzZ01qDojfbe|vvC<)l>CVGeDi3P>!$ln)+Td}P{iC#vm-UMUh0Ob-ZjSZ>^?Rh*KdzNaCyAlwZFJNP3yZ7WH7GjY zQCk&=p_A{a=NG*S0+R!CFejV7;tjBi@hagGn(;=o4|1gQw(gkQSomJpDoK%ZCV+=A{-kahlMxFCnb}#%(U!wwaQ_kEPcz zP{)hDj46nyY=EqcF7RT$j!Z)s9_?F5%)JHX3ufZA88l`RPkMd)YW1$u7CB zPFuN~86xx|iPAJ|Sf+P0o%>cGKbWm;j_g$%uyw?6GSLnu6V0renPS<2$%of2xv%eX zByBTXf*DpDni9&zlQW&>BYJj;>({|l!R5R*wqS9fNO_bfT3UB(am*<6vzWT)I=!IN zd}z-Y@&5?^6~O|0@|c20Es5?d-TE1nio3^=G9awD(mJxNmdd^?cNWoE-C^N#*YCBO z{JxEXzh7e$RU1I#KD(yuN+2}wcTG3tyxpZ_yRF8M-{FYi==!G2O2U)SrtMO;#d)m2RvkA|HwT4 zKD)NEw(pmB+5mXJnw3`bZ-M&@oY3so9S{tsY=qC7-O}vU4c9N(`HtH_2pshYFJnz} zUbVjSpqzvZj#qYE$47sJWI~Z*PY}vB64gnd`wvyj z0p&pVb_`=VZx@Yrj;+TYIqqsTn)L^oJXx3JtY%eVX%eZ2=A#?y7Xi*T(RSsC!KI;P zr^eRxnr`X3XpZESh$|y02;`fIqB{R#a%~acCzP(HZJL9D2)S>D&Q^&YQ>l`>nzvq-{~;OC13yhR}Ob^9wbYP!b_1A+{?n_V+; zRhLFm!_!u@2#+DAw5;9pgBiq`6Q#MkQj(mgKb1qods%hHamMMT99<6q0Vx*pAb=P` z%iu9>ITn#f%l&UC&}VF2`aajkkVpE`&th16$&wMkfh&?l)64%~kT38Af8M=^pxJpo z;D}fWHQx9g6&^v7!*a-W#QYX}BDi~opNdcAhMjTakSdXd>~!Zib}_l~mE$!xuIA3t zMSH&<1CXuamkQ?_cIk?ogWtwA!EsWMl$Gyx?>$VG0^@7XXGIe9P%N+E_XaSEYlPSJtTdZl z<<6KEfQG3$ziIcyfiAO|Z6vtda@%UvdUKh#AmemfNREddzW=<*f61yeP) zd43qZNNb^gXq87xeSY>|6H&MLtU&)>tOfbG4i29YXfa z*Hj=Gty{y(@)cQ-sb#I>#V$_Ufo2X^&5rR&_I13~cnLqN@`F|eSS^vNJMJS!cU%Ly zj9McSEftvP?ttqx4Zlk|a{*4FXDCa`mOF^j#} z3@{bl;NdK$0R&w>}hn>*i>e!|(hxHC~8tai~es7^+Pt!UgrOF84& z;90pw1aHdbP+28g3ND)Ic)6x(q+u0aN_^i`BX8-(OT)7{I7W2+rP5*wflb-mv=73D z3!nMes3-CT2!+KD9_6(eGe$zyb(#Bb-(sr^=KRc0BHr~*k`%gE* zvCF>49OoTN@~Er97X>q&ksJLiAAq|}uhC521o~?ZFP7bRlPyD=&qua`3VsA_YLm}( zCx@ATobx9cpQhHK$y7H}6c|oBJ7%>j<}gMM8kFZMSZsMcQ0SnC%d>7FHqRT0l?jkkd z-JEG)d0$E!f#tZy*O5%7iG4T{?bEPr={8)V->XU65k6aJcY(82L}3xmv!{iK}4=5ZQV z($f~?x9b#_F-Q6AXhrre0zL%ZG+V?oE|g=AdH~b;{;h$eW_p{>wj-!+Xe*uRkJd8f z4zpv_1Bq@NN0?GS-_FiaEi!xHezGN7i{sc{t^5jap^q-t_Wj0>tmg~JXSZp;L^M%1 z*%o=XPc8CN@g*a7KVwX@&V&r^^EbcNsn2DJ@sj8Zuhl_R4}>7BFSvYR)34_?0EY3*%#gMxY(-)$lijZ(_xxO*zwp z!slke*?wx+<)7#g)!}ond3+8yRu(=#u0Du=DgLZuPaJ*OPhf5fwVnV8!DT4Vte0<% zy7ZS5B9xO*J7gwql#Pbc%>TtQ2lQkTQ)47H>-NQL15or+-#DiWtM^63%0M!I84axd z;tD;+VSkQSGi?RbgqF?Twdj96>uEd9Us_~lnN|Wso=sF{F)5pHml?(~G`R?Z%RJOO z7N98EyY|aY!WPJN|1b z4)cjUcEqlGV1&6f=ve$>M;1h!pgv5uqaJe=hQ~&s5k7W8+J%?E%qgAe?lydIag|}( zlOQ13H1g-6+4~4x3dQnx&tylcIRI1ge9+O%Y#b%kCl$lF^7+vtC;zBl{?s%yRq+)% z2}h|Y&)0ji=9VV5somui?I4*N`_tk6k)bqxsZ#EGe&^Z}4N#o$k#SmS(nl3ZK zCsKA7fS9!N5Rz+leWw3Loh`6nFbVJRznRB3C)@({`g{z3D;j_07l~JihEs@wnh1uQ z$v*pgNbE&Y_TW<#-{1@orc{o&d8i+I6*rWeJvbw0W#~_Bu2i~)lGYE=6@kk8!8M>@ zKxRU1ZWDgAWCA74C-ubFZlact$07*?=}?&{t3PiMQMHA*`F~a4_0lX@fzRTE`stl7 z)-E=q=MO)yBJ;mmCf2D<`~>r99{Bep5!Y{mxq@x~8aFDiGKX znG*S;e)@haZwVzi1DPDf%EgpyN($M?rI#t3^j#GV*aW+xUhNIK?n)&=_Hqq-VAwXE zu>{BC%yZp**lfq*l7`_!&|HbYT3Gq^A=NRAur56aL!U$Y?hSg;(Cpc;q9#CYBn>-^ z&A9WMl2j$Vm%i@}H%fhmDU+20?Fs)yn;bXa?l9-Jt+JWoDz5r&FRrj&r7@PBw`D7OB$p>%AYrM_x@_$B17%uE`~APEVVYr%1N^!`UP){lMhzylMgEFk`LN# z6HyclPf%KwT#w{Gr3TiXgI+jZc) zhY}I5GH1mFQcz_6WeyGs%p%cpk)mO`{-oy72@P<9W0@H4Ce2A|jc|e$1}a;am%Jby zdb^1~&RrI4jUwZF-x}Nk49LwR+S@-*I0H`o`!~Mq)Q^~3!ik*J@f~%BCq49g#=7|! z`?Fn+rbC|8Mo}&cpDLP>%< z%fCmV0&(1o$lyEfHr71+ZHMhrScD)UNGIE!gIiQid%P@BzD27c#}9-N)Vbx&e{ZP= zFScc&Yk)w$p$vRY!|N>54()u3XYAK`Ct_L`tM({zt3BOuH(>C#U|G_m_3f2T0o@mo zrxq)7!|AjtMC(wkz`74*-8wKD#w%+_q68Qviw_EbIQ}ma3e_S*O70RyZtY=0j1qy@ zE6q036+`f;I0!h@EC3n=97a$!lbTAA?MjC0D9`s_Ma#bqc+KdHvl?pSng{=7DO|t) zM!|J3l$!rEE$V_3vS1fPStyYiW5q@dQIL+BZkG>p>PS}W=#>~FEe762q(hmZU$@YD z{TPCgu=^fd42J=<{s;nvMj61xtV82_pH^({#07Y`7WbHa<-D9dG`s}kzB1f#Hm`PA z;RZ~)BiGkwCEQU)P_>yWOSs-EQFpo)6^?0H!gzzmH@WJPK0kg#s6} zFWw=zNMnm}HUHSW=D~k?E3RLmHLk#4vaZRx#c}@M;65~5#L}20IrhW9Yb9}@JnvJt zn9XDl)svgJ3+M-w2Y}f&dvAUkiFCHO6Nz@#$fMY~Rr~!oCjZJL+0wD`{R9$r;K{Y! z+e_YeekJ;%@4?F|FNvZ?b-HUPe)LqnSg&R(eE8w$kwwV?)AZC@oFtc$Q*g^^aKU*` z&FuysaZqr&#N)Bqbe7GXVP0DmR1Y&U=2`ZrDDaG5ffa344W*3H768Z3d5@_axtL zSU;XI`P`BUKZcO`^rM9rMqf)1aP~$=V-5_2ZpHVWTW&%}xOuSk&j{V`Z|~l9g%n0- zWyM64!9-+bp+}B<@lcfCt$Ji%d8e;*>I@C#nX6m9Q>90!9?<;4T~XT4%8pc^Z(E2@qZ2;e`8*(3=$VTQ|M>n zzd1?l@8lid<*V4u5V=&Zx%R@K&h?8g}Ul91QE>wE>cOm$$e zikWD>aEKRCNZ3d*(cJfjp{FojpNbIpzXLP0Bq+i-zOD`F*KX;kfMg$>Wecp71utIghmwYo{-cy+m}qpqKW=}_+I$JrDj7JhUq zntq)R28T$YCQy_f@4!d`{Nq*Uc<^smiOeBT>LEZP@d{evOxEFWeBq(wQ@O4F8dKVk zog=*Wb3_8Q7@Z}HfS{;moTe0 z%^=z3?gX^8eMWu5Fxqb4XbkAt(OLKvO)%PW*{f@gYc_XExq(40lL0yPuV}c`3@0i^)_zX>aK-!gvijzt$`I4CLQY; zbqjWREj+agY3r39h<36276u%wd$G#vM@m}+Zu|6<$}jiM#p&1QoN{xq#lx9Eu_?cY zN=rF&+671UNUy7jqPS?@9A$`BLvUPWX`BQ@hB#oMwwqQTQ%%|)ypq8Ok zT}t!XtXmSv$9H2z!d){L(P6noS7dt;ucd<|PudCaVvr+6K+nMH@!8Y04zH_^P+98$=;FD_OmLH)>X z*{OubpMGpG1pf`=|0W;kL+TuB+kC#DWP0;J=i}#!)4bxBlK`q+tQBYB4fG1m8_CFK zXTAm@Ah>WE%N#ONx3m+D0V)DKH3Mxj~h2n+p+K-mb!Iy((6 z=d}J_$Po-D>29{&ogBE+*D65xydlwRS1~UTg2ee8Wl8ox;8sR7LC- zYiWIczWG0M_P?kQj_r;sx_j9(?fx1~)uA`!c_Q_6|z}`wLYDhL0_`oU@zpF>eO{!Y%-shQR4kVfWJptKy&2 zNV%sAQoMW@%zH7#-#X+XB{v>#^!?}SO6*OKMjB54x7_GY`0>dJ9meZuQ? zN{RV@rDkI>G;R7`h#aPfKfIWN_Pyt;J?mM`AM)Lu@a+gDx-Sf4|Dhi<`j-dHM;4m) z$^dAxAQQabfWrubP<4hQRk6l7OLki>tP3m{=dwDS3no7NnhO(ltr|s z5A5pawm~smI)$zZw!vo<_<+bBB4l_XsgvYPXqV&e9SZ!`h#Y>8mxboZA~cnq(^}pT z;5{BR#%xdcjAdsh?Id~o4)o=>0n^hhs95L0aV$ibpr_H5?LsN49pL?E#pL0e|4Yxu z1T-;Va}ey&lMV?^Sw4-QsP6de16NkUjrGSS86$Dclb{!f=$E>iRg_38;dU%Sb!{v0 z!jYy@b~eGApLy0H@X(`2|HZ+HFcNi^tp?TnpGaTmmJA?xg)0d$^1Yc^ir^+e?XEE< zVb5-Bt)4xvo&=v~&jzT5?Zz63!rScwEU3BF5a|U~kIAAp3v51}wI1<^l|BjhbD+ZT z0_tCHZ#EBAwqC{M#5&EhcjxhjYJHTEBR5HGnE_ft)FF{>6iJILr{atmNaW}A3aJ4h zfoo-SJV1@7bIj@|_x~SJ*_sijiq=e!&l?a@4-6#({d(MEO9FI zs&q_+IweM?sUA!?B?tca3 zfA;9K^s8WmtIWpNP-BF%(_n;eNpB2~@r89h|2s+*M+Qman)e;gPt|o0Cf*J z&B2QiG6$kF0pnm?2u`cevcZQM|E{bb8&?W4Aj!wUkUssa*bWdsJ8{il;WaDIVFrPa zz6A~;sFUFJ4u?d8rWOa#7nJlT zD7YsKXL0){hywpaQOO|ZOc6&sNob}*aFFc92r>g30BWgKPeBadtbu2 zLkY{7d%Un_mFdXb6YQ((BAS^B%%*Q~L0Wk6of5_rs8gO}_mi^Lp;A>kTgqj)9@sye zg>#ZTrgh5y&}twF-dh+rsIXX-55sNfu4zr1M4Qwt=4mnAEXv^30nO#2x+5;0jB?Fa z7f(>wBga5{h-&5C)2Wfc6@na7Ur;9UQ)!4?1qaoDuPR-{v{LVn3R9oWQ!$e&R%LX$ ztk?a|@ysZLucq8Hs5Wi)7$e2ihU0&H6cbrEPD{PK4UNlkzTRAEAD1ni^60jStlBjE zVDf_hf#0k-8EMdv3N(0@xAIstqy-GVbhjF+@>1Ae>XTv4o9f}m8l1N~4x#@`10UA*JEd%hJ zC_cJhCVKd-J{O(z~oJyA&1jhfg^Wb_{zedP`ay->OVpR2T^P@hM zor8V4kA0a1n0X5)6B>c6()tL&HoLQZlSHZfkKchy`p5&7bcJc%My|W^KM>py^y0Kk#zn3QLYFlHqB(VglgN0jc*@!7DxC|Q z>0|5_*U}$5uJX1-Z%;Kq)qdSf<^_JA&b?FDsiWez`lkH~qT=x`0s~yJ!Z?&8H3OnJ z^8mx@ewi{l^DgI6UZmx(1~UQPtl3PzE#wq?6v#>m2`?{>2nh|^QYDvWCpx!WEt??L z7Dj==goMu(wuBHhv7WWMe5N(H*}$XMOdZ>)8`XwT)y^pOF!NaTAidp@i|@nsX-yW( zFTM)b-P{n)#HzSH@9ddu{U&wUv|KUG3FzSD+~4X8sA^cbYfxn7Mh041q|qlYgiAF_=(Twbx@)P16S_KD$tzdcGQudeAx1W#7)!hvgtn5CI$ZuncfVYVt~V;d5;2Lv5$ zLWf!8q%Rf_^i-DP7jF042|CtnK{qZ=iwSQOl$+}52?rKALP&zfekvlKW++R-PQjII zCV?IJcD*Sl{+bs>Uyfoei1gV#_Zu7|=CV>Q%9Mq`YDQj^hu!TR`vxcHswJUqlH^o& zuxHPSdzW+1s&W9S6Nonif`10&meB<7Z48yTyJvDO-wNmfCLnkL3y%HoBM}W7Y(MDC zMPfO|UJa)qXe2Fs=&Hu$;zXaU4ub!%I6bjU7^RWs&CP?+WjWzU?4EN=Av3_4#`p$Y z(7j+rU^0p8UF)B?{pF790phuH6Cc;Qrf1YoPk`EgKUa?A1KzB7kHQHMss18#!j*RF z)g~WwR58FBd$pp-hh)kx=Q-e^ZY&vPyU&iBKI@0CH9J8LufY}AOyFiaVkop^u83H*p}Pu zBleRm9D&Mj-at+Xl{|_i>OZrfmaC|mPaHdo^Zptc2)M|e&FBD1IOif%p9Re&IU-_Z zbmftA61KlBmTE=aESoZ{EbRC=_9^VXa~qht7%S{(Ri~%Mr5>}&Hch2rYYHZs5{L}W;vHSyLO}C-JC(9Gul=tH(Xeklyc0NHVt)d%2 zC{wk|UlVX4x2?7v2?vH6MJ-pxv68wz5*#M+qZO6=&h`tP+*8Ojvkyav!}+7!-1pfg z%gIu@)xj8en+YZo@MX%F*6F=zPPnu-{aSBOG4}k-TIK=n`YZn_2W2N2%QqE>WmbrN zfsKTO%)R-O^^Xf@TSm!AOYK4M8GSiH@UE`%c~Ff^Xr~toIcN?C)=Ut~(Ni>tUqM%N zY6t1)Xoi33D~_mQ>dXM9(tXaH zJcOf$UVxw#r*7JV=d?w|(`9wP!i|6Zs_DT+hxX9`S;x~|$Mbl{^X;AeLehe}^^jr- z$b1TAY2A)y$9^I>*b{bW+irBAeGFOi_+Hk!7eRW_edE`t$0l6P>2ttJ_2UOLY7Tl0VbC`VaGIMp@$N-yV+ zfs#bu{rG-H1qbg-Y-kJ)8D)f zVKeXQH0su#h*u(G#CaMK`%^-?wRX+)k(E>Tv(Bvlo}nZs)3-jk&N1&%%UjrUsPq0g zS)V{XP<*_+9yN8=PhV zsn1Cv;fgtp#jjAz61zLT7^ZmFw!xJ#GTPgg6X3bR4@dF*O0wNMKX8@R z`WK>9)E~@%PDDYYYvw&U=ZKn(fS+|d7ZdYhSZE4lpMSd5#-}RrRvPe=)?2F!fT=dh z-_}#l({ypeEn(V7fxW*=Y`qZ}0=|*UM8ol)AE)uY87XO8f%DemMQW?LWK#A)mscl1 zD3_gRZu~J7!ilf0g0-jn0jHm{p(~{WPtjZ4D$*t7$8m`N4pLs&;J(PRhH>tOiiC}I z?c-Yu`+H;Bh=G~9T;Z0mjz57Zx)kB~AFP_(rK!dARKu}6<(Jkz z=Iq5@vxLH!Ue6R#VbX@e1HC0)I=QdTsm68DZDd#z{p#?tvW7ZQUj&rQj39k~QjksA zdymwP1AXP+u@i`<(8GiAdTOsl(QGK^<>qxsmcj!(^#z5{m*hGl+8TfM#Bi1@#0K}1 zrny@j=A;Ji&h+$O=dz$Lg%4;@LjGFZe;XX|FN?zjIYOweH`#0fYnDtNa?4PdUIQur~A&C`y0vm|M&V3 z>_Ua($2=AX*Hk8j2lv|RfkM~ZBRD(CAnvQaM&dA=JVH#dzPFKk7#JaIP+`cU9RK47 zjGp?FbJ)Q?TORbUk9aZ%Ov!!nXvA{+2&mz-m)^@KzJmUbf-(sH#65~2Fm;}=_FZAF zYK^yO&gHZ4r&)Vq+kMq20nY1*UNKd)Q31|51PW+oj|MOTp-a8xFQ<=!j9f?{xR_!1vVAa z)JqIH$M|db1y@9#jqC3^4qQqFJJ=6QhO_zIvgq>`F~ZDD=hhT2hGE9BoyKJ~;2$gH z%}|=#_M22n!W$l2Cf+>n$-a~0JJ#Rt9(2zC{!T_?=xS;u!@#2=ft968wkc}eP)+t$ zz&Ky;0fLtZV8Tas+qSi_ZQHgz zv2EM7lZ~y7y|J;elbh%N;(oaI^f}!%Gu72q{i`$GQ&R|+Y3Aiw+tzb^Jlb23>Aqpt zxt`(Od)GhDq|Cg5oIBB1de8gQ2^q6DkwZT>-FMPF+7a-*IsVjF;_T|UQ^%OqXSKRq z)dJY=uDZ#7TsD3`u;al-&e;PhM{SOK`c($Fufs`Un->N%f`Wc*nu> zNn2!ca2n=%T%7zp@$Uonk(Q+RU_4CKoD>jT3#fI(R5R$UQ-`lxE5$bsk0^`hzd5a1 zf0`0&)o#5Rs?z?=r(0yYdGYjl>+P~AFl4TwvGy{@>9X3oeRyoqA!+y_3Ia>m^_dOP z@FEo6uq=KwS@i+W!bn(Wk8SXR6W&;Kil_@%Ztva>+b_Tt zgGYst;1pZvx3%cfDfrThF@dRfDhBVz1STCa?XD z>zWxIzrO30TJP6)>Ny;^w_A3f=o>&p>hQ~>g8;D=2ZNy6iQct^hDs#rIc>axH;t11$@gAk|1oB`hau zm3?8y9nE7<#^i_f4A6YDAVTK8?wRlQrE!$rW6>-ndA88$Xmc`3LtTu?2t+_43N6aq zq)(;oN7U7f8t4GG1JGWbw!v~dhDCPUMSHvB&G~uH>-*moM29^M?*=}e4)N@B^&k6! z=Vzyg1-#$+6QtXD9Akl{-)7yLxl2b)+sQIkKDV?5k>)f_C_IQ!ZoyDhNlNgdcRwZ1 z=jp$O-?1v=hN4`xud$OWK8;*}<`-5KSB zB6m5OX%<}P(Ue9){@dk8l!cLJ9XD*gRph}Ph%kiGnD;Nl$Fy=U_RI8aK)iAl0+mXs zPy{Mf+#R?R^j%?qv1&1QZIk{h$J+tvJgz00P5x(1lf(JCt#)sXo@2L7i=Gfzc|qD%{OOa&9sQCp0*CK21xI8$Q79eCmq1W9tJ6Unl7O1#fa$6 z{y`;?MJsHYT_o7#6iQu0Dw#IXEX^;?t8T>r*nEpMl$rcQII=A%P*T^(_s)`&S#+$| zUA%%j8EE`V;}=wyKHKI@)u7iAHP48rIep$cmJ;v?SAqSX;@ALLR+^%sKbuD8pX5uw zgNRSNszc4leJBCkQZ@ai7*M+0aJ&d5@KqJl79N))u4Dakxl#;@61hY3y2LSkXvUSv zWY%`QAP`Y#E=pfab_%-(vt&mU&~spg{*qhHA~~R1%3&cHXnzV1b0(52rT#fsu<#)6 zK#0dIA$LTbI`Ip0>`JNRk*=E09yV7_+$Ik86Ddah5oQ5o3>Qe+_B;kSEm#!KbDqfZ z=V#%?AJr8QV%<0F{ZP%*#;2Pt-YL zf>s<`q#iG`O)?jjh<4)5DpQYw=vq@nAA_{S$9T=|I;sa5$jik+m&%xrA{v)YF|C6= zXayUIic|woKD2UFj;&w4t(|#6g~i?2B9lq*9_GX=Y~(>Cm3gsHTaucI-aeNOGx)Te zbXZbEMM4FAqK2tCq9$T+RcSFStiHo5CzySj(!xw8DfkhTCu~TYH6F?PfdBj@ey;26>eG3qr;q|{jg0nMz4!TfJYRIxF`V1KfFJ6$ z+5MQsgjv@3s^7C`j8%-B`E0(ThByXCo>RQH|K{x>rVnXuslm^l0V=x*CkNz(y&A4tOS7Z5o-py48su>M8{3h^!Mch3kzWv|Pt!}2i4_t5i zu6Cg8>o2+l-XMYg%L)i@G%GI#2L$vb4D`RV0s>eWJnd|Ak~ibBnUKP6Xdm$tZnz0K zgovx@$jL3g-wo7@@DmF4f@%+D7eOM^|4TfQl_V4; z)ji-6AXBn>Zjm+D)!rF z%GfK7LfI1ugYd7(;L={GV#-Yev}9v!a(!fm?}FDFQ$?fXRC24-!q9yG7~{iP3qR0L z!-oR>*jh~D7mXmf+I=iN1A$Bk+c2rcW*g!*^IKNWTS4(ZVJM4y7-0?N+;+P+yuN^d zzVBt)Z07MU%=xf) zvkMjg@qz7QqmX~Y1JC^j?T5?n0-pK53gH>v&5-7%%H)$o^-;EN{t}`x1uJbu-^dMI zJwGu1zjv%2oppOW&Yz6AMgsjC+)prM!0RUFVC#g$RKm7kZ6GpENxu=}DZ0D6Rs&*l zc}FU#ojb&u)|c_Nd;ER<{eSWI@$GE;`n|rNUtASw>GpoTz8nGAKQ7YCV830uHLox< z6ac+_y}ktceg6KwG9~eQ0@?0Pj|z(d{GWH5zsF8i%TE}Ab^9(bJUA5^>kUjS+N0ZG zKSL<%fxq3`^>=gu-QAu3Bn$k>>a+t^ZCNfvv)az?SuUq6R3ziy_qOd5>yA^ILy;g_t;N{zGbaTp9BfZgsq($jx8!}Jya&EziEW-p9 zU(~{7L4-6Kc=40gKT=WCExNV$zn%TAJydPDgYe|g0{;Oa|TH*vTq zsQUuTs)rdi?FtH*Cgs(@*Blj#u)G&K_c&g;1!NaGpR4{sL{c$J2#=|#q?zv`C?c%L z&7;w8x2|e)QBeDttQPj5YWL4@hAe}IS4$6t08pE%T0)RxZqAsgjtZ|Mn;=BMvhYyN zgL^~&5V&y$y`ND?K}B|R57GAml2HJ6HVk>7e|$O&Ig~dxP@%z1ea`OLur$X0$UH7O zWHxgHEmf(|#Da*egsM`|;*xSKmyziurr-dy46V|XZ6`!l`VP?^D#1b=BelMg$(jqT z2JnHEGg~s&K^r&Ei#1VT%pNW0ENED7wK5`x>d*5f1{IS%1~p4t1pydw(YKj(?6GKV-ZG@?%8goZx}h4mvAa!Zoi z;+96(14){B;$2%bhJ3a$25wyr%1XF|F8a1Hca)|c7Y`Whh0=5tICaR%?MpuD~GF@TUTq7I?9x_ zAAWDQhiR(2ErwP!esa@7bW4rpI1Y=rwt9={w6T_rh=zK(4y_G&V-1^SX0Vjx-#p17 z_V5}zU!fLoVf8^GsNH4sMj|LfK{NH#RAL47dL7d0D>s_pG!Kf`cJAs{K&tx%rP*iT z2T?CW)O7GB>PooWD6=c%#7UrLu6d>o4U5#-6aD%dDyOSh9sKZTX=fTsue{m3vgus{ z2U*L4w^<@%Hhu}FsFqqB_^q=-O>0jz`-Bj2XiC#;m=pqUk`w|=Bx}WhaB(O_kg0P4 z5kBT&>t8yjLfv<#x+aG+z&>41eN@Ycr3{%Hd*6uRMN)(2ZXy#3oUAjDSB0q)MG?@K~l^vK(iCA8nL3&PF=?~Z7B&a zddWHb*P}W!3N&^LomT1~MH=N0Y`)`<47PikT>dY+UzKFNlGKsQ z)f~w!NuJERi8V>BlsmT&IGwcWNu$)MWaBj0Hd)Oynfgem%7tV`y~-#KAQ2@$iUt&K znqsP~w(zs_Wi0ZArh$0m-v-}k7sV4LO#|zwZAt6`a1oFIl28ZGSJj&d`fIW(v@ILv zEej)w0GVktlC+%dGEwiVRO!r$2r9nT(33_{b9Cx)w($+OY3$mTB$Ct~Pw(SgbzTZ& zEE3i;W^gG(A^h<4WDnjmM#BGL%EqbA3KrXOA(y25vI#YwvCuynhoL??Z4$pxuL&qA z#6D^O8~nlhi2lEL$)gfCE3h4a9Ks5}FkPw}Jtad5TXNdFZ4}t);qybSCHk2&xg9f& z;PXgaX9QEtVlz1~YW$<^q?JEBIa6tzCVx1^do7zfs3OCM@+@trllfv?3~=2)a zpO`366ix(5*O=J;;~syslkwz^RsOAKGh0@{(ZUzY!nTxV#B-WpVIDB}q&_jX@L>hI zjyb~u*izJbsKnlixa;Pst&yvOCQ17ssuG<2%QbBmv~OW!wGLwj4Qh5fPK-enEfF_2 z_~Tr&@Cn&ty*s9+2`dLCWdwT&R|=!_szU>J}WQ5sU}Lnfhl;mz=FWg79Uz7}I;q|^l33TDL2{H$5~>L0Fk z{ru}ABee7evb5oWJ>T(mslg*8ck?#HL)(b8EJV))MhxDK%#vx;o9=#sI@y}Vu<(yC zs*rVT-uF~vC%xheDH<)g7Ll7iyJl%|S^;_58E+aj19N06S-#k?jblqqBvC1OCW(cX zem~l$U=U6{RV9`UeUa7MtBrpsit_tz@ht}U8SginS?%P|9-p& z03|=fS0QM5JWO%J00GhP{GZEx^FYEb2*71u94+KKD*Ab?3r^D3NCO;fpQ6A0r-+yC zI3w76MCs(g-xYP0u1rEfl&MZS)vD$uPFaJ~6jOoM7#xDlxaPKw)<} z&cQAIzcc{%0<>W-0pR0_)<}jhjNoI#tc4V8wYW zc{~zn(m2awrs_0*Dthrzu^v9~7KJmFGct8EN9VWh@D|VU7PT{EfvAm(WsTt8MY0TC zN4U$jxywGe%Z9kie6;T%A2s0){8A{^3KRy>APl|hikC`bNjs*a*PPVSZfY^Mnpp@d zrI!Jh`K54o?Crb$IK*dOPxvH}OnAG(o=UN1!fF)+2uYPfHBIPb+oRXd3OLivV#1d} zy?jq)8)!A6m-CcSDqG3DQ>9;*MxFK~mh+5GFEbzI3)`C7BKKHZba4-+u!}lXGwA+j z*5K56fCnp@i4X+Y|mAjkrR7KR-rTYew90SUD!XTvg{zW zJehRjI@NITeqjcaSVOb)4RG4-DqX*hBo!ImiNsyn)N4{Cl~ZhrI@8}>9nNC4G96V> zMg$t9zOPWJ(VbO#S+wY;lDZRR5wz=e`_f&8fJM5aUGZTx>}o^}=bquzOHwCtz2Q{b z#EzsohC1Et6O_71??eCsh2{+O{}7<8+YOmAO#nOgs>>#+Gi?tH)g9gUEj4D=DE%Qp zbDhwUL`qy|N*GDIPVz%aPq!0gl3Z7<6qC__Jf*%0CUK^qRvXgxLrZgvCsn2apq;>; z-(IXZsLZz?tk@y!dekHaA=8?%0A8IHOn^y;o<5LN3+k`KorK1rT&Slho>;fiI`Z4F zGir$3P%RY(u?Fos0+mKX*l@WHp}`alM5YsqZV$z-um|Tal zp(MILi2+3BshZZr$ZPVm@;fIR;G>3i*N?L(RiO)~e#H|QdSZn!*>*~$$^aqr1ZDig z&8#L3hDA-4{wnDIFw-ntAF?1;AL2{~mUgLushJkTW74VX!Jv7~O~)Q{_TR*6ceeoY zO_GL`=z%1@{|44HXJ*aP>N$Lw5wnKF8YImHF~f;OB+VuRJ%C|r^sHZhm2~x0j2XzJ z<{&z&W^47&Qf9J-)R@8KKBE5(r9aG_or9)DO&LyT5&w@Iq{IzBkGS7jW9>aaP2I3J zT^LnRqpZ*oy1{z2l4~;EV;#d^M!apra6(hlD82E8O10ReL0W^bK~)z*CJxNLQ->V| zb(a%hap_Q8!JC2aQf*>(&3rL^Xuv5F55P+g#JN9!!|+zC(zE=4nE@Zt!D?3d6gl6 z4q%9YG)9Ug1vP3yeEP7cevhe_*JRrkorP38CfqV4OdVJ9&Xb~}F~rt3ixhOb zMlX%5QqGngl05a;pInY?tN``LqI~;E*>` zHKr&VqGEdiAzfyZ*yX61GZ+9aFsyt8R{*hT`gj9?Fa`UI*L7`OIh>ZLJAehC4nBcl z4Pzkfq={U_p+-Mz!Obc>)LdeJ@DDo52<#umGE~%pZO<-GE12>zbWu3fvhXz}a3aJx zxpj7r~2YlbNOB9Xuc4Vb2V6FgSygR*lBFm`}~Iud&5YfUF9jbkQf74cdJS zZZ>c14(pVR>ID0jW=&cF;Mxx%m8?Kh6azg8oL|`vc75%i5)r0Mfuu!*z@%lwS5p;X zAREC2@w^uffmqmO&A!sX6}yGhx({dJL?{*Kzm^ z%et40bxq1vL3(#lnBBBQqRB@XLAV$ToGJ{hnafXW+*Dk zfbdVR5q0!~U54AxaHHX$WQ!qB-rrqP@ryldblgxYlTOKb9JNk@dLnLi;B%%uZ7c+P z!NU%=7)ae#xT9K!BgcO=?=P;?%lfnYCF0%y`N3@okhZ`r1in(cE{n8zWMEj`G(A-{ zQ|urE14>u?9P{3e?18j!y3+Frl;pdU-XXN4Z7c!sEphZmA+;^B2Q5x(Vr$D|k3LM* zKwLk_LH%kNakAF&a@XD&-0CZbaX9RC2!^1wW8(F&`lXoQ^+{H0?ATDzSl#6Z@Ic9P zMb^pPuSm^YwH}awK=h>?0u&&iXggpa_#gAHr!Aw4tCy{r%YXkBT;i|C9dO+F1%5&b z-FIy#`L-@M;G6QA*ak>(tepXQrP{66;^XT}oiH)xg}WX z$R(=P1gni0JKYTpG?vzv5o+fBN^SK~OOy3Ds-^e%l?nj(Xm7=uQA5Fd*sbN+$RA;{ zCIB)%9~qO0d>d!x=E|_8=RCJJbaRhkJ zLySuESds#MQ{sQPCY+wFbH%mZ_4aRuJkQtf+i|Q+@4yT9E7la82QOUY3if?)!4hQca zNlMzeCtqr?Fkr4C%DTM_r|3>29htu*GaO+i>x{Pt1YStDnhUdy0sF|Jw@{Z{Z&p}S zdfAYu=7t~EC6ov2E-}%d)UNq5EO)WHe=%dwlWWQ*ijZw=2O(xqdMpP?FzPcqEh(Pb zrz(2@0fgxOIM{UO>}eUM4S5@j-id-s-C$>|S(r8nl=seJAYtP|k1JUlU~dB#-%jHiJ3G^e^B#`654FOWNM!B{T@)*MW; z%b$J+X0G0wum!18w0ye;>64r|DNo18TK>_?5L@Z3x`M|QPW_ghh7Z_43mqGf5qJ6Q zJMT%6^UvVA3llpwg7`-v16(+gD!Sxj3FBY|;ee8PDp+R-u-&#%-7Oq2i9AdAAf*d{ z3lM_olxhK2BVx`A6JA_+)(&p}cjCEC9x63d7*OC2;YBe)LkSFP=*PMaa)DOE&dz z!ka98$2h3DlUPz;ylASVFz8ItBO)R|PDU_jhAtCG>um$%g%_aUDLa1)ETR~p*EX4B z&bVBw!xHVUaGrAeF-H?_x8jUKje8SP|LXi$aCqPw6V{V>>Ig@ZR-e#sXk6lk6XsOFki}ZF zWbkUeoF^>FFN*m&yL4D;&Bj?ksOXm`+AoiyJpS2M+>a-^J< z^8A%lQQV;3-AvQsOjUyV(bMDBp)(L=7ljCDd(E7FEo7|VP^2$M!^%jrh8mhQkaO$5 zdoWlDb%^+aB^n#fg$RuXd#P=JZ=3Z|-)c&vW3FI(75l}?ZX_xY|Hx#^)!gvQx1WnE z-J2m9A%|)o+)D(RPRQX}LOfEG0{A+G*vzg4vDw4 z@K?FR4e80r!>7dNMpv9vn+s6cX{do8Bb$a%$_@Gz^({oa@SHpE^HK}o*^u-;D>5A+ zTNp-=h&tGIto?wS%t}sbP#GFy-tgRtz;jzmbbty+uZT6^b_vsSj#?YqP|D!8Jq5Qw zOVm3GS5h2hI}UST^8VS#+d_5Q#!Yim~AuyNV^BUc}22>xk{T$w&H4JR(l`EWG!;q7A`Wt zb^C$3tK<}mZ`&q*{rg`cAKvsYLgCgabl@Y0>E{xr;MJY8g^vR!1Z$>iCJNQa)Qk@gcMV77MvX08UffP82kfuzz<6CM6yt?BN zz;Y?19DWt_vv=n5NuyEA_t7L*wbk5mQdAB`rJO&w%iAuco9dJ-dSyCCxn(V(uI3q- zmL;Y%DImn&`QSy9`|3dolmj*F-IN=<7R9NbpDxpFW;TLcMtis*O_TddiF8zP6#R;Ql}bRbV^gXBpx~na zvWBBD!+53Pb!&De!kz*KkTaBCrME3AMk^un_Q@cJZoC}+daghL-0CeCqX3|huV<7; zGy9`E=%PA89kmvIkrB{?htrCcgK-}(2-S7TrUijzxPynl%qQH@Q!Cjk$=}iefV7NoTY6K{t@RV; zCy09y$j@3rq(}6MV~`3wT|4le=?$suoq;<|K1gOHHC$*bDAU@T{fB~Y;D%qtDm_EE zelK8CA`O9Gm)HIYg4dO=2eCvB_D0b^jY*#(3&6PLQ_D#zzzR0uX=#up?JhHk2v~ORi0Echl!_u=rZh*bL@lx}zm6n;X93>!IO`*iJu&oLcNvlai z9V^*~2o==Xas`r?%i8AJFr)CubhW{Lz${2Q{|Hs1YDs zZr44ChQ>;9ghyyl8Q3}ggQ3WFnxRdpX|g1obhe0|-JNb|vd_O4_L0nt_R#vbDKAiz zFfkp65sbE^K3#2Cht*P`o|=O+)cJDf?P7^e_EK+{D}-`1M3bTLx zj<1B|u~{PnpmJ<_l#p?J%DZ(siI;d{M7RD$>%E$>rwXWq95A%lMjHsQ$ie)9)b-?z ze&dmkhxdfR4RKyN{QSx_qwKKPDNlndr>ifE+$dOGftuh*oh$5FCNsz%`a>|?dgTB! zbDJqv<4FN$muq&_E%elhwWEds;z%P32iCNxJ$DTV*sVap(fU1GT?=HP#$cr4k(o(B zj%#l@iJ~DrO0-tTCK9l-HF8RNm90p(k6%%v#AN~qoN($c<2QTpe{qsl6IS;t( zg9mLChH~eJ{mEuNgS-Fk*qXc*eve}v zzdKq{dL!${R3zkZ`9g(Gbqr+9&#+&kw zBz!K?S3gXB2{h^a$w&-uB2IMf!Lg2QWckJ*^^ux1r_g_+!u`+I20o^3eHKtWK%Ws1 z3{5A1lOUfqaR5ev1dT+D)bs08f0b~w_$!#_^jV^~k>|q`bD&63WQIbTm$$#q4Sx~7 z)cM(}*@#V(tM7I68d?&0yI9_kOz@}f$5rtBMvpH`&_7gJs|PyIC!whPo>27mTR9WE z&P~9J&7wjXJ4b%$|GJC<0GncrWd;JCe~F%|25Z)iDN;a+oXebFY&%7_b+af!*>dDa zdey7^mYg}Dd-W=h=MgOTLJLn)tO+?|x#zU8ITY{MZim^TD1rEMDxuNP|7#b&=gXilpO>Vx`Vx*mtUWdWeOrz@-j=-}JlF#$rF z@_mY%sAAw^p%wCQ7!rXQi#X2uRaif7fQyaXCufjH!CY5QQ*?l1-?;B%n69Le+Y3=- z4^Yui(Y$uQ|2Lq@+EOP&1s4VV*SHPG*wkdxhh3%4)YPfVWRkYDr|Br5FEg}aGDk8( z;-y|P03izaj{{`BvV&v)b>RgJuV&dyCTeT;S?K|7QU@24f4N7#Cl;a6uphI08`2Pot-N%A-$nWulUZB;f{BJ-%F<9ep*n|C3V2dL3{~-R~8UF)h zq%-UtIeIdDR=J#=DijKYexbdo`~ZOe3;izu^`X2={e+fhtp8mtUNMa)NM#A+NoLL< zyDtSTm$J`nWU62AS`yLGZYgWYB=)OwsnRa0S2cZvl^;j%jO0W{&tVs1Y~2+4(oCt< zu5*VuzRunqek=w!57+%2M=HH^-nsBA-}}4Z;!P7bcFe>NFuw{BTmdE=eqCW?_5!gF z(SyzU%hz*cP!toaKr*J(&L6?RmNh|rhrcM8u68E2v3;ogfUx}T?0)WeW8+t^Nwq<3 zy*`#3bE-nVfY#=TB5tA#usQ+SNO&V2KtO?CJe~~Doihphk~!!0xpw#9+1T;Vlb`a6 zu?6Bdl1Hfm;FRKO+mW%W0<;hFyR_Fq?nr>Y4=^v_tNU<0dj5X9UEqLl^RV}h=rJ_# z@fnT?t9Mm-FJN}IyJr8-a~?wFl^f0@J_;qZo;}ECO#4-T*KY7V^@M82+@w~Pd@b>f zexTVZEUxxJRqe-^!AysO6f92wimUxP5kk56@%mt^MWbS{PyOSe1;hd0y@OjRfWZD} z|3{;>dte;vZ>+@U-nMbYBYzCUjQ|3s2+Y%-TZ2tikrm}`czoeeM%z)@N0Kx2CmI%b z-!YMpVkA|es0O1S1uOeI;eS4;Fai+S(;OH;Kq?B!*jRkO}4tAe@i`qp*4 z&US7LKCk`)dSn-6_cp0M&2M<7FbtNhD}Am)d1^;t83(87Q{J}^u1YhLBGH99am{I)v7KN87RH@R7!S^_+>_^|)c2vmp7wJa?T zzX26^R5=2!JsXO*I__@F@|O0I!aLJJWPSF}@=`hmlrq|^SEsXsB!QlTXXewFTLaQQ zXY;Z>_ll~X0I$!a9Bzr8mEZqVN}lQ&U0-eY!Flc-S~tG)zm2QodZ`}Ey{iZ`K5u?E zsHN*8b(^m*!K&g&e6gv&bK-3_uk`|Rms=MkPshI)U9%>L#A+0Xj-N7ht^h+lQbeZ1 zij#@}#>mIDn|9f<_DM!XO?2BoU#a6V>979CAZm8;D5B2w#_bd3y??m(;rHF>vABMa z#nk(rQCu}58g9`2dHVOu!3bfbA+WFpec(Z)9y*$zTq&?UvfqB=3|? z{^hFHV(G}#v(2OnfQXzO1T4XmR1BX4uj>o@bE;0i_h@y_)q~^41f#d?{(G4@;+B#tvBX0(QxVXJ8v6$<#QWA=cuKKq^JebUS}m$=w5v? zBpw?YS8;edIe$nQx+fLTp>BZe#z53$Z6oM*YC>wuC*v+i9(ohlNWfUkm>2A91U(JqG+=o( z>(^&uff~Gk@b?6-eCD6UfEyGohd`CX%oue9SpuQarr#G0^=~<>Ap(N-?YFQ#HMci8 zp^y=HbWLz-s-bUDZ+IaJljc(tgZ#3nHAKEGg>|zA%`wYq1i4C@NqdIS>pdF-WXG7i zTLyX*7d-uy^EN5FAH@0forthyR#48&DOZ`k)s;u+$di!EW)Dw)t0$noH}w4MKOW~l z7-xTpGqjI!i2-K6dvyJvXBFv*_{kZ;DXPoBEnf>l~-B|`+ zN#_AhB38?!3)EJD3^;+c9+~S8jWgkH$NRl{)B`V{dR3<>SVm?7zeDd!Kvv<-$<7#V znW{H1FVbqUO(0u6zU%wjiw6_2OuuVy{Hko~b3s%Qm+#A;ifVkrdSVA%%usf7dtpC= z3Q$10=AkQ@78kndfTRZS@%jRJbZTjoowL~#ne@YwL0L|)1Qw^Z$+ZhPcTP;0iQ888 z?#bD%F;~{ZEahio*J-RbpbAj-b};dNuvmDW`#dX8SuQbM+!c{5Yw!wu+a9Y%<8>-q zSGesanV1G6Gq@$29x>37kck+;FoCSebKeWb;ZwRhym`n4h}|-Ter6QSNyV1m z#>=ou5yCT5WD5}~ZfL!<1$8)QwI(1A6Oy&P*(O|(mq33k+2nsTO9_&QiyjPz^@!;mJ*+AT) zrLhKbw!j#ZAx#xmFREzvB$-s3;r`LY@AUm_W$esVm;|V(9GAnM5`9+3hQq@(^ z0NT0VAG(XwUpZjh7c2& zO|O+xH>;EAH(El2BizOa#w_@bTrV_%eLEqD@92RPnO6KUs*^c+b^bk-)KjS> ziBe35f4gph((F^{Xb?{fPiQ%S$-H~oQuJiSAeKS`2FNsI$k@S~J<%l2k|cmE*p&_$ zjL9sK3^sK98X$M>9-_o+0yH)B&Q8Oqx0@$BoJ~QQgHt_j)?XZTmFnlhWY6RMUN%Zh z9o#^E%gpqL$pka4-XR-vABf2(HcKzFeW#!-NB$PX$PfebyNJF^J=g&oWspFg!UHOR?O#kgHNHt<5lDd!m*1KNGSG?3c1gYEI+t|H&jq*O(9^_D88X@n7 z_hHUK`?qWi?K88T(OnFbGww)0 zLKiRM3`J3jkD3@YZ3e@RYeg`|wZpKp%2yTyl#s&0gORtI{Qfy)L5&qC{165DlMBek z-gLFuszGCYeTuyOle!{3%Cnx&N&1E&7JEE2T|dN zMMehe*Ws6EJh6Mqb8xPvoan zM07y;C5m?lZ;@Mt^Qvkp9i}7aSmegP!$QC<8gh?NMV51nK$>5Sv&N3czh4U~25zt; zV4~9*-RzzwV#>L3x$BBfBs92Hz#s7q)n+tguX$uPb<^*c7^rZFMW7H53ii(dV7Rjp z&4H^*gX)=u)qgP-(In&`6)7+Ogw{j-?S#iBm6P+jpsq^<@pY7kHk%>I8NZ}GL0KV2 z6}u+V3i^k##|%QKB1{&yHAoMY)_y3ELI$1}WHxxmbfQ7RK$mOL^tb)XPFKlapPDt( zGz)>yUpxYeG@XPwmX}-6Xwp0vU`jji6^Sq6d61YNCSH@M$jJ?Jr+3dXpnK9KP3#p| zR3sGxyDAZhK?-H|niZ%Yn7SRi*%>zLnI#NLn(eg^dwXueGs}uDv{m1G%-57~OL8wV zi8}0M6)b80a0?Oz<)tz4WDAaXs0xttwmA;|1B0(N+C4_a!22;~Uaivsh!)bf4#W*{ z_KMj!fjc)y>6S=3^da$baL%|`WM0ocjW|aWueI0pc(b_9_p60#4jXL`PR7N)hUssd zSU`ni$oaTpMM1$eo4&%qN2A^$krUQKVw#=zub5_uPKF$;$ii+n>d~bGQOBYTUcFqo zFuKuh9X+2mXt-ZU59Hnuaaynm;hfY&0eu$FbFLBgDmj1p(i!3j8Q1A z*&|D(!ei4Qyb>6r&eQ)LZOJH*1AfG*J4otAmxgSoz&fm4<(IR20BfzDf4$^ejJeZP zJP}U38;;?h8u(k1IzKX z7XbYf2Tof4AObL5H60Lc9%)g!)jTT4jt+3#zu1=wFx$VA&qZSXz(SKgrzaE z!~b1FmgjJn2o|UWaKYq_)PvOw%QFD032|HbC%gO}4V0$q4vggS#nxi6<6O3<$P~;K zyayLMrlGDNcf;#&>vZ1Ob1-C3#N9$w$+~9s+|{xIYeKiAz4b~mt0Ue~)!RRvC1i+U zh&E3l>NN@G6snlLAtG%&@DdM^>`BaI2!QzK#gr-$y(-2A_=Mx%5=6(k<#r_Z*BwH` zzT*~@d2t5SFr7XDV%VEwHw+Y#DfDmTpgC`xQ`UGYI>Ftegkv0pje3@Sj_-xef>XK_ z1sYOZ0=_xR93BrViV)0Y7E{L|P9oz4d5Zfhd6s@f%%Zk+0co%; zdrAj!X^VRRyi4!Oph9tePd>yxljO|+B@5|l{2E;n6!~Yp3a#_NA>JTPHQ1*j657Me zE)P)!L}v88B4Q2~2%4lj$8{m5PfB;rEoe9U&ssH`gAcxHo;X4@e~|N;ni`6(3X2w9 zE>>l5^}E+F zIs0z$)VNhTNR*HsXX(1Bo77_0&)q8;kq26C8TS`jsOO@g zUuB%v_am7&2vo_$uY#p7uW=;)r|2+!QA!Ch&TaqkRs50s1T-O=4rWV}v{X-k#fyC5zElbomxbDIXYCtdT! z)|K}xLhXu*v2j}=gi_hlYLqS9FP9;ylYl$$S4DCvN=0f^C3m*@d|0p6cFOtRA7Ig_ zUw5egPgiFd701%9ZQLzb2uyHy3m)9v-66OpFgSy|4}swB?(P-{?(XjHa@hNP=iB>z zYko|xRd?4~GhI)0*CSWwc$Lhj-~uw?1+}4Zfr^XNO&J^-Aa8k>h7jjj_MfU_&FiS) zfpZvzw1r;rM{nsy-fcdEPv^YLY2>|O`2;gP<=J1f>!eU+=)!w`P6Aghp`bZQ>9l&4 zh;b!~w2s647O#L_9@**3jnPgAJqr5~0;$XZRxQr0}J zG6)|BdyAWNK!!Xgx`vB!uk`Lj=?;>9bd5RNFPb4zGbJhsG`zd1l2 zM~8(k^)V4N4ZhGN)U-nL7tu2WDD%r*lMUnrxMY%;f*8jAaKBkqSl~X@ZO@m)oZn^LScB?j?P!O zVYZbVMj!P$y=R~%BT`z(InYhW>Lqt3$hBU$=H32}@3Q)dAQc;^K*U3|-Dd*>w~VeC zAHV%M*OlmFQ@){Wb^nul1C2X<)Ve9Rg?86r*{H;^{4tAj@v?lRxwZYzKoyNjr2c*h z3lBj7QW3(o@~CI2uo~v6an1m~+mrcjD#}$W17c~_OjGcojdWn%i#^l162S`UE|cD> z9|$R2C^Gh;S-X8m{JN~bUgI!8TN~M@PZ$v}$akUzW$o7l*y?g?8P(P%EbuS~tK6io z6t_WqWiBWgy?HeGv6hAe!#G~LevdGAupYgyW&RT)ZZ->{0>b z>Ggr%DHDfhH(0ecZSJbdwTLXw3_>N40hN_rV?s)Cwo3NUSw|lY%ejb2qV7N_vEwoC zuEwv;c_6+#P(weS_tM;nL|9%{lF*NA4=0c0_rJf zO_pB2viUTlxkF`@5RijB3?|kpY9d`r<6Uh3u38sB*-d33fLP_a&>~c&9p;em3=jLm+StHuM}dcLJmBQXUIli(T-?ksCnHujJHDtUY#wKt6u0kIf0 zIl|nXc+*6IeWLnHg2$tEJKX@1J=$T&oNY398MNiSBEY#Bg0wSJ+ z82{j<*NY9MYGwK%$hVR`Ldj9Uu~Gko6)W5#nfud?RZ3Y;1HE%N%aiJTJVjDfL>U$o ziz%FD7mNv?x!$*^06~4x)rgM)*ot)&nZQmC3j{>CbV%_Krt!;|seMH*>VglfSlt_L zr?^LWt>Sfk?Y5U9on=O!)Ip{R3k9|tOTciIb;V}HMtKgz#oz7oCh>#y13XYGfmP5X z74F2g6B}QeqI$#pWJ!iiP$;Sb1&iR~s%4+W#K;P<$cawu(Z9(N(_`D|`ccI|ybXr< zIH@$QnTcrA(s4?wu<6Id7dp6Q*MG&9h9TvblTtvcbwF!U{sA*88UPxRpA;+$`@w8L zY3ViCj_^^@R;JiLQVNBth&lfmrkTvLUzJ8}=NQbPm~5nb>QH2fC`^6%v)89vjy+Jv z25HYBU@vdfSJWg+d@#OIQ32yRRrRb0h{rrF7`XUR!CbJU##v5&!%S`7cL^YL*U(hl zA0D4?*qtmt=L=1K4n+=6?=zlRdE?B|IyRnGisbL?|voYOVXoQe}z zEtFP)c@K#%PR!F066L@RpPF8{EhVvI6?;Sy&tIP~bDpu;_6Yi$aWDh{oGg0J@QlEM zfFOVXuRh{|SQvrtd5fA$c3T`6UQFX4;%WGf-YQW&09%5uZJ3uea&6zKNR{SqOj}2h zSU*wTA#X2p$-zY8Q;JpW`9NrD_Q8!1HoiTFV>b;csA#JNjvJ0hV_W@8TI+$IzX?_j ze}39)HeQl;UjxnQ9Cp-9m;C(A{bR&i?v82poN;dwq|@oKn_Txz{YTQ*!$=aHeqOM9 zD@MQkRx5RJDStAFm|697&T4P-FTjK5aKmVxTPgPku|uz8&-*8fLWQq!)+^X$_rpeB zG54=OU(P<9EA^yIz}1T#4#yX1=t*&|ap@c+N8P3Pb0&$e{kW7uo=KKK)Tc9Y-2#dm z((Q+of>KH`bUzUkw<~=0XBw_k=HqM}o3>t`!Wa{RXt6*evn(QlCv-#xaUqS_8mk_u z<7MIeNhnJo=&@%hq_v(Ej-)X7B%Wicp0ecqdp~*N;F!lZ3ts7094us8{y1HeW@1pE z3h$j8y=oUPt|mxlA}lYao3C0K8&-p?8dG^!8+1r{6QF%SRP*e;vL8wNJA?BTKDyEK z23ML6ZL14DP4_}4svT<+)FEc`yj3*lV|dF-(vF(-dppz36{!FW9@;{!wSk_dRlqy#vedH$A@P1d0h!lUc>Q4I813_g>rSE&oy0+jV$ z@I*D^4yE=6&g7k z8M*zj+04+F&KeFgwdAQ_C|P4e@H+>5lyxfCMcK80#|M~cf#S_AWcYR*w1C3rPG}iF z3_EygzsG<>8y};BxuTWtmRFnzpdD|I#^%;3IZY?{{LC=XVCFaJ?kZA?4UFFCv@SK-*S`l zqlr0-zU3yzW&}3=dJ)P1ozR&fo_=NBf(~zqIBinxXjU+-fQhULk{)q2|nmSUCk7{R#9hU(k;@hbY13l@doVV|$8&`gw3iFGx zCi#yII*3<9``vPt^%1rbPMY5>*Sl6YY}k|r^DzX6~qL(xesji~E*W9>}Q`9Zi81b@}^uXkp8m z#6oSv9s;6IU5cd`3mjS`jjW7njdDd*@VlAVps~nEwmj5Pw1-r3hv8jztj};@AIy%6 zk(_H!41fGuW+?1Gv-sPi=RZI-Xl?OFLTXO5%ml&Z=Q`Y@OiZiL2@;7#(|hM@W}d&OG!- zm|32+F95gwBhTYeu>Aa2^cOaSZG0Y-C7_Fldzz^7+J96fP9%}CD2~qe!mg?R*1br;Er}&cd@E~$R=8%TR(qh+s@gC z-Oky;+Fd!4@rk~uaJ>P)?c&s&Ek;8lLBS%h$G_jFzT<-*7KuQtf92LQe*b3kV_EBu z-4ZiK>&JZoyk?pBZA!~99!Me0!;IHgNa!j1$ zlC-oWy^goa!X3k)exx#SrG(rG2(_#x#Tn{H#}^830@PCIJ|U~X9E(tnM~92YnJ0Vd zt_gvKP>W+9pb`j(EthJ&%3>CdIBSTtl9~NeIRzh}mmKy*Q8r6Bq2PdqE&48mk;enA z{GOUsgO5Pm|LB_t(aZI2GrgE^hSS7s;c~*5A=cucWLADH%`c=CcO9AF^szle1eGI# zSnOuA$ca`4K#C>JGVQeMZjd?6%QUN<5iaL7oTtsPT@77D@)WlK696BU)tHwwTLYh- zG#J^OT1MumvOXHR24&o$1V} z16!lCu?cVTbkaOV@OrTqKK+?wBw^uXK>$2R=y~wFWk!%M=+>lgRtJRGe}qnbafwgp za1aGH_fqszS-Qh`qa~&9ZSH|HZPvM)OBi;|(}l+3zS7cR@jhg?&DAN1s(HAut!bn& zMee{m{sxBi2)&ZU13e@_H@f$f8Ti8@WnU#fuIcB|Ld&P5_aE@BcX3O@3+Sw`)PQRu zk-v8|S2(_KO7aU(#4+_jx$zZn?8GP|Xdy1Shd(J3rQ6fph$KhE03CEJqH!L$28Ud< zni*_&yV5dKAl&AM_UpB9&>yr|55N3!olu#HqNPH!BL_wnc8J`9rrs8^pUNi+B z+5)3$oV5E;>GR-L6BC5RZ*|>qi^=pj^~jNg0#3jo_gld0+I1RVP-^0FCMeai7!k9gA7RPGiHENkX&mucs6FRLx&se=ZI$>M zi&Odtm>>(tqAVG^qEhkjP?@1xHOeXWvEy$t5j2FN3>aaLzs7bm0TT4(p4vhj1_HwC zopOcozojcC_O`a)?3{kE{AFRo2|Djjf!IN7sIKS%={@_5GIptg8p9Blya9#Ry#d*3oAT7SJBVYwA4tne3g3{o8QeAc@W1B)&#?fH^8s+IPwza}BnMznD<<7hua%!WN za??c?me30M!n2|xDxP4-M;*$(A1c#RI@Ly>2%jni9BT?i(Vq+#5^LztQcyS0Uu~Fz%+nGmPu~m=% zAenjH)lCGWmz(#MZ%J@DV-a~|Wo$H7+5+Z<4h!72&6F-KhK~)}Kx`d39gKK8)H$u+ zB3<_@j}ZNjfp>8Jr0rC8s`c>9u2$j<51S|^u|ge_SAbNHqDE8;7!<6NUDt~t~yIv0l=Ihyd_UU+>1BRdNua!<+$y{G*n|%&aY}@%aAOH3XMXmk&~A`Tt6txUCATV3b&}e@&Qob1;PTCkw1je z49!v4eAv(}#a;}7orL1>QDy#|zkbQp$7#W+j_m~U^pmU+sx{7(b@jKbHBQa>G;Y@X>6~#_E@+?Ap@}cw_SGa^wJ&cTl@=(Ix>b(#?HuDAN$>VDSUv;q>K98p{X2WY$ z=4V?YDI;glZY2+k$+go)w85p%cHVnuDg3+_CIeEksWZ?B4X%rX4N-jQ96-1Ptnmop zK-N(!$4O^~L0K^f%AodAPoiK$)rSnhauI@rQi+9qNwp@)9(oz)_eDksH%5l_(rtJRsptr@ zvGK3@NP=fUC|=RInTCDhM|b<6;=hV8c-kq80McXSF33wLg+cn9PN!Y19#-D;tv05i zl%&TOer&Z;+WVC~2bGU6ArW3;d2LQU9adizn{hM_Wz?9d$^oy5B`VHUb=%1Jss0M7 z)sXDeZAGz2>j9JnEBcDaK(y}_EQ@VH6gl!0E+vs1xJ$)?wv0#51B<78y~UMI)& z_t)PGPO8?Qzqqt31+;HI$u_Cdb@NQuA{0Y23c)yks-==|anm6OtIXg~;NpMhR{zc* z|3hCrL?kMZ;7{@eFDB$tQ&Mcx5&iVUWAy8a=grQFyIO0-(n<9KU~C>4#6x#D(yB$z zsWDJfwq zYhrntV7bX=(RpTL?)K2aV`_HB*h6n_#of7=Mor?#swwHKsB2UD8>i5$+SBQ6&~VC) z+zbOqyF6j#g>kl2bIc$eq-&d8|5m)Upr^B3x2ba8a;tTI^L>?LX}8+L*HB_)XXm@V zz>_#-^y1@7HPZ-&^m9hlG(T>;brV;*W3P?D>aD=5lH=#1kMYzrD6z>@n|w^6lPr(Q z-*A#1r%LBlt;t=Y0CcTwns)Z;GcTMu;kI6GeBqaQE=bW%avEjzpn{R$nxkFl*^eb2 zk>3h+bi-T{sX7_aD<1OuMh18%Nd*nYF4Wk2`H%0T(%Zb%R)BK)<;~3u{TY`6yN{1E zJB-p6>J3M7EcWUz1IomFx@+E#S*`|UQRa4EDmbp1HK+TEX^Wd}IcA>Rf!EhXb_*+v zVa1^Ry9Vc~vWuTHAghPq;zEtS*0!{*kpg?KXSQ^qZ8fE`Vsnz%vwSVkv&UQSUS*H% z3S)X(`Yh*)*F~1TzMhMM$Q;4>WwG{h{h0n!^MdXP>p{oiB~YiLI3wemhssJtvegCq zal=hL%`DNIdxI|LZ-k7twxSBf2&UE4j+c!&1tI~lumimS3B8{3NlKb7cDXBs?Kfhk89Am@5a*j z_+4tx@&+;pn@?^^a_?v%2x&fRAq`q6=t{>)Dlo9n zlgBky#)qzJft);~J1i?>P^tBtXQ*zA+AVlrzkWAl!p|V)qq8*Q_#l!-#o7|5X~j0E zi)Zo!n|A7J@2B|n&zcV=_&xC|%xzAmY!}7T6U;KDvsJ-Ty-TbZW<{~|LBF&-;eK40 zU@9i`1Z-o+@rh3ABhpZac?Kp+*@xidkq9RUBTpnwpMhclh3{7<{4oRMc6BO7Vz5uj zbap6q0c|#irzK0082tMikkph6k#hm_z=oW^ATFNe$3Pk|^k|I4;Qfzuj~Faqo*^+~ zrcEM76)YrErU=yUq9O;!8)|lA2km$yl(`Mx_SD!cU{~{t)(^w?*O60Nh?(Z%ahBEw z6tfnjf=rAz*cOtr$LfFYt+muRjyfTIy4uW4jGN_0kTX>*{DDGoF{l`qCr6T?3*+K* zEFb2zN=9x}5W`#nN4}R+oyUkM9SSHy=@lIfHBC1kqfqNV)?i;NUuOs-8Xz`93dkyf zk5{aYZ;KGclbPU5#Vl~6jHmcK-pkVrxnuh@1*#^B*nfc5NBD}!hKYroAcLkMsD&#T zB(@oGN~4LiUFe@{nK4X-7jutcrmQeO8h8v#!Ijczgg~goh6M?hk+;Z&jNh|}_C2sK zmTOp!VxjB{h@1|{gZXypXPUvr96?+TvxB-Q$YRLsoJslXu&7yk#^je2g%KIeg)b7= z2IPZBimXK`Z4(kTu1tFggF(8Ggjzsog<|NK+yJ9{lm zR32I}1pr+H8ik7&DYAqk+7|HDx{Ul;lrSClB(oo5G@ZxHGCDpc0)^^T~hipWeXFUFF0|Kxp zbNdbZVUzg5s3@-0%UzUko-R3BfxEjTx?=;r!v%;~!4)k`ei#d+N|q}B`3+Lzwhy4Z zv;ph#II|>$#fpiFk$lK%tWOsek9oKcy*On_l;$*eqaT@(CrG zP7BTdUiez4qN{*pI$nVwR5XCDXBgH+nMoW^=3H4C!?R8NgdCGV`%##0&`>#0vC*HU zH|4Q; zVM+`muc$+EXplzZe`F~mv>+{$iaelU&J~lp4AYhmxH=aklyzn&=>C)YNev%&N9%*k zqiG%Ue*PprqEIEJl_ZjqewUEAQAc>l`IK^-H4;1jm73h_gZ_dI<9bE9*k_UDI>TJR+{@7i|*T>>?Z~aYQ1p$rMMb z9?$jA(t?Zp2?JD!A!YVAw8^nV(9>sUp50Mcig4QG(QFx6veW#X64z<+Vbp(jbH)(= zsMas^;jUH4Tk{9n-T+lT8syoBfx#b^bJc%e^pjfC{Pa<(WKIOJc9EFa7zPw{Lf>c! z9iSsMEU#17cFq%S$VvwSq+q}FPo%f9(mb1QV0t2kVz$zQ2l^Ak{RbzAUL(F<=JNl( zD2GbTqvbyCjR`z%OYN)1>Vp|&Vt)1e%=det)zUs4*qO`mJCh`3_Bs;Jcfy6N{hiB~6&g%4xe)p_u18|s5rSO8*N&L^L4 zbccd?`Hz;eUJfz%{gO`jU~2rp1s|1n#?~-@U}djS=V`Yw5v!0RcXnePQgxKAuNCQWnfGsq826eABv6jM01r;TU+@PswOwtJ=b|Wm1!EF%AHZfF-N*YYP2E0z= zK%ph;aY)Z{U@A4NrOYa_T{l{frjWGFPNk1}3g3O}KxIc73h$hX6yL73Io1$uwzV2C&CfEUSd{k(oF>ewHub zD-YLH56!LUX+zDaw_1h`V~Ri7tGmmET$|=dXpIXUqlWz^c0o!g3L0ut^>3q{ z{j!?RI!Pmf3QU3RQ8|DYKMRJO9~3IF8OKGg@}5c+T`4k8YJ)KwZ+1bLk_sM{B#raw zrMi#=#L-mPgD)VL&@ZXt#6m6iGl+*xz(C*Q zO-_uQL`v|Iv?H5;7|AHIQfQu({zE&7rBPPx+HGUaVyCFHiE_&DG7=)W6#pos)6MUIcMWR_19ZQx2K4=nHO?;vf7#Vs_ZM&`!s?5 z17o9=S@Uv22?>%@*!mk6enCXKrb6{Hub0gsN$&tGirXkLx$v>p&haaKpUT650pmAWI;EJgoHe{h&iTjn8PQiP) z3)c|v>fE1A7RZlCeu7+yd@E~;Jo=T-gyET*+KHMU^hpC5DNDzZZe6W3Cc5UBsvAU6Qga;`iK0uex0ss!G9px)zU$SQf6K(4ATD8;GcXtiWJ<<}8508F3h zqju+8ijR;-eb^m)cp15|^|UH>+QT7!PccMNRyE?@Ycb(^xYSGUAEvky-@shH>JmmHic2ORJ@Dl8cO z9s@wjV|tja00B`(1@<HHp84%;K=6g>pAoNri{`K2MG{c+ci@*r z3b5=G2H>CA!TWmsZz+WN)4PZO41QvV;(G(@K9hq_o^U?@w^#I^Q(zz=!9>rz(5|qM zV7+H9#{YI{{G$|vhx`i!^dAlmu+alH_~$b|1~lg1o&V=*W&Nw;^MBt_{u%2Q8xnl} zO!E2f73F=lalFsS5C3$(ACZ5A1T((yK|g(h1lzvwLX&@n1ed%BLR%3+f)#FPa1~`> W-^p(f5P~EBzhkP;(q}BT3t>6 delta 51300 zcmbrlbyQtXwk-@H5Q2x`aaVP^)ImIoGPHUAe<5s`qwhLfAy?kRs2UlOmB0IDk@WBd!hu$uAw|^L z>iNs?x92f9=Qmfg<|LK&#}9{AzlTEJ^tVdqR;DH#438f_yzgg5D*S4XBVCPP!WC1h z->qPYo(Qh&idJR0vm64eDI(LSyprK#!?k#`%K{A4;eICDYGo47q+?7CGcX1bqHy9b zx63vrCO&G7o;5^&vexAM0+jxw{eH4!PDB2BQ>IWba>Ism95XhCi9;B72M*C6`$Li3 zsvlMN2_lPjpqW*WmkKT7Ebcd&*O3Q6!S*gn988`E!dNhH=FHtXTe8b8- z?v?;yx?YgzHL}nh242R zNjB0+1iyulb)`M~XS%)U-=!_=ZJ@^dO2A5xA%#V&ka&p;2Uvr?(2mUyp>+y}x`xYW< z@y?VF@oL$HMm;{9IPWWi&&Zfvqac{&3wF8FnG`2u`3#%6XNUW>M7%W<`{ z5n1-@Qb{^)Kvxr8Mf11>c-q~g-gwme=J66nr?^ObU(kt2m9vta%opj-M);mCS~(=*ipWl;?hZZv@9uHh1?$LorEbJd02dabM#y_S_bSyMX`0x)%NIXV z*>=@W8)obmKhbbE4YkcjzK|G$W8-Kniyn0;4`$RDeVZ5p;0?k#D$?r!OIMem-}$G%Hf;aCKXiFL6TtEr*XtVyN|M2e)N7x{ykUN>fM>gaEH(t*V+ zSu5RN0Uy&=+VH`Z7a!T)evPV1l9p%JMJ^EzTwc2a4~EU`i+i_^zQ5aUeFtys(@d(y z9nDJV;UweehcKJQme=}uG6OSPtMcFjZi>Yx{qZ>&9n64tXX{^i`3e$0Pi17tcS|Aj zf`??AHmX#g{Jf+f(Q6;nh6aYGnb=;!_BxL36a(>yCAOR-Kjd4Y;8ai-UJ8fiH2aj- zKB?>VO+4P=;eID6I$s#F!lLStnG_LjP>cT|sloW2Ae+02 z!Wh6(vvc8pDovywe`sW$iau-`vA%+~)n^-hhDDpl1M@lKp5QTliH1 zhdeuA@2J;n0PCh_L{BqgH8dy4YK8z1{6cgQJgnf+>@IDA^_%jQp|eqrig?SIjnjktC;=8ZqEJ8@KJI^Mlt zrY9u7l#f0GH4_Ss^1ers71-;9Z60|`H8oVZcV` z9?MM&i)`q{iurk!zKO&zvs86Wnk^qG>2=#PtVS|vk&M+e=J`K|mwRjdC?!;MjD{#9 z%l!Q9MzNu{(fUcaY;CI&K?XqJXtE|?tB{idT+AhJ-K|qiv%h{~5VBCb3Vm7A39q7< zNMtoIS0)o6=)>xjW++J2k-+Ie4|5QesX%6{u*H~YZj{&y|8|IRWFniLz{%`OzU7ir z057IEKT5!tZB)5*H3_bIJm8%1QfBSb*3q5SLnaejF815&E}mb7L5AXL@}JsSAX#}E z%4B^pLA%O~!JD1&^r`V9X~ee0hGZyNwo@Zh-RmL*S-R{YLB*Q21|V^#ZV>I=ue-1a z>xcKluhKQn;Qq2rWc{-T3nXqB7>Oj}<$p}=r2O?I?Ywz=CQa{HY_*X&yN+J@t1byo zQ5Ng^Ca;(fuz)7sI~ov+Ph;|1$6m5VoAs>`;osgNNrWU{;U@ zie1|Ve^!SO3BPyQSE4Pa{XyYD^k(k>+w;Xu03gt|!9Ttk{rXUHJFXGYk3!)Wu1(F< zYi!S=VD2N0w%0gb7@P+N)jAgCo0`E-?=olk)0XL9RorZuVRVgpGWUd-V0313pJx6d zVG;*MC)wA_u8Zg-e({U3@qb^8@Z8Xq+i!XdsYpE%;44)MmXNlpFyhu<+;{Qd3^p49 zRbX8r(P^YQ&1Q*JCl z)vP2(yk_Q+*L|Jid&#v0!q(rxy*Dwcfh0^jq-Zd{FgN4VEx^;m{K>d&y4TZgf9dmW zM?#CIq~OEJ<+In_w)$-;NwUB#32+;67f9lD3+My)mn7@@Ef4GCw&**@X9|UymYz4O zEzwiC`d$zF0J;$HxOpxlRx+JL0{w>x^jb;&Z<`nIPgoN4K1=x`-K+Kjj|-AscQ>W! zz}=0^5DIiz-d^WR5e}>-9iE;~M8wm@yDtOIQEi-Fjz1(!}H;!l~ei z3C-G~l4F&q=e?<5$L^`FJq~p)}aWYTeYyG)`3x z!CHzF(HUx3RXKTb%<0uCp~PZ`Glw!zRNXqt-0?V*{QT? z$d3LpVB}yeU`u6uAI{LPGQ+5t#zF+F9Xtn~NXtOOa>~kkE0&s1?)Wp0PHeGnzb}}= z(dk$vlpPg8N6 z*QZN?`-jbO^z@detKD?q@nUoNsfT1th~4X<;|6{3E`1K*JyOU7p09!D-Sy>iUWVNX z_a^s>dD{u?V)wTa5CpF|xVWno28fGgsymQ5Yt32zs8+FL`%%Gk=e?jx5c+bYYo@kk zACt|rwv@=--r&oC9dWNUinyB{J}SYhw+vNRT3&ynBn$SSxV zBF&nn3S8y{>Oz{F3nzEm6%QI^`AhRGwxJ7z$s z_Ux^Gey6%^f0umbqLs5&YSwf#0Zjd8OQF*$Y0t;%&ig~N!toLp-bJsm{kF`rfO;M% zNp6Kqa=m(w7;-G8>o3g;m#nYqqazeCuf4`R;x3*T+-8cL?iT}4NGI;sV4<$`(1}ia z+A$w&)1-ea#js>^5nX~edb~~Y2y{l!p03XmVC+V}e-zIgKj^pfA`U+Kt?-bADfFeM zbJ%O`Q{2rhL(sKls$Na9Bf+D5DO2(L#?!i+Abpj!gqqmPtf`oJhDCqzmiO`2B9NB5 zAbr)f>EpzkL4}7L%$6@bIp;_3z0`x2Ta4Erd%29pM>EQ?xgpETs-c&OO2AHDPJJ%z zFk_3*qgk%naSbMfUQ20dp4bz3{YBMH^M}`ywtHcieDP=rmwS_0%i@0Jy_2WE&TdJ- zlHrFQ)=2>ww<~uMMh=UntkL}m?MJoJS#u-*l#k1-ld1g|3{Cwry0q>Iv)a)uk16sO zx=EfrOR`!Q+MD>dmrK@2#DKb+M<&vEa(&6K29@0g!E#8+cskId#a?_7OtQ=5co%Z~ zUGSntd2u!V)77z3f?LErtH_E#pnQeho;`_~LgR*_;3+9&=hrwj%gc<(uBiSfg$r!v z01SaTv_u+&uZ~^biQ+-{I^xCCeO|Vwubd9}dy-j?x1G)z`+mS$>;gvq%Ry}lJB2JO zPO&qJ(-mRev$vvfpFKzfJ-u&ELftw$suM*I=k0N$6?H&UM5}r@a zd7@T*w;NvV-0J9sonP7)$QCBx;v5nGY>vb=7OG z)YKeXzNWlSpa{iM9S7g4eeXW1lsugYk+w<#SB0?*Go;k%)}RhCIc!-}lE#oEx>D=r zL%kfaI2 zC1?kNGKOebmH}8?RXc-=vpsKv+XnDNYQ|V>2a=1>d*MmbW|)ilS5FZgUGMvv7LkTPDz!o2CSjqwhs-5gr6B4P!Hqtr7HWs-z-YSS@JsUYP^P-0G0ztkrM=9 z+)!cBbT<{*O1ER4dJ?Q+*EE0ESPr_6nb!~=k(j@Ghyh-GK5ONx8-@I?6}~Fx-d&a1 z`w5&W%7fzH%Uow^Y3wO#i9h|O;Bga8=f6?__5U`$+X&*jturAF(%G3%u%v~^^;c?f zd>0^He|(fLWHROwu$wL7=b69(PxxlUha=U9sT6UDSyNl=Q}5z7Er}oHX?O(lDo#XY z$YVJ%$^dFBTzb@d(qOLOdS#WQ&ojtzxVzpRv~iMlq~RfI`FOr?_BxfpmwtcUcmnM? z6_C@F50$Drp9InsL8mJHU(ZL0FU^xou)X9MI))i#+OfPFSL1~Drrq&G5cAa5?^jn& zxIM43xQV<7e5j@5ircPB$@7K#xzyjlXmol5rm&SH=ztXJG;isJ>c^$h$w8lcu%%SP z4UeVcr!uQdY(8Ep2q@sO_`UyuPpE`=8SK#*9Pi%i?U-z#Qpmn_Uib0sxOwRJJEt!~ zfY3=_m6Yj`OqEawx{mpr_@GDB^szBgc2K&IjC-_{(%@;i-YJMB+Unllg~-aiQ(2X# z+0Ufz znWzqVBIhmXUjL2~BIorozQEsC^tV)ufT55K+ghywOM;vhcZs7Hw;tq?S>0V|AZ`oY zA^X0A2m;L3`S;_NzleO)HadN%CZFeD6_^k9WJ9q1K->-gbI{NIw+ZW zt;|j7WDugwf1U~NxFT|1DWeEXgWD=l{ft_A6%yFQ(fJx?_-yxY+0MxuUEY&AnuTl(15Al&5OWtSy{ELZaPQX z_KlPXO1*P(o%5n8+rB@{(ggfQvtcnGlZxKt)zp_{`$!~`oiMn4JhweW{8sHgMnpk2 zpVs!ELu#kGs`AX}8l3{`!zRD&imLbl*N#YkpCM#@xGfV+(60341=cTwjQIj#Guue- zkOgsygOg9a(io-aK826o#~-Re%;o`H*VYIF09@#{?Evn0kI7>|hF-r2#o3 zmbGcRwA#d#wBy!#?BMe;R zk*yy-xm&u~S5;=+&PPa%%uU2kvgU{sgBZ1?^2n}N@Kp3u~b*;Hh-6PdCsOvG= z@RRY&WII{O-Ufy`?_HJtp8CP;*~)d%%=u=w;;)YVl7!A;>7fez9&O*iKs)ELo})#? z*E>=XnQy2hKS-D&^$;pn479h{h3AUgz!L@T^sm|JS>NB*w1)(OhIpgz5QYOcYK~m> zgx}kFxI|rC15r1xxR(l6;-zWQ3Z38EOxul~-Lwx@ko;L@hfqX# z&o?~H^x+L?>{l%67{Vp6eMKIQPRDbAR7+sBq@Th!i?IPki=rsJK z`s1PR0u$iz3L|O}3ty(_$u7A%*BkrjXqfSO>SsRMCs0(hmBr-l~F-4@%zk|o-VwYtK(k8+=ZpTxdeCa9vct+%HVQmQ*<&RH&6YetXms(3ZUf(yH8>xsffL zI2M_E2%@x7+XG(vhjCjC7`{bIhB{R%c~$*=wy;&3m^O|^mRc^Ru0xOww^hF(AKJXb zj88{6k@H%a1H6ZZruCX1OfyR}xpz}1p*rF*5!EE`CRhGczAuG5aH0)TAX|Y zs)fU;bZOvvlv%=eGM#!LYjM-mls;{l-DLm!56I4MCgjEnPf(KAQ^a%XmnG#K)_|77 z?@WmW{Vkg^vJW3tWY(rs1tbtnG7yi#X#2I!ox~MHbLbrT+ML9DYZ`wCIPGZsUQ_)> zvSr$|$8{RxTiQINx@f7HwC8UYQCwIFFg#$NXx`%W}*Yc`M=MVz>XO9Lr7jBCv=l*c?8=P=Aux zo8?>biyv(6>M&kPZ15ik-$%!P*aTgukG3mS{~D&-A8uMJH4FXiF@WbYG!gUsfaprZ z@T~{=RrOiveD6{H5pF9Z}eI>-k_Q76@h(87@I zXM8*2;nl3$FKaPytp^SNLq;n7XGXG~OwIQNMI8>yockjjna zDBn%D|8=Fpg;qOCahi*wj^}q2wzm}-af4tBaRH;vmk8(HFNF($$Jf^F<%9rj)wmXu zSlgiL`a|{QDYWJ&k{3++{Q==^h_7c02ajRHqITB0;odeDAYhLBA|{!uy~eVlebDJp ze?qPWam+Q+drR)GEm$idEs15Uc0RYEvZZjQ`14zh#7 z5+4MRS0Yr<;eH`H!0c&UC|x8TjD3T9#8{8hg(sMd%Qyy~*2iUdbs8C0;hZR!`J2*Xa0&$-xLYCDh8@gfdj;=M!{KEohc$<6;u4SH&(%vB)>1m z*g0BWSr9wh%=krwheZGMj|U$IbJ0ypxwiE)p6mx#6PUpEjY0`83*D4i`ejNZ(A~zl zFbb9a?eAaP)J>kLINiG&^9c&%=@H>FPaEg4PuSNJFJ+FDs)?xdqb^D%ieq9U1l-l% z=`;9)A-Cid@nrNs=-Hy^hll1k&pBpSoo2xul0dx@PtuWL&K;vZt_R!tW~ce1sb8l z%-4<_BF^$ zLdn1Q_&^2xtdG7BNP1ZlJz~?Er!Cdt^MIfre^qYWC107S+BO%Xbxk0y~ z1DdwoOmv4D(ZAKhu3YM#A=Uh!?E!gcRb2K@O;h<7yv~wZ2zKZSd0)(iabfHb7c0r0`BG5x`fIq z5E+Po_)=ZR>3BV;)z!=!akCQA;yxT7)b!~xjfwBP@H*VRFxmK*;X5QkPHL-8Lu0gL zyP4PyGa}CIGWb9SWO}7K<=KWU%te*5ZF#WQ?9yjLXQJxuGB_P9wVx8);o}|hQR|X$jgm)74+Q1SzRLM{A)3s2dtd2Eouc-<=nU|Ek$*-S(DXrh2p5@>5 zP%orCaGB-=G;^cuc`ZohMj79Rrg1txzOvKNn>BjBgigwLaMOxNLCPEs8}s5@W65A? z7A47um*-2u5)(BkYHr9Yuc$du%yX16O`M){Qx!!swHv>E);>fEAj;CM0 z`1oM})BDO&jR#aT-tXiM`}Z=VP@b|Lim2U8e8=Cg3?%+jvQZPv2Kqdf^uQydA87{l ztUeH`i$eOU=|h^d$^YQkFLsF+XqqpW1`eCXltJOueoM6&F>~V&1f{q@Jdfe_2wMO-tX zg;eox)_0B!s4>n#^9ejo5e5|z=O$*V{mkEIy^?UEi~bx5J29hP1OQ*46x>VXZ}x^S zAg&O%yz+Q77U6X{M6(IWuOe_OE=pE*w%qFH9CoK7IeQML zOGr26n!uoj(W=5eWGfYyiEFT{U%*xQbgfJy`6EL*v08@dwOsKf2)YOaD?0baqHQ(y z-iZw@+2KzGfdc^~YW@5FyzWtb1i8mkTc@|6 zcQ1-;?E1?@ReEY&J{Wsp4(O8)GBTjJ=w>e(GlUk_G~sk(AT!-7Fo1T2s!aN?mQJf= z+4K>1!V;<+kpU5gG@@Gb)c|viHjsdypde*fMrSQ4xpip6$qAveBokx>d$2bBZzATg z>N2!MoBzYN#EP5UegWL=zm?xJ-#h*(Tml@M#dGA}QJ{n=e;r%7&)KUK$7a2*%Fz^I z>Cr<8)dBsuWA_k4FW~EdDzG1ikjGrTJms3TJk@wUcbrpo)iBv1)qoZvFlcAlLN{7o zjlea4MgqbOq$mz;h?k^WXDW-ejcwZ;s9hHP<1POh7EyIz18Tn~nojKBRt5}l(HcI_ zgmoMdQCXwZ^(Jp1yyJRT_vUw;b3_%(!f~nuRFBmOoB=Wk?9Gk-t83U(*YkMlsUFs$ zWH?mS;sZ-=EN*Q2QHi~czH7>;VJ~rG_~@s)73nAgbt?b4reZ%6^WZ`Z(9IZUht5?U zybvuM_y2vNF460Zp&2S)y((}pfh1fXTniUv-HHy!3n6lY%^Fn%BY5`?w|y;$_i`k> ztWr5V@M0^u@%!pn(i@3K|I_AblIyS#t**>*;*WYvKzeuc!E>A0t(jEa-C>s0 zRS5{>e_1fyLZbgNDgSS9t)sVHh{A>7Ny*ucf;*h~l4jS0X z7+&YvZJ2QN-5UbGEXs^q)!}fIYtMNuf#lo0J~gK;d5Zhc*%s)==Q`6ZZ31p!RpGi+ z0nkTeHxt<*PQmLj1{8#zH4yrqx zZ(Ak}3oHcrGW=i%;Y^#aOv(G7R}d5tCD^Q3t+wC2DLE0eyK&2Ce*op~F+uoim$iWz zA4p*fR04?dGvn{ve8#~(HaKWzbvM8pm9% zp&JtWmy>eb|!UB!N-@h4RhPZrl1BJ+-{|tek2WFQd`CU@3a;+PwOp zJC!_>=eRU02|_d$2TCY{=+G@o3*9ecKJ)yUUh63t(9NsL&*ZzUnX7%_{`0!CSPO@! zPP*E(Q$slbsrogi|1woZ$-X4`eS@bk`i*Q{3bL3k&7L^eC0JUyVrL~~`=YCR#fQ%6 z>ME2@UoG&uKBpz7#J#%gt=Iq$5vHmF&cvZ?YR}K3Hqq4IWZ){35m^<}(h45Y4tS30 z;f7Mr#7fg*T%gB{Og}bJh3+9MFe=WIZX}aP(NHW~C z8^WPEJcYm8Ljkp=bWqHEZQ$HKHLv)vne0$UGH8xdWUg!FWSy?ArTYwN(>i+$2L?Yj zV~yD2*!{Ssd`5{;UwuEzp~g|rek_* zfuJts&Es!ur%Ovdu^j|!E2MfZD4^kerA=~e$^&gVKad?NXq1uS|2s@3Et8H1#MY@+GNw! zkA0WvHTEl)e`)rrAKngre9MIZ5%@JT{zBw$;3-dh&B(#x$jqw~qr4eC_Lmc0|205! z!pSdQdZ3}WT563%`w%84OxcuebZ8}wN{&zY9#SCuF2@rf9>lVjd5rm9$l$4bXat|m z#)RdRoku9PNF$x(&)?yjz%zpi*0yEAK7(Mv8$e#FFOYk-DO91VZa!7bwL41E~G;ZI$U!+UTW z!@`Tb{M!1`AwInNr7ZKOJ#!K0OLcfPoGkP9zB$_m)8gHO>10^T$#XtVIGZ<>*Nm_& zo#$ijMvo^GYQY4&eF|^x(f}y)lqWiKegyJXQ5%m?4+pLEU)80OUpV8M1>dmRK)Uxj z%-ZOZeV2~ratts`L^eC8!r_U(rOFAvGO|@3;ow%BhVJt#%lk8Y$;taK-9+Q8YHCni z#yhxN?0N@pJrG;Jg^ud#s5o>~p~zuFU;ZGs1$aJLumdB#T4Yf0e6^VwGCyq&P%L~p z%f9S1@)Jkl$TA9}wvYwC4Ng*;7|4hgWVdjjoq}out12V!&!&tFm@jxvdBP_n9LuRM zU!&rLe)OpV--~I}s7pGseh$kf$PkRW@U&{9d^5$G?Ult(lh}gUS2@6+!MttT3$TT5 z{Y@*06|OHGK-XpB#P1b&V&DSa#-{XV4*Evf-U$!frdZ(=IgK9A(AS!dO`81#_b{DT zrD+st8sw2-TZ)2>gOd~|Vl&LJICB5mHlwi+1OFeJjIqj4xoc*0O!x=?gJ5Ymp+LVv z=<9rhsl4@vejn^&a8FR&(6VCgo>`kL7R$EXw}3*}lr9R6%5!LNRDq(C@zM*rcAOFK z_B`b|k-L$04+gHaawAI-WgE@N+K%x}EtyVqef3D>z#_o};EBWxDlCrdJbbZ18Vg~t zOt2Ps0%|5$RoQuez9abnmH>izH&u!>UE}XHDq0oQX}kW$eE6;Q4Tw)W0uglR^5Ik4 zC=wl@0pLV%B2O?mQALP4FkWj%yiA`>8GJOarE%QzMAMk%zW0-yHR7tV7jG`Q7fAN^ zWFTfot_^ajW=%53!LyL;`cDA?|3^gs2*{jSFqBGXKtp#&T;Ce0zK1Ks;@!!GR}Ia< za_&S#tXbPb+zlS{N(K)gkql1(7N}e!LUVy3p-t(^9DEU%$L3b4`6GiTSt5fcy(QRf z@MHC>E*C2t&}xP1;L`XGKrn&Q#J7xYERLUfG-89)7B=881gtH8xi+}7 zu^c#%=1*Qme<+2R6_CshZJpDQD+ zE8-4|_qdSdCh3{?<6gOy^%j`@%MgAS<4C&cn+^51?81d+Gv%+{#-_?6u0@AfK68n` z>~fx`a(zxY6FCqY?XM_O%%TP zZwI~_#LEV zAV*HJJYhx@N7EmKaEtiV41?N(a7Fiec^Ww$Z$nM*)WJD^*rx6p;G7U_(>v%b2HVsF ze;$CDAF!aHU^|xSE1fH(iwP;v6+LgVFVx?cNqw~Tu&i0!Gr6rPI`pVT88p14o$|Re z{Q&OpEs$S5{t*1fJE4gOUX>WPV?PNz@u$?t%EJ~brm-+yl9)`Lh3*FSJqm~sQ}02` zi(p>m3ID!n=*Ljhd-C8h(v7DQAP}hv1a$-<9wkljy>54%o0P2*EdG)J(b9O9r z+C^M}Cq37H^zC;N)vq1FEDR~2ZluDNfZJjbCnfL{uLv_&lA)z`QR5ynTX#GFRE%;6=_n8 zs0ZsoURvVpb9SNOhQXAbSfd5dG z!2@knm7R-=T^*s|%HFiKO!~?VbiBz1iR*Ej-S-Pt{akE;&460PJ~pNy^OixbiroQM z%~}=3+R$7^L>qr@ZiF+SnxiuH=OOB$fw_bTAO4)?r+zURb%w=Cz;RkBiC`||Co0Nd z?PI?EvvMX(miTMQF!IQHR>i8;g<2eS1pY$Tl<5M;6MrI0?CYFji@4k^O);qsiD1@X zZRc@uEdonOMs|L@S=~kzZ9p}1W%kcv6l-g9LXmlbxuKD(0B7dP%%7v?~m|wwLp#V9l+UUZ<2u{FO zpZ6qehwyTsDsPLiRn2<0bK&8D^7%k!mZ4Y9^boa0QGQT-j#g3~@_D_bM#$UNTM)QEFHHCLtIPh!+V6Z22047d!sRgU9hx-v!}rD(N=NRUfCUB1Z=Xmy0wru`pnqrHX zitn!b4=nm`BszzZ2pZlW5^en<(Lm;3Byxk2sM7yu9jn3j+=acOQ{(C=;F7C`pEd1a zbNYE8C(5z!(S8Y3xS+Cn_^VI&yrzd%0(+ULP#dj*A8NNOgk$NP`j=EKnc^O9@5s<2 z20w@D%ZM=i3)^WR?7@YJgmdj9@d4GWl~q5jQLHV^`9$Uk=h{ZX1DshaD~94j;!CvZ zA-g5n>>TXC`c^KSAKSl6EUN@X1<7cy?}Ms?>5qasR>esj{5%Wjj~q}1B+pyZ7(?9QR{P5T0s%^UAgkVgO|tlp`qm`Blz?HNjj{!Mb1OMGh&Y(Gx?~AX$H6W~ zCH?hm5_e9l8Ls+;OJZyNrK$uiWJY!D-#T62mR~?oRn0!6`~OzG<8(B)(&9(^tSJB? zz-+vgOv*IFFgP;FQ;ylQPurZ{g4ETD*E zKcIzVW&et&(n_*`#LF~OEPhj;jMCC3*e>}Wl~0s!^OIZYZ$jh-l>Snpeb!beITZ7M z2=Q2wc=#W^{`@Yy;7eds>Ndi3TnLe49Q(w-_jya7>m==e-)U87r$Zak32O9-@`pK) zfWMH2x{ibe)OC>mhIlx%yT_7Hb2s3@?8#~Iqe%Ba_6S!QD=Yjr^9di|ioYhxugbPR z>KmB~sAj1w{&|REZEOBYgpXkE_s9^hHltR(#cob^Lwsk{9!@Yt6(=+M`c(*&P2#Z7 z7Kf-`tO1gPgQ!rW{zI=*9sCpGd>*JHNURa29k29mBUGpT2e8itngk>)tRX24|C7Wh z?f+l=(#A^y{$jKfzdC{^G@dxv{-~R@3qEdE{dVw||I}k#Nw@Hc|CR5pNjf2SMg86P zqW<_E1qamkphNwa??G+PQ)17x1o*qG;wkK_+g$8SnlrNYBq>oFqzNF9qU=A0yBU2f zSyP$MTb}v<59VKKcXyi~2yGH&}($hrkb3PbG zDf4BP_!~)G{JeTo8=Vk3I8`XN!%^K(7jX?|=Z3mi_`}WRak|hm!1-`7pPT+H^ykdN zpNps3tj)X{)&sVW!taja<7T{gpN49iRIIQV8`~nec~LCo>>Vn|C~(Z|gU!-(MM(3J z?bCOj?Gzm}7xl*pbeF>%l=TMZq`QXX$)n+44SHNYB=-)6N#im7`|8)pHXL6TocD9? z%ZM8m(EtlTO`W7H49WNd-LB9zA$(heA4~?WBd?Vf<63UHEMA6Go zMYD-mjRsJEs`^H&m1Z2ak^m1|?iT8;NtibfokdC>MQgeig4&6n={douxo!Efg%NRM z{iP;$dWd4Df9E$W^0#y;WO-Vz+juEair+j`lPX5M<=$q0TZv)nPpM=f_Aw{^M8zt! z?^BL!7_f2;@8gy7<13bvT7Ze!2%II6y&$B$T!r0#BXfk~#W60*RuI*@w{@p4d?b1$ z!6GkEQ}Bv4WOXzst>efT@ebBe-t468eV zACIMgH%E;&$Sg-5h7q$8JA)-G?1a?D1A(Nj%~N*0jhAP{;j6*xQx_E%k+Pe@Jg$^( zH%`+~XPB6cUVE+VKnP(iz##k#3*Vvqwb8`Bn=X&LzhJvro3(ZFUg}fom2k4C##-60 z>PR4(A+6S`yxmG#Sbe)wNeD%7Nu(e;7F-s~`Qn#p00AP|&%0ilO!%$ns*j$Oc-$`N zkV-l-gs>T`(09yi*45NitD5$(ndKJuq><~Tyoe2YmkozGU1K~wN!$jjIiiQ(KdeY+ zHVQ|38^R11V3}^_ZJ%S2UnmBW|!pXI+a^sWj zghi7O|3n6`im|XENgD%a$2Ar2UYwEi1gSow%iD+AK-u4xs9bN0V>*WVlWq=HuSDZE zsLRz z8Dfyrov;sy-p4V2a3Xss`}(!zDpJWLyG|^Yu}zW8sFnr)bv4B%)u#8dWtEOrJP85P zSkIF&=HL}`tRYBAOqk~rS#Zi|rA3cELnc3atjM=MgkEB#cVot3^Re5OUvGWqI~BqH z50KYx=6QLtQfh7sBq$xhRNQI!LAuF6U1Sjc8)=5q5XyH07uoR|X=B{t7$kGX+p8Nt z^Lwe4e~;vSbOJZ(eFW79;_mQggqERTPKSRK9T==_Z;PolFNoO~#5@}jSb~?LG-Fc$ zDFve2SLcbcYEf0Hz|(CjuSo<3Zd5nz>Q%1G0X5pz_4|;;5!=Z7ndJpReg!z|A<2i} z?nf5c@sp#~!)nXYdV4RwvywnVch|OC?sYxK@ki$>Yx`=w3t(MEyp}t-p&>uj_Q0uv zxEo@1pRf5i8Kw-(+Kg4dT56-A+wlywsZYK-GbWh7J{M?iaez-20yU9z*EGzRB+Ebl z?Fiw`sl9r-01S*u`QMHZVn`wYv6lbs5aCNvEij`+Hl$!qSCFs=wooc%Hs?d(<2CVn zvMi$ljrXvxuXrMsuWx2z_P<1F56jXr_PsQm7sH{;mvpO>AGx;e7Y?P*miiv86H71r zDre+!a$6xLHB!N%BeB|BvEZe3Wl48<=1u^%=xl}&B`{#}5l6H`zs^~O5?^XRi`<2O znwS@UmC^#y*zL8534X2><4(0fwhd|Yrl_A+)oL8?*wwCBqe?WftH9o_R0dWx{fH~e@iJJKYsBmBVrLta(F z32?fyfBiD%JdQCz)?9+ObVCe}h&x)qVO;Bd?Da3&wK8M3_leKKGi83?KmR_B&wcG4 zmMOM_CgHlmn9Joy>YVH6%A1aEwu-8U(&4&wzhvvkA;oi%W^XDLPiY?9!-aex-dmS6 zG5F|Lk-FEUt)-%`k@Jaun2adi^G$|pRwrPkkNCdi{(dqA=NpUPmUr=2SJq0t$nEw% zY?|*?K+z9;OspR@EAZktKa+$iJP>6titbvc33W*fP~pB~F%=b=mZu26<2J|CGNnL# zoOC5=* zv4`N*Fb?ilPWIG&W8;>|uL3`GB)=9V0pG|r&7mtl)MtJ`SO{BTl;m*^p9}FlUIII#1vr28D zw>&+bZ!e3dd);501~RogT)RNe4n}^tIhuaHyC~J)ZFw5o9eut%6WF2 zZ!oP7*un=~-~--klhHtL&Q(DGvp_rl^rsg$}=f9 zTQSGrCD6`eJCU}m(X@|A`i%KqdR#VXYpgOdC!4)E3&J2r2$_=}mruGHbBxT%WKYf7 zrI!P6A@$PZa!E&H7m-xPSjokl_yWIaLuV~8XLPDgcuH|pdT56isL>ax6&9%@7O969 zsnM6H6_%(YmZ*o9sL_|H6_%+ZmZ^uAsj*wBIa;YzTdAE|spDFyt6HfiTd6Ns#PVM; zF?w#Oa=6-$wzJJ@jhxF?W5(u?K7d1lxq5)|ExJ{vW3Iex9823UB$tUL3#FIEbJ~Z_ z5%5$JZWtm|5R(E@`s%^4Uj8upv0m1&BCN0Q2UWf%^k=p(W`!)8Hz>{oF@Xah12hP#wahENJlVyXyfjRF`SpoLS4s9lI#_d6ybp^ zDb){28t_@ap*I8gEGe}Q1?CNgl*|PdJXwA5A_X>@C+taf^QoMCG;;OPW1Vy~a?R07 z@B<1ms?32ZuN@>Op|>{4S$ara4R5eq+sB}&8aE9f8J=CK?Irn3huZdbHd@(qlNIdp=$RgGslY9S~dcrJ%u zXF6QXp-G*{~up(85T#otP3X)+}$<7Jy>uFPJrMpg9Z=oGzsqR z?(QBmz~BUePSD`)?q`zq?!DID=X~Ff?&+ECx%%#Us_L$%x~dzUb6W89h3e4E^&6GC ztx!5dg{tG% zemXB;F=%@*lf}kyhp2zfmu-d~QnbVhJ;c53A!>hbGr4%EnWahz=W|;x+sF9Nx_Y^c z#txxn5x3l(CHzOTGmL}7)7G2Xt=IEyp%qIx(!@Tuz{i&Sip9b&yNrU)9_6_K@CmEd zK}bLeN5$7j8<4`Yf^@RbNNwO*(-pNT_M^+5Z=tUk*}*r#A!(mcDvI!uXqpWZ_4|;F zL*hIh%*MbHGKoW~JA?Y{ydRh@p;_bHcl#`N`$Bj7ukXq^PO}ZyM05|$zL`eE zFENRD0bj$_-s5Oyl@@3YYZT0BKVUP?BnF3z63?ZVzAA=CTW3)4XtfdywG{E1pY*+w zD11C9mA(I^aU@p0g9rB|>+6OW{9TVe(asX)y}TuIk7qQ^Zf?(ob`-hxoS4@5Tk<)U zL}`=rS9wL4-2Nqe5-gNf+N$9CA0&t0b7m^(5P+Jbwc*u-0z)ND>yUZT=~@Zz|%O+s+BEGXTIV2OgTa1+ngj-L(`?Bzg`kVK} zX1d(`&v`pW+kslSMTZI%H`4MAvH?b)0S=`(Ny6XPC^!w@acwgSc31l*n`ffpEW&OT zZ0dk1U4Gn6=hD3Q%A2W^xLZWaJ`;q?J~dVTf>Z03{o-7PSoryFp%?%j zFQ<~9Zz!PU2!qdO!9x@}V@sj!SUgOzv&XN`S4b*D1Zq#svecrEnRR7FlI^tTGp4jKn^?tj;%Hl#(m)-UW%sUEn^AKFE8N6xye z#!CH$&udx@v;ha&tWXE|zAoM$6j(ASUfOjVsE*p$3E|5ftUG#9N(89aAig1Cgicb{f5baA+5$ajc6>LdD{8;(Kbm?{RxHXSu*MQ z3=OBGR-wz$Z+AP|oPLDDcjQd^;7+>k;b${*cB59LO`S^e?zPCXM)Ob721`pqnn#V< z(`BS&`2nr`nL&+m5BYlTW1cfb&f{xcf5ol^A}(-)EIk>~Y)=8-Js?hFZ)wtWCM7a* zzhv$;anyW(10N1-g~jv`~0M4MpN4T_;uBsb;h@>B(D{*Rizrd76+K$z{8|) z68P{(pK#$v zbuBDQnsd%a`@A7#+#0)i+kKC6e0sQl;st~>Tb6_?F_@ummSdSr z4$2ePio39paTZb*tI~;KBV?29lydR2z*BsrLt=>-QR_ zpe6Q$Bha*rZ-03gaCZiM21V!n+3hxk$iy*_yF?X6d4e&&xzRh|6)Q1v%~nBl<-Vlu z!8}Hh)6A0zf9y7DZsrsh&r8WUWe?$D4po4KPMeeo%g!&1lYI3<@ZGKS)%6x`D-3KgH@#4 zC05?Ghf`RlztF69;^;z%$F}uU5lPirtEM)z3X8rhHrq5_A>tXb5S?n8CX4h_hfQ4? zDB5R30(R=>df1YPZ<<}Z=~Buty?Ea`ZgN}RiE*nscGulPlq=iy_(e^cD-1QU!0p7I z-!sgfIjtLXw8Mj@Mkr?ncMfsUs9R;zD&q)`Px5Tahzwc1NyTxMP@JaTjTKBe#mk`EsWs*NqIV^=s`m6rZ#>r0#4e)-t)2_q4yWa<-l zef!kVl89j7FZmj2rJWtw&(6z*kM(!p5B?S77Vkc2|5D}m)S*zQY&Bwfuc2viutP*9 zp@3$O}MTG6^JSKhOeATX_qGX0zK{ptc!7@Oq(=x@OebkfR`!Y7_WYoG6z; z$ouM1y_P=pUGBWZl1#+;>kk#G>jQCw+tQJQnghY^b*Jm%qZEWM=`D?~;UZo(0Q)ps z;|vP&Y2YfE<5aFgR(Y{WW?RtYhBg0NxV@YdMkS~xo z8qMbtPQ63jAGSRnwk0o}^6t&;D>_OlzPkY+uqj$n%-ml_#+&fCO09=qF*c#oyMT18 zjCfHrX`_>4{#@kP+4sD@e<_2Vz@xQfl$lC! zswM$gXi=Sxa$@sV4&Bq6giZ`=94lQl_DqeFjQv*M7DeYhgDpWDsq&zu=sNHTw9_$m zubVahwG`JEhxa-(@m=go1);D-^itKd;mzg-55t6g9{Yf1rNu6tfla_n`JQLwL3J&E zRZ(8&Dd+C2>NfvGv%TkBK);Y>lwu7p3ufp6)Di5%dWt-*aymN^z(ePiWks59{69R$ zyq?a#bUSJ1cS|v*P_vN6&dc5?Lf4)e&LDmEgD?;;YMTl7#urdRDdpHi(iL=|TCoNr zf!a24GSZUSpG~)fn&l$PRHd5~+g6Xo{O=&QU$Ff6-=&DK!+%6TINwevqA4+EOT9k$ z4e7A_`bvGi=M{KP$Q=0%PQoSmo015nQ6gPKaQCfKc8XLMcW*Kuv=Qd6u>;`_RTl9B zQ?#9o;4z+4kij9&Sm%}B?HqZ{3G3TQEI`W`GR!2*FQd6qvO`H0U|TMZ!-sm-G{Cz0 zZ^I;X1=o-SE!7gAb+ZqHjx51#a%_};@y~pxBEP4DEaj8J&nVuJqV^AoiiU4!9aqkF zqDaS;20rt{mSvscyB?9mlm}7(@QV66%Zxn3AdhhT%XScP&=TN5C!;qzd#c2_u73wA z0txYCy)C0RB+!nJw1{A;$Z(HsB({05>j@R}*TCgo5K3Ov0&ItGcwGE?@3>4Pq@Aa> zGjhh*-&3GSoqz}BJ@hN`JB?pub98QPcdONcy3Xf@7WS?k-K$0hI9(rJy{fg4s9rMS zz3)bHjT z5$E21p}_Ng~adUEHbAm(wf$s<(W{tFE@`jWx4U^atv(oU+ zT`TOjO1y9j1m5^0dL;5VKrA! z%_;ImYQ|b4xJ^QiZib^+GIVuKfK6$_bA(Kw7 zB`)fEhJhvRM`ztGtex>>n}f#Y>P13Llz03T0iKvgp0*{JC~;P&{X#Q)EJ8>>mC;K_ z!n)=M-Wh^9fX);XJ(j(jM1CT)ySHFm`GyrvFa)4kNig2K{ahHii8D)2Xif|!pom~j zto7~@f!SqGSJKjszZqA(a^m@own#*$WoVprQSG{14M z2yh21j$Nhcdoc{Vj5lP%G_P_I=Fz`kDXLZJOA-u+$bHmcSd%w2d16k5t)da`O%0dL zf+4_p#zi2&>5^fkd1_-TbjQW8FV+jhdHOLPZ_T*wgk+_jsFZPiSjuK(l7n3wuHJM^ zRD4*rM5&nE#IAT=PH2uyb7kIui87T+xa9y?2VauBb+EJ992G#Dr(-T=^Zj`x+h9B6 z2M%Od*R6zC7%Jpztwu#2>x|0=Xu3*nKBZd^Elujc-pzhkK5|*;Fm86^kiuPVYD(E| z+#=W3UwY%aqS4j13}gTCI0ba(+4)+nFHTY>}ADneJF zx2CP+Bgon3jc>7mxVwEHOnfr#?+ZPb4v!ZUg@O^a)`i!r2YR=I@oXzvIZ1V9e4+ad zEXjj4jNq44vRP^x2gZHdvH`Eaok*n%%Hb1N&hFxlGX|Ek+fPME$Lx+57n-9jXK9zS z{gZIk{ixh>1t{CXHZ$i%l9aw}_DEAFT}qHJC!G`l7C$X9=6W*VqQ$uKOGB zPNJVT{Z&Z^Az26_cv<;AyTaD62v$Gm zb%$TlA+aRi$Um;UPHriD@?~YP6=TIRj2gz1DZ<{*EX025`F`b*o4U;d%(5D*=zfC&Vy7b@@G8Uc;>@twn@e48lcD*I<~NlYq5LxSeYB7Y=~YD|YLeMYO>gG0Icy-n*%{ z30)=6LT?jvr;ja4Ci^`FyuZj+eKdZm3cUGEXb4)XQL`V&vVk(xvN<8oKn+|F3x|z5 zC=_?oPKH`i4AR8N6`MzC?{$EU4juo#8l0d^j)SitP1H6JWT`jnP`4J30ih4_Z8dRk4NA)tcHrQXj+I{VmA-A$$X@#mX`70WDKZjU?)Z2(_Xi({rGO9Q+T-|3zLc#()SG_5)B z*;k)i>K=8|M#j%RE#whw;twQMBYjF@ea?bAq%|QBO+p;QJ9IG_*@0U@*GS>g-cEIm z06nb>9%7xVKjf`FBH0)>g!A|#EpDM*Sy_Q!%sv~`XA3;o4sS7yd+DBTHt+O3!3+3` zd&35Fcss7X82k=vTy3uc_$rbjhVvCib%l7XnDIU{B0jY?=*G36e8o@_dG#~O&R0T+ zhLz%pI1l^t2vP(F8Xunp-uJ4^$&XrLDdP&+gsX|kUGrOvMSCpE=i%Y2iY;p34Bxvj zDR*jPu=JW+mAJ1rO;6J!GNTU)&CPnT-q0j@ceYZY+Msxocxic6ACXi>P~2 zKg?HK5mJ(-nU(*E-_hD?1fDh9wgt5PdfC{Xi8A&}k0YdV;hdzGfQ!~wgck4>sa?7E z=3nBwHD!%3ioO~q3xSJZ_|5vlHJ-fPj_WH~ahh>FTQ3E9cGsxQ8x2Lr`L z*S%i>(V1Ny+teF}PE`E9LE=uNzvFP$C8@otE!Cz+jhZ*-F^XC{*_0`#Qz95wOrKjYmENP zqy`uVV0%k~Uk(L&68?!fe&f6NUM)wRUCvP= zlLm?bd#r^OoL+rQscckq`TbK#y9?!&un5Tw>sA{Rpr@7CeF0t*1ziMSN z{MkCT`^;+lX)Z^tT6Y&z2sPUp5e=D>yvM~}x3zPIoJ{hJ%Ig|W43ZCi!&^fO1()bz zh3ezzn#Lkh$CI&815m1R*UGi7{XU0x?gVxFK|<^io&+%^C2n6F6i<*Ye}=n`t`KgB z&P?5-ROo%YzQ89xM_|leHZ=M(5U)1o4V4AJ{N7hyNufSi-e3Y&caz{rMZAq&+uLhH z-`nG8k%?#T>&*cSk6Pyop{XeSFyaC-OA_G`h0gLCggT(%brHTUbD}Gyjn#O?LD9oQ zY?ICdCtAil!5m+Q38MMu+AsS=0%=X42hPZ{`TR|uNT>cO4F{k|Ok_Ip&3 z&&Jb-*ELr=0vL zfz=EAqN|IHP1fSQ+cbcG)xIGkFX2h$H1+=agPsy_AQWLtqNCg1wSjIL8h*UL$$n2v z%hWk6N71=@@8wW2m%}G}o0ElzFLhfA3`m##_$Rkh*s^i5sF{+^9c0UHqYFAEc$?BJ z6hy{;@DDQw3eo&B>3LXWKll-r|Hyhf;wd$uDC6xuz+S)zy;3gb>nsoCRmDvy58}YK0AjWA@@yb&aFo{X`Bc=Zg%ed%= z&70HDpe%-*>mBIOIhxIov~6VgoAIOked4XXfEOdElTnFnRC99c4e=IJHcJ1K&af1$ z{jjEMpmj`jf$a@*a^&OB>&V{O;XxIfJjZ1FZ@cUZ!N6XP@NB@N;yI$b{ZLl!e!%HC z?`R7G`lxDm9?Y5(BI&GM(hBj`cbiQ-=v}}5ap{Aq@nfR!i-kS6w)wc3GcvXuS(8bd zMbB}<*3ie7ZE3HAGT9F@1S?UtcG6mcd9S>}m)5=3uAv+&#|`S(giC?OtnkC-N4h+Lx%5_kVu0Vs9$NuWx-FF|j zH(LWrrRFo3d)3yRKxL=Rm^%qL9Lot-2hh5g8JUF`;inrt?Ddt9h-lUbX0R$+cK23I z3n}e?49o~}{kfLbq`pU&G>$UR@q(Wx8SQT*Sd7T%9F6DMUGw)EB0vPFZN?C&l~h=n z8nX=}R12=Dz99V_xkFHqL|lAy@h-C*`_!R}!xe=-T1-8n|A4(})?LtGjyl?@aah#@ zRY2t9QNjQ_0G(6gWe=P142xWoeSYsfxz$ICek%K8XnNhCj34-AGb@0uhBv`G`>XGD zd6{|~$nN4=$~}6q>mhdVf3+1n#Y&N1$4eKwpHOK^*6Iu5IM{85h zQktRG!Ng1q#wTp*L)HgDfd8_P*?_Db^8ZKd!f^o2#c<~qOZMjf<;B}0A(-ru7gkx5 zG_J;~(Oxc6hzp2fio~TePs88JbhfKm+KsoVgmVt9?^~k1C^BwRq_Vc^EdhGW@y^nlS#66BhOw6R$8CJxd#edUN z!G@hH6h|X|b!B^iEJGvyi7lXXyRyX6*g8fVIYm>H`c_PSAQ>`K$!-$~B0*iy(4xKt zwS6@DlL`FaQ;HSnlwt^DF$`uSh?4iLstI=)@T)d~NmSg$DErLS66VmkvCf8M4U9Vv zH)rI@(rJa}>{(9AYUOWltshM%9K-Bp=Te;qM%eCFqdd=AS%!sL)UZ;C2vk z+xkyxbD#zxNSP;KLrh;R!UMd5co6I`@{LzuM5cKA_%t&G8H3I zx;V60>FxKJj5mLXR%v*1ReX%bVsb-r%sFG=Fy8z+U)&dR>$Hb~V}f_p(MNBq*asR{ z{ygo}u#HVC1=cE#qvU`$O(6`2+dobvJcPNSH31>- zeYdS5IxITJW=P(RBj)*AV*^~%(HKDj18*||0tL-Jlr!~5o1%E(N!V>7mZ%;e1GB)+)_upRH_zCEkqDy(et-WsJSF9c&+69IlG8mNY) zfO?yUoJ^RazrN-#69+e1@*nN{=P`{g{B<|~i1s&VT#KUr_Vw20-;71y_%8ADE&lVZ z!6WI|J7_lT%{CX7k`Wu_wrQrKvsPt&r!L;8h6lOXfen0*#M^f`W z>AX4eNq(z%+xxc`Nvou0$1Tz_X0=tZdZ}EKh_Ol8?40g+lW4_g5=16)89HZ(1HBja z9|`S$T#hjWz4waH6-r#dANGYZ7v9M2z^m$%<^`r@$cJ^Wz*u-g`%6Lg2*)gSE4sZO z?S6}x8;qND!(;-0#je%qIOM5>At zS-&xVnfQb=rwr%!N>dWL1VR@ubb&J{vtHyFpn8yu`o72s?6 zM)q&UM>@_ouG!^?F{3eQUG2RhqZ(j8_Nnto;!@3$yZtl$U2h~0qB`^mgCI31*ml&? z7b=rDY%8bw-dlVEAAAOBWCUY%pD_kJ3BTYf%s@LNT6*Obrc z;X9YG#vt?w4>Br4x=drY%L>&4VzvnneX6~pIkws8*7w}oFO?IJ0Qp4pyu?IossQ!7 zC@&`%jA>d8e?q#?L8tl`nLR|bUZJjDn1*ZGO0L*cqoEmijBO!dyc~m))z6fpyU?%r z+oj7l#w4EC#Rd$}HV*lYfelN+$~lzTeI3K`YBifIE2bY)^v|q%x(jBTWKOAdyTkP| zStD|+i6a@jBAaG_kTCZoKBgPbml6hvF-ohW5((D&W@Tx?Cu#-I{330oGhqX-JB zz~CHt9y)R2>8_9T;N0I*nlB|x5=%L4p1~yu63VRg_XZMfXgPZDp!cXGAP8Y^M$fuS zY*D>v@^7xJlP!s?ZhWm=#VsUz#ciZfB%!_py`rTUa=@N(N9Fjm=xebHTeAA<@`%~w zR_W}BnJ~fCNEmp{+u&JX>unqUQufwLQ&WzidGdGZL{3L(b1~NSW2t_86i4l(dJB$! zz@sapgy>i$e449tHmvwo=@Pb?{Rcl@6Qt;Pn{nakIsIqhOV z%l{%zwPML-hGBM~ZPzVP*)7vp=^i>XBe;_0Ycq2wL1-MKNP-nYYx`)5ze6VuakECv zWDatXm@uK&G-?*ZOLuO{>fg?nOV`dsT zw?h}#+u>S^!Pf_Qyw2bplQN3HkAUjn9BSScW}{yTjYK7-Ri(0aIJhEGu@<$l5jUKi z`kMY)c-_!)ai6BH!f}Ej2`MV3I$kl9L+tVZoI_WfTGBIS=9ta#nv@$KzRC0 z(;vKz8q{F~!R(bHhih zb5!a~>8MmYeM_=M-WJC{C=~-4N>9*7|Kk$Zd7Vn!XAvkO$WPacY;iNk>trGjn zHrCD zGIY3ih$P0Sta4Q=Dm$j>%_7iRE3G>uX6;r=XwEeIbZ3A$zcIM^U0mztW0$bYF7%1a zcYB>$Oq&I&6^V|s46{!yqT4QkCFzB0V(aM27$JEXsv4OR8J^#3sDdKdp^D*PhclWU z@Ba2wl(#QbFx7+7UU6$^8rH)}TxpAZFg@P0C%xF^*hd*Jx&2!5k8XPzZa96v&ohp@ z<{dRt06= zi`n?4ghk?z(h5TvA%tIi`rn>|IdPaX1PCFIVS|2ho_~e<4XFRiuTFWzGuytYAS~pW zXX3qFAO8+zQjiP^m7UHp=oC&?aWgdL*c1x*hjy;9m-qq0yFxl-7Zrr_4>i#HpwVM4 z2gqlX<662g7IL}|lTwMzl;frkuxbB-r-$$V$=V|_5TkG7i*JMh`l}ynG+hBmTVt|h!357iFD_v*aVSN9&g7*mop}DmNS59 zLvW8E&O!ajlZVtVi`@K!dL!FYd6L%G^_1fq(3(q@q+w3iKzC>BV1^BAcx9&$9nop* zJPpjo*%CpENyrW^2_|F@cf~@i@a9{jkOY}?824lpKUjwz%6hSPsEO`hjvm#o!D|<2 zc}G!U%a8jliE;#m20VrAK;HZ&3DF@5)WQC|H^wqDBl z*GIx-k!^;14(AG%9bGExJn5rB_U%TAAMbhGQnV~eIRyLWP|vu7OW-5`7AmVkWe@pL z*@>#yW5-%$`Hg7}wpg?NOvT#K7ARj#i(P^>*GOH$%=+VXsGkEaw6DQu+mgjvPwjgN zgC4^;!?&cjZI^hoNj$0puzB>`3}K_KoW#AV9LtG>dxU`h+N&Q`eqHB;<;(ou?|F+) zCUk=_v=vxZAa7=lHENXDyn^bs6L~{) zU@<=1_D~0bAdNepl4Dhp>SEP9&0-;v&34Ue+nrbUJdo3Gw2$R>C3ECl@Ed#OSGp8J z;q+TF4Q2JD0=mj7+xfPNXSHmOuryT@ zG&7RZ1_YI$NI*jtcxAT`Ptof{?D!>^LZWixgp@zlkeIa|IEx*frCWJQuMsX7Hp3Wg z+&G%ARe4UYfz$!fq_0C0q;*lX6v~$@uI`so4Hb$~w~99D)N7yK*o#ay^yY9M0%WNk z%Z>`^WL12TBgBd;#s$pAmAo5BriUVYH`hHDqbbf@JE|+V&?*^5;PH6MY##Xyhu+go zawQg}a*Y*QQYpw=>a^mF>_>i@3$x9KG=M*|29GPeWBqAFn5E~^h8YS=>CCC{i=osm7pNx;I!>(+VeX)0% z>27Yd`n>@C&9;gdIzvJ8PA`Y=R49j+Do2niN0cf@>Q@gOjrVs*{Lb6iGH(aVX z1G{S25P)6PZFs@1$<3Qo3b+P+@i`~dwnw+YtCEf;n_7i1AKhaI7}cSmHxlGTp+8m; z2dqj0jwG8}nrIIu`rL@U;TPLwVuS{7{;o|E3r_L~8^fT7Qt7K3txCq>8o-zk8hl*} z{=|%i#1Uelu{OReyBhnu7p6+UbvK`TiwzQRtrNELwfyu2-%)OS5B!Iwj zfpOsI|0P}E-{MvJ+7sT;x=j&8Fa%YML}ciR$;;JVLItbJ_%e`SsMQJ+y301MGE%>jFjK#mY0F`ioZ8>S1s*M-e^`nh6*j2^G0_>`6qX~9Z zwQ=*%C7+a7l@vrmW}Do~0-)03)reAOd=W_CQK14y-!7wA`UHQGN^)4?ed!Sj7ynk)-4p(Xq5V}qWjpRvtEv00?<14c`2{ZemE6?F zG^yDHGlTY6h(ub^Bv*XVe~Z@Gw_Q2@y9f^OzeZll<7P{8HDSOWYG#*j|6u#yZ7dEm zlp(ysw@|xssv>@MD#bUe?oYW)pHU7k)~@`nl9;fPoUoFbu#%Qg6R*cTe>#;wlcb?` z+1PVI0G#f4+OpE^!H*$6@dp}iKMAmELmi#*Ka46A?zG>|ZnfDS*RCAm8fIG!K@U4D zfhdL@RzO(84$B~RVTY{tBk$AbmqWHCPo?G)29!>v98JJQYA?cg&$J4WKeoqas36fV z%lr}7vW#6m={{65?Kf(nN((*mUuzxi9QW7z04taTTr%@2j2C&A@%@b*!<*hKh1wcb z=WJi;d-Hen$st?gL~0-+a6;uZLw?3XVdD2W7$NCY-#M2A)!xRp({m49nDQ-XcMW!(C^!DK?8IN)L~M8w(eQ#LMpVIpH=|Z zVmYM*&qi@%vaW$ZQw0)_263y*u1h(C84r!o1n*)d5A_}GdW}2X>J9Zmi!q%&dzKCL zQs~D1pN&e3v1@FvU51LDmFK(b@oa#^=k9Q7;Q8Ngk4w-Ta$JytHeur{U4im`5hRtA zY2(l&9l8&>zJDVl4y57}VM2ZF*|DV-P1?sG$4&UpVN3SQ`$t5iUH13oJWb^@uCAS( z9Yje^+#-C-kNo=!Bb$Qfk|*B27ukW7o7D8`+NV~lM3pS;L3sN594O-=Q=~o&`x`gj zK2AT;mhOtQ6J4G=iGq%{tePIztGG_uV^F!X4LiT-H`cFC0Y&;h7NXNTm+Vf9Zx7bi zH+R8~Kep->Rx0o9ZW=OB9#*l9n#;E~Zo_$%6rmOWUifF_blO5bp5D$~&fd-jTnXk-oh9(4FdJfc!o{Eom?h4oOXxT7@SLB{duw z+ILNdddB|#>=(E~C^S};I`XoQUl~z}dO)<4GfbVR2M7=&GdEi1l&+-xj&wjpBSkv* z@;#P#zJHpkfmsL+{OH3(hD$8}euB)#r^JHTXeV@uot{L{mv6B8ayankgX9Ijxm2ZW zc(MjRy{@Gu>`_M)`!pa~hCZK+a^R;+fiEv{N zMVi!=2Zsoy zzlt^!P8YhoTzVO10o~_~rpia9O%*|l2JUeY1I!gZ$VlR5rC`sP-hqZ+7#{a1LJH)? zmEK;mJLaajNA;PcI;rMBOv_->_JY3;3drCw#G5U)nup5tqt+73rs;(;*B{i6HX4Xv zqGsF|%9+Uh2*kFf@sDkx=5d#z9NKA_`+=zLA0Ud4K?`l_c3v1O`yP6ON(UB}KV2LM z0nq9Dsa&jO*4i|M5~e4l|+?*SIwPjg@W3SNJg8MuUfULRr5D$lh$yB8|Vw^<8Y)40?x9 zUl4)F!LSw($2~}(Dsy9xK$ID55Bpkb4-wFp%y1B<=IJhA7>~79^%qPR@39wh0 zHCkaHvSOYbY-*G`HCrLqo3_f+w)M2%v$;3l>t$v5EO|k$^ zOpVt!W4MkhAHSKJKM-nsi{MT7bDI7AHZN8k$y;O2<#q}e+kE~Ko1-jWHUoDx2H>IA zcf$S{xAr|HC$S=IXPaT8)2nW+$@ERA6!P~gT#{l!+;}39kCj>#^H0ftcP0gqpkRS( zhc{kRvRt5t;`ipy9N7s<-@6Sd08TSm+>h#R^_i9P^4=U1_BGd?ZQnWp^4S*IHBHo` z>r3{Em6b02<}t~IX#0=Lo1Q|8UBBV^);jHi7shO+esA4m6#=9Wd2vyE7N6b1`FP2$s?m*XP>aXU_|8<=R+=J*@;{be>`jT8E%i|vGk(4v`)$PMtO(l=Y z#jwRR(pR`z%m@paxJTYsLVzw}Kj)i>4*CY+r`$-^L!O9j+xKiEag^al*A!Ps&i)31 zGRF$vo1ZV({@pv>u6t;=Acg6T_Z|Z?oFcEFo8x0BHQVP0%phwnvDlW7r3Rn-<$=Y+ zIR;Uc+OD*yAZf=dJ9~@hPLJE0iwl0?cHzZkZ=a|Az5O;oz5bi$?fU9S`19OC(fRYa zUE{CnD)MJ<51%JNA>i@hgjg2(-o&QEy}jciz}@?PUu1o1WPOSNqiV&ud?9^+eU=Tx zKE7O~sri&l5Dm1E-KFo_H}lR#Q<7m@)`K$4>G-5S!~ggt|3hoF!Fq^q=G}WHS=Gd8 z*-1T`QcWj-(pGcM{nxdqD_pC;lmN9)%|wS^l~09Sw>PSDw`a8*x6#;%`LT;)S8K6S zS0MdeZWl@4XMfDTBEfSiv5u~~fJQPNM)T0=Q%G}f&Q}d8G+n%g9;7L0N#`=O9P@F# zcYLVmY!fO*sE)zc%gPnPS~~`!)a;C7a_n5Yo&jU3K4$i)SW?Xcl!(gA(GUV0j9pJ8bnz83W9ax+DT7QE3| zIMSjiwY^r85i`-J{g6mCdcc;E$8PY2!6rta{kDp&bk{%d$boF-?2Zf%j#_J>&>zn( z=W8M*9ewuj&{J?VlI18%156^^i4AHm6ctUtjzcLYZxNBKDU-9) z6!uZo1N0XedGV@IKbW6o>hwt06qpOB1JaRwj6vPv@qy+jtq*$MijFwU+Z$`<_#L#X z=3kI@U9HH;#IT2J)0lYj`iX~FT~|Mm7n^;)3@m&c z;avErqZtez71_+@_KoU=3SF9&D|IiWT+;jtB`ytSLbX2HyVN2FqUP!O+tSui_gFc* zO84=4pLO479NR&7U+a@Z0T(hiD_s#ko|A7so8qUmU^Qzw7PJCQNrowv8;YTA6l3^~ zemw2G8U1oG8GVb)d3J4|qMN_GCk9G>dAyjF?-*+cls(r)2oJL}1yw|G@nPX^mmGc9 z3~Fr6jrlaG6P&X0dRcdPIC6=)u4fKW8)Q>ZQ8f9r5xeflMYD{7xeNhWEwS-!MdD1v z-sk)*0+dCFtadAzu7pMlHWicI8`GtIDK%J=H)b=L^v1Cjn>}R}iJ;1gKnb884`a-1 zGe&S{HOLxCd*L(eadS&Ww<$JcpBR<7t6du#Qr)UcBfw_(i2y)zV=O1{CVn@Bi;%h@Km0b10p042Dyb>9`o}*y!6(}O z4l`yt$*W%S3?^!>Y5GC9ft~BgSMp7V5SiFs%OXEbw0fMK-;9iBoT5Y-SBAwM^kqvA z*n&zK+*T~SR^fvgKE%mHol=7~b!_Mt0i(3H_}H6punMO%E0x}TWdL>>3Mnh5_KR^F z1@Vy%2sO6(IhZEEVimi|OTWKgI-Ko?Y7MJNs3djIJ7p4=vPd(|veqA~{JERI>N}H2 zsw5i%RM!QRVQ=ZO5-#Dp_iRy$^ykgNBmw>~ zod+N#i7hS~yo{*9jH0}r zXcV44ylI_DztE=Ara=i!;F?$@9(*Z>!`|exVll`_Q%Fiwk}{H>Rhk7hmRV9M9ei*)yG!?g-E z8YfJ1e~F`GvSq${lc+mS9|%WUOryyPlH==;UzID&SS|{Y9R7aGPG_%OA4p1>OZpId zC>^}5j4l;W#83MR0ed*p<^9s69sM$;&9)w2 z#$3qE{7w>QRf1F1PZkT~pBesvt4=>e>pLc1LJ#HUUxJJHfzcqce)u)&AO{H&L|Oo2)Mgmbo>oh4-m6Fq@{NLVRgK4ha(RkS{a=;8-n5t$k0{dzXUoYYj*M1L!jO zyhR169Oaz2d}&w7Jw*L6AQ<|GDbBis-`&_fYb0G^HSz*kVu_nh0YA!N+{?*LWiX;AsfA$r~PcNqOL}!z4xcK8A>^B3E^^b zdO<#DENSz_DU7;kDS~K6k;vH-L3~nv88W+1aTF`^ix-Uif2IcYCI!D?fcSYS+<@m{ z{A18hxHozu8gQ?$30`{Lztl~yeD{CKdgtg$zU6&5C$??dwkF2JwlT4NCYjhi;l!BO zPA0bPiH(V!y!qU_*1f;)ea|0#x>rBDcGd1$-POITo{dtgX1PoGABG$LiVjx5fMA zlRf8d>g+Am%9-f7ek7E?7 zy&a#8qS(l2t)gC6Kvnd@y~}YT82Z{`^DE;oYgTXYk~-HmBNZc)j&5yoU2<)MrA^;# zY7vk~o=@I46`7Gp$H(|Mp@=5+r;d*^rByEk*LKge;NLzddlHTt0o$s>2$;F@TPlECWjTK%xM#83EEHyJZfgZX!v(lK=3WnW zZHhAD=@&6!bC74?y+Q65oTFtZpIkbidK^^zWm1s1cJ37TwP4x=2%i0?YnBN1WE?QS z!*4n4=<&P1ZB;HT|8H8-T|eKVV3eetzUAA_F84t&rgB&$Yxv`8N=R&le|4uIj%ve1 zwtUPDe{DRqE(d#mWx)5_71rM;74`O5QrtZUm^EO=ZFji*xSc)LTQ8>nn`lB-C%%pWlf}VsL0r)M zI-@O%?qAo3Xk=s}%m0<$xl8BX*R#QS+z?GM+fy3%&RbDqh*BO-UOrWmv53)vu~KKX zroqByNOf{{Ga;*%+st+1u20yqisWLr7nvP|T2UJkY}_YD2`MnFDh~9D(n2-7R)yR4 zU?kIi_y*V0XhK2OQ6vK^~1cvNxqpDphy9DHQg zR=ekY=pl$e4uWYbHvX!W(VJOSY^=$l*wauYKYG^B-D=GXw=s+uKgwd4I ztMx^(2lg-{XulaWUkLoEu%y+r8Z6n5d?{t9Qsm;#m6ws1zpRC25f*^Rk#tmSoC-?B zPpUR=&Kpo~hULh#fw%N9Q1$ntf{F2?;^@($-;j1vs2Ym(qtdgxNnx@z*e%b;J$RbH){ZWdR|Nns^sQ6FkW{xy)L- zfo*)Vloa?OZM9eQAvH{b@_gNBs)G1h%z;7lWY*M3tQlF_7s)|-c^RQ-Dh@KUk;M`1 zL~=9P$mpWd#Y}~i#pU@7dKiLHKX&)Z`rM)G6YRzBP<|>MzTEow)HPijj_ByMz$@LAMg*ybzYtJ~Z9}x9$ zRiA4YcTCs#kwSxk>D6C0O#^_R-@M+ilBEmrja+pAsw4MbP%RcpHf(if?k@$JX!>`T z;gfLU{hgpmrucrY{0T6qHmW|XzH$EKbhEngwpOoieG~ruXKO9Wh8vh7WMmld?%TP^ zy!250g(Acz_9ZGT;9>bofkAy=f*PTUK|SCI>HCA3)qVSm^Y3<2OGXpm8ASaLUg92W zDOO?xu_UdB+Xb5bN1&5P86z`0U5NW2QX3(T-S}MQUagM)TZi59uv&iu8Kc0ZWE!C} z0IA+_C}}13?`iX27-+T@!&QfFtM_(u93~3gxDe}?bX7vxhepqp#S~V1?^8kw+&F^* zOg0O-5y~um8{c$6EDt@PR5)?_phLg4($?E@l;4dL++OoWEEw#o?KX5ew0;CmsrNId z592pyS3k5$&1HXzOL5POC8C9BSxnQdc;hJi;2G_jLrg< zM5V&cVVwt}-Ltt&<+L6vAS);-cECd8!z4oAF2&Nfck}w>4uZmfB9x^8&}h0?V>oi? zIp3VM(Rw{3*^28`c`dfnU7N9~huGA6*s*7$b4w>C87__aL-EJ-|jrw1>xx%jF4p zp%YaMlV(v4E);D6ndC3f3iG@6dWj6Ztf}jW;*mCqhKVIg8oA?c%IIx>@fu=u>*N3JI&LF9w&WoKV-`E#) z0h@6&Ie@#Ac69#TaJeq6EuVZa!weUokc|~an`65#8LAazEbY?6RHLF+J^EkoDU8IC9MwwPzWbh8uvC_BF4E?^W3-^N>6t_ zh(UVX>6PsJ(qopWg|Kr|lvZlV8eZr^rB9hb%6<8@p_tdk?tyu(kp(dl!_4V>L}=*t zqb%6m`T&`Dqq}#yiui&YX`l0_7Df0>h2mW4?m-QKg`6T?6WB5rjG?=DfR2pu8LS$< zbTx5L#j=AMX|0#wu(=LqPdRC?E7yI?}_s0#``%fwxKtD13J)(gr{y+V@{Vx_n*VD z2UM|-*SuyTBZ`e@lB{;;vkW&XN}lTIQwbrz?KjBAWiIj>8}yxYVs)fmb*5ZFqEH5y z)qh`BEXTD7ocz{cSytq}fvz@_;+TuVDCd zi6eFQuq=AoV*y#k>IB(3L=0n6%%&aZbSO5E0 zbYH^&r4Z>>#Xe^db}PZakUqZ*d)cwLx_R4Kxc)Ppa7MJ^useJuB>EnhYeaE_N|h8^ zIG{~T4q=D=V;OLtl203fOAIgTy^nOCbdB{?t9}#T#A9qpH;=Z1!X!G`{; zTNBg4#9zNT_tXlfsru;cql-nid-;2#>Jtf|C7#H1R;6WYY_0hpq?|XKyQSZZuUi}J zhRC64tkWU8EGu772}$@Smrz10pB^q|oVGyOrz^T(pv|8*aX<6y{cq##oyn)B`1Cl4 zxKFlc7RTI7zir0NIp??Et00WW*rfOPF5`?XKkqho?)t0_f-6r26&{c4r1_G&-Y1Fy zd)s+-my0i2yV?;h@{A@o&J{LVptQCzzs^+)iA~-4pj#4tuAZLLnIR;bWz~@$?tf;x zon^Ox>?h@^^tHx(V2p|Sd4CPtOAw?@y)(MH0iNw;%nuTj=gdk#x_tNWgo(MlP{mAy7V{DU`-#*0MXmJ#Xe$rFY5 zy{zXZ2n2novugI&g@%VvEaLYRdf*vK)F}58U^DB7cfMJUl>Ob_o*OkbsZJOK_Wy|J zpbgIx=Pcq54i6J*uFj`Z&l1WNQB+M3wcCt2M{6S|<^KB3G#o?OF8w={S)=8P#FG>& zK1sQ}K**emEnYL{&~irlC>~<^pHxIv>^jOcS@Kt#!LK2Cp(s7EHabhN4w2+EE%myh z4FtG93woh2fIxo{@%24X<5=b<-^Z==J5J!l*cLy2QrYNPAp0~PU*~+C#sX68Vo>0o(lFJBCN6HEC(b?=NHyXBJebd+i@rb^b*nt zl=^f*3`~`v-+6;gED^Yn9N$ILM@RJ`Q?{u1)EmCK=h48j8XUoaE8zG90m0@%s>s5L zW_>ElPPy0{m`2yB2GupFvY4A#{={p9SBy)v!eD_8=U@yoz8<=!=lEwgoI5eYRxedj z_~9YoC8pxx(HN2*;$Ucj?~IPB$6Jv<-u&uUTBC75>>mjI`sk|yPAmd@bOW~KrWjHM zXi2YkFKAau*0-o&?F~kC2k!dl$>7o0NQnjgWo>KL)gEL9yV*^Dfp`{iiW|ml6$A5L zSTOx&>$^0=hzUonw523og*Q7Y&&?~U%R7P+fJiojdIejw8dejWn{10rN`nfrB_Y!y z=2=_Lpm|X`GYPX;S&x}JlSS4l<-BS7su3bp9WW!+ucpb8eVX}Uqy zdks#*WqQklQoF@Ubhuig)s0{_9(fC2TpiSAt4IE;#~HrbJ_oO;%%f@H8aOCFT&nVzp09cV6_-GUfVwo z54DcrH}q#F0|yU>VE!z~LEytZ$d+@1W;J|4H{KVNVt{76U}%#o1Z0HN1<69_8ip-g z%kV05NgJP7Cm6u!u;pHF^C$^);U9jkEZ)IDb*@Y!%H|e-0mLJ6oI+XLW2!#*cch~3<@6= z39IQ-{UCrMl_WnFs+KK+e12q4dk^5sD8fyEU|P@^2`pHs1(1hIo_npU#QW2Tmy9EN zf4Q=3#RazyrV&&n+i|n2l9P09tmL#2rR+7 zrG(?r3{H%bK^>7>W^2U>GBZP$G@fH``BWm8 z)-;b%a~S+k6S3_q8M8UF6;*ML&rcQwh*2Tt0>)s%^!<09qM-X}k0Vw7EOOB+-pS#C z2c`o;3sZ7oK!IrX>Q}Z->LyJp4Kt1197a{Bxa7T?=at$S{RI02#gdS{G&H-puk#zf zW#Z8)+$h=^^eQ!|@&3$*PHT!eSa6uqg{v{SE~W-4uzvUl5zYS*GPC+QL%r3o0bCi` zu=cz^5B+hX2PxNV#}+_vr=Mm&7Mza0Le~_h6Qs@nS}%VX=`CEW zcu`W2vtz0n!IEZ6=imr{h31YbA1;4piF@ogONfMcea;bSb> zdhFZNBWp7B+JGU$jo^$kW43W@0PG3y)ukRO)uxhFaLYPDL@6*6Ne6Yi>_3TV?*2M> z-crM+vLs^>iE4T7aJ901Lh5L3j<5l3O`BSF`ZE;|e`|5W ziUJH_iyh-~rS?Vk>r}b(GB#91`xFrxwBuw;d?%^J(ya~FkE9y~zF&Kr5kRQqL@b4( zxZr+_LNx#5U?yq{s;&5t(tr%n&>zg6kZQu!83%H0t}LPg-zs z4OP+bG8W~7z4`y9*WRG=v4tz>SbV*ul(Ja#XHBQakkv@|H5vPB)CmSlW$e>MN{!Vb z$*OEj6nfxYj;bOmDUIB6xPcnc@YF^>w0B0?2h+PzW|)wjS2zvkqzj3KsNT!I(##bM z1}+L{NLbE-)64ZG>1I~x>ZdYz1ek2Nb{qqbvP9Qdq-iyd?dWL7&$Ps5 zF*uK(?#6=nvkzAa%x2K@PIl6EG8x^A=8eMSrDHms3x0zy!)u6DLIC;pQu-{f-x_eR zJ_!vY8;a=Z)6q_HtBs~NaOkn__$U-bI)b&@PFc3Vxn5*K^O|sDj>{z(T*`zrKN`CK`$FkJlJBzn_`X%yab@uu;aPO@o9#EX(eYHV|5dVejG#V-Zp7d`5By@`y!8g znW(=ixO^Ovy7~cYp$|NxI3$3GpNte^t%{_qf{33lb|U&d9{{ewUcl{uM(s@042#hc zs~0SimCoBm8ps$!XcRBH#nVO#;G0nys-XRBbe+svpdT{d$C#o*eGgb800zj7jHv|uO~6PZrNaP z#?EZyeM1m`bM52(^oV9mF&IJ;l4cHG;c(4kWR%gXTHbNQ_403)1;0q5)pSF@uVDJ$ zZs6l1N8m@!vIrF;FY3s$w+@{kx@a4jWvIL7pr{1)OQoDrRUBzF!8Z`09uqg zoo7O~Zrio(TPyMIIgh-i2FWAc2h|C)?L>&u{R?jppat8SV2pGHn!J(AV|4`HkVS-f z<@5oFt9N4#@wTh^XM%?Zwq3h!=~5)~f-{mlc?Lp1pXb6(n5NX2>vFWFgLt zB}~`6^le_as1cmREwgWMJF%9m`n4V8a_a_Z}cC_}Y%dPc7b%dagNu!S}Dk{s_9>Y&~Y+UHX?yI%nkMCgJGcWBRJXUEjwP zwrEb0aj0kYlW4B}_%lm6#Qc8BD;ZgxApY>zMDYkbgxrRIJ!50Fhj3#}07=OGZ6~F5 zO8)@~atgXhsPz&{)_o%Z1N-=Z08^HSfW!oY27^uN20_7#C@GZBV1R**izOAW(gBxQ zgMsn$G6h_aLFiJDfl#EjG>YdGk?EjE&*i|;X4SZjY#y1j-ShYgq*9?Nt1LNG|4nmRS1VM zKM1N%M));n6|0ivAbxM!aw4Aw-u6OlOX#G1c5%_f4?~X7DPmrhBXUAWLe$}%?d51# z;&|Y)Enk~ji^<;cvH5_`f(CEi`XEC6>rkRsL%fU^em|ynG#gY%ub^?=2K?FOZ9qfG zm;W=z$L1h%l>IHHm0PQ)jhf!*eb!1oNtXr^ju7d9-iT7=s5PNf-_>@C{1E@lZ9r!57tVFxdXaHhntgY~_bZbC zDu31!144^$gA@}(h;~c>Two|Ov#FHepnGODit{)pM~)$_^0AE3c#12QR6xV^8zp)>!- zawgkZXWo$*BIo|Wj?DoKdNgZJ+-?Xc=u388NK-3oqR9yxAcK#ca5$w};V&7d57roG zgMS67BH3EUFYz+^WXILhkUw z(+8~B-taT5>_Vjk^T*GpW!CMfSZ_l!E zty}CR6oPeUn|>8uXsZGzRU$KM1ZrD27h#mPbS-QL>u$cW*p6@a)c70?L?FZLLst@b0HGs4YsrB#hz^I*h#%7?4dH2XtK5a9TJ7ukm-U() zNR=nn%ZaoJgp;#Z|6_r4mW^Pzaza#pl*0qd1|4gG7I&`o)}ftCA+ca z{kxJE^2$TVtxhhQ-xJEsCS}#Qm_m@h+@V6@L*S|_)Hc3TB9x%IT6DgkJ9U8D~8s=yV5i}EI8J53Gt>&6|^*7dg~`a8k_$u zklS$%{^t47*NF_ziT~s}GX0uZK?N7;LB!Uz5#}80HfAk9cXC~k^b+26>s&1=E3OdX zOBA#9IsLStUi+D?MVe`nfem(8ty?GKHoD*d(AAzxlb9!Q_sLBVgQk-&09iWe%578N zbFmrI+06U?Ed@l&n>d=j+N11;$YF0T0UiqJqLQ=nomc$2#t$D;Zmj!!p$&p9`%?TqM!WnV% zftQkS>oJ*Ru6uIDMqsUl(x}JtYHWV@QlG^XD{P2FB3~YHNCgxc3onqz8Aoa1)o}6i z^E4iHJ(?0+ga#*s*;&l54>o@|`}0;tDs|4(&|3<<){77$O&x0Jvj^yOzo_g{Bm%uo zBXG*VuqaK{`A7pFzqY*!L+_U1`jZ#p05@eFM<3n>Tr{#2l@!xd_Ih0h!$Y|Pg6pL5 zV)@VS`k6(mkEJr=Zj+wkJsriqhL%CE$hdF@XpC<|Lr|_!|MjNaTWw~HUL0@BO73@Z zwle25f&A$54_>TcbCY=?%9TF7R1UMAR@MNRa3R1bq)nmy(NbRPo3M3*j3g2C2?c zOp@-U=J&y@btS>V@m`1VdwWOi0CV4|q|g%cgftSxS`tiG?P>*)71Y?CmbJ-vbXKBo zx7=i6{i!hag2^yCGj9x9Km<6&Mf)5Omb3B{&d;$R^vxV($P|?wpz;zJs($vZ zXrwzvaMD_N4c+*$jw3wJtCL;vN}?c!h9H?(6r#Is)YO@@N#fP*R)xdDQ03n=J%4tR zj>ATr2nq0r8tvh~89ICQCl#wa2}fZIC?qR4R~7V|KV#Bmd9P5zlc2g1*n-$=gK;f& zS6dNa6ON8i=Oo1#&>Y_BfeV{vjxoL5b1{LRB|Cc+JYh8BvcW~M;SbnuUpsV4Mk|4c za4GLRuIfee(K2&_L|LGr*OFvyoRA=>UL%aoRzob3c_czB4F%?9`?T(GV^XbC#L287 z!TmIlUWS7p&w(u7TF8B_ak#u^G)0dLQ;Sv;IhiiVph0(n0OsEjq3?-_!Ih7vkb zXbux}J+ug28{;7wSD{2lUY8I86_l`ApL4qL@x4FU=Fb}nEJrDLoe-$uc|Ab_fec%S z9mX4?)qXwJ@0zo44PNm}#jE%u*6f8G^S)A!zj>;w49o zID*TzVeQ^3X(1zXBP&gyM{a1N4|-8I7juu;Q?fh17Mwgxz*d{ou<7XBL;B-vmGppk z)oB%22F6y<^b@mwgOt-$VcAk&JxYQfU0MNiY6ew*KM&y=NQb97jFK6y4|f7BZC$s3 z9M=}~<7Yt;^MeC>Im*;FO6g6@25r0v^jx?TfsP2e(}`a?!QGCCxiyG)I7-D#o0P6z zCrmJISy?v?{ijuS+zgESDXkq6-SEr(uqk*^0R;0&PwyWx_(If7 z-Ket`nY=s`;F=)epl^iU3?E;Fqh$;fUBok$6~-P5*({1WgtmOea9f$_aRII0eYiWNGh9-9lupWN+Zfw+W@F{Ej0aRr_GS(66eKr7_l0#AfAx@= zNM+4&yb&acm6ecey)%VkILzQb$u{(x3J$aNM&E-<|6(O<1?e{;PdK;wrw>QFwy`&0Y64ueoChwI# z58a7=O6vFSfv&#%mRg7Gh18+kuo+hHy+3fwAYPd!f2*elm7hbWweh@gI-T zZI>NfgX`5ZVk#d@wzQnffJ4O7uqLJ(UhmXsU}^?3f#r(NdA*?sU&p<30orYqgcbE< z2bTa#V24DQGm4CwuMH>b17JIqxXld3$Khu!?9(r{y`*!t&iKwk|9p&)AvKl=R<^$W zJX{G=@UH!}qhELmhPml|_WFM9Vn*9iG(S3+1#*kBvvc7H`Ey#W5>*or4%TOT1Q(P@ zfVYJ61%=|mC>H+osRhOG+{-6j>a6eIeC#b+-bp$+2;}rIzBbc;;AceL7met|T=Gc< zBs*?>pLwLWc~9B;y}8Es=-xTrA(n19Aj2(-Jzg&;1HRLa*mXH`2WpVU*vBLkopNRQ z)qbNUwvGc^9Ew0`;mP;m>1wTQh%=Y{Swng@vTyNh~*S? zn5myg&gyW{XN9o@4mvoj7S|-_*Yj(mdM`&!)%OTQ^?c`Svf6Z^M^k1EYYE;(bnDkz zv{Q6Q(KTv|L;_p?pwsV(Oyv8K<549?(Bm|iDivL?EBz!0$J2;WVFv~20Qd^v07|Hr zL?>uz<7>gt%2uSm&h+u>>OnfyKt2nmkJb;AlV=8m5?<8kLSFHC*n3&S`^_&K2IK{jBXRyRpW*5B(Kj6(W!VFdJEk$2|$DaApjXBs=8XDd^(MoS#u z1m<`L+tTtQa&oI7uD`wWKUx)U0XdPMf-*eH={U4(Wkk~#vlIekS}BWD)M8WjUN!a5`6VWIb3r|DT>Rp4jBB&QGWD?>(a;eg_T7KCzN*N)C?Fn+VbPE zp;2Axwi;fwPWl^;2mG)!xsN-Ip7%t~`RGZ@bBHht%a^aV8f58*BcaQY zrUeV+dh$vx&4P*E!l+JD0ZMtyvPhlN1Hw+Fb5t;U8rnUq{T}(7I?cVf>uX&5S|Z zZ9yo6QO^*!2XF|T@n@JO_%~5@ge@Po45ErF_KQUH(JSWa1{eEl1N*?sGKU`R<*{J`Juz zm+?!PWR0-zZHgA@8*oe&7ft>OSzoB3K3Qd^$EvqWN(~K>@9$`1QQ9N~e33Z~oeV}JZSH>E~35!V2E~HU_ zX~!j|FGe?-C72y6>Nd450oB9Y{$RCthtU9XvtVQTPy0RsVuT#I+;UQS>!lB&f>&E4 z(8DoLi$Eqig091YAu&QwLcYA^GPDk1RdVy1H!g1ro%aZN9C$si?768H=O5JOc z-XKJ>{3Wp035cQZH&ka+?@`fAm7{96_N!^yx~?XqL;qKCW2Rp)EY8S$S*MW+a(ip9 zoBe%#n!gu0=@kyFG+k~_bs~bpPG&xMg^EBg(_u{<^K**zVg?Fpwlu5KRmttw;-k2u zCnqtIg??J_FN~`@m=_tX=}Kvq=t(M5dnA!n`F7{o@WAa+RPZzwESzQ~Ll2*%A*~8a zZv-Fo_9j%>C-$p2a1i=RU`UN#AaVsQhwlL83Jcdzuz1Sz%qEpwn?^5;0qYE*_*S#D zwboT*(K)PI!*TEJyL4M4f}U&RO?eIJlH@6NQjvlrah^>I+6^tKk^~A@bV%j*Yosh6 zjjcnr0AQK=ZKM%PhKBQV{z4D!-lGA^#PTLoK%Q)1wb*O85>BV2U$HMvToV?p$0a$k z5QU^9p+|=MP6Rx(TRK#6Aakdewm?7x83l6Q&}vUHUNN}>^;1-TMm^^mtF_Nn&Eko8 z?Mj#AZ@=$BXn6aX`7jm^(*SRu2K}ju<3Xi&Ng#tmj!biGwnzq>al$b`5#VOKvE!Mv zkk48iZVlooY%)5|z@6g8#jaIA3n;r`fwaa<2HuSF_mWuA956q6u_)AU>4y%0YIh83 zyd1?9fiT}S>uEMk>aR|)kR9IR)A#NB!-nm2b$G1=Tl4Xy4sT{d?lBrD*f}wJeh;*P<>mip2zwr$e+&KI|>J(&r zm^}D$m9S9;_nj_%TiLJW`vEIk@pkv7F|hdZr3OCbmg<|V@YXltKSaG8YS3ETiuYja zHtRj4XJHP+iD1MjC=^69K2My9#MCe{Y&r&#AOgd*P=n(y(8>FM#R!C%wARZm4p_i5 zq+udWAp_was>FV8jInS2cHjDB7@W%7NGxJ?d-Lv5#}bl8F%iMaII8c~uABzTjW9!j zr7dL5(HSWzz169tLVJ#mb5YYr_qR-;!jlrD+v)kk@8pgGdZk4qRs_Q_vYLkZ-mSMX z33t>S0r}XB_0BE+j)SP2BF;M&%-_@QU6tDG0OxO*Q4m`7RI5(}jM<*}%*v<*VZz;k z3IQeHV4r;3m$yVfHfE2{go6~lZ)>cWLw{giki~t6w8eH+{;;nJQ;9UA ztJT#R(vCd6ox2=%aVQ{Y7evCAG0h$`I=n`RSW`vw`_`8c>|i^gU>MHMQJ{Ljg{!@y zf=u;IPSWW23B|TmLXGZ-KI@13unmw*x}jB>bHLZsxOkWzm{-SS$7qvgZ7&W5YH}6$ zy=S4B?FBn!mpUCDD-dxNA%)LlIP1V5MyYh&NQkpp!Qc0-Emk&~P& z6~fbw%NV7e&V;Uuobs?Ftoc-}c{{MJ*c2))Ml5P;)(o#9ZzFlmK%pIpL4L}=t7^U0 z2pKOSs4D_A*6z%5 zX;|Lro+O|%j47KMu8eJ(=b7TntY9)JC9Va9Y@adqs*&xr)!2Ci9OUOntGdqA)g*l@ zOpyOoxKStW!hHL^qEMBOwiJW@4t~?}X}2vj=3ws>NZwM=A6FhXoeQ>Vr?JH z6u8S-7ZdUpolSdzq)`B}5I|h7aqc4g>1QX7@(h_u{bwHB*sHh>NQ;WA&i>1-p zE97))AW14p>3b{14z}GCUWDE~G5(e0>W(h0ge# z5ndzDbSNHv%=QQzdj{P&zzr45l38|vx(|dhBy_XXB=W{J()S*8#=fIi{7(;N% zJke9?gto8#Yt;5h_pBNk;YiM>kNL}mdBC?x=Ug}2k~gmm&O+mti`To2Ck&Z3IW)fp z6MMPl7|UW>$&^fIswim0iu0E5k&P+&)ka7Of9qwmt1ZaVNQfWYe%DC5g(!3OxuP2v zkAKU%CbDA!+N2-Z$$dJm=cnUp7>Zn>{#+9*Ld(8KpQFLone~xvFNaDHEaEW;&mkZP zW21r+?Thh4rTbjb7#I4DhpJR%cZ3;wj@;d0ELk(~`h9SSUc}8*23e^NX&uf5L6x9g ztyEW*0Y3+?M?DL5g_92?zSgDQBLB-B20OQrwqgv(QG_&ke@BSrRC>^YjuBEHkN*2= zBI()>y#PPD0iAP93wnMr(p5`6g@@qRkX!|m-em8Hjr|l%W=O`w0gZJFXg!q?eu|o{ zN{)=D$Rf(Au6vQ%Juy3uSWsS3DA( zsUojGc!-05i#c}M_WR6_J5IWMAWi!Df(RUOSYt))#5oedZIe&lV^l<=fo%ihyPYkz zG9!;Q@5THTpA7naIXziC?@=~r5@{GMlS~(TIN|F^U2+(ui)?9KF>Q-!A&ZZsjFo|) z5tE;zWweVj)6K6;Sg6SxnQC2dQ~z-J^>+cJv{4<#%rf9S|BN<+cgfFu92=vehZ@)> zCdp95&BfcsiS;cvO+18AX^z5@_!2GK{hm<&TE(2%n>!j>Yb@08?e(CIQ8F;ceP*$A zJ=C)X?%cdkS#1?lA;h7xvgpgy;SFT)ue(MWc!T;u>rL#~i3UsuEL%a>zTITu#%R5? z0i-u@VQ!D+6`qOXEF)~>7;wB=CN%IFrKIv#0!nzyAIh37smc_zjqi_e4QJf=y?C_2 zayvCv@SFH*&Ad@oPbNtxui8M_*}rupqH!Mri^G3-$ps8{(0BVdHz1%w6{fzaY?(|4 zeO3|{Il3lUO;^*0u7y`)hb#rnRvOkWs?1KErCHc$6{lz7LdL!(RdtRE!`dVY8q_N} zn!~LG+P6I}f&oeQ?HK5O%RGFsDfVQqhVr=%>**NNeQD2qI8nxPTD=8wGSUE0CRO-b zYyv%}zQ(dM54)dqgx^ zQ0nm;C4&g;O0~lG4l@h4wTj3vKT5nke1(o9I(Od`jO#YTvy1jZ6$x8UPmVuDwqypq z4y7dTo2`R7{FOVMag*JOzl$O*k}-=iox%12x&`H}RFB-rusQDRqDTcn^3L!=|?}Dot!ni-d0dzQDR- zR2vmFb~Ug;S#PC=TDJd+@hoyA@E3va%Zm61@0>aYrC|(O(`CO)ixyTc#^aAy(L=#) zH|?Vl{Fr-zse_S5Bgs5iZoreGCJDX>ZR=yPvmx7bq|= z)PLtonmO9rTR6D6vi*}XS&=;9u*QozbP2ddhRCKk)oapU3uIgq4J5{vysy!|?Utd) zq!sC)d|Sxx?)vhlMrl^XoF=mn;G-=@+K-4(bLtV7f;gBRPg4U80RnW*Tk0tsma?zkuIhs2Cek>o64e4--X8&+iw ztZf$qH}K74Hc0vDf_M>cMA@r4Hv6;}fA31L-*`9Q(LJZ~1x!JCmcSSh5Bt0ZR5qAA z1R?uy;tWaOjMnZo&S*9}h{l3%G<6JW9Y)P|Z~gQHrd(NKG`SMkpY59+oE$GvB8^c_ z!vB^#NY9C_3o)w7AD$}c7%j6%V2oU7mYsI=UvGU4`Z(i-*UnvbDaygl(o&6gbr*3u zC8ja1$@a0p!y>+A{==gd2U$l|*sVYXoXjznU3Q|}2>)Y4v&XlB| z<>R`JM@-wjNlGUin|Fhi-hQMER=Mg%MAHbb8Tu8JI>Eoojp(J$%N2fk=ho7YK1q_f!e2hulLSr}!v!reV z*{|m+=-=G5livjuaRL%R`}A~4+kWbumOEV-x8ssm!BARA#0km-os_$=_6_F0A$NPb z#{^gd6mF>^KGgcFMxxJC7bMv4$f7Lci0{~-ZL&gmrdjg`>N2?S@hN|0Q>S9Cpc2xE zmokZW7Q_yTvKq_K*9mo1PD%cHhc~hW_qb1*dB94N`(STwfdZrgn$ge!H{j4cZXll* z00HmWW|K}`yl&*JbcLz=(ZwBmSV;lUue+2{~ii!PwpH6rm@zXqY=0ER2}!U z|M>X03|;K`yMEqFar8uW54qk!YFy^Jh1cL3C(M5FdQQty-90%czhM|7>`j*5gXiVZ z1Yg>QadL)=M?JK|Wx2Jg`j29L4L&XIYax3#l@9 z;JF{BK73FwA-OsQ%>G|xCO2B)aL6lBeN+HD%(i+gCNkzdrUzyd>qObgTrtQGt_}=N z%nyhPw-X2(&j(xLQs|UhQ&Lk3Zey?i}Z<=#8x#%I%XSn&O+Pk-- zF(x7lJ#|JQU&rL4=0X;3q9V^+oFJ?uGJW8zh075n@OzqXd`gkl<~e~8X^0FUF^)1p zkP=6hbRvOw8g1`yj>0rFU?<3n6d(gz*PW`yC;q8#?(|nqKfo7BdA*!f2Oua_7_JwY6Mk+S0CQ`Gxcb4SX(R>Yp zYLD2fj+~A4F<)9(34`*2 zW8N}zB8I?=)*)Y^?O|C#NC0I?d-X^S=%_BM`vE=jRFZpZ4h(zBbtzb)b`p7HzGvgf^RdGQNWN0zu8Tz?wL|Q8p`8lcwP4@^C@$O^5<+e5Iw|KnlOGnd9bE7 zS!=5I5ROhbzDIWdzGvTtbRPnoEvT#sd8N zFbFix-Y`9naqoLGsBM13YF~sR!q}meLySQSx=I#ywR1|AInkB$k@@{%rwqLKdi$(3 z*NpgR`HY08cR_*lqh$B2wElDQR%k<`Yr@e%%d>($>RJ$ooaKPwO2trrWam}-qpskk z^P5@z%H$((N769aJ3Sm!hpDPhgzEX-R+~^=vc)5hU?_|Z-(y)-H=jneVTB+5LgK_} zuKZsQHqa^!)_`9a4XaKDz;l5&>{P e0yF@62=+TLkTnf}4VmC`G&DXf?!Es<-v0-;d=1|K diff --git a/ADRpy/analisis/Modulos/correlation_analysis.py b/ADRpy/analisis/Modulos/correlation_analysis.py index b7690c6e..66cc2881 100644 --- a/ADRpy/analisis/Modulos/correlation_analysis.py +++ b/ADRpy/analisis/Modulos/correlation_analysis.py @@ -72,11 +72,11 @@ def agregar_resumen_a_tabla(tabla, titulo): # === Filtrar datos seleccionados === print("\n=== Filtrando datos seleccionados ===") - datos_filtrados = df_procesado.loc[parametros_seleccionados].transpose() + df_filtrado_transpuesto = df_procesado.loc[parametros_seleccionados].transpose() # Tabla filtrada print("\n=== Cálculo de correlaciones filtradas ===") - tabla_filtrada = datos_filtrados.corr() + tabla_filtrada = df_filtrado_transpuesto.corr() agregar_resumen_a_tabla( tabla_filtrada.round(3), "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)", @@ -93,7 +93,7 @@ def agregar_resumen_a_tabla(tabla, titulo): # Preparar datos para el heatmap print("\n=== Preparando datos para el heatmap ===") - heatmap_data = datos_filtrados.dropna( + heatmap_data = df_filtrado_transpuesto.dropna( thresh=2 ) # Excluir variables con menos de 2 valores válidos heatmap_correlaciones = heatmap_data.corr() diff --git a/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py new file mode 100644 index 00000000..c0e92b6b --- /dev/null +++ b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py @@ -0,0 +1,251 @@ +""" +imputacion_similitud_flexible.py +-------------------------------- +Implementa la lógica de K‑NN con 3 ejes obligatorios (físico, geométrico, prestacional) +y filtrado progresivo de familia (F0‑F3). Diseñado para integrarse sin romper +los nombres ni los flujos que ya existen en tu proyecto ADRpy. + +Uso rápido: + python imputacion_similitud_flexible.py --ruta_excel Datos_aeronaves.xlsx \ + --aeronave "Stalker XE" \ + --parametro "Velocidad a la que se realiza el crucero (KTAS)" +""" + +import argparse +import pandas as pd +import numpy as np +from pathlib import Path + +# ------------------------------------------------------------------ # +# CONFIGURACIÓN DE BLOQUES Y CAPAS DE FAMILIA +# ------------------------------------------------------------------ # + +def configurar_similitud(): + """ + Devuelve las configuraciones necesarias para ejecutar la imputación por similitud flexible: + - bloques de rasgos + - filas de familia + - capas de filtrado jerárquico de familia + """ + + bloques_rasgos = { + "fisico": [ + "Peso máximo al despegue (MTOW)", + "Peso vacío", + ], + "geom": [ + "Área del ala", + "envergadura", + "Longitud del fuselaje", + "Relación de aspecto del ala", + ], + "prest": [ + "Potencia específica (P/W)", + "Autonomía de la aeronave", + "Alcance de la aeronave", + "Velocidad a la que se realiza el crucero (KTAS)", + "Velocidad máxima (KIAS)", + ], + } + + filas_familia = [ + "Misión", + "Despegue", + "Propulsión vertical", + "Propulsión horizontal", + "Cantidad de motores propulsión vertical", + "Cantidad de motores propulsión horizontal", + ] + + capas_familia = [ + { + "Misión": "equals", + "Despegue": "equals", + "Propulsión vertical": "equals", + "Propulsión horizontal": "equals", + "Cantidad de motores propulsión vertical": "equals", + "Cantidad de motores propulsión horizontal": "equals", + }, + { + "Misión": "equals", + "Despegue": "equals", + "Propulsión vertical": "equals", + "Propulsión horizontal": "equals", + }, + { + "Misión": "equals", + "Despegue": "equals", + }, + { + "Misión": "equals", + }, + ] + + return bloques_rasgos, filas_familia, capas_familia + +# ------------------------------------------------------------------ # +# HELPERS +# ------------------------------------------------------------------ # + +def imprimir(msg, bold=False): + prefix = "\033[1m" if bold else "" + suffix = "\033[0m" if bold else "" + print(f"{prefix}{msg}{suffix}") + +import pandas as pd + +def zscore(arr: pd.Series) -> pd.Series: + """ + Si la desviación estándar es cero, devolvemos un + vector de ceros (todos idénticos a la media). + En caso contrario, el Z‐score habitual. + """ + std = arr.std(ddof=0) + if std == 0 or pd.isna(std): + # arr.index preserva el nombre de filas + return pd.Series(0.0, index=arr.index) + return (arr - arr.mean()) / std + + +# ------------------------------------------------------------------ # +# FUNCIÓN PRINCIPAL +# ------------------------------------------------------------------ # +def imputar_por_similitud( + df_parametros: pd.DataFrame, + df_atributos: pd.DataFrame, + aeronave_obj: str, + parametro_objetivo: str, + bloques_rasgos: dict, + capas_familia: list +): + + imprimir(f"\n=== Iniciando imputación por similitud de aeronave {aeronave_obj} y parametro {parametro_objetivo} ===", True) + + # ------------------------ Paso 0. Validaciones ------------------ + if parametro_objetivo not in df_parametros.index: + imprimir(f"Parámetro '{parametro_objetivo}' no encontrado.", True) + return None + + if aeronave_obj not in df_parametros.columns: + imprimir(f"Aeronave '{aeronave_obj}' no encontrada.", True) + return None + + # ------------------------ Paso 1. Vector de X ------------------- + vector_objetivo = {} + for bloque, lista in bloques_rasgos.items(): + for rasgo in lista: + if not pd.isna(df_parametros.at[rasgo, aeronave_obj]): + vector_objetivo[bloque] = rasgo + break + else: # ningún rasgo disponible + imprimir(f"⚠️ Bloque {bloque.upper()} sin datos en '{aeronave_obj}'.", True) + return None + + imprimir("Vector objetivo seleccionado (se buscan parámetros con valores no nulos en celdas para realizar la imputación):") + for bloque, rasgo in vector_objetivo.items(): + imprimir(f" {bloque}: {rasgo}") + + # ------------------------ Paso 2. Iterar capas familia ---------- + for capa_idx, criterios in enumerate(capas_familia): + imprimir(f"\n=== Capa F{capa_idx} ===", True) + + # Filtrado fila a fila + mascara_cols = np.array([True] * df_parametros.shape[1]) + for fila, modo in criterios.items(): + val_obj = df_atributos.at[fila, aeronave_obj] + if modo == "equals": + mascara_cols &= df_atributos.loc[fila] == val_obj + + df_familia = df_parametros.loc[:, mascara_cols] + imprimir("Realizando selección de aeronaves con valores en todos los parámetros físicos, geométricos y prestacionales:") + n_fam = df_familia.shape[1] + imprimir(f"Drones en familia: {n_fam}") + + if n_fam == 0: + imprimir("❌ Sin drones en esta capa. Relajando…") + continue + + # Filtrar los que poseen el parámetro objetivo + cols_with_param = df_familia.columns[ + df_familia.loc[parametro_objetivo].notna() + ] + if cols_with_param.empty: + imprimir(f"❌ Ningún dron en F{capa_idx} tiene '{parametro_objetivo}'.") + continue + + # Además deben poseer los tres ejes + filtros_ejes = [ + df_familia.loc[vector_objetivo[bloque]].notna() + for bloque in ("fisico", "geom", "prest") + ] + mask_all_ejes = filtros_ejes[0] & filtros_ejes[1] & filtros_ejes[2] + cols_validas = cols_with_param[mask_all_ejes[cols_with_param]] + + k = len(cols_validas) + imprimir(f"Vecinos válidos (k)......................: {k}") + + if k == 0: + imprimir("❌ No quedan drones con los 3 ejes. Relajando…") + continue + + imprimir(f"Vecinos válidos nombres: {list(cols_validas)}") + + # ---------------- Paso 3. Distancias y media ponderada ------- + # Matriz con los tres ejes + data_ejes = pd.DataFrame({ + col: [ + df_familia.at[vector_objetivo["fisico"], col], + df_familia.at[vector_objetivo["geom"], col], + df_familia.at[vector_objetivo["prest"], col], + ] + for col in list(cols_validas) + [aeronave_obj] + }, index=["fis", "geo", "pre"]).T + + # Z‑score columna a columna + imprimir("Matriz de datos antes de z-score (data_ejes):") + imprimir(data_ejes) + data_z = data_ejes.apply(zscore) + imprimir("Matriz de datos después de z-score (data_z):") + imprimir(data_z) + + # Distancias + diffs = data_z.loc[cols_validas].values - data_z.loc[aeronave_obj].values + dist = np.linalg.norm(diffs, axis=1) + weights = 1 / (1 + dist) + + valores_vecinos = df_familia.loc[parametro_objetivo, cols_validas].values + valor_imputado = np.sum(weights * valores_vecinos) / np.sum(weights) + + # Confianza simple (CV + distancia media) + cv = valores_vecinos.std(ddof=0) / valores_vecinos.mean() + conf = max(0, 1 - cv - 0.1 * dist.mean()) + + imprimir("Detalle del cálculo del valor imputado (se calcula el valor ponderado basado en la distancia entre aeronaves):") + imprimir(f" Pesos (weights): {weights}") + imprimir(f" Valores vecinos: {valores_vecinos}") + + productos = weights * valores_vecinos + suma_ponderada = np.sum(productos) + suma_pesos = np.sum(weights) + + imprimir(f" Producto elemento a elemento (weights * valores_vecinos): {productos}") + imprimir(f" Suma ponderada (Σ weights * valores_vecinos): {suma_ponderada:.3f}") + imprimir(f" Suma de pesos (Σ weights): {suma_pesos:.3f}") + imprimir(f" División final: {suma_ponderada:.3f} / {suma_pesos:.3f} = {valor_imputado:.3f}") + + imprimir(f"✅ Valor imputado: {valor_imputado:.3f}") + imprimir(f" Confianza.....: {conf:.2f}") + imprimir(f" Vecinos usados: {list(cols_validas)}") + + return { + "valor": valor_imputado, + "confianza": conf, + "vecinos": list(cols_validas) + } + + # Si ninguna capa funcionó + imprimir("⚠️ Sin vecinos en ninguna capa. Se delega a correlación.", True) + return None + + + diff --git a/ADRpy/analisis/Modulos/imputation_loop.py b/ADRpy/analisis/Modulos/imputation_loop.py index a0331d94..02b777e1 100644 --- a/ADRpy/analisis/Modulos/imputation_loop.py +++ b/ADRpy/analisis/Modulos/imputation_loop.py @@ -1,13 +1,17 @@ import pandas as pd -from .similarity_imputation import imputacion_similitud_con_rango +from Modulos.imputacion_similitud_flexible import * from .correlation_imputation import Imputacion_por_correlacion from .html_utils import convertir_a_html from .data_processing import generar_resumen_faltantes def bucle_imputacion_similitud_correlacion( + df_parametros, + df_atributos, + parametros_preseleccionados, + bloques_rasgos, + capas_familia, df_procesado, df_filtrado, - parametros_preseleccionados, tabla_completa, parametros_seleccionados, umbral_correlacion=0.7, @@ -99,21 +103,37 @@ def bucle_imputacion_similitud_correlacion( ) # Crear copias independientes para cada método - df_similitud = df_filtrado_base.copy() + df_similitud = df_procesado_base.copy() df_correlacion = df_procesado_base.copy() # Imputación por similitud (no actualiza todavía) print("\n" + "-" * 80) print(f"\033[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN {iteracion} ***\033[0m") print("-" * 80) - df_resultado_final, reporte_similitud = imputacion_similitud_con_rango( - df_filtrado=df_similitud, - df_procesado=df_procesado_base, - rango_min=rango_min, - rango_max=rango_max, - nivel_confianza_min_similitud=nivel_confianza_min_similitud, - ) - + df_similitud_resultado = df_similitud.copy() + reporte_similitud = [] + + for parametro in parametros_preseleccionados: + for aeronave in df_similitud_resultado.columns: + if pd.isna(df_similitud_resultado.loc[parametro, aeronave]): + resultado = imputar_por_similitud( + df_parametros=df_parametros, + df_atributos=df_atributos, + aeronave_obj=aeronave, + parametro_objetivo=parametro, + bloques_rasgos=bloques_rasgos, + capas_familia=capas_familia + ) + + if resultado is not None: + df_similitud_resultado.loc[parametro, aeronave] = resultado["valor"] + reporte_similitud.append({ + "Aeronave": aeronave, + "Parámetro": parametro, + "Valor Imputado": resultado["valor"], + "Nivel de Confianza": resultado["confianza"] + }) + if reporte_similitud and len(reporte_similitud) > 0: print("\033[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\033[0m") # Se guardan las imputaciones de similitud, pero NO se actualiza el DataFrame aún. diff --git a/ADRpy/analisis/Results/Datos_imputados.xlsx b/ADRpy/analisis/Results/Datos_imputados11.xlsx similarity index 92% rename from ADRpy/analisis/Results/Datos_imputados.xlsx rename to ADRpy/analisis/Results/Datos_imputados11.xlsx index 338876317d2cbec21f06b09eca2ebc108a2e351e..d0f0418b8b4c6fd39e431a90103d3959a542b42f 100644 GIT binary patch delta 1037 zcmccK$$X=enK!_jnMH(wfq{eJ_}cD?yazaeR8;<#T_XGwuW8h8oI77>jS0KPoE0rD zDgx%GZ*CJS%gG7PtgN~-VcFWK&c*3z_UE&-^E9rD#jQ0<*vlaPcFG%>r)hHed(1@? zkDD);;qAPL`A&p7V>+_pZ(ywwiKC?h5cHZ89 ztSCXWnV0D}8#6GFHect6Gy^k??cXqh8A^`9OkhTZGdDAs(dMRU0}fGstNxB%lP&G# zHeYKx2~oYM1*-Z-8&ox0S3ECRTgG%D9x$VJaRJ1#4=dNPfJGLr`vI|I&PHJlkjUgs zJD-7NX7Bn4F}QyZ2ZS+eZ#$SVS!KU9B3>tF><7Dh^1}VnjEs}_?pIO(#rd`DQ>|)d z3=H;4Obimh1OWrv8c%afet1Z9vd95JutL3ii_>>9GBCVlVn9*Yz^HCN`CyaiKQU8> zmw}-n7}des8h>?yEzddxad6!sX{MOzV4)3%1m!_y>Xv^Iv}FTk4+V6+g_9o~QU`m3 z>##J_la*j?Hisc51ptMnt^*1Ao9k8N<^*^%GKnz2^I4SpN4>+Z*%=rvEN5TPx# delta 1031 zcmcc7$$Y(&nK!_jnMH(wfq{cTYi`#>-UFOKDr$bK)la^O*EH%s`UeSw&0-eu3vp5s z>X@CHAKiV!aNFuFHnw>lm%~CHy_k9P{N`I;5o%WK`s+47XkwcGrX<@&xNKgY(*_86;PPo@f8A9*hc?0C|+nAu>nu%Yb4ARmw2rEeJ~FgbEd z`F!Yj!ZLRg}=^?_3!q~3aY*Tyw>nZl5*3%>F3uw|MZcR-yt~R+EfuAiw6sf zzdkmv$raslk|}DnPxwOP%~IBXxD+P;5azDt{`}>|9#Q`8XPRp@m!-OSv~{=L*>qF( z@YCasrH1uPul!a`{nc-Ax}fDzTTqyg+egWd94l5=?3?y`gG}r1zfT6_HP)$3}we)CNQJYnVT8RXm``J0S73*Re#5>$yWAq zo3A&Wgs5KJ0#*I94XT>GE1nmuEpxgM513K6xBz0=$Cc|?z#@y*{eajpccU-|NM!Qn zozK8Bb9Q}%7(8JQ2ZS+uZ#$SVS#`fPB3dVB?l+SMMRK!m&WV|93=Ag}7#M_sDF6l< z7#Sw-+pnYmQgbc)RI8d91B1O16N3ay0g&F-c#324#&x2TMGpvqU7>kEnn}%ma^XSI z$TC!cR&oqY2k57<>=ML|o?GBGeL06Iw-$yE)EuiGZyIv_n+;gA?uzvUrm zrk|Z)YqAeP99j<)ik=Pi2{Y4`$xUQuh|(GE-YtY;6-s||3(IeiX8po zlFFRaVr-7s?*6*#08on<(39LKT9;0KcUTJSH|`_SjD3^UkH~?8WckypwU>b^(^(l9 jq)>D;?U_7(kIZDPL*OJec>+*d@8mT{)YwG#gVX^4Ca`=R diff --git a/ADRpy/analisis/Results/archivo_salida.xlsx b/ADRpy/analisis/Results/archivo_salida.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..fd1221bd0061175e7f991c263c222a6fefee2c7b GIT binary patch literal 60204 zcmce7WmsI>wk5#=Bv^ubAUMIjg1fuB7Y>DcfZ)NUaCZ+7pwM8!-GaLXDBP_%=iK}5 z$?N-Gzy8tveH2uEyI5Un8!zE4wzNgp=f>iSmVKwu~~m1l7~pe!e|Agcq>$ z@aQAVWeg*ys!tX>VcfK3W9>y1oT0eo9~{UD&)M{b)sOaSNBxBw@E2UL~robxn5OuhgVvi$o|GJD!yM5pQL9!1M@D5h{b&Dw*2@ z_V=a;?Jt{f6@Oa-#&=a}^cOHND6lXvn15e_i9N{dk2M6v4$F5jV|+HC9N_z!L5iWC z3Wp`HDop++G|kLjCxV;hQr*(Sb8)P&qPTmUtv1WzTVkE=C7QmjeMb%=sjb|C2jd}w zK83b?DA=00v*_J8g3}y;g8Ac8xaK>79u!IOJye!Y!pK;r=&}c*U(h8fsq>c_UEyh@ zvJv2jJv)`f<+b1~?x+37Q{r^0il&%f@5Mwz#zJGSdd~JW`NuOP#-&2{rKK2&kq-18 zu2BsLQEk~nW`0#x^`&SL^WLLm=N`Z9%?Q%+c3wUW@i@bp#UBp;{PpuTYV+0>aZyii zrVEQ7Y^wfV!DF;0Rh?u_OFu}TRelct1gW^pp-tUgm+14|QewuVx%lDf!3Fy7-V2no z=}SR`f$1ZIfqDDvJ$D->XP}v_*;K&c!bUus$JEi5I^g)&Wk0a)0cFJVFu4z=|>8u@+Q9_ct2+aumw>iaYs zVd>ddmy)-wMOn*Uo}Oh8hdplN-54Y(kHwmS9imsU+^Zr4(K<7SLhV!4F{<1o#y?CZ zYPLnS!Hm9-a|qu0LGQ_tHcdQ88p;(*_Bfzq<_-g)`REEj?nn4o{Tjg{8U-bRLnV3L%ys=#Ng9$wGDx z)fx;)3BCskMkNN}C7~c{C&l|R+^r*cQFg2P+sIdD`Qm_H`LE^24TPO^NRPSjHO%Pm zRhiy4IJSCL&6HJ~7r+p~S5MRkS+uSe@NiXgIcIx|uwl=2%|p zyt;dw59U$4+_hb6m9L$gzVNd4wtZ#bHm}!Exu&An2mClE4A8Im#iY?3@P)hC_%jz@ zgFzL;s&zs}M5Qdhy4Y8oH80)s7csoJ^aKD)0JZ2hUzPeTC zFOb?UOtyBe5(#E$_5lx55Yu91B*y@f&py@+Qu~JHmBg||c741oO&1I`uIo*Vg`ahk zoIn&m}z(imjd@5KLvR*iA;AT+KIEXJHO=v`G@9u1P*Zt3(gr~uMmvj z=;Ig+=ettm(V|7!TWut*EfkiyZGssS4$EHAHwiNwh`q`sK?nT!XR!RuXOZ1(y^f#7 zVz&w3@|k)%4B)Hm$>GS>sY;90SPs9p8$fDLoN2|dHcG53;L+b9=ieiNOYu4)6Om_t z3wx-rW&8dm8P5Du&UfYl9gLI|vADy8@Zm2Y3ZKc!B}4lu0A}Qh=Dke<-*PXl7r$nQ z(`|vglJp#dL%73JM@?ab#R-Xj{APJ6Pnp$Yw3^(wK7X0nh*e6h_IBPh>;7ra$jWKH zc5Wwq7N(hv!7%<@tmPVo(GmLHSPG|d&NS*I`{&*sX97D0hubgk8U~8k&=7Z&$%IM# zAD|phhVcX$nv8PcCCfdI2-h3t{SRO;IF;fSW2q4{eIrS6msQjITwwKXNuJ%*_rL&P`)eM0#$BT+c6$pfb$p>>^$2 zPQ!7$$gD5Nyq|=R9>+TGf3IT18KtA1jT7t(9%98-cKQ06O_MjFLLfIBsT&CYHPa0) zVs>#LvFU6t&YCwXbL&8kI(|G9zBJon>GN0FFvoMg4ynM=Pv^eeABA7qP}vzVCulHH zBN8c>sLv27$G(Do!{(ZpHm0{?(wWi0sjwTVYY|M4)% z?Xtp97t8(%EymLb=guL-J4$VOXn<|I$-K+sf%fF_rErvXmu!Vqp}Mncy0K79TBW*S zgLDqp${G95FWLYNjlznGhWYzd5>a2=(rJ7Z)@C9=@acjHw0kI8!Un8=gaQO<;4R{7lpAHoZ8j*xXOm*E2hfp?_OH}Kr=IEC#FCD{F%;%GX_B$k~M_}2=SAg zMV_)EC%z>rYUb}?$%F!~0B({f$~EESbMF(u`okZ)TE3^7F?q7Mx?1quP@TPpi-8q` zUkv)Lpf+Epr6GO$aE1gAOA?i~0cJ{DBE3_n^crj9ub8)|Qd?xr z+bn%6`e@^-Fw$}7a^>E<0@dAlMB=NktKD-xx$M`f6u7?}Jh5L|vTwJ^L@(Q#KZMpj zoK42p-ns5navJzP#N1%q=d^p@J99s-T{alhkK_Ry(DN!@y0=DpHi72!n;k%W`?Y z^N`gI^Rtkn@2A!0FWV)oHSTzSRwfn6lW^)R_;9N(CBEESCQa`#x|uulG;jAk?%vpT zCv1x7SK*3oJ!x1KP5+2wPk8AEuvHPOS&-&u;-N6$4eZSt&D(N&Jl!!= z9omRG`*D$1>sFRFZR+87y=kj_8|Zq(&ple!)kDfw;>{ngfLj|>JHO&x(#&)>aJRqi z;rH`n#uMn^yK(J2=~I~x&rLtBGDMd%WANISzv(XUhBcg;7dT8>Y5$nnZ(2iISG09| z-9WvwAGGn^tT2WyQ5xc1scN`n>cpg9!=yhD3YMjEQ1Nh#Z>`}Has!P&>Y}-)XX%b* z$+BpSWVt?A?nVQ&-Oxtt+YdMm>XtCCt`zve1Bg)yZ`X{ubPu{89EIKW&a^P^JF+g@ zeKji|C_Ef~dfZM}9~|pgI~@@Zw=a^kpk4bx^jc!vEHv1;xw*>(7Be_GkQz&oqKm{C z<&HgHGc7Kew`;95KkfK^dz7@iQI%o?8!UO**60endHk~Z_@gUI&Yd;hldk>z;MG#C zHptI+l--H@4P2)I-$+(+1#3 zOvqLyjE-Zi^IAFTj-yzl3LyB~%*!js9U@KuER?2ek^P|5i@A+N*WO^o+Q;Hy*Gd5Y zq5Tb-SE-2*G{E=u(vhXDMTHrgaI+3ign;kWqe3HocjNfdbjKba;41YbC0t9ytgU$g z_ynPB`W&ysO070t<$}bufycFB6P!);Rn95icg%`;w?#4JH;9Oe58>gw*=~3`Of$K@cUk%((qRBUKGS)^;Ml|kcXnF1C z_L@i5Rq$FaSeu-*!F&ZSDc*Ed$unkW5GQ@GkLAZfv62F}+ZufaVy3HEoDsVnDA7^N zzWpfF&f~~^hZ0~gXTQ{IVdc^6b#jzN<^K3^)-l@d(e-r0+OJYQ4wv?EQo&v;`;-G= zmTJ4HaJ4B4Qr}sr_7yRhgJtMPHBRt1mh!yn_@?B2lHdy#o9ya$A_!@*0mGUd=DCJ! zYSk&UKZmewJ}a^`bs-uQi_+w%h$GBNQ<5Xcv(gQy(_u+HKlD-fwlX@(jeotDP`ekX_d@TdJr-FK3VK@g*QDYQ(x|4X) zU_j#AJh*M=M{s`ImG#55Xp+dquW4}UesJujkvB6ctZUNzX*DYb@+dXmT6+h6I>$W$ zAB_63JjKbZVA%yf#GcHyd!q8WcY&I?Fc@Ulf=gqAOOK{vNbDq|+4I{~M8q54QB1^~ z$fKsL1rJGzYy&t{UlB;VUTTiE%Pvmzyo)W#2kqt7nTBw6huef+$P-Q=d8)SUD%B^` znX^vRR9OK-n(ZW-?Aldkb=HElV}rGirW65-ihv2ly9|O~F(&C!TM<08{yDFmAga6u zG0MpfvtF^4SIZ^)4-O&^k|GaoRzM6pAciIISRNI%3l)_D6?LT~N2xJKDL-c%z`>5j z#U91Z?pqX0wH8bj8%%XHHO9U;#y&B2o+RUitBTE^>l<)oW??{Ca}%dV-^Abrq{JeA}`ceOsxp z^iXrqI)s5@kt}YHpM*|`DrI2aBL3sOO zjUwiaP$!t>bm0rA`5dv?eU*cfzOSpv7%JVc7B{@MYkx9vI})I+(dM@WM_sDa4(Q%8 z2x~N#;uV@C`x{XOPcxTC8L4BYUZK9WHcr;-R@X28#u@CwTpnS>_j=#tCrno`9%pCu z3B79zQX;J~ZcL~6+X)~6XKI{yZT0vU_SBHb?fh5_Bl>s1T0s9n6la;Vx!Sxec*uEv zC}!yO{7}M>?0h*@$~3T+mlN(YC8Pm(WqAI^@cNCbF=L$r_zlxy;=RWbV{7>WPvPFt zlgZ94^&I`M7S9yQ!#Y`7v$qYk8l#j&nZMSfGkWd00b7YKV|?BZ1HW&rlDf(Wd&&_x z=H{g-)3CLsca`!U3PmUr+d7o%`3xDQn{+u(Qbko*2~yaTW_yVEw%|l)6oPu9BCa&T zUVgQhm&~ABz$m0&6CT7$jS&9NQ4|8h$ySu0K#j9F}P)p&;$P zvk-ki_woV{by6~D=*^^?#)$FF!^-SqNlxubQ$*Kx1$GgUzBFs%0^o^P<=io; z+Gv`sJTBPtr{dLXmx(bXLW0a3A%avRkx4dosV;3pyteSPxNT{^gDU7vS^Q%;D@PHi z#HR2)#D+QPriJ|>HQ$Ioaiou4)=(3fFezO5+S-xCtc%k!Sx#;9l{fK^YR#A|ncX%` zoC%{rkdQXN=g@V6w6gcUQwD=n1`%_bUJUNzI}^=;zOu;DHEw1GDLL>aM+nQ%PQGJ0 zYj8?9`$x73W^ieKK}9AT$s_{A_8nf97|+ogw;?1mR*+|`FE1Bc&0Jrr#*aG9 zq@4oh6ie0cIs=pR!n0G(Y5c4$WtJK|7I`*&51t}83I4>0*ZjCVHL=t4=DoBMOp=M# zIQh~;0jBmd(Y;(S_hP$i9!C`l?eRxn)%p_kwG+$g)N;soPI%2|A`@~9P3V43!KQsK z0wnBzNnh5kd)CI-6UtMi)m;tMUhm{iAT=aIWxUFV4_GXROE8>f04S57#$R-h{c-hE zPkidm2`TAtM8t zfixkKn`NHx7H36sUzGD-Om(2^D%A~{5QTP#tFv2L$j-&XU`AyFIQqL*Cz&n+5Ao*f z7&f6wM375N?TBuTmkDZ&bwIk$c6eAL&QE>9OeS4@HA7OBPi>qtzhyB&YH2WsrOK4b>o2wWQ6)uqc(d?4 zcSDqNEY+9uWV0_IjC~h^mFOV27{Y)>q|G0zC(JJ(w0*;Zc4#2s>{a4M>d!>ZZ}aiU zXhOE&X%UGFolX(xlvL`=>2-3yYG!w6W{+$BX;MtfYh9`=A2~vO>C;UJowJ^spKqd= zllo4o{k%ejk%ch-7~%C$zsBtrRzO`@K3xzM#ux&vOm-n(Z(CjapCwC5** zCAGm|xlXN%#Fc#mg-R2;|7w1W=n0r zp>aNw$MucIfaW0HRm_t5^=<|wcp%58|I9YuoKxM(Nmxg$@!bs8y^o zV^YF!vjWSLkX&PAPkd{C?c9izB`^9`a%DHL?M+E+*Fm{tB#{{4wm5ozyw`^kM4ZWg z%66Llv#xnI?_EpOd!|Np+Ezvip$-l^%(rDhwfc>Z8v^taPS5=N(7SL{FmON)%;gk? z;L{cH(kuyl#Jg`%Yf26HXU5>u*79g%m|#2w=?1b7_Vv6@%TKW}%c>CWwKLt~(F!{H zy3MwgaK9*>RyVZOx|K`T3r4d|tJqX22xy6O4U7t&UFf5ab5@Xf{!+4a7ExCClOW6! z&GDztUR|&_YtH51D;(qlv4{a&4k(Trq3CJ|nq+9E0=x%)SUO(*nV{KT*Y*_$`Au zN{O+&uWDVP>sSQuA)B7m7P;Hlhl%=_k!$pJaVT7^ge(iG2X|@z7j@pm=*-o*I!DTL zS!Z{jL4$8?TN^VCJ6-0j9=DGQ5@un8DtBV~t5{#0C;9+EaR;yG<)z`}#Oyidrl1bdcy}&;Fk)Lsogt^4y5o=U0sBhS}^j_f?B$eyk?qS04u8FSiV-SBI zg#tRQYb5``)=TldJYD^_dnUT|anUF64Hq<5;};@kfx8>}Xm*{2S4d}t-c%mnk_WfQ zi*dR>;8s-)WHDCU9QEo9-JSTeRjx1%B3P;&&vdnbowg<+HcGs{&Tsm+S}y7tiuA={ zb=drE4{g%UTS9EQ{0hnxPeECnDA-U zeyc)L4vm^O!ovqqL}*9MUv&BMOe7eUYf@b`CC$i3M?q`kHCVCnVwdVFY$nD5E#I7p zLcOc}k>O&MKUkS_+FmxT2H|FHx@a@vW@XFE+^;)n6$LSkz2TO{%PS)*3QT_iqUxI# ztV9FNq{t-Ma0pf+gDz9(sn@j)y=-IlKk4FbdXmk)guLiO6|#c|nS|vrQOg3$gwL1p zEH&bAO%L$W1Jf~R+$HQ4Hk;qpX`TBLSmHpsXkJe+gH*;$FQrWpdJBV#%UndzBF`%j z-$`_Wmj^7vh_3P203!@7h2To18P2V5!A~B+>Us@40R7U-Fk#{5#;+Tu%(@xISQX-a$@5O}7>!6>Nlb_s z0Tqi~sX92o1xqxqTCl5HaHG09K5(st!eh8-u!Vx=w!1ZYt5Tr3Sz_nWLjs5R^|ejo zyh8rEW+MC0vj#>!YB8QPaX~LKJfzB2mN86+Tnj(oqh1MXI^OkuMYQM(O6-7wm5%94 zbBJ@X#YDzBPA%Nlgu)^;{wPPKC+q$t-R2Qx>COJQ`RSn(r2(9|Mt^h}8a@ExJuNwI zH}ta~*PHrF#{Jk%!kmeg$6o&MdwZuJvcAC@F|M(08SumyHK$#K0Z}jKBzx$ELIV3D z9G^cZ0eHzoncB)U$0hvEdj?h|heFU$ZpJqdEpcg|M771LYE{&$Ofa>DYWiga^vcQR zvd`Z(1gK^$E%8Cz;eo*Gi4q(6RG;ZrU6VzbllIe67K_`PDC5DUIVDz_075EV@qE;B zu-*P+VEH(2JyS4>6sO+g;X*|e1q`pZ#v0y{GWfsJi zkmdEOCU`>q>ZfDEtJ;ej`GIK!2r5%Q`VG34%#ECsTGz>3^?Uq*K>js`!3j-yp04nF zP85^m2vzU&+N4-6LU;=TNP&CrNJHOUe0f33{N91kI~{@p(eMOP(;f5tU7N@Zr&#Iw z^2xqPT~6mdOd*G_6oe(<5rpXSkFxch%t5pHn?XK|v-#Q8=nYi18TMt7P6~|DLbfkx zQOh=E5N>Sm;p=%V)51Q++Ksv5-xw*z*VFe$Z_n)Vo0~Oza*7Z+KvboCi@SLV^?4ck z_gn*^S>CK7+F~S%Uq@}#h2b*f248waxY96vG+iMtiwalM=r5JfPTV@Et7=qv`HYh| zD2EKEoNcLd$t)2JOy}?3`K61PaSiWMZAFWgHog(ItGY+2iv@@fg_Jgj&sPP)I>2f_8Jlh}@_mTI0gA!|{7&$JDKD4Uw7qdaxa z8b9laP;EkV04K!Mv_vUxHvBuyT#5hR3M#FMZ2A=oI0#kW+zaqVDFVyY-1px(%PAS< z@)G<*w4mMVktgInIUzelkW zvk&IsvC4$JVSSK{98)tot?3bUDHZrHwY&P5MWsA6&RjwxXpLhPJoXl1mHEmXuA3T| z3+L)d6h{pKt%m`+(NLdFG}WvFKgLta#1~vWTb}eHKNR^7)xHu;s)JHUJ#qU+TWGX~ z6VM7EafujK=Fa(HEuPXZQ~Dw(L55P*1QTrUKvd;Z3j|KOq9dQB?8n)R3flT}KJ&!Q%TUj{tL|Cemk8y7_lbDhgL8NKq#!QYUCqCm2{Km{%v*RVTPn z7X!!P11F3&xT6ymTiTGnCZe*&cN%}3s!mZ!|cgOOs zYCgk>yRo^TxyUIRHrdNC-M1s7Eh^)|{yBnuh;?e%KgtBwu~W)S*0M_trkZM{Jen#F36Cf;^G&M4Gy3dmY$Y7h+ zE9P_3Wzc~mv~J)w)#e)$25_C`!tXCQ`!yd@;eY&9_p^acMU1J-jzx^Oo+Dt_Tv( z>KqNV4lSfs;}I3-Im`G(Kx0*=*cx z=L*eMou<`^laZ}SidBexHD9+Xh64G?Pwbzol!(S((6>MVTI9((5Gz$>363p0*mRfp zB^!6gBk?*fo8qNoK}LElM3wSX&@J#1PwP8P8LT6YtfxuaL!6v`+Aq)pij|7vzQ*89 zleeeuL}~M|?~@s%kW`J)zo_N6G>g;sXZm;jPU(wY+yMyuo@d!hYf7R2DV@Wzhi^C%}Bh! za176pof7mm_*4y9ga=v!srCIh6QXUCnK?TcRIBOxDqx6Y72pTjKzM}_0wS&zy0-x_f5r^~ZLDB%g6^CluyVLr&bEdrUaR$@Y z@kuOM8vCCp#{aC$Vj~GZMWQBNu7uXbIVFFMn-=Z2DmCR$sY#{R3UgAGehlU0yc9;0 zL7q{;ND$EoxWIz9rqPrTVqZt**`y5wVW=Y7V!akNqf8!u)SHN(+Act2a-pSdSvOEi zp(WHvv0PsvY2b?TOH0??`5Gs#7BeX{0>krm(~3+(z-et?8FZ@Xzik1x`Ai;O>aJVA z(EPWg3UnzU5Wt)h{pN=4bDi4e8$Q?kk-zFk2{lzEMF}A|1UanooNOY;x0`Haq2fmV z!A3@Th8Us!-oc5yEmH;giv01-rSh7LmGYWyP7bpX1$mIWistLb(U7gqao=Cd@_oGz zux`k`6(}IyK72BZ0A1A0UvI8JC?A$6Y6Xw}gb-o}sanG7R?a>b!OB;lKldDFGnkAE z7IKmzbNz<@Z@@f$%`gV@VGQZR7{-S&yboh!A2w+!GBI<={vueB0Yb-xtmOK?j+Mc2 zo%rKwYQI2^YQIWHW_Wy@oxghA?(*pP>OxFe6a0hA|6x%kqyHQPw5&+%r9=d0u|*d~dt>S`rsq;At+ozlem zzm%1^T_B|}CXAIZ8#hst-8@8>rig)wtYrb|nG~;l)do(_>cU;O=NK)~;MA>NH!4F< zfkOiiHQ!Gx|FF*{#@b)^pRxqc6Dy@9*Ok!KKQ#d|uD?kFWCRWf1dc&Optt!9WWZcQ zRD^w+&>xomh*tjMR{p_OnB7*a6-IwWd-{y7S_vDjM#)+F%v7_fJRHs*{Ii>|apT*! zON~u4Bje23@HD6aiBgH1OyvF)lQ4fId$L(r$iHGK{!HZYfMM7BFRs4$8+K%4Kf?#8 zST1HTyNB}+mJCvq|LZ+QEt;M@`hF_qW-qWL3T3lU7{v{9G zrff`^zb^46!(ZX`+xGoURpOSwHk2)51qm&Om9D8yJGgSn-eSD`@dxZ;-~h33fOt4S zA{-zY4)8q=kOl|HfCFU40kY!=a-&&L^wVdWf80)wf~Qn~IExxU(MMQbp0K{zS%ta| zwgcKHkD5OPDg4bEzE#lT2TDfF7q7Ac{uWX^rP8oaV*G?8+?$Bij6#g#E%fSs4vk+O04PAFk6Q7RZ_z;8I8u7maWYT zHdz{8?Z28YEo*fieQNo+RZUv}&Bh|7&6;*@X+a{}JhNlBYITm-w)$eTmAU&G<1=c` z8+1+hGKBPQjz2$0&9{Zy=}n(qsyXk_HF;q#HHSkD#Lz3}O}ff<$JNfS={!N$e63bP z78>JcWx#ipT~#`A-7bS+jdpyPvma>Io3O=n8}dW*-o)I{%VPN_)RE1BJC zCM;jfvERv6PtU7W%v9xms2=@0 zN8BlG9Y@eP{1d%2Y`2c-Je{%m+QKt+#T2S?|HGb*ji)sCd)8yBs7l23rY*tjeg8%~ zA&l7yBywLV_qWjo_{-fJxS?Dp*De7aU0QDy&o9ZX2f9t=)GU0sXIfg_z7-7{)jD0x zt8>JAI%e|l^$PRTD5|kcsC{`oA?a(W)uZx(dBEI5!6k8xy$GF#PEv48x-#r=$Tu?@{$ zFQlQW3oyI3w12$p;{L?z?Lf@mf<~$r5?$3rJ-ar!e>~@Meb1{KN`FH?i|@E4Oi`(8 z*_|j8*$Aq@)L`UXAD9-`g)D~B&k{Or1yCGgQ>PcbP@`r#tpmrYB0#Z)d~P-?uLg(b z0ZLaRa~e^X<2UCIS-lNBxFgW<@wTU4e{a=0=s}tnM}kMj+fC;fHo*~i2tnVp(8xcs zH6jG3@7v$=;#XbX#OXGx4nH=0){0I7(jHJsz^oP3;X{!ymFf!v=_%;nb3m0*Iv{ap z88;H)m6#uwc{G4cg%PNr;GCJiyK}yxoO)u?5>LuDqd>Xu)wdP>^ufW`YWMq$(wJ}u zA_}L{m^@l=EqS*3wwStVXn!~~y{lu%XR;}c2`W$c(Y~R~-V{akQ?4QQ|IF~k?>^dA zfx}iFRj6nq9n%K|I|Bf@rtuoBldz%C>b5U}cHY}@LCe1vs@35EyeI@T|H!1k97776 za|IjFmh-KY_rxjO(a+^L`&rIJBDIOHQ3sk5_$w-f*GXj#k8o3Xt$lv_(&5;R^Q;xa zt4YCa>w6un{OYZH_pz}TI<91?d}6qkDJq^ ziZ*Tu+j&boSxxx%>c?2O>UMe;D4g3uhzWC}0@NAY!&eu!9#;jV2b^0l_sw@*RyRwh z8S_iZ7IN|TO;;Jv35Uzgr1*W+%F=?(D_Rq659PiO&udvW9bej*=5=ZroN8BswN_+2 z8jRH`_f1er7ZLQ|?0EfE5^Z}V#F=~GX}r9%^w<5&H+eRL#%rB6=K4h6&(llG@98WNy}^_9mjl1StW zb=nTCbMSS$oVU8!g{JeRFd3OFMr{S>RJscQNi&v=^L!@LM~CQ1GBk@aDjJ9*CQU+? zXPyg)rv?25$kk}X)mhTkJ0vdAB6Im@@Ge;FiesW31StP;do%lrg?pgwm;P$J$tEHK=c=_orQv=k z;qk+*4yzI|`g`~OnFoe$eHp2kZXc)0HCqD0tvzTS)|Fo#i?i7rk+Q0(9BVDvs6$&X zfANl#`D7Lx$VHAs?kITaLOG$2&eA7tJDF0G>&@7`Ae#q#Z_a}VFi6$I|rkSSV z>=b{4`04WiZ1=r&Y}37X>Ai}U&l8B3ZUr3jCKbj=t0;Q;W3jgd! zz!sgZ+G9P&RNRJgYBQ^;1*$E@a8>0gzgP>+Y*Ca(DrEzh+`NP(sg zDVJwCAv8kvE7_G8Rb3CkyfLxu_&;!yUqK0az1r6Ix&BXbMcVuuxiY4PdHxry^nY!X z;VEO%CWyFEir9AIQyTj?m9;~>OP$m!yBdGaInj=5car#{_e{EJQtjISp*3yJ6-TtF zs|JC(=#g7=-a%yD_W-fy(-tHSHj8!kh+Jx{u|iUBsjRIw<(xzd*&Laj#*sG(PBIQ( z+tmS%+D*mtL|>V#e#`uTWnb6U3@W}7Kh#vXJ$3XrW$8Lc?;IVh{IoSV?EzdOQpv|p(l=tf`aup`1)hGX3?evc_2Boq4Muv!5;gqmq&sU$PnXm#-IO0Zi1a(aP znRhwt7vgev0NvXuH`h2nd8f$FbmS)UD>;k$sA@&$DTRYKzSFg$QDzaHx55*h>9*OO zWw|HfhEd<@XuW`Bzrgb|$0)uBoWAByo3m)tCOR74rBoUq^~){~LZ#vd4mrS%1*Gx* z;QIPuH(hdWeEY&jvxzsLsVrh0(HV5EpDF92@L1fQAZ?gFJ*KBGAw=K53^DM1>Rm2? z?nfZb`~T&4D$xXCYSx_W8X7S2^z-?gZ@P`RkeDuY05?D;72`hx#D85VK6@A$^T+=Y zzzqlINEb7xlA0fkcYMb|1_lEz79ayQEndg4vm5OqGL=VdS+lyvK^0e6@Xh(GEL1LQ z%_fA#QQj0FWH$bOZe#(QZ2uska)^hm13>ixLH_=VlLYG~~*O4vlV_Hy(JN zlFlHdXAFlQ&yt+peb1nVuD`6z^_gBK;!+aRnf)U%vEdAvDUdRFS_fJK&s?zT6s!FM zkH96i#>gqzQkmGSL~ z>S_2ZV=Nf(++G97jqS}0_Ro!)E_{`@Uh1frCRqgTzdBMFxt-IpBpmj*L<>B6a?NHM zYA|k%SX#*hzjSkSU*<_YbKHaW5&k;70!@XvU|~^QZ)>>nUZ;r@=jZ_~Vs6rmL;8rI zKAh$-@@Ga28hki!+PaJIpJ*E#LfW5U55ZN6P48|APc_wG;1=;adHzMaxO zmockM(kD3bea0{90iUx`7yI63fr^KYVLNuAl`y*!FCR^a0oeJ)M12#u2+ZPc z%r+%oUfb4urBHf5QLO)KMa5q}vaAx+ualltx&bD- zc!2jxV|<#{Ag(d=C6&mkp!*o=;>P&>RPM~6WbVTg6g+c(P%x}-s(VvJjvLsd&F81z zriJI~?h@Ebm&Y`@y4COCwn2)V1AXc{?9w#6HG*ydrb$8fhW*TDo|M`*_@=S6(#k zyMb`tb=qGw(J)@G56!tb+tvKyzMnB*Gh?p{`EuraBKPhI_OSgHH=ZO(f5~(eb#P4=@cIpTL-OqMDxCy5(8Ep`Up%38^TE*|URAt>BmAAlIu4PJOcJ)oNxEHTiwm>+oJ>Ad_E><=mQt{nh(^buQM!UjqJmP z-Gx3}KKc*sv&aiLErx})>OKikUH(Ild!f0?BomVz6o86llbanG@Bzyv&yd=+6y%n} zQW-Lm#*c!g=nxt}fkl+J3cvKAf|Z`LN`w&fsUMJB-kFaUk0_hUtQFWl>z;W`&O$WW zV=cH74jdmW1LkJ`(E%qH)$%0A^q}odtrUG58=o*dD4nS0tj?m@W12`%Hl@{r!buY! zTY$*K;nBZcfW!37qohklPyg46auyh|g?+OClPPk}KdX8mLCw6J)dKsSdstRYKvr!) zR$V~Ww}7nrfUJgqtj5muzlJExR}4K?a9kJpY~S-a6gLbBvplypyn~LaY)Z3WgigI$ zNHlb{fQo6ZWoo^ElgY)sWKf1r|JT{XCvb2J`+5Nj;P|b2O3lC*we50pc%~B-^kOjl;y@{>KoMK_a4xs#VFQSj(Z9TKwXsb9f!Jyk&Uh#x>HB zYQM^j5eP+lkkqYCkA_!O`2-qSB*dquy2KC6G>OT)5C$)wbs}h09!!N%1^Z)fc(P5ZI`@-b= z#^n3TUpl2#{zKD?{zII*V4p4>}k1ui+ioJ)wW?!2e(q z*L#H2*Ne(mcgk0(D^@KkR*NcDcPdt?E34g0I%MSZYdlJNWNiQHAqbBbC$upVBu?nE z8)N@{N@+`|q}8!O?sW{M-!LDj;FH@UZ+YBce}mGLcMtja(+HW%h&4NgXo) zd`(M#%|m}JMSrbDe{D&B?LmJXM$e%CpN1&NcVHjT#gAmQVPF4kh0^%{7t@{OV$%P& zVfr6Vl95^iit5eEzlp5*-)7YMe>P)6Gb_Q?Phj_N(b`I5%5MBWybagIDE`Mg*f}2B zq@MMjU~BIGV3kH=qpsH~m=5P3RksC7}n)ut7nJ(N*MrGji2~HLSH?%5;CLbiEZ)Ly{?fOT zPDMTC>p;3%3$R-tVp!(C2JrvL0m>7!1WQl>2vo=oEy|)rYlR8Dw`QeC(D~SU>*%T8 ziL~WY{Dam{NF1pj$?Yh;2EcovsomG1-OdfV%(Q$Xv;a*?TRJ@+w%!eNeY)sqdb$vq zha>rDF-pJF;A(Ll&jF0qb`yUpYCbS{x*fD7djNTz{(2I;Ag^?~`7+z=tzO}VAGEy1 z*5BlI6uJ8Igud-|USG#1b9Pw~m%neq8r=Hg+o_fud%%eGokAMZtzGRjm%)thPLyBu z%)*Yy-~!6dINt~OWzxtcyV~aayjpGBw#AC{3({T#g|w%wN%O5XJLBz!A&+?0opy7- zv-TPH$1U)JgWt_#k>AXjXU2b1CQXWTKRtzl_c-;mmzGN&JGWKPx^g8mnFk9dS3HgERr7WP!fACbo9ZX zGJBlffy0J5=O*`NCk^VStfYm9mxtWSz1qIbSz!Ioi&|GH8=#XSPT*&Pp~oB4)Eq=7 zKi|OKfWWK42iGlk`WS<~quhu4tQB9rx{e@$b|LyH!;?|_YD}x@^Bu0AuQ@ay&j{;8 zP}Lvr5p~wMV;;|RY(jMIU*r_w+MT@Y&h%~UA;s`UT*L7bY{U-v`hWcL}Rz*@fR7i-6=k!gn==%FD+rOP(xzJh`u zv2V=19Ku5zz&nmQN8L4B2PEMA)_M>r+VUQ7fUtCFujc9G`JAuUeSex5DOX6>HtqFc z{QhDy;EC&q%nn#(f>*G#al+VLOpdU_?Q&I@}{LG0bi{|4J!0+M~ z+j~}Og)!QqJ2NEl$+ph^cI0N=z|w1HoHr`0_ObryzK%C?06Ywh-stIDc_jV)xm|l- zQ5Ru&7?@Bln14REYhrI}Yi9TS)b2mt{Q2B&>w=E`x;Pfhs+(^Q=4gkT6TKpj?i;&z z7&XWxx6A?WG{5mpalUI-D|iff?0SrwC!afnx)xAGMV)=J**M{P+m+6ine$EEh$fHS zf0j8k&ea24cvo0Sy`S+~EVrcfOO0DS9hz9`;g3#;s+!ktHp--ptc>?bWRn>TwRl9CYhv)&nY3 z+sqLrMk1f$UJxQ%W83;*`n-`V#!KC+KR@t!a87-6U9Vi{_|+ZJIN zdj2tC87jrwF2Vb8h5}-I1!_XzX$?ph5*l$48mT6;P>o?@>`TGIULDC=VB>&`CtW#t zE91MKnbmhI>zmhWKO`$17xu;20CO8X)F7$Z+dp*iyUvM$OhF=V_c8fKw+3eMhjW8j zEe=tPViQ=>=@-ff9`7XGeB)ZZef+Zwi=tTReP58@B7ruFr1U!#)^=aM_&C@Sp5xgc ze!WoM__=~qvX3#b%Ah}5oQy0^;>PC#d$J^^1V*VQ=R1SPIChr@Ez6wtD7D=Bk|Z^e z6%sgsTe&A5zYDHI&tagZe908wbhTE%fjveUO_lQb>!=3GVJ5+}-^j$T|1s-1ol!_kC;8Ytu8;Q@g6WckkNO`>Bcdf}9(Y_HNmh~@>w&atf#;PX|c z3!!e##=>d0iw6pN{pexGuLP)jBT6G^qys2M-p-eV@4cV71c?f3yt@!r@gT#yftCT8(6{~f2Q!ndkh@T=HO-_((GZN$M#?|= zGhqix^^Sn>Y;fQsA}jKNu0GD`rUb{@Mzmd#}^ zAB}}hkB;Zr&1Dvil9OnD7kT};FELZ>@y2~0S9Mf0;k1dtG5Na*g6GTC62rUYU#g~{ zNsPxco)P$#`R2K^j#A|b6{bX+0ZT0?$NjKyVyk;l{y!yjshXMLFZM+&49jB6ydl7 z-3x|VADex;iTTHd_njp}%nP@iLwQ?pm8t24N%sBW_5 z3vY&xr~)z0Z|v1m9_C;)(MKsE;RjF61;{SU7b=IXuMRB@#y92H{HUun^WMlez_^qs zjL*+^TmqTS+8QW<&=@v=cliSk$AP!0wn;^u`$UI{=OK3Y>K>GAdzIS{i>5D^M-T>6 zz8LB>1AW%js@6{?FZU)&8|KC*Os6mpXXQX;HO}|60T>Z=<#Sz0 zZ8}V8P-0}Q9vO$MV=Sbs#!$wR9bNe0`r?s4BV)~OU*8!N4&R>d^ws_p2Sq(2)~vd+coUz8DCHV%#Sg$^Bdi+A>y21Y8(e z3SSGM#$NDirbs6(xHKh_TPOI~>{r9J>%y%vFVJh81Vdp$hif~8{jt>+5T5r-Ore96 znsEE&7@l`KlZI=>DTr1H4>m);&#!#tN+uB`1WS$J6*0p36Fjc}l*!GaL{Fc?*aHn7aG%rpNO2{a2-P5&x1!@!z~nw5IR=3F5TK7 zLquRrk_q83og`h4B;~=nHz>FOL&WvPcC*s-MYws8V9b>rON4lmIP-NA*O1Xl*mD12^JmxTATbf?a=d1^d0!?W~T_*w=o z{e2%UZ{dVU1I`IH@2M{g?Y{2=zC%lac%Jo|#gqbp>li=qeNr#eR$%<8qpDca!5syW zxA5_)W4`YP=l(vFcRyO3=>J&wuX;p&*Q51UJ<=d?@okIBwZ2G7VI141J7pF(8{AH> z>*Y^WMYr#X@a_b*>u{x>F3}uIEg`Us#TrBUeIliV2%j`a?iKytPMF(7fulIIWlrxUyt=)Gv;-%n{9Gj$m{k1l`=8^0{_j?HlL^H=Z| z3(8F->R-EWj|)(H^v#$bz0KyYfirTRzjjJyRAyYAA}?y|#LqI!rT4GOsz4kjEWqU% z^;mGZ&(TcY>uOC4!}j)svZbMgC&hr#AIRPG(csK1Vh}ROI(DPD$=? zCSPTj-%S<0cvJ1#pT*N+6p824O3^)L9Ig+59HsJ$hdW$4Xs$GdMo2?W(@M$Gd$YLN zO#dqqI;?AF&d8ACg9TQmk9evx697Dd5ARI>P$?n%VbDg#Z>8#l0nxSI9)Zqy4XJNpUBXB-4X1@*&?8dI&D} ztV2k=?L-8yZ5a`F!W?<<0mi3l6uNw&|J-bV8tFf?86p&P!jb6}Ugi3+bkdFV7_lpM z;I?+vzNk#e8&_D5Zln|uM*cfl$jo9$fhgR>8qp?M$hFVy*BUYC1HjjY{w-o>AF2Mh zU!mbiWEOt7%_7oL$B@+2n-7smYlv3bj2pCQje0(s!SDjc{8%$-u~vND+h>@}HC$R+ zG-4d3Je%~2d(25qU@3j)iE^0}{2{r@Ra-4+i@RZd!KE7k%U<;C=Esod4!VU|D#f}p zX?4@JP@_T=-U2fG+GsI3E9SzjPy4>vKktT@>yYS=E%EG%Y^`~}A4)E9M4I!L&drh7TjucEqk9(mt{+%U0mT5{NLcZ~Jsp{;A-0lo$tG+AS}=P_e&fpI^Yn#)LHc^pwP zyC0Z++i6Jwv$Zl*48d!ZeX$@GY109)Nwrm_O-egTK_QF=RkpSJB_GO8Y$r zrj)N)V{kCavCH2`NSjulxLR65emUdHClk@fj#HZ`9=8NR!3$q^< z4z#AP^Xxj4><-yWY)c;W7a4=MGpPYLgqX(cQw?oy(2w;_i{5lB4?1e@>$+77k5gAp zr4b-1X$Ka^@sNFi#uGYpIKXsN$OG^(N8nQU%4b^2xQ#l5p51;f zcqTcbsmz2#Cm}kSZ>$myKgm;&K(b?8lsu*&deqN66`|%T4UdM#AqBH(+ zjXk;*)mDRpizH2`<(fQx$DaqGW#JpkKf!C!P;K>}@ge#9B*lHUBf@0=Vxg){P8eq99-s3j;9U4Br75uZzAc$Eph)WOkN z(s?$23Q;1UGNl0JYMDl#k)gZaf|BeZSb8W8jB-ATv4&#e$Q#-V5qxP8(}YO432XO* zD&=|K0Q=dF`HRE0HbI;r&l1g2ZA5=ylH+#HTnt{Di@TJi-GNy%M8Xh%X;+2~AF4)h z@T$(sQ({@ys;jqC{Qz=hO7d@jhP#%)`R{}mQzO*&wXocESjg44CTlM8b;~d$=I`z9 z_pwM^cg=##@qR5j-%ixeWI)t1Vf_E6nfmE-YN9>Mg=PL zctwdQ^aMurEA)6oy=@7&k|e&;AilC7zH%qN3M0NsBfcslzG@-98X>+~CcZi*zIsV= z^^xT2E6EiV$rTsLl_bfP2FaBL$(1|FRT#-t8p%}|$yE!<)rbcHD2PvSTry!?a$#HwVO&aKTq~`SIEJj=b3kPEgRQgdm?3O(oQH!#$RPr%_La&uvFGbv(5kIH?`T!|F$jIN~_bSnT8A7d|L~D(VqZmv* z^c2^P8e=G@as0+&H4%F5*);%_f{j8+1QCpE4(?aH&$5tlG`Ym}iCnT8>+kaY3G^gn zv6(#cak|lDkeCNk^J6XE$aV%y1g}L>c`VCVxUb4AtM8Ox*}jbW0xiqA#R1w~IMwP> z!AdWebiR|wAkD+^YQmH49zQ zaCy8CM@Aa#OK-I{O$WLIUXal4OS$wd9R^#=rGV7 z*b3$REl|c=2PUJ`GRF1p%R`D{XYO8P!^Gfwo~0zo2VRG= zye4TbS(_-}nA`E{&y%954| zQO#DD;@`#jZKM5BxG_r}u6CTy-;qS%IM}o^A33me4Dh4{Dnfmumxk5}1$IVE@1mCjZ;Ecjr@_6%|jWsouDEq86*5M#oqG#z~{(RIfLts4G^n<;-5yawB za^uft7S=Ij)rpA9Ba!u-bw? z`ZSGtzc|yR_{ol0)XA1oa_@7>!VrzuL1O5d*#fBaouz)AKSb!Pb??Y=mhi0o!OM!; zvW|A=!b*1U_msxI8sFYwXiY=3Wuwx!l`_%GA*13$bR$vodI|RRKd9V-j+Ky(I{)Jqq{m@1QzK*XkgwogS=~~TZzfoZcO|<*S8=a`$ z3wH7*&c=6uhC!b3QOpIC{mEBNZI$2q49VDxOxUV|lNIH}i*j-%r=&4Hj~nmWc;b$G z0~;wvr7?E%M9;>vfrd0}Rdva;+~T5dMH@Y`RVAfMGNfYa(MY&c;AC4Ugcv@UjxI)9$!-Fo@ z*&Y}>laXZv5oH`QJo0lOWj{g6F6E}q8gNzda#b-9=ej6Lut`eX2f-M&L#otTcxV)j z^%>%k7o79QOgyL#^WBo8PO>!?ny!@Bn^`L~j(Gt6Jb-305|5RsF6pTc7)Z1~6`g!F zGRFGQ@yLzN_+#kU$@CKm_3!v0Ma5v_abe;cB)P`MJiu?6Wt+(i?^UKMq^Hh+591)y zPbSoV;D;m=gH^1si0g)N+C;I zA*+U1Sg3=S8s(E&R3J1F#-|=@kp@|I{QOu)WGNTCaOi0Jf_K8-iK4%6$gdQIla7S; z8shdDHpnW7mhNZGi{M7k90O+J^o4b*B6O;j@(Y7y00atv&7$6L1g@}thz_MJkCo6q ziGqzp!->RZ@TMm>aD6JgScKxF2z>Bg6af4@W4BZ-Qw~=Byoj}o9JNnzA9Q@RkEM1e zV7bdEKCeevw6<85tr|6MRqnT-B}9=TQ4q0V3DCTa9Tz_Eq^CPq)IK-06tnI)eiSia zxc(_W53AdMLjr$YY^pr_Rh%=;=41q41gvn@D_Zzv@aPQIdt& z=uE~j*+gl7G4hz{5d8O27^C(6kSZPN#hQLH{Rj!8)2SbjLJOX=sDEdkhN%Ybl+x$L z;#9Y6TZr#@?!x7_z02VSsv?bMFa$1bxYu=$vNz>?nqc&uM!hHM*8~)-_gaCu=vsni z0R_gCw<}O0dRnZ37vf6~X!CsVEhTqd1WR--hRAUPN7Dyc@MG@(xUp^4$en(|JrT%) z>V&P{mp1%C!udP9_L}5CCx(h||AUYstd#IuLD9F0CD^-2`i<#@a+&8s<*I&@Bz-^~ z#S)xdS^dWRLbJj%e zzAcZ8^m4!1N5`9Kpx0b(?K-3kl7#)G)gy7IC^^Z#;^*_knA?Z!Yu8wYY7_pDdIGb& z=24fZ%EipAO>(1npp9r_r{rPz@f7ZUj_IfrNhL1ZJ?raLa38Q)&ilaDvc4uM`8NU$ zn?a*fb}-CVnDZ8#jbn8lUM*E?pwXj5^sC_$BqC|LIy7V-I8z}ApSZFj91C7sIiAeK z5qeNy){ps~f5IOL9E{%m-QX{Edq1wB0E_?5jL(WozXyDMLNol`R&_mJ7#P5B z2$6BB`X@-qB{GRkGKoX7dP3A&25PSINa%29Sr6?~uwZYia}92aZgQD+&P*YbJYKsN zhVmT>QA{{*dm!r|B$$Agab)|CQaq!&8uTN@Vau3Xjgj!HAzHuQ+3zkyxdk zhzE_q48f7QGQN`4a5vB9Y`k8es^2gE8=XxE=uO_~jq;}8kneZHn`{5*>yH`u`+&gn zLecM4fbyVSRXZzMGp+3*fun?K;- zQOq!fgoP)#*`hAjepklar{f-2(}mn-TBE{6j|Wy(eBT*aY_0DhQ1r1v-41jjs~jpd zUDMqQ2a0XI(+)W1#a+!U3d|U!gSTpc%Y(y`!VC%pyNzXEWn0F+PDpx^y|fhnWAWwiZ$_;`>G{ssLgL8F~aBm+HaRbi!`#F%X1 zE-`(k@Q8QppkwuG%83OpGEMu4=5u8qQg zCrWuH^`@gp*5AplCF@NK*JDd6sV%L}w*2wVZZcIT!?0>T4+F!i(z2^QI_IG|C;>%w zbTY+ahm-KII0fgzyXHj1O^RhVJSK(agAqIqir3gYJSMR}^35jGqVW19d-*XqZ})v) ztoRBWb=Wpc!;!`>e#g78<&Ywt$l7xzx3VTE$_88^IN!=k5kDhgyB4jJtgmFc4qmcw zVUl4D6xSMT2v6#4>kH8u)NA%>YfFm}!O?eeP`+<)wv1UUIZS>NAFsq7tRJvec`uljcy8ABaHHa%( z8Wkm*rT}&?PZ_H_utclb>WOD@gI@T^aklbzm zfv0(tM|SW0DiFhMo^nHMETWwVGxeHkCi8l0J7wxILW>y^kJ(k|(r`t_0DSK;%Ah;} zc#tJZeLe6HBO4bXVVyn{rmF{i#5c)G4_lRh02;-L(1HmY~r?&tc84%W2$~lfk77^&UnQE zLCITjyv7r;)*i_l<>z6KsY_NXLtksG+#3OrYGqQn+wa*!%4PhJjkOFrAGZ4x1;fN+2?>wC@uJgl(XFn>P*^c|6|ZfIymW?tzM z^m4n*!w)bsXq`i7Jw*Ob0}`_2YZ-q8CB}&KSh+^}BVr}0YvT^q6hl(EhgF}S3l6T0 zt~h4r1@Fx3gq*bTVhRH1i*7Bo$48aSdc;lI>B+^!DT`sA;aks%!BfnZG1&xv*?(HL zmR>L`=`ZZaAIZR{8ZW^hR`r(+V7-M&)9|7tOFh83!G&q+n2^tei*Y;HaR=CO#{hDe z&W9k8)|FG{YutWd0WK+fJb=UXmlp^p?xAf`ZbdAypCi*z8kqrrg8-?7IH`mjDcEITA)$`*AG%nJ$m<)r=+|k|lQ^D9o~PXoezTA! ziI8#Bd~RF9g6cPz%SsE>#16FVBZL=Nm1;Ed4c4C!IM1hX{QSsvVTeUz{U$;=GCThDgEcU^VciT&2s=L7V4F^sbj z<3fv{(ks`hef8wYKdQoXSwuUNvAj0 zB@d%7dP876YNaoSJJAa3n^ynqiC&;#y}yl0N2lcR=&&8oU39F$gdeM2%;h6*zW)RA zi>DKeVMTwru4)SV;-60N-^`!E#6KMn9Vo|^;+JoGn=U<6UVn&mK7|Cm!3J|y{^KeH zuB_5rXA(Hej<%)5IeZ8c6u+_g5rHCv1&xHEU6D+1xofz(7-k@TlW7uC5Y`YO+SkRQ zlB$GfGXQ?AolbEma>*!n45)CO6!AtyKzP#V%Q?A~7Fkb|OE1qPM;Roi0bVlGUZ)|- zCQYV;gMeG1fhG^9fKhH19Zr?y3DC5V2?9Se`A(O}gw#SlGI=&pQke998#?kTJx`3o z@0CiflU7=;PGRPRw1+LqNkv#?MrcfCU_j{ZkiBnv*n8_a{9wQIiSRz>^5He0S|2*w zwY1-RSl|tTci2`q@Z?k1aV1WMnv*sT);;wUtJ@LthfW^?1b50dsMh{#PWe?hVPBK- zGRoN_)tiK><)WaT+&LUiP46856MCmm3|}bmZ*uArTt!*f(E7gH-vXSs**V|Qg7VLk z@Rfkb!W%;070fj>zoXy;qoGMt)jvWC6Uy^*jSIt$i^7hJ!;VYBj!VOi%LX9BRO3+& zdLdwO?rss=3NmmKc0Txt_^f=Qxwa;}1#C-1i~E4#FOh61a26#XZKNIvDtlF6OQ&ye zKlZ0I(zrKEjMZdVf=X#NGz@u8*5>@3{nJd>^Y0MC#x~=l0V=`;7UT7_c`dcbDg}j3 zWA$X)+XPgo;DKa>&)e3)aO97T8HutGP1^sw%V=s(Yz=$iA+xDVkDg{@TV}~JV zhW4@GM5|%{lMRpH$;8RXuSv8Dq)U2GG29A&E z?AV*AZx5LG>@fq0JH_o<dy>NnDi3?oc}Pwf3l|jw7*~sBDw`ke99A-3;7RE zhS#~0GpUlZv66G4lJmZj6SInwt%_5nD%6?ISxxAoze{P<&&(#&|3s0qJ=sqr(6YCk z@Dbqm(Y1Dyix;2Yfso2ye4jM|bz-V-;xwt*h4LV!G3vM(6e9j;ia5V82ipU}O5Wgxf9bz_0wUJD0Fz})-8}dZNz<@*j39T6`H-IR5?~lgda`0_v0`@< zvrD~@%f7(Hz!C$)Cj)o`%D9WfOt>5aaVIh2gp28zl!zPRsj_P;DR>;>DJEa?ej80s z<6>zSr`Zk`P8qRJ7>p*DPxF>#;1@ZW^w;--BFc&y?)WSP6&wqo)^?tQ9%GiHB=M=| z&yX(+s~C2}Jcad;KLxw0q4FWF?kYbUlsX=5JvcJ>>-*|)R{os{p*VZ@FrkSh92UbLU5}sw+G*K%l-zuKLg(W?tiU=6=SI9TNq40tcB;=eF6;6 zdo`dlt%wVfUAO1QMNfV%+!>v?KHN&aqO^9v5@t+&yl+<87!K_EPu_2Al26&d!qUwZ{zzxeRd9D zO4{i21i8~J{YE;~i6Jh5tu3kkV%7F6K@*~QP4ivWm6nQl@M?H7qBu$%wb|O?)w!T( zN7p!%y70Satn=CmzPg5V(L+L*qNNAJ)TpAq0d!gp0PG#^bQC?Dy zJ@bNVCPgLG*zGBVkVBwdlJmaTMFL|lU44(N2k{5ed;5`4a8i-vGNbrVCgFur7UA*N z3|{}%ly^YzbAC)F0lp>#IW8+#3@V8~WWAE!^voVEEOHE`$y-@#WfHycr$RDPwE>X011v*jO-@hTZJ)k#oi+0Isk$7o!sJ-f% z#$rF>bkDbNKiYv`(1z61tm1T1c!{oIKceRDqQud48=d3aG-pkEn%?${8su93@1;cO zIE#rad{n{`6Yt!8!0=db(1yy+;sokTHSE7Y{r`#(xU7-0Qb7HAK?NY^h9KugAm_#) z=O!TMrXZJRG+}G-!q4$>{pBVmh@dKrxS_mv81Y3y3a$X}VzO&!^Wmw=Wb@`gYuywf z@ISC>ByfmN0}=^Dl3e8d_m6Yl)QKOAHd`I0JH}$Q0&lSZU*ZTgeb)c(eXKfRJ7}t6 z=*bF5%fGu`472RNI*xx@BEer8;<7FP44aWx=Of& zzP9O(50<*mwKhohu@Ehn+7O)#J7q1@nf)*8POM#Z_fX_(cIJRV>|io1*&nWs?~S56 zv(i_`IoNX64}}@(uOW4sow%Z*JaTi8a|@7jOOVSd@GDpWw7>XxRB1K&eyr}{S2TQ1 zSucBf89+LHjP$SwuD|B`^{L6j&pS`TN}kJgdwHC(hO2g`;9bbY(VW8x54{!7e}u{Z zx)lBcVjr5|Hvc>dj;U?C#_`iqM9xf(=;?(D>I$9+T&!jx)(wYh_I+hQoghOR?q8Rw zDJUm-k?(_n0N|Fi&G0Gc!AI0-cF<4J9x2bbTV(g!TqNX6$JCKS<$#S9@5yQJ9;9GL zCo+(>wL7kp-uA-Z`314F46(BU)0Nhfa_K(X z*p+kNqP>`b!unYiN(Cb&8NAMg9pm)Z*8hk&{ue;VKgM$?97H<3OYQPo#4u?^4%RIw z9H`#l=ne0EDJNzbCtDe(N*Skf8D~-%XJZ-XLK)|M87F2rCtJC%3VfM3?J}RVD(xzt zm1?Cr_#}u7ZOrf<6v6GhUvKFHio@A#~*ZA&J{Q+Rpt^bTJ~3U;GwcLxo&<2 z?U-adRus9DIo6-1Fas$!2PwAzDYpda_j6Vh+?XOx%wkTqVosG}--Y*aDP`$I6!FLD zOcaWx>8%zkDLq5Q%=b(E*-Zrc6kS&vbv0A|8tG@H&~SngD8`cq1R=A$B%ev+;zX!Z z0{9dZWc>LY4q_LjtaoPHXp*u!Z0o2f&F_)oa@^Iy&Xtfk^^O!&@c0Md&q>X zev}`(M=Lh=+st?MZaBpOV0dLHSP-q$r-B9XN_{CvBO?!lKL z`{+2Vjf{`qpx+yy+n_%ffLxesZp~0PRX!$ikqS+*wXGdN>-Xet|7d6}9Z|ZJi`seZx#XCV?<#)hK;$Sn> z?GWe4jZ_qDUCW-W5G(rb9<|!oA2T;tV-~}`)U&X`Wemu8$)$|)5ds~d-G&PMAEFmC zabm|r%Q9(k@JDcoT*iPd_OO0Jg^@^<0sE0e6f&@%v&BEC9VzD=w}P9o#vy9)Aq-6? zet>ZGP~1F8+Ik9fze#Ywx@u7|2eCM5KiW?XUp;W8A-Y19>mMv7E0D)e+@qJYC2t7+ z+aav7_BZ>_OMF^diB|AJy zY-kWwSy`D~HXPr@ZG;0`6h~T_T|OM&$8AInTQmdSsThtQ;x^(A_+M0nlknkQTfVcV z`3MCI^$`uH!q_(uUT~9Jdv57w>A@4|)Z|1O>YU%}dL&0~wWYhx+yKN>1;Lf5`7ji> zB}^@Yd72kC_M6NNj+l!exI;A`_~JI7spX8_qhp(^HD)IuCOZf&Ma_qzxa~)6IE8W# zO39kA+=-kwx`j^RN4Yl`7CMz5<-Eb70lfFwLZ=OZF>D^WX%uYJJMM%!DJuTv&j+F(3+qNUqJD3%l*~9+ARZi zjOo!Y^rZ(Yfu=4QcI3V!u9hSWcMI9ybYXO`Q}my7&cCSDT&C%3QVh|@9lno7@!IA7 zNbJ&o)md&Ivzb`lS85~>PII@=!`Moc26&XOvWU_<#O+mxjftw# zb9_@eDsLUJSyOeTIi+324au#sz7!Rg5_<>*KN!2=0|Z8NoF)93=u1dzK}jf1bijlm zRrPl%Dain}9$aepjxd=2I(++UJ%N7@pTjYLAx%{Cg?B7kwN`e?BPTr4%iO1p8VW1l z;-ocg;=s`XYnQ*~zfdC&{@+cr8)_Xlvu|tBB zqu}7^G$$d0+yYu{{^Q?_@4{pLGS}9qPH*Dyo4Hd{xOAIRf}=N@ zdCWgZqOD1`H&t@#g<2R89Z*(ZYz!)y1lpdB$4eeJ+uL=Ht8qvO;>!Dg8>mIzHqkf_ z(<4JHsuMo-^Zc8!YP6V#vh)o1`nlW`YAnECh`8m#v$I=-n016Z1zuqJ0J zKD=CYrT0sPZ@y(^#c#UY7|J9!%FZ*^IE@9`5MQV&6hKdtgNe^XU0)&^JZONw1KW@R zgz{3LY4bquildeVZ`epWX8~1%cA@)b@Z`TqPSE;EVVeJ_gvIIATGN$>{!06hfn$N$ z<9su)dIlXs)@Fi=2vc@SBunO87K%_s*d{AWN*Gm_9BCHX(W^hUW&3M9;k1+oh1ebV zU9qP7uJ{6bB?DbVz^@J&mUqhIqR1nX=xFs1rdl%j$UOzGm5QY3cXlaji`rh+Du75b za9fjg$c5m{39!)FzD0Nr^yKglb+3J}2*>CupWjV9qh-M7*mGO&JkG)Noo8GGFV>;; z$sanawi0pkO3YGgL%*3?9{AV54%n}f2n$|~s8A1f?b!!5o%LeXg(rP__W)1Mz>mw} zir6LGffR7_{M304!2Xn^gsS^90NY0>&jnteXi}my_?hpd4huOaBte2U&VZwsQBO5E z%CwxN+g~YJf-&G1mrn2Cwf86=n|$8WH9wX5j_Th*;0#LJ)b2PAbP zg0ihxf$*lK^Qda?FF&2){NgmIyhT*)I$5XMIofI1mp+@DeA@up%yO+sBe%HHld7 zXmZZjB;!XP6X0L9hu^hBM9ZHn#WMPKw~u-kgAijn@uNG;9^X2%(t#t_JIeK4zW-@7 zqm=6$m9QEZveQ*u&ED}{X_d_t+wmU;S(4oOh)~iQBQqpK+37hk6qV1)1|L{nI_nSF zA9)7VI4iupUue_{7q&rK!q_*EY4lS=cuhUhFx=^wL6;lalhrHXXm#0O`FgeIzJ9jW z&YJw1zY5I&qdv&xm!h5%mvgKCo@4R;8&`X4V!xn+yl@N|SPimdISq18B&}0-$vd*j{8s9QroQa9U9YsB-n5)9Vz}@6h{e|B zsW@QJ$Y!A(j8zMT-d2(+YQ82b^Nar5#20+-ozF2DLAWJkFiiHQ7Xu~nGqC~n|YkhKL^V4{4M{SbyIpq-^18SO2B={5&wEZJ)@Jt z{-e83Tfi~iq!SBqxk7Zs6Gy)q%~jf~o1Vt0I?jEz4t#MpS7SC3@A|l34l1Et4$V<= zT_r7k=;sV>0>@4Ma1Elv3$Cy{u2_fR6X=lk=hT<~gFX50p{2Ew6&?Zn$tC~TZKb8> zCBGSW5e$l%sibd!D7spPCq!~`BiX%MI-#;;->v*fPcy93$!8=RM8R>!e6zD!f+RD| zMv`8XDNix>rBe+S(t=>BDtc`<7ViMWbZZDsiLp=PgK4&ahH3@~P$IB?vUqy^^23%*%wSsxUU zPMnkR6}d2~`%q1Cf*SlhiiCligO3+OMFMR4IJ5eY%!JdBEv**#DLo68W-*}kt9i1n zO;aXHyFMbzn%NrH;=8O%Vn?g%Q$x#8;gWy8to#2PtVpeh_niML;GFKF94S#6=LYfHiK7oCSZgUY5harf z^TceulL``!u@h#FRgSUn4URE{0P?}16Hb?GMk5w@hyDLMAM1B)s=lx;oQ9@z>~zQ7 zp~^9>#Ro58#){udLaB!zV5wJx7zs$vIvVmmzxRJw_&_pMd+BP|#=)XjRN&d#QqQNv zFr-M~eoxT5lii1*7I;b~$0c0y9KRJBu2yZ*cR29C&_8|}eyd|Zvi$C8^wT^Q?UNuW zP&Z=4EGDmvAxZ$b=>E#+^f);?(B!eo@0@%(6w88raCEP)|LIiTLvqI`4t!&Y(1LR1;m z{HFPd^KDmfliZlJB1+3r@_kaxJR4N;vddAUn-g*7Bf$HO5YKTLxmrfVz3oVrB#rf3 zn>SGwI{@Ea=A|u7{9lwQ#C0nH0ak~tQLa5o`|}Sp4lp}=1Ed2X$+xXz%D-c0smzR3 z>FTu?Q}CUEtR}Ty$SQAE({odwf)e0`ik|WJr9V7O5cj~h3ZxE!-HGf^8tNIQBqyY! zKw}sF>R&oPGO)TE#c0JVW@~Ow1o0nE1exO|PSn_YVkNL5!5vjtz4hk6@{y|ABofB> z{pFzAL9_B|SP4DWuDyW^tP2F>zrr|N#aV0VG}=Lq9PB??MQ{(=5;xX2&7n^l@RnF4 z;}@_FkSDjzZ5JK2KBZ`W#^i21X@d;E)IqTiiM$?6F={HHe+-vR%5I;_`M%%yb!(Fl zcmp_;TSQ4=p9Phetsf7+2{At4kU+<$Vb>u+iuYo|?cU~=QzTV@*3vFf;Vv*&RCDXZ?PwrGp>Xc+I!!%_xM z0ml#6@L`(bbiTy`ewCtRj%&RT=MB$1xOIxE%#QTSn&Dz@ zAJdmUNvX|-h0K@KG@bU;QS=H4ukPcYZL>U5F^kx0vHsZh`S?ETUhq+Tnc1RZ!>%l9 zQqB3AYPRt4Qa|Tl5q@D(10vaCI6c2o^`vI8=Fy_?g5a@5t!@MwW5iL*v~+ zv}eJxhn{3HdNBf-G$;O1G>gxcDr?FLWA(VS06{eyWEr$j<63ywAOK8)1Y~=9s31nJ zu5B|1#Pl3*TPJn&ZRlykssb2+!!)~vBpmo_+N(AIqED`i1Z9K7dMg#1VfV8ND;_+R+ueS@5yR>+)AtiR6E0c$^t*d$>R6Cay=lFy&Mz&$SHyaxX{Uld$y4=1Fz$x5%x=osI z&v;$F-sowU>#;LoZ3h}#^W(FOj6r}M>*6EYmuouZJS?Iw6cm=XqE3j&U-s+5E2uHY zEq6FB&s^C6v%ByY4NuFxE!*e z);M^3XrFD!EVuZWS1agxyFO;7iytFAGt&@dnHZTQc5ivRjU>%ZJu}rWN*__aS7@Sh z8l2SY_&Cs?Xo(bFVOnl0FT}ha8=WLLBltYyZ4{p99APOHXHCv)Wzf}wTQ?ZimsBY{ z2t!4Z)RUcL?ft7B7bQBTY_vMbf_gc2A%l8C0Nv6@w6J}ZB%Os&_+^j$?1lOzbH~Xn zQnjURGgik9e%~k3Z`NG!8pGCEx3pzX>dS;~#?gn;Sn~4h>(!AGTkM%ZmKB}lADI(!b<%Otv2As1 z+qSJYHaoU$+h)hMZKq>n(!cMUJNMq1S@Zv|Rqv|vu2XgDRGnSBu%CMN&(FngJi?EW zkwdnhPrLChM-q^RMdl2PQdEf&8*+F9v_q)1bRtv|^COIA%D)cT>x!tEO&QFzLyKA^ zt+&mXL}Vcpd5+Wo*b$tuG(_1ZqsQ94->dY3B^L8~5n-Yh8XLv!0OvvRKTLxi)W7GY zg)tc`XV6C%&>2=?%VOAY(bzFZ=nr*3*>uIZ$U!Vp(qmX;D7+!@#^B z;mi~E`C+SXVEV&R(?xg#oe~H3%AUw6J|8!UdWa;u%5R*020oyraeEex)4_oSnd<*?Grds8I4jE!e$=aToam7OzkZ;CMc++e-nBEh_HZgGrv zgsa(ezYfXNID_6w&yWI2q0WfmJ!mNOPZCay&<J`;lwzj|KZ1!Y+VVLi91LK7T!&zG@c0lOI)#9sn(QagV(;0QzR9Zl$&H7h=dU0i2X;()@SajF{T)p8^KqkiPP7Gm?CNVZ@~FCsE^yjA2{@ zlYnM$rZ9U`hgdD(RWwB-MPUG|qQ+1;mxD`G=pkhsFsH=yu0cVY&}CBU*I_rKNp_W` z#FN<2HvQC58GXh(*D~P#SSLN8%t`4;(S1Oe=)O+pR3QU*eb|XOXD&bs`avM|^&Vz? zJpM#od1NNG6Cz1f72qf^EoZM^B*lqa!mc^A*-me7PQ~Arh2!K$yrc|}syWM5T~KO&W;(I7oVvIU^93HPQV6&OBiu`nEO>XtB=faj)l7qmm6 zBdECv7iQ}x0h2fhryd0O=eP5dchImmN}YEQ#U9%E(7#Lp@YidDDVGJ@&|Vb zuP6rGMXdvY2b(F2nuRhsx!CE;GuZvG0S4&nf&B|kQUSJNjHhNG%^rzisw3JPR99w| zq3Anq6JVBGxhm2dg(TI#KPQ&F6yoT%A%ufuq5tyhcH?UQ3o zDF30-R}%zNKV0mdMj3$%Q3>j7LYLxwDK#>qx+D*{tN*1uZCc_>97?Dhu&D2G$p%&(lDngq=|absl>GIj>~*IG9RE ze1mr0Un+rx3--Mx?FD26B=LK~P6BQMbkSF@Z_^1=aG;o_w;p#2 zQbs8=o87>r{Ifwf+2kQ;Jv(kXYtCfJUX(epw!ddv@w`~8DXl(#D2$^se;~}QGygwf zNIJ}i!pJ(z2f|D`%%)i0y%J!&+~B;t!m;RyuJWnq%C7Q>=nJlhyu-o)=+}m-4X*O( z=uWQk$>{g4^4aMB0?)Y4r1nxxM(Eg^JcTjssgD0+_QMxjF)yiW5J(&dqLlfn1f3Kh z_tdV59izM=UJVuRWP3l;iX+n$uY-21ai)*5_(vu(HSr+Z$CZ}Pm84|6peoG_HQ5y z`bg9jbMoHbDcHn;>&jb%Rqq&#e?sOVph<<+w7wOai~^U~lUDT$spiGP^XD58GDo`D z@wn0#RBhj7a}2=pP^M01sOk3HfYdao{BQmNwnVe`JW|VACo6e_fvGT#j*_u(_l}aO zaEK1G;c$@-GwM)B)=RREkuMW6g=D=AqvLMQv1R(2psF248uD8p%3B1Au#S?#QlK}B z=790Z#7Y>znV!F}444s7XF+sbk=V1G;>h&|BaAJm{-@??ZNHT!RSWaGm9?lk?p%)c z2j+h+P3!@;SU)W}(;iXa0rBq@jjK9;Ox+y)h1oCjV7R%Af|Tf~aimcKzG(-&Lg>m+ zRKN>KIc|EKtse#%%r|6xAsW*29`!^7iy`osLE zo81FdMZuVaMMc4s1Wsl4OSJYHkv`H<|96>AL6>&@x82nG37iV?Ed}*02lcC2cZJ_d zP~U1$-&#=LdQjhnQQxLf-%hBX2j459=1EXtq{0a4zsSccu3QEEGw0lnw zhmqCoBUUSRs^)t}Jc_#b2|mF)E98G~y4`PiZ>&_OS9!E_r`LHrbeLCp1az3!c?@)E zSO10(tX+LmA^Z=T42g~qyheY#CV#wUf4mldyjFj_Hh;YKyn*o5j*`CcwvLja@RyE% z1IfZCVZXZVT^Li}*DH1#{IdWD=O2}McTt)0F;)MZ5dR{haEyuhNDrW_C>WKns3@3} zz^o`3ktilDb3O03vDNe#;i&t1JH~?HI>A`+uvy;ll6&Y-^B}@mot2kX{1l0OZ?x3pIGb)= z`DK*!`^@fJR!bM<6|m?_o1<#Hh>IXsc}%CN4X}nJrYjZ>$M8kTy#BiZhRc z4S9nRMTuk8k&sk@||A`kJj6P)(G0|x3_F<%VPMapPwDe zk0M7Zda4;KvOaSMV72-XMAB z)nD}cATM8fJ#1mKfA-q6|0(G4c-C8ZmWla55Q&P`*Y6$G{k(oL-5cAp=zM2~t;Ta{ zFV42LZ61r>%x~{p;c`2ZbMAIg*s1RAyEy#V)O9bMxOtw@{9{w8MCpL#T8{pT_g;L_ zp1iC)5okm4v;xmd1>Sb8(6tquw=X1eVLi(eFs^jM)Z#XzE1Nv~-$d6!_y62PY5eD= z{QTdWEkZMYpRj|hX=-`3i)^b)caZhF(Rd9G_w9aB&F!(>PS_p!r}9;uN86`cv)k$? zN>maAyZnhD zW33pN{`6=Gggd+cg4=w|YA0sBz2~tt)ZE~%A1oE$SnpPK+wgK%JrrK7 z!&6ls1&!^yzEZD3aev&)Qt)cLcWRwoJnr`C^4R+GK4{K%zx(`Gnl*Ti=#VyGAfSsc z;=wQ8!N1J9|DDnMADT6%I7yo|dW4`yjsZT)wS;>+D^-P^7kQN7vSCv4HvEEE;RN`^ z0;^(Szx7?8mP$_-lJ^W1XU4=`ORK&@r$sU`z}q!!!k5f7v#CzqWD3z z0q$SUQ(C66OI5;m5_N20CQ|mfeT+w)wvkRt(kJD+9&sY&#FJ=yPB*kz#kW>WIu}KA z*H#>wre_y~E7Z=s0B3ov#5LQeMs#xhfI8$=E?qrYVcJRCU$?TrYF1%(jiK=fljywj z!asg(Yi#bg=^oz_w>z7GTeb}ILiTo^&|pt<=rgB4G!=(g*-=c)^ah;tV*L=> z*4#03d+xz9n?Mxj0ja_Rvg9`sC*Z>Vl~6O(o5u(l7ZS7&6&V9{H_zujY_Xkl9pclT z(nA9%=f?<_`~h)brr^OOpI0}SIw(5~VHu@xOm}`!6V{fpB^1sE=YPMl!wB@^ym;Ij zx7k-cl#MX82bF-?D@u8lA!9R}Fw0J)aSj`)jp-%)=EeAm{B+0LqZ{pnVJEgnjmbX| z8n=g94L2`F<1Prxa)8i*&*+O;mIVWd!Ddqcee?Zn8q|5iTpCX7{%=gm+yo>TKfb=T z$`_mR|AR@H@gF8-C2iX|dX#snBscA)!E-@}bTKnCTVF6SE*Trowe^YX$lW#Cjp`wp zI$A3z;OG!B@r+md%j;`-73~Y54zFn*YCx-H=XYc9M(BFXu_O>{R~3ay^ZH(-!DOxn zqwdp{rOQ@@cL)wg5;pY;LUbI;IbSBo)!GmTgD3}RG`I2mO6gldq6+=^F{v=O+O%#y zaqAU?Z9z~FYg*fO;SL*hngkRQc}q|p0a|6}TD6QjSqk?I(#hj;%syq>Gi26+wcL5Q z>hJq(L7Hul_M*q2cv^uKvAGwag`NV4Yl~`NQ`}^2QzY!i~Gjf}!Ppn#pd@UV^A+>WGw+okZ97xzLh*G6H@Ub3{S%9iWM0iYwh>K@~ zt#WBaW)!-Qf#<>Wz1PbMAsKe7Gb#QQ<~WhN&@Ah;l{Qox-Rx!mD$zF6pyt3qdBf8duE##fX z?IKWJ+SdBEw%N?{Z6Ehb3Xz-z$Nojd`P(VSZ@WJv2(KpXD*+To3D zHhuL(w{G^phw8mCaWm_4T>{-_yTI*j1AXhiN!3L^WWL6iUjQ|DARv@~X%R<#11n<( zx_=^uzeJ6{k|zMWYzV%(!Uvt>^D5w(kZ#h*^#}Qv`8E6=&mmAur#>U7OGx9Sq?t znvOYCcY?=skfT&0NTp=w6?G40tsH(BmkjHfwJFHfowbO{t4@U@DuqQ2(Iy7*R-69* zPE5{GC%PtTe!)Z&%vCI4qHStC{vwzkJ3y5*doER(8p!mmP|;#rjt*-@LvY4wAVplb z&t=1es8EXo{fL>>V)&Q-YSz}kvjOL-DxoY%Xd-zS+Qu!h{tY9m$VE{~uhC<$&WQ0V z?|y7p)f_TIA_EaLkw4OCL)={~dx1P0)A~MiuJAk_I}t`eQ^~fE!f&upCtOgCKAjJL z{9zg>)P^jSB68)I8~AtiXYWZz1zCErB@@A{AG%di7sT<=Qgr5VXB@7T`vA`Dyhh8jvAz)7#QZu z(2hn7l z(#uyWx2Gn<#-;9J+u9UrXTor8?_}R;s+U=Ic~|SD?CnRkIR3b_u%S{x^ojnWsrK|O z>V~zV7O2e$o9KoGSt1oofPFNAS7B3R)c^FtFVahGiWXY$a#*7Fb8 z)*oq}&0R5yg^rwP%Z%lFe^7)KpsF0*HfB27HwNFaBT>j41>ojMTU_5Lxb33nLL3K@ zmfRpJ=rjl#53C3K<~N1dlfEG9AJ^$N;QbpnoXR!GE%$4EeVs7tFgQwM?k&oG!M!m%_)3KT~;o(SNP$3E2*9ow)GeW)P5t$&507U-|8^d%X985 zib}^_2LwW_GSvQ*f=b-hYRPl(jSYL(X-t zoQyK4JQ_ldJ_4IK)jD<8cAUh4JmChLw>J>I%dwJ>AvgqJH0nNz6r;Bj#G)Xw%Mk8b;Seq(ey zo8$caNuey*C|^O7S?DXGPJ$7KcK)!pg?ekWh4wuXi~*agwmsL)V8xE_(*^FCY?}TB z46};RoG*3!Il|HiTV>{j^X2MFiOcE)bbl{pCEK4*6KmmA`E+Ks3>EH29h97|Xx^oz zfWVibIg~C9^}fipgpqFDFpdh-x4TvENgnD$vfq6t4&!Pba~~l6CzZxnjh_m;vZb1| zO+$$pAE)`(K_}P$fk!#}a5i_FWi(E32YuiCr#N#t$VrNjbnwy^F3-X3|=1vC0|Q_@?4_}Jg^EDd`T`*L#bPyO8btaTHXJ| zqpX2Dw<#-`j$J6X)auZ#|S;vp>+8X(_@=P*YwSviu8t0ZAKEbq=#ZQp% zm+;mE*d6CO`+tHQ2^Iy@Q>m{JU3l}oOAcNe?iC+mOgP&*hh2o);XSdHmO?~9-%C0A z4bFOT?oE`l95uOOB-`7r9q+cgV_&oXYX{+U5BMO50|N3@{EsQWi!H#?!OYnB%Z<-J z5!2rRyHaZmu*Qb=j+&&h5nkJ$j7vMDEJGMt>S&@M&YMIV=ug~45htzSJlp=9p!1N& z%H%`;Q41_4hgRYNwQ?Rwb8@BQ%Z9!^0Nhg^%-l`Yl##r+q@96M4Y5}DwHe$;xPF5} zMLQco2BKd49F@3h*@c0oKDkoHxH=$c%8Uu`LM;KYq`F{>cY9Xus5>bCoA*$qcI!gz zJM|Py3CXGhXBSy%$lpA>G+K8O#pNPRt0S0k`o!g`~dz zZjXg z9x$zqc9$Jxo<3&UvhGDeuTG}6D=%BF%#c&>9pToH(;}Eh;nYjaVo*zTl3j!AY_G}> zcow?NCk!2}g8^%g+Kq2RRh}`HgC}r^~Iv8WXq%sEOC)Q$*Kt&0GggQ+KMFh;<6hF702rx=4E63~52Ag}T~mt#uQda% zWyKo|@>T;+*7e#9j5R{0qblj6TonMnhw|2fv0Z4xBYx#gh4~e3KXc=0bys44`@M2{ zU7Z&pa2@>B1<N zw-bl}^`mIyy zR+as_3<(+rN*h9VA(wt88RZ%tqU+1(SsQsna_n_|xrCtb45C1o4&HQ!p2Hbi6B%av zfdeEP8*i6Mt)XKj>($hx!QwL`75?FygS*Eri^9phR4Zd|b2^7l`OczDuB54Vi19oI zaX`$ZL!Bwuf}}$xqyy7~s?9DW`B?|HgBugK^(l#gjL&Ygxe(ns9JkjL#SaYwCA};o z$3GZ2L?Q^cz2KIE5%+!HfMVhIg5=vq4XncJyvFx$#Uk9;xB8`|&PL}YD(R(FSOp5H;zPvWm$eg3t;=NQ85`0Fe4POBPSRHr6N5cxWL6nQNFR~ zA$8F_yh3oszGV}|_!(#rK1NoAroAWwq#&EJ%3v>Kwa~HfbC=81LMh7jg``;vYGfv7 z_l^x|E$BEqEN7@XOh0t$nSN85l5}gE?&q+ck)DdGDBU8Va-gAmQ6X(e|Lmugcp$-$ zhA4JaKCGW3m}*)J*n|ZeK?3%($VL9WH6c?>;&eBzcQ+mqE1j=C8p!RMbm(gau3vQP zrDXSHr+7%`)du~C0CF~=muaNYMk$^fH*@ZV9jH#c;t}NjPKha6V zwEc``@DsU5U_6sAd=7>*1knA&q|*hBfMZF7K(N9bQ1WhPWwYvQc}%guI7-EWxx#v< z&E%%N_jj7y*Ckm2MTQr+pHG+!uRM8sare00gp(W2>9Iy)on9*yfNvDPiO_o zpv8{ik^1D|I&8??%QbIsYog;g$p(T+6CpCc6kV1wbJ{xdL=KJRNHk#O`(krdI9$`` zCG%MtnuRa&C1O~3_Ys!#wmG0Gtz>aEqammZ5X(U|{uaaMuzYWz!wT1hxtVTrmOi3k zH}=Sn(1t7|`TbDSlVZ<+$~7w4mQ?IGq+u{CP{y-xsSso_6F^GISd%+0Ou%9L4n~MY zB?QBG(=>$~*J=)b7{gJ;xuBMw)tiN#FXB&1a$(NlFsjs`TOT#E*R3d8hFm$L^u| zM#L}<#mZyuA0@*%<|GE_5Prw=ol+tMx01y(N;0>S;BIp^xC2`L#PZ_s!!HT_rsKGd zN0{+6fkv}(ENS9OM$-+*y~KXUQXHKMQljD%^oEL>7b>1OB(dx7LZs=V6U$yYbt@@u zbP_+M7qv%B3_arJ>G10U#c~h`R|*im*fiq814z)p-I(T|^NjiclQu5jM$^{}b=$|Dp+hX(Rc zJG2tT7EGPl49aqOuSTi8N^q{+@tsW&)R_?xQw?+2ZD$oj^j6%h-S2N(%fk3qBv9|| ztFRbDJ-4WfGOP(NL`BkKdWwMxpcUnv1fv4bnWg!z3|4>d->voSZ%a$T_;;YdXP7oq zbrG~;qzAPbl$U>in(rU&L3;xhCmA5?PWJ#d8xlhzWVsPnHj43@m{27ZW#(TLgC9sufW&Og zkHE~rUGyT3_dSURWnOwZ%rqt^HJ9nCzrp~7~1csu;i41!%?7>Upi)Fp+j9}W4v zM}RlBZ-6k^pM$+j#>|iD8(ySj_j8uf_;y^yuvW7|JD<$=ga%p; z19$?z@(U35N}0i~5hiS*%uSY}luhr|pfxirF*|zkS6Prpp^P}yEzNI%$@n6VEwftKc{p8AhoQbH z+GkLHcuHGn?j28d9KX)@Z)L-$><~j_qFv7_VcCka$zcrC>+oWUt)?) zsm)G|&5Q{Cr9IJYrgIQ7E6lq+WuTGF5<|U5{0dcS7_(IWsEP~76ni#4GVDSXdN!_r zO~AoYWcRi)9Vj-DaW4K_?IhlO)y$F?qi=vQ$lsHh6E$EtXlrxk*02yF2jzqGyD@di z_o04-lo}6?MkZInvFtOI;9KMi3e~eRqA~=e7P$#KX^WsG*@>%~v|M~KRM|39nPJ=J zJNb`Tzbda((v!<;I%fz&Qqwi&V%FHxAd8DFOT2SDf=PTNSGoNwDZ=2TKf~d{(H-Pa zfF?uT_9<>k$ePUThmS=}$W}cAfd7O2nKO&3O}kGc9mg&VfgdD%6EoCd*;X$aJf78; zbeFA`RxX2ZHYSEMEpx1vN;8_+1vZ(TIqQWxzvdAQA|R0m8jLeAEXr12)#&8n52svj z7XyIOTb*v=jYhXYGH&N5q7=V{e02cVD^JM)J!khW*P^`%CLLBzg|gul%2o7+x2kjf zF>j=%`xip@_K03!=?KVB{=aeo318w`goC!Z<;pkE2dRXzPgJ{h<&IwniO=8o?w#YX z30=_2m1WHTuP+4;gNCA@$i(FixfOMkehMD`3$^IAAb}2q zPxX&EuBJ^XT*|@}lUre2G|h#*;cv1p(^bLE1-u)@{^B1GrbwsD8n3y zv(6hf{G45$bdYuCLzix+;TYEv?BO#R9e>rV7snmqfx=JrR^AO&-x%IzqTaUP4C`Tx zLlS+|af&Wk9~QDloPo}}Vt8WanzpCp{pgvM31Q3{g?>vNnsl1Cvl5+$wT^=ZZf{R< zlbyufMOxCHW{zpCXj^8c6gC)SAUd~(GiP05s^Weaq@#JuHMG!K6sA&WW=&r8$fHn8 zg=#7|Fc)$7b<&L8MR0Q2#;8+bI)1&-T2p2Z&6%=yGAO6AwaQW>GWe%x&Un{DP|=E< zMdC14s@1WkNnMweu@_TvCXIuvZc%+#>eQu*=kb{1BJ1snPP;=%y_DHTQcSxsJcr~2 zoWza)hL{C(NEd&|%x2YIQs6OGNJzp8z%@DMI6Z-xf_5+rcIa-@-a3(`+qEF$Db=SY zn>3o5X8qPQU}Gd3uJG#AjR4nR?~Oay4VJ(%ba~eu;b>|nof`FlFT?~=fFU)U?0a|| zwfJ+!yPkMbnB-fuFummAYo!!3fsd`FmN~9+T9mTc-~rrGlHn{sK%=eTAfX{6HpyXj zmWT$u;2^HyPJGO_K`S=Na+Z;pCR=H`)8azp9 zh-LwT8aCo%8?y!q&n7C*CKeExwkEl8Q*;F<&WS>g6v-r5cGz0kj;~8rc3vLbaV>cH zEmNP7u4((=k8B8o;*>PCWPFFjt{+spc{24IMDmS3v0{#X{k7ReT=y$gEh(Py5*c|a zSI^XUpLhAbL+XTxY@i^0#Cz9lS1a~Nru-cUl{0G>J|nAuC>t{Ei1H|$Yc*<=@SnBX zOG%^mCNkGa(Mw0_eevgo=nIv+DcQ)7Hb~wqnK}4!h=j_xN+y4fL_&bw+@Sq<9^!(h5e|{j5G16d4PF)f z+erojw`1(}RC{yj&kb(Z*ejFpEY!g*mtOm$H|5v?R?4?qE@Y#sW^%ar`Q*iVRqr^A zGVLVFW)p9VrR07(@0996V<#9_=U2Q{Yt5f5jk?V*dY`X;U0W|*JQvhkyYk`8+GjOo z^y)YwC_me~6rCp2%^RR26?62JG2J2^tVNR8iTiE@49#$&4;BVZA9UI`iY#yun5Y=~ z6cEmOWo}^DwV9Fui&^@L0Cc%YV`XV8%c_>OI{K={>n*9JyW~eT%Ri;xJfT5c0^PMS z8kfHLuXj>YxG7rKaYFJ9c@zr5kD*T6pQGbAOyN6K`9&3$FjY8~OmG@X50%V3!v>ug zJoRoG?iQ1I-$dZ3bn_g0oZkiLUxeOYuIxntXv|gw>s7pJnQzi-%7sSdQyY_zyC1VAUT~1s0Go^kU>Z_f z8NV*W%5zQgd1a9NVlVfO;sV^pG-Sji(VDZ9(3ln+WHj7~je(oD64Q9iGUC&y;$pT& zjk;GT(w1?|+h{PxR?kKI?pf1QHQ_)!7o*jUe7~yxxz+z$y&`U~?#3PjMP-ew{YdbH z3+gHQ%~j(vLrn640w$YoGt}(@iihI;sri?0ML`qnx-)C$bw_`~fuI{DtY z=My`)jyvL8&J77P)2B<8rPh>?JQb=-cTK#Z`jl2)gTyQ^TE{9P^1BB~X4Zq>=-A~s z^4C$iQPVcigyNAuyAp%9(Z>SL*izY_L)o8u!F40yFD21WOUx;>?d6Bp3Du1B`_Jt+ z8aoQH!FaIIIAafE(J|GNg9|**xJ+s)=jN- zR%2vojhXw_P>{VaMuuhoI?HfPs+W>db)^)%#&)@R-+eslHU@g2)UEDZthTPa;3#^$ zslIK?rjz3nbxbNAxqL!`j~($gp3D-Qbbb~4?Z~|I)-R+YDQXD>u9hZM7R_xm;`$5h zdq6WDPv@YF>Tj9g<&~f9o%;D_SQPF(x;Wfk$lPn*;kY4(5_7rX>nPKLFljVvwCsZ3 zmdC%mNyADj$g}&7QQhmJE|e$XRzMNYmO-nUOujv=rzN`LiK~f>WSPsI0|SraBJiDK zNStF(o@YLsUV$Q=K4E-$t};XM?vV!OE#TXMd~?5s=b{|ZiK~LqlY3~ zWPs9A{sD%R!jJEZ0R|GnuNcaY%yb-c2W;x}A_eU=srkaktQyZSEo=jGM*uz%`x|l{ zCEJVKmB!`p=el2r(>k!KrUSkUABY1a7`+Q0kbUtTM!OCFrDLb|<9<00(4HemOAdwJys}g$tuEZ%NnLng*`23*P z)1)Nyb*bjeZ3W4obVbQ9Sx`CTKLt7b_&_=Qkn-l_^X7UT+Zv~&@TY;KMg5D~{Yb-1 zku?j4;q#$U_8ktsUg&8&aHB%1upTZE-xDXXNBI#2EsFdtP6Dup0>zwzL{31dP4YLK zWvBAx1E*9WrI6!-liu{{fq=tEZ7=SpLceOH%D7;0@IP^I_?07Nl5-Uxf8|6bC*a^F z`5UHWfphqZfOE2ta=x;X-}L!@WtH1r1e04{8ufKw1A_Uz1Pr5<2qe5iki(brl^7bh z%&|rE&-T>&8LPi9A1E_tx*2BrnKZ)Ge5jY&yi5eC+!YkFU;1tVnsYs4Vy1No*v?sr z5DhD8QW|-Owt{(ldmXvud?}cOuY}+Ub5yP!CZshO0h|*(+)8Z*9KAdjjMTCW6sZD! zkB|*qR%%PN@(FVjds)EmrD#ch*Qf6aIY8hx(m=}GzXO0b4!PiAbRo$tT48d?xxgAm{IcBnwp{9l`#6>8!&G**j~IUkdLvOpTs78n+1q#yc8Jo zX;c{{F$QQ@ZgrttJ8F0m>3!e@quD2YPTe(@)9Fg9c@wN?20UJm#$&up4&@Tv)AMX5 zZV4{BLu-4B@Ak+R^K+RJd{U;(EDH6_eKA#a*Bhz4CHf>Q$AwzycDZkV1QtJ2IRtx2 z$64JIM%TT39}f5g{a;2G{i0+I8kajn?k~&@)EDUH-#DxPZggS!yDW%IodA4!E)TN( zH8ZO1JIQ-wWHd!AkmfuSMP@$7Qd?6QN~{&Q*R-}NXSzyd_IN>a?~Cl$^=PPNOE`QB zJoUT>jwb7Ld+n;LY<+X4}RI22q& z$?7%Z&8jNU^4ztKYoZ$Nz2)T4Sc12<@gS$oI&y8_O_#2_snq^*0w6Wjb?(^M+-QD} zdS2Mg?I_<=zJQ0X#kZN19a^z^T-a%;gcn!b(3#X3Q?;adiNkg4uFQ(c-x{fQ>hy6@ zyeu0_ZLHV7ZNI#6nd0Q!gLiuWa&%|nz>d7}OSS#9=wecF(1%BP%mV$ywjq4!Rnh14 zq|xdLdE71_WtOiXr`E|HpK_?5j8-}W0IO(M9fPD727GQLPul~c6S{p zv(b+y^t4MNTRSJG3|0s`DFlpPBcD&ih^K^4i=BEu?uGEsYTIc-e2FhsKs)ewBst`1 zJCv5Ovx=Y%8!duRRFmkiV#n!1d`TcyL_1JG#4GkX%$bgHW=WGQh?nE*s5m~&g++fx z=8u)j{mY!;98LlD7N!WYOf`Jujm(iyx^TDE1u^zLw~e=gbir6*Z3qx;qmEoEG{zZ0 zDuXcvnK%*kuM&2h-o=*;5l;yV_|Y-wLdE=~P!PY|r>RM4)^$~;O5(vKFm2i0z;_Gi>~RHF#SA;}%iq~t1CjMKLk5~ca&)&Jr- zWdCyt4D_sfeOKaoy7$^fz5&p<@pw761Xa|9=f zQnQf5ra%W!M#T(gOr69{09uP2OeQjwWGhwy!@3IjZ1FumsGZ2862`z$MajcB#T}r> z4rVzhCo_~}C;kwGiU;gUp&8c9o9cv|DAgKS3_ARAV8Ta9=Rf)x@nIHU!@}Q3tVhcy z3x>vC!1A2oaIQXSk_J|*1cMD5!j54^g^vU>=JheU7@1Z-%p&$Z!B4 z11>xf>tI3HHA2uW9(^d~Z&;(m!7MtC`Qr>q*g;Z}Dx95P5j%jL#VG&}kO6xSh+2_DI^^9Mv+RviMGzoS@rxRpX4Auk^fBA!28N@xiw*p^UnO?3T z{;sQLmmTsDmQ_b*YC@DQDeG2VW|PmC-Jq0l`V-a!JB5gtF@7$!!=RN-=IyT1d15{y zzTb@s)?Su7xRBlkob;Yvtqi*f#2{$17X~7%a{E{_0(DIN#l&_(Peumrjo^|Za$~9h z7eW$M#s?w*T@)Nt*nUrMyIyP9eABSy`qb5iXP?`6Is=*&Hp#;8Fa$$9o)%P?C~Z-N z>+l4o&V-GO6nA|g<}^Xro^lm%Ci60e}d(+I9>UFKea`Kj!ZYG_%Q$27{V;a(YvG=|5dx^>z^4 zDyVjy^jJNDH3iK)x}9O&xjcJnHg;&{#*Wu^!YVhQ&Lo+*b?N_b(d51B-rar9wOMoj zG(PL1WL2KC9^gE&)^0A2ywrR++524hPte}KLk`e`9k9n2D6a$k|2pLS{AVXBWhE+K zB~B55Yf611e4_hxaHtF&vw)VSo$@kgUX`vVGmsRpG3G_Qkv?~va; zukcDHD$AxOLJ`_t+K0zXEHlYFJpmaeE`-9X%L~5}toG#=ge6uiyd2XcrDwg!C;^bb z+nmB_i7Fi@Ox}HJLPY8clCil#iSb9^V&1Dk z>$+XyVz{<6#QQ7WP9Iijzl&NY?j5{db~~f{K6^-F#VI}Ou4HAU_~=zW?8oRhyl8BA z6TMYvt)bF(7cfV%Iyq@BTtE+{YqwvucA{y1b6X6f7_I8Say^06n}#zo_8{V z2^w^JP$`}m%pEsrA6T*1H$cdWR*dbVhU=Q%{&w9(UMonRQvtk?3}|@NwKy#d$jjKdlok_~yR^UGJ!u zxN*Voc<{YzT?dU;tj)bow=^P;UkO1&H8QAx_30)H|0GphLc%xF4{MbDC4laeBB~QJ zcSc`uE#2*wjQHJY*IW!Dpq@{d@rf;AGlZY58=SQ3cdzOb*vPb0Tyjf3k`)p7keMAS z_W*+iz)=v$WHAqV*eo*;GX^2#62@J>!K(Tl3It}&N9z%gK&roUj4R1@`W7ToIpBuw zftgi@spm26BuZm@Ds$&!1_cDFLW}pPPFF`n_dDEqOtLSFM#$1cOH`E@xL=}84gN%n zjf_GoU=m0*5SaPSmRrl^nV5E4!ooKawP~X5_*b#Ti(z;&| ztXU2yB@&2;L{4nhcyst01IsY+gvU!76%vS_sg9#xYDopeaxR{T9|#o^h94}3e$VK^ z$6Fhjr*FMbOy?d5oFwxLEgxl)rx5f3-+}BAXq&*0!agvgC+4yGE~J`-g=bC<`EMYM z-#tRL$@%u}aMnMhy&Z}#!D_~U3~}^g;f57K9`14;z~gRMh7Ze184$k>U-jk`pYigk zDu7x6p?V5a;tNuyJV79J-CmA`U-E%M%r60>&iD$DOv}k09+$*m1|H?-7gN>&WANbJ zDdj_!e6>@hZo*;e7Aw~}prO<6MvCcrLK~ISYW|Xb@$Y=YBq&IO$5AmuzKd zNYB(b&c*;oK?ms-nb?BEcUNY&yZ!SSz{_xUdLMFu>%{qKOjt@!6;i2X)UcE@J950j zCx3u2^|onI?4<#Xk~rL1R}Uy<86oDCgM+vhPbv!bgdo7@Bd~m`MZz>bW5&vsGyk2Y zGFpA50szqSfc$x@_ITU3!B|PVfyDXR95!3lQk^N*M&{H$Xj3AnJfmO8y-u%>_xYcY zdw&&HgG{jXz!!2)7V7`1uvq^ptV|W{__V*6bc{_ZJeb`mjya3Wi@wQovv#lL6T!f5 zMp964{Odkj#FWCp4Qo8)tPO3dFWMkpLA#^p{|{>g+R0Ntm*;dQBOyA4L`v1e*Gt1~E`?@&F%P{Jze#97@{% z#f)o4St)e_@Dx9VQA_TP ziz!#wp4sWpTn*Ox%>yEB7Fm8Mq7+-@1h2(ZORa?H?0j53ReQh>iUnWy-FUY)Rw!Of z;hFw$|7rgWt(bV=eOGK(!z~y%y6G!iOjk4^M}DCr&#d><^UB)(vDR%GB$(>axZ^=e zIpJvr1#^Nz9Y#)yd2)HSRxLs4QS1wFKdVcLfs)q^p?4HTQPz`V(xA!aX>LP53^9ae zEr_-craSOC2nfCGPhI=lsW8@}zDY+j{ijiqA~O<91<=)9M#wvNJ>H=4Y>K<@JhWa@ z>Fq;ZqUk+B8Tjwhr%2G$z}K)O2{qjA#x~pq^(SY6nWK@_CAX;RMs!g;3gSlbtJ1>U zwcC?%ksfOaG~R+JqgrTUIPPM*pq|_6MN)7Yr{xiy`m%GAbMtwxfwF-tuoslRN}Pai z3}zOq)d@bj6j<*>y#CWpzkS444}*M`rPo_SX#kv!SH}zC#xxasT?($I{ey2%3B(-= zoTr_VRdmSkSZPi{CW~HgBJ48qmNIsU9iG#1aJUhJf~LV2PKq=MK)HV?SFG$ZvvJxw z`&4!7WYzWyDi%PdPzJF|0pYiWMyqkEMTHM1S&~j&y7>ayPxy`nHaQUvE8s5~f4T^g zx`F=d@{kX{OsU|@YIG?B4D!O`stK>t_XFEZC`%Ei$5dZGjU*l=jZj!r__$Q6{W5pUubpsvX&rHRr&CjD!{2zW4QBC`u)e%-JZLu|4 zZsW4}EfQkJtm;j7~Z^oUaV#oK2^MiO?K7N2yiFZV`qC(e%^IEV={Z}=*)I_tu=}k zIQeP%ofy0R46Ss-3u)}B{8cW9o@Lf_xArK66J}37%E|d9UN$#-0q&fjW0N$3wHh${ zK7{o)W&It>dJtuDM(R@nlgP#AvDtA8Gnkk+p4#EImOzMbNL(y#eFH8CFyFf(d*X#o_Ww=xW zF{J#y+{{PMNC#Yx`(74UjeBK^(2SVU{h|4NjMt%n65S`M^SRb<0y4zU0eF}boM;b2 zil^YRSV5Fj`qpuXp&x*U}vki zXsEh*NCpdJM;UVu$C)4NqWe{6Kz52~O8AybAzIAA^~%t5Firitcl(}+(8+VI-Iw(a zTW8MuyyZPS$DryKUeD^p>I|8xc{aC0UYtGqg+W%!^?MKD(`z2#^n%?!xB^?{)V8N8 zF()5fTE)+KJp~>-ai3-b#`XcN#{n4JZC<+PWr3ZV=e=1u4z|O7cX4aN2Ub;xxYO=z z*x?xYg+wVQy}};G5ZJ9lWe!=NlHLpEl+Cz7EK3E!AU3K8jVU}l%KG z4Gde;onXC~_ajtgq{l?@tDgJFb+e;b435vG!f@MKHQdyov&Fijv3q6Km!D@d?{$zC zjXaa&JhNR-V+i6Uj${S%*yJi?wPjKnO}v|1b9LL!(l-q_Y86w5dkFW5WmK+%#b!|B zmrKdnfaot>$8b_D{Oz636W?T8Q z-uGD-IxSj-u`|1s>B9zI@Z{@;w?gU49>;Q4+}jojA0n1jlIN5Z2s1Y>_<*R4<5;4$ zV5NW$#rj&Gtnh3%>e{DUOk{?+V80DW`U(t9KQW3rpj0{%JN$+2Yu9)Cd_G2-nU;N} z@B4D^_-ynf?-2RCaiOCvrh7M>s*AUG*aZ<%k_9O#(teS7V5&ez0yTI^gZAXHPgCS# z%Dx=ohZRjJhOzmXJG_tRH>F$hg;50+`KP~0Z&6`;tZDZ}i<1XyeNM);Z1lof?(qeZ z_9a13DRN=eWXf^Cn6c?;Ai$*qZ7nG01jox4qFgyL9h|s5b#UC@YENNNE~P%x%yS^o zZaDWApD~0sdo9hqRmz_2?aNRUXheE=zCQjVH?SJ8Lx@FQyiXDBHl`CjDOH}nj{00H zH7O6BmmXEkbk%|)aGLC{ZrZmrw3@*2x)E)v$tf`%T<$EqW^{Dm!qdg4S@w^TlZVAn z9);LtiP{bgZcTysngT33*#!@Ty|>CM^D=}Z=9aQc6z06Y4o}1gEz3)rH=>^{2XkA^ zhP?W$KNvHoVLD5^MOcWz$Cdx{<46TY9QGbFha@0aBCy+(Dd!6}r4j3fIV{p{`x*Ii z@Xh)(frsOOJ1QPIk8d;!wU9dAzHP=C$uK4qbcZ-TpB|ApcmeW-xY#?Dlw{gLH*RU$ z6E6ejy-$#Xfg%Qoc)AiF)iA+uiTtYN%$WtMQ(L^V_S5fWJwb%Y28pj zy~6-&-q}=uwbH-JDX3%|5oRVRuxg!4QS{?ad@J5l+Jtj#q!GEdo2kRtX(&`K4BV; z$=7C19#Fp4Z^OSFK{SEl?$$5%{dI;-()VrWKu3Jh_u17&d>h}7trU1>syzjcsgv;P zO78-H^d){EKWd+I0>7G~fW4-(Q`fBUjvMH}?G2v*44&QMG?Q-6O-rejn=?`9?^W5@ zs^f4z!c-o3(r|5BygA7v3AF~;4i)8m^#eKP_!|E)T=_w6n z!8aSpn;_QPQLo2)$D$cmv-6M@;=+k~Gg?eo)z~fFWvJ79Ll=QoHUM z&?@xJ2%3Z!ZWto^mC_R=(Dt%t;E+?^2c0+*G9?ix|9Y#BNJ!_1e5%baztgL?uPffB z+v+P~GTzrIjUT*;e<;0d8ZHY?;o^>%7?E5TJ$rU24;9mW-f8HL)$rJ#g|}vEp0d7Q zKIv?K=9L3hc&C8iE=9r`e@!SwBh}eF_-1EJ`8A!MvffILJW<=b69duxx0vB;?ZmkD z;{-gC(P`n1wYm)Z`y9gxo_VW!83{LzPiOfD3!;wm{cG1a8I*n?Jf-wHzAw^;E}CzO ze<g_irgS^1sVztJEJpzCCg}eK#NNq=kI}3p+&I_ zj8cKnl(he1aZ|FhGH+&vKT%A#MyfPoHjjxAB9@?NIz;wgC=Rh#aGnn|yz2>;t9|Xd zm?4=?aN1SLUbJ*XI>BYBf{ms50a%2xZuNx&Na_t*euBkT%~q^<#wKu zj_&z81GBy6=o~MGtWCSkQ@2B;rMEKiwZJ-r8Gi$DH;b_90eWC#D+iW~ShEB~AUz5j zj!-_4v7XH5CKR@uu>xU#?D7D3YD`m@VbjiD&{!Rn8KLxfVj^=sKIca#atBztRSRpA z_P82XE}+Pg@kOG2%JchN(n8G1oS}WYV+2e~Kkv0MH`2-3?{q{5qm!q?pKt#km?nmw1 zRTZoz>rym~9w(xTFyF~R?`6ry>Mch>oks22wkd7!dnz5ZsURzV(uMoY^^UFnfhZ2; z=_e}QiwpttoZuHEv>JK_-;L#uDI@bK7`{sb@?=7?NHi;8cpWwTgx^cQZvd0GJW+EQ zdzQDn&<~;QHnu{6Sj=h%D170CBsFO!@_2e}MeO?(w1(^z%c%IXw|)j3*O2ZgQ@FvM zJw&oUw=cj%Pjmx2Ex)Yfh!1I-uxrq*Ic|OjhTOvtDY8h&!4sUIGiDF+$wNti=PA%D zFTOX$2Nvbi;8f={72`FWXL%}aCcN+WY_o7_GGZ_?C!bhe@Z3^1> zK16pbso6?m4qg)1)S&(uR4WwWCwoz_GFfCYeP6 z!HuL$s^Brn09J@vGO*nIT4I68wsu-*jAJe)l)z)@KyBGr;b7X!fyT$IC*k~C;K7(2 z`;P1NXwJ$iCf^ZYZvkLaijLHL>I26>qQRS0zH*q*M{||5feMZr=6a9Hb$$@I1#D>0 zpun5oijF{=-1o7PCqZOJqk+nPWi7eS=-L|WJmb#c+CTN!p&-?UExW9B3@Nzh^&s#$wJ>||5aUY-D8 z3qBdtQ;-ItkX$4lzy!QNEF_Ax%1V4d^hP)0BtV>h4zFK51u(KTQ~=xBIk4#4+5PGu zWNCsr6?%NcH?a_tH{l;qMCk=={9D@47HoW#xR0z=TMS~Szm4kmkoZIJ0s;|0#02SR zW^8Tz`}ra<0`l+UHZHBa<_7>MgitPA1^xg^y*m*LqyIC*{vEA(CB@c51o8|qEBo{O zUQGQ%@dEmYTu_kHyj)2U9*%VSglNo?01$v^&p(G3@L1x4Vg%NIX>Mcc@K4qlk>4M% z{YoB!+_ETwwu5ej5!3+EbS3i1x=C55%?O3KB4DKZ6l+v1Wk*LNl5ViNGmJKeimQFtQbJDIDPR0U}?#EgV6t`Uz7gbBj1`0L$&0LabvFaQ7m literal 0 HcmV?d00001 diff --git a/ADRpy/analisis/flujo_datos_adrpy.md b/ADRpy/analisis/flujo_datos_adrpy.md new file mode 100644 index 00000000..5fca5e52 --- /dev/null +++ b/ADRpy/analisis/flujo_datos_adrpy.md @@ -0,0 +1,51 @@ +# 📊 Diagrama de flujo de datos - Proyecto ADRpy + +Este diagrama representa el flujo principal de los datos en el proceso de análisis e imputación de aeronaves. + + +```mermaid +graph TD + A[Archivo Excel original] --> B[Procesamiento y limpieza de datos] + B --> C[Analisis de correlaciones] + B --> D[Imputacion por similitud MTOW] + C --> E[Imputacion por correlacion] + D --> F[Bucle de imputacion hasta completar valores] + E --> F + F --> G[Exportacion a nuevo Excel con formato y comentarios] + G --> H[Visualizacion con Data Wrangler o HTML] +``` + +```mermaid +graph TD + A[📁 Excel original] --> B[🧹 Limpieza de datos] + B --> C[📈 Correlaciones] + B --> D[🧮 Similitud MTOW] + C --> E[🔗 Correlaciones significativas] + D --> F[🔁 Bucle de imputacion] + E --> F + F --> G[📤 Exportar a Excel] + G --> H[🖥️ Visualizar con Data Wrangler] +``` +```mermaid +graph TD + classDef inicio fill=#cce5ff,stroke=#004085,color=#004085,stroke-width:2px; + classDef proceso fill=#e2e3e5,stroke=#383d41,color=#383d41; + classDef importante fill=#fff3cd,stroke=#856404,color=#856404,stroke-width:2px; + classDef salida fill=#d4edda,stroke=#155724,color=#155724; + + A[📁 Excel original]:::inicio --> B[🧹 Limpieza de datos]:::proceso + B --> C[📈 Correlaciones]:::proceso + B --> D[🧮 Similitud MTOW]:::proceso + C --> E[🔗 Correlación significativa]:::importante + D --> F[🔁 Bucle de imputación]:::importante + E --> F + F --> G[📤 Exportación Excel]:::salida + G --> H[🖥️ Visualización HTML o Data Wrangler]:::salida + +--- + +## 📌 Notas: +- Cada bloque representa una etapa clave del proyecto. +- Las flechas indican la evolución del DataFrame a través de funciones. +- Las funciones clave están agrupadas en módulos dentro de la carpeta `Modulos`. + diff --git a/ADRpy/analisis/inicial.drawio b/ADRpy/analisis/inicial.drawio new file mode 100644 index 00000000..61c07fd1 --- /dev/null +++ b/ADRpy/analisis/inicial.drawio @@ -0,0 +1,1391 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/ADRpy/analisis/main.py b/ADRpy/analisis/main.py index 6ca8e8a4..07d33cae 100644 --- a/ADRpy/analisis/main.py +++ b/ADRpy/analisis/main.py @@ -7,6 +7,12 @@ # df_procesado.shape # df_filtrado.isnull().sum() +# TODO: Esto es algo que tengo que hacer más adelante +# FIXME: Esto está fallando o tiene errores +# ! Esto es importante +# ? Esto es una duda o algo que quiero revisar +# * Esto es algo que quiero hacer +# Normal comment: Este es un comentario normal import argparse @@ -69,8 +75,8 @@ from Modulos.excel_export import exportar_excel_con_imputaciones from Modulos.html_utils import convertir_a_html from Modulos.data_processing import mostrar_celdas_faltantes_con_seleccion, generar_resumen_faltantes - - +from Modulos.imputacion_similitud_flexible import configurar_similitud +from Modulos.imputacion_similitud_flexible import imputar_por_similitud # Paso 1: Configurar entorno configurar_entorno(max_rows=20, max_columns=10) @@ -184,8 +190,6 @@ print("\n=== Generando resumen de valores faltantes por columna ===") resumen_faltantes = generar_resumen_faltantes(df_filtrado, titulo="Resumen de Valores Faltantes de df_filtrado") -# Paso 9: Calculando correlaciones y generando heatmap -print("\n=== Calculando correlaciones y generando heatmap ===") # Paso 9: Calculando correlaciones y generando heatmap print("\n=== Calculando correlaciones y generando heatmap ===") tabla_completa = calcular_correlaciones_y_generar_heatmap_con_resumen( @@ -200,12 +204,23 @@ #imputacion_similitud_con_rango(df_filtrado, df_procesado) #Paso 11: Ajustar rango e imputar valores faltantes por correlación #Imputacion_por_correlacion(df_procesado, parametros_preseleccionados, tabla_completa, parametros_seleccionados, umbral_correlacion=0.7, min_datos_validos=5, max_lineas_consola=250) +# Separar atributos y parámetros como antes: + +# Cargar configuración de similitud +bloques_rasgos, filas_familia, capas_familia = configurar_similitud() + +df_atributos = df_procesado.loc[filas_familia] +df_parametros = df_procesado.drop(index=filas_familia) # Paso 10: Llamar a la función principal df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion( + df_parametros=df_parametros, + df_atributos=df_atributos, + parametros_preseleccionados=parametros_preseleccionados, + bloques_rasgos=bloques_rasgos, + capas_familia=capas_familia, df_procesado=df_procesado, df_filtrado=df_filtrado, - parametros_preseleccionados=parametros_preseleccionados, tabla_completa=tabla_completa, parametros_seleccionados=parametros_seleccionados, rango_min=args.rango_min if args.debug_mode else None, @@ -216,7 +231,7 @@ debug_mode=args.debug_mode ) - +print("Hola") # Paso 11: Exportar resultados a Excel archivo_destino = args.archivo_destino @@ -226,7 +241,8 @@ exportar_excel_con_imputaciones( archivo_origen=ruta_archivo, df_procesado=df_procesado_actualizado, - resumen_imputaciones=resumen_imputaciones + resumen_imputaciones=resumen_imputaciones, + archivo_destino=archivo_destino ) print("\n=== Flujo completado. Verifique el archivo generado. ===") print("✅ Script finalizado.") diff --git a/archivo_imputaciones.xlsx b/archivo_imputaciones.xlsx deleted file mode 100644 index e7650ebe2290d9384c29c4a9274a2497735ab197..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 50354 zcmcG$byS>LwmwXPC1`M$1b27$0KwftaJRxexVyW%YXOA>2yVgMg1dVGKhoVZ-90n+ zuDNS{-yg+Wb!xFWXUnsnz2A2uFAWKW4gmr220}Y3NK?E|=3~Okr;(S}yO)=tje$JC z#@3!e&(@aS#mZ7**Zq=7|=*%<$r&21SMeY>e`Q& zOCR!qyfInqjDFLKg}Dz=aE9cbe`qi#G-uPjl4;o|yapFJpNJ5$JJ)LVYXB1h=kQNp z_1+Y{xQXLfqOfx(RuQLS1=*o35qW5&b%|FZ>6PdDHXYa<5 zlGBf$&eUU>T7ni55x|#;Tri@jMDC-_9hqrbOd{$Q>(h-ekGbGliX-aSgQJI8Y-9C!iKxr- z3Q!AS=5I~oprl(R_U?P@Y$TXVfAU^2s8#W!|$mR`G zni$q_8>Qac6ns`bz({rSk*ke36T%T=l%nKfNXUhAX>QM^aJF*n^E1TX)#oQ;*`ERf z0ntwk0fF|SJ{L;{2U8;}qu+lr{ZinO#z+_*2YLtAy+Cj?4@;v7809CFyXB4rheoZe zROCX16aIT5qMrq9)33W_WM=Ns@>h~H<)NYGv zCeeF6%|m;94j}#TX4Alx5Lhl>vgf*(_{zb+HBwFz!GMJRLwPn;@3s6I$qzgx&`(Y_ zo-Wo#`EU|>9ta#((%o%SQAm9q?a~vb+t7qh+^@;6{TxO=kp~gT4h}@6OJ}`x2-X<# zO$h{>3PvUbU?;-CXeP#a(LVfyb|?F;>|-fgndOBEfcII?j~xs->y-N8$OoMHyjNv- z543A@tC}gRxGaFchpL{a6*6i234*sois!?1a6VWz*XZ84R0Ez`G2Bg_PP45ncilWZ zEd+AOU+-G2x5?H`PG7lOcv!*fIxpw|E7z6e`%QW0g?T<#>@%o=e8V|G`u-ezK;0_Z zHH-L+u*y&Ts$w;m>+af@ucEoJXmCl`vSLw?Aa)GIk)gzR9PowLWbB5?9C$E_PL$Vq z?(8Rvrt)riJGu7CX`;1s-V%{Q3Kf+a=|EPfBAx%7uiHV+;`hFNxR8j-6aYIi-83#? z;745ms=V&EvxwS7y`Qf)%KBDQ&zPgU?}pSEo^LN4_Y=eqKoksF{H|w@v)+&3IS3ng zkLVy|Q&G|up~xR}gq^Pu(V`*km_vkuOUQjh1aZIeVVHlzvmgG{gfuSWA|Y7F_=;id z*i8FIgh^=%qLok_*EY$1X1%K^{a`@*Zfp2wjVpj@Xv131!!&hq)z;RAJs`S>Ji+TD zYpOd!YeXL@IUJdRhj6gaA$>urjJ#iDlzxQ=eWYGe)|Jd?=9I zE=;y?s1gZe0(mBlkPuLzXCz1SBwz5>4pDdo=as~;M0E3Bm!=B_>(}=s#6ZnDf1H33 zSZn&R>`bXZu{Z;K519fwA7H-3K~QBQ%@1gbDkMuzS$Ez^K#c zcMcDwZ^w$3KHY1+(b$4xn%~BqF<>+66Ge@mVT0*YED1Q|$GLdT54wo>&eCV+FBY?n zhsI~2q9D4Pl!ciX(2-% zE38<)g(pKAf6e*ESfKSTB}FXuC_Z!~96;hZS-JehW{L+TVpSb%8PB)UN9E41-f4ed zAgdrXPiq@$``lSu7-n)t=o7bDUdmNw{uHGmGya*s%xKg+rA~7@Z<_hwyk~UvJYO@n zizW-j$WnI%XFkSkokZ^h`Qb+jyJF5X;v}noUylQ>HLdM^IFy>MJjQX53*2PxFs>N)<5ZcAMDAfaW>}$*SRR-g(`l5(mh*l3Qn0&q@0%_}VYlR4syJP@n<+jW z!%v>`7~SWo$0e?sBr)(D8KU$EBAmSJAi4S3k;3_D43Y@94UyZ0l~F|68Lizn*V@yN zY_BpK%Td6SP*LOPmjk3qdhC%}s@a%bTH2rTN{@f8BOp>MvMLe*qCLx#;R z4JNc)?8RDeXJu|3%233O2Sb%+n=Jd+dHFYDpsX}*2&#_m zF~%6U5UbPxWtB?iE=T4iN3PR=F&ds_*{xUDVgU;CL)*vQ0uPq$E>>CBHf=3Yi3Qiq zUnSV(4!-bU$m%X9(JYibl*@|y87>K<)7p2a?s1fj$W~01H$IR77tP{Ry(*OUXTWa2 z)vGq~y611gK~!^AYM#Iui+FRRRfc9Zikwx`#C_|638#Z2@i8j_^*LPCcCbz=$Cl%n z?%y*RM?d`v2|EOYz=zim*uQ5oXB&Wpy{VCrgFVA}jdP;Kz$MQ22y|5ZJd{QCHiO*Lgcf;S9(_)7P`kM9!eTECvSPMbwHPs7+nK ztxT|4%Z6}C=X7@DaqHS{qdAQ4vbuHHh*>QOxw6CUW|85+`@quc!RWDG>z<~nj;T=& z8TokopaQ7I~|Q(PYlS<*o5anSNBS9=E8JW zjaCBq)Lna%o;D@~9L#}U4y_=ac`cY9oVT#f?H2;>8Q%_Poqd{4ylfeHoUy>&%f^q$ zHjcZAz{}T@*?q7-*LN}boiB3>nQ`SvVjRujap~jTE!?x%k*!E;>qu)r)!|49&z*~RCbCOx7Pv%Uz6|WRZo7{x z(jhR8;k@&rTjR%|n)!|OJE~0v07YMrpo6VT~sBEH3{TnUs9eM#*JOlkFKr_4>*3-cj_)QYq`uO)@6YTcbZ*f2ko7u8} z8=~hOfhXsS$pD2WN}R;!9xZGGZ^tngR+Okbp+!9pjXh5tBKI5ERS@-0ro#+9#K0*N z-kDh5SgZ6l=GKgFT5?0gad>Dj6%^S=Be33B>EPGh?5y*=-P~_2Cv}d%bdczcUK;(R~Ka` z3Es5OIVTLo+JPK)vb>O=qUS-i5Yq++$QdqKk};Z6Wx5*znk&tlD)lOliY;`?BlQpw z>>0~L^ym;QEYkClwp+sV_z(^(@cRY3jf?eICaQ5P=034n7UHtAAmV)>$kVbsm81|+ z2wBnW0n4rNk+kjMMVr(MNJI%78;7q`RUk9uc>!}%~!0Z=E`@v26Xwnj=M6E zY?HaY5?DbKnQ1>e7I<&&T}4*QKEqPBo08&YoS3O`W$1K~t5NZ80KYGry41Ka6WEfe zAu={R&SJ5j(r`JvAWH81t!q_%o@ zb(@neo|expNzUumPY2%j@Q-9S7rNygn=B_`C$Mcfce5QZh|AF30GEI@Rwgk#>ONfR z4h4|}Q;`I9kpvF&{&04~UR>tY;`cNQ(HIu}Zh3*FMS+U+Q%u8=goy+^v=0$TWlwE6 z$_E|@_PIe@-;st~^SaH&@yvU1&D#}3DojNx)I};d%!?x;TwuFf#=G}>k;)##gQmmS zr^48#-17qO#{=(c0`G06eh@GGAfEZL7J-W^j)&Wei~I8Xd8Q(H>LPg@=BD^oruY`7 zU~xp5TtpdtM46T19JBfyv+|rhJT}%acGfU9))!&HxpXK!sc`!@9Olv`-zY!(j%!VS z$w${iuj<;Z7-TH{qLC6`8~W1`qfJFmOv*^?Y$9}}v@y4ILX~Yr^{Qf_)W@JI-VnWN zV7DTaxs=9gdc$gZwX`B|LX~7ib)#ZIabF-5>+2;9#uvjF*Q-*oZIuZYIh!Xtf@_BZ zEB*(2Z!2Dpha`q4NcW`k(B}8)BRw`s<_jw7AYm$}yx2NWNQy=|=s^2WmdpaHV@q|i zzHa_lM;oh)g#VGDY^jNt`OdOMWeCGzkEduxkw3!_c8%PruCc&uw%2WS++lU=5U`&i zN07(AsQ4Glk68G<&*piFw(CYS z>8U&K1XqA)gh`pTn__*g=x5}nmTZrahP7nPPeZbCXkEF60=v+LQfs9n;Uzk zrJDZE+&O@;;_a9z@IHjpdNp6Wl zZO8TDp3^4Dzp&$RECP$ZDJc--(2R4xOPuAdYGg=XDLpuNWtb?y%h>j0Gau%`kJlcH z>y3W5e66t#P*7fpX1*Gx<*VBtpj~b*vs+=o65BdGDo(j(4gCd#vg%CBtf37vUDfP? zj*R8MLE%NGgO2=6U-HfSzzBa?DjJh@?tUtGlSAq>{W*m0V8LTmY-*$O;^9Kls|XT) zo2>*bJktEmR_62X+nq~2Dyp7m^`#d5+x(;NhP|K)1zukeag{Xp^LkvQy55rO5gxlr zJ0E*L0H@cTS)*1wfL>;r?IEMU`LvWrKR(~nOaEP64vH}#17L96o>B(jAqq&cBy87Nrnl-R08NrVf?HkUtM5kiak4x_%Pg{JV$|nyzFObZr4Er z!=6v>+_Uzp7{l>fR&rxnS!_ev@#r9*FV1s#a68Itw9re*~ z(mo%t&%;}S<736dbwp03|u5nGCs!)Ojm zo7??3pX*XU2%p6Wz}jczF4uYA54FlCZjyCaW}G!?EH!aBIbVK~sT#Hcx$6Ix5?;*e z@7cw3Tai9YsPYwHG)20Z8D`PKM;mXGn|KzwnXvy#$QlA55{>6G+l{?RPRs$_jMI;j zvqtAaUL5X=fzGP%L%5R~Zbtr{%#y#cwXhNg*IuXTbgUOv?~cll8J2j7dCv5D#*x1p zS>ICRsP<-U4VgVXpxQ*lv5hu4A-SO1GP`5cK+9hOA7S8r|O0A>C&VDrIcJGTY z@yRXJ!k2&4x`2G$x*G=Uh&?Km%1O|6@r z6NJq-sDl)RJdH|67O7UaQ&(ERIiE|M;oQrY69B09-~mNo(NE8kGxjMKJhKL_?F#)U zSaR@uDD<5&ji_-e$Cfbh&#G^8QFXTl!K)%Bcq%7h7fGJO;T`)1o*NAJX>;w$T?3&< z(gkLHx>t5QPc0oG%V9fJ;BszCq?6-^>310taC>T59IHh!8<^@T7G_t?>7cS^toF4A z2gKRMaAB`w3lD{a@}vLC;Oq=Ov5Ka#ADWhSu(P3ijUr)GJgI zC$KhVZdoM8SBHXKY7m|FbqRgbm{`K!*L+aAh7hU~4ldQBJ;df!2)q2Wv~oUqJ32?a zko-slRbn9VZa!?DlG}X-d6wK>Q3iPr)uS2ka|KcRV_6wX8CLUT>F6G=IK~X6IvceU zxlPejdtxDw`sLcsHbY(Hl`6Qyc+gtr%Z*~Ms)%)e0cS0YiS9eRTX8z+wD9ID9TE&zFZ_oGc=BN(70((KQV--0E z;FjgXVN8rnhso5%-p_iIcvc;cRniSx4yGlXZcL|MPOi9n&vbhAvY%q)y8T9V0iXDt z3$z6=Fb8%R;O-7AjG{--8&%;J_vhJ<6r-$2z;BIe;%VY5;R@y?Y}NDMxg$4?f>c}C z>dVvXR2-&@RvxXSJe7Q#dKP<*9~&@u9vw3>pDT^M-BX|Lzj(tEb3ir6yj$2mEHGdj zuT3@A7^yE0z8szkkJEqKtD8`Bhj7VYlrx9WC!WFmUioU+UpY@Uz{4%Xvr@L7zNRhf zau|Q5oO0M~kHgE2zbJ#a_ay{X1+=is(cL~@7Ew!gKoy{pEsdjo>qr# zhUw=rk##GPc2j}1sDcJqMIU_C#@civo`r3G)sHA-oo@@)31zZT2^TOjJd)bCjL`98 zi6#;5)OvE!*Bx0O`6)-PQ8!no$*j>mx1l1%8(cRVKxJP|WngCRm5>^@;o?t1<9Lc|zE=A?M;c|qB zOd}${a^f&i4nHx;aTFb$KO~=E*{YZHz!eTb5;S@3cwlY*ot{y9mcou?dXIN6(aYT@wEUJnC7?rGD6lc08z?fa<#`RD!5WtHE+*QU-Qp1x>>nj5TVDv%b0GHvpUAb z5r!wC?K!u(eU?pkYKtY0l(;zn9MR9YeZbqhZT4-aiVxk7;#ZneRbR9`q!Ww-4wY6d zskiD#dJ>cl-Y^v{OpiM40sJd&XBo)np2~()XQ;0o#<;lT@0 zbSL5R0hKRHP4)p*(u}-yo$F?nrdtc=SG$5D8J|OHe;B|ll@vkq*V+-G<%u@H4l&w( zRC^%=;qS3$!l1Z4%a;B8zCYsIEs@_6)MgEm)ldL(e zsg~&FG;1ZL!B%@qKiC}R@ZT|oCt~h#Ft~lz+>AT^`m5+Pw({>_(H{!s)ymUBKX-ME zi)XfRcZ_L%>uu$b&^B0>#avb$thtz?shXIma%Gv&DEf^v?LOPF0oJB(O2!H6VF2hgQz2K{>DddUAVK{`w0F{d7bNh^#~W5 zD|inumHevX#0#3~NU_k-eBfi@pZxCC(@l{w$J1i2FUf>=9`jD?t;JO%wKi5w!b^X< z9d%|uEmg{2r6rXMiiKkDQp}|6Qj3%?t3pD)4x~~Qa_tevbL?De)I zB78PpY5`@uKpLH{J9_5=%l zwS@*`)EG=NcR!op=&NS({szHHL;ykbfv-05<~^LV8ycso$d}_FVvg6%O#L!~)^LDd z@GHbRj+$y#;_FKer%9>);uJDysYQ}9Q$=cuQ)=Mp@8HLFt@6+>1X3!Z_eZUnYA8iV zt@+el9xh86)+*K0T^P>tDPac(W$E`S%gi>~EtJ|@_8j{Z0q6#g?x@%%KH3CWKZZ4cLg!`1oXm(C4PMar zJcN~>>y)b={h=W)m4D1)X0DygSMN~omAkP%Pn6FqVGnLYLZYuv)BgR>mC`caMM>rx z@SZbiry~Kj62WSp#tZzZTK2roh%yPo&yCxbpVq5xoq^J8rGy)Q?ZqGh9HW2F7Na}A zWeXboXU-Z(x0Bx#c{pAixA3(=5qOVnt`YGqGg8Rhdp8AdENSj)5?>aAIDbh=AmM2`yi+&LExn$ z3iRH9S-;+-P8HD?AlfOf-M^WmZcVwrqW?$Im}sYV-h@l(zYC=stIF9ey=aT_{2D^! zeFgc+q^y6GbRRbPmYiiC-f`y~(<0?GBA1;L^>-KGYT}=p6FdMTYS1(U;+SbfG?bHT zsw&Zyr6gjYxV(=|^-~-!A}%H`MZchWQ#wG~;{oT(hAzrNSVAR-ryQ5f{)?;CotCk` z9wM`XVn@mvE6s<<3cf!g&#h(s`Hz16SC;Yc2uWRoZQrHz|!G2V`v$5+o{-Ycb`9N zJS^OIwVX_6?pF~U{e$f)HEo!yx@sHwtsMNGi3(`Vzx~HNWJ13s_w-lW-lhD2k}(Y= z{|9R38=E}}zkwbfmNDHYhlL&+NTc!p{9}Q^lt48MQ@CnDj3KK&?DM>*1F~*-S``sL z)F>EP`r2>)j+WK(4}Hy~NV_J%Zkm4)u!=78`=crn?fTDE(bAvg8P(cZp!%U-O|dtt zP+V%x78ZviBHavQqmPKn*r$;fKTDM_AV4116Go%tqI8kXvCR2kafDTmR3-+Wpk_6c zEVqzY)B4#ei}2Q+ZBG2xZZ_{^3Z_mP4pKB+ErI1PwCP)3qfq5P%-03EPL@@GWzb?mqC8X&S8SAUKR3D|KuvbE11mSa;^U7j)f|JZ8t|_aCcq3i@ zg?a$_)AZo^bFrD2SoErx)ZcU0H8&u`7ZtP zsCP0={>IvhO4gyNFKt!y^4#pyL?v`4;$U)fVHUQWlGM@W)Cvp3ibvlWy#`aAi&7ck z3&}M9%!5?TAO_2Ch{8gZu{-SSN*%=I28J0C6N#+YY6d(BZIl>Ou`o;fXq&jiJ72ZY zHveQaeZ4{VRt7)rAT|U4BjQTRG*H3eI^@aywwZV(bk<$*EXv?*GhsBg3>G%6AN`sS z&=uY0O`<($Wv%#svBR7|-Lk@s8@D^CRk@gJgo3%A8ciC}5I3lL%W7VN?M+i*nqyo$XJV zGL7?x-S3~J))6-HKAIEqwiVmQDR}Ew8n;gt!r5h+SMnUGD}-z0&PV*X6c_Xg8{Mc{ zKxXw$V2nccI9a#ra1Fj$vpT-vpz4xy^YS`R1Ybs4&8fmP!}X^S|DGU-P5iV8{#}QE zvO-sDir!%{)nyNtatqFJw)9NI$#!mEYx+=MQ&e(Rc(l~OwQ+CR_eNDmQuER=5c*`v@ zIkw(W5Wd#uK_Z}oz9Z=P)2+ZQ&G8st>>2?XTszxZ3titE|a8u9U+ri^{Q$J%XpJGh4UJZ0Wah_VyeO zJ@u>Z*P0Lnt&`E+ga-n2Mhy_szRaO_8)J*dC#(4NBUHAzJL4%&(j?Kf#(HcrKc9Gm zt31Y&$8;~1WY3j83-GoCz1T;cuix6z7K zd_Ei?@j-KT^RvS2ChC6bs9T-A!0piK5R|24oOHj1R#t^6ak;M^d7uWiYEQN12l50K zNqjozrPoE3(EKh!DOQK<$L0@B$k5l;3LA)?ToStH3-8rCT#&7&6mG-1njb(Qw#274 zpdHZC%pcK?CI(Nm1r^+RyJo#@u~D|}h1njzBI~f=g%D}rN3KdgTdT@+I&4CY^HrT3qa280ocOal7ti@^r3=g2k1SgMG4OBQ zlHUsmdb=mrJH%4qCyZ%z{v2Ey?}sE}7J#0YyS~z@*1v`{UkuA)lG8~WQ(@ub%C6FB z9{^+qggHT+eEUSCm0)&DTQw_fqvzqAu{q74eI6{^| z%-c8ea7=r0+2j279v=Q!=)-K;3QU`eCJgl2^>`Yr*y4E`)9v-xh@ZgD#4;n*8!d}& zPwn&5-8V&EYj5<>5dLvXg#AqP<1|L^pEMDY3vYA(g&;P6pC`#_p>EA>p(a&UOJKZN z5~xXgmHvgvZ<)X1nD3;m#_o~W@vR)hkj+M6>~7&sZ3i7Inoy1yyj4wTqq>Mzy+U=Q zFCw}_WVQ>_8*MbJ>HuG>OID{Jm>|kIkxqWMa7c7~@(gbuJfFYNyPP#ERLVrAFMb%+ zLTFY$UgMSLBF=n+v8wOnp8Ep1iCX6@Or_)@MrFUit3hkDlz|6cq}cES-G8r8vWcQs zoOv)pC`;$2HU7Bc`Rtiep)Nn+J5Wk^*Un^kkVvZDV&`vnwK>}Oa1yb&)?vAqD;778 ztT~2JwSvcIvj-4Za6si#0lRx+RUQa{@K%>`o$+j*>Q|BCJJ{kk$F%8|U2ix0)tf+9 zGwS$YJfES6=O%lsr7-b|DQjJaS(q_RikO4R>?LbLS?y|k^`NRbd%j(B{2v|{S9Uve z^g%QymnMz26KAAIVnq0%FO9({?R~X8V$1Nq*aLHOkXY>%7uqImbeXR<;-=*v?08DM zUcbdntjA%Ykegz85!oAa3wE-vOAFUoZt+X%1~7ovRq8Pt@o$Op1vs99M$9@YkPk38 zOr|?~@&1*m{lPL$`wJ>nP#M|2ui_z|Tudyta&VJa8?ks<1jW@OMO3Yyh!JJA(mlVP zLO)qwmb^P;U_VUqGcIw*yJqu<3$IGej*|kKxpyYX+pOiEW6BN#ZS~s%;`X&TOUSsW zPBchPd-zEx@Zf4seZSL&!I3ABDaBMDyFMSc})ps&@?a z;m7QQz4^%39zK`ik+fD4>tBh06z@D#I_-5Jxp;b9HEvg*ny;E9E|p=^Y`&()rG}}B znB8D|e@4`yP!?&hdDgzSKhfaZ9OOaP_7g+-45oU;J5U` zfhFi26`=I~%vVqVAhFuNQb4{CiJ4K5 zXYb~geq70$Vtmi2fZ-&|C$XgQ(4B1zj4?#{Gg8ZZSI8N@|C81ndj%@;D{L@8?re&Wetglw_%1l;>mZsxCtTTZR=-P;@Pey&K6*lB;!h*oJa zWYleiU0WkSD+T6C7aI=wp=GCz2#nW3Ws*DA?)+Ro-xu|OejH1!Vk_x2Xx$`Xy1V1h zc*oc3)*|8*dh)m%27Y{>x6RRo%;Q?1Y8B7xN8G~*Qz+!!`eFy{#vQhywZTC}tcdRT=m6bP@hgO{9P{(%`#>$`OLfx`92z6J$u3$`Aa+`I- z)Xn@oFT}ySySsDF2rR7!@>{?)BtfNwT4(5`?%gU3Dd98@a$O}*^Y)NT4k#HJxab%? z;QS=gG_bPZf)I*Cf{^{#*csI+Y}^)mqDRi47V z+HuwXxN2V{@Nn}qf#{7y_$2;)`EaHa+Jz##ssw{=b?heR=9sz3V|&H*`(4%t(q_V@ zvX@7}_LIhZI|#jk&p8Yp9!D3Kd$o?LR*j;^*yS=EyxHzVMSJ;p)01ZIm8AicGmn}S zR#v?Dvk#q2Ez+}ZRKaBdeO^@{B&UK`fS0@dEu@^sg;}8XrkO_=r|pN_wWchGLP}O^ zeqI=RSdiaAO2YZ5+tXg&4qewHjx&D;x=TZtRBV`#I%%bv__GD}rZ#I@m9t*kirCc^ zz4^;Kik4e!df144K&Y9 z&cP9pEi%sg4A6hN{!*JI8W~Ae$aK0*q$Z?dds0VsxK@FWxH>pa$>jDp(tQtkBNM?C zDQoKxn#Y1q<_4X{dDHrhT$Y=mI;3s{-ts5w#p^WAj$cc(FH0L27pzBu=MntxZiQSX)oss5i~3%r)Vb% zT;%wqfKVqD+^Br?8*&@HT7)=^WLCWwMnU~4^TJiAW$68ij&K?;#ib?H^rh4b)tT@c zf4zM>IcB+@`;I|v)M#)|B6IdZT=gV;$o@Sb8UU?A6(%L7{7Iokw1AqLO`%2(Hh!pB zQ6~|%cC%kmDN(a_DzPAv*3qbhLfTUUw|_!DQT*q(C^4fC)Jh5|A#gFY1Mj5)!?F1F zq!M%kdeVTUSo|i#q2C4ADzb_#nHB_3R^=w6+mRH$kt_)grJ_zORu(HDr@r3%+JydI z3Q+@KSVARDr(r&%D3RDwI~7;ZPK#)0Mk!5Vx7L@-jFM1NJS-aUF>y1RjLTRONi#Mt zakH9?%UTjiyVj_LUiw7*aAT3wzRD3}qZG%w>iL{Q! z{(z!xB1|o7d_fH7sewXD@Sw7?ajr0_G@w5gzm61^Za_gAFc*stB!#7)uT@U^B_JJL z2BmMOV!q5|Oe+Q7u7zrFGq^RGgtXuTbz!l3t|CT4YVlkVxk1QP>mSy5rVXsOW@QbGqmDF+)$B5A}LByMJtahXdZX~k|NZhj-vO5Cq~ z5fBuY%axlPO_DpKR#GlqQeLH`v6^2)Z-jl251a(-pu1{uuS^Z}oo5&SRjVL}mb~P! zEg=o_{#X)e84dFRMXf~c+Np$sOxi0WGh%5G4crh&0nCJu;!k2m-@{3*Cc;OF9p52nEx^; z{%`smd;OwM8YVo+zu|HeTw26`i!A>aZwYpvC6-~Q4w?U`NS&)68cIg3qEHeN>Zv?u zN%~)6^Z!kopigGC;|>4jE*5)Ir9+A$iTE1kgNo9L3$;@*1(mc{h9wNrkQ%sy6Cd$! zYl=UK8c|cTD7>wWq5NOc&Oh_k3y9XC+*BH-S~`&Yi}{@P#9Ly2LyP|gZhT*K@xP$x zKVi6AGRD&3anQM@s>iuT>~A1Cdk&iW1y29XpZj0Y?N0%md(jc}Kq5XHH9KePFRh>H zz{^icHbJ8G@E!3@j}N^dcvRVA6To=^+Ny_?%X z7dxMg_*T73_nDIhv~{do3-H(*9(M(-S8*O7mu-TY@8*%YJ8H1zAJrdA5L07d?7hAG zRP#H*S*vSaW1|5bp4u%!w*F~G{1zRjJ3!qqeA}}zn;(&^E>}Ao>QSuf_ZN7UqPVS3 z7kCaI5Ldu=i0pZ;#1}ijxzNU2NJTl0g`dd%d~K#-0>pQhd2~--9aw^2zBnIYeEH%d z=L6z5=L5%E*G}El=EdfRR!9NjR}s30-;h6kjKktNg+!gYEI``y5^PUxoAV)xZb!na z2;;kbwRc#p2b%LEie5p&>-cTqxZ0=n*TNGL-uQ0|r`0)azZQ^@@iu-fygjRyYoGHI z5pVTqk92o9X)6RZ->7LB>@7n}PY#PQDyMbxRXt`oAM`zD`BL6juN=)F7j<}EE(HMJ zK4Y@F0Y9INdN=cO9=n5zBuLbw1Bu9y9_|l7r}pJ|v#Ze3Djd6FtIrbEzKHjZ_t92c z`3G!*%x5sUt5Ll05kY#wROK736A+t0rMZF~ z2Md8Yw^_K#l9FlEup_4Hk)~)BX;_}=06G>ot^LZwjJoq;d^>eJnOVK$PcimoavRJ^ zhlV*Bj-We_mUISS*b%?9)BL*oXk};`;2ERi@-^9^ypwQR5&U6I|MXp(?GqD3m<)zzEnQCp;&fx|7UjiZIVjjQ@prh4}22Y<4@X~YUT zfY{|x&y$e8f79Uw_IJUM$ew~)QSd2p03;R0kK&B$W0@W!bOMR~(~x8HjB@_})dx5Q0sa4`Y*<%Qhe8_U*G(1m6RjbqtL+m#O%dq4-}D@rD3BXESS)f12A~^!EiOdZ(B1cx4@%Nk;TXnnYKfS@H*c zYqYnBM~Kl7A$OSqVc*2=6lcF&`83jY zrAKdk@)aUHH>K9;=zo)^VZt1vpUP0kAg`}A0edU&Cm1&nlE^hwpEQI5m2d%-;(q9_OA zcu;)=6bpv24|>pCu+S2TDVAOPO<5?9`{U2rb3MfEE$zf6)77l3e zG^%RAojsM2i}$_CWt+S(*QQO%16xMRqtf3T2lltw%d^OL5$dT^PJV2l(wz$>m?Cge zshU~|C8i1*W6*!Re}qE(O2h0EwZc45bIG4lFzaVpqw4^%_eRfcp){ur`!q=v3y;cl zFU$(EFwUCxhz5s%i!;HtdN_6=?_)wyNGGL(ym>BNS)_40V-wHJ_r&O~1|@~&9W&;KHN1Y&_8{XoIC}M zb^ME0CB5sv9eMGp>=y(f`M2p*U4W70UuRV5e|=s~k&)YAd?)xUH4WMzEvVLcg^KFF zR-J@#V;W3RqSD9S7}xmhmEk1_qJDYuym_cXa%s0&hjC$*&hlg@w3-I8z@lSljZAIeJg8-8i<_>`KmTK9rXJBwHz~ zwUTdv^x2z|VD=rFw>^DRC=Nuj@Lam{$mG=K+?b`W=!ir3bhqU{A9PRxoXdKJ7DR}cMbIJwIY(Hmt?v>i*@o`Sm z;sk7eA5)zGv`-^@>2%ptUV#b?E~6nzc6+$!@~prA%-IC0E-THx%$dAVW>X(27Au6e zWAAC+J1{W#s*8+et%R+AD|LlMYp~i^l~dDBSH_{C*i?|)8h*%~j}jXbG07w2C3N1a ztRu`;K)^J54;P4ZTEvqDbusi$TE?2HLQgP-q#~WH9(UARzD3Q!%rVF+Fo9Xw>0n=r ze;d=czi44D@Xn4XKS(aylS_cX6`3%b)_9CR-t{8g=<3Or}ZKF*{gBW zZaSDr!ZI-;rcwLnJEUc%?cKi-A?D)|6ohYe@bAf#S*amNu>Y1;!XXt&&BM(g* zE)_LefuzzVY~$7FaOxlFqUKkk%4CqHH>q~$qV9qo-UDUd9;?1@9p0t(3{o6US&NR% zptB1h?f9gmcm~bPyz>;Fv59VP$hpmm(`FK+ABiksDNZz>lWZ^6zjsN%4HPmkV38H5 z7TICfJmk)3f4M4w{jhF|BHv{;cpK_Q>_nWHW4e(l)l= zNwsMtkS${(Z%$Ow^AapS1bsiU`8&p5;tuU4^FTmIiv5qX+RVTH^+;RWV(hP3?K|q^ z2@;b1ms#y?=tBB~Ts6bOll$6@U$ff8 zZv!W@rLetk!ZA})KR#b6u|UAFv5|av8P*=To;=RmIE-K@+j6@(07X4KPLAE&fbJwr zj82Z(#qb_Ahhcb37e#7Jau9-kL3+Ih0Q536k2p7BAW!=J#BTJK8V4 zcfWEC0s?PVhzJ|gI(QBY1TqRXQr!A%No940+#9`l2vt7UxGQ?JZ<-HG;qZbVJlesd z9bji$P3j=&os4

rpD}L<8rV=iLm~lP0WDzsJ_4j#~pTeL`rFev0UQ`8B)uRQlxf z`4hMI$`MD|g)S07vP~kW`(b%N|u z^iAS}*Y#QF{1MG@4cCC~{U(F!d6M#D!G!aG;fKU4~vpvkPJc^Qb6Low(1V`l8{g(LV9(1;p&;qTy=MU;Tq9C3G3U` z6{BuPuuxm{_%>&W%dl2oZaYul$#q1G*|d_@HA6G~&75>-r){$A1=r|<4yNa<9#q(G z5B#$RNIBBbjA4XHA74_7flssAR4X^EfBY^Ld>or8m<)G z5x4G4%&sjOuJT_ZWTN5f(E?e z3Sq4)4ZByiI;~mlE}SjqPAtEa@v05zF6L&+;c~A@SY)bcT;SrRccy&B8xJ$Q*sOFp z>IsIY&}YJ)ruMDNF?6=G zh`mAEv+XLyjq5O=#A5F-6NUc5f$3ShK`({`;)?Ohk0ETIevB6IZNgwOH>&gH_{UKi zPdM8`gkg%5Wy%uvqA;0mfAba&!%!aSJ<)A2YUrisU(W7^2nxZ3>puKt)3(u17>xO@ zarn~pq1kk9Z@j=a=W2}9}Kxo!VI%L`NJIes&^4t#t@;M0|5|}9t(X4h?Nncye zesRWzEg=D=b1f(zPBigeFHRyvcpioJYm0bTdLwQ`Nv!S1rKAfU$8Bx&UzYK(G6#Jq zJ%DmL(f}f}5|8S~%qtLiTev`v8RWm09p$K>GPt$rOUt(eH!HguS_3Rv)y+!?V#V`U zmLFvS4UU|rTy@U(FLLyN3Ws-oDMj1qZ!Qtv5^ifwVPzoNFu;hr-S3nyKCErhAV`S~ z*;=`EEc_tz+GLngNjWlS?e?;e4M?e&-^>+hDe4+jCYTRJw6QEh6wRA)5krobsIZF_ z3AHFi589Y%5Jj$2ZFIXm?)+&S`O`KBOekD3qm@GohcGIr(s_N`{>NEgqWzNW#A}Ds zDCEX>%-Aj8yJ!Sq1xWFB(3kuQ=(iwf9Pv$KWj)YSZql0!$W6aB1P0rua%UFU1UTB! zzO0H#eQjG&d*_E*?%-I26nBp8b|00tC-^zPA-vWx)U?4Ok%V(EXuqk+@k;BCsY}Ws zTdJ9HtA{2S)AiTc;H4;=fozV%$c`A#<E21^OGIY7+oLJrOVxIu-m)$Fk6{p(7~d^S#k3Vi<-k4b6$() zmR9vc0MIbEl%7`F#KxVui8B>*cKs72btC3MkZ$VsAYr)8<>vToU?;&}lDR?@=I*?V znl)m~+CsN%53>v_ac?sZge&;zSiG&Kdj$Y_jKe*j_e#-e* zm*3L;k`(`4K^(O=4KZ5%NMB3wNWaUK6jYdLp0SXoM|%a_6-2(T*a}WF7pz?4O|10N zM6au?32Wo#>>i@8(9pT@7)#tIN_=kM!e%+qm%Yt6LWp(YKReFMbNU8tQRZ z2Z1uFht0nl3Fn$9kJM0_&c>b7@WwG8P$WAlN;V~bO)E6XcX^N(7?)xMi!_9JKZyMy zS@g4%Q!>}-h9>jrMrRalKJ)28I=0ctZ9ezyyfb}&0Nu>6P^cH7QA5%#?X^(o=Wgk+ zmlq8m$@&}Ya8BoF;oIVnW^OZnEi5kQ%Z^uJg4BkM{o4mecPx(;^cpP-NBDcI7xzuu zdwwlb}l54BoFg;@&!If_y2xc+Ab^2hu81BcLGN7Y z0$s84Ttdu4XysMNV$lzRyv}UvFd-{NeOV2YVqDAOdnF6z?{?)AhR8HS+oeT}rsNj2 zKP+k&i%RRplsM;=Zb5JZ3?GcL_qkHu`!rJw7u!^?$#phbsqixdq`9=}J1(br;x-Cw zp|j#2H-V~^51$Toe3;s7oDMBRC+of3ZIt)^|EosK!J-Du2A<8amyLnNbth3?F}XzbsZ4N{H^35Dnaut2X2jK5 zdAuy(qP2X-^ZN|(M3(_h4#J$SoT|!Z*kN;FOH~ah6MN&We1p2NLy|);HSHcIsy%E- zqdzf#Zh(qjkB<-KIeAOsIeBZEs#~K1)eKz^wf5$lky5RL&#ryI0Ac-u;4P)UB_40+ z!b*$JD^YAuUN?tcTXrpu%U@U0cAf^DV?h-)IM$eEbBiMP=LZ>ceh;0XPJ_Fl?nFL^ zti%Y))5@a}_OX%~43u~Cl(e^*)N~TW3aau|x4STHW z7)P78$)f9~J|$OT1O$uF6RsY>6lr{^rz~<5S}e<*jdO0QGF9F@peWMtt1m8cR9r0k zIy>piDPPOz($r|Gymf%7Eh8guk=e)k*^rfg97~l9o#->ApD1wi2T{h2W& z)Q(4k-`R4T=8h#`U)(Or5-3TvU#j=ey1Gb8D|}k~09-P^K{PjuM)_v-5HVGt+(-rM z)@K=s?koc7H?wl#-=waj>dZDr9MLw?v-V&Fq)7_BjYtge0($D)Wgj++Qx01E?HO zt}S-*-AWcrwkMI~YoExuk61APjTeedVOCj;$+ zr)ttWMp9}xF-1tgBB-SFJ?m3NX&k4}Z5sDu#qlc`RM`q&Z-Zl98HmSp2mw$M`BOeS zlM_;MGxXr1ewKFRQdultpK=_ZXv14E;aGb3;rl7VsfgPMU=D5+-1J@0E3p#q-{ndSYjU<7y>}2BQ!f`8dz0L{w z@1$>OY4|_(7{LxRG#`IAgk$zEC^P9H4XMD%phk4M8JUSf6z0eQ!4iy!PP-;GDowEo zZxtfi!<-FjBw9>sB>Hj;#Efdx*`!yEF*ZKqQOhIb7#KCVIBU{MNh=DzO(fq&E&lvi z;RmWrcq-tS;5NZ0FWqm`jQHV5(1e zTD(DIoFs7+(jdxd z%vEJs1bx-xKcmlrPNG77D+h=pfSNYqxXbQ`W=S?&9Ag(XDIC5X#B1|f<(W_l6;v&; z@6L5AUE3czn!vm~1wy=D%LjbNJS*P-=h5Ohz?5Dzm@o~f9a!2JZ%F*r^dXK}ig;qS zpnEn?U@w`(DnTycaIYk-adROOPL=#Pxg_n^FT;?d6kBi$fS8B&ActBDaDg}{JsfVS zGEyUUI8Q(+A{+$u+m4T8|?ki5gD-dnjfi) zf>l~&=Zn@%6e5N7JMybnan~ty=VDY|=qp9%1YR0mP=-A84o<`5Nfa9_{5wT)B;_u z^oP^5Kxv3LUbIkK3s&7bwUMMox67=x>6}0}e1t`>xnFqkz&oTix_1!OD&*gF*-Z?z z*{?YFc`F)fVCQBm0hdOe4)3Rt8P85p2a8hVDh$alL^pS5_UnR-VL=Ilph7wyUNz_o zduG+95hZYH09Bc1Z{A=sNPnE6xMh&{^Pd&h`X%of3K|o5muZS4N6Jt#Z}Hv4&hFP( zX&9r| zg`C|IY@6ig%w$}v#5$i$KhV>Hekiqo0P(~*)-X@iAH6BUP|+&V(zxn;9@H9Xc!%lNINrzQHtaag+6JeCq9SM>q#m=hCmNd^GC&VBfk3jwB6? zRm-JcCmZibt?tl8R$tdvwWYQOFT=Qf6morc84lz4Iac`Fk=sWc<-$AI90`+-g63|Q zvSX#4CKZObz#jQZeS)0%Q$ z^Qrsy8&QH%#{t!iS9_%Ssc5u)de4o773j@x|I88gsN5}VND zHJHtJlee9;tTwSuR&TKv*)$cOVIs!oVoJ00hPl&^j}?ocfq6$qVg-S-;=lDkg+ES; z`4|@|aPIrkSbr7~Lpr0$AwY?{%TgxoMFA5@&cs- zX(Qwp#dHt@kl@4npvlpDm!`$pH&-q_ZAa)kpFN7`Gdov{wwPV6=K(oQ8{);_DxY-z zIq1YI{WS&nr1Lxl_zRTyJ^G_aIqTbXr}%lwk}lGma|*m{hAj;ACPt?6F^Z=E6~4D) z!X%Tad~An=$qq^!k&rN^AbA7fqwkO>CAO$ey3yK3m&A7P3N^tJ!fd4amv9i|;zM$2 z_#~E$o6I2=&Tf>fCFaJxwh9Ba&+G&fl;Nmucy?yZX*MQhdTy${=JluDb=r6|GNZeh z8J^kuoGf!qWK*Gb{=Fd`(!ShEhWj;T0nfP1yL|;Op>`>DS_Rz${-agI3xOff;y+U65hFRGg3?@RYtbOa%_@)YIv$>cY4yf`!h}od{(l2N>_Jk)hbVgj^3T0shr2!eGUH;f@%Gu7w@y+V*oJGLMo^ z(tG7c#)mmBri@qr5q)}`#1#bpd7D?Vl2^yQ+V%pe2XyyFkI>U!^Ek4=zaWtjK}qAU zBut9(NDyi;=&@{B!xpum5_J|>I)6UTM!79eTxCmtgX3dtFsW#XUG9}&6@sFa%`KNx z9ahH@m3OIimHCQmf*8rtKlQAVj{sS;gT z-xWpiz52Y|{&_J{X!Vf#{i!awffs2-Q{$0&0&l;%F&1=1J*YQ0Zh^leM$31t%1d4C4Hy&zX;#tc7#ZgLYV^l0BOWzq^)X~giW}&_IyecG7Bn^FdEmhQr3-FWfO>TKiehXyYu{P57&HShl9cpD~!Tbol|S@l|RCYK6? zj`{_}7O$L2n9+TCkyf!kE_n%gJo9i>_ow9GydBl#5(ACO61R8*%G5G=;= zCoV^>evIx>kla2m{TDm(*Ba~z%aB8XFe5Y0*2aMtm5?+pB4JjBlBO#x?=5J!xwX|V zNY}yf-%AP^`%-8G>SA_oveQMoJ6(mJx)@gyYcc@i#^gAUO6$sQ{P!=XsUsRR38I}7 z!+gixGffI4Nxj8*WlEv7Qzjq<;!#KOWz27`dhKfUh~R-5_?jN}KOzKJiYtm3BX^*+ zv3WhB6UK$AB!H%`*|HDQ@Q42v=z+962AK*!A5VgR069;Xp}-M!5ym-J1pGl2IeHQA z#xWXcO#>@BVW&~&aRg_97c=Rpm2nXUoiip^&2_t*y!5BYWtw2WoWIh1zl$dL^&Pmm zw^B*0+UgKIUYtEfj4vN68BAuh<|ohk$t+o$7Vr*}Jw^$RZTG5Ro^?!;XPf4C!9VCY z%rJZ&Z`AZ3C%o2Id`Hi~1~;Yy8D6#0?xi>qbusz$`18mN5%PEde;>JV7 z%sVjUD+TOIbk*lSz2Ei&M6;jsaIr1p7^4 zpFmK+j2?R1-}Iyf-h(xj_hHwmV;GcjB38HryOk2!bu>ZS?w~plC~bE2opJQZ5sUJ{ z`VtmaTejp|D@R#h7(Xd75G*oWl4+zg!ASY#ilESB+n?eU_@ugn0Ln{mQ=X=*;1`dB zx@g2iNj_|miwstc3|()$`2oJzQ=<3h7#gz(cf+8@WhR&dplH)2D={ zYyFiE$P#vXx6&OILQr*UdJumLG>KHrT@g=;LC(Fedc=XMhvrKM=vDq(ut}cfSH}`c z%88Tc_S}B6>NP3JzGmLza-!mGx=K-|_P?6{WUiZl4TQHb0SOaQ3}_iaV;Djy`J<$8l$t7v9a?F6u!YCU2D z)}KaC*IEC)pAlG*8bD*OO$57ghXB>+sTv&ubm8XDQ2yq${a&S?|6KTX_U36O_q)CP zlZ%=V^bmL%cz6Rs7%m?tOTaZZBB{@=@gTN&`kg zHj_*hs4--lJCHm#h7YkYTWWr#L;9umLX_3B1`d}+Er~Iwnm?-)B!u_7=9|%+^x&HN znP&}K+%!+j>_B7~=;V^zgb^|Bf@yy;G(?=kuLh|p#|0qh?6C&&@%$#gnRmeW&-07i z9P#gIi>Qc>i-Q&p69iJSkErAi){>SlnSJS@Bl(;K;VhpG4dvt+AB5nT5Rj6C9)lui z)p03g&zZ`y6scBhb+$3JV<@FRO%vkOE*0a{l*;CxZcsd>nPh4#*=mTkqADRZRH|9J zvLfsJ9Z4QES97i5A+EWFPjx!#J_pKNS(nAo=^3cKwU2Dxze%>^DfVLZP5f=ozd|?9 zwBzp)e>7Fxc#N2NZ&4=i3y8>bKvrNpgEhcRb zUtGs2-9MK$AV-f;x!_XT5pOFym!?I%@!evG544;6tYBsw!kaVO00Ou*O!NFzr6m304Y{Q#(AaPho;!@Qp`jY)Hi9%K5gl+o!% zOQxNAmhXw4{cDBy4AOvDlYa<9-lO?Xd$ng;v6vnrAjH~bkn61)>q`#Rk%X;$iW_=uF6WHV`Dx`A; z(%{M0f0T{Usvwn_&QCt{hD{j57iVfmNM3m@VuR)&u&a2Ro4@WcX7D%>Y~*vl-rbik z!iFrXcI7ay-6%;tSkocywFY!=85#AVB7f;odjs=F-2Q)>mi&&D75;#LC+V6zV)$tf z8&pF*On$w&RUrckt{UT#JT+Hn$u8ebUH%yQteM0SdkJG65+;14MZDlkx+5t{=D}K70gLwVFo4y;_|A= zL2_R}gCPm$fm%k8iIV<_!l9ce>b`e6Y%P^|UNsRnvZAdrNTIR>3=Nf+$Jd>--(Mdr z!F2)V7kOs8>mR0@#Or1`ZluKHQWPxyT*!hq{Kp;mgd#?%@6+hG(|bQ$v@!LR#Os7f z6Erx_nla;^-IETNB}2FayKUjt{&hIZ>@oS4C18|M+8k?IeVr?=-F7B=U8OH&6sLwy zysGKjr4Pb@iBX=X&`Sag4%bUH>-pj7(~vMMvX4Fi$lQ{VbWfl{47dAQzsAm2(EG<1yZa$L;J|GCgYvipZk(I4P&Lt>O=VY#$x8=rL&w$FbJBTM;3iN0ky(wn~8JizIEoXDy>Z zDbRZT(FH61cg((>1g4IF&xA0}QK_BE>86v^p&*M_=-OJ3x({_?7^#sFElaob zMfg-xO(i|tL+_m*H8&yc$FB3#@(7->tB=a&^ucLG_bC_J?{*3|r!(3xwFHxXPu$EDSNeC4ANJsuzW?3^_@qW%=B)?W5b)AU|L}*4A_CTH@?;IDAh zXysj+qZ2Q`6q}Ei7npBY(SytJ;Fg(>Ya3wIklc;g%FcvCqF%`cFigAto`#)uE~pRi ztAOnr{9btMbuJ`6aA@0s9{35_#*tj~-=Trws|Dzm!apgmPkrzk@841k%zI_<2E^XD zN6c37@g)qugIu8Bl1){j&p+@<1{+5=yh%P3rah_ANfy>ajGR3La~qFZ{Y^Ugvh}({$ce)fI1-6qwp-H)9I-qX=E8 z1N1hDU35TTXRaJgaLz`03ZSm$d)%62S?C==^C%rI>pKln-O@+`3QE6+6=1hyU;N{} z+JW6|`Q?yGV+7not2-1|*Mf+p^(e{_UN@8*=MuUW>}~blV8u)_eShJ_I!+JpI=0Hm zerV`ndcn}hJgw_&Uc>yG!2Sb<22LhE%LJ!z8{r$H`eWS=hdQ;ny@CG4syL%qUOR3r z9xn$j&z*hvVY`eR-;i3H+zxvG>p+o@r<%Vz29M@)vPKf?O!@1=hzb`enp zvP*axMAImFT;*sK#j^_hS1jRK&J4l!2A7hIRX0fV5Hd)NqwFYA$1tqyr!$r)dKhAIcE%S9|b)1;#?9+wBIPt?`i&Q`H0iw`|YftWlY zDT8CG=t~+OU23zvo6K9T<}o4;9oP25k&@cx-ehrv9}VDw2^jagD>CA_xVYO{A9i6uHofwT27=zW z4`rcYjtVcI9pb0O=Z7+A+b4i{{RM%NYl5n8@wshz!TGwh2sonh&PIh8E$Eb-i+SR@ zyKg#W^a<&Y|2X?KYO{!?Hg_>ra9nJ?VKJ{jxNvTMS$p`2h^)pqn;I~Rie(%kiEN&w zjRjF!AcFc0ZdMx&!fo4NKZhDl#yZfO@EpB|j4i0~{uS#p@2>q4f-t5T9JBxlg{4&B z!z%HH1&lySRYJ-_q1hGuN!ZP5*chpcbtLxC%=AuA70e9T|N2eoNXZO1LvKB_%x*_0Ag%w+y zA?ikXv*xVb!xp!m&Jio8p3S+HGfn;B_@bt@^bZFsN4H50_-4~PkuqtY>`4wyHY>}j z6RpoHu5=@8nKzev+LGct$tH3Q*UpTIXUwf2)tl0-e%2qw6A>E`rr%M`68X;H~A^$UE@&p2@0Fs4u zOat3kF^9JDT0E@mh388wF9C2tmKVnE7g`2hu8xjCLRW?Fx7Y8;G8Vex?{W!+!tt{1 zf3;j>IOEZb05mH$)<6tRt6$8l8XNu6579g7RHp1yWcZSm8{LewOcG@Md+K&! z)i`TX5QRAl7!~`v$)}&vvQ9r?KQa<`?0MZci0XRy=RFhE{NgGf}7ALD8F(hJoEZ0K9i|Nh_l5 zMOR@-hn`DChr+d@QwF|vW~ z;zv>JAJduO)lZj}N9M4$^-VW`n+_3Ac8_-abReSiahII$z)?zkr=1pqlMSIM?9kX% zVz5ULX?bIFNrmOz_wE50N^)ft(S{#lx+qE`)6^({3+foK1lB24bmhN?VV}EB(5o%L zZ2u#J#oM671Q~T0U3z%n;|j`}D$`*t*0AOoAMy^-9%rA1gIu8P>ad;{3*r*|mKN-% z*>0a(<+)qC-J-MJmF0D=cFqVb2hAU4*l~o?YKzyp>bzzs6$ejTdgy9&(ApJbIgUAw zdGpJ^M9Iffy}FO0RV6Z@RrQ*vjLqjVk|qr+Cb(J~udHM7Veihd!;_9R%z{AcKe{{E z!|F5R;k%ZOx3|?TmseBHUemchi>Idc>(nepc4AoJt(|_*7%1hAo9262J-SpEZ;mM4 z?#yY!!gP4u>KE(1_HQzHIHDF!ZtIPlj(%PZtIbvLejAGSP|3bk3U`eP_on7={WaHo za3`>KIKpF3Kbu>vs>2<-4<&+pNYnZ3B)WQjZo$a$}JD%WSfpG(Q&I=Y^s%$~=+e0lcEe%A1yr4rh)wOg@kuw&iJu>9`9Rya^yRFxHah3ap8LUja#Uaw7m5$z=c!B*1iD(} zL*K$Dc00F&L!|)P6zaRB%~q$AV-umZIWOmGl#Zrqr~40U4O>S^CKH)Xy*AQQPU{&h zen{D@Cvt(OV^wXgF_||vkkCWuyjp?Q0IpOsFU+<}lG6v0W_TnAb)$Ld<{{UWDktu^ z9Bf!8EZU@_g}Anr?QZAOUAT^jtPaOR=|!Mbb!*iS_6o4e=@M9b?sb8-jH^zokw$PN zru)@2_AI)|uJx`Q#N0GR9FAQ&eLh|at*XBbbAso2y;c7eg>{Mcy7KCBtjT9{=qB_{ z`I4XqOQ+_;!Hg`g(C*#V$w9Ffv*QvP6<*!YFY7n7EwObTj-AZMy>D!67VkP5>IC`2 z$O2Z?Mfb8TLMKgu?xK=>4f*LK992I%$LVgz*r*!+b-J}>6R@25k>3u;6a7pBn z9PPEYVlkpG&9k-NK+KUDXK6!0fMB|iw~9LmuS2miZ5W>f7+Gs?Z+Ya@tb`>>QQ4{& zF+zz{?fMublys_oeV7uUQ9hv0PE0z_s}Q8cJ$e%6G*Y3ZELry&bq55@4nj`3M{Iy5dFrlHbMY(x~VR70c~VZSZd-ZI=@~ zvjF524zebJVvKB=f(5e{k3t63e-J0)daB92V+vd+jI#JoU<*aRoale6)A(KJuiy7~ z_hm=ycr0!^k8(v^c{Smya!pbRO5h~TnUgT3mr*B>n!HP$j*a1lGcplKeN!CxOos%E zX((W3kG%y6B1_p5@xzoRYAt47)UPlC=<*~s6JmcA%)+wExVrio|dr7!vqh$n72 zk8)I8`A0%oC#__;F{A3^#oRnfRk|Mvx>1u0Zdf+clemW?BJmQxr+AiJ60_yd;`|Gk ze85&u>&a>j{_%?-+NX*sJ}-z$vI~h93FV1b$;+mS16A7mOLF6BdE`J8KG!W!drT3b<#O3==Yb+LIE;;{*A$4 zHxLET^i}?a$^3b%Xh4HbREs^a`;HiJ>^ztyruJ3ktigTw-p0|l#5UqQGKxI+AB<7RcSILJq8woEIWRXHn0o=t%>nA41NF0k`WHa` z9N_vna6KEiegRx31a|6uLi)DaPV*y1iCmUzTF80q&90AzFKJ5!&(oLvr!OPVUk;zX z9P><{q#rur;TRoxk>A&ADGgnYl5-4f41wOTIF)YjYayf!Q*En#!2M)@I93E(olFit z?$^z+n59bg`7m-sr5M+tD25aTsVB`yW!~+P#~GYywdS|mj<1+K33HeCBs@)RIQZqn zln!i{0gGp2^p{#0sai|yTIqE|LtfmMX(u%ftZGgV7gJ7)H!AKfbZBj@Auiv2w)S02 z9sqTayh(SL6^dk6o)q~HrwLkzU^@x7Im!=s>a+wLAJb|ydsatr&fFIO)e)L*b9qho zHEt(XYXhbYi+B4%eLZ*gJ6pH63&5P}DkrBDQlkSCcqphvFH5{5R?z!y=gBQL0}fyg zkt$U-J@=?A+6oswUYT4SIxoOkxtV)8wk%o=3IVNOK1@KGp}~^e10e@PAY(v8Mu4&$ z>fxb@iQDK(+ndwuyNQe?&$ZRhwF?HG(<;$%{z5Gn{SvNF8<#Upcpv42fb`RHDZhJ*Bm#|?+q zrqz!dPQuGYo;Dm`7u7y)K!_+ef80QRa=lv*+7N}5qU>h3kE_P3+` zjEuKda=S;;TUVfKdjC~jZEnGBTybtsXz8wrHRR$K%D$13tL>d?@sZBX5%hI!P3^<+ z)^{uSI=HP)O|JzHP3j1vr=nRM_O<#4yg#dX;W;7#8~^V>##1$~L$tW%9NjzrD~_%Y zW^=I@*5=A`E5Brsdy9HW$Qs}0MhV5j$K`_F+4W^Ui*;X=!}}mtRE_%eP$chGhE=Sx zF!{t{yQt_vaK%Nd8pCE0DvA@*c-GgLZj~->KgVHpqo}Dep>we+wqQdEo2(9otrn{= zhbhUO;#Ie3;bNj8)HR1w8m#;?b4JaBuj41?9BM{;2Lv-zj=Z*xvg&bjR@b#?WI8@o zNV8m8+R{QaLsoug(l1ragRN_WV%`m*@lFV#`z?Q3TyfFb#FZvG*~o8lG=?zy*2@dk z-m*iD{S0K(~Y=1HJeQ{s1O+hRV95OH+K4P!YsM%nDD?xb$%UP!ZWxoz70 zgNoqB#3jKHHdybAnH7c?zZ?PE?a_-JaEo+(4iYjV956sa1{EgXU{LfLN;&L=2(_!gTjq^-&F>jLV-}^u*hXTr$$Q5k!9}>FEZyhk2T#IQ=V%tn zd!(vp%wNBZ2ow=by|p8u?LPrURK1^|WSVVNJRI`TB~=k5LA*-E_es zut6%4tQ4bL;feO! zJl+x9R($2DWp(sxvOD7BL&al_b!#LPa?8*+k^Yjp9$iMRWU-hGCfqWCJ?gjo8n7oP zc0jhVl-V7vs<90(%DdXQ#q@`HF*L8`To>R1+R{H-6{@XV-v3I-cz0PFzcH2*5qwhSxq1N`OSDI*GR^nW;8b>VAQkfMe`VCSTEn2UnPnMcq@~= zfosr;%*!#!R>ctMVKU`t_OiPktAY^m74r=TrK>R>(>%nz%$Eq{Qd(M+x&0D&`yR*r z)!@L5OP|~Ei!j~GeZ3^s;hER`BlIau0xQc6FCBZsN(p%0V_JOc(w^0;-Nprb_%e~{ zvrX@25AV8?Q2gG#L}{TNjJ4Kv^>*9dEuv;7@Y+P+9kR-`rc5M&oG?v_qRUy46pVWLN?vT5oaK5=XbFyu2cr2dzDwr=yqyYQH>ZcmJ8S&s5R|2UcN z{HCfuFBi*MxRqk^Q|qZV@eX_DKM{XZ3pi$2D?Y~&qc`%_6LW0+ffBvXASv3H(A(>M zEAJRB|1&CU*o4D#7_JK&&(*y9Pa(sMQS`Tv!TAp%!|hSXkOK)B9*;tXz>|<+Y6cQA zC^rPC>KZ^ohDIFm0UZ2#e;F+o4)^tc3K>OiA0d=rU%a?h_!m0mWMyk+XKY{qVyB)y z7$1d%cafbm^+t`2oPA>u@{yg11Sru}P1PyVeGDPy zhWFY)J+R13s>rK%bxC2=JKLK4Y*6p5UmOE@1})F1xBM!SCV0ay}W?1P`q5&`VdWSrf(03yM3r*lWkSos8Q` zz~4~z48Qj9Je{SO9z?@Et5_~(xH>XvyhW@^Y{R|2@0;`L&p=Yf>&N^iISLyBU?a=nmtCkacf?&6fGhGBlMKs(~f`v&@C;*LE zXF`|PWhsz%qRM&ANZ&>gwLYoKaTvSlCttS<#gJL|;83@o6_aDSt&JA(i5eQ-&G0p> z;~nAtuJYUBVCp27VHii7^t>x2B}kE1BvNSws|Q49QH1y}PMkOp2%rtNu`c=~)cKcX z2^=2sdckpn%uvvLP=<3PZDWMox!Legv(XXJ{VCe#D848VV0iVlA;}&oOrQ&T=+1QD zacb(5BLElQ0p$@(6UkT*I9PqlRH8Qd=PFUU5u{Z7cB5_8G-G}){jfJFR&i2FM zX%-WLAlA$;j+He9vz$M!Yhw0aC2eJoRw`2T8!P%PRD<4|BmWxSM(l3=Ltbhud5l;z z;&tX{6QpnM3Zh^)ucIhoFkn1zg?1GPYI}?rANn}ba2;6&Hfr_g5T1&z?50H=Ic#@suo zyd2?KJqw7Uy3}~gch)=D4aP+;36znu3)>I!A<>H350pAc#NqoWIA4%|TTr~yWXSME zh!K0O8gDat$#6gS#VC8AFgbhM`O@7k(>46c|2+4Ddi4kO50{89zl11czNpW8g;w<9 z=@-B6<-dY2`o5>cr`buaR@${pHb{oyyud}>{~_-SY|MhI!HLqi!?W}aHJX!w^l3<~0d*C5NzVrbE;S8z) zqerUaP6zMOSsQ&J`9I{o~!4pBB#f5q%tO}6`l;wRm?C@*kR84m^FP((GlAPyV zL^-`S2S{r(l2yzgfyY;RYn5N=_pt7L-K88D=!-#&=n^^$77U4Dt_+D5;M?tsjHT&! z2OM6SH_e<3ewK)T{aOLGmh6E}z%CzSVmNerfhj$2ayGyi13ppd-B%7yLG}PAHkA7@ zwbWi*TkRtZh8X=lK9spNS+mf2;4IE|5&&ItTu0go)khn|Wai;&a+sN=&G8pgsT-l_(4{;CQrr zx#@02+0#_co<2~blU)$?ohm<3MHZaE6qcY2AFvI z#rEd~+obSaAnvs!VlG=fKSNI}RjPB3Jqb7+ga3 zoJoBY|J|jERP(??b!nx_Qn#sB1mc0_^+e@VN%#!bHzbn12WVFt88&dmYQZVLDI5(WqrMB5kBEn zI8}Z*)&o8qhJlM*Op9^S5koRWNvuYFZ2{Uqe*0Nh4my@PZDjrIQtW}q=0VqEz{>89 z3-hj_bmou@MKXtdUuGGRH^-|{r|k1{1?>GovR)Al_Cms|>`+(hDf)!*vvk`jL9#=M zyzKhSOmRp!CIvFVtwTS581{a9Q>Q%ceuc<@eKn!nM7c;1?EFfoUe&#uh+n!)cIJZ! z1*}j`pT~~qvqIYRx`AZ+h3nft|rY8VhC|VyyiR!(g1f=2&Ls>p};~U{@wix%C z1RrAB0xGFTY2H`)ie$di?FBWOFWiG@P${%9r-lVLLVf-QsTxPv(bya6@1^kWsdWbw z`B29>Z{9*XKHS2KhT(^rs=wh5R8QAnX|wx*H{ZXJSc0CPkFussDa;qiOVWLz6V)e~ zMC7IE#O=9xvKIc6LU~p+AF9X-E=mXq--K_JPva#xb$U>IdP){{GnN=%WW4tQdjq}{ z1V8^`NlxNHwk_62G^Dpz(F zh-PHDaO@K8Vl-!}54y(sp6G}&u8 zbjwQ38D;Ugpxk$9 zCFw(fK4}OLd{qD_7hj4QWVH`~nkHS|uYF(D@8Z?t`licsLkz?O8JYav;_E|4WtP41 z&MMqdnj8nWsesPTwDebUhsQ|9NS2Q;gYOed0zyW=Z7_~Dj3n}G7B&(zSa5fDcW>O? z-QC^Y-5r9vyC*mVhu{+2AwaM|_&b?5Z|-Hy`!%Q{FV*J*`Hra9W%QNDkMa~2NScDcqUj%knt>KMEG@JCX0#+MWMHcgZ?YB(5ZK!N4MQGnFS+(EwVx};54J+(w=PU z2By-XT^56gkzT`K>3;CBbRo3AZ;0*BvcQZrv7K{OR@J~L#NPr)XZ7p>DZd-&pGMl?x>9baiM9EYBFYf#hYt}`*7AUXp|G$ZA68kkm*p`1 ztvM9a{r3fl&)J+QMhdcVk$Q}V?zbS*36b5ubmF=3Yc1q@u(!Cs!4d_&_k~~Dv-aTg zg-85}4I8BMy}0`_zy!5wW;$#fNgU=jd}0#u5e# zRY>6?ANS(Mz;~lZeMiND53dSiz{fEamZXBE6p&otwS4^Wrz^(ieNiIG$m^BwKK9s) zU6PGwrDJZ5Lg2C;uJX`m$rrV0*^a=sHkJ@%*%dNF`d#{;c4^pxG9P*3>pUJFqJn%( zd~xt)igQ5sYT5H;Zd1xWSW?NGYyVF>3jPWasOntjQIe(?`xQyhx-FAQT z85h^Yr$7RpHfYR`cFFG~;`~ZUeCS`RmF8Xh+GF$Ca#nH&{~|brU}S#lv*R7%h2lHB zo4QX%Sv9(>tZVEx8*I6$u9yOOH;Y5jb|x=UGwJIkyUTXF=&dxL?!pR+ zJoC&~V#C?R3%>CC0_LqKTcq}4W!PisSXMMj8yhkwF48*8Y3Em#znI(8@W+^P<77Xc zRc~-DXp%R7lNjA-gxV-MfF$$$WJlWaZg81!aG~wAos4K0l9<@E6?c=2beNn>HY&P< zc%bFkNk`jslA$yuneaWrUGhUBS*SNZ2j{tu9c8HcO=!lT*rPYX4d!ERlpe;?0A+r- zeWS=SfG7(OdWaK^1tEJ#Gv_Mh#lSHwLi#yglrw(*MU6Zwp|6dtk~LmRmT4X%OVM+n zV?U!gCm{{Nl8cPaym&vS*+p^!!m@*uj&E*`f=<17KdTu|V#0imnUs#Bct5RqeT;-cuC?Jw{E3NlD)`x_SqPPU0B_}z7WywWBr#t5)q(v_& z9p8K_Ie})`K~4ugcb(Y`CpiIc*+E9nSGo1y?R&UbEI|k%Pgal56 zq!0?wH8hM}d!17;fiZw(ur8Z>At2{(;XhU zB@LCIEEB~KiZxiEto^{P&{0>cWr->}%x`iaEw<@cfJllWX&9pm*D=W*UApq4mhO=z zWZg?1V#OSRIpsCwjf9nq&W+kAp$+${%-!<;bxM^3fgJfuEtmd7r`7rfa-#KufRQ9qgh>`zPs(KT@>xuMEx4cDjYr@$x1;q`eDM$+7H{gpCy_?q4)`UK+Ilai`r!8s6j;&hRca zqPapPyGYyzS#g?0H&}47Ic50tQ7RhbARl{|&|&Bf(cGB(_p7~0egkZ2Pp zK0UUywv8u>~SWhNyZ&yu)OSCTZLsmnDZj@_%|e` zd~9~v!+&m;sTpW&4ARJw2A8Hx40O)gf#R z4r`tzi8Wq3f}yI7P;?!FA9F)LAO>3~<>g37-%-Kl+iym?o?~70z|6-?Z{pLAe&rP` zM~S^Q&Tp`J*LC#kkrk8f)HeT>D{Fj;kv?EN-6IR4??z|Wi#|%LqWx!RF7AZa0dk3I z&U3@|Vr0hA7R~W>Gn9&+oO%B8Nrr0g+<6gitUrc2bDqBlhv~?-y+{A&M}bc&tsaU5 zKZstlLXu707iHuh>A?YceKh$W_^7Xeht@Y4uXsLwxMo`}=cd>)CZC96p;)Q*dDbdl z-^}=x{Q@6Fo_5Kc@=?2i{e>_M{&7c1jHO$)VJ1B>=2^sRgCVLT$JD6fGYVGJVSDl= zMxVed9eBO=8;*g)|MV@r6o43SgC$?|T zgCc6u;#G(c8p!cg@q8v@9-;3L2HFVtdxobJK2HTKb0Ku~7!I7`PIUk7R>oP?a?m`NL;vZcXskYI1NIp@_dW08b8?{BY*U z#`7INseUqvZ=!e^94v#6FkqP_b(uwVndkiLHz?AD?<}fU;Iov^0oh=F5`mu)A6$zF zd{pS~A66-hlpqyRtgu+y43R{tjgi_b8KFrTg9SlYpx+?{ry&QUo6V3NgHN5@Y9c?a z17#A6JaXd#VB(H|iK7WcY^R#?rSzb4|H{4|7~#4OsxIzK=vub z5O4tpsLOt=oCdD1gHED(Qw2?LhR6^4NfTJq8(R0G3T&4J5GXhlujdnSh(0Uaq(3xt zAZfXEq=n(uCharAbCI-&xSq@Xev<$A{Wjn{=ORhBw<;x z1CA*JVRjM?3f+tt1HmB39jqHELw##x%9`MF34QQ#Ef!RcL|zb&-+{p&y_1TNQ;(Fx zm_J^e$`mXB&8mGTYY#4qI!zQOl}I3lLOHrLZaymOI2E!{EmP73p9%z|_Ag$cvByz9 zCrMpzqe8P5AX5@i^O60&P7h@YW#a@&<6 z6tMq9uOBI=A31fS3__V;2~uA7jxtIdH0qhLKrj#twVe$V^{$1v;1_#9(3NWdm^zuD zq6ai3k_8B*f^Yye-@0-0_rqU5poD%W{aluHa`J^d!W?Umi`I$)nD~cxS^ct(itoEL zGso}PRe%VU!ZdAIZCTV!stT7;Wz7_}6BRHr!IFww*0_o*Rs?QnVeAuwti};1_I{D? zl#GTvL>Ur+ASfMd87z+aRdbehH{}Sh`Tz=>4zOHC-a?epIObdlnAwWknYc)T)v;rd zXf4ut5QVV;9%R8;Wh~T!OFthdDun>BHu8W<{?Ean8wZ~FsJ#dZ3r=Xivtp49<#ht; zyOqpWI+x5x?$JvrbJ2$jwbUf~NGh*Fpwm<)=L^;7_d7PB? ze$Gi!%d5CVUaQt5jX7A$daIXpcdYn9tp8a6fv%ADHUHRJUB5T0{#m%O4f1t2m4W4U zJsw>B#L%ysrZ2qu2Xg0g(x6|0%x6kd|ckABR z+-Q4=dtBW4*j=@$dX9+LKxj85KeA$Tzxb`a22oOZLvKoNLfx9~DGA@RuO=_9Xlty_ zwa4FG`J!?nv!%)Krt9L`eVT`77t!^lf#$)?nG0njRK4q@^n6Nr*q>i@!V2TqzBzj7 zr?UUaulwWG&eiXi3>Xa;*;HCSl<|v=n=kDf&G)m+dN-w=bOi3_Yfs0gCrw>rU$&J} zY&}~nPRfdpvr9-~rWR;BJb7Dx{8B+CA_C-xx^%V<Ocd4) zIT}lkc-W4lXYQ#b>cmBlAr{vrIjH{TdM>#noG7LnA}r>c_&v&vfq8aGn<7krySgKZ zknY@SFeevt3Y- zNQ2Hi3!pKYP?Ad$(*(w_{0Cf@M@d5tQ!>>{PALRrDGi?`9Xn&@n4Q*GY@mX?Duj$pln)Q zsd2hMki=k?f~rU*QX9f0@mWw1rEPO5R_XVE=kO?xbSK($A|ALKq3N7j^txOZmC8UfS%*Ey!OyHCQ zcQi@L1u0!Jjr&6kj#&DW;H>t5GspBJVVU|Mn=;GPyF&)OFo&{ttzgL)n6#>3UiqJ@ z31w9o6`GT8d+T?&pbp?T^z^1D#TnA_ZWQG<1p~N@Dwtt`3=#=QF#FIymK? zZ)@Bp7h;kJJ!#+^<@v%(80{d)e=urP;8ODhYZFLhX5CK+%?#4(iyefG;aTX;$g?X$7ec|0|Pv(%_{I90!uQP z9$b_p>#G{?!7*&387Bof{`z9VNs6c=`5G`Tv?!8N@NNY$N^D8&6OS)gUeV^jpCI>Q z3+FmfPKDq=O1F${t8yD<#Z3YmOQN828Vi0J$6ihbG>27$E48>Y`8tq-mqk*F7vmZt zQu^I7Z9k@TVms@bO-9x}pjsJ!GSg$gpyJLVE+Y(z3o`0}%h$Zah>OJe33|YRT}JkX zXt^TbK&M!UmJMw3LvX(uqXMh@?MIs-CoxKm?F1YFj$D5s?9Vyq7E|5LM)eDnjOL88 zm%YGzI|H_g>pZ5sR}bOL!E+C9W;woHoIbRfI=AuRChNN5R2k9cl1<*Y5B_r37P#%( z*?IhEx90U~dfH3Pp*n9n#B*$`+g28Pp?!C}`?~1=-^wVEI|oqjcOW3$82{&x!~RDZ zm9Y|6B!(HPKeRK4q4556R4mJkRf?V*`-er6^(y_^C@nr^Tk_#J$=;BXV5U*U5Z%vV z!51h5pDTj$$(qXP$w;Kmr>@ZnGwWQ+9v`P1Gk0Rq)#b&|6q`MTMNz30D_@r^Y1uhn z3Th`P&}|;ktW>q`<5u6gU0K%>Pqn1WAC(>GqFS#v!q+FQEd{PyS6O)S&1>6(+0tI5 z0?;p>hG4BHa6ebfA*iyesnyxIY-*;jl!IR6=2D+C6SY~i^jges)Km}M_U~W5g4IwZ zCF9xNCpPxECnfN1X-N)NKcC#K(j$o5rta?lyy$bo2zd0C#z|6n)L+TV%kVd-x!X(7 zbAHm=@FRJy)>%WN?<;1F<#2V?UOa~x$=2<<>gYk&e((7;ifX*J8^_}q%3ucG#MGO} ze^G>a7a`@vHv#y~PM?)i|ym;lr0b2OpneF$-_t#R_F6l4#_Ee5npIb8W zmAgITzYTj5WT&Knto^9R`1sLj2M%$nep55)pvyY%qKZ4!^K=oo53`o%W*BisFBsGi$=d9rcg))NlQI8teE5BI*;%;Q&LJQAT|(Zoa-r= z;gu?`2m9l!Az&@r^M-=-#dXJ00y4NsP?Y(BGi5VEh_erZy!Z1b^@n$3Gcrl(?M28o zBoHGO4rqKsOj=GZ01&gUg)pNQxgppIND&vXUWUy!buZ9huxtK0_f9F~hTo3xr8!TY z!^CQaJTbhn^BS=Yyk}g+>FiJBZv8EwLBQ4M3GOu+8c7&FN4rf(599&WD`q<4>ZG89 zQk@!z$2y!8R64;^AnGBYthe@jI_{68^xINa0kL3r%DfEtph+a5XBP}!n)QiZkUGsr1ZH1wU;YrhQ+Pya50u#l`$%&KN<+%Z zr=WoHGYHn_evyXsBF8RxTTEF$=dz1;^%Ee*cm|2^qsm}+w*_|)N!M(n2bC2}AKs5% zeJUtB6%bTc0=EG{^AV*c1W;!@KqB|vTuek?2!cZ{EP)sIXqa+6M~H&kKNUoM7SsX+=JMqTN%SHvJm zzS8I`UlSS8Km7%7V~D%BoBWDGV$m7FgVpnP?`+oTX*5530HxSt^6VrbDx<#^xxzYb zRK|@9C0XfJC|Hzs+q^XK!iY{q68^NeADp_982ifESyG2T6BTz7;N<@+q-wfd$~-w| z*2bQv=!LE(UUQ||$;rSQiv338{$^lN0B;`rTR<*Ml>XZ`l0hP6pU0J{^%J#UqJJ}`A=(dD~* z3_`22ut&SdQbNx5q3aWzNOnJ8i^u7+YK%Vjg%B#zecx54wN;`FpPQ zNZMW~E8c~Z-Zxw~!ah~l0^zn@Ntob9@@^5Z#?U5Me0G*#M*D6gi&H%uOBU}bMDB+q zdR+Nw7)nwlWrH7_pJ6F=IjsfMlpifMWV@0Vm;HWH*E3-$psep=tL6AnRM4h?P76_) zw12#IH|LGowKy4>ug6)xzWYF*M^O~{L58ztQow4uy+KNRZXv0OrYjheYB9iTC)u-; z16lxEbapU0XeKB}Cm|Vh&jZ)PcncPuVde@S+XG$1MM&h(C+{WmtfpabqGOv58Mbab z>1dc*L3D;m$&#oes@$CMv9Kx5G6J!`#(C=_$DfN6_rgnVAO~N|GkY ztFoee4ck*mvEFMbbbbKTaUFCCJTHkIaG!0>QWr(vnsc>FM1cGK{Tg2#^;2AGGRyDHPAfPB29Ua@h= z&ByEP8Bo`6l-JlRu3iM2MjghfaEiVuFjU}kvHEh8Ui20U1cavo1O&L3@3$*KXBST!Q|I69{XF;7>4Y6AKtI&+S8D^Q zemzhB7fUndbD6bc)CN=lRPySvJ#x_P_D$ps^-=CGfqz0i0&FV=hs?(-qbAC#N9h%)y~Rx6$^e0Gmj!k zCfv(%L?RzHNwL`-;oO2VJ7ymnf#lM`PI>jqi-$j39WJ1~Aj+L@2)sySVq_?FkyGCE zb$1_8+S))no|IZOX_i0{qD&vJt49vbK+p@au;G2D$T|6$c#Ak<;HafrE{dj!RjNs7 z3e`;5!O`-jL?)n0*)F!Snp0-3nv`-V=e;+Ank8;G6^+b+i+E<-W(DVKjnkHzkrwF0 zOnL0%44LKHwG9gSM1-5o?E9#DOFivcPcn_R$OjuPJe>Hm&}HdJ0aaue;*134$a3q* zSbO@!$|{yUfux!>4R!Srk_ommvbJ*_BjtglDR^xLtYhMp)5%yg)&F7WKv<}{7x-9#fy(GiJR=5dsb{EX=^_U!E z4!GDYQKvd)_JfbeXlcg)av>Mty_eq0KX|9x=xoxnxb#;vV#h6K6L;35cWdS z{zAg}LIQnZ!4&dw*8|}$a?;OR&;c{Z-m_OagGpgAq_XCNFA>~NaR=b#B~tE{8xHlW zN($Tmv6uQLsmHTV{60e6eYz!Vw3T+LMr>M2#m_^b;93a#o*e`B1H|hZE$(!u`RVf&?GNQde8*+w~)|S%!7Cxo$ zT>0JjF}-@45lK*+d=8) zZq69ChrtIsBAX#W9}+PqP80BylX}`xZl+UbO=PD`Vy}vb0&t*WknZa@>8#gw(_!hT zo4!^{IsfS+;&rscuA!gXB6i=w_|kOvKSYlV6Kd2IEy*jk%NUJM#$-$9#02^FetJK7 z?J&G#WpL>WmRy`RYxLa@^vTYW59- zT(%fYBhl^(FEY%=(VMI#a!H|QR>^&RcARok0R1wsf;mXGUibt(4+Nsh7%^3;x2&2Z zec{)p$Gn2NlseA*K8(e1UAU?cBs6SS&qYB)owNpE58!G#p4=Jr?Op3+yDjH>5+ui5 z2b(>0mLvEz3RHOy+A!~RJLqF1M9SK1HjZv7e+uom;@_8mN^$MtP5};GLV5nmH?nJ6`L-x5$84Ji*z> z{+dS*D4~$rrWV8|G2yI-+5xvu2Kg6y!MkK->kjLCDL4uF1_gdWfln}yClm>0kk%cb zk1(@q^7M6fh(FlxOplZiXBiMs(=l-)TE*r*+OJxA@e|QH<0M&K1~oECPSdq7J@8p> zn>;DLpP?5y(h~UE$+c9HdNjBIh?v2QQorxSJ9`;z0Vu(Rsi;oFSsqja&a!bo3Y_It z!&~N5y?3KgnhYkQYxw9hSdc18bgr`q(e;X0&QV?UC3G5G-D5h*_qPPxA}(ufoIS-_(xlgDx*FvmLz&})vj8&rSs zskZx$XK>qVR_hF4yJB-Ls#Q7ODzTdx1g`P#`{KS{^T+t-^08L>Lv_LQ`ImJ<^!bZh zNyZ!gLuN%)UIBB^v+JI0_9G7L_{t04TC5>9rc| z5X1{PR=k9}x(QihVuy!!V1B_?UmHKMn6pOlGq5Lr5bzk+C+WocGDo+x%p6h`Od4^# z{6IIkLx?<{VK+dDm~0$*$mIvS#OnQcpKsC{JGU!F&s5~jwM#RB89J6fGNO+gAw4r@ z(W{-aJ=HPR9!XwwydA3DULF2t9Ba*qiyavuYMd#PdSR~7+&g7pd7Wq;3$_%IzXX-$ zEsHk5*`E&Q7#aTlpw5lh#>7?pl)Lqldhz=MM(@Fw-EqE|Qo-e``#iOjgXGsY;z67E zX;eQ@EIEIHa@q)E}V08$XLg3ZS*(7{DU^I=Ma#yO5PzSAF(e z#&%Wu<>m)rLZP^*1MO{Mu}rjEN*#aRMsM*=iLp_$$JWv7%}hBe-(z1cV@c%Pk|+$h zef=ZEf6GA^hpez;Km$Pvpxy%UFFEM9n%v0V-ujPrJb4Xh7YG-oFFNysokwoRP6)Ta zqM@W;P9ywItKlf4iWVCgg~Ru0jJ>;q(d3NO5i?ai( z_)1i*jx~f_Uw7hF+qDgF;oVnAE#;iqT~PRIvgD1;08})s>MIBra$_nV$;mw2-UL(A z3up0R6Q@}y{C=hblzZQ`8F|;M+{4EYHKpXq_88y2sp#t_OPlZ&oioQwGOOo5wL$Tw z;UbMyx;An@TZE^Ku_E}Q9r3z{b`n#Y^8(7T2tRQ%`HBo|+o26mh?ilXH}GJVeuy2O zowU;kRYfyl-b=uM#np6$WH@=BZn9Pt%HrPHM-FvmVPO|cw0+^CZv=TSwr3*x8pRq! z&N5>H*3&v3Vyx$K`@xJWSo2p=8^hq9fsE#)f*OhxW|yLHaQi`&52zdr^syQZhf%G0 z#wpBA*ja~Y9<5c0K3n=!z#NQ)e4h&QcyHEN@5v9Q2w^}V`t4HxcUwYAK16~_U2ZHN zjX}u-2S?@u@`v7)>Ec_0RCoc~dz}BS^|Jj%-+5qdn?rzrVEZ z;WHx~7aj;2n;THFHx!VOI^`Jv9Md?Iwr9W+Wlf`8U1E9V_nKGE4}9Z@Y^BWx zLu_q#TfPZ5XxH@rh@IHNjipayj(u^yK#rL|WFzsFTEKku@Gw;E%3hIFL=mL01c?qD zX-F6qickw?mKsEnSVR(}um!2cpNiNIC<-5{M!#h1UmSj8kUJf@UQB^9=OGqcUwlFN z@1npgvIbEH-T?lCC$0u+M| zGBlyWs6&5bL3!OeAGB*+an%d;37CA&0wKQ@9!iuGQ>J`S3f;2>)G2DQ$njCiBroY2 zm$1ooI7`9emrtpY3n(1FP@06q@M%beyDub=pOuTy=BikL)M5vUSFaQ%fH~2mWf5Y1 zE6b}Z$rKNbNAqBCmM~incdw0%w?!SOR}Ii?nz%7K;=RI^4k%Dp#=K0XRnKH%Zt*Km>^Y@|*lOpf&Iduw?-OZ&x4x zl|sK+WZnVH#W^t2->a5?KLS9>1pZKr?QLy=t@D5V-Ty0vc|23~KdpfOp`Z%=p_n)s zx?9?r|1ZT^LBHsf4u{?ZBdAm#Y9}0Q;zf%6}nSD!nyQ2ONMX=~!DSy`2-%{Q#lKewy z0;*#ER1DU&num zi*EzI6}bKhXx{n1DgRsidK>udxcyIH-R?hu|Bq4pE$8i^_YcRS=U<0F1!)Li=LiCV P2K=iA3Jq7izd!vyhbVl- From 87482c6483ffe974b3cb77e8524c537dbd38f4b8 Mon Sep 17 00:00:00 2001 From: Delpoo Date: Mon, 5 May 2025 06:54:53 -0300 Subject: [PATCH 6/9] Cambio de logica en similitud flexible al 90% --- .vscode/launch.json | 2 +- ADRpy/analisis/Data/Datos_aeronaves.xlsx | Bin 75687 -> 75912 bytes ADRpy/analisis/Modulos/config_and_loading.py | 29 +- ADRpy/analisis/Modulos/excel_export.py | 9 +- .../Modulos/imputacion_similitud_flexible.py | 380 +- ADRpy/analisis/Results/Datos_imputados.xlsx | Bin 0 -> 76963 bytes ADRpy/analisis/Results/archivo_salida.xlsx | Bin 60204 -> 62070 bytes ADRpy/analisis/aaa.ipynb | 52718 +++++++++++----- ADRpy/analisis/main.py | 13 +- 9 files changed, 36877 insertions(+), 16274 deletions(-) create mode 100644 ADRpy/analisis/Results/Datos_imputados.xlsx diff --git a/.vscode/launch.json b/.vscode/launch.json index 610a5016..a47b4c85 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -48,7 +48,7 @@ "--nivel_confianza_min_similitud", "0.5", "--rango_min", "0.85", "--rango_max", "1.15", - "--parametros", "3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19, 20, 25", + "--parametros", "3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19, 20, 25", "--columna", "Stalker XE", "--umbral_correlacion", "0.5", "--nivel_confianza_min_correlacion", "0.5" diff --git a/ADRpy/analisis/Data/Datos_aeronaves.xlsx b/ADRpy/analisis/Data/Datos_aeronaves.xlsx index 3d9e9464c40a2869d6f029d6742353fc90d8e36e..bdd43fe55c51cf96d03b68ab8c2b2f8b4307b256 100644 GIT binary patch delta 52081 zcmZ^~Wmp{1vIUAm@FYM81b26Lf)m``f?IG6jReWy?k>UI-QC>=2pSv)_eYN0bMCwE z{h0oydZv3<)m~M*YIW~l6L29@aFzOq@G?6-buFF zfjbJPH6NGS#rh4K<#cVdM0#@kyGj5doZRg#Utr$3oheY*E{<3;a4s`wPMhGBiCb7>B-e#y_c>4a>&##VRknSB%J)T$uyLu))aCA zCD-{6Avs0_Z7V7tqK$69c&ZeQixMa`mnIinje?A5IWOm6oA4mmhlX>qq!SHkBV_6J zG&8gm(R|j>eVY$>VEGIr5R{B_7_v+x#z~ef5vBW zkj9M}jC_AUUt~Ny1X?jNUuSq}UBe*gmPS-nmKR}nkk^zSr?`UUr-~nnfwf!?t|sb` z`zS^}1Dj}HE5_VTTb`W(M02Qeu?M=VzhKV-6IUG&nSzsrUyY-Wh8cUVK{bQux)qhN z7VVW!ef&K}8B~Of9U|!y`!K5Y)DU~Vj8#C9_7 zhSDU_IeOvksqiuSv+DfdMjAd#{keEK$S1*d5NKissyD!`=rc20Vhkc|@e%-sg&JrA zWje$~r-500Pc@No0<}TW`i6x531Q}JheLfH3Aevj``ZtfL|D;|$x+|&VO&fPICX^l za=#qpaj-n<-&l5+^j5{3)uR?G#QNk|K3O?aW=X%rN4XzGmyDMRDRz|$TVHxYEQXVO zFcD5O6eftoUDF9WO7^#K-ubHWt=c*cIBwce5JkZp9HM;rs&Y0z`|h3(+BWygjVOoe zJGi#)G&cwwDZd}?oR8Iq*>+AOx^XMz4puaHUWt!w98XG*pEt003b6YJ61SA-gAY{m zO0rmzSETNXLfd*GcWm z&R@PchYL^(c%$Jm>5yJ2#~i$EC$Y1PeGlJF;IZl3k@XO;FmAN41H?|%W7kNdM8lxu zYVCbrr>^7M(gHAP;-9o%Ex_B^!^RR=}b&9mJT`?B=lYQs7 z$CnF)H6Bj*g4M)$lP^8Ayll1o5L6+;I-`ai#~lmMF(mhCv_a(Z z{Y+h==pVBd4j*EE#<2g0ZvT-D(fyW0*B-67jF6LUh;x-%S2!A7Kf<_anqoV3sH7mf z*_zCAZsA;@fLtE0)O74f@g%X_G?Fdky`=(?4U;Lz~cmJW(z^KmiHw?F`&YtvqB z8@l1n_q1Zub*%`fH)2~wsLcs%yCT3NfXR{^=rWA_MwIeZqpYuBOv|cq zwl2A#(F|F8^E>b)dm2V`H#w^aT=5Ns&>c=bmTY7WPx=TZY}dEH#aY&2g=JHF#7fr7 zC2I9x9b77?EE55i!%6Y3?xE-RnIE$14LW&xa6j$fo5b^n8}flYa7`b0a3eI}63X#; z)pW6`p#cG!Rkh%~kmG|F+gxHxDmK^C`_DAZ*2tZn91^W!H>z-4%(M{WAQa!LB8@_)# zDr3?tSTmoLF=2xhB=l0&U%A&YgR4I76=->l>pc0XD%fEb_nKKAuZOT-%Ve>q(E`;A zS0mgAW2=DW$Y`|=#@P6a<5+^&>{md6Y>Is4D@D3Rifwg{JnNKa%1(?N>)1Ue-4S_g zDMr<_JZs;pa3c2JCN|zJho*iAng8{QO^R~M`aW6R_qHX}=L)kvd*R%5!>w;m6?Muv zHM#p6#dq#jtIHsN@yGn{?yEuA*Reu=J%ZsYrwE%B)~*Y?iz# zR@RE`z|eSvameLnw$vigrjMd&J0r2dqsAl0%<@+>AJe|9EaRKk56!T` zb;?w~b?VeCfxQG@>&LMypzy{*V&#h0Uixz|QV#>7k;-6Wa?|xNU5sCby5DBLciKa*x23qUmnq4c7VhT>g zbcXNmpHMxWrC;uwh`0owo-0>~06^c4Gj!(q=Bc0P<>Gb+c*$fUdWKwmh8zk3&pQ0PpEH25@^mV=xo-w$2)C*EY4^ zcV$+yW>M8O*f{}s5km-DDNg0f^dj-oC06%2@UQd(Oa(95h(M#k_JjNW-|yKU9cZ%U9e(bDf4Ur?~8*O4<+rgf@=Z`(_cQjZU!H% zkru0$so1k0rb{$@-WjyoT$}J@s$T2JN5!v`uXxY3GW#P2K@8vLj7=zH6vMux`AWY{ zw#=RGM1lZ#mm_5FdC4XO8jZ9^A)cj(^mJIYyUg)y881E=ns_8<6>2ltH5a<58GL+9 z81<@iZJ7DF>`(zdR=WH;WAj1iB6RQ(lF&>z*L>Mn)Pi}_Os*x^<8sB;0UE71O}ZPK zc%)?QXfyfK`jEUXzI)>~$}j!6Y6%Iv!LoEdUugkA*@P?!MI9AwRuSMPdZVo1zP$YWsbOU#Xq&OG_| zZeF0AJ)BBrUrujfQib+PkEoA5@or+h3R_O5ZBz0YCHZAj;KKarSj@H2a`c(eHkoVn zmkeb1x6eTY#!ZViwg`f$eO8XMAjyI9|>oy0}r@tLc5DZ7}5bI&t%pmY*g;D5=fL?^=OxwwcaVlf= zWiP(F&c};782%=lK8K3SJ)y^$o8RU{_S0$aTOLrHs0}{q2J|vWtpip>P*8vc3n=m5IpnzLw`v2M zb*sk<^{YjEQ;s$H>`$nmLNaY|4l1z~k`h@6-sf4koB~V^C#<>ZgP5exvoJXcAF)@; zc($$4l<-5AMQ71-t}$JF3(3UNi4SxYXEnU}&pLp+>nkQAA@7I#1tEaH0gxh$KP0Lx zfNbqKiPf-AxM6$|N|X`m;Aecgv;eTRIp%2^MH8z&HsL>*cKFB!lkIph?KC|@m^zA@ zJN6IAJyv!+_%3io)mEK)brxE|EESt2JrLKyR@&VO@*y3{!{#J4Uvm4R(bd~dKKrKX z`Q3*M(-QvlLEcU9N53DzRm-jj-fRjeo-?@!yQTPieZOzq2W0C1x*f*ha`3fH z<%6G|AWfgkmqluA4SU@|V zXVx6*7#;dO%|vJ>D5-XM=jOFTG{l2+=6zW3^bt8r#Zk^PW!NdFC6Z;a?B_Ve)~gtJ z+Ef1iOnN{nq12QWn$UyKm$xEgz~k(qRKf=_IE|jvnXJv@)^}Ah1RXQmL>eKY@)<9_=^58VYcgEK?ypDseyt(3zKeXkqD$hFN;hlol=Wz7FR0FF2pfgP05zK#Io*S+ z&pmZ{Mr91Y{(gtLSZBfw-B}wXggs%F2tZI)*$cRxDfm=L4~1r}9jNsB6?u?xr6aH5 zw@%v(mG7e^xZFWTHOklXaF{_1%r?m;eiq7D?GE@kNV6?q)OdIo;J1dy{5U?7=|C^@_TY$Oce{nh17DHn zG}yAXY5Wa4-eL)eM@0z%wb6v{x-br{V$K`dYa^;vs8V)dYdvkgt+`3Pk3HPCHP>mXkk5gONln|NX2I?CX324kd|d)yI8FwaW>|!a@Vp*?bwgh9_2iK zDv~x9A8)Vj_-G4eWqR4e(oDsu1vDNJ;Hu2TercHmw*7`{8M2-1iFjM<)I}tBA?F=t zUt=tA=5KC45b@}#&nHi^@oDgP_e@`N8Xc2|6107*swQ^36NWdMLbq>$rohN)3>Tp5 zR;3x&dnz&tA9&(764o)4cTxAqOZaoHSk&BqgEv;NaoW>Z#;WV|^XM6K7N9XJ(-AE< z@nZw*>5mDbcqvkh(4>~Grinl{2GvX-W_P+u2;==Oc z!6p%6dV2BB&>0_R6hmmsBKen4z(<3a`tIu2q7G-j(bVryv;mVVF~JMQLQ&9jD@9-zV5PgJ~F) zJkgpo^x4&Ac1xh`EtO{2M?`@y++FwdDhY%&ex0MwflfX=fK!Lz{wA)DhOpMkapF2? zy_LId{~^z5lHU$WP0#z(Ajm}ZQ65!`s`oKCGv;4YYdfp>0&B9rIG5J~&kWsnC+ zJsY{DJ&kUY-ib`onD!ckt!p{bfY>oDMDqvDyAdm7UCk6_Ew#dEyc1GQp!<2l(G=nC zsU^8fi>;0Y7(cZ#;93c4DM50yAp>fcyiW*hVECJ11hy5m0lY6P7aN@G0{CA9p9%Bm zo@CLiR*R>mSRJtPsq7}Dsk|vo25%*DB@Ur1Neuh=`~L9Vox4F|)405FRZbETaAqu< z9BO9lT>nUwHz(Dfh33=Xw2wAPs&{?xyEM%>@tpDoWGwplCj}~-8+OH7`hPUjyq!Nt z$ja3_GrJZcLOe2yz;*4etSMBqsq-d&!jtNNpFZ_-wkmllrc^JzsUni886AC_iArO= zpzDm=Ovb2Ob)T=eQ#1G0cQTisX7z<-GfOX9sH%rc^-~~B&7D6f`z@MVbHGVFnp-{D zgnc6!Fb{J@*5EKWa}KVGla4Yj5TIpeauMir9DOW3BvpCo4N}>p7uwU9Yj9ivBZkS6~t2J-#Im z@vmRWh^Aij7bI@opw0KENF;JoSit}r>96V_2eGcvT0BcEl~@^k8H7-3mod zYIVbBtrdr3lg;Y;{r!{^Y_Ah(BQ$_?hB3_Q*g{EFCpZcl7`RFS^ltx@z%Vx z@Nt_**6v*Erq6BdX8JsQuOYKHVI$t%)f=V6+wobzUdESajLFLP)O>&q5_^;Vz#UR; zU(+pw><|3h!6F~`4_VY{3nfn3E&8N!4!79&Lax!PNP7V?Zj(iU)P^sK*NyiVeunD{mIk$db%}hi*HB37)5gag(waA z?P%rMDF9pBip`Pw9@+U~tRS_W{feKt)4q8LJXOV^A0Xc1hj*DCcyRG;zc6JQeqSTy z;3$giKFxVH{LkYCa0!3170E>O!GlwK%}lSoB@w;Ii0fmcFM7dUI|}6;yz9ld&tvVy z&te_d6NNUMtK~9vF(y~C`*GC(!JM(>=jpk5SvXW3!^LSMEU3~%q@)IpAX{deP$NFn z6_Z8io`1wCn|cQ$u4`W`C)Z_lSotIKP6{(Gu4G$$>ALN z^p*_e!-@h^T@%6B;FJ%j>)lvV>j=|s^lc*=bjJY-yPZhwtg(EUItikkT2S7aore-* zd{Fu0ZgIMIH6|z=9zI9M$KdufZ6|e?+YzuJ?CmvGx$v4T4rr?)F>r&s^QwPu@=q*p z=@h03^fOtXA@R1+xG!&o=bHswg5{BQWHusf^C=*2{oZ|Nb*#t0v)y<7ta@+NO|z77 zm~eZ@%!}i{(oSkTa<`3R&6A_5K0@CW8Cz@HfEUM{dI4(mgha7$)iIil_@$NLjUDrOzAPA#h63Tl}-mWHxl{bhU|J_ zrU7VU&5P8m(XzZ3W~%ti;N#pT{Me5DeLtb;Y-Zo2)`ypl^IpI7B}St3f$Lu_6y(SL?2hdOGhE zh;zBo?4?m(L(I^;_vskAwoU$bc17*k z#jWqGqzEcwwh1@-&xBAL6&>}`a7d0$yjH8Yu3eRML15;i2&38R&+qd09m8NL6xsmC zQ6g&3dmGkWj5vWls8``Juk^9j3gS^%y-j3YXR%P1ltp7lBQDd1DMTLUHq}l_-l$jW zBej9TG-D!OQ{-U1Bp8Gyt9c(z%R6$Yz^<0q)|01@`Cu*rVOw9Ca~@yFv>;?^(awP7 zG~*|byrfE*A93dm86LImE-$D7y?YjO@>!ZA@SHjl8l+K&V?#}iJ*RsQm@IaAHRkCs zj*#u{{V*~|ZTX*48<|E?R+t2S3xQa}j_ru6QnP(Wy~_tS^bXcV;k`goM>S-|eR79P zBju8bU%(%vtEh(a*dskv`XG|u+H->~(sz7z6@ZLyd9{T)VwRnA>16IqE`$;e8{uL# z=1O*gJ>v3+;|^$UhEwtVYx$t{VKvB5!TNaz1J#YQDEEqePiQF9=6+VN;UZ3tD{lQj zC9IdsuoNsU=zRh>*;JCK_x-8u_x#CZvam*0B3qGF$L_TBRukMlXgAsHH^9rhDOukY z__qOS&Tlwt>g|WI>Xb|Y8y1INkfL`Vrk5tWD_|J0{rFau$6~VcQxzX$$qfssVn6EW z=RSuxhvtRDKspG~bFU6K!M!BamIXzQOk{D=)XEFrXc4!E5|^{D@?+2#i;bU=Y;Yi+ z+aH?J*R_sd`-%7+00nHv-kp&&mf_QbHyT4*x+%@#i^T!1D%|3yMb( zeCY!<@?n;%t-tTl5Bb-cz-~q9xn$#}NM5NO_Mpo#??fPChjr!&*wb_+^BDd@cta^d&(rql1WQ{EQdaItlz3g3f1ykz*gX3k_ccT`hj z(ECL1o?PXfzzDX@HFhxr`haigW*?WnY^SgY99Z9Xn5mGKrmN!C_f&pAt4B}DHOWF% zpif6Ea3X$sC)I&4ZSQyKMVyXjp%E$ywkuSoG$qlVA^u$YSmf6aVJMl&@acM#>+&`y z=0a?$wkTVV4&}PiX>((9AU$yr^0|N9QXp!7x-;1n)2Zi4POx2pIm(F5pwwwXP+2el@0g#QU+csZiegZ+SU_)a0|6J3YB9fm<|8@%hXcT1MMZv;n`hpaMhp4i4-z#3eDZJ04 z_j=`s)hM8^GJVm6V;Z2c3uD2VA6&3f-#2`4;UACWWm=>863ajQ6ZEwB} zC7pb+H5AGv3~*K3et#Cz3eM#JU8%@F)aqjKAmtLkMepHt^7iXe_$yRHOw3*h!j_2zJ()*`fKL* z{M1Zg(OevWUQ!Vvt#uK}A#a0*MePb=T>QS{h#`^qOGv0$DpjSLNN+feNN?H}VDd(r z8LWTnIhDU;^5FV_jw1fSB67EK`*@1%kIP-j9Wl%JPhoEdx39)CqdKde8BBP6j}c~? zZ$|$Srl>kbi+DYpuk~mpfmh7imu(2)g;QrG84#4td=zH%pT$%JeuWE7CXEzjw}Rf0 z&NxgM2;6`@H5LZsA>=L>F1*yW`xk4%fhmfKEKTE41J?0~j5f^I9YkvFiEr5FvP1p{}kt~XCn-Ijbc$)5i z=U@Hn)_(^DIdfBXFp~&Fztyt!H)r_FbF4QZE#r5~ld5lJr?0c?>neuMVo!#OZ?Xv2 zQ-I6aQ_1s+e`cGXMs%n;|7e;2hQB}%0rOFa5fv(5V&y;tt^@B<;M+0RV20ujUVq+z zqDWWI$~GY*M-zEo|3)@a0gFtzW^$uE`r`p|Vft3oq!0Hz{JGV6M0)%lOr|_7>!WVh zRbgL?CTp=*Xu*HZD=4NyUHkL)1Zzr%VSJ9Dhii`M$)J&+5^NsNHqWAt|J2|yCcpsC zkBU^G>lzOSsp;Mgu|;a5uA`=Huxkr%{*Zr!E61P?)E4J^@l`KWtF6E&47>+jUqQE# zLwAwSfzEfaQKvtEWfrmq{HW7PIY>`9blO5T^p<53R#kGUmVilyECI&KmKZkovu5(CNhnY zhxkL3%wh!)re*i9ufPZil$d-Szlj{WO|it{p+Y@uo!07ML4TRnY=ugD2b;&C7vqBs zZ)xjo-IDP`3F6;wGuDWn6rjbCv{`-#@!(T)HyODa=aCqZF8)yUpV_WEk)PPL&r)A= zSR2tS_d0;J*8NmqSkx6VU3nB0sz8^1{Z1?zw(cUMv zc%T1Sq_70iV2Yqq>g-VZSoGhyAMWnL za^TOJKp2!9b!g5^;e<=B;p!gIZnHR3Jx03`*Iiq#mYW5p#-D@ho^qA7B8`3+ZGFlG zxZclw?|Ks?HpVFQG5Q6%@8_K~FD3nt*Tf^gOk}{2J?CrSdHwk$B+L9k@PcZ9uvv)by0cOA zVJCsyYNRT7S79`LG7JmoAG>t?jTke98h;Q;mta;ryS@@_E$CcsC7xE@QvNXgC;E8T zV&*Wkbw8ZfSWu|vsFK-2bP=;h0+-WOlMhp1m5HN@CSm_ysnPUV_84}U#r`#v3pIN& zN|%k-{#m^Q5wINnz&`!h^Pes$C-{AU77$DAX{gKSJx>%j1$&VwE3{ED+5W^wxp6u; zM>NQl2>6a%ojS=}DvpSYU4U@1^u(NiU702Co8>>hIal1L$ToFqQa|pBM}|yTqchut z82vlCX(>HvYLM+q-*Z%SYOY)StyJy=_@y|$ zFnbz4JDwvx?i{?HqF>j2fd)KaF*h!8vUGiXE~RcR8?h6X>IW7iFd8feLkU@g>{^qJ zva1k(pt0Bk|JL_!HfjP*y%~7coymcDr8)PRg*?wN^ede0(Qt6)v2jsQQjx@Zz|3(31Gbr1a#Y$b_ZIxQwQt>58Sof_Dt=#YC(<>*sew|1sgv(p` zFj7YpMv&B@`_#4JcQdvH&R`|lpy-1GfHaDAs;+x@y?J^su%#QwIs+{1SBM$W@ zF0XLx|DvkC^yLtu_&SZQ!1N^G0`=XM|A$U+)TH)oe5zbasu*Y{`7o!`TV)O3fB&HY zIn3qL2{tYOL>mfm>}%X^nIoeAT?(5n+ayW0X!TTpEo=;J$@Wm0PWnr zPIZ~QrAZ{_o@68>W8eAcTxUYp#xxaMD{g~o>ccBnCBtp+M-6R6MnCf}F6%!n(m&XZ zS9N3>pW4iTdw-9A_uM9^$6VBO4r+`zMCf>`-@GaIEB&{Ws1n<6s5g1{9FN)L(>hTS zWXqp7a6i*^G%}83!(5Ev`wF*vpg={iSTqE4_1}&uk-Eg4R8pTVgdCPePTTX)V^R>? zg#4`y|IuW`aLDHp4A;U4m>i=;j+2(>usOt5s7micQg~_g2GWS!yHBkVl$=7eg=gR8sAJXz z6^7q`5^n>)5*oBm0%8Qj2S`d(A-tbw;b|A>#QyPQj-B`$-%^>3+!i#_2)vyP`4G09 z$?MeUZq+yFZgZ*^t`d?M@hTu^C*Gu-2YqItiL*0)Eqs|fzVEeEhTe?3K4cuv=SKQr z9Y4(Aa5>Eoe@Brs%KC~YGb5GKKg}LpP{cmQs)8kcr#FhdB3i|Oy%NhSOr~6ixLFi) zn=j{aPi{R#Gm(jdEhAq9{ZkqKod%*zT?9MjQxmV^t}cQ5GJjDXK?#TguRxV>K}n;K zK7Ld^0mP1$Z%Hm^VwoZ}qncuN(m$-M6idQKqb!}Xcn`A8T8taWq@EB`q7}}W^%X0E z`B?&+p&IAq;L;fj8n{#b{czk_7&D$ykc*%|tB^{CZG>m0kx&@T9-ePWDyL$Z(u9AJ z7X!8#s#k1`&E%&9ib8&+Tw<>XSJ6af=8-rkA~ zQipb-Jhn@K6o_{3B_ltV`lo%pWEE<(P(LLdWw43QrR>UIwHup*w&l-dlAm=UGL4(e-}DDuhCH z+z{=27{$=P_WeC-Aa3Splb55%+5X=Tzpc+L6D8BST=Y_{l2&v#yA8^J!!NdC&<3VH zZ#uC1pYRjrd$q_Q8ltU%=q)ZY{`b4-xXRaGNo3!d#09IfG>|F8Wo8sp{@ZE%;WyM6yo+Wsj-Qbtb}t^{d(v8s#$l3+ZuT{Xq12J5}aWb zeJe+I2VHU-ME9v4wa~DpuF}S43gIAFg!1W7uf}HaQM`>N?IZj0FW4%8;-2GTU4%$U z!%qMHn}v=}IVp(1=)b)N!A>4iO7tp=6%Z1OeG+;{qu3vvZj5&a#!8m^9gj`(rDq`A z{rk#)qs$=MZmsbXSuC+AEsR2Z>=#jb>d>ZrHDy)fJL>+#--(KGauHS` z2NdqnLEb0SS6HvsMlgrxS<=hBw@i_lp=Y}Tjn+4Nf?_#@wWvza)O1KU@?@1vYoZ6;Yo!{NIoIc%** zKwV;5{_WMOzeXho|GhEA-hr@Ibf(YU!$L&|ddK7a&czE96x7Q<58mop_A6$Xk907Z zF~MaW56m{O>r2f%pnmBJuK5C6Qc%9Kb8PJ&;Iz`umL>m*RFSl{riBftX_4GZO%3%q z;^I1PwhO{I=Dz0AC;=0FcJo*jbHLS?SxNhpZqVMO=T>rlQO{@Btgw>3a(wp7%;kI^ za=FTQOxOhSCgBvE~C-ghKut!qOmG}W4=WjO$e>P-i-}BR( zIygF`H5!4}Ti1^TDxQgC8N`lL=Dsb$dULmJj9IPP%$sxw*e!!SR!RlYf*WGjKI0>G zyoVxIsi8BF!FUT%MUNtv(G?Pl^Z zEPA!``YqKVQD#V($0qE2G>&CFQDroKW?MtjXCzqW(&WFqwZD>VfAj}Li*i)=9CK)G zDb$ogBIn;>q)}P(H!L&FEAE<^DAY;c9sM9J0wpcy(fArpYt6$H*X-H7%^4@jV6IiH z(pDpdkCFw3yPV6#LW+1vczjAlm_)t#g5A5PN6qqcX)C)_#eJL7oicJ{tC*E|oLi9` zcwc{C0;6@+U z9%vg@XD}65zzB{!{fwaTRg`lZrau6LYb`aZC

Ik){3goN6?9gD~EPvG2s${0(7G zRkIFHWN_@A7!hcjXReXj32FO`4#8+4)TcqOL6euMit<{q8pn_x4>T-KRt5(mRTahB zHE~V)5c(6K_`G-}cutK=Ur5YuaLyvlCxMUj9W6#-&Z2#GO~a{wW8xtSA^t&|jyH;& z<`8%%E|mm2m$phbISXyszw+klio^)p$AaM&we!HM{1h{t^i$jkyKRQXswHk`#6#-# z)Q_bn-|3CDoa_&F;{%FQMW@ILZsc-8OpS$fblsOjl2>rHuJ0K}4wSv)7@seC+ z*}93<-Yghz0C4cvm?dpgssY*pXDplywReC@w`G_Gs(St4?P|60x?(|sHvF~fG%{fw z{Cg-lv1xTaB5R+o=k3YnP4?7g{?fzZoAbGef1sPNxV0E|7TcZQRHda4c>bZoH@}>s=NG5bnrU*(a`Jq%UO%X*P1BuJi@caF#(#8Qu zZ%+?ib&Kr$2<^{G9TbCg4c+$xtU@9~REHzV$Qb1Idh3&)eT7NyX!|JG!QxS#oXN

IvgXy6u+`!)E zOK2v*TKPr2WNVv>di6f8o}0$;-5!4}(J!yZ=ka)NPmePPw$^n$H?TW|>F>+;D39|{ zn;-=!s4^;;zwh1GU`lDh0hTk{_3`;HAc@~0_2$b(Rgejxm*cGggMK2PyR)ZE;C}DrVfR;uck1_t zv5A-S-$X(qz*Eso?91IqgU8E?z0Ylj&n~;Gy~}{iiEksysrOBtN(}N0l57O_2EDxy09`l+qYtLd6e5QvLv>&ALg)9%Ljvw>dGM&$2 zBYdWZ6nGz`KL`Q)2UOt4yq3(%v)BwDWg`LL$tJY(f)NIz6^Z|x^lUJ+lZ^=mqYa7w ziu7zTwA1NTXh-6|BR%^Q+FA1|bRh9Rk)GYYUc&@~mW5R7OF9V$62_;734ay*NheW3 z!hE>R#~XYO;{8NB?Lr4G?FmA72~AHsEBY&rl7QCwm1HhdY`_Gb#+P}UXEWE?XlUnWCK!cRldeh6 z%vVD@174+9o9;=^jzT+oUWHeio=MLhLxo|fVHmQI*!@T+5kSIZ)G%eQLICL`dQdaL zwp{K=wkwfGdR|*#e4e(*gp6`{mW<9p3^F?nVH zyA^}wEDasbi9G3jSK6ChQRW3qSdvo-W;cJ2A4w596AJz`$Ow3>lOcX#GRKLC)NU+B z^l~4m$!Ae(P^9MqM2)YqqI3nQ$u%*MrRM|ubB>!|yiYMa3Q@c=0er#Xcys0NQdAsv{XhU-TBO77};* zBXn6O)5YWD4*?GGaa=nt(_)+IC^ z8X+ThAmb3ibn_y0U4Y?8&P-N_;YiouNifd^kwm@|`eUl@vA`M0a>J7pjyhoi{t4gS z2qr=+E@aW5&Wa#qj0hlgIeEa5xHC=={}``BQa&?8rWk6qq$>$zbjK>Cv-lG@Rc%{> zHc^0N)r2;u57!rF0wbuv+Z34+pxtSr9Q zbK-85Cjl`h!l_LDDJOz5Ku}tp)wrUc z4!;Awre&Z$M@fQVd7+qJf$tjS(DVhX^ca`u_hWlBq zOvINo7dVe7q4L3svk5t_SarV&VZ{k@ubgvi(r6Aul@=^K?50X?{>({U9kk{GJJSL(Q3@aYmpGz=Rm$g;-S zBMJ4Qi401Cj5=1xdg?&9j&4rI$Bzg7#BAI#yS>oK#?LYiS+%RZ|e@+5cU2#!0&35>;;pD-*HAa@qJl+RC?FuAZ zB5EsHB|h<;@k!qH{9_s&L=dm??9ZHWESKy;I&m=dfxHq%@tfCOE5+2@Hkyg0Hc_`` z6|?Dm99kBBCAXVs5M`kb=IMy~>uw9ah>s2fEV(D#X4?b+qcIvyj}u{%ayE?f3bwa0+t$HP1Kb)_%rn;N3Tx$a`V2?jo*aeG^>TMpXSA zMl@~3xjbg~i%Fqs-Lj!&QEh!TS<*922ejNI^c8r0W((d!%3dGbaobL}tC%@)Zh>__ zU1>=^Z5zGG)CdK)&RDsufJ@hLFrZHMHq3m^ScSaxcLU^0z{l(@;5FjIo8P9_QUYo3 z#nZt=j@LeecTQq+mY1)aHEI?PZt@7bCJa_fne^uqCyIL1bGiQP9G5pLPWkTjRM_om zFaZ~bdmP~1tfdc3YeNrO3P1k1a@yJLaxq=3?7?I1fA|`}e_D^ARkQM=z{`!T!z+2c z!*~~i>moSuZp(?4h`sqqpXqQnzz!gudhZ#lz;*E}@$SND*>nES$X3Eap!ej5Ay4pW z_n01z#TH#?>-fvPTLORl3nql<{tlzV7z$vREivE-IA1t5{oQo)AZft%!t(fBmHBdO zy^CRA8u&6y3obNxdDH<*I8Ba|TMf>Kl?JGk!?)JrJnLAW^Hh|1G(@|lcyz4eIp2fF zvwnX5G4Ex)-InXi^<{~7qb_E`W58x7+$Z6tW$Zc&Y`?>BISSwUb(j;L>1D!W>BD008KuP#5Xc~SNWgg&SDLt}!D0Jowd^ftVAV$00a?Gl zv+po_KHFqS)oxY4=c!mLvNOzH!%L4woFj)J!w6vFgD9p1L+Ey zis0YyocifMt16{_LLXGMP0j+F0|q|hJ0;?}cfx$R%>QJ^k{~>&LxNdCUKM1_es60| z#o>Mz-tFX7SIPChsw`YWv`c;kq@dcZfa`9u8BFewH|!*{%+msASKr#pWY8s8Zqzpt zPCtP-FLd*JT?h?mbk_;$$SULS$`T4x#|ZZSJm(xpgPF6K4^ND1@Ddrd#SDOF=N)Zj60n{gu)bREY< zP|rLgZ9(o;F=x(rWwyRCYN%lM;(^R^v^|=?%hH%5-r;*y< zdE^6ivkH{g`iA@lR##EgdvLbtlGIj-1AjVUa{Rtzz$?H>*~`&aA82N*I!tnVv#HK@ zo&c8)BG#Dxl)UOuVYz?~9h(EPNlsBKKdnr}j~EuiKPY%Px;13)=d`YcY9vZ1B&97U z<_5ne$Rgxkk}BcWW$@tinsa;;^voc~kv6sru~57elXz_yA{k4f4Er7G&bF>=n-LhSWrM~)M;vzxeAMztnodMDJNQQV zk%~=6RNv!qM~4eo+aNYWg7h!+gB(p3pl*(=We%RPlOgkNv5>JM&&(5cZMkSwss(_# zTuq2X#Z6)7q{zu_&31%Yxhag~a0~MD?+Rz>320ryh|tBN*61wLUztxGW`-fLn2#cSVpD zQ=om_TfYAaN`%TbO~8BU5_YN>^l#?UIKIu?M1{mid5sNXDiw;FCwDyo_WZ*0l7ny~Egxz>o+%c4 zJVHo)JS-Whcs&oK7_V}x5u9xnqU7d%t(Nk9ZIKs0W<4C}nWORNn4Bhe5{MyooPa+h z=faEqaFj3ycVR1GFDx)zpnr;(O&xgtU}@LRVDDTrZ#Ktr@%mDZ zW~Q*-Zn&QgktRXAyyd0cV>i_HKq9jL?dBLJE$uThhnl!tSitE2&Lh_l zu21zlmFZpY+DM-&b4>ZZB@^--^%|L@w|rZS@3H&jx>t#~Ae!-sGCC|KA?<3yfh-0; zcJ)UI_CB^!nS47{r$gO6u(f4T_qe57_QI{f=gTeW3H8xn+lOf%Hcz8>X-38gHmR8l zt8<&-k2QSdG&@2i?HHP2qe@L0MjSrDAci3}95m{U6|IWt*J86FNa_AK-tUbZ))HPK z$Q{myq>rJVM*^quC@E{MMZ1}vJ)0`_n%Y9F(~+7Ei_61;yk{C3fU5IGWVb8jj95r+ zDM4fAx9!UJ!Rb6l-9{SdEe?z6J%qX_9*#*rxL@H03w+`tJr0+)>z)Js;4Yq%4%y;f zA?roh@RlTQxzFm+u{LNS%Pb0f$skcPKDDD;tMT)x<++B(k zcbDQWMcSM8ukXG0{V>U9p3Ux@nIpd=yYr=t+tIK-WbPZ18M!A7;*^f*Wqlc$N>m&# zt@w0(*k(Ux)6;ydP6afyOZ323%J%%svm6ZnY3Us3O%NM+b>Kk4vm^dD46@)E@jWb5 zFmbv5uZxiC-$Y2p+g-g}A2pg>NlWT|p8SO?)Ovc~B#YvIjTwNBG--!U3zUHYqWCEp z3hYiLcDhWSpgDUYkWJ}!S`11zbZoya37s=;C5>!HExxAt!0UC2-}0!4nEVvU)H5$4 zammhkV^#sPvQZzz!q8@sYI4pl`iYC;qt?yXN2UHKuXlOJHk7%GAs@FDC#W^-yU=l0 zdx+I!TDR@UX0qK-qf=oDSe+G$1abQPH#Drk z)f|tdkbV$JQ=e)2?vxSi_8Gwn6oqo~+Hf5_RL#XVuYDGYXU7Q?wK({gK`+DRt9vx|}D;*C*DJoyM`x-OF2`%^O11k*vqy`X_- z%IB1>>JV83(oqkp-^zWz@T!}MA0=am4FOvy{Q=3oP}@}m)3%a2PPok*xIvVi`!Ln; zf-lfWtW2-sY%tT+cpCqpQfT~(x!Tt9Zr%48i&-shNNb#@j?Y~Zy8mEvygz&`dx-n z4{}G?#ga^k#GbsHq#A(rs#5rshi4|u>&%!#58>UD7r}zMGh%Wiu0&S~Lg5bOS zFM2~#q1OhXqnu$$hQ3qfkB@B~`iD=B_8BLKwYrD3{uOVNQ1`%lZnyVOIL_<70hZy6 z5+}=^Gv6x`wDIZIT+)`28JM4BjJh~4&c^YnNRQ`?Z1hmIf$&ynUO697ms4Y*#eP9pkZz5^p{@l?ghi=*{MZEc8D$lnM=xKj5CEQJcKJcx@R9bxh8GKo zBpWIcs1TwbDljo2T9%LB;D0wLmdCogsGr;+hJp_d+swMI?;!CNzp7jdu8}4Ss-OWq zmLu&D|Lz;R@pr3)EN|>fRWOZ<j-djI}1y5B!gi`)D$=iGxSo>96dRX@$*WB14txj67 zFmL>XfP)8yk?T@&zaB{wp8?gUBa|o$qsf&?vnVV%YyT}SQTL^&{z;Pm!W^gpo#X+- ztyCX(XR(`(>2$&t&FyZ(mmegKt{{3i$Jb z&#E&qI{o9|eudXQ0!yHtgqg~eAoEuggFwHCCveQD)x0YhZ>U;Muyy+E00R%i`)qR# zESwozn?On=FP_8D_4$Z}2%ujHGMNw`IW~XMizF%52F7_Y$Sl;}x7ESIigcYhhTBOM zrowvk1ZAaDyNgAc5^b0`on>p&*lr8hSXb0PGb|YBp6{a@pKtL@+~bUQ&VHzPf+_Jy z?%xRT=CBC3%*`@7D1aY02-EVOL~2Vm-a+h;J4 zEK`qilVPZTbqw4u;QsK=yl`chvBYcMq2I(0IKtVY_N}x<=9|VBDM}lO?2%T-_>xrg zB-WpOX|GfB-6VrH>l#7i4d}!1e8ksY!zyCw8f?72ul=fwCOK8{9`>;3bxG7qUlXH< z_vXOr?dEpQ3Ili#!{b+B?gyDVM<-V8Hq^wP!r3Yd6js+!Q=n$G4^DW@LZdo|*u70z zKydaD&8-Z5#{a_AytVWZij_0!%qu3e7H(^idqXs~?P))v0oC_~)Usf;pQQxD%NSI8 zT`TM|!z5M~(c|g2P+Zr;%hZ7%JqrZ_AV3vP2Le>hT4izYmjd6~2McbQe+v+Ws=+PkFUk(Y|U@(w+R zi6SG*Y#PwoSExjL<3;E&uE8UB6xU~8!PF7slqa&0^-~SDtak4JR@bK|x|cO0>ZD}g zj@$TRH@Zvtdek`hqkMog><0cf+{;U-(n9(sU|hHdivFzdV`Wc7#7Q})JV`e(Em|zj zJX;{eL*1^3cr@1Lp6GXTWYG!AkI6T3oT7u~55@Rd$&s7C-GGI^Wf4ll=$g7B|y`+w-X5t}|_Yz72n4woGIm#^nm-{=cVksg{B2~LVT^i%W;==+2` z01**6zkj~}wX~|KcU?N0MaZoAUoNhmtjudyb>a`y@1TaJSpy~{jSR9Dl>`#+om%dQ z_X4LV6P&eI;oP2o;Hdxvo~~mnvCXhcZR13L`KNEQXt6qYIlES#K!;R+2E|)1v)#s zfhIHM-wRzjFGTK88bPcmSlo}9Irg_ei|gC#pK^8l3 z@v4Ib^M6{|2>l{dHxTG@f}y_yfv|NV8?B5444M^Dvv2gf(Y-F8Mag!$sMc{7$$d%7 z&!XnTU3O$q-coH%jSU!8tBlb==@d3wA`Ski3eIuE1i!F!&Yl|u4Z}fY?U#DJbuQsD zfX9D{SIkFix-}UGR(3iGmD$?t6>qjfj>bZWp>Zp*0I-2M3e0O;@+nLH!sjK+?Qhe4@jD}YH1^?1RN*Ki7{5)m*V^HN&bhg zY-msxaDmiFYQWg*tB#zuwto_>g_7dYpmlLK~d{?Cwomu@=7%>(gqjyJhxLDHpA99+o+? z^y+8|2nH`s-)po~=+O7^}|(XxB_#v^CFlYarL=tbqr4LTEjo2djzDXT6U4M+Ma? zLC1b`BaBtIrJVl%Vb2e@qjx2`U3X8{ASTgV9V4Yyu1vL$XgE&6S;ZYE`Ac%v8J~s6 zLsMv^Ta#sE4Loq`I3cy`6YpdW>#xOk?>91~j2>#>?|$V=8Qri`3ltRN?cX=+Aj1Y% zk<|T8=Kjqdu&<|Eky1311$JR#C7Za7!f4tR)EAGP;Q)5t(>EIlYtikVSNvm(lKGI$LTS5wkuAO z`bcE8q2M2ZVqXGG;LG2pPZ2oGBv$R#k8GGDY3#&rn)hvf+Vosy?ulj&1C?eM-vNLn zc2~=GhIVRMGhs-BWj#kIrU2tw-Lpt9Y0wI-gHI1GK`x;d7K`4=mOFeLt&rLOz*t5e zOW}X8)vUqtxdpT`&`4~>NDSh5TKl{Qq@&@d71Y{-FS`s$^_8?Yh9NA%in1lK9q(9qheo-C?~BDTvk(aLVQRS| zzvZfuDTjFKg@;v>KgVxvnrBu+1T_nMS+tWO=Foc{Ql{FdCQ>nzLU@{uA( z!{na-Tz-LJoZIL1ZtY_yYg$5(*`scpprM3W5)23d7|HH9{kbu5tLYw`rs)_(3L1Xy zf?gn$3CU)RTyaEk@=YM*v8EtF7{}~+%zY!^-hJ@bFQT{&SAj0THKQ@W;E@&c;Mgv&tOdVq;HN%Y9*f18PP(_xmfLKmIiAxcA5Wii zr~^`-IVn#5;Qy6u3LtII8xgP-71sq6wY_J~oh9;Y*L%W+2QvDO3(DphW?mIZC5dVD zV#wOxRO3X?Eu$yiJz1h{5?2MCm@A?HNZg8J#zm_oKU))BhQiT<=)Y()m53AcL zE)wD-=pYQNYIs+*>PkRAMr3lHNqtc8+$YgJT>xTn;Z5HT((h(nUwd&R zQp$*{#w^Eqh?Q6$4+-9_ma{ElZob^6yF|3*VN@~{5*K9`6MxMv1{Nr$9emJIP|Lj( zGkGf7u>tEYk|yh{`ee7fD-wL)!iTXDYYIQu!q{%PPPQatS;nbok9r;3z;{>+AHgc< zXl-tdi8)nf@NbdQa!V233?9E7F{j56_E-w*uO{){trdvR~Z_~YdbcmEDOtT&&`8RDd{%>sENoCF-l%^}M|#dL>@@&7~if7Do{l4zBM zf;%McW3=X=2eoLBn3-8Aut>Qfq}V`6X>H}4Jy`qvE?lv}^%6^$SjIQ`3D{VCrrKTn|A9*&vwW3+oLh4w>GP+qcD(rwC>^IKrXMf9G+**F}% zzL?f4B&>RB_uBq_wgp(xe^g>e*xoz4OXFK!--45+n@=qA%Cio&zGdg(e97`K0xa5k z=hW>JS|UW&gPddYr3=h~WZBnJbglxge*6+#)&xSy0fV`GcL;P?n1jbrJp|wIdC^7H z9)V~bZodjRoXbPl3JBpVj8%`N;6I_6zmRRquHRubt-<}TLDqM9;K$=*Hox;5lsPI^%mRbW>hu zBsZ$Cbco;F%mT3RDpgb#h0ujfw5kxK{PrOO{wr9Bf4|apls)kTm%lz3Ocqt31XF)q z$1}q!UiAs_CNv`_Ar^{J{2op(wr?I(4rNjC%nOqmpjVuj^g{Iw5Z=AQ9#aK)t>|>R z1H1TEjonl&DOJ;%BR(!`E#vKEj*hW^l+bGmH}!6VftE%w2sdL)r@Knrq0ysdWUIBS zJtJAj7mC>FqTXz`!W{mP5$<86lj-3cqvT-`0|az;r98L_0cQbJ!i%(`vkID6-=;af zONLpV^`QFFy!-QS9Tasn+>U* z^*m{w_0)#6)ux&7V%7(Q4SM0#NjDBtKJ4RNGm}=mhLoDqt&?n~iFc^GfmiP~e<1W> zu!Vg$V8YS@4%2`8j|Wb~yr|l_Io@$l`44sS&t=EIzkaTs5_i-4Yls~>RGJ_6175EC zjpOBVA&yngY-S{41LYrKgrKA9G1?z)@&$=Ipsx^ZzRxO|&|nLf^R}86k4-WGVy#-> zL??4V(Zshe4Q7pRfooq6J=&JrCD~nVV%ba?ehAtQ{qU1G!U>A{l`F(U=kelBt|y4O zdi*xnd9m`DFrzU?k@%!BIJJJ``(~fE<+rN)&%O)c4d%svAcY@Re*rc@RvoRiBP8L> zHvU(W44VgF{K=}7C*aurBjuwd+pam6olk~)R|sT4jxhY%lwa#c0FEy(U_E27ncIl7 zz^QgL2M35#R^H!3VOH<$v1NB_4E{V2=vCfK@W(J84d~`&@xw$_-sta3eyBCP_L5h4 z3VHIGpX@5-wWM9ZuETbaHHZR3RSvXuE=J8z>$E<62}txI z;Q>TwV`awDvkUze9g31NDqYb&JB(8q$4d|@OY(n3aQ=YRRsOdfai;=~Q;^8Wf90^; z@%~E|vA`MyGs%%7{|xW{Q5|0y9)uO{l#TaJlb+IhMwY2XKi*;r23&lA0_OPNP9js- zc1YCR-(!<@B2n~ySD%fpqms?rH!rbcU9xN2HnPJe(51aK4Rc#4XdG94s3qH19vrk6 z@BUCW2iLL9EKJDgwUfW{;4&=h)dV#l>td{9J{e;j02KgJOs6fs8#y81NH+9@#fqN= zrnPk%G|1M2MB986ZKQM&#Kcf63_j?>sF_L!X%;_!vrep)K`Ak~)XuX#D z+*$Yn`D&0Cg34goJMDCXHtFoRf+l+yLiWu9C6d-Rnw;{mV(`QH2j@>uY@i2|(Nk*7 zD>J}>jE=jtkSe`T+9@?ik+(hpCBPM%7{Mr^SV;7fDk~@{!OJ}_(>y_b_}wBASTAoD;4D+!LauPxlREP`Mc|rF%9m(g?w+%HM!d>@akEU>+xBG zJ7|&K*_2;(5gZU-H61tYbtYEw<;%&6sG4y*ll}-eUAWtBkj$i(GYoQ=NobHY|(~Uv)i`{h0tMTE-eeIWP z!Jwbm-5=siy9U`echkwQ#-|>wuWr9LF=U57-f8YU3AhC&w}`14t4GR;1a`b2w?>vE zZ02Ic`aV6rB9D%s^gzD8j|hMc2dqfO)o0_T?{5E6cO$;ASN z9rXNge9EAx5* zzTD$Ljy6ow^uWdybe3_K`s$I{g4hYlpOFND~eguvH$(nl(oqqFK4-h-!MPVzGXEA`36OK3$cDP^>HT zU}~$;7DF~BI!DJ-KKSNB+Oj z3;eWe%nC^&o`~bIxB6F$N-&v(pYD^s6iT1LX0>cy(NFf>U+UNzN$GV|k~ZS8!$L+| z=}Sm)5`I3QEQ_#XJuGM-Q&Spy%JN+4`*TcnlBjMMSftb-98aBcfR^HY`9);KSbNMN zP!xX`qEyDrx#PUfR8}9CZy>RIG`fbwi?Hs!THQyxBXf}1lvqzTDeu1U*W5uU<-vb|hXe%NGOGU> z%gD&x>eBjX|BwZSjUWv*2p^Wu6>#{k6mWUUnjZ(Sm5?A2Elx7v*T(7P&5xam=rj1r z=~C*jyD%@KZ9M>5Vv~Q>bm@o&z;lxN=W(89u7*Wiz4u&@D?QIK>G5|EhhFo6GvJ#m zV&-TsMkAq`pvr$sretMY=h+>x!{vFqUuZA$8K~cz$itN7O60rf0}jTviU+V}v6MLd z=7)!`vZ&j_q;co_4TBs1xb1pL{-^sPBG1HgmvVwy`M2YjpOr9Drr%=QhaW`$0T^n` z;-N!(fnYYk6poB}V=h`;swGqGQ%YV^gY9i@tu2WJ7mxc-B7($P+Yb^UsKU^{{g#v( z`aX*Z(oFX=QxmA+gTnlLDuD}!=s|jJGo&wb+^Gx4TF7>rFUHP=YM(f*C($hhh? zc3uY=|7WERNfWZgwXTp4gV!@cKdfBH6pur%_kG}!A?nWTHaf!9(IY}=r29@~_NEz@ zFPjTTB!m7rnB z0s(TrkOSm?k8%v{JBUd1<+wrrIfP`fBdU0qV~;|`V9ZtM7=is9dI#YizPg#h5hXKP z<|-K;{hxhItOPkt5M=3Nt(`Au8b(1g}(@$FA^Yn=b>EtQ^eXO*Di4W0H6 zN5}pJ*Oj1$A);Hwdl!x$jwBmq)60+m%Iz(ri+c*vWoy#+HYdV+e+=TGw-4=L9R7{i zT^4=HboG!<=I&EpB2KxtKN>zPvOgOZr2b`vwhKHS91&lB-Z>>iOpLY265WMKHjizv z&4SE0L=b+0g_sPK)nTHVa;l2x#Tb>yv1~FF4!1+^yJO zI9YB`JwGeB`nw7A(;-|B5r=*d8QGxXz)VCV9F< zOsXJyq`~7vraN~9Kf;mMrxaWt`jo>UY#_6g0K@?8Ql$Gyd!|sN2jqU`Tk)}1*UQ`% zyW_v-s3*J&72S({3GNSclKUMsVoo9v!c7KsJ;;v^nZP$O0bN7L180BkT?$79@`xPM zH|;M~*Q{IQc#BtI8Yc*Z?WsP!uc{5x+{uOA<;^5GA~3}~ar{dQy&vuY zmq9Y^8)gHsH500Wklx%c=0A%IMIo#b}4C8 zH#CD}jvIZ!@puTLB5NHyoPsnv)}892`Bnc}e#q)evbb!wCDihY2-%LCxASL68LW5r zQdE*{SfMNc<6SBxZ$&#HzjHRNqKRiV3_^bd1cq)OrMYmhn}i#>#INd-tz;HdlKAL| z2&(K@|0qSCGB%gNShi5Nxg8>#WU||D7uLJsn}i`elJ08RuzI31B?;i(K@4cA?kgo1 zASvL!Mw}FmV>a%>xc?9bt1vXa<#A#*<%9EW5tsnv5ThVuZ!J(`(<^A+vEHIcGK%bo zz*e30*)4L>-YF7`puu97K1@s{S9>I)&fl#TiYR;sBm?Bn)OWEQ@YH-H1-#Ra&LkWY zt6dg0NY2N{1s9g4<(>Ag)fqcPul#q7f9TYAoGnPwTj$J_;aEwNKe|nOE)!e@%z? z2uPbxL;3gtxE1qcgZ8b9YHg+SPP8i))d|D(g+}a~n6xWxjUoBYUl;h%9OvI|@FM@(7|iVT6#%TL-y;dCbCf@zPpin*eso!>?P<)lmgcg&wXbZolG z4qvlaOl>x7A%G#CckZ-HEGFCQ`PHU^f8@)VcSG2P8IJS=Q``3wz8k%ov+(+TV4rA3yq?z6v8`>$R`idAD~;E<9Wa^pg6O zEINX}bn11}XKY25+M48eu)Fx|_j(0%_7t={inj>@?)QUzu7eg(Up`g%$k)s|j#bBW ztP)vGNbs(U{frmh;QRr+59qA?GQQc{bAsz1C(Tq$9XPBf_T%BX)wFC%y{mvhtQ8)= zU%h+(cZ0XJaQv>qWr97+viowVEG*Mz^LX>?!e=|P+1~yua@ZO<$ggpOay*2yRrdHrI16U;@QmHzf0R*V^S0P4}vq<4ArP8gP4~PY+ z3eH<0Kx(%PMO%cok_WH@Fv|IL_nL@46n^*53ZL~&^K>j$_;NG1269pBZ|&OG&ovW; zKMcsZP31_k6oCgC%LK9PH{q=MN4L}QOtE)Zz)W5i^CaP*v?oIzGTrc7COVi9pDiSe z3crK0!oP^=@$vxn7kPO){JGp%N$nY)-|Qa_nE z>)R7mMQa4UvgI%`^NLiEsed2(#>1nUq%;c+pO;t02;L|ltM=MH(Pd-@&|UCXe`cIu zTT=QBY)keL4Yqv_WaS5;+1YhpR55d7#4Q9o{7O(|38#;pbWQqzTi$)cPzpe1ip%TCSgGEdUD~;FyCZP#X3P zs{?={Ulo0#Y8#NZ?Bjv+CJO<5IM_B?JlRvFU{njLf+_1ghz-B$yF9Cbq8P}uVY5a* zNStx>c>=z;CfVG!61d*BCCq$IG$YZ#8CFSY8%!gg1)oepU&Oo30GAIc#xW(OeKX6C+lUutv`#cLPy7Il(r+!Lg};`WyNxKM1;GT_ zsdiYV=hJP~G3()6DeU&H4W7r#apNL&eUamyzEtMTWMw7VG5FG*GYjkmCh{2XSp<+d zs}Qllf4o!e_*#jBJ=@z}`LXF*C5U!g$SFqq6KK_O%#-116$!hr&<({dx=>EON%f%W z!TW^NHrQqiTn7&p!esez>q$w3Z`Wvzj;`XRD;*kbplwK86SGqIy~!@)d`3%netON_ zW?J4D*{NgXxUYPy&PtFQNXxlwo-A`x^c^89yr4^ISNv6D8AfUoUDPUBuA;BkCVB!f z;ggR`=y2Gv`60b)T=rYpZNFMwJ@|6Hp1w`>+xpnNExG}6YR_YjD9%_2rLy9HPz%v zTDq0y1!t4a0!kn++vdTyEyrA&ci(2=8BQJ>Vbu)0oO3;>k=OPp*(&dewJeW1G#h6U zQvG2K082kPw=@*(Q62+$PbnJzZBumteED_w`$_!Q)9x_P%E)H7icz@iJWiD#=olJkYSxb1G3w-Kz#C{A|(cTgrlbFUf&t{wvYGEIOu6!DJpeS3w1jkIGL* zs?1jg-x^pL6U|S3REDFtBh|03!H`5(V!;j5@ zF&Lf`_^BZ9)@%A3Rqpp!B(-j)9z+-vVzYoRJS(7?J%O}r;x#v-U-x%8w$bmyq#;`F z;n^~N+d+U&YR`r@WYR&w2Ak&LjaCEBC!CgtVf`OEFzKc=9@$uE&v^@*#`d7#G7iK zZc3&IK(Cn^T~k>j5-MHnl%C#Y|9ZHpZwLUQH-uNZ?g_ASB2`Yq*j%`G@eB(PizyiT zQ)9-7@?1^dLd*Kg3upX9Je;>3UiW5=Mr@+#!0TOrd!|_mH!})3LuyK>E$#j&pMkOW z9kT8st#oS84OGtjlH>%FQWq?Ns;T5~+PXuM71)hz=LbAg=yG9m13y6uVVo0A90$P7 zFm3WALrc;fI^ldXLUSEX!p_K5CKVpz@<^wsmY-qp6TME&dSynyA=E}C-R?WvL*|_+ zGVQzJsq&{P@n>7hJNaLy(t2{taIy0yqCqw)Xps7Q}{uPaXBt(#Ca((u3XvjUy8v2F~G zzskv`P~KtE6MGbt)&0Dr z^#h#dMMV^oW%>b3IvpL^pP=hHeH~?U-s7C6m=T9KAvaMk<(MIckRp3iEiDs_4@z6G zS9cAVh!o$soDJR}?7gFcsw4Q#lJs#Y=J3s%R2g^+_Fv2Jy&yPkLW6*-qZHS8dLYj4 zBBSat=cN@=;`mVioOw(Qo0lO`!CUos5uW?$0cmZ_2@#$}f*8660yraVN7-85UNPh* z$|aDQaL5_5H^owt8GT50V4blDP0;SK^2?BA;ghw~@C^bSH4Ikw)f6^ztwg#XsH7bj@; zL@yx7dS>uI(&t<(O&&~*doxnqoxPV1oindVwV zHpqRc88{u5a_EkXlgyHSGQFN{;>VWG!QSiMdcS3ws{A&m*0}oYKE@q68yhsvYY6G8 zr2>tQ!qv)ljz@H}7_q4mc}bEu}jTkGq#8yq@${=m#nXo|;ZU zwhrYV|LtPSn1eEAq}0?C^n9`jd3t#L_pgTsSeM_34WLAJL=-#KSP4xuD5zgjDVI%z z4L{PEV1Q@NB&}~g;F**6%zQYlzNa7_3Hlbh^+<`9jYS?Jj0kd9+z@+VsBf=mMK}dq zpM2nz#b{RGYtJl*NN1m#syUph$rTrY>^)WU#pQy3{or7qJomRR^6#f2;=bPoeR8XG)XN;L$njAzb`voOBVCDA){-YM6N1}vxcSI;S?1g|?E<@~ z3e#vwUvDeaGGs!W?fm!@oNx5ijB{S^;~#((n4lK-<6pxr8rTj43MBFIUbOM-6j9tV z*cU$l<21>i;|o1fWaMXxlJkc?d{T>JTcfJZD(46a(ORM;=bnkPMDGXQP185d9*zK8 z(u=I<9J=qV1_`FEtRv}SFmAQ!mPc1+4aN8soW*t2n2no-wk9+Ly~;0P=X3=3EakrG z-~se)FK||t%aXkuijRZN%A(o7mW?H5my42DX2@s{(mSLK$UD&Dm6gbGH>Vp{!1wFn z>?I};9t~BU(qaZm2@6YNbAN*i+Y1D)_Yjy$;G|N1d30SHCxLt}Ik*WN>#9ZjlajOC zxv2({)SI>B|D;Y#eWGE$;iR^)KuPtE|K5Sh-BA7G2)$5CtNO)e$<2qqmcu!B~hIKmj_U@4j_(KT+yiLk+BwKn!w zHSq$KDb<&QWk`p7mCd|W-P>T2-=#ccRW~XGH4p=r!{BmYt30V=X4=1TIpR5>&Kaau z5KmNZ^8|m-FDy8M!*}vo837*h#o(Zs&!ZL0PZz!ITGv9TxeGf}Nfa&K==13c`gwMA zFh0>-*65=SlPy7{Qe=OD@{uDld~p1gDzNBNunF&|<+~xU zX;jr)Fo;mYl90dSa6a?c_c3b4ME{%ZlB-rxdr9ge(u&$)T-RLY^9s-oFR%(Mc|E9? zNE5AQ4F@wpW(eivwa)X9M%f+-ekZeWUmP}D{aN;^S>DXjxA6AB9oIlwKnOSHM6<6P zo-ufaX#a_)Blmn^I9w@N_Jq{pC#juSW#!6J6_o?0x1ru!VrFK7A|V52W@i1OPqg(5 z;i~V5*ZtoyD_Y%kVO#*oi0kczo1!ZRlbb*;kHxw-lm-)1aBmn3y=zReKy&kCdIC3x`Dg3kIhpE}KJ zFikN$zvoScx~D2t)49Zi-S>eIdHY@Cr`O=wB_5ucT5(q*W|lW^h7@BA@-Ad`7M&$8 zGR1Ri#$9fw1?GB_+g1Lz*_s|uk+Kk@GS=^cJHPqM=IE# z95vpry4|@N%b9#8U}o31o}O`h_|>DEfjQlg@lE4PO=+t;d`cX#?S z-)}?6x^2)1LhKTkmL?Ybng3PxTB(oQj+T^1SwA20PK`9UIi#;{1?gO;Okc!&R)}e@ zs0wKGYk*HG^-9-+5;1#em7=5ZKGQ7kqmtj2=wT=7b1m@b>vDBc&=eXfniXg!yTC|5 zPL+k6nu@EXJ0sl?0pe0CvI-_r`UQN|u1t_iAyQi8C4_I9=M~3@q)!ZKP1F9_gAbP7 zaUo}uQsUSDph%H04rPnU`cbMyht0CkFNmcQ7=G#?Tn;!$nJ(7rizby^Jz8mM&XxLT-gGv7$vd0(mx}sVKT#IEwjj@XeAQK@nnCh)^)z7-GG1xNtQL zQUzT(S*8e2006r1h7R`K{(`rn+i#(LF1azc=mbz9Ny%d$_P$v_YTQHRvNS41!P-3V zf_k@QK{P2^aK-^LBog{tI{;-~vqL59hoGS#;zZXr%m{}-jrj70xnSuTAiJIr-cv)d(a#!)HAl@ zQNNjG9B;TDs=4^4ORJ)@&1kq&32(*W=EL$D0?0wkGjji^08uqf$|P5 z{I`tb@)!n%EaZYt_=}03($2+y=%$EN_xVF6GmKS3dWrv1X7g3Lo%x6gKhsjrTAk zF42m@v|FrG-5Py~RQc$~KPKSgH=@p8>6Q*gUlYar7|nyf`OUkfVX!JHv(17Hs#|Di zzGI6iE^M8?gRC>Hil*heu3*NeU^reqOD%&m;$G_7s%m2N4(eZOW`mV=CPbK(zuy_~ zet($W%lpF`*gV6_U_fmSHD;xDmv1<+i8iyxL>#y4}fHlxm`d~RcMvF@%e z>nWG1=0)+YSC6Y*8!QYqjLqC`veVyz(Wj%+F3 zO9hn{#V7Ta@m)F*JJl9W1iFsAW8_1Pp*+Hf1ClYp#;xgOX=Wfsm0;txMsFT#gg42G z$B%gF2NM6SY3hiajzs?Ly3EVRnV{`{__HpX^uTG8ss1-AH6e1+{`3x zuee`ZKVf&b8cSM^G$vv>+9^Y4P~3hoQbgja!o!sdDvtYP<{1`3HPV=dB@&YTsVAfp z(&2*=4GZ*qzy^lIiz^@%2Bc!$9w|x|AEh+Mo<=DkTBn+<+?@AY?{#@|D>y3O)xGU4 zrRUYYNV2AhJGSIvrv6^qNrLnC_7oRT{S`MyrTQx;PqP5LVGc|coE6Lx)dC8Nr2#p1 z$alOFiB;{d>x|RCaDT)XznBEFhF^&(AmRTg_}B;awS)**kMDng8TNCu2C_RYt&o^m zZYBc&?llvX$h-NT(cE%k3{!jc;b0*{BK%!;9()nSjj_~Mv%j}X#IiC(8G);vt-{6a zJFf#_o$h`)7F>Q;k(+{?rw*YQ%bA(d_p>l^@972e$gl6Wj3Hv{W#0$QdOK@-1}>4v ztmuBs0t-HURaZyhQqAocwB&cZSbDsyb-kRRh&yotN+mJM@>$bxoi+4+;-Hn4?#$&f z!Z;IXe305$I$f5R&llWadF~W$6FJw-can;wQz0rBqx;{uOY7RaHMe;9d=>g$*!S8TB_68Vs`}a- z6{w2n+YBapIz%KFOr!e@YDT}~A{sU?KP~$8egcAvFXuJ1YoAb5d#_jR%QI9qnf0Ce zsCJMqq( z_y=B=Ylcd4k4Mf?@d)#>lPhIrzGX@ow6fFip*#0;C^unI;7j#d63Pqy!;j zxZOF^M?TZn4I4TCT4jjH@?vLjChZp$|Am)9QDs*3_iYYQwISSDg z4J9LBNlPD0t_lqz7EH#)*UDpLDNrc)a=KzSsNQjnH_$EW!(ko-4j|*DB^vO~Q-Z!p zSujQqVy9v$?-PAjWXOe%(oIYBk1V>bH>mf*R@R~c6)LbS*Hn|Dj%%OiKB)s+TlHlr z)hju(A;i_$A2Z98y_?y%IoYa_EL>tF$WV7gUeVDzU= zrKYU2>TVmTx0w?Lt)8gijR#^Xqgx80;0;>L>qHpTvtld%y+%|K!$uwMphcQat}tk9 z++wsu%0e-EAo=hAfo%i!1liA#x@mf=!XRY8Ft*OOzkg>M|2&|D8$%l)^M@eFk*-$Y zfR^7omY+HbEQ(16?ld%@Q~h*2Q2{1k1-nDRIG~P_(9FCj`5~TeXe>| zeC2~al=g3f@_9t0|GtJGcFVr=oPx^7ZeUi@uBswrMlkB~z2`e442CayH33ovKXGL1 z4A6@PlbzrhK#nm3Gp!md88O~}?u<7t&61HmFhea_#}j68l=Ri0&Gfwmc>FwY0GrnU zXU8b-nUiCE;0J?aDMp=+5etar%92$1ZUl}7RB5+slt%&?$H6i6f})p?D7Fr^vY0To zGFU+vMB<{~N@>5i{v1ggT^k;B=KU>R{{#MbMZ5f?cC(5#=bMc>E29p}d8f|b^%O2$ zk7S0ffYCg>hy{`r*V3)&1=KY7yov*Ym*21r$kj?jD48h*aZ1=wP_k|*@Ba^3-yGxF z7kt^aZQJIwZQHiZ&$Ml0+P2+2ZQHhOO=J6;-QOmgO(m6+m;2Ald&#YPtIj#2Sb(-W zKEW@c*{%|u#M%~|mLTjIEG@$ZEmQ9RzZAQ*>SzRsM2pSFRfTbl!x800qa?eD#7!Q_ zV(J$dS~Z41YtfYt`jzH7%B{l-8EbE7h+jD<{s>Vj{N9W+R^( z?i7Pb!LN(U89*l3UX-1`7sr%hAb?@hkVYVE?^;PIaH;VOtFOD2Rqu6T_yM0Zxb{mO z+P%lB3iLkFgqBYYpE}m4-Fb7Mu#sjy!sON9rL!~TcYFH zz6p3Sh=WOeUI_P%?`*d;NK|2F*r_Vz27H^ME6g9=p|M{5n7gf`fOhzN5rF#WtD~^4 zsN@584f#Es0}<)q-w5?~xHh=O3rh)Cl+x-kP`=5_pSb_`qX_~h4x#}~#q7G;C`Xm3 zBe7?K4X*)y=ksWb*Ye{U->QbpWQqcJrZ^PLKceLIuJXdq1M|>vkN4j>l0H66F5`H_C!)`Tnd6Gh-U0TMZm{0a}2ia-c0t~a(Y zH?)4U*^9{tVz^e^nU?H_@$kUloRZm-=Zqr6kQG@M$-;=Sc7NnA3jdJe^g-r2g z!T|OY9nA?B->9-B^2MEe_YJ)3=bjL$0HR5^L6&d{+GoXvD@*)Asvt)G{sx zfcVzdMlNr4+G%%XrL)3Lz|H4sgmL=E}MquIs$@_6*bfaQbHU!2+LE{rJJ2?~#s z_=I$uy@?YyaeF6KnT`15{yhd>se+5>Q}yoDh)!;(Wkx6_=f?CD%I_ zgK%e|z}39lph=q42M6xH_@vgT^B8MiqYo=KcZ#B=9a?DZefc@#1ECvVsaqebKWEss zp(VQd1c#&EXMyvS(Ttmp#79nz-w537B@ zjr(|goi|)hq-i4Kx?%Aknw7SnA?0VBfqN^5?3`*7e20!_s|v%S=y|cIK~t70%LK?qH=lZ<(viC z9`#hc8DPGI^UDdOw^TEu$PWtQcYR;XtS~BuHE`*+4uR$vra2_t?m4SomL{ zXf4JkR)fUot!e)^uNyi!0CI7Zn24yt7{tKYM%d^Zw;#YkM`wk3%pScLt@}3WCghkV zdVZ~do^^Xy>2xjjBq#HEJD$ugCD-$;Zmbw67*NeJ>h8;%Ba+yha%h77TQsP=)N9wx z0vWt;)gxdUXjsKyx3bid{5QGZ(2lbGZ*$}`YI`DRi+BMHR>(02xN3AMULD}t^my3U zElziZW8xuYZd({R9@A+jIQ-yjUdS!<5Me9gS$aH^pMm~|VD4ULHBqXm#30)Ot!=XD z89XNOo4`oZp@r%P~j47(-{SgN`h>Wx@-dV!*NEGZnaQJ1x@*)`mk?TZuaFv|pgM93K2~ zI>h7=3WOMeC?36Abg*#fx6+Q@$>sz}CeQk>^noEH(2Fp)F>vwAjuk2<;}yBZ8lq)# z^)x^14((3OeZ_zOg6=YKzPStVlgWJqglT)7?C| zx+&5H3N1^xTLgMWx@MYYy~>@YH@*oHYCJl%3WlPTpFr6kQrC6r344nkB!z3d?qUh% z)OfT!Wlfje+Eb*N>bKn!Jf-vCc{ju-yB_?o5s+zA@^%3#fTN7PMI4G)WRk;pQ3ajN zM~qZO9Z4}y_a9W;CGxf7GgtkRY~w#XPlMGbm>E`J^m=1wf!2KvU< zQp2^Rxlun}f1F;f)#s;l!+Y>a$|Q6-Zi!+L+f3!3KP3syeTk?ogIFr3tn{t43MKjk zuU)dU!;F9XQq>f<#blI=Ajg>wOoLeQ-67|@iE8xidxMr&_?7!Dx6Vr=60*@+E!cBv zvIlwHj;sFd)p#k|Wtv~~y4rg+lQmMXq?+*n4>>(Jz)j=`3!!TkCf^)Ht=I-OnaR|I zg1Yz|Cy0J8RJj-Vm>yuwDng7#>*nOg4}&RMH~^|q=B$-*nD+-Am50$yXfppHGBD%E zFS<=t%G5Jb#;S0l*P>>LL|GWBww{e#+qlqIBBrlsl*Ayk6o(cvu^vxxUwPHviWi=p z5WVjJ(21s07NgMP5+{9!xueD>eV2x`w@qi34c!$!Q4p>Jl}6qzvOlMsN4!AFK)w-p zO>4jr;8iFpH4wF^CNn_GnctsKES5#dN#45B1|QEzq~x#V+@|a*9dE*be^@bLIwtko zN<**=2%dT;5v4f7Inn}n6lEjts<_G*SiS(8N(T3?nsSa0CcrGqjxwP?)tWVC$7Zp^)_VNv2bP*mQtwtXBza1AHqLN6 zAw_D(McAtOnzw7Qm}Y=hQkpnAS?s=NuraMgfZm#yvypcaf0Puj!<{T+9`9 zckmlcKGz!CRJ>JLFskP-4F?T&7Nl&2@-Mtqo0><_h!`o3uy74313SlC7>X>XDcaKoXIBmts@f4(i_SbuF z7fb9U`~@aCG;3a3Z;h-yRljn`K0}Kww7%aK*_b~_T~FTVFCKXtf)_Y;sKe^cw6l4n zyyH@fJUO}n)ZE&8+y*seNJk^giuLmxF10ae+jm`IjEbZ1zQtX7+xwysFZ<2ig%_fJiUx?qJ5vm-KB_TL|PwSQ1>SktV7V zC|eu72E_3SSJAAt^o#?xvCTaz1Y5Urs=w%vuvr1H$VVD5RO=%S5@c`^4b~9up2?^6 z(J_((=U>o3iO)?=DUs-0+jSY0$_1(M5Bq&XWPb5S`fu!H4+Op{^q|j6oHi=)J23|M zWW<4n?rzFL@A4uuG!0iWImK$@uU+6;uJHJO4GKeYL2A`>`7U#=#pQaJIE4bF!$-W&!?G0tta_i+yQ$ zBTUe|L+aMHs{2MY$?s$BNjC{81q~r$ym&Y+P24b%U^F+7@Q#&<8d^b&4LVn@KOC7G zN@1A(IMj~bFN$pgE7t7qV4RNR7vTQtPw>YJW=9}wlA86hzcQecprZyUnk<>RA9i4-xsMH1CSwc@|BBU=>jPT{G1{Mmk3ks0bmetR63oMsl=yhE$~ z2r~=?AYZN|7c}($;sTN`Ghs8Y3@Hg%16@~55M>l3xDp1((DL`uY7iC8DPv_`ZD0>f z$J3yo@nA5LFLnLHeZL_qoijgW>hTW>bv%Q zVVzIcfNd?Ve6(+pr_jU;pga^su9xMa(J?<&JP4UiLn}#C(!gc`z*47_#g1>Q36__ z)-84X)9(iJe*mrXZDjTA{?~tS(xH^=RtLGn<<_&3jqvn z)>+1kOJa9`=s58-npXGn3;4}_t}MEMZn}yV`W4<|r2zI7$4RW+cB9tX1XnE>dQ1j1 z#T!CbJwltpJI^Y__jN<06v5M3eD*3hP9po>Eat|6Fbz6cS0SLtLCy8!wA&#LP^+UW zQl8QI^-U}vUSFOsCz@RT?=4*&pHdIor>LhX*g^(C$^F@bh0Q-aYf@+G-tnMj}>USFN^EBV~M!szhvHsA>m*Z=1}qu?IU zEbe%tNxK8vCFl9~9&c#Fwko9@j92+DxhKceY<)^j#d%~6SEv|>@$8t1p$M%&#;s}Q z-|QSYvvZkWAz&)ty(LB~KBP~diYhl4erlb#(b0EXo{NOr^r6}}2bQ;c3y#c1hJ@P? zoh3Ax?jZiJSlY2xI`-p?)M>K{0ZO~b7wBYAG|1%1r{~3trX}Xzph@*dMh%t=ci3V`{amyQp#lpqQeXWR^1 zpHp7}$eoHD_$D|1SsjaIr1eyp)#@)pNyV07n)@RB&`4KnLTQZz&xG&yJYR94~=>>Z~!OqqwR^G+d{fd%op$ zFhkTkJ=_bM1&z4Oc*$$ax$ll)#ozRdc&~8))aSH+)a+C>+C9swA%YFb$@BT#n_>q8 zaHy{CjGT`wG%M9O=9(xWc*cF*(M>cY{P+-8`%B|vyb2n*_F7wWl+u#+)?&}T_(W}C zAn?vCuggEb!kHh;f4uN~FTpdu22l2A|C)K+a(N{Tp5H)p!}<_n3@SN1nvZJM?A_*b z;97IM#sj&H=I!^+5M3iROh`Ta-uie2m>*UDS~^{nDMiR~OBf$2ow`@BvR)~@@;<9z zds-|t*B`PUt~qx8w`dpk;By{GYpX4XBBu@9)LB0Ejk@Zk88fXU2tPGfK@$DuVL+eJ+G4U(=+LAi(h+pOGokF4MjKef|pUu zpKnRXYnIuC^sJIa8GF4ML@xYMd7RczLEn`)wb$E$9}9`X+`2;C&S7^aSa(o#|%jV8x8&{Uujj_ zy(NJ237b6*X@H2LW#t;trnE5feHJ%ceX%VJKmZR}dXfagfc+QjwvY>9cTB+lX%G_q zH;plKWM2ev&x(pa;ir)pJU`OB%y%2-{)In>o{~i&Dy}&aK*5L`)l;OBNE{>|P9kR6 z+Za8M^PhNcv|#L7JZEkFAM$(9BGR#0Fm(0+Y&hhW_1=^E`6$73EV^`eZic%(ea3v& z?nvpTxRfG8n_z4oGe+SW^BO6>brp$Qyi!}&RHra76InG(w3dXHN;-^!W-04%gJQeC zDUa7m*R9m^fIrVTD%W_o33G>{R|-if9S@#8MUZifx9f41w(BF{w3_a?#ZlQ)a zE91V+{%wLt38YP&?6uGv9T_XH(-1iJYb>e~;rA+Bzhv2!f7>QE;D$*$wKo_@3&rt( zCLOePXL#&)FmEPn!W$3ro)7*F142chAeob{Ojt0?2jHCUlbed8BJPdo&JTPhsWfc4 z{2{rF!g63g|9&|E*tMiwqz2**?SU}hQp;h|q0XC2Z9yOk2oJ}%%c$AcN~c;bpdgSe zCz`GqD}5A;T6je0B0|WCUk};$w#d;+DA1&>V~>#0_4H0ro|X`VF+qswsUIBJhtg=O~mwc8#d|!_KJSjV#uu8TrVe^ zcJe$tH+>-u+mUgb1DHdzwnH_DVtT>@8 z&+_!B@Tz6l=Z)r?@(B}LaR9G6;^;ps8)EsbLp&%TN#++qcMP#>vm`Rh{vcol*P8QQ zLku`c_CLX^@L8h&W6!~KwJ39C?)V8Yim@i zowvToMUbK7z4B#!i8Kq__``FIvr65vVOJT?tqU%S;Gu{~gn;|#)@bJ6LLMFwmzh$Z zs}I#WYpLKoVZZmuL{b$*Bh5*&FKIj+c~X`$<#Gc?oD@4+8742v1?Ch)+%!fr03dbS zEfAzE+TPZUwkiFQd{r&cVMIH(gkFM*!wKLswxvN`gMCUApjSe6LVhQSaSUmbnMd#{ zt1B2~B>gqRL->LThf~t$9I1q&U>Auvxtw5ulR)^g6_5wgY=g%@quIaRH%H2tdG2`G z7M@6KbfJhl?h~rRY{XfA!(!&413D;`n^b>@58x0ju1M*4LhfP}p{R zOPEz`zsCUKRSs^CG=9Wvoy%GVP`W1gnO3ZgIP4xXs!@8>*QnW4O@Dy%G6vukgtvhXGOOdTkLwAx6_0?d7G`f)0O)l6 zD?Y)Bd~9jSEUM$=^6Iuo5@~Q*Rq^im1}XA%dZMkEg|a}-*>y+AJ!q2=?B$q7Rcie* z*H59XHS!hq>UNRA?~{gPcS3A9ifyhb-w`0=b%;)SHIl;vMrlNZJvKhckv zp^H^5SeHh38cqs?tyGqGedGxU0oXWLhKnuI=RV}G4(=F`Jyp6HD*}xdV0{#KfqtnH z^1lJC!B-m{Ux_f5=k4I&ip!hrOH*&uC-_utYPpy=S5vmFWNRTpxau@?*IQG0b*%ch zYy*T|O@1J^F+}ub!OdDI-(He+M(C+@Q8#ft7G@2>PM-q4lz|5q=rHHNhFqA5SIy zU`(`|jB7$4WH#)A)d-+aJ0-}jQVSGP+(;4-w_!9sH$WHkcLp>U`MZIl0XU6>Bh)_j zo7i5;J1LI>mTN$bWyM``uv1g?^`rEW95M{Mf65u|jo7a&V9J3uK#hBJc|hpxQVlA^ zBZqjMxK6NNX()`Bk##nlYJlYWrw(EUGZ=!TGv7fKrdLc|*@>ZzOG~YIv(>_aEjkZa z!l}x?DL-i#kSLmA>7m(QW#&Y@z;;8v-C0Y4x^_Nz^{w$a89?CF%t=R00^9{x`4<@a z6FnFA2!|v~wa+{HfVwfcH!D|WLpteYw{P=l9nObq{dJ^*x`seeLVBFV>xNEJi(S8) zdkjKXl*|fFbt;&Ck{D-d#sc0}H$s`ZK^3R8OyVq4l9B<@5c<5WM|A@nQBL#@5 z1D735W@A6z1^_Bmqt0SFYYhpUGO{B9s|p-Fo^z)ar0U!50JLITN2^g1wlWQ%44z?< z7@CPq4w}n>EKQt8aTbKK-Q%Z7+iX|a4y{J0={Yl}5jQrjaClJE+;Dh$9OQuz`W5%_< zMEFHh<10Fg0O3~t2HMMWT=3@AXC*jDJ%mYcXjdzC=MJ_rPSp23r*GRbh=H+q58>?Y zvXwRQhsJ^qBElCo?Y<+1Z{Kze zO-4WqqD>ekxZ`~$8G0x7D=zMq%{eHjjd1MYEX{w_O-)uaaOHU*lNm?DXoR=}q%*=B z3Io1+;x&A{gg-B4>bUl51z6WxBb%Xjf%t$>;51i-tO^hP*LB~xx3)-@wH8#B`7Q!E z=`i#~0C^R8&q_7lJ}nOy;Ii9cJA2n;#OiEYWd!c%eU?iU>~umHVYJ0p9Y^30_M++y z;e~>9J;mnrG%(gPI!{*--p+gc^Tmh)g#c)Z9&);K)lPG*2I`@PYH83AiU2y(BWd#L zvs(sYT{6_lWBY)!CYJy!nfJz1KhJ(*=$hSFqePJ)19HquRYX-_^;&}6RF~E2s4s19 zwG-r$X7C3zKj|CO;P-GVV2ww63Lz9M+c{NArj^M_U%`RI4y;GpcjB{(@#AezWLa!o zpnrw?`|fuW;`Ywpkw^az1T@ruFkh>0 zLG%oYH2JLHa*wj3S*E;g{hfp^+)b%N?12h3fu1d71j%!!;_u_r{Smg?hj zzcj5}|L!70MTwFThu)PJVdqgX`buvfGZM}77J0C%^OXIARi$%PTb+2V`;JRC4o#Wd zY1Im&y!Lr6Xo8K2-8ExOzS$?7f)v4sXGN%lxr4-(1YDyWtC35Nij8%xoMRoyw#8nF z@rKk$RQj!@OlS?Zsg7@f&)$1kc8?P96|qrTofLja02ucCaUBVty?n_ZCInV&r34U- z)AZkrj6BnL=3<&n-0DgUu_`}Nba_t{J%Iw9yXoJRIEDS&VcVp_y^dPNwewms*9*P5 zccL3tEyR4cj-DPa|FMg2Pi7@lER*invwhSgb@-mlPP+Q#AOm7!>vo;blcj8A^}PY> zyD07v1bCB3Yt8F7Rx~k1(3r@-jOlrLypsN-C}R^)2b4UUFu9OP-bRr=;qi;hVMR-3 z;=uLB*12N4QKuPr7SzSNVp~s`0V_%Q!k|`w<7KN{a2I3>CN}Oh``QoEJ#D|SLBC#N zSN-!xA0Bu83<;DVxfKV0*4L{x;S2&&at=pN2mp`Ek*ckAMh=o_@0k#)u}rX%k#!vz zk24-nV98`S*-ibob_M1AK?&kGAxK^M z-(1=4hn6QsfBC{^%Fi1L5%CJr(;Tm82&IC#<65j$AKd&(nBbEsB~Mp~=RA8D7TK?t z$IRd(wwB+^er(y;$m~jxGwPv9Fl6A@JAhZMw^V0BVQHMqz8XEWUEF1)`mI*SO$bGMB2J5EAQ8WV^tJ0@ z2g0yU2H>I5`lufMb%axcRV|K^z?lrpGl>s94eoh2Psq|0SRI=#R@y;?IcS|@m^_!? zQp>P_M)yGnV6lK!83r=vG}f?42oo`qI1IxI!<4O~w7BCRp036{A3fGNyINpeN zm+RnYStc$QT5jz+ho~K?w!m~Lv%u_34KA6-O*c&N1Frj51L8IK;!{s=Gj%15#e_)YnXc=6?Rf?b<7ca zWaz`mxq=>KQ|UCt71@6C5YnvC6Zj15^g>W#J&9O~Z4o7oQF42DvA11|-0_xli&PmX znCH-eIZ5YyO9&#NIAx0e_Rruf-5^#D(d^Yj(A%bvT>)8@0P8MED;SEZGgo{r!9a!C z#GPLcCS1djD0OdV>D*a?~Bjz43Ya z1_A>5{ssk7Oj>J!hnaglH=PFs0&>Afx_!h0Ff+K@* zAn-<;8D<&ptb^Fq|5K#HXb{!eR4gK%i*3m5VJ$i&4fi3F4}iB_#faMrABh9Rvf0o| z?Uv%S$aTwAYbK?2jb|#6-)nPvTZy;VthOX>zwEfBzTeP2Ia51NZ<_6td}7*pX1SaJ zruO(*r!rY|Tr&7hV~BNzb&|ZhkcQPwx~VE`{ZvIFCr!&Gy6fGT`R|!??f%F-)E$eW zmA|wOcf5QXm z!P4Awa2SPA!HkH~rQUzL{uC{!F^jAPSkfYHV{tEgXLy3!W?GTH+cXqVsSQ;X$O!_z z6nEiD41IUnMP9iLE8J_Bhgrh_^~578YPs$iqbS>IeqPy~0-GW@g?BgGJgdFYi^LeqsGRhG;E*py!^ zqFR>&Cht4dsyQo&0P>#-1Wpf2T2$3s$&k61$pg}rp;^+HO!#ZVr(0x&DwXK)4WVvL>d;02U;50jqRo~00sX~hhwp?vdH)@%pq#&+FYpaOlgxjv z1TM>-hJJ8Ih9G@`Z3N)?ym+*9-ZLyx!vbH`VnV_g$Q& zE6#T>;wAI!&F|9&(4IHPk_}*nbfIS_(7bg60fBUA1#s5det@(5*TJji7h+)M@AqfA z)3Z3n$G^z$BC|e3+c{wA!LEj&sTSjZw|Er5cxwZ{53^q>Z&xEVMsEsoKSeHFtq(qP zz7B=Iaq|TNA+^JAeXd3;T|FIhEua>Sg!hU0Iv(0>`{WxQwgLi-X!Hp+fJaPc|Z8@D#mJnR=O*l6U zaW9RN_gAH>)R&o4_jx{_coVbP=&!IgmJEqwuUumF|HMgCa!<$crY-UoiB}G)Dx6C*tK%H?^Hm z$MkbSgeR&pLlzZzl7o-8MSlQsouOSWuDJMx-i+Lf) zd73TDL>{5J8wC|rYcTAIz9yQU7>pxP>)9{jpzJ!q`K((J{mHg1P{YU&$-1^O1Lk+0 zkq+u7{$#3sycjvH!coof{g+zQk%5)KYf#iK@v}v$W$;~7_ZxPgylU};QM-{SJN5j+ z0sEGSwYq=>r)6mu6`=t5F?WbqyOshj9@UtfG&izUf0HQKwugFZzgfz<<+qx>QIVaK z1J@kc{u;0JTp^;BS)+CLjv(oQG9-7+)h#6o_(m@Ty0Bof5KF`Wcl`Gub>@wmKAMcY zl_Bz^)Tf58Zj-e6{X2wuirf{>vaczjJ80QB94P?LGqU!VUiy8aOu1j*@&~$+|FCcV zJqk`PmKNODFM`CQwfJCU{ebQg%XGvswhY%xHXL@wy0VwmhoyhA*4H2i7zS1&J-u7! zw&r@zXNKLP>om=g)!hJot=m54`I&KXyoqPXcF1qB)4Pu^^vAnjx;&8zd2vBUT;g?n zk8|9v#~=u^GjlGze9pJu5??!l{*hf0qi-OLAM#hof{&QbP+Y&h;ohjcf!{3Og1uhe zQFc*3X!SqA{_Au$9>35*17c7S>3YC`fDYh+fRKK+G*4Sb69+pxGkaGTW(H3?+er;Q z`=3qBpL3TN3FN&c`in}-`GD>*N{`46Q>a5w=`kR|GD|N~Rcg$sK{Lm)1THe`Q#K*2UFVLNb$N{WsxZ!>~065kUL0Y3> znWrTb3a7`xkZHwI416)bVogLhpKZUv+y;W5)Pw0EHO3%1hyb7}N^{A^c3XwL0)Ftc!Z zE!B9@A(jpa{M^7YLN>~h{dx!H6JbD>feUiDr!n6(cFHk@e+x1GY!u5%^BQt&AbTHb z6F&!B4ZM!JEM%Z4bXLFknexWSCW z5uK%O_B!qiwOW=lV3&atk<=npa^DiV-y-Na6VC>^)paV-hL4}r{mJLXgbSz?LWHOk zMU!$LBgox{`omH|Zk=qd!ZsQK%%@dW_|No@0Sv>=8eu zGNPF`0GcKA>-`h)P%I}X^B9~b2rGAzUlD8)5<~3TCrptsITM+4x5co^{Lkh5D6xR21R=oi7%~9n7ITzpI$UgHm!?i zQ5+PJJH!QzLO2rqYISC+&lS-VJCihafStt(|Cy=+>NnVAJJ0-NoKG-VtICQ8zHV92ll%8eW59=PF zEqcdlcqd-jf*HEwn|zuw|A8|Y9C;#Ef>d?RRtppYoWrW_bQ(F}8l+Uq*j99a9I&H* zr@iB=D=5Q<#|VP-$?6gLi_A&uolC*RGoQFTsBl%mF`FW(AzYc$vD=~-7R4!SMW=*U z|I=U=MDz<@8#wQUuR+O~YAPH6WlLr#xAjXB74IEdQvcY8i$*HIg!4s;8~T&!JI?ai z?CMPy@^28Q{Vx9FUH8`c*rSJHSF3LyI6j*vtQrYTdOdx$^D+%pDLRrB5k@@1c6jKU zi`)FCTfI-x)|bWV)a2Ms(p(FAlJqxAYa2LlDloLejQ5}DA2usUng%2=7eFlY8G|73 zP?HrDf;D-xs9`jhY=W*~oKRFC6_g)hfvn&chH`@7K~B%sOSVtP+xbM+Qp5Y~bCy^u ze|9~lt9tW=mq&}H0p4_vz}Vnq#Z-${F8hT27QwXr#?uG5-zcEEPF$7jXb{>s#@SB=~(UbC%)7z6Xs`GeosGFQe%`caJo*b148tb1aF~; z#D1i5FOunpOe*}sS~c~Aa)GG|w?<)S%F+716^p2;rH1y;63^AvldwiA1MgBM(+#_< zqhr07yVr();h#g-`o_5H1abRQZ^(7UTRz8~1dN0`h8H*P?YpV#>~cxFTk3GfyYHur|b_;)xcrh z?BSu&wl;IaY$cly{-0gvS;bQ6-)%Z|e3t$uPK_&YjDsjnN(aE})56{jl26a;W871` zK~VmK-OCNeLD3%r1jhQB&#)oi`T;MT$0j}Zhas(p+?Im(eGkg(*R|~7nET9P3!manK%)?`er;=5qj%XLuk$aoQ$Z6B zChcE}JPl}xb2)9vWC=Oi#+s63PDa$IeT}E?$^HvQq`Zn9YaDTxm0@B&Fiw;>aY#8! zY^+(~`O~NwdUABl8Kw-;_1rKiX9)XP(zgUvAIvFC&Hxzm_-Q=~{Ush8^N1xL1f~d2 z9msw<_QWA1)~Fdnd4Md4bz^RPx^Ut@$#q)d;-c`{I`es4V==q%_~uz*IGJ+~Nd(m` z*NevIT!7cZml(OhDGj6jdgD3dV+~4%0`bbfQ8#xIQ&MQoHIy@3GXB!cMP`?gKkgA1 zGsL+$U4YMyK~t4fm@zVPtQMvar++zSHUtfyuXH**A#h6s z9*Zo5SSyL?dFTlV1zUCNC>7_~&an|8Gp05b#2YlZzBjQ^*&%;~#WB|^i;J2Og;BB5 zmbpVSUrnjT=1Y)l7y>s$+$EM6ZcxT#iSv_UBmvVBW;S}LbmY!OEJ&!_l!;zBd}*rK zjT>{m-NCJ8{&Yf*Xiy?*aa8%{)IQh|OsNI-T;%c(vQ#oWdEsuZq~jZ3r9-n=N)J9= zNY*GNNT{%>G6))iS{Ra{V*AkqRGP4dWkE$&X_KUIl3j?b<&;%u$-B1up~RkpnHf;& zx&RkpQuw@I5?;}=fQ72oD7gq`YKkgF)Krw@G1x@E>0YM5Hk@QmD$t?deTzAnd6lKd z#%rleNz(l=)OP_eNw&YSNMN-nrESAwXSKSnj^wj%MXTd%}+Y&&}fGZx|1p~Bp7 zwkMqu*zsQ{{haxf6IXr#ER0nQ1Un1-mND}#lj&{3HX z!>+2TvSez-S$44bzbd!cFJRf;AFo%)pNmZEgjtiL)$8*)6kRkGlS8IRkg(KMOT^a} zNuTcydeqF2@1;Tvi$%+jlJlO3hHg<#$rWh9Rn>rh1~ys5Y*`)MsKC~fV?JGkDp6O?8@?X!7m57I_*n|);Ea#` zCx&#v5sQ&R4~&P=9 zl$laBDQ3V5?or$&?qQgloweKYnSgjY(- z+c`9MR%t3!5c1;6Rte!Xd}tzCB3)oZinrtcMn#KEX1K%#K@61>J@e61A?zCCf~64& zhgd1)h4kD);UK0`sz$_pX+jHEP8VK_u;3e49|9fCPTP0oaR#C6p!KDp0|9F`RewZ{ zO{8)oDY0cMkQjplc+<}6c%+yVS%AkWawSJo=i{+Vlw*B<^Xr*1mH#R`?uK)n9sNyC zV$CIhUH3yT2Ps&=;8wgb@CSVDuvDgdKTDy$3UcMnV3 zFj%hAz)Oz@k54p{jM-F!Y*r^0#`#Oy0A)(rD4RgQL|Z8(brqzd?g4)NiicFep9;O@ zu@X-S74vEdXZP#SNfIW4A%v`GE*pIKhw3n`12ghJpAqew_3C~{=wkhaG zJoW~u065zT6~8cA3mqVibJJKwV0)HB)3+j*k6vJud^=68AP7_!4XzL!Vi}I5SJnNb zba*$}m@y!njFr?u46_w3zt}G&1rlEuJ~u#6Ea=!2q3@YfWX}5|NTTI{5oDjtl@v(~ zGX$mTa>?(TCUTU2kq5DdCfSSO-G(tXs2Oy#ZtkxoC@VcglmswIk#V&=$=hVNjHC#F zZ>WPO8_ll5q{)N7V!@8h+vxG?w6Cn4=Ukdo3gDndZ}_EQN?(j}3yra@Oo3(U3h#Q0 z=9$M&3-!6(LBHGvT|L_jn=MrwAEK;if`{Kmo74}$py*psr0Toi@yhmTU$wy-*ix`c zpga;v4TDiktpFT4B8gx)*EwT!%A=vS^$5Pex;GJxJk#4ZUuEd1H7f3nXhOjRFAvscJcF_ZCmq%PZ1krSEj2Nfsr1IC7J^5QdFb z)~X1w+pGusb#arUrWBL5+)V;a+fqRLL7qej^fsMCH~Vc=4caMzbe59D=WR2;0~PuT znM!xZg>UBf?t-PEP=3D>5ro6CK<=r=q9LF?qq(ECFilnXOz1Jbp_l@r1O)?#KHtws z|1k}NX9PLYNWehC_`vYO=)mB@*uV%-`Ig=a?`8C(f?Eo>Vq_lAVaWmLy zL<*6_BOQv_WfD(@_NVs8_UH6x_H)7*P*+j4nKai?elj1$jfxG{lPY0m@fUCZ<^Th*QpDZ!>#U+@nXi$#0gdI^D> zfxh|caJ{>eTO_@JaP`kTvLw_z)Cq`KiQMneW^KJte|D$n2gPS6+C7U7 zd8;V0a^7P|zAb!{OLL+7t)<#g4J>`E(^j1PTr%NP@3ae3>)y9++q6_i^s3pOOw)H} z(N5uSuHKLPdT7-uwyP^-mCwxo^nCa2_HQdUUg`~R(2@5(;St#Qb4GsO!za_%zvsBJ z^tXb@frSc>KfRX!6QiZGNE>)s)}>{8_v@K$t51lPRIhb-ju{n6!q4RH~-l#O~ z5}5by(EZwA4gFWPd;ew4n#Q+3WV2%IXhgQOWzvX)G#Sv8&7HnMkx`okbXwE&`-+TWOe#wt`goKW^_eEGgK&aCoKxE%oEadF zUCNB=GKlFg z1_o&q1x6pIpH*hmg$$xk|F6s_$^=|}3>1=>uBQTYkHe4Y8&nvjC-eW{n*LLPQDAcE zZvk$E3FoJ;S78ibTry3S(MlS9>=L0YXL_hAqb+j;8{_22|H{*Mr~-o+-u0J4ceDb> z^p~oP4vhDvYpF3R%YchwCI$v&PRNib!q|(V(=*i=l^{8D`UEwgWo@U-tyDa)fuhWZYwYXO#uL;?T#q` delta 51643 zcmaI8WmKF?(=Lod2%2C)gS)#9Hn_V54ess??tuWogKKaC4DRm1U4pwyfMGc7{pfq% z^L;<=p6R>SnyTuutEziV<(G=x~tY_18>0ybsuh%9X#`+`t)eD$$6E8hXHq-4tF7LG&pZ50r z@vY;LfR_a>2hX+@z1D-_8%pk@L@|v*&7#LW8ym=Xawf zc;PfFa(V4W=Q5^Rnk>|U*w8e7CEheF!*s@L{r1L^jH`wXWRCXb!15>jSGsjZo#DCR?VcMQ}3U9O48OuAo-*}pkM zc+9a9BI6A@RN=b+*m$GgLSpRlS}>g6^$^a2K!~@!XA3;|?9fLpBkHQuq95stvc^7( zx)~;4D-}JnsKGhKd1loeVq6rFu1Y?d!kp4(tZ0~4F5sJ}lX%9(IA5){KbPO6-VCe@ za27EARGggj-KNR4Ddu_lHG|w^Hh|zc$`j5mA@@ z{#h9O@c{R+?frWc5FC4{zYYFu#~h0PD5_c;2Rfnv@IxE-bHa?OQlon{z$LvH^!D_24Z&B*y#}GY4Wix9-qZQb6mQ&yyfns_9&a? zk?n^A2|*|zt|||?f3O<%)EpSPjFJfG;q7B)R;Lhaf>&m`z;^@PEDM~qKroZohj8ko z-X_4kF~rd6U*m^?IZWC_CkNTuuCU>RcVga=#dZvW{i2ev8h56Db`un>?bcC{(dL79 zW#y9GPCCzrl!)U+-;nH>$_q?-Px?|RI^LWAZVQ|i*P_p>QYJ2K8k1~L8oqbD55ab> zH_;qG)fJP&$Q?c%AH)}B}StpH-t97gLXYbdcr zWU>t&>3Qo1I!IQ~D5O@HrS5K;AKfIT99k4a5?$%@}q8N0Y{JHwyhEwrK+|mnJ$!{YxiBrPSWJD z90Qo4hSHai{p8lHj0OAFp3p0U(^XoiDN5-69}5!Ka12+t(bqisD>p;{%d8LX zndGpK4YqNYcP#vh@1%7Yqk8~WWw?Y2Z}$-t2l&UYU^T?i08PSVPsWfJ`s<7X^3A&<$S;3TR* zcFaa|0W&K&eg(CtN>YLda+L>{q??}*z#OsNsvUDuDQhU;nd}Hz51rsWFJP{_gO#SU zZY~1EUCyLhKuFqd19Gm1sCp7^vKcW;GqY#>Btd@$#p+RceUJuMoN2e0?cT}PCCwl+AFZ88|21jT(uh$7D3-@-##SQiNXQiV7 z^lef&)+9(G%-W+xgi9?i8}kcy>8OKmzW7N;$+AB$WYvOj<|e&)px)0SkKH~;*G6H` zQj4%R+PRXw0*4p1H|JT)Oy|QHSGe#~`yHDPnt)Z@VlST!nlAzE7Zc3w3icBdgV)8_ z@`0KN=NW=Kwlh80TEeUyA7=X6;cTh=;f7&30npUV@@HUHX|TEZUqjemL(yMDf0k9S z{m&~Uu6`cfAli)2`fYvO<6y5S+kAUmYG~B*SsQE#UOMk4iOt{~l90`OMi7#adn(W7 zjpKS?<5KULrOK>N{rL$k#@KA0d=b$wrxkcn{X@FQz}NVwLo?KeG+dF`)+`CoEL?sH zRzq+px1{};%d)tL2UbHwX^1yKn)CK^arXFZOu7%Zx}(L>nu6jx!RA7q0t_1PNuq(L z@_4kzu$Doh{F%3RCa*1cG10)@CMMzA=M)cu=Ig|c`klm@*C!wHx%z{B8~B6b+NDK( zZ{`$Qv`@T6{io{d6fOibi7pTwLaam=75tV@zoJrB#2&m=!=LK3FrhJtE(!!Di7p0& z3W+Wnc*4tT%jk#(^yD2DgcFG_as*WeBs)ffCPv?oU3=JH4j=$g$#iBvl zkSWf)^{>ummv5VL=igagT^E^?SfQ zsdE=tRr!|)rhZJ_4j{^!o#NJ$PHIV9Ehp;E<#T zGY_eF9$TQezFpxsZy+4^C|`H*^igdbeM}%a_-#jSv;Xon>koNrV`Q1;@hs7}Ps!A& z3jfcHru(|}n2LKx`d+EZnd8239`3wC*r{+b$QUNYb?-`v6+sJ(Q(s;XP+*O&D4t}eNv!U=U?O9Te~p3O~}z;9Qmx@#~6O~;nya44lMWIvooHyXZaaJAM{|e z4Pv&Mv>&g@podQvb@9B`6H#l=Vf^2!(W=C@@TktjC}au5M>bjQ<=$}{>5EMY(?`vn z@EWhnwKTLP_t~0IBkB_*ITwCQPpYz=SBrYmWS~F1W9MG_8u`BRdTZ`o^{zuFcvopH z3Y3z`e12f5A}QQ4Jt)pSD{9jYudqz6 zqz_`1ZDmugx9pw9dE*+9q%=zGX|jW8WY;-#7yAAD4c67tn=gYr*Impj$M1zlsT`-r z1{mlYtmCn#n5qZaJIO0d>Q4m(E*BerY2w1>W3+STGuN=8Rilj4sRwjuL_t z`B7oFvDlmgb>9?sWcpOjv3Mr<3TwT$Ky>UEi_{aHomQRgBPbvoS|H5l!DKS9B11d9(+bzY3ADu*9?^b9E#l%#$WzIznF5=`NKO~8HuA~w2Y zoL$+pEeZ1@@_WNG<7i+jeds0u9egmDn9RhuQdkrteeb~$!Jr&0D>&TniM!(hPORm3 z*lB>b{70uJ%aNemLEg^KD&HHfRnOG{Sw&uVcX|y{!qNJbi_g8mp`c6jKo(Lj{J~S2 zaiT)jn4~p=77!7Kw?O+^(VL^P_5NRjx`Kin>VpcO@s+gFw7cVy}hgGZ^0^%HN3nzA8~F1R!Pr-AfdC$c@#Nf(yGQ|5@T; z92R@z1*d(aY`HE8IZ$t2?X2vo7AMKV;M#EN)@K#OGPlo~ z&ti&`{Ibf*&J|7H zc#&i91j$fv&;E-^(kU4s$ix$^0R4|Oqj*{4t%C0biKUk7a(KLR*p)pf?8d(8SI0Q+ zR%5gHGY|4e&fT8bE*uYx>=c~n^8=l5?C-GmikKh@tqWn*xcrt|zkMuecMwDNILj`6 zleL2LrkqEqB#%t#!j@7?Y@Q1aTO#S{+kp+=?!p_&FAf(ty%t3$n3Zon{(~#HsX{ux z?W998(!Y7K+A50_);cr;iccYwxwuum9Z1fEw+)v9!_~WoGlw#So)a<-#6`v>Hc9S*-4f{~2C{{6>^ zy^#@KMt&&RAw3mzBcv0AS+5O2TK=xXnLkre+q3Qzytc!0U^0lZ+`JiI{6Hfz(5PEW z>eXG>XeJ#XTuoAf<%F^0^!w2C(?oJ=TWKJ#Awvb~Ml*6pIIW4OdPVlG=Wr&Vs#OQX zB)4_{aW7c>zRP@IU%sLDx*G_ai4L_OjoqeEQa6p~XuD3EbUgPm%&eskJtZcvz|< z+b9V85O7IMK%U)|fX|kC_==HgN1VEA7{k}tPU1{veLdnAG_c3}Mdt#2CJD4l7yK5K zkSTw9h;tQ(x!5a*x#cj&sSsyHN3Qwmwra(9Fqy)xU74W7<`80LGWnz)f~MS~UQ=}VnX6RehJ z_)MR^e>z5`vjsn2>0f5zOV2;-j&M!ecUhLGv_)Xl%MoO$dF zoWL>ei`plT^@R+<8F#ucXT>{j5NZvWXm#m0ukjbdkhd$>*zTa*Rur83*blp^paK#u5+`hG~^a! zt^4`!Rtsq=ywp8<)9>8s->#2|9Bc=!jbZmH5qRL?jyRUG1l`zve8!XMM4tXpc~_pH zQ@lPHK<6HpPALMfHeb~Ynr3s8HYhY5md_ipET@FYllB&BdNJ!eY!L^U>N}S5p(0u& zApor|h|b(rRvC%T?1-{AoTMudkE9(MvzKbn+3X@sDA9<_77==j38aWNu4K$RWI}5Y z_w3Wn>fPoR7el@E%@&b*!35ym8sTsfwv$K`TC{@pRzq6qEkQ4kcgt$U=$j5!{PK|3 z=)^NEF_i8(Mwo6ckr|V82vU? z=TEP1KeR50*G_5)GYI{u^l6bEX*fF62OJ^XuXC_xoi>|Rwxp#^)ZBOyMsWYS8K~2C zFqJ?fGFc?(r6BRR*-rvZq|pRT7C)4e z!yLdB!0bmIGs?SBspx{>>isp@AZEf>Im2NT z2R%I2Qmj?n`q%bgpfBxJ`*_3J^jXe6-V7J)S4Hf*xfIOr?VHU^A(4vPt_axMcK+DR zT<^INh*5G2guQmWcC+aAyiEFDa$Gj3y*Ak*M!C?|+$f-|ptO z{m@NYi|Iw3O|sF*kn$P*cq=^QY=2MUE- z^Q${7o|G3>eshuO;Nj_}^<}|$3NIJQ-yrW1%RnHf*iG!wx>!JPDYk=*#GO)ri_bsk z>Cd+905JQ@D}qaPJS3%u_bT*{WN=Nzs27Qy@|4!k+0ECswt}rvr`V=_aWeq7#~y!8NV&FxIX<{fPA_eML6 zzYRavM=f-OKNL(^-z`tR>!x)zMlebrCW-WyBj03#5niVO_CV zie_oIhuX#}9ql@XrN>9ZTTNs7wYi+_{bm)`=yLR0ay=7d(!w{#y!u?%PH4J_(mO!F z(_KR!J}!r7!qdD&!_UA9uW!7bg7LPYQ>ECJX$C#qp4~3O#1{=DSaVd$ls`!P*M@7x z{b$3ASLfnX28p*t$7yp9-mBc+X!4vuMc32^iLbTkHds2nhc~Wa@Ggbh#P8ZqV)24@ z5+?~)eJVr$2wz^^&1v8Ct=(y|e!Rd}zCo0zrX_8#O7IUk_bkCgf7E!)>v1~`5VYYv za18>P9*S%~Y%xAkA>}0PielGIec3mAi&7;C{qD?$<-zM*0F6Gs;&>ez$ZIX_(_%dzbFrL4*ZJ*0b zHKU#?9lhfZ8TE`B2WK7q`~CdFm)1sMvle%Yw`V_1oDE~*x2?>q=`6>V=k?dxos<^iuDtYa-Gx=PKs{_nq}$Ltws9wyO4AulBRfV56AtpDu~V*OWnr-ns&eh)*yPQ%SVJ6 z!ic6<)q?&j&vj)da!dzCZ-ttBS}aYO*lx8~R^te`hGJ{)6);EYE2Y&Xy+$IwO$U0e z-{%`Gc7;tHf)GwIuJ6X^VSb&uTGw?E%rtR2*wM=PrkF7U7-I?F0l^H&=!9vM9)sq$ zB2ow=X+hqld?6f4_de}TKxl7{7pQ#YouhjlvqhdY6$(*{g1zIv!30ll4SzT@o84iJ z$~J~@7gO(pEKoR(L6-`RO~3 z5Tp6$yQL-8ceEJS9A=$fhtq333|f|25ab2xl!S4~st=TycWcI-7JnyhWXIz`egUMB zi@s@ZV*zB1Y1aQjXh9wgbhD={Hks`(q}$;-59;t=9vI7KvIDvyirs!r7kei3W91*{#>%qP#u$?Oh^U8Ocq%1mJ(BR&4)mWG|>D|@o$js6$ zZ$;cXd#pHGp&lW;=q(NXjyTA)r#iKpnG#478SArFiyaBi4(u^!I z#%ToTlgU*7NoG3o9p7|XYA>05?{~a1$5c3zk)VIX62K?W=f1cN<%+lW>=`nt0 z|I2>%)0PNu6xi&d%?18#L-jrcmg-5lgm@qVkAG9f@mrMo91ws(=M^pRb&LL}1}&L) z*`)BRPrqS=_>N{Kxem=%QoOkd;7;HIA2+vj++`_MgzXWZ#sRFblR9PB>-REN zv%$M4aw7D$(At5h${@IYr76VLYJ;=xgR7f;X?$x}xw``S^y>oomeX@kShWe^5|21* z3zx6mhQo$Q-T~a{6md$Mun$5z3y7PHYJeX*lJzW3!S1L{RmZO)Ir4#Iyyjh+*&>V7^Zwly)zk)%(~9C?vy!T{UR%Z ziJRKNb+6Mj@2NvaDk?}3k=B@$z)oR9;L%s}K0Hf)(M&p)FYBZy(xSB&Z_bEBEUSA~ zT2Oc~J8NjL^AocV z!)kffj9|@{scj?qeEic`*-3v3-DE^answbd6D2IFf4m*!V(a4TX+<3|O9~ul$@@(I zs(fp%5ypY6BEG!MJ}l|GBCDC;c4GPE3byD@qh+K>v4Ub>6Y@&+mqU-lwqVlc7> z*n=0LN3h}O>`5#f6rhmke(cOU5z}=g-1SA5cGtKmm&7BW-GBU}vUR5Jfv7au^ZPwV z%5nB%7a_iMg@3M=(f%Kq_OAi_8+=;^dHy-u`q-$KE1d-@o#VJyuMzKsN1F?VN4p+I z^E;Vv{h9;o7t*CTG=NWipF&74+!TCIxFX7Hm6&wIO9oO2s+HP{^nR@Z`3Dt>jMz@1 zO?c5-%?N;)C8DhjM=xplOPQgVF#7C4T zn+OOHDX@a|tJ(^YRkVj+lP{14e=5*4+#zWI-Z-T-7x-T^eadLEPG9_GV*gUAF>gj- zvdA}h02-HcH*$LIj^C}qGcvisOXZA7P zE1Jd?9jAc)MYH*#i}S=*Lx_IfO#JBt$c zw1cDs+E$&biIVpGcfTM}&F?c3dO%I-hAa?Kj*L9DXXpNDh2%$HL6`A}3C+q#b&myi zBSPVyYsB_G{t3M8s?uZomT4q-NH=?jwVJFr!mkyrH<4fk$vJG+JKV0 zzwq2S!raLm1$6B`-t$xYleDhWoz#n{F8Id{lT-)*fSlr3^%B_G28-h4^Hzlg0PrdF^;tz7wOiS?Er?j*+5yI=k@2pN z)%;ony&7X$Y2@Yu9Tz|AIEo8jR)ArsT95#ZtR;1bvlHKsLw zLL69r@<$vXyn?^OiNjsj(f593mfdxi$_&GlwVC(*U)_wqGRzeGBRbce)AzMTvOt3> zh$v(FU#!+VjrNnplBRVUfS}#A$a}1gFu_xlJCiY_l~;xn_mQOWXw%fiy9ZM{Iqau` zV`RQu4`s|{i72S-k-Y)fU~>42Cic#e6L-q12({& zn=Y&8-|ZC*FUoJYU;7!?T|~M8`qZ3~ciahT6ujMdF=&<7>#7 zU8@4YnH7|^$KC3j?*y)`yh0d^x}t!An*VrH*YCR)q;=Oo19HC=qbi8;LDw1ULI9hG z@n4z_dEL4N5Sx!N^a?L`ItMT>bH84jUbfD-k=Xci+#gCZ=USP1?qgXJGL2Y@yNb_#6^Gm}c^!-RXPMu&>&Qwy(~zh3VA% z_+fD4ZvV=X*oZOZ_*Lcg0!3eh#b4v$h;Q*s?VzKuYi+W<)@P7vaE@fASrFatHpF~{ z&@VL#ga0hB+3ey>{(qRG`+awx@qGAp@ARJm^9y_ZMs7u)X0whTpOs2?)XWS6AE~>` zp>I4zl`G4F$adeGHsj`3hmK>fzlu5DG9YK$XoICe*~x5#*(3<@@bxl_-5{n`lRm_V zxeEBwH1SCHoYD)Y3ip?T{FRem;ay)%Qm?owMfnboM|a!58YpzI&q##w#;<|eWfxhm z*WeMBWg#H&)xbCZ@FsdSvbC(ln)_##0-S5t` z*O}DBw+08+PfFz<2l2FoK-j+G`F@0tB;3>BKdAo$tBS=PUiwB-ktDgwj3t1wwfckP zIJwR1Iees^*zD^`+>tBJt;cI!QF?Qa02u&5g)Sw#6{jUSKslcw&&y5V+ zUywgC;WyDIP-!=PdDWilmz8ywgcY4U7vIp(Lm~Q5!*$yMVWNRTm6j-6wdyX&UDkOI z%evsosV`W+dY!T1Tv>m0Oflq!nJet|4iudtr8S}ajATafG}owtD$cGayLM8hAidTs zX=I7qRw~c#VNwNki4aIngO0xliAoMv#(;!wPGCCiX8%Yu-PL{5`noXDqkAbOPYn)zU506{Z^a2*Uy7_L6xFRWnu!?YfwjyyD@g(XYBlO8(_=<(kf}N;C|~GB z@&`2GV``u=7Uv0yzQOj5tD}A42xo8ll!{pLFx3rnypz zqqr1{toIzolH@$c?vMi!j-JUT6W`AWv?l}xtt=Kb`42&JUA zv80>o(}9!lglH5mBc)}w68>f%5G8F`t^xBd{x33H|0EMr@=Au(-Lc>CoibQ%@%`k? zUX*lNxV;IX?2JwZ%`{hXv985cf6`h7zIR~~mnbc03p@U6AEo`@jK7O-)A|8JMLJBc z8Q4eJ-26(GM;p2RGPY$0;@c;|*}4$`J;&UDLTW!TDa3+gIyE2GR4aDMbvmv*jQZs# z8lM=7dp6F>(>%N%<$T+*lQRP-`W>yN9#8GMR_H9u3jc47Ypf#m8~jT(rmDx(q+AV# z(>yA6BikkO@_&hE(@s^Q0sA_>D%?OLrf)9j=lK7AO2&`n+@hDV?$vfE-)5jO)2n5K zPje*}*K#QqS~DotjqT8@{fmtL|F;EvOJ>*p+XNC&_m2WgWWrqCyVMH@AEKFP64n(H zmTKB6WK0M>LanJ3&8#zIW;8M^(ucJRGxZtH?DCxC`@u5v`?<&%vRu z*8Cq^g%>?O2Wyltol_3qK|%ehj$#>T_6-Tn!>Z@2GSk9I{-;UfrrSqe;n3U5?=B~G zico0Ks1em~$9^z1JeE2?oR`S_aI zFVp1fFaUXFW1zkf=yoymmH0vL^0Gi{S?O!S&5NsscV?Z<_6zQuZH|Mro$ZFFP=c27 z8Jg(r3-RT>lbx-j+qD+`FFD{f>ly!5j5UV{0C)Lly!IrkGSOTGSfca8Jssc6?U$n0 zD>36Xd}pvCLY+I~Hmi2?W}U+J%WJ@u3K5J!&!iOzB9y5Ytbh#I$dV+e1hI&BE*z~+ z0>@WXR9qR>;X{KV+XA_{sFkr4n1FQH!2A+D97$Ovi$Vi<1{GD+%^sDi78Lb5E*fT7 zhyeUAM-pRYR3B1d#M8(Z;i*v=y-bO_zfe;D zq%z{99ZqA>v#tK5D=EW?5P3(B_Z_Eso_J{fn`qtT4%Hv5=sK!IbrI&DSXXG>WGZEJ zbIspN<@9AWakdH?`r!A62`4M>Vz|FGFD>Tr(C1{SP-%j&)ib#eu@nSG^+et8R++_T z`TJlc-r|;PQmer<7ZNM%%Y~+uy-(a8B)p;M<8_UMPqE-(B+(2)FJ^!nJNzk zY9wzP7`gwtSUk@%z~EM-@mcEZ7fYGUj)|jr1%@t*%jGFCY*j#-Tl67XgS8y)kMbc# zM8|Gtr+JXTnI_nV{oh1r;aXK^;CGYOfT zx~VWuzLK7@ITUe+l#h=pRFgjjfaww+2aVWJS`F`7Ph0w@y@R-GBN7{6%%)T{JP56+ zRdDj&<+G91^|t9KK;C}nsltqs?lu-f%zKEAmt6+2FN+@7e)TJpx-Pow_|Az05((uh zU0u+d3ZjzLO{Ej>(TG)6J0=b>T2-vxYkd>o_gSF?s|(v@bS7~3>$d>~ri}7~EG5;I zA||6Ti5^gV><5-Cc^z9lib8C4R(2pU7#ObV6%`ZyXJ{q@(21qm6N^vZrGmkLukX_Mc&)a=yX2OR^T5cY{8{VE@nv^$NYE_9F}ANInB z+3ZM1Q>T?|ok)Bwamg@5q&tK%k(Ds7*+`cUy7rbyJ5){8H63b}BiPN*fLqF=QkM0> zC76I6#alSc^d9oRNBNHZkuJoPPS%7>MPX4GH~&V}mV9T+)JqVv`8-=EHkv+9%|LwS z6T%P6q#wqn=7+JvyRNM9cbLQWzH9Av5yw!EMm+o?IP!bWae`M5>fOYpUGwD0;C&y_iF|B}!8OPKnH!!5cqhe3~)TII}B z3xWtRS>{~M8rvQIseq$z--@6)b!Oa@yXTsr--yJMNy{MFnZa;Lsx%o-Z|j=k!WYYz zB(@=3L6WYVZ({AnZLy7%SzAr%CDy2$}NKSdZB{sL|6D7P*RW!`nBAnlXA zKpm;c=b?0VzdILmRXno0QEbq_VG`j^Fxf> zZeo-Irj}S+K!1SRodx?+TI=8xU<0Ngx#U3r~=un%B>xyU#{EGh_(qSyxrz+8NsAcxmU z_pejrjVMMADBbm5RL`)<0n{P7xX)(jY<%F)tKsULw zPq4q>&}d*&_T#KkkAkz)>I|P5l3!%>S{2O)ObxIuKLQ0it$DI9DMTd0Q5sgy%5uQ@|A>w>n)%Zx!_P zI`hMBx(05};|KW~AvgqJH$4G2@9=}3j1UA~#efCozQqX=Q9%$8!#+R+<`Urq1+Z~F z=UTe)&z@0M$J960L~F1f=mN{$YXIY(l4u$Hh)4T=Adn4S1xRGinojC(Pk$Fm8c||H zLT|%lcgjgr{s3B;P!6U?MIz+*6&VyOcN&4*bY|M4lfj`PQ~E&*Kd}rstnWySyxB)Z zriK(Ju>u(pxZ*A-hONOYF1AF0Gt103NkO&hLDZ&*omizD)_1H<{_v=w(q(T|o*Rsf zDo2o)8;*?{{rV9NONgXtAfdFF3=2czQRg9Xp|ePm0@@p?(FZWbmgl$8$0yOeYt+M1 zq{(;~u`}TKHY%NZoe(#GT z_MZ`RvChmD7Isg$87qr-V*I|pSxfgZ!2T+~NM7IN3%lg&3Q7>k)Sw&S&iJz?g$`9DKjv;dl}0+gstVEa=3WR$91< zH;+}B(4DvY=Bb8Vbv{22zB)JM^HqL5lcO|;V5sNiDG(9;B&v(WZBjKd$bq*i&CWP} zwUy6F`|B7Tl3}4jfwbjg=}PIZ(LGh7w<7}_HfF#joduo~78vc;yi#W1DV>e7DsnVP zKx*Ysa*0oUHY~qt>bMygzg{3sHdQcrFqI!kMmm7WcxrAkjHBn_h@o5>&bT$g7<4ReQ{c9^+feDBrKL>H-FkOS?$ut!m(55Im7~?D1_K+FD2c&(h;;wb|JG zJ)DNzQfgqOP1y;mcY!cLear1Kyj5bu05Er+5^exFdRc8&Nwt}?Ax_!acVs>&KMuz| zzmyaBiS9^Fl{dOYeKzDsTsfKn6@zGATgyYn@2B?B#8w7VeV3-+C5`uw93ujdwY0CV zNj=G6Y}0m{swXk$Rh*gBhV$68d+8jnfv^%qy!GH4i6a3xlTrgU#N+aJ zy$J_!3=QI=al)Dj?|psvwouslwn_)|hXSGKg$XoCn0Wz+(!kdUZo*a(b*#He6H5GEDqIUw=A zTm)j9J z&|MIu>dz-=$%Z0m!3Ju(Z!|eLx`PS&)0@-zWc#72&Y@t#5$qGvw&cL8&sWRqew^*& zt_&zSGb~sc({I;WC#nbOkBhz4bK27qxn{`mm)iBNo=P-YwFcK2NHH@TsPlO;=J+O0 zcADrx2SvtK#((S~=tdl<4`%ZUs0{vQdFENorS*BF5VAqh@uGL9< ziV^_b((=D7>+n+|0u#22u{wJ8heaa^kp;LjcKRe60jiIAkjFc`E|u0NeJCV7Yn)vf zJH3-PL|6ldnm&SvcDx(8hceb^+}2w4AJ)ntP+Ue(Q!=1!ge*t>A$RKZ-ba_0%pdrXx{dF&c)sY<`vZ!v;D~*^z3-f}=R!VJ$Pc$0 z9}@U8(hwLi-vhE?7TK@mKIgeo;yl0C4^iq|`M~8I{maMUi;ySIMJT;Ka+~25|72Qa z+tlP$K;sf={ZnOISax$@gu+ts=G+T^eEN^p&!n8AsRk5@MMlq8j3VF?!d0Hf8?}xKIFGZPWTw>pE zq|u{H;N`j%LFHUnwg0W&)#J^oop%&jN3g#^Z*&BaZZ>8G=xn?bLo?oL^5z;hUSU`2+fzHed{g;;k%xxdBi$T-!B`pToz7x5Z2Mt?ajsV- znZLUb)08;uqoZnU@W=06sH;)M@5)X2>;_C+G4!1l6MMCY!8|&Cif9q`{B|X^eLo2% zmVUP25fcwhNb*(8zCo$z4uS80&_WAGitZ+d_8(!Q>=KC|H(#Mk(rJYnq^G?R}*%kZw^#rL=*D%Uv@_=5O$eFf=zN4wvfs zz{CIJQ&jO4hvv7!&_sS?g13bE26dFIpt8CXki{1*c{N$<$+@8&=2Qi#Lts9et*|Ro z@PClDG*^W7$rTnY$fOEse z_Fa7o(!3VR%m$S`{@E~HJt>xn8bxp|cBCoy}*ANHCH^A1B>c;0Wh z55UMAIT6=rw#O${Hx-Uj2rDl09!T<%%4O5=+J_0fN=QjTx;UT$V8CHgFI7lUhyD+% z5ogNj>`UOVmE0}O2Pc>BrzWPoWGktCd@HtnP0N5j%CD#Rrgt)!9}~XW;!h*XSSU|q zYh@70&Nb)B=vnwYCieC)xN5Kv36AZ_Eqzv-kmXBo3lx+WSHa&vWhjPVXTo_P z9dt-7=)$YJod~~g3OU$pY=8RbS|1pRrA#kqi5ZAJPi_7iRa8A2-FPimy6gJ4Frttj zjL!n6tPE372drzl#Ceq$WkG_NS_pe%S=&_K)L5Ubw(cs(?B!b8ykq>}O{w(K?D6wQ zoFXl?XX3C{#H-502urt9wW%>(_?Oxre7;ZJ_t>)i7TI_QnXIDZ05R}3UA&mpo&Q%u|>7k=|sZ$}LFX7JF-Mjq?!M;NK z14jF?#=?V~|9|*;%ka3FWoy)lDQ0GjnVFes46$QoW_HXlW@cu`G4q(2DQ0G7#+V`b z=FQ&wo^$TG-~BOr=t3Gy%2T}YT~Jz0tptwvlZc#|zSk<7CD zYc}wf{0Nla7C}oT-?R5qv@(E09zOTPQloy2{WZ5M`;&FHHH@La8ta3Yxc6{!5)@}0 zU(DhTcOkkE#a7Lkfh5F|9O_X`D&QEa0)oj1rau?cMFt+}OM~DM2s(_B*EXb^X*jPL zrf-e8;e$vjMQgJO0tE3^#@?uw|NP_Pa{_D&WEc_ec_Hh;_l^y7i^)l7zc-Oo)z%3Y z=)QJHZd=2<&yScW*V}ykN&TjU`Royr{0;I+NcyC}E};WD0SkjDZu>HI2eT239G~s_ zYWl89|28Vp%P&B?FG5{qNm-pjN_#^&&W|@~(fkYchq_#Ki;ywp zh=GU#rg5Y9CkG7~1d$@^CX!~TraglS98}#Mh-}xTY%wIcy*sx4aeXcnhV!*D+L~k^ zCcuxT`M%iRG;n3qLb{^tgFa%a*v179c4XKG~zwG-Zhwpg!%U zI5*hwXb&K1Xvq(Osb=Y*j(|no^!kv4@Z+?g<-Yiuc~*yMTRVOqMZ{A1B#iMnUj$c_ zw#Xw-L!5SJ%yS;Sx?hU*InCd=ucqL8`nB{AVDfbfV^NEZd)C~R$UgD#nS_E7wmTkY z&wJlY%;i$`uf^xjA1B+_UtcM6+#A!DT{qS6TFfl>5;`buvYWfBH0;!1wk{^nPpW29 zm>jE3%TH&0`K~x9)U=r*S}22(O)v5NJMpfo)Wxxp$3}O!UF3c#?c?PAWJV(K<W>OVzxxy4hEcq#cahp+E>8VK3c)xJ_>m=@P`{uD?X{2jo3V zv>7wAYZpQBqy0hML>!j`ro$m4cVur5qS5=6sR1WEr53xrix|9Oh$;(q8R;4!MXhwl zZnaItp2iz8uM-lTYCLML*`_C3wH+a-lH~Zt5RyB*B2T1Q62p$KUI!I6-%P=5rk|;bF z!)sbw`PJr)!7q97P&Jsny~rhUOZ5VJd+Y#@3k0a8k`m4SLt#iouLo9dVsJ)}}V*~rfsJHcb~ z-=Q#B@Ci(W@xO#bmHJ1>qz}fJKtU4k6J4~PXDc|Jd!lmZgB^yc__I)S5X~T#Nn)0x z9VzW)nUMOtiV`%#q(0+=YR~TZg7ZH+o1wNiDmUn$7O%$Yb^jt4XsA$K#cF>#!}|lg z(-g$?|+^nLGe-AWN z?2O{D?FefyXDfWu=AP-GX0Uz7#(UoB4a?pH`)9Is$)~}8**iZuhy9~HXWIO;M$JY0 z^b>bnkJ8LW(m+4?7dxO*oTapju&kytzXF1Tml2dLROlQ)d-9et-ui~hO#n{Po^g}U z<=F?pP2VRWmM-=3qKfX?4-sFq%*z{TAA#~R#3Sn~`ml0{M;DqAz}Hp1i+%5{AHY?o zO1=F`T_ESWp4awOScXXYwe9TD=8phJr&yPA^vK%ix^qj%c0I69rZJ8^Z6o^LQ2OHH zo3WHyYB=7hL^$3wRbtx2O>*7mI!c3OkEAch_=C`fE&Skx4 zB=&MQr?#%yl}IhaQYxTcNh-zoN}D{lzS->faQe%*w7ZZ*7lq8bl$Gk0pD-JW)JdG5 zGJJOH52`Q>bkcxWz9Xtj=)FzZjX6UUcM_Esyf(1N{QrCU1_|=Y8>d{7&HScAi`tW- z;HKhTtCG-=aH*n(q?JRzRc4N@Cz3dSvF=9Aaf!$Is@n;MIT^x}#3zuZq=PGSaxUcG z`M5DZj4@_{dM@k93>y#TV*IUv1f>`sD%e`bUoJhpnZ_!)%wRmj{nN!oOimLNZt0O$ zJ15r;9OjhvEqVY_&K{_lLE1!;De(DgdpP!%rFO zv=CqAJS#$$f%X?672JD5dl@q#_DTkB*a@%pBD(;$lez)^I^N=to7m$(%4;HtR~Xqbn&m$UTYrG2EY>7f-n)lHp3XxyRS=f)k(p6Mvbr3J&gE z7h`89h71380v7&}gs}{vdg%ISMn(I!qmP$E`*>(3@zu43*x;%ICE9b8F*EP*=41hW z;ZkYoxq>J^_E*g);Za^A&?wO;yMn#qKan zrCO`9te&YQp^E+Xo1AjlD#57~Wuw7-gq&IiKSh8gy#WjglB^?MhfmL1Mpt57#0V8| z+=^^##jWg?f8#(Z&wkNvWT~#xSEy%iFVqKh&DZK<9QtkV>9N!Ej|RTnbnya~=j(bM z9Uuz#)ksMO5?T%w_{g-AnL=m&NE?s;DuI~YRj)#h$Dpsn8M6Bz7;x|1dw70ja+Iv1 z>WXc7@huJ7y1GGqL_5jl`Q5WOZL4I<<%7y3dp zZ4*Ny1t|%$Vo1gT?oxeU8>3ghol5wZGqBPYDSiv1Z0YnOo4Czvr~A{j70Y%2!V8<= zwe2+mAnQ0SXZCablNJ+&UGSdw82#5!HG)(g_2C-`ERMiI0ofbqoF1)6qdamP{4bkQ zxvP7LZWmH{KzHWxF1$AT*0(}l#9V+enalXQ&fV)7_WPrGMjA?=x{uXIl2B8t2B+IY ztj-gSe2}U=!@C@0lJ!(MKa29KW)4U-g|aV^53Mh;8CBcJjDDaGJ!E2Z#_KsysxoCO zBFQubm>i)4yyp^3b0?hCX7`xP=wC_HyNYA0sF-}f&|~sXGxY{0%jyp{?>h;ruc1$- z%KHG5@eEzvlokbAlm_Xe;u_}vZ{2jYujWC%L*SmA%;_g4eAs7!vq@g1sB{8P$sr2v z&#km0EB54>*Z#l;3;xh2ZHVf3nG=BK-ucQd@Zj`z5p%T-$XNP_gSDCo#Ovj@)>gjs z0O%Q!f>PKY3~nd>jOn+kE#RA$u~~FB&_zkJ`;tkp9FW=T2}CPEPvhdhxWiSTs&G4^ZA6S1FVElBd+x%PLKo6a;= zAec2<*`BpYwz~iSOLGzRad_*4e>*D%N|PlHTMqp#sfTPR}Pp@X`N;zxN4^D zB&+JxeTx{w;{sF<;3hQuPDLdmY;{}fsVzdJ@e4}tA z==9dBH_Jf3fu_9)oNs|*llzQ5#WR`e*;tP&24cJ> zH7u+ehI-1b*GStPsz1G5_c%|=PX`rha4_()WzoBwgfB`IN6zG`EEh1A(Hh@>V~h{!uxu}VR4v|5mJqz^gQLE@i=!M4j5S=w^J~mjpDUY zu3jS#-*CQ>JH2J_Fy;TeXx{YxZ3K^71VP^G{Dby3BM5HEG^A=Uy%W!BO5J=smvQTY@9q8)TOEoY&8ofg=f%>chJ z8_kRr`ArO(AG2(tU6Dqmm7wtU1^o66*-#C_J=aIqUOPn&?6k4uesjYAIBzqSMzK%E zkE?vdNUHb0ua`dxOs*=Ll!;=go%|&dfMCb=-EvV|O{S+TY|O&&GKZ}61(>2U79>}2KrzPRBIYg!Y?pTzX_uEyDj$C? zj5p1@7Sewy+BI)fTk?%6Zo1-gs;6@ab+pUw!0Tqh+$%nhb(J>6h$%XxC}aG|KDqjD zrX(dKge{0vpBdp2^$$<_@ylF*hGAy=)h^L+DVbcI|`MD)eKk0-#ChBI~x z5v6f|V+D{mXY6LdEU0MCoa2MWm#iLQPjf%^4fdOO*+gsp{D|<4S=jdgRm>_8I(Rjh zd`xb?6ZVajFK?T#5+-F|v>gcJ?uPIz?7-F&Bq<172Q$UGMK;K5e_0-UfTZdv6Jd*7 z-2a;>4(iV(q(Vz+(;1B42cw^+mL;7Jx+bF5`cg&fC?K^zZs12h9d2;y=dFSD5tWP2 z?Rw_d{he1uYpYDm^GZO`-^MD7=oGEk>-3X38k~4xm7Z$d@@I2mNQuPMqO-EK`9Y>? z$1t+p@{hFKGOO7H6gkO623#^QDsBxQY57$%UPq^2zlRH91X57h&T7)hsK}C=r#9B% zc=0BU+7SR}T^&=1dC&hEh2wHczdfPb5eRl^3oLX%!uX1)GuT_{bT^@ILU7wEw7?`x z%eeC3nK@@OK0if`tZvfJd*KD8nZ^{JnthJeAy=$Q@=9}}Ttb(+8F4Z*n?lO)%RqCf z`TgdZUvxGke`Okxq4*J%h`mCL+x*3>t-Te7TrC*vK3CKN(>te}+-!1cJrUzsdW*W0Ie!k`N92%xf><3{F_$329v- z($=p)3&e40*`1Vsjr?K^LGkiM=6=jSslMd?N=j+(ch!dygJQFD7^S$R?Xv1Y-(D@O zw%$4BIihK#T&^RSDd)I14fx!J2XAhV@;eB{YmT+Mst{3Jj3Gu>b2<-|XV~IZZ90#| z#nJ5ugD-Lx`CJ5GS&N{TV=Yk>84%u ztKEfrpt;(ik4EtZOdbc=BOjR9xY|zKyk>!I+1x6nQFXcy#H(?VBoCwj{!0dWJ?V9bLR0Q`8_el=(1* z$#5`BL9CKJKsN}@h15inW6EglNOQ@5+X>*}JsjiMw^KG#+{9Kp9KaT~>J~~mb>suq z%t*LZ1H6h8evqc;8~sRvAN&VbNRM`=J2R@s2QteH;uP*9sQiMaeF;?c6&>v&bv20Z zV{WiLS593F*DHoLN;}zfNIR*vPdn+dOF>dFxJ2qua%;-@#$v#Qe)^4NupN|AY3dDs{Q<{g{7c*8eLG^Vm)q!6Nf( zFOOZd3;h|;;{EI4Z*1BIQMUHNNDdu2Uch9)$J|8;fpjFzi|DSdFVim0 zL&uN)Y*cUPd%`IkR7u^92ABPGM@BkDXvd4aPNt(?REDvxD=qeiP3ANV0XyV_!P`Pm0jn3gc?=#XkowdhwEh&YS1Pap1 z_2pxiR?(cVOIGdCr~~*T@fzI=mV?`yK&zd3sOsL{{t@)Ntz+BF^NwA-iq~up1()KQ zx0?<~fX)8C#77WlU$8Ru&F1M|yO`EQ^u68M!eBnL7TzX8Go+EMvQHaA-DqR$ObidL zeDzfUD1rOanEY$00R>k%1DDnq5Ff2v0CJJO3!*lBd5K{YJPTDC0D}n>6W?%bgvr&!`lekFr^X5Je>fJ-pAq$c z*)qLWn|7z=e*^A_C{ZgT=ClN|e-|VYy$gJ=+~arCJilH(CfOl<3bqlv*&t60Dd3@2mahjD=%janX%#h0m`%iZ~Z~^6dVxK|lDt}VM3>$$uTSx(P zl>QhW7pndEq396BNKLad8n9Ab%dbG~S7F6B{q;{fyo8})*^+PPW^dEYFgv+-~T52+OA-L8g|0ldB21hAM<`gmXqdlL(Hgp=qGq15b# zE#35IJ?+@NT{HQ4kO=#PlL!r=~s@;Squ1OKYf z>u$fNuXY}jS(9vQLOw5U%hjODufrp?Oa#j%qdchaLc)fMDHi^Z^!%ei$vFgv$RVk53c7-7Lrw9J|f`2(8+4YpBx8IfnSworx z5VCF})rXJEJ(?3OsF#az*j1`uoWQhx0;>La2B(S&uXZk^s zDfi$KVVX9((;sdMUX`ah^Z1J9R6ja>=LhSX;R|q$(53NhPq*riYRA5x^u-628#Yts zt8Ho`Ym)7O_t-zX47Mosd~4`+yJi>Pt32>%8U_sq#~`%azftScv7s{aD;lG9{$Q)C zKd;|CsNfpmG#&;5)XY%`rHjWi#!j}mJsVn!b!+bLHKWtA8^K1w1wMu;(hin_`c`_pP7XiN^^HoZXvQkRh@$ek1RFSl^1u=tbE3sOwF$+V=zj3e&mW)>I@)(&tE6 zsvc&FHO1Evcg5{jD*QVbSTbB9q!Kpm(&@P@|Mj5k!o9wQ5DS-oIZv2c#5w6a9vg64 z`5y$GnKaS_!D5liw$g~V^ zabKx09zL(P)E_wSp$`<|Xx95%rv>|sz+9%lP}X(0!L9Y8?E zy=PLMTJ|?;;d=r(8`rYn1_wW;M-J+~bhe|=T0-{(E1R2}-T$8Uf;mg%H7M3+x}0`5 zt5=wQDDqzK%tk~0S0URf=$n&kn4qU`K0%@qyiSXg4lJJp(ztOYlIh)X>>VlthP%40 z^c`-$($n*`KXEMX0+ZsQNB#qopmZoPhiJmS;@(h8gZ&cupJ2g)Kc={Qr<}y3MpG^R z|NPxZcCLtM5<25VQ~S;0E;8wn;Trk?;2 zhCuoF^l|W^WvT+wWtkak&c45tlUAcLaFOM~u+BlD}Zs+simhJ;8aK%<40~ zKY5pFzdB8Z3j^``TijT0m14Vi{+TfaxEBA?^En=MJjlZP!`Ztw5msdpb%2=8)Z!~= zUh<<2U#qO4gvMp)p9?XQ#>Y*h7;E7!416^$Yl)Ka)(SRO!N*(wElncrojL9paN$qe9UJvvvk2-yoN&~bo~Cqjs{%^9$iUZul^nHde%o91ae<@ zvJc*E9R>)0kaZa?2l7A`^Lg9RZy4D#z(96n2p*uC`P1X>smk8R#QX&3WwyQoo(N4o zSpcbVO8Ww^JzVV~#+^KMmHA47AqRoAs^D$lxC*g^8q56^#DaWw?6$S{yz4s58Ecl9N1$ zZ0m{9%~ViTgbh4Kh(I1p+H|K(BK1QDf(tS-J7bgFlbgZ&#S|6;dDq*2?dH+erAJUS2}C zH$NL;{aX=i~!UGZvJ3%`)t~ripP;bj~kI^tUt^j%Nrs4Imi(gPc zd$(hXervm+)0VJV(Y4Wk8zX?TUDw3{qi4x$Y@ z!c6@Qps&)9EU(JxA$N2d-+|0KQP9pA{HW{0Vxo*5w!>m=pJ8xVRvJ}ts6CKtC@ZIdHqfR(I#@Z2RXDkH2XL;$|~)tPeM^ z*X#Z0(;j5vO(MY6xt6aJiy4wu+Wzw`F&&5AR!myH0L9DQmkz{(&$PnX*PP}O!+I%U zg<3#j%O9h4T?~gDasEWdT3;hG@kSMw&nZ(2OQ9thX|2s@_%rzRmok5FVKx?(5=mar zo{A_BZ~NXsd4QkeTzJ8WY*U$!`EiK}y#HQGy-+&TH~zM$RTe zx>kEnxf0tGGs{IdKh<+yyXqH>I)dPfrM{yIvvt)N)Q--U=Dcy7apP)%CgbC(EKXxv zm6*=Bs}}>H?f&*13_AeyG^fbczWqJwIh^5$@lC~*qJ>JMq$*g*`naHnnDI%jL)S+QpO zY%wnM9Q{n4R~yK#9b?|Ua&dP6?0d;^Yd-_xyoZbZdlz=tY5o8s_Oy{fn5`SCwSTX^Trp!GAIiP!C%gK-k$CB z+|_Gm(Ds9ae`Y2`>zTPbk{;{zx2bhI*}Zbizq;w|Z!D79z+|30j99D#Z=yw;x6aHq zbblkmY<{0UBb;R+!s7=QU%I!Z-lcqh0~f1phn)!Fek)f|>M(hOa77MY-JYAa@Y#{h z=eouXYhNF;nljkf+2#k?)|nSRLCHo$BdT<~U0|9$+d-$2Y$?sY`Xx$xY(c7vRj-Xo zs8p%5(_iCXqwnzpF-Ew6w~8ezjC>b?1MU$!t3DW3`#Ej}3wExVyvk}3H!p+Y3O*n| zG?}8fD`pbw-|y-MKEfmYQkNGu0R9HwkCSFXOGqPATN~8`5$*ZNK30#Av}1)DKG7Wb z9&5FSlv#pjTH=#|BhhFUy{bd$^@e07eOlY0a}nI^scPDSG&JQ&uha+g}zWk3VM3hOFr!4%g6@WcC@l9m;3Hy2I)wY8p?8-WNx# zs|Uq#XvfVt;@2d`GGbb}1Mqi&_XS*PlP(ZQB6Tx}FpetXkKP!Z*XyJmt+2>Vkwi_Bz zH)X~1DzMFwOkT4}c<}R#OPW_bg&>pNVed*X6~od=tc))2z!=(B&>fW|%Ufl7hv}#0 zw8x3Kfm`yXm&&`N7ky?719Rlt@8LLlST*=}54udx_Jzb5U<%^T#raz8TdetW%ni4StOGZBJAzMF>fUt$eT){x0U|fP8QWB`Nqd9y0mZRNIJY4| zZWxj5$}t*2u^a^kbwje1v=+TC6Fdm(=K2dkzAWDvXDtDW{R$)%`1p6XXZZN~of%SV zi_<-OZdR=qKpRWLkT87w-_>^b7pmg@Ta87GTTqK3XON8D`x!fR24K}LDD^XOTlXV; zIshaMV)}KYi5HdKN9pYD2O#G{hb*D7B?pfbbg^K>P!lr{R>(@*@ASmUxE9I5f$Eny??MofD{i40D z=IU`C4(+RrS7EMNTov4$9kOQ{OoxSK=dBbD=0`nQt;_brx@=c=Yw z$I$>rFee`r-^=CV*@K?8Tl141c#!k}g>RQCHTONttN+rY*QI|`If&TVnIzwJ9X2PB19he@6ozbdetI20Rz1^~iyN)iYTAj= zBmaq9c94=kxKE~w74MkoAQ+|Ngu&0`lRIJ@G8+P_$0IufZG%1WaXGj|m z&)sg^KxoZEAwPbtI1~o0QNg=OPdndR(d97?tT?P#s|Jjcoo~Y#@KDS|?T)E`ppbT~ zGRx2GH34H)(pL8S`7_8y(L@*ihoK9f4a)DZt`%%{iNY{BKg5aGW`;}SqZ~3JyK`jb zi(Rj9WCnyfl+V~&%}~cSKA-WvRciVZPfz;i=5>gm6fz6p*h`{aW;HzmKgKVLw=14ph&9#YXgMLq&?> zSOu%IxUD>2RJ@Y5DrQO2Zq{QnA0LOKz{*M|tI=SRRs~X`)m`UoUp#25elgyF<|3%3Gx_x`KG`vLQddr#8U= zzickyMd+ARG}7+OpRd%}9L-z2M5RqG-+K{SS`WVz+I>8ie`ToeGtd{Yy2MWZJcWdk z9_?Z87nagohJ~2=)ZNE24kkav!WH(NlsIED7aaif$nnR>s zd>w@!E1KZqdiid=o+hnR7lwwjn`|rzQ>lz@lRc2>j7?)ZqzR3Tb`)UNzRcBhA2{cz z>?~^qT@7Dp4L=ytf{)KMP&Cu@wsO5^n3lTM6$+Cxm>&w`<|bbN)(CJ~E4xg{QDZEm zewq+KN8T)P51!E(-NX|UIe`@)*<;J7a)THvjydwv@)wX#>USnn6T?aiW^ftT-N%Bv z$_i#QA6jP&?c43R@h1#?1g$xAGGD#sEvw(}>V^~^1DiHYPj0)l&W1_4-=DjGPj&x( zdUjYzUGcCPRV??mm;)lMZQD~HI829yd3_k&x1Sj9nnct%f045pfR$PG*!j7w+(TZ^ zbxALLeht6WMa6VII^Psx1IS)cXL%k9sZx z!swms(q=NT;)v7>x;50p5f&jLP6(IY`}p#T%F^ zVGCzX5sfZGG?q6*HK7Z_1s_ZwB^^?QVI4C4!bX%V|B3ReSeeStI%%F{x=`G=FPu=* zUW6N2ncGfA?AGT_$fvHZ+~xN?Po*dH3Idmpz~4uYZwknq9XOK9$s)1hh+^<%dks+i z(t*n)JEBtAKxoKtR*T*q!#=I)Bqb6CtoL#8U**JmTMvwUEF3ytv=;-945T<1zYPL< zCVeNYo<7`wy?5bEQ!>?X+4=f*?A&11(GLOMcg%W1!1j@7b5EXS8fD=D|CRh&+i zR1(9K~pn z;!{!L*G`{!;S=Da`_G&{Ww1^m&dUUBe&H|D>9+C~e?Gq*BZuqU;mjGI80gFo^4j2s zBLDqS3fSda6tc-;^Alb=_7{3k54@n^1Je<}CAxkmsIZayc6wPH14V)4OQCy1Qic*w zjXpndlZ~1Hh;pauQxnxPbuSmx8oI4C$TwJW4_aXK8>ws@6#vb6CJ*#@dCLZruPzTl zXZ;FBevJh)jl%GfU)$o#KT3FDj({+ISSX=Hr-^_WDEHC+@$rUoN(a?emL(;i5hpKivqQ=pTCc!Hl{VHLOl?@qe{AbZ@5%%7Wok zH0*wRD#*U0|NZtahBKxQfrfxU@ZcvY$6*0$Qlr8K9CW=SwmhOax+^a{HvJ7HAa=Qh z7!&-TVvf+z!nZtfM@eIy{$tdJ??Y+%Y#_fqPddmm?%ZKhQojOf@gIYDR8U%LpXF0N zg4-yryuh7)K@yz1N!|)pSgPIPDP3~?A}q4#KxlXTHCBM*VR}IPE6Rib2XG0N9eh3B z?oG`9ze2jf3h~=xoqgNo1}g*?4J@1zfPxe(h6EJ&P|0730Ey~mVEIba@HD$`1X2R- z38qZgP`hvVQf`nwWT2b+h=T_VcMG@pp1`YR8?O7r6<8tI&30lu_MP87kFH=9Ez-<% zX-n~T3}On?c}h+l=B-BF45_X2xE1^z)8@DKY3Scaa&Q3NbG_rf5tpK1I9c`4`?-xA zeb4G-7Uo{L*4S+WRka_pI_hz*Br!F)@c) zA^A)rW((Ey5#W^AjS@%I-rlz4ACn_6SVrsIB3ZYxK)BK2=i}$cFVrQtx#8pc{CawJ z@k2|u^Y`=90q5IUS~0>Omv+qyYz-w~XIG~Wv3{4IpAVogZbvxF&FNlgPFU#ucCCB( zXsHBv#QZ_G>kQkSTdB6jz{H|CstMsen7Zb}AGc=xOXYG3jJlYguJIkG#Dx+YuLpP=S@-RF z@$^$8cW)<;Jb3v>SCf)HqS;Yh$mV(ZLJgI``nlaZLbfsl6SP8@26ve=MHj^s42=)+ zRTNe$z6CVFV&*0;)gVzON^ywPG2@gZ|18| zqMQpvsqibO6XPc<7yRrQ_Ye%L%s(yCeRBOtp;_^LzBVxum-@6_>88wcshEqEq!uRsQB(sYK$N)hmV%LH(XPGw`|(92g1+Pu z_<|&696=M&Kf_ux06yO-RAiTv&@KZC{DS+pZ?cXQIdrtv(bC7;-;A)G4pc)|F&P!4>0O!0HLyZhAfy4aLE987Cj+p1 z`iI8@u>HBiy`>tww5OaNp!s3Wd)A*4{bmzaaI$4eb!;ej${1h2H@GApDx_z4N-8-( zEWmxO%d!)tD0+oy4v}X294))Dn8BU{r{;~IU^Z{8gZa}uH^xMXIcund`#Wf*(aPvE z0^b+$PduniaZENbHkn$qdVwc+z$aFOtT5b7{V7P}h%e3tq|(bP?-qNwU;0QB3Csi$ z+5$YB3%i0pQX?Q?<1=!kIE`?6E@~CijZ`isp0bSUpcgMu6w^zn*f>X>L`v6X={=88 zQC#C%wi4(kFPfzqMQQ4gS}0H2a}W$$p~FO>#}-4@8n*XK3B54Lv!tuB0}*TTWm#?8 z%MkTX0Zr_pFX?T;S3a*#Cns_5W6$vOkz)aap|{5mNW5HHt80NGuw<^~DvhkrB5dK2 zA!F|YzD2a@kUJgwgI*UK}!r>{rQWb-gG7z=MH*m{8>tm@^RGTHaXnbB+X=>Y0 zshMp3Q`<_bmTr(CwUO(anQL2PojUrMwJ%X;ySr(Mn=Q6h6j4$ga5k!;(()%ho0PVC zgXy@jmW{ZEdWjCb4P|X5hh;{Ptjt!fOh0E>rJavx1GJcWAL*y<1*}@qPlh69>M1Fo zmDFo=$SW>f>4H+-sh*p8D;iVW&Zy1a1KvnGnIgx7)-V>s6oy#8!HygSXy%w_=+Lpr zo;)zFykKyDldMJ>0KONsrm}S^noX;i-o|rLG|YOLB`{|Z72-%}sl`IyI4e~)c2sbV zh<*-9uA2;%MHWbuMTU=HFYOg82%!ozb^cCDgtOnc#o&~$`|4C(=Ww#i&`}fFFlY&& zaOLb8G(1ZLX>KR5pd-pV!%vb6SM4;veQFJ!(*M*nTRK7J0=%(OF~8-MGym3OW!j8D z$u1Q~p2YJs>r1Qw0c+lho(Y4&`O}FrB(dfvC>L z>Wl;)NOtP+(m?zNs4F*@3U?(vPp#hd*b2s2z$oBQax6*>&$_J1yS=|WdblpHB0eB7 zYDt9LeNcN=M$*n-vlX)frL@&fUB@|U}Q`aaZj%M1X|Ema|p-;TeGqEiO^fx-%|q=rNfR^WC*Wnv@s<_!#fE4_N+5N!&@ zPdYrC%zC;EeN+sUd;f3Id1`%hPY^tI*3)Xxwn_|9c03qccgFl#O1tW!Z zy(<_^iJZcS;jm;O4v^2PoB5LWGEW!%5wa(T@XT;eP6@sZ(-L1krS+NJu}nRN9Q+h& zE{HT20>V`(k$m4Fm%($*7Zh{^rILP(4hcU}`lV*i{fAFDbk zQeek}R+!9h6Jk7Jp?~lbp7!9lPU=d%(!Vet?*IhV2R`pD>i;<}X-N8N5uqiUq|`T5 zm*z@O*^tVXlKyrB9btUnbYE+papFW_(@Z1iG=jhx*;KQ@OaY3P2zaoOxH!X?J(kLC zGQ%y^X<64o6A{**YiUE9BpB^tK;SBFUHDDrfrScP=}3fpnT6vY@rj07nU8MS6<<2m zvgDNVgyJ;sS=r~4k%N2X@qtRPo#CfI=MU$pMZ@Ycg`+j*)g70ThrQr}3+ zMJBg+#_a-kEo`iSEAVD;kY+bOKV#EGNykq0fvY#O@30-#+rw&_2ntZLMhN?#ygw-2 zZ3ushB)P;jVu$H7rYK64TSo4t5%j8b3j(BSDK8_(pbDECoe)O|59Edy1s8c!NNb*X zF}+%uhCiw=M_U;w*FiQy8L_fHYF0h_g=t+r^1r2r6kWjri$Hgrd5$;pAot*$wVPmf zZ6o&LU_BFfNhDVaOO_!ohF>GJN!DzJ`7>e|qSi6Ff5vKC8NWP{W71PvI!3U|u+=l&NEA}PF}9A3-)Zj2Wm0)mb&iM122UafHJ zBT&a>R|+%uPh`~NavP$It&s*a)Gk#|Gk76h-4y{-?na)h{VfZak;LNm#;9eSnykf) zHEs*3Vfom+t;8|y1wm1!9f*!2FwPr55PRK*Ri9=wO&UbI~a``Ajwwu z?^d7JJ@=B8xZg+zsELXYa9$Jv4Oh7LG2?I2)`<#T=>Js9UaYtd9~kP^$3fS zvaZ~dvX(|U-yLIMxKlVxXicmpX9J6}izor~sf!GDnyYoHpav7Gso8)c?^I$)z*)p7UTu6k?mQ!ep|J4TY|GSY}YyouyVuLkUzn1(B z6SpFSKZyyf0tLFN4o9lBU9=GLl|tAg zA=bftW_z54ssNVCKSKm+)dZV$bDR_^-+&1*;=q?1T) z7CBR>mQC2LfPuj&vKXfEtsFay`kDSGx|u9Q0F3k36pr3TBSr-efO7F-&aEoriX6tc z$7cnPsI+49A;Hk~v2{xKN^JYcr5j>mDJ3LwNsOUc+A1`Cd%3P} zOX636?nuHmeaa;{>epjDs%q2jwiai}DnLtlq!Fbl&IEny-a#6QyJZn;&A#E zyIr|9py3?D!M4A-Y4mK1If?8b#nH=q}@163IVTo03G(uaJS8($j54AEne) zE5czmpiHhQhfkRJUZo9d`=+Hi%$EWHg0$l~^O_63^r;B$27PG}`*u(#2?JxY#i)1Y>n)vG*nB0N2$d86OKWrA!fKxjSMoy z{0L~pW!OPCEYl?CgF7HZ)l`EkgVm&C3Zm4Z1{Fs2Br<&jJXFw|7GnvHa?Bp%e`5{k*1GOfF?=96U|Sl(UN$8wojF#3y=(WX+5*#qM!zZ-hVdV{t+Z?@iPo~wcq;JDmi@k0Id0JVsr?ID7z%3pWshR-uec- z!;1cD+eq|jTmTW73YggX%W^HBKzOFutyB>a>C5IiDa9+T)-02({XovL)k)K-ld*G+ zx6)BaP^%158#H#h?eDEEswpPX%;isM^j1ricR#3Nbmvb2dTX!8n9+Vha<^N~wNX64 zVUGuirSk?vUzlRtgJP^XN4WzFpe+ zJut%_<0_!%WK&XBNixDnqaN$+;i6{BF3^dpPhrOB|X_Xm{v}&>7*9NZ>u}Y zp33I$H3u;&#brU#M}hb05`TKO#u3|c-_ySl{4!U!Z_Bp)hX+z!-DN~0#|sdcTX!Le z^V=$J;A>ZZZ9(8}x(r@hq zi2A&HMyPP>URU40+VYs49+K%4lj=2-gO0^`L6rZ$S zY&M?15){<4&puROp}-u46t#f8bjPR;Lv86D;%T-}<2Cxb1AI@UJB|672LF9zkvphM zj(1DUN!=_+R5OE5t73|SHRtFkP%4)^X{P&_-JM_2=tV0Fh7oLFp=d8R>r+c8@sPM5;8e6?F6Qvb@_SWsBNI|JskSjq@nqr-rRp4T__ zGjlAX1Nzj$>za*GRunO4f_z-3U}5zL7u8SF^*f zKfcZ`H17ZdQUW%WUbxqAQtjZw)%ZB1NO`_dK9NswgDJ0yythP?OSk7qdT(>f_bAG| z-`K=nQbONl_BSLaCy!s^8|$61lC91_rKchKzVs~WhRHYRS5$WpaYD0hJTHsQF9swJ znGtCSSwb)Zgj7K`V{HeVq?WRhgG$gCa|Y*@_#S{QO_2dgY~4a;|GULs94Owo)Qfz2w6%=2omr|QLMki;X!h)d z$n*diLvZY0I)*c~3k#em;*1`6<0sKz-oR(X@L8XpS~2p9g=SLLkO440N??1g z$D`+aRJ^k=~Ov0Wsy5ZO93X5wlaPNqg_u1BZ`7y;-iy z1Q%Q-#}3bwWI7$V>9EmPZL*s+YTPrvfnoqzT=;*O_4G+}xJcq~4y|)c=n%BmqTb1q z%}L@+u63UDp(7;Fi!j#-a50)4Yc$LTAJi7=aMuWQB5yiz5?GlApN;B&$7Kw91CP0JF+jFnm(GUZnzGg|xD#(>p` zDI2&5f0wOCs?Oq5Ox_i;NJgfmf9l^ejG~(s|JSno`=1pd$EbuzC3#`wb}d4ofuTqC zqSy{UujFAFeU3EERE#w7Vm3J(mFbpG$==PfNdvpJI8tO_((21ay7;!C890L3bP7%# zGbe{qQ;kVrtoYU%3n;o;8V$ehTr`3uaT zbpL9Jj7EQ{^AAB*oPq^8O*ig`5D%x5Q(E50hTvkLlz-((0NF5)+G$AslW-}Djc}#WWM`;swtPr%2b# zMbwpCeUs9JiNFf~AI=e##BdTzEtK(`C@C<`*Z$yf6z|(Y$D`A*F zea?(r-e_6VEF!K7Ke2*SMn&{gNYPOZFu*gyk`${i!iP?(P50<;OJz|LW*EE7?}&Pj zWl0PykD+3~T~jIhO1wImkuz0ex1myix}B?1L+64R)ywl`n)UR0pz~-q2c$_-ZwaBc z3bwpo5x>|7)I-|zy0Fbk(Ck`gUPw69q#td4TXDB_z*pr%puIX@ib3C{F-z@yU5H{3 zp-3f)eYNtul7hNQ>|Q@?4YC!vf@(*r0Jt!lS)vr6^4hGPY*PW6W3YQk-qwsV*r|l> z{-nr7kcEpUUN~j)PchI{b^4rV1*{Q5jyl?u3aHOm$#3EzWgRITT?jts8jJ)KA&;08 zs=p{W=-gIt45DQY^qlnP6?gl-EHlNmBoR#J;N8iTRj8#$3(yGNgPE z^}E~YQIYJOmS01uX&pzF_ibAj%D`b8c(Algkn3RY?>tm|t0kqzOh@s^mXj#a%`7Vb zAwnrtDX3#byI{fmS{sf4vN9Q)9BW1tF6quz*iV>w3H$6gZMvUs8&)sBnS;lEyx(c< z8wUH6+DQf-0)=!*A&`ODCn>#8Q*l=`*~w=m?qS&q}x$<>V(1b>{&qh@xe>KpCy9)!FlGNRly zZ#U%l3*#rIVljfy7S*Pz3~Di(^VL$ak%l^6@4cKY(340P7+}z?xT(EX()UyVNqP$y zwBupjp>RX&m-gnI%%&9WcG_jBaAh=gr4j4-E6Y$5Y$>w^-AknUc|(8kr&^K<7U%$~ zbcV|A85!h+-nzEO_n0wiw}zhy*&ef+8Y1;LlTHfMSu2DF$=5PlFk&rJ9&Va$X!+Sq z9+s>bDpZqppDSFpjAHs8NYqsV)(;n6E$gt!yy==Mt)AYkRz2a9U6z-*U32SUqM{a8 zLxse_&l8b9jh;|K%$QM;b8w@D#4I*J=$B60e5^%A#bHcb8Y;nN3>fHlm@-AmY^%j? zucK?aa|NDIKW8Cg7M|BC%c>o(K86T>0-baRV|f>^V)qSCI$*mqkuZs7su=3P94&M@ z;JfSW`G53?=4~;|9Ix15ncLm6LL@cWey8pv%`6fC?#7ErDR8c>>`6KYHA_ZkIrRw= zOUYY-r1((#S?jT5!?LhyXry9=*dRdg5_W5%0VUDgrl#x9H(3U3Lc}KOY3{Ep0t2z{n|GZI^RS04@0=#)wK>Z|NQHfESy|uf$&A zOTHg~qx}FZpnPH$@6%8ITT%X}{NObXpm+ZCYt|huYd#1K)6wB1c*&-b&nC7Vo>c$= ze~O%R!-P!}WGeM>slLqVasN*fum1giD_jkpa^I)1_P+KOl%9yXF=cUC9NrMYQ*C`2 zGr6snGl)l$@Ue{ROsj({;a!wY$y=N19(#aFlJDo*lTOktSVb+;QgSo_eM~T~{SU%EtJPStVb%&t0-N_o;c5DD%trz4=S=sVR{%0u&*bt>J z)#vxvA$+bJtX@4PPX;M;Ds_4V*mQ_&>12|Juw=^;_o!9+E;_M6_vls}&mmasg%q45 zTM@9waL#IBu_@fM+zqotQULK~S3sko|0fsRG`IjHaWI-iEUWI%UMmzf99!MD7k{RK7TdKETMMZrZw%HibTFvJ7W7qFf5 zDlwDXS4aVGT_2RcDSxBN*ia=w1r-MVC!7XjEUGeT!!D9%s%liF(utc|Q#9nzm+6|( z86)Yzagwj;!SZ-d1EfAOgJb`xut!Xu^$_u{a!}8Ir^^WM&`5Iwhe3xNs?nLFn%G_# zn=qN9{;AnzRJ;gN%6d3au{D^@niGdM!1fk5EJgCZezA_CQXBycbcnOPY-IMP_=w@Z zP(IadV4lt-g1R~|m?`8av9XGM&+^M!?xIMh;GZmM*C3k0{EtYRmZD3bM=KgcgCvPC zN;W@87Fv81T>T@!SoizS7<-5TX_wpM3b{b5RsMery@Vijz~Qhv>lgnfdC31>`TySX ze~t7sy1gR@54x{P=d)A!0{)P1w0GtIzk&K#)~R+v%{A8lp&F-<$`z=*2=XjFtDn`I zjFv;uYdSL7FK{h^=wQ2;xo8~o-LY6<8`-0hHo^?x!`3|`K9Sb7-^CbPGl9M|Rcx{C z*k+8YwR3|Xiw4fcar?lQOe>jlD)`Rx`pLg|*T9JxGxnWZfe0!G6AHU7H#B{P*oWxG zV&?Yo7#S4#1(q)nU1IBppl`z*ueQxs7(`Pu9n;V@RCYj6c7OITd%V8R-D6y(UsI=t z>BUx%({N9-amRYwBLI0QC!hC zLmWqNDV94XyV$g+?+e(jOUMJU!FO%rRPZCPKH2?M zZ|NEs$J~h#|JvI!Du3dOhPdHJ_$3VUyysePU0G;Ju^SdwaFpJ9RQj3d1pS4E3Eqoz zOem-jL0KT8PVY<3%=$r)#0ZNH;D^YXV#5FeQkDk-LikRYNG7oWNBya z{4Z3tDb|^G!jW|9Z+!u_HCXD(EI-8gIlag zEB3?nZ8}l8@ct9E>2WUpVE?==FQ@17qLO)LQ5nQ>-@B&mdA5C{|8=#~EwdoAw?X-3 zcEdG^p}%BR;e8dtRWk}pKR87rCzP|7H_@F+haxY(U_CoIn7>@U!rh|q@i*7$z%<#n zX@$qe@WAx&$MOvCNH|9gV0^PQxd?b-@@D<39-s!BV^LBRb_2@)qAv$o%4$>8W^JLT|lRmBtE^2zm~lkw;r*1xWpx$<6ZEE3AA5yuFaHxh8m2 z{M;%RKiAQ_yxHu7b3NF%tpDWw7*)mgP(GD;RpP6E-SpL~rs*L8y3E!VVO6ljzgg5i z*l{Qt=KPPW%ej9feJb%DbMEeXhIY~ zNO=3C>%3t-TcyadTtx)LGUe%xtS%|)&w{qzQJEO$p3=y@Ue%Z{9+`Nw8g~K^k+TAU z#kn%Qt@`+lrn=Yk8H3|`2p0evLb&g3mk9V2^obf@Tlww)!vn(_j`NspIIKxlT)ss! z;b{m06g9j?RmWX(BzLH_qhil~J3pVMd$n9Em-7ugkGG`|~P(atME1Ey_;T)moA>rG~|% z=_8{F4cu1+$;ygJmrf2TezMj601)|{Kt}`UX$ZSM)0=6(9s?89;01)A2YAH`-wX!a zphy`6s_d`yQ3sGkkl$Lg`ywHJ&4<;5K+rz@=2oWwGdtrGa%ui2mw3m~Uf?P0hK@(VX@H%O*&^`*wS_+&j(@dV z`ubD-OsLD@VXqGLz|*@<#c>jro)O>o(Cad@VEbfy45w7Z3z!FKrN}yfr4G;K29*xU;T1WK$^y(3#ldty2*fqI`A=I zZJsPDr6khU$#jxb>TyxOG&@KflU>XB+L??qJ37?Zbu(-C_DjF8Z>8ClI z)~_dACb5eD3{A=s!FVDl(>8w8LH7&**03jaragfIH!xq13}ubXBo+fvmyx&;!QiU9vm8amW#~X#o8~FOr>tCAWo}Zka5IYpTE!EL>FIa%lr< zf6i=$PZTOBV{@}buq-Ez{#3xuQB&@S2;jv=kej7I*J1L5o{Zb)@Td5BT|xyAsMM<< zM=AbWE!}C#zxh6fp|idU2+)5WY=_@`RGmd~;pD7ZL)@XIG6%3X!x)hw{V`aysH1QL z_6TAJF#~g&3hnlUcS#*bjE^N1Mpan^Gh+~0wW8;XOVI-x95xteo^*^reDQ+LIa5_B z^t~hn*Cv@-<@QE)Vs(~1|CYitI*wUXJcn7vA^#+BX@Aw~S;h*q)S-S@ zdfx*P6hW91v(iJI>&#f;Faw2ev%#t)5qYD+#V^IC5@3^BixDnv*I5J5m*k7*1Wep* zh#lv&+rzPwsRd!)#d6)<5cPuvMMyNyTOG1!ltXlSKxh0N7Jg++dvy3YOtyK^DTDeT z9@UO{|HtE{pJjX0St1>~?*N<@lUxd$3JtBP)HX1L7|&>Ot(3A+l}NkZ91;}nI)*=H z&U@r?p#kjE0YP+6gJc6x{Fc*TSoXuHN@C~HzI`sPqf|~5A)gBSaoGg@y-%*KPBbw* zp=l2${o!Fl-klkZSOPgfsxD2+3f|;_CVrME4rI=%ct~eNYJsG`uI*b7xqbf_DOT;T zp{{#&8cMa*^rzj)1e7r-#rzGZZ=frJkIxZz1YOw6{HU!J>4HF9mKG5k8H$w zAS##8B(=oylZ>(y(Itt(?O>J?6tP9?oF&pi6$q3qedMnduyopt= z?VDxK@z+MkGa&#F=IkCwA}FcrI7AIXB!ZQ!vk)L_)E_4Mf}$7~IWcO|1cnvc zf?$MWi(zY-rzB8J0t*jD)?(cEZ;}Nyk|*~?@6$rupZuI z&);MVyViAD({O9wsxYnvmI<(Hs}VYOK&QTUg>*F>F%0UpYn_^HZ8q93GBdp_`!z_* zvYxcrsO|&fbW<2iWT0ns+V4W4=7dnmM&F*Q!FIiU(Hyx3Q z_F53NK{iMH#cmSkArKNu;eyE)ecq|fGSAV#XLAP6fk1W;rI*1K$yN!X5_+d7)y}2@33-Fo1jA z2c`j?lTIlj&w#>0$!ORW@dykODATvh0KI^et(c9D&>4?RAyASm&-s|Ub7QUL zx}Ia+#`rtp2jM@c!=9Ew5_XSwAdyg>>J!g4;E0DR09h~VnCvM`pI45iGV|IVo!Ug^os??wXDIfAzdVfnK{4mDW<3-$iebVtTw}L z9U2fdOp2hD%jFBh8?Bbn^C|uMhxtTdG-P)g$LJKX7^fBD&3R+sOU0QhW&j2q|B@fb zJZ~#{V$<>%xx%U)vSbQ8)^CJ2d?VC3+MUtn^n6+1C+ymT#4dCx$To7!!-^F?S=&dj zma4h8OWuX(dkuvXp@jS4Xudz3_2SFHHuy|0$%x|XXeRMWUCF55v`5WM8URsG84#+a zH5u0Xwp|?+O4~o!9Ed z)Oug-6@4XOS>CpMpnu)?6t}YToVEi3wVy78iejeRq!V>9n^&YlMtZui(A-9?gUnt@ z;#%eFeMlr=e;eB3^;MJR+TSOD1t>cI;)&3O)dEoj}!1rcQw9_GVcP0tBTC{2JJPpEt}ZsXrH<;OtSr(GS8# zzR0}9^+0FBDPD>I4Jj-F-<)L(kB1h93*<10%5M?a4+6|UQfFE6kP76`5_9(|xi5tZ!S4I>81q7$I}Ma1r~^>v9$gd=zO`C`)_!CY zs~4jj>{S*H>1Je=gQx@|HT+o?HiHWQP1Kp?xDeGNp*iOiu${TJQpsZDg|D0=3Kz*6 zWPhQef}*L!q(&Eh$j=P81Zzfrc(PN2b!xeC9Nrf4G6O*>9+pX6_&yAu6JDY1PW4?m z!W$Q@)W7QMF#sfG-7lOP^=l+oUwltzx7i(U^#mgo);9)<5YS>TUN?4;nD6?!c}5{} zLCY@TaHEBIEExD!#CrZbk&1yp6;E*IFMfNDBk?^)h3bh=h>Nms`HipOjpW6n30k)^ zT8Mvt?)6crnRFD^*!-iyBr81-xTL_*@3wGRLZ-Iojsz&NwX>KYV=q$s%itL&h^3g? z;h?)%RQ{51QVS-RD_b|w9pJb|9|V<>C2I3;#dE`p?bPx^0og`)K2yUI2#-;JQ<-;)%n|3%O<>1LA1RE@n9>)Y(s(iBA# zm)P-x?f!=}?Kh%_JJEQhGA~Pn-&89?0^y0)`92^d2(3#de^d-;0T1Q0xl;E-00)9W zR>YdIRh`p=rs-ny%4-IpW?9+DsI>q>vGjQ*(gu#(c}Via{~r8JfsB$ufeKa8jb$zm z*0ZIJVy^EKEDH7e9<|7~YBdW3Hy=_!3lzgmVV$xgk4@cA&b=+%b(tkaWwvt{J}P7d zsT}aT+&B5+C)d!g$A9AEmU}aYbU3mUXKARmkX5Ti5?-1*YA9viZR;Kcl%1Gbb6AlO zL%c%sGBR-e!OhpZFn6;(&gE=K{!~9O!X7${YpHfE)kdnpwrXCWK#~wvvqMSJnyXtH z>es|@Wrwx_*OiXJdg3>Y7eTIrL?Cs0(IH@NSA7DUdkIvPrb->rVe)OgChA*@Q}x7A z*4lbn`H`w83Hh9)6kO+TR|c4*LA|JQPQMN_^8+xv^tsVo(^*(?)$c6t15pN32jI)N z$f%7GdYq1lFY45$Zcx4o8ronbKG{c-v65i-d?FLtxj+n4t2zsekCwyLs`!%a^)7&j z#EQ@>B`jMy0;ZpDuo<{KY6(fSLTOZE7{S>xUCF-HMN~fFvgjGcbdiimYd_1M_%)|- zlVWGYrUd9-EqOlR7V?y5T^EXAYP^3n~&8QgYw^>sBQA)Nfnp)*r6V+ zLQUawmoEjQ1i%Vy6ad0MzXxx|#-8bt_AXHY7>gI(`?3cJFMXEnifo&|3fR~0Yo|NA zdnd;lsFY*$POBKXaLQmRpbnL0e5!?1QLc@O#;`p<%#X9-9=d6vs~eU&!p?1^LQ1~u z>2DQrw&0KHb+-dyq6A|S-a55<|A;--l-aAF2Wx4;`i}@f<4*8gX@Xb>cHkZicy`SI zw6yTcyv>u8pK`Y&J#cZ4_H>)g18{UMKP#2{Jpx2;V&2O5ekVruh4;c=vEsvl8+CE2?rhN!LME~aGN zMJ3>mfD~CU8IHG;cUHWizuqW8-*1NjR4>ADcPRF;**vU<{#E^4o;Z@*t0qWjO=yoE zv4f%tsrc-)3uK*i6VLLWOcdh(@fH)Ck z9+}Yys^00LvhGZ&-3J@2C5N|MuD&u9q6!oSA=#(GDbf-0EclW9c{7l`M4I~XRJ zZ*wo%K__hOsAXT4Y%F9}MaWsT&?FdA@XMW7O-`u}M4}QJtEs1)eEUEz1kb`dM40^$ zv94UN81lU=`B!5C8$$OY+f6;d!|uVJIGQgKqu%0bSG#&z76b~;BLu`v!M04oq~11Z z@(86Ll?x7`C?zS>%8OXX-!l6&wXam~ck5p2F&KM<^Y9hhOwJlm%U15Qb~!fa_3_?SO6jWVC2q9o<0qy$&?h^DfHG-!4@ffVsTKNI2pF3RmYX2M#(soABJ znf2n6%N;xmTY1r>z=#2SvXb&J%?=11O3q+2BEi#g^8z)I&J6nGmcA3cP`?yxr7MGC zB;hD37)n3EI!P=?Rj5>tE|b_4G7WXE9V#rLg(&Y+hW!U+SwggJU``x@PfBJ2M2ri> zCX(9~U$r{VS#VAV4Uq#j1AWjJY8k$5F8v>jiU!6yv(ZBu1#{|9UV*X22)X*g zV;wjlvvbQ2CB=`d5-y06`C3z#Zu9ng-jf($F<|}xxy@IA0s%#%CQ02912i`54%m=< z>E{51i;#W84I;X@%&7skk-pZj%_G;s4I1MpwvNIHfg;?0{Cv$NCejG6$+po}LqI86 zCicRac}^TIJ=G;a;;h!#p4eiHZ1wJcTaTrT<7}O$V4ZXtZAf|T09Lfm`}>hQ9Hy-zi@=$hV3^S$`o~MbD>_E7Wx* z*>^a!&oX0QvVzz%#CDwTC1IB`#i8}64LuIr#0;oU!>hBZk#w+d0F}M+yg~F+ElND> z?X!#4y9-FOf=&p_rAY@@fy zuyO_m0@UBTwWC0%*ht&w5NFt)p1&jXTHi|d{6qOByP7LmX=Ak>~-HS0Bm<0>eC<-3=Jsreo zxlkKGoez>@2r&akIN@is#XfgzNwjScL*cN^#(igDq6RDbWrmLk`Dzv5vJSF41DqRM zBc~i2#-F6UfPhN#J?>}omA{PrMWh|QYoNGra-i9IK;P)VJWj6&zEL-ryYM7LJm&q} za7eAQ{oJ1*rwFqm?wDGfdjAaKmu5INLAudOxY`j*f4D}Kbjtet#1oTBOYn@luxUgZd|V#S zeRzl^)g=RkEtgAORwzp!64f*CRf+8dhDM{E$~Ckl-``blp!@EFr^ODl-^PY=ui2mf zd1zwoZ8lgsT~p?y4I;O&)<6GL(t|okz3Tkup8&sRp~xu{D)_Ti$!G%0>cnN~OyB7U zN+qu?@YfDDMI^;UP?ivk7oHMD4#dEMj}kCeE1tD?1C8PtnT&ZW$}g`2-x7dJHzI;O z6a1!=6R417Q(Cze^bigK)__7a(i)p4Q9BczYP)Pj1LSc&+H6b=a|!$m!do_}!_+Yg zDgX~6$seWfZo25v2Pp`8z z@$tn-R|9{qhg=&}rB7oJi;`RW-oA5evb2B!AiwrNC9{s zP_#dEGM*D9i+qOG-;oUb#=Q!j&@qV7!@`Z}h!ajsq=vyH^~RB*Bk?jxj$?8?iVq-3 zUU97YJ+sBfGkXSi8E%)bn>FOjT_)y`7i9Bl6-%4zA8!+(h_MO1>dOb|t$pLXuk=E3 zFE4fZdGv!NMXzA*o~Mj2bK(mb&TJe4eFBGw?cxaEKjS|*(a^&;Zs~N((VCARu2jARwgwNm&}( z+uEAixi~Zam#&;j)&4gxp@r_idmskq4xQ3T+hq%=PXSqSL(Kz;{)H4Pv~{CYBs(K0Rh_YvU97OM1eGrp zS{4yjo{?FSlKRbBrn0i>LPO19J&0X2%TPOMoVX~`tKW<%W*=eJ7R}tVcFd%p8@n@u zO*BCp7Eyb|cc;ZCt<$6gLst5ZhLT~#WeOnkW#ivqCev-SGmm~?Zk%%_TKYcLNlQYk zH6N)x5a)13CGalD+iS14#a$IVFY`P!Q@p#Iy43FhF!vSp(P17@7ImA(c%0T>KnGpA zy(Cik?g%8xQHbGgBm}%C+gC*Z_b+BQySVqI9)JhkLT4SN;C;J8|BM*1X(s4Wfx&B-MZ1HGW^bRlNM4Q zr3zHZQR=b?g0eb|hU&@_t6(=rw01cWuD42wKL4 zPX+XcKY8Gs{5_D$c}yaRw<7kz@SV`5SwK>W9JZF*w+?C>-dqk{A*5z~X`wZY5^Ub@ zgUl&W+1}sLJrKFe{jYun@+q%EByQx)YP3{>6T8BZf5=$-$Dr)u zK;79_cJvV-={9wT&=d#!kaaWgruP#7_(ln03Cdt3zqCCW2Mr#96&wLJHbG6lh%hbi z#p?R^bI`5=sh{7JgSMe2uKQ)60J=<^WhJTAU@&;O)LM;dk+mJB&GBv3L_-0Pv)lDj ze%~xb@H{-JX^`TZJ1cUz;Cd=(bTf%?Ge-0c4wxN`v56ikhlWNUtq(BW1|-*>TM8AL zZ-4@Dk#A^Pf>Ylx88kD3m}y>!tTa-$V+uxuO-vekS3Fz{y;u@%=N==pcEM+Yl(m(f z6KR4^j9&19>s?%a53Qc`AGcWdA+zYDnILZ!M*0HLkH$Y1)B?2@Dl#jZ-S<=LjiLDBr~5ea)Bor z%pl+(lE;f1$MZ-hX&V0!i14Qd5wT*%hu>>Ri0(TgUSE07@NW4$9c_83cGqoOHLl^# zuEKIrpHFvd(y*(KHQmfIGd3A*sAh?_Sg}3bUG{Fz^!j{F>UW=4=Bc>`w6Sj-thugi zb@Ono&(vMGw)p(>#l5hxeimQieFfDWblf3bmac9 z3ofgETtA0SWj)C*(E_w;Q@6h8ma8>p^>cM>Gh2Tu57ucon~rDXHKR zGAZ_X=p*JC-<3?!Gu{`fS5>S@-D7d7yL&Y3?A4aO*o&fUeLZ=i?n~TZ;#_3aYg)^u z!QRYwJY1r&09NA=bT>j!chn&l3yi&)%uB4D(&S#^(0;scyN+>eY63 z(vIfc^B=#zFCEbVq%73hE@T<))xO4*2zhjN{N4*Z^lM_x?O5yB9y&D^M=F0;cG|Kn zeR#P&K33SRZP7(m0#0ArTpMccQkJaV!Ya$vN4k4*4yMcOeLtCV1rJpfYbwo&5^hR0 z0iWJK!zcAawp(<$J-N&5TfTP%dV0F<^1>@PxA&D=o2|0|y^qc{ohzoZzVmxG?Yhdm zJX3Gwt-4IBJC@6~r&g+Ef*-Fo9rkgkyq=zlI)!NZ?d-mQPVLzH9r!+N+NvpN=t4?8ibq)`z3QcX??=pSvz+_vg#3(3Jq!hdcW#kcL~E z*UKhE&X-w04iBGu^G(TE9)9Q5Q&mwxj6Of*)=&;D_MO|pl?HQXgE7km7A-y%o+iwM zg}jbbqJ%sxBMoU{dwp`muBMB(RG(#iJUpeY>k`FtMXv?-H?NZcJ$4=;54EKk8?tZ? z1yfg|h86RK4yLg)+V2J4VXWj`JdHPF?4e|3h8`EdHS=BN;$H^o>g9$o$>9wqB(sVH zn$UDj9|-3=V-$tdq2NQbL>`fOJ!mR2QJ;`ZN&9g05+b2gA=tlZi#G|l<^MiT)O#Ml z^Wj>QNdJ_W{^nft4%BP~Q&Wa0Eo|J>jo5?)ntcuB%!ZV&EHRnUc`U~*;$oIa|KEG` zik<+JF)R_8G5pRTgcm3$Q6dY`8=xRfN;c3KL<>FgPOb5rdLC-BSwm~&6KS1-9Bm;b zw-7Zc#$>N<4z6S>%QiOJV_wTFoNXOH+39L>oNlima_m9 z11FzY#08w$SIV|+#xjzR1jj4}mw=hx2b$zDGei^Cf*rxH3osfmxaO0mpI3BhEg7dv zk{Oav-37oT+4y4;!)lUC*@VZ=DUm|e&u!oNj>xg;`Yx&IF2p*Ly9UJs4{^cUA9GA# zf2L?Uu{49lmLOD;;UWry!f|lJ#0&t)!GmJZNN`*NoDwvC8K9D^3>Qs6M`c2cx~Qng zkg67U)rKn2MJ`x5hY04$0eDAqli}Fr;mC?qt8d^RabY4`>ovhZh9YMcEwY^Y`97NM zMv}<0RiM~Xq0j?SnlDEp3>|)hIx0n4sAMw3u{Iy^O)T6*{u}H-1~re*pDsY&oqaNP zo(c?GB1}eg)Tx_MjGP3#0ihGIKn$m6+=sALgP!Y>ds{u-*_VgWgJjPxNzW}OCafWG ziP7Ar4KAY+XW&#I8c`savcgWQ>|GW6^@gKW(%^vjU_!7HM6j?GM8(=X@@xo2retl3 zDX{wU2(Hq`9=QAa(uO1|6AAzxDf67kNRK);8Rh&GbbY~+Ajf4st$9;e=P}PcU&?3w zC>jlvo1~&yLL?18vY?tsFVM)s^)AFS zVW1SE&>qA%oHN;6Cx-%;EaTreL4nd(!a_Qlo;-wY;1$c1u7b~J)Q5nLRWBj}eL?|> zu_hrQ@VGu`hE2Z7;7^BbGu0qy&lb;FFvf-i&!AeD0H%=H6ud{GXy9+GNZNp0lhsTs zjb*{&vx<<{(^YqK5eT4u2eVMJ&WD6_m0lMp=ozu=A`l}3eP{s}R|%Cx`a{7b6Cp34 zHg|FlFPb4y)z%-RX`soKIj75zOi4WHaD7V(CTqy~nlX7xLwm|7oGivt z#l|?&M3#OxX<;}moyUe2tS7gU_{Rc0ASmY2VaS6tB50681`o;gm9B=!lCb<(YhDb4 zYZrS21gTi~!w^Pl0tt6ZV<@lm4hDm`ksC(7S%ePXIzf^;kSjyRF%Lbo7uMX*K^YMB zhCp;afW`io@ed$f)iD2#X!6f?Dtv-?M{;!G zXfzUq>4x`PU4)#liXi-8WkO)-(>*OxRAI#2<)u$AI7UDPdXF4}EgfTFPLNC5E>$U* z+V~)QJfU-=Ub#PKvwX=;kelt3oANLH68p%cB;?Ivweh=AVr!}tf5m!+G^PO}V;h6u zvVPDfO~Ernn6}Mb%I5x6{5=_|5L`)c*3rMY-Aq)U=6fhU&=DxzG)ZHlX;DEFe+j;$ zdGCw)#_s^NAlW6q|Ixn1hg|k#k2Io=fX&b|d921huLy6^tJL+5ghvCAn7r|J@{pqWc*#iJ>jU7QH1%$ zK$x4n%oEJZ#j!9%^?cpdbnT~_XG512MDp$Beka?bv0Xb*Mk{yw(75G>SQgOL^!dHM zveYE~;Jc_({_mh`~U**d`>n40s#Udf&Tv@ zVnZ8aVGBb`yZ<6$mu2m^OaV-Y-4F6FM3d_-sMcpB$Dr(`EjR61cd#?7!2ux4b%6dp zW%SL4-gVQEyHUF1=PUPYv%aNj-k(8~(IEi~%Y@`G{Z3WHn^~LxWRHp-=#+`))IdO@raXl{pXXWipOr9ze>G_PuE;b(1nG@z znbqYT3OM^sRsUV0b|_`AGTVzoqW>_(odj+oRYXjq_$rYNG8>e2F!~_M9^{~V@ULL=U&!b!hUAHu(_G4H-6hP z-$@MP=-`uJHk$cu*qFeSz<>h=q|h7cI|AYzWs0v=-9k1A8V3+dvQ7|3=7R!ElnrZn z=)IK#4%_v}$Sm{YC+33{W`6Iwszdl3buoGkzCRj)*wHFpEe1cS>Sy+;9w=Ioe=KzB zF?hMD<^84xFbr_NT}KN^LinIbuVCw8pJhy7XLxyxX+J3`T`2jm)B&(C1=^0(yQ}q#lqmR{|zD#lgUqE47h8(74pqib*GLlqcM@1yx^vVH+CDs?l56x-FTn z`Lu=faTjm&;0H@B#imJPk&kEJzNVjSeXJ^7PS6SeL6BgSR17&!x{NvAo(^C^p3aD% zz#S;Z+wbo|f9lZHCIH}SYL=)s_E9-kb*pTnk_1SQiUtyoyU8WD8NNY5A`0q*3$m|U z6e0KByz>`TrPgP+vaUGuZJVMfg=Jrtlu5fvf4w_vHf6tcXzDaLXGRxTW*2N4rvT_p z3&dG`F7({(I~~gu=hM+UsOFYzvSSMp+2~C+aqZyAj*8%We=yry2?#qo|CQRm!VHz~%gF)tS&#-FFA8N(8Es1|J&<96|f% z#DJ!1JMii@Mr{_*fko2~C^3pL87%>7lbX(|!YDAENtscKY2iAsImXJ2`b;;rf!UQH zw)$Q$dq0rPxNrJ>U0$Hxp4OAEvq|rAZAk_3t&sJenmqAQAF)&CY zWPz-2AEvKUVbp~TZBKuo!YImgRYnuW^yw2+83Pz? zrax3=w30?2LPQwLGTls#(U!S_m2vXH|H{*6ssRHO-u0J)?2$mIc3_`=N{!Khk$F0| zI-{}-dO3_x_)TQGmpY>oBp*&MR0ld$MSOaPI-@PqZ^`M$)fsJ=RAi^KYA`x7WywwV O&|tJ;`z6l^)DHmRm1B+o diff --git a/ADRpy/analisis/Modulos/config_and_loading.py b/ADRpy/analisis/Modulos/config_and_loading.py index 9efb2c11..85ba13c7 100644 --- a/ADRpy/analisis/Modulos/config_and_loading.py +++ b/ADRpy/analisis/Modulos/config_and_loading.py @@ -2,7 +2,7 @@ import tkinter as tk from tkinter import simpledialog, messagebox import sys - +import unicodedata def configurar_entorno(max_rows=20, max_columns=10): """ @@ -76,3 +76,30 @@ def cargar_datos(ruta_archivo=None): raise ValueError("Error: Archivo no encontrado.") except Exception as e: raise ValueError(f"Error al cargar el archivo: {e}") + + + + +def normalizar_encabezados(df): + """ + Normaliza los encabezados del DataFrame: + - Elimina espacios al inicio y al final. + - Convierte a minúsculas. + - Elimina caracteres especiales o no ASCII. + :param df: DataFrame a normalizar. + :return: DataFrame con encabezados normalizados. + """ + def normalizar(texto): + if isinstance(texto, str): + # Eliminar caracteres no ASCII y convertir a minúsculas + texto = ''.join( + c for c in unicodedata.normalize('NFD', texto) + if unicodedata.category(c) != 'Mn' + ) + return texto.strip().lower() # Eliminar espacios y convertir a minúsculas + return texto + + # Normalizar columnas e índices + df.columns = [normalizar(col) for col in df.columns] + df.index = [normalizar(idx) for idx in df.index] + return df \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/excel_export.py b/ADRpy/analisis/Modulos/excel_export.py index 510ba196..ef20ffd1 100644 --- a/ADRpy/analisis/Modulos/excel_export.py +++ b/ADRpy/analisis/Modulos/excel_export.py @@ -57,8 +57,11 @@ def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputa elif registro["Método"] == "Correlación": celda.fill = color_correlacion - # Agregar comentario con el nivel de confianza - comentario = f"Nivel de confianza: {registro['Nivel de Confianza']:.2f}" + # Agregar comentario con el nivel de confianza y la iteración + comentario = ( + f"Nivel de confianza: {registro['Nivel de Confianza']*100:.2f}%\n" + f"Iteración: {registro['Iteración']}" + ) celda.comment = Comment(comentario, "Sistema") # Guardar el archivo con las imputaciones @@ -66,6 +69,6 @@ def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputa print(f"Exportación completada. El archivo se guardó como '{archivo_destino}'.") except FileNotFoundError: - print(f"Error: El archivo '{archivo_origen}' no fue encontrado.") + print(f"Error: El archivo '{archivo_origen}' o {archivo_destino} no fue encontrado.") except Exception as e: print(f"Error al procesar el archivo: {e}") diff --git a/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py index c0e92b6b..c3badfc2 100644 --- a/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py +++ b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py @@ -1,115 +1,53 @@ -""" -imputacion_similitud_flexible.py --------------------------------- -Implementa la lógica de K‑NN con 3 ejes obligatorios (físico, geométrico, prestacional) -y filtrado progresivo de familia (F0‑F3). Diseñado para integrarse sin romper -los nombres ni los flujos que ya existen en tu proyecto ADRpy. - -Uso rápido: - python imputacion_similitud_flexible.py --ruta_excel Datos_aeronaves.xlsx \ - --aeronave "Stalker XE" \ - --parametro "Velocidad a la que se realiza el crucero (KTAS)" -""" - -import argparse import pandas as pd import numpy as np -from pathlib import Path -# ------------------------------------------------------------------ # -# CONFIGURACIÓN DE BLOQUES Y CAPAS DE FAMILIA -# ------------------------------------------------------------------ # +# ------------------------ HELPERS ------------------------ + +def imprimir(msg, bold=False): + prefix = "\033[1m" if bold else "" + suffix = "\033[0m" if bold else "" + print(f"{prefix}{msg}{suffix}") + +# ------------------------ CONFIGURACIÓN ------------------------ def configurar_similitud(): """ - Devuelve las configuraciones necesarias para ejecutar la imputación por similitud flexible: - - bloques de rasgos - - filas de familia - - capas de filtrado jerárquico de familia + Devuelve: + - bloques_rasgos: diccionario de ejes y parámetros + - filas_familia: atributos para clasificación familiar + - capas_familia: filtros progresivos de familia F0, F1, F2 """ - bloques_rasgos = { - "fisico": [ - "Peso máximo al despegue (MTOW)", - "Peso vacío", - ], - "geom": [ - "Área del ala", - "envergadura", - "Longitud del fuselaje", - "Relación de aspecto del ala", - ], + "fisico": ["Peso máximo al despegue (MTOW)", "Peso vacío"], + "geom": ["Área del ala", "envergadura", "Longitud del fuselaje", "Relación de aspecto del ala"], "prest": [ - "Potencia específica (P/W)", - "Autonomía de la aeronave", - "Alcance de la aeronave", - "Velocidad a la que se realiza el crucero (KTAS)", + "Potencia específica (P/W)", "Autonomía de la aeronave", + "Alcance de la aeronave", "Velocidad a la que se realiza el crucero (KTAS)", "Velocidad máxima (KIAS)", ], } - filas_familia = [ - "Misión", - "Despegue", - "Propulsión vertical", - "Propulsión horizontal", - "Cantidad de motores propulsión vertical", - "Cantidad de motores propulsión horizontal", + "Misión", "Despegue", "Propulsión vertical", "Propulsión horizontal", + "Cantidad de motores propulsión vertical", "Cantidad de motores propulsión horizontal", ] - capas_familia = [ - { - "Misión": "equals", - "Despegue": "equals", - "Propulsión vertical": "equals", - "Propulsión horizontal": "equals", - "Cantidad de motores propulsión vertical": "equals", - "Cantidad de motores propulsión horizontal": "equals", - }, - { - "Misión": "equals", - "Despegue": "equals", - "Propulsión vertical": "equals", - "Propulsión horizontal": "equals", - }, - { - "Misión": "equals", - "Despegue": "equals", - }, - { - "Misión": "equals", - }, + {attr: "equals" for attr in filas_familia}, + {attr: "equals" for attr in filas_familia[:4]}, + {attr: "equals" for attr in filas_familia[:2]}, ] - return bloques_rasgos, filas_familia, capas_familia -# ------------------------------------------------------------------ # -# HELPERS -# ------------------------------------------------------------------ # - -def imprimir(msg, bold=False): - prefix = "\033[1m" if bold else "" - suffix = "\033[0m" if bold else "" - print(f"{prefix}{msg}{suffix}") - -import pandas as pd +# ------------------------ FUNCIÓN PRINCIPAL ------------------------ -def zscore(arr: pd.Series) -> pd.Series: +def penalizacion_por_k(k): """ - Si la desviación estándar es cero, devolvemos un - vector de ceros (todos idénticos a la media). - En caso contrario, el Z‐score habitual. + Calcula la penalización por cantidad de vecinos (k) usando una ecuación polinomial. + Para k > 10, la penalización se fija en 1.0 (confianza máxima). """ - std = arr.std(ddof=0) - if std == 0 or pd.isna(std): - # arr.index preserva el nombre de filas - return pd.Series(0.0, index=arr.index) - return (arr - arr.mean()) / std - + if k > 10: + return 1.0 + return max(0, min(1, 0.00002281 * k**5 - 0.00024 * k**4 - 0.0036 * k**3 + 0.046 * k**2 + 0.0095 * k + 0.024)) -# ------------------------------------------------------------------ # -# FUNCIÓN PRINCIPAL -# ------------------------------------------------------------------ # def imputar_por_similitud( df_parametros: pd.DataFrame, df_atributos: pd.DataFrame, @@ -118,134 +56,174 @@ def imputar_por_similitud( bloques_rasgos: dict, capas_familia: list ): + imprimir(f"\n=== Imputación por similitud: {aeronave_obj} - {parametro_objetivo} ===", True) - imprimir(f"\n=== Iniciando imputación por similitud de aeronave {aeronave_obj} y parametro {parametro_objetivo} ===", True) - - # ------------------------ Paso 0. Validaciones ------------------ + # Validaciones if parametro_objetivo not in df_parametros.index: - imprimir(f"Parámetro '{parametro_objetivo}' no encontrado.", True) + imprimir(f"⚠️ Parámetro '{parametro_objetivo}' no encontrado.", True) return None - if aeronave_obj not in df_parametros.columns: - imprimir(f"Aeronave '{aeronave_obj}' no encontrada.", True) + imprimir(f"⚠️ Aeronave '{aeronave_obj}' no encontrada.", True) return None - # ------------------------ Paso 1. Vector de X ------------------- - vector_objetivo = {} - for bloque, lista in bloques_rasgos.items(): - for rasgo in lista: - if not pd.isna(df_parametros.at[rasgo, aeronave_obj]): - vector_objetivo[bloque] = rasgo - break - else: # ningún rasgo disponible - imprimir(f"⚠️ Bloque {bloque.upper()} sin datos en '{aeronave_obj}'.", True) - return None - - imprimir("Vector objetivo seleccionado (se buscan parámetros con valores no nulos en celdas para realizar la imputación):") - for bloque, rasgo in vector_objetivo.items(): - imprimir(f" {bloque}: {rasgo}") - - # ------------------------ Paso 2. Iterar capas familia ---------- + # Iteración por capas de familia for capa_idx, criterios in enumerate(capas_familia): - imprimir(f"\n=== Capa F{capa_idx} ===", True) - - # Filtrado fila a fila - mascara_cols = np.array([True] * df_parametros.shape[1]) + familia = f"F{capa_idx}" + imprimir(f"\n--- Capa {familia}: criterios {list(criterios.keys())} ---", True) + # Filtrar familia + mask = np.ones(df_parametros.shape[1], dtype=bool) for fila, modo in criterios.items(): - val_obj = df_atributos.at[fila, aeronave_obj] - if modo == "equals": - mascara_cols &= df_atributos.loc[fila] == val_obj - - df_familia = df_parametros.loc[:, mascara_cols] - imprimir("Realizando selección de aeronaves con valores en todos los parámetros físicos, geométricos y prestacionales:") - n_fam = df_familia.shape[1] - imprimir(f"Drones en familia: {n_fam}") - - if n_fam == 0: - imprimir("❌ Sin drones en esta capa. Relajando…") + val = df_atributos.at[fila, aeronave_obj] + mask &= (df_atributos.loc[fila] == val).values + df_familia = df_parametros.loc[:, mask] + if df_familia.shape[1] == 0: + imprimir(f"❌ Sin drones en {familia}. Continuando...", True) continue - - # Filtrar los que poseen el parámetro objetivo - cols_with_param = df_familia.columns[ - df_familia.loc[parametro_objetivo].notna() - ] - if cols_with_param.empty: - imprimir(f"❌ Ningún dron en F{capa_idx} tiene '{parametro_objetivo}'.") + # —> Validar que haya vecinos con el parámetro objetivo + cols_validas = df_familia.columns[df_familia.loc[parametro_objetivo].notna()] + if len(cols_validas) == 0: + imprimir(f"❌ Ningún dron en {familia} tiene '{parametro_objetivo}'.", True) continue - # Además deben poseer los tres ejes - filtros_ejes = [ - df_familia.loc[vector_objetivo[bloque]].notna() - for bloque in ("fisico", "geom", "prest") - ] - mask_all_ejes = filtros_ejes[0] & filtros_ejes[1] & filtros_ejes[2] - cols_validas = cols_with_param[mask_all_ejes[cols_with_param]] - k = len(cols_validas) - imprimir(f"Vecinos válidos (k)......................: {k}") + # Parámetros MTOW y filtro ±20% + mtow_obj = df_familia.at["Peso máximo al despegue (MTOW)", aeronave_obj] + mtow_vec = df_familia.loc["Peso máximo al despegue (MTOW)", cols_validas].values + delta_mtow = np.abs(mtow_vec - mtow_obj) / mtow_obj * 100 + mask_mtow = delta_mtow <= 20 + cols_filtrados = cols_validas[mask_mtow] + if len(cols_filtrados) == 0: + imprimir(f"❌ Sin vecinos ±20% MTOW en {familia}.", True) + continue - if k == 0: - imprimir("❌ No quedan drones con los 3 ejes. Relajando…") + # Cálculo de MTOW_score + d = delta_mtow[mask_mtow] + g = -0.002*d**4 + 0.041*d**3 - 0.28135*d**2 + 0.23*d + 99.94 + mtow_scores = g / 100.0 + + # Nueva lógica para calcular los bonos geométricos y prestacionales + + def calcular_bono(tipo): + parametros = bloques_rasgos[tipo] # Obtener los parámetros geométricos o prestacionales + bono_total = 0 # Inicializar el bono total + + for parametro in parametros: + try: + # Valores de la aeronave objetivo y los vecinos + valor_objetivo = df_parametros.at[parametro, aeronave_obj] + valores_vecinos = df_familia.loc[parametro, cols_filtrados].values + + # Si el valor de la aeronave objetivo es NaN, el bono es 0 + if pd.isna(valor_objetivo): + imprimir(f"⚠️ Parámetro '{parametro}' no tiene valor en la aeronave objetivo. Bono = 0.") + continue + + # Calcular las diferencias relativas para los vecinos válidos + diferencias = np.abs(valores_vecinos - valor_objetivo) / valor_objetivo * 100 + + for d, vecino in zip(diferencias, valores_vecinos): + if pd.isna(d): + imprimir(f"⚠️ Diferencia NaN para el parámetro '{parametro}'. Vecino: {vecino}. Bono = 0.") + continue + + # Ajustar la diferencia relativa según el rango + if d > 40: + g = -100 # Máximo bono negativo + elif d > 20: + # Recalcular la diferencia relativa en el rango 20% a 40% + d_ajustada = d - 20 + g = -0.002 * d_ajustada**4 + 0.041 * d_ajustada**3 - 0.28135 * d_ajustada**2 + 0.23 * d_ajustada + 99.94 + g = -g # Cambiar el signo a negativo + else: + # Rango de 1% a 20% + g = -0.002 * d**4 + 0.041 * d**3 - 0.28135 * d**2 + 0.23 * d + 99.94 + + # Calcular el bono para este parámetro y vecino + bono_parametro = (g / 100) * 0.05 + bono_total += bono_parametro + + # Imprimir detalles para depuración + imprimir(f" Parámetro: {parametro}, Vecino: {vecino}, Objetivo: {valor_objetivo}, d: {d:.2f}%, g: {g:.2f}, Bono: {bono_parametro:.5f}") + + except KeyError: + imprimir(f"⚠️ Parámetro '{parametro}' no encontrado en los datos. Ignorando.") + continue + + imprimir(f" Bono total para '{tipo}': {bono_total:.5f}") + return bono_total + + # Calcular los bonos geométricos y prestacionales + bonus_geom = calcular_bono("geom") + bonus_prest = calcular_bono("prest") + imprimir(f" Bono geométrico: {bonus_geom:.3f}") + imprimir(f" Bono prestacional: {bonus_prest:.3f}") + + # Score de familia + family_scores = {0: 0.95, 1: 0.825, 2: 0.70} + fam_score = family_scores[capa_idx] + sim_i = fam_score * mtow_scores + bonus_geom + bonus_prest + + # Mostrar similitudes + for nbr, s in zip(cols_filtrados, sim_i): + imprimir(f" vecino '{nbr}' → sim_i: {s:.3f}") + + # Filtrar por umbral + umbral = 0.0 + mask_sim = sim_i >= umbral + vecinos_val = cols_filtrados[mask_sim] + sim_vals = sim_i[mask_sim] + if len(vecinos_val) == 0 or sim_vals.sum() < 1e-6: + imprimir(f"❌ Sin vecinos ≥{umbral} en {familia}.", True) continue - imprimir(f"Vecinos válidos nombres: {list(cols_validas)}") - - # ---------------- Paso 3. Distancias y media ponderada ------- - # Matriz con los tres ejes - data_ejes = pd.DataFrame({ - col: [ - df_familia.at[vector_objetivo["fisico"], col], - df_familia.at[vector_objetivo["geom"], col], - df_familia.at[vector_objetivo["prest"], col], - ] - for col in list(cols_validas) + [aeronave_obj] - }, index=["fis", "geo", "pre"]).T - - # Z‑score columna a columna - imprimir("Matriz de datos antes de z-score (data_ejes):") - imprimir(data_ejes) - data_z = data_ejes.apply(zscore) - imprimir("Matriz de datos después de z-score (data_z):") - imprimir(data_z) - - # Distancias - diffs = data_z.loc[cols_validas].values - data_z.loc[aeronave_obj].values - dist = np.linalg.norm(diffs, axis=1) - weights = 1 / (1 + dist) - - valores_vecinos = df_familia.loc[parametro_objetivo, cols_validas].values - valor_imputado = np.sum(weights * valores_vecinos) / np.sum(weights) - - # Confianza simple (CV + distancia media) - cv = valores_vecinos.std(ddof=0) / valores_vecinos.mean() - conf = max(0, 1 - cv - 0.1 * dist.mean()) - - imprimir("Detalle del cálculo del valor imputado (se calcula el valor ponderado basado en la distancia entre aeronaves):") - imprimir(f" Pesos (weights): {weights}") - imprimir(f" Valores vecinos: {valores_vecinos}") - - productos = weights * valores_vecinos - suma_ponderada = np.sum(productos) - suma_pesos = np.sum(weights) - - imprimir(f" Producto elemento a elemento (weights * valores_vecinos): {productos}") - imprimir(f" Suma ponderada (Σ weights * valores_vecinos): {suma_ponderada:.3f}") - imprimir(f" Suma de pesos (Σ weights): {suma_pesos:.3f}") - imprimir(f" División final: {suma_ponderada:.3f} / {suma_pesos:.3f} = {valor_imputado:.3f}") - - imprimir(f"✅ Valor imputado: {valor_imputado:.3f}") - imprimir(f" Confianza.....: {conf:.2f}") - imprimir(f" Vecinos usados: {list(cols_validas)}") + # Imputación y confianza + y = df_familia.loc[parametro_objetivo, vecinos_val].values + valor_imp = np.dot(sim_vals, y) / sim_vals.sum() + + # Cálculo de métricas estadísticas + if len(y) > 1: + media_y = np.mean(y) + dispersion = np.std(y, ddof=0) + cv = dispersion / media_y if media_y != 0 else 0 # Coeficiente de variación + else: + media_y = y[0] if len(y) == 1 else 0 # Si hay un solo valor, usarlo; si no hay valores, asignar 0 + cv = 1 # Penalización máxima para k=1 + dispersion = 0 + + # Penalización por cantidad de datos usados + penalizacion_k = penalizacion_por_k(len(vecinos_val)) + # Penalización por la calidad de los datos + confianza_cv = max(0,1-(cv/0.5)) #cuando la desviacion estandar es igual al 50% de la media entonces confianza 0 # Dispersión de los valores + + # Confianza final combinada + beta = 0.7 # Peso para cantidad de datos usados + pesos = sim_vals / sim_vals.sum() # Normalizar los pesos + promedio_sim_i = np.dot(pesos, sim_vals) + confianza_datos = beta * penalizacion_k + (1 - beta) * (confianza_cv) # Confianza basada en K y CV + confianza_final = promedio_sim_i*confianza_datos # Confianza final = promedio de confianza de vecinos * confianza de datos + + # Mostrar detalles del cálculo de confianza final + imprimir("\nDetalles del cálculo de confianza:") + + imprimir(f" Confianza que tan similares son los vecinos (familia x Mtow + Bonos): {[f'{s:.3f}' for s in sim_i]}") + imprimir(f" Promedio ponderado de confianza de similitud de aeronaves: {promedio_sim_i:.3f}") + imprimir(f" Media de valores (y): {media_y:.3f}") + imprimir(f" Coeficiente de variación (CV): {confianza_cv:.3f}") + imprimir(f" Dispersión: {dispersion:.3f}") + imprimir(f" Penalización por cantidad de vecinos (k): {penalizacion_k:.3f}") + imprimir(f" Confianza en base a la calidad y cantidad de datos: {confianza_datos:.3f}") + imprimir(f" Confianza final: {confianza_final*100:.3f}%") + + + # Retornar resultados + imprimir(f"✅ Valor imputado: {valor_imp:.3f} (conf {confianza_final:.3f}, datos {len(vecinos_val)}, familia {familia})") return { - "valor": valor_imputado, - "confianza": conf, - "vecinos": list(cols_validas) + "valor": valor_imp, + "confianza": confianza_final, + "num_vecinos": len(vecinos_val), + "familia": familia } - # Si ninguna capa funcionó - imprimir("⚠️ Sin vecinos en ninguna capa. Se delega a correlación.", True) + imprimir("⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...", True) return None - - - diff --git a/ADRpy/analisis/Results/Datos_imputados.xlsx b/ADRpy/analisis/Results/Datos_imputados.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..3bb5164c10e6747648746d4d43531de7d6071663 GIT binary patch literal 76963 zcmeFZbyS>B)-H-95Ind;aCi6MZjA=l;O=fg(l|kaJ2WoA-66O`aCdj-bTTvFZ|0MG z=B|7HJEzy`>bL2)SJmFnezq0WO0v*zFd$$c-a$Y>kU-da)sfdhLO>A1LqMQIyo1sf zwX=0LwRP54^{_W}(q(kFvHpG;C2jp1yKGZ|s z#5`dtfe?FR`@Yb|}VQ6@78QTH|qTQ%7m^jphKzhdKV;R_^u_cJKB9^7{-f1B zy3TTNA74c8FRqN z$n00S_kcCY^*x@NiaC!(rBQ|>FDcl+Sa)2CrM9C#dow7c4FE{l(e7BsB>O3{uKl!X z*w2U3J$ks{x=RMmeg=jUgI2(i@4u2H#(WY@2O0vR6&3;l1*{o&YbG~4M=K*cJFDOE zFi%Z8I+Yv4SKs0_XnPlp5mIE_gw|1*u;@7I^N*?iK}a@tSnFBN#+n1aRbw31VKJ?d zI_mRaW53;-^zNBQW8G|l1Rz{n$4O6T*oE9ygb@9i{^B%{8IW?8rW!c)R!}*3RsZ#6 zaYlHcKmC35JBS9YHNYWdolQbQ4W%V1-k>nx-6wP;?R$d~2|!#)96(p2ZkIb-7roCR z`u$M7L0FCfu5Nf~8O@wPSRUqtK^yI-T$mbOF9aR=E#pPaWDvgpd=+qC1s15B-phre zBUN3}ah!{vmHS2io!?wQCq8??o`~8AD@{E0)tjv2l|6)4-G0|)Y!Yt0zBL=EHirF- zWP*&cxOGJ>%#5loGv>K_Q+907i~~i;+B3P9eced+oW|RdJs(9~v6LOQBKZQ^2-=)0 zO0$$51pc5h?s04;lSO)M^?>Pc5j)`VAzQi~#h``of{b0j05rd<1kPw{N7@@B@`Qpo zba{(t7f_HF1q-E^9>MT)drLAam*ft#JY3YnERzJz+9+G+S} z1qsek!T0{3{b)&$w*=>C!MDLHo#y&Ou4sh}u|LddOco1Z-(SqLR#D_C`*}aYC-HK; zF*UA9qq^GJWEnoXS=Gh&3G9@hlbGZtL8Z=u~c_pd50xP?8nkt;yOht(7V z$7$tNW?WJ1BAp<^xks&4vS!*IN8tiK6kxefb4MLNF29bNMOScDpJfQ+XAj1Y>wV;> zZX6WjQT%yZxZg{09${+Q2d^d~Q)e)6J+rI0Svx8F1EP`$P3Bu%aIM49UHU0=M${0j9OF^iRz1VA@P_$dO1Uc9~T(5RlP(HPB=hKeA&C=lK43pI~8; zdPJ{R@C(n_=GvKDAthNLx{vB1Z%qp~VUb8<(k?Gug6Bd~(m}>oAuDcwySVA2eQ@W9 z7|Br`a*}%-mD?r2f|Jf(l9T=O(xSPy$de>t=h5`keH`xUHw88itdPF85VLieLw|Uo zMDc~yA6?M&46LmQp$dp%}GQUZ2-;$5>rMnU+;!ZC-J~Agz7= zBJ0P68X1+u)33V``zb6+yE%rky#Sq{Q|Io{#QD+2sNlNQzM>VE&AtSfN%{jJ0{%1; z(Xo!!+AQW~<9lD{haT(W&&1OY2n~1RFp~F!niRKW4Miua(%;Eu!sA^P_=Dr^=^$b7jaTl_uP&}QebDc@aVF`N z>~-SqCYAVgb8gl5<#B6Q|K(-Bp6ZJ0zHr&oswwN2;_HiDvV6wtY2NdGztHQppM=o! z!=~cvd+p7#>tmGF*YDz)pU=&d2iwsuO6FfLL;G%5pLbDK{cep%TlfkB$pu;2V+x`p z^rYB^d}0AZW_?jbI|avV=;8Z!!_!7hf^2NnOP8^Y0ardIh997bKWX*CinmnbP;b`u zek8G@hk^I7Vo@643l9)k(MH6$=rqcTkH&)T^#VsA$U72zuwMgbn!Y1*-HRBUz5}=>p+07xD@GA^ zC`{DUR$3{dn8U(ww}h(;rm&U%Jy_JKCEmGB`eTmB8#R^Q_HR|Anu{P@9 zgw-0E8&hSn!lwJ_gUH?EZ;Z&@>+giv(Bp4~*wE|mh3MYn&mP%Yb|oOg?J%Q$G+k7Z zVSiCfmDYCf71RMJtbE|kL6gnJlg%ZS6{Wqz)4*Nv+2iI2*XJl_CUYOl-sQfo5NhGl zUVT1q5K4P-|724?ba@heTIP3OI92$1=_llKnUvWk?f3XN*8Xx`s4wVqIaSf_^U$v^ z_Y`N~mi?H0Bh-f`Zq15PctVdOsF z4daBnJ81OGyRV9>8{bgmydPv*l3N}^)i=w29l13>`xXkByW;77-yViIZR3DB&RagN zSuD$&3Qj&;dNp;r9@^1A8zL_`mZ+afnp;TPY8Lo@%A}+IW4rD3iKM%E*_G8?MqRrM z(!^zd3ShV}Vq21Q)wEnNJ%=^my!~38@L*cP6f5&uMk7@EYyXD#SfQTJzwu>3(Yp*y z-|thEYihcB$>Is+b6pK8^X2N@S3A{>R3=&PaSLe|OXucR;mOl(?S-cLE4&&GbdN#? z+{p$ZcUe9V)K6{w71N4EYebkyh}vw&)91`O4I!IX3X!9hYrHbo+_{6>Jd^BdqNh9* z+WqdNc+0~wu04()Ie1}ms?B~^=t9Lk(faDi_(2l-S}zJeGOxr+UZBo@Dn8|*3Hf{~ zB-`|yXfgMQVQ)eL4Vwv_|B!il3izu3)Wbx3K9oc*=ze(P)heb{Ve9vymT1o7xu=5m z{4ii<-N#_VP3XK?=IJG1`M6v0DI3kt+hD`uppcP{ zm%AyRX7H3)uTSC=4Wg}zKvM$T_^Dz$CQ)P_b6Y|!_4Q@D$(O~Wwx3}|zfS96(tYdM z%-6a+O~ddtNrI}(i(zy3lOiOvN9uh^MO!4i#!u=~7_6gJaH0lNQfTv;aAW%P0D>Rn zFW{7TXMQRQ*}H$kB3m+=pC>ROod4J~7A2=^-~Fzyp;`(AJPem;teQ(eaSFfC+PlIg zo=+*b?`V|rE1J^xHF;o0Q@mEv!GaLXlfRrr<|S@%jp?nJMK*AL$`HK=N9Jj|AIe5= z#F|47bBr@_s12Z$uPBJ^MIhhd=0dWBqd5)qX}708uWX>;t@a|=?U=H~RQ*hS$Lqlu zTC*Vk-H3tk#qw>_WI;Ox>rZPF`H#83f*rPK$K+I8YpmSf&7GyfSpM`tr>JApuYgmk zh^<+9U`=)L8|OXFK|S$-ibf>p>XZy4mO1~@X(#>T)0WyxcLmn&ST~d4N@6|(NL(XK z$xdx4r$<1BKSwMDiZrFOtVpM2WJ_%`u5NgK1txv;L+rghX~jHKiSwSN$mro};*ORr zWyN6J6<%w|bm9fl$N0wTaC&Fh^nlXS0h3w=0fXk~PXobvJxqr%$6UA&!Zj-CQ=O@$ z^aFY1so!qS<;2RLS@9!7&RT6t=zGT9_f+8n?8(=kjeOpR8@?lwCWU zo`J2PnD+?6w!fUv{wfmL++7iTaOrPAa}ZEUEaURcls&o0FevT88$H@@+eU;%-H(Ya zBvN;U6JxJZY$lfHb#4%~Dd%0PCac8?Eyj5ig61}-9TB`UfX3m-Xf1SexY-*YCc_d#G!JLS3Z z{xs=A9(20$qc>EeeIm9*phMdZ0se|YqC3odv3l6Oc|$YV1hAlUzv$7^b;4Crf7Wiygy$! z{zntI{E3p&=Q{Y)4XD>qlIJ-Lh1tz)(O)I{3*Vp-uhB`2p-_I^7*=gk+DV+#rL5)kf-BoG*Dc@c1EM0T}|1wsyyE#Tt)S~ zZWvglGKilDPgYU&(qG`A4TzPm2oUXIw_~GKs!v+0A+^JYm+~aTR9<~l5F4FKX3p%4hM3+avg}=WO*vHBptK_y(~`YO6(YKW z9eZXh5_)t8TNJuVfMZQu&b@F|U?;iVRvcF|RHj9^=s!H8g%lglu7#uku7IArMOBrQ0UN>e)R##{$j6E0PCe@{n2)FTrK%c8L5hytPZA#HdHu*>0b z8FDG@de|+=C?tTc^bEBEyGC7Ppy;Rl>Fn&YCpQ8f7D@w$GQpHpmd3KY-I~AIQzMF; z;BA1#w&W~V2Y96#Xechk_vu8e%Eg6=syZcs@NUF%Kz!O>2JvHROGRZ^ATMD0YtAT! zOZGueLXItlOCbnWT>5sMR@{7=Y8h6=E$=a_5;auKl$aZ)yqA%PoqGot&3XV=p$eo5ly3Y6eN zH=p`ZL}AbQ!O?S6{-~$J-Ft;;XY^^(zukqN%#f_lF6i3}VyWXS4{M2O+5qLp#csNrh9IryT zW5hT_MIagtPdoD{CEUfa|C(ptYhU}rxjRk+^Nh%&5hX&n3>nhjElNt|cu0&P3xx&F zMUDn0YgCm;=`*xTYXq$&dHm=!jmmVgHSVS(e;%unl@f@<*)6GVj%h^r6Wy~qS926p z|3UTs(>31mQ(L%%OG8-wOUqF5p4n7d%MF~iK#M&L#QEIKkaaw??I)eO;ME?Qnx%Yb zwWt8Q+ukW06i!9vN%h?_n&wh*CkXk@nl*h`%^8Pl+?P?xmvNr=v_SD#3E#3vf^;nG zlZ(&|Mh3Ak@pjrS{b$0AH0_eBJR7NlAp@1O3N}-KrrpW{WvRCviSM~g5}9NIdgl1! ziH`5(ifW_g5ef8N5XxOpQ##i#W~MonY=~$j|AT~d2qjO!et(2%{DdA3m?ikNT0tgo zuiMRj+ZwJW!EK9ga)?8i310p?VDX7%s;LKm3OY4EqbyB*?K z&(l|oUl>ztEbh`a+O~CG-I9r@b~Ik+x!3;sKq$WR=_#8~{G{o~4a40d%DqXI4;~cI zZGZMI@EasDalh0@5BVGxxmf>zam23kf+>$XD*7{rFkiU!y*~9fyJf8vV;rA}2Hnu5 zeZt2|`uO~OY#oDdox~=E#5ROP+#iva`4n)1xQ*{j?W54JKiJb@v90&}O?iB2)ucBm z&5PDVtmfSq5{t}VWkE78RF-m&fJq>K8;M^Q1Et3lF4NWa#^uYpf@CmyGC|A9*HoGM z)dX3aEk6<=5S`0`P@F!7dX6@reVA^_tes?}<(FU$$;k5dQwT=&Bcq`0Ob7~4nHyEs^wSctR)sTE_EC~N}+o>-;~Rfg%azD{HgfE#FS;>3a*&a z`)lKn^Kd4yW-^U~tES@&9qJISoy%j- zw8@`{;QYk8@=0z@i;;iv5n@9h48LknRy%TP=?JhX8q8FSMsUBl%DBQJnvO2U7$4LY z>TZ``Nf9YG+gS6aYcBiiK+2@g<7W}f)ON{44hrD-1v?&!WE}}V-3U0nK8)W8-1c2A zx+#TmzX&Ye7Q0pIAbh&NJPdY!^=P>>_Ud<_JCqzlu?j=TB5vmftOr)Ozlh^H+=sJH z1$r=)n8@-)>bX)Fy24`CZ8El{iBqlfmzNd?bMolY-><8MnSR=$M!|LqQ7UPqy?Y|? z=A;Wk9l+a+SJUFb(0lCT9H`%_fR7Q4Z4`EcP({~Zr@ZH#{L$IdoZ z!-FIGtG?Y+(%TWM=6PKs4lu*75 zgy*^{Cl{HH16rvmZIqyKBmT^5$ObF{rlWGel4OC%#M7w{{Qp{eH}T)X6@(L z!+x0L_G?9&O)}HjxJB5DNZnG+(>DO2V$OZfp~T?G2jPm3AkZ!`HN?HUML?{j1t8uc z$m!tI-f9CEl&3RtkTG2HKGzWm}jKaq0w~p`DMD~y%b+j5(W=@2aCsCQ<kG z=p9RAyJUnVd7)_Q0F$v%{=hQuH_5V$wC&$kZ&d>3!J&{ZaCrYvlrM0pq*Pe|HQbGC zfCI4tPUNz-n7$ByqFawq`z+>2uhDj3M(y0@G%y%uSb0n4ZJ5yT5CeQ>ucA{MH$1r& zgC4v)+4~+QF8I64S)RmX;ue1cp7J&5p|K}Oy8e2-%sR_9;i$O-ik!z%-{6L$(V(%s-`3-RV|%WOOhB_;NMG-MO}Du%lBwG0!ee z;r+9Ji9#Msa($St(%eV!{yMNuTzeG#hUk5w_Oj{}L~NGh%!K(pc`@rnH%=TFmXp&s7R_ugWk(ew)oJbbFau|Z^%Pq{97}q$#Cer23$V>NR^?Ry-yF-*8D{cVP%Mu`--OsGWee!DTv;kxp*)|H~ zWzkrjb-!5EiXm06euU?b9sw(Csq+DQu!Fbfo{heV>b=k>SdE|WJ{Q-@2)7-s^X)#; zSVycXEt9JvZL13@2_#Vp;onk3z&;TOAFtw{LZ;q!@9u1X5c=9X-}$^K^g(C*5EQh3 zS%PIO_T=(f*~b3fr6x3fdrA|O)4mT2BP_o<1MS#dw#wX%6?P8MqHyo}Q#Jt;cT+FY zTfc`Tc&tFj;`rH65@ZGOzFgc1f9(@GC@Kce1?iD?&Q@*1;xPqamf>7lww9W3`fKAf zsbbB8wiA$!Z}Emn>|4c3G3&{r+vkl_O+33^x7J>&L6{P2(IJ_Aw_3H+4e#9T5=M}z z#*wRZW&DFV9Jt27iHe`-k9xt|QJFnJ!+=i!fpjNaZ+XR;mBZqJu@bW(+X?vPiH49j+3&f&6FXCd ze>o*x_j;E^H)&{u;Ug*e;fxwXB5SGNs6!l5NlK%X!p=7|@e)Y#}gJpcS0$g+e~Spd)b*n;Ej?;1BiN+|H3b*sbXPYL2&EJQB;jBTN9DGHY5d| z(U?h3uy)hz#|~-M=NXq<(Uh&FqmE zhBF(v1n!Co4%Kn|RGoKJv`oB8ea)4sbz0l@qLZq1IQ&f$r-)B+W&G`jb|OiV;JWbb zJot_1pCx)d#FLQROdAK^TM(AZy{#v;sbzRKg2ua4iZ0}(G6&mek{dal(eG7b*MC9q zyUtu(OE3u{CRNbEbZ=jVdbmr$vjO82(H|_X$K9j^i8S8_9C}g92=?3p=~fG4qQ|ML5Kp7uO0!?+Xn$8SWvz z7~%>GTE9p(5F&t=Z`(R-H;D=Gw&ucNTt>pp{;m3oy9xPlcQ&T zv#si`Uzr%Rp~6EmV>YMs$uNNY>LY(#Xz^BcpQb#_R!~YOcB0RDb$Q40=Z1saN0O1s z%Zck0!>frATNtmEBW&JN);tiZcqEObh_VVWMR__c2MeP%4}>XRMq??e{FmP?RjOF$ zX3wRfO<@z)r9SwNIwVin41+G$0e&-{A=iPHQ(^G}$qM|kJh`V*U6aOt|ZskUCY-0;alm-w&G#xJY~mFu##U~Z%bMdQ!1=VYS)w_)ncYeK9ir8 z;0SzUs`55_A?U3*1C6D)vK8=ODydd3+DUQK43PQn8U^&1Iq7|w_;E#w!MRmwdHKG< z>c;}|m-4MGw6X*K_xMzHpQf_m^JvdXlipKlem_#}eLj-B60Rz)&Ww%sBJ&lBYaH>} zGMxE*lC)d4=Qi>6m$EIoSlZ&_#XfY)HEh*Ns<%tiC!Xpx>}l%VaK$~u70;I<$V_5z zUN+&aFIb^_C@jQq_f!YXpH&Qm9^Iu$++;anZj0PtQm{DqJg=e0rr!w zkHuvdn0G!BJ6N~bJ`yKxySKP|kjuj~MSYMc=0H5<>Aw;K8cShiS)djVZ8h$2OEyx% zMxBW1W-?Z3@F__1Z)wWbyVL>nFS&fbc+h;a9UbyP_~Oen2jH|IgN;d_5)OPLz}nopd*Mf2PYL*xO#vf`ax42Z{w;u!g?@k&AWt@<0{GoOYTgY8u51 z4+it?vVnxHo*I!pm3`^lhxs0GA-SL)_CWk27bGA~nB&0 zp~KgHu9_vXluI{eFF|%Xxsg?(|&DxhZ=DyEoFHFd-?NajTZhPej z@t0FQiK^j0_aS}+4o1^-$oy(SBRU|EIUO8dCl1kS#2_>Fp)5yAc>FH~e!#+qr00@e zg4Jj&l=-Df!Oly!Vs$}k8BcI{Vcju10A5jJsMGSyvnB$Njq($NG--CEqJQUu)77nV zy>(laB6C$l+XE`4xn zk^iru>mN;<>AxBwLeS;??z-cA*kdu>#e<_LA;mrx!?7z(j2ya~8%l$Xqp(nDou}jl zYN$fG1k9;vzWK0*c>Mdq)Yj?7z9<)-)7sap+*A_AGbPs(E2Cp?rU~A*rW0cB3p@IC zX1K>p^9g8dcs3$*p)GR5$iaVDvSVHeXFEt5`48$$+BK}=XhF>@(b)cHts$tjmt(l( zg80M*sAV1^s{t)<3K)yM3I~OEDCMr>8sUP~TnKrw5Pm71MWH4qD(yQ=CZ6;#F)pVn z6**KVu6zO7fEQ^8UgW8K&4~2$fjsM6TlA8s#dcfJ3K6_7_tmm;>`LC1DB?BcS{e6V zH_>H7+=5d>R+zN#mq+v@Kv;^frDGIQ{cMqbdlra7yo}mXUKt;_@TUyX%+X9oR%Mq2 z@+wa!=P+Wp{6+3a<_B3G7Fi9EUe1lm;({PuxP-lU*&5p8HCF5dYAXBWJf$iJG{yA3 zXWQ+Bz|}JIRF#sMGVdC?hNaMwq(;v@_!E#+eV4m-6s>~*p=YNw838{{U^gLfNV-Av zJe_5GD%1X*hr;v8e-}|&j5JjQ0I_L*>LXwiU^+7A1mil3dS8LN-VPbxQB$oifYNKY zSACGTg=wspbCX$Nx!Otulc~@yIbY1^(v3%O0i|X8siR~y`7oQfA(wPSXd71HpUN{Q zpqA2fT#h|?s7k3EE;aTk=<_q@ORi6i_Ne5d)#ilcqH-)}+Z8Kf83D`mcNvHO zO%CxNwVR&o1Kf(NeI!{uwtK_k0K{B^|ci49wPUi@V+((mNWuQJA(YXh^F zRyDvF&9_wo#O}^q`!k$C!zv3jUr#(=Pb}n&P%`~5K}qXtYTWLG$SYrh>eq?u5QJJ$ zV2Qgr`|TGB?az1!yy0N=yF2Uc&jbjb-oeVs9v(uRLW!gsaKpdtR;F=B!Yew#?DtF(qO8eROvwNL{wa`m{Mf>y9?a#6Hr{`}GD_bA; zR;&FM?5ew7;8UKjPG4_od>%*qsE!qdUhbJ**&g=ii2WWy?H$7l=?7Z9LE21`b$N7( zSeqS04^-Ik&$=o0XVe7z$gqlCom2K_^aT7UuuNT@vhPC5Hh;?#<&BQK5)$OLzUISy z_a0d=#BZL4z#AD>zpHc3{){2*(u?~J6**C2qNsN|AcC)Zy<5s%jE1!bv7dMXSV|X~ z84VIw;0Vc#-V?`)?HZ}LD=hSrrhqB$aF3Ljn9Tln9LOG0ADt zsok?n)K;ln9N#uQ7T;WRk5nHpL~g!&swhiW6N{zCpaaN!tO%-q&U3)K7=Mr2IUo*k z8){2gWj^47%5*?Z6y;1P!zeoD+^;BvIxD8P6p|8_(Yd;RI$l6erTCh4g}Uq`S(TH@ zgU@uud<@&Vy$_yn9l)}Rat&5=HO(S>CgrDbGn(@?MQRT4?n^9e6<}MqG~VMqor_-3 z{d3@U$c@@#@KQzBDfYD9x7@C0DAC9T#J?JG|C6Vm$a}a`v!pEt7hdqRCrE3VxClXbAd{|vPB?8-|Eb(c zzgB-hfQom9Z2qq5=WSiC$mpgh5Ra!=yH(ZMKQp%gBrW`tQ{>p)7Q8>jc6-M&#B+_0 z{ktqo&_%neBH_EeYa~exRPIO|oQncl*{O^t5?jM#xaM8B_o|^6NprHgsT_uBrM^sisO=)JAYelWIwvc^WjL zWDHE2;M-Y1DUUO6XT^-ef7CF4qfq31% zkU*Q{k@@pb8=&RIn)EWwfeP1YwX0&$kb91xqPwGlv8~>To;CG9bz*5O4FS^VDG8=X zFoc8Pr7BLS3IwY?Ia)OMoj9v}qrQUF#_z5WIR&qmqe^(w7u1vqP(yyk?LQqLxDm)TIPwC6&Hn8AV^Cs#*sx8T-7!)F!#p zBo^-djL=pdy{Gz2DwGrLP8mb^>*^s4OD}t!*$*%g*ayZY7Y}iv#Q_P%X5~w`%^*0j zGD>xt5A04PsH4?Oc$Z(Y*$y&X|LT3)9qtJYefa*<)fuOLlFPV=UibZ?5_(T zAk*a&MU;(umS%#{G#8kaSE|C)ioQkzD{a9z9jvtMo2L1e>q3Q{1(-v{po+%SXSt6% zSSucddC&|uUIB02e$ZHoDTCReG##Jw8H0nXC=a@IBoJr~uA_ijD$^l3br`jOs#59$ zDdj&4nPlT$1=#V<1!TNfN+f=8E$KA)XkP&y&On`K9~EStCu_zV+6TXK@Da|Ehim@` z9wj@+l!>+vo+Z=CzImsyN65VdWW+!r$WWmrCqASs#mg_S3f^n9%{kCc8=>$$ZT*tI zRD#k3-C|qN(X|{9PA?V-YWS-&sGyASyDbRJnZ>Bh2K}e{GYWVGGrG^g&fW%a_(w<3 zBQU{d^QmOSvDQuRn1<8fIb?{(zZimOG zY^ODQC;&BKgCo=i6Rw(WVY@lw+R{^TxxHg|o?qIwz-5-NE9SbOf3}3G&R;10Pfe~r zm8YcmgMW)e5UpX1HwT%lC$mJ`i~+M)+nfROh0nABx2k-RJ}qIuy~_FGb~USs!^0MB zC?;$4^&8in%36kaqCY^7qP#n%WLsR97M%P$lj5@g4z%r*z!YTJIx;7D#}TDa(lNiYTh=y>}^F z78(Nv@gX8<)qT3~4BbOGFZ3?(NFM&-ZaW8g`&mwz42Y*P{UzsjnGR}{rtmS}!REkW zzm!GRo-ruqs$2mCYSdUC&C_bs@V8skmUU(&ug(~Z51(2wnr=!F!@7G;Q3X#1;VeVW6I zgP=Scqw5yF@mGiZlE_2Hy7*)8ov}cW+S@HGdp{%!hArZ#@)*BTtFXJuM_thws)z8V zkfl_`C4%;$cBk76!Z#yWp{)9s8`Tk%E8)yrmC6BXe3_KI!O=X{U4|;isXX+2v^w|s zA3!{z4BXZ~4e5}zo#sQj>vs5hd;JN;j~m_W*DA?E)47j^4Y84%9fQ3#EBQhNxaDq; zmTKR2@-m{oiJ~(ho|V(u6YRq50<-plOo!z8ora~*-lC+XJ}+tlx@nqx88;yWQn9Al0Vp2d`AD&+$EOhGc|h|{+vO2C$p z;e29h`lU5Jg@{7uNQ!F*K6vB~^s$Z<~icCkE{O_SA>Xlh;&_+J%M-rBIO zv<>Jw^*t&^!pGooeBdblcyRDBfA;H%b5l98Dvt)N9;YJTuZE+Nw03t1^38%`S4V9% zz6JKlf+|k=8jE6iHk*{@2(?<{e|zT1>B?68x@JwMBq*J%($kuo$O7e22X*?ocK zV&lNSkTCkPHt5B^y?*tly8aKI(8Bbjk*O%w$O|gE>AytQ?c+b*N-mpEgsEq>w(729 zvDWUcW3%?^c4fAf>~>|fHtTks=yjYaNab9v-OrZKA-q;y+?!{ZnKIrS8^-z0i;4rNM; z<&<3N4x@2~`^B*5#zbAh`O!k94dUW#oHJ-}M$ zA7nqE{TGP2Hd(A?yX*cfX-SE$;l=qE{wD4Do>?UPhmAkd^8ZcRr;Ngf($&lFRHH(Y z{MDRiLu0SkBTTOkHue0C^G{AU%Kc*}y|fMqh5Bv$<&KwELz}c3i~0_x={BV8Gi^8P zZZ#sO7XpjBfifjJ#uEjxoRPH_Ir1ttDHc=wTolsD;lYO5cy$Se+W2*mhKqQ0>4uB= zbwP%Fcy-?l`S9z)852u5muvRR8mbXF(8?8|I@RsNdsE zz~@g401en;Fhu|PsmIy=mTrzuNG|ri3!oPJUldj`;Qh5OXEMLD3~}+_0ErsVDx#eC zcaUQLfJDjx21z*&4ARI9q(1m>U^@}F9Q}Q*HmYJ$p(FlGEiU*iMm`isT5FLfZ)}rd zKBb!ad4YXQK7$l#akBE?np!0VukP=rsTg^iiHG@t!}6o0YQXeNKrt(pgq{xJ8HR;D zm?1!RZVgy|anH1h0Y{sgZj59mTQ$rgx!eraf7bs!(3!5rboAe5hSW9ue=tM*;5RdX z)4!P!`*&uDADHP9o?#Y&-GR5bI*)$rHt;l*hE?CDgcgu2Az+GUH6@l>u)sc5;9+}# zxu57>0-XLgiShra^FPEm+lhtQJ@Ds>{w;ch2UzD4FU;aQL-uOov{QS@sCL$Tvjtx{ zDEA21f30rU#rJ!^8ZDQN)uAA4bYi&kQEp&Vhf0 z6k%owbQ>uLcoF$vtv_^Q+&6J|q)O6GfePjR8SpmJOME1Lam&R)cUPNv&JY``dDjpd zyLsf0WAk~1kYnq4#wN}31?Q=PW=??`X^bMhY-+$_NXUr$bB@$=sWK#3;cUhJ)Bq=h z?mBksa^ySU^m!xi8Xdr?99a|CLzq#~{y5>~q2mQqEr>1XTVS6kDB>KcvB*gE7T+mf z%K!^v%HPasjo)3zVa?ZF$7K!M?aFRV)$Ph@jjc{$Nfoz9F~|OMS5oI-vP)@J{v`_x%48Z_J`i zCzlS5ydAJp#Q0i>B=|9w>Gh-HZ+g@Gi$AOwSaO(9$*U`iFq`||M?5gpnE$V!ju!ec z_4sPN$OG@sjPYfi%mW(#)<>TYp;PZPng$VP$4&_Ci%G$tikWM?NWK(}x=cJE|A?$U zcD3DHfow)*UOQmM07(;JHsIO-dj1_}z=$V(_+)Vn&9O{DEb|X&EdS2yREe%(WE}F2 z7Rdv>)BrziM@@c44-nc zCr(=v^LB^|u*_B_UWHt22Q*`m?t*MRx%$bhWg2cX3f;=&A$M1<+ETnmftJ^7ozj;l z8VG!bl21rXogrx8L$mfeX>oT6Lh4h)$ewEoBx7U9@#U3j!EjO`<0OGoP+d6=c_K812Am2yeA|14hHqHyvK>{oPo4U+VRos;qwLu zsa_Kr({K;2;JS^*Rz5CIzZ7^&p6xv{NY+^{5u)-xrMenowzb6ox+yQw-qj3zEK2eBZ}Rgedfs){INpICvlE)Jjf2A^*CM zwr0WvCmXM#!ziL}rk#_%QHT1VwTO0&krX^Ww-`FH%4;1-p?!&~Vx_DqJjzD+?MC)a zRi>0{L{s*i=pE*0r$$k2i`{4ZQ9$_tF2R+Y%(7e--|P~_+#)MAuJd&M9b_wxD+(2V`scW>hO%9*#CzY0=~sVul**&PDojU9rmuKK#R_h% zhioA(5m2QFhx2VJuU=;UkN_%3ouSYD9lnnv!}VIk`&DkDd<ZWn%l0T$4f)`t={WqM2ZgV(SwE0 zC-DAmYfHQ%0H5Mzj!1qz0e-CFh*?~dtpPC%{C>1H#-}@fd*`-E=RxHql5|N&G(>b) znoN~=b(C#AEb$!|O_s(<|wVK zGL3K}`tt{Ke0>cTt2%QVFNuSq9F<6AuI)pSFVsH}ZDC(l69(IRPz#vOVEkS?mZ5If zq?Zh=@-yBaL+F zcikbRnbw$>*9M)e;GJe3Ua@(1j%!j_w!Cy>Mfhalq^4xT6R5g_4i-{7!CDZ+s3L6LHW+AaQqUbkYW2MZ%5>?y-U09}7Pj(GY{#YA@P+Q4%8(#S)C|!W9*kFJCde8+ z7!C&VShwI=791wg=O@~NZuOQfnJ!ht#V{-_D_i^Jck6_7IdnuUOYs%C4N!YgD|39d zAV<;<1S?U~vPI0Gj!HrW8&S)$#njfeE*wN0tfGj?K^rj_<0$>LWmVhOnnlV;@Q-C- zy<$he%{C1rVI5KDCUrIR^GTU_34bIQ3K+CJ>`?Pr#An576=bdj6f%XjN#sn8Gd5z# z@WvbN0e^=67s+h)>P`n3%c)-z%&Y@GGrcdjV_SS;zx+s8GJ#Q0HqhcRu!{;VI|?rI z_gs21r$yM6keNi!ZyfmVetytKLn4x6Ch}r^ktfHzKz>6A{t`ouiJbCep%kS#efTg| z220ygSjEqprUe2rj0yueMmg?6MVF^eZyeyh@8^sElrz2OYAb>QxFfr^mhdZjqmAE` zrf3>B9~>s+OXO;E&Zfs_cvKPzn}-fVsfeY>rF)z za(CP2#e)~KeDhgQ^%{YRYs;o5ODxbAD(@{0icAhK@z1=L`21AnKp-rgFLzd%ydNy@ zx2uJC9WQ&C9~Zr}n_iMUo{x9DJa4b1uZxZ88LyKMc(d<=aJ=uET3#;)yagYxdw7|i zZv0-cUMu6mD|H`gm}y?`FP#TJzrR%eCTv@IJzrcMXnDQ9*5)x|l}GZrKj>wsCLE9` zmcCs1{diKE0Wh|i#5!O0dA%ObQ}Ixksfw)>XNF`jU&N4jO^!*&U-OzX>n>vxJZDB^ z)Lz7}cuh`7&tCJ|Gwm;9BRpq@WjJ2M(0GrIN!MTVS~G7iV>3ME4eNp4%xk-DCO*S) zL2+GCT@KZDF;0Gl?^fcP2l>;6v4U zQ%!-?@L>&o4hJ-RsivT7_&Cv9&bF|Q!XzW(p1I{KZ#21Q=qArzBHJ5g3F_BiO^|=C z&@jikSJSLO!A_m24aztAGnpdA$cNN>8y%Tq&!p=D?vaOlZGSfrNE9Qo+$+x)HmtW z2{79wGf!Jhl>4smT00MZmsL0u2Yi>EtDB_?kJ*&44_&97MGRbyZj9qQQ=on+1uy=? zc$BXdAH;9R1O9WMgLW1Xa60spHWW+*#x<{s2pKr1ATKS zCjTBIq>+WV9N%yEw$K#IxxVuEMOg{l6l8{xkfj(WlvGCOnFc!CL@20C@;X8SR%!mk zFzYs`3xJj!5sEUiypF2CL59CWxZ?LEQU7?ruN6`MdYC!7va=Z5w8pWo#s}$jSiWeU z>Gm7FYo6zAqXa`uqT;Cx;>_>ZZF7Q*g!aAOu_*!Q*1Wa&v%YKlI*`}uKgow|FbcYM z%D*8S8{_C^aa(tP5>n@x|S59w^&IL&z`82n?h~D$<-M|Z3)Q= zQLsnR!O6gBjN|)~DgkPy5n1djE^fQMFoNaHG^!L7wft^X;uLljq~rmGYVdFLO_I*ez+! z@z4ZIZMP~5Y{FF!3v-w3OE(c7nk+*V8c3CfByya+rj^AOyG*W%(Q}E$H1&^9K`Gzq zND}0bCFeugh$mrl_El zzw&Rw;T)5J=$N6SMXf$Kbty-^`ioSuoN_U7rv6#& zFc9n;(`}YB9S>u4Ia3XrH2>*_Lt74<3I%^Yj+L-8iqazc?K20?E6NE6R4RwII{4|a zw+D`O5pV>gaen{gE$%{b1<9mCS3Ydh!ly=#ElqH)V{apzD1-XGssvd=35xt^6Mvp`M%-O`sQgfzMvxKD$a-}t8%7&`t6E$kt1|{*F9&IK2e0a2@ z;ukA}2lqPPwRZR;20uk0St@=D5Uw|aNxz@GGKt8i+aH~1J7 zyO{iNe827dm@I_j^>~kZyN~pGe_ovIbbr2lTHFLgrP)HQ_cO0of)|13GrR&XW9E;w zr<*6|G0men)EQec7X;?#$^QMYGemj}%C0;=|gnT@P< z(-E$oI}JwGo8-i&Qz!-*xA275ZRy(dAwrwl_^vU7b3>j7hRjaAeJIu&|HP+l97e6< zF+HRu6yWmp%<6m3foCXB;nHPe*4Fe6u3pc=_49jeW+w$hP40{}hN+1+49*Lq(+)w9 zH(`oS!ZUlfbjQL~96sI}C&o>;iWaM_-=}U>ezt@AE&-^WO4E3GLl3Qd6JCM_=y^Dg;O%hWQ*J z8^OeCSAPb$IWcy+C2wxh-vp*U^^U$?5huf8u6tG{+RySg^1^op)1Ix5WoqtE(wdxz z<dF(vO)J_{PoK8o)~zcZdH_X zyl&G9hU3lBXsXX&z^o5bwbwU0KTZBp@S50fRC(o))TDFO9B$<;;Z(ItzUNS0TG08) zYxuF|oFMti;C<$#l6UAA6z$6%XM_m@qkVX#yKl@}x7oc=?qW-zK8%)DechFr$xQ}# zF*AebUgzD-W{1%`-C@EGqbB83jE>X#EvEzO8gL0$TtVK<;ZdAxK*& zHYmXlV;cPLKY@&M@b3n`4o|Z5irZ1s1Lv#@VA&<2J9mASyv@h9q)*@*qC*H$qOK0m zWqP(apklQz!t&=-kGdp2XsA;?!*pDczkMT)^V*_L#4`;hQbOPhH#(XVqX0RSy)Aeq1nk%3lLP?L|A@5jPI-{CHmLU|Z5P~s)`z* z!($xet`gbSC>`^W%%nyQVVv()BTPu!p&u+BIP9B$nyknFTm{yVk+Fyvs-|la^nF&t zC*3f2w*G+7?~|yh#X9`*v-oc&1BN(DpOR(6x(Cxn=SqG%X=J;bqF6#P4CrpXKkR zIdc+bg;|FaoyPDMOv%r3cI#QQM$D|X6ltQzZ-Il)is7|{b@Hcj7wU4rs87NICiruH z{vrtf3P34UbV!N>)Jzz*F}%GKvC(j)A>>reN1}juLbdD#7xZO!w8^hL8^%QDgj72e zPMd}_aTLFUd#GI@Av!!Lo@a146|Of>5%0BP#_+fvVeE3pwi@lNGl1ED7XD_I(YtQf z>?Xb0?%j%J`{3K*W^zsgOF_Kh>;QVNqU)u!V#TWO6xtSyX}=1r+JDl^(6!RSxlc8^ z5@~*vZGHxg;*=m60ZuUpp#MP=bK+8_KPK1wi!@Qntn@KJDkK&q`4(i#Md}~UW>!!c z%=x{wHn@CPzMe#fJ$ZmEnuC1o9A5XNCXHGBy*gfXVg+zYiLET&KA?emx8EY6lt|!| z9O&b!;-uP_Y#YHqB9wAMb2WEFCR*R_k`bb}H*up)G%vVJ!Ic4mZ>f!s4HxBsa7~kM zD$4?l%hk>0>4MPN#+0~Y$9^}erOB14qI-!oL~PY4eW`r2-uEYb>c^(MXLJeBX_C}_MA0nN4>L(jea zcGSd+!$pDcwhS&?Nsa8un>eDxUZ8=gl8Ts*SX>k6dG1~cOMy=q!tzQD+sDcBb749A z$bZ9HEsB<^4E}H&7!*9D@{`l5F$2qwJ|kCuKsglV{B!*Wd-+-zk(V^p(4#E;Fh}sES+5J`!h`yR|RZeQ%oHdaFi`oBa9~MC;jV0#K10V;=)Q*9RvNqbHAEmsn6yTzwT5NlI(bc>cLG~5{;%# zH8rD2WB+)!?qKQ#ZB*3bX4O327cP$WYcI61AB%j>o26Y0-j)s4I9jR~w|9>6KRdb& zBDqnsLi;`iX|{gSiy}gl9a1RwXMBfdKiG%Xy_99V)F@h@ROT`-X#MrJ#BuJ>l}i#x zs`O{d89RAb0U~*DhgBb7( zdTG9PkLWtDbT~4?)jY(4q4SGu3}~&rsN`_&Td~$DsmLDWBB!#VubV~2KcEL%(u~F5 z$BkIZaWfu1XN9Y~8iEDEv>p64IWH6QA7>Z%oJIUtfQDGUHqu*t>N?@HYqySSdU3E? z*W&*4CvPLg6ovR2Ha?x45$*98@bb4k<#CiRmG@TPo0k;UPQ1bAVKa~cGHN)cR10By zy=lk=#3{SnN_+3HPwu1!#AVXP!MPq=8&<;2Ho=ne>c3XN7P9r9T2hkDbhUQz z>BfPOCrO5(fNp^5rI?7D5Xs?Yh;IGt&tMk>pXf=JvO=#QA{0 zYQq_``o-~mGkJ8xtI6XO7Ygpqt!Vfy=t1C~)I)-}E8oNgm6?aW#Swn$U1drNdDxy?S3W}BN3zg9#x0aLyj8BLDlm1`lv)r>sE zG__9NS9dhr-AsU>0JHu{)hW(`*OceJ)h?RVZel4HoP?B<~&%b`C&S0 zn?GXv2lb?_VfVgcGUbG!)tYjE6OFM9xGt_9>WV7tgi5j~lcI7ryJ(4fr6>G$r$e(_ zFPpFZ%`l%Z-qHFXja1m4-RzNi!%2(l%H$5eS%2((z?}li~k^!6i1zogdy`0rAB!4En}<5%?1h{M9#Bbo`b_rtK>FK&dK4O?^<1HdgE}AUVW9 z+k--vC2*VG3NqxB`RcdFn!*jHT3Vvl1?1lm)1sEus0rZ!9Jgdt1JNm8W#1iD`-XOJ zBbyv_Sz30_2bvwOC1}f4d6SCR?#8)X{5?(#ho1``%|4rl@(tUiRsVy&34`LqP@;U} zKPo<0mH$UHXZSms{|~atN?&Zw*M?e8!7DT(#bE~OixxDZw0elZc*w|3^j~H1n2~Cf zLbzU>JqBtcT&Cf(E)BmJ_Tp&h)iDr^{u2|Binh|%<0DkHg@#9W++EF#xYrD@^V&29 zLVVc~z^JDb$J0b{l*8p2M;88}m;(B!(n7L*9+K@yGT79rYmQSigZDpqQ-MP5!abTn z${^Nfs%eT(+97PtY;WlDFfy-5xik<>GCD}d4-&7g1*!)51-U#~$PVFNISkYWIQ7cM zEd#uA$(Bu!%eLQ(&mJk=4aV$X*q+21GwyC4mDW zB~m<)fQ<8IuD9b_Lp>_<1b~++1L@Mn1y^N4AE0W?(1|9*+|zXB1PE%J>KDU7!7m>h z>~8ZRZrFl-fbVzO1lwJZI+@zqIpHQb#LKV-O;@}Zf0>n$JALc)8O2$HZS~Nrc1p2A z(OSFpWjSpZ3Csq41wTl5GX503$m3u*@ujKx$MJcmtJ0=_OQ#Enr{TG#1Q*xm%^qIv z92}Vaub#sejMVP?$g=tl>6La0-g&ik;Mo1I%n_kgLF9IxuxO~0!(Hu`tH z&>MsJAE(nrMMgD&UP%|t{SZOeeiQbizKd3UiV3?36k;h+WZmKDD(w|1ZrOhdS0$|A&nS;Ts{NG9B^p)V zxQ=f#zv0+Bvj*?Pcy5)b?T@G{m9kE0uTdKf-I6X%$O()1lx9SE#e)4kzvR4{6}djY zD7~N$reBjZo|m#_KKXyka7ga*$ZV9K5&BmOov9$PY?hLGPiek3fTol%CyN0RgpMU4 z9Y+y(a&_{LB}BhA*Bk~7J9N_9Fol+~TRDT-6kCss7UtcX>)GTgpL4B~n~ig3`H?q4Glf6-&Qsi@4f(x09A2^;G1wweyjU_jSCcP7jcIZ%3 zhzN9=*KHm?2jd2as_PcZe^m|$a=wP}(yfYQ9o*N#)A ze2H&3ey1>g$N1x7$Fp7HOt1N~Piw)nx6@?}tg|za;tUd&a4$sj{B2H}!Q-hl67zl# zlyfd7@J@GAHVBAO2S!s>EORK}$)|@Zp{9$T5hi(zV1Po6q~VBvcV4 zQ)d@B*2n~aU8U&eEFU)}db?Ac94)&PRQm@+-sU&~1L6*e&0~}T%OG5#X-t&N43Lt- zndzxg>YBK0s%$I}32&6hSg>$WstHt}$@3C3K@H28c~a9Vra?Qj%SP|h^q`njpk1@} z7IWgz{`{4*hqXRo8}CjbIdQE=hV&HIAhDOZJrQ|jA8RSW6Lglo{Rwvv>w4PkAs+(z z`)=;s^vU(Su>*I9;ehP5g%N8dF78}xB`p@=zBjsfhyITxc`KtB8tL@=09jI}%SV!g z#*6fk>=Cz|BF2OPs5o1n>$;RjlI`Qh3|P;YL4mdDsrLP6;7Wmf?&=xqu=M#)0wAww z3|B0a7kZ{Zb2&~);0A|hycu$nOdtDgv%Bi=aUekMopO+LYoh&}-k@IM@(N(;4wdb5 z8w6=BB8GJZB1;gyo5rs;9|2wR8YY z?wP$jb;e_P6#fRm{zZlO-_hQGlnAKtCmT>Mj=5uNzd6$~Au%q&@~ZDv4$g@Lf#GcC zV>(E%JAKqQh{uVx*9k5V2H{9e&bT9(q&CY)8fv5Jxo9dt6{Nvv``rnSmY)ZCYCu?U!%66{2&}{KDOko*!%1pT>gOOlA80F0DY&| zO#SOTe~sEoZEl@=d37rySVa-0?7!s;{-PcN%Kd|2@dF=^-f#xH-`Zr{dS$^$Vp?=P6@Mke+Lh;eak?_gjgir3DLdf4} zXR?5d5r8k}GemqxV*LU{Fr98KM*^I8LL}fPxJe%N$D^wJ@%@?{p8NHOt|8^)JpGW$ zna-de_2%bpAolP68-bO@M)BFEHb(9P!z{H9sc1`~#z1>#k4Rr%h0vQ^DuG4|_0jf9Fqs zvsDX=+n$8D;@?@^%?*zD_MGdA5;b)+-UL)TS)q14TXq)I;Gc-}xVJ?bJ5-2mG?I>b z?^?79=8szFGH0LdG?HLbx2y`xKzm5qQlVybkW%&!k1peR(}?9w=yrPGP!BmZ(7^6E zr{hXKV9gs+dmNUVyzM9*@>F>FUcV1wQ{z_^0VjY3S*lINF(qv!-_^&<=+9y&47`Yb zT0n2|Nhc5F5Qb##7=%u#xrQm-0oQ)L_=H`IX9w^ELK>!{_W7r4rpFhsi&r==x%sQjs32)SK<4LvG?9`>HgK9a&D;9-K!PY6x&Czi(fSm%o=d@pls9XFhNJA^UUpYrN;1V)4l7?|XZ@B~`il;ZA#U;RL;kVSf_o#o zmwYi)!7;KRt-xGMMluK-zw;NF{vS39pP6VIP`Zpc?ZzN7eAo0%lxgB}P;XdFF6Ov6 zxrj$kTnVv_ndDCFGO~ZXZA3!(oL#tjF2kNZwPkos!yX;c8AoHm^Cd%;FBQVGiCW|N z>&QVJ$@)|LvyQ(yC5!1{0ecl8`=O(8;gPUW;Ss8G9=q1(m?p%H2a(NjDO4ltbZ*?r zSDOxH>vQ*VaJ~2Hj@k6e?lQ}q;uK<$eeJ8T8s@+F5C(EjlCT02W#p89u*U&IvWy8C z2F$&GoWNh=00AK|(3!}@cDytszyKdNM%FrEAwLaNpjaNfx~t1zjSi6h_?gF04~m=Y zYs-PwC}uE1&dn%aX_s0c!zvL4t_1JIa%iVke{Mdtqt9~K=R9RuD{8-9kXeA0e!^lg z;gBjl7UYzn0oEf@_xTr*B4(46RWc(oPfqABqPjQCMpfMT3d_VlQ{sRS2TOpwg&cdu zU!KdPWWa^N!7Iy_>z@GnxBQK(d>ot1K7xS&EFi&I>d_p1Zj#dNSx&Z1qCOu9CxM^p z-VBu=Y1xibDLyRG)4r@#xKNk;vNe|(Ydv7{eU0$$^a0WiO)OMhqw%oNguBIZ8sOSF zvT5tosStnPI@;fD5lXdN&p{I3Nnh8+j}xYZ7Z=F)QU7^Qzu?qTD+ZmPU5wc{BE=FsU_EG{ugl{VET!ukX-)%#q^3VzsDdzlK}SH@I`9v$#F)Rs?`84f7M___RrfrkB!QP9!s)wc&lF38ipV9i6zBRth4CzT)b z&2|UPg)b20Jm!Z<#$^Ly34_;qb|Md#o*Z3k`^uKh!tS~{K~1T1 z?ES3cO?%NG#NanH`tAH=?)Vy5QKE|135Gf zhH}l6eUnLjw6tS;fC21^|PXAw&FNHZ!TzV?oALK-TNsIz^T%=>B zL)gRs{ZE>Svvrsswphbt23dKUt@NEDVto;B+2d*8k@(k_mxIErlvsXoI`B3 zR9$*TX4cjrJ#R2LR#C_%T|fGeLyT97m19wCCGF(vjlzZ2C_r)MRD-lw8law7BWl;V zITJ{fx0BGKz~id?EdM&RC#b-TByLbTAi^-0He&OK_KVzHN)F5KDgZ!nAwT|iSp17( zs3TVi9H;p>OA3ERQ?VR0s|cfcPqr`I^0XL2_sE@e^fdG(>h(oTyFW;kx&aJceYmne zWv-UNKWrCGN0{+--c!~5(}~s@juow&?_ve}W(f8Aw#G3~CkzERhz6tBV58pXy+I)* zJaQmXc^g0@oYv+iG>Nphj?WE}1*v983aB_M&Qr(kMFjuT2-LU2BBleX7IC}u5Hu96 z%_9yJ==7Z8CWY*O`QZN_BkDIZl1o}e<35R|B1+2E(KQ1FxZMG4mTXgkR9p1I)38{_ z0Ta%hzI2=82{sp_v<^n;EsVlT$UFU7%tKkf*C0KxYl&}_p4jOd zJ|d(3M0y}-GF^G2Kkz_P%ZXDU^iCbw{-E=X#k>?BbiKkRfGBo>(L^tuB}x~|&N;|a z_q=YgZ7;R|@`@2Q)n=*fv)|R7Z*9YFSvi~exIqhm9vXPYWlO%fpoH6M?9-b4$Eb08i)$WHWXnN}LZlVBzO9#Qo;%L9gnKTliR zCHwYtFZwph73GGj#0|6{p@ioBLkSP?A@%;T4Au5JZw6N|27ebx$<3!+G9*sLtVf&x zS&b;c{XN*=gchmazhv#DvWsRyqR|n*BaAAyBN7~@FVSU>_NLEr)HV^6m8>vUFMPOE zaP>*|JEPuszjotoT(2QE%Rv=rAT_&rzm6H~s`XOCXTRy8h~E1j1;0nM6x=(3{hRBm zLh#Rk&gDUGtk;x72u^DVhQmcC$T~?jAxt9YJcUEF3Sxh>M_ngE5F16F0_m^E)rvTN zs<9neERL zo9;c2bFz!;_wg`t5?2=jwZ_ipShC_2_xH)|^Sc^IIU%EmCJP*AGuQO-dHHU=kdRi7 z5?J0W$%@^uSA`RJ#(vtRBU15AI;|eS4rDtWi9Z|Aae{TTUW)DQlQYe3nekPoiHO+| z{>n#fr~Wuk^%Bz27- zoE_h|3&thok(-woBHbrF>`aiMl0In#yx0xI+C7J3-s(lrznRCz8~l9*Qi7wB+R)ks zvy&@SE2G!oyMt=qh33G8Wou|G6XxU# zYNvaomS-O=?@nU>V3QQe;$;Byq6qWiAoC(A^P(K(_YTbJpvs_+4$S5ttDwzD->aOm zxwXic?#;lI?h`W1wu;n()kQZP^#ZKy)y0=IOG`_w3!9n6Qdg+EyC*U0mP$0vPA@D2 zn|&^+v$L|PM_0Y;7XHN^N9_?(uCBaN zja*LoqX+g_b}B83&EL2^I-<8vZf{LTg&XxOu;)zfp$HtRR?d%5_HS=Bp(7hu_Q(3c ztv$^~bN~zXFFyBn6?32koB5~?C+w=-l2300w&QlypA$pppLrb-9FxFC7J(JLmb6Rq z6+mIc#(3Zqy$jXbIgNfs6B%44as#q)PvfqEgBKZEo<+39$yxje6}X+PL;MkVXx9?n z3M&^+y9<9qG`a;J8$lK7--ywG+4J$fEMvpN;oulj0Bn`2<3pT2BNeeqVWDkx*B^w7 zB;}wFBKy{l^WW$A|Buph5#JyD#44`bZ3&fZUxy6A)u7c&KF*n!x-*I1#uJ%kn=bc4 znrT*kYeqonU3OWia@0_7!?8<#8+P9#fYThNT7EZzc@0^%gzFheJXxe#{y?q_*%g^G z9=Bh-ScG1knnXL08aCG0to!SV)aKU&>h?9?jChz<$+$b7d9de7?bvhAz*ot78&^{; z!TMP<))`v08%k;GRx78uV$0F~@D&bfUjd5$>J^5dmE1#uAo%0x;W96uT}1A6NsR{uBcUE>v&VC zx9oiJkjKszhi2=EK;jp?@C?Idcp(&d9D&gdDq?c0U}Z45A2Eayz%etEBCkMzr16p_ zQwMB{o0OdFe$l%E1Tko0QXoo$j=UnJs#{>_1JSpEKLnM~Dj;5+otthSpDyV@dozfX zDv%6LunW3eGG?1IIJf{S z{_3-yK{~SZkAPOOsfX-bY);=tF&)emkJHfKn;>C*JG|Y-ToD-2g8&f|xkTlWwt*Wt zneH##nk>2Y*2Wz>Pzu6Hx>LkP+zs2Rk0d@O3th}4X01#AwHaa9WS!JfUA*0@5bVt5hKT5u!)xePEE&Nwoj0!x zz#$L>z(i4pEeY#_6*o*aHfgq^y~;-0poz|yM+(D`=ydrtqNNF zV-%~DQ(@62AN_S&A3pURuyggV(<8u2k%|(RKa6ZZL1$}7AIM6);!3atojCm5Y3yD! zgzP>|A6DOHqRysJ2%=YhKZb?{ zw(U|-Z{0%dBjUl=?|7fI`fq7#ti^PM&mB5KY79ZN4ob<)gs&a!SVvN(-P0>`%9dMd z+~ZqVnTBIj0yjuv+sKqYVRxRct7Twys8i0Y%?rh&mdDz>U$ZyvKT^o6iry9eTIdf~OGUdWHl^8RXT#fT%)6n0bta%NsHSS2&$wMl zZ#1XHI=$^#7VWhz8G2M)TlEUeNPPx1f+Fm~T7W39F$&>zb#orSLMM7JpMt2SM})@^%7EA0n`a7sy$^o>OS4>+A6<) zX!&#_U&Tknd#O)2=(qlc$a(pe=2S&mM)SD#rRLFg=5TFt>Vr8;7%OL_gVDol#E z2RR!E0x`-5%fs2t@|SWilEmvp=!qUU0RJN>+HEZ*+HGAibY$+Z-LgbTmC?5{)l_c5 zyj%TZNZck#PTu%opg=h+zqAnB2t1eo=k zP{H!b8kblZDA?y9*h$f0e>JEs`Ui%Wn`{|ejn z=}pHGzU}&zAe{T$@`O3dJnA0at#4YOmjuG4;FBVX1t1QPYjHY zVLab1(d%)*bvIp9fddJI7g#NUd||4d8ddI)(jI53V?fI9|hg@oo9 z@Idd~ngNs^%Gy&N85DGf+>-#OoPkC&OL+%xi87EC2+*n$(3_?fk_j1M0H`A_4QWfG zhjcv12QwP=W$Z-rg?0bnR?*$XZ8W^a9SqyrNs@ENW{io{6TYz-3*w2umw5ENU^Iu~t}MS!Wo^2oRweDrs&f?d^N7Wy+#-GNS{7KON%XK` z@BJE`D5UNli2^y$z*;_P7bhq8l|I$1>9!j?1=^o;b%a_MvAQT}XhluFy~HfJ9%Oju z?sUiCun((PZ;Q=CQ+g8ghH{3k-W+&h{lN6xeCd(UAPZIfx=%wuCQ#ki(VwnO#0u7e zijV|&7?8_|KE8FiQ5itL7TqV(h7W*t>U;7$>Plu5@UnRx;Bp_NqroT1v=fu7r+i=z~^;9D%*89A$Uz zkGI{AZ+9;hug1&2vrtbUdndW0)#_8^v3q~I_;?q8di>QHb6<$p`F7MfnCbO)bu;;m z8H@T!@H!ID^XYx(&_Fmr&Z2XXMrm7rnHJ5t^Xq70@-dax9;R8*vWLew`_cV>;O(QU z`&NgV{H(6)hAYSQe*oKINj@mMkyfomRu1d?YzvpAXOtV4uP>6?pCX=8FTQuBS^uf5-8YE?qxk zYF*#JKYDRW+lr{0HEUQI*DT$PmAv#$Hqy+nqqT6_>vnK!@5*g@6HGqjR%1Sk|ZrTiTg8hLpS9o%w>#~c1tF#gAx0g3rJIdO;DD=$d z*>o34Xm18J>}}j+aDAc9Z-eR%*#$cjOi^rI7w6bm7z|GIV_G&``TfGZ_Yb495l8I7 z=qRz=3y4Wuv@{U)rP!eMu?o^a!-vCayAJl#Kp9~| zsTSl_!;L&(oz1M_HM6+S(DKSB_5JnL~DatHuzUbu<8P>Cod zwZEJ*X>1W9Xs0}isy=_~?sQ6MwJJ6xRwdzn|gth#Bs8 z)(XP9*BH_ON;`mQ6&x`g8`yiGL`Nx3!^l?8@tX}x7HBOYC@U16HJ1#c3WEHNuu_Lz zaKpiiB+5f%J>K|%)#YI(O9p3;wlS*$NRY`Fasvtq6mN4nd>wwhC=pv3lVq}HEEytt zshxF9Iq_y1zIa%W1=wUMIu= z?N|*f3`kXW?sKXF-6ps&=Gw=R^4n->=Nzx#w=%I5b`t1h;>fkc0&6QOF?`@!!$5JG zr2irOW=$DvfnIfm1&--XVr<*3Dtjg|@mZ*%1dTD|)OT(H0@JctW{OYX1q6mx|A2`r z)LwjQ?PrFvPdK-8BcseXgp+t^V;~LVM=@#{p;l?-xYwo?ab@w)fd_CwsjneNiwJzlz!_LmFyYA36_eIkLnwrPdR&eV5>C}(-$A= z!tATF>y5L}*-PkA9{%25a+eFovC&(=lH>CrHMTU>oVTDTg{y;-DGzS7F6Mj2zrZrm zLCe}@GGFDrk;jr(8^n>$uET{j8jK6*m%FxhBGpB_iogjG?0Ts-wPsexJrt}#A2Dv? z%$hR>)9Q7aH3q{(y$CSGgt0Cg-JIO))ZxRd(4v2XZEV7rc<%iMqG`MgXL2;uPJ~6N z|FG||3AAy*@X4~3+AiDKSuaH(WiJX<)butq;&kWGAr$vryGOp62~VWs(CBSa;_nH~*FGbT4s?>xA5%YuFR7rElvHM5I33_p zM_<_73+hs=MA4Y(jmmIPOi&I9o{HIk%Z1p&wmU0Zbsvz5DGuY0XN(ES=VoB40bdC? zq*{b&^h8IqA9rWdv?Riv)X{n&pjL0t#$%nhX6&V+Z)^Ht7=SSjV@?{kZwZ@ji^-DD zD1D=*cd>72q;W0NRbVe!<5UseE1xJ`Vb9mPT$|08XePvI_uczSNe{! z)6AeYbT9P7PeHt_?=z`np=y~bs#&+{6c;r{Y4}^OlJ+uKL)Wb42?)$H36{9o&d5GX zG^VjvVwO+y#f>reyCoX~+n-AthK9eFx#{=P?qz1HfV&l*_+~{_9Jb~Fux>XEfj>)4nn!NZg($)J@=zhoL( z0KZHj+;Az$uiRVM&UVefBh?a^nn&N}#wCFEhU**q7q@j>@FToY(M()Su%hL#N<+RE zT=G%`JQ8y2(#gm8ce768U$D^DsEV&lq0FPY<8My1kAAWa5+7S76jh7uKxV!cUmA#) zBDA$YR*_Ems))L!L0(9flC{x%H9V@VM94#_HtK2kmB+Dubvcs=n5EpNhA0JieU5w3_z2*7xiU_RAlh%^>2T(wnU(cg1{!+^Ia%sb=uy^E@DyL7(abZV8u zv0qG`*!OsX+RE!L>g4 z(gJwTsJ*&^nh(|}D}of``Zadd)us(5ELrEZ@o$fOrP_o-&F|;RekExWcQtNOd*=V%aFz{JSAG@9-n|@)2Y>k z>15~PU*_r}le2vF<+%s_1dkk<*#1K&(r{n{-M1~Xe)P=pSq^h7N7E523v$9%o@aT| zC(bgW`?lK))BL^NNHs*hG-21mBar2KwFD;w)N3l-uw_$(EN-^Q^~_zhxU?~-YjXmO zaO2!{&iv6;^el<*-AZ@!HjSDR+x`|`tR$*%x;wr!kS_UXi}t3+5yT9G96rO%xJ0{;#hMT8 zD{ekBqGDFnw2#GluWkAXZrmc+%Rojzdr&|z%KV|&*fna>beePA=y}#DF>m#@a-;aR zP{~cJ?6tedqi?_@(DnT+S_`Q_9OHF`u3T%Dh|b}a!`wLXZH2$rC&Sle&HSqEhM(TX z=&i}7E5|n7+4wj+IdC6W&Dr=UTj{Q*di)r?kL9GA+Qm_%3P2BpaKvAV)+Y7!KsuGI zg6gj5_-=_Cvy7xNuN#g#`y9DrAn2U;Ed_$xJo9$TmGhaNVp1K+T!1d# z=MF0~W2Eaj{Gb@RY||Mx)@LlkIXz?(K8l>*Q09w5Kai(h(t_2YP9%pX66}vY&z-Da ze2p7}o=9{%tmo5W&P)`?#es&nDQ?EUvhxF#=SK%TbMfF`!Ur36m;Y_}FZWVajNLRK zt1@5{{HEFcOP-#f34 z{^;7Dy`;wo+WfnJuK{#Q&|9nlCT{^51c#n$NFU?GCDvj1EZBgR1&awtiKz&xPwSu3wSu;cg0X=o0@M9ZL`fJhuwqW3YS@1C&7e6?`DG6TRA&5>1vWjCj zxrRfZ?}YXCrzmwN#7mxDr_Gf0R+gN1*(TdcA20je)R=%B95q+n?UcCI*kgDGaL@}Y z?rMyY6UYnUQie9TFAjtw;Sy{21V}6V>2c`ZKEV~1iq^wbpJBL5WqYjx z{7gd|#(I{x4yCu$TokdC>EWIT3>vIuNn?%VYwWkYN=ufruo8~< zsoUH}eQCgc+B`R4>!N2c)PMxAJX`hR$P=O|mAWnHwj z+IIJ9+qSz`+qP}nwpQD=ZQHhO+kN}D_qqGtcg8z^zBk4kHM4S7WkqJr%J?!e@{4Ua z`_6NXxmq7yGC3_^>TjQn$r6;em;_6|&+~4d&)4JaeBQ6G{pD}K{}6TzsIJ@Zv7mdS z#8f+*)cyL+Ux%YBOl0_nC6Efo zSHRbGeZdn_B0hI<2I-V$1>vHd%%(Nxr4x~s^F|l$L(TOP12B5#ua?8ZDA!`Zr~B<& z;7E11>lYaGQ6US^mGa}XTU|paWe=Fb^{fcfUSuSM-DCkCghEwhj?rZ;HeVJX&YKnc zj-v%RTKdbD2lgZ;u^r-NH7;7Pi0JcnX{yv%$xg=&Mpr!uT?^^9=KRz4-h(IamGhYG z$Moy%W{Z$qXRDC4AmJ=DpJS{w_vN~qDb6S9koaqCcZug4t@*zCw^|d91kGuH^K4>k ze&keysU67r1m%jS5v;XoGLtZS?7r5O2evRAPMQKLwXjLN@MUxGcqxID7cUbXar~$$ zuU0&=6$F2E*QDMwezgzf?Qfo*#buvII47BJ>`!kWnDz6v`qPu60Su%enT*nczx9T^ zP^^`haAkwgyE?F?2+*?qtpX#h!cjYnnl?LczutyyvHL$ks^FdbQ}K~^Bu;wY>^v)N zM8H>zfba5rj5*#irV%4BaK_HZl} z0`Y`6n8{j}TW5gLg)JR+yTxdvGuAPyWI59lcOIx;X6Am)*x%R|D@m>2{ASnGSE{3S5gX0;d=*jT3EDp4 zpR=moVI*dcz=>IJr+p|!9f^l-U>ofP0-;tZlg(A^E#?;5#@EIO71~SYmt4&f!a@&) z(ZE%hGDN6`86ZG4_LLl_i+EY(qoTNg)>j8n8~6=eYxLXcURGIcAlFY-u>=EGV=%NC zbT73srg$)v5coEqdQXjhFH>!|rmu$bHfAtZM^e;cX-9vg6v9j@U7P-(6T)mV{a$}0 z_2)bzLVx61O4Q=$Ap+lr4!^S0K@Ivf9|B@SPQZ3>FIpmwy|$vXbEr3tL}Dsi5~`Ba+%Qkj^tROuXhdaHFzjv*>gVU$pP$Kxyna&kKPjuB z3t}W<{iw;s0Jww7pIbU_S;ryp9DXv*qbDDObP_j+&!Q)Ph3F)15}U_NKKlP8 zhR<|3wb_Ph4zUq27*=>4+5&;I-&|rTM*9|XD?v{19|W+uzzYZFcddm+{eKwhgSwCf zu&w#Pn6CoMoGu1Hl1h=DC@(5{J=nN%|E^iDa8_vpOZ4d~d_g5bHu-!I82c6n{p>54 z(4iq(J;_gVq+VZvrMT-k#r8va*i8}7b}8r-iLr@^F|VHPztST-FsRE@bow_p-G65j zd)q$$4|3&)+rXy!=Sxx+ok+QR=s5%hEBt?ft;Yv_zcl-7i*d zF#aL?(bQ`kLHvu?IEj~Mdv`FeZ$`3rEW=T?XCoeW)gYd4!zRyu9|~Imx}!OpgMR5;=WH3F9VU2~!aCR|<9)`mw z>tkml;!$nWynDj`*+|pgwjAof`AjJ-^*4jsK21yN?CbFU{{H;*_VM=fbD8$r>;7?5 z%HjU#a66{EE70e2#&OqYYZE#oomJ-B&F%AU{NeDNHl~{L)Zt~iY7#E#IQtvp@66kC zk&oxwZZWU)G_A~ZH|WKcmCOCt7rFCS%*uOvdJ_zHFexqI_odf*%yV;hXLq+3&^dl> za4rdRCJ8n_CW_fiLA=Bn^XWzGn{}~Ryu_Nt+(jI0T7z#xd+Xr!Cx9XD-*q}TBL@F2 zE{xC3pi$GI=8zoKw32QPTsvPn+)XXF)DV!z-OMrQ$4~6AY|&gbDRWWJkcB6r)z;WO z`5ZkGmy{$y+JcH>|LmFYKIS~+Xv&PFcPA9->{xj=e(~L=;zwsmqQV~=Y9>}RN=q!4 z-*|t;re*A}YK>Be0><;kZS_eufXZc%S@%QTzoHG=(W(O#B68LQ4h&fAf$>WMD^WW(3q(19qbWd^r&#G)0NQ zcT^M!mO~NQFYwpHvB2>DA_)>Wz>5+grsn%fBy?R^n}@)F=|%!aOmU$DGv%Bo}om{j(Eu!KQ|i4H3;vA{$5d7L+5(7~XkO-dGN zdF+_sE~#R?QEUu^Tzq0~?Zh@|!+bn3f{N6V_xWfz@QfjGC`p9>C;ea3IyNsyu^*NbLu{S*p zcOGxy0Qrk5+~w#<@}Zde!L*)r2(-ql14Nh8jtd zlAM{=+$*w@nYRcY8jYnJeo5Y`CQyGSSpim1sV8)x`4<*4j(rk0lWSGhvKZcDSq0&b z&!tU$>?!q3#@17@K4(T5aQV&FG2wO`BZxF*okXy3PB8^4$-^|~jxt;J6L))2(`lYS zo=%=&vOGNAPs@C}zu32mvx%nCwa*Ek$-`WvQ@p@fO7xy7zM3-`@vjI?GT5UnwI!Ju zlVXUY+MD6uqWpwfgdR~FiAL&F^}2-f$=_Kvq{IYDTzD2{$b!p>aspjlL$o}ztT3|t zP1rQfAf#GDlp_5~43b9O0DyVsZhl6|?~cEGgn+T31XUJgfaCYLD@V+3R3}oy!A;+A zoE=E~j@F@_UZ$woOe1qHPrWX*ei^sjwzX+KT;f#ewMEj#!Bg!wDc5$@q6m|;7su`|)FvOx1tH-W)ZUh3 z;r1q_1tsA)sIh$B82r#He%aMD(-;MOGb-Nah_zzJ5S&y%38tinqV-F?nKB&Mx|u|- zW|PME?TzUd??BaZQ-&sN^tE&98+u znl;MpPxC9bK9(BC=n|sG8et?TbXX-!>!F}h!!zb#J*A=6(C1wAQmOFk1%BwSCj6!U zM5hg^30z6km5vJ32chygCFS5@W1lJXO63JOP^|1JQb($YO_2iWIyD|}w?o7%z#bi- zR7toDDuJAimkLeaDJs`-(@yYCl5|*IZm`I$(OaMATwA+WG9}~o&WWchLAj7B_0%^| zl1SmH{Fxt)+pdWQr89{RZe(8}9@hidDv zG^7PXwW<6@-`awxYy@5xoUrUMr?>kk9N0+bL}T++(7&22gi03Dd2FSonq9UqePo6~ zdnkMugtLFxT=Q*=1_UnRdGVf3#H@J$>t?M*@fN>yds3Fr3+n<+GZGBTs!>&H#p~{* z9&gZSuW|yI(%;old^mu7LZEI;@#O9yWM>WB$t4<+o}+_e)i4EAOm1R45S)FfJ$}0& z!Sy~<+-~gSQs>Vj8EdJzSFVRnKT=jUYREmO4A|WYg}? zr7p9mP8#cZP5@i8c9HpsjGP=;VQ=binjym9yCMz2IMg_7H!&)tQ)htDxB`he`c|;YxJLNuty%!&IkdU-!V}fsoU1kNHNis1 z$W4YthJVHg3Zv$CyE`gQFK_b!M>S(!Pzi=Q2-;etpOFtp^m4eA_SleV>bh)ovpU7(3&YMRVI$$T5Ym$Si=c&T+^~=e6t%Cp7URK*`!9os$!?_x zG>^zCi21fOLX!r?wkNPE?-nW^19m7%$n{#ZxM2dSj@XSA?H^{RJ;zamC64U#tt@E3 zZOC*w#3V|5Q?WjK+;NTh<8J?2IWz@WOWIkL z5gLhb^W6U$K*Gy%3@2<3r%S#;{sYM@W8`4_@Zbfj1)c!(BUJy8LENtY$+0#gykzmc zeQS~`bY6B48c|oQFT5}o zUX)O(V)8!p-5HscIh-Ehoq`CpLX9000;-DT*}a{5B$e26mB1Lq`FN6ru7cRZk=N1B z5bQ(NB_ESA`7fmS-{%`$tEti0kN^O=od4r|gXv%F#ffq@Kl6>@ZPH6lyl$`>e7?Mb z#icTJogy=hW|LvIFr}Wr0CA_^I{Eru0S*<>|aBSDTKa%<#ii7Wls0 zsae+M&7EPZiq7oXG3eE70BYeA>A=8*_$P~=%Y`Z0N_00pGUQP&P&^?%5OIgJd=N@e zCB>+dNkHrujy~*P<4qCeoC!KLztzw)gu{6u)_Y)uf(rwONl{OANBLBp{a5WvPn8oK z9%y;Ig>`GW2lCl!L$;1Fv?j#?v75>vk#(kKNx8i6K!j8nNpp1kuN|l1zQonObr+r} zz!0*fyVU`eFNMligA!t%c0ERjgXz*#GSnVHkSCD3cTqmx@6ipvhkt>h`3o19cx{{5 z9xHxH{emicjjHgDn5)ps!226Vd)ma%8Nnv0kTHbehd$iCeRu_hR^I4mGDjC=uGT6w z-cP*@?Fd^M93~Yo3aQ^mUlNq55=*|x*>3SCj$opWP%}M%QY6~{*Yc6HDi`F6@^7_w z?kc#Ot@X?tB-F_#gnk-?O)6;_y;Bz-NteAOA-O-8?jak3_uzkAe zdm`)=WzRW!HXMjJx9+VPl^UlH(VYmQ$j+bmjPc_%^4L!tP13BU{l`E*e&xmIqvi4M z!Ljs_{OfC5T#_{9S-7wpQec+*f7H*xfL-GG_n=siE=c=1GL>mor9-n}&K>8ME}xIB z$PSp`)Z`zC?%tLRx23N-Z*c$fZdRnP%I_;93;6`ydGy3tsa*k;=^wc1egTBbo^lm% zF2M6psgdoC6 zaWVa0=H0PB7I0Qv4UaR8A=X@u=eeA4n;s{hI+g}D3i`m8_;`WaC$;AH2cm@fY+lTwf&Qwv$ zikPCKZrfn%=NmHC6gcck71^uNRE_6~qiJl!Wn<4T}wJ z77!iKASBweiuP+7=35@-V;$yeW;t+qvEbkaKRbN@Ad4iLH-IQaWjX2tIO?l;gpD_v z#V#r)g$y*5>ln**q%a(o9gRJ}9Wpa0i#L}!7E8^A9YszdAX3l`jt%7$5gpLNBij3^ zoS!Db0vhp>5N~0>>Z5`VheJRt^f2mAJuLzYhHW6pKIO{eA6}@Nq}@NFsZJzfwhc&5 zZ@~f`&)}I#+&k#g=TJIo>p!joR6unc_q1E#BB||-{yO16c;vf_z&hGOl{vd_yPvH6 zVSSIy7M{PHb)Nj$pxK3a`R>R)87MPg-&Dxt|FOj=cjPHezD4-Vx>;cm>?ANXh>FEh0Mo34Z$T zi~i{jvoV}+p21SBJVzk7^Ly4fd@M#{16L)vRcG9>6XJvdTyZ%h8gYB6R74bGQJBFX zb_Ig|yqvwOD=J2=D0jQdX;Zpau?bas?ObKaFg}Z-fgBhG2D4^KrTrOX>h|8bh|y;* z?O%gRs(%`C$(V#G7-q*b+s~!Ubo+$D1dwRP1pCd?O$7%@Fy%?qr5h1o&Q0_5PTMl{ zst4M#?BLQ(RjdEx8L^sV6R6w$T85`y0(HokO~Np zVC)}({~8PtuZ0IcGR)eSMVThJ{3FEN7IX7}U_YW1QvqyPlGeOuxapvmjDt{op&l0U zvixbD26tGL;XoB6MWV9{aX#9f*rOYFMC1twIV;TB=5qQB#?f78{F^S3Fx8XS%wDXp z+a?p$Cajt0Dn1N3Bh0zeNW+ElzJerWl?Y~0l%?38F-gi&;37R##wapY7&5vj`@tqR z{mzMoy{)n!vxH@-{<%q}f{A}V70dYZ57Jcc(tYhXVBzJZMP^TIz6q(y@|^PzfV2>F z5!myg_Vc0Pk1W6v56m#WHV$Vk{f|#+Xazv1X+hhiOTb z=hrOM5=5+6aw<9|Abc>M&s6^r<{x>;HRfxyjeoj`y;x406-I(}-ZsOq%EmS0-_o49 z?BX(1wg6RCoBc2t_5tVgG{kY}Vj9!`OA!0{Scd<)oj&TW%}li|HF)2!NRQ^<&G44) z3zwR-jlzn!I z7fIuB2EGuWpNk#MYs-~s04fU84`#X}@_|F8ANxU+KjBsWJER0qq8xey0|4kH{2w7D z^S@2lqt@&Hn6Q7{!Gc_)5=*dP_S(Y}(d|jVH<)=8mHrh1Zg*Q;U-a5?)bHGZOOYmxbiG3-avLNVSueeHsO(sq8Xdn zZxU+bop5?wozQ?h<-Q&WGI{}j@AUS3k!5E`pmpqnL_(Po5ETjLDh$JmCeOlA8*HNb zCARVc60v?b)>uLLM*67(x?)@_4rYc>9&wi}P1-ns6s?8;CMAShZ=Y10AVu2g=PkbS z7QypsRry8Z%2hraniWz#>w89r!QEctjDj{zpM-40MFv019cWPRM=JaB%!QkO&Fg-+ zBBJIz*Li_!kn+gm<6zj!&87Azv6MRq74%#h99*sRV%$uNmu%IuNKHcpp!hRoE{ z(ZkK#^84^JueaO#XY&JZ-`DKb;p2Gqx3tZ5waxa4Pg!&Eaq)7(VR6EdC&TRnpP$Ry z^Kt$1(dq5|>*=jifOnMuYOVx|J-C#TDW7ST08VZpWEAVkU&A&tp)%3RhnaYDEA>LA zf)X7ic>zLj^IK80NDAtKbUK;`Hb@%y2km8)nvxzpF`_3=apJqzio`fLNIf+WF7!lM zy*;_b5L1G}Zft_(NJp&3@Qc{T9y8v7Hs~t;-~nwTxcWLTg$Kwv3vp{O#R zuC&8s;S2&`!#dCC5;*u;LZYMO9xj6Vdq-18@`)lAJFbkX)Mm7C!&+?D;GXvY)dT{l z!aB#|##Ad{xhx~@c4qNZw!=ikz=DAJOgW&|VEx8PglB=8FP)QQ7{I>Ur4S{g4Yj!D zXz?6(^fv#1QL440ji4Mn?8q&~^tR=bhda)U;g0s1U0ZLgh|kg1_hYtJXHsFTGQ0OetDt|e*5p6awO zl#PXHYT!w@A6yqe>IXXiDj8b}1jRbhECq~tC$sD?a8rHc zi4;NMh4O5`hk0JdPqP8sSkH74YF?Q_>G~>a)8_&_@gx^*@>P@L4NptkaYP)jsL^s6 zPO(bv5sA7gD1mQj+5C+`4XS8D+pHuy=npjWOC56u9>oqY!LLVHKwe-bKSgP zPag2ZF(;ktG72*8nXy5=2h*X3emwzz!?l3iatg*6|%nmf>2gn z(L+ucO`1gHnZYLTovh1ky{Lv4m3ZtOWkQs8P(BmWvXQD?3{85G9Z&gz*$8k>$bVX! z@Qt0_1ixK{^LI(nU{BS}YXiAFy(xfW5-M=1sB;v1!2H}?|La4j@&)Utmt$7cO^$9= zMDy9NI*-O@tK7l5w2RlD&H;t-ol28O$m$*1;{<}6Cp5pgu_tv89xo(uu*XFKpLTwz zl~dO&8?CZI%GI9*IH@>~s3zwMz>b*h?SD`d@4wcBR`6@btK`^-RpG3fXn0vb>3S3% zOaz=!(+Q9DGEbU)%VTv->3Ru!_Ay)BwJ%LPu>J%BNnD&FnA4Y%a*oy@R*Xak$b=~b z=L#_LP~%J^%RgPG>};?iSlB=X;}D5R&xpgq zb0PmA)$|q2iHZSc<%HTGcUa(t+WCk=K(3|!atN{sS8M_UJjozO2J9KDuKoFcBcKJE zWD_I!v#-&DW^9EE*>G*~Zh!x%@BfOMR!1%>Df1{rB|betsXQVkMOmxFFvF-KPc|kw z?OQ8x2i22TBn~O|N=*FPN~bMst}kwm5Nc9U5Sx^(1GIm#zIu{;jAn#pQc#q%^5Ycq z|AH4Jm>XyzKmh=}G5<%r!1BNGLf=1lA@L11>3RS{R*^tJ$xqg!yo|Enl6{(81wnX(S_xRCkRWLyFwU0>2173A9&%lU@F9xyAh$`T*H z%g$;4%ad_Kt@WwJzrX_jIec0MJ+1jaU;!|IGSMjw?8EWLw;!y-lGSXm&5T3$2P`}X zZfNz_C=vgXtW-6l(}T0iaqW5YqW1SNbLWuXy9q6h9@__7;e zz3mLAxFsvz5{yc2%XXy5bN47wv@ee!4)S2x)@9yGnA3=9T@-GBw8968xFsL{Pe`H! z)%71B2mP7Y69ZUuVy+>iuPgP8&!40xvpIvj`t+PnL{Vo5!SXpLz>$Q39T#$N`*rX9 z?%D3CU9>-3&D$QMK-#wX`F!{Z``uY${j72_{&@J_-Ms$k?(xm#lu>HUp^g1e-k-%` z)&^YF5sX6b$mzQU_>$sIj{_HT>e@nZq6s*v&C3r~b6^%tl(Ju=>-=Sx?(>1deUWnUDx_NsK3&;9X#ldB>ALU zvpOYT=YdnZ8B0E=r8&6LuN+7ow$Uyy0*lVjWIsQsxB5dj^56;RZE4$Di zpmHj#C^|nxtWzFGY}A714sE6}@~P%qn&myXS~7|EICIYbn9=MFEMy9DHjwdEqd22; z2Gy04yY`?kAh=-2Pjw=q2)-?^wuhmY%*fuuC=nXv2|guQVr0%x4{zo}#1;l_RwTLG zg8jV?6OHoR}K&o-rCbd^=dAazG*%IGCt&Udok+ z>A8>NNbtJe9Q_hL!rxfpD?}h-eIk4nV7y)ZiA!9=+W7H3VGM}-143$^~ z@|*_HHLnqt1-J(9_H{Q~nvoX80qwh6_*^H&^CB_=e2dEw0zwhR068wgi>J!;Jn*23 zCpe?zKr&rw&C4Qw(Yp&T?CVDx0jw(+c%XmN&A zFi;^v!%9}Qxu_D*%~cwcN_`>uguVb3C>lYbzVU>}^}joS;K8DhyW^PTYVwZ#0TBSO z1b-RZ;GsNg`IyVN#N;60v~eACl9Cpwz@Mviu_{U?T<4 z1Ct;)c88dP2~Z#l^^59S7Akz~AOnD_H6wm6hUJX}f>q1^w2Qc%3;5vp5q$`OR9#b4 z-BEpo{L063mQaGfT9P|#{R-JIOaQFVEDGGzPaVQ%sM4D;%T|%d!^K^1IMz#uVVdf- z`s)A@j?dPUg&&K__I^ac$36fwNv;ng50+YqMu3T@P88O_6#U(`{gP0*fiG3^GbQ~0 zPkltgHVn%CJP-}ye^ei=|5hIoG3$8n!$0Z+8~z!cw{B}7ygo#5_NuaM?J{-8E)r-6 z>Y%V}yEEWEfuM0#oh1O{(}xkb|G=mkW!2wlu7Ox8F9p#wsMN5X;&d7}qBj)r*iFOE zNS*8y5X&po`;%c6qum+CmsHeLOYHY`yFWcC=FEmrQ2;7;V{MwpM?Qfs0eydRiSSy!f%*LUI8kyD|(;hk*Q2GbuRz;jVjhnKJ-m|ee%SI5FGI^ z)WP*K<|JB_rB0b(&DhRC)%6v8;I zl;(RzpV{UcR*9sI-iZ>OAEv=Alnx4%1<(8sCp+XQ;a3L+ckec~?(|K{5v6@OhREO+ zq};^tGdeKRnh^SBGAK3hd^)0NL5Yrt7L&AVk9JPs2}JRMA-DW#@(e=}z&sDYwRpVI zd@kG}xA4`EKcQRNp-&VObxc!n-(>gkh?ioidsQ1D`d(H(|Htt*Awde(pAJ5#TEHD3 zH{lzZMfr+9b^rxaT-N4#26H_X-2lyU?HOlVvN-XLL8=^cDK~!n5r>*uLao52ze0l~ z&0h#E3&y~~yG$%*zN3kX9eiojE*ZzA(ypg1c(IZ)F!pw7)HM(ek+)Wj@1n{I!{jeo zx|jZB^&+cOG;=Yp{o6KsNg!7a$c+2VFTZK2YS%b;-3y9aYa6X9Q4lbZ$LCtVrGRp9 zO}!m?|6p!r{(79fh)m8)C(w}M2g|l zHy-I6HZ5N zHhYE}kCBAyt5$&&xpxClh=_RFv99}o__2IIw|z0C3*qB2J1dN%E5AduR|xpp|0-h~ za}Ez5WBKqncs^E!K>R5d6djwFmhF^>fEOe66rXn^ZDGYpR0oWMELNCs73b&;AK9t2 zu<5cxxh_p10`c>tc(x@CO;o=~9JdGRSJmEyitDpsq(Q9Mk((G-@SEnd=^JYlFO-v} zlLAiI16hdX2bF?o<4&K2fT*fmgu|HlOHm3&B8g>oNR(V#Gap|jJd$|9=qF8o4njAd zkR3Jp2L&&<&>xqBfAHhip@qu0D=nJ7c}N8@D}zs~CJh~TX)62RhbyBQy0Bh;`>YLs zq}6`#q@Kab$_XO?S89(qqlRYYq&n|JEh^dj*(|py?3ogn&1tpG>PFPVaPM!~BHoR@ z7-6rQya3i5Xk4q^eC>8t+sEIs!8Vq=>4{f(mK<*|WX4R~s{$%{!kyjPm!J&$mfKJ^ zBD*DOKn)fPBCh%1lD$jd+Y)eq2`u!ZE*uz#MV@>`~i} z5ksq(C(0GVem{~jZA%K?;`AmpG(l1Q)%df9LqzINqe$8Us16Ku_fVXj#r3s2x{sUf zdD9y|ynW>GTPb>jNBX#F<66h-V;Jo^f4l4Z?pcOsvWO=pndNJh6_@AzHMv_Jj*>?6 z_M!ed>+@!Fewz2~@mz*$tsMw={f1sDRIqsjqiq~XHD}n{o=RIGw{?ta&Oz-iYDkZK=TTZhNik~@4*UT%7Vb$DI2l;o1rz7YBkD3dJo-K4Q`#%9zjqZDNiO?ioU7v-7c9hq^o13UT!><^#TI^2U>~U zutTT5&CeEnMoCYqd6cmJDlPub)me?H%mp62z+FZzVvtRbbp!qwTC8j|;q6dArKd33 zT5DZal}870BL1SP)uIt#ip&IV0*9{tto}vzJ+)n?Uj5`F4R|L~r`?2m`BN(v_FBJY zGGyOaTJ7SEq?~^7t6iE(7yXM2tv9u|dne+Im(CHK0I$~_qi5og*yJQYeILE;NO}hn zGDPFZ+@70R>QJ^_TET}_^MNGo*3@>h2s%E!g9T0qscemp3`&nYpQ4LfG&(fdn-`St zOnDQu!i#K5Tj$-c0Ha9&+Idb8={T#YwhD8a^0XZvoyCi_@#Mw{BWee=@t3VGZ3$|H z1X|fuWG$TedokxGPveAI!bbfAzO<^CK-RQVa8N1Eu?Hen>K-9zoqN#ufOIHJ!`PiO z?6SRlblMzdMdrz=)(NF)Vs%>xY(hrMw9vgTOnbqp)kg+#IM8z`6BbLsL|-LY$zi0q?(tC}79v+VDNtfvZ81g6@b*bR1MU=b}L z0HRNG1nT^dVyRiM4Xv$I2Nrl)##{zfe{IG9<97*=G-hOwb6%-LxIDc;Kq&9%g; z7mB<`8YH=gwib0Xh<00h>2V)hhKAjA-o4ett?_wZ@cNRgap>C(`DeW9juCsW+L3$I74W4Q~d=zWGVQ`(Pf}IoBNvgfazvoWS zAY_}xBybt2+WjtI0Xf`vYLa0N^=9qNo6ZctZ^eT1dwkICU1( z@^1)5HNx(1b;vb{t#ZN58l8x@LUBsWq&|05^2R*t&V{HvcPDfu$^h+41S~2F=`uNI zJzjrG=%%si%gL9eMX$Q9!d8Y|vD9?R*E;$Q%}o`HsYNemn3$nAV;(+a(c?~GtA(m& zk0|-}E$qZT{%R%j=ii-kIkPsf!U5h3<}oIJ#LH zIs8ijYn?{#w;+7s;$7pJehvLtAuyZJ7_;c>dW>sF9DP5_n+~n@9NFTy_P2C#$z}ec zNyvprHC4=Wi28M|oHj{{DH$r=Qr4BVe4JWp^ttrkOD(H~jRjCa2G=`07v0w(em^!~ zQw#ROIhs^!R2ftZu=b<*sDD4wO7ObYM^;w{BY@w459@?g^V@nR5cxctue5#d;J|=& zvA1MZg5At|{Qbx`Iq|^VG}MTr7-t+^k`jr`x-q>T;~H4{A;j7@Jzf*xrpuNZhu-Ql z3G?st_;?+(&Z7+_@Z_G!+lYs(%0Wlt6vdZ5qbxz$@kq4Cs<+{b*`d*{0wH;% zPSIFdUa-JYI9afawakTsyB&wfH}h&lVD#h~${>`1mJ{An*3tm{HDBW)ES0N@1&g>= z0Z9I>i<4RLjdw=Fghn(At4)!;cJPFa1SlH}FlJ&j(5R`2yx2VxT2PN*s3j3^36fO$ zG|B^`j_E!Lj6Gm8w%p%eo%)Px1$1KgPawXg>Psk(QwVE;l;^~*;C{R88ZUSQKD?dS zfEFA(6M`x9mMSxEgY(Hv+l>?4d3#0ygqqX{z^{5$W@`ee)TmHa49X<&wry_F z>FHBjY`=XM0m}$WqG|!N3G|^vr*Z%~T1DYK@^=UVJLTxkJK=h&&)ksd#IOR0ri$kW z6=xS9K5*5mpNJ9ibs>>W_k&mz_=yij2^1ToopMPb>9kJ5fF#k}^8n_9s>nl03nq=* ze_Z-=t>lhqcm|xy&8WL6wPoaJbN+Y$py*5tIk++4OdCVFy%{Y$1v==t)|+MSjhvf}JUz;wb;uCwMYYqx}1w9ga|FrEs#5Ym=> zMk`f;18)4XqED4Mcr`4W;*ejbJxjhkj%lGNobf;^L9P!soG$7zy|Jo`L`Al_OY*e4 zx5B@9(o3@KT_>peMDQHr4Bre z=e*(6EB?izq^y4fnNBcz_Tpgz&`IF^r}PP*8lSu{4R{n{uy9ReBJp^V<>_ejXv2xg z`PZhF(*s%jL~x4)6AMPX|FAamS>6WmHPsLK3&g3C&GxfY6^N|91p}4s^wY(r=L{rs z!ifo#gVutFl2R@R{xhY|HzTJI9-$GUgHT-=zopw!1wIY&r5@*|JPO^CLY_9YQo3?| z)7f(7-|HUA+J1nq;i;O6>Jhn@Pg^^IA%K!;Fe+CtE{6tIe<1If?3!_eZ;aR9vtT>C z=On6J<}V}=#hiOU1^`J}7PWX8a6uiujG4XTht~YOIF+o(mB_>Ri6@f3I8d)ApWy;{ zXus)BuFvazcLFO@YF^Z4i)C_w!?UoxzD!eTqpbuRs*~YaQM?50y!=}K>?(77_g^eQb(FvLi*8eNVCiB}HNe zE{y1lq#(`LHaj24O?^C+?o2CM)a#6@5;APQx13a?o&_ zH57zMx_5=r)@xcfBO&&>rXcJ2eAJtz!zxA3KB#}yhI|+Ka7GiL>H55-%9wM^%U>Bk z8tDBHn+*~LKnOtyS;{Fem|&T;*5x(MLqiBjBpsAZGnzhO3Avg{P>^v#wQG5V&fpc^ zi7XOE3>p88c9?*XOaFDn^5=Ys0#59GmyC*Yi{1qg(W=AwkcbSyuq zj6(b<^xlj1g)nu(6S5G= z1@gC9cR-6FLktBIg@YLUK@`%LvJ}l@D;WXz#34jCkVU@5E-b$WLnx69$&A}ex(hP3 zKfVF%0f`tz=n=?;Jh34QE4JoxRVSb@B0Kabd4Bzg`1z{nsNQ}7D1TNDM2G}a2A&EQkXtwe^$=-wNZkV^7BYGy0`);jRXvwtNm zUM}ouok#ebq?0C!%(_$)h`Lcuwa{cr_*a2&XS%aFlp;Xg-&jQkrvU=>!!|G&C5n+V zHew&dYL=}-ajk=AkyC%umpi_xk_{G;UzYiQg2#|^WsP@h(@N#hQgPTf&*f24bIr6U zEQlD6%~3`CA*yTdL?4KR2ct22#Ztw(!X=%QVTlZ?`W!o%yiYly8&gn*mR)N3ds%o+ zqq)n7bR1P4ONewNsh*87_9ge!GEmhv1X?Ojf#qYeP%-27M##78;;b3lsy%;q&$A$+ z_@UV^#vLZASI7o7*t*J7wsgL${*o+`-JQ&h9Pm{o*X#fm8^5o8TZFUp0!;)JJ1CDZ z4?jEtUn9^iW9OF~4lV%>pFIsr3{Mxvp!B_n>bI(-hA*iw+MWW|Dna__b9J*sq#z?r zYKBEAcKoCx z=NKqdT>GO?H$4|ktd1QT!*6I>KrsmXTzWAXxcpS|k}C0SgqlGKg_f8$4_T~Lh0TCX zw7K%?^*T-sQz6fUC@v`v(Ir&6ru|T`U&55I-o*-<1WAJFPqlD67YVkdGd7CNNYLc1 z?yY)a$0sf#^C-!HkQ9Y5`6kS|USVj71J7K@QOPC8nV76hv2A5LBTj;0D@B=DQ2XPn zZokMO?>MKLMd)!wDdD|6E0SW6j)65fAbU^|RYQ;JS|IVnAg1nB%FWgQg!F(`Glib% z;$b{BonKcz?t! z;-VESnU2JSD9af1f>E8Td}YnP_PnPZ-=y{+zUOgwbL_PTkUm3$zHCs1A}S@j3G#92 zAY^8{|3%c;B{MoALJ-oAwRxKB1^$R`!Y@>&T0!8L+rmw{DEg1~E4eRz02 zTojRQrBF432j<35yX3YaJXVQ`Be_$<6G*@vsKsl$5$}dd#l5v6 z1eD6F{U*{W)-(~MATH!bWLjUN>JUR$YsGvd`*PgEvz zKk9uO?#n&w>jkqzEtvLVBOW;ZO7+JNGTQn#`mAAb@$YjVe9Bb_{7d=1JL}d zTQ?$_X;l{&b?Y_ERlVe~hCN(bQs;0y1nY-Lw2$zONBGy@>hBTrhr{gVthe&>)wUq1 z8*~hNaEvO=%H;R^-M)22(4(C`_pm4QrEwF%dW+VqoldUmflFtan8TP^#ynK{m9!v@ zj~>Quj6N6avb7Mb3r!OnHXd&X*~Hz8T9zwv-`(Eym+H5zPd{e9zvRYq5OqHwh7w#ZUDFP6TxlO!kj)3=8yB=9`&%J8>; zpK{FZ2Q9ghN%wCpn_`P~gz>2npUNKP!?ocWy4jj`K?ExIAqmMEwAF|3;XMm1DCu39 zu?tL^OOj;!9~m}Y$rgDmTeU&2Y84$!!L;^4{VbBrahbJf8YZiw4cp1OPV?<>b?h+S=EqGn1uOcm7WE5qiCK10&Rxo6@c`T1zw>hb3W8^`8U;KL2(8 zkt-2=49H%u8JG4PQc&MKe9Q18xAm2sLrl6z;x${+fodEn2hlm?|Dx<2!z*o;hSAuz zZQHhOOl(a!$;3`3wly&(wmH$nwryv^vnI2jz2Ebm{axq!@+Z}+&{bVkt5^4ZcQuNl z%VrBFustew@@@;Kku{bgWE+vWJvr}~l8eIqJVMYRrc6*&If>9W>uSdbD)eh&xsct` zNOF{(N4SkWxCyhA;;o;h%fHM*oR{`$N6k`F1ht&nN3ZO)n1fQz-3@F(Xqor=&xeuXt&^Hs`H{7C&|757hqfaBYpImX zudU+1gXHMqB#o7lDZq;~2OlUZ4f?voGNdZKl{nYoIH{;{>GIo&{L}keXbq<#N9H9~ z)6>|?Im8yJ#`fKX!LO7Bp|rfuj#BPV1ED4uTTP#@<+x&QM~hqTe~)V5)9)%qOqtrs zNiN^c989^?{=WTvqY=m|&FR})n%}th7-L~pi((MC`A8)#z|*brKxpfH(9-D%Mc`IR z|FPO8dq2c}TK8p->~19EnpaC;8=mjmA>1O4=>-4Lp1PF!ShZk7i~NifM+ngdy2N#s z&XXXhfbLO`KRRN`GJ{FVweG~Ttbl%ZV|#rx>cTrJzMAf<8a6S-V%AD$g2H>0R;4_2n2-ouPqTvBPTOcRTn2K zdy9{qkpewgXHrS0PTt=4yZ{8=Y9l0}9eFD@8#t(OB~c_jpg!gP5R>nVmVW%Fkd1_1 zhr96aVDJ8O%8=p}^f_n(;a{EwA5$Jjk0FFy%>xs?u;Kx4ZzTc#(vo6)?w&n2RGSpg z+Keve{MBvns3@!Zf^jQ4c^;Vrxlaj8xTbnUJdHNJTrW5KAptdHntX3)qEUmt1U{Ar zo{(w#Dpw8OH|(4=V^n4VDJC23o`AhaY23NvbALrP;8oc6yfe?A`tiIBkC2F8Bz!$5 zT)uEjP{Q{4J&~u+wq)g;pxp<(t;&GBYH+Lfs#o)F_pY2L$~3=D%#%~0pc6ZZzvabz z7EqiRA(JYy&v2{cN?yLfhTnC2ofq~FS=NW(-bsMl6QL}}q}>zvXD3PIvFV!;lZiWI zv9+w-)t2<}Z=49mXvOceoWPpPW{5fikS6$K_P+o}Qw$3cm5f+EwN3vbupy26g0prx=rx>iufIR3? z9<$HCol-6*J{NnlE`L$~T7NO8knf`L^>(#9Z8FrYw{idasEijwu%iZknEKk9;E2dA zTyua@RdQv)_KUuXRbx4Nz2A@gq44@|cvLw<`j!pzj~Bh+3*$6q+la%o-*Mf;GYVh} zlZw$}OBR7S&RRCC_uNOKRd9Ji&luIxqmHsY71h@#AX(i6_M^S=QC@3M*IFBKY2L5e zJQp@t5&afoHY8zn@(-SDD!Q(Hs5X6GScf3(6|EGVqql#x#0WyLwLm0PN0?Px7*(@W z5bKSyx$(WGIigY8ra_3!^=?uJ;({%GdoXm`rpFa}azj)%HcYT zs+{Y9?GeZZ9XRRx(jzrW&^>wXn_ z`j~ldw;UGJs4%Bu8FR-NkX@<^?6*=_j-nu(ir3pdN$Mh9sPD zNd+0ZbMP4W=0N%GiC(>fiC=u;e6Lj;Z~7{ zC%61H9yu@D|Rv}C!Rj~iLoX)J$9#3cg54xN5gN9Z;m>)@9;ICGD@O-IUT z9%m!ao`^DQ4#;1P)8BMoCHe^U%J1R2Z72-DoWK~35W~coFfwDkg_atGqNG{wxvuhA zCs!<)a%|A}EZG~d@W`?<8N``Z2ay2Yv?(&~1H0toyd)Pgfn#NilD10VW^=GYjllOJhZ5K6YD%}=g~H|!Uq&7H-*}*ZrH|>;+hZ4 zkJ~-_Y~-A#Et`?Tw(>qxo26Vel$xg@~4r3mR$;7H*mtFGu{^s_>K_Ltl0N< z4ycykbpNB~#dnmjOkiE#d1k(0^i>P7A?c`-GM*U0SLLW@*d~_B_^?nS;J?XGSVc9H_JN^i`3R0uhGf zg_d8P|FHN}0y4|xhhWc6hO}`Ez7aE3Q1+7$`l!&8FZJ5P_o}&UyomAzjzI;HIdoOg z)OJZuxmYke4g3&(%>z_|y) z#Ya;Ob%$|^Uxh!F)ZryqOXAIob=6h%%2KBU+#D}Riq?*Y28i{06AOQy?6hHQ3Ro}* z!-BbPZkSf7U@f>?5xI+ZaWAVM=9xcI6 zXmA^|t9mha-~N=w%fEJC^*M|7JEK5V*~2)!Dd3(XhNWb5|2&sXhziwAK?c3O)D+xw z`!(@?eK!u+G2y3jspm;LXoN|0K`9axl0>6nTgra2AZb5oBf75{o`}{53~1C#0YSXD zLlny({8!L2$bduX&)}c&?|(IYChU@Q&x5);zw)$%fEl!%FB||Bn6Gw>!)aEwl^oBq zUONz|nQLv*0&+O8(RzKhA5(d5G=yBWU)B9#kxL#hx-+Apxm6a-E3ojOfeF)loFsTL zb>nm7tm0rm)Y=UGr~;4lqSczi9e?H*&-sFleBlFscWIQ&{DYiMA6DDUHUW z%q3}SktA7p`vYM}Muf7b!>_py+Spt?NRp&4`6A4L(fn@4`OqAO#E#&&xIwwj3hr}|D5*l{+%_SI*&Pyv;dMJ`q; zv~FlBrfYa-UE=p;4#1gZZrep%F@>R&z^;K)c#kZk{HPO{y_Wt;EY4(mBFp~jAy@PEUfdo7# ziAGWijgI?wITDL5@viN{LRtJNP(&ejhC%okJIFb|_b>P&q+B&ROH2{;ZE`aqLkYGt8L78u zOIYEm-4ptPI2fH6gEb-Ffl-T_zX)2~I@TbrE^>a+h=Ds`D0n5y4#f2iQp*e9g%t)O z9bQ70+`rNi+!R|{VIrcYgrTa=HxrR6AgL8%ok40tVgtk9$9~og`t3LQrCC8QXZ4+F z)Cg&GEEq*{tb%Rk~%49sQHt_T5&+(luhvL@Yg+nuLbazo68IfJ6 z6sYgj4U^i7HDnp82XT*M$L=pGkcnELV)=APBeww&(S`9i<}19);^ z7BNUD6^zrfYD#vwE1*enO4R-(_2Qj4cV}YaS8()aao60VrR?2OL?6yeqYGn(syy#N zy*H7q`{d?R8bM0C$jA9pe-KDMme2C$!W~h)F7&GL0ifhS#XTSzEKT=tchqLUGbGca zdZpAOY2aMYw0g8lzwCEIHC0xFqLkf$XnuqNFYOaadoKogZ5{vcy{m+}yW8#CRMBZH zm45uq*!7*t2(rD2#t8KOdut5Rfjkrf73E^8fpL8h&a1<3tXlRbT`4Apctjn0ZZ?}!q~l`Yuzu57Tpdwt zr9h7`uSB0X>NQPjXIpqiBM7W@-_RP5FLZrQCPP^?{s~qVKQ+YZd%eUz`uti?LFA9g#P0LTPvPG*mz1k`KZO)j}`DE?SE`4PIi%{qy-on7LXi{;#U`?5U3p572 znNX^*!D_6!eA|_@2Q%<1N&+C|h#7ErIh9LS!U7S_>kALRLwcQQYo|_i-n16k^~3|9 z1iWyZH5B$|hT)j6xqY&u87XFdZ+bX5HR zm8ju+;2Ic1iN@(7issWph%+_9IDlTRRXgP%SlFg+Z>K z7Soxgs09Nj-7b;;6L8ym8znqpc)kXq6d0b`1Q{HmQ6?fM`6NcD%|jdsdbP?=RV;{} zX(ow*-~C$>KPGGo)lZlr7E4^Q@Yc=lg0N`MDL_otB18;Q27Xi-|f;e0AMR%Hn zi~NU9)6j-n-Op-QFqbS2i;=i`?l6ChgF}~Qsru@A5 zV3YYhy&5vFo z{V(i<+Zw^X)>!DJXuZtV2a8gTB$4@nT?&$fRx(cA`J?*cAO8a8Q!*HFv_=Xcra+~!r4DKR4r48DHQ(gJCW3)l~L0pf?Kfu znPa6ch#i&*&-XrbEm@$^x_7nebLIH&sYnToEhX+kW8E`DW)a(_QDD$Xc{1cp zWKNZ@tcpuUsCp&8AVwdoraRI3y!YE3x?%n(rlLtI$8f~MfZPtU&WN){=~bjOpA}1y zCnFdYmS^4DQ4&>XvNv_?#w;C5w;wT%-AgO-W6|4VPSsy>m(KAIQi0hwbY-ahDaD*t zTQQ{VQ3MC~8x-cvBCV}ra*k|S?o-i_0&4UVJuG9XX|V$IAcxuhEN$#hY8Xu^!%4YD zrfsQ}z(pASpc@wE;~Jo>B>CmOcKIapX7Q>?ujFv@0?;cLH#0U^D#X~+<|q;;y^fv= zl*SagLy2##exLeo^Z+-G5R2@USWAG+1?_v(zog&;C9><1df82y?pY1|K;90V7*UXp zk-@-}t0bL0o1CInXyE0dVpLRSf7q>0%#ExWMH`7+fMSQ?L%~wq^UD?qc}an16gS@O z{8lkl2t^x0bCH}lun#Q5`Vx-GkOkzGQ7?AI*za0QH}Vu(D=iSWZn(M{s>rj(&CoYt z5L_W<&iN>J_^3%tw{(g}eE;HM%ecBHMw+eD&!I)~`!HjcXFPGS5p9Ee{As4wXliv( z5Rz7lIDtC|rj^0YOGHGKO0+?xKE9oPw+I9$$W6g%QXaEO|F-rByG ziP@nSJ2i02n)n5S5>k5hnj>Jk@U?x+#^{^j;CW+1`D2(2txehXvz*G|@PuI5x3l*b zQcw2|jiij2F4gyfB1{vv+^XXRkC}l=8tgp0XgGxx%WhpanCDLNVyGC;HDKY^CHfvze-B}l{V?8GBQ zk-k@jdFr^9%}O&|Rws#mhq=R+Dxc@9hC;P9T$!WL*#fHwv!-TT$&&a1Nm5JyRb((_ zMC9%qqv#c^2#xk>Rc$F`y3SVB3MGh@ycUVm8$_))jv=|eXSR$ahTO=y3oINicbDcXe<3vFS6KU(3&U@HX zV6$mMb)ZBTvi*gjVzVW1=&*0bPc~JdkSO&)^#4>Zy?G@ zx_sSNV}0qZ~ig8&^ql&SQm70c| zkD7P3k!T4PN1kpWqMKAJioeH7=05Z zSKjwPTaY@r7>Tfm(>E2oSB6!?Xl*ldO4r?rc#tAQ!x~+%O-mU_b3!(c4}ZK6*ro!P zRGE=jx9pltwHk6o*AhRW-Q)T}sDDC!asf3w_x5&nVQ-mC#-DS>ZM~j#N}jrWWfp*} zWB~&7HA2pcM87rWLcgFi>>>*VnF8eghkv$U6U3vzHBRh;iDyT+v1ani3choRn7fzY zdlIdeR}cwnZ_)|u*x1^>6&Pzma}(3I_tzY_67SZpAyPyd^#58^mC{L^EKjOG;xETYWAjM6<7_LR6<3R15EP zMCjW?;llnorfF)fh9vv=S=&VDLPTu@IeaK!k~4ZY{D{;wdjwf}w##`kHw+G<715x2 zKH?OW|M!85(6USsY>$M>YhnM~)$h)Qzo#hw_kMJQ;%28k;1xZ<0|_A9zx&aqPDWq; zY(+D=+1ZNyg_#)u@adYq!-@pP&#PyUR|K$!UQV|$>`vBrzgh9~Wsnt+4yph@466v} z0cJ6sxSOLdQcvXinc8%@q?xe%;OSgw@*R(g{^=XBpYR%gSiE068F$?he$k(*;=F4- zt!f4DyhI}>-tD;ecw*uHZ2t{pThd02!816sKU^kwGnwcC&0 z_xJmqv_CbUj2oI8n-osyD<1}K%ny7Czh$_=?O@{8KRlmVwA~37L_`Xq;LZ|tAY;5lG-xof+dpsu);o9ey2+_}%(PAn92UX)E(@zyB} z)Xop#Xsc=$!)aR>YlnWo2XNX4#@dn}aQWtAWuH*R36_4oP3_5%-)nRJiBh<0R<4bU zyc<4iyTOVheqK*38US5(@)?Jm`}&m!?Sw~k;b85~rCAv6n%T=1jPs3f?n*rLl~IKKmlFeu6%$TwgSpqEish zcbi(95Ua&FJRa*@(pG^v>7%$zZtGOiR*E+B)K|38xO@oi51L`cnoKV1u)m0Bv{C2l9Vm@HzTE8vqc<{}UnnhsAA(Ns}xtVG!#2uU6m4 z04#qn_#A`Gjhh#)L3|&Yn4GF95ReZ2afdn4-3R<`;r3(p)SKJhdFIS z(nv}(c_lte0wQCKNtrCkWDx2!tnvt32@X|Uh1)H%=VM&9(C*Zt@lC2f1R4(hcQ~~! zeWb<&&h3wT;j*)b{|)mc{09bn-eLmx<%32jVYtTx&RuNLbP>nSK> zp#QPn%;`E+=&y~Rb29lTVn5u&yh{0(Cc!8aFO=lpG<|te4F6`v`?mXUL?GY(2Ry-d zT57N@_bG&xz?s`!4k+d@-K)Dv-+=u&P zQULu7n?QK{8O*^^KtH?8fgk>d@K6Jo`Zq2D`DnO3ei8lYB}14XDU;9q@AwhL$o$g< z;1lw{JpjfM?z#jZC-i^F`RkOwa)|#UXa9f5asC@>v6A$ZG2DOsHk6;7Fo^dzPIr|@ zhfNSX_-?8x4aq7SMy^8WA!E1!37+7v_-(5$9}tgtmtob495(8sJ^39P6K#aPm+js& zoK5m8aEb#(rDd&cm*?q?`Wf@5$v!h{X*r{JDbHCRr!*HAbdQIguhpyu#|P{@Gjnb& zPltdDS;c4W?yA|q4(5<7M^{YpI2OGFMqh@x<=jxp0uO2mLW9oCKrz2x&DL*K} zh@-`^e%3T(@-0W)<({6G*@hagf-)Apj_9h5y_sQRJwSPSI&Yxcd2{MjU@Y9vd%U-; zV@~k?dbtpFoZ)cgd{IFt{Fp;FUbxRpyVCNqAM70*seIUC~r6NV9y~THEM2WNxqeg%jZ=stmdeBLz3A;+XpYekxqEnS38O=NA!f-};nO z;bo}|g$yGXvP4uV&nbd}sCq?n_B=e1<kwxmQQ>g4SgC?DsSJ}Ku~-sxDikZ;>3u9> zVz&CjN+SqqI?Fg>x(^Fdg;8L2OrieRIjoEaN)~{D-AfX8e`Ibm_zzfA|MLT!;6Jna z4#j*w$du2HTrh-$7G8_*u)O1-)XaRg)9CqjhPd(G8tORJ`z8SO4699Wob-y%FoXHY z#20w9Sk&c|zaIqzqB{@38~OuAKa(F$e4nKe>hqJPZpe-1w{N` z4k^tQ|M_RkQpZM^DzjjWP2nQ{kZ}u0z*w8YMSZXoy%q-GV2l0@0T18OT#28PQh>O_ zXR$P;D2ZccyI!5i{`sijT-qgvL~3G4HX?v8VIF{m4N3|aW`qV-;mAn;xP$C_Fjh() z0_6H3ER68lBThRAvk5S27GUuYb4@3}$XWcw0OndqLHw)np(ACCSpZ6!5XqkaM5shg z90Ei62)RtYWLOzf5P((1H|ct@B&bS%jXhz+EEobq`x}-|qX1)p{~BBTvLAqv*8L#} zBJvkFGYk0Nu*6A&wKj$MW2==f+AOmpHJ`(Qi|JbmDh*JB9>i-I!;Ire0H$c@S z+NaV*B6SA%s%WDgJ5?WA#}omONG?m?fNc|V#rLa+oE1HBAczqpxgZ(z$#Y^Kw%z-u$-m>Wr_~j!bXXdhLst zI}#m7o@^aUCn@aD^4kCJRYjLvNSst`&Qi0RU-y`}^n-p*% z4MJ61f|RE=;ok|On<6p)KP?LDP$vw4F9Pf1II=iEmx7$I{?$sm_gWsiu^6$soJXi_ zhX;-_;eh3pFqO0-JWj%2%<8=|IgbLEFaqx>Jtt#OlX~?SAtsmld^3^M!4lE zYB-{8%w$5_enrDkYdyn_<6ZV%m*! zMxl06xstyYu!w^aXmC;IqS%@JKG75v>e5BQH1DCsh!ub zHwvskZ|%#pF{}Op*`=IRk>j2kPvx9_ZH36}9Z)m03>Chj!zs1(L5zA11_2x0|5LnpH3Yb{OzdS_S@N*==?rjNJudJLBKVzV7@a17fV9jm9 z<9rrj;9rD4o)IdGA6sq?pQA;Syb0{XQG`Slp*M%5G;L;uk!6v{s>=$(a zxY&#+5|PaE-pWJt(7=;h4+Me4M4M7Tq`V88Zla+<00m*6k!;7}mqjI2UU+bg>96&% zK_lrwTMqM^<^sy4dej(F=!-}weWfl;%;~Rdkf(HUW|RVbYb5f4w5M+K&eK|Z7)N|u zA)=RegZw>@H3-{2(u<)tT@;){cmjkBehnTs={fs>i7Gvi0&qaX#tpY|_pd53K#q>ifkci_GARI);S zjY9Rpa~b|qvpN2JD?TvTK?S?e7~d{bs`^uray09&Aep8tCKJCrZ<^b)Q_5JyPYR|2 zslwZoAzkf*W(SC#oZl0?BY4IGF>)h+3fBu^>Kk~!I{n5)cmFyRWwys-D&8i{cHj9l z-ZDC<6%ZjGoL(6jN#8T0sCx->4UIN5WB-u3lEU%5oIWFqmpSY-EB9f8k>=~oO5>O% znR7e4hyM3_-cLP)ro%L)l%{C5{yt{&aT9*?mL(m(@SR~X4~lkgk7`_27a@b0`K4jVI_M*WWY0) zGr!1oR-^m_O*FWriN!+I0S(nfZt)s#`o`~|nwEl7dlN+4ZT+nBdx_Bq4NYzln+^mj zOEKR#|Jj2ozU_gAD$}^7e+9$>!{GF8|3S@gO+^>&AOcrbgyL-F_;O=8TkK7_hPV<@ zsS&3(x@d=0BLifV5|!y8dsg3)F_1xXgS*)@^9WU^J%hh}P!P zQlF7a`1t0D8a4ASQq>&Q5grVePc~d?CnrW|xoVSYpCy2WU0+P5J2`dk z7GIt~n0Ql~4CTol4zEy>(n6>hWAt%$=4{u#SxY`bMX5LN4@D_!q-WbLxEh&F77$y};i~lo|wfp&w<{H><1BUz+#Z<4N{?>!`pH9j>8-{t$12k;_za01hV> zN7#nd6!AOP{>cCtMX+5C5IPF5Kp1O~97bs{`0^smtuZ-J{OLh+H}dSrO&pm-PYR&M z^5m!1yo4wbC{h1D73&rh(%Skot_<9hpd-d4(a= zwLl6kb~VxhFAa^>c@;gXD5H&jN0(38**b3S;naiv!>1)fEcA0ff+eW64xVcLl}p)e zq6G~Uji1(USvv17dgl!OYsPgF6eWrRGL8}Z|0m;E{+vMnC*u@%{$^a>$eLq<(qbhQ zRJeY4-zSaJ7MyJ>>$#f1v)i4Gi-KU0FS<&A-QsDkaDJ1C_6PH?J}q?W4$g z5BUVgt5Bs8%C`sil+PGvC!$Gis& zImXZo9O%|xS(qEa6q_11(RW#?VvAqjsGBAZ!Wi84PuIefO&!2~__mc%73?aOt`)QeH% z*bH#StPHbSswb^8$Abj3@L&-A1TjCnJHoS&u|w}fVhmY-J~O71kM<&1!5R&DHa^8KcD@haJT9QuEA)@t5JFe>C+oKV zP80GK_Fown)tGnx=DI6`K!Qm=n!zfF??r-@F+>j2NR)NSkOK1cR@g8(hz!$zq|Y1P z7&9XLQd=S5XFa(@yr=N&Tsd_D{2Qf2@~s7UxnUt(SYtMP%<0l9)zJb>8s6ym`ouFa z_f4P*xoOcOHI+*+yKBQZx=ZG)DReTuF3ff;ZkJ-e>{(6qW|UoNt%3lgenDRa=-f&v z2l4P!Vwmm{&$sPVL4+daxr$JkRwcAZo=-z*fASD>d-HkbRw<19dnsngf(Fy< z_r_djFV7v)lf*W@Rcf!*9d^@7Njw9C_!L7{GIZ})cW7*S6D#$khQ7hhuz3Z~%|&9hWS+tn5@ z(vt@e!j#L{O`-+)6-}Pjq=Y(eI0py*dk$tZ>0)mJsy%?80s#RYEd81FOdRa&%9o8?Nh`M>!sB#QBjrXEJMGJzHGyZ zSkhez&v<&Bkw9U<>grj^179Z+B@|0Ys41-+ zJJ#FUu^s}mOEQ{M`?a-8?$$fXJQ+DPG(VATD(F-$8?N&=!&)bbnfc!29@@ZnbWP!*_sWxVXLM25EWJ^v zy}T;euBo^?ynODetZ~%_Cvd2Lw-&Az}RWO@s#V6QA~qMnlv{3-RnAtLi^nk@S|PVesQBd z)P4hSeW@T$hWQ3-hx`|3+Iq>Y#|MWhy>n2v&H^7G-uEXVHS5;(6}PX(SITabC;X4B z^PE?5^cNfIHaBP-zHG^Y-j5qL4v`L=AuW%47ngRpu8_PXn*g!1g#C7z!Z%Ewfo@IO z+Tjpy<9@%5WZ4-a%&!v1xMVlft)APhGK-g9jqB#@-7RsgYltD))Y}{{t3%Cqs5-zc zQOVLmhMUAh_nC+GB^Sl))+ioqecmx@oraC&i$3Dhv*&vP>Tiq_QaBXivlqgX)mcO! zo1V;jTJ>vgWRtUvIgVFs25uwhkEgf~YEwKwuC*bY9>_L~KH?&A!>7r-2E0PRcVyT$ zXDM~SV# z;q!u}93+eRg4|0thn@irLt~n4LMa_RQ2ywrg;;@B&$T>IqXTg~U5FT6DNRO}+mb$w zge=S&5NrX0Mz=F9&Lh6ZaAZxM7{xAqkH|y5#qhXJ(x}0O4t)>XDUVB3(tE{U+L}Zr zJVp-R?m=lPs9^9imv5@Zc$25 z3EdwFEn>%Y9*h93h#(w(z_?O3HEbteL%0h-w=Bf;Bn9Hk_5Jat{Hqg)ksyfpPfK1? z5rT5y{Dsp3@60GoiAKxyBnS%d3%~nkPWxBi5RnmCxDcI+K|v33<3sVHZu7C9>x(ae z<3kD}Z-=mSr`O8zAo);$g_tR>IxQ#ww9=UDhE}MX#0*lH5NO-$R-9sz=0IN5JKlh00weCIS9K3t9{BA zMk-%nxp800+JeCgje_+!S*y>3=!Ou~YZCLz#DjZK%3sO-bjG8al?aUhPyy@|3@Uh# zI17^ZU3kk;?4U=%Pstq*fW9F_BcKGJZy|#RssDwR0HA%9-1R0ss%HS`lz*Xd0rH;$ zdw0H#2j;vnnTF|O-6W3(X1!I@AMs~zUz{e80&JEw#`78p46_%qb%W@qptFuSgfaC1 z@1uqeqO`juv2O)+d^Cg31Im*{3N=Va0*TchdJvT*-KkC>%A=&W{S?U$=me$zOJVpP zAi8@L0svY9)JOmr5eiU)EbKxSlUIuW`;8%`FduG?#C|G31F$Qv7x7=v0PUegwj5>t zvSm*FVf#eIZ>#i+`wwb6gQdTyr#bh=@Ic5*OFs-h=hL)DwJK33shw@?BrQwK-sh}1 z;JizB`9Gu6?T(-2a}57yM79FoyYGuN0o}hqUP9FztTee0yu3h?X^9kP0etufjWp!r zuTahQCzOP|Ua&cr3qXyEg*H(_Vkct&Q3UF5<6{d`X&HeKR0t*viaq0BT~Bmah_C{P zAhs}v%>;T$UI54k1>`sx3g`WOe2+>5#DxvYyJ&pRQpD>;Pw+K%t60Rgw>wfmvk9-n z$%&Xlfb-Z*D(mFokv_~HJme4u3!oB4KazWU;mu|fQAoFm>GCdUh=B|eYd!wZ;f0AL zi7rkF6CM7}ikl^${L(x-murPTOcz^e5$;oL(^xmd)yBNg-aEDCaW(|O>8#X7ea9r+ zrE*y)PRZqHn)R{-RO#!~&Tmq9wMA)^)Rx|HIXs)q9!7_&Rd65 zCrJ=AFHR-t$tEjB^;5_ofKFu#tkZ=J`&yCfy`$I+jZziR4G!!}fT4Ijx1}Jn&h1q} zkwUinFZn^Mb9bcKv^XBY5Cy$xzC6fd&5Po*df7}7C3?9XgH>Z8%#L4PakH`GiJij1 zBwmOR3bf()G5xBw&KnK4{%kA2>mVYX-%^zq%!Ed%l!g`bnsBVR759-@u``bv`(dHqZ3*dC6Rt_ z(7d#u+X%jS{L?}~g~>e+KSUGshRF=UBv>$#d%8Nicud?-yz-6Q9kUpAAR`OWTs$NJ zKdz^^uwbYNsGPabm$U66l`AoMqIoihKNxT^wMLrZIzMI#a3B02!C?z z-<=o_dwOhzmIf5*8TBCiSGVp+=jcq zva37eMX)`0zpJ$qc7glxNqndZiUm!)S7ufp;7xU53ZSKYQ0;6>ZZmKHDeA`HQ-J@N z!5MId`~ePi+C+!$tWc0aA{>&i1tYc$qUxVMri zCIj|eO}wzrQ@CfAmZUFbpvqyEslB+@sH93WsNR)ROre~n781)e#g-&E6jvcHFksp! z9at#3~?NwIeV>7LVddFiXb%xUbA6SFN=?n)0 z@}Eo^P>9ac-cuT(XwWo@*dh>K1%M7m!(2D7e<>-y>=yal)$W z$PmnWngH>D7fy|TDkLy%C@t|q2Yp+%hz>%Eo6P2$QQbqfO2}VMvGnm9yxQHPpjKNa zvHF}7!)__Vpr0&+eb_a#KOt1?#bYV4+PKBfu1r4HfGQ6r?w66g3tg>Ne=L1hn1lL4 zerDbYy1&;7yCuyzOv_jV3I=LcdY+VNe zJgXR@5j8Yzo4){0pzqugnzdcGvNjXeGUTSOI`gCmLVQt4s`Jn&&Jjd6F0PnHtcKtp zPsVCuNn%q^2dYipOOsKdx}OyA0^+G!FBETY-R{0{o0h)&J;Sc{?GRz%w~-wW%z52% z#sx0X=ieh&NoDD59wNw6uh`!hl=x9VkzMV|qvZvLa%Ns$9Ci8S2$zp)9Xn;JX6Wn@ z-@zBCWH;k<>c`^JlP)EjgXb3;6)am~F^sPseRuHaW)$!WT%6#jMI-NnclPy&$gw5K;H!`drr+mCY71LgGIt+5kb`I8$GH>r zWW)1ZyPBWD2Ri#-n* zn*Aa&Xqj&Js7@?m9(s>8dDef^>PZRYmXd)S>DTOk)!AFVC*ERFe9VomLbB43XxX)j zV@A7Cb8YP4&vC%X^~`kZ_=IDEftrYvXdD#23Ace-W!4z4h5_AMHpK`o%`8Ei?1*E%R;+oTWFjjBAt;IF}~#(8`GV1VNy6v4|Rol`H&(9uvQ@yaK}#3 z2_kIvZTq&L%)ftSr*(?oW{k2;anEwfOf}j7Y_6VOO`wl)nS!m2rsR5ED*MXji9Jq^WPbL=KU*|n-c zO1LcxOqM;%7Anh(;wzG6U5=8a>bJ}!646q~!gS~4Sl{>N7GANbEoPiabm>XSO9p-J zYHC7mT0;IRzO2zfee^O`zC3_U2OzXD}fTzle_S zBxW^@{{^0`cgUk*|9HNM#a9}L(+%~b`!XwBSr>*b%X;%7UgR~23}^%_iYX&->Oqq6 zPVC3fWmei&h7ZSjBhh8tj)vFjCEdqc3LhFi_ecmRoGusI;JvoPe}T) zaXPI`ROdSQX~6H*|DX2G{2%IXkK?}{ipW8V^LY*~jS zNyV5{wyOw5vNcrpRCb2wD_d8H5(%lb9feLa}JySC-#=!8iB(=Q;M`rK;s)v`I)YOVtjnAEcW!e=&sm&D zAXqhfL@uSqDu=BhF_y>;C;Z`+_kQfjX2D8Bv041kgL5{$Q`%O!Rf8)S-?E6_`1bNe zE~f{J#JWaNb_5iaVNIlY^JxJ z&Tkk9GD2;%2||~ho>g7xOSuNIMrzfHBua6*IkSzw5*EG8N=@VrYs$lGzBbIErb+ZZ z0~7q3kURc7w4nQ=g|1aWVB-uXvkC`8PZLEe^?0beJWURY8Jzd@H?Rp>-9sfZGzhsDQ#^ioP>k!B*YDg}$|9S)G<=|5#f zVB@~`Gl{D&Uh?CVsSAH8guy}CpazX0cb}_zi(W097CabC>mj8Jb8FT(=Oz*IPy|t{ z{bk7Ytj|q9QSV~d#+lNqL+^YKMAgxkLy?89RKyj;kIC6@$6yo;iq79lKDsK@XSefU zVT7yKybO^T(YLKHJIu!5hz5q*6klhD+7Md3$Lc*xbiQ>|64as@hA?InzpzACubWFh z(ma!2SOj~D&rvQdV5 zKiva^S&M@TD7Ew6R9KX|^xF3|s*1?0D3c?L2~Mg_bG?RfV~BzYX)(q}v&~GIb*wFM zK?}hK_^o_8cjDIlg!d=Z?JzUW!;{qXhJgX9)7WUr2e1+Jb$Lga1A1;IjwV!VOMnSS zr9E+@Y^n1Nw^H$~*=oOx{e$E91Fx`yfJ3*y$ZqTCd0x}i(an2%OUkqVqhX^O5;_*n zHhS-7xFoVg7->@bxVmCg-UW%1!h0pv*A6Fc= zJZh^?vd;Bc{rIfylkCDomYWN^%b-Y`tarsxhYIzrAH^Knx}FR9mk0?=)@~K{=G^mv zbxFah$?dO!BgvN9Y#s2%!XpP3!a_wto=67gTDs+@C$@!ru;!pSF>i$u4FU+%3rRt1g!AM^x6PaU^T%-U~ejUif zl_YqmslgqLZORdc7J{5i82VtISgJ8C-^qB|iJzu|SG))nhrMbv>66nm@Q^m`uW5Ed zv~8!k1gzCiY4TFxnWKlN@_5we)#Ls2h6ZrC}DMao%w=+z2A%DZ)0f;mfD88&$R?ADtTExlK(s87}Rbch&)~kFf9v>8YgjqT%dJ$MfsExSlT&;6znL zC+0LL;n^%JON#<+>sk{lm}{Yj;>Oua8%zu(TO_+IsSw<0xp1AzcP_MJjGA=pIv&2r zQ)}-%)Ga@K!5SV^5_eo}4^(dEeylXx^0H3WNm{{xO-`4iX)1MbkksUF`HrLFHak`3 z{agegdcbCSb#$?Y9UaCXay>0DQQJv{h~wIrxlqsA;In%1$9~=#(U*G?GA$jEGW~gs3C$v^+!e}*STTO-p=orsL zk3U(=SBG1*MQS8VR3Wv;x?+Y0mnG_~MCptto9FVM@lXGggjo~yVXj0-D)&40&iG}W zqAbbR7_{d)F?m+XTi_*+Cq=9Tp&Ox8`*!3-21*;QT$Zj?UY>jU`s!PO6l-%Us!ol; zSVP@XC~uZGhpDwYHWE-%G&OudHqlORTcw+{`E8i#{Wx%i1E5O5Vlzdhx7eN<|zDOEC;V@nB zy82w6oBiviLBk9h7_l#m(7Y~1;kT8?iKFds#mmqiVe})ij31~vxI>&MW{4UnT-TvX zT0!k9xEHucmc(MtMvULfrG}oE?qciZBU|I4MvfiCi|k6O2WKwSEX!jOn5daBK^MP? zS9l#6wY67U;^>`^{^Y|`czIrW#FA?B;T&_Ms~`RQhUuYP?{+U5rfV#fGM1!RyEvj^ z@6BSdauta@c^{O0J8xWBuD!!sT&gZ?(b=f==pBWP|BMF;N=YCz0fhj6$q;^scX*Xh z6)+-r>3^jTBKyGhm93_acL1=Jeby}0*Tvs{dx)U*_5v!+r3IIPTlImN9mquDz=uflvMtk2(4Hc?!U4;SI)8DILBWu^dT}ikVv&E?ofixYa z1X0#?_NDBs*};_c(b-L9MhHY(^H(l4a$|I^?@N*0@0Y3ncr%3?_zms>z1rKO>U;ZA z~WhbdPxJTgRqGXE7lYJ>WsYbyRaE>`LC9HN|%1*{PFa?|=i%fyk z?@+)Qv%mmwb`LTju4M;6&h-H{1)qXRHqGh(WePqM6HEZVw@fC8&Fv8W?k#382&^n7 zgSt2W4z!~)27|zAPckSLSjFufIs0lq!9cK>jSO6)`Y%ATv<(adD|5)e2-+Rs9-R)@ z8XU}0|OYES+9&IaH|C$jZTo?q6xAEdx_?_F<`Z6T0+J_^Wh nt8cLR-gVM$b5X%v=6|i4(0Vk$G`v0Ca6-(0E2YE0%nbP#NUO5l literal 0 HcmV?d00001 diff --git a/ADRpy/analisis/Results/archivo_salida.xlsx b/ADRpy/analisis/Results/archivo_salida.xlsx index fd1221bd0061175e7f991c263c222a6fefee2c7b..c985821ee2c54d3534fb34e667bea3da0e358275 100644 GIT binary patch delta 44707 zcmb@t1yo$i)-IZa1PB^Dcz^)GgA)>*;O-^#u*6Md! zq$eIjsakY%8j_~+SuZjn)qbCedO<>sD%3~Sgq|yQIj2-5&7^a9g+1HI*SQjY$b$e= z`+Y)>S@<+9UEP&^yLwq+fl0^-uCr2sb zc9;S7U%vLNO${(lUU3x-goRQ2)XtZ$}+n1N^JZND=TntfZ_S0s*{_YP_JH3PNN?SJ!IHQKXYc=X?%v*Tx| zZv6P<2@&nH7`>9$05hYrm1V2PK=iy=)q43CHY?Ui0|Kg-hwAl3gP+8`nGWwZ(DcbE z9hv(qqYI;5*-ubUUO3H$=!8O{P?+q7B>WdlY>cn6&t;9blR?_zn?w=(-@Cdf5V<_B z44Q8|9{NtudJ+Q8j30KIWdpiaA)K5y>(mDw(1N;%#U9appuQR5V)+4dab*0^aI(;x zv!&-@kUxHvg5Xr^axu@;3+(K9-Wc6DsFic**qH2QkdQ1ur!{R_?^dUslAM0=p{S7Z z5r;o~J(*{U*cY|gBJPQ3`~I*qG&>B1b;oR6Ng0Kz??~81hYi>7D%&rs zZNKuNwAR)GpPZdUS084qN&O|A_U^736PhnAs2kGHPWa%34)vPvc;1g38f`lXL~x`Z z8C^E$@Hib;csR7&2+eBVkoP_yIJu~KoV)VwO*`>Aw-7z7pzU`&1l&N+Nf$R7Q+gMl zs~(m(*YQ(k++1v0(9*Psc5mbja|~4m;c9YAve((=9nhbKw~Krw9KC?s*LJPf$U}y9g@RdMj7q&Ndun7<24mvL^(kXs z4#mm<#)GQoRJ-9g2N6BXse5XA0E9cx z@@j)LYbI=-H0}F=MrPh2=`+=bGpIS%;Nma6%~iVg$}XF|y)-@_pz*^cG2;EYv5UfD zy7W=!uMX{p{k>52IE)1L?ilq+3D)cW>P2h-HL`wwzdq$7#PlJZrK-?due{CKsmG!A z>gP-sxb4r~v`XIqW5c?8N(FDtr$L0UN&3 zyLUE&ugzEm=Aa&G#J4HwMl}r5rQN1!&#mU6L@I6~Gcw0xdCi4Qq|*yrAk3Pup^h7% z!5)2{m}1{NgpzZ2TNCX0!TG+mjTL@>Bgf=ciTE~-d1jgz`5YGobHb->)RxmfiEPzz zj}drCdEo0AeBU9}tx39YALC}C#AnZJkz0DOSJwkrDMm1}v<-_T!Phbx7)O6G);E4V z$tE9Xpj7=f&WNSRB|F%{A_`2)Oq&h7ot=XGTrfyy!&iS{EuZ;=a{HouQ5Ew3#7rf< z;a%DqB^`tG$D*y-3SUO0vvqwuOCG{Twk5yhHmzO3G4hy7~UCF zT+PSMQ@M{fs@7`sY_p+D*nRTt13o_2v&7Bmon3V+ThYM@`(`)ld zO7leRPfe|OG(;n&ct+`2Ss=<9vImT(XQpsGb8-w}GrdT|4N)a66IYVcr$UFp5 zi>(Ek(mLufs-tVl>@Iawvi8S{+A#$m?!@iyV~n3L4v+4R_rjCywd%vQYI~L&pq360BI4zn3azUNt#g`# zF|ELu7T{wMROK90Wdl^@B{12?xkzG*pPo7X<`C4R#sR+`37|l#IuU{w(x~4zn1|eN zK4gAe=s=Uww_!h964$pbZL}S(BS+yV5XRY*X*~0R&Q)O6oi~Lh$#avwIM<=9+iXyf z)?%YnFh3HKLaCdd`(hN?P9JZrW%NaD4r;9dYV8s@OQt4ErX*{akbMF*;D%+MmGz!M zp{JpDaX_kQ3s?#lT$DQWQx;xsqK zwlc-GFg+DP4a-3dGe8Y{{Acl+Eb)@8K0P&!7ha7-Uet#PW7gsYvap_*n* zlZ4f+NbOp@5EQ!>v@(m;s(dZXo>!{TQaYzutBj{WSRKolcgN0bvyPOP+GM7{{TkA; zRjR;bPHV-!YQ?@(R2n~~Lbs^0Q#z+$#}iELb_zeMV~CaHHc7>jP!UArG9WvjS>R@K z;ZmywScL`HJlq?deNPwMNc2$xn20|5Ppm1c>D0aY7`Wz~_j<^92xn+U{Ov#pY2hTh z3u>KPp*}~$%Hab`e}~~dn-@j0<($NoBB!F1reAcN@&(lgFYi}lRez^C>|U|6j%J5HI!LpsJI+@xqTkvo@cKD+8E z{!y+{k5Zt4_KGisaY*-!0F_1LhrWrmA$AvJX%Y-c`u7D%scvnmeaYH6b zPMIupE5jTgNKcyO#cpKsLwS^4iu1H+;uwvB{Yu)yjU{1b)boOi4{o$pxRVsJg-dx# zz*PU$yb7O$W)b+_8ys1GeC1FlC->R%_E%4PALjU=?Yo1nK^N1i2;r%!+v2IJmUAy~ zdpeKj&E`I%v$0{TtFu;Pk8EkxSHxt#Fc;pHxI%q_pmrlKwRf}v^_`f=G<0dIxE%3n zQiY<%b>9bynDcNknINlDlo%!UxuH#9VEu#ch3IFVXO>kz^ot@Duc!2bu40uH(5+J= z)dTC&B}#nB2JPI!LNaOnJL5AevMaJV`a}w!4Egyxr|7|7OQV(3;`* zmfgY(w|7TXT3p(48&{n5oew{A0eU(ETMG57;nvsLu>?%Tu56kSD#&IDAz|AHx|G-x zAM8C(70c@7zX(clD_2QGJt*Sh$i#}TkM~d59DOpnau8G@8}k#CvF+oqVJN+SJ^IU~ z(l=}1Xi%vMOfq!JhI;Ojo@ZPH*P)|P$+>2uC$BAfsR>@#s>HP*XDi%w0iG`@T=T7J zO}6Xx-zA^0DH4bK{ZMp5|AAF~bSBiG!S2UYt*8iHK0M)UtH*HepTs0YA5`Ma@xM!E zj6!`$6orbEq*R!zgG`9%UO)@>=@NOyH;5eSSxw_4nAgj89|V=k2RxpTpW(xh=}&*WCLhl9Igjt7zU=tAhr}UrEL%uY4p^oUOv1 zn5-R2K4rB6L3b;JS(O#0znAe3n&9X&y~WKDW?#7QD`s4av%nYA29)euv%ZctW>jY4;HlNSbkes$${aqpoPSfm48 zs2o*YavWuX5_)MNxr+$*xq+f`<_2=5MHMANIDY9%k@3pfQpOqjjft1y3JYSz;xtFL z6oioWKy;$n*g}$-NPr?tQAaI8qFg;f;^j_MHPrnRZx%_3z=fs(aG;ZG>@YvWAJW|qOjV3}pMV}6XecV$dq3oq_XcaN)L2dj!! zH1Ljh6A5_7r|Bt}(7Oo(Oz6|}l8ZDy(;6POk!k%D7AW_N!I>HyibMyl2u89}QWNq6 zDFwn?3sP`qWu>I<_>GoOo)nc((%X<5G1RztE;Ew>x_$2hVzy(Gg=&sQr7rMb~EGaV1UT{O-+ zHb?3>mMByxOH`2s(b0dfD0(Rxx4y0)pw0mqC<>@#k1t3!n#z+@smg~RP|O&xIrdO2 z%j~Y2AoWc>L2XNAbpdhBx%cX~pbgL&PHqBfO`l{vZbip6GTJ9vT;;gFxVWrSpKT_>!%9^8pUiwhUCue3$W%Acsvy6cJn zok(94UWjNgL5IeWNiNiz{de~22rpRM;ZP-CYV*q5mAog^{=}tGBK&z>IOLu!b^u$E zQqiNozTd98d-;mP$kJ-DB<`d>tFl)DvM?}>rf>6c@@j`;64|DrC9!d%aZ-$@vgSbg z!O|oKI>or$-R-Z*x%jK6kUzc>*^=eoxSCEycYW7ZXfOeU%-r0Lw zN>^@6&iO~`Vh6&_p?AWY$P@EX(i6Wo7X78{l76j|nqNx*QB-K=9$<-kIXlugNM$2o zR?%G*d!EWlQ?&>lKy~wyDCgDyT4Bd^vDRmT@l_Ve3D{|#s5KfyRV9`Z9+0m;G$nB+ z@oL#!u;L4Nce|Wqw55FM6~~mASJR%4SFK`cMD01;OL8&VMBq7A92G`%?m+@`QPEc~EKydnQ9DB_ z^LSAo|8fb^KG^L&UZ0x8booGsgG70zJkGtuf0(RX_Qe?a%CaN4lsWY+q1$CmUy4de zZH?M+5)O14+#6?AXcLS8I63R=Rus9BjEe>1-%b%|+MUv$v%7JP)Np>fcpt6a8&AB? zJ*Yri+E&XuWi0c2NoksdcuFdSeOjNPMorkYM$^;Xr;1p;T8&=APoIoxg(47#4yiM| zb{!!(`kI?hT%MwisM0zI{xF$DIuNarfRvs=WnUK&@kl!acj%WH&^a)jv=ic{RVJWk z8?nZ|Rn-unHAz7ccP7_cH^?GcXh}s!+OFh$V#Y@pc88fWP*a;!%gU89`jnDpsmyMwH^%0PxNZ)HS|hHMf2egyF{VvW+*b=Q(I|9~ znFTvh8q0g|RUm`|s-zRBHRXEF#%*eEgm1z_DUEeX5m@ER!fagntL=_5oYm6DHnbAa zVMX0l(MWz3MVBdy?xL#!HuMblZs?LBch5wW<6rNjF`zhE4(Ye%$M)w+<|mzv&uejO zDnM#st{!qel8Ik>;@{U5!)O=Aaz2RHY+i)qi)+)=eN@qvK%ba zJh3Y9ARIZ>7a$IBu~!o}*di4)&FGt0_5zk#UFIBDhFUlM6r?RT4F~d&<9q@VlH+^^ zGLYkZy4i(2F~kogYH52hLxM5$2AbW;LR*sANlRNJuZM~=B~M1s@G@+{*WcQ%3{NB` zZij9hyL}oM8}!XH%QZAwUMvmw%i=4$lpXWKEt64xul-^|Ss)D+W}aDw1|u+m))pe= z|6YwsnmLp^=61d{F@krzns~v4-<88yc*Q;}qhgY=L{tn4P4 zODDtgF~T6-L^ODGLb*;aWt{0sO(C(X9d%!OC%A>j?i3&!jS|8g_HdOsE(~rS>G}77 zT#1pzyM>|_jWwC&?qEBMW2$GeJd0^apUybrk{*9{?D$N&vhJ1Xk-cL$p4*B4CE}N& z2%1-FI`M&U@nNFP-Ml+dR}O|)1Z7hR5<@SKb_H*ydfDV^!#Q_ zixFbJt`r3J^mAf#X}o?K=O?B#CO{s9f5X^Ox@B2ODbf@ML!$WT-_#R0s5YuJ>ZcE3 zpIrNp#mJdGIx|3`KO}>Af?G=(@%>_6kGL=Gj3z+1)U+%4_;!@J2S=Pztx9 z3k+E%{!<-B@t zr7mYAoo~PQEI!>dtMouxGIbvvsp^qEbFeJvmOW2IkLo&ZgLrL8*m{sf4a9XysnK}b zm#&*PGq;2>mA34n`FXP1@jxh(0ttK>G(z|hR!*b73Qsdv+cb)kwbH;6csfo8`egpsbJz? zaW2-pacI1f>3t^0@z;}?NOVCs38VVJtVW3j7rANyVq#gxMN#HG+JutxHO$g%2?Hwt}}$o3}nq@7iE z`Qut&z$h3rN*bq>G)yZ4Pfgu(gW5a$G!>nC&A&A2v#;@x)nQG+tfUk1D${`X77T5V z-%3Ndx<*k+he8x$Nm84OArs?qwJwAtNIbr!kuiQrQ5v40ztIEYfUs^;}|#_hnk;^ zHUP&{J%Bwa$-__s2pz$u{`lN|Kgy@43I#@s*R;vRobphOIT02L1gYz(co@eS%^{7S zCvgmv&Pv!B269=Y&B5XDxZNl#QbT~ToOLbQ2wWI zRlG7CkC_k##x7mQm;-%gqwb=*6Dd|BjsB~8dt(uEaNaRYT{nd@Nyccx+EFdv?0Rr! zwTGTHg%*3#gw8EmUeTkk5aKk!S;ULRyKH5wfPWTpDs*nllHxR+2`p8)y7N93oiqMJ zv94VO^pN28p3dWA=Ed8=W_N|k%r>6NFJ@OtWZE@jDs@T~W3x5a4ZIk|!8{iOy%Ek* zYeJ$W1F&D)9q$h6Zth5nQ6F+`pDtADH~kIB{MuN5 zpx6~UDI2Y~2jbUO9X;ZUJLBK^b1gnMpI|rpQ8i)y!hm7w`R?}LLXLtVD=U6PP13Z2 zl5Gx?!1`ray)QhVr9e@3IMGD#IIvRUPZMu{J82x4krZcirNl%gCMzUa?O_3w+CsGsQ%3idTKu8IeBn(6DcG{el1E-kn?_Qx zOYE2k1CIlLaI#1DwKRr`{pmMTk<%h_dliMK#;ThwUf`*HqsQekp{9qLn#-Tg6)3IE#rYb1%WCue&>?ksl<2H4&>@v`|l|tNb$c73O;n8#l2Ys*v&~%M{-3> zuWaSCvxhJZCSRGmvaxp}v9V`Ltiz4!3BtYm0Dg~>Wf@H_sErS^m17fkQT7m`D{Rwq zX`bcdsUStEt_U_>uNd+M8EJH?nkeX|jO5JXsyG%sDjCbB?Eech;RBQ62x`5rCO`t( z=o4oG&?gh90#E>PB1{1KJXQ2BrU~8#D;JBdGR4Vf5qOnz`8@UG`1rbVWn4*!kiUzi z(Dv#yRgE6>bSOtJkx1z^ygmmABdZMMjO$%;Q%jL&cAOI5(QU~11P{@Ezabo8M})k*K^g)_g}I;*XiOb?x_NBL>W}SRThMaS^;f@e;Idmqa|m3@`R1= zIfz1z6CQ*m$N2)pD#wWc`Xkmxze$?@pk!auiK_Z0NQg5fmqid?{!@>ii~#&HY{J*y z9Laz^W$ItiCT*dkY&tGMTjL^Q0psB)cxqwk{bR{yOz{F0`*lL#$eRpi}FrQzmEO|B8#*GBP zRi_4$ZHjpbGP3fTz7$&%2Eig?pv@@gR+*BqwBkozO?ZULV%KV=ap1-B9&fr%+wAL% zj28Cxmdz~NcRv3%J;TA~GRyv*K&5Z{;`Ml8sD`Xlk!0#N=B8dn3vf+_CiR#;M&C%8 zVpFl9U=akoME&6_qAw`KoK=}P@NPhy;Qce{PbauF?HYO{fK>iGu_r+h9`Lb>tY^9xa@1C1S z@eF|ZbK|j&k%fW8VnzbWJ+-jMhaQW#KiQvf4t&OywISV1&kViLgjP7lv(Lo>@1B7mKmdCFk1*Hf<;;qD@X?@ zO_Q-Zh)EMGgiv;Sx4{>dj%)q4kL=7r%!7E0KY(ol-#ZG;tVAezD>9!uH)(is2qcC~ zj2VS1X@M3q^_HqsT}op-v1WtWOxkcPxi6PJPTYbKi!W(a;K4}c?Uu=S`O9lBjgMQv zxnsa&H2Rf^P=dC~A}~z16G_XRODm~B6<=ylm~T*6CS<mU}6R#++o+lp-B z78)6^oR}s45jFYDWB#@xA$Xl7YL>3lVHZ`g7<0 z*9=idCo#6xkd9QaO_MP=hzV=Zmwu4ah)Jw5ew?32zx3v^M~Pcd#Q;-ERHcoNBT3Q5 z_6}rE`meRca|vZm_IHiC2A(*<|aP*s+;`G7m-odzSEt;E`k9sKSc$8*m~JzJOs zrzz@(sx%|)$Dp*O#T07%ncpftq~u*fBo4GGz^DGk{Im{m{%CM{df9N_pU)3`c!w1K zA3p$e#7zyqYtI#Af`Y!^!I~Op)4xR3$|)7YTZxY`mGD@sJc?C*i+`c>9zU36Jr_HaTt>^LF$Gp9&|#fvFtnHi>q z`;8gx1m`jJXb77kB*|Vfy^GZ6=7`|~kJJXsLsp`-0-xu<*+VRmt_Q+d!Lq2+!R8cU z0wCKJ9h$iPaM6Ar5yu)ofQK4~g&J3n9{``qO-bVZoet1Q~!3hpWA`I%>M7(d9BlSiY^$q958VbEd z`;=ntWM{VTkfISJ;=d28VBbydgT<)U0!`ZN1cZRm{3Tigw80`r@IEa}TZwI_xy^CJ zXv(SROB5%ls;v*aQ*ov9bnxO|s-Oo+o<;R1DOH4<*(abs=*qB*RvA6P^WWMeR5)#K zB$K;Ejc5i1)uQz;6vDOR`Gm9p6lG#a0QzhKBdb$W2~ZR9!%2GJn7u7?q`WP|Oa|SyazeQ1GAC}?`)=$mXShuOm5DZ*ZdRqT3__^41h2o?UAyQXnXOfnYU&! zZ0^Ra0Ck;93(n})6AE(D?%Vf6P{N%_QJYP>B{eG_g9Y)4FmmmqhcE75od!yeCcp9_ zqX#-+g*lSm?WpncId18u)dMK^b)1fi&~ZCZ{W@dig^5FL#PtmS0fA5Wg3Havr4K5L z)|=NJE?=E2CE^XsE7i*~+FaW__lU#MP19R_0sA`n><-66g6XC3eIo+&;-PUb;tSjC zX>)?)w*;6yuE9tq;IH9Gc;Lu)E{UzpabFGN-{Qn@%c%+YDJz-gbP~{(VWxMvD(_WVsvU|*jP@_xLnGo-Axr*q#gMFjD7u+tN#J5fz=pu*q9=AP?4l>~ zmM^|}PsHSO5zKx6V4%p3nzFv~m95rnoTJkOf+^BQS z`n26`Y6=7{sEUzLXJYpx2oF$AzEqoOL}#6!@0;!Ihl*b8xb7?-sm~Ig<(FG+QC<45 zar@9+uR5(cZ_e!l`%V$E{qGM*C}Hrmn(cV97JPIIe6EswF`Dh1B1`v;ZfXpT&YUu* zox@XKNvB&}?NoGcLMZe9vdx&{&X*gDjQv-6xxx!61zh2W6f+%@pjft0O#86j>8+^H zkE3$Nfu;!%T9@2C5UWJ&dhP=pY*ZqR^94hq5I39Mg*ehh-wf;l8-x64Q{&|-CKeSe zKfw@=Iek>C%J8}wem`lY89~3{+0S`bWQg;oA;d~EpAQVsttums5Wrspbyg8^!m)_? zU&+Y*!p0ev`$dGqC`X1-(ju)S(TKKS_`<3RiPJ1cdTNOJvw z-@L9$NIJc6r!Fa>+W5HNarUt1wCdA*l?JgB#G1Ck=+7*}g#BpPZXs=Bst!Uas?jr& zmc43YHy%%VTlsbCIV`y^Z4YgUu>KyH4Hc1;p3GWmN*ZYAgkPLnUnB%!GAOH%ss=2J zEmt>dHoC2PZZc$qXW#Mu%A6KX__vrw3ylbTdF^g>HkVXR#l1dmy*xt`jdQyp z8%@jFJCrbgHd?272QdEz`sJ*;c-vm1iZ7;6VEstCgb;VT@~JEx<=(b+HSKn?53c# z{q#sTjYqTTIN+n4>Qj)ioQY2p0l3(wNhEvtQJwMwedo30T;QI1PH6LwTJB$k=A%VI z(8(*wXc^G)g~-57i=)#)*rG2me;~EAu(E3&(lfnGJk?8W1K~4a2R@S?2(6vKtm{`c zZdb1F;agGD)mK?*cBjVnChwNVi|Q*BT(IaSIV<(sgW~2=)C#FJXh^&LZ9?y!rV}LA zzp(cK)lb9c{6uS+bjH1XLMj`xEron&2G z-j@m4Jj~|??5FY5@_MVu&Gz-z=a5#Q_pVGTjNh2U~bI;eze?wFxKwrv}0`p`G?h?{CuOzoP=cBNwQH-gV65 z*UarDd^|w!y0)X8POEG)l;X7&uexfL5y-!!%;IMO9h?ool+ZPRhxb|C?$sYafRGNndq{#jj&rE_pmbIQ$MpIfl{Gs^a9Jyf zXqNx6--hKEe|6iDoxs@O&!PJ_Iz}ZS#o$0CFHz(|62JICC2$cSa@0J}ar#g)@%4X- z+5}CIMNuc0+o{HzS?F_{<95C&%47RYR86yj7X%)s_I5`U%`(}e8aB@3TPRC}DabqM z`x|}QgqmF*#|0hr0N)|P$)4~|&CSg?Y?%RF_T%(dzLFN=8z0xrQWOvts$VxE&;}ou zhSrg1%UXi~Md1L(cVDG+wGMTo2yl{8!ula(!>uQr`8YNnUvFeBaaxX2)RTSV%Sr{F zz>G7k(O|fZxycZj3M#8x?RsW|op+csEKn*A1`=1VP9)lr>_5a2Jz^XVIXx_#I=L+S z*7wP7%s72X3v?v}^y@lCPQWH(M8?$&0`k=2*8`OS19gW8fD)Zv5bZC8G)Qh*Y~n@t z{w=YYn(?IW{{CIu#TCRe`>tj)gI1QsjXrhtVp}O;tF;o z?QApIDSC*n{BHDz)x+zNMZzBsn9!+u*Y@+alFMhg#DE7KdI7WZE7l3?>`JeCbPixnMIWdhj;939!hv1*g{j^ zTIwCeD@H=c8cIX1aA)^cHFqoqp69Xi-I!IA;!k&|tm(^5?-W3a@sPX1b)d_Y{abyg zGP3?|^S~D>cO8$#Hck~!S>Amao!u_Op_@%LdK|GV`0-7^G}{OEos+lDivcJeWP^Kygkpe>Z^5^ zU|)lt{8sUv)Kyc2o6)d#io1kET>cfmv@?NS;EcnG&T(bjDm(AUa|hwH3q}SWt7j*< zTj)Z(-BJs^99`AlC==NH(ef_InJLs(8RF8mbhdflYyprnw4Q*GnTX%Ue{D-4yoXn=q~BO{%i}$xbiT! znZZg4M|*V;&$~bO!-e!@c;mkS|5Yqyc5=|}W_DU<7fZAY8Z`03IN_AIg#9R#xJ3N0 zl(;_IJfPqV%l~?YgW1uqsiy89hoh$M7spXj($Rl#blWea&y_xY@r@B@bR|L6JWFuX zRgVoruYZg+=x5<8izaMY;dCY%kBQUj)2R^~i5jlSm7Pk1TAg)72jHIBSTEe*Gf^UVY2BLSX-+pB1(~+#2kKV0+ z`;n2|5KJS)fN#h34wKxQLB=i+QB5$AOF$~{Ra9`G(&rzzQOSW5pK~#EUSW|Nf+>Z< zQEH9A6he<`Zl4^W>krSu7Mm4?5@uvdj&`dgY)sCA7v&fDsxNZ4>g^4EpNwSHbo6fB z+Z%?ya7k2r^L{x=e6@a4 zL(_Lc6!-)KBf>@hK%IM7)KN-h<%KbRgmc2nzwEYeb$myOVPUx6Omc@D7A(^ zqq6EyK!#vCAszrNSR`kRE=OKGR0LB2BdREHhFk$Fswt4|n9_`j-RK|T^8Xesm!o37 z|C}MS}1-Tb}H$$y7;9a#T#1mK^v?(2y|<<^IDweAvJUzrQ~VTXa?> ziu4b!jNqSA!W-mOuQ15*qqXA=Gbm@x#LqRNq49?8l(V*lWJ1#T=6#VALRR>&pMUQ5 zgoz}nisXd84ttwRPOgkm`8k)09E4$p%`ztS=uY4=e!tvomB?S(CHY6kWWWywzH4;Bpk4}3m z8!2b4#LqROi4zD|{*f$t1x8H`TUiLy_1U5${|a|o!5P!H|Hp6z{*2cj5hCPoo9X*_ zC9B4xcWd7^GxT{%R;?-s`6shXM3ag7&#_EI{kh3P5Z18ttUO3WotfaD5o*bX`JZ6^ z5r!+G6c~TZAMl?{;6gS0v~W)9Kc_JD6$e4k?`-t{VFH2wfrvk5P(9xwTVCg%kdQ$n z3={tU7ZJd3NaSE#l&rCjg5UfzWT<_^M9BZ1|A?4>4+|Rxf+sCGD@Ibt zPeI|^$JzehEDrybv?6@6N4Mf2`glJ~9&p7H5G z&KAAw@j%zUN`L{`!6v^0V$ssU1JHJ|fA`JcUMgG}aRqX>Y_^9VP#&>Ze$c`c@zI7f zcGcbF)4s|)6m~divz2ChvEF8TvC~|`)Nm2TQwm+;hK|aH>6t9Fm7;kzu|Hf->skwL zC8U@XcaS#d+@23mw>LsvYp*czR$a8d2paA zSze`0f{d}0xb1Lnyjcp(EW9h2T)j`TZ5c5zD}qAk+E1E$v^Tg^0CS&7F`tc$rA%V8 zk?Rw}Pg9U4%{|iTvI8Q4UqvD3)qv;C+0Pf7_qXtbQSc{#r_Yd>j~`!qhe~e8%HyxF z%qmWSP0pF{9^vKaThD5boL7Za3QPw0OfplZnP&dzE3QN>CGzBj2n zc(OQdj~(;&7%IOz7I^UNe|G?#OZM_=zk7&y@e+Rbto*W%()iu+hIhK;v4aT1hVjDo z@oa1P-ac;`hnvA3^hR^sp`Ww}dXhAK1PRz%J(6w1^Ozw)n-4g&$@p|JJpTeXp`N{S zbmMwh-oR5hTnTK@hX_-blsB$S97b+cn>WRhfhR<`Z4NtHFAm z*@nfPXBxCfUBjM7HScPmw#?YfK&CjwlcyX|;x4s`GdKRcghRds8Ees+)sn>wmtH}f2WsFDw{Qbbo;)%1K{-2t95v21e)+K>BDogqHXU;8+i(mk< z;ctAx)y|qNjWgijl2))j?GVK0ZsM*nbb-`JCS)^_Fma8!1WwfW*J9)jJH z2agTurue>ZIReRd{@zW2Q`hC!@MQ$qvE|h1--RLTj3YrWt=ZewI-d^q1h|c^qrGQD z`;rOq_%7A^-ewZ36G!INSM-WBLu7a$<>@w@c9P|)w1w8UCxIWGS9@3-QxgM@>`Uff zeEgomv4QbLxbKxJTWIc~5TiT)D8^!rcR(QOUZ=3^@lSxqmX6=c`iH^6Sy&S)Tpony z$aNVFMeD5Lt1ddx^7o~{7fr7MxJJ>PpS%)%Kf3z#{d-5-Vz16do|eyW3BBJYcL7am zl2?Je5l>dgI%FvJe@iplk_#qH0J9MEK@I7$ee-ApC@SDyU#82y5pDtGBEN zelO_AcJn!^G!eq!9bWFy14|}Mu*Exw7u{=pQq(;?xMGBhObxYWu%o~;1L3CxTE=^*F*1wU826lKe*L--PCy@)OiKed5P9}_11YA z%zww4|E@UyJ;-Xg(Q4VxY8hevJKgJdFCx6cCL*{-)}Ov|rG6=Mnz^a>l9xi_@%?gd z*&vo>Oc!?_NYFcs3~YfF9p7iG-0#`P8> zDy$pB`olAcObJICVRSR)PtQ5A417xf+?UJ^145>hepr+nPZ8xCeC@16m|IH88u>Bb zS;6tm!S8cnLNLPe@ScBqF0%H`8#OPqTftfYZ#UBWY<1+K;fbT22p8@^>ukXmjn7O_ zW?DD}rpgab#KtxQA`3y|HDM~B9UD@-IbWZ6Vz-x#9l815@PSM`GK}xz)PQ| zqjEesWURs(J5l-BN(R+h} zHyVr0`5Ju-SxR>dh0zx;af_heH0$y$*ze+~ zYQQPCidl=54mxHhFSgmNDCI2WSqxrT#(Oez=Dn~;f4^-naScaNjGI*CP@g4Gh<*C) zrP12*Iz4ZMSEOMmmL@0i=W!D*tU*Q(I7+6)Z)W*s3!cv`7w25ycXVJ?bubH# z%T)ZzvFwox_M2?HlF^dZAoh9}D^H#WZ@y|xkMhAiV`5EDJ@aHvkeldY#ZAk*nK1Lu zsoNjzB|WXIRd>0Wuvv8{+kk>rjpRJb!u`oA>{Q~S8roSYRr9dg@&ll7`udJ=$iziu zTSJ#~A#k+4jp_K9^sc?8{bXANJ9y^IwRKPQ<+SVIEef4>9eEt*F7R+45tOLiVO;HG zssE&1Cq8R4X+XQAALlD+^GN=WbkGW~3`!WX@M5DunzLz|v+x^{k*RBDuPs3uA_I-$ zXC#L|xQ`~dZ3W56pLPQHeJYfg>X-rxtd@m(HBLrDhpC^#Nqil zq%BIM^QhRv1;29-ED860!87OPG6N?YH*^Hoh0i){-{4g5B7qyRm7^Gn3ki)gj;A79O}_zCtg-FvW7E8aBA=TO;*D^dm(sBlojG?a@5 zk83!{r|m)2auz%RrB&j|cs$cYTImt!Zev8LDd<&t_f7zG2NX?vFOWYnHVl-y@J!mEX^L_hw7j=&EIGV^?7A^BE1(c)Cfr(}~&H-X@_kOeWebTT=Dm z-P$bz8I$tl+N>nT_&)jd#%bc2`k1)NRY1+L{QaBToWX=EX`S3XQW9U8;K5WdLX^{l z7U9|csSo3bNSZ_*dOz3$>J^F-x&+{>`D;9%O_9Tj-STpWWRZ&ERI%| zdr)TL({_iKzY#iE+)_%$;Vyy!=9u_UmC=b~Gng{Sn&{0WA0r%pr_q$&8x0Fw3gMnBiglta&fkrnLK&->)y34 zv81ihge~PX#&+3z^lEbbic@lycWBRMi&SM2oF3*QoAUMYtneZWU1YpY8`5-LZcgN! z;Qy-`n$clepE`L+&@5U?b>~h*zsP>mJbe?uansJB{M9+h6Y5zgk}(gs&YqzURs8%6 zRo#IGTOBMh8aXtl55ml652gz5SkSKTLZs){tCG*>Yl#qceiip#oamqFwxo>Sd-2__ z4iV{qCLKY#^#gWx(AptwUF}fZm@})^PZmWfZBoJi4`FWs6-Tr54~GySK!D)E-7Udg z65JPe3+`?KCIJ$H6Wk$-ySs(p?ygzfgFF0p^W6L1yzh6<`OeunH9g(a{j2Wk?y8!Z z+Dl>WbNrx%8+Y}_%LSs==_)^iMqUFu)=hO^fun)qSFI0wK(WDap~4R9;a+KLX-XqN zzjbb_!4fd0u*5l0Yc$pSgFY-N98FKz*6kSB&mVEGRqAUfVeAB%mM#pfN$R*B%oQ)& zZyU>{DI~W7izS;=8^x`F&)@|^hyM9N<)VGV)={sq_5#A~$-An1zXwh=-kbBA)AAo8 z?raZo3r8KlH%1P8&n=clMAQ@}4rY21+Azj^J=P*S_ zI^<4bSqYHqk7+hyX=I?p>Ch>({uhlz?1#mQuSAB?S;cR`X@zjv+1aTSY#oMds zXn;pBn4KDvN054Wgc}(~BDvw9r2kvARx27tu(P=e^YWJ%w-D?}1kH4yJAq~X zNP7;&2SV{+{M8M>pcFvyVdXgGvD@G2$;hrLnk`;M)8mrIIjzZo)jq0qhqDE%z^M@M zJg7bCcdGl7c3xzGWkVK~qG6>LmHJI#H%ZB{6I>qC@0Y~Ztp3Bxs{g!%iGA)rGOQ^-qGlV z)j;S$u_oM_Enfv4L@cKc0E&!>ff|O)!U-P>T1#wIJt{I!D|Ns2;^#nE1y^JmeBIh9y8&z$M1)h2S9{%F|Z!ww5Nl?v|3bzl^(B8`@@)%00B>P_Se6Yt< z?l5*^yAS^KdH6!#AI9nu{;7xUpLz_seSKuE_h_6Rq@jGi0}DEhdtvf4QxD6~7<59j zA~mD0>_vd!N~rX;QV%Qf{7v5fN%il@e1nO`2G^1v^%}Qy@X0m{mNQYdxYre4a08kO zcyTXceG!oX6akU+xA&1v#b*wtUP5GWB5e_bv_PqC>`v|q3+k3w~NBcVd@&U4~V7LXMkmQ?#RMY zy!tZ#f8B3fCOlWh|24SNWqry=4i4KIGn5_cCXs6N-#ZRMXZUV#a#vbDW zWxFpXDHFyvYA>vdK#HA1;!p~J8dYfbxD)l??#L#U!>}ybTfrbtJZ1kwPhqtEPDb`% zIA@72JJzOh+(qUmOxkDDP@9e!oDLZ`enPu~@$C9SFS-~8GGB&u7mAtBGFlGGij!jZ z5Y3+!|DjGN+1aqZ=&Sz>r2vg=1~Uu@Xc&e54}EGzu?rh&oKJ73VO+T5|AcW-(-h^t zrV0_1$c%ywV!_hqKZAI{nhm}AjddLcbTI#-m+o$HSb{W?2N&OA<^C%r%24S9@|T2T zVZ-}>D6|2^KLhP9@TVK*4`A(ptm|U_Xm(2r34Os?n~{0@O5Y+pu{oYcLEQvy;`K&<5E2Q}jAjf!&wDac%$` zwj6q|H?RRvU2aZ=jaS;4GmL+)aa5Q{pUKF;GDQhs0uD~i$LWJn>VD~2s9c>8#tKKn z@OeGMmuZ4t7xWK>!G_KUXfhX~f}Se=M~E-uvX^@D&OFD6gwx2&S!8B?-^$GG(STG$ znfHXhXY0`jB~b4|Pk2~yerQK$LpKT&z*}Z3MZ)Er=YOeFRR>C_@W`;}a&yh$fl^g) zs(c6-X%?24QglyCiC5(rF&VXDK525Gpfu!R5esK&?P&A-TRF2|SxqPj-=~aD@5EQ_ z5FVl#1%viG4R`DRiNnPbF<1XnzQ!pes9m^{2ui&RP|R zQ*3thXIqMUa}rNBlQOm0PFK~xLo}Dv@-3~wy7#7iZ8JbA3N;busT3-&PUjd_M4|s6 zff}y8#BLf-9&oY+I53eiMN-;ol`NDqrpm;URw=2<%rrWwIT`zs*3Ny#IBf0{gs*8O_ zPzMDfs2c|$s5|*XsXshwA-UK`x=@rYGmtSq&u~|0h`-C#I}L-uSOaQ}ev`tf7vg<8?p3X)4>OMw4{P0y_LY)dk65Mp zlo(BKy?xRmeQat-U z)>dGXrgkI%|DxqxiHxgpicVPms{1yTuQM)~xJ(Z4(03=(P|p;4(rOqG@xypj zVtKFTF1u{K_2v7~Fg*Zno>f~BWt)BVn8V^dxx4X}N#aeud%;v_|8OUJK~5;4T+ALG zjfL(y0G1f~wt+jPm#$Yz-!Rm_(r`=>8MKrSzk^R5F%LoxzT1MKVCqxMX@wwa_VyC;m~Hi zp|>Uq`sNJ{$!s7yGg?B*YOocL*|U&6{l2^hqJ}{b0li|!%UD^nzMKd=+h}`b0+$Qs zgUYyXn?F?e>Xg4Ez{{7S#EF?>EHD(V|9msZGn>Z7-^(4gn`e%yx0f@1nR;CuVT|^|Cf$TBYqrtp#7n@1KVFxh zm#5}Uae(m>yt&i+(BNAwE8iDHMzb$FBwulNmm_~scmvpeF?O*nWqvLHJc`Nm>+_iS z7>rR*nI2C98$%FW17q)$XeqigT9l2yo?Kp)s1lQ?CQ~E1hoiKbVk~Gwe69%VJ9El& zGu&Y1-}??i9yM8Y+&E|V5&iy^A0@ZcA z&la$d2F!s6YCfetA|h{Vb)lN%bRB)A5+~&<6^p6lIqVgWL_90)k{pYYlDz3L)xF(< z^RvktZ|i`7WV;sosK9yUGJHvI>-R!6!RhmAN_M$<+%u}W+Xcwq3p7V3nXGr?&KeD4 zxy~7rz10<3l5-98Rh3*GLUVJ|bCF&qvx-{YJoygnJnJ;h1yQ^yLJ4jtdTSDa7R;9x zRquP!+|>3^L6u>|#wh=K0iI97DAluQh~0Za8Iv$PBbn+=HYtRDDP%~J<}MMgngC0FJbnI!B*K&uY9Sp; zVH-#+ygn0^NAY#Bo40mJr&-PNcIEsEYNO=}LPuj>!jyuZ#$`Bbk%x{l8%X&m9A!5H zZ&C?o63FsL)C$FTW9#azoz-a;zPt@ocIP34V7Ymdh8eS0e*c==l)7^BZgzQy(o#xQo~H~17o2b zw^WPZ%KMzQH>7R%YoU+QfIZ1p@a>D-xJ7~K$)ad)Med3Z@;e*Y)^6i^!?LzyG2VT? zqq(^Tp~cGz!@;Gz4;c&xv}CVBKeUHw0~-`8Q{i$=zgv0co?LgLdmE}ce4O&jxAGI; z(LQmnju;PQ9*eI9TjdZS3?zNFDw}+7~T_cV0?t;+%OhuotlSWc>>{&(nrC zy$YiCD9#*FDQyq~cLLQ(^zYd<tTMUdER? z|I>Np;e(cW;zaQa4~g{0SGwg8AG=4!ZUt7R10CYC;_7SXl@-oMjMMJgp>5FRI?K7{ zd|C8#O7+>InSv@%R$4H_YcOQCRwgsAw3MBrVJYK%0lTb^xE*)?EW(pfE;%3oVueyOEBc*USF$%Qfr@Ssfcg|MP@A5vv3F7OV2 zw7rSj=aj1`?N@=s6vkXCpi^=qIo2sHJL8MzB}EkkJWSZ@W zO44mMbx6GUeOa@hw&hAZOOQ9a@_2DzGOkJ$qm{?h)Rf^W! z5ZX#bhx0{gz$K4C+x81yN_N*Y)6l>PM%dm*y-UxHgiSInFW)GlkBh%Oedkb5F^Zf2 zBL#9C61OF9qp+VMpwerJw_~Biw-3L>#VH0Gp&{(i&x*FwqJUdfGv|!m<(Cbwr(s=={T`OW6D&laqo6}tb3V!MZN0R{ zWu`buTu|^~kxM#lW{Y3RTT)zQVnnlgF!B|bRh>z(h27i29Q#TuuhW3(0Xd8iV7p+5 zk4txXVRQo9|M2ZK0cLI%b`!jWBllOViCqRSvX7_u3|@W1USY9|&#F6~_eel?Ez2;i zX?d8WM<^mG#zrTz(j-(OFYu-ngva<(JESevZNB?{aiijSpD^k2)`DC&jE<5(%Fc|~ zt<)=V%}v_vDr(mqc4|m;~Tob7Q zv6oA%6c?j1w2t#NY-X;V>o?~7A9?(^h_h}^&V#ho@pL^gSk57ifKWuQ^{$;C zg{y=2qTtT}rq^`)qbU-laio4esg0`b_HbEO^BZE7kl=5$M$=t>p z=VJCxoZm$eeOi3APD{>%&;Xq%?bqc`_$ZXiKl)4HFn>29*ndHByM#JU3%raKIz_O; zJ}9vBY65XqbEV8D=L_KFi{RzIg8|jYOG3_xOH$rEalquCzPzIo{+i-hvh8@1lV(wB zQFnbeBa*MQjvGfG9B0Bj;yazaWfxh7LUg!$MS`}LcablUvqBwG6#b!P!E(iPUHhWL#)r`cUeY(_*5QXO1j0>*?^W2S+Hutu6DPhO2)_}OjzI64VIl{!LMhvDOzsPPNmp!AFZ{Cpu3?)y}(X{h@$iAds zBXfB}=yoMXZhau@GP!M7bV}B{W7r}EQcCweV8fk0hyL*KoS{CCyNJ_)?+{}jLYGbG zVnJ%)N9-beD@06+-eQU+wl=V~yLAxLbmr%KiQ_r8gS*_c64sHztYqLw7FTWHeOAQ0 z75<1PPIi5_M|K9-`}@-rL=%v054Kz|Xbj{xj>Tj%%{aCgRk@3d>7pE0l+Vq$@Gz16 z6f5LA>6n?ynl~$&A?%$JD}{4bXslswXwb$3>D!62uGF~9cZ2-IdUG`y z{~!$4jV5aU$|Y|{1`>-tdY5QB?sIlFviI2cCe0r!O(X~Sz~xj}ojy-YT!{MDg3@nr z)tTz)%=7HeN->j_>um3L^vqMZH+roQa^k*K zg=p70*`Bm1R)+*mI@^z*h#6GZq@?;pB;+oq zPRa?U%4o1wWLmINRHV}h$dXQj^8u?eaYJheys~RWFhYyuhv(j4x*|!XGkMBdYk7V# zB^PbE^iBLgP`}R!gM1n)IL{AK(a*X>6&z3vc`b&}cI7HBe5LOvxVg95Ll)`vvZ8%& z?B4k*J8&d5Er+fJu)dTe}` zv_=ts{e&fiRFlVw|H7)J6Y*She8SLqZ;s4r+N0RY;pw!;AEklgoi2J8zs}q30^GC7 z5N~T5A+EU{y>k9sI&(^ZH{gO#D)#xz`j40_-FHgi$K1|(c|!7#n3=EunN;_Jyy={& z^=$I=3e%4fBaNo;u4iHlf}*;|*YSN%d|y@^y8+D`6yh8`x`pzuDds~W>(qj_XP}nS zmQFV!TbLI;h&JE#6N~TkU?XINfiqm1RtcFRnsmg>spv@QN$IXm zDm1s;_v?Yrh)KW&nrL$Z;~vjH@4r~v3R}mKP%0_P!yEBoln7=?l>rSF84!8Kl_dJq znxrdn#WOt~zgs;NZf;u^`BrzMj##hPrMAvU<+0aFOi*(+t$U(MR1qFJfgSdL7|7W{ z{-d0%vnnW+$GmjM1y+5uKBm5;*LqT>j5CHMXBljUQ=Dmpi(o^qCDo3I!VP+PzVy^> z`RVyGIMlxapo)2|niQz*5Es}b!?6XE?|wzt4Mx}v zk-$fIZy`aedOVlz!|rxHm)>wh7FPwS5^4y`5g>F8l9UPi`8d7Ma%e=&pLH_29SnSW z-OrLGNE|MAUP{3aRwtVZ)rX*<2B{3HDYpKEh{dkuGNf5_(S1CLEb=??N8<4|j~lFn ztU*-D7UO+mzO~7!P~fJe=y6ktu=QKY3KVe()ikE-P}w7eei(=!2%$fX_gQ@(YEQev z_ezB!jrU&l2fhwbL;*Ww=j1!EnVk#ydDmNTviDPYRHgvk&$B zvVrw0=Vc@Z$E}V#p=essQ+gnJOH5o+2r1b6m?BMYl1cbOI|<2eVsL;ePdv*|WIt0^ zg3@Q+En&&-#F~wfS5tpB_3-*PtmwXZ__Lft3+88H`|J2(*@fEy1uwvk6W@ z<;}vq&_(^ZGgTB(0CYi(X){Iu_;_9L$myP;;3=1X^{2s!CD})4LL{fZT}E|B6IH$# z!rv$SXoQUbT7iaXVNpI}X{3L3%fr4C967QclYXWyg8`Utiiy(-?abgR8qoVvtJy{k zd8aRy6@`D0$`#s)sTC@fJW=FkA$xTFWFI%lh0PW|WhtcUSN2_T&uqhkOp(x)ghjiI zplgt9S zz4c%E?#p#aavsD6WImZ-4rO!2EaML%`}2T2&LD0+s=*xHqgnm*U9wL$&Ap+ zOxMXQ)u~o4XZhqr8+-LcM@q9ot`Y9-n+qjVew>WNzPxvHb+SQ~KKwxJ#>DsiYuB$I zmS~Ekzl5}(j-zr*x|$*;JvZy)yy~v7yOy3uDM@LN*~kjuU^nj`?%Oht`kE>{Q(e8Q zqZ3{)!K!Hex>RC@k!hvcUe5bQ=0&&L+FnJ@a5NrfOV)Bjme1{(`X*M8)yEnV|HZGR zzL4pw#NxKJtLCjhB8U|rHOyxz;pHMGWus^#qhFrcM1IW)j@J>hVGjnU>&PgDyK@J_ zGgykmc#5cAu;6z(c)zB;AgZ=rFv^uQY5P zUM|s6WM`Hrn*f+#kIQNSME`EMNu+^Uf|tf2-f|Kjh4W1C67TY#`z_<6r*Ew5;O#?N%+&ew(G+eH*& zjMa$Du4D2==T>&5l~OfZ_!d9r&^kX7X51dJIQ}Mog&6k?gNX0}goKOit8 z_>$8M!+Q}$I#s`)zMm(2dsv1z7d-+~>_g|e9ra}EKK2feiWz|MN~9}&R^)q0UpSsX zy(uNdO|#{X&@auFogpa4K70w)dT!3Udv~8j_|C~GPw`KE9)1c^W9gb=C)VC}0X}}5 zA?@Z(_xojim(mbM!$uDHzx^c*c)c}Zu(|9xsh@ga1T#X&oz6%uDJ*^eSnW}o0F~4o zLjg^O7T3ghasZe9pFLBwof0Kp`K4R!)AQP=Zgo%3>z=yRKRvI1>ele|yy2~T2i6c{P5>){J0sPWV2QAG8DB#4#-cQMbDB0 zdjt9+`y)L1_M{mz599hbD-QtxA?Zf_d>*=na75rFJ4bFazIY*DbW`b0!PNOAq0@W4 zn`*m3iTCSM(u({0TBFT26E#Xc4C(g3wcK$}V|wwx23yyJMD8HbwSb?mit6#3bGTWo zf6T0gdStCxwW3G!?D*8xp_*zuoxij#M^={fOB1fN<;1I)=mRXmtPSMjj(B~H0UZu3tc+u3TJ93b7H$9b-Fv8bcDhMdtYk^1?Ersmpf^Kc0{^*BM?d8bJagWR^oUJY@+{H z9U+zYzE7!>Wm}t4#EaarX5E*?wloAbD&;S@i}U|dWcn2^{fS>Z14%I}D>1`15EFK! z_kZC%u|mI~45f1vW?(!4W3e%+f+u`Nyo!7xMX+Z!M>>HTrQs^7%39q`0-C9c`j(+# zT{hpD-?d81Ckt(d_kUuar9~?lFU)%R{H-?Tc9OVDI6I#pk=CNZG{^3M1IRjtpe_FY zSKSdLWlKm;fd9{CAvP(2`tLOh_}8K}2QrL$4Gubhsyr<)W#>_WHmvx6CPL2~G>M+^ zy7FHf1irb~K&ArH%ZD=PY?+3!a}`CHyDqL&0~YB#c2*iZ#)Jkjj9cz8m?GtIDmt8* z$Tk0Lacl97o(V74l8uCP$!8E7(0kq10QUx7x6c0m=GF^X{EzE^`csgQ`n9&*Kgj1~ zGQ4sPR4Wu2X@|9}w+s3d<3TaLj2>qk^YZx^xKIPEg+A#=1sINv@C1y>#MtQ)rnoxp z^Ry=f`lL}lSP{Fvjvr}ZbELiY8gMDM>*AX&(Y>JFpJmMGwwqqqk~$$;;C8>TgKi7l zzF#dQ{rDB+O6=d~#c)Hn2Lm_M^?C9cxCZ-0R{T7()!>=Gm#C-||HT*Uo2!C4|Cz|I z@Z%GdDBkLqi~5#FrTs<_@FdrwBceKX!yOYv1w@6aqVzfL$8aVwQ75rOp-#8fMEOH4 z&^~C$meLCI9Vt--_$Ty*fI0myBhbsi_;CzlR_>P?J>Cm<70cW}aa{@T^at5Zx59TV zYbgz;CP8T-x^NAJ3h5*%BQ(nbqZ36v_<)l&Qu?jJ^g#8xcg>FrtN-k8+W*p;8Z)X? zcp}A4vH!&ZdEH;05%OIZgk9Iq`)+K#>!N>DW0-%WfaE#26&hAYCv#b+^DuevLTl_J zKAP9qS6p1koC00UipMM9X#Lf!so}J@X>CFi?Lr57f5}HZbx3d7yJ^?h-D5Mu)GcGZ znBrKk7`Jsn44WkGUZ{r?)mbR&FL~e-c0LI$Og#Q$1pT+os(1OqpBdvB%*Q7-$7UF{ z@#&vk3t_iNQewZjk2w+-&2uaYKU@n$k-p>_pRiUXsG$atFq3sn-e{Tnbj=MIwGNRb z0xv(iZ?_U-$eAYNXC#g|wfxY%Icw4RE$BS0o@ETG($q)EXy0B|sXCBX1B#$k) zOLfVgtm1>n70hEoBvjrcs4?#__8Xi#zWXUl-*12B$Tb%T-sizMh+)=ok6l@yJ6LR6ZG6}C=0dqs{J+8$wj^!gz#^p24Oc8VK)q6HymL%0%122VK)k4_nXAN z_g7yqGF$Qqn1C($6pR3!J{(Jfn{(oaCFpw|kdB)JaW3MAaz80IEs>pYCBZh_&}zv=nOT z1`Bk0?lk+2Ui~q5#~Km~BF5#VtVkn&$&oE0{l`H^zH5oFYlX0Djj(HjuxpF3YbOC! z-T@}%ASUHVCglVs6OVVB7R8qRq2|q&M8lzY#rck@R~9E#MT(C+RRu@L^8;^My-IOI zW2U@W0dc3*8zy!oc$mExyJ|X_gHBwKMZ-Ocl|n!JwrF0m9Ua9TR37B-i$k2b^hR8c z`1|TB1iEc5MUdkce-|9R%*>aswLkVz%Eue291QcR9E?DZQK?UL+=uro1q*^t-S^%e z%#7f@_}~H8`{y{yi4WGI1A3J%g7%PQJFRzF)WBuz1p7%2sBX^w>!SyGf*yMpS`*$jdbN;}F> z=^>3@DN9iqAdQJo!U$>1hY}`8V?C5Gza`NghU|_y~+fq(pRUj#t8=L$L&26^q z4&7|FY!5+^@`(AsA~0lH2HgDal%X8}yddP19NIxcrfUvzmZp^%%|`f*di;@YIPjS+ zOuaAg)}X4ns`D1590_xclX}5W(Kepe*5B*IYT@!L|C|Vzh8R;+>gW$;Nw28{21Rz+hY1`c%p_3mTp0Vq!?PJa36GWq zzz;IaLCVvluxb}hH^h8uv>;CwLPHu*xJ|F_7Hgdy?K2%5k@F=YCpSVxF0Z~eLPbgn zC@9LBoB-|a(WAL08|A;Z%Fg1P1|@G#S`}t-PJoj4=viE214qXhEv;~Cs%3R_&N$<1 zw!N5bpuzOMbH#j~R>RYA(H@QAJ0^I_qI>2F&Aeu|8N=3@4xvLNpwu3V#UJt_2j1k*{Sv2J<{)_xT76mcy|N&yl@|3Ly$100Rnq;?{rA^2@rBK(VT* zN)_Z}O-_S$x9Q#7V!iogeMxdYMT{#;{TnI0f?KRPzpM*M&gY2empVEKEG6K04H-E( z8$#3)FXn36%F*P$w>FHZB@NI-)oAk2TN{4Vl51$9`YRpq-$6ccqZcPtsMF z=GVdA?_oF3Oa5jLlI1pZGQA*-vJR=4Uu%26``oV1_m}tDB*$hdqN2>r2i|F@Im?$p#=KTO`0jnK*-y|d}7Hm9!o!+^L4nTCO{;OB$FQ*XjZ?Di=9>|M(_u;eU-Oq|@aRa>&39m!_jp)bi zlB^bT2ciSa5*8?Svi_RMRc zn2$4@eWtifKDog9psQA463Sx?-Na<#mcjQ;^xPl3|MM_p)kEn}4^bo5h#&hryXHuV zBY~T=U?NOheP(z7sAA|=JP6;PjB`KHFl~3gcvNt4C$#L~29+wjo zJz<}-NXt!Ww)K;&T{Zihwb$F?N4&|oMje@7SLOLp6BXdI)wp#x6z=OZ6qd;@{ruu_ zBPI;_T#SJ=e8@V~ewFo-?EQjd!H;Rjqq~iV0WQ*O>(h#egw48DDP_@rtM$;Q#ImgX z@22Z7*Wd>`#390iRtA3P39mgXLY_;%kA2W21QA{$4=#hIFx_`Qq zP6CeZ8aA7(PuaAmtYn*gLnfDr{QV-pc@F1(8@|UoSuM9W8l)I@zk4?y;B%nCNW$Zb z#=fr^tB|05?(t>6?!$PL%t$YR1|uO&54gW_%E&q$Y^c^U%iER=@{)3gEayh%6Yp_r z3$|XCjHJ(qfRaNa7ea>NG4xGVABFg&dCz>lomo_k3px;c(@B=1aKpz@az%>et}1&Kx)LU?IHRrPZ+lYA~q@T0t81%+@(8c8AnSGDu4&>a88bgt=mlvb{j7u-pJIAxm1h!hhT@F&zaQwV@TT~Y9RCgZKfdcoqYL)`i24WmS*i9< z&iU+0h94K7lkmL9NzGivL9n3bm1;+rzc;Q7iAG3d{%ML#JMdcjQy-)Jv{5B`3|ivd z;kYW>LNZpl9R7;0_XGGj6AWkjk+9G=!>Oy|2@9=Z|PJl(tk9xgSqN7&l}y929#f-zlhfM%joiD#XO$w$! z>Bl0m*92|gBpozFSK4jEvG(^DZq}#0e5uCoct{vWDmd~{7T?~vDczcG_~;mHD(97S zW@*PHXUdoBzKrs(9Yv^Pa-yZbyxXgO#hg6_w$B-iKFEBE!#O?H zwcR&%88HwgWzq~8!}0hjwcA};V5KQsf{rk6&gy*>74jYzE!hV?H^iR{r?~21SviIC zG|6>-P$$C5;*|UPipZwbZC^tbuf_`$gzx4Bio`$n`j@?fAMQ04i2skiF!#l<9IIVP zseMEVgtIO|W1zMvfoq_)A;D$PiQzo9DiQNB`87aT$XudqR`ER~1_})|MlYW~)lRXS zagSP~ONyV@i!McRYYwSwz}fDsyq`hRUg8^D3nO35;y@`w1G5)fRw;xzbe+(aj!Ro+ zZ`PN#4OwED2jqYDpeF@U1Sic?UyBFc5N?yy|9NLM|Cx*Frico@bYxBimZ_q-GCuVE z1{E}C4zvgZl%h=(?ZvmB-=GqGPaR(rLo@m$VfJZo(^&?Aov79fw`Z|cQ$X{O6dQ$c ziOGdbKmVSoiC9BDP9GzHrdG`;WSQQQ$wu}l(^ZYw194;-?uOwbw?BIWhiS3+IpPM) zn6J|=EA_%#tf%{CH4KDH0!y6Y;wH6Z(&9K3Y357w`*dtcbYr!StH9`NyC+~$w%yZz z8T)L6a+FKqx5y68P%EH+yg21W8ZZ6L{N}|duHKi;XCf2`B2*HefP3>jSO^ zwu%`ImxhW34VuQdDNV^*4HjH%jA*hmcI8Nw@dzJ(~n#a&5Py^-&B9;v)BoDoD^5k%Z2Lh=8b zu%;0-Lk72TExwfTa`<)Kh1s?bp!mn8-5gyh2MsEu1Js)99L4Zk)Djvh{L<2oLt?lZ z{~PX=KmFrS2!C@vFc9k9oIetZ*lgJwD%or~7)smxkMT9kedizd+^-kKZxF?AGz5zc zB2}^)RI=JrvWir?Dpk4~RJz(zYIzLiX50M@W@Xzw1`D$h{svR95gvm%0yI+zS|EeJ zaV@&b691S)Vo{Z6+)J2qJ%aCuTHB5*XgOIx=}!Pt)jEG#F7dFz%7hseW;AjuS7hAeTEHonzIfqEpGm zGAAn+kxL_G#ZUtMRcF^EG95z8RF8*143vyz96laFQ)geU433&whS zbt??Lv1jb5FMyu8hppI)crTZ(A1pf&yW{+>DY1w-Y&vS~ExVy}K zw~p?H=JnON+q0S$ppOXN-`3%OFs5l7ZtXfm8etll_4PgR^WF0GLTNtW4qPTs`qYMe zw*-yu@EPd1JRI=7Kb-L>cv+7TE>yPoCrZaTG)f0+ERsmv1aLjTR#&l|uz+7QhM~ry z7UyzNGq621Jei+%8b5{IQf)BAzMK5HmbGY3pVyi0upi?Q&8+7W(bTruS<9P}{5M$z z=T4^$IJW7sDI(?phv~?F)5gz*&#;OI!aLz*VzoXzORc{$s`C`36|? z!Ts{Sad2f>L2_yO!~4~nqRVdj-_zYKkGGpk$Gd~S3l;ZzXXYLn4re8YoWdlpTsZFP za32;h9=V@Ck_5J4bO0TDmEpl_cg&2x450y`2*=9wd#>STbPc=)^jF!IeuGObm>b0o;Xd7gB?~kL?(4 z@qV+vKQ;ONUMA|uQz&0J6kzymAgtxq3Sei81b$n4uccLfG6OU}%w3(->o@@D9eX`X zhdWyf3kN4zm)rIZ+)B&*u}ep3YF9SD9h(~3E)xu_s(k#;rkiw`;`$d6mv_4!q#mtq z4{6-hIlk+n_+7liAecNdFqzHJF*?W=-5X&m_fyHd-@>2$iqd>qr^Lh)CR$P+3utZ# z0Djj)F{p}<*9f(WD1&!UqJ%Q|aE;&&P2EEYGzHDOP`nr29bu~gbRZaxLRk}7z{ewk zjQA_~)RFb-PO??|+&r3xCjf^4%P|sfs+StXzDoPxF3)hKVIk+X@u|oUIF@0JRU}?& zis9*1Bu{z}uO|E+65z=U64VVKTWuHLu|@OyD22UI#dQTos;Ks-lpsh5mI)_u@Fx@J z9G1xn;)G^OU3E^+5jJ0SF3iX^UY9O%4+0&{F%ce+23Eoz=5kwG7sS3p`XK4 zseo0VqQSn4aZN;u(s}meiDpb?wl;9H7r#DI>0`gG+5TLqF=FebjOw(T`KY*W5VfE# zYGXqMA(yUeTG8(gvod5&CQ0mEy4`{@XRBJiFm^T5QBM5=x;eMSto)*_uIG%O)3R#i za(<1p=Aj{nV9u44WL3K>O;C&!L}|}x6I4BnTACh*do_oOX$_DS9iOZV}O8@+t8OUBj?Q4o|rPlF+$Lp;n=DF0cbhnX~+HVmCWB*S6 zNVpPXHbCs9lx^JCoLN0l|5#4~P zVR1O`)jZ`$V&=-O`iv_Tj)L`p2eT@*@AdJZDgt%@^;|NGF=#p5qVDp@<``R=>@)!| zd!v9-Q30aEH|vI|kD)RZlX(pe$kz1oVKZ(b-_Pk&90?D3Pu!HF3#tLSZFeQu^&eLs z7TTMB;e5*SHOf*ea$=^_BV}&oT@e;m?JlAIa^tr zjLDA?C2dwM*a!p#ZCV29gJXUqL#lS1tjPuElDQ_Fro6W;JT>eHB%G>EgOfzx*i#g0 zL6uc>K@HLji*iKP-=nq;3v}<}@Rz@EPj|j43qj!ia=RJ#GrWLPu!=yB`^boBzX84x zCvNJ8!l~?(sQcwX57IYcBL?bD747Zrivi&Nf!_lTrB!g zGAdTWY_GmbL9T-5!T6iWbzNfs0)7Vfl+sM8nWjUP6XY0Mp}If9%7NGJrWNoLl{b>T3;` z08c+N75x*JPO^}!k?A9=##`db#5U3^NMpwg(7)Sr9(fYcmc5h4>DlHj^r|o9G%+ZL zIVc#oykm*%nsQhQ&OdTcADh~Gx0HQwyp@X;TA0+S?*o0QC#AbhyvUj9(3!Jb!)NHi z>6*d!d3~eD(a$2EFIIYLKuOSzw}tC3;C9)QA9L#dXQ(sglmhNyDEktZBGNRgY-bll z3qzOMl|C;?vCLEyM|2rir(K?zW$uI%A@-h4Gez*XvIUd$s6qieG7=q_3Q|Pc`*d zkf)ZAJ~H;xfgwAPMXAI_;iVq zNDB83Q#mN#c{jhZ2cP3{@W+W{&<|%dqws}|)&k5C#LGkxAMC6dp_q=Dg9w!L`A-5* z(KpBW!$==fdNo3l;v~RJ1)}V{V3Z6S?h^_pfUA*snGES``+*2OMAsgp1i;Ooc2?Y` zdJ-;NhwsapJ#vui5R-Rn8g~TeVehff9HT~K+)3?5G2p@q7T9V#@M7h6BiRSrSol=s z-E0a3K>wv~W-uRhR-2OC5z`I@dKj?H3reTVDCmN^8FWh|8lyIG91J`i>xPZT5<0ZIyoHprh^0Q_+w^b$*(@M})p|E-rg=Vd2+k_|nArMG|pJ63#m!!=>f8Fz@&_5)WwfUlR>1pnrX zh|@7nE(R-`vg+l2i%+!MbYldssd$8spxH;QsdOu=U5M_v1FJMiTU!4W{`7 z#4+!C);Wjg;e*;)2(ZktabUmaSFb-APm|N#Ey~A0!!H5C^6JlS=qixErC52`;!zG3 z)~jHTSQlegoqO}^C@h9X{7ybcDI<7MHb?L)t}1$^l*4&6#SQzMimA{m7=v=uk_ zke0{pDDzeWa0!&TAKDO0MsyEeUsB>n&gM zV%8k^?aw6&-4b6kau{!{Z4@}-2P3Y~lT05>68BhDS-!)=#NtGApSL4=RyC{CRaFsY zLFC$;+~u4Sij`d|T4@>8pKglKI&jf;@}A{;sAzUBFho)Lu@{T-6IvG^%9z&<-N>9) zMituAG_~w^q+Ldqob;9=Cyu&8hdD%i6BX`}fKRwPCkETMHQTq5RlX*?fnZ{B|6IGT z5vJoC`+h%D!{hiCsE2~JMblobRnKxu8;Kh*SK^O__H$=YMP(V9CEcc;?Sc~FpRGw9PR zr%U7cm`4JeOa)1yqkWXl*B$E^lkZCx3P^Wrn=JOgS%<+}Xw(*knD5jxh$=+2xU^UCf z6S4$T!V~rD;eb!4mB=eA-e!|iIot|TB&A#!p%<(*s)pC>5EK&>idTIJd0|Wc1oU-S z2M}5Mf0ca&P+U*5FD&kw1h-%T7Wbe5g1cLg;BF!KL4tdh;4JP54#AyZ!69gX;I=@p zumpLV{NH!){l0qjs_xX(o~fzs>7F@f=FIQ(Z1=#I-q=u;kGl4_ipw7{oT-(d$NH~b zywN=)jHbTkGlZ2SWA0$euEk8LE4tUbFQ9wsIcJry6325OZ8}J$_RC+zlrq1JZ!Tsv zEF=b(inUN9O6~io6)A6*7lrCJf0s^D%Mz(!q!`%1Raf@NcCa>$llT;`w zfR}vHF}RuD4C#!7If|wFG5h>lBe=!smwIiF%;Xgr-%2JAmw51b=cYLc+N{RDSB1RM zuUlMzGG5|DanKX9zEcoYc+5ytMxpuWM27~I- zR|jp}YJRT)3O2YlI`c+*FSjg@>H^1zfIv61l-I=O*+HPVFf=kW>6>(gy*}Qw=fsLP z?Z-B^{hOt*sK)9Bh$=zDDis3)W7LIyM8P=rbs+qz)McuUzj{?fH>5PotLCDs9g&oH z_=dFJR0p=OSI`s5PiJMpmKkI~|5kbi6_u+5tfJN>u7bbXkKj=L+3oAywm}KJ&#JXA zQxc}ev#o)wdq%%!d& zO7zN1y%k|_sBu9TOWur4NY#(SmN;%1B2nPPli2TAAW?YwB9#y;(?&#>7BNH>xilN* z;4<~TwTLc!Om^_**2GFESncLssGGx6c{9wx)&7MEi0kZdYedsDA|ninAb zWi$_?oVY-Ut#FiRhpP%t$6W)SzC9&L|8j7wSI#V7%03x54kTX4BhzaA8ER2?Jk3Y3 zOyX>hoXjK(dU8NcS^#){JAbD?NK{R6Hnmj1$fwR%<5%+0l(h7`aR}enbBNvM+ttqr zVQhFytX=EFW;D6%<3Am6`$^6TnkwHf)onJY)JV#psF5l;@=p%?Hte-V!GmciWrda8 z9qxe^zSn;NVK?E>XB|?&H9^tF_v4wVB`s;2ACevdF(Aeb;GE@Pm1QZ-wfSK=_Cngm zW1TncY%(?{VUF{A#~1t;|47THk){`Y&NcIN54VPhB?`ADBA~%zUIR_9E~O<_D{yFr z?{UKgFMl23KWizDkR4(Yerqt3C`FCN+T*@Z#^-1Z{qVEhuS<#8Lv*{cqc5C0LF9iAo%E@0z3iS0kM1<1mij_k} z=)1m8%fsc-Td%A$i`oXe7Rci=vYltLfmPWG%8EvyInRtF z#90B|&|*R$OyXA=RkwH0(r;r&s;$uIVXURWPs?*AEwKB!&b=u1cc?UC3)6Jzl|dNB zVgWUBh-ciPw8;|ZXjYGN-2Bk4R1op>5G@saS`Gm(!D180WDu)t49{S{fn*2J+vgV^ zO85FpSnde2)6TbH_4m)haNNeVg`TVZU60p$&cS%0i~I16j0B+xpYKNsvEQZdFeHU07!rgBDF z21MRfA?Qt<^gQqlY)Y@{{J^NAw-!%?xPlr#mrcLx!`aJ*pcGQQuk!^3g*ZRxt5HgC zOiBzd6;t3$U^xSUwI-9V@g8v1{(Vu^(Y_~!BR`6>^#8AiSP~>8Buu0~A3!2_%$wJ7 zkdO$pAm$&*A@ePd07Kj14t^dgTrwv&%DtAy-i=cYU|+_T{9WfAbx6TvG7pIR`r z6K>V48E+u6!TxQ%&IhxK3KQ7fpfEgD!VOwmy2!622@|tgynS8yA%W(aL!r@U{HX<; zf~B60gbSj`p2H$W_C&4TesuQDX91jEyIu3HW6Z$9jj+nI#YllJ!Zkt|6t*UsAj+QBuC$m8po1gKE9I-GTM6Ln+$ZP3@! zjqmaacE_}Gz}D@A?x@GaWmlT2Fj!P^r7tk)Y}4n)Sa_VKUpyx7^}T?BN_}H&gw1lq zr?!&%I{eK+&sUeRpBCl%HN{k8bB}7h_yfn@uy^@GZAvW`;|t|72kMJk?R>5Z_t0G< z$9l_}`Ej7B;+@QPKAF}Tt=9ay{Ood`GPR$`{g%%tfCIx1(8l~y$IcVKh&7$5DpDBU zz~!nun_BUPOWAeiV!P%mrd{WujOF-`W>`1x+q|fjomYCjnHE+Fz4#~2Iof_s?qH@Y zmb%&*;T7vewoX#j}#q!CrE|W zVtkd?2F$MHF>)=$7o`T1QNByR@uvRF*uNkpTl6)xukBs`LQ#>TJCD9qbE;W_W93Kq zz|(EUq0q29#vm)jA5clkZ0~y~)^Pm^oS%f0+b1GlUt<~?uT(VCyo7sRGb_InCoNbE z(TLOj*>6!V97_VNqvaSUc8`9j#oTpoT^o@lIRkz*z5KAFS-hVSZlkm6<|4ujW+^I` zF;Y_;CASx00h>;HNE>k~DknBvD2_g|Z(#m;3|&d*|#u(-|{Le7p=1qjPVjU zS921Ku@Q(f5co^Jtfez&82vmlKPPk+-;kY@if=E%1hy^O&TjBh97VHlVFZg$PqTpa zi-7IS23&(Xy^sn|d?HV({ySo1&RE zo4dp1!~Fg`vVp++lQFwcgz>8 z4i@MW`(M=Bkt|h4VMa~*4wQ432rGe9HvgV_3QU#*Y)`luf=LY@TLecsj>3cRX1wXI)#$O9^!g6 zyIVECuqbk;3Y?=eA*pZPO1L&Rw7G_~?Lik!a1B$K;HLn=c|5s2^JLtB!4+-F)C?=yGvVdhX2e~nGXVmemD=6)Gr#i=6Pz3l+FdSt?th`Y?z#*N zTr%urTJuSApft+T4Ig&lE2t5<%yFo%3Jmzs$J|rF+YzthA~Vc{DCD`O|EFvd;s}%Vbw>aEVVb$1(3U`vEQ+ zb>t+^yw_KXoC))EPITIAaps_#4VH-oi_62X+CeqR^ed>r36y#jII8XA+IXVe7d2M; zQ$^5`s(_e*!Z5{C|9m;FVxKh^+#|2KU^?bSrum)du7F7{+}3icr`bR&TBIypZ};5! zwLL@^$UB79u-GhQYTpTZJ1{pMAB3!@-Zk;ui51`ursVJH`8(_2O!zSB-CNQ>lNo0E z3{e;ruqWpLZ`mXO)pZ%0`a-hq2y+ilB5li2P(pymdD8!H&Pq_UG>!OuH07*VnsqS} zORb(s4Bm7W=4zt8ftNn68^%Aa7F_G^HT?MgW!;%Oh*WQxrEM2wUkvk_Ak0qdI9oya z>KS$}*J`vcjQkYnz?zAhSasnT+7Xi~BZ)tA&aHJqZQHwt^OJ!OopT>VGDohsIfF;i zd@|9x&P_J`IAe^;n}3JrP>uTS5Etua-`1|rC8Y1IvF~3rVCcN^w#{8|$kLUVffb6y z15fmMp@6KA_27>!IB*M>?9mbQ)ug?of5?0Xv3@%z1_jP^(IdnF{hvfck9<#iE*5K@ zx^6My6izxY$O#X`dH@PJDi63dDl=J4zt6hFi(xJ~;Z4am<`KH1E5USIGds_?-NA zImor1RNnr55%WS?7r|YkeqWgV63!os6OKVjWH4Hu6O6 zJp{>y5R(oa%!Cg9nx{OCkv+Fx&v?<|x{op?rusz+q1_}xJAG_gH|>C{{Po5a!(}%N zfZ>}vh6(jp_zE)CS8BrU6=dZ8oN3#m2)q_P+>Ya6{Xl%XB;Q&qF1gditkdWPL~D40 zPGe~s7`LRSDA)-pzxlRGqG%oNi6sS}ycp$7tFv?MW56^UWT4=dnW2v>JG>-*xm;q7 z3aU2eXyum7W-2CTrDvmN`jZb!ivX!Y^d!&}U|d*24UVm+0~& zR`2{&^h?!nwb_RxHM+@QwY+zGULW?ncyeCB_((AMrDi_l?K|g1Z;15kJv-~O1EIl9 z;J7W%B={_Z*tPdvWSB6`ZFv}jnOTldBkW92Td$C1!6w*81>x->Sk=s;5qbPv8;Lc^ z9;vJvl{H2lIp&r-55Y>>EPzaU)ySK7FBlwp`X(5p&m^VkgUL#0hs3J!BAAW(m}lwQ z^Wi3*j&2fZ?20)P*xB(T>95DNqL# z^Rc6@=$LcDLEfo=S8po&Bv#*3QHulCndlV49HmHal>j>ypp-<_Az1}QiYf9fV{m~s zIceUBL}wT&t5k?FiIi^Qskzi=k%_S0dE^+QDiA9+0kX44UMbDwubd;E4{BHG*H(%9 zbJUeGAiT*Gsw1M>wSs6hf3i#`6VaL+vN0i;@$XL35f3$^)}rmu29x)xH1_+DRQ8PG zuX*2=K68!v0KCsSiMSsUWnx)JA8c=y=F+N}Il7XLKJ`5KY>(oK|Jv;S;FnH&GIB!i z*zu0Di?NoL5yGvsm;yW+n-rKjE&95nNTon~v#Y98(JA&6>{$JpW~X)Rm>5?i5xUoHFHXv)hq&{5#x0zgtXcmLNiG@#{UlR`2ay-9U>%F_z(qlBM%o2Op>){$CCZ7}nD0qmVU&Fh--t!3fLikjm* zfjn(1=Dhk(bu8l2G}H7j^@C3?e$Y+3i$QnsuoJSz!Key{mxHueUAf#{tT8UE5pzWw zPsCBM3->(Gw^+AR=Qh@NeUq4eZK?X|)Lz2YDuDSlC;_7-LB_+!{nXx|exCSV@YuzV zDjL5Nri+75o4(M>#i~QUlKhNqI$u**kasud=Ltu0JXyC=dAAbzno{|i68W-yJ3`dK zIuqq{FUV~cQV#x;*yj@EI{h5|ZD=1I z#Shp;M4kf&-RIH8TV;0pY4@=G^orL;tz%siRU^ME?+@>|%qUtqs2dVfb1Rzqf5FUN zeoZV{hMK{+KEWS#4J{6ejx|Ypi#%|rqyf&Aa->HdnNp7>j$)tq`mxq2or}fqS32)W z7Dbyu^V+Gt3AY;*8L`1T4Xlo1sQx9~zlDOoIQ za}+JlB`2ep<{kvUs3B9VV6rY|b zU_CewPka4LVL9Mc@#FfniN>eQGdE` zxHVJdEuN=Tjjl4zHQZu*S*KFs$9EzzvhFt9p782%kskW@mO9eNQ=TzEB6*!@;P*rJ zwAeKm$NPu&&wKk{Jk8@maEgvEB0yjVw7ul(Z6CegJ#jdJBGn|f?!qt6-KWc92_lIZI3v}N%h-GNR>ZZW%AX}WYdm~W=?92#Huro2b@^bE=(<` zMM|&Uu1A(6=IGH82=;veMogagUVnor(V<(r!oK~JIogU5l%hXn}l}vj3ZUJLvH<|mN zc{U@Yr&Sg9Lw(K)OGRYwfiKG`{HrBJKbsiiKQr04J1cHFE0elbzJ7!5)7(}QLZI%j zkjXT)SM&w%HbDLZQ7ij5Xtsb>N%RS)lQG57&Ya_!!Sq(DJcRkPEY$A3UxDI5G;=u% z?-;JPhw@f5{xalh&KbkIW;s7AqMH)qTN)V$`Rh*}ku+Y#`-fN-P#}#yx=A?|2V(vz z)Ia{0XqeS$nd4+r+++?-n9F#6199QIrDP%_$iRUj7shX&Em4MYX1ww;s9{M4A1eyB zVy%BN=maWlIqEUxUmZ2#1!f{W+ILN)$|1RC+JsGZKXE9{3V23i)#D1qp*Vl{-JM0C z!Nr+M19@ywI1jXhh}o0}5optY?SP*Y0=vXR$}2UgSsfagK(aH?pL2x0IeE4g-*pm5 z1=HAk)Ov$GJms%ML&6oH;G1pO2*HQ34-Am5Dq<^WrM~Qp5V!m_Y>386-64i2t^UY~ zZlOabSU7U7sy9)Ftx6q9QhMc8$Cf7YDmF2fmisg)cfiTq5uhPF4(g~vr__zKL zZ%E;ET2DOQ>qWnhN}~{@CWpR3mmtg~^e-y*&B16K7hf=`sU}whxyfodNd#KtG{Wh^ z?9-f|_YUK@14YkYp+fMRtx$Y4;I(Jzq$uS2lW&}gRt*ZwQ3U*y+&ZC{ox;iUV``J4 z32GWX6TZ%wqYonKyxa-jCZgr2%e#V!%|sC1$HH+F>n&X4NjKnzzlooVX{FwehT}Ml zfGU(pw2U8XpwO@`4_usTwEbrB`B;*T1&HpWYJl zR|*cROmnG8%r#L<3xCjehi+pMs{>rP*rTXE>b4~5H})?aMnMizDAvM_!NJ3VMo(0* zui@7E%9G-mvXh#r?u;8%@@T5E9^DBC->?$-XfW&cz~aT$}uhqC8NMY6LA;f9r%*S$QD_W0MS4dvD)%+}5d`1BC|huk-8eAeycf_09Q8uBn_?HPY8J$^xi>U$Wn{qeoleFf4&NB9g6%j>(h{87(9)?Ze;tZ`3>mi< zkH`Ssb;SQ=fUjlPUb-bL56c?O)n*Q8=tg|`Q}atGRo<2gt3R^DsB7F+*C-Axxmm*^ zYD?@c_9s;3;Z3f7??-0xrce*E<34Oa%(JVJHB#xd(a(My@~-pg@O?HD$Z`#3y$O74 z0^W|g7ZNfN(5=^EZ4 zElz6#A7Zq^FeD%-h1~E>kB9Y)W>iyflX@Fpl^jY}F;5|n5%^oZJjF&GgUdAQn9X9J zU-`<~^NReS@)5J+=UfSp2Xl&+v+L&t>!LWZ9dCoEUQTRZ@kR}b;XIUGacHZki$nu& zUeCCnxXwr(8VlOj;k|!7x$=_eJWxuq-h(7rM4>6Zs8hd~Emn?QO0#j~lOrOg@YhjO zA^!3+0{8SH!;Wqp_@6CB(Kp6lTVo&n?&62)bQ0`IU82$2BHKdQ7@O6RsaG=O*bW{1 z<&-U@aTyP8i&iV3yCPN2!WH&pO)x+Y_7=>Jt$9l!I?c*{=s<+l7T{gP%=ICFmU%>( z+wAqkKD1KK-Sqh~@<3Ik9F%4O@z&MioVMzB!btg@n#%|VfA@)g*{E!&l0wQPr>Lp* zzq?5NZ#br7i?-uuTwNc=EhW2@Kc}oWeIE77YgmK9*|LqdP zV#2$xzj^CQZpaS=91RDR+RR2LubDMojlE;m<@?dWPjc`{#t2Kl-gN#_MTSpxReX{3 zYGUG`kieU zhkyp|SSJ~|CkI^&L%??o>CT&fkG=wFUfcP*-_Kt^`{$fw>IUXNh5Sv(-vUHv`#I(x zBoO>#yBp%SE%b*T(y%Ro|EJPJ3S8gv90`ev?fs50-JhEOjzEWmM1}wi|4PBgt+EjJ zyhjk{9iqR4|0D1V65YS35Z7R2S5=5b0X3v;hv=`Yi5*JNpdRFChvzTf;vdK6sz^vz ztDt`q&=fLf2szz*1fkVN29Y9>BAWZh=s_Tw7}bi5gaiZqr&d~}2(2g}IlH)j zg?-$m1idIn$Y+2Y?&AIx_+KYR36TD__%B_9k<%+7Pxcu8@`>$Hf*5Ncx9XITSLN7{ zpuK;1{~i)U;HF^hf0x@7B3J)c*{;2RM&rM&GXF_f+KnJ&{wsuhp9=ZwUpD3af5yfP zQ8V+WhDY!ZAp6g5H>gEA4VUp}QXX zefM6y@80*`Z;bzc491vev)5WP)?739-Y2VwB@>7kin54EIQQ<|L%pY$2Z_S?jCuz& zpL|xKjT$Ef2ISjWpM21z?iKiyO8Nwpgoq=rB1(ZBlx%FP75b9x1Z3{!K0B0GTF^1f zQI&356IZQ$f~liz+nR|&YArY8#=OI%L#Zhr1hHgo%O@X3c9`O)WPLRkqE0T6b;Ad@tf_}A0JCm)8@?8J0sCaXCNbzxVI@u0P-40rdQ)W!->&a<@sZ*k2WJC zphH1Xr=5pe>Vm_mlEczLTQbtjB&gf(uFo)Zi7>1=11Elzm3Jp%i zvpGAP@}AQiQXxhnh$GGVe^yYPuGUbKxwt+=MM8KUp1cBKNuDFUR4DTpY8EV=xYQN$ zU3)dv-#~FXO}*3 zZJAHIo@Gg&J@$rbSn{7PO+KbLtok0$Ah~YFq0^vyf-hwGU}NR;J7}mM-~l+^oDQs; zSJ;8z<)rBTp}I3SCnfU0QQ+c=$zkB`=Yxu)2Q8A8YL|T9%Hs3opL1)?c)e7ai+iv+ zPny!He?GP2Zqnkt*RithO5|dPIZyiBIk^S4rOXr2v|qRQI^`9rEzt?UZ>=m|IU^&; z!b_>k=hv0~HG9qF=3qk)Q0ZR@Km2l>UFA}oJZ|I$oUK|bUHCcg3cmbW+}=sbQRpcc zqkv!KUp2kpSqNjf?7iGtb_2e>O1%Yde>SL^CcQ28;yv%dSAuGDr}mwB3pQN(owJ9~ z@|g{gmf7B<^%zx>R_Cu>oYm28Z27NzHqMJ=h?9YOmZ|8?89A^3I+ZLsy+M#SGm)3S8fB^hX$ecp(920-66M!J}) zalU-{vRG&~m75C{s4qf|$d_Q2+jD=!GCOC|qOkzG-2iHCq|DD%q&XnEa~{@}+Ctbj zA6IX_w1>;Nvd6eHv>a_eoU76V1KwXb9bRH1w&@BCrdL!~DfreIxE{K#iF;bhWP}k^ zS6$Y>a^)9LsE`xqmaK4oGy|RpTuZyBWnbmERD!W#FCL~0@CVdPJUF%AAm-*rfYY_l za&8xSur@!}w$)v*^fJBvZXxvSx&<54qsUMM?(6+%Zr9w}wA7eG6sE-+D&&27qfq~> zqked9ymeE6|1@boF+@YmxEVHMb_=C$_z?4!omO?Y+zFLug@9+pDj?xkS@&Hmc_rwlYZs=*1eSx%IWeg zxZZ!WQ!;#0be7N2r|MmhmXD4n&WI!aGG5BVlpWDo3d+kN?odRh#*q4P8cs&^XJEhO zc#==LuKN)bD|o3(gZqPOR}=JnHdC9h!DVHF#$)yd2S5`dkn5D_$xxm!VSEU6(1CcF zzv>e&%yqe_)L|lFIi18CwAp|Y?>27Peudk(?YeGI^XpF8&UKkuxWPR3chhNHZ>|qp zzqYuw-=4GgC|3+4Cche0u+_*o;6k3HS#QW&YzT+eww0-VLJ8nv>;F=L7f{1il3fwg zkg)YU061o|%BUb0Lr#wJ9Z+vI$ zJ3}vs0ZVF3^&=B*c0kBm<<4&J8M^9*wKB~)Fk5l5I!S!shR47#D15!te0u&EkH@s; z3YHCJwEpCw0G&n7C?JT98Rv5@6P*nR0KiG)duhV_*4eMLC0SJ#S+S9){=Z_LQ0S$d~SA9e0 z^?YgJ!R@0aw~OhK&>QLLrm9QG?GgSyWcw??b{j3bfMXMI9koB%;*KHU+752udBXH& zDWE7SplEk2^0|#v1ZPf*vY13YIps(surH61xD?PYCAQAbrSgza#`#43Ys;J2kxufc z!W{5sR<%(ePe+JV(6Kzx2&%hE^Y^#42@EFeBbDVAW`Qsp$p)Jioj0L`cX&D}9Y z{#ix-5yi_?!XJ@_Dbj19y!1Yqj~t*Xe7ccJ33ihnQDvv|g4&Z|gJP=41}@b8%wwaE5bodglkwECtX+1<>q{4ROv6agGcf zr4lCj6D5fgCN(LG9omT3^d?nqe zhCuCT^0q&o5&4`+D>V8yVBaD0@vq2y>O&8ZA6F{lj&Sspz0-;o+ln(4zlM;s| zX3c32%cG7|yw;BHSg$Amd{Z#NDBX!ay_B{kduPOK%N`T~!(48PrL4OBb+5c#|KeqqPbO}x3xLFk+H{u6s zXr0-q-VwIm8Md-O_3)D18X)7UbDurg6m=q{t| z)CLXCuNNk7fWpkGg@(}f^-|n?VjUUwxEcOiKIJ3(_zL}Tj*{pA_iu`)kDNw^P>BfB zGDQfJ^u^a<_U7Ds}DU%zEr43rptbB2GsFJ^!vafnu6~AXR$I$o?8y7 zOwy^utjX^p@o&ft)qA^(!-|$(vNB1_K~}i}+4?tf>{HkS5<@s&ag4A+igI#G(>R`w zB15go3DU)Rcd=diQH|NbQYDq6+L&E@JRFr%-A!s=s@3B+a#<72RYIzD4O8+C54gvl zrLQTm0hI)7@*L0Hc=Hh@1>-^=3F7lsMvYIKbkR$)NX1#=<;e8=8re=nbn)D~692yB zwp*&u60`eBwL4BnGp@K=HIrgvpU;>sEH+cmkm1`HLh^@v{@AULDf61ucliZpY)O&~ z$XQSI(MHw?YFz?c)}v%#o6UTn@QK3&Kl&)R9{9lk-5LfR7-X+n3TvEixR3COB}?18 z-i>xd#@DB=VUhc=eoyj0YL|tb0I29u=n%@$^GM zRz|ol3VITqx>ze8dX|q?MwC`Yrq;KfR={o|8p>daR@7ss5vrd4TrsRijlH9@*O7s- zB}i3(D4@!dzI~LpD%w%dynryND1ggcc})4y$Euw0!h8aPNhIFOerh?kij!%w$@@^| z?qlJy$6&-rBHvlm)h~gDf0GwZzM=6*il26IVHM>Dlv}#LH4gCG}QIaomY0 z)CM;t*0z?8^hw#WBQB&CzWX&}7e=*jmq>*Xi}PO;L`)BNc~OH&(gY7UfP;*0)v(EI z^2Tr~mU<9<6EmeqE0+z{(_;TBo%)*yiag!urh?Z?^I-T5dvC(+6{y;QWz#%PUK!+-bFI>%b<)vQc% zb^lt^S{7Ls1k)NwE?rg5^=*uH_6rY~oattac2tnP8G-PgC#kKQ=CdiCkn zG_S2p)NQnzG`U^eC`cLy_bFeB>n!4YbR6mC_mAFwG%YWKBqwgmH7%dS;55R(I7y*A z)sM0xV^IM}YfA4-nPv}VQI$)tqDV|o#_2ej=_=JV_{2FfGnET7T>oIKc}Z5<7)jew zsNf+Rw}yX=yYnR{^$Hbhj@K0$Mnu& zg1u`GBsR0Pb)Ie-YS%_b>?743)13|4c`Ek`+_vdYD$2jx3ZJlQNvj?x5%RAxtwA126a^TX`1V>xhK#H9SmYUT zsa0Z&4s3@LWA3tk)E3A#lw?+_OmbG2GN$VZVGskX=lc@0W5POw&CsT!smr zNR*AY;u0=H1D_-^(k^T2d00noz1PNHbtjvA0KMOhA!36BHVn>Yp?zakEP6CgV6GO8 zZ?sL2;+OJ-&Q;P@VHNhYTI0x@&>RoiPWNbp6|6jDbRuJf+?5wlQ0ydz8Fo~PLN58b z4Km+r9!z{jz`;Mr)R+e;(;Ss$v%DCZ;?H;4!iT#n01;3m<`sf}qpjhiq4v|&Z4QXz zv##lw3>RFWs~u@IkBkSg&K9$l7U^3?y;v&)`VTs@jErDkE}W8VGQxUfLMSp}gMTXV zBU;9u(ED+r&ri_{)h_lN)nlAIy9#ced0ga zeD!4@AuyY!I?;2>S|+(iE!K2VYGNV$fT05fWq!9L~2D0lrQ+ud^$J+be`u zDk@_9mKrJD2J-tFDd{dcnj+T9gkUhqjT<*fJd#IeR`t^gIm_yCoc)*7brfGshvP?% z8N~+rRXB=M2N=+*kb1p9We7&Y?Nke|^FN{kQN0QlT1F2{ppFHmBdN=HRfuaN3bXK- z-Av`q^s5I9tGm=i=Uc-j2Rjbbx`-xfJrTv2&-kI9<5I&m{oi` zpUd}-BSSG*dLExY){s4ylU8ltpQ@mG*6Sy@#MC#UF3;N@a>b2qm=LPsnNk%W#Y2Q- zN(jw$?Ha7>zKki!ZJgfR79rOn+afE^;AA|UT7KEW792pdMg7(oadLBJSA2peq^Z4E#|(GbsZ^j01pqA?T(x>-{+ zsmga95;c*Iy}munhHd!Ym7#95N{lq4C>^R*1R*h7Z&l4_3>e<+FBrct35il7;tTGE zre+!$GiZztf~1v^K309#!OAbbUznoons@qu3Wk!5!64grgvEBB?um_t!=`je%IqTxfLM6AKf^ zoZv=xnFop8q10eK=?cOT4stL}$=D2`gZAse57M^79QwJUQ{ErE(}hQ_=b7Q9BAiQh%qHlfI4!_OJIH_1%jr=WqkB8&Zi6lCzP$P@$o zBGS@N`@w1h*(4%Vup5Ia+|AbnwSn|5GF|;WFnx_!ElgQ0ELJUSSS{>VEu38~++Hob zQXPrN<%KAU*|(t;992}8vm~xVGRP4Pack)3@MTx9U4J&={>i;rw~VwV(9|XO8h^w5 zvV1xfaClh{%Z24TL?9%1=%skKrZ$JCUfbU3u@{L}CFd(yziLiu+0iOa>AoZ*jYB5O z9AlDM!H27aWOp$v(W)ldBnlL>+exJC0oW^&NJ@L}y%|;D=h>gy0Dc;o>^u8tb)AeB z=`MH%Wki9#|HH1o{+nbcU{5OK>U%tKf^IoXyb^VU93oCtKIxPwj&$5m&(!8R{oGd; z*Qi!8hnpdl0TQZlj<~8iT_4+v?=Tf|bJPpetzg-Ev0~+$S)3_9s}oap+|)ui{Ny{};YmX& zm_dh)Gdx3OoL(zh_DyAcltR?Q>FPysbm%uh5}&NMahQU+-7}QnS>E(*@gfzrfT-f_ zRaeO$Z=x>&Udcz<8I%v~b5m2Qpeob{!Y+O%1R9^|iV^Jb-nbh!Uq{R7B>wja2H+Z^xj}*ZMyl;)6d8De$KKYG*I9a^zU*6yOGqpDkhGjVhm?SuRx5i0iS0HlB zZ}$Bxp&Kt@Gzcv4;VzFS*xm&G^1e{sZZscXvm9Kr0$j5aT(b&Xvua$kdR((cT(i%( z;11*G9uP#PJN-`de;RP0iYCSjuY^{4znTctv`R~x?DMZu_r7(pcmhXITOz=ATZ^yk z?OyO7Gv_#G^!=+;$)8N^6~67?XDoWj2!?A0n5g;P9Y!(0?&z$K)R+I1OQo6op!VsM z5noKS?zm-4JX^Zj)_cm~UrAb27}5JMjJT79pz3Icgiq1quX`+tjJT95lNdFE9aLm) zg1EU)L@{O2CX}DVimCY?;~-hmsY{A*E~D|T())p*sGwNmJQ6jgP8hyh)fK@$2t0f4@Kw%(JV9?yU{zQ(cK97VwxSdqLsbD6xli-X-{Xl^$2vJ`f9^EGg- zZP@$AynJ`pHG&ITS1CG}ulpI9sjoK1>JRKwF#3x*$|~XAU#5h_PP&SyqKUiPNx1AG z_}9MQTMZ!NL4fWj%AR2h{$`_xfitF|doPAiUkp8YF+}iUi0s8GU1=ItCfQ#xSD3HJ zULHGz&W}AMNOaq?VO7;1V0+acMS~N(UXG5R+%CTJYI$ozjo4#-0!scSDGmAo;(iy4 zo{S}C<7k-+t3S1#Og>&&RfocqD*N*iC+4#vHn%m zzJ#9pam7MGm`@3X{qN{PrH;V?{Y95_uPQROgFP~Kaq{uadGHmL1}0-L2$@$v65UXS9Dhkuq(c^vhRO}pzmc<9N+st0Yu6W!S5ose6&edQOJ0Zpjh2utt(~- zVCBeUpIPG74|>aL;@-EUVJ!$4pGCtzqm{M3&ydEH$Z@YJ$i&Fd*XXuCU*r8G^#h?n zvc00>Eh}n=(T_G65}hAPN-v$DMfVJu%kHh5hmUsf5}z2M_{Fgo`=+E(KJ-@YJvgim zaR%0>n9VT}K^BkdmEZ?v{k_+fpZCpwQfL)v>7)IRItA}7JGD8_smSR+Y6N6Fzm*8c z2M>i?zlDHGbNg&g>5g@-8< zV=yB?9uaR7=}uC(_%SW(MFvJ`VbLZW1ZuSWanf3ySgRu>UKo~=ZT{=y3 z+LbzNd&#*99^$jb8h-Dqjm=u%&U-*RT}@1_D@l7`hH6YeB2L}~v@Y5w z%4m95X@`4?yznnj;GIDBXF$i2qGQ@}X;*sS(kAdo4nQtVQ=tq7}ew;BPPs6~NifUc5K=g&aLx(e9(~Q=F8n#Ye~+ zbacz@ypmtKz~LVsuM^2;h7zRU|f%eXOVw==`Hv%=qRO{HAP=9l~u z=o0=hV)re3%J{uCJ;rkB0ol}ggEaFd*o;-Wnn%kI*ok?S){R${;7b*wMt&GzAXWrZ zw{c1K7hC6@9J)}gw#T*B5uYr}+EN>yP<32kXm}<|#OPxG?S=GobBN8m@xv2U#|?%C z58OFe2wYeEaoMzCd-3;S)uS^8cQCF%lSRL&+VEkq8F^WIxt3gqQ(thsjR4l<3%cb7 zTygEXoS>}<9Q(N}iZU(L*H@Lm0nPK4GFDeQ%05J7Yh8{?Pd*Welc_n9#vze)LsQA^ z@k%WbV}qYLK2~27F1cLA__S*2M0wVWim$)NjT=Qx!^m1Yzs#7L_1YeTyCbeZb4Z%D zxI%f>KM7h{xlMMxV&9_)FGE>wSQF0J0(|OiM4n8RqEdKEyFQK3eKy~*f*-`Qf9B-d z+OF|b@#uuYvbV!XPSw=w9w4-9C+1pi5McPEnO@MD^pN5h-tT zjZWnkti2{~3QlqBOmXXk3=(p#b4LB7yM-@BGasUHP z5L;3Kft>0`69x$fTuSoTlJAD}4jFV><~_{pg5GDc0Go!d6sBF#cQD6~tyy zNKm8tk&i**9d347$Xh_S(=5Y)^R59^ND!v_k%mD+88FvW%&WjfM5%r(@YBk8Arn_;pb2}gYi^(VuxdQu(l0he7jjc=lC@zgF0-^GcX zR48vd-m+Wan{C7_e-}7e-d?)3_r=NekZ-mb)An5;P*>j0Ke;rwwKwnNdduf&MZxkqAcg^o!@{=}S+<3D^E5PxL zy|j&xv=f}@J840)bDb|rqjFzYW(@wjKPcBv;g8#x#}7k(C=T$LMDTMcGn*+WIHu)% z-#A)O0+RL(8)Ha0CKRZ*Ji6B+ZeQ4WTYUdK@peeG6$PF9?T|cXKovy>Xk8qn64Vm{ zPib$R^BQePW`WBSy|S$}M}c3%>yiw{i^3!PfEZ+zp_YU#?-e zQe!{3Kd7Slqp*$VdbI!ipJ{AGh%X;HA>H4O)httw67NXC3cTicA?-PGfVlf@KH7GY zJC0a&*okuXmQ#6# zb@j^QwU+1}mF*kW7hlgWRIzPi=T~wZ>2s>AFYB&`j#T-a zpUxEDf608;8|fSrU_NdO|NbwjPzW}=KON&oB28_AXq6{kI@`-vZr)xl+?tkUyuh>N zEBeA$WRq4qNdM$aQf}{a7VP3CV&(8Cxv4gI%jU{gWe=7toxgHH)WQc8y0aS!Y}O93 zuT^h!%}_cv2a*tFh5Le-TtgOT)@~MsWO^MNv9?UUJ1wpjjWg#I7SCio+cH{YdQ3D> zVk|A_ty-KMU{cx?XT2l$d0<+@ykYOe$|$={L-#sDs~qTVt@FPcTx!QSxr zD_L51i;XsMBT#z)T$=l6|B`8X7q!MqGoPJ1U4Pn_So@vGFSOIAf2d-@<6o82L0`6R zIbj=gFh^wauYzfyuPV-+j}sPoiu^0#c!*5&DMKkK8~*y6m@HA;cPrY$0jbFJs~+ULM7V^pF%FU`ab#3&0u zdjqEoQZBXo>Dnx}6PWy_O$*QS5#00(&%>Ly4^xa37#m}VPJ7Ti4qD*VcHS;0(-!C7 z;VA-%Ec%AC;cEezWv)VIq^WZT*f_tme!Gkjv5BePuwLIw=;mw4D|GC z=-PF_bO$_rc>FnE*M-H*cbC=qxdo3H!%etz_#}kZR5H)V{-)&E;P`6b_$0U~TkS_;LHEle1 ziV&O1!9;Sx;Zz)Y-AaglcglgkjybEhc!(S3R?(08^9*8QNS12LZ8H9gLS6vBBDh>k z|MzD9U2GV%_HnRuyk(ds%XrQVap_upr@G{1PlCg0my}&qc~4``3IuOD`N20>?3I?g zEf+QzwxQsm4d;g6ILhq1Y@|t#F2h{2YiPVrzW}oDj(TEWWJVATz>|%V@HPr+pnwi9 zzx9@!S(eT-{#E*ojc=#9)8bpVPgADYw%ly>SG`Nk^}G$LHt7w0&e_k z4BDzUwNJ*PSCq;Y8D*#SS5gBk8Fz03*WzEL!ycx5dJBiUU4L)jnI6<|UkZcfs(X?0 zxR(&YL*INNI~Av??j)QxAh90)+ky%zyoH}FHg|uhy^FUn8%SZlhg(3n0qwoJIXEf* z+AO^T=J-`GNxd|Q^~n2V&S4r$yBMcx>4!FzKHO8UThCmd$LvzEXeUdztn-U3X>u>v zV}_sB2~|f7UOeXOL(`_>7ccNld2VMlTWyQNqsks7BK?%c(qdK4;dLH|J*&eo+A86G z>dqsZYW`iI#YiIi^+UtOnzR=j=I9dfxX)v3!101v#e>k!1ios)fNPu zyqux)f@6ZwbZH@Y1fJ>#8CgibvP|on1AExP3-c4FgXfwz%Mjr;HcUKE+AZ>(rtRl7 z+P(md=|4mi^!@N)wljVn0KX=z^{WwI?s70m$bH}?&YguzHGJE)Q7&xrue49Nl^>_% zkM^%7-8bP@8uaPAKI`+i#si17<%VHd^S3u~BDY+nxpg_SFvgv`M*9n|mYDP(f*vxi zE0}*crI5A$wXS!H54KlK8Ib1toyoqfz# z>i(GJ0_Ms#-x+$&tYfjeocnw$*Zl+6*Jo~sI_lr74kIuc00ug~xg+6V1!L~jeO zx#ajaOriBx+h=FjgU1qG?-oY$b6reXq#Zau{;MYPfcL*u0N>9(S(UgCc}db<|C_tO zQ=w0JvXyfpYFUnp^F2jsYIyzFOTB^5w*e>)T}E*PAL*pMaZ3Iv7)r>nHiOI5VY~T$9ihC>+zwH?I8Y_{IW?;{@qag z_ayR8#%Ney$r@LV&WO!-Fh zjd68-pRzLo?`m6s`q~q?ciD?6#0tn3Z zgHOARL#9vMj=LL0dEYKJ#dGA=rMy{5jrF8mt4rxONIlDs6SAC|+&Nd1DTWc3vIEJCJ`)rG+m)D9iF1pC{&dE3P&9(=Bn}^&2aYGPzs&S(+U>;Z!SD z`1s1wJI!|}@vZBF#{Ono()`6O>S*IGLMeAaC1;jY5q#gv9Q(SX|trr++Z za|TO)ok3IR+(H`Ufs4KCJa5vW{U*Gd=*P|}cq|xj!oi_DTUT@DJ4==z$$V#K8hM^< z5ZFx&_u@9WCx58Vq$c41a$}yKZT!~*t1+s361(f>#I7=$e)oPg520@4W$RTt<^WgGXVnkDm-VWD> zH}qw^xXY&6!DouqKYFVmrVV`9;h>Zsd+|K@bg{HCKfUSorJI6~>hp~g^_N{+qq6U^ zh^(KEX&%WMm&NN4?t0%@F4|tN!>>-ZT`-~2>!l9smg4~%PLYLRn?esSb*L`H@%{)< z+W^Uju(=v=jLDZ&HN#F7impZqbbf3o_~#q;9=dH_hn4L=+j3YG6x~cFPE(7;y zrKA_FK!}g8kvx)_Z^zY0D)qccCDTh8UIjV1Fn>OfJJc9fRV5wt3IlRTN%HG6e>#Kytgp;{-10^OMz z&!OF2HojoiG5MsUImpA3tef&UO0U1WnrAT4i`e?s({U#?>L$kRA(?ag;9Vo#WA6Am z`qf_NyOR82?-k^u_Jf}Ck-Fhp9eC#X;dk|qu3M?SRui_`(2s}S`*P&B2s4g{PUYzryCsc? z=1XakscxHOwMdOsH#1d?000bJ9v`juv{+nDZrMKOcky}^tEOW%BLLf09Y0IOBJ=?K z=K1cPUr>**>MgI`;GQ1s3vQ`P9PAx#RK7iKlJypD^l{D$_H_ocdU7j*_=xDz3478h zZttFl_ZZwl489DyKDqJf-(r&&a+nPcZqmLLp*i`xPIq5@kp+;A%<%Wcz_H582=je` zW0kE(>s$nO$z&@F984BO$5gZn@}_Y$y_8x_J7~QpHR}4gBgSJCW%$U zuV>OVZI6PD_-m)7@J5K)a9^=mR>seUImK%YcM2>w`i`Ws*H5EjVh8$U;#3_$Z0emx zafHQV8lC9ebU;j0E(!~mThDqf9!rf|VY}=*oge#3=@67g&edEjmar+G^orhCRg)5S zQ(SV_;Pgu0^eW%PZki+`EfY%9um;VxtzL(@RKNgF{J$O zB?c8CJq%o+!m1Elt0%Y=>V-YB+$=S&g#)s8McD(T2*^bv=VC57OPH&9Kjzg3)w~jb z-7t=~7`0XQDi-%D1@|fk_o@WBrF*_p2KZGKlVB3mGE|nIa3BBLhN~$U@f0Lbk|4_Wqr+7&>=r$Vo2|L@9@2@d`?; ze*6Cl(SN}ML`4K+>2HZrY#C5&DN$^JDYnq{Nlsq`zTrlVa_NMG@C;M#&;=>7r@rVt(o3M(HALS%qt1tE}AJ z%N%ZnowC+{bs0p53u2p@3FAhzISp`s$0=hDm$KMXih)?^SnMk$L+<(|Yq`%^j@`^Z z%Zlj`?vEspoS_xJ(J=nP-~ht%g`Ckdp7AoCNi&{lFrJw+p1Coe1v4_~{M!<_Id%YN zulBPrb}P>1KX{aR_CLV4pM}Nvf7I1~ib+;_$?WyJNqOwB%D*uJ{}ii?#{X|9V`1!s zYv0T|{!rN_IwMYlT;R{+_+NKXobvy)i+^ll+i*|=D4mLMZR$T_{1f4SJ^#!9LyY(d zRD`(yna4jd{>dWnFN^a(#OOXjCe6uEIUJL zWDT7cX-n9R$dva$ZKbjMkd!$EO>3}!iYE&M8rs6%)#5(N3O{aHcXxR-$g zlvovlAEy4N2?zeohX2bA$e>G7{?O>58ZPLUpp+lh=+wiFQMD*hGR55zC(p)W{D1Tr zEQFu_W$pfVBLw_rF=KJUCDa5%-x;KLn*4eCud2Q^j;&HBLo^%z>fgE*cFB6_5bljc zLL?eFO&)l+F(`u)KlP@lHkx$^g$~I6cU%5Xf1or%PdEp_g`jW|7tC?_;htzCoi&f#(-r8P)hbXBt|(?OJSH;PWi==OQ!k_~f~Ry#dSb ze$KbYtqr%wV$+DvUzvVo+^BOlJ&WNoi_mnDxXp)c>)u}US(9CZJq~`{3LjIHIh=o- zgn5EWU7i8{^J^SE4KBN3i{JJcn=htyw5-x5=N0hXSAC%iYpfr^Ql4Y9r%^o?PG7fAD@VRJTBu&eAUP3z{_(v)M;E?tG>+qF@XwPqWG z^}2qy81{`86X39A!u4hiGGhmv-{b=mhvoxEH-N31P+b!Mn{V;j)m?hnraTYCfcmbN zz@dT!jHgHEheV~j%<(gGUvBNs8ZYa$J%q*}q}RPe^N$zcF3FNEP0-=#y5;sY;Q|}` zvV*F`VzYocd#>G$hL*MY7VBMGlHG-HA%yvsd3~i}lzGLVBB4jk(1P=p>01C3l^f3( z0Qmca^gOPzKF#O7?2D_z<#*Wu^f0y@1UGj5W+T2ILYeo%Y8@sb;9=Z*p`yDHmqr_D zKbD%CutrEvTCNXzEUoG^%WmthG%hcyHFtrNwyXSh{ma9h9q;`fFYrm>z{ER`>2@|L zw-)$wTb{>{`}~V-@w$3<>ZTkUTwxA?8trX*{LJ-(otH{on%=N-s8v!CRoZ)nBMZgmFx7|Ep~UmPN(U z2G6%gTsai`_N?~|IweYPJ5sU7n0 z?;*BL7RqqW_>n#tlpoKVdVckO&$&o*;AHW^2bl7)W$gnYva8f0vnqkJ`%8N&VaYqK zkAnj9i{`B!dkYJ{!aXL45TTDu*UYunEuTTQiKQq1{HvtFX2xy{Pk{ksQ* zJ+69^#YuSr+t=yOc4D?>Vf?o|yJQ~UtS~opZ4|;Ez?a;Lt(|W+n!~-WkNp6=28Z~- z$I}!0?riEebNs;Z1+M3$^a68)X-8UM+^u!B?Zx2vvaY$u#xP%aa20ScYR$p@U8i6rxa+qrFP2f%YP4qOy)DGM^ml6mM zKYVYsvd{ChJ%uAJvj(J3m(A%j$r=>x>;}oZ%qyeaN_`}rRoL{g(xsLGQ#@(s%UAcx zh}>^f{Pd%&LoeD3eq`=tgY&5|H|0BfE+sYw6-KrhUR+z>Ub{Bf-0JfOm}=Q%kJPZt zg($mt;M(dX#T9AnG|YLo!?{oZZ#AIuR{F+!&-k9ev+ZjsFJ6(`k1aK3(M#zrWbrf3 z=hO7xywYWYi5noW>L2E%Tn?-QX};#zxQd11>H5F~BZ9&LMFJ0{&Y zFWG*;g0Y(5n{2o3O!;O$!$a6}-)=ikr_Nz@_}YvSuCE?Ys9KC_qR!t!;)Dns#x0_J znf?5MC;^PfGyC}?QT-aq`s`<4B6Tq0>Fj4po(hV4wZZq&=-!6~^FJ52V@05*_?8g4 z@>UcV(uUc(kHa)CY=-{$jS{jKCYwFgl{ zEF6{k=$pSFj8zZ6tlqhj@qxh@RVe!3g3a5W^00F4 z9FpQq5Zb)sV9lOMHb~H5>u)4j7h~(c`!i(gFCthkB=~ZO4rYD`Zb0U3x_g;SL}buO zWUzwFR3(ywxjPXDcX2R%hJy<+hIC>7sjT;MT6*`z8}IBc+x|B)(ZL@Lbg|YS2kFMc zJbi*@KWpvl%I3!Lb?i~Bbf{q!yg1UG)Zlvkq`(k?bo{;&vKzUSi+6OBr@y4EnyYzbG*sx6FH6pty46d5RLhR*sx8}l1!g!R^O z3~Av`;^_C9J4tLs`$Q^ER{g{=mQ0j^?KVX5f-De+A`-p>DQLUxDQwa0 zs)Jf+c#YQm>UDZLK?She$cXKe$bM3Gj;3@F=us)(cVjn-NQJ=FCDM1x+EHVS9se4Z zFe9)^OCw&LB}1?=oq!1#btrt4{@~vuNK*~c3&2sv*3Sa545Q9gta-MzVbxuAq@=6w zJ(b1wk$DU^M>1h;p}^v{pvDNcQ)GPiD#=Giq->Dq(Ln2fN+fFkHGFCUK;C-LR@cI0 z8ISZb-ctLsL=HOkCp@CKNivnf5EioDaA_&8XVQ^aC6Axckv$<}GAg0ir?_pg*wxC{ z&2QSJP6h7&X@JDWOy1JoXymt% zu|k)boYE0yMgyrgh{Sy3VwZd6Pi0YV>}03 zg!b8Mh3Ko6ZPj{KxC|0aa>zS4w3HFLB+RS4gL<=d7R#s&daZbDg!Ucc%O=82PI&4A zop!j!XKx!ZzLbAuek8h}r3otxSl1Fb6^lV>h0QHA*J%y9Yj@d{IcmCyC%vYxjEPz_tXq@_k>Yvy15); zGu;bqc?P(9zLHD^j?5abKMGx~wGvM>)QYVT&fu?&>&@`1>AJpyLd`F#YMY(Kqgx)w z)WBZOu5UN6?&cFUbH{1n(u7aWgsRTXmS{()2&%Mm^j@YuV|bZ8@HJx*_~E{eX8@i<_sl@fmY6RrH)~olvw1E2*3-gDxErQ zIPf8=4!1AAIzsG~97gd+(*O@|3CzAEJYqc3>CN*i^OB*<;~#zXpA}$nw+3^9A1ltL z<|hG8o8wHI8T}Rk{ryXVxnd%KxNd2sUJ{SA&$%E!j%2Pjd4=cF32TS;jS##}&odt8 z9kpXCc;$SyX1)?`cp>B;%SN>s3GR+Gc_ht8^;9@Mwu)*$+Mpvk3wTc*42czvH&Tyw zlqO%bSHh{J+KkRZt;`9cPSsZGU&+aiHi&lwOK+aaCW!>Zvfi!38WH_{W|>^yLh1El zJWG#o{OhH77WxlN!EG;ev2*Ts;Mkl;lVOnM+4Vt?+{&na!dTH?gV4YUT5s+KqbboC zV%ND!lji_$zHr_RXT^R0ao!ax2b zILF@fC;4}Sv+eJ=HJ^Rdd=Q_RnBDO~u9Ix}sPreHY_S0oci8UUL;S^8mtw##=)<1l^pkyd zo?kF{j{MWzXsI2{!np%_eN4}XK;chuShz^-fTYlrU}C>0ntuDv+hKNR5*wAQ#4XL;RSz9eZ3Q}K>vRo{5PIAf8jCw8;>#oQ&8BnuU_qoWtF9H z{&`@gsq*eP{cyhYl&$mY(hW z_tgx($$UTuDH&2bfkyPG3h5kqP(5W60=7>M0~+7QI9Ppu4MH>7p| zRq9cT?qwmcFdSrIvoIV|c;}#d7odBWpnF%Kd;c%W-a0CdWo`S8KnRdP5-fqB!QI{6 z2X_nZu7h-t;KAKtaCevB?(XjH!QV;tKIiQ7eCMBUEqc}Tnr5cEs`{?0YVPaTl?WcS z2p)|H9zPL0IuJa15IhDDJVp>aCJ;Pk5IhzTJXR1qHV{039R!a91dkI0j|=n=$h5S- zE>EgYU}0v5c%RP(A>k|yesAC62BSbke4v0_FZaFY`RQhN&d>RJ1!sR*UvrBXz(*pV z19JF^1CZ+UFQ8IDLl<6(rL8Xdu{v#idLi1GH#dpCr>t(QVUg}q^*yGqO~eU}TA-kH z>n7mmJif@jpw?; zs?J^suH*A)9C$_E9iE2$#dE!GP27xfS@(Mx2xT6DPcxBX&qz&XApUKP0$lYhkcp`rWsL&;OlL-&u>1^pj^ zPed9Gf;e7kPS0MEKrDmQzG;|~JLS$B)my&(siVLGp~nouui})&M0HpFAC8NPXbyrxv->#$5GLw)GGg5xLzU7i80lJ*q$8F3j!PD_FS&Z*##M zS)$1Fzjsf-3TsD{jA}V(EFC@$_H6Jt2~O?vZjqrtKfJ=@&@F6(bN>>o;A?;YDYcCS z?r|Pd)w*&Iq8cZM-U=)y%RUOal;t&hYL(JGN~mAtPWFFS3e=T3lqYeLij#f`Gw+z8beedB-X~*E&pt-% zBGng1SlvHD6+wZA#*VOHj73bDs__~i(@fu{=82HNM{`j@beK+&rE&@eCu^YP6&#m5 zEKc{>g`43UoV!Y}m%Y23@E+~dS=;LroW+qi_<_O_a4BhmRIQgu9vxb6o0&$^d^<^+t})ho|Xp0^QrFb zpVTUdsv+)?Bzh|VCroK%4l~lPRTK6#lfVJ>&WC}1?J?<$5Ao-8E_G+PJTON?cl!@0 zpT^Pd*QstOb%ftfiX1uOjw~AQmJwa+Fv#rW>!_f$n|@U4E`>sMKxMJA=8LR1jmd1- z{Y7s!66ZcnwU!<|uc$5S>~JrvZRAv3 zw-y23o4^k2qjIl{_|nXXe8FDc#Qr(|H~{xriUbdd;Riy1s-ozCCfWx(bJ2la zpN_-G?Zt=7Q0yBRSJ|&#vp79uFV;KMEn-F!eFH~~?0Z~)E{QmyXT+{eJ6WD+Kh*#zPlgZoR?$F( zJa9aIEaGi*Lj%Ag)+0AuZ*o1dcBP;zh@mRDK)mvEU=>kd6_<0<=1lmi1o^61$a6i^ zWVmEy9)2L0cED=Z+IW2}8t*qHqAs`;j-7ne8WFmq{y4?eRA{+YUTzfJz}9T{#0}G{|XuJ$0VXQ11^MPnYgKplSqy4g<++n5fcaz5*lUs#>c&& zzrAK#DU2Lcrm1G6%|ic=hsrpG)c8>tmP#5?jSxW%dKiCF4545~E^Pn+DMye~{jRV2 zy@tGiG+I$IM$xUHTwG2yOJ6mshFn6tQ;;45#VR@&o(v16*Iu$wk()R_&J`Vy^B{_V zk8v(|BOyu_Bf6!sRun-w8rEk@*l*gXs47)@n6)5D7|C#|G#hU$VNexmP_>+27^0v= zqN=oA)EDuAFMI%|Q$5RTEv#RrU@OUVGN}c+87U9moJ%YfVYsP*9|M;}lzv`t+iI0* zglK(U!d*p=KBRg0ar)~JR~xt&vE63{Ef~=jZ7h{#Yei4kl?N>9iPNOY6hv;>D(T+E zO-LMhGc#SP>0esfO51myK1rIe-27BoKr|eimoNa6}EnA&OW(pt=%GiefP?CX;nsF-bm9nmTqSl=!V2)>wTYtR~QzQLG!FFz_L9 zY$oj;T3Ep!>(O6Ejc~2ty;A19ID+cdT^rDW_dZg7`AVDra7bmum$~QS^fi)Jh2U6^)zn3zf4jP0O`@OcnHl9n?zj_nC~F zh*?PmC8*PcFus9V0MB}sQK8nE=Q6z#=I4@Ewk~}UPR&M?el6BPgY6COPD}0=mbope zku<;Z3I%iQYdyCgFT=rH&ADy3Pt#9?=Lzk3RFv0;Eq(^RY=eE)${RPKWv~?7&+VSb zyQHWo4%I$iCdJ-8X5RpDEY%jmq4gwIc`aie(UnV?S=-S5p8$4{YU+|bESJ(M$gvT5z}50U^yX%^oxEnW`y*8+Dao92>q9c930XDa z=1O*>fIvakIho0KIU*(t7c*gjykf`%E4gMpnZPF&s}HX9l?j!cru%sg7Zdd&RRaMD zUzi+18(!s|-)d}&4f~6l-rfYp+`NYnA1Vc37D|a$O-M0QS$T|rU3U52b5*hB7y|vS zSYR;!h$bn|mo|HQU8l6yL$73Y)wqa`Us^vB5Yf!Cg@#8Yeslb|S}Ur7eaOT=xM2vp z%eFyBh?xMctPtHBU23cEB~kOU`?wqIMpZdnYPn%}5CN9nd7~e6DoD7VTNDf#VnViS zM9M?LmBaoK231>S_=>IL_>;0e6M$AJG&6P?J7rx)P!TS{@4q8JRmeh?I_5_x%;qS( z!CvBDt@4Lw^B=F;kRR;-pY}kri^@~EEs`r^ObyHeCi7;Do!u1troJ6DdmaShUqboywsL zStck-TK{qT@%=mNGYJ{-w{IPhR7J4$142ye(7W>GCOnH5e6tMNVa&j2%3MqhmXLsY zMP5-ry`JZ-o+rEh?}%U!9xtO74{t#Igr2VFJ`AjR*9J@nB9Um%xom+Q6NiBZ?^{7F z*?sf=3ky6J`=S5m@5KB7(cQryWBy-v9K zndN%DF7iJnBuE@Vzi;c?29$m7ZPo-aYS=i#k|x&mdDeZX}rqmse~)qI+HvWKpcR zz=*`B{Wv`ttsnEJx zl9DMURHO&iUnbW@2^Pl4IzULol#5rvt%ipl88xVDdS5F_wk?&oeY_RyHvCEoM5_9g zN`9N`e<$|ao2lB`Rf#rrj3Qdd4Mw#@LVL4*(UI(a$9E##lRT;i_ZPuf-xg@Mq{kyW z$gtCH=w>r-c6L*zpCa|xVTsrQ@oUpH1rx3+fQ?lFty1~tD z)0QENUv^c<1k4R5Q%=KtQKa{mUoKB)G6J8Vd9!*V;)ZUe%!z57$ISbK>oq_fJDWHV zf|+jXn~|V@EOx*O+q(s1uQFx?u;gL96j>pcy*+dL72 zPi5nfF!;vCLBUNF8RWh^JOrLS3qcylw}Ug>WCEx0n`K$aRqMrPN0t`_Z@dBW33caL zLX!K%+Or%zEgxPicFA6kDYB{x+e`AYo3YIXM@qTLL5tJE)oWKD9JCR6up zs-tohTaMWujDrK-?s;bBv}{aO@Qf86tBfzf6dt2)7~-)Q`Br}pbg1+hk*C7zMY0~sfr=ywdd2uS z^?ILSr#ke$+S&1zbN*Jnc1{)f{1#7legDz9U%=lmq(&iLhrbdH*D4Qbv?R1A0S!AfIo2RjqCC|Y`H zHV3W3_U!o(zwDo=wM!xH78Ic*!TFZAfCx7{H#{&v1anWay9XYgm0eK21hd>J^Y|UY z?5D2bPrYP;zh^2`DK`p%AJkbRGvbt+m`}*n>2AzBIa5t3l^@srelEHIO#p$_B~b9j zx=!3ppD4B<7q6%cWxp$H#!7Tuw%?E?%&0KPj@vx?Gc)e~9s<$fa&^8SKOK1*yOdJk!47+G$IOCpYv#A=_Vxg^2<bA3(WGDCKV_rWS1aZZ5n(ikJWQ8p7Ibm!e6_NKdTH)+8B=5mlZFP3#K zazcCwC8Khq+TTcp`n?uHw@r*Y7027OA;srWJiX_51dtSO!KPnf($srssZA>(NX|&3 zt$A2Lf6SK1X7pNr4u6sz?iam*xih0+)A~RM&CV{_)3FgJu&2~`qlGYThqT9g!Ti8S z^k=^t8Ox6OdQ;01@!5Y%)UsLbI9T;2Ir5dJh{Ti`&Ly>-9#wC%N1wnHPZ=z)2~i5$ zL6<4UHbbV1i^#V^6I}t`NE3%_pi4YfD2)6s)YotOuZD!F{Xj1cgP*ZSa?ah9s?x()=(I3>`CvGc4cBffFIPK9L1H2WK+_hkJc+g=d1;8?eY&9 zz(Yx=jDNMvT1|y3rk?J=z>?=?Z!O$4FvE7U@a9AK_;x~!lBPs~%|tz8UTZD7W?{(Wy1p50X$dcH@W_#{V!2l7`_%kyOD2_q%uA}IbP8Hxdbs2^S zSUSc-lI%tT&$hfmrjn*2>UH>>_|8lOsj9rD^gjr3RYjy=9-4oElN<3MKJ~~xP^b1^ zzR(dpU@@MoZk7De;qlUhs%|+=k!3cKwuzDhS-7ZR+Wl1j%etA;Cv7_`G;KRKx53j> zCMWJ@`nw}GA!qDh@-C25tMdAJbNz)0fWc;*q{RDQ!R~(;cwW>&;~bRVgK2}1koub< zf&LHOAn0Dnn_S7;RLQ$o$@@^ri(SRbRmH1W73R+5t}T8w(5*feVC4`Nc&5hNkrE&o zY}?mC`lJ-_9;n^s0|beMT}bHyL5G})A19~#C(n~xJZO(no1#x!8bU!&mZ%GhLx^rx z5+o8Xw5n~jdlb}Q)N)h9$6?c`8)BUAg<=U+G8Mw6Q$&N{TvZY#tO&y|6XszFQYW|n zhvf6e$Aic6sxF|Tv*Zew=91_7J#=E0B1vZBU&AzLw3z_kEwWAD$J z!?^7jMMB!;A0`EsT`afqibdp}9b+8V8J@Pz~SL8@p= zIJqnE^B37w$0NLjlx5{iD-jC(=(f;HEyfLKo~i=tP%ML3zamLa^N{whNO@!edVp?t zn`S_OpiGF_)1*QBzI$5)^3l9{e)uuLEtIg@c6aDakK$j5(mza+e>H*L(V98jpF0_f z?x{uQ+y4XE@M*+k1J*!dR5u;@@i9}M3wK{^`0%#AKtPu*_3_HBK+CN`%WXi*Z9&Uz zN6YO-%k4+Y9Y!l3H&~*NaHoV!P09yxk;Y4xWjv?BJcDK{lYidcjkn*+XOPj(kw5*E zE68qex*L@>gG2zr3wV20)4Twk=emt=Zk@Uu(kx~@9rEO^0Np*Hl!0AZ5`2!@}SR>Z?Dqr-N7_MgP#WFpnW^4kVo}&bnV|#hgKkG>K zS?u}BpL+r2CG~i-&-i9jHN(um{hq+*km#4>yzTRl!8*v$IiTuA{f_q5c{B`~<0`w# z3L4HNy;9F2J;jFz2DYWX0YeAXafL+Wno#uktXyfhWZ}@wN@mLoXQcQ_ry0MvE zgfpl}IA_R`{s0tNwy2jDT7my5Wg;OwHvzS7IUDqw5m9tl2~SHJdCWlzbbJBb}@M_Eps;H zXP6yvv|%^${~}{USx{s)ewyJ)N%x+9PyiZq(S**)<_r#}8u8z_*?&*ZJvOL0Y2g0Z zse;gRL(y|1(Q{+ba}&{XQvvjHNHgA7LF9QMzQ2W8qU1-_(Qg=UT}J)U&_XJpyV%@c z^@WJE6tV?#;Pq~cJ_tW@eof>7%_t?2NG5xz1RkE|ys85ojkVYvXSl}Uwt??(m2l!o zb^SK~)d0A45>D`R#qd)Vu(toIeQE5nvs>VQNVR{4B(asRAVm))EQiq-m!tfSV@4@? z(+Y)=fdLFLm{3I@X)vLm+K2rR%#5-p@VfzM#EGr{(Ex11#MUOjy{kXwW+I{^9wTn;#Zf9Cy_(Y!wr^I~cz3Bxh$S)s&5kVL{nw zCH4O}_5PnICI8_J|C{F4>QeciXi7&-Nt4R&Q?KKBtAo$6is*R4TPn>gytYrC;fekY zY>3}rcnbl@a=)PGlAuFZ;oRxs7s@gqB7i zo{Ci>&(!=@=w&rpHyG60DD9Bzl zOHOJ!3SO(+RsNIt@P~}FI1H%fC3dIX{M*^7{tZeERpD(VK!}lfcUkwsp`QP$9z)+2 zPelYe9`vQ$cugR|$ZAu`7*WYsQRzBK8M^+Xx@V<`T~)bf|5e?+T1Q0@O`lT_Hh<~U zIC0MwT=tmLI7wBngvdSQ+MA^K*+`YkZAndqpK}%(%>56B^2V>8 zUYdN}t{f;@6bd(^`iJ=Ozg6>OSI2jqM=a-jR|wI032V^e#uo$Um79Z}TY#Qhf?ifZ zT*0ZtxFRH=#i%Rvef@yAqVaR;W?2Rm^w(_pjB(22BBX(uo0sPnk3a9dNh<}eH=R`o z#v6ZixP|P)E{)|JPkI@xc}E6+qXyb<2mhiZG{#wmkB5kt%#juC{7)*NW?Jq?$ zlhdl3XzoRK*3_Nz(5k-#!QlL?1*eIXngT^JJF(8-x1mK=0@MHo51B#Va)-(eIYN4o zi+w8w&qrVAQitF}DKB;zFIO3_W*M)08E{ac>i(3a(d?JkzH4$nVuX1r@ibXx2sxQyI?q?SFk zVLpU$Ts8qWn%d18_n#3Af|i?umRo?9TY~o25Ge({nj&88VqUIdUd>|v#kcXPWf^2N z38xusG?;3o8ErOeslCI+><`NW+07)zG~K_p>T0F~BgZ|d0Xkai2ekMcPaUY_5x1t_ zlY2+;|nYq3sCWj9W_nvso1mCAL2{Yg{#5vmXDjUf`V$fX zgI<5e8ebHPff$+Zna1#?*WmcM>AuxeS2r!o!<}K1U0$smH~R1^LaSXK*hHdBU*1jf zdN7)1LtwGC5KD1JqVi}_!48ynBqA28ykrYt{32Xz3Ov$OJbzTYSRn^HqjA*-;%Ezj ziucNP6)z6R!5(N$wSnks`NA0A_fOUwoOjvp>%S2c2SMRSVbFqXtv(G}kgwI3LJNwu z`kw?7;hU7jNK{6rdgi^va#ZhKNA%H&i5rdkf(#pthl0=xbFJ-J>ZZ%bC9i;dWKfcR z`F$)25&?ar!;B>JW3`Vk@m(*XV|stqxrzwgGxi#<0Uf&E`kcs#x_qKl4of+Dt})Qk z)4}qeY|Y}mANVSJP}DjeOWhuMj`CH0CqI$7R+y5V7)X*JrGsTF3yFW)f_U$n*;C59wW>yu7{l! zAf24eF3y0RRTnbGFCzAus>mxwNmimDGfN1hry7*fT^=(fh_1$IEIi_3kA735Om*U!K!*-=;bX;I+d6 zJ#Vn^)*~NUpXJr2$Kl^jM+s#5{yy7mh{Ck2=?*EALzEi3xCM4rNQj)WNL~(PVpx8_A4%xv zH={=^nuYFEj3f;6oAC!Z1ONLZk!1Y%H&*ZM8Q#Mo!oB}QP+{&Lj4ZazuRp(hyZq=4 zc58N{40F%#15T8w?RE?|*&D&wS`A1g+I}p>?TOQ?P$1KlgY!0fqbv4O1Jbd!A98WK z-}EYE|K!x+*9N;A7@NBRDOKB#1}JX-UK>H9(Th>CA)$Px?2Bn*Q21W?6_$-b<$Gmc zXweAW`)p&-0o{WZ1JFI}_YKnY-wpm586kdbk!@QMWQFdL z^#Tw=;Z1nkXQLShZM6*{6U5ExRe$%&lmNR^0rZj4K0A-oN=8nG`FV0 z(N7r>Xp&|GRm|1gorw`Yo{6!?Po8OW_r}TKMy-v_6jtxNIHgko}b$9#_HVH5t&HYxa4=~#IQ zBb9rup~PzQbmUd2`4Nu{CYJNOaUCW$I}Y*WsEqRhNo4B%iPgpKtazfp@haO)DDE{I z`*4y(kfLLtrG1=}KFN{At$$ycWn|~N>+E^yjZvsZs+Q);clL*k2Fjwd>HNk=`-@4J5Q-)23CJ%Lu)Z7Q~$%A%*V-EZjT z3ZJfxbB>mf7pK0$q}YsPt8 zONTU6dN!xmZ2wQ_5}R!4?+-pm*TIE_>r3zBbboI9#eN}J*4oSKZ*M<_ z@wHzsxj4E``RhocILdZ?SmJ`;7Jqh0W}UMJ1&J1OGx49)nr_#-H$eo2J83!?uq}5N zf*$y{M*8JO+-$hJ!RGeD#2lmJFk!L1#V3r!#XGa((yeAD2}KwF3o|dK&op#DB!ENcx4%;kLFGAvq9oM5-8v?&dra(HN7??|FKJyfIEAt21Z-lic!3{^(9$a%t#y(@5H;?^#!~ zeJUu7R6)btUD-%BXHPc5ZKUq68f_=f`B;Z0)O?Y@A!$p~kiAj9(G*-CSV0+KR+>Da zPgJCL9e+=Z>ar{dKXzw_9l#M_Xd1bJ@_x@O&1vP9l$EzN{lh?b{FA6A9#>44cor!w?RbfqBQrh6}N+9`UZ<04NITcPlVQEJ`;%CTlY=7)gz#BN&Qt>GJmi0Y-1g z31jT~@7_4L={$QMY~I?B;1!j;WeZd*Q5#j%eI_BpA#|fwhAsuVGjSgyenDYR6x|t6 zfUX5@I4$+tGF|1XlIW?s+*E$3?o#|aCz&ECNjiY&+zx)qRZJD+_DWc96JR^Kb@FjuFjWqdHV5K+Y$Pt$zF z{O8w+Ug6|?O^8jldC!0K{`V^?XH~wi@^RWj6ylBkxK&=b)n2$YUbwYhxOHB*^W&d0YArOXkABT3IhDM~-5vtaTtlk=` z-ioZz8miHXtl1i>Il3lfq4oc*PNP>PtPJ4J_*IIbU~RfTio*-fAm@=IXT2rpCelfb zjKhVC!{s|RL-ZJZ<+QvCJrh;DxI|1gk%UR_RHZ%z6#g&OSgUx$1|aN`?VeJ=(g3>>P;$ht7XG+=1l~b zJS{(O#XPT4wROIbpA0Q?7cJ1fsA`kbiax%-*<=Axvp#HN%&?Quoa(IkN9=VdVT*+kEqjoj4Mkgd5R$3Fny8sbx8e!aXOJgDrz zU9sMh4QLoNtU6EiaNo9!J=#aOe+E~{s_u!q66V9I?v1;WF1V`kwh(uvOz_nFt;aVw zl&lJ-U(a!*qK2nd;G9`y*?u2%DtP(lP1LGCZ^}*#PXQ}%wSuF+KVlU{-N@`@4aG{E zW;3O&%3%I2&i&<-ipzC_wGbGES@ERYwf@Pa#%1maH6#N$anbVpiUBul~cJ)$|%y4|--#TqUsfwDz(P;^@yyr{iD}mcq`FC)Zk^xBHjSMTf^R&FGZ- zhYZ$AQ0W=Y!sfKxibu%R>{4yjmBm_dizN?N@m1F00y0I(wr~H2^Bv{fYp%yj5E+l! zLzBk-;q_X(Hn)`*&z1UE%LDM=&K&KW!{;xd&%Ley<;lNz`}+adhaGSbHK+$(C9`gVeTNo+vdY@vCJ&YfbUARA><9~}J=3I?#Z>RUxw0ehKdDX993nfG;m{<}t zA+NnTW^VVyN;r^KiYiI9}NTx4Fvke zeU%Xx;cS_*Zy6Rg;M0XBaM`|m@~+NZ0p!|X0vvE&sUBSR%=Od|H#or^YXIZ`vKgi`4ES|$sMcZEq4Cc2JQ zvPEyt*5h*!h+m17GpV;_G-3@~9xqR?k%Vz?(LD9(CZOu-L8Phsf;$V=C<{wHHt1+5 zCJDABbK^)ZjFi7O-ZAb=?OR|w=K|FpH|iwT&sra9yqykFJt6Ko5QPF8N|Mhwl+CQm zOM(pypPU<-*jB46q-UHSR9eYfJ5Wq_9*;~dDU{v=p-?-e+qdkNH|CW5WodzfEpJ{- z6AMJWxzpD=7$a`>4$0Rp(ti`-Qu z=BTmYB;;KRXJ=s1Cp|1B&c$mm$~O#5V1?5s3cbRPIymV4N-c*lJ?1+{x>4u4rvz+% zuSx$=Wj#=!>-l4~*(J+bkNoYh`K#DLj+s}kN8hN044ACP8|A9P8O`(ZWaqZ5OB!>B zCch(Cr#BM6Ku&qBwU>; zDCh&sYyT*&)2KI~QNh-N;N%zAr2ZoXpIxG_Z1TL?jGB9?zzC`h|7&CVNemL1)) zhIqASw;MN>zhB5ov(Izh0%@3f_Bj3FCRFOsZrkNn>eg{~CmCDQLe!U6VvBz^nr**E#fmY<&@ z9V^h`sk;@W2?Fx$4I`r~Xn_Jh#ukd|q}Zux%_P*4SM%iq)PC&*3uo9A)MLRUFI01G zLZa8qnm?hd4$bD%&vgnIF=8S+QHsBsR-UxNJ>M^|*Y1*SZGN{G}?yk%B6lpu(ozg1ImgiwkhJ(C1O#u&p6? zjvDP>GcLL#sSaqrb+cJq-RCj5T)!1@>DC^*kj89OZ^8`L?{pbxmy2odXmNe??Oxks zITD<>uF2ooJ5RS9yZU7(A0RX-xklYw>eV8)uAQM+hvvkFsY20gcvpKL#SNpe*xGg;NHYge*(B$aVGokd8`W6`R`>TTnoh?VdlIv!ysDIJxz5ldPHWTS^D)! zOJlRs!nJG>vAftU%rT|>e9o~V=yV1P`gk#f>u8jx%#-k^VAs;b#M1qSk5g~e>CR)K z4{pgpxP^`MVK9_i5r2p#))GT8o^XRuRvj9G@l}|EJ;;Y^7XZi_@Zr^#uN;RgP{0I@{4SdpE58L`1wif z`3I++13V0+jidObpV3st9qUTWIx1SZwvd-Qb{vK`P8=E_UOA2{A>X{~Dv==FPsHWX zx`qbf#!lp6Z$fh0wiAB1i7se|7W-azKi9RsLk|2EGcRBUz~)yaq1?Xag$y4Gr6TUy zHSErB>~gDay8cX_Uu3o-QWX10C#KnRmK3xzbYtb35+tn&*RV79Y55?p`DSV*MSp^c zVef@w%{_C%G!>Z;* z9olqJYPt%*qTq%9k*8r&ftstx!VE^rVn(+NTX}mr!AoR1k!P589yD8SJxR-hNyZyK zokWX^_eU{x0sXlPC6vT|Vxzr91PS*w0VNa;_>nb6c5u zcRtdw3kMUdxWAq8d%yAR{#iKky02_~pRRdOx%DFddu`|F^vvA z+gD=Ve5im&fc`PSG^YNfH48fxi<62RuCWA`K#DN8BxUg7$m2&dl!9@JHd(|elPV;J z`~nVo>tELLTQu(V@W=RYV^OUPy;YV9kz6>*8(oL}DLcNRBa9Qf)}wgV1g7&3GZl2M zS8N9kMs0oF{qn2SAKo_0vKP+hv4xBqj`~s(5E^41RL(QMHY`gGG}8Mt%)H~w6tu~V zK_sf_sXvMr&DD$G7JCS6cB}DYc#28^i30l1!-)i6UJSG7=#R!O}sLeimDLbh0ZQUC=u17G+%%;`3hdU4G9q!SWRb*LwzS zu|W+VY4q@ZTw)*%$8J&jQl@5+OC1B-0ptTC_2oU|ZT3+fBZrkE_mA%WH1SF-$hXg& zg?6X38L_-(dd5LhywRUbJ=zI!f!2CEG=K&!Fsn`r$A;Fq(SwwADr9b0r=+HR(Bw?7P);$N2NPCy(TOO-H?n$>~ee2ZZq1 ztsYr|e(#09ga(jOIzIgY2r|@!I6ELT2B<<-? zi|z`m90ZR{rElzdFl`wc(HiBV4Spu4H^vOm3E{mc`uGrq3P(YPKu@nMwbe8D5rQ+} zFtBRh(mhf2K9F6$Xou@#ZcmyCkuJt7&z*@TNn!kRiJVad>2nEKmvKv+P7NG$d^XO7Mx0q{O0(Bc&oyF#2Cv*lH0>S1Z00*?s$N8pHxUM`3&X@shJL&4kfjq+ z?~gHxcUhrN=+%=1ctN}F=C9xyo*w-4yL5ydioRP4Qg>0$Pk$bTy9R{Vh@W@ulKf;< z`6l}=Gc>@5o6@fCOL*q+zGWAP(_=0~plUAzV-T$smSRvQR;d>F7FDdA*GF!ojS`rI^z>D2LAUUMM(z<(b+8&z4fB_NjI)4(*19isA9I=na%>`RXg z`7WDg#Aqm5b1=mqIi(2})^nvFp#0r+R`|KR`R#|mDZt4d>zbkfw_HA9yi0=TB!j_W z25WMOkYi7xfEHavbtup!+cT^wIR1bO8o(?6_WN>!hOOWGOH1(-wRNg}_Zpb^21{?S z9Q3(TI{R+QpReZyfrLK{brc1uAW3$r#;R@|KcBGf3TB+`NKkx87VTn_FcSZto83Cy zkPpCTXM12o#4tlgppSeRTNmZ0bzooUxO>Fp`0lT7L%e*AFgoiJkHcs5?FTEL{x_x# zh-5}OLZLpH9Y)q|SdI~;@vecfKK@^E6vJ{P?Ok%ANsF5_{0HOc0FPeJETvNV6y;-O zF@EVBx2kKpwbxm0RkJXIZ{LumLgNp^rhGLC$JF2PC;AL}ZDu^5+B@lez1$c%(7b1S zmzPG*^|D^2p*|8L8BpdTb$7grD|KbBVsIwtPu*AYJ4ZPrQ{K=2lK<{Qt<0dcl&SAD zXz-*oAstT?4U}&r-D6dAA^RBaS?nH9ynA#?LC*l3Z3bAM>hp3IVsfw((!uYPFHelpC#5goJH#Qt-MG&pBN00NA!o@2F@pL65cwF;AZFS z^+5(L77n@mo>}rajLQ4sgRlJ_AF3~J3BV1(tkpX)=01z~@t1m-|Y{ zF(pl~*RFt)hB5ZR@I6_}>g=KQ41$n0uS% zE0#M3v5dqr+%ph|rR(%y?jH5+}RLn zKDxm3|7yF=peVX#y-UtH2uRLI5)dTGB9e0!5D<`@mmG(nk|gcIl5-Rglq^XB1p&!Q z&N&N94#Hi0zxRIMeeeByr_R(l)$=^3&&*U!bv$p|(3^!v>SYt#0 zFc1&lZ+H%qjtroX<-98Ygi})&(_~}R^wXOlz?z;te!XRjTD2xRa+xiYT4vH})6O@2 zSuglBFgpv&S}czGkT(jkmA^O{pHDYKPlf63&W+4LNVjp6HmBRuI_tWY+37`hy|z>w zou(gkE(L52{MTNanH)-W|7r1Rk(rLEl8(KlKJWB)K=WxXH^35FDhR^oo5Ekuk`7twC zE?-GU_z^HWMoldFldKOeX7Ey;Kq76hAKy=l;UtQI@hYEZ{(i2Eh*rIdmlsrByL_i6 z!VCbej?e5F^wZcUl6?U8a{NbR#kgyV=1 z8()rcUu5k}0>Wej%2`wU1g{b~#C13X-9`?TB8OOz?{BO!anOpZ1Iq)Qtyt%k`f%+x zVF=w3sDkl;vTA(ovjl|d$OtDN`Uq6s7^qb4OQ;Rx;A0(u${D*T_sx!2>YUpcoZC2H zWx3kq!3G5iH@%aeoN}kI)4AP!mg9Lj?&KB}APs9|ENC3OiS+O*6Td`*LC#cbVE z#Gjx?79;N>zQVHoqz&sdkN22AbSP4jI!{JfXDq1KmzEmFAxT-TYD9FbFA3~ljq8$} zlSQ=~Wbu?=z3)Gb}x< zMqrd#biNM|BV%doIp*3O44k)Hj)V12-c|3=Wv>le&-1W+f-1Ry4p$z&pv2gw6ZiD$mm6OQb zZ_x*mzXN_9eF9xC25mD_lIb4A7<|Ow`E+j7^*UV6$QiRTzQaoci=n0Oa?5mX{1=j; zt?yD;egtRrQ0jT}X)sUUDjkrDe<(%%qOyUD5dI@&ti~`HMpI^r;AyZ4b{J3jA`qNf z)n)C4=j(mRIOS|2`k>Cd;o|wtWoX;{McboY-uWf%7!lL$_ho`c^a>QB&273~{YLh+ zxUssq7W%Y)u^!F}2ywPf<;S}gt zwuLT~T5G^sU){;EvT?dvu(Ix8UTyp+<@BlJuebPtxM)5v{Y`1=#__{uT6wwsbe*du zu_4_7MRLS_ltb=2)bt*MOkS0taYd!V6`rO2l2+>7rNie0uQx5v+UKm6N;rd&Z|Ds^ zJ=zG^ISRMfjXK_&TCK>*gpDCF>ZlR~Hcky0O~{YN&wpb;S^K0^lDk8!>J6}tRo5SBcJl=`gB*byXwX(I^b2Ih)tzHl=XR;;(#-_cE1K zPq^`N1m>drc4_v3R@^n3_&FEeZ);MJQo8s<=bR`fjDU@6zm52mWAD#5cO$B$-{9vW z*>Qz$e6k&%4L;GnN9ptFJ>1G@@L7JX%7_eA%M>a3?*R6!?32*mzP%lC6X%*<+a~m+ zlAd2nDqV;18;`y3s^#2t=iDquRQJSOl*XTpi=^^5m#-Zp0aZeRE9cEf<3*js2u6Z< z`o5FC_=Ku~uAh(28HAr2?1=Yd_jXsk>RpXpY&DwCwX?k7m!oN-^cW?!oJ!E-w-)J~ zrXUZZ>G`I4oA|~TQKP12=*uH_aMuUo4m>G&8IlOefX?}6JV8@MD!5quvB)X3~>=8I_+Z06p3ET03CycLoy34voqV4bM*2 z$<{tP+142i&snG)Met{JuuLIj5&O#jfcO!ANkHH(`F-y2QrtQM+G#-?ma+Rd&-CwL zkfq8ph0tK2Mat?%$&w3iBpiWly)M*ng9c14AR>nF`$O_Bct^~b{fQmeGZZ;NT)uoh zYoaruK&00U*wDm-$p?bwfsG;P0|B|09MLqp$nJTznx3wdKf?ae)AF=hOmW{RV?S!b zbrYR%jISTQgndP^kB(QLbSb=29LeZ#O(r8s{A=mRg#1M=ci;iaV38rea}! zZ`9sZjuQt}WS8~Zcv+plwE7Xc=2$Put>61U}pHfi8ab3Ywpvx3EBDrK-%si&-w{089NrM!C zQ!B|*xfn1xke$!bF!9tD##YjBFOAbQeCQ-(&m<&5%gM61qzcJVRB|q632FA*HmC{C zg%pExv&nK%R4!y^2#Tt;FovNuG2R>EKMlg`7zg7$O9sg=GUq~aQD9tfnP;QouZ6+i z+hSoM5OfjA3_E}}V_ThM@JCe8(;pgdIJEY0L_#x`3aPwngp#wIOEDI=OP}zGQ6kd0 zT1<89;my@tjz8XFsD!AK`*~SFriRE{c_Bhj^4+;aP_%}% zR!H0B8Ievd2-8I!q%YkO4xU|;BE~bv=5qLmm&+xEQQH%m?GKsvsqWU2n6z4eOTRYp zsUX4?f#^ctD}D)%;gHzPbF6mX?C`b}nXh%-z0~3A6Sv9_z8-qq*dHxiNoS z(_rPL&zdE&Qnt)DJn6$@PdZ11a$-K!yfC;*22%84QBLM<{tMSHOV00kLP_AP8}pULigR zw5I_Ep*A{h(}jC@`Z-y9@cW{&_GV4Hlq*p|fUip}8r?I5tkXITMRp45G<6bw8-`A( z$N_4x1yAU;eVb*lQ(4GFLTaI)-iLd(C0-Ju++_yNRZUvYqy~{GL%_qc;75LO9S=>o zBBW%lgCzPzv1I^cb@R$b_liI>TWm{ai~8y4PU^*+Xn~~sqMo6C0Ii>F1@HO+cT+sl zsajdXy-n-ruvqzgJ7@Y;{$#NbcZ~_V36NLnQzn#Vrf&a0H~4b8!IkZ}!BzgkUVjSO zrn+RDSFGd0EbgBu~cRgLU;o`v-_SW*D5BL&)Q<^)W#S->=)Iu<&S22QEAJtUm*fhthP2conjo5JA*w9ho zX8Eq^S`#qEBELpA;W$NP#^U(=xE+1ktQxQAg{?>|re|V>wjg$VM~Nx>{D6`ED?)5T zbO{9uG_2_|Um>y;aMs9m;oN5N_J9rT?=n@mv*uwhGvK;AQSuHrM}b+)HHI{qDGkNKK~t zyYiKFzbsRioH4wusD(H2f^>}S42Xf%dhtVITJ6vKC|9 zQshTKWGk^0RDKMC`w^slvWqK%$IX(=7d3n@!ibO+>9|~eF5CYUVxQ94Hf}ajc!=d; zQzkq*;(Tr8t!+*_>2n-(lTyA)`RUtEU{;}tOzZbS!d0(nD8of_rcDCYrQ89FW}LjX zayBPvP#s}Q5Lv(~#N*WOo$o5wxGUmbn}YyJ?s-f_!RZ!Q=@N^MiQLs)c_$a;#1 z^39dATQsVYZTT6E?z&0`xmP2P#(XY-@E{E4330&dJZaE|6{ppo{#ZW64od*lnLR34 ze&_r$s#x&`M1(UXg2^9WJG-uq7t6?G;mm*|)(G)-if&!!T)3EHE_VBg55@R+(76wU zuAN=(1>RAPXUXxY!!OtKH_{IbR*sV{Pq7yLnPGovh859T>~&PlQYW!d?`6Ul*RBh@ zfwHv6#GC@zu$h|&$3E>I2iJb5;*A4hm$a>2;y`P5Yq46(^8LVbae@=~l~F;*9d`cp zx$R&$r%Zo1q4Yr`v+HlYw5w$QZbbl<3SIi%qoBF_;PfG|^CSpc^jnD8O+$2_@y%da zg@^0U2sXkt_{f$XnP?%yo*Ti7i1-xU9AEsO*wV+J(fQ(cW>rt(MAVC^$kmy=u*qMv z(@tpdpG$UNK{bB64ic-=myP^%=D5Opz8pcS&&`R07SXzx`+&N)R$-m^fgTq?=d2I6 zwe0J1?(OW~TzD-hwqF?*Yr>+*tGvwTHqaT58WJdfQxc=@aJY>0Wqf%;V zX01`XXRF0Q0kiaB!F(hY{spm`f2u*6ylJe$HL*O;ApVeZU$v`B4qZlDa&AfWfC)c% z``J*c;@votw|Rt)ogsJ|1Fyl9LpfgP^zWuyX>>EdX%lmEV32<==5}nw6+y^rFWu&` zxwvfP?AhgTw>!Nyw#B7V6{5-6yAem-UMS5!31ZL-u8^Yo3hAQsq@%MFL7+;K#xjs+ zR&j<2XsmeEkkP%zmXf zQ2&MC@`e6oROF)>t8B<-r}Wy}NXEnr)%Ed8tQLqMItz9vmK@kmie?}gF9sl$C3DEe>bXed)P&CBZ+JZEhunUVK=PUC1)4u7wt(b z|E9dPT4Hba(n(8fz7>$ZWX>V_T+asnHI$uv_o8Rf8|phtKOM&5W@!8|G-ITfa1cHP z8oj z{G{%`Kt3rSEX$~2Hx=~LCpM>l~d&AM~3Z0F#^UJZAbiqUj8EJ)Ts(``qqI( z{y)B)O9YFXcMGidogJ@TYIjptP+yUMCa(koR2r z=+34Jm|aH18>P9kh=43wuYybTAlh1by1BZ>cbZPHb>)IqZ9iTUxhJ~^Ll(ZwHWK$R z2x@H}7nr;c$n>!N7ThHkAW`quKTo>_dpU-w6hfG|YNx{p&`N*v85lVi(G15TFZG&L ziq;GR4u;4erWbc-zeQB_g$xdT&vfZ`YC?UOPfhDHN2!U=RX1$m>d^cLqDfO@$~*Gc zkIyw>3T99Htb*`5q#^~x+h&&;+lMuCu21KEJ@DXt(lW>NS=*9r3G|&z*UM1qzO+UR z(}9M;X5mVCSGK8<)ZsgP>)So#gzl3hV#=vNA>8wm8Q1Bl@J}tEa?89pi|X?Cg5>D? zl*_8fPun6~I=@iA%guXtS2+__?e`UvtH0kDUtI}zaOx$R6Fo0)vxa{$kr}vJ6OB$~ z47>WB%Fk3NS5-)BzpSE3tIi()BJ?Lcf`w%bG$Z-0eF&Tcoz`-8pv4)qa&)P(n+5^JQ z`mD0UDoT0gX!D>FZfjNZ0XZN=Q)r5SN+lS_a`i!~>xUANRjApsgWh_%L{ITSIID?2 zECHH$&0#s6r)ClitF8B3W~bGMRRif<+$zzq{KEgoj#{~|xpID9GF!o{O{G3*p^}%> zOCd|!_6LoZ0$gQ{2@YA~L7mvZIsPWW(~*vtfjEs%VF9bf%0(oWI+?4Zxd`&CpGZ&J-DAwZFW%!f&wt>s(1&Ymey-yIj z{|-F=kLX5}feuGoU;AURZ?7Z4e+CPiIDZYcx8Q%`9^s)ok~p_N{7F9Ral*gsh}{N5 z!moE8{Rv?r>|EOnlLUe2A#j!5hm5zlf0hVBnf-r`5O6p=Z2S9_O0+#4_<<2ED#8kk zMggKgO@VW}I{|->;_2tYT}o(q|8dD!nwg#E4jKq#fO1}#Zk7J)2m#CIqjaIjaDpkNOYG~m^`+oudY_OnwCt{s{0*gPQ?wJy^hC7NQl9@&3Bs{hM<`+Kb+;F-~XICKA?!rcz&(8}lGu?IAN zsXm~SNm}^B@o|MZTDrPA{$C19R(}SeW(L_}fm% diff --git a/ADRpy/analisis/aaa.ipynb b/ADRpy/analisis/aaa.ipynb index 21baf37b..4e936c2e 100644 --- a/ADRpy/analisis/aaa.ipynb +++ b/ADRpy/analisis/aaa.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "b70a4a82", "metadata": {}, "outputs": [ @@ -12,52 +12,53 @@ "text": [ "DEBUG: ruta_archivo antes de validar: 'C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Data\\Datos_aeronaves.xlsx'\n", "=== Cargando datos desde el archivo: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Data\\Datos_aeronaves.xlsx ===\n", + "Advertencia: Índices nulos encontrados. Reemplazando por 'indice_desconocido'.\n", "\n", "=== Resumen inicial del DataFrame cargado ===\n", "\n", - "Index: 52 entries, Distancia de carrera requerida para despegue to kjbk\n", + "Index: 57 entries, Distancia de carrera requerida para despegue to indice_desconocido\n", "Data columns (total 37 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", - " 0 Stalker XE 52 non-null object\n", - " 1 Stalker VXE30 52 non-null object\n", - " 2 Aerosonde® Mk. 4.7 Fixed Wing 52 non-null object\n", - " 3 Aerosonde® Mk. 4.7 VTOL 52 non-null object\n", - " 4 Aerosonde® Mk. 4.8 Fixed wing 52 non-null object\n", - " 5 Aerosonde® Mk. 4.8 VTOL FTUAS 52 non-null object\n", - " 6 AAI Aerosonde 52 non-null object\n", - " 7 Fulmar X 52 non-null object\n", - " 8 Orbiter 4 52 non-null object\n", - " 9 Orbiter 3 52 non-null object\n", - " 10 Mantis 52 non-null object\n", - " 11 ScanEagle 52 non-null object\n", - " 12 Integrator 52 non-null object\n", - " 13 Integrator VTOL 52 non-null object\n", - " 14 Integrator Extended Range (ER) 52 non-null object\n", - " 15 ScanEagle 3 52 non-null object\n", - " 16 RQNan21A Blackjack 52 non-null object\n", - " 17 DeltaQuad Evo 52 non-null object\n", - " 18 DeltaQuad Pro #MAP 52 non-null object\n", - " 19 DeltaQuad Pro #CARGO 52 non-null object\n", - " 20 V21 52 non-null object\n", - " 21 V25 52 non-null object\n", - " 22 V32 52 non-null object\n", - " 23 V35 52 non-null object\n", - " 24 V39 52 non-null object\n", - " 25 Volitation VT370 52 non-null object\n", - " 26 Skyeye 2600 52 non-null object\n", - " 27 Skyeye 2930 VTOL 52 non-null object\n", - " 28 Skyeye 3600 52 non-null object\n", - " 29 Skyeye 3600 VTOL 52 non-null object\n", - " 30 Skyeye 5000 52 non-null object\n", - " 31 Skyeye 5000 VTOL 52 non-null object\n", - " 32 Skyeye 5000 VTOL octo 52 non-null object\n", - " 33 Volitation VT510 52 non-null object\n", - " 34 Ascend 52 non-null object\n", - " 35 Transition 52 non-null object\n", - " 36 Reach 52 non-null object\n", + " 0 Stalker XE 57 non-null object\n", + " 1 Stalker VXE30 57 non-null object\n", + " 2 Aerosonde Mk. 4.7 Fixed Wing 57 non-null object\n", + " 3 Aerosonde Mk. 4.7 VTOL 57 non-null object\n", + " 4 Aerosonde Mk. 4.8 Fixed wing 57 non-null object\n", + " 5 Aerosonde Mk. 4.8 VTOL FTUAS 57 non-null object\n", + " 6 AAI Aerosonde 57 non-null object\n", + " 7 Fulmar X 57 non-null object\n", + " 8 Orbiter 4 57 non-null object\n", + " 9 Orbiter 3 57 non-null object\n", + " 10 Mantis 57 non-null object\n", + " 11 ScanEagle 57 non-null object\n", + " 12 Integrator 57 non-null object\n", + " 13 Integrator VTOL 57 non-null object\n", + " 14 Integrator Extended Range (ER) 57 non-null object\n", + " 15 ScanEagle 3 57 non-null object\n", + " 16 RQ Nan 21A Blackjack 57 non-null object\n", + " 17 DeltaQuad Evo 57 non-null object\n", + " 18 DeltaQuad Pro #MAP 57 non-null object\n", + " 19 DeltaQuad Pro #CARGO 57 non-null object\n", + " 20 V21 57 non-null object\n", + " 21 V25 57 non-null object\n", + " 22 V32 57 non-null object\n", + " 23 V35 57 non-null object\n", + " 24 V39 57 non-null object\n", + " 25 Volitation VT370 57 non-null object\n", + " 26 Skyeye 2600 57 non-null object\n", + " 27 Skyeye 2930 VTOL 57 non-null object\n", + " 28 Skyeye 3600 57 non-null object\n", + " 29 Skyeye 3600 VTOL 57 non-null object\n", + " 30 Skyeye 5000 57 non-null object\n", + " 31 Skyeye 5000 VTOL 57 non-null object\n", + " 32 Skyeye 5000 VTOL octo 57 non-null object\n", + " 33 Volitation VT510 57 non-null object\n", + " 34 Ascend 57 non-null object\n", + " 35 Transition 57 non-null object\n", + " 36 Reach 57 non-null object\n", "dtypes: object(37)\n", - "memory usage: 15.4+ KB\n", + "memory usage: 16.9+ KB\n", "None\n", "Datos cargados correctamente desde: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Data\\Datos_aeronaves.xlsx\n", "\n", @@ -66,7 +67,7 @@ "=== Continuando con el procesamiento de datos ===\n", "\n", "Encabezados iniciales cargados:\n", - "['Stalker XE', 'Stalker VXE30', 'Aerosonde®\\xa0Mk. 4.7 Fixed Wing', 'Aerosonde®\\xa0Mk. 4.7 VTOL', 'Aerosonde®\\xa0Mk. 4.8 Fixed wing', 'Aerosonde®\\xa0Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "\n", "=== Mostrando datos iniciales en formato HTML ===\n" ] @@ -112,10 +113,10 @@ " \n", " Stalker XE\n", " Stalker VXE30\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " Aerosonde® Mk. 4.7 VTOL\n", - " Aerosonde® Mk. 4.8 Fixed wing\n", - " Aerosonde® Mk. 4.8 VTOL FTUAS\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", + " Aerosonde Mk. 4.7 VTOL\n", + " Aerosonde Mk. 4.8 Fixed wing\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", " AAI Aerosonde\n", " Fulmar X\n", " Orbiter 4\n", @@ -126,7 +127,7 @@ " Integrator VTOL\n", " Integrator Extended Range (ER)\n", " ScanEagle 3\n", - " RQNan21A Blackjack\n", + " RQ Nan 21A Blackjack\n", " DeltaQuad Evo\n", " DeltaQuad Pro #MAP\n", " DeltaQuad Pro #CARGO\n", @@ -148,6 +149,46 @@ " Transition\n", " Reach\n", " \n", + " \n", + " Modelo\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -191,46 +232,6 @@ " 0\n", " \n", " \n", - " Tasa de ascenso\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " 2.49936\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " 5\n", - " Nan\n", - " 5\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " Nan\n", - " 5\n", - " Nan\n", - " Nan\n", - " Nan\n", - " \n", - " \n", " Altitud a la que se realiza el crucero\n", " 6000\n", " 6000\n", @@ -640,7 +641,7 @@ " Nan\n", " 3270\n", " 800\n", - " 150\n", + " Nan\n", " 50\n", " 25\n", " Nan\n", @@ -648,7 +649,7 @@ " Nan\n", " 500\n", " Nan\n", - " 92.6\n", + " Nan\n", " 270\n", " 100\n", " 100\n", @@ -791,6 +792,46 @@ " 13\n", " \n", " \n", + " Tasa de ascenso\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " \n", + " \n", " Radio de giro\n", " Nan\n", " Nan\n", @@ -1271,7 +1312,7 @@ " Nan\n", " \n", " \n", - " Potencia/Peso\n", + " Potencia específica (P/W)\n", " Nan\n", " Nan\n", " Nan\n", @@ -1391,7 +1432,7 @@ " Nan\n", " \n", " \n", - " Potencia(W)\n", + " Potencia Watts\n", " Nan\n", " Nan\n", " 2980\n", @@ -1431,7 +1472,7 @@ " Nan\n", " \n", " \n", - " Potencia(HP)\n", + " Potencia HP\n", " Nan\n", " Nan\n", " 4\n", @@ -1591,6 +1632,246 @@ " Nan\n", " \n", " \n", + " Despegue\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 1\n", + " 2\n", + " 2\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 3\n", + " 2\n", + " 3\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " \n", + " \n", + " Propulsión horizontal\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 1\n", + " 1\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " 2\n", + " \n", + " \n", + " Propulsión vertical\n", + " 5\n", + " 5\n", + " 5\n", + " 1\n", + " 5\n", + " 1\n", + " 1\n", + " 5\n", + " 5\n", + " 5\n", + " 5\n", + " 5\n", + " 5\n", + " 1\n", + " 5\n", + " 5\n", + " 5\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 5\n", + " 1\n", + " 5\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " Cantidad de motores propulsión vertical\n", + " 0\n", + " 0\n", + " 0\n", + " 4\n", + " 0\n", + " 4\n", + " 4\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 4\n", + " 0\n", + " 0\n", + " 0\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " 0\n", + " 4\n", + " 0\n", + " 4\n", + " 8\n", + " 4\n", + " 4\n", + " 4\n", + " 4\n", + " \n", + " \n", + " Cantidad de motores propulsión horizontal\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " Misión\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", " Dimensiones de la bahía de carga útil\n", " Nan\n", " Nan\n", @@ -1831,7 +2112,7 @@ " Nan\n", " \n", " \n", - " Despegue\n", + " Despegue todos los tipos\n", " Bungee, rail, VTOL\n", " Bungee, rail, VTOL\n", " Rail\n", @@ -2151,47 +2432,7 @@ " Nan\n", " \n", " \n", - " Empresa\n", - " Lockheed Martin\n", - " Lockheed Martin\n", - " Textron Systems\n", - " Textron Systems\n", - " Textron Systems\n", - " Textron Systems\n", - " Textron Systems\n", - " Thales Group\n", - " Aeronautics Group\n", - " Aeronautics Group\n", - " Indra Sistemas\n", - " Insitu\n", - " Insitu\n", - " Insitu\n", - " Insitu\n", - " Insitu\n", - " Insitu\n", - " Vertical Technologies\n", - " Vertical Technologies\n", - " Vertical Technologies\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Airmobi\n", - " Alti\n", - " Alti\n", - " Alti\n", - " \n", - " \n", - " kjbk\n", + " indice_desconocido\n", " pdf\n", " pdf\n", " Link\n", @@ -2300,10 +2541,10 @@ " \n", " Stalker XE\n", " Stalker VXE30\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " Aerosonde® Mk. 4.7 VTOL\n", - " Aerosonde® Mk. 4.8 Fixed wing\n", - " Aerosonde® Mk. 4.8 VTOL FTUAS\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", + " Aerosonde Mk. 4.7 VTOL\n", + " Aerosonde Mk. 4.8 Fixed wing\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", " AAI Aerosonde\n", " Fulmar X\n", " Orbiter 4\n", @@ -2314,7 +2555,7 @@ " Integrator VTOL\n", " Integrator Extended Range (ER)\n", " ScanEagle 3\n", - " RQNan21A Blackjack\n", + " RQ Nan 21A Blackjack\n", " DeltaQuad Evo\n", " DeltaQuad Pro #MAP\n", " DeltaQuad Pro #CARGO\n", @@ -2336,6 +2577,46 @@ " Transition\n", " Reach\n", " \n", + " \n", + " Modelo\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2379,46 +2660,6 @@ " 0.0\n", " \n", " \n", - " Tasa de ascenso\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 2.49936\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", " Altitud a la que se realiza el crucero\n", " 6000.0\n", " 6000.0\n", @@ -2828,7 +3069,7 @@ " NaN\n", " 3270.0\n", " 800.0\n", - " 150.0\n", + " NaN\n", " 50.0\n", " 25.0\n", " NaN\n", @@ -2836,7 +3077,7 @@ " NaN\n", " 500.0\n", " NaN\n", - " 92.6\n", + " NaN\n", " 270.0\n", " 100.0\n", " 100.0\n", @@ -2979,6 +3220,46 @@ " 13.0\n", " \n", " \n", + " Tasa de ascenso\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", " Radio de giro\n", " NaN\n", " NaN\n", @@ -3459,7 +3740,7 @@ " NaN\n", " \n", " \n", - " Potencia/Peso\n", + " Potencia específica (P/W)\n", " NaN\n", " NaN\n", " NaN\n", @@ -3579,7 +3860,7 @@ " NaN\n", " \n", " \n", - " Potencia(W)\n", + " Potencia Watts\n", " NaN\n", " NaN\n", " 2980.0\n", @@ -3619,7 +3900,7 @@ " NaN\n", " \n", " \n", - " Potencia(HP)\n", + " Potencia HP\n", " NaN\n", " NaN\n", " 4.0\n", @@ -3779,6 +4060,246 @@ " NaN\n", " \n", " \n", + " Despegue\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 3.0\n", + " 2.0\n", + " 3.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " \n", + " \n", + " Propulsión horizontal\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " \n", + " \n", + " Propulsión vertical\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", + " Cantidad de motores propulsión vertical\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 8.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " \n", + " \n", + " Cantidad de motores propulsión horizontal\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", + " Misión\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", " Dimensiones de la bahía de carga útil\n", " NaN\n", " NaN\n", @@ -4019,7 +4540,7 @@ " NaN\n", " \n", " \n", - " Despegue\n", + " Despegue todos los tipos\n", " NaN\n", " NaN\n", " NaN\n", @@ -4339,47 +4860,7 @@ " NaN\n", " \n", " \n", - " Empresa\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " kjbk\n", + " indice_desconocido\n", " NaN\n", " NaN\n", " NaN\n", @@ -4433,26 +4914,26 @@ "output_type": "stream", "text": [ "Parámetros disponibles en df_procesado antes de seleccionar:\n", - "['Distancia de carrera requerida para despegue', 'Tasa de ascenso', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia/Peso', 'Capacidad combustible', 'Consumo', 'Potencia(W)', 'Potencia(HP)', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Dimensiones de la bahía de carga útil', 'Battery Power Supply', 'Modelo Motor Fixed Wing', 'Modelo Motor VTOL', 'Portabilidad', 'Cámara', 'Despegue', 'Datalink banks', 'Material del fuselaje', 'Motor recomendado', 'Hélice recomendada VTOL', 'Hélice recomendada Fixed Wing', 'Sistema de control', 'Características adicionales', 'Empresa', 'kjbk']\n", + "['Distancia de carrera requerida para despegue', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Tasa de ascenso', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia específica (P/W)', 'Capacidad combustible', 'Consumo', 'Potencia Watts', 'Potencia HP', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Despegue', 'Propulsión horizontal', 'Propulsión vertical', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal', 'Misión', 'Dimensiones de la bahía de carga útil', 'Battery Power Supply', 'Modelo Motor Fixed Wing', 'Modelo Motor VTOL', 'Portabilidad', 'Cámara', 'Despegue todos los tipos', 'Datalink banks', 'Material del fuselaje', 'Motor recomendado', 'Hélice recomendada VTOL', 'Hélice recomendada Fixed Wing', 'Sistema de control', 'Características adicionales', 'indice_desconocido']\n", "\n", "=== Selección de Parámetros ===\n", "Parámetros disponibles:\n", "1. Distancia de carrera requerida para despegue\n", - "2. Tasa de ascenso\n", - "3. Altitud a la que se realiza el crucero\n", - "4. Velocidad a la que se realiza el crucero (KTAS)\n", - "5. Techo de servicio máximo\n", - "6. Velocidad de pérdida limpia (KCAS)\n", - "7. Área del ala\n", - "8. Relación de aspecto del ala\n", - "9. Longitud del fuselaje\n", - "10. Profundidad del fuselaje\n", - "11. Ancho del fuselaje\n", - "12. Peso máximo al despegue (MTOW)\n", - "13. Alcance de la aeronave\n", - "14. Autonomía de la aeronave\n", - "15. Velocidad máxima (KIAS)\n", - "16. Velocidad de pérdida (KCAS)\n", + "2. Altitud a la que se realiza el crucero\n", + "3. Velocidad a la que se realiza el crucero (KTAS)\n", + "4. Techo de servicio máximo\n", + "5. Velocidad de pérdida limpia (KCAS)\n", + "6. Área del ala\n", + "7. Relación de aspecto del ala\n", + "8. Longitud del fuselaje\n", + "9. Profundidad del fuselaje\n", + "10. Ancho del fuselaje\n", + "11. Peso máximo al despegue (MTOW)\n", + "12. Alcance de la aeronave\n", + "13. Autonomía de la aeronave\n", + "14. Velocidad máxima (KIAS)\n", + "15. Velocidad de pérdida (KCAS)\n", + "16. Tasa de ascenso\n", "17. Radio de giro\n", "18. envergadura\n", "19. Cuerda\n", @@ -4465,36 +4946,41 @@ "26. Maximum Crosswind\n", "27. Rango de comunicación\n", "28. Wing Loading\n", - "29. Potencia/Peso\n", + "29. Potencia específica (P/W)\n", "30. Capacidad combustible\n", "31. Consumo\n", - "32. Potencia(W)\n", - "33. Potencia(HP)\n", + "32. Potencia Watts\n", + "33. Potencia HP\n", "34. Precio\n", "35. Tiempo de emergencia en vuelo\n", "36. Distancia de aterrizaje\n", - "37. Dimensiones de la bahía de carga útil\n", - "38. Battery Power Supply\n", - "39. Modelo Motor Fixed Wing\n", - "40. Modelo Motor VTOL\n", - "41. Portabilidad\n", - "42. Cámara\n", - "43. Despegue\n", - "44. Datalink banks\n", - "45. Material del fuselaje\n", - "46. Motor recomendado\n", - "47. Hélice recomendada VTOL\n", - "48. Hélice recomendada Fixed Wing\n", - "49. Sistema de control\n", - "50. Características adicionales\n", - "51. Empresa\n", - "52. kjbk\n", - "\n", - "Preseleccionados: 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 25\n", + "37. Despegue\n", + "38. Propulsión horizontal\n", + "39. Propulsión vertical\n", + "40. Cantidad de motores propulsión vertical\n", + "41. Cantidad de motores propulsión horizontal\n", + "42. Misión\n", + "43. Dimensiones de la bahía de carga útil\n", + "44. Battery Power Supply\n", + "45. Modelo Motor Fixed Wing\n", + "46. Modelo Motor VTOL\n", + "47. Portabilidad\n", + "48. Cámara\n", + "49. Despegue todos los tipos\n", + "50. Datalink banks\n", + "51. Material del fuselaje\n", + "52. Motor recomendado\n", + "53. Hélice recomendada VTOL\n", + "54. Hélice recomendada Fixed Wing\n", + "55. Sistema de control\n", + "56. Características adicionales\n", + "57. indice_desconocido\n", + "\n", + "Preseleccionados: 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 5, 18, 19, 20, 25\n", "Parámetros seleccionados después de filtrar:\n", - "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n", + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n", "Parámetros seleccionados después de filtrar:\n", - "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" ] }, { @@ -4538,10 +5024,10 @@ " \n", " Stalker XE\n", " Stalker VXE30\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " Aerosonde® Mk. 4.7 VTOL\n", - " Aerosonde® Mk. 4.8 Fixed wing\n", - " Aerosonde® Mk. 4.8 VTOL FTUAS\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", + " Aerosonde Mk. 4.7 VTOL\n", + " Aerosonde Mk. 4.8 Fixed wing\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", " AAI Aerosonde\n", " Fulmar X\n", " Orbiter 4\n", @@ -4552,7 +5038,7 @@ " Integrator VTOL\n", " Integrator Extended Range (ER)\n", " ScanEagle 3\n", - " RQNan21A Blackjack\n", + " RQ Nan 21A Blackjack\n", " DeltaQuad Evo\n", " DeltaQuad Pro #MAP\n", " DeltaQuad Pro #CARGO\n", @@ -4574,6 +5060,46 @@ " Transition\n", " Reach\n", " \n", + " \n", + " Modelo\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4826,7 +5352,7 @@ " NaN\n", " 3270.0\n", " 800.0\n", - " 150.0\n", + " NaN\n", " 50.0\n", " 25.0\n", " NaN\n", @@ -4834,7 +5360,7 @@ " NaN\n", " 500.0\n", " NaN\n", - " 92.6\n", + " NaN\n", " 270.0\n", " 100.0\n", " 100.0\n", @@ -4977,6 +5503,46 @@ " 13.0\n", " \n", " \n", + " Velocidad de pérdida limpia (KCAS)\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 14.0\n", + " 15.5\n", + " 17.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 10.0\n", + " 18.0\n", + " 12.5\n", + " 24.0\n", + " 15.0\n", + " NaN\n", + " NaN\n", + " 25.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", " envergadura\n", " 3.657\n", " 4.8768\n", @@ -5154,10 +5720,10 @@ "=== Columnas con datos faltantes ===\n", "1. Stalker XE\n", "2. Stalker VXE30\n", - "3. Aerosonde® Mk. 4.7 Fixed Wing\n", - "4. Aerosonde® Mk. 4.7 VTOL\n", - "5. Aerosonde® Mk. 4.8 Fixed wing\n", - "6. Aerosonde® Mk. 4.8 VTOL FTUAS\n", + "3. Aerosonde Mk. 4.7 Fixed Wing\n", + "4. Aerosonde Mk. 4.7 VTOL\n", + "5. Aerosonde Mk. 4.8 Fixed wing\n", + "6. Aerosonde Mk. 4.8 VTOL FTUAS\n", "7. AAI Aerosonde\n", "8. Fulmar X\n", "9. Orbiter 4\n", @@ -5168,7 +5734,7 @@ "14. Integrator VTOL\n", "15. Integrator Extended Range (ER)\n", "16. ScanEagle 3\n", - "17. RQNan21A Blackjack\n", + "17. RQ Nan 21A Blackjack\n", "18. DeltaQuad Evo\n", "19. DeltaQuad Pro #MAP\n", "20. DeltaQuad Pro #CARGO\n", @@ -5235,12 +5801,20 @@ " \n", " Stalker XE\n", " \n", + " \n", + " Modelo\n", + " \n", + " \n", " \n", " \n", " \n", " Velocidad de pérdida (KCAS)\n", " NaN\n", " \n", + " \n", + " Velocidad de pérdida limpia (KCAS)\n", + " NaN\n", + " \n", " \n", "" ], @@ -5306,102 +5880,102 @@ " \n", " 0\n", " Stalker XE\n", - " 1.000\n", + " 2.000\n", " \n", " \n", " 1\n", " Stalker VXE30\n", - " 1.000\n", + " 2.000\n", " \n", " \n", " 2\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " 3.000\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", + " 4.000\n", " \n", " \n", " 3\n", - " Aerosonde® Mk. 4.7 VTOL\n", - " 3.000\n", + " Aerosonde Mk. 4.7 VTOL\n", + " 4.000\n", " \n", " \n", " 4\n", - " Aerosonde® Mk. 4.8 Fixed wing\n", - " 3.000\n", + " Aerosonde Mk. 4.8 Fixed wing\n", + " 4.000\n", " \n", " \n", " 5\n", - " Aerosonde® Mk. 4.8 VTOL FTUAS\n", - " 9.000\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", + " 10.000\n", " \n", " \n", " 6\n", " AAI Aerosonde\n", - " 3.000\n", + " 4.000\n", " \n", " \n", " 7\n", " Fulmar X\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 8\n", " Orbiter 4\n", - " 7.000\n", + " 9.000\n", " \n", " \n", " 9\n", " Orbiter 3\n", - " 7.000\n", + " 8.000\n", " \n", " \n", " 10\n", " Mantis\n", - " 7.000\n", + " 8.000\n", " \n", " \n", " 11\n", " ScanEagle\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 12\n", " Integrator\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 13\n", " Integrator VTOL\n", - " 11.000\n", + " 12.000\n", " \n", " \n", " 14\n", " Integrator Extended Range (ER)\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 15\n", " ScanEagle 3\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 16\n", - " RQNan21A Blackjack\n", - " 5.000\n", + " RQ Nan 21A Blackjack\n", + " 7.000\n", " \n", " \n", " 17\n", " DeltaQuad Evo\n", - " 4.000\n", + " 5.000\n", " \n", " \n", " 18\n", " DeltaQuad Pro #MAP\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 19\n", " DeltaQuad Pro #CARGO\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 20\n", @@ -5421,17 +5995,17 @@ " \n", " 23\n", " V35\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 24\n", " V39\n", - " 7.000\n", + " 8.000\n", " \n", " \n", " 25\n", " Volitation VT370\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 26\n", @@ -5461,12 +6035,12 @@ " \n", " 31\n", " Skyeye 5000 VTOL\n", - " 5.000\n", + " 6.000\n", " \n", " \n", " 32\n", " Skyeye 5000 VTOL octo\n", - " 6.000\n", + " 7.000\n", " \n", " \n", " 33\n", @@ -5476,17 +6050,17 @@ " \n", " 34\n", " Ascend\n", - " 4.000\n", + " 5.000\n", " \n", " \n", " 35\n", " Transition\n", - " 4.000\n", + " 5.000\n", " \n", " \n", " 36\n", " Reach\n", - " 4.000\n", + " 5.000\n", " \n", " \n", "" @@ -5545,7 +6119,7 @@ " \n", " 0\n", " Total de Valores Faltantes\n", - " 185.000\n", + " 215.000\n", " \n", " \n", "" @@ -5561,8 +6135,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", - "=== Calculando correlaciones y generando heatmap ===\n", "\n", "=== Calculando correlaciones y generando heatmap ===\n", "\n", @@ -5609,9 +6181,8 @@ "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", " \n", " \n", - " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5626,6 +6197,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5638,21 +6210,27 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5660,15 +6238,73 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5684,6 +6320,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5703,60 +6340,10 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5779,7 +6366,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5789,11 +6375,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5813,6 +6400,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5834,7 +6426,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5844,10 +6435,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5868,6 +6460,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5888,7 +6485,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5899,10 +6495,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5923,6 +6520,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5944,7 +6546,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -5958,6 +6559,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -5978,6 +6580,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5998,7 +6605,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6013,6 +6619,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6033,6 +6640,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6053,7 +6665,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6069,6 +6680,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6088,6 +6700,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6108,7 +6725,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6119,10 +6735,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6143,6 +6760,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6214,12 +6836,16 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6234,6 +6860,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6253,6 +6880,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6273,7 +6905,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6284,10 +6915,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6308,6 +6940,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6328,41 +6965,46 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6383,7 +7025,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6394,10 +7035,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6418,6 +7060,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6438,7 +7085,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6449,11 +7095,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6473,6 +7120,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6494,7 +7146,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6508,6 +7159,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6528,6 +7180,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6546,10 +7203,69 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6563,6 +7279,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6584,6 +7301,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6603,7 +7325,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6614,10 +7335,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6638,6 +7360,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6658,7 +7385,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6674,6 +7400,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6693,6 +7420,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6713,7 +7445,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6724,10 +7455,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6748,6 +7480,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6769,7 +7506,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6784,6 +7520,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6803,6 +7540,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6824,7 +7566,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6834,10 +7575,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6858,6 +7600,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6879,7 +7626,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6894,6 +7640,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6914,6 +7661,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6934,7 +7686,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -6949,6 +7700,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -6968,6 +7720,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6988,7 +7745,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7003,6 +7759,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7023,6 +7780,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7043,7 +7805,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7059,6 +7820,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7079,6 +7841,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7098,7 +7865,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7109,11 +7875,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7133,6 +7900,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7153,7 +7925,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7168,6 +7939,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7189,6 +7961,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7206,7 +7983,12 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7264,7 +8046,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7279,6 +8060,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7298,6 +8080,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7319,7 +8106,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7334,6 +8120,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7353,6 +8140,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7371,8 +8163,7 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7389,6 +8180,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7408,6 +8200,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7426,8 +8223,7 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7439,11 +8235,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7463,6 +8260,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7484,7 +8286,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -7498,6 +8299,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -7518,6 +8320,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7589,56 +8396,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7646,7 +8403,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7699,56 +8456,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7756,42 +8463,47 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7811,42 +8523,47 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7866,42 +8583,47 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7921,42 +8643,47 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7976,24 +8703,7 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8029,34 +8739,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8079,14 +8761,14 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8141,9 +8823,7 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8194,10 +8874,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8205,6 +8881,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8249,9 +8928,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8265,6 +8941,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8304,9 +8983,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8325,6 +9001,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8359,10 +9038,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8386,6 +9061,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8414,9 +9092,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8446,6 +9121,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8469,9 +9147,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8506,6 +9181,11 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8524,544 +9204,23 @@ " \n", " \n", " \n", - " \n", - " \n", - "
ModeloDistancia de carrera requerida para despegueTasa de ascensoAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdaMaximum CrosswindRango de comunicaciónWing LoadingPotencia/PesoPotencia específica (P/W)Capacidad combustibleConsumoPotencia(W)Potencia(HP)Potencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisiónDimensiones de la bahía de carga útilBattery Power SupplyModelo Motor Fixed WingModelo Motor VTOLPortabilidadCámaraDespegueDespegue todos los tiposDatalink banksMaterial del fuselajeMotor recomendadoHélice recomendada Fixed WingSistema de controlCaracterísticas adicionalesEmpresakjbkindice_desconocido
Modelo
Distancia de carrera requerida para despegue1.000nan0.0630.467nan0.316-0.308nannan0.145nan0.229-0.156nannannannannannannannannannannannannannannannannannan
Tasa de ascensonan1.0001.000nan0.870nannannan0.531nannan0.589nan-0.8660.439nannan0.656nannannannannannannannan-1.000nannannannannannannannan0.7350.1540.671-0.598nannannanAltitud a la que se realiza el crucero0.0631.0001.000nan-0.038nannannan-0.095-0.952-0.955-0.2800.128nannannan0.1360.761-0.183nannannan-0.119-0.1090.187-0.159nannannannanVelocidad a la que se realiza el crucero (KTAS)0.467nannan1.0000.0410.128nan0.9360.6630.4070.6650.3360.8150.257nan0.8030.4720.846-0.296nannan0.1130.6190.126-0.126nannannannan
Techo de servicio máximonan0.870-0.0380.0411.000nan0.3690.1370.4630.4280.079-0.111-0.071nan-0.8030.0570.017-0.257nannan0.1250.007-0.1250.125nannannannanVelocidad de pérdida limpia (KCAS)-0.505nannan0.128-0.5021.0000.4010.4461.000nan0.9930.505nan0.163nannan-0.3450.231-0.3450.345nannannannan
Área del ala0.363nan0.3010.587-0.1520.0810.7370.423nan-1.0000.8410.9840.899nannan0.2360.4530.1720.055nannannannan
Relación de aspecto del alanannan-0.351-0.999-0.314-0.859nannannan-0.349-0.744-0.888nannannan-0.247nan0.247-0.247nannannannan
Longitud del fuselaje0.2600.5310.0810.5350.082nan0.9380.7860.1290.1500.3890.2560.180nan0.9180.6930.995-0.210nannan0.1110.6150.093-0.004nannannannannannannannannannannannan
Ancho del fuselaje0.425nannan0.9360.369nan0.940nannannan0.6710.7600.868nannannan0.794nan-0.5350.574nannannannan
Peso máximo al despegue (MTOW)0.1680.589-0.0950.6630.137nan0.9861.000-0.0510.0250.4340.6780.539nan0.9730.7910.8580.052nannan0.0900.4670.0230.075nannannannan
Alcance de la aeronavenannan-0.9520.4070.463-0.9550.6650.428nan-0.301-0.9980.1290.150nan0.982-0.0510.0251.0000.578-0.0620.8430.042nannan-0.107nan-0.010-0.7550.5540.804-1.0000.4070.665nannan-0.059-1.0000.5080.670nannan1.000nannan-1.000nan1.000nannan0.2620.474-0.2620.262nannannannan
Autonomía de la aeronave-0.068-0.866-0.2800.3360.079nan-0.0900.4340.5780.8431.0000.297-0.164nan0.9540.532-0.2010.011nannan-0.4240.4770.361-0.361nannannannan
Velocidad máxima (KIAS)0.3160.4390.1280.815-0.111nan0.9400.678-0.0620.0420.2971.0000.539nannan0.4000.5120.7150.015nannan-0.0410.2080.174-0.133nannannannanVelocidad de pérdida (KCAS)-0.308nannan0.257-0.0711.000-0.1640.5391.000nan0.9930.401nan0.160nannan-0.2440.154-0.2440.444nannannannannan
Radio de giroTasa de ascensonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Radio de gironannan0.803-0.8030.9930.954nan0.993nan1.0000.992nannannannan0.918nannannannannannannan
envergadura0.1450.6560.1360.4720.057nan0.6710.791-0.107-0.0100.5320.4000.401nan0.9921.0000.8850.032nannan-0.1240.5080.239-0.164nannannannan
Cuerdanannan0.7610.8460.0170.512nannannan0.8851.0000.776nannannan-0.313nan0.313-0.313nannannannan
payload0.229nan-0.1830.6960.087nan0.8680.8750.5540.8040.4610.7150.627nan0.9760.7340.776-0.008nannan-0.0040.4770.162-0.111nannannannanduracion en VTOLnannannan-0.694-0.875nan-0.927nannannan-0.258nan-0.024nannannan-0.188-0.9040.188-0.188nannannannanCrucero KIAS0.389nannan1.0000.0410.128nan0.9440.7080.4070.6650.3360.7750.417nan0.8030.5010.846-0.243nannan0.1430.6080.0650.063nannannannanRTF (dry weight)nannannan0.9150.677nan0.994nannannan0.983nan0.915nannannan0.408nannannannannannannanRTF (Including fuel & Batteries)nannannan0.7230.579nan0.857nannannan0.936nan0.559nannannan0.0970.428-0.0970.097nannannannan
Empty weight0.357nan0.0600.426-0.1380.4280.5170.321nan0.9790.9240.971-0.029nannan0.1820.4040.3070.004nannannannan
Maximum Crosswindnannan0.038-0.855-0.961nannannannan-0.452nan-0.142nannannan-0.943nannannannannannannan
Rango de comunicaciónnan-1.000-0.3250.359-0.120nan0.3230.5140.5080.6700.8020.094nannannan0.6480.3540.546nannannan-0.4300.6040.430-0.430nannannannan
Wing Loadingnannan-0.2150.997-0.9860.268-0.2150.900nan0.8440.780nannannannan0.572nannannannannannannannan
Potencia/PesoPotencia específica (P/W)nannannannannannannannanCapacidad combustible-0.018nannan0.491nan0.0680.7050.230nannan0.297nan0.7110.817nannan-0.080nan-0.0800.270nannannannanConsumo-0.240nannan0.4610.5151.0000.9101.000nannan0.085nan0.8460.998nannan0.113nan-0.3750.375nannannannannan
Potencia(W)nanPotencia Wattsnan0.2771.000-0.624nannannan0.5221.0000.841nannannan0.232nan-0.2320.232nannannannannan
Potencia(HP)nanPotencia HPnan0.6901.000nannan0.855-1.000nan-0.5770.970nannannan0.8351.0000.866nannannan-0.694nan0.694-0.694nannannannanPrecio-0.156nannan-0.296-0.2570.1630.0110.0150.160nan0.9210.032nan1.000nannan-0.1380.217-0.1380.134nannannannannannannan
Distancia de aterrizajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Dimensiones de la bahía de carga útilDistancia de aterrizajenannannannannannan
Battery Power Supplynannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Modelo Motor Fixed WingnannannannannannannannannannannannannannannannannannannannannannannannannannanDespegue0.735-0.1190.1130.125-0.3450.236-0.2470.111nan0.7940.0900.262-0.424-0.041-0.244nannan-0.124-0.313-0.004-0.1880.143nan0.0970.182nan-0.430nannan-0.0800.1130.232-0.694-0.138nannan1.000-0.010-0.6390.610nannannannan
Modelo Motor VTOLnannannannannannannannannannannannannannannannannannannannannannannanPropulsión horizontal0.154-0.1090.6190.0070.2310.453nan0.615nannan0.4670.4740.4770.2080.154nan0.9180.508nan0.477-0.9040.6080.4080.4280.404-0.9430.6040.572nannannannannan0.217nannan-0.0101.0000.118-0.083nannannannan
PortabilidadnannannannannannannannannannannannannannannannannannannannannannannannannannannanPropulsión vertical0.6710.1870.126-0.125-0.3450.1720.2470.093nan-0.5350.023-0.2620.3610.174-0.244nannan0.2390.3130.1620.1880.065nan-0.0970.307nan0.430nannan-0.080-0.375-0.2320.694-0.138nannan-0.6390.1181.000-0.954nannannannan
CámaranannannannannannannannannannannannannannannannannannannannannannannannannannanCantidad de motores propulsión vertical-0.598-0.159-0.1260.1250.3450.055-0.247-0.004nan0.5740.0750.262-0.361-0.1330.444nannan-0.164-0.313-0.111-0.1880.063nan0.0970.004nan-0.430nannan0.2700.3750.232-0.6940.134nannan0.610-0.083-0.9541.000nannannannan
DespeguenannannannannannannannannannannannannannannannannanCantidad de motores propulsión horizontalnannannannannannan
Datalink banksnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannan
Material del fuselajenannannannan
Motor recomendadonannanDimensiones de la bahía de carga útilnannannannannannan
Hélice recomendada VTOLnannannannannannannan
Battery Power Supplynannannannannannan
Hélice recomendada Fixed Wingnannannannannannan
Modelo Motor Fixed Wingnannannannannannan
Sistema de controlnannannannannannan
Modelo Motor VTOLnannannannannannan
Características adicionalesnannannannannannannan
Portabilidadnannannannannannan
Empresanannannannannannan
Cámaranannannannannannan
kjbknannannannannannan
Despegue todos los tiposnannannannannannannannan
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Resumen de la Tabla

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ResumenCantidad
0Total de valores2704.000
1Valores numéricos700.000
2Valores NaN2004.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Filtrando datos seleccionados ===\n", - "\n", - "=== Cálculo de correlaciones filtradas ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)1.0000.0410.587-0.9990.5350.6630.4070.3360.8150.2570.4720.8460.6960.426
Techo de servicio máximo0.0411.000-0.152-0.3140.0820.1370.4630.079-0.111-0.0710.0570.0170.087-0.138
Área del ala0.587-0.1521.000-0.8310.8670.977-0.3010.0810.7370.4230.8410.9840.8990.941
Relación de aspecto del ala-0.999-0.314-0.8311.000-0.790-0.823-0.998-0.305-0.859nan-0.349-0.744-0.8880.622
Longitud del fuselaje0.5350.0820.867-0.7901.0000.7860.1290.3890.2560.1800.6930.9950.5990.880
Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.7861.000-0.0510.4340.6780.5390.7910.8580.8750.947
Alcance de la aeronave0.4070.463-0.301-0.9980.129-0.0511.0000.578-0.062nan-0.107-0.7550.554-0.059
Autonomía de la aeronave0.3360.0790.081-0.3050.3890.4340.5781.0000.297-0.1640.532-0.2010.4610.428
Velocidad máxima (KIAS)0.815-0.1110.737-0.8590.2560.678-0.0620.2971.0000.5390.4000.5120.7150.517
Velocidad de pérdida (KCAS)0.257-0.0710.423nan0.1800.539nan-0.1640.5391.0000.401nan0.6270.321
envergadura0.4720.0570.841-0.3490.6930.791-0.1070.5320.4000.4011.0000.8850.7340.924
Cuerda0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nan0.8851.0000.7760.971
payload0.6960.0870.899-0.8880.5990.8750.5540.4610.7150.6270.7340.7761.0000.778
Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.9240.9710.7781.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Resumen de la Tabla

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ResumenCantidad
0Total de valores196.000
1Valores numéricos190.000
2Valores NaN6.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -9076,81 +9235,63 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -9158,12 +9299,54 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9180,11 +9363,55 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -9193,11 +9420,53 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9214,71 +9483,243 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -9338,17 +9779,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadEmpty weight
Velocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannan0.846nannan
Techo de servicio máximonannannannannannan
Área del alanannannan-0.8310.8670.977nannan0.737nan0.8410.9840.8990.941
Relación de aspecto del ala-0.999Datalink banksnannannannannannannannannannannannannannannannannannannannannannannannan-0.831nan-0.790-0.823-0.998nan-0.859nannan-0.744-0.888nan
Longitud del fuselajenannan0.867-0.790nan0.786nannannannannan0.995nan0.880
Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannan0.7910.8580.8750.947
Alcance de la aeronavenannannan-0.998nannannannannannan-0.755nannan
Autonomía de la aeronaveMaterial del fuselajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Velocidad máxima (KIAS)0.815Motor recomendadonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.737-0.859nannannannannannan0.715nan
Velocidad de pérdida (KCAS)Hélice recomendada VTOLnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
envergaduraHélice recomendada Fixed Wingnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.841nannan0.791nannannannannan0.8850.7340.924
Cuerda0.846Sistema de controlnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.984-0.7440.9950.858-0.755nannannan0.885nan0.7760.971
payloadCaracterísticas adicionalesnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.899-0.888nan0.875nannan0.715nan0.7340.776nan0.778
Empty weightindice_desconocidonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0.941nan0.8800.947nannannannan0.9240.9710.778nan
0Total de valores196.0003249.000
1Valores numéricos64.000907.000
2Valores NaN132.0002342.000
" @@ -9365,21 +9806,11 @@ "output_type": "stream", "text": [ "\n", - "=== Preparando datos para el heatmap ===\n", + "=== Filtrando datos seleccionados ===\n", "\n", - "=== Generando heatmap ===\n" + "=== Cálculo de correlaciones filtradas ===\n" ] }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUy/8H8PfS3Q3SjaCoKBZgIIiCLXahXrv72t2i99oBtmJgYBcWqBioKAoiiEp3557fH8jCsruEgvi738/Lh+dxZ+fMmbNnzuzZORMshmEYEEIIIYQQQgghhBBCeAg1dgYIIYQQQgghhBBCCPlTUeMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYSQ38rX1xcsFgvPnz/n+37Pnj2hr6/foHkICgrC8uXLkZGR0aD7aQzLly8Hi8Wq93TfvHmD0aNHw8DAABISEpCRkUGLFi2wceNGpKWl1fv+fkVgYCBYLBYCAwMbJP2YmBiwWCz4+vo2SPqNbdSoUfV2Ddra2kJbWxulpaUC47Rv3x4qKiooKir65f39yrmvqW6qrD4/o9piGAanTp1Cx44doaamBgkJCejo6MDFxQUHDhz4qTSdnJzg5ORUvxmto4aqs+obi8XC8uXLf/t+Hz58CHFxcXz58oUTpq+vj549e/KN//z583qvn+pybdSH/y9lolxOTg5mzJgBLS0tSEhIoHnz5jh16lSttnVycgKLxRL4l5CQAAAoLi6GkZERvL29G/BICCHVocYzQggh/3OCgoKwYsWK/2TjWUPYv38/WrZsiZCQEMydOxfXr1+Hv78/BgwYgD179sDLy6uxs/hbaWpqIjg4GD169GjsrPzxvLy8EBcXhxs3bvB9PyIiAkFBQRg+fDjExMR+eX8tWrRAcHAwWrRo8ctp/WkWLlyIwYMHw8LCAgcOHMC1a9ewevVqqKur4+LFi42dvZ82duxYBAcHN3Y2/kgMw2DGjBkYN24c9PT0Gjs7RIC+ffvi8OHDWLZsGa5duwY7OzsMHjwYJ06cqHHbXbt2ITg4mOvvzp07EBUVhb29PTQ0NAAAoqKiWLp0KVauXInU1NSGPiRCCB8ijZ0BQgghhPy5goODMXHiRDg7O+PChQsQFxfnvOfs7IzZs2fj+vXr9bKvvLw8SElJ8YSXlpaipKSEa9+NSVxcHPb29o2djf8Xhg4dirlz5+LQoUNwc3Pjef/QoUMAgDFjxvzSfoqLi8FisSAnJ/efPDf5+fnw9vbGiBEjsG/fPq73Ro0aBTab3Ug5+3U6OjrQ0dFp7Gz8ka5fv46XL1/WqhHmTyaobv9V8fHxkJaWhpycXL2nXVtXr17FrVu3cOLECQwePBgA0KlTJ3z58gVz586Fp6cnhIWFBW5vaWnJE3b48GEUFxdj7NixXOGDBw/GrFmzsHfvXixatKh+D4QQUiPqeUYIIeSPxzAMdu3ahebNm0NSUhKKioro378/Pn/+zBXv1q1b6NWrF3R0dCAhIQFjY2P89ddfSElJ4cRZvnw55s6dCwAwMDDgDI0oH+ZVPhwmICAAtra2kJSUhIWFBQICAgCUDV+xsLCAtLQ0WrduzTOM5fnz5xg0aBD09fUhKSkJfX19DB48mGvITXk6LBYLt27dwujRo6GkpARpaWm4u7vzHJcgV65cQfPmzSEuLg4DAwNs3rz5lz4/ftauXQsWi4V9+/bxbbwSExODh4cH5zWbzcbGjRthbm4OcXFxqKmpYcSIEfj27RvXdk5OTmjatCkePHiAdu3aQUpKCmPGjOEMidy4cSNWr14NAwMDiIuL4969ewDKPl8PDw8oKSlBQkICtra28PPzq/E4anteAOD79+8YP348mjRpAjExMWhpaaF///5ITEwEIHjY5qNHj9ClSxfIyspCSkoK7dq1w5UrV7jilJ/3e/fuYeLEiVBRUYGysjL69u2LuLg4nrycPn0abdu2hbS0NGRkZODi4oJXr15xxfn8+TMGDRoELS0tiIuLQ11dHV26dEFoaGiNn4uvry/MzMwgLi4OCwsLHDlyhG+8oqIirF69mnNeVVVVMXr0aCQnJ1ebvqKiIvr06YPLly/z9JYoLS3F0aNHYWdnB2tra3z69AmjR4+GiYkJpKSkoK2tDXd3d7x9+5Zru/KhmUePHsXs2bOhra0NcXFxfPr0ie+wzbqcewBIT0//qWuyttfZq1ev0LNnT6ipqUFcXBxaWlro0aMHzzVSWW5uLgoLC6Gpqcn3fSEh7lv6nz1fdd32xIkTaNu2LWRkZCAjI4PmzZvj4MGDXHGuX7+OLl26QF5eHlJSUrCwsMC6des47/MbolfXeiQkJAQdO3aElJQUDA0NsX79eq4GxYKCAsyePRvNmzeHvLw8lJSU0LZtW7499rKysjBu3DgoKytDRkYGrq6uiIiI4IlX2/LKZrOxevVqmJmZQVJSEgoKCrCxscH27durOQtldu/eDTs7O5iZmdUYtzqjRo2CjIwMPnz4ABcXF0hLS0NTUxPr168HADx58gQdOnSAtLQ0TE1NcfjwYb7p1ObaEFS3A2X1Wbdu3aCpqcn5bl2wYAFyc3N/6rhu3LgBdXV19O/fH+fPn0dBQcFPpfMr/P39ISMjgwEDBnCFjx49GnFxcXj69Gmd0zx48CBkZGTg6enJFS4mJgZPT0/s27cPDMP8Ur4JIXVHjWeEEEIaRXlvoqp//G4I//rrL8yYMQNdu3bFhQsXsGvXLrx79w7t2rXjNGgAQFRUFNq2bYvdu3fj5s2bWLp0KZ4+fYoOHTqguLgYQNkQoalTpwIAzp8/zxkmUXmY1+vXr7Fw4ULMnz8f58+fh7y8PPr27Ytly5bhwIEDWLt2LY4fP47MzEz07NkT+fn5nG1jYmJgZmYGb29v3LhxAxs2bEB8fDzs7Oy4GvHKeXl5QUhICCdOnIC3tzeePXsGJyenGoeU3rlzB7169YKsrCxOnTqFTZs2wc/PDz4+Pj/9+fE7R3fv3kXLli3RpEmTavNTbuLEiZg/fz6cnZ1x6dIlrFq1CtevX0e7du14jj8+Ph7Dhg3DkCFDcPXqVUyaNInz3o4dO3D37l1s3rwZ165dg7m5Oe7du4f27dsjIyMDe/bswcWLF9G8eXN4enrWOL9Pbc/L9+/fYWdnB39/f8yaNQvXrl2Dt7c35OXlkZ6eLjD9+/fvo3PnzsjMzMTBgwdx8uRJyMrKwt3dHadPn+aJP3bsWIiKiuLEiRPYuHEjAgMDMWzYMK44a9euxeDBg2FpaQk/Pz8cPXoU2dnZ6NixI96/f8+J5+bmhhcvXmDjxo24desWdu/eDVtb2xrLkK+vL0aPHg0LCwucO3cOixcvxqpVq3D37l2ueGw2G7169cL69esxZMgQXLlyBevXr8etW7fg5OTEVf758fLyQlFREY4dO8YVfuPGDcTFxXGG/cbFxUFZWRnr16/H9evXsXPnToiIiKBNmzb4+PEjT7oLFy5EbGws9uzZg8uXL0NNTY3v/n/XNVmb6yw3NxfOzs5ITEzEzp07cevWLXh7e0NXVxfZ2dkC01ZRUYGxsTF27dqFrVu34sOHDwJ/PP/K+arLtkuXLsXQoUOhpaUFX19f+Pv7Y+TIkVyNkgcPHoSbmxvYbDbnPE2bNq3ahkKgbvVIQkIChg4dimHDhuHSpUvo3r07Fi5cyFXeCgsLkZaWhjlz5uDChQs4efIkOnTogL59+3I1GDMMg969e3MaZv39/WFvb4/u3bvz5LG25XXjxo1Yvnw5Bg8ejCtXruD06dPw8vKqsTwVFRXh9u3b6NSpU7Xxaqu4uBh9+/ZFjx49cPHiRc7ntGjRIowcORJjxoyBv78/zMzMMGrUKLx48YInjdpeG4Lq9sjISLi5ueHgwYO4fv06ZsyYAT8/P7i7u//UMfXp0wc7duxAeno6Bg4cCHV1dYwaNQo3btyodp5FhmH43n/w+6tJWFgYLCwsICLCPaDLxsaG835dREZG4uHDhxg0aBBkZGR43ndycsKXL1/qnC4hpB4whBBCyG/k4+PDAKj2T09PjxM/ODiYAcBs2bKFK52vX78ykpKSzLx58/juh81mM8XFxcyXL18YAMzFixc5723atIkBwERHR/Nsp6enx0hKSjLfvn3jhIWGhjIAGE1NTSY3N5cTfuHCBQYAc+nSJYHHW1JSwuTk5DDS0tLM9u3beT6HPn36cMV//PgxA4BZvXq1wDQZhmHatGnDaGlpMfn5+ZywrKwsRklJian89f6znx/DMExCQgIDgBk0aFC1eSkXHh7OAGAmTZrEFf706VMGALNo0SJOmKOjIwOAuXPnDlfc6OhoBgBjZGTEFBUVcb1nbm7O2NraMsXFxVzhPXv2ZDQ1NZnS0lKGYRjm3r17DADm3r17AvMq6LyMGTOGERUVZd6/fy9w2/I8+vj4cMLs7e0ZNTU1Jjs7m2sfTZs2ZXR0dBg2m80wTMV5r/oZbdy4kQHAxMfHMwzDMLGxsYyIiAgzdepUrnjZ2dmMhoYGM3DgQIZhGCYlJYUBwHh7ewvMLz+lpaWMlpYW06JFC07eGIZhYmJiGFFRUa5r8OTJkwwA5ty5c1xphISEMACYXbt2VbsvNpvNGBgYMDY2Nlzh/fr1Y6SkpJjMzEy+25WUlDBFRUWMiYkJM3PmTE54+fl1cHDg2eZXzn1drsmRI0f+VD31/PlzBgBz4cIFgfkT5NmzZ4yuri6nnpSVlWV69uzJHDlyhOsc1uV8OTo6Mo6OjnXe9vPnz4ywsDAzdOhQgfnNzs5m5OTkmA4dOnDlr6ply5Zx1Vk/U488ffqUK66lpSXj4uIicJ8lJSVMcXEx4+Xlxdja2nLCr127xgDgKhcMwzBr1qxhADDLli2rNk1+5bVnz55M8+bNBW4nSPnxnjp1iuc9PT09pkePHny3Kz9XleunkSNH8pzX4uJiRlVVlQHAvHz5khOemprKCAsLM7NmzeKE1eXaEFS3V1X+HX3//n0GAPP69WvOe1XLRG0kJCQw//zzD9O+fXuGxWIxampqzOTJk5lHjx7xlL/a3IeU/9XExMSEb1mLi4tjADBr166t03HMnz+fAcAEBwfzfT8yMpIBwOzevbtO6RJCfh31PCOEENIojhw5gpCQEJ6/Dh06cMULCAgAi8XCsGHDuJ4Ga2hooFmzZlzDs5KSkjBhwgQ0adIEIiIiEBUV5UyyHB4eXuu8NW/eHNra2pzXFhYWAMqe+Faet6U8vHJPi5ycHMyfPx/GxsYQERGBiIgIZGRkkJubyzcPQ4cO5Xrdrl076OnpcYYp8pObm4uQkBD07dsXEhISnPDynk6V1eXz+1XleR41ahRXeOvWrWFhYYE7d+5whSsqKqJz58580/Lw8ICoqCjn9adPn/DhwwfO51X5WNzc3BAfH8+3d1K52p6Xa9euoVOnTpxzWxu5ubl4+vQp+vfvz9VTQFhYGMOHD8e3b9948lZ5qCtQ0UuhvCzduHEDJSUlGDFiBNexSkhIwNHRkXPelJSUYGRkhE2bNmHr1q149epVrea/+vjxI+Li4jBkyBCuIXN6enpo164dV9yAgAAoKCjA3d2dKy/NmzeHhoZGjWWIxWJh9OjRePPmDac3S2pqKi5fvox+/fpx5isqKSnB2rVrYWlpCTExMYiIiEBMTAyRkZF8r51+/frVeJzA77kma3udGRsbQ1FREfPnz8eePXu4ehDWxM7ODp8+fcL169exaNEitG3bFnfu3MGIESPg4eHB6Yn2K+erttveunULpaWlmDx5ssC0goKCkJWVhUmTJtVp5cS61iMaGhpo3bo1V5iNjQ3PsNwzZ86gffv2kJGR4Xw/HDx4kKsMlO+7ahkYMmQITz5rW15bt26N169fY9KkSbhx4waysrJq9TmUD+MW1KOyrlgsFte8gyIiIjA2NoampiZsbW054UpKSlBTU+M7rLm214aguv3z588YMmQINDQ0ICwsDFFRUTg6OgKo23c0P+rq6pgyZQoePXqEL1++YN68eZye5wYGBlxDQ93d3fnef/D7q43qynddyn5JSQkOHz4MKysrgXM3lpeH79+/1zpdQkj9oAUDCCGENAoLCwu0atWKJ1xeXh5fv37lvE5MTATDMFBXV+ebjqGhIYCy4UbdunVDXFwclixZAmtra0hLS4PNZsPe3r7GoWWVKSkpcb0uXwVQUHjleVaGDBmCO3fuYMmSJbCzs4OcnBznRwu/PJSvpFU1rLrVtNLT08FmswVuW1ltPz9+VFRUICUlhejoaIFxKivPM795mbS0tHh+jAmav4nfe+XD3ubMmYM5c+bw3YbfELxytT0vycnJdZ68PD09HQzDCDxuADznU1lZmet1+Xxy5XkpP147Ozu++yyf44rFYuHOnTtYuXIlNm7ciNmzZ0NJSQlDhw7FmjVrICsry3f78vwIKkMxMTGc14mJicjIyBC4GmZ1n3u50aNHY/ny5fDx8UHLli1x/PhxFBUVca3UOmvWLOzcuRPz58+Ho6MjFBUVISQkhLFjx/K9dqorP5X9jmuytteZvLw87t+/jzVr1mDRokVIT0+HpqYmxo0bh8WLF3M1GPMjKioKFxcXuLi4ACg7j/3790dAQACuXbsGNze3Xzpftd22fP6z6q6V2sThp671SNVrCSi7niqf2/Pnz2PgwIEYMGAA5s6dCw0NDYiIiGD37t2cRSvK9y0iIsKTJr8yUdvyunDhQkhLS+PYsWPYs2cPhIWF4eDggA0bNvD9DixXnkblByTlREREBA5LLB9qWLUsSUlJ8aQlJibG871WHs5v/rDaXhv8zl1OTg46duwICQkJrF69GqamppCSksLXr1/Rt2/fOn1H1yQzMxMZGRnIzMwEAM65KaekpAR5efl62ZeysjLfuiEtLY2zr9q6evUqEhISMH/+fIFxys9hfX5ehJDaocYzQgghfzQVFRWwWCw8fPiQ74T15WFhYWF4/fo1fH19MXLkSM77nz59+m15zczMREBAAJYtW4YFCxZwwsvn2+EnISGBb5ixsbHA/SgqKoLFYgnctrLafn78CAsLo0uXLrh27Rq+fftW44/g8h+c8fHxPHHj4uKgoqLCFVaXp/Xl2y5cuBB9+/blu42gSbXrcl5UVVVrnI+pqvIfZvHx8TzvlfceqXrsNSmPf/bsWU7vSUH09PQ4k7RHRETAz88Py5cvR1FREfbs2cN3m/JzVdsypKysLHBVVUENdJXp6OigW7duOHHiBLZs2QIfHx8YGxvDwcGBE+fYsWMYMWIE1q5dy7VtSkoKFBQUeNKsTY+O33VN1uU6s7a2xqlTp8AwDN68eQNfX1+sXLkSkpKSXHmsDWVlZcyYMQOBgYEICwuDm5vbL52v2m6rqqoKAPj27ZvA+RArx6mLutYjtXHs2DEYGBjg9OnTXOWmsLCQZ98lJSVITU3lakDjVyZqW15FREQwa9YszJo1CxkZGbh9+zYWLVoEFxcXfP36VeAqlOXHya+cqqurC+x5VB4uqCH3V9T22uB3bd69exdxcXEIDAzk9DYDUOPcb7UVERGB06dP49SpU3j//j2MjY0xePBgDBkyBObm5lxxDx8+jNGjR9cqXaaGifmtra1x8uRJlJSUcM17Vr5wRNOmTWt9DAcPHoSYmBiGDx8uME55efiZ64AQ8mto2CYhhJA/Ws+ePcEwDL5//45WrVrx/FlbWwOouFmv+sN17969PGlW7eVTX1gsFhiG4cnDgQMHBPYSOH78ONfroKAgfPnyBU5OTgL3U77SZ9XVxbKzs3H58mWuuLX9/ARZuHAhGIbBuHHjUFRUxPN+cXExZ5/lw3SqTgwfEhKC8PBwdOnSpdp9VcfMzAwmJiZ4/fo13+No1aqVwEaBupyX7t274969e9UOAa1KWloabdq0wfnz57nKFJvNxrFjx6CjowNTU9M6HC3g4uICERERREVFCTxefkxNTbF48WJYW1vj5cuXAtM3MzODpqYmTp48yfXj8MuXLwgKCuKK27NnT6SmpqK0tJRvPmq7EqCXlxfS09OxdOlShIaGYvTo0Vw/slksFs85unLlyi8NT/pd1+TPXGcsFgvNmjXDtm3boKCgUO35Ki4uFtjzrXy4W3kvx185X7Xdtlu3bhAWFsbu3bsFptWuXTvIy8tjz549dVoZsCHqERaLBTExMa7ylpCQwLPaZvnk/FXLwIkTJ/imWdfyqqCggP79+2Py5MlIS0vj6uFZVfnQ8aioKJ73unbtirCwML7Dfv38/CAjI4M2bdoITPtn/cy1Ua4u39G1lZSUhA0bNsDW1hZmZmbYs2cPunXrhmfPniEyMhIrV67kaTgD6nfYZp8+fZCTk4Nz585xhR8+fBhaWlq1Pg8JCQm4evUqevfuzbc3Zbny1U0tLS1rlS4hpP5QzzNCCCF/tPbt22P8+PEYPXo0nj9/DgcHB0hLSyM+Ph6PHj2CtbU1Jk6cCHNzcxgZGWHBggVgGAZKSkq4fPkybt26xZNm+Q/Z7du3Y+TIkRAVFYWZmVmtetBUR05ODg4ODti0aRNUVFSgr6+P+/fv4+DBg3x7zgDA8+fPMXbsWAwYMABfv37F33//DW1tba6VJ/lZtWoVXF1d4ezsjNmzZ6O0tBQbNmyAtLQ0V0+F2n5+gpSvXjpp0iS0bNkSEydOhJWVFYqLi/Hq1Svs27cPTZs2hbu7O8zMzDB+/Hj8888/EBISQvfu3RETE4MlS5agSZMmmDlz5k99ruX27t2L7t27w8XFBaNGjYK2tjbS0tIQHh6Oly9f4syZM3y3q8t5WblyJa5duwYHBwcsWrQI1tbWyMjIwPXr1zFr1iy+P8QAYN26dXB2dkanTp0wZ84ciImJYdeuXQgLC8PJkyfrNO8NAOjr62PlypX4+++/8fnzZ7i6ukJRURGJiYl49uwZpKWlsWLFCrx58wZTpkzBgAEDYGJiAjExMdy9exdv3ryptheTkJAQVq1ahbFjx6JPnz4YN24cMjIysHz5cp6hWYMGDcLx48fh5uaG6dOno3Xr1hAVFcW3b99w79499OrVC3369KnxmDw8PKCiooJNmzZBWFiYq4coUNZw4+vrC3Nzc9jY2ODFixfYtGlTnYf9Vfa7rsnaXmcBAQHYtWsXevfuDUNDQzAMg/PnzyMjIwPOzs4C08/MzIS+vj4GDBiArl27okmTJsjJyUFgYCC2b98OCwsLTo/MXzlftd1WX18fixYtwqpVq5Cfn4/BgwdDXl4e79+/R0pKClasWAEZGRls2bIFY8eORdeuXTFu3Dioq6vj06dPeP36Nf7991++eWiIeqRnz544f/48Jk2ahP79++Pr169YtWoVNDU1ERkZyYnXrVs3ODg4YN68ecjNzUWrVq3w+PFjHD16lG+atSmv7u7uaNq0KVq1agVVVVV8+fIF3t7e0NPTg4mJicA86+jowNDQEE+ePMG0adO43ps+fTqOHDkCJycnTj2Vnp6O06dP4+zZs9i6desvf5/x87PfV0BZY6qioiImTJiAZcuWQVRUFMePH8fr169/Oj9Xr17F+vXr0a9fP2zevBmdOnXiGp4piLKycrUNVHXRvXt3ODs7Y+LEicjKyoKxsTFOnjyJ69ev49ixYxAWFubE9fLywuHDhxEVFcXTo/jw4cMoKSnB2LFjq93fkydPOEN/CSG/2e9eoYAQQsj/tvJVrkJCQvi+36NHD65V7ModOnSIadOmDSMtLc1ISkoyRkZGzIgRI5jnz59z4rx//55xdnZmZGVlGUVFRWbAgAFMbGws31XSFi5cyGhpaTFCQkJcq/MJWsUMADN58mSusPJVFzdt2sQJ+/btG9OvXz9GUVGRkZWVZVxdXZmwsDBGT0+PGTlyJM/ncPPmTWb48OGMgoICIykpybi5uTGRkZE1fIplLl26xNjY2DBiYmKMrq4us379eoGrlNXm86tOaGgoM3LkSEZXV5cRExNjpKWlGVtbW2bp0qVMUlISJ15paSmzYcMGxtTUlBEVFWVUVFSYYcOGMV+/fuVKz9HRkbGysuLZD7/PtLLXr18zAwcOZNTU1BhRUVFGQ0OD6dy5M7Nnzx5OHH4rLtb2vDBM2QqJY8aMYTQ0NBhRUVFGS0uLGThwIJOYmMiVx8qr2TEMwzx8+JDp3Lkz5zO2t7dnLl++zBVHUPkXtErkhQsXmE6dOjFycnKMuLg4o6enx/Tv35+5ffs2wzAMk5iYyIwaNYoxNzdnpKWlGRkZGcbGxobZtm0bU1JSwvczrOzAgQOMiYkJIyYmxpiamjKHDh3iWUmSYcpW5tu8eTPTrFkzRkJCgpGRkWHMzc2Zv/76q9bllWEYZubMmQwAxs3Njee99PR0xsvLi1FTU2OkpKSYDh06MA8fPuRZEbL8szpz5gxPGr9y7utyTfL7jBim5uvsw4cPzODBgxkjIyNGUlKSkZeXZ1q3bs34+vpW+7kVFhYymzdvZrp3787o6uoy4uLijISEBGNhYcHMmzePSU1N5Ypf2/NV9bOty7YMwzBHjhxh7OzsOPFsbW15rourV68yjo6OjLS0NCMlJcVYWloyGzZs4LzPr8761XqE3/lZv349o6+vz4iLizMWFhbM/v37+e47IyODGTNmDKOgoMBISUkxzs7OzIcPH3i+R2pbXrds2cK0a9eOUVFR4dTVXl5eTExMDE++q1qyZAmjqKjIFBQU8LyXkJDATJw4kdHV1WVEREQYWVlZpkOHDnyvi5EjRzLS0tI84YI+v6rfg3W5NgSlyTAMExQUxLRt25aRkpJiVFVVmbFjxzIvX77kqU9ru9pmSkoKU1hYWGO8hpadnc1MmzaN0dDQYMTExBgbGxvm5MmTPPHKVz3lt9K3qakpo6+vX+3KtAzDMB07dmTc3d3rK+uEkDpgMUwd+lETQgghpF74+vpi9OjRCAkJqXbSaEIIIf+b4uLiYGBggCNHjsDT07Oxs0MaWVRUFExMTHDjxo1qe6oSQhoGzXlGCCGEEEIIIX8YLS0tzJgxA2vWrAGbzW7s7JBGtnr1anTp0oUazghpJDTnGSGEEEIIIYT8gRYvXgwpKSl8//5d4Mqm5L+vpKQERkZGWLhwYWNnhZD/WTRskxBCCCGEEEIIIYQQAWjYJiGEEEIIIYQQQgipdw8ePIC7uzu0tLTAYrFw4cKFGre5f/8+WrZsCQkJCRgaGmLPnj08cc6dOwdLS0uIi4vD0tIS/v7+DZD7CtR4RgghhBBCCCGEEELqXW5uLpo1a4Z///23VvGjo6Ph5uaGjh074tWrV1i0aBGmTZuGc+fOceIEBwfD09MTw4cPx+vXrzF8+HAMHDgQT58+bajDoGGbhBBCCCGEEEIIIaRhsVgs+Pv7o3fv3gLjzJ8/H5cuXUJ4eDgnbMKECXj9+jWCg4MBAJ6ensjKysK1a9c4cVxdXaGoqIiTJ082SN6p5xkhhBBCCCGEEEIIqVFhYSGysrK4/goLC+st/eDgYHTr1o0rzMXFBc+fP0dxcXG1cYKCguotH1XRapuEEEIIIYQQQgghf5D2Oyc0dhb4ck7WwIoVK7jCli1bhuXLl9dL+gkJCVBXV+cKU1dXR0lJCVJSUqCpqSkwTkJCQr3kgR9qPCOEkHr0p37J/azHk/cgLiOpsbNR77QU1LD6lk9jZ6NeLXYejXTnPo2djXqleMsfW+43TNf7xjLbcTDmX9nV2NmoVxt6TMKxF9cbOxv1alhLV1wKe9jY2ahXHk07YuiJ5Y2djXp3fMhyBH560djZqFdOxi2xN/hCY2ejXv3VtjcGHl3c2NmoV37DV2PGRe/Gzka98u41A0dCrjZ2NurVCDu3xs7Cf87ChQsxa9YsrjBxcfF63QeLxeJ6XT7bWOVwfnGqhtUnajwjhBBCCCGEEEIIITUSFxev98ayyjQ0NHh6kCUlJUFERATKysrVxqnaG60+0ZxnhBBCCCGEEEIIIX8Q1h/6r6G1bdsWt27d4gq7efMmWrVqBVFR0WrjtGvXrsHyRT3PCCGEEEIIIYQQQki9y8nJwadPnzivo6OjERoaCiUlJejq6mLhwoX4/v07jhw5AqBsZc1///0Xs2bNwrhx4xAcHIyDBw9yraI5ffp0ODg4YMOGDejVqxcuXryI27dv49GjRw12HNTzjBBCCCGEEEIIIYTUu+fPn8PW1ha2trYAgFmzZsHW1hZLly4FAMTHxyM2NpYT38DAAFevXkVgYCCaN2+OVatWYceOHejXrx8nTrt27XDq1Cn4+PjAxsYGvr6+OH36NNq0adNgx0E9zwghhBBCCCGEEEL+IEINOPn97+Tk5MSZ8J8fX19fnjBHR0e8fPmy2nT79++P/v37/2r2ao16nhFCCCGEEEIIIYQQIgA1nhFCCCGEEEIIIYQQIgAN2ySEEEIIIYQQQgj5g7D+I8M2/yuo5xkhhBBCCCGEEEIIIQJQ4xkhhBBCCCGEEEIIIQLQsE1CCCGEEEIIIYSQP8h/ZbXN/wrqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8ICDdv8k1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBattvlHoZ5nhBBCCCGEEEIIIYQIQI1nhBBCCCGEEEIIIYQI8Nsbz/T19eHt7f1b02OxWLhw4cIv7Wf58uVo3rz5L6VRVWBgIFgsFjIyMuo1XcKt6ufs6+sLBQWFRs3TqFGj0Lt370bNw58gNTUVampqiImJaeyscPn333/h4eHR2NkghBBCCCGE/I8SYrH+yL//VbWe88zd3R35+fm4ffs2z3vBwcFo164dXrx4gRYtWtRrBmsSEhICaWnp37pP8v+bp6cn3NzcGjsbBMC6devg7u4OfX19AEBMTAwMDAzw6tUrTmN1dnY23N3dkZCQgI8fP1abXnR0NPT19REUFISOHTvC2dkZ169f54l37tw5bNy4ER8+fACbzYauri5cXV2xZcsWAMC4ceOwZs0aPHr0CB06dKjXY/4VzTSNMcS2G8zVdKEirYAFV3fjYfTrxs4WAODCWX+cPnYSqamp0DfQx5SZ02Bj20xg/NCXr7DL+1/ERMdARUUZg4YPgUff3nzj3r15G6uWrEB7hw5YvWkdJ/z1q1CcPnYSER8+IjUlFas2rkEHR4f6PjQuHx+8xLs7T5GfmQMFTRW06tcV6sZN+MZNiPiCWztO8oR7LB4HeQ1lAAC7tBRhN4MR9TQMeRnZkFdXgm2vTtC2NGzQ4/hZoh3sId6jG4RNjCAkL4esCTNRGhXT2Nni8S7wGd7cCEJeZjYUtdTQ1tMVmiZ6fOPGfYxGwJbDPOEDV0yGgqYqT/inZ29x98A56DUzg8vkwfWed0Hs9azgaGgLWXEpJOak4fK7x4hJjxcYX1hICF1N7GCrZQpZcSlkFuTg7qcXeP7tAyeOhIgYXMzaoKmGISRFxZGen42A94/xMTn2dxwSnt96iOCAu8jOyIKqtgZcRvSFrrlRjdt9/fgZh1f9A7Ummhi/bh4nPOlbPO6fuYr46G/ITElDt+F90Ka7UwMeAa+g6/cQePEGstMzoN5ECx6jB8HQ0pRv3OjwSFw5ehbJ3xNQVFQERRVl2HdzgIN7N77xQx89w/Ft+2Bl1xyjFkxpyMPg0tXEDj0s2kFBUhbfM5Nw9MX1astIO31r9LRoDw1ZZeQVF+BN3CeceHUTOUX5AIBORi3QwaAZmiioAQCi0+Jx+vUdfE79/luOp1xgwC3cPB+AzLQMaOlqY+D4ETBpas437svHz/Dg6m18/fwFJcUl0NTThvuQfrBqyf09l5eTiwtH/PAqKAR5OblQUVdF/7FDYW1n+zsOCaF3gvH82n3kZmRDWVsdTkPcoWNmUON23yNj4LduL1S01TF81QxOuN+6vfj28TNPfAMbc/SZNbo+sy5QN9PW8LDqCAVJGXzLSILv86v4kPRFYPwOBs3gYdkBmnLKyCsqRGhcJI6+uMYpf46Gtpjcvh/PdkOPL0cxu6TBjqM67fVt0Nm4JeQkpJGQnQr/t/fxOS2Ob9whtt3QWteSJzw+KxUb7h1t6KwK9PzWIzy5eg85P+pz52G9a1efR3zG0dU7oaqjgXFr53LCP4S8weNLt5CemAJ2KRuK6iqwd3OCdQe7hjwMQqpV68YzLy8v9O3bF1++fIGeHvcN6KFDh9C8efPf3nAGAKqqvDe25L+hqKgIYmJi9Z6upKQkJCUl6z3dxtRQn1VtFBcXQ1RUtM7b5efn4+DBg7h69arAOMnJyejevTsA4Pbt2xARqaiy7OzsMH78eIwbN44TVl4fHDp0CFOnTsWBAwcQGxsLXV1dTpzbt29j0KBBWLt2LTw8PMBisfD+/XvcuXOHE0dcXBxDhgzBP//880c1nkmKiuNT6jdc/RCEtd0nNHZ2OO7euoOd23ZgxrxZaGpjjcv+lzB/5lz4njoKdQ11nvjxcXFYOHMeevRyx98rliDszVt4b9wKeQUFOHZ24oqbEJ+A3Tt2waY5b0NcQX4BjEyM4drTDcsWLG6ow+OIeRGO5+duo7WnC9QMtRHxKBR3d/nBY/FYSCvJC9yu15LxEJWsuD7FZaQ4/w+9/ACfQ96h7ZDukFNXRlz4Z9zffx6us4ZBqYlGgx7Pz2BJiKPk3QcUPQiC9KzJjZ0dvqJCwhB8+jo6DOkBdWNdhD94jms7jmHg8smQUVYQuN3AVVMgJiHOeS0hy/tgLjs1A0/P3oSGiS7Pew3JRtMY7pYdcCHsAb6kJ6CNriXGtO6JrfdPIqMgh+82Q21dICsuibNv7iE1LxPSYpIQFqoYcCDMEsLYNh7IKcrHsZc3kFmQAwUJGRSWFP+WY3oX/BI3jvjDbcwA6Jga4OWdIJzYsAcTNy2EvIqSwO0K8vJxcfcxGFiZIjcrm+u9ksIiKKqpwKKNLW4d82/oQ+AR+vgZLvmcQp9xQ6FvbownNx/g4JrtmOO9EoqqyjzxxcTF0b57Z2jq6UBMQhzR4ZE4t/coxMTFYd/NkStuelIqAg6fgYGFye86HACAva4Vhrdwhc/zK4hIjkVn41aY5zQM867sRGpeJk98U1VdTLTvg2Mvb+Dl949QlJLDGLueGNvGA94PTwMALNT1EfwlDEeef0URuwQ9LdpjQafhmH9lJ9Lzs3nSbAghD4Lht/8IhkwaAyMLUzy4fgf/LNuA5bs3QUlNhSd+5LsPsLC1Ru+RnpCUlkLQ7fvYuXIzFmxdBV0jfQBASXEJvBevg6y8HP5aNB2KKkpIT06F+G+65/z49DUCT1xGlxG9oWWihzf3nsJ/6yGMXDsLcsqKArcrzMvH9X2noWtphLxM7vrEfepwsEtKOa/zc3NxdMl2mNpZN9hxVNZWrylGtXLDgWeX8TEpFl1N7bCo8wjMvLSDb/kzU9XDlHb9cPjFVTz/9hFKknIYZ++BCW37YPP9E5x4eUUFmH7Rm2vbxmo4s9UyRR9rR5x9fRfRaXFop2+Dv9r2xrq7R5HB53o4/zYQl98/4rwWYglhXqeheB0X+Rtzze39k1e4dewCXEf1RxNTA7y8G4RTm/bhrw0LIK8iuOwV5OXj0p4TMLAyQU4m97FKSkuhvYczVLTUISwijMhX73B53ylIycnCyIZ/IzchDa3WwzZ79uwJNTU1+Pr6coXn5eXh9OnT8PLyAgAEBQXBwcEBkpKSaNKkCaZNm4bc3FyB6cbGxqJXr16QkZGBnJwcBg4ciMTERK44ly5dQqtWrSAhIQEVFRX07duX817VYZuRkZFwcHCAhIQELC0tcevWLZ59zp8/H6amppCSkoKhoSGWLFmC4mLum8X169dDXV0dsrKy8PLyQkFBQbWfT2lpKby8vGBgYABJSUmYmZlh+/bt1W5TVWpqKgYPHgwdHR1ISUnB2toaJ0/y9lqoytfXF7q6upCSkkKfPn2wZcsWrmGJ/IYIzpgxA05OTpzXDMNg48aNMDQ0hKSkJJo1a4azZ89Wu99du3bBxMQEEhISUFdXR//+/X8pPX19faxevRqjRo2CvLw8p1GkpjJ17NgxtGrVCrKystDQ0MCQIUOQlJRU7edV+fPR19cHi8Xi+StXm/JS1ffv3+Hp6QlFRUUoKyujV69edR6a+PjxYzg6OkJKSgqKiopwcXFBeno6AMDJyQlTpkzBrFmzoKKiAmdnZ8TExIDFYiE0NJSTRkZGBlgsFgIDAzlh7969Q48ePSAnJwdZWVl07NgRUVFRnPd9fHxgYWEBCQkJmJubY9euXZz3yvfh5+cHJycnSEhI4NixY2Cz2Vi5ciV0dHQgLi6O5s2b8+3xVdm1a9cgIiKCtm3b8n3/69ev6NixI2RlZXHv3j3o6OhAQ0OD8ycsLMw555XDcnNz4efnh4kTJ6Jnz548dVZAQAA6dOiAuXPnwszMDKampujduzf++ecfrngeHh64cOEC8vPzqz2O3+lJ7Dvsf3oJ9z+HNnZWuJw5eRpuHj3Qo5c79Az0MWXWNKipq+HSOf4/Xi+dvwg1DXVMmTUNegb66NHLHd3de8Dv+CmueKWlpVizdCVGjR8DTW1NnnTatLOH14RxcOjkyPNeQ3h/9xmM2zaDSbtmkNdQgV3/rpBSlMPHh6+q3U5CVgqScjKcP6FKDRifn72Ddbe20LYygqyKAsw6toCmhQHe3w1p6MP5KUW376PgmB9KXv4ZPR75eXMrGGYdWsC8Y0soaqqinWd3yCjK4/3959VuJykrDSl5Wc5f5fMEAGw2G3cPnENLj06Qq+bHQEPoaNAMIV/DEfI1HEk56bj8/jEyC3Jgr9eUb3xT1SYwVNbCoZAr+JT6Den52fiWmYQv6QmcOK2aWEBKVBxHnl/Dl/QEZOTnICY9AfHZqb/lmJ5cDYStkz1sO7Xl9DqTU1bE89uPq93uyoHTsGrXEjom+jzvaRnpoevQXmjargWERX7/gvIPLt+CXecOaNPVAeo6Wug1ZhAUlBURfCOQb3xtQ13YdmwDDV1tKKmpoKVjW5g1t0J0OPePYHYpGye270c3Tw8oqf/eh8bdzdsi8PNLBEa9RFxWCo69vI7UvEx0NWnFN76xsg6SczNwI+IpknMzEJEci7ufnsNQSYsTZ1fQedyODMGXjATEZ6XgwLNLEGKxYKXx+3rc3va/ivbdnNDBpRM0dbXhOX4EFFWUcf8q7wgbAPAcPwIu/d2hb2oEdW1N9Bk5CGpaGnjz9CUnzuNbgcjNzsGkJbNgbGkGZTVVGFuZo4kh/16v9e3FjYdo6mAHa8fWUNZSR6ehHpBVksfru0+q3e6273mY2zeHphFvPiVlpCCtIMv5iw2LhKiYKExb2zTUYXDpadkedz+9wN1PL/A9KxmHn19FSl4mupm15hvfVFUHSbkZuPbhCZJz0vEx+QtuR4TAUFmbKx4DBpkFOVx/jcXJuAWefnmHJ7HvkJiTDv+w+8jIz0EHff6fcUFJEbIL8zh/ugrqkBSVwNPYd7855xWeXgtEc6c2sO1kDxVtdXQb3gdyygp4eaf6+vzaoTOwatsC2sb6PO/pWRrD3M4GKtrqUFRXQWtXR6g10cRXPj0h/8v4/Ub9E/7+V9W68UxERAQjRoyAr68vGIbhhJ85cwZFRUUYOnQo3r59CxcXF/Tt2xdv3rzB6dOn8ejRI0yZwr9rOcMw6N27N9LS0nD//n3cunULUVFR8PT05MS5cuUK+vbtix49euDVq1e4c+cOWrXi/4XNZrPRt29fCAsL48mTJ9izZw/mz5/PE09WVha+vr54//49tm/fjv3792Pbtm2c9/38/LBs2TKsWbMGz58/h6amJlcDgqB96+jowM/PD+/fv8fSpUuxaNEi+Pn5VbtdZQUFBWjZsiUCAgIQFhaG8ePHY/jw4Xj69KnAbZ4+fYoxY8Zg0qRJCA0NRadOnbB69epa77Pc4sWL4ePjg927d+Pdu3eYOXMmhg0bhvv37/ON//z5c0ybNg0rV67Ex48fcf36dTg4OPx0euU2bdqEpk2b4sWLF1iyZEmtylRRURFWrVqF169f48KFC4iOjsaoUaNqfewhISGIj49HfHw8vn37Bnt7e3Ts2JHzfk3lpaq8vDx06tQJMjIyePDgAR49egQZGRm4urqiqKioVnkKDQ1Fly5dYGVlheDgYDx69Aju7u4oLa14+nf48GGIiIjg8ePH2Lt3b63S/f79O6dx+e7du3jx4gXGjBmDkpKyp2379+/H33//jTVr1iA8PBxr167FkiVLcPgw95Cm+fPnY9q0aQgPD4eLiwu2b9+OLVu2YPPmzXjz5g1cXFzg4eGByEjBT8EePHgg8Fr++PEj2rdvD3Nzc1y/fh2ysrK1Oj4AOH36NMzMzGBmZoZhw4bBx8eHq87S0NDAu3fvEBYWVm06rVq1QnFxMZ49e1brff8vKi4uRsSHCLRqw30j26q1HcLe8v+M3799h1atubvd29m3xsfwD5yyCABHDvpCQVEBPTx61n/G66i0pBRpXxOgaaHPFa5loY/k6OqHGgVs8MHZRf/g1o6TSIjgHmpSWlICIVHuH/kioiJIivpaL/n+X1NaUoKU2DjoWHIPFdGxNEJiDZ/p+VV7cXTOZgRsPYy4D9E8778MuA9JWWmYd/i9veyFWULQlldFZDJ3/iOSv0JPkbdnJwBYqhvgW2YSHA1tsajLCMxxHIIeFu0gIiRcKY4+vmQkonfTjljcdRRmOniik1ELsNDwN8WlJSWIj/4KQxszrnAjazN8i+D97MuFBj5BelIKHPu5NnQW66ykuATfo77AtLkVV7hpMyt8+RglYCtu3z/HIuZjFAytuId53jpzGdJysmjdtaOALRuGsJAwDJS08DaeO/9vE6JgosJ/uHpkylcoScmhmVZZDzk5CWm0bmKJ0Gp6xYgLi0KYJYTcwt/zsKqkuASxn6JhacvdOGHZwhpR4RG1SoPNZqMgvwDSlXqovnn6AobmJjixywdzhk7AiknzcPX0BbBL2fWaf35KS0qQGPMdek25eybqNTVF3CfBQxzDHoYgIzkNbXt3rdV+3j58DrM2zSAq3vCjHYSFhGGopIXX8Z+4wt/EfYKZKv/evx+TY6EsJQdbrbJrSF5CGvZ6Vnj1nXvaDwkRMezsMwe7+87F/E7DoK/I+4DudxBmCUFHXg0fkrnP0YekL9BXql2e2uhZISI59rf12qyqrD7/BoOm3PW5YVMzfIuMEbjd6/tPkZ6YAoe+LjXug2EYRIdFIC0huVZDQQlpKHV6LDdmzBhs2rQJgYGB6NSpE4Cy4VF9+/aFoqIipk+fjiFDhmDGjBkAABMTE+zYsQOOjo7YvXs3JCQkuNK7ffs23rx5g+joaDRpUvYlfPToUVhZWSEkJAR2dnZYs2YNBg0ahBUrVnC2a9aM/zw6t2/fRnh4OGJiYqCjowMAWLt2LWfYV7nFiyuG9+jr62P27Nk4ffo05s0rmzfD29sbY8aMwdixYwEAq1evxu3bt6vtfSYqKsqVRwMDAwQFBcHPzw8DBw4U/KFWoq2tjTlz5nBeT506FdevX8eZM2fQpk0bvtts374dLi4uWLBgAQDA1NQUQUFBNfb6qSw3Nxdbt27F3bt3Ob2ADA0N8ejRI+zduxeOjry9OmJjYyEtLY2ePXtCVlYWenp6sLW1/en0ynXu3JnrMxgxYkSNZWrMmDGc+IaGhtixYwdat26NnJwcyMjI1Hj8lYf+Tp8+HfHx8QgJqej1UVN5qerUqVMQEhLCgQMHOC3zPj4+UFBQQGBgILp14z+XSWUbN25Eq1atuBptray4b8iNjY2xceNGzuva9GzbuXMn5OXlcerUKc5QS1PTipv0VatWYcuWLZzenQYGBnj//j327t2LkSNHcuLNmDGDqwfo5s2bMX/+fAwaNAgAsGHDBty7dw/e3t7YuXMn37zExMRAS0uL73sjRoxAu3btcO7cOQgLC/ONI8jBgwcxbNgwAICrqytycnJw584ddO1admM4depUPHz4ENbW1tDT04O9vT26deuGoUOHQly8YsiWtLQ0FBQUEBMTw7fMFhYWorCwkCus8vb/KzIzMsEuLYWiEndPHEVlRaQ/SeO7TVpqKhSVuRvbFJUUUVpaisyMDCirqODt6ze4eukKDhw71GB5r4vCnDwwbIZnKJ+ErDQKsvj3rpaUl4H9YFco6WqAXVyKzyFhuPXPSXSbPgTqxmU3/loWhgi/GwJ14yaQVVFE/McYfH0TydXgS2qv4Md5kpTjPk+SctLIy+Lfs0BKXhYdh7tDVVcTpSWliHzyGgHbDsN99ihomuoDABI+xeLjo5fot+T3D5eWEpOAsJAQZ76ecjmFeZAV59+AoSQpB31FTZSUluLI8+uQFpNA76YOkBQVx9k398riSMnBSFIWoXGR8Hl2BSrS8ujV1AFCLCHc+VR9L71flZedC4bNhrS8HFe4tLwsz9CdcqnxSbh76jJGLpsOoTp+L/wOudk5YLPZkK1yTDIKcsjO4B1eVtnqcXORk5UNNrsUzgM90KZrxcPI6A+RCLnzCDO3LG2QfFdHVlwKwkJCyCzgruMy83Mhr8n//ioy5St2BZ3H1Pb9ISosAhEhYbz49gGHnwueomFQ865Iy89GWMLv6VFS9lmzIafAPdxeVkEeWenVn6tyt/yvoKigEC072nPCkhOSkJr4Hm2c2mPq8nlIikvAyd2+YJey0XNI32pS+3X52Xll15Qc93mRkpNBnoBrKj0hBY/OXIfnogm1uqbiP39F6rcEdBvTv8a49UFOXArCQsI8vcIyC3KhIMG//EUkf8WOR2cww8GTU/5Cvobj0LMATpy4rGTsCjqP2IxESIqKw828LVa5jsPcgJ1I+E09b8tJi5cNp88uyOMKzy7Mg5yElICtKsiJS8FCTR9HX1xrqCzWqLw+l5HnftAtLS+LnIwsvtukJSTj3ukADF8ytdqyV5CXjx1Tl6O0pAQsISG4juoPQ2szgfEJaWh1ajwzNzdHu3btcOjQIXTq1AlRUVF4+PAhbt68CQB48eIFPn36hOPHj3O2YRgGbDYb0dHRsLCw4EovPDwcTZo04TScAYClpSUUFBQQHh4OOzs7hIaGcs1pVJ3w8HDo6upyGs4A8B0SdvbsWXh7e+PTp0/IyclBSUkJ5OTkuNKZMIH7Brlt27a4d+9etfvfs2cPDhw4gC9fviA/Px9FRUV1WqGztLQU69evx+nTp/H9+3fOj/PqFkQIDw9Hnz59ePJal8az9+/fo6CgAM7OzlzhRUVFnAaxqpydnaGnpwdDQ0O4urrC1dUVffr0gZSU1E+lV65qT6TalKlXr15h+fLlCA0NRVpaGtjssid8sbGxsLTknVBTkH379uHgwYN4/PgxV4NaTeWlqvI8V+0tVVBQwDU8sjqhoaEYMGBAtXEE9dqqKd2OHTvynaMsOTkZX79+hZeXF9c1V1JSAnl57hvMyvvOyspCXFwc2rdvzxWnffv2eP1a8NCu/Px8ngb1cr169YK/vz/OnTtX68ZnoKzH2rNnz3D+/HkAZT1mPT09cejQIU7jmbS0NK5cuYKoqCjcu3cPT548wezZs7F9+3YEBwdDSqriZkVSUhJ5eXl897Vu3TquBnMAWLZsGfA/Og0jTxduBkA13bqr9m4pbyxisVjIy83D2mWrMWfRPMg38sq4VfH0ymEAQR115NWVIa9eMc+RqqE2ctOz8P72M07jmV3/rgg+eQ2XVu0HWICsiiKM7G0Q9eRNAx1B7Yl1doDUjIrvwpxFq1ASFt6IOao93vIlOK6ChgoUNCrmOFI3aoKc9Cy8vhkETVN9FBUU4t7B8+g43IPvPGi/C0+DKosFQYdVfj2eCr2NgpKyHs8B4UEY1sIFF8IeoIRdChZYyC3Kx7k3gWDA4HtWMuQkpOFg2LzBG884+azyWtDlxGaz4b/zCBz7d4eyptpvyNkv4KkLq6kkfpi0eh4KCwoRG/EZV4+dg4qGGmw7tkFBfgFObj+I/hNHQFqu9j2w6xtTpaSxWICgwqctp4oRLbvDP+w+3sRHQUFSBkOad8OY1j2x/+klnvg9LdqjrZ41Vt/x/f1zTtW2AFbxLDAIAcfPY9KSWVwNcAybgayCHIZNHQshYSHomRgiIy0dN89dafDGMw5+38V8DorNZuPq3pNo29sZihq1u3EJe/AMyjoa0DTk32jfUPjV34LqPm15VYy264Gzb+7hdVwkFCVlMaylK8bZ98Ke4LKpJCJTviEy5Rtnm49JsdjQYxK6m9vDJ+RKAxxB3bFY1X9vlWuta4X84kKe3qGNokrZK7sN5F/2Luw8io79XGusz8UlxDF2zRwUFRYh5l0Ebh+/AEVVZehZGtdnzv9oQr+hNzipvTpPCOHl5YUpU6Zg586d8PHxgZ6eHrp06QKg7GL466+/MG3aNJ7tKk/YXY5hGL4XVeXwukzszu9JfdX0nzx5wunJ5uLiwumFU77K3s/y8/PDzJkzsWXLFrRt2xaysrLYtGlTtUMuq9qyZQu2bdsGb29vWFtbQ1paGjNmzKh2qF9teicICQnxxKs8Z1d5Y9OVK1egrc09J4CgnjSysrJ4+fIlAgMDcfPmTSxduhTLly9HSEjIT6VXrmpDYU1lKjc3F926dUO3bt1w7NgxqKqqIjY2Fi4uLrUeIgkAgYGBmDp1Kk6ePMnVs/FnygubzUbLli25GvzK1XaBi9qU+6qfVfn8PJXPddW52apLt/y87d+/n6enY9XeX/wadKtea4Ku73IqKiqcOdyqWrRoEWxsbDB06FAwDMM1lLs6Bw8eRElJCVe5YxgGoqKiSE9Ph6JiRe8oIyMjGBkZYezYsfj7779hamqK06dPY/ToitWj0tLSBJ6zhQsXYtasWVxh4uLiuHVgeq3y+l8hryAPIWFhpKVy9zJLT0vn6Y1WTklZmSd+RnoGhIWFIScvj5jP0UiIj8eiOQs47zM/ymeXdk444ncc2jrcdUtDE5eRAkuIhfxs7ifgBTm5dWpQUdXXxueQinlJJGSl0Gl8P5QWl6AwNx+S8jJ4dTGw2ontf5ei4Gco+VAxhImdwr8n4Z9E4sd5qtrLrCA7F1JyNfdELqdmoINPT8saMLOS05CdmoEbOysmmy6vZ/dPWAHPlVMhpyZ4gvtflVdUgFI2G7Li3L0QZMQkkVPIv3E/uzAXmQW5nIYzAEjOSYcQiwV5CRmk5mUiuzAXpQybq2EkKScdchLSEGYJoZRpuKFmUrLSYAkJISeTu1dCXmY2pOV5G4mK8gsQ//krEmK+45rvOQA/zgHDYPWwmRi6cCIMrPivaPm7SMuWzWdYtZdZTmY2ZBUEP3ADwJnHTFNPB9mZWbjldwm2HdsgNSEJ6Ukp8FlXMSdnedmbP2A85v6zGioaDdeYmF2Yh1I2m6eXj5yEtMA5ojysOiAiJRZXwoMAAF8zEuFTcgXLnMfgzOu7XAtcuJm3g4dVR6y7ewRfMxL5ptcQZOTK5jSs2sssOzOTpzdaVSEPgnFkxz78tWA6LGy5J82XV1KAsLAwhIQrZsXRbKKNrPQMlBSXQES0zj+7ak1SVgosISHkVulllpedAyl53rqvKL8QidHfkPQlDnePXQRQcU1tG7MQ/eZ4QbdSA0VxYRE+Pn2Ndn1qHj1RX7IK81DKLoWCJHf+5aspf32aOuJjcixnQv3YjEQUPL2MVa7jcCr0FjLyebdjwCAq9Ts0ZHkX9WhouYX5ZfW7RNX6XQrZAur3ytroWuL5t/AGra9rwqnPM2pbnxciPvorEr58x43DZQ+7y8ve2hGzMWT+BOhblQ0/ZgkJQelH466GnjZSvici6PLt/6nGM/JnqXMtPnDgQEyfPh0nTpzA4cOHMW7cOM4P5BYtWuDdu3cwNq5dgba0tERsbCy+fv3K6X32/v17ZGZmcnqp2djY4M6dO1w/aGtKLy4ujjMcLDg4mCvO48ePoaenh7///psT9uUL9zhzCwsLPHnyBCNGjOCEPXlS/WSbDx8+RLt27TBp0iROWG17GVVOo1evXpwhZ2w2G5GRkTw99iqztLTkyVvV16qqqjzzO4WGhnJ6H1laWkJcXByxsbHVDqmsSkREBF27dkXXrl2xbNkyKCgo4O7du3B2dv6p9PipqUy9ffsWKSkpWL9+PacMPX9etyfmnz59Qr9+/bBo0SKuoYhA7coLvzyfPn0aampq1fZQq055ua/as6k65Y088fHxnB5+lRcPKE/38OHDfFfIVFdXh7a2Nj5//oyhQ4fWer9ycnLQ0tLCo0ePuOa9CwoKQuvW/Cd0BQBbW1scO3ZM4PuLFy+GiIgIhg4dCjabjcGDB1ebj5KSEhw5cgRbtmzhGRrbr18/HD9+XOD8i/r6+pCSkuJaiCIqKgoFBQUCe0uKi4v/Tw7TrEpUVBSm5qZ4/iwEHZ0qzv+LZyFo78B/pVJLaysEP+SeRPb502cwszCHiIgIdPV0cegE9zx7B/fsR15eHqbOmg419d/f80RYRBhKTTQQ/yEGus0qhgzEf4iBjnXtV79L+5YISXnexjZhURFIKciCXVqK2NCP0GshuN7/bfILwM5PqDneH0RYRAQqulr4/j4KBrYVn+G38CjoN6v96lypX+M5PzgVNFTQf9lErvdDLtxFcWER2nm6Qlrp5+r52ipl2PiemQwT1SZ4l1gxH5iJig7eJ8bw3SYmLQHWmkYQExZBUWlZbx4VaXmwGTbnR2dMegKaa5mgciciFWkFZBXkNvgPMWEREWgaNMHntx9hblfxwOpz2EeYtuRdxU9cUgJ/beCew/b5rUeIeReJ/jNGQ4HPSpa/m4ioCLSN9BD5+j2s21TMixfx5j2s7JrXOh2GYVBSXHbO1LQ1MXsb933A9RP+KCwoQK8xg6Gg3HCNtgBQyi5FdFocmmoY4fm3D5xwaw0jvKj0ujIxYVGwq5QfzutKD9R6WLRDbysHbLh3DNFpcfWf+WqIiIpA19gA4a/ewrZdxfyb4a/C0My+pcDtngUG4cj2vRg7bwqsW/PeGxhZmiIkMAhsNpvzQDPxezzklRQatOEMKLum1PW1EfsuEiYtKxYS+fIuEka2vKMwxCXFMWL1TK6w13eDEfs+Cu5ThkFelbtsRTx7g9LiUli0q34ESX0qZZfic1ocbDSNEfK1otezjaYxQr7x7wUtLizKU3+Vl7/q5nPUU9T4rQ245UoZNr5lJsFMVZer95iZmi7C4qsfxmysrANVGUU8qTQktTGU1ec6iA6LgLldxTyC0WERMG3Ju6iNuKQ4xq3jnvrmxe3H+PI+En2njYKCavX1Wnn9SEhjqHNNLiMjA09PTyxatAiZmZlcE7PPnz8f9vb2mDx5MsaNGwdpaWmEh4fj1q1bPCvZAUDXrl05vUu8vb1RUlKCSZMmwdHRkTMsbNmyZejSpQuMjIwwaNAglJSU4Nq1a3znm+ratSvMzMwwYsQIbNmyBVlZWVyNHkDZPFGxsbE4deoU7OzscOXKFfj7c68IN336dIwcORKtWrVChw4dcPz4cbx79w6GhoJXATI2NsaRI0dw48YNGBgY4OjRowgJCYGBgUGtP1tjY2OcO3cOQUFBUFRUxNatW5GQkFBt49m0adPQrl07bNy4Eb1798bNmzd5hmx27twZmzZtwpEjR9C2bVscO3YMYWFhnEYBWVlZzJkzBzNnzgSbzUaHDh2QlZWFoKAgyMjIcM11VS4gIACfP3+Gg4MDFBUVcfXqVbDZbJiZmf1UeoLUVKZ0dXUhJiaGf/75BxMmTEBYWBhWrVpV6/Tz8/Ph7u6O5s2bY/z48UhIqPihqKGhUavyUtXQoUOxadMm9OrVi7MCZWxsLM6fP4+5c+dyDSsWZOHChbC2tsakSZMwYcIEiImJ4d69exgwYABUVHiXUAfKepXZ29tj/fr10NfXR0pKCtd8bQAwZcoU/PPPPxg0aBAWLlwIeXl5PHnyBK1bt4aZmRmWL1+OadOmQU5ODt27d0dhYSGeP3+O9PR0nl5Wlc2dOxfLli2DkZERmjdvDh8fH4SGhvLtfVfOxcUFCxcu5OkRVtmCBQsgLCyM4cOHg81mV9uoFxAQgPT0dHh5efEMM+3fvz8OHjyIKVOmYPny5cjLy4Obmxv09PSQkZGBHTt2oLi4mGuo8cOHD2FoaAgjoz9nYlJJUXHoyFf0hNOSU4GJig6yCnKRmMO/F9/vMGCwJ9YtXw0zc3NYWVsh4MIlJCYmwb1vbwDA/p17kJycgkXLy8qjR99euHDmPHZ6/4Oevdzx7u07XL10BYtXLQMAiImLw8CIu76VkS1ryKgcnp+Xh+/fKibrj4+Lx6eISMjKyUFdg/9E6r/CsnNrPD5yGcq6GlA10EbE41DkpmXBtGNZXfryYiDyM7PRfoQ7ACD8XgikleShoKkCdmkpPj97h9jQj3AcWzHUPjkmDvkZ2VDUUUdeRjbeXH0EhmFg1ZX/PJeNjSUrAyE1FbB+/GgX+tEDkJ2WASY9oxFzVsHGuS3uHToPFT0tqBs1QfiDF8hJy4SFY9l9xbPzt5GbkYVOY8oelry9HQxZZQUoaqmhtLQUn568QfTLcDhPKBsyLiIqCiVt7vIkLlU25LxqeEN5GP0ans274FtGEmIzEtG6iSUUJGXxJLbswZirmT3kJKTh9/oOACA0LgJdTFphQLPOuBURAmkxCbiZt8Pzrx9Qwi5beObJl3dor28Nd6sOCIp5CxVpBXQyboHHMW9/yzHZuznhwq5j0DLUhbaJPl7dDUJmSjpadimbAuDOqcvITstE70nDwBISgloT7jkypeVkISImyhVeWlKC5G8JnP9np2UiIeYbxCTEOb0XGpKDuzNO7TgIHSN96JkZ4umtB8hISUPbbk4AgKvHziEzLQODp5WtUP/42l0oqihB9cdqwjEfIvHg0k20794ZACAqJgoNXe5ethLSZT1UqoY3lGsfgjGxbV9Ep8UhMuUrOhu3hLKUPO5Elj2o9GzWBYpScpwhca++R8CrjTu6GLfCm/goKErKYFhLV3xK+YaMHxOa97Roj/42nbAz6BySczMg/6NnW0FJEQpLaj9q4Fd07eMGny27oGdiCENzEzy8fhdpySlwcCsbTePvewoZqWkYPbvsofizwCD4bN0Nz/EjYGBmgsy0DACAmLgYJH+cE0c3Z9y7fBOn9x5BZw8XJH1PwDW/i+js/nsWuGjp0hHX9p2Gur4ONI118TbwGbJTM9CsU9m8bA/PXENOeha6j/cES0gIKjoaXNtLyspARFSEJxwoW1jAuIUlJGV+79D1gPePMbV9f3xO/Y6I5K/oatoKKtLyuBVRNjfxYFtnKEnKYWdQWY/U598+4K+2veFs2pozbHNkKzdEpnzlTKjf36YTIpO/Ij47lTPnmb6SJg4+u/xbj61c4KeXGNrSBV8zEhGTFo+2+tZQlJTF45iy3s89LdpDXlIax1/e5NqujZ4VYtLif/s8bfy06e6Ei7uPQ9OwCXSM9fHqXhAyU9PRoks7AMC90wHITs+Ex4ShP+pz7sUQpOVkICwqwhX++NJtaBo0gaK6MkpLShEVGo63j0LgOqr6aW3+a/6XV7b8E/3UYxAvLy8cPHgQ3bp14xqOaWNjg/v37+Pvv/9Gx44dwTAMjIyMBA65YrFYuHDhAqZOnQoHBwcICQnB1dWVq6HNyckJZ86cwapVq7B+/XrIyclx9W6pTEhICP7+/vDy8kLr1q2hr6+PHTt2wNW14kurV69emDlzJqZMmYLCwkL06NEDS5YswfLlyzlxPD09ERUVhfnz56OgoAD9+vXDxIkTcePGDYGfyYQJExAaGgpPT0+wWCwMHjwYkyZNwrVrtZ/AccmSJYiOjoaLiwukpKQwfvx49O7dG5mZgicvtbe3x4EDB7Bs2TIsX74cXbt2xeLFi7kakFxcXLBkyRLMmzcPBQUFGDNmDEaMGIG3bytukFetWgU1NTWsW7cOnz9/hoKCAlq0aIFFixbx3a+CggLOnz+P5cuXo6CgACYmJjh58iRnUvu6pidITWVKVVUVvr6+WLRoEXbs2IEWLVpg8+bN8PDwqFX6iYmJ+PDhAz58+MAzeT3DMLUqL1VJSUnhwYMHmD9/Pvr27Yvs7Gxoa2ujS5cute6JZmpqips3b2LRokVo3bo1JCUl0aZNmxp7Xx06dAhjxoxBq1atYGZmho0bN3L1wlJWVsbdu3cxd+5cODo6QlhYGM2bN+fMVzZ27FhISUlh06ZNmDdvHqSlpWFtbc1ZsEGQadOmISsrC7Nnz0ZSUhIsLS1x6dIlmJgI7pFjbW2NVq1awc/PD3/99ZfAeHPnzoWwsDBGjhwJNpuN4cOH84138OBBdO3alafhDCjrebZ27Vq8fPkSjo6O2LlzJ0aMGIHExEQoKirC1tYWN2/ehJlZRY+ikydP1nq+xd/FXFUP//apaMSc1qHsBuJqeDDW3D0saLMG19m5C7Iys3DkkC/SUlKhb2iA9ds2QkOz7AY8NTUVSYkVT3Q1tbSwbttG7PL+BxfP+kNZRQVTZ0+HY2enOu33Y/hHzJxUMaR7l/e/AACXHq5YsPRvQZv9NP2WFijMzceba4+Rn5ULBU0VdJ40ADJKZWUuPysHuWkVwxbYJaV46X8XeZk5EBYVKYs/cQC0rSoaZNnFJQgNeIDslAyIiotB28oQ7Uf0hJgU//kAG5toWztIz634zGUWly3wkn/kFAqOnm6sbHExsmuKgtw8vLxyH3mZOVDSUkP3qUMh+2MobF5mNnLSKr5XS0tK8eTsTeRmZENEVASKWmpwnToEutaNOwywsjfxnyAlJo4uJq0gJy6NhJxU+IQEcIYgyYpLcQ1tKiotwYGnl9DLqiOmduiPvKJCvIn/hBsfK6aSyCzIwYGnl+Fu2R4zOnoiqyAXj6PfIDDq1W85Jqu2LZCfk4sH528gJyMTqjqaGDzvL06vg5yMLGSl1u2hQHZ6JvYv2sR5HXzlLoKv3IWehTFGLJlar/nnp3n71sjLzsXtM5eRlZ4JDV0teC2aDkW1sp5xWemZyEip+KHLMAyuHj+PtKQUCAsLQ1ldFd2H9oV9t1/rtV+fnsS+g4y4FPo0dYSCpAy+ZSZhU+BxpOSVXUMKkrJQlqr43n0QHQoJUTF0M22NoS1ckFdUgHeJ0TgVeosTp6uJHUSFRTCjI/fvg3NvA3H+beBvOCrAzqEtcrNycOXkeWSmZUBLTwdTVsyDslpZI2tmWgbSkivO1cPrd8AuLcXJ3T44uduHE962iwNGzSqbG1JJVRnTVy3Amf3HsHLyAigoK6Kzhytc+9funvRXmbVphvycPDy5eAe5mVlQ1tZAn1mjIadS9oAyNyMb2akZdU43PSEZ3yNi0G+OVz3nuGbBX8IgKy6FfjadoCgpi68ZiVh39yhScjMAAIqSslCRVuDEv//5FSRFxeFq1gYjWroit6gA7xI+49jLit9w0mISGG/fGwqSMsgrLkB0WjyW3TiAqNTqV85uKK/iIiAlJgEXM3vIiUshPjsVe59c5DT2yUlIQ1GS+/eDhIgYmmka43zY/cbIMg9Le1vkZefikf8N5GRkQVVHE4Pmjoe8SkV9nplSt/q8uLAI133PIjstEyJiolDWUkOvicNgaf/7ej8SUhWLoSW9/nN8fX0xY8YMZGRkNHZWCKnW1atXMWfOHISFhXGGOPwJwsLC0KVLF0RERPBtjKtO+52/fzW+hvR48h7EZSQ1djbqnZaCGlbf8qk54v8ji51HI925T80R/x9RvOWPLfdPNnY26tVsx8GYf2VXzRH/H9nQYxKOvaj9QkX/Hwxr6YpLYQ8bOxv1yqNpRww9sbyxs1Hvjg9ZjsBPLxo7G/XKybgl9gZfaOxs1Ku/2vbGwKOLa474/4jf8NWYcdG7sbNRr7x7zcCREMGr4/5/NMLOrbGz8NO6HxA88qcxXRu7tbGz0CgadgA+IYRUw83NDZGRkfj+/TvXqruNLS4uDkeOHKlzwxkhhBBCCCGE1AcW68/pXECo8YwQ0simT//zVqesuuAAIYQQQgghhJD/XdSU+R80atQoGrJJCCGEEEIIIYQQUg+o5xkhhBBCCCGEEELIH0SIVtv8o1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmD0GqbfxbqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8KiYZt/FOp5RgghhBBCCCGEEEKIANR4RgghhBBCCCGEEEKIADRskxBCCCGEEEIIIeQPQsM2/yzU84wQQgghhBBCCCGEEAGo8YwQQgghhBBCCCGEEAFo2CYhhBBCCCGEEELIH0QINGzzT0I9zwghhBBCCCGEEEIIEYAazwghhBBCCCGEEEIIEYCGbRJCCCGEEEIIIYT8QWi1zT8Li2EYprEzQQghhBBCCCGEEELK9D/yd2Nnga+zI9Y0dhYaBfU8I4SQehSXkdTYWahXWgpqaL9zQmNno949nrwH2R8iGjsb9UrW3BRZt+81djbqlVzXTohO+d7Y2ahXBiraeBcf1djZqFdWmkbY/+RiY2ejXo2z7/WfLHvZ0TGNnY16J2ugj+y4uMbORr2S1dLC1/SExs5GvWqiqIGkrNTGzka9UpNTxueUb42djXplqKKD7MhPjZ2NeiVrYtzYWSD/EdR4RgghhBBCCCGEEPIHEaJhm38UWjCAEEIIIYQQQgghhBABqPGMEEIIIYQQQgghhBABaNgmIYQQQgghhBBCyB+EVtv8s1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmDCNFqm38U6nlGCCGEEEIIIYQQQogA1HhGCCGEEEIIIYQQQogANGyTEEIIIYQQQggh5A/ComGbfxTqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIeSPkZeXh1WrVuHLly+NnRVCCCGEEEIIaTSsP/Tf/ypqPCP/L/n6+kJBQeG37MvJyQkzZsz4LfuqT3X9jPT19eHt7d1g+amNqVOnIi4uDnp6enXa7v/rOSKEEEIIIYQQ8uejBQNIg2HVMMHhyJEj4evr+3sy8z/I09MTbm5utY4fEhICaWnpBsxR9U6ePInExERcvHixztueP38eoqKiDZCrhnHhrD9OHzuJ1NRU6BvoY8rMabCxbSYwfujLV9jl/S9iomOgoqKMQcOHwKNvb75x7968jVVLVqC9Qwes3rSOE/76VShOHzuJiA8fkZqSilUb16CDo0N9H1qdNdM0xhDbbjBX04WKtAIWXN2Nh9GvGztbAjEMg32nTsL/xg1k5+bAytQU8/+aACNdwQ2+UbFfsOfEcXyIikJ8UhJmeY3FEI9eXHH2njyB/adOcoUpKyjgxuGjDXIclTEMg/1XA+D/+BGy8/Jgpa+PeQMHw0hLS+A2d0NfwffGNXxNTkZJaSmaqKphWJeucGtjz4nzMjISR2/fxIevsUjJzMSm8RPg1Kx5vef/8vmLOHviNNJSU6FnoI8J0yajaXMbgfHfvHqNff/swpfoGCirqGDAEE/06OPBFcf/9FkE+F9CcmIS5BTk0dHJAaMnjIOYuBgA4NSRE3h8/yG+fYmFmLg4LK2tMGbiODTR06334yt37UIALp46h/TUNDQx0MOYKeNhadOUb9y01DQc3rUfURGfEP8tDm59PeA19S+BaT+6cx9bV21A6/b2WLBmaUMdAo9Xd4IQcvU+cjOzoaKljk5DPaBjZlDjdt8jYnBq3R6o6Khj5KqZXO8V5Obj0bnriHwehoK8fMirKMFpcA8YNrNokGOo7/I3d8pMvH3FWwfatW2DVZvL6vS83Dwc2X8IQQ8eISM9A0amxpgwYwrMLMzr/wB/YBgG+44dg/+1q8jOyYGVmTnmT54MI319gdtExcRgz9Ej+BD5CfFJiZj1118Y0qcvV5yXb9/i6NkzCI+MREpaGjYvXQandu0aJv+HD8M/IADZ2dmwsrDA/OnTYWRQfXm7c/8+9vj44FtcHHS0tDDJywudOnbkvO8+aBDiExN5thvQqxfm/3iod/fBA5y/fBnhERHIzMrC8f37YWZs/MvHdPGsP84cP4XU1DToG+hj0swpsG4u+F7i9ctQ7Nm+EzHRMVBWUYbnsMFw71vxXXQj4Bo2rV7Ps93V+zchJi4OABja2xOJCQk8cTz69ca0uTN5wuvK/8w5nDx2AqkpqdA3NMC0WdPRzLa5wPivXrzCv947EPM5GsoqKhgyYih69+vDeT866jMO7j2Ajx8+ICE+AVNnTsfAIZ5caQzw6IuEeN5j6tO/L2bNn/PLxwQAAecv4uwJP0498de0STXWE/v/2c2pJ/oP8USPPu5ccfxPn8OVSt9THZwcMHrCWM731Mh+Q5CUwFs2e/b1wOTZ0+vluCpjGAb7TpyA/43rZXWEqRnmT5wIo2oeiEd9+YI9x4/hw6dPZfdH48ZhSK/eAuP7+Plh55HDGOzRC7PHj6/3YyCkJtR4RhpMfHw85/+nT5/G0qVL8fHjR06YpKRkY2Tr/73S0lKwWCwICVXfcVRSUrJOn7GqquqvZu2XDB48GIMHD/6pbZWUlOo5Nw3n7q072LltB2bMm4WmNta47H8J82fOhe+po1DXUOeJHx8Xh4Uz56FHL3f8vWIJwt68hffGrZBXUIBjZyeuuAnxCdi9Yxds+Nw8F+QXwMjEGK493bBsweKGOrw6kxQVx6fUb7j6IQhru09o7OzU6PD5czhx8QKWTZ8BXS1tHPQ7jclLl+Lcrt2QlpLiu01BYSF01DXQtV0HbD10QGDahrq62LVyNee1cA3XeH05cusmTty9g6XDR0JXTQ2Hrl/DlH+34+zSFZCWkOC7jbyUFEa7dIe+hgZEhUXwMOwNVh47AkVZWbS1tAIA5BcVwlRHB+5t22H+/r0Nkvf7t+9h7/admDx7OqxsmuLqhctYPGcB9h3zgRqf6ykhLh5L5ixEd3c3zFu6CO/ehGHnlu2QV1BAh05ljcl3b9zGoT37MWvhPFhYW+F77FdsWbMRAPDX9MkAgLehr+HetxdMLczALmXDd99B/D1zHvYd94FEA3y3Pbp7Hz7/7sO4GZNgYW2JG5euYfW8pdh+eA9U1dV44pcUFUNOQR79hg1CwBn/atNOSkiE7+4DsLSxqvd8V+fD01DcO34ZXUf0hrapPl7fe4pzWw5i9LrZkFNWFLhdYV4+ru47BT1LY+RmZXO9V1pSgjOb9kNKTgYeU4ZDRkke2WkZEJMQb5BjaIjyt3TtChQXl3C2ycrMxKRR49CxkyMnzHv9ZsR8jsbcpQuhrKKCOzduYeH0udh3/BBUGui7/PAZP5zwP49ls2ZDV0cHB0+ewORFC3HuwMHq6z4NTXTt6ICte/nXAfkFBTAxMIS7czfMW72qQfIOAIdPncKJM2ewbP586DZpgoNHj2Ly3Lk4d+SIwPy/efcOi1auxIQxY9CpY0fce/gQC1aswMEdO9DU0hIAcGTPHpSy2ZxtoqKjMXnOHHRxcuI6xmZNm6KrkxNWb95cL8dz79Zd7Pb+F9PmzoSVTVNcuXAZC2fOx8GThwXcS8Tj71nz4darJxYs/xvv3oRhx6ZtkFdQgEPnirIlJS0NXz/uhzblDWcAsNNnL9jsUs7r6KhozJ82Gw5V7kd+xp2bt7Fj63bMmj8H1s1scOn8BcydPhtH/Y5DXUODJ37c9zjMmzEb7r09sGTlMrx9/QZbN2yGgqICnDp3AgAUFBRAU1sLTl074Z+tO/jud9/hg2CXVpzD6KjPmDllOjp17fzLxwSU1xO7MHn2NFjaNMXVCwFYMmch9h47JLCeWDpnEVzd3TB36UK8fxOGnVt2QF5Bnut7ymfPfsxcOBeW1lb4FvsNWznfU5MAANsP7AK7Utn88jkai2bM46pL6tPhc2dx4oI/ls2cWXZ/dPo0Ji9ZjHN79tZQR2iga/sO2Hpgf7Xpv4uIgP+N6zDRr/kBy39JTZ1RyO9FwzZJg9HQ0OD8ycvLg8VicYU9ePAALVu2hISEBAwNDbFixQqUlFTcMGZkZGD8+PFQV1eHhIQEmjZtioCAAK593LhxAxYWFpCRkYGrqytXgx2bzcbKlSuho6MDcXFxNG/eHNevX682z7m5uRgxYgRkZGSgqamJLVu28MQpKirCvHnzoK2tDWlpabRp0waBgYHVprt8+XLo6upCXFwcWlpamDZtWq3TKx9+GRAQAEtLS4iLi2P//v2QkJBARkYG136mTZsGR0dHru0qu3TpElq1agUJCQmoqKigb9+KJ8BVh23GxsaiV69ekJGRgZycHAYOHIhEPk9Xy8XExIDFYsHPzw8dO3aEpKQk7OzsEBERgZCQELRq1YpznpKTkznbhYSEwNnZGSoqKpCXl4ejoyNevnzJeT8wMBBiYmJ4+PAhJ2zLli1QUVHhnO+qwzb19fWxevVqzrnU09PDxYsXkZyczDkma2trPH/+nOsYzp07BysrK4iLi0NfX5/v+f9VZ06ehptHD/To5Q49A31MmTUNaupquHSO/w/cS+cvQk1DHVNmTYOegT569HJHd/ce8Dt+iiteaWkp1ixdiVHjx0BTW5MnnTbt7OE1YRwcGuim6Wc9iX2H/U8v4f7n0MbOSo0YhsHJy5cwesBAdG7bDsZ6elgxYyYKigpx/cF9gdtZmZhi+ugxcHFwgFg1PSRFhIWhoqjI+VOUl2+Iw+DCMAxO3ruD0S7d0bm5LYy1tLF8+EgUFBXhRsgzgdu1NDVDp+a2MNDQhI6qKgZ36gJjbW2ERkVx4rS3aoqJ7r3Qubltg+X//OkzcOnZHd09ekBXXw8TZkyBqpoaAvwv8Y1/5cJlqKmrYcKMKdDV10N3jx7o1qM7zp7048QJD3sHK+um6NStCzQ0NdCyjR2cnDsj4kMEJ86arRvQrYcr9A0NYGhihFmL5iEpMQmRHyP47faXXT7jjy5u3eDc0xU6errwmvoXlNVUcePiFb7x1TTV4TV1Ajq5dIFUNT2KS0tL4b16EwaNHgZ1Td56oyE9v/4Q1g52sHFqA2UtdXQe6gFZJQWE3nlS7XY3fc/Doq0tNI15e/m9fRCCgpw89J42Etqm+pBXUYSOqQHUdAX3ovwVDVH+ZOXkoKSsxPl7FfICEuISnAaOwsJCPLr/AF6T/4J182bQ0tHGcK9R0NDUELjfX8UwDE76X8DoQYPQuUMHGOvrY8XsOSgoLMT1e/cEbmdlZobp48bBxclJYN3X3s4Ok0aNQucOHRok78CP/J89i9HDhqGzgwOMDQywYsECFBQU4Prt2wK3O3n2LNq0aoXRQ4dCX1cXo4cOResWLXDi3DlOHEUFBagoKXH+HgUHQ0dLCy2bVTzE6tGtG8aNHInWLVvW2zGdO+kHV3c3uPXqCT0DfUyaORVqaqq4fJ5/7/2A8xehpq6GSTOnQs9AH269esLV3Q1nTnDfS7BYLCgpK3P9VaagqMD13tPHwdDS0UazFs1/+ZhOnziFHr3c4d7bA/oG+pg2ewbU1NXgf5b//dHF8/5Q11DHtNkzoG+gD/feHujh0ROnjp3gxLGwssTk6VPQtZszxMT4l0FFRUUoqyhz/oIePYa2jjaat6if7y7/02fRrWd3uHLqiclQVVPDFf/LfONX1BOToauvB1ePHujWwxXnKtUTH8Lew/LH95S6pgZatmkFJ+dOiPxQ0Umh7FxV1CVPHz+BprYWrKsZ6fCzGIbByYsXMdrTE53btS+rI2bNKqsj7ldzf2RqiuljvODi6Fjt/VFefj6WbN6Ev6dOhayMTL3nn5DaosYz0ihu3LiBYcOGYdq0aXj//j327t0LX19frFmzBkBZw1f37t0RFBSEY8eO4f3791i/fj2EhYU5aeTl5WHz5s04evQoHjx4gNjYWMyZU9G9evv27diyZQs2b96MN2/ewMXFBR4eHoiMjBSYr7lz5+LevXvw9/fHzZs3ERgYiBcvXnDFGT16NB4/foxTp07hzZs3GDBgAFxdXQWme/bsWWzbtg179+5FZGQkLly4AGtr6zqll5eXh3Xr1uHAgQN49+4dhg0bBgUFBZyrdANXWloKPz8/DB06lG8+rly5gr59+6JHjx549eoV7ty5g1atWvGNyzAMevfujbS0NNy/fx+3bt1CVFQUPD09+cavbNmyZVi8eDFevnwJERERDB48GPPmzcP27dvx8OFDREVFYenSimFBWVlZGDFiBB4+fIjg4GAYGhrCzc0N2dllPQrKG8aGDx+OzMxMvH79Gn///Tf2798PzWp+7G3btg3t27fHq1ev0KNHDwwfPhwjRozAsGHD8PLlSxgbG2PEiBFgGAYA8OLFCwwcOBCDBg3C27dvsXz5cixZsqRehxYXFxcj4kMEWrVpzRXeqrUdwt6G8d3m/dt3aNXajivMzr41PoZ/4GpsPnLQFwqKCujh0bPe8ku4fU9MRGp6OuxtK26oxURF0cKqKd58+PDL6cfGxcF11Eh4jPPCwk0b8Y3P0Jj69j01BalZWbC3qBjSJiYqihbGJngT/blWaTAMg2cfPuBLYiJa1MNQpNoqLi5G5McItGjNXY+1aN0K4WHv+G4THvaOJ37LNq0Q+eEj53qyamaNyI8R+Pg+HAAQ/z0OIcFP0bpdG4F5ycvNBVDW8FHfiouLEfXxE5rZteAKb25niw/vwn8p7TNHTkJOQR5de7j8Ujp1VVpSgsSY79BvasoVrt/UBHGfYgRu9/ZBCDKSUtGud1e+70e9eg8tYz3cOeKPXVNXwmfRFjy5fJer90V9aajyV9WNgGtw7NqJ06OxtKQU7FI2xMTEuOKJiYvj3Rv+3yO/6ntCAlLT02DfoqLxR0xMDC2srfEm/H2D7LM+fY+PR2paGuwr3fOIiYmhRbNmePOO/7kCgDfv36NNlfskezs7gdsUFxfj6q1b8OjevUF7ixQXFyPiYwRateG+N2jZxg7vBd1LhL1DyyrxW7WxQ0Q4d9nLz8/HkN4DMci9P/6evaDaBwLFxcW4ff0WXHv++vGW3R99ROsq90d2bVoj7M1bvtu8exsGuyrxW9u3wYf3HwReT7XJx81rN+Dm0bNezqHgeqIl3guoJz6EvUeL1twNrS3a2CHyQwTnuCybNcWnjxH4+L7s3qPse+oZWrez50mvPB/3bt5Gtx6uDVI2vycm/Lg/qvieEhMVRYumTfEm/Ne+pwBgw+7daG9nhzYN+DCOkNqgYZukUaxZswYLFizAyJEjAQCGhoZYtWoV5s2bh2XLluH27dt49uwZwsPDYWpqyolTWXFxMfbs2QMjIyMAwJQpU7By5UrO+5s3b8b8+fMxaNAgAMCGDRtw7949eHt7Y+fOnTx5ysnJwcGDB3HkyBE4OzsDAA4fPgwdHR1OnKioKJw8eRLfvn2D1o/5gObMmYPr16/Dx8cHa9eu5Uk3NjYWGhoa6Nq1K0RFRaGrq4vWrVvXKb3i4mLs2rULzSo9yfT09MSJEyfg5eUFALhz5w7S09MxYMAAgZ/5oEGDsGLFCk5Y5fQqu337Nt68eYPo6Gg0adIEAHD06FFYWVkhJCQEdnZ2fLcrz7+LS9kPsenTp2Pw4MG4c+cO2rdvDwDw8vLiapDq0qUL1/YHDhyAgoIC7t+/j549yxqCVq9ejdu3b2P8+PF49+4dhg8fjj59+qA6bm5u+Ouvsjl+li5dit27d8POzo7z+cyfPx9t27ZFYmIiNDQ0sHXrVnTp0gVLliwBAJiamuL9+/fYtGkTRo0axZN+YWEhCgsLucLExasfGpSZkQl2aSkUlbiHJCkqKyL9SRrfbdJSU6GozH1zqKikiNLSUmRmZEBZRQVvX7/B1UtXcODYoWr3T35Nano6AEBZXoErXFlBAfFJSb+UdlNTU6yYMRN6WtpIzcjAwTOn4TV/Lk7/sxMKDdAgUy41KwsAoCTLvQ8lOTkkpPEvk+Vy8vPhtmgBikqKISwkhPmeg9HGwrLB8lpVVkYm2KVs3utJURFpqfzznp6WDkXFKvE511MmlFWU4dS1MzLTMzB74nQwDIPS0lL07OMBz+FD+KbJMAz27tgFKxtr6BvW/3CS7MwssNlsKCgqcIXLKyoiIy39p9MNf/sOt6/cwNYD//5iDusuPzsXDJsNKXnuHgRS8rLIzczmu016QjIenrmGQX9PhFClB2mVZSanITY8ChZtbdF31hhkJKbg9pELYJeWol1v53o9hoYqf5V9fB+OmM/RmLmw4sGglLQULJpa4oTvUejq6UJBSRGBt+/i4/twaOlo19PRcUtNLzse5Sp5V1ZURHzir9V9v0NqWnX5F9yjPjUtje82qQLqxsBHj5CTkwN3V9dfzHH1Ku4luKesUFQSXPbSUtN4y6qSElfZa6Kvi3mLF8DA2BB5ubk4f/ocZoyfgr1HD0FHV4cnzcf3HyInJwfdenSvh2PKQCm/Y1JWEnhMqalpaK1c9TMoO6aMjAyoqKjUOR8PAx8gJycHbj1rP2dwdQTVEwqKikgXWE+kQUFAPZGVkQklzvdUJuZU+p7q0ccDA4fzn/4k+MFj5OTkwNmtYR6UcO6Pqox4Kbs/SuazRe3duH8fH6I+4cg2719K5/8rIRb1dfqTUOMZaRQvXrxASEgIp6cZUNZzqqCgAHl5eQgNDYWOjg6n4YwfKSkpTsMZAGhqaiLpxw/YrKwsxMXFcRpsyrVv3x6vX/OfjDwqKgpFRUVo27YtJ0xJSQlmZmac1y9fvgTDMDz5KiwshHKVru3lBgwYAG9vbxgaGsLV1RVubm5wd3eHiIhIrdMTExODjQ33xKJDhw5F27ZtERcXBy0tLRw/fhxubm48N+blQkNDMW7cOL7vVRUeHo4mTZpwGs4AwNLSEgoKCggPD6+28axyPtXVy+ZyqNzTTl1dnXOeACA1NRWrV69GYGAgkpKSUFpairy8PMTGxnId/7Fjx2BjYwM9Pb1arQpam3wAQFJSEjQ0NBAeHo5evbgncW/fvj28vb1RWlrK1esRANatW8fVEAmU9bobP2NSjXnjeerHAKjmSWDVJaHLe8uxWCzk5eZh7bLVmLNoHuR/0wq0/yuuBQZi7e6KhnbvJWU9JqueP4ZhfvlJbvuWFU+ljQHYmJuj91/jEHDvLoZVM3luXV179hTrTlYMadk2qWwOL37HVBMpcXEcX/g38goLEfLxA7adPwttFRW0NDWrcdt6VTXvqOF88BxreXBZ+OuXoTh15Dgmz54OcysLxH37jj3bd0LR5yiGjh7Ok9zOrTsQHfUZW3bzn0+nvvDWG8xPLxefn5eH7Ws2Y9LcaZBTaPjhwYLwPSY+547NZiNgz0m06+MMJQ3Bc3oxbAZSsjLoNrofhISEoGGgg5yMLIRcvV/vjWcc9Vz+KrsecA36hgYws+Re7GDukoXYtm4ThvYeCCFhIRibmsDJuQuiIgT3rK+La3fvYu2O7ZzX3ivL5iKrmsOyuq9edlmvrt26hbVbt3Jee68rW2iBp57jE8aDX30vIOrFq1fRrk0bqP5Eo83P4HP51LHsMVzBlk2tYNm0Yu5DKxtrTBw5DhfOnMMUPhPMX7t8Fa3tW0NFtf6Olyf7NZQxnvsjMHzDayvg0mW0aWtf73MH8r/tq+a+T9B38o/wNy9DcfrIcUyePQ1mVhaI+xaHvdt34oSPEobw+Z66EXANrexbQ7meztW1e/ewdmfFgxfvZcsF5Lva29saJSQnY8v+ffh35SqIV+ltS0hjoMYz0ijYbDZWrFjBNedWOQkJiVpNdF91dUUWi8Xzg68uP3Jr82ORzWZDWFgYL1684GlMkREwBr9Jkyb4+PEjbt26hdu3b2PSpEnYtGkT7t+/X+v0JCUlefLdunVrGBkZ4dSpU5g4cSL8/f3h4+MjMO91WTxA0OdUm0aCyuelPG7VsMpDaEaPHo3U1FRs374denp6EBcXh7W1NYqKirjSDQoKAgCkpaUhLS2txpVBa5MPAJy88Du26srEwoULMWvWLK4wcXFxpOZnCtxGXkEeQsLCPE9R09PSeZ5KllNSVuaJn5GeAWFhYcjJyyPmczQS4uOxaM6Cinz/OKYu7ZxwxO84tBuoN8J/nUPr1mhqVtGwXVRcDABIyUiHSqWn42mZmVCq54ZLSQkJGOnp42tcXL2m62DTDE0rTbZb9GMISGpWJlQqzbGWnp0N5Rp6vAkJCaGJWtlk9WZNmiAmMQG+N2/8tsYzOQV5CAkL8Ty9z0jPEHg9KSopIj2tavz0H9dT2fEe2e+Dzi7O6O7RAwBgYGSIgoIC7NiwFYNHDuVarGXX1h148igIm3d6Q1WtYSZql5WXg5CQENKr9DLLzMiAvJLCT6WZ8D0eSQmJWLuw4gFAeX3Xv3NP/Ht0PzT4zJ1YXyRlpcESEkJuBncvs7ysHEjJ8X6XFuUXIjH6G5K+xOHO0YsV+WUYbBm9AAPmjoWupTGkFWQhJCzMdY6UNNWQm5mN0pISCIvU321vQ5W/cgUFBbh/+x5GjB3Fk46WjjY27fRGQX4+cnPzoKyijLVLVkJdk3dS9Z/hYG+PpuYV13FR0Y+6Lz0dKpUe7KVlZEBJwAO7xuTQvj1nQn8AnPuJlLQ07vynp1ebf2UlJZ5eZmkZGXwXKYpPSMCzly+xscpDtYYg6F4iI726ewklPmU1nXMvwY+QkBBMLczw/es3nvcS4xPwKuQFlq2vn0Ue5BUUICzw/oj/olDKykpIS03lCstIKzsm+Z94KJAQH48Xz55j9UbeUSQ/q7yeSEutUn+np0NBYD2hxKeeyOD7PeVa6XuqsCAfOzZsw6Aq31OJCYkIff4Si9cur7fjcmjTBk0rdS7g3B+lV70/yoCSws/XER8+fUJaRgaGz6hovC1ls/HqXRj8Ai4jyP8Cz+8nQhoSNZ6RRtGiRQt8/PgRxgLmx7GxscG3b98QERFRbe8zQeTk5KClpYVHjx7BwcGBEx4UFMQZMlmVsbExREVF8eTJE+jqlk1EnJ6ejoiICM4k/La2tigtLUVSUhI6VlqqvCaSkpLw8PCAh4cHJk+eDHNzc7x9+/an0ys3ZMgQHD9+HDo6OhASEkKPHj0ExrWxscGdO3cwevToGtO1tLREbGwsvn79yul99v79e2RmZsLCwqKGrevm3r172L17N+c8ffnyBSkpKVxxoqKiMHPmTOzfvx9+fn4YMWIE7ty5U+OKo3VhaWmJR48ecYUFBQXB1NSU7xezuLg4/2Ga+YL3ISoqClNzUzx/FoKOThXl8sWzELR34D9ZsqW1FYIfPuYKe/70GcwszCEiIgJdPV0cOnGY6/2De/YjLy8PU2dNhxqflfhI7UhLSXGtEMUwDJQVFfE0NBTmhmW9XouLi/HyXRimjhhZr/suKi5GzLevsLWs32GQ0hISXCtoMgwDZTk5PP0QDrMmZfVecUkJXn6KxNRe1Q+NrophGBSVFNdrfqsjKioKEzNTvAp5gfaOFfXnq5AXsO/Qju82Fk2t8PRxMFfYy2fPYWJuBpEfDSuFhQU8dYuQkBAYhuE0MDEMg11bdyDowSNs/HcbNLQarqFJVFQURmbGeP38Few7VhzX6+ev0Lo9//ltaqKt2wTbDu3iCjt58Ajy8/MxZspfUFZr2J4zwiIiUNfXRsy7SJi0asoJj3kXCWNb3lU/xSXFMXIN98OK0DvB+Br+Ce5ThkNetezHmraJPsKfhIJhs8H6cQ7TE1MgrSBbrw1nQMOVv3IP7gSiuLgInV34z+8GABKSkpCQlER2VjZePAuB16S/fuGIKvCv+5Tw9NVLmP+4bysuLsbLt28xdYxXveyzPvHNv5ISnj5/DnMTEwA/8v/6NaaOHy8wHRtLSzx98QJDK02H8fT5c9hY8ZbRS9evQ1FBAR0qjV5oKKKiojA1M8WLZ8/Rgete4jnaCbqXaGqF4EdBXGHPn4bA1IK37JVjGAZRkZ9gYGTI8971gGtQUFSAvYA5tuqq7P7IDCFPn3EtbBTyLAQdHPjfH1tZN8XjKvdHz54+g7mlucBjqs7Vy1egoKiItu35X78/g7ueqDg3L0NeoG2H9ny3MW9qKaCeMK30PVUIlhD3A18hIWGu76lyt65ch7yiAlq3rZ9zBVRzf/TqFcyNKt0fhYVh6qiaf3cIYtesGU79yz3Vzsrt3tDT0cHIfv3/JxrOaLXNPws1npFGsXTpUvTs2RNNmjTBgAEDICQkhDdv3uDt27dYvXo1HB0d4eDggH79+mHr1q0wNjbGhw8fwGKx4FrLuSTmzp2LZcuWwcjICM2bN4ePjw9CQ0Nx/PhxvvFlZGTg5eWFuXPnQllZGerq6vj777+5fkSZmppi6NChGDFiBLZs2QJbW1ukpKTg7t27sLa2hpsb7xwJvr6+KC0tRZs2bSAlJYWjR49CUlISenp6UFZWrnN6lQ0dOhQrVqzAmjVr0L9/f0hU+lFc1bJly9ClSxcYGRlh0KBBKCkpwbVr1zBv3jyeuF27doWNjQ2GDh0Kb29vlJSUYNKkSXB0dBS4yMDPMjIywuHDh9GyZUtkZmZizpw5XL3kSktLMXz4cHTr1g2jR49G9+7dYW1tjS1btmDu3Ln1lo/Zs2fDzs4Oq1atgqenJ4KDg/Hvv/9i165dNW9cBwMGe2Ld8tUwMzeHlbUVAi5cQmJiEtz79gYA7N+5B8nJKVi0fDEAwKNvL1w4cx47vf9Bz17uePf2Ha5euoLFq5YBKJskuuqNrYxsWc+NyuH5eXn4/u0753V8XDw+RURCVk6O77L2v4ukqDh05Ct67GjJqcBERQdZBblIzPn5+ZwaAovFwmB3D/icPQNdTS000dKCz1k/SIiJw9Wh4mZ/6batUFNWxpQfDWrFxcX4/PXrj/+XIDk1FR8/f4aUpASaaJbNdejtcxAd7VpDQ1UV6RmZOHjmNHLz8tCzcxfejNT3MXXqAp8b19FEVQ1N1NTge+M6JMTE4GJX8aBh2WEfqCooYMqPBjWfG9dhqasLbVVVlJSU4vG7MFx5+gQLBlXMC5ZXUICvlVbWjUtNwcevXyEvLQ0NAT0J6qqv5wBsWrUOJuZmsGhqiWsXA5CUmIgefdwBAId270dqSgrmLlkIAOjR2x2Xzl3A3h270N2jB8LD3uNGwDUs+HG9AUCb9m3hf+osjEyNYW5ZNmzzyH4f2Hdox7lR37llO+7duoNl61dDUkqK01tCWka6xrkPf4b7gD7YsXYLjM1MYGZljpuXryMlMRndPMq+I47t80FqSiqmL6qYGys6smzl04L8fGRlZiI6MgoioqJooq8LMXEx6Bnqc+1D+kdv56rhDaWVa0dc3XsaGgY60DLWxZt7T5GdmoFmnct+4D3wu4ac9Ey4/TUILCEhqOpw96qSkpOGsKgIV3izzm3x8vZj3D1+CbbO7ZGekIKnl++ihTP/H6m/qiHKX7kbAdfQrmMHvr2Cnj8NARgGOrpNEPftOw7s3Asd3Sbo1qNh5tpisVgY3Kc3fE6dgq6WNppoa8Pn1ElIiIvDtVMnTrylmzZCTVkFU8aMAfCj7vsxBUNxSTGSU1LxMSqqrO7TKusRnZefz9XD9ntCAj5GRUFeVhYaavXz8IfFYmFw//7wOX4cujo6aKKjA59jxyAhIQHXrhWNk0vXroWaqiqm/JjiYlC/fhg/fTp8T56EU/v2CHz8GE9fvMDBHdxDtNlsNi5fv46eLi4Q4fNjPjMrCwlJSUj+8WDwy4/PRPnHCp0/o9/ggdiwYg1MLcxg2dQKVy4GICkxCe59PAAAB3btQ0pyMhYs+xsA0LNvL1w864/d3v/CrVdPvA97h+uXr2LRyooFnI4c8IVFU0toN9FBXm4u/P3OISriE6bNmclzvDeuXIOzm2u9Nkp7DhmE1ctWwtzSAlbWTXHJ/yKSEhLRu19vAMCef3cjJTkZi1eU5blX3z4473cO/2zbDvfevfDubRiuXLyMZWsqev8VFxcj5nP0j/+XIDk5GZEfIyApJQWdJhXzuLHZbFy9fAXde3T/qYa36vTx7I/Nq9bDxNz0Rz1xBcmJSXD7UU/47D6A1JQUzFlSNoKgR293XD53Eft27ILrj3riZsA1zF/+NyfNNu3b4nwN31Plx3XrynV07d4NwiIN19DEYrEwuFcv+Jzxg67Wj/ujM35ldYRjpfujLVvK7o9+zCVcdn9UXkeU3x9FQUpCEk20tCAtJQVjfX2ufUmIS0BBVo4nnJDfgRrPSKNwcXFBQEAAVq5ciY0bN0JUVBTm5uYYO3YsJ865c+cwZ84cDB48GLm5uTA2Nsb69etrvY9p06YhKysLs2fPRlJSEiwtLXHp0iWY/HjqyM+mTZuQk5MDDw8PyMrKYvbs2cjM5B6G5+Pjg9WrV2P27Nn4/v07lJWV0bZtW4ENXQoKCli/fj1mzZqF0tJSWFtb4/Lly5w5zeqaXmUmJiaws7NDSEhIjfOAOTk54cyZM1i1ahXWr18POTk5rl55lbFYLFy4cAFTp06Fg4MDhISE4Orqin/++afGPNWVj48Pxo8fD1tbW+jq6mLt2rVcq6auWbMGMTExuHy5bElvDQ0NHDhwAAMHDoSzszOaN29eL/lo0aIF/Pz8sHTpUqxatQqamppYuXIl38UCfkVn5y7IyszCkUO+SEtJhb6hAdZv2wiNH8NtUlNTkVRpAmNNLS2s27YRu7z/wcWz/lBWUcHU2dPh2NmpTvv9GP4RMydN47ze5V02V4VLD1csWPq3oM0anLmqHv7tU9GjZFqHsif8V8ODsebuYUGbNZqRffuhsKgI6/fuRnZODpqamuLfFSu5nsAmpCRDqNIT4eS0NAydWTHk4OgFfxy94I8WTZti35qyuXgSU1Lx9+bNyMjOgqKcHJqamcFn42Zo1tOPx+qMcO6GwuIibDh9Etl5ebDSN8A/U6Zx9VBLSE/jevpZUFSIDadPIikjA+KiotBT18DKUWPQrdLcbeGxXzBh+zbO623nzgIAerSxx/IRo+ol745dOyErKwvHfY4gPTUNeob6WLV5HdQ1yq6ntNQ0JFWa0FxDSxOrNq/D3h07EXD+IpRUlDFxxhR06FRRFw4ZORwsFguH9x1CanIK5BUV0KZ9W4waX9HDJsD/EgBg3hTuH5WzFs1rkAaMDp0dkZ2VDb/DJ5CelgZdA338vWEF1H40fKenpiMlkXtS5tnjpnL+HxXxCQ9vB0JVXQ17T/vWe/5+hnmb5sjPyUPwxdvIzciCirYG+s4aA3mVsiE+uZlZyErLqFOacsoKGDB3HO6duIzDi7dBRkEOLbp1QOseTvV/AGiY8gcA32K/4t2bt1i7bSPf/ebl5MJnz36kJKdARk4WHRw7YtRfXvX+o7+ykQMGorCwCOv//RfZOdloam6Of9eu4677kpK5JrdOTk3F0MkV84AePXcWR8+dRQtrG+zbtAkA8D4iAhPmVzzE27ZvLwCgZ1dnLK90L/DL+R80CIWFhVjv7Y3s7Gw0tbDAv5s2Vcl/EtcD02ZNm2LN0qXYffAg9hw6BB0tLaxbupRrSCgAPHvxAgmJifDozn/i/AdBQVixYQPn9aJVZUMdx40cib9+8h6jk3NnZGVm4tjBI0hLLbuXWLt1A2foblpKKpISKsqeppYm1mzdgN3e/+LSuQtQVlHG5FnT4NC5omEjJycH29ZvRnpqGqRlpGFkaoJte3bA3Ip7xMHLkBdISkhEd/f6mVS/XJduXZGVmQnfA4eQmpIKAyNDbPTeDI0fK6unpqQiMaHi/khLWwsbvbfgn23b4X/mPFRUVTB9zkw4da5o0E1JTsGYYaM4r08dO4FTx06geQtb/LO3okfT82chSExIhFsDrFju2LUTsrOycMLnKNJS06BvqI+Vm9dxHlympaby1BMrN6/Fvh27cPn8JSirKGNClXpi8MhhYLFYOLLPp9L3lD1GjufuCfoq5CWSEpMarGG9spH9+pfVEbt3ld0fmZnh35WruK+xZD73R9Mq7k2Pnj+Po+fPo0VTa+yrw28+Qn4XFlObiZ4IIYTUSlzGn7/yWF1oKaih/c4JjZ2Nevd48h5kf4ho7GzUK1lzU2TdvtfY2ahXcl07ITrle80R/x8xUNHGu/ioxs5GvbLSNML+JxcbOxv1apx9r/9k2cuOjmnsbNQ7WQN9ZNfz/JCNTVZLC1/TExo7G/WqiaIGkrJSa474/4ianDI+p/DOCff/maGKDrIjPzV2NuqVrAn/aYL+Pxjrt66xs8DXgYELGzsLjYLWPiWEEEIIIYQQQgghRABqPCOEEEIIIYQQQgghRACa84wQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhJD/Y+++w5uq3gCOf5N07z0ohRYKbSl77703gvADWQoqojhwIE4UBVEZooKKbJG9lL33KqPMslpKGd17jyS/PwopaROGtrTq+3mePE9ze+7NOcnNSfLe95wjhBDCCAmeCSGEEEIIIYQQQohSMWfOHHx9fbGwsKBBgwYcPHjQaNmRI0eiUCiK3YKCgnRlFi1aZLBMdnZ2qbVBgmdCCCGEEEIIIYQQ5Yih4FB5uD2plStX8uabb/Lhhx9y5swZWrVqRbdu3YiMjDRY/rvvviMqKkp3u3XrFk5OTjz77LN65ezs7PTKRUVFYWFh8Zee68chwTMhhBBCCCGEEEIIUeJmzJjBqFGjGD16NIGBgcyaNQtvb2/mzp1rsLy9vT0eHh6628mTJ0lKSuL555/XK6dQKPTKeXh4lGo7JHgmhBBCCCGEEEIIIR4pJyeH1NRUvVtOTo7Bsrm5uZw6dYrOnTvrbe/cuTNHjhx5rMebP38+HTt2pHLlynrb09PTqVy5MhUrVqRnz56cOXPmrzXoMUnwTAghhBBCCCGEEKIcUaIol7epU6dib2+vd5s6darBNsTHx6NWq3F3d9fb7u7uTnR09COfg6ioKLZu3cro0aP1tgcEBLBo0SL++OMPli9fjoWFBS1atODatWt//Ql/BJNSO7IQQgghhBBCCCGE+NeYOHEi48eP19tmbm7+0H2KzpWm1Wofa/60RYsW4eDgQN++ffW2N23alKZNm+rut2jRgvr16/P9998ze/bsRx73r5DgmRBCCCGEEEIIIYR4JHNz80cGy+5zcXFBpVIVyzKLjY0tlo1WlFarZcGCBQwbNgwzM7OHllUqlTRq1KhUM89k2KYQQgghhBBCCCFEOVLWq2qWxGqbZmZmNGjQgJ07d+pt37lzJ82bN3/ovvv37+f69euMGjXqkY+j1WoJCQnB09Pzier3JCTzTAghhBBCCCGEEEKUuPHjxzNs2DAaNmxIs2bN+OWXX4iMjGTMmDFAwTDQO3fusGTJEr395s+fT5MmTahZs2axY3722Wc0bdqUatWqkZqayuzZswkJCeHHH38stXZI8EwIIYQQQgghhBBClLhBgwaRkJDA559/TlRUFDVr1mTLli261TOjoqKIjIzU2yclJYW1a9fy3XffGTxmcnIyL730EtHR0djb21OvXj0OHDhA48aNS60dEjwTQgghhBBCCCGEKEeUTzhEsjwbO3YsY8eONfi/RYsWFdtmb29PZmam0ePNnDmTmTNnllT1HovMeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjjzpypaidEnmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5okCGbZYnknkmhBBCCCGEEEIIIYQRCq1Wqy3rSgghhBBCCCGEEEKIAuPWzyjrKhj0fb/xZV2FMiHDNoUQogR9sXNhWVehRH3U6XnSLl8t62qUONuA6rT4cUxZV6NEHX71J5JfeK2sq1GiHBb8QP/FH5R1NUrU2hFTaD1nbFlXo0QdGDuH1D0HyroaJcqufWtuxN8p62qUKF8XL15Z+01ZV6PEze3/LkuCt5R1NUrU8EbdGfTbx2VdjRK1cujkf2Xf13PBu2VdjRK16YVv6PTLG2VdjRK186XvyroKf5lSVtssV2TYphBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMybLN8kcwzIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEiQzbLE8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJHVNssXyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJHMMyGEEEIIIYQQQgghjJDgmRD/EdnZ2XzxxRfExMSUdVWEEEIIIYQQQoh/DBm2KcR/xMcff0xqairu7u5lXRUhhBBCCCGEEA+hUEiuU3kir4YQ/wE5OTk4Ozsze/bssq6KEEIIIYQQQgjxjyLBMyH+A8zNzXn//fcxNzcv66oUs2/fPhQKBcnJyY+9j4+PD7Nmzfpbj6tQKNiwYcPfOoYQQgghhBBCiH8/GbYpxH/AkSNHaNWqFZ06dWLbtm1lXR1RxJUDp7m4+zhZKek4eLrQsH9H3P28DZaNvnqTnbOXF9ve+6MXsfdwBkCjVnNhx1HCjl8gMzkNe3cn6vVph1eNKqXajqK0Wi2/rFjO+u3bSctIJ6h6dSa8PIaqlSob3Scs8iY//b6My2FhRMXGMn7UaIb07qNX5uflvzNvhf5z4OzgwPbFS0ulHU+qjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62o9lEWf7pi1aYHCyhJ1+E0yf1uJ5m70Q/cx79QWs3atUDo5ok3PIPfkGbLX/AH5+QCYtW2JebtWKF2cAFDfiSb7z63kn79U6u3p4t+EPkGtcLSy5VZyLAtPbCY0NsJo+Va+dehbszWeds5k5mZz5u41Fp/cQnpOFgCfdRlNTY/i759Tty8zZfeS0mqGnr5BrRlcryNOVvZEJEbx/eHVnIsKM1q+X83WPFOrLR62TsSkJbH09Da2XzmuV+bZ2u3oE9Qad1tHUrIz2Bd2ml+ObSRXnV/azTFKq9Uyb/OfrD90gLTMTIJ8fHnvf0OoWsHL6D57zpxm0bYt3IqLJV+txtvNjaEdO9O9SbNSr++f6zay5veVJCYkUNnXhzGvv0rNurWNlj935iy/fD+HmzcicHZx4dkhg+jRr7demfUr17Bp/R/ExcRi52BPq7ateX7Mi5iZmwFwPuQsa35fybXL10hMSOCTqZ/TvHXLUmtj6yp16VS9EfYWNkSlxrP67B6uJ9wxWHZ4g24086lZbPvd1Hgm71xYbHvDigGMatKLkLvX+PnohpKu+kOd3HmIY1v2kp6ciquXB52G9qVSQNVH7nfrajhLv/gR14oevDjlXd32M3uPcv5gMHG3C/pOD9+KtB3YA6+qxj/zSlrn6o3pVaMlDpY23E6OZfHJrVyOu2m0fEuf2vQOaoWHrROZeTmcvXuNpae2kZ6bVaxs88q1eKPVQIJvhfLt/t9Lsxl6/gt9X/eAZjxTqy1OlrZEJscw7/gfXIy5YbR8j8Dm9AxsjpuNE3EZSaw6u4c91089xRoX16tGS56t3R5nKzsikqKZe3QdF6LDjZbvXaMlfYJa4W7rRGx6Er+f2cmua8EGy7atWo8PO4zkcMQ5Ju2YX1pNKJcUyGqb5YkEz4T4D1iwYAHjxo3j119/JTIykkqVKhktq9VqUavVmJhI9/A0RJwK5eTaXTQe1AW3Kl5cPRTCnjmr6P3RaKyd7I3u1+fjlzC1NNPdN7ex0v0d8ucBwoMv0mxIN+zcnbkbGs7+eevoOn4oTt4epdqeBy1et5bfN27g0zfepFIFL+avWsmrn3zC2jlzsbayMrhPdk4OFd096Ni8JTMW/Gr02FUqVWLO51/o7quU5SeR2tLUnOsJt9ly+QhTuo0p6+o8knm3jph3bkfm/N9Qx8Ri0bMrNu+MI/WDzyE7x+A+pk0bYjGgD5kLlqG+Ho7Sww2rUcMAyF6xDgBNUjJZazaiiY0HwKxFE6zHvUTapK8eGZj7O5r71OL5Rj2Yd/wPLsfepHP1xnzYcQRvbpxFfEZKsfIBbpUZ1/JZFgVv5uTtyzhZ2fFy076Mbf4MX+9dBsA3e5dholTp9rG1sGJ6r3EcjbhQau14UHu/BoxrOYAZB1ZwITqc3jVa8nXPVxm+fDKx6UnFyvcJasVLTfvwzb7fCY2NINDNh/faPkdadiZHbp4HoFO1RrzUtC/T9i7lQnQ43g7uTGxf8Br+cHjtU2mXIUt2bOP33Tv5ZPjzVHJzZ8HWzbw2eyZrJn2BtYWFwX3sra15vlt3fNw9MTVRcfD8OT5fsghHW1ua1SgeyCkp+3ft5efvfuTVt98gqHZNtmz4k4/eeZ9ffluIm0fx+UWj70bx8TsT6darO+998gEXz13gx+nfYe/gQMt2rQHYs30XC36ax/iJ7xFYK4g7kbeY/uXXALz8xqsAZGdl4+tXlU7du/LFh5NKrX0ADSr682yd9qw4s5OwhDu08q3Dqy0H8PmOBSRlpRUrv+rsbjZcOKC7r1Qq+LDDSE7fvlKsrJOVHc/Uasu1uFul2gZDLh07w87fNtB15AC8q/tyes8RVnzzCy9Pex97F0ej+2VnZvHHT7/jG1SN9BT99t8MvU6NZvWpWN0XE1MTjm7aw/JpP/HSVxOwc3Io5RZBs8o1GdGgG/ODN3ElNpKO1Roysf0wxv/5PQmZxfs+f9dKvNq8P4tPbeXUvb7vxSa9eblpX6Yf0L9A5WJtz9D6XQiNiSj1djzov9D3tfKtw4tNejP36HouxUTQLaApkzqPYuy6b4nLSC5WvltAM0Y06Mb3h9dwNf4W/i7evNZyAOk5mZy4FfrU6w/Qpko9XmnWj+8PreZizA16BDZnSrcxjFo1lbiM4q9Tz8AWvNC4FzMPrOBKXCQBbpV4q9X/SM/J5FjkRb2ybjaOvNSkL+eirj+t5ghhVPn5tSGEKBUZGRmsWrWKV155hZ49e7Jo0SK9/98fNrl9+3YaNmyIubk5Bw8eRKvV8vXXX1OlShUsLS2pU6cOa9as0e2nVqsZNWoUvr6+WFpa4u/vz3fffffI+mzZsoXq1atjaWlJu3btiIiIKFbmyJEjtG7dGktLS7y9vXn99dfJyMh47DYHBwfTqVMnXFxcsLe3p02bNpw+ffqh+0yYMIHq1atjZWVFlSpV+Pjjj8nLy3vsx/yrLu05gV+zOlRrXgd7DxcaDeiIlaMdVw6eeeh+FrZWWNrZ6G7KB4JH4ScuUqtzM7yCqmLr4oB/q/p4BvpyaY/hK3qlQavVsvzPP3j+2YG0b9Ycv8qV+ezNt8jOzWHbgf1G9wuqVp03nn+BLq1bY2ZqarSciUqFi6Oj7uZobzzQ+LQdi7zIvON/sD88pKyr8ljMO7Uje9N28k6fRXMnisz5S1GYmWLWpKHRfUyq+pJ/LZy84yfRJCSSf/EyucdPYuJTGJjPP3uB/POX0MTEoomJJXvdn2izczCp6luq7elVoyV7rp9i97WT3EmJY2HwZhIyUuji38Rg+equ3sRlJLHl8lFi05O4HHuTHVdPUNW5MNMpPTeL5Ox03a22px85+Xm6H2OlbWCd9mwOPcLm0CPcTIrm+8NriEtPpm/N1gbLd/Fvwh8XD7Hn+imiUhPYc/0Um0OPMKR+J12ZIA9fLkSHsevaSaLTEgm+Fcruayfxd316WTJFabValu/ZzfNdu9O+Xn38vLyYNOJ5snNz2R583Oh+Dar7065ufXw9Pano6sbg9h3x86pIyPXS/bG1buVquvTsRrfePajkU5kxb76Gq5sbm9b/YbD85g1/4ubuxpg3X6OST2W69e5B5x7dWLN8la5M6IWLBNWqSbvOHfDw9KBBk0a07dSeq5ev6so0ataEkS+NomVbw69/SepQrSFHIs5zOOI80WmJrD63l6TMNFpXqWuwfHZ+Lqk5GbpbZUcPrMwsOHpTP9CsQMHzjXqwKfSwwaB2aTu+dR912zahXrumuHi503lYP+ycHTi9+/BD99u6YDVBzerj5edT7H99xw6jYaeWeFT2wqWCOz1GD0Kr0RJx8VoptUJfj8Dm7Ak7zZ7rp7iTGsfiU1tJyEylc/XGBstXc/EmNiOZbVeOEZeRzJW4SHZdC6aKs36Wp0KhYFyLZ1l9bg8x6YlPoyk6/4W+r2/N1uy8GsyOqye4nRLLvON/EJ+RTPcAw5mz7avWZ+uVYxy8cZaYtEQO3DjLzqvB9K/d7inXvFD/2m3ZduUYW68cIzI5hrlH1xOXnkSvGi0Mlu9YrRGbQw+zP/wM0WkJ7As7w7YrxxhUt6NeOaVCwcT2w1lyaivRqQlPoylCPJQEz4T4l1u5ciX+/v74+/szdOhQFi5ciFarLVbuvffeY+rUqYSGhlK7dm0++ugjFi5cyNy5c7l48SJvvfUWQ4cOZf/+gsCHRqOhYsWKrFq1ikuXLvHJJ5/wwQcfsGrVqmLHvu/WrVs888wzdO/enZCQEEaPHs3777+vV+b8+fN06dKFZ555hnPnzrFy5UoOHTrEa6+99thtTktLY8SIERw8eJBjx45RrVo1unfvTlpa8avk99na2rJo0SIuXbrEd999x7x585g5c+ZjP+Zfoc5Xk3grGs9AH73tFQJ9iLtheEjMfZumLWTNB9+zc/Zyoq/qD8lQ5+ejNNXPHDQxNSE27Old3b8TE0NCUhJN69XTbTMzNaV+UE3OXb78t48fefcuXUeOoPeLo5j4zdfcji69TKZ/M6WrM0oHe/IvPvCa5OeTf+U6Jn7Gh/nmXwvHxMcblW9l3XFMawWRd+6i4R0UCkwbN0BhbkZ+mPGhKH+XiVJFVecKhNzV/7F69u51oz+MrsRG4mxlT32v6gDYW9jQrHJNThnIlLmvQ7WGHI44R05+6QfYTZQqqrtWIrhIRkHwrVBquht+jUyVJuSq9euWo84j0M1Hl6V5LiqM6q6VCHQreF487ZxpWrkmx24+nWw6Q+7Ex5OQmkLTGkG6bWamptSvVp1zYcaHaT1Iq9Vy4nIoN2OiqV+temlVlby8PK5duUr9xvpB5vqNGxJ6wfD7IPTCxWLlGzRpyLXLV8i/N9w5qE4trl25ypVLBa931J27BB89TuPmhoO/pUmlUFLJwYNLRbKNQmMjigVYjGnuU4vLsTdJzEzV294jsDnpOVkciXg6AegHqfPzibpxG9+a/nrbq9T05/a1CKP7nd1/nKSYeFo/0+WxHicvJxeNWoOljeFM65KkUqqo4lShWHbO2ajrVHc1PA3E1bhInK3sqFuhGgD2FtY0qRTEmTv6fd+AWu1Izc5gb9jDL0KWtP9C32eiVOHn7MWZu1f1tp+5c5UAN8OfWaYqE/KKDC/Nzc+juos3qjJYmdFEqaK6i3exz8xTt68Q5G74YpmpyqTYENmc/Dz8XSvptWFo/a4kZ6Wz7cqxkq/4P4RSoSiXt/8qGZclxL/c/PnzGTp0KABdu3YlPT2d3bt307Gj/tWdzz//nE6dCq7MZWRkMGPGDPbs2UOzZgVXvqpUqcKhQ4f4+eefadOmDaampnz22We6/X19fTly5AirVq1i4MCBBusyd+5cqlSpwsyZM1EoFPj7+3P+/HmmTZumK/PNN98wZMgQ3nzzTQCqVavG7NmzadOmDXPnzsXCyLCdB7Vv317v/s8//4yjoyP79++nZ8+eBvf56KOPdH/7+Pjw9ttvs3LlSt577z2D5XNycsjJ0R/S9qQLMuSkZ6LVaLGwtdbbbmFrTXaq4Uw7S3sbmg7uilMlDzR5asKDL7Dz++V0fmMI7n4FWT8VAqsQuicYdz9vbF0ciboSwa1z1wwGTUtLQlJBmr6zvYPedmcHB6JiY//WsWtWr85nb75F5QpeJCQnM3/1SkZNeJeV3/+Ig53d3zr2f43i3vOlSdUPLGtS01A6OxndL+/EKbJsbbCZ+BagQGGiImfPAXK27NQrp/SqgO2Hb4OpCeTkkPHDvFIdsmlrboVKqSIlK11ve3J2Gg6W1QzucyUuklkHVzG+zWBMVSaYKFWciLzE/ON/Gizv51KRyo4ezDmyrsTrb4i9hQ0mSlWxIXKJmak4eRs+30/cukTPwBYcvHGWq3G38HetRPeAZpiqTHCwsCEhM5U910/hYGnLD/3eRoECE5WK9RcOsOzMjqfRLIMSUgsykJxs9dvlZGdHdMLDsw7SszLpPvE9cvPyUSkVTBj8HE0Ca5RaXVOTU9CoNTg66Q/xc3R0JDHBcHZOUmISjo5Fyjs5olarSUlOwdnFmbYd25OSlMzbr7yhm0ahZ7/eDBo2pNTaYoyNuSUqpZK0bP3Po7TsDOzdrY3sVcjOwpog9yosOLFJb3sVZy+a+9Tiy92LS7S+jyszLQOtRoONva3edmt7W9KTUw3ukxgdx96Vmxj28TiUKpXBMkXtXbkJW0d7fINKL4h7n52Rvi8lKx2HCrYG97kaf4vvD6/hzVaDdH1f8K1QFgZv1pXxd61Eu6r1mbBlTqnW35D/Qt9nZ26NykAbk7LSqW9l+HU7fecKnas35ujNC4Ql3MHPuSIdqzfCVGWCnYW1weHUpcne4n4b9N87SVlpOBppw6nbl+kW0JQjEee4Fn+b6i7edPVviqnKBHsLGxKzUgly96Wrf1PGrP36aTRDiMciwTMh/sWuXLnCiRMnWLeu4EeeiYkJgwYNYsGCBcWCZw0bFl4Nv3TpEtnZ2bpg2n25ubnUeyCT6KeffuLXX3/l5s2bZGVlkZubS926dY3WJzQ0lKZNm6J44IrF/eDcfadOneL69essW7ZMt02r1aLRaLhx4waBgYGPbHdsbCyffPIJe/bsISYmBrVaTWZmJpGRkUb3WbNmDbNmzeL69eukp6eTn5+P3UMCMVOnTtULHgJ8+umnmLR48rT/YpOBasHY/KD27s7Yuzvr7rtW8SIjKZVLu07ogmeNBnTk6PKt/DF5HijA1sWRqk1rE3bs3BPX7XFt3bePKXN/1N2f9fEnAHqvNRS8lkW3PakWDQrPVT+gdkAAfV9+kU179zC0T9+/dex/O9OmDbEaPlh3P33W3II/DAVWHxJsNfGvhkXPLmQtXUl++E1U7i5YDh6AJiWVnD8LFyXRRMeQNmkqCisrTBvUxWr0MNKnfVeqATQALfp1f9iEuxXt3RjVuCerz+4h5O41HC1tGd6gKy8362swQNbBryE3k6K5Hn+7xOv9MEWD3wqFolg771t8citOVnb89Mx7oICkzDS2XT7GkPqdUWs1ANStUI1hDbow48AKQmMi8LJ35fWWz5LQoBtLTm0t9fYAbD1xjKm//6a7P3PsOACKdhFarYGNRViZW7Dsg0/IzMkm+MplZq5ZhZeLKw2q+z90v7+taB/HI/q4Yn3i/c0F28+eDmHFkmW8+vYbBAQFcvf2HX767kccFy7lueeHlWjVH1fxs8z4ufegZpVrkpWXzdkHMkHNTUx5vlF3lp3eToaBSemfqmKvXfHPLCjItN/w41Ja9e+Ks6fbYx366KbdXDx6hqEfvoqJmfEpCEpa0VdFoVAYvXDmZe/KyIbdWXt+L2fvXsfR0pbn6ndhdJPe/HxsAxYmZrzWYgC/HN9IWk5m6VfeiH9j31dMkeYoFMY/gleE7MLR0pbpvcahAJKz0tl97SQDardDc6+NZaFofRUKQ31Hgd9Ob8fRypbZfcejoCDQtuPqcQbV7YhGq8HS1JwJ7YYx8+AKUnMef9oWIUqbBM+E+BebP38++fn5eHkVDq/QarWYmpqSlKR/BdzauvAqskZT8OG7efNmvX2hMLtq1apVvPXWW0yfPp1mzZpha2vLN998w/HjxueleZzMJ41Gw8svv8zrr79e7H8PW+jgQSNHjiQuLo5Zs2ZRuXJlzM3NadasGbm5uQbLHzt2jP/973989tlndOnSBXt7e1asWMH06dONPsbEiRMZP3683jZzc3O+OfD4K1CZ21ihUCrIStO/UpydnlEsG+1hXH28CA8uHCZkYWtFu5f6o87LJycjC0t7G85s3IeNs8NjH/NJtW7cmJr+hVfXc+/NFxefnISLU2EGU2JKCk4OJVsPSwsLqlb24dbduyV63H+jvJDzpIVHFG64tzCI0t4OdUrhVWOlnS3aVONXry369SD3yAlyDx4FQHPnLpiZYzViMDmbthd+i1ardQsGqCMiUflWwrxjW7KWrCjZht2TlpOJWqPGwVL/are9hQ3JRTIy7numVhsux95k48WDANxMiiY7P5cvu73M72d2kvzAVXwzlSktfGuzMmRXqdTfkJTsdPI1apys9IP5jpa2JGUafo1y1XlM2/sb3+7/HSdLOxIyU+hVoyUZuVmkZBX8EBnVuBc7rpxgc+gRAMIT72Jhas67bYaw9NS2xwqO/F2ta9elpk/h8Kvce8NgE1JTcXkgazUpLRVn24dnlSqVSrzdCgIb/t6ViIiKYtG2LaUWPLNzsEepUpJUJMssOSm5WDbafY5OjiQlFi2fhEqlws6+oH1L5i2kfZdOdOvdAwDfqlXIzs5m9rQZDB7xnN78lqUtPScLtUaDnYX+55GthRWp2Y8OpjT3qcXxyEu6oAWAq7UjLtYOvNL8Gd22+wGrH/q9zaQd84k3MEl6SbKytUahVBbLMstMScPavnimTG5WDlE3bhF98w7bFxcE1LVaLWi1TBn+NkMmjMEnqDCz9djmvRz+YxdD3n8F90oVSrUt96Xq+j4bve12FtakZBvu+/oGteZqXCR/XiqY5y0yOYbsE7l83uVFVp7dhb2FDW42jrzX9jndPvdfq9+HTOKtP74jxsCk/SXl39z33Zeak4Faoy6WoeVgYaP32fOgXHU+3x1azQ+H1+JgaUtSVipd/JuSmZv9WO/LkpaSXdCGoq+Tg4UtyQ95nabvX86sAytxtLIlMTOV7gHNycjNJiU7gyrOFfC0c2Zylxd1+9w/97aNnsHzK78kKu2/MQfa373gLEqWBM+E+JfKz89nyZIlTJ8+nc6dO+v9r3///ixbtszoPGI1atTA3NycyMhI2rRpY7DMwYMHad68OWPHjtVtC3vEnDQ1atRgw4YNetuOHdOfx6B+/fpcvHgRPz+/hx7rYQ4ePMicOXPo3r07UDDXWnx8vNHyhw8fpnLlynz44Ye6bTdvGl/aHQoCZU86TLMolYkKJ28Poi5HUKlO4Q+8qMsRVKxleIiZIYm3Y7C0Lx5sU5maYOVgi0atJjLkCpXrPzpr76+ytrLSW0FTq9Xi7OjI8ZAQAqpUBQrmCDp98QLjho8o0cfOzcsj4vYt6tUovSFa/xrZOWiKrKCpSU7BpEYA6sh7mVQqFSb+fmSt3mj8OGZmxS8zazVGMyYLKVCU4kq++Ro1YQl3qePpx4nIS7rttSv4EXzrksF9zE1MUWv0r9bfv3pftDktfGphqlKxP/zhC3qUpHyNmqtxkTT0DuTgjbO67Q0rBnAo4uHZpGqNRrdaWwe/hhyJuKD7YWhhYlbsgoZGo0GheHjWQ0mytrDQW0FTq9XibGfP8dBL+HsXXCzJy8/n9LWrjOvX/4mOrUVLbn7+owv+RaamplTzr86Z4FO0aNNKt/1M8CmatmxucJ/AmkEcP3xUb9vpEyepFuCvW+E6Jye7WIBMqVSi1Wqf6tB7ALVWQ2RyNIFulfWyxwruP3wxhmou3rjZOBab0yw6LYHJOxfqbesV1BILEzNWn91DUqbhYZMlSWVigqdvRW5cuEpAo9q67TcuXKV6g+Krs5pbmvPiVP0pHE7tOszNS9d45vWROLgWXiA6umkPhzfuZPCEl6lQ5fEu+JUEtUZNeOJdantU1ZsjrLZHVU7eNjzPqOG+r+AcU6Dgbko87/z5vd7/B9XtiIWJGYtPbiG+lF+rf3Pfd1++Rs31hDvUrVBNb1GNuhWqczzSyByi96i1Gt0qqq1963DiVuhTDfzdl69RczX+FvW9/Dn8wOtSv6L/I+c0VGs1ugVD2lWtz/HIi2jREpkcw4urv9IrO7JRd6xMLZhzZJ3BVUiFeBokeCbEv9SmTZtISkpi1KhR2BdZiXDAgAHMnz/faPDM1taWd955h7feeguNRkPLli1JTU3lyJEj2NjYMGLECPz8/FiyZAnbt2/H19eXpUuXEhwcjK+v8ZX0xowZw/Tp0xk/fjwvv/wyp06dKrb654QJE2jatCmvvvoqL774ItbW1oSGhrJz506+//57wwcuws/Pj6VLl9KwYUNSU1N59913sbS0fGj5yMhIVqxYQaNGjdi8eTPr169/rMf6u2q0b8zhJX/iXMkDV18vrh4OISMxleqtCobHnt64j6yUNFoM7wVA6N5grJ3scfB0QaNWE37iIpEhV2gzup/umHERd8lKTsOxojuZyWmc23IIrVZLUMenN+G0QqFgcK/eLFyzmkqeFfCuUIGFa1ZhYWZO19aFAdlPZs7AzdmZ1+4F1PLy8gi/deve3/nEJSRwJTwcK0sLvD0LruDPWjifVo0a4+HqSlJyCvNXryQjM5Oe7Ts8tfY9jKWpORXtXXX3K9i5UM2lIqnZGaV6lf6vytm5F4uendHExqKOicOiRxe0uXnkHj+pK2M1ehiapBSy1xasIph/9gLmnduhjryNOjwCpZsrFn17khdyXvfLw+KZXuSdv4Q2MQksLDBr0gCTgGpkzCjduXP+vHSI11s+S1jCHa7ERdKpeiNcrO3ZceUEAM/V74yTlR3fHypYPfjkrcuMad6PLv5NCLlzFQdLW15o3JOrcbeKzR3TvlpDTkSGkp7zdIebrTq7hw87jOBK7E0uxtygV40WuNk6svFCQbbcS0374GLtwJR7c0hVtHcj0N2H0Jgb2JpbMbBOB3ydPZmyp3COqSM3zzOwTnuuxt/SDV0a1aQnhyPO635AP20KhYLB7TuwcNsWvN3c8HZ1Z9G2LViYmdGlUWH/9emi+bg6OPJa34LspYXbtlCjsg9eLq7kq/M5fOE8m48d4/3Bzxl7qBLxzKBn+WbyVKoF+BNYswZbN24iNiaGHv0K+usFc+eREB/Pux9PBKBH3178sXYDP8+eQ7fePQi9cIntm7by/qTCOTebtGjG+hVrqFrdj4AaBcM2l8xbSNOWzVHdm2srKzOLu7cLF5WJvhtF2NXr2NrZ4ubhXqJt3H3tJCMb9eBmUjQ3Eu/S0rcOjlZ2umBGn6BWOFjasvjkFr39WvjU4kbCXe6m6l+4yteoi23Lyi0I6BfdXpqadGvLxrnL8KziTUU/H87sPUJKQhL1OxQEPveu3ERaUgq9xzyHQqnEzdtTb39rOxtUpiZ6249u2s3+NVvpO3YY9i5Ousw2MwtzzCz+3sW2x7E59AivNe9PWOJdrsXdokO1hrhY27PzWkHfN7huJ5ys7PjxyFqgYEL3l5r2oVO1RpyNKhi2OaJhN67FF/Z9t1L05yi9P9S26PbS8l/o+zZcOMD41v/jevxtQmNv0tW/Ca42Dmy5XBBoH9GgG87W9sw4UJCxXcHOhequlbgaF4mNmSV9a7amsqMHMw+ufOp1v2/tuX1MaDeUq/GRhMZE0D2wOW42jmwKLchqfKFRT1ys7fl6X8GULF72rgS4VuZy7E1szC3pX7sdPk6euv/nqfOJSIrSe4yMe5+7RbcL8TRJ8EyIf6n58+fTsWPHYoEzKMg8mzJlCqdPG185afLkybi5uTF16lTCw8NxcHCgfv36fPDBB0BBICwkJIRBgwYV/OAZPJixY8eydavx+SIqVarE2rVreeutt5gzZw6NGzdmypQpvPDCC7oytWvXZv/+/Xz44Ye0atUKrVZL1apVGTRo0GO3fcGCBbz00kvUq1ePSpUqMWXKFN555x2j5fv06cNbb73Fa6+9Rk5ODj169ODjjz9m0qRJj/2Yf5VPg0ByMrI4t/UwWakZOHi60H7ss9g4FbxuWanpZCQWXt3V5Ks5vX4PmSnpqExNCsq/8ixeQVULy+TlE7LpAGnxyZiam+EVVIUWw3tiZvXoxRZK0ohn+pOTm8tXP88lLT2dmtWr88Nnn+tlqEXHx6FUFub3xCUm8txbb+juL92wnqUb1lO/Zk1++XIqADHxCXz47bckp6XiaGdHTX9/Fn79LZ5ujzcXTWkLcK3MD/0Kh/S+3vJZALaEHuXLB77Alxc5W3ehMDPDcuggFNZWqMMjSJ/+AzyQoaZ0cgJN4Y+K7D+3odVqsejXE6WjPdq0dPLOXiB7beEk+wp7W6xfHI7C3g5tVjbq23fImDGH/Et/f7XVhzkScR5bcyuerdMeR0tbIpNjmLJ7se5KtaOlLS7WDrrye8NOY2FqTreApoxo2I2M3GzOR4Xx2+ntesf1tHOmhrsPn+1YUKr1N2TP9VPYmVszomF3nK3tuJEQxYRNc4hJLxgC6Gxlh7tN4VBBlVLJoDodqOTgTr5GzZk7Vxm77lui0wqHDC45uRWtVsvoJr1wtXYgOSudIxHnmXf8j6fevgcN79yVnLw8pi3/nbTMDIJ8q/D9uLf0MtSiExP1hrJk5+QwbfkyYpOTMDc1pbKHJ58/P4rODRuVal3bdGxHamoqyxYuISkhkcpVfJj87VTcPTwASExIJDamMMjgUcGTyd9O5efZP7Jp3UacXJx55c3XaNmuta7MkBHDUCgULP5lAQlx8dg7OtCkRTNGvjRKV+bq5StMGFfYx/zyfcHchR27deGdjyaUaBtP3b6CtZklPQKbY2dhTVRqPD8eXqtbPdPewganIkPOLEzMqOdVnVVn95RoXUpSjab1yEzL4ND67aQnp+Ja0ZP/vfsS9i4FWWTpyamkxD/ZxY5Tuw6jzlezdvYive2t+nWhdf+uJVV1o47evICtuRX9a7XF0dKWW8kxfLV3qS6zx8HSBmfrwu+E+8PPYGlqRhf/pgxr0JWM3GwuxtxgWZG+ryz9F/q+gzfOYmtuxf/qdsTJyo6bSdFM2jG/8DPLyg7XBz6zlAol/Wq2xsveFbVGzbmoMN7d9COxZXhxbn/4GewsrBlavwtOVvZEJEbx4dafdXVytrLD7cHXSaFkQO12VHRwQ61RE3L3Gm9snKV7XUWh//LKluWRQvu0c8CFEOJf7Isiw1H+6T7q9Dxpl68+uuA/jG1AdVr8OKasq1GiDr/6E8kvGM4m/adyWPAD/Rd/UNbVKFFrR0yh9Zyxjy74D3Jg7BxS9xwo62qUKLv2rbkRf+fRBf9BfF28eGXtN2VdjRI3t/+7LAne8uiC/yDDG3Vn0G8fl3U1StTKoZP/lX1fzwXvlnU1StSmF76h0y9vPLrgP8jOl74r6yr8ZR9v+6Wsq2DQ5K4vlXUVysTTm3VUCCGEEEIIIYQQQoh/GBm2KYQQQgghhBBCCFGOKB69EpN4iiTzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUchqm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCNKGbZZrkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli+SeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjiiRYZvliWSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SKZZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAzbLF8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEKrVarLetKCCGEEEIIIYQQQogCX+1ZUtZVMOj99sPLugplQuY8E0KIEpTUqV9ZV6FEOe5cT+quvWVdjRJn17EdyS+8VtbVKFEOC36gxY9jyroaJerwqz+RPGZ8WVejRDn8NIPkUePKuholymH+9//Ovm/3/rKuRomy69CG5OH/rj4CwGHJT2VdhVKRumVHWVehRNl170zyWx+UdTVKlMPMKST/b1RZV6NEOayYzyfb5pV1NUrU511fLOsqiH8JGbYphBBCCCGEEEIIIYQRknkmhBBCCCGEEEIIUY4okNU2yxPJPBNCCCGEEEIIIYQQwggJngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYQoR5QKGbZZnkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKheQ6lSfyagghhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUI0pktc3yRDLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRhUKGbZYnknkmhBBCCCGEEEIIIYQREjwT/wknT55k5syZaDSasq6KEEIIIYQQQggh/kEkeCbKREREBAqFgpCQkBI7pkKhYMOGDcW2x8fHM3DgQGrWrIlSWfKn/KRJk6hbt26JH/e/ZOTIkfTt2/exy+/btw+FQkFycvJffsxFixbh4ODwl/cXQgghhBBCiNKiVCjK5e2/SuY8E09s5MiRLF68GACVSkWFChXo0aMHU6ZMwdHRsczqFRUVVezxtVotw4cP55NPPqFTp05lVLN/B4VCwfr1658oyCVKh2nLppj36IyqWlWU9nakjnkLdVhEWVerGK1Wy7wtm1h/+BBpmZkE+fjw3sDBVK1Qweg+e0LOsGj7Vm7FxZGvVuPt6sbQDh3p3qSprszpa9dYumsHl29FEp+SwjcvjaFtnbpPoUUFLPp0x6xNCxRWlqjDb5L520o0d6Mfuo95p7aYtWuF0skRbXoGuSfPkL3mD8jPB8CsbUvM27VC6eIEgPpONNl/biX//KVSb8/jqOPpx5B6nQlwq4SLtQPvb5nLwRtny7paD2XRswtmLZuisLJCHXGTzOVr0UTFGC1vM34sJtX9im3PO3+JjB9/Lbhjbo5l726Y1q2JwtYW9a3bZK3agPrmrdJqhh6L3t30z71lqx597nVsi1m7lg+ceyFkry0898y7d8K0fh1Unu5oc/NQh90ga/VGNDGxT6NJT+Sf0vcVpdVqmbf5T9YfPnivL/TlvUFDHt4Xnjl9ry+MLegL3dwY2qET3Zs0e4o112fRrydmbVuisLZCHRZB5pLlaO5EPXQf8y7tMWvfGqWzE9q0dHKDz5C9ej3k5evKKBwdsBzYD5M6QShMzdBEx5A5fynqiMjSbtK/jlarZd72raw/epi0rCyCKlXmvf4DqerpaXSfPedCWLRzB7fi48nXqPF2cWVo2/Z0b9RYV+aXbVuYt32r3n5OtrZs/3xKqbXlQRZdOmDWrBEKS0vUkbfIXPsHmmjjfZTNq6Mx8atSbHvepctkzFtSbLt5hzZY9uxCzv7DZG3YXKJ1N8ZiQG/M2rdBYWOF+no4mQuWobl996H7mHfriFmndihd7r2fjp8ke/nawveThQWWA/ti2qg+Cntb1BGRZC1ajjo8otTb08g7kJa+dbAxtyQuPYmtl49xM8n455NKoaStX33qVPDDxtyK1OwM9oed4cydqwA0qOhP3QrVcbMt+G13NyWeXdeCuZMSV+ptEcIYCZ6Jv6Rr164sXLiQ/Px8Ll26xAsvvEBycjLLly8vszp5eHgU26ZQKNiyZUsZ1EaI0qOwMCf/4mVyDxzBevyrZV0do5bs3MHve3bzybARVHJzY8G2rbz2w3es+eQzrC0sDO5jb2XF81264ePhganKhIMXzvH5b0twtLWlWY0gALJyc6hesSK9mjVnwryfn2aTMO/WEfPO7cic/xvqmFgsenbF5p1xpH7wOWTnGNzHtGlDLAb0IXPBMtTXw1F6uGE1ahgA2SvWAaBJSiZrzUY0sfEAmLVogvW4l0ib9NUjgyNPg6WpOdcTbrPl8hGmdBtT1tV5JPPO7THv0IbMxctRx8Zh0a0TNm+MIfXTryDH8OuU8dMiMFHp7iusrbD96B3yThcGCa2GDURVwZOMhb+jTUnFrEkDbN4cQ+pnX6NNTindNt0/9xYsu3fudcHm7ddI/XCy8XOvSUMsBvQmc+Ey1NdvFJx7LwwFIHtlwblnUt2P3L0Hyb9xE5QqLJ/pic3br5L60ZeQm1uqbXpS/5S+r6glO7fz+55dfDJsJJXc3VmwdTOvfT+TNZ9ONt4XWlvzfNfu+Lh7YGqi4uD583y+dDGOtna6vvBpMu/RGfOuHcictxh1VCwWfbph894bpE741Pj516wxFs/2I3P+EtTX7vV9L44AIPv31QAorKyw/ehd8kKvkPHtD2hT01C6uaDNzHxqbfs3WbJnF7/v28snQ56jkqsbC3Zu57WffmDNxI8f8rlrzfOduuDj7o6pSsXBixf5fMWygs/dgEBduSoenvz4ymu6+yrl08k+MW/fGvO2Lcj8fS3quHgsOrXDZswLpE6dATmG+6iMhctAVaQ/f2cceSEXipVVeXth1qwR6kcEgkuSee9umHfvTObcBaijYrB4pic2H7xN6vgPITvb4D6mLZpgMXgAmT8vRH31OkpPD6zGvABA9pKVAFi9PAJVRS8yfvwVbVIyZq2aYvPR26S+/THapORSa09Njyp0C2zGpkuHiUyKoZF3AEMbdOWHQ6tJyc4wuM/Auh2wMbdkw4UDJGamYm1mqZfR5ONUgXNR17kVGkO+Rk1L3zoMb9iNHw6tIS1H+od/ojlz5vDNN98QFRVFUFAQs2bNolWrVgbL7tu3j3bt2hXbHhoaSkBAgO7+2rVr+fjjjwkLC6Nq1ap8+eWX9OvXr9TaIMM2xV9ibm6Oh4cHFStWpHPnzgwaNIgdO3bolVm4cCGBgYFYWFgQEBDAnDlzjB5PrVYzatQofH19sbS0xN/fn++++65YuQULFhAUFIS5uTmenp689lrhh3jRYZvnz5+nffv2WFpa4uzszEsvvUR6erru//eHCn777bd4enri7OzMq6++Sl5e3kPb/tVXX+Hu7o6trS2jRo0i28CH3JO0HWDbtm20bNkSBwcHnJ2d6dmzJ2FhYbr/5+bm8tprr+Hp6YmFhQU+Pj5MnTpVr+1z586lW7duWFpa4uvry+rVq/Ue486dOwwaNAhHR0ecnZ3p06cPERERj/X8+vj4ANCvXz8UCoXuPsDcuXOpWrUqZmZm+Pv7s3Tp0oe2Va1WM378eF1b33vvPbRarV4ZrVbL119/TZUqVbC0tKROnTqsWbPmocctasaMGdSqVQtra2u8vb0ZO3as3utfVFhYGH369MHd3R0bGxsaNWrErl27nugxn5bcXfvJ/m0V+afLb+aPVqtl+d7dPN+lG+3r1sOvgheTho0gOzeX7cEnjO7XoLo/7erWw9fDk4qurgxu1wE/Ly9CHng/tAiqySu9+tC+br2n0RQ95p3akb1pO3mnz6K5E0Xm/KUozEwxa9LQ6D4mVX3JvxZO3vGTaBISC378Hz+JiU8lXZn8sxfIP38JTUwsmphYstf9iTY7B5Oqvk+jWY90LPIi847/wf7wkLKuymMx79Ca7K27yAs5j+ZuNJmLf0dhZoZZ4/pG99FmZqJNTdPdTAP9ITeP3FP33memppjWq03Wuj9RXw9HExdP9qbtaOITMW/dvPTb1LEt2Zt3PHDu/fZ45971cPKOn3rg3Duld+5lzJpL7uHjaO5Go7l9h8wFy1A6O6Hy8S71Nj2pf0LfV5RWq2X5nl0837U77evVL+gLhz9/ry88bnQ/XV/o6UlFVzcGt7/fF15/irUvZN6lA9l/bCXvZAiaO3fJ/GVxwXuqWWOj+5j4VSH/Whh5R4PRxCeQfyGU3GPBmPgWnn/mPTujSUwk69clqMMjCspduqK7kCAen1arZfn+fTzfqTPta9fFz7MCk4YMJTs3j+2nTxrdr4FfNdrVroOvuwcVXVwZ3KYtfp4VCAkP0yunUipxsbPT3RxtbEu7SQCYt2lO9s595J2/WJCV+Pvqgr6vfl2j+2gzs9CmpetuptX9IC+P3LPn9QuamWE1dBBZq9ajzcoq3YY8wLxbR7I3bCYv+HRBvztnPgpzM8xaNDG6j0n1quRfvU7e4eNo4hLIP3eR3CPHManiU1DA1BTTxg3I+n0N6stXC75LrPkDTWw85p2KByFKUnOfWpy+fYXTt68Qn5HM1svHSM1Op1GlGgbL+7lUxMfJk99ObSc84S7JWencSYnjVnJhNuHac3sJvhVKdFoi8RkpbLxwEIVCQRVnr1JtS3mjUCjK5e1JrVy5kjfffJMPP/yQM2fO0KpVK7p160Zk5MMzjK9cuUJUVJTuVq1aNd3/jh49yqBBgxg2bBhnz55l2LBhDBw4kOPHjX+2/l0SPBN/W3h4ONu2bcPU1FS3bd68eXz44Yd8+eWXhIaGMmXKFD7++GPdcM+iNBoNFStWZNWqVVy6dIlPPvmEDz74gFWrVunKzJ07l1dffZWXXnqJ8+fP88cff+DnV3yIDUBmZiZdu3bF0dGR4OBgVq9eza5du/SCbQB79+4lLCyMvXv3snjxYhYtWsSiRYuMtnXVqlV8+umnfPnll5w8eRJPT89igbEnbTtARkYG48ePJzg4mN27d6NUKunXr59ugYPZs2fzxx9/sGrVKq5cucJvv/2mF8AC+Pjjj+nfvz9nz55l6NChDB48mNDQUN3z0a5dO2xsbDhw4ACHDh3CxsaGrl27knsvs+Bhz29wcDBQEBSMiorS3V+/fj1vvPEGb7/9NhcuXODll1/m+eefZ+/evUbbOn36dBYsWMD8+fM5dOgQiYmJrF+/Xq/MRx99xMKFC5k7dy4XL17krbfeYujQoezfv9/ocYtSKpXMnj2bCxcusHjxYvbs2cN7771ntHx6ejrdu3dn165dnDlzhi5dutCrV69HdurCsDsJ8SSkptI0sPCqtZmpKfX9qnHuRvhjHUOr1XLi8mVuxsRQ38h7/WlSujqjdLAn/+Llwo35+eRfuW5weIiuyLVwTHy8UflW1h3HtFYQeecuGt5BocC0cQMU5mbkh90oySb8JyhdnFDa25EfeqVwY76a/GthhT8yHoNZiybknjxTmH2lVKJQqfSGmwFo8/Iw8SvdIKfS5SHn3kMCrPnXwzCp/MC55+KMaa0axs89QGFVkJ2izZAr+yWhsC8s/BFpZmpK/WrVORf+JH1h6L2+sNqjdyhhSleXgvPvQmjhxvx88q9cw6TaQ/q+q9cx8amE6t77TunqgmmdmuSdLcz+Ma1Xh/wbkVi99iJ2P3yNzeQPMGvbsrSa8q92JyGBhLRUmvoXZmWYmZhS38+Pczce77NEq9Vy4uoVbsbFUr+q/ufurfg4un36IX0mf8oHSxZyO770A5xKZ0eUdnbkX7lWuFGtJv/6Db0g7KOYNWlI7plzkKt/gdxqQG/yQi+TfzXMyJ4lT+nmgtLRgfwH++H8fPJDr2BSvarR/fIvX8fEtzKqe32+0s0F03q1yDt9rqCASnXvM0q/jdrcPEwCSu87lEqhxNPOhbD4O3rbr8ffoZKDu8F9Atwqczclnpa+tXmn7RBebzWQLv5NMFGqDJYHMFWZoFIoycoznOkqyrcZM2YwatQoRo8eTWBgILNmzcLb25u5c+c+dD83Nzc8PDx0N9UDGaWzZs2iU6dOTJw4kYCAACZOnEiHDh2YNWtWqbVDhm2Kv2TTpk3Y2NigVqt1mVczZszQ/X/y5MlMnz6dZ555BgBfX18uXbrEzz//zIgRI4odz9TUlM8++0x339fXlyNHjrBq1SoGDhwIwBdffMHbb7/NG2+8oSvXqFEjg/VbtmwZWVlZLFmyBGtrawB++OEHevXqxbRp03B3L+jMHR0d+eGHH1CpVAQEBNCjRw92797Niy++aPC4s2bN4oUXXmD06NG6Ou3atUsv++xJ2w7Qv39/vfvz58/Hzc2NS5cuUbNmTSIjI6lWrRotW7ZEoVBQuXLlYsd49tlndfWaPHkyO3fu5Pvvv2fOnDmsWLECpVLJr7/+qrtasHDhQhwcHNi3bx+dO3d+6PPr6uoKgIODg97w2G+//ZaRI0cyduxYAMaPH8+xY8f49ttvDaba3n8OJ06cqGvzTz/9xPbt23X/z8jIYMaMGezZs4dmzQrmdqlSpQqHDh3i559/pk2bNgaPW9Sbb76p+9vX15fJkyfzyiuvGM0CrFOnDnXq1NHd/+KLL1i/fj1//PFHsaArQE5ODjlFhn+Zm5s/Vt3+CxJSUwFwsrXT2+5kZ0d0YuJD903PyqL7B++Tm5+HSqlkwqDBNAk0fPXyaVLYFbRFk5qmt12TmobS2cnofnknTpFla4PNxLcABQoTFTl7DpCzZadeOaVXBWw/fBtMTSAnh4wf5pWLIZv/NA99nZweb15OlU8lVF6eZC5dWbgxJ4f8sBtY9OhERnRMQXZao/qofCqVepaMwv5+m1L1tj/63DtNlo0NNu+/ie7c23uQnK07je5jOegZ8q+GPXIuK/F4ElKM9IW2dkQnJjx03/SsTLp/MIHcvHt94f+GlElfqDv/UoqcfympunkaDck7fpIsOxtsPnoH3fm3ez85mwo/85WuLpi3b03Otl1k/LkNVRUfLIcORJuXR97h0sse+DdKSDNyrtnYEp30GJ+7kz4iNz+/4FwbMJAmDwThgipX5rMhw6jk6kZCWioLdm5n1OwZrJzwIQ73vmeXBoVtQXabJk1/5IAmPR2lo8NjHUNVqSKqCh5k3huqfp9pvdqovCqQOfPho0NKmsLBHjD2fnI2ul/e0RMF76fP3i84jokJOTv2kvPHvbnosrPJv3odi2d6knEnCm1yCqYtmqDy833o/HB/l5WZBSqlkvRc/QsuGblZ2JhbGtzH0dKWSo7u5GvULD+zEytTC3oGtcDS1JwNFw4Y3KdT9UakZmcQnnDH4P/F02Xsd5Ch30K5ubmcOnWK999/X297586dOXLkyEMfp169emRnZ1OjRg0++ugjvd+XR48e5a233tIr36VLFwmeifKnXbt2zJ07l8zMTH799VeuXr3KuHHjAIiLi+PWrVuMGjVKLwiVn5+Pvb290WP+9NNP/Prrr9y8eZOsrCxyc3N1q1jGxsZy9+5dOnTo8Fj1Cw0NpU6dOrrAGUCLFi3QaDRcuXJFFzwLCgrSi2B7enpy/vz5Ysd78LhjxujP99OsWTNdptVfbXtYWBgff/wxx44dIz4+XpdxFhkZSc2aNRk5ciSdOnXC39+frl270rNnTzp37lysHkXv31/N9NSpU1y/fh1bW/0U++zsbMLCwp74+X3w+XjppZf0trVo0cLgkFuAlJQUoqKi9OpqYmJCw4YNdUM3L126RHZ2drEFHnJzc6lX7/GH6e3du5cpU6Zw6dIlUlNTyc/PJzs7m4yMDL3z4r6MjAw+++wzNm3axN27d8nPzycrK8to5tnUqVP1Ar4An376KW8YLP3XmbVvjdWbhedc+geT9a/+lxNbTxxn6vLfdfdnji2Yj6hoanfRIbqGWJmbs2zih2Tm5BB85TIz163By8WFBtX9S7bSj2DatCFWwwfr7qfPund1zFAbHtIuE/9qWPTsQtbSleSH30Tl7oLl4AFoUlLJ+XObrpwmOoa0SVNRWFlh2qAuVqOHkT7tOwmgPYJp4/pYDXlWdz/9/uT+RV+TJxhmYNa8Ceo7UcUmLM9c+DtWw/+H/bRJaNVq1LfukBd8BlWlkh1GYtqkIVbD/6e7n/7dTwV/FD3NFIpHnHt+Befeb6vID49A5eaK5eD+aHp20Qtg3Gf53LOoKlYg7atZJdCKv+ef0vcVVdAX/qa7P/PeHFFFTz8t2keek1bmFiyb+PG9vjCUmWtX4+XiWup9oWmzxlg9P0R3P336jwV/GHpPPaRLNwmojkWvbmQtXk5+2A1U7m5YDh2IJjmFnI335qNVKlDfuEn2mo0AqG/eQuXliXmHNhI8e4Stp4KZumqF7v7MFwveL0XPqsc718xZ9s77ZObmEHz1CjM3rMfL2YUG9zIdWwQWzrPnRwVq+/jS98vP2Bx8nOfati+ZBgGm9etgNbCv7n66gcn9Czz83HuQWZOGqO9Go468Xbi3gz2W/XqS/tMC3eIppcW0RROsXhyuu58+7d535GJ99yP68xr+WPTrSdb838i/Ho7Kww3LEYPRJPckZ90mADJ//BWrl5/Hfu70gs+oGzfJO3xcl338tBlrzv3vhmvO7SEnvyBTbtvlYwyq25FNlw6Tr1HrlW/pW5tanlVZeGJzsf/925XXlS2N/Q6aNGlSsbLx8fGo1Wrd7+/73N3diY42/B3X09OTX375hQYNGpCTk8PSpUvp0KED+/bto3Xr1gBER0c/0TFLggTPxF9ibW2tG9I3e/Zs2rVrx2effcbkyZN1gZ958+bRpIn+2P0HA1UPWrVqFW+99RbTp0+nWbNm2Nra8s033+jGLFtaGr5yYYxWqzU6HvvB7Q8ONb3/v/v1/yv+StsBevXqhbe3N/PmzaNChQpoNBpq1qypG1JZv359bty4wdatW9m1axcDBw6kY8eOj5wH7H5bNRoNDRo0YNmyZcXKuLq6olT+9RHchoIjf2Us/H33n8PNmzfj5aX/g/RxM7tu3rxJ9+7dGTNmDJMnT8bJyYlDhw4xatQoo3Pavfvuu2zfvp1vv/0WPz8/LC0tGTBggO41KGrixImMHz++WP0ye/7PYPm/KvfoCfIvX9Xd18Q//OpxWWlduw41fQqHj+Xe+zKakJqCywOB46S0NJzt7Irt/yClUom3mxsA/t7eRMREs2jH9qcePMsLOU/agytUmRR8ZCrt7VA/cMVYaWeLtkiW04Ms+vUg98gJcg8eBUBz5y6YmWM1YnBBAOP+t0u1WpfBpI6IROVbCfOObclassLYoQWQd/YiaTceCHLdm/RfaW+H+oHXRWlr89DXScfUFLNGdcl6ILB5nyY+gfQZP4KZGQoLc7SpaViNHlbi78u8s+dJ+yyicIOxc+8RbbLo25Pcow+ee1FgbobV8MHkbN6h98vGcsgATOvWIn3ad6U6sfTj+qf0fUUZ7wtTcbF30G1PSkvD2fYJ+8LoaBZt31rqfWHembOkPThk3PTe+edgb6DvSy26u45F/17kHjlO7v7DAAUrCZqbYfX80IJsGa0WbXJKsYna1XejMW1ofH5CUaB1UC1qvuOju68719JS9T9309NxfsT8ZEqlEu97owz8vSoSERPDol07dMGzoizNzfHzrMCtuJJd+TDvYihp3z6wevH9vs/WRr8/t7FG+5B5bHVMTTGrV5usbfpz2JpUrIDS1gbbBxYeUahUqKr4YNayKSnvfvLQQNaTyDt1lrTrDwQZHnw/PbDQjNLeFm3KQ95PA/uSe/AouXsPAqC5dQfMzbF6cTg56zeDVosmJo70z78GczMUlpZok1OweuPlUs2OzszNRq3RYGNmpbfd2sySjFzD88il5WSSmp2hC5wBxKUno1QosLOwJjGz8Hlo4VOLVlXqsjh4CzHp/4zPgf8CY7+DHuZJfjP6+/vj71/4WdesWTNu3brFt99+qwuePekxS4IEz0SJ+PTTT+nWrRuvvPIKFSpUwMvLi/DwcJ577rnH2v/gwYM0b95cN/wP0Jsw39bWFh8fH3bv3m10OOCDatSoweLFi/WyjA4fPoxSqaR69epP2LpCgYGBHDt2jOHDC68gHTt2TPe3u7v7E7c9ISGB0NBQfv75Z92KI4cOHSpWzs7OjkGDBjFo0CAGDBhA165dSUxMxMnJSVePovW6n6lVv359Vq5ciZubG3ZGAhePen5NTU1Rq/Wv9gQGBnLo0CG9xz1y5AiBD8xz9SB7e3s8PT05duyYruPLz8/n1KlT1K9f8EW5Ro0amJubExkZ+dhDNIs6efIk+fn5TJ8+XRcYfHD+PEMOHjzIyJEjdSu0pKenF1tQ4UHGUpNLfJagrGw0WeU/88jawkJvJS+tVouznR3HL4fi710wL0lefj6nr19jXJ8nWwVHq9WSm//whTxKRXYOmiKryGmSUzCpEVB4BVulwsTfj6zVG40fx8ys+JdwraZ4ekAxChQm8jH9SDk5aOKKvE4pqZgEVkd9697wDpUKk2pVyVq/6ZGHM2tYF0xMyDt+ynih3Fy0ubkorCwxrRFA1ro//0YDDDB67vkXP/fW/GH8OGamxc89jbbYuWc55FlM69cm/evZaOIfPpTwqfmH9H1FGe0LQy/p94XXrjKu7zNPdOyCvrB0s2SAe+efflBEk5yCSVAg6pv3AhsqFSb+1chatd7AAe4xMys43/QOpN/35V8LQ+Wpnzmg9HBHk1BOzsNyzOC5ZmvH8StX8K9YsOBHwefudcb16v1Ex9by8HMtNz+PiJgY6lYxPkfXX5KTiyZHP0CiSU3FxN+vMMiqUmHi50vWn8WzZ4syq1sLTFTknTyjtz3vWhip9zPA7rEa3B9NbBzZuw+UWOAMgOxsNEUWF9MkJWNSq0ZhdrNKhUmgP1m/P+SiuKHvEhqN4azCnFy0ObkorK0wrV2TrN9XFy9TQtRaDVGp8VR18SI0NkK3vaqLF5djbxrcJzIphiCPKpipTMhVF5xnLtb2aLQaUh9YnbOFT23aVK3HkpNbuZsqi4iUJ8Z+Bxni4uKCSqUqlhEWGxtbLHPsYZo2bcpvvxVmdnt4ePztYz4p+VYuSkTbtm0JCgpiypQp/PDDD0yaNInXX38dOzs7unXrRk5ODidPniQpKalYlBrAz8+PJUuWsH37dnx9fVm6dCnBwcH4+hZevZ00aRJjxozBzc2Nbt26kZaWxuHDh3XDRR/03HPP8emnnzJixAgmTZpEXFwc48aNY9iwYX/rDfXGG28wYsQIGjZsSMuWLVm2bBkXL16kSpXCCXOftO33V7/85Zdf8PT0JDIystiY8JkzZ+Lp6UndunVRKpWsXr0aDw8PHBwcdGVWr16tV68TJ04wf/583fPxzTff0KdPHz7//HMqVqxIZGQk69at491336VixYqPfH7vB9datGiBubk5jo6OvPvuuwwcOJD69evToUMH/vzzT9atW/fQVSrfeOMNvvrqK6pVq0ZgYCAzZswgOTlZ939bW1veeecd3nrrLTQaDS1btiQ1NZUjR45gY2NjdN64B1WtWpX8/Hy+//57evXqxeHDh/npp58euo+fnx/r1q2jV69eKBQKPv7447+VhViaFLY2KN1cUNyb60hZsSBDT5OYXC4yRqDgStDgdh1YuH0b3q5ueLu5sWj7NizMzOjSqHB1tk8XL8TVwYHX7gXUFm7fRo1KlfBydSU/X83hixfYfPwY7/+vcAhRZna23tXuuwnxXLl1C3trazycjM+/UxJydu7FomdnNLGxqGPisOjRBW1uHrnHC1cysxo9DE1SCtlrC4Ia+WcvYN65HerI26jDI1C6uWLRtyd5Ied1X4QtnulF3vlLaBOTwMICsyYNMAmoRsaMpzsXizGWpuZUtHfV3a9g50I1l4qkZmcQk55UhjUzLGf3ASy6dkQTG486Ng6Lrh3R5uaSe+K0rozVyMFoklPJ3rBZb1+z5k3IC7lgcMJ8kxr+gAJNTCxKNxcsn+mFOiaW3CPGV5AtKTm79mHRozOamLiCNnXvXPzcGzUMTVIy2feCefrn3k2Ubi5Y9O1BXsgF3blnOXQgZk0akP79PLTZ2SjsCjJUtFnZxSaeLmv/hL6vKIVCweD2HVm4fSvebu4FfeG2rff6wsIM9U8XLSjoC+8F1BZu20qNypXv9YX59/rCo7w/+PEuzJW0nO27sejVFU1MLOroWCx6dy14Tx0tPPetXhpZcP6t3gBAfsh5zLt2QH3zFuqwGyjd3bDo35u8M+d051/Ott3YfPwe5r26knf8FKqqPpi3a0nmguKZ8uLhFAoFg9u0ZeGuHXi7uuLt6sqiXTuwMDOlS/3CVXk/XbYEV3sHXutZEFBbuGsHNbwr4eXsQr46n8Ohl9gcfIL3nx2k22fWxvW0CqqJh6MjSenpzN+xnYzsbHo2alKsHiUtZ/8RLDq2RROXgDouAYuObQv6vtMhujJWQwqmQsjevENvX7OmDck7H4o2s0gGVE4umugY/W25uWgzMotvLwU5W3dh0bcHmugY1FGxWPTrjjYnl9wHhipbjR2FJjGJ7BUFc7Xlnz6LeffOqG9Eor4ejtLDDYuBfck7FaJ7P5nUDgKFAs3daJQeblg+9yzqqGhy9x0u1fYciTjPM7Xb6lbMbOgdgL2FDcGRBUPtO1ZvhJ25NevO7wPgfNR12latR99abdh77RRWZhZ09m/C6dtXdcMyW/rWpn21hqw5u4fkrDRszApGIeWq83QBt/+C0syielrMzMxo0KABO3fu1CUpAOzcuZM+ffo89nHOnDmDp6en7n6zZs3YuXOn3rxnO3bsoHnz0lsBXYJnosSMHz+e559/ngkTJjB69GisrKz45ptveO+997C2tqZWrVp6k7g/aMyYMYSEhDBo0KCCD//Bgxk7dixbt27VlRkxYgTZ2dnMnDmTd955BxcXFwYMGGDweFZWVmzfvp033niDRo0aYWVlRf/+/fUWNfgrBg0aRFhYGBMmTCA7O5v+/fvzyiuv6E14/6RtVyqVrFixgtdff52aNWvi7+/P7Nmzadu2ra6MjY0N06ZN49q1a6hUKho1asSWLVv0hlt+9tlnrFixgrFjx+Lh4cGyZcuoUaOG7vk4cOAAEyZM4JlnniEtLQ0vLy86dOigy0R71PM7ffp0xo8fz7x58/Dy8iIiIoK+ffvy3Xff8c033/D666/j6+vLwoUL9epe1Ntvv01UVBQjR45EqVTywgsv0K9fP1JSClPXJ0+ejJubG1OnTiU8PBwHBwfq16/PBx988FivU926dZkxYwbTpk1j4sSJtG7dmqlTp+plyBU1c+ZMXnjhBZo3b46LiwsTJkwg9SHDUcqSabNGWL/7uu5+wWTMkLVkBdkPTnBexoZ36kxOXi7TVi4nLTOTIB9fvn/tdb0r5dFJiXpfDLJzc5i2cjmxycmYm5pS2d2Dz0e+QOcGhV/8QyNvMua7mbr7M9cWXKnt0aQpk4aPLNU25WzdhcLMDMuhg1BYW6EOjyB9+g/wQJaQ0slJL9si+89taLVaLPr1ROlojzYtnbyzF8heW5itpLC3xfrF4Sjs7dBmZaO+fYeMGXPIv3SZ8iDAtTI/9CsM/r/esmCOsS2hR/lyj/GVhMtKzo49KMxMsRzcH4WVJeobkaTP/hlyHnydHItdxVe6uWJSrUrhHGNFKCwtsOjbA6WDA9rMTPLOnCNrw5aCq/+lLGfrLhSmplgOHVh47s34sci5p9+m7E3b0VIwfFPv3FtXmIFn3q4g49l2gv6MjZkLftP7IVce/FP6vqKGd+pCTm4u01YsK+wLx71ZvC9UFukLV/xObHLSA33hKDo3NLxQUmnL2byjoO8bMRiFlRXq8Bukfz1b//xzdtI//zZuKej7BvRG6ehQcP6dOaeb3wxAfeMmGbN/wvLZvlj06YEmPp6sZavJO1r6Ael/o+HtO5KTl8e0NatIy8okqLIP3495tci5llTkczeXaWtWEZty73PXzZ3Phw6nc70GujKxKcl8tHQRyRkZONrYULOyDwveHI9nKV+wAsjZc6Cg7xvQG4WlJeqbt0n/aSHkFE6roXR0KN6fuzpjUsWH9LkLSr2OTyrnj60Fn1EvDEVhbY36ejjpU2bAAxlqSpci76d1m9BqwWJQX5ROjmhT08g7dZbsBxZCUFhZYjG4f8H/0zMKFixasR7UpTtP2IXocCxNzWnrVx9bcyti0xL57dQ2UrILhtbamlthb1k433CuOp/FJ7fQI7A5LzfvR1ZuNheiw9l9rfBiUKNKNTBRqvhfPf05kPdeP8Xe66cR/yzjx49n2LBhNGzYkGbNmvHLL78QGRmpm0t84sSJ3LlzhyVLCuY5nDVrFj4+PgQFBZGbm8tvv/3G2rVrWbt2re6Yb7zxBq1bt2batGn06dOHjRs3smvXLoMjuEqKQvs4szcLIco1hULB+vXr6du3b1lX5T8vqdOTDUks7xx3rid1196yrkaJs+vYjuQXiq+i+k/msOAHWvw45tEF/0EOv/oTyWOKZ+z+kzn8NIPkUcUzpv/JHOZ//+/s+3bvL+tqlCi7Dm1IHv7v6iMAHJY8PLP8nyp1y45HF/oHsevemeS3Hu8i6D+Fw8wpJP9vVFlXo0Q5rJjPJ9vmlXU1StTnXV98dKFyas6RtY8uVAbGNu//xPvMmTOHr7/+mqioKGrWrMnMmTN10/iMHDmSiIgI9u3bB8DXX3/NL7/8wp07d7C0tCQoKIiJEyfSvXt3vWOuWbOGjz76iPDwcKpWrcqXX37JM8882ZQIT0Iyz4QQQgghhBBCCCHKESV/fVG38mbs2LF685s/aNGiRXr333vvPd57771HHnPAgAFGR6KVhn/PqyGEEEIIIYQQQgghRAmTzDMh/gVk9LUQQgghhBBCCFE6JHgmhBBCCCGEEEIIUY78G1bb/DeRYZtCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YhShm2WK5J5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKJBhm+WJZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKWW2zXJHMMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCnDNssVyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEdktc3yRTLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRJTJsszxRaLVabVlXQgghhBBCCCGEEEIUWBK8payrYNDwRt3LugplQjLPhBCiBE3fv7ysq1Ci3m4zmBvxd8q6GiXO18WL/os/KOtqlKi1I6aQPGZ8WVejRDn8NIMWP44p62qUqMOv/sTzK78s62qUqIWDPiQ0Orysq1GiAj2qsPLMzrKuRokaVK8T+66fKutqlLi2fg04dSu0rKtRohp4B/LWH9+VdTVK1Mzeb/wr+/PPdy4o62qUqE86vUDfRe+XdTVK1IaRX5V1FcS/hATPhBBCCCGEEEIIIcoRWW2zfJEFA4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKERm2Wb5I5pkQQgghhBBCCCGEEEZI8EwIIYQQQgghhBBCCCNk2KYQQgghhBBCCCFEOaKUYZvlimSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjCmTYZnkimWdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5Yistlm+SOaZEEIIIYQQQgghhBBGSPBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDmikGGb5YpkngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRzDMhnqKIiAgUCgUhISGlcnyFQsGGDRueaJ+2bdvy5ptvPnb5RYsW4eDg8NAyly9fpmnTplhYWFC3bt0nqs9f9aTtKO3XQgghhBBCCCHEv4Nknon/jJEjR5KcnPzEwaWS5O3tTVRUFC4uLgDs27ePdu3akZSU9MiA1D/Jp59+irW1NVeuXMHGxqasq2NQ0deiLF3cd4Jz24+QmZKGYwU3mg3qime1ygbL3r1yg03TFxfbPvCzV3HwdC22/fqJ8+z5dS2V6/jT5dXBJV73+/5ct5E1v68kMSGByr4+jHn9VWrWrW20/LkzZ/nl+zncvBGBs4sLzw4ZRI9+vfXKrF+5hk3r/yAuJhY7B3tatW3N82NexMzcDIAVS37n8P6D3L4ZiZm5OTVqBfHCKy/iXblSqbWzi38T+gS1wtHKllvJsSw8sZnQ2Aij5Vv51qFvzdZ42jmTmZvNmbvXWHxyC+k5WQB81mU0NT2qFNvv1O3LTNm9pLSaUYxFzy6YtWyKwsoKdcRNMpevRRMVY7S8zfixmFT3K7Y97/wlMn78teCOuTmWvbthWrcmCltb1Lduk7VqA+qbt0qrGU+sjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62oZ1M6vAd38m+JgacOdlDh+P7OTa/GGn8tRjXvS0rdOse13UuL4aNsvAKgUSnoENqeFb20cLW2JSktg9dk9XIgOL9V2PGjL+k1sWLGGpMREvH0qM+q1lwmqU9Ng2cSERBb+OI+wq9eIun2XHv17M3rcGL0yRw8cZs1vK4m6cxd1fj6eFb3oM/AZ2nXp8DSaA8CJHQc49Odu0pNTcK3oSbfh/fEJLP5eAbh5OYwdv28k/m40eTl5OLg60bBDC5r3aK8ro85Xc2DjDkL2HyctKRlnT3c6D+lDtbo1nlaT2LdpJzvWbSIlMZkKlbwY+NJwqtUMMFj29OETHNiyi1vhN8nPy8ezshe9hvQnqIH++ZiZnsGGJas4cySYzPQMXNxdGTD6OWo1qvc0mgTAzo1b2LR6A8kJSXj5eDN87CgCagUZLJuUkMiynxZy41oY0Xei6NKvB8PHji5WbuvaP9j15zbiY+OxtbelSavmDBo9DDMzs9JuDgAtfGrTrmp97CysiU5LYMOFA4Qn3jVaXqVU0aV6YxpUDMDO3Irk7HR2Xg3mxK1LACgVSjpWa0gj70DsLWyITU9i06XDXI67+VTaA9CvZhuG1OuEs5U9NxLvMvvQas5GXTda/pmabehfqy2eds7EpCWy+NRWtl05rvu/SqlkeP2udAtohou1A5HJMcw9uo7jkZeeRnMMunrgNJd2nyArJR0HTxca9O+Am5+30fLqvHzObz3CjeCLZKdlYOVgS80uzajazPj3rtLWzb8pfWu2Lvh+lBTD/BObuPSQ70etq9SlX802VLBzJiM3mzN3rrLo5BbScjJ1ZXrVaEFX/6a4WDuQlpPBkYgLLD29jTx1/lNokRDFSfBMiKdIpVLh4eFR1tUodWFhYfTo0YPKlQ0HgMqD8vJahAVf4OjKbbQc0gN3v0qEHjjJ1tm/MXDSq9g4Oxjdb+Dk1zCzMNfdt7C1LlYmLSGZ42t24FGt9IJJAPt37eXn737k1bffIKh2TbZs+JOP3nmfX35biJuHe7Hy0Xej+PidiXTr1Z33PvmAi+cu8OP077B3cKBlu9YA7Nm+iwU/zWP8xPcIrBXEnchbTP/yawBefuNVAM6HnKXXM32oHuiPRq1h0S/z+fCt9/hl2UIsLC1LvJ3NfWrxfKMezDv+B5djb9K5emM+7DiCNzfOIj4jpVj5ALfKjGv5LIuCN3Py9mWcrOx4uWlfxjZ/hq/3LgPgm73LMFGqdPvYWlgxvdc4jkZcKPH6G2PeuT3mHdqQuXg56tg4LLp1wuaNMaR++hXk5BjcJ+OnRWBSWG+FtRW2H71D3unCwJPVsIGoKniSsfB3tCmpmDVpgM2bY0j97Gu0ycWfr7JgaWrO9YTbbLl8hCndxjx6hzLS2DuQIXU7sfT0Nq7F3aKtX33Gt/4fH277mcTM1GLlfz+zk9Xn9uruqxRKPu8ymuBbobptz9RqQ7PKtVh0cjNRqQnU9KjCuBYD+HL3YiKTjQdOS8qhPftZ8MPPvPzWqwTUrMH2P7cwecLHfL/4Z1zd3YqVz8vNw97BnmeH/o8/Vq83eEwbW1ueHToIr0remJiacPLoCb6fNgMHRwfqNW5Q2k3i/JFTbF28lp6jBlHJvwrBuw7x21dzeG36Rzi4OBUrb2ZuRpMurfGo5IWpuRmRV8L449cVmJmb0bBjSwB2r/yTs4eC6fPSEFwquHP9bCjLp8/jxc/H4+lr/Md1SQk+cJRV85YwZOwLVA2szoFtu/n+02lMmvsNTm7FLz5du3iZwHq16DtiEJbWVhzZtZ8fP/+W92dMplJVHwDy8/KZ9dFUbO3tePmDN3B0cSIpLgHzUui3jTm69xBL5i7ghddfpnpQALs3b2faxMl8M/97XNyLX4jKz8vD1sGePkOeZevaPwwe89Du/az4dSkvvfMa1YMCiLp9l5++mQ3AsLGjSrU9AHUrVKNvzdasObeXG4l3aV65Fi817cNXe38jOSvN4D4jGnTD1tyKlSG7iMtIxtbcCqWicGBS94BmNKgYwKqzu4lNT8TfrTLPN+7J7IOruJMaV+pt6uDXgDdaPsv0/cs5Fx1G36BWfNvrNYb+/hkx6UnFyvcNas2YZn2Ztvc3QmNvEujmw/vthpKWk8nhiPMAvNSkD12qN2Havt+4mRRNY+8aTO02hpfXfmP0gkRpijgVyqm1u2k0qDOuVby4diiEvXNW0/Oj0Vg72Rnc59CCjWSlZdD0uW7YujqSnZaBVqN5yjUv1MKnNi807snPxzZyOTaCLv5N+LjT84zbMMPg96NAt8q80XIgC4I3EXwrFGcrO8Y068erzfvz1d6lQEFwbViDrvxwaA2X4yKpYOfC6y2fBWBB8Kan2r6ypESGbZYnMmxTiHv2799P48aNMTc3x9PTk/fff5/8/MIrG23btuX111/nvffew8nJCQ8PDyZNmqR3jMuXL9OyZUssLCyoUaMGu3bt0htK+eBQwYiICNq1aweAo6MjCoWCkSNHAuDj48OsWbP0jl23bl29x7t27RqtW7fWPdbOnTsf2caMjAyGDx+OjY0Nnp6eTJ8+vViZ3Nxc3nvvPby8vLC2tqZJkybs27fvkce+T6FQcOrUKT7//HMUCgWTJk1i3759KBQKkpOTdeVCQkJQKBREREQAcPPmTXr16oWjoyPW1tYEBQWxZcsWXflLly7RvXt3bGxscHd3Z9iwYcTHxxutx2+//UbDhg2xtbXFw8ODIUOGEBsbq/u/oWGbT/oYJeHczqP4t6xPQKsGOHq60nxQN2wc7bm0/+RD97O0tcbK3lZ3Uyr1u3ONRsOeX9fSoHc77FwcS7MJrFu5mi49u9Gtdw8q+VRmzJuv4ermxqb1hn9gbN7wJ27ubox58zUq+VSmW+8edO7RjTXLV+nKhF64SFCtmrTr3AEPTw8aNGlE207tuXr5qq7MlzOm0blHV3yq+FKlWlXGf/AesTGxXLty1dDD/m29arRkz/VT7L52kjspcSwM3kxCRgpd/JsYLF/d1Zu4jCS2XD5KbHoSl2NvsuPqCao6e+nKpOdmkZydrrvV9vQjJz+PIzfPl0obDDHv0JrsrbvICzmP5m40mYt/R2Fmhlnj+kb30WZmok1N091MA/0hN4/cU/eCZ6ammNarTda6P1FfD0cTF0/2pu1o4hMxb938KbXs0Y5FXmTe8T/YHx5S1lV5qM7+TThwI4QD4SFEpSWw/MxOErNSaV/V8GuUlZdDanaG7ubj5ImVmSWHHsiqa+ZTi02hhzkXFUZcRjJ7w05zITqcrkbO55K2cdV6OnbvTKeeXfH2qcTocWNwcXVl28bNBsu7e7oz+vUxtOvaESub4hcLAGrVq03T1i3w9qmEp1cFeg3oi08VXy6dv1iaTdE5snkP9ds1o0H75rh6edB9xADsnB0J3nnQYHlPX29qt2iIm7cnjm7O1GnVGL/agdy8HKYrc/bQCVr37Uz1ekE4ubvQuHMr/OoEcnjznqfSpl3rt9Cic1tadmmHZyUvBr00HEcXZ/Zv2WWw/KCXhtNlQC98qlfF3cuTfiP+h1sFD84dP60rc3jnPjLS0hn78Xj8avjj7OaKX1AA3lWe3gW3LWs30rZrR9p174RXZW+Gjx2Ns5sLu/7cZrC8q4c7I14dTevO7bCytjJY5tqlK1SvGUCLDm1w9XCndsN6NG/XivCrxrOkSlLbqvU5HnmR45EXiU1PYsPFAyRnpdPCp5bB8gGulfFzqci84xu5Gn+LpKw0IpNjiEiK0pVp6B3ArmvBhMZGkJCZypGI81yJvUlbP+OfDyVpUN2ObAo9zJ+hh7mZFM13h1YTm5ZEv5ptDJbv6t+EjRcPsvv6Ke6mxrP7+kk2hR7muXpd9MosObWVozcvcDc1ng0XD3A88hKD63Z8Km0q6vKeYKo2q41f8zrYe7jQcEBHrBxtuXrwjMHydy+FE3P9Fu1eeRbPAB9snO1x8amAa5WKT7nmhfoEtWTXtZPsuhbM7ZQ45p/YRHxGCl39mxosX921EnHpSWwOPUJsehKhsTfZceUEfi6F34/8XStxOeYmB26cJTY9iZC71zgYflavjBBPmwTPhADu3LlD9+7dadSoEWfPnmXu3LnMnz+fL774Qq/c4sWLsba25vjx43z99dd8/vnnuqCVRqOhb9++WFlZcfz4cX755Rc+/PBDo4/p7e3N2rVrAbhy5QpRUVF89913j1VfjUbDM888g0ql4tixY/z0009MmDDhkfu9++677N27l/Xr17Njxw727dvHqVOn9Mo8//zzHD58mBUrVnDu3DmeffZZunbtyrVr1x6rblFRUQQFBfH2228TFRXFO++881j7vfrqq+Tk5HDgwAHOnz/PtGnTdEM+o6KiaNOmDXXr1uXkyZNs27aNmJgYBg4caPR4ubm5TJ48mbNnz7JhwwZu3LihC04aq/eTPsbfpc7PJz7yLhVrVNXbXrFGVWLCHn71c93kn1n6zrdsmrGYu5dvFPv/6U37sbS1JqBl6X7BzcvL49qVq9Rv3FBve/3GDQm9YPgHa+iFi8XKN2jSkGuXr+gC1kF1anHtylWuXCrIlIm6c5fgo8dp3Nz4D/vMjAwAbO0MX6n9O0yUKqo6VyDkrv774Ozd6/i7Gv7BdyU2Emcre+p7VQfA3sKGZpVrcur2FaOP06FaQw5HnCMnP6/kKv8QShcnlPZ25Ic+UKd8NfnXwjCp4vPYxzFr0YTck2cgN/fegZUoVCrI0x9aoc3Lw8TPtwRq/t+hUirxcfTkYrT++/xidDhVXR7vx1Jr37pcirlBwgNZaqZKVbGhL7nqfKq5ln42U15eHmFXr1G3kX7/VLdRfS5fKJmhU1qtlrOnznDn1m2CahseClqS8vPzibpxi6q1A/W2+9UOJPJq8T7akKgbt7h1NRyfGtUKj5uXj4mpqV45UzNTIh8IsJWW/Lx8Iq/foEY9/aFgNerXIiz08S5SaDQasrOysX4gO/rc8VNUCajG73MW8s5zY/hs7HtsWbkBjfrpZM7k5+Vx42oYtRvW1dteq0Fdrl66/JeP618zkBtXw7h+7yJPzN1oQk6cpl6Tho/Y8+9TKZRUtHfjSmyk3vYrcTfxcfQ0uE+QRxVuJcfQ3q8hn3YaxcT2w+ldoyWmD2RDmyhV5GvUevvlqfOp4lSh5BtRhIlShb9rJU5EhuptP3Er1OB0BwCmKhNyi3x+5uTnUcPdB9W9i4ymKhNy1cXL1PY0PLy6NKnz1STeisYzUP9z0TPQl/gbdwzuc/v8dZwreXBp13HWffgjf3z2C6fX7SE/9+l8byiq4PuRV7HvRyF3rxHgZvj70eXYmzhb29PAyx+49/3IpyYnbxe+/0JjI6jq4kW1e59z7jZO1K/or1dGiKdNhm0KAcyZMwdvb29++OEHFAoFAQEB3L17lwkTJvDJJ5/osnpq167Np59+CkC1atX44Ycf2L17N506dWLHjh2EhYWxb98+3XDAL7/8kk6dOhl8TJVKhZNTwTAONze3J5rzbNeuXYSGhhIREUHFigUfKlOmTKFbt25G90lPT2f+/PksWbJEV6fFixfr9oeC4ZbLly/n9u3bVKhQ8MXonXfeYdu2bSxcuJApU6Y8sm4eHh6YmJhgY2PzRMMiIyMj6d+/P7VqFVwhrVKl8IvR3LlzqV+/vt7jL1iwAG9vb65evUr16tWLHe+FF17Q/V2lShVmz55N48aNSU9PNzgP25M+Rk5ODjlFhrSZm5vzJLLTM9FqtFja6WdRWNpZk5mabnAfK3tbWg3rhWslT9T5aq4dO8ummYvp9fZIPKv7ABB9PZIrh07T/+PSH4aWmpyCRq3B0Uk/u83R0ZHEhESD+yQlJuHoWKS8kyNqtZqU5BScXZxp27E9KUnJvP3KG2i1WtRqNT379WbQsCEGj6nVavl59hyCatfCp0rJB2dsza1QKVWkZOm/LsnZaThYVjO4z5W4SGYdXMX4NoMxVZlgolRxIvIS84//abC8n0tFKjt6MOfIuhKvvzGKe4FGTar+kB5NahpKp8fLWFT5VELl5Unm0pWFG3NyyA+7gUWPTmRExxRkpzWqj8qnEprY0s3m/LexNbNCpVSSmq1/7qVkZ1DT4tFzStpb2FDLsyo/H9ugt/1CdDhd/JtwNS6S2PQkAt19qedVHeVTWNkrLSUVjVqDQ5FzzN7RgaTE4kOxnkRGegajBgwlLzcPpUrJy2++WixIVxoyU9PRaDTY2Nvqbbe2tyU9ufjQ2gd9O/YjMlLT0ajVtBvQnQbtC7Mz/WoHcmTLHnwC/XB0dyH8whUunzyHRqMtlXY8KD01DY1Gg52Dvd52Wwd7UpMeb+j1zvWbyc3OoUGrwgyUuOhYEmIu0aRtC8ZNeo/Yu9Esn7sIjVpDzyHPlGgbDElLKWiXvaOD3nZ7R3tS/sb517xdK9KSU/jszQ/g3udWx15d6T24/9+s8aNZm1miUir15osCSMvJws7CcKams7Udvk4VyFOrWRi8CWszSwbUboeVmQUrQgoyCy/HRtK2Sj3CEu6QkJFMNddK1PSo8lT6CQcLG0yUKhKz9N8/SVmpOFsZvkh24tYletZoyYEbZ7kSF0mAayV6BDbHVGWCg4UNCZmpHI+8xP/qdiTk7nXupMTRsGIArXzroFQ+/eFxOfe+B1rY6mczWthak5WaYXCf9PhkYsNuozQxofWL/cjJyCJ45Q5yMrNpNrT706i2nvvfj4oODU7JSsPRsvj3cyj4fjTjwAreaTtE9/3oeOQl5h0rHLFw6MY57M1tmNJtDAqFAhOliq2Xj7Lu/P5SbU95o1BIrlN5IsEzIYDQ0FCaNWumtxxwixYtSE9P5/bt21SqVDBnVO3a+ldfPT09dUMBr1y5gre3t17AqHHjxqVW30qVKukFvpo1a/bQfcLCwsjNzdUr5+TkhL+/v+7+6dOn0Wq1BgNFzs7OJVR7w15//XVeeeUVduzYQceOHenfv7/u+T516hR79+41GPQKCwszGDw7c+YMkyZNIiQkhMTERDT35oKIjIykRo3iEy0/6WNMnTqVzz77TG/bp59+im07f56Uosh8BtqH/CZy8HDBwaNwnhn3qt6kJ6VydscRPKv7kJudw97562g1rLfBedBKTZEv0lq0D19eu2h57f3NBdvPng5hxZJlvPr2GwQEBXL39h1++u5HHBcu5bnnhxU73I8zZnMjLJzpc2f/vXY8ghb9F6foa/egivZujGrck9Vn9xBy9xqOlrYMb9CVl5v1NRgg6+DXkJtJ0VyPv13i9b7PtHF9rIY8q7uffn9y/6In3RP8MDJr3gT1nSjUEfoZD5kLf8dq+P+wnzYJrVqN+tYd8oLPoKokQy7+iqLdQsG59+gASkvf2mTmZXP6jn7G4+9ndjKyYXemdBuDFohNT+LQjbMGFxooPUXPs0f0G4/B0sqSmb/+SFZWFudOh7BgzjzcK3hSq95Tmki7WPUf3aZRk94kNzuHW9ci2Ll8I04ertRuUZCt1H3kADb+spzZ4yejUChwdHehXtumnNl3rHTqb0jxl8lAO4s7se8Im5atY+zH4/UCcFqNFlsHO4aOG41SpaRytSokJyaxY+3mpxI80zHYrr9+/l0KOc+G39fwwusvUzWgGjF3o1ny46+sc17JM0MH/a2qPq6in1FQcHHJECUKtMBvp7eRnV+QNbzh4gFGNuzB2nN7ydOoWX9hP4PqdGBi+2FotZCQmcKJW5do7P30FqwoXn+F0Z5vYfAWnKzs+KX/BFBAUmYaWy4fZWj9LqjvHee7g6uY0G4ovw+ZhBYtd1Pi2Hz5CD0CynJKgSLnnVZr9FTUagv6lBYje2FmWXDRVv1Mew7O30CjgZ0wMTM1vOPTplAYPB+h4PvRi016szJkN2fuXsXR0paRDbvzSrN+/HCkYFROTY8qDKjTjp+PbeRaXCQedi6MbtyLpNpprDr3dIatC1GUBM+EoPCDqOg2QG+7aZGhEwqFQheUMXSMv0qpVBb7spCXV5iObeiL0KMe29iXpwdpNBpUKhWnTp1CpVLp/e/vrJp5P3PvwTo82B6A0aNH06VLFzZv3syOHTuYOnUq06dPZ9y4cWg0Gnr16sW0adOKHdvTs/hwhIyMDDp37kznzp357bffcHV1JTIyki5dupB7f1hZEU/6GBMnTmT8+PF628zNzfnh2ONnDVnYWKFQKoplmWWnZWBl9/jPt5tvRa4fPwdAalwiaQnJbP/xd93/7z/v88Z8xqDPx2HnVnzi6r/KzsEepUpJUpEss+Sk5GLZaPc5OjmSlFi0fBIqlQo7+4KryUvmLaR9l050690DAN+qVcjOzmb2tBkMHvGc3hxvc2bM5tihI3z74yxc3YpP9FwS0nIyUWvUOFjqZ5XYW9iQnGU4S/CZWm24HHuTjRcL5ju6mRRNdn4uX3Z7md/P7NS7SmumMqWFb21WhhieR6ik5J29SNqNB4Jc9yb9V9rboX4g+0xpa4M21fAE03pMTTFrVJcsA/MEaeITSJ/xI5iZobAwR5uahtXoYWjiDWckCsPScjNRazTYF8kys7OwIiXbcGbCg1r51uFIxHnURSaTTsvJ5PvDazBRqrAxtyI5K41na7cjPiO5JKtvkK29HUqVkuQi/UBKUgoORbKBnpRSqcSzYkHmdJVqVbl98xZrl60s9eCZlZ0NSqWS9GT9901GSjrWRbLRinK8N/G+eyUv0lPS2Ltmiy54Zm1ny5B3XiIvN4+s9AxsHe3Z+ftGHNxK94IWgI1dwXyaRbPM0lJSimWjFRV84ChLZv/Cy++/QWA9/Tm37J0cUKlUKFWF/bintxepScn3hqmW7s8T23vzhKYkJuttT0lOKZaN9iRWL/qdlh3b0q57QXZ/pSo+5GRn8+vMOfQd8myxuUlLUkZuFmqNBjtz/YtmtuaWxbLR7kvNySAlO10XOAOISUtEqVBgb2lLfEYyGblZLAjehIlShbWZBSnZGfQMbGFwoZKSlpydTr5GjbOV/rnmaGlr9PFz1XlM3bOUr/ctw8nSjoTMFHrXaEVGbpYuczw5O52JW3/CTGWCnYUN8RnJvNKsH1FpTz8r2vze98DsNP2+PDs90+gFUEs7GyztbXSBMwB7D2fQQmZyWol+x3scf+X70YDabQmNjWDDxQNAwfejn49tYGr3V1h2ZgdJWWkMqdeJfWGn2XUtTy5RrwABAABJREFUuKBMcgwWJqaMbf4Mq8/tNRqYE6I0SR6gEECNGjU4cuSIXnDnyJEj2Nra4uX1eFkSAQEBREZGEhNTuEpZcHDwQ/e5v3S5Wq0/n4SrqytRUYUTtqampnLjRuGcKTVq1CAyMpK7dwuXHz969OhDH8vPzw9TU1OOHSu8Wp2UlMTVq4XzltSrVw+1Wk1sbCx+fn56t7+zMqWra0FA48E2PThR/33e3t6MGTOGdevW8fbbbzNv3jwA6tevz8WLF/Hx8SlWL2vr4l8uLl++THx8PF999RWtWrUiICBAb7EAQ570MczNzbGzs9O7PemwTZWJCS6VKnDnkv7cNbdDw3Cv+vjzDiXcisLKvuCHtYOHCwM+fYX+H4/R3SrX9qeCvy/9Px5jdOWmv8rU1JRq/tU5E6w/d96Z4FME1gwyuE9gzaBi5U+fOEm1AH9MTAp+NOXkZBf7oXE/qHz/farVavlx+ncc3n+QabOn41HB8LwuJSFfoyYs4S51isyJUruCH1fibhrcx9zEtFjQWqMtCGAUDXW38KmFqUrF/nDDEwSXmJwcNHHxhbeoGDQpqZgEPpBZqVJhUq0q+eERjzycWcO6YGJC3vFTxgvl5qJNTUNhZYlpjQDyzj69lUT/DdQaDRFJUQR56A9HruHuS9gjshT9XSvhbuvEwQcWCigqX6MmOSsNlUJJg4oBnLlTOgtuPMjU1JSq1asRclL/fA85eZqAmiWb0aLVaotdrCkNJiYmePp6E3Zefz6esPOXqVT9CYaSa7Woi8wVCAXznNk5OaBRa7h0IoSABqWfSWdiakIlP19Cz+gvYBJ65gJVAw0Px4KCjLPFM39i9LuvUqtxvWL/r1qjOnFRMbqLjwAxd6Kwd3Io9cAZgImpKb7Vq3L+VIje9gunQqheI+AvHzcnJ6fY0L+Czy0enlJeAtRaDbdTYqnuqr+6dnXXSnoLADzoRmIU9ubWmKkKLwy72Tii0WpIKTIEL1+jJiU7A6VCSe0KfpyPDi/5RhSRr1FzJS6SRt768wg28g7kwiMeX63REJeRjEarpWO1hhyOOF8s2JKrzic+IxmVUknbqvUe2k+WFpWJCidvD6IuR+htj7ocgYuv4d8frlW8yEpJJy+nMOiZGpuEQqHAyuHhgfrSUPD96A51K+h/P6pbwY/LsUa+H6nMDHw/0hYpY+g7VEHa61MYNVxuKBWKcnn7r5LgmfhPSUlJISQkRO8WGRnJ2LFjuXXrFuPGjePy5cts3LiRTz/9lPHjxz/2lcJOnTpRtWpVRowYwblz5zh8+LBuwQBjWWGVK1dGoVCwadMm4uLiSE8vuELTvn17li5dysGDB7lw4QIjRozQywTr2LEj/v7+DB8+nLNnz3Lw4MGHLk4ABZljo0aN4t1332X37t1cuHCBkSNH6rWvevXqPPfccwwfPpx169Zx48YNgoODmTZtmt7Kl0/Kz88Pb29vJk2axNWrV9m8eXOxlT7ffPNNtm/fzo0bNzh9+jR79uwhMLDgC9Orr75KYmIigwcP5sSJE4SHh7Njxw5eeOGFYoFHgEqVKmFmZsb3339PeHg4f/zxB5MnT35oHZ/0MUpK7U7NuHzoNJcPnSYpKo4jK7eRnphCYJuCrIMT63axd0FhNtv5XUeJOBNKSkwCiXdjObFuFzdOhxLUrmCIsImpKU5e7no3cysLTM3NcPJyR2VS8j9Mnhn0LNv+3ML2TVuJjLjJz9/9SGxMDD369QJgwdx5fDN5qq58j769iImO4efZc4iMuMn2TVvZvmkrAwYXLs7QpEUzNq//g3279hB9N4rTJ06yZN5CmrZsrnsv/Dj9O/bs2MWESR9haWVFYkIiiQmJxeaiKyl/XjpEh2oNae/XAC97V0Y26o6LtT07rpwA4Ln6nRnXcoCu/Mlbl2lSOYgu/k1wt3HE37USoxr34mpcwapmD2pfrSEnIkNJz8kqlbo/TM7uA1h07Yhp3VooK3hgNWIw2txcck8Uro5nNXIwFn17FNvXrHkT8kIuoM0ontlgUsMfkxoBKJ2dMAmsjs1bY1HHxJJ75ESptudJWJqaU82lom5C4gp2LlRzqYi7TemuUPukdlw5TmvfurTyrYOnrTP/q9sRZyt79oYVvEYDarVldJNexfZrXaUuYQl3uJMSV+x/VZwq0MDLH1drB6q5eDO+zf9QKBRsufzwCzElpc/AfuzavJ1dm7dzKyKS+T/8THxsHF16F8zZs/SXhcz68lu9fcKvhRF+LYzsrGxSk1MIvxbGrYjCH2drfltJSPBpou9GcfvmLTauXMe+7btp26n9U2lT8x7tOb3nCKf3HiXuTjRbF68lJT6RRh1bAbBz+UbW/rhEV/749v1cPnWehKhYEqJiOb3vKIc37aZ2q0a6MreuRXDpRAiJMfFEhF5nydQf0Wq1tOz9dFYG7NivO4d27OXwjn1ERd5h1S9LSYyLp3X3DgCsX7SChdPn6Mqf2HeEhTPmMmDUUHz9q5GSmExKYjJZD/QRbbp3Ij0tnZU/LyHmThTnT5xh66qNtO3R+am0CaB7/z7s3bqLfVt3cefmLZbOmU98bDwdehWsyrji16XM+WqW3j4R18OJuB5OdnY2qcmpRFwP5/bNwsV96jdtxK4/t3Fk70Fio2I4fyqE1Yt+p0GzRiiLZPOXhn1hp2laOYjG3jVws3Gkb1BrHC1tORJREPzsEdicIfUKn+NTt6+QkZfN4HqdcLdxoopTBXrVaMnxyEvk3VskoJKDO7U8q+JsZUcVpwq83LQvShTsuf7wFcFLysqQXfSq0YIegc2p7OjB6y2exd3WkfX3MpbGNO3LRx1G6sp727vRuXpjKtq7Eejmw2edR1HFuQI/H9uoK1PD3Yc2VepSwc6FOp5+zOj1OgoULDu946m0qaiA9o0IO3KWsKPnSImO59Ta3WQmplKtVV0Azmzcz5Elm3TlfRrVwNzakmO/bSElKp6Y67c4s34vVZrVKrMhmxsvHqJjtUZ08GtIRXtXXmjUExdrB7ZfOQ7A0PpdeKNl4Xe84NuhNK1ck67+TXC3cSLArTKjm/Tialyk7vtR8O3LdPVvSkvf2rjZOFLH048h9ToRfOtSsUCbEE+LDNsU/yn79u2jXj39q6AjRoxg0aJFbNmyhXfffZc6derg5OTEqFGj+Oijjx772CqVig0bNjB69GgaNWpElSpV+Oabb+jVqxcWFhYG9/Hy8uKzzz7j/fff5/nnn2f48OEsWrSIiRMnEh4eTs+ePbG3t2fy5Ml6mWdKpZL169czatQoGjdujI+PD7Nnz6Zr164PreM333xDeno6vXv3xtbWlrfffpuUFP3hGAsXLuSLL77g7bff5s6dOzg7O9OsWTO6d//rk5CampqyfPlyXnnlFerUqUOjRo344osvePbZwrmX1Go1r776Krdv38bOzo6uXbsyc+ZMACpUqMDhw4eZMGECXbp0IScnh8qVK9O1a1eDwU1XV1cWLVrEBx98wOzZs6lfvz7ffvstvXv3NlrHJ32MklK1UU2yMzI5vXk/mSnpOFVwo9u457B1dgAgMyWN9MTC10idr+bYmh1kJKdhYmqCYwU3uo4bQqVaxrMASlubju1ITU1l2cIlJCUkUrmKD5O/nYr7vWzFxIREYmMKM/88Kngy+dup/Dz7Rzat24iTizOvvPkaLdu11pUZMmIYCoWCxb8sICEuHntHB5q0aMbIl0bpymxaXzCx7HuvvaVXn/EfvEfnHg9/L/wVRyLOY2tuxbN12uNoaUtkcgxTdi8m7t4wN0dLW1z+z959R0VxvQ0c/y69914UEAUEe+9d7JrE3o2JMRqNMZpE/RljjJqiiSaxx967xl6xN+wNG4pYQJDe675/oIsrLGoEIXmfzzl7Djt77+y9u8PM7DPPvWNsoSofEHweA119WnvXpl/11iSlp3IlLJgV5/eordfRzJry9m5M3Luo0Nv8OtL2HkShp4thjw9QGBmSdS+UxN/nwQtBSC0ryzyZE1p2tuiU9SBx5tx816swNMCgU1u0LCxQJieTceEyKVt2wkvDB4uTt21p/nwvd/j18Po5+6SdQSeZfHBpcTUrjzMPgjDWN6KDb33MDUx4FBfJb0fXqO6eaW5okmdok6GuPtVcvFl1If8fhLraOrxXoRF2JpakZqZzOewOC079TUpG0QSfX1a/aSPi4xJYu2wVMVHRlHJ3Y/xP32PnYA/k7DciX8oYHvnRZ6q/g2/e5sj+Q9g62LFgbc53lZaayrzfZhEV+RQ9fT2cS7nyxf9GU79po3fSpwp1q5GSmMShjbtIiI3HztWR3t8MwcI2ZxhVQkw8cS8MW1Yqlexf/TcxkVFoaWlhZW9Dix4dqd68nqpMZkYGB9ZuJybiKXoG+pSt7MsHQ/tiaGyU5/2LQo2GdUiKT2TH6k3ERcfiVNqFzyZ+hfWzIfJx0bFER0apyh/dfYDsrCxWz1nM6jmLVcvrNGtI/5E5N7GxsrXm80nfsH7BCr4f+g0W1pY07dCKVp01H6MLW50m9UmMj2fTirXERsfg4laKr6aMx9beDoDY6GiiItSDzmMH5+4r7t0K5sTBI9jY2/L7ypws+fd6d0WhULB+8Uqin0ZjZm5G1To16Pphr3fSp4uPb2OsZ4i/Vy3M9I0IS4hi/qmtqmCEmb4xli8MrUvPymDuyc28X6ExIxt2JykjlYuPb7Mr6ISqjK62Dm2862BtZE5aZgZBESGsPL9HbahnUTpw5xxmBiYMqN4Wa2Mz7kY9ZtS2P3mSkPN/ZG1kjr1p7jBFLS0telRuTikLBzKzszj/6CaDN/5CeELuNqqnrcvHtTriZGZDSkYaJ+9fZdK+xSSmv/uLVwBu1XxIT0rhyq7jpMQnYeFoQ+MhXTCxytmnp8YnkhT9wp2S9fVo+lk3zq7fx66fl6JvbEipqt5UategWNoPcDzkMmb6RnSr3Czn/CgmnEn7l6jOj6yMzLA1sVCVP3jnHIY6+rTxrsuAGm1JSk/lclgwy87tUpVZd+kgSqWSXlVaYmVkTnxqEoEPglh5YQ9CFBeF8nUmQhJC/CPHjx+nfv363LlzhzJlyhR3c8QLbt68ibe3N7dv38bTs/BuTz798OpCW1dJ8GWjHtx7mv/t0v/N3G2c+WDp2OJuRqHa2G8KsYNHvrrgv4jF3F+pN6vo7xr7Lh0fOpcBaycXdzMK1eJu4wh6B8O43iUfBw/WXthX3M0oVN2qtODQnQKGWP9LNfasxrkHQcXdjEJVzdWHL/6eWdzNKFS/dfj8P7k//35f8Vz4KirftviQTku+Ke5mFKot/X8s7ib8Y1uvHinuJuSro1/DVxf6D5LMMyEK0ebNmzExMaFs2bLcuXOHzz//nHr16kngrISJjo5mw4YNmJmZ4er6+nOLCSGEEEIIIYT4/0eCZ0IUooSEBL766isePHiAjY0NzZs3zzO3lyh+AwcO5Ny5c8yZM+eNJ/kXQgghhBBCCPH/iwTPhChEffv2pW/fvsXdDPEKmzdvLu4mCCGEEEIIIYRGijz3ZxfFSe62KYQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCaClk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIQoZtliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgsiwzZJFMs+EEEIIIYQQQgghhNBAgmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShAtZNhmSSKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliNxts2SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkRLhm2WKJJ5JoQQQgghhBBCCCGEBgqlUqks7kYIIYQQQgghhBBCiBz7bp4u7ibkq4VXreJuQrGQYZtCCFGIvt4xu7ibUKh+ajuEa2HBxd2MQufrWIaGs4cUdzMK1ZEhs4kdOKy4m1GoLBb+wYC1k4u7GYVqcbdx1Js1uLibUaiOD51LQkREcTejUJna2bEkcEdxN6NQ9a/RllHb/ijuZhS6ae2HMf3w6uJuRqH6slEP+q2ZVNzNKFRLu4+n87Jxxd2MQrWh72Q6LfmmuJtRqLb0/5Fm84YXdzMK1YFPfi/uJvxjcrfNkkWGbQohhBBCCCGEEEIIoYEEz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIApk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIltxts0SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBCiBFEoFCXy8U/Mnj0bd3d3DAwMqFatGkePHtVYdtOmTbRo0QJbW1vMzMyoU6cOe/bsUSuzZMmSfNuWmpr6j9r3OiR4JoQQQgghhBBCCCEK3dq1axkxYgTjxo3jwoULNGjQgNatWxMaGppv+SNHjtCiRQt27tzJuXPnaNKkCe3bt+fChQtq5czMzAgLC1N7GBgYFFk/5IYBQgghhBBCCCGEEOKV0tLSSEtLU1umr6+Pvr5+vuV//fVXBg4cyEcffQTAjBkz2LNnD3PmzGHq1Kl5ys+YMUPt+ZQpU9i6dSvbtm2jSpUqquUKhQIHB4e37M3rk8wzIYQQQgghhBBCiBJES6EokY+pU6dibm6u9sgvCAaQnp7OuXPnaNmypdryli1bcuLEidf6HLKzs0lISMDKykpteWJiIqVLl8bFxYV27drlyUwrbJJ5JoQQQgghhBBCCCFeacyYMYwcOVJtmaass6dPn5KVlYW9vb3acnt7e8LDw1/r/aZPn05SUhJdu3ZVLfP29mbJkiVUqFCB+Ph4Zs6cSb169bh06RJly5Z9wx69HgmeCSGEEEIIIYQQQohXKmiIpiYv32hAqVS+1s0HVq9ezXfffcfWrVuxs7NTLa9duza1a9dWPa9Xrx5Vq1bljz/+4Pfff3+jtr0uCZ4JIYQQQgghhBBClCAK/tmdLUsSGxsbtLW182SZRURE5MlGe9natWsZOHAg69evp3nz5gWW1dLSokaNGty+ffut26zxPYpszUIIIYQQQgghhBDi/yU9PT2qVavGvn371Jbv27ePunXraqy3evVq+vfvz6pVq2jbtu0r30epVHLx4kUcHR3fus2aSOaZEEIIIYQQQgghhCh0I0eOpE+fPlSvXp06deowf/58QkNDGTx4MJAzh9qjR49YtmwZkBM469u3LzNnzqR27dqqrDVDQ0PMzc0BmDhxIrVr16Zs2bLEx8fz+++/c/HiRWbNmlVk/ZDgmRBCCCGEEEIIIUQJolD8NwYKduvWjaioKL7//nvCwsLw8/Nj586dlC5dGoCwsDBCQ0NV5efNm0dmZiZDhw5l6NChquX9+vVjyZIlAMTGxjJo0CDCw8MxNzenSpUqHDlyhJo1axZZPyR4Jv6RJ0+eMG/ePIYNG4alpWVxN0cIIYQQQgghhBAl0JAhQxgyZEi+rz0PiD136NChV67vt99+47fffiuElr2+/0YoU7xTSqWSPn36oK+v/8aBMzc3N2bMmFE0DXtLCoWCLVu2vFGdxo0bM2LEiCJpz79Vnz59mDJlSnE3462MGjWK4cOHF3czhBBCCCGEEEKUAJJ59g7079+fpUuXAqCjo4Orqyvvv/8+EydOxNjYuJhb9+amTp2Kh4cHX3/99RvXDQwM/Ff2Wbyey5cvs2PHDmbPnq1a1rhxYw4fPszUqVP55ptv1Mq3adOGXbt2MWHCBPr374+7u3uB658wYQLfffcdAEuXLmXWrFlcu3YNLS0tqlSpwldffUW7du0ASExMxNLSkhUrVtCtWzfVOrp168a6deu4c+cOZcqUUS0vU6YM3bp1Y8qUKXz11VeUKVOGL7744pVtKgy1S/vSyKMKpvpGPEmMZtu144TEhGksr62lRfOyNajiVA5TfSPiUhM5eOccZx/eUJUx0NHD36sWfg4eGOrqE5OSwPbrx7kZGapxvYVp15btbF2zkZioaFzdS/PhZ4MoX9Ev37LRUdEsnb2A4Ft3CHv4mDbvd2DgsE80rvvYgcP8OuknatarzTeTvy2qLuSrk29DelRpjpWROSHRYfxxfD2Xw4I1ln/PryHvV2iMg6kVTxJiWH5+N3tunlYr06ViEzr6NsTe1JK41CQOBZ9n/qmtpGdlFnV3VAw6tEavUT0URoZk3b1P8sp1ZD8OL7COfvPG6DWpj5aVJcrEJNLPXiR149+QmdNu/TYt0K1aCW1He5TpGWQF3yNl/Vayn0QUeX+aeFajtVdtLAxNeBQXyaoL+7j99EG+ZQfWbEd990p5lj+Ki+R/u+cDoK3Qoq1PXeq5V8TS0JSwhCjWXzrI1fC7RdqPf6KSoyc9q7TE264UNsYWfLNzDkfvXSruZgE5F9/mL17M5r//JiEhAd/y5fl65EjKvGI/e+DQIeb+9RcPHz/GxcmJIYMG0aRhQ9Xr8xYtYsHixWp1rK2s2LN1q+r5wcOH2bR1K0G3bhEXF8fKRYvwKlu2cDsInNt3nNM7A0iMjcfW2YHmvTvh6u3xynoPb91jxQ+zsHVxYOCUUarlNwMvc+Lv/cQ8eUp2VjaW9jbUbNOYCvWrF3rbNalbugKNPatgqm/Mk4Rotl47yr3oxxrLa2tp0aJcTao5e2Gqb0xsaiIHbgcS+CBIVaaBeyXquFXA0tCUpPQULofdYWfQSTKzs95FlwC4dugMl/ecIDkuAUsnO+p0a4Vj2dL5ln188x7bpy/Ns7zrxKFYONrmWX7nzBUO/rWR0pW88B/ao9DbrklTz2q08a6DuaEpj+MiWXlhD7ci89/3fVSrAw007PvG7poL5Oz72pWvR333ilgYmhEeH8W6Swe4Eq75uFfY/L1q0aF8fSyNTHkQG8GSwB0ERdzXWL6BeyU6+jbA0cya5PQ0Ljy+xbJzu0hMS1GVMdI1oGeVFtQq5YuxvgERCTEsPbeLC49uvYsu0dqrNp38Gub0KeYJC89s53pEiMbyDT0q855fI5zMrElKT+XCo1ssObuThLRkVZn25evRyqs2NsYWJKQlcSLkKsvP7ybjHZ1LdChfn66VmmFtZEZITDizT2zkSgHHyI6+Dejo2wAHUysiEmNYeX4v+24Hql73L1eTr5r0zlOv1V8j31mfSgItxb//bpv/JRI8e0datWrF4sWLycjI4OjRo3z00UckJSUxZ86c4m7aGxs7duw/rmtrm/cEQ/x3/Pnnn3Tp0gVTU1O15a6urixevFgtePb48WMOHjyouiOKq6srYWG5AaNp06axe/du9u/fr1pmYmIC5GSG/fnnn/zwww906tSJjIwMVqxYQceOHZk5cyafffYZJiYmVK9enYCAALXg2eHDh3F1dSUgIEAVPHv48CF3796lSZMmANjZ2dGyZUvmzp3LTz/9VMifkrqKjp60L1+fLVePcD8mnFqlyvNhzXb8eng1samJ+dbpVcUfU31DNlwOICo5DmM9Q7S1chOJtRVafFSrA4npKaw4v4e41EQsDExIy8wo0r48d+zgYRb/OZ+PRwzBp0J59vy9ix+++paZS+dia2+Xp3xmegZmFuZ80Ls729dvLnDdEeFPWDLnL8pX9C2q5mvU1LMaw+p35tcja7gafpcO5evzc7uh9F09iYjEmDzlO/o2YFDtjvxyaBVBESH42LnxVeNeJKQmc+L+FQBalK3BoNqd+ClgOVfD7+JqYc+Ypn0A+PP4xnfSL/3WzdFv2YTkRSvJehKBQTt/TL78jPhxkyA1Ld86urWqY9C5A8mLV5J15x5aDnYYfZhzkpu6dhMAOuU8SQ84Sua9+6CljeH77TD5cijx/5sM6elF1p+arj70rNyC5ed3czvyAY09qzKyYXfG7Z5HdHJ8nvKrLuxj/eUA1XNthRbf+3+k9kP//QqNqFO6AkvO7iAsPgo/Bw+G1evM5ANLCY19UmR9+ScMdfW5E/WQnTdOMKX14OJujpqlq1axau1aJowdSylXVxYuXcrQL75g46pVGBsZ5Vvn8tWrjP3uOwYPHEiThg0JOHKEb779loWzZuHnm7sf8HB3Z/YLwzde3CcCpKSkUKlCBZo3acIPP/9cJP27fuoC+1dswb//B7iUc+fCwROs/WU+H//0NeY2mjP1U5NT2DZ3FW6+ZUmKS1B7zcDYiLodmmPtZI+2jjZ3Llxnx/w1GJuZ4FHRu0j68aJKTmXp4NeATVcOERIdRu3SfnxUqz2/HFpJbEr+x6g+1Vpjqm/EuksHeZoUi4m+kdoPwCrO5WjjU5d1lw4QEh2GrYkF3So3B+Dva8eKvE8AwYFXObl2N/V7tsXesxRBR86y6/cVdP1uKCbWFhrrdZ30GXoG+qrnBqZ5LwgnRMVyesNeHMqWKoqma1TTtTy9qviz7NxObj19SJMyVfmyYU/G7JqT775v5fk9rL90QPVcS6HFD60GcebBddWyDyo2oW5pPxYF7iAs/ikVHMswvH4XJu1fQmhswRdYCkNdtwr0r96Gv05v40bkfVqUrcHYZv344u+ZPE2Ky1Pe2640n9XrzNKzOzn78AZWRmYMqtWRT+u8zy+HVgKgo6XNty0GEJeaxLTDq4hKjsfG2JyUjPyPd4WtnltFPqzZjnmntnIjIgR/r1qMbzGAYVt+zbdPPnal+bx+VxYFbifwQRDWRmYMrvMeQ+t+wI8By4Gc4Fqfaq3489gGbkSG4mRmw/D6XQBYFLi9yPvUuEwVhtR9n9+Predq+F3ala/H1Daf8uG6KfmeH7UvX5+BNdvz65HV3IwIxduuNCMbdicxPYWT96+qyiWmpdB/7Q9qdf8/Bc5EySPDNt8RfX19HBwccHV1pWfPnvTq1Us1RFCpVPLzzz/j4eGBoaEhlSpVYsOGDaq6MTEx9OrVC1tbWwwNDSlbtiyLX7jCeuXKFZo2bYqhoSHW1tYMGjSIxMT8T2ggZwyxQqFgz549VKlSBUNDQ5o2bUpERAS7du3Cx8cHMzMzevToQXJy7hWN3bt3U79+fSwsLLC2tqZdu3YEB+deeVq2bBkmJibcvn1btWzYsGGUK1eOpKQkIO+wTYVCwbx582jXrh1GRkb4+Phw8uRJ7ty5Q+PGjTE2NqZOnTpq7wMwZ84cypQpg56eHl5eXixfvrzAzz8wMJAWLVpgY2ODubk5jRo14vz58wXWeVlSUhJ9+/bFxMQER0dHpk+fnqdMeno6X331Fc7OzhgbG1OrVi21Mdv379+nffv2WFpaYmxsjK+vLzt37gRyv5cdO3ZQqVIlDAwMqFWrFleuXFF7jxMnTtCwYUMMDQ1xdXVl+PDhqs8XciZcbNu2LYaGhri7u7Nq1Sq1zz0kJASFQsHFixdVdWJjY1EoFGptvX79Om3atMHExAR7e3v69OnD06dPNX4+2dnZrF+/ng4dOuR5rV27dkRFRXH8+HHVsiVLltCyZUvs7HKCKdra2jg4OKgeJiYm6Ojo5Fl26tQppk+fzi+//MKoUaPw9PTEx8eHyZMnM2LECEaOHMmDBzlXWZs0aaLWp6CgIFJSUhgyZIja8oCAAHR1dalXr55qWYcOHVi9erXG/haWBu6VCHwQROCDICISY9h2/ThxqYnULp1/llY5W1c8rJ1YFLiDO1EPiUlJ4GFcBPdjck9iq7v6YKSrz7Kzu7gfE05sSiIhMeGEJUQVeX8Atq3fTLM2LWnRrhUupUsxcNgnWNvZsmfrjnzL2znaM3DYYJr4N8OogMzUrKwsZvzwC90H9Ma+CG9DrUnXSk3ZEXSCHUEnuB8Tzh/HNxCZGEsnv4b5lvf3qsXf145x8M45wuKjOHjnHDuCTtCzagtVGV8Hd66GB7P/9lnCE6IJfBDEgdtn8bLNP/uhKOg3b0zqjr1knL9E9qMwkheuQKGni14tzZktOmXcybxzl4zT58iOiibz2g3ST59Dxy33x2LSjDmkHz9N9uNwsh8+InnRSrSsrdB2cy3S/rT0qsWRexc5cvciYQlRrL6wj+iUeJqWqZpv+ZSMNOJTk1QPNytHjPQMOfZCtlYdtwpsDzrO5bBgIpNiCQg+z9Xwu7TyqlWkffknToVeY8Hpvzl892JxN0WNUqlk9bp1DOjbl6aNGuHp4cHEceNITUtj90u3r3/R6vXrqVW9OgP69MGtdGkG9OlDzWrVWLV+vVo5HW1tbKytVY+Xp5Vo26oVHw8YQM3qRZexdWbXYSo1rkXlJrWxcbanRZ/3MLO24MKB4wXW271oPeXrVMXZM+//fenynnjVqIiNsz2W9jbUaNUQO1dHHty8V1TdUNPIozJnQq9zJvQ6EYkx/H3tKLEpidQpXSHf8l62pShj7cxfp//m9tMHxKQk8CD2idoxys3SkZDoMC48ukVMSgK3Ih9w8dFtXMzt30mfAC7vO4lX/ap4N6iGpaMtdbu1xsTSnOuHzxZYz9DUGCNzU9VD66UgbXZ2Ngf/2ki1Dk0wKyBgWhRaedfmyN0LHL57kbD4p6y6sJfo5Hiaeea/zadkpBGXmqR6uFs5YaRnyNG7ufu+um4V2Hb9OJfD7hCZFMvBO+e4En6X1t6130mf2vvU4+Cdcxy4c5ZHcZEsObuTqKQ4WpbLf99bzsaVyKQYdt44SURiDDci7rPv9hnKWDupyjT1rIaJviE/B6zgZmQoT5NiuRFxX20bLUodfeuz//ZZ9t8O5GFcJAvPbOdpUhytvPL/TMvZliIyMYYdQSeISIwhKOI+e2+ewdPGWVXGy7YUN57c58i9S0QkxnDx8W2O3r2kVqYoda7QhF03TrHzxklCY58w+8QmIhJjaF++fr7lW5Stwfag4xwKvkBYQhQBwefZdfMU3So1e6mkkpiUBLWHEMVJgmfFxNDQkIyMnCyQ//3vfyxevJg5c+Zw7do1vvjiC3r37s3hw4cBGD9+PNevX2fXrl0EBQUxZ84cbGxsAEhOTqZVq1ZYWloSGBjI+vXr2b9/P5999tkr2/Ddd9/x559/cuLECR48eEDXrl2ZMWMGq1atYseOHezbt48//vhDVT4hIYEvvviCwMBA9u/fj1Kp5L333iM7OxuAvn370qZNG3r16kVmZia7d+9m3rx5rFy5ssChmpMmTaJv375cvHgRb29vevbsySeffMKYMWM4ezbnJObF/mzevJnPP/+cL7/8kqtXr/LJJ58wYMAAAgICNL0FCQkJ9OvXj6NHj3Lq1CnKli1LmzZtSEh4/Z3w6NGjCQgIYPPmzezdu5dDhw5x7tw5tTIDBgzg+PHjrFmzhsuXL9OlSxdatWqlCigOHTqUtLQ0jhw5wpUrV/jpp59U2VQvvs+0adMIDAzEzs6ODh06qLaVK1eu4O/vz/vvv8/ly5dZu3Ytx44dU/t8+vbty+PHjzl06BAbN25k/vz5RES82TCpsLAwGjVqROXKlTl79iy7d+/myZMndO3aVWOdy5cvExsbS/V8fpjo6enRq1cvtaDvkiVL+PDDD9+oXZBz62ITExM++STvsL4vv/ySjIwMNm7Mydhp0qQJN2/eVGW0BQQE0KBBA5o2bZoneFarVi2MXsh8qFmzJg8ePOD+fc1DA96WtkILZ3Nbbr80pOJW5ANKW+b/I6K8vTsP4yJo5FGFsc36MqpRT9r61EVHS/uFMm7cj31CJ78G/K95f75o2I0mZaqioOhTvzMyMgi+eYdKNdQDFZVrVOHGtSANtV7P+mWrMbMwp3lb/7dazz+ho6VNOdtSatlIAIEPgvCzz39Ilq6WDulZ6tl+aVkZ+Ni5qbJiLocFU862FD52OT+aHc2sqV3aj1MvXHktSlo21mhZmJN5LXfIL5mZZN68g04ZzUPpMu8Eo1PaFW330qr16FYoT8blaxrrKIwMAFAmJWss87a0tbRws3TkWrh6YOFa+F3K2Li81joaulfm+pN7RL2QqaGrpZ3nand6ViZlbYs2EPhf8igsjKjoaGrXqKFapqenR9XKlbl8VfP2fvnqVWq9UAegds2aeeqEPnxIq06d6NC1K2MmTODhY83DCotCVmYm4fce4u5XTm25u58XD2+HaKx3+fAZYp5E0eD9lq98D6VSScjVW0SHR1LqNYaCvq2cY5Qdt14a7n8rMhQ3q/wvYPg6uPMgNoImZaoxvvkAvm7Sm3bl66kdo+5FP8bFwg5Xi5zjnJWRGd52pQkqYNhaYcrKzORp6GNcypdRW+5SvgxPgvMf4vjcpknzWD5qGtt/XcrjG3kDmOe3H8bQ1Bjv+vkH64vK833fy0PJr4YH4/m6+z6Pylx/cpeo5NzsJ10tbTKy1fd9GVkZ72Tfp6OljYe1E5ce31FbfinsDl62+Wf13YwMxdrInCrOOf+H5gbG1C7lx/mHucMxq7t4cyvyAR/V6sBfXcbwa/vhvO/X6J0Mj9PR0qaMtTMXH99WW37x8W287fK/aHYj4j7WxuZUc/YCwNzAhDpufmpTdQRFhFDGxpmyz75rexMrqrp4qZUpKjnnR6553uvcwxv42ud/HqGrrUP6S6Mh0jIz8LYrrZY1bKirz6qe37Gm1/dMbjUIT+vX25b/SxQKRYl8/H8lwzaLwZkzZ1i1ahXNmjUjKSmJX3/9lYMHD1KnTh0APDw8OHbsGPPmzaNRo0aEhoZSpUoVVVDCzc1Nta6VK1eSkpLCsmXLVAGqP//8k/bt2/PTTz9hb6/5Kt4PP/ygyrQZOHAgY8aMITg4GA+PnBOyzp07ExAQoJrbrEuXLmr1Fy1ahIODA9evX8fPLydLZt68eVSsWJHhw4ezadMmJkyYQI2XTnpfNmDAAFVQ5uuvv6ZOnTqMHz8ef/+cH8iff/45AwYMUJWfNm0a/fv3V92tY+TIkZw6dYpp06apht29rGnTpmrP582bh6WlJYcPH1bNkVWQxMREFi5cyLJly2jRIidrZOnSpbi45O7Eg4ODWb16NQ8fPsTJKecK16hRo9i9ezeLFy9mypQphIaG8sEHH1ChQs4V2+ef9YsmTJiQ5z02b95M165d+eWXX+jZs6fqJgVly5bl999/p1GjRsyZM4eQkBD2799PYGCganv566+/KPuG87rMmTOHqlWrqk38v2jRIlxdXbl16xblypXLUyckJARtbW1VJtnLBg4cSP369Zk5cybnzp0jLi6Otm3bquYwe123bt1SZR2+zMnJCXNzc27dyjlJqlevHrq6uhw6dIgePXpw6NAhGjVqRNWqVYmLi+P27duULVuWQ4cO0bu3+rwKzs7Oqn49v43yi9LS0khLU0/x19fXz1OuIEZ6BmhraZGYnqK2PDEtGVP9/E9MrQzNcLN0JDMri2Vnd2OsZ0Anv4YY6uqz4dnQMysjM8oYmnLx8W0Wn9mBjbE5Hf0aoqXQ4sCdgq+qv62EuHiys7OxsLRQW25uaUlsdN7U/dcVdOUa+3fs4de//nzLFv4z5gYm6Ghp57nqGZ0cj5WrWb51zjy4Tjufehy9d4lbkQ/wsi1FG+866GrrYGFgQlRyPAfvnMPC0JQ/3/sSBQp0tLXZfPUIKy/sfRfdQmGe0/bsePUhPdnxCWhZW2msl3HmPCkmJph8MwJQoNDRJi3gKGm7NGcQGXZ7n8xbwWQ/0jyf39sy1TNCW0uL+JeGPMelJuFnYKKhVi5zAxMqOJZh3qktasuvht/F36sWtyJDiUiMwcfenSrO5WQukjcQFZWT+Wptpb5dWVtaEhauOeMjKjo6bx0rK6Kio1XP/cqXZ+K4cZR2dSUqJoaFS5cy8NNPWbtsGRbm5oXYC82SE5JQZmdjbK4+bYGxuSlJsflfqIsOjyRg7XZ6j/8MLW3tfMtAzrDOP4dNJCszE4WWFv79P8C9glehtj8/z6cEeHFeJYCEtBRM9fMfZmtlZI67lSOZ2ZksObsTYz0D3q/QGCNdA9Y9GyJ48fFtjPUMGVrvAxSAtpY2J0IuE3DnXL7rLGypickos5UYmqlf2DU0MyY5Pv+RG0bmpjTo0x7bUo5kZWZx+9Qltv+2lPZf9sexnBsA4XdCuXnsPB+Mf/fDpZ/v++JSk9SWx6UlYf6a+76Kjp7MPak+dcKV8Lu08qrNzYhQIhKjKW/vThVnr3ey7zPVN0JbS5u4l/fnKYlYOOXfp5uRocw8uo6RDbujq62DjpY2gQ+CWHhmm6qMvakVfiYWHL17iSkHluJoZs1HtTqgpaWlOo8q6j7FvnQuEZeSgKVh3nPr53369cgaRjXuqerT6dDrLDj1t6rMsXuXMdc3YUrrwSgUCnS0tNl14ySbrhwu0v5AToBSO5/zo5iUBKyMTPOtc/ZhEG2863A85Aq3nz6gnI0rrb1qoautg7mBCdHJ8YTGRvDzoZXcjXqs2o/M7DiCQRt+4lF8ZJH3S4j8SPDsHdm+fTsmJiZkZmaSkZFBx44d+eOPP7h+/TqpqamqYMlz6enpVKlSBYBPP/2UDz74gPPnz9OyZUs6depE3bp1gZxhaJUqVVLL7KpXrx7Z2dncvHmzwOBZxYoVVX/b29tjZGSkFsyxt7fnzJkzquehoaFMmjSJ06dP8/TpU1XGWWhoqCp4ZmlpycKFC/H396du3bp5Joh/nXYAquDS82WpqanEx8djZmZGUFAQgwYNUltHvXr1mDlzpsb3iIiI4Ntvv+XgwYM8efKErKwskpOTCQ19vcnTg4ODSU9PVwU4AaysrPDyyj15PX/+PEqlMk9gKS0tDWtrawCGDx/Op59+yt69e2nevDkffPCBWv+BfN8jKCgn2+XcuXPcuXOHlStXqsoolUqys7O5d+8et27dQkdHh6pVc694enp6vvFdUc+dO0dAQECerLjnn0V+wbOUlBT09fU1Xo2oWLEiZcuWZcOGDQQEBNCnTx90dXXfqF2vQ6lUqtpgZGREzZo1VcGzw4cPM3r0aHR0dKhXrx6HDh1CX1+fe/fu5QmwGhoaAqgNXX7R1KlTmThxotqyCRMmQI38g4evarMahQJl/kVVfVtzcT+pmTnzRm0POkHvqv5suXqEzOwsFChISk9h4+VDKFHyKD4SMwNjGnpULvLg2cvtVFEq/3HmW0pyMjMnT2PI6OGYWbybH8KavPxdKRQKlBq+raVnd2FlZMbc978CBcQkJ7D7xil6Vm1JljJn/1nZqSx9qvnz65E1BD0JwdncluH1uxBVrTXLzu0q9Pbr1qqOUd/uqueJM+c+69hLBRUKeHm7fIGOlycG7fxJWbGOzLshaNvZYtjjA7Lb+ZO2fU+e8oa9uqDt4kTCjzMKoRevlqc7KPJZmld994okZ6Ry/tFNteWrLuyjf/U2TGk9GCUQkRjDsXuX8r3RgMixa+9epkybpno+49n8kS/vBV7cZ2v00usv16lXO3e4kydQ0deXTt27s33XLnp378479XJbUeZZBjnD+7bOWkGDD1ph7VjwcUPfQJ8PJ39JRlo6Idduc2DlVixsrSld3rNQm/66Cvq6nn8vq87vVR2j/r52jL7VW7PpyiEys7MoY+1Ms7LV2XTlEKExT1QXeJqnJrP/hQnDi9rLx6QCdnlYONhg4WCjem5fxpXEmHgu7T2BYzk30lPTCFi4iQZ9OuQ7D9q78vLxSIHmY9SLGrhXIjkjlXOP1LOHVp7fw4Aa7fixzaeqfd/Rexdp4F65EFtdsPzOkTRxMbflw5rtWH/5IJce3cbCyJS+1VozqHZH5jwLDCoUCuJSk5h3agvZSiV3ox9jaWhGR98GRR4806iAcwkXczs+rtWBtRcPcOHxLSwNTelfvQ2f1nmPP0/kjLTwc/Cgc6UmzDu1lduRoTiY2fBRzfbEVExg3eWD76gTeY+8mv6nlp/bg6WhGX92GolCkRNo23PrDN0rN1f9vgyKCFHLRr0afo+5H4ymk19DZp14N3PCCvEyCZ69I02aNGHOnDno6uri5OSkChrcu5eT8r1jxw5Vpstzz7NYWrduzf3799mxYwf79++nWbNmDB06lGnTphV40vmqk9EXAxcKhSJPIEOhUKh2YJAzb5W7uzsLFizAycmJ7Oxs3NzcSH9p4ucjR46gra3N48ePSUpKwsws/6wMTe3QtOzFtrzct1edfPfv35/IyEhmzJhB6dKl0dfXp06dOnnarkmeA3c+srOz0dbW5ty5c2i/dAX5eRDqo48+wt/fnx07drB3716mTp3K9OnTGTZsWIHrfvEz+OSTTxg+fHieMqVKleLmzZt5lr/c/ufzc7y47Pmw0Bf78jx78WWOGuaasrGxITk5mfT09HyzwgA+/PBDZs2axfXr19UCs2+iXLlyHDt2LN/3efz4MfHx8WqZdk2aNGHt2rVcu3aNlJQUVWCxUaNGBAQEoKenh4GBAbVrq881Ef0sq0HTTS7GjBnDyJEj1Zbp6+vz7f6Fr92X5PRUsrKz81zBN9EzJDEt/6BdQlrO3CTPf5QARCbGoKVQYG5gQlRyHAlpSWQps9VOxCISYzAzMEZboaUK3BQFU3MztLS0iHkpyywuNhZzK4t/tM7wR2FEhD9hypjcYOXz7bdz03b8uXwBDs5FOwdaXGoimdlZWBmp788sDU2JSc4/qyQ9K4OfAlYw7fAqrAzNiEqOo335+iSlpxCXkpMdMLBme/bePMOOoBMA3I1+jIGuPqMb9WT5ud2v9aPnTWRcukLCxJDcBTo5pwFa5mZkxeVmn2mZmqCM1zys3aBTO9JPniH96EmAnGwyfT2M+vYgbcdetV+hhj07o1u5Aok/zUQZE1uo/XlZQnoyWdnZeTItzAyM8mRk5KeBeyVOhFwhK1v9fyQhLZk/jm9AR0sbE30jYlMS6FKxCU+TYguz+f8pDevXx698edXz9GfHmafR0aqpJwCiY2OxstKc5WhtZaXKWlPViYnBqoCLQoaGhpTx8ODBw4f/tPlvzMjUGIWWFkmx6lmcyXGJGJvnvRCVnpJG+L0HPLn/iL1Lc26yoVQqQankx76j6P71J7j55hzLFFpaWDnkHIvsSzsT9egJJ7cdKPLgWVJ6isZj1MvZaM8lpCYRl5qodoyKSIxGS6HAwtCEp0lx+HvV5vzDm5wJzZmYPjwhCj1tXTpXasKB24GFvNfLy8DECIWWIk+WWWpCEkZmr87Ses7O3YU7py8DEB8ZTUJULHtmrVK9/vw4tWDwRLp9PwwzO83b+dt6vu+zeHnfp29E/Ovs+zwqcSLkcr77vt+PrUP32b4vJiWBrpWavZN9X0JaMlnZWVgYqmcvmRsYa7xZxXt+jbgZcV9144n7sU9YkPk3P7QaxOqL+4lNSSAmOYEsZRbZLxynHsVFYmlkio6WdpHe8VVzn0w09qlzxcYERYSw5dqRnD7FhDPv1BamtvmUlRf2EpOSQM8qLTgUfF4VfL4f+wQDHV2G1H2f9ZcDCv1c4kVxqUlkZWdhafjy+ZGJxjnK0rMymHZ4Fb8dXYOloRnRyXG09alHUnqqxmO1EiU3I0NxMf//dfM5rXcw5Yp4fTLn2TtibGyMp6cnpUuXVgsMlS9fHn19fUJDQ/H09FR7uLrmDtuytbWlf//+rFixghkzZjB//nxV/YsXL6pNGH/8+HG0tLTyzQ76p6Kiorhy5QqjR4+mVq1auLq6EhISkqfciRMn+Pnnn9m2bRtmZmavDAr9Ez4+Phw7pn43phMnTuDj46OxztGjRxk+fDht2rTB19cXfX39Aie/f5mnpye6urqcOnVKtSwmJkY1PBCgSpUqZGVlERERkee7dHBwUJVzdXVl8ODBbNq0iS+//JIFCxaovVd+7+HtnXNHrapVq3Lt2rU86/f09ERPTw9vb28yMzO5cOGCah137twhNjZW9fx5MOjFO1u+ePOAF9/Hzc0tz/tomr+ucuXKQM6NBjTp2bMnV65cwc/Pj/Iv/Kh6E927dycxMZF58+bleW3atGno6urywQcfqJY1adKE27dvs2rVKurXr68KbDZq1IhDhw5x6NAh6tSpg4GBgdq6rl69iq6uLr6++d/VUV9fHzMzM7XHmw7bzFJm8yguMs/cIWVtXLgfk/8d/EKiwzEzMEJPO/fah42xOdnKbNXQhpCYcKyNzNUOtzbGFsSnJhVp4AxyAt9lvDy5dPaC2vJLZy/g7av5f7QgzqVc+W3RbKb/9afqUaNuLfyqVGT6X39ibWfz6pW8pczsLG5FhlLdVb0P1V28ufpE863YAbKys4lMiiVbqaSZZ3VOhFxVncga6OjlCc5nZ2ejUBSc3fGPpaaRHfE09/E4nOzYOHTKvzAETFsbHS9PMoMLmJBcTzdvmka2Mk9akWHPLuhWrUTiL3+Q/bTob1iRlZ1NSEwYvg7q86yUt3cn+GnBgRQv21LYm1px9IUbBbwsMzuL2JQEtBVaVHPx5sKjWxrL/n9nbGSEq4uL6uHh5oa1lRWnA3MzizIyMjh/8SIV/fK/QQpART8/Tp9Vz5g9HRhYYJ309HRC7t/H5lnW97ugraODg7sL966qbxP3rt7CpaxbnvL6hvp8NHU0Ayd/qXpUaVoHK0c7Bk7+Eqcymu/UqERJVkbR33Eu5xgVQbmXjlHlbEsREp3/8Ot70WGYGRijp517rmtrbEG2MlsVHNDT1snzYz5bmf0sE6zofyhq6+hgU8qJR9fVb0b1MCgY+zKvP5dX1IMwjJ4FRi0cbOg84VM+GD9Y9Shd0QsnL3c+GD8YY6uCLyS/rdx9n/p0IL4OHtx5xb7P2640DqbWBd5kJCM7i5hn+77qLt55snOLQmZ2FnejHlPRST1IXNHRk5uR+Y8c0dfRJfvlbetZQPD5lnUz8j4OptZqmYeOZtZEJ8cXaeAMcvoUHPWIyi/1qbKTJzci8p9jV187n/OEl57ra+tqKKMomnOJF+ScHz2gmov6UPJqLt5ce1LwjU2ysrN5+uz8qEmZqpy6f7XAQF8Za2e1+UiFeNck86yYmZqaMmrUKL744guys7OpX78+8fHxnDhxAhMTE/r168e3335LtWrV8PX1JS0tje3bt6sCRb169WLChAn069eP7777jsjISIYNG0afPn0KHLL5piwsLLCysmLu3Lk4ODhw//591VxozyUkJNCnTx+GDRtG69atKVWqFNWrV6ddu3Z55kt7G6NHj6Zr165UrVqVZs2asW3bNjZt2sT+/fs11vH09GT58uVUr16d+Ph4Ro8erRqW9zpMTEwYOHAgo0ePxtraGnt7e8aNG6d2l6Vy5crRq1cv+vbty/Tp06lSpQpPnz7l4MGDVKhQgTZt2jBixAhat25NuXLliImJ4eDBg3mCft9//73ae9jY2NCpUycgZ0642rVrM3ToUD7++GOMjY0JCgpS3dzB29ub5s2bM2jQIFWm45dffomhoaEqe83Q0JDatWvz448/4ubmxtOnT/nf//6n1oahQ4eyYMECevTowejRo7GxseHOnTusWbOGBQsW5Mmsg5ygXNWqVTl27JgqkPYyS0tLwsLC3mq4Zp06dfj8888ZPXo06enpdOrUiYyMDFasWMHMmTOZMWOGWuC5bt266Ovr88cffzBu3DjV8ho1ahAXF8fGjRsZPXp0nvc5evQoDRo0eKPt5J84eu8S3So342FsBKGxT6jpWh4LQ1NOheZMht3KqzZmBsYvzBVzi2Zlq9OlUlP23QrEWM+ANt51Ofvghuqk79T9a9Rzq0B73/qcCLmCjbEFTTyrcjzkisZ2FKb2Xd7j9ynT8fQqi5evN3u37ebpk0hadmgDwIr5i4l6GsXnY0ep6ty7nfMjJjUlhfi4OO7dDkZHVxdXt1Lo6etR2sNN7T2Mn2Vzvry8KK27dJBxzfpxM+I+157co335etiZWrL16lEABtXuiI2xBVMOLAVyhlr42LsR9OQepvpGdK3UDHdrR6YcXKpa54n7V+haqSm3nj5QDdscWKsdx0Ou5Dk5Lipp+w9h0LYl2U8iyYqIxKBNS5TpGaSfzg1YGA3sQ3ZMLKmbcuaNybx0Ff2WTcgKfUjW3fto2dlg0KktGRevqoJqhr27olerGol/LECZmorCLOdKuzIlFV7Kdi1Me2+e5uNaHQmJDuPO04c0KlMFayNzAoJz7rDcuUJjLIxM+ev0NrV6DT0qExz1iEdxeedS8bBywtLQlNDYJ1gYmtLJrwEKhYKdN04WWT/+KUNdfbUr805mNpS1cSE+NYknif983sG3pVAo6NG1K4tXrKCUqyuuLi4sXr4cA319Wr0wdcW3P/yAnY0Nnw3OmTeqe+fODBo2jCUrV9K4fn0OHTvG6bNnWThrlqrOjFmzaFC3Lg729sTExLBw2TKSkpJo17q1qkxcfDzhT54Q+ezC2f1n0zZYW1kVWpCtZutGbJuzCkcPV5w93bgYcJL4qBiqNMuZauPQ2u0kxMTTfnBPFFpa2LqqZ8wam5mgo6ujtvzE3/txdHfFwt6G7MxMgi8GcfXYWfz7dy6UNr/K4bsX6VGlBQ9ic+7qXLu0LxaGJqqbmrT2roO5gQlrLubMd3jh0S1alKtBt8rN2HvzNMZ6hrQrX48zoUGqY9T1J/do6FGFR3GRhMY8wdrYnFbetbkWfq9IM2ReVLFFHQIWbcKmtBP2ZVwJOnKOxOg4fBrlzBd7ZtN+kmLjafLh+wBc2X8SU2sLLJ3syMrK4s6py9w7H0SLwTlz9uro6mLlrH7erf/sJikvLy8qu2+c4pPanbgX/Zg7UY9o8mzfd/DZXHJdKjbF0tCU+ae3qtVr6FGZO08fat73GZkRGhOOpZEpnfwa5ez7nmVLF7VtQccZVq8zd6MecTMylBZla2BjbM7eWzmjF3pWaYm1kRl/HN8AwNmHNxhc5z1alqvJxce3sTQ0ZUCNttyOfKDKgtpz8wytveswoGZbdgWdxNHMhvcrNH5n+/Ot144xokFX7jx9xM3I+7QsVwsbYwv23DwNQO+q/lgbmTPz2DoAAh8GMaTu+7TyqsWFR7exNDJlYM123IoMVfUp8OENOpSvz93ox9yKfICjqTU9q7Qg8MH1d3IuseFKAN806cOtyAdcf3KPtj51sTOxZNv1nGSHgTXbY2Nszk8BK4Cc4bXedqUJenIfE31DulRsgruVo+p1gD7VWhH0JIRHcZEY6Rnwnl8jPK1d+P3Y+nzbIMS7IMGzEmDSpEnY2dkxdepU7t69i4WFBVWrVmXs2LFAzt2oxowZQ0hICIaGhjRo0IA1a9YAOXM67dmzh88//5waNWpgZGTEBx98wK+//lqobdTW1mbt2rUMHz4cPz8/vLy8+P3332ncuLGqzOeff46xsbFqknlfX19++uknBg8eTN26dfMMS/2nOnXqxMyZM/nll18YPnw47u7uLF68WK0tL1u0aBGDBg2iSpUqlCpViilTpjBq1CiN5fPzyy+/kJiYSIcOHTA1NeXLL78kLi5OrczixYv54Ycf+PLLL3n06BHW1tbUqVOHNm1yggZZWVkMHTqUhw8fYmZmRqtWrfjtt9/U1vHjjz/y+eefc/v2bSpVqsTff/+tGp5YsWJFDh8+zLhx42jQoAFKpZIyZcrQrVs3Vf1ly5YxcOBAGjZsiIODA1OnTuXatWtqmVWLFi3iww8/pHr16nh5efHzzz/TsmXunb6cnJw4fvw4X3/9Nf7+/qSlpVG6dGlatWqV57bsLxo0aBBLliwp8G6vFhYWr/6wX2HGjBlUrFiROXPmMH78eBQKBVWrVmXLli20b99erezzIZmHDx9W20Z0dXWpU6cOBw4cyPdGE6tXr84zp1lRuBx2ByM9fZqVrY6ZvjHhiVEsDtyuukJvqm+EhWHuMIz0rEz+Ov03HX0bMKx+Z5LT07gcdkd10gU5Qwz/Or2N9uXrMaJBN+JTkzh+7zKHgi/kef+iUL9pIxLiE1i3dBUx0dGUcndj3E8TsXPI+QERExXD0yfqJ+lffpybpRp86w5H9x/C1t6OeWuXvJM2v46Dd85hpm9Mv+ptsDY2415UGF9vn82TxJwhvtZGZtib5A4l09bSolulZpSysCczO4sLj24xZNM0whNyJzpfdnYXSqWSj2q1x9bYgtiURE6EXGHB6b/zvH9RSdu1H4WuLoa9u6IwNiLrbgiJv86C1NwbYmhZWaplmqVu34OSnOGbWpbmKBMSybh0ldRN21Vl9Js0AMD068/V3i950QrSj5+mqJx5EISxvhEdfOtjbmDCo7hIfju6RnW12tzQBGsj9bnzDHX1qebizSoNN2rQ1dbhvQqNsDOxJDUzncthd1hw6m9SMtLyLV+cvG1L8+d7uUPKh9fPuXi1M+gkk18I3BaHfj17kpaWxo/Tp5OQmIifjw9//vorxi/c6Tj8yRO1ycgrVajA5AkTmPPXX8z96y9cnJ2ZOnEifi9kBT+JiGDcxInExsVhaWGBn68vi+fOxfGFrO8jx44xcepU1fOxz25W8/GAAXzyD+78nJ/ytauQkpDM8c17SYyNx9bFka6jP8bcJme4XmJsAvFP3yyAmZGWzp4lG0mIjkVHTxdrJ3vaf9qL8rWrFEqbX+XS49sY6xrQolzNnGNUQhQLT29T/Wg3MzDGUu0YlcG8U1t5z68hnzfsRnJ6Kpce32HXC4GJ/c+GZrbyro25gQmJ6SlcD7+nVqaolanhR2pSMud3HCY5LhErJztaD+uFqbUFAMlxCSRG557jZWVmcWrDXpJiE9DR1cHSyY5Ww3pSqkLhjfJ4W2ceXMdE35COfg2xeLbv+/XIatXdM80NTbAyVs+AM9TVp7qLDyvP552rEnL2fR9UaIytiSVpmelcfnyH+Se3kPyO9n0nQq5gqm9E54pNVBcwphxYpho2amloio1x7v78UPAFDHX1ae1dm37VW5OUnsrV8LusOJfbv6jkOCbtW0z/Gm2Y3mEY0cnx7Aw6oRoWWdSOh1zGTN+IbpWb5fQpJpxJ+5cQ+axPVkZm2JpYqMofvHMOQx192njXZUCNtiSlp3I5LFhtXtR1lw6iVCrpVaUlVkbmxKcmEfggiJUX8v9eC9uh4AuY6RvTp5o/VkbmhESHMWbXXCKeXbCxNjLD7oXzIy2FFp0rNsXV3I7M7CwuPb7NsC2/qc6nIGd4+MiG3bE0MiMpPYU7Tx/yxbaZGrMO/6v+P9/ZsiRSKF9nMichRJE7dOgQTZo0ISYmplACTM89fPgQV1dX1Xx5RSk1NRUvLy/WrFmjduODf5sdO3YwevRoLl++jI7Om11j+HrH7CJqVfH4qe0QroUFv7rgv4yvYxkazh5S3M0oVEeGzCZ2YOEPlS9OFgv/YMDaycXdjEK1uNs46s1693fjK0rHh84lISKiuJtRqEzt7FgSuKO4m1Go+tdoy6htfxR3MwrdtPbDmH54dXE3o1B92agH/dZMKu5mFKql3cfTedm4Vxf8F9nQdzKdlrz65mj/Jlv6/0izeXnnVv43O/DJ78XdhH/szP1rxd2EfNUsnf+0Nv91knkmxH/MwYMHSUxMpEKFCoSFhfHVV1/h5uZGw4YNi/y9DQwMWLZs2RvNJ1cSJSUlsXjx4jcOnAkhhBBCCCGE+O+RX4ZC/MdkZGQwduxY7t69i6mpKXXr1mXlypVvNc/Ym2jUqNE7eZ+i1LVr1+JughBCCCGEEOL/MRm2WbJI8EyIEqJx48Z57pTzT/j7++Pv718ILRJCCCGEEEIIIYTmmb+FEEIIIYQQQgghhPh/TjLPhBBCCCGEEEIIIUoQLRm2WaJI5pkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFECaJAhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCyN02SxbJPBNCCCGEEEIIIYQQQgMJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoQRQybLNEkcwzIYQQQgghhBBCCCE0kOCZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiBJEhm2WLJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAwmeCSGEEEIIIYQQQgihgcx5JoQQQgghhBBCCFGCaCFznpUkknkmhBBCCCGEEEIIIYQGCqVSqSzuRgghhBBCCCGEEEKIHFcf3ynuJuTLz8mzuJtQLGTYphBCFKIV53YXdxMKVe9qrVhwamtxN6PQfVy7I/EHjxR3MwqVWdOGxLR4r7ibUags920mKPxucTejUPk4eJAQEVHczShUpnZ21Js1uLibUaiOD53LlANLi7sZhWpss34khD8p7mYUOlMH++JuQpFICLlf3E0oVKZupYn9/Jvibkahspj5I78ErCjuZhSq0U16/+f2E//mfYRCIcM2SxIZtimEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmipZBcp5JEvg0hhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkShkLttliSSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJn4j/h0KFDKBQKYmNji7sphc7NzY0ZM2b84/ohISEoFAouXrxYaG0SQgghhBBCCCH+v5Bhm+Jf48SJEzRo0IAWLVqwe/fu4m6OEIXm7L6jnNx+kITYeGydHfDv+z6lvMu8st6Dm3dZOukP7FwdGTT1K9XyiIdhHF6/k7B7D4l7Gk3LPu9Rq3XjIuxBXhcOnCBw52GS4hKwcbKnSa8OuHi5v7Leo1shrJk6FxsXe/pN+kLttdSkFI5t3M3ts1dJTU7B3MaKxj3a4lHJp6i68UpKpZIFO7ax+dgREpKT8XVz56vuPSnj5KyxzsEL51myeycPIiPIzMrC1c6O3s1b0qZWnXfY8n9Gt35t9Nu2RLtsGbTMzYgf/AVZwSHF3aw8dm7ezpY1G4iJjsbVrTQDP/sE30p++ZaNjopm8awFBN+6TdjDx7T9oAMfDRusVubkkeNsWLGWsEePycrMxNHFmY5d36eJf7Mi64NSqWT+4sVs/vtvEhIS8C1fnq9HjqSMe8H/RwcOHWLuX3/x8PFjXJycGDJoEE0aNlS9Pm/RIhYsXqxWx9rKij1bt6qeHzx8mE1btxJ06xZxcXGsXLQIr7JlC7eDb6CSoyc9q7TE264UNsYWfLNzDkfvXSq29hTkxuFzXNt/iuS4RCwcbanZpTn2nqXyLRt+6z57ZqzMs7zTt4Mwd7BRPb9+8Aw3j5wnKSYefWNDSlf1plrHJmjrFs1pvFKpZP6SxWzeti132xvxxau3vcOHmLtwYe6299HHatseQERkJH/Mm8uJ06dJTUujtKsr47/6Gh8vLzIzM5n91wKOnzrFo7AwTIyNqVmtOsM++QRbGxsN7ypepFQqmb9iOZt37iQhMRFfb2++HvoZZdzcNNYJDglh7rJl3Lhzm7AnTxj5yWB6vv++WpnzVy6zfP16gm7f5ml0NNMmTKBx3XpF3JtcBq2ao1e3JgpDQ7LuPyB5wxaywyM0ljf5bBA6ZT3yLM+4doOk+UtU6zRo3Vzt9ez4BOLHTy7Utufn+qGzXN53kpS4BCycbKnTxR+HsvnvJx7fDGHnb8vzLO/83adYPNtP3DpxiSPL/s5Tpv8fY9D5l+0n5i1exIIlS9TqWFtZsWfzFtXzqOho/pg3l1OBgSQkJlK1UiVGf/45pVxcC7OLJYICGbZZkkjwTPxrLFq0iGHDhvHXX38RGhpKqVL5H2TEv0dGRga6urrF3Yxide3kefYs20ybD7vgUs6d8wdOsOqnuXz6yxjMbaw01ktNTmHrnBW4+5YjKT5B7bXMtHQs7WzwqVWFfSs2F3UX8rhx+iIBK7fRvG8nnMu5cSngNBunL2TA1C8xs7bUWC8tOYWd89dQurxnnj5lZWay/pcFGJmZ0OGzPphYmZMQHYuegX5Rd6dAy/buZtWBfXzbdwCl7OxZtGsHn/3+Gxu++wFjA4N865gbGzOgdRvc7B3R1dHm6JXLfL9sCZamptQpn3+Ap6RQGOiTee0G6UdOYDxyaHE3J1/HDh5m0Z/z+OSLoXj7lWfPtp1M+no8fyydh629XZ7yGekZmFuY06V3d/5en///i4mpKV16d8O5lCs6ujqcPXmGP376FQtLC6rUrFYk/Vi6ahWr1q5lwtixlHJ1ZeHSpQz94gs2rlqFsZFRvnUuX73K2O++Y/DAgTRp2JCAI0f45ttvWThrFn6+vqpyHu7uzP7tN9VzbS31gQgpKSlUqlCB5k2a8MPPPxdJ/96Eoa4+d6IesvPGCaa0HvzqCsXk3tnrBG7YR63urbDzcOHWsQvsn7WWjuMHYWJlrrFepwmfqO3L9E1zv9+7Z65ybksA9fq0w87Dmbgn0Rxfvh2Amp1bFEk/lq5exap165gwZgylXFxZuHwZQ78cycYVKwve9iZOZPCHA2nSoAEBR4/yzXcTWPjnLPzKlwcgPiGBgZ8NpXrlKsz8+WesLCx5+PgxpiYmAKSmpnLj1m0+6tuPsp6eJCQkMP3PPxg5dgzL5y8okr7+1yxdt45VmzYx4ctRlHJxZuGqVQwd8w0bFy7S+N2lpqXh4uhA84YN+HXevHzLpKSmUtbDg/Yt/flq0vdF2YU89Js1Qr9JfZJXricr8ikGLZtiMuQj4idPg7T0fOskLVoO2tqq5wpjI0y/+pyMi1fUymWFhZM466/cBdnKIunDi4LPXuPU+j3U7dEG+zIu3Dh6nt1/rqLzhE8L3E90mTgE3Rf2Ewam6t+nroE+XSYOUVtWVIEzKLr9BDw7Rk3/VfVc+4XvUqlUMmrcOHR0tJk+eQrGxsasXLeWISNHsn7pMgwNDYusz0LIsE3xr5CUlMS6dev49NNPadeuHUteuiKRn+PHj9OoUSOMjIywtLTE39+fmJgYAHbv3k39+vWxsLDA2tqadu3aERwcrKr7fKjjpk2baNKkCUZGRlSqVImTJ0++9nsolUp+/vlnPDw8MDQ0pFKlSmzYsKHANkdERNC+fXsMDQ1xd3dn5cq8V6Tj4uIYNGgQdnZ2mJmZ0bRpUy5dev0r8FlZWQwcOBB3d3cMDQ3x8vJi5syZhVJn8eLF+Pj4YGBggLe3N7Nnz1a99vwzXbduHY0bN8bAwIAVK1aQnZ3N999/j4uLC/r6+lSuXFkts/B1vouoqCh69OiBi4sLRkZGVKhQgdWrV6tenzdvHs7OzmRnZ6u1t0OHDvTr10/1fNu2bVSrVg0DAwM8PDyYOHEimZmZr/3Z/hOndh6iSuPaVGlSR5V1ZmZtydn9xwust+OvtfjWrYZLWbc8rzmVKU3zXh3xq1sVbZ13f43k7O6jVGhYg4qNa2HtZE/TXh0wtbLg4oFTBdbbu2QTPnWq4JhPlsaVI4GkJibTaXg/nMu5YW5jiUs5d+xKORVVN15JqVSy+uABBrRqQ9MqVfF0dua7fgNITU9nT+BpjfWqlfOiSeWquDs64mJrR4+mzfF0duHinTvvsPX/TPr+w6SuWEfm+ZKZ9QOwdd1mmrdpSYt2rXB1K8VHwwZjY2vL7q078i1v72jPR8MH06RVc4xMjPMtU6FKRWo3rIerWykcnZ1o37kTbh7uXL9yrUj6oFQqWb1uHQP69qVpo0Z4engwcdw4UtPS2L1vn8Z6q9evp1b16gzo0we30qUZ0KcPNatVY9X69WrldLS1sbG2Vj0sLdWD2m1bteLjAQOoWb16kfTvTZ0KvcaC039z+O7F4m5Kga4fPINn3UqUq1cZC0cbanZpgbGFGTePnC+wnqGpMYbmJqqH1gvBzIh7j7Ar44JHDV9MrC1wLu+Be/XyRN0PK5I+KJVKVq9fz4A+fWja8Nm2N2Zszra3v4Btb8N6alWrzoDevXO2vd6982x7S1etxN7WjgljxuDnUx4nR0dqVquGi3NOpq6JiQmzf/2VFk2b4laqFBV8fRk9/HOCbt4k/MmTIunvf4lSqWT1ls0M6N6DpvXr4+nmzsRRo3O+u4CDGuv5ennx+ceD8G/cBD0NFzTr1ajJkP4DaFq/flE1XyP9RvVI3RtAxuVrZIc9IXnFOhS6uuhVq6yxjjI5BWVCouqh61UWMjJIv3hZvWBWtlo5ZVJS0XYGuLr/FOXqVcG7fhUsHW2p09UfY0szgg6fLbCegakxRuYmqofWSxc9FArUXjcyNymyPhTlfgLyOUZZWKheC334kCvXr/HNyC/x9fHBrVQpvvliJCkpKew5cKCouiwEIMEz8S+xdu1avLy88PLyonfv3ixevBilUvPVoYsXL9KsWTN8fX05efIkx44do3379mRlZQE5wbiRI0cSGBjIgQMH0NLS4r333ssTXBk3bhyjRo3i4sWLlCtXjh49eqiCKa96j//9738sXryYOXPmcO3aNb744gt69+7N4cOHNba7f//+hISEcPDgQTZs2MDs2bOJiMhNS1cqlbRt25bw8HB27tzJuXPnqFq1Ks2aNSM6Ovq1Psvs7GxcXFxYt24d169f59tvv2Xs2LGsW7fureosWLCAcePGMXnyZIKCgpgyZQrjx49n6dKlauv6+uuvGT58OEFBQfj7+zNz5kymT5/OtGnTuHz5Mv7+/nTo0IHbt2+/9neRmppKtWrV2L59O1evXmXQoEH06dOH06dzAhhdunTh6dOnBAQEqNYXExPDnj176NWrFwB79uyhd+/eDB8+nOvXrzNv3jyWLFnC5MlFl76flZlJ2L0HeFT0UltepoIXD2/d01jv4qFTxEQ8pdEHrYqsbf9UVmYmT0Ie4eZXTm25m19ZHt8J0VjvypFAYiOiqNupeb6vB1+4jpNnaQ4s28zsYd+zeOx0Tm07mOd/9l169PQpUfFx1C6fm9Gjp6tL1bLluPxCML4gSqWSMzeCuP8knKply726gihQRkYGwbduU7lGVbXllWtU5cbV64XyHkqlkkvnLvDowUN8KxZNpuCjsDCioqOpXaOGapmenh5VK1fm8tWrGutdvnqVWi/UAahds2aeOqEPH9KqUyc6dO3KmAkTePj4ceF24P+hrMwsokLDcPJRHyrm5ONO5N2HBdbdNnUh676ZyZ6ZKwm7GaL2mn0ZF6JCw4kMyfmOEp7G8OhqMC5+noXa/udU2171l7a9SpUK3vauXcu77dWoyeVruXWOHD+Oj7cXX3/7LS06dqDnwIFs3ratwPYkJiWhUCgwMSm6QMB/xaPw8JzvrlpuNqyenh5VK1Tk8vXC2f+9a1rWVmiZm5F544VzwqwsMoPvoeNe+rXXo1e7BunnL0F6hvr6bW0w+34spt9+hVG/HmhZa874LwxZmVk8DQ3D5aX9hItPGZ68Yj+xefICVn71Gzt/W87jl/YTABlp6awZ+zurvpnBnllreBpaNAF2KNr9BDw7Rr3/Hh26dWXMxO/UjlEZ6TnZhvp6eqpl2tra6OjocPHKS8HR/wCFQlEiH/9fybBN8a+wcOFCevfuDUCrVq1ITEzkwIEDNG+e/w/tn3/+merVq6tlPvm+MGTlgw8+yLN+Ozs7rl+/jp9f7o+hUaNG0bZtWwAmTpyIr68vd+7cwdvbu8D3SEpK4tdff+XgwYPUqZMzj5GHhwfHjh1j3rx5NGrUKE+bb926xa5duzh16hS1atVStcvHJ3c+p4CAAK5cuUJERAT6+jmp29OmTWPLli1s2LCBQYMGveqjRFdXl4kTJ6qeu7u7c+LECdatW0fXrl3/cZ1JkyYxffp03n82T4a7u7sqCPVidteIESNUZZ63/+uvv6Z79+4A/PTTTwQEBDBjxgxmzZqlKlfQd+Hs7MyoUaNUZYcNG8bu3btZv349tWrVwsrKilatWrFq1SqaNcuZo2j9+vVYWVmpnk+ePJlvvvlG1VYPDw8mTZrEV199xYQJE/J8JmlpaaSlpakte/6dvK7khCSU2dkYm5upLTc2NyUxLiHfOlFhERxcs41+Ez5H64U09pIi5VmfXr7iaWRuSpKGPsWER3J0/S66j/tUY5/iIqMJDQrGp04V3h/5IbFPnrJ/2Rays7Ko26lohi69SlR8HABWpurfn5WZGeFRUQXWTUxJps2Yr0jPyERbS8HXPXpRy6d8gXXEqyXExZOdlY2FlXomlbmlBTHRMW+17qTEJAZ27k1GegZa2lp8MmJoniBdYYl6tv1YW6n/kLO2tCQsPFxzvejovHWsrIh64eKKX/nyTBw3jtKurkTFxLBw6VIGfvopa5ctw8Jc85AhUbC0xGSU2UoMTdWzFw3MjEmJzz+bxdDchDo9W2NdypGszEzunr7K3t9X4T+it2r+I/fqvqQmJLN7+jKUSlBmZ+PVoCoV/OsWST+iojVte1aEPXnFtvdSBqO1paXatvcoLIyNW7fSq0tXBvTuzbUbQUz7fSa6urq0a5X3YlBaWhp/zp9Hq+bNMTHOPytU5Hr+Wef9HiwIi9A8P1hJpjDNOZfITlA/f8hOSEDLUvM0EC/SLuWCtpMDyavVR39k3g8la+U6siIi0TI1zRkOOuJTEqb+hjI5uXA68JLU5/sJM/Xt2dDMmJT4xHzrGJmbUL9XW2xKO5KVmcWdU5fZOWM5bUf2xbFsTgDRwsGahv06YOVsR0ZKOlcPnmbbL0t4/3+DMLe3LvR+FOV+ws+nPBPHjqW0y7Nj1PJlDBw6hLVLlmJhbo5b6dI4Ojjw5/z5jB01CkMDA1auW0tUdDRPX3HuJcTbkuCZKPFu3rzJmTNn2LRpEwA6Ojp069aNRYsWaQyeXbx4kS5dumhcZ3BwMOPHj+fUqVM8ffpUlb0SGhqqFjyrWLGi6m9HR0cgZ2ilt7d3ge9x/fp1UlNTadFC/Ud9eno6VapUybdOUFAQOjo6VH9hmIy3tzcWL6Qqnzt3jsTERKyt1Q+EKSkpasNOX2Xu3Ln89ddf3L9/n5SUFNLT06lcufI/rhMZGcmDBw8YOHAgH3/8sapOZmYm5i/9GHuxf/Hx8Tx+/Jh69dQnna1Xr16eoagFfRdZWVn8+OOPrF27lkePHqkCW8YvnGz36tWLQYMGMXv2bPT19Vm5ciXdu3dXzaNw7tw5AgMD1TLNsrKySE1NJTk5GaOX5m+YOnWqWkARYMKECXi2r13g55ifl6/fKPNZBjkZgJtnLaNR59ZYO+adu6kkyXNVSqnM90pVdnY22+eupu57LbBysNW4PmW2EiNTE1oO+AAtLS0c3F1IjI0ncOfhdxY823XmFFNXrVA9/23IMCBnqIRaW5X5LHyJkb4BK8d+S3JaKoE3b/DbhnU429hSrZxXgfXeJb2mDTEakTu/VOLYSWReDSrGFr2JvP9Vb3ul1NDIkN/+mkVKSgqXz19k0ewF2Ds5UqFKxVdXfoVde/cyZdo01fMZP/0E5NMLDf9Hal56/eU69Wrn7qM8gYq+vnTq3p3tu3bR+9lFDPEWXneHDpjbW6v9sLXzcCEpJp5r+0+rgmfht+5zec8JanVvha2bE/GRMQSu38elnceo1Obth9Dt2reXKdOnq57P+PHZtpdnv/YPtr2X/u+ys7Mp7+XF0GcX+rzLlePuvRA2bt2aJ3iWmZnJ2O8nkp2dzddfjHzTbv2/sOvgAaa8MIXGjEk/APntN/49k47rVquMUbf3VM8T5y3RUFJBzj/Xq+nVrkHW43CyQtUzuzKDbqn+zg57QmLIfczGf4VezaqkHTr2hi1/Q/nspzXtKCwcbFQ3BgCw93AhMSaeK/tOqoJndh4u2Hm45JYp48rmKQu4diiQut3efpTCu9xP5HuM6tmD7bt307tbN3R0dPj5+0lM+vknmrZri7a2NjWrVaPus8QDIYqSBM9Eibdw4UIyMzNxds69e51SqURXV5eYmJg8c7UAr5wssn379ri6urJgwQKcnJzIzs7Gz8+P9HT1iUdfnMz++Y79eaCtoPd4XmbHjh1q7QbN2UnPh6EWdNDJzs7G0dGRQ4cO5XntxSBbQdatW8cXX3zB9OnTqVOnDqampvzyyy+qIY7/pM7z/i5YsECVNfec9kuZRMb5XD1+uc/5HXwL+i6mT5/Ob7/9xowZM6hQoQLGxsaMGDFC7fts37492dnZ7Nixgxo1anD06FF+/TV3MtLs7GwmTpyolhX3nEE+E7+PGTOGkSPVT+j19fVZfzUgT1lNjEyNUWhpkRgXr7Y8OS4BY3PTPOXTU1IJu/uA8JBH7FqyEXi23SiV/ND7C3qN+RR33+Id+mf4rE9JsepXiZPjEzEyyzvsJj0ljSf3HhJx/zEHlufc7e95n6YP+IYuoz+iVHlPjC1M0dLWVpvjw8rRjqS4BLIyM9/J3G4NK1bGzy13qEV6Zs7wj6j4eGzMLVTLYxLisX4pG+1lWlpauNrlBEC9XEsREhbGkt07S1TwLP3kGTJvvPDj4unrDQ0vTqbmZmhpaxH70jD2uJg4LCwt3mrdWlpaOLrkzLHnUbYMD+8/YOPKtYUSPGtYv77aZMnpGTnb1tPoaGxeuMtgdGwsVlaahxVZW1mpstZUdWJisCogQ8PQ0JAyHh48eFjwkCFRMH0TIxRaijxZZqkJSXmy0Qpi6+7M3TO5Q5gubDtMmZp+lKtXGQBLZzsy0zI4uWonFVvVQ6H1dkGRhvXq4+eTz7YXFY2N9YvbXsHb0csZjgDRMbFqdWysrXF/6a6P7qVLc/CI+nQWmZmZfDNhAo/Dwpjz2wzJOtOgYe06+Hl5q56rvruYGGxeuMgaHRuL1Vvu/96VjKvXSbj/IHeBTs45pJapKVkv3EhIy9QEZUL+mVpqdHXRq1qJlF2a5+FSSc8gKywcLduiu7OrwfP9RJx621MTkvNkoxXEzt2ZO2euaHxdoaXAtrQT8RGFc9x+l/uJlxkaGlLGXf0Y5ePlxaqFi0hMTCQjMxNLCwv6Df6E8l4l5xyqsGj9Px4iWRJJ8EyUaJmZmSxbtozp06fTsmVLtdc++OADVq5cyWeffZanXsWKFTlw4ECezCDIGQ4TFBTEvHnzaNCgAQDHjr35FaaC3qN8+fLo6+sTGhqa7xDN/Pj4+JCZmcnZs2epWbMmkJN1FxsbqypTtWpVwsPD0dHRwa2A244X5OjRo9StW5chQ3LvyPOqrLVX1bG3t8fZ2Zm7d++q5hB7HWZmZjg5OXHs2DEavnCb6hMnTqg+g9dx9OhROnbsqBram52dze3bt9WGvBoaGvL++++zcuVK7ty5Q7ly5aj2wrwgVatW5ebNm3h6vt48Mvr6+m88TPNl2jo6OLq7cvfKTbxrVFItv3v1JuWqVcj7noYGfPLT12rLzu47Rsi123QeMQAL28JPzX9T2jo62Ls5E3LtNmWr52Zxhly7jWcV3zzl9Q316TdZPQh58cBJHgTdof1nfTC3zQkUOJd1I+jURZTZ2SieBdBinjzF2ML0nd0UwdjAQO0OmkqlEmszc04HXcfLNSdLJCMzk/O3bzHsvQ80rSZfSpSkF/HNKd5YSirZKZqHX5REurq6lClXlotnL1C7YW5G68Wz56lVv06hvpdSqSQjI+PVBV+DsZGR2t3JlEol1lZWnA4MxLtcTkA8IyOD8xcvMmyw5rtNVvTz4/TZs/Tq1k217HRgIBX9NM/Nlp6eTsj9+1Sp+PZBwP/PtHW0sS7lSFjQPUpXzv0B9/jGPVwrvv5FjeiH4Ri+MOw9Mz0zz8Wk5wEzJcq3zijSuO2dPau+7V26xLBPPtG4noq+vpw+G0ivF6Z/OB0YSEXf3G2vkl8F7oc+UKt3/+EDHO3tVc+fB85CHz1k3oyZMpS4ABq/u/Pn8X52LpORkcH5K5cZNnBgcTXzzaSlk52mfgEgOy4eHS9Psh49m/dKWxudMu6kbNv1ytXpVakIOtpkBF549Xtra6Ntb0dmcMg/aPjr0dbRxqaUI4+C7uJWJTfw+SjoLqUrvf5+IupBOEb5XGR9TqlUEvUwHCvnwhml8C73Ey9LT08nJDT/Y9TzuRBDHz4g6OZNPv23bOfiX0uCZ6JE2759OzExMQwcODDP8L/OnTuzcOHCfINnY8aMoUKFCgwZMoTBgwejp6dHQEAAXbp0wcrKCmtra+bPn4+joyOhoaF88803b9y2gt7DxsaGUaNG8cUXX5CdnU39+vWJj4/nxIkTmJiYqM0B9pyXlxetWrXi448/Zv78+ejo6DBixAi1DLfmzZtTp04dOnXqxE8//YSXlxePHz9m586ddOrUSW1IpCaenp4sW7aMPXv24O7uzvLlywkMDMTd3f2t6nz33XcMHz4cMzMzWrduTVpaGmfPniUmJiZPhtaLRo8ezYQJEyhTpgyVK1dm8eLFXLx4Md87jRbUvo0bN3LixAksLS359ddfCQ8PVwueQc7Qzfbt23Pt2jVVoO25b7/9lnbt2uHq6kqXLl3Q0tLi8uXLXLlyhR9++OG12/KmardpzJbZK3DyKIVzWTcuHDxB3NMYqjXL+eF/YM02EqLj6DSkNwotLexc1e8uaWxmio6ertryrMxMIh+Gq/5OiI4jPOQhegb6BQ6NLCzVWzVg57y1OLi74ORZissBp0mIiqVS05xU/CPrdpEYE0ebT7qj0NLC1sVBrb6RmTHaujpqyys1rcP5/cc5uPJvqrSoR0z4U05vO0jVFupDft8lhUJBj6bNWLx7J652drja2rNk904M9PTwr5GbgTlhyUJsLSz5rFNOVuPi3TspX9oNZxtbMrMyOX71CjtOneKbHq8feC4uClMTtOxsUDybVFnLJSezNjs6FmVMbDG2LFfHru8xY/I0PL3K4uXrw97tu3gaEYl/hzYALJ+/mKjIKEaMy50n8e7tnIsBqSmpxMfGcfd2MLq6Ori65QyJ2bBiLZ5eZXFwdiQzI5NzpwI5tOcAg0fmPf4UBoVCQY+uXVm8YgWlXF1xdXFh8fLlGOjr0+qF6QC+/eEH7Gxs+OxZQK17584MGjaMJStX0rh+fQ4dO8bps2dZ+ML8kTNmzaJB3bo42NsTExPDwmXLSEpKol3r1qoycfHxhD95QuTTpwDcDw0FcrIGbKzffZDeUFcfF/PcfZeTmQ1lbVyIT03iSeLbzWVXmMo3rcmxpX9jXdoRW3dnbh2/QFJMPF4NcubGO7clgOTYBBr07wDk3J3TxMocCydbsjKzuHvmKvcv3KTxx7kZ0K4VPLl+8AxWrvbYuDmTEBnDxe1HcK1QNs/d9gqDQqGgR5cuLF65glIuLjnb3ooVOdte8xe2vcmTsbO14bNBOT+Uu3fuzKDhw1myaiWN69Xn0PFjnD53loV/5m57Pbt04cOhQ1i0fDktmjThWlAQm7dtY9yzOUszMzP56tvx3Lx1i99+/ImsrCzVHEbmZmZqGegiL4VCQY9O77F4zWpKOTvh6uzM4tVrcr67Jk1V5b79+WfsbKz57MOcQENGRgZ3n/2PZ2RkEBn1lJvBwRgZGOD6bPREckoKD16YtP1ReDg3g4MxNzXFwa5op5FIO3wcgxZNyH4aRVbkUwxaNEGZkUH6uYuqMka9upIdF0fq9j1qdfVqVyfjyvV85zAz6NiGjKtBKGNiUZiaYNCyKQoDfdLPnCvS/vg1r83hxVuwKe2EnYczN49eIDEmDu+GORd0AzcfICk2gcYDOgFw9cBpTKzNsXS0JTsrizunrxBy4QbNPumsWuf57Yexc3fBzM6KjNQ0rgWcIerBE+p2b51fE95aUe4nZsyeRYO69XCwtyMmJjb3GPXC0O79AQFYWFjgYG/PnbvBTP/jDxrVr0/tGq9/4V2If0KCZ6JEW7hwIc2bN88TOIOczLMpU6Zw/nzeW8CXK1eOvXv3MnbsWGrWrImhoSG1atWiR48eaGlpsWbNGoYPH46fnx9eXl78/vvvNG7c+I3aVtB7QM4E+nZ2dkydOpW7d+9iYWFB1apVGTt2rMZ1Ll68mI8++ohGjRphb2/PDz/8wPjx41WvKxQKdu7cybhx4/jwww+JjIzEwcGBhg0bYv/ClduCDB48mIsXL9KtW7ecg1+PHgwZMoRduzRfwXudOh999BFGRkb88ssvfPXVVxgbG1OhQgVGjBhRYHuGDx9OfHw8X375JREREZQvX56///6bsmXLvlZ/AMaPH8+9e/fw9/fHyMiIQYMG0alTJ+Li4tTKNW3aFCsrK27evEnPnj3VXvP392f79u18//33/Pzzz+jq6uLt7c1HH3302u34J3zrVCUlMYkjm/aQGBuHrYsjPb76BItnGVeJsfHER73Zj8OEmDgWjP1F9fzkjoOc3HGQ0j6e9B0/rFDbnx/vWpVJSUzm5Nb9JMXGY+PswPsjP8TcJictPykunvjo2Ddap5m1BV1Gf0zAqm0s/d9vmFiYUbVlfWq2bVz4HXgDfVu2Ii0jg59WryIhOQlfdw/+GPaFWoZaeHS0WuZIaloaP61eSURsDPq6upR2cOT7AQNpWb1Gfm9RoujWqYHx6OGq5yb/y/nRm7JsDanL1xZXs9TUb9qI+LgE1i5bRUxUNKXc3Rj/0/fYOeTsI6Ojool8afLskR/lBsGCb97myP5D2DrYsWBtzt2C01JTmffbLKIin6Knr4dzKVe++N9o6jd9vczif6Jfz56kpaXx4/TpJCQm4ufjw5+//qp29T/8yRO1IR2VKlRg8oQJzPnrL+b+9Rcuzs5MnTgRvxdumPMkIoJxEycSGxeHpYUFfr6+LJ47F0eH3GD1kWPHmDh1qur52O++A+DjAQP45MMPi6zPmnjblubP93IvwgyvnzPf6M6gk0w+uFRTtXfOvXp50pJSuLTzGCnxiVg42tJsSDdMrHPOYVLiE0mKyR2mn52ZxdnNB0mOTUBbVwcLRxuaDemqdifNiq3rg0LBhW1HSI5NwMDECJcKnlTt0LjI+tGvx7Nt77dfc7e9adPVt72IJ2i9MGS0kl8FJn87gTkL/2LuwoW4ODkx9bvv1IYj+/r4MO2Hyfw5fx5/LVuKk4MDX342jNYtckYWRERGcuT4cQB6DlTfzubOmEl1DXPGilz9unYlLT2NH//8k4SEBPy8vflz6lT17y4yQu27i4yKoteQT1XPl2/YwPING6hasSLzf8mZi/H6rVsM/mq0qsxv8+YB0K5FC74blbu8KKQdOIxCVxfDzh1RGBmSdf8BiXMWQlru1BxalhbPJhzNpWVrg04ZdxJn/5XverUszDHu1wOFsRHKxCQy7z8g4dfZRX4hqEx1X9ISU7iw4wjJ8YlYOtni/1kPTK0tAEiOSyQxOnc/kZWZxZmN+0mKTUBHVwcLJ1v8h3bHtULueXJ6chrHVu4gOT4RPUN9rF0daDeqH3buzi+/faEpqv3Ek8hIxn3/wjGqfHkWz1E/Rj2NiuK3WX8S9WyIclt/fz7qmzcx4b/g//OdLUsihVKpfL3ZFoUQQrzSinO7i7sJhap3tVYsOLW1uJtR6D6u3ZH4g0eKuxmFyqxpQ2JavPfqgv8ilvs2ExR+t7ibUah8HDxI+Jfe+U4TUzs76s3SPJz03+j40LlMOVByAnOFYWyzfiSEPynuZhQ6U4fXu3j4b5MQcr+4m1CoTN1KE/v5m4/0KMksZv7ILwErXl3wX2R0k97/uf3Ev3kf8SCmZE6f4Wrp8OpC/0GFn+8thBBCCCGEEEIIIcR/hAzbFEIIIYQQQgghhChB3vamMKJwSeaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmiJXfbLFEk80wIIYQQQgghhBBCCA0keCaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiBFHIsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmikLttliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQRWL27Nm4u7tjYGBAtWrVOHr0aIHlDx8+TLVq1TAwMMDDw4O5c+fmKbNx40bKly+Pvr4+5cuXZ/PmzUXVfECCZ0IIIYQQQgghhBAlii7aJfLxptauXcuIESMYN24cFy5coEGDBrRu3ZrQ0NB8y9+7d482bdrQoEEDLly4wNixYxk+fDgbN25UlTl58iTdunWjT58+XLp0iT59+tC1a1dOnz79jz/vV5HgmRBCCCGEEEIIIYQodL/++isDBw7ko48+wsfHhxkzZuDq6sqcOXPyLT937lxKlSrFjBkz8PHx4aOPPuLDDz9k2rRpqjIzZsygRYsWjBkzBm9vb8aMGUOzZs2YMWNGkfVDgmdCCCGEEEIIIYQQ4pXS0tKIj49Xe6SlpeVbNj09nXPnztGyZUu15S1btuTEiRP51jl58mSe8v7+/pw9e5aMjIwCy2haZ2GQu20KIUQh6l2tVXE3odB9XLtjcTehSJg1bVjcTSh0lvuKdq6H4uDj4FHcTSh0pnZ2xd2EQnd8aN65SP7txjbrV9xNKHSmDvbF3QTxmkzdShd3Ewqdxcwfi7sJhW50k97F3YRCJ/uJkkNbWTLvtjl16lQmTpyotmzChAl89913eco+ffqUrKws7O3Vtyt7e3vCw8PzXX94eHi+5TMzM3n69CmOjo4ay2haZ2GQ4JkQQhSiv68WPPnlv00Hvwbce/qouJtR6NxtnP9z/XK3cSb+wOHibkahMmvWiLUX9hV3MwpVtyotWBK4o7ibUaj612jLlANLi7sZhWpss37UmzW4uJtRqI4PncvuoJPF3YxC18qnDglBN4u7GYXK1MeL6YdXF3czCtWXjXqQcPFycTejUJlWrsiCU1uLuxmF6uPaHVkWuLO4m1Go+tZoU9xN+M8ZM2YMI0eOVFumr69fYB2FQj0QqFQq8yx7VfmXl7/pOt+WBM+EEEIIIYQQQgghxCvp6+u/Mlj2nI2NDdra2nkywiIiIvJkjj3n4OCQb3kdHR2sra0LLKNpnYVB5jwTQgghhBBCCCGEKEmys0vm4w3o6elRrVo19u1TH0mwb98+6tatm2+dOnXq5Cm/d+9eqlevjq6uboFlNK2zMEjmmRBCCCGEEEIIIYQodCNHjqRPnz5Ur16dOnXqMH/+fEJDQxk8OGd6hDFjxvDo0SOWLVsGwODBg/nzzz8ZOXIkH3/8MSdPnmThwoWsXp07nP3zzz+nYcOG/PTTT3Ts2JGtW7eyf/9+jh07VmT9kOCZEEIIIYQQQgghhCh03bp1Iyoqiu+//56wsDD8/PzYuXMnpUvn3BglLCyM0NBQVXl3d3d27tzJF198waxZs3BycuL333/ngw8+UJWpW7cua9as4X//+x/jx4+nTJkyrF27llq1ahVZPyR4JoQQQgghhBBCCFGSPJsk/79gyJAhDBkyJN/XlixZkmdZo0aNOH/+fIHr7Ny5M507dy6M5r0WmfNMCCGEEEIIIYQQQggNJHgmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQoiT5Dw3b/C+QzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIkiRbhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKLOLuwXiBZJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKOVumyWJZJ4JIYQQQgghhBBCCKGBBM+EKEQ3b95k6tSppKWlFXdThBBCCCGEEEIIUQgkeCZEIUlISOC9997D3d0dfX39Qluvm5sbM2bM+Mf1Q0JCUCgUXLx4sdDaJIQQQgghhBCiCGUrS+bj/ymZ80wUiRMnTtCgQQNatGjB7t2737j+d999x5YtW/5VAZ9+/frx0Ucf0b179+JuiviXObE7gENb95AQE4u9qxMdBnTHo3y5fMveC7rNjuUbiHwUTnp6OpY21tRu2ZCG7VvmW/7isTOs/G0+vjUq0/+bz4qsD9s2bWXDqrVER0VR2t2NwcOH4le5osbyly9cYv4fs7l/LwRrGxu69OxG2/c6qF4f/dkXXLlwKU+9GnVqMWnaVACSk5JZtmARJ44cIzYmljLlPBk84jO8fLxLZJ8ANq/dwPbNfxP5JAIzC3MaNG7IgMEfo6evB8CVi5fYsGott2/cJjoqim+nfk/dhvULpT+vS6lUsmDHNjYfP0pCcjK+bu581a0nZZycNNY5eOE8S/bs4kFkBJlZWbja2dG7WQva1KrzDlue68zeIxzbdoDE2DhsXRxp3fcD3Hw88y17/0Ywe1dt5enjcDLSMrCwtaJ6s3rUbdtUVSYrM4sjW/dy8fBpEmJisXa0p2XPjpStXP5ddYlz+45zemcAibHx2Do70Lx3J1y9PV5Z7+Gte6z4YRa2Lg4MnDJKtfxm4GVO/L2fmCdPyc7KxtLehpptGlOhfvWi7IaaG4fPcW3/KZLjErFwtKVml+bYe5bKt2z4rfvsmbEyz/JO3w7C3MFG9fz6wTPcPHKepJh49I0NKV3Vm2odm6CtW7JOeSs5etKzSku87UphY2zBNzvncPRe3n1eSXV05wEObtlFfEwsDq7OvD+wJ2V8vfItG3z9FtuWrePJozAy0tKxtLWmrn8TmnTwf8etVqdUKpm/ZjWb9+4lISkR37Ll+PqTwZQplf82CBAcGsrcVSu5ERxMWGQEIz8cSM8OHfOUi4iK4o9lSzhx/jypaWmUdnJm/GfD8PHMfz9UWK4dOsPlPSdIjkvA0smOOt1a4Vi2dL5lH9+8x/bpS/Ms7zpxKBaOtgDcO3+dC7uOEh8RTXZWNuZ2VlRoUZdydSoVaT9eRalUMn/DejYf2E9CYiK+Zcvy9YcfUcbVVWOdzQf2s+PIYYIfPADAx92DIT164OdZ9l01W+XCgRME7jxMUlwCNk72NOnVARcv91fWe3QrhDVT52LjYk+/SV+ovZaalMKxjbu5ffYqqckpmNtY0bhHWzwq+RRVN9Sc3XeMUy8co1r07kQp7zKvrPfg1l2WPztGfTxltGr5jcDLHP97n9oxqnabxlSoX6MouyFEgUrWmYT4z1i0aBHDhg3jr7/+IjQ0lFIFnIj8V2zatKm4m/Cvk5GRga6ubnE3o1hdPH6Gvxev4b2Pe+Hm7cmpvUdYOHkmo2Z8j6WtdZ7yevr61GvdFMfSLugZ6HMv6DYb5y1HT1+f2i0bqZWNiYhi+9L1uPsU7Ynh4f0BzJs5i6Fffo5vRT92btnG/0Z9w/wVi7FzsM9TPvxxGONHjaF1+zZ89e1Yrl2+yqzpMzG3sKB+k4YAfDtlIhkZmao68XFxDOn/MQ2a5PZxxo/TCLl7j9HfjsHaxoYDe/Yx5vPRzF+5CBtb2xLXp4N79rNo7gJGjvkKnwq+PAp9wPTJPwPwyedDAUhNScXdswwt2rTih3HfvVUf/qll+/aw6uB+vu3Tn1L29izatYPP/viNDRMmYWxgkG8dc2NjBrRqg5u9A7o62hy9coXvly/F0tSMOuV932n7r5w4x66lG2k3sBulvDwI3H+MFT/O5rPp/8PCxipPeT19PWr5N8ShlDO6+nqE3gzm77/WoKevR/XmOYHLA2u3celYIB0H9cTGyZ47l4JYPX0BH38/Ekd3zT/WCsv1UxfYv2IL/v0/wKWcOxcOnmDtL/P5+KevMbex1FgvNTmFbXNX4eZblqS4BLXXDIyNqNuhOdZO9mjraHPnwnV2zF+DsZkJHhULJwBdkHtnrxO4YR+1urfCzsOFW8cusH/WWjqOH4SJlbnGep0mfIKeQW52t76pkervu2eucm5LAPX6tMPOw5m4J9EcX74dgJqdWxRdZ/4BQ1197kQ9ZOeNE0xpPbi4m/NGzh87zeZFq+jySV/cvctyYk8Acyf9ypg/pmCVz3FL30CfBm2a4+Tmip6+HneDbrNuzhL09fWp69/43XfgmaWbN7Hq761MGP45pZycWbh+HUMnfMvG2bMxNjTKt05qWhouDg40r1ePXxctzLdMfGIiA7/5muoVKjBz/ASszM15GB6OqbFxUXaH4MCrnFy7m/o922LvWYqgI2fZ9fsKun43FBNrC431uk76TO1/ysA0t536xoZUadMQCwcbtLW1uX/lFoeXbsHQzBhX36INBBZk6d9bWbVjOxM+HUopR0cWbtrI0MmT2PjbTIwNDfOtc+7aNfzr1qeiVzn0dfVY+vdWPpv8A+um/4qdVd7ttqjcOH2RgJXbaN63E87l3LgUcJqN0xcyYOqXmFlr3p+nJaewc/4aSpf3JClefX+elZnJ+l8WYGRmQofP+mBiZU5CdKza91qUrp+6wL4VW2jVvzOu5dw5f/AEa36Zzyc/ffPKY9Tfc1fh7luWxJeOUYbGRtTr0AKbZ8eo2xeusW3+GozMTCnzDo5RQuRHhm2KQpeUlMS6dev49NNPadeuHUuWLFF7fcmSJVhYWKgt27JlCwqFQvX6xIkTuXTpEgqFAoVCoVpHaGgoHTt2xMTEBDMzM7p27cqTJ09U6/nuu++oXLkyy5cvx83NDXNzc7p3705CQu4OOS0tjeHDh2NnZ4eBgQH169cnMDBQ9fqhQ4dQKBTs2bOHKlWqYGhoSNOmTYmIiGDXrl34+PhgZmZGjx49SE5OVtVr3LgxI0aMUD1fsWIF1atXx9TUFAcHB3r27ElERESBn11ERATt27fH0NAQd3d3Vq7Me5U9Li6OQYMGYWdnh5mZGU2bNuXSpde/Wp2VlcXAgQNxd3fH0NAQLy8vZs6cWSh1Fi9ejI+PDwYGBnh7ezN79mzVa8+Hj65bt47GjRtjYGDAihUryM7O5vvvv8fFxQV9fX0qV66slq34vN6mTZto0qQJRkZGVKpUiZMnT6rKREVF0aNHD1xcXDAyMqJChQqsXr1a9fq8efNwdnYmOztbrb0dOnSgX79+qufbtm2jWrVqGBgY4OHhwcSJE8nMzKQoHdm2jxpN61OreUPsXZzo+GF3LKwtObnnUL7lnT1KUaVBLRxKOWNlZ0O1RnXwquzLvaDbauWys7JZNXMBLbt1wMr+7QJJr7Jp7Xr827WmdYe2lHIrzeARn2FrZ8f2zX/nW37Hlm3Y2dsxeMRnlHIrTesObWnZtjUbVq9TlTE1M8PK2kr1uBB4DgN9Axo2zQmepaWlcezwEQYO/YQKlSvh5OJMn4H9cXB00Pi+xd2noKvX8K3gR5OWzXBwdKBarRo0btGUWzduqcrUqFOL/oMGUr9xw7fuwz+hVCpZfXA/A1q1oWmVqng6OfNd3wGkpqezJ/C0xnrVynnRpHIV3B0dcbG1o0fTZng6O3Mx+M47bH2OEzsOUrVJHao1rYutswNt+nXGzNqSwH1H8y3v6O5KxXrVsXN1xNLOmkoNauJZ0Yf7N4JVZS4dO0PDTi0pV8UXK3sbarZsgGclH47vOPhO+nRm12EqNa5F5Sa1sXG2p0Wf9zCztuDCgeMF1tu9aD3l61TF2TNv5knp8p541aiIjbM9lvY21GjVEDtXRx7cvFdU3VBz/eAZPOtWoly9ylg42lCzSwuMLcy4eeR8gfUMTY0xNDdRPbS0ck9lI+49wq6MCx41fDGxtsC5vAfu1csTdT+sqLvzxk6FXmPB6b85fPdicTfljR3auofazRtSp0UjHFydeP+jXljaWHF8d/7/Dy4epanWsDaOpZyxtrelRuO6eFepQPD1m++45bmUSiWrt/3NgC5daVqnLp6lSzPx8xGkpqWx+8gRjfV8y5bl8/4D8G/QED2d/C/+Ld20EXsbGyYM/xy/cuVwsrenZqVKuDg6FlV3ALi87yRe9avi3aAalo621O3WGhNLc64fPltgPUNTY4zMTVWPF/+nnLzcca/ig6WjLWZ2VlRoVhsrZ3vC74QWaV8KolQqWb1zBwPee5+mtWrhWaoUE4d+lvPdHTumsd4Pwz+ni78/Xm7uuDk7879PPkGpVHLmytV32Ho4u/soFRrWoGLjWlg72dO0VwdMrSy4eOBUgfX2LtmET50qOOaTnXvlSCCpicl0Gt4P53JumNtY4lLOHbtSmjPGC9PpXYeo3LgWVZ4do1o+O0adf8Uxatei9fjWqYqzp1ue10qX98T7hWNUzVaNnh2j7hZRL0oopbJkPv6fkuCZKHRr167Fy8sLLy8vevfuzeLFi1G+wT9Zt27d+PLLL/H19SUsLIywsDC6deuGUqmkU6dOREdHc/jwYfbt20dwcDDdunVTqx8cHMyWLVvYvn0727dv5/Dhw/z444+q17/66is2btzI0qVLOX/+PJ6envj7+xMdHa22nu+++44///yTEydO8ODBA7p27cqMGTNYtWoVO3bsYN++ffzxxx8a+5Gens6kSZO4dOkSW7Zs4d69e/Tv37/Avvfv35+QkBAOHjzIhg0bmD17tlrATalU0rZtW8LDw9m5cyfnzp2jatWqNGvWLE/7NcnOzsbFxYV169Zx/fp1vv32W8aOHcu6deveqs6CBQsYN24ckydPJigoiClTpjB+/HiWLlUfEvD1118zfPhwgoKC8Pf3Z+bMmUyfPp1p06Zx+fJl/P396dChA7dvqweDxo0bx6hRo7h48SLlypWjR48eqsBWamoq1apVY/v27Vy9epVBgwbRp08fTp/O+bHfpUsXnj59SkBAgGp9MTEx7Nmzh169egGwZ88eevfuzfDhw7l+/Trz5s1jyZIlTJ48+bU+138iMyOTR8H3KVdZPTOnXCVf7t8M1lBL3aO7oYTcDMbDV32Y57712zA2M6Vm8waF1t78ZGRkcPvmLarWVB/qVbVmdYKuXsu3TtDVa3nKV6tVnds3bmoMVu7ZvotGzZtg8OyKclZmFtlZ2ejp6amV09PX59rltzsRLqo++VaqwO2bt7h5PQiAsEePCTx5mpp1a71VewvTo6inRMXHU9sndziinq4uVcuW4/Ld1zthVSqVnLkRxP0nT6j6jofDZGZmEnbvAWUqqg9T8azoQ+it1wsKhd17wINbd3Ern9v2zIxMdF7KktXV0yX0xuv9n76NrMxMwu89xN1P/X/c3c+Lh7dDNNa7fPgMMU+iaPB+/kO6X6RUKgm5eovo8EhKvcZQ0LeVlZlFVGgYTj7q7+Xk407k3YcF1t02dSHrvpnJnpkrCbsZovaafRkXokLDiQx5DEDC0xgeXQ3Gxa/4MmT+azIzMnkQHIJXZT+15V6V/bh34/WC5Q/v3ufejdt4+hVf9sijJ0+IiomhduXKqmV6urpU9fPl8o2gt1r3kTNn8PH05Ouff6RFvz70/OJzNu/d85YtLlhWZiZPQx/jUl59mJxL+TI8CX5QYN1Nk+axfNQ0tv+6lMc3NO8nlUolj4LuEvckSuNQ0HfhUUQEUbGx1K6YO3RUT1eXquXLc/nW6wdkU9PSyczMxNzEpCiama+szEyehDzC7aX9uZtfWR7fCdFY78qRQGIjoqjbqXm+rwdfuI6TZ2kOLNvM7GHfs3jsdE5tO5jnonFRyMrMJOzeQ9z91Idte7ziGHXp8Glinjyl4fuvHr6tVCq5pzpGvXooqBBFRYZtikK3cOFCevfuDUCrVq1ITEzkwIEDNG+e/w7/ZYaGhpiYmKCjo4ODg4Nq+b59+7h8+TL37t3D9dmcBsuXL8fX15fAwEBq1MgZA5+dnc2SJUswNTUFoE+fPhw4cIDJkyeTlJTEnDlzWLJkCa1btwZygj779u1j4cKFjB6dO9b+hx9+oF69egAMHDiQMWPGEBwcjIdHzsl+586dCQgI4Ouvv863Hx9++KHqbw8PD37//Xdq1qxJYmIiJvkcqG/dusWuXbs4deoUtWrVUn2WPj65PwIDAgK4cuUKERERqpsSTJs2jS1btrBhwwYGDRr0ys9XV1eXiRMnqp67u7tz4sQJ1q1bR9euXf9xnUmTJjF9+nTef/99VZnnQagXs7tGjBihKvO8/V9//bVqrriffvqJgIAAZsyYwaxZs1TlRo0aRdu2bQGYOHEivr6+3LlzB29vb5ydnRk1Kncun2HDhrF7927Wr19PrVq1sLKyolWrVqxatYpmzZoBsH79eqysrFTPJ0+ezDfffKNqq4eHB5MmTeKrr75iwoQJeT6TtLS0PHdVfdMbRSQlJJKdnY2puZnachMLMxJi4wqs+8PHo0mMTyA7O4sWXTtQq3luptK9G7cJPHCML6Z/+0bt+SfiY+Ny5qKwUk/Lt7S0JDoq/4BuTHQMlpYvlbeyJCsri7jYOKxt1IdP3LweRMjde3wxJvc7NjI2wsevPKuWLKdU6VJYWFlyaP9Bbl4PwsnFuUT2qXHzpsTFxPLlp5+jVCrJysqi3Xsd6Nan51u1tzBFxcUDYGWqvk1amZoRHh1VYN3ElGTajP2a9IwMtLW0+Lp7T2r5vLs5wQCS43P+p0zMTdWWG5ubkhgbX2DdaUP+R1J8ItlZWTTp3IZqTeuqXvOs6MOJnQdx8/HE0t6Gu1dvcuPsZbLfwaS5yQlJKLOzMc6nT0mxCfnWiQ6PJGDtdnqP/wwtbW2N605NTuHPYRPJysxEoaWFf/8PcK+Q/7xVhSktMRllthJDU/VhbAZmxqTEJ+Vbx9DchDo9W2NdypGszEzunr7K3t9X4T+iNw5lczIx3Kv7kvp/7N11dBRX+8Dxb4y4u4cQBYK7hECB4BSneJGW4qUt0PalQGmpUFpeatAWL+7u7u4EC4RgAeKuu78/AptsshugJCRvf8/nnD0nO3tn9t7dyczsM8+9NymV7TMW5d4cVyjwb1yDoNAGGrcpXl1KUhIKhQILK/VjhLmlBUlxRZ+3vhj0IckJueet1j3epn6LJkWWL0kx8XEA2BboCWFracWjp09fa9sPHkexZvs2enfoyLtdu3Hl5k1++OtPDAwMaNe02Ys38A+kP/+fslD/nzK2MCU1MVnjOiaW5jTu2x57D2dysnO4efwCm39aSPuPBuDs56Uql5mazt/jZ5CTlYOurg4Ne7UtFKR7k2Li4wGwtVTv3m1racmjp9EvvZ1fli7B3saGOkFBxVm9IqU9O56bWKr/DjCxNC/Utf65uKinHFq1jZ6ff6D1eJ7wNJbIsHAC61en89iBxD+OZvei9Shycmjwdsl2WX9+jnqV8+7zc1TfiSNfeI6aNXKy6hzVakBXvN/AOUoIbSR4JorV9evXOXnypGr8L319fXr06MG8efNeOnimTVhYGO7u7qrAGUDFihWxsrIiLCxMFTzz8vJSBc4AnJ2dVdlb4eHhZGVlqYJikBsYqlOnDmFh6ncaq1TJGxjc0dERExMTVeDs+bKTJ09qre+5c+eYPHky58+fJzY2VnX3JzIykooVC/+gDAsLQ19fn1q18rJXAgIC1Lq4njlzhuTkZGxt1YMLaWlphIe/fAbE7Nmz+euvv7h79y5paWlkZmZSLd/d11dd5+nTp9y7d49BgwYxZMgQ1TrZ2dlYFri4yd++xMREHj58qPZ9ADRs2LBQV9T834fzs64PT548ISAggJycHL799ltWrFjBgwcPVIEt03zji/Tu3Zv33nuP3377DUNDQ5YsWULPnj3Re3bSPnPmDKdOnVLLNMvJySE9PZ3U1FRMTNTHP/nmm2/UAooAkyZNokbXt4r8HDV61mVZRakEdDQWfW7YV+PISM8g8sZttv69BjsnB6o3rkt6WjrL/juXrh/0w9TCvMhtFKsCbVCiVHXFfqnyyueLC6+zffM2vLzL419RPZvok4mf8tM30+n9dnd09XTx8fMlpMVbhN+4WWgb/0gxt+nC2fMsX7SE4R+NJqBSIA/vP2D2f3/Fev5ier/bt3jq/Iq2nTzBN8v+Vj3/6YMRz+qsXk6JsvDCAkwMjVjy6URSMzI4dT2Mn9aswtXOnpp+pXChW6iqL/jugEGTx5CZnsG9mxHsWrYBGyd7qjTMPV61GdCVDX8sY9bYqejo6GDtaEf1kHqc2190N5tipWF/1PSdKBQKNvz6N427tMLW2aHITRoaGTLw64/Iysgk4spN9izZgJW9LZ4V31CmVsHqF3Hos3S0xdIx79zn4O1GSlwiV3afUAXPom7c5eKOo9Tt2Qp7LxcSn8ZxatUuLmw9TNU2b3bijX8/DV9e0f9ijJ72GRlp6UTcCGfT4lXYOTtSM7heidUwv20H9jPt97yhJGb+J/fmkg4F/69eeKh7IYVSScUKPgzv2w+AAO8K3I6MZM32bSUWPHuuUHuKiO9bOdlhlW+yDccK7iTHJXJh51G14JmBUTm6TBxKVkYmD8PucHzVDizsrXF5iQHui8O2Q4eY9ucc1fOZEz4FCl8vKF98mlJZuGEDO44cZs6kKRgWyGB/Ewqdj5Saz1EKhYLNs5fRoFMLbJy0D8GhVCgxMTej5btd0NXVxam8G8nxiZzaeqDEg2cqhc5Rmq/pFAoF639d/NLnqMFff0xmRiYRV26we8l6rN/kOaosUJZ89qB4eRI8E8Vq7ty5ZGdn4+qal/mhVCoxMDAgLi43M0NXV7dQN86srKwXblup5cRScHnBAeh1dHRUgavn71v4hFt42/m3o6OjU+R2C0pJSaFly5a0bNmSv//+G3t7eyIjIwkNDSUzM1Nr+zTVLT+FQoGzszP79+8v9FrBceS0WblyJR9++CEzZsygfv36mJubM336dFUXx3+yzvPP4c8//1RlzT2nV+COkqmGAXP/yfeR/31nzJjBTz/9xMyZMwkKCsLU1JQxY8aofdbt27dHoVCwZcsWateuzaFDh/jxxx9VrysUCqZMmaKWFfeckYZB0j/99FPGjh2rtszQ0JAdN7UHVAsyNc8dr6dglllyQhLmBe7qF/R8HDNnTzeSEhLZtXIj1RvXJSbqCXFPopn/TV6X4uf71vhu7/HJz19h51T0xcqrsLCyRFdPl7gCGVnxcfGFMrees7axJi62YPk49PT0sCiQhZeens6B3fvoN3hAoe24uLky/deZpKelkZKSiq2dLdMmfomjs1OhsmWhTYv+nE+z0Ba07pCbQVm+gjfp6enM+u5H3unfW22cmTcluEpVKnvl/QDKfNbFNCYxETtLK9XyuKQkbM2L3id1dXVxd8jdt/zd3YmIimLBjm1vNHhmYpH7P5VcICMrJSG5UOZWQdYOuT8iHT1cSU5IYt/qrargmamFOb0+fo+szCzSklMwt7Zk19INWDmU/CDTJuam6OjqklLgDn5qQjKmloWzmDPTMoi6c4/Hdx+wc2HujSzlszFKvu33MT3Hv49XpdwuqTq6uqofZI6ersQ8eMyxTXtK/IeJoZkJOro6hbLM0pNSCmWjFcW+vCu3T+Z10z636QAV6lTGr2E1AKxdHcjOyOLY0q1UadUQHd3XjIoITM1zx8RKLHDeSkpIwtxK+0QPALbPzlsuXu4kxSeyffn6NxY8C65Th8p+eV3lMp9NSBMdH4edTd5EIrEJ8di85PWUNnbW1pQvMOtjeTc39h47+lrbLYrRs/+pgllm6UkpmFi8fLdEh/Ju3DpxUW2Zjq4uls+OdXbuzsRFPeX8tsNvLHgWXKsWlX3zjkl53108dvkyvmMTE7DJd97SZvGmjcxfv5bf/vMFvp5vtvupsep4rn6OSk1M1vg9ZaZl8PjOfZ7cfciexRuAvOP5jHcn0O2TwXhU9MHUyhxdPT216wgbZwdSEpLIyc5GT7/kfvI/P0cVzDJLTUjSeN7NTMvg0Z17RN19wI4C56hp/T6i1/ihGs9RTp6uRD94zNFNu/9/Bc9EmSLBM1FssrOzWbRoETNmzKBlS/UxVrp06cKSJUsYMWIE9vb2JCUlkZKSogqknD9/Xq18uXLlyMnJUVtWsWJFIiMjuXfvnir77OrVqyQkJKh1bSyKj48P5cqV4/Dhw/TqldtVKisri9OnT6sN9v+6rl27RnR0NN9++62qrqdPFz1ga2BgINnZ2Zw+fZo6deoAuZl88c/S0wFq1KhBVFQU+vr6eHl5/aO6HTp0iAYNGjBs2DDVshdlrb1oHUdHR1xdXbl9+7ZqDLGXYWFhgYuLC4cPHyY4OK/b4dGjR1Wfwcs4dOgQHTt2VHUXVigU3Lx5U22/MDY2pnPnzixZsoRbt27h5+dHzZo1Va/XqFGD69ev4/OS08gbGhq+cjfNgvQN9HGt4MnNC1cJqltDtfzGxatUql3tpbejVCrJfnYx6eDqzEc/qWfEbV+6joz0dDoOfAcr28KzDb4OAwMDfP39OHfqDA2b5I2vdu7UGeo10txVKrByJU4cOaa27OzJ0/gG+KNf4ALv4J79ZGVl0ixUe+aqkbExRsbGJCUmcebkKQYNe/81WlRybcrISC8UIHt+M+FVxoUsTqZGRmozaCqVSmwtLDgRdhV/99xsnqzsbM7evMHItwsHlouiVCpVwbg3RV9fH+fy7oRfukbFOnnj4YRfukZArVfomqNUkpNVuO4G5QwwsLEiJzuHqyfPU6leDQ0rFy89fX2cyrtx5/IN/GvnZeDeuXwDv5qFZzI1NDZk8DefqC07s/sId6/eovOo/ljaaz8GKNHc7uKmp6+HrYczj8Lu4FktL7j68Nod3Kv4FbGmutj7URjnCyBmZ2YXuvHyPGCmRFkoK0e8On0DfdwreHH9/BWq1ss7h14/f4WgutVffkNKJdkvceO0uJgam6jNoKlUKrG1tubE+fMEeOd2QczKyuLs5SuMzDfUxD9RNSCQuw8eqC27+/AhzvbFd+OqID19few8XHhwNZzy1fOufe6HheNV9eXHlou596hQl8JClLnjXL0ppsbGajNoKpVKbK2sOHHxIgHlcwN4WdlZnL16lZG9+hS5rUUbNzB37Rp++ew/VKzw5rue6unr4+jlSsSVm/jWyhs3MOLKTXyqaz6e9/9a/Ubt+T3HuBd2i/Yj+qqO566+XoQdP49SoUDn2XVG3ONoTK3MSzRwBrltcn52jgoodI6qXKi8obEhQ74Zp7Ys9xx1k86jBmBVxDkKUF3vClEaJHgmis3mzZuJi4tj0KBBhbrqde3alblz5zJixAjq1q2LiYkJn332GSNHjuTkyZOFZuT08vLizp07nD9/Hjc3N8zNzWnevDlVqlShd+/ezJw5k+zsbIYNG0aTJk3UugIWxdTUlA8++IBPPvkEGxsbPDw8+P7770lNTWXQoEHF9VHg4eFBuXLl+Pnnnxk6dCiXL19m6tSpRa7j7+9Pq1atGDJkCH/88Qf6+vqMGTMG43wXDM2bN6d+/fq8/fbbfPfdd/j7+/Pw4UO2bt3K22+//VKfg4+PD4sWLWLHjh2UL1+exYsXc+rUKcqX134H8WXWmTx5MqNGjcLCwoLWrVuTkZHB6dOniYuLK5Shld8nn3zCpEmTqFChAtWqVWP+/PmcP39e40yjRdVvzZo1HD16FGtra3788UeioqIKBVV79+5N+/btuXLliirQ9twXX3xBu3btcHd3p1u3bujq6nLx4kUuXbrEV1999dJ1eVXB7VuwfNZc3Cp44envzYldB4mPjqV+yxAAtv69hoTYeN4Zlbt/Htm2F2s7G+xdc7uuRly7ycGNO2nYOrcriEE5A5w81Mf8MjLN/cFQcHlx6dyjG9OnfoNvgD+BlSuybcNmnjx+TNtO7QGY9/ufxERH88nE3K4Wbd9uz8Y165kz6zdad2hL2OWr7Ni8jQmT/1No2zs2b6NB40ZYWBbOaDh94hQolbh5uPPw/gP++nUObh7utGzbqky2qW7D+qxbvpoKfj4EVMzttrnoz/nUa9RAlaGZlprGw/t5P7qiHj4i/MYtzC3McXByfO12vYiOjg7vNGvO/B3bcHdwxN3BgQXbt2FUrhyhtfOySictmIe9lRUjngXU5m/fRkVPT1zt7cnOzubIlctsOXGMCe+8fDC9uDRo24y1vy7C1dsDd7/ynN59hIToWGo/mzxj17INJMYm0GV4bpeqEzsOYGlng71L7ud793o4RzbvoW6rvPGY7t2MICkuHidPNxJj49m3eitKpZJGHV5vOIKXVad1Ezb9vhRnb3dcfbw4v+8YiTFxVH8rN5i7f8VmkuISaT+0Fzq6uti7q8/qZ2phhr6Bvtryoxt341zeHStHOxTZ2YSfD+Py4dOEDuj6RtpUsVkdDi/ciK2nM/blXblx5BwpcYn4N84NSJ5Zv4/U+CQaD+gA5M7OaWZjiZWLPTnZOdw+eZm7564TMiQvqOse5MPVvSexcXfEzsuVpKdxnN98EPcg31LJ7CyKsYEhbpZ53bBcLOzwtXMjMT2Fx8lxpVizFwvpGMrfM//Aw8cLL38fju7cT1x0DA1DmwKwafEqEmLi6DMmdxzWQ1t3Y21ni4Nb7v53O+wmezdsJ7jtm/n/0URHR4d32ndg/urVeLi44O7swvzVqzAyNKRVvpt5X8z8CQdbG0b0zQ2oZWVlcfte7gD8WdnZPI2N5frt25gYG+HunDuzYa8OHRk4YRzzVq2kRaNGXLlxk3U7d/D5sOEl2qYqLeqzb95a7DxdcKzgTtjBMyTHJhDYJPfa8OTa3aTEJ9J0YO7/zKXdxzC3tcLaxYGcnBxuHb/InbNhtBiaN/7tuW2HsPd0wcLeGkV2DpGXb3Lj2AUa925bom0pio6ODu+0acv89WvxcHbC3cmZ+evX5n53jfK6Z3/xy8842NgwolfueWjhhg3MXrmcr0aNxtnBnuhn496ZGBlhYmSs8b1KQq1Wjdk6ZwVO5d1w8fHg4r4TJMXEU7VZbhbmwZXbSI5LoM37PXOP527q2fQmFqboGeirLa/arD5ndx9h75KNVG/RkLioaE5s2kuNFurDopSUuq1D2PD7Epy93XHz8eLcvqMkxMRR49k5at+KzSTFJdBhaG90dHVx0HCO0jPQV1t+5Nk5ytrRlpzsHMLPh3Hp8ClaDej2RtpUZryBsVXFy5PgmSg2c+fOpXnz5oUCZ5CbeTZt2jTOnj1LjRo1+Pvvv/nkk0/4448/aN68OZMnT1Yb7L5Lly6sXbuWpk2bEh8fz/z58xkwYADr169n5MiRBAcHo6urS6tWrYqc8VKTb7/9FoVCQd++fUlKSqJWrVrs2LGj0GDfr8Pe3p4FCxbw2WefMWvWLGrUqMEPP/xAhw4dilxv/vz5DB48mCZNmuDo6MhXX33FxIkTVa/r6OiwdetWPv/8cwYOHMjTp09xcnIiODgYR8eX+2E9dOhQzp8/T48ePXIvQN55h2HDhrFt27bXWmfw4MGYmJgwffp0xo0bh6mpKUFBQS/M6Bs1ahSJiYl89NFHPHnyhIoVK7Jx40Z8fV9+lr6JEydy584dQkNDMTEx4b333uPtt98mIUG9W0mzZs2wsbHh+vXrqszD50JDQ9m8eTNffvkl33//PQYGBgQEBDB48OCXrsc/Ua1hHVKTUti9ahOJcQk4ebgw6LPRWD/rIpEYl0B8dN5A7Uqlkq1L1hL7JBo9PT1sHe1p3bsz9VqW3sDLTZo3JTExkSXzFxEXE4untxdTf/gGx2cTfsTGxPLkcd6ssU4uzkz94RvmzPqVzWs3YGNnywdjRtCoabDadu9H3uPKxUtM++l7je+bmpzC/Nl/Ev00GjMLcxo1acyA9wcVyl4rK23q1b8vOjo6LPxjHjFPo7G0tqJuw/oMeC8vcH/j2nXGj8wLNv/x8+8ANG8dysf/0Tw5SXHr1yKUjMxMvlu+hKTUVCp5lefnkWPUMtSi4mLVusClZ2bw3fKlPImPw9DAAE9HJ74cMIiWtWq/kTrnF9SgJmnJKexfs42k+EQc3J3pM2GY6m52UlwiCdF5XWyVSiW7l20k7mkMurq62Dja0eKdjtRqnvejIzsriz0rNhP3JJpyRob4VqtEl+H9MDY1KfT+JaFiveqkJaVyZN1OkuMTsXdzpvsnQ7C0y21TcnwSidGvFnDJyshkx4I1JMXGo1/OAFsXR9p/0JuK9V4he+g1lK9VkYyUNC5sPUxaYjJWzva8NawHZra51xBpicmkxOV1A1Jk53B63V5S45PQM9DHytmOt4Z1V5tJs0rrRqCjw7lNB0mNT8LIzAS3IB9qdAh5I216FQH2nvzSKe9/fVSj3B+EW8OO8fXehdpWKxNqNKpLSmIyO1ZsICEuAWcPV96fOBabZ12fE2PjiXua77ylULLp79XEPn6Krp4edk4OtO/bjQahIaXUglz9O3UmIyODb+fMJik5mcp+fvwyeYpahlrU06fo5stmfBobS++xY1TPF69fx+L166hRqTJ/fD0NgEq+vvww4TN+WbyIv1auwMXRkY8GDaZ1k5ASbU+F2pVJT0nl7JYDpCYkY+PiQOuRvTG3tQJyu9Elx+ZdF+Vk53B89U5S4pPQN9DH2sWBViN74RGUl/2ZnZHJ4aVbSIlLRN9AHysnO5oN6kyF2oUzit6k/h06kpGZybdz/yIpJYXKPj788tl/1DLUomKi0c13nlq9awdZ2dmM/3GG2raGdO3G+900T5hVEgLqViMtOZVjG3KDmXauTnQeOxBLu9zfISkJiSTGxr/SNi1srej2yRD2Ld3Ewv/8hJmVBTVaNqJO25Dib4AGFetVJzUphcPrdqjOUT0/eS/fOSqRhH9wjtq+YDVJsQnPzlEOdPygzxs7RwmhiY6ytPqKCCHEv9DGy4dKuwrFqkPlxtyJfvDigv9jytu5/uvaVd7OlcQ9B0q7GsXK4q0mrDi3q7SrUax6VG/BglNbSrsaxWpA7bZM21O2Az6v6rO3+tPw16GlXY1idWT4bLaHHXtxwf8xrQLrkxR2vbSrUazMA/2ZcWBZaVejWH3U5B2Szl98ccH/IebVqvDn8Q2lXY1iNaReRxad2lra1ShW/Wq3Ke0q/GNJ98vmtar5a85s/79KMs+EEEIIIYQQQgghyhLJcypTytYAEEIIIYQQQgghhBBClCESPBNCCCGEEEIIIYQQQgvptimEEEIIIYQQQghRlki3zTJFMs+EEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKForRrIPKRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskRm2yxTJPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRSLfNskQyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEplts0yRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskSpKO0aiHwk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFHIbJtliY5SKfOfCiGEEEIIIYQQQpQVSddvlnYVNDL39y3tKpQKyTwTQohi1Hvp5NKuQrFa0msySXciSrsaxc68vBcfrJle2tUoVr93+YT4fkNLuxrFymrRbPbfOlPa1ShWIT41+XjTz6VdjWL1Q/uRJEU9Lu1qFCtzJ0e2hx0r7WoUq1aB9Wn467/rGAFwZPhsfti/pLSrUaw+DunN0rM7SrsaxapXjVBmHVpZ2tUoVqMad2fkuh9LuxrF6udOY5l5cEVpV6NYjQnuUdpVEP8SEjwTQgghhBBCCCGEKEukk2CZIhMGCCGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbSQbptCCCGEEEIIIYQQZYlCum2WJZJ5JoQQQgghhBBCCCGEFhI8E+Jf5vHjx3z55ZfExcWVdlWEEEIIIYQQQoj/eRI8E/+TvLy8mDlz5hvdno6ODuvXr3+t95k8eTLVqlV7rW0URalU0rdvXwwNDbG2tn6ldYv7M31VwcHBLF26tNTeP7+PP/6YUaNGlXY1hBBCCCGEEP9fKRVl8/H/lATPxBvVvn17mjdvrvG1Y8eOoaOjw9mzZ99wreDUqVO89957b/x9i9s333yDt7c348ePf+V1S/Mz2Lx5M1FRUfTs2VO1rGAwT6lU8tFHH2Fubs7evXsBCAkJYcyYMYW2t3TpUvT09Bg6dKjG95szZw5Vq1bF1NQUKysrqlevznfffad6fdy4ccyfP587d+4UTwOFEEIIIYQQQvzPkgkDxBs1aNAgOnfuzN27d/H09FR7bd68eVSrVo0aNWq88XrZ29u/8fcsCZ999tk/Xrc0P4NZs2bx7rvvoqurOZ6fk5PDkCFD2LRpE3v37qV27dpFbm/evHmMGzeO33//nR9//BETExPVa3PnzmXs2LHMmjWLJk2akJGRwcWLF7l69aqqjIODAy1btmT27NlqQbWS0ty3Nm0DG2BlbM6DhCcsPrOd608jtZZv4BVEu8CGOJnbkpqVzsWHt1h6bifJmWkANK1Qg0blq+Ju5QDAndhHrLiwh9sxD0q8LfkplUr++Ptv1m3bSlJyMpX8Axg/fDgVvLy0rhMeEcHsxYu4dvMWj548Zuz779OrU2e1MmcvXWLx6lWE3bxJdGwsP3wxiZAGDUq4NbmCvavRwq82lkZmPEqMZtWFvdzS8rn2q9ma+l6VCy1/mBjN1F3zCy2v5RbAoLrtOf/wJnOOrS/uqhfJqFM7yoU0QsfUhJzwCFIXLUPx4FGR6xiGNqNcs2B0bW1QJiWTeeoc6avWQVa2qoyOtRXG3TuhX7USOgblUEQ9JnXuYnIitO/fxWH/5l3sXLuZhNh4XDxc6f5eP3wrB2gse/bISQ5u3c2923fJzsrG2dOV9r26UKlmVbVyqckprF+0knNHT5GanIKdoz1dB/cmqHb1Em3Lcw08gwjxqY65oSmPk2LZcOUQd2Ifai2vp6tLC7861HT1x9zQlPj0ZPbcPMWpe2GqMo3LV6W+VxDWxuakZKZx8dEttoYdI1uRUyJtUCqV/LFgPus2bSIpKYlKFSsyfsyHVChfvsj19hzYz+y5c7n/8CFuLi4MGzyEpsHBamWePH3Kz3Nmc/TECdIzMvB0d2fiuPEE+vuTnZ3Nb3/9yZHjx3nw6BFmpqbUqVmLke+/j72dXYm0Nb9DW/ewd/02EuPicXJ3pfOgXlSo5K+xbPjVG2xatJLHDx6RlZGJtb0tDUKb0rRDaInX83VVdfahV/WWBDh4YGdqxYStv3PozoXSrpZWV/ef4sLOY6QlJGHt4kC97i1x9vXUWPbh9Qi2/Lio0PJuU4Zh5VR4Hwo/dZm9f63Fs6o/LYf1KPa6v6xTOw9xdPMekuITcXBzIrRfFzwDKrxwvcjrt1nw5Swc3J0Z+u2r35AtTpf2neDcjsOkxidj4+JAo56tcfHz0lj2wbU7rP9hXqHlvaaOwto59zo35sFjTm7Yy9O7D0mKiadRj9ZUbfFmriGea1y+Km/51sLCyJRHiTGsvbSfcC3XEn1qhFLXs1Kh5Y8So5m2J3efdDK3pW1gA9ytHLA1tWTNxX3sDz9Xkk0o5PK+k5zfcZjUhGSsXexp2KOI7+n6HTb+UPg6qOeXI1Xf09WDp7l+7DyxD58AYO/pQt1OzXEs71ZibRDiRSTzTLxR7dq1w8HBgQULFqgtT01NZcWKFQwaNAiAo0ePEhwcjLGxMe7u7owaNYqUlBSt242MjKRjx46YmZlhYWFB9+7defz4sVqZjRs3UqtWLYyMjLCzs6Nz57wf5AWznG7evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTi/x89u/fj46ODjt27KB69eoYGxvTrFkznjx5wrZt2wgMDMTCwoJ33nmH1NRU1Xrbt2+nUaNGWFlZYWtrS7t27QgPD1e9vmjRIszMzLh586Zq2ciRI/Hz81N9rgU/Ax0dHebMmUO7du0wMTEhMDCQY8eOcevWLUJCQjA1NaV+/fpq7xMeHk7Hjh1xdHTEzMyM2rVrs3v37iLbHB0dze7du+nQoYPG1zMyMujWrRu7du3i4MGDLwycRUREcPToUSZMmEBAQACrV69We33Tpk10796dQYMG4ePjQ6VKlXjnnXeYOnWqWrkOHTqwbNmyIt+rONTzqETfGq3YcOUQn2+bzbUnkYwL6YOtiaXG8n72HnxQrxMHws8xfsuvzDq8Cm9bVwbXzfv8Ah29OHb3Ml/vXsiknXOJTklgQtO+WBubl3h78lu4aiVL161l3LDhLJz1M7Y21gz/7FNS8u27BaVnZODm5MyIgQOxtbbRWCYtPR3f8t6MGza8pKquUU03f7pVbcb2a8eZtmcht6LvM7xRV62f68oLexi/+TfV49Otv5OckcbZ+9cLlbUxsaBzUAg3n94r6WYUYti2JYat3iJt8XKSJn2LIiEBs3GjwchQ6zoG9etg1K0T6eu3kDRhCqlzF1Oubk2MunVSldExMcH8P5+gzMkh5YdfSPp0CmnLVqMs4vsvDqcOHmPln4to0+Nt/jNrGj6VA/h50nfEPonWWP7mlWsEVg9i5JRxfPbfr/CvUpFfv/yByPAIVZnsrGxm/ucbYh4/5f3PRvPlHz/Qd9RgrGw176PFraqLLx0qN2b3zdP8dHA5t2MfMrhue6yMzbSu07dma3zt3Fl5YS/f7VvMkrM7eJKcNxZmdVc/2gQ2YNeNk3y/729WXthDVRdf2gTWL7F2LFy2lKUrVzJuzBgWzvkDWxsbhn80tshjwsXLl/lsyhTatAxl2dx5tGkZyoTJk7ic74ZHYlISg0YMR19Pn/9+/z2rFi5izLDhmJvlfj7p6elcu3GTwf368/effzF96ldE3r/H2M8+LbG2Pnf28AnWzVtKy27t+eTHL6lQ0Y/ZU38k9mmMxvKGRoY0btOcUV9/xqc/T6Nltw5sXbKGozv2l3hdX5exgSG3Yu7z48HlpV2VFwo/dYVjK3dQvU0jOv3nPZx8PNj+81KSYxOKXK/bl8Pp/f1Y1cPCofAxICkmnhOrd+Hk41FS1X8pl4+dZfuitTR+uyXvfzMOD/8KLPn2dxKiY4tcLz01jfW/Lca7st8bqql2N09e4vDybdRq04TuX3yAs58nm/67mKSY+CLX6/3VaAbMGKd6WDraql7LzszCwt6a+l1aYGKp/RhaUmq4+tG5Sgg7rp/gu31/Ex7zgA8adNJ6LbH64j4+2zpb9Zi47Q9SMtM49yDvmr6cnj7RqQlsvHKYhPTkN9UUlVunLnFkxTZqtG1Cty8+wNnXky2z/n7h9/TO1FH0/+ET1SP/9/TwegS+darQ8aN36TxhCOY2lmz+aRHJcYkl3JoyRqksm4//pyR4Jt4ofX19+vXrx4IFC1Dm+8dbtWoVmZmZ9O7dm0uXLhEaGkrnzp25ePEiK1as4PDhw4wYMULjNpVKJW+//TaxsbEcOHCAXbt2ER4eTo8eeXf6tmzZQufOnWnbti3nzp1jz5491KpVS+P2FAoFnTt3Rk9Pj+PHjzN79myN3SDNzc1ZsGABV69e5b///S9//vknP/30k+r1lStXMmnSJL7++mtOnz6Ns7Mzv/3220t9TpMnT+aXX37h6NGj3Lt3j+7duzNz5kyWLl3Kli1b2LVrFz///LOqfFJSEh9++CGnTp1i9+7dKJVKOnXqhEKR2ye9X79+tGnTht69e5Odnc327duZM2cOS5YswdTUVGs9pk6dSr9+/Th//jwBAQH06tWL999/n08//ZTTp08DqH0vycnJtGnTht27d3Pu3DlCQ0Np3749kZHas0wOHz6sCs4VlJycTNu2bbly5QpHjhzRWKagefPm0bZtWywtLenTpw9z585Ve93JyYnjx49z9+7dIrdTp04d7t2798Jyr6t1QH323z7L/vCzPEyM5u+z24lJTaC5r+b908fWjacp8ey4cYKnKfHceBrJ3lun8bZxUZX57ehadt88xd34KB4lRvPXyY3o6uhQycm7RNuSn1KpZNm69bzbsyfNGjXCx8uLKR99THpGBtv37dO6XiV/f0YPGUJoSAjlDAw0lmlYuzbDBgygWaNGJVV9jd7yrcXRiEscibhEVFIsqy7uIy41iWDvahrLp2dnkpiRonp4WjthUs6IY3cvq5XTQYd3a7dlc9gRolOK/uFWEgxD3yJ94zayTp9H8eAhqX8sRKdcOcrVr6N1HX0fb7JvhpN17BSK6BiyL4eRefwU+uXzfiwatmuJIjaWtL8WkXM7Irfc1esotASxisvudVtp2DKERqFNcfZwpcd7/bC2s+XAVs2B/B7v9SO0a3u8/Crg6OpMp/49cXBx4uKJvCEEjuzaT0pSMsMmjsWnoj+2Dvb4VArA3Vtzlkpxa+JdjZORVzkZeZUnyXFsvHKI+LRk6nsGaSzvb+9BBVtX/jqxkZvR94hLS+Je/GPuxkWpynhZOxMR+4hzD24Ql5bEjaf3OP/gJm6WjiXSBqVSybJVq3i3b1+aBTfBx9ubKZ9+lntM2F34BtVzy1avom7NWrzbpw9enp6826cPdWrWZOmqVaoyC5cuwdHegUmffkrlwIq4ODtTp2ZN3FxdATAzM+O3H3+kRbNmeHl4EFSpEp+MGk3Y9etEFbjRVtz2b9hBvebB1G/RBCd3FzoP7o21nQ1Htu/VWN7N25OawfVw9nDF1tGe2iENCKgeRPjVwkH3suZ45BX+PLGRA7fPl3ZVXujS7mP4N6xOQKMaWDvbU79HKGbWllw9cLrI9YzNTTGxNFM9CmbMKxQK9s1dR432IZjbv9rYs8Xt+JZ9VG9ajxrNGmDv6kSr/l2wtLXm1K7DRa63+a8VVG5YCzdfrzdT0SKc33WUwEY1qBhcCxsXBxr3bIO5tQWX958scj1jC1NMLc1Vj/zfk2N5Nxp2a4VvnSro6b/5TlhNfWpyLOIyx+5e5nFSLGsv7ScuLYlG5atqLJ+enUlSRqrq4WHtiLGBEcfzXUtExj9mw+WDnH1wneyckskcLsqFXUcJaFSDio1rYu1sT6OebTCztuDKgVNFrmdsYYqJpbnqkf97aj6kK5Wb1sHOwxlrZ3ua9OuIUqnkQdjtkm6OEFpJ8Ey8cQMHDiQiIoL9+/erls2bN4/OnTtjbW3N9OnT6dWrF2PGjMHX15cGDRowa9YsFi1apDFza/fu3Vy8eJGlS5dSs2ZN6taty+LFizlw4ACnTuUetL/++mt69uzJlClTCAwMpGrVqlq7OO7evZuwsDAWL15MtWrVCA4OZtq0aYXK/ec//6FBgwZ4eXnRvn17PvroI1auXKl6febMmQwcOJDBgwfj7+/PV199RcWKFV/qM/rqq69o2LAh1atXZ9CgQRw4cIDff/+d6tWr07hxY7p27cq+fAGIbt260aVLF3x9falevTrz5s3j0qVLal0R58yZw6NHjxg1ahQDBgxg0qRJL8zievfdd+nevTt+fn6MHz+eiIgIevfuTWhoKIGBgYwePVrte6xatSrvv/8+QUFB+Pr68tVXX+Ht7c3GjRu1vkdERASOjo4au2xOnTqV8+fPc+jQITw8XnwHV6FQsGDBAvr06QNAz549Vdlyz02aNAkrKyu8vLzw9/dnwIABrFy5UhVofM712Y+uiIiIF77vP6Wnq0d5GxcuPQpXW34pKhxfO3eN69yMvoeNiQVVXXwBsDAypY57Rc4/vKmxPIChngF6OrqkZKQVX+Vf4EFUFDFxsdSrUVO1rFy5ctQICuJi2NUi1iyb9HR08bBy4urjCLXlYU8i8LZ1faltNPAK4tqTu8Smqt81bRvYgOSMNI5GXCqu6r40XXs7dK0syb6c15WP7Gyyr99E31d7sDX7xi30vTzQ8/ZSbcegamWyLuRdzBtUr0r2nUhMRgzB4pfvMZv6GeVCSjbgmZ2VTeStO1SsXkVtecUaQYSH3XipbSgUCtLT0jE1z7uxcPHEGbwDfFn623w+7j2UKcPGsXXFehQ5JT9orp6OLq6WDtwo0JX7xtNIvGycNa5Tyak89+Kf0LRCTSY2f5fxTfvQrmJD9HX1VGXuxD7EzcoBd6vcYJmNiQUBDp6EPYkokXY8ePSImNhY6tXKO++UK1eOGlWrcvHyZa3rXbxyhboFzlX1atfh4pW8dQ4eOUJggD/jv/iCFh070GvQINZt2lRkfZJTUtDR0cHMrOQyT7KzsrkXHoF/NfXu2/7VKnPn2i0ta6m7f/sud67dxEdLt2Px6nKyc4iOfIRrRfXui64VvXkcXnT279qv/uDvT35ky4+LeHi98Lio5zYfxMjchIBGb6Y7tzY52dk8vHOPClXU9xvvKgHcv6F9PNdz+48T9ziakC6tSrqKL5STnc3Tuw/xqOSjtty9kg9RL/ieVnz5G/M/+o71P8zn/rWyE2zR09HF3cqRa0/Ub8xee3yX8rYuWtZSV8+zMtef3CUuLakkqvjKcr+nR7gX+H/K/Z6KHqJh1Ze/s/Dj79k4Yz4PXvA9ZWdmocjJwdDU+LXrLMQ/JWOeiTcuICCABg0aMG/ePJo2bUp4eDiHDh1i586dAJw5c4Zbt26xZMkS1TpKpRKFQsGdO3cKZR+FhYXh7u6Ou3tesKFixYpYWVkRFhZG7dq1OX/+PEOGDHmp+oWFheHh4YGbW16f+vr1C3djWb16NTNnzuTWrVskJyeTnZ2NhYWF2nYKDlhfv359taCXNlWq5P3wc3R0VHUNzb/s5Mm8u26RkZFMnTqVEydOEB0drQoERUZGUrly7kW7tbU1c+fOJTQ0lAYNGjBhwoRXrgdAUFCQ2rL09HQSExOxsLAgJSWFKVOmsHnzZh4+fEh2djZpaWlFZp6lpaVhZGSk8bWWLVuye/dupk2b9lIzge7cuZOUlBRat24NgJ2dHS1btmTevHmqAKizszPHjh3j8uXLHDhwgKNHj9K/f3/++usvtm/frgriGRvnnpxTtXQnysjIICMjQ22ZoaH2bm6amBuaoKerS0K6epfkhLQULJ01/6C7GX2P346uZWTDrhjo6aOvq8eZ+9dYeHqr1vfpWa05sWlJXI56cxeQMXG53UJsC8z6amttzaPHT95YPYqLmaExerq6JBX4rpLSU7B01J69+ZyFkSmVHL2Zd3Kz2nJvW1caeAXx9Z6FxVrfl6VjmXvMUiSoB/QUCYno2mnvkph14jRpFmaY/edjQAcdfT0y9hwgY/MOVRldezsMmwWTsX03KZu2o+fthXGf7iizssg6cqJE2pOcmIRCocDCSr3bs7mVJYlxL5fVt2vdFjLTM6jZuJ5q2dOoJ8Q8vkrdkIaMnDyOJw+jWPb7AhQ5Ctr16lzE1l6fabln+16G+rEoKSMNc0MTjevYmFhS3saZbEU2C05vxbScEZ2DQjAxMGLlhT0AnH94E9Nyxgxv2AUdcoP5RyMusu/WmRJpR0xsbjdFWxv1/crW2oZHj6M0rfJsvViNx5GY2LyuZw8ePWLNhg307tadd/v04cq1MH6Y9V8MDAxo16pwECAjI4Nf/phDq+bNMSsi+/p1pSQ93x8t1JabW1qQ9IL98YtBH5KckIRCkUPrHm9Tv0WTEqvn/zfpyakoFUpMLNS/e2NzU9ISNQ8RYmJpRuM+7bDzdCYnK5ubJy6x5afFtBvbH2e/3AzUqFuRXD9yjs4T3y/xNrxIamIKSoUCM0v1roBmluaEJ2gOusQ8esKeZZt4d/JodPX0NJZ5k3K/JwXGFurXQ8YWZqRqaYOJlRkh/Tri4OlCTnY2149dYMOMBXT6ZKDW8bfeJNPn1xIZBa4lMlKx0HI8z8/C0JSKjuWLvOZ7055/TyYFvydzU1ITNHchNbE0p0nfDtg/+55uHL/Axh8X0vHjd7V+T8fX7MLUygK3im+uF0VZoFT8/+0iWRZJ8EyUikGDBjFixAh+/fVX5s+fj6enJ2+99RaQe9f//fffZ9SoUYXW05R9pFQq0dHRKXL580DIy1Bq6MddcPvHjx9XZbKFhoZiaWnJ8uXLmTFjxku/T1EM8nVX09HRUXv+fFn+TKl27dpRvnx5/vzzT1xcXFAoFHh5eZGZmam23sGDB9HT0+Phw4ekpKSoBfteph7alj2vyyeffMKOHTv44Ycf8PHxwdjYmK5duxaqR352dnbExcVpfO2tt95i1KhRdOzYkZycHLWuqprMmzeP2NhYtQkCFAoF586dY+rUqejluxisXLkylStXZvjw4Rw+fJjGjRtz4MABmjZtCkDssx9m2iZS+Oabb5gyZYraskmTJsE/GCJEifo+p6MDaDlXulrY069ma9ZdPsDFR+FYGZvRq1pLBtZpx58nCmf4tQtsSH3PIL7as4AsRbaGLRaPbXv3Mm3Wf1XPZ36ZO4Zcwf/M3P/LEqtGidNwdCj0/WlS37MyaVnpXMiXIWiob8C7tduw5OwOUjLfTFagQf06mLzbS/U8ecavuX8UPO7p6GjdBwH0A/wwat+atIXLyA6/g56jA8Z9uqOITyBjw7OLel0dcu7cJX31BgBy7t5Dz9UZw7ealFjwLK/+BZ4rNSzT4OT+o2xespZhE8eqBeCUCiXmVhb0GTkYXT1dPH29iY+NY+eaLSUePNOmqP+j58fmpWd3kp6de/zdeOUw/Wq1Zu2l/WQrcqhg68pbvrVYe2k/kXGPsTO1pGPlYJqnp7L7ZtFdbV7Gtl07mZbvnDjz2+801lvbObxAg9TXQX0dhUJBRX9/hj+bMTrAz4/bdyJYs2FDoeBZdnY2n305BYVCwfgPx75qs/4hDTvkC5o8etpnZKSlE3EjnE2LV2Hn7EjN4HpFryRKjJWTndrEAI4V3EmJTeDirmM4+3mSmZ7Bvnnrady3HUZmLw6CvDkF/neUmvc9hULB2l8WEdK1NbbODm+obi+n0OFBqdR6ALR2ssfaKe+6zamCB8mxCZzbcbhMBM+e+6fhkLqeFUnLyuDiw5fLXH2jNHwl2o7t1k52WOf7f3r+PZ3feUTj93Ru+yFunbxEx0/eRV/LkB5CvAkSPBOlonv37owePZqlS5eycOFChgwZojrA1qhRgytXruDj4/OCreSqWLEikZGR3Lt3T5V9dvXqVRISElRZalWqVGHPnj28++67L729hw8f4uKSm0J97NgxtTJHjhzB09OTzz//XLWs4NhYgYGBHD9+nH79+qmWHT9+/KXa9CpiYmK4dOkSv/32G3Xr1gXgwIEDhcodPXqU77//nk2bNjFhwgRGjhzJwoXFm+1y6NAhBgwYQKdOuYOGJycnv7DbY/Xq1YmKiiIuLg7rAtkFAC1atGDz5s20b98ehULBL7/8ovFkHBMTw4YNG1i+fDmVKuXNSqRQKGjcuDHbtm2jXbt2GuvwvDtt/kkpLl++jIGBgdq28vv0008ZO1b9h5ehoSED13xTZHvzS8pIJUehwMpI/W6dhZGp1gFfO1RqxI3oSLaEHQXgXvxj5mdvYVKLgay6sJf4fOu1CWhAh0qN+WbvIu7Fl+y4PsH16lE5IG/2uMzM3MkzouPisLPNGwA2Nj4eGw3fc1mXnJFGjkKBhZF6poK5kQmJ6S8eAL+BVxAnIq+So8wLetubWmNnasUHDfKCL8/37V86fcTknXOJTokvngY8k3XuAknh+brsGOReBuhaWZKTL/tM18IcZaL2QXmNurQn8+gJMg8cAUBx/yEYlsPk3T5kbNwGSiXK+ARyCszYmfMwCoNaJTejsplF7pgpBbPMkhISCmWjFXTq4DEWzfqD9yeMJrC6+lhiljZW6OnpoauX173c2d2VxLh4srOy0TcoucuplMzcfa9glplZOeNC2WjPJaWnkJCerAqcATxJjkVXRwcrYzOiUxII9a/H2fvXORmZ2406KimGcnoGdK3alD03T/3jH3fPBTdsROXAvKEKMp9NqBMdE4udbd6Pptj4uCKPCbY2NmpZZgCxcerHETtbW8oXmMW3vKcnew+qnwuzs7OZMGkSDx894vefZpZo1hmAqfmz/TG+4P6YhPkL9kdbx9wAgIuXO0nxiWxfvl6CZ8XEyMwEHV0dUgtkmaUlpWBs8fL7hIO3G7dO5Ha3T3oaR3JMPDt+zZss4fnN2L8+mEr3L4djYf9mJhgBMLEwRUdXl+QCWcUpicmYWRQemD4zLZ2HtyN5FHGfrQtyJ1pSPhsY/MveY+j76TDKv+EJBHK/J91C2UtpSSmFspyK4ujtxo3jZWPW15Tn1xKGBa4lDE1I1HI8z6+eZ2VO3VO/lihtRX1Pr/L/5OjtrvF7Or/jMGe3HqL92P7Yujm9dn2FeB0SPBOlwszMjB49evDZZ5+RkJDAgAEDVK+NHz+eevXqMXz4cIYMGYKpqSlhYWGFBsl/rnnz5lSpUoXevXszc+ZMsrOzGTZsGE2aNFFNCjBp0iTeeustKlSoQM+ePcnOzmbbtm2MGzdO4/b8/f3p168fM2bMIDExUS1IBuDj40NkZCTLly+ndu3abNmyhXXr1qmVGT16NP3796dWrVo0atSIJUuWcOXKFbXul8XBysoKGxsbZs+ejZOTE3fv3i00wUFSUhJ9+/Zl5MiRtG7dGg8PD2rVqkW7du3o1q1bsdXFx8eHtWvX0r59e3R0dJg4cWKhscQKql69Ovb29hw5ckRrcKtZs2Zs2bKFdu3aoVQq+fXXXwsF0BYvXoytrS3dunUrNH5au3btmDt3Lu3ateODDz7AxcWFZs2a4ebmxqNHj/jqq6+wt7dX65576NAhGjdurDVr0dDQ8JW7aRaUo8jhTuxDKjtV4PT9a6rlQU4VOJPveX7l9AxQFLhoUj3P95m0DWzA25WC+W7f39yJffha9XwZpiYmmObL+FMqldha23Di3FkCngXCs7KyOHvpEiMHDirx+hS3HKWCyPgoAh081bLHcp8XfQfY184dBzPrQmOaRSXFMHWX+lTt7Ss1wki/HKsu7CUuVXvw6h9Lz0CR/lRtkSI+Af1KgeTcfTaGjJ4e+v6+pK1cp2EDz5QrBwW7EigUanees2+Go+esPvi8rpMjihjNswwWB30DfTx8yhN27hLVG+SNkxV27jJV69XUut7J/UdZ9N85DB43gqA6hccqqlDRj1P7j6JQKFTHl8cPHmFpY1WigTPI3fceJDzBz95dreu1n72H1q7Yd2IfUcXFh3J6BmTm5Aat7E2tUCgVxKfl/sApp6dfKGtSoVSggw65X+Trhc80HhNsbDhx+jQBfrk/wrOysjh74QIj39feza1KpUqcOH2K3t27q5adOHWKKpXyxhGrWjmIu5HqYyDdvX8PZ8e8/e954CzywX3mzPwvVpZFB6+Kg76BPu4VvLh+/ora/nf9/BWC6r7CmFhKJdkFZvMW/5yevh52Hs48CLtN+ep5Y4I9CLuNZ1X/ItZUF3MvCuNnszVaOtnR5Qv1oTpOb9hHVnoG9Xu0wtS65Pe3/PT09XEp787ti9cJrJ03EP3tS9fwr1l4ohFDYyM++F59OI9TOw9z5+oNuo8ZiJW9baF1Spqevj72ni7cuxqOd428QPy9q+GUr/byYwBG33uEidWbnW1cmxylgnvxjwlw8ODio7xrB38Hz0Lj3xbkY+eGg5k1f0VoHyOyNOR+T87cD1P/nu5fDcfrVb6nyEeYFOhmfG7HYc5uOUDb0f1w8Hq58WX/df4fz2xZFsmEAaLUDBo0iLi4OJo3b67WHbNKlSocOHCAmzdv0rhxY6pXr87EiRNxdtY8MLKOjg7r16/H2tqa4OBgmjdvjre3NytWrFCVCQkJYdWqVWzcuJFq1arRrFkzTpzQ3G1IV1eXdevWkZGRQZ06dRg8eDBff/21WpmOHTvy4YcfMmLECKpVq8bRo0eZOHGiWpkePXrwxRdfMH78eGrWrMndu3f54IMP/unHpZWenh4rVqzg7NmzVK5cmbFjxxbqPjp69GhMTU1V435VqlSJ7777jqFDh/LgwYNiq8tPP/2EtbU1DRo0oH379oSGhlKjRtFZJnp6egwcOFBtjDtNQkJC2Lp1K4sXL+aDDz4o1L123rx5dOrUSePEA126dGHz5s08fvyY5s2bc/z4cbp164afnx9dunTByMiIPXv2YJsvQ2rZsmUvPU7e69h27RhNK9SgiXd1XCzs6FMjFFsTS/bczJ3xq0fVtxhav5Oq/LkHN6jlHshbPrWwN7XGz86dfjVbcyv6PvHPBo9tF9iQblWa8ceJDTxNicfSyAxLIzMM9cuVeHue09HR4Z1ObzN/+XL2HTnCrYgIJs/4ASNDQ1o96xoL8MX07/ll3jzV86ysLK6Hh3M9PJys7CyeRsdwPTycew/z9tPUtDRVGcidnOB6eDhRT0p2LLU9N0/TsHwV6ntWxsnchq5VmmJtYsGhO7l3SjtWakz/Wm0KrdfQK4g7MQ95mKg+y2S2IoeHidFqj7TMDNKzM3mYGP3G7ixn7NiDUftWGNSshq6rCybv9UeZmUnmsbxxFU3eG4BRt7fz6n7+EoZvBWNQtxa6drboVwrEqEsHss5dVF3oZWzfg14Fbwzbt0LXwR6D+rUxbNqIjN2FM2OLU/NObTi8cx9Hdu7nUeQDVv6xmNin0QS3yR0aYN2C5cyfkTfz8cn9R5n/4+90HdSH8v6+JMTGkxAbT1pKXhZAkzYtSE5KZsWcRTx+8IhLJ8+xbeUGQtq2LNG2PHfg9nnqeFSitnsgDmbWdKjUCCtjM9Vsa60D6tOzWgtV+XMPbpCamU6Pam/haGaNt40L7So25GRkGNmK3JnYrj6+Q33PIKq5+GJjbIGvnTutAupxJerOS3VFflU6Ojq8060b85f8zb6DB7l1+zaTv/km95jQPK/uX3z9Nb/8MUf1vGfXrpw4fZoFS5cQcfcuC5Yu4cSZ0/TKd+OnV7duXLp6hXmLF3Pv/n2279rFuk2b6PYsCzo7O5txX0wk7Po1vvrPRHJycoiOiSE6JoasEg5KhXQM5fjuAxzffZCoew9ZO3cpcdExNAzNPQ5uWryKv2f+oSp/aOtuLp88x5OHUTx5GMXxPYfYu2E7tUIalGg9i4OxgSG+dm742uWOGetiYYevnRuOZmUv2zioeX2uHz7L9SPniHv0lGMrd5Acm0BgcG6Q8+S6Peybv15V/tLu40Scv0bC4xhiHz7h5Lo93DkbRqWQ3CC9voE+Nq4Oao9yJkYYGBli4+qAnv6bH0OsXtumnN13jHP7jvH0QRTbF60lITqOWs1zJ27ZvWwj635bDICOri4O7i5qD1NLM/QNDHBwd6Gc0evdLPynqrVowNVDZ7h6+AyxD59wePlWkmITqBSSOxv0sTU72T13tar8hV1HuX3uKvGPY4h58Jhja3YSfuYqQU3rqsrkZGfzNPIRTyMfkZOdQ3J8Ik8jHxH/uORu7OS379YZ6nsFUc+zEo7mNnQOaoKNiTmHn11LtK/YiL41C4/VWN+zMndiH/EoqXA9cyeWscfV0h59XT0sjc1xtbTHztSqpJsDQNUWDQg7dJaww2eJe/SUIyu25X5PTXL/P46v3cWeuWtU5S/sPsqdc2HEP44h9sETjq/dxe2zVwlqlvc9ndt+iJPr9xDS/20s7KxITUgiNSGJrPSMQu8vxJsimWei1NSvX1/j+GIAtWvXVk0goEnBroAeHh5s2LChyPfr3LkznTtrHpum4Pb8/Pw4dOiQ2rKCdf3+++/5/vvv1ZaNGTNG7flnn31WaFbP7777TmsdQ0JCCr3PgAED1DLzACZPnszkyZNVz5s3b642s2bB+s7LF5x4btSoUWrjyhX8DArWw8vLq9CygvX18vJi7969amWGDx9e6L0LGjNmDJUqVeLu3bt4enpqrA9AcHAwSUl5g8Tmn+nz4sWLWrffuXNn1Q+kLl260KVLlyLrs2XLFvT09OjatesL6/66jkdewczQhE6Vm2BlbMb9hCdM37+E6NTcbj5WxubYmuTdsT545zxGBuVo6VeH3jVCSc1M58rjOyw/v0tVprlvbQz09BnTuIfae625tJ+1l/aXeJue69+tOxkZmXz7yy8kJSdROSCAX6Z9o5aNEvXkKbo6eQHPpzEx9B4+TPV88ZrVLF6zmhpBVfhj+nQArt64wdDxeVmjPz37od2ueQsmf/xxibXnzP3rmJYzpm1gAyyMTHmUGM2vR9aoZs+0NDLDxkT9rqmRfjmqu/qx8sJeTZssEzK27ESnXDmM+7+DjokJObfvkPz9LMh3gapra6N29zN9w1aUSiVGXTuga22FMimZrHMXVeObAeTcuUvKrNkYd3sbo45tUURHk7ZkFVn5gnIloXZwfVISk9mybC0JsfG4eLoxYso4bB1yu8ElxMYT+zTvx8eh7XtQ5OSw7Pf5LPs9LxOw/lvBDBibm0liY2/L6KkTWPXn33w5fAJWttY069CKVl07lGhbnrvw8CamBka08KuDhaEpUUkxzD2xSTXbmoWRKdbGed2YMnOymHN8A50qBzM6uAepmelceHiLbdfyhiDY/axrZquAelgamZGcmcbVqDtqZYpb/3d6kZGRwbc//UhScjKVAwP55YcZBY4Jj9HVzUthrFo5iK+/mMTvc/9i9ty5uLm48M3kyVTON3t1pcBAfvgqN+j216KFuDg58dGIkbRukRvcfPL0KQeP5HYx7jVooFqdZs/8L7Wql9zMiDUa1SUlMZkdKzaQEJeAs4cr708ci41DbtfVxNh44vLtj0qFkk1/ryb28VN09fSwc3Kgfd9uNAgNKbE6FpcAe09+6ZQ3nMGoRrkBzq1hx/h6b+lMiqJNhdqVyEhJ5eyWg6QmJGPj4kCrEb0wt7UCIDUhmZTYvO62ipwcTqzeRUp8EvoG+li52BM64h08gnxLqQUvVrl+DdKSUjiwdgfJ8Qk4uDvTe/xQrJ51H02OTyQhWvOYs2WFb50g0lNSOb1pPykJSdi6ONJ+dF8s8n1PSTF531NOdg5HVu4gJT4RfQMDbFwdaDuqL15V8rqcpsQnsfLLvBso53cc4fyO3LG2Oo0r+cz4sw9uYFrOmFb+9Z5dS8Tw+9F1quO5pZEp1saFryWqufiy5tJ+jdu0NDZjQrO+qufNfWvR3LcWN5/eY9bhVSXVFBWf2kGkJ6dxZnPu92Tj4kDbUX3y/p/ik0jO//+UncPRVXnfk7WLPW1G9cEzKO97urL/FIrsHHbOXqH2XrXah1C7Q7MSb5MQmugotUUvhBDiDdqwYQM2NjY0bty4tKvCypUr8fT0VI0h9yp6L51c/BUqRUt6TSbpTkRpV6PYmZf34oM100u7GsXq9y6fEN9v6IsL/g+xWjSb/SU0+2NpCfGpycebip785H/ND+1HkhRVsuMqvmnmTo5sDyu5QGJpaBVYn4a//ruOEQBHhs/mh/1FZ6//r/k4pDdLz+54ccH/Ib1qhDLr0MrSrkaxGtW4OyPX/Vja1ShWP3cay8yDK15c8H/ImOAeLy5URiWeKpvXQBa1tQ+F8W8mmWdCiDKhY8eOpV0Fle75xtYRQgghhBBCCPH/m4x5JoQQQgghhBBCCCGEFpJ5JoQQQgghhBBCCFGWFJzZXJQqyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCiFIVFxdH3759sbS0xNLSkr59+xIfH6+1fFZWFuPHjycoKAhTU1NcXFzo168fDx8+VCsXEhKCjo6O2qNnz56vVDcJngkhhBBCCCGEEEKUJUpl2XyUoF69enH+/Hm2b9/O9u3bOX/+PH379tVaPjU1lbNnzzJx4kTOnj3L2rVruXHjBh06dChUdsiQITx69Ej1mDNnzivVTcY8E0IIIYQQQgghhBClJiwsjO3bt3P8+HHq1q0LwJ9//kn9+vW5fv06/v7+hdaxtLRk165dast+/vln6tSpQ2RkJB4eHqrlJiYmODk5/eP6SeaZEEIIIYQQQgghhHihjIwMEhMT1R4ZGRmvvd1jx45haWmpCpwB1KtXD0tLS44ePfrS20lISEBHRwcrKyu15UuWLMHOzo5KlSrx8ccfk5SU9Er1k+CZEEIIIYQQQgghRFmiUJbJxzfffKMak+z545tvvnnt5kZFReHg4FBouYODA1FRUS+1jfT0dCZMmECvXr2wsLBQLe/duzfLli1j//79TJw4kTVr1tC5c+dXqp902xRCCCGEEEIIIYQQL/Tpp58yduxYtWWGhoZay0+ePJkpU6YUuc1Tp04BoKOjU+g1pVKpcXlBWVlZ9OzZE4VCwW+//ab22pAhQ1R/V65cGV9fX2rVqsXZs2epUaPGC7cNEjwTQgghhBBCCCGEEC/B0NCwyGBZQSNGjHjhzJZeXl5cvHiRx48fF3rt6dOnODo6Frl+VlYW3bt3586dO+zdu1ct60yTGjVqYGBgwM2bNyV4JoQQQgghhBBCCPE/Sako7RoUCzs7O+zs7F5Yrn79+iQkJHDy5Enq1KkDwIkTJ0hISKBBgwZa13seOLt58yb79u3D1tb2he915coVsrKycHZ2ful2yJhnQgghhBBCCCGEEKLUBAYG0qpVK4YMGcLx48c5fvw4Q4YMoV27dmozbQYEBLBu3ToAsrOz6dq1K6dPn2bJkiXk5OQQFRVFVFQUmZmZAISHh/Pll19y+vRpIiIi2Lp1K926daN69eo0bNjwpesnwTMhhBBCCCGEEEIIUaqWLFlCUFAQLVu2pGXLllSpUoXFixerlbl+/ToJCQkA3L9/n40bN3L//n2qVauGs7Oz6vF8hs5y5cqxZ88eQkND8ff3Z9SoUbRs2ZLdu3ejp6f30nWTbptCCCGEEEIIIYQQZYlSWdo1eONsbGz4+++/iyyjzPe5eHl5qT3XxN3dnQMHDrx23STzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIsUfz/67ZZlknmmRBCCCGEEEIIIYQQWkjwTAghhBBCCCGEEEIILaTbphBCCCGEEEIIIURZolSUdg1EPpJ5JoQQQgghhBBCCCGEFjpKpVJGoRNCCCGEEEIIIYQoIxIPHC7tKmhk0aRRaVehVEi3TSGEKEb7b50p7SoUqxCfmiQ9fFja1Sh25i4uLDq1tbSrUaz61W5T2lUoEWfuhZV2FYpVTfdAZhxYVtrVKFYfNXmntKtQIpLCrpd2FYqVeaA/P+xfUtrVKHYfh/Sm4a9DS7saxerI8NksPbujtKtRrHrVCC3tKpSIidv/KO0qFKuprd5j85WyGbD5p9pV+h8O9EieU5ki3TaFEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKFdNssSyTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS5SK0q6ByEcyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEoXMtlmWSOaZEEIIIYQQQgghhBBaSPBMCCGEEEIIIYQQQggtpNumEEIIIYQQQgghRFmilG6bZYlkngkhhBBCCCGEEEIIoYUEz4QQQgghhBBCCCGE0EK6bQohhBBCCCGEEEKUJdJts0yRzDMh/octWLCAbdu2lXY1hBBCCCGEEEKIfy0JnokS4+XlxcyZM9/o9nR0dFi/fv1rvc/kyZOpVq3aK62zf/9+dHR0iI+Pf633fhVr167l+++/p169ev9o/QEDBvD222+rnoeEhDBmzJgi1ymu73Tv3r0EBASgUChee1sl4cmTJ9jb2/PgwYPSrooQQgghhBBCiFIm3TZFIe3btyctLY3du3cXeu3YsWM0aNCAM2fOUKNGjTdar1OnTmFqavpG37Osun37Nv/5z3/Ytm0b1tbWxbLNtWvXYmBgUCzbepFx48bx+eefo6ubG79fsGABY8aMUQs+hoWF0aJFC+rUqcOyZcswNDRk3759TJ8+nRMnTpCWloaXlxetW7dm7NixuLq6qr2Hv78/d+7c4c6dO4Veu337Np9//jkHDhwgNjYWOzs7atasyfTp0/Hz88PBwYG+ffsyadIk/vrrrxL/PPZv3sXOtZtJiI3HxcOV7u/1w7dygMayZ4+c5ODW3dy7fZfsrGycPV1p36sLlWpWVSuXmpzC+kUrOXf0FKnJKdg52tN1cG+CalcvkTYolUr+WLiQdZs3k5SURKXAQMaPHk2F8uWLXG/PgQPMnj+f+w8f4ubiwrBBg2jauLHq9fY9e/Lo8eNC63Xr2JHxz4K9ew8eZO2mTYTduEFCYiJL/vwTfx+fYm3fc6d3Heb41n0kxydi7+pEiz5v4xFQ4YXr3btxm8Vf/Yq9mxNDpn2iWn5u3zEuHTrF0/tRADiVdyOke1tcK3iWSP3/v9i1YSubV60nPiYOVy93+g0bREBQJY1l42JiWTJ7PnduhhP14BGhndrSb9jgQuW2rdnI7k3biX4SjbmlOXUbN6DH4L6UK1eupJsDwJX9J7m44yipCUlYuzhQv0crnH017ycPr99h84yFhZZ3nzIcK2f7QstvnbzE3r/W4FnVn9Dh7xR73f+/USqV/LF8Get27iQpJZlKvn6Mf38oFTw8tK4THhnJ7KVLuBYezqOnTxg7cBC9OnQsVO5JTAw/L1rA0bNnSc/IwNPFlYkjRhJYQsc8gKv7T3Fh5zHSnu179bq3LGLfi2DLj4sKLe82ZRhWTnaFloefuszev9biWdWflsN6FHvdX1dVZx96VW9JgIMHdqZWTNj6O4fuXCjtar20UzsPcXTzHpLiE3FwcyK0Xxc8X+KcFXn9Ngu+nIWDuzNDvx3/Bmr6/0sd94o0Kl8FM0MTniTHse3aMe7GRWktr6ejS1OfmlR18cHM0ITE9BQOhJ/j7IPrAFR09CLYuzo2Jhbo6egSk5rAkYhLXHh48001iSPb9rJ/ww4S4+Jxcnel48CeeFf001j2dthNtixazZMHj8jMzMTa3pb6LZvQpH1LVZnjuw5wev8xoiJzb2S7VfCkTe/OePh6v5H2lBllNNHg/ysJnolCBg0aROfOnbl79y6enuoXR/PmzaNatWpvPHAGYG9f+IL//ytvb2+uXr36UmWzsrJeKihmY2PzutV6KUePHuXmzZt069ZNa5lTp07RunVrOnbsyB9//IGenh5z5sxh2LBh9O/fnzVr1uDl5UVkZCSLFi1ixowZ/Pjjj6r1Dx8+THp6Ot26dWPBggV8/vnnqtcyMzNp0aIFAQEBrF27FmdnZ+7fv8/WrVtJSEhQlXv33XepU6cO06dPL7YApca2HjzGyj8X0WvYQCoE+nFw+x5+nvQdk3+fjo1D4R8aN69cI7B6EG/374GxqQlHdx/g1y9/YMKPU/Go4AVAdlY2M//zDeaWFrz/2Wis7WyIexqDobFxibVj4fLlLF21iknjx+Ph7s7cxYsZ/sknrFm0CFMTE43rXLxyhc++/JKhAwfStHFj9h06xIQpU5g7axaVK1YEYNHs2eTku3AIv3OH4R9/zFshIaplaenpVK1cmeYhIXz1ww8l1sarx8+x6+/1tBrQFXe/8pzde5Tl0//g/e8mYGmnfR9JT01j4+yllK/kS3JCktprd8NuUbF+Ddz8yqNvoM+xzXtZ9t1s3vt2PBY2ViXWln+zY/sOs+j3eQwc9T5+lQLYs2UH3306lelzf8bOsfB5JDsrC3MrSzr26sa2NRs1bvPwngMs/2sx7308Ar9KATy6/5DZ02cB0HfYoBJtD+QGGI6t2E6jXm1x9PEg7OBpts36m+6Th2Nma6V1ve5TR1DOyFD13Mi88A2opJh4TqzeiZOv9sCOeDUL161l6cYNTBo1Gg8XV+auWsnwSV+w5rffMDXWfDxMz8jAzcmJ5g0b8uO8uRrLJCYnM2jCeGoFBfHfiZOwsbTkflQU5iV4YzH81BWOrdxBw15tcKzgzrWDZ9n+81K6TR6GmY2l1vW6fTm8wL5XuN25+94unHzK7r5nbGDIrZj7bL12lGmth5Z2dV7J5WNn2b5oLW0HdsPd35szu4+w5NvfGf7DZ1jaab/mS09NY/1vi/Gu7FfonCVeX2Unb1oH1mfz1cNExj2mlnsgfWu25ufDK0lIT9G4To9qzTEzNGbd5YPEpiZgWs4YXZ28DmSpWRkcCD9HdEo82Yoc/B086VS5CSmZadyKvl/ibTp3+CQb5i+n85A+lA/04diOA/z51UzG/Xcq1va2hcqXMyxHwzbNcPF0o5yRIXfCbrJ69iLKGRpSv2UTAG5dvk71RnXwCvBB38CAfeu3MWfKj4z771QsbUvuulyIoki3TVFIu3btcHBwYMGCBWrLU1NTWbFiBYMG5f5QOHr0KMHBwRgbG+Pu7s6oUaNISdF80AeIjIykY8eOmJmZYWFhQffu3XlcIKNk48aN1KpVCyMjI+zs7OjcubPqtYJdBm/evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTX/gZbd26FT8/P4yNjWnatCkRERGFyrzq5/O8u+icOXNwd3fHxMSEbt26FeoKOn/+fAIDAzEyMiIgIIDffvtN9VpERAQ6OjqsXLmSkJAQjIyM+Pvvv8nJyWHs2LFYWVlha2vLuHHjUBYYgLJgt80nT57Qvn17jI2NKV++PEuWLClU5x9//JGgoCBMTU1xd3dn2LBhJCcnF/nZLV++nJYtW2JkZKTx9b1799KsWTPeffdd5s6di56eHvfv32fUqFGMGjWKefPmERISgpeXF8HBwfz111988cUXatuYO3cuvXr1om/fvsybN0+trVevXuX27dv89ttv1KtXD09PTxo2bMjXX39N7dq1VeWCgoJwcnJi3bp1Rbbnde1et5WGLUNoFNoUZw9XerzXD2s7Ww5sLZz5CdDjvX6Edm2Pl18FHF2d6dS/Jw4uTlw8cVZV5siu/aQkJTNs4lh8Kvpj62CPT6UA3L1LJptJqVSybPVq3u3Th2bBwfiUL8+UCRNIT09nu4YM1ueWrV5N3Vq1eLd3b7w8PHi3d2/q1KjB0jVrVGWsrayws7FRPQ4fO4abiws1q+Zl2rVt2ZIh/ftTp2bNEmnfcye27adaSF2qN62HnasjLft2wsLWirN7jhS53rZ5q6hUvwauPl6FXnt7WF9qtWiEk6crdi6OtB3cA6VCScSVN3e3+N9m65oNhLRqTtM2LXD1dKffsMHYOtixe9N2jeXtnRzpP3wwwS2bYmKqObBx8+p1/CoH0PCtJtg7OVKlVnUaNG3M7Ru3SrIpKhd3HcO/UQ0CGtfE2tmeBj1aY2ZtydUDp4tcz9jcFBNLc9XjebbvcwqFgr1/raFmh6ZYFBEAFi9PqVSybNNG3u3WnWb1G+Dj6cmU0WNIz8hg+8GDWter5OvL6AHvEto4mHL6mm94LVy7Bkc7OyaNGk1lPz9cHB2pU7Uqbs7OJdUcLu0+hn/D6gQ0qoG1sz31e4S+wr5npnpo2vf2zV1HjfYhmNuX3X3veOQV/jyxkQO3z5d2VV7Z8S37qN60HjWaNcDe1YlW/btgaWvNqV2Hi1xv818rqNywFm6+Xm+mov/PNPCqwtn71zlz/zpPU+LZdu0YienJ1PGoqLG8j50bXjbOLD6zndsxD4hPS+ZBwlPuxef9hoqIfUTYkwiepsQTl5bE8buXeZwUi6eV0xtp08FNO6nzVmPqtQjG0c2Ftwe9g5WtDUd37NdY3s3bkxqN6+Lk4YqNgx01m9THv1pl7oTdUJXp8+F7NGzdDNfyHji6OdP9gwEolUpuXgx7I20SQhMJnolC9PX16devHwsWLFALOqxatYrMzEx69+7NpUuXCA0NpXPnzly8eJEVK1Zw+PBhRowYoXGbSqWSt99+m9jYWA4cOMCuXbsIDw+nR4+8FP0tW7bQuXNn2rZty7lz59izZw+1atXSuD2FQkHnzp3R09Pj+PHjzJ49m/HjC6eVm5ubs2DBAq5evcp///tf/vzzT3766SfV6ytXrmTSpEl8/fXXnD59GmdnZ7VglCb37t2jc+fOtGnThvPnzzN48GAmTJigVuZVP5/nbt26xcqVK9m0aRPbt2/n/PnzDB8+XPX6n3/+yeeff87XX39NWFgY06ZNY+LEiSxcqN49Z/z48YwaNYqwsDBCQ0OZMWMG8+bNY+7cuRw+fJjY2NgXBoUGDBhAREQEe/fuZfXq1fz22288efJErYyuri6zZs3i8uXLLFy4kL179zJu3Lgit3vw4EGt3+u6deto27Ytn3/+OdOnT1ctf77vadu2lZWV6u+kpCRWrVpFnz59aNGiBSkpKezfv1/1ur29Pbq6uqxevZqcnJwi61qnTh0OHTpUZJnXkZ2VTeStO1SsXkVtecUaQYTnu4AoikKhID0tHdN8GSUXT5zBO8CXpb/N5+PeQ5kybBxbV6xHkVMyqd8PHj0iJjaWevm+13LlylGjalUuXrmidb2LV69St8C+UK92ba3rZGVlsXXXLjq0bo2Ojk7xVP4l5WRn8+jOfcpX9ldb7l3Zn/s3I7Sud+HACeIeRxPcOfSl3icrIxNFjgJjM81BHFG07Kws7twIp0qtamrLg2pW48bVa/94u/6VA7lzI5xb13L/Lx8/jOL8ybNUr6v5WFaccrKziY58iFtF9a5WbhUr8Dj8XpHrrp06h8Uf/8DmHxfy8NqdQq+f3XwAY3NTAhq9+Wzyf6sHjx8TExdHvXxjp5YzMKBG5UpcvPZ6P/oOnjxJoI8P47//lhb9+9Lrw9Gs27njNWusXU52DtGRj3AtsO+5VvR+8b731R/8/cmPbPlxEQ+vF973zm0+iJG5CQGNSmYogf/vcrKzeXjnHhWqqA8B4V0lgPs3Cn8fz53bf5y4x9GEdGlV0lX8f0lPRxcXC7tC2WC3ou/jbuWocZ0AB08eJjylUfmqfBLSm9GNuxPqXxd9XT2t7+Nt44KdqSURcY+Ktf6aZGdlcz/8Lv5V1YdG8K9WkYhrL3eD6f7tu0Rcv4V3RX+tZTIzM8jJycFEQwb1v5pSWTYf/09Jt02h0cCBA5k+fTr79++nadOmQG6Xzc6dO2Ntbc3o0aPp1auXKlPJ19eXWbNm0aRJE37//fdCWUW7d+/m4sWL3LlzB3d3dwAWL15MpUqVOHXqFLVr1+brr7+mZ8+eTJkyRbVe1XzZJQW3FxYWRkREBG5ubgBMmzaN1q1bq5X7z3/+o/rby8uLjz76iBUrVqiCMDNnzmTgwIEMHpw7vs1XX33F7t27i8w++/333/H29uann35CR0cHf39/Ll26xHfffacqM3369Ff6fJ5LT09n4cKFqjb9/PPPtG3blhkzZuDk5MTUqVOZMWOGKiOvfPnyXL16lTlz5tC/f3/VdsaMGaOWtTdz5kw+/fRTunTpAsDs2bPZsUP7BfeNGzfYtm0bx48fp27dukBuNldgYKBaufyZauXLl2fq1Kl88MEHRQYgIyIicHFxKbQ8OTmZbt268dlnnxUKRt68eRMLCwucX+Lu+vLly/H19aVSpdyTeM+ePZk7d65qP3Z1dWXWrFmMGzeOKVOmUKtWLZo2bUrv3r3x9lYfR8HV1ZVz585pfJ+MjAwyMjLUlhkaGmosq01yYhIKhQILK/WuL+ZWliTGJWhZS92udVvITM+gZuO8iSOeRj0h5vFV6oY0ZOTkcTx5GMWy3xegyFHQrlfnIrb2z8TExgJgW6B7q621tcbxyvKvp2md59sraP/hwyQnJ9O+1Zu/qE9NSkGpUGBmaa623NTSnOT4RI3rxEY9Zd+KzfSdOBJdPe0XufntW7EZc2tLylfSPE6IKFpSQu7/lKW1ldpyS2tLEmLj/vF2GzRtTFJ8AlPGfAZKJTk5OTRv34oO73R5zRq/WHpyKkqFEmML9R8MxhampCZqzvQ1sTSncd/22Hs4k5Odw83jF9j800LafzQAZz8vAKJuRXL98Fm6TPzf6opW1sXE5+5ntvlu6gDYWlrx6OnT19r2g8dRrNm+jd4dOvJu125cuXmTH/76EwMDA9o1bfZa29bk+b5nUnDfMzclLVFzJr2JpRmN+7TDztOZnKxsbp64xJafFtNubH+c/XKzn6NuRXL9yDk6T3y/2OsscqUmaj5nmVmaE66lK2bMoyfsWbaJdyePfulzlng1JuWM0NPVJTkzTW15cmYa5oaab5rZGFvgYe1EtiKHped2YmJgRPtKjTA2MGL95QOqcob6BnwS0gd9XT0USgWbrx4hPKbkJ75KSco975pZWagtN7O0JCn+cpHrfjn442fXwjmEdu9IvRbBWstuWbwGSxtrfKtoztAT4k2Q4JnQKCAggAYNGjBv3jyaNm1KeHg4hw4dYufOnQCcOXOGW7duqXXlUyqVKBQK7ty5UyjIEhYWhru7uypwBlCxYkWsrKwICwujdu3anD9/niFDhrxU/cLCwvDw8FAFmQDq169fqNzq1auZOXMmt27dIjk5mezsbCwsLNS2M3So+g+H+vXrs2/fviLfu169emqZLwXf+1U/n+c0tUmhUHD9+nX09PS4d+8egwYNUvucsrOzsbRUD77kz+xKSEjg0aNHanXU19enVq1ahbpu5m/j8zLPBQQEqGV4Aezbt49p06Zx9epVEhMTyc7OJj09nZSUFK2TO6SlpWkMHhobG9OoUSP+/PNP3nnnHbXPSKlUvnSm0dy5c+nTp4/qeZ8+fQgODiY+Pl5V/+HDh9OvXz/27dvHiRMnWLVqFdOmTWPjxo20aNFCrU6pqaka3+ebb75RC/QCTJo0iZA+7V+qnmoKNk2pYZkGJ/cfZfOStQybOFYtAKdUKDG3sqDPyMHo6uni6etNfGwcO9dsKZbg2bZdu5iWb4y5md98k9uMAt+RUsOyQgquo1RqbfqGrVtpULcu9naFx4J7Y16yjQqFgvW/LqZxl1bYOju81KaPbd7DlWPn6PP5cPTLvZnJO/61NP5P/fNsxavnL7F+6WoGjnqfCgG+PH4YxaJf/2Kt7Qo693kzg5zrUPB/RXtZKyc7tcHZHSu4kxyXyIWdR3H28yIzPYN9c9fSuG8HjeOgiZe37cB+pv2ed8No5n9yhxEo9H3xWrsgAAqlkooVfBjetx8AAd4VuB0ZyZrt20okePZPaNr3UmITuLjrGM5+nrn73rz1NO7bDiPJsH0DCp9jNZ1kFQoFa39ZREjX1i99zhKvQ/0AroOO1mP682uMVRf3kpGdO/TM9mvH6FGtBZuvHiZbkduLIjM7i9+OrqGcngHeti60CqhHbFoiEbEln32WW8+CS5QvPOgN/3o8mekZ3L0RzpbFa7B1dqBG47qFyu1dt41zh08w7MtxGMj1kShFEjwTWg0aNIgRI0bw66+/Mn/+fDw9PXnrrbeA3JPs+++/z6hRowqt56FhNiltwY/8y41fYTBzTUGfgts/fvy4KpMtNDQUS0tLli9fzowZM176fV72vQt61c9Hm+dt0tHRQfFs0PQ///xTlQ32nF6BO4SvOyvp8zYWFfi4e/cubdq0YejQoUydOhUbGxsOHz7MoEGDCo0rl5+dnR1xcYUzQPT09Fi/fj1dunShadOm7N27l4rPBo338/NTBQGLyj67evUqJ06c4NSpU2rdeHNycli2bBkffPCBapm5uTkdOnSgQ4cOfPXVV4SGhvLVV1+pBc9iY2O1TlTx6aefMnbsWLVlhoaGHLtX9F22/MwscscgKphllpSQUCgbraBTB4+xaNYfvD9hNIHVg9Res7SxQk9PD129vJ75zu6uJMbFk52Vjb7B6x36gxs2VA3oD7mTMABEx8ZiZ5s3MGxsXBw2RUy2YGtjUyjLLDY+XuPkFY+iojh59izfFwhYvikm5qbo6OoWyjJLTUjCtMCdfYDMtAwe3blH1N0H7Fi4Fnj2f6VUMq3fR/QaPxSvSr6q8se37OPIxt30mvABjh6FMzPFyzF/Nq5XQmy82vKE+IRC2WivYtWCpTRqHkLTNrnHBw9vLzLS0/nrp994u1e3QuM5FScjMxN0dHUKZZmlJ6VgYmH20ttxKO/GrRMXAUh8GktSTDw7fl2qev35cf/PoVPo8eVILBzezCQy/+uC69Shsl9epmhmVjYA0fFx2OU7lsUmxGNT4AbUq7KztqZ8vpuQAOXd3Nh77OhrbVebvH1PPcssLSmlUCZkURy83bh14hIASU/jSI6JZ8evy1WvP9/3/vpgKt2/HI6Fvex7r8vE4tk5K0H9nJWSmIyZhaZzVjoPb0fyKOI+WxesBvLOWV/2HkPfT4dRvrJkRL+u1Mx0chQKzMqpB45NyxmRnKn5Zm1SRiqJ6SmqwBnA0+R4dHV0sDAyJTY19ztWgurvqKQY7E2tCfauVuLBM1Pz3PNuUpz6vpackIi5pYWWtXLZPpvEx9nTjaT4RHau2FAoeLZv/Xb2rNnC0Mkf4+Llrmkz/27/j7tIlkUSPBNade/endGjR7N06VIWLlzIkCFDVMGUGjVqcOXKFXxecmr0ihUrEhkZyb1791TZZ1evXiUhIUGVYVSlShX27NnDu++++9Lbe/jwoaoL4LFjx9TKHDlyBE9PT7WZFu/evatWJjAwkOPHj9OvXz/VsuPHj7/wvdevX6+2rOA6r/r5PKepTbq6uvj5+eHo6Iirqyu3b9+md+/eL71NS0tLnJ2dOX78OMHBuenQ2dnZnDlzRuusqYGBgWRnZ3P69Gnq1KkDwPXr19UmLzh9+jTZ2dnMmDFD9cNx5cqVL6xP9erVtc4UamhoyNq1a+natStNmzZlz549VK5cma5duzJhwgS+//57tTHrnnueVTZ37lyCg4P59ddf1V5fvHgxc+fOVQue5aejo0NAQABHj6r/ALl8+TIh+WZ1LFjXV+2mWZC+gT4ePuUJO3eJ6g3yJisIO3eZqvW0D35/cv9RFv13DoPHjSCoTuHxYipU9OPU/qMoFArVd/P4wSMsbaxeO3AGYGpiojaDplKpxNbGhhOnTxPgmxsQysrK4uyFC4x87z2t26lSsSInzpyhd76ZV0+cPk2VSpUKld24fTvWVlY00pBh+ibo6evjXN6NO5dvEFA7b4y6O5dv4FezcqHyhsaGDPlGfYy+M7uPcPfqTTqPGoBVvh+Hxzbv5ciGXbwz/n1cvMvurHP/C/QNDCjvV4FLZ85Tu1FeV+bLZ85Ts0Hhu9kvKyMjA11d9ZsJurq6ude0JXxhq6evj52HCw+uhlO+el5G7v2wcLyqBhSxprqYe48wscwNtlk52dF1kvrx8NT6vWRlZNKgRytMbYr+wSPymBqbqM2gqVQqsbW25sT58wR4544VlpWVxdnLVxiZb3iFf6JqQCB3H6h3w7r78CHO9iWTKaSnr4edhzMPwm5TvnrevvYg7DaeVbWPTVRQzL0ojJ/te5ZOdnT5Qj3j//SGfWSlZ1C/RytMrYu+cSRejp6+Pi7l3bl98TqBtfOGQLl96Rr+NYMKlTc0NuKD79WHzDi18zB3rt6g+5iBWGmYMVG8uhylgoeJ0VSwcyXsSYRqeQU7N67le55fZFwUlZy8KaenT2ZObnDe1tQShVJBopbZOSE36auocdGKi76BPm4VPLlx4QpB9fJ+V9y4cJVKGq5RtVLmjp+W377129m9ejPvTfwQdw2TLgnxpknwTGhlZmZGjx49+Oyzz0hISGDAgAGq18aPH0+9evUYPnw4Q4YMwdTUlLCwMHbt2sXPP/9caFvNmzenSpUq9O7dm5kzZ5Kdnc2wYcNo0qSJqmvgpEmTeOutt6hQoQI9e/YkOzubbdu2aRwkvnnz5vj7+9OvXz9mzJhBYmKiWpAMwMfHh8jISJYvX07t2rXZsmVLoUHyR48eTf/+/alVqxaNGjViyZIlXLlypdDYV/kNHTqUGTNmMHbsWN5//33OnDlTaGbSV/18njMyMqJ///788MMPJCYmMmrUKLp3746TU+5sOZMnT2bUqFFYWFjQunVrMjIyOH36NHFxcYWyoAq289tvv8XX15fAwEB+/PHHQrN45ufv70+rVq0YMmQIf/zxB/r6+owZM0YtO7BChQpkZ2fz888/0759e44cOcLs2bO1bvO50NDQQhMc5FeuXDnWrFlD9+7dadasGXv27CEoKIiffvqJESNGkJiYSL9+/fDy8uL+/fssWrQIMzMzvv32WxYvXsyXX35J5crqwYzBgwfz/fffc+HCBZRKJZMmTaJv375UrFiRcuXKceDAAebNm6eWrZaamsqZM2eYNm3aC9v0Opp3asP8Gb/h6euNd4Avh7bvJfZpNMFtcrM81y1YTnxMLO9+NAzIDZzN//F3erzXj/L+vqoMm3KG5TB+NlNgkzYt2LdpJyvmLKJZh1CePIhi28oNNGtfMmOF6ejo8E7XrsxfsgQPNzfc3dyY//ffGBkZ0ap5c1W5L6ZNw8HenhHPuh337NKF90aPZsGyZYQ0bMj+I0c4ceYMc2fNUtu+QqFg0/bttAsNRV/DOCwJiYlEPXnC0+hoAO5GRgK5mW12GrLY/qm6rUPY8PsSnL3dcfPx4ty+oyTExFHjrQZA7nhlSXEJdBjaGx1dXRzc1bMkTS3M0DPQV1t+bPMeDqzextvD+mJpZ6PKbCtnZEg5o9cLzv5/1aZLR377bibefj74VvRn75adRD+J5q32uZM2LP9rMbHRMQybMEa1TsSt20DuuJOJ8YlE3LqNvoEBbp65N3tq1KvNtjUb8fTxxifAj8cPH7FqwVJq1q/9RsYGqtKiPvvmrcXO0wXHCu6EHTxDcmwCgU1yz58n1+4mJT6RpgNzu2Vf2n0Mc1srrF0cyMnJ4dbxi9w5G0aLod2B3CCjjav64NSGJrnd6QsuF69GR0eHd9p3YP7q1Xi4uODu7ML81aswMjSkVXDeeD5fzPwJB1sbRvTNDahlZWVx+17uIPxZ2dk8jY3l+u3bmBgb4e6ce0OtV4eODJwwjnmrVtKiUSOu3LjJup07+HzY8MIVKSZBzeuzf/467D2dcfB249qhs7n7XnDuDZ6T6/aQEp9E03ffBuDS7uOY21lh7Wyfu++duMSds2E0fz/3Jom+gT42rurBvnKqfa/sdRc0NjDEzTIvA93Fwg5fOzcS01N4nPzPx1F8E+q1bcq6Xxfj4u2Om195zuw5SkJ0HLWaNwJg97KNJMUl0GlY32fnLPWsZ1NLM/QNDAotF6/naMRFulRpysOEaO7FP6aWeyCWRmacjMydUKSFX20sDE1Zc2k/ABcf3SKkQg06BYWw9+ZpTMoZEepfl7P3r6u6bAZ7V+NBwlNiU5gnmD4AAQAASURBVBPR09XFz96Dai5+bLpacpNe5RfcviXLZv2Fm48XXv4VOL7zIHHRsdRv2QSALX+vISEmjl6jc8eYPrxtL9Z2Nji45l4P3Qm7yf6NO2jUJq/7+d5129i+bD19PhyCtYOdqpeGoZEhhsaax44WoqRJ8EwUadCgQcydO5eWLVuqdTesUqUKBw4c4PPPP6dx48YolUoqVKigNntmfjo6Oqxfv56RI0cSHByMrq4urVq1UgskhYSEsGrVKqZOncq3336LhYWFKlOqIF1dXdatW8egQYOoU6cOXl5ezJo1i1b5BhLv2LEjH374ISNGjCAjI4O2bdsyceJEJk+erCrTo0cPwsPDGT9+POnp6XTp0oUPPvigyMH0PTw8WLNmDR9++CG//fYbderUYdq0aQwcOPAffz7P+fj4qGbyjI2NpU2bNmqD7w8ePBgTExOmT5/OuHHjMDU1JSgoSG3gfk0++ugjHj16xIABA9DV1WXgwIF06tSJhATtg9LPnz+fwYMH06RJExwdHfnqq6+YOHGi6vVq1arx448/8t133/Hpp58SHBzMN998o5bFp0mfPn0YP348169fx99f851rAwMDVq5cyTvvvKMKoA0bNgw/Pz9++OEHOnXqRFpaGl5eXrRr146xY8eyceNGYmJi6NSpU6Ht+fr6EhQUxNy5c/niiy/w8vJiypQpREREoKOjo3r+4YcfqtbZsGEDHh4eNG7cuMj2vK7awfVJSUxmy7K1JMTG4+Lpxogp47B1yL1YT4iNJ/ZpjKr8oe17UOTksOz3+Sz7fb5qef23ghkwNvduvo29LaOnTmDVn3/z5fAJWNla06xDK1p17VBi7ejfsycZGRl8O3MmSUlJVA4M5Jfp09Uy1KKePFHr3la1cmW+/uILfp87l9nz5uHm4sI3X3yh1iUU4OSZM0Q9fkyHAhOCPHfw6FGm5Juw47OpUwEY0r8/7+cL+r+uivWqk5qUwuF1O0iOT8TezZmen7yHpV1ugC45PpGE6Ff7MXVm9xFysnNYM2uB2vLGnUIJltnO/pH6TRuRnJjI2r9XEB8bh5uXB+OmTcTeMfeHeXxsLDFP1Adu/2xo3s2HOzfCObr3IHaO9sxa8icAnfp0R0dHh1XzlxAbHYuFpQU16tem+8CXzwJ+HRVqVyY9JZWzWw6QmpCMjYsDrUf2xtzWCsjtPpwcm3c8z8nO4fjqnaTEJ6FvoI+1iwOtRvbCI0i6Xb0J/Tt1zj0ezplNUnIylf38+GXyFLUMtainT9HNNzTC09hYeo8do3q+eP06Fq9fR41Klfnj69ybOJV8fflhwmf8sngRf61cgYujIx8NGkzrJiEl1pYKtSuRkZLK2S0HVfteqxG98u17yaTk2/cUOTmcWL1Lte9ZudgTOuIdPIJ8tbxD2RZg78kvnfKOD6Ma5QYBt4Yd4+u92m8ElgWV69cgLSmFA2t3kByfgIO7M73HD1VlPv+Tc5Z4fZejbmNiYESITw3MDU14nBTL4jPbSEjP7ZpvZmiCpXFel/zMnGwWnN5C28CGDG3QmbTMdC5H3Wb3zVOqMgZ6+rSv2AgLI1OycrKJToln9cW9XI66/UbaVL1RHVKTktm1chOJcQk4e7gy+PPR2Djkjn+YGBdPfHTeMB1KhZKtf68h9kk0unp62Dra07ZPF+o9C7YBHN2+j5zsbBZO/13tvVp270Boz45vpF1lgkK6bZYlOsqXGcBJCFHiJk+ezPr16zl//nxpV6XEjRs3joSEBObMmVPaVdGqTp06jBkzhl69er3SevtvnSmhGpWOEJ+aJD18WNrVKHbmLi4sOrW1tKtRrPrVblPaVSgRZ+6FlXYVilVN90BmHFhW2tUoVh81eae0q1AiksKul3YVipV5oD8/7F/y4oL/Yz4O6U3DX/9ds8YeGT6bpWe138j9X9SrRmhpV6FETNz+R2lXoVhNbfUem68cLu1qFKt2lRqVdhX+scSN20q7ChpZdNB8Q/vfruRGuBVCCC0+//xzPD09ycnJKe2qaPTkyRO6du3KO+/8O38QCiGEEEIIIYR4edJtUwjxxllaWvLZZ5+VdjW0cnBw0DjWnhBCCCGEEEK8EUpFaddA5COZZ0KUEZMnT/5/0WVTCCGEEEIIIYT4XyLBMyGEEEIIIYQQQgghtJBum0IIIYQQQgghhBBlicy2WaZI5pkQQgghhBBCCCGEEFpI8EwIIYQQQgghhBBCCC2k26YQQgghhBBCCCFEWaKUbptliWSeCSGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbTQUSolF1AIIYQQQgghhBCirEhctqa0q6CRxTtdSrsKpULGPBNCiGI059j60q5CsXq//tvci4sq7WoUO3drJ3r8PbG0q1GsVvSZSuLWnaVdjWJl0aYlH278b2lXo1j91GE0/ZdPLe1qFKuFPSeSFHG3tKtRrMy9PJlxYFlpV6NYfdTkHZae3VHa1Sh2vWqE/uva1atGKA1/HVra1ShWR4bPpuP88aVdjWK14d3v+GDN9NKuRrH6vcsntPrzw9KuRrHaPuSn0q6C+JeQbptCCCGEEEIIIYQQQmghmWdCCCGEEEIIIYQQZYhSqSjtKoh8JPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRKku7BiIfyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCCKGFdNsUQgghhBBCCCGEKEsU0m2zLJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRGbbLFMk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFEqSrsGIh/JPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoSxQy22ZZIplnQgghhBBCCCGEEEJoIcEzIYQQQgghhBBCCCG0kOCZEOJ/VkhICGPGjCntagghhBBCCCFE8VIqy+bj/ykZ80wIIUrZ+T3HOL3tACnxSdi6OhLSqz1u/uVfuN6DmxGs/GYOdq6O9J06RrV85TdzuH/9dqHy5asE0Gnsu8VZdZUNq9exaslyYmJi8SrvxbAPRxBUrarW8hfOnmf2f38l4k4Etna29OjzDu07d1S9vmPzNqZ/9W2h9bYe2Ek5Q0MAer/dg8dRUYXKdOjyNqM++bAYWlVYS786tK/YCCtjM+7HP2Hh6W1ce3pXa/lGXlXoUKkxTuY2pGZlcOHhTRaf2U5yZlqhsg08gxjduDun7oXxw4GlJVJ/TZRKJX/u2Ma6Y0dISkujkocn47p0p4Kzs9Z19l48z4JdO7kXHU22Igd3O3v6hDSjTe06qjJ/bN/Knzu2qa1nY27Oji+nlVhbnmvoVYWmFWpgYWRKVFIM6y8f5HbsQ63l9XT1CPWrQ023ACwMTYhPT2bXjVOcvHcVAF0dXZr71qK2eyCWRmY8SY5j89UjRX73xa2ZT03aBNTH0tichwlPWXJuBzee3tNYdnDdDjQuX/j/70HCUz7bNhsAPR1d2lVsSKPyVbAytiAqMYaVF/ZwKSq8RNuRn1Kp5I+/F7Nu61aSkpOpFBDA+OEjqODlpXWd8IgIZi9axLVbN3n0+DFj3x9Kr86d1cqcvXSRxatWEXbzJtGxsfwwaRIhDRqWcGtyXdl/kos7jpKakIS1iwP1e7TC2ddTY9mH1++wecbCQsu7TxmOlbM9AHfOXuXctkMkPolFkaPA0sGGoBYN8Kuv/fj6JpzaeYijm/eQFJ+Ig5sTof264BlQ4YXrRV6/zYIvZ+Hg7szQb8e/gZq+vH9jmzSp6uxDr+otCXDwwM7Uiglbf+fQnQulXS2tWgfUo1PlJlgbmxMZ/5i5Jzdx9XGE1vJNvKvRKagJLhZ2pGSmc+7BDeaf2kJSRiqQe+zrWqUpTX1qYmtiwYPEpyw8vY1zD268oRZBsHc1WvjVxtLIjEeJ0ay6sJdbMQ80lu1XszX1vSoXWv4wMZqpu+YDUM3Fl1YB9bA3tUJPV5cnyfHsvnmKk5FXS7Qd+bULbEjXqk2xMbbgblwUs4+v50pU4WvR59pXbEj7io1xNLfmaXI8y87vYs/N06rXW/nXo7lfbTytnQC4FX2f+ae2cONpZIm3RQhtJHgmhCgxmZmZlCtXrrSrUaSsrCwMDAxK7f2vn7jA/qWbeKvf27j4enJx3wnW/TiP/tPGYmFrrXW9jNQ0tv+xAo+KFUhNSFZ7rf3Iviiyc1TP01JSWDzxv/jVDiqRNuzbtZffZ/7CqE8+pFKVymxZv4lPPxzP3GULcXRyLFT+0cNHfD52PG06tmPC5M+5cvEys6b/hKWVFcHNmqjKmZiasmDlYrV1nwfOAH6dPweFIq+dd8LvMH7URwQ3Cyn+RgL1PSvTv2Zr5p7azPUnkTT3rcWnzfoydtPPxKQmFCrvb+/B8AZdWHhmG2fuX8PGxIIhdTvwfr23mXFwmVpZO1NL+tQIJayIHwQlZdHe3Szdv48vevXGw96Bebt2MGL2L6z+dCKmRkYa17E0MeXdFqF4OTpioKfHoStX+HL5EqzNzakfEKgq5+3kzK8fjFA919PVKfH2VHPx5e3Kway+uI87sQ9p4BnEe/U68u2+v4lPS9K4Tv+arTE3NGHF+d08TYnH3NAEXZ285Pw2AfWp6RbAygt7eJIci7+DJ+/WacesQyt5kPi0xNtUx70ivauHsujMVm5E36dphRp8FNyLT7f9TmxqYqHyS87uYNWFParnujq6fNXqPVUwEKBLlaY08KzMvFNbeJQYTZBzBUY16sbU3QuIjC8clC4JC1euZOnatUz66GM83FyZu3Qpwz+dwJq58zA1MdG4TnpGBm7OTjQPbsyPc+ZoLJOWno6vtzftW4YybuqXJdkENeGnLnNsxXYa9WqLo48HYQdPs23W33SfPBwzWyut63WfOoJyRnnHNiNzU9XfhqbGVG8TjJWTHXp6ety9dIMDC9djbGGKeyWfkmyOVpePnWX7orW0HdgNd39vzuw+wpJvf2f4D59haWejdb301DTW/7YY78p+JCdo/l8sLf/GNmljbGDIrZj7bL12lGmth5Z2dYrUqHwVBtVpz5xj6wl7cpdQ/7p80WIgI9b9SHRKfKHygQ5ejG7cg3knN3HyXhi2JpZ80KATIxp24Zu9udcTvWuGEuJdnV+PruF+/FOqu/rxabN+jN/yG3eKuMlSXGq6+dOtajOWn9tFeMwDGpevyvBGXfly5zziNJyjVl7Yw/rLB1XPdXV1+PytAZy9f121LCUznW3XjvM4KYZshYIgZ2/61WxNUkbqG7muCPauxvv13+bXI6u58vgObQIa8FWr93hv1bc81fA9tQ1swIDa7fjvoRXceHoPf3sPRjfuTnJGGicirwBQxcWH/bfOcvXxHTJzsulWtRnTWg/l/dXfabzmEv8ecXFxjBo1io0bNwLQoUMHfv75Z6ysrLSuM2DAABYuVL8ZVbduXY4fP656npGRwccff8yyZctIS0vjrbfe4rfffsPNze2l6ybdNoX4l1AqlXz//fd4e3tjbGxM1apVWb16NQD79+9HR0eHPXv2UKtWLUxMTGjQoAHXr+eeeK9fv46Ojg7Xrl1T2+aPP/6Il5cXymfpuVevXqVNmzaYmZnh6OhI3759iY6OVpUPCQlhxIgRjB07Fjs7O1q0aAHAxo0b8fX1xdjYmKZNm7Jw4UJ0dHSIj48HICYmhnfeeQc3NzdMTEwICgpi2TL14EJKSgr9+vXDzMwMZ2dnZsyYUegz0NHRYf369WrLrKysWLBgAQARERHo6OiwcuVKQkJCMDIy4u+//36p9y8pZ3YconJwbYKa1MHWxZGmvTtgbmPJhb3Hi1xv94K1BNSrhnOFwhkNxmYmmFqZqx6Rl29iUM4AvzpVSqQNa5atpFX7NrTp2A7P8l4M+3AkDg72bFq7QWP5zWs34ODowLAPR+JZ3os2HdvRqn0bVi1drlZOR0cHG1tbtUd+VtZWaq+dOHIMFzdXqtaoViLtbBvYgL3hZ9l760zuneoz24hJTaSlXx2N5X3t3HmSEs/268d5mhLP9aeR7L55Cm9b10LtHNmwG6su7uVxcmyJ1F0bpVLJsgP7ebdFS5pVqYaPswuTe/UhPTOLHWdPa12vpo8vTatUpbyjE2529rzTJAQfZxfO31bPWtLT1cXOwkL1sDYzL+kmEVKhBicir3Ai8gpPkuNYf+Ug8WnJNPTSHDwOsPfEx86NP09s4Eb0PeLSkoiMf0xE3CNVmVruAey+eYqwJxHEpCZyNOIS15/cJcSnRom3B6BVQD0O3j7HgdvneZQYzdJzO4lNTeQtn1oay6dlZZCQnqJ6lLdxwaScMYdu52WXNPAKYtPVI1x8dIunKfHsvXWG/2PvvsOjKtoGDv92N733RkiBQEIIvSX03jsIAqIIigVsqK/9tX32gl2xgCgCUqQ3QXoPJdQkJIGQ3ntPdvf7I7Bhk11ATeHV576uvXRnZ87OcE7OOTvnmZlzaZcZERTaKG3SarWsWL+O+++exsDevQnw8+f1Z56lrLyc7Xt2Gy3XNjCQJx6cy7D+AzAz8uCjV7fuPDrrfgb27t1Q1Tfo7M4jBPbuTFCfLjh6utJz6ghsHO25uM/43xKApa01Vva2updSWXN77hXoj3+nNjh6umLn5kS7QaE4NXMnLbbpoi+ObtlDpwGhdB7YE9dmHgy/bxL2zo6E7zx403Kbv/+VkF5d8W7l1zgV/RP+iW0y5mjCBb47tpF9lyOauiq3NK5tH3bFhLMzJpyk/Ax+OL6JrOJ8o+epQDef6sjgyMNkFOUSmRHPjuhjBLjU/Dge0LIza87u4WRSNOlFOWyPPsrp5EuMD+nTKG0a1Korh+PPcSj+HGmFOaw+u4fckkL6tuhoMH9ZVQUF5cW6l6+jB1ZmFhy5el6XJyYrkTMpMaQV5pBVnMee2FMk52cSUOt+o6FMbNefHdHH2B59jMS8DBYdXU9mUR6jgw1H/A5q1ZVtkYfZfzmCtMJs9l0+zY7oY0zpMFCX5/09y9gceYjLOSkk5Wfw6YFfUSgUdGzWqlHadMfQaO/MVwOaPn06ERERbN++ne3btxMREcHMmTNvWW748OGkpqbqXlu3btX7/Mknn2TdunWsXLmSgwcPUlRUxOjRo1Gr1Ua2WJd0ngnxD/Hyyy+zZMkSvv76ay5cuMBTTz3FPffcw759+3R5XnrpJT766CNOnDiBiYkJs2fPBiAwMJAuXbrwyy+/6G1z+fLlTJ8+HYVCQWpqKv369aNjx46cOHGC7du3k56ezpQpU/TKLF26FBMTEw4dOsSiRYuIj49n8uTJjB8/noiICB566CFeeuklvTJlZWV06dKFzZs3c/78eebOncvMmTM5duyYLs+zzz7Lnj17WLduHb///jt79+7l5MmTf+nf6rnnnuPxxx8nMjKSYcOG3db3NwR1VRXp8cn4hujfCPiGtCYl1vhwsPMHwsnLzCFs/ODb+p5zB04Q2KMDpub1HwVYWVnJpehLdO3RTS+9S49uXDx33mCZi+cv0KVW/q49unEpMpqqqipdWmlpKdPHT+HuMZN56enniYk2PqSisrKSXdt3Mnz0CBSK+o9uUilVtHDy4mxqrF76mdRYWrs2N1jmUmYCzlZ2dPSq3r/2Ftb08GnL6eRovXyT2w2goKyYPXGn6r3et5KcnU12YQGhgUG6NDMTUzoHBHD2ypXb2oZWq+X4pWiuZmbQuaV+JExiViYjXn2JcW++yos/LSHphs72hqBSKPG2dyM6Q79jITrzKn6OhoehtvVoQWJeOgMDuvLqkDm8MPBexgb3xlSp0uUxUaqo0ujfXFWqq2jh5FX/jahFpVTi5+jJ+VrDX86nxen9ILyZvi06cjH9st7TelOlikpNlV6+SnUlrYwcz/UtOS2N7JwcQrt00aWZmZnRuV17zl5svKFG9UVdVUVWQgrewfrD/LyDW5IeZ3h47XW/vbmIn5/5kM0fLyUlyvjfnVarJTnyMvnp2UaHgjY0dVUVKVcSadk+SC+9Rfsgki4Zr/vpvUfJTc+i/6ThDV3FP+2f2KZ/AhOlipbOzYhIjtFLj0i5RJCb4eM/KuMqLtb2dPEOBMDewoaefu04kVjzcNhEqaJCrX/uq1BX0sbNr34bYIBKocTHwaPOsNPIjPg6D9aM6enXjqiMqwajjq8LdPXB3daRmKykv1Pd22KiVNHKxZtTte5tTiVH08bdz2AZU6WJwX3Q2tUHlcJw94S5iRkmSqVu+K34Z4qMjGT79u18//33hIWFERYWxnfffcfmzZt1QR/GmJub4+HhoXs5OdVEDefn5/PDDz/w0UcfMXjwYDp16sSyZcs4d+4cu3btuu36ybBNIf4BiouL+fjjj9m9ezdhYWEAtGjRgoMHD7Jo0SLmzp0LwFtvvUW/ftXD4p5//nlGjRpFWVkZFhYWzJgxgy+++II333wTgEuXLnHy5El++uknAL7++ms6d+7M22/XzFe0ePFimjdvzqVLl2jdujUAAQEBvP/++7o8zz//PIGBgXzwwQdAdUfd+fPneeutt3R5mjVrxjPPPKN7/9hjj7F9+3ZWr15Njx49KCoq4ocffuCnn37SRbMtXbr0T4XZ3ujJJ59kYq05cm72/YaUl5dTXl6ul2Z+w5DC21FaWIJWo8HazkYv3crOhhIjwz9y07I4uHo7U198GKVKZTDPjVIvJ5KdlMbQ2ZP/VN1uV35ePhq1Gkcn/WEtjk6O5GQbjqLKyc7B0cmxVn4n1Go1+Xn5OLs409zPh/+8/Dz+AS0oKS7mt1/X8uTc+Sz6eTHePnX3+6F9BygqKmLoqBH117gb2JlboVKqyC/VHyKbX1qEg5fhaKpLWYl8fmgNT/aZiqnKBBOlivDESJaEb9HlCXT1YUDLzjy39asGqfetZBdW33w72drppTvZ2JKWe/MouKLSUka+9jIVVVWolEqemzyFHjd0wrX19eX16TPxcXUju7CAxTt3MOezj/n1uZdwsLa+yZb/OmszS1QGbq4Ly0uxszD8nc7Wdvg7eVGpVrMkfDPWZpZMbj8AKzMLVkZU31BFZSTQv0Un4rKTyS7Oo5WrDyEeLVA2QEdtbbZmVqiUSvLLivXS88uLsbewMVKqhr2FDe09A/jmyDq99HNplxkeGEp0RgIZRTkEu/vTqVlgo7QJIDun+vhydtQ/Fzg7OpCakdEodahPZUUlaDVaLO30jzNLO2tKCooMlrGyt6XPzDG4+niirlITc/QMmxcuZczTs/Bs7afLV1FSxrLnPkJdqUapVNBr+qg6nXSNpaSgGK1Gg429/nnPxt6WOCPXrezUDP5YsYn7X3vitq5bje2f2KZ/guvX3bwy/b+fvNIiHC0NX3ejMq7y8b6VPNt/hu66eyzhAt8erYmEP518iXFt+3Ah/TJpBTm09wqgh0+w3lD9hmJjfu0aVet8XlhWjL37ra+LdhbWtHVvweLjm+t8ZmFixjujHsFUqUKj1bLi9E6iMhp+Xk47C2tUShW5Jfp/K7mlhThZ2hksczIpiuFBoRy+eo7YrCRauTRnaOsemKpMsLewIae0bsfg7G6jyS7Ob9S56YRxxn4H/dnfQrUdOXIEe3t7vd9foaGh2Nvbc/jwYQIDA42W3bt3L25ubjg4ONCvXz/eeust3NzcADh58iSVlZUMHTpUl9/Ly4uQkBAOHz7MsGHDbqt+0nkmxD/AxYsXKSsr03UsXVdRUUGnTp1079u3rxm253ltMvCMjAx8fHy4++67efbZZzl69CihoaH88ssvdOzYkeDgYKD6pLNnzx5sbOr+WIuLi9N1nnXtqj+MKDo6mm7d9KOMunfXH+amVqt59913+fXXX0lOTtadkK2v/cCOi4ujoqJC1zEI4OTkdNMT6M3UruOtvt+Qd955h9dff10v7dVXX8VzWMc/X6HaP1a1AHV/wGo0GrYuWkHY+CE4erje1qbP7z+Os7cHni0aNpqkThO03DwCrNZn14cGX08ODmlLcEhb3edt27fjkfseZP3qtcx/+ok6m9u2aSvdQ7vj4ury1xpwm2oHqisUCl3da2tm78qsriNZe24PZ1JicbS0ZUbnYTzQYyyLjq7HwsSM+b0m8+2xDY32JHXbyXDeWVUzPHbhg9Xz3dTeU1q0dXdqLVbm5vzyzPOUVJQTfimahevX0czZhS4B1ZF2vdrU7L8AvGjv58/4t15nS/gxZvQfaGyz9UJbZ09hdD8pUaAFlp3aTllVBQDrL+xnVtdRrD27h0qNmnXn9zG1wyBeGDgTrRayS/I5nniR7s2DG7IZ+vWv1SYFCoPtrK2PfwdKKss4maw/LP+XUzu4v9to3h35CFogoyiXA1ci6OPfsR5rXWPb7j94+9NPde8/efP/AAPHnra6bf+ratf9ZouSOXi44OBRc85yb9mcotwCzvx+WK/zzNTCjEmvPExleQUpkVc4unoHdq6OeN3GwjINx8A53MBu02g0/PbFT/SfPAJnT7dGqttf9U9s0/++2uduhYG065rbu/Fg6Fh+jdjFqeRLOFnaMavbSB7pOZEvDlVPZfL9sU3M6zWJLyc8A2hJK8zhj5gTDGpleBh8Q6hb+9s7n4f5hlBaWcaZlJg6n5VXVfD2rqWYm5gR6ObD5PYDyCrOJybr5pGv9cfAfjLSpuWnd+JoZccn455EQXVH286Y40zpMAi1VlMn/+T2A+nfshP/2fIllbUi1v7xDPx73AmM/Q567bXX/tZ209LSdB1eN3JzcyPNwCJh140YMYK77roLX19frly5wiuvvMLAgQM5efIk5ubmpKWlYWZmhmOtB3bu7u433W5t0nkmxD+ARlN9Yt2yZQvNmumHfZubmxMXVz0P0Y0T41/v2Lhe1tPTkwEDBrB8+XJCQ0NZsWIFDz30kN53jBkzhvfee6/O93vesCpf7Q4nrVZbpxOl9k3PRx99xMKFC/nkk09o164d1tbWPPnkk1RUVBjMb4yhjozKyso6+WrX8Vbfb8gLL7zAggUL9NLMzc358dQ2IyXqsrS1QqFUUlzryXZJYRFW9nU7KStKy0m/kkTG1RR2L6t+iqq9tmT0wtkvMOmZOfgE1wybqyyvIPrYGXpOGFpnW/XF3sEepUpVJ8osLze3TnTZdU7OTuQayK9SqbCztzdYRqlU0rpNIMmJdYcgpKemcTr8JK++++ZfbMWtFZSXoNaocbDU3y92FtbklxmOKhnfti+XMhPYdPEQAAl56ZQdr+CNYQ/y65ld2FvY4GbjyH/6z9CVuf63snz6azy18VPSi3LrtR1927Yj5Bk/3fuKa8NkswsLcLnh3z63qAjnW8xPplQqae5a3Ykb2Myb+PR0ftz1u67zrDZLc3MCPL1IzGy4CfaLK0pRazTYmev/jduaWxrtoCwoLya/rEjXcQaQXpiDUqHA3tKWrOI8iitKWRy+GROlCmszC/LLihndptdNh83Ul8KKEtQaDQ61oszszK0oqBW9YEifFh04HH8WtUb/BrywvITPDq7CVKnCxtyK3NJCpnQYZHAS7vrQNzSMkBsiEyuunZuzcnNxuWE+w5y8PJwcHRqkDg3JwsYKhVJRJ8qsrLAYK7tbRwhe5+bvTeyxs3ppCqUSe7fqfyOX5p7kpmUSse1gk3SeWdlZo1AqKcrXP/aLC4qwsat7zqgoLSPlcgKp8Uls/bG68+L6deuNGU8y84VH8Q9p3Sh1N+af2KZ/guvX3dpRZvaWNnWi0a6b1H4AkenxrLs2wf7V3DTKjlTw7qhH+OXUDnJLCykoL+ad3T9hqjLB1tyKnJIC7u06gvTC+r3eGlJUfu0aVSsS2tbCioKyWz9E6+nXjmMJFw12MGlBNzl/Un4GnrbODA/qQczBhu08Kygrrt5PVvpRZg6WtgYXQIDqIZoL96/kswOrcLSyJaekgBFBYRRXlNW5rk1q15+7Ow7mha1fcyUn1eD2ROMz9jvImNdee61OZ1tt4eHhgOGH74Z+T95o6tSpuv8PCQmha9eu+Pr6smXLljqjjf7MdmuTzjMh/gGCg4MxNzcnISFBNyzzRtc7z25lxowZPPfcc0ybNo24uDjuvvtu3WedO3dm7dq1+Pn5YWJy+6eOoKCgOhM2njihP3nygQMHGDduHPfccw9Q3VEXExNDmzbVq/YFBARgamrK0aNH8fHxAapXYrl06ZJee11dXUlNrbmwxsTEUFJy65uRW32/IfURmqwyMcHdrxkJF2Jo1aVmGfKrF2Jo2aluRIu5pTn3/t9Temlndh8h4WIcY+bfg72r/tDJS8fPoq5U06ZnJxqKqakprQNbc/L4CXr376tLP3n8BD37Gp6sOzikLUcOHtZLO3EsnNZtAo0eW1qtlriYWPxbtqjz2fbN23BwdCC0Z8NNdK7WqLmck0J7j5aEJ0bq0tt7tOREUpTBMuYmpnU6LDTXI+xQkJKfxTObPtf7fGrHwViYmLH0xFayGqBjxtrCQm8FTa1Wi7OtHceiown0ro5OrKyq4lRsLI+NGfuntq1Fq+uMM6SiqpL49HQ6tmi44WZqrYak/Axau/pwLq3mvNfa1afOnGHXXclJpYNnK8xUplSoqzt03Gwc0Wg15Ne68a/SqMkvK0apUNLeK6DOXDwNQa3REJ+bSluPFpy8YU6Zth4tbjl8JcjNFw9bZz67vNponkqNmtzSQlQKJV29g/RW5KxP1lZWeitoarVanJ2cOHbqFEEB1Z3+lZWVnDp3lsfmzGmQOjQklYkJLj5eJF+Mw79TzbUjKTIOvw5BNympLzsx1eDDEz3a6nm6moLKxAQv/+ZcPhtNm24ddOmXz0UR2KXuohzmlhY88v7zemnhvx/kysVLTHlyNg6uznXKNLZ/Ypv+Cao0auKyk+ng1Yqj11ZghOoVlY8lGD5PmZuYotHWvu5Wv6/987hSXUVOSQEqhZKeviEcvHKWhqbWakjIS6ONm69e9Fj1+9iblKxehMjNxpHD8edu+/tMlA0/pLhKoyYmK4lOzVrr1a1Ts9YcvWp47tvr1FoNWcXVc3H2a9mJ4wkX9KLVJrcfwLROQ3hp26JGjKATt+PP/g6aP3++3u9KQ/z8/Dh79izp6el1PsvMzMTd3f22v8/T0xNfX19iYqr/zjw8PKioqCA3N1cv+iwjI4OePXve9nal80yIfwBbW1ueeeYZnnrqKTQaDb1796agoIDDhw9jY2ODr+/tTSw8ceJEHnnkER555BEGDBigF8U2b948vvvuO6ZNm8azzz6Li4sLsbGxrFy5ku+++w6VkTk/HnroIT7++GOee+455syZQ0REhG71y+s9/QEBAaxdu5bDhw/j6OjIxx9/TFpamq7zysbGhjlz5vDss8/i7OyMu7s7L730kt6KZAADBw7kiy++IDQ0FI1Gw3PPPacXbWfMrb6/IXUZ1odt3/6Ku583ngE+nNt7nMLsPDoMqO4IOrB6G0W5BYyYOxWFUomLt4deeUtbG0xMTeqkQ/XCAgGdg7G0aZj5pa6bNG0K773+Fq3bBBIc0pYtGzaTkZ7BmAnVnS/ff/UtWZmZPP9q9UIRoyeOY8OadXz9yReMHDeai+cvsH3TVl5847+6bf70/Y+0CQmmWXNvSoqLWbdqLXGXYnn8Gf3OQ41Gw44t2xgycjiqP9Gp+1dsiTzM/J6TiMtJISYzkUGtuuJibc/OmOMATOs4BCcrO748vBaAk0nRzA0dx5BW3TiTWj1s876uI4i5tqIjQGK+/txOxRWlBtMbikKhYFq//izZ9TvNXV1p7urKj7t+x8LMlGGda4awvPrLT7jaOzB/dPU+XbLrd4Kb+9DM2YUqdRWHIi+yJfw4z99V8+Tvkw3r6NM2BA9HR3KLivjh9x0Ul5UxupvheQTry964U8zoPIzEaytm9vRth6Olre6mflSbnthb2LD89O9A9X4a0ro70zoNYXvUUazNLBgT3JtjCRepvLZIgI+DO/aWNqTkZ2JvYcOwwFCUKNgde/NVFOvL9qijPBQ6nis5KcRmJzOgZSecrezZHVu9aMpd7QfiaGnLt8f0V7jt26IjsVlJJOfXjfZr4eSFo5UdCblpOFrZMj6kHwqFgq2Rh+vkbQgKhYJp4yewZOUKfJp50bxZM5asWImFuTnDB9QM6/3v++/j5uLM/NnVHWqVlZVcTkjQ/X9mdhbRcXFYWVjQ/No1q6S0lMSUFN02ktPSiI6Lw97WFg8Dw0HqS/shYexZ/Bsuvl64t2xO5P6TFOXk06Zf9d/S8d92UZxXwIDZ1U/Bz+06gq2zA45ebqjVamKPnuXKqUiGPFyzEM/pbQdw9fXCztURTZWahPMxXDpyhj4zRjVYO24ldNQA1n35M14tmuPd2p+TfxwmPyuXroOrH5jsWrGRwtx8Jjw6E4VSiVtz/YU1rO1tMDE1rZPelP6JbTLG0tQcb/uaqR+87Fxo5eJNQVlxvUc7/10bLhzgyT5Tic1OIjojgWGB3XGxdmB7VPWK5DO7DMfZyo5PDqwCIDwxknm9JjE8MJTTyZdwtLLlge5juJSZQM61625rl+Y4WdtxJTsVZ2s77u44BIVCwbrz+4zWoz79EXOCWd1GcTU3jSs5KfT274CjlR0HrlSvhjyubR8cLG1ZekL/wXMvv3ZcyU4hpaDuwjvDAntwNTeNrOI8VEoVIR4tCPVty4rTOxulTb+d28uz/WcQk5lIZEY8I4J64mbjyJZr15P7u43C2dqeD/cuB6qntQh09SEq4yo25lZMbNcPP0dPPrr2OVQP1by36wje2/0z6YU5ugjE0spyvUjxfzzNnTls889ycXHBxeXWU6uEhYWRn5/P8ePHddP8HDt2jPz8/D/VyZWdnU1iYqJudFSXLl0wNTVl586dusXuUlNTOX/+vN5c3bcinWdC/EO8+eabuLm58c4773D58mUcHBzo3LkzL774om5o5q3Y2dkxZswYVq9ezeLFi/U+8/Ly4tChQzz33HMMGzaM8vJyfH19GT58eJ1OrBv5+/uzZs0ann76aT799FPCwsJ46aWXeOSRR3RPLF555RWuXLnCsGHDsLKyYu7cuYwfP578/JqV4T744AOKiooYO3Ystra2PP3003qfQ/Xwy/vvv5++ffvi5eXFp59+elsrct7O9zeUwB4dKC0q4eiGPyjOL8C5mQcTFtyPnUv1U5HivEIKs/P+9HZz0zJJvhTPpGcaPoJjwJCBFOTns+yHn8jJzsavhT9vf/we7p7VHXo5WdlkpNV0Bnl6efLWx+/x9SdfsHHtepxdnJm34HH6DqyJIiwqKmLhux+Sm52DtY01LVu3YuE3nxHUVr9D81T4STLS0hkxZmSDt/PI1fPYmlsxqV1/HC1tScxL5909P+uemjpY2uBsXTP0cd/l01iamjEsMJSZXYZTXFHGhfQr/HJqR4PX9c+4d+BgyisreW/NKgpLS2jr68fnD8/Ti1BLy83VC2svq6jgvTWryMjPw9zUFF83d964516GdqpZOTEjP4+Xf/6RvOJiHG1sCPH1Y/GTC/CstbhEfYtIicHazJJhgT2wM7citTCbb49u0HVY2plb6w0DqlBX8s2RdUxs158Ffe+muLKMiJQYtt3QiWSqMmFkUBjOVvaUV1USmRHPL6d2NNoN/PHEi9iYWzIupC8OFjYk52fy8f4VutUz7S1tcLLWHzJjaWpOV+82Ro83U5UJk9r1x9XGkfKqCs6mxPLtkfWUVJYbzN8Q7psyhfKKct794gsKCwsJCQrii3fe0YtQS8vMQKmsOfYys7OZ8egjuvc/r1nDz2vW0Ll9e7794EMALl66xMP/eVaXZ+GiRQCMHjKE156pSa9vLbuFUFZcwqkt+yjJL8LJy40Rj83A1tkBgJL8Qopyaq4r6io1R9f8TnFeISamJjh6uTH8sen4tKsZ8ldVXsHB5Vsozi3AxNQEBw8XBs6ZSMtuIbW/vtGEhHWmtLCYfb/toCgvH7fmnsx47mEcrkU/F+UVkJ91Z3XC3Mo/sU3GBLn68sWEmuFWj/e+C4CtkUd4a/fSpqqWQQevnMXW3IqpHQbhZGXH1dw03ti5RDc80dHSFhdrB13+3bEnsTQ1Z1SbnszuPoriijLOpsay9ETNlBqmKhPu6TwMdxsnyqoqOJkUxSf7V1JcUdYobTqZFI21mSWj2vTEzsKa1IIsvjy0VjcNgL2FDU5W+kNVLUzM6NSsNavO7Da4TXOVKdM6DcHB0oZKdRVphTksCd/CyaSbr05YX/ZfjsDO3JoZnYfhaGXH1ZxUXtn+LRnXOmOdrOxws66J9lEqFExs1x9vBzfUGjVnUmJZUGuqijHBvTBTmfDKkPv1vmvZye0su8Puo0T9adOmDcOHD+fBBx9k0bVr99y5cxk9erTeXNdBQUG88847TJgwgaKiIl577TUmTZqEp6cn8fHxvPjii7i4uDBhwgQA7O3tmTNnDk8//TTOzs44OTnxzDPP0K5dOwYPHnzb9VNob3cyISGEqCdvvfUW33zzDYmJ/7wQ7EVH1jd1FerVQ2HjScy9/Yk0/1c0d/Rg6rJXmroa9erXe96kYOvvTV2NemU3cihPbfz01hn/hywc+wT3rWy4+fmawtK7X6EwvuFXdWtMtn6+fLRvRVNXo1493W8ay/+BPzqndx72j2vX9M7D6PXlw01djXp1aN43jFvyXFNXo15tuP89Hln7QVNXo159PelZhn/31K0z/g/Z/uDCpq7CX5a/aElTV8Eg+4fuv3WmvygnJ4fHH3+cjRs3AjB27Fi++OILHBwcdHkUCgVLlixh1qxZlJaWMn78eE6fPk1eXp5uHu8333yT5s1rFkwrKyvj2WefZfny5ZSWljJo0CC++uorvTy3IpFnQogG99VXX9GtWzecnZ05dOgQH3zwAfPnz2/qagkhhBBCCCHEnelfGOfk5OTEsmXLbprnxvgvS0tLduy49QMUCwsLPv/8cz7//PNb5jVGOs+EEA0uJiaG//u//yMnJwcfHx+efvppXnjhhaaulhBCCCGEEEIIcUvSeSaEaHALFy5k4cL/3ZBpIYQQQgghhBD/XtJ5JoQQQgghhBBCCHEn0fz7hm3eyYwvkSeEEEIIIYQQQgghxL+cdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJP8C1fbvJNJ5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIO4lW09Q1EDeQyDMhhBBCCCGEEEIIIYyQzjMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQdxKNrLZ5J5HIMyGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eq0M27yTSOSZEEIIIYQQQgghhBBGSOeZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiDuJDNu8o0jkmRBCCCGEEEIIIYQQRkjnmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQog7iUbT1DUQN1BotTKQVgghhBBCCCGEEOJOkf/xl01dBYPsF8xr6io0CYk8E0KIejTl55ebugr1atXM/yOjILupq1Hv3Oyc6fvVo01djXq1/9GvyHvqxaauRr1yWPg2vb58uKmrUa8OzfuGyT+91NTVqFdr7n2LvCeeb+pq1CuHT9+lMOJsU1ejXtl2bM9nB1Y1dTXq3eN9pjR1FRrEuCXPNXUV6tWG+9/7R57PZ696u6mrUa8WT3mRfl//szpG9j1yZ3ZAif890nkmhBBCCCGEEEIIcSeRQYJ3FFkwQAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRIZt3lEk8kwIIYQQQgghhBBCCCOk80wIIYQQQgghhBBCCCNk2KYQQgghhBBCCCHEnUQjwzbvJBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOJOotU0dQ3EDSTyTAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRCurbd5JJPJMCCGEEEIIIYQQQggjpPNMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghxJ1EI8M27yQSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiKrbd5RJPJMCPGvs3fvXhQKBXl5eU1dFSGEEEIIIYQQdziJPBNCNIq0tDTeeusttmzZQnJyMm5ubnTs2JEnn3ySQYMGNXX1mtTQ1t0Z27YPDpY2JOVl8OOJrURlXDWav7d/B8YG98bTzpmSinIiUmL4+eQ2iipKAejXohPzek2qU27GL69RqalqkDasW72WFcuWk52VjV8Lfx5f8AQdOnU0mv/0ydN88clnxF++grOLC9PvncH4SRN0n1+Ju8wPi74nOiqKtNQ0HnvqCaZMn6q3jbvGTiQtNa3OtidMnsiC556pt7bdaHzbvkzrNBgnK3vic1L5/NBqzqbGGc0/IaQvE9v1x8PWifTCXH4+tZ0d0cf08tzVfgDj2vbF3daR/LJi9sad4tujG6hQN8y+MsRi2CDMwrqhsLREnZBIydqNaNIyjOa3mfcAJgEt6qRXXoyi+Luf6qSbD+qH5ehhlO87ROn6LfVad0MmhPRjeqchOFvZcyUnhc8OruZMaqzR/BND+jGpXX887ZxJL8xh6cltbL9hP6mUSu7tPJwRQWG4WDuQkJfO10d+41jCxQZvy3XDAnswNrg3jla2JOZl8GP4FiJvcp7o49+BcW376M4Tp1Mu8dPJbRSVl+ryWJlaML3TEHr4tMXa3IKMwlyWntzG6eRLjdEkACyGD8asZ/fqY+9qIiVr1t/82Js/F5NWBo69C1EUf/ujbpsWIwbrfa4pKKTglbfqte63S6vV8u2a1az7YxeFRUW0bdWK52Y/QMvmzY2WWffHLrbs30dcYiIAbfxb8Oi0aYQEtGqsauuc23OM0zsOUpJXhJOXG73vHoFXaz+DeZOjrrD+w8V10qe/+TiOnq4AZCenc3zDbjKvplCYnUfvqSPoMKRnQzbhX2NEUCgTQvrhaGlLQl46PxzfxMX0eKP5+7XoyIR2/fCyc6G4oozTyZdYEr6FwvISAFQKJZPbD2BAQBecrexILshk6YnGPUfcrg6eAUzvNJQgNx9crB14fuvXHLhypqmrZdCAlp0ZHhiKg6UNyfmZrIjYRUxWosG8s7uNprd/+zrpyfmZvLLjO937Ia26MaBlZ5ys7CiqKOVEUhRrzu6hSqNusHbcaHzbPtzd8dr9UW4qXxxac9P7o/Ft+zKxXb/q+6OiXJad3M6OS8d1n38y9gk6NWtdp9yRq+d5fuvXDdIGIW5FOs+EEA0uPj6eXr164eDgwPvvv0/79u2prKxkx44dzJs3j6ioqAb53oqKCszMzBpk2/UlzDeEWV1H8v3xTURnJDC4dTdeHHgvT238jOyS/Dr5A119md9zEktPbuVEUjROlnY8GDqWh8Mm8OG+5bp8JRVlPLHhE72yDdVx9sfvu/js409Z8NwztOvQno2/refZJ57m51W/4O7hUSd/SnIK/3nyacaMH8srb7zKuTNn+fi9D3FwdKD/wAEAlJWV4dnMi/6DB/D5x58Z/N5vl/6ARq3Rvb8Sd5mn5j/BgMEDG6SdAwO68FjvyXy8fyXn0y4zNrg374+ex70r3iSjKLdO/nFt+zA3dBwf7F1OZEY8bdz8+E//GRSWlXD46jmg+mZ3buh43tvzM+fTLtPcwZ0XBs4E4ItDaxukHbWZD+yLef9elCxfizozC4shA7B5eDYF73wM5RUGyxQv+QVUKt17hbUVts88RmXE+Tp5Vc2bYRbWDXVyaoO14UaDArrwRO+7+GjfCs6mxTG+bR8+HDOfe5a/TrqB/TS+bV8eDhvPe3uWEZlxlTZufjw/4B4Ky0s4FF+9n+b2GMew1j14b+8yruam0b15MO+MeJiH1n5g9AdPferp1676PHFsE1GZVxnSqhsvDrqPpzZ+SlZx3fNEkJsv83tNZumJrZxIisLJyo65PcbxSNhEPtj7CwAmShX/HXI/+WXFfLhvOdklBbhY21NaWd7g7bnOfFA/zAf0puSX1dXH3tCB2Dz6AAVvfWj82Fv8c91j7z9PUBlxTi+fOjWNoi+/r0lowhXLlm7cwPItm3n1kXn4eHryw29rmffWm6xd+CnWlpYGy5y8cIFhPXvTPrA15qZmLN24gflv/R+rPvoYNyfnRqt7zPFzHFy5jX4zRuMR4MOF/SfY9OnPTH/jMWydHYyWm/F/T2Bqaa57b2lrrfv/qopK7FwdCejaloO/bmvI6v+r9PZvz5zuY1h0ZD2RGVcZFtiD/w6Zzfx1H5NVnFcnfxs3P57oM5XFxzdxPDESZyt7Huk5gfm9JvHO7p8BmNFlGP1bdOLLw2tJysukU7PWvDDwXp7b8hVXclIauYU3Z2lqTmx2ElujDvP2iIebujpGdWvehmkdh/Dzqe3EZiXRv2UnnuozlZd3fEtOSUGd/CsidrLm3B7de5VCyetD53AiqebeOdSnLZPbD2Bx+GZis5LxsHViTvfRAKyM2NXgbRrQsjPze01m4YFfOZ8ax5i2vXlv1DzuW3mz+6OxfLB3OVEZV2nj7sez/aZTWF7C4avV9xGv7PgOU2VNV4WdhTU/THmBvXGnG7w9dxSN5tZ5RKORYZtCiAb36KOPolAoOH78OJMnT6Z169a0bduWBQsWcPToUeLj41EoFEREROjK5OXloVAo2Lt3ry7t4sWLjBw5EhsbG9zd3Zk5cyZZWVm6z/v378/8+fNZsGABLi4uDBkyBICtW7fSunVrLC0tGTBgAPHx8Xr1y87OZtq0aXh7e2NlZUW7du1YsWJFQ/6T6IwO7sXu2JPsjj157YnuVrJK8hka2N1g/tau3mQU57Et6iiZRblEZ15l16VwWjg308unRUt+WZHeq6H8unwlo8aNYcz4sfj5+/H400/i5u7GujXrDObf8Ns63D3cefzpJ/Hz92PM+LGMGjualctqOv/atA1m3hPzGTx0CGZmpga34+joiLOLs+51+OAhmnk3o2PnTg3SzikdBrIl8jBbIg9zNTeNzw+tIbMoj/EhfQ3mHxbYg40XDrI79iSpBdnsjj3JlsjDTO88RJenrYc/59Pi2BVzgrTCHMITI/kj5gSBrr4N0gZDzPv1pGznXirPXUCTlk7J8tUozEwx69zRaBltSSnawiLdy7R1AFRWUnFGvwMDMzOs7plK6ap1aEtLDW+snk3tOJjNkYfYFHmIq7lpfHpwNRmFuUwI6Wcw//DAHmy4cIA/Yk+SUpDFH7En2Bx5iBmdhunl+enkNo5cPU9KQRbrL+znWMJFpnUcbHCb9W1Mm+rzxB+xJ0jOz+THE1vJLs5naOseBvO3dmlOZnEuW6OOkFGUS1TGVXbGHKels5cuz8CALtiYW/L+nmVEZyaQVZxHVMZVrubWjeZsKOb9elH2+x4qz15Ak5pOybJVKExNMevS0WiZOsdeYKvqYy/irH5GtUYvn7a4uGEbY6y+Wi0rtm7h/gkTGdijBwE+Prw+bz5l5eVsP3jQaLn/e/wJ7ho2jEA/f/yaNePlhx5Cq9Vy/FzdDuqGFLHzMG16dya4b1ecvNzoc/dIbB3tOL/3+E3LWdpZY21vq3splTU/Odz9vel113BadW+PykSe49eXcW37sCsmnJ0x4STlZ/DD8U1kFeczIijUYP5ANx8yinLZHHmYjKJcIjPi2RF9jAAXb12eAS07s+bsHk4mRZNelMP26KOcTr7E+JA+jdWs23Y04QLfHdvIvssRTV2VmxrWujsHrpzhwJUzpBZmsyJiFzmlBQxo2dlg/tLKcgrKinUvP0dPrMwsOXhDVF1L52bEZCVxLOEi2SX5XEi/wrGEi/g5ejZKm6Z0GMTWqCPV90d56XxxaC2ZRbmMa2v4OBnaujsbLx5iT9wpUguv3R9FHWZap6G6PIXlJeSUFuheXZsHUV5Vwd64U43SJiEMkc4zIUSDysnJYfv27cybNw9ra+s6nzs4ONzWdlJTU+nXrx8dO3bkxIkTbN++nfT0dKZMmaKXb+nSpZiYmHDo0CEWLVpEYmIiEydOZOTIkURERPDAAw/w/PPP65UpKyujS5cubN68mfPnzzN37lxmzpzJsWP6w+vqm0qpooWTV53hZGdTYgl09TFYJjozAWcrOzp5VYey21tYE+rbltPJ0Xr5LEzM+HLCM3w98VmeG3BPg91AVVZWcikqmu499Dv7uvXozvmz5wyWuXDuPN1q5e8e2oOoi1FUVf216LjKykp+37aDkWNHo1Ao/tI2bsZEqaK1qw/hiZF66eGJkYS41x1CBmCqNKFCXamXVq6upI2bH6prPyTPpsbR2tWHNm7VnWWeds6E+oZw9Grj/EBWOjuitLOjKjqmJlGtpir2Cib+ho9BQ8x6dKXi9Fmo0G+v1eSxVEZGUXXJ+NCN+mSiVBHo6sPxBP39dDwxkhAPI/tJZUJFVa39VFVJsHvNfjJVGdiXVZW09wyox9obZqJU0cLZizMp+ueJM6m3Ok/Y64a82FtYE+oTwqmkmqFWXb2DuJSZyAM9xvL9XS/w8ZjHmRjSD2UD/P0YonR2QmlvR1VUrWMv7gom/rffeWwW2o2KU2fqHHtKVxfs3ngR2//+B6v7pqF0dqqvqv8pyRkZZOflEdq+gy7NzNSUzsHBnL0UfZOS+srKK6iqqsLexqYhqmmQuqqKzKsp+LTVP86btw0gLe7mEZe/vvEVS55+j/UfLiEp6nJDVlNQfZ5o6dyMiOQYvfSIlEsEuRn+e4rKuIqLtT1dvAMBsLewoadfO04k1kQ0mShVdaYQqLh2HRN/nkqpxNfRkwvp+n8TF9KuEODsbaSUvj4tOnAx/QrZN0SpxWQl4efogb9T9b2eq7UD7TxbcvYm0xXUl+r7o+aG74/+5HW3jZuv7rpb26igMHbHnqSsynBUshCNQR73CCEaVGxsLFqtlqCgoL+1na+//prOnTvz9ttv69IWL15M8+bNuXTpEq1bV/9IDAgI4P3339flefHFF2nRogULFy5EoVAQGBjIuXPneO+993R5mjVrxjPP1MyR9dhjj7F9+3ZWr15Njx6GIzvKy8spL9cf3mRubm4wrzF25laolKo6UWH5ZcU4WBj+gXQpM5HPDq7myb5TMVWZYKJUEZ4YyeLjm3V5Ugoy+erwbyTkpWNpas7IoDDeHP4gz27+krTC7D9Vx1vJz8tDrVbj6KT/w9TR2Ymc7ByDZbKzc+he64eso5MTarWavLw8XFxc/nQ9DuzdT1FRESNHj/zTZW+HvYUNJkoVuaWFeuk5JQU4NbczWOZ44kVGt+nFgStnuJSZSKCrDyODwjBVmeBgYUN2SQG7Y0/iYGnLFxOeRoECE5WKdef388vp3xukHbUpbG0B0BTqH4OaoiKUjg63tQ2VjzcqLw9Kfv1NL920U3tUzbwoWfhVvdT1djhc2085pfpDX3JLC3C2usl+Cu7N/itniM5MIMjVh1Fteurtp2MJF7m742AiUmJJzs+kq3cQffw7oFQ2fEeTrbHzRGkRDl6GzxPRmQl8emAVC/rerXee+OH4Jl0ed1snQmwcOHD5DG//sRRPO2ce6DEWpVLJmrN7DG63Pilsq+uuKdT/m9IUFqJ0dLytbeiOvRVr9NKrriag/mUV6oxMlLa21cNBn3yEwncWoi0pqZ8G3KbsawvTONvb66U729uTmplloIRhXyz/BVcnJ7q3a1ef1bupsqIStBoNlnb6x5mlnQ0l+YUGy1g52ND/3nG4+Xqhrqoi+sgZNnz0IxOenW10njTx912/n8irdZ7IKy3C0dLWYJmojKt8vG8lz/afoTtPHEu4wLdHN+jynE6+xLi2fbiQfpm0ghzaewXQwycYpULiL/4KWzMrVEol+WX6kbAF5cXYW9R9wFybvYU17Txa6u0jqL6O2Zpb8cKAe0FR3aG1O/YkW6OO1Gv9Ddfp2nW3pPZ1txAnI9fd8MRIRrfpycErZ7iUpX9/ZG9hU2dbQW6+tHBuxnvXph34V5HVNu8o0nkmhGhQ2msn/b8bDXTy5En27NmDjYGn7nFxcbrOs65du+p9FhkZSWhoqN73h4WF6eVRq9W8++67/PrrryQnJ+s6xgxFyl33zjvv8Prrr+ulvfrqq9DyTzfN4HXR2KWymb0r93cbxZqzeziTEoOjpS33dBnOg6Hj+OZI9TDJmKwkYrKSdGWiMxJ4b9SjjAgKZUl4w0zWXmf3arV1027Mj/6H2mstrp1+uzZv3ESPsFBcXF3/Uvnbpa21sxQKha7utS09sQ0nKzu+mfgfUEBuSSHbo44yvfNQ1NrqOSw6erViZpdhfLx/JZHp8TSzd+Xx3neR3WUEP52s/7mATDt3wGrKeN37IgOT+1dTGD8IazHr0RV1ShrqhJpjTuFgj+WE0RR9sxj+YjTh31F7P4HCaHOWhG/FycqObyc9p9tPW6OOcE/nYaivbefTA6t4bsA9LJ/+Glq0pORnsiXqMKOCGm+S8zptuskfmLe9K7O7j2b12d2cSY7BwcqWe7uMYG7oOL6+dp5QKBTklxWz6Oh6NFotl3NScLS0Y1zbPg3SeWbapSNWU2sWBSla9KORnApu9+AzC+1W59gDqIqsibDTpKZTFH8Vu1f+g1n3zpTvNT5Usj5sO3CAt79bpHv/yfMvAHWvgVrtTXehnqUbNrDj0EEWvfo65k0wj6eh87uxyjt6uOLoUXMe9mjpQ1FOPqd3HJTOs0ZQ5xplIO265vZuPBg6ll8jdnEq+RJOlnbM6jaSR3pO5ItD1R3S3x/bxLxek/hywjOAlrTCHP6IOcGgVl0NblP8Nbd71uvl156SyjJOpehHrQa6+jC6TU9+PrWdyzkpuNs4Mq3jEPKDi9h08VCD1Pl2GDv2lp7YhpOlHV9PfLbm/ij6KNM7DUWjrTvH16ignlzOTr7pYlpCNAbpPBNCNKhWrVqhUCiIjIxk/PjxBvNcnwvlxotsZaV+OLdGo2HMmDF6EWPXeXrWDEms3eFl7MJ9o48++oiFCxfyySef0K5dO6ytrXnyySepqDAeGv7CCy+wYMECvTRzc3Nmrnrzlt93XUF5CWqNGgdL/Q5Bewtro3OUTQjpR3RmApsuVv8ATMhLp+zYJt4c/iArI3aSV1q3nBYtcdnJeNjW/yTT9g4OqFSqOlFmuTm5daLRrnN2diInWz8CLi8nF5VKhb2DvcEyN5OWmsrJ4yf4v/ffvnXmvyi/rIgqjbrOU1RHS1tySwxHYFSoK3lvzzI+3LccJ0s7skvyGRPcm+KKUvJLq586z+k+ht+jj7Ml8jAAl3NSsDA159l+0/n55HajHXN/VeWFSAo/vGG41bX5hpS2NqgLatqhtLFGW3Qb8+SZmmLWqT2l2/UnJDbx9kJpa4Ptgnm6NIVKhaqFH2a9Q8l/9r8N8jQ179p+crbSP44cLW0NTsQM1fvpnd0/8/7eX3T7aWxwn2v7qUi33Re2fYOZygQ7CxuyivN4JGwCqYW3Hzn0VxXqzhP60SP2FtYG/97h2nki4yobL1SfJ67mpfNd1Ub+b/hcVkTsIq+0kNySQtRaNZob9kNyfiaOVraYKFX1vkJb5fmLFF698dirnvRfaWurf+zZ2qAtvM1jr3MHSrftvHXeikrUqWkoXf98VOuf1bdrV0Ja1QxzrKis7jzOysvD5YaIupyCfJzsHW65vZ83bWTJ+t/46uX/0sq38eZCBLCwsUKhVFKSr78/SguLsbK7/eGj7i28uXT0zlz18J/i+v1E7Sgze0ubOtFo101qP4DI9HjWnd8PwNXcNMqOVPDuqEf45dQOcksLKSgv5p3dP2GqMsHW3IqckgLu7TqC9MK6k8CLWyusKEGt0dSJMrM1t6ag7NbzMvbx78CRq+dR15pEfkJIPw5fPa9bXTQ5PxMzlSn3dR3J5ouH6vlOQt9N749Kb3J/tHcZH+43fn90nbmJKQMDurA4fLPBbQnRmCTmVgjRoJycnBg2bBhffvklxQYmbM7Ly8P1WrRQamrNanw3Lh4A0LlzZy5cuICfnx8BAQF6r5tFiAUHB3P06FG9tNrvDxw4wLhx47jnnnvo0KEDLVq0ICZGf96Q2szNzbGzs9N7/dlhm2qNmss5KXXmTWrvGUB0ZoLh71WZ1ukQvP6U7mZRW76OHuQZuYn5O0xNTWkdFEj4Mf3Jo8OPhxPS3vDworbtQgg/Hq6XdvzYcYKCgzD5C5NHb920BQdHR8J6NVwUUJVGzaXMBLo2b6OX3tU7iPPpN5/PR63RkFmch0arZVBAVw7Hn9d1ilmYmNXdnxoNCsXtR6X8KeUVaLJyal5pGWgKCjAJvOEYVKkwCfCn6orhY/BGZh3bgYmKyhP6q19VxsRR8N6nFH74he5VlZBE5akzFH74RYMNQ6jSqInOTKBbrf3UrXkbzqfd/n4a3Korh+LP1em8rFBXkVWch0qppH/LTrofKg2pSqPmcnYK7b3+xHnCxBQNdY8rQHeWiM68ioets955w9POmZySgnrvOAOuHXvZNa+0DDT5Bo69lv5UXbl1dIFZp/bVx174bay8plKhcndDU1D/58DarC0tae7hqXu18PbG2cGBY2drFjSorKrk1MWLtG8deNNt/bRxA9+vXcPnL7xEcMu/ENb8N6lMTHD19SLxov6chYkX4/Bo2fy2t5OVmIqVg+Ghg6J+VGnUxGUn08GrlV56R69WRqN1zE1M65zjau4n9FWqq8gpKUClUNLTN4RjCRfqre7/JmqNhqu5qQS7++ult3X3JzY7yUipaoGuPrjbOnHgct3rjpnKpM6+1Gq11fuxgeexrL4/SqSrt/70LF29g/7UdXdgQBeOXD1fpx0DWnbBVGXCzkvhRrbyD6fV3pmvfynpPBNCNLivvvoKtVpN9+7dWbt2LTExMURGRvLZZ58RFhaGpaUloaGhvPvuu1y8eJH9+/fz8ssv621j3rx55OTkMG3aNI4fP87ly5f5/fffmT17Nmq18R96Dz/8MHFxcSxYsIDo6GiWL1/Ojz/+qJcnICCAnTt3cvjwYSIjI3nooYdIS2ucFec2XzzEoIAuDGjZmWZ2rtzXdQQu1va6m4RpnYYwr+ckXf4TSVF09wlmSOvuuNk4Eujqw/3dRhGTlah7wje5/QA6eAbgZuOIr6MHj4RNwM/Jk98v3Xx1tL9q6vS72bxhE1s2bib+SjyfffwpGWnpjJ80HoBvvvia/3v1DV3+cRMnkJ6axucLPyX+SjxbNm5my4ZN3H3PdF2eyspKYqIvERN9icrKKjIzM4mJvkRSov7NpUajYeumLYwYNeIvdbz9GavO7GZ0m56MDArD19GD+b0m4WbryIbzBwCYGzqOFwfdp8vvbe/GkNbd8bZ3pY2bL68OmY2/syffHauZq+Tw1XOMC+nDwIAueNo609U7iDk9RnMo/pxeRFBDKt93GIvB/TFtF4zSwx2raZPRVlRScSpCl8dq+mQsRg2tU9YstCuV5yLRltRaSbO8Ak1aut6Ligq0xSXV/9+Afo3YxZjgXoxq0xNfRw8e73UX7raOrLtQHV3xcOh4Xh40S5e/ub0bQ1t3x9vejTZufrw+dA4tnL1YdMOcMsHufvRr0REvOxc6eAbw8ZjHUaDgl1ONMzfdpsjq88TAgC40s3dlVteRuFjb6/6mp3caymO9Juvyn0iKoodPW4becJ6Y3X00MZk154kd0cexNbfi/u6j8LR1pnOzQCa268/26IZdKOVG5fsOYTFkAKbt26L0dMdqxl1oKyupOBmhy2M1YwoWo4fVKVt97F00OIeZxbiRqFr6o3RyROXbHOvZ96CwMKfi+MmGbI5BCoWCaSNHsWT9b+w5fozYhARe++pLLMzNGd67ty7ff7/4nC+W18zns3TDBr7+dSX/feRRPN1cycrLJSsvl5Kyxlm19rqOQ3py8cBJLh48SU5KBgdXbqUwJ5+2/asXfTmy9nd2/VAz59yZnYe5fPoieenZZCenc2Tt78SdvEi7ATXzh6qrqshMSCUzIRV1lZqivAIyE1LJS6/fOTn/bTZcOMCQ1t0Y1Kor3vZuzOk+GhdrB7ZHVT8wnNllOE/2qVlkKTwxklDfEIYHhuJu40SQmy8P9hjLpcwEcq6dJ1q7NCfUty3uNk4Eu/vx6tA5KBQK1p3f1yRtvBlLU3NauXjT6tpqoV52LrRy8cbd5vbmUGwsOy4dp69/R3r7t8fT1pm7Ow7GycpOt4rkpHb9eaD7mDrl+vh3IC47meSCzDqfnUmNZUDLznRvHoyLtT3B7n6MD+lLRErMbY3A+LtWnfmDUdfvjxzcmddzEm62Trro5wd7jOXFgffq8nvbuzGkVTea2bsS5ObLfwffj7+TJ98d21hn26PahHHwyhkKyptmxWQhbiTDNoUQDc7f359Tp07x1ltv8fTTT5OamoqrqytdunTh66+/Bqon/589ezZdu3YlMDCQ999/n6FDa36se3l5cejQIZ577jmGDRtGeXk5vr6+DB8+XDfs0xAfHx/Wrl3LU089xVdffUX37t15++23mT17ti7PK6+8wpUrVxg2bBhWVlbMnTuX8ePHk5+f33D/KNccuXoeW3MrJrUfgKOlLYl56byz+2eyivOA6rB3F2sHXf59l09jaWrO8MAe3NtlOMUVZVxIu8yyUzt0eazNLJgbOh4HSxtKKsu4kpPKqzu+Jy47uUHaMGjoYAry8/nx+8VkZ2Xj37IF73/yIR7XhtNmZ2WTfkOHiVczL97/5CM+X/gp61b/hourC0888xT9Bw7Q5cnKzGL2PbN071cuW87KZcvp2LkTny/6Upd+4ng46WnpjBw7ukHadqPdsSexM7fmvq4jcba240p2Ks9t/or0ouohq85Wdno36SqlkqkdBuHj4E6VRs3p5Es8+tuHpBXWDHH96cQ2tFotD/QYg6u1A3mlRRyOP2fwBrKhlO/ej8LUFMvJY1FYWqK+mkTRN0ugvGbYstLRoc6TRqWrMyYt/Cj6enGj1fV2/BF7EjsLG+7vOgpnazsuZ6fwzKYvSC+8vp/scbetGVKsVCqZ1nEwPg4eVGnUnEqO5uG1H+gtrmGmMuXBHuPwsnOhtLKcI1fP8+bOJRRVNE5HxuH4c9iaWzH52nkiIS+dt//4qdZ5omao6t646vPEiKBQ7us6guKKMs6nXWbZyZrzRHZJPm/uXMKsbiP5aOxj5JQUsDXyMOuvdTI2hvI/9l079sahsLJEfTWRoq9/uI1jzwWTlv4UffW9we0qHeyxvm8aCmsrtEXFVF1NpPDjr9Dm5jVga4y7b+w4yisqePeH7yksLiYkIIAvXnwZa0tLXZ607Cy9BSjW7NxBZVUVz338kd62Hpx8Fw/dpb/KdENq1b0dZcUlnNi0l+L8Qpy93BnzxEzsnB0AKMkvojC75lqprlJzaNUOivMKMDE1xamZG6Men4lf+9a6PMV5hax6o2YhkYgdh4jYcQiv1n5M+M+cxmraP87BK2exNbdiaodBOFnZcTU3jTd2LiHTyP3E7tiTWJqaM6pNT2Z3H0VxRRlnU2NZeqJmvk1TlQn3dB6Gu40TZVUVnEyK4pP9KymuKGvk1t1akKsvX0yomU7j8d53AbA18ghv7V7aVNWqIzwxEhszS8YG98bewobk/Ew+OfCrbvVMewubOkMgLU3N6eIdxIoIw8PUN108iFarZUJIXxwtbSksL+FMaixrz+1t4NZU2xN3CnsLa+7tMqL6/ignlee23Hh/ZI/bjfdHCgVTOwyi+fX7o5RLzFv3kd79EVR3srX3DODpTZ83SjuEuBWFtjG6o4UQ4l9iys8v3zrT/5BVM/+PjIJ/XjSAm50zfb96tKmrUa/2P/oVeU+92NTVqFcOC9+m15cPN3U16tWhed8w+aeXmroa9WrNvW+R98TzTV2NeuXw6bsURpy9dcb/IbYd2/PZgVVNXY1693ifxutMbEzjljzX1FWoVxvuf+8feT6fvarh5lttCounvEi/r+fdOuP/kH2PfHnrTHeo/FffaeoqGGT/+gtNXYUmIcM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQuY8E0IIIYQQQgghhLiDyAxbdxaJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5Fhm3cUiTwTQgghhBBCCCGEEMII6TwTQgghhBBCCCGEEMIIGbYphBBCCCGEEEIIcSfRyLDNO4lEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g1TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9HKapt3Eok8E0IIIYQQQgghhBDCCOk8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCHEn0ciwzTuJRJ4JIYQQQgghhBBCCGGEdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJPIapt3FIk8E0IIIYQQQgghhBDCCIVWK92ZQgghhBBCCCGEEHeKvP+82tRVMMjh/debugpNQoZtCiFEPXpywydNXYV69cm4J7mcldTU1ah3LVy8Gb342aauRr3aPPsD8u6e09TVqFcOK3/gjZ2Lm7oa9eq/Q2Yz/sfnm7oa9Wr9rHf5YM+ypq5GvXp2wD18d3RDU1ejXj0YOo7H1n3c1NWod59PWMAr279t6mrUqzeHz+WRtR80dTXq1deTnmX2qrebuhr1avGUF+n15cNNXY16dWjeN//I/fQ/S6tp6hqIG8iwTSGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eo1MT38nkcgzIYQQQgghhBBCCCGMkM4zIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEHcSrQzbvJNI5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEZI55kQQgghhBBCCCHEnUSrvTNfDSg3N5eZM2dib2+Pvb09M2fOJC8v76ZlFAqFwdcHH3ygy9O/f/86n999991/qm4y55kQQgghhBBCCCGEaFLTp08nKSmJ7du3AzB37lxmzpzJpk2bjJZJTU3Ve79t2zbmzJnDpEmT9NIffPBB3njjDd17S0vLP1U36TwTQgghhBBCCCGEELdUXl5OeXm5Xpq5uTnm5uZ/a7uRkZFs376do0eP0qNHDwC+++47wsLCiI6OJjAw0GA5Dw8PvfcbNmxgwIABtGjRQi/dysqqTt4/Q4ZtCiGEEEIIIYQQQtxJNJo78vXOO+/ohlVef73zzjt/u7lHjhzB3t5e13EGEBoair29PYcPH76tbaSnp7NlyxbmzJlT57NffvkFFxcX2rZtyzPPPENhYeGfqp9EngkhhBBCCCGEEEKIW3rhhRdYsGCBXtrfjToDSEtLw83NrU66m5sbaWlpt7WNpUuXYmtry8SJE/XSZ8yYgb+/Px4eHpw/f54XXniBM2fOsHPnztuun3SeCSGEEEIIIYQQQohb+rNDNF977TVef/31m+YJDw8Hqif/r02r1RpMN2Tx4sXMmDEDCwsLvfQHH3xQ9/8hISG0atWKrl27curUKTp37nxb25bOMyGEEEIIIYQQQog7SQOvbNlY5s+ff8uVLf38/Dh79izp6el1PsvMzMTd3f2W33PgwAGio6P59ddfb5m3c+fOmJqaEhMTI51nQgghhBBCCCGEEKLpuLi44OLicst8YWFh5Ofnc/z4cbp37w7AsWPHyM/Pp2fPnrcs/8MPP9ClSxc6dOhwy7wXLlygsrIST0/PWzfgGlkwQAghhBBCCCGEEEI0mTZt2jB8+HAefPBBjh49ytGjR3nwwQcZPXq03kqbQUFBrFu3Tq9sQUEBq1ev5oEHHqiz3bi4ON544w1OnDhBfHw8W7du5a677qJTp0706tXrtusnnWdCCCGEEEIIIYQQdxKN9s58NaBffvmFdu3aMXToUIYOHUr79u35+eef9fJER0eTn5+vl7Zy5Uq0Wi3Tpk2rs00zMzP++OMPhg0bRmBgII8//jhDhw5l165dqFSq266bDNsUQgghhBBCCCGEEE3KycmJZcuW3TSP1sBccHPnzmXu3LkG8zdv3px9+/b97bpJ5JkQ4n+KQqFg/fr1/5jvEUIIIYQQQghxZ5PIMyGEuAP18mvPwIAu2FlYk1aYzbpz+7ick2Iw7/ROQ+nuE1wnPbUgm/f2/GygRP3b/NsG1ixfRU52Nr7+fjz0+KOEdGxvNP/Z02f47vOvuXolHmcXFyZPn8qoCWP08qz7dS1b1m0kMz0DOwd7evfvy/0PP4CZuRkA902aTkZa3RV5Rk8cy7ynn6jfBhoxMiiMie3642RpS0JeOt8d28iF9CtG849q05PRbXriZuNEZnEuq87sZnfsyUap681YTB6L2cB+KGysUMdepmTxL2iSDB9v15mPGIzZkAEoXZzQFhZRcewEZSvWQmXVtY1aYDllPKbdOqOwt0Udn0DpjytQX45v+AbVcmn/KS7+cZzS/CIcPF3oMmkQbgHNjeZXV1ZxbtthroRfoKywGCsHW0KGhdEyzPgx3dBGBIYyPqQvjla2JOam88PxzVzMiDeav2+LjkwI6YeXnTPFFWWcTr7Ejye2UlheosszJrgXwwNDcbF2oLC8mMPx5/n51HYq1VWN0CK4uPcEZ3ceoTS/EAcvV8LuGoZHKx+DeVOi49m6sO75bPJrj+DgUT0J8aXDZ9j/08Y6eWZ9/gImpo1zy3v6j8OEb91HcX4hLl7uDJgxFu9A/1uWS74Uz8p3vsHF25373nxK77Oy4lIOrt1OzInzlJWUYu/iRP9po2jRoU1DNUNPH/8ODGrVFTsLa1ILsvnt3F7ispMN5r2n8zB6+Latk55akMXbf/wEgIetM6Pa9KS5gxvO1vasPbuHvXGnG7IJBnVvHkxv//bYmFuRUZTLtqgjXM1NM5pfpVAyIKALHbwCsDG3oqCsmH1xpzmVHA1AsLsffVt0wsnKDpVCSXZJPofiz3EmJaaxmkTfFh0Z0rob9hY2pBZksfrMbmKN7Kt7u4wgzC+kTnpKQRZv7lwCQEevVgwPCsXV2gGVUklGUR67YsI5nnCxQdtxowEtOzM8MBQHSxuS8zNZEbGLmKxEg3lndxtNb/+65+nk/Exe2fGd7v2QVt0Y0LIzTlZ2FFWUciIpijVn91ClUTdYO/6KDp4BTO80lCA3H1ysHXh+69ccuHKmqatl0L95PzWof8hqm/8U0nkmhBB3mE5erZnQrh9rzuzmSk4KPf3a81DYeN7Z/TN5pYV18v92bi+bLh7UvVcqlPxnwIxGu2Hft2sPiz79inlPP05w+xC2rt/MK8+8wKJli3HzqLusdFpKKv995kWGjxnJs/99gYtnz/PlR59h72BP7wF9Adi9YxdLvvmOp154luB2bUlKSOLjt94H4KEnHgXg0++/QqPR6LZ79fIVXnzyP/QZ0K8RWl39g/LBHmP5+sg6LqbHMyIolNeGzuHR3z4kszivTv4RQWHc12UEnx9aw6WsRAJdmjO/92SKyks4nhjZKHU2xHzsCMxHDqXk68WoU9OxmDgamxefpmDBS1BWZrCMaa8eWEybTMmiJagvxaL09MDq4dkAlP1UvTy41UP3ofJuRvGX36PNzcOsTyg2Lz9NwdOvoM3Na6zmEX8ykpNr/6Db1KG4tmhGzMEI9ny1mtEvP4C1k53BMgcXb6C0sJjQGSOwdXWkrLAY7Q3HWmPr5dee2d1Hs+joBqIy4hkW2INXhtzPY+s/Jqs4v07+Nm6+PNF7CovDNxOeGImzlR0Ph01gXs9JvHutQ71vi47M7DKcLw6uISozAS87Fx7vfRcAi8M3N3ib4k5c4OjqHfScNhL3lt5EHTjF9i+WM/nVR7Bxsjda7q7XH8XUwlz33sLWSu9zUwtz7nr9Ub20xuo4izoWwZ5fNjH43vE0a+3HmT3HWPvRD9z/ztPYOTsaLVdeUsrWb1fiGxxAcYH+OV5dVcXqD77Dys6GsfNnYuNkT2FOHmY3/Bs0pM7NWjOxfX9WRfzB5ZwUevm155GeE3hr11JyDVyP1pzdw4YLB3TvVQolzw+ayenkmuuRmcqErJJ8TidfYmL7xjlf1xbi0YIRbcLYfPEgCbnpdG3ehpldRvD5wVXklxUbLDO142BszC1Zd34/OSX5WJtZolTUDOIpqSxnX9xpsorzqNKoCXTzZUJIP4orSonNSmrwNnXxDuSuDgNZeXoncdnJ9PHvwLzek3nj98UG99WqM3+w/vx+3XulUsFLg2ZxKilal1ZcUca2qKOkF2ZTpdHQzrMF93YZQWF5CZHp8Q3epm7N2zCt4xB+PrWd2Kwk+rfsxFN9pvLyjm/JKSmok39FxE7WnNuje69SKHl96BxOJEXp0kJ92jK5/QAWh28mNisZD1sn5nQfDcDKiF0N3qY/w9LUnNjsJLZGHebtEQ83dXWM+rfvJ/HvIcM2hRD1pn///syfP5/58+fj4OCAs7MzL7/8sm5c+rJly+jatSu2trZ4eHgwffp0MjIygOqx6wEBAXz44Yd62zx//jxKpZK4uDiD33nu3DkGDhyIpaUlzs7OzJ07l6KiIt3n4eHhDBkyBBcXF+zt7enXrx+nTp3S20ZMTAx9+/bFwsKC4OBgdu7cWZ//LH9a/4DOHLt6gaMJF0gvymXd+X3klRbR289w1EtZVQWF5SW6l4+DO5amFhxLuNAo9V336xqGjh7B8LGj8PHz5eEn5+Hq5saWdZsM5t+yfhNu7m48/OQ8fPx8GT52FENHDWftilW6PFHnLxLcLoQBQwfh7ulBlx5d6T9kADFRNTf1Do4OODk76V7HDh3Fs5kX7Trdennq+jA+pC87L4Xz+6XjJOVn8N2xjWQV5zEyKMxg/oEtO7Mt+igHrpwhvTCH/VfOsPNSOJPaD2iU+hpjPmIwZeu3UBl+Ck1SMiVf/YDC3AyzXj2MljFp3ZKqS7FUHjqGJjObqrMXqDh8DJMWftUZTE0x7d6F0uVrUEddQpOeQdmajWgysjAf0rjtjdodTsuw9gT07IC9hwtdJw/GytGWSwcMR7qkXLxMemwiAx65C88gP2yc7XHx88K1hXej1vtG49r2ZlfMCXbFhJOUn8kPxzeTVZzP8MBQg/lbu/qQWZTLlsjDZBTlEplxld+jjxPg0kyXJ9DVh6j0q+y/coaMolwiUmI4cPmMXp6GdH7XUVr36kRQ7044eroSNmUY1o52RO47cdNyFrbWWNnb6F5Kpf6trEKB3udW9jYN2Qw9J7YfoF3fbrTv3wNnL3cGzhiLrZMDEX8cvWm533/8jTZhnfAMqBt1d25/OGVFJYx//D6atfbD3sUR79b+uPl4NVQz9AwI6MKR+PMcuXqe9MIcfju3l9zSQnr7Gz7P1rkeOVZfj45ePa/Lk5CXzobz+zmVHE2VumkiSHr6tedUUjQnk6LJLM5jW9QRCsqKDEZxAwS4eOPn5MnPJ7dzOTuZvNIikvMzScyriX6Oz0klMiOezOI8cksLOXrt38zXwaNR2jSoVVcOx5/jUPw50gpzWH12D7klhfRt0dFg/rKqCgrKi3UvX0cPrMwsOHLDvorJSuRMSgxphTlkFeexJ/YUyfmZBDg3znliWOvuHLhyhgNXzpBamM2KiF3klBYwoGVng/lLK8spKCvWvfwcPbEys+TgDdFaLZ2bEZOVxLGEi2SX5HMh/QrHEi7i5+jZKG36M44mXOC7YxvZdzmiqatyU//2/ST+PaTzTAhRr5YuXYqJiQnHjh3js88+Y+HChXz//fcAVFRU8Oabb3LmzBnWr1/PlStXmDVrFlA9x9js2bNZsmSJ3vYWL15Mnz59aNmyZZ3vKikpYfjw4Tg6OhIeHs7q1avZtWsX8+fP1+UpLCzkvvvu48CBAxw9epRWrVoxcuRICgurn8JqNBomTpyISqXi6NGjfPPNNzz33HMN9K9zayqFEm97N6Iyr+qlR2Vcxc/p9m4Yevi25VJmgsEnzfWtsrKSmOhLdO7eVS+9c/cuXDxvuPMu6vxFOnfvop+/Rzdioi5RVVU9XCy4Qwix0ZeIvlj9FDI1OYXwI8fp3tNwZ0FlZSV7ft/F0FHDUSgUf7dZt2SiVBHg3IzTKZf00k8nXyLIzddgGVOVSZ3hcBVVlbR2aY5K0TSXY6WbC0pHB6rO3rCvqqqoiozGpHXdvzldlqhYTPx9UbX0123HtFM7Kk+drc6gUqFQqaCyUq+ctqISk6CAem+HMeoqNTmJaXi20R8259nGn6wrhocyJZ2LxdnHg4u7jvHbS1+y8fVvOfXbbqoqKg3mb2gmShUtnZsRUSuSNCIlxuixFpVxFWdre7o0q17W3d7ChjC/EL2n+pEZ8bR0aUYrl+pOQXcbJzp7B+rlaSjqKjVZCal4t2mhl+7dpiXpl28eobPure/45T8L2brwZ1Ki4+t8XllewcoXP2P585+w48uVZCWk1mfVjVJXVZEen4xfSGu9dL+QVqTE1q3ndef2h5OXkU3P8YMNfh53+iJeAb788dM6vnrsDZa8+BFHN+3Wi7ptKCqFkuYO7kRl1LoepV/F3/n2Ou9CfUOIzrjaKNej26VSKPGyc6kTDRablURzh7rR0gBBbr6k5GfS278Dz/afwRN9pjAssAcmSuOrtLVw8sLF2p743IY/BlUKJT4OHlysFQ0WmRFPi9vs6Orp146ojKsGI4WuC3T1wd3WkZhGiKRTKZX4OnpyIf2yXvqFtCsEON/ew4w+LTpwMf0K2Te0KSYrCT9HD/yv3VO5WjvQzrMlZ1Nj66/y/yKynxqYVnNnvv6lZNimEKJeNW/enIULF6JQKAgMDOTcuXMsXLiQBx98kNmzZ+vytWjRgs8++4zu3btTVFSEjY0N999/P//97385fvw43bt3p7KykmXLlvHBBx8Y/K5ffvmF0tJSfvrpJ6ytrQH44osvGDNmDO+99x7u7u4MHDhQr8yiRYtwdHRk3759jB49ml27dhEZGUl8fDze3tUX+bfffpsRI0bctJ3l5eWUl5frpZmb//1hNNbmlqiUSgrLSvTSC8tLsLOwMlKqhp25FW3c/Pj55La/XZfbUZCXj0atwdFJf0iSg6Mjudk5Bsvk5uTg4Kif39HJEbVaTUFePk4uzvQfPJD83HyeeeQJtFotarWaURPGMmVm3eWnAY7sP0RRURFDRg6rn4bdgp25NSqlqs4PwtzSIjpb2Roscyo5mqGtu3Pk6nnispMJcPZmcOtumKpMsLOwbpIflwqH6uFxmnz9H0ua/AKULs5Gy1UeOU6pnQ02rz9fvR0TE8p/30P5xmvHXVkZVZdisZg4muLkVLR5+Zj26oEqwB9NWkbDNMaA8qIStBptnaF9FrbWlBYYHppVlJVHRlwSShMT+j44gfLiUsJ//Z3ykjLC7hnZGNXWY2tuhUqpqjNkO7+0EEfL1gbLRGcm8PH+lTzTfzqmKhNMlCqOJVzku6M184EdvHIWe3Mb3h7xMAqFAhOlim1RR/jt3N9fjepWyq7tF0s7a710SztrSguKDJaxsreh94xRuPh6oq5SE3v0LFs/+ZlRC+7Fs1V1J6KDhzN97xuLUzM3KksrOL/7GJs++JGJL8/F3t348VwfSq8N7a0d6WZlb0txvuG/7dy0TA6s3sbdLz2CUmW4EyY/M4eEyDjahHVi4oLZ5KVnseun9WjUanqOH1Lv7biR7npUrv+3Ulhegp357VyPrAl292fpia0NVcW/xMrMApVSSVFFqV56UUUptkba5WRph4+jB1UaNctP/46VqQVj2vbG0tSC9edr/mbMTUx5tv89mChVaLQaNl88ZHR+uPpko7t3qLWvyoqxd7c2UqqGnYU1bd1bsPh43SHbFiZmvDPqEUyVKjRaLStO76zTodoQbM2sUCmVdYbRFpQXY29x6zbZW1jTzqMl3x7doJd+PPEituZWvDDgXlBUP6DYHXuSrVFH6rX+/xayn8S/iXSeCSHqVWhoqF7kT1hYGB999BFqtZqzZ8/y2muvERERQU5Oju7JeUJCAsHBwXh6ejJq1CgWL15M9+7d2bx5M2VlZdx1110GvysyMpIOHTroOs4AevXqhUajITo6Gnd3dzIyMvjvf//L7t27SU9PR61WU1JSQkJCgm4bPj4+uo6z63W+lXfeeYfXX39dL+3VV1+FTg63/W/1ZygUtzdnaHeftpRWlnMu1fAw14ZSO9hLCzeNAKv9mW7J6WvpZ09F8OtPvzDv6ccJbNuGlKQUFn36JcuXODH9/pl1trdj8za6hnbH2dXlb7XjT6u1T262n1ZG7MLR0paPxjyGAsgrLeKPmBNMbj8ATSM9xTPt1QOrB+/VvS9679Pq/6lT6ZsfcCbBgVhMGE3pD8uoir2MysMNy/umockbTflv1T++Sr78HquH7sf+64/QqtWor1yl8tAxVP6Go6UaVu0DVFvnmK35SItCoaDXrDGYWVZ3iKsnDuTAD+vpNmUIJmamDVzX26RQoK19AF7jbe/Ggz3G8mvEH5xOuYSjpS2zuo7kkbAJfHF4LVA959PkDgNYdHQDMZkJeNi58ED3MeS2L2TV2d2N1oYbVZ8HDO8YBw8X3cIAAO4tvCnKLeDcziO6zjO3Ft643TC81r1lc9a9/R0X9obTc+rw+q+/AXXOe9eOp9o0Gg2bv1lBzwlDcPJwNbo9rUaLla0NQ++fhFKpxMPfm6K8AsK37mvwzjNdHf5iuR6+wZRWlnM25U6NFNFvmQKF0dPe9X24+uxuyquqo1C3Rx1haschbL54UDeBeUVVJV8dXouZypQWzl4MDwolp7SA+JzGiYCsW33j54kbhfmGUFpZZnCu1PKqCt7etRRzEzMC3XyY3H4AWcX5RieDb2gKbu+Y7OXXnpLKMk6lROulB7r6MLpNT34+tZ3LOSm42zgyreMQ8oOL2HTxUIPU+d9I9pP4J5LOMyFEoygrK2Po0KEMHTqUZcuW4erqSkJCAsOGDaOiokKX74EHHmDmzJksXLiQJUuWMHXqVKysDD8J1hr5UQI1N7qzZs0iMzOTTz75BF9fX8zNzQkLC9N9p9bAnfLtDPt74YUXWLBggV6aubk5z23/+pZlb6a4vBS1RoNtrSgzGzMrvVXyjOnhE8yJpEjUjdQZY+dgj1KlJCc7Vy89PzcXh1rRaNc5OjmRm6MflZaXm4dKpcLOvnoC95++W8LAYUMYPnYUAP4tW1BeVspn7y3k7vtm6M1zlJ6WTsSJU7z89mv12LKbKygvRq1R41gryszBwsbgog4AFeoqPj24mi8OrcXB0pbc0gKGBYZSUlFGQdmt9219qDx5hsLYGzp9r02krnSwR51XM/G80t4Wbb7xoTsWU8ZTceAIFXuqJwbXJCaDuTlWD95L+botoNWiSc+k6I33wdwMhaUl2rx8rJ54CE1GVsM0zgBzGysUSgVlhfpPxMuKSrCwNfxE3NLOBkt7G13HGYC9hzNooSSvEDs3pwatc22F5SWoNWocLPWPNXsLG/JKDUdpTW7fn8iMeNZfqJ4M/GpuGouOruedkY/wy+nfyS0tZHqnIeyNO8WumPDqPHnpWJiY8mjPiaw+u+e2fnD/VRbX9ktpvn79ywpL6kSj3YybfzNij58z+rlCqcDV14uCDMNRsPXJ0tYahVJJcZ7+339JQRFWdnXnXasoLSf9ShIZV1P44+fqiAutVgtaLR/d/zx3PfsAPsEBWDvYolSp9M55Tp5uFOcXoq6qQmXScLfy169Hdub6+8TW3IqC27gehfqGEJ54sdGuR7erpKIMtUaDjZn+ddbazIKiCsPtKiwvoaCsWNdxBpBZlIdSocDOwlo31FELuv9PK8zG1dqRvi06NnjnWdH1fVUr0sfWwuq2ri89/dpxLMHwvtKCbhGcpPwMPG2dGR7Ug5iDDdt5VlhRglqjqRO9ZGtuTYGRRR1u1Me/A0eunkdda4jzhJB+HL56XrdqZXJ+JmYqU+7rOpLNFw814Jnvn0n2UwPT/Gta+j9B5jwTQtSro0eP1nnfqlUroqKiyMrK4t1336VPnz4EBQXpFgu40ciRI7G2tubrr79m27ZtekM9awsODiYiIoLi4pqL86FDh1AqlbRuXT2c6cCBAzz++OOMHDmStm3bYm5uTlZWlt42EhISSElJ0aUdOXLrkHBzc3Ps7Oz0XvUxbFOt1ZCUn0Ggq/7E0YFuPre8+Q5w9sbVxpGjVxtnoQAAU1NTWgW25nT4Sb30U+EnCQ5pa7BMUEgwp2rnP36CVkGtMbn2Q7C8vByFUr8TU6lUodVq63R47tyyHXtHB7qHGZ4PrSFUadTEZifT0auVXnpHr9a3HM6i1mrILslHo9XS178DxxMjG7SjQk9ZGZr0jJpXUgqa3DxM2t0wSbZKhUmbQKou3SR60cysbmSaRlM3BBGgvAJtXj4KaytM24dQedLwRP0NQWWiwqm5B6lR8XrpqVHxuPgbngfItUUzSvOLqCyv6dQvyMhFoVBg5WB4SG5DqtKoictOpqOX/lxxHb0CjB5r5iqzOn8nmlrvzVWmRvIojEbl1ReViQoXH0+SI/XnyEmOvIz7n1iYITsxDSt74/tEq9WSnZTWKIsGqExMcPdrRvwF/cid+AsxeAX41clvbmnOfW8t4N43n9S9OgwIxcnTlXvffBKPltXXgGat/MjLyNZb7TU3PQtrB9sG7TiD6nNVYl46QW61r0e+XMlOMVKqWoCLN242jhyJP3/TfE1BrdWQUpBFy1qLY7R08dZbAOBGCblp2FpYY6aq+Td3trZHo9XctINAcW24WUNTazUk5KXRptY8iG3cfLl8i2GjrVya42bjyOF44x3RtTVKmzQaruamEuyuP2dlW3d/YrNvPuda9dxsThy4fKbOZ2YqkzrXXK1WWx3z2ghzpv7TyH4S/ybSeSaEqFeJiYksWLCA6OhoVqxYweeff84TTzyBj48PZmZmfP7551y+fJmNGzfy5ptv1imvUqmYNWsWL7zwAgEBATcdQjljxgwsLCy47777OH/+PHv27OGxxx5j5syZuLtXT/obEBDAzz//TGRkJMeOHWPGjBlYWlrqtjF48GACAwO59957OXPmDAcOHOCll16q/3+YP2Fv7ClCfUPo4ROMu40j40P64mhpy6H46snYR7fpxYzOQ+uU6+HblvicVNIKsxu1vhOmTmbHpq3s2LyNhPirLPr0KzLTMxg5YQwAS77+ng/ffFeXf9T4MWSkZfDtZ1+REH+VHZu38fvmbUyaNqWmLb3C2LJuE3t37SYtJZVTx0/w03dLCO3dE9UNcwNpNBp2btnO4BFDUZk0/M38jdaf38/Q1t0Z0qob3vZuPNB9DK42Drr5OO7rMoIFfe/W5feyc6F/y8542bnQ2qU5/+k/A19HD35qpPnpjCnftguL8aMw7dYJpXczrB6djba8gopDx3R5rB6dg8XdE3Xvq06dwXxwf0zDuqN0dcGkXTAWU8ZTeTJC16lm0r4tJh1CdJ/bvPIs6tQ0KvY27nCLoIHdiDt8hrgjZ8lPy+Lk2j8oySmgVZ+OAJzesI/DP9XM8+PXLRhza0uOLttKfmoW6bGJnF63hxZh7ZpsyOaGCwcZ3KobgwK64m3vyuxuo3GxdmBHdPU+uqfzMJ7oXfP3E54USahvCMMDe+Bu40SQmy8P9Bijt5BIeFIUwwND6e3fHjcbRzp4BjC90xDCEy/W6WhrCCGDQ4k+dJroQxHkpmZydNXvFOXmE9S3ejGR8HV/sHfJel3+838cIz4iivz0bHJTMghf9wfxp6MI7l+zWMmpzftIuhBHQWYu2YlpHPh5E9mJ6QT16VL76xtE1+F9OLfvOOf2h5Odks6eXzZSmJ1Hh4HVHfv7V21j66KVACiUSly9PfReVnbWqExNcPX2wMzcDIAOA8MoLSpm9y8byUnLJC4ikmObdtNpUM9GadOe2JOE+bUj1Lct7rZOTGzXDycrW92qeGOCezOzS90hsWG+IVzJSSXVwPVIpVDSzN6VZvaumChV2Fva0szeFRdrh4Zujs7h+LN08Q6ic7NAXK0dGBEUhr2FDccTIgEY0robk9r11+U/mxpLaUUZE9r1x9XaAV9HD4YF9uBUUrRuyGbfFh1p6dwMR0tbXKzt6enXjo5erQ0OhWwIf8ScoJd/e8J8Q/CwdWJy+wE4WtnpInfGte3DfV3rztvYy68dV7JTSCmoGxU8LLAHQW6+uFjb427rxKBWXQn1bcvxhIsN3h6AHZeO09e/I7392+Np68zdHQfjZGXH3rjqVdMntevPA93H1CnXx78DcdnJJBdk1vnsTGosA1p2pnvzYFys7Ql292N8SF8iUmIMjkZoSpam5rRy8dYt7OJl50IrF2/cbQxH9jeVf/t+Ev8eMmxTCFGv7r33XkpLS+nevTsqlYrHHnuMuXPnolAo+PHHH3nxxRf57LPP6Ny5Mx9++CFjx46ts405c+bw9ttv3zTqDMDKyoodO3bwxBNP0K1bN6ysrJg0aRIff/yxLs/ixYuZO3cunTp1wsfHh7fffptnnnlG97lSqWTdunXMmTOH7t274+fnx2effcbw4Y0zP44hp1MuYWVmwbDAUOzMrUgtzGbR0Q26H712FtY4WtrplbEwMaODZwC/3TBxcWPpN3gAhQUFLF/yMznZOfi18OOND9/B3aO6AzMnO5uM9JooQw8vT9748G2+/ewrNv22EWcXZx5+cj69B/TV5Zl23z0oFAp++nYJ2ZlZ2Ds60KNXKPfNnaP33afDT5GRnsHQUY2/vw5cOYOtuZXuJvFqbhqv/f6DbniLo5Udrjf8GFQqlEwI6Usze1fUGjVnU+N4dvOXZBTlGv6CRlK+cRsKM1MsZ9+Dwtoadexlit7+GMrKdHmULk56kWZlv21GqwWLqeNROjmiLSik8uQZyn79TZdHYWWJxbRJ1Z8XFVN5/CSlK9eBWt2o7fPr0oaK4lLObTtEaUExDp4u9H/0LmycqhdLKCsoojinZoiqqbkZA+dP5cTqnWx7fynm1pb4dA6iw+g+jVrvGx2KP4uduRVTOw7C0dKWhNw03tz1o+5Yc7Kyw9XGQZd/d+xJLE3MGRnUk/u7jaK4ooyzqXF6HbWrzuxGq9Uyo9NQnKzsKSgrJjwxkl9O72iUNrXs2pbyolJOb9lPSUERjl6uDJs/DVvn6naU5BdRdMN+UVepOb52F8V5hZiYmuDg5cqweXfTvF1N9GdFSTkHf9lCSUERZpbmODf3YPQz9+FmJMqwvgX16EhpUQlHNuyiOK8Al2YeTFwwG3uX6h+6xfkFFOTk/alt2jk7cNezD7Jn+SaWvrwQGwc7Og/tTfdR/eu/AQacSr6EtZklwwNDsbOwJrUgm68Pr9Ndj+wtrHGsNaTYwsSMjl6tWHtur8Ft2lva8PzAmrkrB7fqyuBWXYnJTOSzg6sbqil6zqddxsrUgv4BnbE1tyK9MIefT24jv6x6KLGNuRX2ljURixXqKn48sYVRbXrxcM+JlFaUcT7tsm7YM1SvqDwmuDd2FtZUqqvIKs5jzdndnE+7XOf7G8LJpGiszSwZ1abntX2VxZeH1uqGkdpb2OBkVXdfdWrWmlVnDM9zaK4yZVqnIThY2lCpriKtMIcl4Vs4mRRtMH99C0+MxMbMkrHBvbG3sCE5P5NPDvyqW5Wxuk3690OWpuZ08Q5iRcROg9vcdPEgWq2WCdceTBaWl3AmNdbo8dqUglx9+WJCzRQhj/eungN4a+QR3tq9tKmqVce/fT81KOkovKMotNJ1K4SoJ/3796djx4588sknf2s7hw4don///iQlJekiyP5XPLnhk6auQr36ZNyTXG6EJekbWwsXb0Yvfrapq1GvNs/+gLy759w64/8Qh5U/8MbOxU1djXr13yGzGf/j801djXq1fta7fLBnWVNXo149O+Aevqu1+tv/ugdDx/HYuo9vnfF/zOcTFvDK9m+buhr16s3hc3lkreGVxv9XfT3pWWaverupq1GvFk95kV5fPtzU1ahXh+Z984/cT/+r8h56qqmrYJDDooVNXYUmIZFnQog7Rnl5OYmJibzyyitMmTLlf67jTAghhBBCCCHEP4/MeSaEuGOsWLGCwMBA8vPzef/995u6OkIIIYQQQgjRNK6twnzHvf6lJPJMCFFv9u7d+7fKz5o1i1mzZtVLXYQQQgghhBBCiPogkWdCCCGEEEIIIYQQQhghkWdCCCGEEEIIIYQQdxKNpqlrIG4gkWdCCCGEEEIIIYQQQhghnWdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQggh7iT/4pUt70QSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiLDNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k6ikWGbdxKJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9FqmroG4gYSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEy55kQQgghhBBCCCHEnUSrbeoaiBtI5JkQQgghhBBCCCGEEEYotFrpzhRCCCGEEEIIIYS4U+Td+3BTV8Egh5++aeoqNAkZtimEEPXop/CtTV2FenVvt5EUxsQ2dTXqnW2rAIZ8+0RTV6Ne7Zz7Kf/d/l1TV6NevTH8Qcb/+HxTV6NerZ/1LoMWPd7U1ahXfzz0GYVp6U1djXpl6+H+jzyff7L/16auRr17su9UNl842NTVqFej2/Zm+HdPNXU16tX2BxfS7+t5TV2NerXvkS+Zvertpq5GvVo85UV6fXlndtj8VYfm/Q939GgkzulOIsM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQtxJZHr6O4pEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g0TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5HVNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k4iwzbvKBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOIOotXIsM07iUSeCSGEEEIIIYQQQghhhHSeCSGEEEIIIYQQQghhhAzbFEIIIYQQQgghhLiTaDVNXQNxA4k8E0IIIYQQQgghhBDCCOk8E0L8T5s1axbjx4//U2X8/Pz45JNPGqQ+QgghhBBCCCH+WWTYphD/Q2bNmsXSpUvrpA8bNozt27c3+Hfn5eWxfv36Bv2eP+vTTz9Fq63flWji4+Px9/fn9OnTdOzYsV63bciJnQc5unUPRXkFuDbzYMg94/EJannLcomXLvPz/32Jq7cHD779rC49KvwshzbuJDc9C41ag6O7C6Ej+9Oud7eGbEYdWq2Wb5cvZ92O7RQWFdG2dSDPPfIILX19jZaJu3qVb35ZRlRsLKkZGSx48EGmjxtvNP+SVav48qelTBs7jqfnzm2AVugbE9ybu9oPxNnKjvjcNL4+8hvn0y4bzT82uDfj2vbB3daJjKJclp/eya6YcIN5+7fsxEuDZnEo/iyv/f5DQzWhjm7N29DbvwM25pZkFuWyLeooV3PTjOZXKZT0D+hMB68AbMytKCgrZl/caU4nXwKgi3cgHb1a42brCEBKfha7YsJJzs9slPYAjAgMZXxIXxytbEnMTeeH45u5mBFvNH/fFh2ZENIPLztniivKOJ18iR9PbKWwvESXZ0xwL4YHhuJi7UBheTGH48/z86ntVKqrGqFF1cfSlA6DdMfeV4fXcu4mx964tn0Y17YPHteOvV9O/c7OG469Ya27858B99QpN/z7BQ3WJq1Wy7c/LmHdpk0UFhbSNjiY5558ipb+/jct98e+vXzzww8kpaTg7eXFow88yIC+fXWfL1qymO9+/FGvjLOTEzvWrde9z87J4fNF33A0PJzCoiI6d+jAs088gY938/ps4j/yfH5+z3EidhykJL8IRy9Xek0dgVdrP4N5k6OvsPHDJXXS737jMRw9XQG4uP8E0UciyEnJAMDV14seEwbj7u/dYG0w5NC23ezdsIOC3Dw8mjdj3Oy7aRHc2mDey5ExbPlpDRnJqVRUVODo6kzY0H70GzNUl+fozn2c2HuEtIRkALxb+jJyxkR8WrVolPYAjG7Ti8kdBuBkacfV3DS+ObqeCzc5T4wJ7sWY4D642zqSWZTHioid/BFzQvf58MBQBrfuhq+jBwCxWUksCd/CpcyEBm/LdePb9uHujoNxsrInPjeVLw6t4Wxq3E3y92Viu3542DqRXpTLspPb2XHpuO7zT8Y+QadmdffzkavneX7r1w3ShtoGtOzM8MBQHCxtSM7PZEXELmKyEg3mnd1tNL3929dJT87P5JUd3+neD2nVjQEtO+NkZUdRRSknkqJYc3YPVRp1g7Xjr+jgGcD0TkMJcvPBxdqB57d+zYErZ5q6Wneuev6NI/4e6TwT4n/M8OHDWbJE/8bU3Ny8iWrT9Ozt7Zu6Cn/LxaOn2blsPcNnTaZ5a39O7T7Myg++5aH3nsfexdFoubKSUjZ+sxz/tq0oyi/U+8zS2opeY4fg4uWOykRFzOkLbPp2JVZ2trRsH9TQTdJZunYNy9ev49WnnsLHqxk//Por8155mbXfLMLayspgmbLycrw9PBjcqzcff/+dwTzXXbh0iXU7ttPK7+Y/vOtLvxadeCRsAp8fXM2F9CuMatOTt0c8zJxV75BZnFsn/+g2vZjdfQwL968kOjOBIDcfnupzN0XlJRxNuKCX183Gkbk9xnM2NbZR2nJdiEcLRrQJY/PFQyTkptOteRD3dBnOFwdXk19WbLDMlI6DsDG3ZP35/eSUFGBtZolSodB97ufkxdnUWBIj06nSqOnt34F7u47gi4Nr9DqjGkovv/bM7j6aRUc3EJURz7DAHrwy5H4eW/8xWcX5dfK3cfPlid5TWBy+mfDESJyt7Hg4bALzek7i3T0/A9WdazO7DOeLg2uIykzAy86Fx3vfBcDi8M0N3qb+LTvxaM+JfHZwNefTLjM6uBfvjHyE2aveJqOo7rE3Jrg3c7qP4eP9K4jOSCDIzZcFfe+mqKKUI1fP6/IVlZcy69f/0yvbkJ2BS1csZ/mqVbz6wgv4eDfnh59/Yt7TC1i77Bej54Sz58/z4uuv8/DsOQzo04c9Bw7w/Guv8sMXXxISHKzL18Lfn68++lj3XqVS6f5fq9XyzEsvYWKi4qO33sba2ppfVv3KowsWsHrpT1haWtZL+/6J5/PY8HMc+nUbfWaMxjPAhwv7wtny2TLufn0+ts4ORstNe/NxzCxr7k0sbK11/58SHU+r7u3xaNkclakJETsOsnnhT0x9fT42jnYN2Ryd0wePs2HJSiY+eA/+bQI4smMf3/3fJ/zn0zdxdHWuk9/M3IxeIwfi5euNmYU5VyJjWPPNT5iZmxM2tB8Aseej6dS7O35BAZiYmrJn/TYWvf4x//n0Teydje//+tK3RUceChvPl4fWcCH9CiODevJ/w+cyd/W7ZBbn1ck/qk1PZnUbzacHfuVSZiKBrj480WcKReWlHLt2jWrvFcDe2FNcTL9ChbqKuzoM5O0RD/PQmvfILql7Pq1vA1p2Zn6vySw88CvnU+MY07Y3742ax30r3zR47hvXtg9zQ8fywd7lRGVcpY27H8/2m05heQmHr537XtnxHabKmp/AdhbW/DDlBfbGnW7w9kD1A6tpHYfw86ntxGYl0b9lJ57qM5WXd3xLTklBnfwrInay5twe3XuVQsnrQ+dwIilKlxbq05bJ7QewOHwzsVnJeNg6Maf7aABWRuxq+Eb9CZam5sRmJ7E16jBvj3i4qasjxJ8iwzaF+B9jbm6Oh4eH3svRseamTKFQsGjRIkaPHo2VlRVt2rThyJEjxMbG0r9/f6ytrQkLCyMuruap3WuvvUbHjh1ZtGgRzZs3x8rKirvuuou8vDzd50uXLmXDhg0oFAoUCgV79+5l4MCBzJ8/X69+2dnZmJubs3v37jp1z8/PR6VScfLkSaD6B42TkxPdutU8QV+xYgWenp6698nJyUydOhVHR0ecnZ0ZN24c8fHxus9rD9ssLCxkxowZWFtb4+npycKFC+nfvz9PPvmkXl1KSkqYPXs2tra2+Pj48O233+o+878WBdGpUycUCgX9+/e/+U75G45t20vH/j3oNCAUl2buDJ05ATtnB079ceim5bYtXk3bsM40C/Cr85lvcABB3drj0swdR3cXug/vh1tzTxKjjT99rm9arZYVGzZw/9SpDOzZiwA/P15fsICy8nK279tntFzb1q15YvYchvXrh5mpqdF8JaWlvPLhB7z02GPY2tg0RBPqmNS+P9ujj7It+igJeel8fWQdmUW5jAnuZTD/4Fbd2BJ5iH2XT5NWmM3euNNsjz7K1I6D9fIpFQpeGHgvP53cRlpBdmM0RaenXztOJUVzKimarOI8tkUdpaCsiG4+wQbzB7h44+fkybKTO7icnUJeaRHJ+Zkk5mXo8qw9u4fwxEjSCnPIKs5nw/kDKBQKWjg3a5Q2jWvbm10xJ9gVE05SfiY/HN9MVnE+wwNDDeZv7epDZlEuWyIPk1GUS2TGVX6PPk6AS019A119iEq/yv4rZ8goyiUiJYYDl8/o5WlIk9sNYFvUUbZGHSEhL52vDv9GRlEuY4J7G8w/pFU3NkceYm/caVILs9kTd4pt0UeZ2mFQrZxacksL9V4NRavVsmL1au6fOZOBffsR0KIFr7/wYvU5YddOo+VWrFlNjy5duf+ee/Dz9eX+e+6he5cuLF+9Wi+fiUqFi7Oz7uXo4KD7LCEpiXMXL/D8gqdp26YNfj4+PP/UAkpLS9nxxx/11sZ/4vn8zM7DBPXuTHCfLjh6utL77pHYONpxYZ/hCNrrLO2ssbK31b2UypqfHIMfnEzIgO64+Hji6OlKv3vHodVqSY5svGvU/k2/031QH0KH9MXd24vxc6bh4OzE4R17Deb3buFL5z498PBphpObC136hRHYMYQrkZd0ee55ai69Rgykmb8P7t6eTHlkFlqtlpizkY3Spont+rMj+hjbo4+RmJfBoqPrySzKY7SRa9SgVl3ZFnmY/ZcjSCvMZt/l0+yIPsaUDgN1ed7fs4zNkYe4nJNCUn4Gnx74FYVCQcdmrRqlTVM6DGJr1BG2RB7mal46XxxaS2ZRLuPa9jGYf2jr7my8eIg9cadILcxmd+xJtkQdZlqnmgjBwvISckoLdK+uzYMor6pgb9ypRmnTsNbdOXDlDAeunCG1MJsVEbvIKS1gQMvOBvOXVpZTUFase/k5emJlZsnBG6K1Wjo3IyYriWMJF8kuyedC+hWOJVzEz9HT4Dab0tGEC3x3bCP7Lkc0dVWE+NOk80yIf6A333yTe++9l4iICIKCgpg+fToPPfQQL7zwAidOVIfj1+70io2NZdWqVWzatInt27cTERHBvHnzAHjmmWeYMmUKw4cPJzU1ldTUVHr27MkDDzzA8uXLKS8v123nl19+wcvLiwEDBtSpl729PR07dmTv3r0AnD17VvffgoLqp2179+6lX7/qp7glJSUMGDAAGxsb9u/fz8GDB7GxsWH48OFUVFQYbPuCBQs4dOgQGzduZOfOnRw4cIBTp+reEH300Ud07dqV06dP8+ijj/LII48QFVX9FO/48erw/l27dpGamspvv/12e//wf5K6qorUK0n4hwTqpbcICSQpJt5ouTP7jpGbnkXficNu+R1arZYr5y+Rk5Z5W0OH6ktyehrZubmEdqq5GTQzNaVzSAhnI//+D4n3vv6aXt260aNjp7+9rdtholTR2qU5J5Oi9dJPJkXT1t1w5JupyoSKWlE85VWVBLr6oFLUXH7v6TycvNIitkcfrf+K34RKocTTzoW4rGS99NisZHwc3A2WCXLzJSU/i97+7Xmm/3Qe7zOFYYE9MFGqDOaH6n8HlUJJaWW50Tz1xUSpoqVzMyJSYvTSI1JiCHIzPFw4KuMqztb2dGlW/Xdob2FDmF+I3lP9yIx4Wro0o5VL9bAydxsnOnsH6uVpKCZKFa1dm9f5rpNJUTc/9qoq9dLKqyoJcvNFdUMnhqWpOcunv8bKGW/w1vC5BDg33LC55NRUsnNyCO1a87DEzMyMzh06cPb8eaPlzl64QI9u+kMUQ7t15+wF/TIJSUkMnziBsVOn8MLrr5GUkqL7rPLa9cLczEyXplKpMDExIeLc2b/Vruv+iedzdVUVmVdTaR6s/13N2waQFnfzYXur3/iapc+8z8aPlpAcdfNOsaqKSjRqNebW9RMBeCtVlVUkxV0lsENbvfTAjsHER91e9G/S5avER8fSIjjQaJ6KinLUajVWN0TdNRQTpYpWLt6cSta/Rp1KjqaNu5/BMqbKuteoCnUlrWtdo25kbmKGiVLZKFHE18994Yn69wzhiZGEeBgeCmvs3Nem1rnvRqOCwtgde5KyKsP3lfVJpVTi6+jJhXT9v4kLaVdu+/zbp0UHLqZfIfuGKLWYrCT8HD3wd6ruLHO1dqCdZ8tGj2YXDUCjvTNf/1IybFOI/zGbN2/GplakzXPPPccrr7yie3///fczZcoU3WdhYWG88sorDBtWfXP+xBNPcP/99+tto6ysjKVLl+LtXX3x/vzzzxk1ahQfffQRHh4eWFpaUl5ejoeHh67MpEmTeOyxx9iwYYPu+5YsWcKsWbNQ3DCM60b9+/dn7969PP300+zdu5dBgwZx+fJlDh48yMiRI9m7dy9PPfUUACtXrkSpVPL999/rtrdkyRIcHBzYu3cvQ4cO1dt2YWEhS5cuZfny5QwaNEiX38vLq049Ro4cyaOPPqr7N1q4cCF79+4lKCgIV9fqeVmcnZ312nuj8vJyvU5D+PPDZ0sKi9FqNNjY2+qlW9vbUpRXN3QfICctkz2/bmbmK4+hVBnvsCgrKeWzx15DXVWFQqlk+KzJtGhn/Ca/vmXnVg+ncL4h+uP6+9SMvzf31Y59+4iKi+WnhZ/8re38GfYW1qiUKnJL9fdLbmkhjla2BsucTIpiRFAoh+PPEpOVRGuX5gwPDMVUZYK9hQ05pQW0dfdneGAoD699vzGaocfKzAKVUklRhf6PoOKKUmzMDf+IdbS0xcfRnSqNmhWn/5+9+46K4mrDAP4svTcBCyJVEBQVBLsCKmrQ2EsUBYm9gdjzGUvsxt6xYW+IxqixK6AoNqoCAlLEAoogvbPz/UHYuIIKCzLM+v7O4Rz2zhCfG5bZ2bv3vvcGFKTl0L9lF8hLy+L8szuV/oyDiQ2yCnIRn/am0uO1SVlWAZISksj4bAZVZn421OUrr2UUnZqETXdOYa7daEhLSkFKQhIPkyKx78EFwTkBCeFQlVXC6p+mgMfjQUpCEleeB+Lc0y/Poqwt/z33hPv0MT8bGl947j15HQXHFp1wL/EpYj+8gommLn4y7fDfcy8vC0kZ7/Gn33HEp72FoowchljYYevAWZjksw5vsmq/Pl1aetmsygYaGkLtDdQ1kPzuyzX20tLT0UBdeMlbA3V1pKWnCx63MjPHH//7H/Sa6iLt40ccOHoE46dPw+lDh6Gmqgp9PT00btQIO/buxf/mzoW8nByOe59GWno6PqTVzmxPcbyeF+TkgeHzoaAifM8hr6yIvMycSn9GQVUZtmMHQEuvCUpLShDzIAwXNh3GwLmuX6yT9uDsDSiqqaCped3UBsvNzgafz4eSmvASUSVVVWRnfHkgFwCWT5iLnKxs8Pml6DNiIDo6dP/iuf8cPQtVDXU0b135TN7apFJ+ncir5DohX/lS2KDXz9G3RUfcf/kULz68RnNNXfQ26SD0GvW5X236Iy03U1Dj8ntSlVOClIRkhaWMZde+yvv0+FUU+pt1RkBCGGI+lC1FdWzRSeja96kW2nowbKCDdX7Hv1s/PqUsowBJCYkKZRGyCnOhKvftQVZVOUVYNDLC3gd/C7U/ehUJZVkF/GbvDPDKBh5vvwjC5eeBtZqfkB8dDZ4RwjH29vbYvVu4oKnGZ29GWrf+r7Bow4ZlM0gsLCyE2goKCpCVlQUVlbIbkGbNmgkGzgCgU6dO4PP5iI6O/uIAkqysLMaMGQMvLy+MGDECoaGhCAsL++qmAnZ2djhw4AD4fD78/f3Rs2dPNGvWDP7+/rCyskJMTIxg5llQUBBevHgBZWXhNyMFBQVCy07LxcfHo7i4GO3btxe0qaqqwtS04puMT/8f8Xg8NGrUCO/fv69w3pesWbMGf/zxh1Db0qVLYdiv/Rd+4is+G2hk/s30OT6fj/M7j6Lb0L5o0Fj7q/9JWTlZTFg1F0WFRUiMiMHN4+ehrtUAeubG1c9XBVd8fbF65w7B4y1LlwGo2A+GqdDdaklJTcXGfXuxY/kKoVkkdeXzuq08XtnvqzLHgq9BXUEZ2wbNBg9lN/zXYx5iZNte4DN8yEvLYoH9WGy+ewpZhZXXF2PLl+rTlv8+fcJvo/DfT/evPi9binop8l6FwsRdDVrDorERDj76h92ixTwemC/8ppqqamNihwE4HXoLIW9joC6vjHHWjpjaaTB23D8LoKw23LA29tjz4G/EpiahkYomJrT/GR9bZ8M7vOIS9e/j8/y8L/6ejgZdg7q8CnYMmg0er+y5dy3mEX5p2wt8Ph9A2Wy6qE82UXiWkgDPofMwqFV37Py33zVx5cZ1rN64UfB4y9p1Zak/+/tnGOaLH7YIVLhGCv9Ml47/Lck1BtC6ZUsMGj0Kl65exZiRIyElJYU/l6/Aij/XoUf/fpCUlET7du3QuUMH0TpXrazcu55XUMmv50u/M/VGmlBvpCl43MioGXLSMxF6/V6lg2chV+/ixaOnGDjPFVJfWar/PVTswrdfoKavWoCigkK8jInDP0fPokFjbVh1q/g8uv3XFYQEPMS05fMhLVOX/RK+KPCAL177ToTcgLqCCrYMnCV4jboR+wgj2vREKcOvcP6w1j1gZ2SJ+f/srLONUr7kSxtFHX5yBRryKtg9ZB7AAz7mZeNq9AOMtuwNfiV96teiM+LT3uD5+5ffO/JXlf2evq2LfmvkFRcg+K3wDENTrWbob9YZR4OvIj79LRoqqWNUWwdkmufgYuTXl40TQqqOBs8I4RhFRUUYG3/9hln6kxvQ8hvcytrK30RVpvycb72pmTBhAtq2bYvXr1/Dy8sLPXv2hN5XdlPs3r07srOzERwcjLt372LFihXQ1dXF6tWr0bZtW2hra8PMzEyQr127djh+vOInguWzwz5VfjNVccCm4i2J9Gc36Twe76v/Pz7322+/Yfbs2UJtsrKyOB1e9fo5CsqK4ElIVJiVkJeZDUXVijNKivILkZzwCikv3+Da4bKlpAzDAAyD1c5zMHrBFOi3LKtDwpOQgEajsv9HjfR08OHNO9y/ePO7vdnq3qEDWn0ySFlUXDaw8uHjR2h+MribnpkBDTXRCyc/f/EC6RkZGDvLXdBWyucjJOIZvC9dxP2/zgsVCq8tmQW5KOWXVvi0W01OGRl5ldeJKiotxkb/k9hy5zTUFZSRnpcFxxadkVtUgMyCXBg2aILGKg2wos9Ewc+UP3evTtgE19OrkJz9/Wqg5RUVoJTPh5KMcKF2RRl55BblV/oz2YV5yCrIFQycAUBqTgYkeDyoyCkKfarfRd8C3Qzb4vDjy3iXk17Zf67WZRfmoZRfCjV54b8fVTklZORXPlNmWGs7RL1PxPmIsplzLz+mYM+D81jjOBXHQ67jY342Rls6wC8uWLBT6suMd5CTksa0zkNwJtz3i29Oa0P5c0/9s9kj6vJKX6xRVlRajA3+J7D57imoy6sgPS8T/cy6CJ57lWHAIDo1CU1VK15bRdG9S1e0Mvtvxo3gmpCWDs0G/w2upGd8hIb6l68JDTQ0hGaZAUD6x4yv/oy8vDyMDAzx6vVrQZuZqSlOHPBCTk4OiktKoK6mBpcpk2FeyYcrohCn63k5OSUF8CQkKswyy8/OhbxK1ZciNjTURcyDirvphV4LQPDlu/h5tgsaNK38Q7rvQVG5rAZb9kfh31VOZhaUVb++YUGDhmW/h8Z6TZGdkYXrp/+uMHjme/4qbp39B1OWzUUT/drdzfVLssqvE5+/Rskrf/U6sfnOKWy76y14jfqpRSfkFhUg67PrxFALO/zSthd+u7wbCenJ360fn8osyEFJJa+76t/o0zq/Y9hw5wQ05FWQlpeJn827IrcoH5n5wn2SlZJGD+N2dbLpS7nsojyU8vkVZpkpyypW+H9emW4GbRD48hlKP7tfHdzKFvdfPhPsWvkmMxUyktJwsXbEpch73/EVinx3lQz6EvbQ4BkhBACQlJSEt2/fCpY4BgYGQkJCAiYmZUudZGRkUFpaceaIhYUFrK2tsW/fPpw4cQLbt2//6r9TXvdsx44d4PF4MDc3R5MmTRASEoJLly4JZp0BgJWVFU6fPg1tbW3BDLmvMTIygrS0NB49egRd3bIb1qysLMTGxgr9d79F5t8ZTZX1t5ysrGyNdzmVlJJCY4OmSHgWgxY2/82ES3gWA5N2rSr+m/KymLhmvlBb0M17eBkZiyFu46CmpVHhZz5VUvz9PilWVFAQ2i2PYRg0UFfHw5AQtDAqq5dTXFyM4GfPMHOc65f+M99k06YNTu3YKdS2fOsW6DVtCpehw77LwBkAlPBLEfPhFax0THEv8b8aSVZNTXE/8elXf7aU4Qt2ebQ3ssLDpAgwYJCU8Q4Tz6wVOnecjSMUpOWw6/65SndHq02lDB/JWR9gpKkjNAPJSFPni5/CJ318h5aNDCHzST03TUVV8Bm+0I1/F/3WsDWyxJEnV/A268N37cenSviliEt7g7ZNjAW7xQH493FkpT8jKymDUkb4b53/2YC7rKR0hUH4snN4ZbMPv+M7kxJ+KWJSX6FdU+HnXrumLXDvW889Ph8f/n0e2RtZ4cHLZ18d6DNqoFNrb4wrvSZoaODhkydo8e/rSnFxMYLDwjBz8uQv/ndat2yJh08ew+nf0gAA8PDxY7RuWfEaWa6oqAiJSS9h+ckM43LlZQ+SXr9CVHQ0po4fX+2+VUacruflJKWkoKXXGK+j4mBo9d9A6OvIOOi3rfpOnx+SkqHw2QBiyLUABP/jj37uztDWr5uNN8pJSUuhqZEeYsIiYNHxv7qcMWGRaNm+GnU0mYq/B9/zV3HT5xImLfaAbiUbQHwvJfxSxH54DUsdE6HXJEsdEzx4+fWlqJ++RtkaWeLRv69R5Ya1tscoSwcsurIHsR9efZ8OVKL82mfdtIVgUAgArJu2QEDi12sVlvL5gtfQHsbtEFjJtc/eqB2kJaVwI+brm1/UplI+Hy8/JsO8oQGCP1n62rKhAULefn0prKlWMzRU1sDdexUHomUkpSr0j2GYskmj3/tFipAfCA2eEcIxhYWFSEkRrg8jJSUFTU3NL/xE1cjJycHFxQUbNmxAVlYW3NzcMGLECMGSTX19fVy7dg3R0dFo0KABVFVVBbO3JkyYgBkzZkBBQQGDBw/+5r9lZ2eHrVu3YvDgweDxeFBXV4e5uTlOnz6Nbdu2Cc5zcnLC+vXrMXDgQCxfvhxNmzZFUlISzp07h3nz5gktMwUAZWVluLi4YN68edDQ0IC2tjaWLl0KCQmJby8L+oS2tjbk5eVx9epVNG3aFHJyclBVVa3yz1dHh5/s8Pfu42hsqIumxvoI8b2PzLSPsOrZGQDge/oSsj9mYsAUJ/AkJKCtK7xzkqKKEiSlpYTa7124icYGulBv2AClJaWIC43C04DH6Dtu+HfpQ2V4PB5GDRyIg2e80axJE+g2aYKDZ7whJyuLvp8MZC7ZuBHaDRpgxrhxAMreTMe/KitEXVxSgtS0NETHx0FBTh66TZpAUUEBxvr6Qv+WnKwc1JRVKrTXtrPhflhgPwYxH5IQ9S4Rjmadoa2kjktRZUsifrXpD01FVfz5b+0UHVUttNDSw/P3L6EkK4+hre2hr9FYcLy4tASJH4UHKnILy2Z8fd7+vdxPfIohre0EO2Za67aAqpwSHieVFWjuZWIDFVlFnHvqBwB4mvwCdkaWGGRhC9/YICjIyKG3aQcEv44RLMvsatAaPZpbwyfsNjLys6EkU1Y/rai0uEJx6u/h74gAzOo2Ai8+vEF06kv0NukATUU1XIt+CAAYY9UHDRRUsTXAGwDw+HUUpnUegr6mHRDyJhbqCsoY374/YlKTBLMbHr9+jgHmXRGf/hYxqa/QWLkBRls64PGryAoDbd+Dz1NfLLQfi5jUV4h8l4B+/z73LkYGAADGt/8ZmoqqWOd7DADQVFULLbT1EPWu7Lk3vLU9DDQaC44DwNh2fRH1LhFvMlOhICOHwa1sYdygKbYFnKk0Q03xeDyMGj4cB48fQ7OmTaHbtCkOHjtWdk3o5SA4b8mqVdDW0sSMSWUDar8MG4ZJbm44dOI47Lp0hd+9ADwMeoIDnwyib9m1E906d0Gjhtr4+DEDB44cQW5uLvr37Ss456avL9TU1NCoYUO8iI/Dxu3bYdu1KzraiLDU/gvE8XrexqEzbh04By09HTQy0kXknSfITs9ES9uyTRwenLuB3I9Z6Dl+KAAg7OZ9qDRQh3oTbfBLShHzMAzxwZHoM/UXwX8z5OpdPPr7NnpNGAYVTTXkZZb9nUnLykBarmYfSlVV95974+S2/WhqrA99UyM8uH4HHz+ko1Pvstenf46dRWbaR4x2nwAACLhyG+qaGtDWKfvdJETFwu/CNXR1/G9nytt/XcHVk+cxxmMi1LU1kfWxbEBKVk4WsvJy371P5576YZ6dE2JTXyHqfSJ+alF2nfgn6j4AwNWmHxooqmKD3wkAZa9RplrN/n2NUsAQC1voqzfGxn+PA2VLNZ2tf8K620fxLjsd6v/O6s0vLqyTAvveYbewqKcLolOTEJESj/7mXaGtrIELEWXXvokdBkBLUQ2rbx8BULYM30xbD5HvE6Esq4ARrXvAQKMx1vx7/FP9zDohICGszssmXIt5hIntByDxYzLiPryBrZElNBRUBLt9DrWwg7q8MvY/uij0c90M2iAu7U2lNSnDkl+gt0l7JH18h/j0N9BWUsegVt0R+jb2i0tc2SIvLSs0w7mJiiaaazZFVkEu3uV8ZDEZId9Gg2eEcMzVq1fRuLHwDbepqalgp0hRGRsbY8iQIXB0dER6ejocHR2xa9cuwfGJEyfCz88P1tbWyMnJga+vL+zs7AAAo0aNwqxZszB69GjIyX37BtHe3h6bNm0S/DwA2NraIjQ0VGiGmIKCAu7cuYMFCxZgyJAhyM7Oho6ODnr27PnFmWibNm3ClClT0L9/f6ioqGD+/Pl49epVlXKVk5KSwrZt27B8+XIsWbIE3bp1E+wQWtvMO1oiLzsXAX9dQ05GFrSaNsYv8yZBVbNs1kFORhYyP1TvZqK4sAhXD/kgOz0TUjLSaNBEGwOnjoF5x7rZmbKcy9BhKCwswtrdu5Cdk4NWpqbYsXyF0GyUlNRUSEj8N7CZmp4OJzc3weOj587h6LlzsGplgb1rhWdp1TX/+BCoyClijFUfaCioIjE9GYuu7MH7f2/2GiioQFvpv6VkkjwJDGttj6Zq2ijllyL0bSzc/95SZ0sYq+JZSjzkpWVhZ2wFZVkFvM9Ox7Ggq8gsKFumpSyrAFX5/5aXFJWW4PCTy+hn1hmTOw9GflEBnqXE41bsE8E5Ns3MISUhiV8sHYT+Ld8XQfB9UXHn29p2LzEcKrIKGNm2J9TllZH0MQUrbh4SzELQUFCBlpKa4PzbL4IgLyULxxad4WrTD7lFBQhPjsORoCuCc7zDboNhGDhZ9oaGgiqyCnLx+FUUjodc++79AQC/uBCoyCpibLv/nnu/XfH84nNPgieBYa17QFdVGyX8UoS9jcXM85uFnntKMvKY3f0XqCuoILcoHy8+vIbHxa2ITv36Loo14TJqNAoLC7F286aya4KZGXZs2Ch8TXj/Tuia0KaVBVYtWYrdB/bD88ABNG3SBGuWLUMr8/9mQr1LTcWi5X8gIzMT6mpqaGVujoO7PdH4k3qdH9LSsHnnDqR9/AjNBg3Qr08fTHB2qdX+ieP13NjGAgU5+Qi65IfczGxoNNFGP7cxUG6gBgDIy8hGTnqm4Hx+SSnun7mG3IwsSElLQ72JFhzdxkDP4r8NOyL8HoNfUorrnqeF/i3rn+1gM6AH6oJl1/bIy87BDe+LyPqYicbNdDBhkTs0tMs+iMz6mIGMD//9vTB8BpePnUX6+w+QkJREg4Za6DdmKDr2/u+e5f5VX5SWlODweuG6tL1HDECfXwZ+9z7diQ+FiqwinKz6QF1BBS/Tk7H46l7BdUJDQQXaip9eJ3gYYmEneI0Ke/sCsy9sFRrA+Nm8C2QkpbDYQXjG+LGgqzgW/P2vf75xwVCVU4Rzu5/QQFEFCenJWPDPLsG1rIGC6mevuzyMbNMTumplG9uEvI3B9L82IiVb+HW3qao2Wjc2xpyLX18t8T08fhUFJRl5DDDvClU5JbzJTMWWu6cFu2eqyilVWKoqLy2Ldk1b4GTojUr/mxcjA8AwDAa36g51eWVkF+YhLPkFzj71+869qb4WWnrYMfi/siduXcs+CLgcFYhVtw+zFav+qmeDnz86HlPfhqMJIXVu2bJlOH/+PEJDQ0X6+VevXkFfXx+PHz+GlZXVt3+gDuXm5kJHRwcbN27E+FpanvM1Rx5f/u7/Rl1ytnFEdqz4bXWu3NwYDnvdv30ih9yYtBVLru5jO0atWt53IgYdWsh2jFp1ftxa9Nzj9u0TOeTW5G3ITnnHdoxapdyooVhez7fcOf3tEzlmVveRuPTvTCRx0b9lV/Td58F2jFp1deJm2O6eznaMWuU/dSd+9V7Ndoxa5TXif+iycwrbMWrVvemebEcQ2ceBo9mOUCn1v098+yQxRDPPCCEiKy4uRnJyMhYuXIiOHTvWi4GzkJAQPH/+HO3bt0dmZiaWL18OABg48Pt/6ksIIYQQQgghRPzQ4BkhRGT37t2Dvb09TExM4OPjw3YcgQ0bNiA6OhoyMjJo164d7t69W+OacIQQQgghhBBSZ/i0SLA+ocEzQgiWLVuGZcuWVfvn7Ozs6l0hUktLSwQFBbEdgxBCCCGEEEKImJBgOwAhhBBCCCGEEEIIIfUVzTwjhBBCCCGEEEIIqU/q2QqfHx3NPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QnDZzsB+QTNPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QmfdtusT2jmGSGEEEIIIYQQQgghX0CDZ4QQQgghhBBCCCGEfAEt2ySEEEIIIYQQQgipTxhatlmf0MwzQgghhBBCCCGEEEK+gAbPCCGEEEIIIYQQQgj5Alq2SQghhBBCCCGEEFKf0LLNeoVmnhFCCCGEEEIIIYQQ8gU0eEYIIYQQQgghhBBCWLVq1Sp07twZCgoKUFNTq9LPMAyDZcuWoUmTJpCXl4ednR0iIiKEziksLMTMmTOhqakJRUVFDBgwAK9fv65WNho8I4QQQgghhBBCCKlP+Pz6+fUdFRUVYfjw4Zg6dWqVf+bPP//Epk2bsGPHDjx+/BiNGjWCg4MDsrOzBefMmjULf/31F06dOoWAgADk5OSgf//+KC0trfK/QzXPCCGEEEIIIYQQQgir/vjjDwDAoUOHqnQ+wzDYsmULFi1ahCFDhgAADh8+jIYNG+LEiROYPHkyMjMzceDAARw9ehS9evUCABw7dgy6urq4efMm+vTpU6V/i2aeEUIIIYQQQgghhJBvKiwsRFZWltBXYWEhK1kSEhKQkpKC3r17C9pkZWVha2uL+/fvAwCCgoJQXFwsdE6TJk3QqlUrwTlVwhBCCOGUgoICZunSpUxBQQHbUWoN9YkbqE/cIY79oj5xA/WJG6hP3CGO/RLHPv1Ili5dygAQ+lq6dGmt/hsHDx5kVFVVv3nevXv3GADMmzdvhNonTpzI9O7dm2EYhjl+/DgjIyNT4WcdHByYSZMmVTkTj2Fo/1NCCOGSrKwsqKqqIjMzEyoqKmzHqRXUJ26gPnGHOPaL+sQN1CduoD5xhzj2Sxz79CMpLCysMNNMVlYWsrKylZ6/bNkywXLML3n8+DGsra0Fjw8dOoRZs2YhIyPjqz93//59dOnSBW/fvkXjxo0F7RMnTsSrV69w9epVnDhxAq6urhUyOzg4wMjICJ6enl/9N8pRzTNCCCGEEEIIIYQQ8k1fGyirzIwZM/DLL7989Rx9fX2RsjRq1AgAkJKSIjR49v79ezRs2FBwTlFRET5+/Ah1dXWhczp37lzlf4sGzwghhBBCCCGEEEJIrdPU1ISmpuZ3+W8bGBigUaNGuHHjBiwtLQGU7djp7++PdevWAQDatWsHaWlp3LhxAyNGjAAAJCcn49mzZ/jzzz+r/G/R4BkhhBBCCCGEEEIIYVVSUhLS09ORlJSE0tJShIaGAgCMjY2hpKQEAGjRogXWrFmDwYMHg8fjYdasWVi9ejWaN2+O5s2bY/Xq1VBQUMDo0aMBAKqqqhg/fjzmzJmDBg0aQENDA3PnzoWFhYVg982qoMEzQgjhGFlZWSxdurRa06XrO+oTN1CfuEMc+0V94gbqEzdQn7hDHPsljn0itWPJkiU4fPiw4HH5bDJfX1/Y2dkBAKKjo5GZmSk4Z/78+cjPz8e0adPw8eNHdOjQAdevX4eysrLgnM2bN0NKSgojRoxAfn4+evbsiUOHDkFSUrLK2WjDAEIIIYQQQgghhBBCvkCC7QCEEEIIIYQQQgghhNRXNHhGCCGEEEIIIYQQQsgX0OAZIYQQQgghhBBCCCFfQINnhBBCCCGEEEIIIYR8AQ2eEUIIYRXDMKC9a0hde/HiBa5du4b8/HwAoOdgPVdQUMB2hFonjn0ihJDK9OjRAxkZGRXas7Ky0KNHj7oPRIgIaLdNQgip5woLC/Ho0SMkJiYiLy8PWlpasLS0hIGBAdvRauTIkSNYv349YmNjAQAmJiaYN28exo4dy3Iy0ZSWlmLz5s3w9vZGUlISioqKhI6np6ezlKzmXr9+jQsXLlTar02bNrGUSjRpaWkYOXIkbt++DR6Ph9jYWBgaGmL8+PFQU1PDxo0b2Y4oslevXgldJ1q2bAlZWVm2Y4mMz+dj1apV8PT0xLt37xATEwNDQ0MsXrwY+vr6GD9+PNsRq00c+wSI13MvMzMTf/31F+7evVvhdbdPnz7o3Lkz2xEJ4RwJCQmkpKRAW1tbqP39+/fQ0dFBcXExS8kIqToptgMQQgip3P3797F9+3acP38eRUVFUFNTg7y8PNLT01FYWAhDQ0NMmjQJU6ZMgbKyMttxq2XTpk1YvHgxZsyYgS5duoBhGNy7dw9TpkzBhw8f4OHhwXbEavvjjz+wf/9+zJ49G4sXL8aiRYuQmJiI8+fPY8mSJWzHE9mtW7cwYMAAGBgYIDo6Gq1atUJiYiIYhoGVlRXb8arNw8MDUlJSSEpKgpmZmaB95MiR8PDw4Nzg2cuXL+Hp6YmTJ0/i1atXQjPoZGRk0K1bN0yaNAlDhw6FhAS3FhysXLkShw8fxp9//omJEycK2i0sLLB582ZODjSJU5/E7bmXnJyMJUuW4Pjx42jUqBHat2+Ptm3bCl53fX19sWHDBujp6WHp0qUYOXIk25FF8vjxY5w5c6bSD0POnTvHUqqaEcc+iYvw8HDB95GRkUhJSRE8Li0txdWrV6Gjo8NGNEKqjyGEEFLvDBgwgGncuDEzZ84cxt/fn8nNzRU6HhcXxxw6dIjp06cP06hRI+b69essJRWNvr4+c/jw4Qrthw4dYvT19VlIVHOGhobMpUuXGIZhGCUlJebFixcMwzDM1q1bmVGjRrEZrUZsbGyYxYsXMwxT1q+4uDgmOzubGTBgALNr1y6W01Vfw4YNmdDQUIZh/usPwzBMfHw8o6ioyGa0anNzc2OUlZWZoUOHMocPH2aioqKYrKwspri4mHn37h1z69YtZtmyZYypqSnTsmVL5tGjR2xHrhYjIyPm5s2bDMMI/66ioqIYNTU1NqOJTFz6JI7PPS0tLWbOnDnM06dPv3hOXl4ec+LECaZ9+/bM+vXr6zBd7Th58iQjLS3N9OvXj5GRkWH69+/PmJqaMqqqqsy4cePYjicScerT33//XeUvruDxeIyEhAQjISHB8Hi8Cl8KCgrMgQMH2I5JSJXQzDNCCKmHevfujTNnzkBGRqbS44aGhjA0NISLiwsiIiLw9u3bOk5YM8nJyZUufencuTOSk5NZSFRzKSkpsLCwAAAoKSkhMzMTANC/f38sXryYzWg1EhUVhZMnTwIApKSkkJ+fDyUlJSxfvhwDBw7E1KlTWU5YPbm5uVBQUKjQ/uHDB84tM5ORkUFcXBy0tLQqHNPW1kaPHj3Qo0cPLF26FJcvX8bLly9hY2PDQlLRvHnzBsbGxhXa+Xw+Z5f4iEufxPG5FxERUWl/PiUvL49Ro0Zh1KhRSE1NraNktWf16tXYvHkzpk+fDmVlZWzduhUGBgaYPHkyGjduzHY8kYhTnwYNGiT0mMfjCc3o5PF4gu9LS0vrKlaNJCQkgGEYGBoa4tGjR0J/YzIyMtDW1oakpCSLCQmpuvo/h5oQQn5A06dP/+LA2edatmwJBweH75yodhkbG8Pb27tC++nTp9G8eXMWEtVc06ZNBQN/xsbGuH79OoCy5SRcG5T5lKKiIgoLCwEATZo0QVxcnODYhw8f2Iolsu7du+PIkSOCxzweD3w+H+vXr4e9vT2Lyapv/fr133yzX87R0RHDhg37zolqV8uWLXH37t0K7WfOnIGlpSULiWpOXPokjs+9qvZH1PPrg7i4OPTr1w8AICsri9zcXPB4PHh4eGDv3r0spxONOPWJz+cLvq5fv462bdviypUryMjIQGZmJi5fvgwrKytcvXqV7ahVpqenB319ffD5fFhbW0NPT0/w1bhxYxo4I5xCM88IIYRDCgoKcPr0aeTm5sLBwYGzA01//PEHRo4ciTt37qBLly7g8XgICAjArVu3Kh1U44LBgwfj1q1b6NChA9zd3TFq1CgcOHAASUlJnKzhVq5jx464d+8ezM3N0a9fP8yZMwdPnz7FuXPn0LFjR7bjVdv69ethZ2eHJ0+eoKioCPPnz0dERATS09Nx7949tuNV2++//44ePXqgc+fOkJOTYztOrVq6dCnGjh2LN2/egM/n49y5c4iOjsaRI0dw6dIltuOJRBz79Dl/f3/k5uaiU6dOUFdXZztOtbx48QKZmZlo166doO3WrVtYuXIlcnNzMWjQIPzvf/9jMWHNaGhoIDs7GwCgo6ODZ8+ewcLCAhkZGcjLy2M5nWjEsU8AMGvWLHh6eqJr166Ctj59+kBBQQGTJk1CVFQUi+lEExMTAz8/P7x//x58Pl/oGJdrw5IfB+22SQgh9dS8efNQVFSErVu3AgCKiorQoUMHREREQEFBASUlJbhx4wY6derEclLRBAUFYfPmzYiKigLDMDA3N8ecOXM4Nfviax48eID79+/D2NgYAwYMYDuOyOLj45GTk4PWrVsjLy8Pc+fORUBAAIyNjbF582bo6emxHbHaUlJSsHv3bgQFBYHP58PKygrTp0/n3BIfADAyMkJCQgJkZGTQoUMH2Nvbo0ePHujYsWOVZ6/WZ9euXcPq1auFfldLlixB79692Y4mMnHp0/r165GTk4M//vgDAMAwDH766SfBrFttbW3cunULLVu2ZDNmtQwePBitWrXCihUrAJQtOWvZsiW6deuGFi1awMvLCytWrMCsWbPYDSqi0aNHw9raGrNnz8aqVauwdetWDBw4EDdu3ICVlRUni+uLY5+AsiXCjx49EpSDKBceHo4OHTogPz+fpWSi2bdvH6ZOnQpNTU00atRIaAkqj8dDcHAwi+kIqRoaPCOEkHqqVatWWL16tWDg5eDBg5gzZw5CQkLQrFkz/Prrr3j//j3++ecflpMSQtj05s0b3L59G35+fvDz80NCQgLk5eXRqVMn2Nvbw97evtIag4TUhJWVFRYsWCDYdfLMmTNwcXHBjRs3YGZmBmdnZygoKHBqNrGuri68vb0FH0qtXLkSPj4+CA0NBQAcOHAA27dvFzzmmvT0dBQUFKBJkybg8/nYsGGD4MOQxYsXc26mICCefQLKSgxIS0vj2LFjgg92UlJSMHbsWBQVFcHf35/lhNWjp6eHadOmYcGCBWxHIURkNHhGCCH1lIqKCoKDgwXFpUeNGgVlZWVBDY/Q0FA4OjpybrOAT71//77S6futW7dmKVH1XLhwocrncnn2GdeFh4ejVatWkJCQQHh4+FfPVVJSgq6uLqSlpesoXe179eoVfH194efnh7NnzyI3NxclJSVsx6o2V1dXjBkzBj169BCapcBl4tQndXV13L9/H2ZmZgDK+lZSUoKjR48CKJt9O3z4cLx69YrNmNUiLy+PmJgY6OrqAgB69uyJzp07C2aixcXFoV27dsjIyGAxpWhKSkpw/Phx9OnTB40aNWI7DvmGFy9eYPDgwYiOjkazZs0AAElJSTAxMcH58+cr3XikPlNRUUFoaCgMDQ3ZjkKIyKjmGSGE1FMSEhJCuyw9ePBAaNdGNTU1fPz4kY1oNRYUFAQXFxfBks1P8Xg8zuwi9fnOWF/CpT4BZW+Kq/rGPj09/Tunqbm2bdsiJSUF2traaNu2bYUdzD6nqqoKT09PwYwaLomLi4Ofn59gJlppaSnnNkIol5aWhn79+qFBgwb45ZdfMGbMGM4v6xanPhUXFwtthhIYGAh3d3fB4yZNmnBuUxENDQ0kJydDV1cXfD4fT548EapZWVRU9NVrR30mJSWFqVOncrJW1ueysrKqfK6Kisp3TPL9GBsbIzw8HDdu3MDz588F5S169erFyYH34cOH4/r165gyZQrbUQgRGQ2eEUJIPdWiRQtcvHgRs2fPRkREBJKSkoTeBL98+RINGzZkMaHoXF1dYWJiggMHDqBhw4acvBEEUGHGnLjYsmUL2xFqVUJCgmBnvISEhK+eW1hYiDNnzggtR6vPEhIS4OvrK5hplpmZiS5dusDW1hYzZsyAjY0NpKS4ebt34cIFZGRkwNvbGydOnMCWLVtgamqKMWPGYPTo0dDX12c7YrWJU5+MjY1x584dGBoaIikpCTExMbC1tRUcf/36NRo0aMBiwuqztbXFihUrsGvXLpw5cwZ8Pl/odTcyMpJTv6PPdejQASEhIZysVfkpNTW1Kt83cOmDq8/xeDz07t2bc/UQy23btk3wffky2gcPHsDCwqLC7G43N7e6jkdItdGyTUIIqafOnj2LUaNGoVu3boiIiICNjQ0uXrwoOL5gwQIkJCRwqp5MOWVlZYSEhHBu2QH5MXz8+BHjx4/nRKFpCQkJNGvWDNOmTYO9vT2srKwgKSnJdqzv4vXr1zh58iS8vLwQGxvLyaWon+Nyn/bs2YM5c+Zg5MiRePDgAdTU1IR2rF25ciUePnwo9LpV3yUkJMDBwQEJCQmQkJDAtm3bMHXqVMHxQYMGwcDAAJs3b2YxpejOnDmDhQsXwsPDA+3atYOioqLQca6UTPi03ldiYiIWLlyIcePGCWrVBQYG4vDhw1izZg1cXFzYilljubm58Pf3R1JSEoqKioSOcWGwycDAoErn8Xg8xMfHf+c0hNQcDZ4RQkg9dvPmTfzzzz9o1KgRZs6cCQUFBcGxP/74A3Z2dkKf9HPFoEGDMHbsWAwdOpTtKLWK6ze635Kfn4/i4mKhNq4uicnLy6v098SVN4/lRo4ciTt37qCgoADdunWDra0t7O3tYWlpydkZnZUpLi7GP//8g2PHjuGff/6BhoYG3rx5w3asGhGHPh04cACXLl1Co0aNsHTpUqFaWtOmTUOvXr0wZMgQFhNWX3FxMSIjI6GlpYUmTZoIHQsLC4Ouri40NDRYSlczEhISFdrKl7FzrbxAuZ49e2LChAkYNWqUUPuJEyewd+9e+Pn5sROshkJCQuDo6Ii8vDzk5uZCQ0MDHz58gIKCArS1tWmwiRAW0OAZIYRwWGhoKNq2bct2jGr78OEDXFxc0L59e7Rq1arC9H0uFtcX1xvd3NxcLFiwAN7e3khLS6twnGtvtlJTU+Hq6oorV65Uepxr/Sn3/PlzwdJNf39/FBQUoGvXrrC1tYWdnR1sbGzYjigSX19fnDhxAmfPnkVpaSmGDBkCJycn9OjRo9KBAC4Qxz59SWpqqmDJtDh4+vQpDhw4wNml7S9fvvzqcS4u51RQUEBYWBiaN28u1B4TE4O2bdsiLy+PpWQ1Y2dnBxMTE+zevRtqamoICwuDtLQ0xowZA3d3d84NShMiDmjwjBBCOCYzMxPHjx/HgQMHEBoaysk3+xcuXMDYsWORnZ1d4RhXP/0W1xvd6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di2cnJzYjlgtTk5OSExMxJYtW2Bvb4+//voL7969w8qVK7Fx40b069eP7Yi1IjIyEidOnMD27ds5u9tm06ZNkZaWhj59+sDJyQk///wz5OTk2I5VI+LYp88xDIMrV64IZqUVFhayHalGsrKycPLkSRw4cABPnjxB69atERoaynYs8i9TU1P0798fGzduFGqfM2cOLl26hOjoaJaS1YyamhoePnwIU1NTqKmpITAwEGZmZnj48CFcXFzw/PlztiNWy+zZsytt5/F4kJOTg7GxMQYOHMjZWZ3kx0CDZ4QQwhG3b9+Gl5cXzp07Bz09PQwdOhRDhw7l5E5t+vr66N+/PxYvXszZTQ8+J243uuWaNWuGI0eOwM7ODioqKggODoaxsTGOHj2KkydP4vLly2xHrJbGjRvj77//Rvv27aGiooInT57AxMQEFy5cwJ9//omAgAC2I4rs3bt38PPzg5+fH3x9fRETEwNZWVl07NgRvr6+bMertr1792L48OFQV1dnO0qtEcc+lYuPj4eXlxcOHz6MnJwc9OvXD0OHDsXgwYPZjiYSf39/HDhwAGfPnkVBQQHmzZuHCRMmcLpW55EjR7563NnZuY6S1J7Lly9j6NChMDIyQseOHQGU7U4eFxeHs2fPwtHRkeWEotHS0sK9e/dgYmICU1NTbNu2DX369MHz589hZWXFuRl19vb2CA4ORmlpKUxNTcEwDGJjYyEpKYkWLVogOjoaPB4PAQEBMDc3ZzsuIZXi5vZLhBDyg3j9+jUOHToELy8v5ObmYsSIESguLsbZs2c5fXORlpYGDw8PsRk4AwBpaWlBjamGDRsiKSkJZmZmUFVVRVJSEsvpRJeeni4o+quiooL09HQAQNeuXYUKaXNFbm4utLW1AQAaGhpITU2FiYkJLCwsEBwczHK66jtz5oxguWZ0dDSkpKTQvn17jBgxAvb29ujcuTNkZWXZjimSSZMmsR2h1olbnwoKCuDj44P9+/fjwYMHcHBwQHJyMkJDQ9GqVSu241VbcnIyDh48KHjNHTVqFPz9/dGpUyc4OztzeuAMANzd3YUeFxcXIy8vDzIyMlBQUODk4JmjoyNiY2Oxe/duREVFgWEYDBw4EFOmTIGuri7b8URmaWkp+HDH3t4eS5YswYcPH3D06FFYWFiwHa/aymeVHTx4UFArNSsrC+PHj0fXrl0xceJEjB49Gh4eHrh27RrLaQmpHA2eEUJIPeXo6IiAgAD0798f27dvR9++fSEpKQlPT0+2o9XYkCFD4OvrCyMjI7aj1Bpxu9EtZ2hoiMTEROjp6cHc3Bze3t5o3749Ll68CDU1NbbjVZupqSmio6Ohr6+Ptm3bYs+ePdDX14enpycaN27Mdrxqc3JygrW1NQYPHgx7e3t06dIF8vLybMeqNY8fP8aZM2cq3dyBC7uhVkZc+jRt2jScOnUKpqamGDNmDM6ePYsGDRpAWlqas7XbDAwMMHz4cOzcuRMODg6c7ceXfPz4sUJbbGwspk6dinnz5rGQqGaKi4vRu3dv7NmzB6tWrWI7Tq1avXq1oLTFihUr4OLigqlTp8LY2BgHDx5kOV31rV+/Hjdu3BDaZEhFRQXLli1D79694e7ujiVLlqB3794spiTk62jwjBBC6qnr16/Dzc0NU6dOrVAIl+tMTEzw22+/ISAgABYWFhU2DODizpTidqNbztXVFWFhYbC1tcVvv/2Gfv36Yfv27SgpKcGmTZvYjldts2bNQnJyMgBg6dKl6NOnD44fPw4ZGRkcOnSI3XAi+PjxIxQVFdmO8V2cOnUKzs7O6N27N27cuIHevXsjNjYWKSkpnF0KKE592rt3LxYsWICFCxdCWVmZ7Ti1Qk9PDwEBAWjWrBn09PTQokULtiN9d82bN8fatWsxZswYzpUXkJaWxrNnz8RqZ+Fy1tbWgu+1tLQ4VyLhc5mZmXj//n2FVROpqanIysoCUFb+4vMPFAipT6jmGSGE1FOBgYHw8vKCt7c3WrRogbFjx2LkyJFo0qQJwsLCOL1ss3wZYGV4PB5nd6b8ESQlJeHJkycwMjJCmzZt2I5TY3l5eXj+/DmaNWsGTU1NtuOI7M2bNzh79ixiYmLA4/HQvHlzDB06FDo6OmxHE1nr1q0xefJkTJ8+HcrKyggLC4OBgQEmT56Mxo0b448//mA7YrWJU59OnDiBgwcPIjAwEP369cPYsWPRt29fyMvLc/o16t69ezhw4ADOnDkDExMTjBkzBvPnz0d4eDjMzMzYjvddhISEwNbWVjCIwSVz5syBtLQ01q5dy3aU7yI1NVVQD8zU1JSzr1NOTk4IDAzExo0bYWNjAx6Ph0ePHmHu3Lno3Lkzjh49ilOnTmHDhg148uQJ23EJqRQNnhFCSD2Xl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9VWw+7SeEiG7Xrl2YPXs2ioqKoKqqCoZhkJWVBRkZGWzatAnTpk1jO6JIFBUVERERAX19fWhqasLX1xcWFhaIiopCjx49BDMIuUQc+5SYmIiDBw/i0KFDyMvLQ3p6Ok6fPo1hw4axHa1GcnJycPLkSXh5eeHhw4ewtbXF6NGjMWjQIGhpabEdTyQXLlwQeswwDJKTk7Fjxw7o6uriypUrLCUT3cyZM3HkyBEYGxvD2tq6wkxcLs6QBsrqc86cORNHjx4V7EAuKSkJZ2dnbN++HQoKCiwnrJ6cnBx4eHjgyJEjgt2fpaSk4OLigs2bN0NRUVGwi23btm3ZC0rIV9DgGSGE1FNJSUnQ1dUVWo4QHR2NAwcO4OjRo8jIyICDg0OFm2FCiLDZs2dX+VyuvdH6559/MHDgQMyaNQtz5swR1G1LTk7G+vXrsX37dvz999+c3HFOV1cXly9fhoWFBdq0aYOFCxdi1KhRCAwMRN++fZGZmcl2xGoTxz6VYxgG165dg5eXFy5cuABNTU0MGTIE27ZtYztajUVFRQlee9PT01FcXMx2JJF8XsONx+NBS0sLPXr0wMaNGzlZ99He3v6Lx3g8Hm7fvl2HaWrP5MmTcfPmTezYsQNdunQBAAQEBMDNzQ0ODg7YvXs3ywlFk5OTg/j4eDAMAyMjIygpKbEdiZAqo8EzQgippyQlJZGcnCzYGfBTpaWluHjxouBNChfMnj0bK1asgKKi4jcHM7g2gEHqt6+9ufoUF99o2draolu3bli5cmWlx3///XfcvXsX/v7+dZys5kaPHg1ra2vMnj0bq1atwtatWzFw4EDcuHEDVlZWnCquX04c+1SZ9PR0HDlyBAcPHkRYWBjbcWpNSUkJLly4gCFDhrAdhYg5TU1N+Pj4wM7OTqjd19cXI0aMQGpqKjvBCPmB0eAZIYTUUxISEkhJSal08IyL7O3t8ddff0FNTU1sPykmpK6pqKjg8ePHMDU1rfR4dHQ0rK2tBZtZcEl6ejoKCgrQpEkT8Pl8bNiwAQEBATA2NsbixYuhrq7OdsRqE8c+iZO3b99i06ZNWLJkidCugEBZwfOVK1di7ty5aNiwIUsJyZe8ePECcXFx6N69O+Tl5cEwDKc3ElBQUEBQUFCFOnsRERFo3749cnNzWUpWdUOGDMGhQ4egoqLyzQFncfnggIg3GjwjhJB6StwGzwipT8TljZaSkhLCw8NhaGhY6fH4+Hi0bt0aOTk5dZyMiLuqLIfm8XjYuHFjHaSpHXPnzkVWVhb27t1b6fEpU6ZAVVUV69atq+NkohPnZesAkJaWhhEjRsDX1xc8Hg+xsbEwNDTE+PHjoaamxqnn36d69uyJBg0a4MiRI5CTkwMA5Ofnw8XFBenp6bh58ybLCb/N1dUV27Ztg7KyMlxdXb96Lpd3JSc/Dim2AxBCCPmy/fv3f7MehJubWx2lqT3v3r374if34eHhaN26dR0nEk11avlw6fdUnR3XPp+dUd996Y3WhAkTOPlGq2XLlvj777/h4eFR6fHz58+jZcuWdZyq9vD5fLx48QLv378Hn88XOta9e3eWUtWMuPQpJCSE7Qi17urVq/D09PzicWdnZ0ycOJFTg2ef/56CgoJQWloqmK0aExMDSUlJtGvXjo14Nebh4QFpaWkkJSUJzdIaOXIkPDw8OHdNL7d161b07dsXTZs2RZs2bcDj8RAaGgo5OTlcu3aN7XhV8umAGA2OEXFAM88IIaSekpCQQNOmTSEpKfnFc3g8HuLj4+swVe3Q1tbG/v37MWDAAKH2DRs2YPHixcjPz2cpWfUYGBhU6Tyu/Z4kJCS+OQurfKZW+S5gXOHs7Iz3799j//79MDMzQ1hYGAwNDXH9+nV4eHggIiKC7YjVcvjwYUydOhUbNmzApEmTICVV9rloSUkJ9uzZg3nz5mHXrl0YN24cu0FF8ODBA4wePRovX77E57erXHzuAeLZJ3GiqKiIqKgoNGvWrNLj5QM0XFgyV5lNmzbBz88Phw8fFiwR/vjxI1xdXdGtWzfMmTOH5YTV16hRI1y7dg1t2rSBsrKy4JqekJAACwsLTs+6zc/Px7Fjx/D8+XMwDANzc3M4OTlBXl6e7WgiKSkpgZ+fH+Li4jB69GgoKyvj7du3UFFRoY0DCCfQzDNCCKnHnjx5IpbLNhcsWICRI0cKtihPT0/H2LFjERERgdOnT7Mdr8oSEhLYjvBd+Pr6sh3hu7l+/TquXbuGpk2bCrU3b94cL1++ZCmV6FxcXPD06VPMmDEDv/32G4yMjAAAcXFxyMnJgZubGycHzoCyJXLW1tb4559/0LhxY04uq/2cOPXJz8+vQjHzz02bNg27du2qm0C1QF5eHomJiV8cPEtMTOTswAUAbNy4EdevXxeqraeuro6VK1eid+/enBw8y83NhYKCQoX2Dx8+QFZWloVEtUdeXh4TJ05kO0atePnyJfr27YukpCQUFhbCwcEBysrK+PPPP1FQUPDVGZ+E1Bc0eEYIIaTOzZkzB7169cKYMWPQunVrpKeno2PHjggPD+d8IeaioiIkJCTAyMhIMAuIa2xtbdmO8N2I4xutDRs2YNiwYTh58iRiY2MBlC3/++WXX9CxY0eW04kuNjYWPj4+MDY2ZjtKrRGnPg0cOBC+vr6wsrKq9Pj06dNx/PhxTg2edejQAUePHv3i8tkjR46gffv2dZyq9mRlZeHdu3cVlnK/f/+ek5uKAGXXuiNHjmDFihUAymZw8vl8rF+/vso7LdcX1dk9/fOZ+/Wdu7s7rK2tERYWhgYNGgjaBw8ejAkTJrCYjJCq4+ZdPSGEEADA8ePH4eTkxHYMkRgaGqJly5Y4e/YsAGDEiBGcHjjLy8vDzJkzcfjwYQBldWQMDQ3h5uaGJk2aYOHChSwnFN3du3exZ88exMfH48yZM9DR0cHRo0dhYGCArl27sh2vWsTpjRYALF++HHPnzkXHjh05PVBWmQ4dOuDFixdiMdBUTpz6NGHCBPz000+4e/cuTExMhI7NmDEDR44cweXLl1lKJ5q5c+fCwcEBqqqqmDdvnuA16d27d/jzzz9x6NAhXL9+neWUohs8eDBcXV2xceNGwfXiwYMHmDdv3jd3Q6yv1q9fDzs7Ozx58gRFRUWYP38+IiIikJ6ejnv37rEdr1oGDRpUpfO4uMQ7ICAA9+7dg4yMjFC7np4e3rx5w1IqQqqJIYQQUi+1aNGCefv27RePHz9+nJGWlq7DRLUnICCA0dfXZ9q1a8dERkYy+/btY5SVlZnhw4cz6enpbMcTiZubG9OuXTvm7t27jKKiIhMXF8cwDMP8/fffTNu2bVlOJzofHx9GXl6emTBhAiMrKyvo186dO5mffvqJ5XTVFxERwWhpaTF9+/ZlZGRkmGHDhjFmZmZMw4YNmRcvXrAdr9okJCSYd+/esR3juzh37hxjbm7OHDx4kHny5AkTFhYm9MVF4tYnV1dXplmzZszr168FbTNnzmQUFRUZPz8/FpOJztPTk5GVlWUkJCQYNTU1Rl1dnZGQkGBkZWWZXbt2sR2vRnJzc5mpU6cK+ichIcHIyMgwU6dOZXJyctiOJ7Lk5GRmyZIlTL9+/ZiffvqJWbRo0Vfvn0jdU1dXZyIiIhiGYRglJSXBvcTdu3cZbW1tNqMRUmW0YQAhhNRTdnZ2yM/Px+3bt6GoqCh07NSpU3B2dsa6deu+uMtefSYrKwsPDw+sWLEC0tLSAMpqNI0dOxZJSUl4/fo1ywmrT09PD6dPn0bHjh2Fiha/ePECVlZW1drBsj6xtLSEh4cHnJ2dhfoVGhqKvn37IiUlhe2I1ZaSkoLdu3cjKCgIfD4fVlZWmD59Oho3bsx2tGqTkJBASkqKWNZGlJCQqNDG4/E4u1kFIH594vP5GDZsGKKionD37l2sWrUKe/fuxaVLlzg5k7O4uBjS0tJ48+YNvL298eLFCzAMAxMTEwwbNgxNmzbFs2fP0KpVK7aj1khubi7i4uLAMAyMjY0r3GMQ9iUkJFR5UyIuGDlyJFRVVbF3714oKysjPDwcWlpaGDhwIJo1a0a7cRJOoMEzQgipp3JycmBnZwc1NTVcuXJFMMjk7e2NMWPGYPXq1Zg7dy7LKUXj7+9faV0tPp+PVatWYfHixSykqhkFBQU8e/YMhoaGQoNMYWFh6N69OzIzM9mOKBIFBQVERkZCX19fqF/x8fEwNzdHQUEB2xF/aBISEnj37h20tLTYjlLrvrWBg56eXh0lqT3i2KeioiL069cPYWFhyM3NxYULF9CzZ0+2Y4lk2LBhOHPmzBc3cnj27Bl69uyJd+/e1XEy8iV37tz56vEv1a+r7yQlJdG9e3eMHz8ew4YNg5ycHNuRauTt27ewt7eHpKQkYmNjYW1tjdjYWGhqauLOnTti+QEQET80eEYIIfVYamoqunfvDnNzc/j4+MDHxwdOTk5YsWIFFixYwHY88glbW1sMGzYMM2fOFHyqamBggBkzZuDFixe4evUq2xFFYmRkhD179qBXr15Cg2dHjhzB2rVrERkZyXbEarl69SqUlJQEtdp27tyJffv2wdzcHDt37hTahY4LJCQk0KpVq29uThEcHFxHiciPYtu2bYLvs7OzsWLFCvTp06fCwJmbm1tdRxOZrq4ufvrpJ+zdu7fCsYiICPTo0QPdu3fHmTNnWEhXOx4/fowzZ84gKSkJRUVFQsfOnTvHUirRfWk2ZzmuzeYs9+zZM3h5eeH48eMoLCzEyJEjMX78eE5vWJGfn4+TJ08iODhYMOvbycmJ0zvYkh8LDZ4RQkg99+rVK3Tt2hXGxsYICAjAkiVLsGjRIrZj1Vhubi78/f0rvYHn0putcvfv30ffvn3h5OSEQ4cOYfLkyYiIiEBgYCD8/f3Rrl07tiOK5M8//8Thw4fh5eUFBwcHXL58GS9fvoSHhweWLFmCGTNmsB2xWiwsLLBu3To4Ojri6dOnsLa2xpw5c3D79m2YmZlxbumIhIQE5syZAyUlpa+et3Tp0jpKVLvi4uKwZcsWREVFgcfjwczMDO7u7jAyMmI7msjEpU9VWVLG4/EQHx9fB2lqR1RUlGC2z9q1a4Xa7e3t0blzZ5w5cwaSkpIsphRdecmH3r1748aNG+jduzdiY2ORkpKCwYMHc+76B6DCrO7i4mKEhIRg8eLFWLVqFWdnQZYrKSnBxYsXcejQIVy5cgXNmzfH+PHjMXbsWLGccUxIfUaDZ4QQUk+Fh4cLvn/+/DmcnZ0xaNAg/O9//xM6r3Xr1nUdrdpevXoFXV1dweOQkBA4OjoiNzcX+fn5UFdXx4cPH6CgoABtbW1Ovdn61NOnT7FhwwahWloLFiyAhYUF29FqZNGiRdi8ebNgiaasrCzmzp0r2LGSS5SUlPDs2TPo6+tj2bJlePbsGXx8fBAcHAxHR0fO1XAT55pn165dw4ABA9C2bVt06dIFDMPg/v37CAsLw8WLF+Hg4MB2xGoTxz6Jm8ePH6Nnz55YvHgx5s2bh+fPn8Pe3h7t27fHuXPnODtwBpTdL0yePBnTp08XzCQ2MDDA5MmT0bhxY/zxxx9sR6w1d+7cgYeHB4KCgtiOUisKCwuxa9cu/PbbbygqKoK0tDRGjhyJdevWcaJeZ5MmTWBnZyf4+nyHXkK4gAbPCCGknpKQkBAqJF1+uf78ey4sSVi5ciWSk5OxY8cO8Hg82NnZwcjICHv37kXTpk0RFhaG/Px8jBkzBh4eHhgyZAjbkcln8vLyEBkZCT6fD3Nz82/OdKqvNDQ0EBAQAHNzc3Tt2hXOzs6YNGkSEhMTYW5ujry8PLYjVoukpCSSk5PFcvDM0tISffr0EZoBBAALFy7E9evXObkUVRz7JI5u376N/v37Y/78+di3bx+srKxw7tw5Qe1RrlJUVERERAT09fWhqakJX19fWFhYICoqCj169EBycjLbEWtNVFQUbGxskJOTw3aUGnny5Am8vLxw6tQpKCoqwsXFBePHj8fbt2+xZMkSZGdn49GjR2zH/KaTJ0/C398ffn5+iImJQcOGDWFraws7OzvY2trCzMyM7YiEfBMNnhFCSD31rcLS5bhQYDo/Px8zZsxAamoqLly4ADU1NTx48AAtWrRA06ZNERgYCF1dXTx48ADjxo3D8+fP2Y5cJdXZQVNFReU7JiFVNWDAABQVFaFLly5YsWIFEhISoKOjg+vXr2PGjBmIiYlhO2K1iPPMMzk5OTx9+hTNmzcXao+JiUHr1q05uVmFuPTp1KlT+OWXX6p07qtXr5CUlIQuXbp851S16/z58xg+fDh69+6N8+fPc37gDCir6Xb58mVYWFigTZs2WLhwIUaNGoXAwED07duXkxvbfDpLHwAYhkFycjLWrl2L4uJi3Lt3j6VkNbNp0yYcPHgQ0dHRcHR0xIQJE+Do6ChU4+3Fixdo0aIFSkpKWExafe/evYOvry8uXbqE06dPg8/nc+KDYEK+Xl2WEEIIa7gwKFZV8vLyOHDgAE6dOgUAkJaWFtwAamtr4+XLl9DV1YWamhqSkpLYjFotampqX9yV7XNcujGszsw/rhWY3rFjB6ZNmwYfHx/s3r0bOjo6AIArV66gb9++LKervoSEBLGte6OlpYXQ0NAKA02hoaGcHSwUlz7t3r0by5Ytg6urKwYMGFBh1khmZibu3buHY8eO4ebNmzhw4ABLSatHXV29wjX97t27aNiwoVBbenp6XcaqNd26dcONGzdgYWGBESNGwN3dHbdv38aNGzc4Wxusbdu2QjPyy3Xs2BFeXl4spaq53bt349dff4WrqysaNWpU6TnNmjXjzN8WULaLfEBAgGAGWkhICCwsLCrdfZ2Q+ogGzwghpB5KSkpCs2bNqnz+mzdvBIMA9Vn5TAVLS0s8fvwYJiYmsLW1xW+//YapU6fi8OHDnKoP5uvrK/g+MTERCxcuxLhx49CpUycAQGBgIA4fPow1a9awFVEkqqqqgu8ZhsFff/0FVVVVWFtbAwCCgoKQkZHByeW1zZo1w6VLlyq0b968mYU0NXf48OEqnbdkyZLvnKT2TZw4EZMmTUJ8fDw6d+4MHo+HgIAArFu3DnPmzGE7nkjEpU/+/v64dOkStm/fjv/9739QVFREw4YNIScnh48fPyIlJQVaWlpwdXXFs2fPODMwuGXLFrYjfFc7duwQzG787bffIC0tjYCAAAwZMgSLFy9mOZ1oEhIShB5LSEhAS0sLcnJyLCWqHbGxsd88R0ZGBi4uLnWQpuY6dOiA8PBwtGrVCnZ2dvjf//6Hbt26QU1Nje1ohFQZLdskhJB6qGHDhhgwYAAmTpz4xW3JMzMz4e3tja1bt2Ly5MmYOXNmHacU3ZMnT5CVlYUePXogPT0d48aNg5+fH4yMjHDo0CG0adOG7YjV1rNnT0yYMAGjRo0Saj9x4gT27t0LPz8/doLV0IIFC5Ceng5PT09BoezS0lJMmzYNKioqWL9+PcsJq+dbMxurM2hdH0hISKBJkybQ1tauMPOiHI/H42QtLYZhsGXLFmzcuBFv374FUFZ0et68eXBzc6vyrM/6RBz7lJaWhoCAACQmJiI/Px+ampqwtLSEpaWl0BIzQmrT7du3MWPGDDx48KBCWYTMzEx07twZnp6e6NatG0sJa0deXl6lu5JzYbOoT2loaIDH46FXr16CTQOozhnhGho8I4SQeig9PR2rV6+Gl5cXpKWlYW1tjSZNmgg+1Y+MjERERASsra3x+++/46effmI78g9PQUEBYWFhldYyatu2LecK0ZfT0tJCQEAATE1Nhdqjo6PRuXNnpKWlsZRMNOUbcXwJl5bXAoCjoyN8fX3Rp08f/Prrr+jXrx+ndwMsV1JSguPHj6NPnz5o1KgRsrOzAQDKysosJxOdOPbpR1a+mQ+XfKlOJ4/Hg6ysLGRkZOo4kegGDBgAe3t7eHh4VHp827Zt8PX1xV9//VXHyWpHamoqxo0bh6tXr1Z6nGuvVUBZfTo/Pz/4+/vj7t27kJCQgK2tLezt7TFlyhS24xHyTfRxECGE1EMaGhrYsGED3r59i927d8PExAQfPnwQTON3cnJCUFAQ7t27RwNn9YSuri48PT0rtO/Zswe6urosJKodJSUliIqKqtAeFRUFPp/PQqKaCQkJQXBwsODr4cOH8PT0hImJCc6cOcN2vGq7fPky4uPj0aFDB8ybNw9NmzbFggULEB0dzXa0GpGSksLUqVNRWFgIoGyAieuDTOLYJ3FiZmaGEydOVJjh87nY2FhMnToV69atq6NktUdNTQ3q6uoVvtTU1CAvLw89PT0sXbqUE9f2sLCwr9ap7N27N4KCguowUe2aNWsWMjIy8ODBA8jLy+Pq1as4fPgwmjdvjgsXLrAdTyStW7eGm5sbzp49iytXruCnn37CuXPnMH36dLajEVIlVPOMEELqMTk5OQwZMoSTtaW+Ji0tDUuWLIGvry/ev39f4Uadi8WYN2/ejKFDh+LatWvo2LEjAODBgweIi4vD2bNnWU4nOldXV/z666948eKFUL/Wrl0LV1dXltNVX2VLgstndq5fv56Tf2uNGzfGb7/9ht9++w137tzBwYMHYWNjAwsLC9y8eRPy8vJsRxRJhw4dEBISIlabp4hjn8TFzp07sWDBAkyfPh29e/eudMZ3QEAAIiMjMWPGDEybNo3tyNV26NAhLFq0COPGjUP79u3BMAweP36Mw4cP4/fff0dqaio2bNgAWVlZ/O9//2M77le9e/fuqzugSklJITU1tQ4T1a7bt2/j77//ho2NDSQkJKCnpwcHBweoqKhgzZo16NevH9sRqyUkJAR+fn7w8/PD3bt3kZ2djTZt2sDd3R329vZsxyOkSmjwjBBCSJ0bM2YM4uLiMH78eDRs2JBzS18q4+joiNjYWOzevRtRUVFgGAYDBw7ElClTOD3zbMOGDWjUqBE2b96M5ORkAGWDNfPnz+dUgfNvMTExwePHj9mOUWM2NjZITExEZGQkQkJCUFxczNnBs2nTpmHOnDl4/fo12rVrB0VFRaHjXKv5A4hnn8RFjx498PjxY9y/fx+nT5/GiRMnKtRxc3Z2xpgxYzhb5Pzw4cPYuHEjRowYIWgbMGAALCwssGfPHty6dQvNmjXDqlWr6v3gmY6ODp4+fQpjY+NKj4eHh6Nx48Z1nKr25ObmCjba0NDQQGpqKkxMTGBhYcHJGpY2NjawtLSEra0tJk6ciO7du1eoVUdIfUc1zwghhNQ5ZWVlBAQEcHJjgB9Zeb0cLt/wfl7zh2EYJCcnY9myZXj+/DlCQ0PZCVZDgYGB8PLygre3N0xMTODq6orRo0dz9k0+gEqLzfN4PEGtKS7W/BHHPhHu+FJtztjYWLRp0wZ5eXlISEhAy5Yt632dzpkzZ8LPzw+PHz+usLNmfn4+2rdvD3t7e2zbto2lhDVjY2ODlStXok+fPhg0aJBgxtm2bdvg4+ODuLg4tiNWS1ZWFqfvHQgBaOYZIYQQFrRo0QL5+flsxyDVJA43vmpqahVmOjIMA11dXZw6dYqlVKL7888/cfDgQaSlpcHJyQkBAQGwsLBgO1atSEhIYDtCrRPHPhHuaNq0KQ4cOIC1a9cKtR84cEAwQzotLQ3q6upsxKuW33//HefOnYOJiQlmzJgBU1NT8Hg8REVFYefOnSgtLcWiRYvYjimyWbNmCWZ7L126FH369MGxY8cgIyODw4cPs5yu+sTh/oEQmnlGCCGkzj1+/BgLFy7EkiVL0KpVqwp1S+gmi3wv/v7+Qo8lJCSgpaUFY2NjSElx7zNFCQkJNGvWDP379//qTnmbNm2qw1TkR/P69WtcuHABSUlJFQru03Ov/rhw4QKGDx+OFi1awMbGBjweD48fP8bz58/h4+OD/v37Y/fu3YiNjeXE7+3ly5eYOnUqrl27hvK3tDweD3369MGuXbugr6/PbsBawjAM8vPz8fz5czRr1gyamppsRyLkh0SDZ4QQQupcbGwsRo0ahZCQEKF2WrpEvgcrKyvcunUL6urqWL58OebOnQsFBQW2Y9UKOzu7b9YM5PF4uH37dh0lql1Hjx6Fp6cnEhISEBgYCD09PWzZsgUGBgYYOHAg2/FEIm59unXrFgYMGAADAwNER0ejVatWSExMBMMwsLKy4uxzT1y9fPkSnp6eiI6OBsMwaNGiBSZPnszpgaaPHz/ixYsXYBgGzZs358TMuao4cOAANm/eLNhpvXnz5pg1axYmTJjAcjJCfkw0eEYIIRwQFxeHLVu2ICoqCjweD2ZmZnB3d4eRkRHb0UTSvn17SElJwd3dvdINA2xtbVlKRsSRvLw8YmNj0bRpU0hKSiIlJQVaWlpsxyLfsHv3bixZsgSzZs3CqlWr8OzZMxgaGuLQoUM4fPgwfH192Y5YbeLYp/bt26Nv375Yvnw5lJWVERYWBm1tbTg5OaFv376YOnUq2xEJgOLiYvTu3Rt79uyBiYkJ23HINyxevBibN2/GzJkz0alTJwBltS137NgBd3d3rFy5kuWEhPx4aPCMEELquWvXrmHAgAFo27YtunTpAoZhcP/+fYSFheHixYtwcHBgO2K1KSgoICQkBKampmxHIT+ATp06QUlJCV27dsUff/yBuXPnQklJqdJzlyxZUsfpyJeYm5tj9erVGDRokGBQxtDQEM+ePYOdnR0+fPjAdsRqE8c+KSsrIzQ0FEZGRlBXV0dAQABatmyJsLAwDBw4EImJiWxHJP/S0tLC/fv3K2wYQOofTU1NbN++HaNGjRJqP3nyJGbOnMm5a4Wfnx/s7OzYjkFIjXCvuAchhPxgFi5cCA8PjwoFfhcuXIgFCxZwcvDM2toar169ErvBMx8fH3h7e1da94eLW8uX8/f3x4YNG4RmPs6bNw/dunVjO1qVHDp0CEuXLsWlS5fA4/Fw5cqVSuub8Xg8Tg2erV27FjNnzoSiouI3z3348CE+fPiAfv361UGy2pGQkABLS8sK7bKyssjNzWUhUc2JY58UFRVRWFgIAGjSpAni4uLQsmVLAODcG/zK5Ofno7i4WKiNq3U5nZ2dK90wgNQ/paWlsLa2rtDerl07lJSUsJCoZvr27QsdHR24urrCxcVFsEEFIVxCg2eEEFLPRUVFwdvbu0L7r7/+ii1bttR9oFowc+ZMuLu7Y968ebCwsKiwYUDr1q1ZSia6bdu2YdGiRXBxccHff/8NV1dXxMXF4fHjx5g+fTrb8UR27NgxuLq6YsiQIXBzcxPMfOzZsycOHTqE0aNHsx3xm0xNTQU7aUpISODWrVvQ1tZmOVXNRUZGQk9PD8OHD8eAAQNgbW0tWI5aUlKCyMhIBAQE4NixY0hOTsaRI0dYTlw9BgYGCA0NhZ6enlD7lStXYG5uzlKqmhHHPnXs2BH37t2Dubk5+vXrhzlz5uDp06c4d+4cOnbsyHY8keTl5WH+/Pnw9vZGWlpaheNcrctZVFSE/fv348aNG7C2tq4w8M6FTQJ+FGPGjMHu3bsr/E727t0LJycnllKJ7u3btzh27BgOHTqEZcuWoWfPnhg/fjwGDRr01c1uCKlPaNkmIYTUc7q6uti0aROGDx8u1O7t7Y25c+ciKSmJpWSik5CQqNDG4/E4vWFAixYtsHTpUowaNUpoOdaSJUuQnp6OHTt2sB1RJGZmZpg0aRI8PDyE2jdt2oR9+/YhKiqKpWQEAMLDw7Fz506cOXMGmZmZkJSUhKysLPLy8gAAlpaWmDRpElxcXCArK8ty2uo5ePAgFi9ejI0bN2L8+PHYv38/4uLisGbNGuzfvx+//PIL2xGrTRz7FB8fj5ycHLRu3Rp5eXmYO3cuAgICYGxsjM2bN1cYKOSC6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di0nBy8AwN7e/ovHuLyxiDiaOXMmjhw5Al1dXcEg9IMHD/Dq1Ss4OzsLfejItUHP0NBQeHl54eTJk+Dz+XBycsL48ePRpk0btqMR8lU0eEYIIfXc8uXLsXnzZixcuBCdO3cGj8dDQEAA1q1bhzlz5uD3339nO2K1vXz58qvHufhmS0FBAVFRUdDT04O2tjZu3LiBNm3aIDY2Fh07dqx09gIXyMrKIiIiAsbGxkLtL168QKtWrVBQUMBSMvIphmEQHh6OxMRE5OfnQ1NTE23btoWmpibb0Wpk3759WLlyJV69egUA0NHRwbJlyzB+/HiWk4lOHPskbpo1a4YjR47Azs4OKioqCA4OhrGxMY4ePYqTJ0/i8uXLbEckYu5rA52f4uqg59u3b7F3716sXbsWUlJSKCgoQKdOneDp6SlY9k1IfUODZ4QQUs8xDIMtW7Zg48aNePv2LYCyujLz5s2Dm5tbhZ0qCTsMDQ3h4+MDKysr2NjYYMKECZg8eTKuX7+OX375Benp6WxHFImxsTHmzZuHyZMnC7Xv2bMHGzZsQGxsLEvJyI/kw4cP4PP5YrHctpw49iknJwd8Pl+ojYv1wZSUlBAREQE9PT00bdoU586dQ/v27ZGQkAALCwvk5OSwHbFGXrx4gbi4OHTv3h3y8vKCWd+EfE/FxcX4+++/4eXlJVg6PH78eIwaNQrp6elYsGABQkNDERkZyXZUQipFNc8IIaQeKykpwfHjxzFq1Ch4eHggOzsbQNnuZqR+6dGjBy5evAgrKyuMHz8eHh4e8PHxwZMnTzBkyBC244lszpw5cHNzQ2hoqNDMx0OHDmHr1q1sxyM/CK7PoKuMuPQpISEBM2bMgJ+fn9BMVC4vwzc0NERiYiL09PRgbm4Ob29vtG/fHhcvXoSamhrb8USWlpaGESNGwNfXFzweD7GxsTA0NMSECROgpqaGjRs3sh2RiKmZM2fi5MmTAMrquf35559o1aqV4LiioiLWrl0LfX19lhIS8m0084wQQuq5T5cDkvqLz+eDz+cLdnH09vYW1P2ZMmUKpwvi/vXXX9i4caOgvln5bpsDBw5kORkRd+K4g6249alz584AAHd3dzRs2LDCDCZbW1s2YtXI5s2bISkpCTc3N/j6+qJfv34oLS1FSUkJNm3aBHd3d7YjisTZ2Rnv37/H/v37YWZmJqjNef36dXh4eCAiIoLtiERM9ezZExMmTMDQoUO/eD9UUlKCe/fucfKaQX4MNHhGCCH1nL29Pdzd3TFo0CC2oxBCSJ35dAfbffv2VdjBdtWqVWxHrDZx7JOSkhKCgoJgamrKdpTvJikpCU+ePIGRkRGni5o3atQI165dQ5s2bYQ2thGX5aik/rpz5w46d+4s+ICxXElJCe7fv4/u3buzlIyQqqNlm4QQUs9NmzYNc+bMwevXr9GuXbsKW8u3bt2apWTkc3fv3sWePXsQFxcHHx8f6Ojo4OjRozAwMEDXrl3ZjicSQ0NDPH78GA0aNBBqz8jIgJWVFeLj41lKVnXq6upVrufD1dp04mjXrl3Yu3cvRo0ahcOHD2P+/PlCO9hykTj2ycbGBq9evRLrwbNmzZqhWbNmbMeosdzcXCgoKFRo//DhA+d24yXcYm9vj+Tk5Ao1HjMzM2Fvb8/J5d3kx0ODZ4QQUs+NHDkSAODm5iZo4/F4nK4nUy4oKAhRUVHg8XgwMzODlZUV25FEdvbsWYwdOxZOTk4ICQlBYWEhACA7OxurV6/m7O5siYmJlT7HCgsL8ebNGxYSVd+WLVvYjlBnxKkQeFJSkmBJoLy8vKDm49ixY9GxY0fs2LGDzXgiEcc+7d+/H1OmTMGbN2/QqlUrSEtLCx3nygc827Ztq/K5n74ec0n37t1x5MgRrFixAkDZvQSfz8f69eurvLsjIaL40mtRWlpahQ+FCamvaPCMEELquYSEBLYj1Lr379/jl19+gZ+fH9TU1MAwjODTx1OnTkFLS4vtiNW2cuVKeHp6wtnZGadOnRK0d+7cGcuXL2cxmWguXLgg+P7atWtQVVUVPC4tLcWtW7c4U9jXxcWF7QjfXVpaGkaOHInbt2+LTSHwRo0aIS0tDXp6etDT08ODBw/Qpk0bJCQkgKtVR8SxT6mpqYiLi4Orq6ugjYsf8GzevFnocWpqKvLy8gQbBGRkZEBBQQHa2tqcHTxbv3497Ozs8OTJExQVFWH+/PmIiIhAeno67t27x3Y8IobKN0zi8XgYN26c0AzH0tJShIeHCz5QIKS+o8EzQgip58Rxo4CZM2ciKysLERERMDMzAwBERkbCxcUFbm5ugh2ZuCQ6OrrSmh0qKirIyMio+0A1VF5jj8fjVRh8kpaWhr6+PicHZAAgLi4OBw8eRFxcHLZu3QptbW1cvXoVurq6aNmyJdvxROLh4QEpKSkkJSUJ/qaAspmrHh4enPxdieMOtuLYp19//RWWlpY4efJkpRsGcMWnH1SdOHECu3btwoEDBwTLUaOjozFx4kRMnjyZrYg1Zm5ujvDwcOzevRuSkpLIzc3FkCFDMH36dDRu3JjteEQMlX/wxjAMlJWVIS8vLzgmIyODjh07YuLEiWzFI6RaaMMAQgjhgKNHj8LT0xMJCQkIDAyEnp4etmzZAgMDA07ueKiqqoqbN2/CxsZGqP3Ro0fo3bs3JwebjIyMsGfPHvTq1UuoEPORI0ewdu1aREZGsh1RJAYGBnj8+DE0NTXZjlIr/P398dNPP6FLly64c+cOoqKiYGhoiD///BOPHj2Cj48P2xFFIo6FwMVxB1tx7JOioiLCwsJgbGzMdpRaY2RkBB8fH1haWgq1BwUFYdiwYWI5I5yQ7+mPP/7A3LlzaYkm4TQJtgMQQgj5ut27d2P27NlwdHRERkaGYAmMmpoaZ2s58fn8CnVxgLIZTXw+n4VENTd58mS4u7vj4cOH4PF4ePv2LY4fP465c+di2rRpbMcTWUJCgtgMnAHAwoULsXLlSty4cUNooMLe3h6BgYEsJqsZcSwELiEhIbQz24gRI7Bt2za4ublxcpAJEM8+9ejRA2FhYWzHqFXJyckoLi6u0F5aWop3796xkKh2GBgYYPHixYiOjmY7CvnBLF26FIqKinj//j3u3r2LgIAAvH//nu1YhFQLDZ4RQkg9t337duzbtw+LFi2CpKSkoN3a2hpPnz5lMZnoevToAXd3d7x9+1bQ9ubNG3h4eKBnz54sJhPd/PnzMWjQINjb2yMnJwfdu3fHhAkTMHnyZMyYMYPteCJzc3OrtJD2jh07MGvWrLoPVENPnz7F4MGDK7RraWkhLS2NhUS1o7wQeDkqBE7qys8//wwPDw8sW7YMZ8+exYULF4S+uKhnz56YOHEinjx5IqhF9+TJE0yePBm9evViOZ3oZs6ciatXr8LMzAzt2rXDli1bkJyczHYs8gPIysrC2LFjoaOjA1tbW3Tv3h06OjoYM2YMMjMz2Y5HSJXQsk1CCKnn5OXl8fz5c+jp6Qktx4qNjUXr1q2Rn5/PdsRqe/XqFQYOHIhnz55BV1cXPB4PSUlJsLCwwN9//42mTZuyHbFaSktLERAQAAsLC8jJySEyMhJ8Ph/m5uZQUlJiO16N6Ojo4MKFC2jXrp1Qe3BwMAYMGIDXr1+zlEw0TZs2hbe3Nzp37iz09/TXX39h7ty5iIuLYzuiSCIjI2FnZ4d27drh9u3bGDBggFAhcCMjI7YjEjElIfHlz+K5tGHAp1JTU+Hi4oKrV68KZkmXlJSgT58+OHToELS1tVlOWDMxMTE4fvw4Tp06hfj4eNjb22PMmDFwdnZmOxoRUyNGjEBoaCi2b9+OTp06gcfj4f79+3B3d0fr1q3h7e3NdkRCvokGzwghpJ4zNzfHmjVrMHDgQKE3+9u2bcPhw4cRFBTEdkSR3bhxA8+fPwfDMDA3N+f0J/pycnKIioqCgYEB21FqlZycHJ49e1ahntGLFy/QqlUrFBQUsJRMNPPnz0dgYCDOnDkDExMTBAcH4927d3B2doazszOWLl3KdkSRpaSkYPfu3QgKCgKfz4eVlRUVAiekBmJiYgSvUWZmZjAxMWE7Uq178OABpk6divDwcE4OdBJuUFRUxLVr19C1a1eh9rt376Jv377Izc1lKRkhVUe7bRJCSD03b948TJ8+HQUFBWAYBo8ePcLJkyexZs0a7N+/n+14NeLg4AAHBwe2Y9QKCwsLxMfHi93gmbGxMa5evVph6emVK1dgaGjIUirRrVq1CuPGjYOOjo5g0La0tBSjR4/G77//zna8GmnUqBH++OMPtmMQIjZMTEzEcsAMKNug58SJEzh9+jQyMzMxbNgwtiMRMdagQQPBzpufUlVVhbq6OguJCKk+mnlGCCEcsG/fPqxcuRKvXr0CULaUbtmyZRg/fjzLyapu27ZtmDRpEuTk5CqtofUpNze3OkpVe65fv44FCxZgxYoVaNeuXYUdpVRUVFhKVjNeXl6YMWMG5s2bhx49egAAbt26hY0bN2LLli2c3WI+Li4OISEh4PP5sLS0RPPmzdmOVCN37tz56vHu3bvXURLyIxDH6/ns2bOxYsUKKCoqYvbs2V89d9OmTXWUqnaVL9c8ceIEEhMTYW9vDycnJwwZMgTKyspsxyNibO/evThz5gyOHDkimA2dkpICFxcXDBkyBJMnT2Y5ISHfRoNnhBDCIR8+fACfz+dkvRUDAwM8efIEDRo0+OrsLB6Ph/j4+DpMVjs+rfvD4/EE3zMMw9m6P+V2796NVatWCTZ40NfXx7Jly6g+Tj1SWd2pT5+HXH3++fj4wNvbG0lJSSgqKhI6FhwczFKqmhGHPonj9dze3h5//fUX1NTUvrrJBo/Hw+3bt+swWe2RkJCAtbU1Ro8ejV9++QWNGjViOxL5QVhaWuLFixcoLCxEs2bNAABJSUmQlZWt8OEVV66D5MdDyzYJIaSeS0hIQElJCZo3bw5NTU1Be2xsLKSlpaGvr89euGpISEio9Htx4evry3aE72bq1KmYOnUqUlNTIS8vz7lNEL41i+RTXJ1R8vHjR6HHxcXFCAkJweLFi7Fq1SqWUtXMtm3bsGjRIri4uODvv/+Gq6sr4uLi8PjxY0yfPp3teCIRlz6J4/X802u4uF7Pnz9/LrbLUEn9NmjQILYjEFJjNPOMEELqOVtbW/z6669wcXERaj927Bj2798PPz8/doKRKgsNDUXbtm3ZjiGykpIS+Pn5IS4uDqNHj4aysjLevn0LFRUVTgykfT6LJCgoCKWlpTA1NQVQtpRJUlJSsFOlOLlz5w48PDw4ubFIixYtsHTpUowaNUpos5QlS5YgPT0dO3bsYDtitYljn/Lz8yEvL1/pseTkZNqwoh4qKirC+/fvwefzhdrLZwQRQgipiAbPCCGknlNRUUFwcHClux1aW1sjIyODnWA1MGzYMFhbW2PhwoVC7evXr8ejR49w5swZlpLVnszMTBw/fhz79+9HWFgYZ5fNvXz5En379kVSUhIKCwsRExMDQ0NDzJo1CwUFBfD09GQ7YrVs2rQJfn5+OHz4sKBI8cePH+Hq6opu3bphzpw5LCesXVFRUbCxsUFOTg7bUapNQUEBUVFR0NPTg7a2Nm7cuIE2bdogNjYWHTt2RFpaGtsRq00c+9SiRQucOHECVlZWQu0+Pj6CGatcMGTIkCqfe+7cue+Y5PuJjY3Fr7/+ivv37wu1i0N5AcIdOTk5FQZuuVoXlvxYKhbIIIQQUq/weDxkZ2dXaM/MzOTsja6/vz/69etXob1v377fLHxe392+fRtjxoxB48aNsX37djg6OuLJkydsxxKZu7s7rK2t8fHjR6HZJYMHD8atW7dYTCaajRs3Ys2aNUK7e6mrq2PlypXYuHEji8lqJjw8XOgrLCwMV69exdSpU9GmTRu244mkUaNGgsEkPT09PHjwAEDZMkGufvYrjn1ycHBA586dsXbtWjAMg5ycHIwbNw4uLi5YsmQJ2/GqTFVVVfCloqKCW7duCV27g4KCcOvWrUp3DOSKcePGQUJCApcuXUJQUBCCg4MRHByMkJAQqjNFvquEhAT069cPioqKgh021dXVoaamRrttEs6gmmeEEFLPdevWDWvWrMHJkychKSkJoKz495o1a9C1a1eW04kmJycHMjIyFdqlpaWRlZXFQqKqS01NhZaWllDb69evcejQIXh5eSE3NxcjRoxAcXExzp49C3Nzc5aS1o6AgADcu3evwu9LT08Pb968YSmV6LKysvDu3Tu0bNnVrS96AABheElEQVRSqP39+/eVDlJzRdu2bcHj8SoMwHTs2BFeXl4spaqZHj164OLFi7CyssL48ePh4eEBHx8fPHnypFqzhOoTcezT9u3b0a9fP7i6uuKff/4RLOl+/Pgxp65/Bw8eFHy/YMECjBgxAp6enkKvu9OmTeP0DJnQ0FAEBQWhRYsWbEchPxgnJycAZTt4N2zYUGhDG0K4ggbPCCGknvvzzz/RvXt3mJqaolu3bgCAu3fvIisri7P1mVq1aoXTp09XmJVw6tSpev9ma+/evXj9+jW2bdsGaWlpODo6IiAgAP3798f27dvRt29fSEpKcm4545fw+fxKZzi+fv0aysrKLCSqmcGDB8PV1RUbN25Ex44dAQAPHjzAvHnzODt4AVQs2i4hIQEtLS3IycmxlKjm9u7dK1jaM2XKFGhoaCAgIAA///wzpkyZwnI60YhjnwCgd+/eGDJkCHbv3g0pKSlcvHix3l/Lv8bLywsBAQGCgTMAkJSUxOzZs9G5c2esX7+exXSiMzc3x4cPH9iOQX5A4eHhCAoKEtQaJYSLqOYZIYRwwNu3b7Fjxw6EhYVBXl4erVu3xowZM6ChocF2NJFcuHABQ4cOxejRo9GjRw8AwK1bt3Dy5EmcOXOmXu/KVFhYiMWLF0NTUxPz58+HlJQU3NzcMHXqVKHt1qWlpREWFsbpN5AAMHLkSKiqqmLv3r1QVlZGeHg4tLS0MHDgQDRr1kxotgYX5OXlYe7cufDy8kJxcTEAQEpKCuPHj8f69euhqKjIckJCuKV8I5GUlBTs378f/v7+2LBhA9zc3LBq1SpIS0uzHbHa1NXVcfDgwQqvRefPn4erq2uF3W254vbt2/j999+xevVqWFhYVPjdcHlWHanf7O3tsWjRIvTq1YvtKISIjAbPCCGEsOKff/7B6tWrERoaKhgQXLp0KWxtbdmOViVFRUWQkZFBYGAgvLy84O3tjRYtWmDs2LEYOXIkmjRpIhaDZ2/fvoW9vT0kJSURGxsLa2trxMbGQlNTE3fu3IG2tjbbEUWSm5uLuLg4MAwDY2Njzg+abdu2rdJ2Ho8HOTk5GBsbo3v37kIzaeqj8PDwKp/bunXr75ik9ohjnz6lrKyMfv36wdPTE2pqagCA+/fvw9nZGcrKyggJCWE3oAhmz56NQ4cO4X//+5/QDNW1a9fC2dkZmzZtYjmhaCQk/it3/emyOdowgHxvcXFxmDJlCsaMGYNWrVpVGLjl4rWP/Hho8IwQQuq5bxXQ7969ex0lIV+Tl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9lZPLGz+Vn5+PkydPIjg4GHw+H1ZWVnBychLaQICwy8DAAKmpqcjLy4O6ujoYhkFGRgYUFBSgpKSE9+/fw9DQEL6+vtDV1WU77hdJSEhUWrvtc1x6oy+OffrU0aNHMXbs2Art2dnZmDVrFg4cOMBCqprh8/nYsGEDtm7diuTkZABA48aN4e7ujjlz5tT7Qegv8ff3/+pxrnx4RbjnwYMHGD16NBITEwVt5ddFrl77yI+HBs8IIaSe+/ST4nKffmJMNxz1T3R0NA4cOICjR48iIyMDDg4OuHDhAtuxiBg7efIk9u7di/3798PIyAgA8OLFC0yePBmTJk1Cly5d8Msvv6BRo0bw8fFhOe2XvXz5ssrn6unpfccktUcc+yTOSkpKcPz4cfTp0weNGjUSbGIjLksa7969iz179iAuLg4+Pj7Q0dHB0aNHYWBgwNlNiEj9Z25uDjMzM8yfP7/SDQPo2ke4gAbPCCGknsvMzBR6XFxcjJCQECxevBirVq1Cz549WUpWPRoaGoiJiYGmpibU1dW/utNSenp6HSb7fkpLS3Hx4kV4eXlxevAsOjoa27dvR1RUFHg8Hlq0aIEZM2bQjm31iJGREc6ePYu2bdsKtYeEhGDo0KGIj4/H/fv3MXToUMFMGkJqU2RkJJKSklBUVCRo4/F4+Pnnn1lMJRoFBQVERUWJ3Rv6s2fPYuzYsXBycsLRo0cRGRkJQ0ND7Nq1C5cuXcLly5fZjkjElKKiIsLCwmBsbMx2FEJERrttEkJIPaeqqlqhzcHBAbKysvDw8EBQUBALqapv8+bNguWLmzdv/iG2KZeUlMSgQYPq9QYI3+Lj44NRo0bB2toanTp1AlC2/MLCwgInTpzA8OHDWU5IACA5ORklJSUV2ktKSpCSkgIAaNKkCbKzs+s6GhEzmZmZQq9L8fHxGDJkCMLDw4WWp5Zf47k4O7pDhw4ICQkRu8GzlStXwtPTE87Ozjh16pSgvXPnzli+fDmLyYi469GjBw2eEc6jwTNCCOEoLS0tREdHsx2jylxcXATfjxs3jr0gpFrmz5+P3377rcIbq6VLl2LBggU0eFZP2NvbY/Lkydi/fz8sLS0BlM06mzp1qmBH26dPn8LAwIDNmEQMbNu2DXJycpg3bx4AwN3dHbq6urh27Rratm2Lhw8fIiEhAXPnzuVsYf1p06Zhzpw5eP36Ndq1a1dhQxGuFjePjo6utE6qiooKMjIy6j4Q+WH8/PPP8PDwwNOnTyvd6XXAgAEsJSOk6mjZJiGE1HOf79TGMAySk5Oxdu1aFBcX4969eywlE529vT3GjBmDYcOGVTqzjtQfCgoKCA8Pr/BpcWxsLNq0aYO8vDyWklVddZbMcvUGPiUlBWPHjsWtW7cEb0pKSkrQs2dPHD16FA0bNoSvry+Ki4vRu3dvltMSLnv//j3Gjh0LY2Nj7Ny5E5qamrh16xbatGkDHR0dPHr0CDo6Orh16xbmzp3Lyd02v1RrlOvFzY2MjLBnzx706tULysrKCAsLg6GhIY4cOYK1a9ciMjKS7YhETFX2N1WOy39T5MdCM88IIaSea9u2baU7tXXs2BFeXl4spaoZCwsL/P7775gxYwYcHR0xduxYODo6QkZGhu1o5DN2dna4e/duhcGzgIAAdOvWjaVU1fP5stnP/57EYQOORo0a4caNG3j+/DliYmLAMAxatGgBU1NTwTn29vYsJiTiQltbG9euXcOaNWsAlP3NlC/J19TUxNu3b6GjowN9fX1OzY7+VEJCAtsRvovJkyfD3d0dXl5e4PF4ePv2LQIDAzF37lwsWbKE7XhEjPH5fLYjEFJjNPOMEELquc93apOQkICWlhbk5ORYSlQ7+Hw+bt68iRMnTuCvv/6CpKQkhg0bBicnJ9ja2rIdj/zL09MTS5YswYgRI9CxY0cAZTXPzpw5gz/++ANNmjQRnMuFWVs3b97EggULsHr1anTq1Ak8Hg/379/H77//jtWrV8PBwYHtiDVSVFSEhIQEGBkZQUqK+5+RZmRkwMfHB3FxcZg3bx40NDQQHByMhg0bQkdHh+14IhG3PnXr1g2zZ8/G4MGDMWnSJKSmpmLevHnw9PREcHAwnj17xnZE8olFixZh8+bNKCgoAADIyspi7ty5WLFiBcvJCCGkfqPBM0IIqcfKl1jt2bMHJiYmbMf5bgoKCnDx4kWsWrUKT58+5ezsH3H0taUWn+LKsotWrVrB09MTXbt2FWq/e/cuJk2ahKioKJaS1UxeXh5mzpyJw4cPAwBiYmJgaGgINzc3NGnSBAsXLmQ5YfWFh4ejV69eUFVVRWJiIqKjo2FoaIjFixfj5cuXOHLkCNsRq00c+3Tt2jVkZ2dj2LBhePXqFfr164dnz55BQ0MD3t7egpp7XHP06FF4enoiISEBgYGB0NPTw5YtW2BgYICBAweyHa9G8vLyEBkZCT6fD3NzcygpKbEdiYgpR0dHnDx5UlCiY9WqVZg+fTrU1NQAAGlpaejWrRstGSacULU7YkIIIayQlpbGs2fPxHpnypSUFHh6emLdunUIDw+HtbU125HIJ/h8fpW+uDBwBgBxcXGV1tkrH8zgqt9++w1hYWHw8/MTmpXaq1cvnD59msVkops9ezbGjRuH2NhYoT799NNPuHPnDovJRCeOferTpw+GDRsGANDV1UV4eDg+fPiA9+/fc2bg7Nq1a8jMzBQ83r17N2bPng1HR0dkZGQIrm9qamrYsmULSylrj4KCAqytrdG+fXsaOCPf1bVr11BYWCh4vG7dOqSnpwsel5SUcHZ5N/nx0OAZIYTUc87Ozjhw4ADbMWpVVlYWDh48CAcHB+jq6mL37t34+eefERMTg4cPH7Idj3wDl3dls7GxwaxZs5CcnCxoS0lJwZw5c9C+fXsWk9XM+fPnsWPHDnTt2lVosN3c3BxxcXEsJhPd48ePMXny5ArtOjo6SElJYSFRzYljnyqjoaFR5Vmr9UFKSgq6dOmC169fAwC2b9+Offv2YdGiRZCUlBScZ21tjadPn7IVkxDO+XyRGy16I1zG/WIYhBAi5oqKirB//37cuHED1tbWUFRUFDq+adMmlpKJrmHDhlBXV8eIESOwevVq2NjYsB2JfMG6deugr6+PkSNHAgCGDx+Os2fPonHjxrh8+TLatGnDcsLq8fLywuDBg6Gnp4dmzZoBAJKSkmBiYoLz58+zG64GUlNToa2tXaE9NzeXszNX5eTkkJWVVaE9OjoaWlpaLCSqOXHsU0FBAbZv3w5fX1+8f/++QmHw4OBglpJVnYuLC5SVldG3b188e/YMCQkJsLS0rHCerKwscnNzWUhICCGEbTR4Rggh9dyzZ89gZWUFoKyO0ae4+KaYYRhs3boVY8aMgYKCAttxyDfs2bMHx44dAwDcuHEDN2/exNWrV+Ht7Y158+bh+vXrLCesHmNjY4SHhwt2pmQYBubm5ujVqxcn/57K2djY4J9//sHMmTMB/Hdt2LdvHzp16sRmNJENHDgQy5cvh7e3N4CyPiUlJWHhwoUYOnQoy+lEI459+vXXX3Hjxg0MGzYM7du35+zf0ZAhQwQDZgYGBggNDYWenp7QOVeuXIG5uTkb8QjhJB6PV+GawNVrBCG0YQAhhJA6xefzIScnh4iICDRv3pztOOQb5OXlERMTA11dXbi7u6OgoAB79uxBTEwMOnTogI8fP7IdkQC4f/8++vbtCycnJxw6dAiTJ09GREQEAgMD4e/vj3bt2rEdsdqysrLg6OiIiIgIZGdno0mTJkhJSUGnTp1w+fLlCrNwuUAc+6SqqorLly+jS5cubEepNQcPHsTixYuxceNGjB8/Hvv370dcXBzWrFmD/fv345dffmE7IiGcICEhgZ9++gmysrIAgIsXL6JHjx6Ca11hYSGuXr3Kmbqp5MdGM88IIaSey8zMRGlpKTQ0NITa09PTISUlBRUVFZaSiUZCQgLNmzdHWloaDZ5xgLq6Ol69egVdXV1cvXoVK1euBFA2g5CLN7vLly//6vElS5bUUZLa1blzZ9y7dw8bNmyAkZERrl+/DisrKwQGBsLCwoLteCJRUVFBQEAAbt++jeDgYPD5fFhZWaFXr15sRxOZOPZJR0cHysrKbMeoVa6urigpKcH8+fORl5eH0aNHQ0dHB1u3bqWBM0KqwcXFRejxmDFjKpzj7OxcV3EIqRGaeUYIIfXcTz/9hJ9//hnTpk0Tavf09MSFCxdw+fJllpKJ7p9//sHatWuxe/dutGrViu045CtmzJiBS5cuoXnz5ggJCUFiYiKUlJRw+vRprFu3jhP1jD71eR2j4uJiJCQkQEpKCkZGRpzrDyFsu3LlCrZt2wZPT88KyxzFwYcPH8Dn8yutKUgIIeTHQYNnhBBSz2loaODevXswMzMTan/+/Dm6dOmCtLQ0lpKJTl1dHXl5eSgpKYGMjAzk5eWFjn+6jTlhV3FxMbZu3YpXr15h3LhxgsGnLVu2QElJCRMmTGA5Yc1lZWVh3LhxGDx4MMaOHct2HJGVlpbir7/+QlRUFHg8HszMzDBw4EBISXFnocG2bduqfK6bm9t3TFJ7xLFPn0pNTcWIESNw584dKCgoQFpaWug4l6/n79+/R3R0NHg8HkxNTTm7qQMhhJCao8EzQgip5xQVFfHgwYMKS6+ePn2KDh06IC8vj6Vkojt8+PBXj38+zZ+Q7+3Zs2fo378/EhMT2Y4ikmfPnmHgwIFISUmBqakpgLINRrS0tHDhwgXOLN00MDAQepyamoq8vDyoqakBADIyMqCgoABtbW3Ex8ezkLD6xLFPn+rVqxeSkpIwfvx4NGzYsEIxcC5ez7OysjB9+nScPHlSsHuopKQkRo4ciZ07d0JVVZXlhIQQQuoaDZ4RQkg9Z2dnBwsLC2zfvl2offr06QgPD8fdu3dZSkZ+JJGRkUhKSkJRUZFQ+4ABA1hKVLsCAgLw888/c3YDhI4dO0JbWxuHDx+Guro6AODjx48YN24c3r9/j8DAQJYTVt+JEyewa9cuHDhwQDAgGB0djYkTJ2Ly5MlwcnJiOWH1iWOfFBQUEBgYiDZt2rAdpdaMGDECoaGh2L59Ozp16gQej4f79+/D3d0drVu3FuyWSggh5MdBg2eEEFLP3bt3D7169YKNjQ169uwJALh16xYeP36M69evo1u3biwnFE1cXBwOHjyIuLg4bN26Fdra2rh69Sp0dXXRsmVLtuORf8XHx2Pw4MF4+vQpeDweym8bymeXcG3TgM+X0DEMg+TkZBw9ehTdu3fHyZMnWUpWM/Ly8njy5EmFv51nz57BxsYG+fn5LCUTnZGREXx8fCrUqQsKCsKwYcOQkJDAUjLRiWOfrKyssGvXLnTs2JHtKLVGUVER165dQ9euXYXa7969i759+yI3N5elZIQQQtgiwXYAQgghX9elSxcEBgZCV1cX3t7euHjxIoyNjREeHs7ZgTN/f39YWFjg4cOHOHfuHHJycgAA4eHhWLp0KcvpyKfc3d1hYGCAd+/eQUFBAREREbhz5w6sra3h5+fHdrxq27x5s9DXtm3b4OfnBxcXF+zdu5fteCIzNTXFu3fvKrS/f/8exsbGLCSqueTkZBQXF1doLy0trbSvXCCOfVq7di3mzJkDPz8/pKWlISsrS+iLixo0aFDp0kxVVVXBzE5CCCE/Fpp5RgghpM516tQJw4cPx+zZs6GsrIywsDAYGhri8ePHGDRoEN68ecN2RPIvTU1N3L59G61bt4aqqioePXoEU1NT3L59G3PmzEFISAjbEQmAy5cvY/78+Vi2bJlgBtCDBw+wfPlyrF27VmgGjYqKClsxq+Xnn39GUlISDhw4gHbt2oHH4+HJkyeYOHEidHV1ceHCBbYjVps49klCouyz+M9rnTEMAx6Px7nZqQCwd+9enDlzBkeOHEHjxo0BACkpKXBxccGQIUMwefJklhMSQgipazR4RgghpM4pKSnh6dOnMDAwEBo8S0xMRIsWLVBQUMB2RPIvdXV1BAUFwdDQEEZGRti/fz/s7e0RFxcHCwsLzm1Y8euvv2Lr1q1QVlYWas/NzcXMmTPh5eXFUrKaKR/AAP4bxPh8iS3XBjNSU1Ph4uKCq1evCnZwLCkpQZ8+fXDo0CFoa2uznLD6xLFP/v7+Xz1ua2tbR0lqj6WlJV68eIHCwkI0a9YMAJCUlARZWVk0b95c6Nzg4GA2IhJCCKlj3Nm7nBBCiNhQU1NDcnJyhV3oQkJCoKOjw1IqUplWrVohPDwchoaG6NChA/7880/IyMhg7969MDQ0ZDtetR0+fBhr166tMHiWn5+PI0eOcHbwzNfXl+0ItU5LSwuXL19GbGwsoqKiwDAMzMzMYGJiwnY0kYljn7g4OPYtgwYNYjsCIYSQeoZmnhFCCKlz8+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM9U9q0euXbuG3NxcDBkyBPHx8ejfvz+eP3+OBg0a4PTp0+jRowfbEaskKysLDMNAXV0dsbGx0NLSEhwrLS3FxYsXsXDhQrx9+5bFlIQQQgghpD6iwTNCCCF1rri4GOPGjcOpU6fAMAykpKRQWlqK0aNH49ChQ5CUlGQ7IvmK9PR0qKurV6hxVJ9JSEh8NS+Px8Mff/yBRYsW1WGq2nP16lUoKSkJapvt3LkT+/btg7m5OXbu3ElFzgkhhBBCaoAGzwghhLAmPj4ewcHB4PP5sLS0rFBLhpDa4u/vD4Zh0KNHD5w9exYaGhqCYzIyMtDT00OTJk1YTFgzFhYWWLduHRwdHfH06VNYW1tjzpw5uH37NszMzHDw4EG2IxJCCCGEcBYNnhFCSD00ZMiQKp977ty575ikbpSWluLp06fQ09OjGTLku3r58iWaNWvGqVlzVaGkpIRnz55BX18fy5Ytw7Nnz+Dj44Pg4GA4OjoiJSWF7YiEEEIIIZxFGwYQQkg9pKqqynaE72rWrFmwsLDA+PHjUVpaCltbW9y/fx8KCgq4dOkS7Ozs2I5IxEh4eDhatWoFCQkJZGZm4unTp188t3Xr1nWYrPbIyMgIdj69efMmnJ2dAQAaGhrIyspiMxohhBBCCOfRzDNCCCF1rmnTpjh//jysra1x/vx5TJs2DX5+fjhy5Ah8fX1x7949tiMSMSIhIYGUlBRoa2sLap9VdvvD4/FQWlrKQsKaGzBgAIqKitClSxesWLECCQkJ0NHRwfXr1zFjxgzExMSwHVEkd+/exZ49exAXFwcfHx/o6Ojg6NGjMDAwENR346K8vDwkJSWhqKhIqJ0rg7eWlpZVnr0ZHBz8ndN8P0VFRUhISICRkRGkpGjOASGE/Mgk2A5ACCHk20pKSnDz5k3s2bMH2dnZAIC3b98iJyeH5WSi+fDhAxo1agQAuHz5MkaMGAETExOMHz/+q7OCCBFFQkKCYHfNhIQExMfHIyEhocJXfHw8y0lFt2PHDkhJScHHxwe7d++Gjo4OAODKlSvo27cvy+lEc/bsWfTp0wfy8vIICQlBYWEhACA7OxurV69mOZ1oUlNT0b9/fygrK6Nly5awtLQU+uKKQYMGYeDAgRg4cCD69OmDuLg4yMrKws7ODnZ2dpCTk0NcXBz69OnDdlSR5OXlYfz48VBQUEDLli2RlJQEAHBzc8PatWtZTkcIIYQNNPOMEELquZcvX6Jv375ISkpCYWEhYmJiYGhoiFmzZqGgoACenp5sR6w2PT097Nu3Dz179oSBgQF27dqF/v37IyIiAl27dsXHjx/Zjkg+cfToUXh6eiIhIQGBgYHQ09PDli1bYGBggIEDB7Idj4gpS0tLeHh4wNnZGcrKyggLC4OhoSFCQ0PRt29fTtZxc3JyQmJiIrZs2QJ7e3v89ddfePfuHVauXImNGzeiX79+bEestgkTJqBx48ZYsWKFUPvSpUvx6tUreHl5sZRMdO7u7rh37x62bNmCvn37Ijw8HIaGhrhw4QKWLl2KkJAQtiMSQgipYzT/mBBC6jl3d3dYW1sjLCwMDRo0ELQPHjwYEyZMYDGZ6FxdXTFixAg0btwYPB4PDg4OAICHDx+iRYsWLKcjn9q9ezeWLFmCWbNmYdWqVYJljWpqatiyZQvnBs8uXLhQaTuPx4OcnByMjY1hYGBQx6lqR1xcHA4ePIi4uDhs3boV2trauHr1KnR1ddGyZUu241VbdHQ0unfvXqFdRUUFGRkZdR+oFty+fRt///03bGxsICEhAT09PTg4OEBFRQVr1qzh5ODZmTNn8OTJkwrtY8aMgbW1NScHz86fP4/Tp0+jY8eOQstTzc3NERcXx2IyQgghbKHBM0IIqecCAgJw7949yMjICLXr6enhzZs3LKWqmWXLlqFVq1Z49eoVhg8fDllZWQCApKQkFi5cyHI68qnt27dj3759GDRokNByJWtra8ydO5fFZKIZNGhQpTXPytt4PB66du2K8+fPc2rnV39/f/z000/o0qUL7ty5g1WrVkFbWxvh4eHYv38/fHx82I5YbY0bN8aLFy+gr68v1B4QEABDQ0N2QtVQbm4utLW1AZRt5pCamgoTExNYWFhwtjaYvLw8AgIC0Lx5c6H2gIAAyMnJsZSqZlJTUwW/p0/l5uaK3U69hBBCqoZqnhFCSD3H5/MrLWL++vVrKCsrs5CodgwbNgweHh5o2rSpoM3FxYVzM5nEXUJCQqW1mGRlZZGbm8tCopq5ceMGbGxscOPGDWRmZiIzMxM3btxA+/btcenSJdy5cwdpaWmcGxhcuHAhVq5ciRs3bggNtNvb2yMwMJDFZKKbPHky3N3d8fDhQ/B4PLx9+xbHjx/H3LlzMW3aNLbjicTU1BTR0dEAgLZt22LPnj148+YNPD090bhxY5bTiWbWrFmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDg8PD7bjicTGxgb//POP4HH5gNm+ffvQqVMntmIRQghhEc08I4SQes7BwQFbtmzB3r17AZTdxOfk5GDp0qVwdHRkOR0RdwYGBggNDYWenp5Q+5UrV2Bubs5SKtG5u7tj79696Ny5s6CtZ8+ekJOTw6RJkxAREYEtW7bg119/ZTFl9T19+hQnTpyo0K6lpYW0tDQWEtXc/PnzkZmZCXt7exQUFKB79+6QlZXF3LlzMWPGDLbjiWTWrFlITk4GUFYTrE+fPjh+/DhkZGRw6NAhdsOJaOHChTA0NMTWrVsFz0EzMzMcOnQII0aMYDmdaNasWYO+ffsiMjISJSUl2Lp1KyIiIhAYGAh/f3+24xFCCGEBDZ4RQkg9t3nzZtjb28Pc3BwFBQUYPXo0YmNjoampiZMnT7Idj4i5efPmYfr06SgoKADDMHj06BFOnjyJNWvWYP/+/WzHq7a4uDioqKhUaFdRURHsttm8eXN8+PChrqPViJqaGpKTkyvUawsJCRHsvMlFq1atwqJFixAZGQk+nw9zc3MoKSmxHavKiouLIS0tLXjs5OQk+N7S0hKJiYl4/vw5mjVrBk1NTTYi1ooRI0ZwdqCsMp07d8a9e/ewYcMGGBkZ4fr167CyskJgYCAsLCzYjkcIIYQFtNsmIYRwQH5+Pk6dOoWgoCDw+XxYWVnByckJ8vLybEcjP4B9+/Zh5cqVePXqFQBAR0cHy5Ytw/jx41lOVn1du3aFsrIyjhw5Ai0tLQBl9Y2cnZ2Rm5uLO3fu4ObNm5g2bRpiYmJYTlt18+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM5YuXcp2xGrLzMxEaWkpNDQ0hNrT09MhJSVV6SBofbN27VoYGhqK1cASIYQQ8iOiwTNCCCGEVMmHDx/A5/MrLaTNFdHR0Rg4cCASEhKgq6sLHo+HpKQkGBr+v707j6q62v8//jogChjiXM6C5EChgpqpZU44ZDlfKk1N9NpwFXMqu6Vm5fDNGb1KpjjmgJpmV0scSRJSERxREy3MOQ1UkFQ4vz+68ZPQUlP2OYfnYy3Xgn3OH0/XNb3nzf7s7a0vvvhCVatW1erVq3X58mV1797ddO4du379ul555RUtXbpUVqtVBQoUUGZmprp27ap58+bJ2dnZdOJda9OmjZ5//vlc55uFhYVpzZo1WrdunaGyO3fkyBF17NhRffv21YABAzRo0KA/ff+kSZPyqOz+yczM1OTJkxUREaHk5GRdu3Ytx+sXL140VHZ3Ll26dMfvtYfBLQDg/mJ4BgAwIikpSXPnzlVSUpKmTp2q0qVL6+uvv1aFChX02GOPmc6DA7NarVq/fr2OHDkiq9Wq6tWrKzAwUE5O9n+PUlJSkuLj45WVlSV/f/9cNyDak+LFi+vbb79VjRo1cqwfOnRIjRo1spuz3C5fvqxXXnlFK1euVNOmTW/7PovFos2bN+dh2f0xYsQIzZ49W4MGDdLw4cP17rvv6ocfftDq1as1YsQIhYSEmE68I05OTnd8k+atLvEBADg2hmcAgDwXFRWlNm3aqFGjRvrmm2+UmJgob29vffzxx9qxY4dWrFhhOjFf8/f3v+MPkbt3737ANcivChcurNjY2FxnTO3bt0/169dXenq6oTLcrEqVKgoNDVXbtm3l4eGhhISE7LXY2NhbXmRhi26+COCHH37QsGHD9Morr2TfrhkTE6P58+dr7Nix6tmzp6lMAIAhDM8AAHmuQYMG+sc//qFBgwbJw8NDe/bskbe3t3bu3KkOHTro5MmTphPztVGjRmV/nZGRoRkzZsjX1zf7Q2RsbKwOHDigN954Q2PHjjWVec82bdqkTZs26dy5c8rKysrxWnh4uKGqu/dXjwDezB4fB2zSpIn8/Pw0bdq0HOv/+te/tHfvXm3bts1QGW5WuHBhJSYmqmLFiipTpozWrl2rgIAAHTt2TP7+/kpNTTWdeNeaN2+uPn366KWXXsqxvnjxYs2aNUtbt241EwYAMIbbNgEAeW7fvn233I1QqlQpu3kUy5HdfLh8nz59FBISog8//DDXe36/QMCejBo1Sh988IHq1q2rMmXK3PEOO1sUHx+f4/u4uDhlZmaqWrVqkn47b8vZ2Vl16tQxkfe3jR49Wi1atNCePXvUvHlzSb8NPnfu3KnIyEjDdfcmIyND06ZN05YtW245vLXHnZzly5fX6dOnVbFiRfn4+GTfTLlz504VKlTIdN49iYmJUVhYWK71unXrqk+fPgaKAACmMTwDAOS5okWL6vTp0/Ly8sqxHh8fr3Llyhmqwq0sX75cu3btyrX+8ssvq27duna1U0v67bD5efPm2dVlALezZcuW7K8nTZokDw8PzZ8/X8WKFZMk/fLLL+rVq5eefvppU4l/S6NGjRQTE6Px48crIiJCbm5uqlmzpubMmWO3Z7kFBwdrw4YN6tKli5544gm7Ht7+rmPHjtq0aZPq16+vAQMG6KWXXtKcOXOUnJysgQMHms67JxUqVFBYWJgmTpyYY/2TTz5RhQoVDFUBAEzisU0AsHGOcpPZzd566y3FxMRo+fLlqlq1qnbv3q2zZ8+qR48e6tGjR46dTzDrkUce0dixY9WrV68c63PnztWwYcN09uxZQ2X3pkSJEtqxY4eqVKliOuW+KleunCIjI3NdtrF//361bNlSp06dMlSGm3l6emrdunVq1KiR6ZQHJjY2Vtu3b5ePj4/atWtnOueerFu3Tp07d1aVKlX05JNPSvrt95WUlKSVK1fq2WefNVwIAMhr7DwDABs3atSoP73JzB6NHj1ar7zyisqVKyer1SpfX19lZmaqa9eueu+990zn4SZvvvmmXn/9dcXFxeX4EBkeHm6Xf/769OmjxYsXa/jw4aZT7qtLly7p7NmzuYZn586d0+XLlw1V/X1ZWVk6evToLR9xbNy4saGqe1euXDl5eHiYznignnzyyey/K+zVs88+q++//14zZ85UYmKirFar2rdvr9dee42dZwCQT7HzDABsnKPcZHYrSUlJio+PV1ZWlvz9/e32USxHFxERoalTpyoxMVGSVKNGDQ0YMEBBQUGGy+7egAEDtGDBAtWsWVM1a9aUi4tLjtft8WB9SerRo4eioqI0ceLEHEPOoUOHqnHjxpo/f77hwrsXGxurrl276scff9Qf/++qxWJRZmamobJ799VXXyk0NFRhYWGqVKmS6Zx7tmbNmjt+r73uPgMA4GYMzwDAxjniTWaAKU2bNr3taxaLRZs3b87DmvsnPT1dQ4YMUXh4uK5fvy5JKlCggHr37q3x48ercOHChgvvXu3atVW1alWNGjXqlpc7eHp6Giq7d+fPn1dQUJC++eYbubu75xre2stj+E5OTjm+t1gstxxwSrLLIScAAH/EY5sAYOMc5SazQYMG3fF77XX3D2zfzYfsOxJ3d3fNmDFD48ePV1JSkqxWq3x8fOxyaPa777//XitWrJCPj4/plPvmpZde0smTJzVmzBg9/PDDdnthwM2P0G7cuFFvv/22xowZowYNGshisWj79u167733NGbMGIOVAADcPwzPAMDGOcpNZvHx8Tm+j4uLU2ZmpqpVqyZJOnLkiJydnVWnTh0TeciHfvrpJ1ksFoe64bVw4cKqWbOm6Yz7on79+jp69KhDDc+2b9+umJgY1apVy3TKffPmm28qLCxMTz31VPZaq1at5O7urr59+2Y/7g0AgD1jeAYANm7cuHHZX3fp0kUVKlTQt99+a3c3md2842fSpEny8PDQ/PnzVaxYMUnSL7/8ol69eunpp582lYh8ICsrSx999JEmTpyoK1euSJI8PDw0ePBgvfvuu7keR4M5/fv31+DBg3XmzBn5+fnlesTRHoeE1atX19WrV01n3FdJSUm3fITW09NTP/zwQ94HAQDwAHDmGQAgz5UrV06RkZG5bgbcv3+/WrZsqVOnThkqg6N75513NGfOHI0aNUqNGjWS1WrVt99+q/fff1///Oc/NXr0aNOJ+J9bDTJ/P1vLXi8MiIyM1KhRozR69OhbDgSLFCliqOzeNW7cWC4uLlq0aJHKlCkjSTpz5oy6d++ua9euKSoqynAhAAB/H8MzALBxzs7Oaty4sVauXKnixYtnr589e1Zly5a1yw+QHh4e+uKLL9SsWbMc65s3b1b79u11+fJlQ2VwdGXLllVYWFiuXZtffPGF3njjDZ08edJQGf7oxx9//NPX7fG2yt8Hgn8868yeB4JHjx5Vx44ddfjwYVWsWFGSlJycrKpVq2r16tV289itv7//HZ9Bt3v37gdcAwCwNTy2CQA2zmq16tdff1XdunW1Zs0aPf744zles0cdO3ZUr169NHHiRD355JOSpNjYWA0dOlSdOnUyXIebZWZmat68edq0aZPOnTuX46BwSXZ3O+XFixdVvXr1XOvVq1e3m5sO8wt7HI79FUe8sMLHx0d79+7Vhg0bdOjQIVmtVvn6+qpFixZ2dSFChw4dsr/OyMjQjBkz5OvrqwYNGkj67d+oAwcO6I033jBUCAAwiZ1nAGDjnJ2d9dNPP2ncuHGaO3euFi5cqPbt29v1zrP09HQNGTJE4eHhun79uiSpQIEC6t27t8aPH2/XNwQ6mn79+mnevHlq27atypQpk+vD8OTJkw2V3Zv69eurfv36Cg0NzbHev39/7dy5U7GxsYbK7t6aNWvu+L32dD7iHx08eFDJycm6du1ajnV7/j3BtvXp00dlypTRhx9+mGN95MiROnHihMLDww2VAQBMYXgGADbOyclJZ86cUenSpTVr1iyFhITovffeU58+fVSuXDm7HJ79Li0tTUlJSbJarfLx8WFoZoNKliypBQsW6NlnnzWdcl9ERUWpbdu2qlixoho0aCCLxaLt27frxIkTWrdunV1dWHGnlxvY6+OAx44dU8eOHbVv377ss86k///Ioz3+niQpJSVFc+bMUWJioiwWi3x9fRUcHHzLQ/dtVWhoqPr27StXV9dcg+g/CgkJyaOq+8fT01O7du3So48+mmP9+++/V926dZWammqoDABgCsMzALBxNw/PJGnr1q3q0qWL/P39tXnzZrv9AAn7ULZsWW3dulVVq1Y1nXLfnDp1Sv/5z39yPGL2xhtvqGzZsqbTcJPnn39ezs7O+vTTT+Xt7a0dO3bowoULGjx4sCZMmGBXg87f7dq1S61atZKbm5ueeOIJWa1W7dq1S1evXlVkZKQCAgJMJ94RLy8v7dq1SyVKlJCXl9dt32exWHTs2LE8LLs/HnnkEY0dO1a9evXKsT537lwNGzZMZ8+eNVQGADCF4RkA2LibP6T87ujRo3r++ed15MgRhmd4oCZOnKhjx45p+vTpdnV+0d06ceKERo4cyeNYNqRkyZLavHmzatasKU9PT+3YsUPVqlXT5s2bNXjwYMXHx5tOvGtPP/20fHx89Omnn6pAgd+OHr5x44b69OmjY8eO6ZtvvjFcCEkaN26c3n//ffXp0yfHuZzh4eEaMWKEhg0bZrgQAJDXGJ4BgJ3KyMjQ2bNnHfJQbdiOjh07asuWLSpevLgee+wxubi45Hj9888/N1R2f+3Zs0cBAQF2PYxOS0tTVFTULc8Hs8dH54oVK6a4uDh5e3urSpUqmj17tpo2baqkpCT5+fkpPT3ddOJdc3NzU3x8fK5LKw4ePKi6deva5e/JUUVERGjq1KlKTEyUJNWoUUMDBgxQUFCQ4TIAgAnctgkAdsrV1ZXBGR64okWLqmPHjqYz8Bfi4+P17LPPKj09XWlpaSpevLh+/vlnubu7q3Tp0nY5PHv88ce1d+9eeXt7q379+vr4449VsGBBzZo1S97e3qbz7kmRIkWUnJyca3h24sQJeXh4GKr6e7p06aK6devm2o01fvx47dixQ8uXLzdU9vcEBQUxKAMAZGPnGQDYoOLFi+vIkSMqWbKkihUr9qePy128eDEPywDHZO87z5o0aaKqVatq5syZKlq0qPbs2SMXFxe9/PLLGjBggDp16mQ68a6tX79eaWlp6tSpk44dO6bnnntOhw4dUokSJbRs2TI1a9bMdOJdCwkJ0apVqzRhwgQ1bNhQFotF0dHRGjp0qDp37qwpU6aYTrxrpUqV0ubNm+Xn55djfd++fWrRogXngwEAHAI7zwDABk2ePDl7F4I9fpi6E0lJSZoyZUr2jXO/PxJTpUoV02m4hfPnz+vw4cOyWCyqWrWqSpUqZToJN0lISNAnn3wiZ2dnOTs769dff5W3t7c+/vhj9ezZ0y6HZ61atcr+2tvbWwcPHtTFixf/8gcKtmzChAmyWCzq0aOHbty4IUlycXHR66+/rnHjxhmuuzdXrlxRwYIFc627uLjo0qVLBor+vszMTE2ePFkRERG3fAyaH1oBQP7D8AwAbFDPnj1v+bWjWL9+vdq1a6fatWurUaNGslqt2r59ux577DF9+eWXCgwMNJ2I/0lLS1P//v21YMECZWVlSZKcnZ3Vo0cPTZs2Te7u7oYL78xfDY9SUlLyJuQBcXFxyR4oPfzww0pOTlaNGjXk6emp5ORkw3X3JjU1VZmZmSpevHj2WvHixXXx4kUVKFBARYoUMVh3bwoWLKipU6dq7NixSkpKktVqlY+Pj938d3Qrjz/+uJYtW6YRI0bkWF+6dKl8fX0NVf09o0aN0uzZszVo0CANHz5c7777rn744QetXr061+8TAJA/8NgmANigu/lpvT1+gPT391erVq1y7bQYNmyYIiMjtXv3bkNlmDJlivz8/NS8eXNJ0quvvqqNGzdq+vTpatSokSQpOjpaISEhCgwM1MyZM03m3rFevXrd0fvmzp37gEsejJYtW+qVV15R165d9dprryk+Pl4hISFauHChfvnlF3333XemE+9amzZt9Pzzz+uNN97IsR4WFqY1a9Zo3bp1hspwszVr1qhz587q2rVr9qO0mzZt0pIlS7R8+XJ16NDBbOA9qFKlikJDQ9W2bVt5eHgoISEhey02NlaLFy82nQgAyGMMzwDABjk5Of3lY0lWq1UWi8Uuz2hydXXVvn379Oijj+ZYP3LkiGrWrKmMjAxDZYiLi1NQUJDef/99de/eXSVLltSKFSvUpEmTHO/bsmWLgoKCdP78eTOhyGHXrl26fPmymjZtqvPnz6tnz56Kjo6Wj4+P5s6dq1q1aplOvGvFixfXt99+qxo1auRYP3TokBo1aqQLFy4YKrt3aWlpGjdunDZt2qRz585l7+b83bFjxwyV/T1r167VmDFjlJCQIDc3N9WsWVMjR47UM888YzrtnhQuXFiJiYmqWLGiypQpo7Vr1yogIEDHjh2Tv7+/UlNTTScCAPIYj20CgA3asmWL6YQHqlSpUkpISMg1PEtISFDp0qUNVUGS6tSpo++++049e/ZU9+7dlZ6erocffjjX+0qXLq309HQDhbiVunXrZn9dqlQph9iV9euvv2afC3az69ev6+rVqwaK/r4+ffooKipK3bt3V5kyZez27LY/atu2rdq2bWs6474pX768Tp8+rYoVK8rHx0eRkZEKCAjQzp07VahQIdN5AAADGJ4BgA2y15/W36l//vOf6tu3r44dO5bjxrn/+7//0+DBg03n5XslS5bU2rVrJUkNGjTQyJEjtWDBArm6ukqSrl69qlGjRqlBgwYmM+Hg6tWrp1mzZmnatGk51sPCwlSnTh1DVX/PV199pbVr12Y/Au1I4uLisi+A8fX1lb+/v+mke9axY0dt2rRJ9evX14ABA/TSSy9pzpw5Sk5O1sCBA03nAQAM4LFNALAT6enpt7z1q2bNmoaK7p3VatWUKVM0ceJEnTp1SpJUtmxZDR06VCEhIQ6zG8MR7N+/X61bt1ZGRoZq1aoli8WihIQEubq6av369XrsscdMJ8JBffvtt2rRooXq1auXfQbfpk2btHPnTkVGRurpp582XHj3vLy8tG7dulyPotqzc+fO6cUXX9TWrVtVtGhRWa1WpaamqmnTplq6dKlD3MwbGxur7du3y8fHR+3atTOdAwAwgOEZANi48+fPq1evXvrqq69u+bo9nnl2s8uXL0uSPDw8DJfgdq5evapFixbp0KFDslqt8vX1Vbdu3eTm5mY6DQ4uISFB48ePz3GW1jvvvJPrkW97sWjRIn3xxReaP3++Xd+webMXXnhBSUlJWrhwYfZQ8ODBg+rZs6d8fHy0ZMkSw4UAAPx9DM8AwMZ169ZNP/zwg6ZMmaKmTZtq1apVOnv2rD766CNNnDjRoc6ZAQBH5u/vr6SkJFmtVlWuXFkuLi45XrfHm4Y9PT21ceNG1atXL8f6jh071LJlS6WkpJgJu0tr1qy54/ey+wwA8h/OPAMAG7d582Z98cUXqlevnpycnFSpUiUFBgaqSJEiGjt2rF0Oz86ePashQ4Zk3zj3x5/j2PtuOnu3Zs0atWnTRi4uLn/5gZIPkbifLl26dMfvLVKkyAMseTA6dOhgOuG+y8rKyjUElCQXF5dct4nasj/+b2OxWHL92/T7kQL8GwUA+Q87zwDAxhUpUkR79+5V5cqVVblyZX322Wdq1KiRjh8/rscee8wubzxs06aNkpOT1a9fv1veONe+fXtDZZAkJycnnTlzRqVLl5aTk9Nt32exWPgQaUOioqI0YcKE7EPba9SooaFDh9rV2WBOTk5/eeah1Wrlz54Nad++vVJSUrRkyRKVLVtWknTy5El169ZNxYoV06pVqwwX3r2NGzfq7bff1pgxY9SgQQNZLBZt375d7733nsaMGaPAwEDTiQCAPMbOMwCwcdWqVdPhw4dVuXJl1a5dW5988okqV66ssLAwlSlTxnTePYmOjta2bdtUu3Zt0ym4hZt3i9jTzpH8bNGiRerVq5c6deqkkJAQWa1Wbd++Xc2bN9e8efPUtWtX04l3ZMuWLaYT8oQj3Uw5ffp0tW/fXpUrV1aFChVksViUnJwsPz8/LVq0yHTePXnzzTcVFhamp556KnutVatWcnd3V9++fZWYmGiwDgBgAjvPAMDGffbZZ7p+/bpeeeUVxcfHq1WrVrpw4YIKFiyoefPm6YUXXjCdeNd8fX312Wef2fUHRsCW1KhRQ3379tXAgQNzrE+aNEmffvqpw33YT0hIsMvhuyPfTLlhw4Ycl4q0aNHCdNI9c3Nz044dO+Tn55djfe/evapfv76uXr1qqAwAYArDMwCwM+np6Tp06JAqVqyokiVLms65J5GRkZo4cWL2LjrYrpCQEPn4+CgkJCTH+vTp03X06FFNmTLFTBhyKFSokA4cOCAfH58c60ePHtXjjz+ujIwMQ2X3T2pqqj777DPNnj1be/bsscvHNrmZ0j40btxYLi4uWrRoUfYO7zNnzqh79+66du2aoqKiDBcCAPIawzMAsBPXrl3T8ePHVaVKFRUoYH9P3RcrVizHWUZpaWm6ceOG3N3dcx02ffHixbzOw22UK1dOa9asUZ06dXKs7969W+3atdNPP/1kqAw38/Hx0dChQ/Xqq6/mWP/kk080YcIEff/994bK/r7NmzcrPDxcn3/+uSpVqqTOnTurc+fOdrlz1VFupgwNDb3j9/5x8G4Pjh49qo4dO+rw4cOqWLGiJCk5OVlVq1bV6tWrcw2pAQCOz/4+fQFAPpOenq7+/ftr/vz5kqQjR47I29tbISEhKlu2rIYNG2a48M6wQ8k+XbhwQZ6enrnWixQpop9//tlAEW5l8ODBCgkJUUJCgho2bCiLxaLo6GjNmzdPU6dONZ1313766SfNmzdP4eHhSktLU1BQkK5fv66VK1fK19fXdN49c5SbKSdPnnxH77NYLHY5PPPx8dHevXtv+SjqX11oAQBwTOw8AwAbN2DAAH377beaMmWKWrdurb1798rb21tr1qzRyJEjFR8fbzoRDuzxxx/Xa6+9pn79+uVYnzZtmmbOnKmDBw8aKsMfrVq1ShMnTsw+3+z32zbt7fbaZ599VtHR0XruuefUrVs3tW7dWs7OznJxcdGePXvsenjmiDdTAgCQH7DzDABs3OrVq7Vs2TI9+eSTOX7i7evrq6SkJINl927dunVydnZWq1atcqxHRkYqMzNTbdq0MVSGPxo0aJD69eun8+fPq1mzZpKkTZs2aeLEiewmtDEdO3ZUx44dTWf8bZGRkQoJCdHrr7+uRx991HTOfeWIN1P+zt6PFggNDVXfvn3l6ur6l4+l2uNuOgDA32N//7IBQD5z/vx5lS5dOtd6Wlqa3T4+MmzYMI0bNy7XelZWloYNG8bwzIYEBwfr119/1ejRo/Xhhx9KkipXrqyZM2eqR48ehutwK1euXMn1CGCRIkUM1dy9bdu2KTw8XHXr1lX16tXVvXt3u7xV+FYqVKig3bt3O9TNlI5ytMDkyZPVrVs3ubq6/uljqfb6KCoA4O/hsU0AsHHPPPOMunTpov79+8vDw0N79+6Vl5eX+vXrp6NHj+rrr782nXjX3NzclJiYmOumzR9++EGPPfaY0tLSzIThT50/f15ubm566KGHTKfgD44fP65+/fpp69atOW7WtFqtslgsdnkzZXp6upYuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6754sWLBAL7zwggoVKpRj/dq1a1q6dKldDqQ5WgAAkB8wPAMAG7d9+3a1bt1a3bp107x58/Tqq6/qwIEDiomJUVRUVK5bEO3BI488osWLF2c/Bvi7jRs3qmvXrjp37pyhMsA+NWzYUNJvg4yHH344167UZ555xkTWfXP48GHNmTNHCxcuVEpKigIDA7VmzRrTWXfN2dlZp0+fzrWb+MKFCypdurRdDjkrVaqUfbSAh4eH9uzZI29vbx09elQBAQG6dOmS6UQAAP42HtsEABvXsGFDbd++XePHj1eVKlUUGRmpgIAAxcTEyM/Pz3TePWnXrp3efPNNrVq1SlWqVJEkHT16VIMHD1a7du0M1+GPVqxYoYiICCUnJ+vatWs5Xtu9e7ehKtxs7969iouLU7Vq1UynPBDVqlXTxx9/rLFjx+rLL79UeHi46aR78vtOwD/66aefbnmrrT1wxKMFunTporp16+Z65HT8+PHasWOHli9fbqgMAGCKk+kAAMDtXb9+Xb169ZK7u7vmz5+v/fv36+DBg1q0aJHdDs6k3z6AFC5cWNWrV5eXl5e8vLxUo0YNlShRQhMmTDCdh5uEhoaqV69eKl26tOLj4/XEE0+oRIkSOnbsGGfT2ZB69erpxIkTpjMeOGdnZ3Xo0MHudp35+/srICBAFotFzZs3V0BAQPavWrVq6emnn7bbc8/q1auntWvXZn//+8Ds008/VYMGDUxl/S1RUVFq27ZtrvXWrVvrm2++MVAEADCNnWcAYMNcXFy0atUqDR8+3HTKfeXp6ant27drw4YN2rNnj9zc3FSzZk01btzYdBr+YMaMGZo1a5ZeeuklzZ8/X2+99Za8vb01YsQIXbx40XQe/mf27Nl67bXXdPLkST3++ONycXHJ8XrNmjUNlUGSOnToIElKSEhQq1atcpwbWLBgQVWuXFmdO3c2VPf3jB07Vq1bt9bBgwd148YNTZ06NcfRAvboypUrKliwYK51FxcXHkMFgHyKM88AwMb16tVLfn5+GjRokOmUByIjI0OFChWy28d7HJ27u7sSExNVqVIllS5dWhs2bFCtWrX0/fff68knn9SFCxdMJ0JSbGysunbtqh9++CF7zWKx2PWFAY5o/vz5euGFF+Tq6mo65W9LSEhQ7dq1JUn79u3ThAkTFBcXp6ysLAUEBOjtt9+22x3S9erV0/PPP68RI0bkWH///ff15ZdfKi4uzlAZAMAUdp4BgI3z8fHRhx9+qO3bt6tOnToqXLhwjtdDQkIMld27rKwsjR49WmFhYTp79qyOHDkib29vDR8+XJUrV1bv3r1NJ+J/HnnkEV24cEGVKlVSpUqVFBsbq1q1aun48ePi52+2Izg4WP7+/lqyZMktLwyAbejZs6fphPsmICBA/v7+6tOnj7p27ar58+ebTrpvhg8frs6dOyspKSn7YptNmzZpyZIlnHcGAPkUO88AwMZ5eXnd9jWLxaJjx47lYc398cEHH2j+/Pn64IMP9M9//lP79++Xt7e3IiIiNHnyZMXExJhOxP/06dNHFSpU0MiRIxUWFqZBgwapUaNG2rVrlzp16qQ5c+aYToSkwoULa8+ePfLx8TGdgj/h5OT0p4NNe9ohGBMTo/DwcEVEROj69evq3LmzgoOD1bRpU9Np98XatWs1ZswYJSQkZB8tMHLkSLu/uRYAcG8YngEA8pyPj48++eQTNW/eXB4eHtqzZ4+8vb116NAhNWjQQL/88ovpRPxPVlaWsrKyVKDAb5vVIyIiFB0dLR8fH7322mu3PBcIee/555/XK6+8YrfnZuUXq1evzjE8u379uuLj4zV//nyNGjXKLnfdXr16VREREZo7d662bdumypUrKzg4WD179lT58uVN5wEAcF8wPAMA5Dk3NzcdOnRIlSpVyjE8O3jwoJ544glduXLFdCJgV2bNmqWPPvpIwcHB8vPzy3VhQLt27QyV4U4sXrxYy5Yt0xdffGE65W9JSkrS3LlztWDBAp0+fVqBgYFat26d6ax7FhcXp8TERFksFvn6+srf3990EgDAEIZnAIA8V7duXb355pt6+eWXcwzPRo0apY0bN2rbtm2mE/O1vXv33vF7ucXRNjg5Od32NS4MsH1JSUmqWbOm0tLSTKf8bVeuXNFnn32mf//730pJSbHLP3vnzp3Tiy++qK1bt6po0aKyWq1KTU1V06ZNtXTpUpUqVcp0IgAgj3FhAAAgzwQHB2vq1KkaOXKkunfvrpMnTyorK0uff/65Dh8+rAULFui///2v6cx8r3bt2tk3Nf4ZhjK2Iysry3QC7tHVq1c1bdo0u3/EMSoqSuHh4Vq5cqWcnZ0VFBRkl4+hSlL//v116dIlHThwQDVq1JAkHTx4UD179lRISIiWLFliuBAAkNfYeQYAyDPOzs46ffq0SpcurfXr12vMmDGKi4tTVlaWAgICNGLECLVs2dJ0Zr73448/3vF7K1Wq9ABLAMdSrFixHGeeWa1WXb58We7u7lq0aJHdPV574sQJzZs3T/PmzdPx48fVsGFD9e7dW0FBQbluhrYnnp6e2rhxo+rVq5djfceOHWrZsqVSUlLMhAEAjGHnGQAgz9z885pWrVqpVatWBmtwOwzE7ENoaKj69u0rV1dXhYaG/ul7Q0JC8qgKf2bKlCk5vndyclKpUqVUv359FStWzEzUPQoMDNSWLVtUqlQp9ejRQ8HBwapWrZrprPsiKysr17mBkuTi4sIuTwDIp9h5BgB2YNu2bfrkk0+UlJSkFStWqFy5clq4cKG8vLz01FNPmc67Y05OTjp79iznxdiZhQsXKiwsTMePH1dMTIwqVaqkKVOmyMvLS+3btzedl295eXlp165dKlGihLy8vG77PovFomPHjuVhGe5FQkKCateubTrjjrVr1069e/fWc889J2dnZ9M591X79u2VkpKiJUuWqGzZspKkkydPqlu3bipWrJhWrVpluBAAkNduf7osAMAmrFy5Uq1atZKbm5vi4+P166+/SpIuX76sMWPGGK67e1WrVlXx4sX/9Bdsx8yZMzVo0CA9++yzOQ7/Llq0aK5dNMhbx48fV4kSJbK/vt0vBme2KzU1VTNmzFBAQIDq1KljOueurFmzRu3bt3e4wZkkTZ8+XZcvX1blypVVpUoV+fj4yMvLS5cvX9a0adNM5wEADGDnGQDYOH9/fw0cOFA9evTIcTNlQkKCWrdurTNnzphOvGNOTk6aMmWKPD09//R9PXv2zKMi/BVfX1+NGTNGHTp0yPHnb//+/WrSpIl+/vln04nQb4fOu7m53fK106dPq0yZMnlchD+zefNmhYeH6/PPP1elSpXUuXNnde7cWf7+/qbTcJMNGzbo0KFDslqt8vX1VYsWLUwnAQAM4cwzALBxhw8fVuPGjXOtFylSxC4PLX7xxRdVunRp0xm4Q8ePH7/lB/pChQopLS3NQBFuxd/fX4sXL1ZAQECO9RUrVuj111/X+fPnDZXhdz/99JPmzZun8PBwpaWlKSgoSNevX9fKlSvl6+trOg+3EBgYqMDAQNMZAAAbwPAMAGxcmTJldPToUVWuXDnHenR0tLy9vc1E3aObb5mDffDy8lJCQkKuSwS++uorPvDbkMDAQDVs2FDvv/++3n77baWlpalfv35avny5xo0bZzov33v22WcVHR2t5557TtOmTVPr1q3l7OyssLAw02n4n7+6dONmXMABAPkPwzMAsHGvvvqqBgwYoPDwcFksFp06dUoxMTEaMmSIRowYYTrvrnBSgP0ZOnSo/vWvfykjI0NWq1U7duzQkiVLNHbsWM2ePdt0Hv5n2rRpatu2rXr16qW1a9fq1KlTKlKkiHbu3MmQ0wZERkYqJCREr7/+uh599FHTObiFyZMn39H7LBYLwzMAyIcYngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3TeXcnKyjKdgLvUq1cv3bhxQ2+99ZbS09PVtWtXlStXTlOnTtWLL75oOg83admypTp16qSZM2eqQIEC+vLLLxmc2Yht27YpPDxcdevWVfXq1dW9e3e98MILprNwk+PHj5tOAADYMC4MAAA7kZ6eroMHDyorK0u+vr566KGHTCchn/n555+VlZWVfWbdyZMnVa5cOcNVkKSkpCR17dpVZ86c0ezZsxUVFaUJEyYoJCREo0ePlouLi+lE6Le/x5cuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6D39w7do1HT9+XFWqVFGBAuw5AID8jOEZANiZS5cuafPmzapWrZpq1KhhOgf50JkzZzR69GjNnj1bV69eNZ0DSR4eHmrbtq3CwsJUtGhRSdL27duzb+mNj483G4hcDh8+rDlz5mjhwoVKSUlRYGCg1qxZYzoL+m3I2b9/f82fP1+SdOTIEXl7eyskJERly5bVsGHDDBcCAPKak+kAAMCfCwoK0vTp0yVJV69eVb169RQUFKSaNWtq5cqVhuvgqFJSUtStWzeVKlVKZcuWVWhoqLKysjRixAh5e3srNjZW4eHhpjPxPzNmzNDSpUuzB2eS1LBhQ8XHx+e6gRO2oVq1avr444/1008/acmSJaZzcJN33nlHe/bs0datW+Xq6pq93qJFCy1btsxgGQDAFHaeAYCNe+SRR7R+/XrVqlVLixcv1siRI7Vnzx7Nnz9fs2bNYkcJHog33nhDX375pV544QV9/fXXSkxMVKtWrZSRkaGRI0fqmWeeMZ0IAA9EpUqVtGzZMj355JPy8PDQnj175O3traNHjyogIECXLl0ynQgAyGM8vA8ANi41NVXFixeXJH399dfq3Lmz3N3d1bZtWw0dOtRwHRzV2rVrNXfuXLVo0UJvvPGGfHx8VLVqVU2ZMsV0Gv7EwYMHlZycrGvXrmWvWSwWPf/88warAPty/vz57LMdb5aWliaLxWKgCABgGsMzALBxFSpUUExMjIoXL66vv/5aS5culST98ssvOR4nAe6nU6dOZd/U6O3tLVdXV/Xp08dwFX6XmpoqT0/P7O+PHTumTp06ae/evbJYLPr9wYLfP+hnZmYa6QTsUb169bR27Vr1799f0v//7+jTTz9VgwYNTKYBAAxheAYANu7NN99Ut27d9NBDD6lSpUpq0qSJJOmbb76Rn5+f2Tg4rKysrBw3NDo7O6tw4cIGi3Cz0NBQubq6Zu8+HTBggCpUqKD169erdu3a+u6773T8+HENGTJEkyZNMlwL2JexY8eqdevWOnjwoG7cuKGpU6fqwIEDiomJUVRUlOk8AIABnHkGAHYgLi5OycnJCgwM1EMPPSTpt8fqihYtqkaNGhmugyNycnJSmzZtVKhQIUnSl19+qWbNmuUaoH3++ecm8vK9c+fOqXv37vLx8dF//vMflSxZUps2bVKtWrVUrlw57dixQ+XKldOmTZs0ZMgQzkYE7kBCQoJq164tSdq3b58mTJiguLg4ZWVlKSAgQG+//TY/tAKAfIrhGQAAyKVXr1539L65c+c+4BL8mbFjx+qdd95RsWLFFBcXJ29vb9WqVUuzZ89WvXr1lJSUJD8/P6Wnp5tOBWyek5OT/P391adPH3Xt2jXHo9EAgPyN4RkAAICde/rppzVo0CB17NhRffv21fnz5zV06FCFhYVp9+7d2r9/v+lEwObFxMQoPDxcERERun79ujp37qzg4GA1bdrUdBoAwDCGZwAAAHZu/fr1unz5srp06aITJ06obdu22r9/v4oXL66IiAg1a9bMdCJgN65evaqIiAjNnTtX27ZtU+XKlRUcHKyePXuqfPnypvMAAAYwPAMAAHBAFy9eVNGiReXk5GQ6BbBbSUlJmjt3rhYsWKDTp08rMDBQ69atM50FAMhjDM8AAAAA4DauXLmizz77TP/+97+VkpKizMxM00kAgDxWwHQAAOCvbdu2TZ988omSkpK0YsUKlStXTgsXLpSXl5eeeuop03kADMvIyNC0adO0ZcsWnTt3TllZWTle3717t6EywH5FRUUpPDxcK1eulLOzs4KCgtS7d2/TWQAAAxieAYCNW7lypbp3765u3bopPj5ev/76qyTp8uXLGjNmDI+PAFBwcLA2bNigLl266IknnpDFYjGdBNilEydOaN68eZo3b56OHz+uhg0batq0aQoKClLhwoVN5wEADOGxTQCwcf7+/ho4cKB69OghDw8P7dmzR97e3kpISFDr1q115swZ04kADPP09NS6devUqFEj0ymA3QoMDNSWLVtUqlQp9ejRQ8HBwapWrZrpLACADWDnGQDYuMOHD6tx48a51osUKaKUlJS8DwJgc8qVKycPDw/TGYBdc3Nz08qVK/Xcc8/J2dnZdA4AwIZw/RIA2LgyZcro6NGjudajo6Pl7e1toAiArZk4caLefvtt/fjjj6ZTALu1Zs0atW/fnsEZACAXdp4BgI179dVXNWDAAIWHh8tisejUqVOKiYnRkCFDNGLECNN5AGxA3bp1lZGRIW9vb7m7u8vFxSXH6xcvXjRUBgAAYP8YngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3QeABvw0ksv6eTJkxozZowefvhhLgwAAAC4j7gwAADsRHp6ug4ePKisrCz5+vrqoYceMp0EwEa4u7srJiZGtWrVMp0CAADgcNh5BgB2wt3dXXXr1jWdAcAGVa9eXVevXjWdAQAA4JDYeQYANq5p06Z/+gjW5s2b87AGgC2KjIzUqFGjNHr0aPn5+eU686xIkSKGygAAAOwfO88AwMbVrl07x/fXr19XQkKC9u/fr549e5qJAmBTWrduLUlq3rx5jnWr1SqLxaLMzEwTWQAAAA6B4RkA2LjJkyffcv3999/XlStX8rgGgC3asmWL6QQAAACHxWObAGCnjh49qieeeEIXL140nQIAAAAADsvJdAAA4N7ExMTI1dXVdAYAAAAAODQe2wQAG9epU6cc31utVp0+fVq7du3S8OHDDVUBAAAAQP7A8AwAbJynp2eO752cnFStWjV98MEHatmypaEqAAAAAMgfOPMMAAAAAAAAuA12ngEAADiI8+fP6/Dhw7JYLKpatapKlSplOgkAAMDuMTwDABtXrFgxWSyWO3ovN28C+VNaWpr69++vhQsXKjMzU5Lk7OysHj16aNq0aXJ3dzdcCAAAYL8YngGAjRs+fLg++ugjtWrVSg0aNJD0202b69ev1/Dhw1W8eHHDhQBMGzRokKKiorRmzRo1atRIkhQdHa2QkBANHjxYM2fONFwIAABgvzjzDABsXOfOndW0aVP169cvx/r06dO1ceNGrV692kwYAJtRsmRJrVixQk2aNMmxvmXLFgUFBen8+fNmwgAAAByAk+kAAMCfW79+vVq3bp1rvVWrVtq4caOBIgC2Jj09XQ8//HCu9dKlSys9Pd1AEQAAgONgeAYANq5EiRJatWpVrvXVq1erRIkSBooA2JoGDRpo5MiRysjIyF67evWqRo0alf24NwAAAO4NZ54BgI0bNWqUevfura1bt2Z/CI6NjdXXX3+t2bNnG64DYAumTp2q1q1bq3z58qpVq5YsFosSEhLk6uqq9evXm84DAACwa5x5BgB24LvvvlNoaKgSExNltVrl6+urkJAQ1a9f33QaABtx9epVLVq0SIcOHcr+e6Jbt25yc3MznQYAAGDXGJ4BAAAAAAAAt8GZZwAAAHZu/vz5Wrt2bfb3b731looWLaqGDRvqxx9/NFgGAABg/xieAQAA2LkxY8ZkP54ZExOj6dOn6+OPP1bJkiU1cOBAw3UAAAD2jcc2AQAA7Jy7u7sOHTqkihUr6u2339bp06e1YMECHThwQE2aNNH58+dNJwIAANgtdp4BAADYuYceekgXLlyQJEVGRqpFixaSJFdXV129etVkGgAAgN0rYDoAAAAAf09gYKD69Okjf39/HTlyRG3btpUkHThwQJUrVzYbBwAAYOcYngGAHdi5c6eWL1+u5ORkXbt2Lcdrn3/+uaEqALbiP//5j9577z2dOHFCK1euVIkSJSRJcXFxeumllwzXAQAA2DfOPAMAG7d06VL16NFDLVu21IYNG9SyZUt9//33OnPmjDp27Ki5c+eaTgQAAAAAh8WZZwBg48aMGaPJkyfrv//9rwoWLKipU6cqMTFRQUFBqlixouk8ADZi27Ztevnll9WwYUOdPHlSkrRw4UJFR0cbLgMAALBvDM8AwMYlJSVln19UqFAhpaWlyWKxaODAgZo1a5bhOgC2YOXKlWrVqpXc3Ny0e/du/frrr5Kky5cva8yYMYbrAAAA7BvDMwCwccWLF9fly5clSeXKldP+/fslSSkpKUpPTzeZBsBGfPTRRwoLC9Onn34qFxeX7PWGDRtq9+7dBssAAADsHxcGAICNe/rpp7Vhwwb5+fkpKChIAwYM0ObNm7VhwwY1b97cdB4AG3D48GE1btw413qRIkWUkpKS90EAAAAOhOEZANi46dOnKyMjQ5L0zjvvyMXFRdHR0erUqZOGDx9uuA6ALShTpoyOHj2qypUr51iPjo6Wt7e3mSgAAAAHwW2bAAAAdu7jjz/W/PnzFR4ersDAQK1bt04//vijBg4cqBEjRqhfv36mEwEAAOwWwzMAsEGXLl264/cWKVLkAZYAsBfvvvuuJk+enL1TtVChQhoyZIg+/PBDw2UAAAD2jeEZANggJycnWSyWP32P1WqVxWJRZmZmHlUBsHXp6ek6ePCgsrKy5Ovrq4ceesh0EgAAgN3jzDMAsEFbtmwxnQDADqSnp2vo0KFavXq1rl+/rhYtWig0NFQlS5Y0nQYAAOAw2HkGAABgp4YOHaoZM2aoW7ducnV11ZIlS9SkSRMtX77cdBoAAIDDYHgGAABgp6pUqaLRo0frxRdflCTt2LFDjRo1UkZGhpydnQ3XAQAAOAaGZwAAAHaqYMGCOn78uMqVK5e95ubmpiNHjqhChQoGywAAAByHk+kAAAAA3JvMzEwVLFgwx1qBAgV048YNQ0UAAACOhwsDAAAA7JTVatUrr7yiQoUKZa9lZGTotddeU+HChbPXPv/8cxN5AAAADoHhGQAAgJ3q2bNnrrWXX37ZQAkAAIDj4swzALADK1asUEREhJKTk3Xt2rUcr+3evdtQFQAAAAA4Ps48AwAbFxoaql69eql06dKKj4/XE088oRIlSujYsWNq06aN6TwAAAAAcGjsPAMAG1e9enWNHDlSL730kjw8PLRnzx55e3trxIgRunjxoqZPn246EQAAAAAcFjvPAMDGJScnq2HDhpIkNzc3Xb58WZLUvXt3LVmyxGQaAAAAADg8hmcAYOMeeeQRXbhwQZJUqVIlxcbGSpKOHz8uNg8DAAAAwIPF8AwAbFyzZs305ZdfSpJ69+6tgQMHKjAwUC+88II6duxouA4AAAAAHBtnngGAjcvKylJWVpYKFCggSYqIiFB0dLR8fHz02muvqWDBgoYLAQAAAMBxMTwDAAAAAAAAboPHNgEAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALiNAqYDAAC5+fv7y2Kx3NF7d+/e/YBrAAAAACD/YngGADaoQ4cO2V9nZGRoxowZ8vX1VYMGDSRJsbGxOnDggN544w1DhQAAAACQP1isVqvVdAQA4Pb69OmjMmXK6MMPP8yxPnLkSJ04cULh4eGGygAAAADA8TE8AwAb5+npqV27dunRRx/Nsf7999+rbt26Sk1NNVQGAAAAAI6PCwMAwMa5ubkpOjo613p0dLRcXV0NFAEAAABA/sGZZwBg49588029/vrriouL05NPPinptzPPwsPDNWLECMN1AAAAAODYeGwTAOxARESEpk6dqsTERElSjRo1NGDAAAUFBRkuAwAAAADHxvAMAAAAAAAAuA3OPAMAAAAAAABugzPPAMDGZWZmavLkyYqIiFBycrKuXbuW4/WLFy8aKgMAAAAAx8fOMwCwcaNGjdKkSZMUFBSk1NRUDRo0SJ06dZKTk5Pef/9903kAAAAA4NA48wwAbFyVKlUUGhqqtm3bysPDQwkJCdlrsbGxWrx4selEAAAAAHBY7DwDABt35swZ+fn5SZIeeughpaamSpKee+45rV271mQaAAAAADg8hmcAYOPKly+v06dPS5J8fHwUGRkpSdq5c6cKFSpkMg0AAAAAHB7DMwCwcR07dtSmTZskSQMGDNDw4cP16KOPqkePHgoODjZcBwAAAACOjTPPAMDOxMbGavv27fLx8VG7du1M5wAAAACAQ2N4BgAAAAAAANxGAdMBAIDc1qxZc8fvZfcZAAAAADw47DwDABvk5JTzSEqLxaI//nVtsVgkSZmZmXnWBQAAAAD5DRcGAIANysrKyv4VGRmp2rVr66uvvlJKSopSU1P11VdfKSAgQF9//bXpVAAAAABwaOw8AwAb9/jjjyssLExPPfVUjvVt27apb9++SkxMNFQGAAAAAI6PnWcAYOOSkpLk6emZa93T01M//PBD3gcBAAAAQD7CzjMAsHGNGzeWi4uLFi1apDJlykiSzpw5o+7du+vatWuKiooyXAgAAAAAjovhGQDYuKNHj6pjx446fPiwKlasKElKTk5W1apVtXr1avn4+BguBAAAAADHxfAMAOyA1WrVhg0bdOjQIVmtVvn6+qpFixbZN24CAAAAAB4MhmcAAAAAAADAbRQwHQAAyC00NFR9+/aVq6urQkND//S9ISEheVQFAAAAAPkPO88AwAZ5eXlp165dKlGihLy8vG77PovFomPHjuVhGQAAAADkLwzPAAAAAAAAgNtwMh0AAAAAAAAA2CqGZwBg47p06aJx48blWh8/frz+8Y9/GCgCAAAAgPyDxzYBwMaVKlVKmzdvlp+fX471ffv2qUWLFjp79qyhMgAAAABwfOw8AwAbd+XKFRUsWDDXuouLiy5dumSgCAAAAADyD4ZnAGDjHn/8cS1btizX+tKlS+Xr62ugCAAAAADyjwKmAwAAf2748OHq3LmzkpKS1KxZM0nSpk2btGTJEi1fvtxwHQAAAAA4Ns48AwA7sHbtWo0ZM0YJCQlyc3NTzZo1NXLkSD3zzDOm0wAAAADAoTE8AwAAAAAAAG6DxzYBwE7ExcUpMTFRFotFvr6+8vf3N50EAAAAAA6P4RkA2Lhz587pxRdf1NatW1W0aFFZrValpqaqadOmWrp0qUqVKmU6EQAAAAAcFrdtAoCN69+/vy5duqQDBw7o4sWL+uWXX7R//35dunRJISEhpvMAAAAAwKFx5hkA2DhPT09t3LhR9erVy7G+Y8cOtWzZUikpKWbCAAAAACAfYOcZANi4rKwsubi45Fp3cXFRVlaWgSIAAAAAyD8YngGAjWvWrJkGDBigU6dOZa+dPHlSAwcOVPPmzQ2WAQAAAIDj47FNALBxJ06cUPv27bV//35VqFBBFotFycnJ8vPz0xdffKHy5cubTgQAAAAAh8XwDADsxIYNG3To0CFZrVb5+vqqRYsWppMAAAAAwOExPAMAAAAAAABuo4DpAABAbqGhoXf83pCQkAdYAgAAAAD5GzvPAMAGeXl53dH7LBaLjh079oBrAAAAACD/YngGAAAAAAAA3IaT6QAAwJ25du2aDh8+rBs3bphOAQAAAIB8g+EZANi49PR09e7dW+7u7nrssceUnJws6bezzsaNG2e4DgAAAAAcG8MzALBx77zzjvbs2aOtW7fK1dU1e71FixZatmyZwTIAAAAAcHzctgkANm716tVatmyZnnzySVkslux1X19fJSUlGSwDAAAAAMfHzjMAsHHnz59X6dKlc62npaXlGKYBAAAAAO4/hmcAYOPq1auntWvXZn//+8Ds008/VYMGDUxlAQAAAEC+wGObAGDjxo4dq9atW+vgwYO6ceOGpk6dqgMHDigmJkZRUVGm8wAAAADAobHzDABsVEJCgiSpYcOG+vbbb5Wenq4qVaooMjJSDz/8sGJiYlSnTh2zkQAAAADg4CxWq9VqOgIAkJuTk5P8/f3Vp08fde3aVZ6enqaTAAAAACDfYecZANiob7/9VgEBARo2bJjKlCmj7t27a8uWLaazAAAAACBfYecZANi4q1evKiIiQnPnztW2bdtUuXJlBQcHq2fPnipfvrzpPAAAAABwaAzPAMCOJCUlae7cuVqwYIFOnz6twMBArVu3znQWAAAAADgshmcAYGeuXLmizz77TP/+97+VkpKizMxM00kAAAAA4LAKmA4AANyZqKgohYeHa+XKlXJ2dlZQUJB69+5tOgsAAAAAHBo7zwDAhp04cULz5s3TvHnzdPz4cTVs2FC9e/dWUFCQChcubDoPAAAAABweO88AwEYFBgZqy5YtKlWqlHr06KHg4GBVq1bNdBYAAAAA5CsMzwDARrm5uWnlypV67rnn5OzsbDoHAAAAAPIlHtsEAAAAAAAAbsPJdAAAAAAAAABgqxieAQAAAAAAALfB8AwAAAAAAAC4DYZnAAAAAAAAwG0wPAMAAAAAAABug+EZAAAAAAAAcBsMzwAAAAAAAIDb+H/ijI1qDMKIFQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -9415,1256 +9846,966 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

df_procesado_base

\n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReachModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0Modelo
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.344051.0000.0410.587-0.9990.5350.6630.6650.3360.8150.2570.1280.4720.8460.6960.426
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN0.0411.000-0.152-0.3140.0820.1370.4280.079-0.111-0.071-0.5020.0570.0170.087-0.138
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN0.587-0.1521.000-0.8310.8670.977-0.3010.0810.7370.4230.0970.8410.9840.8990.941
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN-0.999-0.314-0.8311.000-0.790-0.823-0.998-0.305-0.859nannan-0.349-0.744-0.8880.622
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.7120.5350.0820.867-0.7901.0000.7860.1500.3890.2560.1800.2600.6930.9950.5990.880
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.7861.0000.0250.4340.6780.5390.5460.7910.8580.8750.947
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN0.6650.428-0.301-0.9980.1500.0251.0000.8430.042nannan-0.010-0.7550.804-0.059
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.00.3360.0790.081-0.3050.3890.4340.8431.0000.297-0.1640.4010.532-0.2010.4610.428
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.00.815-0.1110.737-0.8590.2560.6780.0420.2971.0000.5390.4460.4000.5120.7150.517
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.00.257-0.0710.423nan0.1800.539nan-0.1640.5391.0001.0000.401nan0.6270.321
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNVelocidad de pérdida limpia (KCAS)0.128-0.5020.097nan0.2600.546nan0.4010.4461.0001.0000.505nan0.5360.038
envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.00.4720.0570.841-0.3490.6930.791-0.0100.5320.4000.4010.5051.0000.8850.7340.924
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nannan0.8851.0000.7760.971
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.00.6960.0870.899-0.8880.5990.8750.8040.4610.7150.6270.5360.7340.7761.0000.778
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.0380.9240.9710.7781.000
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.00Total de valores225.000
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.01Valores numéricos213.000
2Valores NaN12.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0Modelo
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNVelocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannannan0.846nannan
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNTecho de servicio máximonannannannannannannannannannannannannannannan
Potencia/PesoNaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNÁrea del alanannannan-0.8310.8670.977nannan0.737nannan0.8410.9840.8990.941
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNRelación de aspecto del ala-0.999nan-0.831nan-0.790-0.823-0.998nan-0.859nannannan-0.744-0.888nan
Longitud del fuselajenannan0.867-0.790nan0.786nannannannannannan0.995nan0.880
Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannannan0.7910.8580.8750.947
Alcance de la aeronavenannannan-0.998nannannan0.843nannannannan-0.7550.804nan
Autonomía de la aeronavenannannannannannan0.843nannannannannannannannan
Velocidad máxima (KIAS)0.815nan0.737-0.859nannannannannannannannannan0.715nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannan
Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannan
envergaduranannan0.841nannan0.791nannannannannannan0.8850.7340.924
Cuerda0.846nan0.984-0.7440.9950.858-0.755nannannannan0.885nan0.7760.971
payloadnannan0.899-0.888nan0.8750.804nan0.715nannan0.7340.776nan0.778
Empty weightnannan0.941nan0.8800.947nannannannannan0.9240.9710.778nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores225.000
1Valores numéricos68.000
2Valores NaN157.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVycPA8S/djbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d26ttiF3QIGHSJ13j+QC5d7L6KA7G/f+fjwPN65c+bMnL5zJtQkSZIQBEEQBEEQBEEQBEEQBKHAqRd2BgRBEARBEARBEARBEATh/wtRGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0RUxgmCIAiCIAiCIAiCIAjCNyIq4wRBEARBEARBEARBEAThGxGVcYIgCIIgCIIgCIIgCILwjYjKOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6IyThAEQRAEQRAEQRAEQRC+EVEZJwiCIPxPW7lyJWpqaly+fFnp902bNsXZ2blA83Du3DkmTpxIVFRUga6nMEycOBE1NbV8T/fmzZv06NEDFxcXdHV1MTQ0pFy5csyYMYOIiIh8X19enDx5EjU1NU6ePFkg6T979gw1NTVWrlxZIOkXtu7du+fbOVi2bFns7e1JTU1VGadatWpYWlqSlJSU5/XlZd9/7tqUVX5uo9ySJImNGzdSo0YNrKys0NXVxcHBAT8/P5YuXfpVadauXZvatWvnb0a/UEFds/KbmpoaEydO/ObrPX36NDo6Ojx//lwW5uzsTNOmTZXGv3z5cr5fn77k3MgP/yvHRIa4uDiGDBmCnZ0durq6lClTho0bN+Zq2dq1a6OmpqbyLywsDIDk5GRcXV2ZM2dOAZZEEISciMo4QRAEQcijc+fO8csvv/wnK+MKwpIlSyhfvjxBQUGMHDmSgwcPsmPHDtq0acOiRYvo1atXYWfxm7K1teX8+fM0adKksLPyr9erVy9CQkI4dOiQ0u8fPHjAuXPn6NKlC9ra2nleX7ly5Th//jzlypXLc1r/NmPGjKFDhw54enqydOlSDhw4wJQpU7C2tmbXrl2Fnb2v1rt3b86fP1/Y2fhXkiSJIUOG0KdPH5ycnAo7O4IKLVu2ZNWqVUyYMIEDBw7g6+tLhw4dWL9+/WeXXbBgAefPn5f7O3bsGFpaWlSuXBkbGxsAtLS0GD9+PJMmTSI8PLygiyQIghKahZ0BQRAEQRD+/zh//jzff/89DRo0YOfOnejo6Mi+a9CgAcOHD+fgwYP5sq6EhAT09fUVwlNTU0lJSZFbd2HS0dGhcuXKhZ2N/wmdOnVi5MiRLF++nMaNGyt8v3z5cgB69uyZp/UkJyejpqaGsbHxf3LffPjwgTlz5tC1a1f+/vtvue+6d+9OWlpaIeUs7xwcHHBwcCjsbPwrHTx4kKtXr+aqUuffTNW1Pa9CQ0MxMDDA2Ng439POrf3793PkyBHWr19Phw4dAKhTpw7Pnz9n5MiRtGvXDg0NDZXLe3l5KYStWrWK5ORkevfuLRfeoUMHhg0bxuLFixk7dmz+FkQQhM8SLeMEQRCE/3ckSWLBggWUKVMGPT09zMzMaN26NU+ePJGLd+TIEZo1a4aDgwO6urq4ubnx3Xff8f79e1mciRMnMnLkSABcXFxkXUEyurVldP/Zu3cvZcuWRU9PD09PT/bu3Qukd9fx9PTEwMCAihUrKnTbuXz5Mu3bt8fZ2Rk9PT2cnZ3p0KGDXBejjHTU1NQ4cuQIPXr0wNzcHAMDAwICAhTKpcq+ffsoU6YMOjo6uLi4MGvWrDxtP2WmTZuGmpoaf//9t9LKMG1tbQIDA2Wf09LSmDFjBiVKlEBHRwcrKyu6du3Kq1ev5JarXbs2JUuW5J9//qFq1aro6+vTs2dPWRfQGTNmMGXKFFxcXNDR0eHEiRNA+vYNDAzE3NwcXV1dypYty+bNmz9bjtzuF4DXr1/Tt29fihYtira2NnZ2drRu3Zo3b94Aqrupnjlzhnr16mFkZIS+vj5Vq1Zl3759cnEy9vuJEyf4/vvvsbS0xMLCgpYtWxISEqKQl02bNlGlShUMDAwwNDTEz8+Pa9euycV58uQJ7du3x87ODh0dHaytralXrx7Xr1//7HZZuXIlHh4e6Ojo4OnpyerVq5XGS0pKYsqUKbL9WqRIEXr06MG7d+9yTN/MzIwWLVqwZ88ehdYcqamprFmzBl9fX3x8fHj06BE9evSgePHi6OvrY29vT0BAALdu3ZJbLqMr6po1axg+fDj29vbo6Ojw6NEjpd1Uv2TfA0RGRn7VOZnb8+zatWs0bdoUKysrdHR0sLOzo0mTJgrnSFbx8fF8/PgRW1tbpd+rq8v/RPja/fWly65fv54qVapgaGiIoaEhZcqUYdmyZXJxDh48SL169TAxMUFfXx9PT09+/fVX2ffKuiR+6XUkKCiIGjVqoK+vT7FixZg+fbpcBWViYiLDhw+nTJkymJiYYG5uTpUqVZS2KIyJiaFPnz5YWFhgaGiIv78/Dx48UIiX2+M1LS2NKVOm4OHhgZ6eHqamppQqVYq5c+fmsBfSLVy4EF9fXzw8PD4bNyfdu3fH0NCQe/fu4efnh4GBAba2tkyfPh2ACxcuUL16dQwMDHB3d2fVqlVK08nNuaHq2g7p17OGDRtia2sru7f++OOPxMfHf1W5Dh06hLW1Na1bt2b79u0kJiZ+VTp5sWPHDgwNDWnTpo1ceI8ePQgJCeHixYtfnOayZcswNDSkXbt2cuHa2tq0a9eOv//+G0mS8pRvQRC+nKiMEwRBEP4TMlo7Zf9T9oD53XffMWTIEOrXr8/OnTtZsGABd+7coWrVqrIKEoDHjx9TpUoVFi5cyOHDhxk/fjwXL16kevXqJCcnA+ldogYOHAjA9u3bZd1CsnZru3HjBmPGjGH06NFs374dExMTWrZsyYQJE1i6dCnTpk1j3bp1REdH07RpUz58+CBb9tmzZ3h4eDBnzhwOHTrEb7/9RmhoKL6+vnKVghl69eqFuro669evZ86cOVy6dInatWt/tgvtsWPHaNasGUZGRmzcuJGZM2eyefNmVqxY8dXbT9k+On78OOXLl6do0aI55ifD999/z+jRo2nQoAG7d+9m8uTJHDx4kKpVqyqUPzQ0lM6dO9OxY0f2799P//79Zd/NmzeP48ePM2vWLA4cOECJEiU4ceIE1apVIyoqikWLFrFr1y7KlClDu3btPjs+Um73y+vXr/H19WXHjh0MGzaMAwcOMGfOHExMTIiMjFSZ/qlTp6hbty7R0dEsW7aMDRs2YGRkREBAAJs2bVKI37t3b7S0tFi/fj0zZszg5MmTdO7cWS7OtGnT6NChA15eXmzevJk1a9YQGxtLjRo1uHv3rixe48aNuXLlCjNmzODIkSMsXLiQsmXLfvYYWrlyJT169MDT05Nt27bx888/M3nyZI4fPy4XLy0tjWbNmjF9+nQ6duzIvn37mD59OkeOHKF27dpyx78yvXr1IikpibVr18qFHzp0iJCQEFk355CQECwsLJg+fToHDx5k/vz5aGpqUqlSJe7fv6+Q7pgxY3jx4gWLFi1iz549WFlZKV3/tzonc3OexcfH06BBA968ecP8+fM5cuQIc+bMwdHRkdjYWJVpW1pa4ubmxoIFC/j999+5d++eyh/jedlfX7Ls+PHj6dSpE3Z2dqxcuZIdO3bQrVs3uUrOZcuW0bhxY9LS0mT7adCgQTlWPMKXXUfCwsLo1KkTnTt3Zvfu3TRq1IgxY8bIHW8fP34kIiKCESNGsHPnTjZs2ED16tVp2bKlXAW0JEk0b95cVtG7Y8cOKleuTKNGjRTymNvjdcaMGUycOJEOHTqwb98+Nm3aRK9evT57PCUlJXH06FHq1KmTY7zcSk5OpmXLljRp0oRdu3bJttPYsWPp1q0bPXv2ZMeOHXh4eNC9e3euXLmikEZuzw1V1/aHDx/SuHFjli1bxsGDBxkyZAibN28mICDgq8rUokUL5s2bR2RkJG3btsXa2pru3btz6NChHMeplCRJ6fOHsr/PuX37Np6enmhqyndgK1WqlOz7L/Hw4UNOnz5N+/btMTQ0VPi+du3aPH/+/IvTFQQhH0iCIAiC8D9sxYoVEpDjn5OTkyz++fPnJUCaPXu2XDovX76U9PT0pFGjRildT1pampScnCw9f/5cAqRdu3bJvps5c6YESE+fPlVYzsnJSdLT05NevXolC7t+/boESLa2tlJ8fLwsfOfOnRIg7d69W2V5U1JSpLi4OMnAwECaO3euwnZo0aKFXPyzZ89KgDRlyhSVaUqSJFWqVEmys7OTPnz4IAuLiYmRzM3NpayPC1+7/SRJksLCwiRAat++fY55yRAcHCwBUv/+/eXCL168KAHS2LFjZWG1atWSAOnYsWNycZ8+fSoBkqurq5SUlCT3XYkSJaSyZctKycnJcuFNmzaVbG1tpdTUVEmSJOnEiRMSIJ04cUJlXlXtl549e0paWlrS3bt3VS6bkccVK1bIwipXrixZWVlJsbGxcusoWbKk5ODgIKWlpUmSlLnfs2+jGTNmSIAUGhoqSZIkvXjxQtLU1JQGDhwoFy82NlaysbGR2rZtK0mSJL1//14CpDlz5qjMrzKpqamSnZ2dVK5cOVneJEmSnj17Jmlpacmdgxs2bJAAadu2bXJpBAUFSYC0YMGCHNeVlpYmubi4SKVKlZILb9WqlaSvry9FR0crXS4lJUVKSkqSihcvLg0dOlQWnrF/a9asqbBMXvb9l5yT3bp1+6rr1OXLlyVA2rlzp8r8qXLp0iXJ0dFRdp00MjKSmjZtKq1evVpuH37J/qpVq5ZUq1atL172yZMnkoaGhtSpUyeV+Y2NjZWMjY2l6tWry+UvuwkTJshds77mOnLx4kW5uF5eXpKfn5/KdaakpEjJyclSr169pLJly8rCDxw4IAFyx4UkSdLUqVMlQJowYUKOaSo7Xps2bSqVKVNG5XKqZJR348aNCt85OTlJTZo0Ubpcxr7Ken3q1q2bwn5NTk6WihQpIgHS1atXZeHh4eGShoaGNGzYMFnYl5wbqq7t2WXco0+dOiUB0o0bN2TfZT8mciMsLEz6888/pWrVqklqamqSlZWV9MMPP0hnzpxROP5y8xyS8fc5xYsXV3qshYSESIA0bdq0LyrH6NGjJUA6f/680u8fPnwoAdLChQu/KF1BEPJOtIwTBEEQ/hNWr15NUFCQwl/16tXl4u3duxc1NTU6d+4s97baxsaG0qVLy3VHe/v2Lf369aNo0aJoamqipaUlG/Q6ODg413krU6YM9vb2ss+enp5A+hvprOPeZIRnbQkSFxfH6NGjcXNzQ1NTE01NTQwNDYmPj1eah06dOsl9rlq1Kk5OTrJumcrEx8cTFBREy5Yt0dXVlYVntMTK6ku2X15l5Ll79+5y4RUrVsTT05Njx47JhZuZmVG3bl2laQUGBqKlpSX7/OjRI+7duyfbXlnL0rhxY0JDQ5W2nsqQ2/1y4MAB6tSpI9u3uREfH8/Fixdp3bq1XEsGDQ0NunTpwqtXrxTylrVrL2S2osg4lg4dOkRKSgpdu3aVK6uuri61atWS7Tdzc3NcXV2ZOXMmv//+O9euXcvV+GH3798nJCSEjh07ynURdHJyomrVqnJx9+7di6mpKQEBAXJ5KVOmDDY2Np89htTU1OjRowc3b96UtbYJDw9nz549tGrVSjbeU0pKCtOmTcPLywttbW00NTXR1tbm4cOHSs+dVq1afbac8G3OydyeZ25ubpiZmTF69GgWLVok18Lxc3x9fXn06BEHDx5k7NixVKlShWPHjtG1a1cCAwNlLeXysr9yu+yRI0dITU3lhx9+UJnWuXPniImJoX///l80M+aXXkdsbGyoWLGiXFipUqUUuiFv2bKFatWqYWhoKLs/LFu2TO4YyFh39mOgY8eOCvnM7fFasWJFbty4Qf/+/Tl06BAxMTG52g4Z3dZVtfj8UmpqanLjNmpqauLm5oatrS1ly5aVhZubm2NlZaW0G3duzw1V1/YnT57QsWNHbGxs0NDQQEtLi1q1agFfdo9WxtramgEDBnDmzBmeP3/OqFGjZC3jXVxc5LrCBgQEKH3+UPaXGzkd319y7KekpLBq1Sq8vb1Vjn2ZcTy8fv061+kKgpA/xAQOgiAIwn+Cp6cnFSpUUAg3MTHh5cuXss9v3rxBkiSsra2VplOsWDEgvXtVw4YNCQkJYdy4cfj4+GBgYEBaWhqVK1f+bFe6rMzNzeU+Z8zyqCo86zg1HTt25NixY4wbNw5fX1+MjY1lP4KU5SFjprTsYTnNlhYZGUlaWprKZbPK7fZTxtLSEn19fZ4+faoyTlYZeVY2rpWdnZ3CjztV418p+y6jm9+IESMYMWKE0mWUdTnMkNv98u7duy8eTD4yMhJJklSWG1DYnxYWFnKfM8bjy8hLRnl9fX2VrjNjjDA1NTWOHTvGpEmTmDFjBsOHD8fc3JxOnToxdepUjIyMlC6fkR9Vx9CzZ89kn9+8eUNUVJTK2U5z2u4ZevTowcSJE1mxYgXly5dn3bp1JCUlyc3EO2zYMObPn8/o0aOpVasWZmZmqKur07t3b6XnTk7HT1bf4pzM7XlmYmLCqVOnmDp1KmPHjiUyMhJbW1v69OnDzz//LFcBrYyWlhZ+fn74+fkB6fuxdevW7N27lwMHDtC4ceM87a/cLpsxflxO50pu4ijzpdeR7OcSpJ9PWfft9u3badu2LW3atGHkyJHY2NigqanJwoULZZOIZKxbU1NTIU1lx0Ruj9cxY8ZgYGDA2rVrWbRoERoaGtSsWZPffvtN6T0wQ0YaWV+4ZNDU1FTZDTOja2X2Y0lfX18hLW1tbYX7Wka4svHXcntuKNt3cXFx1KhRA11dXaZMmYK7uzv6+vq8fPmSli1bftE9+nOio6OJiooiOjoaQLZvMpibm2NiYpIv67KwsFB6bYiIiJCtK7f2799PWFgYo0ePVhknYx/m5/YSBCF3RGWcIAiC8P+KpaUlampqnD59WukEAhlht2/f5saNG6xcuZJu3brJvn/06NE3y2t0dDR79+5lwoQJ/Pjjj7LwjPGKlAkLC1Ma5ubmpnI9ZmZmqKmpqVw2q9xuP2U0NDSoV68eBw4c4NWrV5/9UZ3xAzY0NFQhbkhICJaWlnJhX9KaIGPZMWPG0LJlS6XLqBrk/Ev2S5EiRT47nlV2GT/0QkNDFb7LaN2SveyfkxF/69atstadqjg5OckGzX/w4AGbN29m4sSJJCUlsWjRIqXLZOyr3B5DFhYWKmfNVVXhl5WDgwMNGzZk/fr1zJ49mxUrVuDm5kbNmjVlcdauXUvXrl2ZNm2a3LLv37/H1NRUIc3ctDj5Vufkl5xnPj4+bNy4EUmSuHnzJitXrmTSpEno6enJ5TE3LCwsGDJkCCdPnuT27ds0btw4T/srt8sWKVIEgFevXqkcTzJrnC/xpdeR3Fi7di0uLi5s2rRJ7rj5+PGjwrpTUlIIDw+Xq5BTdkzk9njV1NRk2LBhDBs2jKioKI4ePcrYsWPx8/Pj5cuXKmcZzSinsuPU2tpaZcuojHBVFcN5kdtzQ9m5efz4cUJCQjh58qSsNRzw2bHzcuvBgwds2rSJjRs3cvfuXdzc3OjQoQMdO3akRIkScnFXrVpFjx49cpWu9JmJEnx8fNiwYQMpKSly48ZlTORRsmTJXJdh2bJlaGtr06VLF5VxMo6HrzkPBEHIG9FNVRAEQfh/pWnTpkiSxOvXr6lQoYLCn4+PD5D58J/9h/DixYsV0szeCim/qKmpIUmSQh6WLl2qshXDunXr5D6fO3eO58+fU7t2bZXryZjJNfvscbGxsezZs0cubm63nypjxoxBkiT69OlDUlKSwvfJycmydWZ0S8o+UH9QUBDBwcHUq1cvx3XlxMPDg+LFi3Pjxg2l5ahQoYLKSoYv2S+NGjXixIkTOXZ5zc7AwIBKlSqxfft2uWMqLS2NtWvX4uDggLu7+xeUFvz8/NDU1OTx48cqy6uMu7s7P//8Mz4+Ply9elVl+h4eHtja2rJhwwa5H5vPnz/n3LlzcnGbNm1KeHg4qampSvOR25kee/XqRWRkJOPHj+f69ev06NFD7ke7mpqawj7at29fnrpjfatz8mvOMzU1NUqXLs0ff/yBqalpjvsrOTlZZcu8jO59Ga0w87K/crtsw4YN0dDQYOHChSrTqlq1KiYmJixatOiLZn4siOuImpoa2tracsdbWFiYwmyqGZMlZD8G1q9frzTNLz1eTU1Nad26NT/88AMRERFyLVCzy+gq//jxY4Xv6tevz+3bt5V2c968eTOGhoZUqlRJZdpf62vOjQxfco/Orbdv3/Lbb79RtmxZPDw8WLRoEQ0bNuTSpUs8fPiQSZMmKVTEQf52U23RogVxcXFs27ZNLnzVqlXY2dnlej+EhYWxf/9+mjdvrrS1Z4aM2Wu9vLxyla4gCPlHtIwTBEEQ/l+pVq0affv2pUePHly+fJmaNWtiYGBAaGgoZ86cwcfHh++//54SJUrg6urKjz/+iCRJmJubs2fPHo4cOaKQZsYP47lz59KtWze0tLTw8PDIVQufnBgbG1OzZk1mzpyJpaUlzs7OnDp1imXLlilt2QNw+fJlevfuTZs2bXj58iU//fQT9vb2cjOLKjN58mT8/f1p0KABw4cPJzU1ld9++w0DAwO5lhS53X6qZMxO279/f8qXL8/333+Pt7c3ycnJXLt2jb///puSJUsSEBCAh4cHffv25c8//0RdXZ1GjRrx7Nkzxo0bR9GiRRk6dOhXbdcMixcvplGjRvj5+dG9e3fs7e2JiIggODiYq1evsmXLFqXLfcl+mTRpEgcOHKBmzZqMHTsWHx8foqKiOHjwIMOGDVP6ww7g119/pUGDBtSpU4cRI0agra3NggULuH37Nhs2bPiicYMAnJ2dmTRpEj/99BNPnjzB398fMzMz3rx5w6VLlzAwMOCXX37h5s2bDBgwgDZt2lC8eHG0tbU5fvw4N2/ezLGVlbq6OpMnT6Z37960aNGCPn36EBUVxcSJExW6orVv355169bRuHFjBg8eTMWKFdHS0uLVq1ecOHGCZs2a0aJFi8+WKTAwEEtLS2bOnImGhoZcC1ZIrwhauXIlJUqUoFSpUly5coWZM2d+cTfHrL7VOZnb82zv3r0sWLCA5s2bU6xYMSRJYvv27URFRdGgQQOV6UdHR+Ps7EybNm2oX78+RYsWJS4ujpMnTzJ37lw8PT1lLUbzsr9yu6yzszNjx45l8uTJfPjwgQ4dOmBiYsLdu3d5//49v/zyC4aGhsyePZvevXtTv359+vTpg7W1NY8ePeLGjRv89ddfSvNQENeRpk2bsn37dvr370/r1q15+fIlkydPxtbWlocPH8riNWzYkJo1azJq1Cji4+OpUKECZ8+eZc2aNUrTzM3xGhAQQMmSJalQoQJFihTh+fPnzJkzBycnJ4oXL64yzw4ODhQrVowLFy4waNAgue8GDx7M6tWrqV27tuw6FRkZyaZNm9i6dSu///57nu9nynzt/QrSK2fNzMzo168fEyZMQEtLi3Xr1nHjxo2vzs/+/fuZPn06rVq1YtasWdSpU0euO6oqFhYWOVZ4fYlGjRrRoEEDvv/+e2JiYnBzc2PDhg0cPHiQtWvXoqGhIYvbq1cvVq1axePHjxVaPK9atYqUlBR69+6d4/ouXLgg6+osCMI39q1njBAEQRCE/JQxi1lQUJDS75s0aSI3S2GG5cuXS5UqVZIMDAwkPT09ydXVVeratat0+fJlWZy7d+9KDRo0kIyMjCQzMzOpTZs20osXL5TOgjdmzBjJzs5OUldXl5t9UdUsdYD0ww8/yIVlzKo5c+ZMWdirV6+kVq1aSWZmZpKRkZHk7+8v3b59W3JycpK6deumsB0OHz4sdenSRTI1NZX09PSkxo0bSw8fPvzMVky3e/duqVSpUpK2trbk6OgoTZ8+XeUsdLnZfjm5fv261K1bN8nR0VHS1taWDAwMpLJly0rjx4+X3r59K4uXmpoq/fbbb5K7u7ukpaUlWVpaSp07d5Zevnwpl16tWrUkb29vhfUo26ZZ3bhxQ2rbtq1kZWUlaWlpSTY2NlLdunWlRYsWyeIom1Ezt/tFktJnwOzZs6dkY2MjaWlpSXZ2dlLbtm2lN2/eyOUx62yFkiRJp0+flurWrSvbxpUrV5b27NkjF0fV8a9qFtCdO3dKderUkYyNjSUdHR3JyclJat26tXT06FFJkiTpzZs3Uvfu3aUSJUpIBgYGkqGhoVSqVCnpjz/+kFJSUpRuw6yWLl0qFS9eXNLW1pbc3d2l5cuXK8wUKknpMy/OmjVLKl26tKSrqysZGhpKJUqUkL777rtcH6+SJElDhw6VAKlx48YK30VGRkq9evWSrKysJH19fal69erS6dOnFWb8zNhWW7ZsUUgjL/v+S85JZdtIkj5/nt27d0/q0KGD5OrqKunp6UkmJiZSxYoVpZUrV+a43T5+/CjNmjVLatSokeTo6Cjp6OhIurq6kqenpzRq1CgpPDxcLn5u91f2bfsly0qSJK1evVry9fWVxStbtqzCebF//36pVq1akoGBgaSvry95eXlJv/32m+x7ZdesvF5HlO2f6dOnS87OzpKOjo7k6ekpLVmyROm6o6KipJ49e0qmpqaSvr6+1KBBA+nevXsK95HcHq+zZ8+WqlatKllaWsqu1b169ZKePXumkO/sxo0bJ5mZmUmJiYkK34WFhUnff/+95OjoKGlqakpGRkZS9erVlZ4X3bp1kwwMDBTCVW2/7PfBLzk3VKUpSZJ07tw5qUqVKpK+vr5UpEgRqXfv3tLVq1cVrqe5nU31/fv30sePHz8br6DFxsZKgwYNkmxsbCRtbW2pVKlS0oYNGxTiZcxqq2wmd3d3d8nZ2TnHmYclSZJq1KghBQQE5FfWBUH4AmqS9AXtvAVBEARB+FdauXIlPXr0ICgoKMdBvAVBEIT/n0JCQnBxcWH16tW0a9eusLMjFLLHjx9TvHhxDh06lGNLWkEQCoYYM04QBEEQBEEQBOE/zs7OjiFDhjB16lTS0tIKOztCIZsyZQr16tUTFXGCUEjEmHGCIAiCIAiCIAj/D/z888/o6+vz+vVrlTPXCv99KSkpuLq6MmbMmMLOiiD8vyW6qQqCIAiCIAiCIAiCIAjCNyK6qQqCIAiCIAiCIAiCIAj/av/88w8BAQHY2dmhpqbGzp07P7vMqVOnKF++PLq6uhQrVoxFixYpxNm2bRteXl7o6Ojg5eXFjh07CiD38kRlnCAIgiAIgiAIgiAIgvCvFh8fT+nSpfnrr79yFf/p06c0btyYGjVqcO3aNcaOHcugQYPYtm2bLM758+dp164dXbp04caNG3Tp0oW2bdty8eLFgioGILqpCoIgCIIgCIIgCIIgCP9D1NTU2LFjB82bN1cZZ/To0ezevZvg4GBZWL9+/bhx4wbnz58HoF27dsTExHDgwAFZHH9/f8zMzNiwYUOB5V+0jBMEQRAEQRAEQRAEQRC+uY8fPxITEyP39/Hjx3xJ+/z58zRs2FAuzM/Pj8uXL5OcnJxjnHPnzuVLHlQRs6kKgiAIgiAIgiAIgiD8R1Wb36+ws6BSg3c2/PLLL3JhEyZMYOLEiXlOOywsDGtra7kwa2trUlJSeP/+Pba2tirjhIWF5Xn9ORGVcYIgCP9i/+YbZ26d/WERIVFvCzsbeWJnasWUIysKOxt59nODHkQ2aFHY2cgTsyM7mH2q4LoMfCvDa3Vg9L4FhZ2NPPutSX9G7c3duC3/VjOaDmD37dOFnY08CyxZg07rJxZ2NvJkXceJnHx0pbCzkWe13coTHPaksLORZ542xVh8fmdhZyNPvqvSnLZrfi7sbOTZ5i5TGLJrTmFnI0/mNBvC6qD9hZ2NPOvq27iws/CfM2bMGIYNGyYXpqOjk2/pq6mpyX3OGKkta7iyONnD8puojBMEQRAEQRAEQRAEQRC+OR0dnXytfMvKxsZGoYXb27dv0dTUxMLCIsc42VvL5TcxZpwgCIIgCIIgCIIgCMJ/lNq/+F9BqlKlCkeOHJELO3z4MBUqVEBLSyvHOFWrVi3QvImWcYIgCIIgCIIgCIIgCMK/WlxcHI8ePZJ9fvr0KdevX8fc3BxHR0fGjBnD69evWb16NZA+c+pff/3FsGHD6NOnD+fPn2fZsmVys6QOHjyYmjVr8ttvv9GsWTN27drF0aNHOXPmTIGWRbSMEwRBEARBEARBEARBEP7VLl++TNmyZSlbtiwAw4YNo2zZsowfPx6A0NBQXrx4IYvv4uLC/v37OXnyJGXKlGHy5MnMmzePVq1ayeJUrVqVjRs3smLFCkqVKsXKlSvZtGkTlSpVKtCyiJZxgiAIgiAIgiAIgiAI/1HqBTwZwbdSu3Zt2QQMyqxcuVIhrFatWly9ejXHdFu3bk3r1q3zmr0vIlrGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPU/iPdVP9LRMs4QRAEQRAEQRAEQRAEQfhGRGWcIAiCIAiCIAiCIAiCIHwjopuqIAiCIAiCIAiCIAjCf9R/ZTbV/xLRMk4QBEEQBEEQBEEQBEEQvhFRGScIgiAIgiAIgiAIgiAI34jopioIgiAIgiAIgiAIgvAfpYbopvpvI1rGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPUxGyq/zr/8y3jnJ2dmTNnzjdNT01NjZ07d+ZpPRMnTqRMmTJ5SiO7kydPoqamRlRUVL6mK8jLvp1XrlyJqalpoeape/fuNG/evFDz8G8QHh6OlZUVz549K+ysyPnrr78IDAws7GwIgiAIgiAIgiAI/wKF1jIuICCADx8+cPToUYXvzp8/T9WqVbly5QrlypX7pvkKCgrCwMDgm65T+N/Wrl07GjduXNjZEIBff/2VgIAAnJ2dAXj27BkuLi5cu3ZNVvkdGxtLQEAAYWFh3L9/P8f0nj59irOzM+fOnaNGjRo0aNCAgwcPKsTbtm0bM2bM4N69e6SlpeHo6Ii/vz+zZ88GoE+fPkydOpUzZ85QvXr1fC3z1yht60bHsg0pYeWIpYEpP+5fyOmnNwolLzu37mDT2g2Eh4fj7OLMgKGDKFW2tMr4169eY8Gcv3j29BmWlha079KRwJbNlcY9fvgok8f9QrWa1Zky81dZ+I1r19m0dgMP7t0n/H04k2dMpXqtmvlarvv/XOXOsYt8iI7D1NaSCq3qY+1WVGncsAfPOTJvg0J44M99MLGxACAtNZXbh8/z+OJtEqJiMbE2p2yzOth7FcvXfOeFVvXK6DRpiEZxV9RNjInpN5TUx88KO1vcOXmJm4fOkRAdi5mdFVXa+WNb3Elp3JD7T9k7e5VCeNtffsDUtohC+KNLtzi+dBtOpT3w+6FDvuc9q8pO3tQqVhYjHX3exEWw585ZnkWGqoyvoa5O/eK+lLVzx0hHn+jEOI4/usLlV/dkcXQ1tfHzqERJm2LoaekQ+SGWvXfPcv/diwIrRxWnktRyLZdejtgIdt89zbOIz5WjIuXs3THSMSA6MY5jjy5z+WUwAN9VaYGrhb3CcsFvnrEiaG+BlOHcwROc3HWI2MgorIvaEdijPcW83JXGfRr8kH1rtvLudRhJSUmYWVpQuWFNagY0VBr/+plLrPvjb7x9y9D9xwEFkv8M9Yv70sSzKqZ6RryOfsuaKwdz3PdVnX1o6lkNGyMLEpITuRnyiPXXDhOX9AGAOq7lqO5SmqKmVgA8jQhl041jPAl/XWBlOLn3CIe37yU6Igo7R3va9u1K8ZIllMa9evYS/+w/yssnz0lJTsHWyZ6Ajq3wLi9/z0mIi2fn6s1cOxdEQlw8ltZFaN27Ez6+ZQusHPt37GXnxq1ERkRQ1NmJXgO+w7t0SaVxI8IjWDF/CY8fPCT0VQhNWgXSe2A/uTjn/znL1rWbCH0dQmpKCrYO9jRr25I6fvUKrAwA14+d5/KBU8RHxWJhb03tjgE4eLh8drnXD5+x+dfFWNpb02XyEFn45l8X8+r+E4X4LqVK0GJYj/zMukxD94oEetfAVM+QV1FvWXl5P/fePlcZv7pLaQK9qmNrbEFC0keuhzxkzZUDsvOiVrGy/FCtlcJyndZNJDktpUDKoEw151LUdSuPsa4BYbHh7Lh1iicRIUrjdizbkIqOXgrhoTHh/HZiTUFnVebykTNc2H+CuKgYitjb0KBzcxxLuH52uZcPnrBmynyKONjQZ9pIWfi9oJuc3X2EyDfvSUtNw8zaksqNa+NT3bcgiyEIKhVaZVyvXr1o2bIlz58/x8lJ/qF4+fLllClT5ptXxAEUKaL4sC38NyQlJaGtrZ3v6erp6aGnp5fv6RamgtpWuZGcnIyWltYXL/fhwweWLVvG/v37VcZ59+4djRo1AuDo0aNoamZeAn19fenbty99+vSRhWVcD5YvX87AgQNZunQpL168wNHRURbn6NGjtG/fnmnTphEYGIiamhp3797l2LFjsjg6Ojp07NiRP//8819RGaenpcOj8Ffsv3eOaY36fX6BAnL8yDHm/zGPIaOGUbKUD3t27Gb00JGs3LgGaxtrhfihISGMGTqKJs0C+OmXcdy+eYs5M37HxNSUWnVry8UNCw1j4bwFlCqjWLGX+CER1+Ju+DdtzIQff873cj27EszlbUep2M4Pq2L2PDhzneMLNhP4c28MzE1ULtdsXF+09DLPOx1Dfdn/r+/5hydBd6jSsRHG1haEBD/h1JLt+A/rjHlRm3wvw9dQ09Uh5c49kv45h8GwHwo7OwA8DrrN+U0Hqd6xCdZujgT/c5kD89bSduIPGFqYqlyu7eQBaOvqyD7rGim+pIsNj+Li1sPYFHdU+C6/lbJ1I8CrOjtv/8PzyDAqOXrRs2JTfj+1gajEOKXLdCrrh5GOHltvniA8IRoDbT001DM7RGioqdO7UiBxSR9Ye/UQ0YlxmOoa8jElucDKUdrWjQDvGuy8dYpnkaFUcvSmV8UAZp9cr7Icncv5Y6ijz5abxwmPj8ZQRw91tcxyrL68Hw11DdlnAy1dhtRsz83QRwVShutnL7F7xUZa9OmEcwk3Lhz+h2VT5zJiziTMilgoxNfW0aFao7rYOjmgravD0+CHbFu8Bm0dHSo3rCUXN/JtOHtXbcHFs3iB5D2ryo7edCnnz4rL+3jw7gV13SowqnZnRu2bT3hCtEJ89yKOfF+5BWuvHuLq6/uY6RvT07cpvSsFMuf0JgA8rZ05//w2qy+/JCkthaae1fixThdG75tP5IfYfC9D0D/n2bxkNR3798TV051/Dh7jzwm/MXHhTMytLBXiP7xzD8+yPjTv1g49A33OHT3F/Emz+PH3yTi6OgOQkpzCnJ9/xcjEmO/GDsbM0pzId+HoFOBz3pnjp1j+12K+G/oDJUp6cWjPfiaPHsefqxZTxNpKIX5yUjImpia06dye3Vt2KE3T0MiINp3bYe9YFE0tTS6fv8Sfv/2OqZkpZSuWL5By3L94g5Pr91Cva3Psijtx88RFdvy+nG7ThmFsYaZyuY8JHzj49yYcvVxJiJa/DgQM7EJaSqrs84f4eNaMm4u7r0+BlKGKU0m6V2jM0kt7uP/2BfXdfRlbtytDd89Tel54FHFiQNVWrLqyn8uv7mOuZ0yfyoH0q9KCWafWy+IlJCUyeNccuWW/ZUVcWTt3WvjUYuuN4zyNCKGqcym+q9KcX4+vIUrJubn91kn23D0j+6yups6oOp24EfLwm+X57oVrHFm7E//urSnq7sLV4+fYOPNvvvvtR0wsVR9PiQkf2L1oPS7exYmLli+bnoE+1QIbYGlnjYamBg+v3WHP3xvRNzbCtZTySvz/EnXRTfVfp9C6qTZt2hQrKytWrlwpF56QkMCmTZvo1asXAOfOnaNmzZro6elRtGhRBg0aRHx8vMp0X7x4QbNmzTA0NMTY2Ji2bdvy5s0buTi7d++mQoUK6OrqYmlpScuWLWXfZe+m+vDhQ2rWrImuri5eXl4cOXJEYZ2jR4/G3d0dfX19ihUrxrhx40hOln+YnT59OtbW1hgZGdGrVy8SExNz3D6pqan06tULFxcX9PT08PDwYO7cuTkuk114eDgdOnTAwcEBfX19fHx82LBBsfVFditXrsTR0RF9fX1atGjB7Nmz5bphKusSOWTIEGrXri37LEkSM2bMoFixYujp6VG6dGm2bt2a43oXLFhA8eLF0dXVxdramtatW+cpPWdnZ6ZMmUL37t0xMTGRVbJ87phau3YtFSpUwMjICBsbGzp27Mjbt29z3F5Zt4+zszNqamoKfxlyc7xk9/r1a9q1a4eZmRkWFhY0a9bsi7tinj17llq1aqGvr4+ZmRl+fn5ERkYCULt2bQYMGMCwYcOwtLSkQYMGPHv2DDU1Na5fvy5LIyoqCjU1NU6ePCkLu3PnDk2aNMHY2BgjIyNq1KjB48ePZd+vWLECT09PdHV1KVGiBAsWLJB9l7GOzZs3U7t2bXR1dVm7di1paWlMmjQJBwcHdHR0KFOmjNIWaVkdOHAATU1NqlSpovT7ly9fUqNGDYyMjDhx4gQODg7Y2NjI/jQ0NGT7PGtYfHw8mzdv5vvvv6dp06YK16y9e/dSvXp1Ro4ciYeHB+7u7jRv3pw///xTLl5gYCA7d+7kw4cPOZbjW7jw4g5LLu7m1JPrhZqPLRs20TiwCU2aBeDk4syAYYOwsrZi9zblPy52b9+FlY01A4YNwsnFmSbNAmgU0ITN6zbKxUtNTWXq+El079sTW3tbhXQqVa1Mr359qFmnlsJ3+eHu8Uu4VSlN8aqlMbGxxLd1ffTNjLl/+lqOy+ka6aNnbCj7U89ScfLk0h18GlbB3tsVI0tTPGqUw9bThbvHgwqkDF8j6egpEtduJuVq4bSyVObmkfN4VC9HiRrlMbMtQtV2jTA0M+Huqcs5LqdnZIC+iZHsL+u+AEhLS+P40m2UD6yDcQ4/CvJLDZfSBL0MJuhlMG/jItlz9yzRiXFUdlLecsa9SFGKWdixPGgfj8JfEfkhllfRb3keGSaLU6GoJ/paOqy+fIDnkWFEfYjjWWQYobHhBVeOYmUIenGXSy/vfirHGaI+xFHZWfkPa/cijhSzsGf5pT08ep9ejpdR8uX4kPyRuI8Jsr/iRYqSnJpSYJVx/+w5gm/d6lSqXxNrBzua9WyPqYUZ5w+dVBrfvpgjZWtUwsbRHnMrS8rXqoJHGW+eBsv/qE1LTWP93CU0bBeIuXXBvxhuVKIKJ59c5eTjq4TEvGft1YOEJ0RTv3gFpfHdLBx4Fx/FoQcXeRcfxYN3Lzj+6DLFzO1kcRac287Rh0E8jwojNOY9Sy/tRl1NDW+bgmnBe3THfqo1rE11vzrYOtrTrm9XzCwtOLVfsdcNQLu+XfFrHYCzuyvW9ra06NYeKzsbbl68Kotz9shJ4mPj6D9uGG5eHlhYFcHNuwRFiylvTZsfdm3eQf3GDWnQ1J+izo70HtgPyyJFOLhrn9L41rbW9B7Ujzr+9dE3VN6bx6dsKSrXrEZRZ0ds7e0IaN0c52Iu3L11p8DKceXQaUrW9MWnVkUs7Kyp0ykQI3MTbhy/kONyR1dup0TlMti6Km5jPUN9DEyNZH8vbj9ES1sL94qlCqQMTb2qcfzRFY4/usLrmHesuryf9wnRNPSoqDS+exEH3sZHceDeBd7FRXL/3XOOPgiiWLbWuhIS0Ylxcn/fUm23clx8focLL+7wJi6SHbdPEfUhjurOyrdjYkoSsR8TZH+Optboaely8UXBHT/ZXTxwkjK1K1G2TmUs7a1p2KUFxhamXD12NsflDizfgneVcti7OSt85+TlRgnfUljaW2NmbUlF/1pYFbXlpZLWl4LwLRRaZZympiZdu3Zl5cqVSJIkC9+yZQtJSUl06tSJW7du4efnR8uWLbl58yabNm3izJkzDBigvNm+JEk0b96ciIgITp06xZEjR3j8+DHt2rWTxdm3bx8tW7akSZMmXLt2jWPHjlGhgvIHj7S0NFq2bImGhgYXLlxg0aJFjB49WiGekZERK1eu5O7du8ydO5clS5bwxx9/yL7fvHkzEyZMYOrUqVy+fBlbW1u5CglV63ZwcGDz5s3cvXuX8ePHM3bsWDZv3pzjclklJiZSvnx59u7dy+3bt+nbty9dunTh4sWLKpe5ePEiPXv2pH///ly/fp06deowZcqUXK8zw88//8yKFStYuHAhd+7cYejQoXTu3JlTp04pjX/58mUGDRrEpEmTuH//PgcPHqRmzZpfnV6GmTNnUrJkSa5cucK4ceNydUwlJSUxefJkbty4wc6dO3n69Cndu3fPddmDgoIIDQ0lNDSUV69eUblyZWrUqCH7/nPHS3YJCQnUqVMHQ0ND/vnnH86cOYOhoSH+/v4kJSXlKk/Xr1+nXr16eHt7c/78ec6cOUNAQACpqZlvG1etWoWmpiZnz55l8eLFuUr39evXssrq48ePc+XKFXr27ElKSvrbviVLlvDTTz8xdepUgoODmTZtGuPGjWPVKvluYKNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLmzZv4+fkRGBjIw4eq38j9888/Ks/l+/fvU61aNUqUKMHBgwcxMjLKVfkANm3ahIeHBx4eHnTu3JkVK1bIXbNsbGy4c+cOt2/fzjGdChUqkJyczKVLl3K97v+y5ORkHtx7QIVK8g+4FSr6cvuW8m1599YdKlSU70rgW7ki94PvyY45gNXLVmJqZkqTwKb5n/HPSE1JJeJlGLaeznLhdp7OvHuac1etvb+tYOvYPzkybwNhD+S7xKSmpKCuJd+YXVNLk7ePX+ZLvv+LUlNSeP8iBAcv+S4tDl6uvPnMdts+eTFrRsxi7++rCLn3VOH7q3tPoWdkQInqBd+CX0NNHXuTIjx8J5/nB+9e4mSm2IIUwMvahVfRb6lVrCxj63VlRK2ONPGsimaWFmRe1s48j3pD85I1+Ll+d4bWbEcd13KoUTBvztPLYcWD9/LlePj+Jc5mylt3elm78CrqLbVdy/FT/e6MrN2ZJp7V5MqRnW9RL26EPCQ5Nf9bnaQkp/D68XPcy3jLhbuX9ub5/ccqlpL3+skLnt1/TDFv+W6tR7bswcDYiIr1a6hYMv9oqGvgYm7HrVD5PN8Ke0xxS+Xd6R++f4m5vjGl7dJb7RnrGlCxqBfXc2gpo6OhhYaaOvEf8/8lVEpyCi8ePcWrrHxlglc5Hx4HP8hVGmlpaSR+SMQgS8vXmxevUKxEcdYvWMGITv34pf8o9m/aSVpqWr7mP0NycjKPHzykjK/8taSMbznu3b6bL+uQJIkbV67x+uUrvEspr8DPq9SUFN48e41TSflWnU4l3Ql5pLqL5+3TQUS9i6BK8/q5Ws+t05fxqFQaLZ38772hoa5BMXM7bmSryL8Z8giPIspbQN9/9wILfWPK2qWfzya6BlR28ubaa/lhUHQ1tZnfYgQLW45kdJ3OOJspvigsKBpq6jiYWHHvnfx+uPf2Oc7muctHJSdvHrx7USAtXJVJTUkh9OkrXEp6yIUXK+nBq4fPVC5349RFIt+8p2ZLv8+uQ5Iknt5+QETYu1x1fRWEglCos6n27NmTmTNncvLkSerUqQOkdwdr2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y8+ZNnj59StGi6Q8Ta9aswdvbm6CgIHx9fZk6dSrt27fnl19+kS1XurTy8YmOHj1KcHAwz549w8HBAYBp06bJurll+PnnzG5Ozs7ODB8+nE2bNjFq1CgA5syZQ8+ePenduzcAU6ZM4ejRozm2jtPS0pLLo4uLC+fOnWPz5s20bdtW9UbNwt7enhEjRsg+Dxw4kIMHD7JlyxYqVaqkdJm5c+fi5+fHjz/+CIC7uzvnzp37bKukrOLj4/n99985fvy4rJVSsWLFOHPmDIsXL6ZWLcXWKC9evMDAwICmTZtiZGSEk5MTZcuW/er0MtStW1duG3Tt2vWzx1TPnj1l8YsVK8a8efOoWLEicXFxGBoafrb8Wbs6Dx48mNDQUIKCMluvfO54yW7jxo2oq6uzdOlSWQu7FStWYGpqysmTJ2nYUPm4M1nNmDGDChUqyFUCe3vL/5hwc3NjxowZss+5aXk3f/58TExM2Lhxo6xrqbt75g+MyZMnM3v2bFnrUxcXF+7evcvixYvp1q2bLN6QIUPkWqjOmjWL0aNH0759ewB+++03Tpw4wZw5c5g/f77SvDx79gw7Ozul33Xt2pWqVauybds2NDRU/4hTZtmyZXTu3BkAf39/4uLiOHbsGPXrpz84Dhw4kNOnT+Pj44OTkxOVK1emYcOGdOrUCR2dzG5uBgYGmJqa8uzZsxyP2f8voqOiSUtNxcxcvlWRmYUZkRcilC4TER6OmYV85Z2ZuRmpqalER0VhYWnJrRs32b97H0vXLi+wvOfkY1wCUpqk0K1R18iAxBjlrbr1TAyp3MEfc0cb0pJTeRJ0myN/bqDh4I5Yu6X/ALDzLEbw8SCs3YpiZGlG6P1nvLz5UK5iWJCX+Glf6BnL7ws9YwMSYpS3StA3MaJGlwCKONqSmpLKwws32PvHKgKGd8fW3RmAsEcvuH/mKq3GfZsu3vraumioq8vGH8oQ9zEBIx3lFSfmesY4m9mSkprK6ssHMdDWpXnJmuhp6bD15on0OPrGuOoZcT3kISsu7cPSwIRmJWuirqbOsUc5txz8GhndZOM+JsiFx35MwEhHX+kyFvrGOJvbkpKWyurL+zHQ1qN5yVroa+mw5eZxhfhFTa2wNbZg681jSlLLu/jYONLS0jAyMZYLNzQ1JjZKsQtbVlP6jCQuJpa0tFQatA2kUv3MF45P7z0k6NgZhs4eXyD5zs5IRx8NdXWiE+WvSdEf4jGxVf6c8/D9Sxac287Aaq3R0tBEU12DK6/useqy6qEh2pepT8SHWG6H5X+rk/RtmYaxqXzXfyNTE2Iic94XGY7s2EdS4kfK16gsC3sX9pbwN3epVLsaAyeO4m1IGBsWriQtNY2mHVvmkNrXiY2OIS01DdNs90ITM1MiIyLzlHZ8XDy9WncmOSkZdQ11vhvyg0KlX375EJuAlJaGgbH88aNvbEhCtPIKnMiw95zZcpB2Y/uhnotns9AnLwl/FUbDnq0/G/drGOvoo6GuodBqLToxHlNd5efFg3cvmXdmC0NqtpOdF0Evg1l+KXO8ypCYdyw4t50XUW/Q09KhcYkqTPbvw8i98wkrwJbIGQx00q+9sYmK115jXeXX3qyMdfTxtHJmzZUDBZVFBQmx8UhpaRiayL88NzAxIi4qRukyEWHvOLFpL13GDczxeEpM+MC8gRNJTUlBTV0d/+6tKebjoTL+f4mYTfXfp1Ar40qUKEHVqlVZvnw5derU4fHjx5w+fZrDhw8DcOXKFR49esS6detky0iSRFpaGk+fPsXT01MuveDgYIoWLSqriAPw8vLC1NSU4OBgfH19uX79utyYUDkJDg7G0dFRVhEHKO0Ct3XrVubMmcOjR4+Ii4sjJSUFY2NjuXT69ZN/aK9SpQonTpzIcf2LFi1i6dKlPH/+nA8fPpCUlPRFM7CmpqYyffp0Nm3axOvXr/n48SMfP37McYKK4OBgWrRooZDXL6mMu3v3LomJiTRo0EAuPCkpSVbBll2DBg1wcnKiWLFi+Pv74+/vT4sWLdDX1/+q9DJkbymVm2Pq2rVrTJw4kevXrxMREUFaWvrb0BcvXuDlpTiYqSp///03y5Yt4+zZs3IVdJ87XrLLyHP21lyJiYly3UFzcv36ddq0aZNjHFWtyj6Xbo0aNZSO8fbu3TtevnxJr1695M65lJQUTEzkH56zrjsmJoaQkBCqVasmF6datWrcuKG6+9uHDx8UKugzNGvWjB07drBt27ZcV2ZDeou6S5cusX37diC9RW+7du1Yvny5rDLOwMCAffv28fjxY06cOMGFCxcYPnw4c+fO5fz58+jrZz7o6OnpkZCQoHRdGednVlkr8/6rFB4MJCCHh4XsrXYyKqPU1NRIiE9g2oQpjBg7CpNCnuFYoXWRBKoaHJlYW2BinTnWVJFi9sRHxnD36CVZZZxv6/qc33CA3ZOXgBoYWZrhWrkUjy/cLKAS5Ey7bk30h2Te1+LGTibldnCh5OVzFI8Z1XFNbSwxtckca8ratShxkTHcOHwOW3dnkhI/cmLZdmp0CVQ6jlxBUqh4VVNDVVEyzquN14+SmJLegnpv8Dk6l/Nj5+1/SElLRQ014pM+sO3mSSQkXse8w1jXgJrFyhRIZVxmObLlFT5bjg3XDmeW4+4ZOpdvxI7bp0hJS5WL71vUi9CYcF5GqR5aIl8oXLdyOME/6T9lFB8TP/LiwRP2r92GpY0VZWtUIvFDIhvmLqP1910xMM59q+38IGXb8mo57Ax74yJ0/bTdb4Y+xlTPkI5lGtKzYlOWXNytEL+pZzWqOPkw5djKgh0bK/tm//yuAODSyXPsXbed/uOGyVXoSWkSRqbGdB7YG3UNdZyKFyMqIpLD2/YVSGVcJsWC5PWHs56+Hn8snc+HDx+4efU6yxcswdrOFp+yBdPFE1ByboCyHZKWlsb+xRuo0rwBZja565Z9+59LWDjYYFtM+UuI/KLsHqHqGmVvUoQevk3YevMEN0IeYqZnROfy/vSp3IxF59OH3Hj4/hUP37+SLXP/7Qt+a9KfRiUqsyJIeVfkb0FNLef7YYaKjt58SP6o0JL2m8h2PKU/Iio/nnbOX0ONVv5Y2CqOs5iVjq4OvaeOIOljEs/uPODoup2YFbHAycstP3MuCLlSqJVxkD6Rw4ABA5g/fz4rVqzAycmJevXSZ/pJS0vju+++Y9CgQQrLZR1APYMkKb9xZQ3/koH2lbU4yJ7+hQsXZC3t/Pz8ZK2EMmZR/FqbN29m6NChzJ49mypVqmBkZMTMmTNz7GKa3ezZs/njjz+YM2cOPj4+GBgYMGTIkBy7NuamlYW6urpCvKxjnmVUXu3btw97e/kxE1RVLhgZGXH16lVOnjzJ4cOHGT9+PBMnTiQoKOir0suQveLxc8dUfHw8DRs2pGHDhqxdu5YiRYrw4sUL/Pz8ct0lFODkyZMMHDiQDRs2yLW8/JrjJS0tjfLly8tVIGbI7YQjuTnus2+rjDGSsu7r7GPb5ZRuxn5bsmSJQkvM7K3TlFUQZz/XVJ3fGSwtLWVj4GU3duxYSpUqRadOnZAkSa7rek6WLVtGSkqK3HEnSRJaWlpERkZiZpb5JtvV1RVXV1d69+7NTz/9hLu7O5s2baJHj8zZviIiIlTus19//VWuNSzAhAkT4D86p4yJqQnqGhpEhMu3gouMiFRoLZfB3MJCIX5UZBQaGhoYm5jw7MlTwkJDGTviR9n30qfjsF7V2qzevA57B8VZF/OTjqE+aupqfIiVf7OeGBf/RZU3RZzteRKUOTaLrpE+dfq2IjU5hY/xH9AzMeTarpM5TkJQkJLOXyLlXmZXsLT3ylszFibdT/sieyu4xNh49I0/38o5g5WLA48upld6xryLIDY8ikPzMwfmzrhGLun3C+0mDcTYyjwfcp8pISmR1LQ0hdZjhtp6Cq3MMsR+jCc6MV5WgQXwLi4SdTU1THQNCU+IJvZjPKlSmlyFzNu4SIx1DdBQUydVyt9uefFJH9LLka0lhqGOvspyxCQmEJ0YJ1eOt5/KYapnyPv4zBZQWuqalLYrzuEHuX9O+lIGRuljOWZvBRcXHYuRqeqXaoBsHDhbJwdio2M4snk3ZWtUIjzsLZFv37Pi18xxRjOOqdFt+jLyzylY2uT84/JLxX5MIDUtTaG1j7GugcqxrAK9q/Pg/Qv2BZ8D4GXUG1ak7GNCg55suXFcbgKOxiWqEuhdg1+Pr+Zl1Bul6eWVoXH6WI7ZW8HFRkcrtJbLLuif86ye9zff/TgYz7Ly4xWamJuioaGBukbmSD62Re2JiYwiJTkFTa38/elkZGKMuoY6URHy19DoyGhMzUzzlLa6ujq2Duk9BooVd+XV85dsW7epQCrj9Iz0UVNXJz5bK7iE2Dj0TRSvt0kfPvLm6SvePg/h+NpdwKfjXpL4o+cYWo3ohWOWypHkj0ncv3iDqi0+3xvka8V8TCA1LRVTPfn8muRwXrQoWYv7717IJjt4EfWGxIt7mOzfh43XjxD1QXE5CYnH4a+xMVKc8KUgxH9Uce3V1idWxbU3q0qOXlx+FZzv94Sc6BsZoKaurtAKLiE6FgMTxZcWSR8+Evr0JWHPX3NoVfoL9IzjaVrX4XQc3Q9n7/Qu1Grq6ph/qgC2cbLn/es3nNtzVFTGCYWi0Cvj2rZty+DBg1m/fj2rVq2iT58+sh/c5cqV486dO7i55e7k8PLy4sWLF7x8+VLWOu7u3btER0fLWtGVKlWKY8eOyf1A/lx6ISEhsu5v58+fl4tz9uxZnJyc+Omnn2Rhz5/L98n39PTkwoULdO3aVRZ24ULOg5mePn2aqlWr0r9/f1lYbltBZU2jWbNmsi52aWlpPHz4UKFFYVZeXl4Kecv+uUiRIgrjY12/fl3WOsrLywsdHR1evHjxRd3xNDU1qV+/PvXr12fChAmYmppy/PhxGjRo8FXpKfO5Y+rWrVu8f/+e6dOny46hy5e/rIXAo0ePaNWqFWPHjpXregm5O16U5XnTpk1YWVnl2IIuJxnHffbKnpxkVBqFhobKWiBmncwhI91Vq1YpnQHV2toae3t7njx5QqdOnXK9XmNjY+zs7Dhz5ozcuIHnzp2jYkXlA+gClC1blrVr16r8/ueff0ZTU5NOnTqRlpZGhw4dcsxHSkoKq1evZvbs2QpdgVu1asW6detUjl/p7OyMvr6+3MQgjx8/JjExUWVrzjFjxjBs2DC5MB0dHY4sHZxjPv9XaWlp4V7CncuXgqhRO3M/X7kURLWaymec9fLx5vxp+YF7L1+8hIdnCTQ1NXF0cmT5evnxCJctWkJCQgIDhw3GSsmsdPlNQ1MD86I2hN57hmPpzG4Pofee4eCT+xkSI169Qc9EsfJOQ0sTfVMj0lJTeXH9Pk7lVF/PC9SHRNI+hH0+XiHS0NTE0tGO13cf41I2czu9Cn6Mc+ncz5oW/jJU9mPS1MaS1hO+l/s+aOdxkj8mUbWdPwbmX3eNzkmqlMbr6HcUL1KUO28yx68rbunA3TfPlC7zLCIMH1tXtDU0Sfo0dpqlgQlpUprsR+WzyDDK2BWXa5lmaWBKTGJ8gfzoSi/HW4pbFuVOlm6LxS3ly5XV88hQStm5oq2hRVJqsiyPaVKawo/cUnZuaKprcO1V7sYL+xqaWprYuzrx8MZdfCpldvd7cPMu3r5lcp2OJEmkJKfvFyt7W4b/IX9vPrh+Bx8TE2nWswOmFvlbuQuQmpbK04gQStq4cvnVPVm4j40rV7J8zkpbQ4u0bMeF7HOWF2VNPKvS3Lsmv51Yy9OIkHzPewZNLU0c3VwIvnaLslUzxxINvnab0pVVzxZ66eQ5Vs9dTO9RA/CpqHg/dvVyJ+jkOdLS0mQvJd+8DsXE3DTfK+Ig/V7o6l6c65evUblmZo+A65evUqm68gmpvpYkSZ+dMOxraWhqYu1sz4s7DylePnNcuud3HuJaVrFXiY6eDl2nDJULu3H8PC/uPiZgQGdMisgf9w8u3SQ1ORXPqjn3iMmL1LRUnkSEUMrWjaCXmS29S9m6EfRKectvHQ0thetlxnmR0/ibTmY2BVZRnV2qlMar6Ld4FHGUa93mYeXI7dCcu5C7WThQxNCMC1m63X4LGpqa2Lo48PT2A0r4ZlYeP739APfyiuMe6ujp0OdX+eF+rhw9y/O7D2k5qDumRXK+jmZcj//r1AtoTFjh6xV6ZZyhoSHt2rVj7NixREdHyw2UP3r0aCpXrswPP/xAnz59MDAwIDg4mCNHjijMVAhQv359WeuXOXPmkJKSQv/+/alVq5asG9yECROoV68erq6utG/fnpSUFA4cOKB0vK769evj4eFB165dmT17NjExMXKVKJA+ztaLFy/YuHEjvr6+7Nu3jx075GcCHDx4MN26daNChQpUr16ddevWcefOHYoVUz27lJubG6tXr+bQoUO4uLiwZs0agoKCcHFxyfW2dXNzY9u2bZw7dw4zMzN+//13wsLCcqyMGzRoEFWrVmXGjBk0b96cw4cPK3RRrVu3LjNnzmT16tVUqVKFtWvXcvv2bVklg5GRESNGjGDo0KGkpaVRvXp1YmJiOHfuHIaGhnJjhWXYu3cvT548oWbNmpiZmbF//37S0tLw8PD4qvRU+dwx5ejoiLa2Nn/++Sf9+vXj9u3bTJ48Odfpf/jwgYCAAMqUKUPfvn0JC8v8sWpjY5Or4yW7Tp06MXPmTJo1ayabYfTFixds376dkSNHynWjVmXMmDH4+PjQv39/+vXrh7a2NidOnKBNmzZYWloqXUZPT4/KlSszffp0nJ2def/+vdx4dwADBgzgzz//pH379owZMwYTExMuXLhAxYoV8fDwYOLEiQwaNAhjY2MaNWrEx48fuXz5MpGRkQoVT1mNHDmSCRMm4OrqSpkyZVixYgXXr19X2jowg5+fH2PGjFFosZbVjz/+iIaGBl26dCEtLS3HSsK9e/cSGRlJr169FLrVtm7dmmXLljFgwAAmTpxIQkICjRs3xsnJiaioKObNm0dycrJc1+rTp09TrFgxXF2VDxKro6Pzzbql6mnp4GCS2eTOztiS4pYOxCTG8yYub2PUfIk2Hdrx68QpeJQogbePN3t37ubNm7cEtGwOwJL5i3j37j1jJ6Yfd4Etm7Fzy3bmz/mTps0CuHPrDvt37+PnyRMA0NbRwcVV/rpqaJReiZI1/ENCAq9fZU6mEBoSyqMHDzEyNsbaRvmA+F/Cq25Fzq7eg4WjDUVc7Hlw9jrxETG410i/Rl7ddZIP0bFU6xoAQPCJIAzMTTC1tSQtNZUnl+7w4vp9avXOHDLg3bMQPkTFYuZgTUJULDf3n0GSJLzrKx//szCoGRmibmWJ2qfKA/VPrRDTIqKQIqMKJU+lGlThxPLtWDrZYe1alOB/rhAXEY1nrfRngkvbjxIfFUOdnukvTm4dPY+RhSlmdlakpqby6MJNnl4NpkG/9O7tmlpamNvLHyM6+und47OH56fTT2/Qrkw9XkW95UXUGyoW9cJUz4gLL9JfjPl7VMZY14DNN9LHSrse8oB6xSvQpnRdjjwIwkBbl8YlqnL55T1Z184Lz+9QzdmHAO/qnHt2C0sDU+q4lePss1sFV44n12lXtgGvot/yIjKMSo7emOoZcuH5p3KUqIKJrgGbrqfPhnntdXo52paux+EHFzHQ1qOJZzWCXgYrdFGtWNSLO2FPSEjOebb6vKoZ0ICN85bh4OqMk0cxLh75h6j3EVRpWBuA/Wu3ER0RRYdBvQA4e+A4ZpbmFPk0s/Ozew/5Z/dhqjWqC4CWthY2jvItdnUN0luwZA/PTwfunef7Ki15GhHCw/cvqetWHgt9E449TH8B2a50Pcz0jWVd7a69fkCvSgHUc6vAzdDHmOkZ0rm8P4/evyLq06DuTT2r0bpUHeaf28a7+ChMPrW8S0xJ4mNK7nsX5Fb9Fo1ZMXsBTsWLUaxEcU4fPE7Eu/fUbJzew2bHyo1EhUfQY3j6i+1LJ8+x4veFtOvbFReP4kRHRAGgraON3qdtXqtxA07sOcymxaupG+jH29dhHNi8i7oB/vme/wzN2rZgztRZuHkUx8Pbk8N7D/D+7Tv8AhsDsObvFYS/C2fIT5ljID95mF6pkvghkZioaJ48fIyWliZFndNnJN26dhNuHsWxsbclJTmFKxeCOHnoGP2GKX+JmB/K+9XgwN+bsHZ2wNbNkVsnLxEbHkXpOulj8p3ecoC4yBga9W2Hmro6lg7yE7foGRmiqaWpEA7pEz24lfNCT8Xssfll792zDKzWmifhr3nw7iX13StgaWDCkQfpYz93KNsAcz1j5p/bBsDlV/f4rkpzGrhXlHVT7VahMQ/fv5RNdtC6VB0evntJaGy4bMw4Z3Nbll3aU6Blyerko6t0Ku/Hy6g3PIsIpYqzD2Z6Rpx9lt7qu6lnNUz0DFh39bDccpWcvHkWEfpNxrbLrlKj2uxauA7bYkVxcHPm2olzRIdHUq5eVQBObNpLbGQ0gf06oaaujlVR+ckoDIwN0dDSlAs/u/soti5FMbO2IDUllcfXg7l1Jgj/7jkP5SMIBaXQK+MgvavqsmXLaNiwoVz301KlSnHq1Cl++uknatSogSRJuLq6quxipqamxs6dOxk4cCA1a9ZEXV0df39/uYq72rVrs2XLFiZPnsz06dMxNjaWa32Tlbq6Ojt27KBXr15UrFgRZ2dn5s2bh79/5g25WbNmDB06lAEDBvDx40eaNGnCuHHjmDhxoixOu3btePz4MaNHjyYxMZFWrVrx/fffc+jQIZXbpF+/fly/fp127dqhpqZGhw4d6N+/PwcO5H7wzHHjxvH06VP8/PzQ19enb9++NG/enOho1QPbVq5cmaVLlzJhwgQmTpxI/fr1+fnnn+UqpPz8/Bg3bhyjRo0iMTGRnj170rVrV27dynyAnzx5MlZWVvz66688efIEU1NTypUrx9ixY5Wu19TUlO3btzNx4kQSExMpXrw4GzZskE0y8KXpqfK5Y6pIkSKsXLmSsWPHMm/ePMqVK8esWbMIDAzMVfpv3rzh3r173Lt3T2EyAUmScnW8ZKevr88///zD6NGjadmyJbGxsdjb21OvXr1ct5Rzd3fn8OHDjB07looVK6Knp0elSpU+2zps+fLl9OzZkwoVKuDh4cGMGTPkWolZWFhw/PhxRo4cSa1atdDQ0KBMmTKy8d569+6Nvr4+M2fOZNSoURgYGODj4yObQEOVQYMGERMTw/Dhw3n79i1eXl7s3r2b4sVVtyzy8fGhQoUKbN68me+++05lvJEjR6KhoUG3bt1IS0ujS5cuSuMtW7aM+vXrK1TEQXrLuGnTpnH16lVq1arF/Pnz6dq1K2/evMHMzIyyZcty+PBhPDwyW0Zt2LAh1+NVFrQSRZz4q0VmZeig6ukPIfuDzzP1+CpVi+W7ug3qERMdw+rlK4l4H45zMRem/zEDG9v0B/Hw8HDevsl8c2xrZ8evf8xgwZw/2bV1BxaWlgwcPphadWt/0XrvB99naP/MruoL5vwFgF8Tf34c/5OqxXLNubwnH+M/cPPAWT7ExGNqa0nd/m0wNE8/lj7ExBEfkdn1Ii0llas7jpMQHYeGlmZ6/O/bYO+dWXGblpzC9b3/EPs+Ci0dbey9i1Gta1O09ZWPk1gYtKr4YjAyc7sa/pz+w/HD6o0krtlUKHly9S1JYnwCV/edIiE6DnM7KxoN7ITRp+69CdGxxEVk3hNTU1K5sPUw8VGxaGppYmZnhf/Ajjj6uKtYw7dxM/QR+to61CteAWMdA8LiwlkRtFfWOsxIR1+ua1VSagpLL+6mmXcNBlZvTULSR26GPuLQ/cwunNGJcSy9uIcAr2oMqdGOmMR4zj69ycnH1wqsHDdCH6GvrUv94r7p5YgNZ/mlvbLKHGMdfUz1MrsgJaUms+TCLpqVrMmgGm1JSErkZsgjDt6Xb7FvaWCKi4UdSy7sKrC8ZyhTrSIJsfEc3bKHmMhobBzt6DV2MGZW6V3OYiKjiXqf+cNVkiT2r9tOxNv3aGhoYGFdhEadWlK5YeFO5HPhxR0MdfRpUbIWpnqGvIp+y8yT63ifkH4+mOoZYaGfef/75+l1dLW0aehekU7l/EhISuTOm6dsvH5EFqd+cV+0NDQZUkP+OX3brZNsv3Uy38vgW7MK8TFx7NuwneiIKOycHBjwyygsrNJfNkVHRBHxLnNfnD54jLTUVDYsXMGGhStk4VXq1aT7sPQxMM2LWDB48o9sWbKWST/8iKmFGXUD/fFvnbvnwK9RvW4tYqJj2bR6PZHhETi6ODPut0lYfXo5FBEewbu38uMgDuudWan2+P5D/jl6kiI2VizZlH4P/5iYyOI/5hP+7j3aOtrYOxZl6M8jqV634I47j0ql+RCXwIVdx4iPjsHC3oYWw3pgbJn+gjQ+KpbY8KgvTjcy7B2vHzyj1Yhe+ZxjReef38ZIR59WpepgpmfEy6g3/Hp8De/jowAw0zPC0sBUFv/Uk2voaeng71GJruX9iU9K5E7YE9ZezfyNZ6CtS9/KzTHVMyQhOZGnEaFMOLSUx+E5z7Cen66FPEBfWxc/j8oY6+gTGhvO4gu7ZBWGxroGmOnJ/6bQ1dSmtK0b22+f+mb5zMqrclkSYuM5s+MQcVExFHGwpf3IvphYpr/wi4uKIfr9l71ATv6YxMGVW4mNiEZTWwsLOyuafd8Zr8oF1+JSEHKiJomp2ITPWLlyJUOGDCEqKqqwsyIIOdq/fz8jRozg9u3bsu4l/wa3b9+mXr16PHjwQGnlXk6qzf82MzYWpLM/LCKkoAdUL2B2plZMObLi8xH/5X5u0IPIBi0+H/FfzOzIDmaf2lDY2ciz4bU6MHrfgs9H/Jf7rUl/Ru39q7CzkSczmg5g9+3ThZ2NPAssWYNO6ycWdjbyZF3HiZx8dKWws5Fntd3KE1wAs8h+a542xVh8fmdhZyNPvqvSnLZrfv58xH+5zV2mMGTXnMLORp7MaTaE1UGqZ2D+X9HVt3FhZ+GrNFqquldSYTvQ+/fCzkKh+Fe0jBMEQcgPjRs35uHDh7x+/VpuVuXCFhISwurVq7+4Ik4QBEEQBEEQBEH47xGVcYIg/KcMHvzvm/Ag+wQQgiAIgiAIgiAIwv9f/55+XMK/Vvfu3UUXVUEQBEEQBEEQBEH4H6Smpv6v/fv/6v9vyQVBEARBEARBEARBEAThGxOVcYIgCIIgCIIgCIIgCILwjYgx4wRBEARBEARBEARBEP6j1NXUCjsLQjaiZZwgCIIgCIIgCIIgCIIgfCOiMk4QBEEQBEEQBEEQBEEQvhHRTVUQBEEQBEEQBEEQBOE/Sg3RTfXfRrSMEwRBEARBEARBEARBEIRvRFTGCYIgCIIgCIIgCIIgCMI3IrqpCoIgCIIgCIIgCIIg/EeJ2VT/fUTLOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6KbqiAIgiAIgiAIgiAIwn+Umuim+q8jWsYJgiAIgiAIgiAIgiAIwjciKuMEQRAEQRAEQRAEQRAE4RsR3VQFQRAEQRAEQRAEQRD+o0Q31X8f0TJOEARBEARBEARBEARBEL4RURknCIIgCIIgCIIgCIIgCN+ImiRJUmFnQhAEQRAEQRAEQRAEQch/rVaNLewsqLSt27TCzkKhEGPGCYIg/IuFRL0t7CzkmZ2pFdXm9yvsbOTJ2R8WEXvvQWFnI8+MSrgTc/REYWcjT4zr1+Hp+9eFnY08c7G0507o48LORp5527qyOmh/YWcjT7r6Nv7PHFOxT58VdjbyxMjFmdiQkMLORp4Z2dkRvWRVYWcjz0z6dONlZFhhZyNPiprZ8DYmvLCzkWdWxhY8ef+qsLORJ8UsHYh9+Kiws5FnRsXdCjsLwn+E6KYqCIIgCIIgCIIgCIIgCN+IaBknCIIgCIIgCIIgCILwHyVmU/33ES3jBEEQBEEQBEEQBEEQBOEbEZVxgiAIgiAIgiAIgiAIgvCNiG6qgiAIgiAIgiAIgiAI/1Hqopvqv45oGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0R0UxUEQRAEQRAEQRAEQfiPErOp/vuIlnGCIAiCIAiCIAiCIAiC8I2IyjhBEARBEARBEARBEARB+EZEN1VBEARBEARBEARBEIT/KDVEN9V/G9EyThAEQRAEQRAEQRAEQRC+EVEZJwiCIAiCIAiCIAiCIAjfiOimKgiCIAiCIAiCIAiC8B+lLmZT/dcRLeMEQRAEQRAEQRAEQRAE4RsRlXGCIAiCIAiCIAiCIAiC8I2IyjhBEP6TEhISmDx5Ms+fPy/srAiCIAiCIAiCIBQaNTW1f+3f/1eiMk74f2/lypWYmpp+k3XVrl2bIUOGfJN15acv3UbOzs7MmTOnwPKTGwMHDiQkJAQnJ6cvWu5/dR8JgiAIgiAIgiAI/xvEBA7C/4TP1Zh369aNlStXfpvM/D/Url07GjdunOv4QUFBGBgYFGCOcrZhwwbevHnDrl27vnjZ7du3o6WlVQC5yn87t+5g09oNhIeH4+zizIChgyhVtrTK+NevXmPBnL949vQZlpYWtO/SkcCWzZXGPX74KJPH/UK1mtWZMvNXWfiNa9fZtHYDD+7dJ/x9OJNnTKV6rZr5XbTPKm3rRseyDSlh5YilgSk/7l/I6ac3vnk+ciJJEn9v3MCOQ4eIjY/D292d0d/1w9VRdQXx4xfPWbR+HfcePyb07VuG9epNx8BmcnEWb1jPko0b5MIsTE05tGpNgZRhyf697Dh7htiEBLydnRnVtgOudnYqlzl+/RorDx3g5bt3pKSmUrSIFZ3r1adxpcqyOFcfPmTN0cPce/mC99HRzOzbj9qly+RLnvds38XW9ZuICA/HycWZfoN+oGSZUirj37x2g7//XMDzp8+wsLSkTcd2NGkRKBdnx6at7N2xm3dv3mJsakKN2jXp0a8P2jraAGxcvZ6zp07z6vkLtHV08PLxpuf3fSjq5JgvZQI4sHMvuzZuIzI8gqIuTvQc0BevUiWVxo0Ij2DVgiU8fvCI0FchNG4ZSK+B36lM+8yxU/w++TcqVqvMj1PH51uelbl85AwX9p8gLiqGIvY2NOjcHMcSrp9d7uWDJ6yZMp8iDjb0mTZSFn4v6CZndx8h8s170lLTMLO2pHLj2vhU9823POf3MTVywFBuXVO8XvlWqcTkWenX24T4BFYvWc65f84QFRmFq7sb/YYMwMOzRL6VS5Ik/l67lh0H9hMbF4e3RwlG//ADrs7OKpd5/OwZi9as5t7DR4S+fcOw776jY4uWcnGu3rrFmq1bCH74kPcREcwaP4HaVavmX55XrWLH3r3Exsbi7enJ6MGDcXVxyXG5Y6dOsWjFCl6FhOBgZ0f/Xr2oU6OG7PuA9u0JffNGYbk2zZox+tMLuuP//MP2PXsIfvCA6JgY1i1ZgoebW76USxlJklhy7jQ7b14n9mMi3jZ2jKzvh6tlEZXL7L19k0kH9yqEnx4yCh3N/P3Zt2vrDras20h4eATOLs70HzoAnzKqn0FuXL3Oornzefb0GRaWFrTr3IGAlpn3t0N7DzBzynSF5fafOoy2jg4AnZq3401YmEKcwFbNGTRy6FeVY8eWbWxYu57w9+E4F3Nh0LDBlC5bRmX8a1eu8deceTx78hQLS0s6du1E81YtZN8/ffyEZYuXcv/ePcJCwxg4dDBtO7aTS6NNYEvCQhXL0aJ1S4aNHvHFZdi7fRdb12+WXaO+G9T/s9eoJX8ulF2jWndsR5MWAXJxdmzaxr4s973qtWvSo19v2X2vW6uOvA1TPGeatgzkh+GDv7gMqkiSxN/r17Pj0MH065S7B6O//x7XHF62P37+nEXr1nLv0aP0Z6k+fejYrLnK+Cs2b2b+6lV0CGzG8L598y3vgvA5ojJO+J8QGhoq+/+mTZsYP3489+/fl4Xp6ekVRrb+56WmpqKmpoa6es6NZPX09L5oGxcpovpB8Vvo0KEDHTp0+Kplzc3N8zk3BeP4kWPM/2MeQ0YNo2QpH/bs2M3ooSNZuXEN1jbWCvFDQ0IYM3QUTZoF8NMv47h98xZzZvyOiakpterWlosbFhrGwnkLKKXkoTrxQyKuxd3wb9qYCT/+XFDF+yw9LR0ehb9i/71zTGvUr9DykZNV27exftdOJgwegqOdPcs2b+KH8ePZtmAhBvr6SpdJ/PgRB2sb6letzu/Ll6pMu5ijIwsmTZF91vjMOfy1Vh85zPrjxxjfpRuOVlYsP3iAAX/NZev4XzDQ1VW6jIm+Pj38GuFsY4OWhianb99k0trVmBkZUcXLG4APSR9xd3AgoEpVRi9ZnG/5PXX0BIvnzueH4YPxLlWS/Tv38POIH/l77QqslJwXYSGhjBsxhkYBjRk1fix3bt5m/uy5mJiaUr1OeiXz8UNHWb5oCcPGjMLTx5vXL14ye+oMAL4b/AMAt67fIKBlM9w9PUhLTWPl38v4aego/l63At18uD+dOX6KFX/9TZ8h/fH08eLQ7gNMGTWeuasWUcTaSiF+SlIyxqYmtOrcnr1bduSY9tuwN6xcuBSvUt55zufn3L1wjSNrd+LfvTVF3V24evwcG2f+zXe//YiJpZnK5RITPrB70XpcvIsTFx0r952egT7VAhtgaWeNhqYGD6/dYc/fG9E3NsK1VN4rrgrimBo/7ReSk1Nky8RER9O/ex9q1KklC5szfRbPnjxl5PgxWFhacuzQEcYMHsnf65ZjmU/32FVbNrN+x3YmDBuOo4MDyzas54exY9i2dFnO1ygbW+rXqMnvi5Wfux8SEynuUoyABg0ZNWVyvuRVlueNG1m/ZQsTRo/GsWhRlq1Zww8jR7Jt9WqVeb555w5jJ02iX8+e1KlRgxOnT/PjL7+wbN48Snp5AbB60SJS09Jkyzx++pQfRoygXu3acuUqXbIk9WvXZsqsWflaLmVWX7rAhiuXGO/fFEczc5ZfOMvALRvY0us7DLR1VC5noK3Dll7yle/5XRF34shxFs75i0Ejh+JdqiT7du5hzNDRLNuwSsUzSCg/DRtN42ZN+XHiT9y5eZt5M//AxNSUmnUzj3t9AwNWbpZ/sZRREQcwf8Vi0tJSZZ+fPn7K6EHDqZntOSa3jh0+yrzf5zJs9Ah8Spdi9/adjBw8nDWb12FtY6MQP+R1CKOGDCegeSDjJk3g1o2b/P7bLEzNTKldtw4AiYmJ2NrbUbt+Hf78fZ7S9f69ahlpqZnH29PHTxg6YDB16tf94jKkX6MW8MPwQXiVKsn+nXsZN2IMi9cuV3mNGj9iLP4BjRk5fgx3b95m/ux5mJiayN33VixawtAxI/Hy8ebVi1f8Lrvv9Qdg7tIFpGU5Z54/ecrYIaPkrmP5YdW2razfuYMJQ4emP0tt2sQP435m26LFn7lO2VC/WnV+X7okx/TvPHjAjkMHKe6cc4X+f4GYTfXfR3RTFf4n2NjYyP5MTExQU1OTC/vnn38oX748urq6FCtWjF9++YWUlMwH3aioKPr27Yu1tTW6urqULFmSvXvl3xweOnQIT09PDA0N8ff3l6sATEtLY9KkSTg4OKCjo0OZMmU4ePBgjnmOj4+na9euGBoaYmtry+zZsxXiJCUlMWrUKOzt7TEwMKBSpUqcPHkyx3QnTpyIo6MjOjo62NnZMWjQoFynl9HddO/evXh5eaGjo8OSJUvQ1dUlKipKbj2DBg2iVq1acstltXv3bipUqICuri6Wlpa0bJn5Zjx7N9UXL17QrFkzDA0NMTY2pm3btrxR8gY6w7Nnz1BTU2Pz5s3UqFEDPT09fH19efDgAUFBQVSoUEG2n969eydbLigoiAYNGmBpaYmJiQm1atXi6tWrsu9PnjyJtrY2p0+floXNnj0bS0tL2f7O3k3V2dmZKVOmyPalk5MTu3bt4t27d7Iy+fj4cPnyZbkybNu2DW9vb3R0dHB2dla6//Niy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35D+/d23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18faubzw9aXuvDiDksu7ubUk+uFmg9VJEliw57d9GjTlrpVquLm5MQvQ4aSmPSRg/+cUrmcd3F3BvfoiV/Nmmjn0EJTU0MDSzMz2Z+ZiUnBlOHEMXr4NaJumbK42dkzsUs3EpOSOBR0SeVy5d09qFOmLC42tjgUKUKHOvVws7fn+uPHsjjVvEvyfUAz6pYpm6953r5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGCb9/B26ckdRrWw8bWhvKVfKndoC4P7j2QxZn6+280bOKPczEXihV3ZdjYUbx985aH9x8oW+0X27NlB/UaN6RBU38cnBzpNfA7LKyKcGjXPqXxrWyt6TWwH3X86qGfQyvl1NRU5kyZSfsenbG2VTzf89vFAycpU7sSZetUxtLemoZdWmBsYcrVY2dzXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW17ef5IveS6IY8rI2BhzC3PZ37WgK+jq6MoqJT5+/MiZU//Q64fv8ClTGjsHe7r06o6NrY3K9X4pSZLYsGMnPdq3p2716rg5O/PL8BEkfvzIwRMnVC7n7eHB4D598KtdW+U1qpqvL/27d6du9er5kle5PG/dSo/OnalbsyZuLi788uOPJCYmcvDoUZXLbdi6lUoVKtCjUyecHR3p0akTFcuVY/22bbI4ZqamWJqby/7OnD+Pg50d5UtnvpRq0rAhfbp1o2L58vlaLmUkSWLj1Ut0r1SNOu4lcC1ixYRGASSmJHMo+E6Oy6qpgaWBodxfftu2YTP+AY1p3KwpTi7O9B86ECurIuzZrrxHwt7tu7CytqL/0IE4uTjTuFlT/AMas2W9/DOImpoa5hYWcn9ZmZqZyn138ex57BzsKV2uzFeVY9P6jTRpFkBA80CcXZwZNHwIVtZW7Niq/Flq1/YdWNtYM2j4EJxdnAloHkiTwKZsXLteFsfT24sfBg+gfsMGaGsrP0fMzMywsLSQ/Z07cxZ7B3vKlPvye+KOTVtp2LQR/rJr1A8UsbJi3449SuNnXqN+wNHZCf/AJjRs4s+2LNeoe7fv4vXpvmdta0P5ShWo3aAOD+9lNoRI3xeZ17GLZy9ga2+HTw49NL6UJEls2LWLHu3aUbdqtfTr1LBh6depUzk8S7m7M7hnL/xq1crxWSrhwwfGzZrJTwMHYmSY/+eJIHyOqIwT/ucdOnSIzp07M2jQIO7evcvixYtZuXIlU6dOBdIr0ho1asS5c+dYu3Ytd+/eZfr06WhoaMjSSEhIYNasWaxZs4Z//vmHFy9eMGJEZjPxuXPnMnv2bGbNmsXNmzfx8/MjMDCQhw8fqszXyJEjOXHiBDt27ODw4cOcPHmSK1euyMXp0aMHZ8+eZePGjdy8eZM2bdrg7++vMt2tW7fyxx9/sHjxYh4+fMjOnTvx8fH5ovQSEhL49ddfWbp0KXfu3KFz586YmpqyLctDaWpqKps3b6ZTp05K87Fv3z5atmxJkyZNuHbtGseOHaNChQpK40qSRPPmzYmIiODUqVMcOXKEx48f065dO6Xxs5owYQI///wzV69eRVNTkw4dOjBq1Cjmzp3L6dOnefz4MePHZ3apiomJoWvXrpw+fZrz589TrFgxGjduTGxsekuKjIq2Ll26EB0dzY0bN/jpp59YsmQJtjn8EP3jjz+oVq0a165do0mTJnTp0oWuXbvSuXNnrl69ipubG127dkWSJACuXLlC27Ztad++Pbdu3WLixImMGzcu37pSJycn8+DeAypUqigXXqGiL7dv3Va6zN1bd6hQUb7blm/litwPvidXcb162UpMzUxpEtg0X/L6/9XrN28Ij4ykctnMB2ttLS3KeZfk5r17eU7/RUgI/t27EdinF2NmzuCVkm47efU6/D3hMTFU9vSUhWlraVHOrTg3n+auokOSJC7du8fzN28oV4DduSD9vHh4/wHlKspfi8pVrEDwbeU/XoNv31GIX75SBR7euy87L7xL+/Dw/gPu3w0GIPR1CEHnL1KxaiWVeUmIjwfSK13yKjk5mcf3H1Hat5xceBnfsty7E5yntLes3oCxqQn1m/jlKZ3cSE1JIfTpK1xKesiFFyvpwauHz1Qud+PURSLfvKdmy8/nUZIknt5+QETYu1x1ff2cgjqmsju09wC16teRtaJMTUklLTUNbW1tuXjaOjrcuan8Gv+lXoeFER4ZQeVymRVL2tralPPx4Wbw3XxZR357HRpKeEQElbM8b2hra1OudGlu3lFdQXXz7l0qZXtGqezrq3KZ5ORk9h85QmCjRoU2sHhIdBTh8fFUztJaR1tTk3IOjtx8/TrHZT8kJRG4+C+aLvqTods3c/9N/t4fkpOTeXD/ARUqyT9TlK/ky11VzyC371A+W/wKlXx5ECx/Xnz48IGOzdvSPqA1Pw3/MccXGsnJyRw9eAT/pl+3n9Kfpe5TMduzlG+lity+eUvpMndu3cY3W/yKlStx7+49led3bvJx+MAhGgc2/eJyqL5GleeuimvUvdt3KVdRvkK5XCVfHt57ICuDV+mSPLr/gPt3059X0u97l6hYtbJCehn5OHH4KA2b+OfrOfP6TdinZ6nM+5+2lhblSpbkZnDe7n8Avy1cSDVfXyrl84tBQcgt0U1V+J83depUfvzxR7p16wZAsWLFmDx5MqNGjWLChAkcPXqUS5cuERwcjLu7uyxOVsnJySxatAhX1/SH9wEDBjBp0iTZ97NmzWL06NG0b98egN9++40TJ04wZ84c5s+fr5CnuLg4li1bxurVq2nQoAEAq1atwsHBQRbn8ePHbNiwgVevXmH3afylESNGcPDgQVasWMG0adMU0n3x4gU2NjbUr18fLS0tHB0dqVix4hell5yczIIFCyid5W1vu3btWL9+Pb169QLg2LFjREZG0qZNG5XbvH379vzyyy+ysKzpZXX06FFu3rzJ06dPKVq0KABr1qzB29uboKAgfH1Vj+szYsQI/PzSf4ANHjyYDh06cOzYMapVqwZAr1695Cq46tWrJ7f80qVLMTU15dSpUzRtml65NGXKFI4ePUrfvn25c+cOXbp0oUWLFuSkcePGfPddepeP8ePHs3DhQnx9fWXbZ/To0VSpUoU3b95gY2PD77//Tr169Rg3bhwA7u7u3L17l5kzZ9K9e/cc15Ub0VHRpKWmYmYu363LzMKMyAsRSpeJCA/HzEL+AdLM3IzU1FSio6KwsLTk1o2b7N+9j6Vrl+c5j//fhUdGAmBhYioXbmFqSujbt3lKu6S7O78MGYqTnT3hUVEs27KJXqNHsunP+ZjmQ+VPhvCYGADMjeTTNDc2JixC+XGWIe7DBxqP/ZGklGQ01NUZ3a4DlTy98i1vysRERaePGZb9vDAzIyJceX4jIyIxM8sWX3ZeRGNhaUHt+nWJjoxi+PeDkSSJ1NRUmrYIpF2XjkrTlCSJxfMW4F3KB+diee/2EhsdQ1paGqZmpnLhJmZmREVEfnW6wbfucHTfIX5f+lcec5g7CbHxSGlpGJoYyYUbmBgRFxWjdJmIsHec2LSXLuMGop7lBVp2iQkfmDdwIqkpKaipq+PfvTXFfDxUxs+tgjqmsrp/N5hnT54ydEzmC0B9A308S3qxfuUaHJ0cMTU34+TR49y/G4ydg32eywUQHpmef4tsebUwMyP0Td6uUQUlPCKnPKtubR8eEaF0mXAV17GTZ84QFxdHgL9/HnP89cI/VeibZ2vZam5gQGhMtMrlnMwtGN8oAFfLIsQnfWTTlSB6b1jNum69cTTLn2E4Mp9B5NMzM1d9XkSERyieR+bmcudFUWdHRv38Iy5uxUiIj2f7pm0M6TuAxWuW4+DooJDm2VOniYuLo2GTRl9ZjihSlZXDwlxlOcLDI6hokb3c6eWIiorC0tLyi/Nx+uQ/xMXF0bhp7sdmzqDqGmVqZkakymtUBKYqrlExUdGYy+570YzIct9r0iKQtl2UDwFz/p+zxMXF0aBx/r7YkT1LZeudk/4s9U7JErl36NQp7j1+xOo/5uQpnf8laohuqv82ojJO+J935coVgoKCZC3hIL1lV2JiIgkJCVy/fh0HBwdZRZwy+vr6soo4AFtbW95++sEcExNDSEiIrAIoQ7Vq1bhxQ/mA8Y8fPyYpKYkqVarIwszNzfHwyPxxcPXqVSRJUsjXx48fscjWLD9DmzZtmDNnDsWKFcPf35/GjRsTEBCApqZmrtPT1tamVCn5QV07depElSpVCAkJwc7OjnXr1tG4cWOFHxQZrl+/Tp8+fZR+l11wcDBFixaVVcQBeHl5YWpqSnBwcI6VcVnzaW2dPu5F1paA1tbWsv0EEB4ezpQpUzh58iRv374lNTWVhIQEXrx4IVf+tWvXUqpUKZycnHI162tu8gHw9u1bbGxsCA4Oplkz+UH3q1Wrxpw5c0hNTZVrlZnh48ePfPz4US5MR0f1mDCgZGITifT+KariZ7sJZ7TkU1NTIyE+gWkTpjBi7ChMvtHswv8lB06eZNrCzIr5OePSW2xm30eSJOX5rXG18plvwN2AUiVK0Py7Puw9cZzOOQxQ/DkHLl3k1w2ZXW3+6J8+HpqyMnyOvo4O68b8RMLHjwTdv8cf27dib2lJefe8V5B8Vvb88pltrlC+jOD08BtXr7Nx9Tp+GD6YEt6ehLx6zaK58zFbsYZOPbooJDf/93k8ffyE2QuVjxX0tRTPd+mrH6w/JCQwd+os+o8chLFp/ndxzpHC/lE+SVNaWho756+hRit/LGwVx8XLSkdXh95TR5D0MYlndx5wdN1OzIpY4OSVT60x8/mYyurg3gM4F3PBw8tTLnzkuDH88etMOjVvi7qGOm7uxandoB6PH6hukZ+TA8ePM23eXNnnOZPSx3LLnqP0a9RXrSLfHThyhGm//y77POfX9MktFK5JSsIUKLsWq4i6a/9+qlaqRJGvqFj5Wgfv3ubXIwdkn/9o2RZQdt/O+Qe1j509PnaZFbal7YvSZfUyNl+9zIh6DfM1z0ouSV94XkhywV4lvfEqmTl2pXcpH77v1oedW7YxQMmEAAf27Kdi5YpYFsnbflLI8mfOAYV9gqQ0PLf27t5DpSqV8zQWpPLHwRyeB1Xd1z+F37x6nU2r1/HD8EF4eHsS8iqExXPns36FOR2V3PcO7T1AhcoVscjjvjhw4gTT5me+IJozYaKK/Ob4uPtZYe/eMXvJ3/w1aTI62VogC8K3JCrjhP95aWlp/PLLL3JjlmXQ1dXN1cQD2WfPVFNTU/jB+SU/qnPzYzUtLQ0NDQ2uXLmiUDljqGLcgqJFi3L//n2OHDnC0aNH6d+/PzNnzuTUqVO5Tk9PT08h3xUrVsTV1ZWNGzfy/fffs2PHDlasWKEy718ymYOq7ZSbSoms+yUjbvawrIPH9ujRg/DwcObOnYuTkxM6Ojr4+PiQlJQkl+65c+cAiIiIICIi4rMzv+YmH4AsL8rK9rlj4tdff5VraQjp3XT7DumvENfE1AR1DQ2FN7eREZEKb0czmFtYKMSPioxCQ0MDYxMTnj15SlhoKGNH/JiZ50/lqVe1Nqs3r8M+n1pk/BfVrFiRkh6ZFeFJyckAvI+KxDLLW/eI6GjM87myU09XF1cnZ16GhOQpnZqlSlMyS5eopE/dVcJjorHMMiZdZGwsFp9pgaeurk5Rq/QKFI+iRXn2JoyVhw8VaGWcsakJ6hrqCq0BoiKjVJ4XZuZmREZkjx/56bxIL+PqJSuo69eARoFNAHBxLUZiYiLzfvudDt06yU2As+D3eVw4c45Z8+dQxCp/Btk3MjFGXV2dyGyt4KKjojAxN/2qNMNeh/I27A3TxmReczKuUa3rNuWvNUuwUTJmZF7oGxmgpq6u0AouIToWg2yt5QCSPnwk9OlLwp6/5tCq7Zl5lCSmdR1Ox9H9cPYuDoCaujrmNunb28bJnvev33Buz9E8V8YV1DGVITExkVNHT9C1d3eFdOwc7Jk5fw6JHz4QH5+AhaUF08ZNwtpWcVD53KhZuTIlS2Sef0lJn65RkZFYZnlhFxEVhbmKF3HfWs1q1WQTLACye/n7iAj5PEdG5phnC3NzhVZwEVFRSidsCg0L49LVq8zIdj8uaDXciuNtmzlLdVJq+iQF4fFxWGZ5hotMiMdcP/ez1aurqeFlY8fLyJxbM38JVc8gUZE5PYOYKzmPImXPIMqoq6vj7unB65evFL57ExrGtaArTJj+9ROEmJiaoqHyWUp5K0ILC3MiwsPlwqIi0sth8hUvNsJCQ7ly6TJTZij2hsmNjGtURHi2+0NkJKYqr1HmSq5RUUrve/5Z7nsfEz8w77c/aJ/tvvcm7A3XL1/l52kTv6oMWdWsVImSWRouyJ6lIrM/S0Vhbvr116l7jx4RERVFlyGZlbypaWlcu3ObzXv3cG7HTqUvzgUhv4nKOOF/Xrly5bh//z5uKsYjKlWqFK9eveLBgwc5to5TxdjYGDs7O86cOUPNmjVl4efOnZN1Ec3Ozc0NLS0tLly4gKOjIwCRkZE8ePBANilC2bJlSU1N5e3bt9SoUSPX+dHT0yMwMJDAwEB++OEHSpQowa1bt746vQwdO3Zk3bp1ODg4oK6uTpMmTVTGLVWqFMeOHaNHjx6fTdfLy4sXL17w8uVLWeu4u3fvEh0djaen52eW/jInTpxg4cKFsv30/Plz3r9/Lxfn8ePHDB06lCVLlrB582a6du3KsWPHPjuj7Jfw8vLizJkzcmHnzp3D3d1d5c19zJgxDBs2TC5MR0eH8A+K3VG0tLRwL+HO5UtB1KideUxeuRREtZrKB8z28vHm/Gn5QdIvX7yEh2cJNDU1cXRyZPn6VXLfL1u0hISEBAYOG4yVkhkbhUwG+vpys3pJkoSFmRkXr1+nRLH0VrfJyclcvXObgV275eu6k5KTefbqJWW98tYN1EBXV26GVEmSsDA25uK9YDyKpl/HklNSuProIQOb5dy1OztJkkhKSc5T/j5HS0uL4h7uXAu6QrVamdfAa0FXqFy9qtJlPEt6c/Hsebmwq5cuU7yEB5qfZh/8+DFR4fqgrq6OJEmyCixJkljw+zzO/XOGGX/9gY1d/lVkaWlp4erhxo3L16hcI7McNy5fo2I15eP3fI69Y1H+WL5ALmzDstV8+PCBngO+w8Iq/1sEaWhqYuviwNPbDyjhm9na+OntB7iXL6kQX0dPhz6/jpILu3L0LM/vPqTloO6YFsm5y11K8teN35RVQR1TGf45dpLk5CTq+tVXmQddPT109fSIjYnlyqUgevX/TmXcnCi/Rplz8dpVSnx6fkpOTubqrVsM7Nnrq9aR35Tm2dyci5cvU6J4ekVscnIyV2/cYGDfvirTKeXlxcUrV+iUZeiNi5cvU8pbcQbh3QcPYmZqSvUsPRu+BQNtHbkZUiVJwsLAgIvPn+JhnV4Bm5yaytVXLxhQs06u05UkiQdv3+CWj7Pca2lp4e7hzpVLl6ku9wxymaqqnkFKenP+zDm5sMsXg3D3VDwvsub98cNHuLgWU/ju4N4DmJqZUlnFGGa5LkcJD4IuXpKblCroUhDVayp/jvb2KcnZbM9Sly5eooRXCZXlyMn+PfswNTOjSjXl15PPkb9GZW77q0FXqFK9mtJlSpT0UnGNcs9y3/uImrr8S2V1dQ25+16GI/sOYmJmSsUqX78vMqh8lrp2jRKuWZ6lbt9mYPfP/wZRxbd0aTb+JT/M0KS5c3BycKBbq9b/2Yq4whoDU1BNVMYJ//PGjx9P06ZNKVq0KG3atEFdXZ2bN29y69YtpkyZQq1atahZsyatWrXi999/x83NjXv37qGmpoZ/LscDGTlyJBMmTMDV1ZUyZcqwYsUKrl+/zrp165TGNzQ0pFevXowcORILCwusra356aef5H7Qubu706lTJ7p27crs2bMpW7Ys79+/5/jx4/j4+NC4seLYEStXriQ1NZVKlSqhr6/PmjVr0NPTw8nJCQsLiy9OL6tOnTrxyy+/MHXqVFq3bo1ulh/l2U2YMIF69erh6upK+/btSUlJ4cCBA4waNUohbv369SlVqhSdOnVizpw5pKSk0L9/f2rVqqVy0oev5erqyqpVqyhfvjzR0dGMGDFCrhVfamoqXbp0oWHDhvTo0YNGjRrh4+PD7NmzGTlyZL7lY/jw4fj6+jJ58mTatWvH+fPn+euvv1iwYIHKZXR0dJR3S/2gPH6bDu34deIUPEqUwNvHm707d/PmzVsCWjYHYMn8Rbx7956xE38GILBlM3Zu2c78OX/StFkAd27dYf/uffw8eQKQPjB49gdeQ6P0t/FZwz8kJPD6Vebg0aEhoTx68BAjY2Osbaw/u23yi56WDg4mmT8u7IwtKW7pQExiPG/ivn4crfyipqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x86B//x+9YWVgw4FMFXXJyMk9evvz0/xTehYdz/8kT9PV0Kfqp1cScFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjOS1DHXqseLQQYoWsaKolRUrDx1EV1sbP9/MFxETVq2giKkpAz5V0K04dBAvR0fsixQhJSWVs3dus+/iBX5snznGWkJiIi+zzIQcEv6e+y9fYmJggI2KFgm50bJdG2ZO/pXiJTzwLOnFgV17efvmDU1aBACwfOESwt+/Z+S4MQA0aR7A7m07WTxvAY0CmxB8+y6H9h7gx0/nDUClalXYsXErru5ulPBK76a6eskKKlevKntgnz97LieOHGPC9Cno6evLWloYGBp8trt5bgS0acG8abNx8yiOh3cJDu85yPs372gYmH5dX/v3CsLfhzN4bOa4Y08fps9em/jhAzHR0Tx9+BhNLS2KOjuiraONUzFnuXUYfGp9kz08P1VqVJtdC9dhW6woDm7OXDtxjujwSMrVS/8hemLTXmIjowns1wk1dXWsispXahoYG6KhpSkXfnb3UWxdimJmbUFqSiqPrwdz60wQ/t2Vj3n6pQrimMpwaO8BqtaorrRl0OWLQSBJODgWJeTVa5bOX4yDY1EaNsmfcczU1NTo0KI5KzZuxNHOnqL29qzYuAFdHR3862RW9oyfOQMrC0sG9OwJfLpGfRr6ITklmXfvw7n/+HH6NepT98iEDx/kWuq+Dgvj/uPHmBgZYWP19S921NTU6NC6NSvWrcPRwYGiDg6sWLsWXV1d/OtnVmiOnzYNqyJFGPBpOI32rVrRd/BgVm7YQO1q1Th59iwXr1xh2Tz5ruRpaWnsOXiQpn5+aCr5MR4dE0PY27e8+/SS7/mn7WDxaQbW/KSmpkb7chVZefEcRc3McTQ1Y8XFc+hqauHnmVmJOGH/bqwMjfjhUwXdknOnKWlrj6OZGfFJSWy6GsSDd28YVT9/x/Jq1aEtv/0yFXdPD7xKerNv117evnlLQItAAJYu+Jv3797x44SfAGjashm7tu5g4Zy/aNysKXdv3+Hgnv2MnZQ5CdfqpSvxLOmFfVEHEuLj2bF5G48fPGLQiKFy605LS+PQvgM0aOyPxldUgGXVrmN7pkyYRAkvT7x9SrJ7xy7ehr2heavmACz6ayHv373j51/S89msZQu2b97Gn3/MJaB5M+7cus2+XXuYMDWzJWVycjLPnjz99P8U3r17x8P7D9DT18ehaObYd2lpaezfs49GTRp9VUVehhbtWjNr8nSKl3D/dI3ax7s3b2n86Rq1YuFSwt+/Z8S49J4PTZoHsGfbLv6etwD/T9eow3sPMHriT7I0K1WrwvbP3PcyynBk30HqN2qIhmb+V2CpqanRoVkzVmzZjKPdp2epLZvTr1O1sjxLzZ6d/iz1aVzm9GepjOtUxrPUY/R19ShqZ4eBvj5uzs5y69LV0cXUyFghXBAKkqiME/7n+fn5sXfvXiZNmsSMGTPQ0tKiRIkS9O7dWxZn27ZtjBgxgg4dOhAfH4+bmxvTp0/P9ToGDRpETEwMw4cP5+3bt3h5ebF7926Kf3ozq8zMmTOJi4sjMDAQIyMjhg8fTnS0fCunFStWMGXKFIYPH87r16+xsLCgSpUqKivOTE1NmT59OsOGDSM1NRUfHx/27NkjGxPuS9PLqnjx4vj6+hIUFPTZcdRq167Nli1bmDx5MtOnT8fY2Fiu1WBWampq7Ny5k4EDB1KzZk3U1dXx9/fnzz///GyevtSKFSvo27cvZcuWxdHRkWnTpsnNijt16lSePXvGnj3p073b2NiwdOlS2rZtS4MGDShTpky+5KNcuXJs3ryZ8ePHM3nyZGxtbZk0aVK+TN6QoW6DesREx7B6+Uoi3ofjXMyF6X/MwOZTF6bw8HDeZhnQ2tbOjl//mMGCOX+ya+sOLCwtGTh8MLXq1v6i9d4Pvs/Q/oNknxfMSR/bw6+JPz+O/0nVYvmuRBEn/mqR2ZJwUPX0H977g88z9fgqVYt9U91atuJjUhLTFy8kNi6Oku7u/PXLJLm3vmHv36Ge5e3zu4gIOg3N7DaxZucO1uzcQbmSJfl7avp4SW/eh/PTrFlExcZgZmxMSQ8PVsyYhW0efuSq0rVBQz4mJ/Hbpg3EJiTg7ezCnwMGybWgC4uMkHvbmpj0kd82beBtVBQ6Wlo4WdswqXtPGmYZ6y74xXP6zf1D9vmPbVsBaFKpMhO7dv/q/NaqX4eYmBjWrVhNZHgETsWcmfx/7N13dFTF28Dx7+6m916AQAIhCST03nsHBUEQpIoiYkFRQawgP0FUiqiAIl16R3rvLfQWOiGU9N7L7r5/BDbZZENLQ97nw9lz2JuZuzN7787enfvMzC+TcHXL/lzERMcQkWtyercy7kz4ZRJ/zviDTWs34ODkyHsff0DTVjntWb9BA1AoFCz8ax7RkVHY2tvRoEkjBg/LiR7atG4jAKM/0P/ROOrL0UXSedK0dQsSExJZuXApsTExlPfy5KvJ43F52AEeGx1LVLj+ZNafvvOh7v83r93g4K59OLu68OeKBYUuz/Oq2rAWKYnJHFq3naS4BJzLufPG58OwdcruyEiKSyA+6tk60zPTM9i2YDWJMfEYmRjjWMaFV9/rT9WGRbM6XnGcUwD3Qu5y6fwFJk77yeDrpiQlM3/2HKIio7CysaZpi2YMfndooX605zXo9d6kp2fw4++/k5iUSICfH79PnKTfRkVEolTk3EiMjI7mzfdzpk9YvGY1i9espna16vz1888AXL52jeFjcm7OTfvrTwC6tm3HuFzfyc9V5jfeID09nR+nTycxMZGAKlX4/eef85Q5Qu/mZ42AAH749ltmzZ3L7HnzKFemDJO+/VZvCCzAiVOnCAsP55VOhhcEOHDkCOMnT9Y9/3JC9hDJdwYN4t0i/H5/ZGD9hqRnZfLTrm0kpqXh716G33q9oRdBF56QgDJX+5uYnsakHVuITknGysQUH1dX/nyjv94Q2KLQql1rEuLj+WfuImKis69BJk6drBtGHRMVTURYzufCvYw7P0ydzKzpv7NxzXocnRx5f9RHNG+d06GSlJTEtB9/ITY6BksrSyr5VGba7Bn4+euPojgdeIqIsHA6dXv2BQ/yatO+LQnx8Sz4ex7RUdF4VarIT9N/wc09u8M/Oiqa8LCca6kyZcvw0/Qp/DbtV9atWouTsxMjP/uElq1zOrCjIqN4q/9g3fPl/yxl+T9LqVm7Fr/9mRONdfJEIOFh4XQu5Or1Ldq2IjEhgaXzFxMTHYNnRU++/2WS7gZpTHR0vjbq+18m8teMmfy7diOOTo4Mz9NG9R3UH4VCwaK/5uf63mvIoGH6UbNnAk8TER5RZDcJDBnUs1d2OzVrZva1lK8vv38/Qf8zH2ngWuqjnGvVxWvXsnjtWmoHVOOvZ/j9J0RxU2ifZnIrIYQQpeJB3Iu5qt2zKGPnQpM/hpd2MQrl8PuzSbxyrbSLUWjWfj4k7Npb2sUoFJu2rbgddf/JCV9wXk5luRR6s7SLUWj+7pVYFLiltItRKAPrdX5pzqnE28GlXYxCsfbyJLGQ81++CKzLlCF+zotxY6gwbN8ZxN3YsNIuRqF42LsRkRD95IQvOBcbR25F5Z8/77+kolM5Eq/fKO1iFJp15SJaHKiEDVnxw5MTlZL5fUruhv6LpOgmSRJCCCGEEEIIIYQQQjyWdMYJIYQQQgghhBBCCFFCZM44IYQQQgghhBBCiJeUrKb64pHIOCGEEEIIIYQQQgghSoh0xgkhhBBCCCGEEEIIUUJkmKoQQgghhBBCCCHES0qJDFN90UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJSWrqb54JDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEOI/YebMmXh5eWFmZkadOnU4ePBggWkHDx6MQqHI9/D399elWbBggcE0aWlpxVYH6YwTQgghhBBCCCGEeEkZ6mh6UR7PasWKFXz88cd89dVXnDlzhmbNmtGpUydCQkIMpv/1118JDQ3VPe7evYuDgwOvv/66XjobGxu9dKGhoZiZmT3X+/00pDNOCCGEEEIIIYQQQrzwpk6dytChQ3n77bepUqUK06dPx8PDg1mzZhlMb2tri5ubm+5x8uRJYmNjGTJkiF46hUKhl87Nza1Y6yGdcUIIIYQQQgghhBCixKWnp5OQkKD3SE9PN5g2IyODU6dO0b59e73t7du358iRI0/1enPnzqVt27ZUqFBBb3tSUhIVKlSgXLlydO3alTNnzjxfhZ6SdMYJIYQQQgghhBBCvKSUKF7Yx6RJk7C1tdV7TJo0yWA9oqKiUKvVuLq66m13dXUlLCzsie9DaGgoW7du5e2339bb7ufnx4IFC9i4cSPLli3DzMyMJk2acP369ed/05/AqNj2LIQQQgghhBBCCCFEAcaOHcuoUaP0tpmamj42T9655rRa7VPNP7dgwQLs7Ozo3r273vaGDRvSsGFD3fMmTZpQu3ZtfvvtN2bMmPHE/T4P6YwTQgghhBBCCCGEECXO1NT0iZ1vjzg5OaFSqfJFwUVEROSLlstLq9Uyb948BgwYgImJyWPTKpVK6tWrV6yRcTJMVQghhBBCCCGEEOIlVdorphbVaqomJibUqVOHnTt36m3fuXMnjRs3fmze/fv3c+PGDYYOHfrE19FqtZw9exZ3d/dnKt+zkMg4IYQQQgghhBBCCPHCGzVqFAMGDKBu3bo0atSIv/76i5CQEIYPHw5kD3u9f/8+ixYt0ss3d+5cGjRoQEBAQL59jh8/noYNG1K5cmUSEhKYMWMGZ8+e5Y8//ii2ekhnnBBCCCGEEEIIIYR44fXp04fo6Gi+//57QkNDCQgIYMuWLbrVUUNDQwkJCdHLEx8fz5o1a/j1118N7jMuLo5hw4YRFhaGra0ttWrV4sCBA9SvX7/Y6iGdcUIIIYQQQgghhBAvKeUzDgd90Y0YMYIRI0YY/NuCBQvybbO1tSUlJaXA/U2bNo1p06YVVfGeikKr1WpL9BWFEEIIIYQQQgghRIl4f+0vpV2EAv3x2melXYRSIZFxQgjxAvvfzvmlXYRC+7rdEBKvXCvtYhSKtZ8PTf4YXtrFKLTD788m7q0PSrsYhWI373d6LvyytItRaGsGTaT5TMN3dP9LDoyYScKeA6VdjEKxad2c21H3S7sYheblVJb31vxc2sUolFk9P2dR4JbSLkahDazXmRuRd0u7GIXm7exBn3++Ke1iFMqK/hNemra267zPS7sYhbLprZ9p99fI0i5Goe0cZniYoxDPSjrjhBBCCCGEEEIIIV5Sz7pqqSh+ytIugBBCCCGEEEIIIYQQ/19IZ5wQQgghhBBCCCGEECVEhqkKIYQQQgghhBBCvKQUyDDVF41ExgkhhBBCCCGEEEIIUUKkM04IIYQQQgghhBBCiBIiw1SFEEIIIYQQQgghXlJKWU31hSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5RChqm+cCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxkpJhqi8eiYwTQgghhBBCCCGEEKKESGecEOK5pKWl8b///Y/w8PDSLooQQgghhBBCCPGfIcNUhRDP5ZtvviEhIQFXV9fSLooQQgghhBBCiAIokWGqLxqJjBNCPLP09HQcHR2ZMWNGaRdFCCGEEEIIIYT4T5HOOCHEMzM1NeWLL77A1NS0tIuSz759+1AoFMTFxT11Hk9PT6ZPn16o11UoFKxfv75Q+xBCCCGEEEII8fKTYapCiGd25MgRmjVrRrt27di2bVtpF0c8dPXAaS7tPk5qfBJ27k7U7dkWV28Pg2nDrt1h54xl+ba/8vU72Lo5AqBRq7m44yg3j18kJS4RW1cHar3airJVKxZrPbRaLX8tX8a67dtJTE7C38eHMe8Op1L5CgXmuRlyh9lLl3Dl5k1CIyIYNfRt+r3yql6aP5ctZc5y/To72tmxfeHiYqnH06jh7k2/Wu3xcymPk6UdX2yZxcHb50qtPIaYvdoZkxZNUFiYo751h5R/VqB5EPbYPKbtWmLSqhlKB3u0SclknDxD2uqNkJUFgEnLppi2aobSyQEA9f0w0v7dStaFy0Ve/g6+DXjVvxn2FtbcjYtg/onNBEUEF5i+mVcNugc0x93GkZSMNM48uM7Ck1tISk8FYHyHtwlwy/8ZOHXvChN3Lyry8j/S3b85fWu1xcHCluCYUH47vIrzoTcLTN8joDmvVWuJm7UD4YmxLD69je1Xj+uleb16K171b46rtT3xacnsu3mav45tIEOdVWz1yEur1TJn87+sO3SAxJQU/D29GP1GPyqVKVtgnj1nTrNg2xbuRkaQpVbj4eJC/7bt6dygUbGU8d+1G1i9dAUx0dFU8PJk+EfvE1CzeoHpz585x1+/zeTO7WAcnZx4vV8fuvR4RS/NuhWr2bRuI5HhEdjY2dKsZXOGDH8HE1MTAC6cPcfqpSu4fuU6MdHRfDvpexo3b1qk9WpesSbtfOpha2ZFaEIUq87t4Ub0fYNpB9bpRCPPgHzbHyREMWHn/Hzb65bzY2iDbpx9cJ0/j64v0nLndnLnIY5t2UtSXALOZd1o17875f0qPTHf3Wu3WPy/P3Au58Y7Ez/XbT+z9ygXDgYSeS+7jXPzKkfL3l0oW6ng75/nsWntBtYuW0VMdDTlPT0ZNnIEATWqFZj+wplzzPltNiHBwTg4OtLrzT507t5N9/esrCxWLl7G7q07iI6KopyHB4Pfe5u6Devr0gzp9SYRYfnn+e3S4xVGfPpRkdSrvU99ulVtip25FffiIlh4citXIu8UmL6pZ3Ve8W+Gm7UDKZnpnHtwncWntpGUkZovbeMK1RjZrDeBd4P4Zf/SIimvIS9rW9vZrxGvVWuJg7k1IXHhzDm+kUvhtwtM36VKY7pWaYyLlQORybGsPLeHPTdOlVh5AbpVbcrr1VvjaGFDcGwYs46u5WLYrQLTv1K1Ka/6N8PV2oGIpFiWntnJruuBBtO2rFSLr9oM5nDwecbtmFtcVXihyGqqLx7pjBNCPLN58+bx4Ycf8vfffxMSEkL58uULTKvValGr1RgZSXNTnIJPBXFyzS7q9+mAS8WyXDt0lj0zV/LK129j6WBbYL5XvxmGsbmJ7rmplYXu/2f/PcCtwEs06tcJG1dHHgTdYv+ctXQc1R8HD7diq8vCtWtYumE93438mPJlyjJ35Qre//Zb1sychaWFhcE8aenplHN1o23jpkyd93eB+65Yvjwzv/+f7rlKWboB4ubGptyIvseWK0eY2Gl4qZbFENNObTFt34qUuf+gDo/ArGtHrD77kIQvv4e0dIN5jBvWxazXq6TMW4L6xi2Ubi5YDB0AQNrytQBoYuNIXb0BTUQUACZNGmD54TASx/34xI6+Z9HYsxpD6nVhzvGNXIm4Q3uf+nzVdhAfb5hOVHJ8vvR+LhX4sOnrLAjczMl7V3CwsOHdht0Z0fg1ftq7BICf9y7BSKnS5bE2s2BKtw85GnyxyMqdV2vvOnzYtBdTDyznYtgtXqnalJ+6vs/AZROISIrNl/5V/2YMa/gqP+9bSlBEMFVcPBnd8k0S01I4cucCAO0q12NYw+5M3ruYi2G38LBzZWzr7OP0++E1xVaXvBbt2MbS3Tv5duAQyru4Mm/rZj6YMY3V4/6HpZmZwTy2lpYM6dQZT1d3jI1UHLxwnu8XLcDe2ppGVfN3GBXG/l17+fPXP3j/05H4Vw9gy/p/+fqzL/jrn/m4uOWfMzXsQSjffDaWTt06M/rbL7l0/iJ/TPkVWzs7mrZqDsCe7buYN3sOo8aOpko1f+6H3GXKDz8B8O7I9wFIS03Dy7sS7Tp35H9fjSvSOgHUKefL6zVas/zMTm5G36eZVw3eb9qL73fMIzY1MV/6led2s/7iAd1zpVLBV20Gc/re1XxpHSxseK1aS65H3i3ycud2+dgZdv6zno6De+Hh48XpPUdY/vNfvDv5C2yd7AvMl5aSysbZS/Hyr0xSvH5d7wTdoGqj2pTz8cLI2Iijm/awbPJshv04BhsHuyIp94Hde5kzYxYjPv2IKtX82bZhM999NpZZi+cWeE599/lXdOzWmc++/YKgC5eYOWUGtna2NGmZfU4t+ms++3bs4sMxoyhX3oPTJ07yw5fj+GX2r1TyqQzA9Dl/oNZocup66zZffzJGd14WVqMKAQyq04m5gZu4GhFC28p1Gdt6AKP+/Y3olPztra9zed5v3JOFp7Zy6mF7+06DV3i3YXemHNC/ceZkaUv/2h0ICg8ukrIW5GVta5t51eCdBq8w6+g6LocH08mvIePaD2XE2l+ITI7Ll76TXyMG1enEb4dXcy3qLr5OHnzQtBdJ6SmcuBtUImVuUbEW7zXqwW+HVnEp/DZdqjRmYqfhDF05icjk/Meia5UmvFW/G9MOLOdqZAh+LuX5pNkbJKWncCzkkl5aFyt7hjXozvnQGyVSFyEKIsNUhRDPJDk5mZUrV/Lee+/RtWtXFixYoPf3R8NEt2/fTt26dTE1NeXgwYNotVp++uknKlasiLm5OTVq1GD16tW6fGq1mqFDh+Ll5YW5uTm+vr78+uuvTyzPli1b8PHxwdzcnFatWhEcHJwvzZEjR2jevDnm5uZ4eHjw0UcfkZyc/NR1DgwMpF27djg5OWFra0uLFi04ffr0Y/OMGTMGHx8fLCwsqFixIt988w2ZmZlP/ZrP6vKeE3g3qkHlxjWwdXOiXq+2WNjbcPXgmcfmM7O2wNzGSvdQ5uqcunXiEtXaN6KsfyWsnezwbVYb9ypeXN5j+C5jUdBqtSz7dyNDXu9N60aN8a5QgfEff0JaRjrbDuwvMJ9/ZR9GDnmLDs2bY2JsXGA6I5UKJ3t73cPetuCOypJwLOQSc45vZP+ts6VajoKYtmtF2qbtZJ4+h+Z+KClzF6MwMcakQd0C8xhV8iLr+i0yj59EEx1D1qUrZBw/iZFnTqd91rmLZF24jCY8Ak14BGlr/0Wblo5RJa8iLX+3qk3Zc+MUu6+f5H58JPMDNxOdHE8H3wYG0/s4exCZHMuWK0eJSIrlSsQddlw7QSXHnCitpIxU4tKSdI/q7t6kZ2XqfngVh941WrM56Aibg45wJzaM3w6vJjIpju4Bhn9Ed/BtwMZLh9hz4xShCdHsuXGKzUFH6Fe7nS6Nv5sXF8Nusuv6ScISYwi8G8Tu6yfxdS7aCKDH0Wq1LNuzmyEdO9O6Vm28y5Zl3KAhpGVksD3weIH56vj40qpmbbzc3Snn7ELf1m3xLluOszeK/ofV2hWr6NC1E51e6UJ5zwoM//gDnF1c2LRuo8H0m9f/i4urC8M//oDynhXo9EoX2nfpxOplK3Vpgi5ewr9aAK3at8HN3Y06DerRsl1rrl25pktTr1EDBg8bStOWRdNRklebynU5EnyBw8EXCEuMYdX5vcSmJNK8Yk2D6dOyMkhIT9Y9Kti7YWFixtE7+p3QChQMqdeFTUGHDXZ4F6XjW/dRs2UDarVqiFNZV9oP6IGNox2ndx9+bL6t81bh36g2Zb098/2t+4gB1G3XFLcKZXEq40qXt/ug1WgJvnS9yMq9bvka2nftSIdunSnvWYFhI0fg5OLClvX/Gky/Zf0mnF1dGDZyBOU9K9ChW2fadenI2mWrdGn2bt9F7wH9qNeoAe5ly9ClxyvUblCXtctzrrNs7e1wcHTQPQKPHMe9bBmq1apRJPXqUqUxe26eZs+NU9xPiGThqa1EpyTQ3qe+wfSVnTyISI5j29VjRCbHcTUyhF3XA6noqB8Vq1Ao+LDJ66w6v4fwpJgiKWtBXta2tntAc3ZeC2THtRPci49gzvGNRCXH0dnPcDRx60q12Xr1GAdvnyM8MYYDt8+x81ogPau3KrEy96zekm1Xj7H16jFC4sKZdXQdkUmxdKvaxGD6tpXrsTnoMPtvnSEsMZp9N8+w7eox+tRsq5dOqVAwtvVAFp3aSlhCdElURYgCSWecEOKZrFixAl9fX3x9fenfvz/z589Hq9XmSzd69GgmTZpEUFAQ1atX5+uvv2b+/PnMmjWLS5cu8cknn9C/f3/278/uYNFoNJQrV46VK1dy+fJlvv32W7788ktWrlyZb9+P3L17l9dee43OnTtz9uxZ3n77bb744gu9NBcuXKBDhw689tprnD9/nhUrVnDo0CE++OCDp65zYmIigwYN4uDBgxw7dozKlSvTuXNnEhPzRw88Ym1tzYIFC7h8+TK//vorc+bMYdq0aU/9ms9CnaUm5m4Y7lU89baXqeJJ5G3DQ44e2TR5Pqu//I2dM5YRdk1/KIk6KwulsX5Eo5GxERE3iy/a4X54ONGxsTSsVUu3zcTYmNr+AZy/cqXQ+w958ICOgwfxyjtDGfvzT9wLK7oorJeN0tkRpZ0tWZdyve9ZWWRdvYGRd8FDlbOu38LI0wOVVwXdfoyr+ZN5/pLhDAoFxvXroDA1IetmwUNmnpWRUkUlxzKcfaD/I/rcgxsF/gi6GhGCo4Uttcv6AGBrZkWjCgGcMhD980ibynU5HHye9Kzi6Ww3UqrwcS5PYJ5ohMC7QQS4Gj4OxkojMtT65UlXZ1LFxVMXDXo+9CY+zuWp4pL9XrjbONKwQgDH7hRfhF9e96OiiE6Ip2FVf902E2Njalf24fzNgoeF5abVajlxJYg74WHUruxTpOXLzMzk+tVr1K6v3/lcu35dgi4aPp+DLl7Kl75Og7pcv3KVrIfDtP1rVOP61WtcvZx9TEPvPyDw6HHqNzbcSVzUVAol5e3cuJwnyigoIjhfR0hBGntW40rEHWJSEvS2d6nSmKT0VI4EF1/nNGR/P4XevodXgK/e9ooBvty7HlxgvnP7jxMbHkXz1zo81etkpmegUWswtzIclf2sMjMzuXHtGrXq5Tmn6tUh6KLhYfpXLl2mdr06+unr1+X6lWu6cyozMwNjUxO9NCYmplw+b/jznJmZyd4du2jXpWORDF1TKVVUdCiTL9LoXOgNfJwNT5dxLTIERwsbapbJjtyzNbOkQXl/ztzXb297VWtFQloye28+/iZoYb2sba2RUoW3Y1nOPLimt/3M/Wv4uRj+LjRWGZGZZwhtRlYmPk4eqBTF331gpFTh4+SR77v31L2r+LsavmlnrDLKN+w3PSsTX+fyemXuX7sjcalJbLt6rOgL/oJTKhQv7OP/Kxk3JoR4JnPnzqV///4AdOzYkaSkJHbv3k3btvp3nr7//nvatcu+M5icnMzUqVPZs2cPjRpl34WrWLEihw4d4s8//6RFixYYGxszfvx4XX4vLy+OHDnCypUr6d27t8GyzJo1i4oVKzJt2jQUCgW+vr5cuHCByZMn69L8/PPP9OvXj48//hiAypUrM2PGDFq0aMGsWbMwK2AYVG6tW7fWe/7nn39ib2/P/v376dq1q8E8X3/9te7/np6efPrpp6xYsYLRo0cbTJ+enk56uv6wv6ddICM9KQWtRouZtaXedjNrS9ISDEcAmtta0bBvRxzKu6HJVHMr8CI7f1tG+5H9cPXOjmAqU6UiQXsCcfX2wNrJntCrwdw9f91g52tRiY7NHnrgaGunt93Rzo7QiIhC7TvAx4fxH39ChTJliY6LY+6qFQwd8zkrfvsDOxubQu37ZaR4+J5oEvQ7nTUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nCIdomptaoFKqSI+NUlve1xaInbmlQ3muRoZwvSDKxnVoi/GKiOMlCpOhFxm7nHDESveTuWoYO/GzCNri6zcedmaWWGkVOUbOhiTkoCDh+Hz9sTdy3St0oSDt89xLfIuvs7l6ezXCGOVEXZmVkSnJLDnxinszK35vcenKFBgpFKx7uIBlpzZUWx1ySs6ITtyysFavx4ONjaERT8+YiEpNYXOY0eTkZmFSqlgTN83aVClapGWLyEuHo1ag72D/pBHe3t7YqINR+jExsRib58nvYM9arWa+Lh4HJ0cadm2NfGxcXz63kjdVA5de7xCnwH9irT8BbEyNUelVJKYpv/9kJiWjK2rZQG5ctiYWeLvWpF5Jzbpba/oWJbGntX4YffCIi2vISmJyWg1GqxsrfW2W9pakxSXYDBPTFgke1dsYsA3H6JUqQymyWvvik1Y29vi5V80Hb0J8dnnlF2ec8rOwZ7Ygs6p6BjsGuRPr1arSYiLx8HJkdr167J++WoCalTDvWwZzp06w/FDR/SGpeZ27MBhkpKSaNu5fZHUy6aA9jY+NQm7MtYG81yLustvh1fzcbM+uvY28G4Q8wM369L4OpenVaXajNkys0jK+Tgva1trY2qJykC9YlOTqG1h+Nicvn+V9j71OXrnIjej7+PtWI62PvUwVhlhY2ZpcCh7UbI1e1Rm/c9ybGoi9gWU+dS9K3Tya8iR4PNcj7qHj5MHHX0bYqwywtbMipjUBPxdvejo25Dha34q1vIL8bSkM04I8dSuXr3KiRMnWLs2+4enkZERffr0Yd68efk64+rWzbnre/nyZdLS0nSdc49kZGRQK1cE1OzZs/n777+5c+cOqampZGRkULNmzQLLExQURMOGDfXu6j7q7Hvk1KlT3LhxgyVLlui2abVaNBoNt2/fpkqVKk+sd0REBN9++y179uwhPDwctVpNSkoKISEhBeZZvXo106dP58aNGyQlJZGVlYXNYzp8Jk2apNcZCfDdd99h1OTphzEoyHNnSQt5Nz1i6+qIrauj7rlzxbIkxyZwedcJXWdcvV5tObpsKxsnzAEFWDvZU6lhdW4eO//UZXqSrfv2MXHWH7rn07/5Nrsuee6SabXaQt+9b1In55z0Bqr7+dH93XfYtHcP/V/tXqh9vwyMG9bFYmBf3fOk6bOy/2Oo8/UxHbJGvpUx69qB1MUryLp1B5WrE+Z9e6GJTyD935wFXzRh4SSOm4TCwgLjOjWxeHsASZN/LdIOOQAt+mXN9znJpZytC0Prd2XVuT2cfXAde3NrBtbpyLuNuhvscGvjXZc7sWHciLpXpGU2JG8nuEKhyFe3Rxae3IqDhQ2zXxsNCohNSWTblWP0q90etTb7x3nNMpUZUKcDUw8sJyg8mLK2znzU9HWi63Ri0amtxVKHrSeOMWnpP7rn00Z8+LAu+um0WgMb87AwNWPJl9+Skp5G4NUrTFu9krJOztTx8X1svueStz3iCe1Rvvbr0ebs7edOn2X5oiW8/+lI/Pyr8ODefWb/+gf28xfz5pABRVr0x8l/9hR8TuXWqEIAqZlpnMsVdWpqZMyQep1Zcno7yQYm3y82+Y6N4UnKNRoN6/9YTLOeHXF0d3mqXR/dtJtLR8/Q/6v3MTIpePqD5/Gs33H5/pRzUgHZcw3O+Gkqw998CxTgXqYMbTt3YNeW7Qb3t2PzVuo2qI+jk9Nz18GQvGePQqEo8AZeWVtnBtftzJoLezn34Ab25ta8WbsDbzd4hT+PrcfMyIQPmvTir+MbSExPKdJyPs7L0NYalKcKCkXBX+XLz+7C3tyaKd0+RAHEpSax+/pJelVvhUZruIO3OOQtn0JhqN3K9s/p7dhbWDOj+ygUZHfc7bh2nD4126LRajA3NmVMqwFMO7ichPSnn6pGiOIknXFCiKc2d+5csrKyKFs2ZxiLVqvF2NiY2Fj9aABLy5y765qHd2Y3b96slxdyor9WrlzJJ598wpQpU2jUqBHW1tb8/PPPHD9e8LxBTxOhpdFoePfdd/noo/wrhT1u4YncBg8eTGRkJNOnT6dChQqYmprSqFEjMjIyDKY/duwYb7zxBuPHj6dDhw7Y2tqyfPlypkyZUuBrjB07llGjRultMzU15ecDT14xzNTKAoVSQWqi/h3ptKTkfNFyj+PsWZZbgTlDr8ysLWg1rCfqzCzSk1Mxt7XizIZ9WDnaPfU+n6R5/foE+OZEHGQ8nFcvKi4WJ4ec6KuY+Hgc7IrudQHMzcyoVMGTuw8eFOl+/6syz14g8VZwzoaHi64obW1Qx+fcnVbaWKNNKPiuuFmPLmQcOUHGwaMAaO4/ABNTLAb1JX3T9pyra7Vat4CDOjgElVd5TNu2JHXR8iKpT2J6CmqNGjtz/bvotmZWxOWJ3njktWotuBJxhw2XDgJwJzaMtKwMfuj0LkvP7CQuVzSAicqYJl7VWXF2V5GUtyDxaUlkadQ4WOh35tubWxObYvg4ZKgzmbz3H37ZvxQHcxuiU+LpVrUpyRmpxKdm/wgZWr8bO66eYHPQEQBuxTzAzNiUz1v0Y/GpbU/VKfOsmlevSYBnznCvjIdDe6MTEnDKFQ0bm5iAo/Xjo1WVSiUeLtmdKr4e5QkODWXBti1F2hlnY2eLUqXMF7EUFxuXL1ruEXsHe2Jj8qaPRaVSYWObXadFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt7cncUhKT0VtUaDjZn+94O1mQUJaU/u9GjsWY3jIZd1nQ0Azpb2OFna8V7j13TbHnUu/d7jU8btmEuUgYnin5eFtSUKpTJfFFxKfCKWtvkjZzJS0wm9fZewO/fZvjC7Y12r1YJWy8SBn9JvzHA8/XMiZo9t3svhjbvo98V7uJYvU2TltrE1fE7Fx8bli5Z7xN7Rgdho/Qnr42Lj9M4pW3s7vpn0PRnpGSQkJODo5Mj8WX/j6p5/saWIsHDOnjzDlz98V0S1ggRde2ult93GzJL4NMPtbXf/5lyLDOHfy9lz/IXEhZN2IoPvO7zDinO7sDWzwsXKntEt39TleXROLe03jk82/kq4gUUVntfL1NbmlpCejFqjzhdRZmdmpfedpl+vLH49tIrfD6/Bztya2NQEOvg2JCUj7anaiMKKT8suc95jYWdmTdxjjsWU/cuYfmAF9hbWxKQk0NmvMckZacSnJVPRsQzuNo5M6PCOLs+j82nb21MZsuIHQhNf7jnkFCUwxFg8G+mME0I8laysLBYtWsSUKVNo315/WEPPnj1ZsmRJgfOwVa1aFVNTU0JCQmjRooXBNAcPHqRx48aMGDFCt+3mE+YMqlq1KuvXr9fbduyY/hwQtWvX5tKlS3h7ez92X49z8OBBZs6cSefOnYHsueqioqIKTH/48GEqVKjAV199pdt2586dAtNDdsfb0w5LzUtlpMLBw43QK8GUr5HzQzT0SjDlqhkejmdIzL1wzG3zd96pjI2wsLNGo1YTcvYqFWo/OZrwaVlaWOitkKrVanG0t+f42bP4VawEZM9tc/rSRT4cOKjIXheyO/6C792lVtWiHdr2n5WWjibPCqmauHiMqvqhDnkY+aVSYeTrTeqqDQXvx8Qk/+1srabAKM0cChRFuOpylkbNzegH1HD35kRIzlxM1ct4E3jX8NxMpkbG+YZ1PYoCyFv8Jp7VMFap2H/r8YukFFaWRs21yBDqelTh4O1zuu11y/lxKPjxUapqjUa3Ul4b77ocCb6o++FnZmSS74aGRqNBoXh8xERhWJqZ6a2QqtVqcbSx5XjQZXw9sm+OZGZlcfr6NT7s0fOZ9q1FS0ZW1pMTPgNjY2Mq+/pwJvAUTVo0020/E3iKhk0bG8xTJcCf44eP6m07feIklf18dauKp6en5etwUyqVaLXaYp0G4BG1VkNIXBhVXCroRbdlP3/8IhiVnTxwsbLPNydcWGI0E3bO19vWzb8pZkYmrDq3h9gUw0NHn5fKyAh3r3LcvngNv3rVddtvX7yGT538K+qampvyziT9aSJO7TrMncvXee2jwdg559z8ObppD4c37KTvmHcpU/Hpbto9LWNjY7x9ss+pxi2a6rafOVnwOeXnX5UTR/TPqTOBJ6ns55NvpXoTUxOcnJ3IysriyP6DNGud/5pr5+Zt2NrbUb9RwyKoUTa1Rs2tmAdUd6ukN+dadbdKnLxneL5Xw+1t9vmvQMGD+Cg++/c3vb/3qdkWMyMTFp7cQlQRn1MvU1ubW5ZGzY3o+9QsU1lvwZWaZXw4HlLAXK4PqbUa3Uq4zb1qcOJuULF3HsLDYxF1l9plfTmc672vXc73ifNRqrUa3eIxrSrV5njIJbRoCYkL551VP+qlHVyvMxbGZsw8stbgqrJCFDfpjBNCPJVNmzYRGxvL0KFDsc2zAmWvXr2YO3dugZ1x1tbWfPbZZ3zyySdoNBqaNm1KQkICR44cwcrKikGDBuHt7c2iRYvYvn07Xl5eLF68mMDAQLy8Cl5dcfjw4UyZMoVRo0bx7rvvcurUqXyru44ZM4aGDRvy/vvv884772BpaUlQUBA7d+7kt99+M7zjPLy9vVm8eDF169YlISGBzz//HHNz88emDwkJYfny5dSrV4/Nmzezbt26p3qt51W1dX0OL/oXx/JuOHuV5drhsyTHJODTLHsY8OkN+0iNT6TJwG4ABO0NxNLBFjt3JzRqNbdOXCLk7FVavN1Dt8/I4AekxiViX86VlLhEzm85hFarxb9t8U0yrlAo6NvtFeavXkV59zJ4lCnD/NUrMTMxpWPznB8V306bioujIx887KDLzMzk1t27D/+fRWR0NFdv3cLC3AwP9+yohunz59KsXn3cnJ2JjYtn7qoVJKek0LV1m2Krz5OYG5tSztZZ97yMjROVncqRkJZcpHf8n1f6zr2YdW2PJiICdXgkZl06oM3IJOP4SV0ai7cHoImNJ21N9uqSWecuYtq+FeqQe6hvBaN0ccase1cyz17Q/eowe60bmRcuo42JBTMzTBrUwcivMslTi3ZeoH8vH+Kjpq9zM/o+VyNDaOdTDydLW3ZcPQHAm7Xb42Bhw2+HslccPHn3CsMb96CDbwPO3r+Gnbk1b9XvyrXIu/nmyGlduS4nQoJISi/+IXkrz+3hqzaDuBpxh0vht+lWtQku1vZsuJgdwTes4as4Wdox8eFcXeVsXaji6klQ+G2sTS3oXaMNXo7uTNyTM5fXkTsX6F2jNdei7uqGTg1t0JXDwRd0P4iLm0KhoG/rNszftgUPFxc8nF1ZsG0LZiYmdKiX0858t2Auznb2fNA9O+pq/rYtVK3gSVknZ7LUWRy+eIHNx47xRd83C3qp5/Zan9f5ecIkKvv5UiWgKls3bCIiPJwuPbLb0nmz5hAdFcXn34wFoEv3bmxcs54/Z8yk0ytdCLp4me2btvLFuJx5RBs0acS65aup5OONX9XsYaqL5synYdPGqB7OZZaaksqDezkL8IQ9COXmtRtY21jj4uZa6Hrtvn6SwfW6cCc2jNsxD2jqVQN7CxtdJ8Sr/s2wM7dm4cktevmaeFbjdvQDHiTo35DK0qjzbUvNyO7cz7u9qDTo1JINs5bgXtGDct6enNl7hPjoWGq3ye7U2rtiE4mx8bwy/E0USiUuHu56+S1trFAZG+ltP7ppN/tXb6X7iAHYOjnoIu9MzEwxMXu+G2Z59XijJ1MmTKaynw9+AVXZtnEzkeERdO6efU4tmP030ZFRfPpN9oJUnbt3ZdPaDcz5bRYdunXmysXL7Ni0jdHjvtTt88qlIKKjoqjoXYnoqGiWzluERqOhZ78+eq+t0WjYuWU7bTq2Q2X0dPPmPa3NQUf4oHFPbsY84HrkXdpUrouTpS07r2e3t31rtsPBwoY/jqwBsifjH9bwVdpVrse50OxhqoPqduJ6VE57ezdef67YR0Og824vKi9rW7v+4gFGNX+DG1H3CIq4Q0ffBjhb2bHlSnYn76A6nXC0tGXqgezI9DI2Tvg4l+daZAhWJuZ0D2hOBXs3ph1cUSLlBVhzfh9jWvXnWlQIQeHBdK7SGBcrezYFZUdSvlWvK06Wtvy0L3samrK2zvg5V+BKxB2sTM3pWb0Vng7uur9nqrMIjg3Ve43kh9/febcLUVKkM04I8VTmzp1L27Zt83XEQXZk3MSJEzl9uuCVriZMmICLiwuTJk3i1q1b2NnZUbt2bb78Mvticvjw4Zw9e5Y+ffpk/0Dr25cRI0awdWvB82mUL1+eNWvW8MknnzBz5kzq16/PxIkTeeutt3Rpqlevzv79+/nqq69o1qwZWq2WSpUq0adPnwL3m9e8efMYNmwYtWrVonz58kycOJHPPvuswPSvvvoqn3zyCR988AHp6el06dKFb775hnHjxj31az4rzzpVSE9O5fzWw6QmJGPn7kTrEa9j5ZB9vFITkkiOybmLrMlSc3rdHlLik1AZG2Wnf+91yvpXykmTmcXZTQdIjIrD2NSEsv4VaTKwKyYWT170ojAGvdaT9IwMfvxzFolJSQT4+PD7+O/1IujCoiJRKnNilSJjYnjzk5G654vXr2Px+nXUDgjgrx8mARAeFc1Xv/xCXGIC9jY2BPj6Mv+nX3B3ebr5g4qDn3MFfu+RMzz5o6avA7Al6Cg/5LqYLy3pW3ehMDHBvH8fFJYWqG8FkzTld8gVQad0cABNzg+KtH+3odVqMevRFaW9LdrEJDLPXSRtTc4iCApbayzfGYjC1gZtahrqe/dJnjqTrMuFXzE3tyPBF7A2teD1Gq2xN7cmJC6cibsX6u6A25tb42Rpp0u/9+ZpzIxN6eTXkEF1O5GckcaF0Jv8c1p/3iV3G0equnoyfse8Ii1vQfbcOIWNqSWD6nbG0dKG29GhjNk0k/Ck7KFujhY2uFrlDHFTKZX0qdGG8nauZGnUnLl/jRFrfyEsMWdo3KKTW9FqtbzdoBvOlnbEpSZxJPgCc45vLJE6PTKwfUfSMzOZvGwpiSnJ+HtV5LcPP9GLoAuLidGbTystPZ3Jy5YQEReLqbExFdzc+X7IUNrXrVfk5WvRthUJCQksmb+I2OgYKlT0ZMIvk3B1yx7+FxMdQ0R4TseAWxl3JvwyiT9n/MGmtRtwcHLkvY8/oGmr5ro0/QYNQKFQsPCveURHRmFrb0eDJo0YPGyoLs21K1cZ82FO2/DXb9lzOLbt1IHPvh5T6HqduncVSxNzulRpjI2ZJaEJUfxxeI1udVRbMysc8gxrMzMyoVZZH1ae21Po1y8KVRvWIiUxmUPrtpMUl4BzOXfe+HwYtk7ZUW5JcQnERz3bTY1Tuw6jzlKzZsYCve3NenSgec+ORVLu5m1akRCfwLIF/xATHUMFL0/G/zxR18kaEx1DZJ5zavzPPzDnt1lsWrsRRydH3v34fZq0zDmnMjMyWDxnPmEPQjE3N6duw/p8+s0YrKz1h42ePXmayPAI2nfpVCR1ye3onYtYm1rQs1pL7M2tuRsXzo97F+uilOzMrXC0zLmG3H/rDObGJnTwbciAOh1JzkjjUvhtlpw2PM9dSXhZ29qDt89hbWrBGzXb4mBhw53YMMbtmJvzXWhhg3Ou70KlQkmPgOaUtXVGrVFzPvQmn2/6g4gSvEm4/9YZbMws6V+7Aw4WtgTHhPLV1j91ZXC0sMEl97FQKOlVvRXl7FxQa9ScfXCdkRum646dePycuaJ0KLQlEQ8vhBDiufwvz7Cf/6Kv2w0h8cq10i5GoVj7+dDkj+GlXYxCO/z+bOLeMhzB+l9hN+93ei788skJX3BrBk2k+cwRT074gjswYiYJew6UdjEKxaZ1c25H3X9ywhecl1NZ3lvzc2kXo1Bm9fycRYFbnpzwBTewXmduRN4t7WIUmrezB33++aa0i1EoK/pPeGna2q7zPi/tYhTKprd+pt1fI5+c8AW3c9ivpV2E5/LF5lmlXYQC/djlvdIuQqmQWfyEEEIIIYQQQgghhCghMkxVCCGEEEIIIYQQ4iWlVMgw1ReNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SChmm+sKRyDghhBBCCCGEEEIIIUqIdMYJIYQQQgghhBBCCFFCZJiqEEIIIYQQQgghxEtKVlN98UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJaVAhqm+aCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxklLIaqovHImME0IIIYQQQgghhBCihEhnnBBCCCGEEEIIIYQQJUSGqQohhBBCCCGEEEK8pJQyTPWFI5FxQgghhBBCCCGEEEKUEOmME0IIIYQQQgghhBCihMgwVSGEEEIIIYQQQoiXlKym+uJRaLVabWkXQgghhBBCCCGEEEIUve93zivtIhTo23ZvlXYRSoVExgkhxAsstl2P0i5CodnvXEfCrr2lXYxCsWnbiri3PijtYhSa3bzfafLH8NIuRqEcfn82ccNHlXYxCs1u9lTihn5Y2sUoNLu5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZbNLu0iyDySNiyo7SLUCg2ndsT98mXpV2MQrObNpG4N4aWdjEKxW75XL7dNqe0i1Fo33d8p7SLIF4SMmecEEIIIYQQQgghhBAlRCLjhBBCCCGEEEIIIV5SSmTOuBeNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SCoUMU33RSGScEEIIIYQQQgghhBAlRDrjhBBCCCGEEEIIIYQoITJMVQghhBBCCCGEEOIlJcNUXzwSGSeEEEIIIYQQQgghRAmRzjghhBBCCCGEEEIIIUqIDFMVQgghhBBCCCGEeEkpZZjqC0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLykFMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooRIZ5wQz+jkyZNMmzYNjUZT2kURQgghhBBCCCEeS6lQvLCP/6+kM0785wUHB6NQKDh79myR7VOhULB+/fp826OioujduzcBAQEolUX/8Rk3bhw1a9Ys8v3+fzJ48GC6d+/+1On37duHQqEgLi7uuV9zwYIF2NnZPXd+IYQQQgghhBD/f8gCDqJUDR48mIULFwKgUqkoU6YMXbp0YeLEidjb25dauUJDQ/O9vlarZeDAgXz77be0a9eulEr2clAoFKxbt+6ZOs1E0TJu2hDTLu1RVa6E0taGhOGfoL4ZXNrFArI/a3O2bGLd4UMkpqTg7+nJ6N59qVSmTIF59pw9w4LtW7kbGUmWWo2Hswv927Slc4OGujSnr19n8a4dXLkbQlR8PD8PG07LGjWLtS5mr3bGpEUTFBbmqG/dIeWfFWgehD02j2m7lpi0aobSwR5tUjIZJ8+QtnojZGUBYNKyKaatmqF0cgBAfT+MtH+3knXhcrHW5XFquHvTr1Z7/FzK42RpxxdbZnHw9rlSK48hZl07YNK0IQoLC9TBd0hZtgZNaHiB6a1GjcDIxzvf9swLl0n+4+/sJ6ammL/SCeOaASisrVHfvUfqyvWo79wtnjq80kn/fFqy8snnU9uWmLRqmut8OkvampzzybRzO4xr10Dl7oo2IxP1zdukrtqAJjyiWOrwLF7kdiovrVbLnM3/su7wwYftlhej+/R7fLt15vTDdisiu91ycaF/m3Z0btCoxMpt1qMrJi2borC0QH0zmJRFy9DcD31sHtMOrTFp3RylowPaxCQyAs+QtmodZGbp0ijs7TDv3QOjGv4ojE3QhIWTMncx6uCQ4q6SKEVarZY527ey7uhhElNT8S9fgdE9e1PJ3b3APHvOn2XBzh3cjYoiS6PGw8mZ/i1b07lefV2av7ZtYc72rXr5HKyt2f79xGKri1mHNpg0qofC3Bx1yF1S1mxEE1Zwu2j1/tsYeVfMtz3z8hWS5yzKt920TQvMu3Ygff9hUtdvLtKyP2LW6xVMWrdAYWWB+sYtUuYtQXPvwWPzmHZqi0m7ViidHn6+j58kbdmanM+3mRnmvbtjXK82Cltr1MEhpC5YhvpWcJGXv55HFZp61cDK1JzIpFi2XjnGndiCv/NUCiUtvWtTo4w3VqYWJKQls//mGc7cvwZAnXK+1Czjg4t19m+8B/FR7LoeyP34yCIvuxBPQzrjRKnr2LEj8+fPJysri8uXL/PWW28RFxfHsmXLSq1Mbm5u+bYpFAq2bNlSCqURougpzEzJunSFjANHsBz1fmkXR8+inTtYumc33w4YRHkXF+Zt28oHv//K6m/HY2lmZjCPrYUFQzp0wtPNDWOVEQcvnuf7fxZhb21No6r+AKRmpONTrhzdGjVmzJw/i70epp3aYtq+FSlz/0EdHoFZ145YffYhCV9+D2npBvMYN6yLWa9XSZm3BPWNWyjdXLAYOgCAtOVrAdDExpG6egOaiCgATJo0wPLDYSSO+/GJHTPFxdzYlBvR99hy5QgTOw0vlTI8jmn71pi2aUHKwmWoIyIx69QOq5HDSfjuR0g3fCySZy8AI5XuucLSAuuvPyPzdE4no8WA3qjKuJM8fyna+ARMGtTB6uPhJIz/CW1cfNHW4dH5NG/Jw/OpA1affkDCVxMKPp8a1MWs1yukzF+C+sbt7PPprf4ApK3IPp+MfLzJ2HuQrNt3QKnC/LWuWH36Pglf/wAZGUVah2f1IrdTeS3auZ2le3bx7YDBlHd1Zd7WzXzw2zRWfzeh4HbL0pIhHTvj6eqGsZGKgxcu8P3ihdhb2+jareJk2qU9ph3bkDJnIerQCMxe7YTV6JEkjPmu4HOqUX3MXu9BytxFqK8/bKPeGQRA2tJVACgsLLD++nMyg66S/MvvaBMSUbo4oU1JKfY6idK1aM8ulu7by7f93qS8swvzdm7ng9m/s3rsN4/5/rZkSLsOeLq6YqxScfDSJb5fviT7+9uvii5dRTd3/njvA91zlbL4hraZtm6OacsmpCxdgzoyCrN2rbAa/hYJk6ZCuuF2MXn+ElDl+c747EMyz17Ml1blURaTRvVQP6Hju1B1eKUTpp3bkzJrHurQcMxe64rVl5+SMOorSEszmMe4SQPM+vYi5c/5qK/dQOnuhsXwtwBIW7QCAIt3B6EqV5bkP/5GGxuHSbOGWH39KQmffoM2Nq7Iyh/gVpFOVRqx6fJhQmLDqefhR/86Hfn90Cri05IN5uldsw1Wpuasv3iAmJQELE3M9YZAejqU4XzoDe4GhZOlUdPUqwYD63bi90OrSUx/+dsnxf/j4aAvKhmmKkqdqakpbm5ulCtXjvbt29OnTx927Nihl2b+/PlUqVIFMzMz/Pz8mDlzZoH7U6vVDB06FC8vL8zNzfH19eXXX3/Nl27evHn4+/tjamqKu7s7H3yQ8wWfd5jqhQsXaN26Nebm5jg6OjJs2DCSkpJ0f380NPKXX37B3d0dR0dH3n//fTIzMx9b9x9//BFXV1esra0ZOnQoaQa+HJ+l7gDbtm2jadOm2NnZ4ejoSNeuXbl586bu7xkZGXzwwQe4u7tjZmaGp6cnkyZN0qv7rFmz6NSpE+bm5nh5ebFq1Sq917h//z59+vTB3t4eR0dHXn31VYKDg5/q/fX09ASgR48eKBQK3XOAWbNmUalSJUxMTPD19WXx4sWPratarWbUqFG6uo4ePRqtVquXRqvV8tNPP1GxYkXMzc2pUaMGq1evfux+85o6dSrVqlXD0tISDw8PRowYoXf887p58yavvvoqrq6uWFlZUa9ePXbt2vVMr1ncMnbtJ+2flWSdfrGil7RaLcv27mZIh060rlkL7zJlGTdgEGkZGWwPPFFgvjo+vrSqWQsvN3fKOTvTt1UbvMuW5Wyuc7+JfwDvdXuV1jVrlURVMG3XirRN28k8fQ7N/VBS5i5GYWKMSYO6BeYxquRF1vVbZB4/iSY6Jrsj4vhJjDzL69JknbtI1oXLaMIj0IRHkLb2X7Rp6RhV8iqJahl0LOQSc45vZP+ts6VWhscxbdOctK27yDx7Ac2DMFIWLkVhYoJJ/doF5tGmpKBNSNQ9jKv4QkYmGacefmaMjTGuVZ3Utf+ivnELTWQUaZu2o4mKwbR546KvQ9uWpG3eket8+ufpzqcbt8g8firX+XRK73xKnj6LjMPH0TwIQ3PvPinzlqB0dEDl6VHkdXhWL2o7lZdWq2XZnl0M6diZ1rVqZ7dbA4c8bLeOF5hP1265u1PO2YW+rR+1WzdKpNymHdqQtnErmSfPorn/gJS/FmZ/LhrVLzCPkXdFsq7fJPNoIJqoaLIuBpFxLBAjr5xzyrRrezQxMaT+vQj1reDsdJev6m4giJeTVqtl2f59DGnXntbVa+LtXoZx/fqTlpHJ9tMnC8xXx7syrarXwMvVjXJOzvRt0RJv9zKcvXVTL51KqcTJxkb3sLeyLra6mLZoTNrOfWReuJQd1bl0VXZ7W7tmgXm0KaloE5N0D2Mfb8jMJOPcBf2EJiZY9O9D6sp1aFNTi68OndqStn4zmYGns9v2mXNRmJpg0qRBgXmMfCqRde0GmYePo4mMJuv8JTKOHMeoomd2AmNjjOvXIXXpatRXrmVfg6zeiCYiCtN2rYq0/I09q3H63lVO37tKVHIcW68cIyEtiXrlqxpM7+1UDk8Hd/45tZ1b0Q+IS03ifnwkd+NyohnXnN9L4N0gwhJjiEqOZ8PFgygUCio6li3SsgvxtKQzTrxQbt26xbZt2zA2NtZtmzNnDl999RU//PADQUFBTJw4kW+++UY3vDUvjUZDuXLlWLlyJZcvX+bbb7/lyy+/ZOXKlbo0s2bN4v3332fYsGFcuHCBjRs34u2dfzgSQEpKCh07dsTe3p7AwEBWrVrFrl279DrvAPbu3cvNmzfZu3cvCxcuZMGCBSxYsKDAuq5cuZLvvvuOH374gZMnT+Lu7p6vo+1Z6w6QnJzMqFGjCAwMZPfu3SiVSnr06KFbcGLGjBls3LiRlStXcvXqVf755x+9DjGAb775hp49e3Lu3Dn69+9P3759CQoK0r0frVq1wsrKigMHDnDo0CGsrKzo2LEjGQ+jKB73/gYGBgLZnYyhoaG65+vWrWPkyJF8+umnXLx4kXfffZchQ4awd+/eAus6ZcoU5s2bx9y5czl06BAxMTGsW7dOL83XX3/N/PnzmTVrFpcuXeKTTz6hf//+7N+/v8D95qVUKpkxYwYXL15k4cKF7Nmzh9GjRxeYPikpic6dO7Nr1y7OnDlDhw4d6NatGyEhMjznSe5HRxGdkEDDKjl3w02MjantXZnzt2891T60Wi0nrlzhTng4tQv4XBc3pbMjSjtbsi5dydmYlUXW1RsGh7Hokly/hZGnByqvCrr9GFfzJ/P8JcMZFAqM69dBYWpC1s3bRVmFl4bSyQGlrQ1ZQVdzNmapybp+M+cHxlMwadKAjJNncqLFlEoUKpXe0DwAbWYmRt5F2zGqdHrM+fSYTtisGzcxqpDrfHJyxLha1YLPJ0BhkR29ok1++aMEikpOu5XzI9HE2JjalX04f+tZ2q2gh+1W5eIqqo7S2Sn7nLoYlLMxK4usq9cxqvyYNuraDYw8y6N6+NlROjthXCOAzHM50T/GtWqQdTsEiw/eweb3n7Ca8CUmLZsWV1XEC+J+dDTRiQk09PXTbTMxMqa2tzfnbz/d95NWq+XEtavciYygdiX97++7UZF0+u4rXp3wHV8ums+9qOLp3FU62qO0sSHr6vWcjWo1WTdu63U6P4lJg7pknDkPGfo35i16vUJm0BWyrt0sIGfhKV2cUNrbkZW7rc/KIivoKkY+lQrMl3XlBkZeFVA9/F5RujhhXKsamafPZydQqR5+7+nXSZuRiZFf0V1vqRRK3G2cuBl1X2/7jaj7lLdzNZjHz6UCD+KjaOpVnc9a9uOjZr3p4NsAI6XKYHoAY5URKoWS1EzDkcBCFDcZpipK3aZNm7CyskKtVusiw6ZOnar7+4QJE5gyZQqvvfYaAF5eXly+fJk///yTQYMG5dufsbEx48eP1z338vLiyJEjrFy5kt69ewPwv//9j08//ZSRI0fq0tWrV89g+ZYsWUJqaiqLFi3C0tISgN9//51u3boxefJkXF2zvxTs7e35/fffUalU+Pn50aVLF3bv3s0777xjcL/Tp0/nrbfe4u2339aVadeuXXrRcc9ad4CePXvqPZ87dy4uLi5cvnyZgIAAQkJCqFy5Mk2bNkWhUFChQoV8+3j99dd15ZowYQI7d+7kt99+Y+bMmSxfvhylUsnff/+tC3eeP38+dnZ27Nu3j/bt2z/2/XV2dgbAzs5ObzjwL7/8wuDBgxkxYgQAo0aN4tixY/zyyy+0amX4btv06dMZO3asrs6zZ89m+/btur8nJyczdepU9uzZQ6NG2XPwVKxYkUOHDvHnn3/SokULg/vN6+OPP9b938vLiwkTJvDee+8VGKVYo0YNatSooXv+v//9j3Xr1rFx48Z8nbhCX3RCAgAO1jZ62x1sbAiLiXls3qTUVDp/+QUZWZmolErG9OlLgyqG76AWN4VNdvk1CYl62zUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nFIbovqie+yxcHi6uUlVnuVRlXUnZfGKnI3p6WTdvI1Zl3Ykh4VnR8/Vq43Ks3yRRwApbB/VIUFv+5PPp9OkWllh9cXH6M6nvQdJ37qzwDzmfV4j69rNJ84bJnJExxfQblnbEBYT/di8SakpdP5yDBmZD9utN/qVSLulO6fi85xT8Qm6+SgNyTx+klQbK6y+/gzdObV7P+mbcr57lc5OmLZuTvq2XST/uw1VRU/M+/dGm5lJ5uGCIwXFf1t0YgGfAytrwmKf4vt73NdkZGVlfw569aZBrk49/woVGN9vAOWdXYhOTGDezu0MnTGVFWO+wu7htXlRUVhnR9xpEvVHQGiSklDa2z3VPlTly6Eq40bKw+kAHjGuVR1V2TKkTHv8KJfCUtjZAgV9vh0LzJd59ET253v8F9n7MTIifcde0jc+nK8vLY2sazcwe60ryfdD0cbFY9ykASpvr8fOp/esLEzMUCmVJGXo3xRKzkjFytTcYB57c2vK27uSpVGz7MxOLIzN6OrfBHNjU9ZfPGAwTzufeiSkJXMr+r7Bv79sFAqJw3rRSGecKHWtWrVi1qxZpKSk8Pfff3Pt2jU+/PBDACIjI7l79y5Dhw7V69TKysrC1ta2wH3Onj2bv//+mzt37pCamkpGRoZuldKIiAgePHhAmzZtnqp8QUFB1KhRQ9cRB9CkSRM0Gg1Xr17Vdcb5+/ujyjVXhLu7OxcuXMi3v9z7HT5cf26lRo0a6SLBnrfuN2/e5JtvvuHYsWNERUXpIuJCQkIICAhg8ODBtGvXDl9fXzp27EjXrl1p3759vnLkff5otdpTp05x48YNrK31hwekpaVx8+bNZ35/c78fw4YN09vWpEkTg0OMAeLj4wkNDdUrq5GREXXr1tUNVb18+TJpaWn5FtzIyMigVq2nH6q4d+9eJk6cyOXLl0lISCArK4u0tDSSk5P1zotHkpOTGT9+PJs2beLBgwdkZWWRmpr62Mi49PR00vPMXWVqavrUZXwck9bNsfg451xL+nKCfjREKdp64jiTli3VPZ82InteqLzzWuQdfmyIhakpS8Z+RUp6OoFXrzBt7WrKOjlRx8e3aAttgHHDulgM7Kt7njR9VvZ/DJX7MXUx8q2MWdcOpC5eQdatO6hcnTDv2wtNfALp/27TpdOEhZM4bhIKCwuM69TE4u0BJE3+VTrkAOP6tbHo97ruedKjxRbyvu/PMHeKSeMGqO+H5pt8PmX+UiwGvoHt5HFo1WrUd++TGXgGVfnCDXkxblAXi4Fv6J4n/To7+z95Tx2F4gnnk3f2+fTPSrJuBaNycca8b080XTvodZ48Yv7m66jKlSHxx+mFKv/zeJHbqbyy261/dM+nPZzHKu8ppUX7xPPMwtSMJWO/edhuBTFtzSrKOjkXebtl3Kg+FkP66Z4nTfnjYSENfC4e09wa+flg1q0TqQuXkXXzNipXF8z790YTF0/6hofz6ioVqG/fIW31BgDUd+6iKuuOaZsW0hn3Etl6KpBJK5frnk97J/vzm/eMf7rPgSlLPvuClIx0Aq9dZdr6dZR1dKLOwyjRJlVy5lD0pgzVPb3o/sN4Ngce582WrQtVD+PaNbDo3V33PMnAYgvZHv/ZyM2kQV3UD8JQh9zLyW1ni3mPriTNnqdbQKeoGDdpgMU7A3XPkyY/vHbO9/3whO+Mqr6Y9ehK6tx/yLpxC5WbC+aD+qKJ60r62k0ApPzxNxbvDsF21pTs773bd8g8fFwXgV3cCir+o+vG1ef3kJ6VHbm37cox+tRsy6bLh8nSqPXSN/WqTjX3Ssw/sTnf34QoKdIZJ0qdpaWlbgjjjBkzaNWqFePHj2fChAm6jqQ5c+bQoIH+HAe5O75yW7lyJZ988glTpkyhUaNGWFtb8/PPP3P8ePYFoLm54TsqBdFqtQVOeJl7e+6htY/+9qj8z+N56g7QrVs3PDw8mDNnDmXKlEGj0RAQEKAbQlq7dm1u377N1q1b2bVrF71796Zt27ZPnEftUV01Gg116tRhyZIl+dI4OzujVD7/XRdDHTCFmWz00Xu4efNmypbV/3H8tB1dd+7coXPnzgwfPpwJEybg4ODAoUOHGDp0aIFzAn7++eds376dX375BW9vb8zNzenVq5fuGBgyadIkvYhOgO+++46RBaR/FhlHT5B15ZruuSbq8XeoS1Lz6jUI8MwZZpfx8AI1OiEep1ydzrGJiTja2OTLn5tSqcTDxQUAXw8PgsPDWLBje4l0xmWevUBi7pXEjLK/XpW2Nqhz3ZlW2lijzROhlZtZjy5kHDlBxsGjAGjuPwATUywG9c3uPHl0FapW66Kv1MEhqLzKY9q2JamLlhe06/83Ms9dIvF2rk6zh4swKG1tUOd675XWVo89FjrGxpjUq0lqrs7QRzRR0SRN/QNMTFCYmaJNSMTi7QGF/oxlnrtA4vjgXHUo4Hx6Qh3Muncl42ju8ykUTE2wGNiX9M079H7VmPfrhXHNaiRN/rVIJ+F+Wi9yO5VXwe1WAk62drrtsYmJOFo/Y7sVFsaC7VuLvN3KPHOOxNxD2Y0fnlN2tgbaqIS82XXMenYj48hxMvYfBshemdHUBIsh/bOjZ7RatHHx+SamVz8Iw7huwXM0iv+e5v7VCPjMU/dc9zlITND//k5KwvEJ87splUo8Ho6c8C1bjuDwcBbs2qHrjMvL3NQUb/cy3I0s/CqYmZeCSPwl1wrYj9pbayv97wwrS7SPmS9Yx9gYk1rVSd2mP1ewUbkyKK2tsM61GI1CpUJV0ROTpg2J//zbx3aUPbYOp86ReCPXNWTuz3euxYSUttZo4x/z+e7dnYyDR8nYexAAzd37YGqKxTsDSV+3GbRaNOGRJH3/E5iaoDA3RxsXj8XId4s0IjwlIw21RoOViYXedksTc5IzDM+zl5ieQkJasq4jDiAyKQ6lQoGNmSUxKTn1buJZjWYVa7IwcAvhSS/ud414+UlnnHjhfPfdd3Tq1In33nuPMmXKULZsWW7dusWbb775VPkPHjxI48aNdcMdAb0FDKytrfH09GT37t0FDn/MrWrVqixcuFAvCurw4cMolUp8fHyesXY5qlSpwrFjxxg4MOdO1rFjx3T/d3V1fea6R0dHExQUxJ9//kmzZs0AOHToUL50NjY29OnThz59+tCrVy86duxITEwMDg4OunLkLdejSLLatWuzYsUKXFxcsCmgc+RJ76+xsTFqtf5dqCpVqnDo0CG91z1y5AhVcs0dlputrS3u7u4cO3aM5s2bA9lRg6dOnaJ27ewL/qpVq2JqakpISMhTD0nN6+TJk2RlZTFlyhRdR2Pu+QcNOXjwIIMHD6ZHjx5A9hxyeRe4yGvs2LGMGjVKb5upqSkpXd8oIMczSE1Dk/piRkxZmpnprbCm1WpxtLHh+JUgfD2y52bJzMri9I3rfPhqj2fat1arJSPr8YuoFJm0dDR5Vh/UxMVjVNUv5864SoWRrzepqzYUvB8Tk/wX41pN/lCDfBQojOQrHYD0dDSReY5FfAJGVXxQ3304FEWlwqhyJVLXbXri7kzq1gQjIzKPnyo4UUYG2owMFBbmGFf1I3Xtv4WoAI85n3zzn0+rNz6m8Mb5zyeNNt/5ZN7vdYxrVyfppxlooh4/rLLYvMDtVF4FtltBl/XbrevX+LD7a8+07+x2q2ijZoCH55R+x4UmLh4j/yqo7zzsiFCpMPKtTOrKdQZ28JCJSfY5pLcj/TYq6/pNVO768zop3VzRRJfSuSWKhcHPgbUNx69exbdc9gIw2d/fN/iw2yvPtG8tj/8cZGRlEhweTs2KBc9/9tTSM9Ck63fIaBISMPL1zulUVqkw8vYi9d/8EcV5mdSsBkYqMk+e0dueef0mCY8i1h6y6NsTTUQkabsPPHdHHABpaWjyLAKniY3DqFrVnIhulQqjKr6kLn3MzXdD1yAajeHIxvQMtOkZKCwtMK4eQOrSVfnTPCe1VkNoQhSVnMoSFBGs217JqSxXIu4YzBMSG46/W0VMVEZkqLPPHSdLWzRaDQm5Vl9t4lmdFpVqsejkVh4k/P9aVEb55ItJUcLkyl28cFq2bIm/vz8TJ07k999/Z9y4cXz00UfY2NjQqVMn0tPTOXnyJLGxsfk6LwC8vb1ZtGgR27dvx8vLi8WLFxMYGIiXV85d7HHjxjF8+HBcXFzo1KkTiYmJHD58WDc8Nrc333yT7777jkGDBjFu3DgiIyP58MMPGTBggG6I6vMYOXIkgwYNom7dujRt2pQlS5Zw6dIlKlbMmTj5Wev+aHXTv/76C3d3d0JCQvjiiy/00kybNg13d3dq1qyJUqlk1apVuLm5YWdnp0uzatUqvXKdOHGCuXPn6t6Pn3/+mVdffZXvv/+ecuXKERISwtq1a/n8888pV67cE9/fR511TZo0wdTUFHt7ez7//HN69+5N7dq1adOmDf/++y9r16597CqkI0eO5Mcff6Ry5cpUqVKFqVOnEhcXp/u7tbU1n332GZ988gkajYamTZuSkJDAkSNHsLKyKnDevdwqVapEVlYWv/32G926dePw4cPMnj37sXm8vb1Zu3Yt3bp1Q6FQ8M033zwxStLU1NRgtF5xTaGusLZC6eKE4uF8U8py2ZGDmpi4UomK0ZVLoaBvqzbM374ND2cXPFxcWLB9G2YmJnSol7PC33cL5+NsZ8cHDzvo5m/fRtXy5Snr7ExWlprDly6y+fgxvngjZ1hWSlqa3l30B9FRXL17F1tLS9wcCp4j6Xml79yLWdf2aCIiUIdHYtalA9qMTDKO56wqZ/H2ADSx8aStye5QyTp3EdP2rVCH3EN9KxilizNm3buSefaC7gLZ7LVuZF64jDYmFszMMGlQByO/yiRPLd45aB7H3NiUcrbOuudlbJyo7FSOhLRkwpNiS61cj6TvPoBZx7ZoIqJQR0Ri1rEt2owMMk6c1qWxGNwXTVwCaes36+U1adyAzLMXDS5oYFTVF1CgCY9A6eKE+WvdUIdHkHGk4JV/n7sOu/Zh1qU9mvDI7Dp0bp//fBo6AE1sHGkPOwP1z6c7KF2cMOvehcyzF3Xnk3n/3pg0qEPSb3PQpqWhsMmOYNGmpuWbpLukvajtVF4KhYK+rdsyf/tWPFxcs9utbVsftls5ke3fLZiX3W497KCbv20rVStUeNhuZT1st47yRd+nuwFXWOnbd2PWrSOa8AjUYRGYvdIx+3NxNOf8tRg2OPucWrUegKyzFzDt2Ab1nbuob95G6eqCWc9XyDxzXndOpW/bjdU3ozHt1pHM46dQVfLEtFVTUublj6gXLw+FQkHfFi2Zv2sHHs7OeDg7s2DXDsxMjOlQO2fV5++WLMLZ1o4PumZ30M3ftYOqHuUp6+hEljqLw0GX2Rx4gi9e76PLM33DOpr5B+Bmb09sUhJzd2wnOS2NrvUKXhm0MNL3H8GsbUs0kdGoI6Mxa9syu709fVaXxqJf9hQSaZt36OU1aViXzAtBaFPyRHClZ6AJC9fflpGBNjkl//aiqMPWXZh174ImLBx1aARmPTqjTc8gI9dQcYsRQ9HExJK2PHtuu6zT5zDt3B717RDUN26hdHPBrHd3Mk+d1X2+jar7g0KB5kEYSjcXzN98HXVoGBn7Dhdp+Y8EX+C16i11K6LW9fDD1syKwJDs6Qva+tTDxtSStRf2AXAh9AYtK9Wie7UW7L1+CgsTM9r7NuD0vWu6YahNvarTunJdVp/bQ1xqIlYm2aOlMtSZug48IUqSdMaJF9KoUaMYMmQIY8aM4e2338bCwoKff/6Z0aNHY2lpSbVq1fQm1c9t+PDhnD17lj59+mRfGPTty4gRI9i6dasuzaBBg0hLS2PatGl89tlnODk50atXL4P7s7CwYPv27YwcOZJ69ephYWFBz5499RaZeB59+vTh5s2bjBkzhrS0NHr27Ml7772ntwDBs9ZdqVSyfPlyPvroIwICAvD19WXGjBm0bNlSl8bKyorJkydz/fp1VCoV9erVY8uWLXrDS8ePH8/y5csZMWIEbm5uLFmyhKpVq+rejwMHDjBmzBhee+01EhMTKVu2LG3atNFFyj3p/Z0yZQqjRo1izpw5lC1bluDgYLp3786vv/7Kzz//zEcffYSXlxfz58/XK3ten376KaGhoQwePBilUslbb71Fjx49iI/PCcmfMGECLi4uTJo0iVu3bmFnZ0ft2rX58ssvn+o41axZk6lTpzJ58mTGjh1L8+bNmTRpkl4EX17Tpk3jrbfeonHjxjg5OTFmzBgSHjPspzQYN6qH5ecf6Z5nT8YNqYuWk5Z7kvpSMLBde9IzM5i8YhmJKSn4e3rx2wcf6d2BD4uN0RvCnJaRzuQVy4iIi8PU2JgKrm58P/gt2tfJ+QEQFHKH4b9O0z2ftib77nCXBg0ZN3BwkdcjfesuFCYmmPfvg8LSAvWtYJKm/A65Ip6UDg56USZp/25Dq9Vi1qMrSntbtIlJZJ67SNqanEgrha01lu8MRGFrgzY1DfW9+yRPnUnW5SuUFj/nCvzeI+cGwUdNs+ds2xJ0lB/2FLz6c0lJ37EHhYkx5n17orAwR307hKQZf0J67mNhny8iQOnijFHlijlztuWhMDfDrHsXlHZ2aFNSyDxzntT1W7IjCYq6Dlt3oTA2xrx/75zzaeofec4n/TqkbdqOluzhqnrn09qciEDTVtlR1NZj9AfFp8z7R+9HW2l4kdupvAa260B6RgaTly/Jabc+/Dh/u6XM024tX0pEXGyudmso7esaXlCqqKVv3pHdRg3qi8LCAvWt2yT9NEP/nHJ00D+nNmzJbqN6vYLS3i77nDpzXjc/HID69h2SZ8zG/PXumL3aBU1UFKlLVpF5tOg7qcWLZWDrtqRnZjJ59UoSU1Pwr+DJb8Pfz/M5iM3z/Z3B5NUriYh/+P3t4sr3/QfSvlYdXZqI+Di+XryAuORk7K2sCKjgybyPR+FeDDfSANL3HMhub3u9gsLcHPWdeyTNng/pOdONKO3t8n9nODtiVNGTpFnziqVczyJ949bs7723+qOwtER94xZJE6dCrgg6pVOez/faTWi1YNanO0oHe7QJiWSeOkdaroUoFBbmmPXtmf33pOTshaeWrwN10c67djHsFubGprT0ro21qQURiTH8c2ob8WnZQ4WtTS2wNc+ZtzlDncXCk1voUqUx7zbuQWpGGhfDbrH7es4Nq3rlq2KkVPFGLf25pPfeOMXeG6cRoqQptE8zK7YQ4v8NhULBunXr6N69e2kXRQCx7Z5taOaLyH7nOhJ27S3tYhSKTdtWxL31318J127e7zT5Y/iTE77ADr8/m7jh+SOD/2vsZk8lbmj+aOz/Gru5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZb9PjIc1HyErbseHKiF5hN5/bEffJ0N2BfZHbTJhL3xtDSLkah2C2fy7fb5pR2MQrt+47vPDnRC2j6gRfrJlZuHzfv8+RELyFZ31YIIYQQQgghhBBCiBIinXFCCCGEEEIIIYQQQpQQmTNOCKFHRq4LIYQQQgghxMtDaWhVXFGqJDJOCCGEEEIIIYQQQvwnzJw5Ey8vL8zMzKhTpw4HDx4sMO2+fftQKBT5Hleu6C9+tmbNGqpWrYqpqSlVq1Zl3bp1xVoH6YwTQgghhBBCCCGEEC+8FStW8PHHH/PVV19x5swZmjVrRqdOnQgJCXlsvqtXrxIaGqp7VK5cWfe3o0eP0qdPHwYMGMC5c+cYMGAAvXv35vjx4ltZXjrjhBBCCCGEEEIIIV5ShiLDXpTHs5o6dSpDhw7l7bffpkqVKkyfPh0PDw9mzZr12HwuLi64ubnpHiqVSve36dOn065dO8aOHYufnx9jx46lTZs2TJ8+/ZnL97SkM04IIYQQQgghhBBCvNAyMjI4deoU7du319vevn17jhw58ti8tWrVwt3dnTZt2rB37169vx09ejTfPjt06PDEfRaGLOAghBBCCCGEEEIIIUpceno66enpettMTU0xNTXNlzYqKgq1Wo2rq6vedldXV8LCwgzu393dnb/++os6deqQnp7O4sWLadOmDfv27aN58+YAhIWFPdM+i4J0xgkhhBBCCCGEEEK8pF7k1VQnTZrE+PHj9bZ99913jBs3rsA8eYe3arXaAoe8+vr64uvrq3veqFEj7t69yy+//KLrjHvWfRYF6YwTQgghhBBCCCGEECVu7NixjBo1Sm+boag4ACcnJ1QqVb6ItYiIiHyRbY/TsGFD/vnnH91zNze3Qu/zWcmccUIIIYQQQgghhBCixJmammJjY6P3KKgzzsTEhDp16rBz50697Tt37qRx48ZP/ZpnzpzB3d1d97xRo0b59rljx45n2uezksg4IYQQQgghhBBCiJdUcQ63LGmjRo1iwIAB1K1bl0aNGvHXX38REhLC8OHDgexIu/v377No0SIge6VUT09P/P39ycjI4J9//mHNmjWsWbNGt8+RI0fSvHlzJk+ezKuvvsqGDRvYtWsXhw4dKrZ6SGecEEIIIYQQQgghhHjh9enTh+joaL7//ntCQ0MJCAhgy5YtVKhQAYDQ0FBCQkJ06TMyMvjss8+4f/8+5ubm+Pv7s3nzZjp37qxL07hxY5YvX87XX3/NN998Q6VKlVixYgUNGjQotnpIZ5wQQgghhBBCCCGE+E8YMWIEI0aMMPi3BQsW6D0fPXo0o0ePfuI+e/XqRa9evYqieE9FOuOEEEIIIYQQQgghXlJKWS7ghSNHRAghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxknqZVlN9WUhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEKrVarLe1CCCGEEEIIIYQQQoiiN+fYhtIuQoHeafhqaRehVMiccUII8QKbsn9ZaReh0D5t0ZfbUfdLuxiF4uVUlp4LvyztYhTamkETiRs+qrSLUSh2s6fS5I/hpV2MQjv8/myGrPihtItRaPP7fMX5B9dLuxiFUr1MZVac2VnaxSi0PrXase/GqdIuRqG09K7DqbtBpV2MQqvjUYW910+WdjEKrVXlunyy8dfSLkahTHtl5EvznfH9znmlXYxC+bbdW3Rf8EVpF6PQ1g/+sbSLIF4SMkxVCCGEEEIIIYQQQogSIpFxQgghhBBCCCGEEC8pBbKa6otGIuOEEEIIIYQQQgghhCgh0hknhBBCCCGEEEIIIUQJkWGqQgghhBBCCCGEEC8phUKGqb5oJDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEEKUEBmmKoQQQgghhBBCCPGSUsow1ReORMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5Ssprqi0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLyklMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5Sspvrikcg4If6jgoODUSgUnD17tlj2r1AoWL9+/TPladmyJR9//PFTp1+wYAF2dnaPTXPlyhUaNmyImZkZNWvWfKbyPK9nrUdxHwshhBBCCCGEEC8PiYwT4jkMHjyYuLi4Z+6sKkoeHh6Ehobi5OQEwL59+2jVqhWxsbFP7OD6L/nuu++wtLTk6tWrWFlZlXZxDMp7LErLpX0nOL/9CCnxidiXcaFRn464V65gMO2Dq7fZNGVhvu29x7+Pnbtzvu03Tlxgz99rqFDDlw7v9y2yMv+7dgOrl64gJjqaCl6eDP/ofQJqVi8w/fkz5/jrt5ncuR2Mo5MTr/frQ5cer+ilWbdiNZvWbSQyPAIbO1uatWzOkOHvYGJqAsDyRUs5vP8g9+6EYGJqStVq/rz13jt4VChfZPXq4NuAV/2bYW9hzd24COaf2ExQRHCB6Zt51aB7QHPcbRxJyUjjzIPrLDy5haT0VADGd3ibALeK+fKduneFibsXFVm5DTHr2gGTpg1RWFigDr5DyrI1aELDC0xvNWoERj7e+bZnXrhM8h9/Zz8xNcX8lU4Y1wxAYW2N+u49UleuR33nbnFV44lquHvTr1Z7/FzK42RpxxdbZnHw9rlSK09erbzr0Mm3IXbmVtyPj2TpmZ1cjzL8fg2t35WmXjXybb8fH8nX2/4CQKVQ0qVKY5p4Vcfe3JrQxGhWndvDxbBbxVqP7es3s2HFWuKiYyjnWZ4hH7xDleoBBtPGRsewcOZcbl2/Qdi9B3R6rRtDPhiml2bvtl3MnDw9X94l29diYmJSHFXgxI4DHPp3N0lx8TiXc6fTwJ54Vsl/zgPcuXKTHUs3EPUgjMz0TOycHajbpgmNu7TWpVFnqTmwYQdn9x8nMTYOR3dX2vd7lco1qxZL+R/Zt2knO9ZuIj4mjjLly9J72EAqB/gZTHv68AkObNnF3Vt3yMrMwr1CWbr164l/Hf3zLCUpmfWLVnLmSCApSck4uTrT6+03qVavVrHUYeeGLWxatZ646FjKenowcMRQ/Kr5G0wbGx3DktnzuX39JmH3Q+nQowsDR7ydL93WNRvZ9e82oiKisLa1pkGzxvR5e0CxnU8A+zbvZOfazbpj8fo7Awo8FmeOBLJ/yy7u3bpDVmYm7uXL0bVfT/zr6H93piQls2HxSs4cOak7Fj2Hvkm1ejWLrR5NPKvTqlJtbMwsCUuMZv3FA9yKeVBgepVSRQef+tQp54eNqQVxaUnsvBbIibuXAVAqlLStXJd6HlWwNbMiIimWTZcPcyXyTrHVoUdAC/rVaoejhS23Yx4w49AqzoXeKDD9awEt6FmtJe42joQnxrDw1Fa2XT2eq45KBtbuSCe/RjhZ2hESF86so2s5HnK52OpgyLUDp7m8+wSp8UnYuTtRp2cbXLw9CkyvzsziwtYj3A68RFpiMhZ21gR0aESlRgVfoxW1Tr4N6R7QPPtaKjacuSc2cfkx11LNK9akR0ALytg4kpyRxpn711hwcguJ6Sm6NN2qNqGjb0OcLO1ITE/mSPBFFp/eRqY6qwRqJIQ+6YwT4j9KpVLh5uZW2sUodjdv3qRLly5UqGC4U+lF8CIci5uBFzm6YhtN+3XB1bs8QQdOsnXGP/Qe9z5WjnYF5us94QNMzEx1z82sLfOlSYyO4/jqHbhVLrrOKoD9u/by569/8P6nI/GvHsCW9f/y9Wdf8Nc/83Fxc82XPuxBKN98NpZO3Toz+tsvuXT+In9M+RVbOzuatmoOwJ7tu5g3ew6jxo6mSjV/7ofcZcoPPwHw7sj3Abhw9hzdXnsVnyq+aNQaFvw1l68+Gc1fS+ZjZm5e6Ho19qzGkHpdmHN8I1ci7tDepz5ftR3ExxumE5Ucny+9n0sFPmz6OgsCN3Py3hUcLGx4t2F3RjR+jZ/2LgHg571LMFKqdHmszSyY0u1DjgZfLHR5H8e0fWtM27QgZeEy1BGRmHVqh9XI4SR89yOkpxvMkzx7ARjllFVhaYH115+ReTqnY8tiQG9UZdxJnr8UbXwCJg3qYPXxcBLG/4Q2Lv97VBLMjU25EX2PLVeOMLHT8FIpQ0Hqe1ShX812LD69jeuRd2npXZtRzd/gq21/EpOSkC/90jM7WXV+r+65SqHk+w5vE3g3SLfttWotaFShGgtObiY0IZoAt4p82KQXP+xeSEhcwZ2thXF4zwHm/zGHdz5+D9+Aquz8dys/jBnHtAUzcXZ1yZc+MzMTGzsber7Zm02rNxS4X3NLC35d9KfetuLqOLlw5BRbF66h69A+lPetSOCuQ/zz40w+mPI1dk4O+dKbmJrQoENz3MqXxdjUhJCrN9n493JMTE2o27YpALtX/Mu5Q4G8OqwfTmVcuXEuiGVT5vDO96Nw9yr4x3JhBB44yso5i+g34i0qVfHhwLbd/PbdZMbN+hkHl/w3lq5fukKVWtXoPqgP5pYWHNm1nz++/4Uvpk6gfCVPALIys5j+9SSsbW1498uR2Ds5EBsZjWkRtKuGHN17iEWz5vHWR+/i4+/H7s3bmTx2Aj/P/Q0n1/w3lbIyM7G2s+XVfq+zdc1Gg/s8tHs/y/9ezLDPPsDH34/Qew+Y/fMMAAaMGFos9Th54Cir5iym73tDqFTVh4Nb9/D7uJ/4buZPho/FxStUqRlA94G9Mbe05Oiu/cyc8Atjpnyvdyx+/eZHrG1tGDb2o4fHIgYzc7NiqQNAzTKV6R7QnNXn93I75gGNK1RjWMNX+XHvP8SlJhrMM6hOJ6xNLVhxdheRyXFYm1qgVOQM3Ors14g65fxYeW43EUkx+LpUYEj9rsw4uJL7CZFFXoc23nUY2fR1puxfxvmwm3T3b8Yv3T6g/9LxhCfF5kvf3b85wxt1Z/LefwiKuEMVF0++aNWfxPQUDgdfAGBYg1fp4NOAyfv+4U5sGPU9qjKp03DeXfNzgTdUilrwqSBOrdlNvT7tca5YluuHzrJ35iq6fv02lg42BvMcmreB1MRkGr7ZCWtne9ISk9FqNCVSXsju2H2rflf+PLaBKxHBdPBtwDfthvDh+qkGr6WquFRgZNPezAvcRODdIBwtbBjeqAfvN+7Jj3sXA9mddQPqdOT3Q6u5EhlCGRsnPmr6OgDzAjeVWN1KiwxTffHIMFUhisH+/fupX78+pqamuLu788UXX5CVlXPHpWXLlnz00UeMHj0aBwcH3NzcGDdunN4+rly5QtOmTTEzM6Nq1ars2rVLb+ho7qGRwcHBtGrVCgB7e3sUCgWDBw8GwNPTk+nTp+vtu2bNmnqvd/36dZo3b657rZ07dz6xjsnJyQwcOBArKyvc3d2ZMmVKvjQZGRmMHj2asmXLYmlpSYMGDdi3b98T9/2IQqHg1KlTfP/99ygUCsaNG8e+fftQKBTExcXp0p09exaFQkFwcDAAd+7coVu3btjb22NpaYm/vz9btmzRpb98+TKdO3fGysoKV1dXBgwYQFRUVIHl+Oeff6hbty7W1ta4ubnRr18/IiIidH83NEz1WV+jsM7vPIpv09r4NauDvbszjft0wsrelsv7Tz42n7m1JRa21rqHUqn/taDRaNjz9xrqvNIKGyf7Ii3z2hWr6NC1E51e6UJ5zwoM//gDnF1c2LTO8I+kzev/xcXVheEff0B5zwp0eqUL7bt0YvWylbo0QRcv4V8tgFbt2+Dm7kadBvVo2a41165c06X5Yepk2nfpiGdFLypWrsSoL0cTER7B9avXDL3sM+tWtSl7bpxi9/WT3I+PZH7gZqKT4+ng28Bgeh9nDyKTY9ly5SgRSbFcibjDjmsnqORYVpcmKSOVuLQk3aO6uzfpWZkcuXOhSMpcENM2zUnbuovMsxfQPAgjZeFSFCYmmNSvXWAebUoK2oRE3cO4ii9kZJJx6mFnnLExxrWqk7r2X9Q3bqGJjCJt03Y0UTGYNm9crPV5nGMhl5hzfCP7b50ttTIUpL1vAw7cPsuBW2cJTYxm2ZmdxKQm0LqS4eOQmplOQlqy7uHp4I6FiTmHckX6NfKsxqagw5wPvUlkchx7b57mYtgtOhZwnhaFTavW07pzO9p06UC5Ch4M+WAYTi5O7Ni4xWB6FzdX3vrwXVp0aIOFpUWB+1WgwN7BXu9RXI5s3kPtVo2o07oxzmXd6DyoFzaO9gTuPGgwvbuXB9Wb1MXFwx17F0dqNKuPd/Uq3LlyU5fm3KETNO/eHp9a/ji4OlG/fTO8a1Th8OY9xVaPXeu20KR9S5p2aIV7+bL0GTYQeydH9m/ZZTB9n2ED6dCrG54+lXAt606PQW/gUsaN88dP69Ic3rmP5MQkRnwzCu+qvji6OOPt74dHxeK5mbZlzQZadmxLq87tKFvBg4Ej3sbRxYld/24zmN7ZzZVB779N8/atCjyfrl++ik+AH03atMDZzZXqdWvRuFUzbl0rODKqsHat30qTdg+PhUdZeg8b8Nhj0XvYgFzHwo3ug/rgUsaNCydyjsWRh8fiva8/yXUsfClXTMcCoGWl2hwPucTxkEtEJMWy/tIB4lKTaOJZzWB6P+cKeDuVY87xDVyLuktsaiIhceEEx4bq0tT18GPX9UCCIoKJTkngSPAFrkbcoaV3wd9BhdGnZls2BR3m36DD3IkN49dDq4hIjKVHQAuD6Tv6NmDDpYPsvnGKBwlR7L5xkk1Bh3mzVge9NItObeXonYs8SIhi/aUDHA+5TN+abYulDoZc2RNIpUbV8W5cA1s3J+r2aouFvTXXDp4xmP7B5VuE37hLq/dex93PEytHW5w8y+BcsVyJlflV/6bsun6SXdcDuRcfydwTm4hKjqejb0OD6X2cyxOZFMvmoCNEJMUSFHGHHVdP4O2Ucy3l61yeK+F3OHD7HBFJsZx9cJ2Dt87ppRGiJElnnBBF7P79+3Tu3Jl69epx7tw5Zs2axdy5c/nf//6nl27hwoVYWlpy/PhxfvrpJ77//ntdJ5hGo6F79+5YWFhw/Phx/vrrL7766qsCX9PDw4M1a9YAcPXqVUJDQ/n111+fqrwajYbXXnsNlUrFsWPHmD17NmPGjHlivs8//5y9e/eybt06duzYwb59+zh16pRemiFDhnD48GGWL1/O+fPnef311+nYsSPXr19/qrKFhobi7+/Pp59+SmhoKJ999tlT5Xv//fdJT0/nwIEDXLhwgcmTJ+uGuIaGhtKiRQtq1qzJyZMn2bZtG+Hh4fTu3bvA/WVkZDBhwgTOnTvH+vXruX37tq6zs6ByP+trFIY6K4uokAeUq1pJb3u5qpUIv/n4u65rJ/zJ4s9+YdPUhTy4cjvf309v2o+5tSV+TYv2wjczM5PrV69Ru35dve2169cl6OIlg3mCLl7Kl75Og7pcv3JV19ntX6Ma169e4+rl7Aig0PsPCDx6nPqNC+5gSElOBsDaxvDd4WdhpFRRybEMZx/on+PnHtzA19nwj6CrESE4WthSu6wPALZmVjSqEMCpe1cLfJ02letyOPg86VmZhS5zQZRODihtbcgKylWOLDVZ129iVNHzqfdj0qQBGSfPQEbGwx0rUahUkKk/JESbmYmRt1cRlPzlolIq8bR351KY/ufzUtgtKjk93Q+j5l41uRx+m+hcUXTGSlW+YTkZ6iwqOxdPJFZmZia3rt2gRl394YrV69bi6sUrhdp3Wmoq770xhHdfH8SkseO5ff3mkzM9h6ysLEJv36VS9Sp6272rVyHkWv7205DQ23e5e+0WnlUr5+w3MwsjY2O9dMYmxoRcKaZ6ZGYRcuM2VWvpDzerWrsaN4Oe7qaERqMhLTUNy1zR1OePn6KiX2WWzpzPZ28OZ/yI0WxZsR6NuuijabIyM7l97SbV69bU216tTk2uXX7+88k3oAq3r93kxsMbOOEPwjh74jS1GtR9Qs7n8+hYVKml32FVpVY1bl15umulR8fCItdUHueOn6aiX2WWzVrA5/3f4/sRY9i6ckOxHAvIjr4tZ+vC1YgQve1XI+/gae9uMI+/W0XuxoXT2rsu37UbytjWA3mlalOMc0WBGylVZGnUevky1VlUdChT5HUwUqrwdS7PiZAgve0n7gYZnCYCwFhlREae7+H0rEyqunqienhz01hlRIY6f5rq7oaHthc1dZaamLthuFfR/351r+JF1O37BvPcu3ADx/JuXN51nLVf/cHG8X9xeu0esjKK75ojt+xrqbL5rqXOPriOn4vha6krEXdwtLSlTllf4OG1lGcAJ+/ltAdBEcFUcipL5Yffna5WDtQu56uXRoiSJMNUhShiM2fOxMPDg99//x2FQoGfnx8PHjxgzJgxfPvtt7rIo+rVq/Pdd98BULlyZX7//Xd2795Nu3bt2LFjBzdv3mTfvn264Y8//PAD7dq1M/iaKpUKB4fs4TEuLi7PNGfcrl27CAoKIjg4mHLlsr+cJk6cSKdOnQrMk5SUxNy5c1m0aJGuTAsXLtTlh+zhpcuWLePevXuUKZN90fTZZ5+xbds25s+fz8SJE59YNjc3N4yMjLCysnqmYaAhISH07NmTatWyL24rVsy5iJo1axa1a9fWe/158+bh4eHBtWvX8PHxybe/t956S/f/ihUrMmPGDOrXr09SUpLBeeye5zUKIy0pBa1Gi7mN/hBTcxtLUhKSDOaxsLWm2YBuOJd3R52l5vqxc2yatpBunw7G3ccTgLAbIVw9dJqe3xT9kL2EuHg0ak2+CBZ7e3tiomMM5omNicXePk96B3vUajXxcfE4OjnSsm1r4mPj+PS9kWi1WtRqNV17vEKfAf0M7lOr1fLnjJn4V6+GZ8XCdwRZm1qgUqqIT9V/3+PSErEzr2wwz9XIEKYfXMmoFn0xVhlhpFRxIuQyc4//azC9t1M5Kti7MfPI2kKX93EUDzsnNQn6w4s0CYkonzLySOVZHlVZd1IWr8jZmJ5O1s3bmHVpR3JYeHb0XL3aqDzLo4kovujR/yprEwtUSiUJafrnVHxaMgFmT55H09bMimrulfjz2Hq97RfDbtHBtwHXIkOISIqliqsXtcr6oCymYSyJ8QloNBrs8nyG7eztiYs9XUCuJytbvhzvf/EJ5b0qkJqSwuY1G/n6w9H88vcM3MsVbbRDSkISGo0GK1trve2WttYkxeUfLpzbLyO+JjkhCY1aTatenanTOicK1Lt6FY5s2YNnFW/sXZ24dfEqV06eR6PRFmn5H0lKSESj0WBjZ6u33drOloTYpxsmvnPdZjLS0qnTLCdKJTIsgujwyzRo2YQPx40m4kEYy2YtQKPW0LXfa0Vah8T47DrY2tvpbbe1tyU+Jv9wwqfVuFUzEuPiGf/xl/DwO6Rtt4680rdnIUtsmO5Y2OsfCxt7WxJOP92x2LVuy8NjkXPTKSo8gqvnL1O/ZWM+GDeaiPthLJ+9AI1aTZe+RXssl049cgABAABJREFUACxNzFEplXpzcwEkpqdiY5Z/+gsAR0sbvBzKkKlWMz9wE5Ym5vSq3goLEzOWn82OCrwSEULLirW4GX2f6OQ4KjuXJ8CtYrG0U3ZmVhgpVcSk6n+WY1MTcLQwfLPuxN3LdK3alAO3z3E1MgQ/5/J0qdIYY5URdmZWRKckcDzkMm/UbMvZBze4Hx9J3XJ+NPOqgVJZMkMG0x9eI5pZ60eDmllbkpqQbDBPUlQcETfvoTQyovk7PUhPTiVwxQ7SU9Jo1L9zsZf50bVU3uHN8amJ2Jsbvoa+GhnC1APL+axlP9211PGQy8w5ljPa4tDt89iaWjGx03AUCgVGShVbrxxl7YX9xVqfF0Vxfb+L5yedcUIUsaCgIBo1aqQ3Lr9JkyYkJSVx7949ypfPnnerenX9O9Lu7u66oY9Xr17Fw8NDrwOqfv36xVbe8uXL63WkNWrU6LF5bt68SUZGhl46BwcHfH19dc9Pnz6NVqvN1/GUnp6Oo6NjEZXesI8++oj33nuPHTt20LZtW3r27Kl7v0+dOsXevXsNdqLdvHnTYEfZmTNnGDduHGfPniUmJgbNwzkzQkJCqFo1/wTbz/Ma6enppOeZg8vU1DRfusdRoP8lq33M7zg7Nyfs3HLmonGt5EFSbALndhzB3ceTjLR09s5dS7MBrxicR67I5Lkw0KJ9/JwWedNrH23O3n7u9FmWL1rC+5+OxM+/Cg/u3Wf2r39gP38xbw4ZkG93f0ydwe2bt5gya0bh6pGHFv03P++xya2crQtD63dl1bk9nH1wHXtzawbW6ci7jbob7HBr412XO7Fh3Ii6V6RlNq5fG4t+r+ueJz1abCHvifQMF3MmjRugvh+KOlg/WiJl/lIsBr6B7eRxaNVq1Hfvkxl4BlV5GSpSkLwf5+xz6smdNU29qpOSmcbp+/qRlkvP7GRw3c5M7DQcLRCRFMuh2+cMLvxQpPKcPlq0j/18PIlPVT98quZMdO8bUJXRw0ayde0m3vro3efe72PlK+4T2i1g6LiPyUhL5+71YHYu24CDmzPVm2RHW3Ue3IsNfy1jxqgJKBQK7F2dqNWyIWf2HSue8j+St8haA9sMOLHvCJuWrGXEN6P0OvS0Gi3Wdjb0//BtlColFSpXJC4mlh1rNhd5Z5yOwTo8//l0+ewF1i9dzVsfvUslv8qEPwhj0R9/s9ZxBa/171Oooj5O/u9v7VMdi8D9R9i0dC3vFXQsPnh4LLy9iI+JZcfazcXSGad7XQNtkraAixElCrTAP6e3kZaVHTm9/tIBBtftwprze8nUqFl3cT99arRhbOsBaLUQnRLPibuXqe9RfIub5C+vosCWdn7gFhwsbPir5xhQQGxKIluuHKV/7Q6oH+7n14MrGdOqP0v7jUOLlgfxkWy+coQufiU9LUPexldb4EdFq81u05oM7oaJefa1qPq11hycu556vdthZGJsOGNxUygMnmOQfS31ToNXWHF2N2ceXMPe3JrBdTvzXqMe/H4ke/RQgFtFetVoxZ/HNnA9MgQ3Gyfert+N2OqJrDxffNMCCFEQ6YwToog9+gLLuw30J840zjMkRaFQ6Dp5DO3jeSmVynwXFpmZOWHmhi6SnvTaBV1Y5abRaFCpVJw6dQqVSqX3t8KsivoosjB3GXLXB+Dtt9+mQ4cObN68mR07djBp0iSmTJnChx9+iEajoVu3bkyePDnfvt3d8w+lSE5Opn379rRv355//vkHZ2dnQkJC6NChAxmPht3l8ayvATBp0iTGjx+vt+27777DupWvwfS5mVlZoFAq8kXBpSUmY2Hz9O+1i1c5bhw/D0BCZAyJ0XFs/2Op7u+P3vM5w8fT5/sPsXHJP1n507Kxs0WpUhKbJwouLjauwPme7B3siY3Jmz4WlUqFjW32XetFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt6ceDOnzuDYoSP88sd0nF3yT/b9PBLTU1Br1NiZ60fO2JpZEZdqOErxtWotuBJxhw2XsuecuhMbRlpWBj90epelZ3bq3Rk2URnTxKs6K84ankuoMDLPXSLxdq5Os4eLMChtbVDnio5TWluhTTA8GbceY2NM6tUk1cD8TZqoaJKm/gEmJijMTNEmJGLx9gA0UYajIv8/S8xIQa3RYJsnCs7GzIL4NMNRDbk186rBkeALqPNMvJ2YnsJvh1djpFRhZWpBXGoir1dvRVRyXFEWX8fa1galUklcnqil+Ni4fNFNhaFUKvH2q0zo/YJXcHxeFjZWKJVKkuL0z//k+CQs80TL5WX/cCJ+1/JlSYpPZO/qLbrOOEsba/p9NozMjExSk5Kxtrdl59IN2LkUz40rK5vs+UHzRsElxsfni5bLK/DAURbN+It3vxiZb2ilrYMdKpUKpSqnnXX3KEtCbNzDobhF97PD+uEcp/ExcXrb4+PiC3U+rVqwlKZtW9Kqc3bUf/mKnqSnpfH3tJl07/d6vnlVC+vRsYiPjdPbnhiX8MRjcfLAURbNmMOwLz6iSk39FYkNHQs3jzLFciwAkjNSUWs02Jjq37yzNjXPFy33SEJ6MvFpSbqOOIDwxBiUCgW25tZEJceRnJHKvMBNGClVWJqYEZ+WTNcqTQwuXFNYcWlJZGnUOFrov+/25tYFvl6GOpNJexbz074lOJjbEJ0SzytVm5GckaqLkI9LS2Ls1tmYqIywMbMiKjmO9xr1IDSxZCLBTR9eI6Yl6n9fpCWlFHiz1dzGCnNbK11HHICtmyNoISUusVDXf0/jea6lelVvSVBEMOsvHQCyr6X+PLaeSZ3fY8mZHcSmJtKvVjv23TzNruuB2WniwjEzMmZE49dYdX5vgR19QhQXmTNOiCJWtWpVjhw5otdZdOTIEaytrSlb9umiPvz8/AgJCSE8PGdFu8DAwMfmebRynFqtP7eGs7MzoaE5k+EmJCRw+3bO3DZVq1YlJCSEBw9yfrgcPXr0sa/l7e2NsbExx47l3LWPjY3l2rWcuWZq1aqFWq0mIiICb29vvUdhVh51ds7uNMldp9wLJzzi4eHB8OHDWbt2LZ9++ilz5swBoHbt2ly6dAlPT8985bK0zH9RcuXKFaKiovjxxx9p1qwZfn5+eos3GPKsrwEwduxY4uPj9R5jx459qvdEZWSEU/ky3L+sP7/QvaCbuFZ6+vmfou+GYmGb/YPfzs2JXt+9R89vhuseFar7UsbXi57fDC9w9a2nZWxsTGVfH84E6s8zeCbwFFUC/A3mqRLgny/96RMnqezni5FR9g+L9PS0fD+WHnVIP/pMarVa/pjyK4f3H2TyjCm4lTHcQfo8sjRqbkY/oEaeuWCql/HmauQdg3lMjYzzdXBrtNkdJ3m7xZt4VsNYpWL/LcOTLhdKejqayKicR2g4mvgEjKrkiuRUqTCqXImsW8FP3J1J3ZpgZETm8VMFJ8rIQJuQiMLCHOOqfmSeK97VYf+L1BoNwbGh+LvpD6Ou6urFzSdER/o6l8fV2oGDuRZuyCtLoyYuNRGVQkmdcn6cuV80C5nkZWxsTEUfb86fPKu3/fyps/gG+BnO9By0Wi3BN24XyyIORkZGuHt5cPOC/vxCNy9cobzPMwxz12pR55kzEbLnibNxsEOj1nD5xFn86lQ3kLnwjIyNKO/tRdAZ/QVggs5cpFKVgqdROLHvCAunzebtz9+nWv1a+f5eqaoPkaHhuhuLAOH3Q7F1sCvyzh8jY2O8fCpx4dRZve0XT53Vi5R8Vunp6fmGD2Z/h/D4cPPnpDsWZ/XbvqCzF6joZ3hqA8iOiFs4/U+GfvY+1eoZOBZVfIjIdyzCiuVYAKi1Gu7FR+DjrL/quo9zeb0FGXK7HROKraklJqqcm9MuVvZotBri8wxPzNKoiU9LRqlQUr2MNxfCbhV5HbI0aq5GhlDPQ39OyHoeVbj4hNdTazREJseh0WppW7kuh4Mv5OvYyVBnEZUch0qppGWlWo9tl4uSykiFg4cboVeC9baHXgnGycvw7xLnimVJjU8iMz2nozQhIhaFQoGF3eNvPBSF7Gup+9Qso38tVbOMN1ciCriWUpkYuJbS5klj6HorOyT4/8MITsUL/O//K+mME+I5xcfHc/bsWb1HSEgII0aM4O7du3z44YdcuXKFDRs28N133zFq1KinvqParl07KlWqxKBBgzh//jyHDx/WLeBQUNRahQoVUCgUbNq0icjISJKSsu8ctW7dmsWLF3Pw4EEuXvw/9u46rqrzD+D459LdISgSgiDY3d29Ods5nZsLZ0ydTrc5nXMu1Nk5FTtnd2JOxS4MFASV7s77+4N58QpYgDh/37ev+3rJuc9z7vfhXs4593ueuM5HH32k1lOtZcuWuLu7079/f65cucKJEyeeu1gE5PRsGzRoEN988w2HDx/m+vXrDBgwQK195cuXp2/fvvTv358tW7YQEBCAr68vv/32m9rKpq/K1dUVBwcHJk6cyJ07d9i9e3eelVxHjBjB/v37CQgI4OLFixw5coQKFXIuroYMGUJ0dDS9e/fm3Llz3L9/nwMHDvDxxx/nSWQClC1bFh0dHebMmcP9+/fZsWMHkydPfm6Mr/oakDMk1cTERO3xKsNUK7eqx62TF7l18iIxIRGc3rCPxOg4KjTJ6Xlxbsshji7LHfJ47dA/BF7yIy4siujH4ZzbcoiAi354NcsZDq2lrY1FaVu1h66BHtq6OliUtkVTq/AX8+/37M6+nXvYv2svQYEPWDRrHuFhYXR4rxMAyxYs4Y/JU1XlO3TtRFhoGItmzyco8AH7d+1l/669fNA7d2GMOg3qsXvrDnwOHSH0cQgXz51n5ZLl1G1YX/W5nzd9FkcOHGLsxO/RNzAgOiqa6KjoPMOEX9fOmydp4VaT5q41KG1qzYBa7bEyNOXA7XMA9K3emqENP1CVPx98izqOXrRxr4OtkTnu1mUZVLsTdyJyVpd7WnO3mpwL8iMxLaVIYn2RtMPH0WvbEu2qldCwL4XBR71RpqeT/tSqfQYDeqPXtUOeujr165Bx+TrKpLy9IrQ83dHy9EDD0gKtCuUx+vpLssLCST99rljb8zz62rq4WZVRTexsb2KFm1UZbI2Kb2XOl3Xg9lkaO1elkXMV7Iwt6VW1JZYGphy9l/M+fFCpKZ/U6ZSnXmOXqtyLesSjuIg8z7lY2FOjtDvWhma4WTkwskkvFAoFe249/2ZMYXTs3pXDew5wZM8BHj4IxnveEiLDImjdKWcOojVLvJnzi/rxPMD/PgH+90lNSSU+No4A//sEPzXsedOKtVw+d4Gwx6EE+N9nwe+zCPS/T6vOBc97Whj1OzTn4pHTXDz6DxGPQtm74m/iIqOp1bIRAAfXbefveStV5c/uP8atC9eICgknKiSciz7/cGrXYSo3qqUqE3w3kJvnLhMdFkmgnz8rp85DqVTSsHPxrbbY8r32nDxwlFMHfAgJesTGxauIjoikcfsWAGz1Xs/y6fNV5c/5nGb5jAV8MKgfzu5uxEXHEhcdS8pTf99N2rciMSGRDYtWEvYohGvnLrF343aadmhdLG1o360LR/cewmfvIR49CGbV/KVEhkfSolPOSpbr/1rF/F9nqtUJ9L9PoP99UlNTiY+NJ9D/Pg8f5C50VL1uLQ7t3MfpoycIDwnj2oXLbPJeS416tdB4ppd/UWnZtR2nnrwXwY/YuGQVMRFRz7wXC1TlfY+dZvmMhXQb1BdnD1fiYmKJi1F/Lxq3b0lSQiIbF6/KeS98L7Fv03aadMh/7uGi4HPvInUdvajt4ImNkTldvRpjrm/M6cCcpG+HCvXpUy33s3Dh4W2SMlLpXa0VtkYWuFjY08mzIWeDbpLx76INZc1sqWRXDksDE1ws7Pmsblc0UHDE//krxb+uDZcP0cmzAR0q1MfRvBTDGnTH1ticrf/2tvq8ble+bzFAVd7B1IbW5WtTxtSGCjZOTGo9CBdLexad2a4q42nrRBOXqtibWFHFzpUZnYahQMGaiweKpQ358Whei3unr3Dvn6vEhUZy4e/DJEfH49aoKgCXth/j9MpdqvJOtTzRNdTnzOo9xIVEEuYfzKWtR3GpV+mNDVHdfuMkLd1q0cK1JmVMrfm4VkesDM3Yf/ssAP2qt2F4w9zrP9+HftR1rEhb9zrYGlngYePIJ3U6cSciSHUt5fvwFm3d69LQuTI2RuZUsXOlT7VW+AbfzJO4E+JNkGGqQrwmHx8fqlVTvxv50Ucf4e3tzZ49e/jmm2+oUqUKFhYWDBo0iO+///6l962pqcm2bdv45JNPqFWrFi4uLvzxxx906tQJPT29fOuULl2aSZMm8e233zJw4ED69++Pt7c348aN4/79+3Ts2BFTU1MmT56s1jNOQ0ODrVu3MmjQIGrXro2TkxOzZ8+mbdu2z43xjz/+IDExkc6dO2NsbMyoUaOIi1Mf8rJ8+XJ+/vlnRo0axaNHj7C0tKRevXq0b//6k79qa2uzbt06vvjiC6pUqUKtWrX4+eef6d49d66rrKwshgwZwsOHDzExMaFt27b8+eefANjb23Pq1CnGjh1LmzZtSEtLw9HRkbZt2+abLLW2tsbb25vx48cze/ZsqlevzrRp0+jcuXOBMb7qaxSFcrUqkpqUzMXdx0iOS8TC3oZ2Q/tibGkGQHJcAonRue9PVmYWZzYfICk2AS1tLcztbWg7tA9lKxXt4hLP06RlM+Lj41mzfCUxUdE4ujgxedpUbP/tORkdFU14WG4vxFL2dkyeNpVFs+exa8t2LKws+WLEVzRs1lhVps9HH6JQKFixeBlREZGYmptRp0E9BgwepCqza2vOZL5jvvpaLZ6R48fQusPzP/cv43TgNYx1DehepTnm+sYExYbxy+EVRPw7/M9c3xgrQzNV+aP3LqKnrUs7j7p8VLMdSempXAu5x+qL+9X2a2diiaetE5MOLCt0jC8r7cARFDra6PfuhsJAn6yAIBJnL4KnEpcaFuZ5eoxo2Fij5eZC4qyF+e5Xoa+HXtcOaJiZoUxOJuPSVVK27YHs4lnp72V4WDsy972Rqp+HNcw5puzx+4cpR1aUVFhAzmp+hroGdPZqiKmeEY/iIvjzxHrV6qim+kZ5hlbpa+tSo4wHay/l/4VPW1OL9yo1wcbInNTMdK6G+LPkzA5SMoomKZ2fBs0bkxifwOaV64mJjsbByZHxv07EupQNADFRMUSGqycOx3w6TPX/+3f8OXn4GNa2Nsxfn/N3kJSYxKIZc4mNjsHA0BBnVxcmzfoVtwovHuL/OirVr0FKYhI+f+8lITYeGwc7+n37JWbWOcO2EmLiiXtquLVSqeTQuh3EREShoaGBha0VrXp3oWbLBqoymRkZHN6wi5jwSHT0dHGr6kW3If3RNzTI8/pFpVbjeiTFJ7J73RbiomOxdyzDV5PGYPnvkP246FiiI6JU5U/sO0x2VhbrFixn3YLlqu31WjRmwMicRX4srC0ZPvlbNi1ZzU9DvsXM0pzmndvS9oOCz5eFUa9ZQxLj49myegOx0TGUcSrLmF9+wNo25/MUGx1N1DOfp/Gf5/6NB9y5x+kjx7GytWb2mpze8+/164FCoWDT8jVER0ZjYmpC9Xq16PFx32JpA0DNxvVITEhk9/qtxD95LyZ+k/texKi/F8f3HiE7K4v1C7xZv8Bbtb1ui0YM+Pqp9+Knb9n01yomfzVO9V606ZY3aV9ULj++i6GOPm3c62Cia0BIQhSLz2xXJUJMdA0xf2rYYXpWBgv/2cr7lZoysnEvkjJSufz4Lnv9TqvKaGtq0d6jHpYGpqRlZuAXHsiai/vVhrYWpcP+FzDRM2JgzQ5YGppwP+oxo3fOJSwh52/a0sAUW+PcIZoaGhr0rtqSsmalyMzO4uKj23z+9x+EJuS+Xzqa2nxapwv2JlakZKTxz4PrTD64nMT0N3NTDcCpRgXSk1K4tvcUKfFJmNlZ0fTL7hhZ5Jw3UuMTSYp+arVtXR2af9WT85sOsvf3Fega6lO2ugdVOjZ6YzGfCryKia4BPau2yLmWigll8iFv1bWUhYEJ1kZmqvJH/C+gr6VLe4/6DKzVgaT0VK6G3GPlhb2qMhuvHEGpVNK3WmssDEyJT03CN9iPNZf2I0RJUChfZvInIUSJO3XqFA0bNsTf359y5cqVdDjiKbdv38bDw4O7d+/i6lq0S9VPP7auSPdXEkY16U1A5KOSDqNQnK1K023F+JIOo9D+/ugXYp/6MvpfZLZwBg3mFf0Kv2/aqSELGbhhSkmHUWjLe37H1cd3SzqMQqls78aGSwdLOoxC61mtFT7+zxkW/h/Q1LUGF4L9SjqMQqvhUIGjd4un99ab1MytJl/vmFXSYRTKn52HvzPnjJ8OvrmbccVhQquP6er9bUmHUWjbBvxa0iG8lrf5PNezWvH12n2bSc84Id5SW7duxcjICDc3N/z9/Rk+fDgNGjSQRNxbJjo6ms2bN2NiYoKDw8vPzyaEEEIIIYQQ4v+TJOOEeEslJCQwZswYgoODsbKyomXLlnnmRhMlb9CgQVy4cIEFCxa80hxvQgghhBBCCCH+P0kyToi3VP/+/enfv39JhyFeYOvWrSUdghBCCCGEEEIUqKBFAEXJkdVUhRBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUTJM9e0jPeOEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGsgw1beN9IwTQgghhBBCCCGEEOINkWScEEIIIYQQQgghhBBviAxTFUIIIYQQQgghhHhHKRTSD+ttI++IEEIIIYQQQgghhBBviCTjhBBCCCGEEEIIIYR4Q2SYqhBCCCGEEEIIIcQ7SkMhq6m+baRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0ohw1TfOtIzTgghhBBCCCGEEEKIN0SScUIIIYQQQgghhBBCvCEyTFUIIYQQQgghhBDiHaVAhqm+bRRKpVJZ0kEIIYQQQgghhBBCiKK34/qJkg6hQJ0rNirpEEqE9IwTQoi32Njd80s6hEL7rcOX3Ai5V9JhFIqXXTkaz/+ypMMotONfzid20NCSDqNQzJbOYeCGKSUdRqEt7/kdDeZ9XtJhFNqpIQsJi48s6TAKxdbECm/f3SUdRqENqNWB0TvnlHQYhTKt01CmH1tX0mEU2qgmvZnms6akwyi00U378tH6ySUdRqGs6PUDH6z8rqTDKLTN/afQ1fvbkg6jULYN+JUWi4aVdBiFdviz2SUdgnhHSDJOCCGEEEIIIYQQ4h2lIaupvnVkAQchhBBCCCGEEEIIId4QScYJIYQQQgghhBBCCPGGyDBVIYQQQgghhBBCiHeUQoapvnWkZ5wQQgghhBBCCCGEEG+IJOOEEEIIIYQQQgghhHhDZJiqEEIIIYQQQgghxDtKhqm+faRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0oDGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWtIz3jxFshLCyMn376iZiYmJIORQghhBBCCCGEEKLYSDJOlDilUsmHH36Irq4u5ubmr1TXycmJmTNnFk9ghaRQKNi2bdsr1WnatCkjRowolnj+qz788EN++eWXkg6jUEaPHs2wYcNKOgwhhBBCCCGEEG8BGab6HzRgwABWrFgBgJaWFg4ODrz//vtMmjQJQ0PDEo7u1U2dOhUXFxfGjh37ynV9fX3/k20WL+fq1avs3r2b+fPnq7Y1bdqUY8eOMXXqVL799lu18u3bt2fv3r38+OOPDBgwAGdn5+fu/8cff2TixIkArFixgnnz5nHjxg00NDSoVq0aY8aMoWPHjgAkJiZibm7O6tWr6dmzp2ofPXv2ZOPGjfj7+1OuXDnV9nLlytGzZ09++eUXxowZQ7ly5fj6669fGFNh1HX0oolLNYx1DQhLjGbnjVMExoQUWF5TQ4OWbrWoZl8eY10D4lITOeJ/gfMPb6nK6Gnp0Ma9DhVLuaCvrUtMSgK7bp7idkRQsbVj77ZdbF//NzFR0Tg4O/LxV4PxrFwx37LRUdGsmL+Ee3f8CXn4mPbvd2bQ0M8K3PfJw8eYMfk3ajeoy7dTJhRXE+jq1Zje1VpiYWBKYHQIc05t4mrIvQLLv1exMe9XakopYwvCEmJYdXEf+2+fVSvTvXIzung1xtbYnLjUJHzuXWTxme2kZ2UWWzsA9Dq3Q6dJAxQG+mTdf0Dymo1kPw59bh3dlk3RadYQDQtzlIlJpJ+/TOrfOyAzJ1bd9q3Qrl4FTTtblOkZZN0LIGXTdrLDwos8/mauNWjnXhczfSMexUWw9tJB7kYG51t2UO2ONHSukmf7o7gIvt+3GABNhQYdKtSngXNlzPWNCUmIYtOVI1wPvV/ksb+OKnau9KnWGg+bslgZmvHtngWcCLhSIrFs3bSFdavXEh0ZhZOLM0NHDqNKtaoFlr984RJzZ84h8H4AllZW9Onfhy7d3lM9v3PrDvbv2cv9ewEAuHu48+mQz/D08lSVWbZ4Kd5Llqnt18LCgm37dxZZuy4cPMXZPUdJjI3HunQpWvbrioOHywvrPbwTwOqf52FdphSDfhmt2n7b9yqndxwiJiyS7KxszG2tqN2+KZUa1iyymPNT37ESTV2rYaxrSFhCNNtvnCAg+nGB5TU1NGhVvjY1SrtjrGtIbGoih+/64hvspyrTyLkK9ZwqYa5vTFJ6CldD/Nnj9w+Z2VnF0oYbPue4uv80yXEJmNvbUK9nW+zcHPMt+/h2ALumr8izvcekIZjZWefZ7n/uGkf++hvHKu60GdK7yGN/2k0fX64c+IeUf9tRt0fr57QjkN0zVubZ3n3Sl5iVsgLgzunLHFuxI0+ZgXPHo6VdfF//mrvWoL1HPUz1jXkcF8GaS/u5E5H/8faTOp1pVMDxdvzehUDO8bajZwMaOlfGTN+E0PgoNl45zLXQgs+nhdXGvQ6dPRtibmBMcGw43r678Qt/UGD5Rs5V6OLVCDsTS5LT07j0+A4rL+wlMS1FVcZAW48+1VpRp6wXhrp6hCfEsOLCXi49ulNs7WjnXpeuFRvntCMmjKXndnEzPLDA8o1dqvJexSbYm1iSlJ7KpUd38D6/h4S0ZFWZTp4NaOteFytDMxLSkjgdeJ1VF/eRUUzXIZ09G9KjSgssDUwIjAll/um/ufacc20Xr0Z08WpEKWMLwhNjWHPxAAfv+qqeb1O+NmOa9ctTr+1fI4utDW8TWU317SPJuP+otm3bsnz5cjIyMjhx4gSffPIJSUlJLFiwoKRDe2Xjx49/7brW1nkvnsS7Y+7cuXTv3h1jY2O17Q4ODixfvlwtGff48WOOHDmCnZ2dqkxISG4iatq0aezbt49Dhw6pthkZGQE5Pdfmzp3Lzz//TNeuXcnIyGD16tV06dKFWbNm8dVXX2FkZETNmjU5evSoWjLu2LFjODg4cPToUVUy7uHDh9y/f59mzZoBYGNjQ+vWrVm4cCG//fZbEf+WclS2c6WTZ0O2XT/Og5hQ6pT15OPaHZlxbB2xqYn51ulbrQ3GuvpsvnqUqOQ4DHX00dTI7TCtqdDgkzqdSUxPYfXF/cSlJmKmZ0RaZkaxtAHg5JFjLJ+7mE9HfEmFSp7s37GXn8dMYNaKhVjb2uQpn5megYmZKd369WLXpq3P3Xd4aBjeC/7Cs7JXcYUP5HwZGdrwA2YcX8/10Pt09mzI7x2H0H/dZMIT8w7F7+LViMF1u/CHz1r8wgOpYOPEmKZ9SUhN5vSDawC0cqvF4Lpd+e3oKq6H3sfBzJZxzT8EYO6pv4utLbrtWqLbuhnJy9aQFRaOXsc2GI36ivjvJkNqWr51tOvURO+DziQvX0OWfwAapWww+Djn4jd1wxYAtMq7kn70BJkBD0BDE/33O2I0agjx30+B9PQii7+2QwX6VG3Fqov7uBsRTFPX6oxs3Ivv9i0iOjk+T/m1lw6y6epR1c+aCg1+avOJWrLh/UpNqOdYCe/zuwmJj6JiKReGNviAKYdXEBQbVmSxvy59bV38ox6y59Zpfmn3eYnFcfjAIebMmMXIsaOoWKUyO7ZsY8zw0azcuBrbUqXylH/86DFjRoymY9dOfP/TBK5fucqM36Zjam5G0+Y5x9JLFy7SonUrhleuiI6uLutWrmH0V1+zYsNqrG1yrwecXZyZMW+W6mdNzaIbCHLzzCUOrd5GmwHdKFPemUtHTrPhj8V8+ttYTK0K7t2fmpzCzoVrcfJyIykuQe05PUMD6nduiaW9LZpamvhfusnuxesxNDHCpbJHkcX+tCr2bnSu2Igt13wIjA6hrmNFPqnTiT981hCbkv8548Ma7TDWNWDjlSNEJsVipGugNgdRtdLlaV+hPhuvHCYwOgRrIzN6Vm0JwI4bJ4u8Dfd8r/PPhn007NMBW9ey+B0/z97Zq+kxcQhGlmYF1usx+St09HRVP+sZ572pmxAVy9nNByjlVrbI437WPd8b/LNxPw36tMe2nAO3jl9k35y1dJ/4JUYWpgXW6/7TkGfaYaD2vLaeLj1+GqK2rTgTcbUdPOlbrQ0rL+zhTuRDmpWrzqjGfRi3d0G+x9s1F/ez6cph1c8aCg1+bjuYc8E3Vdu6VW5GfceKLPPdTUh8JJXsyjGsYXcmH/ImKPb5N4VeR32nSgyo2Z6/zu7kVsQDWrnVYnyLj/h6xywik+LylPewceSrBh+w4vwezj+8hYWBCYPrdOGLeu/zh88aALQ0NJnQaiBxqUlMO7aWqOR4rAxNScnI/xxaFBo4Vebj2h1ZdGY7t8IDaeNehx9aDWTothn5tqOCjSPDG/Zgme8ufIP9sDQw4fN67zGkfjd+PboKyEnWfVijLXNPbuZWRBD2JlYMa9gdgGW+u4q8DU3LVePL+u8z++Qmrofep6NnA6a2/4KPN/6S77VUJ8+GDKrdiRnH13E7PAgPG0dGNu5FYnoK/zy4riqXmJbCgA0/q9X9f0jEibeTDFP9j9LV1aVUqVI4ODjQp08f+vbtqxoSqVQq+f3333FxcUFfX58qVaqwefNmVd2YmBj69u2LtbU1+vr6uLm5sXz5ctXz165do3nz5ujr62NpacngwYNJTMz/wgzAx8cHhULB/v37qVatGvr6+jRv3pzw8HD27t1LhQoVMDExoXfv3iQn595d2bdvHw0bNsTMzAxLS0s6duzIvXu5d7pWrlyJkZERd+/eVW0bOnQo5cuXJykpCcg7TFWhULBo0SI6duyIgYEBFSpU4J9//sHf35+mTZtiaGhIvXr11F4HYMGCBZQrVw4dHR3c3d1ZtWrVc3//vr6+tGrVCisrK0xNTWnSpAkXL158bp1nJSUl0b9/f4yMjLCzs2P69Ol5yqSnpzNmzBhKly6NoaEhderUwcfHR/X8gwcP6NSpE+bm5hgaGuLl5cWePXuA3Pdl9+7dVKlSBT09PerUqcO1a9fUXuP06dM0btwYfX19HBwcGDZsmOr3CxASEkKHDh3Q19fH2dmZtWvXqv3eAwMDUSgUXL58WVUnNjYWhUKhFuvNmzdp3749RkZG2Nra8uGHHxIZGVng7yc7O5tNmzbRuXPnPM917NiRqKgoTp06pdrm7e1N69atsbHJSdhoampSqlQp1cPIyAgtLa08286cOcP06dP5448/GD16NK6urlSoUIEpU6YwYsQIRo4cSXBwzl3dZs2aqbXJz8+PlJQUvvzyS7XtR48eRVtbmwYNGqi2de7cmXXr1hXY3sJq5FwF32A/fIP9CE+MYefNU8SlJlLXMf8eZeWtHXCxtGeZ7278ox4Sk5LAw7hwHsTkXtzWdKiAgbYuK8/v5UFMKLEpiQTGhBKSEFVs7di5aSst2remVce2lHEsy6Chn2FpY83+7bvzLW9jZ8ugoZ/TrE0LDJ7TSzYrK4uZP/9Br4H9sP03YVtcelRpzm6/0+z2O82DmFDmnNpMRGIsXSs2zrd8G/c67LhxkiP+FwiJj+KI/wV2+52mT/VWqjJepZy5HnqPQ3fPE5oQjW+wH4fvnsfdOv+eE0VFt2VTUncfIOPiFbIfhZC8dDUKHW106hTcY0ernDOZ/vfJOHuB7KhoMm/cIv3sBbSccr/UJs1cQPqps2Q/DiX74SOSl61Bw9ICTSeHIo2/tXsdjgdc5vj9y4QkRLHu0kGiU+JpXq56vuVTMtKIT01SPZws7DDQ0efkUz3L6jlVYpffKa6G3CMiKZaj9y5yPfQ+bd3rFGnsr+tM0A2WnN3BsfuXSzSOjWs30KFLRzp27YyTsxPDRo3A2taGbZvzT5pv37INm1K2DBs1AidnJzp27Uz7zh3YsDr3uDnh54m81/193NzL4+jkyDffjSVbmc0F3/Nq+9LU1MTSylL1MHvFKTCe59zeY1RpWoeqzepiVdqWVh++h4mlGZcOn3puvX3LNuFZrzqlXfP+zTp6uuJeqzJWpW0xt7WiVtvG2DjYEXw7oMjiflYTl6qcC7rJuaCbhCfGsOPGCWJTEqnnWCnf8u7WZSlnWZq/zu7gbmQwMSkJBMeGqZ0znMztCIwO4dKjO8SkJHAnIpjLj+5SxtS2WNpw9eA/uDesjkejGpjbWVO/ZzuMzE25eez8c+vpGxtiYGqsemhoqH8dys7O5shff1OjczNMnpNgLSrXDv2De4NqeDSsjrmdNfV6tnmFdhipHs+2Q6FA7XkDU6PibAZtPepy/P4ljt2/TEh8JGsvHSA6OZ4WrvmfL1Iy0ohLTVI9nC3sMdDR58T93ONtfadK7Lx5iqsh/kQkxXLE/wLXQu/TzqNusbShU4UGHPG/wGH/8zyKi8D7/B6ikuJoXT7/43t5KwcikmLYc+sfwhNjuBX+gIN3z1HO0l5VprlrDYx09fn96GpuRwQRmRTLrfAHan87Ra2LV0MO3T3Pobu+PIyLYOm5XUQmxdHWPf/fW3nrskQkxrDb7zThiTH4hT/gwO1zuFqVVpVxty7LrbAHHA+4QnhiDJcf3+XE/StqZYrSB5WasffWGfbc+oeg2DDmn95CeGIMnTwb5lu+lVstdvmdwufeJUISojh67yJ7b5+hZ5UWz5RUEpOSoPYQoqRIMu4doa+vT0ZGTm+V77//nuXLl7NgwQJu3LjB119/Tb9+/Th27BgAP/zwAzdv3mTv3r34+fmxYMECrKxyurUnJyfTtm1bzM3N8fX1ZdOmTRw6dIivvvrqhTFMnDiRuXPncvr0aYKDg+nRowczZ85k7dq17N69m4MHDzJnzhxV+YSEBL7++mt8fX05dOgQSqWS9957j+zsbAD69+9P+/bt6du3L5mZmezbt49FixaxZs2a5w5NnTx5Mv379+fy5ct4eHjQp08fPvvsM8aNG8f58zkXNk+3Z+vWrQwfPpxRo0Zx/fp1PvvsMwYOHMjRo0cLegkSEhL46KOPOHHiBGfOnMHNzY327duTkPDyB/RvvvmGo0ePsnXrVg4cOICPjw8XLlxQKzNw4EBOnTrF+vXruXr1Kt27d6dt27aqBOWQIUNIS0vj+PHjXLt2jd9++03V2+vp15k2bRq+vr7Y2NjQuXNn1Wfl2rVrtGnThvfff5+rV6+yYcMGTp48qfb76d+/P48fP8bHx4e///6bxYsXEx7+akPJQkJCaNKkCVWrVuX8+fPs27ePsLAwevToUWCdq1evEhsbS82aeS/idHR06Nu3r1oS2dvbm48//viV4gJYt24dRkZGfPZZ3qGNo0aNIiMjg7//zul51KxZM27fvq3qcXf06FEaNWpE8+bN8yTj6tSpg4FB7l3q2rVrExwczIMHBQ91eF2aCg1Km1pz95mhIHcignE0z/9LkKetMw/jwmniUo3xLfozukkfOlSoj5aG5lNlnHgQG0bXio34vuUAvm7ck2blqqOgeLq5Z2RkcO+2P1VqqSdKqtaqxq0bfgXUejmbVq7DxMyUlh3aFGo/L6KloUl567JqPakAfIP9qGib/zA2bQ0t0rPUexumZWVQwcZJ1VPxasg9yluXpYJNzhd5OxNL6jpW5MxTd3uLmoaVJRpmpmTeyB22TGYmmbf90SpX8HDrTP97aDk6oOnsqNqPdiVPMq7eKLCOwkAPAGVScoFlXpWmhgZO5nbcCFVPaNwIvU85qzIvtY/GzlW5GRZA1FO9OrQ1NPPcRU/PysTNumgTif9lGRkZ3Ll1m1p1aqttr1WnNtev5v+ZvXHtep7ytevW4dbNW2Rm5t9rIS01lczMTExMTNS2Pwx+yHvtOtOjywdMHD+Bxw8fFaI1ubIyMwkNeIhzxfJq250ruvPwbmCB9a4eO0dMWBSN3m/9wtdQKpUEXr9DdGgEZV9i6OvryDln2HDnmekG7kQE4WSR/80Kr1LOBMeG06xcDX5oOZCxzfrR0bOB2jkjIPoxZcxscDDLOe9YGJjgYeOI33OGxr2urMxMIoMeU8aznNr2Mp7lCLuX/7DIJ7ZMXsSq0dPYNWMFj2/lTXhe3HUMfWNDPBrmn7QvSlmZWUQGhVD6mXaU9nR5cTt+Xszqb2awe8ZKHueTuM1IS2fduFmsHfsn++auIzKo4GkrCuvJ8fbZ4frXQ+/h+rLHW5eq3Ay7T1Rybs8tbQ1NMrLV//4zsjKK5XirpaGJi6U9Vx77q22/EuKPu3X+PSRvRwRhaWBKtdI5xwRTPUPqlq3IxYe5w09rlvHgTkQwn9TpzF/dxzGj0zDer9ik2Fa21NLQpJxlaS4/vqu2/fLju3jY5H8D71b4AywNTalR2v3fdhhRz6mi2rQlfuGBlLMqjdu/76etkQXVy7irlSnKNpS3dsiz7wsPb+Flm//1h7amFunPjNxIy8zAw8ZRbdSHvrYua/tMZH3fn5jSdjCuli/3+XwXKN7if/+vZJjqO+DcuXOsXbuWFi1akJSUxIwZMzhy5Aj16tUDwMXFhZMnT7Jo0SKaNGlCUFAQ1apVUyU5nJycVPtas2YNKSkprFy5UpXwmjt3Lp06deK3337D1rbgu5s///yzqifQoEGDGDduHPfu3cPFJedi8oMPPuDo0aOqueG6d++uVn/ZsmWUKlWKmzdvUrFiTm+eRYsWUblyZYYNG8aWLVv48ccfqVWr1nN/HwMHDlQlecaOHUu9evX44YcfaNMm50v48OHDGThwoKr8tGnTGDBgAF9++SUAI0eO5MyZM0ybNk01zPBZzZs3V/t50aJFmJubc+zYMdUcY8+TmJjI0qVLWblyJa1a5fR+WbFiBWXK5J4Q7t27x7p163j48CH29jl32EaPHs2+fftYvnw5v/zyC0FBQXTr1o1KlXLuZD/5XT/txx9/zPMaW7dupUePHvzxxx/06dNHtWiEm5sbs2fPpkmTJixYsIDAwEAOHTqEr6+v6vPy119/4ebm9sI2Pm3BggVUr15dbSGGZcuW4eDgwJ07dyhfvnyeOoGBgWhqaqp6uj1r0KBBNGzYkFmzZnHhwgXi4uLo0KGDag64l3Xnzh1Vr8hn2dvbY2pqyp07ORdVDRo0QFtbGx8fH3r37o2Pjw9NmjShevXqxMXFcffuXdzc3PDx8aFfP/U5KUqXLq1ql6Nj3ouhtLQ00tLUhyzo6urmKZcfAx09NDU0SExPUduemJaMsW7+F6wW+iY4mduRmZXFyvP7MNTRo2vFxuhr67L532F6FgYmlNM35vLjuyw/txsrQ1O6VGyMhkKDw/7Pv2P/OhLi4snOzsbM3Extu6m5ObHRr7/Sst+1GxzavZ8Zf80tZIQvZqpnhJaGZp47rdHJ8Vg4mORb51zwTTpWaMCJgCvciQjG3bos7T3qoa2phZmeEVHJ8Rzxv4CZvjFz3xuFAgVamppsvX6cNZcOFFtbFKY58WbHqw8vyo5PQMPSosB6GecukmJkhNG3IwAFCi1N0o6eIG3vwQLr6Pd8n8w798h+VHRfFo11DNDU0CD+mWHacalJVNR7cQ8RUz0jKtmVY9GZbWrbr4fep417He5EBBGeGEMFW2eqlS5fbF+s/oviYmPJysrC3EL9c2JhaU50VP49a6OjorGwVO+FZG5hQVZWFrGxsaqbhk9bOHch1tbW1Kide9PG08uT8ZO+x6FsWWKiolm5bAVfDvqcFRtWY2pW8JC/l5GckIQyOxtDU/WpEwxNjUmKzf9mXHRoBEc37KLfD1+hoamZbxnIGcY6d+gksjIzUWho0GZAN5wruRcq3oI8mZLg6bmgABLSUjDWNci3joWBKc4WdmRmZ+J9fg+GOnq8X6kpBtp6bPx3qOHlx3cx1NFnSINuKABNDU1OB17lqP+FfPdZGKmJySizleibqN+c1TcxJDk+/9EcBqbGNPqwE9Zl7cjKzOLumSvs+nMFnUYNwK68EwCh/kHcPnmRbj+8mSHeT9ph8Gw7jA1JiU/Kt46BqRGN+nXEytGOrIxM7p69xu4/V9Fx5EfYlc+5vjAtZUWTj7pgUdqG9NQ0bhw5x47fl9Pth88wtbUs8nY8Od7GparHHJeWhOlLHm8r27my8B/1nrPXQu/T1r0ut8ODCE+MxtPWmWql3YvleGusa4CmhiZxz54zUhIxs8+/Dbcjgph1YiMjG/dCW1MLLQ1NfIP9WHoud45KW2MLKhqZceL+FX45vAI7E0s+qdMZDQ0N1fVWcbQj9pnrkLiUBMz1815vP2nHjOPrGd20j6odZ4NusuRM7ryDJwOuYqprxC/tPkehUKClocneW/+w5dqxIm+DqZ4hmvlcS8WkJGBhYJxvnfMP/WjvUY9Tgde4GxlMeSsH2rnXQVtTC1M9I6KT4wmKDed3nzXcj3qsOobN6jKCwZt/41F8RJG3Q4gXkWTcf9SuXbswMjIiMzOTjIwMunTpwpw5c7h58yapqamq5MsT6enpVKtWDYAvvviCbt26cfHiRVq3bk3Xrl2pX78+kDPsrkqVKmo9zxo0aEB2dja3b99+bjKucuXKqv/b2tpiYGCglhyytbXl3Llzqp+DgoKYPHkyZ8+eJTIyUtUjLigoSJWMMzc3Z+nSpbRp04b69evnmbD/ZeIAVMmqJ9tSU1OJj4/HxMQEPz8/Bg8erLaPBg0aMGvWLAoSHh7OhAkTOHLkCGFhYWRlZZGcnExQ0MtNan/v3j3S09NVCVPImWDa3T33wvvixYsolco8iaq0tDQsLXMupIYNG8YXX3zBgQMHaNmyJd26dVNrP5Dva/j55fTauXDhAv7+/qxZs0ZVRqlUkp2dTUBAAHfu3EFLS4vq1XPvDru6ur7yqrcXLlzg6NGjeXrtPfld5JeMS0lJQVdXt8DJRitXroybmxubN2/m6NGjfPjhh2hra79SXC9DqVSqYjAwMKB27dqqZNyxY8f45ptv0NLSokGDBvj4+KCrq0tAQECehK2+vj6A2lDtp02dOpVJkyapbfvxxx+hVv7JyIJiVaNQoMy/qKpN6y8fIjUzZ46uXX6n6Ve9DduuHyczOwsFCpLSU/j7qg9KlDyKj8BEz5DGLlWLJRn3bGwqSuVr3zVLSU5m1pRpfPnNMEwK+UX8VTz7XigUCpQFvBsrzu/FwsCEhe+PAQXEJCew79YZ+lRvTZYy57hY1d6ND2u0Ycbx9fiFBVLa1JphDbsTVaMdKy/sLZKYtevUxKB/L9XPibMW/tuYZwoqFPDsZ+0pWu6u6HVsQ8rqjWTeD0TTxhr93t3I7tiGtF3785TX79sdzTL2JPw6swhakVee8FHkszWvhs6VSc5I5eKj22rb1146yICa7fml3ecogfDEGE4GXMl34Yf/d8/+LSuVz59AOu/fubKA7bB25RoOHzjI7IVz1W5c1G2Qe87DtRxelSvSu2sP9u3eS8++vfLs57U82y6UebZBznDH7fNW06hbWyztnn8s19XT5eMpo8hISyfwxl0Or9mOmbUljp6uRRPzS3hefuPJ+7b24gHVOWPHjZP0r9mOLdd8yMzOopxlaVq41WTLNR+CYsJUN3BapiZz6KlJ1Is0ZvJ+xgpiVspKtcABgG05BxJj4rly4DR25Z1IT03j6NItNPqwc77zyL0t8mtHUnQcVw/+o0rG2bqUwdYl9wZvqXJl2TJlMTeO+lK/V9tii+3Z85yCgs99T2vkXIXkjFQuPFLvCbXm4n4G1urIr+2/UB1vTwRcppFz1SKMWl1+11IFKWNqzce1O7Lp6hGuPLqLmYEx/Wu0Y3DdLiz4N7GoUCiIS01i0ZltZCuV3I9+jLm+CV28GhVLMq5Az7kOKWNqw6d1OrPh8mEuPb6Dub4xA2q254t67zH3dM7okIqlXPigSjMWndnO3YggSplY8UntTsRUTmDj1SPFFHTeM3hBf+OrLuzHXN+EuV1HolDkJO723zlHr6otVd8x/cID1XrqXg8NYGG3b+hasTHzThff/LtCFESScf9RzZo1Y8GCBWhra2Nvb69KQgQE5HRT3717t6onzhNPLlbbtWvHgwcP2L17N4cOHaJFixYMGTKEadOmqSUenvWiFVieToQoFIo8iRGFQqE6GELOvF/Ozs4sWbIEe3t7srOzcXJyIv2ZybuPHz+OpqYmjx8/JikpKc9wlBfFUdC2p2PJ+4Wh4N8D5KxoGxERwcyZM3F0dERXV5d69erlib0geU70+cjOzkZTU5MLFy6g+czd9CdJrU8++YQ2bdqwe/duDhw4wNSpU5k+fTpDhw597r6f/h189tlnDBs2LE+ZsmXLcvv27Tzbn43/yRwlT297Mgz26bY86V35LLsC5u+ysrIiOTmZ9PT0fHutAXz88cfMmzePmzdvqiV6X0X58uU5efJkvq/z+PFj4uPj1XoCNmvWjA0bNnDjxg1SUlJUicomTZpw9OhRdHR00NPTo25d9Xk5oqOjgYIXHRk3bhwjR45U26arq8uEQ0tf2Ibk9FSysrPz9Ggw0tEnMS3/5F9CWs4cLU++VAFEJMagoVBgqmdEVHIcCWlJZCmz1S7ewhNjMNEzRFOhoUoUFRVjUxM0NDSIeaYXXFxsLKYWZq+1z9BHIYSHhvHLuNxE55PP6gfNOzJ31RJKlS66OeTiUhPJzM7CwkD9OGWub0xMcv49Z9KzMvjt6GqmHVuLhb4JUclxdPJsSFJ6CnEpOb0MBtXuxIHb59jtdxqA+9GP0dPW5ZsmfVh1Yd9Lfdl5kYwr10iYFJi7QSvnEkHD1ISsuNzecRrGRijjCx6Sr9e1I+n/nCP9xD8AOb3ddHUw6N+btN0H1L4t6/f5AO2qlUj8bRbKmNhCt+FpCenJZGVn5+mVYaJnkKf3Rn4aOVfhdOA1srLVP+cJacnMObUZLQ1NjHQNiE1JoHvlZkQmxRZl+P9ppmZmaGpq5ukFFxMdk6e33BMWlhZERUXnKa+pqZmnR9u6VWtZvXwlM+bNpJzb85NV+vr6uLi68DD4+UP+XoaBsSEKDQ2SYtV7iybHJWKYz3xc6SlphAYEE/bgEQdW5CxeolQqQank1/6j6TX2M5y8cs4vCg0NLErlnB9sHUsT9SiMf3YeLpZkXFJ6SoHnjGd7yz2RkJpEXGqi2jkjPDEaDYUCM30jIpPiaONel4sPb3MuKGcC/tCEKHQ0tfmgSjMO3/UtgqNULj0jAxQaijy94FITkjAwefm50Wycy+B/9ioA8RHRJETFsn/eWtXzT84XSz6fRM+fhmJiU3Cv4NeR2w71Y1JKQlKeXn/PY+NSBv+z1wp8XqGhwNrJnrjw4pnz9cnx1uzZ462uAfEvc7x1qcLpwKv5Hm9nn9yI9r/H25iUBHpUaVEsx9uEtGSysrMw01fveWWqZ1jgoibvVWzC7fAHqgVKHsSGsSRzBz+3Hcy6y4eITUkgJjmBLGUW2U+d+x7FRWBuYIyWhmaRrzRccDuMCmzHB5Wb4hceyLYbx3PaERPKojPbmNr+C9ZcOkBMSgJ9qrXC595FVWL9QWwYelrafFn/fTZdPVok1yFPxKUmkZWdhbn+s9dSRgXO8ZaelcG0Y2v588R6zPVNiE6Oo0OFBiSlpxZ4zlei5HZEEGVM/z8WBJQe/G8fmTPuP8rQ0BBXV1ccHR3VEk2enp7o6uoSFBSEq6ur2sPBIXe4mrW1NQMGDGD16tXMnDmTxYsXq+pfvnxZbQL/U6dOoaGhkW/vpdcVFRXFtWvX+Oabb6hTpw4ODg4EBgbmKXf69Gl+//13du7ciYmJyQuTTK+jQoUKnDypvsrX6dOnqVChQoF1Tpw4wbBhw2jfvj1eXl7o6uo+dzGCZ7m6uqKtrc2ZM2dU22JiYlTDIQGqVatGVlYW4eHhed7LUk+tROfg4MDnn3/Oli1bGDVqFEuWLFF7rfxew8MjZ3W26tWrc+PGjTz7d3V1RUdHBw8PDzIzM7l06ZJqH/7+/sTGxqp+fpJcenrl0qcXc3j6dZycnPK8TkHz/1WtWhXIWfihIH369OHatWtUrFgRT0/PAss9T69evUhMTGTRokV5nps2bRra2tp069ZNta1Zs2bcvXuXtWvX0rBhQ1WitEmTJvj4+ODj40O9evXQ09NT29f169fR1tbGyyv/lTx1dXUxMTFRe7zsMNUsZTaP4iLyzKHiZlWGBzH5r+4YGB2KiZ4BOpq592SsDE3JVmarhmgExoRiaWCq1u/AytCM+NSkIk/EQU7SvJy7K1fOX1LbfuX8JTy8Cv57fJ7SZR34c9l8pv81V/WoVb8OFatVZvpfc7G0yTv0rTAys7O4ExFETQf1eGuW8eB62P0CauXIys4mIimWbKWSFq41OR14XXVxq6elkyeJn52djULx/N4sryQ1jezwyNzH41CyY+PQ8nxqqJymJlrurmTee87E8jraebunZCt5tnOTfp/uaFevQuIfc8iOLPoviFnZ2QTGhOBVSn1+GU9bZ+5FPnxuXXfrstgaW3DiqYUbnpWZnUVsSgKaCg1qlPHg0qM7BZb9f6OtrU15D3fOn1XvDXX+nC8VK+e/qIxXpYqcP6de3vfsOTw8PdDSyj1OrVu1hpVLvflj9nQ8PF98XEhPT+dB4ANVj/LC0NTSopRzGQKuq7/XAdfvUMbNKU95XX1dPpn6DYOmjFI9qjWvh4WdDYOmjMK+XMErdSpRkpVRPCv85Zwzwin/zDmjvHVZAqPzHyoeEB2CiZ4hOpq515zWhmZkK7NVX/B1NLXyfCHPVmb/23utaL8EamppYVXWnkc31Rfkeuh3D9tyLz+fWFRwiGphA7NSVnzw4xd0++Fz1cOxsjv27s50++FzDC2efzP4dWhqaWJV1o5Hfurnh0d+91+xHaHoP2eBBqVSSVRwGAam+Q/xK6zc4636dClepVzwf8Hx1sPGkVLGls9ddCYjO4uYf4+3Nct45OmxXBQys7O4H/WYyvbqCfDKdq7cjsh/5IuuljbZz37m/00oPvnE3454QCljS7VenHYmlkQnxxd5Ig5y2nEv6hFVn2lHVXtXboXnP2+xrmY+1xjP/KyrqV1AGUXRXYf8K+daKpgaZdSH6tco48GNsOcvbJOVnU3kv9dSzcpV58yD689NFJazLK02L6wQb5Ik494xxsbGjB49mq+//poVK1Zw7949Ll26xLx581ixYgUAEyZMYPv27fj7+3Pjxg127dqlSjz17dsXPT09PvroI65fv87Ro0cZOnQoH3744XOHqL4qMzMzLCwsWLhwIf7+/hw+fJhRo0aplUlISODDDz9k6NChtGvXjrVr17Jx40Y2bdpUZHFAzgIH3t7eLFy4kLt37zJjxgy2bNnC6NGjC6zj6urKqlWr8PPz4+zZs/Tt21c1DPFlGBkZMWjQIL755hsOHz7M9evXGTBggNpKWOXLl6dv377079+fLVu2EBAQgK+vL7/99ptqxdQRI0awf/9+AgICuHjxIkeOHMmTRPzpp5/UXsPKyoquXbsCOXPq/fPPPwwZMoTLly9z9+5dduzYoUp6enh40LJlSwYPHsy5c+e4dOkSgwcPRl9fX9W7Tl9fn7p16/Lrr79y8+ZNjh8/zvfff68Ww5AhQ4iOjqZ3796cO3eO+/fvc+DAAT7++GOysvK/ELG2tqZ69ep5EqVPMzc3JyQkhMOHD7/07/5Z9erVY/jw4XzzzTdMnz6de/fucevWLb7//ntmzZrF9OnT1RLZ9evXR1dXlzlz5tCkSRPV9lq1ahEXF8fff/+d71yDJ06coFGjRq/0OXkVJwKuUMuhAjXLeGBjZE7HCg0w0zfmTFDOZOlt3evS46kVpS4/vkNyehrdqzTHxsgcZws72nvU53zwLdXF4ZkHNzDU0aOTV0OsDE3xsHGkmWt1ThfjogGdur/H4d37ObznAA8fBLFs7mIiwyJo3bk9AKsXL2fWL9PU6gTcvUfA3XukpqQQHxdHwN17BAfmXDjr6Org6OKk9jA0MkJfXx9HF6diGdq88coROlaoT3uPejial+KrBt2wMTZn+/UTAAyu24XxLT5SlS9jakOr8rUpY2pNBRtHfmz1Mc6Wdiw5u11V5vSDa3Sp2IjmrjWwM7akZhkPBtXpyKnAa3kumItS2iEf9Dq0RrtaZTRK22HwcT+U6Rmkn80dpmww6EP03u+k+jnzynV0mzZEu3Z1NKws0fJ0R69rBzIuX1cl6fT79UCnXk2SFq9AmZqKwsQYhYkxFPH7ceD2WRo7V6WRcxXsjC3pVbUllgamHL2Xs/r1B5Wa8kmdTnnqNXapyr2oRzyKyzuHjIuFPTVKu2NtaIablQMjm/RCoVCw59Y/RRr769LX1sXNqoxqkm17EyvcrMpga1T8q0I+rUefnuzavpPdO3YRGBDInBmzCA8No0u39wBYNHcBU36crCrf5f2uhIWEMvfP2QQGBLJ7xy52b99Fz369VWXWrlzDXwuWMHbCOErZ2REVGUVUZJTa8P95M+dy+cIlHj96zM3rN5gw9nuSkpJo27F9kbSrdrsmXPE5y5VjZ4l8FMah1duIj4qhWouc6T58Nuxi58KcnlUKDQ2sHezUHoYmRmhpa2HtYIeOXs4Nl9M7DhFw7TYx4VFEPQ7j3B4frp88j1eDGkUSc36O3b9M7bJe1HKogI2ROZ29GmKmb6RaFKadRz16Vc2d8uTSozskp6fSs2oLbI3McbGwp6NnA84F+anOGTfDAqjnWImq9m5Y6JvgZuVAW4+63AgNKNJeM09UblWPWycvcuvkRWJCIji9YR+J0XFUaJIzh+C5LYc4umyLqvy1Q/8QeMmPuLAooh+Hc27LIQIu+uHVLGfhEC1tbSxK26o9dA300NbVwaK0LZpaxTOgqFLLetw+eZHbpy4RExLBPxv357Sjcc77f27rYY4u3/ZUO84QePlWbju2Hs5pR9PcOZUv7DxG8A1/4iNiiAoO5fjKnUQFh6r2WRz23TpDE5dqOcdbEyv6VGuFpYEpR/6dM7B75eYMrtMlT73GLlXxj3xY8PG2jAfWhmaUt3ZgVNM+Ocfbf3uJF7Wdfqdo4VqD5q41KG1qzYCa7bEyNOXAnZzRF32qtWZogw9U5c8/vEWdsl60Ll8bGyNz3K3L8nHtjtyNCFb14Np/+xzGugYMrN0BO2NLqpd25/1KTdl3+2yxtAFg+42TtHSrRQvXmjlDaWt1xMrQjP3/vma/6m0Y3jB3ETXfh37UdaxIW/c62BpZ4GHjyCd1OnEnIkjVDt+Ht2jrXpeGzpWxMTKnip0rfaq1wjf4ZrFch2y+dpT2HvVo616Xsma2fFHvPWyMzNl5M+d7waDanRjbLHd+5jKm1rR0q0lpE2vcrcvyfYuPcLawY+m5XaoyH9ZoS80yHtgZW1LOsjSjm/TB1bKMap/iv2X+/Pk4Ozujp6dHjRo1OHHiRIFlt2zZQqtWrbC2tsbExIR69eqxf7/61Cne3t4oFIo8j9TU1GJrgwxTfQdNnjwZGxsbpk6dyv379zEzM6N69eqMHz8eyFmJcty4cQQGBqKvr0+jRo1Yv349kDMn1v79+xk+fDi1atXCwMCAbt26MWPGjCKNUVNTkw0bNjBs2DAqVqyIu7s7s2fPpmnTpqoyw4cPx9DQUDXpv5eXF7/99huff/459evXzzMM93V17dqVWbNm8ccffzBs2DCcnZ1Zvny5WizPWrZsGYMHD6ZatWqULVuWX3755bnJu/z88ccfJCYm0rlzZ4yNjRk1ahRxcXFqZZYvX87PP//MqFGjePToEZaWltSrV4/27XO+VGRlZTFkyBAePnyIiYkJbdu25c8//1Tbx6+//srw4cO5e/cuVapUYceOHarhmJUrV+bYsWN89913NGrUCKVSSbly5ejZs6eq/sqVKxk0aBCNGzemVKlSTJ06lRs3bqj1/Fq2bBkff/wxNWvWxN3dnd9//53WrXNXjbO3t+fUqVOMHTuWNm3akJaWhqOjI23btlVLQD5r8ODBeHt7P3c1XzMzsxf/sl9g5syZVK5cmQULFvDDDz+gUCioXr0627Zto1Mn9S/qT4agHjt2TO0zoq2tTb169Th8+HC+ybh169blmROuKF0N8cdAR5cWbjUx0TUkNDGK5b67VD0WjHUNMNPPvWuenpXJX2d30MWrEUMbfkByehpXQ/xVF2qQM+Tyr7M76eTZgBGNehKfmsSpgKv43LuU5/WLSsPmTUiIT2DjirXEREdT1tmJ736bhE2pnJsBMVExRIapX7CP+jS3x+y9O/6cOOSDta0NizZ4F1ucz3PE/wImuoZ8VLM9loYmBESFMHbXfMISc4bgWRqYqCVGNDU06FmlBWXNbMnMzuLSozt8uWUaoQm5Q/ZWnt+LUqnkkzqdsDY0IzYlkdOB11hydkee1y9KaXsPodDWRr9fDxSGBmTdDyRxxjxIzV1sRMPCXK0nXOqu/SjJGa6qYW6KMiGRjCvXSd2Se0Gs26wRAMZjh6u9XvKy1aSfKrovKOeC/TDUNaCzV0NM9Yx4FBfBnyfWq+6Cm+obYWmgPgRSX1uXGmU8WFvA4hjamlq8V6kJNkbmpGamczXEnyVndpCSkZZv+TfNw9qRue/lDnkf1jBnsaQ9fv8w5ciKNxZHi9YtiY+LZ8Vfy4mKjMK5nAu/zZxGKbucnt1RkVGEheb23LUvbc/vM6cx58/ZbN20BUtrK4aPHkHT5rnH022bt5CRkcGEseo3fAZ8+jEfDx4EQER4OJO+/5G42DjMzM3wrOjFwmWLVa9bWJ51q5GSkMyprQdIjI3HuowdPb75FFOrnOGLibEJxEe+2oIzGWnp7Pf+m4ToWLR0tLG0t6XTF33xrFutSGLOz5XHdzHU1qNV+do554yEKJae3an64m2iZ4i52jkjg0VntvNexcYMb9yT5PRUrjz2Z+9TSehD/w5FbetRF1M9IxLTU7gZGqBWpiiVq1WR1KRkLu4+RnJcIhb2NrQb2hdjSzMAkuMSSIzOva7KyszizOYDJMUmoKWthbm9DW2H9qFspaIb+fE6ytXyIi0pmYu7j6va0farPk+1I5Gkp9qRnZXF2c0HVe0ws7emzVe9KVspd0qN9JRUTq7eTXJ8Ijr6ulg6lKLT6I+wcS6aa+f8nAu+iZGuPl0qNsbs3+PtjOPrVKujmuobYWGo3rtQX1uXmmUqsOZi3vlEIed4261SU6yNzEnLTOfqY38W/7ON5GI63p4OvIaxrgEfVG6Gub4xQbFh/HJ4pWpYrLm+MVaGuecMn3uX0NfWpZ1HXT6q2Y6k9FSuh95n9YXc9kQlxzH54HIG1GrP9M5DiU6OZ4/fadWQ0OJwKvAqJroG9KzaIqcdMaFMPuRNxL/tsDAwwdrITFX+iP8F9LV0ae9Rn4G1OpCUnsrVkHtqc9JuvHIEpVJJ32qtsTAwJT41Cd9gP9Zcyv+9Kyyfe5cw0TXkwxptsDAwJTA6hHF7FxKemHN8tTQwweapaykNhQYfVG6Og6kNmdlZXHl8l6Hb/lRde0HOUPyRjXthbmBCUnoK/pEP+XrnrAJ7Pr5rXjTl1H/Jhg0bGDFiBPPnz6dBgwYsWrSIdu3acfPmTcqWzdvr/Pjx47Rq1YpffvkFMzMzli9fTqdOnTh79qxqXn0AExOTPNM0PTvaqSgplC8zeZUQ4j/Hx8eHZs2aERMTUyQJqycePnyIg4ODar7B4pSamoq7uzvr169XW4jiv2b37t188803XL16VW241csYu3t+MUX15vzW4UtuhNx7ccG3mJddORrP/7Kkwyi041/OJ3ZQ0Q/3f5PMls5h4IYpJR1GoS3v+R0N5r2ZFRuL06khCwmLf/lpGt5GtiZWePvuLukwCm1ArQ6M3jmnpMMolGmdhjL92LqSDqPQRjXpzTSfNS8u+JYb3bQvH62f/OKCb7EVvX7gg5XflXQYhba5/xS6er94Ibu32bYBv9JiUd55qv9rDn82u6RDeC0+xbCydVFp6vpqvXbr1KlD9erVWbBggWpbhQoV6Nq1K1OnTn2pfXh5edGzZ08mTJgA5PSMGzFihNp0TMVNhqkKIZ7ryJEj7Nixg4CAAE6fPk2vXr1wcnKicePGxf7aenp6rFy58pXm43sbJSUlsXz58ldOxAkhhBBCCCHEuywtLY34+Hi1R1pa/j1g09PTuXDhgtooLIDWrVtz+vTLDWHPzs4mISEBi2cWlUpMTMTR0ZEyZcrQsWNHtXnTi4Mk44QQz5WRkcH48ePx8vLivffew9raGh8fn2KZays/TZo0yTNU9L+mR48e1KlTp6TDEEIIIYQQQvwf0lAo3trH1KlTMTU1VXsU1MMtMjKSrKysPPPZ29raEhoa+lK/i+nTp5OUlESPHrlzJ3p4eODt7c2OHTtYt24denp6NGjQgLt3777+L/0FpJuGEO+opk2b5ln16HW0adOGNm3aFEFEQgghhBBCCCFErnHjxjFy5Ei1bbq6us+t8+wceEql8qXmxVu3bh0TJ05k+/bt2NjYqLbXrVuXunXrqn5u0KAB1atXZ86cOcyeXTxDkyUZJ4QQQgghhBBCCCHeOF1d3Rcm356wsrJCU1MzTy+48PDwPL3lnrVhwwYGDRrEpk2baNmy5XPLamhoUKtWrWLtGSfDVIUQQgghhBBCCCHeUYq3+N+r0NHRoUaNGhw8eFBt+8GDB6lfv36B9datW8eAAQNYu3YtHTp0eOHrKJVKLl++jJ2d3SvF9yqkZ5wQQgghhBBCCCGEeOuNHDmSDz/8kJo1a1KvXj0WL15MUFAQn3+es0r9uHHjePToEStXrgRyEnH9+/dn1qxZ1K1bV9WrTl9fH1NTUwAmTZpE3bp1cXNzIz4+ntmzZ3P58mXmzZtXbO2QZJwQQgghhBBCCCGEeOv17NmTqKgofvrpJ0JCQqhYsSJ79uzB0dERgJCQEIKCglTlFy1aRGZmJkOGDGHIkCGq7R999BHe3t4AxMbGMnjwYEJDQzE1NaVatWocP36c2rVrF1s7JBknhBBCCCGEEEII8Y5SKN6tGcq+/PJLvvzyy3yfe5Jge8LHx+eF+/vzzz/5888/iyCyl/duvSNCCCGEEEIIIYQQQrzFJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGopXW7VUFD/pGSeEEEIIIYQQQgghxBsiyTghhBBCCCGEEEIIId4QGaYqhBBCCCGEEEII8Y5SyDDVt470jBNCCCGEEEIIIYQQ4g2RZJwQQgghhBBCCCGEEG+IDFMVQgghhBBCCCGEeEdpIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h0lq6m+fRRKpVJZ0kEIIYQQQgghhBBCiKJ37sGNkg6hQLUdvUo6hBIhPeOEEOItNmbX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2JavVfSYRSK+cGtXH18t6TDKLTK9m6ExUeWdBiFZmtiRYN5n5d0GIVyashCeq7+oaTDKLQN/SbzODa8pMMoFHszm5IOQTwjITa2pEMoFGMzM2KHf1vSYRSa2axf6b/up5IOo1BW9p5AQmhYSYdRaMalbEs6BPGOkGScEEIIIYQQQgghxDtKhqm+fWQBByGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5SGDFN960jPOCGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5QCGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQoZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKBmm+vaRnnFCCCGEEEIIIYQQQrwhkowT4hk+Pj4oFApiY2NLOpQi5+TkxMyZM1+7fmBgIAqFgsuXLxdZTEIIIYQQQgghxP8TGaYq/i+dPn2aRo0a0apVK/bt21fS4QhRJOo5VqRJueoY6xoQlhDNjpsnCIwOKbC8poYGLd1qU710eYx1DYlLTeSw/3nOB/sB8Fm99yhnWTpPPb+wQJb77iq2dpw/eJIze46SGBuPdelStOrXlbIe5V5YL/jOfVb9PA/rMqX49JdvVNtv+V7l1I6DxIRFkp2VjbmtFXXbN6VSw1rF1ob8KJVKluzeydaTx0lITsbLyZkxvfpQzj7v7/iJI5cu4r1vD8ER4WRmZeFgY0O/lq1pX6feG4z85Wg3rItuh9ZoupVDw9SE+M+/JuteYEmHxf5tu9m+YQuxUdGUcSrLwK8+pULlivmWjYmKZsX8pdy/60/ow8e0e78TA78arFbm6L5DzP9tZp66a/ZvQUdHp8ji3rppC+tWryU6MgonF2eGjhxGlWpVCyx/+cIl5s6cQ+D9ACytrOjTvw9dur2nen7n1h3s37OX+/cCAHD3cOfTIZ/h6eWpKrNs8VK8lyxT26+FhQXb9u8ssna9jCp2rvSp1hoPm7JYGZrx7Z4FnAi48kZjeJ7W5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG2Rxbxt81Y2rF5HVFQUTs5OfPX1MCpXq1Jg+csXLzF/5lwCAwKxsrKk14d96Px+13zLHjlwiMk/TKJB44b8/MdU1fY13qs44XOcoAcP0NXVxatSRQZ/9QVlHcsWWbvE20WpVLL4r7/Yum0bCQkJeHl5Mfabbyjn4vLceoePHGHhokU8fPSIMqVL8+UXX9CsaVPV8xcvXWLV6tX43bpFZGQk037/naZNmhRrW/TatkSnfm0U+vpkPQgmefM2skPDCyxv9NVgtNzytjPjxi2SFnur9qnXrqXa89nxCcT/MKVIY89PC9eatK9QD1N9Yx7FhbPm4gHuRAQVWL6eY0U6VKiPrbElKRmpXA25x/pLB/M9bhUVpVLJYu/lbN25M+fz4+nJ2BFfU87Z+bn1Dh/zYeHSpTx8/Jgy9vZ8+cmnNGvcWPX8ouXLWOLtrVbH0sKC/Vu3qX6Oio5mzqKFnPH1JSExkepVqvDN8OGULeNQlE0sURrIMNW3jSTjxP+lZcuWMXToUP766y+CgoIoW1YuDP/rMjIy0NbWLukwSkwVO1c6eTVi27VjBMaEUKesF4Nqd2K6z1piUxPzrdOveluMdA3YdPUIUUlxGOnqo6HI7TC98vweNDU0VT8bausxonEvrob4F1s7bp65xMHV22g74AMcyjtz8chp1v+xmM9++xZTK/MC66Ump7Bj4VqcvdxIjEtQe07f0IAGnVthZW+LppYmdy/dYOfi9RiYGFOuskexteVZKw/sY+3hg0zoP5CyNrYs27ubr2b/yeaJP2Oop5dvHVNDQwa2a4+TrR3aWpqcuHaVn1Z6Y25sTD3P/BNKJUWhp0vmjVukHz+N4cghJR0OAKeOHGf5vCV8OuIL3Ct6cnDnXqaMncif3vOxtrXJUz4jIwMTMxO69e3Brs3bC9yvvqEBs1YuUttWlIm4wwcOMWfGLEaOHUXFKpXZsWUbY4aPZuXG1diWKpWn/ONHjxkzYjQdu3bi+58mcP3KVWb8Nh1TczOaNm8GwKULF2nRuhXDK1dER1eXdSvXMPqrr1mxYTXWNtaqfTm7ODNj3izVz5qab34Qhb62Lv5RD9lz6zS/tPv8jb/+89RzrMhHNdqx1HcXt8ODaOlWk3HNP2TkzjlEJcflKe9uXZYh9bux4sJeLjy8hYWBCZ/W6cxndbsy/fg6tbJWhqb0q94Gv7DAIo35yMHDzPtzNiPGjKRi5Urs3LqDsV9/g/f6VdiWss1TPuTxY8Z9PYYOXTrx3aQfuH71GjN/n4GpmRlNmjdVKxsaEsqC2fOpXDVvYu/Kpct0/eA93D0rkJWZxdKFixkzbCTL169CX1+/SNso3g4rVq1i7dq1/DhhAmXLlmXpsmUMGTqUvzduxNDQMN86V69dY/z33/P54ME0a9qUoz4+fDt+PEsXL6ZixZzzXEpKCm5ubnTq2JEx335b7O3QbdEE3WYNSV6ziayISPRaN8foy0+InzIN0tLzrZO0bBVo5l4zKQwNMB4znIzL19TKZYWEkjjvr9wN2cpiacPT6pT1pG/1Nqw4v4e7kcE0c63O6CZ9GLdnPlHJ8XnKl7dy4LO6XVlz6QCXHt3BQt+YAbU68HHtTsw+ubHY4lyxbi1rN27kx3HjKFvGgaWrVjJk1Ej+Xr0GQwODfOtcvX6d8ZMm8fnHg2jWqBFHT5zg24k/snTuPCp65t5scnF2Zv70GaqfNZ96r5RKJaO/+w4tLU2mT/kFQ0ND1mzcwJcjR7JpxUo5XoliI8NUxf+dpKQkNm7cyBdffEHHjh3xfuZOSX5OnTpFkyZNMDAwwNzcnDZt2hATEwPAvn37aNiwIWZmZlhaWtKxY0fu3bunqvtkaOeWLVto1qwZBgYGVKlShX/++eelX0OpVPL777/j4uKCvr4+VapUYfPmzc+NOTw8nE6dOqGvr4+zszNr1qzJUyYuLo7BgwdjY2ODiYkJzZs358qVl+99kJWVxaBBg3B2dkZfXx93d3dmzZpVJHWWL19OhQoV0NPTw8PDg/nz56uee/I73bhxI02bNkVPT4/Vq1eTnZ3NTz/9RJkyZdDV1aVq1apqPR9f5r2Iioqid+/elClTBgMDAypVqsS6dblfmBYtWkTp0qXJzs5Wi7dz58589NFHqp937txJjRo10NPTw8XFhUmTJpGZmfnSv9tX1cilKr5BNzkXfJPwxBh23jxJbEoidZ0q5Vu+vHVZXCxLs+zcTvwjHxKTkkBwbDgPYkJVZVIy0khMS1Y93KwdyMjKLNZk3Nm9PlRtWodqzepiVdqW1h++h4mlGRcPn3puvb3LNuFVrzqlXZ3yPOfo6YpHrcpYlbbF3NaK2m2bYONgR/Dt+8XUiryUSiXrjhxmYNv2NK9WHdfSpZn40UBS09PZ73u2wHo1yrvTrGp1nO3sKGNtQ+/mLXEtXYbL/sX3Hryu9EPHSF29kcyLb08Ppl2bttG8fStadGhDGUcHBn41GCsbKw7s2JNveZtStnw89DOatGmBgWH+F/4AChSYW5irPYrSxrUb6NClIx27dsbJ2Ylho0ZgbWvDts1b8y2/fcs2bErZMmzUCJycnejYtTPtO3dgw+rcY9eEnyfyXvf3cXMvj6OTI998N5ZsZTYXfM+r7UtTUxNLK0vVw8y8aNv2Ms4E3WDJ2R0cu3/5jb/2i3SoUJ8j9y5yxP8Cj+IjWHFhL1HJ8bQuXzvf8m5WDoQnxbLv9hkikmK5HRHEobu+uDzT61ihUDC0QXc2XT1CWGJ0kca8ad0G2nfuQIcunXB0duKrkcOwsbVhx9/5f552bNmOTSlbvho5DEdnJzp06US7Th3YuGa9WrmsrCymTPiJAYM/xq60XZ79/D5rOm07tsfZxRnX8q6M/WEcYaFh3Ll1u0jbJ94OSqWSdevXM3DgQJo3a4ZruXJM+vFHUlNT2bd/f4H11q1fT53atRk4YABOTk4MHDCA2rVqsXZ97uetQf36fPn55zRv1uxNNAXdJg1IPXCUjKs3yA4JI3n1RhTa2ujUqFpgHWVyCsqERNVD290NMjJIv3xVvWBWtlo5ZVJS8TYGaOtej2P3L3Hs/iUex0ey5uIBopPjaO5WM9/y5azKEJEUy8E754hMiuVOZDBH/S/gbJH377yoKJVK1m3axMAPP6R54ya4urgwadx4UtPS2HfoYIH11m3eRJ0aNRnYrx9Ojo4M7NeP2jVqsHbTJrVyWpqaWFlaqh7mZmaq54IePuTazRt8O3IUXhUq4FS2LN9+PZKUlBT2Hz5cXE0WQpJx4v/Phg0bcHd3x93dnX79+rF8+XKUyoLvSl2+fJkWLVrg5eXFP//8w8mTJ+nUqRNZWVlATnJv5MiR+Pr6cvjwYTQ0NHjvvffyJGu+++47Ro8ezeXLlylfvjy9e/dWJWde9Brff/89y5cvZ8GCBdy4cYOvv/6afv36cezYsQLjHjBgAIGBgRw5coTNmzczf/58wsNzu9crlUo6dOhAaGgoe/bs4cKFC1SvXp0WLVoQHf1yXwSys7MpU6YMGzdu5ObNm0yYMIHx48ezcWPBd81eps6SJUv47rvvmDJlCn5+fvzyyy/88MMPrFixQm1fY8eOZdiwYfj5+dGmTRtmzZrF9OnTmTZtGlevXqVNmzZ07tyZu3fvvvR7kZqaSo0aNdi1axfXr19n8ODBfPjhh5w9m5Mw6d69O5GRkRw9elS1v5iYGPbv30/fvn0B2L9/P/369WPYsGHcvHmTRYsW4e3tzZQpxTMMQVOhQWlTG+5EBqttvxsZjJN53l40AJ62zjyMDadpuep813IA3zTtR4cKDdB6qifcs2o5eHLl8V0ysoonqZiVmUlIwEOcK7qrbXep6M7Du4EF1rty7CwxYZE0fr/NC19DqVQScP0O0aERLzX0tag8iowkKj6Oup5eqm062tpUdyvP1aeS98+jVCo5d8uPB2GhVHcrX1yhvjMyMjK4f8efKjWrqW2vXLMat6/fKtS+U1NS+KLXQD7r/hFTx00i4O7LvYcvIyMjgzu3blOrjnpyp1ad2ly/ej3fOjeuXc9TvnbdOty6eavAmwBpqalkZmZiYmKitv1h8EPea9eZHl0+YOL4CTx++KgQrXm3aGpo4mJhn+eGxJUQf8pb5z+U6U5EEJYGJlS1dwPAVM+QOmW9uPRIPSH1QaVmxKcmcfTexSKNOefzdIeaz3w+atauxfVr+X+ebl67Qc3a6sP4a9WtzW0/9c/TyqXemJmb0aFzx5eKJSkxJ+nw7GdOvBsePX5MVFQUdevUUW3T0dGherVqXL12rcB6V69do85TdQDq1q373DrFScPSAg1TEzJvPXXtmJVF5r0AtJwdX3o/OnVrkX7xCqRnqO/f2gqTn8ZjPGEMBh/1RsPSoqhCz5emhgZOFnZcD1U/T10LvY+bVf7HrbuRwVgYmFDZzhUAEz1DapXNuQYsLo9CQoiKjqZuzdxjj46ODtWrVOHq9fyPVQBXb9ygTi3141XdWrW5ekO9TtDDh7R9/z069+zBuEkTefj4seq5jPSc3o66T/Vw19TUREtLi8vXnkmm/ocpFIq39vH/Soapiv87S5cupV+/fgC0bduWxMREDh8+TMuWLfMt//vvv1OzZk21nlleXrlfqLt165Zn/zY2Nty8eVPVvR5g9OjRdOjQAYBJkybh5eWFv78/Hh4ez32NpKQkZsyYwZEjR6hXL2eeKBcXF06ePMmiRYtoks+cGXfu3GHv3r2cOXNGdYGzdOlSKlSooCpz9OhRrl27Rnh4OLq6ugBMmzaNbdu2sXnzZgYPHpxnv8/S1tZm0qRJqp+dnZ05ffo0GzdupEePHq9dZ/LkyUyfPp33339fVeZJUuvp3mcjRoxQlXkS/9ixY+nVqxcAv/32G0ePHmXmzJnMmzdPVe5570Xp0qUZPXq0quzQoUPZt28fmzZtok6dOlhYWNC2bVvWrl1LixYtANi0aRMWFhaqn6dMmcK3336ritXFxYXJkyczZswYfvzxxxf+Xl+VoY4+mhoaJKYlq21PSEvGWDf/3j2WBiY4WdiRmZ3FyvN7MNTRp2vFJhho67Lp6pE85R3MbLAzsWTz1eK7Q5ickIQyOxsjU2O17YamxiTG5h1GARAdGsHRDbv48IehaGgWnEhMTU5h9tCJZGVmotDQoO2AD3Cp5F5g+aIWFZ8zfM3CWP1LqIWJCaFRUc+tm5iSTPtxY0jPyERTQ8HY3n2pU8HzuXUEJMTFk52dnadnl5m5ObExr5/wKF22DEO+/Zqyzo6kJCez++8dfD90DNP+mo1dmYLn/3tZcbGxZGVlYW6h/gXNwtKc6AI+K9FR0VhYqrfT3MKCrKwsYmNjsbKyylNn4dyFWFtbU6N2bs8ITy9Pxk/6HoeyZYmJimblshV8OehzVmxYjamZaaHb9l9nomuApoYmcSnqQ//jUhIxszfOt86dyGDmnNrMiEY90dbUQktDE99gP5b77laVcbcuS7Ny1Rm7Z36++yiMuNg4srOy8vTeNLc0J+ZM/jfeoqOiMLdUT96ZW5iTlZVFXGwsllZWXLtylT07dvPX6mX57uNZSqWS+bPmUqlKZZzLPX/+MPHfFPXv8cnymWOXpYUFIaGh+VVR1cuvTtQLzo3FRWFsBEB2gvqUF9kJCWi8ZE9hzbJl0LQvRfI69VEsmQ+CyFqzkazwCDSMjXOGv474goSpf6JMTi5gb4VjrGuApoYGcanqPfDiU5Mw1ct/6LB/5EMW/rOVIQ26qY5bFx/eZtWF4ptnOyq6gM+PuQUhYc/5/ERHY/nM+2Jpbk7UUx0LKlbwZNL48TiWcSAqJoalq1YyaMiXbPBegZmpKU6OjtiVKsXcxYsZP3o0+np6rNm4gajoaCJL6HMo/j9IMk78X7l9+zbnzp1jy5YtAGhpadGzZ0+WLVtWYDLu8uXLdO/evcB93rt3jx9++IEzZ84QGRmp6hEXFBSkloyrXLmy6v92djndvMPDw/Hw8Hjua9y8eZPU1FRatWqltj09PZ1q1arlW8fPzw8tLS1q1sz9kuXh4YHZU12yL1y4QGJiIpaWlmp1U1JS1IbZvsjChQv566+/ePDgASkpKaSnp1O1atXXrhMREUFwcDCDBg3i008/VdXJzMzE1FT9y+DT7YuPj+fx48c0aNBArUyDBg3yDL193nuRlZXFr7/+yoYNG3j06BFpaWmkpaWpzXXSt29fBg8ezPz589HV1WXNmjX06tVLNf/EhQsX8PX1VesJl5WVRWpqKsnJyRjkM+/Fk9d52pMk6ct6toOnAiioz+eTu1DrLh0gNTPnjuCumyfpV6MdW68fIzM7S618LQdPQuKjCI4tePLiIvPMHTLlU/E+LTs7m23zVtGoW1ss7fLO//U0XT1dPpkymvS0dAJv3OHQmm2YW1vi6OlalJGr7D13hqlrV6t+/vPLoUCepuW8Zy+4I2igq8ea8RNITkvF9/Yt/ty8kdJW1tQo/+aSic/Sad4YgxG5c3kljp9M5nW/EovnuZ79naNEUYhJjMt7elDeM3euQfeKnowZPJy9W3bx8bDPXnu/z3r2M69U5v93oCqfp03KArbD2pVrOHzgILMXzlU7ztRt8NTCIK7l8Kpckd5de7Bv91569u316o14Rz17XFUoFAX2sC9tas2Amu35+9pRrjz2x1zfmL7V2/BJnc4sOrMNPS0dvmrwAYvPbichrXi+jD+JUc0Ljj3Pfm6etE+hUJCclMwvP/7M6PFjMH3quuJ5Zv3xJ/f87zFn0bwXFxb/CXv37eOXX39V/TxzRs58XHmOXflsexGlUvnGesto16iKQc/cxW4SF3kXUPJ5V1XqdOrWIutxKFlBD9W2Z/rdUf0/OySMxMAHmPwwBp3a1UnzOfmKkb+ifEIvqDX2Jlb0q96W7dePcy30HmZ6xvSs1pIBtTqw9FzRLOiz9+ABfpk+XfXzzF9/A/K7TnqJz0Kez5x6nQZ166r+7wpU9vKia5/e7Nq3j349e6KlpcXvP01m8u+/0bxjBzQ1Naldowb1n+mxKURRk2Sc+L+ydOlSMjMzKV06t/eCUqlEW1ubmJgYzPO54/WiSTs7deqEg4MDS5Yswd7enuzsbCpWrEh6uvoEr08vLvDkBPEkcfe813hSZvfu3WpxQ8HJmqcvmp+3Xzs7O3x8fPI8Z/aSF9cbN27k66+/Zvr06dSrVw9jY2P++OMP1ZDO16nzpL1LlizJM2xB85meT/lNBpz3C2zek/jz3ovp06fz559/MnPmTCpVqoShoSEjRoxQez87depEdnY2u3fvplatWpw4cYIZM3Inhc3OzmbSpElqvfae0Ctgov6pU6eq9RgEcnrR1czbo+VZSekpZGVnY6ynnuQz0jXI01vuifjUZOJSE1WJOIDwxBg0FArM9I2ITMqdiFxbQ4sq9m4cuFPw+1oUDIwNUWho5OkFlxyXgKFp3l4n6SlphAQEE/rgEftX5CTYlUolKJX80n8UfcZ+jpNXztAwhYYGFqVyJqkv5ViayEdhnN55qNiScY0rV6WiU27vj/TMnGEqUfHxWJmaqbbHJMRjafz8IVsaGho42OQkG90dyhIYEoL3vj0lmoxL/+ccmbee+lIRWbRzXBUFY1MTNDQ0iI2OUdseFxOLqblZkb2OhoYGrh5uhDx6/OLCL8HUzAxNTc08veBiomPy9JZ7wsLSgqio6DzlNTU18/RoW7dqLauXr2TGvJmUc3v+519fXx8XVxceBgc/t9z/i/i0ZLKyszDTN1LbbqKXsxp1frp6NeZORBA7b+bMexkUG0bquXR+avMpG64cwlTPCBsjc8Y07auq8+S8tLbPRL7eMYuwxJh89/0yTM1M0dDUJDqfz0dBcx1aWFrmKR8bE4umpiYmpqYE3g8gNCSE8aNzJ9JX/nsObVG/KSs3rqH0U71EZ0/7k9MnTjFr0Zx8F04R/02NGzWi4lMjRdIzcs5zkVFRar1xo6OjsSjg2AVgaWmp1osJIDom5rl1ilLG9ZskPHjqGKeVc62pYWxMVnxu7zgNYyOUCfn/navR1kanehVS9hY8z5lKegZZIaFoWL/4Wu91JaQlk5Wdjam++jWziZ4h8an5z1fXybMhdyOD2XMrZ07lYMJJ803n+1YD2Xz1aIHHu1fRuEFDKj7Vyz/38xONleVTn5/YGCye0yPR0sIin89P7HPr6OvrU87ZheCHucnSCu7urF26jMTERDIyMzE3M+Ojzz/D073krrWKmsb/8XDQt5Uk48T/jczMTFauXMn06dNp3bq12nPdunVjzZo1fPXVV3nqVa5cmcOHD+dJlEBO13o/Pz8WLVpEo0aNADh58tXvbD3vNTw9PdHV1SUoKCjfIan5qVChApmZmZw/f57atXOGmty+fZvY2FhVmerVqxMaGoqWlhZOTk6vHDPAiRMnqF+/Pl9++aVq24t61b2ojq2tLaVLl+b+/fuqOdhehomJCfb29pw8eZLGTy1nfvr0adXv4GWcOHGCLl26qIYyZ2dnc/fuXbUhvvr6+rz//vusWbMGf39/ypcvT40aNVTPV69endu3b+Pq+vKJnnHjxjFy5Ei1bbq6uvxwcMkL62Yps3kUF46blQM3QnMXJXCzcuBGWEC+dR7EhFDZvhw6mtqkZ+VcAFkZmpGtzCb2mSFYle1d0dLQ5NLDO/ntqshoamlh51yGgOt38KiV23sx4PodytfIu3Korr4un04do7btwqFTPLh5l/eHDcDM+vkX8pkZxbeghqGentoKqUqlEksTU8763cTdIWf15ozMTC7evcPQ97oVtJt8KVGSXoyLgbyUlFSyUwoeNvI20NbWxqW8K1fPX6ZOo/qq7VcvXKZWg6K7261UKgn0D6DsK8wl9Dza2tqU93Dn/FlfGjfLPeafP+dLw8YN863jVakip0+oL3Lie/YcHp4eaGnlXuqtW7WGlUtXMG3ODDw8Kzy7mzzS09N5EPgg35Uy/x9lZWdxP/oxlUuVwzc4tydo5VLlOP8w/3kIdbW0yXpmDtlsZW6vxcdxkYzeOUft+Z5VW6KnpcOK83uIzGelw1eR83kqz/lzvjRqmntuvHDOlwYFfJ48K3nxzzOfp/Nnz+FeIefzVNaxLMvWqs/hunThEpKTkxk6cjg2/ybclEols6fN5OSx4/w5fzZ29vaFaot4uxgaGqrdFFUqlVhaWnL23Dk8/k1gZGRkcPHSJYYOKXiF7cqVKnH27Fn69u6t2nb27FkqV8p/Aaoil5ZOdpr6zY/suHi03F3JenKTRVMTrXLOpOzc+8Ld6VSrDFqaZPheevFra2qiaWtD5r3A1wj85WRlZxMYHULFUi5ceJg7V2XFUi5cfJT/Yio6Wtp55r5WHbeKKJ9jaGCgtkKqUqnE0sKCs+fP41E+Z17cjIwMLl65wtDPCu51XtnLi7Pnfen71PQ4Z319qexV8Irz6enpBAY9oNpTI2WeMDLKudkS9DAYv9u3+WLQoFdumxAvS5Jx4v/Grl27iImJYdCgQXmGO37wwQcsXbo032TcuHHjqFSpEl9++SWff/45Ojo6HD16lO7du2NhYYGlpSWLFy/Gzs6OoKAgvn2NJdef9xpWVlaMHj2ar7/+muzsbBo2bEh8fDynT5/GyMhIbQ61J9zd3Wnbti2ffvopixcvRktLixEjRqj1wGvZsiX16tWja9eu/Pbbb7i7u/P48WP27NlD165d1YaAFsTV1ZWVK1eyf/9+nJ2dWbVqFb6+vjg7OxeqzsSJExk2bBgmJia0a9eOtLQ0zp8/T0xMTJ6E1dO++eYbfvzxR8qVK0fVqlVZvnw5ly9fzncl2efF9/fff3P69GnMzc2ZMWMGoaGhask4yBmq2qlTJ27cuKFK3D0xYcIEOnbsiIODA927d0dDQ4OrV69y7do1fv7553xfV1dX95WHpT7txP3L9KzWiodx4QTFhFKnrBdm+kaceZAzgW1bj3qY6hmy4fIhAC49ukMLt5r0qNKCA3fOYqijT4cKDfAN9sszRLW2gyc3Qu+TnJH62vG9rDrtmrJ9wRrsXBwo4+rEpaOniYuKoXqLnGTK0Q27SIiJo/PnfVFoaGDjoL6yl6GJEZraWmrbT+04hJ2zA+a2lmRlZnHvsh/XTvrSdkDBw8+LmkKhoHfzFizftwcHGxscrG3x3rcHPR0d2tTKTQz96L0UazNzvuqa06ty+b49eDo6UdrKmsysTE5dv8buM2f4tvfLJ6rfFIWxERo2Vij+nYxa49+eMdnRsShjYkskpo7duzJn6gzKubtS3qsCh3btIzIsgtad2gOwZok30RFRDB0/SlUnwD8noZ2akkp8bBwB/vfR0tLCwSknibppxVrcKrhjV6Y0ycnJ7P17B4H+9xk0/PO8AbymHn16MuXHybh7euBVqSI7t24nPDSMLt1yhlItmruAyIhIvpv0AwBd3u/K1o1/M/fP2XTs2pkb166ze/suJkyZqNrn2pVrWLpwCT/8/COl7OyIisz58qlvoK8aOj9v5lwaNGqATSlbYmNiWLl0BUlJSbTt2L7I2vYy9LV1KWNqrfrZ3sQKN6syxKcmFaqXWFHY7Xear+p34170Y+5GBNPCrSZWhqYcvHsOgN5VW2FhYMK8038DcOHhbQbX7UIrt1pcCckZpvpRzXbcjQwmJiWn101wnPrw/6T0lHy3v67uvXsydeLPuHt44FXJi13bdhAWFk6n97sCsGTeQiIiIhk/8XsAOr/fhW2btjBv5hw6dunEjWs32LNjN99PzpnzVEdXN8+8b0b/zrP19PaZf8zg8P5D/PzHLxgYGqh6exoaGqGr9/rnO/F2UigU9O7Vi+Xe3pR1cMDBwYHl3t7o6enRtk3uAksTJk7Extqar/5N0PXq2ZPBn3+O98qVNG3cGJ/jxzl77hxLFy9W1UlOTlbrxfTo8WNu37mDqYkJpUrlv1BVYaQdO4Veq2ZkR0aRFRGJXqtmKDMySL9wWVXGoG8PsuPiSN2lvlKsTt2aZFy7me8ccHpd2pNx3Q9lTCwKYyP0WjdHoadL+rkLRd6Gp+27/Q+f1X2PgOgQ/CMf0rRcdSwNTDlyN+d1u1dpjrm+MYvPbAdyrhE/rt2R5q41uBZyDzN9Y/pWb829yEd5btgWFYVCQe/u3Vm+ZjVly5TBoUwZlq9ejZ6uLm1b5k7VM2HKFGysrfhqcE6CrtcHHzB42DC8166haYOG+Jw6ydkL51k6N3dI/Mz582hUvwGlbG2IiYll6cqVJCUl0bFtW1WZQ0ePYmZmRilbW/zv32P6nDk0adiQurVe/oa+EK9KknHi/8bSpUtp2bJlnkQc5PSM++WXX7h4Me+k3uXLl+fAgQOMHz+e2rVro6+vT506dejduzcaGhqsX7+eYcOGUbFiRdzd3Zk9ezZNmzZ9pdie9xqQs6CBjY0NU6dO5f79+5iZmVG9enXGjx9f4D6XL1/OJ598QpMmTbC1teXnn3/mhx9+UD2vUCjYs2cP3333HR9//DERERGUKlWKxo0bY2tr+1Jxf/7551y+fJmePXvmnER79+bLL79k796C7xy+TJ1PPvkEAwMD/vjjD8aMGYOhoSGVKlVixIgRz41n2LBhxMfHM2rUKMLDw/H09GTHjh24ubm9VHsAfvjhBwICAmjTpg0GBgYMHjyYrl27EhcXp1auefPmWFhYcPv2bfr06aP2XJs2bdi1axc//fQTv//+O9ra2nh4ePDJJ5+8dByv6kqIPwY6erR0q4WJriGhCVEsO7eL2H+/7JnoGmCmnzvUMz0rgyVnttOlYmOGNepBcnoqVx/7s+/2GbX9Whma4Wxpz5J/L9CKm2fdaiQnJHFy634SY+OxLmNHr28GY2qVk+BJjI0nLvLVvoxnpKWzz3szCdFxaOloY2lvQ5cv+uFZN/85F4tL/9ZtScvI4Ld1a0lITsLL2YU5Q79W60EXGh2tNqw6NS2N39atITw2Bl1tbRxL2fHTwEG0rlkrv5coUdr1amH4zTDVz0bf5yyEkrJyPamrNpRITA2aNyYxPoHNK9cTEx2Ng5Mj43+diHWpnJ47MVExRIZHqNUZ82luG+7f8efk4WNY29owf33ORPVJiUksmjGX2OgYDAwNcXZ1YdKsX3GrUHRDWVq0bkl8XDwr/lpOVGQUzuVc+G3mNErZ5XzpjIqMIiw0TFXevrQ9v8+cxpw/Z7N10xYsra0YPnoETZs3U5XZtnkLGRkZTBj7vdprDfj0Yz4enHPnPyI8nEnf/0hcbBxm5mZ4VvRi4bLFqtd9UzysHZn7Xu6Nl2ENcxLne/z+YcqRFQVVeyP+eXAdY10DulVqirm+McGxYfx6dJVqaL+ZvhGWhrnXGcfuX0JfW4c27nX5sEZbktJTuREWwJqL+wt6iSLXvFUL4uPiWbnMm+jIKJxcnPn1z99zP09RUYSH5X6e7Oztmfrn78yfOYftm7diaWXF0FHDadK86Su97o6/twHw9RfD1LaP/WHcG0/wijfjow8/JC0tjV9//52EhAQqenkxd/ZstR50oWFhaGhoqH6uUrkyUyZPZsGiRSxctIgyZcowdcoUtXmXb/r58flTIyr+nDkTgI4dOjBxwoQib0fa4WMotLXR/6ALCgN9sh4Ek7hgKaTlTu2hYW6WZ7JeDWsrtMo5kzj/r3z3q2FmiuFHvVEYGqBMTCLzQTAJM+YX+w2rs0E3MdIxoItXY8z0jXgYF870Y2uJSv73uKVnhKVB7nHrZMAV9LV0aFm+Fr2rtSY5PZWb4QFsvFx8i3gBfNS7T87n588ZJCQmUrFCBeZOm67Wgy40PAwNjdzrpCoVKzFlwo8sWPoXC5cupYy9PVMnTqSiZ+4Q2LCICL77aRKxcXGYm5lR0dOT5QsWYvdUIjcyKoo/580lKiYGK0tLOrRpwyf983Z4+C/7f1619G2lUBY046wQQogSN2bX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2Javffigm8x84Nbufr4bkmHUWiV7d0Ii48s6TAKzdbEigbziq5XYEk4NWQhPVf/8OKCb7kN/Sbz+E0sslOM7M1kTrm3TcJTU5z8FxmbmRE7/NVHrbxtzGb9Sv91P5V0GIWysvcEEp66kfRfZVzq5TotvG1uFTB1zdvAw7bgUVXvMo0XFxFCCCGEEEIIIYQQQhQFGaYqhBBCCCGEEEII8Y5SIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h2loZB+WG8beUeEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RCoWspvq2kZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKA0ZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKAUyTPVtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQpZTfWtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWto1AqlcqSDkIIIYQQQgghhBBCFL2g6JCSDqFAZS3sSjqEEiE944QQ4i224/qJkg6h0DpXbERA5KOSDqNQnK1K/+fbADntiD98rKTDKBSTFk3YcOlgSYdRaD2rtcLbd3dJh1FoA2p1oOfqH0o6jELZ0G8yDeZ9XtJhFNqpIQvZ5/dPSYdRKG0r1CPB73ZJh1FoxhXcWXtxf0mHUWh9qrdh+rF1JR1GoYxq0puEy1dLOoxCM65amSVntpd0GIXyad0urPTdU9JhFFr/Wu1LOgTxjpBknBBCCCGEEEIIIcQ7SlZTffvIAg5CCCGEEEIIIYQQQrwhheoZd+HCBfz8/FAoFFSoUIHq1asXVVxCCCGEEEIIIYQQQrxzXisZFx4eTq9evfDx8cHMzAylUklcXBzNmjVj/fr1WFtbF3WcQgghhBBCCCGEEOIVKZBhqm+b1xqmOnToUOLj47lx4wbR0dHExMRw/fp14uPjGTZsWFHHKIQQQgghhBBCCCHEO+G1esbt27ePQ4cOUaFCBdU2T09P5s2bR+vWrYssOCGEEEIIIYQQQggh3iWvlYzLzs5GW1s7z3ZtbW2ys7MLHZQQQgghhBBCCCGEKDwNWU31rfNaw1SbN2/O8OHDefz4sWrbo0eP+Prrr2nRokWRBSeEEEIIIYQQQgghxLvktZJxc+fOJSEhAScnJ8qVK4erqyvOzs4kJCQwZ86coo5RCCGEEEIIIYQQQoh3wmsNU3VwcODixYscPHiQW7duoVQq8fT0pGXLlkUdnxBCCCGEEEIIIYR4TQoZpvrWea1k3BOtWrWiVatWRRWLEEIIIYQQQgghhBDvtJdOxs2ePfuldzps2LDXCkYIIYQQQgghhBBCiHfZSyfj/vzzz5cqp1AoJBknhBBCCCGEEEII8RaQ1VTfPi+djAsICCjOOIQQQgghhBBCCCGEeOe91mqqT6Snp3P79m0yMzOLKh4hhBBCCCGEEEIIId5Zr5WMS05OZtCgQRgYGODl5UVQUBCQM1fcr7/+WqQBCiGEEEIIIYQQQojXo3iL//2/eq1k3Lhx47hy5Qo+Pj7o6emptrds2ZINGzYUWXBC/D+7ffs2U6dOJS0traRDEUIIIYQQQgghRBF5rWTctm3bmDt3Lg0bNkTx1ESAnp6e3Lt3r8iCE+L/VUJCAu+99x7Ozs7o6uoW2X6dnJyYOXPma9cPDAxEoVBw+fLlIotJCCGEEEIIIYT4f/LSCzg8LSIiAhsbmzzbk5KS1JJzQhSF06dP06hRI1q1asW+ffteuf7EiRPZtm3bfyqB9NFHH/HJJ5/Qq1evkg5F/Iec3ncUn+37SYiJxdbBns4De+HiWT7fsgF+d9m9ajMRj0JJT0/H3MqSuq0b07hT63zLXz55jjV/LsarVlUGfPtVkcW8c8t2Nq/dQHRUFI7OTnw+bAgVq1YusPzVS1dYPGc+DwICsbSyonufnnR4r7Pq+W+++pprl67kqVerXh0mT5sKQHJSMiuXLOP08ZPExsRSrrwrn4/4CvcKHm9NOwC2btjMrq07iAgLx8TMlEZNGzPw80/R0dUB4NrlK2xeu4G7t+4SHRXFhKk/Ub9xw9duw8tSKpUs2b2TradOkJCcjJeTM2N69qGcvX2BdY5cuoj3/r0ER4STmZWFg40N/Vq0on2desUe77kDxzm58zCJsXFYl7GjXf9uOFVwzbfsg1v3OLB2O5GPQ8lIy8DM2oKaLRpQv0NzVZmszCyObz/A5WNnSYiJxdLOltZ9uuBW1bNY23Hh4CnO7jlKYmw81qVL0bJfVxw8XF5Y7+GdAFb/PA/rMqUY9Mto1fbbvlc5veMQMWGRZGdlY25rRe32TanUsGZxNoPW5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG1xNuOlVLFzpU+11njYlMXK0Ixv9yzgREDe49Pb4sSewxzZtpf4mFhKOZTm/UF9KOflnm/ZezfvsHPlRsIehZCRlo65tSX12zSjWec2bzjqnGPS4vXr2HrgAAlJiXi5lWfsZ59TrmzZAuvcCwpi4do13Lp3j5CIcEZ+PIg+nbvkKRceFcWcld6cvniR1LQ0HO1L88NXQ6ngmv8xpCj5HjjB6V2HSYiNx6ZMKdr074ajR7kX1gu6fR/vn2Zj42DH57+OLfY4n3bD5xxX958mOS4Bc3sb6vVsi52bY75lH98OYNf0FXm295g0BDM7awACLt7k0t4TxIdHk52VjamNBZVa1ad8vSrF2o5nKZVKFm/exNbDh0hITMTLzY2xH39COQeHAutsPXyI3cePcS84GIAKzi582bs3FV3d3kjMlw6fxnfPMZLiErCyt6VZ386UcXd+Yb1HdwJZP3UhVmVs+Wjy12rPpSalcPLvfdw9f53U5BRMrSxo2rsDLlUqFEsbzh88yZmnznut+nWl7Ev8DQTfuc+qf897n/7yjWr7Ld+rnNpxUO28V7d9Uyo1rFUs8b9tJE/z9nmtZFytWrXYvXs3Q4cOBXLf2CVLllCvXvFfWIv/L8uWLWPo0KH89ddfBAUFUfY5F1fvii1btpR0CP85GRkZaGtrl3QYJebyqXPsWL6e9z7ti5OHK2cOHGfplFmMnvkT5taWecrr6OrSoF1z7BzLoKOnS4DfXf5etAodXV3qtm6iVjYmPIpdKzbhXKFoLyCPHTrKolnzGDJqOF6VK7Jn206+H/0ti1cvx6aUbZ7yoY9D+GH0ONp1as+YCeO5cfU686bPwtTMjIbNGgMw4ZdJZGTkLioUHxfHlwM+pVGz3DbN/HUagfcD+GbCOCytrDi8/yDjhn/D4jXLsLK2fivacWT/IZYtXMLIcWOoUMmLR0HBTJ/yOwCfDR8CQGpKKs6u5WjVvi0/fzfxleN+XSsP7mftkUNM+HAAZW1tWbZ3N1/N+ZPNP07G8KmpK55mamjIwLbtcbIthbaWJieuXeOnVSswNzahnqdXscV67fQF9q74m46DelLW3QXfQydZ/et8vpr+PWZWFnnK6+jqUKdNY0qVLY22rg5Bt++x46/16OjqULNlTqLz8IadXDnpS5fBfbCyt8X/ih/rpi/h059GYudc8Bezwrh55hKHVm+jzYBulCnvzKUjp9nwx2I+/W0splbmBdZLTU5h58K1OHm5kRSXoPacnqEB9Tu3xNLeFk0tTfwv3WT34vUYmhjhUvn1E9PPU8+xIh/VaMdS313cDg+ipVtNxjX/kJE75xCVHJenvLt1WYbU78aKC3u58PAWFgYmfFqnM5/V7cr04+vUyloZmtKvehv8wgKLJfbXoa+ti3/UQ/bcOs0v7T4v6XCe6+LJs2xdtpbun/XH2cON0/uPsnDyDMbN+QWLfM4hunq6NGrfEnsnB3R0dbjvd5eNC7zR1dWlfpumbzT2FVu3sHbHdn4cNpyy9qVZumkjQ36cwN/z52Oob5BvndS0NMqUKkXLBg2YsWxpvmXiExMZ9O1YalaqxKwffsTC1JSHoaEYGxoWZ3MAuP7PRfat3EKHj7vj4O7ChUOnWPPrAoZMG49pPseuJ1KTU9g2fxUuFcuT+MzffHG753udfzbso2GfDti6lsXv+Hn2zl5Nj4lDMLI0K7Bej8lfoaOXOwpEzzj396trqE+19o0xK2WFpqYmD67d4diKbeibGOLgVfwJ0SdW7NjO2t27+PGLIZS1s2Pplr8ZMmUyf/85C0N9/XzrXLhxgzb1G1LZvTy62jqs2LGdr6b8zMbpM7CxyPs3VZRunb3M0TU7adm/K6XLO3Hl6Fn+nr6UgVNHYWJZ8DkjLTmFPYvX4+jpSlK8+ucnKzOTTX8swcDEiM5ffYiRhSkJ0bFq711RunnmEgdXb6PtgA9wKO/MxSOnWf/HYj777dsXnvd2LFyLs5dbnr8BfUMDGnRuhdW/5727l26wc/F6DEyMKVdM5z0hnue1hqlOnTqV7777ji+++ILMzExmzZpFq1at8Pb2ZsqUKUUdo/g/lpSUxMaNG/niiy/o2LEj3t7eas97e3tjZmamtm3btm2qBLG3tzeTJk3iypUrKBQKFAqFah9BQUF06dIFIyMjTExM6NGjB2FhYar9TJw4kapVq7Jq1SqcnJwwNTWlV69eJCTkHtjT0tIYNmwYNjY26Onp0bBhQ3x9fVXP+/j4oFAo2L9/P9WqVUNfX5/mzZsTHh7O3r17qVChAiYmJvTu3Zvk5GRVvaZNmzJixAjVz6tXr6ZmzZoYGxtTqlQp+vTpQ3h4+HN/d+Hh4XTq1Al9fX2cnZ1Zs2ZNnjJxcXEMHjwYGxsbTExMaN68OVeuvPxd+6ysLAYNGoSzszP6+vq4u7sza9asIqmzfPlyKlSogJ6eHh4eHsyfP1/13JPhshs3bqRp06bo6emxevVqsv/H3l1HR3G9DRz/xt3dhTgEdwlBg1PcHVqKl7ZAhaKlgpTSlkIpXtzdJVhwJwFCSAiQBIi7bHbfPwKbbHYTLAF+vPdzzp6TzN47e2d3dmfmmefeK5Uyffp0HB0d0dHRoWrVqgrZlC/qbd26lSZNmqCvr0+VKlUICQmRl0lISKBXr144Ojqir6+Pv78/69YVXvQtXrwYBwcHpFKpQns7dOjAgAED5P/v2rWLGjVqoKuri7u7O9OmTSvXmadP7DpEraYNqdM8ABtHezoO7omphRkhB46rLO/g7ky1RnWwdXbA3NqSGo3r4V21IpFh4QrlpPlS1v6+hJY9OmBu8/qBqtJs3bCJoHatad2hLc6uLgwfNwora2t2b9upsvye7buwtrFm+LhROLu60LpDW1q2bc3mdRvlZYyMjTG3MJc/rly4hK6OLgFNC4JxOTk5nAo+wZCRn+FftQr2jg70GzIQWzvbEl/3fWxH2M1bVPSvRJOWzbC1s6VGnVoEtmjK3dt35WVq1avDwE+H0DAw4I3a/SZkMhnrjh5mUKs2NK1WHQ97B6b2H0R2bi4HLpwrsV4NL2+aVK2Gm50djlbW9GraDA8HB65G3CvX9p7Zc5TqTepRo2l9rBxsaTOgK8YWZlw4dFJleTs3Jyo3qIm1kx1m1hZUaVQbj8q+PLhdOATHtVPnCfikJV7VKmJuY0ntlo3wqOLL6T1Hy207zu8LpkpgHao2qYulgw0t+nXC2MKUK0dOl1pv/7JN+NWrjoOHcmaKi58H3rUqY+lgg5mNJbVaBWDtZMfDO5HltRm09a3P0YjLHL13icepz1h5aR8Jmam09KqtsrynpRNPM5LZf+cszzKSufMsmsPhF3C3cFAop6amxugG3dh0/ShP0hPLrf2v62z0LZac20nw/avvuykvdXzHAeo2D6Bei8bYOtnTeWgfzCzNOb1f9X7t6O5CjYC62Dk7YGFjRa3A+vhU8yci9M47bbdMJmPdrp0M6tadpvXq4+HiwrSx48jOyWH/iRMl1qvo6cnYgYMIahSAtqbqG3krt27BxtKSKWPGUsnLC3sbG2pXqYKjnV15bY7c2T3HqNakLtWf/3a1GtAFEwszLhw6VWq93f9uoFKDmjh6upZ7G4u7figE74bV8WlUAzM7K+r3aI2hmQmhwRdLradnZIC+iZH8oa5eeHlq7+2GWzVfzOysMLY2x79ZXcwdbIi7F13emyMnk8lYt3cPgzp1pmmdOng4OzNt5KiCfexUyZ/HzDFj6RYUhLerG64ODnz/2WfIZDLO37hZ7m2+uP8k/gG1qBxYBwt7G5r26YCRuSlXj5wttd7BFVvxrVcNOw/lxIcbJy6QnZ7JJ2MG4ODliomlGY5eblg7l5wV/zbO7TtO1cA6VHt+3Gv5/Lh3+SXHvX3LNlGxXnUcPFyVnnPx88CnyHGvdqvGz49798tlG4TytXDhQtzc3NDV1aVGjRqcPKn63O6F4OBghWuzRYsWKZXZsmULfn5+6Ojo4Ofnx7Zt28qr+cAbBuPq16/P6dOnyczMpEKFChw8eBAbGxtCQkKoUaNGWbdR+H9sw4YNeHt74+3tTd++fVm+fDkymeyV6/fo0YMvv/ySihUrEhsbS2xsLD169EAmk/HJJ5+QmJhIcHAwhw4dIiIigh49eijUj4iIYPv27ezevZvdu3cTHBysMGPwhAkT2LJlCytXruTy5ct4eHgQFBREYqLixcDUqVP5888/OXPmDA8fPqR79+7Mnz+ftWvXsmfPHg4dOsQff/xR4nbk5uYyY8YMrl27xvbt24mMjGTgwIGlbvvAgQOJiori6NGjbN68mYULFyoE8GQyGW3btiUuLo69e/dy6dIlqlevTrNmzZTaXxKpVIqjoyMbN24kNDSUH374gW+//ZaNGze+VZ0lS5bw3Xff8eOPPxIWFsasWbOYPHkyK1cqdmeYOHEiY8aMISwsjKCgIH7//Xfmzp3LnDlzuH79OkFBQXTo0IHwcMUA03fffcdXX33F1atX8fLyolevXvJAWXZ2NjVq1GD37t3cvHmTTz/9lH79+nHuXEGgoVu3bsTHx3Ps2DH5+pKSkjhw4AB9+vQB4MCBA/Tt25cxY8YQGhrK4sWLy/VmhSRPwuOIB3hVVcww8qpSkQd3Xm0cz8f3o4m6E4F7RcVurYc27cLA2IjazRuVWXuhIJMx/M5dqtdW7BJXvXZNwm7eUlkn7OYtpfI16tQk/PadEgOdB3bvo3HzJug+v3OdL8lHmi9FW1tboZy2jg63rr/+CXJ5bUfFKv6E37nLndAwAGIfx3Ah5By169d57TaWpccJ8SSkplLXt7BLpraWFtU9vbh+/9VOZmUyGedvh/HgyROql2N3HYlEQmzkQypUVuw+41HZl+i7rxZwio18yMO793H1K2ynJE+CZrEsXC1tLaJvl8+YufkSCXGRj3CrpPjddKvkzaPwqBLrXQ8+T9KTBBp1Vt31vCiZTEbUzbskxj3D+RW6vr4JDXUN3M3tuR6rGIC9FnsPLyvVGYV3n0VjoW9MVfuC999E14A6zhW58lgx4NPVvwmp2Rkci7hcLm3/2EnyJDyMiMK7aiWF5d5VKxF5+9UC5o/uPyDydjgeld5tdsnjJ09ISEqibtWq8mXaWlpUr1SR67fD3mrdJ86fx9fDg4m//kyLAf3o/cVYth088JYtfrl8iYSYyIdKmTrulX14VMpv15XjZ0l6Ek9gl1bl3UQl+RIJ8dExOPopdiF09KvAk4iHpdbdOmMxq7+aw+55K4m5XfL2yWQyHofdJ+VJQoldX8vD46dPSUhOpm7lwq6x2lpaVPfz4/rdVw8+Z+fkIpFIMDE0LI9myuVLJDyJeoxrsWOGayVPYu5FlVjvxokLJD9NoP4nzVU+H3ElFHsPF46s2sbC0dNZ/u1czu46qnRzuizkSyTERj7CrZJiN3n3lxz3rgWfI+lJPAGdX95dXiaTESk/7r286+vHQAuND/bxujZs2MC4ceP47rvvuHLlCo0aNaJ169ZER6sO1EdGRtKmTRsaNWrElStX+PbbbxkzZgxbtmyRlwkJCaFHjx7069ePa9eu0a9fP7p37y6/BiwPb9RNFcDf31/pwlgQytrSpUvp27cvAK1atSI9PZ0jR47QvLnqA0Vxenp6GBoaoqmpia2trXz5oUOHuH79OpGRkTg9H+9h9erVVKxYkQsXLlCrVsHYAVKplBUrVmBkZARAv379OHLkCD/++CMZGRn8/fffrFixgtatWwMFQaRDhw6xdOlSvv66cIyCmTNn0qBBAwCGDBnCN998Q0REBO7uBRc9Xbt25dixY0ycqHpsj8GDB8v/dnd3Z8GCBdSuXZv09HQMVRzU7969y759+zh79ix16tSRv5e+voUXpceOHePGjRs8ffpUPknEnDlz2L59O5s3b+bTTz996furpaXFtGnT5P+7ublx5swZNm7cSPfu3d+4zowZM5g7dy6dO3eWl3kR1CqafTZu3Dh5mRftnzhxonysvV9++YVjx44xf/58/vrrL3m5r776irZt2wIwbdo0KlasyL179/Dx8cHBwYGvviocV2n06NHs37+fTZs2UadOHczNzWnVqhVr166lWbNmAGzatAlzc3P5/z/++COTJk2St9Xd3Z0ZM2YwYcIEpkyZ8tL39XVlpKUjlUoxMjFWWG5oakxasnLXr6JmDvua9NQ0pNJ8WnTvQJ3mhVlWkbfDuXDkFF/M/aHM25yanFIwXoe5YlcDMzMzEhNUB4OTEpMwMytW3tyM/Px8UpJTsLBU7PZxJzSMqPuRfPFN4eepb6CPbyU/1q5YjbOLM6bmZhw/fJQ7oWHYOypm27zP7Qhs3pSUpGS+/HwsMpmM/Px82nXqQI9+vV+7jWUpISUVAHMjxX3N3MiYuMSEUuumZ2XS5tuJ5ObloaGuzsSevanjW37jrGWmFnwvDE2MFJYbmBiRnpxaat05I74nIzUdaX4+Tbq2oUbT+vLnPCr7cmbvUVx9PTCzseT+zTvcvngdqfTVbxS91nakZSCTSjFQsR0Zyaq7oSXGPePYht30nTwKdY2ST3KzM7P4c/Q08iUS1NTVCRrYBTd/1WOEvS1jHX001DVIyUpXWJ6SlY6pvZHKOnfjH/LH6c2Ma9QDLQ1NNNU1uPAwjOUX9sjLeFs506RCdSbuXahyHcLLZaSlIZVKMTZV/F4bmRiTllT6MeSHIV+QnlJwDGnd4xPqtWhcavmylpCcBIBFsV4SFiamxD579lbrfvwkji3799GnQ0cGde3GrfBw5vy7BC0tLdo1afryFbyhzNSC73zx3y5DEyMiSuh6mhD7lCPrdjFo6thSv/PlJTs9E5lUhp6xYhdePWMDMlPTVdbRNzGiUb/2WDnbkS/JJ/zsNXb/tpL2Xw7EzstVXi43M5v/Js4lPy8fdXU1GvRuqxT0K08JyckAWJiYKCy3MDEh9ln8K6/nz7VrsDI3p7a/f1k2T0nW82OGvoni9YG+iZHScAUvJMU94+SmffT87vMS95+UZ4lEh0XgW68anccPJvlJPIdXbUean0/9T1qU6Ta8OO69zvH7xXGv3+TRLz3uLRg9VX7cazWwK+7ldNwTys+8efMYMmQIQ4cOBWD+/PkcOHCAv//+m59++kmp/KJFi3B2dpZPZOjr68vFixeZM2cOXbp0ka+jRYsWfPPNNwB88803BAcHM3/+fIVeUmXplYNxqamln7gWZWxs/PJCgvASd+7c4fz58/Lx0zQ1NenRowfLli175WBcScLCwnBycpIH4qBgNmBTU1PCwsLkwThXV1d5IA7Azs5Onl0WERFBXl6ePMgGBYGm2rVrExameDe2cuXCgdxtbGzQ19eXB+JeLDt//nyJ7b1y5QpTp07l6tWrJCYmyu9CRUdH4+enfDEbFhaGpqYmNWsWZt/4+PgodOm9dOkS6enpWFgoBjCysrJea1bkRYsW8e+///LgwQOysrLIzc2lapE71K9b59mzZzx8+JAhQ4YwbNgweR2JRIJJsROhotuXmppKTEyMwucB0KBBA6Wut0U/D7vn3U2ePn2Kj48P+fn5/Pzzz2zYsIHHjx+Tk5NDTk4OBkXGiOnTpw+ffvopCxcuREdHhzVr1tCzZ080nh/8L126xIULFxQy4fLz88nOziYzMxN9feUxbF68TlGvPZNu8YFZZTKg9MFaR8ycQE52DtF377P3vy1Y2lpTrVEdsrOyWff7Urp+3h8DY9UXymWiWJtlyEofYLZ4edmLxcp19u/eh6u7G95+iplRX0/+ht9+mk2fT7qjrqGOh5cngS2aEXE3XGkdr6yMt+Pa5ausX7WGkV+OxaeiLzGPHrPo978wW76aPoP6vXk7X9O+8+f4ad1/8v9/+3zU83YqlpMhU15YjL6OLmu+mUxmTg4X7oTx25ZNOFhaUcOrnE+ClZr1ks8GGDJ1HLnZOTwMj+LQuh2Y21pRuUHB702bgV3Z8c86FoyfgZqaGmY2llQLrMuV46V3/3lrKvYxVe+5VCplx1//0ahLKyzslCfbKkpHV4fBP35JXk4uUbfCObJmB6ZWFrj4ld9YTMVDlmpqaiVmvDuYWDGwZhu23DjGtZh7mOkZ0ad6EEPrdGDx2e3oamozqkFX/jm3g7ScTJXrEF5H8f1J9rJDCGNnfUtOVjZRdyPYtXoTlnY21AioW24t3Bd8nFl/FwZe539fcLNIjeLfj5f+JL2UVCbDr4IHI/v1B8DHvQL3o6PZsn9fuQbjChU/Tqj+PKRSKVv/XEVg19Yv/c6XN6XPoZR7FKa2lpjaWsr/t6ngRHpSKtcOnlEIxmnpatNl8nDycnKJCYvk7KYDGFuZYf8KkxG8iX0nTzJryWL5//MnFVyYFz9uyF5+2JNbuWMHB06fYvGUaegUy8wvL0rHOZnqY59UKmX3onXU79QCc9uShyORSWXoGxnSclAX1NXVsXVzJD05lQt7g8s8GCendNxTfb4nlUrZ/tfqVz7uDf3xK3Jzcom6dZfDa7ZjVs7HPeHlSroOUnUtlJuby6VLl5g0aZLC8pYtW3LmzBmV6w8JCaFlS8WeAkFBQSxdulQ+7nhISAhffPGFUpkXAbzy8MrBOFNT01eegSM/P/+NGyQILyxduhSJRIKDQ2G2ikwmQ0tLi6SkgswSdXV1pZP4vLy8l65bVsIBqfjy4hMCqKmpyQNhL15X+eCsvO6i61FTUyt1vcVlZGTQsmVLWrZsyX///YeVlRXR0dEEBQWRm5tb4vapaltRUqkUOzs7jh8/rvRc8XH4SrJx40a++OIL5s6dS7169TAyMmL27NmlpvO+rM6L92HJkiXyrL4XNIrd6TJQMYjym3weRV937ty5/Pbbb8yfPx9/f38MDAwYN26cwnvdvn17pFIpe/bsoVatWpw8eZJ58+bJn5dKpUybNk0ha+8F3RIGuP/pp58UMgYBpkyZQvWuzVSWL8rAyBB1dXWlLLj0lDSMTEu/OfJiHDg7F0fSUlI5tHEn1RrVISHuKUlP41n+U2H36Rf71cRun/L1HzOxtH3zk35jUxPUNdRJKpY9lpyUrJRl9oKZuRlJicXLJ6GhoYFxsazA7Oxsgg8fo//QgUrrsXd0YPZf88nOyiIjIxMLSwtmTZ6OjZ2tUtn3tR2rliynaVALWncoyOB0q+BOdnY2C36ZR68BfRTG1ClPAZWrUMm18IIn93k32oTUVCxNTOXLk9LSsDAqfV9TV1fH6flM7N5OTkTFxbHiwL5yC8bpGxd8L9KLZY9lpKQrZZkVZ2ZdcIFo4+xAekoaxzbvlQfjDIyN6P3Vp+Tl5pGVnoGRmQmH1u7A1Lp8BuTWNzJATV2djGLZAJkp6RiYKGdG52blEBf5kCcPHnNwZcHNLJlMBjIZP/f/ip4TP8O1YkG3TzV1dfnFl42LAwmPnxCy60i5XJSk5mSSL83HVE+xzca6BqRkq86c+aRiAHefRbMrtGCMoOjkJ2Sfz2V60DA2XDuMia4h1oZmTAjsI6/z4jd9be+pfLHzd56kJ5X5tnxsDIwKxulKLXYMSUtJw8jUpIRaBSyeH0PsXZ1IS05l//rt5RqMC6hdm0pehd3vcp9P2BOfnISleeHEBokpyZi/4rlMSSzNzHArNlumm6MjR0NUX+yVFX3jgu98eoridz4jNR1DFTfHcrOyibkfTWzUI/au2AwUfuen9xlHv29GKHVzL2u6hvqoqaspZcFlp2Wgb/zq3TKt3Ry5d+66wjI1dXVMnv++WjrZkRT3jKv7TpVbMC6gZk0qeRb+BhbuY8lYFslqT0xNwbzIcbAkq3ftZPn2rSz8/gc8Xcq/e62e/JiheOzLTE1X+VnkZuXwJPIRTx/EcGT1DqBw/5k7aBLdvh6Ks58HBqZGqGtoKJx/mNtZk5GSRr5EgobmG3e4U/LiuFc8Cy4zJU3l8Ts3K4fYyIfEPXjMgWLHvVn9v6T3xOEqj3u2Lg7EP37CmV2H/18E4zRkH+5sqiVdB02dOlWpbHx8PPn5+djYKE6SZmNjQ1xcnMr1x8XFqSwvkUiIj4/Hzs6uxDIlrbMsvPK3puj4SFFRUUyaNImBAwfKZ08NCQlh5cqVKtMCBeF1SSQSVq1axdy5c5Wi2F26dGHNmjWMGjUKKysr0tLSyMjIkAdmrl69qlBeW1tbKUDs5+dHdHQ0Dx8+lGfHhYaGkpKSotCVszQeHh5oa2tz6tQpevcu6DqWl5fHxYsXFSZfeFu3b98mPj6en3/+Wd7WixdLHwzX19cXiUTCxYsXqV27YGDsO3fukPw81R6gevXqxMXFoampiaur6xu17eTJk9SvX58RI0bIl70sq+5ldWxsbHBwcOD+/fvyMdhehbGxMfb29pw6dYqAgMKulmfOnJG/B6/i5MmTdOzYUd49WiqVEh4errBf6Onp0blzZ9asWcO9e/fw8vJSGC+zevXq3LlzBw+PVz+wf/PNN4wfP15hmY6ODgfCS86YfEFTSxOHCi6EXwvFv051+fK710OpWKvqK7dBJpMheX7Sae1gx5e/KR4U96/dRk52Nh0H98LUouTZ3F6FlpYWnt5eXLlwiQaNC8eju3LhEnUb1ldZx7dSRc6dDlFYdvn8RTx9vNEsdhJ44shx8vJyaRpUchatrp4eunp6pKWmcen8BYaM+OyD2Y6cnGylgNuLmw+vM27m2zLQ1VWYIVUmk2FhbMy5sFC8nQoGeM6TSLgcfpfRnygHn0sjk8nkwb3yoKmpiZ2bExE3buNXu3Csn4gbt/Gp+RrdhGQy8vOU26mlrYWWuSn5knxCz1+lYt3qKiq/PQ1NTWzdHIm8eRfvWoVZvZE37+JVQ3kmWh09HYb+9LXCskuHT/Mg9B6dxwzAxKrk764M1dtaFvKl+dxPjKGybQUuPCzMHq9sW4GLj26rrKOjqUV+sRtV0hc3m1AjJiWer3Ypjrfao2pzdDW1WXlxL/GZr96r4/8zTS1NnCq4cufqLarULTyW3bl6C/861V59RTIZkle4Ifo2DPT0FWZIlclkWJiZce7qVXzcC7ou5uXlcfnmLUYXGdbiTVTx8eXB48cKyx7ExGBnVb7ZZxqamti7OXH/+h18axX+dt2/cRvvGsq/XTp6unz+q2KGyIWDp4gMvUv3cYMxVTEbbnm02dLZnsehEbhVKzxfehQWgWuVVx9HMOFhrFL3SiWygjHFyouBnp7CDKkymQwLU1POXb+Oj1tBADBPksfl0FBG9+5b6rpW7dzB0q1b+PPb7/Gr8G661mpoamLj6kDUrXA8axaOAxl1KxyPaqqPGQN+VDz/vHokhIdh92g/qp/8mOHg6UrY2avIpFLUnp+fJD2Jx8DUqEwDcS+2we75cc9H6bhXSam8jp4Ow36aoLCs4LgXTucxAzEt5bgHyM99hfenpOug0rxKAsbLyhdf/rrrfFuv/M1p3LhwDIjp06czb948evXqJV/WoUMH/P39+eeffxTGdBKEN7F7926SkpIYMmSIUtfErl27snTpUkaNGkWdOnXQ19fn22+/ZfTo0Zw/f15pxlVXV1ciIyO5evUqjo6OGBkZ0bx5cypXrkyfPn2YP38+EomEESNG0LhxY4Wuj6UxMDDg888/5+uvv8bc3BxnZ2d+/fVXMjMzGTJkSFm9FTg7O6Otrc0ff/zB8OHDuXnzJjNmzCi1jre3N61atWLYsGH8888/aGpqMm7cOPSKnFw0b96cevXq8cknn/DLL7/g7e1NTEwMe/fu5ZNPPnml98HDw4NVq1Zx4MAB3NzcWL16NRcuXMDNreS7la9SZ+rUqYwZMwZjY2Nat25NTk4OFy9eJCkpSemHuqivv/6aKVOmUKFCBapWrcry5cu5evWqyplkS2vfli1bOHPmDGZmZsybN4+4uDilIG2fPn1o3749t27dkgfuXvjhhx9o164dTk5OdOvWDXV1da5fv86NGzeYOXOmytctKRX7VQW0b8H6BUtxrOCKi7c75w6dIDk+kXotAwHY+98WUhKT6TWmYN88ve8oZpbmWDkUdNONuh3OiZ0HadC6oOuNlrYWts6KY6jpGhRcABVf/qY69+jG7Bk/4enjjW8lP/bt2M3TJ09o26k9AMv+XkJCfDxfTy7oItL2k/bs3LKdxQsW0rpDW8JuhnJg9z4mTf1ead0Hdu+jfqOGGJsoZ3VcPHcBZDIcnZ2IefSYf/9ajKOzEy3bvtmg1+WxHXUa1GPb+s1U8PLAx6+gm+qqJcup27C+PEM0KzOLmEeFF4pxMbFE3L2HkbER1raKd/bKipqaGr2aNmf5gX04WdvgZG3Niv370NXWJqhWYSbrlBXLsDI1ZdTzAN3y/fvwc3HBwcoKiUTC6Vs32XMuhEm9Xj3g/ibqt23K1r9W4eDujJOXGxcPnyYlPpFazyckObRuB6mJKXQZWdAN7dyBYEwszbGyL3j/HtyJ4PTuI9RpVXgO9DA8irSkZGxdHElNTObY5r3IZDIadni74RNKU7t1Y3b9vRY7dyccPFy5eiyE1IQkqjUrCPge37CbtKRU2g/vjZq6OlZOirM9GhgboqmlqbD8zM7D2Lk5YWpjiVQiIeJqGDdPXSRoYNdy2449YWcYVb8LEYkxhD97SDPPmlgamHDo+U2HXlVbYK5vzF9nCgZUvvToDp/W7UgLz1pciy3opjqgZmvC4x+SlFWQ9fEwRXFm8YzcLJXL3wc9LR0cTQq7fdkbW+Jp6UhqdsYHl7EX2DGI/+b/g7OHK67eHpw5eJyk+AQaBDUBYNfqTaQkJNF3XMF4sif3HsbM0gJrx4J96n5YOEd37Cegbfl9D1RRU1OjV/sOLN+8GWd7e5zs7Fm+eRO6Ojq0KnJj7of5v2FtYc6ofgXXKHl5edx/WDCxQJ5EwrPERO7cv4++ni5OdgWzQ/bu0JHBkyawbNNGWjRsyK274Ww7eIDvRows9+2q27YJ2/5ajb27E45eblw6coaU+CRqNm8IwOF1O0lLSqHTiH6oqatj7aQ4o6WBiSGaWlpKy8tT5Rb1OLZsK5Yu9thUcCLsxCXSE1PwbVxwPnl+62EyklNpMrjguHDjcAhGFqaY2VuTn5/PvbPXibwcRovhhWMOX9l3EisXe4ytzJBK8om+Gc7dkGs06tP2nW2Xmpoavdq0Zfn2rTjb2eJka8fy7VsL9rGGDeXlfvjzD6zNzRnVu+C4tnLHDhZtXM/MMWOxs7Yi/vn4hvq6uujr6ql8rbJSs1Uj9i7egK2bI/Yezlw/do60hGSqNC3IWj2xcR/pSSm0+axnwTHDUbFngL6xARpamgrLqzStx+XDpzm6ZifVWjQgKS6ec7uOUr2F4vAwZaVO60B2/L0GO3cnHD1cuXLsDCkJSVR/ftw7tmE3aUkpdBje5/l3QPm4p6GlqbD89PPjnpmNBfmSfCKuhnHj1AVaDexWLtsgvLrXuQ6ytLREQ0NDKWPt6dOnSpltL9ja2qosr6mpKR+yqaQyJa2zLLxRGDskJETlVLA1a9aUD6InCG9j6dKlNG/eXCkQBwWZcbNmzeLy5ctUr16d//77j6+//pp//vmH5s2bM3XqVIXJB7p06cLWrVtp0qQJycnJLF++nIEDB7J9+3ZGjx5NQEAA6urqtGrVqtQZTVX5+eefkUql9OvXj7S0NGrWrMmBAweUBmd/G1ZWVqxYsYJvv/2WBQsWUL16debMmUOHDh1Krbd8+XKGDh1K48aNsbGxYebMmUyePFn+vJqaGnv37uW7775j8ODBPHv2DFtbWwICAl75R2f48OFcvXqVHj16FJys9OrFiBEj2Ldv31vVGTp0KPr6+syePZsJEyZgYGCAv7//SzMOx4wZQ2pqKl9++SVPnz7Fz8+PnTt34un56jM2Tp48mcjISIKCgtDX1+fTTz/lk08+ISVFsftO06ZNMTc3586dO/LMyBeCgoLYvXs306dP59dff0VLSwsfH59y/X2s2qA2mWkZHN60i9SkFGyd7Rny7VjMnnftSE1KITm+cIB9mUzG3jVbSXwaj4aGBhY2VrTu05m6Ld/d4NuNmzchNTWVNctXkZSQiIu7KzPm/ITN88lWEhMSefqk8ILa1t6OGXN+YvGCv9i9dQfmlhZ8Pm4UDZsEKKz3UfRDbl2/wazfflX5upnpGSxftIT4Z/EYGhvRsHEjBn42RCm77n1uR+8B/VBTU2PlP8tIeBaPiZkpdRrUY+CnhYH+u7fvMHF0YXD6nz/+BqB56yC++l71ZDBloX+LIHJyc/ll/RrSMjOp6OrGH6PHKWTQxSUloqZeeCcxOzeHX9av5WlyEjpaWrjY2DJ94BBa1qxVbu0E8K9fg6z0DI5v2UdacirWTnb0nTRCfpc8LSmVlPjCLsMymYzD63aS9CwBdXV1zG0sadGrIzWbF15sSPLyOLJhN0lP49HW1cGzakW6jOyPnoHyWJBlxa9uNbLSMjm97SDpyalYOdrR/ethmFgWbEd6chqp8a8X3MnLyeXAii2kJSajqa2Fhb0N7T/vg1/d18iEek0hD25ipKNPF/9AzPSMeJj8hJ+PrSY+o+D31VTPEAuDwuN+8P0r6GlpE+Rdl341WpGRm82tJ5GsuVz+M1qWBR8rF/7sVPgdHdOw4IJvb1gIPx79sCZBq96wDhmp6RzYsIOUpBTsnB34bPJ4zJ932U5NTCbpWZFjiFTGrv82k/jkGeoaGljaWtO+XzfqBwW+87YP6NSZnJwcfl68iLT0dCp5efHn1GkKGXRxz56hXiS74VliIn3Gj5P/v3r7NlZv30b1ipX458dZAFT09GTOpG/5c/Uq/t24AXsbG74cMpTWjQPLfZsq1atOVloGwVsPkJ6cgrWTHX0mDpf/dqUnp5Lymt/58lahViWyMzK5vCeYzJR0zO2taT26D0YWpkBBF8P0xMJzqXxJPmc3HyQjOQ1NLU3M7K1pNbo3zv6FXWolObmcWruHjKRUNLU0MbW1pOmQzlSopZwdVZ4GdOhITm4uPy/9l7SMDCp5ePDnt98rZNDFJcSjXuS4t/nQAfIkEibOm6uwrmFdu/FZN9WTnJUVnzpVyUrPJGRHQQDU0sGWzuMHY2JZcH2SkZJKamLya63T2MKUbl8P49jaXaz8/jcMTY2p3rIhtdsGlv0GUHDcy0zL4NS2A/LjXs+vPy1y3Hv970BeTi77V2wmLTHl+XHPmo6f9y3X494HpRxmvn0ftLW1qVGjBocOHaJTp07y5YcOHaJjx44q69SrV49du3YpLDt48CA1a9aUD19Ur149Dh06pDBu3MGDB6lfX3VPl7KgJnuD/i7e3t60a9eOuXMVf1y+/PJLdu/ezZ07rz7NsyAIglCynTdPvu8mvLUOlRoRGf/45QU/YG6WDv/z2wAF25F6JPh9N+OtGDdrzIYrh953M95aj2otWFFkVtD/VQNrtaXHf5NfXvADtqHvDBr8Nfx9N+OtnR65iP1hIS8v+AFr5VuPtLD//esII19v1v6PBI1L07t6EHODy2cWwXfly8a9SLt6/eUFP3BGVSuz5OyO992MtzKsbkdWXdj7vpvx1vrXavO+m/BG0ooMV/ShMXrNMT43bNhAv379WLRoEfXq1eOff/5hyZIl3Lp1CxcXF7755hseP37MqlWrAIiMjKRSpUp89tlnDBs2jJCQEIYPH866devks6meOXOGgIAAfvzxRzp27MiOHTv4/vvvOXXqlNI45mXljdIAfvvtN7p06cKBAweoW7cg3fXs2bNERESwZcuWMm2gIAiCIAiCIAiCIAiCIPTo0YOEhASmT59ObGwslSpVYu/evbg8nyQlNjaW6OhoeXk3Nzf27t3LF198wV9//YW9vT0LFiyQB+IA6tevz/r16/n++++ZPHkyFSpUYMOGDeUWiIM3DMa1adOG8PBwFi5cyO3bt5HJZHTs2JHhw4fLB5gXBEEQBEEQBEEQBEEQ3rN3OAHYuzBixAiFCQGLKj6GPBTMgXD58uVS19m1a1e6di2/sXOLe+OpTxwdHZk1a1ZZtkUQBEEQBEEQBEEQBEEQPmpvHIxLTk5m6dKlhIWFoaamhp+fH4MHD1Y54L4gCIIgCIIgCIIgCIIgCKD+JpUuXrxIhQoV+O2330hMTCQ+Pp558+ZRoUKFl6b+CYIgCIIgCIIgCIIgCO+ITPbhPv6feqPMuC+++IIOHTqwZMkSNDULViGRSBg6dCjjxo3jxIkTZdpIQRAEQRAEQRAEQRAEQfgYvFEw7uLFiwqBOABNTU0mTJhAzZo1y6xxgiAIgiAIgiAIgiAIgvAxeaNuqsbGxgpTxb7w8OFDjIyM3rpRgiAIgiAIgiAIgiAIQhmQyj7cx/9TbxSM69GjB0OGDGHDhg08fPiQR48esX79eoYOHUqvXr3Kuo2CIAiCIAiCIAiCIAiC8FF4o26qc+bMQU1Njf79+yORSJDJZGhra/P555/z888/l3UbBUEQBEEQBEEQBEEQBOGj8EbBOG1tbX7//Xd++uknIiIikMlkeHh4oK+vX9btEwRBEARBEARBEARBEN6UTPq+WyAU81rBuMGDB79SuWXLlr1RYwRBEARBEARBEARBEAThY/ZawbgVK1bg4uJCtWrVkMn+/w60JwiCIAiCIAiCIAiCIAhv4rWCccOHD2f9+vXcv3+fwYMH07dvX8zNzcurbYIgCIIgCIIgCIIgCMLbEMlUH5zXmk114cKFxMbGMnHiRHbt2oWTkxPdu3fnwIEDIlNOEARBEARBEARBEARBEF7itYJxADo6OvTq1YtDhw4RGhpKxYoVGTFiBC4uLqSnp5dHGwVBEARBEARBEARBEATho/BGs6m+oKamhpqaGjKZDKlUzM4hCIIgCIIgCIIgCILwQZGKnowfmtfOjMvJyWHdunW0aNECb29vbty4wZ9//kl0dDSGhobl0UZBEARBEARBEARBEARB+Ci8VmbciBEjWL9+Pc7OzgwaNIj169djYWFRXm0TBEEQBEEQBEEQBEEQhI/KawXjFi1ahLOzM25ubgQHBxMcHKyy3NatW8ukcYIgCIIgCIIgCIIgCMJbEBNufnBeKxjXv39/1NTUyqstgiAIgiAIgiAIgiAIgvBRU5PJRIhUEARBEARBEARBEAThY5QWG/e+m1AiIzvb992E9+KtZlMVBEEQyleftVPfdxPe2preU0mLjHrfzXgrRm6ufL5l9vtuxlv7u8vXJPcf/r6b8VZMVy3i+L1L77sZby3QowZf7frjfTfjrc1pP5qY5Kfvuxlvxd7Umv1hIe+7GW+tlW89Gvz1v/39Pj1yEXOOr3nfzXhrXwX2Yem5Xe+7GW9tSJ32rL184H034630rh7EgpMb33cz3tqYRt0ZvW3e+27GW/mj03jmn9jwvpvx1sYF9HjfTXgzMun7boFQzGvPpioIgiAIgiAIgiAIgiAIwpsRwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVRMFfChEZlxgiAIgiAIgiAIgiAIgvCOiGCcIAiCIAiCIAiCIAiCILwjopuqIAiCIAiCIAiCIAjCx0omuql+aERmnCAIgiAIgiAIgiAIgiC8IyIYJwiCIAiCIAiCIAiCIAjviOimKgiCIAiCIAiCIAiC8LES3VQ/OCIzThAEQRAEQRAEQRAEQRDeERGMEwRBEARBEARBEARBEIR3RHRTFQRBEARBEARBEARB+FhJpe+7BUIxIjNOEARBEARBEARBEARBEN4REYwTBEEQBEEQBEEQBEEQhHdEdFMVBEEQBEEQBEEQBEH4WInZVD84IjNOEIRSPXnyhOnTp5OUlPS+myIIgiAIgiAIgiAI//NEME4QAFdXV+bPn/9O16empsb27dvf6nWmTp1K1apV32odpZHJZPTr1w8dHR3MzMxeq25Zv6evKyAggLVr17631y/qq6++YsyYMe+7GYIgCIIgCIIgCMIHQATjhP9p7du3p3nz5iqfCwkJQU1NjcuXL7/jVsGFCxf49NNP3/nrlrWffvoJd3d3Jk6c+Np13+d7sHv3buLi4ujZs6d8WfHgoEwm48svv8TIyIijR48CEBgYyLhx45TWt3btWjQ0NBg+fLjK11u8eDFVqlTBwMAAU1NTqlWrxi+//CJ/fsKECSxfvpzIyMiy2UBBEARBEARBEIRXJZV9uI//p8SYccL/tCFDhtC5c2cePHiAi4uLwnPLli2jatWqVK9e/Z23y8rK6p2/Znn49ttv37ju+3wPFixYwKBBg1BXV32/IT8/n2HDhrFr1y6OHj1KrVq1Sl3fsmXLmDBhAn///Tfz5s1DX19f/tzSpUsZP348CxYsoHHjxuTk5HD9+nVCQ0PlZaytrWnZsiWLFi1SCNKVteaetWjrWx9TPSMepzxl9aX93HkWXWL5+q7+tPNtgK2RBZl52VyPucfaKwdJz80CoEmF6jR0q4KTqTUAkYmxbLh2hPsJj8ttG6AgUPrPf/+xbd9e0tLTqejtw8SRI6ng6lpinYioKBatXsXt8HvEPn3C+M8+o3enzgplLt+4werNmwgLDyc+MZE5P0whsH79ctmGAPeqtPCqhYmuIbGp8Wy6dpR7Jbxv/Wu0pp5rJaXlManxzDi0XGl5TUcfhtRpz9WYcBaHbC/rpivR7dQO7cCGqBnokx8RReaqdUgfx5ZaRyeoKdpNA1C3MEeWlk7uhStkb9oGeRJ5GTUzU/S6d0KzSkXUtLSRxj0hc+lq8qNK3mffxPHdhzi4dTcpicnYOzvQ/dP+eFbyUVn28unznNh7mIf3HyDJk2Dn4kD73l2oWKOKQrnM9Ay2r9rIlTMXyEzPwNLGiq5D++Bfq1qZtr2o+i7+BHpUw0jHgCdpiey4dZLIxJgSy2uoq9PCqzY1HLwx0jEgOTudI+EXuPAwTF6mkVsV6rn6Y6ZnREZuFtdj77E3LASJNL9M2rx98zY2/LeOhIQEXN1cGfXFGCpXq1Ji+auXr7Bw/p9ERUZhaWlBz3696dD5E5Vljx48zIzJ02gQ0JCZs3+SL1+zYjUnj58g+sEDdHR0qOhfiU9HfY6zi3OZbFNJTu49wtHt+0hNSsbWyYHOQ3pToaK3yrIRoXfZtWojTx7HkpeTi5mVBfWDmtCkQ1C5tvFNVbHzoHe1lvhYO2NpYMqkvX9zMvLa+24WAKHHL3DtYAhZKWmY2VtTt3tL7DxdVJaNuRPFnnmrlJZ3mzYCU1tLpeURF25y9N+tuFTxpuWIHmXe9qKuHD7N+b3HSU9Jw9LBhqZ9OuLk7f7Seo/uRrJu1t9YOdoycOZ4+fIbJy+wb8kGpfLj//0JTW2tMm17aS4cPMmZ3UdIS07F2tGWoP5dcPGp8NJ60Xfus2L6Aqyd7Bj+8+vfEH4bN46d48qBU2Qmp2Nub03Dnq2x93JVWfbx7Ui2z1mmtLz3jDGY2RWcByc8fsL5HUd59iCGtIRkGvZoTZUW5XPuUVQjtyo086yJsa4BsakJbL1xnIgSzkP6Vg+ijktFpeWxqfHMOlLwnbE1sqCtb32cTK2xMDBhy/VjHI+4Up6bwM1j57l64BSZKemY2VvRoEcpn8WdSHbOUT5n6jl9tPyzCD1xkTshV0mMeQqAlYs9dTo1x8bNsdy2QRBKIzLjhP9p7dq1w9ramhUrVigsz8zMZMOGDQwZMgSAM2fOEBAQgJ6eHk5OTowZM4aMjIwS1xsdHU3Hjh0xNDTE2NiY7t278+TJE4UyO3fupGbNmujq6mJpaUnnzoUX/sWzsMLDwwkICEBXVxc/Pz8OHTqk9JoTJ07Ey8sLfX193N3dmTx5Mnl5eQplfv75Z2xsbDAyMmLIkCFkZ2eX+v4cP34cNTU1Dhw4QLVq1dDT06Np06Y8ffqUffv24evri7GxMb169SIzM1Neb//+/TRs2BBTU1MsLCxo164dERER8udXrVqFoaEh4eHh8mWjR4/Gy8tL/r4Wfw/U1NRYvHgx7dq1Q19fH19fX0JCQrh37x6BgYEYGBhQr149hdeJiIigY8eO2NjYYGhoSK1atTh8+HCp2xwfH8/hw4fp0KGDyudzcnLo1q0bhw4d4sSJEy8NxEVFRXHmzBkmTZqEj48PmzdvVnh+165ddO/enSFDhuDh4UHFihXp1asXM2bMUCjXoUMH1q1bV+prvY26zhXpV70VO26d5Lt9i7j9NJoJgX2x0DdRWd7LypnP63YiOOIKE/f8xYJTm3C3cGBoncL3zdfGlZAHN/nx8EqmHFxKfEYKk5r0w0zPqNy2A2Dlpo2s3baVCSNGsnLBH1iYmzHy22/IKLKPFpedk4OjrR2jBg/GwsxcZZms7Gw83dyZMGJkeTUdgBqO3nSr0pT9t88y68hK7sU/YmTDriW+bxuvHWHi7oXyxzd7/yY9J4vLj+4olTXXN6azfyDhzx6W6za8oNO2JTqtmpG1ej1pU35GmpKC4YSxoKtTYh2terXR7daJ7O17SJs0jcylq9GuUwPdbp3kZdT09TH6/mtk+flkzPmTtG+mkbVuM7JSPuM3ceFECBuXrKJNj0/4fsEsPCr58MeUX0h8Gq+yfPit2/hW82f0tAl8+/tMvCv78df0OURHRMnLSPIkzP/+JxKePOOzb8cy/Z859BszFFML1ftdWahi70mHSo04HH6R306s535iDEPrtMdUz7DEOv1qtMbT0omN147yy7HVrLl8gKfphWN/VnPwoo1vfQ7dPc+vx/5j47UjVLH3pI1vvTJp89FDR/jrtwX0HdSPJauWUrlqFSZ+8TVP4p6oLB8bE8M3X0ygctUqLFm1lD4D+/HH3N8JPnpcqWxcbBx/L1hI5arKgb1rV67ySddO/LV0MbMX/EZ+fj4TxownKyurTLZLlcunzrFt2VpadmvP1/OmU8HPi0Uz5pH4LEFleR1dHRq1ac6YH7/lmz9m0bJbB/au2cKZA8fLrY1vQ09Lh3sJj5h3Yv37boqCiAu3CNl4gGptGtLp+0+x9XBm/x9rSU9MKbVet+kj6fPrePnD2Fr5u5uWkMy5zYew9SjfIC5A2NmrHFmzk7odmjNw+hc4ermzec6/pMaXPlZvTmYWe/9Zj4ufh8rntfV0GbHgB4XHuwzE3Qy5zP5VW2n0SUs++2kCzt4VWPPz36TEJ5ZaLzszi+0LV+NeyesdtbRQ+PkbnFq/j5ptGtP9h8+x83Jh1++rSUtILrVen5ljGTh3gvxhYmMhf06Sm4exlRn1urRA36Tk3+yyVN3Bi86VAzlw5xy/HPuPiITHfF6/U4nnIZuvH+PbvYvkj8n7/iEjN4srjwvP87U1NInPTGHnrVOkZKeX+zbcu3CD0xv2Ub1tY7r98Dl2ni7sWfDfSz+LXjPGMGDO1/JH0c8i5k4UnrUr0/HLQXSeNAwjcxN2/7aK9KTUct4aQVBNBOOE/2mampr079+fFStWICsyQ8ymTZvIzc2lT58+3Lhxg6CgIDp37sz169fZsGEDp06dYtSoUSrXKZPJ+OSTT0hMTCQ4OJhDhw4RERFBjx6Fd0X37NlD586dadu2LVeuXOHIkSPUrFlT5fqkUimdO3dGQ0ODs2fPsmjRIpXdPo2MjFixYgWhoaH8/vvvLFmyhN9++03+/MaNG5kyZQo//vgjFy9exM7OjoULF77S+zR16lT+/PNPzpw5w8OHD+nevTvz589n7dq17Nmzh0OHDvHHH3/Iy6elpfHFF19w4cIFDh8+jEwmo1OnTkilUgD69+9PmzZt6NOnDxKJhP3797N48WLWrFmDgYFBie2YMWMG/fv35+rVq/j4+NC7d28+++wzvvnmGy5evAig8Lmkp6fTpk0bDh8+zJUrVwgKCqJ9+/ZER5ecOXPq1Cl5sK+49PR02rZty61btzh9+rTKMsUtW7aMtm3bYmJiQt++fVm6dKnC87a2tpw9e5YHDx6Uup7atWvz8OHDl5Z7U6196nH8/mWOR1wmJjWe/y7vJyEzheaeqvdLDwtHnmUkc+DuOZ5lJHP3WTRH713E3dxeXmbhma0cDr/Ag+Q4YlPj+ff8TtTV1Kho+/K79W9KJpOxbtt2BvXsSdOGDfFwdWXal1+RnZPD/mPHSqxX0dubscOGERQYiLaW6ouNBrVqMWLgQJo2bFhezQegmWdNzkTd4HTUDeLSEtl0/RhJmWkEuFdVWT5bkktqTob84WJmi762LiEPbiqUU0ONQbXasjvsNPEZpV9slhWdoGZk79xH3sWrSB/HkPnPStS0tdGuV7vEOpoe7kjCI8gLuYA0PgHJzTByz15A063wolanXUukiYlk/buK/PtRBeVC7yAtIUj2pg5v20uDloE0DGqCnbMDPT7tj5mlBcF7VQf1e3zan6Cu7XH1qoCNgx2dBvTE2t6W6+cKhzs4feg4GWnpjJg8Hg8/byysrfCo6IOTu+psnLLQ2L0q56NDOR8dytP0JHbeOklyVjr1XPxVlve2cqaChQP/nttJePxDkrLSeJj8hAdJcfIyrmZ2RCXGcuXxXZKy0rj77CFXH4fjaGJTJm3etG4DbTq0pW3H9ri4uTJq/BisbazZuWWbyvI7t+7A2taGUePH4OLmStuO7Wndvi0b1ygGgPLz8/nxh+kM/HQwdg52Suv59fe5tGrXBjd3Nzy8PJg4+RuexD3h7m3l4HZZOb7jAHWbB1CvRWNsnezpPLQPZpbmnN5/VGV5R3cXagTUxc7ZAQsbK2oF1senmj8RoeXXxrdxNvoWS87tJPj+1ffdFAU3Dofg3aAaPg2rY2ZnRb0eQRiamRAafLHUenpGBuibGMofxbPopVIpx5Zuo3r7QIysXm+83DdxcX8wlRvXpkpgHSwcbGjWtyNG5qZcORpSar0Dy7fgW7ca9h6qf3vU1MDQ1Fjh8S6d3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcNLeLqoTP4NqyOX0BNzO2tadSzDUZmxtw8fr7UenrGBhiYGMkfRfcpGzdHGnRrhWftymhovptOaU08ahASdZOQBzd5kpbI1hvHScpKo6Gb6szkbEkuaTmZ8oezmQ16WrqcLXIeEp38hB03T3D58R0k+WWTPV2aa4fO4NOwOn6NamBmZ0XDnm0wNDPmVvCFUuvpGRugb2IkfxT9LJoP60qlJrWxdLbDzM6Kxv07IpPJeBx2v7w358Mgk324j/+nRDBO+J83ePBgoqKiOH78uHzZsmXL6Ny5M2ZmZsyePZvevXszbtw4PD09qV+/PgsWLGDVqlUqM8sOHz7M9evXWbt2LTVq1KBOnTqsXr2a4OBgLlwoOAD8+OOP9OzZk2nTpuHr60uVKlVK7NJ5+PBhwsLCWL16NVWrViUgIIBZs2Yplfv++++pX78+rq6utG/fni+//JKNGzfKn58/fz6DBw9m6NCheHt7M3PmTPz8/F7pPZo5cyYNGjSgWrVqDBkyhODgYP7++2+qVatGo0aN6Nq1K8eKBDq6detGly5d8PT0pFq1aixbtowbN24odL1cvHgxsbGxjBkzhoEDBzJlypSXZpkNGjSI7t274+XlxcSJE4mKiqJPnz4EBQXh6+vL2LFjFT7HKlWq8Nlnn+Hv74+npyczZ87E3d2dnTt3lvgaUVFR2NjYqOyiOmPGDK5evcrJkydxdn753W6pVMqKFSvo27cvAD179pRn870wZcoUTE1NcXV1xdvbm4EDB7Jx40Z54PIFBwcHefvKmoa6Bm7m9tyIjVBYfiMuAk9LJ5V1wuMfYq5vTBV7TwCMdQ2o7eTH1ZhwleUBdDS00FBTJyOn/DJMHsfFkZCUSN3qNeTLtLW1qe7vz/Ww0FJqfhg01NRxNrUl9EmUwvKwp1G4Wzi80jrqu/pz++kDEjMV79S29a1Pek4WZ6JulFVzS6VuZYm6qQmSm4XdGpFIkNwJR9Oz5ICs5O49NF2d0XB3la9Hq0ol8q4VntRrVauCJDIa/VHDMP7zVwxnfIt2YNkGSSV5EqLvReJXrbLCcr/q/kSE3X2ldUilUrKzsjEwKrzJcP3cJdx9PFm7cDlf9RnOtBET2LthO9J8aSlrenMaauo4mFhzt1iX87vPonE1Vw5GAVS0deNh8lOaVKjB5OaDmNikL+38GqCpriEvE5kYg6OpNU6mBcE3c31jfKxdCHsa9dZtzsvL4+7tu9Ssoxi0rVm7Fjdv3FRZJ/TGLWrWVjyG1Kpbmztht5FICrs3r1q6AlMzU9p2aPdKbclIL8jWNjYun0CEJE/Cw4govKsqdjX3rlqJyNv3Sqil6NH9B0TeDsejhO7TgrJ8ST7x0bE4+Cl2eXTwc+dJROmZw1tn/sN/X89jz7xVxNxRHsv1yu4T6Brp49Ow/Lqdv5AvkRAX9RjXYllgbv5ePA6PKrHejRPnSX4aT4NOLUosk5udy6IvZrJw7Aw2z13Kk6jyHWKiqHyJhJjIh1SorLhPu1f24dHdksfPvXL8LElP4gns0qq8m6gkXyLh2YMYnCsqZho6VfQg7iX71IbpC1n+5S9sn7OcR7ffb2BHQ00dJ1Mbbj9VvPl7+8kD3CzsS6ilqK5LJe48fUBSVlp5NPGlCj6LWJyKfb8LPovSh7LYNP1vVn71KzvnLufxSz4LSW4e0vx8dAz03rrNgvAmxJhxwv88Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bvHmjVr5HVkMhlSqZTIyEil7KiwsDCcnJxwcioMYvj5+WFqakpYWBi1atXi6tWrDBs27JXaFxYWhrOzM46OheMR1Kun3A1o8+bNzJ8/n3v37pGeno5EIlG4eAgLC1OaQKBevXoKQbSSVK5ceDFqY2Mj7wpbdNn584V3/aKjo5kxYwbnzp0jPj5eHliKjo6mUqWCCw4zMzOWLl1KUFAQ9evXZ9KkSa/dDgB/f3+FZdnZ2aSmpmJsbExGRgbTpk1j9+7dxMTEIJFIyMrKKjUzLisrC11dXZXPtWzZksOHDzNr1qxXmun14MGDZGRk0Lp1awAsLS1p2bIly5YtkwdU7ezsCAkJ4ebNmwQHB3PmzBkGDBjAv//+y/79++VBQT29ggN9Zgnd8HJycsjJyVFYpqNTclfAoox09NFQVyclW7HrdUpWBiZ2qrtEhMc/ZOGZrYxu0BUtDU001TW49Og2Ky/uLfF1elZtTmJWGjfjyu9EMyGpoPuKRbHZey3MzIh98rTcXresGOrooaGuTlqxzyItOwMTm5KzRl8w1jWgoo07y87vVljubuFAfVd/fjyyskzbWxo1k4LfH2mKYlBQmpKKumXJXTLzzl0ky9gQw++/AtRQ09Qg50gwObsPyMuoW1mi0zSAnP2Hydi1Hw13V/T6dkeWl0fe6XNl0v701DSkUinGpopdtY1MTUhNerXMwkPb9pCbnUONRnXly57FPSXhSSh1AhsweuoEnsbEse7vFUjzpbTr3bmUtb0ZA+3n+1SO4m9HWk4WRjr6KuuY65vgZm6HRCphxcW9GGjr0tk/EH0tXTZeOwLA1ZhwDLT1GNmgC2oUBPXPRF3n2L1Lb93mlOQUpPn5mJkrfo/NLMxIOqu6i1piQgJmForBOzNzM/Lz80lJTsbC0pIb166zd+ce/v1PeYwmVWQyGQt//xP/KpVxq1A+Gb0ZaS/2M8Vgn5GJMWkv2c9+GPIF6SlpSKX5tO7xCfVaNC6XNn6MstMzkUll6Bsr/q7qGRmQlap6GBJ9E0Ma9W2HpYsd+XkSws/dYM9vq2k3fgB2XgXZZXH3orlz+gqdJ39W7tsAkJmWgUwqxcBEsfugvrERGSmqAyGJcc8I3riX3t+NRF1DQ2UZCztr2gzrgZWTHTlZ2Vw6eJI1M/9k4MzxmNuW/5i+makF22VYbLsMTYyIKGG7EmKfcmTdLgZNHVvidpWngn1Kip6x4nmTnrEhmSW0Wd/UkMD+HbF2sSdfIuFOyDV2zF1Bp68Hlzi2WXkzeHEeklPsPCQnE+MSjhlFGesY4GfjVur5YHl78VnoF/8sjAzITFHdRVbfxIjG/Tpg9fyzuHv2GjvnraTjV4NK/CzObjmEgakxjn7l1+NDEEojgnHCR2HIkCGMGjWKv/76i+XLl+Pi4kKzZs2AgsyGzz77jDFjxijVU5UdJZPJUFNTK3X5i8DKq5CpSL0tvv6zZ8/KM+2CgoIwMTFh/fr1zJ0795VfpzRaRbrtqampKfz/YlnRTK527drh5ubGkiVLsLe3RyqV4urqSm5urkK9EydOoKGhQUxMDBkZGS/NPCjejpKWvWjL119/zYEDB5gzZw4eHh7o6enRtWtXpXYUZWlpSVKS6nFWmjVrxpgxY+jYsSP5+fkKXXNVWbZsGYmJiQoTNkilUq5cucKMGTPQKHKyWKlSJSpVqsTIkSM5deoUjRo1Ijg4mCZNmgCQmFhwAVrSxBY//fQT06ZNU1g2ZcoUeI0hU2Qo7mtqakAJmd8Oxlb0r9GabTeDuR4bgameIb2rtmRw7XYsOaecedjOtwH1XPyZeWQFeVKJijW+mX1HjzJrwe/y/+dPLxhrr/g3sOD7V2YvW+5UfOuVPh9V6rlUIisvm2tFMhR1NLUYVKsNay4fICO3/LISterVRn9Qb/n/6XP/Kvij+G+YmlqJ+xWApo8Xuu1bk7VyHZKISDRsrNHr2x1pcgo5O56f3KurkR/5gOzNOwDIf/AQDQc7dJo1LrNgXGF7i/0vU7FMhfPHz7B7zVZGTB6vENCTSWUYmRrTd/RQ1DXUcfF0JzkxiYNb9pRLMK4kpX0fXvyWrr18kGxJwe/lzlun6F+zNVtvHEcizaeChQPNPGuy9cZxopOeYGlgQsdKATTPzuRweOndgF69jcUaKSu94WrFPpgXx081NTUyMzKZNWUmX307ARNT01d6/d9n/0bEvQj+WPzX6zT7DanY0V6yn42d9S05WdlE3Y1g1+pNWNrZUCOgbumVhDdmamupMFGDTQUnMhJTuH4oBDsvF3Kzczi2bDuN+rVD1/DlQYvypfqYJ5VK2f33Ghp0bom5XclBNXsPF4Xuq46erqz8YT6XD52meb9PyqG9JVHxnS5hu7b+uYrArq2xsLN+R21TTel9l8lK/N0ys7XCrEhw07aCM+mJKVw5cOq9BeNeeNOOf3Vc/MjKy+F6zKtl9pYrFW+7qms0ADNbS8yKfL9ffBZXD55W+Vlc2X+Se+dv0PHrQWiWMLzJR0dWPhn8wpsTwTjho9C9e3fGjh3L2rVrWblyJcOGDZP/WFevXp1bt27h4aF6gNvi/Pz8iI6O5uHDh/LsuNDQUFJSUuRZdJUrV+bIkSMMGjToldcXExODvX1BenhIiOI4IKdPn8bFxYXvvvtOvqz42GK+vr6cPXuW/v37y5edPXv2lbbpdSQkJHDjxg0WLlxInTp1AAgODlYqd+bMGX799Vd27drFpEmTGD16NCtXlm3WzsmTJxk4cCCdOhUM/J6env7Sbp7VqlUjLi6OpKQkzIplVwG0aNGC3bt30759e6RSKX/++afKA3tCQgI7duxg/fr1VKxYOMOUVCqlUaNG7Nu3j3btVHeTetF9uOgkITdv3kRLS0thXUV98803jB8/XmGZjo4Og7f8pLJ8UWk5meRLpZjqKt5BNNY1KHGQ3Q4VG3I3Ppo9YWcAeJj8hOWSPUxpMZhN146SXKReG5/6dKjYiJ+OruJhsurB199UQN26VPIpnHEwN7dg0pL4pCQsLQoH3U1MTsZcxef5oUnPySJfKsVYVzFbw0hXn9Tsl09OUN/Vn3PRoeQXOWGyMjDD0sCUz+sXBnpe7LN/dvqSqQeXEp+R/NZtz7tyjbSIIt2HtApOEdRNTcgvkh2nbmyELLXkwY51u7Qn98w5coNPAyB9FAM62ugP6kvOzn0gkyFLTiG/2Iys+TFxaNUsu9mvDY0LxoopngWXlpKilC1X3IUTIaxa8A+fTRqLbzXFcdlMzE3R0NBAXaOwK7ydkwOpSclI8iRoapXtqVVGbsE+VTwLzlBbTylb7oW07AxSstPlgTiAp+mJqKupYapnSHxGCkHedbn86A7nowu6f8elJaCtoUXXKk04En7hjS/kAExMTVDX0CAxQTELLikxSSlb7gVzCwul8slJyWhoaGBsYkLU/UjiYmP59qvCLGzZ8xs3zeoHsmrjGhwcC7uCL5jzG2dOnub3xX9gZVN+F/cGRs/3s+Ti+1kaRi/ZzyxsCi7i7V2dSEtOZf/67SIY94p0DfVRU1cjs1gWXFZaBnrGL89CfsHa3ZF75wq6/qc9SyI9IZkDfxWOU/giIPzv5zPoPn0kxlZlO1GLvpEBaurqSllwmanp6BsrD7afm5VDXOQjnjyI4fCq7YVtlMmYPXAC3ScMw8XPU6memro6tm5OJD15VqbtL4m+ccF2pRfLrM5ITcdQ5XZlE3M/mtioR+xdUTBR1ovtmt5nHP2+GYFbOU/oULBPqStlXmWlZShlaJXGxt2Ru2ff32zDGS/OQ3SKnYfo6JNawjGjqLoulbjwUPE85F0r7bN4ne+3jbuTys/i6oFTXN57kvbjB2DhaPvW7RWENyWCccJHwdDQkB49evDtt9+SkpLCwIED5c9NnDiRunXrMnLkSIYNG4aBgQFhYWFKkxa80Lx5cypXrkyfPn2YP38+EomEESNG0LhxY/kkDVOmTKFZs2ZUqFCBnj17IpFI2LdvHxMmTFC5Pm9vb/r378/cuXNJTU1VCLoBeHh4EB0dzfr166lVqxZ79uxh2zbFQa7Hjh3LgAEDqFmzJg0bNmTNmjXcunVLobtpWTA1NcXc3JxFixZha2vLgwcPlCacSEtLo1+/fowePZrWrVvj7OxMzZo1adeuHd26dSuztnh4eLB161bat2+PmpoakydPVhqLrbhq1aphZWXF6dOnSwyWNW3alD179tCuXTtkMhl//fWXUkBu9erVWFhY0K1bN6Xx59q1a8fSpUtp164dn3/+Ofb29jRt2hRHR0diY2OZOXMmVlZWCt2RT548SaNGjUrMqtTR0XnlbqnF5UvziUyMoZJtBS4+ui1f7m9bgUtF/i9KW0MLabETLfn/Rd6Ltr71+aRiAL8c+4/IxJg3al9pDPT1MSiSeSiTybAwM+fclcv4PA+g5+XlcfnGDUYPHlLmr1/W8mVSopPj8LV2UchuK/i/9LvMnpZOWBuaKY0JF5eWwIxDyxWWta/YEF1NbTZdO0pSZsmBsdeSnYM0W/FCTZqcgmZFX/IfPB8vR0MDTW9PsjaqHoQfAG1tkBYL5UilCne4JeERaNgpThSgbmuDNEH17JNvQlNLE2cPN8Ku3KBa/cKxyMKu3KRK3Rol1jt//Ayrfl/M0Amj8K+tPGZUBT8vLhw/g1Qqlf82PHkci4m5aZkH4qBgn3qc8hQvKyeFLuJeVs4ldhmPTIylsr0H2hpa5OYXBLitDEyRyqQkZxVc3GhraCpla0pl0ufZaaWk1b4CLS0tvHy8uHj+Ao0CA+TLL52/QIMA1WMD+vlXJOTkaYVlF8+dx9vXB01NTZxdnFm2VvGGz9JFS8jMzGT0+LFYPw+4yWQyFsyZz6ngE/y2cAF29q82RtKb0tTSxKmCK3eu3lLYr+5cvYV/ndcYc0wmQ1JsBnWhZBqaGlg62/E47D5u1QrHJXscdh+XKt6l1FSU8DAOveczXJrYWtLlB8XhQC7uOEZedg71erTCwKz04Oqb0NDUxNbVgaibd/GqWRj4j7p5F4/qlZTK6+jpMGjWlwrLrhw+Q3TYPTqO7o9JCcFCmUzG0+jHWDmqHmeyrGloamLv5sT963fwrVU4acD9G7fxrqE88YyOni6f/6o43MmFg6eIDL1L93GDMbWyUKpTHm22crHnYWgE7tULx2R+GBqBW9VXH88x/mEs+qblO+t8afJlUh4mP8HH2pnrsYXnHd7WLkpjCxfnYemItaEZ/0apHtvzXSn4LOx4FKb4WTwKjcD1dT6L6Fj0i3WVvnLgFJf3BNN2bH+sXV9tLF9BKC9iAgfhozFkyBCSkpJo3ry5QvfTypUrExwcTHh4OI0aNaJatWpMnjwZOzvVJyRqamps374dMzMzAgICaN68Oe7u7mzYsEFeJjAwkE2bNrFz506qVq1K06ZNOXdOddcqdXV1tm3bRk5ODrVr12bo0KH8+OOPCmU6duzIF198wahRo6hatSpnzpxh8uTJCmV69OjBDz/8wMSJE6lRowYPHjzg888/f9O3q0QaGhps2LCBy5cvU6lSJcaPH6/UXXbs2LEYGBjIx02rWLEiv/zyC8OHD+fx47IbIPi3337DzMyM+vXr0759e4KCgqhevfTMGQ0NDQYPHqwwRqAqgYGB7N27l9WrV/P5558rdSdetmwZnTp1UjkRRJcuXdi9ezdPnjyhefPmnD17lm7duuHl5UWXLl3Q1dXlyJEjWBTJ7Fq3bt0rjzP4JvbdDqFJheo0dq+GvbElfasHYaFvwpHwglnlelRpxvB6neTlrzy+S00nX5p51MTKwAwvSyf612jNvfhHJD8fsLedbwO6VW7KP+d28CwjGRNdQ0x0DdHR1C637VBTU6NXp09Yvn49x06f5l5UFFPnzkFXR4dWz7v8Avww+1f+XFY4blReXh53IiK4ExFBniSPZ/EJ3ImI4GFM4f6YmZUlLwMFk0XciYgg7mnZjkV3JPwiDdwqU8+lErZG5nSt3AQzfWNORhbcne1YsREDarZRqtfA1Z/IhBhiUhVnFJVI84lJjVd4ZOXmkC3JJSY1vlzvXuccOIJu+1Zo1aiKuoM9+p8OQJabS25I4RiT+p8ORLfbJ4XtvXoDnWYBaNWpibqlBZoVfdHt0oG8K9flXV5z9h9Bo4I7Ou1boW5thVa9Wug0aUjOYeUs3LfRvFMbTh08xumDx4mNfszGf1aT+CyegDYFwxhsW7Ge5XMLZ6U+f/wMy+f9TdchfXHz9iQlMZmUxGSyMgqzCRq3aUF6WjobFq/iyeNYbpy/wr6NOwhs27JM215U8P2r1HauSC0nX6wNzehQsSGmeobyme5a+9SjZ9XCgdyvPL5LZm42Pao2w8bQDHdze9r5NeB8dBgSacEseKFPIqnn4k9Ve0/M9YzxtHSilU9dbsVFvlKX6pfp1qsHe3fsZu/OPTyIjOKv3xbw5MlT2nf+BIAlfy1i1tSZ8vIdOnfkSdwT/pr/Bw8io9i7cw97d+6he5+eAGjr6OBWwV3hYWhkiL6+Pm4V3OVDHsyfPY9D+w/y3fQf0DfQJzEhgcSEBHKyc5TaWFYCOwZx9nAwZw+fIO5hDFuXriUpPoEGQQW/WbtWb+K/+f/Iy5/ce5ib56/wNCaOpzFxnD1ykqM79lMzsH65tfFt6Gnp4GnpiKdlwdi39saWeFo6YmP4frOV/ZvX486py9w5fYWk2GeEbDxAemIKvgEFQdHz245wbPl2efkbh88SdfU2KU8SSIx5yvltR4i8HEbFwIJgvaaWJuYO1goPbX1dtHR1MHewRkOzfMYxq9mqMdeDz3M9+DwJj59wZM0OUhOSqdq0IEsyeONe9ixeBxRkuFk52ik89I0N0dTSwsrRDu3nN/VObztI5PU7JD9N4MmDx+z/dyNPo2Oo2lR5zOLyUrdtEy4fC+HKsRCePY5j/6qtpMQnUbN5QUD+8LqdbFu4Wr5d1k72Cg8Dk4LtsnayR1v3zW5Wvq6qLeoTevISoacukRjzlFPr95KWmELFwILxLEO2HOTw0s3y8tcOneH+lVCSnySQ8PgJIVsOEnEpFP8mdeRl8iUSnkXH8iw6lnxJPunJqTyLjiX5SdndfCru2L1L1HP1p65LRWyMzOns3xhzfSNOPT8Pae/XkH41lCfJqOdSicjEWGLTlNtWMJmQFQ4mVmiqa2CiZ4SDiRWWBqblsg1VWtQn7ORlwk5dJin2Gac37Cv4LBoXfF/Pbj3EkaVb5OWvHT5D5JUwkp8kkPj4KWe3HuL+5VD8mxZ+Flf2n+T89iMEDvgEY0tTMlPSyExJI68cjw8fFKnsw338PyUy44SPRr169VSOzwZQq1Yt+YQOqhTv+ujs7MyOHTtKfb3OnTvTubPq8YGKr8/Ly4uTJ08qLCve1l9//ZVff/1VYdm4ceMU/v/222+VZm395ZdfSmxjYGCg0usMHDhQIXMQYOrUqUydOlX+f/PmzRVmTi3e3mXLlAfPHjNmjMK4fMXfg+LtcHV1VVpWvL2urq4cPXpUoczIkSOVXru4cePGUbFiRR48eICLi4vK9gAEBASQllbYNaToTK7Xr18vcf2dO3cm73kGQ5cuXejSpUup7dmzZw8aGhp07dr1pW1/U2ejb2Goo0+nSo0x1TPkUcpTZh9fQ3xmQdcpUz0jLPQL7+qfiLyKrpY2Lb1q06d6EJm52dx6Esn6q4fkZZp71kJLQ5NxjXoovNaWG8fZeuN4uW3LgG7dycnJ5ec//yQtPY1KPj78OesnhQy6uKfPUFcrDJQ+S0igz8gR8v9Xb9nM6i2bqe5fmX9mzwYg9O5dhk8szF797Z/FALRr3oKpX31VZu2/9OgOBtp6tPWtj7GuAbGp8fx1eot8dlQTXUPM9RXv1OpqalPNwYuN146qWuV7k7PnIGra2ugN6IWavj759yNJ/3UBFDlxVbcwVxhXLnvHXmQyGbpdO6BuZoosLZ28K9fl48MB5Ec+IGPBIvS6fYJux7ZI4+PJWrOJvCJBvrJQK6AeGanp7Fm3lZTEZOxdHBk1bQIW1gXdA1MSk0l8VnjRcXL/EaT5+az7eznr/i7MRqzXLICB4wsyZsytLBg7YxKblvzH9JGTMLUwo2mHVrTq2qFM217UtZhwDLR0aeFVG2MdA+LSElh6bpd8pjtjXQPM9Aq7UeXm57H47A46VQpgbEAPMnOzuRZzj323C4dIOPy8K2orn7qY6BqSnptFaFykQpm30bRFM1JTUlm1bAWJ8Qm4urvx82+/YmtX0CUoISGBp08Ku73b2dvz02+/snD+H+zYvA0LS0tGfzmWxk0DX+t1d27ZDsAXnyuOEztx8je0aqccBC8L1RvWISM1nQMbdpCSlIKdswOfTR6PuXXB+EWpickkFdnPZFIZu/7bTOKTZ6hraGBpa037ft2oHxRYLu17Wz5WLvzZqXAYhTENCzLg94aF8OPRdzepTHEValUkJyOTy3tOkJmSjrm9Na1G9cbIwhSAzJR0MhILuw9L8/M5t/kQGclpaGppYmpvRdCoXjj7K3frfJd861YlOz2DMzsOkZGciqWjLV2/HILJ84lyMpJTSU1QPRZuSbIzsziwfBMZKWno6Oli7eJAr29HYFfh5TPJl5VK9aqTlZZB8NYDpCenYO1kR5+JwzF9nr2XnpxKSvzrbVd586ztT3ZGJhd3HScjJQ0Lexvaj+2HcZF9Ki2hcJ/Kl+RzeuMBMpJT0dTSwtzBmrZj+uFaubBLbUZyGhunF970uXrgNFcPFIxj1mlC+WT8X358FwNtPVp5131+HpLA32e2yY8ZJroGmOkpn4dUtfdky43jKtdpomfIpKb95P8396xJc8+ahD97yIJTm8p8Gzxq+ZOdnsWl3QWfhbm9NW3H9C38fienkV70+y3J58ymws/CzN6KNmP64uJf+FncOn4BqSSfg4s2KLxWzfaB1OrQtMy3QRBeRk1WUvRCEAThf9iOHTswNzenUaNG77spbNy4ERcXF/kYfK+jz9qpZd+gd2xN76mkRUa972a8FSM3Vz7fMvt9N+Ot/d3la5L7D395wQ+Y6apFHC+DGT/ft0CPGny1q/RJZP4XzGk/mpjkD3+m49LYm1qzP6xsgpDvUyvfejT463/7+3165CLmHC89s/1/wVeBfVh6btf7bsZbG1KnPWsvH3h5wQ9Y7+pBLDi58X03462NadSd0dvmve9mvJU/Oo1n/okNLy/4gRsX0OPlhT5AaXfCX17oPTHyfr83Rd4XkRknCMJHqWPHju+7CXLdu3d/300QBEEQBEEQBOH/K5GD9cERY8YJgiAIgiAIgiAIgiAIwjsignGCIAiCIAiCIAiCIAiC8I6IbqqCIAiCIAiCIAiCIAgfK9FN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVT6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VmE31gyMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+V6Kb6wRGZcYIgCIIgCIIgCIIgCILwjohgnCAIgiAIgiAIgiAIgiC8I6KbqiAIgiAIgiAIgiAIwsdKKrqpfmhEZpwgCIIgCIIgCIIgCIIgvCMiGCcIgiAIgiAIgiAIgiAI74jopioIgiAIgiAIgiAIgvCxkknfdwuEYkRmnCAIgiAIgiAIgiAIgiC8I2oymUyM5CcIgiAIgiAIgiAIgvARSrt6/X03oURGVSu/7ya8F6KbqiAIwgfs+L1L77sJby3QowZpMTHvuxlvxcjenlUX9r7vZry1/rXavO8mlIlLD8PedxPeWg0nX+YGr3vfzXhrXzbu9b6bUCbSwu687ya8NSNfb+YcX/O+m/FWvgrsQ4O/hr/vZry10yMXfTTbsfbygffdjLfSu3rQ+25CmZm8/5/33YS3MqPVp+y+dep9N+OttavY8H034c2IHKwPjuimKgiCIAiCIAiCIAiCIAjviAjGCYIgCIIgCIIgCIIgCMI7IrqpCoIgCIIgCIIgCIIgfKRkUtFN9UMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlZhN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlUz6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VVMym+qERmXGCIAiCIAiCIAiCIAiC8I6IYJwgCIIgCIIgCIIgCILw0UhKSqJfv36YmJhgYmJCv379SE5OLrF8Xl4eEydOxN/fHwMDA+zt7enfvz8xMTEK5QIDA1FTU1N49OzZ87XbJ4JxgiAIgiAIgiAIgiAIHyuZ7MN9lJPevXtz9epV9u/fz/79+7l69Sr9+vUrsXxmZiaXL19m8uTJXL58ma1bt3L37l06dOigVHbYsGHExsbKH4sXL37t9okx4wRBEARBEARBEARBEISPQlhYGPv37+fs2bPUqVMHgCVLllCvXj3u3LmDt7e3Uh0TExMOHTqksOyPP/6gdu3aREdH4+zsLF+ur6+Pra3tW7VRZMYJggDAihUr2Ldv3/tuhiAIgiAIgiAIgvD/RE5ODqmpqQqPnJyct1pnSEgIJiYm8kAcQN26dTExMeHMmTOvvJ6UlBTU1NQwNTVVWL5mzRosLS2pWLEiX331FWlpaa/dRhGME/4nuLq6Mn/+/He6PjU1NbZv3/5WrzN16lSqVq36WnWOHz+Omppaqf3Zy9rWrVv59ddfqVu37hvVHzhwIJ988on8/8DAQMaNG1dqnbL6TI8ePYqPjw9SqfSt11Uenj59ipWVFY8fP37fTREEQRAEQRAE4f8jqeyDffz000/ycd1ePH766ae32ty4uDisra2VlltbWxMXF/dK68jOzmbSpEn07t0bY2Nj+fI+ffqwbt06jh8/zuTJk9myZQudO3d+7TaKbqpCuWrfvj1ZWVkcPnxY6bmQkBDq16/PpUuXqF69+jtt14ULFzAwMHinr/mhun//Pt9//z379u3DzMysTNa5detWtLS0ymRdLzNhwgS+++471NUL7i2sWLGCcePGKQQzw8LCaNGiBbVr12bdunXo6Ohw7NgxZs+ezblz58jKysLV1ZXWrVszfvx4HBwcFF7D29ubyMhIIiMjlZ67f/8+3333HcHBwSQmJmJpaUmNGjWYPXs2Xl5eWFtb069fP6ZMmcK///5bru/F8d2HOLh1NymJydg7O9D90/54VvJRWfby6fOc2HuYh/cfIMmTYOfiQPveXahYo4pCucz0DLav2siVMxfITM/A0saKrkP74F+rWpm1WyaT8c/KlWzbvZu0tDQq+voycexYKri5lVrvSHAwi5Yv51FMDI729owYMoQmjRrJn2/fsyexT54o1evWsSMTnweLj544wdZduwi7e5eU1FTWLFmCt4fHW2/TxUOnOLv3GOnJqVg52NKi7yc4+1R4ab2Hd++zeuZfWDnaMmzW1/LlV46FcOPkBZ49Kjh5sHVzJLB7WxwquLx1Wz92h3bsZfem7SQnJOHg6kT/EUPw8a+osmxSQiJrFi0nMjyCuMexBHVqS/8RQ5XK7duyk8O79hP/NB4jEyPqNKpPj6H90NbWLrftuHX8PNcPnCEzJQ0ze2vq9WiFnafqzz/mTiS7565UWt592khM7ayUlt87f4Oj/27BpYo3QSN7lXnbP0YymYx/1q9j28GDpGWkU9HTi4mfDadCkS4sxUVER7No7RpuR0QQ++wp4wcPoXeHjkrlniYk8MeqFZy5fJnsnBxc7B2YPGo0vmXw21RU6PELXDsYQtbzfapu95al7FNR7Jm3Sml5t2kjMLW1VFoeceEmR//diksVb1qO6FGm7X4TVew86F2tJT7WzlgamDJp79+cjLz2vpv12v7XtuPCwZOc2X2EtORUrB1tCerfBZdXOBZG37nPiukLsHayY/jPE99BSz8+tZ38aOhWGUMdfZ6mJ7HvdggPkkoOQGioqdPEowZV7D0w1NEnNTuD4IgrXH58BwA/G1cC3Kthrm+Mhpo6CZkpnI66wbWY8HLbhtP7jnJ8xwFSk5KxdXKg4+CeuPt5qSx7PyycPas28/RxLLm5uZhZWVCvZWMat28pL3P2UDAXj4cQF11wg9yxggtt+nTG2dO93LZBeDXffPMN48ePV1imo6OjsuzUqVOZNm1aqeu7cOECUJBcU5xMJlO5vLi8vDx69uyJVCpl4cKFCs8NGzZM/nelSpXw9PSkZs2aXL58+bXiGiIYJ5SrIUOG0LlzZx48eICLi+IJ3rJly6hateo7D8QBWFkpX4z8f+Xu7k5oaOgrlc3Ly3ulIJu5ufnbNuuVnDlzhvDwcLp161ZimQsXLtC6dWs6duzIP//8g4aGBosXL2bEiBEMGDCALVu24OrqSnR0NKtWrWLu3LnMmzdPXv/UqVNkZ2fTrVs3VqxYwXfffSd/Ljc3lxYtWuDj48PWrVuxs7Pj0aNH7N27l5SUFHm5QYMGUbt2bWbPnl1mAU+l7TwRwsYlq+g9YjAVfL04sf8If0z5hal/z8bcWvlCKfzWbXyr+fPJgB7oGehz5nAwf02fw6R5M3Cu4AqAJE/C/O9/wsjEmM++HYuZpTlJzxLQ0dMr07avXL+etZs2MWXiRJydnFi6ejUjv/6aLatWYaCvr7LO9Vu3+Hb6dIYPHkyTRo04dvIkk6ZNY+mCBVTy8wNg1aJF5BfJmIyIjGTkV1/RLDBQviwrO5sqlSrRPDCQmXPmlMn2hJ69wqH/ttNqYFecvNy4fPQM62f/w2e/TMLEsuTPPzszi52L1uJW0ZP0FMVU9wdh9/CrVx1HLzc0tTQJ2X2Udb8s4tOfJ2Jsblom7f4YhRw7xaq/lzF4zGd4VfThyJ4D/PLNDGYv/QNLG+XjgCQvDyNTEzr27sa+LTtVrvPUkWDW/7uaT78ahVdFH2IfxbBo9gIA+o0YUi7bEXHhJiEb9tOwd1tsPJwJO3GRfQv+o/vUkRhamJZYr/uMUWjrFp7M6hop34RKS0jm3OaD2HqWHEQSlK3ctpW1O3cwZcxYnO0dWLppIyOn/MCWhQsx0FP9u5Wdk4OjrS3NGzRg3rKlKsukpqczZNJEavr78/vkKZibmPAoLg6jMr6BGHHhFiEbD9CgdxtsKjhx+8Rl9v+xlm5TR2BoblJivW7TRxbbp5S3tWCfOoStx4ezT+lp6XAv4RF7b59hVuvh77s5b+x/aTtuhlxm/6qttB3cDSdvdy4dPs2an/9m5JxvMbEs+TwxOzOL7QtX417JS+lYKLyaSrbutPatx+7QU0QnPaGmky/9arTmj1MbScnOUFmnR9XmGOrose3mCRIzUzDQ1kNdrbATXWZeDsERV4jPSEYizcfb2oVOlRqTkZvFvfhHZb4NV06dZ8fy9XQe1hc3Xw9CDgSzZOZ8Jvw+AzMrC6Xy2jraNGjTFHsXR7R1dYgMC2fzolVo6+hQr2VjAO7dvEO1hrVx9fFAU0uLY9v3sXjaPCb8PgMTi/I5PxdejY6OTonBt+JGjRr10plLXV1duX79Ok9U3JR/9uwZNjY2pdbPy8uje/fuREZGcvToUYWsOFWqV6+OlpYW4eHhrxXbEN1UhXLVrl07rK2tWbFihcLyzMxMNmzYwJAhBRcuZ86cISAgAD09PZycnBgzZgwZGaoPFgDR0dF07NgRQ0NDjI2N6d69u9KXbefOndSsWRNdXV0sLS0VUkeLd5EMDw8nICAAXV1d/Pz8lAZuBJg4cSJeXl7o6+vj7u7O5MmTycvLUyjz888/Y2Njg5GREUOGDCE7O/ul79HevXvx8vJCT0+PJk2aEBUVpVTmdd+fF91jFy9ejJOTE/r6+nTr1k2p6+vy5cvx9fVFV1cXHx8fhah/VFQUampqbNy4kcDAQHR1dfnvv//Iz89n/PjxmJqaYmFhwYQJE5AVmwWneDfVp0+f0r59e/T09HBzc2PNmjVKbZ43b558GmknJydGjBhBenp6qe/d+vXradmyJbq6uiqfP3r0KE2bNmXQoEEsXboUDQ0NHj16xJgxYxgzZgzLli0jMDAQV1dXAgIC+Pfff/nhhx8U1rF06VJ69+5Nv379WLZsmcK2hoaGcv/+fRYuXEjdunVxcXGhQYMG/Pjjj9SqVUtezt/fH1tbW7Zt21bq9ryNw9v20qBlIA2DmmDn7ECPT/tjZmlB8F7lrFSAHp/2J6hre1y9KmDjYEenAT2xtrfl+rnL8jKnDx0nIy2dEZPH4+HnjYW1FR4VfXByL7tsLJlMxrrNmxnUty9NAwLwcHNj2qRJZGdns19FRu0L6zZvpk7Nmgzq0wdXZ2cG9elD7erVWbtli7yMmakplubm8sepkBAc7e2pUaUw+69ty5YMGzCA2jVqlNk2ndt3nKqBdajWpC6WDja07NcJYwtTLh85XWq9fcs2UbFedRw8XJWe+2REP2q2aIitiwOW9ja0HdoDmVRG1K3yuyP9Mdi7ZQeBrZrTpE0LHFyc6D9iKBbWlhzetV9leStbGwaMHEpAyyboG6gOqISH3sGrkg8NmjXGytaGyjWrUb9JI+7fvVdu23H9UAjeDavj06gGZnZW1O/RGkMzE0KDL5ZaT8/IAH0TI/njRQbxC1KplKP/bqFGhyYYlxIoFhTJZDLW7drJoG7daVqvPh4uLkwbO47snBz2nzhRYr2Knp6MHTiIoEYBaGuqvrG1cusWbCwtmTJmLJW8vLC3saF2lSo42tmV6TbcOByCd4Nq+DSsjpmdFfV6BL3GPmUof6jap44t3Ub19oEYWX04+9TZ6FssObeT4PtX33dT3sr/0nac3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcN/QjVd63M5Ud3uPToDs8yktl3O4TU7HRqO/upLO9h6YiruR2rL+3nfsJjkrPSeZzyjIfJhddWUYmxhD2N4llGMklZaZx9cJMnaYm4mL7dAPYlObHrILWbNaJuiwBsHO35ZEgvTC3MOXPguMryju4uVG9UB1tnB8ytLanRuB7eVSsRGXZXXqbvF5/SoHVTHNycsXG0o/vnA5HJZIRfDyuXbfjgyKQf7uM1WFpa4uPjU+pDV1eXevXqkZKSwvnz5+V1z507R0pKCvXr1y9x/S8CceHh4Rw+fBgLC+Xgb3G3bt0iLy8Pu9c8VotgnFCuNDU16d+/PytWrFAIYmzatInc3Fz69OnDjRs3CAoKonPnzly/fp0NGzZw6tQpRo0apXKdMpmMTz75hMTERIKDgzl06BARERH06FHYDWLPnj107tyZtm3bcuXKFY4cOULNmjVVrk8qldK5c2c0NDQ4e/YsixYtYuJE5ZR4IyMjVqxYQWhoKL///jtLlizht99+kz+/ceNGpkyZwo8//sjFixexs7NTSmkt7uHDh3Tu3Jk2bdpw9epVhg4dyqRJkxTKvO7788K9e/fYuHEju3btkk/lPHLkSPnzS5Ys4bvvvuPHH38kLCyMWbNmMXnyZFauVOzaNHHiRMaMGUNYWBhBQUHMnTuXZcuWsXTpUk6dOkViYuJLg0wDBw4kKiqKo0ePsnnzZhYuXMjTp08Vyqirq7NgwQJu3rzJypUrOXr0KBMmTCh1vSdOnCjxc922bRtt27blu+++Y/bs2fLlL/a9ktZddHDOtLQ0Nm3aRN++fWnRogUZGRkcP35c/ryVlRXq6ups3ryZ/Pz8Uttau3ZtTp48WWqZNyXJkxB9LxK/apUVlvtV9yeiyElIaaRSKdlZ2RgUyZy5fu4S7j6erF24nK/6DGfaiAns3bAdaX7Zjc/3ODaWhMRE6hb5HLW1talepQrXb90qsd710FDqFPvs69aqVWKdvLw89h46RIfWrV8pNf1N5UskxEY+wq2S4gxN7pW8eRQeVWK9a8HnSHoST0DnoFd6nbycXKT5UvQMVQeMhIIst8i7EVSuWVVhuX+NqtwNvf3G6/Wu5Evk3Qju3S74bj2JiePq+ctUq6P6t+ht5UskxEfH4Oin2LXL0a8CTyIellp364zFrP5qDrvnrSTmdqTS85d3B6NnZIBPw3efof6/7PGTJyQkJVG3yJiw2lpaVK9UkcZPljgAAQAASURBVOu33+6i7sT58/h6eDDx159pMaAfvb8Yy7aDB96yxYryJfnER8fiUGyfcvBzf/k+NfMf/vt6HnvmrSLmjvI+dWX3CXSN9PFpWHZDGQj/e/IlEmIiH1KhsuJQGe6VfXh0V3m/eeHK8bMkPYknsEur8m7iR0tDTR17Y0ulbLV78Y9wMlWdDeRj7UJMyjMaulXh68A+jG3UnSDvOmiqa5T4Ou7m9lgamBCVFFum7YeC89pHEQ/wrqI4pIR3VT+ibr/aja9H9x8Qdece7n7KM2a+kJubQ35+PvoqssaF/32+vr60atWKYcOGcfbsWc6ePcuwYcNo166dwkyqPj4+8mtZiURC165duXjxImvWrCE/P5+4uDji4uLIzc0FICIigunTp3Px4kWioqLYu3cv3bp1o1q1ajRo0OC12ii6qQrlbvDgwcyePZvjx4/TpEkToKCLaufOnTEzM2Ps2LH07t1bnknl6enJggULaNy4MX///bdS1tPhw4e5fv06kZGRODk5AbB69WoqVqzIhQsXqFWrFj/++CM9e/ZU6E9epYriWFhF1xcWFkZUVBSOjo4AzJo1i9atWyuU+/777+V/u7q68uWXX7JhwwZ5UGf+/PkMHjyYoUMLxheaOXMmhw8fLjU77u+//8bd3Z3ffvsNNTU1vL29uXHjBr/88ou8zOzZs1/r/XkhOzublStXyrfpjz/+oG3btsydOxdbW1tmzJjB3Llz5RmDbm5uhIaGsnjxYgYMGCBfz7hx4xSyCufPn88333xDly5dAFi0aBEHDpR8oXD37l327dunMK300qVL8fX1VShXNJPOzc2NGTNm8Pnnn5ca0IyKisLe3l5peXp6Ot26dePbb79VCm6Gh4djbGz8Sncu1q9fj6enJxUrFpwM9OzZk6VLl8r3YwcHBxYsWMCECROYNm0aNWvWpEmTJvTp0wd3d8XxJxwcHLhy5cpLX/NNpKemIZVKMTZV7FpkZGpCalJKCbUUHdq2h9zsHGo0KpzE41ncUxKehFInsAGjp07gaUwc6/5egTRfSrverz9IqSoJiYkAWBTrvmthZqZyvLei9VTVebG+4o6fOkV6ejrtW5XvCX5mWgYyqRRDEyOF5QYmRqQnp6qskxj3jGMbdtNv8mjUNUo+8S3q2IbdGJmZ4FZR9dgpAqSlFHwvTMxMFZabmJmQkpj0xuut36QRackpTBv3Lchk5Ofn07x9Kzr06vKWLVYtOz0TmVSGnrHixYKesQGZqaqzh/VNjGjUrz1WznbkS/IJP3uN3b+tpP2XA7HzcgUg7l40d05dpsvkD7ur24coIblg/7EoNrOahYkpsc+evdW6Hz+JY8v+ffTp0JFBXbtxKzycOf8uQUtLi3ZNmr7Vul94sU/pF9+njAzISlWdda9vYkijvu2wdLEjP09C+Lkb7PltNe3GD8DOqyBbOu5eNHdOX6Hz5M/KpJ3C/67MVNXHQkMTIyJK6HqaEPuUI+t2MWjq2Fc+FgrK9LV10VBXJz03S2F5em4WRjqqb+CZ6xnjbGaLRJrP2isH0dfSpX3Fhuhp6bL9ZrC8nI6mFl8H9kVTXQOpTMru0NNEJJT9BGUZaQXHb0NTxa6BhiYmpCXfLLXu9KFfPT8vzieoe0fqtggoseye1VswMTfDs7LqjEHhf9+aNWsYM2YMLVsWjB3YoUMH/vzzT4Uyd+7ckQ8v9OjRI3buLBimpPgkjMeOHSMwMBBtbW2OHDnC77//Tnp6Ok5OTrRt25YpU6ag8Zq/XSIYJ5Q7Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bun0HVRJpMhlUqJjIxUCtqEhYXh5OQkD8QB+Pn5YWpqSlhYGLVq1eLq1asKAyuWJiwsDGdnZ3nQCqBevXpK5TZv3sz8+fO5d+8e6enpSCQShf7jYWFhDB+ueFFTr149jh07Vupr161bVyFTp/hrv+7784KqbZJKpdy5cwcNDQ0ePnzIkCFDFN4niUSCiYliQKdo5llKSgqxsbEKbdTU1KRmzZpKXVWLbuOLMi/4+PgoTQ997NgxZs2aRWhoKKmpqUgkErKzs8nIyChxso2srCyVwUg9PT0aNmzIkiVL6NWrl8J79KqDdkJB0LBv377y//v27UtAQADJycny9o8cOZL+/ftz7Ngxzp07x6ZNm5g1axY7d+6kRYsWCm3KzMws8bVycnKUpvB+1bET5IpvlkzFMhXOHz/D7jVbGTF5vEJATyaVYWRqTN/RQ1HXUMfF053kxCQObtnzxsG4fYcOMavImHzzn8+UVPwzkalYpqR4HZmsxM3dsXcv9evUwcpSefy8cvGK2yOVStn+12oadWmFhZ3yjE+qhOw+wq2QK/T9biSa2u9mopT/aSq/F2+eHRl69Qbb125m8JjPqODjyZOYOFb99S9bLTbQuW/5DVSvRvH9veSypraWCoPq21RwIj0plWsHz2Dn5Upudg7Hlm6lUb8OKseRExTtCz7OrL8LbwzN/75gOAOlz4S32rUAkMpk+FXwYGS//gD4uFfgfnQ0W/bvK7Ng3JtQtU9lJKZw/VAIdl4uBfvUsu006tcOXZGxK8gpH6dVHailUilb/1xFYNfWr3wsFF5G8SChhlqJx40X5yebrh8lR1IwBM/+2yH0qNqC3aGnkEgLen/kSvJYeGYL2hpauFvY08qnLolZqUQlln12XEG7ii+RvfRHduSPE8nNzuHB3Qj2rN6ChZ011RvVUSp3dNs+rpw6x4jpE9D6/3IuVdqJw0fK3Nyc//77r9QyRa9hXV1dS7ymfcHJyYng4OBSy7wqEYwT3okhQ4YwatQo/vrrL5YvX46LiwvNmjUDCg7An332GWPGjFGq56xiVrKSgilFl+u9xgDzqr5wxdd/9uxZeaZdUFAQJiYmrF+/nrlz577y67zqaxf3uu9PSV5sk5qaGtLng9ovWbJEnq32QvGI/tvOOvtiG0sLrDx48IA2bdowfPhwZsyYgbm5OadOnWLIkCFK4/IVZWlpSVKScoaLhoYG27dvp0uXLjRp0oSjR4/i93xQfy8vL3lQsbTsuNDQUM6dO8eFCxcUui3n5+ezbt06Pv/8c/kyIyMjOnToQIcOHZg5cyZBQUHMnDlTIRiXmJhY6sQhP/30k9LMQFOmTCGwb/sS67xgaFwwFlTxLLi0lBSlbLniLpwIYdWCf/hs0lh8q/krPGdiboqGhgbqGoUjGtg5OZCalIwkT4Km1usfQgIaNJBPsADIU77jExOxLDImQ2JSEualTHZhYW6ulAWXmJyscvKQ2Lg4zl++zK8vmXmpLOgbGaCmrq6UBZeZkoZBsQwBgNysHGIjHxL34DEHVm4Fnn9nZDJm9f+S3hOH41rRU17+7J5jnN55mN6TPsfGWTkrVChk9HyMtJTEZIXlKckpStlyr2PTirU0bB5IkzYF329nd1dysrP597eFfNK7m9IYWm9L11AfNXU1pSy47LQM9I0NX3k91m6O3Dt3HYDUZ4mkJSRz4K+18udf/FYvGT6NHtNHY2z9bibi+V8QULs2lbwKs1Bz8yQAxCcnYVnkNycxJRnzYjeaXpelmRluRW42Arg5OnI05Mxbrbeown1KMQsuKy1DKQOzNNbujtw7dwOAtGdJpCckc+Cv9fLnX+xT/34+g+7TR2JsJfap/y/0jZ8fC1MUj4UZqekYGqs6FmYTcz+a2KhH7F2xGSg8Fk7vM45+34zArZLIBH8VmbnZ5EulGGorBsUNtHVJz1V9UzgtJ5PU7Ax5IA7gWXoy6mpqGOsakJhZ8DnKQP53XFoCVgZmBLhXLfNgnIFRwfE7LUlx/0lPScXIpPSB9C2eT85k5+JIWnIqBzfsUArGHdu+nyNb9jB86lfYuzqpWo0gvBMiGCe8E927d2fs2LGsXbuWlStXMmzYMHlwpnr16ty6dQsPD49XWpefnx/R0dE8fPhQnh0XGhpKSkqKPAOqcuXKHDlyhEGDBr3y+mJiYuRdHkNCQhTKnD59GhcXF4WZNB88eKBQxtfXl7Nnz9K/f3/5srNnz770tbdv366wrHid131/XlC1Terq6nh5eWFjY4ODgwP379+nT58+r7xOExMT7OzsOHv2LAEBBWnfEomES5culThzjK+vLxKJhIsXL1K7dm2gIB246GQSFy9eRCKRMHfuXPmF7MaNG1/anmrVqpU4E6yOjg5bt26la9euNGnShCNHjlCpUiW6du3KpEmT+PXXXxXG/HvhRdbb0qVLCQgI4K+//lJ4fvXq1SxdulQhGFeUmpoaPj4+nDmjeOF08+ZNAovM4llcSVN6hzwsPR0fQFNLE2cPN8Ku3KBa/cKJI8Ku3KRK3ZInJjh//Ayrfl/M0Amj8K+tPL5PBT8vLhw/g1QqlX8uTx7HYmJu+kaBOAADfX2FGVJlMhkW5uacu3gRH8+CoFNeXh6Xr11j9Keflrieyn5+nLt0iT5FZtI9d/EilStWVCq7c/9+zExNaagi47WsaWhqYufmSOTNu/jUKhzDL/LmXbxqVFIqr6Onw7CfFMcvvHT4NA9Cw+k8ZiCmRS5eQ3Yf5fSOQ/Sa+Bn27h/OLIUfKk0tLdy8KnDj0lVqNSzsfn3z0lVq1Fe+S/6qcnJyUFdXvLmgrq5ecMO5HO46a2hqYulsz+PQCNyqFWb5PgqLwLWKTyk1FSU8jEXfpCB4Z2prSdcpir9hF7YfJS8nl/o9WmFgXvrFzv83Bnr6CjOkymQyLMzMOHf1Kj7uBeOu5eXlcfnmLUYXGebhTVTx8eXBY8VuXw9iYrCzKrtsIQ1NDSyd7Xgcdh+3aoX70OOw+7hUKXl8peISHsah93yfMrG1pMsPir0DLu44Rl52DvV6tMLArPQbQ8LHRUNTE3s3J+5fv4NvrcJhYu7fuI13DX+l8jp6unz+q+KwIhcOniIy9C7dxw3GVMXsmYJq+TIpManxVLB0IOxplHx5BUtHbhf5v6jopDgq2rqjraFJbn7BzQYLAxOkMimpJcy+CgVJaqWNK/emNLU0cazgwt1rt/CvW3h9cfdaKBVVnK+WSFYw/lxRx7bv5/Dm3Xw6+QucVEyYJQjvkgjGCe+EoaEhPXr04NtvvyUlJYWBAwfKn5s4cSJ169Zl5MiRDBs2DAMDA8LCwjh06BB//PGH0rqaN29O5cqV6dOnD/Pnz0cikTBixAgaN24s7wo5ZcoUmjVrRoUKFejZsycSiYR9+/apHLS/efPmeHt7079/f+bOnUtqaqpC0A3Aw8OD6Oho1q9fT61atdizZ4/SpAVjx45lwIAB1KxZk4YNG7JmzRpu3bqlNHZYUcOHD2fu3LmMHz+ezz77jEuXLinNPPu6788Lurq6DBgwgDlz5pCamsqYMWPo3r07trYFsx5NnTqVMWPGYGxsTOvWrcnJyeHixYskJSUpBYWKb+fPP/+Mp6cnvr6+zJs3T2mW1qK8vb3lg2f+888/aGpqMm7cOIXsxQoVKiCRSPjjjz9o3749p0+fZtGiRSWu84WgoCClCSeK0tbWZsuWLXTv3p2mTZty5MgR/P39+e233xg1ahSpqan0798fV1dXHj16xKpVqzA0NOTnn39m9erVTJ8+nUqVFAMoQ4cO5ddff+XatWvIZDKmTJlCv3798PPzQ1tbm+DgYJYtW6aQTZeZmcmlS5eYNWtWiW19nSm9VWneqQ3L5y7ExdMddx9PTu4/SuKzeALaFGSgbluxnuSERAZ9OQIoCMQtn/c3PT7tj5u3pzx7SFtHG73ns0g2btOCY7sOsmHxKpp2COLp4zj2bdxB0/ZlN+6ampoavbp2ZfmaNTg7OuLk6Mjy//5DV1eXVs2by8v9MGsW1lZWjHrerbpnly58OnYsK9atI7BBA46fPs25S5dYumCBwvqlUim79u+nXVAQmirGcUhJTSXu6VOexccD8CA6GijIvLNUkWX3Kuq0DmTH32uwc3fC0cOVK8fOkJKQRPVmBTM3Hduwm7SkFDoM74OaujrWTooZmgbGhmhoaSosD9l9hODN+/hkRD9MLM3lmXfaujpo6775fvOxa9OlIwt/mY+7lweeft4c3XOQ+KfxNGtfMFHG+n9XkxifwIhJ4+R1ou7dBwrG3UxNTiXq3n00tbRwdCm4+VO9bi32bdmJi4c7Hj5ePImJZdOKtdSoV6vcxjmq3KIex5ZtxdLFHpsKToSduER6Ygq+jQuOeee3HiYjOZUmgwu6j984HIKRhSlm9tbk5+dz7+x1Ii+H0WJ4d6AgUGnuoDiQt45+QZf/4ssFZWpqavRq34HlmzfjbG+Pk509yzdvQldHh1YBheMT/TD/N6wtzBnVryBAl5eXx/2HBRMk5EkkPEtM5M79++jr6eJkV3DjrHeHjgyeNIFlmzbSomFDbt0NZ9vBA3w3YqRyQ96Cf/N6HF++DSsXO6zdHbl98nLBPhVQcAPn/LYjZCSn0WTQJwDcOHwWI0tTzOysCvapczeIvBxG888Kbohoamli7qAYMNSW71Pvv9uhnpYOjiaF2en2xpZ4WjqSmp3Bk/Q3H0PyXftf2o66bZuw7a/V2Ls74ejlxqUjZ0iJT6Jm84YAHF63k7SkFDqN6Pf8WKiY7W1gYoimlpbScuHlzkRdp0vlJsSkxPMw+Qk1nXwx0TXkfHTBBDMtvGphrGPAlhvHAbgee4/ACtXp5B/I0fCL6GvrEuRdh8uP7si7qAa4V+VxyjMSM1PRUFfHy8qZqvZe7Aotn8nJAtq3ZN2Cf3H0cMXVuwJnD54gKT6Rei0bA7Dnvy2kJCTRe2zBWN2n9h3FzNIca4eCc6fIsHCO7zxAwzaF3fuPbtvH/nXb6fvFMMysLeU9SnR0ddDRUz0G90dF+v+vm+qHTgTjhHdmyJAhLF26lJYtWyp0r6xcuTLBwcF89913NGrUCJlMRoUKFRRmRy1KTU2N7du3M3r0aAICAlBXV6dVq1YKganAwEA2bdrEjBkz+PnnnzE2NpZnchWnrq7Otm3bGDJkCLVr18bV1ZUFCxbQqshA7x07duSLL75g1KhR5OTk0LZtWyZPnszUqVPlZXr06EFERAQTJ04kOzubLl268Pnnn5c6uYGzszNbtmzhiy++YOHChdSuXZtZs2YxePDgN35/XvDw8JDP1JqYmEibNm0UJkMYOnQo+vr6zJ49mwkTJmBgYIC/v7/CRAqqfPnll8TGxjJw4EDU1dUZPHgwnTp1kg98qcry5csZOnQojRs3xsbGhpkzZzJ58mT581WrVmXevHn88ssvfPPNNwQEBPDTTz8pZBmq0rdvXyZOnMidO3cUZsUpSktLi40bN9KrVy95QG7EiBF4eXkxZ84cOnXqRFZWFq6urrRr147x48ezc+dOEhIS6NSpk9L6PD098ff3Z+nSpfzwww+4uroybdo0oqKiUFNTk///xRdfyOvs2LEDZ2dnGjVqVOr2vI1aAfXISE1nz7qtpCQmY+/iyKhpE7CwLjhpT0lMJvFZgrz8yf1HkObns+7v5az7e7l8eb1mAQwcX5DdYG5lwdgZk9i05D+mj5yEqYUZTTu0olXXDmXa9gE9e5KTk8PP8+eTlpZGJV9f/pw9WyGDLu7pU4Xuf1UqVeLHH37g76VLWbRsGY729vz0ww8KXWABzl+6RNyTJ3QoNiHLCyfOnGFakQlTvp0xA4BhAwbwWZGbBq/Dr+7/sXfX0VEdbQCHf3F39wRCgrsEJ1AI7m5toUILpZQKbanQUqgipbSUUtydFnd3AsESgoYEiBF33e+PwIbNbpDGgO99ztlzkrszd9/Zvbv37uw7M/VIT0njyMadpCYmY+fqxMCP38LCtqBzLzUxmaT7z/alKXDPUfJy81g/a5HK9pa9Amglq84Vq6l/C1KTk9mwbDWJ8Qm4errzydQvsXMo6BxIjI8nLkZ1wv3PRxX+GHHr6g2O7TuErYMds5bPA6DX0P5oaWmxduFy4u/HY25hTv2mjeg/4umzjJ9V5UY1yUxL5+zWg6QnpWLtbE+n94ZgZmMJFAyDTo0v/AzOy83jxLpdpCWmoKuni5WzPR3fG4x7LRnmVVpe7dW74HNr7p+kpKZS08eH2ZO+Ucmgi4qNRfuRKRpi4+MZMn6c8v+lmzaydNNG6teoyV9TCn6sqVGlCr98+jmzly7h7zWrcXZw4MORb9CpdZtSjb9yoxpkpaVzdush5THVcczgR46pVNIeOaby8/I4uW638piydLYjYMwg3GtVKeYRni9V7TyY3avwvT22RUEn4raQ40zZV/yPes+bF6kdNZvWJyMljYMbdpKamIS9mxNDJoxSZnz/l3OheDqXom5irGdIG+/6mBkYE50Sz9LA7SRlFkx3YGpgjIVR4TQH2Xm5LDqzlS7VmjOqWW8ysjO5FHWTPddOK8vo6ejSrXoLzA1NyMnL5X5aIusu7ONS1M0yaUO9Fo1JT0ll95rNJCck4eTuwhsT38favmDuyuSERBLvF05XoshXsG3ZeuJj7qOto4ONgx1dhvbB70HnHcCxHfvJy81l8c9zVB6rQ//uBAzsUSbtEOJxtBRPM2mVEOKFMmnSJDZt2kRQUFBFh1LmPvnkE5KSkpg7d25Fh1Ksxo0bM27cOAYPHvzMdQ9cDyyDiMpXG+8GpNy7V9FhlIiZszNLTm+r6DBKbHijzhUdQqkIjAip6BBKrIFbNaYdXFnRYZTYh60HVXQIpSIlJLSiQygxs2q+/HJg+ZMLPsc+ajOE5r+/+Cv8Hh3950vTjhVni/9R+UUwuH5ARYdQar7c8VdFh1Aikzu+xZbLRyo6jBLrWqNFRYfwnyQfKr25R0ubeatmFR1ChSjdWYaFEKKcTZw4EQ8PD/Ly8io6FI1iYmLo27cvgwa9HF9YhRBCCCGEEC8YRf7ze/s/JcNUhRAvNAsLCz7//POKDqNY9vb2GucqFEIIIYQQQgjx/0ky44R4CU2aNOn/YoiqEEIIIYQQQgjxopHMOCGEEEIIIYQQQoiXlSwV8NyRzDghhBBCCCGEEEIIIcqJdMYJIYQQQgghhBBCCFFOZJiqEEIIIYQQQgghxMsqX4apPm8kM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4WSnyKzoCUYRkxgkhhBBCCCGEEEIIUU6kM04IIYQQQgghhBBCiHIiw1SFEEIIIYQQQgghXlb5sprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLyuFDFN93khmnBBCCCGEEEIIIYQQ5URLoZAuUiGEEEIIIYQQQoiXUfLOvRUdQrHMA9pVdAgVQoapCiHEcywk6mZFh1Bi1RwrkTRvcUWHUSIWb77K9diIig6jxLzt3Co6hFKx/9qZig6hxPyrNOSXA8srOowS+6jNkIoOoVSsOLuzokMoscH1A5h/cnNFh1EiI5t0o/nvoyo6jBI7OvrPl6Ydvx1ZW9FhlMh7LfpVdAilZtrBlRUdQol82HoQkUmxFR1GiTlZ2FV0CP+N5GA9d2SYqhBCCCGEEEIIIYQQ5UQ644QQQgghhBBCCCGEKCcyTFUIIYQQQgghhBDiZZWfX9ERiCIkM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4Wckw1eeOZMYJIYQQQgghhBBCCFFOpDNOCCGEEEIIIYQQQohyIsNUhRBCCCGEEEIIIV5W+TJM9XkjmXFCCCGEEEIIIYQQQpQT6YwTQgghhBBCCCGEEKKcyDBVIYQQQgghhBBCiJeVIr+iIxBFSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVYhStGjRIhwcHOjUqVNFhyKEEEIIIYQQQshqqs8h6Yz7P+Lp6cm4ceMYN25cue1PS0uLjRs30rNnz//8OJMmTWLTpk0EBQU9dZ0DBw7g7+9PQkIClpaW//mxn8WGDRv46aefOHr06H+q/9prr5GYmMimTZsAaNOmDXXr1mXmzJnF1imN1/TR1ygsLAwvLy/OnTtH3bp1//M+n0ZpHY/79u3j3XffJTg4GG3t5y/ZNyYmhho1ahAUFISLi0uZPta2jVvYtGodCfHxuHl6MHLM29SoU1Nj2fi4eBb+Po8bV68ReeceXfp05433RqmUOX7oKOuWrSby7j3ycnNxcnWhR//e+Ae0K9N2FKVQKJh37DCbLgSRkpVJDUdnPn4lgMq2dsXW2XLpAt/u2KK2/fC4TzDQLf1T35YN/7Bh5Vri4+Jw9/TkrfffpWadWsWWv3juPPN++5PwsDCsbWzoO2QAnXt2U96fm5vLmqUr2bt9F3H37+Pq5sZr77xBQ7/GyjKv9x1CTFS02r679OrOux+OLd0GvsAObN3N7g1bSYpPxNndhX5vDqNKzaoay547dpqD2/Zw5+ZtcnNycHJ3pevgPtRoUFulXHpqGv8sXcO5Y2dIT03D1sGOPiOHUKtR3TJrR/CB05zfdZyMpBSsnO3x698BpyoeGsveCw1j6/Qlatv7ffMulo62AFw9FsTBxf+qlXl99ufo6snl4bM6veswx7bsJSUxGXtXRwKG98GjauUn1gsPvcmib2dh7+bEqB8mlEOkhc7tOcqpbQdITUrB1sWBtkN64OZb6Yn17ly9xcqpc7BzdeS178Yrt188fJrt81arlR//9/fo6uuVauzPqo6TN4PrdaCqvTu2JpZ8um0Oh2+dr9CY/ovnvR0X953k7M7DpCemYu1iT8uBnXH28dRY9s6Vm2z6eYHa9iHfvY+VU8H5Pe5uNCc37SX29j1S4hJpMbAzdds3K8smvDQuHzjFhZ3HSH9wzmg6oONjzhm32DJtsdr2/t+MxtJJ/Vrr+qmL7Pt7PR51fAkYPajUYt60bgOrlq4kLi4Or0qejPngfWrXq1Ns+aCz5/hj5m/cuhmGra0NA4cNoUefnsr7D+0/yLKFS7h75y55ubm4uLkyYMhAOnTuqCyTm5vLonkL2LNjN/HxcdjY2NCxa2eGjXj1ufxeIV4ucrX1AujWrRsZGRns2bNH7b7jx4/TrFkzAgMDqV+/frnGdfr0aUxMTMr1MZ9XN2/e5IsvvmD79u1YWVmVyj43bNiAnl75Xry6ubkRGRmJra1tmT9WaR0/n3zyCRMnTlSeMBctWsS4ceNITExUlgkJCaF9+/Y0btyYlStXYmBgwP79+/n55585efIkGRkZeHp60qlTJ8aPH6/Waebr68utW7e4deuW2n03b95k4sSJHDx4kPj4eGxtbWnQoAE///wzPj4+2NvbM2zYML7++mv+/vvvEre3OEf2HWTB7Lm8/cFoqtaszs7N25g84Ut+WzwXOwd7tfI52TlYWFrQb+hA/l27UeM+Tc3M6Dd0AC7ubujq6XLm+Cl++3E6llaW1GvcoMzaUtSSUydYGXiKrzp2xd3KmgUnjvLe2pWsHfk2JvoGxdYz0Tdg7ci3VbaVRUfcob37mTdrDu9+OJZqtWqw45+tfP3RZ8xZOh97Rwe18lH3Ivn644l07NaZj776lJCLl/lj2iwsLC1o3qYVAEv+WsiBXXt4b8J4XN3dOHvqDFM+n8Qvf/5KZZ8qAMyc9zt5+YWT8d6+eYsvPphAC/9Wpd7GF9WZQ8dZO28pg955ncrVfTi8fR+zJ/3E13/8hLW9+ufctUtXqFa3Jj2H98fIxITjew7yx+RfmDDtW9wrewKQm5PLr1/+gJmFOW99NhYrW2sSYuMxNDIss3bcOH2Z42t20nxwZxwqu3Hl0Fl2/LaCfpPexdTaoth6/b4djb5h4XvE0MxY5X49QwP6fztaZZt0xD27S8fPsmPJBrqM6IebbyUC9xxl+Q9zGP3L51jYWhdbLzM9g01/LKVSTR9Sk1LKMWIIORHE3uX/0v7V3rhW8SRo/wnW/fI3I7//GHPb4q9jstIz2PbXKjyqe5OenKp2v76RIW/8+InKtoruiAMw0jPgetwdtl05xtROo55c4Tn1PLfj2qmLHF61jdZDu+Hk7c7lg6fZPHMJgyePxczGsth6Q6aMQ9+o8HPKyKzw2jA3OwcLO2u8G9bkyOptZRn+S+XG6UscX72DFoO74ODtTsihM2yftYz+k0Zj+pjXov/kMUXOGerX6SlxiZxctwvHKu6lGvO+3XuZPX0W4z75kFp1avHvxn/4ZNxHLF69FAdHR7XykXfv8em4j+nSsxsTv/mKi+cvMvOnaVhaWdK6bRsAzMzNGPb6cNw9PdDV0+P4kaP8MPl7LK2saNy0CQArlyzn3w3/8NnXE/Gs5EVoyBV+nDwVE1MT+g7sX6ptFKIo6e59AYwcOZJ9+/Zx+/ZttfsWLFhA3bp1y70jDsDOzg5jY+MnF/w/UKlSJYKDg/Hw0PyL06NycnKeap/W1taYmZmVNLRnoqOjg6OjI7pl0GFRVGkcP8eOHePatWv069ev2DKnT5+mZcuWBAQEsHbtWgwMDJg7dy6vvPIKjo6OrF+/nuDgYP7880+SkpKYNm2aSv0jR46QmZlJv379WLRokcp92dnZtG/fnuTkZDZs2EBoaCirV6+mZs2aJCUlKcu9/vrrLF++nISEhBK193H+WbORVzp3oH3Xjrh5uvPGe6OwtbNjxz9bNZZ3cHLgjbGj8O/4CsammjtFa9WrjV+r5rh5uuPk4ky3vj3xrORF8MXLZdaOohQKBavOnuK1Js3x96lKZTt7vu7UjczcHHaGPD4OLS2wNTFVuZWFjavW06FrRwK6dcbd04O33n8XW3t7tm3arLH8tk1bsHOw563338Xd04OAbp1p36UjG1auVZbZv3MP/YcNplHTJji5ONOlV3fqN2nIhlXrlGUsrCyxtrFW3k4fO4mTizO1HvMr8v+bPZu207x9G1oE+OPk5kL/t4ZhZWvDwW3qP24B9H9rGAF9u+HpUxkHF0d6vjoAe2dHLp46qyxzbPcB0lJSeeeLD/Cu7ouNvR3eNXxxrfTkz///6uKe4/g2r0fVFvWxcrKj6YAATK0sCD545rH1jMxMMLYwVd6K/sqvpYXK/cYWZfMeedmd2Lqfev5+1G/bDDsXRzq+2gcLGytO7z7y2Hpb/l5NzeYNca3iWT6BPuLMjoPUbt2YOm2aYOPiQLuhPTCztuTcvuOPrbdz4Xqq+dXD2Vvz8a6lBaaW5iq358GJ8MvMO/kvB28GVXQoJfI8tyNo11Gqt2xAjVYNsXa2p+WgLphaW3DxwKnH1jM2N8HEwkx5e/RzysHLleb9O+LTpDY65XBt+rK4sPs4vi3qU7VlA6yc7Gg2oNMznDPMlLei54z8/Hz2/b2eBt39H9tp/1+sXbGKzt270rVnNzy8PHlv/PvYO9jzz/pNGsv/u2ET9o4OvDf+fTy8POnasxudunVh9bKVyjL1GtSnpX9rPLw8cXF1oe/A/lT2rszF8xeUZS5fvEyLVi1o2qIZTs5OtGnnT6MmjQkNCS3V9j0XFIrn9/Z/SjrjXgBdu3bF3t5erSMgPT2d1atXM3LkSKCgY6JVq1YYGRnh5ubG2LFjSUtLK3a/4eHh9OjRA1NTU8zNzenfvz/R0apDnv79918aNmyIoaEhtra29O7dW3mfp6enyhDKa9eu0apVKwwNDalevTq7d+9We8wJEybg4+ODsbExlSpV4ssvv1TrnPrhhx9wcHDAzMyMkSNHkpmZ+cTnaNu2bfj4+GBkZIS/vz9hYWFqZZ71+Zk0aRJ169Zl7ty5uLm5YWxsTL9+/VQyrgAWLlxItWrVMDQ0pGrVqvzxxx/K+8LCwtDS0mLNmjW0adMGQ0NDli1bRl5eHuPHj8fS0hIbGxs++eQTFEU+iNq0aaMyhDMmJoZu3bphZGSEl5cXy5cvV4t5+vTp1KpVCxMTE9zc3Hj33XdJTVX/5bo4D+N9OCT4wIEDaGlpsXPnTurVq4eRkRFt27YlJiaG7du3U61aNczNzRk0aBDp6ekqsY8ZM4YxY8Yo2/jFF1+otLHo8fNfYl+1ahUdOnTA0FBzRsq+ffto27Ytr7/+OvPnz0dHR4c7d+4wduxYxo4dy4IFC2jTpg2enp60atWKv//+m6+++kplH/Pnz2fw4MEMGzaMBQsWqLQhODiYmzdv8scff+Dn54eHhwfNmzdnypQpNGrUSFmuVq1aODo6snGj5gy0ksrJyeHG1WvUbaTaKV+3UX2uXAoulcdQKBScDzzH3Yg71KiteehrWbiXlEhcWhp+nl7Kbfq6utR3defC3buPrZuRnU33ubPp+udvfLBhDaHRUaUeX05ODtevXqVeo4Yq2+s3akBIMc/9lcvB1G+kmllYv3FDrl25Sm5u7oP9ZqNnoK9SRl/fgOALl4qNY/+uPbTv0hEtLa3/2pyXSm5OLuHXb1Gtnupw4Wr1anHzyrWn2kd+fj6ZGZkYmxZ2Up0/eZZKVauwcs4iPh76Dt++O4Hta/4hPy//MXv67/Jy87gfHolLddUhjy7VKxF9I+KxdTd89xfLPp7O1ulLuBd6S+3+nKxsVn72KysmzGDH7JXcD48s1dj/H+Tl5nLvVgSVa6sOfa5Uuyp3rqo/5w+dO3CChOj7tOnTsdgyZSUvN5eosLt41vRR2e5Vy4e718KKrXfx0CkSY+7TvFf7YstkZ2bz5wff8cf7k1k3bT7RYY//nBYvh7zcXGJu38OthrfKdrfq3kRdD39s3VXf/M6C8T+w6ecF3LlysyzD/L+Ql5vL/fB7uBY5Z7hWr/zkc8bkuSz96Be2TF/MvSvqn19ntxzEyMyEqi1KNwkkJyeH0CtXadSkkcr2Rk0acbmY657LFy+rlW/s15jQkCvKa6lHKRQKAk+dIeJ2OHXq1VVur1W3FoFnAom4XXCcXr96jYvnL+DXzK+ErRLiyaQz7gWgq6vL8OHDWbRokUpHwNq1a8nOzmbIkCFcvHiRgIAAevfuzYULF1i9ejVHjhxhzJgxGvepUCjo2bMn8fHxHDx4kN27d3Pjxg0GDBigLLN161Z69+5Nly5dOHfuHHv37qVhw4Ya95efn0/v3r3R0dHhxIkT/Pnnn0yYoD73iZmZGYsWLSI4OJhff/2VefPmMWPGDOX9a9as4euvv2bKlCmcOXMGJycnlc4tTSIiIujduzedO3cmKCiIN954g08//VSlzLM+Pw9dv36dNWvWsHnzZnbs2EFQUBCjRxcO6Zk3bx4TJ05kypQphISEMHXqVL788ksWL1add2HChAmMHTuWkJAQAgICmDZtGgsWLGD+/PkcOXKE+Pj4J3bUvPbaa4SFhbFv3z7WrVvHH3/8QUxMjEoZbW1tZs2axaVLl1i8eDH79u3jk08+KWaPT2/SpEnMnj2bY8eOERERQf/+/Zk5cyYrVqxg69at7N69m99++02lzuLFi9HV1eXkyZPMmjWLGTNmPHaY5n+J/dChQ8Uekxs3bqRLly5MnDiRn3/+Wbn94fumuH0/OsdgSkoKa9euZejQobRv3560tDQOHDigvN/Ozg5tbW3WrVtHXl7eY2Nt3Lgxhw8ffmyZ/yolKZn8vHwsrVV/pbSwsiQhvmTZeGmpaQzs2Iu+7brx3adf8+bYd9Q6/cpS3IMOc+siQ5qtTUyISy++s9bD2oavOnXjl179mNy1BwY6OryxcgnhCfGlGl9yUpLG597S2oqEOM2PlRAXr7F8Xl4eyYkFGZX1Gzdk06p13I24Q35+PudOB3LyyDHii9nniUNHSU1N5ZXOHUqhVS+H1OQU8vPzMbdSHcZpbmVBckJSMbVU7dm4jezMLBq0bKLcdj86hrNHT5Gfn8+YSZ/QaUBP9mzcxvY1m0ozfKXM1HQU+QqMzVXfA0ZmJmQka/5BydjClJZDu9J+VD/aj+qHhaMtW2csJfJqYYa9haMtrV/tQYd3B+D/Rm909XT596eFJEXHlUk7XlbpyWko8vMxtVDNZDe1MCt26GlcZAx7V26m95jhaOvolEeYKtJTCmI2KRKzsbkZacXEHB8Vy8E12+g6akixMds42dP5zQH0/mAE3d4dgq6+Lsu/m018VGypt0E8XzJS0lHk52Nsrppda2xhQnqS5nO1iaUZ/sN70OndwXR6dzCWjrZs+mUhdzX8cCCe3sNzhlHRc4a5icah5QDGFma0HNaN9qP60+GdAVg62LBlxmIir4Ypy0RdDyf0yFlaDeumcR8lkZSYRH5eHlY2qsP6raytiY/TfE6Kj4vDyrpIeRtr8vLySHokcSI1NZWOrdvzSrM2fDr+E8Z+NI6Gj3TiDR4+lHYdXmF4/yG0a9qaN4eNoO/A/rQLKP5HByFKi+T7viBGjBjBzz//rFyYAAqGqPbu3RsrKyvef/99Bg8erMykqlKlCrNmzaJ169bMmTNHLXNoz549XLhwgVu3buHm5gbA0qVLqVGjBqdPn6ZRo0ZMmTKFgQMH8s033yjr1amjefjTnj17CAkJISwsDFdXVwCmTp2qtqroF198ofzb09OTDz/8kNWrVys7RmbOnMmIESN44403APjuu+/Ys2fPY7Pj5syZQ6VKlZgxYwZaWlr4+vpy8eJFfvzxR2WZn3/++Zmen4cyMzNZvHixsk2//fYbXbp0Ydq0aTg6OjJ58mSmTZumzBj08vIiODiYuXPn8uqrryr3M27cOJWswpkzZ/LZZ5/Rp08fAP7880927txZbBuvXr3K9u3bOXHiBE2aFHwpnD9/PtWqVVMp92gmnZeXF5MnT+add955Yofmk3z33Xc0b94cKBg2/dlnn3Hjxg0qVSqY6Llv377s379fpQPWzc1N7TWZMWMGb775psbH+C+xh4WF4ezsrLY9NTWVfv368fnnn6t1zF67dg1zc3OcnJye2O5Vq1ZRpUoVatSoAcDAgQOZP3++8j3o4uLCrFmz+OSTT/jmm29o2LAh/v7+DBkyRPncPOTi4sK5c+eKfaysrCyysrJUthkYFD8fmmZFM6IUJc6SMjI2Ysbfv5ORkcGFs0Es+GMeDs5O1KpX+8mV/4MdwZf4fvd25f8zehfM16FVpG0Khfq2R9VydqGWc+H8fnVc3Bi2ZD5rzp7ho3al32FV9HlWKB7/3Kvd9fCHlgd3vP3+aGb9NJ1RQ0aAFjg5O/NK5wD2bNP8ObFr63YaNmmMTTnM9/iiUT92FOpvFQ1OHzzGlhUbeOfL8ZhbFnboKfIVmFmaM3TMG2jraOPh7UVSfAK7Nmyly6Dej9lj+bF0tFUu1ADgUNmNtPgkLuw+jpNPwfBCh0quOFRyVZZxrOzOhil/cXn/aZoNLP9srRff0x1n+fn5bJi9hDZ9O2HjpD6fZ8VSqH82URDzljnLad67A9YaJnN/yNnbQ2X4qmsVTxZ/NZOzu4/yyrCeZRCveO4pKPbz1srRDivHwuPJydud1IQkzu08iouvl+ZK4qlpum4qjqZzRmpCMud3HcPJx5PszCz2z99Ay2HdNc4jV1o0n68fdy2lofyDPT1kbGzM38sWkpGRwdnTZ/h95mycXJyp16Dgh+V9u/eye/suvpj8NV6VvLh+9Rqzp8/CxtaWjl1Vv8e+8P6Ph4M+r6Qz7gVRtWpVmjVrxoIFC/D39+fGjRscPnyYXbt2ARAYGMj169dVhi4qFAry8/O5deuWWqdNSEgIbm5uyo44gOrVq2NpaUlISAiNGjUiKCio2I6TokJCQnB3d1d2WgE0bdpUrdy6deuYOXMm169fJzU1ldzcXMzNzVX2M2qU6oS0TZs2Zf/+/Y99bD8/P5UP5KKP/azPz0Oa2pSfn09oaCg6OjpEREQwcuRIlecpNzcXCwvVTIxHs7eSkpKIjIxUiVFXV5eGDRuqDVV9tI0PyzxUtWpVtZVi9+/fz9SpUwkODiY5OZnc3FwyMzNJS0sr0WIJtWsXdrw4ODgohxk/uu3UKdU5QTS9JtOmTSMvLw8dDb+q/5fYMzIyNHakGhkZ0aJFC+bNm8egQYNUXt8ndZI8av78+QwdOlT5/9ChQ2nVqhWJiYnK53706NEMHz6c/fv3c/LkSdauXcvUqVP5999/ad++8Fc1IyMjlaG8RX3//fcqHd8AX3/9NQNGDX9inGYW5mjraJMYr5o1lZSQhKWV5VO0tHja2to4uRZ0eFaqUpk7tyNYv3x1mXXGtfSuQg2nwg7W7AcZh3Fpqdg+MlQwIT0Na+OnP6a1tbSo7uhMRClnxplbWKCto62WBZeUkKiW/faQlY01CXGqGYuJCYno6OhgblHweWhhZcmX339LdlY2ycnJ2NjasHDO3zg4qU9iHBMVTdCZc3w+5etSatXLwdS8YL6bpIREle0pickqnWuanDl0nCWz5vHWp2OpVld1WLaFtSU6Ojpo6xQOLnB0cyY5IZHcnNxSXwDB0NQYLW0t0otkwWWkpKllPjyOfSVXrp+8WOz9Wtpa2Hk6kxQjmXHPwtjcBC1tbVKTklW2pyWnYmquPu9rdkYm926GExl2h22LCuaAVDyYM+fbIeMY9tm7eBUZPlrqMZsVxFw0Cy49ORVjjTFnEXXrDtG377FnySaVmH9+7RP6f/ImHtWrqNXT0tbG0cuNhGjJjHvZGZkZo6WtrZZ5lZ6cppYt9ziOldwIPfH8rA77Iio8Z6i+Fpkpz/Za2Hu5cv1kwdxqybHxpMQlsvP3Fcr7H35nmTfqGwZ8+x7m9sUvVvMkFpYWaOvoqGXBJSYkYG2teb/WNjbq5eMT0NHRweKRc7y2tjaubgXf5ar4VOH2rdusWLRM2Rn356w/GPzqENp1eAWASt6ViYqMYvnipS9fZ5x47khn3Atk5MiRjBkzht9//52FCxfi4eFBu3btgIJfLd9++23Gjh2rVs/dXX21m+I6JB7dbmRk9NSxaepEKrr/EydOKDPtAgICsLCwYNWqVWoT5j+r4jqwHvWsz09xHrZJS0uL/AerGM6bN0+ZrfZQ0c6mkq4a+rCNj+tEun37Np07d2bUqFFMnjwZa2trjhw5wsiRI5960YjiPLqqq5aWltoqr48+H//Ff43d1tZW46IIOjo6bNq0iT59+uDv78++ffuoXr06AD4+PsoO0cdlxwUHB3Py5ElOnz6tkvGXl5fHypUreeedd5TbzMzM6N69O927d+e7774jICCA7777TqUzLj4+Hju74jMKPvvsM8aPH6+yzcDAgJsJT55vR09Pj8o+VQg6cw6/Vs2V24POnKVJC/VO8ZJQKBQlPp4ex0TfQGWFVIVCgY2JCSdv38LXoaAjKicvj7N3whnTyv+p96tQKLgaE433Y16D/0JPTw9vHx/OnQ6kWesWyu3nzgTi16KZxjpVa1Tn1DHVSdLPnT5Dlao+aoun6BvoY2tnS25uLscOHqZl29Zq+9u9dQcWVpY0birzmzxKV08Xd28vQoIuUa9Z4ZCUkKCL1GlS/GrApw8eY8mvfzHy4zHUalRP7f7K1Xw4dfAY+fn5ysmto+9GYWFtWSYrkero6mDr7sTdkJt41Sucl+xuyE086vg+9X7iIqIweswCDQqFgriIaKxdnrdsreebjq4uzl5u3LwQSrVGhaMHbl68gm+DWmrlDYwMeecn1Yzt07uOcCv4Kv3HjcDSzqZcYnb0dCHs0lV8GhbGGHbpKt711ecENTAy4PWpH6psO7fnGOEh1+nx3nAs7DR/WVYoFMSE38XO9cmZ6OLFpqOri72HMxGXr1O5fnXl9ojg63jV0/yDtyax4ZGykEwJ6ejqYuvuzN3gGyrP/Z2QG3jWqfqYmqriIgpfC0tHW/p+/Y7K/ac37SMnK5tmAzpiYl2yhVr09PTwrerDmVOnaelfeJ1z5tQZmrdqobFOjVo1OHbkmGpMJ0/jW63q4xeiUyjIzslW/puVmYm2lurMXTo6OihK8L1GiKclc8a9QPr374+Ojg4rVqxg8eLFvP7668rOmfr163P58mW8vb3Vbvr6+mr7ql69OuHh4UREFE7kGRwcTFJSkjKLqHbt2uzdu/epYnu4v3v37im3HT+u+mXz6NGjeHh4MHHiRBo2bEiVKlXUVoitVq0aJ06cUNlW9H9Nj/2kOs/6/DykqU3a2tr4+Pjg4OCAi4sLN2/eVNunl1fx6fUWFhY4OTmpxJibm0tgYGCxdapVq0Zubi5nzhSughQaGqqymMSZM2fIzc1l2rRp+Pn54ePjoxJ7edP0mlSpUkVjVtx/jb1evXoEB2ueJN/AwIANGzbQuHFj/P39uXSpYALYvn37oq+vz08//aSx3sPndP78+bRq1Yrz588TFBSkvH3yySfMnz+/2Ji0tLSoWrWq2uIgly5dol499S/2j8Zrbm6ucnuWYao9+vdiz9ad7Nm6k4iwcObPnsv9mFgCuncGYOlfC5k55ReVOjev3eDmtRtkZmSSnJjEzWs3iAgrfE+uW7aaoNNniboXyZ3bEfyzegMHdu6lTfu2Tx1XSWlpaTGwfmMWnTzG/muh3IiN4ZvtmzHU1SOgWg1lua+3/cvvhwozaOcdO8zxWze5m5jA1Zhovtu5laux0fSuU/rz3fUa2IddW7aza8t2wsNu89esP4iNjqFzz4J5VRb9+TfTJv+gLN+5Z1diomKY99scwsNuP6i7g96DClcFvnI5hKMHDxN59x6Xzl/kqw8/Iz8/nz6DB6g8dn5+Pru37aRdx/bo6Jb/3FPPu1d6duLorv0c3XWAyIi7rJm3lITYOFp1Lvgha+OiVSycNkdZ/vTBYyyc/id9Rg7Bq6o3SQmJJCUkkpFWmNXaqvMrpKWksuavpUTfjeTi6XPsWPsPrbuU3fwytV5pSuiRs4QePUdCZCzH1+wkNT6Jaq0KOhVPbdzL/oWblOUv7jlBWNAVkqLjiL8Xw6mNe7l1NoQabQo7JQM3HyTi8nWSYxOIi4ji0JLNxEVEKfcpnp5fF3/O7j/Ouf3Hib0bxY4lG0i6n0DDVwq+RO5Z+S8b/1gKFGSL2bs5q9xMLEzR1dPD3s0ZfcNnnZ7gv2nYsTUXDp7iwsFTxN2NZu/yf0iOS6Ru24JO/YNrtrF17kplzHauTio3Y/OCmO1cndB/cK46unEXty6EkhgTR/Ttu+z4ew0x4feo27Z0fxT6L4z0DKhi60oV24IMGWdzW6rYuuJgWrorQpa157kddTs0J/hwIMGHA4m/F8PhVdtIjU+iZuuCz51j63ex++/CFcGDdh/j5tlgEqPvE3c3mmPrd3Ej8DK12xb+sJSXm0tseCSx4ZHk5eaRlpBMbHgkiTK35WPVbt+UK0fOcuXIWRIiYzm2ekfBOaN1wQibUxv2sH/BBmX5i3uOE3YupPCcsWFPwTnDvzEAunp6WLs4qNwMjA3RM9DH2sWhVFa67Td4IFv/2cK2f7dw+1YYs6fPIjoqmu69ewLw1+9/MvXrycry3Xv3JDoyit9n/MbtW2Fs+7eg7oChg5Rlli9aypmTp7l39y63w26zZvkqdm7bQfuOAcoyTVs2Z+miJRw/cozIe5Ec3n+QNStW07JNqxK3SYgnkcy4F4ipqSkDBgzg888/Jykpiddee01534QJE/Dz82P06NG8+eabmJiYEBISonFifYBXXnmF2rVrM2TIEGbOnElubi7vvvsurVu3Vg6F/Prrr2nXrh2VK1dm4MCB5Obmsn37do0T37/yyiv4+voyfPhwpk2bRnJyMhMnTlQp4+3tTXh4OKtWraJRo0Zs3bpVbdGC999/n1dffZWGDRvSokULli9fzuXLl9Xm33rUqFGjmDZtGuPHj+ftt98mMDBQbeXZZ31+HjI0NOTVV1/ll19+ITk5mbFjx9K/f38cHQsydCZNmsTYsWMxNzenU6dOZGVlcebMGRISEtSynIq284cffqBKlSpUq1aN6dOnq63S+ihfX186duzIm2++yV9//YWuri7jxo1TyV6sXLkyubm5/Pbbb3Tr1o2jR4/y559/FrvPshYREaF8Tc6ePctvv/1WbBbkf409ICBAbbGMR+nr67N+/Xr69+9P27Zt2bt3L7Vq1WLGjBmMGTOG5ORkhg8fjqenJ3fu3GHJkiWYmpryww8/sHTpUr799ltq1lTNEnjjjTf46aefOH/+PAqFgq+//pphw4ZRvXp19PX1OXjwIAsWLFDJpktPTycwMJCpU6c+5bP37Fq0bU1yUgqrl6wgIS4edy9PvvzxW+wdHQCIj4sntsiCH+PfKFzA5EboNQ7tOYCdoz3zVhc8p1mZmcyd8TtxsffRN9DHxd2ND774mBYasrPK0vDGfmTl5vDTnh2kZGZSw8mZ3/oOVMmgi05ORvuRzNGUrEy+37WNuPQ0TPUN8HFwYO7AoSpDYEtLq3b+JCcls3LRMuLj4vHw8uSbn6eqPvfRhc+9o7MT3/w8hXm/zWHLhn+xsbXh7XGjaf7IhV9OdjZL5y0k6l4kRkZGNPRrzIdfTsDUTDVjIOjMWWKjY+jQRYZSaNKwVVNSU1LZumojyfGJOHu4MmbSx9jYF2RIJiUkEh9b+KXu0PZ95OflsWrOIlbNWaTc7teuJa99UDCFgrWdDe9/+ylr/17K5DGfYWljRdvuHQnoU/qTWj9UuVENstLSObv1EOlJqVg729NxzGDMbCwBSE9KJS2+cFGK/Lw8Tq7bTVpiCrp6ulg62xEwZhDutQqHEmZnZHJk2VbSk1PRNzLAxs2Rbh+9ir2XS9GHF09Qs2l9MlLSOLhhJ6mJSdi7OTFkwigsH2SMpSYmk3S/ZIvplLZqfnXJTE3j2D+7SUtMxtbVkb4fjsTCtiDmtMRkkuOeLebM9Ax2LlxLWlIKBkaG2Hu4MOjzd3Gq/PQjEMpKVTsPZvcqvC4b26Lgx49tIceZsq/464jnzfPcjiqNa5GZms7pzftJS0rBxsWBru8Pw9y2oKMwPTGFlPhEZfn83DyOrt1BakLyg84ee7q+PwzP2oUZv2mJKaz+5nfl/+d2HuHcziM4+3rS+5M3yq1tL5rKjWqSmZbO2a0HleeMTu8NeeSckULqI+eMvNw8TqzbpTxnWDnb0/G9wbjXKtsh849q274dyUlJLJ6/iPj7cXhV9uLHGT/j+GB6jrj7cURHRyvLO7k488PMn/l9xm9sWrcBG1tb3vtwHK3btlGWycjIYMZP04iNicHAwAB3Dw8mfvsVbdu3U5Z5/6MPmD93HjN/mkZCQgK2trZ069WdV994vdzaXm4k2++5o6V4mjF+4rlx/PhxmjVrRocOHdQm/D99+jQTJ07k+PHjKBQKKleurOy8g4IFE8aNG6ecKD88PJz33nuPvXv3oq2tTceOHfntt99wcHBQ7nPDhg1MnjyZ4OBgzM3NadWqFevXr9e4v6tXrzJy5EhOnTqFp6cns2bNomPHjmzcuJGePXsC8Mknn7BgwQKysrLo0qULfn5+TJo0SaUjaurUqcyYMYPMzEz69OmDg4MDO3fuJCgoqNjnZcuWLXzwwQdERETQuHFjXn/9dUaMGEFCQoJybq8nPT9FTZo0iU2bNvH222/z3XffER8fT+fOnfn777+xsir8BXLFihX8/PPPBAcHY2JiQq1atRg3bhy9evUiLCwMLy8vzp07R926dZV1cnNz+eijj1i4cCHa2tqMGDGC+/fvk5SUxKZNmwBo06YNdevWZebMmQBERUXxxhtvsGfPHhwcHPjuu+/48ssvVV6DGTNm8PPPP5OYmEirVq0YMmQIw4cPV3keitLS0lK+RkXjfbhgyKP1Fy1axLhx41Res4fP1cPXqE2bNtSoUYP8/HxWrFiBjo4Ob7/9NlOnTlVmcxY9fv5L7AkJCcqFEXx9fYuNLycnh0GDBnHw4EH27t1L7dq12bNnD7/88gunTp0iIyMDT09Punbtyvjx4zl27Bj9+/fn3r17Ku+Hh2rXrk2bNm346quvmDx5Mvv27SMsLAwtLS08PT159dVX+eCDD5RD2FauXMk333zDlStXNLbjcUKibj5znedNNcdKJM17cb7saGLx5qtcj414csHnnLed25MLvQD2Xzvz5ELPOf8qDfnlwPInF3zOfdRmSEWHUCpWnC1+EaUXxeD6Acw/ubmiwyiRkU260fz3UU8u+Jw7OvrPl6Ydvx1ZW9FhlMh7Lfo9udALYtrBlRUdQol82HoQkUkv/hySThalO+VJeUleu6miQyiWeb+eFR1ChZDOOCGKUbSDSTy9oh2JZemTTz4hKSmJuXPnlvlj/VeNGzdm3LhxDB48+JnrSmfc80E6454v0hn3/JDOuOeHdMY9P6Qz7vkhnXHPD+mMq1jSGff8kTnjhBAvtIkTJ+Lh4UHeg1U3nzcxMTH07duXQYMGPbmwEEIIIYQQQpS2B6tgP5e3/1MyZ5wQ4oVmYWFR7FDj54G9vb3GeRaFEEIIIYQQQvx/ks44IYoxadIkJk2aVNFhvJAOHDhQ0SEIIYQQQgghhBDPJemME0IIIYQQQgghhHhZ/R8PB31eyZxxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVb4MU33eSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVQghhBBCCCGEEOIlpVDkV3QIogjJjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKwUsprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8Gab6vJHMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlREuhkC5SIYQQQgghhBBCiJdR0pJVFR1CsSyGD6zoECqEDFMVQojn2Nzjmyo6hBJ7u2lPIhKiKjqMEnGzcmTAsi8rOowSWz10MsnbdlV0GCVi3rkDH/z7a0WHUWIzur/Pq6smV3QYJbZ44JekJCZWdBglYmZpybSDKys6jBL7sPUgVpzdWdFhlMjg+gEvfBugoB2/HVlb0WGU2Hst+tH891EVHUaJHB39Jz0WTqjoMErsn9d/5J31P1d0GCUyp8/HdJz3QUWHUWI73pxR0SH8N4r8io5AFCHDVIUQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8WSrgeSOZcUIIIYQQQgghhBBClBPpjBNCCCGEEEIIIYQQopzIMFUhhBBCCCGEEEKIl5VChqk+byQzTgghhBBCCCGEEEK8NBISEhg2bBgWFhZYWFgwbNgwEhMTH1vntddeQ0tLS+Xm5+enUiYrK4v33nsPW1tbTExM6N69O3fu3Hnm+KQzTgghhBBCCCGEEEK8NAYPHkxQUBA7duxgx44dBAUFMWzYsCfW69ixI5GRkcrbtm3bVO4fN24cGzduZNWqVRw5coTU1FS6du1KXl7eM8Unw1SFEEIIIYQQQgghXlb/Z6uphoSEsGPHDk6cOEGTJk0AmDdvHk2bNiU0NBRfX99i6xoYGODo6KjxvqSkJObPn8/SpUt55ZVXAFi2bBlubm7s2bOHgICAp45RMuOEEEIIIYQQQgghxEvh+PHjWFhYKDviAPz8/LCwsODYsWOPrXvgwAHs7e3x8fHhzTffJCYmRnlfYGAgOTk5dOjQQbnN2dmZmjVrPnG/RUlmnBBCCCGEEEIIIYQod1lZWWRlZalsMzAwwMDA4D/vMyoqCnt7e7Xt9vb2REVFFVuvU6dO9OvXDw8PD27dusWXX35J27ZtCQwMxMDAgKioKPT19bGyslKp5+Dg8Nj9aiKZcUIIIYQQQgghhBAvK0X+c3v7/vvvlYssPLx9//33GpsxadIktQUWit7OnDkDgJaWlvrToFBo3P7QgAED6NKlCzVr1qRbt25s376dq1evsnXr1sc/vU/YryaSGSeEEEIIIYQQQgghyt1nn33G+PHjVbYVlxU3ZswYBg4c+Nj9eXp6cuHCBaKjo9Xui42NxcHB4aljc3JywsPDg2vXrgHg6OhIdnY2CQkJKtlxMTExNGvW7Kn3C9IZJ4QQQgghhBBCCCEqwLMMSbW1tcXW1vaJ5Zo2bUpSUhKnTp2icePGAJw8eZKkpKRn6jSLi4sjIiICJycnABo0aICenh67d++mf//+AERGRnLp0iV++umnp94vyDBVIYQQQgghhBBCiJdXfv7zeysD1apVo2PHjrz55pucOHGCEydO8Oabb9K1a1eVlVSrVq3Kxo0bAUhNTeWjjz7i+PHjhIWFceDAAbp164atrS29evUCwMLCgpEjR/Lhhx+yd+9ezp07x9ChQ6lVq5ZyddWnJZlxQgghhBBCCCGEEOKlsXz5csaOHatc+bR79+7Mnj1bpUxoaChJSUkA6OjocPHiRZYsWUJiYiJOTk74+/uzevVqzMzMlHVmzJiBrq4u/fv3JyMjg3bt2rFo0SJ0dHSeKT7pjBNCCCGEEEIIIYQQLw1ra2uWLVv22DIKhUL5t5GRETt37nzifg0NDfntt9/47bffShSfDFMVQogH2rRpw7hx4yo6DCGEEEIIIYQoPQrF83v7PyWZcUII8ZII2nucM9sPkpaYgo2LA20Gd8PV1+uJ9e5eC2PN93OxdXFg2ORxyu1rvp/LndCbauW9alel1/jXSyXmf9ZtZO3yVcTFxePp5cm7H4yhVt06xZY/fzaIP3/9nbBbYdjY2jBg6CC69e6hvH/nlu38/N0PavW2HdyF/oOJYYf0HEB0VJRame59ejL24w9KoVXQwacx3aq3wNLIlDuJMSw+s50rsbeLLd/Cszbda7TE0cya9Jwszt+7xtLAHaRmZ6iVbeZRi/db9ud0RAi/HFxRKvEWR6FQMG/ndjYeP0pKRgY13D34pE9/Kj+YxFaTfReCWLR7FxH375Obn4ebrR1D27Slc6PGyjJ/7djGvJ3bVepZm5mx89uppd6G5p618a9cH3NDE6JS4th06RA34+8VW15HW4cAn8Y0cK2KuYExiZmp7L56mlMRwQBoa2nzSpWGNHKrhoWhKTGpCWwJPvrY17c0tPVuQOeqTbEwMuNeUizLz+3kamyExrJvNOlOSy/199HdpFg+3/4nADpa2nSt3pwWXrWxNDInKjmONef3cjHqRpm2Q6FQ8Nfff7Nx0yZSUlKoUaMGEz7+mMqVKj223t59+/hz7lzu3L2Lq4sL777zDv5t2ijvP3vuHEuXLSPkyhXu37/PLz/9RJvWrcukDZcPnOLCzmOkJ6Vg5WxP0wEdcariobHsvdBbbJm2WG17/29GY+lkB8Cts8Gc236Y5Jh48vPysbC3plb7Zvg0Lf6zsCyc3nWYY1v2kpKYjL2rIwHD++BRtfIT64WH3mTRt7Owd3Ni1A8TyiHSx3sR23Fx30nO7jxMemIq1i72tBzYGWcfT41l71y5yaafF6htH/Ld+1g9OKbi7kZzctNeYm/fIyUukRYDO1O3/bOt8ldW6jh5M7heB6rau2NrYsmn2+Zw+Nb5ig5LqVNVP3rVbI2VkRnhidHMP7WZ4OiwYsu3rlSXXrVa42xuS1p2JufuXmXh6a2kZKUDBZ+1fWv74+/dABtjc+4mx7L4zHbO3b1apu1oVaku7X0aYWFoSmTyfdae38f1uLsayw5v0ImmnjXVtt9Lvs/k3QsBqOtchY5V/bAzsURHW5uY1ET2XDvNqfDgMmtD12rN6VvHH2sjc24nRPHniU1cjlK/Ln2oW/XmdKveEgczK2JTE1kZtJu9184o7+/o68crPo3wsHIE4Pr9Oyw8vZWrseFl1gYhHkc644QQL4zs7Gz09fUrOozHysnJQU9Pr9wfN/TkeQ6s2Ey74T1xruLBhf0n2Th9Aa9OHY+5jVWx9bLSM9jx12rcq1cmPSlV5b5u7w0jPzdP+X9GWhpLv/wVn0a1SiXm/bv3MWfmbMZ+/AE1atdk66bNfPbBBOavXIyDo/qS45H3Ipk4fgKde3Tl00kTuXzhErN+noGFpSWt2hZ+6TY2MWHRmqUqdfUfWaHp94Vzyc8vbNetG7eYMPZDWrVtUyrtaupRk1cbdGL+6S2ExoTzSpWGfNZ2GOM3/0ZcepJaeV87d0Y368PiwO0E3rmCtbE5bzbpztt+PZl2aKVKWVsTC4bWDyDkMV8MStOSfXtYcWA/Xw0egrudPQt272TMn7NZ99mXmBgaaqxjYWzC6+0D8HRwQE9Hh8OXL/PtquVYmZnRtGo1ZblKjk78/s4Y5f862lqlHn9d5yr0rNmKdRf2cyv+Hs08avGWXw9+2L+MxIwUjXVebdAJMwNjVgftITYtETMDY7S1CgcSdK7alAauVVlzfi8xqfH42nvweuOuzDq8hrvJsaXeBoDGbtUZUi+AJYHbuHr/Dv6V6/Nhq8F8tn0O8enJauWXn93J2vN7lf9ra2nzXce3lB2KAH1q+9PMoyYLTm8lMvk+tZwqM7ZFPybvWUR4onpndWlZvHQpK1as4OuvvsLd3Z35CxYw+r33WL9mDSYmJhrrXLh4kc+/+IJRb72Ff5s27D9wgE8//5z5f/1FzZoFXyAzMjKoUqUK3bp25ZNPPy2z+G+cvsTx1TtoMbgLDt7uhBw6w/ZZy+g/aTSmNpbF1us/eQz6hoWfQ4ZmhW01MDGiXudWWDraoqOjw+2LVzm4eBNG5ia41fAus7Y86tLxs+xYsoEuI/rh5luJwD1HWf7DHEb/8jkWttbF1stMz2DTH0upVNOH1CTN76ny9CK249qpixxetY3WQ7vh5O3O5YOn2TxzCYMnj8XsMcfUkCnj0DcqPKaMHjmmcrNzsLCzxrthTY6s3laW4T8zIz0DrsfdYduVY0ztNKqiw1HRwqs2Ixt3Y+7xTYTE3CbAtwlftR/BmI3TuZ+WqFa+mr0n77ccwIJTmzkVEYKNsQXvNOvFmOZ9+H5fwXXIkAYBtKlUj9+PredOYiz1XHz4rO1wJmz9g1uP+WGoJBq4+tKvTltWndvNjbi7tPSqw+gWffl21wISNJz71pzfy6ZLh5T/a2trMbHda5y9E6rclpadyfYrJ4hOiSM3P59aTpUY3qATKVnpZXJN0qpSXd5u2pPfj67jcvQtOldtxncd3+KttT8Qq+G16FKtGa816sqvh1dzNTYCXzt33m/Zn9SsDE6GXwagtrM3B66fJTj6Ftl5ufSr05apnUbx9rofNV6fCVHWZJiqEEIjhULBTz/9RKVKlTAyMqJOnTqsW7cOgAMHDqClpcXevXtp2LAhxsbGNGvWjNDQgpN2aGgoWlpaXLlyRWWf06dPx9PTUzk2Pzg4mM6dO2NqaoqDgwPDhg3j/v37yvJt2rRhzJgxjB8/HltbW9q3bw/Av//+S5UqVTAyMsLf35/FixejpaVFYmIiULAE9aBBg3B1dcXY2JhatWqxcqVqp0ZaWhrDhw/H1NQUJycnpk2bpvYcaGlpsWnTJpVtlpaWLFq0CICwsDC0tLRYs2YNbdq0wdDQkGXLlj3V45e2wJ2HqdmqEbVaN8bG2QH/Id0xs7bg/L4Tj623Z9EGqvrVxamyelaHkakxJpZmylv4pWvo6evh07h2qcS8fuUaOnbrTOceXfHw8uTdD97D3t6OzRv+0Vh+y4Z/sHew590P3sPDy5POPbrSsVtn1q5YpVJOS0sLaxsbldujLK0sVe47efQ4zq4u1Klft1Ta1aVaM/bdOMu+64EFv4AHbicuPZkOPo01lq9i60ZMWiI7Qk8Qm5ZIaGw4e66dppKNi1q73mvej7UX9hGdGl8qsT6OQqFg5cEDvN6+A21r18XbyZlJg4eSmZ3DzrNniq3XwLsK/rXr4OXgiKutHYNat8HbyZmgm6oZVzra2tiamytvVqZmxezxv2tTuT4nwy9zMvwyMakJbLp8iMSMVJp7au5QrmrngbetK/NO/sPV+xEkZKQQnhhNWEKkskxDt6rsuXaakJgw4tKTORZ2kdCY27Txrl/q8T/Usaofh26e4+DNICKT77Pi3C7i05Np591QY/mMnCySMtOUNy9rZ4z1jTh8szD7pJlnLTYHH+VC5HVi0xLZdz2Qi1E36VTVr8zaoVAoWLlqFa+//jpt/f3xrlyZb77+mszMTHY8Zo6WlatW0aRxY15/7TU8PT15/bXXaNyoEStWFb73mzdrxrujRtHW37/M4ge4sPs4vi3qU7VlA6yc7Gg2oBOmVhYEHyz+PQEFHSXGFmbKm7Z24SW4s68XXvWqYeVkh7m9NbXa+WHt4kDU9fLL1jixdT/1/P2o37YZdi6OdHy1DxY2VpzefeSx9bb8vZqazRviWsWzfAJ9ghexHUG7jlK9ZQNqtGqItbM9LQd1wdTagosHTj22nrG5CSYWZsrbo8eUg5crzft3xKdJbXR0n6/cixPhl5l38l8O3gyq6FDU9KjRkj3XTrP72mnuJMUw/9Rm7qclFfu56GvvXpAdHXKMmNQEQmLC2Bl6Em9bV2UZ/8r1WXdhP4F3QolOjWdH6AnO3b1Kz5oty6wd7ao05FjYRY6GXSQqJZ61F/aTkJ5Cq0p1NZbPzM0mOStNefOwcsRY35Djty8py1y7H8H5e9eISonnfloi+6+f5W5SLN5FrlVKS+9abdgZepIdoSeJSIxh7olNxKYm0rV6c43l21VpyPaQYxy6GURUShwHb55jZ+hJ+tdpqyzz0/5lbAk5ys34e9xJiuHXw6vR0tKirkuVMmnDcydf8fze/k9JZ5wQQqMvvviChQsXMmfOHC5fvswHH3zA0KFDOXjwoLLMxIkTmTZtGmfOnEFXV5cRI0YA4OvrS4MGDVi+fLnKPlesWMHgwYPR0tIiMjKS1q1bU7duXc6cOcOOHTuIjo6mf//+KnUWL16Mrq4uR48eZe7cuYSFhdG3b1969uxJUFAQb7/9NhMnTlSpk5mZSYMGDdiyZQuXLl3irbfeYtiwYZw8eVJZ5uOPP2b//v1s3LiRXbt2ceDAAQIDA//TczVhwgTGjh1LSEgIAQEBT/X4pSkvN5fosLt41FS9mPCo6cO968UPnbt0+DSJsfE07fl0y3BfPHwG3yZ10DMoeXZiTk4OV0Ov0rBJI5XtDZo0IvjiJY11gi9dpkGR8g2bNOJqSCi5ubnKbRkZGQzu2Z+B3foy8cNPuRZa/FCQnJwc9uzYTceundDSKnlmlo62DpWsnbkQeV1l+/nI6/jYuWmsczU2HBtjc+o6F7x+FoYmNHGvwbm7oSrl+tbyJzkzjf03zpY4zqdxNy6OuJRk/HyrKrfp6+pR39ubC7duPdU+FAoFp66Gcjs2hvqVVTN8Iu7H0unrifSY/DWfL1nInUc64kuDjpY2rhb2hMaodmiExt7G00rzMNsajpWISIymrXdDvm4/ks/aDqd79RboaReujqWrrUPuI5mVADl5uVSydi7V+B/S0dbG08qJS0WG5lyKuqHyhe9xWlWqS3D0TZVf/vW0dcjJz1Upl5OXQ5VijtPScPfePeLi4vBr0kS5TV9fn/r16nHh4sVi6124eJEmj9QB8PPze2ydspCXm8v98Hu4Vlcd8uhavTLRNzQPGX5ow+S5LP3oF7ZMX8y9K8W/fxQKBXdDbpIUHVfs0NfSlpeby71bEVSuXVVle6XaVblztfhYzx04QUL0fdr06VjWIT6VF7Edebm5xNy+p5YB6Vbd+4mdsau++Z0F439g088LuHOl+KF74unoautQ2caFoLvXVLYH3btKVXvN78UrMbexNbGggasvABaGpjTzrMWZiMIfo3W1dcjOU/2szc7LoZq9Z+k24AEdLW3cLR3VhtaGxISp/chXnGaetbgSc1tj5vVDvnbuOJhZce3+nZKEq5Gutg5VbF05W+Q66OzdUKo5eGqso6etq/F59rFzR0dLc5eHga4+utrayiHFQpS35+unEiHEcyEtLY3p06ezb98+mjZtCkClSpU4cuQIc+fO5a233gJgypQptH4wJ8+nn35Kly5dyMzMxNDQkCFDhjB79mwmT54MwNWrVwkMDGTJkiUAzJkzh/r16zN1auEcUQsWLMDNzY2rV6/i4+MDgLe3Nz/99JOyzKeffoqvry8///wzUNDxd+nSJaZMmaIs4+LiwkcffaT8/7333mPHjh2sXbuWJk2akJqayvz581myZIky227x4sW4uj7dF9uixo0bR+/evVW2Pe7xNcnKyiIrK0tlm8EjQysfJyMlHUV+Pibmpirbjc1NSS9muE1C1H2OrN3BgM9Hof0Uy3BH3owg7k4UHUb0faqYniQpMYn8vDysrFWHDVlZWxEfpznrKz4uHitrqyLlrcnLyyMpMQkbWxvcPN355ItP8fKuRHpaGhtWr2fcW2OYu3QBru7qr+/Rg4dJTU2lQ5dOpdIucwNjdLR1SMpQHfKblJGKpbPmzK+r9yP47eg6xrUcgJ6OLrraOpyOCGHh6a3KMr527vhXrs+EbX+USpxPIy6l4CLc2sxcZbu1qRlRCY/PzEvNyKDzpC/Izs1FR1ubCX370+SRTr0aHh58M3gY7nb2xKUks2D3TkbOms7qCROxLGao4rMy0TdCR8NFdkpWBuaGmh/DxsQcL2tncvLyWHh6Cyb6RvSt7Y+xviGrgvYAcCUmnDaV6nEj7i5xaYlUsXOnpmMltEuhM1cTM31jdLS1ScpMU9melJWGhaFpMbUKWRiaUtvJmz+Pb1TZfjHqJh19/QiNCScmNZ7qDl7Uc/Ets3ZAQdYygE2R972NtTWRGuZxfLSepjoP91deMlPTUeQrMDJXPX6MzE1IT07VWMfYwoyWw7ph5+5EXm4e106cZ8uMxXT78DWcHpkTLDs9k2UTppGXk4e2thbNB3dR6/QrK+nJaSjy8zG1UP2MMrUw40Yx55C4yBj2rtzM65Pef6pzSHl4Edvx8PxtXPT8bWFC+iXNx5SJpRn+w3tg5+lCXk4uoceD2PTLQnp9PAKXp5gnVmj28PydmKn6vCdmpGJlpPn8fSXmNtMPruLjNkOU5++T4Zf560Rhhv+5u1fpUaMll6NvEpUcT21nb5q4V1eZ/qA0mRo8OPcVOWekZKZh4fDk86u5oQk1HCqx4NQWtfsMdfX5vss76GnrkK9QsPLcbq7ElP58qeaGJuho65CQrvq+TchIwdrIXGOdwDtX6FjVj2O3L3L9/h2q2LrRwacJejq6WBiaEp+h3rE4olFX4tKSynz+PiGKI51xQgg1wcHBZGZmKjuqHsrOzqZevXrK/2vXLhyu6PRgQveYmBjc3d0ZOHAgH3/8MSdOnMDPz4/ly5dTt25dqlevDkBgYCD79+/H1FT9y+SNGzeUnXENG6oOwwoNDaVRI9XsqMaNVYf/5eXl8cMPP7B69Wru3r2r7Oh6OB/RjRs3yM7OVnY0QsHS176+vk/3BBVRNMYnPb4m33//Pd98843Ktq+//hqngLpPH0jRL9EKAPUv1vn5+Wybu5KmPdtj5Wj3VLu+dOgUNq6OOFUq3awZtZAVPD5Drch9D4c8P9xcvWYNqtesoby/Ru1avPPqm2xau54xH76vtrvtm7fR2K8xtna2/60BxSiacK+lpaWydPqjXCzseK1hZ9Zf3M/5e9exMjJjSP0A3mjSnbknNmGoq8+Y5n356+Q/Zfrr7fbA03y/pnDY34w3C+byKfpqKFCov3BFGBsYsPyjT0nPzuL01VBmbNqIi40tDbwLsv+aVyt8jbxxpranFz2nfMPW0ycZ0qZtcbv9TxRqrwbFvhbaaKEAlp3dQWZuNgCbLh/itYZdWH9hPzn5eWy8dJABddrxWdthKBQQl57EqYhgGrtVL9W41WIu0g4ttDS2raiWXnVIz8kk8K7qtAHLz+7k9UZd+aHzOyiAmNQEDt8KoqVX3VKLefuOHUz9oXBBlZnTpxfEXvR9rGHbkygUilLJZv0vtCj6OVR8WUtHWywdCz9fHCq7kZqQzPldx1Q64/QM9enz5ShysrK5F3KLE2t3Ym5nhXO5dq5o+HzV8BTn5+ezYfYS2vTthI2TfTnF9ixegnYo0BgzgJWjncq528nbndSEJM7tPCqdcaWg6PlBS8O2h9ws7HnTrzurg/Zw9u5VrI3Mea1RZ95p1pvZRwumdvn75GZGN+/D770+AhREpcSz99oZ2lXRPM1AqbVDbcvTnTOaetQkIyeT8/euqd2XlZvN1D2LMdDVx9fenb61/bmflsS1+4/PDP7vNLwWxbRhxbndWBmbM7PHOLQo6Ljbfe0U/eu0I0+Rr1a+b+22tKlcj0+2/k5OkYy6l9b/8aqlzyvpjBNCqMnPLzhpbd26FRcX1ZR2AwMDbtwomPvp0YUKHn4peljXyckJf39/VqxYgZ+fHytXruTtt99WeYxu3brx448/qj2+0yMrNRbtwNL0BazoRdK0adOYMWMGM2fOpFatWpiYmDBu3Diys7M1li+Opg6UnJwctXJFY3zS42vy2WefMX78eJVtBgYGLDq7vZgahYzMjNHS1iatyC//6SmpGFuod3ZmZ2QRfesOMbfvsW9Zwa+3igdLi88Y8Rl9PhqJe/XCITM5WdmEnjxPs14dnhjL07KwtEBbR0ctCy4xIUEt++0haxtrEjSU19HRwdzCQmMdbW1tfKr5cjdCfRhFdGQU504H8vUPk/9jK9QlZ6WTl5+HpZHq825uaEJSpuYsh541WnE1NpzNwUcBCE+MJvNUNt8GvMnq83uwMDTF3tSKT9oMUdZ5+B5YMXgSH/z7K9GpCSWOvVWNWtT8yFP5f/aDob9xKcnYPvL8JqSmYvOE+d20tbVxsyv4sujr4kpYdDSL9uxSdsYVZWRggLeTMxGxpbcAQlp2Bnn5+ZgbqL4/zQyMiu3UTM5KIykzVdkRBxCdEo+2lhYWRmbcT0skLTuDBae3oKutg4m+IUmZaXSt1vyxw3lKIiU7nbz8fCyLZMGZGxiTXCTzQZOWlepwLOwCefmqX0ZSstKZdWQNeto6mBoYk5CRQv867TROUv5ftWrZkpo1Cjtesx98ft6Pi8PWtrCDKj4+Hmvr4ifXt7GxIS5e9b0fn5Dw2DplwdDUGC1tLbUsuMyUNLXMpsex93Ll+skLKtu0tLWxsC+Y39LWzYmEqFiCth8pl844Y3MTtLS1SU1SPYbTklMxNVd/r2dnZHLvZjiRYXfYtqigw+HhOeTbIeMY9tm7eNX0KfO4i3oR2/Hw/F30mEpPfrZjyrGSG6Ennp8VSV9ED8/fRbPgLIxM1bLlHupT25+Q6DA2Plj84HZCFJnHs/mhyzssP7uThIwUkrPS+H7fEvR0dDEzMCY+PZnhDTsRnVLy87YmqVkPzn1FMsDNDI1JznzyD3rNPGtxMjxYYweWApSLJ9xJisHJzIaOVZtw7UjpdsYlZ6YVvBbGqllwlkZmGheggIIhqTMOrWLW4TVYGZsRn55Mp6pNScvOVDtX9qnVhoF1X+GzbXO4FR+pcX9ClAfpjBNCqKlevToGBgaEh4crh6E+6mFn3JMMGTKECRMmMGjQIG7cuMHAgQOV99WvX5/169fj6emJ7jNMLly1alW2bVNdGezMGdWJsw8fPkyPHj0YOnQoUNDxd+3aNapVK1jJ0dvbGz09PU6cOIG7uzsACQkJXL16VaW9dnZ2REYWnqSvXbtGevqTL2Se9PiaGBgYPPWw1KJ0dHVx8HQh/PI1qjQoXJr+9uVrVK6nnq1jYGTA8O8+UNl2ft9xwoNv0G3MUCzsVL/gXj11gbycPKo1q0dp0dPTw8fXh8BTZ2jRppVye+CpMzRr1UJjneo1a3D8yDGVbWdOnsanmm+xx5BCoeDGtet4Va6kdt+OLduxtLLEr1npTVifl5/Hzfh71HaszOmIEOX22o6VOXPnisY6Brp6ah0l+Q8z/tDiXtJ9Ptr8m8r9A+q+gqGuPovPbON+KXUCmRgaqqyQqlAosDEz52RoKL6uBRmRObm5nL1+nfe6dX+mfStQKDv3NMnOzSEsOpq6lUpvWF6eIp87STH42LlzMarwM8vHzl1t/rWHbsVHUsepCvo6emTnFXQc2Ztaka/IJ6nIF4Dc/DySMtPQ1tKmtrO32jxDpdaO/HzCEiKp4ViJwEfmz6nhWOmJQ2uq2nvgaGbDrJtriy2Tk59HQkYKOlraNHStqrLiakmZmJio/FihUCiwsbHh5KlTVH2QiZyTk8PZc+d4b/ToYvdTu1YtTp48yZBBg5TbTp48Se1apbOy89PS0dXF1t2Zu8E38KpX+Hl+J+QGnnWqPqamqriISI0/lKhQFMwnVh50dHVx9nLj5oVQqjWqo9x+8+IVfBuoP8cGRoa885PqirWndx3hVvBV+o8bgaWdjVqd8vAitkNHVxd7D2ciLl+ncv3C83VE8HWVY+xJYsOf4pgSj5Wbn8eNuLvUca7CiQerb0LBqtwnwzV/Lhro6pGvKHr+Lvi/aGJjTl4u8enJ6Ghp08yjJkduXaAs5CnyCU+Mopq9h0p2W8H/1x9Ts2BBKXtTK46FPf18nLrapT+8Ozc/j2v371DPxUcllnouPpy4rXle4YfyFPncTyuYH7V15XqcCr+skk3Xt7Y/g+q1Z+L2uWWY0SfE05HOOCGEGjMzMz766CM++OAD8vPzadGiBcnJyRw7dgxTU1M8PJ5uUunevXvzzjvv8M477+Dv76+SZTd69GjmzZvHoEGD+Pjjj7G1teX69eusWrWKefPmoVPM3C1vv/0206dPZ8KECYwcOZKgoCDl6qYPs4W8vb1Zv349x44dw8rKiunTpxMVFaXsDDM1NWXkyJF8/PHH2NjY4ODgwMSJE1VWIgNo27Yts2fPxs/Pj/z8fCZMmKCSDVicJz1+WWgQ0JLtf63GwdMVJ293Lh44RUpcInX8CzqaDq/dTmpCMp3eGoCWtja2ro4q9Y3MTNHV01XbDgULPXjXr46RaenM5fVQn0H9+fGbKfhU86V6zRps/WcLMdExdOtV0NHz9x9/cT82lk+/Lligo2vvHvyzbiNzZs6mc4+uBF+6zI7N2/j826+U+1zy9yKq1ayOi5sr6WlpbFyznhtXrzP2I9XOx/z8fHZu3U77zh1LfaW5rSHHGNOsDzfi73EtNoJ2VRpia2LB7msFK+MNqtsea2Nzfj+2HoDAO6G85deD9lUacT6yYJjqqw07ce3Bap4AEUkxKo+Rlp2hcXtp0tLSYlDrNizcsws3Ozvc7OxYtGcXhvp6BNQvHF7z9fIl2FlYMqZrweu2cM8uqru542JjS25eLkdDgtl6+hSf9hugrDPzn420rFETRysrElJTmb9rJ2mZmXRtpHlOxf/qwI2zDKkfQMSDFVGbedTCyshMeXHfpVozLAxNWXFuF1DwWrT3acygeu3ZceUEJvqGdKvegpPhweQ8WLTB3dIBCyNT7iXFYmFoSoCvH9pose/641fTLIkdV07wtl9PbsXf43rcXfwr18PG2IJ91wsWnelXuy1WRmb8dVJ1JeJWlepy/f4d7iapZxxWsnbGytic8IQorIzN6FmzNVpaWmwLOaZWtrRoaWkxaOBAFi5ahLubG25ubixctAhDQ0M6BgQoy301aRL2dnaMedBBN3DAAN4aNYpFS5bQplUrDhw6xMlTp5j/11/KOunp6UTcKcyAvXvvHqFXr2Jhbo6jo/rn2n9Vu31T9i/YgK2HMw6V3Qg5FEhqfBLVWhe8J05t2ENaYjL+IwrmEb245zhmNpZYOduTl5fH9RMXuHU2hPajChcrOrf9MHYezpjbWZGfm0f4pWtcPX6elkO6lFrcT+LXxZ+Nvy/FuZIbrj5eBO49RtL9BBq+UvDjyJ6V/5KSkESvd4ehpa2NvZvqgiUmFqbo6umpbS9vL2I76nZozu6/12Hv6YJjZTcuHzpDanwSNVsXTMlxbP0u0hKSaf9GwZytQbuPYW5jibWLPXm5eYSeOM+NwMt0erewszovN5f4e7EP/s4jLSGZ2PBI9Az0sXSomM7Sh4z0DHC1KBxm62xuSxVbV5Iz00oly7sk/rl8mHEtB3A97g6hMeEE+DbG1sSSHVcKVqYf1qAjNsbmzDy8BoDTESGMbt6Hjr5+nLt7FStjM95o3I2rseHEPzh/+9i6YW1izq24SGxMzBlYtz1aWlpsvHSw2DhKau+1M7zWqAu3E6K4FX+PFl51sDI25/CtguzJHjVaYmlkxuIzqj9uN/esxa24e9xLVl9QKcC3CbcTorifloiOtg41HSvh51GDled2l0kbNlw8wMdthnAtNoKQmDA6VW2GvakVWx+co15v1AUbEwt+ObACKJjyw9fOnSsxtzE1MKZ3rdZ4Wjkx7cH9UDA0dXjDTvy4bynRKfHKLMiMnCyVjPiXloZsR1GxpDNOCKHR5MmTsbe35/vvv+fmzZtYWlpSv359Pv/8c+VQ1CcxNzenW7durF27lgULFqjc5+zszNGjR5kwYQIBAQFkZWXh4eFBx44d1TrFHuXl5cW6dev48MMP+fXXX2natCkTJ07knXfeUWaWffnll9y6dYuAgACMjY1566236NmzJ0lJhSsJ/vzzz6SmptK9e3fMzMz48MMPVe6HguGmr7/+Oq1atcLZ2Zlff/31qVZcfZrHL22+TeqQkZrOiX/2kpaUjI2LI73Gv465bcGQz7TEFFLiEp95vwlRsdy9Gkafj0aWcsTg374tyUlJLJu/hPi4ODwreTF1+o84OBV8cY6/H0dMVGFnk5OzE1Om/8icmbP5d/0mbGxtGD1+LK3aFmYzpqamMuOHX0iIi8fE1ITKPlWY8ecsqtZQ7Qg9ezqQmKhoOnXrXOrtOn77EmYGxvSp1QYrIzMiEqP5Yf9S5S+1lkam2JgUDvs8ePMcRnr6BPj6MaxBR9KyM7kcfYvlZ3eWemzPanjbV8jKyeHHdWtIyUinhocnv40arZJBF5WQoDJ0PDM7mx/XrSEmKREDPT087B34duhwOtRroCwTk5TIF0sXkZiWhpWpKTU9PFkwbjxOpTzsMOjeNUz0jQjwbYK5gTGRKXH8deIfZSenuYGJypCk7Lwc/jy+kd612jC+1UDScjIJuneN7Y90UOnp6NK5alNsjC3Iys0hJCaM5Wd3lumF/KmIYEwNjOhRsxWWhqbcTYpl+qGVytVRLYxMsTZRHc5jpGdAQ9dqxR5Hejq69KnVBjtTK7Jys7lw7zp/Hd9Eek6WxvKl5dVhw8jKyuKHn34iJSWFmjVqMHvWLJUMuqjoaJXzQJ3atZkyeTJz5s7lz7lzcXV15fspU6hZszATODgkhFHvvqv8f8bMmQB07dKFSV8VdtiXVOVGNclMS+fs1oOkJ6Vi7WxPp/eGYGZjCUB6Ugqp8YWf9Xm5eZxYt4u0xBR09XSxcran43uDca9VOPwxNyubIyu2kpaQjK6eLpaOtrQd2ZvKjWoWffgyU7NpfTJS0ji4YSepiUnYuzkxZMIoLB9kSqcmJpN0v2I7Sp7Gi9iOKo1rkZmazunN+0lLSsHGxYGu7w9Tnr/TE1NIiU9Uls/PzePo2h2kJiSjq6eHtYs9Xd8fhmftwnlv0xJTWP3N78r/z+08wrmdR3D29aT3J2+UW9s0qWrnwexehdNyjG3RD4BtIceZsm9xRYUFwJFbFzAzMGZAnXZYG5tzOyGKb3cvVA7NtDIyw9bEUll+3/VAjPQM6FKtGSMadyEtO5MLkddZfKZwihE9HV2G1g/AwdSazNxsAu9cYeahVaRlZ5ZZOwLvhGKib0SXas0wNzQhMvk+vx9dr5xOwcLQFGtj1eG4hrr61HPxYc35fRr3aaCjx6B67bE0MiUnL5eolHgWnt5K4J1QjeVL6tDNIMwNTBhSPwArY3Nux0fy5Y6/iHnQYWttbI69SeG0JtpaWvSu1QZXS3vy8vM4f+8644tM49GtenP0dXT5sv3rKo+1LHAHy56Day7x/0dL8bSTJwkhxHNqypQp/Pnnn0REvHzp5nOPb6roEErs7aY9iUgofqXEF4GblSMDln1Z0WGU2Oqhk0netquiwygR884d+ODfXys6jBKb0f19Xl1VevMVVpTFA78kJTGxosMoETNLS6YdXFnRYZTYh60HseIF/0I5uH7AC98GKGjHb0eKHx7+onivRT+a/z6qosMokaOj/6THwgkVHUaJ/fP6j7yz/ueKDqNE5vT5mI7zPnhywefcjjdnVHQI/0nS7L+eXKiCWIx5q6JDqBCSGSeEeOH88ccfNGrUCBsbG44ePcrPP//MmDFjKjosIYQQQgghhHj+5EsO1vNGOuOEEC+ca9eu8d133xEfH4+7uzsffvghn332WUWHJYQQQgghhBBCPJF0xgkhXjgzZsxgxowXM0VcCCGEEEIIIcT/N+mME0IIIYQQQgghhHhZyVIBz53ilywUQgghhBBCCCGEEEKUKumME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXlQxTfe5IZpwQQgghhBBCCCGEEOVEOuOEEEIIIYQQQgghhCgnMkxVCCGEEEIIIYQQ4mWVn1/REYgiJDNOCCGEEEIIIYQQQohyIp1xQgghhBBCCCGEEEKUExmmKoQQQgghhBBCCPGyktVUnzuSGSeEEEIIIYQQQgghRDmRzjghhBBCCCGEEEIIIcqJDFMVQgghhBBCCCGEeFnJMNXnjmTGCSGEEEIIIYQQQghRTqQzTgghhBBCCCGEEEKIciLDVIUQQgghhBBCCCFeVvkyTPV5I5lxQgghhBBCCCGEEEKUEy2FQmbyE0IIIYQQQgghhHgZJf00q6JDKJbFJ2MrOoQKIcNUhRDiOdZ/6RcVHUKJrRn2HTHJcRUdRonYm9vQ6o93KzqMEjv07h8kfvB5RYdRIpYzptL891EVHUaJHR39J32XTKzoMEps3fApJL7/aUWHUSKWv/5AStCFig6jxMzq1mbW4TUVHUaJjG3Zv6JDEEX0WDihokMokX9e//GlOWeMWDO1osMokQX9P6f1nNEVHUaJHXzn94oO4b9R5Fd0BKIIGaYqhBBCCCGEEEIIIUQ5kc44IYQQQgghhBBCCCHKiQxTFUIIIYQQQgghhHhZyVIBzx3JjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKzyZZjq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLytZTfW5I5lxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVX5+RUcgipDMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJ9IZJ4QQJXTgwAG0tLRITEys6FCEEEIIIYQQQpVC8fze/k/JnHFCiBdSVFQUU6ZMYevWrdy9exd7e3vq1q3LuHHjaNeuXUWHVyE6+DSme42WWBqZcicxhkVntnEl5nax5Vt41aF79RY4mduQnp1F0L1rLA3cTmp2BgCtK9VjdPM+avWGLJ9ETn5uqcS8ce16Vi5bQdz9ODwreTF2/PvUqVe32PLnAs8xe+Yswm7ewsbWlsHDh9CzTy/l/bdu3GT+3L8JvXKFqMgo3vvgffoPHqCyj37dexMVGaW27159ezN+wkel0q6eNVoxqN4rWBtbEBYfyW9H13Ih8kax5XvVbEXvWm1wNLMmOiWBpWd3sDP0pGrctf3pUaMVDmZWJGWmceDGWf468Q/ZeaXzWhTHMKAd+k0boWVkRF54BOnr/yU/KqbY8qaj30DXu5La9pzgK6TNW6K23aBda4y6BpB18CgZm7aWauwAvWq2ZnC99tgYW3Ar/h6zjqzlfOT1Ysv3rtmaPrXa4GRuQ3RKPIsDt7PjkddCR1ub4fU70qlqU2xNLAlPjGbO8Q2cDA8u9dgfFeDbhO7VW2BlbEZEYgyLTm8l5DHv75ZedehRo6Xy/X3u3lWWBG4nNStDWcZYz5DB9drTxL0GJgaGxKQksDhwO+fuXi3Tthh2fAX9Zo0LjqnbEaSv2/T4Y2rMW+hW0XBMXb5C2l+LlPs07PSKyv35ySkkfzmlVGMvjkKh4K91a9m4dw8pqanUqFKFCSPeoLKbW7F1Nu7dw9ZDB7kREQFANa9KvDtoEDW9q5RLzBf3n+TcziOkJ6Zi7WxPi4GdcPbx1Fj27pVbbPplgdr2wZPHYuVkB0Dc3WhO/bOP2Nv3SIlLpMWATtRp36wsmyCeM52q+tGrZmusjMwIT4xm/qnNBEeHFVu+daW69KrVGmdzW9KyMzl39yoLT28lJSsdAB0tbfrW9sffuwE2xubcTY5l8Zmy/4x6GnWcvBlcrwNV7d2xNbHk021zOHzrfEWHpeRfuT4dff2wNDLlblIsK4P2cO1+hMayIxp1pYVXbbXtd5Ni+XLnPOX/7as0wr9yfayNzUnNzuDMnSusu7Cf3Py8MmlDzxotGVj3wbVUQiSzj6577LVUzxqt6F2rdcG1VGoCywJ3sPPqKeX9M7u/Tz0XH7V6x29f4tNtc8qkDUI8jnTGCSFeOGFhYTRv3hxLS0t++uknateuTU5ODjt37mT06NFcuXKlTB43OzsbfX39Mtl3STX1qMlrDTvz96nNhMaE84pPIz5vO5wP/p1FXHqSWnlfOw/GNOvD4sBtnLkTirWROW/6dWdU0178cnCFslx6dibv/zNTpW5pdcTt3bWHWdN/ZfyEj6hVpzb/btjEx+9/yNI1y3FwdFQrf+/uPT4Z9yHdenbny2+/5uL5C0z/8RcsrSxp09YfgMzMTJxcnGnzij+/TZ+l8XH/Wjyf/Lx85f+3btzkgzHv4/9K21JpV1vvBrzXoi/TD63iUtRNuldvwU9dRzN85WRiUhPUyveo0ZK3/Hrw84EVhMSEUc3ek0/aDCElM51jty8CBRfAb/n15Mf9S7kUdRM3Swc+azsMgNlH15dK3JoYtG2FQZvmpK9YT17sfQzb+2M6agTJ30+HrGyNddIWLgcdHeX/WibGmH30HjlBl9TK6ri5oN+0EXl3I8sk/nbeDXi/RT+mHVzJhagb9KzRkl+6jWHoim+I1vBa9KzRilFNe/Lj/mWExNymmr0nn/oPJSUrnaNhBa/FW016EODThB8PLON2QhSN3arzfadRvL3+52K/6JRUM89aBe/vk5u5Enub9lUa8Xm7V/ng31+5n6b+/q5q78GY5n1ZfGYbZ+5cwdrYnLea9OCdpr35+cByAHS1dfiq/eskZabxy8EVxKUnY2tiQUZOVpm04SGDdq0x8G9B+vK1BcdUh7aYvvsGyVN+Kf6YWrBU/Zj65H1ygi6qlMuLjCL1978LN+SX36/ti//9hxVbt/D1O6Nxd3Ji/ob1jJ4ymfUzfsXEyEhjncDLlwlo1oLavj4Y6Omz+N9/GDPlO9ZMm469tU2Zxnvt1EWOrNpO6yFdcfR25/KhM2z+dSmDv30PMxvLYusN+e599IwMlP8bmZko/87NzsHczgrvhjU4snp7WYYvnkMtvGozsnE35h7fREjMbQJ8m/BV+xGM2Tid+2mJauWr2XvyfssBLDi1mVMRIdgYW/BOs16Mad6H7/ctBWBIgwDaVKrH78fWcycxlnouPnzWdjgTtv7Brfh75dxCVUZ6BlyPu8O2K8eY2mlUhcZSVCO3agyq256lZ3dw/f4d2lSuxwctB/DFzr+IT09WK78yaDfrLu5X/q+jpc03HUZy5k7h9bSfew361vZnwektXL9/F0cza0Y27grAqqA9pd4G/8r1GdO8LzMOr+ZS5A261WjBj11G8+qqx11LdefnAyu4EnObag6efNx6MClZ6Ry7XXD98eXOeehpF3Z/mBuaML//Zxy4ca7U4xfiacgwVSHEC+fdd99FS0uLU6dO0bdvX3x8fKhRowbjx4/nxIkThIWFoaWlRVBQkLJOYmIiWlpaHDhwQLktODiYzp07Y2pqioODA8OGDeP+/fvK+9u0acOYMWMYP348tra2tG/fHoBt27bh4+ODkZER/v7+hIWFqcQXFxfHoEGDcHV1xdjYmFq1arFy5cqyfEroWr05+64Hsu964INfjrdxPz2JDr6NNZb3sXMlJi2R7VdOEJuaQGjsbfZcPU0lGxeVcgoUJGWmqtxKy+oVq+jSoxvdenbH08uTsR+Ow97Bno3rNmos/8+GjTg4OjD2w3F4ennSrWd3unTvyqplhZ2H1WpUZ/T7Y3ilQ3v09fU07sfKygobWxvl7diRo7i4ulC3fr1SaVf/Om3ZGnKMrSHHuJ0QxW9H1xGbmkjPmq00lg/wbcK/l4+w73ogkclx7LseyNaQYwyu315ZpoajF5eibrDn2hmiUuI5HRHC3mtn8LXzKJWYi2PQuhmZuw+Qc/Ey+VHRpK9Yi5a+Hvr16xZbR5GegSIlVXnT8/GGnByyz6t2nKCvj/HQAWSs2YgiI0PzzkpoQN1X2BJylM0hR7mdEMWvR9YSk5JAr5qtNZbv6NuEfy4fZu/1QO4l32fv9TNsCTnKkHoBKmWWBG7n+O1L3Eu+z6bLhzgZHsyguq9o3Gdp6Fat4P299/oZ7ibFsujMNuLSkujg00RjeR9bN2LTEth25TgxqQlcibnN7munqGzjrCzT1rsBpgZG/LR/GaGx4dxPS+RKzG1uJ6hnjZYmg9bNydy1n5wLl8mPjCZ92Rq09PTQb1C32Dpqx5RvlYJjKuiCasG8fJVyirS0Mm2LMj6FgpXbtvJ6r960bdIEb3d3vhk9hsysLHYcOVJsve/Gvk+/gAB8Pb3wdHHhi7ffRqFQcOqiesd1aQvafYxqLepTvVVDrJ3taTmwM2ZW5lw6cOqx9YzMTTCxMFPetLULv0o4eLnSvF9HqjSujY6u/N7//6ZHjZbsuXaa3ddOcycphvmnNnM/LYlOVf00lve1dycmNYEtIceISU0gJCaMnaEn8bZ1VZbxr1yfdRf2E3gnlOjUeHaEnuDc3av0rNmyvJpVrBPhl5l38l8O3gyq6FDUBPg05vCt8xy+dZ7IlDhWBu0hPiMZ/8r1NZbPyMkiOTNNefO0csJY34gjj2T6VbZx4dr9O5wMDyYuPYnL0bc4GR6Mp5VTmbShf512bLtyvOBaKjGa2UfXE5uaQI8aml/7Dj6N+Tf4KPtvnCUy5cG11JVjDKrXQVkmJSud+Ixk5a2hW1WycrM5cONsmbThuZOf//ze/k9JZ5wQ4oUSHx/Pjh07GD16NCYmJmr3W1paPtV+IiMjad26NXXr1uXMmTPs2LGD6Oho+vfvr1Ju8eLF6OrqcvToUebOnUtERAS9e/emc+fOBAUF8cYbb/Dpp5+q1MnMzKRBgwZs2bKFS5cu8dZbbzFs2DBOnlQddlhadLR1qGTtrDb07sK96/jauWusExobjo2xOfWcC9L1LQxN8POowbm7oSrlDHX1+b3XR8zp/TET/IeW2kVXTk4OV6+E0riJamdhoyaNuXThosY6ly9eolGR8o39mnAl+Aq5uf8tWy8nJ4dd23fSuXtXtLS0/tM+HqWrrYOPnTunI0JUtp+OCKGmg/owOwA9bV2y83JUtmXl5VDN3hOdB190L0TewMfOnWr2BZ1vTuY2+HnU5MTtsvvSrm1jhba5Obmh1wo35uWRe/0Wul6ajytN9Js0JPvcBchWbaNx3+7khFwh92rxQ05KQldbB187d06Fq74WpyJCqOlYzGuho0t2bpHXIjeH6g6Fr4WejobXKzeH2k7epRh9IV1tHSrZOHP+nur7+3zkk97fFsrhOBaGJvi51+TsncKhXQ1dq3I1NoI3mnTn736fMb3bWHrXbI12KbwPiqNtY422hTm5V4ocUzduoev19B3L+n6NyD57Xu2Y0razxfzbzzH76hOMXx2Eto11aYX+WHdjYohLTMSvdp3CGPX0qF+9Oheuhj6mpqrMrGxyc3OxMDUtizCV8nJzib19D/caqsesWw1vom48Prtz9bd/sPDDH9n0y0LuXLlZlmGKF4iutg6VbVwIuntNZXvQvatUtdf83r4ScxtbEwsauPoCYGFoSjPPWpyJKMzG0tXWUZuKIfvB+VFopqOtjYeVE5ejVd+fl6Nu4W3jWkwtVS0r1SE4+hZxj2TRXbt/B08rR7ysC64D7UwsqeVUmQuPmfbhvyq4lnLTfC31jOfvavYeyvN3UV2qNmXf9UAyczVnZQtR1uRnKyHEC+X69esoFAqqVq1aov3MmTOH+vXrM3XqVOW2BQsW4ObmxtWrV/HxKfgS6+3tzU8//aQs8/nnn1OpUiVmzJiBlpYWvr6+XLx4kR9//FFZxsXFhY8+Kpx77L333mPHjh2sXbuWJk00Z7KUhLmBMTraOmpZa0mZaVgaav5SdzU2gllH1jKu1QD0dHTR1dbhdEQIC05tUZa5lxzLH8c2EJ4YjZGeAZ2rNmVyxzf5eMvvRKXElSjmpMRE8vLysLJW/bJsZWNNfFy8xjpxcfE0LvLl2sramry8PBITE7G1tX3mOA4fOERqaiqdu3Z+5rqaWBiaoqutQ0JGisr2+PRkrN3MNdY5FRFM12rNOXzrPFdjI/C1c6dz1abo6ehiaWhKXHoy+64HYmlkxuxeH6KFFro6Omy8dIjl53aVStyaaJmZAZCfonpc5aemom1l+VT70HF3RcfZkfTVG1S269WrjY6LM+kz/iiVWDWxfPBaxGeoDslJyEjGxvgxr0X1Fhy6dZ7Q2HCq2rnTpVozldfiZHgwA+u+QtC969xNiqWha1VaetVBW7tsOrHMint/Z6Ri6az5/R0aG86vh9cwvtVAlff3/FOblWUczKypaWrJ4Zvnmbp3MU7mNrzRpDva2tqsu7Bf435LSsusIN78FNX3R35KCtpWVk+1D+UxtXKdyvbc2+HkLV9DXkws2mZmBcNfx71DyvczUKSnl04DihH3YPEeGwsLle02FhZExt7XUEOz2SuWY2dtTeNatUozPDWZqeko8vMxMlc9fozMTUlPStFYx9jSlDbDe2Dv4Uxebi6hx8/zz7RF9Pp4RLHzzIn/Hw+vQxKLfE4lZqRiZWSmsc6VmNtMP7iKj9sMUX5OnQy/zF8n/lGWOXf3Kj1qtORy9E2ikuOp7exNE/fqaGtJPklxzPSN0dHWJilTNTM4OSsNC0P1H7GLsjA0oZZjZZXXAQrOj2YGxnzmPxy0CjrM9l0PZNuV46Uaf0EMD87f6UXP3ylYF3P+Ph0RQtdqzThy6zxX76teS1kYmqrtq6q9B5VsXPjxwdQNQlQE6YwTQrxQFA9W3ClpFlNgYCD79+/HVEMGwo0bN5SdcQ0bNlS5LyQkBD8/P5XHb9q0qUqZvLw8fvjhB1avXs3du3fJysoiKytLYybfQw/LPMrAwKCY0pppWoyouBmTXCzseL1RF9Zd2M/5e9ewMjJjaIOOvOnXgz+PFwwTvXb/Dtfu31HWCY0J58cu79Kpqh8LT5fORPtqL6NCob7t0fKo3ql40MKi25/Wln8306SpH7Z2dv+pfnEURV4MLS0tZaxFLT6zHWtjc/7s/QloQUJ6CjuunGBw/Q7kKQpS9+s6V2FYgwCmH1pFSHQYLhZ2jG3Rj7gGnVgSWDpzM+nVr4Nx/57K/1M1LLbwoDXFH1hF6DdpSN69KPLCC48jLUsLjHp1JfXPBfAfMxqfRdHXArSKDX/h6W1YG5vzV58Jytdi25XjDK0fQN6D/fx6eA0T/IeyYvAkFCi4lxTL1ivH6FK1bCeqV2vHY94orhZ2jGjclbUX9nH+7jUsjc0Y3qATb/n1YM6D97eWlhZJmWnMPbGJfIWCm/H3sDIyp0eNlqXWGafXoC7GAwoXWEmdu6iYklo87UGl79dI7ZgCyA0pzPrLj4wmNew25l9+gn7j+mQdKH6o6H+x/fBhps6bq/x/5qefAernJYXisS+TisX//MPOo0eY+/U3GJTT3KSaPn+LC9jK0Q4rx8LPScfK7qTGJ3Fu5xHpjBNKauc+DdsecrOw502/7qwO2sPZu1exNjLntUadeadZb2YfLehs//vkZkY378PvvT4CFESlxLP32hnaVWmocZ+ieE/7KdvcszbpOZmcvaea1etr507Xas1YenYHN+Pv4WBqxaC67Umqnsrm4KNlErMmxR1Pi89sx9rInDm9Py68lgo9weB6HchXqA+D7FK1GTfj7j52obOXTXHPnag40hknhHihVKlSBS0tLUJCQujZs6fGMg/nsHn0pJOTo5q6np+fT7du3VQy2h5yciocilm0A+1pTmTTpk1jxowZzJw5k1q1amFiYsK4cePIzi4+Df7777/nm2++Udn29ddfQ+UnPhzJWenk5edhaaTasWhhaFLsHG+9arYmNDaczcEFX1LDE6PJPLmZyR3fZFXQbhIz1OspUHAj7i6OZiWfWNzC0hIdHR21LLiE+AS1bLmHbGysiY9TzchLjE9AR0cHC0sLjXUeJyoyksBTZ/jup6lPLvyUkjJTyc3PU/vl1srIjIR0zRkn2Xk5/Lh/Gb8cXIG1kTlx6Ul0q96CtOwMkjIKftke2bgbu0JPsTXkGAA34+9hqGfAx60HszRwR7Edfc8i53IIKb88MkTtwZxP2mam5CUXxq5taoIi9SnmDtTTQ79ebTJ2qE7srOvqjLaZKWbjRyu3aenooFPJE/0WfiR9/FWpLHOf+OC1sDFWPTasjMw0TmANBa/F9/uW8tOB5crXonv1lg9ei1Tlfj/b/if6OrqYG5pyPy2Rd5r2IjLl6TOgnkWK8v2tml1iYWii8X0KD97fMbf593LB+/t2YjTzcv/lu45vsTJoD4kZKSSkp5CnyCP/kef6blIsVsZm6GrrlMrqeDmXgkm5/egxVbAIg7aZmeoxZWaKIuUpj6n6dcjYvvvJZbNzyIuMQtvu2TNmn6RVw4bUrFI4xDM7p6BT+X5iIraPZPjFJydhbWH5xP0t3fwvCzdt4I8vvqKKR9nOAwlgaGqMlrY26Umqz3lGShrG5k8/RNahkitXTzw/q0eKivPwOqRoFpyFkalattxDfWr7ExIdxsZLhwC4nRBF5vFsfujyDsvP7iQhI4XkrDS+37cEPR1dzAyMiU9PZnjDTkSnqE/gLwqkZKeTl5+vlgVnZmBCcuaT59Fs6VWH47cvkVdkHq9eNVtz7PYl5Yqxd5Ni0dfR49WGndkSfLQUrkIKPfZaKuMx11IHlvHLoeKvpR4y0NWjrXcDFpzeonFfQpQXyfEVQrxQrK2tCQgI4PfffydNw+TciYmJ2D3IcoqMLFyh8dHFHADq16/P5cuX8fT0xNvbW+X2uAy26tWrc+LECZVtRf8/fPgwPXr0YOjQodSpU4dKlSpx7ZrqPCpFffbZZyQlJancPvvss8fWeSgvP4+b8ffU5qyq7eRNaGy4xjoGOnpqHYsPfzl8XJaZh5UjicVcCD0LPT09fKr6cvqk6mThp0+dpmZtzUO0atSqyelTp1W2nTp5iqrVq6L7HyYL37Z5K5ZWVjRtXnoZTbn5eVyNDaehWzWV7Q1dq3Ip+vHzK+Xl5xOblki+QkE774YcC7uk7GQz1NVXf73y89HSevrMmyfKyib/fnzhLSqG/ORkdH0fOa50dND19iL3lubj6lH6dWuBrg45Z1RXKcu5doPkH38l5ZfZyltu+B1yzp4n5ZfZpdIRBwWvRWhsOI2KvBaN3KpxKerpX4tXqjTkaNhFtQ7P7Lxc7qcloqOtTZvK9ZRfUEpbbn4eN+PuUdv5Gd7funrko368AMp3d2jsbRzNbFTe707mNsSnJ5dKRxzw4JiKK7xFxZCfpOGYquxF7q0nZyfo16tdcEydfoqV73R00HGwJz+55J9XRZkYGeHm6KS8VXJ1xcbSkpMXCheUyMnN4WxwMLV9fB+7ryX//sPf69fx22cTqV75KX59KQU6urrYeTgTEaw6X2NE8A0cK7s99X7uR0RibKl5CKL4/5Kbn8eNuLvUca6isr2uc5ViM48MdPXUPlcLr0NU5eTlEp+ejI6WNs08anIy/HKpxf6yycvP53ZCJNUdvFS213Dw4nrcnWJqFfC1c8fBzJrDN9XPZ/o6umqvl0KhKHitSnmu0YJrqQgauqpOSdPQteoznb/bejfg+O1LanH7V26Ano4uu6+eLmYvQpQP6YwTQrxw/vjjD/Ly8mjcuDHr16/n2rVrhISEMGvWLJo2bYqRkRF+fn788MMPBAcHc+jQIb744guVfYwePZr4+HgGDRrEqVOnuHnzJrt27WLEiBHk5RX/RXTUqFHcuHGD8ePHExoayooVK1i0aJFKGW9vb3bv3s2xY8cICQnh7bffJirq8SsUGhgYYG5urnJ7lmGqW4KP0s67Af6V6+NibserDTtha2KhvNAYVK89o5v1UZY/c+cKjd2r096nMfamVvjaufN6oy5cux+h/NWxb21/6jh5Y29qhYeVI+807YWntRO7rj5+tb2nNWDwQLb8s5mt/24h7FYYs6b/SkxUND379ATgz9lz+O7rb5Xle/TuRXRkFL/N+JWwW2Fs/XcLW//ZzMChg5VlcnJyuBZ6lWuhV8nJySU2NpZroVe5E6F6AZqfn8+2zVvp1KXTf+rIe5w15/fRtVozOldtioeVI2Oa98HezIp/Lh0G4C2/Hnze7lVleVcLe9r7NMbVwo5q9h583X4EXjZOzDtZOF/LsdsX6VGzJW29G+BkZkND16qMbNKVo2EXVTKbSlvWwWMYvtIGvVrV0XZ0wHhQXxTZOWSfDVKWMR7cF8MuHdTq6vs1JOdiCIr0IiulZmWTHxWtciM7G0VaesHfpWh10B66VW9Ol2rN8LByZGzzfjiYWbHxckEmxii/nnzR7jVleTcLezr4NMbVwp5q9p5802EklWycmfvI3DnVHTxpXakuzua21HHyZnq3sWihxfKzZTd/3+aQgvd3W+8GuFjY8VrDztiaWCjfi4PrdeC95n2V5c/cuUIT9xp0eOT9PaJxV67FFr6/d4aewszAmNcbd8HJzIb6Lr70rtWGHaFls9DMQ1kHj2LY3h+92jXQdnLAeEg/FDk5ZAcGKcsYD+mPYdcAtboFx1SwxjngDHt0RqeyF9rWVuh4uGEyYihahgZknwosy+YABcNTB3XuwsJNG9h/6iTXw8OZ9MfvGBoY0LFFC2W5r2b/xuwVhfMTLf7nH+asXsVX77yLk70d9xMTuJ+YQHpm2awu/Ki67ZsRfDiQ4COBxN+L4ciqbaTEJ1GjTcEiOcfX72LP/MJ5+c7vPsbNc8EkRscRdzea4+t3cSMwmFr+hfOg5uXmEhseSWx4JHm5eaQmJhMbHklidMnmGBUvhn8uH6a9TyPaVWmIq4U9Ixt3xdbEkh1XCn6wHNagI+NaFi6SdToiBD+PmnT09cPB1Jqq9h682aQ7V2PDiX/wOeVj64afRw0cTK2p7uDJ1x1GoqWlxcZLByukjY8y0jOgiq0rVR6s/upsbksVW1ccTJ9u/suytPPqKVp51aWFV22czGwYWPcVrI3NlauG9qnVhjcad1Or19KrDjfi7nI3OVbtvvOR1/GvXJ/GbtWxNbGguoMnPWu2IujetTIZ/rjm/F66PLyWsnRgdLM+2JtZKzO+32zSnc/bDleWd7Wwp32VRrhY2FHV3oOvXnkdL2sn5p38V23fXao15cit8yRnlc+K288NheL5vf2fkmGqQogXjpeXF2fPnmXKlCl8+OGHREZGYmdnR4MGDZgzZw5QsBjDiBEjaNiwIb6+vvz000906FDYYeDs7MzRo0eZMGECAQEBZGVl4eHhQceOHZXDXDVxd3dn/fr1fPDBB/zxxx80btyYqVOnMmLECGWZL7/8klu3bhEQEICxsTFvvfUWPXv2JCkpqcyek+O3L2FmYEyf2v5YGZkRkRjN9/uWcj8tEShI7bc1sVSWP3jzHEZ6BnT0bcLwBh1Jy87kctRNlp3dqSxjom/IW349sTQyJT0nk1vxkXy9829uxN0tlZjbdXiF5KQkFv29gLj7cXhVrsRPM3/B8cEw4bj7cUQ/0jnj7OLMTzOn8duMX9m4dgO2dra8/9EHtGnrryxzP/Y+I4a+pvx/1bIVrFq2grr16/Hb3N+V28+cOk10VDSdu3ctlbY8at/1QMwNTHi1YWdsTMy5FRfJhC1/EJ1aMCTXxthc5WJdR1ubAXXa4W7pQG5+HufuXuXdDb8QlVI4hHfJme0oFAreaNINOxNLEjNSORZ2UeNFZmnK2ncILT09jPp2R8vIiLzbd0j9cyFkFQ651rayVLuQ0razQbeSJ6lzFpRpfE+y93og5oamvN6wCzYm5tyMu8dHm2cTnfLwtbDAwaxwWLS2tjaD6r6Cu6Ujufl5nL0byqj1P6ssWKKvo8ebTXrgbG5LRk4Wx29fYvLuhaRml10HyrGwi5gZGNP3wfs7PDGaqXuXFHl/Fw7HPXCj4P3dqaofrzbsRFp2JpeibrIssPD9HZeexOTdC3mtUWemdX+P+PRktoUcY9ODjsqykrX34INjqgdaxkbk3Y4gdc78pzimbNGt7EXqH39r3K+2pQUmrw5Cy8QYRWoaubcjSJn+B4qExDJsTaFXu/cgKzubH+b/TUpaGjW9vZn9+ReYGBkpy0TF3VdZ6GPd7p3k5OYyYfo0lX292bcfb/dTXdm7tFVpXIvMtHTObD5AWlIKNs4OdHt/GOY2lgCkJ6WSEld4zsrLzePomp2kJSajq6eHtYs9XcYOw7O2j7JMWmIKa74tXJQlaOdRgnYexdnHk16fjCzT9oiKd+TWBcwMjBlQpx3WxubcToji290LiS3mOmTf9UCM9AzoUq0ZIxp3IS07kwuR11l8pnAeVD0dXYbWD8DB1JrM3GwC71xh5qFVpGVnlnPr1FW182B2r/HK/8e26AfAtpDjTNm3uKLCAgo6Ok31jehevQUWhqbcTYpl5uHVytVRLQxN1YaAGukZ0MC1KiuDNE8DsDn4CAqFgl41W2FlZEZKVjrnI6+z/uKBMmnD/htnsTA0YXiDTgXXUvGRTNj66LWUBfaPXktpaTGgTjvcHl5L3bvK6I3TVK6loKDTrraTNx9u/q1M4hbiWWgpZCY/IYR4bvVf+sWTCz3n1gz7jpjkFzszwt7chlZ/vFvRYZTYoXf/IPGDzys6jP+xd99xTdxvHMA/SYBA2HvIBlmCAiqKExyIe2vd22rdo+vXOlpbOx11VW3de2/FCSgqirIU2UP23nvkfn9QooGgKCMQn/frlZfm7nvJ8yWXu9xz39EoKls2oufOBeIOo9EeLtqNcYe/E3cYjXZ2+s/IXfaNuMNoFJW/fkVBYPD7C7ZyivYdse3BaXGH0ShLezdvEpJ8uJEHvhZ3CI1yadZvEnPOmH266ca4FYf9E/6Hvn8ven/BVs574c73F2qFctf8LO4Q6qWyoe3/HvoY1DKOEEIIIYQQQgghRFLxqQ1Wa0NjxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpIdRNlRBCCCGEEEIIIURS0WyqrQ61jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBXDF3cEpBZqGUcIIYQQQgghhBBCSAuhZBwhhBBCCCGEEEIIIS2EuqkSQgghhBBCCCGESCo+zaba2lDLOEIIIYQQQgghhBBCWgiLYRhKkRJCCCGEEEIIIYRIoNxV34s7hHqpbPpJ3CGIBXVTJYSQVmz5pa3iDqHRto5cjpjMRHGH0SimGvoYtv9LcYfRaFdn/4Hcz+aIO4xGUTm5Dz/e3i/uMBpt7cDZGHXwG3GH0WgXZ/6K6Sd+FHcYjXJ40lr843tJ3GE02rzuI7HkwmZxh9Eo20evxBqPveIOo9E2uM/HJu8T4g6j0Vb1nYSF5/4QdxiN8vfYLzH79EZxh9Fo+yf8Dz13LhB3GI3ycNFuifks2iRqg9XqUDdVQgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQojEyMnJwbRp06CsrAxlZWVMmzYNubm579yGxWKJfPzxx5tWwi4uLnXWf/bZZx8cH3VTJYQQQgghhBBCCJFUn2A31cmTJyMxMREeHh4AgPnz52PatGm4cuVKvdukpKQIPb9x4wbmzJmDsWPHCi2fN28efvzxzTAdcnJyHxwfJeMIIYQQQgghhBBCiEQIDQ2Fh4cHfH190a1bNwDAP//8A2dnZ4SHh8PS0lLkdjo6OkLPL126BFdXV5iamgot5/F4dcp+KOqmSgghhBBCCCGEEEJaXFlZGfLz84UeZWVljXrNx48fQ1lZWZCIA4Du3btDWVkZjx49atBrpKWl4dq1a5gzp+7kZ8eOHYOGhgY6dOiA1atXo6Cg4INjpGQcIYQQQgghhBBCiKTi81vt45dffhGM61bz+OWXXxpV3dTUVGhpadVZrqWlhdTU1Aa9xqFDh6CoqIgxY8YILZ8yZQpOnDgBLy8vrFmzBufOnatTpiGomyohhBBCCCGEEEIIaXHffvstVq5cKbSMy+WKLLt+/Xr88MMP73w9Pz8/ANWTMdTGMIzI5aLs378fU6ZMgaysrNDyefPmCf5va2uL9u3bo0uXLvD394ejo2ODXhugZBwhhBBCCCGEEEIIEQMul1tv8q22xYsXv3fmUmNjYwQHByMtLa3OuoyMDGhra7/3fR48eIDw8HCcOnXqvWUdHR0hLS2NyMhISsYRQgghhBBCCCGEEEjMbKoaGhrQ0NB4bzlnZ2fk5eXh6dOncHJyAgA8efIEeXl56NGjx3u337dvHzp37oxOnTq9t2xISAgqKiqgq6v7/gq8hcaMI4QQQgghhBBCCCESwdraGu7u7pg3bx58fX3h6+uLefPmYdiwYUIzqVpZWeHChQtC2+bn5+PMmTOYO3dundeNjo7Gjz/+iGfPniEuLg7Xr1/H+PHj4eDggJ49e35QjJSMI4QQQgghhBBCCCES49ixY7Czs4Obmxvc3NzQsWNHHDlyRKhMeHg48vLyhJadPHkSDMNg0qRJdV5TRkYGd+/exaBBg2BpaYmlS5fCzc0Nd+7cAYfD+aD4qJsqIYQQQgghhBBCiKTiS0Y31Q+hpqaGo0ePvrMMI6L77vz58zF//nyR5Q0MDODt7d0k8VHLOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSHUTZUQQgghhBBCCCFEUknIbKqShFrGEUIIIYQQQgghhBDSQigZRwghhBBCCCGEEEJIC6FkHCHkk8ZisXDx4kWJeR9CCCGEEEIIEcLwW+/jE0VjxhFCiATradwR/cw7Q0lWHqkFWbjwwhsx2ckiy052cIOToU2d5Sn5WfjN80izxHf1/CWcPX4a2VlZMDIxxudLv4Ctfcd6ywcHBOGf7X/jdWwc1DU0MG7yRAwdPVyozIVT53DtwmVkpKVDSUUZvVz6YNaCuZDhygAAZoydjPTUtDqvPWzMCCxataxpK/iWIVbOGGPnAjU5RcTnpuGfJ5cRkhZbb/mh1j0wzLoHtBTUkFGUg9NB93Av6nmzxVcf2XEjINOvL1gKPFRFxaB4/zHwE0XvQzW4gwdAZqAr2BpqYAoKUf7kGUpPnAMqKv97UVnITRgF6a6OYCkroiouHiUHT6AqJq75KwQg4r4/Xt19ipK8QqjoaqDz2P7QMjeot3xVRSVe3HiEWL8QlBYUgaeiCNtBzjBzrn9fbWqDLbtjlG0fqPIUkZCThn1Pr+JVely95fuY2mO0bV/oKamjqLwUAUkROPjsOgrKigVlhtv0hLtld2jIq6CgrAiP4l7iiL8HKqoqW6BG1fqbd8EQa2coyykiKS8dx/xvISIjvt7yzka2GGrdA9qK6iipKEVwSjROBtxGYXlJi8UccPcR/K57oyivABp62nCdMgL6libv3S4pIg4nf9kNDX1tzNiwQmhdaVEJfM55IPLZS5QWl0BZQw0uk4bCtJN1c1UDvU06oX/7LlCSlUdKfhbOv/BCdFaSyLJTHQehm1GHOstT8jOx8e5hAICOojqGWveAgYoW1OWVcS7YE17RAc0WPwA4Gdigl0lHKHB5SC/MwY2wx3idk1pveQ6LDVfzzuikZw4FLg/5pUXwjg6Af1I4AMBG2xh9TB2gxlMCh8VGVnEeHsa9QFByZLPWI8TrKYJvPkJxXgFU9bTgPNEduu2NRJZNDo/F1U2H6iyf8MMiqOhq1lke9fQF7v17DkadLDFo0aQmj/1tfUztMdCiK5RlFZCSn4kzQfcQVc8+Nb3zYDgb29ZZnpyfiQ23DwAA7PXaw92qOzTlVcBhs5FemIs7kX54Gv+q2ergauYId8vuUJFTQFJeBk4E3kFkZoLIsrO7DkMvk7rngaS8DKy5+Y/g+cD2XeFq5gg1nhIKy0vwLDEMZ4M9UcmvarZ6NFQnXXNMdnCDlZYhNORV8M31v/EgNkjcYQH49D4L8umhZBwhhEgoBz0LjLbri7NB9xCbnYwexh3xufMo/HLvCHJLCuqUP//CC1de+Qies1lsfOU6pdkuQrzveGLPX7uwaNVS2HS0xfWLV7Fm9bfYc3Q/tHS065RPTU7B2tX/g/vwIfhy7bd4FfwSOzdtg7KKMnq59gEA3Lt5Bwd2/4MV334JG7sOSIxPxOaffwcAfL7sCwDAX//uAp//5i7c65hY/G/5V+jt2rdZ6glUX/TO6zYCfz++gFdpcRhs1R3r3ebgi/N/IqMot075wVbOmNF5MLY/PIuIzARYahhgca9xKCwrxtOE0GaLszbuiMHgDnFD8d/7UZWSBtkxw6Dwv1XIX/kdUFoqchvpnt0gO2kcivccQFVEFNi6OuAtmA0AKD18CgDA+3wGOPrtULTzXzA5uZDp3R0K369C/qo1YHJym7VOcc9D8fzcXXSd6AZN03aI9AmE564zGPb9XMirKYncxmf/JZQUFKH7lMFQ1FRFaUERGH7L3cntadwRs52GYY/vJYSlx2GQZTesGTgLSy5uRmZRXp3y1lpGWNZrAvb7XYVfQijUeUpY4Dwai3qMxa//Jdb7mNpjWmd37PA5i7CMeOgpaWBpr/EAgP1+V1ukXt0MbTDFcRAOPbuOyMwEuJo7YnXfyfj2+i5kFefXKW+hYYDPu4/CsYBbCEiKgJqcImZ2HYrZTsOxzed0i8Qc9iQQnseuYMD0UWhnYYwgzyc4t2kfZv2yCkrqqvVuV1Zcgut7T8LIxhxF+cLH36rKSpz54x/wlBQwYvE0KKgpoyA7FzKy3Garh2M7C4zp6ILTgXcRk52MnsYdsbDHaPx85xByRJwfzgZ74lLIA8FzDouNb/pPQ0DSm/ODDEcKmcV5CEiKwJiOzXc8rWGrY4rB1s64+soH8Tlp6GJgjWmdB2O7z2nklRaJ3Gai/QAocOVw4eV9ZBfnQV5GDmzWm45CxRVl8I4OQGZRLir5VbDUMsJo274oKi9BVGZis9Qj2u8lHp/yQK/JQ6FtbojQ+89wY9tRTFi/CArqKvVuN2HDYqF9RFZRvk6ZgqxcPDl7CzrtDZsjdCGd9S0xvlM/nAy4jeisJPQ26YRFvcbhx1v7Re5Tp4Pu4uLL+4LnbDYL3/WfCf/EcMGyovJS3AjzRVpBFir5fNjpmmJ658EoKCtGaFpck9ehq4E1JtkPxBF/D0RlJsLFzAErek/E9zf3IlvEMelE4G2cfeEpeM5hsfGD2xw8SwwTLOtu2AHjOrpiv99VRGUmQUdRDXOchgEATgbeafI6fCg5aS6ishJxPewRNg5eIO5wBD7Fz4J8eqibKiGk1XJxccHixYuxePFiqKioQF1dHd9//z2Y/2YDOnr0KLp06QJFRUXo6Ohg8uTJSE9PBwAwDANzc3P8+eefQq/58uVLsNlsREdHi3zPFy9eoF+/fpCTk4O6ujrmz5+PwsJCwXo/Pz8MHDgQGhoaUFZWRt++feHv7y/0GpGRkejTpw9kZWVhY2OD27dvN+WfpcFczB3x5HUIfONDkFaYgwsvvZFbUohexqJb85RWlqOgrFjwMFTRhpy0LJ7EhzRLfBdOnYXbsMFwHzEUhsZGWLB8ETS1tHDtwhWR5a9dvAItbS0sWL4IhsZGcB8xFG5D3XHuxJuL8LCXr2BjZwtXt/7Q1tVB525d4DLQFZFhb37cq6iqQE1dTfB48tAXuu30YOfQqVnqCQCjbPvgdoQfbkU8RWJeOv55chmZRbkYYuUssnw/M0fcCPfFg9ggpBVk435sEG5H+GFsR9dmi1EU7uABKL14DRV+/uAnJqF41z6wuDKQ6dmt3m2kLMxQGRGFiodPwM/IQmVwCMofPYGUqXF1AWlpSDt1Rsnxs6gKiwA/LR2lZy+Dn54J7sDmr1/YPT+YOXeEeY9OUNbRQJdxA8BTVUTEA9EteJJfxSAtKgGuC8dD18oYCurK0DDWg6apfrPHWmNkh164E/kMdyL9kJiXgX1PryKzKA/ult1FlrfQNERGYQ6uhT5CemEOQtNf41b4U5hrtBOUsdQ0RFjaa9yPDUJ6YQ4CkyPxICZIqExzc7d0hndMALxjApCcn4lj/reQXZyHfu27iCxvpqGPjKJc3I54isyiXERkJsAz6jlM1HRbLOZnHg9g16crOrp0g7qeNvpNGQFFNRUE3vV953a3Dp6HtbMDdM3rJkVe3PdDaWExRi2dgXYWxlDWUIW+hQm0DPWaqxpwNe+Mx3Ev8fj1S6QVZOP8Cy/klBSgl4no42Cd84Nq9fnB9/VLQZn43DRcenkf/knhqKxq/lYmPYw7wj8xHM8Tw5FRlIsbYY+RX1oosoU3AJhr6MNYTRdHnnsgJisJuSWFSMrLQELum5bScdkpCE2PQ0ZRLnJKCuD739/HSEWn2eoRfPsxLHs5wqp3Z6jqaqLHxMFQUFXGK+9n79xOTlEePGVFwYPNFr6s4/P5uPfvOXQe4QoljfoTxU2lf/sueBT3Ag/jXiC1IBtngj2RU1yAPqb2IsuXVpYjv6xI8DBS1QFPRhaP39qnIjMTEJQcidSCbGQW5cIzyh9JeRkwV2+e49QgCyc8iA3Cg9ggpBRk4UTgHWSX5MPVzFFk+ZKKMuSXFgkexqq64MnIweetlmVm6u0QmZmIJ/GvkFWch5C0WDyJfwVj1ZY7br2Lb3wI/nlyGd4xgeIORcin+Fk0Oz7Teh+fKErGEUJatUOHDkFKSgpPnjzBtm3bsGXLFvz7778AgPLycmzYsAFBQUG4ePEiYmNjMXPmTADVY7TNnj0bBw4cEHq9/fv3o3fv3jAzM6vzXsXFxXB3d4eqqir8/Pxw5swZ3LlzB4sXLxaUKSgowIwZM/DgwQP4+vqiffv2GDJkCAoKqu/68vl8jBkzBhwOB76+vti9eze+/vrrZvrr1I/DYkNfWQthGa+Floelv4ZxAy9cuxl1QERGvMg72o1VUVGByPAIODoJX3Q7OnXGq5eik39hL1/B0amzcPluXREZFoHKyupudTadbBEVHoHwV9V3QlOSkuH3+CmceohOWlRUVMDz1h24DXUHi8VqbLVEkmJzYK7eDgHJEULLA5IiYKUluhuSNEeqTlfB8soKWGgYgMNqmVM3W0sDbFUVVAa/9XlUVqIyNBxSFnW/P4IiYVGQMjECx8xE8DrSDnao8A+uLsDhgMXhABUVQtsx5RWQsjJv8nq8raqyCtkJqdC1Fu5SqGttgsxY0V2pEl9EQd1QB6/uPMH573bi8g974X/+HirLK0SWb2pSbA7M1NshsFYL1cDkyHr3n7D011CXV0bndpYAAGVZBTgb2wq1EAhNj4OZRju016hOKmorqMFR31KoTHPisNkwVtPFy1ThGyMvUmPQXkN0l+HIzASo8ZTQUbd6P1GSlUdXQ5tm70JYo6qyEmlxSTC2tRBabmzbHslRcfVu9+K+H3LTs9Bj1ACR66MDXkHP3Ah3D1/AriU/4sD/NsH3yj2hFrxNicNiw0BFG2Hptc4Paa9hot6wBGB3I1uEp79ulvNDQ3BYbOgpadRprRaVmQgDlbotqwHASssIyXkZ6GXSCV+6TMGy3hMwyLIbpNicet/HVE0PGvLKiMtJadL4a1RVViIzPhn6NsLHVH0bM6RFi+6OV+P8hj04svpPXN18CMlhdYc88L/qDTlFeVj1Ep28aEocFhuGKjp4Vau1Wmh6HEwbmDjrYWyHsPTXIls91bDUNIS2oioim6GVIofNhpGqLkLSYoSWh6TGwly9YTdfept2wqu0WKGWvZGZiTBW1RHcNNCUV4GdrhmCU6KaLngJQ58F+VRQN1VCSKtmYGCALVu2gMViwdLSEi9evMCWLVswb948zJ49W1DO1NQU27Ztg5OTEwoLC6GgoIBZs2Zh7dq1ePr0KZycnFBRUYGjR4/ijz/+EPlex44dQ0lJCQ4fPgx5+eruHjt27MDw4cPx22+/QVtbG/369RPaZs+ePVBVVYW3tzeGDRuGO3fuIDQ0FHFxcdDXr/7BsHHjRgwePLiZ/kKiyXPlwGGzUVBaLLS8oKwYSrK8926vxOXBWssYR57faJb48nPzwK/iQ1VN+G69iqoqcrKyRW6Tk50NFVXh8qpqqqiqqkJ+bh7UNNThMqAf8nLysHrhMjAMg6qqKgwdPQITpokeJ+fx/YcoLCzEwCGDmqZiIihx5cFhc+pctOaUFMKRpyhyG/+kcLhZOOHx65eIzkqCubo+Blh0hTRHCkqy8i1yAcxSUQYA8POEL4z4eflga6jXu13F46coUVKAwg/fVL+OlBTKbnmi7PJ/+1JpKSojoiA7ZhiKklLA5OZBumc3cMxNwE9Nb57K/KessBgMn4GsovB3QFZRHiX5oru1FWbmIj06EWwpKfSZNxplRSXwO3ULZcWlcJ46pFnjBQBFLg8cNqdO1/K8kgKoylmI3CY8Ix6b75/EapfJkOZIQYrNwZP4V/jH97KgjE9sMJS5Ctg4eAFYLBak2BzcCHuM8y+8m7U+Narrxa7TnTC/tAjKsnW72wHViZbdjy9gUc+xgnr5J4bjyHOPlggZJf91T+YpKwgt5ykroihP9HcyJzUDD87cwGffLQSbIzrpk5eRjfjQaFg7O2DMytnITcvEncMXwa+qQo9RA5u8HoLzQ5nw376grBhK3IacH+Rho22CQ8+uN3lsDcWTkQWHza4zVmBheQkU66mDmpwSDFV1UMmvwvGAW+BJy2J4h16Qk5bFxZdv9nuulDS+dJkKKTYHfIaPq68e1juWXmOV/ndMklMS3ufllORRnF8ochuesiJ6TxsOTUNdVFVWIdI3CFe3HMLwVTOha2EMAEiNike4jz/GrmmZbocKgt8ctfap0iIoa4v+Pr9NSVYeHbRNsf9p3S7yslIy+GXoQkizOeAzDE4E3K6TSG4KijL1HJPK6j8mvU1ZVh52OmbY63tJaPnThFdQ5PLwret0gFV9g+Ve1HNcD3vcpPFLEvosyKeCknGEkFate/fuQi2WnJ2dsWnTJlRVVSE4OBjr169HYGAgsrOzBa0I4uPjYWNjA11dXQwdOhT79++Hk5MTrl69itLSUowfP17ke4WGhqJTp06CRBwA9OzZE3w+H+Hh4dDW1kZ6ejrWrl2Le/fuIS0tDVVVVSguLkZ8fLzgNQwNDQWJuJqY36esrAxlZWVCy7jcph8viMUCmAa0Bncy7ICSijK8SBHdnbcp43kbA7yzhVrtdTVdlmteKNg/EKcOH8OiVUth2cEayYnJ2PPXThw/oIbJs6bVeb2bV2+gS3cnqGtqNKoeDVLr7/6uz+Jk4B2oyili0/AlYAHILSnE3chnGNfRFfxmmnVKumc38OZNFzwv/O2v/+KuHeS7dyIpG0vIjh6Gkn1HURkVA46OFuRmTAI/dxjKzldfaBXv/Be8z2dB+e9NYKqqUBX7GhUPn4BjIrqlV9OrveMxdfbFN6sYsFgs9Jw5HDJy1d/JqjH98GDfRXSdMBBSMtLNHGs9WCwwtXeq/+gra2FetxE4FXgXAckRUJVTxMwuQ7DQeTR2PDoHoHq8rXGdXLHH9xIiM+Kho6SBuU7DkdOxAKeD77VcPURUob69S09JA1Md3XHp5X28SI2GiqwiJjoMwMyuQ7Hvqeju7c2hzjHqv32kNj6fj6u7T6DH6IFQ06k7sL5gcz4DnqIC3GaNBZvNho6JPgpz8+F33btZknGC9/3I7boZ2aCkogzBya2hNYlwLVhg1Xt4qvmMzgTfQ1lldctWj7DHmGg/EFdf+QgGcC+vrMCuR+cgw5GGqboe3K26I7skH3HZzdM6ribut73rPK2iowEVnTfnLG0zAxTm5CPo1iPoWhijvLQMnvvOo/e0ESLHkWtOdcOu/zj1NmcjW5RUlIps5VpWWY6Ndw6BKyUDSy1DjOvoisyivHoH8m9qLDTsu9LTuCOKK0rhnxwutNxS0xDDrHvgiL8HYrKToa2gikn2A5FnU4grrx42S8ySij6LRmrIBQBpUZSMI4S0SaWlpXBzc4ObmxuOHj0KTU1NxMfHY9CgQSgvLxeUmzt3LqZNm4YtW7bgwIEDmDhxIng80XfNmXouqIA3P+JnzpyJjIwMbN26FUZGRuByuXB2dha8JyPiRNeQ7o+//PILfvjhB6Fl69atAxxU3rutKEVlJaji86FYqxWcggxPaDbF+nQztMGzxFBUNVPiR0lFGWwOG9lZOULL83JyoFKrtVwNVTU15GQLt5rLzckFh8OBknL1wPuH/zmAfoMGwn3EUACAiZkpykpLsO23LfhsxhShMXXSUtMQ+Mwf329c34Q1qyu/rAhV/Cqo1moFpyKrIHIiDQAor6rEXz5nsOPhOajIKSKnJB+DLLujuLwU+aXv//w+RsXzIBREvbUPSlf/RGCrKKMq980kAWxlRTB59Xcjkp0wCuUPHqPcs3qwd35CEsDlgjdvOsouXAMYBvy0DBT++DvAlQFLTg5Mbh54yz4HPz2zWepWg6vAA4vNQmmB8N320sLiei9a5ZQUIKesIEjEAYCyjjrAAMW5BVDSUmvWmAvKilHFr4KKnPD+oyyrgNwS0S1nxnV0QWh6HC6GVA+O/jonFXt8L+KXIQtxLOAWckoKMNlhILyi/XEn0q+6TG4aZKWk8UWPMTgT7NmgC+jG14sPZTnhv7uSrDzy6xl8f7hNL0RmJghaMSQgHWV+5fh+4CycDfZEXqnov0dTkVOUB4vNRlGu8Pe2OL8QPCWFOuXLS8qQFpuI9NfJuHukuoUGwzAAw2DTrG8w/su5MLQxh7yKItgcjtDxSU1XC0V5BaiqrARHqml/rtecH5S4wn97RS4P+Q04P3Q3soVfwqtmOz80RHF5Kar4fCjICJ/j5GVkUVguug4FZcXILy0SJOIAIKMwF2wWC0qy8oLukQwg+H9qQRY05VXRx9S+WZJxsv8dk2q3gistKBK5T9VHy0QfUU+qhwLIz8hGQVYubu48Llhf89vknwU/YOKPS5r8uFVYs0/VarWkKMtr0Dmrh7EdnsSL3qcYQDDRUWJeOnQV1eFu1Q2RPk2bjCso/++YVLsO3PqPSW/rbdIJj1+/RFWt7uWjbfvi0euXghlKk/IyIMORxowuQ3D11cNmPtK2TfRZkE8FjRlHCGnVfH196zxv3749wsLCkJmZiV9//RW9e/eGlZWVYPKGtw0ZMgTy8vL4+++/cePGDaGurbXZ2NggMDAQRUVvTvQPHz4Em82GhUV1d7AHDx5g6dKlGDJkCDp06AAul4vMzEyh14iPj0dycrJg2ePH72/+/u233yIvL0/o8e233753u/pUMXwk5qXDUlN4sHBLLcP3XlCYq+tDU0EVvq+bZ+IGAJCWlkZ7SwsE+D0XWu7v9xw2th1EbmNlawP/2uWfPkN7KwtI/XexWlZWBhZbOPnJZnPAMEydROntax5QVlWBk7Po8eSaSiW/ClFZSbDXay+03F7P4r1dbaoYPrKK88BnGPQx6YSnCaHNlyQpLQU/Lf3NIzEZ/JxcSNm9NRg6hwMpa0tURryjxaSMTN27r3x+3WaQAFBWDiY3Dyx5HqQ72qLiuehJFJoKR4oDNQMdpITFCS1PCYuDhonocY00TduhJK8QFWVvkvz56TlgsVjgqYjuZtyUKvlViM5Kgr2e8Hh69nrm9e4/XI5Mnf2dX+s5lyNdTxlWva0Em1IVn4+47BTY6pgKLbfVMa23xYuMVH0xi969mhpHSgraxu0QFyLceicuJBJ65sZ1ynPluJjx80pM37Bc8Ojk2h1qupqYvmE5dMyqj8/t2hsjNz1LaIbenLRMyKsoNnkiDqg+riTkpsFKq/b5wQixWcn1bFXNXEMfWgqqeBz38p3lmlsVw0dyfibMak04YqahLzQhw9vic1KhKCsPGc6bv6m6vDL4DP+dF/is/7qzNQeOlBQ0DPWQ9Er4mJoYGg1tM9FjJ4qSlZAi6D6toqOBcesWYuyaBYKHUUdL6FmaYOyaBfXOGt0YVQwf8bmpsK41jqW1lhFi3tPFt72GAbQUVPEo7kWD3685Po8qPh+vc1Jgoy08pmgHbRNEZb17jLrqsezU8CAmqM46GY5UnfM2wzDVbSFb4sDVBtFnQT4VlIwjhLRqCQkJWLlyJcLDw3HixAls374dy5Ytg6GhIWRkZLB9+3bExMTg8uXL2LBhQ53tORwOZs6ciW+//Rbm5ubv7DI6ZcoUyMrKYsaMGXj58iU8PT2xZMkSTJs2Ddra1QNCm5ub48iRIwgNDcWTJ08wZcoUyMnJCV5jwIABsLS0xPTp0xEUFIQHDx7gu+++e289uVwulJSUhB6N7abqFeWP7ka26GZoA20FVYyy7QNVOUU8jKu+ez7MuiemOLrV2a6bUQfEZacgtSCrUe//PqMnjsPNK9dx8+oNxMe9xp6/diEjLR1DRg8HABz4+1/8ueFXQfmho4YjPTUde7ftQnzca9y8egO3rt7A2EkT3sTe0xnXLlyB1517SE1Ogf/TZzj8zwF079UDnLfGa+Lz+bh9zQMDBruBI9U8F1lvu/jyPtwsnDCwfVfoK2thrtNwaCqoCFr4zOg8GCv7fCYor6ekARczR+gpacBCwwBfuUyBkaoODjfTGH71KbtxB7KjhkK6qwPY+u3A+2I2mLJylD98IijD+2IOZD8bI3he6R8E7gAXSDs7ga2pASk7G8hOGIWK54GCJJ1Uxw6Q6mQrWK+w5ktUpaSi3Kv5u4lY9euK6EdBiH4cjLzUTDw/dxfF2flo39seABBwyRuPDr8Zt8i4qw248nLwPXodeSmZSItKQMAFT5g627VYF9VLIT4Y0L4r+pt3gb6yJmZ3HQYNeRXcDK/+HKY6DsKyXm++B36JoehuZAt3y27QVlCDlZYR5nYbLjQhi19iGNwtu6OXSUdoKaiik645JjsMhF/CqzqJu+biEf4YfU0d0cfUHnpKGpjs4AZ1njLuRVYn3cd36of53UcKygckRaCzgRX6mXeGprwK2msYYGrnQYjOTKq3lWBT6+LeGy+8n+LFfT9kJafB89hlFGTlolO/6qT+/dM3cH3PSQAAi82Gpr6O0IOnJA+OtBQ09XUgw5UBAHTq54ySwiLcO3YZ2akZiA4MxZMr9+DQv0ez1cMz6jmcje3Q3agDtBXVMMauL9R4ioKZB4fb9MK0zu51tnM2skVsdgpSRJwfOCw22ilrop2yJqTYHCjLKaKdsiY05FWapQ6P4oLRWd8Kju0soSmvgsFWzlCWVcDT+FAAwECLrhhr5yIoH5wShZLyUoy2c4GmvAqMVHUwyLIb/BPDBV1U+5jaw0y9HVTlFKEhr4wexnaw17No1klCOg50RpiPP8J8/JGTkoFHpzxQmJ0H677VExw9PX8HnvvPC8q/uPMYcQGhyEvLQnZyOp6ev4NY/1B0cHUCAEhJS0OtnbbQg8uThTRXBmrttJslwQsAdyOfoadJRzgb2UJHUQ3jOrpClackaIU0skNvzOhSd5zNnsZ2iM1KRnJ+3ZbRgyy7wUrLCBryytBWVEP/9l3Q3agDnsa/apY63Ix4ij4m9uhl0hG6iur4zH4A1HhK8Ir2BwCMtXPBXKfhdbbrbdIJ0VlJSMrPqLMuKCUKrmaOcDKwgYa8Mmy0jTHKtg8CkyNF9qZoaXLSXLTX0BdM5qOnpIH2GvrQVmj+GXjf5VP8LJrdfy2zW+XjE0XdVAkhrdr06dNRUlICJycncDgcLFmyBPPnzweLxcLBgwfxv//9D9u2bYOjoyP+/PNPjBgxos5rzJkzBxs3bnxnqzgA4PF4uHnzJpYtW4auXbuCx+Nh7Nix2Lx5s6DM/v37MX/+fDg4OMDQ0BAbN27E6tWrBevZbDYuXLiAOXPmwMnJCcbGxti2bRvc3ete1DS3gOQI8GRkMciyO5S4PKQUZGGP7yXBxbiSrDxU5YTvkMtKyaCTrjnOvzWYdXPpO8AVBfn5OH7gCLKzsmFsaowf//wF2jrVic/srCykp71p7aijp4sf/9yIvdt24cr5y1DXUMeC5YvRy7WPoMykGVPBYrFweO8BZGVkQllVBd16dseM+XOE3jvAzx/paelwG9oyn8uD2CAocnmCH5Ovc1Kx/tY+QdcbVZ4SNN+6YGWz2Bht2wftlDVRxa9CcEo0vry6E+mFOaLfoJmUXb4Blow05GZPBUteHlVRMSjcuBkoLX0Tq4aa0A+p0vNXwTCA7MRRYKupgskvQMXzIJSeenMxyeLJQXbS2Or1hUWoePocJScvAFVVzV4n487WKC8qwYsbD1GSXwQVXQ24fDEeCmrVE1aU5heiKPtNN1xprgz6LZ6IZ2du48bvh8CVl4OhoxU6Devd7LHWeBgXDCUuDxPt+0NVThHxOanYcOegYP9R4ylBU0FFUP5e1HPISXExxKoHZnUdiqLyUgSnRAslc08H3QPDMJji4AY1njLyS4vglxCKYwE3W6xeT+JfQUGGh5Ed+kBFTgGJeenY5H0cWcXV3aJVZBWgzlMWlPeJDYKclAwGWHTFJAc3FJeX4lV6LE4H3m2xmK262aOksBiPL91BUW4+NNrpYMzK2VDWqL5wLcrLR3527ge9ppK6CsZ/OQ+ex6/g0PdboKCiBEe3XnAa6tL0FfiPf1IE5GXk4G7ZHUqy8kjJz8Lfjy4Izg/KsvJQrdU1WlZKBvZ67XHuhZfI11SWU8A3/d6MzTmgfRcMaN8FkRkJ2OZzpsnr8DI1BjxpWbiYO0KRy0NaQTaOPL8h6K6swOVBWe5NV8/yqkocfHYNQ617YkGPMSgpL8XL1BhBV22geibr4Ta9oCQrj4qqSmQW5eJs8D28TI2p8/5NxayrLUqLiuF/zRvFeYVQ09PC4CVToKiuAgAozitAYfaboQKqKqvge/YWinILICUtBVU9LbgvmQxDO9ETurSU54nhkJeRw1DrHv/tU5nY+fCcoMuvsqwC1Hh19ymHdhY4HSR6nEouRxqTHAZCRU4BFVWVSC3IxgG/a3ieGC6yfGP5JYRCQUYOI2x6QVlWAUl5Gdj64JRgRs7qOgj/bpKT5qKzvhVOBN4W+ZpXXvmAYRiM/u+GaEFZMYJSour9HrU0K00j7Bi9UvB8aa/qcZWvhz7Gz/cOiSusT/KzIJ8eFvNJpIEJIW2Ri4sL7O3tsXXr1ka9zsOHD+Hi4oLExERBC7e2YvmlreIOodG2jlyOmMx3dyto7Uw19DFs/5fiDqPRrs7+A7mfzXl/wVZM5eQ+/Hh7v7jDaLS1A2dj1MFvxB1Go12c+Sumn/hR3GE0yuFJa/FPrVn32qJ53UdiyYXN7y/Yim0fvRJrPPaKO4xG2+A+H5u8T4g7jEZb1XcSFp4TPQN9W/H32C8x+/RGcYfRaPsn/A89d7bM7LjN5eGi3RLzWbRFufOXizuEeqns3SruEMSCWsYRQiRWWVkZEhISsGbNGkyYMKHNJeIIIYQQQgghpNH44pt0h4hGY8YRQiTWiRMnYGlpiby8PPz+++/iDocQQgghhBBCCKGWcYSQ1svLy6tR28+cORMzZ85sklgIIYQQQgghhJCmQMk4QgghhBBCCCGEEElFUwW0OtRNlRBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVNRNtdWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKTiUzfV1oZaxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpISyGoWk1CCGEEEIIIYQQQiRR7pT54g6hXirH9oo7BLGgMeMIIaQVO+x3XdwhNNr0rkNQEBkl7jAaRbG9OQbuXSbuMBrt9vy/sNbjH3GH0Sg/us/DqIPfiDuMRrs481f037NU3GE02t3Pt6EgNU3cYTSKoo62xBxrt94/Je4wGmV5n4m4GuIj7jAabViHXkjJyxB3GI2mq6wJ939WiDuMRvGYtwV9/14k7jAazXvhTsw+vVHcYTTK/gn/Q8+dC8QdRqM9XLRb3CEQCUHdVAkhhBBCCCGEEEIIaSHUMo4QQgghhBBCCCFEUvH54o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQScUw4o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgohk/dVFsbahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUDM2m2tpQyzhCCPnPzJkzMWrUqA/axtjYGFu3bm2WeAghhBBCCCGESB5qGUfIJ2rmzJk4dOhQneWDBg2Ch4dHs793bm4uLl682Kzv86H++usvME181yguLg4mJiYICAiAvb19k752bc9u+8D3uicKc/Oh2U4HA6eOgqGV2Xu3S4iIwZGfdkJTXwfzNn4pWB7mF4yHl28jJy0T/Co+VLU10H2IC+x6dW3OaoBhGOw9fhwXbnqgoLAQHSws8fXChTAzMqp3m+jXr7H72FGERUUhJT0dK+fNw+SRo+otf+D0aew8fAiTRozEqvnzm7wOw216YXzHflDnKSEuJxV/Pz6Pl6kx9ZYfYdMLIzv0hraiGtILc3A84DbuRPqJLOti5oDv+s/Ew7hgrL+1r8ljf1tXA2v0MukEBa4cMgpzcCPMF69zUustz2Gx4WLuiE565lDg8pBfWgTv6AAEJEUAADrrW8JezwJaiqoAgOS8TNyJ9ENSXkaz1WGwZXeMsu0DVZ4iEnLSsO/pVbxKj6u3fB9Te4y27Qs9JXUUlZciICkCB59dR0FZsaDMcJuecLfsDg15FRSUFeFR3Esc8fdARVVls9VjhE0vTOjUX7BP7Xp0Di/esU+N7NAbIzv0hs5/+9Qx/1u4/dY+NcjCCV+5Tq2znfu/K5u0HgzDYO/BA7hw5QoKCgrQwcYGXy9fATMTk3dud9fbC7v37UNicjL09fTwxdx5cO3TR7B+z4H9+OfgQaFt1NXUcPPCRcHzrOxsbN+zG75+figoLIRjp074ctkyGOobNKpOknKsfen5FIE3fVCcVwhVPU30nDgYehbGIssmhcfi8p8H6iz/7MclUNXVBAC8uv8M4Y8DkZ2cDgDQNNJDt9EDoG2i32x1eHjjHrwu3UR+Ti50DNph5OzPYGpjIbJsTGgkrh0+i/SkFJSXl0NVUx3Obn3Rd7iboIzvbW8883qM1PgkAIC+mRGGTBkDw/amTRr3xbPncfLICWRlZcHE1BiLVyxDR4dO9ZYP9A/Arq3bERsTBw0NdXw2bQpGjh0lWH/f0xtHDxxGUmISqior0c5AHxOnfAa3Ie6CMpWVlTj4z37c8biN7OwsqKurw33YEEybPQNsdtO0zxhm3RPjOrlCTU4Jr3NSsdv3IkLecZwabtMTw216Q1tRFRmFuTgReBt3I58J1rtbdscAi64wUtUBAERlJuKA3zVEZMQ3SbyijOrQG5/ZD4AaTxlxOSnY8fAsglOi31G+D8bY9YWOohrSCnNw9LkHbkY8FazfOmIZHNrV3Scfv36Jb67/3Sx1AABXM0e4W3aHipwCkvIycCLwDiIzE0SWnd11GHqZdKyzPCkvA2tu/iN4PrB9V7iaOUKNp4TC8hI8SwzD2WBPVPKrmq0eDdFJ1xyTHdxgpWUIDXkVfHP9bzyIDRJrTIQ0BCXjCPmEubu748AB4R/XXC5XTNGIn7KysrhD+GivfANw++hFuM8cBwMLE/jfe4STf+zF5799A2UN1Xq3Ky0uweXdx2HSoT0K8wqE1snJ89BzxEBo6GmDI8VBZEAIruw9CZ6SIsw6WjVbXQ6dO4vjFy9g3YoVMNRrh32nTmHRmu9xbvceyPN4outRVgZ9HR0M6NkLm//9R2SZGiEREbhw0wPtjd+dDPhYfU0dsNB5NLb7nEFIWiyGWvfAxsELMOf0L8goyqlTfph1T8x2Go4t908iPCMeVlqGWNH7MxSWFcM3PkSorJaCKuZ3G4XglKhmif1ttjqmGGztjKuvHiI+Jw1dDawwtbM7dvicQV5pkchtJtj3hwJXDhdf3kd2cT7kZeTAZrEE643V9BCcEoWE0DRU8qvQy6QTpncZjB0+Z4WSXU2lp3FHzHYahj2+lxCWHodBlt2wZuAsLLm4GZlFeXXKW2sZYVmvCdjvdxV+CaFQ5ylhgfNoLOoxFr96HgFQnayb1tkdO3zOIiwjHnpKGljaazwAYL/f1SavA1CdgP2ixxhs8zmDl6kxGGbTE78MWYjZpzcivbDuPjXcphfmOA3H5vsnEJ4eDystI6zs8xkKy0vw+PVLQbnCshLMPPWT0LZNnVA8dOI4jp8+jXXffgtDfQPsO3IYi1atxLmjx+r9Pge/fIn//fADFsyeA9feveH54AG+Wb8O+3bshK2NjaCcqYkJdm3aLHjO4XAE/2cYBqu/+w5SUhxs+nkj5OXlcez0KXyxciXOHDoMOTm5j6qPpBxro/xe4OGpG+g9ZRh0zQ0R4u2Ha9uO4rMfFkNRXaXe7SZtWAoZuTe/E2QV5QX/Tw6PQ3unjtAxMwBHWgqBN31wdcthTPxhMRRUlZq8DgE+T3HpwEmMmTcVJtbmeHzTG//8tBVf/bUBqprqdcrLcGXQc0g/6BnpQ0aWi9jQSJzdfRgyXC6c3foCAKJehsOhlxOMrcwhJS0Nz4s3sOeHzfjqrw1QVq//8/0Q927fxY7N27D8q1Ww62SHyxcu4avlq3Ho1BFo6+jUKZ+SlIxvln+JoaOG47sf1uJF0Ats/X0TVFRV0LefCwBAUUkR02ZNh6GxEaSkpfHY5yF+3fALVFRV4eTcDQBw4vAxXD5/Cd+u+w7GpiYIDw3Dbxs2Ql5BHuM+m9DoevUxtcfnzqOw8+FZhKTFYohVD/zkPh/zz/yKjKLcOuWHWvfAzK7D8NeDU4jISIClpiGW9Z6AwrISPPnv3NdRzxxeUf54lRaL8qpKjO/UDxsHL8DnZ39DVnHdY3hjuZo5YnHPcdjy4BRepkRjeIde+G3oIsw4uUHksXZkh96Y330E/vA6jrD017DWNsaXfSejoKwYj/471q65+Q+k2W8uuZVk5bFvwrfwig5o8vhrdDWwxiT7gTji74GozES4mDlgRe+J+P7mXmQX59cpfyLwNs6+8BQ857DY+MFtDp4lhgmWdTfsgHEdXbHf7yqiMpOgo6iGOU7DAAAnA+80W10aQk6ai6isRFwPe4SNgxeINZZWjU/dVFsb6qZKyCeMy+VCR0dH6KGq+ubHJovFwp49ezBs2DDweDxYW1vj8ePHiIqKgouLC+Tl5eHs7Izo6Dd3DNevXw97e3vs2bMHBgYG4PF4GD9+PHJzcwXrDx06hEuXLoHFYoHFYsHLywv9+vXD4sWLheLLysoCl8vFvXv36sSel5cHDoeD58+fA6i+8FJTU0PXrm9aEpw4cQK6urqC50lJSZg4cSJUVVWhrq6OkSNHIi4uTrC+djfVgoICTJkyBfLy8tDV1cWWLVvg4uKC5cuXC8VSXFyM2bNnQ1FREYaGhti7d69gncl/rT8cHBzAYrHg4uLy7g/lIz254QV7l25wcO0OjXbacJs2GkrqKvC/+/Cd293YfwYdnB3Rzty4zjojG3NYde0IjXbaUNXWgJN7X2gZ6CIhvP673I3FMAxOXLqEWRMnol+PnjA3NsYPK1eitKwMHt7e9W7XwcICy2bPwaC+fSEjLV1vueKSEqz58w98t2QJFBUUmqMKGNvRBR7hvrgR7ov43DT8/fgCMgpzMNymp8jyA9p3xbXQh/COCUBqQRa8ogPgEe6LifYDhMqxWSx82286Dj+/gdT8rGaJ/W09jO3gnxgO/8RwZBbl4kaYL/JLC9HV0EZkeXMNfRir6eLo85uIyUpGbkkhkvIykJCbLihzLtgTfgmhSC3IRmZRHi69fAAWiwVT9XbNUoeRHXrhTuQz3In0Q2JeBvY9vYrMojy4W3YXWd5C0xAZhTm4FvoI6YU5CE1/jVvhT2Gu8SY+S01DhKW9xv3YIKQX5iAwORIPYoKEyjS1cXauuBHmi+thjxGfm4Zdj84jvTAHw216iSw/sH1XXA19CK/oAKQUZMEz2h83wn0xsVP/WiUZ5JQUCD2aEsMwOHHmDGZNm4Z+ffrC3NQUP3z7v+rv853b9W534uwZdOvcBbOmToWxkRFmTZ0Kp86dcfzMGaFyUhwONNTVBQ9VFRXBuvjERLx4FYJvVq5CB2trGBsa4psVK1FSUoKbd+9+dJ0k5VgbdPsRrHo5wqZ3Z6jqaqLXZ0OgoKqEEG/RLXJryCnJg6esKHi83aJqwLxxsHV1goahLlR1NdF3+kgwDIOk0Oapx/0rt+DUvze6D+wDbX09jJozCSrqanh000tkeX1TIzj27gYdw3ZQ09JA577OsLS3RWxohKDM1BXz0XNwP7QzMYS2vi4mLJwJhmEQGRzaZHGfOX4SQ0YMw7BRw2FkYowlK5dBS1sLl85dFFn+8vmL0NLRxpKVy2BkYoxho4Zj8PChOHX0hKCMQ2dH9HbtCyMTY7TTb4dxn02AmbkZXgQFC8qEvAhBrz694NyrB3T1dOHS3xVduzkhPDS8Seo1xs4FN8OfwCP8CRJy07HH9yIyCnMxrJ5zX//2XXAj9BHuxwQitSAL3jEBuBn+BBM69ROU+d3zKK6GPkRMdjIS89Lx14NTYLFYsG/Xvklirm1Cp/64HvYY10If4XVuGnY8PIeMwhyM7NBbZHk3CydcfvUQntH+SCnIwr2o57gW9giTHN60tiwoK0Z2Sb7g0cXACmWV5fCK9m+WOgDVLZ8fxAbhQWwQUgqycCLwDrJL8uFq5iiyfElFGfJLiwQPY1Vd8GTk4PNW6zIz9XaIzEzEk/hXyCrOQ0haLJ7Ev4Kxqq7I12xJvvEh+OfJZXjHBIo7FEI+CCXjCCHvtGHDBkyfPh2BgYGwsrLC5MmT8fnnn+Pbb7/Fs2fVXQlqJ9GioqJw+vRpXLlyBR4eHggMDMSiRYsAAKtXr8aECRPg7u6OlJQUpKSkoEePHpg7dy6OHz+OsrIywescO3YMenp6cHV1rROXsrIy7O3t4eXlBQAIDg4W/JufX33Xz8vLC337Vt/tLi4uhqurKxQUFHD//n34+PhAQUEB7u7uKC8vF1n3lStX4uHDh7h8+TJu376NBw8ewN+/7o+nTZs2oUuXLggICMAXX3yBhQsXIiys+m7i06fVXRXu3LmDlJQUnD9/vmF/+A9QVVmJlNhEmNhaCi03tbVEYmRcvdsFeT9BTlom+owZ9N73YBgGsS8jkJ2a0aDuWB8rKS0VWTk56O7w5gejjLQ0HG1tERza+Iuh3/7+Gz27dkU3e4dGv5YoUmwOLDQM8DxR+OLmeWI4OmiLboknzZFCea3WSGWVFbDUNASH9eY0PdXRHbklhfAI9236wGvhsNjQVdJAdGaS0PKozCQYqmiL3MZKywjJeZnoZdIRq10mY2nvCRhk2Q1SbI7I8kB13TksNkoqyuot87Gk2ByYqbdDYHKk0PLA5EhYaYnu8hyW/hrq8sro3K76u6QsqwBnY1uh1gGh6XEw02iH9hrVXe+0FdTgqG8pVKap62GhaVDn9Z8nhr17n6qsEFpWVlkBKy0jcN5KnshJc3F88nqcnPIjfnafD3P1pu1OmJSSgqzsbHTv8uYmiYyMDBw7dULwy5f1bhccEoJuXYW7aHbv6oTgEOFt4hMT4T5mNEZMnIBvf1iPxORkwbqK/47rXBkZwTIOhwMpKSkEvgjGx5CUY21VZSUyXqfAwEb49Q06mCM1+t3d/878+DcOrf4dlzcdQFLYu5NsleUV4FdVgSv/ca0Q3/naFZVIjH4Ny04dhJZb2tsgLqxhLYcTY14jLjwKpjaW9ZYpLy9DVVUVeG+1AGyMiooKhIdFoGs34f27a7euCAkW/Z0IeRFSp7xTdyeEh4ahsrJuS1aGYfD86TMkvI5HJwd7wXI7ezs8f/YcCa+rP+OoiEi8CApG9x6ib058CCk2B+019OGfJHzu808Kh7W2schtpNl1z33lVRWwqHXuextXSgZSbHaztKSuOdb6JQj/1vBLCIWtjuhuyvUda61rHWvfNtTKGfeinqO0UvRvz8bisNkwUtVFSJrw9zMkNbbBx/jepp3wKi0WWW+1oovMTISxqg5M1KqTb5ryKrDTNWuRlvqESCrqpkrIJ+zq1atQqNU66Ouvv8aaNWsEz2fNmoUJEyYI1jk7O2PNmjUYNKj6omLZsmWYNWuW0GuUlpbi0KFD0NevPulv374dQ4cOxaZNm6CjowM5OTmUlZVB563uGGPHjsWSJUtw6dIlwfsdOHAAM2fOBOutbm5vc3FxgZeXF1atWgUvLy/0798fMTEx8PHxwZAhQ+Dl5YUVK1YAAE6ePAk2m41///1X8HoHDhyAiooKvLy84ObmJvTaBQUFOHToEI4fP47+/fsLyuvp6dWJY8iQIfjiiy8Ef6MtW7bAy8sLVlZW0NSsHktHXV1dqL61lZWVCSUigYZ3GS4uKALD50NBWVFoubyyIgpz63ZHAIDs1Ax4nrqKaWuWgM2pP1lSWlyCbUvWo6qyEiw2G+4zx8HUrv4Ll8bKyqnuBqL+VguXmucp6Y0bV+ymtzfCoqNweMvWRr3OuyjLyoPD5iCnRPjvnlNSAFWeoshtnieGYbBVdzyKC0ZkZiIsNAzgbtkd0hwpKMsqILskHx20TeBu2R0Lzv3ebLG/jScjCw6bjcJy4QueovISKHBFX1iryinCUFUblfwqnAi4DZ60LIZ16Ak5aS4uvrwvcpuBFl2RX1qEmKwkkesbQ5HLA4fNQW6t1l55JQVQlRM9plR4Rjw23z+J1S6TIc2RghSbgyfxr/CP72VBGZ/YYChzFbBx8AKwWCxIsTm4EfYY51/U33KzMd7sU8L1yCkpgFo9+9SzxFAMsXLGw7gXiMxMgIWGAQZbdnuzTxXnIz43Hb97HUNMVjLkZWQxxs4Ff41cjvlnf0NSftOM4ZeVXd2CU11NTWi5uqoaUtLqH3swKzsb6qrCXQLVVVWRlZ0teG5rbYMf/vc/GOkbICsnB/uOHMacRV/g1MFDUFFWhrGREXR1dLBj7178b/VqyMnK4tjpU8jKzkZm1se1LJWUY21pYTEYPh88JeHzv5yiPIrzCkVuw1NWRN9pI6BppIeqykpE+Abh8uZDGLl6Vr3jzPmeuw15FSXo2zTteGsAUFRQAD6fDwUV4e6vCsrKKMitP9ELAD/OXY3C/ALw+VUYNGEkug/sU2/Za0fOQVlNFe07im4R/KHycvPAr6qCqrrwd0JVTQ3Z9eyX2VlZUFXrJlxeXQ1VVVXIy82FuoYGAKCwsBDjho5GRXk52BwOVny1El3eSuJNnj4VRYVFmD5hCthsNvh8PuYunI/+gwY2ul5KNcepYhHHKTnRXZSfJ4bB3ao7Hr1+gajMRLTXMICbRTehc19ts7sOQ1ZRnmAc0qakLKsAKTanTjfO6mOt6Dr4JYRimHUP+MQGISKzuqvtECtnoWPt26y0jGCq3g6/eR1r8vhrKMrwwGGz6wwnkV9WBGXZ9yeVlWXlYadjhr2+l4SWP014BUUuD9+6TgdY1cnLe1HPcT3scZPGT5oRwxd3BKQWSsYR8glzdXXF338LDx6rVuuiqWPHNwO6amtXt4ixs7MTWlZaWor8/HwoKVX/WDE0NBQk4gDA2dkZfD4f4eHh9SakuFwupk6div3792PChAkIDAxEUFDQOyd5cHFxwb59+8Dn8+Ht7Y3+/fvD0NAQ3t7ecHR0REREhKBl3PPnzxEVFQVFReGLqNLSUqFutjViYmJQUVEBJycnwTJlZWVYWta9OHr7b8RisaCjo4P09PQ65d7ll19+wQ8//CC0bN26dTAd6lTPFiLUSloy/8VTG5/Px8WdR9B7rDvUdbXe+ZJcWS7m/rwa5WXliAuJwJ1jF6GqqQ4jG/OGx/UONzw9sXHnDsHzrevWAyLiZpg61fsgqRkZ2PTPXuz4cYNQS5nmUnseEBar+vMQ5aj/TajyFLFt1EqwUP3D/1bEE0y0HwA+w4ecNBdfu07DlgcnkV8meqy2llTfHCc1n9nZ4Hso+6+lgEdYdXfbq68e1hnguZdJR9jpmuHA02stO/gziwWmnk9DX1kL87qNwKnAuwhIjoCqnCJmdhmChc6jsePROQDVY+mN6+SKPb6XEJkRDx0lDcx1Go6cjgU4HVy3S33TqR0zq97P4sjzm1CVU8KOUSvBYlXvUzcjnuIz+wHg86t/jIemxyH0rYksXqbGYvfYLzHKtg92/lfXD3Xj9i1s3LRJ8Hzrr79VR1rru8swTL03WQTqHM+Et+nZ/U1rHnMAHTt0wKjJk3DVwwNTJ06ElJQUfv9xAzb8/hv6DRsKDocDp86d0aObcFLjo7TBY61IIj6C+j4XVR0NqOpoCJ7rmBmiMDsPgbceikzGBXg8QNTTFxj55SxIvWPogMaqG+77TxaLfv4a5aVleB0RjWtHzkFdVwuOvevuF/cu3ECAzxN88eNXkJZp2jqwUPsc9+64654Ta778b5bzeDz8e/QASkpK4O/3DDu37oBuOz04dK5uaX7v9l3cvnEL329YBxNTE0RFRGLH5m1Q19CA+7DBTVOxWscpFlDv8fZ4wG2o8pSwdeRywbnvduRTTOjUH1UikgbjOvaDi5kDvrq2s1knyxGlvsm9Dj27ATU5Jfw95kuABeQUF8Aj3BeTHdzAF1GHoVY9EJOVhLD0180dch3Vn8X79TTuiOKKUvgnC7dytNQ0xDDrHjji74GY7GRoK6hikv1A5NkU4sqrd3fTJ4SIRsk4Qj5h8vLyMDd/9w996bd+RNf8GBS1rOYCT5SaMu+7+Jo7dy7s7e2RmJiI/fv3o3///jB6xwyaffr0QUFBAfz9/fHgwQNs2LABBgYG2LhxI+zt7aGlpQVra2tBfJ07d8axY3XvRta0XntbzQ+v+n8AvyFd60KDxWK98+8hyrfffouVK1cKLeNyuTgV/P6xjXiK8mCx2XVaZhTnFUBeuW7LmfKSMqTEJiD1dRJuHqruNsswDMAw2Dh9FSZ/vQDGHarHY2Gx2VDTqf776Bi1Q2ZSGh5dudNkF4h9unWD7VsJzvKK6iROZk4ONN5KDGfn5UJN5eMHzw6LikJ2bi6mLV8mWFbF5yMg5CVOX72CRxcuCg3+/rHySotQxa+qcxddRVYRucWix+Mqr6rAJu8T2Hr/FFR5isguzscQqx4oKi9FXmkRTNX1oKukjg2D5gm2qdkvPeZuxqxTPyOloGnHkCsuL0UVnw8FGeEB9uVl5FBUXiJym4KyYuSXFgkScQCQUZgLNosFJVl5oRYCPY3t0NvUHof8riOtMFvUyzVaQVkxqvhVUJET/g4oyyogt0R0659xHV0Qmh6HiyHVLfle56Rij+9F/DJkIY4F3EJOSQEmOwyEV7S/YLbb17lpkJWSxhc9xuBMsGe9F54fq2afUq3VukRVTqHeMd7Kqyrwp/dxbHlwEqpySsguzsNQ656CfUoUBgzCM+Khr1z3eNhQfXr2gq31mxZEgu9zVjY01N8kcrJzc6CmWv/3WV1NTagVHABk5+S+cxs5OTmYmZgiITFRsMza0hLH9+1HYWEhKioroaqighkLPoeNiJsqDdGWj7Vvk1XggcVm12kFV1JQBDmlhnfH1DY1QIRv3RkLA2/6wP/6AwxfOQPq+vW3CG8MecXq8eoKcoQ/i8K8fCgqv3uyCHXt6r+zrpE+CnLzcevUpTrJOM+LHrh77hoWrF8NPePGzb77NmUVZbA5nDqt4HJzcurcDK2hpq5et3x2DjgcDpRV3kw8xWazoW9QfSO0vUV7vI59jeMHjwqScbu37cLkGVPQ3616PFJTczOkpqTi2KEjjU7G5dccp2qf++QU33mc2nL/JLY9OC049w22ckZReSnyax2nxtq54DP7Afj2+t+IzU5pVKz1ySstRKWI87fqe+rwm9dR/Hn/ONTklJBVnIfhNr1QVF6CvBLhOnClpNHPvHOzTfRTo6C8GFV8fp1WcIpc+Tp/V1F6m3TC49cvUVXrd+xo27549PqlYJbSpLwMyHCkMaPLEFx99bCJz3yEfBooGUcIaXLx8fFITk4WdOl8/Pgx2Gw2LCyqu4bJyMigqqpuSxg7Ozt06dIF//zzD44fP47t27e/831qxo3bsWMHWCwWbGxsoKenh4CAAFy9elXQKg4AHB0dcerUKWhpaQla8L2LmZkZpKWl8fTpUxgYVP8Qz8/PR2RkpNDrvo/Mf62wRNX3bVwu96NnsuVISUHXRB+xLyNg1fVNK73YlxGw6Gxb973kuJj3y1dCy57feYjXryIxZulMqGiKviCoUVnRdHek5Xk8oRkVGYaBuqoqngQEwMqsejyjiooK+L98iSUzZ9X3Mu/VtVMnnNyxU2jZj39thZG+PmaMHdckiTgAqORXISIzAY7tLPEw7s24VI76lngU9+Kd21YxfMEMn65mjngSHwIGDOJz0zDvzK9CZWd2HQKetCx2PTovcpa6xqpi+EjJz4SZRjuh1lNmGu3qvaMfn5OGDjqmkHlrDDwNeWXwGb7QBUBP447oa+aAw89uIDk/s8ljr1HJr0J0VhLs9cwFM/MB+O/5K5HbcDkyqGKEv6v8Wgl4Lke6TlK+ugyrugVkE1+RVPKrEJGRgM76wvtUZ30rPHzfPsXnI/O//cPVzBG+r1++M1lopt6uURe6Ir/Pamp48uwZrP47/ldUVMA/KAhLPv+83tfp2KEDnjzzw5QJb2Z4fOLnh44d6h7PapSXlyMu/jUc3mqpXKNmOIb4xASEhodj4Zw5H1w3oG0fa9/GkZKCppEuEkOjYer4Jnma+CoaxvYNn701Mz4FvFpJyICbPvC/5o2hy6ZDy7j5JjWRkpaCvpkRIoJCYNf9zRijEUGv0MHpA8YEZer+nT0veuDO2auYv2YFDERMuNEY0tLSsLSywLOnfujt+ua3xLOnz9Czj+gJWTrYdcAjn0dCy/ye+MHS2gpSUu+4lGMYlFe8GZesrLQU7FpjsXE4HDAfePNQlEp+FSIzE+HQzkLoXOfQzgK+r9/dbfjtc19fMwc8/e/cV2NcR1dMchiI727sQWRmQqNjrU/NsbaLvpUg4QQAXfSt4PPWsVeUKj5fcC7uZ94Zj0Uca13NOkOaI4XbEe+eJKWxqvh8vM5JgY22Cfzf6s7bQdsEAcnv7t5rqWkIbUU1PHhYN8kuw5GqUyeGYarbZjbHyY80PfqMWh1KxhHyCSsrK0NqqvC4PVJSUtDQ0Khni4aRlZXFjBkz8OeffyI/Px9Lly7FhAkTBF1UjY2NcfPmTYSHh0NdXR3KysqC1mVz587F4sWLwePxMHr06Pe+l4uLC/766y+MHj0aLBYLqqqqsLGxwalTp7Bt2zZBuSlTpuCPP/7AyJEj8eOPP0JfXx/x8fE4f/48vvzyS6FutQCgqKiIGTNm4Msvv4Samhq0tLSwbt06sNns93eveouWlhbk5OTg4eEBfX19yMrKQllZ+f0bfqBug11w6e9j0DU1gL65MQI8HyEvKweO/XsAADxPXUVBTh5GLJgCFpsNLQPh2a/klRTAkZYSWv7w8h3omhhAVVsdVZVViA4MxQsfP7jPHN/k8ddgsViYNHIkDpw5DUM9PRjo6eHAmdOQ5XLh/lYSdO2mTdBSV8fimTMBVF/gxyRUD0pdUVmJjKwshMdEgycrBwM9PcjzeDA3NhZ6L1muLFQUleosb6xzwV742nUqIjLjEZoWhyHWPaCloIqrodXdOGZ3HQYNeWX8/t+YMe2UNWGlaYSw9NdQ4MphbEdXGKvpCtZXVFUiLkc4QVJUVt06rfbypvQo7gXGdHQRzIjaxcAKyrIK8IuvHtx6gEVXKHHlcf6FFwDgRUoUXMwcMMquLzwjn4MnIws3y27wT4wQdEPtZdIR/dp3wdmge8gtKYCCTPX4c+VVFXUG8m4Kl0J8sLz3BERlJiE84zXcLLpBQ14FN8OfAACmOg6COk8Zf/mcBgD4JYbiix5j4G7ZDQFJkVDlKWKO0zBEZMQLWkb4JYZhhE0vxGQnIyIjAbqK6pjsMBB+Ca/qJO6aytkXnvjGdRoiMhLwKi0WQ//bp6688gEAzHEaDg15ZfzmeRQAoK+sCSstI4SmVe9T4zu6wkRNV7AeAKZ1dkdoWhyS8jLAk5HFaNu+MFfXxzafMyJj+BgsFguTxo/HgWNHYaivDwN9fRw4erT6+zzgzThVa3/+GVqaGlg8vzpB99m4cZi/dCkOHj8Gl5694PXQB0+eP8O+txLqW3ftRO8ePaGjrYWcnFzsO3wYRUVFGObuLihzx9MTKioq0NHWRlRMNDZt346+vXqhe9cP6P5fi6QcazsN7IG7+85D06gddMwM8Or+MxRk56FD3+oxxnzP30ZRTj76zxkLAAi68whK6qpQ1dMCv7IKEU+CEOP/CoMWfiZ4zQCPB3h66R4GzB0HJQ0VFOdVf2ekuTKQlv24m03v0me4G05s+xf65sYwtjSD7637yMnMhrNb9bni2tFzyMvKweRlcwEAPjfuQVVDDVrtqv/2saGR8Lp8E72GvJm9896FG/A4cRFTV8yDqpYG8nOqk0RcWS64crJNEvf4yZ9h47oNsLS2Qgc7W1y5cBlpqWkYMWYUAGDvzt3ITM/A/36oHr93xJhRuHDmPHZu2Y5ho4Yj5MVLXL98FWt+Wi94zWMHj8DS2gp6+nqoqKjEk4ePcfO6B1Z8vVpQxrl3Txw5eBhaOtowNjVBVHgETh8/hSHDhzRJvc6/8MKXLlMQmZGA0PQ4DLaqPk5dC61OJM7qOhTq8sr40+s4gOpzn6Wm4X/nPh7G2PWFsaouNv23Hqjumjq9y2D8du8I0gqyofpfS+eSirJmmQDhdNBdfNd/BsIz4hGSGoNhNr2gpaiGyyHVx9p53UZAU14FG+8dBlA9tIG1lhFepcdBkcvDhI79YKKmi1/+W/+2odbO8IkNapHhJm5GPMU8pxGIy0lBdGYS+po5QI2nJJjBdaydC1TlFPHv0ytC2/U26YTorCSR44YGpUTBzcIJ8TlpiMlOgpaCKkbZ9kFgcmS93Xhbipw0V6hVt56SBtpr6CO/tAhphTlijIyQd6NkHCGfMA8PD+jqCl8oWFpaCmYC/Vjm5uYYM2YMhgwZguzsbAwZMgS7du0SrJ83bx68vLzQpUsXFBYWwtPTEy4uLgCASZMmYfny5Zg8eTJkZd//w9fV1RWbN28WbA8Affv2RWBgoFALNh6Ph/v37+Prr7/GmDFjUFBQgHbt2qF///71tpTbvHkzFixYgGHDhkFJSQlfffUVEhISGhRXDSkpKWzbtg0//vgj1q5di969ewtmgG1KNt0dUFxQBJ8LN1GYmw9NfV189uV8KGtUt7wozM1HXuaH/SCpKCuHx8GzKMjOg5SMNNT1tDBy4VTYdG+emUhrzBg7DmVl5fj1710oKCyEraUldvy4QajFTWpGBtjsN0nRjOxsTFm6VPD8yPnzOHL+PBxt7bD3V+FWZc3NOyYASrLymOo4CGo8ZcRlp+C7G3uQ/t8PQnWeErQU3nS347DYGNfRFfoqWqjiVyEwORLLLm1ttu6bDfUyNQZy0ly4mDtCkctDekE2jj73QF5pddc2RS4PynJvusGUV1Xi0LPrGGrdA5/3GI2S8lK8TI3B3chngjJdDW0gxebgMwfhAcM9o57DM6ruTMWN9TAuGEpcHiba94eqnCLic1Kx4c5BQQsGNZ4SNBVUBOXvRT2HnBQXQ6x6YFbXoSgqL0VwSjQOP78hKHM66B4YhsEUBzeo8ZSRX1oEv4RQHAu42eTx1/CKDoASVx7TOr/Zp769sbvefYrNYmNcx34wUNZCJb8KQcmRWHJxi9A+pSAjh5V9PoMqTwlF5SWIykzEiit/ITzj3bNpfqgZkyajrKwMv27ZXP19trbGjj83CX+f09OEvs+dbO3w89p1+Hvfv9i9bx/09fTwy/r1sLV504orLSMD3/34A3Lz8qCqogJbGxsc+Hs3dN8alzQzKwtbdu5AVk4ONNTVMXTQIMydPqNR9ZGUY615VzuUFpbg+VUvFOUVQE1PC0OXToWiugoAoDi3AIXZeYLy/MoqPDpzE0W5+ZCSloaqniaGLJ0KI7s3k6GEePmBX1mFW7tPCb1Xl+Eu6DqiH5qaQy8nFBcU4vbpK8jPyYOuYTvM/W4Z1LSqbyjm5+QiN/PNPs/wGVw/eg7Z6ZlgczhQ19bE0Klj0d3tzW+FRx6eqKqsxKE/hMfTdZswAoM+G9kkcfcb2B/5eXk4tO8gsjOzYGJmgt+2/AEd3ep9NyszC2lpaYLyuu308OvWP7Bzy3ZcPHse6hoaWLJqOfr2cxGUKSkpwZbfNyEjPR1cLheGRkb47se16Dewv6DMstUrsG/PP9j6+ybk5ORAQ0MDw0ePwIy5H9/q/G33YwKhxJXHFMdBUOUp4XV2CtZ47BUcp9R4StCSf/s4xcIYOxfBuS8oOQorL/8llDwZbtMTMhwprBkoHOPR5x446t/0x1zPaH8oy8pjeufBUJdXQmx2Cr6+tktw7FTnKdc6f7MwsVN/GKhUT14UkByBRRc2IbVA+Pytr6yFjrrmWHXl3T0+mopfQigUZOQwwqYXlGUVkJSXga0PTglmR1WWVajTHVdOmovO+lY4EXhb5GteeeUDhmEw2rYPVOUUUVBWjKCUKJx74dXMtXk/K00j7Bj9ZqiXpb2qb2RcD32Mn+8dEldYhLwXixF3KpsQIlHWr1+PixcvIjAw8KO2T0hIgLGxMfz8/ODo6Pj+DVpQUVER2rVrh02bNmHOR3Zz+lCH/a63yPs0p+ldh6AgMkrcYTSKYntzDNy77P0FW7nb8//CWo9/xB1Go/zoPg+jDn4j7jAa7eLMX9F/z9L3F2zl7n6+DQWpae8v2Iop6mhLzLF26/1T7y/Yii3vMxFX/2uF1JYN69ALKXlNMyuxOOkqa8L9nxXiDqNRPOZtQd+/F4k7jEbzXrgTs09vFHcYjbJ/wv/Qc+cCcYfRaA8X7RZ3CB8lZ/gkcYdQL9UrJ8QdglhQyzhCSKtQUVGBlJQUfPPNN+jevXurSMQFBAQgLCwMTk5OyMvLw48//ggAGDmyae6OE0IIIYQQQgj59FAyjhDSKjx8+BCurq6wsLDA2bNnxR2OwJ9//onw8HDIyMigc+fOePDgQaPH1COEEEIIIYQQ8umiZBwhpEmtX78e69ev/+DtXFxcxD4AbG0ODg54/vy5uMMghBBCCCGEkI/Xyq6zCMB+fxFCCCGEEEIIIYQQQkhToGQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUfJpNtbWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKRiqJtqa0Mt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCJEYP//8M3r06AEejwcVFZUGbcMwDNavXw89PT3IycnBxcUFISEhQmXKysqwZMkSaGhoQF5eHiNGjEBiYuIHx0fJOEIIIYQQQgghhBBJxee33kczKS8vx/jx47Fw4cIGb/P7779j8+bN2LFjB/z8/KCjo4OBAweioKBAUGb58uW4cOECTp48CR8fHxQWFmLYsGGoqqr6oPhozDhCCCGEEEIIIYQQIjF++OEHAMDBgwcbVJ5hGGzduhXfffcdxowZAwA4dOgQtLW1cfz4cXz++efIy8vDvn37cOTIEQwYMAAAcPToURgYGODOnTsYNGhQg+OjlnGEEEIIIYQQQgghpMWVlZUhPz9f6FFWVtbiccTGxiI1NRVubm6CZVwuF3379sWjR48AAM+fP0dFRYVQGT09Pdja2grKNBhDCCHkk1RaWsqsW7eOKS0tFXcoH00S6sAwVI/WRBLqwDCSUQ9JqAPDUD1aE0moA8NIRj0koQ4MQ/VoTSShDp+qdevWMQCEHuvWrWuy1z9w4ACjrKz83nIPHz5kADBJSUlCy+fNm8e4ubkxDMMwx44dY2RkZOpsO3DgQGb+/PkfFBeLYWiOW0II+RTl5+dDWVkZeXl5UFJSEnc4H0US6gBQPVoTSagDIBn1kIQ6AFSP1kQS6gBIRj0koQ4A1aM1kYQ6fKrKysrqtITjcrngcrl1yq5fv17Q/bQ+fn5+6NKli+D5wYMHsXz5cuTm5r5zu0ePHqFnz55ITk6Grq6uYPm8efOQkJAADw8PHD9+HLNmzaoT78CBA2FmZobdu3e/8z3eRmPGEUIIIYQQQgghhJAWV1/iTZTFixfjs88+e2cZY2Pjj4pDR0cHAJCamiqUjEtPT4e2tragTHl5OXJycqCqqipUpkePHh/0fpSMI4QQQgghhBBCCCGtmoaGBjQ0NJrltU1MTKCjo4Pbt2/DwcEBQPWMrN7e3vjtt98AAJ07d4a0tDRu376NCRMmAABSUlLw8uVL/P777x/0fpSMI4QQQgghhBBCCCESIz4+HtnZ2YiPj0dVVRUCAwMBAObm5lBQUAAAWFlZ4ZdffsHo0aPBYrGwfPlybNy4Ee3bt0f79u2xceNG8Hg8TJ48GQCgrKyMOXPmYNWqVVBXV4eamhpWr14NOzs7weyqDUXJOEII+URxuVysW7euwc3CWyNJqANA9WhNJKEOgGTUQxLqAFA9WhNJqAMgGfWQhDoAVI/WRBLqQJrW2rVrcejQIcHzmtZunp6ecHFxAQCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KBbt264desWFBUVBWW2bNkCKSkpTJgwASUlJejfvz8OHjwIDofzQfHRBA6EEEIIIYQQQgghhLQQtrgDIIQQQgghhBBCCCHkU0HJOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQMo4QQkibxDAMaA4i0lSioqJw8+ZNlJSUAADtW2JWWloq7hCahKTUgxBCWpt+/fohNze3zvL8/Hz069ev5QMi5APRbKqEEPKJKCsrw9OnTxEXF4fi4mJoamrCwcEBJiYm4g7tgxw+fBh//PEHIiMjAQAWFhb48ssvMW3aNDFH1nBVVVXYsmULTp8+jfj4eJSXlwutz87OFlNkHy4xMRGXL18WWY/NmzeLKaqGy8rKwsSJE3Hv3j2wWCxERkbC1NQUc+bMgYqKCjZt2iTuEBssISFB6PvdoUMHcLlccYfVYHw+Hz///DN2796NtLQ0REREwNTUFGvWrIGxsTHmzJkj7hAbRFLq0db3p7y8PFy4cAEPHjyoc94bNGgQevToIe4QG0RS6kFIU2Oz2UhNTYWWlpbQ8vT0dLRr1w4VFRViioyQhpESdwCEEEKa16NHj7B9+3ZcvHgR5eXlUFFRgZycHLKzs1FWVgZTU1PMnz8fCxYsgKKiorjDfafNmzdjzZo1WLx4MXr27AmGYfDw4UMsWLAAmZmZWLFihbhDbJAffvgB//77L1auXIk1a9bgu+++Q1xcHC5evIi1a9eKO7wGu3v3LkaMGAETExOEh4fD1tYWcXFxYBgGjo6O4g6vQVasWAEpKSnEx8fD2tpasHzixIlYsWJFq0/GvX79Grt378aJEyeQkJAg1KJPRkYGvXv3xvz58zF27Fiw2a27Q8RPP/2EQ4cO4ffff8e8efMEy+3s7LBly5Y2k8Rqy/WQhP0pJSUFa9euxbFjx6CjowMnJyfY29sLznuenp74888/YWRkhHXr1mHixIniDlkkSalHbX5+fjhz5ozIGzjnz58XU1QfTlLq0RYFBwcL/v/q1SukpqYKnldVVcHDwwPt2rUTR2iEfBiGEEKIxBoxYgSjq6vLrFq1ivH29maKioqE1kdHRzMHDx5kBg0axOjo6DC3bt0SU6QNY2xszBw6dKjO8oMHDzLGxsZiiOjjmJqaMlevXmUYhmEUFBSYqKgohmEY5q+//mImTZokztA+SNeuXZk1a9YwDFNdj+joaKagoIAZMWIEs2vXLjFH1zDa2tpMYGAgwzBv6sAwDBMTE8PIy8uLM7T3Wrp0KaOoqMiMHTuWOXToEBMaGsrk5+czFRUVTFpaGnP37l1m/fr1jKWlJdOhQwfm6dOn4g75nczMzJg7d+4wDCP8WYSGhjIqKiriDO2DtNV6SMr+pKmpyaxatYp58eJFvWWKi4uZ48ePM05OTswff/zRgtE1nKTU420nTpxgpKWlmaFDhzIyMjLMsGHDGEtLS0ZZWZmZOXOmuMNrsLZcj0uXLjX40VqxWCyGzWYzbDabYbFYdR48Ho/Zt2+fuMMk5L0oGUcIIRJsx44dTFlZWYPKvnz5stUn47hcLhMZGVlneUREBMPlcsUQ0cfh8XjM69evGYZhGB0dHeb58+cMw1QnR5WUlMQZ2gd5O5GooqLCvHz5kmEYhgkMDGSMjIzEGFnDKSgoMBEREYL/1yROnj59yqipqYkztPdavXo1k55bMlIvAAC8QUlEQVSe3qCy165dY86cOdPMETWOrKwsExcXxzCM8GcREhLS6hOjb2ur9ZCU/amhdfjY8i1FUurxNjs7O2bHjh0Mw7z5bvD5fGbevHnM2rVrxRxdw7XletROXNVOaNUkudhstrhDrVdcXBwTGxvLsFgsxs/Pj4mLixM8kpOTmcrKSnGHSEiDtM725YQQQprEokWLICMj06CyHTp0wMCBA5s5osYxNzfH6dOn6yw/deoU2rdvL4aIPo6+vj5SUlIAVNfp1q1bAKq7vbSlMZnk5eVRVlYGANDT00N0dLRgXWZmprjC+iB9+vTB4cOHBc9ZLBb4fD7++OMPuLq6ijGy9/vjjz+gqanZoLJDhgzBuHHjmjmixunQoQMePHhQZ/mZM2fg4OAghog+Tluth6TsTw2tw8eWbymSUo+3RUdHY+jQoQAALpeLoqIisFgsrFixAnv37hVzdA3XluvB5/MFj1u3bsHe3h43btxAbm4u8vLycP36dTg6OsLDw0PcodbLyMgIxsbG4PP56NKlC4yMjAQPXV1dcDgccYdISIPQmHGEEPIJKi0txalTp1BUVISBAwe2mUTWDz/8gIkTJ+L+/fvo2bMnWCwWfHx8cPfuXZFJutZq9OjRuHv3Lrp164Zly5Zh0qRJ2LdvH+Lj49vMuHcA0L17dzx8+BA2NjYYOnQoVq1ahRcvXuD8+fPo3r27uMNrkD/++AMuLi549uwZysvL8dVXXyEkJATZ2dl4+PChuMN7r++//x79+vVDjx49ICsrK+5wGmXdunWYNm0akpKSwOfzcf78eYSHh+Pw4cO4evWquMNrMEmpx9u8vb1RVFQEZ2dnqKqqijuc94qKikJeXh46d+4sWHb37l389NNPKCoqwqhRo/C///1PjBE2jKTUo4aamhoKCgoAAO3atcPLly9hZ2eH3NxcFBcXizm6hpOUeixfvhy7d+9Gr169BMsGDRoEHo+H+fPnIzQ0VIzRNUxERAS8vLyQnp4OPp8vtK4tjcFLPlHibppHCCGkea1evZpZunSp4HlZWRljb2/PSEtLM8rKyoy8vDzz6NEjMUb4YZ49e8ZMmTKFcXR0ZBwcHJgpU6Yw/v7+4g6rUR4/fsxs2rSpVY/RIkp0dDQTFBTEMAzDFBUVMQsXLmTs7OyY0aNHC7rptQUpKSnM2rVrmaFDhzKDBw9mvvvuOyY5OVncYTWIqakpw2KxGC6Xy/Tp04dZt24d4+3t3eDu6a2Nh4cH06dPH0ZeXp6Rk5Njevbsydy8eVPcYX2wtlqP33//XaibHZ/PZwYNGiTowqatrS3ojt6ajRo1ivn+++8Fz2NiYhg5OTnGzc2NWbp0KaOgoMBs2bJFfAE2kKTUo8akSZOYTZs2MQzDMD/99BOjqanJzJ07lzEyMmJGjx4t5ugaTlLqISsrywQHB9dZHhQUxMjKyoohog+zd+9ehsPhMNra2kynTp0Ye3t7wcPBwUHc4RHyXiyGeWuaJEIIIRLH1tYWGzduxIgRIwAABw4cwKpVqxAQEABDQ0PMnj0b6enpuHbtmpgjJYR8jKSkJNy7dw9eXl7w8vJCbGws5OTk4OzsDFdXV7i6uqJHjx7iDpO0AY6Ojvj6668FM3OeOXMGM2bMwO3bt2FtbY3p06eDx+O1+pbIBgYGOH36NJydnQFUz3B79uxZBAYGAgD27duH7du3C563VpJSjxrZ2dkoLS2Fnp4e+Hw+/vzzT/j4+MDc3Bxr1qxpE60uAcmpR58+fSAtLY2jR49CV1cXAJCamopp06ahvLwc3t7eYo7w3YyMjPDFF1/g66+/FncohHwUSsYRQoiEU1JSgr+/P8zNzQEAkyZNgqKiomBck8DAQAwZMgTJycniDPODpKeni+yS0LFjRzFF9H6XL19ucNmaxClpHsHBwbC1tQWbzUZwcPA7yyooKMDAwADS0tItFF3jJSQkwNPTE15eXjh37hyKiopQWVkp7rDea9asWZg6dSr69esHFosl7nA+Wluuh6qqKh49egRra2sA1XWprKzEkSNHAAC+vr4YP348EhISxBnme8nJySEiIgIGBgYAgP79+6NHjx7YsGEDgOoxvzp37ozc3FwxRvl+klIPAKisrMSxY8cwaNAg6OjoiDscgupu0KNHj0Z4eDgMDQ0BAPHx8bCwsMDFixcFvxtbKyUlJQQGBsLU1FTcoRDyUWjMOEIIkXBsNhtv33fx9fXFmjVrBM9VVFSQk5MjjtA+2PPnzzFjxgyEhoai9r0kFouFqqoqMUX2fqNGjWpQudZeD1VV1QYnGLKzs5s5mo9jb2+P1NRUaGlpwd7eHiwWq87+9DZlZWXs3r1b0FqoNYuOjoaXl5egpVxVVVWrn4iiRlZWFoYOHQp1dXV89tlnmDp1aque8KA+bbkeFRUVQpPIPH78GMuWLRM819PTaxOTs6ipqSElJQUGBgbg8/l49uyZ0Hic5eXl7/zOtxaSUg8AkJKSwsKFC9vEOGSi5OfnN7iskpJSM0bSdMzNzREcHIzbt28jLCwMDMPAxsYGAwYMaBM3EsaPH49bt25hwYIF4g6FkI9CyThCCJFwVlZWuHLlClauXImQkBDEx8cLXZy/fv0a2traYoyw4WbNmgULCwvs27cP2trabeLHYo3arfjaqq1bt4o7hEaLjY0VzDwYGxv7zrJlZWU4c+aMUNe91iQ2Nhaenp6ClnB5eXno2bMn+vbti8WLF6Nr166QkmobP/cuX76M3NxcnD59GsePH8fWrVthaWmJqVOnYvLkyTA2NhZ3iA3Sluthbm6O+/fvw9TUFPHx8YiIiEDfvn0F6xMTE6Guri7GCBumb9++2LBhA3bt2oUzZ86Az+cLnfdevXrVqj+HGpJSjxrdunVDQEAAjIyMxB3KB1NRUWnwb47WfEOtNhaLBTc3N7i5uYk7lAbZtm2b4P813YJ9fX1hZ2dXpwX70qVLWzo8Qj4IdVMlhBAJd+7cOUyaNAm9e/dGSEgIunbtiitXrgjWf/3114iNjW31YwABgKKiIgICAlp91wkiWXJycjBnzhycP39e3KHUwWazYWhoiC+++AKurq5wdHQEh8MRd1hNIjExESdOnMD+/fsRGRnZJrraitKW6rFnzx6sWrUKEydOhK+vL1RUVIRmFf7pp5/w5MkToXNIaxQbG4uBAwciNjYWbDYb27Ztw8KFCwXrR40aBRMTE2zZskWMUb6fpNSjxpkzZ/DNN99gxYoV6Ny5M+Tl5YXWt+ahJt4ePy0uLg7ffPMNZs6cKRjP7/Hjxzh06BB++eUXzJgxQ1xhfrCioiJ4e3sjPj4e5eXlQutaYzLLxMSkQeVYLBZiYmKaORpCGoeScYQQ8gm4c+cOrl27Bh0dHSxZsgQ8Hk+w7ocffoCLi4tQ64fWatSoUZg2bRrGjh0r7lAara39AH6fkpISVFRUCC1rK111AKC4uFjkZ9GaLw4BYOLEibh//z5KS0vRu3dv9O3bF66urnBwcGhTLUdrq6iowLVr13D06FFcu3YNampqSEpKEndYH6wt1mPfvn24evUqdHR0sG7dOqHxvb744gsMGDAAY8aMEWOEDVNRUYFXr15BU1MTenp6QuuCgoJgYGAANTU1MUXXcJJSD6D65kFtNcMEtPYhGt7Wv39/zJ07F5MmTRJafvz4cezduxdeXl7iCewDBQQEYMiQISguLkZRURHU1NSQmZkJHo8HLS0tSmYR0swoGUcIIQSBgYGwt7cXdxjvlZmZiRkzZsDJyQm2trZ1uiS0lYkPJOUHcFFREb7++mucPn0aWVlZdda3hQurjIwMzJo1Czdu3BC5vi3UAQDCwsIEXVW9vb1RWlqKXr16oW/fvnBxcUHXrl3FHWKDeHp64vjx4zh37hyqqqowZswYTJkyBf369RN5Id9aSUo9RMnIyBB0826rXrx4gX379rX5bvdtrR6vX79+5/q20n2Vx+MhKCgI7du3F1oeEREBe3t7FBcXiymyD+Pi4gILCwv8/fffUFFRQVBQEKSlpTF16lQsW7asTSTdCWnLKBlHCCGfqLy8PBw7dgz79u1DYGBgm0g6XL58GdOmTUNBQUGddW3prrqk/ABetGgRPD098eOPP2L69OnYuXMnkpKSsGfPHvz666+YMmWKuEN8rylTpiAuLg5bt26Fq6srLly4gLS0NPz000/YtGkThg4dKu4QP8qrV69w/PhxbN++vc3Mpqqvr4+srCwMGjQIU6ZMwfDhwyErKyvusD6YpNTjbQzD4MaNG4JWc2VlZeIO6YPl5+fjxIkT2LdvH549e4aOHTsiMDBQ3GF9MEmpR1tmaWmJYcOGYdOmTULLV61ahatXryI8PFxMkX0YFRUVPHnyBJaWllBRUcHjx49hbW2NJ0+eYMaMGQgLCxN3iO+0cuVKkctZLBZkZWVhbm6OkSNHtpmWo+TT0zZG9CWEENJk7t27h/379+P8+fMwMjLC2LFj8e+//4o7rAZZunQppk2bhjVr1rSZSSdECQwMxJ49e8DhcMDhcFBWVgZTU1P8/vvvmDFjRptJxl25cgWHDx+Gi4sLZs+ejd69e8Pc3BxGRkY4duxYm0jG3bt3D5cuXULXrl3BZrNhZGSEgQMHQklJCb/88kubSsalpaXBy8sLXl5e8PT0REREBLhcLnr37i3u0Bpk7dq1GD9+PFRVVcUdSqNISj0AICYmBvv378ehQ4dQWFiIoUOH4uTJk+IO64N4e3tj3759OHfuHEpLS/Hll1/i+PHjbW7sUUmox+HDh9+5fvr06S0USeNs2bIFY8eOxc2bN9G9e3cA1TPVR0dH49y5c2KOruGkpaUFwxloa2sjPj4e1tbWUFZWRnx8vJije7+AgAD4+/ujqqoKlpaWYBgGkZGR4HA4sLKywq5du7Bq1Sr4+PjAxsZG3OESUgcl4wgh5BOQmJiIgwcPYv/+/SgqKsKECRNQUVGBc+fOtakfKFlZWVixYkWbTsQBbf8HcI3s7GzBYMpKSkrIzs4GAPTq1UtokPHWrKioCFpaWgAANTU1ZGRkwMLCAnZ2dvD39xdzdO935swZQffU8PBwSElJwcnJCRMmTICrqyt69OgBLpcr7jAbZP78+eIOoUm09XqUlpbi7Nmz+Pfff+Hr64uBAwciJSUFgYGBsLW1FXd4DZKSkoIDBw4IznmTJk2Ct7c3nJ2dMX369DaTwJKUetRYtmyZ0POKigoUFxdDRkYGPB6vzSTjhgwZgsjISPz9998IDQ0FwzAYOXIkFixYAAMDA3GH12AODg549uwZLCws4OrqirVr1yIzMxNHjhyBnZ2duMN7r5pWbwcOHBCMUZufn485c+agV69emDdvHiZPnowVK1bg5s2bYo6WkLooGUcIIRJuyJAh8PHxwbBhw7B9+3a4u7uDw+Fg9+7d4g7tg40ZMwaenp4wMzMTdyiN0tZ/ANcwNTVFXFwcjIyMYGNjg9OnT8PJyQlXrlyBioqKuMNrEEtLS4SHh8PY2Bj29vbYs2cPjI2NsXv3bujq6oo7vPeaMmUKunTpgtGjR8PV1RU9e/aEnJycuMP6aH5+fjhz5ozIyTRa42y29Wmr9fjiiy9w8uRJWFpaYurUqTh37hzU1dUhLS3dpsa6MzExwfjx47Fz504MHDiwTcX+NkmpR42cnJw6yyIjI7Fw4UJ8+eWXYojow1VUVMDNzQ179uzBzz//LO5wGmXjxo2CYT82bNiAGTNmYOHChTA3N8eBAwfEHN37/fHHH7h9+7bQZFFKSkpYv3493NzcsGzZMqxduxZubm5ijJKQ+lEyjhBCJNytW7ewdOlSLFy4sM5gw22NhYUFvv32W/j4+MDOzq7OBA5tZRbStv4DuMasWbMQFBSEvn374ttvv8XQoUOxfft2VFZWYvPmzeIOr0GWL1+OlJQUAMC6deswaNAgHDt2DDIyMjh48KB4g2uAnJwcyMvLizuMJnHy5ElMnz4dbm5uuH37Ntzc3BAZGYnU1FSMHj1a3OE1WFuux969e/H111/jm2++gaKiorjD+WhGRkbw8fGBoaEhjIyMYGVlJe6QPoqk1ONd2rdvj19//RVTp05t9WOUAdUt21++fNmmZ6uu0aVLF8H/NTU1cf36dTFG8+Hy8vKQnp5ep4dHRkYG8vPzAVSPi1f7hgghrQUl4wghRMI9ePAA+/fvR5cuXWBlZYVp06Zh4sSJ4g7ro/z7779QUFCAt7c3vL29hdaxWKw2k4xr6z+Aa6xYsULwf1dXV4SFheHZs2cwMzNDp06dxBhZw709rp2DgwPi4uIQFhYGQ0NDaGhoiDGyhqlJxCUlJeHcuXOIiIgAi8VC+/btMXbsWLRr107METbcxo0bsWXLFixatAiKior466+/YGJigs8//7xNtFKs0ZbrcfjwYRw4cAC6uroYOnQopk2bBnd3d3GH9cHCw8Px8OFD7Nu3D127doWFhQWmTp0KAG0qiSIp9XgfDoeD5ORkcYfRYNOnT8e+ffvw66+/ijuUJpGRkYHw8HCwWCxYWlq2iXMfUN1Ndfbs2di0aRO6du0KFouFp0+fYvXq1Rg1ahQA4OnTp7CwsBBvoITUg2ZTJYSQT0RxcTFOnjyJ/fv34+nTp6iqqsLmzZsxe/bsNt0CgpBP3a5du7By5UqUl5dDWVkZDMMgPz8fMjIy2Lx5M7744gtxh9gg8vLyCAkJgbGxMTQ0NODp6Qk7OzuEhoaiX79+ghaMrZ0k1CMuLg4HDhzAwYMHUVxcjOzsbJw6dQrjxo0Td2gfrLCwECdOnMD+/fvx5MkT9O3bF5MnT8aoUaOgqakp7vAaTBLqcfnyZaHnDMMgJSUFO3bsgIGBAW7cuCGmyD7MkiVLcPjwYZibm6NLly51Wie3lZbhRUVFWLJkCY4cOSKYjZ7D4WD69OnYvn07eDyemCN8t8LCQqxYsQKHDx8WzBguJSWFGTNmYMuWLZCXlxfMNGxvby++QAmpByXjCCFEwsXHx8PAwEDoLnp4eDj27duHI0eOIDc3FwMHDqzzI5kQSbVy5coGl23tF1XXrl3DyJEjsXz5cqxatUrQ8iolJQV//PEHtm/fjkuXLmHIkCFijvT9DAwMcP36ddjZ2aFTp0745ptvMGnSJDx+/Bju7u7Iy8sTd4gNIin1AKqTJTdv3sT+/ftx+fJlaGhoYMyYMdi2bZu4Q/sooaGhgnNfdnY2KioqxB3SR2mr9ag95h2LxYKmpib69euHTZs2tfqWozVcXV3rXcdisXDv3r0WjObjff7557hz5w527NiBnj17AgB8fHywdOlSDBw4EH///beYI2yYwsJCxMTEgGEYmJmZQUFBQdwhEdIglIwjhBAJx+FwkJKSIpgx8m1VVVW4cuWK4EKrNVq5ciU2bNgAeXn59yZRWnvihLQO77qQeltbuKjq27cvevfujZ9++knk+u+//x4PHjyo0627NZo8eTK6dOmClStX4ueff8Zff/2FkSNH4vbt23B0dGzVEx+8TVLqUVt2dragG2tQUJC4w2mUyspKXL58GWPGjBF3KI0iKfUg4qGhoYGzZ8/CxcVFaLmnpycmTJiAjIwM8QRGyCeCknGEECLh2Gw2UlNTRSbj2gJXV1dcuHABKioqEnM3mpCmoqSkBD8/P1haWopcHx4eji5duggmDGnNsrOzUVpaCj09PfD5fPz555/w8fGBubk51qxZA1VVVXGH2CCSUo+2LDk5GZs3b8batWuFZloEqgd9/+mnn7B69Wpoa2uLKcKGkZR6SKqoqChER0ejT58+kJOTA8MwbWosPx6Ph+fPn8Pa2lpoeUhICJycnFBUVCSmyOo3ZswYHDx4EEpKSu9NQrfVGx/k00HJOEIIkXBtPRlHSEtoqxdVCgoKCA4Ohqmpqcj1MTEx6NixIwoLC1s4MtIWNaQLN4vFwqZNm1ogmo+3evVq5OfnY+/evSLXL1iwAMrKyvjtt99aOLIPIwn1kKRhAWpkZWVhwoQJ8PT0BIvFQmRkJExNTTFnzhyoqKi0+u9Hjf79+0NdXR2HDx+GrKwsAKCkpAQzZsxAdnY27ty5I+YI65o1axa2bdsGRUVFzJo1651l29Ls9OTTRLOpEkLIJ6BmFtJ3aQszkaalpdXbAiA4OBgdO3Zs4Yga7kPGWGrNn0V+fn6Dy9ZuydEa1XdRNXfu3DZxUdWhQwdcunRJaGbbt128eBEdOnRo4ag+Hp/PR1RUFNLT08Hn84XW9enTR0xRfbi2Wo+AgABxh9AkPDw8sHv37nrXT58+HfPmzWvVSSxAMupRe596/vw5qqqqBK15IyIiwOFw0LlzZ3GE91FWrFgBaWlpxMfHC7UqmzhxIlasWNHqzxs1/vrrL7i7u0NfXx+dOnUCi8VCYGAgZGVlcfPmTXGHJ9LbCTZKtpG2jlrGEUKIhGOz2dDX1weHw6m3DIvFQkxMTAtG9XG0tLTw77//YsSIEULL//zzT6xZswYlJSViiuz9TExMGlSutX8WbDb7vS3GalqV1czO1ppNnz4d6enp+Pfff2FtbY2goCCYmpri1q1bWLFiBUJCQsQd4jsdOnQICxcuxJ9//on58+dDSqr6PmtlZSX27NmDL7/8Ert27cLMmTPFG2gD+Pr6YvLkyXj9+jVq/zxtK/sTIDn1aMvk5eURGhoKQ0NDketrkiitsRve2ySlHjU2b94MLy8vHDp0SNBdOycnB7NmzULv3r2xatUqMUfYMDo6Orh58yY6deoERUVFwXkjNjYWdnZ2baolcklJCY4ePYqwsDAwDAMbGxtMmTIFcnJy4g6tQSorK+Hl5YXo6GhMnjwZioqKSE5OhpKSEk3kQFo9ahlHCCGfgGfPnklEN9Wvv/4aEydOFExbn52djWnTpiEkJASnTp0Sd3jvFBsbK+4QmoSnp6e4Q2hSt27dws2bN6Gvry+0vH379nj9+rWYomq4GTNm4MWLF1i8eDG+/fZbmJmZAQCio6NRWFiIpUuXtolEHFDd5a5Lly64du0adHV120Q3YVHacj28vLzqDOZe2xdffIFdu3a1TEAfSU5ODnFxcfUmseLi4tpEskFS6lFj06ZNuHXrltC4iaqqqvjpp5/g5ubWZpJxRUVF4PF4dZZnZmaCy+WKIaKPJycnh3nz5ok7jI/y+vVruLu7Iz4+HmVlZRg4cCAUFRXx+++/o7S09J2tSglpDSgZRwghpM1YtWoVBgwYgKlTp6Jjx47Izs5G9+7dERwc3CYHsC4vL0dsbCzMzMwELZpau759+4o7hCYlCRdVf/75J8aNG4cTJ04gMjISQHVXyM8++wzdu3cXc3QNFxkZibNnz8Lc3FzcoTRKW67HyJEj4enpCUdHR5HrFy1ahGPHjrX6ZFy3bt1w5MiRersEHz58GE5OTi0c1YeTlHrUyM/PR1paWp2u8+np6W1ikpkaffr0weHDh7FhwwYA1S1e+Xw+/vjjjwbP1i0uly9fbnDZ2r0QWptly5ahS5cuCAoKgrq6umD56NGjMXfuXDFGRkgDMYQQQiQai8Vi0tLS3lnm6NGjLRRN4+Xn5zMTJ05kpKSkGCkpKebgwYPiDumDFRUVMbNnz2Y4HA7D4XCY6OhohmEYZsmSJcwvv/wi5ug+zP3795kpU6Ywzs7OTGJiIsMwDHP48GHmwYMHYo6sYYYMGcJ8//33DMMwjIKCAhMTE8NUVVUx48ePZ8aOHSvm6N7vhx9+YIqKisQdRpNwdXVlbty4Ie4wGq0t12PlypWMlpYWEx4eXmfdokWLGAUFBeb+/ftiiOzD3Lt3j+FwOMyqVauY1NRUwfLU1FRm5cqVDIfDYe7evSvGCBtGUupRY9q0aYyhoSFz5swZJiEhgUlISGDOnDnDGBsbM9OnTxd3eA0WEhLCaGpqMu7u7oyMjAwzbtw4xtramtHW1maioqLEHd47sVisBj3YbLa4Q30vdXV1JiwsjGGY6vN3zW+p2NhYRk5OTpyhEdIglIwjhBAJZ2VlxSQnJ9e7/tixY4y0tHQLRvTxfHx8GGNjY6Zz587Mq1evmH/++YdRVFRkxo8fz2RnZ4s7vAZbunQp07lzZ+bBgweMvLy84AfkpUuXGHt7ezFH13Bnz55l5OTkmLlz5zJcLldQj507dzKDBw8Wc3QN05YvqhiGYdhs9nuT7W3F+fPnGRsbG+bAgQPMs2fPmKCgIKFHW9HW6zFr1izG0NBQkFxnmOobBfLy8oyXl5cYI/swu3fvZrhcLsNmsxkVFRVGVVWVYbPZDJfLZXbt2iXu8BpMUurBMNU3ohYuXCioD5vNZmRkZJiFCxcyhYWF4g7vg6SkpDBr165lhg4dygwePJj57rvv3vlbizQ9VVVVJiQkhGEY4WTcgwcPGC0tLXGGRkiD0AQOhBAi4VxcXFBSUoJ79+5BXl5eaN3Jkycxffp0/Pbbb/XOxtiacLlcrFixAhs2bIC0tDSA6rGxpk2bhvj4eCQmJoo5woYxMjLCqVOn0L17d6HBn6OiouDo6PhBM5aKk4ODA1asWIHp06cL1SMwMBDu7u5ITU0Vd4gNkpqair///hvPnz8Hn8+Ho6MjFi1aBF1dXXGH9l5sNhupqakSMSYkm82us4zFYrWpCUGAtl8PPp+PcePGITQ0FA8ePMDPP/+MvXv34urVq62+C16NiooKSEtLIykpCadPn0ZUVBQYhoGFhQXGjRsHfX19vHz5Era2tuIO9Z0kpR61FRUVITo6GgzDwNzcvM5vE9IyYmNjGzy5VGs0ceJEKCsrY+/evVBUVERwcDA0NTUxcuRIGBoa0myrpNWjZBwhhEi4wsJCuLi4QEVFBTdu3BAksU6fPo2pU6di48aNWL16tZijbBhvb2+RY5bx+Xz8/PPPWLNmjRii+nA8Hg8vX76EqampUBIrKCgIffr0QV5enrhDbBAej4dXr17B2NhYqB4xMTGwsbFBaWmpuEOUeGw2G2lpadDU1BR3KI32vgkzjIyMWiiSxpGEepSXl2Po0KEICgpCUVERLl++jP79+4s7rAYbN24czpw5U+/kGS9fvkT//v2RlpbWwpF9GEmph6S5f//+O9fXN8Zfa8PhcNCnTx/MmTMH48aNg6ysrLhD+iDJyclwdXUFh8NBZGQkunTpgsjISGhoaOD+/fsScZOKSDZKxhFCyCcgIyMDffr0gY2NDc6ePYuzZ89iypQp2LBhA77++mtxh/fJ6du3L8aNG4clS5YI7uaamJhg8eLFiIqKgoeHh7hDbBAzMzPs2bMHAwYMEErGHT58GL/++itevXol7hDfy8PDAwoKCujVqxcAYOfOnfjnn39gY2ODnTt3Cs361xqx2WzY2tq+dwIQf3//FoqItGXbtm0T/L+goAAbNmzAoEGD6iTili5d2tKhfRADAwMMHjwYe/furbMuJCQE/fr1+z97dx5Wc/r+Afx9StqkhbIkaRE1Qin7FlLD2E2GKMkytpK1maEwlmZsiSEkZYvKMhn7UhE1aJWSnCJLEU2hheqc3x9+zteZwimm53w69+u6uq7Ocz5/vD8zdXTu8zz3jb59+yIsLIxBOsnVl/v40I0bNxAWFoacnBy8fftW7LmjR48ySlUzH9v9+p607359LzU1FYGBgThw4ADevHmDcePGwdXVlVNDQUpLSxESEoKEhATRznZHR0dOTRkmsouKcYQQIiMePnyI3r17w9jYGDExMfDy8sIvv/zCOlaNFRcXIzo6uto/5KX9DeJ7165dg729PRwdHREUFIQZM2bg9u3biI2NRXR0NLp06cI6okR+//13BAcHIzAwELa2tjh16hQePHgADw8PeHl5Yc6cOawjfpa5uTl+++03DBkyBLdu3YKVlRUWLFiAS5cuwdTUVOqPucjJyWHBggVo1KjRJ6/z9vauo0Rfhs/nw9fXF+np6eDxeDA1NYW7uzuMjIxYR6sRrt6HJEfWeDwesrKy6iBN7aWnp4t2/Pj4+Iit29jYoGfPnggLC4O8vDzDlJ9XX+7jvfetMQYPHozz589j8ODByMzMRF5eHkaNGiX1r7fv/Xv3enl5ORITE7Fs2TKsXr2aU7tIAaCiogInTpxAUFAQTp8+jbZt28LV1RWTJk2qF7uuCZFaTDrVEUIIqTMfNg4/fPiwUFFRUThu3DhONBXPyckRe5yQkCBs3ry5UE1NTdigQQOhtra2kMfjCVVVVYUGBgaMUtZOSkqK0MnJSfjNN98ITU1NhY6OjsKUlBTWsWrs559/FiorK4smsCkpKYmmk3KBqqqqMDs7WygUCoXe3t6iCarx8fHCZs2aMUwmGUmmJXPFmTNnhA0bNhR27dpV6OHhIZw3b56wa9euQkVFReG5c+dYx5NYfbkPrrt+/bpQTU1N+PvvvwuFQqEwPT1d2Lx5c+Hw4cOFFRUVjNNJrr7ch1AoFJqbmwu3bt0qFAr/13BfIBAIp02bJvTy8mKc7stFR0cLLS0tWceotbKyMuHGjRuFioqKQh6PJ2zYsKFw0qRJUjuYokWLFsLx48cLd+zYUe0EaEKkHe2MI4SQek5OTk6sefj7l/1/fy+NxypWrVqF3NxcbN26FTweD/3794eRkRF27tyJVq1aITk5GaWlpZg4cSI8PDwwevRo1pFlUklJCdLS0iAQCGBmZvbZXVrSREtLCzExMTAzM0Pv3r3h5OSE6dOn4/79+zAzM0NJSQnriJ8kLy+P3NzcetEbx8LCAnZ2dmI7gADA09MT586d48xR2/pyH/XBpUuX8N1332Hx4sXYtWsXLC0tcfToUVHvVK6oL/ehqqqK27dvo02bNmjatCkiIyNhbm6O9PR0DBgwALm5uawjfpH09HRYW1vj9evXrKPUyM2bNxEYGIhDhw5BVVUVzs7OcHV1xZMnT+Dl5YVXr17h+vXrrGNWERISgujoaERFReHu3bto1qwZ+vXrh/79+6Nfv34wNTVlHZGQT6JiHCGE1HOfayb+njQ2FS8tLcWcOXOQn5+PiIgIaGhoIC4uDu3bt0erVq0QGxsLPT09xMXFYfLkybhz5w7ryB9VkwmpjRs3/g+TkA8NHz4cb9++Ra9evfDrr78iOzsburq6OHfuHObMmYO7d++yjvhJ9WmaqpKSEm7duoW2bduKrd+9excdO3bkzEAQrt7HoUOH8MMPP0h07cOHD5GTk4NevXr9x6m+3PHjx/H9999j8ODBOH78OOcKWO/Vh/vQ09PDqVOnYG5ujk6dOsHT0xPjx49HbGws7O3tOTO8KCUlReyxUChEbm4ufHx8UF5ejqtXrzJKVjMbN27Enj17kJGRgSFDhmDq1KkYMmSIWE+8e/fuoX379qioqGCY9POePn2KyMhI/PXXXzh8+DAEAoFUfshMyIc+3e2XEEII50ljkU1SysrK2L17Nw4dOgQAUFBQEP2RqKOjgwcPHkBPTw8aGhrIyclhGfWzNDQ0PjoR79+k+Q/Imuw+5EIz7q1bt2LWrFkIDw/H9u3boaurCwA4ffo07O3tGaf7vOzs7HrT00dbWxtJSUlVilhJSUmcKjZy9T62b9+O5cuXw8XFBcOHD6+yq6SoqAhXr17F/v37ceHCBezevZtR0s/T1NSs8np75coVNGvWTGytoKCgLmPVWH25j/f69OmD8+fPw9zcHA4ODnB3d8elS5dw/vx5TvVZ69y5s9jpgve6d++OwMBARqlqbvv27ZgyZQpcXFzQvHnzaq9p3bq1VP+uv379GjExMaIdcomJiTA3N0e/fv1YRyPks6gYRwgh9VhOTg5at24t8fWPHz8WFSOkyfvdGhYWFrhx4wZMTEzQr18//PTTT5g5cyaCg4Nhbm7OOOWnRUZGir6/f/8+PD09MXnyZPTo0QMAEBsbi+DgYKxdu5ZVRImoq6uLvhcKhTh27BjU1dVhZWUFAIiPj0dhYSFnjgy3bt0af/31V5X1TZs2MUhTc8HBwRJd5+Xl9R8n+XLTpk3D9OnTkZWVhZ49e4LH4yEmJga//fYbFixYwDqexLh6H9HR0fjrr7+wZcsW/Pzzz1BVVUWzZs2gpKSEf/75B3l5edDW1oaLiwtSU1OlurDo6+vLOsJXUV/u472tW7eKdob+9NNPUFBQQExMDEaPHo1ly5YxTie57OxsscdycnLQ1taGkpISo0S1k5mZ+dlrGjZsCGdn5zpIU3PdunVDSkoKOnTogP79++Pnn39Gnz59oKGhwToaIRKhY6qEEFKPNWvWDMOHD8e0adM+Oqq+qKgIoaGh2Lx5M2bMmIG5c+fWcUrJ3bx5Ey9fvsSAAQNQUFCAyZMnIyoqCkZGRggKCkKnTp1YR5TIwIEDMXXqVIwfP15s/eDBg9i5cyeioqLYBKuhJUuWoKCgAP7+/qJpfpWVlZg1axYaN26MdevWMU74eZ/bUVmTYjYLcnJyaNmyJXR0dKrs0niPx+Nxok+ZUCiEr68vNmzYgCdPngAAWrZsiUWLFsHNzU3inaWs1Yf7ePHiBWJiYnD//n2UlpaiadOmsLCwgIWFhdgRNkJkyaVLlzBnzhzExcVVaSdRVFSEnj17wt/fH3369GGUsHZKSkqqnVDfsWNHRokko6WlBR6Ph0GDBqF///7o378/9YkjnELFOEIIqccKCgqwZs0aBAYGQkFBAVZWVmjZsqVop0NaWhpu374NKysrLF26FN9++y3ryDJBRUUFycnJ1faU6ty5s9QPDXhPW1sbMTExaNeundh6RkYGevbsiRcvXjBKJrn3A04+RpqPDAPAkCFDEBkZCTs7O0yZMgVDhw4VFUa5pKKiAgcOHICdnR2aN2+OV69eAQDU1NQYJ6uZ+nIfsuT9cCOu48J9fKx3Ko/Hg6KiIho2bFjHiWpm+PDhsLGxgYeHR7XP+/n5ITIyEseOHavjZLWTn5+PyZMn48yZM9U+L+3//gHv+vdFRUUhOjoaV65cgZycHPr16wcbGxv8+OOPrOMR8kn00RYhhNRjWlpaWL9+PZ48eYLt27fDxMQEz58/Fx1NcHR0RHx8PK5evUqFuDqkp6cHf3//Kus7duyAnp4eg0S1U1FRgfT09Crr6enpEAgEDBLVXGJiIhISEkRff//9N/z9/WFiYoKwsDDW8T7r1KlTyMrKQrdu3bBo0SK0atUKS5YsQUZGButoNdKgQQPMnDkTb968AfCueMXFAlZ9uQ8uMzU1xcGDB6vs8vm3zMxMzJw5E7/99lsdJauZ+nIfH9LQ0ICmpmaVLw0NDSgrK0NfXx/e3t5S++9HcnLyJ3uJDh48GPHx8XWY6MvMmzcPhYWFiIuLg7KyMs6cOYPg4GC0bdsWERERrONJpGPHjnBzc8ORI0dw+vRpfPvttzh69Chmz57NOhohn0U94wghRAYoKSlh9OjRnOnj9TEvXryAl5cXIiMj8ezZsyp/sHOlifWmTZswZswYnD17Ft27dwcAxMXFgc/n48iRI4zTSc7FxQVTpkzBvXv3xO7Dx8cHLi4ujNNJprqjze93kK5bt44TvzMtWrTATz/9hJ9++gmXL1/Gnj17YG1tDXNzc1y4cAHKysqsI0qkW7duSExM5PTQGaD+3AdX/fHHH1iyZAlmz56NwYMHV7sjPCYmBmlpaZgzZw5mzZrFOnK16st9fCgoKAi//PILJk+ejK5du0IoFOLGjRsIDg7G0qVLkZ+fj/Xr10NRURE///wz67hVPH369JNTbBs0aID8/Pw6TPRlLl26hD///BPW1taQk5ODvr4+bG1t0bhxY6xduxZDhw5lHfGTEhMTERUVhaioKFy5cgWvXr1Cp06d4O7uDhsbG9bxCPksKsYRQgjhjIkTJ4LP58PV1RXNmjWT+iM5HzNkyBBkZmZi+/btSE9Ph1AoxIgRI/Djjz9yamfc+vXr0bx5c2zatAm5ubkA3hWGFi9eLNWN6iVhYmKCGzdusI5RY9bW1rh//z7S0tKQmJiI8vJyzhTjZs2ahQULFuDRo0fo0qULVFVVxZ6X9v5F79WX++CqAQMG4MaNG7h27RoOHz6MgwcPVul95+TkhIkTJ0p1o/f6ch8fCg4OxoYNG+Dg4CBaGz58OMzNzbFjxw5cvHgRrVu3xurVq6WyGKerq4tbt27B2Ni42udTUlLQokWLOk5Ve8XFxaJBLFpaWsjPz4eJiQnMzc050WfU2toaFhYW6NevH6ZNm4a+fftW6eVHiDSjnnGEEEI4Q01NDTExMZwZ1CBL3vcC4tofwv/uYSQUCpGbm4vly5fjzp07SEpKYhOshmJjYxEYGIjQ0FCYmJjAxcUFEyZM4MybdADVDgbg8XiiXlhc6F8E1J/7IORr+1i/1MzMTHTq1AklJSXIzs7GN998I5W9U+fOnYuoqCjcuHGjyuTU0tJSdO3aFTY2NvDz82OUsGasra2xatUq2NnZYeTIkaIdcX5+fggPDwefz2cd8ZNevnzJub85CPkQ7YwjhBDCGe3bt0dpaSnrGKQaXP2DWENDo8oOS6FQCD09PRw6dIhRKsn9/vvv2LNnD168eAFHR0fExMTA3Nycdaxayc7OZh3hq6gv90HI19aqVSvs3r0bPj4+Yuu7d+8W7Qp/8eIFNDU1WcT7rKVLl+Lo0aMwMTHBnDlz0K5dO/B4PKSnp+OPP/5AZWUlfvnlF9YxJTZv3jzRrnZvb2/Y2dlh//79aNiwIYKDgxmn+zyu/t1ByHu0M44QQghn3LhxA56envDy8kKHDh2q9G6hP8xITUVHR4s9lpOTg7a2NoyNjdGggfR/ZiknJ4fWrVvju+++++Qkwo0bN9ZhKlIfPHr0CBEREcjJyakyRIB+nkhtRERE4Pvvv0f79u1hbW0NHo+HGzdu4M6dOwgPD8d3332H7du3IzMzU2p/xh48eICZM2fi7NmzeP82msfjwc7ODtu2bUObNm3YBqwloVCI0tJS3LlzB61bt0bTpk1ZRyKk3qNiHCGEEM7IzMzE+PHjkZiYKLZOx79ITVhaWuLixYvQ1NTEypUrsXDhQqioqLCOVSv9+/f/bO9EHo+HS5cu1VGiL7Nv3z74+/sjOzsbsbGx0NfXh6+vLwwMDDBixAjW8STG9fu4ePEihg8fDgMDA2RkZKBDhw64f/8+hEIhLC0tOfPzRKTPgwcP4O/vj4yMDAiFQrRv3x4zZszgXBHrn3/+wb179yAUCtG2bVup3c33Obt378amTZuQmZkJAGjbti3mzZuHqVOnMk5GSP1HxThCCJEhfD4fvr6+SE9PB4/Hg6mpKdzd3WFkZMQ6mkS6du2KBg0awN3dvdoBDv369WOUjHCJsrIyMjMz0apVK8jLyyMvLw/a2tqsY8m87du3w8vLC/PmzcPq1auRmpoKQ0NDBAUFITg4GJGRkawjSqQ+3EfXrl1hb2+PlStXQk1NDcnJydDR0YGjoyPs7e0xc+ZM1hEJx5SXl2Pw4MHYsWMHTExMWMchAJYtW4ZNmzZh7ty56NGjB4B3/Ue3bt0Kd3d3rFq1inFCQuo3KsYRQoiMOHv2LIYPH47OnTujV69eEAqFuHbtGpKTk3HixAnY2tqyjvhZKioqSExMRLt27VhHIRzWo0cPNGrUCL1798aKFSuwcOFCNGrUqNprvby86jid7DIzM8OaNWswcuRIUQHI0NAQqamp6N+/P54/f846okTqw32oqakhKSkJRkZG0NTURExMDL755hskJydjxIgRuH//PuuIhIO0tbVx7dq1KgMcCBtNmzbFli1bMH78eLH1kJAQzJ07V+pfq6KiotC/f3/WMQipNelvhkIIIeSr8PT0hIeHR5XGyZ6enliyZAkninFWVlZ4+PBhvSjGhYeHIzQ0tNp+TAkJCYxS1Vx0dDTWr18vttty0aJF6NOnD+toHxUUFARvb2/89ddf4PF4OH36dLX94Xg8nlQX43x8fDB37lyoqqp+9tq///4bz58/x9ChQ+sgWe1kZ2fDwsKiyrqioiKKi4sZJKqd+nAfqqqqePPmDQCgZcuW4PP5+OabbwBA6t+gf0xpaSnKy8vF1rjYZ5TL9+Hk5FTtAAfCRmVlJaysrKqsd+nSBRUVFQwS1Yy9vT10dXXh4uICZ2dn0RAQQriCinGEECIj0tPTERoaWmV9ypQp8PX1rftAtTB37ly4u7tj0aJFMDc3rzLAoWPHjoyS1Yyfnx9++eUXODs7488//4SLiwv4fD5u3LiB2bNns44nsf3798PFxQWjR4+Gm5ubaLflwIEDERQUhAkTJrCOWK127dqJJqXKycnh4sWL0NHRYZyq5tLS0qCvr4/vv/8ew4cPh5WVlei4bUVFBdLS0hATE4P9+/cjNzcXe/fuZZz40wwMDJCUlAR9fX2x9dOnT8PMzIxRqpqrD/fRvXt3XL16FWZmZhg6dCgWLFiAW7du4ejRo+jevTvreBIrKSnB4sWLERoaihcvXlR5nit9RuvLfbx9+xYBAQE4f/48rKysqnyQIK1DG+qriRMnYvv27VX+u+/cuROOjo6MUknuyZMn2L9/P4KCgrB8+XIMHDgQrq6uGDly5CcHGhEiLeiYKiGEyAg9PT1s3LgR33//vdh6aGgoFi5ciJycHEbJJCcnJ1dljcfjcW6AQ/v27eHt7Y3x48eLHWPz8vJCQUEBtm7dyjqiRExNTTF9+nR4eHiIrW/cuBG7du1Ceno6o2SyIyUlBX/88QfCwsJQVFQEeXl5KCoqoqSkBABgYWGB6dOnw9nZGYqKiozTftqePXuwbNkybNiwAa6urggICACfz8fatWsREBCAH374gXVEidSH+8jKysLr16/RsWNHlJSUYOHChYiJiYGxsTE2bdpUpdAorWbPno3IyEisXLkSTk5O+OOPP/D48WPs2LEDPj4+nCg4APXnPmxsbD76HJcGzdQXc+fOxd69e6GnpycqssfFxeHhw4dwcnIS+8BT2gulSUlJCAwMREhICAQCARwdHeHq6opOnTqxjkbIR1ExjhBCZMTKlSuxadMmeHp6omfPnuDxeIiJicFvv/2GBQsWYOnSpawjftaDBw8++TxX3iCqqKggPT0d+vr60NHRwfnz59GpUydkZmaie/fu1e58kEaKioq4ffs2jI2Nxdbv3buHDh06oKysjFEy2SMUCpGSkoL79++jtLQUTZs2RefOndG0aVPW0Wpk165dWLVqFR4+fAgA0NXVxfLly+Hq6so4Wc3Ul/vgutatW2Pv3r3o378/GjdujISEBBgbG2Pfvn0ICQnBqVOnWEeUSH25DyJdPlUc/RBXCqVPnjzBzp074ePjgwYNGqCsrAw9evSAv7+/6Jg9IdKEjqkSQoiMWLZsGdTU1LBhwwb89NNPAN71Alq+fDnc3NwYp5MMV4ptn9O8eXO8ePEC+vr60NfXR1xcHDp16oTs7Gxw6TMyPT09XLx4sUox7uLFi9S7pY7xeDx06tSJ87sApk2bhmnTpuH58+cQCAScPD4M1J/7AIDXr19DIBCIrXGlR1lBQQEMDAwAvMtcUFAAAOjduzenJsLWl/t47969e+Dz+ejbty+UlZVFu9tJ3eLCZOfPKS8vx59//onAwEDR8eetW7di/PjxKCgowJIlS/D9998jLS2NdVRCqqBiHCGEyICKigocOHAA48ePh4eHB169egXg3cQ8UvcGDBiAEydOwNLSEq6urvDw8EB4eDhu3ryJ0aNHs44nsQULFsDNzQ1JSUliuy2DgoKwefNm1vEIh3FtR9/HcPU+srOzMWfOHERFRYntcOVaSwBDQ0Pcv38f+vr6MDMzQ2hoKLp27YoTJ05AQ0ODdTyJ1Zf7ePHiBRwcHBAZGQkej4fMzEwYGhpi6tSp0NDQwIYNG1hHJBwyd+5chISEAHjX/+73339Hhw4dRM+rqqrCx8cHbdq0YZSQkE+jY6qEECIjPjwaSdgSCAQQCASiCZ6hoaGifkw//vgjpxoPHzt2DBs2bBD1h3s/TXXEiBGMkxEuqi9Thrl+Hz179gQAuLu7o1mzZlV2LfXr149FrBrbtGkT5OXl4ebmhsjISAwdOhSVlZWoqKjAxo0b4e7uzjqiROrLfTg5OeHZs2cICAiAqampqF/quXPn4OHhgdu3b7OOSDhk4MCBmDp1KsaMGfPRv5sqKipw9epVzrxmEdlCxThCCJERNjY2cHd3x8iRI1lHIYSQKj6cMrxr164qU4ZXr17NOqJE6sN9NGrUCPHx8WjXrh3rKF9VTk4Obt68CSMjI04f6ebqfTRv3hxnz55Fp06dxIYXZWdnw9zcHK9fv2YdkXDI5cuX0bNnT9EHm+9VVFTg2rVr6Nu3L6NkhEiGjqkSQoiMmDVrFhYsWIBHjx6hS5cuUFVVFXu+Y8eOjJLJpitXrmDHjh3g8/kIDw+Hrq4u9u3bBwMDA/Tu3Zt1PIkYGhrixo0baNKkidh6YWEhLC0tkZWVxSjZp2lqakrcn+h9byby39u2bRt27tyJ8ePHIzg4GIsXLxabMswV9eE+rK2t8fDhw3pXjGvdujVat27NOsYX4+p9FBcXQ0VFpcr68+fPpX7aM5E+NjY2yM3NrdKTs6ioCDY2Npw5Tk9kFxXjCCFERowbNw4AxIY18Hg8zvUAAoD4+Hikp6eDx+PB1NQUlpaWrCPVyJEjRzBp0iQ4OjoiMTERb968AQC8evUKa9as4cxkvPv371f7c/PmzRs8fvyYQSLJ+Pr6so7wn+FyY/ScnBzR8UhlZWVRb8tJkyahe/fu2Lp1K8t4EqsP9xEQEIAff/wRjx8/RocOHaCgoCD2vDR/eOPn5yfxtdI8vMjPzw/Tp0+HkpLSZ+9Jmu/jQ3379sXevXvx66+/Anj3N4hAIMC6desknuxJyHsf+/ftxYsXVT5wJkQaUTGOEEJkRHZ2NusIX+zZs2f44YcfEBUVBQ0NDQiFQtEnoIcOHYK2tjbriBJZtWoV/P394eTkhEOHDonWe/bsiZUrVzJMJpmIiAjR92fPnoW6urrocWVlJS5evCjVDZOdnZ1ZR/jqXrx4gXHjxuHSpUucbYxeX6YM14f7yM/PB5/Ph4uLi2iNKx/ebNq0Sexxfn4+SkpKRIMOCgsLoaKiAh0dHakuYm3atAmOjo5QUlKqck8f4vF4Un0fH1q3bh369++Pmzdv4u3bt1i8eDFu376NgoICXL16lXU8whHvB13xeDxMnjxZbFdlZWUlUlJSRB+IECLNqBhHCCEyoj4Mbpg7dy5evnyJ27dvw9TUFACQlpYGZ2dnuLm5iaZqSbuMjIxqe5k0btwYhYWFdR+oht73HeTxeFUKWwoKCmjTpg0nij/v8fl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjScTDwwMNGjRATk6O6HcDeLcj1sPDgxP/P+rLlOH6cB9TpkyBhYUFQkJCqh3gIM0+/ODp4MGD2LZtG3bv3i06cpuRkYFp06ZhxowZrCJK5MP7qA8fpgGAmZkZUlJSsH37dsjLy6O4uBijR4/G7Nmz0aJFC9bxCEe8/wBQKBRCTU0NysrKoucaNmyI7t27Y9q0aaziESIxGuBACCEyZN++ffD390d2djZiY2Ohr68PX19fGBgYcGL6pbq6Oi5cuABra2ux9evXr2Pw4MGcKGQBgJGREXbs2IFBgwaJNbHeu3cvfHx8kJaWxjqiRAwMDHDjxg00bdqUdZRai46OxrfffotevXrh8uXLSE9Ph6GhIX7//Xdcv34d4eHhrCNKpD40Rq8vU4brw32oqqoiOTkZxsbGrKN8ESMjI4SHh8PCwkJsPT4+HmPHjuVkkev9WzcuFUgJ+S+sWLECCxcupCOphLPkWAcghBBSN7Zv34758+djyJAhKCwsFB0z0tDQ4EwPLYFAUKV3EfBuN5ZAIGCQqHZmzJgBd3d3/P333+DxeHjy5AkOHDiAhQsXYtasWazjSSw7O5vThTgA8PT0xKpVq3D+/HmxIomNjQ1iY2MZJquZ+tAYXU5OTmwqnoODA/z8/ODm5saJAtZ79eE+BgwYgOTkZNYxvlhubi7Ky8urrFdWVuLp06cMEtXe7t270aFDBygpKUFJSQkdOnRAQEAA61g1YmBggGXLliEjI4N1FFIPeHt7Q1VVFc+ePcOVK1cQExODZ8+esY5FiMSoGEcIITJiy5Yt2LVrF3755RfIy8uL1q2srHDr1i2GySQ3YMAAuLu748mTJ6K1x48fw8PDAwMHDmSYrGYWL16MkSNHwsbGBq9fv0bfvn0xdepUzJgxA3PmzGEdT2Jubm7VNhbfunUr5s2bV/eBauHWrVsYNWpUlXVtbW28ePGCQaLaed8Y/T1qjE6+xLBhw+Dh4YHly5fjyJEjiIiIEPviioEDB2LatGm4efOmaEfZzZs3MWPGDAwaNIhxOsktW7YM7u7uGDZsGMLCwhAWFib6f7R06VLW8SQ2d+5cnDlzBqampujSpQt8fX2Rm5vLOhbhqJcvX2LSpEnQ1dVFv3790LdvX+jq6mLixIkoKipiHY+Qz6JjqoQQIiOUlZVx584d6Ovrix1jy8zMRMeOHVFaWso64mc9fPgQI0aMQGpqKvT09MDj8ZCTkwNzc3P8+eefaNWqFeuIn1VZWYmYmBiYm5tDSUkJaWlpEAgEMDMzQ6NGjVjHqxFdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ5Fq1aoXQ0FD07NlT7Pfi2LFjWLhwIfh8PuuIEklLS0P//v3RpUsXXLp0CcOHDxdrjG5kZMQ6IuEQObmPf14v7QMcPpSfnw9nZ2ecOXNGtKu6oqICdnZ2CAoKgo6ODuOEkmnatCm2bNmC8ePHi62HhIRg7ty5eP78OaNktXP37l0cOHAAhw4dQlZWFmxsbDBx4kQ4OTmxjkY4xMHBAUlJSdiyZQt69OgBHo+Ha9euwd3dHR07dkRoaCjriIR8EhXjCCFERpiZmWHt2rUYMWKEWNHBz88PwcHBiI+PZx1RYufPn8edO3cgFAphZmbGqR0OAKCkpIT09HQYGBiwjvJFlJSUkJqaWqWv1L1799ChQweUlZUxSia5xYsXIzY2FmFhYTAxMUFCQgKePn0KJycnODk5wdvbm3VEieXl5WH79u2Ij4+HQCCApaUlNUYnBO+KP+//zTA1NYWJiQnrSDWiqamJ69evo23btmLrd+/eRdeuXTnTL7U6cXFxmDlzJlJSUjhT5CXSQVVVFWfPnkXv3r3F1q9cuQJ7e3sUFxczSkaIZGiaKiGEyIhFixZh9uzZKCsrg1AoxPXr1xESEoK1a9dyru+Mra0tbG1tWceoNXNzc2RlZXG+GGdsbIwzZ85UOVp7+vRpGBoaMkpVM6tXr8bkyZOhq6srKu5WVlZiwoQJnDr+Bbwb4rBixQrWMQiROiYmJpwrwH1o4sSJ2L59OzZu3Ci2vnPnTjg6OjJK9WWuX7+OgwcP4vDhwygqKsLYsWNZRyIc06RJE9Fk1Q+pq6tDU1OTQSJCaoZ2xhFCiAzZtWsXVq1ahYcPHwJ4d8xw+fLlcHV1ZZzs4/z8/DB9+nQoKSlV25/sQ25ubnWU6sucO3cOS5Yswa+//oouXbpUmQTWuHFjRslqJjAwEHPmzMGiRYswYMAAAMDFixexYcMG+Pr6Ytq0aYwTSo7P5yMxMRECgQAWFhZVdqBIu8uXL3/y+b59+9ZREsJV9eW1dv78+fj111+hqqqK+fPnf/Lafxe3pNXcuXOxd+9e6OnpoXv37gDe7Sh7+PAhnJycxAYbSfM9vT+eevDgQdy/fx82NjZwdHTE6NGjoaamxjoe4ZidO3ciLCwMe/fuFe0Az8vLg7OzM0aPHo0ZM2YwTkjIp1ExjhBCZNDz588hEAg40S/HwMAAN2/eRJMmTT65k4zH4yErK6sOk9Xeh/2YeDye6HuhUMipfkzAuym9q1evFg3VaNOmDZYvX069f+pYdT2+PvzZ4srPVHh4OEJDQ5GTk4O3b9+KPZeQkMAoVc1x8T7qy2utjY0Njh07Bg0NjU8OL+HxeLh06VIdJqs9SYewSPs9ycnJwcrKChMmTMAPP/yA5s2bs45EOMzCwgL37t3Dmzdv0Lp1awBATk4OFBUVq3ygJq2vu0S20TFVQgiREdnZ2aioqEDbtm3RtGlT0XpmZiYUFBTQpk0bduE+ITs7u9rvuSwyMpJ1hK9m5syZmDlzJvLz86GsrMyJIRSf2y3zIWneZfKhf/75R+xxeXk5EhMTsWzZMqxevZpRqprx8/PDL7/8AmdnZ/z5559wcXEBn8/HjRs3MHv2bNbxJMbV+6gvr7Ufvr7Wl9fa+nIfd+7c4fRxYSJdRo4cyToCIV+EdsYRQoiM6NevH6ZMmQJnZ2ex9f379yMgIABRUVFsghExSUlJ6Ny5M+sYEquoqEBUVBT4fD4mTJgANTU1PHnyBI0bN5bawty/d5nEx8ejsrIS7dq1A/DuKJW8vLxoMimXXb58GR4eHpwY0NK+fXt4e3tj/PjxYkNmvLy8UFBQgK1bt7KOKJH6cB+lpaVQVlau9rnc3FwaCkK+yNu3b/Hs2TMIBAKx9fe7mwghRBZQMY4QQmRE48aNkZCQUO3kSysrK05MYxs7diysrKzg6ekptr5u3Tpcv34dYWFhjJJ9maKiIhw4cAABAQFITk7mzJHCBw8ewN7eHjk5OXjz5g3u3r0LQ0NDzJs3D2VlZfD392cd8bM2btyIqKgoBAcHixo+//PPP3BxcUGfPn2wYMECxgm/THp6OqytrfH69WvWUT5LRUUF6enp0NfXh46ODs6fP49OnTohMzMT3bt3x4sXL1hHlEh9uI/27dvj4MGDsLS0FFsPDw8X7YSVVqNHj5b42qNHj/6HSb6esrIybNmyBZGRkdUWsbhyBC8zMxNTpkzBtWvXxNa52KKBSJfXr19X+b3gSv9dIrvomCohhMgIHo+HV69eVVkvKirizB/A0dHR8Pb2rrJub2+P9evXM0j0ZS5duoTAwEAcPXoU+vr6GDNmDHbv3s06lsTc3d1hZWWF5ORkNGnSRLQ+atQoTJ06lWEyyW3YsAHnzp0Tm7ymqamJVatWYfDgwZwpxqWkpIg9FgqFyM3NhY+PDzp16sQoVc00b94cL168gL6+PvT19REXF4dOnTohOzsbXPrsuD7ch62tLXr27Inly5djyZIlKC4uxpw5cxAWFgYfHx/W8T7pw+mKQqEQx44dg7q6OqysrAC82wlbWFhYo6Ida1OmTMH58+cxduxYdO3aVawfJJdMnjwZDRo0wF9//YUWLVpw9j6IdMjOzsacOXMQFRWFsrIy0ToVdwlXUDGOEEJkRJ8+fbB27VqEhIRAXl4ewLum7mvXrkXv3r0Zp5PM69ev0bBhwyrrCgoKePnyJYNEn5afnw9tbW2xtUePHiEoKAiBgYEoLi6Gg4MDysvLceTIEZiZmTFKWjsxMTG4evVqlf8n+vr6ePz4MaNUNfPy5Us8ffoU33zzjdj6s2fPqi1eS6vOnTuDx+NVKfZ0794dgYGBjFLVzIABA3DixAlYWlrC1dUVHh4eCA8Px82bNzlVOKkP97FlyxYMHToULi4uOHnypOjo+Y0bN6T+dWrPnj2i75csWQIHBwf4+/uL/bs3a9YsTu2aOXnyJE6dOoVevXqxjvJFkpKSEB8fj/bt27OOQuoBR0dHAO8muzdr1oyKu4RzqBhHCCEy4vfff0ffvn3Rrl079OnTBwBw5coVvHz5kjN9sTp06IDDhw/Dy8tLbP3QoUNS+QZx586dePToEfz8/KCgoIAhQ4YgJiYG3333HbZs2QJ7e3vIy8tz4jhndQQCQbWfPD969AhqamoMEtXcqFGj4OLigg0bNqB79+4AgLi4OCxatIgzhROgasN9OTk5aGtrQ0lJiVGimtu5c6fomNGPP/4ILS0txMTEYNiwYfjxxx8Zp5NcfbmPwYMHY/To0di+fTsaNGiAEydOSOXr7KcEBgYiJiZGVIgDAHl5ecyfPx89e/bEunXrGKaTnK6uLmdeUz/FzMwMz58/Zx2D1BMpKSmIj48X9XslhGuoZxwhhMiQJ0+eYOvWrUhOToaysjI6duyIOXPmQEtLi3U0iURERGDMmDGYMGECBgwYAAC4ePEiQkJCEBYWJnWTtd68eYNly5ahadOmWLx4MRo0aAA3NzfMnDkTbdu2FV2noKCA5ORkzr3RHTduHNTV1bFz506oqakhJSUF2traGDFiBFq3bi22Q0ValZSUYOHChQgMDER5eTkAoEGDBnB1dcW6deugqqrKOCEhde/9QJa8vDwEBAQgOjoa69evh5ubG1avXg0FBQXWESWiqamJPXv2VPm34fjx43BxcakyhVhanT59Gn5+fvD394e+vj7rOLV26dIlLF26FGvWrIG5uXmVnyMu7VYk7NnY2OCXX37BoEGDWEchpFaoGEcIIYRTTp48iTVr1iApKUlUUPT29ka/fv1YR/uot2/fomHDhoiNjUVgYCBCQ0PRvn17TJo0CePGjUPLli05WYx78uQJbGxsIC8vj8zMTFhZWSEzMxNNmzbF5cuXoaOjwzqixIqLi8Hn8yEUCmFsbMy5Ipyfn1+16zweD0pKSjA2Nkbfvn3FdghJg3/3uvuUjh07/odJvkx9uY/31NTUMHToUPj7+0NDQwMAcO3aNTg5OUFNTQ2JiYlsA0po/vz5CAoKws8//yy289XHxwdOTk7YuHEj44SSyc/Ph4ODAy5fvgwVFZUqRayCggJGyWpGTk5O9P2HRwqpxxepDT6fjx9//BETJ05Ehw4dqvxecOG1lsg2KsYRQoiMuHz58ief79u3bx0lISUlJTh06BACAwNx/fp1VFZWYuPGjZgyZQrnjiKVlpYiJCQECQkJEAgEsLS0hKOjI5SVlVlHkykGBgbIz89HSUkJNDU1IRQKUVhYCBUVFTRq1AjPnj2DoaEhIiMjoaenxzquiJycXLW97v5N2t+o15f7eG/fvn2YNGlSlfVXr15h3rx5nBk0IxAIsH79emzevBm5ubkAgBYtWsDd3R0LFiyQuuL0xwwaNAg5OTlwdXWttjeWs7Mzo2Q1Ex0d/cnnpflDNSJ94uLiMGHCBNy/f1+09v51mCuvtUS2UTGOEEJkxIefSL/34R/09EcLGxkZGdi9ezf27duHwsJC2NraIiIignUswjEhISHYuXMnAgICYGRkBAC4d+8eZsyYgenTp6NXr1744Ycf0Lx5c4SHhzNO+z8PHjyQ+FppPp5XX+6jPqmoqMCBAwdgZ2eH5s2bi4b8cPEopIqKCmJjYzkzGflTrly5gh07doDP5yM8PBy6urrYt28fDAwMODNMikgHMzMzmJqaYvHixdUWqem1lkg7KsYRQoiMKCoqEntcXl6OxMRELFu2DKtXr8bAgQMZJfs0LS0t3L17F02bNoWmpuYnp2Vx5ahOdSorK3HixAkEBgZyqhiXkZGBLVu2ID09HTweD+3bt8ecOXNoWl4dMzIywpEjR9C5c2ex9cTERIwZMwZZWVm4du0axowZI9ohRMjnpKWlIScnB2/fvhWt8Xg8DBs2jGEqyamoqCA9PZ3zb8otLS2xbds20VFbrjpy5AgmTZoER0dH7Nu3D2lpaTA0NMS2bdvw119/4dSpU6wjEg5RVVVFcnIyjI2NWUchpFZomiohhMgIdXX1Kmu2trZQVFSEh4cH4uPjGaT6vE2bNomObm7atKnejq6Xl5fHyJEjpW4IxaeEh4dj/PjxsLKyQo8ePQC8OzZibm6OgwcP4vvvv2ecUHbk5uaioqKiynpFRQXy8vIAAC1btsSrV6/qOhrhgKKiIrF/I7KysjB69GikpKSIHb99//rLlZ3U3bp1Q2JiIueLcT4+PliwYAFWr17N6cEHq1atgr+/P5ycnHDo0CHRes+ePbFy5UqGyQgXDRgwgIpxhNNoZxwhhMi49PR0WFtb4/Xr16yjEI4xNDTExIkTq7yJ8vb2xr59+5CVlcUomewZOnSoaPKlhYUFgHe74qZNm4bmzZvjr7/+wokTJ/Dzzz/j1q1bjNMSafPrr79CSUkJixYtAgDRzreAgAB07twZf//9N7Kzs7Fw4UJs3LgRffr0YRlXYmFhYfD09ISHhwe6dOlSZTALVxq8v28z8e8Po7jWG0tFRQVpaWlo06YN1NTUkJycDENDQ2RlZcHMzAxlZWWsIxIO2blzJ1atWoUpU6ZUW6QePnw4o2SESIaKcYQQIiP+Pe1PKBQiNzcXPj4+KC8vx9WrVxklk5yNjQ0mTpyIsWPHVrvTj9QtFRUVpKSkVPlUOjMzE506dUJJSQmjZJ9Wk2PAXPljPi8vD5MmTcLFixdFb0gqKiowcOBA7Nu3D82aNUNkZCTKy8sxePBgxmmJtHn27BkmTZoEY2Nj/PHHH2jatCkuXryITp06QVdXF9evX4euri4uXryIhQsXcmaa6sd6pXKtiFVfBh8YGRlhx44dGDRokFgxbu/evfDx8UFaWhrriIRDqvv9fo9Lv99EdtExVUIIkRGdO3eudtpf9+7dERgYyChVzZibm2Pp0qWYM2cOhgwZgkmTJmHIkCFo2LAh62gyqX///rhy5UqVYlxMTIxU75z591Hgf/9ecHGwSfPmzXH+/HncuXMHd+/ehVAoRPv27dGuXTvRNTY2NgwTEmmmo6ODs2fPYu3atQDe/dy/bw/QtGlTPHnyBLq6umjTpg0yMjJYRq2R7Oxs1hG+Cq4U2z5nxowZcHd3R2BgIHg8Hp48eYLY2FgsXLgQXl5erOMRjhEIBKwjEPJFaGccIYTIiH9P+5OTk4O2tjaUlJQYJaodgUCACxcu4ODBgzh27Bjk5eUxduxYODo61ps3LFzh7+8PLy8vODg4iBqLx8XFISwsDCtWrEDLli1F10rrDrMLFy5gyZIlWLNmDXr06AEej4dr165h6dKlWLNmDWxtbVlHrJG3b98iOzsbRkZGaNCAe5+5FhYWIjw8HHw+H4sWLYKWlhYSEhLQrFkz6Orqso4nMa7fR58+fTB//nyMGjUK06dPR35+PhYtWgR/f38kJCQgNTWVdcR6LyUlBR06dICcnFyVne3/xpXjtgDwyy+/YNOmTaIjqYqKili4cCF+/fVXxskIIaRuUTGOEEJkwPujaTt27ICJiQnrOF9NWVkZTpw4gdWrV+PWrVuc2cVUX3zqiMiHpPm4SIcOHeDv74/evXuLrV+5cgXTp09Heno6o2Q1U1JSgrlz5yI4OBgAcPfuXRgaGsLNzQ0tW7aEp6cn44Sfl5KSgkGDBkFdXR33799HRkYGDA0NsWzZMjx48AB79+5lHVEi9eE+zp49i1evXmHs2LF4+PAhhg4ditTUVGhpaSE0NBQDBgxgHVFi+/btg7+/P7KzsxEbGwt9fX34+vrCwMAAI0aMYB3vo+Tk5JCXlwcdHR3IyclVu7MdkO7X148pKSlBWloaBAIBzMzM0KhRI9aRCIcMGTIEISEhonYlq1evxuzZs6GhoQEAePHiBfr06UPHnonUk+yvaEIIIZymoKCA1NTUejWJNC8vD/7+/vjtt9+QkpICKysr1pFkjkAgkOhLmt8o8vn8avsPvi+kcMVPP/2E5ORkREVFie12HTRoEA4fPswwmeTmz5+PyZMnIzMzU+wevv32W1y+fJlhspqpD/dhZ2eHsWPHAgD09PSQkpKC58+f49mzZ1JdiDt79iyKiopEj7dv34758+djyJAhKCwsFL0WaWhowNfXl1FKyWRnZ0NbW1v0fVZWFrKzs6t8cXFQjoqKCqysrNC1a1cqxJEaO3v2LN68eSN6/Ntvv6GgoED0uKKiglPH6YnsomIcIYTICCcnJ+zevZt1jC/y8uVL7NmzB7a2ttDT08P27dsxbNgw3L17F3///TfreATvjudxibW1NebNm4fc3FzRWl5eHhYsWICuXbsyTFYzx48fx9atW9G7d2+xoruZmRn4fD7DZJK7ceMGZsyYUWVdV1cXeXl5DBLVTn25j3/T0tKSeDcsK3l5eejVqxcePXoEANiyZQt27dqFX375BfLy8qLrrKyspH6qsL6+vuh3WV9f/5NfhMiSf+8QpYN+hKu410yEEEJIrbx9+xYBAQE4f/48rKysoKqqKvb8xo0bGSWTXLNmzaCpqQkHBwesWbMG1tbWrCPJtN9++w1t2rTBuHHjAADff/89jhw5ghYtWuDUqVPo1KkT44SfFxgYiFGjRkFfXx+tW7cGAOTk5MDExATHjx9nG64G8vPzoaOjU2W9uLiYMztilZSU8PLlyyrrGRkZoh1CXFAf7qOsrAxbtmxBZGQknj17VqVRekJCAqNkn+bs7Aw1NTXY29sjNTUV2dnZsLCwqHKdoqIiiouLGSSUXH2c+kwIIeR/qBhHCCEyIjU1FZaWlgDe9ZP6EBferAuFQmzevBkTJ06EiooK6zgEwI4dO7B//34AwPnz53HhwgWcOXMGoaGhWLRoEc6dO8c44ecZGxsjJSVFNIlUKBTCzMwMgwYN4sTvxXvW1tY4efIk5s6dC+B/v9O7du1Cjx49WEaT2IgRI7By5UqEhoYCeHcPOTk58PT0xJgxYxink1x9uI8pU6bg/PnzGDt2LLp27cqp34XRo0eLCnAGBgZISkqqsnvs9OnTMDMzYxFPYv+e+vwxXOwZR8iX4PF4VV6TuPQaRch7NMCBEEIIJwgEAigpKeH27dto27Yt6zgEgLKyMu7evQs9PT24u7ujrKwMO3bswN27d9GtWzf8888/rCPKjGvXrsHe3h6Ojo4ICgrCjBkzcPv2bcTGxiI6OhpdunRhHfGzXr58iSFDhuD27dt49eoVWrZsiby8PPTo0QOnTp2qsptXWtWH+1BXV8epU6fQq1cv1lG+yJ49e7Bs2TJs2LABrq6uCAgIAJ/Px9q1axEQEIAffviBdURCSA3Jycnh22+/haKiIgDgxIkTGDBggOi19c2bNzhz5gwVqYnUo51xhBAiI4qKilBZWQktLS2x9YKCAjRo0ACNGzdmlEwycnJyaNu2LV68eEHFOCmhqamJhw8fQk9PD2fOnMGqVasAvNvFyJU/gleuXPnJ5728vOooyZfp2bMnrl69ivXr18PIyAjnzp2DpaUlYmNjYW5uzjqeRBo3boyYmBhcunQJCQkJEAgEsLS0xKBBg1hHq5H6cB+6urpQU1NjHeOLubi4oKKiAosXL0ZJSQkmTJgAXV1dbN68mQpxhHCUs7Oz2OOJEydWucbJyamu4hBSa7QzjhBCZMS3336LYcOGYdasWWLr/v7+iIiIwKlTpxglk9zJkyfh4+OD7du3o0OHDqzjyLw5c+bgr7/+Qtu2bZGYmIj79++jUaNGOHz4MH777Tep7Sv1oX/3kyovL0d2djYaNGgAIyMjTtwDIV/b6dOn4efnB39//3ozIOD58+cQCATV9lYkhBBC6hoV4wghREZoaWnh6tWrMDU1FVu/c+cOevXqhRcvXjBKJjlNTU2UlJSgoqICDRs2hLKystjzH462J/+98vJybN68GQ8fPsTkyZNFhS1fX180atQIU6dOZZywdl6+fInJkydj1KhRmDRpEus4EqusrMSxY8eQnp4OHo8HU1NTjBgxAg0aSO9BCD8/P4mvdXNz+w+TfJn6ch/v5efnw8HBAZcvX4aKigoUFBTEnufaa+2zZ8+QkZEBHo+Hdu3acWaQBiGEkPqLinGEECIjVFVVERcXV+XI2q1bt9CtWzeUlJQwSia54ODgTz7/76MLhNRWamoqvvvuO9y/f591FImkpqZixIgRyMvLQ7t27QC8G9Sira2NiIgIqT2qamBgIPY4Pz8fJSUl0NDQAAAUFhZCRUUFOjo6yMrKYpBQMvXlPt4bNGgQcnJy4OrqimbNmlVpjs6V19qXL19i9uzZCAkJEU2ElZeXx7hx4/DHH39AXV2dcUJCCCGyiopxhBAiI/r37w9zc3Ns2bJFbH327NlISUnBlStXGCUjXJeWloacnBy8fftWbH348OGMEn25mJgYDBs2jDNDKLp37w4dHR0EBwdDU1MTAPDPP/9g8uTJePbsGWJjYxkn/LyDBw9i27Zt2L17t6igmJGRgWnTpmHGjBlwdHRknFAy9eE+VFRUEBsbi06dOrGO8kUcHByQlJSELVu2oEePHuDxeLh27Rrc3d3RsWNH0cRbQgghpK5RMY4QQmTE1atXMWjQIFhbW2PgwIEAgIsXL+LGjRs4d+4c+vTpwzihZPh8Pvbs2QM+n4/NmzdDR0cHZ86cgZ6eHr755hvW8WRKVlYWRo0ahVu3boHH4+H9nxTvd9FwYYjDv48XCoVC5ObmYt++fejbty9CQkIYJasZZWVl3Lx5s8rvQGpqKqytrVFaWsoomeSMjIwQHh5epY9ffHw8xo4di+zsbEbJaqY+3IelpSW2bduG7t27s47yRVRVVXH27Fn07t1bbP3KlSuwt7dHcXExo2S1V1paivLycrE1aR/ARAghpCo51gEIIYTUjV69eiE2NhZ6enoIDQ3FiRMnYGxsjJSUFM4U4qKjo2Fubo6///4bR48exevXrwEAKSkp8Pb2ZpxO9ri7u8PAwABPnz6FiooKbt++jcuXL8PKygpRUVGs40lk06ZNYl9+fn6IioqCs7Mzdu7cyTqexNq1a4enT59WWX/27BmMjY0ZJKq53NzcKkUG4F1Rt7p7k1b14T58fHywYMECREVF4cWLF3j58qXYF1c0adKk2qOo6urqoh2kXFBSUoI5c+ZAR0cHjRo1gqamptgXIYQQ7qGdcYQQQjijR48e+P777zF//nyoqakhOTkZhoaGuHHjBkaOHInHjx+zjihTmjZtikuXLqFjx45QV1fH9evX0a5dO1y6dAkLFixAYmIi64gy49SpU1i8eDGWL18u2s0UFxeHlStXwsfHR2xnkLTuohk2bBhycnKwe/dudOnSBTweDzdv3sS0adOgp6eHiIgI1hElUh/uQ07u3ef1/+4VJxQKwePxOLHrFQB27tyJsLAw7N27Fy1atAAA5OXlwdnZGaNHj8aMGTMYJ5TM7NmzERkZiZUrV8LJyQl//PEHHj9+jB07dsDHx4cTR58JIYSIo2IcIYQQzmjUqBFu3boFAwMDsWLc/fv30b59e5SVlbGOKFM0NTURHx8PQ0NDGBkZISAgADY2NuDz+TA3N+fEUJApU6Zg8+bNUFNTE1svLi7G3LlzERgYyChZzbwvngD/K6D8+9iwtBdS8vPz4ezsjDNnzoimd1ZUVMDOzg5BQUHQ0dFhnFAy9eE+oqOjP/l8v3796ijJl7GwsMC9e/fw5s0btG7dGgCQk5MDRUVFtG3bVuzahIQEFhEl0rp1a+zduxf9+/dH48aNkZCQAGNjY+zbtw8hISE4deoU64iEEEJqSHpn3RNCCCH/oqGhgdzc3CqTCxMTE6Grq8solezq0KEDUlJSYGhoiG7duuH3339Hw4YNsXPnThgaGrKOJ5Hg4GD4+PhUKcaVlpZi7969nCnGRUZGso7wxbS1tXHq1ClkZmYiPT0dQqEQpqamMDExYR2tRurDfXCl2PY5I0eOZB3hqygoKBD9u9e4cWMUFBQAAHr37o2ZM2eyjEYIIaSWqBhHCCGEMyZMmIAlS5YgLCwMPB4PAoEAV69excKFC+Hk5MQ6nsxZunSpqAH6qlWr8N1336FPnz5o0qQJDh8+zDjdp718+RJCoRBCoRCvXr2CkpKS6LnKykqcOnWKEzuY3qsvxRMAaNu2bZVdS1xUX+6Dy+pLL9H3O8D19fVhZmaG0NBQdO3aFSdOnICGhgbreIQQQmqBjqkSQgjhjPLyckyePBmHDh2CUChEgwYNUFlZiQkTJiAoKAjy8vKsI8q8goICaGpqVuk1JW3k5OQ+mZHH42HFihX45Zdf6jBV7Z05cwaNGjUS9Yb7448/sGvXLpiZmeGPP/6gJu+EcNimTZsgLy8PNzc3REZGYujQoaisrERFRQU2btwId3d31hEJIYTUEBXjCCGEcE5WVhYSEhIgEAhgYWFBu09IjUVHR0MoFGLAgAE4cuQItLS0RM81bNgQ+vr6aNmyJcOENWNubo7ffvsNQ4YMwa1bt2BlZYUFCxbg0qVLMDU1xZ49e1hHJIR8JTk5Obh58yaMjIzQqVMn1nEIIYTUAhXjCCGkHhs9erTE1x49evQ/TPLfqKysxK1bt6Cvr087f0itPHjwAK1bt5b6nXyf06hRI6SmpqJNmzZYvnw5UlNTER4ejoSEBAwZMgR5eXmsIxJCCCGEkP9HPeMIIaQeU1dXZx3hq5o3bx7Mzc3h6uqKyspK9OvXD9euXYOKigr++usv9O/fn3VEwgEpKSno0KED5OTkUFRUhFu3bn302o4dO9Zhstpr2LChaHrthQsXRD0UtbS08PLlS5bRCCG14OfnJ/G1bm5u/2ESQggh/wXaGUcIIYQzWrVqhePHj8PKygrHjx/HrFmzEBUVhb179yIyMhJXr15lHZFwgJycHPLy8qCjoyPqHVfdn0M8Hg+VlZUMEtbc8OHD8fbtW/Tq1Qu//vorsrOzoauri3PnzmHOnDm4e/cu64gSuXLlCnbs2AE+n4/w8HDo6upi3759MDAwEPXD44qSkhLk5OTg7du3YuvSWuC1sLCQeIdoQkLCf5zm63r79i2ys7NhZGSEBg24sRfh31PD8/PzUVJSIhrYUFhYCBUVFejo6CArK4tBQkIIIV9CjnUAQgghdaeiogIXLlzAjh078OrVKwDAkydP8Pr1a8bJJPP8+XM0b94cAHDq1Ck4ODjAxMQErq6un9zdRMiHsrOzoa2tLfo+KysL2dnZVb649AZ369ataNCgAcLDw7F9+3bo6uoCAE6fPg17e3vG6SRz5MgR2NnZQVlZGYmJiXjz5g0A4NWrV1izZg3jdJLLz8/Hd999BzU1NXzzzTewsLAQ+5JWI0eOxIgRIzBixAjY2dmBz+dDUVER/fv3R//+/aGkpAQ+nw87OzvWUSVWUlICV1dXqKio4JtvvkFOTg6AdzvJfHx8GKf7tA9fi1avXo3OnTsjPT0dBQUFKCgoQHp6OiwtLfHrr7+yjkoIIaQWaGccIYTIiAcPHsDe3h45OTl48+YN7t69C0NDQ8ybNw9lZWXw9/dnHfGz9PX1sWvXLgwcOBAGBgbYtm0bvvvuO9y+fRu9e/fGP//8wzqizNm3bx/8/f2RnZ2N2NhY6Ovrw9fXFwYGBhgxYgTreIRDLCws4OHhAScnJ6ipqSE5ORmGhoZISkqCvb09Z/reOTo64v79+/D19YWNjQ2OHTuGp0+fYtWqVdiwYQOGDh3KOuJnTZ06FS1atKhS6PH29sbDhw8RGBjIKFnNuLu74+rVq/D19YW9vT1SUlJgaGiIiIgIeHt7IzExkXVEiRgZGSE8PLxKMTc+Ph5jx45FdnY2o2SEEEJqixv7tAkhhHwxd3d3WFlZITk5GU2aNBGtjxo1ClOnTmWYTHIuLi5wcHBAixYtwOPxYGtrCwD4+++/0b59e8bpZM/27dvh5eWFefPmYfXq1aIjnRoaGvD19eVEMS4iIqLadR6PByUlJRgbG1c5Liat+Hw+9uzZAz6fj82bN0NHRwdnzpyBnp4evvnmG9bxPisjIwN9+/atst64cWMUFhbWfaBaunTpEv78809YW1tDTk4O+vr6sLW1RePGjbF27VpOFOPCwsJw8+bNKusTJ06ElZUVZ4pxx48fx+HDh9G9e3exI7hmZmbg8/kMk9VMbm4uysvLq6xXVlbi6dOnDBIRQgj5UlSMI4QQGRETE4OrV6+iYcOGYuv6+vp4/Pgxo1Q1s3z5cnTo0AEPHz7E999/D0VFRQCAvLw8PD09GaeTPVu2bMGuXbswcuRIsSNfVlZWWLhwIcNkkhs5cmS1PePer/F4PPTu3RvHjx+X6om90dHR+Pbbb9GrVy9cvnwZq1evho6ODlJSUhAQEIDw8HDWET+rRYsWuHfvHtq0aSO2HhMTA0NDQzahaqG4uBg6OjoA3g3QyM/Ph4mJCczNzTnTa01ZWRkxMTFo27at2HpMTAyUlJQYpaq5/Px80f+LDxUXF3NqgvLAgQMxbdo07N69G126dAGPx8PNmzcxY8YMDBo0iHU8QgghtUA94wghREYIBIJqm9E/evQIampqDBLVztixY+Hh4YFWrVqJ1pydnTmxC6u+yc7OrrYHlqKiIoqLixkkqrnz58/D2toa58+fR1FREYqKinD+/Hl07doVf/31Fy5fvowXL15IfXHR09MTq1atwvnz58UK7jY2NoiNjWWYTHIzZsyAu7s7/v77b/B4PDx58gQHDhzAwoULMWvWLNbxJNauXTtkZGQAADp37owdO3bg8ePH8Pf3R4sWLRink8y8efMwc+ZMzJkzB/v378f+/fsxZ84czJ49Gx4eHqzjScza2honT54UPX5fgNu1axd69OjBKlaNBQYGQldXF127doWSkhIUFRXRrVs3tGjRAgEBAazjEUIIqQXaGUcIITLC1tYWvr6+2LlzJ4B3b0pev34Nb29vDBkyhHE6wkUGBgZISkqCvr6+2Prp06dhZmbGKFXNuLu7Y+fOnejZs6dobeDAgVBSUsL06dNx+/Zt+Pr6YsqUKQxTft6tW7dw8ODBKuva2tp48eIFg0Q1t3jxYhQVFcHGxgZlZWXo27cvFBUVsXDhQsyZM4d1PInNmzcPubm5AN71WLOzs8OBAwfQsGFDBAUFsQ0nIU9PTxgaGmLz5s2inytTU1MEBQXBwcGBcTrJrV27Fvb29khLS0NFRQU2b96M27dvIzY2FtHR0azjSUxbWxunTp3C3bt3cefOHQiFQpiamsLExIR1NEIIIbVEAxwIIURGPHnyBDY2NpCXl0dmZiasrKyQmZmJpk2b4vLly9Ue5SHkU/bs2YNly5Zhw4YNcHV1RUBAAPh8PtauXYuAgAD88MMPrCN+lrKyMm7cuIEOHTqIrd+6dQtdu3ZFaWkpHjx4AFNTU5SUlDBK+XmtWrVCaGgoevbsKTb84NixY1i4cCGn+mOVlJQgLS0NAoEAZmZmaNSoEetIn1ReXg4FBYWPPl9SUoI7d+6gdevWaNq0aR0mI8C73+X169cjPj4eAoEAlpaWWLJkCczNzVlHI4QQIsOoGEcIITKktLQUhw4dEntT4ujoCGVlZdbRCEft2rULq1atwsOHDwEAurq6WL58OVxdXRknk0zv3r2hpqaGvXv3QltbG8C7PlNOTk4oLi7G5cuXceHCBcyaNQt3795lnPbjFi9ejNjYWISFhcHExAQJCQl4+vQpnJyc4OTkBG9vb9YRP6uoqAiVlZXQ0tISWy8oKECDBg3QuHFjRsk+zcfHB4aGhpzaMUak3/z58/Hrr79CVVUV8+fP/+S1GzdurKNUhBBCvhYqxhFCCCHkiz1//hwCgYBzOywzMjIwYsQIZGdnQ09PDzweDzk5OTA0NMSff/4JExMTHD9+HK9evcKkSZNYx/2o8vJyTJ48GYcOHYJQKESDBg1QWVmJCRMmICgoCPLy8qwjfta3336LYcOGVekP5+/vj4iICJw6dYpRsk+7e/cuRo0ahenTp8Pd3b1eFE4qKyuxadMmhIaGIicnB2/fvhV7vqCggFGyz3v58qXE10prgRd41+/x2LFj0NDQgI2NzUev4/F4uHTpUh0mI4QQ8jVQMY4QQgin8Pl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjEQ4SCoU4e/Ys7t69C6FQiPbt28PW1hZyctybc8Xn85GYmAiBQAALC4sq0zClmZaWFq5evQpTU1Ox9Tt37qBXr15S3fvu1atXmDx5Mo4cOVIvCideXl4ICAjA/PnzsWzZMvzyyy+4f/8+jh8/Di8vL7i5ubGO+FFycnIST0qtbqgRIYQQUheoGEcIIYQzoqOj8e2336JXr164fPky0tPTYWhoiN9//x3Xr19HeHg464j1noWFhcRvdBMSEv7jNKQ+UVVVRVxcXJVeXrdu3UK3bt2kumdffWNkZAQ/Pz8MHToUampqSEpKEq3FxcVVOyxEWnw4mOH+/fvw9PTE5MmTRdNTY2NjERwcjLVr18LZ2ZlVTEIIITKOinGEEEI4o0ePHvj+++8xf/58sSb1N27cwMiRI/H48WPWEeu9FStWiL4vKyvDtm3bYGZmJnqjGxcXh9u3b2PWrFlYu3Ytq5g1cvHiRVy8eBHPnj2DQCAQey4wMJBRqs/73HHID3HhaGT//v1hbm6OLVu2iK3Pnj0bKSkpuHLlCqNkskdVVRXp6elo3bo1WrRogZMnT8LS0hJZWVmwsLBAUVER64gSGThwIKZOnYrx48eLrR88eBA7d+5EVFQUm2ASGD16tMTXHj169D9MQggh5L/QgHUAQgghRFK3bt2qdkeGtra2VB9hq08+HAQwdepUuLm54ddff61yzfuBDtJuxYoVWLlyJaysrNCiRQuJd/1Jg8TERLHH8fHxqKysRLt27QC862UmLy+PLl26sIhXY6tXr8agQYOQnJyMgQMHAnhXKL1x4wbOnTvHOJ3kysrKsGXLFkRGRlZb4OXCjtFWrVohNzcXrVu3hrGxMc6dOwdLS0vcuHEDioqKrONJLDY2Fv7+/lXWraysMHXqVAaJJKeuri76XigU4tixY1BXV4eVlRWAd7/vhYWFNSraEUIIkR5UjCOEEMIZGhoayM3NhYGBgdh6YmIidHV1GaWSXWFhYbh582aV9YkTJ8LKykqqd5W95+/vj6CgIKkezvAxkZGRou83btwINTU1BAcHQ1NTEwDwzz//wMXFBX369GEVsUZ69eqF2NhYrFu3DqGhoVBWVkbHjh2xe/duTvW+mzJlCs6fP4+xY8eia9eunCrwvjdq1ChcvHgR3bp1g7u7O8aPH4/du3cjJycHHh4erONJTE9PD/7+/tiwYYPY+o4dO6Cnp8colWT27Nkj+n7JkiVwcHCAv7+/aBhLZWUlZs2aJdVDKAghhHwcHVMlhBAZweXpeO8tXrwYsbGxCAsLg4mJCRISEvD06VM4OTnByclJbNcW+e81b94ca9euhYuLi9j6nj174OnpiadPnzJKJrkmTZrg+vXrMDIyYh3li+jq6uLcuXNVhpikpqZi8ODBePLkCaNkskddXR2nTp1Cr169WEf5auLi4nDt2jUYGxtj+PDhrONI7NSpUxgzZgyMjIzQvXt3AO/uhc/n48iRIxgyZAjjhJLR1tZGTEyMaNfrexkZGejZsyftDCeEEA6inXGEECIjVqxY8cnpeFywevVqTJ48Gbq6uhAKhTAzM0NlZSUmTJiApUuXso4nc+bNm4eZM2ciPj5e7I1uYGAgZ36mpk6dioMHD2LZsmWso3yRly9f4unTp1WKcc+ePcOrV68Ypao5gUCAe/fuVXu8s2/fvoxS1Yyuri7U1NRYx/iqunfvLvod55IhQ4YgMzMT27dvR3p6OoRCIUaMGIEff/xR6nfGfaiiogLp6elVinHp6elVfk8IIYRwA+2MI4QQGcHl6Xj/xufzkZiYCIFAAAsLC04dYatvQkNDsXnzZqSnpwMATE1N4e7uDgcHB8bJJOPu7o69e/eiY8eO6NixIxQUFMSe58LgAwBwcnJCdHQ0NmzYIFYYXbRoEfr27Yvg4GDGCT8vLi4OEyZMwIMHD/DvP095PB4qKysZJauZ06dPw8/PD/7+/tDX12cdR2IRERESX8ul3XH1wfz58xEUFISff/5Z7Pfbx8cHTk5OnHmdIoQQ8j9UjCOEEBlRX6bjEfI12djYfPQ5Ho+HS5cu1WGa2ispKcHChQsRGBiI8vJyAECDBg3g6uqKdevWQVVVlXHCz+vcuTNMTEywYsWKaodpfNjQXprl5+fDwcEBly9fhoqKSpUCr7S2BJCTkxN7zOPxqi2KAuBMYbS+EAgEWL9+PTZv3ozc3FwAQIsWLeDu7o4FCxaI+sgRQgjhDjqmSgghMoKr0/Hmz58v8bW0O4DU1IdDELhMRUUF27Ztw7p168Dn8yEUCmFsbMyJItx7mZmZCA8Ph7GxMesoX2T8+PF4/Pgx1qxZg2bNmnFmgMOHxx0vXLiAJUuWYM2aNejRowd4PB6uXbuGpUuXYs2aNQxTyp6KigocOHAATk5OWLx4MV6+fAkANLiBEEI4jopxhBAiI7g6HS8xMVHscXx8PCorK0W9c+7evQt5eXl06dKFRTxSjzx69Ag8Ho/Tk3lVVVXRsWNH1jFqpVu3brh37x7ni3HXrl1DbGwsOnXqxDpKrc2bNw/+/v7o3bu3aM3Ozg4qKiqYPn266Fg6+e81aNAAM2fOFP03pyIcIYTUD1SMI4QQGeHj4yP6fuzYsdDT08PVq1elfjrehzuXNm7cCDU1NQQHB0NTUxMA8M8//8DFxQV9+vRhFZFwmEAgwKpVq7Bhwwa8fv0aAKCmpoYFCxbgl19+qXJ0j/x35s6diwULFiAvLw/m5uZVjndypcjYvn17lJaWso7xRfh8frXHgtXV1XH//v26DyTjunXrhsTERE71ICSEEPJp1DOOEEIIZ+jq6uLcuXNVJkampqZi8ODBePLkCaNkhKt++ukn7N69GytWrECvXr0gFApx9epVLF++HNOmTcPq1atZR5QZ1RU+3/ct49IAh3PnzmHFihVYvXp1tUVFLuxs6tu3LxQUFLB//360aNECAJCXl4dJkybh7du3iI6OZpxQtoSFhcHT0xMeHh7o0qVLlePnXClUE0II+R8qxhFCiIyQl5dH3759ceTIEWhpaYnWnz59ipYtW3Lija6amhr+/PNPDBgwQGz90qVLGDFiBF69esUoGeGqli1bwt/fv8ru0D///BOzZs3C48ePGSWTPQ8ePPjk81zZFfS+qPjvXnFcKireu3cPo0aNQkZGBlq3bg0AyMnJgYmJCY4fPy7VR4ktLCwk7tOXkJDwH6f5OupLoZoQQsj/0DFVQgiREUKhEG/evIGVlRUiIiLQoUMHsee4YNSoUXBxccGGDRvQvXt3AEBcXBwWLVqE0aNHM04neyorKxEUFISLFy/i2bNnYg3gAXBiEmlBQQHat29fZb19+/ZSO/WyvuJKse1z6sNQEGNjY6SkpOD8+fO4c+cOhEIhzMzMMGjQIKkfSDFy5EjR92VlZdi2bRvMzMzQo0cPAO/+zbh9+zZmzZrFKGHNZWdns45ACCHkK6OdcYQQIiPk5eXx6NEj+Pj4YM+ePdi3bx9GjBjBqZ1xJSUlWLhwIQIDA1FeXg7gXXNrV1dXrFu3jlOTI+uDOXPmICgoCEOHDkWLFi2qvEnftGkTo2SS69atG7p16wY/Pz+x9blz5+LGjRuIi4tjlOzzIiIiJL5WmvtC/ltaWhpycnLw9u1bsXUu3QORDlOnTkWLFi3w66+/iq17e3vj4cOHCAwMZJSMEEKIrKNiHCGEyAg5OTnk5eVBR0cHO3fuhJubG5YuXYqpU6dCV1eXE8W494qLi8Hn8yEUCmFsbExFOEaaNm2KvXv3YsiQIayj1Fp0dDSGDh2K1q1bo0ePHuDxeLh27RoePnyIU6dOSfVgEEmHS3DlGFtWVhZGjRqFW7duiY7gAf877smFe3ivsLAQu3fvRnp6Ong8HszMzDBlypRqhyJICz8/P0yfPh1KSkpVitP/5ubmVkepvoy6ujpu3ryJtm3biq1nZmbCysoKRUVFjJLV3L59++Dv74/s7GzExsZCX18fvr6+MDAwwIgRI1jHI4QQUkNUjCOEEBnxYTEOAKKiojB27FhYWFjg0qVLnHqjS6RDy5YtERUVBRMTE9ZRvsiTJ0/wxx9/iB3HmzVrFlq2bMk6mkwZNmwY5OXlsWvXLhgaGuL69et48eIFFixYgPXr10t1YfRDN2/ehJ2dHZSVldG1a1cIhULcvHkTpaWlOHfuHCwtLVlHrJaBgQFu3ryJJk2awMDA4KPX8Xg8ZGVl1WGy2mvevDnWrl0LFxcXsfU9e/bA09MTT58+ZZTs086ePYvu3buLirfbt2+Hl5cX5s2bh9WrVyM1NRWGhoYICgpCcHBwvTgaTQghsoaKcYQQIiM+fKP13r179zBs2DDcvXuXinGkxjZs2ICsrCxs3bpV6vtI1dTDhw/h7e1Nx9jqUNOmTXHp0iV07NgR6urquH79Otq1a4dLly5hwYIFSExMZB1RIn369IGxsTF27dqFBg3etWeuqKjA1KlTkZWVhcuXLzNOKDt8fHywfPlyTJ06VazPaGBgILy8vODp6ck4YfWCg4Oxbt06nDlzBq1atYKZmRnWrFmDkSNHQk1NDcnJyTA0NERqair69++P58+fs45MCCGkhqgYRwghMq6srAxPnz6tN83TSd0ZNWoUIiMjoaWlhW+++QYKCgpizx89epRRsi+XnJwMS0tLThWpi4uLER0dXW2/NS4cK9TU1ER8fDwMDQ1hZGSEgIAA2NjYgM/nw9zcHCUlJawjSkRZWRmJiYlVBoOkpaXBysqKM/dRX4SGhmLz5s1IT08HAJiamsLd3R0ODg6Mk33a0aNH4eXlhdTUVCgrK+POnTvQ19cXK8ZlZmaiY8eOKC0tZR2XEEJIDdE0VUIIkXFKSkpUiCO1oqGhgVGjRrGOQQAkJiZiyJAhKCkpQXFxMbS0tPD8+XOoqKhAR0eHE8W4Dh06ICUlBYaGhujWrRt+//13NGzYEDt37oShoSHreBJr3LgxcnJyqhTjHj58CDU1NUapambs2LGwsrKqsnNs3bp1uH79OsLCwhglqzkHBwepL7xVZ/To0bCwsADwbmd7UlJSlX+rT58+DTMzMxbxCCGEfCEqxhFCSD2mpaWFu3fvomnTptDU1PzkUcKCgoI6TEbqgz179rCOQP6fh4cHhg0bhu3bt0NDQwNxcXFQUFDAxIkT4e7uzjqeRJYuXYri4mIAwKpVq/Ddd9+hT58+aNKkCQ4fPsw4neTGjRsHV1dXrF+/Hj179gSPx0NMTAwWLVqE8ePHs44nkejoaHh7e1dZt7e3x/r16xkkkk3ve/ctWrQIs2fPRllZGYRCIa5fv46QkBCsXbsWAQEBjFMSQgipDSrGEUJIPbZp0ybRTgxfX1+2Yb4SPp8PX19f0ZTC90eOjIyMWEeTWfn5+cjIyACPx4OJiQm0tbVZR5I5SUlJ2LFjB+Tl5SEvL483b97A0NAQv//+O5ydnTF69GjWET/Lzs5O9L2hoSHS0tJQUFDw2Q8SpM369evB4/Hg5OSEiooKAICCggJmzpwJHx8fxukk8/r1azRs2LDKuoKCAl6+fMkgUe1UVlZi06ZNCA0Nrfb4Nlc+hHJxcUFFRQUWL16MkpISTJgwAbq6uti8eTN++OEH1vEIIYTUAvWMI4QQwhlnz57F8OHD0blzZ/Tq1QtCoRDXrl1DcnIyTpw4AVtbW9YRZUpxcTHmzp2LvXv3QiAQAADk5eXh5OSELVu2QEVFhXHCj/tccaqwsBDR0dGc6Rmnra2Nq1evwsTEBO3atYOfnx/s7Oxw584dWFpacqJPWVFRESorK6GlpSW2XlBQgAYNGqBx48aMktVOSUkJ+Hw+hEIhjI2Npfr34d+sra0xbNgweHl5ia0vX74cJ06cQHx8PKNkNePl5YWAgADMnz8fy5Ytwy+//IL79+/j+PHj8PLy4sTx7X97/vw5BAKBaDI6IYQQbqJiHCGE1GM12cHAhTe6FhYWsLOzq7K7xNPTE+fOnUNCQgKjZLLB19cX5ubmGDhwIABgxowZuHDhArZu3YpevXoBAGJiYuDm5gZbW1ts376dZdxPcnFxkeg6rhzFHTx4MCZPnowJEybgxx9/RGJiItzc3LBv3z78888/+Pvvv1lH/Kxvv/0Ww4YNw6xZs8TW/f39ERERgVOnTjFKJnsiIiIwZswYTJgwAQMGDAAAXLx4ESEhIQgLC8PIkSPZBpSQkZER/Pz8MHToUKipqSEpKUm0FhcXh4MHD7KOWCPPnj0T7UJu164d7UImhBAOo2IcIYTUY3Jycp893iUUCsHj8TixA0hJSQm3bt1C27Ztxdbv3r2Ljh07oqysjFEy2RAfHw8HBwcsX74ckyZNQtOmTREeHo7+/fuLXRcZGQkHBwfk5+ezCSqDbt68iVevXsHGxgb5+flwdnZGTEwMjI2NsWfPHnTq1Il1xM/S0tLC1atXYWpqKrZ+584d9OrVCy9evGCUrGaKi4vh4+ODixcv4tmzZ6Jdo+9lZWUxSlYzJ0+exJo1a5CUlARlZWV07NgR3t7e6NevH+toElNVVUV6ejpat26NFi1a4OTJk7C0tERWVhYsLCxQVFTEOqJEXr58idmzZyMkJERsF/K4cePwxx9/QF1dnXFCQgghNUU94wghpB6LjIxkHeGr0tbWRlJSUpViXFJSEh3ZqQNdunTB33//DWdnZ0yaNAklJSVo1qxZlet0dHQ4cSyyPrGyshJ9r62tzcldZG/evBH1WPtQeXk5SktLGSSqnalTpyI6OhqTJk1CixYtONXv7kNDhw7F0KFDWcf4Iq1atUJubi5at24NY2NjnDt3DpaWlrhx4wYUFRVZx5PY1KlTkZSUhJMnT6JHjx7g8Xi4du0a3N3dMW3aNISGhrKOSAghpIZoZxwhhBDOWLlyJTZt2gRPT0+xKYW//fYbFixYgKVLl7KOKFMGDhyIJk2aYO/evVBSUgIAlJaWwtnZGQUFBbhw4QLjhIRL+vfvD3Nzc2zZskVsffbs2UhJScGVK1cYJasZDQ0NnDx5UnR0m8vi4+NFw3LMzMxgYWHBOlKNeHp6onHjxvj5558RHh6O8ePHo02bNsjJyYGHhwdnBmqoqqri7Nmz6N27t9j6lStXYG9vL5pCTAghhDuoGEcIITKmpKSk2qlyHTt2ZJRIckKhEL6+vtiwYQOePHkCAGjZsiUWLVoENzc3zu5A4arU1FTY29ujrKwMnTp1Ao/HQ1JSEpSUlHD27Fl88803rCMSDrl69SoGDRoEa2trUV/Cixcv4saNGzh37hz69OnDOKFkDAwMcOrUqSrHbbnk2bNn+OGHHxAVFQUNDQ0IhUIUFRXBxsYGhw4d4myvsri4OFy7dg3GxsYYPnw46zgSa926NU6ePAlzc3Ox9ZSUFAwZMgSPHj1ilIwQQkhtUTGOEEJkRH5+PlxcXHD69Olqn+dCz7gPvXr1CgCgpqbGOIlsKy0txf79+3Hnzh0IhUKYmZnB0dERysrKrKMRDkpKSsK6devE+pT99NNPVY6mS7P9+/fjzz//RHBwMKcmqH5o3Lhx4PP52Ldvn6iomJaWBmdnZxgbGyMkJIRxQtmyc+dOhIWFYe/evWjRogUAIC8vD87Ozhg9ejRmzJjBOCEhhJCaomIcIYTICEdHR9y/fx++vr6wsbHBsWPH8PTpU6xatQobNmzgfG8gQgiRBhYWFuDz+RAKhWjTpg0UFBTEnufC1Gd1dXVcuHAB1tbWYuvXr1/H4MGDUVhYyCaYBCIiIiS+liu74ywsLHDv3j28efMGrVu3BgDk5ORAUVGxSqGaCz9fhBBCaIADIYTIjEuXLuHPP/+EtbU15OTkoK+vD1tbWzRu3Bhr167lRDHu6dOnWLhwoWhK4b8/T+La7j4uioiIwLfffgsFBYXPvunlyhtdws7Lly8lvrZx48b/YZKvZ+TIkawjfDGBQFCliAgACgoKVabDSpt///fn8XhV/q1439KAK/9m1IefKUIIIeJoZxwhhMiIxo0bIyUlBW3atEGbNm1w4MAB9OrVC9nZ2fjmm284Mf3y22+/RU5ODubMmVPtlMIRI0YwSiY75OTkkJeXBx0dHcjJyX30Oh6Px5k3uvVFdHQ01q9fL2q4b2pqikWLFkl1rzU5ObnP9noUCoX081THRowYgcLCQoSEhKBly5YAgMePH8PR0RGampo4duwY44SSuXDhApYsWYI1a9aITSFdunQp1qxZA1tbW9YRCSGEyCjaGUcIITKiXbt2yMjIQJs2bdC5c2fs2LEDbdq0gb+/v6gHjbSLiYnBlStX0LlzZ9ZRZNaHu2KkfYeMLNm/fz9cXFwwevRouLm5QSgU4tq1axg4cCCCgoIwYcIE1hGrFRkZyTrCf4bLk0i3bt2KESNGoE2bNtDT0wOPx0NOTg7Mzc2xf/9+1vEkNm/ePPj7+4tNIbWzs4OKigqmT5+O9PR0hukIIYTIMtoZRwghMuLAgQMoLy/H5MmTkZiYCDs7O7x48QINGzZEUFAQxo0bxzriZ5mZmeHAgQOcelNLSF0wNTXF9OnT4eHhIba+ceNG7Nq1i/NFh6SkJM4U4evTJNLz58+LDWcZNGgQ60g1oqysjOvXr1c7hbRbt24oLS1llIwQQoiso2IcIYTIqJKSEty5cwetW7dG06ZNWceRyLlz57BhwwbRrj7ClpubG4yNjeHm5ia2vnXrVty7dw++vr5sgskgRUVF3L59G8bGxmLr9+7dQ4cOHVBWVsYoWe0VFRXhwIEDCAgIQHJyMmeOqdIkUunRt29fKCgoYP/+/WJTSCdNmoS3b98iOjqacUJCCCGyiopxhBAiY96+fYvs7GwYGRmhQQPp71agqakp1lOquLgYFRUVUFFRqdJgvKCgoK7jyTRdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ7DE2NsaiRYswY8YMsfUdO3Zg/fr1yMzMZJSs5i5duoTAwEAcPXoU+vr6GDNmDMaMGcOZHbFcnUTq5+cn8bX/LsBLq3v37mHUqFHIyMgQm0JqYmKC48ePVyleE0IIIXVF+t+FEUII+SpKSkowd+5cBAcHAwDu3r0LQ0NDuLm5oWXLlvD09GScsHq0u0p6vXjxAurq6lXWGzdujOfPnzNIJLsWLFgANzc3JCUloWfPnuDxeIiJiUFQUBA2b97MOt5nPXr0CEFBQQgMDERxcTEcHBxQXl6OI0eOwMzMjHW8GuHqJNJNmzZJdB2Px+NMMc7Y2BgpKSnVHrf93OAQacS1D9MIIYR8HO2MI4QQGeHu7o6rV6/C19cX9vb2SElJgaGhISIiIuDt7Y3ExETWEQnHdOjQAT/++CPmzJkjtr5lyxZs374daWlpjJLJpmPHjmHDhg2i/nDvp6lK+5ThIUOGICYmBt999x0cHR1hb28PeXl5KCgoIDk5mXPFuPoyiZRID65+mEYIIeTj6CMVQgiREcePH8fhw4fRvXt3sR0BZmZm4PP5DJNJ7tSpU5CXl4ednZ3Y+rlz51BZWYlvv/2WUTLZNH/+fMyZMwf5+fkYMGAAAODixYvYsGED7WhkYNSoURg1ahTrGDV27tw5uLm5YebMmWjbti3rOF+svkwiBbi5E8vPzw/Tp0+HkpLSZ4/ecmWH308//YTk5GRERUXB3t5etD5o0CB4e3tTMY4QQjiIG/+qEkII+WL5+fnQ0dGpsl5cXMyZ4zqenp7w8fGpsi4QCODp6UnFuDo2ZcoUvHnzBqtXr8avv/4KAGjTpg22b98OJycnxulk1+vXr6sch2zcuDGjNJ935coVBAYGwsrKCu3bt8ekSZM4Md35Y/T09JCQkMDpSaRc3om1adMmODo6QklJ6ZNHb7l03LY+fJhGCCFEnBzrAIQQQuqGtbU1Tp48KXr8/g/6Xbt2oUePHqxi1UhmZma1R9bat2+Pe/fuMUhEZs6ciUePHuHp06d4+fIlsrKyqBDHQHZ2NoYOHQpVVVWoq6tDU1MTmpqa0NDQgKamJut4n9SjRw/s2rULubm5mDFjBg4dOgRdXV0IBAKcP38er169Yh2xRvbu3Ys3b97A1tYWc+fOhZubGwYNGoS3b99i7969rONJ5MOdWEpKSqL1QYMG4fDhwwyTfV52djaaNGki+v5jX1lZWYyTSq4+fJhGCCFEHPWMI4QQGXHt2jXY29vD0dERQUFBmDFjBm7fvo3Y2FhER0dXmYgpjZo3b46DBw+KjkS+d+HCBUyYMAHPnj1jlIwQtnr27AngXW/IZs2aVXmD3q9fPxaxai0jIwO7d+/Gvn37UFhYCFtbW0RERLCOJRF5eXnk5uZWKZ68ePECOjo6qKysZJRMcvr6+qKdWGpqakhOToahoSHu3bsHS0tLvHz5knVEmdKvXz+MHTsWc+fOhZqaGlJSUmBgYIA5c+bg3r17OHPmDOuIhBBCaoiOqRJCiIzo2bMnrl27hnXr1sHIyAjnzp2DpaUlYmNjYW5uzjqeRIYPH4558+bh2LFjMDIyAgDcu3cPCxYswPDhwxmnk03h4eEIDQ1FTk4O3r59K/ZcQkICo1SyJyUlBfHx8WjXrh3rKF9Fu3bt8Pvvv2Pt2rU4ceIEAgMDWUeSmFAorHa30qNHj6qdPiyN6stOrLFjx8LKyqrKsdp169bh+vXrCAsLY5SsZtauXQt7e3ukpaWhoqICmzdvFvswjRBCCPfQMVVCCJEB5eXlcHFxgYqKCoKDg5Gamoq0tDTs37+fM4U44N0bKFVVVbRv3x4GBgYwMDCAqakpmjRpgvXr17OOJ3P8/Pzg4uICHR0dJCYmomvXrmjSpAmysrKof18ds7a2xsOHD1nH+Ork5eUxcuRITuyKs7CwgKWlJXg8HgYOHAhLS0vRV6dOndCnTx/O9I2rD20NACA6OhpDhw6tsm5vb4/Lly8zSFQ7PXv2xNWrV1FSUiL6MK1Zs2aIjY3lxK52QgghVdHOOEIIkQEKCgo4duwYli1bxjrKF1FXV8e1a9dw/vx5JCcnQ1lZGR07dkTfvn1ZR5NJ27Ztw86dOzF+/HgEBwdj8eLFMDQ0hJeXFwoKCljHkykBAQH48ccf8fjxY3To0AEKCgpiz3fs2JFRMtkxcuRIAEBSUhLs7OzQqFEj0XMNGzZEmzZtMGbMGEbpaqa+7MR6/fo1GjZsWGVdQUGBc0dtzc3NRQM1CCGEcB/1jCOEEBnh4uICc3NzzJ8/n3WUr6KsrAyKioqcOjJV36ioqCA9PR36+vrQ0dHB+fPn0alTJ2RmZqJ79+548eIF64gyIy4uDhMmTMD9+/dFazweT3Rkkgt9yuqL4OBgjBs3TmzwAVckJSWhc+fOAIBbt25h/fr1iI+Ph0AggKWlJZYsWcKp3dTW1tYYNmwYvLy8xNaXL1+OEydOID4+nlGyz6tJsVCapyUTQgipHu2MI4QQGWFsbIxff/0V165dQ5cuXaCqqir2vJubG6NkkhMIBFi9ejX8/f3x9OlT3L17F4aGhli2bBnatGkDV1dX1hFlSvPmzfHixQvo6+tDX18fcXFx6NSpE7Kzs0Gf9dWtKVOmwMLCAiEhIdUOcCB1x9nZmXWEWrO0tISFhQWmTp2KCRMmcH4n1rJlyzBmzBjw+XzR4J+LFy8iJCRE6vvFaWhoSPx7TMV2QgjhHtoZRwghMsLAwOCjz/F4PGRlZdVhmtpZuXIlgoODsXLlSkybNg2pqakwNDREaGgoNm3ahNjYWNYRZcrUqVOhp6cHb29v+Pv7Y/78+ejVqxdu3ryJ0aNHY/fu3awjygxVVVUkJyfD2NiYdRSZJycn98kiijQXTmJjYxEYGIjQ0FCUl5djzJgxmDJlCmxsbFhHq7WTJ09izZo1SEpKErU28Pb2lvoJwx8eB75//z48PT0xefJkUc++2NhYBAcHY+3atZwuABNCiKyiYhwhhBDOMDY2xo4dOzBw4ECoqakhOTkZhoaGuHPnDnr06IF//vmHdUSZIhAIIBAI0KDBu432oaGhiImJgbGxMX788cdqezWR/8awYcMwefJkzvQkq8+OHz8uVowrLy9HYmIigoODsWLFCk7s4C0tLUVoaCj27NmDK1euoE2bNpgyZQqcnZ3RqlUr1vFkzsCBAzF16lSMHz9ebP3gwYPYuXMnoqKi2AQjhBBSa1SMI4QQwhnKysq4c+cO9PX1xYpxaWlp6Nq1K16/fs06IiFM7Ny5E6tWrcKUKVNgbm5eZYDD8OHDGSUj7x08eBCHDx/Gn3/+yTpKjfD5fOzZswd79+5Fbm4ubG1tcerUKdaxaiQ+Ph7p6eng8XgwMzODhYUF60g1oqKiguTkZLRt21Zs/e7du+jcuTNKSkoYJSOEEFJbVIwjhBDCGVZWVpg3bx4mTpwoVoxbsWIFLly4gCtXrrCOWO+lpKRIfC1N8Kw7cnJyH32OBjhIBz6fj44dO6K4uJh1lBp7/fo1Dhw4gJ9//hmFhYWc+Xl69uwZfvjhB0RFRUFDQwNCoRBFRUWwsbHBoUOHoK2tzTqiRNq1a4fvvvsOGzZsEFtfsGAB/vrrL2RkZDBKRgghpLZogAMhhBCpN2XKFGzevBne3t6YNGkSHj9+DIFAgKNHjyIjIwN79+7FX3/9xTqmTOjcubNoSuenUAGobgkEAtYRyCeUlpZiy5YtnDviGR0djcDAQBw5cgTy8vJwcHDgxDHb9+bOnYuXL1/i9u3bMDU1BQCkpaXB2dkZbm5uCAkJYZxQMps2bcKYMWNw9uxZdO/eHcC7Ccp8Ph9HjhxhnI4QQkht0M44QgghUk9eXh65ubnQ0dHB2bNnsWbNGsTHx0MgEMDS0hJeXl4YPHgw65gy4cGDBxJfq6+v/x8mIUQ6aWpqivWMEwqFePXqFVRUVLB//36pPzL88OFDBAUFISgoCNnZ2ejZsydcXV3h4OBQZQq3tFNXV8eFCxdgbW0ttn79+nUMHjwYhYWFbILVwqNHj7B9+3akp6dDKBTCzMwMP/74I/T09FhHI4QQUgtUjCOEECL15OTkkJeXBx0dHdZRCJEafn5+mD59OpSUlODn5/fJa93c3OooFQkODhZ7LCcnB21tbXTr1g2ampqMUknG1tYWkZGR0NbWhpOTE6ZMmYJ27dqxjlVrampquHLlCjp37iy2npiYiH79+uHly5dsghFCCJF5VIwjhBAZcuXKFezYsQN8Ph/h4eHQ1dXFvn37YGBggN69e7OO91FycnJ4+vQpZ/r7yJJ9+/bB398f2dnZiI2Nhb6+Pnx9fWFgYIARI0awjlevGRgY4ObNm2jSpAkMDAw+eh2Px0NWVlYdJiMfk5SUVKUwJE2GDx8OV1dXfPfdd5CXl2cd54uNGDEChYWFCAkJQcuWLQEAjx8/hqOjIzQ1NXHs2DHGCQkhhMiqj3f7JYQQUq8cOXIEdnZ2UFZWRmJiIt68eQMAePXqFdasWcM43eeZmJhAS0vrk1+kbm3fvh3z58/HkCFDxJq6a2howNfXl204GZCdnY0mTZqIvv/YFxXi2CoqKsK2bdtgaWmJLl26sI7zSRERERgxYkS9KMQBwNatW/Hq1Su0adMGRkZGMDY2hoGBAV69eoUtW7awjkcIIUSG0c44QgiRERYWFvDw8ICTk5PYJNKkpCTY29sjLy+PdcSPkpOTg6+vL9TV1T95nbOzcx0lIgBgZmaGNWvWYOTIkWI/U6mpqejfvz+eP3/OOqLMKC0thbKycrXP5ebmokWLFnWciFy6dAmBgYE4evQo9PX1MWbMGIwZMwYWFhaso8mc8+fP486dO6Jea4MGDWIdiRBCiIyjaaqEECIjMjIy0Ldv3yrrjRs35kQT6x9++IF6xkmZ7OzsagsLioqKKC4uZpBIdllYWODgwYOwtLQUWw8PD8fMmTORn5/PKJlsefToEYKCghAYGIji4mI4ODigvLwcR44cgZmZGet4MsvW1ha2trasYxBCCCEiVIwjhBAZ0aJFC9y7dw9t2rQRW4+JiYGhoSGbUBL6cDIhkR4GBgZISkqqMjX19OnTVHioY7a2tujZsyeWL1+OJUuWoLi4GHPmzEFYWBh8fHxYx5MJQ4YMQUxMDL777jts2bIF9vb2kJeXh7+/P+toMuVzw0w+RINNCCGEsELFOEIIkREzZsyAu7s7AgMDwePx8OTJE8TGxmLhwoXw8vJiHe+TqKOCdFq0aBFmz56NsrIyCIVCXL9+HSEhIVi7di0CAgJYx5MpW7ZswdChQ+Hi4oKTJ0/iyZMnaNy4MW7cuEGF0Tpy7tw5uLm5YebMmWjbti3rODJr06ZNEl3H4/GkuhhnYWEh8QdRCQkJ/3EaQgghXxsV4wghREYsXrwYRUVFsLGxQVlZGfr27QtFRUUsXLgQc+bMYR3vkwQCAesIpBouLi6oqKjA4sWLUVJSggkTJkBXVxebN2/GDz/8wDqezBk8eDBGjx6N7du3o0GDBjhx4gQV4urQlStXEBgYCCsrK7Rv3x6TJk3CuHHjWMeSOdnZ2awjfBUjR44UfV9WVoZt27bBzMwMPXr0AADExcXh9u3bmDVrFqOEhBBCvgQNcCCEEBlTUlKCtLQ0CAQCmJmZoVGjRqwjkXrg+fPnEAgEor5+jx8/hq6uLuNUsoPP52PChAnIy8tDQEAAoqOjsX79eri5uWH16tVQUFBgHVFmlJSU4NChQwgMDMT169dRWVmJjRs3YsqUKVBTU2MdTya9ffsW2dnZMDIyQoMG3NuLMHXqVLRo0QK//vqr2Lq3tzcePnyIwMBARskIIYTUFhXjCCFERr18+RKXLl1Cu3btYGpqyjoOqSfy8vKwevVqBAQEoLS0lHUcmaGmpoahQ4fC398fGhoaAIBr166JpicnJiayDSijMjIysHv3buzbtw+FhYWwtbVFREQE61gyo6SkBHPnzkVwcDAA4O7duzA0NISbmxtatmwJT09Pxgklo66ujps3b1Y5/pyZmQkrKysUFRUxSkYIIaS25FgHIIQQUjccHBywdetWAEBpaSmsra3h4OCAjh074siRI4zTES4pLCyEo6MjtLW10bJlS/j5+UEgEMDLywuGhoaIi4ujnRp1bNu2bTh06JCoEAcAPXv2RGJiYpUJq6TutGvXDr///jsePXqEkJAQ1nFkzk8//YTk5GRERUVBSUlJtD5o0CAcPnyYYbKaUVZWRkxMTJX1mJgYsfsihBDCHbQzjhBCZETz5s1x9uxZdOrUCQcPHoS3tzeSk5MRHByMnTt30s4ZIrFZs2bhxIkTGDduHM6cOYP09HTY2dmhrKwM3t7e6NevH+uIhBACfX19HD58GN27d4eamhqSk5NhaGiIe/fuwdLSEi9fvmQdUSI+Pj5Yvnw5pk6diu7duwOA6EMPLy8vzuzwI4QQ8j/ca5pACCGkVoqKiqClpQUAOHPmDMaMGQMVFRUMHToUixYtYpyOcMnJkyexZ88eDBo0CLNmzYKxsTFMTEzg6+vLOprMS0tLQ05ODt6+fSta4/F4GDZsGMNUhLCRn58v6mP5oeLiYoknlUoDT09PGBoaYvPmzTh48CAAwNTUFEFBQXBwcGCcjhBCSG1QMY4QQmSEnp4eYmNjoaWlhTNnzuDQoUMAgH/++YeOuZAaefLkiWhKp6GhIZSUlDB16lTGqWRLUVER1NXVRY+zsrIwevRopKSkgMfj4f3Bh/cFh8rKSiY5CWHJ2toaJ0+exNy5cwH87/dh165doqmkXOHg4ECFN0IIqUeoGEcIITJi3rx5cHR0RKNGjaCvr4/+/fsDAC5fvgxzc3O24QinCAQCsemc8vLyUFVVZZhI9vj5+UFJSUm0q9Xd3R16eno4e/YsOnfujL///hvZ2dlYuHAhNm7cyDgtIWysXbsW9vb2SEtLQ0VFBTZv3ozbt28jNjYW0dHRrOMRQgiRYdQzjhBCZEh8fDxycnJga2uLRo0aAXh35FBDQwO9evVinI5whZycHL799lsoKioCAE6cOIEBAwZUKcgdPXqURTyZ8OzZM0yaNAnGxsb4448/0LRpU1y8eBGdOnWCrq4url+/Dl1dXVy8eBELFy6knpBEpiQlJaFz584AgFu3bmH9+vWIj4+HQCCApaUllixZwqkPoSorK7Fp0yaEhoZWOYYOAAUFBYySEUIIqS3aGUcIITKkS5cu6NKli9ja0KFDGaUhXOXs7Cz2eOLEiYySyC4dHR2cPXsWa9euBfDuzbqamhoAoGnTpnjy5Al0dXXRpk0bZGRksIxKSJ2ztLSEhYUFpk6digkTJiA4OJh1pC+yYsUKBAQEYP78+Vi2bBl++eUX3L9/H8ePH4eXlxfreIQQQmqBdsYRQgghhHBcnz59MH/+fIwaNQrTp09Hfn4+Fi1aBH9/fyQkJCA1NZV1RELqTGxsLAIDAxEaGory8nKMGTMGU6ZMgY2NDetotWJkZAQ/Pz8MHToUampqSEpKEq3FxcWJhjoQQgjhDirGEUIIIYRw3NmzZ/Hq1SuMHTsWDx8+xNChQ5GamgotLS2EhoZiwIABrCMSUudKS0sRGhqKPXv24MqVK2jTpg2mTJkCZ2dntGrVinU8iamqqiI9PR2tW7dGixYtcPLkSVhaWiIrKwsWFhYoKipiHZEQQkgNybEOQAghhBBCvoydnR3Gjh0L4N3k5JSUFDx//hzPnj2jQhyRWcrKynB2dkZUVBTu3r2L8ePHY8eOHTAwMMCQIUNYx5NYq1atkJubCwAwNjbGuXPnAAA3btwQ9e4khBDCLbQzjhBCCCGEEFLvvX79GgcOHMDPP/+MwsJCVFZWso4kEU9PTzRu3Bg///wzwsPDMX78eLRp0wY5OTnw8PCAj48P64iEEEJqiIpxhBAiQ65cuYIdO3aAz+cjPDwcurq62LdvHwwMDNC7d2/W8QghtVRWVoYtW7YgMjISz549g0AgEHs+ISGBUTJC2IuOjkZgYCCOHDkCeXl5ODg4wNXVFd27d2cdrVbi4uJw7do1GBsbY/jw4azjEEIIqQWapkoIITLiyJEjmDRpEhwdHZGYmIg3b94AAF69eoU1a9bg1KlTjBMSQmprypQpOH/+PMaOHYuuXbuCx+OxjkQIUw8fPkRQUBCCgoKQnZ2Nnj17YsuWLXBwcICqqirreF+ke/funC0kEkIIeYd2xhFCiIywsLCAh4cHnJycoKamhuTkZBgaGiIpKQn29vbIy8tjHZEQUkvq6uo4deoUevXqxToKIczZ2toiMjIS2tracHJywpQpU9CuXTvWsWokIiJC4mtpdxwhhHAP7YwjhBAZkZGRgb59+1ZZb9y4MQoLC+s+ECHkq9HV1YWamhrrGIRIBWVlZRw5cgTfffcd5OXlWceplZEjR4o95vF4+Pceivc7YLnS+44QQsj/0DRVQgiRES1atMC9e/eqrMfExMDQ0JBBIkLI17JhwwYsWbIEDx48YB2FEOYiIiIwYsQIzhbiAEAgEIi+zp07h86dO+P06dMoLCxEUVERTp8+DUtLS5w5c4Z1VEIIIbVAO+MIIURGzJgxA+7u7ggMDASPx8OTJ08QGxuLhQsXwsvLi3U8QsgXsLKyQllZGQwNDaGiogIFBQWx5wsKChglI4R8qXnz5sHf319s0JKdnR1UVFQwffp0pKenM0xHCCGkNqgYRwghMmLx4sUoKiqCjY0NysrK0LdvXygqKmLhwoWYM2cO63iEkC8wfvx4PH78GGvWrEGzZs1ogAMh9Qifz4e6unqVdXV1ddy/f7/uAxFCCPliNMCBEEJkTElJCdLS0iAQCGBmZoZGjRqxjkQI+UIqKiqIjY1Fp06dWEchhHxlffv2hYKCAvbv348WLVoAAPLy8jBp0iS8ffsW0dHRjBMSQgipKdoZRwghMkZFRQVWVlasYxBCvqL27dujtLSUdQxCyH8gMDAQo0aNgr6+Plq3bg0AyMnJgYmJCY4fP842HCGEkFqhnXGEECIjbGxsPnl07dKlS3WYhhDyNZ07dw4rVqzA6tWrYW5uXqVnXOPGjRklI4R8DUKhEOfPn8edO3cgFAphZmaGQYMG0ZF0QgjhKCrGEUKIjPDw8BB7XF5ejqSkJKSmpsLZ2RmbN29mlIwQ8qXk5OQAoMobc6FQCB6Ph8rKShaxCCGEEEJINeiYKiGEyIhNmzZVu758+XK8fv26jtMQQr6myMhI1hEIIV+Rn58fpk+fDiUlJfj5+X3yWjc3tzpKRQgh5GuhnXGEECLj7t27h65du6KgoIB1FEIIIYQAMDAwwM2bN9GkSRMYGBh89Doej4esrKw6TEYIIeRroJ1xhBAi42JjY6GkpMQ6BiGEEEL+X3Z2drXfE0IIqR+oGEcIITJi9OjRYo+FQiFyc3Nx8+ZNLFu2jFEqQgghhBBCCJEtcqwDEEIIqRvq6upiX1paWujfvz9OnToFb29v1vEIIYQQUo2xY8fCx8enyvq6devw/fffM0hECCHkS1HPOEIIIYQQQgiRUtra2rh06RLMzc3F1m/duoVBgwbh6dOnjJIRQgipLTqmSgghhBBST+Tn5yMjIwM8Hg8mJibQ1tZmHYkQ8oVev36Nhg0bVllXUFDAy5cvGSQihBDypeiYKiGEyAhNTU1oaWlJ9EUI4Zbi4mJMmTIFLVu2RN++fdGnTx+0bNkSrq6uKCkpYR2PEPIFOnTogMOHD1dZP3ToEMzMzBgkIoQQ8qVoZxwhhMiIZcuWYdWqVbCzs0OPHj0AvJukevbsWSxbtoyKcIRw2Pz58xEdHY2IiAj06tULABATEwM3NzcsWLAA27dvZ5yQEFJby5Ytw5gxY8Dn8zFgwAAAwMWLFxESEoKwsDDG6QghhNQG9YwjhBAZMWbMGNjY2GDOnDli61u3bsWFCxdw/PhxNsEIIV+sadOmCA8PR//+/cXWIyMj4eDggPz8fDbBCCFfxcmTJ7FmzRokJSVBWVkZHTt2hLe3N/r168c6GiGEkFqgYhwhhMiIRo0aISkpCcbGxmLrmZmZsLCwwOvXrxklI4R8KRUVFcTHx8PU1FRs/fbt2+jatSuKi4sZJSOEEEIIIf9GPeMIIURGNGnSBMeOHauyfvz4cTRp0oRBIkLI19KjRw94e3ujrKxMtFZaWooVK1aIjqUTQrgtPj4e+/fvx4EDB5CYmMg6DiGEkC9APeMIIURGrFixAq6uroiKihK9OY+Li8OZM2cQEBDAOB0h5Ets3rwZ9vb2aNWqFTp16gQej4ekpCQoKSnh7NmzrOMRQr7As2fP8MMPPyAqKgoaGhoQCoUoKiqCjY0NDh06RFOTCSGEg+iYKiGEyJC///4bfn5+SE9Ph1AohJmZGdzc3NCtWzfW0QghX6i0tBT79+/HnTt3RL/fjo6OUFZWZh2NEPIFxo0bBz6fj3379omOoqelpcHZ2RnGxsYICQlhnJAQQkhNUTGOEEIIIYQQQqSUuro6Lly4AGtra7H169evY/DgwSgsLGQTjBBCSK1RzzhCCCGEEI4LDg7GyZMnRY8XL14MDQ0N9OzZEw8ePGCYjBDypQQCARQUFKqsKygoQCAQMEhECCHkS1ExjhBCCCGE49asWSM6jhobG4utW7fi999/R9OmTeHh4cE4HSHkSwwYMADu7u548uSJaO3x48fw8PDAwIEDGSYjhBBSW3RMlRBCCCGE41RUVHDnzh20bt0aS5YsQW5uLvbu3Yvbt2+jf//+yM/PZx2REFJLDx8+xIgRI5Camgo9PT3weDzk5OTA3Nwcf/75J1q1asU6IiGEkBqiaaqEEEIIIRzXqFEjvHjxAq1bt8a5c+dEu+GUlJRQWlrKOB0h5Evo6ekhISEB58+fFxvQMmjQINbRCCGE1BIV4wghhBBCOM7W1hZTp06FhYUF7t69i6FDhwIAbt++jTZt2rANRwj5KmxtbWFra8s6BiGEkK+AinGEECJDbty4gbCwMOTk5ODt27dizx09epRRKkLIl/rjjz+wdOlSPHz4EEeOHEGTJk0AAPHx8Rg/fjzjdISQmvLz85P4Wjc3t/8wCSGEkP8C9YwjhBAZcejQITg5OWHw4ME4f/48Bg8ejMzMTOTl5WHUqFHYs2cP64iEEEIIAWBgYCDRdTweD1lZWf9xGkIIIV8bFeMIIURGdOzYETNmzMDs2bOhpqaG5ORkGBgYYMaMGWjRogVWrFjBOiIh5AtcuXIFO3bsQFZWFsLCwqCrq4t9+/bBwMAAvXv3Zh2PEEIIIYT8PznWAQghhNQNPp8v6iOlqKiI4uJi8Hg8eHh4YOfOnYzTEUK+xJEjR2BnZwdlZWUkJCTgzZs3AIBXr15hzZo1jNMRQr6Gt2/fIiMjAxUVFayjEEII+UJUjCOEEBmhpaWFV69eAQB0dXWRmpoKACgsLERJSQnLaISQL7Rq1Sr4+/tj165dUFBQEK337NkTCQkJDJMR8n/t3XtslvXdP/D3XQ5SdaBT2chAOamxigqKA1R8wDKPmYquHhBRiscpqFGmJuiWZc7EZU6yoZsZoJsHcBimQR3opLEI8cDwABUBcSXzMDMGRJGBtM8fbs364PP8/In0nlyvV9Kk9+e6evfd/kHIu9/v92J7bdy4MbW1tdl1111z8MEHp7GxMcknZ8XddtttZU4HwOehjAMoiGOPPTbz5s1LktTU1GTChAm5+OKLc+655+b4448vczpgeyxfvjxDhw7dZt65c+esW7eu7QMBX5gbb7wxL7/8cubPn59OnTq1zKurqzNjxowyJgPg8/I0VYCC+PnPf55NmzYl+eQ/9h06dEh9fX1GjhyZSZMmlTkdsD26deuWlStXpmfPnq3m9fX16d27d3lCAV+I2bNnZ8aMGRk0aFBKpVLLvKqqKqtWrSpjMgA+L2UcQEF89atfbfm8oqIiEydOzMSJE8uYCPiiXHrppZkwYUKmTp2aUqmUt99+OwsXLsx1112Xm2++udzxgO3w/vvvp2vXrtvM/3X2KwBfPso4gJ3Yhg0bPvO9nTt33oFJgB1p4sSJWb9+fYYNG5ZNmzZl6NCh2WWXXXLdddflyiuvLHc8YDsMHDgwc+bMyVVXXZUkLQXcPffck8GDB5czGgCfU6m5ubm53CEA2DEqKir+n381b25uTqlUytatW9soFbCjbNy4McuWLUtTU1Oqqqqy++67lzsSsJ2ee+65nHjiiRk1alSmT5+eSy+9NEuXLs3ChQtTV1eXI444otwRAfj/ZGUcwE7smWeeKXcEYAfauHFjrr/++syePTtbtmxJdXV1Jk+enL333rvc0YDttGTJkhx++OEZMmRIFixYkJ/85Cfp06dP5s6dmwEDBmThwoXp169fuWMC8DlYGQcA8CV1/fXXZ8qUKRk1alQ6deqUBx98MP/1X/+Vhx9+uNzRgO1UUVGR/v37Z9y4cTnvvPPSpUuXckcC4AuijAMA+JLq06dPfvSjH+Wcc85Jkjz//PM5+uijs2nTprRr167M6YDtsXDhwkydOjUzZ87Mli1bcuaZZ2bs2LEZNmxYuaMBsJ2UcQAAX1IdO3bM6tWr841vfKNlVllZmTfeeCM9evQoYzLgi/LRRx9l5syZmTZtWp599tn07NkzY8eOzZgxY9K9e/dyxwPgc6godwAAAD6frVu3pmPHjq1m7du3z8cff1ymRMAXrbKyMmPGjMn8+fPzxhtv5Nxzz80vf/nL9OrVKyeffHK54wHwOVgZBwDwJVVRUZGTTjopu+yyS8vssccey/Dhw7Pbbru1zB555JFyxAN2gA8++CD3339/brrppqxbt87T0AG+hDxNFQDgS2rMmDHbzM4///wyJAF2tLq6ukydOjWzZs1Ku3btUlNTk9ra2nLHAuBzsDIOoEB+97vfZebMmWlsbMzmzZtbXVu8eHGZUgEAn2bNmjWZPn16pk+fntWrV2fIkCGpra1NTU1Nq9WvAHy5ODMOoCAmT56ciy66KF27ds2f/vSnHHXUUdlrr73y5ptv5qSTTip3PADg34wYMSK9evXKlClTctZZZ6WhoSH19fW56KKLFHEAX3K2qQIUxJQpU/KrX/0q5557bu69995MnDgxvXv3zs0335y1a9eWOx4A8G8qKysza9asnHrqqWnXrl254wDwBbJNFaAgdt111zQ0NGS//fZL165dM2/evBx22GFZsWJFBg0alL/97W/ljggAALDTs00VoCC+/vWvtxRu++23XxYtWpQkWb16dfxdBgAAoG0o4wAKYvjw4XnssceSJLW1tbnmmmsyYsSInH322TnjjDPKnA4AAKAYbFMFKIimpqY0NTWlfftPjgudOXNm6uvr07dv31x22WXp2LFjmRMCAADs/JRxAAAAANBGbFMFAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANtK+3AEA2HH69++fUqn0me5dvHjxDk4DAACAMg5gJ3b66ae3fL5p06ZMmTIlVVVVGTx4cJJk0aJFWbp0aa644ooyJQQAACiWUnNzc3O5QwCw440bNy7dunXLD3/4w1bzW265JWvWrMnUqVPLlAwAAKA4lHEABdGlS5e8+OKL2X///VvNV6xYkSOPPDLr168vUzIAAIDi8AAHgIKorKxMfX39NvP6+vp06tSpDIkAAACKx5lxAAVx9dVX5/LLL89LL72UQYMGJfnkzLipU6fm5ptvLnM6AACAYrBNFaBAZs6cmTvvvDMNDQ1JkoMOOigTJkxITU1NmZMBAAAUgzIOAAAAANqIM+MAAAAAoI04Mw6gILZu3Zo77rgjM2fOTGNjYzZv3tzq+tq1a8uUDAAAoDisjAMoiB/84Af56U9/mpqamqxfvz7XXnttRo4cmYqKinz/+98vdzwAAIBCcGYcQEH06dMnkydPzimnnJKvfOUrWbJkScts0aJFeeCBB8odEQAAYKdnZRxAQbz77rvp169fkmT33XfP+vXrkySnnnpq5syZU85oAAAAhaGMAyiI7t2755133kmS9O3bN3Pnzk2SvPDCC9lll13KGQ0AAKAwlHEABXHGGWfk6aefTpJMmDAhkyZNyv77758LLrggY8eOLXM6AACAYnBmHEBBLVq0KM8991z69u2bb3/72+WOAwAAUAjKOAAAAABoI+3LHQCAHefRRx/9zPdaHQcAALDjWRkHsBOrqGh9NGipVMr//Ge/VColSbZu3dpmuQAAAIrKAxwAdmJNTU0tH3Pnzs3hhx+eJ554IuvWrcv69evzxBNPZMCAAXnyySfLHRUAAKAQrIwDKIhDDjkkd999d4455phW82effTaXXHJJGhoaypQMAACgOKyMAyiIVatWpUuXLtvMu3TpkrfeeqvtAwEAABSQlXEABTF06NB06NAhv/3tb9OtW7ckybvvvpvRo0dn8+bNqaurK3NCAACAnZ8yDqAgVq5cmTPOOCPLly/PvvvumyRpbGzMAQcckNmzZ6dv375lTggAALDzU8YBFEhzc3PmzZuX119/Pc3Nzamqqkp1dXXLE1UBAADYsZRxAAAAANBG2pc7AAA7zuTJk3PJJZekU6dOmTx58v957/jx49soFQAAQHFZGQewE+vVq1defPHF7LXXXunVq9f/el+pVMqbb77ZhskAAACKSRkHAAAAAG2kotwBAAAAAKAolHEABXHWWWfltttu22Z+++235zvf+U4ZEgEAABSPbaoABbHPPvvkj3/8Y/r169dq/uqrr6a6ujrvvfdemZIBAAAUh5VxAAXxwQcfpGPHjtvMO3TokA0bNpQhEQAAQPEo4wAK4pBDDsmMGTO2mT/00EOpqqoqQyIAAIDiaV/uAAC0jUmTJuXMM8/MqlWrMnz48CTJ008/nQcffDAPP/xwmdMBAAAUgzPjAApkzpw5ufXWW7NkyZJUVlbm0EMPzS233JLjjjuu3NEAAAAKQRkHAAAAAG3ENlWAgnnppZfS0NCQUqmUqqqq9O/fv9yRAAAACkMZB1AQf/3rX3POOedk/vz52WOPPdLc3Jz169dn2LBheeihh7LPPvuUOyIAAMBOz9NUAQriqquuyoYNG7J06dKsXbs2f//73/Paa69lw4YNGT9+fLnjAQAAFIIz4wAKokuXLnnqqacycODAVvPnn38+3/rWt7Ju3bryBAMAACgQK+MACqKpqSkdOnTYZt6hQ4c0NTWVIREAAEDxKOMACmL48OGZMGFC3n777ZbZX/7yl1xzzTU5/vjjy5gMAACgOGxTBSiINWvW5LTTTstrr72WHj16pFQqpbGxMf369cvvf//7dO/evdwRAQAAdnrKOICCmTdvXl5//fU0Nzenqqoq1dXV5Y4EAABQGMo4AAAAAGgj7csdAIAdZ/LkyZ/53vHjx+/AJAAAACRWxgHs1Hr16vWZ7iuVSnnzzTd3cBoAAACUcQAAAADQRirKHQCAtrV58+YsX748H3/8cbmjAAAAFI4yDqAgNm7cmNra2uy66645+OCD09jYmOSTs+Juu+22MqcDAAAoBmUcQEHceOONefnllzN//vx06tSpZV5dXZ0ZM2aUMRkAAEBxeJoqQEHMnj07M2bMyKBBg1IqlVrmVVVVWbVqVRmTAQAAFIeVcQAF8f7776dr167bzD/88MNW5RwAAAA7jjIOoCAGDhyYOXPmtLz+VwF3zz33ZPDgweWKBQAAUCi2qQIUxI9//OOceOKJWbZsWT7++OPceeedWbp0aRYuXJi6urpyxwMAACgEK+MAdnJLlixJkgwZMiQLFizIxo0b06dPn8ydOzdf+9rXsnDhwhxxxBHlDQkAAFAQpebm5uZyhwBgx6moqEj//v0zbty4nHfeeenSpUu5IwEAABSWlXEAO7kFCxZkwIABueGGG9KtW7eMHj06zzzzTLljAQAAFJKVcQAF8dFHH2XmzJmZNm1ann322fTs2TNjx47NmDFj0r1793LHAwAAKARlHEABrVq1KtOmTct9992Xd955JyNGjMjjjz9e7lgAAAA7PWUcQEF98MEHuf/++3PTTTdl3bp12bp1a7kjAQAA7PTalzsAAG2rrq4uU6dOzaxZs9KuXbvU1NSktra23LEAAAAKwco4gAJYs2ZNpk+fnunTp2f16tUZMmRIamtrU1NTk912263c8QAAAArDyjiAndyIESPyzDPPZJ999skFF1yQsWPH5sADDyx3LAAAgEJSxgHs5CorKzNr1qyceuqpadeuXbnjAAAAFJptqgAAAADQRirKHQAAAAAAikIZBwAAAABtRBkHAAAAAG1EGQcAADvQ/PnzUyqVsm7dus/8NT179szPfvazHZYJACgfZRwAAIV24YUXplQq5bLLLtvm2hVXXJFSqZQLL7yw7YMBADslZRwAAIXXo0ePPPTQQ/noo49aZps2bcqDDz6Yfffdt4zJAICdjTIOAIDCGzBgQPbdd9888sgjLbNHHnkkPXr0SP/+/Vtm//jHPzJ+/Ph07do1nTp1yjHHHJMXXnih1Xs9/vjjOeCAA1JZWZlhw4blrbfe2ub7Pffccxk6dGgqKyvTo0ePjB8/Ph9++OH/mq+xsTGnnXZadt9993Tu3Dk1NTV57733tv8HBwDanDIOAACSXHTRRZk2bVrL66lTp2bs2LGt7pk4cWJmzZqVe++9N4sXL07fvn1zwgknZO3atUmSNWvWZOTIkTn55JOzZMmSjBs3LjfccEOr93j11VdzwgknZOTIkXnllVcyY8aM1NfX58orr/zUXM3NzTn99NOzdu3a1NXVZd68eVm1alXOPvvsL/g3AAC0BWUcAAAkGT16dOrr6/PWW2/lz3/+cxYsWJDzzz+/5fqHH36Yu+66K7fffntOOumkVFVV5Z577kllZWV+/etfJ0nuuuuu9O7dO3fccUcOPPDAjBo1apvz5m6//facd955ufrqq7P//vtnyJAhmTx5cu67775s2rRpm1xPPfVUXnnllTzwwAM54ogj8s1vfjO/+c1vUldXt82qPADgP1/7cgcAAID/BHvvvXdOOeWU3HvvvWlubs4pp5ySvffeu+X6qlWrsmXLlhx99NEtsw4dOuSoo45KQ0NDkqShoSGDBg1KqVRquWfw4MGtvs9LL72UlStX5v7772+ZNTc3p6mpKatXr85BBx3U6v6Ghob06NEjPXr0aJlVVVVljz32SENDQwYOHPjF/AIAgDahjAMAgH8aO3Zsy3bRX/ziF62uNTc3J0mrou1f83/N/nXP/6WpqSmXXnppxo8fv821T3tYxL+//2eZAwD/2WxTBQCAfzrxxBOzefPmbN68OSeccEKra3379k3Hjh1TX1/fMtuyZUtefPHFltVsVVVVWbRoUauv+5+vBwwYkKVLl6Zv377bfHTs2HGbTFVVVWlsbMyaNWtaZsuWLcv69eu3WUUHAPznU8YBAMA/tWvXLg0NDWloaEi7du1aXdttt91y+eWX5/rrr8+TTz6ZZcuW5eKLL87GjRtTW1ubJLnsssuyatWqXHvttVm+fHkeeOCBTJ8+vdX7fO9738vChQvz3e9+N0uWLMmKFSvy6KOP5qqrrvrUTNXV1Tn00EMzatSoLF68OM8//3wuuOCCHHfccTnyyCN3yO8BANhxlHEAAPBvOnfunM6dO3/qtdtuuy1nnnlmRo8enQEDBmTlypX5wx/+kD333DPJJ9tMZ82alcceeyyHHXZY7r777tx6662t3uPQQw9NXV1dVqxYkWOPPTb9+/fPpEmT0q1bt0/9nqVSKbNnz86ee+6ZoUOHprq6Or17986MGTO+2B8cAGgTpebPcrAFAAAAALDdrIwDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA28t+vkhTTEyLM9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

df_procesado_base

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10672,43 +10813,153 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10716,7 +10967,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -10730,24 +10980,34 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -10757,17 +11017,36 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -10778,9 +11057,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -10801,27 +11077,49 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10841,9 +11139,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -10858,13 +11153,18 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -10874,13 +11174,9 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -10894,35 +11190,76 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -10932,7 +11269,9 @@ " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -10940,20 +11279,87 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -10974,13 +11380,26 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11020,10 +11439,7 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11044,6 +11460,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11060,11 +11479,54 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11095,12 +11557,51 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11116,6 +11617,8 @@ " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11131,16 +11634,52 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11158,6 +11697,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11174,13 +11714,20 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -11190,6 +11737,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11206,30 +11754,19 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11240,13 +11777,29 @@ " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11258,14 +11811,15 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11280,12 +11834,37 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11300,17 +11879,14 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11324,6 +11900,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11340,14 +11919,14 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11380,14 +11959,7 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11413,21 +11985,25 @@ " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11449,26 +12025,28 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11477,6 +12055,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11500,15 +12079,14 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11518,6 +12096,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11539,163 +12118,14 @@ " \n", " \n", " \n", - " \n", - "
Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Modelo
Distancia de carrera requerida para despegue0.00.0NaN0.0NaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.60.0NaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaN0.96NaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaN1.2NaNNaN5.0NaNNaNNaN17000.010000.013000.016000.0
Potencia(W)NaNNaN2980.02980.0NaNNaN1280.0NaNVelocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
Potencia(HP)NaNNaN4.04.0Área del ala0.871.1582831.551.551.55NaN0.57NaN1.74NaNNaNNaNNaNNaNNaN8.00.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Tiempo de emergencia en vueloNaNProfundidad del fuselajeNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPeso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0NaN50.025.0NaNNaNNaN500.0NaNNaN270.0100.0100.0NaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNAutonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
Modelo Motor Fixed WingTasa de ascensoNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNRadio de giroNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaN
PortabilidadNaNenvergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Cámaraduracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
DespegueRTF (dry weight)NaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaN
Datalink banksNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.463292NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNWing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaN
Hélice recomendada Fixed WingNaNPotencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNCapacidad combustibleNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
EmpresaNaNNaNNaNNaNPotencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaN
kjbkNaNNaNNaNNaNPotencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaN
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

df_filtrado_base

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -11703,60 +12133,44 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -11766,6 +12180,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11780,6 +12197,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11787,109 +12207,21 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -11899,9 +12231,7 @@ " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", @@ -11909,87 +12239,300 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -12010,73 +12553,60 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -12109,54 +12639,67 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -12167,511 +12710,46 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288PrecioNaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaN0.0NaN3270.0800.0150.050.025.0NaNNaN0.00.00.0NaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.0Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.02.02.02.02.02.02.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
envergadura3.6574.87684.44.44.4Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaN0.196552NaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.463292CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Configuración Inicial ===\n", - "\n", - "Valores configurados: Rango MTOW [85% - 115%], Confianza Mínima: 0.50\n", - "\n", - "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 1 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "=== Iteración 1: Resumen antes de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Resumen de Valores Faltantes Antes de Iteración 1

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ColumnaValores Faltantes
0Stalker XE33.000
1Stalker VXE3034.000
2Aerosonde® Mk. 4.7 Fixed Wing33.000
3Aerosonde® Mk. 4.7 VTOL32.000
4Aerosonde® Mk. 4.8 Fixed wing36.000
5Aerosonde® Mk. 4.8 VTOL FTUAS44.000
6AAI Aerosonde34.000
7Fulmar X42.000
8Orbiter 443.000
9Orbiter 343.000
10Mantis42.000
11ScanEagle41.000
12Integrator41.000
13Integrator VTOL45.000
14Integrator Extended Range (ER)43.000
15ScanEagle 341.000
16RQNan21A Blackjack39.000
17DeltaQuad Evo34.000
18DeltaQuad Pro #MAP38.000
19DeltaQuad Pro #CARGO38.000
20V2132.000
21V2532.000
22V3233.000
23V3538.000
24V3940.000
25Volitation VT37037.000
26Skyeye 260039.000
27Skyeye 2930 VTOL37.000
28Skyeye 360039.000
29Skyeye 3600 VTOL35.000
30Skyeye 500034.000
31Skyeye 5000 VTOL37.000
32Skyeye 5000 VTOL octo38.000
33Volitation VT51035.000
34Ascend35.000
35Transition35.000
36Reach35.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Sumatoria Total de Valores Faltantes

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ResumenCantidad
0Total de Valores Faltantes1387.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 1 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "Rango mínimo: 0.85, Rango máximo: 1.15, Confianza mínima: 0.5\n", - "\n", - "=== Verificación de 'df_resultado_por_similitud' ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Datos Filtrados por aeronaves seleccionadas antes de imputar(df_resultado_por_similitud)

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -12679,20 +12757,26 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -12703,36 +12787,26 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -12765,107 +12839,21 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -12875,97 +12863,36 @@ " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -12986,73 +12913,60 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -13085,54 +12999,67 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -13143,26 +13070,13 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.55Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.57NaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Longitud del fuselaje2.12.59083.03.03.0Motor recomendadoNaNNaNNaNNaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0150.050.025.0NaNNaNNaN500.0NaN92.6270.0100.0100.0NaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
envergadura3.6574.87684.44.44.4Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.352Sistema de controlNaNNaNNaNNaNNaNNaNNaN0.196552NaNNaNNaNNaN
payload2.4947562.49475614.511.317.722.7Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
Empty weight10.88620817.463292indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
" @@ -13174,3494 +13088,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #0 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 36.09 | 35.80 \n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 30.63 | 31.20 \n", - "Volitation VT510| 100.0| 1.075 | 0.0188 | 32.81 | 33.43 \n", - "Reach | 91.0| 0.978 | -0.0054 | 27.34 | 27.20 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [35.803064717345336, 31.201619674835236, 33.430306794466325, 27.19703938863795] = 32.32\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 32.32\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #1 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", - "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, V25, Skyeye 2600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 1.038 | 0.0095 | 16.88 | 17.04 \n", - "V25 | 12.5| 0.954 | -0.0115 | 21.88 | 21.62 \n", - "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 36.09 | 37.40 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [17.041451525056257, 21.624760478782665, 37.402903766342334] = 21.62\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 21.62\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #2 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", - "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing, RQNan21A Blackjack\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 27.34 | 27.16 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 27.34 | 27.27 \n", - "RQNan21A Blackjack| 61.0| 1.109 | 0.0273 | 33.80 | 34.72 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [27.157613705003314, 27.26947572941752, 34.718989390850375] = 27.27\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.96\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 27.27\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.96\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Advertencia: Ponderación del modelo (-0.016) fuera de rango. Revisar lógica previa.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #3 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle 3, V35, Skyeye 2930 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle 3 | 36.3| 1.134 | 0.0336 | 25.70 | 26.57 \n", - "V35 | 32.0| 1.000 | 0.0000 | 27.34 | 27.34 \n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 26.25 | 25.43 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [26.566881229546517, 27.344050412360318, 25.429966883495094] = 26.57\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.55\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 26.57\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.55\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.55\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #4 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 0.997 | -0.0007 | 30.95 | 30.93 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [30.93282942341402] = 30.93\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 30.93\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #5 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator Extended Range (ER)\n", - "\u001b[1mMTOW actual:\u001b[0m 74.8 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 1.000 | 0.0000 | 30.95 | 30.95 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [30.953465066791882] = 30.95\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 30.95\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #6 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39, Skyeye 2930 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle | 26.5| 0.946 | -0.0134 | 30.63 | 30.22 \n", - "V35 | 32.0| 1.143 | 0.0357 | 27.34 | 28.32 \n", - "V39 | 24.0| 0.857 | -0.0357 | 27.34 | 26.37 \n", - "Skyeye 2930 VTOL| 28.0| 1.000 | 0.0000 | 26.25 | 26.25 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [30.21517570565815, 28.32062364137318, 26.36747718334745, 26.250288395865905] = 27.34\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 27.34\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.81\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.88\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #7 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad a la que se realiza el crucero (KTAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 36.09 | 35.19 \n", - "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 30.63 | 30.63 \n", - "Volitation VT510| 100.0| 1.000 | 0.0000 | 32.81 | 32.81 \n", - "Reach | 91.0| 0.910 | -0.0225 | 27.34 | 26.73 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [35.19179288070773, 30.625336461843556, 32.812860494832385, 26.72880927808221] = 31.72\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 31.72\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #8 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", - "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing, RQNan21A Blackjack\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 9700.00 | 9633.86 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 18200.00 | 18150.36 \n", - "RQNan21A Blackjack| 61.0| 1.109 | 0.0273 | 20.00 | 20.55 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [9633.863636363636, 18150.363636363636, 20.545454545454547] = 9633.86\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 9633.86\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #9 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle 3, V35\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle 3 | 36.3| 1.134 | 0.0336 | 20.00 | 20.67 \n", - "V35 | 32.0| 1.000 | 0.0000 | 16000.00 | 16000.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [20.671875, 16000.0] = 8010.34\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 8010.34\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #10 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Mantis\n", - "\u001b[1mMTOW actual:\u001b[0m 6.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Pro #MAP, DeltaQuad Pro #CARGO\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "DeltaQuad Pro #MAP| 6.2| 0.954 | -0.0115 | 13.12 | 12.97 \n", - "DeltaQuad Pro #CARGO| 6.2| 0.954 | -0.0115 | 13.12 | 12.97 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.97158076923077, 12.97158076923077] = 12.97\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.97\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #11 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 0.997 | -0.0007 | 19500.00 | 19487.00 \n", - "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 19500.00 | 19487.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [19487.0, 19487.0] = 19487.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 19487.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #12 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", - "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 0.907 | -0.0233 | 12000.00 | 11720.00 \n", - "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 15000.00 | 14525.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [11720.0, 14524.999999999998] = 13122.50\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 13122.50\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.93\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #13 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2930 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle | 26.5| 0.946 | -0.0134 | 19500.00 | 19238.84 \n", - "V35 | 32.0| 1.143 | 0.0357 | 16000.00 | 16571.43 \n", - "V39 | 24.0| 0.857 | -0.0357 | 16000.00 | 15428.57 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [19238.839285714286, 16571.42857142857, 15428.57142857143] = 16571.43\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.90\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 16571.43\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.91\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.90\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.90\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #14 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V35, V39\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle | 26.5| 0.946 | -0.0134 | 19500.00 | 19238.84 \n", - "V35 | 32.0| 1.143 | 0.0357 | 16000.00 | 16571.43 \n", - "V39 | 24.0| 0.857 | -0.0357 | 16000.00 | 15428.57 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [19238.839285714286, 16571.42857142857, 15428.57142857143] = 16571.43\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.90\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 16571.43\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.91\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.90\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.90\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #15 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing, ScanEagle 3, Volitation VT370\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 14700.00 | 14902.12 \n", - "ScanEagle 3 | 36.3| 0.907 | -0.0231 | 20.00 | 19.54 \n", - "Volitation VT370| 40.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14902.124999999998, 19.537499999999998, 17000.0] = 14902.12\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.97\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 14902.12\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.97\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #16 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", - "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.033 | 0.0083 | 15000.00 | 15125.00 \n", - "Volitation VT510| 100.0| 1.111 | 0.0278 | 17000.00 | 17472.22 \n", - "Reach | 91.0| 1.011 | 0.0028 | 16000.00 | 16044.44 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15125.0, 17472.22222222222, 16044.444444444443] = 16044.44\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.92\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 16044.44\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.88\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.92\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #17 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 15000.00 | 14737.50 \n", - "Volitation VT510| 100.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 16000.00 | 15640.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14737.5, 17000.0, 15640.0] = 15640.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.93\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 15640.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.90\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.93\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #18 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Techo de servicio máximo\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 15000.00 | 14737.50 \n", - "Volitation VT510| 100.0| 1.000 | 0.0000 | 17000.00 | 17000.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 16000.00 | 15640.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14737.5, 17000.0, 15640.0] = 15640.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.93\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 15640.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.90\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.93\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #19 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 2.62 | 2.59 \n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 2.62 | 2.66 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 2.62 | 2.66 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.593911290322581, 2.664206989247312, 2.664206989247312] = 2.66\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 2.66\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.56\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #20 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 1.16 | 1.16 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.15767579628992] = 1.16\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.16\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #21 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", - "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 1.55 | 1.54 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 1.55 | 1.55 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5394318181818183, 1.5457727272727273] = 1.54\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.54\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #22 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 1.00 | 0.97 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 1.33 | 1.29 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.96875, 1.2884375000000001] = 1.13\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.13\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para Mantis.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #23 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", - "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 1.00 | 1.01 \n", - "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 1.33 | 1.35 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.0141509433962264, 1.348820754716981] = 1.18\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.18\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para Integrator Extended Range (ER).\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #24 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", - "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 1.32 | 1.35 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.3536363636363637] = 1.35\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.35\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #25 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", - "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 1.55 | 1.50 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 1.55 | 1.51 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5023565573770492, 1.5080737704918032] = 1.51\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.51\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Imputación descartada por baja confianza: 0.475 < 0.5.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para DeltaQuad Pro #CARGO.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para V32.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #25 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m V35\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 1.00 | 0.97 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 1.33 | 1.29 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.96875, 1.2884375000000001] = 1.13\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.13\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Área del ala'.\n", - "No se pudo imputar: Área del ala para V39.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #26 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing, Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 1.55 | 1.57 \n", - "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 1.32 | 1.32 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.5713125, 1.32] = 1.45\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.87\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.45\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.98\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.87\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #27 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 2.62 | 2.55 \n", - "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 2.62 | 2.62 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 2.62 | 2.62 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.5496250000000003, 2.615, 2.615] = 2.62\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 2.62\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.58\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #28 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Ascend\n", - "\u001b[1mMTOW actual:\u001b[0m 9.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo, V21\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "DeltaQuad Evo| 10.0| 1.053 | 0.0132 | 0.84 | 0.85 \n", - "V21 | 10.0| 1.053 | 0.0132 | 0.80 | 0.81 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.8510526315789473, 0.8105263157894737] = 0.83\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.76\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.83\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.71\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.85\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.76\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #29 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", - "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 1.16 | 1.19 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.1897828403221333] = 1.19\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.19\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #30 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Área del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", - "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.989 | -0.0027 | 2.62 | 2.61 \n", - "Skyeye 5000 VTOL| 100.0| 1.099 | 0.0247 | 2.62 | 2.68 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.099 | 0.0247 | 2.62 | 2.68 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.6078159340659344, 2.6796565934065932, 2.6796565934065932] = 2.68\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 2.68\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.56\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #31 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 15.33 | 15.32 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15.318411644882964] = 15.32\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 15.32\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #32 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", - "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 12.50 | 12.41 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 12.50 | 12.47 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.414772727272728, 12.465909090909093] = 12.44\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.44\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 3'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Orbiter 3.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Mantis.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para ScanEagle.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Integrator Extended Range (ER).\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle 3'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para ScanEagle 3.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #33 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", - "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 12.50 | 12.12 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 12.50 | 12.16 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.11577868852459, 12.161885245901642] = 12.14\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.14\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Imputación descartada por baja confianza: 0.475 < 0.5.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Evo'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Evo.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para DeltaQuad Pro #CARGO.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V21'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para V21.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #33 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m V25\n", - "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 1.088 | 0.0220 | 15.30 | 15.64 \n", - "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 14.75 | 14.93 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15.637882845188285, 14.93143859649123] = 15.28\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 15.28\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.03\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para V32.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V35'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para V35.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para V39.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #34 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 12.50 | 12.67 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.671875000000002] = 12.67\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Advertencia: Ponderación del modelo (-1.312) fuera de rango. Revisar lógica previa.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #35 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", - "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 0.907 | -0.0233 | 15.30 | 14.94 \n", - "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 14.75 | 14.29 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14.944225941422594, 14.28716374269006] = 14.62\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 14.62\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.54\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Imputación descartada por baja confianza: 0.478 < 0.5.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 2930 VTOL'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Skyeye 2930 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 3600'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Skyeye 3600.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #35 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 12.50 | 12.67 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.671875000000002] = 12.67\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #36 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", - "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.033 | 0.0083 | 12.50 | 12.60 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.604166666666668] = 12.60\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.60\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.97\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.78\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #37 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #38 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #39 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 12.50 | 12.28 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.281250000000002] = 12.28\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.28\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Ascend'para el parametro 'Relación de aspecto del ala'.\n", - "No se pudo imputar: Relación de aspecto del ala para Ascend.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #40 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", - "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 15.33 | 15.74 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15.743253313648973] = 15.74\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 15.74\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #41 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Relación de aspecto del ala\n", - "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", - "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 1.022 | 0.0055 | 12.50 | 12.57 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.568681318681321] = 12.57\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.57\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #42 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 3.50 | 3.47 \n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 3.50 | 3.57 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 3.50 | 3.57 \n", - "Volitation VT510| 100.0| 1.075 | 0.0188 | 2.90 | 2.96 \n", - "Reach | 91.0| 0.978 | -0.0054 | 4.71 | 4.69 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [3.471774193548387, 3.5658602150537635, 3.5658602150537635, 2.9596639784946235, 4.6866666666666665] = 3.57\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 3.57\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #43 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 0.997 | -0.0007 | 2.50 | 2.50 \n", - "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 2.50 | 2.50 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.498333333333333, 2.498333333333333] = 2.50\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 2.50\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #44 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Longitud del fuselaje\n", - "\u001b[1mAeronave a imputar:\u001b[0m V39\n", - "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m ScanEagle, V32\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "ScanEagle | 26.5| 1.104 | 0.0260 | 1.71 | 1.75 \n", - "V32 | 23.5| 0.979 | -0.0052 | 1.00 | 0.99 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.75453125, 0.9947916666666666] = 1.37\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.37\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #45 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 300.00 | 296.09 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [296.09004739336496] = 296.09\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 296.09\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #46 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 53.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 4, RQNan21A Blackjack\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 4 | 55.0| 1.028 | 0.0070 | 150.00 | 151.05 \n", - "RQNan21A Blackjack| 61.0| 1.140 | 0.0350 | 92.60 | 95.85 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [151.05140186915887, 95.84532710280374] = 123.45\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 123.45\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.92\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #47 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 Fixed wing\n", - "\u001b[1mMTOW actual:\u001b[0m 54.4 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 4, RQNan21A Blackjack\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 4 | 55.0| 1.011 | 0.0028 | 150.00 | 150.41 \n", - "RQNan21A Blackjack| 61.0| 1.121 | 0.0303 | 92.60 | 95.41 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [150.41360294117646, 95.40863970588234] = 122.91\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 122.91\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #48 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 800.00 | 815.05 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [815.0537634408602] = 815.05\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.59\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 815.05\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.76\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.59\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Alcance de la aeronave'.\n", - "No se pudo imputar: Alcance de la aeronave para ScanEagle.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #49 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator\n", - "\u001b[1mMTOW actual:\u001b[0m 74.8 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator Extended Range (ER)| 74.8| 1.000 | 0.0000 | 500.00 | 500.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [500.0] = 500.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 500.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #50 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 500.00 | 499.67 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [499.66666666666663] = 499.67\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 499.67\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #51 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", - "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3, Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 3 | 32.0| 0.882 | -0.0296 | 50.00 | 48.52 \n", - "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 300.00 | 307.64 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [48.519283746556475, 307.6446280991736] = 178.08\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 178.08\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #52 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m V21\n", - "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "DeltaQuad Evo| 10.0| 1.000 | 0.0000 | 270.00 | 270.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [270.0] = 270.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 270.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #53 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m V25\n", - "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 1.088 | 0.0220 | 370.00 | 378.14 \n", - "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 3270.00 | 3309.24 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [378.14, 3309.2400000000002] = 1843.69\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.85\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1843.69\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.85\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #54 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m V32\n", - "\u001b[1mMTOW actual:\u001b[0m 23.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Fulmar X\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Fulmar X | 20.0| 0.851 | -0.0372 | 800.00 | 770.21 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [770.2127659574468] = 770.21\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 770.21\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.86\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #55 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m V35\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 3 | 32.0| 1.000 | 0.0000 | 50.00 | 50.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [50.0] = 50.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 50.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Alcance de la aeronave'.\n", - "No se pudo imputar: Alcance de la aeronave para V39.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #56 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 300.00 | 300.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [300.0] = 300.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 300.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #57 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", - "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 0.907 | -0.0233 | 370.00 | 361.37 \n", - "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 3270.00 | 3166.45 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [361.3666666666667, 3166.45] = 1763.91\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1763.91\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #58 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2930 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 3 | 32.0| 1.143 | 0.0357 | 50.00 | 51.79 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [51.78571428571428] = 51.79\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 51.79\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.87\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #59 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 3 | 32.0| 1.143 | 0.0357 | 50.00 | 51.79 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [51.78571428571428] = 51.79\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.56\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 51.79\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.87\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.72\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.56\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #60 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000\n", - "\u001b[1mMTOW actual:\u001b[0m 90.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 VTOL| 100.0| 1.111 | 0.0278 | 800.00 | 822.22 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [822.2222222222222] = 822.22\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 822.22\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #61 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 800.00 | 800.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [800.0] = 800.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 800.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #62 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 800.00 | 800.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [800.0] = 800.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 800.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #63 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Ascend\n", - "\u001b[1mMTOW actual:\u001b[0m 9.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Evo\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "DeltaQuad Evo| 10.0| 1.053 | 0.0132 | 270.00 | 273.55 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [273.55263157894734] = 273.55\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 273.55\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #64 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", - "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Fulmar X\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 433.00 | 444.78 \n", - "Fulmar X | 20.0| 1.111 | 0.0278 | 800.00 | 822.22 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [444.7754831111111, 822.2222222222222] = 633.50\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 633.50\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #65 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Alcance de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Reach\n", - "\u001b[1mMTOW actual:\u001b[0m 91.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 VTOL| 100.0| 1.099 | 0.0247 | 800.00 | 819.78 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [819.7802197802197] = 819.78\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 819.78\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #66 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Autonomía de la aeronave\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL octo\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS, Skyeye 5000, Skyeye 5000 VTOL, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.8 VTOL FTUAS| 93.0| 0.930 | -0.0175 | 14.00 | 13.76 \n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 8.00 | 7.80 \n", - "Skyeye 5000 VTOL| 100.0| 1.000 | 0.0000 | 8.00 | 8.00 \n", - "Volitation VT510| 100.0| 1.000 | 0.0000 | 5.00 | 5.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 20.00 | 19.55 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [13.755, 7.8, 8.0, 5.0, 19.55] = 8.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 8.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #67 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 42.00 | 41.66 \n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 42.00 | 42.79 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 38.00 | 38.72 \n", - "Volitation VT510| 100.0| 1.075 | 0.0188 | 50.00 | 50.94 \n", - "Reach | 91.0| 0.978 | -0.0054 | 35.00 | 34.81 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [41.66129032258065, 42.79032258064516, 38.71505376344086, 50.94086021505376, 34.81182795698925] = 41.66\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 41.66\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #68 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 0.997 | -0.0007 | 46.30 | 46.27 \n", - "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 46.30 | 46.27 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [46.26913333333333, 46.26913333333333] = 46.27\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 46.27\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #69 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Evo\n", - "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V21, Ascend\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V21 | 10.0| 1.000 | 0.0000 | 33.00 | 33.00 \n", - "Ascend | 9.5| 0.950 | -0.0125 | 30.00 | 29.62 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [33.0, 29.625] = 31.31\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 31.31\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #70 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Pro #MAP\n", - "\u001b[1mMTOW actual:\u001b[0m 6.2 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Mantis\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Mantis | 6.5| 1.048 | 0.0121 | 25.60 | 25.91 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [25.909677419354843] = 25.91\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 25.91\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #71 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Pro #CARGO\n", - "\u001b[1mMTOW actual:\u001b[0m 6.2 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Mantis\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Mantis | 6.5| 1.048 | 0.0121 | 25.60 | 25.91 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [25.909677419354843] = 25.91\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 25.91\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #72 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", - "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 0.907 | -0.0233 | 20.00 | 19.53 \n", - "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 30.85 | 29.87 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [19.533333333333335, 29.86894348051936] = 24.70\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.83\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 24.70\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.93\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.83\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #73 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad máxima (KIAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600\n", - "\u001b[1mMTOW actual:\u001b[0m 28.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Orbiter 3, ScanEagle, V35, V39, Skyeye 2930 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Orbiter 3 | 32.0| 1.143 | 0.0357 | 36.00 | 37.29 \n", - "ScanEagle | 26.5| 0.946 | -0.0134 | 41.20 | 40.65 \n", - "V35 | 32.0| 1.143 | 0.0357 | 33.00 | 34.18 \n", - "V39 | 24.0| 0.857 | -0.0357 | 33.00 | 31.82 \n", - "Skyeye 2930 VTOL| 28.0| 1.000 | 0.0000 | 30.00 | 30.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [37.28571428571428, 40.64821428571429, 34.17857142857142, 31.821428571428573, 30.0] = 34.18\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 34.18\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.93\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #74 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Stalker XE\n", - "\u001b[1mMTOW actual:\u001b[0m 13.6 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V25, Skyeye 2600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V25 | 12.5| 0.919 | -0.0202 | 15.50 | 15.19 \n", - "Skyeye 2600 | 15.0| 1.103 | 0.0257 | 10.00 | 10.26 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15.18658088235294, 10.257352941176471] = 12.72\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.72\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #75 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Stalker VXE30\n", - "\u001b[1mMTOW actual:\u001b[0m 19.958047999999998 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Transition\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Transition | 18.0| 0.902 | -0.0245 | 13.00 | 12.68 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.68114837683525] = 12.68\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.68\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #76 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 24.00 | 23.69 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [23.687203791469194] = 23.69\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 23.69\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.7 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.8 Fixed wing.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #77 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 15.00 | 14.88 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 24.00 | 24.45 \n", - "Volitation VT510| 100.0| 1.075 | 0.0188 | 25.00 | 25.47 \n", - "Reach | 91.0| 0.978 | -0.0054 | 13.00 | 12.93 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14.879032258064516, 24.451612903225808, 25.47043010752688, 12.93010752688172] = 19.67\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 19.67\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #78 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", - "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V25, Skyeye 2600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V25 | 12.5| 0.954 | -0.0115 | 15.50 | 15.32 \n", - "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 10.00 | 10.36 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [15.322519083969466, 10.36259541984733] = 12.84\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.84\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.91\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.94\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #79 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Transition\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Transition | 18.0| 0.900 | -0.0250 | 13.00 | 12.67 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [12.674999999999999] = 12.67\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 12.67\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Orbiter 4.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #80 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 18.00 | 17.44 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 12.50 | 12.11 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4375, 12.109375] = 14.77\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 14.77\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Mantis.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #81 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", - "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V32, Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V32 | 23.5| 0.887 | -0.0283 | 17.00 | 16.52 \n", - "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 18.00 | 18.25 \n", - "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 12.50 | 12.68 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [16.5188679245283, 18.254716981132074, 12.67688679245283] = 16.52\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 16.52\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator Extended Range (ER).\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #82 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", - "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 24.00 | 24.61 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [24.611570247933887] = 24.61\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 24.61\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para RQNan21A Blackjack.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #83 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m DeltaQuad Evo\n", - "\u001b[1mMTOW actual:\u001b[0m 10.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V21, Ascend\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V21 | 10.0| 1.000 | 0.0000 | 14.00 | 14.00 \n", - "Ascend | 9.5| 0.950 | -0.0125 | 13.00 | 12.84 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14.0, 12.8375] = 13.42\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 13.42\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.95\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.96\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #CARGO.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #84 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m V35\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 18.00 | 17.44 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 12.50 | 12.11 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4375, 12.109375] = 14.77\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 14.77\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.97\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #85 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m V39\n", - "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V32\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V32 | 23.5| 0.979 | -0.0052 | 17.00 | 16.91 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [16.911458333333332] = 16.91\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 16.91\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #86 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 24.00 | 24.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [24.0] = 24.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 24.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #87 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Velocidad de pérdida (KCAS)\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 15.00 | 14.62 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 24.00 | 24.00 \n", - "Volitation VT510| 100.0| 1.000 | 0.0000 | 25.00 | 25.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 13.00 | 12.71 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [14.625, 24.0, 25.0, 12.7075] = 19.31\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 19.31\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.11\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #88 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m envergadura\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL, Skyeye 5000 VTOL octo, Volitation VT510, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 5.00 | 4.96 \n", - "Skyeye 5000 VTOL| 100.0| 1.075 | 0.0188 | 5.00 | 5.09 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 5.00 | 5.09 \n", - "Volitation VT510| 100.0| 1.075 | 0.0188 | 5.10 | 5.20 \n", - "Reach | 91.0| 0.978 | -0.0054 | 6.00 | 5.97 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [4.959677419354839, 5.094086021505376, 5.094086021505376, 5.195967741935483, 5.967741935483871] = 5.09\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 1.00\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 5.09\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.22\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.96\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 1.00\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #89 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m envergadura\n", - "\u001b[1mAeronave a imputar:\u001b[0m Integrator VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 75.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Integrator, Integrator Extended Range (ER)\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Integrator | 74.8| 0.997 | -0.0007 | 4.80 | 4.80 \n", - "Integrator Extended Range (ER)| 74.8| 0.997 | -0.0007 | 4.80 | 4.80 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [4.796799999999999, 4.796799999999999] = 4.80\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.53\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 4.80\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.60\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.53\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 VTOL FTUAS'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Aerosonde® Mk. 4.8 VTOL FTUAS.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #90 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 0.32 | 0.32 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.318028178521024] = 0.32\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.32\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #91 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 4\n", - "\u001b[1mMTOW actual:\u001b[0m 55.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.973 | -0.0068 | 0.35 | 0.35 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.989 | -0.0027 | 0.35 | 0.35 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.34959999999999997, 0.35104] = 0.35\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.52\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.35\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.59\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.52\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 3'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Orbiter 3.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Mantis.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para ScanEagle.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Integrator Extended Range (ER).\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'ScanEagle 3'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para ScanEagle 3.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #92 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m RQNan21A Blackjack\n", - "\u001b[1mMTOW actual:\u001b[0m 61.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 VTOL, Aerosonde® Mk. 4.8 Fixed wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 VTOL| 53.5| 0.877 | -0.0307 | 0.35 | 0.34 \n", - "Aerosonde® Mk. 4.8 Fixed wing| 54.4| 0.892 | -0.0270 | 0.35 | 0.34 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.34118032786885244, 0.3424786885245901] = 0.34\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.48\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.34\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.89\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.53\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.48\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Imputación descartada por baja confianza: 0.475 < 0.5.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Evo'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para DeltaQuad Evo.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para DeltaQuad Pro #CARGO.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V21'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para V21.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #92 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m V25\n", - "\u001b[1mMTOW actual:\u001b[0m 12.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 1.088 | 0.0220 | 0.24 | 0.24 \n", - "AAI Aerosonde| 13.1| 1.048 | 0.0120 | 0.20 | 0.20 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.244258, 0.19891034482758618] = 0.22\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.84\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.22\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.96\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.84\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V32'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para V32.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V35'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para V35.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'V39'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para V39.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #93 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 0.35 | 0.36 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.35683999999999994] = 0.36\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.36\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #94 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 2600\n", - "\u001b[1mMTOW actual:\u001b[0m 15.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, AAI Aerosonde\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 0.907 | -0.0233 | 0.24 | 0.23 \n", - "AAI Aerosonde| 13.1| 0.873 | -0.0317 | 0.20 | 0.19 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.23342333333333332, 0.19032758620689652] = 0.21\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.81\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.21\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.92\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.81\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 2930 VTOL'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Skyeye 2930 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 3600'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Skyeye 3600.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #95 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 3600 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Aerosonde® Mk. 4.7 Fixed Wing| 42.2| 1.055 | 0.0138 | 0.35 | 0.36 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.35683999999999994] = 0.36\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.36\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Skyeye 5000.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000 VTOL'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Skyeye 5000 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Skyeye 5000 VTOL octo'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Skyeye 5000 VTOL octo.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Volitation VT510'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Volitation VT510.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Ascend'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Ascend.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #96 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Cuerda\n", - "\u001b[1mAeronave a imputar:\u001b[0m Transition\n", - "\u001b[1mMTOW actual:\u001b[0m 18.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 1.109 | 0.0272 | 0.32 | 0.33 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [0.3268483894678044] = 0.33\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.57\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 0.33\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.57\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Reach'para el parametro 'Cuerda'.\n", - "No se pudo imputar: Cuerda para Reach.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #97 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m payload\n", - "\u001b[1mAeronave a imputar:\u001b[0m AAI Aerosonde\n", - "\u001b[1mMTOW actual:\u001b[0m 13.1 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker XE, V25, Skyeye 2600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker XE | 13.6| 1.038 | 0.0095 | 2.49 | 2.52 \n", - "V25 | 12.5| 0.954 | -0.0115 | 2.20 | 2.17 \n", - "Skyeye 2600 | 15.0| 1.145 | 0.0363 | 4.00 | 4.15 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.518560923664122, 2.174809160305344, 4.145038167938932] = 2.52\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 2.52\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.99\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #98 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m payload\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Transition\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 2.49 | 2.49 \n", - "Transition | 18.0| 0.900 | -0.0250 | 1.50 | 1.46 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [2.4934477499536, 1.4625] = 1.98\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.98\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #99 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m payload\n", - "\u001b[1mAeronave a imputar:\u001b[0m Mantis\n", - "\u001b[1mMTOW actual:\u001b[0m 6.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m DeltaQuad Pro #MAP, DeltaQuad Pro #CARGO\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "DeltaQuad Pro #MAP| 6.2| 0.954 | -0.0115 | 1.20 | 1.19 \n", - "DeltaQuad Pro #CARGO| 6.2| 0.954 | -0.0115 | 1.20 | 1.19 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [1.1861538461538461, 1.1861538461538461] = 1.19\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.51\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 1.19\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.57\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.51\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #100 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.7 Fixed Wing\n", - "\u001b[1mMTOW actual:\u001b[0m 42.2 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 0.948 | -0.0130 | 11.00 | 10.86 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [10.856635071090047] = 10.86\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.60\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 10.86\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.77\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.60\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Aerosonde® Mk. 4.7 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Aerosonde® Mk. 4.8 Fixed wing.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #101 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Aerosonde® Mk. 4.8 VTOL FTUAS\n", - "\u001b[1mMTOW actual:\u001b[0m 93.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.968 | -0.0081 | 32.00 | 31.74 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.075 | 0.0188 | 35.00 | 35.66 \n", - "Reach | 91.0| 0.978 | -0.0054 | 31.00 | 30.83 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [31.741935483870968, 35.65860215053763, 30.833333333333332] = 31.74\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 31.74\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.96\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.94\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #102 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Fulmar X\n", - "\u001b[1mMTOW actual:\u001b[0m 20.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Stalker VXE30, Transition\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Stalker VXE30| 19.958047999999998| 0.998 | -0.0005 | 17.46 | 17.45 \n", - "Transition | 18.0| 0.900 | -0.0250 | 5.80 | 5.65 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [17.4541342496752, 5.654999999999999] = 11.55\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.86\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 11.55\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.95\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.97\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.86\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Orbiter 4.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #103 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Orbiter 3\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 7.10 | 6.88 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 11.50 | 11.14 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [6.878125, 11.140625] = 9.01\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 9.01\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Mantis.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #104 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle\n", - "\u001b[1mMTOW actual:\u001b[0m 26.5 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V32, Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V32 | 23.5| 0.887 | -0.0283 | 6.45 | 6.27 \n", - "Skyeye 2930 VTOL| 28.0| 1.057 | 0.0142 | 7.10 | 7.20 \n", - "Skyeye 3600 | 28.0| 1.057 | 0.0142 | 11.50 | 11.66 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [6.267452830188679, 7.200471698113207, 11.662735849056602] = 7.20\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.95\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 7.20\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.93\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 1.00\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.95\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.95\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para Integrator Extended Range (ER).\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #105 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m ScanEagle 3\n", - "\u001b[1mMTOW actual:\u001b[0m 36.3 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.102 | 0.0255 | 11.00 | 11.28 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [11.280303030303031] = 11.28\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.58\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 11.28\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.90\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.74\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.58\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para RQNan21A Blackjack.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Empty weight'.\n", - "No se pudo imputar: Empty weight para DeltaQuad Pro #CARGO.\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #106 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m V35\n", - "\u001b[1mMTOW actual:\u001b[0m 32.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 2930 VTOL, Skyeye 3600\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 2930 VTOL| 28.0| 0.875 | -0.0312 | 7.10 | 6.88 \n", - "Skyeye 3600 | 28.0| 0.875 | -0.0312 | 11.50 | 11.14 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [6.878125, 11.140625] = 9.01\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.82\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 9.01\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.89\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.88\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.98\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.92\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.82\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #107 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m V39\n", - "\u001b[1mMTOW actual:\u001b[0m 24.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m V32\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "V32 | 23.5| 0.979 | -0.0052 | 6.45 | 6.42 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [6.41640625] = 6.42\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.61\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 6.42\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.98\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.79\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.61\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #108 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT370\n", - "\u001b[1mMTOW actual:\u001b[0m 40.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 3600 VTOL\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 3600 VTOL| 40.0| 1.000 | 0.0000 | 11.00 | 11.00 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [11.0] = 11.00\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.62\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 11.00\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 0.78\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 1.00\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.50\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.80\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.62\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #109 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Skyeye 5000 VTOL\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 32.00 | 31.20 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 35.00 | 35.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 31.00 | 30.30 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [31.2, 35.0, 30.302500000000002] = 31.20\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.91\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 31.20\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.87\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.91\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "\u001b[1m======================== DETALLE DE CÁLCULO DE IMPUTACIÓN #110 ========================\u001b[0m\n", - "\u001b[1mParámetro:\u001b[0m Empty weight\n", - "\u001b[1mAeronave a imputar:\u001b[0m Volitation VT510\n", - "\u001b[1mMTOW actual:\u001b[0m 100.0 kg\n", - "\u001b[1mRango Similitud:\u001b[0m 85% - 115%\n", - "\u001b[1mCandidatas dentro del rango:\u001b[0m Skyeye 5000, Skyeye 5000 VTOL octo, Reach\n", - "\n", - "Aeronaves Válidas para el Cálculo:\n", - "-----------------------------------------------------------------------------------------------\n", - "Aeronave | MTOW Candidata | Rel. MTOW (Candidata/Actual) | Ajuste Individual | Valor Original | Valor Ajustado\n", - "------------|----------------|------------------------------|-------------------|----------------|---------------\n", - "Skyeye 5000 | 90.0| 0.900 | -0.0250 | 32.00 | 31.20 \n", - "Skyeye 5000 VTOL octo| 100.0| 1.000 | 0.0000 | 35.00 | 35.00 \n", - "Reach | 91.0| 0.910 | -0.0225 | 31.00 | 30.30 \n", - "-----------------------------------------------------------------------------------------------\n", - "\n", - "Cálculo del Valor Final:\n", - "\u001b[1m- Se tomó la mediana de los valores ajustados [31.2, 35.0, 30.302500000000002] = 31.20\u001b[0m\n", - "\u001b[1m- Nivel de Confianza calculado:\u001b[0m 0.91\n", - "\u001b[1m- Valor Imputado Final:\u001b[0m 31.20\n", - "\n", - "Detalle del Cálculo de Confianza:\n", - "\u001b[1m- Penalización por pocos candidatos:\u001b[0m 1.00\n", - "\u001b[1m- Cantidad Ponderada (basada en MTOW):\u001b[0m 0.94\n", - "\u001b[1m- Ponderación del modelo (R² o dispersión):\u001b[0m 0.87\n", - "\u001b[1m- Confianza Base:\u001b[0m 0.91\n", - "\u001b[1m- Confianza Final (tras penalización):\u001b[0m 0.91\n", - "\u001b[1m============================================================================================\u001b[0m\n", - "\n", - "\n", - "=== Generando reporte final ===\n" - ] - }, { "data": { "text/html": [ @@ -16697,893 +13123,5446 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Reporte Final de Imputaciones

\n", + "

df_filtrado_base

\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
0Aerosonde® Mk. 4.8 VTOL FTUASVelocidad a la que se realiza el crucero (KTAS)32.3161.000
1AAI AerosondeVelocidad a la que se realiza el crucero (KTAS)21.6250.953
2Orbiter 4Velocidad a la que se realiza el crucero (KTAS)27.2690.959
3Orbiter 3Velocidad a la que se realiza el crucero (KTAS)26.5670.551
4Integrator VTOLVelocidad a la que se realiza el crucero (KTAS)30.9330.621
5Integrator Extended Range (ER)Velocidad a la que se realiza el crucero (KTAS)30.9530.622
6Skyeye 3600Velocidad a la que se realiza el crucero (KTAS)27.3440.972Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
7Skyeye 5000 VTOL octoVelocidad a la que se realiza el crucero (KTAS)31.7191.000Modelo
8Orbiter 4Techo de servicio máximo9633.8640.972Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
9Orbiter 3Techo de servicio máximo8010.3360.855
10MantisTecho de servicio máximo12.9720.509
11Integrator VTOLTecho de servicio máximo19487.0000.532
12Skyeye 2600Techo de servicio máximo13122.5000.809
13Skyeye 2930 VTOLTecho de servicio máximo16571.4290.901
14Skyeye 3600Techo de servicio máximo16571.4290.901Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
15Skyeye 3600 VTOLTecho de servicio máximo14902.1250.972Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
16Skyeye 5000Techo de servicio máximo16044.4440.922Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
17Skyeye 5000 VTOLTecho de servicio máximo15640.0000.930Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
18Skyeye 5000 VTOL octoTecho de servicio máximo15640.0000.930Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
19Aerosonde® Mk. 4.8 VTOL FTUASÁrea del ala2.6640.565Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0NaN50.025.0NaNNaNNaN500.0NaNNaN270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
20Fulmar XÁrea del ala1.1580.621Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
21Orbiter 4Área del ala1.5430.523Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
22Orbiter 3Área del ala1.1290.809Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
23ScanEagleÁrea del ala1.1810.856Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
24ScanEagle 3Área del ala1.3540.577envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
25V35Área del ala1.1290.809Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
26Volitation VT370Área del ala1.4460.869
27Volitation VT510Área del ala2.6150.581payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
28AscendÁrea del ala0.8310.758Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
29TransitionÁrea del ala1.1900.574
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Configuración Inicial ===\n", + "\n", + "Valores configurados: Rango MTOW [85% - 115%], Confianza Mínima: 0.50\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 1: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Antes de Iteración 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
ColumnaValores Faltantes
30ReachÁrea del ala2.6800.5600Stalker XE32.000
31Fulmar XRelación de aspecto del ala15.3180.6211Stalker VXE3033.000
32Orbiter 4Relación de aspecto del ala12.4400.5232Aerosonde Mk. 4.7 Fixed Wing32.000
33V25Relación de aspecto del ala15.2850.5103Aerosonde Mk. 4.7 VTOL31.000
34Volitation VT370Relación de aspecto del ala12.6720.5974Aerosonde Mk. 4.8 Fixed wing35.000
35Skyeye 3600 VTOLRelación de aspecto del ala12.6720.5975Aerosonde Mk. 4.8 VTOL FTUAS43.000
36Skyeye 5000Relación de aspecto del ala12.6040.6076AAI Aerosonde34.000
37Skyeye 5000 VTOLRelación de aspecto del ala12.2810.5917Fulmar X41.000
38Skyeye 5000 VTOL octoRelación de aspecto del ala12.2810.5918Orbiter 443.000
39Volitation VT510Relación de aspecto del ala12.2810.5919Orbiter 342.000
40TransitionRelación de aspecto del ala15.7430.57410Mantis41.000
41ReachRelación de aspecto del ala12.5690.61211ScanEagle40.000
42Aerosonde® Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5661.00012Integrator40.000
4313Integrator VTOLLongitud del fuselaje2.4980.532
44V39Longitud del fuselaje1.3750.854
45Aerosonde® Mk. 4.7 Fixed WingAlcance de la aeronave296.0900.59944.000
46Aerosonde® Mk. 4.7 VTOLAlcance de la aeronave123.4480.84414Integrator Extended Range (ER)42.000
47Aerosonde® Mk. 4.8 Fixed wingAlcance de la aeronave122.9110.85415ScanEagle 340.000
48Aerosonde® Mk. 4.8 VTOL FTUASAlcance de la aeronave815.0540.58816RQ Nan 21A Blackjack39.000
49IntegratorAlcance de la aeronave500.0000.62217DeltaQuad Evo33.000
50Integrator VTOLAlcance de la aeronave499.6670.62118DeltaQuad Pro #MAP37.000
51ScanEagle 3Alcance de la aeronave178.0820.83319DeltaQuad Pro #CARGO37.000
5220V21Alcance de la aeronave270.0000.62231.000
5321V25Alcance de la aeronave1843.6900.85431.000
5422V32Alcance de la aeronave770.2130.55832.000
5523V35Alcance de la aeronave50.0000.62238.000
5624V3939.000
25Volitation VT370Alcance de la aeronave300.0000.62237.000
5726Skyeye 2600Alcance de la aeronave1763.9080.83238.000
5827Skyeye 2930 VTOLAlcance de la aeronave51.7860.56036.000
5928Skyeye 3600Alcance de la aeronave51.7860.56038.000
6029Skyeye 3600 VTOL34.000
30Skyeye 5000Alcance de la aeronave822.2220.57333.000
6131Skyeye 5000 VTOL36.000
32Skyeye 5000 VTOL octoAlcance de la aeronave800.0000.62237.000
6233Volitation VT510Alcance de la aeronave800.0000.62235.000
6334AscendAlcance de la aeronave273.5530.59834.000
6435TransitionAlcance de la aeronave633.4990.83034.000
6536ReachAlcance de la aeronave819.7800.578
66Skyeye 5000 VTOL octoAutonomía de la aeronave8.0001.00034.000
67Aerosonde® Mk. 4.8 VTOL FTUASVelocidad máxima (KIAS)41.6611.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
ResumenCantidad
68Integrator VTOLVelocidad máxima (KIAS)46.2690.5320Total de Valores Faltantes1356.000
69DeltaQuad EvoVelocidad máxima (KIAS)31.3120.865
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 1 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.15000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.150\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.770\n", + " vecino 'Volitation VT510' → sim_i: 0.770\n", + " vecino 'Reach' → sim_i: 0.795\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.770', '0.770', '0.795']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.778\n", + " Media de valores (y): 30.261\n", + " Coeficiente de variación (CV): 0.851\n", + " Dispersión: 2.247\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.504\n", + " Confianza final: 39.244%\n", + "✅ Valor imputado: 30.229 (conf 0.392, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: AAI Aerosonde - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.88, Objetivo: 0.57, d: 54.39%, g: -100.00, Bono: -0.05000\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 2.9, d: 10.34%, g: 94.70, Bono: 0.04735\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 1.7, d: 20.59%, g: -99.99, Bono: -0.04999\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': -0.05265\n", + "⚠️ Diferencia NaN para el parámetro 'Potencia específica (P/W)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 26.0, d: 92.31%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.053\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 2600' → sim_i: 0.664\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.664']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.664\n", + " Media de valores (y): 36.094\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.517%\n", + "✅ Valor imputado: 36.094 (conf 0.035, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 5.2, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: envergadura, Vecino: 4.8, Objetivo: 5.2, d: 7.69%, g: 96.72, Bono: 0.04836\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 1.2, d: 150.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5, Objetivo: 1.2, d: 108.33%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01457\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 24.0, d: 17.50%, g: 49.96, Bono: 0.02498\n", + " Parámetro: Autonomía de la aeronave, Vecino: 16.0, Objetivo: 24.0, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 36.0, d: 7.11%, g: 96.98, Bono: 0.04849\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 46.3, Objetivo: 36.0, d: 28.61%, g: -96.24, Bono: -0.04812\n", + " Bono total para 'prest': -0.01814\n", + " Bono geométrico: -0.015\n", + " Bono prestacional: -0.018\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 0.916\n", + " vecino 'RQ Nan 21A Blackjack' → sim_i: 0.859\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.916', '0.859']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.889\n", + " Media de valores (y): 30.571\n", + " Coeficiente de variación (CV): 0.789\n", + " Dispersión: 3.227\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.373\n", + " Confianza final: 33.168%\n", + "✅ Valor imputado: 30.466 (conf 0.332, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.1, Objetivo: 4.4, d: 29.55%, g: -95.56, Bono: -0.04778\n", + " Parámetro: envergadura, Vecino: 4.0, Objetivo: 4.4, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.71, Objetivo: 1.2, d: 42.50%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.4, Objetivo: 1.2, d: 100.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.09982\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 18.0, Objetivo: 6.0, d: 200.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 18.0, Objetivo: 6.0, d: 200.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 41.2, Objetivo: 36.0, d: 14.44%, g: 81.06, Bono: 0.04053\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 41.2, Objetivo: 36.0, d: 14.44%, g: 81.06, Bono: 0.04053\n", + " Bono total para 'prest': -0.01894\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.019\n", + " vecino 'ScanEagle' → sim_i: 0.262\n", + " vecino 'ScanEagle 3' → sim_i: 0.487\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.262', '0.487']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.408\n", + " Media de valores (y): 28.164\n", + " Coeficiente de variación (CV): 0.825\n", + " Dispersión: 2.461\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.384\n", + " Confianza final: 15.678%\n", + "✅ Valor imputado: 27.426 (conf 0.157, datos 2, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8, Objetivo: 4.8, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: envergadura, Vecino: 4.8, Objetivo: 4.8, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5, Objetivo: 2.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5, Objetivo: 2.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.19988\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 24.0, Objetivo: 19.0, d: 26.32%, g: -97.32, Bono: -0.04866\n", + " Parámetro: Autonomía de la aeronave, Vecino: 16.0, Objetivo: 19.0, d: 15.79%, g: 70.51, Bono: 0.03526\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 46.3, Objetivo: 46.3, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 46.3, Objetivo: 46.3, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': 0.08654\n", + " Bono geométrico: 0.200\n", + " Bono prestacional: 0.087\n", + " vecino 'Integrator' → sim_i: 1.236\n", + " vecino 'RQ Nan 21A Blackjack' → sim_i: 0.611\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.236', '0.611']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.029\n", + " Media de valores (y): 32.375\n", + " Coeficiente de variación (CV): 0.912\n", + " Dispersión: 1.422\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.410\n", + " Confianza final: 42.216%\n", + "✅ Valor imputado: 31.894 (conf 0.422, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad a la que se realiza el crucero (KTAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 2.615, Objetivo: 2.615, d: 0.00%, g: 99.94, Bono: 0.04997\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 5.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 3.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.18823\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 38.0, d: 10.53%, g: 94.45, Bono: 0.04723\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 38.0, d: 31.58%, g: -92.58, Bono: -0.04629\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 38.0, d: 7.89%, g: 96.63, Bono: 0.04831\n", + " Bono total para 'prest': 0.04925\n", + " Bono geométrico: 0.188\n", + " Bono prestacional: 0.049\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 1.062\n", + " vecino 'Volitation VT510' → sim_i: 1.062\n", + " vecino 'Reach' → sim_i: 1.029\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.062', '1.062', '1.029']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.051\n", + " Media de valores (y): 30.261\n", + " Coeficiente de variación (CV): 0.851\n", + " Dispersión: 2.247\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.504\n", + " Confianza final: 53.011%\n", + "✅ Valor imputado: 30.291 (conf 0.530, datos 3, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 5.2, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: envergadura, Vecino: 4.8, Objetivo: 5.2, d: 7.69%, g: 96.72, Bono: 0.04836\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 1.2, d: 150.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5, Objetivo: 1.2, d: 108.33%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01457\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 24.0, d: 17.50%, g: 49.96, Bono: 0.02498\n", + " Parámetro: Autonomía de la aeronave, Vecino: 16.0, Objetivo: 24.0, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 36.0, d: 7.11%, g: 96.98, Bono: 0.04849\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 46.3, Objetivo: 36.0, d: 28.61%, g: -96.24, Bono: -0.04812\n", + " Bono total para 'prest': -0.01814\n", + " Bono geométrico: -0.015\n", + " Bono prestacional: -0.018\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 0.916\n", + " vecino 'RQ Nan 21A Blackjack' → sim_i: 0.859\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.916', '0.859']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.889\n", + " Media de valores (y): 9110.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 9090.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.137\n", + " Confianza final: 12.136%\n", + "✅ Valor imputado: 9403.635 (conf 0.121, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.1, Objetivo: 4.4, d: 29.55%, g: -95.56, Bono: -0.04778\n", + " Parámetro: envergadura, Vecino: 4.0, Objetivo: 4.4, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.71, Objetivo: 1.2, d: 42.50%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.4, Objetivo: 1.2, d: 100.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.09982\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 18.0, Objetivo: 6.0, d: 200.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 18.0, Objetivo: 6.0, d: 200.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 41.2, Objetivo: 36.0, d: 14.44%, g: 81.06, Bono: 0.04053\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 41.2, Objetivo: 36.0, d: 14.44%, g: 81.06, Bono: 0.04053\n", + " Bono total para 'prest': -0.01894\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.019\n", + " vecino 'ScanEagle' → sim_i: 0.262\n", + " vecino 'ScanEagle 3' → sim_i: 0.487\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.262', '0.487']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.408\n", + " Media de valores (y): 9760.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 9740.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.137\n", + " Confianza final: 5.574%\n", + "✅ Valor imputado: 6839.145 (conf 0.056, datos 2, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2600 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.88, d: 35.23%, g: -75.44, Bono: -0.03772\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.6, d: 11.54%, g: 92.67, Bono: 0.04633\n", + " Parámetro: envergadura, Vecino: 3.0, Objetivo: 2.6, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 2.05, d: 17.07%, g: 55.96, Bono: 0.02798\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.3, Objetivo: 2.05, d: 12.20%, g: 91.03, Bono: 0.04551\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.11918\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 2.0, d: 1200.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 12.0, Objetivo: 2.0, d: 500.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 36.09414654431562, d: 39.39%, g: -14.71, Bono: -0.00736\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.10736\n", + " Bono geométrico: 0.119\n", + " Bono prestacional: -0.107\n", + " vecino 'AAI Aerosonde' → sim_i: 0.863\n", + " vecino 'Transition' → sim_i: 0.012\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.863', '0.012']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.851\n", + " Media de valores (y): 14000.000\n", + " Coeficiente de variación (CV): 0.857\n", + " Dispersión: 1000.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.394\n", + " Confianza final: 33.507%\n", + "✅ Valor imputado: 14972.956 (conf 0.335, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.2, Objetivo: 2.93, d: 9.22%, g: 95.83, Bono: 0.04791\n", + " Parámetro: envergadura, Vecino: 3.5, Objetivo: 2.93, d: 19.45%, g: 13.34, Bono: 0.00667\n", + " Parámetro: envergadura, Vecino: 3.9, Objetivo: 2.93, d: 33.11%, g: -87.92, Bono: -0.04396\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.0, Objetivo: 2.03, d: 50.74%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.88, Objetivo: 2.03, d: 7.39%, g: 96.86, Bono: 0.04843\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00905\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 3.0, d: 50.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.8, Objetivo: 3.0, d: 6.67%, g: 97.17, Bono: 0.04858\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 3.0, d: 50.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 26.250288395865905, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 26.250288395865905, d: 4.17%, g: 98.38, Bono: 0.04919\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 26.250288395865905, d: 4.17%, g: 98.38, Bono: 0.04919\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 30.0, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 30.0, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 30.0, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Bono total para 'prest': 0.22017\n", + " Bono geométrico: 0.009\n", + " Bono prestacional: 0.220\n", + " vecino 'V32' → sim_i: 0.873\n", + " vecino 'V35' → sim_i: 1.009\n", + " vecino 'V39' → sim_i: 1.009\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.873', '1.009', '1.009']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.968\n", + " Media de valores (y): 16000.000\n", + " Coeficiente de variación (CV): 1.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.549\n", + " Confianza final: 53.099%\n", + "✅ Valor imputado: 16000.000 (conf 0.531, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 VTOL - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.5, Objetivo: 3.6, d: 2.78%, g: 99.17, Bono: 0.04958\n", + " Parámetro: envergadura, Vecino: 6.5, Objetivo: 3.6, d: 80.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.88, Objetivo: 2.42, d: 22.31%, g: -99.42, Bono: -0.04971\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.02, Objetivo: 2.42, d: 16.53%, g: 62.74, Bono: 0.03137\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01875\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.8, Objetivo: 6.0, d: 53.33%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 15.0, Objetivo: 6.0, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 32.812860494832385, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 32.812860494832385, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': 0.06105\n", + " Bono geométrico: -0.019\n", + " Bono prestacional: 0.061\n", + " vecino 'V35' → sim_i: 0.042\n", + " vecino 'Volitation VT370' → sim_i: 0.992\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.042', '0.992']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.953\n", + " Media de valores (y): 16500.000\n", + " Coeficiente de variación (CV): 0.939\n", + " Dispersión: 500.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.418\n", + " Confianza final: 39.867%\n", + "✅ Valor imputado: 16959.092 (conf 0.399, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03832\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 14.0, Objetivo: 8.0, d: 75.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 8.0, d: 37.50%, g: -49.96, Bono: -0.02498\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 8.0, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 30.625336461843556, d: 7.14%, g: 96.96, Bono: 0.04848\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 30.625336461843556, d: 10.71%, g: 94.18, Bono: 0.04709\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 42.0, d: 19.05%, g: 22.32, Bono: 0.01116\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 42.0, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Bono total para 'prest': 0.01231\n", + " Bono geométrico: 0.038\n", + " Bono prestacional: 0.012\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.972\n", + " vecino 'Volitation VT510' → sim_i: 1.000\n", + " vecino 'Reach' → sim_i: 0.963\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.972', '1.000', '0.963']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.979\n", + " Media de valores (y): 16000.000\n", + " Coeficiente de variación (CV): 0.898\n", + " Dispersión: 816.497\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.518\n", + " Confianza final: 50.706%\n", + "✅ Valor imputado: 16009.436 (conf 0.507, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03832\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 38.0, d: 31.58%, g: -92.58, Bono: -0.04629\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 38.0, d: 7.89%, g: 96.63, Bono: 0.04831\n", + " Bono total para 'prest': 0.00202\n", + " Bono geométrico: 0.038\n", + " Bono prestacional: 0.002\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.841\n", + " vecino 'Volitation VT510' → sim_i: 0.865\n", + " vecino 'Reach' → sim_i: 0.832\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.841', '0.865', '0.832']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.846\n", + " Media de valores (y): 16000.000\n", + " Coeficiente de variación (CV): 0.898\n", + " Dispersión: 816.497\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.518\n", + " Confianza final: 43.846%\n", + "✅ Valor imputado: 16009.476 (conf 0.438, datos 3, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.870\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.870']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.870\n", + " Media de valores (y): 2.615\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.607%\n", + "✅ Valor imputado: 2.615 (conf 0.046, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8768, Objetivo: 3.0, d: 62.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5908, Objetivo: 1.2, d: 115.90%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.10000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 8.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Alcance de la aeronave, Vecino: 433.0, Objetivo: 800.0, d: 45.88%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 17.602373279430935, Objetivo: 30.406584058544677, d: 42.11%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 25.034211403264, Objetivo: 41.7, d: 39.97%, g: -0.88, Bono: -0.00044\n", + " Bono total para 'prest': -0.05047\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.050\n", + " vecino 'Stalker VXE30' → sim_i: 0.799\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.799']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.799\n", + " Media de valores (y): 1.158\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.235%\n", + "✅ Valor imputado: 1.158 (conf 0.042, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 5.2, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 1.2, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01293\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 24.0, d: 17.50%, g: 49.96, Bono: 0.02498\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 36.0, d: 7.11%, g: 96.98, Bono: 0.04849\n", + " Bono total para 'prest': 0.07347\n", + " Bono geométrico: -0.013\n", + " Bono prestacional: 0.073\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 1.010\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.010']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.010\n", + " Media de valores (y): 1.550\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.349%\n", + "✅ Valor imputado: 1.550 (conf 0.053, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.4, d: 25.00%, g: -97.93, Bono: -0.04897\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00141\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 18.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 25.7034073876187, d: 6.38%, g: 97.29, Bono: 0.04864\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 41.2, d: 18.84%, g: 26.66, Bono: 0.01333\n", + " Bono total para 'prest': 0.10952\n", + " Bono geométrico: -0.001\n", + " Bono prestacional: 0.110\n", + " vecino 'Aerosonde Mk. 4.7 Fixed Wing' → sim_i: 0.733\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.733']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.733\n", + " Media de valores (y): 1.550\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.885%\n", + "✅ Valor imputado: 1.550 (conf 0.039, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.8, d: 8.33%, g: 96.40, Bono: 0.04820\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.5, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.04820\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 16.0, d: 23.75%, g: -98.61, Bono: -0.04931\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 33.797246309677355, d: 19.09%, g: 21.34, Bono: 0.01067\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 46.3, d: 27.78%, g: -96.68, Bono: -0.04834\n", + " Bono total para 'prest': -0.08698\n", + " Bono geométrico: 0.048\n", + " Bono prestacional: -0.087\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 0.854\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.854']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.854\n", + " Media de valores (y): 1.550\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.526%\n", + "✅ Valor imputado: 1.550 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.2, d: 8.44%, g: 96.34, Bono: 0.04817\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.03, Objetivo: 1.0, d: 103.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00183\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 21.875240329888257, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.00448\n", + " Bono geométrico: -0.002\n", + " Bono prestacional: 0.004\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.194\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.194']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.194\n", + " Media de valores (y): 1.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 1.028%\n", + "✅ Valor imputado: 1.000 (conf 0.010, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.5, d: 16.29%, g: 65.47, Bono: 0.03274\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.03, Objetivo: 1.88, d: 7.98%, g: 96.58, Bono: 0.04829\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.08103\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 2.8, d: 7.14%, g: 96.96, Bono: 0.04848\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.14568\n", + " Bono geométrico: 0.081\n", + " Bono prestacional: 0.146\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 1.083\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.083']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.083\n", + " Media de valores (y): 1.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.736%\n", + "✅ Valor imputado: 1.000 (conf 0.057, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.9, d: 24.87%, g: -98.00, Bono: -0.04900\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04900\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.05371\n", + " Bono geométrico: -0.049\n", + " Bono prestacional: 0.054\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.585\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.585']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.585\n", + " Media de valores (y): 1.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.101%\n", + "✅ Valor imputado: 1.000 (conf 0.031, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.6, Objetivo: 6.5, d: 44.62%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.42, Objetivo: 2.02, d: 19.80%, g: 5.01, Bono: 0.00251\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04749\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 15.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.047\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 3600 VTOL' → sim_i: 0.852\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.852']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.852\n", + " Media de valores (y): 1.320\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.513%\n", + "✅ Valor imputado: 1.320 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 5.1, d: 1.96%, g: 99.59, Bono: 0.04979\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 2.905, d: 20.48%, g: -99.99, Bono: -0.04999\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00020\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 5.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 30.625336461843556, Objetivo: 32.812860494832385, d: 6.67%, g: 97.17, Bono: 0.04858\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 50.0, d: 16.00%, g: 68.46, Bono: 0.03423\n", + " Bono total para 'prest': 0.03281\n", + " Bono geométrico: -0.000\n", + " Bono prestacional: 0.033\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.982\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.982']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.982\n", + " Media de valores (y): 2.615\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.203%\n", + "✅ Valor imputado: 2.615 (conf 0.052, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.69, Objetivo: 2.0, d: 34.50%, g: -80.70, Bono: -0.04035\n", + " Parámetro: envergadura, Vecino: 2.15, Objetivo: 2.0, d: 7.50%, g: 96.81, Bono: 0.04840\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.75, Objetivo: 1.562, d: 51.98%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.93, Objetivo: 1.562, d: 40.46%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.09195\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.53, Objetivo: 6.0, d: 24.50%, g: -98.19, Bono: -0.04910\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 6.0, d: 50.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 18.090823752817585, Objetivo: 21.875240329888257, d: 17.30%, g: 52.85, Bono: 0.02643\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 19.68771629689943, Objetivo: 21.875240329888257, d: 10.00%, g: 95.11, Bono: 0.04755\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 30.0, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Bono total para 'prest': 0.02243\n", + " Bono geométrico: -0.092\n", + " Bono prestacional: 0.022\n", + " vecino 'DeltaQuad Evo' → sim_i: 0.615\n", + " vecino 'V21' → sim_i: 0.615\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.615', '0.615']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.615\n", + " Media de valores (y): 0.820\n", + " Coeficiente de variación (CV): 0.951\n", + " Dispersión: 0.020\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.422\n", + " Confianza final: 25.952%\n", + "✅ Valor imputado: 0.820 (conf 0.260, datos 2, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 3.0, d: 13.33%, g: 86.96, Bono: 0.04348\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 2.3, d: 10.87%, g: 93.93, Bono: 0.04697\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.09045\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 12.0, d: 83.33%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 36.09414654431562, Objetivo: 21.875240329888257, d: 65.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.10000\n", + " Bono geométrico: 0.090\n", + " Bono prestacional: -0.100\n", + " vecino 'Skyeye 2600' → sim_i: 0.571\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.571']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.571\n", + " Media de valores (y): 0.880\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.025%\n", + "✅ Valor imputado: 0.880 (conf 0.030, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 6.0, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 4.712, d: 25.72%, g: -97.58, Bono: -0.04879\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01823\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 20.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 30.625336461843556, Objetivo: 27.344050412360318, d: 12.00%, g: 91.56, Bono: 0.04578\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 35.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Bono total para 'prest': -0.00422\n", + " Bono geométrico: -0.018\n", + " Bono prestacional: -0.004\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.882\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.882']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.882\n", + " Media de valores (y): 2.615\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.674%\n", + "✅ Valor imputado: 2.615 (conf 0.047, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8768, Objetivo: 3.0, d: 62.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5908, Objetivo: 1.2, d: 115.90%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.10000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 8.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Alcance de la aeronave, Vecino: 433.0, Objetivo: 800.0, d: 45.88%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 17.602373279430935, Objetivo: 30.406584058544677, d: 42.11%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 25.034211403264, Objetivo: 41.7, d: 39.97%, g: -0.88, Bono: -0.00044\n", + " Bono total para 'prest': -0.05047\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.050\n", + " vecino 'Stalker VXE30' → sim_i: 0.799\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.799']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.799\n", + " Media de valores (y): 15.326\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.235%\n", + "✅ Valor imputado: 15.326 (conf 0.042, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 5.2, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 1.2, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01293\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 24.0, d: 17.50%, g: 49.96, Bono: 0.02498\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 36.0, d: 7.11%, g: 96.98, Bono: 0.04849\n", + " Bono total para 'prest': 0.07347\n", + " Bono geométrico: -0.013\n", + " Bono prestacional: 0.073\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 1.010\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.010']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.010\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.349%\n", + "✅ Valor imputado: 12.500 (conf 0.053, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.4, d: 25.00%, g: -97.93, Bono: -0.04897\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00141\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 18.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 25.7034073876187, d: 6.38%, g: 97.29, Bono: 0.04864\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 41.2, d: 18.84%, g: 26.66, Bono: 0.01333\n", + " Bono total para 'prest': 0.10952\n", + " Bono geométrico: -0.001\n", + " Bono prestacional: 0.110\n", + " vecino 'Aerosonde Mk. 4.7 Fixed Wing' → sim_i: 0.733\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.733']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.733\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.885%\n", + "✅ Valor imputado: 12.500 (conf 0.039, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.8, d: 8.33%, g: 96.40, Bono: 0.04820\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.5, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.04820\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 16.0, d: 23.75%, g: -98.61, Bono: -0.04931\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 33.797246309677355, d: 19.09%, g: 21.34, Bono: 0.01067\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 46.3, d: 27.78%, g: -96.68, Bono: -0.04834\n", + " Bono total para 'prest': -0.08698\n", + " Bono geométrico: 0.048\n", + " Bono prestacional: -0.087\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 0.854\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.854']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.854\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.526%\n", + "✅ Valor imputado: 12.500 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V21 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V25 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.52, d: 9.62%, g: 95.49, Bono: 0.04775\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.45, d: 18.37%, g: 35.68, Bono: 0.01784\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 0.93, d: 82.80%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.01558\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 4.0, d: 550.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.845724764736, Objetivo: 33.0, d: 6.53%, g: 97.23, Bono: 0.04861\n", + " Bono total para 'prest': -0.00139\n", + " Bono geométrico: 0.016\n", + " Bono prestacional: -0.001\n", + " vecino 'AAI Aerosonde' → sim_i: 0.700\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.700']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.700\n", + " Media de valores (y): 14.754\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.711%\n", + "✅ Valor imputado: 14.754 (conf 0.037, datos 1, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2600 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.88, d: 35.23%, g: -75.44, Bono: -0.03772\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.6, d: 11.54%, g: 92.67, Bono: 0.04633\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 2.05, d: 17.07%, g: 55.96, Bono: 0.02798\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03660\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 2.0, d: 1200.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.037\n", + " Bono prestacional: -0.050\n", + " vecino 'AAI Aerosonde' → sim_i: 0.837\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.837']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.837\n", + " Media de valores (y): 14.754\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.436%\n", + "✅ Valor imputado: 14.754 (conf 0.044, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 14.0, Objetivo: 8.0, d: 75.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.872\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.872']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.872\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.618%\n", + "✅ Valor imputado: 12.500 (conf 0.046, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': 0.00000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: 0.000\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.800\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.800']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.800\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.241%\n", + "✅ Valor imputado: 12.500 (conf 0.042, datos 1, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 14.0, Objetivo: 5.0, d: 180.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.872\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.872']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.872\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.618%\n", + "✅ Valor imputado: 12.500 (conf 0.046, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 14.0, Objetivo: 20.0, d: 30.00%, g: -95.11, Bono: -0.04755\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.04755\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.048\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 0.897\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.897']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.897\n", + " Media de valores (y): 12.500\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.755%\n", + "✅ Valor imputado: 12.500 (conf 0.048, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Longitud del fuselaje ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.15000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.150\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.770\n", + " vecino 'Volitation VT510' → sim_i: 0.770\n", + " vecino 'Reach' → sim_i: 0.795\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.770', '0.770', '0.795']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.778\n", + " Media de valores (y): 3.706\n", + " Coeficiente de variación (CV): 0.594\n", + " Dispersión: 0.752\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.427\n", + " Confianza final: 33.237%\n", + "✅ Valor imputado: 3.717 (conf 0.332, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Longitud del fuselaje ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Longitud del fuselaje ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.2, Objetivo: 3.9, d: 17.95%, g: 42.93, Bono: 0.02147\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.9, d: 24.87%, g: -98.00, Bono: -0.04900\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.02753\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 4.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 27.344050412360318, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.15365\n", + " Bono geométrico: -0.028\n", + " Bono prestacional: 0.154\n", + " vecino 'V32' → sim_i: 1.072\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.707\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.072', '0.707']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.927\n", + " Media de valores (y): 1.515\n", + " Coeficiente de variación (CV): 0.320\n", + " Dispersión: 0.515\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.233\n", + " Confianza final: 21.554%\n", + "✅ Valor imputado: 1.409 (conf 0.216, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.870\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.870']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.870\n", + " Media de valores (y): 800.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.607%\n", + "✅ Valor imputado: 800.000 (conf 0.046, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8, Objetivo: 4.8, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5, Objetivo: 2.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.09994\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.0, Objetivo: 24.0, d: 20.83%, g: -99.96, Bono: -0.04998\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 46.3, Objetivo: 46.3, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.00001\n", + " Bono geométrico: 0.100\n", + " Bono prestacional: -0.000\n", + " vecino 'Integrator Extended Range (ER)' → sim_i: 1.049\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.049']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.049\n", + " Media de valores (y): 500.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.559%\n", + "✅ Valor imputado: 500.000 (conf 0.056, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.2, Objetivo: 2.4, d: 50.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00245\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 18.0, d: 66.67%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 36.0, Objetivo: 41.2, d: 12.62%, g: 89.71, Bono: 0.04485\n", + " Bono total para 'prest': -0.00515\n", + " Bono geométrico: -0.002\n", + " Bono prestacional: -0.005\n", + " vecino 'Orbiter 3' → sim_i: 0.636\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.636']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.636\n", + " Media de valores (y): 50.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.370%\n", + "✅ Valor imputado: 50.000 (conf 0.034, datos 1, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V21 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.84, Objetivo: 0.8, d: 5.00%, g: 97.93, Bono: 0.04897\n", + " Parámetro: envergadura, Vecino: 2.69, Objetivo: 2.15, d: 25.12%, g: -97.87, Bono: -0.04894\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.75, Objetivo: 0.93, d: 19.35%, g: 15.60, Bono: 0.00780\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00783\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.53, Objetivo: 3.0, d: 51.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 18.090823752817585, Objetivo: 19.68771629689943, d: 8.11%, g: 96.52, Bono: 0.04826\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.00174\n", + " Bono geométrico: 0.008\n", + " Bono prestacional: -0.002\n", + " vecino 'DeltaQuad Evo' → sim_i: 0.956\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.956']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.956\n", + " Media de valores (y): 270.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.062%\n", + "✅ Valor imputado: 270.000 (conf 0.051, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V25 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.84, Objetivo: 0.52, d: 61.54%, g: -100.00, Bono: -0.05000\n", + " Parámetro: envergadura, Vecino: 2.69, Objetivo: 2.45, d: 9.80%, g: 95.32, Bono: 0.04766\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.75, Objetivo: 0.93, d: 19.35%, g: 15.60, Bono: 0.00780\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.00546\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.53, Objetivo: 4.0, d: 13.25%, g: 87.32, Bono: 0.04366\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 18.090823752817585, Objetivo: 21.875240329888257, d: 17.30%, g: 52.85, Bono: 0.02643\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': 0.07009\n", + " Bono geométrico: 0.005\n", + " Bono prestacional: 0.070\n", + " vecino 'DeltaQuad Evo' → sim_i: 0.076\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.076']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.076\n", + " Media de valores (y): 270.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 0.400%\n", + "✅ Valor imputado: 270.000 (conf 0.004, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.6, Objetivo: 6.5, d: 44.62%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.42, Objetivo: 2.02, d: 19.80%, g: 5.01, Bono: 0.00251\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04749\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 15.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.047\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 3600 VTOL' → sim_i: 0.852\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.852']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.852\n", + " Media de valores (y): 300.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.513%\n", + "✅ Valor imputado: 300.000 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2600 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.88, d: 35.23%, g: -75.44, Bono: -0.03772\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.6, d: 11.54%, g: 92.67, Bono: 0.04633\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 2.05, d: 17.07%, g: 55.96, Bono: 0.02798\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03660\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 2.0, d: 1200.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.037\n", + " Bono prestacional: -0.050\n", + " vecino 'AAI Aerosonde' → sim_i: 0.837\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.837']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.837\n", + " Media de valores (y): 3270.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.436%\n", + "✅ Valor imputado: 3270.000 (conf 0.044, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 2.615, Objetivo: 2.615, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 5.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 3.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.14991\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 38.0, d: 10.53%, g: 94.45, Bono: 0.04723\n", + " Bono total para 'prest': 0.04723\n", + " Bono geométrico: 0.150\n", + " Bono prestacional: 0.047\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 1.022\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.022']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.022\n", + " Media de valores (y): 800.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.412%\n", + "✅ Valor imputado: 800.000 (conf 0.054, datos 1, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 5.1, d: 1.96%, g: 99.59, Bono: 0.04979\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 2.905, d: 20.48%, g: -99.99, Bono: -0.04999\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00020\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 5.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 30.625336461843556, Objetivo: 32.812860494832385, d: 6.67%, g: 97.17, Bono: 0.04858\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 50.0, d: 16.00%, g: 68.46, Bono: 0.03423\n", + " Bono total para 'prest': 0.03281\n", + " Bono geométrico: -0.000\n", + " Bono prestacional: 0.033\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.982\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.982']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.982\n", + " Media de valores (y): 800.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.203%\n", + "✅ Valor imputado: 800.000 (conf 0.052, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.69, Objetivo: 2.0, d: 34.50%, g: -80.70, Bono: -0.04035\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.75, Objetivo: 1.562, d: 51.98%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.09035\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.53, Objetivo: 6.0, d: 24.50%, g: -98.19, Bono: -0.04910\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 18.090823752817585, Objetivo: 21.875240329888257, d: 17.30%, g: 52.85, Bono: 0.02643\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.02267\n", + " Bono geométrico: -0.090\n", + " Bono prestacional: -0.023\n", + " vecino 'DeltaQuad Evo' → sim_i: 0.572\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.572']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.572\n", + " Media de valores (y): 270.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.028%\n", + "✅ Valor imputado: 270.000 (conf 0.030, datos 1, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 6.0, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 4.712, d: 25.72%, g: -97.58, Bono: -0.04879\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01823\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 20.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 30.625336461843556, Objetivo: 27.344050412360318, d: 12.00%, g: 91.56, Bono: 0.04578\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 35.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Bono total para 'prest': -0.00422\n", + " Bono geométrico: -0.018\n", + " Bono prestacional: -0.004\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.882\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.882']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.882\n", + " Media de valores (y): 800.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.674%\n", + "✅ Valor imputado: 800.000 (conf 0.047, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Autonomía de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Autonomía de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: Área del ala, Vecino: 2.615, Objetivo: 2.615, d: 0.00%, g: 99.94, Bono: 0.04997\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'envergadura'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.0, Objetivo: 5.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Diferencia NaN para el parámetro 'Longitud del fuselaje'. Vecino: nan. Bono = 0.\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.5, Objetivo: 3.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.18823\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 42.0, Objetivo: 38.0, d: 10.53%, g: 94.45, Bono: 0.04723\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 38.0, d: 31.58%, g: -92.58, Bono: -0.04629\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 38.0, d: 7.89%, g: 96.63, Bono: 0.04831\n", + " Bono total para 'prest': 0.04925\n", + " Bono geométrico: 0.188\n", + " Bono prestacional: 0.049\n", + " vecino 'Aerosonde Mk. 4.8 VTOL FTUAS' → sim_i: 1.038\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 1.062\n", + " vecino 'Volitation VT510' → sim_i: 1.062\n", + " vecino 'Reach' → sim_i: 1.029\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.038', '1.062', '1.062', '1.029']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.048\n", + " Media de valores (y): 11.750\n", + " Coeficiente de variación (CV): 0.019\n", + " Dispersión: 5.761\n", + " Penalización por cantidad de vecinos (k): 0.530\n", + " Confianza en base a la calidad y cantidad de datos: 0.376\n", + " Confianza final: 39.457%\n", + "✅ Valor imputado: 11.673 (conf 0.395, datos 4, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.15000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.150\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.770\n", + " vecino 'Volitation VT510' → sim_i: 0.770\n", + " vecino 'Reach' → sim_i: 0.795\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.770', '0.770', '0.795']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.778\n", + " Media de valores (y): 42.333\n", + " Coeficiente de variación (CV): 0.710\n", + " Dispersión: 6.128\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.462\n", + " Confianza final: 35.952%\n", + "✅ Valor imputado: 42.253 (conf 0.360, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.8, Objetivo: 0.84, d: 4.76%, g: 98.05, Bono: 0.04903\n", + " Parámetro: envergadura, Vecino: 2.15, Objetivo: 2.69, d: 20.07%, g: -99.96, Bono: -0.04998\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.93, Objetivo: 0.75, d: 24.00%, g: -98.47, Bono: -0.04924\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.05019\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.53, d: 33.77%, g: -84.88, Bono: -0.04244\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 19.68771629689943, Objetivo: 18.090823752817585, d: 8.83%, g: 96.11, Bono: 0.04805\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': 0.00561\n", + " Bono geométrico: -0.050\n", + " Bono prestacional: 0.006\n", + " vecino 'V21' → sim_i: 0.905\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.905']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.905\n", + " Media de valores (y): 33.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.794%\n", + "✅ Valor imputado: 33.000 (conf 0.048, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2600 - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.88, d: 35.23%, g: -75.44, Bono: -0.03772\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.6, d: 11.54%, g: 92.67, Bono: 0.04633\n", + " Parámetro: envergadura, Vecino: 3.0, Objetivo: 2.6, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 2.05, d: 17.07%, g: 55.96, Bono: 0.02798\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.3, Objetivo: 2.05, d: 12.20%, g: 91.03, Bono: 0.04551\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.11918\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 2.0, d: 1200.00%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 12.0, Objetivo: 2.0, d: 500.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 36.09414654431562, d: 39.39%, g: -14.71, Bono: -0.00736\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.10736\n", + " Bono geométrico: 0.119\n", + " Bono prestacional: -0.107\n", + " vecino 'AAI Aerosonde' → sim_i: 0.863\n", + " vecino 'Transition' → sim_i: 0.012\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.863', '0.012']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.851\n", + " Media de valores (y): 30.423\n", + " Coeficiente de variación (CV): 0.972\n", + " Dispersión: 0.423\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.428\n", + " Confianza final: 36.444%\n", + "✅ Valor imputado: 30.834 (conf 0.364, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.10000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.100\n", + " vecino 'Volitation VT510' → sim_i: 0.820\n", + " vecino 'Reach' → sim_i: 0.845\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.820', '0.845']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.833\n", + " Media de valores (y): 19.000\n", + " Coeficiente de variación (CV): 0.368\n", + " Dispersión: 6.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.247\n", + " Confianza final: 20.573%\n", + "✅ Valor imputado: 18.907 (conf 0.206, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: AAI Aerosonde - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.88, Objetivo: 0.57, d: 54.39%, g: -100.00, Bono: -0.05000\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 2.9, d: 10.34%, g: 94.70, Bono: 0.04735\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 1.7, d: 20.59%, g: -99.99, Bono: -0.04999\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': -0.05265\n", + "⚠️ Diferencia NaN para el parámetro 'Potencia específica (P/W)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 26.0, d: 92.31%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.053\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 2600' → sim_i: 0.664\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.664']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.664\n", + " Media de valores (y): 10.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.517%\n", + "✅ Valor imputado: 10.000 (conf 0.035, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.8, Objetivo: 0.84, d: 4.76%, g: 98.05, Bono: 0.04903\n", + " Parámetro: envergadura, Vecino: 2.15, Objetivo: 2.69, d: 20.07%, g: -99.96, Bono: -0.04998\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.93, Objetivo: 0.75, d: 24.00%, g: -98.47, Bono: -0.04924\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.05019\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.53, d: 33.77%, g: -84.88, Bono: -0.04244\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 19.68771629689943, Objetivo: 18.090823752817585, d: 8.83%, g: 96.11, Bono: 0.04805\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': 0.00561\n", + " Bono geométrico: -0.050\n", + " Bono prestacional: 0.006\n", + " vecino 'V21' → sim_i: 0.905\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.905']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.905\n", + " Media de valores (y): 14.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.794%\n", + "✅ Valor imputado: 14.000 (conf 0.048, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.5, d: 16.29%, g: 65.47, Bono: 0.03274\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.03, Objetivo: 1.88, d: 7.98%, g: 96.58, Bono: 0.04829\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.08103\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 2.8, d: 7.14%, g: 96.96, Bono: 0.04848\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.14568\n", + " Bono geométrico: 0.081\n", + " Bono prestacional: 0.146\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 1.083\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.083']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.083\n", + " Media de valores (y): 18.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.736%\n", + "✅ Valor imputado: 18.000 (conf 0.057, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.2, Objetivo: 3.9, d: 17.95%, g: 42.93, Bono: 0.02147\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.9, d: 24.87%, g: -98.00, Bono: -0.04900\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.02753\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 4.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 27.344050412360318, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.15365\n", + " Bono geométrico: -0.028\n", + " Bono prestacional: 0.154\n", + " vecino 'V32' → sim_i: 1.072\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.707\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.072', '0.707']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.927\n", + " Media de valores (y): 17.500\n", + " Coeficiente de variación (CV): 0.943\n", + " Dispersión: 0.500\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.419\n", + " Confianza final: 38.865%\n", + "✅ Valor imputado: 17.397 (conf 0.389, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.6, Objetivo: 6.5, d: 44.62%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.42, Objetivo: 2.02, d: 19.80%, g: 5.01, Bono: 0.00251\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04749\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 15.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.047\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 3600 VTOL' → sim_i: 0.852\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.852']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.852\n", + " Media de valores (y): 24.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.513%\n", + "✅ Valor imputado: 24.000 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03832\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 8.0, d: 37.50%, g: -49.96, Bono: -0.02498\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 8.0, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 30.625336461843556, d: 7.14%, g: 96.96, Bono: 0.04848\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 30.625336461843556, d: 10.71%, g: 94.18, Bono: 0.04709\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 42.0, d: 19.05%, g: 22.32, Bono: 0.01116\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 42.0, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Bono total para 'prest': 0.06231\n", + " Bono geométrico: 0.038\n", + " Bono prestacional: 0.062\n", + " vecino 'Volitation VT510' → sim_i: 1.050\n", + " vecino 'Reach' → sim_i: 1.013\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.050', '1.013']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.032\n", + " Media de valores (y): 19.000\n", + " Coeficiente de variación (CV): 0.368\n", + " Dispersión: 6.000\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.247\n", + " Confianza final: 25.490%\n", + "✅ Valor imputado: 19.109 (conf 0.255, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Volitation VT510' → sim_i: 0.870\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.870']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.870\n", + " Media de valores (y): 25.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.607%\n", + "✅ Valor imputado: 25.000 (conf 0.046, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: AAI Aerosonde - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.88, Objetivo: 0.57, d: 54.39%, g: -100.00, Bono: -0.05000\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 2.9, d: 10.34%, g: 94.70, Bono: 0.04735\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 1.7, d: 20.59%, g: -99.99, Bono: -0.04999\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': -0.05265\n", + "⚠️ Diferencia NaN para el parámetro 'Potencia específica (P/W)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 26.0, d: 92.31%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.053\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 2600' → sim_i: 0.664\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.664']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.664\n", + " Media de valores (y): 10.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.517%\n", + "✅ Valor imputado: 10.000 (conf 0.035, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.8, Objetivo: 0.84, d: 4.76%, g: 98.05, Bono: 0.04903\n", + " Parámetro: envergadura, Vecino: 2.15, Objetivo: 2.69, d: 20.07%, g: -99.96, Bono: -0.04998\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.93, Objetivo: 0.75, d: 24.00%, g: -98.47, Bono: -0.04924\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.05019\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.53, d: 33.77%, g: -84.88, Bono: -0.04244\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 19.68771629689943, Objetivo: 18.090823752817585, d: 8.83%, g: 96.11, Bono: 0.04805\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': 0.00561\n", + " Bono geométrico: -0.050\n", + " Bono prestacional: 0.006\n", + " vecino 'V21' → sim_i: 0.905\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.905']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.905\n", + " Media de valores (y): 14.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.794%\n", + "✅ Valor imputado: 14.000 (conf 0.048, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.5, d: 16.29%, g: 65.47, Bono: 0.03274\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.03, Objetivo: 1.88, d: 7.98%, g: 96.58, Bono: 0.04829\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.08103\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 2.8, d: 7.14%, g: 96.96, Bono: 0.04848\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.14568\n", + " Bono geométrico: 0.081\n", + " Bono prestacional: 0.146\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 1.083\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.083']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.083\n", + " Media de valores (y): 18.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.736%\n", + "✅ Valor imputado: 18.000 (conf 0.057, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.2, Objetivo: 3.9, d: 17.95%, g: 42.93, Bono: 0.02147\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.9, d: 24.87%, g: -98.00, Bono: -0.04900\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.02753\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 4.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 27.344050412360318, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.15365\n", + " Bono geométrico: -0.028\n", + " Bono prestacional: 0.154\n", + " vecino 'V32' → sim_i: 1.072\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.707\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.072', '0.707']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.927\n", + " Media de valores (y): 17.500\n", + " Coeficiente de variación (CV): 0.943\n", + " Dispersión: 0.500\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.419\n", + " Confianza final: 38.865%\n", + "✅ Valor imputado: 17.397 (conf 0.389, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.6, Objetivo: 6.5, d: 44.62%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.42, Objetivo: 2.02, d: 19.80%, g: 5.01, Bono: 0.00251\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04749\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 15.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.047\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 3600 VTOL' → sim_i: 0.852\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.852']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.852\n", + " Media de valores (y): 24.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.513%\n", + "✅ Valor imputado: 24.000 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.07825\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 8.0, d: 37.50%, g: -49.96, Bono: -0.02498\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 30.625336461843556, d: 7.14%, g: 96.96, Bono: 0.04848\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 42.0, d: 19.05%, g: 22.32, Bono: 0.01116\n", + " Bono total para 'prest': 0.03466\n", + " Bono geométrico: 0.078\n", + " Bono prestacional: 0.035\n", + " vecino 'Volitation VT510' → sim_i: 1.062\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.062']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.062\n", + " Media de valores (y): 25.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.628%\n", + "✅ Valor imputado: 25.000 (conf 0.056, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 5.0, d: 2.00%, g: 99.57, Bono: 0.04979\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 3.5, d: 17.00%, g: 56.93, Bono: 0.02847\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.07825\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Autonomía de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 38.0, d: 31.58%, g: -92.58, Bono: -0.04629\n", + " Bono total para 'prest': -0.04629\n", + " Bono geométrico: 0.078\n", + " Bono prestacional: -0.046\n", + " vecino 'Volitation VT510' → sim_i: 0.856\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.856']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.856\n", + " Media de valores (y): 25.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.537%\n", + "✅ Valor imputado: 25.000 (conf 0.045, datos 1, familia F1)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.15, Objetivo: 2.0, d: 7.50%, g: 96.81, Bono: 0.04840\n", + " Parámetro: Longitud del fuselaje, Vecino: 0.93, Objetivo: 1.562, d: 40.46%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00160\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 6.0, d: 50.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 19.68771629689943, Objetivo: 21.875240329888257, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 30.0, d: 10.00%, g: 95.11, Bono: 0.04755\n", + " Bono total para 'prest': 0.04511\n", + " Bono geométrico: -0.002\n", + " Bono prestacional: 0.045\n", + " vecino 'V21' → sim_i: 0.728\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.728']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.728\n", + " Media de valores (y): 14.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.857%\n", + "✅ Valor imputado: 14.000 (conf 0.039, datos 1, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 3.0, d: 13.33%, g: 86.96, Bono: 0.04348\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 2.3, d: 10.87%, g: 93.93, Bono: 0.04697\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.09045\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 12.0, d: 83.33%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 36.09414654431562, Objetivo: 21.875240329888257, d: 65.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.10000\n", + " Bono geométrico: 0.090\n", + " Bono prestacional: -0.100\n", + " vecino 'Skyeye 2600' → sim_i: 0.571\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.571']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.571\n", + " Media de valores (y): 10.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.025%\n", + "✅ Valor imputado: 10.000 (conf 0.030, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 5.1, Objetivo: 6.0, d: 15.00%, g: 77.21, Bono: 0.03861\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.905, Objetivo: 4.712, d: 38.35%, g: -36.01, Bono: -0.01801\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.02060\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 20.0, d: 75.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 50.0, Objetivo: 35.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + " Bono total para 'prest': -0.14997\n", + " Bono geométrico: 0.021\n", + " Bono prestacional: -0.150\n", + " vecino 'Volitation VT510' → sim_i: 0.775\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.775']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.775\n", + " Media de valores (y): 25.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.107%\n", + "✅ Valor imputado: 25.000 (conf 0.041, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - envergadura ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 5.0, Objetivo: 14.0, d: 64.29%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.15000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.150\n", + " vecino 'Skyeye 5000 VTOL' → sim_i: 0.770\n", + " vecino 'Volitation VT510' → sim_i: 0.770\n", + " vecino 'Reach' → sim_i: 0.795\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.770', '0.770', '0.795']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.778\n", + " Media de valores (y): 5.367\n", + " Coeficiente de variación (CV): 0.832\n", + " Dispersión: 0.450\n", + " Penalización por cantidad de vecinos (k): 0.355\n", + " Confianza en base a la calidad y cantidad de datos: 0.499\n", + " Confianza final: 38.799%\n", + "✅ Valor imputado: 5.374 (conf 0.388, datos 3, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - envergadura ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8768, Objetivo: 3.0, d: 62.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5908, Objetivo: 1.2, d: 115.90%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.10000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 8.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Alcance de la aeronave, Vecino: 433.0, Objetivo: 800.0, d: 45.88%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 17.602373279430935, Objetivo: 30.406584058544677, d: 42.11%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 25.034211403264, Objetivo: 41.7, d: 39.97%, g: -0.88, Bono: -0.00044\n", + " Bono total para 'prest': -0.05047\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.050\n", + " vecino 'Stalker VXE30' → sim_i: 0.799\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.799']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.799\n", + " Media de valores (y): 0.318\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.235%\n", + "✅ Valor imputado: 0.318 (conf 0.042, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 5.2, d: 15.38%, g: 74.14, Bono: 0.03707\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 1.2, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.01293\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 24.0, d: 17.50%, g: 49.96, Bono: 0.02498\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 36.0, d: 7.11%, g: 96.98, Bono: 0.04849\n", + " Bono total para 'prest': 0.07347\n", + " Bono geométrico: -0.013\n", + " Bono prestacional: 0.073\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 1.010\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.010']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.010\n", + " Media de valores (y): 0.352\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.349%\n", + "✅ Valor imputado: 0.352 (conf 0.053, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.4, d: 25.00%, g: -97.93, Bono: -0.04897\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.00141\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 18.0, d: 10.00%, g: 95.10, Bono: 0.04755\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 25.7034073876187, d: 6.38%, g: 97.29, Bono: 0.04864\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 41.2, d: 18.84%, g: 26.66, Bono: 0.01333\n", + " Bono total para 'prest': 0.10952\n", + " Bono geométrico: -0.001\n", + " Bono prestacional: 0.110\n", + " vecino 'Aerosonde Mk. 4.7 Fixed Wing' → sim_i: 0.733\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.733']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.733\n", + " Media de valores (y): 0.352\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.885%\n", + "✅ Valor imputado: 0.352 (conf 0.039, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.4, Objetivo: 4.8, d: 8.33%, g: 96.40, Bono: 0.04820\n", + " Parámetro: Longitud del fuselaje, Vecino: 3.0, Objetivo: 2.5, d: 20.00%, g: 0.00, Bono: 0.00000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.04820\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 19.8, Objetivo: 16.0, d: 23.75%, g: -98.61, Bono: -0.04931\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 33.797246309677355, d: 19.09%, g: 21.34, Bono: 0.01067\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.43886, Objetivo: 46.3, d: 27.78%, g: -96.68, Bono: -0.04834\n", + " Bono total para 'prest': -0.08698\n", + " Bono geométrico: 0.048\n", + " Bono prestacional: -0.087\n", + " vecino 'Aerosonde Mk. 4.8 Fixed wing' → sim_i: 0.854\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.854']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.854\n", + " Media de valores (y): 0.352\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.526%\n", + "✅ Valor imputado: 0.352 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V21 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V25 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.52, d: 9.62%, g: 95.49, Bono: 0.04775\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.45, d: 18.37%, g: 35.68, Bono: 0.01784\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 0.93, d: 82.80%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.01558\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 4.0, d: 550.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.845724764736, Objetivo: 33.0, d: 6.53%, g: 97.23, Bono: 0.04861\n", + " Bono total para 'prest': -0.00139\n", + " Bono geométrico: 0.016\n", + " Bono prestacional: -0.001\n", + " vecino 'AAI Aerosonde' → sim_i: 0.700\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.700']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.700\n", + " Media de valores (y): 0.197\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.711%\n", + "✅ Valor imputado: 0.197 (conf 0.037, datos 1, familia F2)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2600 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.57, Objetivo: 0.88, d: 35.23%, g: -75.44, Bono: -0.03772\n", + " Parámetro: envergadura, Vecino: 2.9, Objetivo: 2.6, d: 11.54%, g: 92.67, Bono: 0.04633\n", + " Parámetro: Longitud del fuselaje, Vecino: 1.7, Objetivo: 2.05, d: 17.07%, g: 55.96, Bono: 0.02798\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.03660\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 26.0, Objetivo: 2.0, d: 1200.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad a la que se realiza el crucero (KTAS)'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.037\n", + " Bono prestacional: -0.050\n", + " vecino 'AAI Aerosonde' → sim_i: 0.837\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.837']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.837\n", + " Media de valores (y): 0.197\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.436%\n", + "✅ Valor imputado: 0.197 (conf 0.044, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: AAI Aerosonde - payload ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + " Parámetro: Área del ala, Vecino: 0.88, Objetivo: 0.57, d: 54.39%, g: -100.00, Bono: -0.05000\n", + " Parámetro: envergadura, Vecino: 2.6, Objetivo: 2.9, d: 10.34%, g: 94.70, Bono: 0.04735\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.05, Objetivo: 1.7, d: 20.59%, g: -99.99, Bono: -0.04999\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': -0.05265\n", + "⚠️ Diferencia NaN para el parámetro 'Potencia específica (P/W)'. Vecino: nan. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 2.0, Objetivo: 26.0, d: 92.31%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Velocidad máxima (KIAS)'. Vecino: nan. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.053\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 2600' → sim_i: 0.664\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.664']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.664\n", + " Media de valores (y): 4.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 3.517%\n", + "✅ Valor imputado: 4.000 (conf 0.035, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - payload ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8768, Objetivo: 3.0, d: 62.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5908, Objetivo: 1.2, d: 115.90%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.10000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 8.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Alcance de la aeronave, Vecino: 433.0, Objetivo: 800.0, d: 45.88%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 17.602373279430935, Objetivo: 30.406584058544677, d: 42.11%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 25.034211403264, Objetivo: 41.7, d: 39.97%, g: -0.88, Bono: -0.00044\n", + " Bono total para 'prest': -0.05047\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.050\n", + " vecino 'Stalker VXE30' → sim_i: 0.799\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.799']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.799\n", + " Media de valores (y): 2.495\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.235%\n", + "✅ Valor imputado: 2.495 (conf 0.042, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - payload ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'envergadura' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Diferencia NaN para el parámetro 'Relación de aspecto del ala'. Vecino: nan. Bono = 0.\n", + " Bono total para 'geom': 0.00000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 14.0, d: 42.86%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad a la que se realiza el crucero (KTAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Velocidad máxima (KIAS)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: 0.000\n", + " Bono prestacional: -0.050\n", + " vecino 'Reach' → sim_i: 0.895\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.895']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.895\n", + " Media de valores (y): 31.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.743%\n", + "✅ Valor imputado: 31.000 (conf 0.047, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 4.8768, Objetivo: 3.0, d: 62.56%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.5908, Objetivo: 1.2, d: 115.90%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.10000\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 8.0, Objetivo: 8.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Alcance de la aeronave, Vecino: 433.0, Objetivo: 800.0, d: 45.88%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 17.602373279430935, Objetivo: 30.406584058544677, d: 42.11%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 25.034211403264, Objetivo: 41.7, d: 39.97%, g: -0.88, Bono: -0.00044\n", + " Bono total para 'prest': -0.05047\n", + " Bono geométrico: -0.100\n", + " Bono prestacional: -0.050\n", + " vecino 'Stalker VXE30' → sim_i: 0.799\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.799']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.799\n", + " Media de valores (y): 17.463\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.235%\n", + "✅ Valor imputado: 17.463 (conf 0.042, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.5, d: 16.29%, g: 65.47, Bono: 0.03274\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.03, Objetivo: 1.88, d: 7.98%, g: 96.58, Bono: 0.04829\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': 0.08103\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 2.8, d: 7.14%, g: 96.96, Bono: 0.04848\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.14568\n", + " Bono geométrico: 0.081\n", + " Bono prestacional: 0.146\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 1.083\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.083']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 1.083\n", + " Media de valores (y): 7.100\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 5.736%\n", + "✅ Valor imputado: 7.100 (conf 0.057, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.2, Objetivo: 3.9, d: 17.95%, g: 42.93, Bono: 0.02147\n", + " Parámetro: envergadura, Vecino: 2.93, Objetivo: 3.9, d: 24.87%, g: -98.00, Bono: -0.04900\n", + "⚠️ Parámetro 'Longitud del fuselaje' no tiene valor en la aeronave objetivo. Bono = 0.\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.02753\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 4.5, Objetivo: 4.5, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Autonomía de la aeronave, Vecino: 3.0, Objetivo: 4.5, d: 33.33%, g: -86.96, Bono: -0.04348\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 21.875240329888257, Objetivo: 27.344050412360318, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 26.250288395865905, Objetivo: 27.344050412360318, d: 4.00%, g: 98.47, Bono: 0.04924\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 30.0, Objetivo: 33.0, d: 9.09%, g: 95.92, Bono: 0.04796\n", + " Bono total para 'prest': 0.15365\n", + " Bono geométrico: -0.028\n", + " Bono prestacional: 0.154\n", + " vecino 'V32' → sim_i: 1.072\n", + " vecino 'Skyeye 2930 VTOL' → sim_i: 0.707\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.072', '0.707']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.927\n", + " Media de valores (y): 6.775\n", + " Coeficiente de variación (CV): 0.904\n", + " Dispersión: 0.325\n", + " Penalización por cantidad de vecinos (k): 0.195\n", + " Confianza en base a la calidad y cantidad de datos: 0.408\n", + " Confianza final: 37.786%\n", + "✅ Valor imputado: 6.708 (conf 0.378, datos 2, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 3.6, Objetivo: 6.5, d: 44.62%, g: -100.00, Bono: -0.05000\n", + " Parámetro: Longitud del fuselaje, Vecino: 2.42, Objetivo: 2.02, d: 19.80%, g: 5.01, Bono: 0.00251\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.04749\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 6.0, Objetivo: 15.0, d: 60.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 32.812860494832385, Objetivo: 27.344050412360318, d: 20.00%, g: -99.94, Bono: -0.04997\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 33.0, Objetivo: 33.0, d: 0.00%, g: 99.94, Bono: 0.04997\n", + " Bono total para 'prest': -0.05000\n", + " Bono geométrico: -0.047\n", + " Bono prestacional: -0.050\n", + " vecino 'Skyeye 3600 VTOL' → sim_i: 0.852\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.852']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.852\n", + " Media de valores (y): 11.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.513%\n", + "✅ Valor imputado: 11.000 (conf 0.045, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Diferencia NaN para el parámetro 'Área del ala'. Vecino: nan. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.0, d: 20.00%, g: 0.00, Bono: 0.00000\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 3.5, d: 34.63%, g: -79.86, Bono: -0.03993\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.03993\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 8.0, d: 150.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Diferencia NaN para el parámetro 'Alcance de la aeronave'. Vecino: nan. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 30.625336461843556, d: 10.71%, g: 94.18, Bono: 0.04709\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 42.0, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Bono total para 'prest': 0.02765\n", + " Bono geométrico: -0.040\n", + " Bono prestacional: 0.028\n", + " vecino 'Reach' → sim_i: 0.900\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.900']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.900\n", + " Media de valores (y): 31.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.766%\n", + "✅ Valor imputado: 31.000 (conf 0.048, datos 1, familia F0)\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: envergadura, Vecino: 6.0, Objetivo: 5.1, d: 17.65%, g: 47.74, Bono: 0.02387\n", + " Parámetro: Longitud del fuselaje, Vecino: 4.712, Objetivo: 2.905, d: 62.20%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Relación de aspecto del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Bono total para 'geom': -0.02613\n", + "⚠️ Parámetro 'Potencia específica (P/W)' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Autonomía de la aeronave, Vecino: 20.0, Objetivo: 5.0, d: 300.00%, g: -100.00, Bono: -0.05000\n", + "⚠️ Parámetro 'Alcance de la aeronave' no tiene valor en la aeronave objetivo. Bono = 0.\n", + " Parámetro: Velocidad a la que se realiza el crucero (KTAS), Vecino: 27.344050412360318, Objetivo: 32.812860494832385, d: 16.67%, g: 61.11, Bono: 0.03056\n", + " Parámetro: Velocidad máxima (KIAS), Vecino: 35.0, Objetivo: 50.0, d: 30.00%, g: -95.11, Bono: -0.04755\n", + " Bono total para 'prest': -0.06700\n", + " Bono geométrico: -0.026\n", + " Bono prestacional: -0.067\n", + " vecino 'Reach' → sim_i: 0.819\n", + "\n", + "Detalles del cálculo de confianza:\n", + " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['0.819']\n", + " Promedio ponderado de confianza de similitud de aeronaves: 0.819\n", + " Media de valores (y): 31.000\n", + " Coeficiente de variación (CV): 0.000\n", + " Dispersión: 0.000\n", + " Penalización por cantidad de vecinos (k): 0.076\n", + " Confianza en base a la calidad y cantidad de datos: 0.053\n", + " Confianza final: 4.338%\n", + "✅ Valor imputado: 31.000 (conf 0.043, datos 1, familia F0)\n", + "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 1 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
70DeltaQuad Pro #MAPVelocidad máxima (KIAS)25.9100.600
71DeltaQuad Pro #CARGOVelocidad máxima (KIAS)25.9100.600
72Skyeye 2600Velocidad máxima (KIAS)24.7010.826
73Skyeye 3600Velocidad máxima (KIAS)34.1791.000
74Stalker XEVelocidad de pérdida (KCAS)12.7220.838
75Stalker VXE30Velocidad de pérdida (KCAS)12.6810.579
76Aerosonde® Mk. 4.7 Fixed WingVelocidad de pérdida (KCAS)23.6870.599
77Aerosonde® Mk. 4.8 VTOL FTUASVelocidad de pérdida (KCAS)19.6651.000
78AAI AerosondeVelocidad de pérdida (KCAS)12.8430.837
79Fulmar XVelocidad de pérdida (KCAS)12.6750.578
80Orbiter 3Velocidad de pérdida (KCAS)14.7730.815
81ScanEagleVelocidad de pérdida (KCAS)16.5190.949
82ScanEagle 3Velocidad de pérdida (KCAS)24.6120.577
83DeltaQuad EvoVelocidad de pérdida (KCAS)13.4190.857
84V35Velocidad de pérdida (KCAS)14.7730.815
85V39Velocidad de pérdida (KCAS)16.9110.613
86Volitation VT370Velocidad de pérdida (KCAS)24.0000.622
87Skyeye 5000 VTOLVelocidad de pérdida (KCAS)19.3121.000
88Aerosonde® Mk. 4.8 VTOL FTUASenvergadura5.0941.000
89Integrator VTOLenvergadura4.7970.532
90Fulmar XCuerda0.3180.621
91Orbiter 4Cuerda0.3500.523
92V25Cuerda0.2220.841
93Volitation VT370Cuerda0.3570.597
94Skyeye 2600Cuerda0.2120.806
95Skyeye 3600 VTOLCuerda0.3570.597
96TransitionCuerda0.3270.574
97AAI Aerosondepayload2.5190.952
98Fulmar Xpayload1.9780.862
99Mantispayload1.1860.509
100Aerosonde® Mk. 4.7 Fixed WingEmpty weight10.8570.599
101Aerosonde® Mk. 4.8 VTOL FTUASEmpty weight31.7420.951
102Fulmar XEmpty weight11.5550.863
103Orbiter 3Empty weight9.0090.820
104ScanEagleEmpty weight7.2000.955
105ScanEagle 3Empty weight11.2800.577
106V35Empty weight9.0090.820
107V39Empty weight6.4160.613
108Volitation VT370Empty weight11.0000.622
109Skyeye 5000 VTOLEmpty weight31.2000.912
110Volitation VT510Empty weight31.2000.912
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 1 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\n", - "=== DataFrame inicial ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -17628,46 +18607,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -18077,7 +19016,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18085,7 +19024,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18228,6 +19167,46 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18708,7 +19687,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18828,7 +19807,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18868,7 +19847,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19028,6 +20007,246 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19268,7 +20487,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19588,47 +20807,7 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19730,7 +20909,7 @@ "

Tabla de Correlaciones con todos los parametros(tabla_completa)

ModeloStalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
0.0
Tasa de ascensoNaNNaNNaNNaNNaNNaN2.49936NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN5.0NaN5.0NaNNaNNaNNaNNaNNaNNaN5.0NaNNaNNaN
Altitud a la que se realiza el crucero6000.06000.0NaN3270.0800.0150.0NaN50.025.0NaNNaN500.0NaN92.6NaN270.0100.0100.013.0
Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Radio de giroNaNNaNNaN
Potencia/PesoPotencia específica (P/W)NaNNaNNaNNaN
Potencia(W)Potencia WattsNaNNaN2980.0NaN
Potencia(HP)Potencia HPNaNNaN4.0NaN
Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Dimensiones de la bahía de carga útilNaNNaNNaN
DespegueDespegue todos los tiposNaNNaNNaNNaN
EmpresaNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
kjbkindice_desconocidoNaNNaNNaN
\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19757,6 +20936,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19788,6 +21008,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19801,7 +21027,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19817,6 +21043,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19830,7 +21062,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19846,6 +21078,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19859,7 +21097,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19875,6 +21113,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19904,6 +21148,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19933,6 +21183,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19962,6 +21218,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19975,7 +21237,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -19991,6 +21253,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20020,6 +21288,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20033,7 +21307,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20049,35 +21323,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20091,7 +21377,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20107,6 +21393,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20120,7 +21412,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20136,6 +21428,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20165,6 +21463,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20178,7 +21482,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20194,6 +21498,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20223,6 +21533,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20236,7 +21552,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20252,6 +21568,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20281,6 +21603,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20294,7 +21622,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20310,6 +21638,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20339,6 +21673,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20368,6 +21708,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20397,6 +21743,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20410,7 +21762,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20426,6 +21778,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20455,6 +21813,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20484,6 +21848,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20513,6 +21883,222 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Capacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
-0.018-0.240-0.1560.7350.1540.671-0.598nannan
Altitud a la que se realiza el crucero0.081nan-0.095-0.952-0.955-0.2800.128nannannannan-0.119-0.1090.187-0.159nannan
Velocidad a la que se realiza el crucero (KTAS)0.5350.9360.6630.4070.6650.3360.8150.2570.4910.461-0.2960.1130.6190.126-0.126nannan
Techo de servicio máximo0.0820.3690.1370.4630.4280.079-0.111-0.071nan0.515-0.2570.1250.007-0.1250.125nannan
Velocidad de pérdida limpia (KCAS)0.0681.0000.163-0.3450.231-0.3450.345nannan
Área del ala1.0001.0000.8990.2360.4530.1720.055nannan
Relación de aspecto del alanannannan-0.247nan0.247-0.247nannan
Longitud del fuselaje1.0000.9380.7860.1290.1500.3890.2560.1800.9290.036-0.2100.1110.6150.093-0.004nannan
Ancho del fuselajenan1.000nan0.794nan-0.5350.574nannan
Peso máximo al despegue (MTOW)0.7860.9861.000-0.0510.0250.4340.6780.5390.9760.7580.0520.0900.4670.0230.075nannan
Alcance de la aeronavenan-0.9520.4070.463-0.9550.6650.428nan-0.301-0.9980.1290.1500.982-0.0510.0251.0000.578-0.0620.8430.042nan-0.107-0.010-0.7550.5540.804-1.0000.4070.665nan-0.059-1.0000.5080.6701.000nan1.0000.2620.474-0.2620.262nannan
Autonomía de la aeronave0.389-0.0900.4340.5780.8431.0000.297-0.164-0.113-0.7320.011-0.4240.4770.361-0.361nannan
Velocidad máxima (KIAS)0.2560.9400.678-0.0620.0420.2971.0000.5390.7050.9100.015-0.0410.2080.174-0.133nannan
Velocidad de pérdida (KCAS)0.2301.0000.160-0.2440.154-0.2440.444nannan
envergadura0.6930.6710.791-0.107-0.0100.5320.4000.4010.2970.0850.032-0.1240.5080.239-0.164nannan
Cuerdanannannan-0.313nan0.313-0.313nannan
payload0.5990.8680.8750.5540.8040.4610.7150.6270.7110.846-0.008-0.0040.4770.162-0.111nannan
duracion en VTOLnannannan-0.188-0.9040.188-0.188nannan
Crucero KIAS0.5760.9440.7080.4070.6650.3360.7750.4170.5810.461-0.2430.1430.6080.0650.063nannan
RTF (Including fuel & Batteries)nannannan0.0970.428-0.0970.097nannan
Empty weight0.995nan-0.0290.1820.4040.3070.004nannan
Maximum Crosswindnannannannan-0.943nannannannan
Rango de comunicación0.6760.3230.5140.5080.6700.8020.094nannannannan-0.4300.6040.430-0.430nannan
Capacidad combustible1.0000.3770.817-0.080nan-0.0800.270nannan
Consumo0.3771.0000.9980.113nan-0.3750.375nannan
Precio0.8170.9981.000-0.1380.217-0.1380.134nannan
Despegue0.735-0.1190.1130.125-0.3450.236-0.2470.1110.7940.0900.262-0.424-0.041-0.244-0.124-0.313-0.004-0.1880.1430.0970.182nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
Propulsión horizontal0.154-0.1090.6190.0070.2310.453nan0.615nan0.4670.4740.4770.2080.1540.508nan0.477-0.9040.6080.4280.404-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
Propulsión vertical0.6710.1870.126-0.125-0.3450.1720.2470.093-0.5350.023-0.2620.3610.174-0.2440.2390.3130.1620.1880.065-0.0970.307nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
Cantidad de motores propulsión vertical-0.598-0.159-0.1260.1250.3450.055-0.247-0.0040.5740.0750.262-0.361-0.1330.444-0.164-0.313-0.111-0.1880.0630.0970.004nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" @@ -20571,17 +22157,17 @@ " \n", " 0\n", " Total de valores\n", - " 676.000\n", + " 1024.000\n", " \n", " \n", " 1\n", " Valores numéricos\n", - " 532.000\n", + " 740.000\n", " \n", " \n", " 2\n", " Valores NaN\n", - " 144.000\n", + " 284.000\n", " \n", " \n", "" @@ -20641,7 +22227,7 @@ "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20652,11 +22238,30 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20667,10 +22272,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20684,10 +22290,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20705,6 +22312,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20722,6 +22330,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20735,10 +22344,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20752,10 +22362,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20763,19 +22374,20 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20786,10 +22398,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20803,10 +22416,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20824,12 +22438,31 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -20837,10 +22470,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20858,6 +22492,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20871,10 +22506,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20892,6 +22528,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -20954,17 +22591,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
-0.9990.5350.6630.4070.6650.3360.8150.2570.1280.4720.8460.696-0.3140.0820.1370.4630.4280.079-0.111-0.071-0.5020.0570.0170.0870.0810.7370.4230.0970.8410.9840.899-0.305-0.859nannan-0.349-0.744-0.888-0.7901.0000.7860.1290.1500.3890.2560.1800.2600.6930.9950.599-0.8230.7861.000-0.0510.0250.4340.6780.5390.5460.7910.8580.875
Alcance de la aeronave0.4070.4630.6650.428-0.301-0.9980.129-0.0510.1500.0251.0000.578-0.0620.8430.042nannan-0.107-0.010-0.7550.5540.804-0.059
-0.3050.3890.4340.5780.8431.0000.297-0.1640.4010.532-0.2010.461-0.8590.2560.678-0.0620.0420.2971.0000.5390.4460.4000.5120.715-0.1640.5391.0001.0000.401nan0.6270.321
Velocidad de pérdida limpia (KCAS)0.128-0.5020.097nan0.2600.546nan0.4010.4461.0001.0000.505nan0.5360.038
envergadura0.4720.057-0.3490.6930.791-0.107-0.0100.5320.4000.4010.5051.0000.8850.734-0.2010.512nannan0.8851.0000.776-0.8880.5990.8750.5540.8040.4610.7150.6270.5360.7340.7761.0000.4280.5170.3210.0380.9240.9710.778
0Total de valores196.000225.000
1Valores numéricos190.000213.000
2Valores NaN6.00012.000
" @@ -21014,7 +22651,7 @@ "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21025,11 +22662,30 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21045,6 +22701,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21065,6 +22722,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21078,6 +22736,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21096,6 +22755,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21113,6 +22773,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21129,6 +22790,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21143,12 +22805,13 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21159,6 +22822,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21182,6 +22846,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21201,6 +22866,25 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21215,6 +22899,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21231,6 +22916,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21244,10 +22930,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21265,6 +22952,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21327,17 +23015,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
0.815nannannan0.846nannannannannannan
Área del alanan0.737nannan0.8410.9840.899-0.859nannannan-0.744-0.888nannannannannan0.995nan0.880nannannannan0.7910.8580.875nannannan0.843nannannannan-0.755nan0.804nan
nannannan0.843nannannannannannannan0.715nan
nannannannan
Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannan
envergaduranannannannan0.8850.7340.924nannannannan0.885nan0.776-0.888nan0.875nan0.804nan0.715nannan0.7340.776nannannannannan0.9240.9710.778
0Total de valores196.000225.000
1Valores numéricos64.00068.000
2Valores NaN132.000157.000
" @@ -21361,7 +23049,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUy/8H8PfS3Q3SjaCoKBZgIIiCLXahXrv72t2i99oBtmJgYBcWqBioKAoiiEp3557fH8jCsruEgvi738/Lh+dxZ+fMmbNnzuzZORMshmEYEEIIIYQQQgghhBBCeAg1dgYIIYQQQgghhBBCCPlTUeMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIYSQ38rX1xcsFgvPnz/n+37Pnj2hr6/foHkICgrC8uXLkZGR0aD7aQzLly8Hi8Wq93TfvHmD0aNHw8DAABISEpCRkUGLFi2wceNGpKWl1fv+fkVgYCBYLBYCAwMbJP2YmBiwWCz4+vo2SPqNbdSoUfV2Ddra2kJbWxulpaUC47Rv3x4qKiooKir65f39yrmvqW6qrD4/o9piGAanTp1Cx44doaamBgkJCejo6MDFxQUHDhz4qTSdnJzg5ORUvxmto4aqs+obi8XC8uXLf/t+Hz58CHFxcXz58oUTpq+vj549e/KN//z583qvn+pybdSH/y9lolxOTg5mzJgBLS0tSEhIoHnz5jh16lSttnVycgKLxRL4l5CQAAAoLi6GkZERvL29G/BICCHVocYzQggh/3OCgoKwYsWK/2TjWUPYv38/WrZsiZCQEMydOxfXr1+Hv78/BgwYgD179sDLy6uxs/hbaWpqIjg4GD169GjsrPzxvLy8EBcXhxs3bvB9PyIiAkFBQRg+fDjExMR+eX8tWrRAcHAwWrRo8ctp/WkWLlyIwYMHw8LCAgcOHMC1a9ewevVqqKur4+LFi42dvZ82duxYBAcHN3Y2/kgMw2DGjBkYN24c9PT0Gjs7RIC+ffvi8OHDWLZsGa5duwY7OzsMHjwYJ06cqHHbXbt2ITg4mOvvzp07EBUVhb29PTQ0NAAAoqKiWLp0KVauXInU1NSGPiRCCB8ijZ0BQgghhPy5goODMXHiRDg7O+PChQsQFxfnvOfs7IzZs2fj+vXr9bKvvLw8SElJ8YSXlpaipKSEa9+NSVxcHPb29o2djf8Xhg4dirlz5+LQoUNwc3Pjef/QoUMAgDFjxvzSfoqLi8FisSAnJ/efPDf5+fnw9vbGiBEjsG/fPq73Ro0aBTab3Ug5+3U6OjrQ0dFp7Gz8ka5fv46XL1/WqhHmTyaobv9V8fHxkJaWhpycXL2nXVtXr17FrVu3cOLECQwePBgA0KlTJ3z58gVz586Fp6cnhIWFBW5vaWnJE3b48GEUFxdj7NixXOGDBw/GrFmzsHfvXixatKh+D4QQUiPqeUYIIeSPxzAMdu3ahebNm0NSUhKKioro378/Pn/+zBXv1q1b6NWrF3R0dCAhIQFjY2P89ddfSElJ4cRZvnw55s6dCwAwMDDgDI0oH+ZVPhwmICAAtra2kJSUhIWFBQICAgCUDV+xsLCAtLQ0WrduzTOM5fnz5xg0aBD09fUhKSkJfX19DB48mGvITXk6LBYLt27dwujRo6GkpARpaWm4u7vzHJcgV65cQfPmzSEuLg4DAwNs3rz5lz4/ftauXQsWi4V9+/bxbbwSExODh4cH5zWbzcbGjRthbm4OcXFxqKmpYcSIEfj27RvXdk5OTmjatCkePHiAdu3aQUpKCmPGjOEMidy4cSNWr14NAwMDiIuL4969ewDKPl8PDw8oKSlBQkICtra28PPzq/E4anteAOD79+8YP348mjRpAjExMWhpaaF///5ITEwEIHjY5qNHj9ClSxfIyspCSkoK7dq1w5UrV7jilJ/3e/fuYeLEiVBRUYGysjL69u2LuLg4nrycPn0abdu2hbS0NGRkZODi4oJXr15xxfn8+TMGDRoELS0tiIuLQ11dHV26dEFoaGiNn4uvry/MzMwgLi4OCwsLHDlyhG+8oqIirF69mnNeVVVVMXr0aCQnJ1ebvqKiIvr06YPLly/z9JYoLS3F0aNHYWdnB2tra3z69AmjR4+GiYkJpKSkoK2tDXd3d7x9+5Zru/KhmUePHsXs2bOhra0NcXFxfPr0ie+wzbqcewBIT0//qWuyttfZq1ev0LNnT6ipqUFcXBxaWlro0aMHzzVSWW5uLgoLC6Gpqcn3fSEh7lv6nz1fdd32xIkTaNu2LWRkZCAjI4PmzZvj4MGDXHGuX7+OLl26QF5eHlJSUrCwsMC6des47/MbolfXeiQkJAQdO3aElJQUDA0NsX79eq4GxYKCAsyePRvNmzeHvLw8lJSU0LZtW7499rKysjBu3DgoKytDRkYGrq6uiIiI4IlX2/LKZrOxevVqmJmZQVJSEgoKCrCxscH27durOQtldu/eDTs7O5iZmdUYtzqjRo2CjIwMPnz4ABcXF0hLS0NTUxPr168HADx58gQdOnSAtLQ0TE1NcfjwYb7p1ObaEFS3A2X1Wbdu3aCpqcn5bl2wYAFyc3N/6rhu3LgBdXV19O/fH+fPn0dBQcFPpfMr/P39ISMjgwEDBnCFjx49GnFxcXj69Gmd0zx48CBkZGTg6enJFS4mJgZPT0/s27cPDMP8Ur4JIXVHjWeEEEIaRXlvoqp//G4I//rrL8yYMQNdu3bFhQsXsGvXLrx79w7t2rXjNGgAQFRUFNq2bYvdu3fj5s2bWLp0KZ4+fYoOHTqguLgYQNkQoalTpwIAzp8/zxkmUXmY1+vXr7Fw4ULMnz8f58+fh7y8PPr27Ytly5bhwIEDWLt2LY4fP47MzEz07NkT+fn5nG1jYmJgZmYGb29v3LhxAxs2bEB8fDzs7Oy4GvHKeXl5QUhICCdOnIC3tzeePXsGJyenGoeU3rlzB7169YKsrCxOnTqFTZs2wc/PDz4+Pj/9+fE7R3fv3kXLli3RpEmTavNTbuLEiZg/fz6cnZ1x6dIlrFq1CtevX0e7du14jj8+Ph7Dhg3DkCFDcPXqVUyaNInz3o4dO3D37l1s3rwZ165dg7m5Oe7du4f27dsjIyMDe/bswcWLF9G8eXN4enrWOL9Pbc/L9+/fYWdnB39/f8yaNQvXrl2Dt7c35OXlkZ6eLjD9+/fvo3PnzsjMzMTBgwdx8uRJyMrKwt3dHadPn+aJP3bsWIiKiuLEiRPYuHEjAgMDMWzYMK44a9euxeDBg2FpaQk/Pz8cPXoU2dnZ6NixI96/f8+J5+bmhhcvXmDjxo24desWdu/eDVtb2xrLkK+vL0aPHg0LCwucO3cOixcvxqpVq3D37l2ueGw2G7169cL69esxZMgQXLlyBevXr8etW7fg5OTEVf758fLyQlFREY4dO8YVfuPGDcTFxXGG/cbFxUFZWRnr16/H9evXsXPnToiIiKBNmzb4+PEjT7oLFy5EbGws9uzZg8uXL0NNTY3v/n/XNVmb6yw3NxfOzs5ITEzEzp07cevWLXh7e0NXVxfZ2dkC01ZRUYGxsTF27dqFrVu34sOHDwJ/PP/K+arLtkuXLsXQoUOhpaUFX19f+Pv7Y+TIkVyNkgcPHoSbmxvYbDbnPE2bNq3ahkKgbvVIQkIChg4dimHDhuHSpUvo3r07Fi5cyFXeCgsLkZaWhjlz5uDChQs4efIkOnTogL59+3I1GDMMg969e3MaZv39/WFvb4/u3bvz5LG25XXjxo1Yvnw5Bg8ejCtXruD06dPw8vKqsTwVFRXh9u3b6NSpU7Xxaqu4uBh9+/ZFjx49cPHiRc7ntGjRIowcORJjxoyBv78/zMzMMGrUKLx48YInjdpeG4Lq9sjISLi5ueHgwYO4fv06ZsyYAT8/P7i7u//UMfXp0wc7duxAeno6Bg4cCHV1dYwaNQo3btyodp5FhmH43n/w+6tJWFgYLCwsICLCPaDLxsaG835dREZG4uHDhxg0aBBkZGR43ndycsKXL1/qnC4hpB4whBBCyG/k4+PDAKj2T09PjxM/ODiYAcBs2bKFK52vX78ykpKSzLx58/juh81mM8XFxcyXL18YAMzFixc5723atIkBwERHR/Nsp6enx0hKSjLfvn3jhIWGhjIAGE1NTSY3N5cTfuHCBQYAc+nSJYHHW1JSwuTk5DDS0tLM9u3beT6HPn36cMV//PgxA4BZvXq1wDQZhmHatGnDaGlpMfn5+ZywrKwsRklJian89f6znx/DMExCQgIDgBk0aFC1eSkXHh7OAGAmTZrEFf706VMGALNo0SJOmKOjIwOAuXPnDlfc6OhoBgBjZGTEFBUVcb1nbm7O2NraMsXFxVzhPXv2ZDQ1NZnS0lKGYRjm3r17DADm3r17AvMq6LyMGTOGERUVZd6/fy9w2/I8+vj4cMLs7e0ZNTU1Jjs7m2sfTZs2ZXR0dBg2m80wTMV5r/oZbdy4kQHAxMfHMwzDMLGxsYyIiAgzdepUrnjZ2dmMhoYGM3DgQIZhGCYlJYUBwHh7ewvMLz+lpaWMlpYW06JFC07eGIZhYmJiGFFRUa5r8OTJkwwA5ty5c1xphISEMACYXbt2VbsvNpvNGBgYMDY2Nlzh/fr1Y6SkpJjMzEy+25WUlDBFRUWMiYkJM3PmTE54+fl1cHDg2eZXzn1drsmRI0f+VD31/PlzBgBz4cIFgfkT5NmzZ4yuri6nnpSVlWV69uzJHDlyhOsc1uV8OTo6Mo6OjnXe9vPnz4ywsDAzdOhQgfnNzs5m5OTkmA4dOnDlr6ply5Zx1Vk/U488ffqUK66lpSXj4uIicJ8lJSVMcXEx4+Xlxdja2nLCr127xgDgKhcMwzBr1qxhADDLli2rNk1+5bVnz55M8+bNBW4nSPnxnjp1iuc9PT09pkePHny3Kz9XleunkSNH8pzX4uJiRlVVlQHAvHz5khOemprKCAsLM7NmzeKE1eXaEFS3V1X+HX3//n0GAPP69WvOe1XLRG0kJCQw//zzD9O+fXuGxWIxampqzOTJk5lHjx7xlL/a3IeU/9XExMSEb1mLi4tjADBr166t03HMnz+fAcAEBwfzfT8yMpIBwOzevbtO6RJCfh31PCOEENIojhw5gpCQEJ6/Dh06cMULCAgAi8XCsGHDuJ4Ga2hooFmzZlzDs5KSkjBhwgQ0adIEIiIiEBUV5UyyHB4eXuu8NW/eHNra2pzXFhYWAMqe+Faet6U8vHJPi5ycHMyfPx/GxsYQERGBiIgIZGRkkJubyzcPQ4cO5Xrdrl076OnpcYYp8pObm4uQkBD07dsXEhISnPDynk6V1eXz+1XleR41ahRXeOvWrWFhYYE7d+5whSsqKqJz58580/Lw8ICoqCjn9adPn/DhwwfO51X5WNzc3BAfH8+3d1K52p6Xa9euoVOnTpxzWxu5ubl4+vQp+vfvz9VTQFhYGMOHD8e3b9948lZ5qCtQ0UuhvCzduHEDJSUlGDFiBNexSkhIwNHRkXPelJSUYGRkhE2bNmHr1q149epVrea/+vjxI+Li4jBkyBCuIXN6enpo164dV9yAgAAoKCjA3d2dKy/NmzeHhoZGjWWIxWJh9OjRePPmDac3S2pqKi5fvox+/fpx5isqKSnB2rVrYWlpCTExMYiIiEBMTAyRkZF8r51+/frVeJzA77kma3udGRsbQ1FREfPnz8eePXu4ehDWxM7ODp8+fcL169exaNEitG3bFnfu3MGIESPg4eHB6Yn2K+erttveunULpaWlmDx5ssC0goKCkJWVhUmTJtVp5cS61iMaGhpo3bo1V5iNjQ3PsNwzZ86gffv2kJGR4Xw/HDx4kKsMlO+7ahkYMmQITz5rW15bt26N169fY9KkSbhx4waysrJq9TmUD+MW1KOyrlgsFte8gyIiIjA2NoampiZsbW054UpKSlBTU+M7rLm214aguv3z588YMmQINDQ0ICwsDFFRUTg6OgKo23c0P+rq6pgyZQoePXqEL1++YN68eZye5wYGBlxDQ93d3fnef/D7q43qynddyn5JSQkOHz4MKysrgXM3lpeH79+/1zpdQkj9oAUDCCGENAoLCwu0atWKJ1xeXh5fv37lvE5MTATDMFBXV+ebjqGhIYCy4UbdunVDXFwclixZAmtra0hLS4PNZsPe3r7GoWWVKSkpcb0uXwVQUHjleVaGDBmCO3fuYMmSJbCzs4OcnBznRwu/PJSvpFU1rLrVtNLT08FmswVuW1ltPz9+VFRUICUlhejoaIFxKivPM795mbS0tHh+jAmav4nfe+XD3ubMmYM5c+bw3YbfELxytT0vycnJdZ68PD09HQzDCDxuADznU1lZmet1+Xxy5XkpP147Ozu++yyf44rFYuHOnTtYuXIlNm7ciNmzZ0NJSQlDhw7FmjVrICsry3f78vwIKkMxMTGc14mJicjIyBC4GmZ1n3u50aNHY/ny5fDx8UHLli1x/PhxFBUVca3UOmvWLOzcuRPz58+Ho6MjFBUVISQkhLFjx/K9dqorP5X9jmuytteZvLw87t+/jzVr1mDRokVIT0+HpqYmxo0bh8WLF3M1GPMjKioKFxcXuLi4ACg7j/3790dAQACuXbsGNze3Xzpftd22fP6z6q6V2sThp671SNVrCSi7niqf2/Pnz2PgwIEYMGAA5s6dCw0NDYiIiGD37t2cRSvK9y0iIsKTJr8yUdvyunDhQkhLS+PYsWPYs2cPhIWF4eDggA0bNvD9DixXnkblByTlREREBA5LLB9qWLUsSUlJ8aQlJibG871WHs5v/rDaXhv8zl1OTg46duwICQkJrF69GqamppCSksLXr1/Rt2/fOn1H1yQzMxMZGRnIzMwEAM65KaekpAR5efl62ZeysjLfuiEtLY2zr9q6evUqEhISMH/+fIFxys9hfX5ehJDaocYzQgghfzQVFRWwWCw8fPiQ74T15WFhYWF4/fo1fH19MXLkSM77nz59+m15zczMREBAAJYtW4YFCxZwwsvn2+EnISGBb5ixsbHA/SgqKoLFYgnctrLafn78CAsLo0uXLrh27Rq+fftW44/g8h+c8fHxPHHj4uKgoqLCFVaXp/Xl2y5cuBB9+/blu42gSbXrcl5UVVVrnI+pqvIfZvHx8TzvlfceqXrsNSmPf/bsWU7vSUH09PQ4k7RHRETAz88Py5cvR1FREfbs2cN3m/JzVdsypKysLHBVVUENdJXp6OigW7duOHHiBLZs2QIfHx8YGxvDwcGBE+fYsWMYMWIE1q5dy7VtSkoKFBQUeNKsTY+O33VN1uU6s7a2xqlTp8AwDN68eQNfX1+sXLkSkpKSXHmsDWVlZcyYMQOBgYEICwuDm5vbL52v2m6rqqoKAPj27ZvA+RArx6mLutYjtXHs2DEYGBjg9OnTXOWmsLCQZ98lJSVITU3lakDjVyZqW15FREQwa9YszJo1CxkZGbh9+zYWLVoEFxcXfP36VeAqlOXHya+cqqurC+x5VB4uqCH3V9T22uB3bd69exdxcXEIDAzk9DYDUOPcb7UVERGB06dP49SpU3j//j2MjY0xePBgDBkyBObm5lxxDx8+jNGjR9cqXaaGifmtra1x8uRJlJSUcM17Vr5wRNOmTWt9DAcPHoSYmBiGDx8uME55efiZ64AQ8mto2CYhhJA/Ws+ePcEwDL5//45WrVrx/FlbWwOouFmv+sN17969PGlW7eVTX1gsFhiG4cnDgQMHBPYSOH78ONfroKAgfPnyBU5OTgL3U77SZ9XVxbKzs3H58mWuuLX9/ARZuHAhGIbBuHHjUFRUxPN+cXExZ5/lw3SqTgwfEhKC8PBwdOnSpdp9VcfMzAwmJiZ4/fo13+No1aqVwEaBupyX7t274969e9UOAa1KWloabdq0wfnz57nKFJvNxrFjx6CjowNTU9M6HC3g4uICERERREVFCTxefkxNTbF48WJYW1vj5cuXAtM3MzODpqYmTp48yfXj8MuXLwgKCuKK27NnT6SmpqK0tJRvPmq7EqCXlxfS09OxdOlShIaGYvTo0Vw/slksFs85unLlyi8NT/pd1+TPXGcsFgvNmjXDtm3boKCgUO35Ki4uFtjzrXy4W3kvx185X7Xdtlu3bhAWFsbu3bsFptWuXTvIy8tjz549dVoZsCHqERaLBTExMa7ylpCQwLPaZvnk/FXLwIkTJ/imWdfyqqCggP79+2Py5MlIS0vj6uFZVfnQ8aioKJ73unbtirCwML7Dfv38/CAjI4M2bdoITPtn/cy1Ua4u39G1lZSUhA0bNsDW1hZmZmbYs2cPunXrhmfPniEyMhIrV67kaTgD6nfYZp8+fZCTk4Nz585xhR8+fBhaWlq1Pg8JCQm4evUqevfuzbc3Zbny1U0tLS1rlS4hpP5QzzNCCCF/tPbt22P8+PEYPXo0nj9/DgcHB0hLSyM+Ph6PHj2CtbU1Jk6cCHNzcxgZGWHBggVgGAZKSkq4fPkybt26xZNm+Q/Z7du3Y+TIkRAVFYWZmVmtetBUR05ODg4ODti0aRNUVFSgr6+P+/fv4+DBg3x7zgDA8+fPMXbsWAwYMABfv37F33//DW1tba6VJ/lZtWoVXF1d4ezsjNmzZ6O0tBQbNmyAtLQ0V0+F2n5+gpSvXjpp0iS0bNkSEydOhJWVFYqLi/Hq1Svs27cPTZs2hbu7O8zMzDB+/Hj8888/EBISQvfu3RETE4MlS5agSZMmmDlz5k99ruX27t2L7t27w8XFBaNGjYK2tjbS0tIQHh6Oly9f4syZM3y3q8t5WblyJa5duwYHBwcsWrQI1tbWyMjIwPXr1zFr1iy+P8QAYN26dXB2dkanTp0wZ84ciImJYdeuXQgLC8PJkyfrNO8NAOjr62PlypX4+++/8fnzZ7i6ukJRURGJiYl49uwZpKWlsWLFCrx58wZTpkzBgAEDYGJiAjExMdy9exdv3ryptheTkJAQVq1ahbFjx6JPnz4YN24cMjIysHz5cp6hWYMGDcLx48fh5uaG6dOno3Xr1hAVFcW3b99w79499OrVC3369KnxmDw8PKCiooJNmzZBWFiYq4coUNZw4+vrC3Nzc9jY2ODFixfYtGlTnYf9Vfa7rsnaXmcBAQHYtWsXevfuDUNDQzAMg/PnzyMjIwPOzs4C08/MzIS+vj4GDBiArl27okmTJsjJyUFgYCC2b98OCwsLTo/MXzlftd1WX18fixYtwqpVq5Cfn4/BgwdDXl4e79+/R0pKClasWAEZGRls2bIFY8eORdeuXTFu3Dioq6vj06dPeP36Nf7991++eWiIeqRnz544f/48Jk2ahP79++Pr169YtWoVNDU1ERkZyYnXrVs3ODg4YN68ecjNzUWrVq3w+PFjHD16lG+atSmv7u7uaNq0KVq1agVVVVV8+fIF3t7e0NPTg4mJicA86+jowNDQEE+ePMG0adO43ps+fTqOHDkCJycnTj2Vnp6O06dP4+zZs9i6desvf5/x87PfV0BZY6qioiImTJiAZcuWQVRUFMePH8fr169/Oj9Xr17F+vXr0a9fP2zevBmdOnXiGp4piLKycrUNVHXRvXt3ODs7Y+LEicjKyoKxsTFOnjyJ69ev49ixYxAWFubE9fLywuHDhxEVFcXTo/jw4cMoKSnB2LFjq93fkydPOEN/CSG/2e9eoYAQQsj/tvJVrkJCQvi+36NHD65V7ModOnSIadOmDSMtLc1ISkoyRkZGzIgRI5jnz59z4rx//55xdnZmZGVlGUVFRWbAgAFMbGws31XSFi5cyGhpaTFCQkJcq/MJWsUMADN58mSusPJVFzdt2sQJ+/btG9OvXz9GUVGRkZWVZVxdXZmwsDBGT0+PGTlyJM/ncPPmTWb48OGMgoICIykpybi5uTGRkZE1fIplLl26xNjY2DBiYmKMrq4us379eoGrlNXm86tOaGgoM3LkSEZXV5cRExNjpKWlGVtbW2bp0qVMUlISJ15paSmzYcMGxtTUlBEVFWVUVFSYYcOGMV+/fuVKz9HRkbGysuLZD7/PtLLXr18zAwcOZNTU1BhRUVFGQ0OD6dy5M7Nnzx5OHH4rLtb2vDBM2QqJY8aMYTQ0NBhRUVFGS0uLGThwIJOYmMiVx8qr2TEMwzx8+JDp3Lkz5zO2t7dnLl++zBVHUPkXtErkhQsXmE6dOjFycnKMuLg4o6enx/Tv35+5ffs2wzAMk5iYyIwaNYoxNzdnpKWlGRkZGcbGxobZtm0bU1JSwvczrOzAgQOMiYkJIyYmxpiamjKHDh3iWUmSYcpW5tu8eTPTrFkzRkJCgpGRkWHMzc2Zv/76q9bllWEYZubMmQwAxs3Njee99PR0xsvLi1FTU2OkpKSYDh06MA8fPuRZEbL8szpz5gxPGr9y7utyTfL7jBim5uvsw4cPzODBgxkjIyNGUlKSkZeXZ1q3bs34+vpW+7kVFhYymzdvZrp3787o6uoy4uLijISEBGNhYcHMmzePSU1N5Ypf2/NV9bOty7YMwzBHjhxh7OzsOPFsbW15rourV68yjo6OjLS0NCMlJcVYWloyGzZs4LzPr8761XqE3/lZv349o6+vz4iLizMWFhbM/v37+e47IyODGTNmDKOgoMBISUkxzs7OzIcPH3i+R2pbXrds2cK0a9eOUVFR4dTVXl5eTExMDE++q1qyZAmjqKjIFBQU8LyXkJDATJw4kdHV1WVEREQYWVlZpkOHDnyvi5EjRzLS0tI84YI+v6rfg3W5NgSlyTAMExQUxLRt25aRkpJiVFVVmbFjxzIvX77kqU9ru9pmSkoKU1hYWGO8hpadnc1MmzaN0dDQYMTExBgbGxvm5MmTPPHKVz3lt9K3qakpo6+vX+3KtAzDMB07dmTc3d3rK+uEkDpgMUwd+lETQgghpF74+vpi9OjRCAkJqXbSaEIIIf+b4uLiYGBggCNHjsDT07Oxs0MaWVRUFExMTHDjxo1qe6oSQhoGzXlGCCGEEEIIIX8YLS0tzJgxA2vWrAGbzW7s7JBGtnr1anTp0oUazghpJDTnGSGEEEIIIYT8gRYvXgwpKSl8//5d4Mqm5L+vpKQERkZGWLhwYWNnhZD/WTRskxBCCCGEEEIIIYQQAWjYJiGEEEIIIYQQQgipdw8ePIC7uzu0tLTAYrFw4cKFGre5f/8+WrZsCQkJCRgaGmLPnj08cc6dOwdLS0uIi4vD0tIS/v7+DZD7CtR4RgghhBBCCCGEEELqXW5uLpo1a4Z///23VvGjo6Ph5uaGjh074tWrV1i0aBGmTZuGc+fOceIEBwfD09MTw4cPx+vXrzF8+HAMHDgQT58+bajDoGGbhBBCCCGEEEIIIaRhsVgs+Pv7o3fv3gLjzJ8/H5cuXUJ4eDgnbMKECXj9+jWCg4MBAJ6ensjKysK1a9c4cVxdXaGoqIiTJ082SN6p5xkhhBBCCCGEEEIIqVFhYSGysrK4/goLC+st/eDgYHTr1o0rzMXFBc+fP0dxcXG1cYKCguotH1XRapuEEEIIIYQQQgghf5D2Oyc0dhb4ck7WwIoVK7jCli1bhuXLl9dL+gkJCVBXV+cKU1dXR0lJCVJSUqCpqSkwTkJCQr3kgR9qPCOEkHr0p37J/azHk/cgLiOpsbNR77QU1LD6lk9jZ6NeLXYejXTnPo2djXqleMsfW+43TNf7xjLbcTDmX9nV2NmoVxt6TMKxF9cbOxv1alhLV1wKe9jY2ahXHk07YuiJ5Y2djXp3fMhyBH560djZqFdOxi2xN/hCY2ejXv3VtjcGHl3c2NmoV37DV2PGRe/Gzka98u41A0dCrjZ2NurVCDu3xs7Cf87ChQsxa9YsrjBxcfF63QeLxeJ6XT7bWOVwfnGqhtUnajwjhBBCCCGEEEIIITUSFxev98ayyjQ0NHh6kCUlJUFERATKysrVxqnaG60+0ZxnhBBCCCGEEEIIIX8Q1h/6r6G1bdsWt27d4gq7efMmWrVqBVFR0WrjtGvXrsHyRT3PCCGEEEIIIYQQQki9y8nJwadPnzivo6OjERoaCiUlJejq6mLhwoX4/v07jhw5AqBsZc1///0Xs2bNwrhx4xAcHIyDBw9yraI5ffp0ODg4YMOGDejVqxcuXryI27dv49GjRw12HNTzjBBCCCGEEEIIIYTUu+fPn8PW1ha2trYAgFmzZsHW1hZLly4FAMTHxyM2NpYT38DAAFevXkVgYCCaN2+OVatWYceOHejXrx8nTrt27XDq1Cn4+PjAxsYGvr6+OH36NNq0adNgx0E9zwghhBBCCCGEEEL+IEINOPn97+Tk5MSZ8J8fX19fnjBHR0e8fPmy2nT79++P/v37/2r2ao16nhFCCCGEEEIIIYQQIgA1nhFCCCGEEEIIIYQQIgAN2ySEEEIIIYQQQgj5g7D+I8M2/yuo5xkhhBBCCCGEEEIIIQJQ4xkhhBBCCCGEEEIIIQLQsE1CCCGEEEIIIYSQP8h/ZbXN/wrqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8ICDdv8k1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBattvlHoZ5nhBBCCCGEEEIIIYQIQI1nhBBCCCGEEEIIIYQI8Nsbz/T19eHt7f1b02OxWLhw4cIv7Wf58uVo3rz5L6VRVWBgIFgsFjIyMuo1XcKt6ufs6+sLBQWFRs3TqFGj0Lt370bNw58gNTUVampqiImJaeyscPn333/h4eHR2NkghBBCCCGE/I8SYrH+yL//VbWe88zd3R35+fm4ffs2z3vBwcFo164dXrx4gRYtWtRrBmsSEhICaWnp37pP8v+bp6cn3NzcGjsbBMC6devg7u4OfX19AEBMTAwMDAzw6tUrTmN1dnY23N3dkZCQgI8fP1abXnR0NPT19REUFISOHTvC2dkZ169f54l37tw5bNy4ER8+fACbzYauri5cXV2xZcsWAMC4ceOwZs0aPHr0CB06dKjXY/4VzTSNMcS2G8zVdKEirYAFV3fjYfTrxs4WAODCWX+cPnYSqamp0DfQx5SZ02Bj20xg/NCXr7DL+1/ERMdARUUZg4YPgUff3nzj3r15G6uWrEB7hw5YvWkdJ/z1q1CcPnYSER8+IjUlFas2rkEHR4f6PjQuHx+8xLs7T5GfmQMFTRW06tcV6sZN+MZNiPiCWztO8oR7LB4HeQ1lAAC7tBRhN4MR9TQMeRnZkFdXgm2vTtC2NGzQ4/hZoh3sId6jG4RNjCAkL4esCTNRGhXT2Nni8S7wGd7cCEJeZjYUtdTQ1tMVmiZ6fOPGfYxGwJbDPOEDV0yGgqYqT/inZ29x98A56DUzg8vkwfWed0Hs9azgaGgLWXEpJOak4fK7x4hJjxcYX1hICF1N7GCrZQpZcSlkFuTg7qcXeP7tAyeOhIgYXMzaoKmGISRFxZGen42A94/xMTn2dxwSnt96iOCAu8jOyIKqtgZcRvSFrrlRjdt9/fgZh1f9A7Ummhi/bh4nPOlbPO6fuYr46G/ITElDt+F90Ka7UwMeAa+g6/cQePEGstMzoN5ECx6jB8HQ0pRv3OjwSFw5ehbJ3xNQVFQERRVl2HdzgIN7N77xQx89w/Ft+2Bl1xyjFkxpyMPg0tXEDj0s2kFBUhbfM5Nw9MX1astIO31r9LRoDw1ZZeQVF+BN3CeceHUTOUX5AIBORi3QwaAZmiioAQCi0+Jx+vUdfE79/luOp1xgwC3cPB+AzLQMaOlqY+D4ETBpas437svHz/Dg6m18/fwFJcUl0NTThvuQfrBqyf09l5eTiwtH/PAqKAR5OblQUVdF/7FDYW1n+zsOCaF3gvH82n3kZmRDWVsdTkPcoWNmUON23yNj4LduL1S01TF81QxOuN+6vfj28TNPfAMbc/SZNbo+sy5QN9PW8LDqCAVJGXzLSILv86v4kPRFYPwOBs3gYdkBmnLKyCsqRGhcJI6+uMYpf46Gtpjcvh/PdkOPL0cxu6TBjqM67fVt0Nm4JeQkpJGQnQr/t/fxOS2Ob9whtt3QWteSJzw+KxUb7h1t6KwK9PzWIzy5eg85P+pz52G9a1efR3zG0dU7oaqjgXFr53LCP4S8weNLt5CemAJ2KRuK6iqwd3OCdQe7hjwMQqpV68YzLy8v9O3bF1++fIGeHvcN6KFDh9C8efPf3nAGAKqqvDe25L+hqKgIYmJi9Z6upKQkJCUl6z3dxtRQn1VtFBcXQ1RUtM7b5efn4+DBg7h69arAOMnJyejevTsA4Pbt2xARqaiy7OzsMH78eIwbN44TVl4fHDp0CFOnTsWBAwcQGxsLXV1dTpzbt29j0KBBWLt2LTw8PMBisfD+/XvcuXOHE0dcXBxDhgzBP//880c1nkmKiuNT6jdc/RCEtd0nNHZ2OO7euoOd23ZgxrxZaGpjjcv+lzB/5lz4njoKdQ11nvjxcXFYOHMeevRyx98rliDszVt4b9wKeQUFOHZ24oqbEJ+A3Tt2waY5b0NcQX4BjEyM4drTDcsWLG6ow+OIeRGO5+duo7WnC9QMtRHxKBR3d/nBY/FYSCvJC9yu15LxEJWsuD7FZaQ4/w+9/ACfQ96h7ZDukFNXRlz4Z9zffx6us4ZBqYlGgx7Pz2BJiKPk3QcUPQiC9KzJjZ0dvqJCwhB8+jo6DOkBdWNdhD94jms7jmHg8smQUVYQuN3AVVMgJiHOeS0hy/tgLjs1A0/P3oSGiS7Pew3JRtMY7pYdcCHsAb6kJ6CNriXGtO6JrfdPIqMgh+82Q21dICsuibNv7iE1LxPSYpIQFqoYcCDMEsLYNh7IKcrHsZc3kFmQAwUJGRSWFP+WY3oX/BI3jvjDbcwA6Jga4OWdIJzYsAcTNy2EvIqSwO0K8vJxcfcxGFiZIjcrm+u9ksIiKKqpwKKNLW4d82/oQ+AR+vgZLvmcQp9xQ6FvbownNx/g4JrtmOO9EoqqyjzxxcTF0b57Z2jq6UBMQhzR4ZE4t/coxMTFYd/NkStuelIqAg6fgYGFye86HACAva4Vhrdwhc/zK4hIjkVn41aY5zQM867sRGpeJk98U1VdTLTvg2Mvb+Dl949QlJLDGLueGNvGA94PTwMALNT1EfwlDEeef0URuwQ9LdpjQafhmH9lJ9Lzs3nSbAghD4Lht/8IhkwaAyMLUzy4fgf/LNuA5bs3QUlNhSd+5LsPsLC1Ru+RnpCUlkLQ7fvYuXIzFmxdBV0jfQBASXEJvBevg6y8HP5aNB2KKkpIT06F+G+65/z49DUCT1xGlxG9oWWihzf3nsJ/6yGMXDsLcsqKArcrzMvH9X2noWtphLxM7vrEfepwsEtKOa/zc3NxdMl2mNpZN9hxVNZWrylGtXLDgWeX8TEpFl1N7bCo8wjMvLSDb/kzU9XDlHb9cPjFVTz/9hFKknIYZ++BCW37YPP9E5x4eUUFmH7Rm2vbxmo4s9UyRR9rR5x9fRfRaXFop2+Dv9r2xrq7R5HB53o4/zYQl98/4rwWYglhXqeheB0X+Rtzze39k1e4dewCXEf1RxNTA7y8G4RTm/bhrw0LIK8iuOwV5OXj0p4TMLAyQU4m97FKSkuhvYczVLTUISwijMhX73B53ylIycnCyIZ/IzchDa3WwzZ79uwJNTU1+Pr6coXn5eXh9OnT8PLyAgAEBQXBwcEBkpKSaNKkCaZNm4bc3FyB6cbGxqJXr16QkZGBnJwcBg4ciMTERK44ly5dQqtWrSAhIQEVFRX07duX817VYZuRkZFwcHCAhIQELC0tcevWLZ59zp8/H6amppCSkoKhoSGWLFmC4mLum8X169dDXV0dsrKy8PLyQkFBQbWfT2lpKby8vGBgYABJSUmYmZlh+/bt1W5TVWpqKgYPHgwdHR1ISUnB2toaJ0/y9lqoytfXF7q6upCSkkKfPn2wZcsWrmGJ/IYIzpgxA05OTpzXDMNg48aNMDQ0hKSkJJo1a4azZ89Wu99du3bBxMQEEhISUFdXR//+/X8pPX19faxevRqjRo2CvLw8p1GkpjJ17NgxtGrVCrKystDQ0MCQIUOQlJRU7edV+fPR19cHi8Xi+StXm/JS1ffv3+Hp6QlFRUUoKyujV69edR6a+PjxYzg6OkJKSgqKiopwcXFBeno6AMDJyQlTpkzBrFmzoKKiAmdnZ8TExIDFYiE0NJSTRkZGBlgsFgIDAzlh7969Q48ePSAnJwdZWVl07NgRUVFRnPd9fHxgYWEBCQkJmJubY9euXZz3yvfh5+cHJycnSEhI4NixY2Cz2Vi5ciV0dHQgLi6O5s2b8+3xVdm1a9cgIiKCtm3b8n3/69ev6NixI2RlZXHv3j3o6OhAQ0OD8ycsLMw555XDcnNz4efnh4kTJ6Jnz548dVZAQAA6dOiAuXPnwszMDKampujduzf++ecfrngeHh64cOEC8vPzqz2O3+lJ7Dvsf3oJ9z+HNnZWuJw5eRpuHj3Qo5c79Az0MWXWNKipq+HSOf4/Xi+dvwg1DXVMmTUNegb66NHLHd3de8Dv+CmueKWlpVizdCVGjR8DTW1NnnTatLOH14RxcOjkyPNeQ3h/9xmM2zaDSbtmkNdQgV3/rpBSlMPHh6+q3U5CVgqScjKcP6FKDRifn72Ddbe20LYygqyKAsw6toCmhQHe3w1p6MP5KUW376PgmB9KXv4ZPR75eXMrGGYdWsC8Y0soaqqinWd3yCjK4/3959VuJykrDSl5Wc5f5fMEAGw2G3cPnENLj06Qq+bHQEPoaNAMIV/DEfI1HEk56bj8/jEyC3Jgr9eUb3xT1SYwVNbCoZAr+JT6Den52fiWmYQv6QmcOK2aWEBKVBxHnl/Dl/QEZOTnICY9AfHZqb/lmJ5cDYStkz1sO7Xl9DqTU1bE89uPq93uyoHTsGrXEjom+jzvaRnpoevQXmjargWERX7/gvIPLt+CXecOaNPVAeo6Wug1ZhAUlBURfCOQb3xtQ13YdmwDDV1tKKmpoKVjW5g1t0J0OPePYHYpGye270c3Tw8oqf/eh8bdzdsi8PNLBEa9RFxWCo69vI7UvEx0NWnFN76xsg6SczNwI+IpknMzEJEci7ufnsNQSYsTZ1fQedyODMGXjATEZ6XgwLNLEGKxYKXx+3rc3va/ivbdnNDBpRM0dbXhOX4EFFWUcf8q7wgbAPAcPwIu/d2hb2oEdW1N9Bk5CGpaGnjz9CUnzuNbgcjNzsGkJbNgbGkGZTVVGFuZo4kh/16v9e3FjYdo6mAHa8fWUNZSR6ehHpBVksfru0+q3e6273mY2zeHphFvPiVlpCCtIMv5iw2LhKiYKExb2zTUYXDpadkedz+9wN1PL/A9KxmHn19FSl4mupm15hvfVFUHSbkZuPbhCZJz0vEx+QtuR4TAUFmbKx4DBpkFOVx/jcXJuAWefnmHJ7HvkJiTDv+w+8jIz0EHff6fcUFJEbIL8zh/ugrqkBSVwNPYd7855xWeXgtEc6c2sO1kDxVtdXQb3gdyygp4eaf6+vzaoTOwatsC2sb6PO/pWRrD3M4GKtrqUFRXQWtXR6g10cRXPj0h/8v4/Ub9E/7+V9W68UxERAQjRoyAr68vGIbhhJ85cwZFRUUYOnQo3r59CxcXF/Tt2xdv3rzB6dOn8ejRI0yZwr9rOcMw6N27N9LS0nD//n3cunULUVFR8PT05MS5cuUK+vbtix49euDVq1e4c+cOWrXi/4XNZrPRt29fCAsL48mTJ9izZw/mz5/PE09WVha+vr54//49tm/fjv3792Pbtm2c9/38/LBs2TKsWbMGz58/h6amJlcDgqB96+jowM/PD+/fv8fSpUuxaNEi+Pn5VbtdZQUFBWjZsiUCAgIQFhaG8ePHY/jw4Xj69KnAbZ4+fYoxY8Zg0qRJCA0NRadOnbB69epa77Pc4sWL4ePjg927d+Pdu3eYOXMmhg0bhvv37/ON//z5c0ybNg0rV67Ex48fcf36dTg4OPx0euU2bdqEpk2b4sWLF1iyZEmtylRRURFWrVqF169f48KFC4iOjsaoUaNqfewhISGIj49HfHw8vn37Bnt7e3Ts2JHzfk3lpaq8vDx06tQJMjIyePDgAR49egQZGRm4urqiqKioVnkKDQ1Fly5dYGVlheDgYDx69Aju7u4oLa14+nf48GGIiIjg8ePH2Lt3b63S/f79O6dx+e7du3jx4gXGjBmDkpKyp2379+/H33//jTVr1iA8PBxr167FkiVLcPgw95Cm+fPnY9q0aQgPD4eLiwu2b9+OLVu2YPPmzXjz5g1cXFzg4eGByEjBT8EePHgg8Fr++PEj2rdvD3Nzc1y/fh2ysrK1Oj4AOH36NMzMzGBmZoZhw4bBx8eHq87S0NDAu3fvEBYWVm06rVq1QnFxMZ49e1brff8vKi4uRsSHCLRqw30j26q1HcLe8v+M3799h1atubvd29m3xsfwD5yyCABHDvpCQVEBPTx61n/G66i0pBRpXxOgaaHPFa5loY/k6OqHGgVs8MHZRf/g1o6TSIjgHmpSWlICIVHuH/kioiJIivpaL/n+X1NaUoKU2DjoWHIPFdGxNEJiDZ/p+VV7cXTOZgRsPYy4D9E8778MuA9JWWmYd/i9veyFWULQlldFZDJ3/iOSv0JPkbdnJwBYqhvgW2YSHA1tsajLCMxxHIIeFu0gIiRcKY4+vmQkonfTjljcdRRmOniik1ELsNDwN8WlJSWIj/4KQxszrnAjazN8i+D97MuFBj5BelIKHPu5NnQW66ykuATfo77AtLkVV7hpMyt8+RglYCtu3z/HIuZjFAytuId53jpzGdJysmjdtaOALRuGsJAwDJS08DaeO/9vE6JgosJ/uHpkylcoScmhmVZZDzk5CWm0bmKJ0Gp6xYgLi0KYJYTcwt/zsKqkuASxn6JhacvdOGHZwhpR4RG1SoPNZqMgvwDSlXqovnn6AobmJjixywdzhk7AiknzcPX0BbBL2fWaf35KS0qQGPMdek25eybqNTVF3CfBQxzDHoYgIzkNbXt3rdV+3j58DrM2zSAq3vCjHYSFhGGopIXX8Z+4wt/EfYKZKv/evx+TY6EsJQdbrbJrSF5CGvZ6Vnj1nXvaDwkRMezsMwe7+87F/E7DoK/I+4DudxBmCUFHXg0fkrnP0YekL9BXql2e2uhZISI59rf12qyqrD7/BoOm3PW5YVMzfIuMEbjd6/tPkZ6YAoe+LjXug2EYRIdFIC0huVZDQQlpKHV6LDdmzBhs2rQJgYGB6NSpE4Cy4VF9+/aFoqIipk+fjiFDhmDGjBkAABMTE+zYsQOOjo7YvXs3JCQkuNK7ffs23rx5g+joaDRpUvYlfPToUVhZWSEkJAR2dnZYs2YNBg0ahBUrVnC2a9aM/zw6t2/fRnh4OGJiYqCjowMAWLt2LWfYV7nFiyuG9+jr62P27Nk4ffo05s0rmzfD29sbY8aMwdixYwEAq1evxu3bt6vtfSYqKsqVRwMDAwQFBcHPzw8DBw4U/KFWoq2tjTlz5nBeT506FdevX8eZM2fQpk0bvtts374dLi4uWLBgAQDA1NQUQUFBNfb6qSw3Nxdbt27F3bt3Ob2ADA0N8ejRI+zduxeOjry9OmJjYyEtLY2ePXtCVlYWenp6sLW1/en0ynXu3JnrMxgxYkSNZWrMmDGc+IaGhtixYwdat26NnJwcyMjI1Hj8lYf+Tp8+HfHx8QgJqej1UVN5qerUqVMQEhLCgQMHOC3zPj4+UFBQQGBgILp14z+XSWUbN25Eq1atuBptray4b8iNjY2xceNGzuva9GzbuXMn5OXlcerUKc5QS1PTipv0VatWYcuWLZzenQYGBnj//j327t2LkSNHcuLNmDGDqwfo5s2bMX/+fAwaNAgAsGHDBty7dw/e3t7YuXMn37zExMRAS0uL73sjRoxAu3btcO7cOQgLC/ONI8jBgwcxbNgwAICrqytycnJw584ddO1admM4depUPHz4ENbW1tDT04O9vT26deuGoUOHQly8YsiWtLQ0FBQUEBMTw7fMFhYWorCwkCus8vb/KzIzMsEuLYWiEndPHEVlRaQ/SeO7TVpqKhSVuRvbFJUUUVpaisyMDCirqODt6ze4eukKDhw71GB5r4vCnDwwbIZnKJ+ErDQKsvj3rpaUl4H9YFco6WqAXVyKzyFhuPXPSXSbPgTqxmU3/loWhgi/GwJ14yaQVVFE/McYfH0TydXgS2qv4Md5kpTjPk+SctLIy+Lfs0BKXhYdh7tDVVcTpSWliHzyGgHbDsN99ihomuoDABI+xeLjo5fot+T3D5eWEpOAsJAQZ76ecjmFeZAV59+AoSQpB31FTZSUluLI8+uQFpNA76YOkBQVx9k398riSMnBSFIWoXGR8Hl2BSrS8ujV1AFCLCHc+VR9L71flZedC4bNhrS8HFe4tLwsz9CdcqnxSbh76jJGLpsOoTp+L/wOudk5YLPZkK1yTDIKcsjO4B1eVtnqcXORk5UNNrsUzgM90KZrxcPI6A+RCLnzCDO3LG2QfFdHVlwKwkJCyCzgruMy83Mhr8n//ioy5St2BZ3H1Pb9ISosAhEhYbz49gGHnwueomFQ865Iy89GWMLv6VFS9lmzIafAPdxeVkEeWenVn6tyt/yvoKigEC072nPCkhOSkJr4Hm2c2mPq8nlIikvAyd2+YJey0XNI32pS+3X52Xll15Qc93mRkpNBnoBrKj0hBY/OXIfnogm1uqbiP39F6rcEdBvTv8a49UFOXArCQsI8vcIyC3KhIMG//EUkf8WOR2cww8GTU/5Cvobj0LMATpy4rGTsCjqP2IxESIqKw828LVa5jsPcgJ1I+E09b8tJi5cNp88uyOMKzy7Mg5yElICtKsiJS8FCTR9HX1xrqCzWqLw+l5HnftAtLS+LnIwsvtukJSTj3ukADF8ytdqyV5CXjx1Tl6O0pAQsISG4juoPQ2szgfEJaWh1ajwzNzdHu3btcOjQIXTq1AlRUVF4+PAhbt68CQB48eIFPn36hOPHj3O2YRgGbDYb0dHRsLCw4EovPDwcTZo04TScAYClpSUUFBQQHh4OOzs7hIaGcs1pVJ3w8HDo6upyGs4A8B0SdvbsWXh7e+PTp0/IyclBSUkJ5OTkuNKZMIH7Brlt27a4d+9etfvfs2cPDhw4gC9fviA/Px9FRUV1WqGztLQU69evx+nTp/H9+3fOj/PqFkQIDw9Hnz59ePJal8az9+/fo6CgAM7OzlzhRUVFnAaxqpydnaGnpwdDQ0O4urrC1dUVffr0gZSU1E+lV65qT6TalKlXr15h+fLlCA0NRVpaGtjssid8sbGxsLTknVBTkH379uHgwYN4/PgxV4NaTeWlqvI8V+0tVVBQwDU8sjqhoaEYMGBAtXEE9dqqKd2OHTvynaMsOTkZX79+hZeXF9c1V1JSAnl57hvMyvvOyspCXFwc2rdvzxWnffv2eP1a8NCu/Px8ngb1cr169YK/vz/OnTtX68ZnoKzH2rNnz3D+/HkAZT1mPT09cejQIU7jmbS0NK5cuYKoqCjcu3cPT548wezZs7F9+3YEBwdDSqriZkVSUhJ5eXl897Vu3TquBnMAWLZsGfA/Og0jTxduBkA13bqr9m4pbyxisVjIy83D2mWrMWfRPMg38sq4VfH0ymEAQR115NWVIa9eMc+RqqE2ctOz8P72M07jmV3/rgg+eQ2XVu0HWICsiiKM7G0Q9eRNAx1B7Yl1doDUjIrvwpxFq1ASFt6IOao93vIlOK6ChgoUNCrmOFI3aoKc9Cy8vhkETVN9FBUU4t7B8+g43IPvPGi/C0+DKosFQYdVfj2eCr2NgpKyHs8B4UEY1sIFF8IeoIRdChZYyC3Kx7k3gWDA4HtWMuQkpOFg2LzBG884+azyWtDlxGaz4b/zCBz7d4eyptpvyNkv4KkLq6kkfpi0eh4KCwoRG/EZV4+dg4qGGmw7tkFBfgFObj+I/hNHQFqu9j2w6xtTpaSxWICgwqctp4oRLbvDP+w+3sRHQUFSBkOad8OY1j2x/+klnvg9LdqjrZ41Vt/x/f1zTtW2AFbxLDAIAcfPY9KSWVwNcAybgayCHIZNHQshYSHomRgiIy0dN89dafDGMw5+38V8DorNZuPq3pNo29sZihq1u3EJe/AMyjoa0DTk32jfUPjV34LqPm15VYy264Gzb+7hdVwkFCVlMaylK8bZ98Ke4LKpJCJTviEy5Rtnm49JsdjQYxK6m9vDJ+RKAxxB3bFY1X9vlWuta4X84kKe3qGNokrZK7sN5F/2Luw8io79XGusz8UlxDF2zRwUFRYh5l0Ebh+/AEVVZehZGtdnzv9oQr+hNzipvTpPCOHl5YUpU6Zg586d8PHxgZ6eHrp06QKg7GL466+/MG3aNJ7tKk/YXY5hGL4XVeXwukzszu9JfdX0nzx5wunJ5uLiwumFU77K3s/y8/PDzJkzsWXLFrRt2xaysrLYtGlTtUMuq9qyZQu2bdsGb29vWFtbQ1paGjNmzKh2qF9teicICQnxxKs8Z1d5Y9OVK1egrc09J4CgnjSysrJ4+fIlAgMDcfPmTSxduhTLly9HSEjIT6VXrmpDYU1lKjc3F926dUO3bt1w7NgxqKqqIjY2Fi4uLrUeIgkAgYGBmDp1Kk6ePMnVs/FnygubzUbLli25GvzK1XaBi9qU+6qfVfn8PJXPddW52apLt/y87d+/n6enY9XeX/wadKtea4Ku73IqKiqcOdyqWrRoEWxsbDB06FAwDMM1lLs6Bw8eRElJCVe5YxgGoqKiSE9Ph6JiRe8oIyMjGBkZYezYsfj7779hamqK06dPY/ToitWj0tLSBJ6zhQsXYtasWVxh4uLiuHVgeq3y+l8hryAPIWFhpKVy9zJLT0vn6Y1WTklZmSd+RnoGhIWFIScvj5jP0UiIj8eiOQs47zM/ymeXdk444ncc2jrcdUtDE5eRAkuIhfxs7ifgBTm5dWpQUdXXxueQinlJJGSl0Gl8P5QWl6AwNx+S8jJ4dTGw2ontf5ei4Gco+VAxhImdwr8n4Z9E4sd5qtrLrCA7F1JyNfdELqdmoINPT8saMLOS05CdmoEbOysmmy6vZ/dPWAHPlVMhpyZ4gvtflVdUgFI2G7Li3L0QZMQkkVPIv3E/uzAXmQW5nIYzAEjOSYcQiwV5CRmk5mUiuzAXpQybq2EkKScdchLSEGYJoZRpuKFmUrLSYAkJISeTu1dCXmY2pOV5G4mK8gsQ//krEmK+45rvOQA/zgHDYPWwmRi6cCIMrPivaPm7SMuWzWdYtZdZTmY2ZBUEP3ADwJnHTFNPB9mZWbjldwm2HdsgNSEJ6Ukp8FlXMSdnedmbP2A85v6zGioaDdeYmF2Yh1I2m6eXj5yEtMA5ojysOiAiJRZXwoMAAF8zEuFTcgXLnMfgzOu7XAtcuJm3g4dVR6y7ewRfMxL5ptcQZOTK5jSs2sssOzOTpzdaVSEPgnFkxz78tWA6LGy5J82XV1KAsLAwhIQrZsXRbKKNrPQMlBSXQES0zj+7ak1SVgosISHkVulllpedAyl53rqvKL8QidHfkPQlDnePXQRQcU1tG7MQ/eZ4QbdSA0VxYRE+Pn2Ndn1qHj1RX7IK81DKLoWCJHf+5aspf32aOuJjcixnQv3YjEQUPL2MVa7jcCr0FjLyebdjwCAq9Ts0ZHkX9WhouYX5ZfW7RNX6XQrZAur3ytroWuL5t/AGra9rwqnPM2pbnxciPvorEr58x43DZQ+7y8ve2hGzMWT+BOhblQ0/ZgkJQelH466GnjZSvici6PLt/6nGM/JnqXMtPnDgQEyfPh0nTpzA4cOHMW7cOM4P5BYtWuDdu3cwNq5dgba0tERsbCy+fv3K6X32/v17ZGZmcnqp2djY4M6dO1w/aGtKLy4ujjMcLDg4mCvO48ePoaenh7///psT9uUL9zhzCwsLPHnyBCNGjOCEPXlS/WSbDx8+RLt27TBp0iROWG17GVVOo1evXpwhZ2w2G5GRkTw99iqztLTkyVvV16qqqjzzO4WGhnJ6H1laWkJcXByxsbHVDqmsSkREBF27dkXXrl2xbNkyKCgo4O7du3B2dv6p9PipqUy9ffsWKSkpWL9+PacMPX9etyfmnz59Qr9+/bBo0SKuoYhA7coLvzyfPn0aampq1fZQq055ua/as6k65Y088fHxnB5+lRcPKE/38OHDfFfIVFdXh7a2Nj5//oyhQ4fWer9ycnLQ0tLCo0ePuOa9CwoKQuvW/Cd0BQBbW1scO3ZM4PuLFy+GiIgIhg4dCjabjcGDB1ebj5KSEhw5cgRbtmzhGRrbr18/HD9+XOD8i/r6+pCSkuJaiCIqKgoFBQUCe0uKi4v/Tw7TrEpUVBSm5qZ4/iwEHZ0qzv+LZyFo78B/pVJLaysEP+SeRPb502cwszCHiIgIdPV0cegE9zx7B/fsR15eHqbOmg419d/f80RYRBhKTTQQ/yEGus0qhgzEf4iBjnXtV79L+5YISXnexjZhURFIKciCXVqK2NCP0GshuN7/bfILwM5PqDneH0RYRAQqulr4/j4KBrYVn+G38CjoN6v96lypX+M5PzgVNFTQf9lErvdDLtxFcWER2nm6Qlrp5+r52ipl2PiemQwT1SZ4l1gxH5iJig7eJ8bw3SYmLQHWmkYQExZBUWlZbx4VaXmwGTbnR2dMegKaa5mgciciFWkFZBXkNvgPMWEREWgaNMHntx9hblfxwOpz2EeYtuRdxU9cUgJ/beCew/b5rUeIeReJ/jNGQ4HPSpa/m4ioCLSN9BD5+j2s21TMixfx5j2s7JrXOh2GYVBSXHbO1LQ1MXsb933A9RP+KCwoQK8xg6Gg3HCNtgBQyi5FdFocmmoY4fm3D5xwaw0jvKj0ujIxYVGwq5QfzutKD9R6WLRDbysHbLh3DNFpcfWf+WqIiIpA19gA4a/ewrZdxfyb4a/C0My+pcDtngUG4cj2vRg7bwqsW/PeGxhZmiIkMAhsNpvzQDPxezzklRQatOEMKLum1PW1EfsuEiYtKxYS+fIuEka2vKMwxCXFMWL1TK6w13eDEfs+Cu5ThkFelbtsRTx7g9LiUli0q34ESX0qZZfic1ocbDSNEfK1otezjaYxQr7x7wUtLizKU3+Vl7/q5nPUU9T4rQ245UoZNr5lJsFMVZer95iZmi7C4qsfxmysrANVGUU8qTQktTGU1ec6iA6LgLldxTyC0WERMG3Ju6iNuKQ4xq3jnvrmxe3H+PI+En2njYKCavX1Wnn9SEhjqHNNLiMjA09PTyxatAiZmZlcE7PPnz8f9vb2mDx5MsaNGwdpaWmEh4fj1q1bPCvZAUDXrl05vUu8vb1RUlKCSZMmwdHRkTMsbNmyZejSpQuMjIwwaNAglJSU4Nq1a3znm+ratSvMzMwwYsQIbNmyBVlZWVyNHkDZPFGxsbE4deoU7OzscOXKFfj7c68IN336dIwcORKtWrVChw4dcPz4cbx79w6GhoJXATI2NsaRI0dw48YNGBgY4OjRowgJCYGBgUGtP1tjY2OcO3cOQUFBUFRUxNatW5GQkFBt49m0adPQrl07bNy4Eb1798bNmzd5hmx27twZmzZtwpEjR9C2bVscO3YMYWFhnEYBWVlZzJkzBzNnzgSbzUaHDh2QlZWFoKAgyMjIcM11VS4gIACfP3+Gg4MDFBUVcfXqVbDZbJiZmf1UeoLUVKZ0dXUhJiaGf/75BxMmTEBYWBhWrVpV6/Tz8/Ph7u6O5s2bY/z48UhIqPihqKGhUavyUtXQoUOxadMm9OrVi7MCZWxsLM6fP4+5c+dyDSsWZOHChbC2tsakSZMwYcIEiImJ4d69exgwYABUVHiXUAfKepXZ29tj/fr10NfXR0pKCtd8bQAwZcoU/PPPPxg0aBAWLlwIeXl5PHnyBK1bt4aZmRmWL1+OadOmQU5ODt27d0dhYSGeP3+O9PR0nl5Wlc2dOxfLli2DkZERmjdvDh8fH4SGhvLtfVfOxcUFCxcu5OkRVtmCBQsgLCyM4cOHg81mV9uoFxAQgPT0dHh5efEMM+3fvz8OHjyIKVOmYPny5cjLy4Obmxv09PSQkZGBHTt2oLi4mGuo8cOHD2FoaAgjoz9nYlJJUXHoyFf0hNOSU4GJig6yCnKRmMO/F9/vMGCwJ9YtXw0zc3NYWVsh4MIlJCYmwb1vbwDA/p17kJycgkXLy8qjR99euHDmPHZ6/4Oevdzx7u07XL10BYtXLQMAiImLw8CIu76VkS1ryKgcnp+Xh+/fKibrj4+Lx6eISMjKyUFdg/9E6r/CsnNrPD5yGcq6GlA10EbE41DkpmXBtGNZXfryYiDyM7PRfoQ7ACD8XgikleShoKkCdmkpPj97h9jQj3AcWzHUPjkmDvkZ2VDUUUdeRjbeXH0EhmFg1ZX/PJeNjSUrAyE1FbB+/GgX+tEDkJ2WASY9oxFzVsHGuS3uHToPFT0tqBs1QfiDF8hJy4SFY9l9xbPzt5GbkYVOY8oelry9HQxZZQUoaqmhtLQUn568QfTLcDhPKBsyLiIqCiVt7vIkLlU25LxqeEN5GP0ans274FtGEmIzEtG6iSUUJGXxJLbswZirmT3kJKTh9/oOACA0LgJdTFphQLPOuBURAmkxCbiZt8Pzrx9Qwi5beObJl3dor28Nd6sOCIp5CxVpBXQyboHHMW9/yzHZuznhwq5j0DLUhbaJPl7dDUJmSjpadimbAuDOqcvITstE70nDwBISgloT7jkypeVkISImyhVeWlKC5G8JnP9np2UiIeYbxCTEOb0XGpKDuzNO7TgIHSN96JkZ4umtB8hISUPbbk4AgKvHziEzLQODp5WtUP/42l0oqihB9cdqwjEfIvHg0k20794ZACAqJgoNXe5ethLSZT1UqoY3lGsfgjGxbV9Ep8UhMuUrOhu3hLKUPO5Elj2o9GzWBYpScpwhca++R8CrjTu6GLfCm/goKErKYFhLV3xK+YaMHxOa97Roj/42nbAz6BySczMg/6NnW0FJEQpLaj9q4Fd07eMGny27oGdiCENzEzy8fhdpySlwcCsbTePvewoZqWkYPbvsofizwCD4bN0Nz/EjYGBmgsy0DACAmLgYJH+cE0c3Z9y7fBOn9x5BZw8XJH1PwDW/i+js/nsWuGjp0hHX9p2Gur4ONI118TbwGbJTM9CsU9m8bA/PXENOeha6j/cES0gIKjoaXNtLyspARFSEJxwoW1jAuIUlJGV+79D1gPePMbV9f3xO/Y6I5K/oatoKKtLyuBVRNjfxYFtnKEnKYWdQWY/U598+4K+2veFs2pozbHNkKzdEpnzlTKjf36YTIpO/Ij47lTPnmb6SJg4+u/xbj61c4KeXGNrSBV8zEhGTFo+2+tZQlJTF45iy3s89LdpDXlIax1/e5NqujZ4VYtLif/s8bfy06e6Ei7uPQ9OwCXSM9fHqXhAyU9PRoks7AMC90wHITs+Ex4ShP+pz7sUQpOVkICwqwhX++NJtaBo0gaK6MkpLShEVGo63j0LgOqr6aW3+a/6XV7b8E/3UYxAvLy8cPHgQ3bp14xqOaWNjg/v37+Pvv/9Gx44dwTAMjIyMBA65YrFYuHDhAqZOnQoHBwcICQnB1dWVq6HNyckJZ86cwapVq7B+/XrIyclx9W6pTEhICP7+/vDy8kLr1q2hr6+PHTt2wNW14kurV69emDlzJqZMmYLCwkL06NEDS5YswfLlyzlxPD09ERUVhfnz56OgoAD9+vXDxIkTcePGDYGfyYQJExAaGgpPT0+wWCwMHjwYkyZNwrVrtZ/AccmSJYiOjoaLiwukpKQwfvx49O7dG5mZgicvtbe3x4EDB7Bs2TIsX74cXbt2xeLFi7kakFxcXLBkyRLMmzcPBQUFGDNmDEaMGIG3bytukFetWgU1NTWsW7cOnz9/hoKCAlq0aIFFixbx3a+CggLOnz+P5cuXo6CgACYmJjh58iRnUvu6pidITWVKVVUVvr6+WLRoEXbs2IEWLVpg8+bN8PDwqFX6iYmJ+PDhAz58+MAzeT3DMLUqL1VJSUnhwYMHmD9/Pvr27Yvs7Gxoa2ujS5cute6JZmpqips3b2LRokVo3bo1JCUl0aZNmxp7Xx06dAhjxoxBq1atYGZmho0bN3L1wlJWVsbdu3cxd+5cODo6QlhYGM2bN+fMVzZ27FhISUlh06ZNmDdvHqSlpWFtbc1ZsEGQadOmISsrC7Nnz0ZSUhIsLS1x6dIlmJgI7pFjbW2NVq1awc/PD3/99ZfAeHPnzoWwsDBGjhwJNpuN4cOH84138OBBdO3alafhDCjrebZ27Vq8fPkSjo6O2LlzJ0aMGIHExEQoKirC1tYWN2/ehJlZRY+ikydP1nq+xd/FXFUP//apaMSc1qHsBuJqeDDW3D0saLMG19m5C7Iys3DkkC/SUlKhb2iA9ds2QkOz7AY8NTUVSYkVT3Q1tbSwbttG7PL+BxfP+kNZRQVTZ0+HY2enOu33Y/hHzJxUMaR7l/e/AACXHq5YsPRvQZv9NP2WFijMzceba4+Rn5ULBU0VdJ40ADJKZWUuPysHuWkVwxbYJaV46X8XeZk5EBYVKYs/cQC0rSoaZNnFJQgNeIDslAyIiotB28oQ7Uf0hJgU//kAG5toWztIz634zGUWly3wkn/kFAqOnm6sbHExsmuKgtw8vLxyH3mZOVDSUkP3qUMh+2MobF5mNnLSKr5XS0tK8eTsTeRmZENEVASKWmpwnToEutaNOwywsjfxnyAlJo4uJq0gJy6NhJxU+IQEcIYgyYpLcQ1tKiotwYGnl9DLqiOmduiPvKJCvIn/hBsfK6aSyCzIwYGnl+Fu2R4zOnoiqyAXj6PfIDDq1W85Jqu2LZCfk4sH528gJyMTqjqaGDzvL06vg5yMLGSl1u2hQHZ6JvYv2sR5HXzlLoKv3IWehTFGLJlar/nnp3n71sjLzsXtM5eRlZ4JDV0teC2aDkW1sp5xWemZyEip+KHLMAyuHj+PtKQUCAsLQ1ldFd2H9oV9t1/rtV+fnsS+g4y4FPo0dYSCpAy+ZSZhU+BxpOSVXUMKkrJQlqr43n0QHQoJUTF0M22NoS1ckFdUgHeJ0TgVeosTp6uJHUSFRTCjI/fvg3NvA3H+beBvOCrAzqEtcrNycOXkeWSmZUBLTwdTVsyDslpZI2tmWgbSkivO1cPrd8AuLcXJ3T44uduHE962iwNGzSqbG1JJVRnTVy3Amf3HsHLyAigoK6Kzhytc+9funvRXmbVphvycPDy5eAe5mVlQ1tZAn1mjIadS9oAyNyMb2akZdU43PSEZ3yNi0G+OVz3nuGbBX8IgKy6FfjadoCgpi68ZiVh39yhScjMAAIqSslCRVuDEv//5FSRFxeFq1gYjWroit6gA7xI+49jLit9w0mISGG/fGwqSMsgrLkB0WjyW3TiAqNTqV85uKK/iIiAlJgEXM3vIiUshPjsVe59c5DT2yUlIQ1GS+/eDhIgYmmka43zY/cbIMg9Le1vkZefikf8N5GRkQVVHE4Pmjoe8SkV9nplSt/q8uLAI133PIjstEyJiolDWUkOvicNgaf/7ej8SUhWLoSW9/nN8fX0xY8YMZGRkNHZWCKnW1atXMWfOHISFhXGGOPwJwsLC0KVLF0RERPBtjKtO+52/fzW+hvR48h7EZSQ1djbqnZaCGlbf8qk54v8ji51HI925T80R/x9RvOWPLfdPNnY26tVsx8GYf2VXzRH/H9nQYxKOvaj9QkX/Hwxr6YpLYQ8bOxv1yqNpRww9sbyxs1Hvjg9ZjsBPLxo7G/XKybgl9gZfaOxs1Ku/2vbGwKOLa474/4jf8NWYcdG7sbNRr7x7zcCREMGr4/5/NMLOrbGz8NO6HxA88qcxXRu7tbGz0CgadgA+IYRUw83NDZGRkfj+/TvXqruNLS4uDkeOHKlzwxkhhBBCCCGE1AcW68/pXECo8YwQ0simT//zVqesuuAAIYQQQgghhJD/XdSU+R80atQoGrJJCCGEEEIIIYQQUg+o5xkhhBBCCCGEEELIH0SIVtv8o1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmD0GqbfxbqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD8KiYZt/FOp5RgghhBBCCCGEEEKIANR4RgghhBBCCCGEEEKIADRskxBCCCGEEEIIIeQPQsM2/yzU84wQQgghhBBCCCGEEAGo8YwQQgghhBBCCCGEEAFo2CYhhBBCCCGEEELIH0QINGzzT0I9zwghhBBCCCGEEEIIEYAazwghhBBCCCGEEEIIEYCGbRJCCCGEEEIIIYT8QWi1zT8Li2EYprEzQQghhBBCCCGEEELK9D/yd2Nnga+zI9Y0dhYaBfU8I4SQehSXkdTYWahXWgpqaL9zQmNno949nrwH2R8iGjsb9UrW3BRZt+81djbqlVzXTohO+d7Y2ahXBiraeBcf1djZqFdWmkbY/+RiY2ejXo2z7/WfLHvZ0TGNnY16J2ugj+y4uMbORr2S1dLC1/SExs5GvWqiqIGkrNTGzka9UpNTxueUb42djXplqKKD7MhPjZ2NeiVrYtzYWSD/EdR4RgghhBBCCCGEEPIHEaJhm38UWjCAEEIIIYQQQgghhBABqPGMEEIIIYQQQgghhBABaNgmIYQQQgghhBBCyB+EVtv8s1DPM0IIIYQQQgghhBBCBKDGM0IIIYQQQgghhBBCBKBhm4QQQgghhBBCCCF/EBZo2OafhHqeEUIIIYQQQgghhBAiADWeEUIIIYQQQgghhBAiAA3bJIQQQgghhBBCCPmDCNFqm38U6nlGCCGEEEIIIYQQQogA1HhGCCGEEEIIIYQQQogANGyTEEIIIYQQQggh5A/ComGbfxTqeUYIIYQQQgghhBBCiADUeEYIIYQQQgghhBBCiAA0bJMQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhBBCCCECUOMZIYQQQgghhBBCCCECUOMZIeSPkZeXh1WrVuHLly+NnRVCCCGEEEIIaTSsP/Tf/ypqPCP/L/n6+kJBQeG37MvJyQkzZsz4LfuqT3X9jPT19eHt7d1g+amNqVOnIi4uDnp6enXa7v/rOSKEEEIIIYQQ8uejBQNIg2HVMMHhyJEj4evr+3sy8z/I09MTbm5utY4fEhICaWnpBsxR9U6ePInExERcvHixztueP38eoqKiDZCrhnHhrD9OHzuJ1NRU6BvoY8rMabCxbSYwfujLV9jl/S9iomOgoqKMQcOHwKNvb75x7968jVVLVqC9Qwes3rSOE/76VShOHzuJiA8fkZqSilUb16CDo0N9H1qdNdM0xhDbbjBX04WKtAIWXN2Nh9GvGztbAjEMg32nTsL/xg1k5+bAytQU8/+aACNdwQ2+UbFfsOfEcXyIikJ8UhJmeY3FEI9eXHH2njyB/adOcoUpKyjgxuGjDXIclTEMg/1XA+D/+BGy8/Jgpa+PeQMHw0hLS+A2d0NfwffGNXxNTkZJaSmaqKphWJeucGtjz4nzMjISR2/fxIevsUjJzMSm8RPg1Kx5vef/8vmLOHviNNJSU6FnoI8J0yajaXMbgfHfvHqNff/swpfoGCirqGDAEE/06OPBFcf/9FkE+F9CcmIS5BTk0dHJAaMnjIOYuBgA4NSRE3h8/yG+fYmFmLg4LK2tMGbiODTR06334yt37UIALp46h/TUNDQx0MOYKeNhadOUb9y01DQc3rUfURGfEP8tDm59PeA19S+BaT+6cx9bV21A6/b2WLBmaUMdAo9Xd4IQcvU+cjOzoaKljk5DPaBjZlDjdt8jYnBq3R6o6Khj5KqZXO8V5Obj0bnriHwehoK8fMirKMFpcA8YNrNokGOo7/I3d8pMvH3FWwfatW2DVZvL6vS83Dwc2X8IQQ8eISM9A0amxpgwYwrMLMzr/wB/YBgG+44dg/+1q8jOyYGVmTnmT54MI319gdtExcRgz9Ej+BD5CfFJiZj1118Y0qcvV5yXb9/i6NkzCI+MREpaGjYvXQandu0aJv+HD8M/IADZ2dmwsrDA/OnTYWRQfXm7c/8+9vj44FtcHHS0tDDJywudOnbkvO8+aBDiExN5thvQqxfm/3iod/fBA5y/fBnhERHIzMrC8f37YWZs/MvHdPGsP84cP4XU1DToG+hj0swpsG4u+F7i9ctQ7Nm+EzHRMVBWUYbnsMFw71vxXXQj4Bo2rV7Ps93V+zchJi4OABja2xOJCQk8cTz69ca0uTN5wuvK/8w5nDx2AqkpqdA3NMC0WdPRzLa5wPivXrzCv947EPM5GsoqKhgyYih69+vDeT866jMO7j2Ajx8+ICE+AVNnTsfAIZ5caQzw6IuEeN5j6tO/L2bNn/PLxwQAAecv4uwJP0498de0STXWE/v/2c2pJ/oP8USPPu5ccfxPn8OVSt9THZwcMHrCWM731Mh+Q5CUwFs2e/b1wOTZ0+vluCpjGAb7TpyA/43rZXWEqRnmT5wIo2oeiEd9+YI9x4/hw6dPZfdH48ZhSK/eAuP7+Plh55HDGOzRC7PHj6/3YyCkJtR4RhpMfHw85/+nT5/G0qVL8fHjR06YpKRkY2Tr/73S0lKwWCwICVXfcVRSUrJOn7GqquqvZu2XDB48GIMHD/6pbZWUlOo5Nw3n7q072LltB2bMm4WmNta47H8J82fOhe+po1DXUOeJHx8Xh4Uz56FHL3f8vWIJwt68hffGrZBXUIBjZyeuuAnxCdi9Yxds+Nw8F+QXwMjEGK493bBsweKGOrw6kxQVx6fUb7j6IQhru09o7OzU6PD5czhx8QKWTZ8BXS1tHPQ7jclLl+Lcrt2QlpLiu01BYSF01DXQtV0HbD10QGDahrq62LVyNee1cA3XeH05cusmTty9g6XDR0JXTQ2Hrl/DlH+34+zSFZCWkOC7jbyUFEa7dIe+hgZEhUXwMOwNVh47AkVZWbS1tAIA5BcVwlRHB+5t22H+/r0Nkvf7t+9h7/admDx7OqxsmuLqhctYPGcB9h3zgRqf6ykhLh5L5ixEd3c3zFu6CO/ehGHnlu2QV1BAh05ljcl3b9zGoT37MWvhPFhYW+F77FdsWbMRAPDX9MkAgLehr+HetxdMLczALmXDd99B/D1zHvYd94FEA3y3Pbp7Hz7/7sO4GZNgYW2JG5euYfW8pdh+eA9U1dV44pcUFUNOQR79hg1CwBn/atNOSkiE7+4DsLSxqvd8V+fD01DcO34ZXUf0hrapPl7fe4pzWw5i9LrZkFNWFLhdYV4+ru47BT1LY+RmZXO9V1pSgjOb9kNKTgYeU4ZDRkke2WkZEJMQb5BjaIjyt3TtChQXl3C2ycrMxKRR49CxkyMnzHv9ZsR8jsbcpQuhrKKCOzduYeH0udh3/BBUGui7/PAZP5zwP49ls2ZDV0cHB0+ewORFC3HuwMHq6z4NTXTt6ICte/nXAfkFBTAxMIS7czfMW72qQfIOAIdPncKJM2ewbP586DZpgoNHj2Ly3Lk4d+SIwPy/efcOi1auxIQxY9CpY0fce/gQC1aswMEdO9DU0hIAcGTPHpSy2ZxtoqKjMXnOHHRxcuI6xmZNm6KrkxNWb95cL8dz79Zd7Pb+F9PmzoSVTVNcuXAZC2fOx8GThwXcS8Tj71nz4darJxYs/xvv3oRhx6ZtkFdQgEPnirIlJS0NXz/uhzblDWcAsNNnL9jsUs7r6KhozJ82Gw5V7kd+xp2bt7Fj63bMmj8H1s1scOn8BcydPhtH/Y5DXUODJ37c9zjMmzEb7r09sGTlMrx9/QZbN2yGgqICnDp3AgAUFBRAU1sLTl074Z+tO/jud9/hg2CXVpzD6KjPmDllOjp17fzLxwSU1xO7MHn2NFjaNMXVCwFYMmch9h47JLCeWDpnEVzd3TB36UK8fxOGnVt2QF5Bnut7ymfPfsxcOBeW1lb4FvsNWznfU5MAANsP7AK7Utn88jkai2bM46pL6tPhc2dx4oI/ls2cWXZ/dPo0Ji9ZjHN79tZQR2iga/sO2Hpgf7Xpv4uIgP+N6zDRr/kBy39JTZ1RyO9FwzZJg9HQ0OD8ycvLg8VicYU9ePAALVu2hISEBAwNDbFixQqUlFTcMGZkZGD8+PFQV1eHhIQEmjZtioCAAK593LhxAxYWFpCRkYGrqytXgx2bzcbKlSuho6MDcXFxNG/eHNevX682z7m5uRgxYgRkZGSgqamJLVu28MQpKirCvHnzoK2tDWlpabRp0waBgYHVprt8+XLo6upCXFwcWlpamDZtWq3TKx9+GRAQAEtLS4iLi2P//v2QkJBARkYG136mTZsGR0dHru0qu3TpElq1agUJCQmoqKigb9+KJ8BVh23GxsaiV69ekJGRgZycHAYOHIhEPk9Xy8XExIDFYsHPzw8dO3aEpKQk7OzsEBERgZCQELRq1YpznpKTkznbhYSEwNnZGSoqKpCXl4ejoyNevnzJeT8wMBBiYmJ4+PAhJ2zLli1QUVHhnO+qwzb19fWxevVqzrnU09PDxYsXkZyczDkma2trPH/+nOsYzp07BysrK4iLi0NfX5/v+f9VZ06ehptHD/To5Q49A31MmTUNaupquHSO/w/cS+cvQk1DHVNmTYOegT569HJHd/ce8Dt+iiteaWkp1ixdiVHjx0BTW5MnnTbt7OE1YRwcGuim6Wc9iX2H/U8v4f7n0MbOSo0YhsHJy5cwesBAdG7bDsZ6elgxYyYKigpx/cF9gdtZmZhi+ugxcHFwgFg1PSRFhIWhoqjI+VOUl2+Iw+DCMAxO3ruD0S7d0bm5LYy1tLF8+EgUFBXhRsgzgdu1NDVDp+a2MNDQhI6qKgZ36gJjbW2ERkVx4rS3aoqJ7r3Qubltg+X//OkzcOnZHd09ekBXXw8TZkyBqpoaAvwv8Y1/5cJlqKmrYcKMKdDV10N3jx7o1qM7zp7048QJD3sHK+um6NStCzQ0NdCyjR2cnDsj4kMEJ86arRvQrYcr9A0NYGhihFmL5iEpMQmRHyP47faXXT7jjy5u3eDc0xU6errwmvoXlNVUcePiFb7x1TTV4TV1Ajq5dIFUNT2KS0tL4b16EwaNHgZ1Td56oyE9v/4Q1g52sHFqA2UtdXQe6gFZJQWE3nlS7XY3fc/Doq0tNI15e/m9fRCCgpw89J42Etqm+pBXUYSOqQHUdAX3ovwVDVH+ZOXkoKSsxPl7FfICEuISnAaOwsJCPLr/AF6T/4J182bQ0tHGcK9R0NDUELjfX8UwDE76X8DoQYPQuUMHGOvrY8XsOSgoLMT1e/cEbmdlZobp48bBxclJYN3X3s4Ok0aNQucOHRok78CP/J89i9HDhqGzgwOMDQywYsECFBQU4Prt2wK3O3n2LNq0aoXRQ4dCX1cXo4cOResWLXDi3DlOHEUFBagoKXH+HgUHQ0dLCy2bVTzE6tGtG8aNHInWLVvW2zGdO+kHV3c3uPXqCT0DfUyaORVqaqq4fJ5/7/2A8xehpq6GSTOnQs9AH269esLV3Q1nTnDfS7BYLCgpK3P9VaagqMD13tPHwdDS0UazFs1/+ZhOnziFHr3c4d7bA/oG+pg2ewbU1NXgf5b//dHF8/5Q11DHtNkzoG+gD/feHujh0ROnjp3gxLGwssTk6VPQtZszxMT4l0FFRUUoqyhz/oIePYa2jjaat6if7y7/02fRrWd3uHLqiclQVVPDFf/LfONX1BOToauvB1ePHujWwxXnKtUTH8Lew/LH95S6pgZatmkFJ+dOiPxQ0Umh7FxV1CVPHz+BprYWrKsZ6fCzGIbByYsXMdrTE53btS+rI2bNKqsj7ldzf2RqiuljvODi6Fjt/VFefj6WbN6Ev6dOhayMTL3nn5DaosYz0ihu3LiBYcOGYdq0aXj//j327t0LX19frFmzBkBZw1f37t0RFBSEY8eO4f3791i/fj2EhYU5aeTl5WHz5s04evQoHjx4gNjYWMyZU9G9evv27diyZQs2b96MN2/ewMXFBR4eHoiMjBSYr7lz5+LevXvw9/fHzZs3ERgYiBcvXnDFGT16NB4/foxTp07hzZs3GDBgAFxdXQWme/bsWWzbtg179+5FZGQkLly4AGtr6zqll5eXh3Xr1uHAgQN49+4dhg0bBgUFBZyrdANXWloKPz8/DB06lG8+rly5gr59+6JHjx549eoV7ty5g1atWvGNyzAMevfujbS0NNy/fx+3bt1CVFQUPD09+cavbNmyZVi8eDFevnwJERERDB48GPPmzcP27dvx8OFDREVFYenSimFBWVlZGDFiBB4+fIjg4GAYGhrCzc0N2dllPQrKG8aGDx+OzMxMvH79Gn///Tf2798PzWp+7G3btg3t27fHq1ev0KNHDwwfPhwjRozAsGHD8PLlSxgbG2PEiBFgGAYA8OLFCwwcOBCDBg3C27dvsXz5cixZsqRehxYXFxcj4kMEWrVpzRXeqrUdwt6G8d3m/dt3aNXajivMzr41PoZ/4GpsPnLQFwqKCujh0bPe8ku4fU9MRGp6OuxtK26oxURF0cKqKd58+PDL6cfGxcF11Eh4jPPCwk0b8Y3P0Jj69j01BalZWbC3qBjSJiYqihbGJngT/blWaTAMg2cfPuBLYiJa1MNQpNoqLi5G5McItGjNXY+1aN0K4WHv+G4THvaOJ37LNq0Q+eEj53qyamaNyI8R+Pg+HAAQ/z0OIcFP0bpdG4F5ycvNBVDW8FHfiouLEfXxE5rZteAKb25niw/vwn8p7TNHTkJOQR5de7j8Ujp1VVpSgsSY79BvasoVrt/UBHGfYgRu9/ZBCDKSUtGud1e+70e9eg8tYz3cOeKPXVNXwmfRFjy5fJer90V9aajyV9WNgGtw7NqJ06OxtKQU7FI2xMTEuOKJiYvj3Rv+3yO/6ntCAlLT02DfoqLxR0xMDC2srfEm/H2D7LM+fY+PR2paGuwr3fOIiYmhRbNmePOO/7kCgDfv36NNlfskezs7gdsUFxfj6q1b8OjevUF7ixQXFyPiYwRateG+N2jZxg7vBd1LhL1DyyrxW7WxQ0Q4d9nLz8/HkN4DMci9P/6evaDaBwLFxcW4ff0WXHv++vGW3R99ROsq90d2bVoj7M1bvtu8exsGuyrxW9u3wYf3HwReT7XJx81rN+Dm0bNezqHgeqIl3guoJz6EvUeL1twNrS3a2CHyQwTnuCybNcWnjxH4+L7s3qPse+oZWrez50mvPB/3bt5Gtx6uDVI2vycm/Lg/qvieEhMVRYumTfEm/Ne+pwBgw+7daG9nhzYN+DCOkNqgYZukUaxZswYLFizAyJEjAQCGhoZYtWoV5s2bh2XLluH27dt49uwZwsPDYWpqyolTWXFxMfbs2QMjIyMAwJQpU7By5UrO+5s3b8b8+fMxaNAgAMCGDRtw7949eHt7Y+fOnTx5ysnJwcGDB3HkyBE4OzsDAA4fPgwdHR1OnKioKJw8eRLfvn2D1o/5gObMmYPr16/Dx8cHa9eu5Uk3NjYWGhoa6Nq1K0RFRaGrq4vWrVvXKb3i4mLs2rULzSo9yfT09MSJEyfg5eUFALhz5w7S09MxYMAAgZ/5oEGDsGLFCk5Y5fQqu337Nt68eYPo6Gg0adIEAHD06FFYWVkhJCQEdnZ2fLcrz7+LS9kPsenTp2Pw4MG4c+cO2rdvDwDw8vLiapDq0qUL1/YHDhyAgoIC7t+/j549yxqCVq9ejdu3b2P8+PF49+4dhg8fjj59+qA6bm5u+Ouvsjl+li5dit27d8POzo7z+cyfPx9t27ZFYmIiNDQ0sHXrVnTp0gVLliwBAJiamuL9+/fYtGkTRo0axZN+YWEhCgsLucLExasfGpSZkQl2aSkUlbiHJCkqKyL9SRrfbdJSU6GozH1zqKikiNLSUmRmZEBZRQVvX7/B1UtXcODYoWr3T35Nano6AEBZXoErXFlBAfFJSb+UdlNTU6yYMRN6WtpIzcjAwTOn4TV/Lk7/sxMKDdAgUy41KwsAoCTLvQ8lOTkkpPEvk+Vy8vPhtmgBikqKISwkhPmeg9HGwrLB8lpVVkYm2KVs3utJURFpqfzznp6WDkXFKvE511MmlFWU4dS1MzLTMzB74nQwDIPS0lL07OMBz+FD+KbJMAz27tgFKxtr6BvW/3CS7MwssNlsKCgqcIXLKyoiIy39p9MNf/sOt6/cwNYD//5iDusuPzsXDJsNKXnuHgRS8rLIzczmu016QjIenrmGQX9PhFClB2mVZSanITY8ChZtbdF31hhkJKbg9pELYJeWol1v53o9hoYqf5V9fB+OmM/RmLmw4sGglLQULJpa4oTvUejq6UJBSRGBt+/i4/twaOlo19PRcUtNLzse5Sp5V1ZURHzir9V9v0NqWnX5F9yjPjUtje82qQLqxsBHj5CTkwN3V9dfzHH1Ku4luKesUFQSXPbSUtN4y6qSElfZa6Kvi3mLF8DA2BB5ubk4f/ocZoyfgr1HD0FHV4cnzcf3HyInJwfdenSvh2PKQCm/Y1JWEnhMqalpaK1c9TMoO6aMjAyoqKjUOR8PAx8gJycHbj1rP2dwdQTVEwqKikgXWE+kQUFAPZGVkQklzvdUJuZU+p7q0ccDA4fzn/4k+MFj5OTkwNmtYR6UcO6Pqox4Kbs/SuazRe3duH8fH6I+4cg2719K5/8rIRb1dfqTUOMZaRQvXrxASEgIp6cZUNZzqqCgAHl5eQgNDYWOjg6n4YwfKSkpTsMZAGhqaiLpxw/YrKwsxMXFcRpsyrVv3x6vX/OfjDwqKgpFRUVo27YtJ0xJSQlmZmac1y9fvgTDMDz5KiwshHKVru3lBgwYAG9vbxgaGsLV1RVubm5wd3eHiIhIrdMTExODjQ33xKJDhw5F27ZtERcXBy0tLRw/fhxubm48N+blQkNDMW7cOL7vVRUeHo4mTZpwGs4AwNLSEgoKCggPD6+28axyPtXVy+ZyqNzTTl1dnXOeACA1NRWrV69GYGAgkpKSUFpairy8PMTGxnId/7Fjx2BjYwM9Pb1arQpam3wAQFJSEjQ0NBAeHo5evbgncW/fvj28vb1RWlrK1esRANatW8fVEAmU9bobP2NSjXnjeerHAKjmSWDVJaHLe8uxWCzk5eZh7bLVmLNoHuR/0wq0/yuuBQZi7e6KhnbvJWU9JqueP4ZhfvlJbvuWFU+ljQHYmJuj91/jEHDvLoZVM3luXV179hTrTlYMadk2qWwOL37HVBMpcXEcX/g38goLEfLxA7adPwttFRW0NDWrcdt6VTXvqOF88BxreXBZ+OuXoTh15Dgmz54OcysLxH37jj3bd0LR5yiGjh7Ok9zOrTsQHfUZW3bzn0+nvvDWG8xPLxefn5eH7Ws2Y9LcaZBTaPjhwYLwPSY+547NZiNgz0m06+MMJQ3Bc3oxbAZSsjLoNrofhISEoGGgg5yMLIRcvV/vjWcc9Vz+KrsecA36hgYws+Re7GDukoXYtm4ThvYeCCFhIRibmsDJuQuiIgT3rK+La3fvYu2O7ZzX3ivL5iKrmsOyuq9edlmvrt26hbVbt3Jee68rW2iBp57jE8aDX30vIOrFq1fRrk0bqP5Eo83P4HP51LHsMVzBlk2tYNm0Yu5DKxtrTBw5DhfOnMMUPhPMX7t8Fa3tW0NFtf6Olyf7NZQxnvsjMHzDayvg0mW0aWtf73MH8r/tq+a+T9B38o/wNy9DcfrIcUyePQ1mVhaI+xaHvdt34oSPEobw+Z66EXANrexbQ7meztW1e/ewdmfFgxfvZcsF5Lva29saJSQnY8v+ffh35SqIV+ltS0hjoMYz0ijYbDZWrFjBNedWOQkJiVpNdF91dUUWi8Xzg68uP3Jr82ORzWZDWFgYL1684GlMkREwBr9Jkyb4+PEjbt26hdu3b2PSpEnYtGkT7t+/X+v0JCUlefLdunVrGBkZ4dSpU5g4cSL8/f3h4+MjMO91WTxA0OdUm0aCyuelPG7VsMpDaEaPHo3U1FRs374denp6EBcXh7W1NYqKirjSDQoKAgCkpaUhLS2txpVBa5MPAJy88Du26srEwoULMWvWLK4wcXFxpOZnCtxGXkEeQsLCPE9R09PSeZ5KllNSVuaJn5GeAWFhYcjJyyPmczQS4uOxaM6Cinz/OKYu7ZxwxO84tBuoN8J/nUPr1mhqVtGwXVRcDABIyUiHSqWn42mZmVCq54ZLSQkJGOnp42tcXL2m62DTDE0rTbZb9GMISGpWJlQqzbGWnp0N5Rp6vAkJCaGJWtlk9WZNmiAmMQG+N2/8tsYzOQV5CAkL8Ty9z0jPEHg9KSopIj2tavz0H9dT2fEe2e+Dzi7O6O7RAwBgYGSIgoIC7NiwFYNHDuVarGXX1h148igIm3d6Q1WtYSZql5WXg5CQENKr9DLLzMiAvJLCT6WZ8D0eSQmJWLuw4gFAeX3Xv3NP/Ht0PzT4zJ1YXyRlpcESEkJuBncvs7ysHEjJ8X6XFuUXIjH6G5K+xOHO0YsV+WUYbBm9AAPmjoWupTGkFWQhJCzMdY6UNNWQm5mN0pISCIvU321vQ5W/cgUFBbh/+x5GjB3Fk46WjjY27fRGQX4+cnPzoKyijLVLVkJdk3dS9Z/hYG+PpuYV13FR0Y+6Lz0dKpUe7KVlZEBJwAO7xuTQvj1nQn8AnPuJlLQ07vynp1ebf2UlJZ5eZmkZGXwXKYpPSMCzly+xscpDtYYg6F4iI726ewklPmU1nXMvwY+QkBBMLczw/es3nvcS4xPwKuQFlq2vn0Ue5BUUICzw/oj/olDKykpIS03lCstIKzsm+Z94KJAQH48Xz55j9UbeUSQ/q7yeSEutUn+np0NBYD2hxKeeyOD7PeVa6XuqsCAfOzZsw6Aq31OJCYkIff4Si9cur7fjcmjTBk0rdS7g3B+lV70/yoCSws/XER8+fUJaRgaGz6hovC1ls/HqXRj8Ai4jyP8Cz+8nQhoSNZ6RRtGiRQt8/PgRxgLmx7GxscG3b98QERFRbe8zQeTk5KClpYVHjx7BwcGBEx4UFMQZMlmVsbExREVF8eTJE+jqlk1EnJ6ejoiICM4k/La2tigtLUVSUhI6VlqqvCaSkpLw8PCAh4cHJk+eDHNzc7x9+/an0ys3ZMgQHD9+HDo6OhASEkKPHj0ExrWxscGdO3cwevToGtO1tLREbGwsvn79yul99v79e2RmZsLCwqKGrevm3r172L17N+c8ffnyBSkpKVxxoqKiMHPmTOzfvx9+fn4YMWIE7ty5U+OKo3VhaWmJR48ecYUFBQXB1NSU7xezuLg4/2Ga+YL3ISoqClNzUzx/FoKOThXl8sWzELR34D9ZsqW1FYIfPuYKe/70GcwszCEiIgJdPV0cOnGY6/2De/YjLy8PU2dNhxqflfhI7UhLSXGtEMUwDJQVFfE0NBTmhmW9XouLi/HyXRimjhhZr/suKi5GzLevsLWs32GQ0hISXCtoMgwDZTk5PP0QDrMmZfVecUkJXn6KxNRe1Q+NrophGBSVFNdrfqsjKioKEzNTvAp5gfaOFfXnq5AXsO/Qju82Fk2t8PRxMFfYy2fPYWJuBpEfDSuFhQU8dYuQkBAYhuE0MDEMg11bdyDowSNs/HcbNLQarqFJVFQURmbGeP38Few7VhzX6+ev0Lo9//ltaqKt2wTbDu3iCjt58Ajy8/MxZspfUFZr2J4zwiIiUNfXRsy7SJi0asoJj3kXCWNb3lU/xSXFMXIN98OK0DvB+Br+Ce5ThkNetezHmraJPsKfhIJhs8H6cQ7TE1MgrSBbrw1nQMOVv3IP7gSiuLgInV34z+8GABKSkpCQlER2VjZePAuB16S/fuGIKvCv+5Tw9NVLmP+4bysuLsbLt28xdYxXveyzPvHNv5ISnj5/DnMTEwA/8v/6NaaOHy8wHRtLSzx98QJDK02H8fT5c9hY8ZbRS9evQ1FBAR0qjV5oKKKiojA1M8WLZ8/Rgete4jnaCbqXaGqF4EdBXGHPn4bA1IK37JVjGAZRkZ9gYGTI8971gGtQUFSAvYA5tuqq7P7IDCFPn3EtbBTyLAQdHPjfH1tZN8XjKvdHz54+g7mlucBjqs7Vy1egoKiItu35X78/g7ueqDg3L0NeoG2H9ny3MW9qKaCeMK30PVUIlhD3A18hIWGu76lyt65ch7yiAlq3rZ9zBVRzf/TqFcyNKt0fhYVh6qiaf3cIYtesGU79yz3Vzsrt3tDT0cHIfv3/JxrOaLXNPws1npFGsXTpUvTs2RNNmjTBgAEDICQkhDdv3uDt27dYvXo1HB0d4eDggH79+mHr1q0wNjbGhw8fwGKx4FrLuSTmzp2LZcuWwcjICM2bN4ePjw9CQ0Nx/PhxvvFlZGTg5eWFuXPnQllZGerq6vj777+5fkSZmppi6NChGDFiBLZs2QJbW1ukpKTg7t27sLa2hpsb7xwJvr6+KC0tRZs2bSAlJYWjR49CUlISenp6UFZWrnN6lQ0dOhQrVqzAmjVr0L9/f0hU+lFc1bJly9ClSxcYGRlh0KBBKCkpwbVr1zBv3jyeuF27doWNjQ2GDh0Kb29vlJSUYNKkSXB0dBS4yMDPMjIywuHDh9GyZUtkZmZizpw5XL3kSktLMXz4cHTr1g2jR49G9+7dYW1tjS1btmDu3Ln1lo/Zs2fDzs4Oq1atgqenJ4KDg/Hvv/9i165dNW9cBwMGe2Ld8tUwMzeHlbUVAi5cQmJiEtz79gYA7N+5B8nJKVi0fDEAwKNvL1w4cx47vf9Bz17uePf2Ha5euoLFq5YBKJskuuqNrYxsWc+NyuH5eXn4/u0753V8XDw+RURCVk6O77L2v4ukqDh05Ct67GjJqcBERQdZBblIzPn5+ZwaAovFwmB3D/icPQNdTS000dKCz1k/SIiJw9Wh4mZ/6batUFNWxpQfDWrFxcX4/PXrj/+XIDk1FR8/f4aUpASaaJbNdejtcxAd7VpDQ1UV6RmZOHjmNHLz8tCzcxfejNT3MXXqAp8b19FEVQ1N1NTge+M6JMTE4GJX8aBh2WEfqCooYMqPBjWfG9dhqasLbVVVlJSU4vG7MFx5+gQLBlXMC5ZXUICvlVbWjUtNwcevXyEvLQ0NAT0J6qqv5wBsWrUOJuZmsGhqiWsXA5CUmIgefdwBAId270dqSgrmLlkIAOjR2x2Xzl3A3h270N2jB8LD3uNGwDUs+HG9AUCb9m3hf+osjEyNYW5ZNmzzyH4f2Hdox7lR37llO+7duoNl61dDUkqK01tCWka6xrkPf4b7gD7YsXYLjM1MYGZljpuXryMlMRndPMq+I47t80FqSiqmL6qYGys6smzl04L8fGRlZiI6MgoioqJooq8LMXEx6Bnqc+1D+kdv56rhDaWVa0dc3XsaGgY60DLWxZt7T5GdmoFmnct+4D3wu4ac9Ey4/TUILCEhqOpw96qSkpOGsKgIV3izzm3x8vZj3D1+CbbO7ZGekIKnl++ihTP/H6m/qiHKX7kbAdfQrmMHvr2Cnj8NARgGOrpNEPftOw7s3Asd3Sbo1qNh5tpisVgY3Kc3fE6dgq6WNppoa8Pn1ElIiIvDtVMnTrylmzZCTVkFU8aMAfCj7vsxBUNxSTGSU1LxMSqqrO7TKusRnZefz9XD9ntCAj5GRUFeVhYaavXz8IfFYmFw//7wOX4cujo6aKKjA59jxyAhIQHXrhWNk0vXroWaqiqm/JjiYlC/fhg/fTp8T56EU/v2CHz8GE9fvMDBHdxDtNlsNi5fv46eLi4Q4fNjPjMrCwlJSUj+8WDwy4/PRPnHCp0/o9/ggdiwYg1MLcxg2dQKVy4GICkxCe59PAAAB3btQ0pyMhYs+xsA0LNvL1w864/d3v/CrVdPvA97h+uXr2LRyooFnI4c8IVFU0toN9FBXm4u/P3OISriE6bNmclzvDeuXIOzm2u9Nkp7DhmE1ctWwtzSAlbWTXHJ/yKSEhLRu19vAMCef3cjJTkZi1eU5blX3z4473cO/2zbDvfevfDubRiuXLyMZWsqev8VFxcj5nP0j/+XIDk5GZEfIyApJQWdJhXzuLHZbFy9fAXde3T/qYa36vTx7I/Nq9bDxNz0Rz1xBcmJSXD7UU/47D6A1JQUzFlSNoKgR293XD53Eft27ILrj3riZsA1zF/+NyfNNu3b4nwN31Plx3XrynV07d4NwiIN19DEYrEwuFcv+Jzxg67Wj/ujM35ldYRjpfujLVvK7o9+zCVcdn9UXkeU3x9FQUpCEk20tCAtJQVjfX2ufUmIS0BBVo4nnJDfgRrPSKNwcXFBQEAAVq5ciY0bN0JUVBTm5uYYO3YsJ865c+cwZ84cDB48GLm5uTA2Nsb69etrvY9p06YhKysLs2fPRlJSEiwtLXHp0iWY/HjqyM+mTZuQk5MDDw8PyMrKYvbs2cjM5B6G5+Pjg9WrV2P27Nn4/v07lJWV0bZtW4ENXQoKCli/fj1mzZqF0tJSWFtb4/Lly5w5zeqaXmUmJiaws7NDSEhIjfOAOTk54cyZM1i1ahXWr18POTk5rl55lbFYLFy4cAFTp06Fg4MDhISE4Orqin/++afGPNWVj48Pxo8fD1tbW+jq6mLt2rVcq6auWbMGMTExuHy5bElvDQ0NHDhwAAMHDoSzszOaN29eL/lo0aIF/Pz8sHTpUqxatQqamppYuXIl38UCfkVn5y7IyszCkUO+SEtJhb6hAdZv2wiNH8NtUlNTkVRpAmNNLS2s27YRu7z/wcWz/lBWUcHU2dPh2NmpTvv9GP4RMydN47ze5V02V4VLD1csWPq3oM0anLmqHv7tU9GjZFqHsif8V8ODsebuYUGbNZqRffuhsKgI6/fuRnZODpqamuLfFSu5nsAmpCRDqNIT4eS0NAydWTHk4OgFfxy94I8WTZti35qyuXgSU1Lx9+bNyMjOgqKcHJqamcFn42Zo1tOPx+qMcO6GwuIibDh9Etl5ebDSN8A/U6Zx9VBLSE/jevpZUFSIDadPIikjA+KiotBT18DKUWPQrdLcbeGxXzBh+zbO623nzgIAerSxx/IRo+ol745dOyErKwvHfY4gPTUNeob6WLV5HdQ1yq6ntNQ0JFWa0FxDSxOrNq/D3h07EXD+IpRUlDFxxhR06FRRFw4ZORwsFguH9x1CanIK5BUV0KZ9W4waX9HDJsD/EgBg3hTuH5WzFs1rkAaMDp0dkZ2VDb/DJ5CelgZdA338vWEF1H40fKenpiMlkXtS5tnjpnL+HxXxCQ9vB0JVXQ17T/vWe/5+hnmb5sjPyUPwxdvIzciCirYG+s4aA3mVsiE+uZlZyErLqFOacsoKGDB3HO6duIzDi7dBRkEOLbp1QOseTvV/AGiY8gcA32K/4t2bt1i7bSPf/ebl5MJnz36kJKdARk4WHRw7YtRfXvX+o7+ykQMGorCwCOv//RfZOdloam6Of9eu4677kpK5JrdOTk3F0MkV84AePXcWR8+dRQtrG+zbtAkA8D4iAhPmVzzE27ZvLwCgZ1dnLK90L/DL+R80CIWFhVjv7Y3s7Gw0tbDAv5s2Vcl/EtcD02ZNm2LN0qXYffAg9hw6BB0tLaxbupRrSCgAPHvxAgmJifDozn/i/AdBQVixYQPn9aJVZUMdx40cib9+8h6jk3NnZGVm4tjBI0hLLbuXWLt1A2foblpKKpISKsqeppYm1mzdgN3e/+LSuQtQVlHG5FnT4NC5omEjJycH29ZvRnpqGqRlpGFkaoJte3bA3Ip7xMHLkBdISkhEd/f6mVS/XJduXZGVmQnfA4eQmpIKAyNDbPTeDI0fK6unpqQiMaHi/khLWwsbvbfgn23b4X/mPFRUVTB9zkw4da5o0E1JTsGYYaM4r08dO4FTx06geQtb/LO3okfT82chSExIhFsDrFju2LUTsrOycMLnKNJS06BvqI+Vm9dxHlympaby1BMrN6/Fvh27cPn8JSirKGNClXpi8MhhYLFYOLLPp9L3lD1GjufuCfoq5CWSEpMarGG9spH9+pfVEbt3ld0fmZnh35WruK+xZD73R9Mq7k2Pnj+Po+fPo0VTa+yrw28+Qn4XFlObiZ4IIYTUSlzGn7/yWF1oKaih/c4JjZ2Nevd48h5kf4ho7GzUK1lzU2TdvtfY2ahXcl07ITrle80R/x8xUNHGu/ioxs5GvbLSNML+JxcbOxv1apx9r/9k2cuOjmnsbNQ7WQN9ZNfz/JCNTVZLC1/TExo7G/WqiaIGkrJSa474/4ianDI+p/DOCff/maGKDrIjPzV2NuqVrAn/aYL+Pxjrt66xs8DXgYELGzsLjYLWPiWEEEIIIYQQQgghRABqPCOEEEIIIYQQQgghRACa84wQQgghhBBCCCHkD0Krbf5ZqOcZIYQQQgghhJD/Y+++w5uq3gCOf5N07z0ohRYKbSl77703gvADWQoqojhwIE4UBVEZooKKbJG9lL33KqPMslpKGd17jyS/PwopaROGtrTq+3mePE9ze+7NOcnNSfLe95wjhBDCCAmeCSGEEEIIIYQQQohSMWfOHHx9fbGwsKBBgwYcPHjQaNmRI0eiUCiK3YKCgnRlFi1aZLBMdnZ2qbVBgmdCCCGEEEIIIYQQ5Yih4FB5uD2plStX8uabb/Lhhx9y5swZWrVqRbdu3YiMjDRY/rvvviMqKkp3u3XrFk5OTjz77LN65ezs7PTKRUVFYWFh8Zee68chwTMhhBBCCCGEEEIIUeJmzJjBqFGjGD16NIGBgcyaNQtvb2/mzp1rsLy9vT0eHh6628mTJ0lKSuL555/XK6dQKPTKeXh4lGo7JHgmhBBCCCGEEEIIIR4pJyeH1NRUvVtOTo7Bsrm5uZw6dYrOnTvrbe/cuTNHjhx5rMebP38+HTt2pHLlynrb09PTqVy5MhUrVqRnz56cOXPmrzXoMUnwTAghhBBCCCGEEKIcUaIol7epU6dib2+vd5s6darBNsTHx6NWq3F3d9fb7u7uTnR09COfg6ioKLZu3cro0aP1tgcEBLBo0SL++OMPli9fjoWFBS1atODatWt//Ql/BJNSO7IQQgghhBBCCCGE+NeYOHEi48eP19tmbm7+0H2KzpWm1Wofa/60RYsW4eDgQN++ffW2N23alKZNm+rut2jRgvr16/P9998ze/bsRx73r5DgmRBCCCGEEEIIIYR4JHNz80cGy+5zcXFBpVIVyzKLjY0tlo1WlFarZcGCBQwbNgwzM7OHllUqlTRq1KhUM89k2KYQQgghhBBCCCFEOVLWq2qWxGqbZmZmNGjQgJ07d+pt37lzJ82bN3/ovvv37+f69euMGjXqkY+j1WoJCQnB09Pzier3JCTzTAghhBBCCCGEEEKUuPHjxzNs2DAaNmxIs2bN+OWXX4iMjGTMmDFAwTDQO3fusGTJEr395s+fT5MmTahZs2axY3722Wc0bdqUatWqkZqayuzZswkJCeHHH38stXZI8EwIIYQQQgghhBBClLhBgwaRkJDA559/TlRUFDVr1mTLli261TOjoqKIjIzU2yclJYW1a9fy3XffGTxmcnIyL730EtHR0djb21OvXj0OHDhA48aNS60dEjwTQgghhBBCCCGEKEeUTzhEsjwbO3YsY8eONfi/RYsWFdtmb29PZmam0ePNnDmTmTNnllT1HovMeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjjzpypaidEnmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5okCGbZYnknkmhBBCCCGEEEIIIYQRCq1Wqy3rSgghhBBCCCGEEEKIAuPWzyjrKhj0fb/xZV2FMiHDNoUQogR9sXNhWVehRH3U6XnSLl8t62qUONuA6rT4cUxZV6NEHX71J5JfeK2sq1GiHBb8QP/FH5R1NUrU2hFTaD1nbFlXo0QdGDuH1D0HyroaJcqufWtuxN8p62qUKF8XL15Z+01ZV6PEze3/LkuCt5R1NUrU8EbdGfTbx2VdjRK1cujkf2Xf13PBu2VdjRK16YVv6PTLG2VdjRK186XvyroKf5lSVtssV2TYphBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMybLN8kcwzIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEiQzbLE8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJHVNssXyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJHMMyGEEEIIIYQQQgghjJDgmRD/EdnZ2XzxxRfExMSUdVWEEEIIIYQQQoh/DBm2KcR/xMcff0xqairu7u5lXRUhhBBCCCGEEA+hUEiuU3kir4YQ/wE5OTk4Ozsze/bssq6KEEIIIYQQQgjxjyLBMyH+A8zNzXn//fcxNzcv66oUs2/fPhQKBcnJyY+9j4+PD7Nmzfpbj6tQKNiwYcPfOoYQQgghhBBCiH8/GbYpxH/AkSNHaNWqFZ06dWLbtm1lXR1RxJUDp7m4+zhZKek4eLrQsH9H3P28DZaNvnqTnbOXF9ve+6MXsfdwBkCjVnNhx1HCjl8gMzkNe3cn6vVph1eNKqXajqK0Wi2/rFjO+u3bSctIJ6h6dSa8PIaqlSob3Scs8iY//b6My2FhRMXGMn7UaIb07qNX5uflvzNvhf5z4OzgwPbFS0ulHU+qjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62o9lEWf7pi1aYHCyhJ1+E0yf1uJ5m70Q/cx79QWs3atUDo5ok3PIPfkGbLX/AH5+QCYtW2JebtWKF2cAFDfiSb7z63kn79U6u3p4t+EPkGtcLSy5VZyLAtPbCY0NsJo+Va+dehbszWeds5k5mZz5u41Fp/cQnpOFgCfdRlNTY/i759Tty8zZfeS0mqGnr5BrRlcryNOVvZEJEbx/eHVnIsKM1q+X83WPFOrLR62TsSkJbH09Da2XzmuV+bZ2u3oE9Qad1tHUrIz2Bd2ml+ObSRXnV/azTFKq9Uyb/OfrD90gLTMTIJ8fHnvf0OoWsHL6D57zpxm0bYt3IqLJV+txtvNjaEdO9O9SbNSr++f6zay5veVJCYkUNnXhzGvv0rNurWNlj935iy/fD+HmzcicHZx4dkhg+jRr7demfUr17Bp/R/ExcRi52BPq7ateX7Mi5iZmwFwPuQsa35fybXL10hMSOCTqZ/TvHXLUmtj6yp16VS9EfYWNkSlxrP67B6uJ9wxWHZ4g24086lZbPvd1Hgm71xYbHvDigGMatKLkLvX+PnohpKu+kOd3HmIY1v2kp6ciquXB52G9qVSQNVH7nfrajhLv/gR14oevDjlXd32M3uPcv5gMHG3C/pOD9+KtB3YA6+qxj/zSlrn6o3pVaMlDpY23E6OZfHJrVyOu2m0fEuf2vQOaoWHrROZeTmcvXuNpae2kZ6bVaxs88q1eKPVQIJvhfLt/t9Lsxl6/gt9X/eAZjxTqy1OlrZEJscw7/gfXIy5YbR8j8Dm9AxsjpuNE3EZSaw6u4c91089xRoX16tGS56t3R5nKzsikqKZe3QdF6LDjZbvXaMlfYJa4W7rRGx6Er+f2cmua8EGy7atWo8PO4zkcMQ5Ju2YX1pNKJcUyGqb5YkEz4T4D1iwYAHjxo3j119/JTIykkqVKhktq9VqUavVmJhI9/A0RJwK5eTaXTQe1AW3Kl5cPRTCnjmr6P3RaKyd7I3u1+fjlzC1NNPdN7ex0v0d8ucBwoMv0mxIN+zcnbkbGs7+eevoOn4oTt4epdqeBy1et5bfN27g0zfepFIFL+avWsmrn3zC2jlzsbayMrhPdk4OFd096Ni8JTMW/Gr02FUqVWLO51/o7quU5SeR2tLUnOsJt9ly+QhTuo0p6+o8knm3jph3bkfm/N9Qx8Ri0bMrNu+MI/WDzyE7x+A+pk0bYjGgD5kLlqG+Ho7Sww2rUcMAyF6xDgBNUjJZazaiiY0HwKxFE6zHvUTapK8eGZj7O5r71OL5Rj2Yd/wPLsfepHP1xnzYcQRvbpxFfEZKsfIBbpUZ1/JZFgVv5uTtyzhZ2fFy076Mbf4MX+9dBsA3e5dholTp9rG1sGJ6r3EcjbhQau14UHu/BoxrOYAZB1ZwITqc3jVa8nXPVxm+fDKx6UnFyvcJasVLTfvwzb7fCY2NINDNh/faPkdadiZHbp4HoFO1RrzUtC/T9i7lQnQ43g7uTGxf8Br+cHjtU2mXIUt2bOP33Tv5ZPjzVHJzZ8HWzbw2eyZrJn2BtYWFwX3sra15vlt3fNw9MTVRcfD8OT5fsghHW1ua1SgeyCkp+3ft5efvfuTVt98gqHZNtmz4k4/eeZ9ffluIm0fx+UWj70bx8TsT6darO+998gEXz13gx+nfYe/gQMt2rQHYs30XC36ax/iJ7xFYK4g7kbeY/uXXALz8xqsAZGdl4+tXlU7du/LFh5NKrX0ADSr682yd9qw4s5OwhDu08q3Dqy0H8PmOBSRlpRUrv+rsbjZcOKC7r1Qq+LDDSE7fvlKsrJOVHc/Uasu1uFul2gZDLh07w87fNtB15AC8q/tyes8RVnzzCy9Pex97F0ej+2VnZvHHT7/jG1SN9BT99t8MvU6NZvWpWN0XE1MTjm7aw/JpP/HSVxOwc3Io5RZBs8o1GdGgG/ODN3ElNpKO1Roysf0wxv/5PQmZxfs+f9dKvNq8P4tPbeXUvb7vxSa9eblpX6Yf0L9A5WJtz9D6XQiNiSj1djzov9D3tfKtw4tNejP36HouxUTQLaApkzqPYuy6b4nLSC5WvltAM0Y06Mb3h9dwNf4W/i7evNZyAOk5mZy4FfrU6w/Qpko9XmnWj+8PreZizA16BDZnSrcxjFo1lbiM4q9Tz8AWvNC4FzMPrOBKXCQBbpV4q9X/SM/J5FjkRb2ybjaOvNSkL+eirj+t5ghhVPn5tSGEKBUZGRmsWrWKV155hZ49e7Jo0SK9/98fNrl9+3YaNmyIubk5Bw8eRKvV8vXXX1OlShUsLS2pU6cOa9as0e2nVqsZNWoUvr6+WFpa4u/vz3fffffI+mzZsoXq1atjaWlJu3btiIiIKFbmyJEjtG7dGktLS7y9vXn99dfJyMh47DYHBwfTqVMnXFxcsLe3p02bNpw+ffqh+0yYMIHq1atjZWVFlSpV+Pjjj8nLy3vsx/yrLu05gV+zOlRrXgd7DxcaDeiIlaMdVw6eeeh+FrZWWNrZ6G7KB4JH4ScuUqtzM7yCqmLr4oB/q/p4BvpyaY/hK3qlQavVsvzPP3j+2YG0b9Ycv8qV+ezNt8jOzWHbgf1G9wuqVp03nn+BLq1bY2ZqarSciUqFi6Oj7uZobzzQ+LQdi7zIvON/sD88pKyr8ljMO7Uje9N28k6fRXMnisz5S1GYmWLWpKHRfUyq+pJ/LZy84yfRJCSSf/EyucdPYuJTGJjPP3uB/POX0MTEoomJJXvdn2izczCp6luq7elVoyV7rp9i97WT3EmJY2HwZhIyUuji38Rg+equ3sRlJLHl8lFi05O4HHuTHVdPUNW5MNMpPTeL5Ox03a22px85+Xm6H2OlbWCd9mwOPcLm0CPcTIrm+8NriEtPpm/N1gbLd/Fvwh8XD7Hn+imiUhPYc/0Um0OPMKR+J12ZIA9fLkSHsevaSaLTEgm+Fcruayfxd316WTJFabValu/ZzfNdu9O+Xn38vLyYNOJ5snNz2R583Oh+Dar7065ufXw9Pano6sbg9h3x86pIyPXS/bG1buVquvTsRrfePajkU5kxb76Gq5sbm9b/YbD85g1/4ubuxpg3X6OST2W69e5B5x7dWLN8la5M6IWLBNWqSbvOHfDw9KBBk0a07dSeq5ev6so0ataEkS+NomVbw69/SepQrSFHIs5zOOI80WmJrD63l6TMNFpXqWuwfHZ+Lqk5GbpbZUcPrMwsOHpTP9CsQMHzjXqwKfSwwaB2aTu+dR912zahXrumuHi503lYP+ycHTi9+/BD99u6YDVBzerj5edT7H99xw6jYaeWeFT2wqWCOz1GD0Kr0RJx8VoptUJfj8Dm7Ak7zZ7rp7iTGsfiU1tJyEylc/XGBstXc/EmNiOZbVeOEZeRzJW4SHZdC6aKs36Wp0KhYFyLZ1l9bg8x6YlPoyk6/4W+r2/N1uy8GsyOqye4nRLLvON/EJ+RTPcAw5mz7avWZ+uVYxy8cZaYtEQO3DjLzqvB9K/d7inXvFD/2m3ZduUYW68cIzI5hrlH1xOXnkSvGi0Mlu9YrRGbQw+zP/wM0WkJ7As7w7YrxxhUt6NeOaVCwcT2w1lyaivRqQlPoylCPJQEz4T4l1u5ciX+/v74+/szdOhQFi5ciFarLVbuvffeY+rUqYSGhlK7dm0++ugjFi5cyNy5c7l48SJvvfUWQ4cOZf/+gsCHRqOhYsWKrFq1ikuXLvHJJ5/wwQcfsGrVqmLHvu/WrVs888wzdO/enZCQEEaPHs3777+vV+b8+fN06dKFZ555hnPnzrFy5UoOHTrEa6+99thtTktLY8SIERw8eJBjx45RrVo1unfvTlpa8avk99na2rJo0SIuXbrEd999x7x585g5c+ZjP+Zfoc5Xk3grGs9AH73tFQJ9iLtheEjMfZumLWTNB9+zc/Zyoq/qD8lQ5+ejNNXPHDQxNSE27Old3b8TE0NCUhJN69XTbTMzNaV+UE3OXb78t48fefcuXUeOoPeLo5j4zdfcji69TKZ/M6WrM0oHe/IvPvCa5OeTf+U6Jn7Gh/nmXwvHxMcblW9l3XFMawWRd+6i4R0UCkwbN0BhbkZ+mPGhKH+XiVJFVecKhNzV/7F69u51oz+MrsRG4mxlT32v6gDYW9jQrHJNThnIlLmvQ7WGHI44R05+6QfYTZQqqrtWIrhIRkHwrVBquht+jUyVJuSq9euWo84j0M1Hl6V5LiqM6q6VCHQreF487ZxpWrkmx24+nWw6Q+7Ex5OQmkLTGkG6bWamptSvVp1zYcaHaT1Iq9Vy4nIoN2OiqV+temlVlby8PK5duUr9xvpB5vqNGxJ6wfD7IPTCxWLlGzRpyLXLV8i/N9w5qE4trl25ypVLBa931J27BB89TuPmhoO/pUmlUFLJwYNLRbKNQmMjigVYjGnuU4vLsTdJzEzV294jsDnpOVkciXg6AegHqfPzibpxG9+a/nrbq9T05/a1CKP7nd1/nKSYeFo/0+WxHicvJxeNWoOljeFM65KkUqqo4lShWHbO2ajrVHc1PA3E1bhInK3sqFuhGgD2FtY0qRTEmTv6fd+AWu1Izc5gb9jDL0KWtP9C32eiVOHn7MWZu1f1tp+5c5UAN8OfWaYqE/KKDC/Nzc+juos3qjJYmdFEqaK6i3exz8xTt68Q5G74YpmpyqTYENmc/Dz8XSvptWFo/a4kZ6Wz7cqxkq/4P4RSoSiXt/8qGZclxL/c/PnzGTp0KABdu3YlPT2d3bt307Gj/tWdzz//nE6dCq7MZWRkMGPGDPbs2UOzZgVXvqpUqcKhQ4f4+eefadOmDaampnz22We6/X19fTly5AirVq1i4MCBBusyd+5cqlSpwsyZM1EoFPj7+3P+/HmmTZumK/PNN98wZMgQ3nzzTQCqVavG7NmzadOmDXPnzsXCyLCdB7Vv317v/s8//4yjoyP79++nZ8+eBvf56KOPdH/7+Pjw9ttvs3LlSt577z2D5XNycsjJ0R/S9qQLMuSkZ6LVaLGwtdbbbmFrTXaq4Uw7S3sbmg7uilMlDzR5asKDL7Dz++V0fmMI7n4FWT8VAqsQuicYdz9vbF0ciboSwa1z1wwGTUtLQlJBmr6zvYPedmcHB6JiY//WsWtWr85nb75F5QpeJCQnM3/1SkZNeJeV3/+Ig53d3zr2f43i3vOlSdUPLGtS01A6OxndL+/EKbJsbbCZ+BagQGGiImfPAXK27NQrp/SqgO2Hb4OpCeTkkPHDvFIdsmlrboVKqSIlK11ve3J2Gg6W1QzucyUuklkHVzG+zWBMVSaYKFWciLzE/ON/Gizv51KRyo4ezDmyrsTrb4i9hQ0mSlWxIXKJmak4eRs+30/cukTPwBYcvHGWq3G38HetRPeAZpiqTHCwsCEhM5U910/hYGnLD/3eRoECE5WK9RcOsOzMjqfRLIMSUgsykJxs9dvlZGdHdMLDsw7SszLpPvE9cvPyUSkVTBj8HE0Ca5RaXVOTU9CoNTg66Q/xc3R0JDHBcHZOUmISjo5Fyjs5olarSUlOwdnFmbYd25OSlMzbr7yhm0ahZ7/eDBo2pNTaYoyNuSUqpZK0bP3Po7TsDOzdrY3sVcjOwpog9yosOLFJb3sVZy+a+9Tiy92LS7S+jyszLQOtRoONva3edmt7W9KTUw3ukxgdx96Vmxj28TiUKpXBMkXtXbkJW0d7fINKL4h7n52Rvi8lKx2HCrYG97kaf4vvD6/hzVaDdH1f8K1QFgZv1pXxd61Eu6r1mbBlTqnW35D/Qt9nZ26NykAbk7LSqW9l+HU7fecKnas35ujNC4Ql3MHPuSIdqzfCVGWCnYW1weHUpcne4n4b9N87SVlpOBppw6nbl+kW0JQjEee4Fn+b6i7edPVviqnKBHsLGxKzUgly96Wrf1PGrP36aTRDiMciwTMh/sWuXLnCiRMnWLeu4EeeiYkJgwYNYsGCBcWCZw0bFl4Nv3TpEtnZ2bpg2n25ubnUeyCT6KeffuLXX3/l5s2bZGVlkZubS926dY3WJzQ0lKZNm6J44IrF/eDcfadOneL69essW7ZMt02r1aLRaLhx4waBgYGPbHdsbCyffPIJe/bsISYmBrVaTWZmJpGRkUb3WbNmDbNmzeL69eukp6eTn5+P3UMCMVOnTtULHgJ8+umnmLR48rT/YpOBasHY/KD27s7Yuzvr7rtW8SIjKZVLu07ogmeNBnTk6PKt/DF5HijA1sWRqk1rE3bs3BPX7XFt3bePKXN/1N2f9fEnAHqvNRS8lkW3PakWDQrPVT+gdkAAfV9+kU179zC0T9+/dex/O9OmDbEaPlh3P33W3II/DAVWHxJsNfGvhkXPLmQtXUl++E1U7i5YDh6AJiWVnD8LFyXRRMeQNmkqCisrTBvUxWr0MNKnfVeqATQALfp1f9iEuxXt3RjVuCerz+4h5O41HC1tGd6gKy8362swQNbBryE3k6K5Hn+7xOv9MEWD3wqFolg771t8citOVnb89Mx7oICkzDS2XT7GkPqdUWs1ANStUI1hDbow48AKQmMi8LJ35fWWz5LQoBtLTm0t9fYAbD1xjKm//6a7P3PsOACKdhFarYGNRViZW7Dsg0/IzMkm+MplZq5ZhZeLKw2q+z90v7+taB/HI/q4Yn3i/c0F28+eDmHFkmW8+vYbBAQFcvf2HX767kccFy7lueeHlWjVH1fxs8z4ufegZpVrkpWXzdkHMkHNTUx5vlF3lp3eToaBSemfqmKvXfHPLCjItN/w41Ja9e+Ks6fbYx366KbdXDx6hqEfvoqJmfEpCEpa0VdFoVAYvXDmZe/KyIbdWXt+L2fvXsfR0pbn6ndhdJPe/HxsAxYmZrzWYgC/HN9IWk5m6VfeiH9j31dMkeYoFMY/gleE7MLR0pbpvcahAJKz0tl97SQDardDc6+NZaFofRUKQ31Hgd9Ob8fRypbZfcejoCDQtuPqcQbV7YhGq8HS1JwJ7YYx8+AKUnMef9oWIUqbBM+E+BebP38++fn5eHkVDq/QarWYmpqSlKR/BdzauvAqskZT8OG7efNmvX2hMLtq1apVvPXWW0yfPp1mzZpha2vLN998w/HjxueleZzMJ41Gw8svv8zrr79e7H8PW+jgQSNHjiQuLo5Zs2ZRuXJlzM3NadasGbm5uQbLHzt2jP/973989tlndOnSBXt7e1asWMH06dONPsbEiRMZP3683jZzc3O+OfD4K1CZ21ihUCrIStO/UpydnlEsG+1hXH28CA8uHCZkYWtFu5f6o87LJycjC0t7G85s3IeNs8NjH/NJtW7cmJr+hVfXc+/NFxefnISLU2EGU2JKCk4OJVsPSwsLqlb24dbduyV63H+jvJDzpIVHFG64tzCI0t4OdUrhVWOlnS3aVONXry369SD3yAlyDx4FQHPnLpiZYzViMDmbthd+i1ardQsGqCMiUflWwrxjW7KWrCjZht2TlpOJWqPGwVL/are9hQ3JRTIy7numVhsux95k48WDANxMiiY7P5cvu73M72d2kvzAVXwzlSktfGuzMmRXqdTfkJTsdPI1apys9IP5jpa2JGUafo1y1XlM2/sb3+7/HSdLOxIyU+hVoyUZuVmkZBX8EBnVuBc7rpxgc+gRAMIT72Jhas67bYaw9NS2xwqO/F2ta9elpk/h8Kvce8NgE1JTcXkgazUpLRVn24dnlSqVSrzdCgIb/t6ViIiKYtG2LaUWPLNzsEepUpJUJMssOSm5WDbafY5OjiQlFi2fhEqlws6+oH1L5i2kfZdOdOvdAwDfqlXIzs5m9rQZDB7xnN78lqUtPScLtUaDnYX+55GthRWp2Y8OpjT3qcXxyEu6oAWAq7UjLtYOvNL8Gd22+wGrH/q9zaQd84k3MEl6SbKytUahVBbLMstMScPavnimTG5WDlE3bhF98w7bFxcE1LVaLWi1TBn+NkMmjMEnqDCz9djmvRz+YxdD3n8F90oVSrUt96Xq+j4bve12FtakZBvu+/oGteZqXCR/XiqY5y0yOYbsE7l83uVFVp7dhb2FDW42jrzX9jndPvdfq9+HTOKtP74jxsCk/SXl39z33Zeak4Faoy6WoeVgYaP32fOgXHU+3x1azQ+H1+JgaUtSVipd/JuSmZv9WO/LkpaSXdCGoq+Tg4UtyQ95nabvX86sAytxtLIlMTOV7gHNycjNJiU7gyrOFfC0c2Zylxd1+9w/97aNnsHzK78kKu2/MQfa373gLEqWBM+E+JfKz89nyZIlTJ8+nc6dO+v9r3///ixbtszoPGI1atTA3NycyMhI2rRpY7DMwYMHad68OWPHjtVtC3vEnDQ1atRgw4YNetuOHdOfx6B+/fpcvHgRPz+/hx7rYQ4ePMicOXPo3r07UDDXWnx8vNHyhw8fpnLlynz44Ye6bTdvGl/aHQoCZU86TLMolYkKJ28Poi5HUKlO4Q+8qMsRVKxleIiZIYm3Y7C0Lx5sU5maYOVgi0atJjLkCpXrPzpr76+ytrLSW0FTq9Xi7OjI8ZAQAqpUBQrmCDp98QLjho8o0cfOzcsj4vYt6tUovSFa/xrZOWiKrKCpSU7BpEYA6sh7mVQqFSb+fmSt3mj8OGZmxS8zazVGMyYLKVCU4kq++Ro1YQl3qePpx4nIS7rttSv4EXzrksF9zE1MUWv0r9bfv3pftDktfGphqlKxP/zhC3qUpHyNmqtxkTT0DuTgjbO67Q0rBnAo4uHZpGqNRrdaWwe/hhyJuKD7YWhhYlbsgoZGo0GheHjWQ0mytrDQW0FTq9XibGfP8dBL+HsXXCzJy8/n9LWrjOvX/4mOrUVLbn7+owv+RaamplTzr86Z4FO0aNNKt/1M8CmatmxucJ/AmkEcP3xUb9vpEyepFuCvW+E6Jye7WIBMqVSi1Wqf6tB7ALVWQ2RyNIFulfWyxwruP3wxhmou3rjZOBab0yw6LYHJOxfqbesV1BILEzNWn91DUqbhYZMlSWVigqdvRW5cuEpAo9q67TcuXKV6g+Krs5pbmvPiVP0pHE7tOszNS9d45vWROLgWXiA6umkPhzfuZPCEl6lQ5fEu+JUEtUZNeOJdantU1ZsjrLZHVU7eNjzPqOG+r+AcU6Dgbko87/z5vd7/B9XtiIWJGYtPbiG+lF+rf3Pfd1++Rs31hDvUrVBNb1GNuhWqczzSyByi96i1Gt0qqq1963DiVuhTDfzdl69RczX+FvW9/Dn8wOtSv6L/I+c0VGs1ugVD2lWtz/HIi2jREpkcw4urv9IrO7JRd6xMLZhzZJ3BVUiFeBokeCbEv9SmTZtISkpi1KhR2BdZiXDAgAHMnz/faPDM1taWd955h7feeguNRkPLli1JTU3lyJEj2NjYMGLECPz8/FiyZAnbt2/H19eXpUuXEhwcjK+v8ZX0xowZw/Tp0xk/fjwvv/wyp06dKrb654QJE2jatCmvvvoqL774ItbW1oSGhrJz506+//57wwcuws/Pj6VLl9KwYUNSU1N59913sbS0fGj5yMhIVqxYQaNGjdi8eTPr169/rMf6u2q0b8zhJX/iXMkDV18vrh4OISMxleqtCobHnt64j6yUNFoM7wVA6N5grJ3scfB0QaNWE37iIpEhV2gzup/umHERd8lKTsOxojuZyWmc23IIrVZLUMenN+G0QqFgcK/eLFyzmkqeFfCuUIGFa1ZhYWZO19aFAdlPZs7AzdmZ1+4F1PLy8gi/deve3/nEJSRwJTwcK0sLvD0LruDPWjifVo0a4+HqSlJyCvNXryQjM5Oe7Ts8tfY9jKWpORXtXXX3K9i5UM2lIqnZGaV6lf6vytm5F4uendHExqKOicOiRxe0uXnkHj+pK2M1ehiapBSy1xasIph/9gLmnduhjryNOjwCpZsrFn17khdyXvfLw+KZXuSdv4Q2MQksLDBr0gCTgGpkzCjduXP+vHSI11s+S1jCHa7ERdKpeiNcrO3ZceUEAM/V74yTlR3fHypYPfjkrcuMad6PLv5NCLlzFQdLW15o3JOrcbeKzR3TvlpDTkSGkp7zdIebrTq7hw87jOBK7E0uxtygV40WuNk6svFCQbbcS0374GLtwJR7c0hVtHcj0N2H0Jgb2JpbMbBOB3ydPZmyp3COqSM3zzOwTnuuxt/SDV0a1aQnhyPO635AP20KhYLB7TuwcNsWvN3c8HZ1Z9G2LViYmdGlUWH/9emi+bg6OPJa34LspYXbtlCjsg9eLq7kq/M5fOE8m48d4/3Bzxl7qBLxzKBn+WbyVKoF+BNYswZbN24iNiaGHv0K+usFc+eREB/Pux9PBKBH3178sXYDP8+eQ7fePQi9cIntm7by/qTCOTebtGjG+hVrqFrdj4AaBcM2l8xbSNOWzVHdm2srKzOLu7cLF5WJvhtF2NXr2NrZ4ubhXqJt3H3tJCMb9eBmUjQ3Eu/S0rcOjlZ2umBGn6BWOFjasvjkFr39WvjU4kbCXe6m6l+4yteoi23Lyi0I6BfdXpqadGvLxrnL8KziTUU/H87sPUJKQhL1OxQEPveu3ERaUgq9xzyHQqnEzdtTb39rOxtUpiZ6249u2s3+NVvpO3YY9i5Ousw2MwtzzCz+3sW2x7E59AivNe9PWOJdrsXdokO1hrhY27PzWkHfN7huJ5ys7PjxyFqgYEL3l5r2oVO1RpyNKhi2OaJhN67FF/Z9t1L05yi9P9S26PbS8l/o+zZcOMD41v/jevxtQmNv0tW/Ca42Dmy5XBBoH9GgG87W9sw4UJCxXcHOhequlbgaF4mNmSV9a7amsqMHMw+ufOp1v2/tuX1MaDeUq/GRhMZE0D2wOW42jmwKLchqfKFRT1ys7fl6X8GULF72rgS4VuZy7E1szC3pX7sdPk6euv/nqfOJSIrSe4yMe5+7RbcL8TRJ8EyIf6n58+fTsWPHYoEzKMg8mzJlCqdPG185afLkybi5uTF16lTCw8NxcHCgfv36fPDBB0BBICwkJIRBgwYV/OAZPJixY8eydavx+SIqVarE2rVreeutt5gzZw6NGzdmypQpvPDCC7oytWvXZv/+/Xz44Ye0atUKrVZL1apVGTRo0GO3fcGCBbz00kvUq1ePSpUqMWXKFN555x2j5fv06cNbb73Fa6+9Rk5ODj169ODjjz9m0qRJj/2Yf5VPg0ByMrI4t/UwWakZOHi60H7ss9g4FbxuWanpZCQWXt3V5Ks5vX4PmSnpqExNCsq/8ixeQVULy+TlE7LpAGnxyZiam+EVVIUWw3tiZvXoxRZK0ohn+pOTm8tXP88lLT2dmtWr88Nnn+tlqEXHx6FUFub3xCUm8txbb+juL92wnqUb1lO/Zk1++XIqADHxCXz47bckp6XiaGdHTX9/Fn79LZ5ujzcXTWkLcK3MD/0Kh/S+3vJZALaEHuXLB77Alxc5W3ehMDPDcuggFNZWqMMjSJ/+AzyQoaZ0cgJN4Y+K7D+3odVqsejXE6WjPdq0dPLOXiB7beEk+wp7W6xfHI7C3g5tVjbq23fImDGH/Et/f7XVhzkScR5bcyuerdMeR0tbIpNjmLJ7se5KtaOlLS7WDrrye8NOY2FqTreApoxo2I2M3GzOR4Xx2+ntesf1tHOmhrsPn+1YUKr1N2TP9VPYmVszomF3nK3tuJEQxYRNc4hJLxgC6Gxlh7tN4VBBlVLJoDodqOTgTr5GzZk7Vxm77lui0wqHDC45uRWtVsvoJr1wtXYgOSudIxHnmXf8j6fevgcN79yVnLw8pi3/nbTMDIJ8q/D9uLf0MtSiExP1hrJk5+QwbfkyYpOTMDc1pbKHJ58/P4rODRuVal3bdGxHamoqyxYuISkhkcpVfJj87VTcPTwASExIJDamMMjgUcGTyd9O5efZP7Jp3UacXJx55c3XaNmuta7MkBHDUCgULP5lAQlx8dg7OtCkRTNGvjRKV+bq5StMGFfYx/zyfcHchR27deGdjyaUaBtP3b6CtZklPQKbY2dhTVRqPD8eXqtbPdPewganIkPOLEzMqOdVnVVn95RoXUpSjab1yEzL4ND67aQnp+Ja0ZP/vfsS9i4FWWTpyamkxD/ZxY5Tuw6jzlezdvYive2t+nWhdf+uJVV1o47evICtuRX9a7XF0dKWW8kxfLV3qS6zx8HSBmfrwu+E+8PPYGlqRhf/pgxr0JWM3GwuxtxgWZG+ryz9F/q+gzfOYmtuxf/qdsTJyo6bSdFM2jG/8DPLyg7XBz6zlAol/Wq2xsveFbVGzbmoMN7d9COxZXhxbn/4GewsrBlavwtOVvZEJEbx4dafdXVytrLD7cHXSaFkQO12VHRwQ61RE3L3Gm9snKV7XUWh//LKluWRQvu0c8CFEOJf7Isiw1H+6T7q9Dxpl68+uuA/jG1AdVr8OKasq1GiDr/6E8kvGM4m/adyWPAD/Rd/UNbVKFFrR0yh9Zyxjy74D3Jg7BxS9xwo62qUKLv2rbkRf+fRBf9BfF28eGXtN2VdjRI3t/+7LAne8uiC/yDDG3Vn0G8fl3U1StTKoZP/lX1fzwXvlnU1StSmF76h0y9vPLrgP8jOl74r6yr8ZR9v+6Wsq2DQ5K4vlXUVysTTm3VUCCGEEEIIIYQQQoh/GBm2KYQQQgghhBBCCFGOKB69EpN4iiTzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUchqm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCNKGbZZrkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli+SeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjiiRYZvliWSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SKZZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAzbLF8k80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEKrVarLetKCCGEEEIIIYQQQogCX+1ZUtZVMOj99sPLugplQuY8E0KIEpTUqV9ZV6FEOe5cT+quvWVdjRJn17EdyS+8VtbVKFEOC36gxY9jyroaJerwqz+RPGZ8WVejRDn8NIPkUePKuholymH+9//Ovm/3/rKuRomy69CG5OH/rj4CwGHJT2VdhVKRumVHWVehRNl170zyWx+UdTVKlMPMKST/b1RZV6NEOayYzyfb5pV1NUrU511fLOsqiH8JGbYphBBCCCGEEEIIIYQRknkmhBBCCCGEEEIIUY4okNU2yxPJPBNCCCGEEEIIIYQQwggJngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYQoR5QKGbZZnkjmmRBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5opBhm+WKZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKheQ6lSfyagghhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUI0pktc3yRDLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRhUKGbZYnknkmhBBCCCGEEEIIIYQREjwT/wknT55k5syZaDSasq6KEEIIIYQQQggh/kEkeCbKREREBAqFgpCQkBI7pkKhYMOGDcW2x8fHM3DgQGrWrIlSWfKn/KRJk6hbt26JH/e/ZOTIkfTt2/exy+/btw+FQkFycvJffsxFixbh4ODwl/cXQgghhBBCiNKiVCjK5e2/SuY8E09s5MiRLF68GACVSkWFChXo0aMHU6ZMwdHRsczqFRUVVezxtVotw4cP55NPPqFTp05lVLN/B4VCwfr1658oyCVKh2nLppj36IyqWlWU9nakjnkLdVhEWVerGK1Wy7wtm1h/+BBpmZkE+fjw3sDBVK1Qweg+e0LOsGj7Vm7FxZGvVuPt6sbQDh3p3qSprszpa9dYumsHl29FEp+SwjcvjaFtnbpPoUUFLPp0x6xNCxRWlqjDb5L520o0d6Mfuo95p7aYtWuF0skRbXoGuSfPkL3mD8jPB8CsbUvM27VC6eIEgPpONNl/biX//KVSb8/jqOPpx5B6nQlwq4SLtQPvb5nLwRtny7paD2XRswtmLZuisLJCHXGTzOVr0UTFGC1vM34sJtX9im3PO3+JjB9/Lbhjbo5l726Y1q2JwtYW9a3bZK3agPrmrdJqhh6L3t30z71lqx597nVsi1m7lg+ceyFkry0898y7d8K0fh1Unu5oc/NQh90ga/VGNDGxT6NJT+Sf0vcVpdVqmbf5T9YfPnivL/TlvUFDHt4Xnjl9ry+MLegL3dwY2qET3Zs0e4o112fRrydmbVuisLZCHRZB5pLlaO5EPXQf8y7tMWvfGqWzE9q0dHKDz5C9ej3k5evKKBwdsBzYD5M6QShMzdBEx5A5fynqiMjSbtK/jlarZd72raw/epi0rCyCKlXmvf4DqerpaXSfPedCWLRzB7fi48nXqPF2cWVo2/Z0b9RYV+aXbVuYt32r3n5OtrZs/3xKqbXlQRZdOmDWrBEKS0vUkbfIXPsHmmjjfZTNq6Mx8atSbHvepctkzFtSbLt5hzZY9uxCzv7DZG3YXKJ1N8ZiQG/M2rdBYWOF+no4mQuWobl996H7mHfriFmndihd7r2fjp8ke/nawveThQWWA/ti2qg+Cntb1BGRZC1ajjo8otTb08g7kJa+dbAxtyQuPYmtl49xM8n455NKoaStX33qVPDDxtyK1OwM9oed4cydqwA0qOhP3QrVcbMt+G13NyWeXdeCuZMSV+ptEcIYCZ6Jv6Rr164sXLiQ/Px8Ll26xAsvvEBycjLLly8vszp5eHgU26ZQKNiyZUsZ1EaI0qOwMCf/4mVyDxzBevyrZV0do5bs3MHve3bzybARVHJzY8G2rbz2w3es+eQzrC0sDO5jb2XF81264ePhganKhIMXzvH5b0twtLWlWY0gALJyc6hesSK9mjVnwryfn2aTMO/WEfPO7cic/xvqmFgsenbF5p1xpH7wOWTnGNzHtGlDLAb0IXPBMtTXw1F6uGE1ahgA2SvWAaBJSiZrzUY0sfEAmLVogvW4l0ib9NUjgyNPg6WpOdcTbrPl8hGmdBtT1tV5JPPO7THv0IbMxctRx8Zh0a0TNm+MIfXTryDH8OuU8dMiMFHp7iusrbD96B3yThcGCa2GDURVwZOMhb+jTUnFrEkDbN4cQ+pnX6NNTindNt0/9xYsu3fudcHm7ddI/XCy8XOvSUMsBvQmc+Ey1NdvFJx7LwwFIHtlwblnUt2P3L0Hyb9xE5QqLJ/pic3br5L60ZeQm1uqbXpS/5S+r6glO7fz+55dfDJsJJXc3VmwdTOvfT+TNZ9ONt4XWlvzfNfu+Lh7YGqi4uD583y+dDGOtna6vvBpMu/RGfOuHcictxh1VCwWfbph894bpE741Pj516wxFs/2I3P+EtTX7vV9L44AIPv31QAorKyw/ehd8kKvkPHtD2hT01C6uaDNzHxqbfs3WbJnF7/v28snQ56jkqsbC3Zu57WffmDNxI8f8rlrzfOduuDj7o6pSsXBixf5fMWygs/dgEBduSoenvz4ymu6+yrl08k+MW/fGvO2Lcj8fS3quHgsOrXDZswLpE6dATmG+6iMhctAVaQ/f2cceSEXipVVeXth1qwR6kcEgkuSee9umHfvTObcBaijYrB4pic2H7xN6vgPITvb4D6mLZpgMXgAmT8vRH31OkpPD6zGvABA9pKVAFi9PAJVRS8yfvwVbVIyZq2aYvPR26S+/THapORSa09Njyp0C2zGpkuHiUyKoZF3AEMbdOWHQ6tJyc4wuM/Auh2wMbdkw4UDJGamYm1mqZfR5ONUgXNR17kVGkO+Rk1L3zoMb9iNHw6tIS1H+od/ojlz5vDNN98QFRVFUFAQs2bNolWrVgbL7tu3j3bt2hXbHhoaSkBAgO7+2rVr+fjjjwkLC6Nq1ap8+eWX9OvXr9TaIMM2xV9ibm6Oh4cHFStWpHPnzgwaNIgdO3bolVm4cCGBgYFYWFgQEBDAnDlzjB5PrVYzatQofH19sbS0xN/fn++++65YuQULFhAUFIS5uTmenp689lrhh3jRYZvnz5+nffv2WFpa4uzszEsvvUR6erru//eHCn777bd4enri7OzMq6++Sl5e3kPb/tVXX+Hu7o6trS2jRo0i28CH3JO0HWDbtm20bNkSBwcHnJ2d6dmzJ2FhYbr/5+bm8tprr+Hp6YmFhQU+Pj5MnTpVr+1z586lW7duWFpa4uvry+rVq/Ue486dOwwaNAhHR0ecnZ3p06cPERERj/X8+vj4ANCvXz8UCoXuPsDcuXOpWrUqZmZm+Pv7s3Tp0oe2Va1WM378eF1b33vvPbRarV4ZrVbL119/TZUqVbC0tKROnTqsWbPmocctasaMGdSqVQtra2u8vb0ZO3as3utfVFhYGH369MHd3R0bGxsaNWrErl27nugxn5bcXfvJ/m0V+afLb+aPVqtl+d7dPN+lG+3r1sOvgheTho0gOzeX7cEnjO7XoLo/7erWw9fDk4qurgxu1wE/Ly9CHng/tAiqySu9+tC+br2n0RQ95p3akb1pO3mnz6K5E0Xm/KUozEwxa9LQ6D4mVX3JvxZO3vGTaBISC378Hz+JiU8lXZn8sxfIP38JTUwsmphYstf9iTY7B5Oqvk+jWY90LPIi847/wf7wkLKuymMx79Ca7K27yAs5j+ZuNJmLf0dhZoZZ4/pG99FmZqJNTdPdTAP9ITeP3FP33memppjWq03Wuj9RXw9HExdP9qbtaOITMW/dvPTb1LEt2Zt3PHDu/fZ45971cPKOn3rg3Duld+5lzJpL7uHjaO5Go7l9h8wFy1A6O6Hy8S71Nj2pf0LfV5RWq2X5nl0837U77evVL+gLhz9/ry88bnQ/XV/o6UlFVzcGt7/fF15/irUvZN6lA9l/bCXvZAiaO3fJ/GVxwXuqWWOj+5j4VSH/Whh5R4PRxCeQfyGU3GPBmPgWnn/mPTujSUwk69clqMMjCspduqK7kCAen1arZfn+fTzfqTPta9fFz7MCk4YMJTs3j+2nTxrdr4FfNdrVroOvuwcVXVwZ3KYtfp4VCAkP0yunUipxsbPT3RxtbEu7SQCYt2lO9s595J2/WJCV+Pvqgr6vfl2j+2gzs9CmpetuptX9IC+P3LPn9QuamWE1dBBZq9ajzcoq3YY8wLxbR7I3bCYv+HRBvztnPgpzM8xaNDG6j0n1quRfvU7e4eNo4hLIP3eR3CPHManiU1DA1BTTxg3I+n0N6stXC75LrPkDTWw85p2KByFKUnOfWpy+fYXTt68Qn5HM1svHSM1Op1GlGgbL+7lUxMfJk99ObSc84S7JWencSYnjVnJhNuHac3sJvhVKdFoi8RkpbLxwEIVCQRVnr1JtS3mjUCjK5e1JrVy5kjfffJMPP/yQM2fO0KpVK7p160Zk5MMzjK9cuUJUVJTuVq1aNd3/jh49yqBBgxg2bBhnz55l2LBhDBw4kOPHjX+2/l0SPBN/W3h4ONu2bcPU1FS3bd68eXz44Yd8+eWXhIaGMmXKFD7++GPdcM+iNBoNFStWZNWqVVy6dIlPPvmEDz74gFWrVunKzJ07l1dffZWXXnqJ8+fP88cff+DnV3yIDUBmZiZdu3bF0dGR4OBgVq9eza5du/SCbQB79+4lLCyMvXv3snjxYhYtWsSiRYuMtnXVqlV8+umnfPnll5w8eRJPT89igbEnbTtARkYG48ePJzg4mN27d6NUKunXr59ugYPZs2fzxx9/sGrVKq5cucJvv/2mF8AC+Pjjj+nfvz9nz55l6NChDB48mNDQUN3z0a5dO2xsbDhw4ACHDh3CxsaGrl27knsvs+Bhz29wcDBQEBSMiorS3V+/fj1vvPEGb7/9NhcuXODll1/m+eefZ+/evUbbOn36dBYsWMD8+fM5dOgQiYmJrF+/Xq/MRx99xMKFC5k7dy4XL17krbfeYujQoezfv9/ocYtSKpXMnj2bCxcusHjxYvbs2cN7771ntHx6ejrdu3dn165dnDlzhi5dutCrV69HdurCsDsJ8SSkptI0sPCqtZmpKfX9qnHuRvhjHUOr1XLi8mVuxsRQ38h7/WlSujqjdLAn/+Llwo35+eRfuW5weIiuyLVwTHy8UflW1h3HtFYQeecuGt5BocC0cQMU5mbkh90oySb8JyhdnFDa25EfeqVwY76a/GthhT8yHoNZiybknjxTmH2lVKJQqfSGmwFo8/Iw8SvdIKfS5SHn3kMCrPnXwzCp/MC55+KMaa0axs89QGFVkJ2izZAr+yWhsC8s/BFpZmpK/WrVORf+JH1h6L2+sNqjdyhhSleXgvPvQmjhxvx88q9cw6TaQ/q+q9cx8amE6t77TunqgmmdmuSdLcz+Ma1Xh/wbkVi99iJ2P3yNzeQPMGvbsrSa8q92JyGBhLRUmvoXZmWYmZhS38+Pczce77NEq9Vy4uoVbsbFUr+q/ufurfg4un36IX0mf8oHSxZyO770A5xKZ0eUdnbkX7lWuFGtJv/6Db0g7KOYNWlI7plzkKt/gdxqQG/yQi+TfzXMyJ4lT+nmgtLRgfwH++H8fPJDr2BSvarR/fIvX8fEtzKqe32+0s0F03q1yDt9rqCASnXvM0q/jdrcPEwCSu87lEqhxNPOhbD4O3rbr8ffoZKDu8F9Atwqczclnpa+tXmn7RBebzWQLv5NMFGqDJYHMFWZoFIoycoznOkqyrcZM2YwatQoRo8eTWBgILNmzcLb25u5c+c+dD83Nzc8PDx0N9UDGaWzZs2iU6dOTJw4kYCAACZOnEiHDh2YNWtWqbVDhm2Kv2TTpk3Y2NigVqt1mVczZszQ/X/y5MlMnz6dZ555BgBfX18uXbrEzz//zIgRI4odz9TUlM8++0x339fXlyNHjrBq1SoGDhwIwBdffMHbb7/NG2+8oSvXqFEjg/VbtmwZWVlZLFmyBGtrawB++OEHevXqxbRp03B3L+jMHR0d+eGHH1CpVAQEBNCjRw92797Niy++aPC4s2bN4oUXXmD06NG6Ou3atUsv++xJ2w7Qv39/vfvz58/Hzc2NS5cuUbNmTSIjI6lWrRotW7ZEoVBQuXLlYsd49tlndfWaPHkyO3fu5Pvvv2fOnDmsWLECpVLJr7/+qrtasHDhQhwcHNi3bx+dO3d+6PPr6uoKgIODg97w2G+//ZaRI0cyduxYAMaPH8+xY8f49ttvDaba3n8OJ06cqGvzTz/9xPbt23X/z8jIYMaMGezZs4dmzQrmdqlSpQqHDh3i559/pk2bNgaPW9Sbb76p+9vX15fJkyfzyiuvGM0CrFOnDnXq1NHd/+KLL1i/fj1//PFHsaArQE5ODjlFhn+Zm5s/Vt3+CxJSUwFwsrXT2+5kZ0d0YuJD903PyqL7B++Tm5+HSqlkwqDBNAk0fPXyaVLYFbRFk5qmt12TmobS2cnofnknTpFla4PNxLcABQoTFTl7DpCzZadeOaVXBWw/fBtMTSAnh4wf5pWLIZv/NA99nZweb15OlU8lVF6eZC5dWbgxJ4f8sBtY9OhERnRMQXZao/qofCqVepaMwv5+m1L1tj/63DtNlo0NNu+/ie7c23uQnK07je5jOegZ8q+GPXIuK/F4ElKM9IW2dkQnJjx03/SsTLp/MIHcvHt94f+GlElfqDv/UoqcfympunkaDck7fpIsOxtsPnoH3fm3ez85mwo/85WuLpi3b03Otl1k/LkNVRUfLIcORJuXR97h0sse+DdKSDNyrtnYEp30GJ+7kz4iNz+/4FwbMJAmDwThgipX5rMhw6jk6kZCWioLdm5n1OwZrJzwIQ73vmeXBoVtQXabJk1/5IAmPR2lo8NjHUNVqSKqCh5k3huqfp9pvdqovCqQOfPho0NKmsLBHjD2fnI2ul/e0RMF76fP3i84jokJOTv2kvPHvbnosrPJv3odi2d6knEnCm1yCqYtmqDy833o/HB/l5WZBSqlkvRc/QsuGblZ2JhbGtzH0dKWSo7u5GvULD+zEytTC3oGtcDS1JwNFw4Y3KdT9UakZmcQnnDH4P/F02Xsd5Ch30K5ubmcOnWK999/X297586dOXLkyEMfp169emRnZ1OjRg0++ugjvd+XR48e5a233tIr36VLFwmeifKnXbt2zJ07l8zMTH799VeuXr3KuHHjAIiLi+PWrVuMGjVKLwiVn5+Pvb290WP+9NNP/Prrr9y8eZOsrCxyc3N1q1jGxsZy9+5dOnTo8Fj1Cw0NpU6dOrrAGUCLFi3QaDRcuXJFFzwLCgrSi2B7enpy/vz5Ysd78LhjxujP99OsWTNdptVfbXtYWBgff/wxx44dIz4+XpdxFhkZSc2aNRk5ciSdOnXC39+frl270rNnTzp37lysHkXv31/N9NSpU1y/fh1bW/0U++zsbMLCwp74+X3w+XjppZf0trVo0cLgkFuAlJQUoqKi9OpqYmJCw4YNdUM3L126RHZ2drEFHnJzc6lX7/GH6e3du5cpU6Zw6dIlUlNTyc/PJzs7m4yMDL3z4r6MjAw+++wzNm3axN27d8nPzycrK8to5tnUqVP1Ar4An376KW8YLP3XmbVvjdWbhedc+geT9a/+lxNbTxxn6vLfdfdnji2Yj6hoanfRIbqGWJmbs2zih2Tm5BB85TIz163By8WFBtX9S7bSj2DatCFWwwfr7qfPund1zFAbHtIuE/9qWPTsQtbSleSH30Tl7oLl4AFoUlLJ+XObrpwmOoa0SVNRWFlh2qAuVqOHkT7tOwmgPYJp4/pYDXlWdz/9/uT+RV+TJxhmYNa8Ceo7UcUmLM9c+DtWw/+H/bRJaNVq1LfukBd8BlWlkh1GYtqkIVbD/6e7n/7dTwV/FD3NFIpHnHt+Befeb6vID49A5eaK5eD+aHp20Qtg3Gf53LOoKlYg7atZJdCKv+ef0vcVVdAX/qa7P/PeHFFFTz8t2keek1bmFiyb+PG9vjCUmWtX4+XiWup9oWmzxlg9P0R3P336jwV/GHpPPaRLNwmojkWvbmQtXk5+2A1U7m5YDh2IJjmFnI335qNVKlDfuEn2mo0AqG/eQuXliXmHNhI8e4Stp4KZumqF7v7MFwveL0XPqsc718xZ9s77ZObmEHz1CjM3rMfL2YUG9zIdWwQWzrPnRwVq+/jS98vP2Bx8nOfati+ZBgGm9etgNbCv7n66gcn9Czz83HuQWZOGqO9Go468Xbi3gz2W/XqS/tMC3eIppcW0RROsXhyuu58+7d535GJ99yP68xr+WPTrSdb838i/Ho7Kww3LEYPRJPckZ90mADJ//BWrl5/Hfu70gs+oGzfJO3xcl338tBlrzv3vhmvO7SEnvyBTbtvlYwyq25FNlw6Tr1HrlW/pW5tanlVZeGJzsf/925XXlS2N/Q6aNGlSsbLx8fGo1Wrd7+/73N3diY42/B3X09OTX375hQYNGpCTk8PSpUvp0KED+/bto3Xr1gBER0c/0TFLggTPxF9ibW2tG9I3e/Zs2rVrx2effcbkyZN1gZ958+bRpIn+2P0HA1UPWrVqFW+99RbTp0+nWbNm2Nra8s033+jGLFtaGr5yYYxWqzU6HvvB7Q8ONb3/v/v1/yv+StsBevXqhbe3N/PmzaNChQpoNBpq1qypG1JZv359bty4wdatW9m1axcDBw6kY8eOj5wH7H5bNRoNDRo0YNmyZcXKuLq6olT+9RHchoIjf2Us/H33n8PNmzfj5aX/g/RxM7tu3rxJ9+7dGTNmDJMnT8bJyYlDhw4xatQoo3Pavfvuu2zfvp1vv/0WPz8/LC0tGTBggO41KGrixImMHz++WP0ye/7PYPm/KvfoCfIvX9Xd18Q//OpxWWlduw41fQqHj+Xe+zKakJqCywOB46S0NJzt7Irt/yClUom3mxsA/t7eRMREs2jH9qcePMsLOU/agytUmRR8ZCrt7VA/cMVYaWeLtkiW04Ms+vUg98gJcg8eBUBz5y6YmWM1YnBBAOP+t0u1WpfBpI6IROVbCfOObclassLYoQWQd/YiaTceCHLdm/RfaW+H+oHXRWlr89DXScfUFLNGdcl6ILB5nyY+gfQZP4KZGQoLc7SpaViNHlbi78u8s+dJ+yyicIOxc+8RbbLo25Pcow+ee1FgbobV8MHkbN6h98vGcsgATOvWIn3ad6U6sfTj+qf0fUUZ7wtTcbF30G1PSkvD2fYJ+8LoaBZt31rqfWHembOkPThk3PTe+edgb6DvSy26u45F/17kHjlO7v7DAAUrCZqbYfX80IJsGa0WbXJKsYna1XejMW1ofH5CUaB1UC1qvuOju68719JS9T9309NxfsT8ZEqlEu97owz8vSoSERPDol07dMGzoizNzfHzrMCtuJJd+TDvYihp3z6wevH9vs/WRr8/t7FG+5B5bHVMTTGrV5usbfpz2JpUrIDS1gbbBxYeUahUqKr4YNayKSnvfvLQQNaTyDt1lrTrDwQZHnw/PbDQjNLeFm3KQ95PA/uSe/AouXsPAqC5dQfMzbF6cTg56zeDVosmJo70z78GczMUlpZok1OweuPlUs2OzszNRq3RYGNmpbfd2sySjFzD88il5WSSmp2hC5wBxKUno1QosLOwJjGz8Hlo4VOLVlXqsjh4CzHp/4zPgf8CY7+DHuZJfjP6+/vj71/4WdesWTNu3brFt99+qwuePekxS4IEz0SJ+PTTT+nWrRuvvPIKFSpUwMvLi/DwcJ577rnH2v/gwYM0b95cN/wP0Jsw39bWFh8fH3bv3m10OOCDatSoweLFi/WyjA4fPoxSqaR69epP2LpCgYGBHDt2jOHDC68gHTt2TPe3u7v7E7c9ISGB0NBQfv75Z92KI4cOHSpWzs7OjkGDBjFo0CAGDBhA165dSUxMxMnJSVePovW6n6lVv359Vq5ciZubG3ZGAhePen5NTU1Rq/Wv9gQGBnLo0CG9xz1y5AiBD8xz9SB7e3s8PT05duyYruPLz8/n1KlT1K9f8EW5Ro0amJubExkZ+dhDNIs6efIk+fn5TJ8+XRcYfHD+PEMOHjzIyJEjdSu0pKenF1tQ4UHGUpNLfJagrGw0WeU/88jawkJvJS+tVouznR3HL4fi710wL0lefj6nr19jXJ8nWwVHq9WSm//whTxKRXYOmiKryGmSUzCpEVB4BVulwsTfj6zVG40fx8ys+JdwraZ4ekAxChQm8jH9SDk5aOKKvE4pqZgEVkd9697wDpUKk2pVyVq/6ZGHM2tYF0xMyDt+ynih3Fy0ubkorCwxrRFA1ro//0YDDDB67vkXP/fW/GH8OGamxc89jbbYuWc55FlM69cm/evZaOIfPpTwqfmH9H1FGe0LQy/p94XXrjKu7zNPdOyCvrB0s2SAe+efflBEk5yCSVAg6pv3AhsqFSb+1chatd7AAe4xMys43/QOpN/35V8LQ+Wpnzmg9HBHk1BOzsNyzOC5ZmvH8StX8K9YsOBHwefudcb16v1Ex9by8HMtNz+PiJgY6lYxPkfXX5KTiyZHP0CiSU3FxN+vMMiqUmHi50vWn8WzZ4syq1sLTFTknTyjtz3vWhip9zPA7rEa3B9NbBzZuw+UWOAMgOxsNEUWF9MkJWNSq0ZhdrNKhUmgP1m/P+SiuKHvEhqN4azCnFy0ObkorK0wrV2TrN9XFy9TQtRaDVGp8VR18SI0NkK3vaqLF5djbxrcJzIphiCPKpipTMhVF5xnLtb2aLQaUh9YnbOFT23aVK3HkpNbuZsqi4iUJ8Z+Bxni4uKCSqUqlhEWGxtbLHPsYZo2bcpvvxVmdnt4ePztYz4p+VYuSkTbtm0JCgpiypQp/PDDD0yaNInXX38dOzs7unXrRk5ODidPniQpKalYlBrAz8+PJUuWsH37dnx9fVm6dCnBwcH4+hZevZ00aRJjxozBzc2Nbt26kZaWxuHDh3XDRR/03HPP8emnnzJixAgmTZpEXFwc48aNY9iwYX/rDfXGG28wYsQIGjZsSMuWLVm2bBkXL16kSpXCCXOftO33V7/85Zdf8PT0JDIystiY8JkzZ+Lp6UndunVRKpWsXr0aDw8PHBwcdGVWr16tV68TJ04wf/583fPxzTff0KdPHz7//HMqVqxIZGQk69at491336VixYqPfH7vB9datGiBubk5jo6OvPvuuwwcOJD69evToUMH/vzzT9atW/fQVSrfeOMNvvrqK6pVq0ZgYCAzZswgOTlZ939bW1veeecd3nrrLTQaDS1btiQ1NZUjR45gY2NjdN64B1WtWpX8/Hy+//57evXqxeHDh/npp58euo+fnx/r1q2jV69eKBQKPv7447+VhViaFLY2KN1cUNyb60hZsSBDT5OYXC4yRqDgStDgdh1YuH0b3q5ueLu5sWj7NizMzOjSqHB1tk8XL8TVwYHX7gXUFm7fRo1KlfBydSU/X83hixfYfPwY7/+vcAhRZna23tXuuwnxXLl1C3trazycjM+/UxJydu7FomdnNLGxqGPisOjRBW1uHrnHC1cysxo9DE1SCtlrC4Ia+WcvYN65HerI26jDI1C6uWLRtyd5Ied1X4QtnulF3vlLaBOTwMICsyYNMAmoRsaMpzsXizGWpuZUtHfV3a9g50I1l4qkZmcQk55UhjUzLGf3ASy6dkQTG486Ng6Lrh3R5uaSe+K0rozVyMFoklPJ3rBZb1+z5k3IC7lgcMJ8kxr+gAJNTCxKNxcsn+mFOiaW3CPGV5AtKTm79mHRozOamLiCNnXvXPzcGzUMTVIy2feCefrn3k2Ubi5Y9O1BXsgF3blnOXQgZk0akP79PLTZ2SjsCjJUtFnZxSaeLmv/hL6vKIVCweD2HVm4fSvebu4FfeG2rff6wsIM9U8XLSjoC+8F1BZu20qNypXv9YX59/rCo7w/+PEuzJW0nO27sejVFU1MLOroWCx6dy14Tx0tPPetXhpZcP6t3gBAfsh5zLt2QH3zFuqwGyjd3bDo35u8M+d051/Ott3YfPwe5r26knf8FKqqPpi3a0nmguKZ8uLhFAoFg9u0ZeGuHXi7uuLt6sqiXTuwMDOlS/3CVXk/XbYEV3sHXutZEFBbuGsHNbwr4eXsQr46n8Ohl9gcfIL3nx2k22fWxvW0CqqJh6MjSenpzN+xnYzsbHo2alKsHiUtZ/8RLDq2RROXgDouAYuObQv6vtMhujJWQwqmQsjevENvX7OmDck7H4o2s0gGVE4umugY/W25uWgzMotvLwU5W3dh0bcHmugY1FGxWPTrjjYnl9wHhipbjR2FJjGJ7BUFc7Xlnz6LeffOqG9Eor4ejtLDDYuBfck7FaJ7P5nUDgKFAs3daJQeblg+9yzqqGhy9x0u1fYciTjPM7Xb6lbMbOgdgL2FDcGRBUPtO1ZvhJ25NevO7wPgfNR12latR99abdh77RRWZhZ09m/C6dtXdcMyW/rWpn21hqw5u4fkrDRszApGIeWq83QBt/+C0syielrMzMxo0KABO3fu1CUpAOzcuZM+ffo89nHOnDmDp6en7n6zZs3YuXOn3rxnO3bsoHnz0lsBXYJnosSMHz+e559/ngkTJjB69GisrKz45ptveO+997C2tqZWrVp6k7g/aMyYMYSEhDBo0KCCD//Bgxk7dixbt27VlRkxYgTZ2dnMnDmTd955BxcXFwYMGGDweFZWVmzfvp033niDRo0aYWVlRf/+/fUWNfgrBg0aRFhYGBMmTCA7O5v+/fvzyiuv6E14/6RtVyqVrFixgtdff52aNWvi7+/P7Nmzadu2ra6MjY0N06ZN49q1a6hUKho1asSWLVv0hlt+9tlnrFixgrFjx+Lh4cGyZcuoUaOG7vk4cOAAEyZM4JlnniEtLQ0vLy86dOigy0R71PM7ffp0xo8fz7x58/Dy8iIiIoK+ffvy3Xff8c033/D666/j6+vLwoUL9epe1Ntvv01UVBQjR45EqVTywgsv0K9fP1JSClPXJ0+ejJubG1OnTiU8PBwHBwfq16/PBx988FivU926dZkxYwbTpk1j4sSJtG7dmqlTp+plyBU1c+ZMXnjhBZo3b46LiwsTJkwg9SHDUcqSabNGWL/7uu5+wWTMkLVkBdkPTnBexoZ36kxOXi7TVi4nLTOTIB9fvn/tdb0r5dFJiXpfDLJzc5i2cjmxycmYm5pS2d2Dz0e+QOcGhV/8QyNvMua7mbr7M9cWXKnt0aQpk4aPLNU25WzdhcLMDMuhg1BYW6EOjyB9+g/wQJaQ0slJL9si+89taLVaLPr1ROlojzYtnbyzF8heW5itpLC3xfrF4Sjs7dBmZaO+fYeMGXPIv3SZ8iDAtTI/9CsM/r/esmCOsS2hR/lyj/GVhMtKzo49KMxMsRzcH4WVJeobkaTP/hlyHnydHItdxVe6uWJSrUrhHGNFKCwtsOjbA6WDA9rMTPLOnCNrw5aCq/+lLGfrLhSmplgOHVh47s34sci5p9+m7E3b0VIwfFPv3FtXmIFn3q4g49l2gv6MjZkLftP7IVce/FP6vqKGd+pCTm4u01YsK+wLx71ZvC9UFukLV/xObHLSA33hKDo3NLxQUmnL2byjoO8bMRiFlRXq8Bukfz1b//xzdtI//zZuKej7BvRG6ehQcP6dOaeb3wxAfeMmGbN/wvLZvlj06YEmPp6sZavJO1r6Ael/o+HtO5KTl8e0NatIy8okqLIP3495tci5llTkczeXaWtWEZty73PXzZ3Phw6nc70GujKxKcl8tHQRyRkZONrYULOyDwveHI9nKV+wAsjZc6Cg7xvQG4WlJeqbt0n/aSHkFE6roXR0KN6fuzpjUsWH9LkLSr2OTyrnj60Fn1EvDEVhbY36ejjpU2bAAxlqSpci76d1m9BqwWJQX5ROjmhT08g7dZbsBxZCUFhZYjG4f8H/0zMKFixasR7UpTtP2IXocCxNzWnrVx9bcyti0xL57dQ2UrILhtbamlthb1k433CuOp/FJ7fQI7A5LzfvR1ZuNheiw9l9rfBiUKNKNTBRqvhfPf05kPdeP8Xe66cR/yzjx49n2LBhNGzYkGbNmvHLL78QGRmpm0t84sSJ3LlzhyVLCuY5nDVrFj4+PgQFBZGbm8tvv/3G2rVrWbt2re6Yb7zxBq1bt2batGn06dOHjRs3smvXLoMjuEqKQvs4szcLIco1hULB+vXr6du3b1lX5T8vqdOTDUks7xx3rid1196yrkaJs+vYjuQXiq+i+k/msOAHWvw45tEF/0EOv/oTyWOKZ+z+kzn8NIPkUcUzpv/JHOZ//+/s+3bvL+tqlCi7Dm1IHv7v6iMAHJY8PLP8nyp1y45HF/oHsevemeS3Hu8i6D+Fw8wpJP9vVFlXo0Q5rJjPJ9vmlXU1StTnXV98dKFyas6RtY8uVAbGNu//xPvMmTOHr7/+mqioKGrWrMnMmTN10/iMHDmSiIgI9u3bB8DXX3/NL7/8wp07d7C0tCQoKIiJEyfSvXt3vWOuWbOGjz76iPDwcKpWrcqXX37JM8882ZQIT0Iyz4QQQgghhBBCCCHKESV/fVG38mbs2LF685s/aNGiRXr333vvPd57771HHnPAgAFGR6KVhn/PqyGEEEIIIYQQQgghRAmTzDMh/gVk9LUQQgghhBBCCFE6JHgmhBBCCCGEEEIIUY78G1bb/DeRYZtCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YhShm2WK5J5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKJBhm+WJZJ4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCMKWW2zXJHMMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCnDNssVyTwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEdktc3yRTLPhBBCCCGEEEIIIYQwQoJnQgghhBBCCCGEEEIYIcM2hRBCCCGEEEIIIcoRJTJsszxRaLVabVlXQgghhBBCCCGEEEIUWBK8payrYNDwRt3LugplQjLPhBCiBE3fv7ysq1Ci3m4zmBvxd8q6GiXO18WL/os/KOtqlKi1I6aQPGZ8WVejRDn8NIMWP44p62qUqMOv/sTzK78s62qUqIWDPiQ0Orysq1GiAj2qsPLMzrKuRokaVK8T+66fKutqlLi2fg04dSu0rKtRohp4B/LWH9+VdTVK1Mzeb/wr+/PPdy4o62qUqE86vUDfRe+XdTVK1IaRX5V1FcS/hATPhBBCCCGEEEIIIcoRWW2zfJEFA4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKERm2Wb5I5pkQQgghhBBCCCGEEEZI8EwIIYQQQgghhBBCCCNk2KYQQgghhBBCCCFEOaKUYZvlimSeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjCmTYZnkimWdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5Yistlm+SOaZEEIIIYQQQgghhBBGSPBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDmikGGb5YpkngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRzDMhnqKIiAgUCgUhISGlcnyFQsGGDRueaJ+2bdvy5ptvPnb5RYsW4eDg8NAyly9fpmnTplhYWFC3bt0nqs9f9aTtKO3XQgghhBBCCCHEv4Nknon/jJEjR5KcnPzEwaWS5O3tTVRUFC4uLgDs27ePdu3akZSU9MiA1D/Jp59+irW1NVeuXMHGxqasq2NQ0deiLF3cd4Jz24+QmZKGYwU3mg3qime1ygbL3r1yg03TFxfbPvCzV3HwdC22/fqJ8+z5dS2V6/jT5dXBJV73+/5ct5E1v68kMSGByr4+jHn9VWrWrW20/LkzZ/nl+zncvBGBs4sLzw4ZRI9+vfXKrF+5hk3r/yAuJhY7B3tatW3N82NexMzcDIAVS37n8P6D3L4ZiZm5OTVqBfHCKy/iXblSqbWzi38T+gS1wtHKllvJsSw8sZnQ2Aij5Vv51qFvzdZ42jmTmZvNmbvXWHxyC+k5WQB81mU0NT2qFNvv1O3LTNm9pLSaUYxFzy6YtWyKwsoKdcRNMpevRRMVY7S8zfixmFT3K7Y97/wlMn78teCOuTmWvbthWrcmCltb1Lduk7VqA+qbt0qrGU+sjqcfQ+p1JsCtEi7WDry/ZS4Hb5wt62oZ1M6vAd38m+JgacOdlDh+P7OTa/GGn8tRjXvS0rdOse13UuL4aNsvAKgUSnoENqeFb20cLW2JSktg9dk9XIgOL9V2PGjL+k1sWLGGpMREvH0qM+q1lwmqU9Ng2cSERBb+OI+wq9eIun2XHv17M3rcGL0yRw8cZs1vK4m6cxd1fj6eFb3oM/AZ2nXp8DSaA8CJHQc49Odu0pNTcK3oSbfh/fEJLP5eAbh5OYwdv28k/m40eTl5OLg60bBDC5r3aK8ro85Xc2DjDkL2HyctKRlnT3c6D+lDtbo1nlaT2LdpJzvWbSIlMZkKlbwY+NJwqtUMMFj29OETHNiyi1vhN8nPy8ezshe9hvQnqIH++ZiZnsGGJas4cySYzPQMXNxdGTD6OWo1qvc0mgTAzo1b2LR6A8kJSXj5eDN87CgCagUZLJuUkMiynxZy41oY0Xei6NKvB8PHji5WbuvaP9j15zbiY+OxtbelSavmDBo9DDMzs9JuDgAtfGrTrmp97CysiU5LYMOFA4Qn3jVaXqVU0aV6YxpUDMDO3Irk7HR2Xg3mxK1LACgVSjpWa0gj70DsLWyITU9i06XDXI67+VTaA9CvZhuG1OuEs5U9NxLvMvvQas5GXTda/pmabehfqy2eds7EpCWy+NRWtl05rvu/SqlkeP2udAtohou1A5HJMcw9uo7jkZeeRnMMunrgNJd2nyArJR0HTxca9O+Am5+30fLqvHzObz3CjeCLZKdlYOVgS80uzajazPj3rtLWzb8pfWu2Lvh+lBTD/BObuPSQ70etq9SlX802VLBzJiM3mzN3rrLo5BbScjJ1ZXrVaEFX/6a4WDuQlpPBkYgLLD29jTx1/lNokRDFSfBMiKdIpVLh4eFR1tUodWFhYfTo0YPKlQ0HgMqD8vJahAVf4OjKbbQc0gN3v0qEHjjJ1tm/MXDSq9g4Oxjdb+Dk1zCzMNfdt7C1LlYmLSGZ42t24FGt9IJJAPt37eXn737k1bffIKh2TbZs+JOP3nmfX35biJuHe7Hy0Xej+PidiXTr1Z33PvmAi+cu8OP077B3cKBlu9YA7Nm+iwU/zWP8xPcIrBXEnchbTP/yawBefuNVAM6HnKXXM32oHuiPRq1h0S/z+fCt9/hl2UIsLC1LvJ3NfWrxfKMezDv+B5djb9K5emM+7DiCNzfOIj4jpVj5ALfKjGv5LIuCN3Py9mWcrOx4uWlfxjZ/hq/3LgPgm73LMFGqdPvYWlgxvdc4jkZcKPH6G2PeuT3mHdqQuXg56tg4LLp1wuaNMaR++hXk5BjcJ+OnRWBSWG+FtRW2H71D3unCwJPVsIGoKniSsfB3tCmpmDVpgM2bY0j97Gu0ycWfr7JgaWrO9YTbbLl8hCndxjx6hzLS2DuQIXU7sfT0Nq7F3aKtX33Gt/4fH277mcTM1GLlfz+zk9Xn9uruqxRKPu8ymuBbobptz9RqQ7PKtVh0cjNRqQnU9KjCuBYD+HL3YiKTjQdOS8qhPftZ8MPPvPzWqwTUrMH2P7cwecLHfL/4Z1zd3YqVz8vNw97BnmeH/o8/Vq83eEwbW1ueHToIr0remJiacPLoCb6fNgMHRwfqNW5Q2k3i/JFTbF28lp6jBlHJvwrBuw7x21dzeG36Rzi4OBUrb2ZuRpMurfGo5IWpuRmRV8L449cVmJmb0bBjSwB2r/yTs4eC6fPSEFwquHP9bCjLp8/jxc/H4+lr/Md1SQk+cJRV85YwZOwLVA2szoFtu/n+02lMmvsNTm7FLz5du3iZwHq16DtiEJbWVhzZtZ8fP/+W92dMplJVHwDy8/KZ9dFUbO3tePmDN3B0cSIpLgHzUui3jTm69xBL5i7ghddfpnpQALs3b2faxMl8M/97XNyLX4jKz8vD1sGePkOeZevaPwwe89Du/az4dSkvvfMa1YMCiLp9l5++mQ3AsLGjSrU9AHUrVKNvzdasObeXG4l3aV65Fi817cNXe38jOSvN4D4jGnTD1tyKlSG7iMtIxtbcCqWicGBS94BmNKgYwKqzu4lNT8TfrTLPN+7J7IOruJMaV+pt6uDXgDdaPsv0/cs5Fx1G36BWfNvrNYb+/hkx6UnFyvcNas2YZn2Ztvc3QmNvEujmw/vthpKWk8nhiPMAvNSkD12qN2Havt+4mRRNY+8aTO02hpfXfmP0gkRpijgVyqm1u2k0qDOuVby4diiEvXNW0/Oj0Vg72Rnc59CCjWSlZdD0uW7YujqSnZaBVqN5yjUv1MKnNi807snPxzZyOTaCLv5N+LjT84zbMMPg96NAt8q80XIgC4I3EXwrFGcrO8Y068erzfvz1d6lQEFwbViDrvxwaA2X4yKpYOfC6y2fBWBB8Kan2r6ypESGbZYnMmxTiHv2799P48aNMTc3x9PTk/fff5/8/MIrG23btuX111/nvffew8nJCQ8PDyZNmqR3jMuXL9OyZUssLCyoUaMGu3bt0htK+eBQwYiICNq1aweAo6MjCoWCkSNHAuDj48OsWbP0jl23bl29x7t27RqtW7fWPdbOnTsf2caMjAyGDx+OjY0Nnp6eTJ8+vViZ3Nxc3nvvPby8vLC2tqZJkybs27fvkce+T6FQcOrUKT7//HMUCgWTJk1i3759KBQKkpOTdeVCQkJQKBREREQAcPPmTXr16oWjoyPW1tYEBQWxZcsWXflLly7RvXt3bGxscHd3Z9iwYcTHxxutx2+//UbDhg2xtbXFw8ODIUOGEBsbq/u/oWGbT/oYJeHczqP4t6xPQKsGOHq60nxQN2wc7bm0/+RD97O0tcbK3lZ3Uyr1u3ONRsOeX9fSoHc77FwcS7MJrFu5mi49u9Gtdw8q+VRmzJuv4ermxqb1hn9gbN7wJ27ubox58zUq+VSmW+8edO7RjTXLV+nKhF64SFCtmrTr3AEPTw8aNGlE207tuXr5qq7MlzOm0blHV3yq+FKlWlXGf/AesTGxXLty1dDD/m29arRkz/VT7L52kjspcSwM3kxCRgpd/JsYLF/d1Zu4jCS2XD5KbHoSl2NvsuPqCao6e+nKpOdmkZydrrvV9vQjJz+PIzfPl0obDDHv0JrsrbvICzmP5m40mYt/R2Fmhlnj+kb30WZmok1N091MA/0hN4/cU/eCZ6ammNarTda6P1FfD0cTF0/2pu1o4hMxb938KbXs0Y5FXmTe8T/YHx5S1lV5qM7+TThwI4QD4SFEpSWw/MxOErNSaV/V8GuUlZdDanaG7ubj5ImVmSWHHsiqa+ZTi02hhzkXFUZcRjJ7w05zITqcrkbO55K2cdV6OnbvTKeeXfH2qcTocWNwcXVl28bNBsu7e7oz+vUxtOvaESub4hcLAGrVq03T1i3w9qmEp1cFeg3oi08VXy6dv1iaTdE5snkP9ds1o0H75rh6edB9xADsnB0J3nnQYHlPX29qt2iIm7cnjm7O1GnVGL/agdy8HKYrc/bQCVr37Uz1ekE4ubvQuHMr/OoEcnjznqfSpl3rt9Cic1tadmmHZyUvBr00HEcXZ/Zv2WWw/KCXhtNlQC98qlfF3cuTfiP+h1sFD84dP60rc3jnPjLS0hn78Xj8avjj7OaKX1AA3lWe3gW3LWs30rZrR9p174RXZW+Gjx2Ns5sLu/7cZrC8q4c7I14dTevO7bCytjJY5tqlK1SvGUCLDm1w9XCndsN6NG/XivCrxrOkSlLbqvU5HnmR45EXiU1PYsPFAyRnpdPCp5bB8gGulfFzqci84xu5Gn+LpKw0IpNjiEiK0pVp6B3ArmvBhMZGkJCZypGI81yJvUlbP+OfDyVpUN2ObAo9zJ+hh7mZFM13h1YTm5ZEv5ptDJbv6t+EjRcPsvv6Ke6mxrP7+kk2hR7muXpd9MosObWVozcvcDc1ng0XD3A88hKD63Z8Km0q6vKeYKo2q41f8zrYe7jQcEBHrBxtuXrwjMHydy+FE3P9Fu1eeRbPAB9snO1x8amAa5WKT7nmhfoEtWTXtZPsuhbM7ZQ45p/YRHxGCl39mxosX921EnHpSWwOPUJsehKhsTfZceUEfi6F34/8XStxOeYmB26cJTY9iZC71zgYflavjBBPmwTPhADu3LlD9+7dadSoEWfPnmXu3LnMnz+fL774Qq/c4sWLsba25vjx43z99dd8/vnnuqCVRqOhb9++WFlZcfz4cX755Rc+/PBDo4/p7e3N2rVrAbhy5QpRUVF89913j1VfjUbDM888g0ql4tixY/z0009MmDDhkfu9++677N27l/Xr17Njxw727dvHqVOn9Mo8//zzHD58mBUrVnDu3DmeffZZunbtyrVr1x6rblFRUQQFBfH2228TFRXFO++881j7vfrqq+Tk5HDgwAHOnz/PtGnTdEM+o6KiaNOmDXXr1uXkyZNs27aNmJgYBg4caPR4ubm5TJ48mbNnz7JhwwZu3LihC04aq/eTPsbfpc7PJz7yLhVrVNXbXrFGVWLCHn71c93kn1n6zrdsmrGYu5dvFPv/6U37sbS1JqBl6X7BzcvL49qVq9Rv3FBve/3GDQm9YPgHa+iFi8XKN2jSkGuXr+gC1kF1anHtylWuXCrIlIm6c5fgo8dp3Nz4D/vMjAwAbO0MX6n9O0yUKqo6VyDkrv774Ozd6/i7Gv7BdyU2Emcre+p7VQfA3sKGZpVrcur2FaOP06FaQw5HnCMnP6/kKv8QShcnlPZ25Ic+UKd8NfnXwjCp4vPYxzFr0YTck2cgN/fegZUoVCrI0x9aoc3Lw8TPtwRq/t+hUirxcfTkYrT++/xidDhVXR7vx1Jr37pcirlBwgNZaqZKVbGhL7nqfKq5ln42U15eHmFXr1G3kX7/VLdRfS5fKJmhU1qtlrOnznDn1m2CahseClqS8vPzibpxi6q1A/W2+9UOJPJq8T7akKgbt7h1NRyfGtUKj5uXj4mpqV45UzNTIh8IsJWW/Lx8Iq/foEY9/aFgNerXIiz08S5SaDQasrOysX4gO/rc8VNUCajG73MW8s5zY/hs7HtsWbkBjfrpZM7k5+Vx42oYtRvW1dteq0Fdrl66/JeP618zkBtXw7h+7yJPzN1oQk6cpl6Tho/Y8+9TKZRUtHfjSmyk3vYrcTfxcfQ0uE+QRxVuJcfQ3q8hn3YaxcT2w+ldoyWmD2RDmyhV5GvUevvlqfOp4lSh5BtRhIlShb9rJU5EhuptP3Er1OB0BwCmKhNyi3x+5uTnUcPdB9W9i4ymKhNy1cXL1PY0PLy6NKnz1STeisYzUP9z0TPQl/gbdwzuc/v8dZwreXBp13HWffgjf3z2C6fX7SE/9+l8byiq4PuRV7HvRyF3rxHgZvj70eXYmzhb29PAyx+49/3IpyYnbxe+/0JjI6jq4kW1e59z7jZO1K/or1dGiKdNhm0KAcyZMwdvb29++OEHFAoFAQEB3L17lwkTJvDJJ5/osnpq167Np59+CkC1atX44Ycf2L17N506dWLHjh2EhYWxb98+3XDAL7/8kk6dOhl8TJVKhZNTwTAONze3J5rzbNeuXYSGhhIREUHFigUfKlOmTKFbt25G90lPT2f+/PksWbJEV6fFixfr9oeC4ZbLly/n9u3bVKhQ8MXonXfeYdu2bSxcuJApU6Y8sm4eHh6YmJhgY2PzRMMiIyMj6d+/P7VqFVwhrVKl8IvR3LlzqV+/vt7jL1iwAG9vb65evUr16tWLHe+FF17Q/V2lShVmz55N48aNSU9PNzgP25M+Rk5ODjlFhrSZm5vzJLLTM9FqtFja6WdRWNpZk5mabnAfK3tbWg3rhWslT9T5aq4dO8ummYvp9fZIPKv7ABB9PZIrh07T/+PSH4aWmpyCRq3B0Uk/u83R0ZHEhESD+yQlJuHoWKS8kyNqtZqU5BScXZxp27E9KUnJvP3KG2i1WtRqNT379WbQsCEGj6nVavl59hyCatfCp0rJB2dsza1QKVWkZOm/LsnZaThYVjO4z5W4SGYdXMX4NoMxVZlgolRxIvIS84//abC8n0tFKjt6MOfIuhKvvzGKe4FGTar+kB5NahpKp8fLWFT5VELl5Unm0pWFG3NyyA+7gUWPTmRExxRkpzWqj8qnEprY0s3m/LexNbNCpVSSmq1/7qVkZ1DT4tFzStpb2FDLsyo/H9ugt/1CdDhd/JtwNS6S2PQkAt19qedVHeVTWNkrLSUVjVqDQ5FzzN7RgaTE4kOxnkRGegajBgwlLzcPpUrJy2++WixIVxoyU9PRaDTY2Nvqbbe2tyU9ufjQ2gd9O/YjMlLT0ajVtBvQnQbtC7Mz/WoHcmTLHnwC/XB0dyH8whUunzyHRqMtlXY8KD01DY1Gg52Dvd52Wwd7UpMeb+j1zvWbyc3OoUGrwgyUuOhYEmIu0aRtC8ZNeo/Yu9Esn7sIjVpDzyHPlGgbDElLKWiXvaOD3nZ7R3tS/sb517xdK9KSU/jszQ/g3udWx15d6T24/9+s8aNZm1miUir15osCSMvJws7CcKams7Udvk4VyFOrWRi8CWszSwbUboeVmQUrQgoyCy/HRtK2Sj3CEu6QkJFMNddK1PSo8lT6CQcLG0yUKhKz9N8/SVmpOFsZvkh24tYletZoyYEbZ7kSF0mAayV6BDbHVGWCg4UNCZmpHI+8xP/qdiTk7nXupMTRsGIArXzroFQ+/eFxOfe+B1rY6mczWthak5WaYXCf9PhkYsNuozQxofWL/cjJyCJ45Q5yMrNpNrT706i2nvvfj4oODU7JSsPRsvj3cyj4fjTjwAreaTtE9/3oeOQl5h0rHLFw6MY57M1tmNJtDAqFAhOliq2Xj7Lu/P5SbU95o1BIrlN5IsEzIYDQ0FCaNWumtxxwixYtSE9P5/bt21SqVDBnVO3a+ldfPT09dUMBr1y5gre3t17AqHHjxqVW30qVKukFvpo1a/bQfcLCwsjNzdUr5+TkhL+/v+7+6dOn0Wq1BgNFzs7OJVR7w15//XVeeeUVduzYQceOHenfv7/u+T516hR79+41GPQKCwszGDw7c+YMkyZNIiQkhMTERDT35oKIjIykRo3iEy0/6WNMnTqVzz77TG/bp59+im07f56Uosh8BtqH/CZy8HDBwaNwnhn3qt6kJ6VydscRPKv7kJudw97562g1rLfBedBKTZEv0lq0D19eu2h57f3NBdvPng5hxZJlvPr2GwQEBXL39h1++u5HHBcu5bnnhxU73I8zZnMjLJzpc2f/vXY8ghb9F6foa/egivZujGrck9Vn9xBy9xqOlrYMb9CVl5v1NRgg6+DXkJtJ0VyPv13i9b7PtHF9rIY8q7uffn9y/6In3RP8MDJr3gT1nSjUEfoZD5kLf8dq+P+wnzYJrVqN+tYd8oLPoKokQy7+iqLdQsG59+gASkvf2mTmZXP6jn7G4+9ndjKyYXemdBuDFohNT+LQjbMGFxooPUXPs0f0G4/B0sqSmb/+SFZWFudOh7BgzjzcK3hSq95Tmki7WPUf3aZRk94kNzuHW9ci2Ll8I04ertRuUZCt1H3kADb+spzZ4yejUChwdHehXtumnNl3rHTqb0jxl8lAO4s7se8Im5atY+zH4/UCcFqNFlsHO4aOG41SpaRytSokJyaxY+3mpxI80zHYrr9+/l0KOc+G39fwwusvUzWgGjF3o1ny46+sc17JM0MH/a2qPq6in1FQcHHJECUKtMBvp7eRnV+QNbzh4gFGNuzB2nN7ydOoWX9hP4PqdGBi+2FotZCQmcKJW5do7P30FqwoXn+F0Z5vYfAWnKzs+KX/BFBAUmYaWy4fZWj9LqjvHee7g6uY0G4ovw+ZhBYtd1Pi2Hz5CD0CynJKgSLnnVZr9FTUagv6lBYje2FmWXDRVv1Mew7O30CjgZ0wMTM1vOPTplAYPB+h4PvRi016szJkN2fuXsXR0paRDbvzSrN+/HCkYFROTY8qDKjTjp+PbeRaXCQedi6MbtyLpNpprDr3dIatC1GUBM+EoPCDqOg2QG+7aZGhEwqFQheUMXSMv0qpVBb7spCXV5iObeiL0KMe29iXpwdpNBpUKhWnTp1CpVLp/e/vrJp5P3PvwTo82B6A0aNH06VLFzZv3syOHTuYOnUq06dPZ9y4cWg0Gnr16sW0adOKHdvTs/hwhIyMDDp37kznzp357bffcHV1JTIyki5dupB7f1hZEU/6GBMnTmT8+PF628zNzfnh2ONnDVnYWKFQKoplmWWnZWBl9/jPt5tvRa4fPwdAalwiaQnJbP/xd93/7z/v88Z8xqDPx2HnVnzi6r/KzsEepUpJUpEss+Sk5GLZaPc5OjmSlFi0fBIqlQo7+4KryUvmLaR9l050690DAN+qVcjOzmb2tBkMHvGc3hxvc2bM5tihI3z74yxc3YpP9FwS0nIyUWvUOFjqZ5XYW9iQnGU4S/CZWm24HHuTjRcL5ju6mRRNdn4uX3Z7md/P7NS7SmumMqWFb21WhhieR6ik5J29SNqNB4Jc9yb9V9rboX4g+0xpa4M21fAE03pMTTFrVJcsA/MEaeITSJ/xI5iZobAwR5uahtXoYWjiDWckCsPScjNRazTYF8kys7OwIiXbcGbCg1r51uFIxHnURSaTTsvJ5PvDazBRqrAxtyI5K41na7cjPiO5JKtvkK29HUqVkuQi/UBKUgoORbKBnpRSqcSzYkHmdJVqVbl98xZrl60s9eCZlZ0NSqWS9GT9901GSjrWRbLRinK8N/G+eyUv0lPS2Ltmiy54Zm1ny5B3XiIvN4+s9AxsHe3Z+ftGHNxK94IWgI1dwXyaRbPM0lJSimWjFRV84ChLZv/Cy++/QWA9/Tm37J0cUKlUKFWF/bintxepScn3hqmW7s8T23vzhKYkJuttT0lOKZaN9iRWL/qdlh3b0q57QXZ/pSo+5GRn8+vMOfQd8myxuUlLUkZuFmqNBjtz/YtmtuaWxbLR7kvNySAlO10XOAOISUtEqVBgb2lLfEYyGblZLAjehIlShbWZBSnZGfQMbGFwoZKSlpydTr5GjbOV/rnmaGlr9PFz1XlM3bOUr/ctw8nSjoTMFHrXaEVGbpYuczw5O52JW3/CTGWCnYUN8RnJvNKsH1FpTz8r2vze98DsNP2+PDs90+gFUEs7GyztbXSBMwB7D2fQQmZyWol+x3scf+X70YDabQmNjWDDxQNAwfejn49tYGr3V1h2ZgdJWWkMqdeJfWGn2XUtTy5RrwABAABJREFUuKBMcgwWJqaMbf4Mq8/tNRqYE6I0SR6gEECNGjU4cuSIXnDnyJEj2Nra4uX1eFkSAQEBREZGEhNTuEpZcHDwQ/e5v3S5Wq0/n4SrqytRUYUTtqampnLjRuGcKTVq1CAyMpK7dwuXHz969OhDH8vPzw9TU1OOHSu8Wp2UlMTVq4XzltSrVw+1Wk1sbCx+fn56t7+zMqWra0FA48E2PThR/33e3t6MGTOGdevW8fbbbzNv3jwA6tevz8WLF/Hx8SlWL2vr4l8uLl++THx8PF999RWtWrUiICBAb7EAQ570MczNzbGzs9O7PemwTZWJCS6VKnDnkv7cNbdDw3Cv+vjzDiXcisLKvuCHtYOHCwM+fYX+H4/R3SrX9qeCvy/9Px5jdOWmv8rU1JRq/tU5E6w/d96Z4FME1gwyuE9gzaBi5U+fOEm1AH9MTAp+NOXkZBf7oXE/qHz/farVavlx+ncc3n+QabOn41HB8LwuJSFfoyYs4S51isyJUruCH1fibhrcx9zEtFjQWqMtCGAUDXW38KmFqUrF/nDDEwSXmJwcNHHxhbeoGDQpqZgEPpBZqVJhUq0q+eERjzycWcO6YGJC3vFTxgvl5qJNTUNhZYlpjQDyzj69lUT/DdQaDRFJUQR56A9HruHuS9gjshT9XSvhbuvEwQcWCigqX6MmOSsNlUJJg4oBnLlTOgtuPMjU1JSq1asRclL/fA85eZqAmiWb0aLVaotdrCkNJiYmePp6E3Zefz6esPOXqVT9CYaSa7Woi8wVCAXznNk5OaBRa7h0IoSABqWfSWdiakIlP19Cz+gvYBJ65gJVAw0Px4KCjLPFM39i9LuvUqtxvWL/r1qjOnFRMbqLjwAxd6Kwd3Io9cAZgImpKb7Vq3L+VIje9gunQqheI+AvHzcnJ6fY0L+Czy0enlJeAtRaDbdTYqnuqr+6dnXXSnoLADzoRmIU9ubWmKkKLwy72Tii0WpIKTIEL1+jJiU7A6VCSe0KfpyPDi/5RhSRr1FzJS6SRt768wg28g7kwiMeX63REJeRjEarpWO1hhyOOF8s2JKrzic+IxmVUknbqvUe2k+WFpWJCidvD6IuR+htj7ocgYuv4d8frlW8yEpJJy+nMOiZGpuEQqHAyuHhgfrSUPD96A51K+h/P6pbwY/LsUa+H6nMDHw/0hYpY+g7VEHa61MYNVxuKBWKcnn7r5LgmfhPSUlJISQkRO8WGRnJ2LFjuXXrFuPGjePy5cts3LiRTz/9lPHjxz/2lcJOnTpRtWpVRowYwblz5zh8+LBuwQBjWWGVK1dGoVCwadMm4uLiSE8vuELTvn17li5dysGDB7lw4QIjRozQywTr2LEj/v7+DB8+nLNnz3Lw4MGHLk4ABZljo0aN4t1332X37t1cuHCBkSNH6rWvevXqPPfccwwfPpx169Zx48YNgoODmTZtmt7Kl0/Kz88Pb29vJk2axNWrV9m8eXOxlT7ffPNNtm/fzo0bNzh9+jR79uwhMLDgC9Orr75KYmIigwcP5sSJE4SHh7Njxw5eeOGFYoFHgEqVKmFmZsb3339PeHg4f/zxB5MnT35oHZ/0MUpK7U7NuHzoNJcPnSYpKo4jK7eRnphCYJuCrIMT63axd0FhNtv5XUeJOBNKSkwCiXdjObFuFzdOhxLUrmCIsImpKU5e7no3cysLTM3NcPJyR2VS8j9Mnhn0LNv+3ML2TVuJjLjJz9/9SGxMDD369QJgwdx5fDN5qq58j769iImO4efZc4iMuMn2TVvZvmkrAwYXLs7QpEUzNq//g3279hB9N4rTJ06yZN5CmrZsrnsv/Dj9O/bs2MWESR9haWVFYkIiiQmJxeaiKyl/XjpEh2oNae/XAC97V0Y26o6LtT07rpwA4Ln6nRnXcoCu/Mlbl2lSOYgu/k1wt3HE37USoxr34mpcwapmD2pfrSEnIkNJz8kqlbo/TM7uA1h07Yhp3VooK3hgNWIw2txcck8Uro5nNXIwFn17FNvXrHkT8kIuoM0ontlgUsMfkxoBKJ2dMAmsjs1bY1HHxJJ75ESptudJWJqaU82lom5C4gp2LlRzqYi7TemuUPukdlw5TmvfurTyrYOnrTP/q9sRZyt79oYVvEYDarVldJNexfZrXaUuYQl3uJMSV+x/VZwq0MDLH1drB6q5eDO+zf9QKBRsufzwCzElpc/AfuzavJ1dm7dzKyKS+T/8THxsHF16F8zZs/SXhcz68lu9fcKvhRF+LYzsrGxSk1MIvxbGrYjCH2drfltJSPBpou9GcfvmLTauXMe+7btp26n9U2lT8x7tOb3nCKf3HiXuTjRbF68lJT6RRh1bAbBz+UbW/rhEV/749v1cPnWehKhYEqJiOb3vKIc37aZ2q0a6MreuRXDpRAiJMfFEhF5nydQf0Wq1tOz9dFYG7NivO4d27OXwjn1ERd5h1S9LSYyLp3X3DgCsX7SChdPn6Mqf2HeEhTPmMmDUUHz9q5GSmExKYjJZD/QRbbp3Ij0tnZU/LyHmThTnT5xh66qNtO3R+am0CaB7/z7s3bqLfVt3cefmLZbOmU98bDwdehWsyrji16XM+WqW3j4R18OJuB5OdnY2qcmpRFwP5/bNwsV96jdtxK4/t3Fk70Fio2I4fyqE1Yt+p0GzRiiLZPOXhn1hp2laOYjG3jVws3Gkb1BrHC1tORJREPzsEdicIfUKn+NTt6+QkZfN4HqdcLdxoopTBXrVaMnxyEvk3VskoJKDO7U8q+JsZUcVpwq83LQvShTsuf7wFcFLysqQXfSq0YIegc2p7OjB6y2exd3WkfX3MpbGNO3LRx1G6sp727vRuXpjKtq7Eejmw2edR1HFuQI/H9uoK1PD3Yc2VepSwc6FOp5+zOj1OgoULDu946m0qaiA9o0IO3KWsKPnSImO59Ta3WQmplKtVV0Azmzcz5Elm3TlfRrVwNzakmO/bSElKp6Y67c4s34vVZrVKrMhmxsvHqJjtUZ08GtIRXtXXmjUExdrB7ZfOQ7A0PpdeKNl4Xe84NuhNK1ck67+TXC3cSLArTKjm/Tialyk7vtR8O3LdPVvSkvf2rjZOFLH048h9ToRfOtSsUCbEE+LDNsU/yn79u2jXj39q6AjRoxg0aJFbNmyhXfffZc6derg5OTEqFGj+Oijjx772CqVig0bNjB69GgaNWpElSpV+Oabb+jVqxcWFhYG9/Hy8uKzzz7j/fff5/nnn2f48OEsWrSIiRMnEh4eTs+ePbG3t2fy5Ml6mWdKpZL169czatQoGjdujI+PD7Nnz6Zr164PreM333xDeno6vXv3xtbWlrfffpuUFP3hGAsXLuSLL77g7bff5s6dOzg7O9OsWTO6d//rk5CampqyfPlyXnnlFerUqUOjRo344osvePbZwrmX1Go1r776Krdv38bOzo6uXbsyc+ZMACpUqMDhw4eZMGECXbp0IScnh8qVK9O1a1eDwU1XV1cWLVrEBx98wOzZs6lfvz7ffvstvXv3NlrHJ32MklK1UU2yMzI5vXk/mSnpOFVwo9u457B1dgAgMyWN9MTC10idr+bYmh1kJKdhYmqCYwU3uo4bQqVaxrMASlubju1ITU1l2cIlJCUkUrmKD5O/nYr7vWzFxIREYmMKM/88Kngy+dup/Dz7Rzat24iTizOvvPkaLdu11pUZMmIYCoWCxb8sICEuHntHB5q0aMbIl0bpymxaXzCx7HuvvaVXn/EfvEfnHg9/L/wVRyLOY2tuxbN12uNoaUtkcgxTdi8m7t4wN0dLW1z+z959R0VxvQ0c/y69914UEAUEe+9d7JrE3o2JMRqNMZpE/RljjJqiiSaxx967xl6xN+wNG4pYQJDe675/oIsrLGoEIXmfzzl7Djt77+y9u8PM7DPPvWNsoSofEHweA119WnvXpl/11iSlp3IlLJgV5/eordfRzJry9m5M3Luo0Nv8OtL2HkShp4thjw9QGBmSdS+UxN/nwQtBSC0ryzyZE1p2tuiU9SBx5tx816swNMCgU1u0LCxQJieTceEyKVt2wkvDB4uTt21p/nwvd/j18Po5+6SdQSeZfHBpcTUrjzMPgjDWN6KDb33MDUx4FBfJb0fXqO6eaW5okmdok6GuPtVcvFl1If8fhLraOrxXoRF2JpakZqZzOewOC079TUpG0QSfX1a/aSPi4xJYu2wVMVHRlHJ3Y/xP32PnYA/k7DciX8oYHvnRZ6q/g2/e5sj+Q9g62LFgbc53lZaayrzfZhEV+RQ9fT2cS7nyxf9GU79po3fSpwp1q5GSmMShjbtIiI3HztWR3t8MwcI2ZxhVQkw8cS8MW1Yqlexf/TcxkVFoaWlhZW9Dix4dqd68nqpMZkYGB9ZuJybiKXoG+pSt7MsHQ/tiaGyU5/2LQo2GdUiKT2TH6k3ERcfiVNqFzyZ+hfWzIfJx0bFER0apyh/dfYDsrCxWz1nM6jmLVcvrNGtI/5E5N7GxsrXm80nfsH7BCr4f+g0W1pY07dCKVp01H6MLW50m9UmMj2fTirXERsfg4laKr6aMx9beDoDY6GiiItSDzmMH5+4r7t0K5sTBI9jY2/L7ypws+fd6d0WhULB+8Uqin0ZjZm5G1To16Pphr3fSp4uPb2OsZ4i/Vy3M9I0IS4hi/qmtqmCEmb4xli8MrUvPymDuyc28X6ExIxt2JykjlYuPb7Mr6ISqjK62Dm2862BtZE5aZgZBESGsPL9HbahnUTpw5xxmBiYMqN4Wa2Mz7kY9ZtS2P3mSkPN/ZG1kjr1p7jBFLS0telRuTikLBzKzszj/6CaDN/5CeELuNqqnrcvHtTriZGZDSkYaJ+9fZdK+xSSmv/uLVwBu1XxIT0rhyq7jpMQnYeFoQ+MhXTCxytmnp8YnkhT9wp2S9fVo+lk3zq7fx66fl6JvbEipqt5UategWNoPcDzkMmb6RnSr3Czn/CgmnEn7l6jOj6yMzLA1sVCVP3jnHIY6+rTxrsuAGm1JSk/lclgwy87tUpVZd+kgSqWSXlVaYmVkTnxqEoEPglh5YQ9CFBeF8nUmQhJC/CPHjx+nfv363LlzhzJlyhR3c8QLbt68ibe3N7dv38bTs/BuTz798OpCW1dJ8GWjHtx7mv/t0v/N3G2c+WDp2OJuRqHa2G8KsYNHvrrgv4jF3F+pN6vo7xr7Lh0fOpcBaycXdzMK1eJu4wh6B8O43iUfBw/WXthX3M0oVN2qtODQnQKGWP9LNfasxrkHQcXdjEJVzdWHL/6eWdzNKFS/dfj8P7k//35f8Vz4KirftviQTku+Ke5mFKot/X8s7ib8Y1uvHinuJuSro1/DVxf6D5LMMyEK0ebNmzExMaFs2bLcuXOHzz//nHr16kngrISJjo5mw4YNmJmZ4er6+nOLCSGEEEIIIYT4/0eCZ0IUooSEBL766isePHiAjY0NzZs3zzO3lyh+AwcO5Ny5c8yZM+eNJ/kXQgghhBBCCPH/iwTPhChEffv2pW/fvsXdDPEKmzdvLu4mCCGEEEIIIYRGijz3ZxfFSe62KYQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCaClk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIQoZtliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgsiwzZJFMs+EEEIIIYQQQgghhNBAgmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShAtZNhmSSKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliNxts2SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkRLhm2WKJJ5JoQQQgghhBBCCCGEBgqlUqks7kYIIYQQQgghhBBCiBz7bp4u7ibkq4VXreJuQrGQYZtCCFGIvt4xu7ibUKh+ajuEa2HBxd2MQufrWIaGs4cUdzMK1ZEhs4kdOKy4m1GoLBb+wYC1k4u7GYVqcbdx1Js1uLibUaiOD51LQkREcTejUJna2bEkcEdxN6NQ9a/RllHb/ijuZhS6ae2HMf3w6uJuRqH6slEP+q2ZVNzNKFRLu4+n87Jxxd2MQrWh72Q6LfmmuJtRqLb0/5Fm84YXdzMK1YFPfi/uJvxjcrfNkkWGbQohhBBCCCGEEEIIoYEEz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIApk2GZJIplnQgghhBBCCCGEEEJoIMEzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEECWIltxts0SRzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBCiBFEoFCXy8U/Mnj0bd3d3DAwMqFatGkePHtVYdtOmTbRo0QJbW1vMzMyoU6cOe/bsUSuzZMmSfNuWmpr6j9r3OiR4JoQQQgghhBBCCCEK3dq1axkxYgTjxo3jwoULNGjQgNatWxMaGppv+SNHjtCiRQt27tzJuXPnaNKkCe3bt+fChQtq5czMzAgLC1N7GBgYFFk/5IYBQgghhBBCCCGEEOKV0tLSSEtLU1umr6+Pvr5+vuV//fVXBg4cyEcffQTAjBkz2LNnD3PmzGHq1Kl5ys+YMUPt+ZQpU9i6dSvbtm2jSpUqquUKhQIHB4e37M3rk8wzIYQQQgghhBBCiBJES6EokY+pU6dibm6u9sgvCAaQnp7OuXPnaNmypdryli1bcuLEidf6HLKzs0lISMDKykpteWJiIqVLl8bFxYV27drlyUwrbJJ5JoQQQgghhBBCCCFeacyYMYwcOVJtmaass6dPn5KVlYW9vb3acnt7e8LDw1/r/aZPn05SUhJdu3ZVLfP29mbJkiVUqFCB+Ph4Zs6cSb169bh06RJly5Z9wx69HgmeCSGEEEIIIYQQQohXKmiIpiYv32hAqVS+1s0HVq9ezXfffcfWrVuxs7NTLa9duza1a9dWPa9Xrx5Vq1bljz/+4Pfff3+jtr0uCZ4JIYQQQgghhBBClCAK/tmdLUsSGxsbtLW182SZRURE5MlGe9natWsZOHAg69evp3nz5gWW1dLSokaNGty+ffut26zxPYpszUIIIYQQQgghhBDi/yU9PT2qVavGvn371Jbv27ePunXraqy3evVq+vfvz6pVq2jbtu0r30epVHLx4kUcHR3fus2aSOaZEEIIIYQQQgghhCh0I0eOpE+fPlSvXp06deowf/58QkNDGTx4MJAzh9qjR49YtmwZkBM469u3LzNnzqR27dqqrDVDQ0PMzc0BmDhxIrVr16Zs2bLEx8fz+++/c/HiRWbNmlVk/ZDgmRBCCCGEEEIIIUQJolD8NwYKduvWjaioKL7//nvCwsLw8/Nj586dlC5dGoCwsDBCQ0NV5efNm0dmZiZDhw5l6NChquX9+vVjyZIlAMTGxjJo0CDCw8MxNzenSpUqHDlyhJo1axZZPyR4Jv6RJ0+eMG/ePIYNG4alpWVxN0cIIYQQQgghhBAl0JAhQxgyZEi+rz0PiD136NChV67vt99+47fffiuElr2+/0YoU7xTSqWSPn36oK+v/8aBMzc3N2bMmFE0DXtLCoWCLVu2vFGdxo0bM2LEiCJpz79Vnz59mDJlSnE3462MGjWK4cOHF3czhBBCCCGEEEKUAJJ59g7079+fpUuXAqCjo4Orqyvvv/8+EydOxNjYuJhb9+amTp2Kh4cHX3/99RvXDQwM/Ff2Wbyey5cvs2PHDmbPnq1a1rhxYw4fPszUqVP55ptv1Mq3adOGXbt2MWHCBPr374+7u3uB658wYQLfffcdAEuXLmXWrFlcu3YNLS0tqlSpwldffUW7du0ASExMxNLSkhUrVtCtWzfVOrp168a6deu4c+cOZcqUUS0vU6YM3bp1Y8qUKXz11VeUKVOGL7744pVtKgy1S/vSyKMKpvpGPEmMZtu144TEhGksr62lRfOyNajiVA5TfSPiUhM5eOccZx/eUJUx0NHD36sWfg4eGOrqE5OSwPbrx7kZGapxvYVp15btbF2zkZioaFzdS/PhZ4MoX9Ev37LRUdEsnb2A4Ft3CHv4mDbvd2DgsE80rvvYgcP8OuknatarzTeTvy2qLuSrk29DelRpjpWROSHRYfxxfD2Xw4I1ln/PryHvV2iMg6kVTxJiWH5+N3tunlYr06ViEzr6NsTe1JK41CQOBZ9n/qmtpGdlFnV3VAw6tEavUT0URoZk3b1P8sp1ZD8OL7COfvPG6DWpj5aVJcrEJNLPXiR149+QmdNu/TYt0K1aCW1He5TpGWQF3yNl/Vayn0QUeX+aeFajtVdtLAxNeBQXyaoL+7j99EG+ZQfWbEd990p5lj+Ki+R/u+cDoK3Qoq1PXeq5V8TS0JSwhCjWXzrI1fC7RdqPf6KSoyc9q7TE264UNsYWfLNzDkfvXSruZgE5F9/mL17M5r//JiEhAd/y5fl65EjKvGI/e+DQIeb+9RcPHz/GxcmJIYMG0aRhQ9Xr8xYtYsHixWp1rK2s2LN1q+r5wcOH2bR1K0G3bhEXF8fKRYvwKlu2cDsInNt3nNM7A0iMjcfW2YHmvTvh6u3xynoPb91jxQ+zsHVxYOCUUarlNwMvc+Lv/cQ8eUp2VjaW9jbUbNOYCvWrF3rbNalbugKNPatgqm/Mk4Rotl47yr3oxxrLa2tp0aJcTao5e2Gqb0xsaiIHbgcS+CBIVaaBeyXquFXA0tCUpPQULofdYWfQSTKzs95FlwC4dugMl/ecIDkuAUsnO+p0a4Vj2dL5ln188x7bpy/Ns7zrxKFYONrmWX7nzBUO/rWR0pW88B/ao9DbrklTz2q08a6DuaEpj+MiWXlhD7ci89/3fVSrAw007PvG7poL5Oz72pWvR333ilgYmhEeH8W6Swe4Eq75uFfY/L1q0aF8fSyNTHkQG8GSwB0ERdzXWL6BeyU6+jbA0cya5PQ0Ljy+xbJzu0hMS1GVMdI1oGeVFtQq5YuxvgERCTEsPbeLC49uvYsu0dqrNp38Gub0KeYJC89s53pEiMbyDT0q855fI5zMrElKT+XCo1ssObuThLRkVZn25evRyqs2NsYWJKQlcSLkKsvP7ybjHZ1LdChfn66VmmFtZEZITDizT2zkSgHHyI6+Dejo2wAHUysiEmNYeX4v+24Hql73L1eTr5r0zlOv1V8j31mfSgItxb//bpv/JRI8e0datWrF4sWLycjI4OjRo3z00UckJSUxZ86c4m7aGxs7duw/rmtrm/cEQ/x3/Pnnn3Tp0gVTU1O15a6urixevFgtePb48WMOHjyouiOKq6srYWG5AaNp06axe/du9u/fr1pmYmIC5GSG/fnnn/zwww906tSJjIwMVqxYQceOHZk5cyafffYZJiYmVK9enYCAALXg2eHDh3F1dSUgIEAVPHv48CF3796lSZMmANjZ2dGyZUvmzp3LTz/9VMifkrqKjp60L1+fLVePcD8mnFqlyvNhzXb8eng1samJ+dbpVcUfU31DNlwOICo5DmM9Q7S1chOJtRVafFSrA4npKaw4v4e41EQsDExIy8wo0r48d+zgYRb/OZ+PRwzBp0J59vy9ix+++paZS+dia2+Xp3xmegZmFuZ80Ls729dvLnDdEeFPWDLnL8pX9C2q5mvU1LMaw+p35tcja7gafpcO5evzc7uh9F09iYjEmDzlO/o2YFDtjvxyaBVBESH42LnxVeNeJKQmc+L+FQBalK3BoNqd+ClgOVfD7+JqYc+Ypn0A+PP4xnfSL/3WzdFv2YTkRSvJehKBQTt/TL78jPhxkyA1Ld86urWqY9C5A8mLV5J15x5aDnYYfZhzkpu6dhMAOuU8SQ84Sua9+6CljeH77TD5cijx/5sM6elF1p+arj70rNyC5ed3czvyAY09qzKyYXfG7Z5HdHJ8nvKrLuxj/eUA1XNthRbf+3+k9kP//QqNqFO6AkvO7iAsPgo/Bw+G1evM5ANLCY19UmR9+ScMdfW5E/WQnTdOMKX14OJujpqlq1axau1aJowdSylXVxYuXcrQL75g46pVGBsZ5Vvn8tWrjP3uOwYPHEiThg0JOHKEb779loWzZuHnm7sf8HB3Z/YLwzde3CcCpKSkUKlCBZo3acIPP/9cJP27fuoC+1dswb//B7iUc+fCwROs/WU+H//0NeY2mjP1U5NT2DZ3FW6+ZUmKS1B7zcDYiLodmmPtZI+2jjZ3Llxnx/w1GJuZ4FHRu0j68aJKTmXp4NeATVcOERIdRu3SfnxUqz2/HFpJbEr+x6g+1Vpjqm/EuksHeZoUi4m+kdoPwCrO5WjjU5d1lw4QEh2GrYkF3So3B+Dva8eKvE8AwYFXObl2N/V7tsXesxRBR86y6/cVdP1uKCbWFhrrdZ30GXoG+qrnBqZ5LwgnRMVyesNeHMqWKoqma1TTtTy9qviz7NxObj19SJMyVfmyYU/G7JqT775v5fk9rL90QPVcS6HFD60GcebBddWyDyo2oW5pPxYF7iAs/ikVHMswvH4XJu1fQmhswRdYCkNdtwr0r96Gv05v40bkfVqUrcHYZv344u+ZPE2Ky1Pe2640n9XrzNKzOzn78AZWRmYMqtWRT+u8zy+HVgKgo6XNty0GEJeaxLTDq4hKjsfG2JyUjPyPd4WtnltFPqzZjnmntnIjIgR/r1qMbzGAYVt+zbdPPnal+bx+VxYFbifwQRDWRmYMrvMeQ+t+wI8By4Gc4Fqfaq3489gGbkSG4mRmw/D6XQBYFLi9yPvUuEwVhtR9n9+Predq+F3ala/H1Daf8uG6KfmeH7UvX5+BNdvz65HV3IwIxduuNCMbdicxPYWT96+qyiWmpdB/7Q9qdf8/Bc5EySPDNt8RfX19HBwccHV1pWfPnvTq1Us1RFCpVPLzzz/j4eGBoaEhlSpVYsOGDaq6MTEx9OrVC1tbWwwNDSlbtiyLX7jCeuXKFZo2bYqhoSHW1tYMGjSIxMT8T2ggZwyxQqFgz549VKlSBUNDQ5o2bUpERAS7du3Cx8cHMzMzevToQXJy7hWN3bt3U79+fSwsLLC2tqZdu3YEB+deeVq2bBkmJibcvn1btWzYsGGUK1eOpKQkIO+wTYVCwbx582jXrh1GRkb4+Phw8uRJ7ty5Q+PGjTE2NqZOnTpq7wMwZ84cypQpg56eHl5eXixfvrzAzz8wMJAWLVpgY2ODubk5jRo14vz58wXWeVlSUhJ9+/bFxMQER0dHpk+fnqdMeno6X331Fc7OzhgbG1OrVi21Mdv379+nffv2WFpaYmxsjK+vLzt37gRyv5cdO3ZQqVIlDAwMqFWrFleuXFF7jxMnTtCwYUMMDQ1xdXVl+PDhqs8XciZcbNu2LYaGhri7u7Nq1Sq1zz0kJASFQsHFixdVdWJjY1EoFGptvX79Om3atMHExAR7e3v69OnD06dPNX4+2dnZrF+/ng4dOuR5rV27dkRFRXH8+HHVsiVLltCyZUvs7HKCKdra2jg4OKgeJiYm6Ojo5Fl26tQppk+fzi+//MKoUaPw9PTEx8eHyZMnM2LECEaOHMmDBzlXWZs0aaLWp6CgIFJSUhgyZIja8oCAAHR1dalXr55qWYcOHVi9erXG/haWBu6VCHwQROCDICISY9h2/ThxqYnULp1/llY5W1c8rJ1YFLiDO1EPiUlJ4GFcBPdjck9iq7v6YKSrz7Kzu7gfE05sSiIhMeGEJUQVeX8Atq3fTLM2LWnRrhUupUsxcNgnWNvZsmfrjnzL2znaM3DYYJr4N8OogMzUrKwsZvzwC90H9Ma+CG9DrUnXSk3ZEXSCHUEnuB8Tzh/HNxCZGEsnv4b5lvf3qsXf145x8M45wuKjOHjnHDuCTtCzagtVGV8Hd66GB7P/9lnCE6IJfBDEgdtn8bLNP/uhKOg3b0zqjr1knL9E9qMwkheuQKGni14tzZktOmXcybxzl4zT58iOiibz2g3ST59Dxy33x2LSjDmkHz9N9uNwsh8+InnRSrSsrdB2cy3S/rT0qsWRexc5cvciYQlRrL6wj+iUeJqWqZpv+ZSMNOJTk1QPNytHjPQMOfZCtlYdtwpsDzrO5bBgIpNiCQg+z9Xwu7TyqlWkffknToVeY8Hpvzl892JxN0WNUqlk9bp1DOjbl6aNGuHp4cHEceNITUtj90u3r3/R6vXrqVW9OgP69MGtdGkG9OlDzWrVWLV+vVo5HW1tbKytVY+Xp5Vo26oVHw8YQM3qRZexdWbXYSo1rkXlJrWxcbanRZ/3MLO24MKB4wXW271oPeXrVMXZM+//fenynnjVqIiNsz2W9jbUaNUQO1dHHty8V1TdUNPIozJnQq9zJvQ6EYkx/H3tKLEpidQpXSHf8l62pShj7cxfp//m9tMHxKQk8CD2idoxys3SkZDoMC48ukVMSgK3Ih9w8dFtXMzt30mfAC7vO4lX/ap4N6iGpaMtdbu1xsTSnOuHzxZYz9DUGCNzU9VD66UgbXZ2Ngf/2ki1Dk0wKyBgWhRaedfmyN0LHL57kbD4p6y6sJfo5Hiaeea/zadkpBGXmqR6uFs5YaRnyNG7ufu+um4V2Hb9OJfD7hCZFMvBO+e4En6X1t6130mf2vvU4+Cdcxy4c5ZHcZEsObuTqKQ4WpbLf99bzsaVyKQYdt44SURiDDci7rPv9hnKWDupyjT1rIaJviE/B6zgZmQoT5NiuRFxX20bLUodfeuz//ZZ9t8O5GFcJAvPbOdpUhytvPL/TMvZliIyMYYdQSeISIwhKOI+e2+ewdPGWVXGy7YUN57c58i9S0QkxnDx8W2O3r2kVqYoda7QhF03TrHzxklCY58w+8QmIhJjaF++fr7lW5Stwfag4xwKvkBYQhQBwefZdfMU3So1e6mkkpiUBLWHEMVJgmfFxNDQkIyMnCyQ//3vfyxevJg5c+Zw7do1vvjiC3r37s3hw4cBGD9+PNevX2fXrl0EBQUxZ84cbGxsAEhOTqZVq1ZYWloSGBjI+vXr2b9/P5999tkr2/Ddd9/x559/cuLECR48eEDXrl2ZMWMGq1atYseOHezbt48//vhDVT4hIYEvvviCwMBA9u/fj1Kp5L333iM7OxuAvn370qZNG3r16kVmZia7d+9m3rx5rFy5ssChmpMmTaJv375cvHgRb29vevbsySeffMKYMWM4ezbnJObF/mzevJnPP/+cL7/8kqtXr/LJJ58wYMAAAgICNL0FCQkJ9OvXj6NHj3Lq1CnKli1LmzZtSEh4/Z3w6NGjCQgIYPPmzezdu5dDhw5x7tw5tTIDBgzg+PHjrFmzhsuXL9OlSxdatWqlCigOHTqUtLQ0jhw5wpUrV/jpp59U2VQvvs+0adMIDAzEzs6ODh06qLaVK1eu4O/vz/vvv8/ly5dZu3Ytx44dU/t8+vbty+PHjzl06BAbN25k/vz5RES82TCpsLAwGjVqROXKlTl79iy7d+/myZMndO3aVWOdy5cvExsbS/V8fpjo6enRq1cvtaDvkiVL+PDDD9+oXZBz62ITExM++STvsL4vv/ySjIwMNm7Mydhp0qQJN2/eVGW0BQQE0KBBA5o2bZoneFarVi2MXsh8qFmzJg8ePOD+fc1DA96WtkILZ3Nbbr80pOJW5ANKW+b/I6K8vTsP4yJo5FGFsc36MqpRT9r61EVHS/uFMm7cj31CJ78G/K95f75o2I0mZaqioOhTvzMyMgi+eYdKNdQDFZVrVOHGtSANtV7P+mWrMbMwp3lb/7dazz+ho6VNOdtSatlIAIEPgvCzz39Ilq6WDulZ6tl+aVkZ+Ni5qbJiLocFU862FD52OT+aHc2sqV3aj1MvXHktSlo21mhZmJN5LXfIL5mZZN68g04ZzUPpMu8Eo1PaFW330qr16FYoT8blaxrrKIwMAFAmJWss87a0tbRws3TkWrh6YOFa+F3K2Li81joaulfm+pN7RL2QqaGrpZ3nand6ViZlbYs2EPhf8igsjKjoaGrXqKFapqenR9XKlbl8VfP2fvnqVWq9UAegds2aeeqEPnxIq06d6NC1K2MmTODhY83DCotCVmYm4fce4u5XTm25u58XD2+HaKx3+fAZYp5E0eD9lq98D6VSScjVW0SHR1LqNYaCvq2cY5Qdt14a7n8rMhQ3q/wvYPg6uPMgNoImZaoxvvkAvm7Sm3bl66kdo+5FP8bFwg5Xi5zjnJWRGd52pQkqYNhaYcrKzORp6GNcypdRW+5SvgxPgvMf4vjcpknzWD5qGtt/XcrjG3kDmOe3H8bQ1Bjv+vkH64vK833fy0PJr4YH4/m6+z6Pylx/cpeo5NzsJ10tbTKy1fd9GVkZ72Tfp6OljYe1E5ce31FbfinsDl62+Wf13YwMxdrInCrOOf+H5gbG1C7lx/mHucMxq7t4cyvyAR/V6sBfXcbwa/vhvO/X6J0Mj9PR0qaMtTMXH99WW37x8W287fK/aHYj4j7WxuZUc/YCwNzAhDpufmpTdQRFhFDGxpmyz75rexMrqrp4qZUpKjnnR6553uvcwxv42ud/HqGrrUP6S6Mh0jIz8LYrrZY1bKirz6qe37Gm1/dMbjUIT+vX25b/SxQKRYl8/H8lwzaLwZkzZ1i1ahXNmjUjKSmJX3/9lYMHD1KnTh0APDw8OHbsGPPmzaNRo0aEhoZSpUoVVVDCzc1Nta6VK1eSkpLCsmXLVAGqP//8k/bt2/PTTz9hb6/5Kt4PP/ygyrQZOHAgY8aMITg4GA+PnBOyzp07ExAQoJrbrEuXLmr1Fy1ahIODA9evX8fPLydLZt68eVSsWJHhw4ezadMmJkyYQI2XTnpfNmDAAFVQ5uuvv6ZOnTqMHz8ef/+cH8iff/45AwYMUJWfNm0a/fv3V92tY+TIkZw6dYpp06apht29rGnTpmrP582bh6WlJYcPH1bNkVWQxMREFi5cyLJly2jRIidrZOnSpbi45O7Eg4ODWb16NQ8fPsTJKecK16hRo9i9ezeLFy9mypQphIaG8sEHH1ChQs4V2+ef9YsmTJiQ5z02b95M165d+eWXX+jZs6fqJgVly5bl999/p1GjRsyZM4eQkBD2799PYGCganv566+/KPuG87rMmTOHqlWrqk38v2jRIlxdXbl16xblypXLUyckJARtbW1VJtnLBg4cSP369Zk5cybnzp0jLi6Otm3bquYwe123bt1SZR2+zMnJCXNzc27dyjlJqlevHrq6uhw6dIgePXpw6NAhGjVqRNWqVYmLi+P27duULVuWQ4cO0bu3+rwKzs7Oqn49v43yi9LS0khLU0/x19fXz1OuIEZ6BmhraZGYnqK2PDEtGVP9/E9MrQzNcLN0JDMri2Vnd2OsZ0Anv4YY6uqz4dnQMysjM8oYmnLx8W0Wn9mBjbE5Hf0aoqXQ4sCdgq+qv62EuHiys7OxsLRQW25uaUlsdN7U/dcVdOUa+3fs4de//nzLFv4z5gYm6Ghp57nqGZ0cj5WrWb51zjy4Tjufehy9d4lbkQ/wsi1FG+866GrrYGFgQlRyPAfvnMPC0JQ/3/sSBQp0tLXZfPUIKy/sfRfdQmGe0/bsePUhPdnxCWhZW2msl3HmPCkmJph8MwJQoNDRJi3gKGm7NGcQGXZ7n8xbwWQ/0jyf39sy1TNCW0uL+JeGPMelJuFnYKKhVi5zAxMqOJZh3qktasuvht/F36sWtyJDiUiMwcfenSrO5WQukjcQFZWT+Wptpb5dWVtaEhauOeMjKjo6bx0rK6Kio1XP/cqXZ+K4cZR2dSUqJoaFS5cy8NNPWbtsGRbm5oXYC82SE5JQZmdjbK4+bYGxuSlJsflfqIsOjyRg7XZ6j/8MLW3tfMtAzrDOP4dNJCszE4WWFv79P8C9glehtj8/z6cEeHFeJYCEtBRM9fMfZmtlZI67lSOZ2ZksObsTYz0D3q/QGCNdA9Y9GyJ48fFtjPUMGVrvAxSAtpY2J0IuE3DnXL7rLGypickos5UYmqlf2DU0MyY5Pv+RG0bmpjTo0x7bUo5kZWZx+9Qltv+2lPZf9sexnBsA4XdCuXnsPB+Mf/fDpZ/v++JSk9SWx6UlYf6a+76Kjp7MPak+dcKV8Lu08qrNzYhQIhKjKW/vThVnr3ey7zPVN0JbS5u4l/fnKYlYOOXfp5uRocw8uo6RDbujq62DjpY2gQ+CWHhmm6qMvakVfiYWHL17iSkHluJoZs1HtTqgpaWlOo8q6j7FvnQuEZeSgKVh3nPr53369cgaRjXuqerT6dDrLDj1t6rMsXuXMdc3YUrrwSgUCnS0tNl14ySbrhwu0v5AToBSO5/zo5iUBKyMTPOtc/ZhEG2863A85Aq3nz6gnI0rrb1qoautg7mBCdHJ8YTGRvDzoZXcjXqs2o/M7DiCQRt+4lF8ZJH3S4j8SPDsHdm+fTsmJiZkZmaSkZFBx44d+eOPP7h+/TqpqamqYMlz6enpVKlSBYBPP/2UDz74gPPnz9OyZUs6depE3bp1gZxhaJUqVVLL7KpXrx7Z2dncvHmzwOBZxYoVVX/b29tjZGSkFsyxt7fnzJkzquehoaFMmjSJ06dP8/TpU1XGWWhoqCp4ZmlpycKFC/H396du3bp5Joh/nXYAquDS82WpqanEx8djZmZGUFAQgwYNUltHvXr1mDlzpsb3iIiI4Ntvv+XgwYM8efKErKwskpOTCQ19vcnTg4ODSU9PVwU4AaysrPDyyj15PX/+PEqlMk9gKS0tDWtrawCGDx/Op59+yt69e2nevDkffPCBWv+BfN8jKCgn2+XcuXPcuXOHlStXqsoolUqys7O5d+8et27dQkdHh6pVc694enp6vvFdUc+dO0dAQECerLjnn0V+wbOUlBT09fU1Xo2oWLEiZcuWZcOGDQQEBNCnTx90dXXfqF2vQ6lUqtpgZGREzZo1VcGzw4cPM3r0aHR0dKhXrx6HDh1CX1+fe/fu5QmwGhoaAqgNXX7R1KlTmThxotqyCRMmQI38g4evarMahQJl/kVVfVtzcT+pmTnzRm0POkHvqv5suXqEzOwsFChISk9h4+VDKFHyKD4SMwNjGnpULvLg2cvtVFEq/3HmW0pyMjMnT2PI6OGYWbybH8KavPxdKRQKlBq+raVnd2FlZMbc978CBcQkJ7D7xil6Vm1JljJn/1nZqSx9qvnz65E1BD0JwdncluH1uxBVrTXLzu0q9Pbr1qqOUd/uqueJM+c+69hLBRUKeHm7fIGOlycG7fxJWbGOzLshaNvZYtjjA7Lb+ZO2fU+e8oa9uqDt4kTCjzMKoRevlqc7KPJZmld994okZ6Ry/tFNteWrLuyjf/U2TGk9GCUQkRjDsXuX8r3RgMixa+9epkybpno+49n8kS/vBV7cZ2v00usv16lXO3e4kydQ0deXTt27s33XLnp378479XJbUeZZBjnD+7bOWkGDD1ph7VjwcUPfQJ8PJ39JRlo6Idduc2DlVixsrSld3rNQm/66Cvq6nn8vq87vVR2j/r52jL7VW7PpyiEys7MoY+1Ms7LV2XTlEKExT1QXeJqnJrP/hQnDi9rLx6QCdnlYONhg4WCjem5fxpXEmHgu7T2BYzk30lPTCFi4iQZ9OuQ7D9q78vLxSIHmY9SLGrhXIjkjlXOP1LOHVp7fw4Aa7fixzaeqfd/Rexdp4F65EFtdsPzOkTRxMbflw5rtWH/5IJce3cbCyJS+1VozqHZH5jwLDCoUCuJSk5h3agvZSiV3ox9jaWhGR98GRR4806iAcwkXczs+rtWBtRcPcOHxLSwNTelfvQ2f1nmPP0/kjLTwc/Cgc6UmzDu1lduRoTiY2fBRzfbEVExg3eWD76gTeY+8mv6nlp/bg6WhGX92GolCkRNo23PrDN0rN1f9vgyKCFHLRr0afo+5H4ymk19DZp14N3PCCvEyCZ69I02aNGHOnDno6uri5OSkChrcu5eT8r1jxw5Vpstzz7NYWrduzf3799mxYwf79++nWbNmDB06lGnTphV40vmqk9EXAxcKhSJPIEOhUKh2YJAzb5W7uzsLFizAycmJ7Oxs3NzcSH9p4ucjR46gra3N48ePSUpKwsws/6wMTe3QtOzFtrzct1edfPfv35/IyEhmzJhB6dKl0dfXp06dOnnarkmeA3c+srOz0dbW5ty5c2i/dAX5eRDqo48+wt/fnx07drB3716mTp3K9OnTGTZsWIHrfvEz+OSTTxg+fHieMqVKleLmzZt5lr/c/ufzc7y47Pmw0Bf78jx78WWOGuaasrGxITk5mfT09HyzwgA+/PBDZs2axfXr19UCs2+iXLlyHDt2LN/3efz4MfHx8WqZdk2aNGHt2rVcu3aNlJQUVWCxUaNGBAQEoKenh4GBAbVrq881Ef0sq0HTTS7GjBnDyJEj1Zbp6+vz7f6Fr92X5PRUsrKz81zBN9EzJDEt/6BdQlrO3CTPf5QARCbGoKVQYG5gQlRyHAlpSWQps9VOxCISYzAzMEZboaUK3BQFU3MztLS0iHkpyywuNhZzK4t/tM7wR2FEhD9hypjcYOXz7bdz03b8uXwBDs5FOwdaXGoimdlZWBmp788sDU2JSc4/qyQ9K4OfAlYw7fAqrAzNiEqOo335+iSlpxCXkpMdMLBme/bePMOOoBMA3I1+jIGuPqMb9WT5ud2v9aPnTWRcukLCxJDcBTo5pwFa5mZkxeVmn2mZmqCM1zys3aBTO9JPniH96EmAnGwyfT2M+vYgbcdetV+hhj07o1u5Aok/zUQZE1uo/XlZQnoyWdnZeTItzAyM8mRk5KeBeyVOhFwhK1v9fyQhLZk/jm9AR0sbE30jYlMS6FKxCU+TYguz+f8pDevXx698edXz9GfHmafR0aqpJwCiY2OxstKc5WhtZaXKWlPViYnBqoCLQoaGhpTx8ODBw4f/tPlvzMjUGIWWFkmx6lmcyXGJGJvnvRCVnpJG+L0HPLn/iL1Lc26yoVQqQankx76j6P71J7j55hzLFFpaWDnkHIvsSzsT9egJJ7cdKPLgWVJ6isZj1MvZaM8lpCYRl5qodoyKSIxGS6HAwtCEp0lx+HvV5vzDm5wJzZmYPjwhCj1tXTpXasKB24GFvNfLy8DECIWWIk+WWWpCEkZmr87Ses7O3YU7py8DEB8ZTUJULHtmrVK9/vw4tWDwRLp9PwwzO83b+dt6vu+zeHnfp29E/Ovs+zwqcSLkcr77vt+PrUP32b4vJiWBrpWavZN9X0JaMlnZWVgYqmcvmRsYa7xZxXt+jbgZcV9144n7sU9YkPk3P7QaxOqL+4lNSSAmOYEsZRbZLxynHsVFYmlkio6WdpHe8VVzn0w09qlzxcYERYSw5dqRnD7FhDPv1BamtvmUlRf2EpOSQM8qLTgUfF4VfL4f+wQDHV2G1H2f9ZcDCv1c4kVxqUlkZWdhafjy+ZGJxjnK0rMymHZ4Fb8dXYOloRnRyXG09alHUnqqxmO1EiU3I0NxMf//dfM5rXcw5Yp4fTLn2TtibGyMp6cnpUuXVgsMlS9fHn19fUJDQ/H09FR7uLrmDtuytbWlf//+rFixghkzZjB//nxV/YsXL6pNGH/8+HG0tLTyzQ76p6Kiorhy5QqjR4+mVq1auLq6EhISkqfciRMn+Pnnn9m2bRtmZmavDAr9Ez4+Phw7pn43phMnTuDj46OxztGjRxk+fDht2rTB19cXfX39Aie/f5mnpye6urqcOnVKtSwmJkY1PBCgSpUqZGVlERERkee7dHBwUJVzdXVl8ODBbNq0iS+//JIFCxaovVd+7+HtnXNHrapVq3Lt2rU86/f09ERPTw9vb28yMzO5cOGCah137twhNjZW9fx5MOjFO1u+ePOAF9/Hzc0tz/tomr+ucuXKQM6NBjTp2bMnV65cwc/Pj/Iv/Kh6E927dycxMZF58+bleW3atGno6urywQcfqJY1adKE27dvs2rVKurXr68KbDZq1IhDhw5x6NAh6tSpg4GBgdq6rl69iq6uLr6++d/VUV9fHzMzM7XHmw7bzFJm8yguMs/cIWVtXLgfk/8d/EKiwzEzMEJPO/fah42xOdnKbNXQhpCYcKyNzNUOtzbGFsSnJhVp4AxyAt9lvDy5dPaC2vJLZy/g7av5f7QgzqVc+W3RbKb/9afqUaNuLfyqVGT6X39ibWfz6pW8pczsLG5FhlLdVb0P1V28ufpE863YAbKys4lMiiVbqaSZZ3VOhFxVncga6OjlCc5nZ2ejUBSc3fGPpaaRHfE09/E4nOzYOHTKvzAETFsbHS9PMoMLmJBcTzdvmka2Mk9akWHPLuhWrUTiL3+Q/bTob1iRlZ1NSEwYvg7q86yUt3cn+GnBgRQv21LYm1px9IUbBbwsMzuL2JQEtBVaVHPx5sKjWxrL/n9nbGSEq4uL6uHh5oa1lRWnA3MzizIyMjh/8SIV/fK/QQpART8/Tp9Vz5g9HRhYYJ309HRC7t/H5lnW97ugraODg7sL966qbxP3rt7CpaxbnvL6hvp8NHU0Ayd/qXpUaVoHK0c7Bk7+Eqcymu/UqERJVkbR33Eu5xgVQbmXjlHlbEsREp3/8Ot70WGYGRijp517rmtrbEG2MlsVHNDT1snzYz5bmf0sE6zofyhq6+hgU8qJR9fVb0b1MCgY+zKvP5dX1IMwjJ4FRi0cbOg84VM+GD9Y9Shd0QsnL3c+GD8YY6uCLyS/rdx9n/p0IL4OHtx5xb7P2640DqbWBd5kJCM7i5hn+77qLt55snOLQmZ2FnejHlPRST1IXNHRk5uR+Y8c0dfRJfvlbetZQPD5lnUz8j4OptZqmYeOZtZEJ8cXaeAMcvoUHPWIyi/1qbKTJzci8p9jV187n/OEl57ra+tqKKMomnOJF+ScHz2gmov6UPJqLt5ce1LwjU2ysrN5+uz8qEmZqpy6f7XAQF8Za2e1+UiFeNck86yYmZqaMmrUKL744guys7OpX78+8fHxnDhxAhMTE/r168e3335LtWrV8PX1JS0tje3bt6sCRb169WLChAn069eP7777jsjISIYNG0afPn0KHLL5piwsLLCysmLu3Lk4ODhw//591VxozyUkJNCnTx+GDRtG69atKVWqFNWrV6ddu3Z55kt7G6NHj6Zr165UrVqVZs2asW3bNjZt2sT+/fs11vH09GT58uVUr16d+Ph4Ro8erRqW9zpMTEwYOHAgo0ePxtraGnt7e8aNG6d2l6Vy5crRq1cv+vbty/Tp06lSpQpPnz7l4MGDVKhQgTZt2jBixAhat25NuXLliImJ4eDBg3mCft9//73ae9jY2NCpUycgZ0642rVrM3ToUD7++GOMjY0JCgpS3dzB29ub5s2bM2jQIFWm45dffomhoaEqe83Q0JDatWvz448/4ubmxtOnT/nf//6n1oahQ4eyYMECevTowejRo7GxseHOnTusWbOGBQsW5Mmsg5ygXNWqVTl27JgqkPYyS0tLwsLC3mq4Zp06dfj8888ZPXo06enpdOrUiYyMDFasWMHMmTOZMWOGWuC5bt266Ovr88cffzBu3DjV8ho1ahAXF8fGjRsZPXp0nvc5evQoDRo0eKPt5J84eu8S3So342FsBKGxT6jpWh4LQ1NOheZMht3KqzZmBsYvzBVzi2Zlq9OlUlP23QrEWM+ANt51Ofvghuqk79T9a9Rzq0B73/qcCLmCjbEFTTyrcjzkisZ2FKb2Xd7j9ynT8fQqi5evN3u37ebpk0hadmgDwIr5i4l6GsXnY0ep6ty7nfMjJjUlhfi4OO7dDkZHVxdXt1Lo6etR2sNN7T2Mn2Vzvry8KK27dJBxzfpxM+I+157co335etiZWrL16lEABtXuiI2xBVMOLAVyhlr42LsR9OQepvpGdK3UDHdrR6YcXKpa54n7V+haqSm3nj5QDdscWKsdx0Ou5Dk5Lipp+w9h0LYl2U8iyYqIxKBNS5TpGaSfzg1YGA3sQ3ZMLKmbcuaNybx0Ff2WTcgKfUjW3fto2dlg0KktGRevqoJqhr27olerGol/LECZmorCLOdKuzIlFV7Kdi1Me2+e5uNaHQmJDuPO04c0KlMFayNzAoJz7rDcuUJjLIxM+ev0NrV6DT0qExz1iEdxeedS8bBywtLQlNDYJ1gYmtLJrwEKhYKdN04WWT/+KUNdfbUr805mNpS1cSE+NYknif983sG3pVAo6NG1K4tXrKCUqyuuLi4sXr4cA319Wr0wdcW3P/yAnY0Nnw3OmTeqe+fODBo2jCUrV9K4fn0OHTvG6bNnWThrlqrOjFmzaFC3Lg729sTExLBw2TKSkpJo17q1qkxcfDzhT54Q+ezC2f1n0zZYW1kVWpCtZutGbJuzCkcPV5w93bgYcJL4qBiqNMuZauPQ2u0kxMTTfnBPFFpa2LqqZ8wam5mgo6ujtvzE3/txdHfFwt6G7MxMgi8GcfXYWfz7dy6UNr/K4bsX6VGlBQ9ic+7qXLu0LxaGJqqbmrT2roO5gQlrLubMd3jh0S1alKtBt8rN2HvzNMZ6hrQrX48zoUGqY9T1J/do6FGFR3GRhMY8wdrYnFbetbkWfq9IM2ReVLFFHQIWbcKmtBP2ZVwJOnKOxOg4fBrlzBd7ZtN+kmLjafLh+wBc2X8SU2sLLJ3syMrK4s6py9w7H0SLwTlz9uro6mLlrH7erf/sJikvLy8qu2+c4pPanbgX/Zg7UY9o8mzfd/DZXHJdKjbF0tCU+ae3qtVr6FGZO08fat73GZkRGhOOpZEpnfwa5ez7nmVLF7VtQccZVq8zd6MecTMylBZla2BjbM7eWzmjF3pWaYm1kRl/HN8AwNmHNxhc5z1alqvJxce3sTQ0ZUCNttyOfKDKgtpz8wytveswoGZbdgWdxNHMhvcrNH5n+/Ot144xokFX7jx9xM3I+7QsVwsbYwv23DwNQO+q/lgbmTPz2DoAAh8GMaTu+7TyqsWFR7exNDJlYM123IoMVfUp8OENOpSvz93ox9yKfICjqTU9q7Qg8MH1d3IuseFKAN806cOtyAdcf3KPtj51sTOxZNv1nGSHgTXbY2Nszk8BK4Cc4bXedqUJenIfE31DulRsgruVo+p1gD7VWhH0JIRHcZEY6Rnwnl8jPK1d+P3Y+nzbIMS7IMGzEmDSpEnY2dkxdepU7t69i4WFBVWrVmXs2LFAzt2oxowZQ0hICIaGhjRo0IA1a9YAOXM67dmzh88//5waNWpgZGTEBx98wK+//lqobdTW1mbt2rUMHz4cPz8/vLy8+P3332ncuLGqzOeff46xsbFqknlfX19++uknBg8eTN26dfMMS/2nOnXqxMyZM/nll18YPnw47u7uLF68WK0tL1u0aBGDBg2iSpUqlCpViilTpjBq1CiN5fPzyy+/kJiYSIcOHTA1NeXLL78kLi5OrczixYv54Ycf+PLLL3n06BHW1tbUqVOHNm1yggZZWVkMHTqUhw8fYmZmRqtWrfjtt9/U1vHjjz/y+eefc/v2bSpVqsTff/+tGp5YsWJFDh8+zLhx42jQoAFKpZIyZcrQrVs3Vf1ly5YxcOBAGjZsiIODA1OnTuXatWtqmVWLFi3iww8/pHr16nh5efHzzz/TsmXunb6cnJw4fvw4X3/9Nf7+/qSlpVG6dGlatWqV57bsLxo0aBBLliwp8G6vFhYWr/6wX2HGjBlUrFiROXPmMH78eBQKBVWrVmXLli20b99erezzIZmHDx9W20Z0dXWpU6cOBw4cyPdGE6tXr84zp1lRuBx2ByM9fZqVrY6ZvjHhiVEsDtyuukJvqm+EhWHuMIz0rEz+Ov03HX0bMKx+Z5LT07gcdkd10gU5Qwz/Or2N9uXrMaJBN+JTkzh+7zKHgi/kef+iUL9pIxLiE1i3dBUx0dGUcndj3E8TsXPI+QERExXD0yfqJ+lffpybpRp86w5H9x/C1t6OeWuXvJM2v46Dd85hpm9Mv+ptsDY2415UGF9vn82TxJwhvtZGZtib5A4l09bSolulZpSysCczO4sLj24xZNM0whNyJzpfdnYXSqWSj2q1x9bYgtiURE6EXGHB6b/zvH9RSdu1H4WuLoa9u6IwNiLrbgiJv86C1NwbYmhZWaplmqVu34OSnOGbWpbmKBMSybh0ldRN21Vl9Js0AMD068/V3i950QrSj5+mqJx5EISxvhEdfOtjbmDCo7hIfju6RnW12tzQBGsj9bnzDHX1qebizSoNN2rQ1dbhvQqNsDOxJDUzncthd1hw6m9SMtLyLV+cvG1L8+d7uUPKh9fPuXi1M+gkk18I3BaHfj17kpaWxo/Tp5OQmIifjw9//vorxi/c6Tj8yRO1ycgrVajA5AkTmPPXX8z96y9cnJ2ZOnEifi9kBT+JiGDcxInExsVhaWGBn68vi+fOxfGFrO8jx44xcepU1fOxz25W8/GAAXzyD+78nJ/ytauQkpDM8c17SYyNx9bFka6jP8bcJme4XmJsAvFP3yyAmZGWzp4lG0mIjkVHTxdrJ3vaf9qL8rWrFEqbX+XS49sY6xrQolzNnGNUQhQLT29T/Wg3MzDGUu0YlcG8U1t5z68hnzfsRnJ6Kpce32HXC4GJ/c+GZrbyro25gQmJ6SlcD7+nVqaolanhR2pSMud3HCY5LhErJztaD+uFqbUFAMlxCSRG557jZWVmcWrDXpJiE9DR1cHSyY5Ww3pSqkLhjfJ4W2ceXMdE35COfg2xeLbv+/XIatXdM80NTbAyVs+AM9TVp7qLDyvP552rEnL2fR9UaIytiSVpmelcfnyH+Se3kPyO9n0nQq5gqm9E54pNVBcwphxYpho2amloio1x7v78UPAFDHX1ae1dm37VW5OUnsrV8LusOJfbv6jkOCbtW0z/Gm2Y3mEY0cnx7Aw6oRoWWdSOh1zGTN+IbpWb5fQpJpxJ+5cQ+axPVkZm2JpYqMofvHMOQx192njXZUCNtiSlp3I5LFhtXtR1lw6iVCrpVaUlVkbmxKcmEfggiJUX8v9eC9uh4AuY6RvTp5o/VkbmhESHMWbXXCKeXbCxNjLD7oXzIy2FFp0rNsXV3I7M7CwuPb7NsC2/qc6nIGd4+MiG3bE0MiMpPYU7Tx/yxbaZGrMO/6v+P9/ZsiRSKF9nMichRJE7dOgQTZo0ISYmplACTM89fPgQV1dX1Xx5RSk1NRUvLy/WrFmjduODf5sdO3YwevRoLl++jI7Om11j+HrH7CJqVfH4qe0QroUFv7rgv4yvYxkazh5S3M0oVEeGzCZ2YOEPlS9OFgv/YMDaycXdjEK1uNs46s1693fjK0rHh84lISKiuJtRqEzt7FgSuKO4m1Go+tdoy6htfxR3MwrdtPbDmH54dXE3o1B92agH/dZMKu5mFKql3cfTedm4Vxf8F9nQdzKdlrz65mj/Jlv6/0izeXnnVv43O/DJ78XdhH/szP1rxd2EfNUsnf+0Nv91knkmxH/MwYMHSUxMpEKFCoSFhfHVV1/h5uZGw4YNi/y9DQwMWLZs2RvNJ1cSJSUlsXjx4jcOnAkhhBBCCCGE+O+RX4ZC/MdkZGQwduxY7t69i6mpKXXr1mXlypVvNc/Ym2jUqNE7eZ+i1LVr1+JughBCCCGEEOL/MRm2WbJI8EyIEqJx48Z57pTzT/j7++Pv718ILRJCCCGEEEIIIYTmmb+FEEIIIYQQQgghhPh/TjLPhBBCCCGEEEIIIUoQLRm2WaJI5pkQQgghhBBCCCGEEBpI8EwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFECaJAhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGCyN02SxbJPBNCCCGEEEIIIYQQQgMJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoQRQybLNEkcwzIYQQQgghhBBCCCE0kOCZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiBJEhm2WLJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAwmeCSGEEEIIIYQQQgihgcx5JoQQQgghhBBCCFGCaCFznpUkknkmhBBCCCGEEEIIIYQGCqVSqSzuRgghhBBCCCGEEEKIHFcf3ynuJuTLz8mzuJtQLGTYphBCFKIV53YXdxMKVe9qrVhwamtxN6PQfVy7I/EHjxR3MwqVWdOGxLR4r7ibUags920mKPxucTejUPk4eJAQEVHczShUpnZ21Js1uLibUaiOD53LlANLi7sZhWpss34khD8p7mYUOlMH++JuQpFICLlf3E0oVKZupYn9/Jvibkahspj5I78ErCjuZhSq0U16/+f2E//mfYRCIcM2SxIZtimEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmipZBcp5JEvg0hhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIEkShkLttliSSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRgmjJsM0SRTLPhBBCCCGEEEIIIYTQQIJn4j/h0KFDKBQKYmNji7sphc7NzY0ZM2b84/ohISEoFAouXrxYaG0SQgghhBBCCCH+v5Bhm+Jf48SJEzRo0IAWLVqwe/fu4m6OEIXm7L6jnNx+kITYeGydHfDv+z6lvMu8st6Dm3dZOukP7FwdGTT1K9XyiIdhHF6/k7B7D4l7Gk3LPu9Rq3XjIuxBXhcOnCBw52GS4hKwcbKnSa8OuHi5v7Leo1shrJk6FxsXe/pN+kLttdSkFI5t3M3ts1dJTU7B3MaKxj3a4lHJp6i68UpKpZIFO7ax+dgREpKT8XVz56vuPSnj5KyxzsEL51myeycPIiPIzMrC1c6O3s1b0qZWnXfY8n9Gt35t9Nu2RLtsGbTMzYgf/AVZwSHF3aw8dm7ezpY1G4iJjsbVrTQDP/sE30p++ZaNjopm8awFBN+6TdjDx7T9oAMfDRusVubkkeNsWLGWsEePycrMxNHFmY5d36eJf7Mi64NSqWT+4sVs/vtvEhIS8C1fnq9HjqSMe8H/RwcOHWLuX3/x8PFjXJycGDJoEE0aNlS9Pm/RIhYsXqxWx9rKij1bt6qeHzx8mE1btxJ06xZxcXGsXLQIr7JlC7eDb6CSoyc9q7TE264UNsYWfLNzDkfvXSq29hTkxuFzXNt/iuS4RCwcbanZpTn2nqXyLRt+6z57ZqzMs7zTt4Mwd7BRPb9+8Aw3j5wnKSYefWNDSlf1plrHJmjrFs1pvFKpZP6SxWzeti132xvxxau3vcOHmLtwYe6299HHatseQERkJH/Mm8uJ06dJTUujtKsr47/6Gh8vLzIzM5n91wKOnzrFo7AwTIyNqVmtOsM++QRbGxsN7ypepFQqmb9iOZt37iQhMRFfb2++HvoZZdzcNNYJDglh7rJl3Lhzm7AnTxj5yWB6vv++WpnzVy6zfP16gm7f5ml0NNMmTKBx3XpF3JtcBq2ao1e3JgpDQ7LuPyB5wxaywyM0ljf5bBA6ZT3yLM+4doOk+UtU6zRo3Vzt9ez4BOLHTy7Utufn+qGzXN53kpS4BCycbKnTxR+HsvnvJx7fDGHnb8vzLO/83adYPNtP3DpxiSPL/s5Tpv8fY9D5l+0n5i1exIIlS9TqWFtZsWfzFtXzqOho/pg3l1OBgSQkJlK1UiVGf/45pVxcC7OLJYICGbZZkkjwTPxrLFq0iGHDhvHXX38RGhpKqVL5H2TEv0dGRga6urrF3Yxide3kefYs20ybD7vgUs6d8wdOsOqnuXz6yxjMbaw01ktNTmHrnBW4+5YjKT5B7bXMtHQs7WzwqVWFfSs2F3UX8rhx+iIBK7fRvG8nnMu5cSngNBunL2TA1C8xs7bUWC8tOYWd89dQurxnnj5lZWay/pcFGJmZ0OGzPphYmZMQHYuegX5Rd6dAy/buZtWBfXzbdwCl7OxZtGsHn/3+Gxu++wFjA4N865gbGzOgdRvc7B3R1dHm6JXLfL9sCZamptQpn3+Ap6RQGOiTee0G6UdOYDxyaHE3J1/HDh5m0Z/z+OSLoXj7lWfPtp1M+no8fyydh629XZ7yGekZmFuY06V3d/5en///i4mpKV16d8O5lCs6ujqcPXmGP376FQtLC6rUrFYk/Vi6ahWr1q5lwtixlHJ1ZeHSpQz94gs2rlqFsZFRvnUuX73K2O++Y/DAgTRp2JCAI0f45ttvWThrFn6+vqpyHu7uzP7tN9VzbS31gQgpKSlUqlCB5k2a8MPPPxdJ/96Eoa4+d6IesvPGCaa0HvzqCsXk3tnrBG7YR63urbDzcOHWsQvsn7WWjuMHYWJlrrFepwmfqO3L9E1zv9+7Z65ybksA9fq0w87Dmbgn0Rxfvh2Amp1bFEk/lq5exap165gwZgylXFxZuHwZQ78cycYVKwve9iZOZPCHA2nSoAEBR4/yzXcTWPjnLPzKlwcgPiGBgZ8NpXrlKsz8+WesLCx5+PgxpiYmAKSmpnLj1m0+6tuPsp6eJCQkMP3PPxg5dgzL5y8okr7+1yxdt45VmzYx4ctRlHJxZuGqVQwd8w0bFy7S+N2lpqXh4uhA84YN+HXevHzLpKSmUtbDg/Yt/flq0vdF2YU89Js1Qr9JfZJXricr8ikGLZtiMuQj4idPg7T0fOskLVoO2tqq5wpjI0y/+pyMi1fUymWFhZM466/cBdnKIunDi4LPXuPU+j3U7dEG+zIu3Dh6nt1/rqLzhE8L3E90mTgE3Rf2Ewam6t+nroE+XSYOUVtWVIEzKLr9BDw7Rk3/VfVc+4XvUqlUMmrcOHR0tJk+eQrGxsasXLeWISNHsn7pMgwNDYusz0LIsE3xr5CUlMS6dev49NNPadeuHUteuiKRn+PHj9OoUSOMjIywtLTE39+fmJgYAHbv3k39+vWxsLDA2tqadu3aERwcrKr7fKjjpk2baNKkCUZGRlSqVImTJ0++9nsolUp+/vlnPDw8MDQ0pFKlSmzYsKHANkdERNC+fXsMDQ1xd3dn5cq8V6Tj4uIYNGgQdnZ2mJmZ0bRpUy5dev0r8FlZWQwcOBB3d3cMDQ3x8vJi5syZhVJn8eLF+Pj4YGBggLe3N7Nnz1a99vwzXbduHY0bN8bAwIAVK1aQnZ3N999/j4uLC/r6+lSuXFkts/B1vouoqCh69OiBi4sLRkZGVKhQgdWrV6tenzdvHs7OzmRnZ6u1t0OHDvTr10/1fNu2bVSrVg0DAwM8PDyYOHEimZmZr/3Z/hOndh6iSuPaVGlSR5V1ZmZtydn9xwust+OvtfjWrYZLWbc8rzmVKU3zXh3xq1sVbZ13f43k7O6jVGhYg4qNa2HtZE/TXh0wtbLg4oFTBdbbu2QTPnWq4JhPlsaVI4GkJibTaXg/nMu5YW5jiUs5d+xKORVVN15JqVSy+uABBrRqQ9MqVfF0dua7fgNITU9nT+BpjfWqlfOiSeWquDs64mJrR4+mzfF0duHinTvvsPX/TPr+w6SuWEfm+ZKZ9QOwdd1mmrdpSYt2rXB1K8VHwwZjY2vL7q078i1v72jPR8MH06RVc4xMjPMtU6FKRWo3rIerWykcnZ1o37kTbh7uXL9yrUj6oFQqWb1uHQP69qVpo0Z4engwcdw4UtPS2L1vn8Z6q9evp1b16gzo0we30qUZ0KcPNatVY9X69WrldLS1sbG2Vj0sLdWD2m1bteLjAQOoWb16kfTvTZ0KvcaC039z+O7F4m5Kga4fPINn3UqUq1cZC0cbanZpgbGFGTePnC+wnqGpMYbmJqqH1gvBzIh7j7Ar44JHDV9MrC1wLu+Be/XyRN0PK5I+KJVKVq9fz4A+fWja8Nm2N2Zszra3v4Btb8N6alWrzoDevXO2vd6982x7S1etxN7WjgljxuDnUx4nR0dqVquGi3NOpq6JiQmzf/2VFk2b4laqFBV8fRk9/HOCbt4k/MmTIunvf4lSqWT1ls0M6N6DpvXr4+nmzsRRo3O+u4CDGuv5ennx+ceD8G/cBD0NFzTr1ajJkP4DaFq/flE1XyP9RvVI3RtAxuVrZIc9IXnFOhS6uuhVq6yxjjI5BWVCouqh61UWMjJIv3hZvWBWtlo5ZVJS0XYGuLr/FOXqVcG7fhUsHW2p09UfY0szgg6fLbCegakxRuYmqofWSxc9FArUXjcyNymyPhTlfgLyOUZZWKheC334kCvXr/HNyC/x9fHBrVQpvvliJCkpKew5cKCouiwEIMEz8S+xdu1avLy88PLyonfv3ixevBilUvPVoYsXL9KsWTN8fX05efIkx44do3379mRlZQE5wbiRI0cSGBjIgQMH0NLS4r333ssTXBk3bhyjRo3i4sWLlCtXjh49eqiCKa96j//9738sXryYOXPmcO3aNb744gt69+7N4cOHNba7f//+hISEcPDgQTZs2MDs2bOJiMhNS1cqlbRt25bw8HB27tzJuXPnqFq1Ks2aNSM6Ovq1Psvs7GxcXFxYt24d169f59tvv2Xs2LGsW7fureosWLCAcePGMXnyZIKCgpgyZQrjx49n6dKlauv6+uuvGT58OEFBQfj7+zNz5kymT5/OtGnTuHz5Mv7+/nTo0IHbt2+/9neRmppKtWrV2L59O1evXmXQoEH06dOH06dzAhhdunTh6dOnBAQEqNYXExPDnj176NWrFwB79uyhd+/eDB8+nOvXrzNv3jyWLFnC5MlFl76flZlJ2L0HeFT0UltepoIXD2/d01jv4qFTxEQ8pdEHrYqsbf9UVmYmT0Ie4eZXTm25m19ZHt8J0VjvypFAYiOiqNupeb6vB1+4jpNnaQ4s28zsYd+zeOx0Tm07mOd/9l169PQpUfFx1C6fm9Gjp6tL1bLluPxCML4gSqWSMzeCuP8knKply726gihQRkYGwbduU7lGVbXllWtU5cbV64XyHkqlkkvnLvDowUN8KxZNpuCjsDCioqOpXaOGapmenh5VK1fm8tWrGutdvnqVWi/UAahds2aeOqEPH9KqUyc6dO3KmAkTePj4ceF24P+hrMwsokLDcPJRHyrm5ONO5N2HBdbdNnUh676ZyZ6ZKwm7GaL2mn0ZF6JCw4kMyfmOEp7G8OhqMC5+noXa/udU2171l7a9SpUK3vauXcu77dWoyeVruXWOHD+Oj7cXX3/7LS06dqDnwIFs3ratwPYkJiWhUCgwMSm6QMB/xaPw8JzvrlpuNqyenh5VK1Tk8vXC2f+9a1rWVmiZm5F544VzwqwsMoPvoeNe+rXXo1e7BunnL0F6hvr6bW0w+34spt9+hVG/HmhZa874LwxZmVk8DQ3D5aX9hItPGZ68Yj+xefICVn71Gzt/W87jl/YTABlp6awZ+zurvpnBnllreBpaNAF2KNr9BDw7Rr3/Hh26dWXMxO/UjlEZ6TnZhvp6eqpl2tra6OjocPHKS8HR/wCFQlEiH/9fybBN8a+wcOFCevfuDUCrVq1ITEzkwIEDNG+e/w/tn3/+merVq6tlPvm+MGTlgw8+yLN+Ozs7rl+/jp9f7o+hUaNG0bZtWwAmTpyIr68vd+7cwdvbu8D3SEpK4tdff+XgwYPUqZMzj5GHhwfHjh1j3rx5NGrUKE+bb926xa5duzh16hS1atVStcvHJ3c+p4CAAK5cuUJERAT6+jmp29OmTWPLli1s2LCBQYMGveqjRFdXl4kTJ6qeu7u7c+LECdatW0fXrl3/cZ1JkyYxffp03n82T4a7u7sqCPVidteIESNUZZ63/+uvv6Z79+4A/PTTTwQEBDBjxgxmzZqlKlfQd+Hs7MyoUaNUZYcNG8bu3btZv349tWrVwsrKilatWrFq1SqaNcuZo2j9+vVYWVmpnk+ePJlvvvlG1VYPDw8mTZrEV199xYQJE/J8JmlpaaSlpakte/6dvK7khCSU2dkYm5upLTc2NyUxLiHfOlFhERxcs41+Ez5H64U09pIi5VmfXr7iaWRuSpKGPsWER3J0/S66j/tUY5/iIqMJDQrGp04V3h/5IbFPnrJ/2Rays7Ko26lohi69SlR8HABWpurfn5WZGeFRUQXWTUxJps2Yr0jPyERbS8HXPXpRy6d8gXXEqyXExZOdlY2FlXomlbmlBTHRMW+17qTEJAZ27k1GegZa2lp8MmJoniBdYYl6tv1YW6n/kLO2tCQsPFxzvejovHWsrIh64eKKX/nyTBw3jtKurkTFxLBw6VIGfvopa5ctw8Jc85AhUbC0xGSU2UoMTdWzFw3MjEmJzz+bxdDchDo9W2NdypGszEzunr7K3t9X4T+it2r+I/fqvqQmJLN7+jKUSlBmZ+PVoCoV/OsWST+iojVte1aEPXnFtvdSBqO1paXatvcoLIyNW7fSq0tXBvTuzbUbQUz7fSa6urq0a5X3YlBaWhp/zp9Hq+bNMTHOPytU5Hr+Wef9HiwIi9A8P1hJpjDNOZfITlA/f8hOSEDLUvM0EC/SLuWCtpMDyavVR39k3g8la+U6siIi0TI1zRkOOuJTEqb+hjI5uXA68JLU5/sJM/Xt2dDMmJT4xHzrGJmbUL9XW2xKO5KVmcWdU5fZOWM5bUf2xbFsTgDRwsGahv06YOVsR0ZKOlcPnmbbL0t4/3+DMLe3LvR+FOV+ws+nPBPHjqW0y7Nj1PJlDBw6hLVLlmJhbo5b6dI4Ojjw5/z5jB01CkMDA1auW0tUdDRPX3HuJcTbkuCZKPFu3rzJmTNn2LRpEwA6Ojp069aNRYsWaQyeXbx4kS5dumhcZ3BwMOPHj+fUqVM8ffpUlb0SGhqqFjyrWLGi6m9HR0cgZ2ilt7d3ge9x/fp1UlNTadFC/Ud9eno6VapUybdOUFAQOjo6VH9hmIy3tzcWL6Qqnzt3jsTERKyt1Q+EKSkpasNOX2Xu3Ln89ddf3L9/n5SUFNLT06lcufI/rhMZGcmDBw8YOHAgH3/8sapOZmYm5i/9GHuxf/Hx8Tx+/Jh69dQnna1Xr16eoagFfRdZWVn8+OOPrF27lkePHqkCW8YvnGz36tWLQYMGMXv2bPT19Vm5ciXdu3dXzaNw7tw5AgMD1TLNsrKySE1NJTk5GaOX5m+YOnWqWkARYMKECXi2r13g55ifl6/fKPNZBjkZgJtnLaNR59ZYO+adu6kkyXNVSqnM90pVdnY22+eupu57LbBysNW4PmW2EiNTE1oO+AAtLS0c3F1IjI0ncOfhdxY823XmFFNXrVA9/23IMCBnqIRaW5X5LHyJkb4BK8d+S3JaKoE3b/DbhnU429hSrZxXgfXeJb2mDTEakTu/VOLYSWReDSrGFr2JvP9Vb3ul1NDIkN/+mkVKSgqXz19k0ewF2Ds5UqFKxVdXfoVde/cyZdo01fMZP/0E5NMLDf9Hal56/eU69Wrn7qM8gYq+vnTq3p3tu3bR+9lFDPEWXneHDpjbW6v9sLXzcCEpJp5r+0+rgmfht+5zec8JanVvha2bE/GRMQSu38elnceo1Obth9Dt2reXKdOnq57P+PHZtpdnv/YPtr2X/u+ys7Mp7+XF0GcX+rzLlePuvRA2bt2aJ3iWmZnJ2O8nkp2dzddfjHzTbv2/sOvgAaa8MIXGjEk/APntN/49k47rVquMUbf3VM8T5y3RUFJBzj/Xq+nVrkHW43CyQtUzuzKDbqn+zg57QmLIfczGf4VezaqkHTr2hi1/Q/nspzXtKCwcbFQ3BgCw93AhMSaeK/tOqoJndh4u2Hm45JYp48rmKQu4diiQut3efpTCu9xP5HuM6tmD7bt307tbN3R0dPj5+0lM+vknmrZri7a2NjWrVaPus8QDIYqSBM9Eibdw4UIyMzNxds69e51SqURXV5eYmJg8c7UAr5wssn379ri6urJgwQKcnJzIzs7Gz8+P9HT1iUdfnMz++Y79eaCtoPd4XmbHjh1q7QbN2UnPh6EWdNDJzs7G0dGRQ4cO5XntxSBbQdatW8cXX3zB9OnTqVOnDqampvzyyy+qIY7/pM7z/i5YsECVNfec9kuZRMb5XD1+uc/5HXwL+i6mT5/Ob7/9xowZM6hQoQLGxsaMGDFC7fts37492dnZ7Nixgxo1anD06FF+/TV3MtLs7GwmTpyolhX3nEE+E7+PGTOGkSPVT+j19fVZfzUgT1lNjEyNUWhpkRgXr7Y8OS4BY3PTPOXTU1IJu/uA8JBH7FqyEXi23SiV/ND7C3qN+RR33+Id+mf4rE9JsepXiZPjEzEyyzvsJj0ljSf3HhJx/zEHlufc7e95n6YP+IYuoz+iVHlPjC1M0dLWVpvjw8rRjqS4BLIyM9/J3G4NK1bGzy13qEV6Zs7wj6j4eGzMLVTLYxLisX4pG+1lWlpauNrlBEC9XEsREhbGkt07S1TwLP3kGTJvvPDj4unrDQ0vTqbmZmhpaxH70jD2uJg4LCwt3mrdWlpaOLrkzLHnUbYMD+8/YOPKtYUSPGtYv77aZMnpGTnb1tPoaGxeuMtgdGwsVlaahxVZW1mpstZUdWJisCogQ8PQ0JAyHh48eFjwkCFRMH0TIxRaijxZZqkJSXmy0Qpi6+7M3TO5Q5gubDtMmZp+lKtXGQBLZzsy0zI4uWonFVvVQ6H1dkGRhvXq4+eTz7YXFY2N9YvbXsHb0csZjgDRMbFqdWysrXF/6a6P7qVLc/CI+nQWmZmZfDNhAo/Dwpjz2wzJOtOgYe06+Hl5q56rvruYGGxeuMgaHRuL1Vvu/96VjKvXSbj/IHeBTs45pJapKVkv3EhIy9QEZUL+mVpqdHXRq1qJlF2a5+FSSc8gKywcLduiu7OrwfP9RJx621MTkvNkoxXEzt2ZO2euaHxdoaXAtrQT8RGFc9x+l/uJlxkaGlLGXf0Y5ePlxaqFi0hMTCQjMxNLCwv6Df6E8l4l5xyqsGj9Px4iWRJJ8EyUaJmZmSxbtozp06fTsmVLtdc++OADVq5cyWeffZanXsWKFTlw4ECezCDIGQ4TFBTEvHnzaNCgAQDHjr35FaaC3qN8+fLo6+sTGhqa7xDN/Pj4+JCZmcnZs2epWbMmkJN1FxsbqypTtWpVwsPD0dHRwa2A244X5OjRo9StW5chQ3LvyPOqrLVX1bG3t8fZ2Zm7d++q5hB7HWZmZjg5OXHs2DEavnCb6hMnTqg+g9dx9OhROnbsqBram52dze3bt9WGvBoaGvL++++zcuVK7ty5Q7ly5aj2wrwgVatW5ebNm3h6vt48Mvr6+m88TPNl2jo6OLq7cvfKTbxrVFItv3v1JuWqVcj7noYGfPLT12rLzu47Rsi123QeMQAL28JPzX9T2jo62Ls5E3LtNmWr52Zxhly7jWcV3zzl9Q316TdZPQh58cBJHgTdof1nfTC3zQkUOJd1I+jURZTZ2SieBdBinjzF2ML0nd0UwdjAQO0OmkqlEmszc04HXcfLNSdLJCMzk/O3bzHsvQ80rSZfSpSkF/HNKd5YSirZKZqHX5REurq6lClXlotnL1C7YW5G68Wz56lVv06hvpdSqSQjI+PVBV+DsZGR2t3JlEol1lZWnA4MxLtcTkA8IyOD8xcvMmyw5rtNVvTz4/TZs/Tq1k217HRgIBX9NM/Nlp6eTsj9+1Sp+PZBwP/PtHW0sS7lSFjQPUpXzv0B9/jGPVwrvv5FjeiH4Ri+MOw9Mz0zz8Wk5wEzJcq3zijSuO2dPau+7V26xLBPPtG4noq+vpw+G0ivF6Z/OB0YSEXf3G2vkl8F7oc+UKt3/+EDHO3tVc+fB85CHz1k3oyZMpS4ABq/u/Pn8X52LpORkcH5K5cZNnBgcTXzzaSlk52mfgEgOy4eHS9Psh49m/dKWxudMu6kbNv1ytXpVakIOtpkBF549Xtra6Ntb0dmcMg/aPjr0dbRxqaUI4+C7uJWJTfw+SjoLqUrvf5+IupBOEb5XGR9TqlUEvUwHCvnwhml8C73Ey9LT08nJDT/Y9TzuRBDHz4g6OZNPv23bOfiX0uCZ6JE2759OzExMQwcODDP8L/OnTuzcOHCfINnY8aMoUKFCgwZMoTBgwejp6dHQEAAXbp0wcrKCmtra+bPn4+joyOhoaF88803b9y2gt7DxsaGUaNG8cUXX5CdnU39+vWJj4/nxIkTmJiYqM0B9pyXlxetWrXi448/Zv78+ejo6DBixAi1DLfmzZtTp04dOnXqxE8//YSXlxePHz9m586ddOrUSW1IpCaenp4sW7aMPXv24O7uzvLlywkMDMTd3f2t6nz33XcMHz4cMzMzWrduTVpaGmfPniUmJiZPhtaLRo8ezYQJEyhTpgyVK1dm8eLFXLx4Md87jRbUvo0bN3LixAksLS359ddfCQ8PVwueQc7Qzfbt23Pt2jVVoO25b7/9lnbt2uHq6kqXLl3Q0tLi8uXLXLlyhR9++OG12/KmardpzJbZK3DyKIVzWTcuHDxB3NMYqjXL+eF/YM02EqLj6DSkNwotLexc1e8uaWxmio6ertryrMxMIh+Gq/5OiI4jPOQhegb6BQ6NLCzVWzVg57y1OLi74ORZissBp0mIiqVS05xU/CPrdpEYE0ebT7qj0NLC1sVBrb6RmTHaujpqyys1rcP5/cc5uPJvqrSoR0z4U05vO0jVFupDft8lhUJBj6bNWLx7J652drja2rNk904M9PTwr5GbgTlhyUJsLSz5rFNOVuPi3TspX9oNZxtbMrMyOX71CjtOneKbHq8feC4uClMTtOxsUDybVFnLJSezNjs6FmVMbDG2LFfHru8xY/I0PL3K4uXrw97tu3gaEYl/hzYALJ+/mKjIKEaMy50n8e7tnIsBqSmpxMfGcfd2MLq6Ori65QyJ2bBiLZ5eZXFwdiQzI5NzpwI5tOcAg0fmPf4UBoVCQY+uXVm8YgWlXF1xdXFh8fLlGOjr0+qF6QC+/eEH7Gxs+OxZQK17584MGjaMJStX0rh+fQ4dO8bps2dZ+ML8kTNmzaJB3bo42NsTExPDwmXLSEpKol3r1qoycfHxhD95QuTTpwDcDw0FcrIGbKzffZDeUFcfF/PcfZeTmQ1lbVyIT03iSeLbzWVXmMo3rcmxpX9jXdoRW3dnbh2/QFJMPF4NcubGO7clgOTYBBr07wDk3J3TxMocCydbsjKzuHvmKvcv3KTxx7kZ0K4VPLl+8AxWrvbYuDmTEBnDxe1HcK1QNs/d9gqDQqGgR5cuLF65glIuLjnb3ooVOdte8xe2vcmTsbO14bNBOT+Uu3fuzKDhw1myaiWN69Xn0PFjnD53loV/5m57Pbt04cOhQ1i0fDktmjThWlAQm7dtY9yzOUszMzP56tvx3Lx1i99+/ImsrCzVHEbmZmZqGegiL4VCQY9O77F4zWpKOTvh6uzM4tVrcr67Jk1V5b79+WfsbKz57MOcQENGRgZ3n/2PZ2RkEBn1lJvBwRgZGOD6bPREckoKD16YtP1ReDg3g4MxNzXFwa5op5FIO3wcgxZNyH4aRVbkUwxaNEGZkUH6uYuqMka9upIdF0fq9j1qdfVqVyfjyvV85zAz6NiGjKtBKGNiUZiaYNCyKQoDfdLPnCvS/vg1r83hxVuwKe2EnYczN49eIDEmDu+GORd0AzcfICk2gcYDOgFw9cBpTKzNsXS0JTsrizunrxBy4QbNPumsWuf57Yexc3fBzM6KjNQ0rgWcIerBE+p2b51fE95aUe4nZsyeRYO69XCwtyMmJjb3GPXC0O79AQFYWFjgYG/PnbvBTP/jDxrVr0/tGq9/4V2If0KCZ6JEW7hwIc2bN88TOIOczLMpU6Zw/nzeW8CXK1eOvXv3MnbsWGrWrImhoSG1atWiR48eaGlpsWbNGoYPH46fnx9eXl78/vvvNG7c+I3aVtB7QM4E+nZ2dkydOpW7d+9iYWFB1apVGTt2rMZ1Ll68mI8++ohGjRphb2/PDz/8wPjx41WvKxQKdu7cybhx4/jwww+JjIzEwcGBhg0bYv/ClduCDB48mIsXL9KtW7ecg1+PHgwZMoRduzRfwXudOh999BFGRkb88ssvfPXVVxgbG1OhQgVGjBhRYHuGDx9OfHw8X375JREREZQvX56///6bsmXLvlZ/AMaPH8+9e/fw9/fHyMiIQYMG0alTJ+Li4tTKNW3aFCsrK27evEnPnj3VXvP392f79u18//33/Pzzz+jq6uLt7c1HH3302u34J3zrVCUlMYkjm/aQGBuHrYsjPb76BItnGVeJsfHER73Zj8OEmDgWjP1F9fzkjoOc3HGQ0j6e9B0/rFDbnx/vWpVJSUzm5Nb9JMXGY+PswPsjP8TcJictPykunvjo2Ddap5m1BV1Gf0zAqm0s/d9vmFiYUbVlfWq2bVz4HXgDfVu2Ii0jg59WryIhOQlfdw/+GPaFWoZaeHS0WuZIaloaP61eSURsDPq6upR2cOT7AQNpWb1Gfm9RoujWqYHx6OGq5yb/y/nRm7JsDanL1xZXs9TUb9qI+LgE1i5bRUxUNKXc3Rj/0/fYOeTsI6Ojool8afLskR/lBsGCb97myP5D2DrYsWBtzt2C01JTmffbLKIin6Knr4dzKVe++N9o6jd9vczif6Jfz56kpaXx4/TpJCQm4ufjw5+//qp29T/8yRO1IR2VKlRg8oQJzPnrL+b+9Rcuzs5MnTgRvxdumPMkIoJxEycSGxeHpYUFfr6+LJ47F0eH3GD1kWPHmDh1qur52O++A+DjAQP45MMPi6zPmnjblubP93IvwgyvnzPf6M6gk0w+uFRTtXfOvXp50pJSuLTzGCnxiVg42tJsSDdMrHPOYVLiE0mKyR2mn52ZxdnNB0mOTUBbVwcLRxuaDemqdifNiq3rg0LBhW1HSI5NwMDECJcKnlTt0LjI+tGvx7Nt77dfc7e9adPVt72IJ2i9MGS0kl8FJn87gTkL/2LuwoW4ODkx9bvv1IYj+/r4MO2Hyfw5fx5/LVuKk4MDX342jNYtckYWRERGcuT4cQB6DlTfzubOmEl1DXPGilz9unYlLT2NH//8k4SEBPy8vflz6lT17y4yQu27i4yKoteQT1XPl2/YwPING6hasSLzf8mZi/H6rVsM/mq0qsxv8+YB0K5FC74blbu8KKQdOIxCVxfDzh1RGBmSdf8BiXMWQlru1BxalhbPJhzNpWVrg04ZdxJn/5XverUszDHu1wOFsRHKxCQy7z8g4dfZRX4hqEx1X9ISU7iw4wjJ8YlYOtni/1kPTK0tAEiOSyQxOnc/kZWZxZmN+0mKTUBHVwcLJ1v8h3bHtULueXJ6chrHVu4gOT4RPUN9rF0daDeqH3buzi+/faEpqv3Ek8hIxn3/wjGqfHkWz1E/Rj2NiuK3WX8S9WyIclt/fz7qmzcx4b/g//OdLUsihVKpfL3ZFoUQQrzSinO7i7sJhap3tVYsOLW1uJtR6D6u3ZH4g0eKuxmFyqxpQ2JavPfqgv8ilvs2ExR+t7ibUah8HDxI+Jfe+U4TUzs76s3SPJz03+j40LlMOVByAnOFYWyzfiSEPynuZhQ6U4fXu3j4b5MQcr+4m1CoTN1KE/v5m4/0KMksZv7ILwErXl3wX2R0k97/uf3Ev3kf8SCmZE6f4Wrp8OpC/0GFn+8thBBCCCGEEEIIIcR/hAzbFEIIIYQQQgghhChB3vamMKJwSeaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmiJXfbLFEk80wIIYQQQgghhBBCCA0keCaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiBFHIsM0SRTLPhBBCCCGEEEIIIYTQQIJnQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIUoQudtmySKZZ0IIIYQQQgghhBBCaCDBMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBAliAIZtlmSSOaZEEIIIYQQQgghhBAaSPBMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRAmikLttliiSeSaEEEIIIYQQQgghhAYSPBNCCCGEEEIIIYQQRWL27Nm4u7tjYGBAtWrVOHr0aIHlDx8+TLVq1TAwMMDDw4O5c+fmKbNx40bKly+Pvr4+5cuXZ/PmzUXVfECCZ0IIIYQQQgghhBAlii7aJfLxptauXcuIESMYN24cFy5coEGDBrRu3ZrQ0NB8y9+7d482bdrQoEEDLly4wNixYxk+fDgbN25UlTl58iTdunWjT58+XLp0iT59+tC1a1dOnz79jz/vV5HgmRBCCCGEEEIIIYQodL/++isDBw7ko48+wsfHhxkzZuDq6sqcOXPyLT937lxKlSrFjBkz8PHx4aOPPuLDDz9k2rRpqjIzZsygRYsWjBkzBm9vb8aMGUOzZs2YMWNGkfVDgmdCCCGEEEIIIYQQ4pXS0tKIj49Xe6SlpeVbNj09nXPnztGyZUu15S1btuTEiRP51jl58mSe8v7+/pw9e5aMjIwCy2haZ2GQu20KIUQh6l2tVXE3odB9XLtjcTehSJg1bVjcTSh0lvuKdq6H4uDj4FHcTSh0pnZ2xd2EQnd8aN65SP7txjbrV9xNKHSmDvbF3QTxmkzdShd3Ewqdxcwfi7sJhW50k97F3YRCJ/uJkkNbWTLvtjl16lQmTpyotmzChAl89913eco+ffqUrKws7O3Vtyt7e3vCw8PzXX94eHi+5TMzM3n69CmOjo4ay2haZ2GQ4JkQQhSiv68WPPnlv00Hvwbce/qouJtR6NxtnP9z/XK3cSb+wOHibkahMmvWiLUX9hV3MwpVtyotWBK4o7ibUaj612jLlANLi7sZhWpss37UmzW4uJtRqI4PncvuoJPF3YxC18qnDglBN4u7GYXK1MeL6YdXF3czCtWXjXqQcPFycTejUJlWrsiCU1uLuxmF6uPaHVkWuLO4m1Go+tZoU9xN+M8ZM2YMI0eOVFumr69fYB2FQj0QqFQq8yx7VfmXl7/pOt+WBM+EEEIIIYQQQgghxCvp6+u/Mlj2nI2NDdra2nkywiIiIvJkjj3n4OCQb3kdHR2sra0LLKNpnYVB5jwTQgghhBBCCCGEKEmys0vm4w3o6elRrVo19u1TH0mwb98+6tatm2+dOnXq5Cm/d+9eqlevjq6uboFlNK2zMEjmmRBCCCGEEEIIIYQodCNHjqRPnz5Ur16dOnXqMH/+fEJDQxk8OGd6hDFjxvDo0SOWLVsGwODBg/nzzz8ZOXIkH3/8MSdPnmThwoWsXp07nP3zzz+nYcOG/PTTT3Ts2JGtW7eyf/9+jh07VmT9kOCZEEIIIYQQQgghhCh03bp1Iyoqiu+//56wsDD8/PzYuXMnpUvn3BglLCyM0NBQVXl3d3d27tzJF198waxZs3BycuL333/ngw8+UJWpW7cua9as4X//+x/jx4+nTJkyrF27llq1ahVZPyR4JoQQQgghhBBCCFGSPJsk/79gyJAhDBkyJN/XlixZkmdZo0aNOH/+fIHr7Ny5M507dy6M5r0WmfNMCCGEEEIIIYQQQggNJHgmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQoiT5Dw3b/C+QzDMhhBBCCCGEEEIIITSQ4JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIkiRbhm2WJJJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKLOLuwXiBZJ5JoQQQgghhBBCCCGEBhI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGSKOVumyWJZJ4JIYQQQgghhBBCCKGBBM+EKEQ3b95k6tSppKWlFXdThBBCCCGEEEIIUQgkeCZEIUlISOC9997D3d0dfX39Qluvm5sbM2bM+Mf1Q0JCUCgUXLx4sdDaJIQQQgghhBCiCGUrS+bj/ymZ80wUiRMnTtCgQQNatGjB7t2737j+d999x5YtW/5VAZ9+/frx0Ucf0b179+JuiviXObE7gENb95AQE4u9qxMdBnTHo3y5fMveC7rNjuUbiHwUTnp6OpY21tRu2ZCG7VvmW/7isTOs/G0+vjUq0/+bz4qsD9s2bWXDqrVER0VR2t2NwcOH4le5osbyly9cYv4fs7l/LwRrGxu69OxG2/c6qF4f/dkXXLlwKU+9GnVqMWnaVACSk5JZtmARJ44cIzYmljLlPBk84jO8fLxLZJ8ANq/dwPbNfxP5JAIzC3MaNG7IgMEfo6evB8CVi5fYsGott2/cJjoqim+nfk/dhvULpT+vS6lUsmDHNjYfP0pCcjK+bu581a0nZZycNNY5eOE8S/bs4kFkBJlZWbja2dG7WQva1KrzDlue68zeIxzbdoDE2DhsXRxp3fcD3Hw88y17/0Ywe1dt5enjcDLSMrCwtaJ6s3rUbdtUVSYrM4sjW/dy8fBpEmJisXa0p2XPjpStXP5ddYlz+45zemcAibHx2Do70Lx3J1y9PV5Z7+Gte6z4YRa2Lg4MnDJKtfxm4GVO/L2fmCdPyc7KxtLehpptGlOhfvWi7IaaG4fPcW3/KZLjErFwtKVml+bYe5bKt2z4rfvsmbEyz/JO3w7C3MFG9fz6wTPcPHKepJh49I0NKV3Vm2odm6CtW7JOeSs5etKzSku87UphY2zBNzvncPRe3n1eSXV05wEObtlFfEwsDq7OvD+wJ2V8vfItG3z9FtuWrePJozAy0tKxtLWmrn8TmnTwf8etVqdUKpm/ZjWb9+4lISkR37Ll+PqTwZQplf82CBAcGsrcVSu5ERxMWGQEIz8cSM8OHfOUi4iK4o9lSzhx/jypaWmUdnJm/GfD8PHMfz9UWK4dOsPlPSdIjkvA0smOOt1a4Vi2dL5lH9+8x/bpS/Ms7zpxKBaOtgDcO3+dC7uOEh8RTXZWNuZ2VlRoUZdydSoVaT9eRalUMn/DejYf2E9CYiK+Zcvy9YcfUcbVVWOdzQf2s+PIYYIfPADAx92DIT164OdZ9l01W+XCgRME7jxMUlwCNk72NOnVARcv91fWe3QrhDVT52LjYk+/SV+ovZaalMKxjbu5ffYqqckpmNtY0bhHWzwq+RRVN9Sc3XeMUy8co1r07kQp7zKvrPfg1l2WPztGfTxltGr5jcDLHP97n9oxqnabxlSoX6MouyFEgUrWmYT4z1i0aBHDhg3jr7/+IjQ0lFIFnIj8V2zatKm4m/Cvk5GRga6ubnE3o1hdPH6Gvxev4b2Pe+Hm7cmpvUdYOHkmo2Z8j6WtdZ7yevr61GvdFMfSLugZ6HMv6DYb5y1HT1+f2i0bqZWNiYhi+9L1uPsU7Ynh4f0BzJs5i6Fffo5vRT92btnG/0Z9w/wVi7FzsM9TPvxxGONHjaF1+zZ89e1Yrl2+yqzpMzG3sKB+k4YAfDtlIhkZmao68XFxDOn/MQ2a5PZxxo/TCLl7j9HfjsHaxoYDe/Yx5vPRzF+5CBtb2xLXp4N79rNo7gJGjvkKnwq+PAp9wPTJPwPwyedDAUhNScXdswwt2rTih3HfvVUf/qll+/aw6uB+vu3Tn1L29izatYPP/viNDRMmYWxgkG8dc2NjBrRqg5u9A7o62hy9coXvly/F0tSMOuV932n7r5w4x66lG2k3sBulvDwI3H+MFT/O5rPp/8PCxipPeT19PWr5N8ShlDO6+nqE3gzm77/WoKevR/XmOYHLA2u3celYIB0H9cTGyZ47l4JYPX0BH38/Ekd3zT/WCsv1UxfYv2IL/v0/wKWcOxcOnmDtL/P5+KevMbex1FgvNTmFbXNX4eZblqS4BLXXDIyNqNuhOdZO9mjraHPnwnV2zF+DsZkJHhULJwBdkHtnrxO4YR+1urfCzsOFW8cusH/WWjqOH4SJlbnGep0mfIKeQW52t76pkervu2eucm5LAPX6tMPOw5m4J9EcX74dgJqdWxRdZ/4BQ1197kQ9ZOeNE0xpPbi4m/NGzh87zeZFq+jySV/cvctyYk8Acyf9ypg/pmCVz3FL30CfBm2a4+Tmip6+HneDbrNuzhL09fWp69/43XfgmaWbN7Hq761MGP45pZycWbh+HUMnfMvG2bMxNjTKt05qWhouDg40r1ePXxctzLdMfGIiA7/5muoVKjBz/ASszM15GB6OqbFxUXaH4MCrnFy7m/o922LvWYqgI2fZ9fsKun43FBNrC431uk76TO1/ysA0t536xoZUadMQCwcbtLW1uX/lFoeXbsHQzBhX36INBBZk6d9bWbVjOxM+HUopR0cWbtrI0MmT2PjbTIwNDfOtc+7aNfzr1qeiVzn0dfVY+vdWPpv8A+um/4qdVd7ttqjcOH2RgJXbaN63E87l3LgUcJqN0xcyYOqXmFlr3p+nJaewc/4aSpf3JClefX+elZnJ+l8WYGRmQofP+mBiZU5CdKza91qUrp+6wL4VW2jVvzOu5dw5f/AEa36Zzyc/ffPKY9Tfc1fh7luWxJeOUYbGRtTr0AKbZ8eo2xeusW3+GozMTCnzDo5RQuRHhm2KQpeUlMS6dev49NNPadeuHUuWLFF7fcmSJVhYWKgt27JlCwqFQvX6xIkTuXTpEgqFAoVCoVpHaGgoHTt2xMTEBDMzM7p27cqTJ09U6/nuu++oXLkyy5cvx83NDXNzc7p3705CQu4OOS0tjeHDh2NnZ4eBgQH169cnMDBQ9fqhQ4dQKBTs2bOHKlWqYGhoSNOmTYmIiGDXrl34+PhgZmZGjx49SE5OVtVr3LgxI0aMUD1fsWIF1atXx9TUFAcHB3r27ElERESBn11ERATt27fH0NAQd3d3Vq7Me5U9Li6OQYMGYWdnh5mZGU2bNuXSpde/Wp2VlcXAgQNxd3fH0NAQLy8vZs6cWSh1Fi9ejI+PDwYGBnh7ezN79mzVa8+Hj65bt47GjRtjYGDAihUryM7O5vvvv8fFxQV9fX0qV66slq34vN6mTZto0qQJRkZGVKpUiZMnT6rKREVF0aNHD1xcXDAyMqJChQqsXr1a9fq8efNwdnYmOztbrb0dOnSgX79+qufbtm2jWrVqGBgY4OHhwcSJE8nMzKQoHdm2jxpN61OreUPsXZzo+GF3LKwtObnnUL7lnT1KUaVBLRxKOWNlZ0O1RnXwquzLvaDbauWys7JZNXMBLbt1wMr+7QJJr7Jp7Xr827WmdYe2lHIrzeARn2FrZ8f2zX/nW37Hlm3Y2dsxeMRnlHIrTesObWnZtjUbVq9TlTE1M8PK2kr1uBB4DgN9Axo2zQmepaWlcezwEQYO/YQKlSvh5OJMn4H9cXB00Pi+xd2noKvX8K3gR5OWzXBwdKBarRo0btGUWzduqcrUqFOL/oMGUr9xw7fuwz+hVCpZfXA/A1q1oWmVqng6OfNd3wGkpqezJ/C0xnrVynnRpHIV3B0dcbG1o0fTZng6O3Mx+M47bH2OEzsOUrVJHao1rYutswNt+nXGzNqSwH1H8y3v6O5KxXrVsXN1xNLOmkoNauJZ0Yf7N4JVZS4dO0PDTi0pV8UXK3sbarZsgGclH47vOPhO+nRm12EqNa5F5Sa1sXG2p0Wf9zCztuDCgeMF1tu9aD3l61TF2TNv5knp8p541aiIjbM9lvY21GjVEDtXRx7cvFdU3VBz/eAZPOtWoly9ylg42lCzSwuMLcy4eeR8gfUMTY0xNDdRPbS0ck9lI+49wq6MCx41fDGxtsC5vAfu1csTdT+sqLvzxk6FXmPB6b85fPdicTfljR3auofazRtSp0UjHFydeP+jXljaWHF8d/7/Dy4epanWsDaOpZyxtrelRuO6eFepQPD1m++45bmUSiWrt/3NgC5daVqnLp6lSzPx8xGkpqWx+8gRjfV8y5bl8/4D8G/QED2d/C/+Ld20EXsbGyYM/xy/cuVwsrenZqVKuDg6FlV3ALi87yRe9avi3aAalo621O3WGhNLc64fPltgPUNTY4zMTVWPF/+nnLzcca/ig6WjLWZ2VlRoVhsrZ3vC74QWaV8KolQqWb1zBwPee5+mtWrhWaoUE4d+lvPdHTumsd4Pwz+ni78/Xm7uuDk7879PPkGpVHLmytV32Ho4u/soFRrWoGLjWlg72dO0VwdMrSy4eOBUgfX2LtmET50qOOaTnXvlSCCpicl0Gt4P53JumNtY4lLOHbtSmjPGC9PpXYeo3LgWVZ4do1o+O0adf8Uxatei9fjWqYqzp1ue10qX98T7hWNUzVaNnh2j7hZRL0oopbJkPv6fkuCZKHRr167Fy8sLLy8vevfuzeLFi1G+wT9Zt27d+PLLL/H19SUsLIywsDC6deuGUqmkU6dOREdHc/jwYfbt20dwcDDdunVTqx8cHMyWLVvYvn0727dv5/Dhw/z444+q17/66is2btzI0qVLOX/+PJ6envj7+xMdHa22nu+++44///yTEydO8ODBA7p27cqMGTNYtWoVO3bsYN++ffzxxx8a+5Gens6kSZO4dOkSW7Zs4d69e/Tv37/Avvfv35+QkBAOHjzIhg0bmD17tlrATalU0rZtW8LDw9m5cyfnzp2jatWqNGvWLE/7NcnOzsbFxYV169Zx/fp1vv32W8aOHcu6deveqs6CBQsYN24ckydPJigoiClTpjB+/HiWLlUfEvD1118zfPhwgoKC8Pf3Z+bMmUyfPp1p06Zx+fJl/P396dChA7dvqweDxo0bx6hRo7h48SLlypWjR48eqsBWamoq1apVY/v27Vy9epVBgwbRp08fTp/O+bHfpUsXnj59SkBAgGp9MTEx7Nmzh169egGwZ88eevfuzfDhw7l+/Trz5s1jyZIlTJ48+bU+138iMyOTR8H3KVdZPTOnXCVf7t8M1lBL3aO7oYTcDMbDV32Y57712zA2M6Vm8waF1t78ZGRkcPvmLarWVB/qVbVmdYKuXsu3TtDVa3nKV6tVnds3bmoMVu7ZvotGzZtg8OyKclZmFtlZ2ejp6amV09PX59rltzsRLqo++VaqwO2bt7h5PQiAsEePCTx5mpp1a71VewvTo6inRMXHU9sndziinq4uVcuW4/Ld1zthVSqVnLkRxP0nT6j6jofDZGZmEnbvAWUqqg9T8azoQ+it1wsKhd17wINbd3Ern9v2zIxMdF7KktXV0yX0xuv9n76NrMxMwu89xN1P/X/c3c+Lh7dDNNa7fPgMMU+iaPB+/kO6X6RUKgm5eovo8EhKvcZQ0LeVlZlFVGgYTj7q7+Xk407k3YcF1t02dSHrvpnJnpkrCbsZovaafRkXokLDiQx5DEDC0xgeXQ3Gxa/4MmT+azIzMnkQHIJXZT+15V6V/bh34/WC5Q/v3ufejdt4+hVf9sijJ0+IiomhduXKqmV6urpU9fPl8o2gt1r3kTNn8PH05Ouff6RFvz70/OJzNu/d85YtLlhWZiZPQx/jUl59mJxL+TI8CX5QYN1Nk+axfNQ0tv+6lMc3NO8nlUolj4LuEvckSuNQ0HfhUUQEUbGx1K6YO3RUT1eXquXLc/nW6wdkU9PSyczMxNzEpCiama+szEyehDzC7aX9uZtfWR7fCdFY78qRQGIjoqjbqXm+rwdfuI6TZ2kOLNvM7GHfs3jsdE5tO5jnonFRyMrMJOzeQ9z91Idte7ziGHXp8Glinjyl4fuvHr6tVCq5pzpGvXooqBBFRYZtikK3cOFCevfuDUCrVq1ITEzkwIEDNG+e/w7/ZYaGhpiYmKCjo4ODg4Nq+b59+7h8+TL37t3D9dmcBsuXL8fX15fAwEBq1MgZA5+dnc2SJUswNTUFoE+fPhw4cIDJkyeTlJTEnDlzWLJkCa1btwZygj779u1j4cKFjB6dO9b+hx9+oF69egAMHDiQMWPGEBwcjIdHzsl+586dCQgI4Ouvv863Hx9++KHqbw8PD37//Xdq1qxJYmIiJvkcqG/dusWuXbs4deoUtWrVUn2WPj65PwIDAgK4cuUKERERqpsSTJs2jS1btrBhwwYGDRr0ys9XV1eXiRMnqp67u7tz4sQJ1q1bR9euXf9xnUmTJjF9+nTef/99VZnnQagXs7tGjBihKvO8/V9//bVqrriffvqJgIAAZsyYwaxZs1TlRo0aRdu2bQGYOHEivr6+3LlzB29vb5ydnRk1Kncun2HDhrF7927Wr19PrVq1sLKyolWrVqxatYpmzZoBsH79eqysrFTPJ0+ezDfffKNqq4eHB5MmTeKrr75iwoQJeT6TtLS0PHdVfdMbRSQlJJKdnY2puZnachMLMxJi4wqs+8PHo0mMTyA7O4sWXTtQq3luptK9G7cJPHCML6Z/+0bt+SfiY+Ny5qKwUk/Lt7S0JDoq/4BuTHQMlpYvlbeyJCsri7jYOKxt1IdP3LweRMjde3wxJvc7NjI2wsevPKuWLKdU6VJYWFlyaP9Bbl4PwsnFuUT2qXHzpsTFxPLlp5+jVCrJysqi3Xsd6Nan51u1tzBFxcUDYGWqvk1amZoRHh1VYN3ElGTajP2a9IwMtLW0+Lp7T2r5vLs5wQCS43P+p0zMTdWWG5ubkhgbX2DdaUP+R1J8ItlZWTTp3IZqTeuqXvOs6MOJnQdx8/HE0t6Gu1dvcuPsZbLfwaS5yQlJKLOzMc6nT0mxCfnWiQ6PJGDtdnqP/wwtbW2N605NTuHPYRPJysxEoaWFf/8PcK+Q/7xVhSktMRllthJDU/VhbAZmxqTEJ+Vbx9DchDo9W2NdypGszEzunr7K3t9X4T+iNw5lczIx3Kv7kvp/7N11dBRX+8Dxb4y4u4cQBYK7hECB4BSneJGW4qUt0PalQGmpUFpeatAWL+7u7u4EC4RgAeKuu78/AptsshugJCRvf8/nnD0nO3tn9t7dyczsM8+9NymV7TMW5d4cVyjwb1yDoNAGGrcpXl1KUhIKhQILK/VjhLmlBUlxRZ+3vhj0IckJueet1j3epn6LJkWWL0kx8XEA2BboCWFracWjp09fa9sPHkexZvs2enfoyLtdu3Hl5k1++OtPDAwMaNe02Ys38A+kP/+fslD/nzK2MCU1MVnjOiaW5jTu2x57D2dysnO4efwCm39aSPuPBuDs56Uql5mazt/jZ5CTlYOurg4Ne7UtFKR7k2Li4wGwtVTv3m1racmjp9EvvZ1fli7B3saGOkFBxVm9IqU9O56bWKr/DjCxNC/Utf65uKinHFq1jZ6ff6D1eJ7wNJbIsHAC61en89iBxD+OZvei9Shycmjwdsl2WX9+jnqV8+7zc1TfiSNfeI6aNXKy6hzVakBXvN/AOUoIbSR4JorV9evXOXnypGr8L319fXr06MG8efNeOnimTVhYGO7u7qrAGUDFihWxsrIiLCxMFTzz8vJSBc4AnJ2dVdlb4eHhZGVlqYJikBsYqlOnDmFh6ncaq1TJGxjc0dERExMTVeDs+bKTJ09qre+5c+eYPHky58+fJzY2VnX3JzIykooVC/+gDAsLQ19fn1q18rJXAgIC1Lq4njlzhuTkZGxt1YMLaWlphIe/fAbE7Nmz+euvv7h79y5paWlkZmZSLd/d11dd5+nTp9y7d49BgwYxZMgQ1TrZ2dlYFri4yd++xMREHj58qPZ9ADRs2LBQV9T834fzs64PT548ISAggJycHL799ltWrFjBgwcPVIEt03zji/Tu3Zv33nuP3377DUNDQ5YsWULPnj3Re3bSPnPmDKdOnVLLNMvJySE9PZ3U1FRMTNTHP/nmm2/UAooAkyZNokbXt4r8HDV61mVZRakEdDQWfW7YV+PISM8g8sZttv69BjsnB6o3rkt6WjrL/juXrh/0w9TCvMhtFKsCbVCiVHXFfqnyyueLC6+zffM2vLzL419RPZvok4mf8tM30+n9dnd09XTx8fMlpMVbhN+4WWgb/0gxt+nC2fMsX7SE4R+NJqBSIA/vP2D2f3/Fev5ier/bt3jq/Iq2nTzBN8v+Vj3/6YMRz+qsXk6JsvDCAkwMjVjy6URSMzI4dT2Mn9aswtXOnpp+pXChW6iqL/jugEGTx5CZnsG9mxHsWrYBGyd7qjTMPV61GdCVDX8sY9bYqejo6GDtaEf1kHqc2190N5tipWF/1PSdKBQKNvz6N427tMLW2aHITRoaGTLw64/Iysgk4spN9izZgJW9LZ4V31CmVsHqF3Hos3S0xdIx79zn4O1GSlwiV3afUAXPom7c5eKOo9Tt2Qp7LxcSn8ZxatUuLmw9TNU2b3bijX8/DV9e0f9ijJ72GRlp6UTcCGfT4lXYOTtSM7heidUwv20H9jPt97yhJGb+J/fmkg4F/69eeKh7IYVSScUKPgzv2w+AAO8K3I6MZM32bSUWPHuuUHuKiO9bOdlhlW+yDccK7iTHJXJh51G14JmBUTm6TBxKVkYmD8PucHzVDizsrXF5iQHui8O2Q4eY9ucc1fOZEz4FCl8vKF98mlJZuGEDO44cZs6kKRgWyGB/Ewqdj5Saz1EKhYLNs5fRoFMLbJy0D8GhVCgxMTej5btd0NXVxam8G8nxiZzaeqDEg2cqhc5Rmq/pFAoF639d/NLnqMFff0xmRiYRV26we8l6rN/kOaosUJZ89qB4eRI8E8Vq7ty5ZGdn4+qal/mhVCoxMDAgLi43M0NXV7dQN86srKwXblup5cRScHnBAeh1dHRUgavn71v4hFt42/m3o6OjU+R2C0pJSaFly5a0bNmSv//+G3t7eyIjIwkNDSUzM1Nr+zTVLT+FQoGzszP79+8v9FrBceS0WblyJR9++CEzZsygfv36mJubM336dFUXx3+yzvPP4c8//1RlzT2nV+COkqmGAXP/yfeR/31nzJjBTz/9xMyZMwkKCsLU1JQxY8aofdbt27dHoVCwZcsWateuzaFDh/jxxx9VrysUCqZMmaKWFfeckYZB0j/99FPGjh2rtszQ0JAdN7UHVAsyNc8dr6dglllyQhLmBe7qF/R8HDNnTzeSEhLZtXIj1RvXJSbqCXFPopn/TV6X4uf71vhu7/HJz19h51T0xcqrsLCyRFdPl7gCGVnxcfGFMrees7axJi62YPk49PT0sCiQhZeens6B3fvoN3hAoe24uLky/deZpKelkZKSiq2dLdMmfomjs1OhsmWhTYv+nE+z0Ba07pCbQVm+gjfp6enM+u5H3unfW22cmTcluEpVKnvl/QDKfNbFNCYxETtLK9XyuKQkbM2L3id1dXVxd8jdt/zd3YmIimLBjm1vNHhmYpH7P5VcICMrJSG5UOZWQdYOuT8iHT1cSU5IYt/qrargmamFOb0+fo+szCzSklMwt7Zk19INWDmU/CDTJuam6OjqklLgDn5qQjKmloWzmDPTMoi6c4/Hdx+wc2HujSzlszFKvu33MT3Hv49XpdwuqTq6uqofZI6ersQ8eMyxTXtK/IeJoZkJOro6hbLM0pNSCmWjFcW+vCu3T+Z10z636QAV6lTGr2E1AKxdHcjOyOLY0q1UadUQHd3XjIoITM1zx8RKLHDeSkpIwtxK+0QPALbPzlsuXu4kxSeyffn6NxY8C65Th8p+eV3lMp9NSBMdH4edTd5EIrEJ8di85PWUNnbW1pQvMOtjeTc39h47+lrbLYrRs/+pgllm6UkpmFi8fLdEh/Ju3DpxUW2Zjq4uls+OdXbuzsRFPeX8tsNvLHgWXKsWlX3zjkl53108dvkyvmMTE7DJd97SZvGmjcxfv5bf/vMFvp5vtvupsep4rn6OSk1M1vg9ZaZl8PjOfZ7cfciexRuAvOP5jHcn0O2TwXhU9MHUyhxdPT216wgbZwdSEpLIyc5GT7/kfvI/P0cVzDJLTUjSeN7NTMvg0Z17RN19wI4C56hp/T6i1/ihGs9RTp6uRD94zNFNu/9/Bc9EmSLBM1FssrOzWbRoETNmzKBlS/UxVrp06cKSJUsYMWIE9vb2JCUlkZKSogqknD9/Xq18uXLlyMnJUVtWsWJFIiMjuXfvnir77OrVqyQkJKh1bSyKj48P5cqV4/Dhw/TqldtVKisri9OnT6sN9v+6rl27RnR0NN9++62qrqdPFz1ga2BgINnZ2Zw+fZo6deoAuZl88c/S0wFq1KhBVFQU+vr6eHl5/aO6HTp0iAYNGjBs2DDVshdlrb1oHUdHR1xdXbl9+7ZqDLGXYWFhgYuLC4cPHyY4OK/b4dGjR1Wfwcs4dOgQHTt2VHUXVigU3Lx5U22/MDY2pnPnzixZsoRbt27h5+dHzZo1Va/XqFGD69ev4/OS08gbGhq+cjfNgvQN9HGt4MnNC1cJqltDtfzGxatUql3tpbejVCrJfnYx6eDqzEc/qWfEbV+6joz0dDoOfAcr28KzDb4OAwMDfP39OHfqDA2b5I2vdu7UGeo10txVKrByJU4cOaa27OzJ0/gG+KNf4ALv4J79ZGVl0ixUe+aqkbExRsbGJCUmcebkKQYNe/81WlRybcrISC8UIHt+M+FVxoUsTqZGRmozaCqVSmwtLDgRdhV/99xsnqzsbM7evMHItwsHlouiVCpVwbg3RV9fH+fy7oRfukbFOnnj4YRfukZArVfomqNUkpNVuO4G5QwwsLEiJzuHqyfPU6leDQ0rFy89fX2cyrtx5/IN/GvnZeDeuXwDv5qFZzI1NDZk8DefqC07s/sId6/eovOo/ljaaz8GKNHc7uKmp6+HrYczj8Lu4FktL7j68Nod3Kv4FbGmutj7URjnCyBmZ2YXuvHyPGCmRFkoK0e8On0DfdwreHH9/BWq1ss7h14/f4WgutVffkNKJdkvceO0uJgam6jNoKlUKrG1tubE+fMEeOd2QczKyuLs5SuMzDfUxD9RNSCQuw8eqC27+/AhzvbFd+OqID19few8XHhwNZzy1fOufe6HheNV9eXHlou596hQl8JClLnjXL0ppsbGajNoKpVKbK2sOHHxIgHlcwN4WdlZnL16lZG9+hS5rUUbNzB37Rp++ew/VKzw5rue6unr4+jlSsSVm/jWyhs3MOLKTXyqaz6e9/9a/Ubt+T3HuBd2i/Yj+qqO566+XoQdP49SoUDn2XVG3ONoTK3MSzRwBrltcn52jgoodI6qXKi8obEhQ74Zp7Ys9xx1k86jBmBVxDkKUF3vClEaJHgmis3mzZuJi4tj0KBBhbrqde3alblz5zJixAjq1q2LiYkJn332GSNHjuTkyZOFZuT08vLizp07nD9/Hjc3N8zNzWnevDlVqlShd+/ezJw5k+zsbIYNG0aTJk3UugIWxdTUlA8++IBPPvkEGxsbPDw8+P7770lNTWXQoEHF9VHg4eFBuXLl+Pnnnxk6dCiXL19m6tSpRa7j7+9Pq1atGDJkCH/88Qf6+vqMGTMG43wXDM2bN6d+/fq8/fbbfPfdd/j7+/Pw4UO2bt3K22+//VKfg4+PD4sWLWLHjh2UL1+exYsXc+rUKcqX134H8WXWmTx5MqNGjcLCwoLWrVuTkZHB6dOniYuLK5Shld8nn3zCpEmTqFChAtWqVWP+/PmcP39e40yjRdVvzZo1HD16FGtra3788UeioqIKBVV79+5N+/btuXLliirQ9twXX3xBu3btcHd3p1u3bujq6nLx4kUuXbrEV1999dJ1eVXB7VuwfNZc3Cp44envzYldB4mPjqV+yxAAtv69hoTYeN4Zlbt/Htm2F2s7G+xdc7uuRly7ycGNO2nYOrcriEE5A5w81Mf8MjLN/cFQcHlx6dyjG9OnfoNvgD+BlSuybcNmnjx+TNtO7QGY9/ufxERH88nE3K4Wbd9uz8Y165kz6zdad2hL2OWr7Ni8jQmT/1No2zs2b6NB40ZYWBbOaDh94hQolbh5uPPw/gP++nUObh7utGzbqky2qW7D+qxbvpoKfj4EVMzttrnoz/nUa9RAlaGZlprGw/t5P7qiHj4i/MYtzC3McXByfO12vYiOjg7vNGvO/B3bcHdwxN3BgQXbt2FUrhyhtfOySictmIe9lRUjngXU5m/fRkVPT1zt7cnOzubIlctsOXGMCe+8fDC9uDRo24y1vy7C1dsDd7/ynN59hIToWGo/mzxj17INJMYm0GV4bpeqEzsOYGlng71L7ud793o4RzbvoW6rvPGY7t2MICkuHidPNxJj49m3eitKpZJGHV5vOIKXVad1Ezb9vhRnb3dcfbw4v+8YiTFxVH8rN5i7f8VmkuISaT+0Fzq6uti7q8/qZ2phhr6Bvtryoxt341zeHStHOxTZ2YSfD+Py4dOEDuj6RtpUsVkdDi/ciK2nM/blXblx5BwpcYn4N84NSJ5Zv4/U+CQaD+gA5M7OaWZjiZWLPTnZOdw+eZm7564TMiQvqOse5MPVvSexcXfEzsuVpKdxnN98EPcg31LJ7CyKsYEhbpZ53bBcLOzwtXMjMT2Fx8lxpVizFwvpGMrfM//Aw8cLL38fju7cT1x0DA1DmwKwafEqEmLi6DMmdxzWQ1t3Y21ni4Nb7v53O+wmezdsJ7jtm/n/0URHR4d32ndg/urVeLi44O7swvzVqzAyNKRVvpt5X8z8CQdbG0b0zQ2oZWVlcfte7gD8WdnZPI2N5frt25gYG+HunDuzYa8OHRk4YRzzVq2kRaNGXLlxk3U7d/D5sOEl2qYqLeqzb95a7DxdcKzgTtjBMyTHJhDYJPfa8OTa3aTEJ9J0YO7/zKXdxzC3tcLaxYGcnBxuHb/InbNhtBiaN/7tuW2HsPd0wcLeGkV2DpGXb3Lj2AUa925bom0pio6ODu+0acv89WvxcHbC3cmZ+evX5n53jfK6Z3/xy8842NgwolfueWjhhg3MXrmcr0aNxtnBnuhn496ZGBlhYmSs8b1KQq1Wjdk6ZwVO5d1w8fHg4r4TJMXEU7VZbhbmwZXbSI5LoM37PXOP527q2fQmFqboGeirLa/arD5ndx9h75KNVG/RkLioaE5s2kuNFurDopSUuq1D2PD7Epy93XHz8eLcvqMkxMRR49k5at+KzSTFJdBhaG90dHVx0HCO0jPQV1t+5Nk5ytrRlpzsHMLPh3Hp8ClaDej2RtpUZryBsVXFy5PgmSg2c+fOpXnz5oUCZ5CbeTZt2jTOnj1LjRo1+Pvvv/nkk0/4448/aN68OZMnT1Yb7L5Lly6sXbuWpk2bEh8fz/z58xkwYADr169n5MiRBAcHo6urS6tWrYqc8VKTb7/9FoVCQd++fUlKSqJWrVrs2LGj0GDfr8Pe3p4FCxbw2WefMWvWLGrUqMEPP/xAhw4dilxv/vz5DB48mCZNmuDo6MhXX33FxIkTVa/r6OiwdetWPv/8cwYOHMjTp09xcnIiODgYR8eX+2E9dOhQzp8/T48ePXIvQN55h2HDhrFt27bXWmfw4MGYmJgwffp0xo0bh6mpKUFBQS/M6Bs1ahSJiYl89NFHPHnyhIoVK7Jx40Z8fV9+lr6JEydy584dQkNDMTEx4b333uPtt98mIUG9W0mzZs2wsbHh+vXrqszD50JDQ9m8eTNffvkl33//PQYGBgQEBDB48OCXrsc/Ua1hHVKTUti9ahOJcQk4ebgw6LPRWD/rIpEYl0B8dN5A7Uqlkq1L1hL7JBo9PT1sHe1p3bsz9VqW3sDLTZo3JTExkSXzFxEXE4untxdTf/gGx2cTfsTGxPLkcd6ssU4uzkz94RvmzPqVzWs3YGNnywdjRtCoabDadu9H3uPKxUtM++l7je+bmpzC/Nl/Ev00GjMLcxo1acyA9wcVyl4rK23q1b8vOjo6LPxjHjFPo7G0tqJuw/oMeC8vcH/j2nXGj8wLNv/x8+8ANG8dysf/0Tw5SXHr1yKUjMxMvlu+hKTUVCp5lefnkWPUMtSi4mLVusClZ2bw3fKlPImPw9DAAE9HJ74cMIiWtWq/kTrnF9SgJmnJKexfs42k+EQc3J3pM2GY6m52UlwiCdF5XWyVSiW7l20k7mkMurq62Dja0eKdjtRqnvejIzsriz0rNhP3JJpyRob4VqtEl+H9MDY1KfT+JaFiveqkJaVyZN1OkuMTsXdzpvsnQ7C0y21TcnwSidGvFnDJyshkx4I1JMXGo1/OAFsXR9p/0JuK9V4he+g1lK9VkYyUNC5sPUxaYjJWzva8NawHZra51xBpicmkxOV1A1Jk53B63V5S45PQM9DHytmOt4Z1V5tJs0rrRqCjw7lNB0mNT8LIzAS3IB9qdAh5I216FQH2nvzSKe9/fVSj3B+EW8OO8fXehdpWKxNqNKpLSmIyO1ZsICEuAWcPV96fOBabZ12fE2PjiXua77ylULLp79XEPn6Krp4edk4OtO/bjQahIaXUglz9O3UmIyODb+fMJik5mcp+fvwyeYpahlrU06fo5stmfBobS++xY1TPF69fx+L166hRqTJ/fD0NgEq+vvww4TN+WbyIv1auwMXRkY8GDaZ1k5ASbU+F2pVJT0nl7JYDpCYkY+PiQOuRvTG3tQJyu9Elx+ZdF+Vk53B89U5S4pPQN9DH2sWBViN74RGUl/2ZnZHJ4aVbSIlLRN9AHysnO5oN6kyF2oUzit6k/h06kpGZybdz/yIpJYXKPj788tl/1DLUomKi0c13nlq9awdZ2dmM/3GG2raGdO3G+900T5hVEgLqViMtOZVjG3KDmXauTnQeOxBLu9zfISkJiSTGxr/SNi1srej2yRD2Ld3Ewv/8hJmVBTVaNqJO25Dib4AGFetVJzUphcPrdqjOUT0/eS/fOSqRhH9wjtq+YDVJsQnPzlEOdPygzxs7RwmhiY6ytPqKCCHEv9DGy4dKuwrFqkPlxtyJfvDigv9jytu5/uvaVd7OlcQ9B0q7GsXK4q0mrDi3q7SrUax6VG/BglNbSrsaxWpA7bZM21O2Az6v6rO3+tPw16GlXY1idWT4bLaHHXtxwf8xrQLrkxR2vbSrUazMA/2ZcWBZaVejWH3U5B2Szl98ccH/IebVqvDn8Q2lXY1iNaReRxad2lra1ShW/Wq3Ke0q/GNJ98vmtar5a85s/79KMs+EEEIIIYQQQgghyhLJcypTytYAEEIIIYQQQgghhBBClCESPBNCCCGEEEIIIYQQQgvptimEEEIIIYQQQghRlki3zTJFMs+EEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKForRrIPKRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskRm2yxTJPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRSLfNskQyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEplts0yRzDMhhBBCCCGEEEIIIbSQ4JkQQgghhBBCCCGEEFpIt00hhBBCCCGEEEKIskSpKO0aiHwk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFHIbJtliY5SKfOfCiGEEEIIIYQQQpQVSddvlnYVNDL39y3tKpQKyTwTQohi1Hvp5NKuQrFa0msySXciSrsaxc68vBcfrJle2tUoVr93+YT4fkNLuxrFymrRbPbfOlPa1ShWIT41+XjTz6VdjWL1Q/uRJEU9Lu1qFCtzJ0e2hx0r7WoUq1aB9Wn467/rGAFwZPhsfti/pLSrUaw+DunN0rM7SrsaxapXjVBmHVpZ2tUoVqMad2fkuh9LuxrF6udOY5l5cEVpV6NYjQnuUdpVEP8SEjwTQgghhBBCCCGEKEukk2CZIhMGCCGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbSQbptCCCGEEEIIIYQQZYlCum2WJZJ5JoQQQgghhBBCCCGEFhI8E+Jf5vHjx3z55ZfExcWVdlWEEEIIIYQQQoj/eRI8E/+TvLy8mDlz5hvdno6ODuvXr3+t95k8eTLVqlV7rW0URalU0rdvXwwNDbG2tn6ldYv7M31VwcHBLF26tNTeP7+PP/6YUaNGlXY1hBBCCCGEEP9fKRVl8/H/lATPxBvVvn17mjdvrvG1Y8eOoaOjw9mzZ99wreDUqVO89957b/x9i9s333yDt7c348ePf+V1S/Mz2Lx5M1FRUfTs2VO1rGAwT6lU8tFHH2Fubs7evXsBCAkJYcyYMYW2t3TpUvT09Bg6dKjG95szZw5Vq1bF1NQUKysrqlevznfffad6fdy4ccyfP587d+4UTwOFEEIIIYQQQvzPkgkDxBs1aNAgOnfuzN27d/H09FR7bd68eVSrVo0aNWq88XrZ29u/8fcsCZ999tk/Xrc0P4NZs2bx7rvvoqurOZ6fk5PDkCFD2LRpE3v37qV27dpFbm/evHmMGzeO33//nR9//BETExPVa3PnzmXs2LHMmjWLJk2akJGRwcWLF7l69aqqjIODAy1btmT27NlqQbWS0ty3Nm0DG2BlbM6DhCcsPrOd608jtZZv4BVEu8CGOJnbkpqVzsWHt1h6bifJmWkANK1Qg0blq+Ju5QDAndhHrLiwh9sxD0q8LfkplUr++Ptv1m3bSlJyMpX8Axg/fDgVvLy0rhMeEcHsxYu4dvMWj548Zuz779OrU2e1MmcvXWLx6lWE3bxJdGwsP3wxiZAGDUq4NbmCvavRwq82lkZmPEqMZtWFvdzS8rn2q9ma+l6VCy1/mBjN1F3zCy2v5RbAoLrtOf/wJnOOrS/uqhfJqFM7yoU0QsfUhJzwCFIXLUPx4FGR6xiGNqNcs2B0bW1QJiWTeeoc6avWQVa2qoyOtRXG3TuhX7USOgblUEQ9JnXuYnIitO/fxWH/5l3sXLuZhNh4XDxc6f5eP3wrB2gse/bISQ5u3c2923fJzsrG2dOV9r26UKlmVbVyqckprF+0knNHT5GanIKdoz1dB/cmqHb1Em3Lcw08gwjxqY65oSmPk2LZcOUQd2Ifai2vp6tLC7861HT1x9zQlPj0ZPbcPMWpe2GqMo3LV6W+VxDWxuakZKZx8dEttoYdI1uRUyJtUCqV/LFgPus2bSIpKYlKFSsyfsyHVChfvsj19hzYz+y5c7n/8CFuLi4MGzyEpsHBamWePH3Kz3Nmc/TECdIzMvB0d2fiuPEE+vuTnZ3Nb3/9yZHjx3nw6BFmpqbUqVmLke+/j72dXYm0Nb9DW/ewd/02EuPicXJ3pfOgXlSo5K+xbPjVG2xatJLHDx6RlZGJtb0tDUKb0rRDaInX83VVdfahV/WWBDh4YGdqxYStv3PozoXSrpZWV/ef4sLOY6QlJGHt4kC97i1x9vXUWPbh9Qi2/Lio0PJuU4Zh5VR4Hwo/dZm9f63Fs6o/LYf1KPa6v6xTOw9xdPMekuITcXBzIrRfFzwDKrxwvcjrt1nw5Swc3J0Z+u2r35AtTpf2neDcjsOkxidj4+JAo56tcfHz0lj2wbU7rP9hXqHlvaaOwto59zo35sFjTm7Yy9O7D0mKiadRj9ZUbfFmriGea1y+Km/51sLCyJRHiTGsvbSfcC3XEn1qhFLXs1Kh5Y8So5m2J3efdDK3pW1gA9ytHLA1tWTNxX3sDz9Xkk0o5PK+k5zfcZjUhGSsXexp2KOI7+n6HTb+UPg6qOeXI1Xf09WDp7l+7DyxD58AYO/pQt1OzXEs71ZibRDiRSTzTLxR7dq1w8HBgQULFqgtT01NZcWKFQwaNAiAo0ePEhwcjLGxMe7u7owaNYqUlBSt242MjKRjx46YmZlhYWFB9+7defz4sVqZjRs3UqtWLYyMjLCzs6Nz57wf5AWznG7evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTi/x89u/fj46ODjt27KB69eoYGxvTrFkznjx5wrZt2wgMDMTCwoJ33nmH1NRU1Xrbt2+nUaNGWFlZYWtrS7t27QgPD1e9vmjRIszMzLh586Zq2ciRI/Hz81N9rgU/Ax0dHebMmUO7du0wMTEhMDCQY8eOcevWLUJCQjA1NaV+/fpq7xMeHk7Hjh1xdHTEzMyM2rVrs3v37iLbHB0dze7du+nQoYPG1zMyMujWrRu7du3i4MGDLwycRUREcPToUSZMmEBAQACrV69We33Tpk10796dQYMG4ePjQ6VKlXjnnXeYOnWqWrkOHTqwbNmyIt+rONTzqETfGq3YcOUQn2+bzbUnkYwL6YOtiaXG8n72HnxQrxMHws8xfsuvzDq8Cm9bVwbXzfv8Ah29OHb3Ml/vXsiknXOJTklgQtO+WBubl3h78lu4aiVL161l3LDhLJz1M7Y21gz/7FNS8u27BaVnZODm5MyIgQOxtbbRWCYtPR3f8t6MGza8pKquUU03f7pVbcb2a8eZtmcht6LvM7xRV62f68oLexi/+TfV49Otv5OckcbZ+9cLlbUxsaBzUAg3n94r6WYUYti2JYat3iJt8XKSJn2LIiEBs3GjwchQ6zoG9etg1K0T6eu3kDRhCqlzF1Oubk2MunVSldExMcH8P5+gzMkh5YdfSPp0CmnLVqMs4vsvDqcOHmPln4to0+Nt/jNrGj6VA/h50nfEPonWWP7mlWsEVg9i5JRxfPbfr/CvUpFfv/yByPAIVZnsrGxm/ucbYh4/5f3PRvPlHz/Qd9RgrGw176PFraqLLx0qN2b3zdP8dHA5t2MfMrhue6yMzbSu07dma3zt3Fl5YS/f7VvMkrM7eJKcNxZmdVc/2gQ2YNeNk3y/729WXthDVRdf2gTWL7F2LFy2lKUrVzJuzBgWzvkDWxsbhn80tshjwsXLl/lsyhTatAxl2dx5tGkZyoTJk7ic74ZHYlISg0YMR19Pn/9+/z2rFi5izLDhmJvlfj7p6elcu3GTwf368/effzF96ldE3r/H2M8+LbG2Pnf28AnWzVtKy27t+eTHL6lQ0Y/ZU38k9mmMxvKGRoY0btOcUV9/xqc/T6Nltw5sXbKGozv2l3hdX5exgSG3Yu7z48HlpV2VFwo/dYVjK3dQvU0jOv3nPZx8PNj+81KSYxOKXK/bl8Pp/f1Y1cPCofAxICkmnhOrd+Hk41FS1X8pl4+dZfuitTR+uyXvfzMOD/8KLPn2dxKiY4tcLz01jfW/Lca7st8bqql2N09e4vDybdRq04TuX3yAs58nm/67mKSY+CLX6/3VaAbMGKd6WDraql7LzszCwt6a+l1aYGKp/RhaUmq4+tG5Sgg7rp/gu31/Ex7zgA8adNJ6LbH64j4+2zpb9Zi47Q9SMtM49yDvmr6cnj7RqQlsvHKYhPTkN9UUlVunLnFkxTZqtG1Cty8+wNnXky2z/n7h9/TO1FH0/+ET1SP/9/TwegS+darQ8aN36TxhCOY2lmz+aRHJcYkl3JoyRqksm4//pyR4Jt4ofX19+vXrx4IFC1Dm+8dbtWoVmZmZ9O7dm0uXLhEaGkrnzp25ePEiK1as4PDhw4wYMULjNpVKJW+//TaxsbEcOHCAXbt2ER4eTo8eeXf6tmzZQufOnWnbti3nzp1jz5491KpVS+P2FAoFnTt3Rk9Pj+PHjzN79myN3SDNzc1ZsGABV69e5b///S9//vknP/30k+r1lStXMmnSJL7++mtOnz6Ns7Mzv/3220t9TpMnT+aXX37h6NGj3Lt3j+7duzNz5kyWLl3Kli1b2LVrFz///LOqfFJSEh9++CGnTp1i9+7dKJVKOnXqhEKR2ye9X79+tGnTht69e5Odnc327duZM2cOS5YswdTUVGs9pk6dSr9+/Th//jwBAQH06tWL999/n08//ZTTp08DqH0vycnJtGnTht27d3Pu3DlCQ0Np3749kZHas0wOHz6sCs4VlJycTNu2bbly5QpHjhzRWKagefPm0bZtWywtLenTpw9z585Ve93JyYnjx49z9+7dIrdTp04d7t2798Jyr6t1QH323z7L/vCzPEyM5u+z24lJTaC5r+b908fWjacp8ey4cYKnKfHceBrJ3lun8bZxUZX57ehadt88xd34KB4lRvPXyY3o6uhQycm7RNuSn1KpZNm69bzbsyfNGjXCx8uLKR99THpGBtv37dO6XiV/f0YPGUJoSAjlDAw0lmlYuzbDBgygWaNGJVV9jd7yrcXRiEscibhEVFIsqy7uIy41iWDvahrLp2dnkpiRonp4WjthUs6IY3cvq5XTQYd3a7dlc9gRolOK/uFWEgxD3yJ94zayTp9H8eAhqX8sRKdcOcrVr6N1HX0fb7JvhpN17BSK6BiyL4eRefwU+uXzfiwatmuJIjaWtL8WkXM7Irfc1esotASxisvudVtp2DKERqFNcfZwpcd7/bC2s+XAVs2B/B7v9SO0a3u8/Crg6OpMp/49cXBx4uKJvCEEjuzaT0pSMsMmjsWnoj+2Dvb4VArA3Vtzlkpxa+JdjZORVzkZeZUnyXFsvHKI+LRk6nsGaSzvb+9BBVtX/jqxkZvR94hLS+Je/GPuxkWpynhZOxMR+4hzD24Ql5bEjaf3OP/gJm6WjiXSBqVSybJVq3i3b1+aBTfBx9ubKZ9+lntM2F34BtVzy1avom7NWrzbpw9enp6826cPdWrWZOmqVaoyC5cuwdHegUmffkrlwIq4ODtTp2ZN3FxdATAzM+O3H3+kRbNmeHl4EFSpEp+MGk3Y9etEFbjRVtz2b9hBvebB1G/RBCd3FzoP7o21nQ1Htu/VWN7N25OawfVw9nDF1tGe2iENCKgeRPjVwkH3suZ45BX+PLGRA7fPl3ZVXujS7mP4N6xOQKMaWDvbU79HKGbWllw9cLrI9YzNTTGxNFM9CmbMKxQK9s1dR432IZjbv9rYs8Xt+JZ9VG9ajxrNGmDv6kSr/l2wtLXm1K7DRa63+a8VVG5YCzdfrzdT0SKc33WUwEY1qBhcCxsXBxr3bIO5tQWX958scj1jC1NMLc1Vj/zfk2N5Nxp2a4VvnSro6b/5TlhNfWpyLOIyx+5e5nFSLGsv7ScuLYlG5atqLJ+enUlSRqrq4WHtiLGBEcfzXUtExj9mw+WDnH1wneyckskcLsqFXUcJaFSDio1rYu1sT6OebTCztuDKgVNFrmdsYYqJpbnqkf97aj6kK5Wb1sHOwxlrZ3ua9OuIUqnkQdjtkm6OEFpJ8Ey8cQMHDiQiIoL9+/erls2bN4/OnTtjbW3N9OnT6dWrF2PGjMHX15cGDRowa9YsFi1apDFza/fu3Vy8eJGlS5dSs2ZN6taty+LFizlw4ACnTuUetL/++mt69uzJlClTCAwMpGrVqlq7OO7evZuwsDAWL15MtWrVCA4OZtq0aYXK/ec//6FBgwZ4eXnRvn17PvroI1auXKl6febMmQwcOJDBgwfj7+/PV199RcWKFV/qM/rqq69o2LAh1atXZ9CgQRw4cIDff/+d6tWr07hxY7p27cq+fAGIbt260aVLF3x9falevTrz5s3j0qVLal0R58yZw6NHjxg1ahQDBgxg0qRJL8zievfdd+nevTt+fn6MHz+eiIgIevfuTWhoKIGBgYwePVrte6xatSrvv/8+QUFB+Pr68tVXX+Ht7c3GjRu1vkdERASOjo4au2xOnTqV8+fPc+jQITw8XnwHV6FQsGDBAvr06QNAz549Vdlyz02aNAkrKyu8vLzw9/dnwIABrFy5UhVofM712Y+uiIiIF77vP6Wnq0d5GxcuPQpXW34pKhxfO3eN69yMvoeNiQVVXXwBsDAypY57Rc4/vKmxPIChngF6OrqkZKQVX+Vf4EFUFDFxsdSrUVO1rFy5ctQICuJi2NUi1iyb9HR08bBy4urjCLXlYU8i8LZ1faltNPAK4tqTu8Smqt81bRvYgOSMNI5GXCqu6r40XXs7dK0syb6c15WP7Gyyr99E31d7sDX7xi30vTzQ8/ZSbcegamWyLuRdzBtUr0r2nUhMRgzB4pfvMZv6GeVCSjbgmZ2VTeStO1SsXkVtecUaQYSH3XipbSgUCtLT0jE1z7uxcPHEGbwDfFn623w+7j2UKcPGsXXFehQ5JT9orp6OLq6WDtwo0JX7xtNIvGycNa5Tyak89+Kf0LRCTSY2f5fxTfvQrmJD9HX1VGXuxD7EzcoBd6vcYJmNiQUBDp6EPYkokXY8ePSImNhY6tXKO++UK1eOGlWrcvHyZa3rXbxyhboFzlX1atfh4pW8dQ4eOUJggD/jv/iCFh070GvQINZt2lRkfZJTUtDR0cHMrOQyT7KzsrkXHoF/NfXu2/7VKnPn2i0ta6m7f/sud67dxEdLt2Px6nKyc4iOfIRrRfXui64VvXkcXnT279qv/uDvT35ky4+LeHi98Lio5zYfxMjchIBGb6Y7tzY52dk8vHOPClXU9xvvKgHcv6F9PNdz+48T9ziakC6tSrqKL5STnc3Tuw/xqOSjtty9kg9RL/ieVnz5G/M/+o71P8zn/rWyE2zR09HF3cqRa0/Ub8xee3yX8rYuWtZSV8+zMtef3CUuLakkqvjKcr+nR7gX+H/K/Z6KHqJh1Ze/s/Dj79k4Yz4PXvA9ZWdmocjJwdDU+LXrLMQ/JWOeiTcuICCABg0aMG/ePJo2bUp4eDiHDh1i586dAJw5c4Zbt26xZMkS1TpKpRKFQsGdO3cKZR+FhYXh7u6Ou3tesKFixYpYWVkRFhZG7dq1OX/+PEOGDHmp+oWFheHh4YGbW16f+vr1C3djWb16NTNnzuTWrVskJyeTnZ2NhYWF2nYKDlhfv359taCXNlWq5P3wc3R0VHUNzb/s5Mm8u26RkZFMnTqVEydOEB0drQoERUZGUrly7kW7tbU1c+fOJTQ0lAYNGjBhwoRXrgdAUFCQ2rL09HQSExOxsLAgJSWFKVOmsHnzZh4+fEh2djZpaWlFZp6lpaVhZGSk8bWWLVuye/dupk2b9lIzge7cuZOUlBRat24NgJ2dHS1btmTevHmqAKizszPHjh3j8uXLHDhwgKNHj9K/f3/++usvtm/frgriGRvnnpxTtXQnysjIICMjQ22ZoaH2bm6amBuaoKerS0K6epfkhLQULJ01/6C7GX2P346uZWTDrhjo6aOvq8eZ+9dYeHqr1vfpWa05sWlJXI56cxeQMXG53UJsC8z6amttzaPHT95YPYqLmaExerq6JBX4rpLSU7B01J69+ZyFkSmVHL2Zd3Kz2nJvW1caeAXx9Z6FxVrfl6VjmXvMUiSoB/QUCYno2mnvkph14jRpFmaY/edjQAcdfT0y9hwgY/MOVRldezsMmwWTsX03KZu2o+fthXGf7iizssg6cqJE2pOcmIRCocDCSr3bs7mVJYlxL5fVt2vdFjLTM6jZuJ5q2dOoJ8Q8vkrdkIaMnDyOJw+jWPb7AhQ5Ctr16lzE1l6fabln+16G+rEoKSMNc0MTjevYmFhS3saZbEU2C05vxbScEZ2DQjAxMGLlhT0AnH94E9Nyxgxv2AUdcoP5RyMusu/WmRJpR0xsbjdFWxv1/crW2oZHj6M0rfJsvViNx5GY2LyuZw8ePWLNhg307tadd/v04cq1MH6Y9V8MDAxo16pwECAjI4Nf/phDq+bNMSsi+/p1pSQ93x8t1JabW1qQ9IL98YtBH5KckIRCkUPrHm9Tv0WTEqvn/zfpyakoFUpMLNS/e2NzU9ISNQ8RYmJpRuM+7bDzdCYnK5ubJy6x5afFtBvbH2e/3AzUqFuRXD9yjs4T3y/xNrxIamIKSoUCM0v1roBmluaEJ2gOusQ8esKeZZt4d/JodPX0NJZ5k3K/JwXGFurXQ8YWZqRqaYOJlRkh/Tri4OlCTnY2149dYMOMBXT6ZKDW8bfeJNPn1xIZBa4lMlKx0HI8z8/C0JSKjuWLvOZ7055/TyYFvydzU1ITNHchNbE0p0nfDtg/+55uHL/Axh8X0vHjd7V+T8fX7MLUygK3im+uF0VZoFT8/+0iWRZJ8EyUikGDBjFixAh+/fVX5s+fj6enJ2+99RaQe9f//fffZ9SoUYXW05R9pFQq0dHRKXL580DIy1Bq6MddcPvHjx9XZbKFhoZiaWnJ8uXLmTFjxku/T1EM8nVX09HRUXv+fFn+TKl27dpRvnx5/vzzT1xcXFAoFHh5eZGZmam23sGDB9HT0+Phw4ekpKSoBfteph7alj2vyyeffMKOHTv44Ycf8PHxwdjYmK5duxaqR352dnbExcVpfO2tt95i1KhRdOzYkZycHLWuqprMmzeP2NhYtQkCFAoF586dY+rUqejluxisXLkylStXZvjw4Rw+fJjGjRtz4MABmjZtCkDssx9m2iZS+Oabb5gyZYraskmTJsE/GCJEifo+p6MDaDlXulrY069ma9ZdPsDFR+FYGZvRq1pLBtZpx58nCmf4tQtsSH3PIL7as4AsRbaGLRaPbXv3Mm3Wf1XPZ36ZO4Zcwf/M3P/LEqtGidNwdCj0/WlS37MyaVnpXMiXIWiob8C7tduw5OwOUjLfTFagQf06mLzbS/U8ecavuX8UPO7p6GjdBwH0A/wwat+atIXLyA6/g56jA8Z9uqOITyBjw7OLel0dcu7cJX31BgBy7t5Dz9UZw7ealFjwLK/+BZ4rNSzT4OT+o2xespZhE8eqBeCUCiXmVhb0GTkYXT1dPH29iY+NY+eaLSUePNOmqP+j58fmpWd3kp6de/zdeOUw/Wq1Zu2l/WQrcqhg68pbvrVYe2k/kXGPsTO1pGPlYJqnp7L7ZtFdbV7Gtl07mZbvnDjz2+801lvbObxAg9TXQX0dhUJBRX9/hj+bMTrAz4/bdyJYs2FDoeBZdnY2n305BYVCwfgPx75qs/4hDTvkC5o8etpnZKSlE3EjnE2LV2Hn7EjN4HpFryRKjJWTndrEAI4V3EmJTeDirmM4+3mSmZ7Bvnnrady3HUZmLw6CvDkF/neUmvc9hULB2l8WEdK1NbbODm+obi+n0OFBqdR6ALR2ssfaKe+6zamCB8mxCZzbcbhMBM+e+6fhkLqeFUnLyuDiw5fLXH2jNHwl2o7t1k52WOf7f3r+PZ3feUTj93Ru+yFunbxEx0/eRV/LkB5CvAkSPBOlonv37owePZqlS5eycOFChgwZojrA1qhRgytXruDj4/OCreSqWLEikZGR3Lt3T5V9dvXqVRISElRZalWqVGHPnj28++67L729hw8f4uKSm0J97NgxtTJHjhzB09OTzz//XLWs4NhYgYGBHD9+nH79+qmWHT9+/KXa9CpiYmK4dOkSv/32G3Xr1gXgwIEDhcodPXqU77//nk2bNjFhwgRGjhzJwoXFm+1y6NAhBgwYQKdOuYOGJycnv7DbY/Xq1YmKiiIuLg7rAtkFAC1atGDz5s20b98ehULBL7/8ovFkHBMTw4YNG1i+fDmVKuXNSqRQKGjcuDHbtm2jXbt2GuvwvDtt/kkpLl++jIGBgdq28vv0008ZO1b9h5ehoSED13xTZHvzS8pIJUehwMpI/W6dhZGp1gFfO1RqxI3oSLaEHQXgXvxj5mdvYVKLgay6sJf4fOu1CWhAh0qN+WbvIu7Fl+y4PsH16lE5IG/2uMzM3MkzouPisLPNGwA2Nj4eGw3fc1mXnJFGjkKBhZF6poK5kQmJ6S8eAL+BVxAnIq+So8wLetubWmNnasUHDfKCL8/37V86fcTknXOJTokvngY8k3XuAknh+brsGOReBuhaWZKTL/tM18IcZaL2QXmNurQn8+gJMg8cAUBx/yEYlsPk3T5kbNwGSiXK+ARyCszYmfMwCoNaJTejsplF7pgpBbPMkhISCmWjFXTq4DEWzfqD9yeMJrC6+lhiljZW6OnpoauX173c2d2VxLh4srOy0TcoucuplMzcfa9glplZOeNC2WjPJaWnkJCerAqcATxJjkVXRwcrYzOiUxII9a/H2fvXORmZ2406KimGcnoGdK3alD03T/3jH3fPBTdsROXAvKEKMp9NqBMdE4udbd6Pptj4uCKPCbY2NmpZZgCxcerHETtbW8oXmMW3vKcnew+qnwuzs7OZMGkSDx894vefZpZo1hmAqfmz/TG+4P6YhPkL9kdbx9wAgIuXO0nxiWxfvl6CZ8XEyMwEHV0dUgtkmaUlpWBs8fL7hIO3G7dO5Ha3T3oaR3JMPDt+zZss4fnN2L8+mEr3L4djYf9mJhgBMLEwRUdXl+QCWcUpicmYWRQemD4zLZ2HtyN5FHGfrQtyJ1pSPhsY/MveY+j76TDKv+EJBHK/J91C2UtpSSmFspyK4ujtxo3jZWPW15Tn1xKGBa4lDE1I1HI8z6+eZ2VO3VO/lihtRX1Pr/L/5OjtrvF7Or/jMGe3HqL92P7Yujm9dn2FeB0SPBOlwszMjB49evDZZ5+RkJDAgAEDVK+NHz+eevXqMXz4cIYMGYKpqSlhYWGFBsl/rnnz5lSpUoXevXszc+ZMsrOzGTZsGE2aNFFNCjBp0iTeeustKlSoQM+ePcnOzmbbtm2MGzdO4/b8/f3p168fM2bMIDExUS1IBuDj40NkZCTLly+ndu3abNmyhXXr1qmVGT16NP3796dWrVo0atSIJUuWcOXKFbXul8XBysoKGxsbZs+ejZOTE3fv3i00wUFSUhJ9+/Zl5MiRtG7dGg8PD2rVqkW7du3o1q1bsdXFx8eHtWvX0r59e3R0dJg4cWKhscQKql69Ovb29hw5ckRrcKtZs2Zs2bKFdu3aoVQq+fXXXwsF0BYvXoytrS3dunUrNH5au3btmDt3Lu3ateODDz7AxcWFZs2a4ebmxqNHj/jqq6+wt7dX65576NAhGjdurDVr0dDQ8JW7aRaUo8jhTuxDKjtV4PT9a6rlQU4VOJPveX7l9AxQFLhoUj3P95m0DWzA25WC+W7f39yJffha9XwZpiYmmObL+FMqldha23Di3FkCngXCs7KyOHvpEiMHDirx+hS3HKWCyPgoAh081bLHcp8XfQfY184dBzPrQmOaRSXFMHWX+lTt7Ss1wki/HKsu7CUuVXvw6h9Lz0CR/lRtkSI+Af1KgeTcfTaGjJ4e+v6+pK1cp2EDz5QrBwW7EigUanees2+Go+esPvi8rpMjihjNswwWB30DfTx8yhN27hLVG+SNkxV27jJV69XUut7J/UdZ9N85DB43gqA6hccqqlDRj1P7j6JQKFTHl8cPHmFpY1WigTPI3fceJDzBz95dreu1n72H1q7Yd2IfUcXFh3J6BmTm5Aat7E2tUCgVxKfl/sApp6dfKGtSoVSggw65X+Trhc80HhNsbDhx+jQBfrk/wrOysjh74QIj39feza1KpUqcOH2K3t27q5adOHWKKpXyxhGrWjmIu5HqYyDdvX8PZ8e8/e954CzywX3mzPwvVpZFB6+Kg76BPu4VvLh+/ora/nf9/BWC6r7CmFhKJdkFZvMW/5yevh52Hs48CLtN+ep5Y4I9CLuNZ1X/ItZUF3MvCuNnszVaOtnR5Qv1oTpOb9hHVnoG9Xu0wtS65Pe3/PT09XEp787ti9cJrJ03EP3tS9fwr1l4ohFDYyM++F59OI9TOw9z5+oNuo8ZiJW9baF1Spqevj72ni7cuxqOd428QPy9q+GUr/byYwBG33uEidWbnW1cmxylgnvxjwlw8ODio7xrB38Hz0Lj3xbkY+eGg5k1f0VoHyOyNOR+T87cD1P/nu5fDcfrVb6nyEeYFOhmfG7HYc5uOUDb0f1w8Hq58WX/df4fz2xZFsmEAaLUDBo0iLi4OJo3b67WHbNKlSocOHCAmzdv0rhxY6pXr87EiRNxdtY8MLKOjg7r16/H2tqa4OBgmjdvjre3NytWrFCVCQkJYdWqVWzcuJFq1arRrFkzTpzQ3G1IV1eXdevWkZGRQZ06dRg8eDBff/21WpmOHTvy4YcfMmLECKpVq8bRo0eZOHGiWpkePXrwxRdfMH78eGrWrMndu3f54IMP/unHpZWenh4rVqzg7NmzVK5cmbFjxxbqPjp69GhMTU1V435VqlSJ7777jqFDh/LgwYNiq8tPP/2EtbU1DRo0oH379oSGhlKjRtFZJnp6egwcOFBtjDtNQkJC2Lp1K4sXL+aDDz4o1L123rx5dOrUSePEA126dGHz5s08fvyY5s2bc/z4cbp164afnx9dunTByMiIPXv2YJsvQ2rZsmUvPU7e69h27RhNK9SgiXd1XCzs6FMjFFsTS/bczJ3xq0fVtxhav5Oq/LkHN6jlHshbPrWwN7XGz86dfjVbcyv6PvHPBo9tF9iQblWa8ceJDTxNicfSyAxLIzMM9cuVeHue09HR4Z1ObzN/+XL2HTnCrYgIJs/4ASNDQ1o96xoL8MX07/ll3jzV86ysLK6Hh3M9PJys7CyeRsdwPTycew/z9tPUtDRVGcidnOB6eDhRT0p2LLU9N0/TsHwV6ntWxsnchq5VmmJtYsGhO7l3SjtWakz/Wm0KrdfQK4g7MQ95mKg+y2S2IoeHidFqj7TMDNKzM3mYGP3G7ixn7NiDUftWGNSshq6rCybv9UeZmUnmsbxxFU3eG4BRt7fz6n7+EoZvBWNQtxa6drboVwrEqEsHss5dVF3oZWzfg14Fbwzbt0LXwR6D+rUxbNqIjN2FM2OLU/NObTi8cx9Hdu7nUeQDVv6xmNin0QS3yR0aYN2C5cyfkTfz8cn9R5n/4+90HdSH8v6+JMTGkxAbT1pKXhZAkzYtSE5KZsWcRTx+8IhLJ8+xbeUGQtq2LNG2PHfg9nnqeFSitnsgDmbWdKjUCCtjM9Vsa60D6tOzWgtV+XMPbpCamU6Pam/haGaNt40L7So25GRkGNmK3JnYrj6+Q33PIKq5+GJjbIGvnTutAupxJerOS3VFflU6Ojq8060b85f8zb6DB7l1+zaTv/km95jQPK/uX3z9Nb/8MUf1vGfXrpw4fZoFS5cQcfcuC5Yu4cSZ0/TKd+OnV7duXLp6hXmLF3Pv/n2279rFuk2b6PYsCzo7O5txX0wk7Po1vvrPRHJycoiOiSE6JoasEg5KhXQM5fjuAxzffZCoew9ZO3cpcdExNAzNPQ5uWryKv2f+oSp/aOtuLp88x5OHUTx5GMXxPYfYu2E7tUIalGg9i4OxgSG+dm742uWOGetiYYevnRuOZmUv2zioeX2uHz7L9SPniHv0lGMrd5Acm0BgcG6Q8+S6Peybv15V/tLu40Scv0bC4xhiHz7h5Lo93DkbRqWQ3CC9voE+Nq4Oao9yJkYYGBli4+qAnv6bH0OsXtumnN13jHP7jvH0QRTbF60lITqOWs1zJ27ZvWwj635bDICOri4O7i5qD1NLM/QNDHBwd6Gc0evdLPynqrVowNVDZ7h6+AyxD59wePlWkmITqBSSOxv0sTU72T13tar8hV1HuX3uKvGPY4h58Jhja3YSfuYqQU3rqsrkZGfzNPIRTyMfkZOdQ3J8Ik8jHxH/uORu7OS379YZ6nsFUc+zEo7mNnQOaoKNiTmHn11LtK/YiL41C4/VWN+zMndiH/EoqXA9cyeWscfV0h59XT0sjc1xtbTHztSqpJsDQNUWDQg7dJaww2eJe/SUIyu25X5PTXL/P46v3cWeuWtU5S/sPsqdc2HEP44h9sETjq/dxe2zVwlqlvc9ndt+iJPr9xDS/20s7KxITUgiNSGJrPSMQu8vxJsimWei1NSvX1/j+GIAtWvXVk0goEnBroAeHh5s2LChyPfr3LkznTtrHpum4Pb8/Pw4dOiQ2rKCdf3+++/5/vvv1ZaNGTNG7flnn31WaFbP7777TmsdQ0JCCr3PgAED1DLzACZPnszkyZNVz5s3b642s2bB+s7LF5x4btSoUWrjyhX8DArWw8vLq9CygvX18vJi7969amWGDx9e6L0LGjNmDJUqVeLu3bt4enpqrA9AcHAwSUl5g8Tmn+nz4sWLWrffuXNn1Q+kLl260KVLlyLrs2XLFvT09OjatesL6/66jkdewczQhE6Vm2BlbMb9hCdM37+E6NTcbj5WxubYmuTdsT545zxGBuVo6VeH3jVCSc1M58rjOyw/v0tVprlvbQz09BnTuIfae625tJ+1l/aXeJue69+tOxkZmXz7yy8kJSdROSCAX6Z9o5aNEvXkKbo6eQHPpzEx9B4+TPV88ZrVLF6zmhpBVfhj+nQArt64wdDxeVmjPz37od2ueQsmf/xxibXnzP3rmJYzpm1gAyyMTHmUGM2vR9aoZs+0NDLDxkT9rqmRfjmqu/qx8sJeTZssEzK27ESnXDmM+7+DjokJObfvkPz9LMh3gapra6N29zN9w1aUSiVGXTuga22FMimZrHMXVeObAeTcuUvKrNkYd3sbo45tUURHk7ZkFVn5gnIloXZwfVISk9mybC0JsfG4eLoxYso4bB1yu8ElxMYT+zTvx8eh7XtQ5OSw7Pf5LPs9LxOw/lvBDBibm0liY2/L6KkTWPXn33w5fAJWttY069CKVl07lGhbnrvw8CamBka08KuDhaEpUUkxzD2xSTXbmoWRKdbGed2YMnOymHN8A50qBzM6uAepmelceHiLbdfyhiDY/axrZquAelgamZGcmcbVqDtqZYpb/3d6kZGRwbc//UhScjKVAwP55YcZBY4Jj9HVzUthrFo5iK+/mMTvc/9i9ty5uLm48M3kyVTON3t1pcBAfvgqN+j216KFuDg58dGIkbRukRvcfPL0KQeP5HYx7jVooFqdZs/8L7Wql9zMiDUa1SUlMZkdKzaQEJeAs4cr708ci41DbtfVxNh44vLtj0qFkk1/ryb28VN09fSwc3Kgfd9uNAgNKbE6FpcAe09+6ZQ3nMGoRrkBzq1hx/h6b+lMiqJNhdqVyEhJ5eyWg6QmJGPj4kCrEb0wt7UCIDUhmZTYvO62ipwcTqzeRUp8EvoG+li52BM64h08gnxLqQUvVrl+DdKSUjiwdgfJ8Qk4uDvTe/xQrJ51H02OTyQhWvOYs2WFb50g0lNSOb1pPykJSdi6ONJ+dF8s8n1PSTF531NOdg5HVu4gJT4RfQMDbFwdaDuqL15V8rqcpsQnsfLLvBso53cc4fyO3LG2Oo0r+cz4sw9uYFrOmFb+9Z5dS8Tw+9F1quO5pZEp1saFryWqufiy5tJ+jdu0NDZjQrO+qufNfWvR3LcWN5/eY9bhVSXVFBWf2kGkJ6dxZnPu92Tj4kDbUX3y/p/ik0jO//+UncPRVXnfk7WLPW1G9cEzKO97urL/FIrsHHbOXqH2XrXah1C7Q7MSb5MQmugotUUvhBDiDdqwYQM2NjY0bty4tKvCypUr8fT0VI0h9yp6L51c/BUqRUt6TSbpTkRpV6PYmZf34oM100u7GsXq9y6fEN9v6IsL/g+xWjSb/SU0+2NpCfGpycebip785H/ND+1HkhRVsuMqvmnmTo5sDyu5QGJpaBVYn4a//ruOEQBHhs/mh/1FZ6//r/k4pDdLz+54ccH/Ib1qhDLr0MrSrkaxGtW4OyPX/Vja1ShWP3cay8yDK15c8H/ImOAeLy5URiWeKpvXQBa1tQ+F8W8mmWdCiDKhY8eOpV0Fle75xtYRQgghhBBCCPH/m4x5JoQQQgghhBBCCCGEFpJ5JoQQQgghhBBCCFGWFJzZXJQqyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCiFIVFxdH3759sbS0xNLSkr59+xIfH6+1fFZWFuPHjycoKAhTU1NcXFzo168fDx8+VCsXEhKCjo6O2qNnz56vVDcJngkhhBBCCCGEEEKUJUpl2XyUoF69enH+/Hm2b9/O9u3bOX/+PH379tVaPjU1lbNnzzJx4kTOnj3L2rVruXHjBh06dChUdsiQITx69Ej1mDNnzivVTcY8E0IIIYQQQgghhBClJiwsjO3bt3P8+HHq1q0LwJ9//kn9+vW5fv06/v7+hdaxtLRk165dast+/vln6tSpQ2RkJB4eHqrlJiYmODk5/eP6SeaZEEIIIYQQQgghhHihjIwMEhMT1R4ZGRmvvd1jx45haWmpCpwB1KtXD0tLS44ePfrS20lISEBHRwcrKyu15UuWLMHOzo5KlSrx8ccfk5SU9Er1k+CZEEIIIYQQQgghRFmiUJbJxzfffKMak+z545tvvnnt5kZFReHg4FBouYODA1FRUS+1jfT0dCZMmECvXr2wsLBQLe/duzfLli1j//79TJw4kTVr1tC5c+dXqp902xRCCCGEEEIIIYQQL/Tpp58yduxYtWWGhoZay0+ePJkpU6YUuc1Tp04BoKOjU+g1pVKpcXlBWVlZ9OzZE4VCwW+//ab22pAhQ1R/V65cGV9fX2rVqsXZs2epUaPGC7cNEjwTQgghhBBCCCGEEC/B0NCwyGBZQSNGjHjhzJZeXl5cvHiRx48fF3rt6dOnODo6Frl+VlYW3bt3586dO+zdu1ct60yTGjVqYGBgwM2bNyV4JoQQQgghhBBCCPE/Sako7RoUCzs7O+zs7F5Yrn79+iQkJHDy5Enq1KkDwIkTJ0hISKBBgwZa13seOLt58yb79u3D1tb2he915coVsrKycHZ2ful2yJhnQgghhBBCCCGEEKLUBAYG0qpVK4YMGcLx48c5fvw4Q4YMoV27dmozbQYEBLBu3ToAsrOz6dq1K6dPn2bJkiXk5OQQFRVFVFQUmZmZAISHh/Pll19y+vRpIiIi2Lp1K926daN69eo0bNjwpesnwTMhhBBCCCGEEEIIUaqWLFlCUFAQLVu2pGXLllSpUoXFixerlbl+/ToJCQkA3L9/n40bN3L//n2qVauGs7Oz6vF8hs5y5cqxZ88eQkND8ff3Z9SoUbRs2ZLdu3ejp6f30nWTbptCCCGEEEIIIYQQZYlSWdo1eONsbGz4+++/iyyjzPe5eHl5qT3XxN3dnQMHDrx23STzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIsUfz/67ZZlknmmRBCCCGEEEIIIYQQWkjwTAghhBBCCCGEEEIILaTbphBCCCGEEEIIIURZolSUdg1EPpJ5JoQQQgghhBBCCCGEFjpKpVJGoRNCCCGEEEIIIYQoIxIPHC7tKmhk0aRRaVehVEi3TSGEKEb7b50p7SoUqxCfmiQ9fFja1Sh25i4uLDq1tbSrUaz61W5T2lUoEWfuhZV2FYpVTfdAZhxYVtrVKFYfNXmntKtQIpLCrpd2FYqVeaA/P+xfUtrVKHYfh/Sm4a9DS7saxerI8NksPbujtKtRrHrVCC3tKpSIidv/KO0qFKuprd5j85WyGbD5p9pV+h8O9EieU5ki3TaFEEIIIYQQQgghhNBCgmdCCCGEEEIIIYQQQmgh3TaFEEIIIYQQQgghyhKFdNssSyTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS5SK0q6ByEcyz4QQQgghhBBCCCGE0EKCZ0IIIYQQQgghhBBCaCHdNoUQQgghhBBCCCHKEoXMtlmWSOaZEEIIIYQQQgghhBBaSPBMCCGEEEIIIYQQQggtpNumEEIIIYQQQgghRFmilG6bZYlkngkhhBBCCCGEEEIIoYUEz4QQQgghhBBCCCGE0EK6bQohhBBCCCGEEEKUJdJts0yRzDMh/octWLCAbdu2lXY1hBBCCCGEEEKIfy0JnokS4+XlxcyZM9/o9nR0dFi/fv1rvc/kyZOpVq3aK62zf/9+dHR0iI+Pf633fhVr167l+++/p169ev9o/QEDBvD222+rnoeEhDBmzJgi1ymu73Tv3r0EBASgUChee1sl4cmTJ9jb2/PgwYPSrooQQgghhBBCiFIm3TZFIe3btyctLY3du3cXeu3YsWM0aNCAM2fOUKNGjTdar1OnTmFqavpG37Osun37Nv/5z3/Ytm0b1tbWxbLNtWvXYmBgUCzbepFx48bx+eefo6ubG79fsGABY8aMUQs+hoWF0aJFC+rUqcOyZcswNDRk3759TJ8+nRMnTpCWloaXlxetW7dm7NixuLq6qr2Hv78/d+7c4c6dO4Veu337Np9//jkHDhwgNjYWOzs7atasyfTp0/Hz88PBwYG+ffsyadIk/vrrrxL/PPZv3sXOtZtJiI3HxcOV7u/1w7dygMayZ4+c5ODW3dy7fZfsrGycPV1p36sLlWpWVSuXmpzC+kUrOXf0FKnJKdg52tN1cG+CalcvkTYolUr+WLiQdZs3k5SURKXAQMaPHk2F8uWLXG/PgQPMnj+f+w8f4ubiwrBBg2jauLHq9fY9e/Lo8eNC63Xr2JHxz4K9ew8eZO2mTYTduEFCYiJL/vwTfx+fYm3fc6d3Heb41n0kxydi7+pEiz5v4xFQ4YXr3btxm8Vf/Yq9mxNDpn2iWn5u3zEuHTrF0/tRADiVdyOke1tcK3iWSP3/v9i1YSubV60nPiYOVy93+g0bREBQJY1l42JiWTJ7PnduhhP14BGhndrSb9jgQuW2rdnI7k3biX4SjbmlOXUbN6DH4L6UK1eupJsDwJX9J7m44yipCUlYuzhQv0crnH017ycPr99h84yFhZZ3nzIcK2f7QstvnbzE3r/W4FnVn9Dh7xR73f+/USqV/LF8Get27iQpJZlKvn6Mf38oFTw8tK4THhnJ7KVLuBYezqOnTxg7cBC9OnQsVO5JTAw/L1rA0bNnSc/IwNPFlYkjRhJYQsc8gKv7T3Fh5zHSnu179bq3LGLfi2DLj4sKLe82ZRhWTnaFloefuszev9biWdWflsN6FHvdX1dVZx96VW9JgIMHdqZWTNj6O4fuXCjtar20UzsPcXTzHpLiE3FwcyK0Xxc8X+KcFXn9Ngu+nIWDuzNDvx3/Bmr6/0sd94o0Kl8FM0MTniTHse3aMe7GRWktr6ejS1OfmlR18cHM0ITE9BQOhJ/j7IPrAFR09CLYuzo2Jhbo6egSk5rAkYhLXHh48001iSPb9rJ/ww4S4+Jxcnel48CeeFf001j2dthNtixazZMHj8jMzMTa3pb6LZvQpH1LVZnjuw5wev8xoiJzb2S7VfCkTe/OePh6v5H2lBllNNHg/ysJnolCBg0aROfOnbl79y6enuoXR/PmzaNatWpvPHAGYG9f+IL//ytvb2+uXr36UmWzsrJeKihmY2PzutV6KUePHuXmzZt069ZNa5lTp07RunVrOnbsyB9//IGenh5z5sxh2LBh9O/fnzVr1uDl5UVkZCSLFi1ixowZ/Pjjj6r1Dx8+THp6Ot26dWPBggV8/vnnqtcyMzNp0aIFAQEBrF27FmdnZ+7fv8/WrVtJSEhQlXv33XepU6cO06dPL7YApca2HjzGyj8X0WvYQCoE+nFw+x5+nvQdk3+fjo1D4R8aN69cI7B6EG/374GxqQlHdx/g1y9/YMKPU/Go4AVAdlY2M//zDeaWFrz/2Wis7WyIexqDobFxibVj4fLlLF21iknjx+Ph7s7cxYsZ/sknrFm0CFMTE43rXLxyhc++/JKhAwfStHFj9h06xIQpU5g7axaVK1YEYNHs2eTku3AIv3OH4R9/zFshIaplaenpVK1cmeYhIXz1ww8l1sarx8+x6+/1tBrQFXe/8pzde5Tl0//g/e8mYGmnfR9JT01j4+yllK/kS3JCktprd8NuUbF+Ddz8yqNvoM+xzXtZ9t1s3vt2PBY2ViXWln+zY/sOs+j3eQwc9T5+lQLYs2UH3306lelzf8bOsfB5JDsrC3MrSzr26sa2NRs1bvPwngMs/2sx7308Ar9KATy6/5DZ02cB0HfYoBJtD+QGGI6t2E6jXm1x9PEg7OBpts36m+6Th2Nma6V1ve5TR1DOyFD13Mi88A2opJh4TqzeiZOv9sCOeDUL161l6cYNTBo1Gg8XV+auWsnwSV+w5rffMDXWfDxMz8jAzcmJ5g0b8uO8uRrLJCYnM2jCeGoFBfHfiZOwsbTkflQU5iV4YzH81BWOrdxBw15tcKzgzrWDZ9n+81K6TR6GmY2l1vW6fTm8wL5XuN25+94unHzK7r5nbGDIrZj7bL12lGmth5Z2dV7J5WNn2b5oLW0HdsPd35szu4+w5NvfGf7DZ1jaab/mS09NY/1vi/Gu7FfonCVeX2Unb1oH1mfz1cNExj2mlnsgfWu25ufDK0lIT9G4To9qzTEzNGbd5YPEpiZgWs4YXZ28DmSpWRkcCD9HdEo82Yoc/B086VS5CSmZadyKvl/ibTp3+CQb5i+n85A+lA/04diOA/z51UzG/Xcq1va2hcqXMyxHwzbNcPF0o5yRIXfCbrJ69iLKGRpSv2UTAG5dvk71RnXwCvBB38CAfeu3MWfKj4z771QsbUvuulyIoki3TVFIu3btcHBwYMGCBWrLU1NTWbFiBYMG5f5QOHr0KMHBwRgbG+Pu7s6oUaNISdF80AeIjIykY8eOmJmZYWFhQffu3XlcIKNk48aN1KpVCyMjI+zs7OjcubPqtYJdBm/evElwcDBGRkZUrFiRXbt2FXrP8ePH4+fnh4mJCd7e3kycOJGsrCy1Mt9++y2Ojo6Ym5szaNAg0tPTX/gZbd26FT8/P4yNjWnatCkRERGFyrzq5/O8u+icOXNwd3fHxMSEbt26FeoKOn/+fAIDAzEyMiIgIIDffvtN9VpERAQ6OjqsXLmSkJAQjIyM+Pvvv8nJyWHs2LFYWVlha2vLuHHjUBYYgLJgt80nT57Qvn17jI2NKV++PEuWLClU5x9//JGgoCBMTU1xd3dn2LBhJCcnF/nZLV++nJYtW2JkZKTx9b1799KsWTPeffdd5s6di56eHvfv32fUqFGMGjWKefPmERISgpeXF8HBwfz111988cUXatuYO3cuvXr1om/fvsybN0+trVevXuX27dv89ttv1KtXD09PTxo2bMjXX39N7dq1VeWCgoJwcnJi3bp1Rbbnde1et5WGLUNoFNoUZw9XerzXD2s7Ww5sLZz5CdDjvX6Edm2Pl18FHF2d6dS/Jw4uTlw8cVZV5siu/aQkJTNs4lh8Kvpj62CPT6UA3L1LJptJqVSybPVq3u3Th2bBwfiUL8+UCRNIT09nu4YM1ueWrV5N3Vq1eLd3b7w8PHi3d2/q1KjB0jVrVGWsrayws7FRPQ4fO4abiws1q+Zl2rVt2ZIh/ftTp2bNEmnfcye27adaSF2qN62HnasjLft2wsLWirN7jhS53rZ5q6hUvwauPl6FXnt7WF9qtWiEk6crdi6OtB3cA6VCScSVN3e3+N9m65oNhLRqTtM2LXD1dKffsMHYOtixe9N2jeXtnRzpP3wwwS2bYmKqObBx8+p1/CoH0PCtJtg7OVKlVnUaNG3M7Ru3SrIpKhd3HcO/UQ0CGtfE2tmeBj1aY2ZtydUDp4tcz9jcFBNLc9XjebbvcwqFgr1/raFmh6ZYFBEAFi9PqVSybNNG3u3WnWb1G+Dj6cmU0WNIz8hg+8GDWter5OvL6AHvEto4mHL6mm94LVy7Bkc7OyaNGk1lPz9cHB2pU7Uqbs7OJdUcLu0+hn/D6gQ0qoG1sz31e4S+wr5npnpo2vf2zV1HjfYhmNuX3X3veOQV/jyxkQO3z5d2VV7Z8S37qN60HjWaNcDe1YlW/btgaWvNqV2Hi1xv818rqNywFm6+Xm+mov/PNPCqwtn71zlz/zpPU+LZdu0YienJ1PGoqLG8j50bXjbOLD6zndsxD4hPS+ZBwlPuxef9hoqIfUTYkwiepsQTl5bE8buXeZwUi6eV0xtp08FNO6nzVmPqtQjG0c2Ftwe9g5WtDUd37NdY3s3bkxqN6+Lk4YqNgx01m9THv1pl7oTdUJXp8+F7NGzdDNfyHji6OdP9gwEolUpuXgx7I20SQhMJnolC9PX16devHwsWLFALOqxatYrMzEx69+7NpUuXCA0NpXPnzly8eJEVK1Zw+PBhRowYoXGbSqWSt99+m9jYWA4cOMCuXbsIDw+nR4+8FP0tW7bQuXNn2rZty7lz59izZw+1atXSuD2FQkHnzp3R09Pj+PHjzJ49m/HjC6eVm5ubs2DBAq5evcp///tf/vzzT3766SfV6ytXrmTSpEl8/fXXnD59GmdnZ7VglCb37t2jc+fOtGnThvPnzzN48GAmTJigVuZVP5/nbt26xcqVK9m0aRPbt2/n/PnzDB8+XPX6n3/+yeeff87XX39NWFgY06ZNY+LEiSxcqN49Z/z48YwaNYqwsDBCQ0OZMWMG8+bNY+7cuRw+fJjY2NgXBoUGDBhAREQEe/fuZfXq1fz22288efJErYyuri6zZs3i8uXLLFy4kL179zJu3Lgit3vw4EGt3+u6deto27Ytn3/+OdOnT1ctf77vadu2lZWV6u+kpCRWrVpFnz59aNGiBSkpKezfv1/1ur29Pbq6uqxevZqcnJwi61qnTh0OHTpUZJnXkZ2VTeStO1SsXkVtecUaQYTnu4AoikKhID0tHdN8GSUXT5zBO8CXpb/N5+PeQ5kybBxbV6xHkVMyqd8PHj0iJjaWevm+13LlylGjalUuXrmidb2LV69St8C+UK92ba3rZGVlsXXXLjq0bo2Ojk7xVP4l5WRn8+jOfcpX9ldb7l3Zn/s3I7Sud+HACeIeRxPcOfSl3icrIxNFjgJjM81BHFG07Kws7twIp0qtamrLg2pW48bVa/94u/6VA7lzI5xb13L/Lx8/jOL8ybNUr6v5WFaccrKziY58iFtF9a5WbhUr8Dj8XpHrrp06h8Uf/8DmHxfy8NqdQq+f3XwAY3NTAhq9+Wzyf6sHjx8TExdHvXxjp5YzMKBG5UpcvPZ6P/oOnjxJoI8P47//lhb9+9Lrw9Gs27njNWusXU52DtGRj3AtsO+5VvR+8b731R/8/cmPbPlxEQ+vF973zm0+iJG5CQGNSmYogf/vcrKzeXjnHhWqqA8B4V0lgPs3Cn8fz53bf5y4x9GEdGlV0lX8f0lPRxcXC7tC2WC3ou/jbuWocZ0AB08eJjylUfmqfBLSm9GNuxPqXxd9XT2t7+Nt44KdqSURcY+Ktf6aZGdlcz/8Lv5V1YdG8K9WkYhrL3eD6f7tu0Rcv4V3RX+tZTIzM8jJycFEQwb1v5pSWTYf/09Jt02h0cCBA5k+fTr79++nadOmQG6Xzc6dO2Ntbc3o0aPp1auXKlPJ19eXWbNm0aRJE37//fdCWUW7d+/m4sWL3LlzB3d3dwAWL15MpUqVOHXqFLVr1+brr7+mZ8+eTJkyRbVe1XzZJQW3FxYWRkREBG5ubgBMmzaN1q1bq5X7z3/+o/rby8uLjz76iBUrVqiCMDNnzmTgwIEMHpw7vs1XX33F7t27i8w++/333/H29uann35CR0cHf39/Ll26xHfffacqM3369Ff6fJ5LT09n4cKFqjb9/PPPtG3blhkzZuDk5MTUqVOZMWOGKiOvfPnyXL16lTlz5tC/f3/VdsaMGaOWtTdz5kw+/fRTunTpAsDs2bPZsUP7BfeNGzfYtm0bx48fp27dukBuNldgYKBaufyZauXLl2fq1Kl88MEHRQYgIyIicHFxKbQ8OTmZbt268dlnnxUKRt68eRMLCwucX+Lu+vLly/H19aVSpdyTeM+ePZk7d65qP3Z1dWXWrFmMGzeOKVOmUKtWLZo2bUrv3r3x9lYfR8HV1ZVz585pfJ+MjAwyMjLUlhkaGmosq01yYhIKhQILK/WuL+ZWliTGJWhZS92udVvITM+gZuO8iSOeRj0h5vFV6oY0ZOTkcTx5GMWy3xegyFHQrlfnIrb2z8TExgJgW6B7q621tcbxyvKvp2md59sraP/hwyQnJ9O+1Zu/qE9NSkGpUGBmaa623NTSnOT4RI3rxEY9Zd+KzfSdOBJdPe0XufntW7EZc2tLylfSPE6IKFpSQu7/lKW1ldpyS2tLEmLj/vF2GzRtTFJ8AlPGfAZKJTk5OTRv34oO73R5zRq/WHpyKkqFEmML9R8MxhampCZqzvQ1sTSncd/22Hs4k5Odw83jF9j800LafzQAZz8vAKJuRXL98Fm6TPzf6opW1sXE5+5ntvlu6gDYWlrx6OnT19r2g8dRrNm+jd4dOvJu125cuXmTH/76EwMDA9o1bfZa29bk+b5nUnDfMzclLVFzJr2JpRmN+7TDztOZnKxsbp64xJafFtNubH+c/XKzn6NuRXL9yDk6T3y/2OsscqUmaj5nmVmaE66lK2bMoyfsWbaJdyePfulzlng1JuWM0NPVJTkzTW15cmYa5oaab5rZGFvgYe1EtiKHped2YmJgRPtKjTA2MGL95QOqcob6BnwS0gd9XT0USgWbrx4hPKbkJ75KSco975pZWagtN7O0JCn+cpHrfjn442fXwjmEdu9IvRbBWstuWbwGSxtrfKtoztAT4k2Q4JnQKCAggAYNGjBv3jyaNm1KeHg4hw4dYufOnQCcOXOGW7duqXXlUyqVKBQK7ty5UyjIEhYWhru7uypwBlCxYkWsrKwICwujdu3anD9/niFDhrxU/cLCwvDw8FAFmQDq169fqNzq1auZOXMmt27dIjk5mezsbCwsLNS2M3So+g+H+vXrs2/fviLfu169emqZLwXf+1U/n+c0tUmhUHD9+nX09PS4d+8egwYNUvucsrOzsbRUD77kz+xKSEjg0aNHanXU19enVq1ahbpu5m/j8zLPBQQEqGV4Aezbt49p06Zx9epVEhMTyc7OJj09nZSUFK2TO6SlpWkMHhobG9OoUSP+/PNP3nnnHbXPSKlUvnSm0dy5c+nTp4/qeZ8+fQgODiY+Pl5V/+HDh9OvXz/27dvHiRMnWLVqFdOmTWPjxo20aNFCrU6pqaka3+ebb75RC/QCTJo0iZA+7V+qnmoKNk2pYZkGJ/cfZfOStQybOFYtAKdUKDG3sqDPyMHo6uni6etNfGwcO9dsKZbg2bZdu5iWb4y5md98k9uMAt+RUsOyQgquo1RqbfqGrVtpULcu9naFx4J7Y16yjQqFgvW/LqZxl1bYOju81KaPbd7DlWPn6PP5cPTLvZnJO/61NP5P/fNsxavnL7F+6WoGjnqfCgG+PH4YxaJf/2Kt7Qo693kzg5zrUPB/RXtZKyc7tcHZHSu4kxyXyIWdR3H28yIzPYN9c9fSuG8HjeOgiZe37cB+pv2ed8No5n9yhxEo9H3xWrsgAAqlkooVfBjetx8AAd4VuB0ZyZrt20okePZPaNr3UmITuLjrGM5+nrn73rz1NO7bDiPJsH0DCp9jNZ1kFQoFa39ZREjX1i99zhKvQ/0AroOO1mP682uMVRf3kpGdO/TM9mvH6FGtBZuvHiZbkduLIjM7i9+OrqGcngHeti60CqhHbFoiEbEln32WW8+CS5QvPOgN/3o8mekZ3L0RzpbFa7B1dqBG47qFyu1dt41zh08w7MtxGMj1kShFEjwTWg0aNIgRI0bw66+/Mn/+fDw9PXnrrbeA3JPs+++/z6hRowqt56FhNiltwY/8y41fYTBzTUGfgts/fvy4KpMtNDQUS0tLli9fzowZM176fV72vQt61c9Hm+dt0tHRQfFs0PQ///xTlQ32nF6BO4SvOyvp8zYWFfi4e/cubdq0YejQoUydOhUbGxsOHz7MoEGDCo0rl5+dnR1xcYUzQPT09Fi/fj1dunShadOm7N27l4rPBo338/NTBQGLyj67evUqJ06c4NSpU2rdeHNycli2bBkffPCBapm5uTkdOnSgQ4cOfPXVV4SGhvLVV1+pBc9iY2O1TlTx6aefMnbsWLVlhoaGHLtX9F22/MwscscgKphllpSQUCgbraBTB4+xaNYfvD9hNIHVg9Res7SxQk9PD129vJ75zu6uJMbFk52Vjb7B6x36gxs2VA3oD7mTMABEx8ZiZ5s3MGxsXBw2RUy2YGtjUyjLLDY+XuPkFY+iojh59izfFwhYvikm5qbo6OoWyjJLTUjCtMCdfYDMtAwe3blH1N0H7Fi4Fnj2f6VUMq3fR/QaPxSvSr6q8se37OPIxt30mvABjh6FMzPFyzF/Nq5XQmy82vKE+IRC2WivYtWCpTRqHkLTNrnHBw9vLzLS0/nrp994u1e3QuM5FScjMxN0dHUKZZmlJ6VgYmH20ttxKO/GrRMXAUh8GktSTDw7fl2qev35cf/PoVPo8eVILBzezCQy/+uC69Shsl9epmhmVjYA0fFx2OU7lsUmxGNT4AbUq7KztqZ8vpuQAOXd3Nh77OhrbVebvH1PPcssLSmlUCZkURy83bh14hIASU/jSI6JZ8evy1WvP9/3/vpgKt2/HI6Fvex7r8vE4tk5K0H9nJWSmIyZhaZzVjoPb0fyKOI+WxesBvLOWV/2HkPfT4dRvrJkRL+u1Mx0chQKzMqpB45NyxmRnKn5Zm1SRiqJ6SmqwBnA0+R4dHV0sDAyJTY19ztWgurvqKQY7E2tCfauVuLBM1Pz3PNuUpz6vpackIi5pYWWtXLZPpvEx9nTjaT4RHau2FAoeLZv/Xb2rNnC0Mkf4+Llrmkz/27/j7tIlkUSPBNade/endGjR7N06VIWLlzIkCFDVMGUGjVqcOXKFXxecmr0ihUrEhkZyb1791TZZ1evXiUhIUGVYVSlShX27NnDu++++9Lbe/jwoaoL4LFjx9TKHDlyBE9PT7WZFu/evatWJjAwkOPHj9OvXz/VsuPHj7/wvdevX6+2rOA6r/r5PKepTbq6uvj5+eHo6Iirqyu3b9+md+/eL71NS0tLnJ2dOX78OMHBuenQ2dnZnDlzRuusqYGBgWRnZ3P69Gnq1KkDwPXr19UmLzh9+jTZ2dnMmDFD9cNx5cqVL6xP9erVtc4UamhoyNq1a+natStNmzZlz549VK5cma5duzJhwgS+//57tTHrnnueVTZ37lyCg4P59ddf1V5fvHgxc+fOVQue5aejo0NAQABHj6r/ALl8+TIh+WZ1LFjXV+2mWZC+gT4ePuUJO3eJ6g3yJisIO3eZqvW0D35/cv9RFv13DoPHjSCoTuHxYipU9OPU/qMoFArVd/P4wSMsbaxeO3AGYGpiojaDplKpxNbGhhOnTxPgmxsQysrK4uyFC4x87z2t26lSsSInzpyhd76ZV0+cPk2VSpUKld24fTvWVlY00pBh+ibo6evjXN6NO5dvEFA7b4y6O5dv4FezcqHyhsaGDPlGfYy+M7uPcPfqTTqPGoBVvh+Hxzbv5ciGXbwz/n1cvMvurHP/C/QNDCjvV4FLZ85Tu1FeV+bLZ85Ts0Hhu9kvKyMjA11d9ZsJurq6ude0JXxhq6evj52HCw+uhlO+el5G7v2wcLyqBhSxprqYe48wscwNtlk52dF1kvrx8NT6vWRlZNKgRytMbYr+wSPymBqbqM2gqVQqsbW25sT58wR4544VlpWVxdnLVxiZb3iFf6JqQCB3H6h3w7r78CHO9iWTKaSnr4edhzMPwm5TvnrevvYg7DaeVbWPTVRQzL0ojJ/te5ZOdnT5Qj3j//SGfWSlZ1C/RytMrYu+cSRejp6+Pi7l3bl98TqBtfOGQLl96Rr+NYMKlTc0NuKD79WHzDi18zB3rt6g+5iBWGmYMVG8uhylgoeJ0VSwcyXsSYRqeQU7N67le55fZFwUlZy8KaenT2ZObnDe1tQShVJBopbZOSE36auocdGKi76BPm4VPLlx4QpB9fJ+V9y4cJVKGq5RtVLmjp+W377129m9ejPvTfwQdw2TLgnxpknwTGhlZmZGjx49+Oyzz0hISGDAgAGq18aPH0+9evUYPnw4Q4YMwdTUlLCwMHbt2sXPP/9caFvNmzenSpUq9O7dm5kzZ5Kdnc2wYcNo0qSJqmvgpEmTeOutt6hQoQI9e/YkOzubbdu2aRwkvnnz5vj7+9OvXz9mzJhBYmKiWpAMwMfHh8jISJYvX07t2rXZsmVLoUHyR48eTf/+/alVqxaNGjViyZIlXLlypdDYV/kNHTqUGTNmMHbsWN5//33OnDlTaGbSV/18njMyMqJ///788MMPJCYmMmrUKLp3746TU+5sOZMnT2bUqFFYWFjQunVrMjIyOH36NHFxcYWyoAq289tvv8XX15fAwEB+/PHHQrN45ufv70+rVq0YMmQIf/zxB/r6+owZM0YtO7BChQpkZ2fz888/0759e44cOcLs2bO1bvO50NDQQhMc5FeuXDnWrFlD9+7dadasGXv27CEoKIiffvqJESNGkJiYSL9+/fDy8uL+/fssWrQIMzMzvv32WxYvXsyXX35J5crqwYzBgwfz/fffc+HCBZRKJZMmTaJv375UrFiRcuXKceDAAebNm6eWrZaamsqZM2eYNm3aC9v0Opp3asP8Gb/h6euNd4Avh7bvJfZpNMFtcrM81y1YTnxMLO9+NAzIDZzN//F3erzXj/L+vqoMm3KG5TB+NlNgkzYt2LdpJyvmLKJZh1CePIhi28oNNGtfMmOF6ejo8E7XrsxfsgQPNzfc3dyY//ffGBkZ0ap5c1W5L6ZNw8HenhHPuh337NKF90aPZsGyZYQ0bMj+I0c4ceYMc2fNUtu+QqFg0/bttAsNRV/DOCwJiYlEPXnC0+hoAO5GRgK5mW12GrLY/qm6rUPY8PsSnL3dcfPx4ty+oyTExFHjrQZA7nhlSXEJdBjaGx1dXRzc1bMkTS3M0DPQV1t+bPMeDqzextvD+mJpZ6PKbCtnZEg5o9cLzv5/1aZLR377bibefj74VvRn75adRD+J5q32uZM2LP9rMbHRMQybMEa1TsSt20DuuJOJ8YlE3LqNvoEBbp65N3tq1KvNtjUb8fTxxifAj8cPH7FqwVJq1q/9RsYGqtKiPvvmrcXO0wXHCu6EHTxDcmwCgU1yz58n1+4mJT6RpgNzu2Vf2n0Mc1srrF0cyMnJ4dbxi9w5G0aLod2B3CCjjav64NSGJrnd6QsuF69GR0eHd9p3YP7q1Xi4uODu7ML81aswMjSkVXDeeD5fzPwJB1sbRvTNDahlZWVx+17uIPxZ2dk8jY3l+u3bmBgb4e6ce0OtV4eODJwwjnmrVtKiUSOu3LjJup07+HzY8MIVKSZBzeuzf/467D2dcfB249qhs7n7XnDuDZ6T6/aQEp9E03ffBuDS7uOY21lh7Wyfu++duMSds2E0fz/3Jom+gT42rurBvnKqfa/sdRc0NjDEzTIvA93Fwg5fOzcS01N4nPzPx1F8E+q1bcq6Xxfj4u2Om195zuw5SkJ0HLWaNwJg97KNJMUl0GlY32fnLPWsZ1NLM/QNDAotF6/naMRFulRpysOEaO7FP6aWeyCWRmacjMydUKSFX20sDE1Zc2k/ABcf3SKkQg06BYWw9+ZpTMoZEepfl7P3r6u6bAZ7V+NBwlNiU5gnmD4AAQAASURBVBPR09XFz96Dai5+bLpacpNe5RfcviXLZv2Fm48XXv4VOL7zIHHRsdRv2QSALX+vISEmjl6jc8eYPrxtL9Z2Nji45l4P3Qm7yf6NO2jUJq/7+d5129i+bD19PhyCtYOdqpeGoZEhhsaax44WoqRJ8EwUadCgQcydO5eWLVuqdTesUqUKBw4c4PPPP6dx48YolUoqVKigNntmfjo6Oqxfv56RI0cSHByMrq4urVq1UgskhYSEsGrVKqZOncq3336LhYWFKlOqIF1dXdatW8egQYOoU6cOXl5ezJo1i1b5BhLv2LEjH374ISNGjCAjI4O2bdsyceJEJk+erCrTo0cPwsPDGT9+POnp6XTp0oUPPvigyMH0PTw8WLNmDR9++CG//fYbderUYdq0aQwcOPAffz7P+fj4qGbyjI2NpU2bNmqD7w8ePBgTExOmT5/OuHHjMDU1JSgoSG3gfk0++ugjHj16xIABA9DV1WXgwIF06tSJhATtg9LPnz+fwYMH06RJExwdHfnqq6+YOHGi6vVq1arx448/8t133/Hpp58SHBzMN998o5bFp0mfPn0YP348169fx99f851rAwMDVq5cyTvvvKMKoA0bNgw/Pz9++OEHOnXqRFpaGl5eXrRr146xY8eyceNGYmJi6NSpU6Ht+fr6EhQUxNy5c/niiy/w8vJiypQpREREoKOjo3r+4YcfqtbZsGEDHh4eNG7cuMj2vK7awfVJSUxmy7K1JMTG4+Lpxogp47B1yL1YT4iNJ/ZpjKr8oe17UOTksOz3+Sz7fb5qef23ghkwNvduvo29LaOnTmDVn3/z5fAJWNla06xDK1p17VBi7ejfsycZGRl8O3MmSUlJVA4M5Jfp09Uy1KKePFHr3la1cmW+/uILfp87l9nz5uHm4sI3X3yh1iUU4OSZM0Q9fkyHAhOCPHfw6FGm5Juw47OpUwEY0r8/7+cL+r+uivWqk5qUwuF1O0iOT8TezZmen7yHpV1ugC45PpGE6Ff7MXVm9xFysnNYM2uB2vLGnUIJltnO/pH6TRuRnJjI2r9XEB8bh5uXB+OmTcTeMfeHeXxsLDFP1Adu/2xo3s2HOzfCObr3IHaO9sxa8icAnfp0R0dHh1XzlxAbHYuFpQU16tem+8CXzwJ+HRVqVyY9JZWzWw6QmpCMjYsDrUf2xtzWCsjtPpwcm3c8z8nO4fjqnaTEJ6FvoI+1iwOtRvbCI0i6Xb0J/Tt1zj0ezplNUnIylf38+GXyFLUMtainT9HNNzTC09hYeo8do3q+eP06Fq9fR41Klfnj69ybOJV8fflhwmf8sngRf61cgYujIx8NGkzrJiEl1pYKtSuRkZLK2S0HVfteqxG98u17yaTk2/cUOTmcWL1Lte9ZudgTOuIdPIJ8tbxD2RZg78kvnfKOD6Ma5QYBt4Yd4+u92m8ElgWV69cgLSmFA2t3kByfgIO7M73HD1VlPv+Tc5Z4fZejbmNiYESITw3MDU14nBTL4jPbSEjP7ZpvZmiCpXFel/zMnGwWnN5C28CGDG3QmbTMdC5H3Wb3zVOqMgZ6+rSv2AgLI1OycrKJToln9cW9XI66/UbaVL1RHVKTktm1chOJcQk4e7gy+PPR2Djkjn+YGBdPfHTeMB1KhZKtf68h9kk0unp62Dra07ZPF+o9C7YBHN2+j5zsbBZO/13tvVp270Boz45vpF1lgkK6bZYlOsqXGcBJCFHiJk+ezPr16zl//nxpV6XEjRs3joSEBObMmVPaVdGqTp06jBkzhl69er3SevtvnSmhGpWOEJ+aJD18WNrVKHbmLi4sOrW1tKtRrPrVblPaVSgRZ+6FlXYVilVN90BmHFhW2tUoVh81eae0q1AiksKul3YVipV5oD8/7F/y4oL/Yz4O6U3DX/9ds8YeGT6bpWe138j9X9SrRmhpV6FETNz+R2lXoVhNbfUem68cLu1qFKt2lRqVdhX+scSN20q7ChpZdNB8Q/vfruRGuBVCCC0+//xzPD09ycnJKe2qaPTkyRO6du3KO+/8O38QCiGEEEIIIYR4edJtUwjxxllaWvLZZ5+VdjW0cnBw0DjWnhBCCCGEEEK8EUpFaddA5COZZ0KUEZMnT/5/0WVTCCGEEEIIIYT4XyLBMyGEEEIIIYQQQgghtJBum0IIIYQQQgghhBBlicy2WaZI5pkQQgghhBBCCCGEEFpI8EwIIYQQQgghhBBCCC2k26YQQgghhBBCCCFEWaKUbptliWSeCSGEEEIIIYQQQgihhQTPhBBCCCGEEEIIIYTQQrptCiGEEEIIIYQQQpQl0m2zTJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRKEo7RqIfCTzTAghhBBCCCGEEEIILSR4JoQQQgghhBBCCCGEFtJtUwghhBBCCCGEEKIskdk2yxTJPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoS6TbZpkimWdCCCGEEEIIIYQQQmghwTMhhBBCCCGEEEIIIbTQUSolF1AIIYQQQgghhBCirEhctqa0q6CRxTtdSrsKpULGPBNCiGI059j60q5CsXq//tvci4sq7WoUO3drJ3r8PbG0q1GsVvSZSuLWnaVdjWJl0aYlH278b2lXo1j91GE0/ZdPLe1qFKuFPSeSFHG3tKtRrMy9PJlxYFlpV6NYfdTkHZae3VHa1Sh2vWqE/uva1atGKA1/HVra1ShWR4bPpuP88aVdjWK14d3v+GDN9NKuRrH6vcsntPrzw9KuRrHaPuSn0q6C+JeQbptCCCGEEEIIIYQQQmghmWdCCCGEEEIIIYQQZYhSqSjtKoh8JPNMCCGEEEIIIYQQQggtJHgmhBBCCCGEEEIIIYQW0m1TCCGEEEIIIYQQoixRKku7BiIfyTwTQgghhBBCCCGEEEILCZ4JIYQQQgghhBBCCKGFdNsUQgghhBBCCCGEKEsU0m2zLJHMMyGEEEIIIYQQQgghtJDgmRBCCCGEEEIIIYQQWki3TSGEEEIIIYQQQoiyRGbbLFMk80wIIYQQQgghhBBCCC0keCaEEEIIIYQQQgghhBbSbVMIIYQQQgghhBCiLFEqSrsGIh/JPBNCCCGEEEIIIYQQQgsJngkhhBBCCCGEEEIIoYV02xRCCCGEEEIIIYQoSxQy22ZZIplnQgghhBBCCCGEEEJoIcEzIYQQQgghhBBCCCG0kOCZEOJ/VkhICGPGjCntagghhBBCCCFE8VIqy+bj/ykZ80wIIUrZ+T3HOL3tACnxSdi6OhLSqz1u/uVfuN6DmxGs/GYOdq6O9J06RrV85TdzuH/9dqHy5asE0Gnsu8VZdZUNq9exaslyYmJi8SrvxbAPRxBUrarW8hfOnmf2f38l4k4Etna29OjzDu07d1S9vmPzNqZ/9W2h9bYe2Ek5Q0MAer/dg8dRUYXKdOjyNqM++bAYWlVYS786tK/YCCtjM+7HP2Hh6W1ce3pXa/lGXlXoUKkxTuY2pGZlcOHhTRaf2U5yZlqhsg08gxjduDun7oXxw4GlJVJ/TZRKJX/u2Ma6Y0dISkujkocn47p0p4Kzs9Z19l48z4JdO7kXHU22Igd3O3v6hDSjTe06qjJ/bN/Knzu2qa1nY27Oji+nlVhbnmvoVYWmFWpgYWRKVFIM6y8f5HbsQ63l9XT1CPWrQ023ACwMTYhPT2bXjVOcvHcVAF0dXZr71qK2eyCWRmY8SY5j89UjRX73xa2ZT03aBNTH0tichwlPWXJuBzee3tNYdnDdDjQuX/j/70HCUz7bNhsAPR1d2lVsSKPyVbAytiAqMYaVF/ZwKSq8RNuRn1Kp5I+/F7Nu61aSkpOpFBDA+OEjqODlpXWd8IgIZi9axLVbN3n0+DFj3x9Kr86d1cqcvXSRxatWEXbzJtGxsfwwaRIhDRqWcGtyXdl/kos7jpKakIS1iwP1e7TC2ddTY9mH1++wecbCQsu7TxmOlbM9AHfOXuXctkMkPolFkaPA0sGGoBYN8Kuv/fj6JpzaeYijm/eQFJ+Ig5sTof264BlQ4YXrRV6/zYIvZ+Hg7szQb8e/gZq+vH9jmzSp6uxDr+otCXDwwM7Uiglbf+fQnQulXS2tWgfUo1PlJlgbmxMZ/5i5Jzdx9XGE1vJNvKvRKagJLhZ2pGSmc+7BDeaf2kJSRiqQe+zrWqUpTX1qYmtiwYPEpyw8vY1zD268oRZBsHc1WvjVxtLIjEeJ0ay6sJdbMQ80lu1XszX1vSoXWv4wMZqpu+YDUM3Fl1YB9bA3tUJPV5cnyfHsvnmKk5FXS7Qd+bULbEjXqk2xMbbgblwUs4+v50pU4WvR59pXbEj7io1xNLfmaXI8y87vYs/N06rXW/nXo7lfbTytnQC4FX2f+ae2cONpZIm3RQhtJHgmhCgxmZmZlCtXrrSrUaSsrCwMDAxK7f2vn7jA/qWbeKvf27j4enJx3wnW/TiP/tPGYmFrrXW9jNQ0tv+xAo+KFUhNSFZ7rf3Iviiyc1TP01JSWDzxv/jVDiqRNuzbtZffZ/7CqE8+pFKVymxZv4lPPxzP3GULcXRyLFT+0cNHfD52PG06tmPC5M+5cvEys6b/hKWVFcHNmqjKmZiasmDlYrV1nwfOAH6dPweFIq+dd8LvMH7URwQ3Cyn+RgL1PSvTv2Zr5p7azPUnkTT3rcWnzfoydtPPxKQmFCrvb+/B8AZdWHhmG2fuX8PGxIIhdTvwfr23mXFwmVpZO1NL+tQIJayIHwQlZdHe3Szdv48vevXGw96Bebt2MGL2L6z+dCKmRkYa17E0MeXdFqF4OTpioKfHoStX+HL5EqzNzakfEKgq5+3kzK8fjFA919PVKfH2VHPx5e3Kway+uI87sQ9p4BnEe/U68u2+v4lPS9K4Tv+arTE3NGHF+d08TYnH3NAEXZ285Pw2AfWp6RbAygt7eJIci7+DJ+/WacesQyt5kPi0xNtUx70ivauHsujMVm5E36dphRp8FNyLT7f9TmxqYqHyS87uYNWFParnujq6fNXqPVUwEKBLlaY08KzMvFNbeJQYTZBzBUY16sbU3QuIjC8clC4JC1euZOnatUz66GM83FyZu3Qpwz+dwJq58zA1MdG4TnpGBm7OTjQPbsyPc+ZoLJOWno6vtzftW4YybuqXJdkENeGnLnNsxXYa9WqLo48HYQdPs23W33SfPBwzWyut63WfOoJyRnnHNiNzU9XfhqbGVG8TjJWTHXp6ety9dIMDC9djbGGKeyWfkmyOVpePnWX7orW0HdgNd39vzuw+wpJvf2f4D59haWejdb301DTW/7YY78p+JCdo/l8sLf/GNmljbGDIrZj7bL12lGmth5Z2dYrUqHwVBtVpz5xj6wl7cpdQ/7p80WIgI9b9SHRKfKHygQ5ejG7cg3knN3HyXhi2JpZ80KATIxp24Zu9udcTvWuGEuJdnV+PruF+/FOqu/rxabN+jN/yG3eKuMlSXGq6+dOtajOWn9tFeMwDGpevyvBGXfly5zziNJyjVl7Yw/rLB1XPdXV1+PytAZy9f121LCUznW3XjvM4KYZshYIgZ2/61WxNUkbqG7muCPauxvv13+bXI6u58vgObQIa8FWr93hv1bc81fA9tQ1swIDa7fjvoRXceHoPf3sPRjfuTnJGGicirwBQxcWH/bfOcvXxHTJzsulWtRnTWg/l/dXfabzmEv8ecXFxjBo1io0bNwLQoUMHfv75Z6ysrLSuM2DAABYuVL8ZVbduXY4fP656npGRwccff8yyZctIS0vjrbfe4rfffsPNze2l6ybdNoX4l1AqlXz//fd4e3tjbGxM1apVWb16NQD79+9HR0eHPXv2UKtWLUxMTGjQoAHXr+eeeK9fv46Ojg7Xrl1T2+aPP/6Il5cXymfpuVevXqVNmzaYmZnh6OhI3759iY6OVpUPCQlhxIgRjB07Fjs7O1q0aAHAxo0b8fX1xdjYmKZNm7Jw4UJ0dHSIj48HICYmhnfeeQc3NzdMTEwICgpi2TL14EJKSgr9+vXDzMwMZ2dnZsyYUegz0NHRYf369WrLrKysWLBgAQARERHo6OiwcuVKQkJCMDIy4u+//36p9y8pZ3YconJwbYKa1MHWxZGmvTtgbmPJhb3Hi1xv94K1BNSrhnOFwhkNxmYmmFqZqx6Rl29iUM4AvzpVSqQNa5atpFX7NrTp2A7P8l4M+3AkDg72bFq7QWP5zWs34ODowLAPR+JZ3os2HdvRqn0bVi1drlZOR0cHG1tbtUd+VtZWaq+dOHIMFzdXqtaoViLtbBvYgL3hZ9l760zuneoz24hJTaSlXx2N5X3t3HmSEs/268d5mhLP9aeR7L55Cm9b10LtHNmwG6su7uVxcmyJ1F0bpVLJsgP7ebdFS5pVqYaPswuTe/UhPTOLHWdPa12vpo8vTatUpbyjE2529rzTJAQfZxfO31bPWtLT1cXOwkL1sDYzL+kmEVKhBicir3Ai8gpPkuNYf+Ug8WnJNPTSHDwOsPfEx86NP09s4Eb0PeLSkoiMf0xE3CNVmVruAey+eYqwJxHEpCZyNOIS15/cJcSnRom3B6BVQD0O3j7HgdvneZQYzdJzO4lNTeQtn1oay6dlZZCQnqJ6lLdxwaScMYdu52WXNPAKYtPVI1x8dIunKfHsvXWG/2PvvsOjKtoGDv92N733RkiBQEIIvSX03jsIAqIIigVsqK/9tX32gl2xgCgCUqQ3QXoPJdQkJIGQ3ntPdvf7I7Bhk11ATeHV576uvXRnZ87OcE7OOTvnmZlzaZcZERTaKG3SarWsWL+O+++exsDevQnw8+f1Z56lrLyc7Xt2Gy3XNjCQJx6cy7D+AzAz8uCjV7fuPDrrfgb27t1Q1Tfo7M4jBPbuTFCfLjh6utJz6ghsHO25uM/43xKApa01Vva2updSWXN77hXoj3+nNjh6umLn5kS7QaE4NXMnLbbpoi+ObtlDpwGhdB7YE9dmHgy/bxL2zo6E7zx403Kbv/+VkF5d8W7l1zgV/RP+iW0y5mjCBb47tpF9lyOauiq3NK5tH3bFhLMzJpyk/Ax+OL6JrOJ8o+epQDef6sjgyMNkFOUSmRHPjuhjBLjU/Dge0LIza87u4WRSNOlFOWyPPsrp5EuMD+nTKG0a1Korh+PPcSj+HGmFOaw+u4fckkL6tuhoMH9ZVQUF5cW6l6+jB1ZmFhy5el6XJyYrkTMpMaQV5pBVnMee2FMk52cSUOt+o6FMbNefHdHH2B59jMS8DBYdXU9mUR6jgw1H/A5q1ZVtkYfZfzmCtMJs9l0+zY7oY0zpMFCX5/09y9gceYjLOSkk5Wfw6YFfUSgUdGzWqlHadMfQaO/MVwOaPn06ERERbN++ne3btxMREcHMmTNvWW748OGkpqbqXlu3btX7/Mknn2TdunWsXLmSgwcPUlRUxOjRo1Gr1Ua2WJd0ngnxD/Hyyy+zZMkSvv76ay5cuMBTTz3FPffcw759+3R5XnrpJT766CNOnDiBiYkJs2fPBiAwMJAuXbrwyy+/6G1z+fLlTJ8+HYVCQWpqKv369aNjx46cOHGC7du3k56ezpQpU/TKLF26FBMTEw4dOsSiRYuIj49n8uTJjB8/noiICB566CFeeuklvTJlZWV06dKFzZs3c/78eebOncvMmTM5duyYLs+zzz7Lnj17WLduHb///jt79+7l5MmTf+nf6rnnnuPxxx8nMjKSYcOG3db3NwR1VRXp8cn4hujfCPiGtCYl1vhwsPMHwsnLzCFs/ODb+p5zB04Q2KMDpub1HwVYWVnJpehLdO3RTS+9S49uXDx33mCZi+cv0KVW/q49unEpMpqqqipdWmlpKdPHT+HuMZN56enniYk2PqSisrKSXdt3Mnz0CBSK+o9uUilVtHDy4mxqrF76mdRYWrs2N1jmUmYCzlZ2dPSq3r/2Ftb08GnL6eRovXyT2w2goKyYPXGn6r3et5KcnU12YQGhgUG6NDMTUzoHBHD2ypXb2oZWq+X4pWiuZmbQuaV+JExiViYjXn2JcW++yos/LSHphs72hqBSKPG2dyM6Q79jITrzKn6OhoehtvVoQWJeOgMDuvLqkDm8MPBexgb3xlSp0uUxUaqo0ujfXFWqq2jh5FX/jahFpVTi5+jJ+VrDX86nxen9ILyZvi06cjH9st7TelOlikpNlV6+SnUlrYwcz/UtOS2N7JwcQrt00aWZmZnRuV17zl5svKFG9UVdVUVWQgrewfrD/LyDW5IeZ3h47XW/vbmIn5/5kM0fLyUlyvjfnVarJTnyMvnp2UaHgjY0dVUVKVcSadk+SC+9Rfsgki4Zr/vpvUfJTc+i/6ThDV3FP+2f2KZ/AhOlipbOzYhIjtFLj0i5RJCb4eM/KuMqLtb2dPEOBMDewoaefu04kVjzcNhEqaJCrX/uq1BX0sbNr34bYIBKocTHwaPOsNPIjPg6D9aM6enXjqiMqwajjq8LdPXB3daRmKykv1Pd22KiVNHKxZtTte5tTiVH08bdz2AZU6WJwX3Q2tUHlcJw94S5iRkmSqVu+K34Z4qMjGT79u18//33hIWFERYWxnfffcfmzZt1QR/GmJub4+HhoXs5OdVEDefn5/PDDz/w0UcfMXjwYDp16sSyZcs4d+4cu3btuu36ybBNIf4BiouL+fjjj9m9ezdhYWEAtGjRgoMHD7Jo0SLmzp0LwFtvvUW/ftXD4p5//nlGjRpFWVkZFhYWzJgxgy+++II333wTgEuXLnHy5El++uknAL7++ms6d+7M22/XzFe0ePFimjdvzqVLl2jdujUAAQEBvP/++7o8zz//PIGBgXzwwQdAdUfd+fPneeutt3R5mjVrxjPPPKN7/9hjj7F9+3ZWr15Njx49KCoq4ocffuCnn37SRbMtXbr0T4XZ3ujJJ59kYq05cm72/YaUl5dTXl6ul2Z+w5DC21FaWIJWo8HazkYv3crOhhIjwz9y07I4uHo7U198GKVKZTDPjVIvJ5KdlMbQ2ZP/VN1uV35ePhq1Gkcn/WEtjk6O5GQbjqLKyc7B0cmxVn4n1Go1+Xn5OLs409zPh/+8/Dz+AS0oKS7mt1/X8uTc+Sz6eTHePnX3+6F9BygqKmLoqBH117gb2JlboVKqyC/VHyKbX1qEg5fhaKpLWYl8fmgNT/aZiqnKBBOlivDESJaEb9HlCXT1YUDLzjy39asGqfetZBdW33w72drppTvZ2JKWe/MouKLSUka+9jIVVVWolEqemzyFHjd0wrX19eX16TPxcXUju7CAxTt3MOezj/n1uZdwsLa+yZb/OmszS1QGbq4Ly0uxszD8nc7Wdvg7eVGpVrMkfDPWZpZMbj8AKzMLVkZU31BFZSTQv0Un4rKTyS7Oo5WrDyEeLVA2QEdtbbZmVqiUSvLLivXS88uLsbewMVKqhr2FDe09A/jmyDq99HNplxkeGEp0RgIZRTkEu/vTqVlgo7QJIDun+vhydtQ/Fzg7OpCakdEodahPZUUlaDVaLO30jzNLO2tKCooMlrGyt6XPzDG4+niirlITc/QMmxcuZczTs/Bs7afLV1FSxrLnPkJdqUapVNBr+qg6nXSNpaSgGK1Gg429/nnPxt6WOCPXrezUDP5YsYn7X3vitq5bje2f2KZ/guvX3bwy/b+fvNIiHC0NX3ejMq7y8b6VPNt/hu66eyzhAt8erYmEP518iXFt+3Ah/TJpBTm09wqgh0+w3lD9hmJjfu0aVet8XlhWjL37ra+LdhbWtHVvweLjm+t8ZmFixjujHsFUqUKj1bLi9E6iMhp+Xk47C2tUShW5Jfp/K7mlhThZ2hksczIpiuFBoRy+eo7YrCRauTRnaOsemKpMsLewIae0bsfg7G6jyS7Ob9S56YRxxn4H/dnfQrUdOXIEe3t7vd9foaGh2Nvbc/jwYQIDA42W3bt3L25ubjg4ONCvXz/eeust3NzcADh58iSVlZUMHTpUl9/Ly4uQkBAOHz7MsGHDbqt+0nkmxD/AxYsXKSsr03UsXVdRUUGnTp1079u3rxm253ltMvCMjAx8fHy4++67efbZZzl69CihoaH88ssvdOzYkeDgYKD6pLNnzx5sbOr+WIuLi9N1nnXtqj+MKDo6mm7d9KOMunfXH+amVqt59913+fXXX0lOTtadkK2v/cCOi4ujoqJC1zEI4OTkdNMT6M3UruOtvt+Qd955h9dff10v7dVXX8VzWMc/X6HaP1a1AHV/wGo0GrYuWkHY+CE4erje1qbP7z+Os7cHni0aNpqkThO03DwCrNZn14cGX08ODmlLcEhb3edt27fjkfseZP3qtcx/+ok6m9u2aSvdQ7vj4ury1xpwm2oHqisUCl3da2tm78qsriNZe24PZ1JicbS0ZUbnYTzQYyyLjq7HwsSM+b0m8+2xDY32JHXbyXDeWVUzPHbhg9Xz3dTeU1q0dXdqLVbm5vzyzPOUVJQTfimahevX0czZhS4B1ZF2vdrU7L8AvGjv58/4t15nS/gxZvQfaGyz9UJbZ09hdD8pUaAFlp3aTllVBQDrL+xnVtdRrD27h0qNmnXn9zG1wyBeGDgTrRayS/I5nniR7s2DG7IZ+vWv1SYFCoPtrK2PfwdKKss4maw/LP+XUzu4v9to3h35CFogoyiXA1ci6OPfsR5rXWPb7j94+9NPde8/efP/AAPHnra6bf+ratf9ZouSOXi44OBRc85yb9mcotwCzvx+WK/zzNTCjEmvPExleQUpkVc4unoHdq6OeN3GwjINx8A53MBu02g0/PbFT/SfPAJnT7dGqttf9U9s0/++2uduhYG065rbu/Fg6Fh+jdjFqeRLOFnaMavbSB7pOZEvDlVPZfL9sU3M6zWJLyc8A2hJK8zhj5gTDGpleBh8Q6hb+9s7n4f5hlBaWcaZlJg6n5VXVfD2rqWYm5gR6ObD5PYDyCrOJybr5pGv9cfAfjLSpuWnd+JoZccn455EQXVH286Y40zpMAi1VlMn/+T2A+nfshP/2fIllbUi1v7xDPx73AmM/Q567bXX/tZ209LSdB1eN3JzcyPNwCJh140YMYK77roLX19frly5wiuvvMLAgQM5efIk5ubmpKWlYWZmhmOtB3bu7u433W5t0nkmxD+ARlN9Yt2yZQvNmumHfZubmxMXVz0P0Y0T41/v2Lhe1tPTkwEDBrB8+XJCQ0NZsWIFDz30kN53jBkzhvfee6/O93vesCpf7Q4nrVZbpxOl9k3PRx99xMKFC/nkk09o164d1tbWPPnkk1RUVBjMb4yhjozKyso6+WrX8Vbfb8gLL7zAggUL9NLMzc358dQ2IyXqsrS1QqFUUlzryXZJYRFW9nU7KStKy0m/kkTG1RR2L6t+iqq9tmT0wtkvMOmZOfgE1wybqyyvIPrYGXpOGFpnW/XF3sEepUpVJ8osLze3TnTZdU7OTuQayK9SqbCztzdYRqlU0rpNIMmJdYcgpKemcTr8JK++++ZfbMWtFZSXoNaocbDU3y92FtbklxmOKhnfti+XMhPYdPEQAAl56ZQdr+CNYQ/y65ld2FvY4GbjyH/6z9CVuf63snz6azy18VPSi3LrtR1927Yj5Bk/3fuKa8NkswsLcLnh3z63qAjnW8xPplQqae5a3Ykb2Myb+PR0ftz1u67zrDZLc3MCPL1IzGy4CfaLK0pRazTYmev/jduaWxrtoCwoLya/rEjXcQaQXpiDUqHA3tKWrOI8iitKWRy+GROlCmszC/LLihndptdNh83Ul8KKEtQaDQ61oszszK0oqBW9YEifFh04HH8WtUb/BrywvITPDq7CVKnCxtyK3NJCpnQYZHAS7vrQNzSMkBsiEyuunZuzcnNxuWE+w5y8PJwcHRqkDg3JwsYKhVJRJ8qsrLAYK7tbRwhe5+bvTeyxs3ppCqUSe7fqfyOX5p7kpmUSse1gk3SeWdlZo1AqKcrXP/aLC4qwsat7zqgoLSPlcgKp8Uls/bG68+L6deuNGU8y84VH8Q9p3Sh1N+af2KZ/guvX3dpRZvaWNnWi0a6b1H4AkenxrLs2wf7V3DTKjlTw7qhH+OXUDnJLCykoL+ad3T9hqjLB1tyKnJIC7u06gvTC+r3eGlJUfu0aVSsS2tbCioKyWz9E6+nXjmMJFw12MGlBNzl/Un4GnrbODA/qQczBhu08Kygrrt5PVvpRZg6WtgYXQIDqIZoL96/kswOrcLSyJaekgBFBYRRXlNW5rk1q15+7Ow7mha1fcyUn1eD2ROMz9jvImNdee61OZ1tt4eHhgOGH74Z+T95o6tSpuv8PCQmha9eu+Pr6smXLljqjjf7MdmuTzjMh/gGCg4MxNzcnISFBNyzzRtc7z25lxowZPPfcc0ybNo24uDjuvvtu3WedO3dm7dq1+Pn5YWJy+6eOoKCgOhM2njihP3nygQMHGDduHPfccw9Q3VEXExNDmzbVq/YFBARgamrK0aNH8fHxAapXYrl06ZJee11dXUlNrbmwxsTEUFJy65uRW32/IfURmqwyMcHdrxkJF2Jo1aVmGfKrF2Jo2aluRIu5pTn3/t9Temlndh8h4WIcY+bfg72r/tDJS8fPoq5U06ZnJxqKqakprQNbc/L4CXr376tLP3n8BD37Gp6sOzikLUcOHtZLO3EsnNZtAo0eW1qtlriYWPxbtqjz2fbN23BwdCC0Z8NNdK7WqLmck0J7j5aEJ0bq0tt7tOREUpTBMuYmpnU6LDTXI+xQkJKfxTObPtf7fGrHwViYmLH0xFayGqBjxtrCQm8FTa1Wi7OtHceiown0ro5OrKyq4lRsLI+NGfuntq1Fq+uMM6SiqpL49HQ6tmi44WZqrYak/Axau/pwLq3mvNfa1afOnGHXXclJpYNnK8xUplSoqzt03Gwc0Wg15Ne68a/SqMkvK0apUNLeK6DOXDwNQa3REJ+bSluPFpy8YU6Zth4tbjl8JcjNFw9bZz67vNponkqNmtzSQlQKJV29g/RW5KxP1lZWeitoarVanJ2cOHbqFEEB1Z3+lZWVnDp3lsfmzGmQOjQklYkJLj5eJF+Mw79TzbUjKTIOvw5BNympLzsx1eDDEz3a6nm6moLKxAQv/+ZcPhtNm24ddOmXz0UR2KXuohzmlhY88v7zemnhvx/kysVLTHlyNg6uznXKNLZ/Ypv+Cao0auKyk+ng1Yqj11ZghOoVlY8lGD5PmZuYotHWvu5Wv6/987hSXUVOSQEqhZKeviEcvHKWhqbWakjIS6ONm69e9Fj1+9iblKxehMjNxpHD8edu+/tMlA0/pLhKoyYmK4lOzVrr1a1Ts9YcvWp47tvr1FoNWcXVc3H2a9mJ4wkX9KLVJrcfwLROQ3hp26JGjKATt+PP/g6aP3++3u9KQ/z8/Dh79izp6el1PsvMzMTd3f22v8/T0xNfX19iYqr/zjw8PKioqCA3N1cv+iwjI4OePXve9nal80yIfwBbW1ueeeYZnnrqKTQaDb1796agoIDDhw9jY2ODr+/tTSw8ceJEHnnkER555BEGDBigF8U2b948vvvuO6ZNm8azzz6Li4sLsbGxrFy5ku+++w6VkTk/HnroIT7++GOee+455syZQ0REhG71y+s9/QEBAaxdu5bDhw/j6OjIxx9/TFpamq7zysbGhjlz5vDss8/i7OyMu7s7L730kt6KZAADBw7kiy++IDQ0FI1Gw3PPPacXbWfMrb6/IXUZ1odt3/6Ku583ngE+nNt7nMLsPDoMqO4IOrB6G0W5BYyYOxWFUomLt4deeUtbG0xMTeqkQ/XCAgGdg7G0aZj5pa6bNG0K773+Fq3bBBIc0pYtGzaTkZ7BmAnVnS/ff/UtWZmZPP9q9UIRoyeOY8OadXz9yReMHDeai+cvsH3TVl5847+6bf70/Y+0CQmmWXNvSoqLWbdqLXGXYnn8Gf3OQ41Gw44t2xgycjiqP9Gp+1dsiTzM/J6TiMtJISYzkUGtuuJibc/OmOMATOs4BCcrO748vBaAk0nRzA0dx5BW3TiTWj1s876uI4i5tqIjQGK+/txOxRWlBtMbikKhYFq//izZ9TvNXV1p7urKj7t+x8LMlGGda4awvPrLT7jaOzB/dPU+XbLrd4Kb+9DM2YUqdRWHIi+yJfw4z99V8+Tvkw3r6NM2BA9HR3KLivjh9x0Ul5UxupvheQTry964U8zoPIzEaytm9vRth6Olre6mflSbnthb2LD89O9A9X4a0ro70zoNYXvUUazNLBgT3JtjCRepvLZIgI+DO/aWNqTkZ2JvYcOwwFCUKNgde/NVFOvL9qijPBQ6nis5KcRmJzOgZSecrezZHVu9aMpd7QfiaGnLt8f0V7jt26IjsVlJJOfXjfZr4eSFo5UdCblpOFrZMj6kHwqFgq2Rh+vkbQgKhYJp4yewZOUKfJp50bxZM5asWImFuTnDB9QM6/3v++/j5uLM/NnVHWqVlZVcTkjQ/X9mdhbRcXFYWVjQ/No1q6S0lMSUFN02ktPSiI6Lw97WFg8Dw0HqS/shYexZ/Bsuvl64t2xO5P6TFOXk06Zf9d/S8d92UZxXwIDZ1U/Bz+06gq2zA45ebqjVamKPnuXKqUiGPFyzEM/pbQdw9fXCztURTZWahPMxXDpyhj4zRjVYO24ldNQA1n35M14tmuPd2p+TfxwmPyuXroOrH5jsWrGRwtx8Jjw6E4VSiVtz/YU1rO1tMDE1rZPelP6JbTLG0tQcb/uaqR+87Fxo5eJNQVlxvUc7/10bLhzgyT5Tic1OIjojgWGB3XGxdmB7VPWK5DO7DMfZyo5PDqwCIDwxknm9JjE8MJTTyZdwtLLlge5juJSZQM61625rl+Y4WdtxJTsVZ2s77u44BIVCwbrz+4zWoz79EXOCWd1GcTU3jSs5KfT274CjlR0HrlSvhjyubR8cLG1ZekL/wXMvv3ZcyU4hpaDuwjvDAntwNTeNrOI8VEoVIR4tCPVty4rTOxulTb+d28uz/WcQk5lIZEY8I4J64mbjyJZr15P7u43C2dqeD/cuB6qntQh09SEq4yo25lZMbNcPP0dPPrr2OVQP1by36wje2/0z6YU5ugjE0spyvUjxfzzNnTls889ycXHBxeXWU6uEhYWRn5/P8ePHddP8HDt2jPz8/D/VyZWdnU1iYqJudFSXLl0wNTVl586dusXuUlNTOX/+vN5c3bcinWdC/EO8+eabuLm58c4773D58mUcHBzo3LkzL774om5o5q3Y2dkxZswYVq9ezeLFi/U+8/Ly4tChQzz33HMMGzaM8vJyfH19GT58eJ1OrBv5+/uzZs0ann76aT799FPCwsJ46aWXeOSRR3RPLF555RWuXLnCsGHDsLKyYu7cuYwfP578/JqV4T744AOKiooYO3Ystra2PP3003qfQ/Xwy/vvv5++ffvi5eXFp59+elsrct7O9zeUwB4dKC0q4eiGPyjOL8C5mQcTFtyPnUv1U5HivEIKs/P+9HZz0zJJvhTPpGcaPoJjwJCBFOTns+yHn8jJzsavhT9vf/we7p7VHXo5WdlkpNV0Bnl6efLWx+/x9SdfsHHtepxdnJm34HH6DqyJIiwqKmLhux+Sm52DtY01LVu3YuE3nxHUVr9D81T4STLS0hkxZmSDt/PI1fPYmlsxqV1/HC1tScxL5909P+uemjpY2uBsXTP0cd/l01iamjEsMJSZXYZTXFHGhfQr/HJqR4PX9c+4d+BgyisreW/NKgpLS2jr68fnD8/Ti1BLy83VC2svq6jgvTWryMjPw9zUFF83d964516GdqpZOTEjP4+Xf/6RvOJiHG1sCPH1Y/GTC/CstbhEfYtIicHazJJhgT2wM7citTCbb49u0HVY2plb6w0DqlBX8s2RdUxs158Ffe+muLKMiJQYtt3QiWSqMmFkUBjOVvaUV1USmRHPL6d2NNoN/PHEi9iYWzIupC8OFjYk52fy8f4VutUz7S1tcLLWHzJjaWpOV+82Ro83U5UJk9r1x9XGkfKqCs6mxPLtkfWUVJYbzN8Q7psyhfKKct794gsKCwsJCQrii3fe0YtQS8vMQKmsOfYys7OZ8egjuvc/r1nDz2vW0Ll9e7794EMALl66xMP/eVaXZ+GiRQCMHjKE156pSa9vLbuFUFZcwqkt+yjJL8LJy40Rj83A1tkBgJL8Qopyaq4r6io1R9f8TnFeISamJjh6uTH8sen4tKsZ8ldVXsHB5Vsozi3AxNQEBw8XBs6ZSMtuIbW/vtGEhHWmtLCYfb/toCgvH7fmnsx47mEcrkU/F+UVkJ91Z3XC3Mo/sU3GBLn68sWEmuFWj/e+C4CtkUd4a/fSpqqWQQevnMXW3IqpHQbhZGXH1dw03ti5RDc80dHSFhdrB13+3bEnsTQ1Z1SbnszuPoriijLOpsay9ETNlBqmKhPu6TwMdxsnyqoqOJkUxSf7V1JcUdYobTqZFI21mSWj2vTEzsKa1IIsvjy0VjcNgL2FDU5W+kNVLUzM6NSsNavO7Da4TXOVKdM6DcHB0oZKdRVphTksCd/CyaSbr05YX/ZfjsDO3JoZnYfhaGXH1ZxUXtn+LRnXOmOdrOxws66J9lEqFExs1x9vBzfUGjVnUmJZUGuqijHBvTBTmfDKkPv1vmvZye0su8Puo0T9adOmDcOHD+fBBx9k0bVr99y5cxk9erTeXNdBQUG88847TJgwgaKiIl577TUmTZqEp6cn8fHxvPjii7i4uDBhwgQA7O3tmTNnDk8//TTOzs44OTnxzDPP0K5dOwYPHnzb9VNob3cyISGEqCdvvfUW33zzDYmJ/7wQ7EVH1jd1FerVQ2HjScy9/Yk0/1c0d/Rg6rJXmroa9erXe96kYOvvTV2NemU3cihPbfz01hn/hywc+wT3rWy4+fmawtK7X6EwvuFXdWtMtn6+fLRvRVNXo1493W8ay/+BPzqndx72j2vX9M7D6PXlw01djXp1aN43jFvyXFNXo15tuP89Hln7QVNXo159PelZhn/31K0z/g/Z/uDCpq7CX5a/aElTV8Eg+4fuv3WmvygnJ4fHH3+cjRs3AjB27Fi++OILHBwcdHkUCgVLlixh1qxZlJaWMn78eE6fPk1eXp5uHu8333yT5s1rFkwrKyvj2WefZfny5ZSWljJo0CC++uorvTy3IpFnQogG99VXX9GtWzecnZ05dOgQH3zwAfPnz2/qagkhhBBCCCHEnelfGOfk5OTEsmXLbprnxvgvS0tLduy49QMUCwsLPv/8cz7//PNb5jVGOs+EEA0uJiaG//u//yMnJwcfHx+efvppXnjhhaaulhBCCCGEEEIIcUvSeSaEaHALFy5k4cL/3ZBpIYQQQgghhBD/XtJ5JoQQQgghhBBCCHEn0fz7hm3eyYwvkSeEEEIIIYQQQgghxL+cdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJP8C1fbvJNJ5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIO4lW09Q1EDeQyDMhhBBCCCGEEEIIIYyQzjMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQdxKNrLZ5J5HIMyGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eq0M27yTSOSZEEIIIYQQQgghhBBGSOeZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiDuJDNu8o0jkmRBCCCGEEEIIIYQQRkjnmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQog7iUbT1DUQN1BotTKQVgghhBBCCCGEEOJOkf/xl01dBYPsF8xr6io0CYk8E0KIejTl55ebugr1atXM/yOjILupq1Hv3Oyc6fvVo01djXq1/9GvyHvqxaauRr1yWPg2vb58uKmrUa8OzfuGyT+91NTVqFdr7n2LvCeeb+pq1CuHT9+lMOJsU1ejXtl2bM9nB1Y1dTXq3eN9pjR1FRrEuCXPNXUV6tWG+9/7R57PZ696u6mrUa8WT3mRfl//szpG9j1yZ3ZAif890nkmhBBCCCGEEEIIcSeRQYJ3FFkwQAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRIZt3lEk8kwIIYQQQgghhBBCCCOk80wIIYQQQgghhBBCCCNk2KYQQgghhBBCCCHEnUQjwzbvJBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOJOotU0dQ3EDSTyTAghhBBCCCGEEEIII6TzTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIcSdRCurbd5JJPJMCCGEEEIIIYQQQggjpPNMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghxJ1EI8M27yQSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiKrbd5RJPJMCPGvs3fvXhQKBXl5eU1dFSGEEEIIIYQQdziJPBNCNIq0tDTeeusttmzZQnJyMm5ubnTs2JEnn3ySQYMGNXX1mtTQ1t0Z27YPDpY2JOVl8OOJrURlXDWav7d/B8YG98bTzpmSinIiUmL4+eQ2iipKAejXohPzek2qU27GL69RqalqkDasW72WFcuWk52VjV8Lfx5f8AQdOnU0mv/0ydN88clnxF++grOLC9PvncH4SRN0n1+Ju8wPi74nOiqKtNQ0HnvqCaZMn6q3jbvGTiQtNa3OtidMnsiC556pt7bdaHzbvkzrNBgnK3vic1L5/NBqzqbGGc0/IaQvE9v1x8PWifTCXH4+tZ0d0cf08tzVfgDj2vbF3daR/LJi9sad4tujG6hQN8y+MsRi2CDMwrqhsLREnZBIydqNaNIyjOa3mfcAJgEt6qRXXoyi+Luf6qSbD+qH5ehhlO87ROn6LfVad0MmhPRjeqchOFvZcyUnhc8OruZMaqzR/BND+jGpXX887ZxJL8xh6cltbL9hP6mUSu7tPJwRQWG4WDuQkJfO10d+41jCxQZvy3XDAnswNrg3jla2JOZl8GP4FiJvcp7o49+BcW376M4Tp1Mu8dPJbRSVl+ryWJlaML3TEHr4tMXa3IKMwlyWntzG6eRLjdEkACyGD8asZ/fqY+9qIiVr1t/82Js/F5NWBo69C1EUf/ujbpsWIwbrfa4pKKTglbfqte63S6vV8u2a1az7YxeFRUW0bdWK52Y/QMvmzY2WWffHLrbs30dcYiIAbfxb8Oi0aYQEtGqsauuc23OM0zsOUpJXhJOXG73vHoFXaz+DeZOjrrD+w8V10qe/+TiOnq4AZCenc3zDbjKvplCYnUfvqSPoMKRnQzbhX2NEUCgTQvrhaGlLQl46PxzfxMX0eKP5+7XoyIR2/fCyc6G4oozTyZdYEr6FwvISAFQKJZPbD2BAQBecrexILshk6YnGPUfcrg6eAUzvNJQgNx9crB14fuvXHLhypqmrZdCAlp0ZHhiKg6UNyfmZrIjYRUxWosG8s7uNprd/+zrpyfmZvLLjO937Ia26MaBlZ5ys7CiqKOVEUhRrzu6hSqNusHbcaHzbPtzd8dr9UW4qXxxac9P7o/Ft+zKxXb/q+6OiXJad3M6OS8d1n38y9gk6NWtdp9yRq+d5fuvXDdIGIW5FOs+EEA0uPj6eXr164eDgwPvvv0/79u2prKxkx44dzJs3j6ioqAb53oqKCszMzBpk2/UlzDeEWV1H8v3xTURnJDC4dTdeHHgvT238jOyS/Dr5A119md9zEktPbuVEUjROlnY8GDqWh8Mm8OG+5bp8JRVlPLHhE72yDdVx9sfvu/js409Z8NwztOvQno2/refZJ57m51W/4O7hUSd/SnIK/3nyacaMH8srb7zKuTNn+fi9D3FwdKD/wAEAlJWV4dnMi/6DB/D5x58Z/N5vl/6ARq3Rvb8Sd5mn5j/BgMEDG6SdAwO68FjvyXy8fyXn0y4zNrg374+ex70r3iSjKLdO/nFt+zA3dBwf7F1OZEY8bdz8+E//GRSWlXD46jmg+mZ3buh43tvzM+fTLtPcwZ0XBs4E4ItDaxukHbWZD+yLef9elCxfizozC4shA7B5eDYF73wM5RUGyxQv+QVUKt17hbUVts88RmXE+Tp5Vc2bYRbWDXVyaoO14UaDArrwRO+7+GjfCs6mxTG+bR8+HDOfe5a/TrqB/TS+bV8eDhvPe3uWEZlxlTZufjw/4B4Ky0s4FF+9n+b2GMew1j14b+8yruam0b15MO+MeJiH1n5g9AdPferp1676PHFsE1GZVxnSqhsvDrqPpzZ+SlZx3fNEkJsv83tNZumJrZxIisLJyo65PcbxSNhEPtj7CwAmShX/HXI/+WXFfLhvOdklBbhY21NaWd7g7bnOfFA/zAf0puSX1dXH3tCB2Dz6AAVvfWj82Fv8c91j7z9PUBlxTi+fOjWNoi+/r0lowhXLlm7cwPItm3n1kXn4eHryw29rmffWm6xd+CnWlpYGy5y8cIFhPXvTPrA15qZmLN24gflv/R+rPvoYNyfnRqt7zPFzHFy5jX4zRuMR4MOF/SfY9OnPTH/jMWydHYyWm/F/T2Bqaa57b2lrrfv/qopK7FwdCejaloO/bmvI6v+r9PZvz5zuY1h0ZD2RGVcZFtiD/w6Zzfx1H5NVnFcnfxs3P57oM5XFxzdxPDESZyt7Huk5gfm9JvHO7p8BmNFlGP1bdOLLw2tJysukU7PWvDDwXp7b8hVXclIauYU3Z2lqTmx2ElujDvP2iIebujpGdWvehmkdh/Dzqe3EZiXRv2UnnuozlZd3fEtOSUGd/CsidrLm3B7de5VCyetD53AiqebeOdSnLZPbD2Bx+GZis5LxsHViTvfRAKyM2NXgbRrQsjPze01m4YFfOZ8ax5i2vXlv1DzuW3mz+6OxfLB3OVEZV2nj7sez/aZTWF7C4avV9xGv7PgOU2VNV4WdhTU/THmBvXGnG7w9dxSN5tZ5RKORYZtCiAb36KOPolAoOH78OJMnT6Z169a0bduWBQsWcPToUeLj41EoFEREROjK5OXloVAo2Lt3ry7t4sWLjBw5EhsbG9zd3Zk5cyZZWVm6z/v378/8+fNZsGABLi4uDBkyBICtW7fSunVrLC0tGTBgAPHx8Xr1y87OZtq0aXh7e2NlZUW7du1YsWJFQ/6T6IwO7sXu2JPsjj157YnuVrJK8hka2N1g/tau3mQU57Et6iiZRblEZ15l16VwWjg308unRUt+WZHeq6H8unwlo8aNYcz4sfj5+/H400/i5u7GujXrDObf8Ns63D3cefzpJ/Hz92PM+LGMGjualctqOv/atA1m3hPzGTx0CGZmpga34+joiLOLs+51+OAhmnk3o2PnTg3SzikdBrIl8jBbIg9zNTeNzw+tIbMoj/EhfQ3mHxbYg40XDrI79iSpBdnsjj3JlsjDTO88RJenrYc/59Pi2BVzgrTCHMITI/kj5gSBrr4N0gZDzPv1pGznXirPXUCTlk7J8tUozEwx69zRaBltSSnawiLdy7R1AFRWUnFGvwMDMzOs7plK6ap1aEtLDW+snk3tOJjNkYfYFHmIq7lpfHpwNRmFuUwI6Wcw//DAHmy4cIA/Yk+SUpDFH7En2Bx5iBmdhunl+enkNo5cPU9KQRbrL+znWMJFpnUcbHCb9W1Mm+rzxB+xJ0jOz+THE1vJLs5naOseBvO3dmlOZnEuW6OOkFGUS1TGVXbGHKels5cuz8CALtiYW/L+nmVEZyaQVZxHVMZVrubWjeZsKOb9elH2+x4qz15Ak5pOybJVKExNMevS0WiZOsdeYKvqYy/irH5GtUYvn7a4uGEbY6y+Wi0rtm7h/gkTGdijBwE+Prw+bz5l5eVsP3jQaLn/e/wJ7ho2jEA/f/yaNePlhx5Cq9Vy/FzdDuqGFLHzMG16dya4b1ecvNzoc/dIbB3tOL/3+E3LWdpZY21vq3splTU/Odz9vel113BadW+PykSe49eXcW37sCsmnJ0x4STlZ/DD8U1kFeczIijUYP5ANx8yinLZHHmYjKJcIjPi2RF9jAAXb12eAS07s+bsHk4mRZNelMP26KOcTr7E+JA+jdWs23Y04QLfHdvIvssRTV2VmxrWujsHrpzhwJUzpBZmsyJiFzmlBQxo2dlg/tLKcgrKinUvP0dPrMwsOXhDVF1L52bEZCVxLOEi2SX5XEi/wrGEi/g5ejZKm6Z0GMTWqCPV90d56XxxaC2ZRbmMa2v4OBnaujsbLx5iT9wpUguv3R9FHWZap6G6PIXlJeSUFuheXZsHUV5Vwd64U43SJiEMkc4zIUSDysnJYfv27cybNw9ra+s6nzs4ONzWdlJTU+nXrx8dO3bkxIkTbN++nfT0dKZMmaKXb+nSpZiYmHDo0CEWLVpEYmIiEydOZOTIkURERPDAAw/w/PPP65UpKyujS5cubN68mfPnzzN37lxmzpzJsWP6w+vqm0qpooWTV53hZGdTYgl09TFYJjozAWcrOzp5VYey21tYE+rbltPJ0Xr5LEzM+HLCM3w98VmeG3BPg91AVVZWcikqmu499Dv7uvXozvmz5wyWuXDuPN1q5e8e2oOoi1FUVf216LjKykp+37aDkWNHo1Ao/tI2bsZEqaK1qw/hiZF66eGJkYS41x1CBmCqNKFCXamXVq6upI2bH6prPyTPpsbR2tWHNm7VnWWeds6E+oZw9Grj/EBWOjuitLOjKjqmJlGtpir2Cib+ho9BQ8x6dKXi9Fmo0G+v1eSxVEZGUXXJ+NCN+mSiVBHo6sPxBP39dDwxkhAPI/tJZUJFVa39VFVJsHvNfjJVGdiXVZW09wyox9obZqJU0cLZizMp+ueJM6m3Ok/Y64a82FtYE+oTwqmkmqFWXb2DuJSZyAM9xvL9XS/w8ZjHmRjSD2UD/P0YonR2QmlvR1VUrWMv7gom/rffeWwW2o2KU2fqHHtKVxfs3ngR2//+B6v7pqF0dqqvqv8pyRkZZOflEdq+gy7NzNSUzsHBnL0UfZOS+srKK6iqqsLexqYhqmmQuqqKzKsp+LTVP86btw0gLe7mEZe/vvEVS55+j/UfLiEp6nJDVlNQfZ5o6dyMiOQYvfSIlEsEuRn+e4rKuIqLtT1dvAMBsLewoadfO04k1kQ0mShVdaYQqLh2HRN/nkqpxNfRkwvp+n8TF9KuEODsbaSUvj4tOnAx/QrZN0SpxWQl4efogb9T9b2eq7UD7TxbcvYm0xXUl+r7o+aG74/+5HW3jZuv7rpb26igMHbHnqSsynBUshCNQR73CCEaVGxsLFqtlqCgoL+1na+//prOnTvz9ttv69IWL15M8+bNuXTpEq1bV/9IDAgI4P3339flefHFF2nRogULFy5EoVAQGBjIuXPneO+993R5mjVrxjPP1MyR9dhjj7F9+3ZWr15Njx6GIzvKy8spL9cf3mRubm4wrzF25laolKo6UWH5ZcU4WBj+gXQpM5HPDq7myb5TMVWZYKJUEZ4YyeLjm3V5Ugoy+erwbyTkpWNpas7IoDDeHP4gz27+krTC7D9Vx1vJz8tDrVbj6KT/w9TR2Ymc7ByDZbKzc+he64eso5MTarWavLw8XFxc/nQ9DuzdT1FRESNHj/zTZW+HvYUNJkoVuaWFeuk5JQU4NbczWOZ44kVGt+nFgStnuJSZSKCrDyODwjBVmeBgYUN2SQG7Y0/iYGnLFxOeRoECE5WKdef388vp3xukHbUpbG0B0BTqH4OaoiKUjg63tQ2VjzcqLw9Kfv1NL920U3tUzbwoWfhVvdT1djhc2085pfpDX3JLC3C2usl+Cu7N/itniM5MIMjVh1Fteurtp2MJF7m742AiUmJJzs+kq3cQffw7oFQ2fEeTrbHzRGkRDl6GzxPRmQl8emAVC/rerXee+OH4Jl0ed1snQmwcOHD5DG//sRRPO2ce6DEWpVLJmrN7DG63Pilsq+uuKdT/m9IUFqJ0dLytbeiOvRVr9NKrriag/mUV6oxMlLa21cNBn3yEwncWoi0pqZ8G3KbsawvTONvb66U729uTmplloIRhXyz/BVcnJ7q3a1ef1bupsqIStBoNlnb6x5mlnQ0l+YUGy1g52ND/3nG4+Xqhrqoi+sgZNnz0IxOenW10njTx912/n8irdZ7IKy3C0dLWYJmojKt8vG8lz/afoTtPHEu4wLdHN+jynE6+xLi2fbiQfpm0ghzaewXQwycYpULiL/4KWzMrVEol+WX6kbAF5cXYW9R9wFybvYU17Txa6u0jqL6O2Zpb8cKAe0FR3aG1O/YkW6OO1Gv9Ddfp2nW3pPZ1txAnI9fd8MRIRrfpycErZ7iUpX9/ZG9hU2dbQW6+tHBuxnvXph34V5HVNu8o0nkmhGhQ2msn/b8bDXTy5En27NmDjYGn7nFxcbrOs65du+p9FhkZSWhoqN73h4WF6eVRq9W8++67/PrrryQnJ+s6xgxFyl33zjvv8Prrr+ulvfrqq9DyTzfN4HXR2KWymb0r93cbxZqzeziTEoOjpS33dBnOg6Hj+OZI9TDJmKwkYrKSdGWiMxJ4b9SjjAgKZUl4w0zWXmf3arV1027Mj/6H2mstrp1+uzZv3ESPsFBcXF3/Uvnbpa21sxQKha7utS09sQ0nKzu+mfgfUEBuSSHbo44yvfNQ1NrqOSw6erViZpdhfLx/JZHp8TSzd+Xx3neR3WUEP52s/7mATDt3wGrKeN37IgOT+1dTGD8IazHr0RV1ShrqhJpjTuFgj+WE0RR9sxj+YjTh31F7P4HCaHOWhG/FycqObyc9p9tPW6OOcE/nYaivbefTA6t4bsA9LJ/+Glq0pORnsiXqMKOCGm+S8zptuskfmLe9K7O7j2b12d2cSY7BwcqWe7uMYG7oOL6+dp5QKBTklxWz6Oh6NFotl3NScLS0Y1zbPg3SeWbapSNWU2sWBSla9KORnApu9+AzC+1W59gDqIqsibDTpKZTFH8Vu1f+g1n3zpTvNT5Usj5sO3CAt79bpHv/yfMvAHWvgVrtTXehnqUbNrDj0EEWvfo65k0wj6eh87uxyjt6uOLoUXMe9mjpQ1FOPqd3HJTOs0ZQ5xplIO265vZuPBg6ll8jdnEq+RJOlnbM6jaSR3pO5ItD1R3S3x/bxLxek/hywjOAlrTCHP6IOcGgVl0NblP8Nbd71uvl156SyjJOpehHrQa6+jC6TU9+PrWdyzkpuNs4Mq3jEPKDi9h08VCD1Pl2GDv2lp7YhpOlHV9PfLbm/ij6KNM7DUWjrTvH16ignlzOTr7pYlpCNAbpPBNCNKhWrVqhUCiIjIxk/PjxBvNcnwvlxotsZaV+OLdGo2HMmDF6EWPXeXrWDEms3eFl7MJ9o48++oiFCxfyySef0K5dO6ytrXnyySepqDAeGv7CCy+wYMECvTRzc3Nmrnrzlt93XUF5CWqNGgdL/Q5Bewtro3OUTQjpR3RmApsuVv8ATMhLp+zYJt4c/iArI3aSV1q3nBYtcdnJeNjW/yTT9g4OqFSqOlFmuTm5daLRrnN2diInWz8CLi8nF5VKhb2DvcEyN5OWmsrJ4yf4v/ffvnXmvyi/rIgqjbrOU1RHS1tySwxHYFSoK3lvzzI+3LccJ0s7skvyGRPcm+KKUvJLq586z+k+ht+jj7Ml8jAAl3NSsDA159l+0/n55HajHXN/VeWFSAo/vGG41bX5hpS2NqgLatqhtLFGW3Qb8+SZmmLWqT2l2/UnJDbx9kJpa4Ptgnm6NIVKhaqFH2a9Q8l/9r8N8jQ179p+crbSP44cLW0NTsQM1fvpnd0/8/7eX3T7aWxwn2v7qUi33Re2fYOZygQ7CxuyivN4JGwCqYW3Hzn0VxXqzhP60SP2FtYG/97h2nki4yobL1SfJ67mpfNd1Ub+b/hcVkTsIq+0kNySQtRaNZob9kNyfiaOVraYKFX1vkJb5fmLFF698dirnvRfaWurf+zZ2qAtvM1jr3MHSrftvHXeikrUqWkoXf98VOuf1bdrV0Ja1QxzrKis7jzOysvD5YaIupyCfJzsHW65vZ83bWTJ+t/46uX/0sq38eZCBLCwsUKhVFKSr78/SguLsbK7/eGj7i28uXT0zlz18J/i+v1E7Sgze0ubOtFo101qP4DI9HjWnd8PwNXcNMqOVPDuqEf45dQOcksLKSgv5p3dP2GqMsHW3IqckgLu7TqC9MK6k8CLWyusKEGt0dSJMrM1t6ag7NbzMvbx78CRq+dR15pEfkJIPw5fPa9bXTQ5PxMzlSn3dR3J5ouH6vlOQt9N749Kb3J/tHcZH+43fn90nbmJKQMDurA4fLPBbQnRmCTmVgjRoJycnBg2bBhffvklxQYmbM7Ly8P1WrRQamrNanw3Lh4A0LlzZy5cuICfnx8BAQF6r5tFiAUHB3P06FG9tNrvDxw4wLhx47jnnnvo0KEDLVq0ICZGf96Q2szNzbGzs9N7/dlhm2qNmss5KXXmTWrvGUB0ZoLh71WZ1ukQvP6U7mZRW76OHuQZuYn5O0xNTWkdFEj4Mf3Jo8OPhxPS3vDworbtQgg/Hq6XdvzYcYKCgzD5C5NHb920BQdHR8J6NVwUUJVGzaXMBLo2b6OX3tU7iPPpN5/PR63RkFmch0arZVBAVw7Hn9d1ilmYmNXdnxoNCsXtR6X8KeUVaLJyal5pGWgKCjAJvOEYVKkwCfCn6orhY/BGZh3bgYmKyhP6q19VxsRR8N6nFH74he5VlZBE5akzFH74RYMNQ6jSqInOTKBbrf3UrXkbzqfd/n4a3Korh+LP1em8rFBXkVWch0qppH/LTrofKg2pSqPmcnYK7b3+xHnCxBQNdY8rQHeWiM68ioets955w9POmZySgnrvOAOuHXvZNa+0DDT5Bo69lv5UXbl1dIFZp/bVx174bay8plKhcndDU1D/58DarC0tae7hqXu18PbG2cGBY2drFjSorKrk1MWLtG8deNNt/bRxA9+vXcPnL7xEcMu/ENb8N6lMTHD19SLxov6chYkX4/Bo2fy2t5OVmIqVg+Ghg6J+VGnUxGUn08GrlV56R69WRqN1zE1M65zjau4n9FWqq8gpKUClUNLTN4RjCRfqre7/JmqNhqu5qQS7++ult3X3JzY7yUipaoGuPrjbOnHgct3rjpnKpM6+1Gq11fuxgeexrL4/SqSrt/70LF29g/7UdXdgQBeOXD1fpx0DWnbBVGXCzkvhRrbyD6fV3pmvfynpPBNCNLivvvoKtVpN9+7dWbt2LTExMURGRvLZZ58RFhaGpaUloaGhvPvuu1y8eJH9+/fz8ssv621j3rx55OTkMG3aNI4fP87ly5f5/fffmT17Nmq18R96Dz/8MHFxcSxYsIDo6GiWL1/Ojz/+qJcnICCAnTt3cvjwYSIjI3nooYdIS2ucFec2XzzEoIAuDGjZmWZ2rtzXdQQu1va6m4RpnYYwr+ckXf4TSVF09wlmSOvuuNk4Eujqw/3dRhGTlah7wje5/QA6eAbgZuOIr6MHj4RNwM/Jk98v3Xx1tL9q6vS72bxhE1s2bib+SjyfffwpGWnpjJ80HoBvvvia/3v1DV3+cRMnkJ6axucLPyX+SjxbNm5my4ZN3H3PdF2eyspKYqIvERN9icrKKjIzM4mJvkRSov7NpUajYeumLYwYNeIvdbz9GavO7GZ0m56MDArD19GD+b0m4WbryIbzBwCYGzqOFwfdp8vvbe/GkNbd8bZ3pY2bL68OmY2/syffHauZq+Tw1XOMC+nDwIAueNo609U7iDk9RnMo/pxeRFBDKt93GIvB/TFtF4zSwx2raZPRVlRScSpCl8dq+mQsRg2tU9YstCuV5yLRltRaSbO8Ak1aut6Ligq0xSXV/9+Afo3YxZjgXoxq0xNfRw8e73UX7raOrLtQHV3xcOh4Xh40S5e/ub0bQ1t3x9vejTZufrw+dA4tnL1YdMOcMsHufvRr0REvOxc6eAbw8ZjHUaDgl1ONMzfdpsjq88TAgC40s3dlVteRuFjb6/6mp3caymO9Juvyn0iKoodPW4becJ6Y3X00MZk154kd0cexNbfi/u6j8LR1pnOzQCa268/26IZdKOVG5fsOYTFkAKbt26L0dMdqxl1oKyupOBmhy2M1YwoWo4fVKVt97F00OIeZxbiRqFr6o3RyROXbHOvZ96CwMKfi+MmGbI5BCoWCaSNHsWT9b+w5fozYhARe++pLLMzNGd67ty7ff7/4nC+W18zns3TDBr7+dSX/feRRPN1cycrLJSsvl5Kyxlm19rqOQ3py8cBJLh48SU5KBgdXbqUwJ5+2/asXfTmy9nd2/VAz59yZnYe5fPoieenZZCenc2Tt78SdvEi7ATXzh6qrqshMSCUzIRV1lZqivAIyE1LJS6/fOTn/bTZcOMCQ1t0Y1Kor3vZuzOk+GhdrB7ZHVT8wnNllOE/2qVlkKTwxklDfEIYHhuJu40SQmy8P9hjLpcwEcq6dJ1q7NCfUty3uNk4Eu/vx6tA5KBQK1p3f1yRtvBlLU3NauXjT6tpqoV52LrRy8cbd5vbmUGwsOy4dp69/R3r7t8fT1pm7Ow7GycpOt4rkpHb9eaD7mDrl+vh3IC47meSCzDqfnUmNZUDLznRvHoyLtT3B7n6MD+lLRErMbY3A+LtWnfmDUdfvjxzcmddzEm62Trro5wd7jOXFgffq8nvbuzGkVTea2bsS5ObLfwffj7+TJ98d21hn26PahHHwyhkKyptmxWQhbiTDNoUQDc7f359Tp07x1ltv8fTTT5OamoqrqytdunTh66+/Bqon/589ezZdu3YlMDCQ999/n6FDa36se3l5cejQIZ577jmGDRtGeXk5vr6+DB8+XDfs0xAfHx/Wrl3LU089xVdffUX37t15++23mT17ti7PK6+8wpUrVxg2bBhWVlbMnTuX8ePHk5+f33D/KNccuXoeW3MrJrUfgKOlLYl56byz+2eyivOA6rB3F2sHXf59l09jaWrO8MAe3NtlOMUVZVxIu8yyUzt0eazNLJgbOh4HSxtKKsu4kpPKqzu+Jy47uUHaMGjoYAry8/nx+8VkZ2Xj37IF73/yIR7XhtNmZ2WTfkOHiVczL97/5CM+X/gp61b/hourC0888xT9Bw7Q5cnKzGL2PbN071cuW87KZcvp2LkTny/6Upd+4ng46WnpjBw7ukHadqPdsSexM7fmvq4jcba240p2Ks9t/or0ouohq85Wdno36SqlkqkdBuHj4E6VRs3p5Es8+tuHpBXWDHH96cQ2tFotD/QYg6u1A3mlRRyOP2fwBrKhlO/ej8LUFMvJY1FYWqK+mkTRN0ugvGbYstLRoc6TRqWrMyYt/Cj6enGj1fV2/BF7EjsLG+7vOgpnazsuZ6fwzKYvSC+8vp/scbetGVKsVCqZ1nEwPg4eVGnUnEqO5uG1H+gtrmGmMuXBHuPwsnOhtLKcI1fP8+bOJRRVNE5HxuH4c9iaWzH52nkiIS+dt//4qdZ5omao6t646vPEiKBQ7us6guKKMs6nXWbZyZrzRHZJPm/uXMKsbiP5aOxj5JQUsDXyMOuvdTI2hvI/9l079sahsLJEfTWRoq9/uI1jzwWTlv4UffW9we0qHeyxvm8aCmsrtEXFVF1NpPDjr9Dm5jVga4y7b+w4yisqePeH7yksLiYkIIAvXnwZa0tLXZ607Cy9BSjW7NxBZVUVz338kd62Hpx8Fw/dpb/KdENq1b0dZcUlnNi0l+L8Qpy93BnzxEzsnB0AKMkvojC75lqprlJzaNUOivMKMDE1xamZG6Men4lf+9a6PMV5hax6o2YhkYgdh4jYcQiv1n5M+M+cxmraP87BK2exNbdiaodBOFnZcTU3jTd2LiHTyP3E7tiTWJqaM6pNT2Z3H0VxRRlnU2NZeqJmvk1TlQn3dB6Gu40TZVUVnEyK4pP9KymuKGvk1t1akKsvX0yomU7j8d53AbA18ghv7V7aVNWqIzwxEhszS8YG98bewobk/Ew+OfCrbvVMewubOkMgLU3N6eIdxIoIw8PUN108iFarZUJIXxwtbSksL+FMaixrz+1t4NZU2xN3CnsLa+7tMqL6/ignlee23Hh/ZI/bjfdHCgVTOwyi+fX7o5RLzFv3kd79EVR3srX3DODpTZ83SjuEuBWFtjG6o4UQ4l9iys8v3zrT/5BVM/+PjIJ/XjSAm50zfb96tKmrUa/2P/oVeU+92NTVqFcOC9+m15cPN3U16tWhed8w+aeXmroa9WrNvW+R98TzTV2NeuXw6bsURpy9dcb/IbYd2/PZgVVNXY1693ifxutMbEzjljzX1FWoVxvuf+8feT6fvarh5lttCounvEi/r+fdOuP/kH2PfHnrTHeo/FffaeoqGGT/+gtNXYUmIcM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQuY8E0IIIYQQQgghhLiDyAxbdxaJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5Fhm3cUiTwTQgghhBBCCCGEEMII6TwTQgghhBBCCCGEEMIIGbYphBBCCCGEEEIIcSfRyLDNO4lEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g1TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9HKapt3Eok8E0IIIYQQQgghhBDCCOk8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCHEn0ciwzTuJRJ4JIYQQQgghhBBCCGGEdJ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEuJPIapt3FIk8E0IIIYQQQgghhBDCCIVWK92ZQgghhBBCCCGEEHeKvP+82tRVMMjh/debugpNQoZtCiFEPXpywydNXYV69cm4J7mcldTU1ah3LVy8Gb342aauRr3aPPsD8u6e09TVqFcOK3/gjZ2Lm7oa9eq/Q2Yz/sfnm7oa9Wr9rHf5YM+ypq5GvXp2wD18d3RDU1ejXj0YOo7H1n3c1NWod59PWMAr279t6mrUqzeHz+WRtR80dTXq1deTnmX2qrebuhr1avGUF+n15cNNXY16dWjeN//I/fQ/S6tp6hqIG8iwTSGEEEIIIYQQQgghjJDOMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBB3Eo1MT38nkcgzIYQQQgghhBBCCCGMkM4zIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEHcSrQzbvJNI5JkQQgghhBBCCCGEEEZI55kQQgghhBBCCCGEEEZI55kQQgghhBBCCCHEnUSrvTNfDSg3N5eZM2dib2+Pvb09M2fOJC8v76ZlFAqFwdcHH3ygy9O/f/86n999991/qm4y55kQQgghhBBCCCGEaFLTp08nKSmJ7du3AzB37lxmzpzJpk2bjJZJTU3Ve79t2zbmzJnDpEmT9NIffPBB3njjDd17S0vLP1U36TwTQgghhBBCCCGEELdUXl5OeXm5Xpq5uTnm5uZ/a7uRkZFs376do0eP0qNHDwC+++47wsLCiI6OJjAw0GA5Dw8PvfcbNmxgwIABtGjRQi/dysqqTt4/Q4ZtCiGEEEIIIYQQQtxJNJo78vXOO+/ohlVef73zzjt/u7lHjhzB3t5e13EGEBoair29PYcPH76tbaSnp7NlyxbmzJlT57NffvkFFxcX2rZtyzPPPENhYeGfqp9EngkhhBBCCCGEEEKIW3rhhRdYsGCBXtrfjToDSEtLw83NrU66m5sbaWlpt7WNpUuXYmtry8SJE/XSZ8yYgb+/Px4eHpw/f54XXniBM2fOsHPnztuun3SeCSGEEEIIIYQQQohb+rNDNF977TVef/31m+YJDw8Hqif/r02r1RpMN2Tx4sXMmDEDCwsLvfQHH3xQ9/8hISG0atWKrl27curUKTp37nxb25bOMyGEEEIIIYQQQog7SQOvbNlY5s+ff8uVLf38/Dh79izp6el1PsvMzMTd3f2W33PgwAGio6P59ddfb5m3c+fOmJqaEhMTI51nQgghhBBCCCGEEKLpuLi44OLicst8YWFh5Ofnc/z4cbp37w7AsWPHyM/Pp2fPnrcs/8MPP9ClSxc6dOhwy7wXLlygsrIST0/PWzfgGlkwQAghhBBCCCGEEEI0mTZt2jB8+HAefPBBjh49ytGjR3nwwQcZPXq03kqbQUFBrFu3Tq9sQUEBq1ev5oEHHqiz3bi4ON544w1OnDhBfHw8W7du5a677qJTp0706tXrtusnnWdCCCGEEEIIIYQQdxKN9s58NaBffvmFdu3aMXToUIYOHUr79u35+eef9fJER0eTn5+vl7Zy5Uq0Wi3Tpk2rs00zMzP++OMPhg0bRmBgII8//jhDhw5l165dqFSq266bDNsUQgghhBBCCCGEEE3KycmJZcuW3TSP1sBccHPnzmXu3LkG8zdv3px9+/b97bpJ5JkQ4n+KQqFg/fr1/5jvEUIIIYQQQghxZ5PIMyGEuAP18mvPwIAu2FlYk1aYzbpz+7ick2Iw7/ROQ+nuE1wnPbUgm/f2/GygRP3b/NsG1ixfRU52Nr7+fjz0+KOEdGxvNP/Z02f47vOvuXolHmcXFyZPn8qoCWP08qz7dS1b1m0kMz0DOwd7evfvy/0PP4CZuRkA902aTkZa3RV5Rk8cy7ynn6jfBhoxMiiMie3642RpS0JeOt8d28iF9CtG849q05PRbXriZuNEZnEuq87sZnfsyUap681YTB6L2cB+KGysUMdepmTxL2iSDB9v15mPGIzZkAEoXZzQFhZRcewEZSvWQmXVtY1aYDllPKbdOqOwt0Udn0DpjytQX45v+AbVcmn/KS7+cZzS/CIcPF3oMmkQbgHNjeZXV1ZxbtthroRfoKywGCsHW0KGhdEyzPgx3dBGBIYyPqQvjla2JOam88PxzVzMiDeav2+LjkwI6YeXnTPFFWWcTr7Ejye2UlheosszJrgXwwNDcbF2oLC8mMPx5/n51HYq1VWN0CK4uPcEZ3ceoTS/EAcvV8LuGoZHKx+DeVOi49m6sO75bPJrj+DgUT0J8aXDZ9j/08Y6eWZ9/gImpo1zy3v6j8OEb91HcX4hLl7uDJgxFu9A/1uWS74Uz8p3vsHF25373nxK77Oy4lIOrt1OzInzlJWUYu/iRP9po2jRoU1DNUNPH/8ODGrVFTsLa1ILsvnt3F7ispMN5r2n8zB6+Latk55akMXbf/wEgIetM6Pa9KS5gxvO1vasPbuHvXGnG7IJBnVvHkxv//bYmFuRUZTLtqgjXM1NM5pfpVAyIKALHbwCsDG3oqCsmH1xpzmVHA1AsLsffVt0wsnKDpVCSXZJPofiz3EmJaaxmkTfFh0Z0rob9hY2pBZksfrMbmKN7Kt7u4wgzC+kTnpKQRZv7lwCQEevVgwPCsXV2gGVUklGUR67YsI5nnCxQdtxowEtOzM8MBQHSxuS8zNZEbGLmKxEg3lndxtNb/+65+nk/Exe2fGd7v2QVt0Y0LIzTlZ2FFWUciIpijVn91ClUTdYO/6KDp4BTO80lCA3H1ysHXh+69ccuHKmqatl0L95PzWof8hqm/8U0nkmhBB3mE5erZnQrh9rzuzmSk4KPf3a81DYeN7Z/TN5pYV18v92bi+bLh7UvVcqlPxnwIxGu2Hft2sPiz79inlPP05w+xC2rt/MK8+8wKJli3HzqLusdFpKKv995kWGjxnJs/99gYtnz/PlR59h72BP7wF9Adi9YxdLvvmOp154luB2bUlKSOLjt94H4KEnHgXg0++/QqPR6LZ79fIVXnzyP/QZ0K8RWl39g/LBHmP5+sg6LqbHMyIolNeGzuHR3z4kszivTv4RQWHc12UEnx9aw6WsRAJdmjO/92SKyks4nhjZKHU2xHzsCMxHDqXk68WoU9OxmDgamxefpmDBS1BWZrCMaa8eWEybTMmiJagvxaL09MDq4dkAlP1UvTy41UP3ofJuRvGX36PNzcOsTyg2Lz9NwdOvoM3Na6zmEX8ykpNr/6Db1KG4tmhGzMEI9ny1mtEvP4C1k53BMgcXb6C0sJjQGSOwdXWkrLAY7Q3HWmPr5dee2d1Hs+joBqIy4hkW2INXhtzPY+s/Jqs4v07+Nm6+PNF7CovDNxOeGImzlR0Ph01gXs9JvHutQ71vi47M7DKcLw6uISozAS87Fx7vfRcAi8M3N3ib4k5c4OjqHfScNhL3lt5EHTjF9i+WM/nVR7Bxsjda7q7XH8XUwlz33sLWSu9zUwtz7nr9Ub20xuo4izoWwZ5fNjH43vE0a+3HmT3HWPvRD9z/ztPYOTsaLVdeUsrWb1fiGxxAcYH+OV5dVcXqD77Dys6GsfNnYuNkT2FOHmY3/Bs0pM7NWjOxfX9WRfzB5ZwUevm155GeE3hr11JyDVyP1pzdw4YLB3TvVQolzw+ayenkmuuRmcqErJJ8TidfYmL7xjlf1xbi0YIRbcLYfPEgCbnpdG3ehpldRvD5wVXklxUbLDO142BszC1Zd34/OSX5WJtZolTUDOIpqSxnX9xpsorzqNKoCXTzZUJIP4orSonNSmrwNnXxDuSuDgNZeXoncdnJ9PHvwLzek3nj98UG99WqM3+w/vx+3XulUsFLg2ZxKilal1ZcUca2qKOkF2ZTpdHQzrMF93YZQWF5CZHp8Q3epm7N2zCt4xB+PrWd2Kwk+rfsxFN9pvLyjm/JKSmok39FxE7WnNuje69SKHl96BxOJEXp0kJ92jK5/QAWh28mNisZD1sn5nQfDcDKiF0N3qY/w9LUnNjsJLZGHebtEQ83dXWM+rfvJ/HvIcM2hRD1pn///syfP5/58+fj4OCAs7MzL7/8sm5c+rJly+jatSu2trZ4eHgwffp0MjIygOqx6wEBAXz44Yd62zx//jxKpZK4uDiD33nu3DkGDhyIpaUlzs7OzJ07l6KiIt3n4eHhDBkyBBcXF+zt7enXrx+nTp3S20ZMTAx9+/bFwsKC4OBgdu7cWZ//LH9a/4DOHLt6gaMJF0gvymXd+X3klRbR289w1EtZVQWF5SW6l4+DO5amFhxLuNAo9V336xqGjh7B8LGj8PHz5eEn5+Hq5saWdZsM5t+yfhNu7m48/OQ8fPx8GT52FENHDWftilW6PFHnLxLcLoQBQwfh7ulBlx5d6T9kADFRNTf1Do4OODk76V7HDh3Fs5kX7Trdennq+jA+pC87L4Xz+6XjJOVn8N2xjWQV5zEyKMxg/oEtO7Mt+igHrpwhvTCH/VfOsPNSOJPaD2iU+hpjPmIwZeu3UBl+Ck1SMiVf/YDC3AyzXj2MljFp3ZKqS7FUHjqGJjObqrMXqDh8DJMWftUZTE0x7d6F0uVrUEddQpOeQdmajWgysjAf0rjtjdodTsuw9gT07IC9hwtdJw/GytGWSwcMR7qkXLxMemwiAx65C88gP2yc7XHx88K1hXej1vtG49r2ZlfMCXbFhJOUn8kPxzeTVZzP8MBQg/lbu/qQWZTLlsjDZBTlEplxld+jjxPg0kyXJ9DVh6j0q+y/coaMolwiUmI4cPmMXp6GdH7XUVr36kRQ7044eroSNmUY1o52RO47cdNyFrbWWNnb6F5Kpf6trEKB3udW9jYN2Qw9J7YfoF3fbrTv3wNnL3cGzhiLrZMDEX8cvWm533/8jTZhnfAMqBt1d25/OGVFJYx//D6atfbD3sUR79b+uPl4NVQz9AwI6MKR+PMcuXqe9MIcfju3l9zSQnr7Gz7P1rkeOVZfj45ePa/Lk5CXzobz+zmVHE2VumkiSHr6tedUUjQnk6LJLM5jW9QRCsqKDEZxAwS4eOPn5MnPJ7dzOTuZvNIikvMzScyriX6Oz0klMiOezOI8cksLOXrt38zXwaNR2jSoVVcOx5/jUPw50gpzWH12D7klhfRt0dFg/rKqCgrKi3UvX0cPrMwsOHLDvorJSuRMSgxphTlkFeexJ/YUyfmZBDg3znliWOvuHLhyhgNXzpBamM2KiF3klBYwoGVng/lLK8spKCvWvfwcPbEys+TgDdFaLZ2bEZOVxLGEi2SX5HMh/QrHEi7i5+jZKG36M44mXOC7YxvZdzmiqatyU//2/ST+PaTzTAhRr5YuXYqJiQnHjh3js88+Y+HChXz//fcAVFRU8Oabb3LmzBnWr1/PlStXmDVrFlA9x9js2bNZsmSJ3vYWL15Mnz59aNmyZZ3vKikpYfjw4Tg6OhIeHs7q1avZtWsX8+fP1+UpLCzkvvvu48CBAxw9epRWrVoxcuRICgurn8JqNBomTpyISqXi6NGjfPPNNzz33HMN9K9zayqFEm97N6Iyr+qlR2Vcxc/p9m4Yevi25VJmgsEnzfWtsrKSmOhLdO7eVS+9c/cuXDxvuPMu6vxFOnfvop+/Rzdioi5RVVU9XCy4Qwix0ZeIvlj9FDI1OYXwI8fp3tNwZ0FlZSV7ft/F0FHDUSgUf7dZt2SiVBHg3IzTKZf00k8nXyLIzddgGVOVSZ3hcBVVlbR2aY5K0TSXY6WbC0pHB6rO3rCvqqqoiozGpHXdvzldlqhYTPx9UbX0123HtFM7Kk+drc6gUqFQqaCyUq+ctqISk6CAem+HMeoqNTmJaXi20R8259nGn6wrhocyJZ2LxdnHg4u7jvHbS1+y8fVvOfXbbqoqKg3mb2gmShUtnZsRUSuSNCIlxuixFpVxFWdre7o0q17W3d7ChjC/EL2n+pEZ8bR0aUYrl+pOQXcbJzp7B+rlaSjqKjVZCal4t2mhl+7dpiXpl28eobPure/45T8L2brwZ1Ki4+t8XllewcoXP2P585+w48uVZCWk1mfVjVJXVZEen4xfSGu9dL+QVqTE1q3ndef2h5OXkU3P8YMNfh53+iJeAb788dM6vnrsDZa8+BFHN+3Wi7ptKCqFkuYO7kRl1LoepV/F3/n2Ou9CfUOIzrjaKNej26VSKPGyc6kTDRablURzh7rR0gBBbr6k5GfS278Dz/afwRN9pjAssAcmSuOrtLVw8sLF2p743IY/BlUKJT4OHlysFQ0WmRFPi9vs6Orp146ojKsGI4WuC3T1wd3WkZhGiKRTKZX4OnpyIf2yXvqFtCsEON/ew4w+LTpwMf0K2Te0KSYrCT9HD/yv3VO5WjvQzrMlZ1Nj66/y/yKynxqYVnNnvv6lZNimEKJeNW/enIULF6JQKAgMDOTcuXMsXLiQBx98kNmzZ+vytWjRgs8++4zu3btTVFSEjY0N999/P//97385fvw43bt3p7KykmXLlvHBBx8Y/K5ffvmF0tJSfvrpJ6ytrQH44osvGDNmDO+99x7u7u4MHDhQr8yiRYtwdHRk3759jB49ml27dhEZGUl8fDze3tUX+bfffpsRI0bctJ3l5eWUl5frpZmb//1hNNbmlqiUSgrLSvTSC8tLsLOwMlKqhp25FW3c/Pj55La/XZfbUZCXj0atwdFJf0iSg6Mjudk5Bsvk5uTg4Kif39HJEbVaTUFePk4uzvQfPJD83HyeeeQJtFotarWaURPGMmVm3eWnAY7sP0RRURFDRg6rn4bdgp25NSqlqs4PwtzSIjpb2Roscyo5mqGtu3Pk6nnispMJcPZmcOtumKpMsLOwbpIflwqH6uFxmnz9H0ua/AKULs5Gy1UeOU6pnQ02rz9fvR0TE8p/30P5xmvHXVkZVZdisZg4muLkVLR5+Zj26oEqwB9NWkbDNMaA8qIStBptnaF9FrbWlBYYHppVlJVHRlwSShMT+j44gfLiUsJ//Z3ykjLC7hnZGNXWY2tuhUqpqjNkO7+0EEfL1gbLRGcm8PH+lTzTfzqmKhNMlCqOJVzku6M184EdvHIWe3Mb3h7xMAqFAhOlim1RR/jt3N9fjepWyq7tF0s7a710SztrSguKDJaxsreh94xRuPh6oq5SE3v0LFs/+ZlRC+7Fs1V1J6KDhzN97xuLUzM3KksrOL/7GJs++JGJL8/F3t348VwfSq8N7a0d6WZlb0txvuG/7dy0TA6s3sbdLz2CUmW4EyY/M4eEyDjahHVi4oLZ5KVnseun9WjUanqOH1Lv7biR7npUrv+3Ulhegp357VyPrAl292fpia0NVcW/xMrMApVSSVFFqV56UUUptkba5WRph4+jB1UaNctP/46VqQVj2vbG0tSC9edr/mbMTUx5tv89mChVaLQaNl88ZHR+uPpko7t3qLWvyoqxd7c2UqqGnYU1bd1bsPh43SHbFiZmvDPqEUyVKjRaLStO76zTodoQbM2sUCmVdYbRFpQXY29x6zbZW1jTzqMl3x7doJd+PPEituZWvDDgXlBUP6DYHXuSrVFH6rX+/xayn8S/iXSeCSHqVWhoqF7kT1hYGB999BFqtZqzZ8/y2muvERERQU5Oju7JeUJCAsHBwXh6ejJq1CgWL15M9+7d2bx5M2VlZdx1110GvysyMpIOHTroOs4AevXqhUajITo6Gnd3dzIyMvjvf//L7t27SU9PR61WU1JSQkJCgm4bPj4+uo6z63W+lXfeeYfXX39dL+3VV1+FTg63/W/1ZygUtzdnaHeftpRWlnMu1fAw14ZSO9hLCzeNAKv9mW7J6WvpZ09F8OtPvzDv6ccJbNuGlKQUFn36JcuXODH9/pl1trdj8za6hnbH2dXlb7XjT6u1T262n1ZG7MLR0paPxjyGAsgrLeKPmBNMbj8ATSM9xTPt1QOrB+/VvS9679Pq/6lT6ZsfcCbBgVhMGE3pD8uoir2MysMNy/umockbTflv1T++Sr78HquH7sf+64/QqtWor1yl8tAxVP6Go6UaVu0DVFvnmK35SItCoaDXrDGYWVZ3iKsnDuTAD+vpNmUIJmamDVzX26RQoK19AF7jbe/Ggz3G8mvEH5xOuYSjpS2zuo7kkbAJfHF4LVA959PkDgNYdHQDMZkJeNi58ED3MeS2L2TV2d2N1oYbVZ8HDO8YBw8X3cIAAO4tvCnKLeDcziO6zjO3Ft643TC81r1lc9a9/R0X9obTc+rw+q+/AXXOe9eOp9o0Gg2bv1lBzwlDcPJwNbo9rUaLla0NQ++fhFKpxMPfm6K8AsK37mvwzjNdHf5iuR6+wZRWlnM25U6NFNFvmQKF0dPe9X24+uxuyquqo1C3Rx1haschbL54UDeBeUVVJV8dXouZypQWzl4MDwolp7SA+JzGiYCsW33j54kbhfmGUFpZZnCu1PKqCt7etRRzEzMC3XyY3H4AWcX5RieDb2gKbu+Y7OXXnpLKMk6lROulB7r6MLpNT34+tZ3LOSm42zgyreMQ8oOL2HTxUIPU+d9I9pP4J5LOMyFEoygrK2Po0KEMHTqUZcuW4erqSkJCAsOGDaOiokKX74EHHmDmzJksXLiQJUuWMHXqVKysDD8J1hr5UQI1N7qzZs0iMzOTTz75BF9fX8zNzQkLC9N9p9bAnfLtDPt74YUXWLBggV6aubk5z23/+pZlb6a4vBS1RoNtrSgzGzMrvVXyjOnhE8yJpEjUjdQZY+dgj1KlJCc7Vy89PzcXh1rRaNc5OjmRm6MflZaXm4dKpcLOvnoC95++W8LAYUMYPnYUAP4tW1BeVspn7y3k7vtm6M1zlJ6WTsSJU7z89mv12LKbKygvRq1R41gryszBwsbgog4AFeoqPj24mi8OrcXB0pbc0gKGBYZSUlFGQdmt9219qDx5hsLYGzp9r02krnSwR51XM/G80t4Wbb7xoTsWU8ZTceAIFXuqJwbXJCaDuTlWD95L+botoNWiSc+k6I33wdwMhaUl2rx8rJ54CE1GVsM0zgBzGysUSgVlhfpPxMuKSrCwNfxE3NLOBkt7G13HGYC9hzNooSSvEDs3pwatc22F5SWoNWocLPWPNXsLG/JKDUdpTW7fn8iMeNZfqJ4M/GpuGouOruedkY/wy+nfyS0tZHqnIeyNO8WumPDqPHnpWJiY8mjPiaw+u+e2fnD/VRbX9ktpvn79ywpL6kSj3YybfzNij58z+rlCqcDV14uCDMNRsPXJ0tYahVJJcZ7+339JQRFWdnXnXasoLSf9ShIZV1P44+fqiAutVgtaLR/d/zx3PfsAPsEBWDvYolSp9M55Tp5uFOcXoq6qQmXScLfy169Hdub6+8TW3IqC27gehfqGEJ54sdGuR7erpKIMtUaDjZn+ddbazIKiCsPtKiwvoaCsWNdxBpBZlIdSocDOwlo31FELuv9PK8zG1dqRvi06NnjnWdH1fVUr0sfWwuq2ri89/dpxLMHwvtKCbhGcpPwMPG2dGR7Ug5iDDdt5VlhRglqjqRO9ZGtuTYGRRR1u1Me/A0eunkdda4jzhJB+HL56XrdqZXJ+JmYqU+7rOpLNFw814Jnvn0n2UwPT/Gta+j9B5jwTQtSro0eP1nnfqlUroqKiyMrK4t1336VPnz4EBQXpFgu40ciRI7G2tubrr79m27ZtekM9awsODiYiIoLi4pqL86FDh1AqlbRuXT2c6cCBAzz++OOMHDmStm3bYm5uTlZWlt42EhISSElJ0aUdOXLrkHBzc3Ps7Oz0XvUxbFOt1ZCUn0Ggq/7E0YFuPre8+Q5w9sbVxpGjVxtnoQAAU1NTWgW25nT4Sb30U+EnCQ5pa7BMUEgwp2rnP36CVkGtMbn2Q7C8vByFUr8TU6lUodVq63R47tyyHXtHB7qHGZ4PrSFUadTEZifT0auVXnpHr9a3HM6i1mrILslHo9XS178DxxMjG7SjQk9ZGZr0jJpXUgqa3DxM2t0wSbZKhUmbQKou3SR60cysbmSaRlM3BBGgvAJtXj4KaytM24dQedLwRP0NQWWiwqm5B6lR8XrpqVHxuPgbngfItUUzSvOLqCyv6dQvyMhFoVBg5WB4SG5DqtKoictOpqOX/lxxHb0CjB5r5iqzOn8nmlrvzVWmRvIojEbl1ReViQoXH0+SI/XnyEmOvIz7n1iYITsxDSt74/tEq9WSnZTWKIsGqExMcPdrRvwF/cid+AsxeAX41clvbmnOfW8t4N43n9S9OgwIxcnTlXvffBKPltXXgGat/MjLyNZb7TU3PQtrB9sG7TiD6nNVYl46QW61r0e+XMlOMVKqWoCLN242jhyJP3/TfE1BrdWQUpBFy1qLY7R08dZbAOBGCblp2FpYY6aq+Td3trZHo9XctINAcW24WUNTazUk5KXRptY8iG3cfLl8i2GjrVya42bjyOF44x3RtTVKmzQaruamEuyuP2dlW3d/YrNvPuda9dxsThy4fKbOZ2YqkzrXXK1WWx3z2ghzpv7TyH4S/ybSeSaEqFeJiYksWLCA6OhoVqxYweeff84TTzyBj48PZmZmfP7551y+fJmNGzfy5ptv1imvUqmYNWsWL7zwAgEBATcdQjljxgwsLCy47777OH/+PHv27OGxxx5j5syZuLtXT/obEBDAzz//TGRkJMeOHWPGjBlYWlrqtjF48GACAwO59957OXPmDAcOHOCll16q/3+YP2Fv7ClCfUPo4ROMu40j40P64mhpy6H46snYR7fpxYzOQ+uU6+HblvicVNIKsxu1vhOmTmbHpq3s2LyNhPirLPr0KzLTMxg5YQwAS77+ng/ffFeXf9T4MWSkZfDtZ1+REH+VHZu38fvmbUyaNqWmLb3C2LJuE3t37SYtJZVTx0/w03dLCO3dE9UNcwNpNBp2btnO4BFDUZk0/M38jdaf38/Q1t0Z0qob3vZuPNB9DK42Drr5OO7rMoIFfe/W5feyc6F/y8542bnQ2qU5/+k/A19HD35qpPnpjCnftguL8aMw7dYJpXczrB6djba8gopDx3R5rB6dg8XdE3Xvq06dwXxwf0zDuqN0dcGkXTAWU8ZTeTJC16lm0r4tJh1CdJ/bvPIs6tQ0KvY27nCLoIHdiDt8hrgjZ8lPy+Lk2j8oySmgVZ+OAJzesI/DP9XM8+PXLRhza0uOLttKfmoW6bGJnF63hxZh7ZpsyOaGCwcZ3KobgwK64m3vyuxuo3GxdmBHdPU+uqfzMJ7oXfP3E54USahvCMMDe+Bu40SQmy8P9Bijt5BIeFIUwwND6e3fHjcbRzp4BjC90xDCEy/W6WhrCCGDQ4k+dJroQxHkpmZydNXvFOXmE9S3ejGR8HV/sHfJel3+838cIz4iivz0bHJTMghf9wfxp6MI7l+zWMmpzftIuhBHQWYu2YlpHPh5E9mJ6QT16VL76xtE1+F9OLfvOOf2h5Odks6eXzZSmJ1Hh4HVHfv7V21j66KVACiUSly9PfReVnbWqExNcPX2wMzcDIAOA8MoLSpm9y8byUnLJC4ikmObdtNpUM9GadOe2JOE+bUj1Lct7rZOTGzXDycrW92qeGOCezOzS90hsWG+IVzJSSXVwPVIpVDSzN6VZvaumChV2Fva0szeFRdrh4Zujs7h+LN08Q6ic7NAXK0dGBEUhr2FDccTIgEY0robk9r11+U/mxpLaUUZE9r1x9XaAV9HD4YF9uBUUrRuyGbfFh1p6dwMR0tbXKzt6enXjo5erQ0OhWwIf8ScoJd/e8J8Q/CwdWJy+wE4WtnpInfGte3DfV3rztvYy68dV7JTSCmoGxU8LLAHQW6+uFjb427rxKBWXQn1bcvxhIsN3h6AHZeO09e/I7392+Np68zdHQfjZGXH3rjqVdMntevPA93H1CnXx78DcdnJJBdk1vnsTGosA1p2pnvzYFys7Ql292N8SF8iUmIMjkZoSpam5rRy8dYt7OJl50IrF2/cbQxH9jeVf/t+Ev8eMmxTCFGv7r33XkpLS+nevTsqlYrHHnuMuXPnolAo+PHHH3nxxRf57LPP6Ny5Mx9++CFjx46ts405c+bw9ttv3zTqDMDKyoodO3bwxBNP0K1bN6ysrJg0aRIff/yxLs/ixYuZO3cunTp1wsfHh7fffptnnnlG97lSqWTdunXMmTOH7t274+fnx2effcbw4Y0zP44hp1MuYWVmwbDAUOzMrUgtzGbR0Q26H712FtY4WtrplbEwMaODZwC/3TBxcWPpN3gAhQUFLF/yMznZOfi18OOND9/B3aO6AzMnO5uM9JooQw8vT9748G2+/ewrNv22EWcXZx5+cj69B/TV5Zl23z0oFAp++nYJ2ZlZ2Ds60KNXKPfNnaP33afDT5GRnsHQUY2/vw5cOYOtuZXuJvFqbhqv/f6DbniLo5Udrjf8GFQqlEwI6Usze1fUGjVnU+N4dvOXZBTlGv6CRlK+cRsKM1MsZ9+Dwtoadexlit7+GMrKdHmULk56kWZlv21GqwWLqeNROjmiLSik8uQZyn79TZdHYWWJxbRJ1Z8XFVN5/CSlK9eBWt2o7fPr0oaK4lLObTtEaUExDp4u9H/0LmycqhdLKCsoojinZoiqqbkZA+dP5cTqnWx7fynm1pb4dA6iw+g+jVrvGx2KP4uduRVTOw7C0dKWhNw03tz1o+5Yc7Kyw9XGQZd/d+xJLE3MGRnUk/u7jaK4ooyzqXF6HbWrzuxGq9Uyo9NQnKzsKSgrJjwxkl9O72iUNrXs2pbyolJOb9lPSUERjl6uDJs/DVvn6naU5BdRdMN+UVepOb52F8V5hZiYmuDg5cqweXfTvF1N9GdFSTkHf9lCSUERZpbmODf3YPQz9+FmJMqwvgX16EhpUQlHNuyiOK8Al2YeTFwwG3uX6h+6xfkFFOTk/alt2jk7cNezD7Jn+SaWvrwQGwc7Og/tTfdR/eu/AQacSr6EtZklwwNDsbOwJrUgm68Pr9Ndj+wtrHGsNaTYwsSMjl6tWHtur8Ft2lva8PzAmrkrB7fqyuBWXYnJTOSzg6sbqil6zqddxsrUgv4BnbE1tyK9MIefT24jv6x6KLGNuRX2ljURixXqKn48sYVRbXrxcM+JlFaUcT7tsm7YM1SvqDwmuDd2FtZUqqvIKs5jzdndnE+7XOf7G8LJpGiszSwZ1abntX2VxZeH1uqGkdpb2OBkVXdfdWrWmlVnDM9zaK4yZVqnIThY2lCpriKtMIcl4Vs4mRRtMH99C0+MxMbMkrHBvbG3sCE5P5NPDvyqW5Wxuk3690OWpuZ08Q5iRcROg9vcdPEgWq2WCdceTBaWl3AmNdbo8dqUglx9+WJCzRQhj/eungN4a+QR3tq9tKmqVce/fT81KOkovKMotNJ1K4SoJ/3796djx4588sknf2s7hw4don///iQlJekiyP5XPLnhk6auQr36ZNyTXG6EJekbWwsXb0Yvfrapq1GvNs/+gLy759w64/8Qh5U/8MbOxU1djXr13yGzGf/j801djXq1fta7fLBnWVNXo149O+Aevqu1+tv/ugdDx/HYuo9vnfF/zOcTFvDK9m+buhr16s3hc3lkreGVxv9XfT3pWWaverupq1GvFk95kV5fPtzU1ahXh+Z984/cT/+r8h56qqmrYJDDooVNXYUmIZFnQog7Rnl5OYmJibzyyitMmTLlf67jTAghhBBCCCHEP4/MeSaEuGOsWLGCwMBA8vPzef/995u6OkIIIYQQQgjRNK6twnzHvf6lJPJMCFFv9u7d+7fKz5o1i1mzZtVLXYQQQgghhBBCiPogkWdCCCGEEEIIIYQQQhghkWdCCCGEEEIIIYQQdxKNpqlrIG4gkWdCCCGEEEIIIYQQQhghnWdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQggh7iT/4pUt70QSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEybFMIIYQQQgghhBDiTiLDNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k6ikWGbdxKJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ9FqmroG4gYSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBHSeSaEEEIIIYQQQgghhBEy55kQQgghhBBCCCHEnUSrbeoaiBtI5JkQQgghhBBCCCGEEEYotFrpzhRCCCGEEEIIIYS4U+Td+3BTV8Egh5++aeoqNAkZtimEEPXop/CtTV2FenVvt5EUxsQ2dTXqnW2rAIZ8+0RTV6Ne7Zz7Kf/d/l1TV6NevTH8Qcb/+HxTV6NerZ/1LoMWPd7U1ahXfzz0GYVp6U1djXpl6+H+jzyff7L/16auRr17su9UNl842NTVqFej2/Zm+HdPNXU16tX2BxfS7+t5TV2NerXvkS+Zvertpq5GvVo85UV6fXlndtj8VYfm/Q939GgkzulOIsM2hRBCCCGEEEIIIYQwQjrPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQtxJZHr6O4pEngkhhBBCCCGEEEIIYYR0ngkhhBBCCCGEEEIIYYQM2xRCCCGEEEIIIYS4k2g0TV0DcQOJPBNCCCGEEEIIIYQQwgjpPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghxJ5HVNu8oEnkmhBBCCCGEEEIIIYQR0nkmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQ4k4iwzbvKBJ5JoQQQgghhBBCCCGEEdJ5JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEOIOotXIsM07iUSeCSGEEEIIIYQQQghhhHSeCSGEEEIIIYQQQghhhAzbFEIIIYQQQgghhLiTaDVNXQNxA4k8E0IIIYQQQgghhBDCCOk8E0L8T5s1axbjx4//U2X8/Pz45JNPGqQ+QgghhBBCCCH+WWTYphD/Q2bNmsXSpUvrpA8bNozt27c3+Hfn5eWxfv36Bv2eP+vTTz9Fq63flWji4+Px9/fn9OnTdOzYsV63bciJnQc5unUPRXkFuDbzYMg94/EJannLcomXLvPz/32Jq7cHD779rC49KvwshzbuJDc9C41ag6O7C6Ej+9Oud7eGbEYdWq2Wb5cvZ92O7RQWFdG2dSDPPfIILX19jZaJu3qVb35ZRlRsLKkZGSx48EGmjxtvNP+SVav48qelTBs7jqfnzm2AVugbE9ybu9oPxNnKjvjcNL4+8hvn0y4bzT82uDfj2vbB3daJjKJclp/eya6YcIN5+7fsxEuDZnEo/iyv/f5DQzWhjm7N29DbvwM25pZkFuWyLeooV3PTjOZXKZT0D+hMB68AbMytKCgrZl/caU4nXwKgi3cgHb1a42brCEBKfha7YsJJzs9slPYAjAgMZXxIXxytbEnMTeeH45u5mBFvNH/fFh2ZENIPLztniivKOJ18iR9PbKWwvESXZ0xwL4YHhuJi7UBheTGH48/z86ntVKqrGqFF1cfSlA6DdMfeV4fXcu4mx964tn0Y17YPHteOvV9O/c7OG469Ya27858B99QpN/z7BQ3WJq1Wy7c/LmHdpk0UFhbSNjiY5558ipb+/jct98e+vXzzww8kpaTg7eXFow88yIC+fXWfL1qymO9+/FGvjLOTEzvWrde9z87J4fNF33A0PJzCoiI6d+jAs088gY938/ps4j/yfH5+z3EidhykJL8IRy9Xek0dgVdrP4N5k6OvsPHDJXXS737jMRw9XQG4uP8E0UciyEnJAMDV14seEwbj7u/dYG0w5NC23ezdsIOC3Dw8mjdj3Oy7aRHc2mDey5ExbPlpDRnJqVRUVODo6kzY0H70GzNUl+fozn2c2HuEtIRkALxb+jJyxkR8WrVolPYAjG7Ti8kdBuBkacfV3DS+ObqeCzc5T4wJ7sWY4D642zqSWZTHioid/BFzQvf58MBQBrfuhq+jBwCxWUksCd/CpcyEBm/LdePb9uHujoNxsrInPjeVLw6t4Wxq3E3y92Viu3542DqRXpTLspPb2XHpuO7zT8Y+QadmdffzkavneX7r1w3ShtoGtOzM8MBQHCxtSM7PZEXELmKyEg3mnd1tNL3929dJT87P5JUd3+neD2nVjQEtO+NkZUdRRSknkqJYc3YPVRp1g7Xjr+jgGcD0TkMJcvPBxdqB57d+zYErZ5q6Wneuev6NI/4e6TwT4n/M8OHDWbJE/8bU3Ny8iWrT9Ozt7Zu6Cn/LxaOn2blsPcNnTaZ5a39O7T7Myg++5aH3nsfexdFoubKSUjZ+sxz/tq0oyi/U+8zS2opeY4fg4uWOykRFzOkLbPp2JVZ2trRsH9TQTdJZunYNy9ev49WnnsLHqxk//Por8155mbXfLMLayspgmbLycrw9PBjcqzcff/+dwTzXXbh0iXU7ttPK7+Y/vOtLvxadeCRsAp8fXM2F9CuMatOTt0c8zJxV75BZnFsn/+g2vZjdfQwL968kOjOBIDcfnupzN0XlJRxNuKCX183Gkbk9xnM2NbZR2nJdiEcLRrQJY/PFQyTkptOteRD3dBnOFwdXk19WbLDMlI6DsDG3ZP35/eSUFGBtZolSodB97ufkxdnUWBIj06nSqOnt34F7u47gi4Nr9DqjGkovv/bM7j6aRUc3EJURz7DAHrwy5H4eW/8xWcX5dfK3cfPlid5TWBy+mfDESJyt7Hg4bALzek7i3T0/A9WdazO7DOeLg2uIykzAy86Fx3vfBcDi8M0N3qb+LTvxaM+JfHZwNefTLjM6uBfvjHyE2aveJqOo7rE3Jrg3c7qP4eP9K4jOSCDIzZcFfe+mqKKUI1fP6/IVlZcy69f/0yvbkJ2BS1csZ/mqVbz6wgv4eDfnh59/Yt7TC1i77Bej54Sz58/z4uuv8/DsOQzo04c9Bw7w/Guv8sMXXxISHKzL18Lfn68++lj3XqVS6f5fq9XyzEsvYWKi4qO33sba2ppfVv3KowsWsHrpT1haWtZL+/6J5/PY8HMc+nUbfWaMxjPAhwv7wtny2TLufn0+ts4ORstNe/NxzCxr7k0sbK11/58SHU+r7u3xaNkclakJETsOsnnhT0x9fT42jnYN2Ryd0wePs2HJSiY+eA/+bQI4smMf3/3fJ/zn0zdxdHWuk9/M3IxeIwfi5euNmYU5VyJjWPPNT5iZmxM2tB8Aseej6dS7O35BAZiYmrJn/TYWvf4x//n0Teydje//+tK3RUceChvPl4fWcCH9CiODevJ/w+cyd/W7ZBbn1ck/qk1PZnUbzacHfuVSZiKBrj480WcKReWlHLt2jWrvFcDe2FNcTL9ChbqKuzoM5O0RD/PQmvfILql7Pq1vA1p2Zn6vySw88CvnU+MY07Y3742ax30r3zR47hvXtg9zQ8fywd7lRGVcpY27H8/2m05heQmHr537XtnxHabKmp/AdhbW/DDlBfbGnW7w9kD1A6tpHYfw86ntxGYl0b9lJ57qM5WXd3xLTklBnfwrInay5twe3XuVQsnrQ+dwIilKlxbq05bJ7QewOHwzsVnJeNg6Maf7aABWRuxq+Eb9CZam5sRmJ7E16jBvj3i4qasjxJ8iwzaF+B9jbm6Oh4eH3svRseamTKFQsGjRIkaPHo2VlRVt2rThyJEjxMbG0r9/f6ytrQkLCyMuruap3WuvvUbHjh1ZtGgRzZs3x8rKirvuuou8vDzd50uXLmXDhg0oFAoUCgV79+5l4MCBzJ8/X69+2dnZmJubs3v37jp1z8/PR6VScfLkSaD6B42TkxPdutU8QV+xYgWenp6698nJyUydOhVHR0ecnZ0ZN24c8fHxus9rD9ssLCxkxowZWFtb4+npycKFC+nfvz9PPvmkXl1KSkqYPXs2tra2+Pj48O233+o+878WBdGpUycUCgX9+/e/+U75G45t20vH/j3oNCAUl2buDJ05ATtnB079ceim5bYtXk3bsM40C/Cr85lvcABB3drj0swdR3cXug/vh1tzTxKjjT99rm9arZYVGzZw/9SpDOzZiwA/P15fsICy8nK279tntFzb1q15YvYchvXrh5mpqdF8JaWlvPLhB7z02GPY2tg0RBPqmNS+P9ujj7It+igJeel8fWQdmUW5jAnuZTD/4Fbd2BJ5iH2XT5NWmM3euNNsjz7K1I6D9fIpFQpeGHgvP53cRlpBdmM0RaenXztOJUVzKimarOI8tkUdpaCsiG4+wQbzB7h44+fkybKTO7icnUJeaRHJ+Zkk5mXo8qw9u4fwxEjSCnPIKs5nw/kDKBQKWjg3a5Q2jWvbm10xJ9gVE05SfiY/HN9MVnE+wwNDDeZv7epDZlEuWyIPk1GUS2TGVX6PPk6AS019A119iEq/yv4rZ8goyiUiJYYDl8/o5WlIk9sNYFvUUbZGHSEhL52vDv9GRlEuY4J7G8w/pFU3NkceYm/caVILs9kTd4pt0UeZ2mFQrZxacksL9V4NRavVsmL1au6fOZOBffsR0KIFr7/wYvU5YddOo+VWrFlNjy5duf+ee/Dz9eX+e+6he5cuLF+9Wi+fiUqFi7Oz7uXo4KD7LCEpiXMXL/D8gqdp26YNfj4+PP/UAkpLS9nxxx/11sZ/4vn8zM7DBPXuTHCfLjh6utL77pHYONpxYZ/hCNrrLO2ssbK31b2UypqfHIMfnEzIgO64+Hji6OlKv3vHodVqSY5svGvU/k2/031QH0KH9MXd24vxc6bh4OzE4R17Deb3buFL5z498PBphpObC136hRHYMYQrkZd0ee55ai69Rgykmb8P7t6eTHlkFlqtlpizkY3Spont+rMj+hjbo4+RmJfBoqPrySzKY7SRa9SgVl3ZFnmY/ZcjSCvMZt/l0+yIPsaUDgN1ed7fs4zNkYe4nJNCUn4Gnx74FYVCQcdmrRqlTVM6DGJr1BG2RB7mal46XxxaS2ZRLuPa9jGYf2jr7my8eIg9cadILcxmd+xJtkQdZlqnmgjBwvISckoLdK+uzYMor6pgb9ypRmnTsNbdOXDlDAeunCG1MJsVEbvIKS1gQMvOBvOXVpZTUFase/k5emJlZsnBG6K1Wjo3IyYriWMJF8kuyedC+hWOJVzEz9HT4Dab0tGEC3x3bCP7Lkc0dVWE+NOk80yIf6A333yTe++9l4iICIKCgpg+fToPPfQQL7zwAidOVIfj1+70io2NZdWqVWzatInt27cTERHBvHnzAHjmmWeYMmUKw4cPJzU1ldTUVHr27MkDDzzA8uXLKS8v123nl19+wcvLiwEDBtSpl729PR07dmTv3r0AnD17VvffgoLqp2179+6lX7/qp7glJSUMGDAAGxsb9u/fz8GDB7GxsWH48OFUVFQYbPuCBQs4dOgQGzduZOfOnRw4cIBTp+reEH300Ud07dqV06dP8+ijj/LII48QFVX9FO/48erw/l27dpGamspvv/12e//wf5K6qorUK0n4hwTqpbcICSQpJt5ouTP7jpGbnkXficNu+R1arZYr5y+Rk5Z5W0OH6ktyehrZubmEdqq5GTQzNaVzSAhnI//+D4n3vv6aXt260aNjp7+9rdtholTR2qU5J5Oi9dJPJkXT1t1w5JupyoSKWlE85VWVBLr6oFLUXH7v6TycvNIitkcfrf+K34RKocTTzoW4rGS99NisZHwc3A2WCXLzJSU/i97+7Xmm/3Qe7zOFYYE9MFGqDOaH6n8HlUJJaWW50Tz1xUSpoqVzMyJSYvTSI1JiCHIzPFw4KuMqztb2dGlW/Xdob2FDmF+I3lP9yIx4Wro0o5VL9bAydxsnOnsH6uVpKCZKFa1dm9f5rpNJUTc/9qoq9dLKqyoJcvNFdUMnhqWpOcunv8bKGW/w1vC5BDg33LC55NRUsnNyCO1a87DEzMyMzh06cPb8eaPlzl64QI9u+kMUQ7t15+wF/TIJSUkMnziBsVOn8MLrr5GUkqL7rPLa9cLczEyXplKpMDExIeLc2b/Vruv+iedzdVUVmVdTaR6s/13N2waQFnfzYXur3/iapc+8z8aPlpAcdfNOsaqKSjRqNebW9RMBeCtVlVUkxV0lsENbvfTAjsHER91e9G/S5avER8fSIjjQaJ6KinLUajVWN0TdNRQTpYpWLt6cSta/Rp1KjqaNu5/BMqbKuteoCnUlrWtdo25kbmKGiVLZKFHE18994Yn69wzhiZGEeBgeCmvs3Nem1rnvRqOCwtgde5KyKsP3lfVJpVTi6+jJhXT9v4kLaVdu+/zbp0UHLqZfIfuGKLWYrCT8HD3wd6ruLHO1dqCdZ8tGj2YXDUCjvTNf/1IybFOI/zGbN2/GplakzXPPPccrr7yie3///fczZcoU3WdhYWG88sorDBtWfXP+xBNPcP/99+tto6ysjKVLl+LtXX3x/vzzzxk1ahQfffQRHh4eWFpaUl5ejoeHh67MpEmTeOyxx9iwYYPu+5YsWcKsWbNQ3DCM60b9+/dn7969PP300+zdu5dBgwZx+fJlDh48yMiRI9m7dy9PPfUUACtXrkSpVPL999/rtrdkyRIcHBzYu3cvQ4cO1dt2YWEhS5cuZfny5QwaNEiX38vLq049Ro4cyaOPPqr7N1q4cCF79+4lKCgIV9fqeVmcnZ312nuj8vJyvU5D+PPDZ0sKi9FqNNjY2+qlW9vbUpRXN3QfICctkz2/bmbmK4+hVBnvsCgrKeWzx15DXVWFQqlk+KzJtGhn/Ca/vmXnVg+ncL4h+uP6+9SMvzf31Y59+4iKi+WnhZ/8re38GfYW1qiUKnJL9fdLbmkhjla2BsucTIpiRFAoh+PPEpOVRGuX5gwPDMVUZYK9hQ05pQW0dfdneGAoD699vzGaocfKzAKVUklRhf6PoOKKUmzMDf+IdbS0xcfRnSqNmhWn/5+9+46K4mrDAP4svTcBCyJVEBQVBLsCKmrQ2EsUBYm9gdjzGUvsxt6xYW+IxqixK6AoNqoCAlLEAoogvbPz/UHYuIIKCzLM+v7O4Rz2zhCfG5bZ2bv3vvcGFKTl0L9lF8hLy+L8szuV/oyDiQ2yCnIRn/am0uO1SVlWAZISksj4bAZVZn421OUrr2UUnZqETXdOYa7daEhLSkFKQhIPkyKx78EFwTkBCeFQlVXC6p+mgMfjQUpCEleeB+Lc0y/Poqwt/z33hPv0MT8bGl947j15HQXHFp1wL/EpYj+8gommLn4y7fDfcy8vC0kZ7/Gn33HEp72FoowchljYYevAWZjksw5vsmq/Pl1aetmsygYaGkLtDdQ1kPzuyzX20tLT0UBdeMlbA3V1pKWnCx63MjPHH//7H/Sa6iLt40ccOHoE46dPw+lDh6Gmqgp9PT00btQIO/buxf/mzoW8nByOe59GWno6PqTVzmxPcbyeF+TkgeHzoaAifM8hr6yIvMycSn9GQVUZtmMHQEuvCUpLShDzIAwXNh3GwLmuX6yT9uDsDSiqqaCped3UBsvNzgafz4eSmvASUSVVVWRnfHkgFwCWT5iLnKxs8Pml6DNiIDo6dP/iuf8cPQtVDXU0b135TN7apFJ+ncir5DohX/lS2KDXz9G3RUfcf/kULz68RnNNXfQ26SD0GvW5X236Iy03U1Dj8ntSlVOClIRkhaWMZde+yvv0+FUU+pt1RkBCGGI+lC1FdWzRSeja96kW2nowbKCDdX7Hv1s/PqUsowBJCYkKZRGyCnOhKvftQVZVOUVYNDLC3gd/C7U/ehUJZVkF/GbvDPDKBh5vvwjC5eeBtZqfkB8dDZ4RwjH29vbYvVu4oKnGZ29GWrf+r7Bow4ZlM0gsLCyE2goKCpCVlQUVlbIbkGbNmgkGzgCgU6dO4PP5iI6O/uIAkqysLMaMGQMvLy+MGDECoaGhCAsL++qmAnZ2djhw4AD4fD78/f3Rs2dPNGvWDP7+/rCyskJMTIxg5llQUBBevHgBZWXhNyMFBQVCy07LxcfHo7i4GO3btxe0qaqqwtS04puMT/8f8Xg8NGrUCO/fv69w3pesWbMGf/zxh1Db0qVLYdiv/Rd+4is+G2hk/s30OT6fj/M7j6Lb0L5o0Fj7q/9JWTlZTFg1F0WFRUiMiMHN4+ehrtUAeubG1c9XBVd8fbF65w7B4y1LlwGo2A+GqdDdaklJTcXGfXuxY/kKoVkkdeXzuq08XtnvqzLHgq9BXUEZ2wbNBg9lN/zXYx5iZNte4DN8yEvLYoH9WGy+ewpZhZXXF2PLl+rTlv8+fcJvo/DfT/evPi9binop8l6FwsRdDVrDorERDj76h92ixTwemC/8ppqqamNihwE4HXoLIW9joC6vjHHWjpjaaTB23D8LoKw23LA29tjz4G/EpiahkYomJrT/GR9bZ8M7vOIS9e/j8/y8L/6ejgZdg7q8CnYMmg0er+y5dy3mEX5p2wt8Ph9A2Wy6qE82UXiWkgDPofMwqFV37Py33zVx5cZ1rN64UfB4y9p1Zak/+/tnGOaLH7YIVLhGCv9Ml47/Lck1BtC6ZUsMGj0Kl65exZiRIyElJYU/l6/Aij/XoUf/fpCUlET7du3QuUMH0TpXrazcu55XUMmv50u/M/VGmlBvpCl43MioGXLSMxF6/V6lg2chV+/ixaOnGDjPFVJfWar/PVTswrdfoKavWoCigkK8jInDP0fPokFjbVh1q/g8uv3XFYQEPMS05fMhLVOX/RK+KPCAL177ToTcgLqCCrYMnCV4jboR+wgj2vREKcOvcP6w1j1gZ2SJ+f/srLONUr7kSxtFHX5yBRryKtg9ZB7AAz7mZeNq9AOMtuwNfiV96teiM+LT3uD5+5ffO/JXlf2evq2LfmvkFRcg+K3wDENTrWbob9YZR4OvIj79LRoqqWNUWwdkmufgYuTXl40TQqqOBs8I4RhFRUUYG3/9hln6kxvQ8hvcytrK30RVpvycb72pmTBhAtq2bYvXr1/Dy8sLPXv2hN5XdlPs3r07srOzERwcjLt372LFihXQ1dXF6tWr0bZtW2hra8PMzEyQr127djh+vOInguWzwz5VfjNVccCm4i2J9Gc36Twe76v/Pz7322+/Yfbs2UJtsrKyOB1e9fo5CsqK4ElIVJiVkJeZDUXVijNKivILkZzwCikv3+Da4bKlpAzDAAyD1c5zMHrBFOi3LKtDwpOQgEajsv9HjfR08OHNO9y/ePO7vdnq3qEDWn0ySFlUXDaw8uHjR2h+MribnpkBDTXRCyc/f/EC6RkZGDvLXdBWyucjJOIZvC9dxP2/zgsVCq8tmQW5KOWXVvi0W01OGRl5ldeJKiotxkb/k9hy5zTUFZSRnpcFxxadkVtUgMyCXBg2aILGKg2wos9Ewc+UP3evTtgE19OrkJz9/Wqg5RUVoJTPh5KMcKF2RRl55BblV/oz2YV5yCrIFQycAUBqTgYkeDyoyCkKfarfRd8C3Qzb4vDjy3iXk17Zf67WZRfmoZRfCjV54b8fVTklZORXPlNmWGs7RL1PxPmIsplzLz+mYM+D81jjOBXHQ67jY342Rls6wC8uWLBT6suMd5CTksa0zkNwJtz3i29Oa0P5c0/9s9kj6vJKX6xRVlRajA3+J7D57imoy6sgPS8T/cy6CJ57lWHAIDo1CU1VK15bRdG9S1e0Mvtvxo3gmpCWDs0G/w2upGd8hIb6l68JDTQ0hGaZAUD6x4yv/oy8vDyMDAzx6vVrQZuZqSlOHPBCTk4OiktKoK6mBpcpk2FeyYcrohCn63k5OSUF8CQkKswyy8/OhbxK1ZciNjTURcyDirvphV4LQPDlu/h5tgsaNK38Q7rvQVG5rAZb9kfh31VOZhaUVb++YUGDhmW/h8Z6TZGdkYXrp/+uMHjme/4qbp39B1OWzUUT/drdzfVLssqvE5+/Rskrf/U6sfnOKWy76y14jfqpRSfkFhUg67PrxFALO/zSthd+u7wbCenJ360fn8osyEFJJa+76t/o0zq/Y9hw5wQ05FWQlpeJn827IrcoH5n5wn2SlZJGD+N2dbLpS7nsojyU8vkVZpkpyypW+H9emW4GbRD48hlKP7tfHdzKFvdfPhPsWvkmMxUyktJwsXbEpch73/EVinx3lQz6EvbQ4BkhBACQlJSEt2/fCpY4BgYGQkJCAiYmZUudZGRkUFpaceaIhYUFrK2tsW/fPpw4cQLbt2//6r9TXvdsx44d4PF4MDc3R5MmTRASEoJLly4JZp0BgJWVFU6fPg1tbW3BDLmvMTIygrS0NB49egRd3bIb1qysLMTGxgr9d79F5t8ZTZX1t5ysrGyNdzmVlJJCY4OmSHgWgxY2/82ES3gWA5N2rSr+m/KymLhmvlBb0M17eBkZiyFu46CmpVHhZz5VUvz9PilWVFAQ2i2PYRg0UFfHw5AQtDAqq5dTXFyM4GfPMHOc65f+M99k06YNTu3YKdS2fOsW6DVtCpehw77LwBkAlPBLEfPhFax0THEv8b8aSVZNTXE/8elXf7aU4Qt2ebQ3ssLDpAgwYJCU8Q4Tz6wVOnecjSMUpOWw6/65SndHq02lDB/JWR9gpKkjNAPJSFPni5/CJ318h5aNDCHzST03TUVV8Bm+0I1/F/3WsDWyxJEnV/A268N37cenSviliEt7g7ZNjAW7xQH493FkpT8jKymDUkb4b53/2YC7rKR0hUH4snN4ZbMPv+M7kxJ+KWJSX6FdU+HnXrumLXDvW889Ph8f/n0e2RtZ4cHLZ18d6DNqoFNrb4wrvSZoaODhkydo8e/rSnFxMYLDwjBz8uQv/ndat2yJh08ew+nf0gAA8PDxY7RuWfEaWa6oqAiJSS9h+ckM43LlZQ+SXr9CVHQ0po4fX+2+VUacruflJKWkoKXXGK+j4mBo9d9A6OvIOOi3rfpOnx+SkqHw2QBiyLUABP/jj37uztDWr5uNN8pJSUuhqZEeYsIiYNHxv7qcMWGRaNm+GnU0mYq/B9/zV3HT5xImLfaAbiUbQHwvJfxSxH54DUsdE6HXJEsdEzx4+fWlqJ++RtkaWeLRv69R5Ya1tscoSwcsurIHsR9efZ8OVKL82mfdtIVgUAgArJu2QEDi12sVlvL5gtfQHsbtEFjJtc/eqB2kJaVwI+brm1/UplI+Hy8/JsO8oQGCP1n62rKhAULefn0prKlWMzRU1sDdexUHomUkpSr0j2GYskmj3/tFipAfCA2eEcIxhYWFSEkRrg8jJSUFTU3NL/xE1cjJycHFxQUbNmxAVlYW3NzcMGLECMGSTX19fVy7dg3R0dFo0KABVFVVBbO3JkyYgBkzZkBBQQGDBw/+5r9lZ2eHrVu3YvDgweDxeFBXV4e5uTlOnz6Nbdu2Cc5zcnLC+vXrMXDgQCxfvhxNmzZFUlISzp07h3nz5gktMwUAZWVluLi4YN68edDQ0IC2tjaWLl0KCQmJby8L+oS2tjbk5eVx9epVNG3aFHJyclBVVa3yz1dHh5/s8Pfu42hsqIumxvoI8b2PzLSPsOrZGQDge/oSsj9mYsAUJ/AkJKCtK7xzkqKKEiSlpYTa7124icYGulBv2AClJaWIC43C04DH6Dtu+HfpQ2V4PB5GDRyIg2e80axJE+g2aYKDZ7whJyuLvp8MZC7ZuBHaDRpgxrhxAMreTMe/KitEXVxSgtS0NETHx0FBTh66TZpAUUEBxvr6Qv+WnKwc1JRVKrTXtrPhflhgPwYxH5IQ9S4Rjmadoa2kjktRZUsifrXpD01FVfz5b+0UHVUttNDSw/P3L6EkK4+hre2hr9FYcLy4tASJH4UHKnILy2Z8fd7+vdxPfIohre0EO2Za67aAqpwSHieVFWjuZWIDFVlFnHvqBwB4mvwCdkaWGGRhC9/YICjIyKG3aQcEv44RLMvsatAaPZpbwyfsNjLys6EkU1Y/rai0uEJx6u/h74gAzOo2Ai8+vEF06kv0NukATUU1XIt+CAAYY9UHDRRUsTXAGwDw+HUUpnUegr6mHRDyJhbqCsoY374/YlKTBLMbHr9+jgHmXRGf/hYxqa/QWLkBRls64PGryAoDbd+Dz1NfLLQfi5jUV4h8l4B+/z73LkYGAADGt/8ZmoqqWOd7DADQVFULLbT1EPWu7Lk3vLU9DDQaC44DwNh2fRH1LhFvMlOhICOHwa1sYdygKbYFnKk0Q03xeDyMGj4cB48fQ7OmTaHbtCkOHjtWdk3o5SA4b8mqVdDW0sSMSWUDar8MG4ZJbm44dOI47Lp0hd+9ADwMeoIDnwyib9m1E906d0Gjhtr4+DEDB44cQW5uLvr37Ss456avL9TU1NCoYUO8iI/Dxu3bYdu1KzraiLDU/gvE8XrexqEzbh04By09HTQy0kXknSfITs9ES9uyTRwenLuB3I9Z6Dl+KAAg7OZ9qDRQh3oTbfBLShHzMAzxwZHoM/UXwX8z5OpdPPr7NnpNGAYVTTXkZZb9nUnLykBarmYfSlVV95974+S2/WhqrA99UyM8uH4HHz+ko1Pvstenf46dRWbaR4x2nwAACLhyG+qaGtDWKfvdJETFwu/CNXR1/G9nytt/XcHVk+cxxmMi1LU1kfWxbEBKVk4WsvJy371P5576YZ6dE2JTXyHqfSJ+alF2nfgn6j4AwNWmHxooqmKD3wkAZa9RplrN/n2NUsAQC1voqzfGxn+PA2VLNZ2tf8K620fxLjsd6v/O6s0vLqyTAvveYbewqKcLolOTEJESj/7mXaGtrIELEWXXvokdBkBLUQ2rbx8BULYM30xbD5HvE6Esq4ARrXvAQKMx1vx7/FP9zDohICGszssmXIt5hIntByDxYzLiPryBrZElNBRUBLt9DrWwg7q8MvY/uij0c90M2iAu7U2lNSnDkl+gt0l7JH18h/j0N9BWUsegVt0R+jb2i0tc2SIvLSs0w7mJiiaaazZFVkEu3uV8ZDEZId9Gg2eEcMzVq1fRuLHwDbepqalgp0hRGRsbY8iQIXB0dER6ejocHR2xa9cuwfGJEyfCz88P1tbWyMnJga+vL+zs7AAAo0aNwqxZszB69GjIyX37BtHe3h6bNm0S/DwA2NraIjQ0VGiGmIKCAu7cuYMFCxZgyJAhyM7Oho6ODnr27PnFmWibNm3ClClT0L9/f6ioqGD+/Pl49epVlXKVk5KSwrZt27B8+XIsWbIE3bp1E+wQWtvMO1oiLzsXAX9dQ05GFrSaNsYv8yZBVbNs1kFORhYyP1TvZqK4sAhXD/kgOz0TUjLSaNBEGwOnjoF5x7rZmbKcy9BhKCwswtrdu5Cdk4NWpqbYsXyF0GyUlNRUSEj8N7CZmp4OJzc3weOj587h6LlzsGplgb1rhWdp1TX/+BCoyClijFUfaCioIjE9GYuu7MH7f2/2GiioQFvpv6VkkjwJDGttj6Zq2ijllyL0bSzc/95SZ0sYq+JZSjzkpWVhZ2wFZVkFvM9Ox7Ggq8gsKFumpSyrAFX5/5aXFJWW4PCTy+hn1hmTOw9GflEBnqXE41bsE8E5Ns3MISUhiV8sHYT+Ld8XQfB9UXHn29p2LzEcKrIKGNm2J9TllZH0MQUrbh4SzELQUFCBlpKa4PzbL4IgLyULxxad4WrTD7lFBQhPjsORoCuCc7zDboNhGDhZ9oaGgiqyCnLx+FUUjodc++79AQC/uBCoyCpibLv/nnu/XfH84nNPgieBYa17QFdVGyX8UoS9jcXM85uFnntKMvKY3f0XqCuoILcoHy8+vIbHxa2ITv36Loo14TJqNAoLC7F286aya4KZGXZs2Ch8TXj/Tuia0KaVBVYtWYrdB/bD88ABNG3SBGuWLUMr8/9mQr1LTcWi5X8gIzMT6mpqaGVujoO7PdH4k3qdH9LSsHnnDqR9/AjNBg3Qr08fTHB2qdX+ieP13NjGAgU5+Qi65IfczGxoNNFGP7cxUG6gBgDIy8hGTnqm4Hx+SSnun7mG3IwsSElLQ72JFhzdxkDP4r8NOyL8HoNfUorrnqeF/i3rn+1gM6AH6oJl1/bIy87BDe+LyPqYicbNdDBhkTs0tMs+iMz6mIGMD//9vTB8BpePnUX6+w+QkJREg4Za6DdmKDr2/u+e5f5VX5SWlODweuG6tL1HDECfXwZ+9z7diQ+FiqwinKz6QF1BBS/Tk7H46l7BdUJDQQXaip9eJ3gYYmEneI0Ke/sCsy9sFRrA+Nm8C2QkpbDYQXjG+LGgqzgW/P2vf75xwVCVU4Rzu5/QQFEFCenJWPDPLsG1rIGC6mevuzyMbNMTumplG9uEvI3B9L82IiVb+HW3qao2Wjc2xpyLX18t8T08fhUFJRl5DDDvClU5JbzJTMWWu6cFu2eqyilVWKoqLy2Ldk1b4GTojUr/mxcjA8AwDAa36g51eWVkF+YhLPkFzj71+869qb4WWnrYMfi/siduXcs+CLgcFYhVtw+zFav+qmeDnz86HlPfhqMJIXVu2bJlOH/+PEJDQ0X6+VevXkFfXx+PHz+GlZXVt3+gDuXm5kJHRwcbN27E+FpanvM1Rx5f/u7/Rl1ytnFEdqz4bXWu3NwYDnvdv30ih9yYtBVLru5jO0atWt53IgYdWsh2jFp1ftxa9Nzj9u0TOeTW5G3ITnnHdoxapdyooVhez7fcOf3tEzlmVveRuPTvTCRx0b9lV/Td58F2jFp1deJm2O6eznaMWuU/dSd+9V7Ndoxa5TXif+iycwrbMWrVvemebEcQ2ceBo9mOUCn1v098+yQxRDPPCCEiKy4uRnJyMhYuXIiOHTvWi4GzkJAQPH/+HO3bt0dmZiaWL18OABg48Pt/6ksIIYQQQgghRPzQ4BkhRGT37t2Dvb09TExM4OPjw3YcgQ0bNiA6OhoyMjJo164d7t69W+OacIQQQgghhBBSZ/i0SLA+ocEzQgiWLVuGZcuWVfvn7Ozs6l0hUktLSwQFBbEdgxBCCCGEEEKImJBgOwAhhBBCCCGEEEIIIfUVzTwjhBBCCCGEEEIIqU/q2QqfHx3NPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QnDZzsB+QTNPCOEEEIIIYQQQggh5Ato8IwQQgghhBBCCCGEkC+gZZuEEEIIIYQQQggh9QmfdtusT2jmGSGEEEIIIYQQQgghX0CDZ4QQQgghhBBCCCGEfAEt2ySEEEIIIYQQQgipTxhatlmf0MwzQgghhBBCCCGEEEK+gAbPCCGEEEIIIYQQQgj5Alq2SQghhBBCCCGEEFKf0LLNeoVmnhFCCCGEEEIIIYQQ8gU0eEYIIYQQQgghhBBCWLVq1Sp07twZCgoKUFNTq9LPMAyDZcuWoUmTJpCXl4ednR0iIiKEziksLMTMmTOhqakJRUVFDBgwAK9fv65WNho8I4QQQgghhBBCCKlP+Pz6+fUdFRUVYfjw4Zg6dWqVf+bPP//Epk2bsGPHDjx+/BiNGjWCg4MDsrOzBefMmjULf/31F06dOoWAgADk5OSgf//+KC0trfK/QzXPCCGEEEIIIYQQQgir/vjjDwDAoUOHqnQ+wzDYsmULFi1ahCFDhgAADh8+jIYNG+LEiROYPHkyMjMzceDAARw9ehS9evUCABw7dgy6urq4efMm+vTpU6V/i2aeEUIIIYQQQgghhJBvKiwsRFZWltBXYWEhK1kSEhKQkpKC3r17C9pkZWVha2uL+/fvAwCCgoJQXFwsdE6TJk3QqlUrwTlVwhBCCOGUgoICZunSpUxBQQHbUWoN9YkbqE/cIY79oj5xA/WJG6hP3CGO/RLHPv1Ili5dygAQ+lq6dGmt/hsHDx5kVFVVv3nevXv3GADMmzdvhNonTpzI9O7dm2EYhjl+/DgjIyNT4WcdHByYSZMmVTkTj2Fo/1NCCOGSrKwsqKqqIjMzEyoqKmzHqRXUJ26gPnGHOPaL+sQN1CduoD5xhzj2Sxz79CMpLCysMNNMVlYWsrKylZ6/bNkywXLML3n8+DGsra0Fjw8dOoRZs2YhIyPjqz93//59dOnSBW/fvkXjxo0F7RMnTsSrV69w9epVnDhxAq6urhUyOzg4wMjICJ6enl/9N8pRzTNCCCGEEEIIIYQQ8k1fGyirzIwZM/DLL7989Rx9fX2RsjRq1AgAkJKSIjR49v79ezRs2FBwTlFRET5+/Ah1dXWhczp37lzlf4sGzwghhBBCCCGEEEJIrdPU1ISmpuZ3+W8bGBigUaNGuHHjBiwtLQGU7djp7++PdevWAQDatWsHaWlp3LhxAyNGjAAAJCcn49mzZ/jzzz+r/G/R4BkhhBBCCCGEEEIIYVVSUhLS09ORlJSE0tJShIaGAgCMjY2hpKQEAGjRogXWrFmDwYMHg8fjYdasWVi9ejWaN2+O5s2bY/Xq1VBQUMDo0aMBAKqqqhg/fjzmzJmDBg0aQENDA3PnzoWFhYVg982qoMEzQgjhGFlZWSxdurRa06XrO+oTN1CfuEMc+0V94gbqEzdQn7hDHPsljn0itWPJkiU4fPiw4HH5bDJfX1/Y2dkBAKKjo5GZmSk4Z/78+cjPz8e0adPw8eNHdOjQAdevX4eysrLgnM2bN0NKSgojRoxAfn4+evbsiUOHDkFSUrLK2WjDAEIIIYQQQgghhBBCvkCC7QCEEEIIIYQQQgghhNRXNHhGCCGEEEIIIYQQQsgX0OAZIYQQQgghhBBCCCFfQINnhBBCCCGEEEIIIYR8AQ2eEUIIYRXDMKC9a0hde/HiBa5du4b8/HwAoOdgPVdQUMB2hFonjn0ihJDK9OjRAxkZGRXas7Ky0KNHj7oPRIgIaLdNQgip5woLC/Ho0SMkJiYiLy8PWlpasLS0hIGBAdvRauTIkSNYv349YmNjAQAmJiaYN28exo4dy3Iy0ZSWlmLz5s3w9vZGUlISioqKhI6np6ezlKzmXr9+jQsXLlTar02bNrGUSjRpaWkYOXIkbt++DR6Ph9jYWBgaGmL8+PFQU1PDxo0b2Y4oslevXgldJ1q2bAlZWVm2Y4mMz+dj1apV8PT0xLt37xATEwNDQ0MsXrwY+vr6GD9+PNsRq00c+wSI13MvMzMTf/31F+7evVvhdbdPnz7o3Lkz2xEJ4RwJCQmkpKRAW1tbqP39+/fQ0dFBcXExS8kIqToptgMQQgip3P3797F9+3acP38eRUVFUFNTg7y8PNLT01FYWAhDQ0NMmjQJU6ZMgbKyMttxq2XTpk1YvHgxZsyYgS5duoBhGNy7dw9TpkzBhw8f4OHhwXbEavvjjz+wf/9+zJ49G4sXL8aiRYuQmJiI8+fPY8mSJWzHE9mtW7cwYMAAGBgYIDo6Gq1atUJiYiIYhoGVlRXb8arNw8MDUlJSSEpKgpmZmaB95MiR8PDw4Nzg2cuXL+Hp6YmTJ0/i1atXQjPoZGRk0K1bN0yaNAlDhw6FhAS3FhysXLkShw8fxp9//omJEycK2i0sLLB582ZODjSJU5/E7bmXnJyMJUuW4Pjx42jUqBHat2+Ptm3bCl53fX19sWHDBujp6WHp0qUYOXIk25FF8vjxY5w5c6bSD0POnTvHUqqaEcc+iYvw8HDB95GRkUhJSRE8Li0txdWrV6Gjo8NGNEKqjyGEEFLvDBgwgGncuDEzZ84cxt/fn8nNzRU6HhcXxxw6dIjp06cP06hRI+b69essJRWNvr4+c/jw4Qrthw4dYvT19VlIVHOGhobMpUuXGIZhGCUlJebFixcMwzDM1q1bmVGjRrEZrUZsbGyYxYsXMwxT1q+4uDgmOzubGTBgALNr1y6W01Vfw4YNmdDQUIZh/usPwzBMfHw8o6ioyGa0anNzc2OUlZWZoUOHMocPH2aioqKYrKwspri4mHn37h1z69YtZtmyZYypqSnTsmVL5tGjR2xHrhYjIyPm5s2bDMMI/66ioqIYNTU1NqOJTFz6JI7PPS0tLWbOnDnM06dPv3hOXl4ec+LECaZ9+/bM+vXr6zBd7Th58iQjLS3N9OvXj5GRkWH69+/PmJqaMqqqqsy4cePYjicScerT33//XeUvruDxeIyEhAQjISHB8Hi8Cl8KCgrMgQMH2I5JSJXQzDNCCKmHevfujTNnzkBGRqbS44aGhjA0NISLiwsiIiLw9u3bOk5YM8nJyZUufencuTOSk5NZSFRzKSkpsLCwAAAoKSkhMzMTANC/f38sXryYzWg1EhUVhZMnTwIApKSkkJ+fDyUlJSxfvhwDBw7E1KlTWU5YPbm5uVBQUKjQ/uHDB84tM5ORkUFcXBy0tLQqHNPW1kaPHj3Qo0cPLF26FJcvX8bLly9hY2PDQlLRvHnzBsbGxhXa+Xw+Z5f4iEufxPG5FxERUWl/PiUvL49Ro0Zh1KhRSE1NraNktWf16tXYvHkzpk+fDmVlZWzduhUGBgaYPHkyGjduzHY8kYhTnwYNGiT0mMfjCc3o5PF4gu9LS0vrKlaNJCQkgGEYGBoa4tGjR0J/YzIyMtDW1oakpCSLCQmpuvo/h5oQQn5A06dP/+LA2edatmwJBweH75yodhkbG8Pb27tC++nTp9G8eXMWEtVc06ZNBQN/xsbGuH79OoCy5SRcG5T5lKKiIgoLCwEATZo0QVxcnODYhw8f2Iolsu7du+PIkSOCxzweD3w+H+vXr4e9vT2Lyapv/fr133yzX87R0RHDhg37zolqV8uWLXH37t0K7WfOnIGlpSULiWpOXPokjs+9qvZH1PPrg7i4OPTr1w8AICsri9zcXPB4PHh4eGDv3r0spxONOPWJz+cLvq5fv462bdviypUryMjIQGZmJi5fvgwrKytcvXqV7ahVpqenB319ffD5fFhbW0NPT0/w1bhxYxo4I5xCM88IIYRDCgoKcPr0aeTm5sLBwYGzA01//PEHRo4ciTt37qBLly7g8XgICAjArVu3Kh1U44LBgwfj1q1b6NChA9zd3TFq1CgcOHAASUlJnKzhVq5jx464d+8ezM3N0a9fP8yZMwdPnz7FuXPn0LFjR7bjVdv69ethZ2eHJ0+eoKioCPPnz0dERATS09Nx7949tuNV2++//44ePXqgc+fOkJOTYztOrVq6dCnGjh2LN2/egM/n49y5c4iOjsaRI0dw6dIltuOJRBz79Dl/f3/k5uaiU6dOUFdXZztOtbx48QKZmZlo166doO3WrVtYuXIlcnNzMWjQIPzvf/9jMWHNaGhoIDs7GwCgo6ODZ8+ewcLCAhkZGcjLy2M5nWjEsU8AMGvWLHh6eqJr166Ctj59+kBBQQGTJk1CVFQUi+lEExMTAz8/P7x//x58Pl/oGJdrw5IfB+22SQgh9dS8efNQVFSErVu3AgCKiorQoUMHREREQEFBASUlJbhx4wY6derEclLRBAUFYfPmzYiKigLDMDA3N8ecOXM4Nfviax48eID79+/D2NgYAwYMYDuOyOLj45GTk4PWrVsjLy8Pc+fORUBAAIyNjbF582bo6emxHbHaUlJSsHv3bgQFBYHP58PKygrTp0/n3BIfADAyMkJCQgJkZGTQoUMH2Nvbo0ePHujYsWOVZ6/WZ9euXcPq1auFfldLlixB79692Y4mMnHp0/r165GTk4M//vgDAMAwDH766SfBrFttbW3cunULLVu2ZDNmtQwePBitWrXCihUrAJQtOWvZsiW6deuGFi1awMvLCytWrMCsWbPYDSqi0aNHw9raGrNnz8aqVauwdetWDBw4EDdu3ICVlRUni+uLY5+AsiXCjx49EpSDKBceHo4OHTogPz+fpWSi2bdvH6ZOnQpNTU00atRIaAkqj8dDcHAwi+kIqRoaPCOEkHqqVatWWL16tWDg5eDBg5gzZw5CQkLQrFkz/Prrr3j//j3++ecflpMSQtj05s0b3L59G35+fvDz80NCQgLk5eXRqVMn2Nvbw97evtIag4TUhJWVFRYsWCDYdfLMmTNwcXHBjRs3YGZmBmdnZygoKHBqNrGuri68vb0FH0qtXLkSPj4+CA0NBQAcOHAA27dvFzzmmvT0dBQUFKBJkybg8/nYsGGD4MOQxYsXc26mICCefQLKSgxIS0vj2LFjgg92UlJSMHbsWBQVFcHf35/lhNWjp6eHadOmYcGCBWxHIURkNHhGCCH1lIqKCoKDgwXFpUeNGgVlZWVBDY/Q0FA4OjpybrOAT71//77S6futW7dmKVH1XLhwocrncnn2GdeFh4ejVatWkJCQQHh4+FfPVVJSgq6uLqSlpesoXe179eoVfH194efnh7NnzyI3NxclJSVsx6o2V1dXjBkzBj169BCapcBl4tQndXV13L9/H2ZmZgDK+lZSUoKjR48CKJt9O3z4cLx69YrNmNUiLy+PmJgY6OrqAgB69uyJzp07C2aixcXFoV27dsjIyGAxpWhKSkpw/Phx9OnTB40aNWI7DvmGFy9eYPDgwYiOjkazZs0AAElJSTAxMcH58+cr3XikPlNRUUFoaCgMDQ3ZjkKIyKjmGSGE1FMSEhJCuyw9ePBAaNdGNTU1fPz4kY1oNRYUFAQXFxfBks1P8Xg8zuwi9fnOWF/CpT4BZW+Kq/rGPj09/Tunqbm2bdsiJSUF2traaNu2bYUdzD6nqqoKT09PwYwaLomLi4Ofn59gJlppaSnnNkIol5aWhn79+qFBgwb45ZdfMGbMGM4v6xanPhUXFwtthhIYGAh3d3fB4yZNmnBuUxENDQ0kJydDV1cXfD4fT548EapZWVRU9NVrR30mJSWFqVOncrJW1ueysrKqfK6Kisp3TPL9GBsbIzw8HDdu3MDz588F5S169erFyYH34cOH4/r165gyZQrbUQgRGQ2eEUJIPdWiRQtcvHgRs2fPRkREBJKSkoTeBL98+RINGzZkMaHoXF1dYWJiggMHDqBhw4acvBEEUGHGnLjYsmUL2xFqVUJCgmBnvISEhK+eW1hYiDNnzggtR6vPEhIS4OvrK5hplpmZiS5dusDW1hYzZsyAjY0NpKS4ebt34cIFZGRkwNvbGydOnMCWLVtgamqKMWPGYPTo0dDX12c7YrWJU5+MjY1x584dGBoaIikpCTExMbC1tRUcf/36NRo0aMBiwuqztbXFihUrsGvXLpw5cwZ8Pl/odTcyMpJTv6PPdejQASEhIZysVfkpNTW1Kt83cOmDq8/xeDz07t2bc/UQy23btk3wffky2gcPHsDCwqLC7G43N7e6jkdItdGyTUIIqafOnj2LUaNGoVu3boiIiICNjQ0uXrwoOL5gwQIkJCRwqp5MOWVlZYSEhHBu2QH5MXz8+BHjx4/nRKFpCQkJNGvWDNOmTYO9vT2srKwgKSnJdqzv4vXr1zh58iS8vLwQGxvLyaWon+Nyn/bs2YM5c+Zg5MiRePDgAdTU1IR2rF25ciUePnwo9LpV3yUkJMDBwQEJCQmQkJDAtm3bMHXqVMHxQYMGwcDAAJs3b2YxpejOnDmDhQsXwsPDA+3atYOioqLQca6UTPi03ldiYiIWLlyIcePGCWrVBQYG4vDhw1izZg1cXFzYilljubm58Pf3R1JSEoqKioSOcWGwycDAoErn8Xg8xMfHf+c0hNQcDZ4RQkg9dvPmTfzzzz9o1KgRZs6cCQUFBcGxP/74A3Z2dkKf9HPFoEGDMHbsWAwdOpTtKLWK6ze635Kfn4/i4mKhNq4uicnLy6v098SVN4/lRo4ciTt37qCgoADdunWDra0t7O3tYWlpydkZnZUpLi7GP//8g2PHjuGff/6BhoYG3rx5w3asGhGHPh04cACXLl1Co0aNsHTpUqFaWtOmTUOvXr0wZMgQFhNWX3FxMSIjI6GlpYUmTZoIHQsLC4Ouri40NDRYSlczEhISFdrKl7FzrbxAuZ49e2LChAkYNWqUUPuJEyewd+9e+Pn5sROshkJCQuDo6Ii8vDzk5uZCQ0MDHz58gIKCArS1tWmwiRAW0OAZIYRwWGhoKNq2bct2jGr78OEDXFxc0L59e7Rq1arC9H0uFtcX1xvd3NxcLFiwAN7e3khLS6twnGtvtlJTU+Hq6oorV65Uepxr/Sn3/PlzwdJNf39/FBQUoGvXrrC1tYWdnR1sbGzYjigSX19fnDhxAmfPnkVpaSmGDBkCJycn9OjRo9KBAC4Qxz59SWpqqmDJtDh4+vQpDhw4wNml7S9fvvzqcS4u51RQUEBYWBiaN28u1B4TE4O2bdsiLy+PpWQ1Y2dnBxMTE+zevRtqamoICwuDtLQ0xowZA3d3d84NShMiDmjwjBBCOCYzMxPHjx/HgQMHEBoaysk3+xcuXMDYsWORnZ1d4RhXP/0W1xvd6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di2cnJzYjlgtTk5OSExMxJYtW2Bvb4+//voL7969w8qVK7Fx40b069eP7Yi1IjIyEidOnMD27ds5u9tm06ZNkZaWhj59+sDJyQk///wz5OTk2I5VI+LYp88xDIMrV64IZqUVFhayHalGsrKycPLkSRw4cABPnjxB69atERoaynYs8i9TU1P0798fGzduFGqfM2cOLl26hOjoaJaS1YyamhoePnwIU1NTqKmpITAwEGZmZnj48CFcXFzw/PlztiNWy+zZsytt5/F4kJOTg7GxMQYOHMjZWZ3kx0CDZ4QQwhG3b9+Gl5cXzp07Bz09PQwdOhRDhw7l5E5t+vr66N+/PxYvXszZTQ8+J243uuWaNWuGI0eOwM7ODioqKggODoaxsTGOHj2KkydP4vLly2xHrJbGjRvj77//Rvv27aGiooInT57AxMQEFy5cwJ9//omAgAC2I4rs3bt38PPzg5+fH3x9fRETEwNZWVl07NgRvr6+bMertr1792L48OFQV1dnO0qtEcc+lYuPj4eXlxcOHz6MnJwc9OvXD0OHDsXgwYPZjiYSf39/HDhwAGfPnkVBQQHmzZuHCRMmcLpW55EjR7563NnZuY6S1J7Lly9j6NChMDIyQseOHQGU7U4eFxeHs2fPwtHRkeWEotHS0sK9e/dgYmICU1NTbNu2DX369MHz589hZWXFuRl19vb2CA4ORmlpKUxNTcEwDGJjYyEpKYkWLVogOjoaPB4PAQEBMDc3ZzsuIZXi5vZLhBDyg3j9+jUOHToELy8v5ObmYsSIESguLsbZs2c5fXORlpYGDw8PsRk4AwBpaWlBjamGDRsiKSkJZmZmUFVVRVJSEsvpRJeeni4o+quiooL09HQAQNeuXYUKaXNFbm4utLW1AQAaGhpITU2FiYkJLCwsEBwczHK66jtz5oxguWZ0dDSkpKTQvn17jBgxAvb29ujcuTNkZWXZjimSSZMmsR2h1olbnwoKCuDj44P9+/fjwYMHcHBwQHJyMkJDQ9GqVSu241VbcnIyDh48KHjNHTVqFPz9/dGpUyc4OztzeuAMANzd3YUeFxcXIy8vDzIyMlBQUODk4JmjoyNiY2Oxe/duREVFgWEYDBw4EFOmTIGuri7b8URmaWkp+HDH3t4eS5YswYcPH3D06FFYWFiwHa/aymeVHTx4UFArNSsrC+PHj0fXrl0xceJEjB49Gh4eHrh27RrLaQmpHA2eEUJIPeXo6IiAgAD0798f27dvR9++fSEpKQlPT0+2o9XYkCFD4OvrCyMjI7aj1Bpxu9EtZ2hoiMTEROjp6cHc3Bze3t5o3749Ll68CDU1NbbjVZupqSmio6Ohr6+Ptm3bYs+ePdDX14enpycaN27Mdrxqc3JygrW1NQYPHgx7e3t06dIF8vLybMeqNY8fP8aZM2cq3dyBC7uhVkZc+jRt2jScOnUKpqamGDNmDM6ePYsGDRpAWlqas7XbDAwMMHz4cOzcuRMODg6c7ceXfPz4sUJbbGwspk6dinnz5rGQqGaKi4vRu3dv7NmzB6tWrWI7Tq1avXq1oLTFihUr4OLigqlTp8LY2BgHDx5kOV31rV+/Hjdu3BDaZEhFRQXLli1D79694e7ujiVLlqB3794spiTk62jwjBBC6qnr16/Dzc0NU6dOrVAIl+tMTEzw22+/ISAgABYWFhU2DODizpTidqNbztXVFWFhYbC1tcVvv/2Gfv36Yfv27SgpKcGmTZvYjldts2bNQnJyMgBg6dKl6NOnD44fPw4ZGRkcOnSI3XAi+PjxIxQVFdmO8V2cOnUKzs7O6N27N27cuIHevXsjNjYWKSkpnF0KKE592rt3LxYsWICFCxdCWVmZ7Ti1Qk9PDwEBAWjWrBn09PTQokULtiN9d82bN8fatWsxZswYzpUXkJaWxrNnz8RqZ+Fy1tbWgu+1tLQ4VyLhc5mZmXj//n2FVROpqanIysoCUFb+4vMPFAipT6jmGSGE1FOBgYHw8vKCt7c3WrRogbFjx2LkyJFo0qQJwsLCOL1ss3wZYGV4PB5nd6b8ESQlJeHJkycwMjJCmzZt2I5TY3l5eXj+/DmaNWsGTU1NtuOI7M2bNzh79ixiYmLA4/HQvHlzDB06FDo6OmxHE1nr1q0xefJkTJ8+HcrKyggLC4OBgQEmT56Mxo0b448//mA7YrWJU59OnDiBgwcPIjAwEP369cPYsWPRt29fyMvLc/o16t69ezhw4ADOnDkDExMTjBkzBvPnz0d4eDjMzMzYjvddhISEwNbWVjCIwSVz5syBtLQ01q5dy3aU7yI1NVVQD8zU1JSzr1NOTk4IDAzExo0bYWNjAx6Ph0ePHmHu3Lno3Lkzjh49ilOnTmHDhg148uQJ23EJqRQNnhFCSD2Xl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9VWw+7SeEiG7Xrl2YPXs2ioqKoKqqCoZhkJWVBRkZGWzatAnTpk1jO6JIFBUVERERAX19fWhqasLX1xcWFhaIiopCjx49BDMIuUQc+5SYmIiDBw/i0KFDyMvLQ3p6Ok6fPo1hw4axHa1GcnJycPLkSXh5eeHhw4ewtbXF6NGjMWjQIGhpabEdTyQXLlwQeswwDJKTk7Fjxw7o6uriypUrLCUT3cyZM3HkyBEYGxvD2tq6wkxcLs6QBsrqc86cORNHjx4V7EAuKSkJZ2dnbN++HQoKCiwnrJ6cnBx4eHjgyJEjgt2fpaSk4OLigs2bN0NRUVGwi23btm3ZC0rIV9DgGSGE1FNJSUnQ1dUVWo4QHR2NAwcO4OjRo8jIyICDg0OFm2FCiLDZs2dX+VyuvdH6559/MHDgQMyaNQtz5swR1G1LTk7G+vXrsX37dvz999+c3HFOV1cXly9fhoWFBdq0aYOFCxdi1KhRCAwMRN++fZGZmcl2xGoTxz6VYxgG165dg5eXFy5cuABNTU0MGTIE27ZtYztajUVFRQlee9PT01FcXMx2JJF8XsONx+NBS0sLPXr0wMaNGzlZ99He3v6Lx3g8Hm7fvl2HaWrP5MmTcfPmTezYsQNdunQBAAQEBMDNzQ0ODg7YvXs3ywlFk5OTg/j4eDAMAyMjIygpKbEdiZAqo8EzQgippyQlJZGcnCzYGfBTpaWluHjxouBNChfMnj0bK1asgKKi4jcHM7g2gEHqt6+9ufoUF99o2draolu3bli5cmWlx3///XfcvXsX/v7+dZys5kaPHg1ra2vMnj0bq1atwtatWzFw4EDcuHEDVlZWnCquX04c+1SZ9PR0HDlyBAcPHkRYWBjbcWpNSUkJLly4gCFDhrAdhYg5TU1N+Pj4wM7OTqjd19cXI0aMQGpqKjvBCPmB0eAZIYTUUxISEkhJSal08IyL7O3t8ddff0FNTU1sPykmpK6pqKjg8ePHMDU1rfR4dHQ0rK2tBZtZcEl6ejoKCgrQpEkT8Pl8bNiwAQEBATA2NsbixYuhrq7OdsRqE8c+iZO3b99i06ZNWLJkidCugEBZwfOVK1di7ty5aNiwIUsJyZe8ePECcXFx6N69O+Tl5cEwDKc3ElBQUEBQUFCFOnsRERFo3749cnNzWUpWdUOGDMGhQ4egoqLyzQFncfnggIg3GjwjhJB6StwGzwipT8TljZaSkhLCw8NhaGhY6fH4+Hi0bt0aOTk5dZyMiLuqLIfm8XjYuHFjHaSpHXPnzkVWVhb27t1b6fEpU6ZAVVUV69atq+NkohPnZesAkJaWhhEjRsDX1xc8Hg+xsbEwNDTE+PHjoaamxqnn36d69uyJBg0a4MiRI5CTkwMA5Ofnw8XFBenp6bh58ybLCb/N1dUV27Ztg7KyMlxdXb96Lpd3JSc/Dim2AxBCCPmy/fv3f7MehJubWx2lqT3v3r374if34eHhaN26dR0nEk11avlw6fdUnR3XPp+dUd996Y3WhAkTOPlGq2XLlvj777/h4eFR6fHz58+jZcuWdZyq9vD5fLx48QLv378Hn88XOta9e3eWUtWMuPQpJCSE7Qi17urVq/D09PzicWdnZ0ycOJFTg2ef/56CgoJQWloqmK0aExMDSUlJtGvXjo14Nebh4QFpaWkkJSUJzdIaOXIkPDw8OHdNL7d161b07dsXTZs2RZs2bcDj8RAaGgo5OTlcu3aN7XhV8umAGA2OEXFAM88IIaSekpCQQNOmTSEpKfnFc3g8HuLj4+swVe3Q1tbG/v37MWDAAKH2DRs2YPHixcjPz2cpWfUYGBhU6Tyu/Z4kJCS+OQurfKZW+S5gXOHs7Iz3799j//79MDMzQ1hYGAwNDXH9+nV4eHggIiKC7YjVcvjwYUydOhUbNmzApEmTICVV9rloSUkJ9uzZg3nz5mHXrl0YN24cu0FF8ODBA4wePRovX77E57erXHzuAeLZJ3GiqKiIqKgoNGvWrNLj5QM0XFgyV5lNmzbBz88Phw8fFiwR/vjxI1xdXdGtWzfMmTOH5YTV16hRI1y7dg1t2rSBsrKy4JqekJAACwsLTs+6zc/Px7Fjx/D8+XMwDANzc3M4OTlBXl6e7WgiKSkpgZ+fH+Li4jB69GgoKyvj7du3UFFRoY0DCCfQzDNCCKnHnjx5IpbLNhcsWICRI0cKtihPT0/H2LFjERERgdOnT7Mdr8oSEhLYjvBd+Pr6sh3hu7l+/TquXbuGpk2bCrU3b94cL1++ZCmV6FxcXPD06VPMmDEDv/32G4yMjAAAcXFxyMnJgZubGycHzoCyJXLW1tb4559/0LhxY04uq/2cOPXJz8+vQjHzz02bNg27du2qm0C1QF5eHomJiV8cPEtMTOTswAUAbNy4EdevXxeqraeuro6VK1eid+/enBw8y83NhYKCQoX2Dx8+QFZWloVEtUdeXh4TJ05kO0atePnyJfr27YukpCQUFhbCwcEBysrK+PPPP1FQUPDVGZ+E1Bc0eEYIIaTOzZkzB7169cKYMWPQunVrpKeno2PHjggPD+d8IeaioiIkJCTAyMhIMAuIa2xtbdmO8N2I4xutDRs2YNiwYTh58iRiY2MBlC3/++WXX9CxY0eW04kuNjYWPj4+MDY2ZjtKrRGnPg0cOBC+vr6wsrKq9Pj06dNx/PhxTg2edejQAUePHv3i8tkjR46gffv2dZyq9mRlZeHdu3cVlnK/f/+ek5uKAGXXuiNHjmDFihUAymZw8vl8rF+/vso7LdcX1dk9/fOZ+/Wdu7s7rK2tERYWhgYNGgjaBw8ejAkTJrCYjJCq4+ZdPSGEEADA8ePH4eTkxHYMkRgaGqJly5Y4e/YsAGDEiBGcHjjLy8vDzJkzcfjwYQBldWQMDQ3h5uaGJk2aYOHChSwnFN3du3exZ88exMfH48yZM9DR0cHRo0dhYGCArl27sh2vWsTpjRYALF++HHPnzkXHjh05PVBWmQ4dOuDFixdiMdBUTpz6NGHCBPz000+4e/cuTExMhI7NmDEDR44cweXLl1lKJ5q5c+fCwcEBqqqqmDdvnuA16d27d/jzzz9x6NAhXL9+neWUohs8eDBcXV2xceNGwfXiwYMHmDdv3jd3Q6yv1q9fDzs7Ozx58gRFRUWYP38+IiIikJ6ejnv37rEdr1oGDRpUpfO4uMQ7ICAA9+7dg4yMjFC7np4e3rx5w1IqQqqJIYQQUi+1aNGCefv27RePHz9+nJGWlq7DRLUnICCA0dfXZ9q1a8dERkYy+/btY5SVlZnhw4cz6enpbMcTiZubG9OuXTvm7t27jKKiIhMXF8cwDMP8/fffTNu2bVlOJzofHx9GXl6emTBhAiMrKyvo186dO5mffvqJ5XTVFxERwWhpaTF9+/ZlZGRkmGHDhjFmZmZMw4YNmRcvXrAdr9okJCSYd+/esR3juzh37hxjbm7OHDx4kHny5AkTFhYm9MVF4tYnV1dXplmzZszr168FbTNnzmQUFRUZPz8/FpOJztPTk5GVlWUkJCQYNTU1Rl1dnZGQkGBkZWWZXbt2sR2vRnJzc5mpU6cK+ichIcHIyMgwU6dOZXJyctiOJ7Lk5GRmyZIlTL9+/ZiffvqJWbRo0Vfvn0jdU1dXZyIiIhiGYRglJSXBvcTdu3cZbW1tNqMRUmW0YQAhhNRTdnZ2yM/Px+3bt6GoqCh07NSpU3B2dsa6deu+uMtefSYrKwsPDw+sWLEC0tLSAMpqNI0dOxZJSUl4/fo1ywmrT09PD6dPn0bHjh2Fiha/ePECVlZW1drBsj6xtLSEh4cHnJ2dhfoVGhqKvn37IiUlhe2I1ZaSkoLdu3cjKCgIfD4fVlZWmD59Oho3bsx2tGqTkJBASkqKWNZGlJCQqNDG4/E4u1kFIH594vP5GDZsGKKionD37l2sWrUKe/fuxaVLlzg5k7O4uBjS0tJ48+YNvL298eLFCzAMAxMTEwwbNgxNmzbFs2fP0KpVK7aj1khubi7i4uLAMAyMjY0r3GMQ9iUkJFR5UyIuGDlyJFRVVbF3714oKysjPDwcWlpaGDhwIJo1a0a7cRJOoMEzQgipp3JycmBnZwc1NTVcuXJFMMjk7e2NMWPGYPXq1Zg7dy7LKUXj7+9faV0tPp+PVatWYfHixSykqhkFBQU8e/YMhoaGQoNMYWFh6N69OzIzM9mOKBIFBQVERkZCX19fqF/x8fEwNzdHQUEB2xF/aBISEnj37h20tLTYjlLrvrWBg56eXh0lqT3i2KeioiL069cPYWFhyM3NxYULF9CzZ0+2Y4lk2LBhOHPmzBc3cnj27Bl69uyJd+/e1XEy8iV37tz56vEv1a+r7yQlJdG9e3eMHz8ew4YNg5ycHNuRauTt27ewt7eHpKQkYmNjYW1tjdjYWGhqauLOnTti+QEQET80eEYIIfVYamoqunfvDnNzc/j4+MDHxwdOTk5YsWIFFixYwHY88glbW1sMGzYMM2fOFHyqamBggBkzZuDFixe4evUq2xFFYmRkhD179qBXr15Cg2dHjhzB2rVrERkZyXbEarl69SqUlJQEtdp27tyJffv2wdzcHDt37hTahY4LJCQk0KpVq29uThEcHFxHiciPYtu2bYLvs7OzsWLFCvTp06fCwJmbm1tdRxOZrq4ufvrpJ+zdu7fCsYiICPTo0QPdu3fHmTNnWEhXOx4/fowzZ84gKSkJRUVFQsfOnTvHUirRfWk2ZzmuzeYs9+zZM3h5eeH48eMoLCzEyJEjMX78eE5vWJGfn4+TJ08iODhYMOvbycmJ0zvYkh8LDZ4RQkg99+rVK3Tt2hXGxsYICAjAkiVLsGjRIrZj1Vhubi78/f0rvYHn0putcvfv30ffvn3h5OSEQ4cOYfLkyYiIiEBgYCD8/f3Rrl07tiOK5M8//8Thw4fh5eUFBwcHXL58GS9fvoSHhweWLFmCGTNmsB2xWiwsLLBu3To4Ojri6dOnsLa2xpw5c3D79m2YmZlxbumIhIQE5syZAyUlpa+et3Tp0jpKVLvi4uKwZcsWREVFgcfjwczMDO7u7jAyMmI7msjEpU9VWVLG4/EQHx9fB2lqR1RUlGC2z9q1a4Xa7e3t0blzZ5w5cwaSkpIsphRdecmH3r1748aNG+jduzdiY2ORkpKCwYMHc+76B6DCrO7i4mKEhIRg8eLFWLVqFWdnQZYrKSnBxYsXcejQIVy5cgXNmzfH+PHjMXbsWLGccUxIfUaDZ4QQUk+Fh4cLvn/+/DmcnZ0xaNAg/O9//xM6r3Xr1nUdrdpevXoFXV1dweOQkBA4OjoiNzcX+fn5UFdXx4cPH6CgoABtbW1Ovdn61NOnT7FhwwahWloLFiyAhYUF29FqZNGiRdi8ebNgiaasrCzmzp0r2LGSS5SUlPDs2TPo6+tj2bJlePbsGXx8fBAcHAxHR0fO1XAT55pn165dw4ABA9C2bVt06dIFDMPg/v37CAsLw8WLF+Hg4MB2xGoTxz6Jm8ePH6Nnz55YvHgx5s2bh+fPn8Pe3h7t27fHuXPnODtwBpTdL0yePBnTp08XzCQ2MDDA5MmT0bhxY/zxxx9sR6w1d+7cgYeHB4KCgtiOUisKCwuxa9cu/PbbbygqKoK0tDRGjhyJdevWcaJeZ5MmTWBnZyf4+nyHXkK4gAbPCCGknpKQkBAqJF1+uf78ey4sSVi5ciWSk5OxY8cO8Hg82NnZwcjICHv37kXTpk0RFhaG/Px8jBkzBh4eHhgyZAjbkcln8vLyEBkZCT6fD3Nz82/OdKqvNDQ0EBAQAHNzc3Tt2hXOzs6YNGkSEhMTYW5ujry8PLYjVoukpCSSk5PFcvDM0tISffr0EZoBBAALFy7E9evXObkUVRz7JI5u376N/v37Y/78+di3bx+srKxw7tw5Qe1RrlJUVERERAT09fWhqakJX19fWFhYICoqCj169EBycjLbEWtNVFQUbGxskJOTw3aUGnny5Am8vLxw6tQpKCoqwsXFBePHj8fbt2+xZMkSZGdn49GjR2zH/KaTJ0/C398ffn5+iImJQcOGDWFraws7OzvY2trCzMyM7YiEfBMNnhFCSD31rcLS5bhQYDo/Px8zZsxAamoqLly4ADU1NTx48AAtWrRA06ZNERgYCF1dXTx48ADjxo3D8+fP2Y5cJdXZQVNFReU7JiFVNWDAABQVFaFLly5YsWIFEhISoKOjg+vXr2PGjBmIiYlhO2K1iPPMMzk5OTx9+hTNmzcXao+JiUHr1q05uVmFuPTp1KlT+OWXX6p07qtXr5CUlIQuXbp851S16/z58xg+fDh69+6N8+fPc37gDCir6Xb58mVYWFigTZs2WLhwIUaNGoXAwED07duXkxvbfDpLHwAYhkFycjLWrl2L4uJi3Lt3j6VkNbNp0yYcPHgQ0dHRcHR0xIQJE+Do6ChU4+3Fixdo0aIFSkpKWExafe/evYOvry8uXbqE06dPg8/nc+KDYEK+Xl2WEEIIa7gwKFZV8vLyOHDgAE6dOgUAkJaWFtwAamtr4+XLl9DV1YWamhqSkpLYjFotampqX9yV7XNcujGszsw/rhWY3rFjB6ZNmwYfHx/s3r0bOjo6AIArV66gb9++LKervoSEBLGte6OlpYXQ0NAKA02hoaGcHSwUlz7t3r0by5Ytg6urKwYMGFBh1khmZibu3buHY8eO4ebNmzhw4ABLSatHXV29wjX97t27aNiwoVBbenp6XcaqNd26dcONGzdgYWGBESNGwN3dHbdv38aNGzc4Wxusbdu2QjPyy3Xs2BFeXl4spaq53bt349dff4WrqysaNWpU6TnNmjXjzN8WULaLfEBAgGAGWkhICCwsLCrdfZ2Q+ogGzwghpB5KSkpCs2bNqnz+mzdvBIMA9Vn5TAVLS0s8fvwYJiYmsLW1xW+//YapU6fi8OHDnKoP5uvrK/g+MTERCxcuxLhx49CpUycAQGBgIA4fPow1a9awFVEkqqqqgu8ZhsFff/0FVVVVWFtbAwCCgoKQkZHByeW1zZo1w6VLlyq0b968mYU0NXf48OEqnbdkyZLvnKT2TZw4EZMmTUJ8fDw6d+4MHo+HgIAArFu3DnPmzGE7nkjEpU/+/v64dOkStm/fjv/9739QVFREw4YNIScnh48fPyIlJQVaWlpwdXXFs2fPODMwuGXLFrYjfFc7duwQzG787bffIC0tjYCAAAwZMgSLFy9mOZ1oEhIShB5LSEhAS0sLcnJyLCWqHbGxsd88R0ZGBi4uLnWQpuY6dOiA8PBwtGrVCnZ2dvjf//6Hbt26QU1Nje1ohFQZLdskhJB6qGHDhhgwYAAmTpz4xW3JMzMz4e3tja1bt2Ly5MmYOXNmHacU3ZMnT5CVlYUePXogPT0d48aNg5+fH4yMjHDo0CG0adOG7YjV1rNnT0yYMAGjRo0Saj9x4gT27t0LPz8/doLV0IIFC5Ceng5PT09BoezS0lJMmzYNKioqWL9+PcsJq+dbMxurM2hdH0hISKBJkybQ1tauMPOiHI/H42QtLYZhsGXLFmzcuBFv374FUFZ0et68eXBzc6vyrM/6RBz7lJaWhoCAACQmJiI/Px+ampqwtLSEpaWl0BIzQmrT7du3MWPGDDx48KBCWYTMzEx07twZnp6e6NatG0sJa0deXl6lu5JzYbOoT2loaIDH46FXr16CTQOozhnhGho8I4SQeig9PR2rV6+Gl5cXpKWlYW1tjSZNmgg+1Y+MjERERASsra3x+++/46effmI78g9PQUEBYWFhldYyatu2LecK0ZfT0tJCQEAATE1Nhdqjo6PRuXNnpKWlsZRMNOUbcXwJl5bXAoCjoyN8fX3Rp08f/Prrr+jXrx+ndwMsV1JSguPHj6NPnz5o1KgRsrOzAQDKysosJxOdOPbpR1a+mQ+XfKlOJ4/Hg6ysLGRkZOo4kegGDBgAe3t7eHh4VHp827Zt8PX1xV9//VXHyWpHamoqxo0bh6tXr1Z6nGuvVUBZfTo/Pz/4+/vj7t27kJCQgK2tLezt7TFlyhS24xHyTfRxECGE1EMaGhrYsGED3r59i927d8PExAQfPnwQTON3cnJCUFAQ7t27RwNn9YSuri48PT0rtO/Zswe6urosJKodJSUliIqKqtAeFRUFPp/PQqKaCQkJQXBwsODr4cOH8PT0hImJCc6cOcN2vGq7fPky4uPj0aFDB8ybNw9NmzbFggULEB0dzXa0GpGSksLUqVNRWFgIoGyAieuDTOLYJ3FiZmaGEydOVJjh87nY2FhMnToV69atq6NktUdNTQ3q6uoVvtTU1CAvLw89PT0sXbqUE9f2sLCwr9ap7N27N4KCguowUe2aNWsWMjIy8ODBA8jLy+Pq1as4fPgwmjdvjgsXLrAdTyStW7eGm5sbzp49iytXruCnn37CuXPnMH36dLajEVIlVPOMEELqMTk5OQwZMoSTtaW+Ji0tDUuWLIGvry/ev39f4Uadi8WYN2/ejKFDh+LatWvo2LEjAODBgweIi4vD2bNnWU4nOldXV/z666948eKFUL/Wrl0LV1dXltNVX2VLgstndq5fv56Tf2uNGzfGb7/9ht9++w137tzBwYMHYWNjAwsLC9y8eRPy8vJsRxRJhw4dEBISIlabp4hjn8TFzp07sWDBAkyfPh29e/eudMZ3QEAAIiMjMWPGDEybNo3tyNV26NAhLFq0COPGjUP79u3BMAweP36Mw4cP4/fff0dqaio2bNgAWVlZ/O9//2M77le9e/fuqzugSklJITU1tQ4T1a7bt2/j77//ho2NDSQkJKCnpwcHBweoqKhgzZo16NevH9sRqyUkJAR+fn7w8/PD3bt3kZ2djTZt2sDd3R329vZsxyOkSmjwjBBCSJ0bM2YM4uLiMH78eDRs2JBzS18q4+joiNjYWOzevRtRUVFgGAYDBw7ElClTOD3zbMOGDWjUqBE2b96M5ORkAGWDNfPnz+dUgfNvMTExwePHj9mOUWM2NjZITExEZGQkQkJCUFxczNnBs2nTpmHOnDl4/fo12rVrB0VFRaHjXKv5A4hnn8RFjx498PjxY9y/fx+nT5/GiRMnKtRxc3Z2xpgxYzhb5Pzw4cPYuHEjRowYIWgbMGAALCwssGfPHty6dQvNmjXDqlWr6v3gmY6ODp4+fQpjY+NKj4eHh6Nx48Z1nKr25ObmCjba0NDQQGpqKkxMTGBhYcHJGpY2NjawtLSEra0tJk6ciO7du1eoVUdIfUc1zwghhNQ5ZWVlBAQEcHJjgB9Zeb0cLt/wfl7zh2EYJCcnY9myZXj+/DlCQ0PZCVZDgYGB8PLygre3N0xMTODq6orRo0dz9k0+gEqLzfN4PEGtKS7W/BHHPhHu+FJtztjYWLRp0wZ5eXlISEhAy5Yt632dzpkzZ8LPzw+PHz+usLNmfn4+2rdvD3t7e2zbto2lhDVjY2ODlStXok+fPhg0aJBgxtm2bdvg4+ODuLg4tiNWS1ZWFqfvHQgBaOYZIYQQFrRo0QL5+flsxyDVJA43vmpqahVmOjIMA11dXZw6dYqlVKL7888/cfDgQaSlpcHJyQkBAQGwsLBgO1atSEhIYDtCrRPHPhHuaNq0KQ4cOIC1a9cKtR84cEAwQzotLQ3q6upsxKuW33//HefOnYOJiQlmzJgBU1NT8Hg8REVFYefOnSgtLcWiRYvYjimyWbNmCWZ7L126FH369MGxY8cgIyODw4cPs5yu+sTh/oEQmnlGCCGkzj1+/BgLFy7EkiVL0KpVqwp1S+gmi3wv/v7+Qo8lJCSgpaUFY2NjSElx7zNFCQkJNGvWDP379//qTnmbNm2qw1TkR/P69WtcuHABSUlJFQru03Ov/rhw4QKGDx+OFi1awMbGBjweD48fP8bz58/h4+OD/v37Y/fu3YiNjeXE7+3ly5eYOnUqrl27hvK3tDweD3369MGuXbugr6/PbsBawjAM8vPz8fz5czRr1gyamppsRyLkh0SDZ4QQQupcbGwsRo0ahZCQEKF2WrpEvgcrKyvcunUL6urqWL58OebOnQsFBQW2Y9UKOzu7b9YM5PF4uH37dh0lql1Hjx6Fp6cnEhISEBgYCD09PWzZsgUGBgYYOHAg2/FEIm59unXrFgYMGAADAwNER0ejVatWSExMBMMwsLKy4uxzT1y9fPkSnp6eiI6OBsMwaNGiBSZPnszpgaaPHz/ixYsXYBgGzZs358TMuao4cOAANm/eLNhpvXnz5pg1axYmTJjAcjJCfkw0eEYIIRwQFxeHLVu2ICoqCjweD2ZmZnB3d4eRkRHb0UTSvn17SElJwd3dvdINA2xtbVlKRsSRvLw8YmNj0bRpU0hKSiIlJQVaWlpsxyLfsHv3bixZsgSzZs3CqlWr8OzZMxgaGuLQoUM4fPgwfH192Y5YbeLYp/bt26Nv375Yvnw5lJWVERYWBm1tbTg5OaFv376YOnUq2xEJgOLiYvTu3Rt79uyBiYkJ23HINyxevBibN2/GzJkz0alTJwBltS137NgBd3d3rFy5kuWEhPx4aPCMEELquWvXrmHAgAFo27YtunTpAoZhcP/+fYSFheHixYtwcHBgO2K1KSgoICQkBKampmxHIT+ATp06QUlJCV27dsUff/yBuXPnQklJqdJzlyxZUsfpyJeYm5tj9erVGDRokGBQxtDQEM+ePYOdnR0+fPjAdsRqE8c+KSsrIzQ0FEZGRlBXV0dAQABatmyJsLAwDBw4EImJiWxHJP/S0tLC/fv3K2wYQOofTU1NbN++HaNGjRJqP3nyJGbOnMm5a4Wfnx/s7OzYjkFIjXCvuAchhPxgFi5cCA8PjwoFfhcuXIgFCxZwcvDM2toar169ErvBMx8fH3h7e1da94eLW8uX8/f3x4YNG4RmPs6bNw/dunVjO1qVHDp0CEuXLsWlS5fA4/Fw5cqVSuub8Xg8Tg2erV27FjNnzoSiouI3z3348CE+fPiAfv361UGy2pGQkABLS8sK7bKyssjNzWUhUc2JY58UFRVRWFgIAGjSpAni4uLQsmVLAODcG/zK5Ofno7i4WKiNq3U5nZ2dK90wgNQ/paWlsLa2rtDerl07lJSUsJCoZvr27QsdHR24urrCxcVFsEEFIVxCg2eEEFLPRUVFwdvbu0L7r7/+ii1bttR9oFowc+ZMuLu7Y968ebCwsKiwYUDr1q1ZSia6bdu2YdGiRXBxccHff/8NV1dXxMXF4fHjx5g+fTrb8UR27NgxuLq6YsiQIXBzcxPMfOzZsycOHTqE0aNHsx3xm0xNTQU7aUpISODWrVvQ1tZmOVXNRUZGQk9PD8OHD8eAAQNgbW0tWI5aUlKCyMhIBAQE4NixY0hOTsaRI0dYTlw9BgYGCA0NhZ6enlD7lStXYG5uzlKqmhHHPnXs2BH37t2Dubk5+vXrhzlz5uDp06c4d+4cOnbsyHY8keTl5WH+/Pnw9vZGWlpaheNcrctZVFSE/fv348aNG7C2tq4w8M6FTQJ+FGPGjMHu3bsr/E727t0LJycnllKJ7u3btzh27BgOHTqEZcuWoWfPnhg/fjwGDRr01c1uCKlPaNkmIYTUc7q6uti0aROGDx8u1O7t7Y25c+ciKSmJpWSik5CQqNDG4/E4vWFAixYtsHTpUowaNUpoOdaSJUuQnp6OHTt2sB1RJGZmZpg0aRI8PDyE2jdt2oR9+/YhKiqKpWQEAMLDw7Fz506cOXMGmZmZkJSUhKysLPLy8gAAlpaWmDRpElxcXCArK8ty2uo5ePAgFi9ejI0bN2L8+PHYv38/4uLisGbNGuzfvx+//PIL2xGrTRz7FB8fj5ycHLRu3Rp5eXmYO3cuAgICYGxsjM2bN1cYKOSC6dOnw9fXF8uXL4ezszN27tyJN2/eYM+ePVi7di0nBy8AwN7e/ovHuLyxiDiaOXMmjhw5Al1dXcEg9IMHD/Dq1Ss4OzsLfejItUHP0NBQeHl54eTJk+Dz+XBycsL48ePRpk0btqMR8lU0eEYIIfXc8uXLsXnzZixcuBCdO3cGj8dDQEAA1q1bhzlz5uD3339nO2K1vXz58qvHufhmS0FBAVFRUdDT04O2tjZu3LiBNm3aIDY2Fh07dqx09gIXyMrKIiIiAsbGxkLtL168QKtWrVBQUMBSMvIphmEQHh6OxMRE5OfnQ1NTE23btoWmpibb0Wpk3759WLlyJV69egUA0NHRwbJlyzB+/HiWk4lOHPskbpo1a4YjR47Azs4OKioqCA4OhrGxMY4ePYqTJ0/i8uXLbEckYu5rA52f4uqg59u3b7F3716sXbsWUlJSKCgoQKdOneDp6SlY9k1IfUODZ4QQUs8xDIMtW7Zg48aNePv2LYCyujLz5s2Dm5tbhZ0qCTsMDQ3h4+MDKysr2NjYYMKECZg8eTKuX7+OX375Benp6WxHFImxsTHmzZuHyZMnC7Xv2bMHGzZsQGxsLEvJyI/kw4cP4PP5YrHctpw49iknJwd8Pl+ojYv1wZSUlBAREQE9PT00bdoU586dQ/v27ZGQkAALCwvk5OSwHbFGXrx4gbi4OHTv3h3y8vKCWd+EfE/FxcX4+++/4eXlJVg6PH78eIwaNQrp6elYsGABQkNDERkZyXZUQipFNc8IIaQeKykpwfHjxzFq1Ch4eHggOzsbQNnuZqR+6dGjBy5evAgrKyuMHz8eHh4e8PHxwZMnTzBkyBC244lszpw5cHNzQ2hoqNDMx0OHDmHr1q1sxyM/CK7PoKuMuPQpISEBM2bMgJ+fn9BMVC4vwzc0NERiYiL09PRgbm4Ob29vtG/fHhcvXoSamhrb8USWlpaGESNGwNfXFzweD7GxsTA0NMSECROgpqaGjRs3sh2RiKmZM2fi5MmTAMrquf35559o1aqV4LiioiLWrl0LfX19lhIS8m0084wQQuq5T5cDkvqLz+eDz+cLdnH09vYW1P2ZMmUKpwvi/vXXX9i4caOgvln5bpsDBw5kORkRd+K4g6249alz584AAHd3dzRs2LDCDCZbW1s2YtXI5s2bISkpCTc3N/j6+qJfv34oLS1FSUkJNm3aBHd3d7YjisTZ2Rnv37/H/v37YWZmJqjNef36dXh4eCAiIoLtiERM9ezZExMmTMDQoUO/eD9UUlKCe/fucfKaQX4MNHhGCCH1nL29Pdzd3TFo0CC2oxBCSJ35dAfbffv2VdjBdtWqVWxHrDZx7JOSkhKCgoJgamrKdpTvJikpCU+ePIGRkRGni5o3atQI165dQ5s2bYQ2thGX5aik/rpz5w46d+4s+ICxXElJCe7fv4/u3buzlIyQqqNlm4QQUs9NmzYNc+bMwevXr9GuXbsKW8u3bt2apWTkc3fv3sWePXsQFxcHHx8f6Ojo4OjRozAwMEDXrl3ZjicSQ0NDPH78GA0aNBBqz8jIgJWVFeLj41lKVnXq6upVrufD1dp04mjXrl3Yu3cvRo0ahcOHD2P+/PlCO9hykTj2ycbGBq9evRLrwbNmzZqhWbNmbMeosdzcXCgoKFRo//DhA+d24yXcYm9vj+Tk5Ao1HjMzM2Fvb8/J5d3kx0ODZ4QQUs+NHDkSAODm5iZo4/F4nK4nUy4oKAhRUVHg8XgwMzODlZUV25FEdvbsWYwdOxZOTk4ICQlBYWEhACA7OxurV6/m7O5siYmJlT7HCgsL8ebNGxYSVd+WLVvYjlBnxKkQeFJSkmBJoLy8vKDm49ixY9GxY0fs2LGDzXgiEcc+7d+/H1OmTMGbN2/QqlUrSEtLCx3nygc827Ztq/K5n74ec0n37t1x5MgRrFixAkDZvQSfz8f69eurvLsjIaL40mtRWlpahQ+FCamvaPCMEELquYSEBLYj1Lr379/jl19+gZ+fH9TU1MAwjODTx1OnTkFLS4vtiNW2cuVKeHp6wtnZGadOnRK0d+7cGcuXL2cxmWguXLgg+P7atWtQVVUVPC4tLcWtW7c4U9jXxcWF7QjfXVpaGkaOHInbt2+LTSHwRo0aIS0tDXp6etDT08ODBw/Qpk0bJCQkgKtVR8SxT6mpqYiLi4Orq6ugjYsf8GzevFnocWpqKvLy8gQbBGRkZEBBQQHa2tqcHTxbv3497Ozs8OTJExQVFWH+/PmIiIhAeno67t27x3Y8IobKN0zi8XgYN26c0AzH0tJShIeHCz5QIKS+o8EzQgip58Rxo4CZM2ciKysLERERMDMzAwBERkbCxcUFbm5ugh2ZuCQ6OrrSmh0qKirIyMio+0A1VF5jj8fjVRh8kpaWhr6+PicHZAAgLi4OBw8eRFxcHLZu3QptbW1cvXoVurq6aNmyJdvxROLh4QEpKSkkJSUJ/qaAspmrHh4enPxdieMOtuLYp19//RWWlpY4efJkpRsGcMWnH1SdOHECu3btwoEDBwTLUaOjozFx4kRMnjyZrYg1Zm5ujvDwcOzevRuSkpLIzc3FkCFDMH36dDRu3JjteEQMlX/wxjAMlJWVIS8vLzgmIyODjh07YuLEiWzFI6RaaMMAQgjhgKNHj8LT0xMJCQkIDAyEnp4etmzZAgMDA07ueKiqqoqbN2/CxsZGqP3Ro0fo3bs3JwebjIyMsGfPHvTq1UuoEPORI0ewdu1aREZGsh1RJAYGBnj8+DE0NTXZjlIr/P398dNPP6FLly64c+cOoqKiYGhoiD///BOPHj2Cj48P2xFFIo6FwMVxB1tx7JOioiLCwsJgbGzMdpRaY2RkBB8fH1haWgq1BwUFYdiwYWI5I5yQ7+mPP/7A3LlzaYkm4TQJtgMQQgj5ut27d2P27NlwdHRERkaGYAmMmpoaZ2s58fn8CnVxgLIZTXw+n4VENTd58mS4u7vj4cOH4PF4ePv2LY4fP465c+di2rRpbMcTWUJCgtgMnAHAwoULsXLlSty4cUNooMLe3h6BgYEsJqsZcSwELiEhIbQz24gRI7Bt2za4ublxcpAJEM8+9ejRA2FhYWzHqFXJyckoLi6u0F5aWop3796xkKh2GBgYYPHixYiOjmY7CvnBLF26FIqKinj//j3u3r2LgIAAvH//nu1YhFQLDZ4RQkg9t337duzbtw+LFi2CpKSkoN3a2hpPnz5lMZnoevToAXd3d7x9+1bQ9ubNG3h4eKBnz54sJhPd/PnzMWjQINjb2yMnJwfdu3fHhAkTMHnyZMyYMYPteCJzc3OrtJD2jh07MGvWrLoPVENPnz7F4MGDK7RraWkhLS2NhUS1o7wQeDkqBE7qys8//wwPDw8sW7YMZ8+exYULF4S+uKhnz56YOHEinjx5IqhF9+TJE0yePBm9evViOZ3oZs6ciatXr8LMzAzt2rXDli1bkJyczHYs8gPIysrC2LFjoaOjA1tbW3Tv3h06OjoYM2YMMjMz2Y5HSJXQsk1CCKnn5OXl8fz5c+jp6Qktx4qNjUXr1q2Rn5/PdsRqe/XqFQYOHIhnz55BV1cXPB4PSUlJsLCwwN9//42mTZuyHbFaSktLERAQAAsLC8jJySEyMhJ8Ph/m5uZQUlJiO16N6Ojo4MKFC2jXrp1Qe3BwMAYMGIDXr1+zlEw0TZs2hbe3Nzp37iz09/TXX39h7ty5iIuLYzuiSCIjI2FnZ4d27drh9u3bGDBggFAhcCMjI7YjEjElIfHlz+K5tGHAp1JTU+Hi4oKrV68KZkmXlJSgT58+OHToELS1tVlOWDMxMTE4fvw4Tp06hfj4eNjb22PMmDFwdnZmOxoRUyNGjEBoaCi2b9+OTp06gcfj4f79+3B3d0fr1q3h7e3NdkRCvokGzwghpJ4zNzfHmjVrMHDgQKE3+9u2bcPhw4cRFBTEdkSR3bhxA8+fPwfDMDA3N+f0J/pycnKIioqCgYEB21FqlZycHJ49e1ahntGLFy/QqlUrFBQUsJRMNPPnz0dgYCDOnDkDExMTBAcH4927d3B2doazszOWLl3KdkSRpaSkYPfu3QgKCgKfz4eVlRUVAiekBmJiYgSvUWZmZjAxMWE7Uq178OABpk6divDwcE4OdBJuUFRUxLVr19C1a1eh9rt376Jv377Izc1lKRkhVUe7bRJCSD03b948TJ8+HQUFBWAYBo8ePcLJkyexZs0a7N+/n+14NeLg4AAHBwe2Y9QKCwsLxMfHi93gmbGxMa5evVph6emVK1dgaGjIUirRrVq1CuPGjYOOjo5g0La0tBSjR4/G77//zna8GmnUqBH++OMPtmMQIjZMTEzEcsAMKNug58SJEzh9+jQyMzMxbNgwtiMRMdagQQPBzpufUlVVhbq6OguJCKk+mnlGCCEcsG/fPqxcuRKvXr0CULaUbtmyZRg/fjzLyapu27ZtmDRpEuTk5CqtofUpNze3OkpVe65fv44FCxZgxYoVaNeuXYUdpVRUVFhKVjNeXl6YMWMG5s2bhx49egAAbt26hY0bN2LLli2c3WI+Li4OISEh4PP5sLS0RPPmzdmOVCN37tz56vHu3bvXURLyIxDH6/ns2bOxYsUKKCoqYvbs2V89d9OmTXWUqnaVL9c8ceIEEhMTYW9vDycnJwwZMgTKyspsxyNibO/evThz5gyOHDkimA2dkpICFxcXDBkyBJMnT2Y5ISHfRoNnhBDCIR8+fACfz+dkvRUDAwM8efIEDRo0+OrsLB6Ph/j4+DpMVjs+rfvD4/EE3zMMw9m6P+V2796NVatWCTZ40NfXx7Jly6g+Tj1SWd2pT5+HXH3++fj4wNvbG0lJSSgqKhI6FhwczFKqmhGHPonj9dze3h5//fUX1NTUvrrJBo/Hw+3bt+swWe2RkJCAtbU1Ro8ejV9++QWNGjViOxL5QVhaWuLFixcoLCxEs2bNAABJSUmQlZWt8OEVV66D5MdDyzYJIaSeS0hIQElJCZo3bw5NTU1Be2xsLKSlpaGvr89euGpISEio9Htx4evry3aE72bq1KmYOnUqUlNTIS8vz7lNEL41i+RTXJ1R8vHjR6HHxcXFCAkJweLFi7Fq1SqWUtXMtm3bsGjRIri4uODvv/+Gq6sr4uLi8PjxY0yfPp3teCIRlz6J4/X802u4uF7Pnz9/LrbLUEn9NmjQILYjEFJjNPOMEELqOVtbW/z6669wcXERaj927Bj2798PPz8/doKRKgsNDUXbtm3ZjiGykpIS+Pn5IS4uDqNHj4aysjLevn0LFRUVTgykfT6LJCgoCKWlpTA1NQVQtpRJUlJSsFOlOLlz5w48PDw4ubFIixYtsHTpUowaNUpos5QlS5YgPT0dO3bsYDtitYljn/Lz8yEvL1/pseTkZNqwoh4qKirC+/fvwefzhdrLZwQRQgipiAbPCCGknlNRUUFwcHClux1aW1sjIyODnWA1MGzYMFhbW2PhwoVC7evXr8ejR49w5swZlpLVnszMTBw/fhz79+9HWFgYZ5fNvXz5En379kVSUhIKCwsRExMDQ0NDzJo1CwUFBfD09GQ7YrVs2rQJfn5+OHz4sKBI8cePH+Hq6opu3bphzpw5LCesXVFRUbCxsUFOTg7bUapNQUEBUVFR0NPTg7a2Nm7cuIE2bdogNjYWHTt2RFpaGtsRq00c+9SiRQucOHECVlZWQu0+Pj6CGatcMGTIkCqfe+7cue+Y5PuJjY3Fr7/+ivv37wu1i0N5AcIdOTk5FQZuuVoXlvxYKhbIIIQQUq/weDxkZ2dXaM/MzOTsja6/vz/69etXob1v377fLHxe392+fRtjxoxB48aNsX37djg6OuLJkydsxxKZu7s7rK2t8fHjR6HZJYMHD8atW7dYTCaajRs3Ys2aNUK7e6mrq2PlypXYuHEji8lqJjw8XOgrLCwMV69exdSpU9GmTRu244mkUaNGgsEkPT09PHjwAEDZMkGufvYrjn1ycHBA586dsXbtWjAMg5ycHIwbNw4uLi5YsmQJ2/GqTFVVVfCloqKCW7duCV27g4KCcOvWrUp3DOSKcePGQUJCApcuXUJQUBCCg4MRHByMkJAQqjNFvquEhAT069cPioqKgh021dXVoaamRrttEs6gmmeEEFLPdevWDWvWrMHJkychKSkJoKz495o1a9C1a1eW04kmJycHMjIyFdqlpaWRlZXFQqKqS01NhZaWllDb69evcejQIXh5eSE3NxcjRoxAcXExzp49C3Nzc5aS1o6AgADcu3evwu9LT08Pb968YSmV6LKysvDu3Tu0bNnVrS96AABheElEQVRSqP39+/eVDlJzRdu2bcHj8SoMwHTs2BFeXl4spaqZHj164OLFi7CyssL48ePh4eEBHx8fPHnypFqzhOoTcezT9u3b0a9fP7i6uuKff/4RLOl+/Pgxp65/Bw8eFHy/YMECjBgxAp6enkKvu9OmTeP0DJnQ0FAEBQWhRYsWbEchPxgnJycAZTt4N2zYUGhDG0K4ggbPCCGknvvzzz/RvXt3mJqaolu3bgCAu3fvIisri7P1mVq1aoXTp09XmJVw6tSpev9ma+/evXj9+jW2bdsGaWlpODo6IiAgAP3798f27dvRt29fSEpKcm4545fw+fxKZzi+fv0aysrKLCSqmcGDB8PV1RUbN25Ex44dAQAPHjzAvHnzODt4AVQs2i4hIQEtLS3IycmxlKjm9u7dK1jaM2XKFGhoaCAgIAA///wzpkyZwnI60YhjnwCgd+/eGDJkCHbv3g0pKSlcvHix3l/Lv8bLywsBAQGCgTMAkJSUxOzZs9G5c2esX7+exXSiMzc3x4cPH9iOQX5A4eHhCAoKEtQaJYSLqOYZIYRwwNu3b7Fjxw6EhYVBXl4erVu3xowZM6ChocF2NJFcuHABQ4cOxejRo9GjRw8AwK1bt3Dy5EmcOXOmXu/KVFhYiMWLF0NTUxPz58+HlJQU3NzcMHXqVKHt1qWlpREWFsbpN5AAMHLkSKiqqmLv3r1QVlZGeHg4tLS0MHDgQDRr1kxotgYX5OXlYe7cufDy8kJxcTEAQEpKCuPHj8f69euhqKjIckJCuKV8I5GUlBTs378f/v7+2LBhA9zc3LBq1SpIS0uzHbHa1NXVcfDgwQqvRefPn4erq2uF3W254vbt2/j999+xevVqWFhYVPjdcHlWHanf7O3tsWjRIvTq1YvtKISIjAbPCCGEsOKff/7B6tWrERoaKhgQXLp0KWxtbdmOViVFRUWQkZFBYGAgvLy84O3tjRYtWmDs2LEYOXIkmjRpIhaDZ2/fvoW9vT0kJSURGxsLa2trxMbGQlNTE3fu3IG2tjbbEUWSm5uLuLg4MAwDY2Njzg+abdu2rdJ2Ho8HOTk5GBsbo3v37kIzaeqj8PDwKp/bunXr75ik9ohjnz6lrKyMfv36wdPTE2pqagCA+/fvw9nZGcrKyggJCWE3oAhmz56NQ4cO4X//+5/QDNW1a9fC2dkZmzZtYjmhaCQk/it3/emyOdowgHxvcXFxmDJlCsaMGYNWrVpVGLjl4rWP/Hho8IwQQuq5bxXQ7969ex0lIV+Tl5eHU6dOwcvLC48ePUJpaSk2bdqEX3/9lZPLGz+Vn5+PkydPIjg4GHw+H1ZWVnBychLaQICwy8DAAKmpqcjLy4O6ujoYhkFGRgYUFBSgpKSE9+/fw9DQEL6+vtDV1WU77hdJSEhUWrvtc1x6oy+OffrU0aNHMXbs2Art2dnZmDVrFg4cOMBCqprh8/nYsGEDtm7diuTkZABA48aN4e7ujjlz5tT7Qegv8ff3/+pxrnx4RbjnwYMHGD16NBITEwVt5ddFrl77yI+HBs8IIaSe+/ST4nKffmJMNxz1T3R0NA4cOICjR48iIyMDDg4OuHDhAtuxiBg7efIk9u7di/3798PIyAgA8OLFC0yePBmTJk1Cly5d8Msvv6BRo0bw8fFhOe2XvXz5ssrn6unpfccktUcc+yTOSkpKcPz4cfTp0weNGjUSbGIjLksa7969iz179iAuLg4+Pj7Q0dHB0aNHYWBgwNlNiEj9Z25uDjMzM8yfP7/SDQPo2ke4gAbPCCGknsvMzBR6XFxcjJCQECxevBirVq1Cz549WUpWPRoaGoiJiYGmpibU1dW/utNSenp6HSb7fkpLS3Hx4kV4eXlxevAsOjoa27dvR1RUFHg8Hlq0aIEZM2bQjm31iJGREc6ePYu2bdsKtYeEhGDo0KGIj4/H/fv3MXToUMFMGkJqU2RkJJKSklBUVCRo4/F4+Pnnn1lMJRoFBQVERUWJ3Rv6s2fPYuzYsXBycsLRo0cRGRkJQ0ND7Nq1C5cuXcLly5fZjkjElKKiIsLCwmBsbMx2FEJERrttEkJIPaeqqlqhzcHBAbKysvDw8EBQUBALqapv8+bNguWLmzdv/iG2KZeUlMSgQYPq9QYI3+Lj44NRo0bB2toanTp1AlC2/MLCwgInTpzA8OHDWU5IACA5ORklJSUV2ktKSpCSkgIAaNKkCbKzs+s6GhEzmZmZQq9L8fHxGDJkCMLDw4WWp5Zf47k4O7pDhw4ICQkRu8GzlStXwtPTE87Ozjh16pSgvXPnzli+fDmLyYi469GjBw2eEc6jwTNCCOEoLS0tREdHsx2jylxcXATfjxs3jr0gpFrmz5+P3377rcIbq6VLl2LBggU0eFZP2NvbY/Lkydi/fz8sLS0BlM06mzp1qmBH26dPn8LAwIDNmEQMbNu2DXJycpg3bx4AwN3dHbq6urh27Rratm2Lhw8fIiEhAXPnzuVsYf1p06Zhzpw5eP36Ndq1a1dhQxGuFjePjo6utE6qiooKMjIy6j4Q+WH8/PPP8PDwwNOnTyvd6XXAgAEsJSOk6mjZJiGE1HOf79TGMAySk5Oxdu1aFBcX4969eywlE529vT3GjBmDYcOGVTqzjtQfCgoKCA8Pr/BpcWxsLNq0aYO8vDyWklVddZbMcvUGPiUlBWPHjsWtW7cEb0pKSkrQs2dPHD16FA0bNoSvry+Ki4vRu3dvltMSLnv//j3Gjh0LY2Nj7Ny5E5qamrh16xbatGkDHR0dPHr0CDo6Orh16xbmzp3Lyd02v1RrlOvFzY2MjLBnzx706tULysrKCAsLg6GhIY4cOYK1a9ciMjKS7YhETFX2N1WOy39T5MdCM88IIaSea9u2baU7tXXs2BFeXl4spaoZCwsL/P7775gxYwYcHR0xduxYODo6QkZGhu1o5DN2dna4e/duhcGzgIAAdOvWjaVU1fP5stnP/57EYQOORo0a4caNG3j+/DliYmLAMAxatGgBU1NTwTn29vYsJiTiQltbG9euXcOaNWsAlP3NlC/J19TUxNu3b6GjowN9fX1OzY7+VEJCAtsRvovJkyfD3d0dXl5e4PF4ePv2LQIDAzF37lwsWbKE7XhEjPH5fLYjEFJjNPOMEELquc93apOQkICWlhbk5ORYSlQ7+Hw+bt68iRMnTuCvv/6CpKQkhg0bBicnJ9ja2rIdj/zL09MTS5YswYgRI9CxY0cAZTXPzpw5gz/++ANNmjQRnMuFWVs3b97EggULsHr1anTq1Ak8Hg/379/H77//jtWrV8PBwYHtiDVSVFSEhIQEGBkZQUqK+5+RZmRkwMfHB3FxcZg3bx40NDQQHByMhg0bQkdHh+14IhG3PnXr1g2zZ8/G4MGDMWnSJKSmpmLevHnw9PREcHAwnj17xnZE8olFixZh8+bNKCgoAADIyspi7ty5WLFiBcvJCCGkfqPBM0IIqcfKl1jt2bMHJiYmbMf5bgoKCnDx4kWsWrUKT58+5ezsH3H0taUWn+LKsotWrVrB09MTXbt2FWq/e/cuJk2ahKioKJaS1UxeXh5mzpyJw4cPAwBiYmJgaGgINzc3NGnSBAsXLmQ5YfWFh4ejV69eUFVVRWJiIqKjo2FoaIjFixfj5cuXOHLkCNsRq00c+3Tt2jVkZ2dj2LBhePXqFfr164dnz55BQ0MD3t7egpp7XHP06FF4enoiISEBgYGB0NPTw5YtW2BgYICBAweyHa9G8vLyEBkZCT6fD3NzcygpKbEdiYgpR0dHnDx5UlCiY9WqVZg+fTrU1NQAAGlpaejWrRstGSacULU7YkIIIayQlpbGs2fPxHpnypSUFHh6emLdunUIDw+HtbU125HIJ/h8fpW+uDBwBgBxcXGV1tkrH8zgqt9++w1hYWHw8/MTmpXaq1cvnD59msVkops9ezbGjRuH2NhYoT799NNPuHPnDovJRCeOferTpw+GDRsGANDV1UV4eDg+fPiA9+/fc2bg7Nq1a8jMzBQ83r17N2bPng1HR0dkZGQIrm9qamrYsmULSylrj4KCAqytrdG+fXsaOCPf1bVr11BYWCh4vG7dOqSnpwsel5SUcHZ5N/nx0OAZIYTUc87Ozjhw4ADbMWpVVlYWDh48CAcHB+jq6mL37t34+eefERMTg4cPH7Idj3wDl3dls7GxwaxZs5CcnCxoS0lJwZw5c9C+fXsWk9XM+fPnsWPHDnTt2lVosN3c3BxxcXEsJhPd48ePMXny5ArtOjo6SElJYSFRzYljnyqjoaFR5Vmr9UFKSgq6dOmC169fAwC2b9+Offv2YdGiRZCUlBScZ21tjadPn7IVkxDO+XyRGy16I1zG/WIYhBAi5oqKirB//37cuHED1tbWUFRUFDq+adMmlpKJrmHDhlBXV8eIESOwevVq2NjYsB2JfMG6deugr6+PkSNHAgCGDx+Os2fPonHjxrh8+TLatGnDcsLq8fLywuDBg6Gnp4dmzZoBAJKSkmBiYoLz58+zG64GUlNToa2tXaE9NzeXszNX5eTkkJWVVaE9OjoaWlpaLCSqOXHsU0FBAbZv3w5fX1+8f/++QmHw4OBglpJVnYuLC5SVldG3b188e/YMCQkJsLS0rHCerKwscnNzWUhICCGEbTR4Rggh9dyzZ89gZWUFoKyO0ae4+KaYYRhs3boVY8aMgYKCAttxyDfs2bMHx44dAwDcuHEDN2/exNWrV+Ht7Y158+bh+vXrLCesHmNjY4SHhwt2pmQYBubm5ujVqxcn/57K2djY4J9//sHMmTMB/Hdt2LdvHzp16sRmNJENHDgQy5cvh7e3N4CyPiUlJWHhwoUYOnQoy+lEI459+vXXX3Hjxg0MGzYM7du35+zf0ZAhQwQDZgYGBggNDYWenp7QOVeuXIG5uTkb8QjhJB6PV+GawNVrBCG0YQAhhJA6xefzIScnh4iICDRv3pztOOQb5OXlERMTA11dXbi7u6OgoAB79uxBTEwMOnTogI8fP7IdkQC4f/8++vbtCycnJxw6dAiTJ09GREQEAgMD4e/vj3bt2rEdsdqysrLg6OiIiIgIZGdno0mTJkhJSUGnTp1w+fLlCrNwuUAc+6SqqorLly+jS5cubEepNQcPHsTixYuxceNGjB8/Hvv370dcXBzWrFmD/fv345dffmE7IiGcICEhgZ9++gmysrIAgIsXL6JHjx6Ca11hYSGuXr3Kmbqp5MdGM88IIaSey8zMRGlpKTQ0NITa09PTISUlBRUVFZaSiUZCQgLNmzdHWloaDZ5xgLq6Ol69egVdXV1cvXoVK1euBFA2g5CLN7vLly//6vElS5bUUZLa1blzZ9y7dw8bNmyAkZERrl+/DisrKwQGBsLCwoLteCJRUVFBQEAAbt++jeDgYPD5fFhZWaFXr15sRxOZOPZJR0cHysrKbMeoVa6urigpKcH8+fORl5eH0aNHQ0dHB1u3bqWBM0KqwcXFRejxmDFjKpzj7OxcV3EIqRGaeUYIIfXcTz/9hJ9//hnTpk0Tavf09MSFCxdw+fJllpKJ7p9//sHatWuxe/dutGrViu045CtmzJiBS5cuoXnz5ggJCUFiYiKUlJRw+vRprFu3jhP1jD71eR2j4uJiJCQkQEpKCkZGRpzrDyFsu3LlCrZt2wZPT88KyxzFwYcPH8Dn8yutKUgIIeTHQYNnhBBSz2loaODevXswMzMTan/+/Dm6dOmCtLQ0lpKJTl1dHXl5eSgpKYGMjAzk5eWFjn+6jTlhV3FxMbZu3YpXr15h3LhxgsGnLVu2QElJCRMmTGA5Yc1lZWVh3LhxGDx4MMaOHct2HJGVlpbir7/+QlRUFHg8HszMzDBw4EBISXFnocG2bduqfK6bm9t3TFJ7xLFPn0pNTcWIESNw584dKCgoQFpaWug4l6/n79+/R3R0NHg8HkxNTTm7qQMhhJCao8EzQgip5xQVFfHgwYMKS6+ePn2KDh06IC8vj6Vkojt8+PBXj38+zZ+Q7+3Zs2fo378/EhMT2Y4ikmfPnmHgwIFISUmBqakpgLINRrS0tHDhwgXOLN00MDAQepyamoq8vDyoqakBADIyMqCgoABtbW3Ex8ezkLD6xLFPn+rVqxeSkpIwfvx4NGzYsEIxcC5ez7OysjB9+nScPHlSsHuopKQkRo4ciZ07d0JVVZXlhIQQQuoaDZ4RQkg9Z2dnBwsLC2zfvl2offr06QgPD8fdu3dZSkZ+JJGRkUhKSkJRUZFQ+4ABA1hKVLsCAgLw888/c3YDhI4dO0JbWxuHDx+Guro6AODjx48YN24c3r9/j8DAQJYTVt+JEyewa9cuHDhwQDAgGB0djYkTJ2Ly5MlwcnJiOWH1iWOfFBQUEBgYiDZt2rAdpdaMGDECoaGh2L59Ozp16gQej4f79+/D3d0drVu3FuyWSggh5MdBg2eEEFLP3bt3D7169YKNjQ169uwJALh16xYeP36M69evo1u3biwnFE1cXBwOHjyIuLg4bN26Fdra2rh69Sp0dXXRsmVLtuORf8XHx2Pw4MF4+vQpeDweym8bymeXcG3TgM+X0DEMg+TkZBw9ehTdu3fHyZMnWUpWM/Ly8njy5EmFv51nz57BxsYG+fn5LCUTnZGREXx8fCrUqQsKCsKwYcOQkJDAUjLRiWOfrKyssGvXLnTs2JHtKLVGUVER165dQ9euXYXa7969i759+yI3N5elZIQQQtgiwXYAQgghX9elSxcEBgZCV1cX3t7euHjxIoyNjREeHs7ZgTN/f39YWFjg4cOHOHfuHHJycgAA4eHhWLp0KcvpyKfc3d1hYGCAd+/eQUFBAREREbhz5w6sra3h5+fHdrxq27x5s9DXtm3b4OfnBxcXF+zdu5fteCIzNTXFu3fvKrS/f/8exsbGLCSqueTkZBQXF1doLy0trbSvXCCOfVq7di3mzJkDPz8/pKWlISsrS+iLixo0aFDp0kxVVVXBzE5CCCE/Fpp5RgghpM516tQJw4cPx+zZs6GsrIywsDAYGhri8ePHGDRoEN68ecN2RPIvTU1N3L59G61bt4aqqioePXoEU1NT3L59G3PmzEFISAjbEQmAy5cvY/78+Vi2bJlgBtCDBw+wfPlyrF27VmgGjYqKClsxq+Xnn39GUlISDhw4gHbt2oHH4+HJkyeYOHEidHV1ceHCBbYjVps49klCouyz+M9rnTEMAx6Px7nZqQCwd+9enDlzBkeOHEHjxo0BACkpKXBxccGQIUMwefJklhMSQgipazR4RgghpM4pKSnh6dOnMDAwEBo8S0xMRIsWLVBQUMB2RPIvdXV1BAUFwdDQEEZGRti/fz/s7e0RFxcHCwsLzm1Y8euvv2Lr1q1QVlYWas/NzcXMmTPh5eXFUrKaKR/AAP4bxPh8iS3XBjNSU1Ph4uKCq1evCnZwLCkpQZ8+fXDo0CFoa2uznLD6xLFP/v7+Xz1ua2tbR0lqj6WlJV68eIHCwkI0a9YMAJCUlARZWVk0b95c6Nzg4GA2IhJCCKlj3Nm7nBBCiNhQU1NDcnJyhV3oQkJCoKOjw1IqUplWrVohPDwchoaG6NChA/7880/IyMhg7969MDQ0ZDtetR0+fBhr166tMHiWn5+PI0eOcHbwzNfXl+0ItU5LSwuXL19GbGwsoqKiwDAMzMzMYGJiwnY0kYljn7g4OPYtgwYNYjsCIYSQeoZmnhFCCKlz8+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM9U9q0euXbuG3NxcDBkyBPHx8ejfvz+eP3+OBg0a4PTp0+jRowfbEaskKysLDMNAXV0dsbGx0NLSEhwrLS3FxYsXsXDhQrx9+5bFlIQQQgghpD6iwTNCCCF1rri4GOPGjcOpU6fAMAykpKRQWlqK0aNH49ChQ5CUlGQ7IvmK9PR0qKurV6hxVJ9JSEh8NS+Px8Mff/yBRYsW1WGq2nP16lUoKSkJapvt3LkT+/btg7m5OXbu3ElFzgkhhBBCaoAGzwghhLAmPj4ewcHB4PP5sLS0rFBLhpDa4u/vD4Zh0KNHD5w9exYaGhqCYzIyMtDT00OTJk1YTFgzFhYWWLduHRwdHfH06VNYW1tjzpw5uH37NszMzHDw4EG2IxJCCCGEcBYNnhFCSD00ZMiQKp977ty575ikbpSWluLp06fQ09OjGTLku3r58iWaNWvGqVlzVaGkpIRnz55BX18fy5Ytw7Nnz+Dj44Pg4GA4OjoiJSWF7YiEEEIIIZxFGwYQQkg9pKqqynaE72rWrFmwsLDA+PHjUVpaCltbW9y/fx8KCgq4dOkS7Ozs2I5IxEh4eDhatWoFCQkJZGZm4unTp188t3Xr1nWYrPbIyMgIdj69efMmnJ2dAQAaGhrIyspiMxohhBBCCOfRzDNCCCF1rmnTpjh//jysra1x/vx5TJs2DX5+fjhy5Ah8fX1x7949tiMSMSIhIYGUlBRoa2sLap9VdvvD4/FQWlrKQsKaGzBgAIqKitClSxesWLECCQkJ0NHRwfXr1zFjxgzExMSwHVEkd+/exZ49exAXFwcfHx/o6Ojg6NGjMDAwENR346K8vDwkJSWhqKhIqJ0rg7eWlpZVnr0ZHBz8ndN8P0VFRUhISICRkRGkpGjOASGE/Mgk2A5ACCHk20pKSnDz5k3s2bMH2dnZAIC3b98iJyeH5WSi+fDhAxo1agQAuHz5MkaMGAETExOMHz/+q7OCCBFFQkKCYHfNhIQExMfHIyEhocJXfHw8y0lFt2PHDkhJScHHxwe7d++Gjo4OAODKlSvo27cvy+lEc/bsWfTp0wfy8vIICQlBYWEhACA7OxurV69mOZ1oUlNT0b9/fygrK6Nly5awtLQU+uKKQYMGYeDAgRg4cCD69OmDuLg4yMrKws7ODnZ2dpCTk0NcXBz69OnDdlSR5OXlYfz48VBQUEDLli2RlJQEAHBzc8PatWtZTkcIIYQNNPOMEELquZcvX6Jv375ISkpCYWEhYmJiYGhoiFmzZqGgoACenp5sR6w2PT097Nu3Dz179oSBgQF27dqF/v37IyIiAl27dsXHjx/Zjkg+cfToUXh6eiIhIQGBgYHQ09PDli1bYGBggIEDB7Idj4gpS0tLeHh4wNnZGcrKyggLC4OhoSFCQ0PRt29fTtZxc3JyQmJiIrZs2QJ7e3v89ddfePfuHVauXImNGzeiX79+bEestgkTJqBx48ZYsWKFUPvSpUvx6tUreHl5sZRMdO7u7rh37x62bNmCvn37Ijw8HIaGhrhw4QKWLl2KkJAQtiMSQgipYzT/mBBC6jl3d3dYW1sjLCwMDRo0ELQPHjwYEyZMYDGZ6FxdXTFixAg0btwYPB4PDg4OAICHDx+iRYsWLKcjn9q9ezeWLFmCWbNmYdWqVYJljWpqatiyZQvnBs8uXLhQaTuPx4OcnByMjY1hYGBQx6lqR1xcHA4ePIi4uDhs3boV2trauHr1KnR1ddGyZUu241VbdHQ0unfvXqFdRUUFGRkZdR+oFty+fRt///03bGxsICEhAT09PTg4OEBFRQVr1qzh5ODZmTNn8OTJkwrtY8aMgbW1NScHz86fP4/Tp0+jY8eOQstTzc3NERcXx2IyQgghbKHBM0IIqecCAgJw7949yMjICLXr6enhzZs3LKWqmWXLlqFVq1Z49eoVhg8fDllZWQCApKQkFi5cyHI68qnt27dj3759GDRokNByJWtra8ydO5fFZKIZNGhQpTXPytt4PB66du2K8+fPc2rnV39/f/z000/o0qUL7ty5g1WrVkFbWxvh4eHYv38/fHx82I5YbY0bN8aLFy+gr68v1B4QEABDQ0N2QtVQbm4utLW1AZRt5pCamgoTExNYWFhwtjaYvLw8AgIC0Lx5c6H2gIAAyMnJsZSqZlJTUwW/p0/l5uaK3U69hBBCqoZqnhFCSD3H5/MrLWL++vVrKCsrs5CodgwbNgweHh5o2rSpoM3FxYVzM5nEXUJCQqW1mGRlZZGbm8tCopq5ceMGbGxscOPGDWRmZiIzMxM3btxA+/btcenSJdy5cwdpaWmcGxhcuHAhVq5ciRs3bggNtNvb2yMwMJDFZKKbPHky3N3d8fDhQ/B4PLx9+xbHjx/H3LlzMW3aNLbjicTU1BTR0dEAgLZt22LPnj148+YNPD090bhxY5bTiWbWrFmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDg8PD7bjicTGxgb//POP4HH5gNm+ffvQqVMntmIRQghhEc08I4SQes7BwQFbtmzB3r17AZTdxOfk5GDp0qVwdHRkOR0RdwYGBggNDYWenp5Q+5UrV2Bubs5SKtG5u7tj79696Ny5s6CtZ8+ekJOTw6RJkxAREYEtW7bg119/ZTFl9T19+hQnTpyo0K6lpYW0tDQWEtXc/PnzkZmZCXt7exQUFKB79+6QlZXF3LlzMWPGDLbjiWTWrFlITk4GUFYTrE+fPjh+/DhkZGRw6NAhdsOJaOHChTA0NMTWrVsFz0EzMzMcOnQII0aMYDmdaNasWYO+ffsiMjISJSUl2Lp1KyIiIhAYGAh/f3+24xFCCGEBDZ4RQkg9t3nzZtjb28Pc3BwFBQUYPXo0YmNjoampiZMnT7Idj4i5efPmYfr06SgoKADDMHj06BFOnjyJNWvWYP/+/WzHq7a4uDioqKhUaFdRURHsttm8eXN8+PChrqPViJqaGpKTkyvUawsJCRHsvMlFq1atwqJFixAZGQk+nw9zc3MoKSmxHavKiouLIS0tLXjs5OQk+N7S0hKJiYl4/vw5mjVrBk1NTTYi1ooRI0ZwdqCsMp07d8a9e/ewYcMGGBkZ4fr167CyskJgYCAsLCzYjkcIIYQFtNsmIYRwQH5+Pk6dOoWgoCDw+XxYWVnByckJ8vLybEcjP4B9+/Zh5cqVePXqFQBAR0cHy5Ytw/jx41lOVn1du3aFsrIyjhw5Ai0tLQBl9Y2cnZ2Rm5uLO3fu4ObNm5g2bRpiYmJYTlt18+fPR2BgIM6cOQMTExMEBwfj3bt3cHZ2hrOzM5YuXcp2xGrLzMxEaWkpNDQ0hNrT09MhJSVV6SBofbN27VoYGhqK1cASIYQQ8iOiwTNCCCGEVMmHDx/A5/MrLaTNFdHR0Rg4cCASEhKgq6sLHo+HpKQkGBr+v707j6q62v8//jogChjiXM6C5EChgpqpZU44ZDlfKk1N9NpwFXMqu6Vm5fDNGb1KpjjmgJpmV0scSRJSERxREy3MOQ1UkFQ4vz+68ZPQUlP2OYfnYy3Xgn3OH0/XNb3nzf7s7a0vvvhCVatW1erVq3X58mV1797ddO4du379ul555RUtXbpUVqtVBQoUUGZmprp27ap58+bJ2dnZdOJda9OmjZ5//vlc55uFhYVpzZo1WrdunaGyO3fkyBF17NhRffv21YABAzRo0KA/ff+kSZPyqOz+yczM1OTJkxUREaHk5GRdu3Ytx+sXL140VHZ3Ll26dMfvtYfBLQDg/mJ4BgAwIikpSXPnzlVSUpKmTp2q0qVL6+uvv1aFChX02GOPmc6DA7NarVq/fr2OHDkiq9Wq6tWrKzAwUE5O9n+PUlJSkuLj45WVlSV/f/9cNyDak+LFi+vbb79VjRo1cqwfOnRIjRo1spuz3C5fvqxXXnlFK1euVNOmTW/7PovFos2bN+dh2f0xYsQIzZ49W4MGDdLw4cP17rvv6ocfftDq1as1YsQIhYSEmE68I05OTnd8k+atLvEBADg2hmcAgDwXFRWlNm3aqFGjRvrmm2+UmJgob29vffzxx9qxY4dWrFhhOjFf8/f3v+MPkbt3737ANcivChcurNjY2FxnTO3bt0/169dXenq6oTLcrEqVKgoNDVXbtm3l4eGhhISE7LXY2NhbXmRhi26+COCHH37QsGHD9Morr2TfrhkTE6P58+dr7Nix6tmzp6lMAIAhDM8AAHmuQYMG+sc//qFBgwbJw8NDe/bskbe3t3bu3KkOHTro5MmTphPztVGjRmV/nZGRoRkzZsjX1zf7Q2RsbKwOHDigN954Q2PHjjWVec82bdqkTZs26dy5c8rKysrxWnh4uKGqu/dXjwDezB4fB2zSpIn8/Pw0bdq0HOv/+te/tHfvXm3bts1QGW5WuHBhJSYmqmLFiipTpozWrl2rgIAAHTt2TP7+/kpNTTWdeNeaN2+uPn366KWXXsqxvnjxYs2aNUtbt241EwYAMIbbNgEAeW7fvn233I1QqlQpu3kUy5HdfLh8nz59FBISog8//DDXe36/QMCejBo1Sh988IHq1q2rMmXK3PEOO1sUHx+f4/u4uDhlZmaqWrVqkn47b8vZ2Vl16tQxkfe3jR49Wi1atNCePXvUvHlzSb8NPnfu3KnIyEjDdfcmIyND06ZN05YtW245vLXHnZzly5fX6dOnVbFiRfn4+GTfTLlz504VKlTIdN49iYmJUVhYWK71unXrqk+fPgaKAACmMTwDAOS5okWL6vTp0/Ly8sqxHh8fr3Llyhmqwq0sX75cu3btyrX+8ssvq27duna1U0v67bD5efPm2dVlALezZcuW7K8nTZokDw8PzZ8/X8WKFZMk/fLLL+rVq5eefvppU4l/S6NGjRQTE6Px48crIiJCbm5uqlmzpubMmWO3Z7kFBwdrw4YN6tKli5544gm7Ht7+rmPHjtq0aZPq16+vAQMG6KWXXtKcOXOUnJysgQMHms67JxUqVFBYWJgmTpyYY/2TTz5RhQoVDFUBAEzisU0AsHGOcpPZzd566y3FxMRo+fLlqlq1qnbv3q2zZ8+qR48e6tGjR46dTzDrkUce0dixY9WrV68c63PnztWwYcN09uxZQ2X3pkSJEtqxY4eqVKliOuW+KleunCIjI3NdtrF//361bNlSp06dMlSGm3l6emrdunVq1KiR6ZQHJjY2Vtu3b5ePj4/atWtnOueerFu3Tp07d1aVKlX05JNPSvrt95WUlKSVK1fq2WefNVwIAMhr7DwDABs3atSoP73JzB6NHj1ar7zyisqVKyer1SpfX19lZmaqa9eueu+990zn4SZvvvmmXn/9dcXFxeX4EBkeHm6Xf/769OmjxYsXa/jw4aZT7qtLly7p7NmzuYZn586d0+XLlw1V/X1ZWVk6evToLR9xbNy4saGqe1euXDl5eHiYznignnzyyey/K+zVs88+q++//14zZ85UYmKirFar2rdvr9dee42dZwCQT7HzDABsnKPcZHYrSUlJio+PV1ZWlvz9/e32USxHFxERoalTpyoxMVGSVKNGDQ0YMEBBQUGGy+7egAEDtGDBAtWsWVM1a9aUi4tLjtft8WB9SerRo4eioqI0ceLEHEPOoUOHqnHjxpo/f77hwrsXGxurrl276scff9Qf/++qxWJRZmamobJ799VXXyk0NFRhYWGqVKmS6Zx7tmbNmjt+r73uPgMA4GYMzwDAxjniTWaAKU2bNr3taxaLRZs3b87DmvsnPT1dQ4YMUXh4uK5fvy5JKlCggHr37q3x48ercOHChgvvXu3atVW1alWNGjXqlpc7eHp6Giq7d+fPn1dQUJC++eYbubu75xre2stj+E5OTjm+t1gstxxwSrLLIScAAH/EY5sAYOMc5SazQYMG3fF77XX3D2zfzYfsOxJ3d3fNmDFD48ePV1JSkqxWq3x8fOxyaPa777//XitWrJCPj4/plPvmpZde0smTJzVmzBg9/PDDdnthwM2P0G7cuFFvv/22xowZowYNGshisWj79u167733NGbMGIOVAADcPwzPAMDGOcpNZvHx8Tm+j4uLU2ZmpqpVqyZJOnLkiJydnVWnTh0TeciHfvrpJ1ksFoe64bVw4cKqWbOm6Yz7on79+jp69KhDDc+2b9+umJgY1apVy3TKffPmm28qLCxMTz31VPZaq1at5O7urr59+2Y/7g0AgD1jeAYANm7cuHHZX3fp0kUVKlTQt99+a3c3md2842fSpEny8PDQ/PnzVaxYMUnSL7/8ol69eunpp582lYh8ICsrSx999JEmTpyoK1euSJI8PDw0ePBgvfvuu7keR4M5/fv31+DBg3XmzBn5+fnlesTRHoeE1atX19WrV01n3FdJSUm3fITW09NTP/zwQ94HAQDwAHDmGQAgz5UrV06RkZG5bgbcv3+/WrZsqVOnThkqg6N75513NGfOHI0aNUqNGjWS1WrVt99+q/fff1///Oc/NXr0aNOJ+J9bDTJ/P1vLXi8MiIyM1KhRozR69OhbDgSLFCliqOzeNW7cWC4uLlq0aJHKlCkjSTpz5oy6d++ua9euKSoqynAhAAB/H8MzALBxzs7Oaty4sVauXKnixYtnr589e1Zly5a1yw+QHh4e+uKLL9SsWbMc65s3b1b79u11+fJlQ2VwdGXLllVYWFiuXZtffPGF3njjDZ08edJQGf7oxx9//NPX7fG2yt8Hgn8868yeB4JHjx5Vx44ddfjwYVWsWFGSlJycrKpVq2r16tV289itv7//HZ9Bt3v37gdcAwCwNTy2CQA2zmq16tdff1XdunW1Zs0aPf744zles0cdO3ZUr169NHHiRD355JOSpNjYWA0dOlSdOnUyXIebZWZmat68edq0aZPOnTuX46BwSXZ3O+XFixdVvXr1XOvVq1e3m5sO8wt7HI79FUe8sMLHx0d79+7Vhg0bdOjQIVmtVvn6+qpFixZ2dSFChw4dsr/OyMjQjBkz5OvrqwYNGkj67d+oAwcO6I033jBUCAAwiZ1nAGDjnJ2d9dNPP2ncuHGaO3euFi5cqPbt29v1zrP09HQNGTJE4eHhun79uiSpQIEC6t27t8aPH2/XNwQ6mn79+mnevHlq27atypQpk+vD8OTJkw2V3Zv69eurfv36Cg0NzbHev39/7dy5U7GxsYbK7t6aNWvu+L32dD7iHx08eFDJycm6du1ajnV7/j3BtvXp00dlypTRhx9+mGN95MiROnHihMLDww2VAQBMYXgGADbOyclJZ86cUenSpTVr1iyFhITovffeU58+fVSuXDm7HJ79Li0tTUlJSbJarfLx8WFoZoNKliypBQsW6NlnnzWdcl9ERUWpbdu2qlixoho0aCCLxaLt27frxIkTWrdunV1dWHGnlxvY6+OAx44dU8eOHbVv377ss86k///Ioz3+niQpJSVFc+bMUWJioiwWi3x9fRUcHHzLQ/dtVWhoqPr27StXV9dcg+g/CgkJyaOq+8fT01O7du3So48+mmP9+++/V926dZWammqoDABgCsMzALBxNw/PJGnr1q3q0qWL/P39tXnzZrv9AAn7ULZsWW3dulVVq1Y1nXLfnDp1Sv/5z39yPGL2xhtvqGzZsqbTcJPnn39ezs7O+vTTT+Xt7a0dO3bowoULGjx4sCZMmGBXg87f7dq1S61atZKbm5ueeOIJWa1W7dq1S1evXlVkZKQCAgJMJ94RLy8v7dq1SyVKlJCXl9dt32exWHTs2LE8LLs/HnnkEY0dO1a9evXKsT537lwNGzZMZ8+eNVQGADCF4RkA2LibP6T87ujRo3r++ed15MgRhmd4oCZOnKhjx45p+vTpdnV+0d06ceKERo4cyeNYNqRkyZLavHmzatasKU9PT+3YsUPVqlXT5s2bNXjwYMXHx5tOvGtPP/20fHx89Omnn6pAgd+OHr5x44b69OmjY8eO6ZtvvjFcCEkaN26c3n//ffXp0yfHuZzh4eEaMWKEhg0bZrgQAJDXGJ4BgJ3KyMjQ2bNnHfJQbdiOjh07asuWLSpevLgee+wxubi45Hj9888/N1R2f+3Zs0cBAQF2PYxOS0tTVFTULc8Hs8dH54oVK6a4uDh5e3urSpUqmj17tpo2baqkpCT5+fkpPT3ddOJdc3NzU3x8fK5LKw4ePKi6deva5e/JUUVERGjq1KlKTEyUJNWoUUMDBgxQUFCQ4TIAgAnctgkAdsrV1ZXBGR64okWLqmPHjqYz8Bfi4+P17LPPKj09XWlpaSpevLh+/vlnubu7q3Tp0nY5PHv88ce1d+9eeXt7q379+vr4449VsGBBzZo1S97e3qbz7kmRIkWUnJyca3h24sQJeXh4GKr6e7p06aK6devm2o01fvx47dixQ8uXLzdU9vcEBQUxKAMAZGPnGQDYoOLFi+vIkSMqWbKkihUr9qePy128eDEPywDHZO87z5o0aaKqVatq5syZKlq0qPbs2SMXFxe9/PLLGjBggDp16mQ68a6tX79eaWlp6tSpk44dO6bnnntOhw4dUokSJbRs2TI1a9bMdOJdCwkJ0apVqzRhwgQ1bNhQFotF0dHRGjp0qDp37qwpU6aYTrxrpUqV0ubNm+Xn55djfd++fWrRogXngwEAHAI7zwDABk2ePDl7F4I9fpi6E0lJSZoyZUr2jXO/PxJTpUoV02m4hfPnz+vw4cOyWCyqWrWqSpUqZToJN0lISNAnn3wiZ2dnOTs769dff5W3t7c+/vhj9ezZ0y6HZ61atcr+2tvbWwcPHtTFixf/8gcKtmzChAmyWCzq0aOHbty4IUlycXHR66+/rnHjxhmuuzdXrlxRwYIFc627uLjo0qVLBor+vszMTE2ePFkRERG3fAyaH1oBQP7D8AwAbFDPnj1v+bWjWL9+vdq1a6fatWurUaNGslqt2r59ux577DF9+eWXCgwMNJ2I/0lLS1P//v21YMECZWVlSZKcnZ3Vo0cPTZs2Te7u7oYL78xfDY9SUlLyJuQBcXFxyR4oPfzww0pOTlaNGjXk6emp5ORkw3X3JjU1VZmZmSpevHj2WvHixXXx4kUVKFBARYoUMVh3bwoWLKipU6dq7NixSkpKktVqlY+Pj938d3Qrjz/+uJYtW6YRI0bkWF+6dKl8fX0NVf09o0aN0uzZszVo0CANHz5c7777rn744QetXr061+8TAJA/8NgmANigu/lpvT1+gPT391erVq1y7bQYNmyYIiMjtXv3bkNlmDJlivz8/NS8eXNJ0quvvqqNGzdq+vTpatSokSQpOjpaISEhCgwM1MyZM03m3rFevXrd0fvmzp37gEsejJYtW+qVV15R165d9dprryk+Pl4hISFauHChfvnlF3333XemE+9amzZt9Pzzz+uNN97IsR4WFqY1a9Zo3bp1hspwszVr1qhz587q2rVr9qO0mzZt0pIlS7R8+XJ16NDBbOA9qFKlikJDQ9W2bVt5eHgoISEhey02NlaLFy82nQgAyGMMzwDABjk5Of3lY0lWq1UWi8Uuz2hydXXVvn379Oijj+ZYP3LkiGrWrKmMjAxDZYiLi1NQUJDef/99de/eXSVLltSKFSvUpEmTHO/bsmWLgoKCdP78eTOhyGHXrl26fPmymjZtqvPnz6tnz56Kjo6Wj4+P5s6dq1q1aplOvGvFixfXt99+qxo1auRYP3TokBo1aqQLFy4YKrt3aWlpGjdunDZt2qRz585l7+b83bFjxwyV/T1r167VmDFjlJCQIDc3N9WsWVMjR47UM888YzrtnhQuXFiJiYmqWLGiypQpo7Vr1yogIEDHjh2Tv7+/UlNTTScCAPIYj20CgA3asmWL6YQHqlSpUkpISMg1PEtISFDp0qUNVUGS6tSpo++++049e/ZU9+7dlZ6erocffjjX+0qXLq309HQDhbiVunXrZn9dqlQph9iV9euvv2afC3az69ev6+rVqwaK/r4+ffooKipK3bt3V5kyZez27LY/atu2rdq2bWs6474pX768Tp8+rYoVK8rHx0eRkZEKCAjQzp07VahQIdN5AAADGJ4BgA2y15/W36l//vOf6tu3r44dO5bjxrn/+7//0+DBg03n5XslS5bU2rVrJUkNGjTQyJEjtWDBArm6ukqSrl69qlGjRqlBgwYmM+Hg6tWrp1mzZmnatGk51sPCwlSnTh1DVX/PV199pbVr12Y/Au1I4uLisi+A8fX1lb+/v+mke9axY0dt2rRJ9evX14ABA/TSSy9pzpw5Sk5O1sCBA03nAQAM4LFNALAT6enpt7z1q2bNmoaK7p3VatWUKVM0ceJEnTp1SpJUtmxZDR06VCEhIQ6zG8MR7N+/X61bt1ZGRoZq1aoli8WihIQEubq6av369XrsscdMJ8JBffvtt2rRooXq1auXfQbfpk2btHPnTkVGRurpp582XHj3vLy8tG7dulyPotqzc+fO6cUXX9TWrVtVtGhRWa1WpaamqmnTplq6dKlD3MwbGxur7du3y8fHR+3atTOdAwAwgOEZANi48+fPq1evXvrqq69u+bo9nnl2s8uXL0uSPDw8DJfgdq5evapFixbp0KFDslqt8vX1Vbdu3eTm5mY6DQ4uISFB48ePz3GW1jvvvJPrkW97sWjRIn3xxReaP3++Xd+webMXXnhBSUlJWrhwYfZQ8ODBg+rZs6d8fHy0ZMkSw4UAAPx9DM8AwMZ169ZNP/zwg6ZMmaKmTZtq1apVOnv2rD766CNNnDjRoc6ZAQBH5u/vr6SkJFmtVlWuXFkuLi45XrfHm4Y9PT21ceNG1atXL8f6jh071LJlS6WkpJgJu0tr1qy54/ey+wwA8h/OPAMAG7d582Z98cUXqlevnpycnFSpUiUFBgaqSJEiGjt2rF0Oz86ePashQ4Zk3zj3x5/j2PtuOnu3Zs0atWnTRi4uLn/5gZIPkbifLl26dMfvLVKkyAMseTA6dOhgOuG+y8rKyjUElCQXF5dct4nasj/+b2OxWHL92/T7kQL8GwUA+Q87zwDAxhUpUkR79+5V5cqVVblyZX322Wdq1KiRjh8/rscee8wubzxs06aNkpOT1a9fv1veONe+fXtDZZAkJycnnTlzRqVLl5aTk9Nt32exWPgQaUOioqI0YcKE7EPba9SooaFDh9rV2WBOTk5/eeah1Wrlz54Nad++vVJSUrRkyRKVLVtWknTy5El169ZNxYoV06pVqwwX3r2NGzfq7bff1pgxY9SgQQNZLBZt375d7733nsaMGaPAwEDTiQCAPMbOMwCwcdWqVdPhw4dVuXJl1a5dW5988okqV66ssLAwlSlTxnTePYmOjta2bdtUu3Zt0ym4hZt3i9jTzpH8bNGiRerVq5c6deqkkJAQWa1Wbd++Xc2bN9e8efPUtWtX04l3ZMuWLaYT8oQj3Uw5ffp0tW/fXpUrV1aFChVksViUnJwsPz8/LVq0yHTePXnzzTcVFhamp556KnutVatWcnd3V9++fZWYmGiwDgBgAjvPAMDGffbZZ7p+/bpeeeUVxcfHq1WrVrpw4YIKFiyoefPm6YUXXjCdeNd8fX312Wef2fUHRsCW1KhRQ3379tXAgQNzrE+aNEmffvqpw33YT0hIsMvhuyPfTLlhw4Ycl4q0aNHCdNI9c3Nz044dO+Tn55djfe/evapfv76uXr1qqAwAYArDMwCwM+np6Tp06JAqVqyokiVLms65J5GRkZo4cWL2LjrYrpCQEPn4+CgkJCTH+vTp03X06FFNmTLFTBhyKFSokA4cOCAfH58c60ePHtXjjz+ujIwMQ2X3T2pqqj777DPNnj1be/bsscvHNrmZ0j40btxYLi4uWrRoUfYO7zNnzqh79+66du2aoqKiDBcCAPIawzMAsBPXrl3T8ePHVaVKFRUoYH9P3RcrVizHWUZpaWm6ceOG3N3dcx02ffHixbzOw22UK1dOa9asUZ06dXKs7969W+3atdNPP/1kqAw38/Hx0dChQ/Xqq6/mWP/kk080YcIEff/994bK/r7NmzcrPDxcn3/+uSpVqqTOnTurc+fOdrlz1VFupgwNDb3j9/5x8G4Pjh49qo4dO+rw4cOqWLGiJCk5OVlVq1bV6tWrcw2pAQCOz/4+fQFAPpOenq7+/ftr/vz5kqQjR47I29tbISEhKlu2rIYNG2a48M6wQ8k+XbhwQZ6enrnWixQpop9//tlAEW5l8ODBCgkJUUJCgho2bCiLxaLo6GjNmzdPU6dONZ1313766SfNmzdP4eHhSktLU1BQkK5fv66VK1fK19fXdN49c5SbKSdPnnxH77NYLHY5PPPx8dHevXtv+SjqX11oAQBwTOw8AwAbN2DAAH377beaMmWKWrdurb1798rb21tr1qzRyJEjFR8fbzoRDuzxxx/Xa6+9pn79+uVYnzZtmmbOnKmDBw8aKsMfrVq1ShMnTsw+3+z32zbt7fbaZ599VtHR0XruuefUrVs3tW7dWs7OznJxcdGePXvsenjmiDdTAgCQH7DzDABs3OrVq7Vs2TI9+eSTOX7i7evrq6SkJINl927dunVydnZWq1atcqxHRkYqMzNTbdq0MVSGPxo0aJD69eun8+fPq1mzZpKkTZs2aeLEiewmtDEdO3ZUx44dTWf8bZGRkQoJCdHrr7+uRx991HTOfeWIN1P+zt6PFggNDVXfvn3l6ur6l4+l2uNuOgDA32N//7IBQD5z/vx5lS5dOtd6Wlqa3T4+MmzYMI0bNy7XelZWloYNG8bwzIYEBwfr119/1ejRo/Xhhx9KkipXrqyZM2eqR48ehutwK1euXMn1CGCRIkUM1dy9bdu2KTw8XHXr1lX16tXVvXt3u7xV+FYqVKig3bt3O9TNlI5ytMDkyZPVrVs3ubq6/uljqfb6KCoA4O/hsU0AsHHPPPOMunTpov79+8vDw0N79+6Vl5eX+vXrp6NHj+rrr782nXjX3NzclJiYmOumzR9++EGPPfaY0tLSzIThT50/f15ubm566KGHTKfgD44fP65+/fpp69atOW7WtFqtslgsdnkzZXp6upYuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6754sWLBAL7zwggoVKpRj/dq1a1q6dKldDqQ5WgAAkB8wPAMAG7d9+3a1bt1a3bp107x58/Tqq6/qwIEDiomJUVRUVK5bEO3BI488osWLF2c/Bvi7jRs3qmvXrjp37pyhMsA+NWzYUNJvg4yHH344167UZ555xkTWfXP48GHNmTNHCxcuVEpKigIDA7VmzRrTWXfN2dlZp0+fzrWb+MKFCypdurRdDjkrVaqUfbSAh4eH9uzZI29vbx09elQBAQG6dOmS6UQAAP42HtsEABvXsGFDbd++XePHj1eVKlUUGRmpgIAAxcTEyM/Pz3TePWnXrp3efPNNrVq1SlWqVJEkHT16VIMHD1a7du0M1+GPVqxYoYiICCUnJ+vatWs5Xtu9e7ehKtxs7969iouLU7Vq1UynPBDVqlXTxx9/rLFjx+rLL79UeHi46aR78vtOwD/66aefbnmrrT1wxKMFunTporp16+Z65HT8+PHasWOHli9fbqgMAGCKk+kAAMDtXb9+Xb169ZK7u7vmz5+v/fv36+DBg1q0aJHdDs6k3z6AFC5cWNWrV5eXl5e8vLxUo0YNlShRQhMmTDCdh5uEhoaqV69eKl26tOLj4/XEE0+oRIkSOnbsGGfT2ZB69erpxIkTpjMeOGdnZ3Xo0MHudp35+/srICBAFotFzZs3V0BAQPavWrVq6emnn7bbc8/q1auntWvXZn//+8Ds008/VYMGDUxl/S1RUVFq27ZtrvXWrVvrm2++MVAEADCNnWcAYMNcXFy0atUqDR8+3HTKfeXp6ant27drw4YN2rNnj9zc3FSzZk01btzYdBr+YMaMGZo1a5ZeeuklzZ8/X2+99Za8vb01YsQIXbx40XQe/mf27Nl67bXXdPLkST3++ONycXHJ8XrNmjUNlUGSOnToIElKSEhQq1atcpwbWLBgQVWuXFmdO3c2VPf3jB07Vq1bt9bBgwd148YNTZ06NcfRAvboypUrKliwYK51FxcXHkMFgHyKM88AwMb16tVLfn5+GjRokOmUByIjI0OFChWy28d7HJ27u7sSExNVqVIllS5dWhs2bFCtWrX0/fff68knn9SFCxdMJ0JSbGysunbtqh9++CF7zWKx2PWFAY5o/vz5euGFF+Tq6mo65W9LSEhQ7dq1JUn79u3ThAkTFBcXp6ysLAUEBOjtt9+22x3S9erV0/PPP68RI0bkWH///ff15ZdfKi4uzlAZAMAUdp4BgI3z8fHRhx9+qO3bt6tOnToqXLhwjtdDQkIMld27rKwsjR49WmFhYTp79qyOHDkib29vDR8+XJUrV1bv3r1NJ+J/HnnkEV24cEGVKlVSpUqVFBsbq1q1aun48ePi52+2Izg4WP7+/lqyZMktLwyAbejZs6fphPsmICBA/v7+6tOnj7p27ar58+ebTrpvhg8frs6dOyspKSn7YptNmzZpyZIlnHcGAPkUO88AwMZ5eXnd9jWLxaJjx47lYc398cEHH2j+/Pn64IMP9M9//lP79++Xt7e3IiIiNHnyZMXExJhOxP/06dNHFSpU0MiRIxUWFqZBgwapUaNG2rVrlzp16qQ5c+aYToSkwoULa8+ePfLx8TGdgj/h5OT0p4NNe9ohGBMTo/DwcEVEROj69evq3LmzgoOD1bRpU9Np98XatWs1ZswYJSQkZB8tMHLkSLu/uRYAcG8YngEA8pyPj48++eQTNW/eXB4eHtqzZ4+8vb116NAhNWjQQL/88ovpRPxPVlaWsrKyVKDAb5vVIyIiFB0dLR8fH7322mu3PBcIee/555/XK6+8YrfnZuUXq1evzjE8u379uuLj4zV//nyNGjXKLnfdXr16VREREZo7d662bdumypUrKzg4WD179lT58uVN5wEAcF8wPAMA5Dk3NzcdOnRIlSpVyjE8O3jwoJ544glduXLFdCJgV2bNmqWPPvpIwcHB8vPzy3VhQLt27QyV4U4sXrxYy5Yt0xdffGE65W9JSkrS3LlztWDBAp0+fVqBgYFat26d6ax7FhcXp8TERFksFvn6+srf3990EgDAEIZnAIA8V7duXb355pt6+eWXcwzPRo0apY0bN2rbtm2mE/O1vXv33vF7ucXRNjg5Od32NS4MsH1JSUmqWbOm0tLSTKf8bVeuXNFnn32mf//730pJSbHLP3vnzp3Tiy++qK1bt6po0aKyWq1KTU1V06ZNtXTpUpUqVcp0IgAgj3FhAAAgzwQHB2vq1KkaOXKkunfvrpMnTyorK0uff/65Dh8+rAULFui///2v6cx8r3bt2tk3Nf4ZhjK2Iysry3QC7tHVq1c1bdo0u3/EMSoqSuHh4Vq5cqWcnZ0VFBRkl4+hSlL//v116dIlHThwQDVq1JAkHTx4UD179lRISIiWLFliuBAAkNfYeQYAyDPOzs46ffq0SpcurfXr12vMmDGKi4tTVlaWAgICNGLECLVs2dJ0Zr73448/3vF7K1Wq9ABLAMdSrFixHGeeWa1WXb58We7u7lq0aJHdPV574sQJzZs3T/PmzdPx48fVsGFD9e7dW0FBQbluhrYnnp6e2rhxo+rVq5djfceOHWrZsqVSUlLMhAEAjGHnGQAgz9z885pWrVqpVatWBmtwOwzE7ENoaKj69u0rV1dXhYaG/ul7Q0JC8qgKf2bKlCk5vndyclKpUqVUv359FStWzEzUPQoMDNSWLVtUqlQp9ejRQ8HBwapWrZrprPsiKysr17mBkuTi4sIuTwDIp9h5BgB2YNu2bfrkk0+UlJSkFStWqFy5clq4cKG8vLz01FNPmc67Y05OTjp79iznxdiZhQsXKiwsTMePH1dMTIwqVaqkKVOmyMvLS+3btzedl295eXlp165dKlGihLy8vG77PovFomPHjuVhGe5FQkKCateubTrjjrVr1069e/fWc889J2dnZ9M591X79u2VkpKiJUuWqGzZspKkkydPqlu3bipWrJhWrVpluBAAkNduf7osAMAmrFy5Uq1atZKbm5vi4+P166+/SpIuX76sMWPGGK67e1WrVlXx4sX/9Bdsx8yZMzVo0CA9++yzOQ7/Llq0aK5dNMhbx48fV4kSJbK/vt0vBme2KzU1VTNmzFBAQIDq1KljOueurFmzRu3bt3e4wZkkTZ8+XZcvX1blypVVpUoV+fj4yMvLS5cvX9a0adNM5wEADGDnGQDYOH9/fw0cOFA9evTIcTNlQkKCWrdurTNnzphOvGNOTk6aMmWKPD09//R9PXv2zKMi/BVfX1+NGTNGHTp0yPHnb//+/WrSpIl+/vln04nQb4fOu7m53fK106dPq0yZMnlchD+zefNmhYeH6/PPP1elSpXUuXNnde7cWf7+/qbTcJMNGzbo0KFDslqt8vX1VYsWLUwnAQAM4cwzALBxhw8fVuPGjXOtFylSxC4PLX7xxRdVunRp0xm4Q8ePH7/lB/pChQopLS3NQBFuxd/fX4sXL1ZAQECO9RUrVuj111/X+fPnDZXhdz/99JPmzZun8PBwpaWlKSgoSNevX9fKlSvl6+trOg+3EBgYqMDAQNMZAAAbwPAMAGxcmTJldPToUVWuXDnHenR0tLy9vc1E3aObb5mDffDy8lJCQkKuSwS++uorPvDbkMDAQDVs2FDvv/++3n77baWlpalfv35avny5xo0bZzov33v22WcVHR2t5557TtOmTVPr1q3l7OyssLAw02n4n7+6dONmXMABAPkPwzMAsHGvvvqqBgwYoPDwcFksFp06dUoxMTEaMmSIRowYYTrvrnBSgP0ZOnSo/vWvfykjI0NWq1U7duzQkiVLNHbsWM2ePdt0Hv5n2rRpatu2rXr16qW1a9fq1KlTKlKkiHbu3MmQ0wZERkYqJCREr7/+uh599FHTObiFyZMn39H7LBYLwzMAyIcYngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3TeXcnKyjKdgLvUq1cv3bhxQ2+99ZbS09PVtWtXlStXTlOnTtWLL75oOg83admypTp16qSZM2eqQIEC+vLLLxmc2Yht27YpPDxcdevWVfXq1dW9e3e98MILprNwk+PHj5tOAADYMC4MAAA7kZ6eroMHDyorK0u+vr566KGHTCchn/n555+VlZWVfWbdyZMnVa5cOcNVkKSkpCR17dpVZ86c0ezZsxUVFaUJEyYoJCREo0ePlouLi+lE6Le/x5cuXarw8HDt2LFDmZmZmjRpkoKDg+Xh4WE6D39w7do1HT9+XFWqVFGBAuw5AID8jOEZANiZS5cuafPmzapWrZpq1KhhOgf50JkzZzR69GjNnj1bV69eNZ0DSR4eHmrbtq3CwsJUtGhRSdL27duzb+mNj483G4hcDh8+rDlz5mjhwoVKSUlRYGCg1qxZYzoL+m3I2b9/f82fP1+SdOTIEXl7eyskJERly5bVsGHDDBcCAPKak+kAAMCfCwoK0vTp0yVJV69eVb169RQUFKSaNWtq5cqVhuvgqFJSUtStWzeVKlVKZcuWVWhoqLKysjRixAh5e3srNjZW4eHhpjPxPzNmzNDSpUuzB2eS1LBhQ8XHx+e6gRO2oVq1avr444/1008/acmSJaZzcJN33nlHe/bs0datW+Xq6pq93qJFCy1btsxgGQDAFHaeAYCNe+SRR7R+/XrVqlVLixcv1siRI7Vnzx7Nnz9fs2bNYkcJHog33nhDX375pV544QV9/fXXSkxMVKtWrZSRkaGRI0fqmWeeMZ0IAA9EpUqVtGzZMj355JPy8PDQnj175O3traNHjyogIECXLl0ynQgAyGM8vA8ANi41NVXFixeXJH399dfq3Lmz3N3d1bZtWw0dOtRwHRzV2rVrNXfuXLVo0UJvvPGGfHx8VLVqVU2ZMsV0Gv7EwYMHlZycrGvXrmWvWSwWPf/88warAPty/vz57LMdb5aWliaLxWKgCABgGsMzALBxFSpUUExMjIoXL66vv/5aS5culST98ssvOR4nAe6nU6dOZd/U6O3tLVdXV/Xp08dwFX6XmpoqT0/P7O+PHTumTp06ae/evbJYLPr9wYLfP+hnZmYa6QTsUb169bR27Vr1799f0v//7+jTTz9VgwYNTKYBAAxheAYANu7NN99Ut27d9NBDD6lSpUpq0qSJJOmbb76Rn5+f2Tg4rKysrBw3NDo7O6tw4cIGi3Cz0NBQubq6Zu8+HTBggCpUqKD169erdu3a+u6773T8+HENGTJEkyZNMlwL2JexY8eqdevWOnjwoG7cuKGpU6fqwIEDiomJUVRUlOk8AIABnHkGAHYgLi5OycnJCgwM1EMPPSTpt8fqihYtqkaNGhmugyNycnJSmzZtVKhQIUnSl19+qWbNmuUaoH3++ecm8vK9c+fOqXv37vLx8dF//vMflSxZUps2bVKtWrVUrlw57dixQ+XKldOmTZs0ZMgQzkYE7kBCQoJq164tSdq3b58mTJiguLg4ZWVlKSAgQG+//TY/tAKAfIrhGQAAyKVXr1539L65c+c+4BL8mbFjx+qdd95RsWLFFBcXJ29vb9WqVUuzZ89WvXr1lJSUJD8/P6Wnp5tOBWyek5OT/P391adPH3Xt2jXHo9EAgPyN4RkAAICde/rppzVo0CB17NhRffv21fnz5zV06FCFhYVp9+7d2r9/v+lEwObFxMQoPDxcERERun79ujp37qzg4GA1bdrUdBoAwDCGZwAAAHZu/fr1unz5srp06aITJ06obdu22r9/v4oXL66IiAg1a9bMdCJgN65evaqIiAjNnTtX27ZtU+XKlRUcHKyePXuqfPnypvMAAAYwPAMAAHBAFy9eVNGiReXk5GQ6BbBbSUlJmjt3rhYsWKDTp08rMDBQ69atM50FAMhjDM8AAAAA4DauXLmizz77TP/+97+VkpKizMxM00kAgDxWwHQAAOCvbdu2TZ988omSkpK0YsUKlStXTgsXLpSXl5eeeuop03kADMvIyNC0adO0ZcsWnTt3TllZWTle3717t6EywH5FRUUpPDxcK1eulLOzs4KCgtS7d2/TWQAAAxieAYCNW7lypbp3765u3bopPj5ev/76qyTp8uXLGjNmDI+PAFBwcLA2bNigLl266IknnpDFYjGdBNilEydOaN68eZo3b56OHz+uhg0batq0aQoKClLhwoVN5wEADOGxTQCwcf7+/ho4cKB69OghDw8P7dmzR97e3kpISFDr1q115swZ04kADPP09NS6devUqFEj0ymA3QoMDNSWLVtUqlQp9ejRQ8HBwapWrZrpLACADWDnGQDYuMOHD6tx48a51osUKaKUlJS8DwJgc8qVKycPDw/TGYBdc3Nz08qVK/Xcc8/J2dnZdA4AwIZw/RIA2LgyZcro6NGjudajo6Pl7e1toAiArZk4caLefvtt/fjjj6ZTALu1Zs0atW/fnsEZACAXdp4BgI179dVXNWDAAIWHh8tisejUqVOKiYnRkCFDNGLECNN5AGxA3bp1lZGRIW9vb7m7u8vFxSXH6xcvXjRUBgAAYP8YngGAjXvrrbeUmpqqpk2bKiMjQ40bN1ahQoU0ZMgQ9evXz3QeABvw0ksv6eTJkxozZowefvhhLgwAAAC4j7gwAADsRHp6ug4ePKisrCz5+vrqoYceMp0EwEa4u7srJiZGtWrVMp0CAADgcNh5BgB2wt3dXXXr1jWdAcAGVa9eXVevXjWdAQAA4JDYeQYANq5p06Z/+gjW5s2b87AGgC2KjIzUqFGjNHr0aPn5+eU686xIkSKGygAAAOwfO88AwMbVrl07x/fXr19XQkKC9u/fr549e5qJAmBTWrduLUlq3rx5jnWr1SqLxaLMzEwTWQAAAA6B4RkA2LjJkyffcv3999/XlStX8rgGgC3asmWL6QQAAACHxWObAGCnjh49qieeeEIXL140nQIAAAAADsvJdAAA4N7ExMTI1dXVdAYAAAAAODQe2wQAG9epU6cc31utVp0+fVq7du3S8OHDDVUBAAAAQP7A8AwAbJynp2eO752cnFStWjV98MEHatmypaEqAAAAAMgfOPMMAAAAAAAAuA12ngEAADiI8+fP6/Dhw7JYLKpatapKlSplOgkAAMDuMTwDABtXrFgxWSyWO3ovN28C+VNaWpr69++vhQsXKjMzU5Lk7OysHj16aNq0aXJ3dzdcCAAAYL8YngGAjRs+fLg++ugjtWrVSg0aNJD0202b69ev1/Dhw1W8eHHDhQBMGzRokKKiorRmzRo1atRIkhQdHa2QkBANHjxYM2fONFwIAABgvzjzDABsXOfOndW0aVP169cvx/r06dO1ceNGrV692kwYAJtRsmRJrVixQk2aNMmxvmXLFgUFBen8+fNmwgAAAByAk+kAAMCfW79+vVq3bp1rvVWrVtq4caOBIgC2Jj09XQ8//HCu9dKlSys9Pd1AEQAAgONgeAYANq5EiRJatWpVrvXVq1erRIkSBooA2JoGDRpo5MiRysjIyF67evWqRo0alf24NwAAAO4NZ54BgI0bNWqUevfura1bt2Z/CI6NjdXXX3+t2bNnG64DYAumTp2q1q1bq3z58qpVq5YsFosSEhLk6uqq9evXm84DAACwa5x5BgB24LvvvlNoaKgSExNltVrl6+urkJAQ1a9f33QaABtx9epVLVq0SIcOHcr+e6Jbt25yc3MznQYAAGDXGJ4BAAAAAAAAt8GZZwAAAHZu/vz5Wrt2bfb3b731looWLaqGDRvqxx9/NFgGAABg/xieAQAA2LkxY8ZkP54ZExOj6dOn6+OPP1bJkiU1cOBAw3UAAAD2jcc2AQAA7Jy7u7sOHTqkihUr6u2339bp06e1YMECHThwQE2aNNH58+dNJwIAANgtdp4BAADYuYceekgXLlyQJEVGRqpFixaSJFdXV129etVkGgAAgN0rYDoAAAAAf09gYKD69Okjf39/HTlyRG3btpUkHThwQJUrVzYbBwAAYOcYngGAHdi5c6eWL1+u5ORkXbt2Lcdrn3/+uaEqALbiP//5j9577z2dOHFCK1euVIkSJSRJcXFxeumllwzXAQAA2DfOPAMAG7d06VL16NFDLVu21IYNG9SyZUt9//33OnPmjDp27Ki5c+eaTgQAAAAAh8WZZwBg48aMGaPJkyfrv//9rwoWLKipU6cqMTFRQUFBqlixouk8ADZi27Ztevnll9WwYUOdPHlSkrRw4UJFR0cbLgMAALBvDM8AwMYlJSVln19UqFAhpaWlyWKxaODAgZo1a5bhOgC2YOXKlWrVqpXc3Ny0e/du/frrr5Kky5cva8yYMYbrAAAA7BvDMwCwccWLF9fly5clSeXKldP+/fslSSkpKUpPTzeZBsBGfPTRRwoLC9Onn34qFxeX7PWGDRtq9+7dBssAAADsHxcGAICNe/rpp7Vhwwb5+fkpKChIAwYM0ObNm7VhwwY1b97cdB4AG3D48GE1btw413qRIkWUkpKS90EAAAAOhOEZANi46dOnKyMjQ5L0zjvvyMXFRdHR0erUqZOGDx9uuA6ALShTpoyOHj2qypUr51iPjo6Wt7e3mSgAAAAHwW2bAAAAdu7jjz/W/PnzFR4ersDAQK1bt04//vijBg4cqBEjRqhfv36mEwEAAOwWwzMAsEGXLl264/cWKVLkAZYAsBfvvvuuJk+enL1TtVChQhoyZIg+/PBDw2UAAAD2jeEZANggJycnWSyWP32P1WqVxWJRZmZmHlUBsHXp6ek6ePCgsrKy5Ovrq4ceesh0EgAAgN3jzDMAsEFbtmwxnQDADqSnp2vo0KFavXq1rl+/rhYtWig0NFQlS5Y0nQYAAOAw2HkGAABgp4YOHaoZM2aoW7ducnV11ZIlS9SkSRMtX77cdBoAAIDDYHgGAABgp6pUqaLRo0frxRdflCTt2LFDjRo1UkZGhpydnQ3XAQAAOAaGZwAAAHaqYMGCOn78uMqVK5e95ubmpiNHjqhChQoGywAAAByHk+kAAAAA3JvMzEwVLFgwx1qBAgV048YNQ0UAAACOhwsDAAAA7JTVatUrr7yiQoUKZa9lZGTotddeU+HChbPXPv/8cxN5AAAADoHhGQAAgJ3q2bNnrrWXX37ZQAkAAIDj4swzALADK1asUEREhJKTk3Xt2rUcr+3evdtQFQAAAAA4Ps48AwAbFxoaql69eql06dKKj4/XE088oRIlSujYsWNq06aN6TwAAAAAcGjsPAMAG1e9enWNHDlSL730kjw8PLRnzx55e3trxIgRunjxoqZPn246EQAAAAAcFjvPAMDGJScnq2HDhpIkNzc3Xb58WZLUvXt3LVmyxGQaAAAAADg8hmcAYOMeeeQRXbhwQZJUqVIlxcbGSpKOHz8uNg8DAAAAwIPF8AwAbFyzZs305ZdfSpJ69+6tgQMHKjAwUC+88II6duxouA4AAAAAHBtnngGAjcvKylJWVpYKFCggSYqIiFB0dLR8fHz02muvqWDBgoYLAQAAAMBxMTwDAAAAAAAAboPHNgEAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALiNAqYDAAC5+fv7y2Kx3NF7d+/e/YBrAAAAACD/YngGADaoQ4cO2V9nZGRoxowZ8vX1VYMGDSRJsbGxOnDggN544w1DhQAAAACQP1isVqvVdAQA4Pb69OmjMmXK6MMPP8yxPnLkSJ04cULh4eGGygAAAADA8TE8AwAb5+npqV27dunRRx/Nsf7999+rbt26Sk1NNVQGAAAAAI6PCwMAwMa5ubkpOjo613p0dLRcXV0NFAEAAABA/sGZZwBg49588029/vrriouL05NPPinptzPPwsPDNWLECMN1AAAAAODYeGwTAOxARESEpk6dqsTERElSjRo1NGDAAAUFBRkuAwAAAADHxvAMAAAAAAAAuA3OPAMAAAAAAABugzPPAMDGZWZmavLkyYqIiFBycrKuXbuW4/WLFy8aKgMAAAAAx8fOMwCwcaNGjdKkSZMUFBSk1NRUDRo0SJ06dZKTk5Pef/9903kAAAAA4NA48wwAbFyVKlUUGhqqtm3bysPDQwkJCdlrsbGxWrx4selEAAAAAHBY7DwDABt35swZ+fn5SZIeeughpaamSpKee+45rV271mQaAAAAADg8hmcAYOPKly+v06dPS5J8fHwUGRkpSdq5c6cKFSpkMg0AAAAAHB7DMwCwcR07dtSmTZskSQMGDNDw4cP16KOPqkePHgoODjZcBwAAAACOjTPPAMDOxMbGavv27fLx8VG7du1M5wAAAACAQ2N4BgAAAAAAANxGAdMBAIDc1qxZc8fvZfcZAAAAADw47DwDABvk5JTzSEqLxaI//nVtsVgkSZmZmXnWBQAAAAD5DRcGAIANysrKyv4VGRmp2rVr66uvvlJKSopSU1P11VdfKSAgQF9//bXpVAAAAABwaOw8AwAb9/jjjyssLExPPfVUjvVt27apb9++SkxMNFQGAAAAAI6PnWcAYOOSkpLk6emZa93T01M//PBD3gcBAAAAQD7CzjMAsHGNGzeWi4uLFi1apDJlykiSzpw5o+7du+vatWuKiooyXAgAAAAAjovhGQDYuKNHj6pjx446fPiwKlasKElKTk5W1apVtXr1avn4+BguBAAAAADHxfAMAOyA1WrVhg0bdOjQIVmtVvn6+qpFixbZN24CAAAAAB4MhmcAAAAAAADAbRQwHQAAyC00NFR9+/aVq6urQkND//S9ISEheVQFAAAAAPkPO88AwAZ5eXlp165dKlGihLy8vG77PovFomPHjuVhGQAAAADkLwzPAAAAAAAAgNtwMh0AAAAAAAAA2CqGZwBg47p06aJx48blWh8/frz+8Y9/GCgCAAAAgPyDxzYBwMaVKlVKmzdvlp+fX471ffv2qUWLFjp79qyhMgAAAABwfOw8AwAbd+XKFRUsWDDXuouLiy5dumSgCAAAAADyD4ZnAGDjHn/8cS1btizX+tKlS+Xr62ugCAAAAADyjwKmAwAAf2748OHq3LmzkpKS1KxZM0nSpk2btGTJEi1fvtxwHQAAAAA4Ns48AwA7sHbtWo0ZM0YJCQlyc3NTzZo1NXLkSD3zzDOm0wAAAADAoTE8AwAAAAAAAG6DxzYBwE7ExcUpMTFRFotFvr6+8vf3N50EAAAAAA6P4RkA2Lhz587pxRdf1NatW1W0aFFZrValpqaqadOmWrp0qUqVKmU6EQAAAAAcFrdtAoCN69+/vy5duqQDBw7o4sWL+uWXX7R//35dunRJISEhpvMAAAAAwKFx5hkA2DhPT09t3LhR9erVy7G+Y8cOtWzZUikpKWbCAAAAACAfYOcZANi4rKwsubi45Fp3cXFRVlaWgSIAAAAAyD8YngGAjWvWrJkGDBigU6dOZa+dPHlSAwcOVPPmzQ2WAQAAAIDj47FNALBxJ06cUPv27bV//35VqFBBFotFycnJ8vPz0xdffKHy5cubTgQAAAAAh8XwDADsxIYNG3To0CFZrVb5+vqqRYsWppMAAAAAwOExPAMAAAAAAABuo4DpAABAbqGhoXf83pCQkAdYAgAAAAD5GzvPAMAGeXl53dH7LBaLjh079oBrAAAAACD/YngGAAAAAAAA3IaT6QAAwJ25du2aDh8+rBs3bphOAQAAAIB8g+EZANi49PR09e7dW+7u7nrssceUnJws6bezzsaNG2e4DgAAAAAcG8MzALBx77zzjvbs2aOtW7fK1dU1e71FixZatmyZwTIAAAAAcHzctgkANm716tVatmyZnnzySVkslux1X19fJSUlGSwDAAAAAMfHzjMAsHHnz59X6dKlc62npaXlGKYBAAAAAO4/hmcAYOPq1auntWvXZn//+8Ds008/VYMGDUxlAQAAAEC+wGObAGDjxo4dq9atW+vgwYO6ceOGpk6dqgMHDigmJkZRUVGm8wAAAADAobHzDABsVEJCgiSpYcOG+vbbb5Wenq4qVaooMjJSDz/8sGJiYlSnTh2zkQAAAADg4CxWq9VqOgIAkJuTk5P8/f3Vp08fde3aVZ6enqaTAAAAACDfYecZANiob7/9VgEBARo2bJjKlCmj7t27a8uWLaazAAAAACBfYecZANi4q1evKiIiQnPnztW2bdtUuXJlBQcHq2fPnipfvrzpPAAAAABwaAzPAMCOJCUlae7cuVqwYIFOnz6twMBArVu3znQWAAAAADgshmcAYGeuXLmizz77TP/+97+VkpKizMxM00kAAAAA4LAKmA4AANyZqKgohYeHa+XKlXJ2dlZQUJB69+5tOgsAAAAAHBo7zwDAhp04cULz5s3TvHnzdPz4cTVs2FC9e/dWUFCQChcubDoPAAAAABweO88AwEYFBgZqy5YtKlWqlHr06KHg4GBVq1bNdBYAAAAA5CsMzwDARrm5uWnlypV67rnn5OzsbDoHAAAAAPIlHtsEAAAAAAAAbsPJdAAAAAAAAABgqxieAQAAAAAAALfB8AwAAAAAAAC4DYZnAAAAAAAAwG0wPAMAAAAAAABug+EZAAAAAAAAcBsMzwAAAAAAAIDb+H/ijI1qDMKIFQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVycPA8S/djbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d26ttiF3QIGHSJ13j+QC5d7L6KA7G/f+fjwPN65c+bMnL5zJtQkSZIQBEEQBEEQBEEQBEEQBKHAqRd2BgRBEARBEARBEARBEATh/wtRGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0RUxgmCIAiCIAiCIAiCIAjCNyIq4wRBEARBEARBEARBEAThGxGVcYIgCIIgCIIgCIIgCILwjYjKOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6IyThAEQRAEQRAEQRAEQRC+EVEZJwiCIPxPW7lyJWpqaly+fFnp902bNsXZ2blA83Du3DkmTpxIVFRUga6nMEycOBE1NbV8T/fmzZv06NEDFxcXdHV1MTQ0pFy5csyYMYOIiIh8X19enDx5EjU1NU6ePFkg6T979gw1NTVWrlxZIOkXtu7du+fbOVi2bFns7e1JTU1VGadatWpYWlqSlJSU5/XlZd9/7tqUVX5uo9ySJImNGzdSo0YNrKys0NXVxcHBAT8/P5YuXfpVadauXZvatWvnb0a/UEFds/KbmpoaEydO/ObrPX36NDo6Ojx//lwW5uzsTNOmTZXGv3z5cr5fn77k3MgP/yvHRIa4uDiGDBmCnZ0durq6lClTho0bN+Zq2dq1a6OmpqbyLywsDIDk5GRcXV2ZM2dOAZZEEISciMo4QRAEQcijc+fO8csvv/wnK+MKwpIlSyhfvjxBQUGMHDmSgwcPsmPHDtq0acOiRYvo1atXYWfxm7K1teX8+fM0adKksLPyr9erVy9CQkI4dOiQ0u8fPHjAuXPn6NKlC9ra2nleX7ly5Th//jzlypXLc1r/NmPGjKFDhw54enqydOlSDhw4wJQpU7C2tmbXrl2Fnb2v1rt3b86fP1/Y2fhXkiSJIUOG0KdPH5ycnAo7O4IKLVu2ZNWqVUyYMIEDBw7g6+tLhw4dWL9+/WeXXbBgAefPn5f7O3bsGFpaWlSuXBkbGxsAtLS0GD9+PJMmTSI8PLygiyQIghKahZ0BQRAEQRD+/zh//jzff/89DRo0YOfOnejo6Mi+a9CgAcOHD+fgwYP5sq6EhAT09fUVwlNTU0lJSZFbd2HS0dGhcuXKhZ2N/wmdOnVi5MiRLF++nMaNGyt8v3z5cgB69uyZp/UkJyejpqaGsbHxf3LffPjwgTlz5tC1a1f+/vtvue+6d+9OWlpaIeUs7xwcHHBwcCjsbPwrHTx4kKtXr+aqUuffTNW1Pa9CQ0MxMDDA2Ng439POrf3793PkyBHWr19Phw4dAKhTpw7Pnz9n5MiRtGvXDg0NDZXLe3l5KYStWrWK5ORkevfuLRfeoUMHhg0bxuLFixk7dmz+FkQQhM8SLeMEQRCE/3ckSWLBggWUKVMGPT09zMzMaN26NU+ePJGLd+TIEZo1a4aDgwO6urq4ubnx3Xff8f79e1mciRMnMnLkSABcXFxkXUEyurVldP/Zu3cvZcuWRU9PD09PT/bu3Qukd9fx9PTEwMCAihUrKnTbuXz5Mu3bt8fZ2Rk9PT2cnZ3p0KGDXBejjHTU1NQ4cuQIPXr0wNzcHAMDAwICAhTKpcq+ffsoU6YMOjo6uLi4MGvWrDxtP2WmTZuGmpoaf//9t9LKMG1tbQIDA2Wf09LSmDFjBiVKlEBHRwcrKyu6du3Kq1ev5JarXbs2JUuW5J9//qFq1aro6+vTs2dPWRfQGTNmMGXKFFxcXNDR0eHEiRNA+vYNDAzE3NwcXV1dypYty+bNmz9bjtzuF4DXr1/Tt29fihYtira2NnZ2drRu3Zo3b94Aqrupnjlzhnr16mFkZIS+vj5Vq1Zl3759cnEy9vuJEyf4/vvvsbS0xMLCgpYtWxISEqKQl02bNlGlShUMDAwwNDTEz8+Pa9euycV58uQJ7du3x87ODh0dHaytralXrx7Xr1//7HZZuXIlHh4e6Ojo4OnpyerVq5XGS0pKYsqUKbL9WqRIEXr06MG7d+9yTN/MzIwWLVqwZ88ehdYcqamprFmzBl9fX3x8fHj06BE9evSgePHi6OvrY29vT0BAALdu3ZJbLqMr6po1axg+fDj29vbo6Ojw6NEjpd1Uv2TfA0RGRn7VOZnb8+zatWs0bdoUKysrdHR0sLOzo0mTJgrnSFbx8fF8/PgRW1tbpd+rq8v/RPja/fWly65fv54qVapgaGiIoaEhZcqUYdmyZXJxDh48SL169TAxMUFfXx9PT09+/fVX2ffKuiR+6XUkKCiIGjVqoK+vT7FixZg+fbpcBWViYiLDhw+nTJkymJiYYG5uTpUqVZS2KIyJiaFPnz5YWFhgaGiIv78/Dx48UIiX2+M1LS2NKVOm4OHhgZ6eHqamppQqVYq5c+fmsBfSLVy4EF9fXzw8PD4bNyfdu3fH0NCQe/fu4efnh4GBAba2tkyfPh2ACxcuUL16dQwMDHB3d2fVqlVK08nNuaHq2g7p17OGDRtia2sru7f++OOPxMfHf1W5Dh06hLW1Na1bt2b79u0kJiZ+VTp5sWPHDgwNDWnTpo1ceI8ePQgJCeHixYtfnOayZcswNDSkXbt2cuHa2tq0a9eOv//+G0mS8pRvQRC+nKiMEwRBEP4TMlo7Zf9T9oD53XffMWTIEOrXr8/OnTtZsGABd+7coWrVqrIKEoDHjx9TpUoVFi5cyOHDhxk/fjwXL16kevXqJCcnA+ldogYOHAjA9u3bZd1CsnZru3HjBmPGjGH06NFs374dExMTWrZsyYQJE1i6dCnTpk1j3bp1REdH07RpUz58+CBb9tmzZ3h4eDBnzhwOHTrEb7/9RmhoKL6+vnKVghl69eqFuro669evZ86cOVy6dInatWt/tgvtsWPHaNasGUZGRmzcuJGZM2eyefNmVqxY8dXbT9k+On78OOXLl6do0aI55ifD999/z+jRo2nQoAG7d+9m8uTJHDx4kKpVqyqUPzQ0lM6dO9OxY0f2799P//79Zd/NmzeP48ePM2vWLA4cOECJEiU4ceIE1apVIyoqikWLFrFr1y7KlClDu3btPjs+Um73y+vXr/H19WXHjh0MGzaMAwcOMGfOHExMTIiMjFSZ/qlTp6hbty7R0dEsW7aMDRs2YGRkREBAAJs2bVKI37t3b7S0tFi/fj0zZszg5MmTdO7cWS7OtGnT6NChA15eXmzevJk1a9YQGxtLjRo1uHv3rixe48aNuXLlCjNmzODIkSMsXLiQsmXLfvYYWrlyJT169MDT05Nt27bx888/M3nyZI4fPy4XLy0tjWbNmjF9+nQ6duzIvn37mD59OkeOHKF27dpyx78yvXr1IikpibVr18qFHzp0iJCQEFk355CQECwsLJg+fToHDx5k/vz5aGpqUqlSJe7fv6+Q7pgxY3jx4gWLFi1iz549WFlZKV3/tzonc3OexcfH06BBA968ecP8+fM5cuQIc+bMwdHRkdjYWJVpW1pa4ubmxoIFC/j999+5d++eyh/jedlfX7Ls+PHj6dSpE3Z2dqxcuZIdO3bQrVs3uUrOZcuW0bhxY9LS0mT7adCgQTlWPMKXXUfCwsLo1KkTnTt3Zvfu3TRq1IgxY8bIHW8fP34kIiKCESNGsHPnTjZs2ED16tVp2bKlXAW0JEk0b95cVtG7Y8cOKleuTKNGjRTymNvjdcaMGUycOJEOHTqwb98+Nm3aRK9evT57PCUlJXH06FHq1KmTY7zcSk5OpmXLljRp0oRdu3bJttPYsWPp1q0bPXv2ZMeOHXh4eNC9e3euXLmikEZuzw1V1/aHDx/SuHFjli1bxsGDBxkyZAibN28mICDgq8rUokUL5s2bR2RkJG3btsXa2pru3btz6NChHMeplCRJ6fOHsr/PuX37Np6enmhqyndgK1WqlOz7L/Hw4UNOnz5N+/btMTQ0VPi+du3aPH/+/IvTFQQhH0iCIAiC8D9sxYoVEpDjn5OTkyz++fPnJUCaPXu2XDovX76U9PT0pFGjRildT1pampScnCw9f/5cAqRdu3bJvps5c6YESE+fPlVYzsnJSdLT05NevXolC7t+/boESLa2tlJ8fLwsfOfOnRIg7d69W2V5U1JSpLi4OMnAwECaO3euwnZo0aKFXPyzZ89KgDRlyhSVaUqSJFWqVEmys7OTPnz4IAuLiYmRzM3NpayPC1+7/SRJksLCwiRAat++fY55yRAcHCwBUv/+/eXCL168KAHS2LFjZWG1atWSAOnYsWNycZ8+fSoBkqurq5SUlCT3XYkSJaSyZctKycnJcuFNmzaVbG1tpdTUVEmSJOnEiRMSIJ04cUJlXlXtl549e0paWlrS3bt3VS6bkccVK1bIwipXrixZWVlJsbGxcusoWbKk5ODgIKWlpUmSlLnfs2+jGTNmSIAUGhoqSZIkvXjxQtLU1JQGDhwoFy82NlaysbGR2rZtK0mSJL1//14CpDlz5qjMrzKpqamSnZ2dVK5cOVneJEmSnj17Jmlpacmdgxs2bJAAadu2bXJpBAUFSYC0YMGCHNeVlpYmubi4SKVKlZILb9WqlaSvry9FR0crXS4lJUVKSkqSihcvLg0dOlQWnrF/a9asqbBMXvb9l5yT3bp1+6rr1OXLlyVA2rlzp8r8qXLp0iXJ0dFRdp00MjKSmjZtKq1evVpuH37J/qpVq5ZUq1atL172yZMnkoaGhtSpUyeV+Y2NjZWMjY2l6tWry+UvuwkTJshds77mOnLx4kW5uF5eXpKfn5/KdaakpEjJyclSr169pLJly8rCDxw4IAFyx4UkSdLUqVMlQJowYUKOaSo7Xps2bSqVKVNG5XKqZJR348aNCt85OTlJTZo0Ubpcxr7Ken3q1q2bwn5NTk6WihQpIgHS1atXZeHh4eGShoaGNGzYMFnYl5wbqq7t2WXco0+dOiUB0o0bN2TfZT8mciMsLEz6888/pWrVqklqamqSlZWV9MMPP0hnzpxROP5y8xyS8fc5xYsXV3qshYSESIA0bdq0LyrH6NGjJUA6f/680u8fPnwoAdLChQu/KF1BEPJOtIwTBEEQ/hNWr15NUFCQwl/16tXl4u3duxc1NTU6d+4s97baxsaG0qVLy3VHe/v2Lf369aNo0aJoamqipaUlG/Q6ODg413krU6YM9vb2ss+enp5A+hvprOPeZIRnbQkSFxfH6NGjcXNzQ1NTE01NTQwNDYmPj1eah06dOsl9rlq1Kk5OTrJumcrEx8cTFBREy5Yt0dXVlYVntMTK6ku2X15l5Ll79+5y4RUrVsTT05Njx47JhZuZmVG3bl2laQUGBqKlpSX7/OjRI+7duyfbXlnL0rhxY0JDQ5W2nsqQ2/1y4MAB6tSpI9u3uREfH8/Fixdp3bq1XEsGDQ0NunTpwqtXrxTylrVrL2S2osg4lg4dOkRKSgpdu3aVK6uuri61atWS7Tdzc3NcXV2ZOXMmv//+O9euXcvV+GH3798nJCSEjh07ynURdHJyomrVqnJx9+7di6mpKQEBAXJ5KVOmDDY2Np89htTU1OjRowc3b96UtbYJDw9nz549tGrVSjbeU0pKCtOmTcPLywttbW00NTXR1tbm4cOHSs+dVq1afbac8G3OydyeZ25ubpiZmTF69GgWLVok18Lxc3x9fXn06BEHDx5k7NixVKlShWPHjtG1a1cCAwNlLeXysr9yu+yRI0dITU3lhx9+UJnWuXPniImJoX///l80M+aXXkdsbGyoWLGiXFipUqUUuiFv2bKFatWqYWhoKLs/LFu2TO4YyFh39mOgY8eOCvnM7fFasWJFbty4Qf/+/Tl06BAxMTG52g4Z3dZVtfj8UmpqanLjNmpqauLm5oatrS1ly5aVhZubm2NlZaW0G3duzw1V1/YnT57QsWNHbGxs0NDQQEtLi1q1agFfdo9WxtramgEDBnDmzBmeP3/OqFGjZC3jXVxc5LrCBgQEKH3+UPaXGzkd319y7KekpLBq1Sq8vb1Vjn2ZcTy8fv061+kKgpA/xAQOgiAIwn+Cp6cnFSpUUAg3MTHh5cuXss9v3rxBkiSsra2VplOsWDEgvXtVw4YNCQkJYdy4cfj4+GBgYEBaWhqVK1f+bFe6rMzNzeU+Z8zyqCo86zg1HTt25NixY4wbNw5fX1+MjY1lP4KU5SFjprTsYTnNlhYZGUlaWprKZbPK7fZTxtLSEn19fZ4+faoyTlYZeVY2rpWdnZ3CjztV418p+y6jm9+IESMYMWKE0mWUdTnMkNv98u7duy8eTD4yMhJJklSWG1DYnxYWFnKfM8bjy8hLRnl9fX2VrjNjjDA1NTWOHTvGpEmTmDFjBsOHD8fc3JxOnToxdepUjIyMlC6fkR9Vx9CzZ89kn9+8eUNUVJTK2U5z2u4ZevTowcSJE1mxYgXly5dn3bp1JCUlyc3EO2zYMObPn8/o0aOpVasWZmZmqKur07t3b6XnTk7HT1bf4pzM7XlmYmLCqVOnmDp1KmPHjiUyMhJbW1v69OnDzz//LFcBrYyWlhZ+fn74+fkB6fuxdevW7N27lwMHDtC4ceM87a/cLpsxflxO50pu4ijzpdeR7OcSpJ9PWfft9u3badu2LW3atGHkyJHY2NigqanJwoULZZOIZKxbU1NTIU1lx0Ruj9cxY8ZgYGDA2rVrWbRoERoaGtSsWZPffvtN6T0wQ0YaWV+4ZNDU1FTZDTOja2X2Y0lfX18hLW1tbYX7Wka4svHXcntuKNt3cXFx1KhRA11dXaZMmYK7uzv6+vq8fPmSli1bftE9+nOio6OJiooiOjoaQLZvMpibm2NiYpIv67KwsFB6bYiIiJCtK7f2799PWFgYo0ePVhknYx/m5/YSBCF3RGWcIAiC8P+KpaUlampqnD59WukEAhlht2/f5saNG6xcuZJu3brJvn/06NE3y2t0dDR79+5lwoQJ/Pjjj7LwjPGKlAkLC1Ma5ubmpnI9ZmZmqKmpqVw2q9xuP2U0NDSoV68eBw4c4NWrV5/9UZ3xAzY0NFQhbkhICJaWlnJhX9KaIGPZMWPG0LJlS6XLqBrk/Ev2S5EiRT47nlV2GT/0QkNDFb7LaN2SveyfkxF/69atstadqjg5OckGzX/w4AGbN29m4sSJJCUlsWjRIqXLZOyr3B5DFhYWKmfNVVXhl5WDgwMNGzZk/fr1zJ49mxUrVuDm5kbNmjVlcdauXUvXrl2ZNm2a3LLv37/H1NRUIc3ctDj5Vufkl5xnPj4+bNy4EUmSuHnzJitXrmTSpEno6enJ5TE3LCwsGDJkCCdPnuT27ds0btw4T/srt8sWKVIEgFevXqkcTzJrnC/xpdeR3Fi7di0uLi5s2rRJ7rj5+PGjwrpTUlIIDw+Xq5BTdkzk9njV1NRk2LBhDBs2jKioKI4ePcrYsWPx8/Pj5cuXKmcZzSinsuPU2tpaZcuojHBVFcN5kdtzQ9m5efz4cUJCQjh58qSsNRzw2bHzcuvBgwds2rSJjRs3cvfuXdzc3OjQoQMdO3akRIkScnFXrVpFjx49cpWu9JmJEnx8fNiwYQMpKSly48ZlTORRsmTJXJdh2bJlaGtr06VLF5VxMo6HrzkPBEHIG9FNVRAEQfh/pWnTpkiSxOvXr6lQoYLCn4+PD5D58J/9h/DixYsV0szeCim/qKmpIUmSQh6WLl2qshXDunXr5D6fO3eO58+fU7t2bZXryZjJNfvscbGxsezZs0cubm63nypjxoxBkiT69OlDUlKSwvfJycmydWZ0S8o+UH9QUBDBwcHUq1cvx3XlxMPDg+LFi3Pjxg2l5ahQoYLKSoYv2S+NGjXixIkTOXZ5zc7AwIBKlSqxfft2uWMqLS2NtWvX4uDggLu7+xeUFvz8/NDU1OTx48cqy6uMu7s7P//8Mz4+Ply9elVl+h4eHtja2rJhwwa5H5vPnz/n3LlzcnGbNm1KeHg4qampSvOR25kee/XqRWRkJOPHj+f69ev06NFD7ke7mpqawj7at29fnrpjfatz8mvOMzU1NUqXLs0ff/yBqalpjvsrOTlZZcu8jO59Ga0w87K/crtsw4YN0dDQYOHChSrTqlq1KiYmJixatOiLZn4siOuImpoa2tracsdbWFiYwmyqGZMlZD8G1q9frzTNLz1eTU1Nad26NT/88AMRERFyLVCzy+gq//jxY4Xv6tevz+3bt5V2c968eTOGhoZUqlRJZdpf62vOjQxfco/Orbdv3/Lbb79RtmxZPDw8WLRoEQ0bNuTSpUs8fPiQSZMmKVTEQf52U23RogVxcXFs27ZNLnzVqlXY2dnlej+EhYWxf/9+mjdvrrS1Z4aM2Wu9vLxyla4gCPlHtIwTBEEQ/l+pVq0affv2pUePHly+fJmaNWtiYGBAaGgoZ86cwcfHh++//54SJUrg6urKjz/+iCRJmJubs2fPHo4cOaKQZsYP47lz59KtWze0tLTw8PDIVQufnBgbG1OzZk1mzpyJpaUlzs7OnDp1imXLlilt2QNw+fJlevfuTZs2bXj58iU//fQT9vb2cjOLKjN58mT8/f1p0KABw4cPJzU1ld9++w0DAwO5lhS53X6qZMxO279/f8qXL8/333+Pt7c3ycnJXLt2jb///puSJUsSEBCAh4cHffv25c8//0RdXZ1GjRrx7Nkzxo0bR9GiRRk6dOhXbdcMixcvplGjRvj5+dG9e3fs7e2JiIggODiYq1evsmXLFqXLfcl+mTRpEgcOHKBmzZqMHTsWHx8foqKiOHjwIMOGDVP6ww7g119/pUGDBtSpU4cRI0agra3NggULuH37Nhs2bPiicYMAnJ2dmTRpEj/99BNPnjzB398fMzMz3rx5w6VLlzAwMOCXX37h5s2bDBgwgDZt2lC8eHG0tbU5fvw4N2/ezLGVlbq6OpMnT6Z37960aNGCPn36EBUVxcSJExW6orVv355169bRuHFjBg8eTMWKFdHS0uLVq1ecOHGCZs2a0aJFi8+WKTAwEEtLS2bOnImGhoZcC1ZIrwhauXIlJUqUoFSpUly5coWZM2d+cTfHrL7VOZnb82zv3r0sWLCA5s2bU6xYMSRJYvv27URFRdGgQQOV6UdHR+Ps7EybNm2oX78+RYsWJS4ujpMnTzJ37lw8PT1lLUbzsr9yu6yzszNjx45l8uTJfPjwgQ4dOmBiYsLdu3d5//49v/zyC4aGhsyePZvevXtTv359+vTpg7W1NY8ePeLGjRv89ddfSvNQENeRpk2bsn37dvr370/r1q15+fIlkydPxtbWlocPH8riNWzYkJo1azJq1Cji4+OpUKECZ8+eZc2aNUrTzM3xGhAQQMmSJalQoQJFihTh+fPnzJkzBycnJ4oXL64yzw4ODhQrVowLFy4waNAgue8GDx7M6tWrqV27tuw6FRkZyaZNm9i6dSu///57nu9nynzt/QrSK2fNzMzo168fEyZMQEtLi3Xr1nHjxo2vzs/+/fuZPn06rVq1YtasWdSpU0euO6oqFhYWOVZ4fYlGjRrRoEEDvv/+e2JiYnBzc2PDhg0cPHiQtWvXoqGhIYvbq1cvVq1axePHjxVaPK9atYqUlBR69+6d4/ouXLgg6+osCMI39q1njBAEQRCE/JQxi1lQUJDS75s0aSI3S2GG5cuXS5UqVZIMDAwkPT09ydXVVeratat0+fJlWZy7d+9KDRo0kIyMjCQzMzOpTZs20osXL5TOgjdmzBjJzs5OUldXl5t9UdUsdYD0ww8/yIVlzKo5c+ZMWdirV6+kVq1aSWZmZpKRkZHk7+8v3b59W3JycpK6deumsB0OHz4sdenSRTI1NZX09PSkxo0bSw8fPvzMVky3e/duqVSpUpK2trbk6OgoTZ8+XeUsdLnZfjm5fv261K1bN8nR0VHS1taWDAwMpLJly0rjx4+X3r59K4uXmpoq/fbbb5K7u7ukpaUlWVpaSp07d5Zevnwpl16tWrUkb29vhfUo26ZZ3bhxQ2rbtq1kZWUlaWlpSTY2NlLdunWlRYsWyeIom1Ezt/tFktJnwOzZs6dkY2MjaWlpSXZ2dlLbtm2lN2/eyOUx62yFkiRJp0+flurWrSvbxpUrV5b27NkjF0fV8a9qFtCdO3dKderUkYyNjSUdHR3JyclJat26tXT06FFJkiTpzZs3Uvfu3aUSJUpIBgYGkqGhoVSqVCnpjz/+kFJSUpRuw6yWLl0qFS9eXNLW1pbc3d2l5cuXK8wUKknpMy/OmjVLKl26tKSrqysZGhpKJUqUkL777rtcH6+SJElDhw6VAKlx48YK30VGRkq9evWSrKysJH19fal69erS6dOnFWb8zNhWW7ZsUUgjL/v+S85JZdtIkj5/nt27d0/q0KGD5OrqKunp6UkmJiZSxYoVpZUrV+a43T5+/CjNmjVLatSokeTo6Cjp6OhIurq6kqenpzRq1CgpPDxcLn5u91f2bfsly0qSJK1evVry9fWVxStbtqzCebF//36pVq1akoGBgaSvry95eXlJv/32m+x7ZdesvF5HlO2f6dOnS87OzpKOjo7k6ekpLVmyROm6o6KipJ49e0qmpqaSvr6+1KBBA+nevXsK95HcHq+zZ8+WqlatKllaWsqu1b169ZKePXumkO/sxo0bJ5mZmUmJiYkK34WFhUnff/+95OjoKGlqakpGRkZS9erVlZ4X3bp1kwwMDBTCVW2/7PfBLzk3VKUpSZJ07tw5qUqVKpK+vr5UpEgRqXfv3tLVq1cVrqe5nU31/fv30sePHz8br6DFxsZKgwYNkmxsbCRtbW2pVKlS0oYNGxTiZcxqq2wmd3d3d8nZ2TnHmYclSZJq1KghBQQE5FfWBUH4AmqS9AXtvAVBEARB+FdauXIlPXr0ICgoKMdBvAVBEIT/n0JCQnBxcWH16tW0a9eusLMjFLLHjx9TvHhxDh06lGNLWkEQCoYYM04QBEEQBEEQBOE/zs7OjiFDhjB16lTS0tIKOztCIZsyZQr16tUTFXGCUEjEmHGCIAiCIAiCIAj/D/z888/o6+vz+vVrlTPXCv99KSkpuLq6MmbMmMLOiiD8vyW6qQqCIAiCIAiCIAiCIAjCNyK6qQqCIAiCIAiCIAiCIAj/av/88w8BAQHY2dmhpqbGzp07P7vMqVOnKF++PLq6uhQrVoxFixYpxNm2bRteXl7o6Ojg5eXFjh07CiD38kRlnCAIgiAIgiAIgiAIgvCvFh8fT+nSpfnrr79yFf/p06c0btyYGjVqcO3aNcaOHcugQYPYtm2bLM758+dp164dXbp04caNG3Tp0oW2bdty8eLFgioGILqpCoIgCIIgCIIgCIIgCP9D1NTU2LFjB82bN1cZZ/To0ezevZvg4GBZWL9+/bhx4wbnz58HoF27dsTExHDgwAFZHH9/f8zMzNiwYUOB5V+0jBMEQRAEQRAEQRAEQRC+uY8fPxITEyP39/Hjx3xJ+/z58zRs2FAuzM/Pj8uXL5OcnJxjnHPnzuVLHlQRs6kKgiAIgiAIgiAIgiD8R1Wb36+ws6BSg3c2/PLLL3JhEyZMYOLEiXlOOywsDGtra7kwa2trUlJSeP/+Pba2tirjhIWF5Xn9ORGVcYIgCP9i/+YbZ26d/WERIVFvCzsbeWJnasWUIysKOxt59nODHkQ2aFHY2cgTsyM7mH2q4LoMfCvDa3Vg9L4FhZ2NPPutSX9G7c3duC3/VjOaDmD37dOFnY08CyxZg07rJxZ2NvJkXceJnHx0pbCzkWe13coTHPaksLORZ542xVh8fmdhZyNPvqvSnLZrfi7sbOTZ5i5TGLJrTmFnI0/mNBvC6qD9hZ2NPOvq27iws/CfM2bMGIYNGyYXpqOjk2/pq6mpyX3OGKkta7iyONnD8puojBMEQRAEQRAEQRAEQRC+OR0dnXytfMvKxsZGoYXb27dv0dTUxMLCIsc42VvL5TcxZpwgCIIgCIIgCIIgCMJ/lNq/+F9BqlKlCkeOHJELO3z4MBUqVEBLSyvHOFWrVi3QvImWcYIgCIIgCIIgCIIgCMK/WlxcHI8ePZJ9fvr0KdevX8fc3BxHR0fGjBnD69evWb16NZA+c+pff/3FsGHD6NOnD+fPn2fZsmVys6QOHjyYmjVr8ttvv9GsWTN27drF0aNHOXPmTIGWRbSMEwRBEARBEARBEARBEP7VLl++TNmyZSlbtiwAw4YNo2zZsowfPx6A0NBQXrx4IYvv4uLC/v37OXnyJGXKlGHy5MnMmzePVq1ayeJUrVqVjRs3smLFCkqVKsXKlSvZtGkTlSpVKtCyiJZxgiAIgiAIgiAIgiAI/1HqBTwZwbdSu3Zt2QQMyqxcuVIhrFatWly9ejXHdFu3bk3r1q3zmr0vIlrGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPU/iPdVP9LRMs4QRAEQRAEQRAEQRAEQfhGRGWcIAiCIAiCIAiCIAiCIHwjopuqIAiCIAiCIAiCIAjCf9R/ZTbV/xLRMk4QBEEQBEEQBEEQBEEQvhFRGScIgiAIgiAIgiAIgiAI34jopioIgiAIgiAIgiAIgvAfpYbopvpvI1rGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPUxGyq/zr/8y3jnJ2dmTNnzjdNT01NjZ07d+ZpPRMnTqRMmTJ5SiO7kydPoqamRlRUVL6mK8jLvp1XrlyJqalpoeape/fuNG/evFDz8G8QHh6OlZUVz549K+ysyPnrr78IDAws7GwIgiAIgiAIgiAI/wKF1jIuICCADx8+cPToUYXvzp8/T9WqVbly5QrlypX7pvkKCgrCwMDgm65T+N/Wrl07GjduXNjZEIBff/2VgIAAnJ2dAXj27BkuLi5cu3ZNVvkdGxtLQEAAYWFh3L9/P8f0nj59irOzM+fOnaNGjRo0aNCAgwcPKsTbtm0bM2bM4N69e6SlpeHo6Ii/vz+zZ88GoE+fPkydOpUzZ85QvXr1fC3z1yht60bHsg0pYeWIpYEpP+5fyOmnNwolLzu37mDT2g2Eh4fj7OLMgKGDKFW2tMr4169eY8Gcv3j29BmWlha079KRwJbNlcY9fvgok8f9QrWa1Zky81dZ+I1r19m0dgMP7t0n/H04k2dMpXqtmvlarvv/XOXOsYt8iI7D1NaSCq3qY+1WVGncsAfPOTJvg0J44M99MLGxACAtNZXbh8/z+OJtEqJiMbE2p2yzOth7FcvXfOeFVvXK6DRpiEZxV9RNjInpN5TUx88KO1vcOXmJm4fOkRAdi5mdFVXa+WNb3Elp3JD7T9k7e5VCeNtffsDUtohC+KNLtzi+dBtOpT3w+6FDvuc9q8pO3tQqVhYjHX3exEWw585ZnkWGqoyvoa5O/eK+lLVzx0hHn+jEOI4/usLlV/dkcXQ1tfHzqERJm2LoaekQ+SGWvXfPcv/diwIrRxWnktRyLZdejtgIdt89zbOIz5WjIuXs3THSMSA6MY5jjy5z+WUwAN9VaYGrhb3CcsFvnrEiaG+BlOHcwROc3HWI2MgorIvaEdijPcW83JXGfRr8kH1rtvLudRhJSUmYWVpQuWFNagY0VBr/+plLrPvjb7x9y9D9xwEFkv8M9Yv70sSzKqZ6RryOfsuaKwdz3PdVnX1o6lkNGyMLEpITuRnyiPXXDhOX9AGAOq7lqO5SmqKmVgA8jQhl041jPAl/XWBlOLn3CIe37yU6Igo7R3va9u1K8ZIllMa9evYS/+w/yssnz0lJTsHWyZ6Ajq3wLi9/z0mIi2fn6s1cOxdEQlw8ltZFaN27Ez6+ZQusHPt37GXnxq1ERkRQ1NmJXgO+w7t0SaVxI8IjWDF/CY8fPCT0VQhNWgXSe2A/uTjn/znL1rWbCH0dQmpKCrYO9jRr25I6fvUKrAwA14+d5/KBU8RHxWJhb03tjgE4eLh8drnXD5+x+dfFWNpb02XyEFn45l8X8+r+E4X4LqVK0GJYj/zMukxD94oEetfAVM+QV1FvWXl5P/fePlcZv7pLaQK9qmNrbEFC0keuhzxkzZUDsvOiVrGy/FCtlcJyndZNJDktpUDKoEw151LUdSuPsa4BYbHh7Lh1iicRIUrjdizbkIqOXgrhoTHh/HZiTUFnVebykTNc2H+CuKgYitjb0KBzcxxLuH52uZcPnrBmynyKONjQZ9pIWfi9oJuc3X2EyDfvSUtNw8zaksqNa+NT3bcgiyEIKhVaZVyvXr1o2bIlz58/x8lJ/qF4+fLllClT5ptXxAEUKaL4sC38NyQlJaGtrZ3v6erp6aGnp5fv6RamgtpWuZGcnIyWltYXL/fhwweWLVvG/v37VcZ59+4djRo1AuDo0aNoamZeAn19fenbty99+vSRhWVcD5YvX87AgQNZunQpL168wNHRURbn6NGjtG/fnmnTphEYGIiamhp3797l2LFjsjg6Ojp07NiRP//8819RGaenpcOj8Ffsv3eOaY36fX6BAnL8yDHm/zGPIaOGUbKUD3t27Gb00JGs3LgGaxtrhfihISGMGTqKJs0C+OmXcdy+eYs5M37HxNSUWnVry8UNCw1j4bwFlCqjWLGX+CER1+Ju+DdtzIQff873cj27EszlbUep2M4Pq2L2PDhzneMLNhP4c28MzE1ULtdsXF+09DLPOx1Dfdn/r+/5hydBd6jSsRHG1haEBD/h1JLt+A/rjHlRm3wvw9dQ09Uh5c49kv45h8GwHwo7OwA8DrrN+U0Hqd6xCdZujgT/c5kD89bSduIPGFqYqlyu7eQBaOvqyD7rGim+pIsNj+Li1sPYFHdU+C6/lbJ1I8CrOjtv/8PzyDAqOXrRs2JTfj+1gajEOKXLdCrrh5GOHltvniA8IRoDbT001DM7RGioqdO7UiBxSR9Ye/UQ0YlxmOoa8jElucDKUdrWjQDvGuy8dYpnkaFUcvSmV8UAZp9cr7Icncv5Y6ijz5abxwmPj8ZQRw91tcxyrL68Hw11DdlnAy1dhtRsz83QRwVShutnL7F7xUZa9OmEcwk3Lhz+h2VT5zJiziTMilgoxNfW0aFao7rYOjmgravD0+CHbFu8Bm0dHSo3rCUXN/JtOHtXbcHFs3iB5D2ryo7edCnnz4rL+3jw7gV13SowqnZnRu2bT3hCtEJ89yKOfF+5BWuvHuLq6/uY6RvT07cpvSsFMuf0JgA8rZ05//w2qy+/JCkthaae1fixThdG75tP5IfYfC9D0D/n2bxkNR3798TV051/Dh7jzwm/MXHhTMytLBXiP7xzD8+yPjTv1g49A33OHT3F/Emz+PH3yTi6OgOQkpzCnJ9/xcjEmO/GDsbM0pzId+HoFOBz3pnjp1j+12K+G/oDJUp6cWjPfiaPHsefqxZTxNpKIX5yUjImpia06dye3Vt2KE3T0MiINp3bYe9YFE0tTS6fv8Sfv/2OqZkpZSuWL5By3L94g5Pr91Cva3Psijtx88RFdvy+nG7ThmFsYaZyuY8JHzj49yYcvVxJiJa/DgQM7EJaSqrs84f4eNaMm4u7r0+BlKGKU0m6V2jM0kt7uP/2BfXdfRlbtytDd89Tel54FHFiQNVWrLqyn8uv7mOuZ0yfyoH0q9KCWafWy+IlJCUyeNccuWW/ZUVcWTt3WvjUYuuN4zyNCKGqcym+q9KcX4+vIUrJubn91kn23D0j+6yups6oOp24EfLwm+X57oVrHFm7E//urSnq7sLV4+fYOPNvvvvtR0wsVR9PiQkf2L1oPS7exYmLli+bnoE+1QIbYGlnjYamBg+v3WHP3xvRNzbCtZTySvz/EnXRTfVfp9C6qTZt2hQrKytWrlwpF56QkMCmTZvo1asXAOfOnaNmzZro6elRtGhRBg0aRHx8vMp0X7x4QbNmzTA0NMTY2Ji2bdvy5s0buTi7d++mQoUK6OrqYmlpScuWLWXfZe+m+vDhQ2rWrImuri5eXl4cOXJEYZ2jR4/G3d0dfX19ihUrxrhx40hOln+YnT59OtbW1hgZGdGrVy8SExNz3D6pqan06tULFxcX9PT08PDwYO7cuTkuk114eDgdOnTAwcEBfX19fHx82LBBsfVFditXrsTR0RF9fX1atGjB7Nmz5bphKusSOWTIEGrXri37LEkSM2bMoFixYujp6VG6dGm2bt2a43oXLFhA8eLF0dXVxdramtatW+cpPWdnZ6ZMmUL37t0xMTGRVbJ87phau3YtFSpUwMjICBsbGzp27Mjbt29z3F5Zt4+zszNqamoKfxlyc7xk9/r1a9q1a4eZmRkWFhY0a9bsi7tinj17llq1aqGvr4+ZmRl+fn5ERkYCULt2bQYMGMCwYcOwtLSkQYMGPHv2DDU1Na5fvy5LIyoqCjU1NU6ePCkLu3PnDk2aNMHY2BgjIyNq1KjB48ePZd+vWLECT09PdHV1KVGiBAsWLJB9l7GOzZs3U7t2bXR1dVm7di1paWlMmjQJBwcHdHR0KFOmjNIWaVkdOHAATU1NqlSpovT7ly9fUqNGDYyMjDhx4gQODg7Y2NjI/jQ0NGT7PGtYfHw8mzdv5vvvv6dp06YK16y9e/dSvXp1Ro4ciYeHB+7u7jRv3pw///xTLl5gYCA7d+7kw4cPOZbjW7jw4g5LLu7m1JPrhZqPLRs20TiwCU2aBeDk4syAYYOwsrZi9zblPy52b9+FlY01A4YNwsnFmSbNAmgU0ITN6zbKxUtNTWXq+El079sTW3tbhXQqVa1Mr359qFmnlsJ3+eHu8Uu4VSlN8aqlMbGxxLd1ffTNjLl/+lqOy+ka6aNnbCj7U89ScfLk0h18GlbB3tsVI0tTPGqUw9bThbvHgwqkDF8j6egpEtduJuVq4bSyVObmkfN4VC9HiRrlMbMtQtV2jTA0M+Huqcs5LqdnZIC+iZHsL+u+AEhLS+P40m2UD6yDcQ4/CvJLDZfSBL0MJuhlMG/jItlz9yzRiXFUdlLecsa9SFGKWdixPGgfj8JfEfkhllfRb3keGSaLU6GoJ/paOqy+fIDnkWFEfYjjWWQYobHhBVeOYmUIenGXSy/vfirHGaI+xFHZWfkPa/cijhSzsGf5pT08ep9ejpdR8uX4kPyRuI8Jsr/iRYqSnJpSYJVx/+w5gm/d6lSqXxNrBzua9WyPqYUZ5w+dVBrfvpgjZWtUwsbRHnMrS8rXqoJHGW+eBsv/qE1LTWP93CU0bBeIuXXBvxhuVKIKJ59c5eTjq4TEvGft1YOEJ0RTv3gFpfHdLBx4Fx/FoQcXeRcfxYN3Lzj+6DLFzO1kcRac287Rh0E8jwojNOY9Sy/tRl1NDW+bgmnBe3THfqo1rE11vzrYOtrTrm9XzCwtOLVfsdcNQLu+XfFrHYCzuyvW9ra06NYeKzsbbl68Kotz9shJ4mPj6D9uGG5eHlhYFcHNuwRFiylvTZsfdm3eQf3GDWnQ1J+izo70HtgPyyJFOLhrn9L41rbW9B7Ujzr+9dE3VN6bx6dsKSrXrEZRZ0ds7e0IaN0c52Iu3L11p8DKceXQaUrW9MWnVkUs7Kyp0ykQI3MTbhy/kONyR1dup0TlMti6Km5jPUN9DEyNZH8vbj9ES1sL94qlCqQMTb2qcfzRFY4/usLrmHesuryf9wnRNPSoqDS+exEH3sZHceDeBd7FRXL/3XOOPgiiWLbWuhIS0Ylxcn/fUm23clx8focLL+7wJi6SHbdPEfUhjurOyrdjYkoSsR8TZH+Optboaely8UXBHT/ZXTxwkjK1K1G2TmUs7a1p2KUFxhamXD12NsflDizfgneVcti7OSt85+TlRgnfUljaW2NmbUlF/1pYFbXlpZLWl4LwLRRaZZympiZdu3Zl5cqVSJIkC9+yZQtJSUl06tSJW7du4efnR8uWLbl58yabNm3izJkzDBigvNm+JEk0b96ciIgITp06xZEjR3j8+DHt2rWTxdm3bx8tW7akSZMmXLt2jWPHjlGhgvIHj7S0NFq2bImGhgYXLlxg0aJFjB49WiGekZERK1eu5O7du8ydO5clS5bwxx9/yL7fvHkzEyZMYOrUqVy+fBlbW1u5CglV63ZwcGDz5s3cvXuX8ePHM3bsWDZv3pzjclklJiZSvnx59u7dy+3bt+nbty9dunTh4sWLKpe5ePEiPXv2pH///ly/fp06deowZcqUXK8zw88//8yKFStYuHAhd+7cYejQoXTu3JlTp04pjX/58mUGDRrEpEmTuH//PgcPHqRmzZpfnV6GmTNnUrJkSa5cucK4ceNydUwlJSUxefJkbty4wc6dO3n69Cndu3fPddmDgoIIDQ0lNDSUV69eUblyZWrUqCH7/nPHS3YJCQnUqVMHQ0ND/vnnH86cOYOhoSH+/v4kJSXlKk/Xr1+nXr16eHt7c/78ec6cOUNAQACpqZlvG1etWoWmpiZnz55l8eLFuUr39evXssrq48ePc+XKFXr27ElKSvrbviVLlvDTTz8xdepUgoODmTZtGuPGjWPVKvluYKNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLmzZv4+fkRGBjIw4eq38j9888/Ks/l+/fvU61aNUqUKMHBgwcxMjLKVfkANm3ahIeHBx4eHnTu3JkVK1bIXbNsbGy4c+cOt2/fzjGdChUqkJyczKVLl3K97v+y5ORkHtx7QIVK8g+4FSr6cvuW8m1599YdKlSU70rgW7ki94PvyY45gNXLVmJqZkqTwKb5n/HPSE1JJeJlGLaeznLhdp7OvHuac1etvb+tYOvYPzkybwNhD+S7xKSmpKCuJd+YXVNLk7ePX+ZLvv+LUlNSeP8iBAcv+S4tDl6uvPnMdts+eTFrRsxi7++rCLn3VOH7q3tPoWdkQInqBd+CX0NNHXuTIjx8J5/nB+9e4mSm2IIUwMvahVfRb6lVrCxj63VlRK2ONPGsimaWFmRe1s48j3pD85I1+Ll+d4bWbEcd13KoUTBvztPLYcWD9/LlePj+Jc5mylt3elm78CrqLbVdy/FT/e6MrN2ZJp7V5MqRnW9RL26EPCQ5Nf9bnaQkp/D68XPcy3jLhbuX9ub5/ccqlpL3+skLnt1/TDFv+W6tR7bswcDYiIr1a6hYMv9oqGvgYm7HrVD5PN8Ke0xxS+Xd6R++f4m5vjGl7dJb7RnrGlCxqBfXc2gpo6OhhYaaOvEf8/8lVEpyCi8ePcWrrHxlglc5Hx4HP8hVGmlpaSR+SMQgS8vXmxevUKxEcdYvWMGITv34pf8o9m/aSVpqWr7mP0NycjKPHzykjK/8taSMbznu3b6bL+uQJIkbV67x+uUrvEspr8DPq9SUFN48e41TSflWnU4l3Ql5pLqL5+3TQUS9i6BK8/q5Ws+t05fxqFQaLZ38772hoa5BMXM7bmSryL8Z8giPIspbQN9/9wILfWPK2qWfzya6BlR28ubaa/lhUHQ1tZnfYgQLW45kdJ3OOJspvigsKBpq6jiYWHHvnfx+uPf2Oc7muctHJSdvHrx7USAtXJVJTUkh9OkrXEp6yIUXK+nBq4fPVC5349RFIt+8p2ZLv8+uQ5Iknt5+QETYu1x1fRWEglCos6n27NmTmTNncvLkSerUqQOkdwdr2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y8+ZNnj59StGi6Q8Ta9aswdvbm6CgIHx9fZk6dSrt27fnl19+kS1XurTy8YmOHj1KcHAwz549w8HBAYBp06bJurll+PnnzG5Ozs7ODB8+nE2bNjFq1CgA5syZQ8+ePenduzcAU6ZM4ejRozm2jtPS0pLLo4uLC+fOnWPz5s20bdtW9UbNwt7enhEjRsg+Dxw4kIMHD7JlyxYqVaqkdJm5c+fi5+fHjz/+CIC7uzvnzp37bKukrOLj4/n99985fvy4rJVSsWLFOHPmDIsXL6ZWLcXWKC9evMDAwICmTZtiZGSEk5MTZcuW/er0MtStW1duG3Tt2vWzx1TPnj1l8YsVK8a8efOoWLEicXFxGBoafrb8Wbs6Dx48mNDQUIKCMluvfO54yW7jxo2oq6uzdOlSWQu7FStWYGpqysmTJ2nYUPm4M1nNmDGDChUqyFUCe3vL/5hwc3NjxowZss+5aXk3f/58TExM2Lhxo6xrqbt75g+MyZMnM3v2bFnrUxcXF+7evcvixYvp1q2bLN6QIUPkWqjOmjWL0aNH0759ewB+++03Tpw4wZw5c5g/f77SvDx79gw7Ozul33Xt2pWqVauybds2NDRU/4hTZtmyZXTu3BkAf39/4uLiOHbsGPXrpz84Dhw4kNOnT+Pj44OTkxOVK1emYcOGdOrUCR2dzG5uBgYGmJqa8uzZsxyP2f8voqOiSUtNxcxcvlWRmYUZkRcilC4TER6OmYV85Z2ZuRmpqalER0VhYWnJrRs32b97H0vXLi+wvOfkY1wCUpqk0K1R18iAxBjlrbr1TAyp3MEfc0cb0pJTeRJ0myN/bqDh4I5Yu6X/ALDzLEbw8SCs3YpiZGlG6P1nvLz5UK5iWJCX+Glf6BnL7ws9YwMSYpS3StA3MaJGlwCKONqSmpLKwws32PvHKgKGd8fW3RmAsEcvuH/mKq3GfZsu3vraumioq8vGH8oQ9zEBIx3lFSfmesY4m9mSkprK6ssHMdDWpXnJmuhp6bD15on0OPrGuOoZcT3kISsu7cPSwIRmJWuirqbOsUc5txz8GhndZOM+JsiFx35MwEhHX+kyFvrGOJvbkpKWyurL+zHQ1qN5yVroa+mw5eZxhfhFTa2wNbZg681jSlLLu/jYONLS0jAyMZYLNzQ1JjZKsQtbVlP6jCQuJpa0tFQatA2kUv3MF45P7z0k6NgZhs4eXyD5zs5IRx8NdXWiE+WvSdEf4jGxVf6c8/D9Sxac287Aaq3R0tBEU12DK6/useqy6qEh2pepT8SHWG6H5X+rk/RtmYaxqXzXfyNTE2Iic94XGY7s2EdS4kfK16gsC3sX9pbwN3epVLsaAyeO4m1IGBsWriQtNY2mHVvmkNrXiY2OIS01DdNs90ITM1MiIyLzlHZ8XDy9WncmOSkZdQ11vhvyg0KlX375EJuAlJaGgbH88aNvbEhCtPIKnMiw95zZcpB2Y/uhnotns9AnLwl/FUbDnq0/G/drGOvoo6GuodBqLToxHlNd5efFg3cvmXdmC0NqtpOdF0Evg1l+KXO8ypCYdyw4t50XUW/Q09KhcYkqTPbvw8i98wkrwJbIGQx00q+9sYmK115jXeXX3qyMdfTxtHJmzZUDBZVFBQmx8UhpaRiayL88NzAxIi4qRukyEWHvOLFpL13GDczxeEpM+MC8gRNJTUlBTV0d/+6tKebjoTL+f4mYTfXfp1Ar40qUKEHVqlVZvnw5derU4fHjx5w+fZrDhw8DcOXKFR49esS6detky0iSRFpaGk+fPsXT01MuveDgYIoWLSqriAPw8vLC1NSU4OBgfH19uX79utyYUDkJDg7G0dFRVhEHKO0Ct3XrVubMmcOjR4+Ii4sjJSUFY2NjuXT69ZN/aK9SpQonTpzIcf2LFi1i6dKlPH/+nA8fPpCUlPRFM7CmpqYyffp0Nm3axOvXr/n48SMfP37McYKK4OBgWrRooZDXL6mMu3v3LomJiTRo0EAuPCkpSVbBll2DBg1wcnKiWLFi+Pv74+/vT4sWLdDX1/+q9DJkbymVm2Pq2rVrTJw4kevXrxMREUFaWvrb0BcvXuDlpTiYqSp///03y5Yt4+zZs3IVdJ87XrLLyHP21lyJiYly3UFzcv36ddq0aZNjHFWtyj6Xbo0aNZSO8fbu3TtevnxJr1695M65lJQUTEzkH56zrjsmJoaQkBCqVasmF6datWrcuKG6+9uHDx8UKugzNGvWjB07drBt27ZcV2ZDeou6S5cusX37diC9RW+7du1Yvny5rDLOwMCAffv28fjxY06cOMGFCxcYPnw4c+fO5fz58+jrZz7o6OnpkZCQoHRdGednVlkr8/6rFB4MJCCHh4XsrXYyKqPU1NRIiE9g2oQpjBg7CpNCnuFYoXWRBKoaHJlYW2BinTnWVJFi9sRHxnD36CVZZZxv6/qc33CA3ZOXgBoYWZrhWrkUjy/cLKAS5Ey7bk30h2Te1+LGTibldnCh5OVzFI8Z1XFNbSwxtckca8ratShxkTHcOHwOW3dnkhI/cmLZdmp0CVQ6jlxBUqh4VVNDVVEyzquN14+SmJLegnpv8Dk6l/Nj5+1/SElLRQ014pM+sO3mSSQkXse8w1jXgJrFyhRIZVxmObLlFT5bjg3XDmeW4+4ZOpdvxI7bp0hJS5WL71vUi9CYcF5GqR5aIl8oXLdyOME/6T9lFB8TP/LiwRP2r92GpY0VZWtUIvFDIhvmLqP1910xMM59q+38IGXb8mo57Ax74yJ0/bTdb4Y+xlTPkI5lGtKzYlOWXNytEL+pZzWqOPkw5djKgh0bK/tm//yuAODSyXPsXbed/uOGyVXoSWkSRqbGdB7YG3UNdZyKFyMqIpLD2/YVSGVcJsWC5PWHs56+Hn8snc+HDx+4efU6yxcswdrOFp+yBdPFE1ByboCyHZKWlsb+xRuo0rwBZja565Z9+59LWDjYYFtM+UuI/KLsHqHqGmVvUoQevk3YevMEN0IeYqZnROfy/vSp3IxF59OH3Hj4/hUP37+SLXP/7Qt+a9KfRiUqsyJIeVfkb0FNLef7YYaKjt58SP6o0JL2m8h2PKU/Iio/nnbOX0ONVv5Y2CqOs5iVjq4OvaeOIOljEs/uPODoup2YFbHAycstP3MuCLlSqJVxkD6Rw4ABA5g/fz4rVqzAycmJevXSZ/pJS0vju+++Y9CgQQrLZR1APYMkKb9xZQ3/koH2lbU4yJ7+hQsXZC3t/Pz8ZK2EMmZR/FqbN29m6NChzJ49mypVqmBkZMTMmTNz7GKa3ezZs/njjz+YM2cOPj4+GBgYMGTIkBy7NuamlYW6urpCvKxjnmVUXu3btw97e/kxE1RVLhgZGXH16lVOnjzJ4cOHGT9+PBMnTiQoKOir0suQveLxc8dUfHw8DRs2pGHDhqxdu5YiRYrw4sUL/Pz8ct0lFODkyZMMHDiQDRs2yLW8/JrjJS0tjfLly8tVIGbI7YQjuTnus2+rjDGSsu7r7GPb5ZRuxn5bsmSJQkvM7K3TlFUQZz/XVJ3fGSwtLWVj4GU3duxYSpUqRadOnZAkSa7rek6WLVtGSkqK3HEnSRJaWlpERkZiZpb5JtvV1RVXV1d69+7NTz/9hLu7O5s2baJHj8zZviIiIlTus19//VWuNSzAhAkT4D86p4yJqQnqGhpEhMu3gouMiFRoLZfB3MJCIX5UZBQaGhoYm5jw7MlTwkJDGTviR9n30qfjsF7V2qzevA57B8VZF/OTjqE+aupqfIiVf7OeGBf/RZU3RZzteRKUOTaLrpE+dfq2IjU5hY/xH9AzMeTarpM5TkJQkJLOXyLlXmZXsLT3ylszFibdT/sieyu4xNh49I0/38o5g5WLA48upld6xryLIDY8ikPzMwfmzrhGLun3C+0mDcTYyjwfcp8pISmR1LQ0hdZjhtp6Cq3MMsR+jCc6MV5WgQXwLi4SdTU1THQNCU+IJvZjPKlSmlyFzNu4SIx1DdBQUydVyt9uefFJH9LLka0lhqGOvspyxCQmEJ0YJ1eOt5/KYapnyPv4zBZQWuqalLYrzuEHuX9O+lIGRuljOWZvBRcXHYuRqeqXaoBsHDhbJwdio2M4snk3ZWtUIjzsLZFv37Pi18xxRjOOqdFt+jLyzylY2uT84/JLxX5MIDUtTaG1j7GugcqxrAK9q/Pg/Qv2BZ8D4GXUG1ak7GNCg55suXFcbgKOxiWqEuhdg1+Pr+Zl1Bul6eWVoXH6WI7ZW8HFRkcrtJbLLuif86ye9zff/TgYz7Ly4xWamJuioaGBukbmSD62Re2JiYwiJTkFTa38/elkZGKMuoY6URHy19DoyGhMzUzzlLa6ujq2Duk9BooVd+XV85dsW7epQCrj9Iz0UVNXJz5bK7iE2Dj0TRSvt0kfPvLm6SvePg/h+NpdwKfjXpL4o+cYWo3ohWOWypHkj0ncv3iDqi0+3xvka8V8TCA1LRVTPfn8muRwXrQoWYv7717IJjt4EfWGxIt7mOzfh43XjxD1QXE5CYnH4a+xMVKc8KUgxH9Uce3V1idWxbU3q0qOXlx+FZzv94Sc6BsZoKaurtAKLiE6FgMTxZcWSR8+Evr0JWHPX3NoVfoL9IzjaVrX4XQc3Q9n7/Qu1Grq6ph/qgC2cbLn/es3nNtzVFTGCYWi0Cvj2rZty+DBg1m/fj2rVq2iT58+sh/c5cqV486dO7i55e7k8PLy4sWLF7x8+VLWOu7u3btER0fLWtGVKlWKY8eOyf1A/lx6ISEhsu5v58+fl4tz9uxZnJyc+Omnn2Rhz5/L98n39PTkwoULdO3aVRZ24ULOg5mePn2aqlWr0r9/f1lYbltBZU2jWbNmsi52aWlpPHz4UKFFYVZeXl4Kecv+uUiRIgrjY12/fl3WOsrLywsdHR1evHjxRd3xNDU1qV+/PvXr12fChAmYmppy/PhxGjRo8FXpKfO5Y+rWrVu8f/+e6dOny46hy5e/rIXAo0ePaNWqFWPHjpXregm5O16U5XnTpk1YWVnl2IIuJxnHffbKnpxkVBqFhobKWiBmncwhI91Vq1YpnQHV2toae3t7njx5QqdOnXK9XmNjY+zs7Dhz5ozcuIHnzp2jYkXlA+gClC1blrVr16r8/ueff0ZTU5NOnTqRlpZGhw4dcsxHSkoKq1evZvbs2QpdgVu1asW6detUjl/p7OyMvr6+3MQgjx8/JjExUWVrzjFjxjBs2DC5MB0dHY4sHZxjPv9XaWlp4V7CncuXgqhRO3M/X7kURLWaymec9fLx5vxp+YF7L1+8hIdnCTQ1NXF0cmT5evnxCJctWkJCQgIDhw3GSsmsdPlNQ1MD86I2hN57hmPpzG4Pofee4eCT+xkSI169Qc9EsfJOQ0sTfVMj0lJTeXH9Pk7lVF/PC9SHRNI+hH0+XiHS0NTE0tGO13cf41I2czu9Cn6Mc+ncz5oW/jJU9mPS1MaS1hO+l/s+aOdxkj8mUbWdPwbmX3eNzkmqlMbr6HcUL1KUO28yx68rbunA3TfPlC7zLCIMH1tXtDU0Sfo0dpqlgQlpUprsR+WzyDDK2BWXa5lmaWBKTGJ8gfzoSi/HW4pbFuVOlm6LxS3ly5XV88hQStm5oq2hRVJqsiyPaVKawo/cUnZuaKprcO1V7sYL+xqaWprYuzrx8MZdfCpldvd7cPMu3r5lcp2OJEmkJKfvFyt7W4b/IX9vPrh+Bx8TE2nWswOmFvlbuQuQmpbK04gQStq4cvnVPVm4j40rV7J8zkpbQ4u0bMeF7HOWF2VNPKvS3Lsmv51Yy9OIkHzPewZNLU0c3VwIvnaLslUzxxINvnab0pVVzxZ66eQ5Vs9dTO9RA/CpqHg/dvVyJ+jkOdLS0mQvJd+8DsXE3DTfK+Ig/V7o6l6c65evUblmZo+A65evUqm68gmpvpYkSZ+dMOxraWhqYu1sz4s7DylePnNcuud3HuJaVrFXiY6eDl2nDJULu3H8PC/uPiZgQGdMisgf9w8u3SQ1ORXPqjn3iMmL1LRUnkSEUMrWjaCXmS29S9m6EfRKectvHQ0thetlxnmR0/ibTmY2BVZRnV2qlMar6Ld4FHGUa93mYeXI7dCcu5C7WThQxNCMC1m63X4LGpqa2Lo48PT2A0r4ZlYeP739APfyiuMe6ujp0OdX+eF+rhw9y/O7D2k5qDumRXK+jmZcj//r1AtoTFjh6xV6ZZyhoSHt2rVj7NixREdHyw2UP3r0aCpXrswPP/xAnz59MDAwIDg4mCNHjijMVAhQv359WeuXOXPmkJKSQv/+/alVq5asG9yECROoV68erq6utG/fnpSUFA4cOKB0vK769evj4eFB165dmT17NjExMXKVKJA+ztaLFy/YuHEjvr6+7Nu3jx075GcCHDx4MN26daNChQpUr16ddevWcefOHYoVUz27lJubG6tXr+bQoUO4uLiwZs0agoKCcHFxyfW2dXNzY9u2bZw7dw4zMzN+//13wsLCcqyMGzRoEFWrVmXGjBk0b96cw4cPK3RRrVu3LjNnzmT16tVUqVKFtWvXcvv2bVklg5GRESNGjGDo0KGkpaVRvXp1YmJiOHfuHIaGhnJjhWXYu3cvT548oWbNmpiZmbF//37S0tLw8PD4qvRU+dwx5ejoiLa2Nn/++Sf9+vXj9u3bTJ48Odfpf/jwgYCAAMqUKUPfvn0JC8v8sWpjY5Or4yW7Tp06MXPmTJo1ayabYfTFixds376dkSNHynWjVmXMmDH4+PjQv39/+vXrh7a2NidOnKBNmzZYWloqXUZPT4/KlSszffp0nJ2def/+vdx4dwADBgzgzz//pH379owZMwYTExMuXLhAxYoV8fDwYOLEiQwaNAhjY2MaNWrEx48fuXz5MpGRkQoVT1mNHDmSCRMm4OrqSpkyZVixYgXXr19X2jowg5+fH2PGjFFosZbVjz/+iIaGBl26dCEtLS3HSsK9e/cSGRlJr169FLrVtm7dmmXLljFgwAAmTpxIQkICjRs3xsnJiaioKObNm0dycrJc1+rTp09TrFgxXF2VDxKro6Pzzbql6mnp4GCS2eTOztiS4pYOxCTG8yYub2PUfIk2Hdrx68QpeJQogbePN3t37ubNm7cEtGwOwJL5i3j37j1jJ6Yfd4Etm7Fzy3bmz/mTps0CuHPrDvt37+PnyRMA0NbRwcVV/rpqaJReiZI1/ENCAq9fZU6mEBoSyqMHDzEyNsbaRvmA+F/Cq25Fzq7eg4WjDUVc7Hlw9jrxETG410i/Rl7ddZIP0bFU6xoAQPCJIAzMTTC1tSQtNZUnl+7w4vp9avXOHDLg3bMQPkTFYuZgTUJULDf3n0GSJLzrKx//szCoGRmibmWJ2qfKA/VPrRDTIqKQIqMKJU+lGlThxPLtWDrZYe1alOB/rhAXEY1nrfRngkvbjxIfFUOdnukvTm4dPY+RhSlmdlakpqby6MJNnl4NpkG/9O7tmlpamNvLHyM6+und47OH56fTT2/Qrkw9XkW95UXUGyoW9cJUz4gLL9JfjPl7VMZY14DNN9LHSrse8oB6xSvQpnRdjjwIwkBbl8YlqnL55T1Z184Lz+9QzdmHAO/qnHt2C0sDU+q4lePss1sFV44n12lXtgGvot/yIjKMSo7emOoZcuH5p3KUqIKJrgGbrqfPhnntdXo52paux+EHFzHQ1qOJZzWCXgYrdFGtWNSLO2FPSEjOebb6vKoZ0ICN85bh4OqMk0cxLh75h6j3EVRpWBuA/Wu3ER0RRYdBvQA4e+A4ZpbmFPk0s/Ozew/5Z/dhqjWqC4CWthY2jvItdnUN0luwZA/PTwfunef7Ki15GhHCw/cvqetWHgt9E449TH8B2a50Pcz0jWVd7a69fkCvSgHUc6vAzdDHmOkZ0rm8P4/evyLq06DuTT2r0bpUHeaf28a7+ChMPrW8S0xJ4mNK7nsX5Fb9Fo1ZMXsBTsWLUaxEcU4fPE7Eu/fUbJzew2bHyo1EhUfQY3j6i+1LJ8+x4veFtOvbFReP4kRHRAGgraON3qdtXqtxA07sOcymxaupG+jH29dhHNi8i7oB/vme/wzN2rZgztRZuHkUx8Pbk8N7D/D+7Tv8AhsDsObvFYS/C2fIT5ljID95mF6pkvghkZioaJ48fIyWliZFndNnJN26dhNuHsWxsbclJTmFKxeCOHnoGP2GKX+JmB/K+9XgwN+bsHZ2wNbNkVsnLxEbHkXpOulj8p3ecoC4yBga9W2Hmro6lg7yE7foGRmiqaWpEA7pEz24lfNCT8Xssfll792zDKzWmifhr3nw7iX13StgaWDCkQfpYz93KNsAcz1j5p/bBsDlV/f4rkpzGrhXlHVT7VahMQ/fv5RNdtC6VB0evntJaGy4bMw4Z3Nbll3aU6Blyerko6t0Ku/Hy6g3PIsIpYqzD2Z6Rpx9lt7qu6lnNUz0DFh39bDccpWcvHkWEfpNxrbLrlKj2uxauA7bYkVxcHPm2olzRIdHUq5eVQBObNpLbGQ0gf06oaaujlVR+ckoDIwN0dDSlAs/u/soti5FMbO2IDUllcfXg7l1Jgj/7jkP5SMIBaXQK+MgvavqsmXLaNiwoVz301KlSnHq1Cl++uknatSogSRJuLq6quxipqamxs6dOxk4cCA1a9ZEXV0df39/uYq72rVrs2XLFiZPnsz06dMxNjaWa32Tlbq6Ojt27KBXr15UrFgRZ2dn5s2bh79/5g25WbNmDB06lAEDBvDx40eaNGnCuHHjmDhxoixOu3btePz4MaNHjyYxMZFWrVrx/fffc+jQIZXbpF+/fly/fp127dqhpqZGhw4d6N+/PwcO5H7wzHHjxvH06VP8/PzQ19enb9++NG/enOho1QPbVq5cmaVLlzJhwgQmTpxI/fr1+fnnn+UqpPz8/Bg3bhyjRo0iMTGRnj170rVrV27dynyAnzx5MlZWVvz66688efIEU1NTypUrx9ixY5Wu19TUlO3btzNx4kQSExMpXrw4GzZskE0y8KXpqfK5Y6pIkSKsXLmSsWPHMm/ePMqVK8esWbMIDAzMVfpv3rzh3r173Lt3T2EyAUmScnW8ZKevr88///zD6NGjadmyJbGxsdjb21OvXr1ct5Rzd3fn8OHDjB07looVK6Knp0elSpU+2zps+fLl9OzZkwoVKuDh4cGMGTPkWolZWFhw/PhxRo4cSa1atdDQ0KBMmTKy8d569+6Nvr4+M2fOZNSoURgYGODj4yObQEOVQYMGERMTw/Dhw3n79i1eXl7s3r2b4sVVtyzy8fGhQoUKbN68me+++05lvJEjR6KhoUG3bt1IS0ujS5cuSuMtW7aM+vXrK1TEQXrLuGnTpnH16lVq1arF/Pnz6dq1K2/evMHMzIyyZcty+PBhPDwyW0Zt2LAh1+NVFrQSRZz4q0VmZeig6ukPIfuDzzP1+CpVi+W7ug3qERMdw+rlK4l4H45zMRem/zEDG9v0B/Hw8HDevsl8c2xrZ8evf8xgwZw/2bV1BxaWlgwcPphadWt/0XrvB99naP/MruoL5vwFgF8Tf34c/5OqxXLNubwnH+M/cPPAWT7ExGNqa0nd/m0wNE8/lj7ExBEfkdn1Ii0llas7jpMQHYeGlmZ6/O/bYO+dWXGblpzC9b3/EPs+Ci0dbey9i1Gta1O09ZWPk1gYtKr4YjAyc7sa/pz+w/HD6o0krtlUKHly9S1JYnwCV/edIiE6DnM7KxoN7ITRp+69CdGxxEVk3hNTU1K5sPUw8VGxaGppYmZnhf/Ajjj6uKtYw7dxM/QR+to61CteAWMdA8LiwlkRtFfWOsxIR1+ua1VSagpLL+6mmXcNBlZvTULSR26GPuLQ/cwunNGJcSy9uIcAr2oMqdGOmMR4zj69ycnH1wqsHDdCH6GvrUv94r7p5YgNZ/mlvbLKHGMdfUz1MrsgJaUms+TCLpqVrMmgGm1JSErkZsgjDt6Xb7FvaWCKi4UdSy7sKrC8ZyhTrSIJsfEc3bKHmMhobBzt6DV2MGZW6V3OYiKjiXqf+cNVkiT2r9tOxNv3aGhoYGFdhEadWlK5YeFO5HPhxR0MdfRpUbIWpnqGvIp+y8yT63ifkH4+mOoZYaGfef/75+l1dLW0aehekU7l/EhISuTOm6dsvH5EFqd+cV+0NDQZUkP+OX3brZNsv3Uy38vgW7MK8TFx7NuwneiIKOycHBjwyygsrNJfNkVHRBHxLnNfnD54jLTUVDYsXMGGhStk4VXq1aT7sPQxMM2LWDB48o9sWbKWST/8iKmFGXUD/fFvnbvnwK9RvW4tYqJj2bR6PZHhETi6ODPut0lYfXo5FBEewbu38uMgDuudWan2+P5D/jl6kiI2VizZlH4P/5iYyOI/5hP+7j3aOtrYOxZl6M8jqV634I47j0ql+RCXwIVdx4iPjsHC3oYWw3pgbJn+gjQ+KpbY8KgvTjcy7B2vHzyj1Yhe+ZxjReef38ZIR59WpepgpmfEy6g3/Hp8De/jowAw0zPC0sBUFv/Uk2voaeng71GJruX9iU9K5E7YE9ZezfyNZ6CtS9/KzTHVMyQhOZGnEaFMOLSUx+E5z7Cen66FPEBfWxc/j8oY6+gTGhvO4gu7ZBWGxroGmOnJ/6bQ1dSmtK0b22+f+mb5zMqrclkSYuM5s+MQcVExFHGwpf3IvphYpr/wi4uKIfr9l71ATv6YxMGVW4mNiEZTWwsLOyuafd8Zr8oF1+JSEHKiJomp2ITPWLlyJUOGDCEqKqqwsyIIOdq/fz8jRozg9u3bsu4l/wa3b9+mXr16PHjwQGnlXk6qzf82MzYWpLM/LCKkoAdUL2B2plZMObLi8xH/5X5u0IPIBi0+H/FfzOzIDmaf2lDY2ciz4bU6MHrfgs9H/Jf7rUl/Ru39q7CzkSczmg5g9+3ThZ2NPAssWYNO6ycWdjbyZF3HiZx8dKWws5Fntd3KE1wAs8h+a542xVh8fmdhZyNPvqvSnLZrfv58xH+5zV2mMGTXnMLORp7MaTaE1UGqZ2D+X9HVt3FhZ+GrNFqquldSYTvQ+/fCzkKh+Fe0jBMEQcgPjRs35uHDh7x+/VpuVuXCFhISwurVq7+4Ik4QBEEQBEEQBEH47xGVcYIg/KcMHvzvm/Ag+wQQgiAIgiAIgiAIwv9f/55+XMK/Vvfu3UUXVUEQBEEQBEEQBEH4H6Smpv6v/fv/6v9vyQVBEARBEARBEARBEAThGxOVcYIgCIIgCIIgCIIgCILwjYgx4wRBEARBEARBEARBEP6j1NXUCjsLQjaiZZwgCIIgCIIgCIIgCIIgfCOiMk4QBEEQBEEQBEEQBEEQvhHRTVUQBEEQBEEQBEEQBOE/Sg3RTfXfRrSMEwRBEARBEARBEARBEIRvRFTGCYIgCIIgCIIgCIIgCMI3IrqpCoIgCIIgCIIgCIIg/EeJ2VT/fUTLOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6KbqiAIgiAIgiAIgiAIwn+Umuim+q8jWsYJgiAIgiAIgiAIgiAIwjciKuMEQRAEQRAEQRAEQRAE4RsR3VQFQRAEQRAEQRAEQRD+o0Q31X8f0TJOEARBEARBEARBEARBEL4RURknCIIgCIIgCIIgCIIgCN+ImiRJUmFnQhAEQRAEQRAEQRAEQch/rVaNLewsqLSt27TCzkKhEGPGCYIg/IuFRL0t7CzkmZ2pFdXm9yvsbOTJ2R8WEXvvQWFnI8+MSrgTc/REYWcjT4zr1+Hp+9eFnY08c7G0507o48LORp5527qyOmh/YWcjT7r6Nv7PHFOxT58VdjbyxMjFmdiQkMLORp4Z2dkRvWRVYWcjz0z6dONlZFhhZyNPiprZ8DYmvLCzkWdWxhY8ef+qsLORJ8UsHYh9+Kiws5FnRsXdCjsLwn+E6KYqCIIgCIIgCIIgCIIgCN+IaBknCIIgCIIgCIIgCILwHyVmU/33ES3jBEEQBEEQBEEQBEEQBOEbEZVxgiAIgiAIgiAIgiAIgvCNiG6qgiAIgiAIgiAIgiAI/1Hqopvqv45oGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0R0UxUEQRAEQRAEQRAEQfiPErOp/vuIlnGCIAiCIAiCIAiCIAiC8I2IyjhBEARBEARBEARBEARB+EZEN1VBEARBEARBEARBEIT/KDVEN9V/G9EyThAEQRAEQRAEQRAEQRC+EVEZJwiCIAiCIAiCIAiCIAjfiOimKgiCIAiCIAiCIAiC8B+lLmZT/dcRLeMEQRAEQRAEQRAEQRAE4RsRlXGCIAiCIAiCIAiCIAiC8I2IyjhBEP6TEhISmDx5Ms+fPy/srAiCIAiCIAiCIBQaNTW1f+3f/1eiMk74f2/lypWYmpp+k3XVrl2bIUOGfJN15acv3UbOzs7MmTOnwPKTGwMHDiQkJAQnJ6cvWu5/dR8JgiAIgiAIgiAI/xvEBA7C/4TP1Zh369aNlStXfpvM/D/Url07GjdunOv4QUFBGBgYFGCOcrZhwwbevHnDrl27vnjZ7du3o6WlVQC5yn87t+5g09oNhIeH4+zizIChgyhVtrTK+NevXmPBnL949vQZlpYWtO/SkcCWzZXGPX74KJPH/UK1mtWZMvNXWfiNa9fZtHYDD+7dJ/x9OJNnTKV6rZr5XbTPKm3rRseyDSlh5YilgSk/7l/I6ac3vnk+ciJJEn9v3MCOQ4eIjY/D292d0d/1w9VRdQXx4xfPWbR+HfcePyb07VuG9epNx8BmcnEWb1jPko0b5MIsTE05tGpNgZRhyf697Dh7htiEBLydnRnVtgOudnYqlzl+/RorDx3g5bt3pKSmUrSIFZ3r1adxpcqyOFcfPmTN0cPce/mC99HRzOzbj9qly+RLnvds38XW9ZuICA/HycWZfoN+oGSZUirj37x2g7//XMDzp8+wsLSkTcd2NGkRKBdnx6at7N2xm3dv3mJsakKN2jXp0a8P2jraAGxcvZ6zp07z6vkLtHV08PLxpuf3fSjq5JgvZQI4sHMvuzZuIzI8gqIuTvQc0BevUiWVxo0Ij2DVgiU8fvCI0FchNG4ZSK+B36lM+8yxU/w++TcqVqvMj1PH51uelbl85AwX9p8gLiqGIvY2NOjcHMcSrp9d7uWDJ6yZMp8iDjb0mTZSFn4v6CZndx8h8s170lLTMLO2pHLj2vhU9823POf3MTVywFBuXVO8XvlWqcTkWenX24T4BFYvWc65f84QFRmFq7sb/YYMwMOzRL6VS5Ik/l67lh0H9hMbF4e3RwlG//ADrs7OKpd5/OwZi9as5t7DR4S+fcOw776jY4uWcnGu3rrFmq1bCH74kPcREcwaP4HaVavmX55XrWLH3r3Exsbi7enJ6MGDcXVxyXG5Y6dOsWjFCl6FhOBgZ0f/Xr2oU6OG7PuA9u0JffNGYbk2zZox+tMLuuP//MP2PXsIfvCA6JgY1i1ZgoebW76USxlJklhy7jQ7b14n9mMi3jZ2jKzvh6tlEZXL7L19k0kH9yqEnx4yCh3N/P3Zt2vrDras20h4eATOLs70HzoAnzKqn0FuXL3Oornzefb0GRaWFrTr3IGAlpn3t0N7DzBzynSF5fafOoy2jg4AnZq3401YmEKcwFbNGTRy6FeVY8eWbWxYu57w9+E4F3Nh0LDBlC5bRmX8a1eu8deceTx78hQLS0s6du1E81YtZN8/ffyEZYuXcv/ePcJCwxg4dDBtO7aTS6NNYEvCQhXL0aJ1S4aNHvHFZdi7fRdb12+WXaO+G9T/s9eoJX8ulF2jWndsR5MWAXJxdmzaxr4s973qtWvSo19v2X2vW6uOvA1TPGeatgzkh+GDv7gMqkiSxN/r17Pj0MH065S7B6O//x7XHF62P37+nEXr1nLv0aP0Z6k+fejYrLnK+Cs2b2b+6lV0CGzG8L598y3vgvA5ojJO+J8QGhoq+/+mTZsYP3489+/fl4Xp6ekVRrb+56WmpqKmpoa6es6NZPX09L5oGxcpovpB8Vvo0KEDHTp0+Kplzc3N8zk3BeP4kWPM/2MeQ0YNo2QpH/bs2M3ooSNZuXEN1jbWCvFDQ0IYM3QUTZoF8NMv47h98xZzZvyOiakpterWlosbFhrGwnkLKKXkoTrxQyKuxd3wb9qYCT/+XFDF+yw9LR0ehb9i/71zTGvUr9DykZNV27exftdOJgwegqOdPcs2b+KH8ePZtmAhBvr6SpdJ/PgRB2sb6letzu/Ll6pMu5ijIwsmTZF91vjMOfy1Vh85zPrjxxjfpRuOVlYsP3iAAX/NZev4XzDQ1VW6jIm+Pj38GuFsY4OWhianb99k0trVmBkZUcXLG4APSR9xd3AgoEpVRi9ZnG/5PXX0BIvnzueH4YPxLlWS/Tv38POIH/l77QqslJwXYSGhjBsxhkYBjRk1fix3bt5m/uy5mJiaUr1OeiXz8UNHWb5oCcPGjMLTx5vXL14ye+oMAL4b/AMAt67fIKBlM9w9PUhLTWPl38v4aego/l63At18uD+dOX6KFX/9TZ8h/fH08eLQ7gNMGTWeuasWUcTaSiF+SlIyxqYmtOrcnr1bduSY9tuwN6xcuBSvUt55zufn3L1wjSNrd+LfvTVF3V24evwcG2f+zXe//YiJpZnK5RITPrB70XpcvIsTFx0r952egT7VAhtgaWeNhqYGD6/dYc/fG9E3NsK1VN4rrgrimBo/7ReSk1Nky8RER9O/ex9q1KklC5szfRbPnjxl5PgxWFhacuzQEcYMHsnf65ZjmU/32FVbNrN+x3YmDBuOo4MDyzas54exY9i2dFnO1ygbW+rXqMnvi5Wfux8SEynuUoyABg0ZNWVyvuRVlueNG1m/ZQsTRo/GsWhRlq1Zww8jR7Jt9WqVeb555w5jJ02iX8+e1KlRgxOnT/PjL7+wbN48Snp5AbB60SJS09Jkyzx++pQfRoygXu3acuUqXbIk9WvXZsqsWflaLmVWX7rAhiuXGO/fFEczc5ZfOMvALRvY0us7DLR1VC5noK3Dll7yle/5XRF34shxFs75i0Ejh+JdqiT7du5hzNDRLNuwSsUzSCg/DRtN42ZN+XHiT9y5eZt5M//AxNSUmnUzj3t9AwNWbpZ/sZRREQcwf8Vi0tJSZZ+fPn7K6EHDqZntOSa3jh0+yrzf5zJs9Ah8Spdi9/adjBw8nDWb12FtY6MQP+R1CKOGDCegeSDjJk3g1o2b/P7bLEzNTKldtw4AiYmJ2NrbUbt+Hf78fZ7S9f69ahlpqZnH29PHTxg6YDB16tf94jKkX6MW8MPwQXiVKsn+nXsZN2IMi9cuV3mNGj9iLP4BjRk5fgx3b95m/ux5mJiayN33VixawtAxI/Hy8ebVi1f8Lrvv9Qdg7tIFpGU5Z54/ecrYIaPkrmP5YdW2razfuYMJQ4emP0tt2sQP435m26LFn7lO2VC/WnV+X7okx/TvPHjAjkMHKe6cc4X+f4GYTfXfR3RTFf4n2NjYyP5MTExQU1OTC/vnn38oX748urq6FCtWjF9++YWUlMwH3aioKPr27Yu1tTW6urqULFmSvXvl3xweOnQIT09PDA0N8ff3l6sATEtLY9KkSTg4OKCjo0OZMmU4ePBgjnmOj4+na9euGBoaYmtry+zZsxXiJCUlMWrUKOzt7TEwMKBSpUqcPHkyx3QnTpyIo6MjOjo62NnZMWjQoFynl9HddO/evXh5eaGjo8OSJUvQ1dUlKipKbj2DBg2iVq1acstltXv3bipUqICuri6Wlpa0bJn5Zjx7N9UXL17QrFkzDA0NMTY2pm3btrxR8gY6w7Nnz1BTU2Pz5s3UqFEDPT09fH19efDgAUFBQVSoUEG2n969eydbLigoiAYNGmBpaYmJiQm1atXi6tWrsu9PnjyJtrY2p0+floXNnj0bS0tL2f7O3k3V2dmZKVOmyPalk5MTu3bt4t27d7Iy+fj4cPnyZbkybNu2DW9vb3R0dHB2dla6//Niy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35D+/d23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18faubzw9aXuvDiDksu7ubUk+uFmg9VJEliw57d9GjTlrpVquLm5MQvQ4aSmPSRg/+cUrmcd3F3BvfoiV/Nmmjn0EJTU0MDSzMz2Z+ZiUnBlOHEMXr4NaJumbK42dkzsUs3EpOSOBR0SeVy5d09qFOmLC42tjgUKUKHOvVws7fn+uPHsjjVvEvyfUAz6pYpm6953r5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGCb9/B26ckdRrWw8bWhvKVfKndoC4P7j2QxZn6+280bOKPczEXihV3ZdjYUbx985aH9x8oW+0X27NlB/UaN6RBU38cnBzpNfA7LKyKcGjXPqXxrWyt6TWwH3X86qGfQyvl1NRU5kyZSfsenbG2VTzf89vFAycpU7sSZetUxtLemoZdWmBsYcrVY2dzXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW17ef5IveS6IY8rI2BhzC3PZ37WgK+jq6MoqJT5+/MiZU//Q64fv8ClTGjsHe7r06o6NrY3K9X4pSZLYsGMnPdq3p2716rg5O/PL8BEkfvzIwRMnVC7n7eHB4D598KtdW+U1qpqvL/27d6du9er5kle5PG/dSo/OnalbsyZuLi788uOPJCYmcvDoUZXLbdi6lUoVKtCjUyecHR3p0akTFcuVY/22bbI4ZqamWJqby/7OnD+Pg50d5UtnvpRq0rAhfbp1o2L58vlaLmUkSWLj1Ut0r1SNOu4lcC1ixYRGASSmJHMo+E6Oy6qpgaWBodxfftu2YTP+AY1p3KwpTi7O9B86ECurIuzZrrxHwt7tu7CytqL/0IE4uTjTuFlT/AMas2W9/DOImpoa5hYWcn9ZmZqZyn138ex57BzsKV2uzFeVY9P6jTRpFkBA80CcXZwZNHwIVtZW7Niq/Flq1/YdWNtYM2j4EJxdnAloHkiTwKZsXLteFsfT24sfBg+gfsMGaGsrP0fMzMywsLSQ/Z07cxZ7B3vKlPvye+KOTVtp2LQR/rJr1A8UsbJi3449SuNnXqN+wNHZCf/AJjRs4s+2LNeoe7fv4vXpvmdta0P5ShWo3aAOD+9lNoRI3xeZ17GLZy9ga2+HTw49NL6UJEls2LWLHu3aUbdqtfTr1LBh6depUzk8S7m7M7hnL/xq1crxWSrhwwfGzZrJTwMHYmSY/+eJIHyOqIwT/ucdOnSIzp07M2jQIO7evcvixYtZuXIlU6dOBdIr0ho1asS5c+dYu3Ytd+/eZfr06WhoaMjSSEhIYNasWaxZs4Z//vmHFy9eMGJEZjPxuXPnMnv2bGbNmsXNmzfx8/MjMDCQhw8fqszXyJEjOXHiBDt27ODw4cOcPHmSK1euyMXp0aMHZ8+eZePGjdy8eZM2bdrg7++vMt2tW7fyxx9/sHjxYh4+fMjOnTvx8fH5ovQSEhL49ddfWbp0KXfu3KFz586YmpqyLctDaWpqKps3b6ZTp05K87Fv3z5atmxJkyZNuHbtGseOHaNChQpK40qSRPPmzYmIiODUqVMcOXKEx48f065dO6Xxs5owYQI///wzV69eRVNTkw4dOjBq1Cjmzp3L6dOnefz4MePHZ3apiomJoWvXrpw+fZrz589TrFgxGjduTGxsekuKjIq2Ll26EB0dzY0bN/jpp59YsmQJtjn8EP3jjz+oVq0a165do0mTJnTp0oWuXbvSuXNnrl69ipubG127dkWSJACuXLlC27Ztad++Pbdu3WLixImMGzcu37pSJycn8+DeAypUqigXXqGiL7dv3Va6zN1bd6hQUb7blm/litwPvidXcb162UpMzUxpEtg0X/L6/9XrN28Ij4ykctnMB2ttLS3KeZfk5r17eU7/RUgI/t27EdinF2NmzuCVkm47efU6/D3hMTFU9vSUhWlraVHOrTg3n+auokOSJC7du8fzN28oV4DduSD9vHh4/wHlKspfi8pVrEDwbeU/XoNv31GIX75SBR7euy87L7xL+/Dw/gPu3w0GIPR1CEHnL1KxaiWVeUmIjwfSK13yKjk5mcf3H1Hat5xceBnfsty7E5yntLes3oCxqQn1m/jlKZ3cSE1JIfTpK1xKesiFFyvpwauHz1Qud+PURSLfvKdmy8/nUZIknt5+QETYu1x1ff2cgjqmsju09wC16teRtaJMTUklLTUNbW1tuXjaOjrcuan8Gv+lXoeFER4ZQeVymRVL2tralPPx4Wbw3XxZR357HRpKeEQElbM8b2hra1OudGlu3lFdQXXz7l0qZXtGqezrq3KZ5ORk9h85QmCjRoU2sHhIdBTh8fFUztJaR1tTk3IOjtx8/TrHZT8kJRG4+C+aLvqTods3c/9N/t4fkpOTeXD/ARUqyT9TlK/ky11VzyC371A+W/wKlXx5ECx/Xnz48IGOzdvSPqA1Pw3/MccXGsnJyRw9eAT/pl+3n9Kfpe5TMduzlG+lity+eUvpMndu3cY3W/yKlStx7+49led3bvJx+MAhGgc2/eJyqL5GleeuimvUvdt3KVdRvkK5XCVfHt57ICuDV+mSPLr/gPt3059X0u97l6hYtbJCehn5OHH4KA2b+OfrOfP6TdinZ6nM+5+2lhblSpbkZnDe7n8Avy1cSDVfXyrl84tBQcgt0U1V+J83depUfvzxR7p16wZAsWLFmDx5MqNGjWLChAkcPXqUS5cuERwcjLu7uyxOVsnJySxatAhX1/SH9wEDBjBp0iTZ97NmzWL06NG0b98egN9++40TJ04wZ84c5s+fr5CnuLg4li1bxurVq2nQoAEAq1atwsHBQRbn8ePHbNiwgVevXmH3afylESNGcPDgQVasWMG0adMU0n3x4gU2NjbUr18fLS0tHB0dqVix4hell5yczIIFCyid5W1vu3btWL9+Pb169QLg2LFjREZG0qZNG5XbvH379vzyyy+ysKzpZXX06FFu3rzJ06dPKVq0KABr1qzB29uboKAgfH1Vj+szYsQI/PzSf4ANHjyYDh06cOzYMapVqwZAr1695Cq46tWrJ7f80qVLMTU15dSpUzRtml65NGXKFI4ePUrfvn25c+cOXbp0oUWLFuSkcePGfPddepeP8ePHs3DhQnx9fWXbZ/To0VSpUoU3b95gY2PD77//Tr169Rg3bhwA7u7u3L17l5kzZ9K9e/cc15Ub0VHRpKWmYmYu363LzMKMyAsRSpeJCA/HzEL+AdLM3IzU1FSio6KwsLTk1o2b7N+9j6Vrl+c5j//fhUdGAmBhYioXbmFqSujbt3lKu6S7O78MGYqTnT3hUVEs27KJXqNHsunP+ZjmQ+VPhvCYGADMjeTTNDc2JixC+XGWIe7DBxqP/ZGklGQ01NUZ3a4DlTy98i1vysRERaePGZb9vDAzIyJceX4jIyIxM8sWX3ZeRGNhaUHt+nWJjoxi+PeDkSSJ1NRUmrYIpF2XjkrTlCSJxfMW4F3KB+diee/2EhsdQ1paGqZmpnLhJmZmREVEfnW6wbfucHTfIX5f+lcec5g7CbHxSGlpGJoYyYUbmBgRFxWjdJmIsHec2LSXLuMGop7lBVp2iQkfmDdwIqkpKaipq+PfvTXFfDxUxs+tgjqmsrp/N5hnT54ydEzmC0B9A308S3qxfuUaHJ0cMTU34+TR49y/G4ydg32eywUQHpmef4tsebUwMyP0Td6uUQUlPCKnPKtubR8eEaF0mXAV17GTZ84QFxdHgL9/HnP89cI/VeibZ2vZam5gQGhMtMrlnMwtGN8oAFfLIsQnfWTTlSB6b1jNum69cTTLn2E4Mp9B5NMzM1d9XkSERyieR+bmcudFUWdHRv38Iy5uxUiIj2f7pm0M6TuAxWuW4+DooJDm2VOniYuLo2GTRl9ZjihSlZXDwlxlOcLDI6hokb3c6eWIiorC0tLyi/Nx+uQ/xMXF0bhp7sdmzqDqGmVqZkakymtUBKYqrlExUdGYy+570YzIct9r0iKQtl2UDwFz/p+zxMXF0aBx/r7YkT1LZeudk/4s9U7JErl36NQp7j1+xOo/5uQpnf8laohuqv82ojJO+J935coVgoKCZC3hIL1lV2JiIgkJCVy/fh0HBwdZRZwy+vr6soo4AFtbW95++sEcExNDSEiIrAIoQ7Vq1bhxQ/mA8Y8fPyYpKYkqVarIwszNzfHwyPxxcPXqVSRJUsjXx48fscjWLD9DmzZtmDNnDsWKFcPf35/GjRsTEBCApqZmrtPT1tamVCn5QV07depElSpVCAkJwc7OjnXr1tG4cWOFHxQZrl+/Tp8+fZR+l11wcDBFixaVVcQBeHl5YWpqSnBwcI6VcVnzaW2dPu5F1paA1tbWsv0EEB4ezpQpUzh58iRv374lNTWVhIQEXrx4IVf+tWvXUqpUKZycnHI162tu8gHw9u1bbGxsCA4Oplkz+UH3q1Wrxpw5c0hNTZVrlZnh48ePfPz4US5MR0f1mDCgZGITifT+KariZ7sJZ7TkU1NTIyE+gWkTpjBi7ChMvtHswv8lB06eZNrCzIr5OePSW2xm30eSJOX5rXG18plvwN2AUiVK0Py7Puw9cZzOOQxQ/DkHLl3k1w2ZXW3+6J8+HpqyMnyOvo4O68b8RMLHjwTdv8cf27dib2lJefe8V5B8Vvb88pltrlC+jOD08BtXr7Nx9Tp+GD6YEt6ehLx6zaK58zFbsYZOPbooJDf/93k8ffyE2QuVjxX0tRTPd+mrH6w/JCQwd+os+o8chLFp/ndxzpHC/lE+SVNaWho756+hRit/LGwVx8XLSkdXh95TR5D0MYlndx5wdN1OzIpY4OSVT60x8/mYyurg3gM4F3PBw8tTLnzkuDH88etMOjVvi7qGOm7uxandoB6PH6hukZ+TA8ePM23eXNnnOZPSx3LLnqP0a9RXrSLfHThyhGm//y77POfX9MktFK5JSsIUKLsWq4i6a/9+qlaqRJGvqFj5Wgfv3ubXIwdkn/9o2RZQdt/O+Qe1j509PnaZFbal7YvSZfUyNl+9zIh6DfM1z0ouSV94XkhywV4lvfEqmTl2pXcpH77v1oedW7YxQMmEAAf27Kdi5YpYFsnbflLI8mfOAYV9gqQ0PLf27t5DpSqV8zQWpPLHwRyeB1Xd1z+F37x6nU2r1/HD8EF4eHsS8iqExXPns36FOR2V3PcO7T1AhcoVscjjvjhw4gTT5me+IJozYaKK/Ob4uPtZYe/eMXvJ3/w1aTI62VogC8K3JCrjhP95aWlp/PLLL3JjlmXQ1dXN1cQD2WfPVFNTU/jB+SU/qnPzYzUtLQ0NDQ2uXLmiUDljqGLcgqJFi3L//n2OHDnC0aNH6d+/PzNnzuTUqVO5Tk9PT08h3xUrVsTV1ZWNGzfy/fffs2PHDlasWKEy718ymYOq7ZSbSoms+yUjbvawrIPH9ujRg/DwcObOnYuTkxM6Ojr4+PiQlJQkl+65c+cAiIiIICIi4rMzv+YmH4AsL8rK9rlj4tdff5VraQjp3XT7DumvENfE1AR1DQ2FN7eREZEKb0czmFtYKMSPioxCQ0MDYxMTnj15SlhoKGNH/JiZ50/lqVe1Nqs3r8M+n1pk/BfVrFiRkh6ZFeFJyckAvI+KxDLLW/eI6GjM87myU09XF1cnZ16GhOQpnZqlSlMyS5eopE/dVcJjorHMMiZdZGwsFp9pgaeurk5Rq/QKFI+iRXn2JoyVhw8VaGWcsakJ6hrqCq0BoiKjVJ4XZuZmREZkjx/56bxIL+PqJSuo69eARoFNAHBxLUZiYiLzfvudDt06yU2As+D3eVw4c45Z8+dQxCp/Btk3MjFGXV2dyGyt4KKjojAxN/2qNMNeh/I27A3TxmReczKuUa3rNuWvNUuwUTJmZF7oGxmgpq6u0AouIToWg2yt5QCSPnwk9OlLwp6/5tCq7Zl5lCSmdR1Ox9H9cPYuDoCaujrmNunb28bJnvev33Buz9E8V8YV1DGVITExkVNHT9C1d3eFdOwc7Jk5fw6JHz4QH5+AhaUF08ZNwtpWcVD53KhZuTIlS2Sef0lJn65RkZFYZnlhFxEVhbmKF3HfWs1q1WQTLACye/n7iAj5PEdG5phnC3NzhVZwEVFRSidsCg0L49LVq8zIdj8uaDXciuNtmzlLdVJq+iQF4fFxWGZ5hotMiMdcP/ez1aurqeFlY8fLyJxbM38JVc8gUZE5PYOYKzmPImXPIMqoq6vj7unB65evFL57ExrGtaArTJj+9ROEmJiaoqHyWUp5K0ILC3MiwsPlwqIi0sth8hUvNsJCQ7ly6TJTZij2hsmNjGtURHi2+0NkJKYqr1HmSq5RUUrve/5Z7nsfEz8w77c/aJ/tvvcm7A3XL1/l52kTv6oMWdWsVImSWRouyJ6lIrM/S0Vhbvr116l7jx4RERVFlyGZlbypaWlcu3ObzXv3cG7HTqUvzgUhv4nKOOF/Xrly5bh//z5uKsYjKlWqFK9eveLBgwc5to5TxdjYGDs7O86cOUPNmjVl4efOnZN1Ec3Ozc0NLS0tLly4gKOjIwCRkZE8ePBANilC2bJlSU1N5e3bt9SoUSPX+dHT0yMwMJDAwEB++OEHSpQowa1bt746vQwdO3Zk3bp1ODg4oK6uTpMmTVTGLVWqFMeOHaNHjx6fTdfLy4sXL17w8uVLWeu4u3fvEh0djaen52eW/jInTpxg4cKFsv30/Plz3r9/Lxfn8ePHDB06lCVLlrB582a6du3KsWPHPjuj7Jfw8vLizJkzcmHnzp3D3d1d5c19zJgxDBs2TC5MR0eH8A+K3VG0tLRwL+HO5UtB1KideUxeuRREtZrKB8z28vHm/Gn5QdIvX7yEh2cJNDU1cXRyZPn6VXLfL1u0hISEBAYOG4yVkhkbhUwG+vpys3pJkoSFmRkXr1+nRLH0VrfJyclcvXObgV275eu6k5KTefbqJWW98tYN1EBXV26GVEmSsDA25uK9YDyKpl/HklNSuProIQOb5dy1OztJkkhKSc5T/j5HS0uL4h7uXAu6QrVamdfAa0FXqFy9qtJlPEt6c/Hsebmwq5cuU7yEB5qfZh/8+DFR4fqgrq6OJEmyCixJkljw+zzO/XOGGX/9gY1d/lVkaWlp4erhxo3L16hcI7McNy5fo2I15eP3fI69Y1H+WL5ALmzDstV8+PCBngO+w8Iq/1sEaWhqYuviwNPbDyjhm9na+OntB7iXL6kQX0dPhz6/jpILu3L0LM/vPqTloO6YFsm5y11K8teN35RVQR1TGf45dpLk5CTq+tVXmQddPT109fSIjYnlyqUgevX/TmXcnCi/Rplz8dpVSnx6fkpOTubqrVsM7Nnrq9aR35Tm2dyci5cvU6J4ekVscnIyV2/cYGDfvirTKeXlxcUrV+iUZeiNi5cvU8pbcQbh3QcPYmZqSvUsPRu+BQNtHbkZUiVJwsLAgIvPn+JhnV4Bm5yaytVXLxhQs06u05UkiQdv3+CWj7Pca2lp4e7hzpVLl6ku9wxymaqqnkFKenP+zDm5sMsXg3D3VDwvsub98cNHuLgWU/ju4N4DmJqZUlnFGGa5LkcJD4IuXpKblCroUhDVayp/jvb2KcnZbM9Sly5eooRXCZXlyMn+PfswNTOjSjXl15PPkb9GZW77q0FXqFK9mtJlSpT0UnGNcs9y3/uImrr8S2V1dQ25+16GI/sOYmJmSsUqX78vMqh8lrp2jRKuWZ6lbt9mYPfP/wZRxbd0aTb+JT/M0KS5c3BycKBbq9b/2Yq4whoDU1BNVMYJ//PGjx9P06ZNKVq0KG3atEFdXZ2bN29y69YtpkyZQq1atahZsyatWrXi999/x83NjXv37qGmpoZ/LscDGTlyJBMmTMDV1ZUyZcqwYsUKrl+/zrp165TGNzQ0pFevXowcORILCwusra356aef5H7Qubu706lTJ7p27crs2bMpW7Ys79+/5/jx4/j4+NC4seLYEStXriQ1NZVKlSqhr6/PmjVr0NPTw8nJCQsLiy9OL6tOnTrxyy+/MHXqVFq3bo1ulh/l2U2YMIF69erh6upK+/btSUlJ4cCBA4waNUohbv369SlVqhSdOnVizpw5pKSk0L9/f2rVqqVy0oev5erqyqpVqyhfvjzR0dGMGDFCrhVfamoqXbp0oWHDhvTo0YNGjRrh4+PD7NmzGTlyZL7lY/jw4fj6+jJ58mTatWvH+fPn+euvv1iwYIHKZXR0dJR3S/2gPH6bDu34deIUPEqUwNvHm707d/PmzVsCWjYHYMn8Rbx7956xE38GILBlM3Zu2c78OX/StFkAd27dYf/uffw8eQKQPjB49gdeQ6P0t/FZwz8kJPD6Vebg0aEhoTx68BAjY2Osbaw/u23yi56WDg4mmT8u7IwtKW7pQExiPG/ivn4crfyipqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x86B//x+9YWVgw4FMFXXJyMk9evvz0/xTehYdz/8kT9PV0Kfqp1cScFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjOS1DHXqseLQQYoWsaKolRUrDx1EV1sbP9/MFxETVq2giKkpAz5V0K04dBAvR0fsixQhJSWVs3dus+/iBX5snznGWkJiIi+zzIQcEv6e+y9fYmJggI2KFgm50bJdG2ZO/pXiJTzwLOnFgV17efvmDU1aBACwfOESwt+/Z+S4MQA0aR7A7m07WTxvAY0CmxB8+y6H9h7gx0/nDUClalXYsXErru5ulPBK76a6eskKKlevKntgnz97LieOHGPC9Cno6evLWloYGBp8trt5bgS0acG8abNx8yiOh3cJDu85yPs372gYmH5dX/v3CsLfhzN4bOa4Y08fps9em/jhAzHR0Tx9+BhNLS2KOjuiraONUzFnuXUYfGp9kz08P1VqVJtdC9dhW6woDm7OXDtxjujwSMrVS/8hemLTXmIjowns1wk1dXWsispXahoYG6KhpSkXfnb3UWxdimJmbUFqSiqPrwdz60wQ/t2Vj3n6pQrimMpwaO8BqtaorrRl0OWLQSBJODgWJeTVa5bOX4yDY1EaNsmfcczU1NTo0KI5KzZuxNHOnqL29qzYuAFdHR3862RW9oyfOQMrC0sG9OwJfLpGfRr6ITklmXfvw7n/+HH6NepT98iEDx/kWuq+Dgvj/uPHmBgZYWP19S921NTU6NC6NSvWrcPRwYGiDg6sWLsWXV1d/OtnVmiOnzYNqyJFGPBpOI32rVrRd/BgVm7YQO1q1Th59iwXr1xh2Tz5ruRpaWnsOXiQpn5+aCr5MR4dE0PY27e8+/SS7/mn7WDxaQbW/KSmpkb7chVZefEcRc3McTQ1Y8XFc+hqauHnmVmJOGH/bqwMjfjhUwXdknOnKWlrj6OZGfFJSWy6GsSDd28YVT9/x/Jq1aEtv/0yFXdPD7xKerNv117evnlLQItAAJYu+Jv3797x44SfAGjashm7tu5g4Zy/aNysKXdv3+Hgnv2MnZQ5CdfqpSvxLOmFfVEHEuLj2bF5G48fPGLQiKFy605LS+PQvgM0aOyPxldUgGXVrmN7pkyYRAkvT7x9SrJ7xy7ehr2heavmACz6ayHv373j51/S89msZQu2b97Gn3/MJaB5M+7cus2+XXuYMDWzJWVycjLPnjz99P8U3r17x8P7D9DT18ehaObYd2lpaezfs49GTRp9VUVehhbtWjNr8nSKl3D/dI3ax7s3b2n86Rq1YuFSwt+/Z8S49J4PTZoHsGfbLv6etwD/T9eow3sPMHriT7I0K1WrwvbP3PcyynBk30HqN2qIhmb+V2CpqanRoVkzVmzZjKPdp2epLZvTr1O1sjxLzZ6d/iz1aVzm9GepjOtUxrPUY/R19ShqZ4eBvj5uzs5y69LV0cXUyFghXBAKkqiME/7n+fn5sXfvXiZNmsSMGTPQ0tKiRIkS9O7dWxZn27ZtjBgxgg4dOhAfH4+bmxvTp0/P9ToGDRpETEwMw4cP5+3bt3h5ebF7926Kf3ozq8zMmTOJi4sjMDAQIyMjhg8fTnS0fCunFStWMGXKFIYPH87r16+xsLCgSpUqKivOTE1NmT59OsOGDSM1NRUfHx/27NkjGxPuS9PLqnjx4vj6+hIUFPTZcdRq167Nli1bmDx5MtOnT8fY2Fiu1WBWampq7Ny5k4EDB1KzZk3U1dXx9/fnzz///GyevtSKFSvo27cvZcuWxdHRkWnTpsnNijt16lSePXvGnj3p073b2NiwdOlS2rZtS4MGDShTpky+5KNcuXJs3ryZ8ePHM3nyZGxtbZk0aVK+TN6QoW6DesREx7B6+Uoi3ofjXMyF6X/MwOZTF6bw8HDeZhnQ2tbOjl//mMGCOX+ya+sOLCwtGTh8MLXq1v6i9d4Pvs/Q/oNknxfMSR/bw6+JPz+O/0nVYvmuRBEn/mqR2ZJwUPX0H977g88z9fgqVYt9U91atuJjUhLTFy8kNi6Oku7u/PXLJLm3vmHv36Ge5e3zu4gIOg3N7DaxZucO1uzcQbmSJfl7avp4SW/eh/PTrFlExcZgZmxMSQ8PVsyYhW0efuSq0rVBQz4mJ/Hbpg3EJiTg7ezCnwMGybWgC4uMkHvbmpj0kd82beBtVBQ6Wlo4WdswqXtPGmYZ6y74xXP6zf1D9vmPbVsBaFKpMhO7dv/q/NaqX4eYmBjWrVhNZHgETsWcmfx/7N13dFTF28Dx7+6m916AQAIhCST03nsHBUEQpIoiYkFRQawgP0FUiqiAIl16R3rvLfQWOiGU9N7L7r5/BDbZZENLQ97nw9lz2JuZuzN7787enfvMzC+TcHXL/lzERMcQkWtyercy7kz4ZRJ/zviDTWs34ODkyHsff0DTVjntWb9BA1AoFCz8ax7RkVHY2tvRoEkjBg/LiR7atG4jAKM/0P/ROOrL0UXSedK0dQsSExJZuXApsTExlPfy5KvJ43F52AEeGx1LVLj+ZNafvvOh7v83r93g4K59OLu68OeKBYUuz/Oq2rAWKYnJHFq3naS4BJzLufPG58OwdcruyEiKSyA+6tk60zPTM9i2YDWJMfEYmRjjWMaFV9/rT9WGRbM6XnGcUwD3Qu5y6fwFJk77yeDrpiQlM3/2HKIio7CysaZpi2YMfndooX605zXo9d6kp2fw4++/k5iUSICfH79PnKTfRkVEolTk3EiMjI7mzfdzpk9YvGY1i9espna16vz1888AXL52jeFjcm7OTfvrTwC6tm3HuFzfyc9V5jfeID09nR+nTycxMZGAKlX4/eef85Q5Qu/mZ42AAH749ltmzZ3L7HnzKFemDJO+/VZvCCzAiVOnCAsP55VOhhcEOHDkCOMnT9Y9/3JC9hDJdwYN4t0i/H5/ZGD9hqRnZfLTrm0kpqXh716G33q9oRdBF56QgDJX+5uYnsakHVuITknGysQUH1dX/nyjv94Q2KLQql1rEuLj+WfuImKis69BJk6drBtGHRMVTURYzufCvYw7P0ydzKzpv7NxzXocnRx5f9RHNG+d06GSlJTEtB9/ITY6BksrSyr5VGba7Bn4+euPojgdeIqIsHA6dXv2BQ/yatO+LQnx8Sz4ex7RUdF4VarIT9N/wc09u8M/Oiqa8LCca6kyZcvw0/Qp/DbtV9atWouTsxMjP/uElq1zOrCjIqN4q/9g3fPl/yxl+T9LqVm7Fr/9mRONdfJEIOFh4XQu5Or1Ldq2IjEhgaXzFxMTHYNnRU++/2WS7gZpTHR0vjbq+18m8teMmfy7diOOTo4Mz9NG9R3UH4VCwaK/5uf63mvIoGH6UbNnAk8TER5RZDcJDBnUs1d2OzVrZva1lK8vv38/Qf8zH2ngWuqjnGvVxWvXsnjtWmoHVOOvZ/j9J0RxU2ifZnIrIYQQpeJB3Iu5qt2zKGPnQpM/hpd2MQrl8PuzSbxyrbSLUWjWfj4k7Npb2sUoFJu2rbgddf/JCV9wXk5luRR6s7SLUWj+7pVYFLiltItRKAPrdX5pzqnE28GlXYxCsfbyJLGQ81++CKzLlCF+zotxY6gwbN8ZxN3YsNIuRqF42LsRkRD95IQvOBcbR25F5Z8/77+kolM5Eq/fKO1iFJp15SJaHKiEDVnxw5MTlZL5fUruhv6LpOgmSRJCCCGEEEIIIYQQQjyWdMYJIYQQQgghhBBCCFFCZM44IYQQQgghhBBCiJeUrKb64pHIOCGEEEIIIYQQQgghSoh0xgkhhBBCCCGEEEIIUUJkmKoQQgghhBBCCCHES0qJDFN90UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJSWrqb54JDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEOI/YebMmXh5eWFmZkadOnU4ePBggWkHDx6MQqHI9/D399elWbBggcE0aWlpxVYH6YwTQgghhBBCCCGEeEkZ6mh6UR7PasWKFXz88cd89dVXnDlzhmbNmtGpUydCQkIMpv/1118JDQ3VPe7evYuDgwOvv/66XjobGxu9dKGhoZiZmT3X+/00pDNOCCGEEEIIIYQQQrzwpk6dytChQ3n77bepUqUK06dPx8PDg1mzZhlMb2tri5ubm+5x8uRJYmNjGTJkiF46hUKhl87Nza1Y6yGdcUIIIYQQQgghhBCixKWnp5OQkKD3SE9PN5g2IyODU6dO0b59e73t7du358iRI0/1enPnzqVt27ZUqFBBb3tSUhIVKlSgXLlydO3alTNnzjxfhZ6SdMYJIYQQQgghhBBCvKSUKF7Yx6RJk7C1tdV7TJo0yWA9oqKiUKvVuLq66m13dXUlLCzsie9DaGgoW7du5e2339bb7ufnx4IFC9i4cSPLli3DzMyMJk2acP369ed/05/AqNj2LIQQQgghhBBCCCFEAcaOHcuoUaP0tpmamj42T9655rRa7VPNP7dgwQLs7Ozo3r273vaGDRvSsGFD3fMmTZpQu3ZtfvvtN2bMmPHE/T4P6YwTQgghhBBCCCGEECXO1NT0iZ1vjzg5OaFSqfJFwUVEROSLlstLq9Uyb948BgwYgImJyWPTKpVK6tWrV6yRcTJMVQghhBBCCCGEEOIlVdorphbVaqomJibUqVOHnTt36m3fuXMnjRs3fmze/fv3c+PGDYYOHfrE19FqtZw9exZ3d/dnKt+zkMg4IYQQQgghhBBCCPHCGzVqFAMGDKBu3bo0atSIv/76i5CQEIYPHw5kD3u9f/8+ixYt0ss3d+5cGjRoQEBAQL59jh8/noYNG1K5cmUSEhKYMWMGZ8+e5Y8//ii2ekhnnBBCCCGEEEIIIYR44fXp04fo6Gi+//57QkNDCQgIYMuWLbrVUUNDQwkJCdHLEx8fz5o1a/j1118N7jMuLo5hw4YRFhaGra0ttWrV4sCBA9SvX7/Y6iGdcUIIIYQQQgghhBAvKeUzDgd90Y0YMYIRI0YY/NuCBQvybbO1tSUlJaXA/U2bNo1p06YVVfGeikKr1WpL9BWFEEIIIYQQQgghRIl4f+0vpV2EAv3x2melXYRSIZFxQgjxAvvfzvmlXYRC+7rdEBKvXCvtYhSKtZ8PTf4YXtrFKLTD788m7q0PSrsYhWI373d6LvyytItRaGsGTaT5TMN3dP9LDoyYScKeA6VdjEKxad2c21H3S7sYheblVJb31vxc2sUolFk9P2dR4JbSLkahDazXmRuRd0u7GIXm7exBn3++Ke1iFMqK/hNemra267zPS7sYhbLprZ9p99fI0i5Goe0cZniYoxDPSjrjhBBCCCGEEEIIIV5Sz7pqqSh+ytIugBBCCCGEEEIIIYQQ/19IZ5wQQgghhBBCCCGEECVEhqkKIYQQQgghhBBCvKQUyDDVF41ExgkhhBBCCCGEEEIIUUKkM04IIYQQQgghhBBCiBIiw1SFEEIIIYQQQgghXlJKWU31hSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5RChqm+cCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxkpJhqi8eiYwTQgghhBBCCCGEEKKESGecEOK5pKWl8b///Y/w8PDSLooQQgghhBBCCPGfIcNUhRDP5ZtvviEhIQFXV9fSLooQQgghhBBCiAIokWGqLxqJjBNCPLP09HQcHR2ZMWNGaRdFCCGEEEIIIYT4T5HOOCHEMzM1NeWLL77A1NS0tIuSz759+1AoFMTFxT11Hk9PT6ZPn16o11UoFKxfv75Q+xBCCCGEEEII8fKTYapCiGd25MgRmjVrRrt27di2bVtpF0c8dPXAaS7tPk5qfBJ27k7U7dkWV28Pg2nDrt1h54xl+ba/8vU72Lo5AqBRq7m44yg3j18kJS4RW1cHar3airJVKxZrPbRaLX8tX8a67dtJTE7C38eHMe8Op1L5CgXmuRlyh9lLl3Dl5k1CIyIYNfRt+r3yql6aP5ctZc5y/To72tmxfeHiYqnH06jh7k2/Wu3xcymPk6UdX2yZxcHb50qtPIaYvdoZkxZNUFiYo751h5R/VqB5EPbYPKbtWmLSqhlKB3u0SclknDxD2uqNkJUFgEnLppi2aobSyQEA9f0w0v7dStaFy0Ve/g6+DXjVvxn2FtbcjYtg/onNBEUEF5i+mVcNugc0x93GkZSMNM48uM7Ck1tISk8FYHyHtwlwy/8ZOHXvChN3Lyry8j/S3b85fWu1xcHCluCYUH47vIrzoTcLTN8joDmvVWuJm7UD4YmxLD69je1Xj+uleb16K171b46rtT3xacnsu3mav45tIEOdVWz1yEur1TJn87+sO3SAxJQU/D29GP1GPyqVKVtgnj1nTrNg2xbuRkaQpVbj4eJC/7bt6dygUbGU8d+1G1i9dAUx0dFU8PJk+EfvE1CzeoHpz585x1+/zeTO7WAcnZx4vV8fuvR4RS/NuhWr2bRuI5HhEdjY2dKsZXOGDH8HE1MTAC6cPcfqpSu4fuU6MdHRfDvpexo3b1qk9WpesSbtfOpha2ZFaEIUq87t4Ub0fYNpB9bpRCPPgHzbHyREMWHn/Hzb65bzY2iDbpx9cJ0/j64v0nLndnLnIY5t2UtSXALOZd1o17875f0qPTHf3Wu3WPy/P3Au58Y7Ez/XbT+z9ygXDgYSeS+7jXPzKkfL3l0oW6ng75/nsWntBtYuW0VMdDTlPT0ZNnIEATWqFZj+wplzzPltNiHBwTg4OtLrzT507t5N9/esrCxWLl7G7q07iI6KopyHB4Pfe5u6Devr0gzp9SYRYfnn+e3S4xVGfPpRkdSrvU99ulVtip25FffiIlh4citXIu8UmL6pZ3Ve8W+Gm7UDKZnpnHtwncWntpGUkZovbeMK1RjZrDeBd4P4Zf/SIimvIS9rW9vZrxGvVWuJg7k1IXHhzDm+kUvhtwtM36VKY7pWaYyLlQORybGsPLeHPTdOlVh5AbpVbcrr1VvjaGFDcGwYs46u5WLYrQLTv1K1Ka/6N8PV2oGIpFiWntnJruuBBtO2rFSLr9oM5nDwecbtmFtcVXihyGqqLx7pjBNCPLN58+bx4Ycf8vfffxMSEkL58uULTKvValGr1RgZSXNTnIJPBXFyzS7q9+mAS8WyXDt0lj0zV/LK129j6WBbYL5XvxmGsbmJ7rmplYXu/2f/PcCtwEs06tcJG1dHHgTdYv+ctXQc1R8HD7diq8vCtWtYumE93438mPJlyjJ35Qre//Zb1sychaWFhcE8aenplHN1o23jpkyd93eB+65Yvjwzv/+f7rlKWboB4ubGptyIvseWK0eY2Gl4qZbFENNObTFt34qUuf+gDo/ArGtHrD77kIQvv4e0dIN5jBvWxazXq6TMW4L6xi2Ubi5YDB0AQNrytQBoYuNIXb0BTUQUACZNGmD54TASx/34xI6+Z9HYsxpD6nVhzvGNXIm4Q3uf+nzVdhAfb5hOVHJ8vvR+LhX4sOnrLAjczMl7V3CwsOHdht0Z0fg1ftq7BICf9y7BSKnS5bE2s2BKtw85GnyxyMqdV2vvOnzYtBdTDyznYtgtXqnalJ+6vs/AZROISIrNl/5V/2YMa/gqP+9bSlBEMFVcPBnd8k0S01I4cucCAO0q12NYw+5M3ruYi2G38LBzZWzr7OP0++E1xVaXvBbt2MbS3Tv5duAQyru4Mm/rZj6YMY3V4/6HpZmZwTy2lpYM6dQZT1d3jI1UHLxwnu8XLcDe2ppGVfN3GBXG/l17+fPXP3j/05H4Vw9gy/p/+fqzL/jrn/m4uOWfMzXsQSjffDaWTt06M/rbL7l0/iJ/TPkVWzs7mrZqDsCe7buYN3sOo8aOpko1f+6H3GXKDz8B8O7I9wFIS03Dy7sS7Tp35H9fjSvSOgHUKefL6zVas/zMTm5G36eZVw3eb9qL73fMIzY1MV/6led2s/7iAd1zpVLBV20Gc/re1XxpHSxseK1aS65H3i3ycud2+dgZdv6zno6De+Hh48XpPUdY/vNfvDv5C2yd7AvMl5aSysbZS/Hyr0xSvH5d7wTdoGqj2pTz8cLI2Iijm/awbPJshv04BhsHuyIp94Hde5kzYxYjPv2IKtX82bZhM999NpZZi+cWeE599/lXdOzWmc++/YKgC5eYOWUGtna2NGmZfU4t+ms++3bs4sMxoyhX3oPTJ07yw5fj+GX2r1TyqQzA9Dl/oNZocup66zZffzJGd14WVqMKAQyq04m5gZu4GhFC28p1Gdt6AKP+/Y3olPztra9zed5v3JOFp7Zy6mF7+06DV3i3YXemHNC/ceZkaUv/2h0ICg8ukrIW5GVta5t51eCdBq8w6+g6LocH08mvIePaD2XE2l+ITI7Ll76TXyMG1enEb4dXcy3qLr5OHnzQtBdJ6SmcuBtUImVuUbEW7zXqwW+HVnEp/DZdqjRmYqfhDF05icjk/Meia5UmvFW/G9MOLOdqZAh+LuX5pNkbJKWncCzkkl5aFyt7hjXozvnQGyVSFyEKIsNUhRDPJDk5mZUrV/Lee+/RtWtXFixYoPf3R8NEt2/fTt26dTE1NeXgwYNotVp++uknKlasiLm5OTVq1GD16tW6fGq1mqFDh+Ll5YW5uTm+vr78+uuvTyzPli1b8PHxwdzcnFatWhEcHJwvzZEjR2jevDnm5uZ4eHjw0UcfkZyc/NR1DgwMpF27djg5OWFra0uLFi04ffr0Y/OMGTMGHx8fLCwsqFixIt988w2ZmZlP/ZrP6vKeE3g3qkHlxjWwdXOiXq+2WNjbcPXgmcfmM7O2wNzGSvdQ5uqcunXiEtXaN6KsfyWsnezwbVYb9ypeXN5j+C5jUdBqtSz7dyNDXu9N60aN8a5QgfEff0JaRjrbDuwvMJ9/ZR9GDnmLDs2bY2JsXGA6I5UKJ3t73cPetuCOypJwLOQSc45vZP+ts6VajoKYtmtF2qbtZJ4+h+Z+KClzF6MwMcakQd0C8xhV8iLr+i0yj59EEx1D1qUrZBw/iZFnTqd91rmLZF24jCY8Ak14BGlr/0Wblo5RJa8iLX+3qk3Zc+MUu6+f5H58JPMDNxOdHE8H3wYG0/s4exCZHMuWK0eJSIrlSsQddlw7QSXHnCitpIxU4tKSdI/q7t6kZ2XqfngVh941WrM56Aibg45wJzaM3w6vJjIpju4Bhn9Ed/BtwMZLh9hz4xShCdHsuXGKzUFH6Fe7nS6Nv5sXF8Nusuv6ScISYwi8G8Tu6yfxdS7aCKDH0Wq1LNuzmyEdO9O6Vm28y5Zl3KAhpGVksD3weIH56vj40qpmbbzc3Snn7ELf1m3xLluOszeK/ofV2hWr6NC1E51e6UJ5zwoM//gDnF1c2LRuo8H0m9f/i4urC8M//oDynhXo9EoX2nfpxOplK3Vpgi5ewr9aAK3at8HN3Y06DerRsl1rrl25pktTr1EDBg8bStOWRdNRklebynU5EnyBw8EXCEuMYdX5vcSmJNK8Yk2D6dOyMkhIT9Y9Kti7YWFixtE7+p3QChQMqdeFTUGHDXZ4F6XjW/dRs2UDarVqiFNZV9oP6IGNox2ndx9+bL6t81bh36g2Zb098/2t+4gB1G3XFLcKZXEq40qXt/ug1WgJvnS9yMq9bvka2nftSIdunSnvWYFhI0fg5OLClvX/Gky/Zf0mnF1dGDZyBOU9K9ChW2fadenI2mWrdGn2bt9F7wH9qNeoAe5ly9ClxyvUblCXtctzrrNs7e1wcHTQPQKPHMe9bBmq1apRJPXqUqUxe26eZs+NU9xPiGThqa1EpyTQ3qe+wfSVnTyISI5j29VjRCbHcTUyhF3XA6noqB8Vq1Ao+LDJ66w6v4fwpJgiKWtBXta2tntAc3ZeC2THtRPci49gzvGNRCXH0dnPcDRx60q12Xr1GAdvnyM8MYYDt8+x81ogPau3KrEy96zekm1Xj7H16jFC4sKZdXQdkUmxdKvaxGD6tpXrsTnoMPtvnSEsMZp9N8+w7eox+tRsq5dOqVAwtvVAFp3aSlhCdElURYgCSWecEOKZrFixAl9fX3x9fenfvz/z589Hq9XmSzd69GgmTZpEUFAQ1atX5+uvv2b+/PnMmjWLS5cu8cknn9C/f3/278/uYNFoNJQrV46VK1dy+fJlvv32W7788ktWrlyZb9+P3L17l9dee43OnTtz9uxZ3n77bb744gu9NBcuXKBDhw689tprnD9/nhUrVnDo0CE++OCDp65zYmIigwYN4uDBgxw7dozKlSvTuXNnEhPzRw88Ym1tzYIFC7h8+TK//vorc+bMYdq0aU/9ms9CnaUm5m4Y7lU89baXqeJJ5G3DQ44e2TR5Pqu//I2dM5YRdk1/KIk6KwulsX5Eo5GxERE3iy/a4X54ONGxsTSsVUu3zcTYmNr+AZy/cqXQ+w958ICOgwfxyjtDGfvzT9wLK7oorJeN0tkRpZ0tWZdyve9ZWWRdvYGRd8FDlbOu38LI0wOVVwXdfoyr+ZN5/pLhDAoFxvXroDA1IetmwUNmnpWRUkUlxzKcfaD/I/rcgxsF/gi6GhGCo4Uttcv6AGBrZkWjCgGcMhD980ibynU5HHye9Kzi6Ww3UqrwcS5PYJ5ohMC7QQS4Gj4OxkojMtT65UlXZ1LFxVMXDXo+9CY+zuWp4pL9XrjbONKwQgDH7hRfhF9e96OiiE6Ip2FVf902E2Njalf24fzNgoeF5abVajlxJYg74WHUruxTpOXLzMzk+tVr1K6v3/lcu35dgi4aPp+DLl7Kl75Og7pcv3KVrIfDtP1rVOP61WtcvZx9TEPvPyDw6HHqNzbcSVzUVAol5e3cuJwnyigoIjhfR0hBGntW40rEHWJSEvS2d6nSmKT0VI4EF1/nNGR/P4XevodXgK/e9ooBvty7HlxgvnP7jxMbHkXz1zo81etkpmegUWswtzIclf2sMjMzuXHtGrXq5Tmn6tUh6KLhYfpXLl2mdr06+unr1+X6lWu6cyozMwNjUxO9NCYmplw+b/jznJmZyd4du2jXpWORDF1TKVVUdCiTL9LoXOgNfJwNT5dxLTIERwsbapbJjtyzNbOkQXl/ztzXb297VWtFQloye28+/iZoYb2sba2RUoW3Y1nOPLimt/3M/Wv4uRj+LjRWGZGZZwhtRlYmPk4eqBTF331gpFTh4+SR77v31L2r+LsavmlnrDLKN+w3PSsTX+fyemXuX7sjcalJbLt6rOgL/oJTKhQv7OP/Kxk3JoR4JnPnzqV///4AdOzYkaSkJHbv3k3btvp3nr7//nvatcu+M5icnMzUqVPZs2cPjRpl34WrWLEihw4d4s8//6RFixYYGxszfvx4XX4vLy+OHDnCypUr6d27t8GyzJo1i4oVKzJt2jQUCgW+vr5cuHCByZMn69L8/PPP9OvXj48//hiAypUrM2PGDFq0aMGsWbMwK2AYVG6tW7fWe/7nn39ib2/P/v376dq1q8E8X3/9te7/np6efPrpp6xYsYLRo0cbTJ+enk56uv6wv6ddICM9KQWtRouZtaXedjNrS9ISDEcAmtta0bBvRxzKu6HJVHMr8CI7f1tG+5H9cPXOjmAqU6UiQXsCcfX2wNrJntCrwdw9f91g52tRiY7NHnrgaGunt93Rzo7QiIhC7TvAx4fxH39ChTJliY6LY+6qFQwd8zkrfvsDOxubQu37ZaR4+J5oEvQ7nTUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nCIdomptaoFKqSI+NUlve1xaInbmlQ3muRoZwvSDKxnVoi/GKiOMlCpOhFxm7nHDESveTuWoYO/GzCNri6zcedmaWWGkVOUbOhiTkoCDh+Hz9sTdy3St0oSDt89xLfIuvs7l6ezXCGOVEXZmVkSnJLDnxinszK35vcenKFBgpFKx7uIBlpzZUWx1ySs6ITtyysFavx4ONjaERT8+YiEpNYXOY0eTkZmFSqlgTN83aVClapGWLyEuHo1ag72D/pBHe3t7YqINR+jExsRib58nvYM9arWa+Lh4HJ0cadm2NfGxcXz63kjdVA5de7xCnwH9irT8BbEyNUelVJKYpv/9kJiWjK2rZQG5ctiYWeLvWpF5Jzbpba/oWJbGntX4YffCIi2vISmJyWg1GqxsrfW2W9pakxSXYDBPTFgke1dsYsA3H6JUqQymyWvvik1Y29vi5V80Hb0J8dnnlF2ec8rOwZ7Ygs6p6BjsGuRPr1arSYiLx8HJkdr167J++WoCalTDvWwZzp06w/FDR/SGpeZ27MBhkpKSaNu5fZHUy6aA9jY+NQm7MtYG81yLustvh1fzcbM+uvY28G4Q8wM369L4OpenVaXajNkys0jK+Tgva1trY2qJykC9YlOTqG1h+Nicvn+V9j71OXrnIjej7+PtWI62PvUwVhlhY2ZpcCh7UbI1e1Rm/c9ybGoi9gWU+dS9K3Tya8iR4PNcj7qHj5MHHX0bYqwywtbMipjUBPxdvejo25Dha34q1vIL8bSkM04I8dSuXr3KiRMnWLs2+4enkZERffr0Yd68efk64+rWzbnre/nyZdLS0nSdc49kZGRQK1cE1OzZs/n777+5c+cOqampZGRkULNmzQLLExQURMOGDfXu6j7q7Hvk1KlT3LhxgyVLlui2abVaNBoNt2/fpkqVKk+sd0REBN9++y179uwhPDwctVpNSkoKISEhBeZZvXo106dP58aNGyQlJZGVlYXNYzp8Jk2apNcZCfDdd99h1OTphzEoyHNnSQt5Nz1i6+qIrauj7rlzxbIkxyZwedcJXWdcvV5tObpsKxsnzAEFWDvZU6lhdW4eO//UZXqSrfv2MXHWH7rn07/5Nrsuee6SabXaQt+9b1In55z0Bqr7+dH93XfYtHcP/V/tXqh9vwyMG9bFYmBf3fOk6bOy/2Oo8/UxHbJGvpUx69qB1MUryLp1B5WrE+Z9e6GJTyD935wFXzRh4SSOm4TCwgLjOjWxeHsASZN/LdIOOQAt+mXN9znJpZytC0Prd2XVuT2cfXAde3NrBtbpyLuNuhvscGvjXZc7sWHciLpXpGU2JG8nuEKhyFe3Rxae3IqDhQ2zXxsNCohNSWTblWP0q90etTb7x3nNMpUZUKcDUw8sJyg8mLK2znzU9HWi63Ri0amtxVKHrSeOMWnpP7rn00Z8+LAu+um0WgMb87AwNWPJl9+Skp5G4NUrTFu9krJOztTx8X1svueStz3iCe1Rvvbr0ebs7edOn2X5oiW8/+lI/Pyr8ODefWb/+gf28xfz5pABRVr0x8l/9hR8TuXWqEIAqZlpnMsVdWpqZMyQep1Zcno7yQYm3y82+Y6N4UnKNRoN6/9YTLOeHXF0d3mqXR/dtJtLR8/Q/6v3MTIpePqD5/Gs33H5/pRzUgHZcw3O+Gkqw998CxTgXqYMbTt3YNeW7Qb3t2PzVuo2qI+jk9Nz18GQvGePQqEo8AZeWVtnBtftzJoLezn34Ab25ta8WbsDbzd4hT+PrcfMyIQPmvTir+MbSExPKdJyPs7L0NYalKcKCkXBX+XLz+7C3tyaKd0+RAHEpSax+/pJelVvhUZruIO3OOQtn0JhqN3K9s/p7dhbWDOj+ygUZHfc7bh2nD4126LRajA3NmVMqwFMO7ichPSnn6pGiOIknXFCiKc2d+5csrKyKFs2ZxiLVqvF2NiY2Fj9aABLy5y765qHd2Y3b96slxdyor9WrlzJJ598wpQpU2jUqBHW1tb8/PPPHD9e8LxBTxOhpdFoePfdd/noo/wrhT1u4YncBg8eTGRkJNOnT6dChQqYmprSqFEjMjIyDKY/duwYb7zxBuPHj6dDhw7Y2tqyfPlypkyZUuBrjB07llGjRultMzU15ecDT14xzNTKAoVSQWqi/h3ptKTkfNFyj+PsWZZbgTlDr8ysLWg1rCfqzCzSk1Mxt7XizIZ9WDnaPfU+n6R5/foE+OZEHGQ8nFcvKi4WJ4ec6KuY+Hgc7IrudQHMzcyoVMGTuw8eFOl+/6syz14g8VZwzoaHi64obW1Qx+fcnVbaWKNNKPiuuFmPLmQcOUHGwaMAaO4/ABNTLAb1JX3T9pyra7Vat4CDOjgElVd5TNu2JHXR8iKpT2J6CmqNGjtz/bvotmZWxOWJ3njktWotuBJxhw2XDgJwJzaMtKwMfuj0LkvP7CQuVzSAicqYJl7VWXF2V5GUtyDxaUlkadQ4WOh35tubWxObYvg4ZKgzmbz3H37ZvxQHcxuiU+LpVrUpyRmpxKdm/wgZWr8bO66eYHPQEQBuxTzAzNiUz1v0Y/GpbU/VKfOsmlevSYBnznCvjIdDe6MTEnDKFQ0bm5iAo/Xjo1WVSiUeLtmdKr4e5QkODWXBti1F2hlnY2eLUqXMF7EUFxuXL1ruEXsHe2Jj8qaPRaVSYWObXadFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt7cncUhKT0VtUaDjZn+94O1mQUJaU/u9GjsWY3jIZd1nQ0Azpb2OFna8V7j13TbHnUu/d7jU8btmEuUgYnin5eFtSUKpTJfFFxKfCKWtvkjZzJS0wm9fZewO/fZvjC7Y12r1YJWy8SBn9JvzHA8/XMiZo9t3svhjbvo98V7uJYvU2TltrE1fE7Fx8bli5Z7xN7Rgdho/Qnr42Lj9M4pW3s7vpn0PRnpGSQkJODo5Mj8WX/j6p5/saWIsHDOnjzDlz98V0S1ggRde2ult93GzJL4NMPtbXf/5lyLDOHfy9lz/IXEhZN2IoPvO7zDinO7sDWzwsXKntEt39TleXROLe03jk82/kq4gUUVntfL1NbmlpCejFqjzhdRZmdmpfedpl+vLH49tIrfD6/Bztya2NQEOvg2JCUj7anaiMKKT8suc95jYWdmTdxjjsWU/cuYfmAF9hbWxKQk0NmvMckZacSnJVPRsQzuNo5M6PCOLs+j82nb21MZsuIHQhNf7jnkFCUwxFg8G+mME0I8laysLBYtWsSUKVNo315/WEPPnj1ZsmRJgfOwVa1aFVNTU0JCQmjRooXBNAcPHqRx48aMGDFCt+3mE+YMqlq1KuvXr9fbduyY/hwQtWvX5tKlS3h7ez92X49z8OBBZs6cSefOnYHsueqioqIKTH/48GEqVKjAV199pdt2586dAtNDdsfb0w5LzUtlpMLBw43QK8GUr5HzQzT0SjDlqhkejmdIzL1wzG3zd96pjI2wsLNGo1YTcvYqFWo/OZrwaVlaWOitkKrVanG0t+f42bP4VawEZM9tc/rSRT4cOKjIXheyO/6C792lVtWiHdr2n5WWjibPCqmauHiMqvqhDnkY+aVSYeTrTeqqDQXvx8Qk/+1srabAKM0cChRFuOpylkbNzegH1HD35kRIzlxM1ct4E3jX8NxMpkbG+YZ1PYoCyFv8Jp7VMFap2H/r8YukFFaWRs21yBDqelTh4O1zuu11y/lxKPjxUapqjUa3Ul4b77ocCb6o++FnZmSS74aGRqNBoXh8xERhWJqZ6a2QqtVqcbSx5XjQZXw9sm+OZGZlcfr6NT7s0fOZ9q1FS0ZW1pMTPgNjY2Mq+/pwJvAUTVo0020/E3iKhk0bG8xTJcCf44eP6m07feIklf18dauKp6en5etwUyqVaLXaYp0G4BG1VkNIXBhVXCroRbdlP3/8IhiVnTxwsbLPNydcWGI0E3bO19vWzb8pZkYmrDq3h9gUw0NHn5fKyAh3r3LcvngNv3rVddtvX7yGT538K+qampvyziT9aSJO7TrMncvXee2jwdg559z8ObppD4c37KTvmHcpU/Hpbto9LWNjY7x9ss+pxi2a6rafOVnwOeXnX5UTR/TPqTOBJ6ns55NvpXoTUxOcnJ3IysriyP6DNGud/5pr5+Zt2NrbUb9RwyKoUTa1Rs2tmAdUd6ukN+dadbdKnLxneL5Xw+1t9vmvQMGD+Cg++/c3vb/3qdkWMyMTFp7cQlQRn1MvU1ubW5ZGzY3o+9QsU1lvwZWaZXw4HlLAXK4PqbUa3Uq4zb1qcOJuULF3HsLDYxF1l9plfTmc672vXc73ifNRqrUa3eIxrSrV5njIJbRoCYkL551VP+qlHVyvMxbGZsw8stbgqrJCFDfpjBNCPJVNmzYRGxvL0KFDsc2zAmWvXr2YO3dugZ1x1tbWfPbZZ3zyySdoNBqaNm1KQkICR44cwcrKikGDBuHt7c2iRYvYvn07Xl5eLF68mMDAQLy8Cl5dcfjw4UyZMoVRo0bx7rvvcurUqXyru44ZM4aGDRvy/vvv884772BpaUlQUBA7d+7kt99+M7zjPLy9vVm8eDF169YlISGBzz//HHNz88emDwkJYfny5dSrV4/Nmzezbt26p3qt51W1dX0OL/oXx/JuOHuV5drhsyTHJODTLHsY8OkN+0iNT6TJwG4ABO0NxNLBFjt3JzRqNbdOXCLk7FVavN1Dt8/I4AekxiViX86VlLhEzm85hFarxb9t8U0yrlAo6NvtFeavXkV59zJ4lCnD/NUrMTMxpWPznB8V306bioujIx887KDLzMzk1t27D/+fRWR0NFdv3cLC3AwP9+yohunz59KsXn3cnJ2JjYtn7qoVJKek0LV1m2Krz5OYG5tSztZZ97yMjROVncqRkJZcpHf8n1f6zr2YdW2PJiICdXgkZl06oM3IJOP4SV0ai7cHoImNJ21N9uqSWecuYtq+FeqQe6hvBaN0ccase1cyz17Q/eowe60bmRcuo42JBTMzTBrUwcivMslTi3ZeoH8vH+Kjpq9zM/o+VyNDaOdTDydLW3ZcPQHAm7Xb42Bhw2+HslccPHn3CsMb96CDbwPO3r+Gnbk1b9XvyrXIu/nmyGlduS4nQoJISi/+IXkrz+3hqzaDuBpxh0vht+lWtQku1vZsuJgdwTes4as4Wdox8eFcXeVsXaji6klQ+G2sTS3oXaMNXo7uTNyTM5fXkTsX6F2jNdei7uqGTg1t0JXDwRd0P4iLm0KhoG/rNszftgUPFxc8nF1ZsG0LZiYmdKiX0858t2Auznb2fNA9O+pq/rYtVK3gSVknZ7LUWRy+eIHNx47xRd83C3qp5/Zan9f5ecIkKvv5UiWgKls3bCIiPJwuPbLb0nmz5hAdFcXn34wFoEv3bmxcs54/Z8yk0ytdCLp4me2btvLFuJx5RBs0acS65aup5OONX9XsYaqL5synYdPGqB7OZZaaksqDezkL8IQ9COXmtRtY21jj4uZa6Hrtvn6SwfW6cCc2jNsxD2jqVQN7CxtdJ8Sr/s2wM7dm4cktevmaeFbjdvQDHiTo35DK0qjzbUvNyO7cz7u9qDTo1JINs5bgXtGDct6enNl7hPjoWGq3ye7U2rtiE4mx8bwy/E0USiUuHu56+S1trFAZG+ltP7ppN/tXb6X7iAHYOjnoIu9MzEwxMXu+G2Z59XijJ1MmTKaynw9+AVXZtnEzkeERdO6efU4tmP030ZFRfPpN9oJUnbt3ZdPaDcz5bRYdunXmysXL7Ni0jdHjvtTt88qlIKKjoqjoXYnoqGiWzluERqOhZ78+eq+t0WjYuWU7bTq2Q2X0dPPmPa3NQUf4oHFPbsY84HrkXdpUrouTpS07r2e3t31rtsPBwoY/jqwBsifjH9bwVdpVrse50OxhqoPqduJ6VE57ezdef67YR0Og824vKi9rW7v+4gFGNX+DG1H3CIq4Q0ffBjhb2bHlSnYn76A6nXC0tGXqgezI9DI2Tvg4l+daZAhWJuZ0D2hOBXs3ph1cUSLlBVhzfh9jWvXnWlQIQeHBdK7SGBcrezYFZUdSvlWvK06Wtvy0L3samrK2zvg5V+BKxB2sTM3pWb0Vng7uur9nqrMIjg3Ve43kh9/febcLUVKkM04I8VTmzp1L27Zt83XEQXZk3MSJEzl9uuCVriZMmICLiwuTJk3i1q1b2NnZUbt2bb78Mvticvjw4Zw9e5Y+ffpk/0Dr25cRI0awdWvB82mUL1+eNWvW8MknnzBz5kzq16/PxIkTeeutt3Rpqlevzv79+/nqq69o1qwZWq2WSpUq0adPnwL3m9e8efMYNmwYtWrVonz58kycOJHPPvuswPSvvvoqn3zyCR988AHp6el06dKFb775hnHjxj31az4rzzpVSE9O5fzWw6QmJGPn7kTrEa9j5ZB9vFITkkiOybmLrMlSc3rdHlLik1AZG2Wnf+91yvpXykmTmcXZTQdIjIrD2NSEsv4VaTKwKyYWT170ojAGvdaT9IwMfvxzFolJSQT4+PD7+O/1IujCoiJRKnNilSJjYnjzk5G654vXr2Px+nXUDgjgrx8mARAeFc1Xv/xCXGIC9jY2BPj6Mv+nX3B3ebr5g4qDn3MFfu+RMzz5o6avA7Al6Cg/5LqYLy3pW3ehMDHBvH8fFJYWqG8FkzTld8gVQad0cABNzg+KtH+3odVqMevRFaW9LdrEJDLPXSRtTc4iCApbayzfGYjC1gZtahrqe/dJnjqTrMuFXzE3tyPBF7A2teD1Gq2xN7cmJC6cibsX6u6A25tb42Rpp0u/9+ZpzIxN6eTXkEF1O5GckcaF0Jv8c1p/3iV3G0equnoyfse8Ii1vQfbcOIWNqSWD6nbG0dKG29GhjNk0k/Ck7KFujhY2uFrlDHFTKZX0qdGG8nauZGnUnLl/jRFrfyEsMWdo3KKTW9FqtbzdoBvOlnbEpSZxJPgCc45vLJE6PTKwfUfSMzOZvGwpiSnJ+HtV5LcPP9GLoAuLidGbTystPZ3Jy5YQEReLqbExFdzc+X7IUNrXrVfk5WvRthUJCQksmb+I2OgYKlT0ZMIvk3B1yx7+FxMdQ0R4TseAWxl3JvwyiT9n/MGmtRtwcHLkvY8/oGmr5ro0/QYNQKFQsPCveURHRmFrb0eDJo0YPGyoLs21K1cZ82FO2/DXb9lzOLbt1IHPvh5T6HqduncVSxNzulRpjI2ZJaEJUfxxeI1udVRbMysc8gxrMzMyoVZZH1ae21Po1y8KVRvWIiUxmUPrtpMUl4BzOXfe+HwYtk7ZUW5JcQnERz3bTY1Tuw6jzlKzZsYCve3NenSgec+ORVLu5m1akRCfwLIF/xATHUMFL0/G/zxR18kaEx1DZJ5zavzPPzDnt1lsWrsRRydH3v34fZq0zDmnMjMyWDxnPmEPQjE3N6duw/p8+s0YrKz1h42ePXmayPAI2nfpVCR1ye3onYtYm1rQs1pL7M2tuRsXzo97F+uilOzMrXC0zLmG3H/rDObGJnTwbciAOh1JzkjjUvhtlpw2PM9dSXhZ29qDt89hbWrBGzXb4mBhw53YMMbtmJvzXWhhg3Ou70KlQkmPgOaUtXVGrVFzPvQmn2/6g4gSvEm4/9YZbMws6V+7Aw4WtgTHhPLV1j91ZXC0sMEl97FQKOlVvRXl7FxQa9ScfXCdkRum646dePycuaJ0KLQlEQ8vhBDiufwvz7Cf/6Kv2w0h8cq10i5GoVj7+dDkj+GlXYxCO/z+bOLeMhzB+l9hN+93ei788skJX3BrBk2k+cwRT074gjswYiYJew6UdjEKxaZ1c25H3X9ywhecl1NZ3lvzc2kXo1Bm9fycRYFbnpzwBTewXmduRN4t7WIUmrezB33++aa0i1EoK/pPeGna2q7zPi/tYhTKprd+pt1fI5+c8AW3c9ivpV2E5/LF5lmlXYQC/djlvdIuQqmQWfyEEEIIIYQQQgghhCghMkxVCCGEEEIIIYQQ4iWlVMgw1ReNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SChmm+sKRyDghhBBCCCGEEEIIIUqIdMYJIYQQQgghhBBCCFFCZJiqEEIIIYQQQgghxEtKVlN98UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJaVAhqm+aCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxklLIaqovHImME0IIIYQQQgghhBCihEhnnBBCCCGEEEIIIYQQJUSGqQohhBBCCCGEEEK8pJQyTPWFI5FxQgghhBBCCCGEEEKUEOmME0IIIYQQQgghhBCihMgwVSGEEEIIIYQQQoiXlKym+uJRaLVabWkXQgghhBBCCCGEEEIUve93zivtIhTo23ZvlXYRSoVExgkhxAsstl2P0i5CodnvXEfCrr2lXYxCsWnbiri3PijtYhSa3bzfafLH8NIuRqEcfn82ccNHlXYxCs1u9lTihn5Y2sUoNLu5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZbNLu0iyDySNiyo7SLUCg2ndsT98mXpV2MQrObNpG4N4aWdjEKxW75XL7dNqe0i1Fo33d8p7SLIF4SMmecEEIIIYQQQgghhBAlRCLjhBBCCCGEEEIIIV5SSmTOuBeNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SCoUMU33RSGScEEIIIYQQQgghhBAlRDrjhBBCCCGEEEIIIYQoITJMVQghhBBCCCGEEOIlJcNUXzwSGSeEEEIIIYQQQgghRAmRzjghhBBCCCGEEEIIIUqIDFMVQgghhBBCCCGEeEkpZZjqC0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLykFMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooRIZ5wQz+jkyZNMmzYNjUZT2kURQgghhBBCCCEeS6lQvLCP/6+kM0785wUHB6NQKDh79myR7VOhULB+/fp826OioujduzcBAQEolUX/8Rk3bhw1a9Ys8v3+fzJ48GC6d+/+1On37duHQqEgLi7uuV9zwYIF2NnZPXd+IYQQQgghhBD/f8gCDqJUDR48mIULFwKgUqkoU6YMXbp0YeLEidjb25dauUJDQ/O9vlarZeDAgXz77be0a9eulEr2clAoFKxbt+6ZOs1E0TJu2hDTLu1RVa6E0taGhOGfoL4ZXNrFArI/a3O2bGLd4UMkpqTg7+nJ6N59qVSmTIF59pw9w4LtW7kbGUmWWo2Hswv927Slc4OGujSnr19n8a4dXLkbQlR8PD8PG07LGjWLtS5mr3bGpEUTFBbmqG/dIeWfFWgehD02j2m7lpi0aobSwR5tUjIZJ8+QtnojZGUBYNKyKaatmqF0cgBAfT+MtH+3knXhcrHW5XFquHvTr1Z7/FzK42RpxxdbZnHw9rlSK48hZl07YNK0IQoLC9TBd0hZtgZNaHiB6a1GjcDIxzvf9swLl0n+4+/sJ6ammL/SCeOaASisrVHfvUfqyvWo79wtnjq80kn/fFqy8snnU9uWmLRqmut8OkvampzzybRzO4xr10Dl7oo2IxP1zdukrtqAJjyiWOrwLF7kdiovrVbLnM3/su7wwYftlhej+/R7fLt15vTDdisiu91ycaF/m3Z0btCoxMpt1qMrJi2borC0QH0zmJRFy9DcD31sHtMOrTFp3RylowPaxCQyAs+QtmodZGbp0ijs7TDv3QOjGv4ojE3QhIWTMncx6uCQ4q6SKEVarZY527ey7uhhElNT8S9fgdE9e1PJ3b3APHvOn2XBzh3cjYoiS6PGw8mZ/i1b07lefV2av7ZtYc72rXr5HKyt2f79xGKri1mHNpg0qofC3Bx1yF1S1mxEE1Zwu2j1/tsYeVfMtz3z8hWS5yzKt920TQvMu3Ygff9hUtdvLtKyP2LW6xVMWrdAYWWB+sYtUuYtQXPvwWPzmHZqi0m7ViidHn6+j58kbdmanM+3mRnmvbtjXK82Cltr1MEhpC5YhvpWcJGXv55HFZp61cDK1JzIpFi2XjnGndiCv/NUCiUtvWtTo4w3VqYWJKQls//mGc7cvwZAnXK+1Czjg4t19m+8B/FR7LoeyP34yCIvuxBPQzrjRKnr2LEj8+fPJysri8uXL/PWW28RFxfHsmXLSq1Mbm5u+bYpFAq2bNlSCqURougpzEzJunSFjANHsBz1fmkXR8+inTtYumc33w4YRHkXF+Zt28oHv//K6m/HY2lmZjCPrYUFQzp0wtPNDWOVEQcvnuf7fxZhb21No6r+AKRmpONTrhzdGjVmzJw/i70epp3aYtq+FSlz/0EdHoFZ145YffYhCV9+D2npBvMYN6yLWa9XSZm3BPWNWyjdXLAYOgCAtOVrAdDExpG6egOaiCgATJo0wPLDYSSO+/GJHTPFxdzYlBvR99hy5QgTOw0vlTI8jmn71pi2aUHKwmWoIyIx69QOq5HDSfjuR0g3fCySZy8AI5XuucLSAuuvPyPzdE4no8WA3qjKuJM8fyna+ARMGtTB6uPhJIz/CW1cfNHW4dH5NG/Jw/OpA1affkDCVxMKPp8a1MWs1yukzF+C+sbt7PPprf4ApK3IPp+MfLzJ2HuQrNt3QKnC/LWuWH36Pglf/wAZGUVah2f1IrdTeS3auZ2le3bx7YDBlHd1Zd7WzXzw2zRWfzeh4HbL0pIhHTvj6eqGsZGKgxcu8P3ihdhb2+jareJk2qU9ph3bkDJnIerQCMxe7YTV6JEkjPmu4HOqUX3MXu9BytxFqK8/bKPeGQRA2tJVACgsLLD++nMyg66S/MvvaBMSUbo4oU1JKfY6idK1aM8ulu7by7f93qS8swvzdm7ng9m/s3rsN4/5/rZkSLsOeLq6YqxScfDSJb5fviT7+9uvii5dRTd3/njvA91zlbL4hraZtm6OacsmpCxdgzoyCrN2rbAa/hYJk6ZCuuF2MXn+ElDl+c747EMyz17Ml1blURaTRvVQP6Hju1B1eKUTpp3bkzJrHurQcMxe64rVl5+SMOorSEszmMe4SQPM+vYi5c/5qK/dQOnuhsXwtwBIW7QCAIt3B6EqV5bkP/5GGxuHSbOGWH39KQmffoM2Nq7Iyh/gVpFOVRqx6fJhQmLDqefhR/86Hfn90Cri05IN5uldsw1Wpuasv3iAmJQELE3M9YZAejqU4XzoDe4GhZOlUdPUqwYD63bi90OrSUx/+dsnxf/j4aAvKhmmKkqdqakpbm5ulCtXjvbt29OnTx927Nihl2b+/PlUqVIFMzMz/Pz8mDlzZoH7U6vVDB06FC8vL8zNzfH19eXXX3/Nl27evHn4+/tjamqKu7s7H3yQ8wWfd5jqhQsXaN26Nebm5jg6OjJs2DCSkpJ0f380NPKXX37B3d0dR0dH3n//fTIzMx9b9x9//BFXV1esra0ZOnQoaQa+HJ+l7gDbtm2jadOm2NnZ4ejoSNeuXbl586bu7xkZGXzwwQe4u7tjZmaGp6cnkyZN0qv7rFmz6NSpE+bm5nh5ebFq1Sq917h//z59+vTB3t4eR0dHXn31VYKDg5/q/fX09ASgR48eKBQK3XOAWbNmUalSJUxMTPD19WXx4sWPratarWbUqFG6uo4ePRqtVquXRqvV8tNPP1GxYkXMzc2pUaMGq1evfux+85o6dSrVqlXD0tISDw8PRowYoXf887p58yavvvoqrq6uWFlZUa9ePXbt2vVMr1ncMnbtJ+2flWSdfrGil7RaLcv27mZIh060rlkL7zJlGTdgEGkZGWwPPFFgvjo+vrSqWQsvN3fKOTvTt1UbvMuW5Wyuc7+JfwDvdXuV1jVrlURVMG3XirRN28k8fQ7N/VBS5i5GYWKMSYO6BeYxquRF1vVbZB4/iSY6Jrsj4vhJjDzL69JknbtI1oXLaMIj0IRHkLb2X7Rp6RhV8iqJahl0LOQSc45vZP+ts6VWhscxbdOctK27yDx7Ac2DMFIWLkVhYoJJ/doF5tGmpKBNSNQ9jKv4QkYmGacefmaMjTGuVZ3Utf+ivnELTWQUaZu2o4mKwbR546KvQ9uWpG3eket8+ufpzqcbt8g8firX+XRK73xKnj6LjMPH0TwIQ3PvPinzlqB0dEDl6VHkdXhWL2o7lZdWq2XZnl0M6diZ1rVqZ7dbA4c8bLeOF5hP1265u1PO2YW+rR+1WzdKpNymHdqQtnErmSfPorn/gJS/FmZ/LhrVLzCPkXdFsq7fJPNoIJqoaLIuBpFxLBAjr5xzyrRrezQxMaT+vQj1reDsdJev6m4giJeTVqtl2f59DGnXntbVa+LtXoZx/fqTlpHJ9tMnC8xXx7syrarXwMvVjXJOzvRt0RJv9zKcvXVTL51KqcTJxkb3sLeyLra6mLZoTNrOfWReuJQd1bl0VXZ7W7tmgXm0KaloE5N0D2Mfb8jMJOPcBf2EJiZY9O9D6sp1aFNTi68OndqStn4zmYGns9v2mXNRmJpg0qRBgXmMfCqRde0GmYePo4mMJuv8JTKOHMeoomd2AmNjjOvXIXXpatRXrmVfg6zeiCYiCtN2rYq0/I09q3H63lVO37tKVHIcW68cIyEtiXrlqxpM7+1UDk8Hd/45tZ1b0Q+IS03ifnwkd+NyohnXnN9L4N0gwhJjiEqOZ8PFgygUCio6li3SsgvxtKQzTrxQbt26xbZt2zA2NtZtmzNnDl999RU//PADQUFBTJw4kW+++UY3vDUvjUZDuXLlWLlyJZcvX+bbb7/lyy+/ZOXKlbo0s2bN4v3332fYsGFcuHCBjRs34u2dfzgSQEpKCh07dsTe3p7AwEBWrVrFrl279DrvAPbu3cvNmzfZu3cvCxcuZMGCBSxYsKDAuq5cuZLvvvuOH374gZMnT+Lu7p6vo+1Z6w6QnJzMqFGjCAwMZPfu3SiVSnr06KFbcGLGjBls3LiRlStXcvXqVf755x+9DjGAb775hp49e3Lu3Dn69+9P3759CQoK0r0frVq1wsrKigMHDnDo0CGsrKzo2LEjGQ+jKB73/gYGBgLZnYyhoaG65+vWrWPkyJF8+umnXLx4kXfffZchQ4awd+/eAus6ZcoU5s2bx9y5czl06BAxMTGsW7dOL83XX3/N/PnzmTVrFpcuXeKTTz6hf//+7N+/v8D95qVUKpkxYwYXL15k4cKF7Nmzh9GjRxeYPikpic6dO7Nr1y7OnDlDhw4d6NatGyEhMjznSe5HRxGdkEDDKjl3w02MjantXZnzt2891T60Wi0nrlzhTng4tQv4XBc3pbMjSjtbsi5dydmYlUXW1RsGh7Hokly/hZGnByqvCrr9GFfzJ/P8JcMZFAqM69dBYWpC1s3bRVmFl4bSyQGlrQ1ZQVdzNmapybp+M+cHxlMwadKAjJNncqLFlEoUKpXe0DwAbWYmRt5F2zGqdHrM+fSYTtisGzcxqpDrfHJyxLha1YLPJ0BhkR29ok1++aMEikpOu5XzI9HE2JjalX04f+tZ2q2gh+1W5eIqqo7S2Sn7nLoYlLMxK4usq9cxqvyYNuraDYw8y6N6+NlROjthXCOAzHM50T/GtWqQdTsEiw/eweb3n7Ca8CUmLZsWV1XEC+J+dDTRiQk09PXTbTMxMqa2tzfnbz/d95NWq+XEtavciYygdiX97++7UZF0+u4rXp3wHV8ums+9qOLp3FU62qO0sSHr6vWcjWo1WTdu63U6P4lJg7pknDkPGfo35i16vUJm0BWyrt0sIGfhKV2cUNrbkZW7rc/KIivoKkY+lQrMl3XlBkZeFVA9/F5RujhhXKsamafPZydQqR5+7+nXSZuRiZFf0V1vqRRK3G2cuBl1X2/7jaj7lLdzNZjHz6UCD+KjaOpVnc9a9uOjZr3p4NsAI6XKYHoAY5URKoWS1EzDkcBCFDcZpipK3aZNm7CyskKtVusiw6ZOnar7+4QJE5gyZQqvvfYaAF5eXly+fJk///yTQYMG5dufsbEx48eP1z338vLiyJEjrFy5kt69ewPwv//9j08//ZSRI0fq0tWrV89g+ZYsWUJqaiqLFi3C0tISgN9//51u3boxefJkXF2zvxTs7e35/fffUalU+Pn50aVLF3bv3s0777xjcL/Tp0/nrbfe4u2339aVadeuXXrRcc9ad4CePXvqPZ87dy4uLi5cvnyZgIAAQkJCqFy5Mk2bNkWhUFChQoV8+3j99dd15ZowYQI7d+7kt99+Y+bMmSxfvhylUsnff/+tC3eeP38+dnZ27Nu3j/bt2z/2/XV2dgbAzs5ObzjwL7/8wuDBgxkxYgQAo0aN4tixY/zyyy+0amX4btv06dMZO3asrs6zZ89m+/btur8nJyczdepU9uzZQ6NG2XPwVKxYkUOHDvHnn3/SokULg/vN6+OPP9b938vLiwkTJvDee+8VGKVYo0YNatSooXv+v//9j3Xr1rFx48Z8nbhCX3RCAgAO1jZ62x1sbAiLiXls3qTUVDp/+QUZWZmolErG9OlLgyqG76AWN4VNdvk1CYl62zUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nFIbovqie+yxcHi6uUlVnuVRlXUnZfGKnI3p6WTdvI1Zl3Ykh4VnR8/Vq43Ks3yRRwApbB/VIUFv+5PPp9OkWllh9cXH6M6nvQdJ37qzwDzmfV4j69rNJ84bJnJExxfQblnbEBYT/di8SakpdP5yDBmZD9utN/qVSLulO6fi85xT8Qm6+SgNyTx+klQbK6y+/gzdObV7P+mbcr57lc5OmLZuTvq2XST/uw1VRU/M+/dGm5lJ5uGCIwXFf1t0YgGfAytrwmKf4vt73NdkZGVlfw569aZBrk49/woVGN9vAOWdXYhOTGDezu0MnTGVFWO+wu7htXlRUVhnR9xpEvVHQGiSklDa2z3VPlTly6Eq40bKw+kAHjGuVR1V2TKkTHv8KJfCUtjZAgV9vh0LzJd59ET253v8F9n7MTIifcde0jc+nK8vLY2sazcwe60ryfdD0cbFY9ykASpvr8fOp/esLEzMUCmVJGXo3xRKzkjFytTcYB57c2vK27uSpVGz7MxOLIzN6OrfBHNjU9ZfPGAwTzufeiSkJXMr+r7Bv79sFAqJw3rRSGecKHWtWrVi1qxZpKSk8Pfff3Pt2jU+/PBDACIjI7l79y5Dhw7V69TKysrC1ta2wH3Onj2bv//+mzt37pCamkpGRoZuldKIiAgePHhAmzZtnqp8QUFB1KhRQ9cRB9CkSRM0Gg1Xr17Vdcb5+/ujyjVXhLu7OxcuXMi3v9z7HT5cf26lRo0a6SLBnrfuN2/e5JtvvuHYsWNERUXpIuJCQkIICAhg8ODBtGvXDl9fXzp27EjXrl1p3759vnLkff5otdpTp05x48YNrK31hwekpaVx8+bNZ35/c78fw4YN09vWpEkTg0OMAeLj4wkNDdUrq5GREXXr1tUNVb18+TJpaWn5FtzIyMigVq2nH6q4d+9eJk6cyOXLl0lISCArK4u0tDSSk5P1zotHkpOTGT9+PJs2beLBgwdkZWWRmpr62Mi49PR00vPMXWVqavrUZXwck9bNsfg451xL+nKCfjREKdp64jiTli3VPZ82InteqLzzWuQdfmyIhakpS8Z+RUp6OoFXrzBt7WrKOjlRx8e3aAttgHHDulgM7Kt7njR9VvZ/DJX7MXUx8q2MWdcOpC5eQdatO6hcnTDv2wtNfALp/27TpdOEhZM4bhIKCwuM69TE4u0BJE3+VTrkAOP6tbHo97ruedKjxRbyvu/PMHeKSeMGqO+H5pt8PmX+UiwGvoHt5HFo1WrUd++TGXgGVfnCDXkxblAXi4Fv6J4n/To7+z95Tx2F4gnnk3f2+fTPSrJuBaNycca8b080XTvodZ48Yv7m66jKlSHxx+mFKv/zeJHbqbyy261/dM+nPZzHKu8ppUX7xPPMwtSMJWO/edhuBTFtzSrKOjkXebtl3Kg+FkP66Z4nTfnjYSENfC4e09wa+flg1q0TqQuXkXXzNipXF8z790YTF0/6hofz6ioVqG/fIW31BgDUd+6iKuuOaZsW0hn3Etl6KpBJK5frnk97J/vzm/eMf7rPgSlLPvuClIx0Aq9dZdr6dZR1dKLOwyjRJlVy5lD0pgzVPb3o/sN4Ngce582WrQtVD+PaNbDo3V33PMnAYgvZHv/ZyM2kQV3UD8JQh9zLyW1ni3mPriTNnqdbQKeoGDdpgMU7A3XPkyY/vHbO9/3whO+Mqr6Y9ehK6tx/yLpxC5WbC+aD+qKJ60r62k0ApPzxNxbvDsF21pTs773bd8g8fFwXgV3cCir+o+vG1ef3kJ6VHbm37cox+tRsy6bLh8nSqPXSN/WqTjX3Ssw/sTnf34QoKdIZJ0qdpaWlbgjjjBkzaNWqFePHj2fChAm6jqQ5c+bQoIH+HAe5O75yW7lyJZ988glTpkyhUaNGWFtb8/PPP3P8ePYFoLm54TsqBdFqtQVOeJl7e+6htY/+9qj8z+N56g7QrVs3PDw8mDNnDmXKlEGj0RAQEKAbQlq7dm1u377N1q1b2bVrF71796Zt27ZPnEftUV01Gg116tRhyZIl+dI4OzujVD7/XRdDHTCFmWz00Xu4efNmypbV/3H8tB1dd+7coXPnzgwfPpwJEybg4ODAoUOHGDp0aIFzAn7++eds376dX375BW9vb8zNzenVq5fuGBgyadIkvYhOgO+++46RBaR/FhlHT5B15ZruuSbq8XeoS1Lz6jUI8MwZZpfx8AI1OiEep1ydzrGJiTja2OTLn5tSqcTDxQUAXw8PgsPDWLBje4l0xmWevUBi7pXEjLK/XpW2Nqhz3ZlW2lijzROhlZtZjy5kHDlBxsGjAGjuPwATUywG9c3uPHl0FapW66Kv1MEhqLzKY9q2JamLlhe06/83Ms9dIvF2rk6zh4swKG1tUOd675XWVo89FjrGxpjUq0lqrs7QRzRR0SRN/QNMTFCYmaJNSMTi7QGF/oxlnrtA4vjgXHUo4Hx6Qh3Muncl42ju8ykUTE2wGNiX9M079H7VmPfrhXHNaiRN/rVIJ+F+Wi9yO5VXwe1WAk62drrtsYmJOFo/Y7sVFsaC7VuLvN3KPHOOxNxD2Y0fnlN2tgbaqIS82XXMenYj48hxMvYfBshemdHUBIsh/bOjZ7RatHHx+SamVz8Iw7huwXM0iv+e5v7VCPjMU/dc9zlITND//k5KwvEJ87splUo8Ho6c8C1bjuDwcBbs2qHrjMvL3NQUb/cy3I0s/CqYmZeCSPwl1wrYj9pbayv97wwrS7SPmS9Yx9gYk1rVSd2mP1ewUbkyKK2tsM61GI1CpUJV0ROTpg2J//zbx3aUPbYOp86ReCPXNWTuz3euxYSUttZo4x/z+e7dnYyDR8nYexAAzd37YGqKxTsDSV+3GbRaNOGRJH3/E5iaoDA3RxsXj8XId4s0IjwlIw21RoOViYXedksTc5IzDM+zl5ieQkJasq4jDiAyKQ6lQoGNmSUxKTn1buJZjWYVa7IwcAvhSS/ud414+UlnnHjhfPfdd3Tq1In33nuPMmXKULZsWW7dusWbb775VPkPHjxI48aNdcMdAb0FDKytrfH09GT37t0FDn/MrWrVqixcuFAvCurw4cMolUp8fHyesXY5qlSpwrFjxxg4MOdO1rFjx3T/d3V1fea6R0dHExQUxJ9//kmzZs0AOHToUL50NjY29OnThz59+tCrVy86duxITEwMDg4OunLkLdejSLLatWuzYsUKXFxcsCmgc+RJ76+xsTFqtf5dqCpVqnDo0CG91z1y5AhVcs0dlputrS3u7u4cO3aM5s2bA9lRg6dOnaJ27ewL/qpVq2JqakpISMhTD0nN6+TJk2RlZTFlyhRdR2Pu+QcNOXjwIIMHD6ZHjx5A9hxyeRe4yGvs2LGMGjVKb5upqSkpXd8oIMczSE1Dk/piRkxZmpnprbCm1WpxtLHh+JUgfD2y52bJzMri9I3rfPhqj2fat1arJSPr8YuoFJm0dDR5Vh/UxMVjVNUv5864SoWRrzepqzYUvB8Tk/wX41pN/lCDfBQojOQrHYD0dDSReY5FfAJGVXxQ3304FEWlwqhyJVLXbXri7kzq1gQjIzKPnyo4UUYG2owMFBbmGFf1I3Xtv4WoAI85n3zzn0+rNz6m8Mb5zyeNNt/5ZN7vdYxrVyfppxlooh4/rLLYvMDtVF4FtltBl/XbrevX+LD7a8+07+x2q2ijZoCH55R+x4UmLh4j/yqo7zzsiFCpMPKtTOrKdQZ28JCJSfY5pLcj/TYq6/pNVO768zop3VzRRJfSuSWKhcHPgbUNx69exbdc9gIw2d/fN/iw2yvPtG8tj/8cZGRlEhweTs2KBc9/9tTSM9Ck63fIaBISMPL1zulUVqkw8vYi9d/8EcV5mdSsBkYqMk+e0dueef0mCY8i1h6y6NsTTUQkabsPPHdHHABpaWjyLAKniY3DqFrVnIhulQqjKr6kLn3MzXdD1yAajeHIxvQMtOkZKCwtMK4eQOrSVfnTPCe1VkNoQhSVnMoSFBGs217JqSxXIu4YzBMSG46/W0VMVEZkqLPPHSdLWzRaDQm5Vl9t4lmdFpVqsejkVh4k/P9aVEb55ItJUcLkyl28cFq2bIm/vz8TJ07k999/Z9y4cXz00UfY2NjQqVMn0tPTOXnyJLGxsfk6LwC8vb1ZtGgR27dvx8vLi8WLFxMYGIiXV85d7HHjxjF8+HBcXFzo1KkTiYmJHD58WDc8Nrc333yT7777jkGDBjFu3DgiIyP58MMPGTBggG6I6vMYOXIkgwYNom7dujRt2pQlS5Zw6dIlKlbMmTj5Wev+aHXTv/76C3d3d0JCQvjiiy/00kybNg13d3dq1qyJUqlk1apVuLm5YWdnp0uzatUqvXKdOHGCuXPn6t6Pn3/+mVdffZXvv/+ecuXKERISwtq1a/n8888pV67cE9/fR511TZo0wdTUFHt7ez7//HN69+5N7dq1adOmDf/++y9r16597CqkI0eO5Mcff6Ry5cpUqVKFqVOnEhcXp/u7tbU1n332GZ988gkajYamTZuSkJDAkSNHsLKyKnDevdwqVapEVlYWv/32G926dePw4cPMnj37sXm8vb1Zu3Yt3bp1Q6FQ8M033zwxStLU1NRgtF5xTaGusLZC6eKE4uF8U8py2ZGDmpi4UomK0ZVLoaBvqzbM374ND2cXPFxcWLB9G2YmJnSol7PC33cL5+NsZ8cHDzvo5m/fRtXy5Snr7ExWlprDly6y+fgxvngjZ1hWSlqa3l30B9FRXL17F1tLS9wcCp4j6Xml79yLWdf2aCIiUIdHYtalA9qMTDKO56wqZ/H2ADSx8aStye5QyTp3EdP2rVCH3EN9KxilizNm3buSefaC7gLZ7LVuZF64jDYmFszMMGlQByO/yiRPLd45aB7H3NiUcrbOuudlbJyo7FSOhLRkwpNiS61cj6TvPoBZx7ZoIqJQR0Ri1rEt2owMMk6c1qWxGNwXTVwCaes36+U1adyAzLMXDS5oYFTVF1CgCY9A6eKE+WvdUIdHkHGk4JV/n7sOu/Zh1qU9mvDI7Dp0bp//fBo6AE1sHGkPOwP1z6c7KF2cMOvehcyzF3Xnk3n/3pg0qEPSb3PQpqWhsMmOYNGmpuWbpLukvajtVF4KhYK+rdsyf/tWPFxcs9utbVsftls5ke3fLZiX3W497KCbv20rVStUeNhuZT1st47yRd+nuwFXWOnbd2PWrSOa8AjUYRGYvdIx+3NxNOf8tRg2OPucWrUegKyzFzDt2Ab1nbuob95G6eqCWc9XyDxzXndOpW/bjdU3ozHt1pHM46dQVfLEtFVTUublj6gXLw+FQkHfFi2Zv2sHHs7OeDg7s2DXDsxMjOlQO2fV5++WLMLZ1o4PumZ30M3ftYOqHuUp6+hEljqLw0GX2Rx4gi9e76PLM33DOpr5B+Bmb09sUhJzd2wnOS2NrvUKXhm0MNL3H8GsbUs0kdGoI6Mxa9syu709fVaXxqJf9hQSaZt36OU1aViXzAtBaFPyRHClZ6AJC9fflpGBNjkl//aiqMPWXZh174ImLBx1aARmPTqjTc8gI9dQcYsRQ9HExJK2PHtuu6zT5zDt3B717RDUN26hdHPBrHd3Mk+d1X2+jar7g0KB5kEYSjcXzN98HXVoGBn7Dhdp+Y8EX+C16i11K6LW9fDD1syKwJDs6Qva+tTDxtSStRf2AXAh9AYtK9Wie7UW7L1+CgsTM9r7NuD0vWu6YahNvarTunJdVp/bQ1xqIlYm2aOlMtSZug48IUqSdMaJF9KoUaMYMmQIY8aM4e2338bCwoKff/6Z0aNHY2lpSbVq1fQm1c9t+PDhnD17lj59+mRfGPTty4gRI9i6dasuzaBBg0hLS2PatGl89tlnODk50atXL4P7s7CwYPv27YwcOZJ69ephYWFBz5499RaZeB59+vTh5s2bjBkzhrS0NHr27Ml7772ntwDBs9ZdqVSyfPlyPvroIwICAvD19WXGjBm0bNlSl8bKyorJkydz/fp1VCoV9erVY8uWLXrDS8ePH8/y5csZMWIEbm5uLFmyhKpVq+rejwMHDjBmzBhee+01EhMTKVu2LG3atNFFyj3p/Z0yZQqjRo1izpw5lC1bluDgYLp3786vv/7Kzz//zEcffYSXlxfz58/XK3ten376KaGhoQwePBilUslbb71Fjx49iI/PCcmfMGECLi4uTJo0iVu3bmFnZ0ft2rX58ssvn+o41axZk6lTpzJ58mTGjh1L8+bNmTRpkl4EX17Tpk3jrbfeonHjxjg5OTFmzBgSHjPspzQYN6qH5ecf6Z5nT8YNqYuWk5Z7kvpSMLBde9IzM5i8YhmJKSn4e3rx2wcf6d2BD4uN0RvCnJaRzuQVy4iIi8PU2JgKrm58P/gt2tfJ+QEQFHKH4b9O0z2ftib77nCXBg0ZN3BwkdcjfesuFCYmmPfvg8LSAvWtYJKm/A65Ip6UDg56USZp/25Dq9Vi1qMrSntbtIlJZJ67SNqanEgrha01lu8MRGFrgzY1DfW9+yRPnUnW5SuUFj/nCvzeI+cGwUdNs+ds2xJ0lB/2FLz6c0lJ37EHhYkx5n17orAwR307hKQZf0J67mNhny8iQOnijFHlijlztuWhMDfDrHsXlHZ2aFNSyDxzntT1W7IjCYq6Dlt3oTA2xrx/75zzaeofec4n/TqkbdqOluzhqnrn09qciEDTVtlR1NZj9AfFp8z7R+9HW2l4kdupvAa260B6RgaTly/Jabc+/Dh/u6XM024tX0pEXGyudmso7esaXlCqqKVv3pHdRg3qi8LCAvWt2yT9NEP/nHJ00D+nNmzJbqN6vYLS3i77nDpzXjc/HID69h2SZ8zG/PXumL3aBU1UFKlLVpF5tOg7qcWLZWDrtqRnZjJ59UoSU1Pwr+DJb8Pfz/M5iM3z/Z3B5NUriYh/+P3t4sr3/QfSvlYdXZqI+Di+XryAuORk7K2sCKjgybyPR+FeDDfSANL3HMhub3u9gsLcHPWdeyTNng/pOdONKO3t8n9nODtiVNGTpFnziqVczyJ949bs7723+qOwtER94xZJE6dCrgg6pVOez/faTWi1YNanO0oHe7QJiWSeOkdaroUoFBbmmPXtmf33pOTshaeWrwN10c67djHsFubGprT0ro21qQURiTH8c2ob8WnZQ4WtTS2wNc+ZtzlDncXCk1voUqUx7zbuQWpGGhfDbrH7es4Nq3rlq2KkVPFGLf25pPfeOMXeG6cRoqQptE8zK7YQ4v8NhULBunXr6N69e2kXRQCx7Z5taOaLyH7nOhJ27S3tYhSKTdtWxL31318J127e7zT5Y/iTE77ADr8/m7jh+SOD/2vsZk8lbmj+aOz/Gru5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZb9PjIc1HyErbseHKiF5hN5/bEffJ0N2BfZHbTJhL3xtDSLkah2C2fy7fb5pR2MQrt+47vPDnRC2j6gRfrJlZuHzfv8+RELyFZ31YIIYQQQgghhBBCiBIinXFCCCGEEEIIIYQQQpQQmTNOCKFHRq4LIYQQQgghxMtDaWhVXFGqJDJOCCGEEEIIIYQQQvwnzJw5Ey8vL8zMzKhTpw4HDx4sMO2+fftQKBT5Hleu6C9+tmbNGqpWrYqpqSlVq1Zl3bp1xVoH6YwTQgghhBBCCCGEEC+8FStW8PHHH/PVV19x5swZmjVrRqdOnQgJCXlsvqtXrxIaGqp7VK5cWfe3o0eP0qdPHwYMGMC5c+cYMGAAvXv35vjx4ltZXjrjhBBCCCGEEEIIIV5ShiLDXpTHs5o6dSpDhw7l7bffpkqVKkyfPh0PDw9mzZr12HwuLi64ubnpHiqVSve36dOn065dO8aOHYufnx9jx46lTZs2TJ8+/ZnL97SkM04IIYQQQgghhBBCvNAyMjI4deoU7du319vevn17jhw58ti8tWrVwt3dnTZt2rB37169vx09ejTfPjt06PDEfRaGLOAghBBCCCGEEEIIIUpceno66enpettMTU0xNTXNlzYqKgq1Wo2rq6vedldXV8LCwgzu393dnb/++os6deqQnp7O4sWLadOmDfv27aN58+YAhIWFPdM+i4J0xgkhhBBCCCGEEEK8pF7k1VQnTZrE+PHj9bZ99913jBs3rsA8eYe3arXaAoe8+vr64uvrq3veqFEj7t69yy+//KLrjHvWfRYF6YwTQgghhBBCCCGEECVu7NixjBo1Sm+boag4ACcnJ1QqVb6ItYiIiHyRbY/TsGFD/vnnH91zNze3Qu/zWcmccUIIIYQQQgghhBCixJmammJjY6P3KKgzzsTEhDp16rBz50697Tt37qRx48ZP/ZpnzpzB3d1d97xRo0b59rljx45n2uezksg4IYQQQgghhBBCiJdUcQ63LGmjRo1iwIAB1K1bl0aNGvHXX38REhLC8OHDgexIu/v377No0SIge6VUT09P/P39ycjI4J9//mHNmjWsWbNGt8+RI0fSvHlzJk+ezKuvvsqGDRvYtWsXhw4dKrZ6SGecEEIIIYQQQgghhHjh9enTh+joaL7//ntCQ0MJCAhgy5YtVKhQAYDQ0FBCQkJ06TMyMvjss8+4f/8+5ubm+Pv7s3nzZjp37qxL07hxY5YvX87XX3/NN998Q6VKlVixYgUNGjQotnpIZ5wQQgghhBBCCCGE+E8YMWIEI0aMMPi3BQsW6D0fPXo0o0ePfuI+e/XqRa9evYqieE9FOuOEEEIIIYQQQgghXlJKWS7ghSNHRAghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxknqZVlN9WUhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEKrVarLe1CCCGEEEIIIYQQQoiiN+fYhtIuQoHeafhqaRehVMiccUII8QKbsn9ZaReh0D5t0ZfbUfdLuxiF4uVUlp4LvyztYhTamkETiRs+qrSLUSh2s6fS5I/hpV2MQjv8/myGrPihtItRaPP7fMX5B9dLuxiFUr1MZVac2VnaxSi0PrXase/GqdIuRqG09K7DqbtBpV2MQqvjUYW910+WdjEKrVXlunyy8dfSLkahTHtl5EvznfH9znmlXYxC+bbdW3Rf8EVpF6PQ1g/+sbSLIF4SMkxVCCGEEEIIIYQQQogSIpFxQgghhBBCCCGEEC8pBbKa6otGIuOEEEIIIYQQQgghhCgh0hknhBBCCCGEEEIIIUQJkWGqQgghhBBCCCGEEC8phUKGqb5oJDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEEKUEBmmKoQQQgghhBBCCPGSUsow1ReORMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5Ssprqi0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLyklMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5Sspvrikcg4If6jgoODUSgUnD17tlj2r1AoWL9+/TPladmyJR9//PFTp1+wYAF2dnaPTXPlyhUaNmyImZkZNWvWfKbyPK9nrUdxHwshhBBCCCGEEC8PiYwT4jkMHjyYuLi4Z+6sKkoeHh6Ehobi5OQEwL59+2jVqhWxsbFP7OD6L/nuu++wtLTk6tWrWFlZlXZxDMp7LErLpX0nOL/9CCnxidiXcaFRn464V65gMO2Dq7fZNGVhvu29x7+Pnbtzvu03Tlxgz99rqFDDlw7v9y2yMv+7dgOrl64gJjqaCl6eDP/ofQJqVi8w/fkz5/jrt5ncuR2Mo5MTr/frQ5cer+ilWbdiNZvWbSQyPAIbO1uatWzOkOHvYGJqAsDyRUs5vP8g9+6EYGJqStVq/rz13jt4VChfZPXq4NuAV/2bYW9hzd24COaf2ExQRHCB6Zt51aB7QHPcbRxJyUjjzIPrLDy5haT0VADGd3ibALeK+fKduneFibsXFVm5DTHr2gGTpg1RWFigDr5DyrI1aELDC0xvNWoERj7e+bZnXrhM8h9/Zz8xNcX8lU4Y1wxAYW2N+u49UleuR33nbnFV44lquHvTr1Z7/FzK42RpxxdbZnHw9rlSK09erbzr0Mm3IXbmVtyPj2TpmZ1cjzL8fg2t35WmXjXybb8fH8nX2/4CQKVQ0qVKY5p4Vcfe3JrQxGhWndvDxbBbxVqP7es3s2HFWuKiYyjnWZ4hH7xDleoBBtPGRsewcOZcbl2/Qdi9B3R6rRtDPhiml2bvtl3MnDw9X94l29diYmJSHFXgxI4DHPp3N0lx8TiXc6fTwJ54Vsl/zgPcuXKTHUs3EPUgjMz0TOycHajbpgmNu7TWpVFnqTmwYQdn9x8nMTYOR3dX2vd7lco1qxZL+R/Zt2knO9ZuIj4mjjLly9J72EAqB/gZTHv68AkObNnF3Vt3yMrMwr1CWbr164l/Hf3zLCUpmfWLVnLmSCApSck4uTrT6+03qVavVrHUYeeGLWxatZ646FjKenowcMRQ/Kr5G0wbGx3DktnzuX39JmH3Q+nQowsDR7ydL93WNRvZ9e82oiKisLa1pkGzxvR5e0CxnU8A+zbvZOfazbpj8fo7Awo8FmeOBLJ/yy7u3bpDVmYm7uXL0bVfT/zr6H93piQls2HxSs4cOak7Fj2Hvkm1ejWLrR5NPKvTqlJtbMwsCUuMZv3FA9yKeVBgepVSRQef+tQp54eNqQVxaUnsvBbIibuXAVAqlLStXJd6HlWwNbMiIimWTZcPcyXyTrHVoUdAC/rVaoejhS23Yx4w49AqzoXeKDD9awEt6FmtJe42joQnxrDw1Fa2XT2eq45KBtbuSCe/RjhZ2hESF86so2s5HnK52OpgyLUDp7m8+wSp8UnYuTtRp2cbXLw9CkyvzsziwtYj3A68RFpiMhZ21gR0aESlRgVfoxW1Tr4N6R7QPPtaKjacuSc2cfkx11LNK9akR0ALytg4kpyRxpn711hwcguJ6Sm6NN2qNqGjb0OcLO1ITE/mSPBFFp/eRqY6qwRqJIQ+6YwT4j9KpVLh5uZW2sUodjdv3qRLly5UqGC4U+lF8CIci5uBFzm6YhtN+3XB1bs8QQdOsnXGP/Qe9z5WjnYF5us94QNMzEx1z82sLfOlSYyO4/jqHbhVLrrOKoD9u/by569/8P6nI/GvHsCW9f/y9Wdf8Nc/83Fxc82XPuxBKN98NpZO3Toz+tsvuXT+In9M+RVbOzuatmoOwJ7tu5g3ew6jxo6mSjV/7ofcZcoPPwHw7sj3Abhw9hzdXnsVnyq+aNQaFvw1l68+Gc1fS+ZjZm5e6Ho19qzGkHpdmHN8I1ci7tDepz5ftR3ExxumE5Ucny+9n0sFPmz6OgsCN3Py3hUcLGx4t2F3RjR+jZ/2LgHg571LMFKqdHmszSyY0u1DjgZfLHR5H8e0fWtM27QgZeEy1BGRmHVqh9XI4SR89yOkpxvMkzx7ARjllFVhaYH115+ReTqnY8tiQG9UZdxJnr8UbXwCJg3qYPXxcBLG/4Q2Lv97VBLMjU25EX2PLVeOMLHT8FIpQ0Hqe1ShX812LD69jeuRd2npXZtRzd/gq21/EpOSkC/90jM7WXV+r+65SqHk+w5vE3g3SLfttWotaFShGgtObiY0IZoAt4p82KQXP+xeSEhcwZ2thXF4zwHm/zGHdz5+D9+Aquz8dys/jBnHtAUzcXZ1yZc+MzMTGzsber7Zm02rNxS4X3NLC35d9KfetuLqOLlw5BRbF66h69A+lPetSOCuQ/zz40w+mPI1dk4O+dKbmJrQoENz3MqXxdjUhJCrN9n493JMTE2o27YpALtX/Mu5Q4G8OqwfTmVcuXEuiGVT5vDO96Nw9yr4x3JhBB44yso5i+g34i0qVfHhwLbd/PbdZMbN+hkHl/w3lq5fukKVWtXoPqgP5pYWHNm1nz++/4Uvpk6gfCVPALIys5j+9SSsbW1498uR2Ds5EBsZjWkRtKuGHN17iEWz5vHWR+/i4+/H7s3bmTx2Aj/P/Q0n1/w3lbIyM7G2s+XVfq+zdc1Gg/s8tHs/y/9ezLDPPsDH34/Qew+Y/fMMAAaMGFos9Th54Cir5iym73tDqFTVh4Nb9/D7uJ/4buZPho/FxStUqRlA94G9Mbe05Oiu/cyc8Atjpnyvdyx+/eZHrG1tGDb2o4fHIgYzc7NiqQNAzTKV6R7QnNXn93I75gGNK1RjWMNX+XHvP8SlJhrMM6hOJ6xNLVhxdheRyXFYm1qgVOQM3Ors14g65fxYeW43EUkx+LpUYEj9rsw4uJL7CZFFXoc23nUY2fR1puxfxvmwm3T3b8Yv3T6g/9LxhCfF5kvf3b85wxt1Z/LefwiKuEMVF0++aNWfxPQUDgdfAGBYg1fp4NOAyfv+4U5sGPU9qjKp03DeXfNzgTdUilrwqSBOrdlNvT7tca5YluuHzrJ35iq6fv02lg42BvMcmreB1MRkGr7ZCWtne9ISk9FqNCVSXsju2H2rflf+PLaBKxHBdPBtwDfthvDh+qkGr6WquFRgZNPezAvcRODdIBwtbBjeqAfvN+7Jj3sXA9mddQPqdOT3Q6u5EhlCGRsnPmr6OgDzAjeVWN1KiwxTffHIMFUhisH+/fupX78+pqamuLu788UXX5CVlXPHpWXLlnz00UeMHj0aBwcH3NzcGDdunN4+rly5QtOmTTEzM6Nq1ars2rVLb+ho7qGRwcHBtGrVCgB7e3sUCgWDBw8GwNPTk+nTp+vtu2bNmnqvd/36dZo3b657rZ07dz6xjsnJyQwcOBArKyvc3d2ZMmVKvjQZGRmMHj2asmXLYmlpSYMGDdi3b98T9/2IQqHg1KlTfP/99ygUCsaNG8e+fftQKBTExcXp0p09exaFQkFwcDAAd+7coVu3btjb22NpaYm/vz9btmzRpb98+TKdO3fGysoKV1dXBgwYQFRUVIHl+Oeff6hbty7W1ta4ubnRr18/IiIidH83NEz1WV+jsM7vPIpv09r4NauDvbszjft0wsrelsv7Tz42n7m1JRa21rqHUqn/taDRaNjz9xrqvNIKGyf7Ii3z2hWr6NC1E51e6UJ5zwoM//gDnF1c2LTO8I+kzev/xcXVheEff0B5zwp0eqUL7bt0YvWylbo0QRcv4V8tgFbt2+Dm7kadBvVo2a41165c06X5Yepk2nfpiGdFLypWrsSoL0cTER7B9avXDL3sM+tWtSl7bpxi9/WT3I+PZH7gZqKT4+ng28Bgeh9nDyKTY9ly5SgRSbFcibjDjmsnqORYVpcmKSOVuLQk3aO6uzfpWZkcuXOhSMpcENM2zUnbuovMsxfQPAgjZeFSFCYmmNSvXWAebUoK2oRE3cO4ii9kZJJx6mFnnLExxrWqk7r2X9Q3bqGJjCJt03Y0UTGYNm9crPV5nGMhl5hzfCP7b50ttTIUpL1vAw7cPsuBW2cJTYxm2ZmdxKQm0LqS4eOQmplOQlqy7uHp4I6FiTmHckX6NfKsxqagw5wPvUlkchx7b57mYtgtOhZwnhaFTavW07pzO9p06UC5Ch4M+WAYTi5O7Ni4xWB6FzdX3vrwXVp0aIOFpUWB+1WgwN7BXu9RXI5s3kPtVo2o07oxzmXd6DyoFzaO9gTuPGgwvbuXB9Wb1MXFwx17F0dqNKuPd/Uq3LlyU5fm3KETNO/eHp9a/ji4OlG/fTO8a1Th8OY9xVaPXeu20KR9S5p2aIV7+bL0GTYQeydH9m/ZZTB9n2ED6dCrG54+lXAt606PQW/gUsaN88dP69Ic3rmP5MQkRnwzCu+qvji6OOPt74dHxeK5mbZlzQZadmxLq87tKFvBg4Ej3sbRxYld/24zmN7ZzZVB779N8/atCjyfrl++ik+AH03atMDZzZXqdWvRuFUzbl0rODKqsHat30qTdg+PhUdZeg8b8Nhj0XvYgFzHwo3ug/rgUsaNCydyjsWRh8fiva8/yXUsfClXTMcCoGWl2hwPucTxkEtEJMWy/tIB4lKTaOJZzWB6P+cKeDuVY87xDVyLuktsaiIhceEEx4bq0tT18GPX9UCCIoKJTkngSPAFrkbcoaV3wd9BhdGnZls2BR3m36DD3IkN49dDq4hIjKVHQAuD6Tv6NmDDpYPsvnGKBwlR7L5xkk1Bh3mzVge9NItObeXonYs8SIhi/aUDHA+5TN+abYulDoZc2RNIpUbV8W5cA1s3J+r2aouFvTXXDp4xmP7B5VuE37hLq/dex93PEytHW5w8y+BcsVyJlflV/6bsun6SXdcDuRcfydwTm4hKjqejb0OD6X2cyxOZFMvmoCNEJMUSFHGHHVdP4O2Ucy3l61yeK+F3OHD7HBFJsZx9cJ2Dt87ppRGiJElnnBBF7P79+3Tu3Jl69epx7tw5Zs2axdy5c/nf//6nl27hwoVYWlpy/PhxfvrpJ77//ntdJ5hGo6F79+5YWFhw/Phx/vrrL7766qsCX9PDw4M1a9YAcPXqVUJDQ/n111+fqrwajYbXXnsNlUrFsWPHmD17NmPGjHlivs8//5y9e/eybt06duzYwb59+zh16pRemiFDhnD48GGWL1/O+fPnef311+nYsSPXr19/qrKFhobi7+/Pp59+SmhoKJ999tlT5Xv//fdJT0/nwIEDXLhwgcmTJ+uGuIaGhtKiRQtq1qzJyZMn2bZtG+Hh4fTu3bvA/WVkZDBhwgTOnTvH+vXruX37tq6zs6ByP+trFIY6K4uokAeUq1pJb3u5qpUIv/n4u65rJ/zJ4s9+YdPUhTy4cjvf309v2o+5tSV+TYv2wjczM5PrV69Ru35dve2169cl6OIlg3mCLl7Kl75Og7pcv3JV19ntX6Ma169e4+rl7Aig0PsPCDx6nPqNC+5gSElOBsDaxvDd4WdhpFRRybEMZx/on+PnHtzA19nwj6CrESE4WthSu6wPALZmVjSqEMCpe1cLfJ02letyOPg86VmZhS5zQZRODihtbcgKylWOLDVZ129iVNHzqfdj0qQBGSfPQEbGwx0rUahUkKk/JESbmYmRt1cRlPzlolIq8bR351KY/ufzUtgtKjk93Q+j5l41uRx+m+hcUXTGSlW+YTkZ6iwqOxdPJFZmZia3rt2gRl394YrV69bi6sUrhdp3Wmoq770xhHdfH8SkseO5ff3mkzM9h6ysLEJv36VS9Sp6272rVyHkWv7205DQ23e5e+0WnlUr5+w3MwsjY2O9dMYmxoRcKaZ6ZGYRcuM2VWvpDzerWrsaN4Oe7qaERqMhLTUNy1zR1OePn6KiX2WWzpzPZ28OZ/yI0WxZsR6NuuijabIyM7l97SbV69bU216tTk2uXX7+88k3oAq3r93kxsMbOOEPwjh74jS1GtR9Qs7n8+hYVKml32FVpVY1bl15umulR8fCItdUHueOn6aiX2WWzVrA5/3f4/sRY9i6ckOxHAvIjr4tZ+vC1YgQve1XI+/gae9uMI+/W0XuxoXT2rsu37UbytjWA3mlalOMc0WBGylVZGnUevky1VlUdChT5HUwUqrwdS7PiZAgve0n7gYZnCYCwFhlREae7+H0rEyqunqienhz01hlRIY6f5rq7oaHthc1dZaamLthuFfR/351r+JF1O37BvPcu3ADx/JuXN51nLVf/cHG8X9xeu0esjKK75ojt+xrqbL5rqXOPriOn4vha6krEXdwtLSlTllf4OG1lGcAJ+/ltAdBEcFUcipL5Yffna5WDtQu56uXRoiSJMNUhShiM2fOxMPDg99//x2FQoGfnx8PHjxgzJgxfPvtt7rIo+rVq/Pdd98BULlyZX7//Xd2795Nu3bt2LFjBzdv3mTfvn264Y8//PAD7dq1M/iaKpUKB4fs4TEuLi7PNGfcrl27CAoKIjg4mHLlsr+cJk6cSKdOnQrMk5SUxNy5c1m0aJGuTAsXLtTlh+zhpcuWLePevXuUKZN90fTZZ5+xbds25s+fz8SJE59YNjc3N4yMjLCysnqmYaAhISH07NmTatWyL24rVsy5iJo1axa1a9fWe/158+bh4eHBtWvX8PHxybe/t956S/f/ihUrMmPGDOrXr09SUpLBeeye5zUKIy0pBa1Gi7mN/hBTcxtLUhKSDOaxsLWm2YBuOJd3R52l5vqxc2yatpBunw7G3ccTgLAbIVw9dJqe3xT9kL2EuHg0ak2+CBZ7e3tiomMM5omNicXePk96B3vUajXxcfE4OjnSsm1r4mPj+PS9kWi1WtRqNV17vEKfAf0M7lOr1fLnjJn4V6+GZ8XCdwRZm1qgUqqIT9V/3+PSErEzr2wwz9XIEKYfXMmoFn0xVhlhpFRxIuQyc4//azC9t1M5Kti7MfPI2kKX93EUDzsnNQn6w4s0CYkonzLySOVZHlVZd1IWr8jZmJ5O1s3bmHVpR3JYeHb0XL3aqDzLo4kovujR/yprEwtUSiUJafrnVHxaMgFmT55H09bMimrulfjz2Hq97RfDbtHBtwHXIkOISIqliqsXtcr6oCymYSyJ8QloNBrs8nyG7eztiYs9XUCuJytbvhzvf/EJ5b0qkJqSwuY1G/n6w9H88vcM3MsVbbRDSkISGo0GK1trve2WttYkxeUfLpzbLyO+JjkhCY1aTatenanTOicK1Lt6FY5s2YNnFW/sXZ24dfEqV06eR6PRFmn5H0lKSESj0WBjZ6u33drOloTYpxsmvnPdZjLS0qnTLCdKJTIsgujwyzRo2YQPx40m4kEYy2YtQKPW0LXfa0Vah8T47DrY2tvpbbe1tyU+Jv9wwqfVuFUzEuPiGf/xl/DwO6Rtt4680rdnIUtsmO5Y2OsfCxt7WxJOP92x2LVuy8NjkXPTKSo8gqvnL1O/ZWM+GDeaiPthLJ+9AI1aTZe+RXssl049cgABAABJREFUACxNzFEplXpzcwEkpqdiY5Z/+gsAR0sbvBzKkKlWMz9wE5Ym5vSq3goLEzOWn82OCrwSEULLirW4GX2f6OQ4KjuXJ8CtYrG0U3ZmVhgpVcSk6n+WY1MTcLQwfLPuxN3LdK3alAO3z3E1MgQ/5/J0qdIYY5URdmZWRKckcDzkMm/UbMvZBze4Hx9J3XJ+NPOqgVJZMkMG0x9eI5pZ60eDmllbkpqQbDBPUlQcETfvoTQyovk7PUhPTiVwxQ7SU9Jo1L9zsZf50bVU3uHN8amJ2Jsbvoa+GhnC1APL+axlP9211PGQy8w5ljPa4tDt89iaWjGx03AUCgVGShVbrxxl7YX9xVqfF0Vxfb+L5yedcUIUsaCgIBo1aqQ3Lr9JkyYkJSVx7949ypfPnnerenX9O9Lu7u66oY9Xr17Fw8NDrwOqfv36xVbe8uXL63WkNWrU6LF5bt68SUZGhl46BwcHfH19dc9Pnz6NVqvN1/GUnp6Oo6NjEZXesI8++oj33nuPHTt20LZtW3r27Kl7v0+dOsXevXsNdqLdvHnTYEfZmTNnGDduHGfPniUmJgbNwzkzQkJCqFo1/wTbz/Ma6enppOeZg8vU1DRfusdRoP8lq33M7zg7Nyfs3HLmonGt5EFSbALndhzB3ceTjLR09s5dS7MBrxicR67I5Lkw0KJ9/JwWedNrH23O3n7u9FmWL1rC+5+OxM+/Cg/u3Wf2r39gP38xbw4ZkG93f0ydwe2bt5gya0bh6pGHFv03P++xya2crQtD63dl1bk9nH1wHXtzawbW6ci7jbob7HBr412XO7Fh3Ii6V6RlNq5fG4t+r+ueJz1abCHvifQMF3MmjRugvh+KOlg/WiJl/lIsBr6B7eRxaNVq1Hfvkxl4BlV5GSpSkLwf5+xz6smdNU29qpOSmcbp+/qRlkvP7GRw3c5M7DQcLRCRFMuh2+cMLvxQpPKcPlq0j/18PIlPVT98quZMdO8bUJXRw0ayde0m3vro3efe72PlK+4T2i1g6LiPyUhL5+71YHYu24CDmzPVm2RHW3Ue3IsNfy1jxqgJKBQK7F2dqNWyIWf2HSue8j+St8haA9sMOLHvCJuWrGXEN6P0OvS0Gi3Wdjb0//BtlColFSpXJC4mlh1rNhd5Z5yOwTo8//l0+ewF1i9dzVsfvUslv8qEPwhj0R9/s9ZxBa/171Oooj5O/u9v7VMdi8D9R9i0dC3vFXQsPnh4LLy9iI+JZcfazcXSGad7XQNtkraAixElCrTAP6e3kZaVHTm9/tIBBtftwprze8nUqFl3cT99arRhbOsBaLUQnRLPibuXqe9RfIub5C+vosCWdn7gFhwsbPir5xhQQGxKIluuHKV/7Q6oH+7n14MrGdOqP0v7jUOLlgfxkWy+coQufiU9LUPexldb4EdFq81u05oM7oaJefa1qPq11hycu556vdthZGJsOGNxUygMnmOQfS31ToNXWHF2N2ceXMPe3JrBdTvzXqMe/H4ke/RQgFtFetVoxZ/HNnA9MgQ3Gyfert+N2OqJrDxffNMCCFEQ6YwToog9+gLLuw30J840zjMkRaFQ6Dp5DO3jeSmVynwXFpmZOWHmhi6SnvTaBV1Y5abRaFCpVJw6dQqVSqX3t8KsivoosjB3GXLXB+Dtt9+mQ4cObN68mR07djBp0iSmTJnChx9+iEajoVu3bkyePDnfvt3d8w+lSE5Opn379rRv355//vkHZ2dnQkJC6NChAxmPht3l8ayvATBp0iTGjx+vt+27777DupWvwfS5mVlZoFAq8kXBpSUmY2Hz9O+1i1c5bhw/D0BCZAyJ0XFs/2Op7u+P3vM5w8fT5/sPsXHJP1n507Kxs0WpUhKbJwouLjauwPme7B3siY3Jmz4WlUqFjW32XetFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt6ceDOnzuDYoSP88sd0nF3yT/b9PBLTU1Br1NiZ60fO2JpZEZdqOErxtWotuBJxhw2XsuecuhMbRlpWBj90epelZ3bq3Rk2URnTxKs6K84ankuoMDLPXSLxdq5Os4eLMChtbVDnio5TWluhTTA8GbceY2NM6tUk1cD8TZqoaJKm/gEmJijMTNEmJGLx9gA0UYajIv8/S8xIQa3RYJsnCs7GzIL4NMNRDbk186rBkeALqPNMvJ2YnsJvh1djpFRhZWpBXGoir1dvRVRyXFEWX8fa1galUklcnqil+Ni4fNFNhaFUKvH2q0zo/YJXcHxeFjZWKJVKkuL0z//k+CQs80TL5WX/cCJ+1/JlSYpPZO/qLbrOOEsba/p9NozMjExSk5Kxtrdl59IN2LkUz40rK5vs+UHzRsElxsfni5bLK/DAURbN+It3vxiZb2ilrYMdKpUKpSqnnXX3KEtCbNzDobhF97PD+uEcp/ExcXrb4+PiC3U+rVqwlKZtW9Kqc3bUf/mKnqSnpfH3tJl07/d6vnlVC+vRsYiPjdPbnhiX8MRjcfLAURbNmMOwLz6iSk39FYkNHQs3jzLFciwAkjNSUWs02Jjq37yzNjXPFy33SEJ6MvFpSbqOOIDwxBiUCgW25tZEJceRnJHKvMBNGClVWJqYEZ+WTNcqTQwuXFNYcWlJZGnUOFrov+/25tYFvl6GOpNJexbz074lOJjbEJ0SzytVm5GckaqLkI9LS2Ls1tmYqIywMbMiKjmO9xr1IDSxZCLBTR9eI6Yl6n9fpCWlFHiz1dzGCnNbK11HHICtmyNoISUusVDXf0/jea6lelVvSVBEMOsvHQCyr6X+PLaeSZ3fY8mZHcSmJtKvVjv23TzNruuB2WniwjEzMmZE49dYdX5vgR19QhQXmTNOiCJWtWpVjhw5otdZdOTIEaytrSlb9umiPvz8/AgJCSE8PGdFu8DAwMfmebRynFqtP7eGs7MzoaE5k+EmJCRw+3bO3DZVq1YlJCSEBw9yfrgcPXr0sa/l7e2NsbExx47l3LWPjY3l2rWcuWZq1aqFWq0mIiICb29vvUdhVh51ds7uNMldp9wLJzzi4eHB8OHDWbt2LZ9++ilz5swBoHbt2ly6dAlPT8985bK0zH9RcuXKFaKiovjxxx9p1qwZfn5+eos3GPKsrwEwduxY4uPj9R5jx459qvdEZWSEU/ky3L+sP7/QvaCbuFZ6+vmfou+GYmGb/YPfzs2JXt+9R89vhuseFar7UsbXi57fDC9w9a2nZWxsTGVfH84E6s8zeCbwFFUC/A3mqRLgny/96RMnqezni5FR9g+L9PS0fD+WHnVIP/pMarVa/pjyK4f3H2TyjCm4lTHcQfo8sjRqbkY/oEaeuWCql/HmauQdg3lMjYzzdXBrtNkdJ3m7xZt4VsNYpWL/LcOTLhdKejqayKicR2g4mvgEjKrkiuRUqTCqXImsW8FP3J1J3ZpgZETm8VMFJ8rIQJuQiMLCHOOqfmSeK97VYf+L1BoNwbGh+LvpD6Ou6urFzSdER/o6l8fV2oGDuRZuyCtLoyYuNRGVQkmdcn6cuV80C5nkZWxsTEUfb86fPKu3/fyps/gG+BnO9By0Wi3BN24XyyIORkZGuHt5cPOC/vxCNy9cobzPMwxz12pR55kzEbLnibNxsEOj1nD5xFn86lQ3kLnwjIyNKO/tRdAZ/QVggs5cpFKVgqdROLHvCAunzebtz9+nWv1a+f5eqaoPkaHhuhuLAOH3Q7F1sCvyzh8jY2O8fCpx4dRZve0XT53Vi5R8Vunp6fmGD2Z/h/D4cPPnpDsWZ/XbvqCzF6joZ3hqA8iOiFs4/U+GfvY+1eoZOBZVfIjIdyzCiuVYAKi1Gu7FR+DjrL/quo9zeb0FGXK7HROKraklJqqcm9MuVvZotBri8wxPzNKoiU9LRqlQUr2MNxfCbhV5HbI0aq5GhlDPQ39OyHoeVbj4hNdTazREJseh0WppW7kuh4Mv5OvYyVBnEZUch0qppGWlWo9tl4uSykiFg4cboVeC9baHXgnGycvw7xLnimVJjU8iMz2nozQhIhaFQoGF3eNvPBSF7Gup+9Qso38tVbOMN1ciCriWUpkYuJbS5klj6HorOyT4/8MITsUL/O//K+mME+I5xcfHc/bsWb1HSEgII0aM4O7du3z44YdcuXKFDRs28N133zFq1KinvqParl07KlWqxKBBgzh//jyHDx/WLeBQUNRahQoVUCgUbNq0icjISJKSsu8ctW7dmsWLF3Pw4EEuXvw/9u46rqrzD+D459LdISgSgiDY3d29Ods5nZsLZ0ydTrc5nXMu1Nk5FTtnd2JOxS4MFASV7s77+4N58QpYgDh/37ev+3rJuc9z7vfhXs4593ueuM5HH32k1lOtZcuWuLu7079/f65cucKJEyeeu1gE5PRsGzRoEN988w2HDx/m+vXrDBgwQK195cuXp2/fvvTv358tW7YQEBCAr68vv/32m9rKpq/K1dUVBwcHJk6cyJ07d9i9e3eelVxHjBjB/v37CQgI4OLFixw5coQKFXIuroYMGUJ0dDS9e/fm3Llz3L9/nwMHDvDxxx/nSWQClC1bFh0dHebMmcP9+/fZsWMHkydPfm6Mr/oakDMk1cTERO3xKsNUK7eqx62TF7l18iIxIRGc3rCPxOg4KjTJ6Xlxbsshji7LHfJ47dA/BF7yIy4siujH4ZzbcoiAi354NcsZDq2lrY1FaVu1h66BHtq6OliUtkVTq/AX8+/37M6+nXvYv2svQYEPWDRrHuFhYXR4rxMAyxYs4Y/JU1XlO3TtRFhoGItmzyco8AH7d+1l/669fNA7d2GMOg3qsXvrDnwOHSH0cQgXz51n5ZLl1G1YX/W5nzd9FkcOHGLsxO/RNzAgOiqa6KjoPMOEX9fOmydp4VaT5q41KG1qzYBa7bEyNOXA7XMA9K3emqENP1CVPx98izqOXrRxr4OtkTnu1mUZVLsTdyJyVpd7WnO3mpwL8iMxLaVIYn2RtMPH0WvbEu2qldCwL4XBR71RpqeT/tSqfQYDeqPXtUOeujr165Bx+TrKpLy9IrQ83dHy9EDD0gKtCuUx+vpLssLCST99rljb8zz62rq4WZVRTexsb2KFm1UZbI2Kb2XOl3Xg9lkaO1elkXMV7Iwt6VW1JZYGphy9l/M+fFCpKZ/U6ZSnXmOXqtyLesSjuIg8z7lY2FOjtDvWhma4WTkwskkvFAoFe249/2ZMYXTs3pXDew5wZM8BHj4IxnveEiLDImjdKWcOojVLvJnzi/rxPMD/PgH+90lNSSU+No4A//sEPzXsedOKtVw+d4Gwx6EE+N9nwe+zCPS/T6vOBc97Whj1OzTn4pHTXDz6DxGPQtm74m/iIqOp1bIRAAfXbefveStV5c/uP8atC9eICgknKiSciz7/cGrXYSo3qqUqE3w3kJvnLhMdFkmgnz8rp85DqVTSsHPxrbbY8r32nDxwlFMHfAgJesTGxauIjoikcfsWAGz1Xs/y6fNV5c/5nGb5jAV8MKgfzu5uxEXHEhcdS8pTf99N2rciMSGRDYtWEvYohGvnLrF343aadmhdLG1o360LR/cewmfvIR49CGbV/KVEhkfSolPOSpbr/1rF/F9nqtUJ9L9PoP99UlNTiY+NJ9D/Pg8f5C50VL1uLQ7t3MfpoycIDwnj2oXLbPJeS416tdB4ppd/UWnZtR2nnrwXwY/YuGQVMRFRz7wXC1TlfY+dZvmMhXQb1BdnD1fiYmKJi1F/Lxq3b0lSQiIbF6/KeS98L7Fv03aadMh/7uGi4HPvInUdvajt4ImNkTldvRpjrm/M6cCcpG+HCvXpUy33s3Dh4W2SMlLpXa0VtkYWuFjY08mzIWeDbpLx76INZc1sqWRXDksDE1ws7Pmsblc0UHDE//krxb+uDZcP0cmzAR0q1MfRvBTDGnTH1ticrf/2tvq8ble+bzFAVd7B1IbW5WtTxtSGCjZOTGo9CBdLexad2a4q42nrRBOXqtibWFHFzpUZnYahQMGaiweKpQ358Whei3unr3Dvn6vEhUZy4e/DJEfH49aoKgCXth/j9MpdqvJOtTzRNdTnzOo9xIVEEuYfzKWtR3GpV+mNDVHdfuMkLd1q0cK1JmVMrfm4VkesDM3Yf/ssAP2qt2F4w9zrP9+HftR1rEhb9zrYGlngYePIJ3U6cSciSHUt5fvwFm3d69LQuTI2RuZUsXOlT7VW+AbfzJO4E+JNkGGqQrwmHx8fqlVTvxv50Ucf4e3tzZ49e/jmm2+oUqUKFhYWDBo0iO+///6l962pqcm2bdv45JNPqFWrFi4uLvzxxx906tQJPT29fOuULl2aSZMm8e233zJw4ED69++Pt7c348aN4/79+3Ts2BFTU1MmT56s1jNOQ0ODrVu3MmjQIGrXro2TkxOzZ8+mbdu2z43xjz/+IDExkc6dO2NsbMyoUaOIi1Mf8rJ8+XJ+/vlnRo0axaNHj7C0tKRevXq0b//6k79qa2uzbt06vvjiC6pUqUKtWrX4+eef6d49d66rrKwshgwZwsOHDzExMaFt27b8+eefANjb23Pq1CnGjh1LmzZtSEtLw9HRkbZt2+abLLW2tsbb25vx48cze/ZsqlevzrRp0+jcuXOBMb7qaxSFcrUqkpqUzMXdx0iOS8TC3oZ2Q/tibGkGQHJcAonRue9PVmYWZzYfICk2AS1tLcztbWg7tA9lKxXt4hLP06RlM+Lj41mzfCUxUdE4ujgxedpUbP/tORkdFU14WG4vxFL2dkyeNpVFs+exa8t2LKws+WLEVzRs1lhVps9HH6JQKFixeBlREZGYmptRp0E9BgwepCqza2vOZL5jvvpaLZ6R48fQusPzP/cv43TgNYx1DehepTnm+sYExYbxy+EVRPw7/M9c3xgrQzNV+aP3LqKnrUs7j7p8VLMdSempXAu5x+qL+9X2a2diiaetE5MOLCt0jC8r7cARFDra6PfuhsJAn6yAIBJnL4KnEpcaFuZ5eoxo2Fij5eZC4qyF+e5Xoa+HXtcOaJiZoUxOJuPSVVK27YHs4lnp72V4WDsy972Rqp+HNcw5puzx+4cpR1aUVFhAzmp+hroGdPZqiKmeEY/iIvjzxHrV6qim+kZ5hlbpa+tSo4wHay/l/4VPW1OL9yo1wcbInNTMdK6G+LPkzA5SMoomKZ2fBs0bkxifwOaV64mJjsbByZHxv07EupQNADFRMUSGqycOx3w6TPX/+3f8OXn4GNa2Nsxfn/N3kJSYxKIZc4mNjsHA0BBnVxcmzfoVtwovHuL/OirVr0FKYhI+f+8lITYeGwc7+n37JWbWOcO2EmLiiXtquLVSqeTQuh3EREShoaGBha0VrXp3oWbLBqoymRkZHN6wi5jwSHT0dHGr6kW3If3RNzTI8/pFpVbjeiTFJ7J73RbiomOxdyzDV5PGYPnvkP246FiiI6JU5U/sO0x2VhbrFixn3YLlqu31WjRmwMicRX4srC0ZPvlbNi1ZzU9DvsXM0pzmndvS9oOCz5eFUa9ZQxLj49myegOx0TGUcSrLmF9+wNo25/MUGx1N1DOfp/Gf5/6NB9y5x+kjx7GytWb2mpze8+/164FCoWDT8jVER0ZjYmpC9Xq16PFx32JpA0DNxvVITEhk9/qtxD95LyZ+k/texKi/F8f3HiE7K4v1C7xZv8Bbtb1ui0YM+Pqp9+Knb9n01yomfzVO9V606ZY3aV9ULj++i6GOPm3c62Cia0BIQhSLz2xXJUJMdA0xf2rYYXpWBgv/2cr7lZoysnEvkjJSufz4Lnv9TqvKaGtq0d6jHpYGpqRlZuAXHsiai/vVhrYWpcP+FzDRM2JgzQ5YGppwP+oxo3fOJSwh52/a0sAUW+PcIZoaGhr0rtqSsmalyMzO4uKj23z+9x+EJuS+Xzqa2nxapwv2JlakZKTxz4PrTD64nMT0N3NTDcCpRgXSk1K4tvcUKfFJmNlZ0fTL7hhZ5Jw3UuMTSYp+arVtXR2af9WT85sOsvf3Fega6lO2ugdVOjZ6YzGfCryKia4BPau2yLmWigll8iFv1bWUhYEJ1kZmqvJH/C+gr6VLe4/6DKzVgaT0VK6G3GPlhb2qMhuvHEGpVNK3WmssDEyJT03CN9iPNZf2I0RJUChfZvInIUSJO3XqFA0bNsTf359y5cqVdDjiKbdv38bDw4O7d+/i6lq0S9VPP7auSPdXEkY16U1A5KOSDqNQnK1K023F+JIOo9D+/ugXYp/6MvpfZLZwBg3mFf0Kv2/aqSELGbhhSkmHUWjLe37H1cd3SzqMQqls78aGSwdLOoxC61mtFT7+zxkW/h/Q1LUGF4L9SjqMQqvhUIGjd4un99ab1MytJl/vmFXSYRTKn52HvzPnjJ8OvrmbccVhQquP6er9bUmHUWjbBvxa0iG8lrf5PNezWvH12n2bSc84Id5SW7duxcjICDc3N/z9/Rk+fDgNGjSQRNxbJjo6ms2bN2NiYoKDw8vPzyaEEEIIIYQQ4v+TJOOEeEslJCQwZswYgoODsbKyomXLlnnmRhMlb9CgQVy4cIEFCxa80hxvQgghhBBCCCH+P0kyToi3VP/+/enfv39JhyFeYOvWrSUdghBCCCGEEEIUqKBFAEXJkdVUhRBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUTJM9e0jPeOEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGsgw1beN9IwTQgghhBBCCCGEEOINkWScEEIIIYQQQgghhBBviAxTFUIIIYQQQgghhHhHKRTSD+ttI++IEEIIIYQQQgghhBBviCTjhBBCCCGEEEIIIYR4Q2SYqhBCCCGEEEIIIcQ7SkMhq6m+baRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0ohw1TfOtIzTgghhBBCCCGEEEKIN0SScUIIIYQQQgghhBBCvCEyTFUIIYQQQgghhBDiHaVAhqm+bRRKpVJZ0kEIIYQQQgghhBBCiKK34/qJkg6hQJ0rNirpEEqE9IwTQoi32Njd80s6hEL7rcOX3Ai5V9JhFIqXXTkaz/+ypMMotONfzid20NCSDqNQzJbOYeCGKSUdRqEt7/kdDeZ9XtJhFNqpIQsJi48s6TAKxdbECm/f3SUdRqENqNWB0TvnlHQYhTKt01CmH1tX0mEU2qgmvZnms6akwyi00U378tH6ySUdRqGs6PUDH6z8rqTDKLTN/afQ1fvbkg6jULYN+JUWi4aVdBiFdviz2SUdgnhHSDJOCCGEEEIIIYQQ4h2lIaupvnVkAQchhBBCCCGEEEIIId4QScYJIYQQQgghhBBCCPGGyDBVIYQQQgghhBBCiHeUQoapvnWkZ5wQQgghhBBCCCGEEG+IJOOEEEIIIYQQQgghhHhDZJiqEEIIIYQQQgghxDtKhqm+faRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0oDGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWtIz3jxFshLCyMn376iZiYmJIORQghhBBCCCGEEKLYSDJOlDilUsmHH36Irq4u5ubmr1TXycmJmTNnFk9ghaRQKNi2bdsr1WnatCkjRowolnj+qz788EN++eWXkg6jUEaPHs2wYcNKOgwhhBBCCCGEEG8BGab6HzRgwABWrFgBgJaWFg4ODrz//vtMmjQJQ0PDEo7u1U2dOhUXFxfGjh37ynV9fX3/k20WL+fq1avs3r2b+fPnq7Y1bdqUY8eOMXXqVL799lu18u3bt2fv3r38+OOPDBgwAGdn5+fu/8cff2TixIkArFixgnnz5nHjxg00NDSoVq0aY8aMoWPHjgAkJiZibm7O6tWr6dmzp2ofPXv2ZOPGjfj7+1OuXDnV9nLlytGzZ09++eUXxowZQ7ly5fj6669fGFNh1HX0oolLNYx1DQhLjGbnjVMExoQUWF5TQ4OWbrWoZl8eY10D4lITOeJ/gfMPb6nK6Gnp0Ma9DhVLuaCvrUtMSgK7bp7idkRQsbVj77ZdbF//NzFR0Tg4O/LxV4PxrFwx37LRUdGsmL+Ee3f8CXn4mPbvd2bQ0M8K3PfJw8eYMfk3ajeoy7dTJhRXE+jq1Zje1VpiYWBKYHQIc05t4mrIvQLLv1exMe9XakopYwvCEmJYdXEf+2+fVSvTvXIzung1xtbYnLjUJHzuXWTxme2kZ2UWWzsA9Dq3Q6dJAxQG+mTdf0Dymo1kPw59bh3dlk3RadYQDQtzlIlJpJ+/TOrfOyAzJ1bd9q3Qrl4FTTtblOkZZN0LIGXTdrLDwos8/mauNWjnXhczfSMexUWw9tJB7kYG51t2UO2ONHSukmf7o7gIvt+3GABNhQYdKtSngXNlzPWNCUmIYtOVI1wPvV/ksb+OKnau9KnWGg+bslgZmvHtngWcCLhSIrFs3bSFdavXEh0ZhZOLM0NHDqNKtaoFlr984RJzZ84h8H4AllZW9Onfhy7d3lM9v3PrDvbv2cv9ewEAuHu48+mQz/D08lSVWbZ4Kd5Llqnt18LCgm37dxZZuy4cPMXZPUdJjI3HunQpWvbrioOHywvrPbwTwOqf52FdphSDfhmt2n7b9yqndxwiJiyS7KxszG2tqN2+KZUa1iyymPNT37ESTV2rYaxrSFhCNNtvnCAg+nGB5TU1NGhVvjY1SrtjrGtIbGoih+/64hvspyrTyLkK9ZwqYa5vTFJ6CldD/Nnj9w+Z2VnF0oYbPue4uv80yXEJmNvbUK9nW+zcHPMt+/h2ALumr8izvcekIZjZWefZ7n/uGkf++hvHKu60GdK7yGN/2k0fX64c+IeUf9tRt0fr57QjkN0zVubZ3n3Sl5iVsgLgzunLHFuxI0+ZgXPHo6VdfF//mrvWoL1HPUz1jXkcF8GaS/u5E5H/8faTOp1pVMDxdvzehUDO8bajZwMaOlfGTN+E0PgoNl45zLXQgs+nhdXGvQ6dPRtibmBMcGw43r678Qt/UGD5Rs5V6OLVCDsTS5LT07j0+A4rL+wlMS1FVcZAW48+1VpRp6wXhrp6hCfEsOLCXi49ulNs7WjnXpeuFRvntCMmjKXndnEzPLDA8o1dqvJexSbYm1iSlJ7KpUd38D6/h4S0ZFWZTp4NaOteFytDMxLSkjgdeJ1VF/eRUUzXIZ09G9KjSgssDUwIjAll/um/ufacc20Xr0Z08WpEKWMLwhNjWHPxAAfv+qqeb1O+NmOa9ctTr+1fI4utDW8TWU317SPJuP+otm3bsnz5cjIyMjhx4gSffPIJSUlJLFiwoKRDe2Xjx49/7brW1nkvnsS7Y+7cuXTv3h1jY2O17Q4ODixfvlwtGff48WOOHDmCnZ2dqkxISG4iatq0aezbt49Dhw6pthkZGQE5Pdfmzp3Lzz//TNeuXcnIyGD16tV06dKFWbNm8dVXX2FkZETNmjU5evSoWjLu2LFjODg4cPToUVUy7uHDh9y/f59mzZoBYGNjQ+vWrVm4cCG//fZbEf+WclS2c6WTZ0O2XT/Og5hQ6pT15OPaHZlxbB2xqYn51ulbrQ3GuvpsvnqUqOQ4DHX00dTI7TCtqdDgkzqdSUxPYfXF/cSlJmKmZ0RaZkaxtAHg5JFjLJ+7mE9HfEmFSp7s37GXn8dMYNaKhVjb2uQpn5megYmZKd369WLXpq3P3Xd4aBjeC/7Cs7JXcYUP5HwZGdrwA2YcX8/10Pt09mzI7x2H0H/dZMIT8w7F7+LViMF1u/CHz1r8wgOpYOPEmKZ9SUhN5vSDawC0cqvF4Lpd+e3oKq6H3sfBzJZxzT8EYO6pv4utLbrtWqLbuhnJy9aQFRaOXsc2GI36ivjvJkNqWr51tOvURO+DziQvX0OWfwAapWww+Djn4jd1wxYAtMq7kn70BJkBD0BDE/33O2I0agjx30+B9PQii7+2QwX6VG3Fqov7uBsRTFPX6oxs3Ivv9i0iOjk+T/m1lw6y6epR1c+aCg1+avOJWrLh/UpNqOdYCe/zuwmJj6JiKReGNviAKYdXEBQbVmSxvy59bV38ox6y59Zpfmn3eYnFcfjAIebMmMXIsaOoWKUyO7ZsY8zw0azcuBrbUqXylH/86DFjRoymY9dOfP/TBK5fucqM36Zjam5G0+Y5x9JLFy7SonUrhleuiI6uLutWrmH0V1+zYsNqrG1yrwecXZyZMW+W6mdNzaIbCHLzzCUOrd5GmwHdKFPemUtHTrPhj8V8+ttYTK0K7t2fmpzCzoVrcfJyIykuQe05PUMD6nduiaW9LZpamvhfusnuxesxNDHCpbJHkcX+tCr2bnSu2Igt13wIjA6hrmNFPqnTiT981hCbkv8548Ma7TDWNWDjlSNEJsVipGugNgdRtdLlaV+hPhuvHCYwOgRrIzN6Vm0JwI4bJ4u8Dfd8r/PPhn007NMBW9ey+B0/z97Zq+kxcQhGlmYF1usx+St09HRVP+sZ572pmxAVy9nNByjlVrbI437WPd8b/LNxPw36tMe2nAO3jl9k35y1dJ/4JUYWpgXW6/7TkGfaYaD2vLaeLj1+GqK2rTgTcbUdPOlbrQ0rL+zhTuRDmpWrzqjGfRi3d0G+x9s1F/ez6cph1c8aCg1+bjuYc8E3Vdu6VW5GfceKLPPdTUh8JJXsyjGsYXcmH/ImKPb5N4VeR32nSgyo2Z6/zu7kVsQDWrnVYnyLj/h6xywik+LylPewceSrBh+w4vwezj+8hYWBCYPrdOGLeu/zh88aALQ0NJnQaiBxqUlMO7aWqOR4rAxNScnI/xxaFBo4Vebj2h1ZdGY7t8IDaeNehx9aDWTothn5tqOCjSPDG/Zgme8ufIP9sDQw4fN67zGkfjd+PboKyEnWfVijLXNPbuZWRBD2JlYMa9gdgGW+u4q8DU3LVePL+u8z++Qmrofep6NnA6a2/4KPN/6S77VUJ8+GDKrdiRnH13E7PAgPG0dGNu5FYnoK/zy4riqXmJbCgA0/q9X9f0jEibeTDFP9j9LV1aVUqVI4ODjQp08f+vbtqxoSqVQq+f3333FxcUFfX58qVaqwefNmVd2YmBj69u2LtbU1+vr6uLm5sXz5ctXz165do3nz5ujr62NpacngwYNJTMz/wgzAx8cHhULB/v37qVatGvr6+jRv3pzw8HD27t1LhQoVMDExoXfv3iQn595d2bdvHw0bNsTMzAxLS0s6duzIvXu5d7pWrlyJkZERd+/eVW0bOnQo5cuXJykpCcg7TFWhULBo0SI6duyIgYEBFSpU4J9//sHf35+mTZtiaGhIvXr11F4HYMGCBZQrVw4dHR3c3d1ZtWrVc3//vr6+tGrVCisrK0xNTWnSpAkXL158bp1nJSUl0b9/f4yMjLCzs2P69Ol5yqSnpzNmzBhKly6NoaEhderUwcfHR/X8gwcP6NSpE+bm5hgaGuLl5cWePXuA3Pdl9+7dVKlSBT09PerUqcO1a9fUXuP06dM0btwYfX19HBwcGDZsmOr3CxASEkKHDh3Q19fH2dmZtWvXqv3eAwMDUSgUXL58WVUnNjYWhUKhFuvNmzdp3749RkZG2Nra8uGHHxIZGVng7yc7O5tNmzbRuXPnPM917NiRqKgoTp06pdrm7e1N69atsbHJSdhoampSqlQp1cPIyAgtLa08286cOcP06dP5448/GD16NK6urlSoUIEpU6YwYsQIRo4cSXBwzl3dZs2aqbXJz8+PlJQUvvzyS7XtR48eRVtbmwYNGqi2de7cmXXr1hXY3sJq5FwF32A/fIP9CE+MYefNU8SlJlLXMf8eZeWtHXCxtGeZ7278ox4Sk5LAw7hwHsTkXtzWdKiAgbYuK8/v5UFMKLEpiQTGhBKSEFVs7di5aSst2remVce2lHEsy6Chn2FpY83+7bvzLW9jZ8ugoZ/TrE0LDJ7TSzYrK4uZP/9Br4H9sP03YVtcelRpzm6/0+z2O82DmFDmnNpMRGIsXSs2zrd8G/c67LhxkiP+FwiJj+KI/wV2+52mT/VWqjJepZy5HnqPQ3fPE5oQjW+wH4fvnsfdOv+eE0VFt2VTUncfIOPiFbIfhZC8dDUKHW106hTcY0ernDOZ/vfJOHuB7KhoMm/cIv3sBbSccr/UJs1cQPqps2Q/DiX74SOSl61Bw9ICTSeHIo2/tXsdjgdc5vj9y4QkRLHu0kGiU+JpXq56vuVTMtKIT01SPZws7DDQ0efkUz3L6jlVYpffKa6G3CMiKZaj9y5yPfQ+bd3rFGnsr+tM0A2WnN3BsfuXSzSOjWs30KFLRzp27YyTsxPDRo3A2taGbZvzT5pv37INm1K2DBs1AidnJzp27Uz7zh3YsDr3uDnh54m81/193NzL4+jkyDffjSVbmc0F3/Nq+9LU1MTSylL1MHvFKTCe59zeY1RpWoeqzepiVdqWVh++h4mlGZcOn3puvX3LNuFZrzqlXfP+zTp6uuJeqzJWpW0xt7WiVtvG2DjYEXw7oMjiflYTl6qcC7rJuaCbhCfGsOPGCWJTEqnnWCnf8u7WZSlnWZq/zu7gbmQwMSkJBMeGqZ0znMztCIwO4dKjO8SkJHAnIpjLj+5SxtS2WNpw9eA/uDesjkejGpjbWVO/ZzuMzE25eez8c+vpGxtiYGqsemhoqH8dys7O5shff1OjczNMnpNgLSrXDv2De4NqeDSsjrmdNfV6tnmFdhipHs+2Q6FA7XkDU6PibAZtPepy/P4ljt2/TEh8JGsvHSA6OZ4WrvmfL1Iy0ohLTVI9nC3sMdDR58T93ONtfadK7Lx5iqsh/kQkxXLE/wLXQu/TzqNusbShU4UGHPG/wGH/8zyKi8D7/B6ikuJoXT7/43t5KwcikmLYc+sfwhNjuBX+gIN3z1HO0l5VprlrDYx09fn96GpuRwQRmRTLrfAHan87Ra2LV0MO3T3Pobu+PIyLYOm5XUQmxdHWPf/fW3nrskQkxrDb7zThiTH4hT/gwO1zuFqVVpVxty7LrbAHHA+4QnhiDJcf3+XE/StqZYrSB5WasffWGfbc+oeg2DDmn95CeGIMnTwb5lu+lVstdvmdwufeJUISojh67yJ7b5+hZ5UWz5RUEpOSoPYQoqRIMu4doa+vT0ZGTm+V77//nuXLl7NgwQJu3LjB119/Tb9+/Th27BgAP/zwAzdv3mTv3r34+fmxYMECrKxyurUnJyfTtm1bzM3N8fX1ZdOmTRw6dIivvvrqhTFMnDiRuXPncvr0aYKDg+nRowczZ85k7dq17N69m4MHDzJnzhxV+YSEBL7++mt8fX05dOgQSqWS9957j+zsbAD69+9P+/bt6du3L5mZmezbt49FixaxZs2a5w5NnTx5Mv379+fy5ct4eHjQp08fPvvsM8aNG8f58zkXNk+3Z+vWrQwfPpxRo0Zx/fp1PvvsMwYOHMjRo0cLegkSEhL46KOPOHHiBGfOnMHNzY327duTkPDyB/RvvvmGo0ePsnXrVg4cOICPjw8XLlxQKzNw4EBOnTrF+vXruXr1Kt27d6dt27aqBOWQIUNIS0vj+PHjXLt2jd9++03V2+vp15k2bRq+vr7Y2NjQuXNn1Wfl2rVrtGnThvfff5+rV6+yYcMGTp48qfb76d+/P48fP8bHx4e///6bxYsXEx7+akPJQkJCaNKkCVWrVuX8+fPs27ePsLAwevToUWCdq1evEhsbS82aeS/idHR06Nu3r1oS2dvbm48//viV4gJYt24dRkZGfPZZ3qGNo0aNIiMjg7//zul51KxZM27fvq3qcXf06FEaNWpE8+bN8yTj6tSpg4FB7l3q2rVrExwczIMHBQ91eF2aCg1Km1pz95mhIHcignE0z/9LkKetMw/jwmniUo3xLfozukkfOlSoj5aG5lNlnHgQG0bXio34vuUAvm7ck2blqqOgeLq5Z2RkcO+2P1VqqSdKqtaqxq0bfgXUejmbVq7DxMyUlh3aFGo/L6KloUl567JqPakAfIP9qGib/zA2bQ0t0rPUexumZWVQwcZJ1VPxasg9yluXpYJNzhd5OxNL6jpW5MxTd3uLmoaVJRpmpmTeyB22TGYmmbf90SpX8HDrTP97aDk6oOnsqNqPdiVPMq7eKLCOwkAPAGVScoFlXpWmhgZO5nbcCFVPaNwIvU85qzIvtY/GzlW5GRZA1FO9OrQ1NPPcRU/PysTNumgTif9lGRkZ3Ll1m1p1aqttr1WnNtev5v+ZvXHtep7ytevW4dbNW2Rm5t9rIS01lczMTExMTNS2Pwx+yHvtOtOjywdMHD+Bxw8fFaI1ubIyMwkNeIhzxfJq250ruvPwbmCB9a4eO0dMWBSN3m/9wtdQKpUEXr9DdGgEZV9i6OvryDln2HDnmekG7kQE4WSR/80Kr1LOBMeG06xcDX5oOZCxzfrR0bOB2jkjIPoxZcxscDDLOe9YGJjgYeOI33OGxr2urMxMIoMeU8aznNr2Mp7lCLuX/7DIJ7ZMXsSq0dPYNWMFj2/lTXhe3HUMfWNDPBrmn7QvSlmZWUQGhVD6mXaU9nR5cTt+Xszqb2awe8ZKHueTuM1IS2fduFmsHfsn++auIzKo4GkrCuvJ8fbZ4frXQ+/h+rLHW5eq3Ay7T1Rybs8tbQ1NMrLV//4zsjKK5XirpaGJi6U9Vx77q22/EuKPu3X+PSRvRwRhaWBKtdI5xwRTPUPqlq3IxYe5w09rlvHgTkQwn9TpzF/dxzGj0zDer9ik2Fa21NLQpJxlaS4/vqu2/fLju3jY5H8D71b4AywNTalR2v3fdhhRz6mi2rQlfuGBlLMqjdu/76etkQXVy7irlSnKNpS3dsiz7wsPb+Flm//1h7amFunPjNxIy8zAw8ZRbdSHvrYua/tMZH3fn5jSdjCuli/3+XwXKN7if/+vZJjqO+DcuXOsXbuWFi1akJSUxIwZMzhy5Aj16tUDwMXFhZMnT7Jo0SKaNGlCUFAQ1apVUyU5nJycVPtas2YNKSkprFy5UpXwmjt3Lp06deK3337D1rbgu5s///yzqifQoEGDGDduHPfu3cPFJedi8oMPPuDo0aOqueG6d++uVn/ZsmWUKlWKmzdvUrFiTm+eRYsWUblyZYYNG8aWLVv48ccfqVWr1nN/HwMHDlQlecaOHUu9evX44YcfaNMm50v48OHDGThwoKr8tGnTGDBgAF9++SUAI0eO5MyZM0ybNk01zPBZzZs3V/t50aJFmJubc+zYMdUcY8+TmJjI0qVLWblyJa1a5fR+WbFiBWXK5J4Q7t27x7p163j48CH29jl32EaPHs2+fftYvnw5v/zyC0FBQXTr1o1KlXLuZD/5XT/txx9/zPMaW7dupUePHvzxxx/06dNHtWiEm5sbs2fPpkmTJixYsIDAwEAOHTqEr6+v6vPy119/4ebm9sI2Pm3BggVUr15dbSGGZcuW4eDgwJ07dyhfvnyeOoGBgWhqaqp6uj1r0KBBNGzYkFmzZnHhwgXi4uLo0KGDag64l3Xnzh1Vr8hn2dvbY2pqyp07ORdVDRo0QFtbGx8fH3r37o2Pjw9NmjShevXqxMXFcffuXdzc3PDx8aFfP/U5KUqXLq1ql6Nj3ouhtLQ00tLUhyzo6urmKZcfAx09NDU0SExPUduemJaMsW7+F6wW+iY4mduRmZXFyvP7MNTRo2vFxuhr67L532F6FgYmlNM35vLjuyw/txsrQ1O6VGyMhkKDw/7Pv2P/OhLi4snOzsbM3Extu6m5ObHRr7/Sst+1GxzavZ8Zf80tZIQvZqpnhJaGZp47rdHJ8Vg4mORb51zwTTpWaMCJgCvciQjG3bos7T3qoa2phZmeEVHJ8Rzxv4CZvjFz3xuFAgVamppsvX6cNZcOFFtbFKY58WbHqw8vyo5PQMPSosB6GecukmJkhNG3IwAFCi1N0o6eIG3vwQLr6Pd8n8w798h+VHRfFo11DNDU0CD+mWHacalJVNR7cQ8RUz0jKtmVY9GZbWrbr4fep417He5EBBGeGEMFW2eqlS5fbF+s/oviYmPJysrC3EL9c2JhaU50VP49a6OjorGwVO+FZG5hQVZWFrGxsaqbhk9bOHch1tbW1Kide9PG08uT8ZO+x6FsWWKiolm5bAVfDvqcFRtWY2pW8JC/l5GckIQyOxtDU/WpEwxNjUmKzf9mXHRoBEc37KLfD1+hoamZbxnIGcY6d+gksjIzUWho0GZAN5wruRcq3oI8mZLg6bmgABLSUjDWNci3joWBKc4WdmRmZ+J9fg+GOnq8X6kpBtp6bPx3qOHlx3cx1NFnSINuKABNDU1OB17lqP+FfPdZGKmJySizleibqN+c1TcxJDk+/9EcBqbGNPqwE9Zl7cjKzOLumSvs+nMFnUYNwK68EwCh/kHcPnmRbj+8mSHeT9ph8Gw7jA1JiU/Kt46BqRGN+nXEytGOrIxM7p69xu4/V9Fx5EfYlc+5vjAtZUWTj7pgUdqG9NQ0bhw5x47fl9Pth88wtbUs8nY8Od7GparHHJeWhOlLHm8r27my8B/1nrPXQu/T1r0ut8ODCE+MxtPWmWql3YvleGusa4CmhiZxz54zUhIxs8+/Dbcjgph1YiMjG/dCW1MLLQ1NfIP9WHoud45KW2MLKhqZceL+FX45vAI7E0s+qdMZDQ0N1fVWcbQj9pnrkLiUBMz1815vP2nHjOPrGd20j6odZ4NusuRM7ryDJwOuYqprxC/tPkehUKClocneW/+w5dqxIm+DqZ4hmvlcS8WkJGBhYJxvnfMP/WjvUY9Tgde4GxlMeSsH2rnXQVtTC1M9I6KT4wmKDed3nzXcj3qsOobN6jKCwZt/41F8RJG3Q4gXkWTcf9SuXbswMjIiMzOTjIwMunTpwpw5c7h58yapqamq5MsT6enpVKtWDYAvvviCbt26cfHiRVq3bk3Xrl2pX78+kDPsrkqVKmo9zxo0aEB2dja3b99+bjKucuXKqv/b2tpiYGCglhyytbXl3Llzqp+DgoKYPHkyZ8+eJTIyUtUjLigoSJWMMzc3Z+nSpbRp04b69evnmbD/ZeIAVMmqJ9tSU1OJj4/HxMQEPz8/Bg8erLaPBg0aMGvWLAoSHh7OhAkTOHLkCGFhYWRlZZGcnExQ0MtNan/v3j3S09NVCVPImWDa3T33wvvixYsolco8iaq0tDQsLXMupIYNG8YXX3zBgQMHaNmyJd26dVNrP5Dva/j55fTauXDhAv7+/qxZs0ZVRqlUkp2dTUBAAHfu3EFLS4vq1XPvDru6ur7yqrcXLlzg6NGjeXrtPfld5JeMS0lJQVdXt8DJRitXroybmxubN2/m6NGjfPjhh2hra79SXC9DqVSqYjAwMKB27dqqZNyxY8f45ptv0NLSokGDBvj4+KCrq0tAQECehK2+vj6A2lDtp02dOpVJkyapbfvxxx+hVv7JyIJiVaNQoMy/qKpN6y8fIjUzZ46uXX6n6Ve9DduuHyczOwsFCpLSU/j7qg9KlDyKj8BEz5DGLlWLJRn3bGwqSuVr3zVLSU5m1pRpfPnNMEwK+UX8VTz7XigUCpQFvBsrzu/FwsCEhe+PAQXEJCew79YZ+lRvTZYy57hY1d6ND2u0Ycbx9fiFBVLa1JphDbsTVaMdKy/sLZKYtevUxKB/L9XPibMW/tuYZwoqFPDsZ+0pWu6u6HVsQ8rqjWTeD0TTxhr93t3I7tiGtF3785TX79sdzTL2JPw6swhakVee8FHkszWvhs6VSc5I5eKj22rb1146yICa7fml3ecogfDEGE4GXMl34Yf/d8/+LSuVz59AOu/fubKA7bB25RoOHzjI7IVz1W5c1G2Qe87DtRxelSvSu2sP9u3eS8++vfLs57U82y6UebZBznDH7fNW06hbWyztnn8s19XT5eMpo8hISyfwxl0Or9mOmbUljp6uRRPzS3hefuPJ+7b24gHVOWPHjZP0r9mOLdd8yMzOopxlaVq41WTLNR+CYsJUN3BapiZz6KlJ1Is0ZvJ+xgpiVspKtcABgG05BxJj4rly4DR25Z1IT03j6NItNPqwc77zyL0t8mtHUnQcVw/+o0rG2bqUwdYl9wZvqXJl2TJlMTeO+lK/V9tii+3Z85yCgs99T2vkXIXkjFQuPFLvCbXm4n4G1urIr+2/UB1vTwRcppFz1SKMWl1+11IFKWNqzce1O7Lp6hGuPLqLmYEx/Wu0Y3DdLiz4N7GoUCiIS01i0ZltZCuV3I9+jLm+CV28GhVLMq5Az7kOKWNqw6d1OrPh8mEuPb6Dub4xA2q254t67zH3dM7okIqlXPigSjMWndnO3YggSplY8UntTsRUTmDj1SPFFHTeM3hBf+OrLuzHXN+EuV1HolDkJO723zlHr6otVd8x/cID1XrqXg8NYGG3b+hasTHzThff/LtCFESScf9RzZo1Y8GCBWhra2Nvb69KQgQE5HRT3717t6onzhNPLlbbtWvHgwcP2L17N4cOHaJFixYMGTKEadOmqSUenvWiFVieToQoFIo8iRGFQqE6GELOvF/Ozs4sWbIEe3t7srOzcXJyIv2ZybuPHz+OpqYmjx8/JikpKc9wlBfFUdC2p2PJ+4Wh4N8D5KxoGxERwcyZM3F0dERXV5d69erlib0geU70+cjOzkZTU5MLFy6g+czd9CdJrU8++YQ2bdqwe/duDhw4wNSpU5k+fTpDhw597r6f/h189tlnDBs2LE+ZsmXLcvv27Tzbn43/yRwlT297Mgz26bY86V35LLsC5u+ysrIiOTmZ9PT0fHutAXz88cfMmzePmzdvqiV6X0X58uU5efJkvq/z+PFj4uPj1XoCNmvWjA0bNnDjxg1SUlJUicomTZpw9OhRdHR00NPTo25d9Xk5oqOjgYIXHRk3bhwjR45U26arq8uEQ0tf2Ibk9FSysrPz9Ggw0tEnMS3/5F9CWs4cLU++VAFEJMagoVBgqmdEVHIcCWlJZCmz1S7ewhNjMNEzRFOhoUoUFRVjUxM0NDSIeaYXXFxsLKYWZq+1z9BHIYSHhvHLuNxE55PP6gfNOzJ31RJKlS66OeTiUhPJzM7CwkD9OGWub0xMcv49Z9KzMvjt6GqmHVuLhb4JUclxdPJsSFJ6CnEpOb0MBtXuxIHb59jtdxqA+9GP0dPW5ZsmfVh1Yd9Lfdl5kYwr10iYFJi7QSvnEkHD1ISsuNzecRrGRijjCx6Sr9e1I+n/nCP9xD8AOb3ddHUw6N+btN0H1L4t6/f5AO2qlUj8bRbKmNhCt+FpCenJZGVn5+mVYaJnkKf3Rn4aOVfhdOA1srLVP+cJacnMObUZLQ1NjHQNiE1JoHvlZkQmxRZl+P9ppmZmaGpq5ukFFxMdk6e33BMWlhZERUXnKa+pqZmnR9u6VWtZvXwlM+bNpJzb85NV+vr6uLi68DD4+UP+XoaBsSEKDQ2SYtV7iybHJWKYz3xc6SlphAYEE/bgEQdW5CxeolQqQank1/6j6TX2M5y8cs4vCg0NLErlnB9sHUsT9SiMf3YeLpZkXFJ6SoHnjGd7yz2RkJpEXGqi2jkjPDEaDYUCM30jIpPiaONel4sPb3MuKGcC/tCEKHQ0tfmgSjMO3/UtgqNULj0jAxQaijy94FITkjAwefm50Wycy+B/9ioA8RHRJETFsn/eWtXzT84XSz6fRM+fhmJiU3Cv4NeR2w71Y1JKQlKeXn/PY+NSBv+z1wp8XqGhwNrJnrjw4pnz9cnx1uzZ462uAfEvc7x1qcLpwKv5Hm9nn9yI9r/H25iUBHpUaVEsx9uEtGSysrMw01fveWWqZ1jgoibvVWzC7fAHqgVKHsSGsSRzBz+3Hcy6y4eITUkgJjmBLGUW2U+d+x7FRWBuYIyWhmaRrzRccDuMCmzHB5Wb4hceyLYbx3PaERPKojPbmNr+C9ZcOkBMSgJ9qrXC595FVWL9QWwYelrafFn/fTZdPVok1yFPxKUmkZWdhbn+s9dSRgXO8ZaelcG0Y2v588R6zPVNiE6Oo0OFBiSlpxZ4zlei5HZEEGVM/z8WBJQe/G8fmTPuP8rQ0BBXV1ccHR3VEk2enp7o6uoSFBSEq6ur2sPBIXe4mrW1NQMGDGD16tXMnDmTxYsXq+pfvnxZbQL/U6dOoaGhkW/vpdcVFRXFtWvX+Oabb6hTpw4ODg4EBgbmKXf69Gl+//13du7ciYmJyQuTTK+jQoUKnDypvsrX6dOnqVChQoF1Tpw4wbBhw2jfvj1eXl7o6uo+dzGCZ7m6uqKtrc2ZM2dU22JiYlTDIQGqVatGVlYW4eHhed7LUk+tROfg4MDnn3/Oli1bGDVqFEuWLFF7rfxew8MjZ3W26tWrc+PGjTz7d3V1RUdHBw8PDzIzM7l06ZJqH/7+/sTGxqp+fpJcenrl0qcXc3j6dZycnPK8TkHz/1WtWhXIWfihIH369OHatWtUrFgRT0/PAss9T69evUhMTGTRokV5nps2bRra2tp069ZNta1Zs2bcvXuXtWvX0rBhQ1WitEmTJvj4+ODj40O9evXQ09NT29f169fR1tbGyyv/lTx1dXUxMTFRe7zsMNUsZTaP4iLyzKHiZlWGBzH5r+4YGB2KiZ4BOpq592SsDE3JVmarhmgExoRiaWCq1u/AytCM+NSkIk/EQU7SvJy7K1fOX1LbfuX8JTy8Cv57fJ7SZR34c9l8pv81V/WoVb8OFatVZvpfc7G0yTv0rTAys7O4ExFETQf1eGuW8eB62P0CauXIys4mIimWbKWSFq41OR14XXVxq6elkyeJn52djULx/N4sryQ1jezwyNzH41CyY+PQ8nxqqJymJlrurmTee87E8jraebunZCt5tnOTfp/uaFevQuIfc8iOLPoviFnZ2QTGhOBVSn1+GU9bZ+5FPnxuXXfrstgaW3DiqYUbnpWZnUVsSgKaCg1qlPHg0qM7BZb9f6OtrU15D3fOn1XvDXX+nC8VK+e/qIxXpYqcP6de3vfsOTw8PdDSyj1OrVu1hpVLvflj9nQ8PF98XEhPT+dB4ANVj/LC0NTSopRzGQKuq7/XAdfvUMbNKU95XX1dPpn6DYOmjFI9qjWvh4WdDYOmjMK+XMErdSpRkpVRPCv85Zwzwin/zDmjvHVZAqPzHyoeEB2CiZ4hOpq515zWhmZkK7NVX/B1NLXyfCHPVmb/23utaL8EamppYVXWnkc31Rfkeuh3D9tyLz+fWFRwiGphA7NSVnzw4xd0++Fz1cOxsjv27s50++FzDC2efzP4dWhqaWJV1o5Hfurnh0d+91+xHaHoP2eBBqVSSVRwGAam+Q/xK6zc4636dClepVzwf8Hx1sPGkVLGls9ddCYjO4uYf4+3Nct45OmxXBQys7O4H/WYyvbqCfDKdq7cjsh/5IuuljbZz37m/00oPvnE3454QCljS7VenHYmlkQnxxd5Ig5y2nEv6hFVn2lHVXtXboXnP2+xrmY+1xjP/KyrqV1AGUXRXYf8K+daKpgaZdSH6tco48GNsOcvbJOVnU3kv9dSzcpV58yD689NFJazLK02L6wQb5Ik494xxsbGjB49mq+//poVK1Zw7949Ll26xLx581ixYgUAEyZMYPv27fj7+3Pjxg127dqlSjz17dsXPT09PvroI65fv87Ro0cZOnQoH3744XOHqL4qMzMzLCwsWLhwIf7+/hw+fJhRo0aplUlISODDDz9k6NChtGvXjrVr17Jx40Y2bdpUZHFAzgIH3t7eLFy4kLt37zJjxgy2bNnC6NGjC6zj6urKqlWr8PPz4+zZs/Tt21c1DPFlGBkZMWjQIL755hsOHz7M9evXGTBggNpKWOXLl6dv377079+fLVu2EBAQgK+vL7/99ptqxdQRI0awf/9+AgICuHjxIkeOHMmTRPzpp5/UXsPKyoquXbsCOXPq/fPPPwwZMoTLly9z9+5dduzYoUp6enh40LJlSwYPHsy5c+e4dOkSgwcPRl9fX9W7Tl9fn7p16/Lrr79y8+ZNjh8/zvfff68Ww5AhQ4iOjqZ3796cO3eO+/fvc+DAAT7++GOysvK/ELG2tqZ69ep5EqVPMzc3JyQkhMOHD7/07/5Z9erVY/jw4XzzzTdMnz6de/fucevWLb7//ntmzZrF9OnT1RLZ9evXR1dXlzlz5tCkSRPV9lq1ahEXF8fff/+d71yDJ06coFGjRq/0OXkVJwKuUMuhAjXLeGBjZE7HCg0w0zfmTFDOZOlt3evS46kVpS4/vkNyehrdqzTHxsgcZws72nvU53zwLdXF4ZkHNzDU0aOTV0OsDE3xsHGkmWt1ThfjogGdur/H4d37ObznAA8fBLFs7mIiwyJo3bk9AKsXL2fWL9PU6gTcvUfA3XukpqQQHxdHwN17BAfmXDjr6Org6OKk9jA0MkJfXx9HF6diGdq88coROlaoT3uPejial+KrBt2wMTZn+/UTAAyu24XxLT5SlS9jakOr8rUpY2pNBRtHfmz1Mc6Wdiw5u11V5vSDa3Sp2IjmrjWwM7akZhkPBtXpyKnAa3kumItS2iEf9Dq0RrtaZTRK22HwcT+U6Rmkn80dpmww6EP03u+k+jnzynV0mzZEu3Z1NKws0fJ0R69rBzIuX1cl6fT79UCnXk2SFq9AmZqKwsQYhYkxFPH7ceD2WRo7V6WRcxXsjC3pVbUllgamHL2Xs/r1B5Wa8kmdTnnqNXapyr2oRzyKyzuHjIuFPTVKu2NtaIablQMjm/RCoVCw59Y/RRr769LX1sXNqoxqkm17EyvcrMpga1T8q0I+rUefnuzavpPdO3YRGBDInBmzCA8No0u39wBYNHcBU36crCrf5f2uhIWEMvfP2QQGBLJ7xy52b99Fz369VWXWrlzDXwuWMHbCOErZ2REVGUVUZJTa8P95M+dy+cIlHj96zM3rN5gw9nuSkpJo27F9kbSrdrsmXPE5y5VjZ4l8FMah1duIj4qhWouc6T58Nuxi58KcnlUKDQ2sHezUHoYmRmhpa2HtYIeOXs4Nl9M7DhFw7TYx4VFEPQ7j3B4frp88j1eDGkUSc36O3b9M7bJe1HKogI2ROZ29GmKmb6RaFKadRz16Vc2d8uTSozskp6fSs2oLbI3McbGwp6NnA84F+anOGTfDAqjnWImq9m5Y6JvgZuVAW4+63AgNKNJeM09UblWPWycvcuvkRWJCIji9YR+J0XFUaJIzh+C5LYc4umyLqvy1Q/8QeMmPuLAooh+Hc27LIQIu+uHVLGfhEC1tbSxK26o9dA300NbVwaK0LZpaxTOgqFLLetw+eZHbpy4RExLBPxv357Sjcc77f27rYY4u3/ZUO84QePlWbju2Hs5pR9PcOZUv7DxG8A1/4iNiiAoO5fjKnUQFh6r2WRz23TpDE5dqOcdbEyv6VGuFpYEpR/6dM7B75eYMrtMlT73GLlXxj3xY8PG2jAfWhmaUt3ZgVNM+Ocfbf3uJF7Wdfqdo4VqD5q41KG1qzYCa7bEyNOXAnZzRF32qtWZogw9U5c8/vEWdsl60Ll8bGyNz3K3L8nHtjtyNCFb14Np/+xzGugYMrN0BO2NLqpd25/1KTdl3+2yxtAFg+42TtHSrRQvXmjlDaWt1xMrQjP3/vma/6m0Y3jB3ETXfh37UdaxIW/c62BpZ4GHjyCd1OnEnIkjVDt+Ht2jrXpeGzpWxMTKnip0rfaq1wjf4ZrFch2y+dpT2HvVo616Xsma2fFHvPWyMzNl5M+d7waDanRjbLHd+5jKm1rR0q0lpE2vcrcvyfYuPcLawY+m5XaoyH9ZoS80yHtgZW1LOsjSjm/TB1bKMap/iv2X+/Pk4Ozujp6dHjRo1OHHiRIFlt2zZQqtWrbC2tsbExIR69eqxf7/61Cne3t4oFIo8j9TU1GJrgwxTfQdNnjwZGxsbpk6dyv379zEzM6N69eqMHz8eyFmJcty4cQQGBqKvr0+jRo1Yv349kDMn1v79+xk+fDi1atXCwMCAbt26MWPGjCKNUVNTkw0bNjBs2DAqVqyIu7s7s2fPpmnTpqoyw4cPx9DQUDXpv5eXF7/99huff/459evXzzMM93V17dqVWbNm8ccffzBs2DCcnZ1Zvny5WizPWrZsGYMHD6ZatWqULVuWX3755bnJu/z88ccfJCYm0rlzZ4yNjRk1ahRxcXFqZZYvX87PP//MqFGjePToEZaWltSrV4/27XO+VGRlZTFkyBAePnyIiYkJbdu25c8//1Tbx6+//srw4cO5e/cuVapUYceOHarhmJUrV+bYsWN89913NGrUCKVSSbly5ejZs6eq/sqVKxk0aBCNGzemVKlSTJ06lRs3bqj1/Fq2bBkff/wxNWvWxN3dnd9//53WrXNXjbO3t+fUqVOMHTuWNm3akJaWhqOjI23btlVLQD5r8ODBeHt7P3c1XzMzsxf/sl9g5syZVK5cmQULFvDDDz+gUCioXr0627Zto1Mn9S/qT4agHjt2TO0zoq2tTb169Th8+HC+ybh169blmROuKF0N8cdAR5cWbjUx0TUkNDGK5b67VD0WjHUNMNPPvWuenpXJX2d30MWrEUMbfkByehpXQ/xVF2qQM+Tyr7M76eTZgBGNehKfmsSpgKv43LuU5/WLSsPmTUiIT2DjirXEREdT1tmJ736bhE2pnJsBMVExRIapX7CP+jS3x+y9O/6cOOSDta0NizZ4F1ucz3PE/wImuoZ8VLM9loYmBESFMHbXfMISc4bgWRqYqCVGNDU06FmlBWXNbMnMzuLSozt8uWUaoQm5Q/ZWnt+LUqnkkzqdsDY0IzYlkdOB11hydkee1y9KaXsPodDWRr9fDxSGBmTdDyRxxjxIzV1sRMPCXK0nXOqu/SjJGa6qYW6KMiGRjCvXSd2Se0Gs26wRAMZjh6u9XvKy1aSfKrovKOeC/TDUNaCzV0NM9Yx4FBfBnyfWq+6Cm+obYWmgPgRSX1uXGmU8WFvA4hjamlq8V6kJNkbmpGamczXEnyVndpCSkZZv+TfNw9qRue/lDnkf1jBnsaQ9fv8w5ciKNxZHi9YtiY+LZ8Vfy4mKjMK5nAu/zZxGKbucnt1RkVGEheb23LUvbc/vM6cx58/ZbN20BUtrK4aPHkHT5rnH022bt5CRkcGEseo3fAZ8+jEfDx4EQER4OJO+/5G42DjMzM3wrOjFwmWLVa9bWJ51q5GSkMyprQdIjI3HuowdPb75FFOrnOGLibEJxEe+2oIzGWnp7Pf+m4ToWLR0tLG0t6XTF33xrFutSGLOz5XHdzHU1qNV+do554yEKJae3an64m2iZ4i52jkjg0VntvNexcYMb9yT5PRUrjz2Z+9TSehD/w5FbetRF1M9IxLTU7gZGqBWpiiVq1WR1KRkLu4+RnJcIhb2NrQb2hdjSzMAkuMSSIzOva7KyszizOYDJMUmoKWthbm9DW2H9qFspaIb+fE6ytXyIi0pmYu7j6va0farPk+1I5Gkp9qRnZXF2c0HVe0ws7emzVe9KVspd0qN9JRUTq7eTXJ8Ijr6ulg6lKLT6I+wcS6aa+f8nAu+iZGuPl0qNsbs3+PtjOPrVKujmuobYWGo3rtQX1uXmmUqsOZi3vlEIed4261SU6yNzEnLTOfqY38W/7ON5GI63p4OvIaxrgEfVG6Gub4xQbFh/HJ4pWpYrLm+MVaGuecMn3uX0NfWpZ1HXT6q2Y6k9FSuh95n9YXc9kQlxzH54HIG1GrP9M5DiU6OZ4/fadWQ0OJwKvAqJroG9KzaIqcdMaFMPuRNxL/tsDAwwdrITFX+iP8F9LV0ae9Rn4G1OpCUnsrVkHtqc9JuvHIEpVJJ32qtsTAwJT41Cd9gP9Zcyv+9Kyyfe5cw0TXkwxptsDAwJTA6hHF7FxKemHN8tTQwweapaykNhQYfVG6Og6kNmdlZXHl8l6Hb/lRde0HOUPyRjXthbmBCUnoK/pEP+XrnrAJ7Pr5rXjTl1H/Jhg0bGDFiBPPnz6dBgwYsWrSIdu3acfPmTcqWzdvr/Pjx47Rq1YpffvkFMzMzli9fTqdOnTh79qxqXn0AExOTPNM0PTvaqSgplC8zeZUQ4j/Hx8eHZs2aERMTUyQJqycePnyIg4ODar7B4pSamoq7uzvr169XW4jiv2b37t188803XL16VW241csYu3t+MUX15vzW4UtuhNx7ccG3mJddORrP/7Kkwyi041/OJ3ZQ0Q/3f5PMls5h4IYpJR1GoS3v+R0N5r2ZFRuL06khCwmLf/lpGt5GtiZWePvuLukwCm1ArQ6M3jmnpMMolGmdhjL92LqSDqPQRjXpzTSfNS8u+JYb3bQvH62f/OKCb7EVvX7gg5XflXQYhba5/xS6er94Ibu32bYBv9JiUd55qv9rDn82u6RDeC0+xbCydVFp6vpqvXbr1KlD9erVWbBggWpbhQoV6Nq1K1OnTn2pfXh5edGzZ08mTJgA5PSMGzFihNp0TMVNhqkKIZ7ryJEj7Nixg4CAAE6fPk2vXr1wcnKicePGxf7aenp6rFy58pXm43sbJSUlsXz58ldOxAkhhBBCCCHEuywtLY34+Hi1R1pa/j1g09PTuXDhgtooLIDWrVtz+vTLDWHPzs4mISEBi2cWlUpMTMTR0ZEyZcrQsWNHtXnTi4Mk44QQz5WRkcH48ePx8vLivffew9raGh8fn2KZays/TZo0yTNU9L+mR48e1KlTp6TDEEIIIYQQQvwf0lAo3trH1KlTMTU1VXsU1MMtMjKSrKysPPPZ29raEhoa+lK/i+nTp5OUlESPHrlzJ3p4eODt7c2OHTtYt24denp6NGjQgLt3777+L/0FpJuGEO+opk2b5ln16HW0adOGNm3aFEFEQgghhBBCCCFErnHjxjFy5Ei1bbq6us+t8+wceEql8qXmxVu3bh0TJ05k+/bt2NjYqLbXrVuXunXrqn5u0KAB1atXZ86cOcyeXTxDkyUZJ4QQQgghhBBCCCHeOF1d3Rcm356wsrJCU1MzTy+48PDwPL3lnrVhwwYGDRrEpk2baNmy5XPLamhoUKtWrWLtGSfDVIUQQgghhBBCCCHeUYq3+N+r0NHRoUaNGhw8eFBt+8GDB6lfv36B9datW8eAAQNYu3YtHTp0eOHrKJVKLl++jJ2d3SvF9yqkZ5wQQgghhBBCCCGEeOuNHDmSDz/8kJo1a1KvXj0WL15MUFAQn3+es0r9uHHjePToEStXrgRyEnH9+/dn1qxZ1K1bV9WrTl9fH1NTUwAmTZpE3bp1cXNzIz4+ntmzZ3P58mXmzZtXbO2QZJwQQgghhBBCCCGEeOv17NmTqKgofvrpJ0JCQqhYsSJ79uzB0dERgJCQEIKCglTlFy1aRGZmJkOGDGHIkCGq7R999BHe3t4AxMbGMnjwYEJDQzE1NaVatWocP36c2rVrF1s7JBknhBBCCCGEEEII8Y5SKN6tGcq+/PJLvvzyy3yfe5Jge8LHx+eF+/vzzz/5888/iyCyl/duvSNCCCGEEEIIIYQQQrzFJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGopXW7VUFD/pGSeEEEIIIYQQQgghxBsiyTghhBBCCCGEEEIIId4QGaYqhBBCCCGEEEII8Y5SyDDVt470jBNCCCGEEEIIIYQQ4g2RZJwQQgghhBBCCCGEEG+IDFMVQgghhBBCCCGEeEdpIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h0lq6m+fRRKpVJZ0kEIIYQQQgghhBBCiKJ37sGNkg6hQLUdvUo6hBIhPeOEEOItNmbX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2JavVfSYRSK+cGtXH18t6TDKLTK9m6ExUeWdBiFZmtiRYN5n5d0GIVyashCeq7+oaTDKLQN/SbzODa8pMMoFHszm5IOQTwjITa2pEMoFGMzM2KHf1vSYRSa2axf6b/up5IOo1BW9p5AQmhYSYdRaMalbEs6BPGOkGScEEIIIYQQQgghxDtKhqm+fWQBByGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5SGDFN960jPOCGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5QCGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQoZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKBmm+vaRnnFCCCGEEEIIIYQQQrwhkowT4hk+Pj4oFApiY2NLOpQi5+TkxMyZM1+7fmBgIAqFgsuXLxdZTEIIIYQQQgghxP8TGaYq/i+dPn2aRo0a0apVK/bt21fS4QhRJOo5VqRJueoY6xoQlhDNjpsnCIwOKbC8poYGLd1qU710eYx1DYlLTeSw/3nOB/sB8Fm99yhnWTpPPb+wQJb77iq2dpw/eJIze46SGBuPdelStOrXlbIe5V5YL/jOfVb9PA/rMqX49JdvVNtv+V7l1I6DxIRFkp2VjbmtFXXbN6VSw1rF1ob8KJVKluzeydaTx0lITsbLyZkxvfpQzj7v7/iJI5cu4r1vD8ER4WRmZeFgY0O/lq1pX6feG4z85Wg3rItuh9ZoupVDw9SE+M+/JuteYEmHxf5tu9m+YQuxUdGUcSrLwK8+pULlivmWjYmKZsX8pdy/60/ow8e0e78TA78arFbm6L5DzP9tZp66a/ZvQUdHp8ji3rppC+tWryU6MgonF2eGjhxGlWpVCyx/+cIl5s6cQ+D9ACytrOjTvw9dur2nen7n1h3s37OX+/cCAHD3cOfTIZ/h6eWpKrNs8VK8lyxT26+FhQXb9u8ssna9jCp2rvSp1hoPm7JYGZrx7Z4FnAi48kZjeJ7W5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG2Rxbxt81Y2rF5HVFQUTs5OfPX1MCpXq1Jg+csXLzF/5lwCAwKxsrKk14d96Px+13zLHjlwiMk/TKJB44b8/MdU1fY13qs44XOcoAcP0NXVxatSRQZ/9QVlHcsWWbvE20WpVLL4r7/Yum0bCQkJeHl5Mfabbyjn4vLceoePHGHhokU8fPSIMqVL8+UXX9CsaVPV8xcvXWLV6tX43bpFZGQk037/naZNmhRrW/TatkSnfm0U+vpkPQgmefM2skPDCyxv9NVgtNzytjPjxi2SFnur9qnXrqXa89nxCcT/MKVIY89PC9eatK9QD1N9Yx7FhbPm4gHuRAQVWL6eY0U6VKiPrbElKRmpXA25x/pLB/M9bhUVpVLJYu/lbN25M+fz4+nJ2BFfU87Z+bn1Dh/zYeHSpTx8/Jgy9vZ8+cmnNGvcWPX8ouXLWOLtrVbH0sKC/Vu3qX6Oio5mzqKFnPH1JSExkepVqvDN8OGULeNQlE0sURrIMNW3jSTjxP+lZcuWMXToUP766y+CgoIoW1YuDP/rMjIy0NbWLukwSkwVO1c6eTVi27VjBMaEUKesF4Nqd2K6z1piUxPzrdOveluMdA3YdPUIUUlxGOnqo6HI7TC98vweNDU0VT8bausxonEvrob4F1s7bp65xMHV22g74AMcyjtz8chp1v+xmM9++xZTK/MC66Ump7Bj4VqcvdxIjEtQe07f0IAGnVthZW+LppYmdy/dYOfi9RiYGFOuskexteVZKw/sY+3hg0zoP5CyNrYs27ubr2b/yeaJP2Oop5dvHVNDQwa2a4+TrR3aWpqcuHaVn1Z6Y25sTD3P/BNKJUWhp0vmjVukHz+N4cghJR0OAKeOHGf5vCV8OuIL3Ct6cnDnXqaMncif3vOxtrXJUz4jIwMTMxO69e3Brs3bC9yvvqEBs1YuUttWlIm4wwcOMWfGLEaOHUXFKpXZsWUbY4aPZuXG1diWKpWn/ONHjxkzYjQdu3bi+58mcP3KVWb8Nh1TczOaNm8GwKULF2nRuhXDK1dER1eXdSvXMPqrr1mxYTXWNtaqfTm7ODNj3izVz5qab34Qhb62Lv5RD9lz6zS/tPv8jb/+89RzrMhHNdqx1HcXt8ODaOlWk3HNP2TkzjlEJcflKe9uXZYh9bux4sJeLjy8hYWBCZ/W6cxndbsy/fg6tbJWhqb0q94Gv7DAIo35yMHDzPtzNiPGjKRi5Urs3LqDsV9/g/f6VdiWss1TPuTxY8Z9PYYOXTrx3aQfuH71GjN/n4GpmRlNmjdVKxsaEsqC2fOpXDVvYu/Kpct0/eA93D0rkJWZxdKFixkzbCTL169CX1+/SNso3g4rVq1i7dq1/DhhAmXLlmXpsmUMGTqUvzduxNDQMN86V69dY/z33/P54ME0a9qUoz4+fDt+PEsXL6ZixZzzXEpKCm5ubnTq2JEx335b7O3QbdEE3WYNSV6ziayISPRaN8foy0+InzIN0tLzrZO0bBVo5l4zKQwNMB4znIzL19TKZYWEkjjvr9wN2cpiacPT6pT1pG/1Nqw4v4e7kcE0c63O6CZ9GLdnPlHJ8XnKl7dy4LO6XVlz6QCXHt3BQt+YAbU68HHtTsw+ubHY4lyxbi1rN27kx3HjKFvGgaWrVjJk1Ej+Xr0GQwODfOtcvX6d8ZMm8fnHg2jWqBFHT5zg24k/snTuPCp65t5scnF2Zv70GaqfNZ96r5RKJaO/+w4tLU2mT/kFQ0ND1mzcwJcjR7JpxUo5XoliI8NUxf+dpKQkNm7cyBdffEHHjh3xfuZOSX5OnTpFkyZNMDAwwNzcnDZt2hATEwPAvn37aNiwIWZmZlhaWtKxY0fu3bunqvtkaOeWLVto1qwZBgYGVKlShX/++eelX0OpVPL777/j4uKCvr4+VapUYfPmzc+NOTw8nE6dOqGvr4+zszNr1qzJUyYuLo7BgwdjY2ODiYkJzZs358qVl+99kJWVxaBBg3B2dkZfXx93d3dmzZpVJHWWL19OhQoV0NPTw8PDg/nz56uee/I73bhxI02bNkVPT4/Vq1eTnZ3NTz/9RJkyZdDV1aVq1apqPR9f5r2Iioqid+/elClTBgMDAypVqsS6dblfmBYtWkTp0qXJzs5Wi7dz58589NFHqp937txJjRo10NPTw8XFhUmTJpGZmfnSv9tX1cilKr5BNzkXfJPwxBh23jxJbEoidZ0q5Vu+vHVZXCxLs+zcTvwjHxKTkkBwbDgPYkJVZVIy0khMS1Y93KwdyMjKLNZk3Nm9PlRtWodqzepiVdqW1h++h4mlGRcPn3puvb3LNuFVrzqlXZ3yPOfo6YpHrcpYlbbF3NaK2m2bYONgR/Dt+8XUiryUSiXrjhxmYNv2NK9WHdfSpZn40UBS09PZ73u2wHo1yrvTrGp1nO3sKGNtQ+/mLXEtXYbL/sX3Hryu9EPHSF29kcyLb08Ppl2bttG8fStadGhDGUcHBn41GCsbKw7s2JNveZtStnw89DOatGmBgWH+F/4AChSYW5irPYrSxrUb6NClIx27dsbJ2Ylho0ZgbWvDts1b8y2/fcs2bErZMmzUCJycnejYtTPtO3dgw+rcY9eEnyfyXvf3cXMvj6OTI998N5ZsZTYXfM+r7UtTUxNLK0vVw8y8aNv2Ms4E3WDJ2R0cu3/5jb/2i3SoUJ8j9y5yxP8Cj+IjWHFhL1HJ8bQuXzvf8m5WDoQnxbLv9hkikmK5HRHEobu+uDzT61ihUDC0QXc2XT1CWGJ0kca8ad0G2nfuQIcunXB0duKrkcOwsbVhx9/5f552bNmOTSlbvho5DEdnJzp06US7Th3YuGa9WrmsrCymTPiJAYM/xq60XZ79/D5rOm07tsfZxRnX8q6M/WEcYaFh3Ll1u0jbJ94OSqWSdevXM3DgQJo3a4ZruXJM+vFHUlNT2bd/f4H11q1fT53atRk4YABOTk4MHDCA2rVqsXZ97uetQf36fPn55zRv1uxNNAXdJg1IPXCUjKs3yA4JI3n1RhTa2ujUqFpgHWVyCsqERNVD290NMjJIv3xVvWBWtlo5ZVJS8TYGaOtej2P3L3Hs/iUex0ey5uIBopPjaO5WM9/y5azKEJEUy8E754hMiuVOZDBH/S/gbJH377yoKJVK1m3axMAPP6R54ya4urgwadx4UtPS2HfoYIH11m3eRJ0aNRnYrx9Ojo4M7NeP2jVqsHbTJrVyWpqaWFlaqh7mZmaq54IePuTazRt8O3IUXhUq4FS2LN9+PZKUlBT2Hz5cXE0WQpJx4v/Phg0bcHd3x93dnX79+rF8+XKUyoLvSl2+fJkWLVrg5eXFP//8w8mTJ+nUqRNZWVlATnJv5MiR+Pr6cvjwYTQ0NHjvvffyJGu+++47Ro8ezeXLlylfvjy9e/dWJWde9Brff/89y5cvZ8GCBdy4cYOvv/6afv36cezYsQLjHjBgAIGBgRw5coTNmzczf/58wsNzu9crlUo6dOhAaGgoe/bs4cKFC1SvXp0WLVoQHf1yXwSys7MpU6YMGzdu5ObNm0yYMIHx48ezcWPBd81eps6SJUv47rvvmDJlCn5+fvzyyy/88MMPrFixQm1fY8eOZdiwYfj5+dGmTRtmzZrF9OnTmTZtGlevXqVNmzZ07tyZu3fvvvR7kZqaSo0aNdi1axfXr19n8ODBfPjhh5w9m5Mw6d69O5GRkRw9elS1v5iYGPbv30/fvn0B2L9/P/369WPYsGHcvHmTRYsW4e3tzZQpxTMMQVOhQWlTG+5EBqttvxsZjJN53l40AJ62zjyMDadpuep813IA3zTtR4cKDdB6qifcs2o5eHLl8V0ysoonqZiVmUlIwEOcK7qrbXep6M7Du4EF1rty7CwxYZE0fr/NC19DqVQScP0O0aERLzX0tag8iowkKj6Oup5eqm062tpUdyvP1aeS98+jVCo5d8uPB2GhVHcrX1yhvjMyMjK4f8efKjWrqW2vXLMat6/fKtS+U1NS+KLXQD7r/hFTx00i4O7LvYcvIyMjgzu3blOrjnpyp1ad2ly/ej3fOjeuXc9TvnbdOty6eavAmwBpqalkZmZiYmKitv1h8EPea9eZHl0+YOL4CTx++KgQrXm3aGpo4mJhn+eGxJUQf8pb5z+U6U5EEJYGJlS1dwPAVM+QOmW9uPRIPSH1QaVmxKcmcfTexSKNOefzdIeaz3w+atauxfVr+X+ebl67Qc3a6sP4a9WtzW0/9c/TyqXemJmb0aFzx5eKJSkxJ+nw7GdOvBsePX5MVFQUdevUUW3T0dGherVqXL12rcB6V69do85TdQDq1q373DrFScPSAg1TEzJvPXXtmJVF5r0AtJwdX3o/OnVrkX7xCqRnqO/f2gqTn8ZjPGEMBh/1RsPSoqhCz5emhgZOFnZcD1U/T10LvY+bVf7HrbuRwVgYmFDZzhUAEz1DapXNuQYsLo9CQoiKjqZuzdxjj46ODtWrVOHq9fyPVQBXb9ygTi3141XdWrW5ekO9TtDDh7R9/z069+zBuEkTefj4seq5jPSc3o66T/Vw19TUREtLi8vXnkmm/ocpFIq39vH/Soapiv87S5cupV+/fgC0bduWxMREDh8+TMuWLfMt//vvv1OzZk21nlleXrlfqLt165Zn/zY2Nty8eVPVvR5g9OjRdOjQAYBJkybh5eWFv78/Hh4ez32NpKQkZsyYwZEjR6hXL2eeKBcXF06ePMmiRYtoks+cGXfu3GHv3r2cOXNGdYGzdOlSKlSooCpz9OhRrl27Rnh4OLq6ugBMmzaNbdu2sXnzZgYPHpxnv8/S1tZm0qRJqp+dnZ05ffo0GzdupEePHq9dZ/LkyUyfPp33339fVeZJUuvp3mcjRoxQlXkS/9ixY+nVqxcAv/32G0ePHmXmzJnMmzdPVe5570Xp0qUZPXq0quzQoUPZt28fmzZtok6dOlhYWNC2bVvWrl1LixYtANi0aRMWFhaqn6dMmcK3336ritXFxYXJkyczZswYfvzxxxf+Xl+VoY4+mhoaJKYlq21PSEvGWDf/3j2WBiY4WdiRmZ3FyvN7MNTRp2vFJhho67Lp6pE85R3MbLAzsWTz1eK7Q5ickIQyOxsjU2O17YamxiTG5h1GARAdGsHRDbv48IehaGgWnEhMTU5h9tCJZGVmotDQoO2AD3Cp5F5g+aIWFZ8zfM3CWP1LqIWJCaFRUc+tm5iSTPtxY0jPyERTQ8HY3n2pU8HzuXUEJMTFk52dnadnl5m5ObExr5/wKF22DEO+/Zqyzo6kJCez++8dfD90DNP+mo1dmYLn/3tZcbGxZGVlYW6h/gXNwtKc6AI+K9FR0VhYqrfT3MKCrKwsYmNjsbKyylNn4dyFWFtbU6N2bs8ITy9Pxk/6HoeyZYmJimblshV8OehzVmxYjamZaaHb9l9nomuApoYmcSnqQ//jUhIxszfOt86dyGDmnNrMiEY90dbUQktDE99gP5b77laVcbcuS7Ny1Rm7Z36++yiMuNg4srOy8vTeNLc0J+ZM/jfeoqOiMLdUT96ZW5iTlZVFXGwsllZWXLtylT07dvPX6mX57uNZSqWS+bPmUqlKZZzLPX/+MPHfFPXv8cnymWOXpYUFIaGh+VVR1cuvTtQLzo3FRWFsBEB2gvqUF9kJCWi8ZE9hzbJl0LQvRfI69VEsmQ+CyFqzkazwCDSMjXOGv474goSpf6JMTi5gb4VjrGuApoYGcanqPfDiU5Mw1ct/6LB/5EMW/rOVIQ26qY5bFx/eZtWF4ptnOyq6gM+PuQUhYc/5/ERHY/nM+2Jpbk7UUx0LKlbwZNL48TiWcSAqJoalq1YyaMiXbPBegZmpKU6OjtiVKsXcxYsZP3o0+np6rNm4gajoaCJL6HMo/j9IMk78X7l9+zbnzp1jy5YtAGhpadGzZ0+WLVtWYDLu8uXLdO/evcB93rt3jx9++IEzZ84QGRmp6hEXFBSkloyrXLmy6v92djndvMPDw/Hw8Hjua9y8eZPU1FRatWqltj09PZ1q1arlW8fPzw8tLS1q1sz9kuXh4YHZU12yL1y4QGJiIpaWlmp1U1JS1IbZvsjChQv566+/ePDgASkpKaSnp1O1atXXrhMREUFwcDCDBg3i008/VdXJzMzE1FT9y+DT7YuPj+fx48c0aNBArUyDBg3yDL193nuRlZXFr7/+yoYNG3j06BFpaWmkpaWpzXXSt29fBg8ezPz589HV1WXNmjX06tVLNf/EhQsX8PX1VesJl5WVRWpqKsnJyRjkM+/Fk9d52pMk6ct6toOnAiioz+eTu1DrLh0gNTPnjuCumyfpV6MdW68fIzM7S618LQdPQuKjCI4tePLiIvPMHTLlU/E+LTs7m23zVtGoW1ss7fLO//U0XT1dPpkymvS0dAJv3OHQmm2YW1vi6OlalJGr7D13hqlrV6t+/vPLoUCepuW8Zy+4I2igq8ea8RNITkvF9/Yt/ty8kdJW1tQo/+aSic/Sad4YgxG5c3kljp9M5nW/EovnuZ79naNEUYhJjMt7elDeM3euQfeKnowZPJy9W3bx8bDPXnu/z3r2M69U5v93oCqfp03KArbD2pVrOHzgILMXzlU7ztRt8NTCIK7l8Kpckd5de7Bv91569u316o14Rz17XFUoFAX2sC9tas2Amu35+9pRrjz2x1zfmL7V2/BJnc4sOrMNPS0dvmrwAYvPbichrXi+jD+JUc0Ljj3Pfm6etE+hUJCclMwvP/7M6PFjMH3quuJ5Zv3xJ/f87zFn0bwXFxb/CXv37eOXX39V/TxzRs58XHmOXflsexGlUvnGesto16iKQc/cxW4SF3kXUPJ5V1XqdOrWIutxKFlBD9W2Z/rdUf0/OySMxMAHmPwwBp3a1UnzOfmKkb+ifEIvqDX2Jlb0q96W7dePcy30HmZ6xvSs1pIBtTqw9FzRLOiz9+ABfpk+XfXzzF9/A/K7TnqJz0Kez5x6nQZ166r+7wpU9vKia5/e7Nq3j349e6KlpcXvP01m8u+/0bxjBzQ1Naldowb1n+mxKURRk2Sc+L+ydOlSMjMzKV06t/eCUqlEW1ubmJgYzPO54/WiSTs7deqEg4MDS5Yswd7enuzsbCpWrEh6uvoEr08vLvDkBPEkcfe813hSZvfu3WpxQ8HJmqcvmp+3Xzs7O3x8fPI8Z/aSF9cbN27k66+/Zvr06dSrVw9jY2P++OMP1ZDO16nzpL1LlizJM2xB85meT/lNBpz3C2zek/jz3ovp06fz559/MnPmTCpVqoShoSEjRoxQez87depEdnY2u3fvplatWpw4cYIZM3Inhc3OzmbSpElqvfae0Ctgov6pU6eq9RgEcnrR1czbo+VZSekpZGVnY6ynnuQz0jXI01vuifjUZOJSE1WJOIDwxBg0FArM9I2ITMqdiFxbQ4sq9m4cuFPw+1oUDIwNUWho5OkFlxyXgKFp3l4n6SlphAQEE/rgEftX5CTYlUolKJX80n8UfcZ+jpNXztAwhYYGFqVyJqkv5ViayEdhnN55qNiScY0rV6WiU27vj/TMnGEqUfHxWJmaqbbHJMRjafz8IVsaGho42OQkG90dyhIYEoL3vj0lmoxL/+ccmbee+lIRWbRzXBUFY1MTNDQ0iI2OUdseFxOLqblZkb2OhoYGrh5uhDx6/OLCL8HUzAxNTc08veBiomPy9JZ7wsLSgqio6DzlNTU18/RoW7dqLauXr2TGvJmUc3v+519fXx8XVxceBgc/t9z/i/i0ZLKyszDTN1LbbqKXsxp1frp6NeZORBA7b+bMexkUG0bquXR+avMpG64cwlTPCBsjc8Y07auq8+S8tLbPRL7eMYuwxJh89/0yTM1M0dDUJDqfz0dBcx1aWFrmKR8bE4umpiYmpqYE3g8gNCSE8aNzJ9JX/nsObVG/KSs3rqH0U71EZ0/7k9MnTjFr0Zx8F04R/02NGzWi4lMjRdIzcs5zkVFRar1xo6OjsSjg2AVgaWmp1osJIDom5rl1ilLG9ZskPHjqGKeVc62pYWxMVnxu7zgNYyOUCfn/navR1kanehVS9hY8z5lKegZZIaFoWL/4Wu91JaQlk5Wdjam++jWziZ4h8an5z1fXybMhdyOD2XMrZ07lYMJJ803n+1YD2Xz1aIHHu1fRuEFDKj7Vyz/38xONleVTn5/YGCye0yPR0sIin89P7HPr6OvrU87ZheCHucnSCu7urF26jMTERDIyMzE3M+Ojzz/D073krrWKmsb/8XDQt5Uk48T/jczMTFauXMn06dNp3bq12nPdunVjzZo1fPXVV3nqVa5cmcOHD+dJlEBO13o/Pz8WLVpEo0aNADh58tXvbD3vNTw9PdHV1SUoKCjfIan5qVChApmZmZw/f57atXOGmty+fZvY2FhVmerVqxMaGoqWlhZOTk6vHDPAiRMnqF+/Pl9++aVq24t61b2ojq2tLaVLl+b+/fuqOdhehomJCfb29pw8eZLGTy1nfvr0adXv4GWcOHGCLl26qIYyZ2dnc/fuXbUhvvr6+rz//vusWbMGf39/ypcvT40aNVTPV69endu3b+Pq+vKJnnHjxjFy5Ei1bbq6uvxwcMkL62Yps3kUF46blQM3QnMXJXCzcuBGWEC+dR7EhFDZvhw6mtqkZ+VcAFkZmpGtzCb2mSFYle1d0dLQ5NLDO/ntqshoamlh51yGgOt38KiV23sx4PodytfIu3Korr4un04do7btwqFTPLh5l/eHDcDM+vkX8pkZxbeghqGentoKqUqlEksTU8763cTdIWf15ozMTC7evcPQ97oVtJt8KVGSXoyLgbyUlFSyUwoeNvI20NbWxqW8K1fPX6ZOo/qq7VcvXKZWg6K7261UKgn0D6DsK8wl9Dza2tqU93Dn/FlfGjfLPeafP+dLw8YN863jVakip0+oL3Lie/YcHp4eaGnlXuqtW7WGlUtXMG3ODDw8Kzy7mzzS09N5EPgg35Uy/x9lZWdxP/oxlUuVwzc4tydo5VLlOP8w/3kIdbW0yXpmDtlsZW6vxcdxkYzeOUft+Z5VW6KnpcOK83uIzGelw1eR83kqz/lzvjRqmntuvHDOlwYFfJ48K3nxzzOfp/Nnz+FeIefzVNaxLMvWqs/hunThEpKTkxk6cjg2/ybclEols6fN5OSx4/w5fzZ29vaFaot4uxgaGqrdFFUqlVhaWnL23Dk8/k1gZGRkcPHSJYYOKXiF7cqVKnH27Fn69u6t2nb27FkqV8p/Aaoil5ZOdpr6zY/suHi03F3JenKTRVMTrXLOpOzc+8Ld6VSrDFqaZPheevFra2qiaWtD5r3A1wj85WRlZxMYHULFUi5ceJg7V2XFUi5cfJT/Yio6Wtp55r5WHbeKKJ9jaGCgtkKqUqnE0sKCs+fP41E+Z17cjIwMLl65wtDPCu51XtnLi7Pnfen71PQ4Z319qexV8Irz6enpBAY9oNpTI2WeMDLKudkS9DAYv9u3+WLQoFdumxAvS5Jx4v/Grl27iImJYdCgQXmGO37wwQcsXbo032TcuHHjqFSpEl9++SWff/45Ojo6HD16lO7du2NhYYGlpSWLFy/Gzs6OoKAgvn2NJdef9xpWVlaMHj2ar7/+muzsbBo2bEh8fDynT5/GyMhIbQ61J9zd3Wnbti2ffvopixcvRktLixEjRqj1wGvZsiX16tWja9eu/Pbbb7i7u/P48WP27NlD165d1YaAFsTV1ZWVK1eyf/9+nJ2dWbVqFb6+vjg7OxeqzsSJExk2bBgmJia0a9eOtLQ0zp8/T0xMTJ6E1dO++eYbfvzxR8qVK0fVqlVZvnw5ly9fzncl2efF9/fff3P69GnMzc2ZMWMGoaGhask4yBmq2qlTJ27cuKFK3D0xYcIEOnbsiIODA927d0dDQ4OrV69y7do1fv7553xfV1dX95WHpT7txP3L9KzWiodx4QTFhFKnrBdm+kaceZAzgW1bj3qY6hmy4fIhAC49ukMLt5r0qNKCA3fOYqijT4cKDfAN9sszRLW2gyc3Qu+TnJH62vG9rDrtmrJ9wRrsXBwo4+rEpaOniYuKoXqLnGTK0Q27SIiJo/PnfVFoaGDjoL6yl6GJEZraWmrbT+04hJ2zA+a2lmRlZnHvsh/XTvrSdkDBw8+LmkKhoHfzFizftwcHGxscrG3x3rcHPR0d2tTKTQz96L0UazNzvuqa06ty+b49eDo6UdrKmsysTE5dv8buM2f4tvfLJ6rfFIWxERo2Vij+nYxa49+eMdnRsShjYkskpo7duzJn6gzKubtS3qsCh3btIzIsgtad2gOwZok30RFRDB0/SlUnwD8noZ2akkp8bBwB/vfR0tLCwSknibppxVrcKrhjV6Y0ycnJ7P17B4H+9xk0/PO8AbymHn16MuXHybh7euBVqSI7t24nPDSMLt1yhlItmruAyIhIvpv0AwBd3u/K1o1/M/fP2XTs2pkb166ze/suJkyZqNrn2pVrWLpwCT/8/COl7OyIisz58qlvoK8aOj9v5lwaNGqATSlbYmNiWLl0BUlJSbTt2L7I2vYy9LV1KWNqrfrZ3sQKN6syxKcmFaqXWFHY7Xear+p34170Y+5GBNPCrSZWhqYcvHsOgN5VW2FhYMK8038DcOHhbQbX7UIrt1pcCckZpvpRzXbcjQwmJiWn101wnPrw/6T0lHy3v67uvXsydeLPuHt44FXJi13bdhAWFk6n97sCsGTeQiIiIhk/8XsAOr/fhW2btjBv5hw6dunEjWs32LNjN99PzpnzVEdXN8+8b0b/zrP19PaZf8zg8P5D/PzHLxgYGqh6exoaGqGr9/rnO/F2UigU9O7Vi+Xe3pR1cMDBwYHl3t7o6enRtk3uAksTJk7Extqar/5N0PXq2ZPBn3+O98qVNG3cGJ/jxzl77hxLFy9W1UlOTlbrxfTo8WNu37mDqYkJpUrlv1BVYaQdO4Veq2ZkR0aRFRGJXqtmKDMySL9wWVXGoG8PsuPiSN2lvlKsTt2aZFy7me8ccHpd2pNx3Q9lTCwKYyP0WjdHoadL+rkLRd6Gp+27/Q+f1X2PgOgQ/CMf0rRcdSwNTDlyN+d1u1dpjrm+MYvPbAdyrhE/rt2R5q41uBZyDzN9Y/pWb829yEd5btgWFYVCQe/u3Vm+ZjVly5TBoUwZlq9ejZ6uLm1b5k7VM2HKFGysrfhqcE6CrtcHHzB42DC8166haYOG+Jw6ydkL51k6N3dI/Mz582hUvwGlbG2IiYll6cqVJCUl0bFtW1WZQ0ePYmZmRilbW/zv32P6nDk0adiQurVe/oa+EK9KknHi/8bSpUtp2bJlnkQc5PSM++WXX7h4Me+k3uXLl+fAgQOMHz+e2rVro6+vT506dejduzcaGhqsX7+eYcOGUbFiRdzd3Zk9ezZNmzZ9pdie9xqQs6CBjY0NU6dO5f79+5iZmVG9enXGjx9f4D6XL1/OJ598QpMmTbC1teXnn3/mhx9+UD2vUCjYs2cP3333HR9//DERERGUKlWKxo0bY2tr+1Jxf/7551y+fJmePXvmnER79+bLL79k796C7xy+TJ1PPvkEAwMD/vjjD8aMGYOhoSGVKlVixIgRz41n2LBhxMfHM2rUKMLDw/H09GTHjh24ubm9VHsAfvjhBwICAmjTpg0GBgYMHjyYrl27EhcXp1auefPmWFhYcPv2bfr06aP2XJs2bdi1axc//fQTv//+O9ra2nh4ePDJJ5+8dByv6kqIPwY6erR0q4WJriGhCVEsO7eL2H+/7JnoGmCmnzvUMz0rgyVnttOlYmOGNepBcnoqVx/7s+/2GbX9Whma4Wxpz5J/L9CKm2fdaiQnJHFy634SY+OxLmNHr28GY2qVk+BJjI0nLvLVvoxnpKWzz3szCdFxaOloY2lvQ5cv+uFZN/85F4tL/9ZtScvI4Ld1a0lITsLL2YU5Q79W60EXGh2tNqw6NS2N39atITw2Bl1tbRxL2fHTwEG0rlkrv5coUdr1amH4zTDVz0bf5yyEkrJyPamrNpRITA2aNyYxPoHNK9cTEx2Ng5Mj43+diHWpnJ47MVExRIZHqNUZ82luG+7f8efk4WNY29owf33ORPVJiUksmjGX2OgYDAwNcXZ1YdKsX3GrUHRDWVq0bkl8XDwr/lpOVGQUzuVc+G3mNErZ5XzpjIqMIiw0TFXevrQ9v8+cxpw/Z7N10xYsra0YPnoETZs3U5XZtnkLGRkZTBj7vdprDfj0Yz4enHPnPyI8nEnf/0hcbBxm5mZ4VvRi4bLFqtd9UzysHZn7Xu6Nl2ENcxLne/z+YcqRFQVVeyP+eXAdY10DulVqirm+McGxYfx6dJVqaL+ZvhGWhrnXGcfuX0JfW4c27nX5sEZbktJTuREWwJqL+wt6iSLXvFUL4uPiWbnMm+jIKJxcnPn1z99zP09RUYSH5X6e7Oztmfrn78yfOYftm7diaWXF0FHDadK86Su97o6/twHw9RfD1LaP/WHcG0/wijfjow8/JC0tjV9//52EhAQqenkxd/ZstR50oWFhaGhoqH6uUrkyUyZPZsGiRSxctIgyZcowdcoUtXmXb/r58flTIyr+nDkTgI4dOjBxwoQib0fa4WMotLXR/6ALCgN9sh4Ek7hgKaTlTu2hYW6WZ7JeDWsrtMo5kzj/r3z3q2FmiuFHvVEYGqBMTCLzQTAJM+YX+w2rs0E3MdIxoItXY8z0jXgYF870Y2uJSv73uKVnhKVB7nHrZMAV9LV0aFm+Fr2rtSY5PZWb4QFsvFx8i3gBfNS7T87n588ZJCQmUrFCBeZOm67Wgy40PAwNjdzrpCoVKzFlwo8sWPoXC5cupYy9PVMnTqSiZ+4Q2LCICL77aRKxcXGYm5lR0dOT5QsWYvdUIjcyKoo/580lKiYGK0tLOrRpwyf983Z4+C/7f1619G2lUBY046wQQogSN2bX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2Javffigm8x84Nbufr4bkmHUWiV7d0Ii48s6TAKzdbEigbziq5XYEk4NWQhPVf/8OKCb7kN/Sbz+E0sslOM7M1kTrm3TcJTU5z8FxmbmRE7/NVHrbxtzGb9Sv91P5V0GIWysvcEEp66kfRfZVzq5TotvG1uFTB1zdvAw7bgUVXvMo0XFxFCCCGEEEIIIYQQQhQFGaYqhBBCCCGEEEII8Y5SIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h2loZB+WG8beUeEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RCoWspvq2kZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKA0ZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKAUyTPVtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQpZTfWtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWto1AqlcqSDkIIIYQQQgghhBBCFL2g6JCSDqFAZS3sSjqEEiE944QQ4i224/qJkg6h0DpXbERA5KOSDqNQnK1K/+fbADntiD98rKTDKBSTFk3YcOlgSYdRaD2rtcLbd3dJh1FoA2p1oOfqH0o6jELZ0G8yDeZ9XtJhFNqpIQvZ5/dPSYdRKG0r1CPB73ZJh1FoxhXcWXtxf0mHUWh9qrdh+rF1JR1GoYxq0puEy1dLOoxCM65amSVntpd0GIXyad0urPTdU9JhFFr/Wu1LOgTxjpBknBBCCCGEEEIIIcQ7SlZTffvIAg5CCCGEEEIIIYQQQrwhheoZd+HCBfz8/FAoFFSoUIHq1asXVVxCCCGEEEIIIYQQQrxzXisZFx4eTq9evfDx8cHMzAylUklcXBzNmjVj/fr1WFtbF3WcQgghhBBCCCGEEOIVKZBhqm+b1xqmOnToUOLj47lx4wbR0dHExMRw/fp14uPjGTZsWFHHKIQQQgghhBBCCCHEO+G1esbt27ePQ4cOUaFCBdU2T09P5s2bR+vWrYssOCGEEEIIIYQQQggh3iWvlYzLzs5GW1s7z3ZtbW2ys7MLHZQQQgghhBBCCCGEKDwNWU31rfNaw1SbN2/O8OHDefz4sWrbo0eP+Prrr2nRokWRBSeEEEIIIYQQQgghxLvktZJxc+fOJSEhAScnJ8qVK4erqyvOzs4kJCQwZ86coo5RCCGEEEIIIYQQQoh3wmsNU3VwcODixYscPHiQW7duoVQq8fT0pGXLlkUdnxBCCCGEEEIIIYR4TQoZpvrWea1k3BOtWrWiVatWRRWLEEIIIYQQQgghhBDvtJdOxs2ePfuldzps2LDXCkYIIYQQQgghhBBCiHfZSyfj/vzzz5cqp1AoJBknhBBCCCGEEEII8RaQ1VTfPi+djAsICCjOOIQQQgghhBBCCCGEeOe91mqqT6Snp3P79m0yMzOLKh4hhBBCCCGEEEIIId5Zr5WMS05OZtCgQRgYGODl5UVQUBCQM1fcr7/+WqQBCiGEEEIIIYQQQojXo3iL//2/eq1k3Lhx47hy5Qo+Pj7o6emptrds2ZINGzYUWXBC/D+7ffs2U6dOJS0traRDEUIIIYQQQgghRBF5rWTctm3bmDt3Lg0bNkTx1ESAnp6e3Lt3r8iCE+L/VUJCAu+99x7Ozs7o6uoW2X6dnJyYOXPma9cPDAxEoVBw+fLlIotJCCGEEEIIIYT4f/LSCzg8LSIiAhsbmzzbk5KS1JJzQhSF06dP06hRI1q1asW+ffteuf7EiRPZtm3bfyqB9NFHH/HJJ5/Qq1evkg5F/Iec3ncUn+37SYiJxdbBns4De+HiWT7fsgF+d9m9ajMRj0JJT0/H3MqSuq0b07hT63zLXz55jjV/LsarVlUGfPtVkcW8c8t2Nq/dQHRUFI7OTnw+bAgVq1YusPzVS1dYPGc+DwICsbSyonufnnR4r7Pq+W+++pprl67kqVerXh0mT5sKQHJSMiuXLOP08ZPExsRSrrwrn4/4CvcKHm9NOwC2btjMrq07iAgLx8TMlEZNGzPw80/R0dUB4NrlK2xeu4G7t+4SHRXFhKk/Ub9xw9duw8tSKpUs2b2TradOkJCcjJeTM2N69qGcvX2BdY5cuoj3/r0ER4STmZWFg40N/Vq0on2desUe77kDxzm58zCJsXFYl7GjXf9uOFVwzbfsg1v3OLB2O5GPQ8lIy8DM2oKaLRpQv0NzVZmszCyObz/A5WNnSYiJxdLOltZ9uuBW1bNY23Hh4CnO7jlKYmw81qVL0bJfVxw8XF5Y7+GdAFb/PA/rMqUY9Mto1fbbvlc5veMQMWGRZGdlY25rRe32TanUsGZxNoPW5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG1xNuOlVLFzpU+11njYlMXK0Ixv9yzgREDe49Pb4sSewxzZtpf4mFhKOZTm/UF9KOflnm/ZezfvsHPlRsIehZCRlo65tSX12zSjWec2bzjqnGPS4vXr2HrgAAlJiXi5lWfsZ59TrmzZAuvcCwpi4do13Lp3j5CIcEZ+PIg+nbvkKRceFcWcld6cvniR1LQ0HO1L88NXQ6ngmv8xpCj5HjjB6V2HSYiNx6ZMKdr074ajR7kX1gu6fR/vn2Zj42DH57+OLfY4n3bD5xxX958mOS4Bc3sb6vVsi52bY75lH98OYNf0FXm295g0BDM7awACLt7k0t4TxIdHk52VjamNBZVa1ad8vSrF2o5nKZVKFm/exNbDh0hITMTLzY2xH39COQeHAutsPXyI3cePcS84GIAKzi582bs3FV3d3kjMlw6fxnfPMZLiErCyt6VZ386UcXd+Yb1HdwJZP3UhVmVs+Wjy12rPpSalcPLvfdw9f53U5BRMrSxo2rsDLlUqFEsbzh88yZmnznut+nWl7Ev8DQTfuc+qf897n/7yjWr7Ld+rnNpxUO28V7d9Uyo1rFUs8b9tJE/z9nmtZFytWrXYvXs3Q4cOBXLf2CVLllCvXvFfWIv/L8uWLWPo0KH89ddfBAUFUfY5F1fvii1btpR0CP85GRkZaGtrl3QYJebyqXPsWL6e9z7ti5OHK2cOHGfplFmMnvkT5taWecrr6OrSoF1z7BzLoKOnS4DfXf5etAodXV3qtm6iVjYmPIpdKzbhXKFoLyCPHTrKolnzGDJqOF6VK7Jn206+H/0ti1cvx6aUbZ7yoY9D+GH0ONp1as+YCeO5cfU686bPwtTMjIbNGgMw4ZdJZGTkLioUHxfHlwM+pVGz3DbN/HUagfcD+GbCOCytrDi8/yDjhn/D4jXLsLK2fivacWT/IZYtXMLIcWOoUMmLR0HBTJ/yOwCfDR8CQGpKKs6u5WjVvi0/fzfxleN+XSsP7mftkUNM+HAAZW1tWbZ3N1/N+ZPNP07G8KmpK55mamjIwLbtcbIthbaWJieuXeOnVSswNzahnqdXscV67fQF9q74m46DelLW3QXfQydZ/et8vpr+PWZWFnnK6+jqUKdNY0qVLY22rg5Bt++x46/16OjqULNlTqLz8IadXDnpS5fBfbCyt8X/ih/rpi/h059GYudc8Bezwrh55hKHVm+jzYBulCnvzKUjp9nwx2I+/W0splbmBdZLTU5h58K1OHm5kRSXoPacnqEB9Tu3xNLeFk0tTfwv3WT34vUYmhjhUvn1E9PPU8+xIh/VaMdS313cDg+ipVtNxjX/kJE75xCVHJenvLt1WYbU78aKC3u58PAWFgYmfFqnM5/V7cr04+vUyloZmtKvehv8wgKLJfbXoa+ti3/UQ/bcOs0v7T4v6XCe6+LJs2xdtpbun/XH2cON0/uPsnDyDMbN+QWLfM4hunq6NGrfEnsnB3R0dbjvd5eNC7zR1dWlfpumbzT2FVu3sHbHdn4cNpyy9qVZumkjQ36cwN/z52Oob5BvndS0NMqUKkXLBg2YsWxpvmXiExMZ9O1YalaqxKwffsTC1JSHoaEYGxoWZ3MAuP7PRfat3EKHj7vj4O7ChUOnWPPrAoZMG49pPseuJ1KTU9g2fxUuFcuT+MzffHG753udfzbso2GfDti6lsXv+Hn2zl5Nj4lDMLI0K7Bej8lfoaOXOwpEzzj396trqE+19o0xK2WFpqYmD67d4diKbeibGOLgVfwJ0SdW7NjO2t27+PGLIZS1s2Pplr8ZMmUyf/85C0N9/XzrXLhxgzb1G1LZvTy62jqs2LGdr6b8zMbpM7CxyPs3VZRunb3M0TU7adm/K6XLO3Hl6Fn+nr6UgVNHYWJZ8DkjLTmFPYvX4+jpSlK8+ucnKzOTTX8swcDEiM5ffYiRhSkJ0bFq711RunnmEgdXb6PtgA9wKO/MxSOnWf/HYj777dsXnvd2LFyLs5dbnr8BfUMDGnRuhdW/5727l26wc/F6DEyMKVdM5z0hnue1hqlOnTqV7777ji+++ILMzExmzZpFq1at8Pb2ZsqUKUUdo/g/lpSUxMaNG/niiy/o2LEj3t7eas97e3tjZmamtm3btm2qBLG3tzeTJk3iypUrKBQKFAqFah9BQUF06dIFIyMjTExM6NGjB2FhYar9TJw4kapVq7Jq1SqcnJwwNTWlV69eJCTkHtjT0tIYNmwYNjY26Onp0bBhQ3x9fVXP+/j4oFAo2L9/P9WqVUNfX5/mzZsTHh7O3r17qVChAiYmJvTu3Zvk5GRVvaZNmzJixAjVz6tXr6ZmzZoYGxtTqlQp+vTpQ3h4+HN/d+Hh4XTq1Al9fX2cnZ1Zs2ZNnjJxcXEMHjwYGxsbTExMaN68OVeuvPxd+6ysLAYNGoSzszP6+vq4u7sza9asIqmzfPlyKlSogJ6eHh4eHsyfP1/13JPhshs3bqRp06bo6emxevVqsv/H3l1HR3G9DRz/xt3dhTgEdwlBg1PcHVqKl7ZAhaKlgpTSlkIpXtzdJVhwJwFCSAiQBIi7bHbfPwKbbHYTLAF+vPdzzp6TzN47e2d3dmfmmefeK5Uyffp0HB0d0dHRoWrVqgrZlC/qbd26lSZNmqCvr0+VKlUICQmRl0lISKBXr144Ojqir6+Pv78/69YVXvQtXrwYBwcHpFKpQns7dOjAgAED5P/v2rWLGjVqoKuri7u7O9OmTSvXmadP7DpEraYNqdM8ABtHezoO7omphRkhB46rLO/g7ky1RnWwdXbA3NqSGo3r4V21IpFh4QrlpPlS1v6+hJY9OmBu8/qBqtJs3bCJoHatad2hLc6uLgwfNwora2t2b9upsvye7buwtrFm+LhROLu60LpDW1q2bc3mdRvlZYyMjTG3MJc/rly4hK6OLgFNC4JxOTk5nAo+wZCRn+FftQr2jg70GzIQWzvbEl/3fWxH2M1bVPSvRJOWzbC1s6VGnVoEtmjK3dt35WVq1avDwE+H0DAw4I3a/SZkMhnrjh5mUKs2NK1WHQ97B6b2H0R2bi4HLpwrsV4NL2+aVK2Gm50djlbW9GraDA8HB65G3CvX9p7Zc5TqTepRo2l9rBxsaTOgK8YWZlw4dFJleTs3Jyo3qIm1kx1m1hZUaVQbj8q+PLhdOATHtVPnCfikJV7VKmJuY0ntlo3wqOLL6T1Hy207zu8LpkpgHao2qYulgw0t+nXC2MKUK0dOl1pv/7JN+NWrjoOHcmaKi58H3rUqY+lgg5mNJbVaBWDtZMfDO5HltRm09a3P0YjLHL13icepz1h5aR8Jmam09KqtsrynpRNPM5LZf+cszzKSufMsmsPhF3C3cFAop6amxugG3dh0/ShP0hPLrf2v62z0LZac20nw/avvuykvdXzHAeo2D6Bei8bYOtnTeWgfzCzNOb1f9X7t6O5CjYC62Dk7YGFjRa3A+vhU8yci9M47bbdMJmPdrp0M6tadpvXq4+HiwrSx48jOyWH/iRMl1qvo6cnYgYMIahSAtqbqG3krt27BxtKSKWPGUsnLC3sbG2pXqYKjnV15bY7c2T3HqNakLtWf/3a1GtAFEwszLhw6VWq93f9uoFKDmjh6upZ7G4u7figE74bV8WlUAzM7K+r3aI2hmQmhwRdLradnZIC+iZH8oa5eeHlq7+2GWzVfzOysMLY2x79ZXcwdbIi7F13emyMnk8lYt3cPgzp1pmmdOng4OzNt5KiCfexUyZ/HzDFj6RYUhLerG64ODnz/2WfIZDLO37hZ7m2+uP8k/gG1qBxYBwt7G5r26YCRuSlXj5wttd7BFVvxrVcNOw/lxIcbJy6QnZ7JJ2MG4ODliomlGY5eblg7l5wV/zbO7TtO1cA6VHt+3Gv5/Lh3+SXHvX3LNlGxXnUcPFyVnnPx88CnyHGvdqvGz49798tlG4TytXDhQtzc3NDV1aVGjRqcPKn63O6F4OBghWuzRYsWKZXZsmULfn5+6Ojo4Ofnx7Zt28qr+cAbBuPq16/P6dOnyczMpEKFChw8eBAbGxtCQkKoUaNGWbdR+H9sw4YNeHt74+3tTd++fVm+fDkymeyV6/fo0YMvv/ySihUrEhsbS2xsLD169EAmk/HJJ5+QmJhIcHAwhw4dIiIigh49eijUj4iIYPv27ezevZvdu3cTHBysMGPwhAkT2LJlCytXruTy5ct4eHgQFBREYqLixcDUqVP5888/OXPmDA8fPqR79+7Mnz+ftWvXsmfPHg4dOsQff/xR4nbk5uYyY8YMrl27xvbt24mMjGTgwIGlbvvAgQOJiori6NGjbN68mYULFyoE8GQyGW3btiUuLo69e/dy6dIlqlevTrNmzZTaXxKpVIqjoyMbN24kNDSUH374gW+//ZaNGze+VZ0lS5bw3Xff8eOPPxIWFsasWbOYPHkyK1cqdmeYOHEiY8aMISwsjKCgIH7//Xfmzp3LnDlzuH79OkFBQXTo0IHwcMUA03fffcdXX33F1atX8fLyolevXvJAWXZ2NjVq1GD37t3cvHmTTz/9lH79+nHuXEGgoVu3bsTHx3Ps2DH5+pKSkjhw4AB9+vQB4MCBA/Tt25cxY8YQGhrK4sWLy/VmhSRPwuOIB3hVVcww8qpSkQd3Xm0cz8f3o4m6E4F7RcVurYc27cLA2IjazRuVWXuhIJMx/M5dqtdW7BJXvXZNwm7eUlkn7OYtpfI16tQk/PadEgOdB3bvo3HzJug+v3OdL8lHmi9FW1tboZy2jg63rr/+CXJ5bUfFKv6E37nLndAwAGIfx3Ah5By169d57TaWpccJ8SSkplLXt7BLpraWFtU9vbh+/9VOZmUyGedvh/HgyROql2N3HYlEQmzkQypUVuw+41HZl+i7rxZwio18yMO793H1K2ynJE+CZrEsXC1tLaJvl8+YufkSCXGRj3CrpPjddKvkzaPwqBLrXQ8+T9KTBBp1Vt31vCiZTEbUzbskxj3D+RW6vr4JDXUN3M3tuR6rGIC9FnsPLyvVGYV3n0VjoW9MVfuC999E14A6zhW58lgx4NPVvwmp2Rkci7hcLm3/2EnyJDyMiMK7aiWF5d5VKxF5+9UC5o/uPyDydjgeld5tdsnjJ09ISEqibtWq8mXaWlpUr1SR67fD3mrdJ86fx9fDg4m//kyLAf3o/cVYth088JYtfrl8iYSYyIdKmTrulX14VMpv15XjZ0l6Ek9gl1bl3UQl+RIJ8dExOPopdiF09KvAk4iHpdbdOmMxq7+aw+55K4m5XfL2yWQyHofdJ+VJQoldX8vD46dPSUhOpm7lwq6x2lpaVPfz4/rdVw8+Z+fkIpFIMDE0LI9myuVLJDyJeoxrsWOGayVPYu5FlVjvxokLJD9NoP4nzVU+H3ElFHsPF46s2sbC0dNZ/u1czu46qnRzuizkSyTERj7CrZJiN3n3lxz3rgWfI+lJPAGdX95dXiaTESk/7r286+vHQAuND/bxujZs2MC4ceP47rvvuHLlCo0aNaJ169ZER6sO1EdGRtKmTRsaNWrElStX+PbbbxkzZgxbtmyRlwkJCaFHjx7069ePa9eu0a9fP7p37y6/BiwPb9RNFcDf31/pwlgQytrSpUvp27cvAK1atSI9PZ0jR47QvLnqA0Vxenp6GBoaoqmpia2trXz5oUOHuH79OpGRkTg9H+9h9erVVKxYkQsXLlCrVsHYAVKplBUrVmBkZARAv379OHLkCD/++CMZGRn8/fffrFixgtatWwMFQaRDhw6xdOlSvv66cIyCmTNn0qBBAwCGDBnCN998Q0REBO7uBRc9Xbt25dixY0ycqHpsj8GDB8v/dnd3Z8GCBdSuXZv09HQMVRzU7969y759+zh79ix16tSRv5e+voUXpceOHePGjRs8ffpUPknEnDlz2L59O5s3b+bTTz996furpaXFtGnT5P+7ublx5swZNm7cSPfu3d+4zowZM5g7dy6dO3eWl3kR1CqafTZu3Dh5mRftnzhxonysvV9++YVjx44xf/58/vrrL3m5r776irZt2wIwbdo0KlasyL179/Dx8cHBwYGvviocV2n06NHs37+fTZs2UadOHczNzWnVqhVr166lWbNmAGzatAlzc3P5/z/++COTJk2St9Xd3Z0ZM2YwYcIEpkyZ8tL39XVlpKUjlUoxMjFWWG5oakxasnLXr6JmDvua9NQ0pNJ8WnTvQJ3mhVlWkbfDuXDkFF/M/aHM25yanFIwXoe5YlcDMzMzEhNUB4OTEpMwMytW3tyM/Px8UpJTsLBU7PZxJzSMqPuRfPFN4eepb6CPbyU/1q5YjbOLM6bmZhw/fJQ7oWHYOypm27zP7Qhs3pSUpGS+/HwsMpmM/Px82nXqQI9+vV+7jWUpISUVAHMjxX3N3MiYuMSEUuumZ2XS5tuJ5ObloaGuzsSevanjW37jrGWmFnwvDE2MFJYbmBiRnpxaat05I74nIzUdaX4+Tbq2oUbT+vLnPCr7cmbvUVx9PTCzseT+zTvcvngdqfTVbxS91nakZSCTSjFQsR0Zyaq7oSXGPePYht30nTwKdY2ST3KzM7P4c/Q08iUS1NTVCRrYBTd/1WOEvS1jHX001DVIyUpXWJ6SlY6pvZHKOnfjH/LH6c2Ma9QDLQ1NNNU1uPAwjOUX9sjLeFs506RCdSbuXahyHcLLZaSlIZVKMTZV/F4bmRiTllT6MeSHIV+QnlJwDGnd4xPqtWhcavmylpCcBIBFsV4SFiamxD579lbrfvwkji3799GnQ0cGde3GrfBw5vy7BC0tLdo1afryFbyhzNSC73zx3y5DEyMiSuh6mhD7lCPrdjFo6thSv/PlJTs9E5lUhp6xYhdePWMDMlPTVdbRNzGiUb/2WDnbkS/JJ/zsNXb/tpL2Xw7EzstVXi43M5v/Js4lPy8fdXU1GvRuqxT0K08JyckAWJiYKCy3MDEh9ln8K6/nz7VrsDI3p7a/f1k2T0nW82OGvoni9YG+iZHScAUvJMU94+SmffT87vMS95+UZ4lEh0XgW68anccPJvlJPIdXbUean0/9T1qU6Ta8OO69zvH7xXGv3+TRLz3uLRg9VX7cazWwK+7ldNwTys+8efMYMmQIQ4cOBWD+/PkcOHCAv//+m59++kmp/KJFi3B2dpZPZOjr68vFixeZM2cOXbp0ka+jRYsWfPPNNwB88803BAcHM3/+fIVeUmXplYNxqamln7gWZWxs/PJCgvASd+7c4fz58/Lx0zQ1NenRowfLli175WBcScLCwnBycpIH4qBgNmBTU1PCwsLkwThXV1d5IA7Azs5Onl0WERFBXl6ePMgGBYGm2rVrExameDe2cuXCgdxtbGzQ19eXB+JeLDt//nyJ7b1y5QpTp07l6tWrJCYmyu9CRUdH4+enfDEbFhaGpqYmNWsWZt/4+PgodOm9dOkS6enpWFgoBjCysrJea1bkRYsW8e+///LgwQOysrLIzc2lapE71K9b59mzZzx8+JAhQ4YwbNgweR2JRIJJsROhotuXmppKTEyMwucB0KBBA6Wut0U/D7vn3U2ePn2Kj48P+fn5/Pzzz2zYsIHHjx+Tk5NDTk4OBkXGiOnTpw+ffvopCxcuREdHhzVr1tCzZ080nh/8L126xIULFxQy4fLz88nOziYzMxN9feUxbF68TlGvPZNu8YFZZTKg9MFaR8ycQE52DtF377P3vy1Y2lpTrVEdsrOyWff7Urp+3h8DY9UXymWiWJtlyEofYLZ4edmLxcp19u/eh6u7G95+iplRX0/+ht9+mk2fT7qjrqGOh5cngS2aEXE3XGkdr6yMt+Pa5ausX7WGkV+OxaeiLzGPHrPo978wW76aPoP6vXk7X9O+8+f4ad1/8v9/+3zU83YqlpMhU15YjL6OLmu+mUxmTg4X7oTx25ZNOFhaUcOrnE+ClZr1ks8GGDJ1HLnZOTwMj+LQuh2Y21pRuUHB702bgV3Z8c86FoyfgZqaGmY2llQLrMuV46V3/3lrKvYxVe+5VCplx1//0ahLKyzslCfbKkpHV4fBP35JXk4uUbfCObJmB6ZWFrj4ld9YTMVDlmpqaiVmvDuYWDGwZhu23DjGtZh7mOkZ0ad6EEPrdGDx2e3oamozqkFX/jm3g7ScTJXrEF5H8f1J9rJDCGNnfUtOVjZRdyPYtXoTlnY21AioW24t3Bd8nFl/FwZe539fcLNIjeLfj5f+JL2UVCbDr4IHI/v1B8DHvQL3o6PZsn9fuQbjChU/Tqj+PKRSKVv/XEVg19Yv/c6XN6XPoZR7FKa2lpjaWsr/t6ngRHpSKtcOnlEIxmnpatNl8nDycnKJCYvk7KYDGFuZYf8KkxG8iX0nTzJryWL5//MnFVyYFz9uyF5+2JNbuWMHB06fYvGUaegUy8wvL0rHOZnqY59UKmX3onXU79QCc9uShyORSWXoGxnSclAX1NXVsXVzJD05lQt7g8s8GCendNxTfb4nlUrZ/tfqVz7uDf3xK3Jzcom6dZfDa7ZjVs7HPeHlSroOUnUtlJuby6VLl5g0aZLC8pYtW3LmzBmV6w8JCaFlS8WeAkFBQSxdulQ+7nhISAhffPGFUpkXAbzy8MrBOFNT01eegSM/P/+NGyQILyxduhSJRIKDQ2G2ikwmQ0tLi6SkgswSdXV1pZP4vLy8l65bVsIBqfjy4hMCqKmpyQNhL15X+eCsvO6i61FTUyt1vcVlZGTQsmVLWrZsyX///YeVlRXR0dEEBQWRm5tb4vapaltRUqkUOzs7jh8/rvRc8XH4SrJx40a++OIL5s6dS7169TAyMmL27NmlpvO+rM6L92HJkiXyrL4XNIrd6TJQMYjym3weRV937ty5/Pbbb8yfPx9/f38MDAwYN26cwnvdvn17pFIpe/bsoVatWpw8eZJ58+bJn5dKpUybNk0ha+8F3RIGuP/pp58UMgYBpkyZQvWuzVSWL8rAyBB1dXWlLLj0lDSMTEu/OfJiHDg7F0fSUlI5tHEn1RrVISHuKUlP41n+U2H36Rf71cRun/L1HzOxtH3zk35jUxPUNdRJKpY9lpyUrJRl9oKZuRlJicXLJ6GhoYFxsazA7Oxsgg8fo//QgUrrsXd0YPZf88nOyiIjIxMLSwtmTZ6OjZ2tUtn3tR2rliynaVALWncoyOB0q+BOdnY2C36ZR68BfRTG1ClPAZWrUMm18IIn93k32oTUVCxNTOXLk9LSsDAqfV9TV1fH6flM7N5OTkTFxbHiwL5yC8bpGxd8L9KLZY9lpKQrZZkVZ2ZdcIFo4+xAekoaxzbvlQfjDIyN6P3Vp+Tl5pGVnoGRmQmH1u7A1Lp8BuTWNzJATV2djGLZAJkp6RiYKGdG52blEBf5kCcPHnNwZcHNLJlMBjIZP/f/ip4TP8O1YkG3TzV1dfnFl42LAwmPnxCy60i5XJSk5mSSL83HVE+xzca6BqRkq86c+aRiAHefRbMrtGCMoOjkJ2Sfz2V60DA2XDuMia4h1oZmTAjsI6/z4jd9be+pfLHzd56kJ5X5tnxsDIwKxulKLXYMSUtJw8jUpIRaBSyeH0PsXZ1IS05l//rt5RqMC6hdm0pehd3vcp9P2BOfnISleeHEBokpyZi/4rlMSSzNzHArNlumm6MjR0NUX+yVFX3jgu98eoridz4jNR1DFTfHcrOyibkfTWzUI/au2AwUfuen9xlHv29GKHVzL2u6hvqoqaspZcFlp2Wgb/zq3TKt3Ry5d+66wjI1dXVMnv++WjrZkRT3jKv7TpVbMC6gZk0qeRb+BhbuY8lYFslqT0xNwbzIcbAkq3ftZPn2rSz8/gc8Xcq/e62e/JiheOzLTE1X+VnkZuXwJPIRTx/EcGT1DqBw/5k7aBLdvh6Ks58HBqZGqGtoKJx/mNtZk5GSRr5EgobmG3e4U/LiuFc8Cy4zJU3l8Ts3K4fYyIfEPXjMgWLHvVn9v6T3xOEqj3u2Lg7EP37CmV2H/18E4zRkH+5sqiVdB02dOlWpbHx8PPn5+djYKE6SZmNjQ1xcnMr1x8XFqSwvkUiIj4/Hzs6uxDIlrbMsvPK3puj4SFFRUUyaNImBAwfKZ08NCQlh5cqVKtMCBeF1SSQSVq1axdy5c5Wi2F26dGHNmjWMGjUKKysr0tLSyMjIkAdmrl69qlBeW1tbKUDs5+dHdHQ0Dx8+lGfHhYaGkpKSotCVszQeHh5oa2tz6tQpevcu6DqWl5fHxYsXFSZfeFu3b98mPj6en3/+Wd7WixdLHwzX19cXiUTCxYsXqV27YGDsO3fukPw81R6gevXqxMXFoampiaur6xu17eTJk9SvX58RI0bIl70sq+5ldWxsbHBwcOD+/fvyMdhehbGxMfb29pw6dYqAgMKulmfOnJG/B6/i5MmTdOzYUd49WiqVEh4errBf6Onp0blzZ9asWcO9e/fw8vJSGC+zevXq3LlzBw+PVz+wf/PNN4wfP15hmY6ODgfCS86YfEFTSxOHCi6EXwvFv051+fK710OpWKvqK7dBJpMheX7Sae1gx5e/KR4U96/dRk52Nh0H98LUouTZ3F6FlpYWnt5eXLlwiQaNC8eju3LhEnUb1ldZx7dSRc6dDlFYdvn8RTx9vNEsdhJ44shx8vJyaRpUchatrp4eunp6pKWmcen8BYaM+OyD2Y6cnGylgNuLmw+vM27m2zLQ1VWYIVUmk2FhbMy5sFC8nQoGeM6TSLgcfpfRnygHn0sjk8nkwb3yoKmpiZ2bExE3buNXu3Csn4gbt/Gp+RrdhGQy8vOU26mlrYWWuSn5knxCz1+lYt3qKiq/PQ1NTWzdHIm8eRfvWoVZvZE37+JVQ3kmWh09HYb+9LXCskuHT/Mg9B6dxwzAxKrk764M1dtaFvKl+dxPjKGybQUuPCzMHq9sW4GLj26rrKOjqUV+sRtV0hc3m1AjJiWer3Ypjrfao2pzdDW1WXlxL/GZr96r4/8zTS1NnCq4cufqLarULTyW3bl6C/861V59RTIZkle4Ifo2DPT0FWZIlclkWJiZce7qVXzcC7ou5uXlcfnmLUYXGdbiTVTx8eXB48cKyx7ExGBnVb7ZZxqamti7OXH/+h18axX+dt2/cRvvGsq/XTp6unz+q2KGyIWDp4gMvUv3cYMxVTEbbnm02dLZnsehEbhVKzxfehQWgWuVVx9HMOFhrFL3SiWygjHFyouBnp7CDKkymQwLU1POXb+Oj1tBADBPksfl0FBG9+5b6rpW7dzB0q1b+PPb7/Gr8G661mpoamLj6kDUrXA8axaOAxl1KxyPaqqPGQN+VDz/vHokhIdh92g/qp/8mOHg6UrY2avIpFLUnp+fJD2Jx8DUqEwDcS+2we75cc9H6bhXSam8jp4Ow36aoLCs4LgXTucxAzEt5bgHyM99hfenpOug0rxKAsbLyhdf/rrrfFuv/M1p3LhwDIjp06czb948evXqJV/WoUMH/P39+eeffxTGdBKEN7F7926SkpIYMmSIUtfErl27snTpUkaNGkWdOnXQ19fn22+/ZfTo0Zw/f15pxlVXV1ciIyO5evUqjo6OGBkZ0bx5cypXrkyfPn2YP38+EomEESNG0LhxY4Wuj6UxMDDg888/5+uvv8bc3BxnZ2d+/fVXMjMzGTJkSFm9FTg7O6Otrc0ff/zB8OHDuXnzJjNmzCi1jre3N61atWLYsGH8888/aGpqMm7cOPSKnFw0b96cevXq8cknn/DLL7/g7e1NTEwMe/fu5ZNPPnml98HDw4NVq1Zx4MAB3NzcWL16NRcuXMDNreS7la9SZ+rUqYwZMwZjY2Nat25NTk4OFy9eJCkpSemHuqivv/6aKVOmUKFCBapWrcry5cu5evWqyplkS2vfli1bOHPmDGZmZsybN4+4uDilIG2fPn1o3749t27dkgfuXvjhhx9o164dTk5OdOvWDXV1da5fv86NGzeYOXOmytctKRX7VQW0b8H6BUtxrOCKi7c75w6dIDk+kXotAwHY+98WUhKT6TWmYN88ve8oZpbmWDkUdNONuh3OiZ0HadC6oOuNlrYWts6KY6jpGhRcABVf/qY69+jG7Bk/4enjjW8lP/bt2M3TJ09o26k9AMv+XkJCfDxfTy7oItL2k/bs3LKdxQsW0rpDW8JuhnJg9z4mTf1ead0Hdu+jfqOGGJsoZ3VcPHcBZDIcnZ2IefSYf/9ajKOzEy3bvtmg1+WxHXUa1GPb+s1U8PLAx6+gm+qqJcup27C+PEM0KzOLmEeFF4pxMbFE3L2HkbER1raKd/bKipqaGr2aNmf5gX04WdvgZG3Niv370NXWJqhWYSbrlBXLsDI1ZdTzAN3y/fvwc3HBwcoKiUTC6Vs32XMuhEm9Xj3g/ibqt23K1r9W4eDujJOXGxcPnyYlPpFazyckObRuB6mJKXQZWdAN7dyBYEwszbGyL3j/HtyJ4PTuI9RpVXgO9DA8irSkZGxdHElNTObY5r3IZDIadni74RNKU7t1Y3b9vRY7dyccPFy5eiyE1IQkqjUrCPge37CbtKRU2g/vjZq6OlZOirM9GhgboqmlqbD8zM7D2Lk5YWpjiVQiIeJqGDdPXSRoYNdy2449YWcYVb8LEYkxhD97SDPPmlgamHDo+U2HXlVbYK5vzF9nCgZUvvToDp/W7UgLz1pciy3opjqgZmvC4x+SlFWQ9fEwRXFm8YzcLJXL3wc9LR0cTQq7fdkbW+Jp6UhqdsYHl7EX2DGI/+b/g7OHK67eHpw5eJyk+AQaBDUBYNfqTaQkJNF3XMF4sif3HsbM0gJrx4J96n5YOEd37Cegbfl9D1RRU1OjV/sOLN+8GWd7e5zs7Fm+eRO6Ojq0KnJj7of5v2FtYc6ofgXXKHl5edx/WDCxQJ5EwrPERO7cv4++ni5OdgWzQ/bu0JHBkyawbNNGWjRsyK274Ww7eIDvRows9+2q27YJ2/5ajb27E45eblw6coaU+CRqNm8IwOF1O0lLSqHTiH6oqatj7aQ4o6WBiSGaWlpKy8tT5Rb1OLZsK5Yu9thUcCLsxCXSE1PwbVxwPnl+62EyklNpMrjguHDjcAhGFqaY2VuTn5/PvbPXibwcRovhhWMOX9l3EisXe4ytzJBK8om+Gc7dkGs06tP2nW2Xmpoavdq0Zfn2rTjb2eJka8fy7VsL9rGGDeXlfvjzD6zNzRnVu+C4tnLHDhZtXM/MMWOxs7Yi/vn4hvq6uujr6ql8rbJSs1Uj9i7egK2bI/Yezlw/do60hGSqNC3IWj2xcR/pSSm0+axnwTHDUbFngL6xARpamgrLqzStx+XDpzm6ZifVWjQgKS6ec7uOUr2F4vAwZaVO60B2/L0GO3cnHD1cuXLsDCkJSVR/ftw7tmE3aUkpdBje5/l3QPm4p6GlqbD89PPjnpmNBfmSfCKuhnHj1AVaDexWLtsgvLrXuQ6ytLREQ0NDKWPt6dOnSpltL9ja2qosr6mpKR+yqaQyJa2zLLxRGDskJETlVLA1a9aUD6InCG9j6dKlNG/eXCkQBwWZcbNmzeLy5ctUr16d//77j6+//pp//vmH5s2bM3XqVIXJB7p06cLWrVtp0qQJycnJLF++nIEDB7J9+3ZGjx5NQEAA6urqtGrVqtQZTVX5+eefkUql9OvXj7S0NGrWrMmBAweUBmd/G1ZWVqxYsYJvv/2WBQsWUL16debMmUOHDh1Krbd8+XKGDh1K48aNsbGxYebMmUyePFn+vJqaGnv37uW7775j8ODBPHv2DFtbWwICAl75R2f48OFcvXqVHj16FJys9OrFiBEj2Ldv31vVGTp0KPr6+syePZsJEyZgYGCAv7//SzMOx4wZQ2pqKl9++SVPnz7Fz8+PnTt34un56jM2Tp48mcjISIKCgtDX1+fTTz/lk08+ISVFsftO06ZNMTc3586dO/LMyBeCgoLYvXs306dP59dff0VLSwsfH59y/X2s2qA2mWkZHN60i9SkFGyd7Rny7VjMnnftSE1KITm+cIB9mUzG3jVbSXwaj4aGBhY2VrTu05m6Ld/d4NuNmzchNTWVNctXkZSQiIu7KzPm/ITN88lWEhMSefqk8ILa1t6OGXN+YvGCv9i9dQfmlhZ8Pm4UDZsEKKz3UfRDbl2/wazfflX5upnpGSxftIT4Z/EYGhvRsHEjBn42RCm77n1uR+8B/VBTU2PlP8tIeBaPiZkpdRrUY+CnhYH+u7fvMHF0YXD6nz/+BqB56yC++l71ZDBloX+LIHJyc/ll/RrSMjOp6OrGH6PHKWTQxSUloqZeeCcxOzeHX9av5WlyEjpaWrjY2DJ94BBa1qxVbu0E8K9fg6z0DI5v2UdacirWTnb0nTRCfpc8LSmVlPjCLsMymYzD63aS9CwBdXV1zG0sadGrIzWbF15sSPLyOLJhN0lP49HW1cGzakW6jOyPnoHyWJBlxa9uNbLSMjm97SDpyalYOdrR/ethmFgWbEd6chqp8a8X3MnLyeXAii2kJSajqa2Fhb0N7T/vg1/d18iEek0hD25ipKNPF/9AzPSMeJj8hJ+PrSY+o+D31VTPEAuDwuN+8P0r6GlpE+Rdl341WpGRm82tJ5GsuVz+M1qWBR8rF/7sVPgdHdOw4IJvb1gIPx79sCZBq96wDhmp6RzYsIOUpBTsnB34bPJ4zJ932U5NTCbpWZFjiFTGrv82k/jkGeoaGljaWtO+XzfqBwW+87YP6NSZnJwcfl68iLT0dCp5efHn1GkKGXRxz56hXiS74VliIn3Gj5P/v3r7NlZv30b1ipX458dZAFT09GTOpG/5c/Uq/t24AXsbG74cMpTWjQPLfZsq1atOVloGwVsPkJ6cgrWTHX0mDpf/dqUnp5Lymt/58lahViWyMzK5vCeYzJR0zO2taT26D0YWpkBBF8P0xMJzqXxJPmc3HyQjOQ1NLU3M7K1pNbo3zv6FXWolObmcWruHjKRUNLU0MbW1pOmQzlSopZwdVZ4GdOhITm4uPy/9l7SMDCp5ePDnt98rZNDFJcSjXuS4t/nQAfIkEibOm6uwrmFdu/FZN9WTnJUVnzpVyUrPJGRHQQDU0sGWzuMHY2JZcH2SkZJKamLya63T2MKUbl8P49jaXaz8/jcMTY2p3rIhtdsGlv0GUHDcy0zL4NS2A/LjXs+vPy1y3Hv970BeTi77V2wmLTHl+XHPmo6f9y3X494HpRxmvn0ftLW1qVGjBocOHaJTp07y5YcOHaJjx44q69SrV49du3YpLDt48CA1a9aUD19Ur149Dh06pDBu3MGDB6lfX3VPl7KgJnuD/i7e3t60a9eOuXMVf1y+/PJLdu/ezZ07rz7NsyAIglCynTdPvu8mvLUOlRoRGf/45QU/YG6WDv/z2wAF25F6JPh9N+OtGDdrzIYrh953M95aj2otWFFkVtD/VQNrtaXHf5NfXvADtqHvDBr8Nfx9N+OtnR65iP1hIS8v+AFr5VuPtLD//esII19v1v6PBI1L07t6EHODy2cWwXfly8a9SLt6/eUFP3BGVSuz5OyO992MtzKsbkdWXdj7vpvx1vrXavO+m/BG0ooMV/ShMXrNMT43bNhAv379WLRoEfXq1eOff/5hyZIl3Lp1CxcXF7755hseP37MqlWrAIiMjKRSpUp89tlnDBs2jJCQEIYPH866devks6meOXOGgIAAfvzxRzp27MiOHTv4/vvvOXXqlNI45mXljdIAfvvtN7p06cKBAweoW7cg3fXs2bNERESwZcuWMm2gIAiCIAiCIAiCIAiCIPTo0YOEhASmT59ObGwslSpVYu/evbg8nyQlNjaW6OhoeXk3Nzf27t3LF198wV9//YW9vT0LFiyQB+IA6tevz/r16/n++++ZPHkyFSpUYMOGDeUWiIM3DMa1adOG8PBwFi5cyO3bt5HJZHTs2JHhw4fLB5gXBEEQBEEQBEEQBEEQ3rN3OAHYuzBixAiFCQGLKj6GPBTMgXD58uVS19m1a1e6di2/sXOLe+OpTxwdHZk1a1ZZtkUQBEEQBEEQBEEQBEEQPmpvHIxLTk5m6dKlhIWFoaamhp+fH4MHD1Y54L4gCIIgCIIgCIIgCIIgCKD+JpUuXrxIhQoV+O2330hMTCQ+Pp558+ZRoUKFl6b+CYIgCIIgCIIgCIIgCO+ITPbhPv6feqPMuC+++IIOHTqwZMkSNDULViGRSBg6dCjjxo3jxIkTZdpIQRAEQRAEQRAEQRAEQfgYvFEw7uLFiwqBOABNTU0mTJhAzZo1y6xxgiAIgiAIgiAIgiAIgvAxeaNuqsbGxgpTxb7w8OFDjIyM3rpRgiAIgiAIgiAIgiAIQhmQyj7cx/9TbxSM69GjB0OGDGHDhg08fPiQR48esX79eoYOHUqvXr3Kuo2CIAiCIAiCIAiCIAiC8FF4o26qc+bMQU1Njf79+yORSJDJZGhra/P555/z888/l3UbBUEQBEEQBEEQBEEQBOGj8EbBOG1tbX7//Xd++uknIiIikMlkeHh4oK+vX9btEwRBEARBEARBEARBEN6UTPq+WyAU81rBuMGDB79SuWXLlr1RYwRBEARBEARBEARBEAThY/ZawbgVK1bg4uJCtWrVkMn+/w60JwiCIAiCIAiCIAiCIAhv4rWCccOHD2f9+vXcv3+fwYMH07dvX8zNzcurbYIgCIIgCIIgCIIgCMLbEMlUH5zXmk114cKFxMbGMnHiRHbt2oWTkxPdu3fnwIEDIlNOEARBEARBEARBEARBEF7itYJxADo6OvTq1YtDhw4RGhpKxYoVGTFiBC4uLqSnp5dHGwVBEARBEARBEARBEATho/BGs6m+oKamhpqaGjKZDKlUzM4hCIIgCIIgCIIgCILwQZGKnowfmtfOjMvJyWHdunW0aNECb29vbty4wZ9//kl0dDSGhobl0UZBEARBEARBEARBEARB+Ci8VmbciBEjWL9+Pc7OzgwaNIj169djYWFRXm0TBEEQBEEQBEEQBEEQhI/KawXjFi1ahLOzM25ubgQHBxMcHKyy3NatW8ukcYIgCIIgCIIgCIIgCMJbEBNufnBeKxjXv39/1NTUyqstgiAIgiAIgiAIgiAIgvBRU5PJRIhUEARBEARBEARBEAThY5QWG/e+m1AiIzvb992E9+KtZlMVBEEQyleftVPfdxPe2preU0mLjHrfzXgrRm6ufL5l9vtuxlv7u8vXJPcf/r6b8VZMVy3i+L1L77sZby3QowZf7frjfTfjrc1pP5qY5Kfvuxlvxd7Umv1hIe+7GW+tlW89Gvz1v/39Pj1yEXOOr3nfzXhrXwX2Yem5Xe+7GW9tSJ32rL184H034630rh7EgpMb33cz3tqYRt0ZvW3e+27GW/mj03jmn9jwvpvx1sYF9HjfTXgzMun7boFQzGvPpioIgiAIgiAIgiAIgiAIwpsRwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVRMFfChEZlxgiAIgiAIgiAIgiAIgvCOiGCcIAiCIAiCIAiCIAiCILwjopuqIAiCIAiCIAiCIAjCx0omuql+aERmnCAIgiAIgiAIgiAIgiC8IyIYJwiCIAiCIAiCIAiCIAjviOimKgiCIAiCIAiCIAiC8LES3VQ/OCIzThAEQRAEQRAEQRAEQRDeERGMEwRBEARBEARBEARBEIR3RHRTFQRBEARBEARBEARB+FhJpe+7BUIxIjNOEARBEARBEARBEARBEN4REYwTBEEQBEEQBEEQBEEQhHdEdFMVBEEQBEEQBEEQBEH4WInZVD84IjNOEIRSPXnyhOnTp5OUlPS+myIIgiAIgiAIgiAI//NEME4QAFdXV+bPn/9O16empsb27dvf6nWmTp1K1apV32odpZHJZPTr1w8dHR3MzMxeq25Zv6evKyAggLVr17631y/qq6++YsyYMe+7GYIgCIIgCIIgCMIHQATjhP9p7du3p3nz5iqfCwkJQU1NjcuXL7/jVsGFCxf49NNP3/nrlrWffvoJd3d3Jk6c+Np13+d7sHv3buLi4ujZs6d8WfHgoEwm48svv8TIyIijR48CEBgYyLhx45TWt3btWjQ0NBg+fLjK11u8eDFVqlTBwMAAU1NTqlWrxi+//CJ/fsKECSxfvpzIyMiy2UBBEARBEARBEIRXJZV9uI//p8SYccL/tCFDhtC5c2cePHiAi4uLwnPLli2jatWqVK9e/Z23y8rK6p2/Znn49ttv37ju+3wPFixYwKBBg1BXV32/IT8/n2HDhrFr1y6OHj1KrVq1Sl3fsmXLmDBhAn///Tfz5s1DX19f/tzSpUsZP348CxYsoHHjxuTk5HD9+nVCQ0PlZaytrWnZsiWLFi1SCNKVteaetWjrWx9TPSMepzxl9aX93HkWXWL5+q7+tPNtgK2RBZl52VyPucfaKwdJz80CoEmF6jR0q4KTqTUAkYmxbLh2hPsJj8ttG6AgUPrPf/+xbd9e0tLTqejtw8SRI6ng6lpinYioKBatXsXt8HvEPn3C+M8+o3enzgplLt+4werNmwgLDyc+MZE5P0whsH79ctmGAPeqtPCqhYmuIbGp8Wy6dpR7Jbxv/Wu0pp5rJaXlManxzDi0XGl5TUcfhtRpz9WYcBaHbC/rpivR7dQO7cCGqBnokx8RReaqdUgfx5ZaRyeoKdpNA1C3MEeWlk7uhStkb9oGeRJ5GTUzU/S6d0KzSkXUtLSRxj0hc+lq8qNK3mffxPHdhzi4dTcpicnYOzvQ/dP+eFbyUVn28unznNh7mIf3HyDJk2Dn4kD73l2oWKOKQrnM9Ay2r9rIlTMXyEzPwNLGiq5D++Bfq1qZtr2o+i7+BHpUw0jHgCdpiey4dZLIxJgSy2uoq9PCqzY1HLwx0jEgOTudI+EXuPAwTF6mkVsV6rn6Y6ZnREZuFtdj77E3LASJNL9M2rx98zY2/LeOhIQEXN1cGfXFGCpXq1Ji+auXr7Bw/p9ERUZhaWlBz3696dD5E5Vljx48zIzJ02gQ0JCZs3+SL1+zYjUnj58g+sEDdHR0qOhfiU9HfY6zi3OZbFNJTu49wtHt+0hNSsbWyYHOQ3pToaK3yrIRoXfZtWojTx7HkpeTi5mVBfWDmtCkQ1C5tvFNVbHzoHe1lvhYO2NpYMqkvX9zMvLa+24WAKHHL3DtYAhZKWmY2VtTt3tL7DxdVJaNuRPFnnmrlJZ3mzYCU1tLpeURF25y9N+tuFTxpuWIHmXe9qKuHD7N+b3HSU9Jw9LBhqZ9OuLk7f7Seo/uRrJu1t9YOdoycOZ4+fIbJy+wb8kGpfLj//0JTW2tMm17aS4cPMmZ3UdIS07F2tGWoP5dcPGp8NJ60Xfus2L6Aqyd7Bj+8+vfEH4bN46d48qBU2Qmp2Nub03Dnq2x93JVWfbx7Ui2z1mmtLz3jDGY2RWcByc8fsL5HUd59iCGtIRkGvZoTZUW5XPuUVQjtyo086yJsa4BsakJbL1xnIgSzkP6Vg+ijktFpeWxqfHMOlLwnbE1sqCtb32cTK2xMDBhy/VjHI+4Up6bwM1j57l64BSZKemY2VvRoEcpn8WdSHbOUT5n6jl9tPyzCD1xkTshV0mMeQqAlYs9dTo1x8bNsdy2QRBKIzLjhP9p7dq1w9ramhUrVigsz8zMZMOGDQwZMgSAM2fOEBAQgJ6eHk5OTowZM4aMjIwS1xsdHU3Hjh0xNDTE2NiY7t278+TJE4UyO3fupGbNmujq6mJpaUnnzoUX/sWzsMLDwwkICEBXVxc/Pz8OHTqk9JoTJ07Ey8sLfX193N3dmTx5Mnl5eQplfv75Z2xsbDAyMmLIkCFkZ2eX+v4cP34cNTU1Dhw4QLVq1dDT06Np06Y8ffqUffv24evri7GxMb169SIzM1Neb//+/TRs2BBTU1MsLCxo164dERER8udXrVqFoaEh4eHh8mWjR4/Gy8tL/r4Wfw/U1NRYvHgx7dq1Q19fH19fX0JCQrh37x6BgYEYGBhQr149hdeJiIigY8eO2NjYYGhoSK1atTh8+HCp2xwfH8/hw4fp0KGDyudzcnLo1q0bhw4d4sSJEy8NxEVFRXHmzBkmTZqEj48PmzdvVnh+165ddO/enSFDhuDh4UHFihXp1asXM2bMUCjXoUMH1q1bV+prvY26zhXpV70VO26d5Lt9i7j9NJoJgX2x0DdRWd7LypnP63YiOOIKE/f8xYJTm3C3cGBoncL3zdfGlZAHN/nx8EqmHFxKfEYKk5r0w0zPqNy2A2Dlpo2s3baVCSNGsnLBH1iYmzHy22/IKLKPFpedk4OjrR2jBg/GwsxcZZms7Gw83dyZMGJkeTUdgBqO3nSr0pT9t88y68hK7sU/YmTDriW+bxuvHWHi7oXyxzd7/yY9J4vLj+4olTXXN6azfyDhzx6W6za8oNO2JTqtmpG1ej1pU35GmpKC4YSxoKtTYh2terXR7daJ7O17SJs0jcylq9GuUwPdbp3kZdT09TH6/mtk+flkzPmTtG+mkbVuM7JSPuM3ceFECBuXrKJNj0/4fsEsPCr58MeUX0h8Gq+yfPit2/hW82f0tAl8+/tMvCv78df0OURHRMnLSPIkzP/+JxKePOOzb8cy/Z859BszFFML1ftdWahi70mHSo04HH6R306s535iDEPrtMdUz7DEOv1qtMbT0omN147yy7HVrLl8gKfphWN/VnPwoo1vfQ7dPc+vx/5j47UjVLH3pI1vvTJp89FDR/jrtwX0HdSPJauWUrlqFSZ+8TVP4p6oLB8bE8M3X0ygctUqLFm1lD4D+/HH3N8JPnpcqWxcbBx/L1hI5arKgb1rV67ySddO/LV0MbMX/EZ+fj4TxownKyurTLZLlcunzrFt2VpadmvP1/OmU8HPi0Uz5pH4LEFleR1dHRq1ac6YH7/lmz9m0bJbB/au2cKZA8fLrY1vQ09Lh3sJj5h3Yv37boqCiAu3CNl4gGptGtLp+0+x9XBm/x9rSU9MKbVet+kj6fPrePnD2Fr5u5uWkMy5zYew9SjfIC5A2NmrHFmzk7odmjNw+hc4ermzec6/pMaXPlZvTmYWe/9Zj4ufh8rntfV0GbHgB4XHuwzE3Qy5zP5VW2n0SUs++2kCzt4VWPPz36TEJ5ZaLzszi+0LV+NeyesdtbRQ+PkbnFq/j5ptGtP9h8+x83Jh1++rSUtILrVen5ljGTh3gvxhYmMhf06Sm4exlRn1urRA36Tk3+yyVN3Bi86VAzlw5xy/HPuPiITHfF6/U4nnIZuvH+PbvYvkj8n7/iEjN4srjwvP87U1NInPTGHnrVOkZKeX+zbcu3CD0xv2Ub1tY7r98Dl2ni7sWfDfSz+LXjPGMGDO1/JH0c8i5k4UnrUr0/HLQXSeNAwjcxN2/7aK9KTUct4aQVBNBOOE/2mampr079+fFStWICsyQ8ymTZvIzc2lT58+3Lhxg6CgIDp37sz169fZsGEDp06dYtSoUSrXKZPJ+OSTT0hMTCQ4OJhDhw4RERFBjx6Fd0X37NlD586dadu2LVeuXOHIkSPUrFlT5fqkUimdO3dGQ0ODs2fPsmjRIpXdPo2MjFixYgWhoaH8/vvvLFmyhN9++03+/MaNG5kyZQo//vgjFy9exM7OjoULF77S+zR16lT+/PNPzpw5w8OHD+nevTvz589n7dq17Nmzh0OHDvHHH3/Iy6elpfHFF19w4cIFDh8+jEwmo1OnTkilUgD69+9PmzZt6NOnDxKJhP3797N48WLWrFmDgYFBie2YMWMG/fv35+rVq/j4+NC7d28+++wzvvnmGy5evAig8Lmkp6fTpk0bDh8+zJUrVwgKCqJ9+/ZER5ecOXPq1Cl5sK+49PR02rZty61btzh9+rTKMsUtW7aMtm3bYmJiQt++fVm6dKnC87a2tpw9e5YHDx6Uup7atWvz8OHDl5Z7U6196nH8/mWOR1wmJjWe/y7vJyEzheaeqvdLDwtHnmUkc+DuOZ5lJHP3WTRH713E3dxeXmbhma0cDr/Ag+Q4YlPj+ff8TtTV1Kho+/K79W9KJpOxbtt2BvXsSdOGDfFwdWXal1+RnZPD/mPHSqxX0dubscOGERQYiLaW6ouNBrVqMWLgQJo2bFhezQegmWdNzkTd4HTUDeLSEtl0/RhJmWkEuFdVWT5bkktqTob84WJmi762LiEPbiqUU0ONQbXasjvsNPEZpV9slhWdoGZk79xH3sWrSB/HkPnPStS0tdGuV7vEOpoe7kjCI8gLuYA0PgHJzTByz15A063wolanXUukiYlk/buK/PtRBeVC7yAtIUj2pg5v20uDloE0DGqCnbMDPT7tj5mlBcF7VQf1e3zan6Cu7XH1qoCNgx2dBvTE2t6W6+cKhzs4feg4GWnpjJg8Hg8/byysrfCo6IOTu+psnLLQ2L0q56NDOR8dytP0JHbeOklyVjr1XPxVlve2cqaChQP/nttJePxDkrLSeJj8hAdJcfIyrmZ2RCXGcuXxXZKy0rj77CFXH4fjaGJTJm3etG4DbTq0pW3H9ri4uTJq/BisbazZuWWbyvI7t+7A2taGUePH4OLmStuO7Wndvi0b1ygGgPLz8/nxh+kM/HQwdg52Suv59fe5tGrXBjd3Nzy8PJg4+RuexD3h7m3l4HZZOb7jAHWbB1CvRWNsnezpPLQPZpbmnN5/VGV5R3cXagTUxc7ZAQsbK2oF1senmj8RoeXXxrdxNvoWS87tJPj+1ffdFAU3Dofg3aAaPg2rY2ZnRb0eQRiamRAafLHUenpGBuibGMofxbPopVIpx5Zuo3r7QIysXm+83DdxcX8wlRvXpkpgHSwcbGjWtyNG5qZcORpSar0Dy7fgW7ca9h6qf3vU1MDQ1Fjh8S6d3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcNLeLqoTP4NqyOX0BNzO2tadSzDUZmxtw8fr7UenrGBhiYGMkfRfcpGzdHGnRrhWftymhovptOaU08ahASdZOQBzd5kpbI1hvHScpKo6Gb6szkbEkuaTmZ8oezmQ16WrqcLXIeEp38hB03T3D58R0k+WWTPV2aa4fO4NOwOn6NamBmZ0XDnm0wNDPmVvCFUuvpGRugb2IkfxT9LJoP60qlJrWxdLbDzM6Kxv07IpPJeBx2v7w358Mgk324j/+nRDBO+J83ePBgoqKiOH78uHzZsmXL6Ny5M2ZmZsyePZvevXszbtw4PD09qV+/PgsWLGDVqlUqM8sOHz7M9evXWbt2LTVq1KBOnTqsXr2a4OBgLlwoOAD8+OOP9OzZk2nTpuHr60uVKlVK7NJ5+PBhwsLCWL16NVWrViUgIIBZs2Yplfv++++pX78+rq6utG/fni+//JKNGzfKn58/fz6DBw9m6NCheHt7M3PmTPz8/F7pPZo5cyYNGjSgWrVqDBkyhODgYP7++2+qVatGo0aN6Nq1K8eKBDq6detGly5d8PT0pFq1aixbtowbN24odL1cvHgxsbGxjBkzhoEDBzJlypSXZpkNGjSI7t274+XlxcSJE4mKiqJPnz4EBQXh6+vL2LFjFT7HKlWq8Nlnn+Hv74+npyczZ87E3d2dnTt3lvgaUVFR2NjYqOyiOmPGDK5evcrJkydxdn753W6pVMqKFSvo27cvAD179pRn870wZcoUTE1NcXV1xdvbm4EDB7Jx40Z54PIFBwcHefvKmoa6Bm7m9tyIjVBYfiMuAk9LJ5V1wuMfYq5vTBV7TwCMdQ2o7eTH1ZhwleUBdDS00FBTJyOn/DJMHsfFkZCUSN3qNeTLtLW1qe7vz/Ww0FJqfhg01NRxNrUl9EmUwvKwp1G4Wzi80jrqu/pz++kDEjMV79S29a1Pek4WZ6JulFVzS6VuZYm6qQmSm4XdGpFIkNwJR9Oz5ICs5O49NF2d0XB3la9Hq0ol8q4VntRrVauCJDIa/VHDMP7zVwxnfIt2YNkGSSV5EqLvReJXrbLCcr/q/kSE3X2ldUilUrKzsjEwKrzJcP3cJdx9PFm7cDlf9RnOtBET2LthO9J8aSlrenMaauo4mFhzt1iX87vPonE1Vw5GAVS0deNh8lOaVKjB5OaDmNikL+38GqCpriEvE5kYg6OpNU6mBcE3c31jfKxdCHsa9dZtzsvL4+7tu9Ssoxi0rVm7Fjdv3FRZJ/TGLWrWVjyG1Kpbmztht5FICrs3r1q6AlMzU9p2aPdKbclIL8jWNjYun0CEJE/Cw4govKsqdjX3rlqJyNv3Sqil6NH9B0TeDsejhO7TgrJ8ST7x0bE4+Cl2eXTwc+dJROmZw1tn/sN/X89jz7xVxNxRHsv1yu4T6Brp49Ow/Lqdv5AvkRAX9RjXYllgbv5ePA6PKrHejRPnSX4aT4NOLUosk5udy6IvZrJw7Aw2z13Kk6jyHWKiqHyJhJjIh1SorLhPu1f24dHdksfPvXL8LElP4gns0qq8m6gkXyLh2YMYnCsqZho6VfQg7iX71IbpC1n+5S9sn7OcR7ffb2BHQ00dJ1Mbbj9VvPl7+8kD3CzsS6ilqK5LJe48fUBSVlp5NPGlCj6LWJyKfb8LPovSh7LYNP1vVn71KzvnLufxSz4LSW4e0vx8dAz03rrNgvAmxJhxwv88Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bvHmjVr5HVkMhlSqZTIyEil7KiwsDCcnJxwcioMYvj5+WFqakpYWBi1atXi6tWrDBs27JXaFxYWhrOzM46OheMR1Kun3A1o8+bNzJ8/n3v37pGeno5EIlG4eAgLC1OaQKBevXoKQbSSVK5ceDFqY2Mj7wpbdNn584V3/aKjo5kxYwbnzp0jPj5eHliKjo6mUqWCCw4zMzOWLl1KUFAQ9evXZ9KkSa/dDgB/f3+FZdnZ2aSmpmJsbExGRgbTpk1j9+7dxMTEIJFIyMrKKjUzLisrC11dXZXPtWzZksOHDzNr1qxXmun14MGDZGRk0Lp1awAsLS1p2bIly5YtkwdU7ezsCAkJ4ebNmwQHB3PmzBkGDBjAv//+y/79++VBQT29ggN9Zgnd8HJycsjJyVFYpqNTclfAoox09NFQVyclW7HrdUpWBiZ2qrtEhMc/ZOGZrYxu0BUtDU001TW49Og2Ky/uLfF1elZtTmJWGjfjyu9EMyGpoPuKRbHZey3MzIh98rTcXresGOrooaGuTlqxzyItOwMTm5KzRl8w1jWgoo07y87vVljubuFAfVd/fjyyskzbWxo1k4LfH2mKYlBQmpKKumXJXTLzzl0ky9gQw++/AtRQ09Qg50gwObsPyMuoW1mi0zSAnP2Hydi1Hw13V/T6dkeWl0fe6XNl0v701DSkUinGpopdtY1MTUhNerXMwkPb9pCbnUONRnXly57FPSXhSSh1AhsweuoEnsbEse7vFUjzpbTr3bmUtb0ZA+3n+1SO4m9HWk4WRjr6KuuY65vgZm6HRCphxcW9GGjr0tk/EH0tXTZeOwLA1ZhwDLT1GNmgC2oUBPXPRF3n2L1Lb93mlOQUpPn5mJkrfo/NLMxIOqu6i1piQgJmForBOzNzM/Lz80lJTsbC0pIb166zd+ce/v1PeYwmVWQyGQt//xP/KpVxq1A+Gb0ZaS/2M8Vgn5GJMWkv2c9+GPIF6SlpSKX5tO7xCfVaNC6XNn6MstMzkUll6Bsr/q7qGRmQlap6GBJ9E0Ma9W2HpYsd+XkSws/dYM9vq2k3fgB2XgXZZXH3orlz+gqdJ39W7tsAkJmWgUwqxcBEsfugvrERGSmqAyGJcc8I3riX3t+NRF1DQ2UZCztr2gzrgZWTHTlZ2Vw6eJI1M/9k4MzxmNuW/5i+makF22VYbLsMTYyIKGG7EmKfcmTdLgZNHVvidpWngn1Kip6x4nmTnrEhmSW0Wd/UkMD+HbF2sSdfIuFOyDV2zF1Bp68Hlzi2WXkzeHEeklPsPCQnE+MSjhlFGesY4GfjVur5YHl78VnoF/8sjAzITFHdRVbfxIjG/Tpg9fyzuHv2GjvnraTjV4NK/CzObjmEgakxjn7l1+NDEEojgnHCR2HIkCGMGjWKv/76i+XLl+Pi4kKzZs2AgsyGzz77jDFjxijVU5UdJZPJUFNTK3X5i8DKq5CpSL0tvv6zZ8/KM+2CgoIwMTFh/fr1zJ0795VfpzRaRbrtqampKfz/YlnRTK527drh5ubGkiVLsLe3RyqV4urqSm5urkK9EydOoKGhQUxMDBkZGS/NPCjejpKWvWjL119/zYEDB5gzZw4eHh7o6enRtWtXpXYUZWlpSVKS6nFWmjVrxpgxY+jYsSP5+fkKXXNVWbZsGYmJiQoTNkilUq5cucKMGTPQKHKyWKlSJSpVqsTIkSM5deoUjRo1Ijg4mCZNmgCQmFhwAVrSxBY//fQT06ZNU1g2ZcoUeI0hU2Qo7mtqakAJmd8Oxlb0r9GabTeDuR4bgameIb2rtmRw7XYsOaecedjOtwH1XPyZeWQFeVKJijW+mX1HjzJrwe/y/+dPLxhrr/g3sOD7V2YvW+5UfOuVPh9V6rlUIisvm2tFMhR1NLUYVKsNay4fICO3/LISterVRn9Qb/n/6XP/Kvij+G+YmlqJ+xWApo8Xuu1bk7VyHZKISDRsrNHr2x1pcgo5O56f3KurkR/5gOzNOwDIf/AQDQc7dJo1LrNgXGF7i/0vU7FMhfPHz7B7zVZGTB6vENCTSWUYmRrTd/RQ1DXUcfF0JzkxiYNb9pRLMK4kpX0fXvyWrr18kGxJwe/lzlun6F+zNVtvHEcizaeChQPNPGuy9cZxopOeYGlgQsdKATTPzuRweOndgF69jcUaKSu94WrFPpgXx081NTUyMzKZNWUmX307ARNT01d6/d9n/0bEvQj+WPzX6zT7DanY0V6yn42d9S05WdlE3Y1g1+pNWNrZUCOgbumVhDdmamupMFGDTQUnMhJTuH4oBDsvF3Kzczi2bDuN+rVD1/DlQYvypfqYJ5VK2f33Ghp0bom5XclBNXsPF4Xuq46erqz8YT6XD52meb9PyqG9JVHxnS5hu7b+uYrArq2xsLN+R21TTel9l8lK/N0ys7XCrEhw07aCM+mJKVw5cOq9BeNeeNOOf3Vc/MjKy+F6zKtl9pYrFW+7qms0ADNbS8yKfL9ffBZXD55W+Vlc2X+Se+dv0PHrQWiWMLzJR0dWPhn8wpsTwTjho9C9e3fGjh3L2rVrWblyJcOGDZP/WFevXp1bt27h4aF6gNvi/Pz8iI6O5uHDh/LsuNDQUFJSUuRZdJUrV+bIkSMMGjToldcXExODvX1BenhIiOI4IKdPn8bFxYXvvvtOvqz42GK+vr6cPXuW/v37y5edPXv2lbbpdSQkJHDjxg0WLlxInTp1AAgODlYqd+bMGX799Vd27drFpEmTGD16NCtXlm3WzsmTJxk4cCCdOhUM/J6env7Sbp7VqlUjLi6OpKQkzIplVwG0aNGC3bt30759e6RSKX/++afKA3tCQgI7duxg/fr1VKxYOMOUVCqlUaNG7Nu3j3btVHeTetF9uOgkITdv3kRLS0thXUV98803jB8/XmGZjo4Og7f8pLJ8UWk5meRLpZjqKt5BNNY1KHGQ3Q4VG3I3Ppo9YWcAeJj8hOWSPUxpMZhN146SXKReG5/6dKjYiJ+OruJhsurB199UQN26VPIpnHEwN7dg0pL4pCQsLQoH3U1MTsZcxef5oUnPySJfKsVYVzFbw0hXn9Tsl09OUN/Vn3PRoeQXOWGyMjDD0sCUz+sXBnpe7LN/dvqSqQeXEp+R/NZtz7tyjbSIIt2HtApOEdRNTcgvkh2nbmyELLXkwY51u7Qn98w5coNPAyB9FAM62ugP6kvOzn0gkyFLTiG/2Iys+TFxaNUsu9mvDY0LxoopngWXlpKilC1X3IUTIaxa8A+fTRqLbzXFcdlMzE3R0NBAXaOwK7ydkwOpSclI8iRoapXtqVVGbsE+VTwLzlBbTylb7oW07AxSstPlgTiAp+mJqKupYapnSHxGCkHedbn86A7nowu6f8elJaCtoUXXKk04En7hjS/kAExMTVDX0CAxQTELLikxSSlb7gVzCwul8slJyWhoaGBsYkLU/UjiYmP59qvCLGzZ8xs3zeoHsmrjGhwcC7uCL5jzG2dOnub3xX9gZVN+F/cGRs/3s+Ti+1kaRi/ZzyxsCi7i7V2dSEtOZf/67SIY94p0DfVRU1cjs1gWXFZaBnrGL89CfsHa3ZF75wq6/qc9SyI9IZkDfxWOU/giIPzv5zPoPn0kxlZlO1GLvpEBaurqSllwmanp6BsrD7afm5VDXOQjnjyI4fCq7YVtlMmYPXAC3ScMw8XPU6memro6tm5OJD15VqbtL4m+ccF2pRfLrM5ITcdQ5XZlE3M/mtioR+xdUTBR1ovtmt5nHP2+GYFbOU/oULBPqStlXmWlZShlaJXGxt2Ru2ff32zDGS/OQ3SKnYfo6JNawjGjqLoulbjwUPE85F0r7bN4ne+3jbuTys/i6oFTXN57kvbjB2DhaPvW7RWENyWCccJHwdDQkB49evDtt9+SkpLCwIED5c9NnDiRunXrMnLkSIYNG4aBgQFhYWFKkxa80Lx5cypXrkyfPn2YP38+EomEESNG0LhxY/kkDVOmTKFZs2ZUqFCBnj17IpFI2LdvHxMmTFC5Pm9vb/r378/cuXNJTU1VCLoBeHh4EB0dzfr166lVqxZ79uxh2zbFQa7Hjh3LgAEDqFmzJg0bNmTNmjXcunVLobtpWTA1NcXc3JxFixZha2vLgwcPlCacSEtLo1+/fowePZrWrVvj7OxMzZo1adeuHd26dSuztnh4eLB161bat2+PmpoakydPVhqLrbhq1aphZWXF6dOnSwyWNW3alD179tCuXTtkMhl//fWXUkBu9erVWFhY0K1bN6Xx59q1a8fSpUtp164dn3/+Ofb29jRt2hRHR0diY2OZOXMmVlZWCt2RT548SaNGjUrMqtTR0XnlbqnF5UvziUyMoZJtBS4+ui1f7m9bgUtF/i9KW0MLabETLfn/Rd6Ltr71+aRiAL8c+4/IxJg3al9pDPT1MSiSeSiTybAwM+fclcv4PA+g5+XlcfnGDUYPHlLmr1/W8mVSopPj8LV2UchuK/i/9LvMnpZOWBuaKY0JF5eWwIxDyxWWta/YEF1NbTZdO0pSZsmBsdeSnYM0W/FCTZqcgmZFX/IfPB8vR0MDTW9PsjaqHoQfAG1tkBYL5UilCne4JeERaNgpThSgbmuDNEH17JNvQlNLE2cPN8Ku3KBa/cKxyMKu3KRK3Rol1jt//Ayrfl/M0Amj8K+tPGZUBT8vLhw/g1Qqlf82PHkci4m5aZkH4qBgn3qc8hQvKyeFLuJeVs4ldhmPTIylsr0H2hpa5OYXBLitDEyRyqQkZxVc3GhraCpla0pl0ufZaaWk1b4CLS0tvHy8uHj+Ao0CA+TLL52/QIMA1WMD+vlXJOTkaYVlF8+dx9vXB01NTZxdnFm2VvGGz9JFS8jMzGT0+LFYPw+4yWQyFsyZz6ngE/y2cAF29q82RtKb0tTSxKmCK3eu3lLYr+5cvYV/ndcYc0wmQ1JsBnWhZBqaGlg62/E47D5u1QrHJXscdh+XKt6l1FSU8DAOveczXJrYWtLlB8XhQC7uOEZedg71erTCwKz04Oqb0NDUxNbVgaibd/GqWRj4j7p5F4/qlZTK6+jpMGjWlwrLrhw+Q3TYPTqO7o9JCcFCmUzG0+jHWDmqHmeyrGloamLv5sT963fwrVU4acD9G7fxrqE88YyOni6f/6o43MmFg6eIDL1L93GDMbWyUKpTHm22crHnYWgE7tULx2R+GBqBW9VXH88x/mEs+qblO+t8afJlUh4mP8HH2pnrsYXnHd7WLkpjCxfnYemItaEZ/0apHtvzXSn4LOx4FKb4WTwKjcD1dT6L6Fj0i3WVvnLgFJf3BNN2bH+sXV9tLF9BKC9iAgfhozFkyBCSkpJo3ry5QvfTypUrExwcTHh4OI0aNaJatWpMnjwZOzvVJyRqamps374dMzMzAgICaN68Oe7u7mzYsEFeJjAwkE2bNrFz506qVq1K06ZNOXdOddcqdXV1tm3bRk5ODrVr12bo0KH8+OOPCmU6duzIF198wahRo6hatSpnzpxh8uTJCmV69OjBDz/8wMSJE6lRowYPHjzg888/f9O3q0QaGhps2LCBy5cvU6lSJcaPH6/UXXbs2LEYGBjIx02rWLEiv/zyC8OHD+fx47IbIPi3337DzMyM+vXr0759e4KCgqhevfTMGQ0NDQYPHqwwRqAqgYGB7N27l9WrV/P5558rdSdetmwZnTp1UjkRRJcuXdi9ezdPnjyhefPmnD17lm7duuHl5UWXLl3Q1dXlyJEjWBTJ7Fq3bt0rjzP4JvbdDqFJheo0dq+GvbElfasHYaFvwpHwglnlelRpxvB6neTlrzy+S00nX5p51MTKwAwvSyf612jNvfhHJD8fsLedbwO6VW7KP+d28CwjGRNdQ0x0DdHR1C637VBTU6NXp09Yvn49x06f5l5UFFPnzkFXR4dWz7v8Avww+1f+XFY4blReXh53IiK4ExFBniSPZ/EJ3ImI4GFM4f6YmZUlLwMFk0XciYgg7mnZjkV3JPwiDdwqU8+lErZG5nSt3AQzfWNORhbcne1YsREDarZRqtfA1Z/IhBhiUhVnFJVI84lJjVd4ZOXmkC3JJSY1vlzvXuccOIJu+1Zo1aiKuoM9+p8OQJabS25I4RiT+p8ORLfbJ4XtvXoDnWYBaNWpibqlBZoVfdHt0oG8K9flXV5z9h9Bo4I7Ou1boW5thVa9Wug0aUjOYeUs3LfRvFMbTh08xumDx4mNfszGf1aT+CyegDYFwxhsW7Ge5XMLZ6U+f/wMy+f9TdchfXHz9iQlMZmUxGSyMgqzCRq3aUF6WjobFq/iyeNYbpy/wr6NOwhs27JM215U8P2r1HauSC0nX6wNzehQsSGmeobyme5a+9SjZ9XCgdyvPL5LZm42Pao2w8bQDHdze9r5NeB8dBgSacEseKFPIqnn4k9Ve0/M9YzxtHSilU9dbsVFvlKX6pfp1qsHe3fsZu/OPTyIjOKv3xbw5MlT2nf+BIAlfy1i1tSZ8vIdOnfkSdwT/pr/Bw8io9i7cw97d+6he5+eAGjr6OBWwV3hYWhkiL6+Pm4V3OVDHsyfPY9D+w/y3fQf0DfQJzEhgcSEBHKyc5TaWFYCOwZx9nAwZw+fIO5hDFuXriUpPoEGQQW/WbtWb+K/+f/Iy5/ce5ib56/wNCaOpzFxnD1ykqM79lMzsH65tfFt6Gnp4GnpiKdlwdi39saWeFo6YmP4frOV/ZvX486py9w5fYWk2GeEbDxAemIKvgEFQdHz245wbPl2efkbh88SdfU2KU8SSIx5yvltR4i8HEbFwIJgvaaWJuYO1goPbX1dtHR1MHewRkOzfMYxq9mqMdeDz3M9+DwJj59wZM0OUhOSqdq0IEsyeONe9ixeBxRkuFk52ik89I0N0dTSwsrRDu3nN/VObztI5PU7JD9N4MmDx+z/dyNPo2Oo2lR5zOLyUrdtEy4fC+HKsRCePY5j/6qtpMQnUbN5QUD+8LqdbFu4Wr5d1k72Cg8Dk4LtsnayR1v3zW5Wvq6qLeoTevISoacukRjzlFPr95KWmELFwILxLEO2HOTw0s3y8tcOneH+lVCSnySQ8PgJIVsOEnEpFP8mdeRl8iUSnkXH8iw6lnxJPunJqTyLjiX5SdndfCru2L1L1HP1p65LRWyMzOns3xhzfSNOPT8Pae/XkH41lCfJqOdSicjEWGLTlNtWMJmQFQ4mVmiqa2CiZ4SDiRWWBqblsg1VWtQn7ORlwk5dJin2Gac37Cv4LBoXfF/Pbj3EkaVb5OWvHT5D5JUwkp8kkPj4KWe3HuL+5VD8mxZ+Flf2n+T89iMEDvgEY0tTMlPSyExJI68cjw8fFKnsw338PyUy44SPRr169VSOzwZQq1Yt+YQOqhTv+ujs7MyOHTtKfb3OnTvTubPq8YGKr8/Ly4uTJ08qLCve1l9//ZVff/1VYdm4ceMU/v/222+VZm395ZdfSmxjYGCg0usMHDhQIXMQYOrUqUydOlX+f/PmzRVmTi3e3mXLlAfPHjNmjMK4fMXfg+LtcHV1VVpWvL2urq4cPXpUoczIkSOVXru4cePGUbFiRR48eICLi4vK9gAEBASQllbYNaToTK7Xr18vcf2dO3cm73kGQ5cuXejSpUup7dmzZw8aGhp07dr1pW1/U2ejb2Goo0+nSo0x1TPkUcpTZh9fQ3xmQdcpUz0jLPQL7+qfiLyKrpY2Lb1q06d6EJm52dx6Esn6q4fkZZp71kJLQ5NxjXoovNaWG8fZeuN4uW3LgG7dycnJ5ec//yQtPY1KPj78OesnhQy6uKfPUFcrDJQ+S0igz8gR8v9Xb9nM6i2bqe5fmX9mzwYg9O5dhk8szF797Z/FALRr3oKpX31VZu2/9OgOBtp6tPWtj7GuAbGp8fx1eot8dlQTXUPM9RXv1OpqalPNwYuN146qWuV7k7PnIGra2ugN6IWavj759yNJ/3UBFDlxVbcwVxhXLnvHXmQyGbpdO6BuZoosLZ28K9fl48MB5Ec+IGPBIvS6fYJux7ZI4+PJWrOJvCJBvrJQK6AeGanp7Fm3lZTEZOxdHBk1bQIW1gXdA1MSk0l8VnjRcXL/EaT5+az7eznr/i7MRqzXLICB4wsyZsytLBg7YxKblvzH9JGTMLUwo2mHVrTq2qFM217UtZhwDLR0aeFVG2MdA+LSElh6bpd8pjtjXQPM9Aq7UeXm57H47A46VQpgbEAPMnOzuRZzj323C4dIOPy8K2orn7qY6BqSnptFaFykQpm30bRFM1JTUlm1bAWJ8Qm4urvx82+/YmtX0CUoISGBp08Ku73b2dvz02+/snD+H+zYvA0LS0tGfzmWxk0DX+t1d27ZDsAXnyuOEztx8je0aqccBC8L1RvWISM1nQMbdpCSlIKdswOfTR6PuXXB+EWpickkFdnPZFIZu/7bTOKTZ6hraGBpa037ft2oHxRYLu17Wz5WLvzZqXAYhTENCzLg94aF8OPRdzepTHEValUkJyOTy3tOkJmSjrm9Na1G9cbIwhSAzJR0MhILuw9L8/M5t/kQGclpaGppYmpvRdCoXjj7K3frfJd861YlOz2DMzsOkZGciqWjLV2/HILJ84lyMpJTSU1QPRZuSbIzsziwfBMZKWno6Oli7eJAr29HYFfh5TPJl5VK9aqTlZZB8NYDpCenYO1kR5+JwzF9nr2XnpxKSvzrbVd586ztT3ZGJhd3HScjJQ0Lexvaj+2HcZF9Ki2hcJ/Kl+RzeuMBMpJT0dTSwtzBmrZj+uFaubBLbUZyGhunF970uXrgNFcPFIxj1mlC+WT8X358FwNtPVp5131+HpLA32e2yY8ZJroGmOkpn4dUtfdky43jKtdpomfIpKb95P8396xJc8+ahD97yIJTm8p8Gzxq+ZOdnsWl3QWfhbm9NW3H9C38fienkV70+y3J58ymws/CzN6KNmP64uJf+FncOn4BqSSfg4s2KLxWzfaB1OrQtMy3QRBeRk1WUvRCEAThf9iOHTswNzenUaNG77spbNy4ERcXF/kYfK+jz9qpZd+gd2xN76mkRUa972a8FSM3Vz7fMvt9N+Ot/d3la5L7D395wQ+Y6apFHC+DGT/ft0CPGny1q/RJZP4XzGk/mpjkD3+m49LYm1qzP6xsgpDvUyvfejT463/7+3165CLmHC89s/1/wVeBfVh6btf7bsZbG1KnPWsvH3h5wQ9Y7+pBLDi58X03462NadSd0dvmve9mvJU/Oo1n/okNLy/4gRsX0OPlhT5AaXfCX17oPTHyfr83Rd4XkRknCMJHqWPHju+7CXLdu3d/300QBEEQBEEQBOH/K5GD9cERY8YJgiAIgiAIgiAIgiAIwjsignGCIAiCIAiCIAiCIAiC8I6IbqqCIAiCIAiCIAiCIAgfK9FN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVT6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VmE31gyMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+V6Kb6wRGZcYIgCIIgCIIgCIIgCILwjohgnCAIgiAIgiAIgiAIgiC8I6KbqiAIgiAIgiAIgiAIwsdKKrqpfmhEZpwgCIIgCIIgCIIgCIIgvCMiGCcIgiAIgiAIgiAIgiAI74jopioIgiAIgiAIgiAIgvCxkknfdwuEYkRmnCAIgiAIgiAIgiAIgiC8I2oymUyM5CcIgiAIgiAIgiAIgvARSrt6/X03oURGVSu/7ya8F6KbqiAIwgfs+L1L77sJby3QowZpMTHvuxlvxcjenlUX9r7vZry1/rXavO8mlIlLD8PedxPeWg0nX+YGr3vfzXhrXzbu9b6bUCbSwu687ya8NSNfb+YcX/O+m/FWvgrsQ4O/hr/vZry10yMXfTTbsfbygffdjLfSu3rQ+25CmZm8/5/33YS3MqPVp+y+dep9N+OttavY8H034c2IHKwPjuimKgiCIAiCIAiCIAiCIAjviAjGCYIgCIIgCIIgCIIgCMI7IrqpCoIgCIIgCIIgCIIgfKRkUtFN9UMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlZhN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlUz6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VVMym+qERmXGCIAiCIAiCIAiCIAiC8I6IYJwgCIIgCIIgCIIgCILw0UhKSqJfv36YmJhgYmJCv379SE5OLrF8Xl4eEydOxN/fHwMDA+zt7enfvz8xMTEK5QIDA1FTU1N49OzZ87XbJ4JxgiAIgiAIgiAIgiAIHyuZ7MN9lJPevXtz9epV9u/fz/79+7l69Sr9+vUrsXxmZiaXL19m8uTJXL58ma1bt3L37l06dOigVHbYsGHExsbKH4sXL37t9okx4wRBEARBEARBEARBEISPQlhYGPv37+fs2bPUqVMHgCVLllCvXj3u3LmDt7e3Uh0TExMOHTqksOyPP/6gdu3aREdH4+zsLF+ur6+Pra3tW7VRZMYJggDAihUr2Ldv3/tuhiAIgiAIgiAIgvD/RE5ODqmpqQqPnJyct1pnSEgIJiYm8kAcQN26dTExMeHMmTOvvJ6UlBTU1NQwNTVVWL5mzRosLS2pWLEiX331FWlpaa/dRhGME/4nuLq6Mn/+/He6PjU1NbZv3/5WrzN16lSqVq36WnWOHz+Omppaqf3Zy9rWrVv59ddfqVu37hvVHzhwIJ988on8/8DAQMaNG1dqnbL6TI8ePYqPjw9SqfSt11Uenj59ipWVFY8fP37fTREEQRAEQRAE4f8jqeyDffz000/ycd1ePH766ae32ty4uDisra2VlltbWxMXF/dK68jOzmbSpEn07t0bY2Nj+fI+ffqwbt06jh8/zuTJk9myZQudO3d+7TaKbqpCuWrfvj1ZWVkcPnxY6bmQkBDq16/PpUuXqF69+jtt14ULFzAwMHinr/mhun//Pt9//z379u3DzMysTNa5detWtLS0ymRdLzNhwgS+++471NUL7i2sWLGCcePGKQQzw8LCaNGiBbVr12bdunXo6Ohw7NgxZs+ezblz58jKysLV1ZXWrVszfvx4HBwcFF7D29ubyMhIIiMjlZ67f/8+3333HcHBwSQmJmJpaUmNGjWYPXs2Xl5eWFtb069fP6ZMmcK///5bru/F8d2HOLh1NymJydg7O9D90/54VvJRWfby6fOc2HuYh/cfIMmTYOfiQPveXahYo4pCucz0DLav2siVMxfITM/A0saKrkP74F+rWpm1WyaT8c/KlWzbvZu0tDQq+voycexYKri5lVrvSHAwi5Yv51FMDI729owYMoQmjRrJn2/fsyexT54o1evWsSMTnweLj544wdZduwi7e5eU1FTWLFmCt4fHW2/TxUOnOLv3GOnJqVg52NKi7yc4+1R4ab2Hd++zeuZfWDnaMmzW1/LlV46FcOPkBZ49Kjh5sHVzJLB7WxwquLx1Wz92h3bsZfem7SQnJOHg6kT/EUPw8a+osmxSQiJrFi0nMjyCuMexBHVqS/8RQ5XK7duyk8O79hP/NB4jEyPqNKpPj6H90NbWLrftuHX8PNcPnCEzJQ0ze2vq9WiFnafqzz/mTiS7565UWt592khM7ayUlt87f4Oj/27BpYo3QSN7lXnbP0YymYx/1q9j28GDpGWkU9HTi4mfDadCkS4sxUVER7No7RpuR0QQ++wp4wcPoXeHjkrlniYk8MeqFZy5fJnsnBxc7B2YPGo0vmXw21RU6PELXDsYQtbzfapu95al7FNR7Jm3Sml5t2kjMLW1VFoeceEmR//diksVb1qO6FGm7X4TVew86F2tJT7WzlgamDJp79+cjLz2vpv12v7XtuPCwZOc2X2EtORUrB1tCerfBZdXOBZG37nPiukLsHayY/jPE99BSz8+tZ38aOhWGUMdfZ6mJ7HvdggPkkoOQGioqdPEowZV7D0w1NEnNTuD4IgrXH58BwA/G1cC3Kthrm+Mhpo6CZkpnI66wbWY8HLbhtP7jnJ8xwFSk5KxdXKg4+CeuPt5qSx7PyycPas28/RxLLm5uZhZWVCvZWMat28pL3P2UDAXj4cQF11wg9yxggtt+nTG2dO93LZBeDXffPMN48ePV1imo6OjsuzUqVOZNm1aqeu7cOECUJBcU5xMJlO5vLi8vDx69uyJVCpl4cKFCs8NGzZM/nelSpXw9PSkZs2aXL58+bXiGiIYJ5SrIUOG0LlzZx48eICLi+IJ3rJly6hateo7D8QBWFkpX4z8f+Xu7k5oaOgrlc3Ly3ulIJu5ufnbNuuVnDlzhvDwcLp161ZimQsXLtC6dWs6duzIP//8g4aGBosXL2bEiBEMGDCALVu24OrqSnR0NKtWrWLu3LnMmzdPXv/UqVNkZ2fTrVs3VqxYwXfffSd/Ljc3lxYtWuDj48PWrVuxs7Pj0aNH7N27l5SUFHm5QYMGUbt2bWbPnl1mAU+l7TwRwsYlq+g9YjAVfL04sf8If0z5hal/z8bcWvlCKfzWbXyr+fPJgB7oGehz5nAwf02fw6R5M3Cu4AqAJE/C/O9/wsjEmM++HYuZpTlJzxLQ0dMr07avXL+etZs2MWXiRJydnFi6ejUjv/6aLatWYaCvr7LO9Vu3+Hb6dIYPHkyTRo04dvIkk6ZNY+mCBVTy8wNg1aJF5BfJmIyIjGTkV1/RLDBQviwrO5sqlSrRPDCQmXPmlMn2hJ69wqH/ttNqYFecvNy4fPQM62f/w2e/TMLEsuTPPzszi52L1uJW0ZP0FMVU9wdh9/CrVx1HLzc0tTQJ2X2Udb8s4tOfJ2Jsblom7f4YhRw7xaq/lzF4zGd4VfThyJ4D/PLNDGYv/QNLG+XjgCQvDyNTEzr27sa+LTtVrvPUkWDW/7uaT78ahVdFH2IfxbBo9gIA+o0YUi7bEXHhJiEb9tOwd1tsPJwJO3GRfQv+o/vUkRhamJZYr/uMUWjrFp7M6hop34RKS0jm3OaD2HqWHEQSlK3ctpW1O3cwZcxYnO0dWLppIyOn/MCWhQsx0FP9u5Wdk4OjrS3NGzRg3rKlKsukpqczZNJEavr78/vkKZibmPAoLg6jMr6BGHHhFiEbD9CgdxtsKjhx+8Rl9v+xlm5TR2BoblJivW7TRxbbp5S3tWCfOoStx4ezT+lp6XAv4RF7b59hVuvh77s5b+x/aTtuhlxm/6qttB3cDSdvdy4dPs2an/9m5JxvMbEs+TwxOzOL7QtX417JS+lYKLyaSrbutPatx+7QU0QnPaGmky/9arTmj1MbScnOUFmnR9XmGOrose3mCRIzUzDQ1kNdrbATXWZeDsERV4jPSEYizcfb2oVOlRqTkZvFvfhHZb4NV06dZ8fy9XQe1hc3Xw9CDgSzZOZ8Jvw+AzMrC6Xy2jraNGjTFHsXR7R1dYgMC2fzolVo6+hQr2VjAO7dvEO1hrVx9fFAU0uLY9v3sXjaPCb8PgMTi/I5PxdejY6OTonBt+JGjRr10plLXV1duX79Ok9U3JR/9uwZNjY2pdbPy8uje/fuREZGcvToUYWsOFWqV6+OlpYW4eHhrxXbEN1UhXLVrl07rK2tWbFihcLyzMxMNmzYwJAhBRcuZ86cISAgAD09PZycnBgzZgwZGaoPFgDR0dF07NgRQ0NDjI2N6d69u9KXbefOndSsWRNdXV0sLS0VUkeLd5EMDw8nICAAXV1d/Pz8lAZuBJg4cSJeXl7o6+vj7u7O5MmTycvLUyjz888/Y2Njg5GREUOGDCE7O/ul79HevXvx8vJCT0+PJk2aEBUVpVTmdd+fF91jFy9ejJOTE/r6+nTr1k2p6+vy5cvx9fVFV1cXHx8fhah/VFQUampqbNy4kcDAQHR1dfnvv//Iz89n/PjxmJqaYmFhwYQJE5AVmwWneDfVp0+f0r59e/T09HBzc2PNmjVKbZ43b558GmknJydGjBhBenp6qe/d+vXradmyJbq6uiqfP3r0KE2bNmXQoEEsXboUDQ0NHj16xJgxYxgzZgzLli0jMDAQV1dXAgIC+Pfff/nhhx8U1rF06VJ69+5Nv379WLZsmcK2hoaGcv/+fRYuXEjdunVxcXGhQYMG/Pjjj9SqVUtezt/fH1tbW7Zt21bq9ryNw9v20qBlIA2DmmDn7ECPT/tjZmlB8F7lrFSAHp/2J6hre1y9KmDjYEenAT2xtrfl+rnL8jKnDx0nIy2dEZPH4+HnjYW1FR4VfXByL7tsLJlMxrrNmxnUty9NAwLwcHNj2qRJZGdns19FRu0L6zZvpk7Nmgzq0wdXZ2cG9elD7erVWbtli7yMmakplubm8sepkBAc7e2pUaUw+69ty5YMGzCA2jVqlNk2ndt3nKqBdajWpC6WDja07NcJYwtTLh85XWq9fcs2UbFedRw8XJWe+2REP2q2aIitiwOW9ja0HdoDmVRG1K3yuyP9Mdi7ZQeBrZrTpE0LHFyc6D9iKBbWlhzetV9leStbGwaMHEpAyyboG6gOqISH3sGrkg8NmjXGytaGyjWrUb9JI+7fvVdu23H9UAjeDavj06gGZnZW1O/RGkMzE0KDL5ZaT8/IAH0TI/njRQbxC1KplKP/bqFGhyYYlxIoFhTJZDLW7drJoG7daVqvPh4uLkwbO47snBz2nzhRYr2Knp6MHTiIoEYBaGuqvrG1cusWbCwtmTJmLJW8vLC3saF2lSo42tmV6TbcOByCd4Nq+DSsjpmdFfV6BL3GPmUof6jap44t3Ub19oEYWX04+9TZ6FssObeT4PtX33dT3sr/0nac3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcN/QjVd63M5Ud3uPToDs8yktl3O4TU7HRqO/upLO9h6YiruR2rL+3nfsJjkrPSeZzyjIfJhddWUYmxhD2N4llGMklZaZx9cJMnaYm4mL7dAPYlObHrILWbNaJuiwBsHO35ZEgvTC3MOXPguMryju4uVG9UB1tnB8ytLanRuB7eVSsRGXZXXqbvF5/SoHVTHNycsXG0o/vnA5HJZIRfDyuXbfjgyKQf7uM1WFpa4uPjU+pDV1eXevXqkZKSwvnz5+V1z507R0pKCvXr1y9x/S8CceHh4Rw+fBgLC+Xgb3G3bt0iLy8Pu9c8VotgnFCuNDU16d+/PytWrFAIYmzatInc3Fz69OnDjRs3CAoKonPnzly/fp0NGzZw6tQpRo0apXKdMpmMTz75hMTERIKDgzl06BARERH06FHYDWLPnj107tyZtm3bcuXKFY4cOULNmjVVrk8qldK5c2c0NDQ4e/YsixYtYuJE5ZR4IyMjVqxYQWhoKL///jtLlizht99+kz+/ceNGpkyZwo8//sjFixexs7NTSmkt7uHDh3Tu3Jk2bdpw9epVhg4dyqRJkxTKvO7788K9e/fYuHEju3btkk/lPHLkSPnzS5Ys4bvvvuPHH38kLCyMWbNmMXnyZFauVOzaNHHiRMaMGUNYWBhBQUHMnTuXZcuWsXTpUk6dOkViYuJLg0wDBw4kKiqKo0ePsnnzZhYuXMjTp08Vyqirq7NgwQJu3rzJypUrOXr0KBMmTCh1vSdOnCjxc922bRtt27blu+++Y/bs2fLlL/a9ktZddHDOtLQ0Nm3aRN++fWnRogUZGRkcP35c/ryVlRXq6ups3ryZ/Pz8Uttau3ZtTp48WWqZNyXJkxB9LxK/apUVlvtV9yeiyElIaaRSKdlZ2RgUyZy5fu4S7j6erF24nK/6DGfaiAns3bAdaX7Zjc/3ODaWhMRE6hb5HLW1talepQrXb90qsd710FDqFPvs69aqVWKdvLw89h46RIfWrV8pNf1N5UskxEY+wq2S4gxN7pW8eRQeVWK9a8HnSHoST0DnoFd6nbycXKT5UvQMVQeMhIIst8i7EVSuWVVhuX+NqtwNvf3G6/Wu5Evk3Qju3S74bj2JiePq+ctUq6P6t+ht5UskxEfH4Oin2LXL0a8CTyIellp364zFrP5qDrvnrSTmdqTS85d3B6NnZIBPw3efof6/7PGTJyQkJVG3yJiw2lpaVK9UkcZPljgAAQAASURBVOu33+6i7sT58/h6eDDx159pMaAfvb8Yy7aDB96yxYryJfnER8fiUGyfcvBzf/k+NfMf/vt6HnvmrSLmjvI+dWX3CXSN9PFpWHZDGQj/e/IlEmIiH1KhsuJQGe6VfXh0V3m/eeHK8bMkPYknsEur8m7iR0tDTR17Y0ulbLV78Y9wMlWdDeRj7UJMyjMaulXh68A+jG3UnSDvOmiqa5T4Ou7m9lgamBCVFFum7YeC89pHEQ/wrqI4pIR3VT+ibr/aja9H9x8Qdece7n7KM2a+kJubQ35+PvoqssaF/32+vr60atWKYcOGcfbsWc6ePcuwYcNo166dwkyqPj4+8mtZiURC165duXjxImvWrCE/P5+4uDji4uLIzc0FICIigunTp3Px4kWioqLYu3cv3bp1o1q1ajRo0OC12ii6qQrlbvDgwcyePZvjx4/TpEkToKCLaufOnTEzM2Ps2LH07t1bnknl6enJggULaNy4MX///bdS1tPhw4e5fv06kZGRODk5AbB69WoqVqzIhQsXqFWrFj/++CM9e/ZU6E9epYriWFhF1xcWFkZUVBSOjo4AzJo1i9atWyuU+/777+V/u7q68uWXX7JhwwZ5UGf+/PkMHjyYoUMLxheaOXMmhw8fLjU77u+//8bd3Z3ffvsNNTU1vL29uXHjBr/88ou8zOzZs1/r/XkhOzublStXyrfpjz/+oG3btsydOxdbW1tmzJjB3Llz5RmDbm5uhIaGsnjxYgYMGCBfz7hx4xSyCufPn88333xDly5dAFi0aBEHDpR8oXD37l327dunMK300qVL8fX1VShXNJPOzc2NGTNm8Pnnn5ca0IyKisLe3l5peXp6Ot26dePbb79VCm6Gh4djbGz8Sncu1q9fj6enJxUrFpwM9OzZk6VLl8r3YwcHBxYsWMCECROYNm0aNWvWpEmTJvTp0wd3d8XxJxwcHLhy5cpLX/NNpKemIZVKMTZV7FpkZGpCalJKCbUUHdq2h9zsHGo0KpzE41ncUxKehFInsAGjp07gaUwc6/5egTRfSrverz9IqSoJiYkAWBTrvmthZqZyvLei9VTVebG+4o6fOkV6ejrtW5XvCX5mWgYyqRRDEyOF5QYmRqQnp6qskxj3jGMbdtNv8mjUNUo+8S3q2IbdGJmZ4FZR9dgpAqSlFHwvTMxMFZabmJmQkpj0xuut36QRackpTBv3Lchk5Ofn07x9Kzr06vKWLVYtOz0TmVSGnrHixYKesQGZqaqzh/VNjGjUrz1WznbkS/IJP3uN3b+tpP2XA7HzcgUg7l40d05dpsvkD7ur24coIblg/7EoNrOahYkpsc+evdW6Hz+JY8v+ffTp0JFBXbtxKzycOf8uQUtLi3ZNmr7Vul94sU/pF9+njAzISlWdda9vYkijvu2wdLEjP09C+Lkb7PltNe3GD8DOqyBbOu5eNHdOX6Hz5M/KpJ3C/67MVNXHQkMTIyJK6HqaEPuUI+t2MWjq2Fc+FgrK9LV10VBXJz03S2F5em4WRjqqb+CZ6xnjbGaLRJrP2isH0dfSpX3Fhuhp6bL9ZrC8nI6mFl8H9kVTXQOpTMru0NNEJJT9BGUZaQXHb0NTxa6BhiYmpCXfLLXu9KFfPT8vzieoe0fqtggoseye1VswMTfDs7LqjEHhf9+aNWsYM2YMLVsWjB3YoUMH/vzzT4Uyd+7ckQ8v9OjRI3buLBimpPgkjMeOHSMwMBBtbW2OHDnC77//Tnp6Ok5OTrRt25YpU6ag8Zq/XSIYJ5Q7Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bun0HVRJpMhlUqJjIxUCtqEhYXh5OQkD8QB+Pn5YWpqSlhYGLVq1eLq1asKAyuWJiwsDGdnZ3nQCqBevXpK5TZv3sz8+fO5d+8e6enpSCQShf7jYWFhDB+ueFFTr149jh07Vupr161bVyFTp/hrv+7784KqbZJKpdy5cwcNDQ0ePnzIkCFDFN4niUSCiYliQKdo5llKSgqxsbEKbdTU1KRmzZpKXVWLbuOLMi/4+PgoTQ997NgxZs2aRWhoKKmpqUgkErKzs8nIyChxso2srCyVwUg9PT0aNmzIkiVL6NWrl8J79KqDdkJB0LBv377y//v27UtAQADJycny9o8cOZL+/ftz7Ngxzp07x6ZNm5g1axY7d+6kRYsWCm3KzMws8bVycnKUpvB+1bET5IpvlkzFMhXOHz/D7jVbGTF5vEJATyaVYWRqTN/RQ1HXUMfF053kxCQObtnzxsG4fYcOMavImHzzn8+UVPwzkalYpqR4HZmsxM3dsXcv9evUwcpSefy8cvGK2yOVStn+12oadWmFhZ3yjE+qhOw+wq2QK/T9biSa2u9mopT/aSq/F2+eHRl69Qbb125m8JjPqODjyZOYOFb99S9bLTbQuW/5DVSvRvH9veSypraWCoPq21RwIj0plWsHz2Dn5Upudg7Hlm6lUb8OKseRExTtCz7OrL8LbwzN/75gOAOlz4S32rUAkMpk+FXwYGS//gD4uFfgfnQ0W/bvK7Ng3JtQtU9lJKZw/VAIdl4uBfvUsu006tcOXZGxK8gpH6dVHailUilb/1xFYNfWr3wsFF5G8SChhlqJx40X5yebrh8lR1IwBM/+2yH0qNqC3aGnkEgLen/kSvJYeGYL2hpauFvY08qnLolZqUQlln12XEG7ii+RvfRHduSPE8nNzuHB3Qj2rN6ChZ011RvVUSp3dNs+rpw6x4jpE9D6/3IuVdqJw0fK3Nyc//77r9QyRa9hXV1dS7ymfcHJyYng4OBSy7wqEYwT3okhQ4YwatQo/vrrL5YvX46LiwvNmjUDCg7An332GWPGjFGq56xiVrKSgilFl+u9xgDzqr5wxdd/9uxZeaZdUFAQJiYmrF+/nrlz577y67zqaxf3uu9PSV5sk5qaGtLng9ovWbJEnq32QvGI/tvOOvtiG0sLrDx48IA2bdowfPhwZsyYgbm5OadOnWLIkCFK4/IVZWlpSVKScoaLhoYG27dvp0uXLjRp0oSjR4/i93xQfy8vL3lQsbTsuNDQUM6dO8eFCxcUui3n5+ezbt06Pv/8c/kyIyMjOnToQIcOHZg5cyZBQUHMnDlTIRiXmJhY6sQhP/30k9LMQFOmTCGwb/sS67xgaFwwFlTxLLi0lBSlbLniLpwIYdWCf/hs0lh8q/krPGdiboqGhgbqGoUjGtg5OZCalIwkT4Km1usfQgIaNJBPsADIU77jExOxLDImQ2JSEualTHZhYW6ulAWXmJyscvKQ2Lg4zl++zK8vmXmpLOgbGaCmrq6UBZeZkoZBsQwBgNysHGIjHxL34DEHVm4Fnn9nZDJm9f+S3hOH41rRU17+7J5jnN55mN6TPsfGWTkrVChk9HyMtJTEZIXlKckpStlyr2PTirU0bB5IkzYF329nd1dysrP597eFfNK7m9IYWm9L11AfNXU1pSy47LQM9I0NX3k91m6O3Dt3HYDUZ4mkJSRz4K+18udf/FYvGT6NHtNHY2z9bibi+V8QULs2lbwKs1Bz8yQAxCcnYVnkNycxJRnzYjeaXpelmRluRW42Arg5OnI05Mxbrbeown1KMQsuKy1DKQOzNNbujtw7dwOAtGdJpCckc+Cv9fLnX+xT/34+g+7TR2JsJfap/y/0jZ8fC1MUj4UZqekYGqs6FmYTcz+a2KhH7F2xGSg8Fk7vM45+34zArZLIBH8VmbnZ5EulGGorBsUNtHVJz1V9UzgtJ5PU7Ax5IA7gWXoy6mpqGOsakJhZ8DnKQP53XFoCVgZmBLhXLfNgnIFRwfE7LUlx/0lPScXIpPSB9C2eT85k5+JIWnIqBzfsUArGHdu+nyNb9jB86lfYuzqpWo0gvBMiGCe8E927d2fs2LGsXbuWlStXMmzYMHlwpnr16ty6dQsPD49XWpefnx/R0dE8fPhQnh0XGhpKSkqKPAOqcuXKHDlyhEGDBr3y+mJiYuRdHkNCQhTKnD59GhcXF4WZNB88eKBQxtfXl7Nnz9K/f3/5srNnz770tbdv366wrHid131/XlC1Terq6nh5eWFjY4ODgwP379+nT58+r7xOExMT7OzsOHv2LAEBBWnfEomES5culThzjK+vLxKJhIsXL1K7dm2gIB246GQSFy9eRCKRMHfuXPmF7MaNG1/anmrVqpU4E6yOjg5bt26la9euNGnShCNHjlCpUiW6du3KpEmT+PXXXxXG/HvhRdbb0qVLCQgI4K+//lJ4fvXq1SxdulQhGFeUmpoaPj4+nDmjeOF08+ZNAovM4llcSVN6hzwsPR0fQFNLE2cPN8Ku3KBa/cKJI8Ku3KRK3ZInJjh//Ayrfl/M0Amj8K+tPL5PBT8vLhw/g1QqlX8uTx7HYmJu+kaBOAADfX2FGVJlMhkW5uacu3gRH8+CoFNeXh6Xr11j9Keflrieyn5+nLt0iT5FZtI9d/EilStWVCq7c/9+zExNaagi47WsaWhqYufmSOTNu/jUKhzDL/LmXbxqVFIqr6Onw7CfFMcvvHT4NA9Cw+k8ZiCmRS5eQ3Yf5fSOQ/Sa+Bn27h/OLIUfKk0tLdy8KnDj0lVqNSzsfn3z0lVq1Fe+S/6qcnJyUFdXvLmgrq5ecMO5HO46a2hqYulsz+PQCNyqFWb5PgqLwLWKTyk1FSU8jEXfpCB4Z2prSdcpir9hF7YfJS8nl/o9WmFgXvrFzv83Bnr6CjOkymQyLMzMOHf1Kj7uBeOu5eXlcfnmLUYXGebhTVTx8eXBY8VuXw9iYrCzKrtsIQ1NDSyd7Xgcdh+3aoX70OOw+7hUKXl8peISHsah93yfMrG1pMsPir0DLu44Rl52DvV6tMLArPQbQ8LHRUNTE3s3J+5fv4NvrcJhYu7fuI13DX+l8jp6unz+q+KwIhcOniIy9C7dxw3GVMXsmYJq+TIpManxVLB0IOxplHx5BUtHbhf5v6jopDgq2rqjraFJbn7BzQYLAxOkMimpJcy+CgVJaqWNK/emNLU0cazgwt1rt/CvW3h9cfdaKBVVnK+WSFYw/lxRx7bv5/Dm3Xw6+QucVEyYJQjvkgjGCe+EoaEhPXr04NtvvyUlJYWBAwfKn5s4cSJ169Zl5MiRDBs2DAMDA8LCwjh06BB//PGH0rqaN29O5cqV6dOnD/Pnz0cikTBixAgaN24s7wo5ZcoUmjVrRoUKFejZsycSiYR9+/apHLS/efPmeHt7079/f+bOnUtqaqpC0A3Aw8OD6Oho1q9fT61atdizZ4/SpAVjx45lwIAB1KxZk4YNG7JmzRpu3bqlNHZYUcOHD2fu3LmMHz+ezz77jEuXLinNPPu6788Lurq6DBgwgDlz5pCamsqYMWPo3r07trYFsx5NnTqVMWPGYGxsTOvWrcnJyeHixYskJSUpBYWKb+fPP/+Mp6cnvr6+zJs3T2mW1qK8vb3lg2f+888/aGpqMm7cOIXsxQoVKiCRSPjjjz9o3749p0+fZtGiRSWu84WgoCClCSeK0tbWZsuWLXTv3p2mTZty5MgR/P39+e233xg1ahSpqan0798fV1dXHj16xKpVqzA0NOTnn39m9erVTJ8+nUqVFAMoQ4cO5ddff+XatWvIZDKmTJlCv3798PPzQ1tbm+DgYJYtW6aQTZeZmcmlS5eYNWtWiW19nSm9VWneqQ3L5y7ExdMddx9PTu4/SuKzeALaFGSgbluxnuSERAZ9OQIoCMQtn/c3PT7tj5u3pzx7SFtHG73ns0g2btOCY7sOsmHxKpp2COLp4zj2bdxB0/ZlN+6ampoavbp2ZfmaNTg7OuLk6Mjy//5DV1eXVs2by8v9MGsW1lZWjHrerbpnly58OnYsK9atI7BBA46fPs25S5dYumCBwvqlUim79u+nXVAQmirGcUhJTSXu6VOexccD8CA6GijIvLNUkWX3Kuq0DmTH32uwc3fC0cOVK8fOkJKQRPVmBTM3Hduwm7SkFDoM74OaujrWTooZmgbGhmhoaSosD9l9hODN+/hkRD9MLM3lmXfaujpo6775fvOxa9OlIwt/mY+7lweeft4c3XOQ+KfxNGtfMFHG+n9XkxifwIhJ4+R1ou7dBwrG3UxNTiXq3n00tbRwdCm4+VO9bi32bdmJi4c7Hj5ePImJZdOKtdSoV6vcxjmq3KIex5ZtxdLFHpsKToSduER6Ygq+jQuOeee3HiYjOZUmgwu6j984HIKRhSlm9tbk5+dz7+x1Ii+H0WJ4d6AgUGnuoDiQt45+QZf/4ssFZWpqavRq34HlmzfjbG+Pk509yzdvQldHh1YBheMT/TD/N6wtzBnVryBAl5eXx/2HBRMk5EkkPEtM5M79++jr6eJkV3DjrHeHjgyeNIFlmzbSomFDbt0NZ9vBA3w3YqRyQ96Cf/N6HF++DSsXO6zdHbl98nLBPhVQcAPn/LYjZCSn0WTQJwDcOHwWI0tTzOysCvapczeIvBxG888Kbohoamli7qAYMNSW71Pvv9uhnpYOjiaF2en2xpZ4WjqSmp3Bk/Q3H0PyXftf2o66bZuw7a/V2Ls74ejlxqUjZ0iJT6Jm84YAHF63k7SkFDqN6Pf8WKiY7W1gYoimlpbScuHlzkRdp0vlJsSkxPMw+Qk1nXwx0TXkfHTBBDMtvGphrGPAlhvHAbgee4/ACtXp5B/I0fCL6GvrEuRdh8uP7si7qAa4V+VxyjMSM1PRUFfHy8qZqvZe7Aotn8nJAtq3ZN2Cf3H0cMXVuwJnD54gKT6Rei0bA7Dnvy2kJCTRe2zBWN2n9h3FzNIca4eCc6fIsHCO7zxAwzaF3fuPbtvH/nXb6fvFMMysLeU9SnR0ddDRUz0G90dF+v+vm+qHTgTjhHdmyJAhLF26lJYtWyp0r6xcuTLBwcF89913NGrUCJlMRoUKFRRmRy1KTU2N7du3M3r0aAICAlBXV6dVq1YKganAwEA2bdrEjBkz+PnnnzE2NpZnchWnrq7Otm3bGDJkCLVr18bV1ZUFCxbQqshA7x07duSLL75g1KhR5OTk0LZtWyZPnszUqVPlZXr06EFERAQTJ04kOzubLl268Pnnn5c6uYGzszNbtmzhiy++YOHChdSuXZtZs2YxePDgN35/XvDw8JDP1JqYmEibNm0UJkMYOnQo+vr6zJ49mwkTJmBgYIC/v7/CRAqqfPnll8TGxjJw4EDU1dUZPHgwnTp1kg98qcry5csZOnQojRs3xsbGhpkzZzJ58mT581WrVmXevHn88ssvfPPNNwQEBPDTTz8pZBmq0rdvXyZOnMidO3cUZsUpSktLi40bN9KrVy95QG7EiBF4eXkxZ84cOnXqRFZWFq6urrRr147x48ezc+dOEhIS6NSpk9L6PD098ff3Z+nSpfzwww+4uroybdo0oqKiUFNTk///xRdfyOvs2LEDZ2dnGjVqVOr2vI1aAfXISE1nz7qtpCQmY+/iyKhpE7CwLjhpT0lMJvFZgrz8yf1HkObns+7v5az7e7l8eb1mAQwcX5DdYG5lwdgZk9i05D+mj5yEqYUZTTu0olXXDmXa9gE9e5KTk8PP8+eTlpZGJV9f/pw9WyGDLu7pU4Xuf1UqVeLHH37g76VLWbRsGY729vz0ww8KXWABzl+6RNyTJ3QoNiHLCyfOnGFakQlTvp0xA4BhAwbwWZGbBq/Dr+7/sXfX0VEdbQCHf3F39wRCgrsEJ1AI7m5toUILpZQKbanQUqgipbSUUtydFnd3AsESgoYEiBF33e+PwIbNbpDGgO99ztlzkrszd9/Zvbv37uw7M/VIT0njyMadpCYmY+fqxMCP38LCtqBzLzUxmaT7z/alKXDPUfJy81g/a5HK9pa9Amglq84Vq6l/C1KTk9mwbDWJ8Qm4errzydQvsXMo6BxIjI8nLkZ1wv3PRxX+GHHr6g2O7TuErYMds5bPA6DX0P5oaWmxduFy4u/HY25hTv2mjeg/4umzjJ9V5UY1yUxL5+zWg6QnpWLtbE+n94ZgZmMJFAyDTo0v/AzOy83jxLpdpCWmoKuni5WzPR3fG4x7LRnmVVpe7dW74HNr7p+kpKZS08eH2ZO+Ucmgi4qNRfuRKRpi4+MZMn6c8v+lmzaydNNG6teoyV9TCn6sqVGlCr98+jmzly7h7zWrcXZw4MORb9CpdZtSjb9yoxpkpaVzdush5THVcczgR46pVNIeOaby8/I4uW638piydLYjYMwg3GtVKeYRni9V7TyY3avwvT22RUEn4raQ40zZV/yPes+bF6kdNZvWJyMljYMbdpKamIS9mxNDJoxSZnz/l3OheDqXom5irGdIG+/6mBkYE50Sz9LA7SRlFkx3YGpgjIVR4TQH2Xm5LDqzlS7VmjOqWW8ysjO5FHWTPddOK8vo6ejSrXoLzA1NyMnL5X5aIusu7ONS1M0yaUO9Fo1JT0ll95rNJCck4eTuwhsT38favmDuyuSERBLvF05XoshXsG3ZeuJj7qOto4ONgx1dhvbB70HnHcCxHfvJy81l8c9zVB6rQ//uBAzsUSbtEOJxtBRPM2mVEOKFMmnSJDZt2kRQUFBFh1LmPvnkE5KSkpg7d25Fh1Ksxo0bM27cOAYPHvzMdQ9cDyyDiMpXG+8GpNy7V9FhlIiZszNLTm+r6DBKbHijzhUdQqkIjAip6BBKrIFbNaYdXFnRYZTYh60HVXQIpSIlJLSiQygxs2q+/HJg+ZMLPsc+ajOE5r+/+Cv8Hh3950vTjhVni/9R+UUwuH5ARYdQar7c8VdFh1Aikzu+xZbLRyo6jBLrWqNFRYfwnyQfKr25R0ubeatmFR1ChSjdWYaFEKKcTZw4EQ8PD/Ly8io6FI1iYmLo27cvgwa9HF9YhRBCCCGEEC8YRf7ze/s/JcNUhRAvNAsLCz7//POKDqNY9vb2GucqFEIIIYQQQgjx/0ky44R4CU2aNOn/YoiqEEIIIYQQQgjxopHMOCGEEEIIIYQQQoiXlSwV8NyRzDghhBBCCCGEEEIIIcqJdMYJIYQQQgghhBBCCFFOZJiqEEIIIYQQQgghxMsqX4apPm8kM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4WSnyKzoCUYRkxgkhhBBCCCGEEEIIUU6kM04IIYQQQgghhBBCiHIiw1SFEEIIIYQQQgghXlb5sprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLyuFDFN93khmnBBCCCGEEEIIIYQQ5URLoZAuUiGEEEIIIYQQQoiXUfLOvRUdQrHMA9pVdAgVQoapCiHEcywk6mZFh1Bi1RwrkTRvcUWHUSIWb77K9diIig6jxLzt3Co6hFKx/9qZig6hxPyrNOSXA8srOowS+6jNkIoOoVSsOLuzokMoscH1A5h/cnNFh1EiI5t0o/nvoyo6jBI7OvrPl6Ydvx1ZW9FhlMh7LfpVdAilZtrBlRUdQol82HoQkUmxFR1GiTlZ2FV0CP+N5GA9d2SYqhBCCCGEEEIIIYQQ5UQ644QQQgghhBBCCCGEKCcyTFUIIYQQQgghhBDiZZWfX9ERiCIkM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4Wckw1eeOZMYJIYQQQgghhBBCCFFOpDNOCCGEEEIIIYQQQohyIsNUhRBCCCGEEEIIIV5W+TJM9XkjmXFCCCGEEEIIIYQQQpQT6YwTQgghhBBCCCGEEKKcyDBVIYQQQgghhBBCiJeVIr+iIxBFSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVYhStGjRIhwcHOjUqVNFhyKEEEIIIYQQQshqqs8h6Yz7P+Lp6cm4ceMYN25cue1PS0uLjRs30rNnz//8OJMmTWLTpk0EBQU9dZ0DBw7g7+9PQkIClpaW//mxn8WGDRv46aefOHr06H+q/9prr5GYmMimTZsAaNOmDXXr1mXmzJnF1imN1/TR1ygsLAwvLy/OnTtH3bp1//M+n0ZpHY/79u3j3XffJTg4GG3t5y/ZNyYmhho1ahAUFISLi0uZPta2jVvYtGodCfHxuHl6MHLM29SoU1Nj2fi4eBb+Po8bV68ReeceXfp05433RqmUOX7oKOuWrSby7j3ycnNxcnWhR//e+Ae0K9N2FKVQKJh37DCbLgSRkpVJDUdnPn4lgMq2dsXW2XLpAt/u2KK2/fC4TzDQLf1T35YN/7Bh5Vri4+Jw9/TkrfffpWadWsWWv3juPPN++5PwsDCsbWzoO2QAnXt2U96fm5vLmqUr2bt9F3H37+Pq5sZr77xBQ7/GyjKv9x1CTFS02r679OrOux+OLd0GvsAObN3N7g1bSYpPxNndhX5vDqNKzaoay547dpqD2/Zw5+ZtcnNycHJ3pevgPtRoUFulXHpqGv8sXcO5Y2dIT03D1sGOPiOHUKtR3TJrR/CB05zfdZyMpBSsnO3x698BpyoeGsveCw1j6/Qlatv7ffMulo62AFw9FsTBxf+qlXl99ufo6snl4bM6veswx7bsJSUxGXtXRwKG98GjauUn1gsPvcmib2dh7+bEqB8mlEOkhc7tOcqpbQdITUrB1sWBtkN64OZb6Yn17ly9xcqpc7BzdeS178Yrt188fJrt81arlR//9/fo6uuVauzPqo6TN4PrdaCqvTu2JpZ8um0Oh2+dr9CY/ovnvR0X953k7M7DpCemYu1iT8uBnXH28dRY9s6Vm2z6eYHa9iHfvY+VU8H5Pe5uNCc37SX29j1S4hJpMbAzdds3K8smvDQuHzjFhZ3HSH9wzmg6oONjzhm32DJtsdr2/t+MxtJJ/Vrr+qmL7Pt7PR51fAkYPajUYt60bgOrlq4kLi4Or0qejPngfWrXq1Ns+aCz5/hj5m/cuhmGra0NA4cNoUefnsr7D+0/yLKFS7h75y55ubm4uLkyYMhAOnTuqCyTm5vLonkL2LNjN/HxcdjY2NCxa2eGjXj1ufxeIV4ucrX1AujWrRsZGRns2bNH7b7jx4/TrFkzAgMDqV+/frnGdfr0aUxMTMr1MZ9XN2/e5IsvvmD79u1YWVmVyj43bNiAnl75Xry6ubkRGRmJra1tmT9WaR0/n3zyCRMnTlSeMBctWsS4ceNITExUlgkJCaF9+/Y0btyYlStXYmBgwP79+/n55585efIkGRkZeHp60qlTJ8aPH6/Waebr68utW7e4deuW2n03b95k4sSJHDx4kPj4eGxtbWnQoAE///wzPj4+2NvbM2zYML7++mv+/vvvEre3OEf2HWTB7Lm8/cFoqtaszs7N25g84Ut+WzwXOwd7tfI52TlYWFrQb+hA/l27UeM+Tc3M6Dd0AC7ubujq6XLm+Cl++3E6llaW1GvcoMzaUtSSUydYGXiKrzp2xd3KmgUnjvLe2pWsHfk2JvoGxdYz0Tdg7ci3VbaVRUfcob37mTdrDu9+OJZqtWqw45+tfP3RZ8xZOh97Rwe18lH3Ivn644l07NaZj776lJCLl/lj2iwsLC1o3qYVAEv+WsiBXXt4b8J4XN3dOHvqDFM+n8Qvf/5KZZ8qAMyc9zt5+YWT8d6+eYsvPphAC/9Wpd7GF9WZQ8dZO28pg955ncrVfTi8fR+zJ/3E13/8hLW9+ufctUtXqFa3Jj2H98fIxITjew7yx+RfmDDtW9wrewKQm5PLr1/+gJmFOW99NhYrW2sSYuMxNDIss3bcOH2Z42t20nxwZxwqu3Hl0Fl2/LaCfpPexdTaoth6/b4djb5h4XvE0MxY5X49QwP6fztaZZt0xD27S8fPsmPJBrqM6IebbyUC9xxl+Q9zGP3L51jYWhdbLzM9g01/LKVSTR9Sk1LKMWIIORHE3uX/0v7V3rhW8SRo/wnW/fI3I7//GHPb4q9jstIz2PbXKjyqe5OenKp2v76RIW/8+InKtoruiAMw0jPgetwdtl05xtROo55c4Tn1PLfj2qmLHF61jdZDu+Hk7c7lg6fZPHMJgyePxczGsth6Q6aMQ9+o8HPKyKzw2jA3OwcLO2u8G9bkyOptZRn+S+XG6UscX72DFoO74ODtTsihM2yftYz+k0Zj+pjXov/kMUXOGerX6SlxiZxctwvHKu6lGvO+3XuZPX0W4z75kFp1avHvxn/4ZNxHLF69FAdHR7XykXfv8em4j+nSsxsTv/mKi+cvMvOnaVhaWdK6bRsAzMzNGPb6cNw9PdDV0+P4kaP8MPl7LK2saNy0CQArlyzn3w3/8NnXE/Gs5EVoyBV+nDwVE1MT+g7sX6ptFKIo6e59AYwcOZJ9+/Zx+/ZttfsWLFhA3bp1y70jDsDOzg5jY+MnF/w/UKlSJYKDg/Hw0PyL06NycnKeap/W1taYmZmVNLRnoqOjg6OjI7pl0GFRVGkcP8eOHePatWv069ev2DKnT5+mZcuWBAQEsHbtWgwMDJg7dy6vvPIKjo6OrF+/nuDgYP7880+SkpKYNm2aSv0jR46QmZlJv379WLRokcp92dnZtG/fnuTkZDZs2EBoaCirV6+mZs2aJCUlKcu9/vrrLF++nISEhBK193H+WbORVzp3oH3Xjrh5uvPGe6OwtbNjxz9bNZZ3cHLgjbGj8O/4CsammjtFa9WrjV+r5rh5uuPk4ky3vj3xrORF8MXLZdaOohQKBavOnuK1Js3x96lKZTt7vu7UjczcHHaGPD4OLS2wNTFVuZWFjavW06FrRwK6dcbd04O33n8XW3t7tm3arLH8tk1bsHOw563338Xd04OAbp1p36UjG1auVZbZv3MP/YcNplHTJji5ONOlV3fqN2nIhlXrlGUsrCyxtrFW3k4fO4mTizO1HvMr8v+bPZu207x9G1oE+OPk5kL/t4ZhZWvDwW3qP24B9H9rGAF9u+HpUxkHF0d6vjoAe2dHLp46qyxzbPcB0lJSeeeLD/Cu7ouNvR3eNXxxrfTkz///6uKe4/g2r0fVFvWxcrKj6YAATK0sCD545rH1jMxMMLYwVd6K/sqvpYXK/cYWZfMeedmd2Lqfev5+1G/bDDsXRzq+2gcLGytO7z7y2Hpb/l5NzeYNca3iWT6BPuLMjoPUbt2YOm2aYOPiQLuhPTCztuTcvuOPrbdz4Xqq+dXD2Vvz8a6lBaaW5iq358GJ8MvMO/kvB28GVXQoJfI8tyNo11Gqt2xAjVYNsXa2p+WgLphaW3DxwKnH1jM2N8HEwkx5e/RzysHLleb9O+LTpDY65XBt+rK4sPs4vi3qU7VlA6yc7Gg2oNMznDPMlLei54z8/Hz2/b2eBt39H9tp/1+sXbGKzt270rVnNzy8PHlv/PvYO9jzz/pNGsv/u2ET9o4OvDf+fTy8POnasxudunVh9bKVyjL1GtSnpX9rPLw8cXF1oe/A/lT2rszF8xeUZS5fvEyLVi1o2qIZTs5OtGnnT6MmjQkNCS3V9j0XFIrn9/Z/SjrjXgBdu3bF3t5erSMgPT2d1atXM3LkSKCgY6JVq1YYGRnh5ubG2LFjSUtLK3a/4eHh9OjRA1NTU8zNzenfvz/R0apDnv79918aNmyIoaEhtra29O7dW3mfp6enyhDKa9eu0apVKwwNDalevTq7d+9We8wJEybg4+ODsbExlSpV4ssvv1TrnPrhhx9wcHDAzMyMkSNHkpmZ+cTnaNu2bfj4+GBkZIS/vz9hYWFqZZ71+Zk0aRJ169Zl7ty5uLm5YWxsTL9+/VQyrgAWLlxItWrVMDQ0pGrVqvzxxx/K+8LCwtDS0mLNmjW0adMGQ0NDli1bRl5eHuPHj8fS0hIbGxs++eQTFEU+iNq0aaMyhDMmJoZu3bphZGSEl5cXy5cvV4t5+vTp1KpVCxMTE9zc3Hj33XdJTVX/5bo4D+N9OCT4wIEDaGlpsXPnTurVq4eRkRFt27YlJiaG7du3U61aNczNzRk0aBDp6ekqsY8ZM4YxY8Yo2/jFF1+otLHo8fNfYl+1ahUdOnTA0FBzRsq+ffto27Ytr7/+OvPnz0dHR4c7d+4wduxYxo4dy4IFC2jTpg2enp60atWKv//+m6+++kplH/Pnz2fw4MEMGzaMBQsWqLQhODiYmzdv8scff+Dn54eHhwfNmzdnypQpNGrUSFmuVq1aODo6snGj5gy0ksrJyeHG1WvUbaTaKV+3UX2uXAoulcdQKBScDzzH3Yg71KiteehrWbiXlEhcWhp+nl7Kbfq6utR3defC3buPrZuRnU33ubPp+udvfLBhDaHRUaUeX05ODtevXqVeo4Yq2+s3akBIMc/9lcvB1G+kmllYv3FDrl25Sm5u7oP9ZqNnoK9SRl/fgOALl4qNY/+uPbTv0hEtLa3/2pyXSm5OLuHXb1Gtnupw4Wr1anHzyrWn2kd+fj6ZGZkYmxZ2Up0/eZZKVauwcs4iPh76Dt++O4Hta/4hPy//MXv67/Jy87gfHolLddUhjy7VKxF9I+KxdTd89xfLPp7O1ulLuBd6S+3+nKxsVn72KysmzGDH7JXcD48s1dj/H+Tl5nLvVgSVa6sOfa5Uuyp3rqo/5w+dO3CChOj7tOnTsdgyZSUvN5eosLt41vRR2e5Vy4e718KKrXfx0CkSY+7TvFf7YstkZ2bz5wff8cf7k1k3bT7RYY//nBYvh7zcXGJu38OthrfKdrfq3kRdD39s3VXf/M6C8T+w6ecF3LlysyzD/L+Ql5vL/fB7uBY5Z7hWr/zkc8bkuSz96Be2TF/MvSvqn19ntxzEyMyEqi1KNwkkJyeH0CtXadSkkcr2Rk0acbmY657LFy+rlW/s15jQkCvKa6lHKRQKAk+dIeJ2OHXq1VVur1W3FoFnAom4XXCcXr96jYvnL+DXzK+ErRLiyaQz7gWgq6vL8OHDWbRokUpHwNq1a8nOzmbIkCFcvHiRgIAAevfuzYULF1i9ejVHjhxhzJgxGvepUCjo2bMn8fHxHDx4kN27d3Pjxg0GDBigLLN161Z69+5Nly5dOHfuHHv37qVhw4Ya95efn0/v3r3R0dHhxIkT/Pnnn0yYoD73iZmZGYsWLSI4OJhff/2VefPmMWPGDOX9a9as4euvv2bKlCmcOXMGJycnlc4tTSIiIujduzedO3cmKCiIN954g08//VSlzLM+Pw9dv36dNWvWsHnzZnbs2EFQUBCjRxcO6Zk3bx4TJ05kypQphISEMHXqVL788ksWL1add2HChAmMHTuWkJAQAgICmDZtGgsWLGD+/PkcOXKE+Pj4J3bUvPbaa4SFhbFv3z7WrVvHH3/8QUxMjEoZbW1tZs2axaVLl1i8eDH79u3jk08+KWaPT2/SpEnMnj2bY8eOERERQf/+/Zk5cyYrVqxg69at7N69m99++02lzuLFi9HV1eXkyZPMmjWLGTNmPHaY5n+J/dChQ8Uekxs3bqRLly5MnDiRn3/+Wbn94fumuH0/OsdgSkoKa9euZejQobRv3560tDQOHDigvN/Ozg5tbW3WrVtHXl7eY2Nt3Lgxhw8ffmyZ/yolKZn8vHwsrVV/pbSwsiQhvmTZeGmpaQzs2Iu+7brx3adf8+bYd9Q6/cpS3IMOc+siQ5qtTUyISy++s9bD2oavOnXjl179mNy1BwY6OryxcgnhCfGlGl9yUpLG597S2oqEOM2PlRAXr7F8Xl4eyYkFGZX1Gzdk06p13I24Q35+PudOB3LyyDHii9nniUNHSU1N5ZXOHUqhVS+H1OQU8vPzMbdSHcZpbmVBckJSMbVU7dm4jezMLBq0bKLcdj86hrNHT5Gfn8+YSZ/QaUBP9mzcxvY1m0ozfKXM1HQU+QqMzVXfA0ZmJmQka/5BydjClJZDu9J+VD/aj+qHhaMtW2csJfJqYYa9haMtrV/tQYd3B+D/Rm909XT596eFJEXHlUk7XlbpyWko8vMxtVDNZDe1MCt26GlcZAx7V26m95jhaOvolEeYKtJTCmI2KRKzsbkZacXEHB8Vy8E12+g6akixMds42dP5zQH0/mAE3d4dgq6+Lsu/m018VGypt0E8XzJS0lHk52Nsrppda2xhQnqS5nO1iaUZ/sN70OndwXR6dzCWjrZs+mUhdzX8cCCe3sNzhlHRc4a5icah5QDGFma0HNaN9qP60+GdAVg62LBlxmIir4Ypy0RdDyf0yFlaDeumcR8lkZSYRH5eHlY2qsP6raytiY/TfE6Kj4vDyrpIeRtr8vLySHokcSI1NZWOrdvzSrM2fDr+E8Z+NI6Gj3TiDR4+lHYdXmF4/yG0a9qaN4eNoO/A/rQLKP5HByFKi+T7viBGjBjBzz//rFyYAAqGqPbu3RsrKyvef/99Bg8erMykqlKlCrNmzaJ169bMmTNHLXNoz549XLhwgVu3buHm5gbA0qVLqVGjBqdPn6ZRo0ZMmTKFgQMH8s033yjr1amjefjTnj17CAkJISwsDFdXVwCmTp2qtqroF198ofzb09OTDz/8kNWrVys7RmbOnMmIESN44403APjuu+/Ys2fPY7Pj5syZQ6VKlZgxYwZaWlr4+vpy8eJFfvzxR2WZn3/++Zmen4cyMzNZvHixsk2//fYbXbp0Ydq0aTg6OjJ58mSmTZumzBj08vIiODiYuXPn8uqrryr3M27cOJWswpkzZ/LZZ5/Rp08fAP7880927txZbBuvXr3K9u3bOXHiBE2aFHwpnD9/PtWqVVMp92gmnZeXF5MnT+add955Yofmk3z33Xc0b94cKBg2/dlnn3Hjxg0qVSqY6Llv377s379fpQPWzc1N7TWZMWMGb775psbH+C+xh4WF4ezsrLY9NTWVfv368fnnn6t1zF67dg1zc3OcnJye2O5Vq1ZRpUoVatSoAcDAgQOZP3++8j3o4uLCrFmz+OSTT/jmm29o2LAh/v7+DBkyRPncPOTi4sK5c+eKfaysrCyysrJUthkYFD8fmmZFM6IUJc6SMjI2Ysbfv5ORkcGFs0Es+GMeDs5O1KpX+8mV/4MdwZf4fvd25f8zehfM16FVpG0Khfq2R9VydqGWc+H8fnVc3Bi2ZD5rzp7ho3al32FV9HlWKB7/3Kvd9fCHlgd3vP3+aGb9NJ1RQ0aAFjg5O/NK5wD2bNP8ObFr63YaNmmMTTnM9/iiUT92FOpvFQ1OHzzGlhUbeOfL8ZhbFnboKfIVmFmaM3TMG2jraOPh7UVSfAK7Nmyly6Dej9lj+bF0tFUu1ADgUNmNtPgkLuw+jpNPwfBCh0quOFRyVZZxrOzOhil/cXn/aZoNLP9srRff0x1n+fn5bJi9hDZ9O2HjpD6fZ8VSqH82URDzljnLad67A9YaJnN/yNnbQ2X4qmsVTxZ/NZOzu4/yyrCeZRCveO4pKPbz1srRDivHwuPJydud1IQkzu08iouvl+ZK4qlpum4qjqZzRmpCMud3HcPJx5PszCz2z99Ay2HdNc4jV1o0n68fdy2lofyDPT1kbGzM38sWkpGRwdnTZ/h95mycXJyp16Dgh+V9u/eye/suvpj8NV6VvLh+9Rqzp8/CxtaWjl1Vv8e+8P6Ph4M+r6Qz7gVRtWpVmjVrxoIFC/D39+fGjRscPnyYXbt2ARAYGMj169dVhi4qFAry8/O5deuWWqdNSEgIbm5uyo44gOrVq2NpaUlISAiNGjUiKCio2I6TokJCQnB3d1d2WgE0bdpUrdy6deuYOXMm169fJzU1ldzcXMzNzVX2M2qU6oS0TZs2Zf/+/Y99bD8/P5UP5KKP/azPz0Oa2pSfn09oaCg6OjpEREQwcuRIlecpNzcXCwvVTIxHs7eSkpKIjIxUiVFXV5eGDRuqDVV9tI0PyzxUtWpVtZVi9+/fz9SpUwkODiY5OZnc3FwyMzNJS0sr0WIJtWsXdrw4ODgohxk/uu3UKdU5QTS9JtOmTSMvLw8dDb+q/5fYMzIyNHakGhkZ0aJFC+bNm8egQYNUXt8ndZI8av78+QwdOlT5/9ChQ2nVqhWJiYnK53706NEMHz6c/fv3c/LkSdauXcvUqVP5999/ad++8Fc1IyMjlaG8RX3//fcqHd8AX3/9NQNGDX9inGYW5mjraJMYr5o1lZSQhKWV5VO0tHja2to4uRZ0eFaqUpk7tyNYv3x1mXXGtfSuQg2nwg7W7AcZh3Fpqdg+MlQwIT0Na+OnP6a1tbSo7uhMRClnxplbWKCto62WBZeUkKiW/faQlY01CXGqGYuJCYno6OhgblHweWhhZcmX339LdlY2ycnJ2NjasHDO3zg4qU9iHBMVTdCZc3w+5etSatXLwdS8YL6bpIREle0pickqnWuanDl0nCWz5vHWp2OpVld1WLaFtSU6Ojpo6xQOLnB0cyY5IZHcnNxSXwDB0NQYLW0t0otkwWWkpKllPjyOfSVXrp+8WOz9Wtpa2Hk6kxQjmXHPwtjcBC1tbVKTklW2pyWnYmquPu9rdkYm926GExl2h22LCuaAVDyYM+fbIeMY9tm7eBUZPlrqMZsVxFw0Cy49ORVjjTFnEXXrDtG377FnySaVmH9+7RP6f/ImHtWrqNXT0tbG0cuNhGjJjHvZGZkZo6WtrZZ5lZ6cppYt9ziOldwIPfH8rA77Iio8Z6i+Fpkpz/Za2Hu5cv1kwdxqybHxpMQlsvP3Fcr7H35nmTfqGwZ8+x7m9sUvVvMkFpYWaOvoqGXBJSYkYG2teb/WNjbq5eMT0NHRweKRc7y2tjaubgXf5ar4VOH2rdusWLRM2Rn356w/GPzqENp1eAWASt6ViYqMYvnipS9fZ5x47khn3Atk5MiRjBkzht9//52FCxfi4eFBu3btgIJfLd9++23Gjh2rVs/dXX21m+I6JB7dbmRk9NSxaepEKrr/EydOKDPtAgICsLCwYNWqVWoT5j+r4jqwHvWsz09xHrZJS0uL/AerGM6bN0+ZrfZQ0c6mkq4a+rCNj+tEun37Np07d2bUqFFMnjwZa2trjhw5wsiRI5960YjiPLqqq5aWltoqr48+H//Ff43d1tZW46IIOjo6bNq0iT59+uDv78++ffuoXr06AD4+PsoO0cdlxwUHB3Py5ElOnz6tkvGXl5fHypUreeedd5TbzMzM6N69O927d+e7774jICCA7777TqUzLj4+Hju74jMKPvvsM8aPH6+yzcDAgJsJT55vR09Pj8o+VQg6cw6/Vs2V24POnKVJC/VO8ZJQKBQlPp4ex0TfQGWFVIVCgY2JCSdv38LXoaAjKicvj7N3whnTyv+p96tQKLgaE433Y16D/0JPTw9vHx/OnQ6kWesWyu3nzgTi16KZxjpVa1Tn1DHVSdLPnT5Dlao+aoun6BvoY2tnS25uLscOHqZl29Zq+9u9dQcWVpY0birzmzxKV08Xd28vQoIuUa9Z4ZCUkKCL1GlS/GrApw8eY8mvfzHy4zHUalRP7f7K1Xw4dfAY+fn5ysmto+9GYWFtWSYrkero6mDr7sTdkJt41Sucl+xuyE086vg+9X7iIqIweswCDQqFgriIaKxdnrdsreebjq4uzl5u3LwQSrVGhaMHbl68gm+DWmrlDYwMeecn1Yzt07uOcCv4Kv3HjcDSzqZcYnb0dCHs0lV8GhbGGHbpKt711ecENTAy4PWpH6psO7fnGOEh1+nx3nAs7DR/WVYoFMSE38XO9cmZ6OLFpqOri72HMxGXr1O5fnXl9ojg63jV0/yDtyax4ZGykEwJ6ejqYuvuzN3gGyrP/Z2QG3jWqfqYmqriIgpfC0tHW/p+/Y7K/ac37SMnK5tmAzpiYl2yhVr09PTwrerDmVOnaelfeJ1z5tQZmrdqobFOjVo1OHbkmGpMJ0/jW63q4xeiUyjIzslW/puVmYm2lurMXTo6OihK8L1GiKclc8a9QPr374+Ojg4rVqxg8eLFvP7668rOmfr163P58mW8vb3Vbvr6+mr7ql69OuHh4UREFE7kGRwcTFJSkjKLqHbt2uzdu/epYnu4v3v37im3HT+u+mXz6NGjeHh4MHHiRBo2bEiVKlXUVoitVq0aJ06cUNlW9H9Nj/2kOs/6/DykqU3a2tr4+Pjg4OCAi4sLN2/eVNunl1fx6fUWFhY4OTmpxJibm0tgYGCxdapVq0Zubi5nzhSughQaGqqymMSZM2fIzc1l2rRp+Pn54ePjoxJ7edP0mlSpUkVjVtx/jb1evXoEB2ueJN/AwIANGzbQuHFj/P39uXSpYALYvn37oq+vz08//aSx3sPndP78+bRq1Yrz588TFBSkvH3yySfMnz+/2Ji0tLSoWrWq2uIgly5dol499S/2j8Zrbm6ucnuWYao9+vdiz9ad7Nm6k4iwcObPnsv9mFgCuncGYOlfC5k55ReVOjev3eDmtRtkZmSSnJjEzWs3iAgrfE+uW7aaoNNniboXyZ3bEfyzegMHdu6lTfu2Tx1XSWlpaTGwfmMWnTzG/muh3IiN4ZvtmzHU1SOgWg1lua+3/cvvhwozaOcdO8zxWze5m5jA1Zhovtu5laux0fSuU/rz3fUa2IddW7aza8t2wsNu89esP4iNjqFzz4J5VRb9+TfTJv+gLN+5Z1diomKY99scwsNuP6i7g96DClcFvnI5hKMHDxN59x6Xzl/kqw8/Iz8/nz6DB6g8dn5+Pru37aRdx/bo6Jb/3FPPu1d6duLorv0c3XWAyIi7rJm3lITYOFp1Lvgha+OiVSycNkdZ/vTBYyyc/id9Rg7Bq6o3SQmJJCUkkpFWmNXaqvMrpKWksuavpUTfjeTi6XPsWPsPrbuU3fwytV5pSuiRs4QePUdCZCzH1+wkNT6Jaq0KOhVPbdzL/oWblOUv7jlBWNAVkqLjiL8Xw6mNe7l1NoQabQo7JQM3HyTi8nWSYxOIi4ji0JLNxEVEKfcpnp5fF3/O7j/Ouf3Hib0bxY4lG0i6n0DDVwq+RO5Z+S8b/1gKFGSL2bs5q9xMLEzR1dPD3s0ZfcNnnZ7gv2nYsTUXDp7iwsFTxN2NZu/yf0iOS6Ru24JO/YNrtrF17kplzHauTio3Y/OCmO1cndB/cK46unEXty6EkhgTR/Ttu+z4ew0x4feo27Z0fxT6L4z0DKhi60oV24IMGWdzW6rYuuJgWrorQpa157kddTs0J/hwIMGHA4m/F8PhVdtIjU+iZuuCz51j63ex++/CFcGDdh/j5tlgEqPvE3c3mmPrd3Ej8DK12xb+sJSXm0tseCSx4ZHk5eaRlpBMbHgkiTK35WPVbt+UK0fOcuXIWRIiYzm2ekfBOaN1wQibUxv2sH/BBmX5i3uOE3YupPCcsWFPwTnDvzEAunp6WLs4qNwMjA3RM9DH2sWhVFa67Td4IFv/2cK2f7dw+1YYs6fPIjoqmu69ewLw1+9/MvXrycry3Xv3JDoyit9n/MbtW2Fs+7eg7oChg5Rlli9aypmTp7l39y63w26zZvkqdm7bQfuOAcoyTVs2Z+miJRw/cozIe5Ec3n+QNStW07JNqxK3SYgnkcy4F4ipqSkDBgzg888/Jykpiddee01534QJE/Dz82P06NG8+eabmJiYEBISonFifYBXXnmF2rVrM2TIEGbOnElubi7vvvsurVu3Vg6F/Prrr2nXrh2VK1dm4MCB5Obmsn37do0T37/yyiv4+voyfPhwpk2bRnJyMhMnTlQp4+3tTXh4OKtWraJRo0Zs3bpVbdGC999/n1dffZWGDRvSokULli9fzuXLl9Xm33rUqFGjmDZtGuPHj+ftt98mMDBQbeXZZ31+HjI0NOTVV1/ll19+ITk5mbFjx9K/f38cHQsydCZNmsTYsWMxNzenU6dOZGVlcebMGRISEtSynIq284cffqBKlSpUq1aN6dOnq63S+ihfX186duzIm2++yV9//YWuri7jxo1TyV6sXLkyubm5/Pbbb3Tr1o2jR4/y559/FrvPshYREaF8Tc6ePctvv/1WbBbkf409ICBAbbGMR+nr67N+/Xr69+9P27Zt2bt3L7Vq1WLGjBmMGTOG5ORkhg8fjqenJ3fu3GHJkiWYmpryww8/sHTpUr799ltq1lTNEnjjjTf46aefOH/+PAqFgq+//pphw4ZRvXp19PX1OXjwIAsWLFDJpktPTycwMJCpU6c+5bP37Fq0bU1yUgqrl6wgIS4edy9PvvzxW+wdHQCIj4sntsiCH+PfKFzA5EboNQ7tOYCdoz3zVhc8p1mZmcyd8TtxsffRN9DHxd2ND774mBYasrPK0vDGfmTl5vDTnh2kZGZSw8mZ3/oOVMmgi05ORvuRzNGUrEy+37WNuPQ0TPUN8HFwYO7AoSpDYEtLq3b+JCcls3LRMuLj4vHw8uSbn6eqPvfRhc+9o7MT3/w8hXm/zWHLhn+xsbXh7XGjaf7IhV9OdjZL5y0k6l4kRkZGNPRrzIdfTsDUTDVjIOjMWWKjY+jQRYZSaNKwVVNSU1LZumojyfGJOHu4MmbSx9jYF2RIJiUkEh9b+KXu0PZ95OflsWrOIlbNWaTc7teuJa99UDCFgrWdDe9/+ylr/17K5DGfYWljRdvuHQnoU/qTWj9UuVENstLSObv1EOlJqVg729NxzGDMbCwBSE9KJS2+cFGK/Lw8Tq7bTVpiCrp6ulg62xEwZhDutQqHEmZnZHJk2VbSk1PRNzLAxs2Rbh+9ir2XS9GHF09Qs2l9MlLSOLhhJ6mJSdi7OTFkwigsH2SMpSYmk3S/ZIvplLZqfnXJTE3j2D+7SUtMxtbVkb4fjsTCtiDmtMRkkuOeLebM9Ax2LlxLWlIKBkaG2Hu4MOjzd3Gq/PQjEMpKVTsPZvcqvC4b26Lgx49tIceZsq/464jnzfPcjiqNa5GZms7pzftJS0rBxsWBru8Pw9y2oKMwPTGFlPhEZfn83DyOrt1BakLyg84ee7q+PwzP2oUZv2mJKaz+5nfl/+d2HuHcziM4+3rS+5M3yq1tL5rKjWqSmZbO2a0HleeMTu8NeeSckULqI+eMvNw8TqzbpTxnWDnb0/G9wbjXKtsh849q274dyUlJLJ6/iPj7cXhV9uLHGT/j+GB6jrj7cURHRyvLO7k488PMn/l9xm9sWrcBG1tb3vtwHK3btlGWycjIYMZP04iNicHAwAB3Dw8mfvsVbdu3U5Z5/6MPmD93HjN/mkZCQgK2trZ069WdV994vdzaXm4k2++5o6V4mjF+4rlx/PhxmjVrRocOHdQm/D99+jQTJ07k+PHjKBQKKleurOy8g4IFE8aNG6ecKD88PJz33nuPvXv3oq2tTceOHfntt99wcHBQ7nPDhg1MnjyZ4OBgzM3NadWqFevXr9e4v6tXrzJy5EhOnTqFp6cns2bNomPHjmzcuJGePXsC8Mknn7BgwQKysrLo0qULfn5+TJo0SaUjaurUqcyYMYPMzEz69OmDg4MDO3fuJCgoqNjnZcuWLXzwwQdERETQuHFjXn/9dUaMGEFCQoJybq8nPT9FTZo0iU2bNvH222/z3XffER8fT+fOnfn777+xsir8BXLFihX8/PPPBAcHY2JiQq1atRg3bhy9evUiLCwMLy8vzp07R926dZV1cnNz+eijj1i4cCHa2tqMGDGC+/fvk5SUxKZNmwBo06YNdevWZebMmQBERUXxxhtvsGfPHhwcHPjuu+/48ssvVV6DGTNm8PPPP5OYmEirVq0YMmQIw4cPV3keitLS0lK+RkXjfbhgyKP1Fy1axLhx41Res4fP1cPXqE2bNtSoUYP8/HxWrFiBjo4Ob7/9NlOnTlVmcxY9fv5L7AkJCcqFEXx9fYuNLycnh0GDBnHw4EH27t1L7dq12bNnD7/88gunTp0iIyMDT09Punbtyvjx4zl27Bj9+/fn3r17Ku+Hh2rXrk2bNm346quvmDx5Mvv27SMsLAwtLS08PT159dVX+eCDD5RD2FauXMk333zDlStXNLbjcUKibj5znedNNcdKJM17cb7saGLx5qtcj414csHnnLed25MLvQD2Xzvz5ELPOf8qDfnlwPInF3zOfdRmSEWHUCpWnC1+EaUXxeD6Acw/ubmiwyiRkU260fz3UU8u+Jw7OvrPl6Ydvx1ZW9FhlMh7Lfo9udALYtrBlRUdQol82HoQkUkv/hySThalO+VJeUleu6miQyiWeb+eFR1ChZDOOCGKUbSDSTy9oh2JZemTTz4hKSmJuXPnlvlj/VeNGzdm3LhxDB48+JnrSmfc80E6454v0hn3/JDOuOeHdMY9P6Qz7vkhnXHPD+mMq1jSGff8kTnjhBAvtIkTJ+Lh4UHeg1U3nzcxMTH07duXQYMGPbmwEEIIIYQQQpS2B6tgP5e3/1MyZ5wQ4oVmYWFR7FDj54G9vb3GeRaFEEIIIYQQQvx/ks44IYoxadIkJk2aVNFhvJAOHDhQ0SEIIYQQQgghhBDPJemME0IIIYQQQgghhHhZ/R8PB31eyZxxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVb4MU33eSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVQghhBBCCCGEEOIlpVDkV3QIogjJjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKwUsprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8Gab6vJHMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlREuhkC5SIYQQQgghhBBCiJdR0pJVFR1CsSyGD6zoECqEDFMVQojn2Nzjmyo6hBJ7u2lPIhKiKjqMEnGzcmTAsi8rOowSWz10MsnbdlV0GCVi3rkDH/z7a0WHUWIzur/Pq6smV3QYJbZ44JekJCZWdBglYmZpybSDKys6jBL7sPUgVpzdWdFhlMjg+gEvfBugoB2/HVlb0WGU2Hst+tH891EVHUaJHB39Jz0WTqjoMErsn9d/5J31P1d0GCUyp8/HdJz3QUWHUWI73pxR0SH8N4r8io5AFCHDVIUQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8WSrgeSOZcUIIIYQQQgghhBBClBPpjBNCCCGEEEIIIYQQopzIMFUhhBBCCCGEEEKIl5VChqk+byQzTgghhBBCCCGEEEK8NBISEhg2bBgWFhZYWFgwbNgwEhMTH1vntddeQ0tLS+Xm5+enUiYrK4v33nsPW1tbTExM6N69O3fu3Hnm+KQzTgghhBBCCCGEEEK8NAYPHkxQUBA7duxgx44dBAUFMWzYsCfW69ixI5GRkcrbtm3bVO4fN24cGzduZNWqVRw5coTU1FS6du1KXl7eM8Unw1SFEEIIIYQQQgghXlb/Z6uphoSEsGPHDk6cOEGTJk0AmDdvHk2bNiU0NBRfX99i6xoYGODo6KjxvqSkJObPn8/SpUt55ZVXAFi2bBlubm7s2bOHgICAp45RMuOEEEIIIYQQQgghxEvh+PHjWFhYKDviAPz8/LCwsODYsWOPrXvgwAHs7e3x8fHhzTffJCYmRnlfYGAgOTk5dOjQQbnN2dmZmjVrPnG/RUlmnBBCCCGEEEIIIYQod1lZWWRlZalsMzAwwMDA4D/vMyoqCnt7e7Xt9vb2REVFFVuvU6dO9OvXDw8PD27dusWXX35J27ZtCQwMxMDAgKioKPT19bGyslKp5+Dg8Nj9aiKZcUIIIYQQQgghhBAvK0X+c3v7/vvvlYssPLx9//33GpsxadIktQUWit7OnDkDgJaWlvrToFBo3P7QgAED6NKlCzVr1qRbt25s376dq1evsnXr1sc/vU/YryaSGSeEEEIIIYQQQgghyt1nn33G+PHjVbYVlxU3ZswYBg4c+Nj9eXp6cuHCBaKjo9Xui42NxcHB4aljc3JywsPDg2vXrgHg6OhIdnY2CQkJKtlxMTExNGvW7Kn3C9IZJ4QQQgghhBBCCCEqwLMMSbW1tcXW1vaJ5Zo2bUpSUhKnTp2icePGAJw8eZKkpKRn6jSLi4sjIiICJycnABo0aICenh67d++mf//+AERGRnLp0iV++umnp94vyDBVIYQQQgghhBBCiJdXfv7zeysD1apVo2PHjrz55pucOHGCEydO8Oabb9K1a1eVlVSrVq3Kxo0bAUhNTeWjjz7i+PHjhIWFceDAAbp164atrS29evUCwMLCgpEjR/Lhhx+yd+9ezp07x9ChQ6lVq5ZyddWnJZlxQgghhBBCCCGEEOKlsXz5csaOHatc+bR79+7Mnj1bpUxoaChJSUkA6OjocPHiRZYsWUJiYiJOTk74+/uzevVqzMzMlHVmzJiBrq4u/fv3JyMjg3bt2rFo0SJ0dHSeKT7pjBNCCCGEEEIIIYQQLw1ra2uWLVv22DIKhUL5t5GRETt37nzifg0NDfntt9/47bffShSfDFMVQogH2rRpw7hx4yo6DCGEEEIIIYQoPQrF83v7PyWZcUII8ZII2nucM9sPkpaYgo2LA20Gd8PV1+uJ9e5eC2PN93OxdXFg2ORxyu1rvp/LndCbauW9alel1/jXSyXmf9ZtZO3yVcTFxePp5cm7H4yhVt06xZY/fzaIP3/9nbBbYdjY2jBg6CC69e6hvH/nlu38/N0PavW2HdyF/oOJYYf0HEB0VJRame59ejL24w9KoVXQwacx3aq3wNLIlDuJMSw+s50rsbeLLd/Cszbda7TE0cya9Jwszt+7xtLAHaRmZ6iVbeZRi/db9ud0RAi/HFxRKvEWR6FQMG/ndjYeP0pKRgY13D34pE9/Kj+YxFaTfReCWLR7FxH375Obn4ebrR1D27Slc6PGyjJ/7djGvJ3bVepZm5mx89uppd6G5p618a9cH3NDE6JS4th06RA34+8VW15HW4cAn8Y0cK2KuYExiZmp7L56mlMRwQBoa2nzSpWGNHKrhoWhKTGpCWwJPvrY17c0tPVuQOeqTbEwMuNeUizLz+3kamyExrJvNOlOSy/199HdpFg+3/4nADpa2nSt3pwWXrWxNDInKjmONef3cjHqRpm2Q6FQ8Nfff7Nx0yZSUlKoUaMGEz7+mMqVKj223t59+/hz7lzu3L2Lq4sL777zDv5t2ijvP3vuHEuXLSPkyhXu37/PLz/9RJvWrcukDZcPnOLCzmOkJ6Vg5WxP0wEdcariobHsvdBbbJm2WG17/29GY+lkB8Cts8Gc236Y5Jh48vPysbC3plb7Zvg0Lf6zsCyc3nWYY1v2kpKYjL2rIwHD++BRtfIT64WH3mTRt7Owd3Ni1A8TyiHSx3sR23Fx30nO7jxMemIq1i72tBzYGWcfT41l71y5yaafF6htH/Ld+1g9OKbi7kZzctNeYm/fIyUukRYDO1O3/bOt8ldW6jh5M7heB6rau2NrYsmn2+Zw+Nb5ig5LqVNVP3rVbI2VkRnhidHMP7WZ4OiwYsu3rlSXXrVa42xuS1p2JufuXmXh6a2kZKUDBZ+1fWv74+/dABtjc+4mx7L4zHbO3b1apu1oVaku7X0aYWFoSmTyfdae38f1uLsayw5v0ImmnjXVtt9Lvs/k3QsBqOtchY5V/bAzsURHW5uY1ET2XDvNqfDgMmtD12rN6VvHH2sjc24nRPHniU1cjlK/Ln2oW/XmdKveEgczK2JTE1kZtJu9184o7+/o68crPo3wsHIE4Pr9Oyw8vZWrseFl1gYhHkc644QQL4zs7Gz09fUrOozHysnJQU9Pr9wfN/TkeQ6s2Ey74T1xruLBhf0n2Th9Aa9OHY+5jVWx9bLSM9jx12rcq1cmPSlV5b5u7w0jPzdP+X9GWhpLv/wVn0a1SiXm/bv3MWfmbMZ+/AE1atdk66bNfPbBBOavXIyDo/qS45H3Ipk4fgKde3Tl00kTuXzhErN+noGFpSWt2hZ+6TY2MWHRmqUqdfUfWaHp94Vzyc8vbNetG7eYMPZDWrVtUyrtaupRk1cbdGL+6S2ExoTzSpWGfNZ2GOM3/0ZcepJaeV87d0Y368PiwO0E3rmCtbE5bzbpztt+PZl2aKVKWVsTC4bWDyDkMV8MStOSfXtYcWA/Xw0egrudPQt272TMn7NZ99mXmBgaaqxjYWzC6+0D8HRwQE9Hh8OXL/PtquVYmZnRtGo1ZblKjk78/s4Y5f862lqlHn9d5yr0rNmKdRf2cyv+Hs08avGWXw9+2L+MxIwUjXVebdAJMwNjVgftITYtETMDY7S1CgcSdK7alAauVVlzfi8xqfH42nvweuOuzDq8hrvJsaXeBoDGbtUZUi+AJYHbuHr/Dv6V6/Nhq8F8tn0O8enJauWXn93J2vN7lf9ra2nzXce3lB2KAH1q+9PMoyYLTm8lMvk+tZwqM7ZFPybvWUR4onpndWlZvHQpK1as4OuvvsLd3Z35CxYw+r33WL9mDSYmJhrrXLh4kc+/+IJRb72Ff5s27D9wgE8//5z5f/1FzZoFXyAzMjKoUqUK3bp25ZNPPy2z+G+cvsTx1TtoMbgLDt7uhBw6w/ZZy+g/aTSmNpbF1us/eQz6hoWfQ4ZmhW01MDGiXudWWDraoqOjw+2LVzm4eBNG5ia41fAus7Y86tLxs+xYsoEuI/rh5luJwD1HWf7DHEb/8jkWttbF1stMz2DTH0upVNOH1CTN76ny9CK249qpixxetY3WQ7vh5O3O5YOn2TxzCYMnj8XsMcfUkCnj0DcqPKaMHjmmcrNzsLCzxrthTY6s3laW4T8zIz0DrsfdYduVY0ztNKqiw1HRwqs2Ixt3Y+7xTYTE3CbAtwlftR/BmI3TuZ+WqFa+mr0n77ccwIJTmzkVEYKNsQXvNOvFmOZ9+H5fwXXIkAYBtKlUj9+PredOYiz1XHz4rO1wJmz9g1uP+WGoJBq4+tKvTltWndvNjbi7tPSqw+gWffl21wISNJz71pzfy6ZLh5T/a2trMbHda5y9E6rclpadyfYrJ4hOiSM3P59aTpUY3qATKVnpZXJN0qpSXd5u2pPfj67jcvQtOldtxncd3+KttT8Qq+G16FKtGa816sqvh1dzNTYCXzt33m/Zn9SsDE6GXwagtrM3B66fJTj6Ftl5ufSr05apnUbx9rofNV6fCVHWZJiqEEIjhULBTz/9RKVKlTAyMqJOnTqsW7cOgAMHDqClpcXevXtp2LAhxsbGNGvWjNDQgpN2aGgoWlpaXLlyRWWf06dPx9PTUzk2Pzg4mM6dO2NqaoqDgwPDhg3j/v37yvJt2rRhzJgxjB8/HltbW9q3bw/Av//+S5UqVTAyMsLf35/FixejpaVFYmIiULAE9aBBg3B1dcXY2JhatWqxcqVqp0ZaWhrDhw/H1NQUJycnpk2bpvYcaGlpsWnTJpVtlpaWLFq0CICwsDC0tLRYs2YNbdq0wdDQkGXLlj3V45e2wJ2HqdmqEbVaN8bG2QH/Id0xs7bg/L4Tj623Z9EGqvrVxamyelaHkakxJpZmylv4pWvo6evh07h2qcS8fuUaOnbrTOceXfHw8uTdD97D3t6OzRv+0Vh+y4Z/sHew590P3sPDy5POPbrSsVtn1q5YpVJOS0sLaxsbldujLK0sVe47efQ4zq4u1Klft1Ta1aVaM/bdOMu+64EFv4AHbicuPZkOPo01lq9i60ZMWiI7Qk8Qm5ZIaGw4e66dppKNi1q73mvej7UX9hGdGl8qsT6OQqFg5cEDvN6+A21r18XbyZlJg4eSmZ3DzrNniq3XwLsK/rXr4OXgiKutHYNat8HbyZmgm6oZVzra2tiamytvVqZmxezxv2tTuT4nwy9zMvwyMakJbLp8iMSMVJp7au5QrmrngbetK/NO/sPV+xEkZKQQnhhNWEKkskxDt6rsuXaakJgw4tKTORZ2kdCY27Txrl/q8T/Usaofh26e4+DNICKT77Pi3C7i05Np591QY/mMnCySMtOUNy9rZ4z1jTh8szD7pJlnLTYHH+VC5HVi0xLZdz2Qi1E36VTVr8zaoVAoWLlqFa+//jpt/f3xrlyZb77+mszMTHY8Zo6WlatW0aRxY15/7TU8PT15/bXXaNyoEStWFb73mzdrxrujRtHW37/M4ge4sPs4vi3qU7VlA6yc7Gg2oBOmVhYEHyz+PQEFHSXGFmbKm7Z24SW4s68XXvWqYeVkh7m9NbXa+WHt4kDU9fLL1jixdT/1/P2o37YZdi6OdHy1DxY2VpzefeSx9bb8vZqazRviWsWzfAJ9ghexHUG7jlK9ZQNqtGqItbM9LQd1wdTagosHTj22nrG5CSYWZsrbo8eUg5crzft3xKdJbXR0n6/cixPhl5l38l8O3gyq6FDU9KjRkj3XTrP72mnuJMUw/9Rm7qclFfu56GvvXpAdHXKMmNQEQmLC2Bl6Em9bV2UZ/8r1WXdhP4F3QolOjWdH6AnO3b1Kz5oty6wd7ao05FjYRY6GXSQqJZ61F/aTkJ5Cq0p1NZbPzM0mOStNefOwcsRY35Djty8py1y7H8H5e9eISonnfloi+6+f5W5SLN5FrlVKS+9abdgZepIdoSeJSIxh7olNxKYm0rV6c43l21VpyPaQYxy6GURUShwHb55jZ+hJ+tdpqyzz0/5lbAk5ys34e9xJiuHXw6vR0tKirkuVMmnDcydf8fze/k9JZ5wQQqMvvviChQsXMmfOHC5fvswHH3zA0KFDOXjwoLLMxIkTmTZtGmfOnEFXV5cRI0YA4OvrS4MGDVi+fLnKPlesWMHgwYPR0tIiMjKS1q1bU7duXc6cOcOOHTuIjo6mf//+KnUWL16Mrq4uR48eZe7cuYSFhdG3b1969uxJUFAQb7/9NhMnTlSpk5mZSYMGDdiyZQuXLl3irbfeYtiwYZw8eVJZ5uOPP2b//v1s3LiRXbt2ceDAAQIDA//TczVhwgTGjh1LSEgIAQEBT/X4pSkvN5fosLt41FS9mPCo6cO968UPnbt0+DSJsfE07fl0y3BfPHwG3yZ10DMoeXZiTk4OV0Ov0rBJI5XtDZo0IvjiJY11gi9dpkGR8g2bNOJqSCi5ubnKbRkZGQzu2Z+B3foy8cNPuRZa/FCQnJwc9uzYTceundDSKnlmlo62DpWsnbkQeV1l+/nI6/jYuWmsczU2HBtjc+o6F7x+FoYmNHGvwbm7oSrl+tbyJzkzjf03zpY4zqdxNy6OuJRk/HyrKrfp6+pR39ubC7duPdU+FAoFp66Gcjs2hvqVVTN8Iu7H0unrifSY/DWfL1nInUc64kuDjpY2rhb2hMaodmiExt7G00rzMNsajpWISIymrXdDvm4/ks/aDqd79RboaReujqWrrUPuI5mVADl5uVSydi7V+B/S0dbG08qJS0WG5lyKuqHyhe9xWlWqS3D0TZVf/vW0dcjJz1Upl5OXQ5VijtPScPfePeLi4vBr0kS5TV9fn/r16nHh4sVi6124eJEmj9QB8PPze2ydspCXm8v98Hu4Vlcd8uhavTLRNzQPGX5ow+S5LP3oF7ZMX8y9K8W/fxQKBXdDbpIUHVfs0NfSlpeby71bEVSuXVVle6XaVblztfhYzx04QUL0fdr06VjWIT6VF7Edebm5xNy+p5YB6Vbd+4mdsau++Z0F439g088LuHOl+KF74unoautQ2caFoLvXVLYH3btKVXvN78UrMbexNbGggasvABaGpjTzrMWZiMIfo3W1dcjOU/2szc7LoZq9Z+k24AEdLW3cLR3VhtaGxISp/chXnGaetbgSc1tj5vVDvnbuOJhZce3+nZKEq5Gutg5VbF05W+Q66OzdUKo5eGqso6etq/F59rFzR0dLc5eHga4+utrayiHFQpS35+unEiHEcyEtLY3p06ezb98+mjZtCkClSpU4cuQIc+fO5a233gJgypQptH4wJ8+nn35Kly5dyMzMxNDQkCFDhjB79mwmT54MwNWrVwkMDGTJkiUAzJkzh/r16zN1auEcUQsWLMDNzY2rV6/i4+MDgLe3Nz/99JOyzKeffoqvry8///wzUNDxd+nSJaZMmaIs4+LiwkcffaT8/7333mPHjh2sXbuWJk2akJqayvz581myZIky227x4sW4uj7dF9uixo0bR+/evVW2Pe7xNcnKyiIrK0tlm8EjQysfJyMlHUV+Pibmpirbjc1NSS9muE1C1H2OrN3BgM9Hof0Uy3BH3owg7k4UHUb0faqYniQpMYn8vDysrFWHDVlZWxEfpznrKz4uHitrqyLlrcnLyyMpMQkbWxvcPN355ItP8fKuRHpaGhtWr2fcW2OYu3QBru7qr+/Rg4dJTU2lQ5dOpdIucwNjdLR1SMpQHfKblJGKpbPmzK+r9yP47eg6xrUcgJ6OLrraOpyOCGHh6a3KMr527vhXrs+EbX+USpxPIy6l4CLc2sxcZbu1qRlRCY/PzEvNyKDzpC/Izs1FR1ubCX370+SRTr0aHh58M3gY7nb2xKUks2D3TkbOms7qCROxLGao4rMy0TdCR8NFdkpWBuaGmh/DxsQcL2tncvLyWHh6Cyb6RvSt7Y+xviGrgvYAcCUmnDaV6nEj7i5xaYlUsXOnpmMltEuhM1cTM31jdLS1ScpMU9melJWGhaFpMbUKWRiaUtvJmz+Pb1TZfjHqJh19/QiNCScmNZ7qDl7Uc/Ets3ZAQdYygE2R972NtTWRGuZxfLSepjoP91deMlPTUeQrMDJXPX6MzE1IT07VWMfYwoyWw7ph5+5EXm4e106cZ8uMxXT78DWcHpkTLDs9k2UTppGXk4e2thbNB3dR6/QrK+nJaSjy8zG1UP2MMrUw40Yx55C4yBj2rtzM65Pef6pzSHl4Edvx8PxtXPT8bWFC+iXNx5SJpRn+w3tg5+lCXk4uoceD2PTLQnp9PAKXp5gnVmj28PydmKn6vCdmpGJlpPn8fSXmNtMPruLjNkOU5++T4Zf560Rhhv+5u1fpUaMll6NvEpUcT21nb5q4V1eZ/qA0mRo8OPcVOWekZKZh4fDk86u5oQk1HCqx4NQWtfsMdfX5vss76GnrkK9QsPLcbq7ElP58qeaGJuho65CQrvq+TchIwdrIXGOdwDtX6FjVj2O3L3L9/h2q2LrRwacJejq6WBiaEp+h3rE4olFX4tKSynz+PiGKI51xQgg1wcHBZGZmKjuqHsrOzqZevXrK/2vXLhyu6PRgQveYmBjc3d0ZOHAgH3/8MSdOnMDPz4/ly5dTt25dqlevDkBgYCD79+/H1FT9y+SNGzeUnXENG6oOwwoNDaVRI9XsqMaNVYf/5eXl8cMPP7B69Wru3r2r7Oh6OB/RjRs3yM7OVnY0QsHS176+vk/3BBVRNMYnPb4m33//Pd98843Ktq+//hqngLpPH0jRL9EKAPUv1vn5+Wybu5KmPdtj5Wj3VLu+dOgUNq6OOFUq3awZtZAVPD5Drch9D4c8P9xcvWYNqtesoby/Ru1avPPqm2xau54xH76vtrvtm7fR2K8xtna2/60BxSiacK+lpaWydPqjXCzseK1hZ9Zf3M/5e9exMjJjSP0A3mjSnbknNmGoq8+Y5n356+Q/Zfrr7fbA03y/pnDY34w3C+byKfpqKFCov3BFGBsYsPyjT0nPzuL01VBmbNqIi40tDbwLsv+aVyt8jbxxpranFz2nfMPW0ycZ0qZtcbv9TxRqrwbFvhbaaKEAlp3dQWZuNgCbLh/itYZdWH9hPzn5eWy8dJABddrxWdthKBQQl57EqYhgGrtVL9W41WIu0g4ttDS2raiWXnVIz8kk8K7qtAHLz+7k9UZd+aHzOyiAmNQEDt8KoqVX3VKLefuOHUz9oXBBlZnTpxfEXvR9rGHbkygUilLJZv0vtCj6OVR8WUtHWywdCz9fHCq7kZqQzPldx1Q64/QM9enz5ShysrK5F3KLE2t3Ym5nhXO5dq5o+HzV8BTn5+ezYfYS2vTthI2TfTnF9ixegnYo0BgzgJWjncq528nbndSEJM7tPCqdcaWg6PlBS8O2h9ws7HnTrzurg/Zw9u5VrI3Mea1RZ95p1pvZRwumdvn75GZGN+/D770+AhREpcSz99oZ2lXRPM1AqbVDbcvTnTOaetQkIyeT8/euqd2XlZvN1D2LMdDVx9fenb61/bmflsS1+4/PDP7vNLwWxbRhxbndWBmbM7PHOLQo6Ljbfe0U/eu0I0+Rr1a+b+22tKlcj0+2/k5OkYy6l9b/8aqlzyvpjBNCqMnPLzhpbd26FRcX1ZR2AwMDbtwomPvp0YUKHn4peljXyckJf39/VqxYgZ+fHytXruTtt99WeYxu3brx448/qj2+0yMrNRbtwNL0BazoRdK0adOYMWMGM2fOpFatWpiYmDBu3Diys7M1li+Opg6UnJwctXJFY3zS42vy2WefMX78eJVtBgYGLDq7vZgahYzMjNHS1iatyC//6SmpGFuod3ZmZ2QRfesOMbfvsW9Zwa+3igdLi88Y8Rl9PhqJe/XCITM5WdmEnjxPs14dnhjL07KwtEBbR0ctCy4xIUEt++0haxtrEjSU19HRwdzCQmMdbW1tfKr5cjdCfRhFdGQU504H8vUPk/9jK9QlZ6WTl5+HpZHq825uaEJSpuYsh541WnE1NpzNwUcBCE+MJvNUNt8GvMnq83uwMDTF3tSKT9oMUdZ5+B5YMXgSH/z7K9GpCSWOvVWNWtT8yFP5f/aDob9xKcnYPvL8JqSmYvOE+d20tbVxsyv4sujr4kpYdDSL9uxSdsYVZWRggLeTMxGxpbcAQlp2Bnn5+ZgbqL4/zQyMiu3UTM5KIykzVdkRBxCdEo+2lhYWRmbcT0skLTuDBae3oKutg4m+IUmZaXSt1vyxw3lKIiU7nbz8fCyLZMGZGxiTXCTzQZOWlepwLOwCefmqX0ZSstKZdWQNeto6mBoYk5CRQv867TROUv5ftWrZkpo1Cjtesx98ft6Pi8PWtrCDKj4+Hmvr4ifXt7GxIS5e9b0fn5Dw2DplwdDUGC1tLbUsuMyUNLXMpsex93Ll+skLKtu0tLWxsC+Y39LWzYmEqFiCth8pl844Y3MTtLS1SU1SPYbTklMxNVd/r2dnZHLvZjiRYXfYtqigw+HhOeTbIeMY9tm7eNX0KfO4i3oR2/Hw/F30mEpPfrZjyrGSG6Ennp8VSV9ED8/fRbPgLIxM1bLlHupT25+Q6DA2Plj84HZCFJnHs/mhyzssP7uThIwUkrPS+H7fEvR0dDEzMCY+PZnhDTsRnVLy87YmqVkPzn1FMsDNDI1JznzyD3rNPGtxMjxYYweWApSLJ9xJisHJzIaOVZtw7UjpdsYlZ6YVvBbGqllwlkZmGheggIIhqTMOrWLW4TVYGZsRn55Mp6pNScvOVDtX9qnVhoF1X+GzbXO4FR+pcX9ClAfpjBNCqKlevToGBgaEh4crh6E+6mFn3JMMGTKECRMmMGjQIG7cuMHAgQOV99WvX5/169fj6emJ7jNMLly1alW2bVNdGezMGdWJsw8fPkyPHj0YOnQoUNDxd+3aNapVK1jJ0dvbGz09PU6cOIG7uzsACQkJXL16VaW9dnZ2REYWnqSvXbtGevqTL2Se9PiaGBgYPPWw1KJ0dHVx8HQh/PI1qjQoXJr+9uVrVK6nnq1jYGTA8O8+UNl2ft9xwoNv0G3MUCzsVL/gXj11gbycPKo1q0dp0dPTw8fXh8BTZ2jRppVye+CpMzRr1UJjneo1a3D8yDGVbWdOnsanmm+xx5BCoeDGtet4Va6kdt+OLduxtLLEr1npTVifl5/Hzfh71HaszOmIEOX22o6VOXPnisY6Brp6ah0l+Q8z/tDiXtJ9Ptr8m8r9A+q+gqGuPovPbON+KXUCmRgaqqyQqlAosDEz52RoKL6uBRmRObm5nL1+nfe6dX+mfStQKDv3NMnOzSEsOpq6lUpvWF6eIp87STH42LlzMarwM8vHzl1t/rWHbsVHUsepCvo6emTnFXQc2Ztaka/IJ6nIF4Dc/DySMtPQ1tKmtrO32jxDpdaO/HzCEiKp4ViJwEfmz6nhWOmJQ2uq2nvgaGbDrJtriy2Tk59HQkYKOlraNHStqrLiakmZmJio/FihUCiwsbHh5KlTVH2QiZyTk8PZc+d4b/ToYvdTu1YtTp48yZBBg5TbTp48Se1apbOy89PS0dXF1t2Zu8E38KpX+Hl+J+QGnnWqPqamqriISI0/lKhQFMwnVh50dHVx9nLj5oVQqjWqo9x+8+IVfBuoP8cGRoa885PqirWndx3hVvBV+o8bgaWdjVqd8vAitkNHVxd7D2ciLl+ncv3C83VE8HWVY+xJYsOf4pgSj5Wbn8eNuLvUca7CiQerb0LBqtwnwzV/Lhro6pGvKHr+Lvi/aGJjTl4u8enJ6Ghp08yjJkduXaAs5CnyCU+Mopq9h0p2W8H/1x9Ts2BBKXtTK46FPf18nLrapT+8Ozc/j2v371DPxUcllnouPpy4rXle4YfyFPncTyuYH7V15XqcCr+skk3Xt7Y/g+q1Z+L2uWWY0SfE05HOOCGEGjMzMz766CM++OAD8vPzadGiBcnJyRw7dgxTU1M8PJ5uUunevXvzzjvv8M477+Dv76+SZTd69GjmzZvHoEGD+Pjjj7G1teX69eusWrWKefPmoVPM3C1vv/0206dPZ8KECYwcOZKgoCDl6qYPs4W8vb1Zv349x44dw8rKiunTpxMVFaXsDDM1NWXkyJF8/PHH2NjY4ODgwMSJE1VWIgNo27Yts2fPxs/Pj/z8fCZMmKCSDVicJz1+WWgQ0JLtf63GwdMVJ293Lh44RUpcInX8CzqaDq/dTmpCMp3eGoCWtja2ro4q9Y3MTNHV01XbDgULPXjXr46RaenM5fVQn0H9+fGbKfhU86V6zRps/WcLMdExdOtV0NHz9x9/cT82lk+/Lligo2vvHvyzbiNzZs6mc4+uBF+6zI7N2/j826+U+1zy9yKq1ayOi5sr6WlpbFyznhtXrzP2I9XOx/z8fHZu3U77zh1LfaW5rSHHGNOsDzfi73EtNoJ2VRpia2LB7msFK+MNqtsea2Nzfj+2HoDAO6G85deD9lUacT6yYJjqqw07ce3Bap4AEUkxKo+Rlp2hcXtp0tLSYlDrNizcsws3Ozvc7OxYtGcXhvp6BNQvHF7z9fIl2FlYMqZrweu2cM8uqru542JjS25eLkdDgtl6+hSf9hugrDPzn420rFETRysrElJTmb9rJ2mZmXRtpHlOxf/qwI2zDKkfQMSDFVGbedTCyshMeXHfpVozLAxNWXFuF1DwWrT3acygeu3ZceUEJvqGdKvegpPhweQ8WLTB3dIBCyNT7iXFYmFoSoCvH9pose/641fTLIkdV07wtl9PbsXf43rcXfwr18PG2IJ91wsWnelXuy1WRmb8dVJ1JeJWlepy/f4d7iapZxxWsnbGytic8IQorIzN6FmzNVpaWmwLOaZWtrRoaWkxaOBAFi5ahLubG25ubixctAhDQ0M6BgQoy301aRL2dnaMedBBN3DAAN4aNYpFS5bQplUrDhw6xMlTp5j/11/KOunp6UTcKcyAvXvvHqFXr2Jhbo6jo/rn2n9Vu31T9i/YgK2HMw6V3Qg5FEhqfBLVWhe8J05t2ENaYjL+IwrmEb245zhmNpZYOduTl5fH9RMXuHU2hPajChcrOrf9MHYezpjbWZGfm0f4pWtcPX6elkO6lFrcT+LXxZ+Nvy/FuZIbrj5eBO49RtL9BBq+UvDjyJ6V/5KSkESvd4ehpa2NvZvqgiUmFqbo6umpbS9vL2I76nZozu6/12Hv6YJjZTcuHzpDanwSNVsXTMlxbP0u0hKSaf9GwZytQbuPYW5jibWLPXm5eYSeOM+NwMt0erewszovN5f4e7EP/s4jLSGZ2PBI9Az0sXSomM7Sh4z0DHC1KBxm62xuSxVbV5Iz00oly7sk/rl8mHEtB3A97g6hMeEE+DbG1sSSHVcKVqYf1qAjNsbmzDy8BoDTESGMbt6Hjr5+nLt7FStjM95o3I2rseHEPzh/+9i6YW1izq24SGxMzBlYtz1aWlpsvHSw2DhKau+1M7zWqAu3E6K4FX+PFl51sDI25/CtguzJHjVaYmlkxuIzqj9uN/esxa24e9xLVl9QKcC3CbcTorifloiOtg41HSvh51GDled2l0kbNlw8wMdthnAtNoKQmDA6VW2GvakVWx+co15v1AUbEwt+ObACKJjyw9fOnSsxtzE1MKZ3rdZ4Wjkx7cH9UDA0dXjDTvy4bynRKfHKLMiMnCyVjPiXloZsR1GxpDNOCKHR5MmTsbe35/vvv+fmzZtYWlpSv359Pv/8c+VQ1CcxNzenW7durF27lgULFqjc5+zszNGjR5kwYQIBAQFkZWXh4eFBx44d1TrFHuXl5cW6dev48MMP+fXXX2natCkTJ07knXfeUWaWffnll9y6dYuAgACMjY1566236NmzJ0lJhSsJ/vzzz6SmptK9e3fMzMz48MMPVe6HguGmr7/+Oq1atcLZ2Zlff/31qVZcfZrHL22+TeqQkZrOiX/2kpaUjI2LI73Gv465bcGQz7TEFFLiEp95vwlRsdy9Gkafj0aWcsTg374tyUlJLJu/hPi4ODwreTF1+o84OBV8cY6/H0dMVGFnk5OzE1Om/8icmbP5d/0mbGxtGD1+LK3aFmYzpqamMuOHX0iIi8fE1ITKPlWY8ecsqtZQ7Qg9ezqQmKhoOnXrXOrtOn77EmYGxvSp1QYrIzMiEqP5Yf9S5S+1lkam2JgUDvs8ePMcRnr6BPj6MaxBR9KyM7kcfYvlZ3eWemzPanjbV8jKyeHHdWtIyUinhocnv40arZJBF5WQoDJ0PDM7mx/XrSEmKREDPT087B34duhwOtRroCwTk5TIF0sXkZiWhpWpKTU9PFkwbjxOpTzsMOjeNUz0jQjwbYK5gTGRKXH8deIfZSenuYGJypCk7Lwc/jy+kd612jC+1UDScjIJuneN7Y90UOnp6NK5alNsjC3Iys0hJCaM5Wd3lumF/KmIYEwNjOhRsxWWhqbcTYpl+qGVytVRLYxMsTZRHc5jpGdAQ9dqxR5Hejq69KnVBjtTK7Jys7lw7zp/Hd9Eek6WxvKl5dVhw8jKyuKHn34iJSWFmjVqMHvWLJUMuqjoaJXzQJ3atZkyeTJz5s7lz7lzcXV15fspU6hZszATODgkhFHvvqv8f8bMmQB07dKFSV8VdtiXVOVGNclMS+fs1oOkJ6Vi7WxPp/eGYGZjCUB6Ugqp8YWf9Xm5eZxYt4u0xBR09XSxcran43uDca9VOPwxNyubIyu2kpaQjK6eLpaOtrQd2ZvKjWoWffgyU7NpfTJS0ji4YSepiUnYuzkxZMIoLB9kSqcmJpN0v2I7Sp7Gi9iOKo1rkZmazunN+0lLSsHGxYGu7w9Tnr/TE1NIiU9Uls/PzePo2h2kJiSjq6eHtYs9Xd8fhmftwnlv0xJTWP3N78r/z+08wrmdR3D29aT3J2+UW9s0qWrnwexehdNyjG3RD4BtIceZsm9xRYUFwJFbFzAzMGZAnXZYG5tzOyGKb3cvVA7NtDIyw9bEUll+3/VAjPQM6FKtGSMadyEtO5MLkddZfKZwihE9HV2G1g/AwdSazNxsAu9cYeahVaRlZ5ZZOwLvhGKib0SXas0wNzQhMvk+vx9dr5xOwcLQFGtj1eG4hrr61HPxYc35fRr3aaCjx6B67bE0MiUnL5eolHgWnt5K4J1QjeVL6tDNIMwNTBhSPwArY3Nux0fy5Y6/iHnQYWttbI69SeG0JtpaWvSu1QZXS3vy8vM4f+8644tM49GtenP0dXT5sv3rKo+1LHAHy56Day7x/0dL8bSTJwkhxHNqypQp/Pnnn0REvHzp5nOPb6roEErs7aY9iUgofqXEF4GblSMDln1Z0WGU2Oqhk0netquiwygR884d+ODfXys6jBKb0f19Xl1VevMVVpTFA78kJTGxosMoETNLS6YdXFnRYZTYh60HseIF/0I5uH7AC98GKGjHb0eKHx7+onivRT+a/z6qosMokaOj/6THwgkVHUaJ/fP6j7yz/ueKDqNE5vT5mI7zPnhywefcjjdnVHQI/0nS7L+eXKiCWIx5q6JDqBCSGSeEeOH88ccfNGrUCBsbG44ePcrPP//MmDFjKjosIYQQQgghhHj+5EsO1vNGOuOEEC+ca9eu8d133xEfH4+7uzsffvghn332WUWHJYQQQgghhBBCPJF0xgkhXjgzZsxgxowXM0VcCCGEEEIIIcT/N+mME0IIIYQQQgghhHhZyVIBz53ilywUQgghhBBCCCGEEEKUKumME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXlQxTfe5IZpwQQgghhBBCCCGEEOVEOuOEEEIIIYQQQgghhCgnMkxVCCGEEEIIIYQQ4mWVn1/REYgiJDNOCCGEEEIIIYQQQohyIp1xQgghhBBCCCGEEEKUExmmKoQQQgghhBBCCPGyktVUnzuSGSeEEEIIIYQQQgghRDmRzjghhBBCCCGEEEIIIcqJDFMVQgghhBBCCCGEeFnJMNXnjmTGCSGEEEIIIYQQQghRTqQzTgghhBBCCCGEEEKIciLDVIUQQgghhBBCCCFeVvkyTPV5I5lxQgghhBBCCCGEEEKUEy2FQmbyE0IIIYQQQgghhHgZJf00q6JDKJbFJ2MrOoQKIcNUhRDiOdZ/6RcVHUKJrRn2HTHJcRUdRonYm9vQ6o93KzqMEjv07h8kfvB5RYdRIpYzptL891EVHUaJHR39J32XTKzoMEps3fApJL7/aUWHUSKWv/5AStCFig6jxMzq1mbW4TUVHUaJjG3Zv6JDEEX0WDihokMokX9e//GlOWeMWDO1osMokQX9P6f1nNEVHUaJHXzn94oO4b9R5Fd0BKIIGaYqhBBCCCGEEEIIIUQ5kc44IYQQQgghhBBCCCHKiQxTFUIIIYQQQgghhHhZyVIBzx3JjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKzyZZjq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLytZTfW5I5lxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVX5+RUcgipDMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJ9IZJ4QQJXTgwAG0tLRITEys6FCEEEIIIYQQQpVC8fze/k/JnHFCiBdSVFQUU6ZMYevWrdy9exd7e3vq1q3LuHHjaNeuXUWHVyE6+DSme42WWBqZcicxhkVntnEl5nax5Vt41aF79RY4mduQnp1F0L1rLA3cTmp2BgCtK9VjdPM+avWGLJ9ETn5uqcS8ce16Vi5bQdz9ODwreTF2/PvUqVe32PLnAs8xe+Yswm7ewsbWlsHDh9CzTy/l/bdu3GT+3L8JvXKFqMgo3vvgffoPHqCyj37dexMVGaW27159ezN+wkel0q6eNVoxqN4rWBtbEBYfyW9H13Ih8kax5XvVbEXvWm1wNLMmOiWBpWd3sDP0pGrctf3pUaMVDmZWJGWmceDGWf468Q/ZeaXzWhTHMKAd+k0boWVkRF54BOnr/yU/KqbY8qaj30DXu5La9pzgK6TNW6K23aBda4y6BpB18CgZm7aWauwAvWq2ZnC99tgYW3Ar/h6zjqzlfOT1Ysv3rtmaPrXa4GRuQ3RKPIsDt7PjkddCR1ub4fU70qlqU2xNLAlPjGbO8Q2cDA8u9dgfFeDbhO7VW2BlbEZEYgyLTm8l5DHv75ZedehRo6Xy/X3u3lWWBG4nNStDWcZYz5DB9drTxL0GJgaGxKQksDhwO+fuXi3Tthh2fAX9Zo0LjqnbEaSv2/T4Y2rMW+hW0XBMXb5C2l+LlPs07PSKyv35ySkkfzmlVGMvjkKh4K91a9m4dw8pqanUqFKFCSPeoLKbW7F1Nu7dw9ZDB7kREQFANa9KvDtoEDW9q5RLzBf3n+TcziOkJ6Zi7WxPi4GdcPbx1Fj27pVbbPplgdr2wZPHYuVkB0Dc3WhO/bOP2Nv3SIlLpMWATtRp36wsmyCeM52q+tGrZmusjMwIT4xm/qnNBEeHFVu+daW69KrVGmdzW9KyMzl39yoLT28lJSsdAB0tbfrW9sffuwE2xubcTY5l8Zmy/4x6GnWcvBlcrwNV7d2xNbHk021zOHzrfEWHpeRfuT4dff2wNDLlblIsK4P2cO1+hMayIxp1pYVXbbXtd5Ni+XLnPOX/7as0wr9yfayNzUnNzuDMnSusu7Cf3Py8MmlDzxotGVj3wbVUQiSzj6577LVUzxqt6F2rdcG1VGoCywJ3sPPqKeX9M7u/Tz0XH7V6x29f4tNtc8qkDUI8jnTGCSFeOGFhYTRv3hxLS0t++uknateuTU5ODjt37mT06NFcuXKlTB43OzsbfX39Mtl3STX1qMlrDTvz96nNhMaE84pPIz5vO5wP/p1FXHqSWnlfOw/GNOvD4sBtnLkTirWROW/6dWdU0178cnCFslx6dibv/zNTpW5pdcTt3bWHWdN/ZfyEj6hVpzb/btjEx+9/yNI1y3FwdFQrf+/uPT4Z9yHdenbny2+/5uL5C0z/8RcsrSxp09YfgMzMTJxcnGnzij+/TZ+l8XH/Wjyf/Lx85f+3btzkgzHv4/9K21JpV1vvBrzXoi/TD63iUtRNuldvwU9dRzN85WRiUhPUyveo0ZK3/Hrw84EVhMSEUc3ek0/aDCElM51jty8CBRfAb/n15Mf9S7kUdRM3Swc+azsMgNlH15dK3JoYtG2FQZvmpK9YT17sfQzb+2M6agTJ30+HrGyNddIWLgcdHeX/WibGmH30HjlBl9TK6ri5oN+0EXl3I8sk/nbeDXi/RT+mHVzJhagb9KzRkl+6jWHoim+I1vBa9KzRilFNe/Lj/mWExNymmr0nn/oPJSUrnaNhBa/FW016EODThB8PLON2QhSN3arzfadRvL3+52K/6JRUM89aBe/vk5u5Enub9lUa8Xm7V/ng31+5n6b+/q5q78GY5n1ZfGYbZ+5cwdrYnLea9OCdpr35+cByAHS1dfiq/eskZabxy8EVxKUnY2tiQUZOVpm04SGDdq0x8G9B+vK1BcdUh7aYvvsGyVN+Kf6YWrBU/Zj65H1ygi6qlMuLjCL1978LN+SX36/ti//9hxVbt/D1O6Nxd3Ji/ob1jJ4ymfUzfsXEyEhjncDLlwlo1oLavj4Y6Omz+N9/GDPlO9ZMm469tU2Zxnvt1EWOrNpO6yFdcfR25/KhM2z+dSmDv30PMxvLYusN+e599IwMlP8bmZko/87NzsHczgrvhjU4snp7WYYvnkMtvGozsnE35h7fREjMbQJ8m/BV+xGM2Tid+2mJauWr2XvyfssBLDi1mVMRIdgYW/BOs16Mad6H7/ctBWBIgwDaVKrH78fWcycxlnouPnzWdjgTtv7Brfh75dxCVUZ6BlyPu8O2K8eY2mlUhcZSVCO3agyq256lZ3dw/f4d2lSuxwctB/DFzr+IT09WK78yaDfrLu5X/q+jpc03HUZy5k7h9bSfew361vZnwektXL9/F0cza0Y27grAqqA9pd4G/8r1GdO8LzMOr+ZS5A261WjBj11G8+qqx11LdefnAyu4EnObag6efNx6MClZ6Ry7XXD98eXOeehpF3Z/mBuaML//Zxy4ca7U4xfiacgwVSHEC+fdd99FS0uLU6dO0bdvX3x8fKhRowbjx4/nxIkThIWFoaWlRVBQkLJOYmIiWlpaHDhwQLktODiYzp07Y2pqioODA8OGDeP+/fvK+9u0acOYMWMYP348tra2tG/fHoBt27bh4+ODkZER/v7+hIWFqcQXFxfHoEGDcHV1xdjYmFq1arFy5cqyfEroWr05+64Hsu964INfjrdxPz2JDr6NNZb3sXMlJi2R7VdOEJuaQGjsbfZcPU0lGxeVcgoUJGWmqtxKy+oVq+jSoxvdenbH08uTsR+Ow97Bno3rNmos/8+GjTg4OjD2w3F4ennSrWd3unTvyqplhZ2H1WpUZ/T7Y3ilQ3v09fU07sfKygobWxvl7diRo7i4ulC3fr1SaVf/Om3ZGnKMrSHHuJ0QxW9H1xGbmkjPmq00lg/wbcK/l4+w73ogkclx7LseyNaQYwyu315ZpoajF5eibrDn2hmiUuI5HRHC3mtn8LXzKJWYi2PQuhmZuw+Qc/Ey+VHRpK9Yi5a+Hvr16xZbR5GegSIlVXnT8/GGnByyz6t2nKCvj/HQAWSs2YgiI0PzzkpoQN1X2BJylM0hR7mdEMWvR9YSk5JAr5qtNZbv6NuEfy4fZu/1QO4l32fv9TNsCTnKkHoBKmWWBG7n+O1L3Eu+z6bLhzgZHsyguq9o3Gdp6Fat4P299/oZ7ibFsujMNuLSkujg00RjeR9bN2LTEth25TgxqQlcibnN7munqGzjrCzT1rsBpgZG/LR/GaGx4dxPS+RKzG1uJ6hnjZYmg9bNydy1n5wLl8mPjCZ92Rq09PTQb1C32Dpqx5RvlYJjKuiCasG8fJVyirS0Mm2LMj6FgpXbtvJ6r960bdIEb3d3vhk9hsysLHYcOVJsve/Gvk+/gAB8Pb3wdHHhi7ffRqFQcOqiesd1aQvafYxqLepTvVVDrJ3taTmwM2ZW5lw6cOqx9YzMTTCxMFPetLULv0o4eLnSvF9HqjSujY6u/N7//6ZHjZbsuXaa3ddOcycphvmnNnM/LYlOVf00lve1dycmNYEtIceISU0gJCaMnaEn8bZ1VZbxr1yfdRf2E3gnlOjUeHaEnuDc3av0rNmyvJpVrBPhl5l38l8O3gyq6FDUBPg05vCt8xy+dZ7IlDhWBu0hPiMZ/8r1NZbPyMkiOTNNefO0csJY34gjj2T6VbZx4dr9O5wMDyYuPYnL0bc4GR6Mp5VTmbShf512bLtyvOBaKjGa2UfXE5uaQI8aml/7Dj6N+Tf4KPtvnCUy5cG11JVjDKrXQVkmJSud+Ixk5a2hW1WycrM5cONsmbThuZOf//ze/k9JZ5wQ4oUSHx/Pjh07GD16NCYmJmr3W1paPtV+IiMjad26NXXr1uXMmTPs2LGD6Oho+vfvr1Ju8eLF6OrqcvToUebOnUtERAS9e/emc+fOBAUF8cYbb/Dpp5+q1MnMzKRBgwZs2bKFS5cu8dZbbzFs2DBOnlQddlhadLR1qGTtrDb07sK96/jauWusExobjo2xOfWcC9L1LQxN8POowbm7oSrlDHX1+b3XR8zp/TET/IeW2kVXTk4OV6+E0riJamdhoyaNuXThosY6ly9eolGR8o39mnAl+Aq5uf8tWy8nJ4dd23fSuXtXtLS0/tM+HqWrrYOPnTunI0JUtp+OCKGmg/owOwA9bV2y83JUtmXl5VDN3hOdB190L0TewMfOnWr2BZ1vTuY2+HnU5MTtsvvSrm1jhba5Obmh1wo35uWRe/0Wul6ajytN9Js0JPvcBchWbaNx3+7khFwh92rxQ05KQldbB187d06Fq74WpyJCqOlYzGuho0t2bpHXIjeH6g6Fr4WejobXKzeH2k7epRh9IV1tHSrZOHP+nur7+3zkk97fFsrhOBaGJvi51+TsncKhXQ1dq3I1NoI3mnTn736fMb3bWHrXbI12KbwPiqNtY422hTm5V4ocUzduoev19B3L+n6NyD57Xu2Y0razxfzbzzH76hOMXx2Eto11aYX+WHdjYohLTMSvdp3CGPX0qF+9Oheuhj6mpqrMrGxyc3OxMDUtizCV8nJzib19D/caqsesWw1vom48Prtz9bd/sPDDH9n0y0LuXLlZlmGKF4iutg6VbVwIuntNZXvQvatUtdf83r4ScxtbEwsauPoCYGFoSjPPWpyJKMzG0tXWUZuKIfvB+VFopqOtjYeVE5ejVd+fl6Nu4W3jWkwtVS0r1SE4+hZxj2TRXbt/B08rR7ysC64D7UwsqeVUmQuPmfbhvyq4lnLTfC31jOfvavYeyvN3UV2qNmXf9UAyczVnZQtR1uRnKyHEC+X69esoFAqqVq1aov3MmTOH+vXrM3XqVOW2BQsW4ObmxtWrV/HxKfgS6+3tzU8//aQs8/nnn1OpUiVmzJiBlpYWvr6+XLx4kR9//FFZxsXFhY8+Kpx77L333mPHjh2sXbuWJk00Z7KUhLmBMTraOmpZa0mZaVgaav5SdzU2gllH1jKu1QD0dHTR1dbhdEQIC05tUZa5lxzLH8c2EJ4YjZGeAZ2rNmVyxzf5eMvvRKXElSjmpMRE8vLysLJW/bJsZWNNfFy8xjpxcfE0LvLl2sramry8PBITE7G1tX3mOA4fOERqaiqdu3Z+5rqaWBiaoqutQ0JGisr2+PRkrN3MNdY5FRFM12rNOXzrPFdjI/C1c6dz1abo6ehiaWhKXHoy+64HYmlkxuxeH6KFFro6Omy8dIjl53aVStyaaJmZAZCfonpc5aemom1l+VT70HF3RcfZkfTVG1S269WrjY6LM+kz/iiVWDWxfPBaxGeoDslJyEjGxvgxr0X1Fhy6dZ7Q2HCq2rnTpVozldfiZHgwA+u+QtC969xNiqWha1VaetVBW7tsOrHMint/Z6Ri6az5/R0aG86vh9cwvtVAlff3/FOblWUczKypaWrJ4Zvnmbp3MU7mNrzRpDva2tqsu7Bf435LSsusIN78FNX3R35KCtpWVk+1D+UxtXKdyvbc2+HkLV9DXkws2mZmBcNfx71DyvczUKSnl04DihH3YPEeGwsLle02FhZExt7XUEOz2SuWY2dtTeNatUozPDWZqeko8vMxMlc9fozMTUlPStFYx9jSlDbDe2Dv4Uxebi6hx8/zz7RF9Pp4RLHzzIn/Hw+vQxKLfE4lZqRiZWSmsc6VmNtMP7iKj9sMUX5OnQy/zF8n/lGWOXf3Kj1qtORy9E2ikuOp7exNE/fqaGtJPklxzPSN0dHWJilTNTM4OSsNC0P1H7GLsjA0oZZjZZXXAQrOj2YGxnzmPxy0CjrM9l0PZNuV46Uaf0EMD87f6UXP3ylYF3P+Ph0RQtdqzThy6zxX76teS1kYmqrtq6q9B5VsXPjxwdQNQlQE6YwTQrxQFA9W3ClpFlNgYCD79+/HVEMGwo0bN5SdcQ0bNlS5LyQkBD8/P5XHb9q0qUqZvLw8fvjhB1avXs3du3fJysoiKytLYybfQw/LPMrAwKCY0pppWoyouBmTXCzseL1RF9Zd2M/5e9ewMjJjaIOOvOnXgz+PFwwTvXb/Dtfu31HWCY0J58cu79Kpqh8LT5fORPtqL6NCob7t0fKo3ql40MKi25/Wln8306SpH7Z2dv+pfnEURV4MLS0tZaxFLT6zHWtjc/7s/QloQUJ6CjuunGBw/Q7kKQpS9+s6V2FYgwCmH1pFSHQYLhZ2jG3Rj7gGnVgSWDpzM+nVr4Nx/57K/1M1LLbwoDXFH1hF6DdpSN69KPLCC48jLUsLjHp1JfXPBfAfMxqfRdHXArSKDX/h6W1YG5vzV58Jytdi25XjDK0fQN6D/fx6eA0T/IeyYvAkFCi4lxTL1ivH6FK1bCeqV2vHY94orhZ2jGjclbUX9nH+7jUsjc0Y3qATb/n1YM6D97eWlhZJmWnMPbGJfIWCm/H3sDIyp0eNlqXWGafXoC7GAwoXWEmdu6iYklo87UGl79dI7ZgCyA0pzPrLj4wmNew25l9+gn7j+mQdKH6o6H+x/fBhps6bq/x/5qefAernJYXisS+TisX//MPOo0eY+/U3GJTT3KSaPn+LC9jK0Q4rx8LPScfK7qTGJ3Fu5xHpjBNKauc+DdsecrOw502/7qwO2sPZu1exNjLntUadeadZb2YfLehs//vkZkY378PvvT4CFESlxLP32hnaVWmocZ+ieE/7KdvcszbpOZmcvaea1etr507Xas1YenYHN+Pv4WBqxaC67Umqnsrm4KNlErMmxR1Pi89sx9rInDm9Py68lgo9weB6HchXqA+D7FK1GTfj7j52obOXTXHPnag40hknhHihVKlSBS0tLUJCQujZs6fGMg/nsHn0pJOTo5q6np+fT7du3VQy2h5yciocilm0A+1pTmTTpk1jxowZzJw5k1q1amFiYsK4cePIzi4+Df7777/nm2++Udn29ddfQ+UnPhzJWenk5edhaaTasWhhaFLsHG+9arYmNDaczcEFX1LDE6PJPLmZyR3fZFXQbhIz1OspUHAj7i6OZiWfWNzC0hIdHR21LLiE+AS1bLmHbGysiY9TzchLjE9AR0cHC0sLjXUeJyoyksBTZ/jup6lPLvyUkjJTyc3PU/vl1srIjIR0zRkn2Xk5/Lh/Gb8cXIG1kTlx6Ul0q96CtOwMkjIKftke2bgbu0JPsTXkGAA34+9hqGfAx60HszRwR7Edfc8i53IIKb88MkTtwZxP2mam5CUXxq5taoIi9SnmDtTTQ79ebTJ2qE7srOvqjLaZKWbjRyu3aenooFPJE/0WfiR9/FWpLHOf+OC1sDFWPTasjMw0TmANBa/F9/uW8tOB5crXonv1lg9ei1Tlfj/b/if6OrqYG5pyPy2Rd5r2IjLl6TOgnkWK8v2tml1iYWii8X0KD97fMbf593LB+/t2YjTzcv/lu45vsTJoD4kZKSSkp5CnyCP/kef6blIsVsZm6GrrlMrqeDmXgkm5/egxVbAIg7aZmeoxZWaKIuUpj6n6dcjYvvvJZbNzyIuMQtvu2TNmn6RVw4bUrFI4xDM7p6BT+X5iIraPZPjFJydhbWH5xP0t3fwvCzdt4I8vvqKKR9nOAwlgaGqMlrY26Umqz3lGShrG5k8/RNahkitXTzw/q0eKivPwOqRoFpyFkalattxDfWr7ExIdxsZLhwC4nRBF5vFsfujyDsvP7iQhI4XkrDS+37cEPR1dzAyMiU9PZnjDTkSnqE/gLwqkZKeTl5+vlgVnZmBCcuaT59Fs6VWH47cvkVdkHq9eNVtz7PYl5Yqxd5Ni0dfR49WGndkSfLQUrkIKPfZaKuMx11IHlvHLoeKvpR4y0NWjrXcDFpzeonFfQpQXyfEVQrxQrK2tCQgI4PfffydNw+TciYmJ2D3IcoqMLFyh8dHFHADq16/P5cuX8fT0xNvbW+X2uAy26tWrc+LECZVtRf8/fPgwPXr0YOjQodSpU4dKlSpx7ZrqPCpFffbZZyQlJancPvvss8fWeSgvP4+b8ffU5qyq7eRNaGy4xjoGOnpqHYsPfzl8XJaZh5UjicVcCD0LPT09fKr6cvqk6mThp0+dpmZtzUO0atSqyelTp1W2nTp5iqrVq6L7HyYL37Z5K5ZWVjRtXnoZTbn5eVyNDaehWzWV7Q1dq3Ip+vHzK+Xl5xOblki+QkE774YcC7uk7GQz1NVXf73y89HSevrMmyfKyib/fnzhLSqG/ORkdH0fOa50dND19iL3lubj6lH6dWuBrg45Z1RXKcu5doPkH38l5ZfZyltu+B1yzp4n5ZfZpdIRBwWvRWhsOI2KvBaN3KpxKerpX4tXqjTkaNhFtQ7P7Lxc7qcloqOtTZvK9ZRfUEpbbn4eN+PuUdv5Gd7funrko368AMp3d2jsbRzNbFTe707mNsSnJ5dKRxzw4JiKK7xFxZCfpOGYquxF7q0nZyfo16tdcEydfoqV73R00HGwJz+55J9XRZkYGeHm6KS8VXJ1xcbSkpMXCheUyMnN4WxwMLV9fB+7ryX//sPf69fx22cTqV75KX59KQU6urrYeTgTEaw6X2NE8A0cK7s99X7uR0RibKl5CKL4/5Kbn8eNuLvUca6isr2uc5ViM48MdPXUPlcLr0NU5eTlEp+ejI6WNs08anIy/HKpxf6yycvP53ZCJNUdvFS213Dw4nrcnWJqFfC1c8fBzJrDN9XPZ/o6umqvl0KhKHitSnmu0YJrqQgauqpOSdPQteoznb/bejfg+O1LanH7V26Ano4uu6+eLmYvQpQP6YwTQrxw/vjjD/Ly8mjcuDHr16/n2rVrhISEMGvWLJo2bYqRkRF+fn788MMPBAcHc+jQIb744guVfYwePZr4+HgGDRrEqVOnuHnzJrt27WLEiBHk5RX/RXTUqFHcuHGD8ePHExoayooVK1i0aJFKGW9vb3bv3s2xY8cICQnh7bffJirq8SsUGhgYYG5urnJ7lmGqW4KP0s67Af6V6+NibserDTtha2KhvNAYVK89o5v1UZY/c+cKjd2r096nMfamVvjaufN6oy5cux+h/NWxb21/6jh5Y29qhYeVI+807YWntRO7rj5+tb2nNWDwQLb8s5mt/24h7FYYs6b/SkxUND379ATgz9lz+O7rb5Xle/TuRXRkFL/N+JWwW2Fs/XcLW//ZzMChg5VlcnJyuBZ6lWuhV8nJySU2NpZroVe5E6F6AZqfn8+2zVvp1KXTf+rIe5w15/fRtVozOldtioeVI2Oa98HezIp/Lh0G4C2/Hnze7lVleVcLe9r7NMbVwo5q9h583X4EXjZOzDtZOF/LsdsX6VGzJW29G+BkZkND16qMbNKVo2EXVTKbSlvWwWMYvtIGvVrV0XZ0wHhQXxTZOWSfDVKWMR7cF8MuHdTq6vs1JOdiCIr0IiulZmWTHxWtciM7G0VaesHfpWh10B66VW9Ol2rN8LByZGzzfjiYWbHxckEmxii/nnzR7jVleTcLezr4NMbVwp5q9p5802EklWycmfvI3DnVHTxpXakuzua21HHyZnq3sWihxfKzZTd/3+aQgvd3W+8GuFjY8VrDztiaWCjfi4PrdeC95n2V5c/cuUIT9xp0eOT9PaJxV67FFr6/d4aewszAmNcbd8HJzIb6Lr70rtWGHaFls9DMQ1kHj2LY3h+92jXQdnLAeEg/FDk5ZAcGKcsYD+mPYdcAtboFx1SwxjngDHt0RqeyF9rWVuh4uGEyYihahgZknwosy+YABcNTB3XuwsJNG9h/6iTXw8OZ9MfvGBoY0LFFC2W5r2b/xuwVhfMTLf7nH+asXsVX77yLk70d9xMTuJ+YQHpm2awu/Ki67ZsRfDiQ4COBxN+L4ciqbaTEJ1GjTcEiOcfX72LP/MJ5+c7vPsbNc8EkRscRdzea4+t3cSMwmFr+hfOg5uXmEhseSWx4JHm5eaQmJhMbHklidMnmGBUvhn8uH6a9TyPaVWmIq4U9Ixt3xdbEkh1XCn6wHNagI+NaFi6SdToiBD+PmnT09cPB1Jqq9h682aQ7V2PDiX/wOeVj64afRw0cTK2p7uDJ1x1GoqWlxcZLByukjY8y0jOgiq0rVR6s/upsbksVW1ccTJ9u/suytPPqKVp51aWFV22czGwYWPcVrI3NlauG9qnVhjcad1Or19KrDjfi7nI3OVbtvvOR1/GvXJ/GbtWxNbGguoMnPWu2IujetTIZ/rjm/F66PLyWsnRgdLM+2JtZKzO+32zSnc/bDleWd7Wwp32VRrhY2FHV3oOvXnkdL2sn5p38V23fXao15cit8yRnlc+K288NheL5vf2fkmGqQogXjpeXF2fPnmXKlCl8+OGHREZGYmdnR4MGDZgzZw5QsBjDiBEjaNiwIb6+vvz000906FDYYeDs7MzRo0eZMGECAQEBZGVl4eHhQceOHZXDXDVxd3dn/fr1fPDBB/zxxx80btyYqVOnMmLECGWZL7/8klu3bhEQEICxsTFvvfUWPXv2JCkpqcyek+O3L2FmYEyf2v5YGZkRkRjN9/uWcj8tEShI7bc1sVSWP3jzHEZ6BnT0bcLwBh1Jy87kctRNlp3dqSxjom/IW349sTQyJT0nk1vxkXy9829uxN0tlZjbdXiF5KQkFv29gLj7cXhVrsRPM3/B8cEw4bj7cUQ/0jnj7OLMTzOn8duMX9m4dgO2dra8/9EHtGnrryxzP/Y+I4a+pvx/1bIVrFq2grr16/Hb3N+V28+cOk10VDSdu3ctlbY8at/1QMwNTHi1YWdsTMy5FRfJhC1/EJ1aMCTXxthc5WJdR1ubAXXa4W7pQG5+HufuXuXdDb8QlVI4hHfJme0oFAreaNINOxNLEjNSORZ2UeNFZmnK2ncILT09jPp2R8vIiLzbd0j9cyFkFQ651rayVLuQ0razQbeSJ6lzFpRpfE+y93og5oamvN6wCzYm5tyMu8dHm2cTnfLwtbDAwaxwWLS2tjaD6r6Cu6Ujufl5nL0byqj1P6ssWKKvo8ebTXrgbG5LRk4Wx29fYvLuhaRml10HyrGwi5gZGNP3wfs7PDGaqXuXFHl/Fw7HPXCj4P3dqaofrzbsRFp2JpeibrIssPD9HZeexOTdC3mtUWemdX+P+PRktoUcY9ODjsqykrX34INjqgdaxkbk3Y4gdc78pzimbNGt7EXqH39r3K+2pQUmrw5Cy8QYRWoaubcjSJn+B4qExDJsTaFXu/cgKzubH+b/TUpaGjW9vZn9+ReYGBkpy0TF3VdZ6GPd7p3k5OYyYfo0lX292bcfb/dTXdm7tFVpXIvMtHTObD5AWlIKNs4OdHt/GOY2lgCkJ6WSEld4zsrLzePomp2kJSajq6eHtYs9XcYOw7O2j7JMWmIKa74tXJQlaOdRgnYexdnHk16fjCzT9oiKd+TWBcwMjBlQpx3WxubcToji290LiS3mOmTf9UCM9AzoUq0ZIxp3IS07kwuR11l8pnAeVD0dXYbWD8DB1JrM3GwC71xh5qFVpGVnlnPr1FW182B2r/HK/8e26AfAtpDjTNm3uKLCAgo6Ok31jehevQUWhqbcTYpl5uHVytVRLQxN1YaAGukZ0MC1KiuDNE8DsDn4CAqFgl41W2FlZEZKVjrnI6+z/uKBMmnD/htnsTA0YXiDTgXXUvGRTNj66LWUBfaPXktpaTGgTjvcHl5L3bvK6I3TVK6loKDTrraTNx9u/q1M4hbiWWgpZCY/IYR4bvVf+sWTCz3n1gz7jpjkFzszwt7chlZ/vFvRYZTYoXf/IPGDzys6jP+xd99xTdxvHMA/SYBA2HvIBlmCAiqKExyIe2vd22rdo+vXOlpbOx11VW3de2/FCSgqirIU2UP23nvkfn9QooGgKCMQn/frlZfm7nvJ8yWXu9xz39EoKls2oufOBeIOo9EeLtqNcYe/E3cYjXZ2+s/IXfaNuMNoFJW/fkVBYPD7C7ZyivYdse3BaXGH0ShLezdvEpJ8uJEHvhZ3CI1yadZvEnPOmH266ca4FYf9E/6Hvn8ven/BVs574c73F2qFctf8LO4Q6qWyoe3/HvoY1DKOEEIIIYQQQgghRFLxqQ1Wa0NjxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpIdRNlRBCCCGEEEIIIURS0WyqrQ61jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBXDF3cEpBZqGUcIIYQQQgghhBBCSAuhZBwhhBBCCCGEEEIIIS2EuqkSQgghhBBCCCGESCo+zaba2lDLOEIIIYQQQgghhBBCWgiLYRhKkRJCCCGEEEIIIYRIoNxV34s7hHqpbPpJ3CGIBXVTJYSQVmz5pa3iDqHRto5cjpjMRHGH0SimGvoYtv9LcYfRaFdn/4Hcz+aIO4xGUTm5Dz/e3i/uMBpt7cDZGHXwG3GH0WgXZ/6K6Sd+FHcYjXJ40lr843tJ3GE02rzuI7HkwmZxh9Eo20evxBqPveIOo9E2uM/HJu8T4g6j0Vb1nYSF5/4QdxiN8vfYLzH79EZxh9Fo+yf8Dz13LhB3GI3ycNFuifks2iRqg9XqUDdVQgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQojEyMnJwbRp06CsrAxlZWVMmzYNubm579yGxWKJfPzxx5tWwi4uLnXWf/bZZx8cH3VTJYQQQgghhBBCCJFUn2A31cmTJyMxMREeHh4AgPnz52PatGm4cuVKvdukpKQIPb9x4wbmzJmDsWPHCi2fN28efvzxzTAdcnJyHxwfJeMIIYQQQgghhBBCiEQIDQ2Fh4cHfH190a1bNwDAP//8A2dnZ4SHh8PS0lLkdjo6OkLPL126BFdXV5iamgot5/F4dcp+KOqmSgghhBBCCCGEEEJaXFlZGfLz84UeZWVljXrNx48fQ1lZWZCIA4Du3btDWVkZjx49atBrpKWl4dq1a5gzp+7kZ8eOHYOGhgY6dOiA1atXo6Cg4INjpGQcIYQQQgghhBBCiKTi81vt45dffhGM61bz+OWXXxpV3dTUVGhpadVZrqWlhdTU1Aa9xqFDh6CoqIgxY8YILZ8yZQpOnDgBLy8vrFmzBufOnatTpiGomyohhBBCCCGEEEIIaXHffvstVq5cKbSMy+WKLLt+/Xr88MMP73w9Pz8/ANWTMdTGMIzI5aLs378fU6ZMgaysrNDyefPmCf5va2uL9u3bo0uXLvD394ejo2ODXhugZBwhhBBCCCGEEEIIEQMul1tv8q22xYsXv3fmUmNjYwQHByMtLa3OuoyMDGhra7/3fR48eIDw8HCcOnXqvWUdHR0hLS2NyMhISsYRQgghhBBCCCGEEEjMbKoaGhrQ0NB4bzlnZ2fk5eXh6dOncHJyAgA8efIEeXl56NGjx3u337dvHzp37oxOnTq9t2xISAgqKiqgq6v7/gq8hcaMI4QQQgghhBBCCCESwdraGu7u7pg3bx58fX3h6+uLefPmYdiwYUIzqVpZWeHChQtC2+bn5+PMmTOYO3dundeNjo7Gjz/+iGfPniEuLg7Xr1/H+PHj4eDggJ49e35QjJSMI4QQQgghhBBCCCES49ixY7Czs4Obmxvc3NzQsWNHHDlyRKhMeHg48vLyhJadPHkSDMNg0qRJdV5TRkYGd+/exaBBg2BpaYmlS5fCzc0Nd+7cAYfD+aD4qJsqIYQQQgghhBBCiKTiS0Y31Q+hpqaGo0ePvrMMI6L77vz58zF//nyR5Q0MDODt7d0k8VHLOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSHUTZUQQgghhBBCCCFEUknIbKqShFrGEUIIIYQQQgghhBDSQigZRwghhBBCCCGEEEJIC6FkHCHkk8ZisXDx4kWJeR9CCCGEEEIIEcLwW+/jE0VjxhFCiATradwR/cw7Q0lWHqkFWbjwwhsx2ckiy052cIOToU2d5Sn5WfjN80izxHf1/CWcPX4a2VlZMDIxxudLv4Ctfcd6ywcHBOGf7X/jdWwc1DU0MG7yRAwdPVyozIVT53DtwmVkpKVDSUUZvVz6YNaCuZDhygAAZoydjPTUtDqvPWzMCCxataxpK/iWIVbOGGPnAjU5RcTnpuGfJ5cRkhZbb/mh1j0wzLoHtBTUkFGUg9NB93Av6nmzxVcf2XEjINOvL1gKPFRFxaB4/zHwE0XvQzW4gwdAZqAr2BpqYAoKUf7kGUpPnAMqKv97UVnITRgF6a6OYCkroiouHiUHT6AqJq75KwQg4r4/Xt19ipK8QqjoaqDz2P7QMjeot3xVRSVe3HiEWL8QlBYUgaeiCNtBzjBzrn9fbWqDLbtjlG0fqPIUkZCThn1Pr+JVely95fuY2mO0bV/oKamjqLwUAUkROPjsOgrKigVlhtv0hLtld2jIq6CgrAiP4l7iiL8HKqoqW6BG1fqbd8EQa2coyykiKS8dx/xvISIjvt7yzka2GGrdA9qK6iipKEVwSjROBtxGYXlJi8UccPcR/K57oyivABp62nCdMgL6libv3S4pIg4nf9kNDX1tzNiwQmhdaVEJfM55IPLZS5QWl0BZQw0uk4bCtJN1c1UDvU06oX/7LlCSlUdKfhbOv/BCdFaSyLJTHQehm1GHOstT8jOx8e5hAICOojqGWveAgYoW1OWVcS7YE17RAc0WPwA4Gdigl0lHKHB5SC/MwY2wx3idk1pveQ6LDVfzzuikZw4FLg/5pUXwjg6Af1I4AMBG2xh9TB2gxlMCh8VGVnEeHsa9QFByZLPWI8TrKYJvPkJxXgFU9bTgPNEduu2NRJZNDo/F1U2H6iyf8MMiqOhq1lke9fQF7v17DkadLDFo0aQmj/1tfUztMdCiK5RlFZCSn4kzQfcQVc8+Nb3zYDgb29ZZnpyfiQ23DwAA7PXaw92qOzTlVcBhs5FemIs7kX54Gv+q2ergauYId8vuUJFTQFJeBk4E3kFkZoLIsrO7DkMvk7rngaS8DKy5+Y/g+cD2XeFq5gg1nhIKy0vwLDEMZ4M9UcmvarZ6NFQnXXNMdnCDlZYhNORV8M31v/EgNkjcYQH49D4L8umhZBwhhEgoBz0LjLbri7NB9xCbnYwexh3xufMo/HLvCHJLCuqUP//CC1de+Qies1lsfOU6pdkuQrzveGLPX7uwaNVS2HS0xfWLV7Fm9bfYc3Q/tHS065RPTU7B2tX/g/vwIfhy7bd4FfwSOzdtg7KKMnq59gEA3Lt5Bwd2/4MV334JG7sOSIxPxOaffwcAfL7sCwDAX//uAp//5i7c65hY/G/5V+jt2rdZ6glUX/TO6zYCfz++gFdpcRhs1R3r3ebgi/N/IqMot075wVbOmNF5MLY/PIuIzARYahhgca9xKCwrxtOE0GaLszbuiMHgDnFD8d/7UZWSBtkxw6Dwv1XIX/kdUFoqchvpnt0gO2kcivccQFVEFNi6OuAtmA0AKD18CgDA+3wGOPrtULTzXzA5uZDp3R0K369C/qo1YHJym7VOcc9D8fzcXXSd6AZN03aI9AmE564zGPb9XMirKYncxmf/JZQUFKH7lMFQ1FRFaUERGH7L3cntadwRs52GYY/vJYSlx2GQZTesGTgLSy5uRmZRXp3y1lpGWNZrAvb7XYVfQijUeUpY4Dwai3qMxa//Jdb7mNpjWmd37PA5i7CMeOgpaWBpr/EAgP1+V1ukXt0MbTDFcRAOPbuOyMwEuJo7YnXfyfj2+i5kFefXKW+hYYDPu4/CsYBbCEiKgJqcImZ2HYrZTsOxzed0i8Qc9iQQnseuYMD0UWhnYYwgzyc4t2kfZv2yCkrqqvVuV1Zcgut7T8LIxhxF+cLH36rKSpz54x/wlBQwYvE0KKgpoyA7FzKy3Garh2M7C4zp6ILTgXcRk52MnsYdsbDHaPx85xByRJwfzgZ74lLIA8FzDouNb/pPQ0DSm/ODDEcKmcV5CEiKwJiOzXc8rWGrY4rB1s64+soH8Tlp6GJgjWmdB2O7z2nklRaJ3Gai/QAocOVw4eV9ZBfnQV5GDmzWm45CxRVl8I4OQGZRLir5VbDUMsJo274oKi9BVGZis9Qj2u8lHp/yQK/JQ6FtbojQ+89wY9tRTFi/CArqKvVuN2HDYqF9RFZRvk6ZgqxcPDl7CzrtDZsjdCGd9S0xvlM/nAy4jeisJPQ26YRFvcbhx1v7Re5Tp4Pu4uLL+4LnbDYL3/WfCf/EcMGyovJS3AjzRVpBFir5fNjpmmJ658EoKCtGaFpck9ehq4E1JtkPxBF/D0RlJsLFzAErek/E9zf3IlvEMelE4G2cfeEpeM5hsfGD2xw8SwwTLOtu2AHjOrpiv99VRGUmQUdRDXOchgEATgbeafI6fCg5aS6ishJxPewRNg5eIO5wBD7Fz4J8eqibKiGk1XJxccHixYuxePFiqKioQF1dHd9//z2Y/2YDOnr0KLp06QJFRUXo6Ohg8uTJSE9PBwAwDANzc3P8+eefQq/58uVLsNlsREdHi3zPFy9eoF+/fpCTk4O6ujrmz5+PwsJCwXo/Pz8MHDgQGhoaUFZWRt++feHv7y/0GpGRkejTpw9kZWVhY2OD27dvN+WfpcFczB3x5HUIfONDkFaYgwsvvZFbUohexqJb85RWlqOgrFjwMFTRhpy0LJ7EhzRLfBdOnYXbsMFwHzEUhsZGWLB8ETS1tHDtwhWR5a9dvAItbS0sWL4IhsZGcB8xFG5D3XHuxJuL8LCXr2BjZwtXt/7Q1tVB525d4DLQFZFhb37cq6iqQE1dTfB48tAXuu30YOfQqVnqCQCjbPvgdoQfbkU8RWJeOv55chmZRbkYYuUssnw/M0fcCPfFg9ggpBVk435sEG5H+GFsR9dmi1EU7uABKL14DRV+/uAnJqF41z6wuDKQ6dmt3m2kLMxQGRGFiodPwM/IQmVwCMofPYGUqXF1AWlpSDt1Rsnxs6gKiwA/LR2lZy+Dn54J7sDmr1/YPT+YOXeEeY9OUNbRQJdxA8BTVUTEA9EteJJfxSAtKgGuC8dD18oYCurK0DDWg6apfrPHWmNkh164E/kMdyL9kJiXgX1PryKzKA/ult1FlrfQNERGYQ6uhT5CemEOQtNf41b4U5hrtBOUsdQ0RFjaa9yPDUJ6YQ4CkyPxICZIqExzc7d0hndMALxjApCcn4lj/reQXZyHfu27iCxvpqGPjKJc3I54isyiXERkJsAz6jlM1HRbLOZnHg9g16crOrp0g7qeNvpNGQFFNRUE3vV953a3Dp6HtbMDdM3rJkVe3PdDaWExRi2dgXYWxlDWUIW+hQm0DPWaqxpwNe+Mx3Ev8fj1S6QVZOP8Cy/klBSgl4no42Cd84Nq9fnB9/VLQZn43DRcenkf/knhqKxq/lYmPYw7wj8xHM8Tw5FRlIsbYY+RX1oosoU3AJhr6MNYTRdHnnsgJisJuSWFSMrLQELum5bScdkpCE2PQ0ZRLnJKCuD739/HSEWn2eoRfPsxLHs5wqp3Z6jqaqLHxMFQUFXGK+9n79xOTlEePGVFwYPNFr6s4/P5uPfvOXQe4QoljfoTxU2lf/sueBT3Ag/jXiC1IBtngj2RU1yAPqb2IsuXVpYjv6xI8DBS1QFPRhaP39qnIjMTEJQcidSCbGQW5cIzyh9JeRkwV2+e49QgCyc8iA3Cg9ggpBRk4UTgHWSX5MPVzFFk+ZKKMuSXFgkexqq64MnIweetlmVm6u0QmZmIJ/GvkFWch5C0WDyJfwVj1ZY7br2Lb3wI/nlyGd4xgeIORcin+Fk0Oz7Teh+fKErGEUJatUOHDkFKSgpPnjzBtm3bsGXLFvz7778AgPLycmzYsAFBQUG4ePEiYmNjMXPmTADVY7TNnj0bBw4cEHq9/fv3o3fv3jAzM6vzXsXFxXB3d4eqqir8/Pxw5swZ3LlzB4sXLxaUKSgowIwZM/DgwQP4+vqiffv2GDJkCAoKqu/68vl8jBkzBhwOB76+vti9eze+/vrrZvrr1I/DYkNfWQthGa+Floelv4ZxAy9cuxl1QERGvMg72o1VUVGByPAIODoJX3Q7OnXGq5eik39hL1/B0amzcPluXREZFoHKyupudTadbBEVHoHwV9V3QlOSkuH3+CmceohOWlRUVMDz1h24DXUHi8VqbLVEkmJzYK7eDgHJEULLA5IiYKUluhuSNEeqTlfB8soKWGgYgMNqmVM3W0sDbFUVVAa/9XlUVqIyNBxSFnW/P4IiYVGQMjECx8xE8DrSDnao8A+uLsDhgMXhABUVQtsx5RWQsjJv8nq8raqyCtkJqdC1Fu5SqGttgsxY0V2pEl9EQd1QB6/uPMH573bi8g974X/+HirLK0SWb2pSbA7M1NshsFYL1cDkyHr3n7D011CXV0bndpYAAGVZBTgb2wq1EAhNj4OZRju016hOKmorqMFR31KoTHPisNkwVtPFy1ThGyMvUmPQXkN0l+HIzASo8ZTQUbd6P1GSlUdXQ5tm70JYo6qyEmlxSTC2tRBabmzbHslRcfVu9+K+H3LTs9Bj1ACR66MDXkHP3Ah3D1/AriU/4sD/NsH3yj2hFrxNicNiw0BFG2Hptc4Paa9hot6wBGB3I1uEp79ulvNDQ3BYbOgpadRprRaVmQgDlbotqwHASssIyXkZ6GXSCV+6TMGy3hMwyLIbpNicet/HVE0PGvLKiMtJadL4a1RVViIzPhn6NsLHVH0bM6RFi+6OV+P8hj04svpPXN18CMlhdYc88L/qDTlFeVj1Ep28aEocFhuGKjp4Vau1Wmh6HEwbmDjrYWyHsPTXIls91bDUNIS2oioim6GVIofNhpGqLkLSYoSWh6TGwly9YTdfept2wqu0WKGWvZGZiTBW1RHcNNCUV4GdrhmCU6KaLngJQ58F+VRQN1VCSKtmYGCALVu2gMViwdLSEi9evMCWLVswb948zJ49W1DO1NQU27Ztg5OTEwoLC6GgoIBZs2Zh7dq1ePr0KZycnFBRUYGjR4/ijz/+EPlex44dQ0lJCQ4fPgx5+eruHjt27MDw4cPx22+/QVtbG/369RPaZs+ePVBVVYW3tzeGDRuGO3fuIDQ0FHFxcdDXr/7BsHHjRgwePLiZ/kKiyXPlwGGzUVBaLLS8oKwYSrK8926vxOXBWssYR57faJb48nPzwK/iQ1VN+G69iqoqcrKyRW6Tk50NFVXh8qpqqqiqqkJ+bh7UNNThMqAf8nLysHrhMjAMg6qqKgwdPQITpokeJ+fx/YcoLCzEwCGDmqZiIihx5cFhc+pctOaUFMKRpyhyG/+kcLhZOOHx65eIzkqCubo+Blh0hTRHCkqy8i1yAcxSUQYA8POEL4z4eflga6jXu13F46coUVKAwg/fVL+OlBTKbnmi7PJ/+1JpKSojoiA7ZhiKklLA5OZBumc3cMxNwE9Nb57K/KessBgMn4GsovB3QFZRHiX5oru1FWbmIj06EWwpKfSZNxplRSXwO3ULZcWlcJ46pFnjBQBFLg8cNqdO1/K8kgKoylmI3CY8Ix6b75/EapfJkOZIQYrNwZP4V/jH97KgjE9sMJS5Ctg4eAFYLBak2BzcCHuM8y+8m7U+Narrxa7TnTC/tAjKsnW72wHViZbdjy9gUc+xgnr5J4bjyHOPlggZJf91T+YpKwgt5ykroihP9HcyJzUDD87cwGffLQSbIzrpk5eRjfjQaFg7O2DMytnITcvEncMXwa+qQo9RA5u8HoLzQ5nw376grBhK3IacH+Rho22CQ8+uN3lsDcWTkQWHza4zVmBheQkU66mDmpwSDFV1UMmvwvGAW+BJy2J4h16Qk5bFxZdv9nuulDS+dJkKKTYHfIaPq68e1juWXmOV/ndMklMS3ufllORRnF8ochuesiJ6TxsOTUNdVFVWIdI3CFe3HMLwVTOha2EMAEiNike4jz/GrmmZbocKgt8ctfap0iIoa4v+Pr9NSVYeHbRNsf9p3S7yslIy+GXoQkizOeAzDE4E3K6TSG4KijL1HJPK6j8mvU1ZVh52OmbY63tJaPnThFdQ5PLwret0gFV9g+Ve1HNcD3vcpPFLEvosyKeCknGEkFate/fuQi2WnJ2dsWnTJlRVVSE4OBjr169HYGAgsrOzBa0I4uPjYWNjA11dXQwdOhT79++Hk5MTrl69itLSUowfP17ke4WGhqJTp06CRBwA9OzZE3w+H+Hh4dDW1kZ6ejrWrl2Le/fuIS0tDVVVVSguLkZ8fLzgNQwNDQWJuJqY36esrAxlZWVCy7jcph8viMUCmAa0Bncy7ICSijK8SBHdnbcp43kbA7yzhVrtdTVdlmteKNg/EKcOH8OiVUth2cEayYnJ2PPXThw/oIbJs6bVeb2bV2+gS3cnqGtqNKoeDVLr7/6uz+Jk4B2oyili0/AlYAHILSnE3chnGNfRFfxmmnVKumc38OZNFzwv/O2v/+KuHeS7dyIpG0vIjh6Gkn1HURkVA46OFuRmTAI/dxjKzldfaBXv/Be8z2dB+e9NYKqqUBX7GhUPn4BjIrqlV9OrveMxdfbFN6sYsFgs9Jw5HDJy1d/JqjH98GDfRXSdMBBSMtLNHGs9WCwwtXeq/+gra2FetxE4FXgXAckRUJVTxMwuQ7DQeTR2PDoHoHq8rXGdXLHH9xIiM+Kho6SBuU7DkdOxAKeD77VcPURUob69S09JA1Md3XHp5X28SI2GiqwiJjoMwMyuQ7Hvqeju7c2hzjHqv32kNj6fj6u7T6DH6IFQ06k7sL5gcz4DnqIC3GaNBZvNho6JPgpz8+F33btZknGC9/3I7boZ2aCkogzBya2hNYlwLVhg1Xt4qvmMzgTfQ1lldctWj7DHmGg/EFdf+QgGcC+vrMCuR+cgw5GGqboe3K26I7skH3HZzdM6ribut73rPK2iowEVnTfnLG0zAxTm5CPo1iPoWhijvLQMnvvOo/e0ESLHkWtOdcOu/zj1NmcjW5RUlIps5VpWWY6Ndw6BKyUDSy1DjOvoisyivHoH8m9qLDTsu9LTuCOKK0rhnxwutNxS0xDDrHvgiL8HYrKToa2gikn2A5FnU4grrx42S8ySij6LRmrIBQBpUZSMI4S0SaWlpXBzc4ObmxuOHj0KTU1NxMfHY9CgQSgvLxeUmzt3LqZNm4YtW7bgwIEDmDhxIng80XfNmXouqIA3P+JnzpyJjIwMbN26FUZGRuByuXB2dha8JyPiRNeQ7o+//PILfvjhB6Fl69atAxxU3rutKEVlJaji86FYqxWcggxPaDbF+nQztMGzxFBUNVPiR0lFGWwOG9lZOULL83JyoFKrtVwNVTU15GQLt5rLzckFh8OBknL1wPuH/zmAfoMGwn3EUACAiZkpykpLsO23LfhsxhShMXXSUtMQ+Mwf329c34Q1qyu/rAhV/Cqo1moFpyKrIHIiDQAor6rEXz5nsOPhOajIKSKnJB+DLLujuLwU+aXv//w+RsXzIBREvbUPSlf/RGCrKKMq980kAWxlRTB59Xcjkp0wCuUPHqPcs3qwd35CEsDlgjdvOsouXAMYBvy0DBT++DvAlQFLTg5Mbh54yz4HPz2zWepWg6vAA4vNQmmB8N320sLiei9a5ZQUIKesIEjEAYCyjjrAAMW5BVDSUmvWmAvKilHFr4KKnPD+oyyrgNwS0S1nxnV0QWh6HC6GVA+O/jonFXt8L+KXIQtxLOAWckoKMNlhILyi/XEn0q+6TG4aZKWk8UWPMTgT7NmgC+jG14sPZTnhv7uSrDzy6xl8f7hNL0RmJghaMSQgHWV+5fh+4CycDfZEXqnov0dTkVOUB4vNRlGu8Pe2OL8QPCWFOuXLS8qQFpuI9NfJuHukuoUGwzAAw2DTrG8w/su5MLQxh7yKItgcjtDxSU1XC0V5BaiqrARHqml/rtecH5S4wn97RS4P+Q04P3Q3soVfwqtmOz80RHF5Kar4fCjICJ/j5GVkUVguug4FZcXILy0SJOIAIKMwF2wWC0qy8oLukQwg+H9qQRY05VXRx9S+WZJxsv8dk2q3gistKBK5T9VHy0QfUU+qhwLIz8hGQVYubu48Llhf89vknwU/YOKPS5r8uFVYs0/VarWkKMtr0Dmrh7EdnsSL3qcYQDDRUWJeOnQV1eFu1Q2RPk2bjCso/++YVLsO3PqPSW/rbdIJj1+/RFWt7uWjbfvi0euXghlKk/IyIMORxowuQ3D11cNmPtK2TfRZkE8FjRlHCGnVfH196zxv3749wsLCkJmZiV9//RW9e/eGlZWVYPKGtw0ZMgTy8vL4+++/cePGDaGurbXZ2NggMDAQRUVvTvQPHz4Em82GhUV1d7AHDx5g6dKlGDJkCDp06AAul4vMzEyh14iPj0dycrJg2ePH72/+/u233yIvL0/o8e233753u/pUMXwk5qXDUlN4sHBLLcP3XlCYq+tDU0EVvq+bZ+IGAJCWlkZ7SwsE+D0XWu7v9xw2th1EbmNlawP/2uWfPkN7KwtI/XexWlZWBhZbOPnJZnPAMEydROntax5QVlWBk7Po8eSaSiW/ClFZSbDXay+03F7P4r1dbaoYPrKK88BnGPQx6YSnCaHNlyQpLQU/Lf3NIzEZ/JxcSNm9NRg6hwMpa0tURryjxaSMTN27r3x+3WaQAFBWDiY3Dyx5HqQ72qLiuehJFJoKR4oDNQMdpITFCS1PCYuDhonocY00TduhJK8QFWVvkvz56TlgsVjgqYjuZtyUKvlViM5Kgr2e8Hh69nrm9e4/XI5Mnf2dX+s5lyNdTxlWva0Em1IVn4+47BTY6pgKLbfVMa23xYuMVH0xi969mhpHSgraxu0QFyLceicuJBJ65sZ1ynPluJjx80pM37Bc8Ojk2h1qupqYvmE5dMyqj8/t2hsjNz1LaIbenLRMyKsoNnkiDqg+riTkpsFKq/b5wQixWcn1bFXNXEMfWgqqeBz38p3lmlsVw0dyfibMak04YqahLzQhw9vic1KhKCsPGc6bv6m6vDL4DP+dF/is/7qzNQeOlBQ0DPWQ9Er4mJoYGg1tM9FjJ4qSlZAi6D6toqOBcesWYuyaBYKHUUdL6FmaYOyaBfXOGt0YVQwf8bmpsK41jqW1lhFi3tPFt72GAbQUVPEo7kWD3685Po8qPh+vc1Jgoy08pmgHbRNEZb17jLrqsezU8CAmqM46GY5UnfM2wzDVbSFb4sDVBtFnQT4VlIwjhLRqCQkJWLlyJcLDw3HixAls374dy5Ytg6GhIWRkZLB9+3bExMTg8uXL2LBhQ53tORwOZs6ciW+//Rbm5ubv7DI6ZcoUyMrKYsaMGXj58iU8PT2xZMkSTJs2Ddra1QNCm5ub48iRIwgNDcWTJ08wZcoUyMnJCV5jwIABsLS0xPTp0xEUFIQHDx7gu+++e289uVwulJSUhB6N7abqFeWP7ka26GZoA20FVYyy7QNVOUU8jKu+ez7MuiemOLrV2a6bUQfEZacgtSCrUe//PqMnjsPNK9dx8+oNxMe9xp6/diEjLR1DRg8HABz4+1/8ueFXQfmho4YjPTUde7ftQnzca9y8egO3rt7A2EkT3sTe0xnXLlyB1517SE1Ogf/TZzj8zwF079UDnLfGa+Lz+bh9zQMDBruBI9U8F1lvu/jyPtwsnDCwfVfoK2thrtNwaCqoCFr4zOg8GCv7fCYor6ekARczR+gpacBCwwBfuUyBkaoODjfTGH71KbtxB7KjhkK6qwPY+u3A+2I2mLJylD98IijD+2IOZD8bI3he6R8E7gAXSDs7ga2pASk7G8hOGIWK54GCJJ1Uxw6Q6mQrWK+w5ktUpaSi3Kv5u4lY9euK6EdBiH4cjLzUTDw/dxfF2flo39seABBwyRuPDr8Zt8i4qw248nLwPXodeSmZSItKQMAFT5g627VYF9VLIT4Y0L4r+pt3gb6yJmZ3HQYNeRXcDK/+HKY6DsKyXm++B36JoehuZAt3y27QVlCDlZYR5nYbLjQhi19iGNwtu6OXSUdoKaiik645JjsMhF/CqzqJu+biEf4YfU0d0cfUHnpKGpjs4AZ1njLuRVYn3cd36of53UcKygckRaCzgRX6mXeGprwK2msYYGrnQYjOTKq3lWBT6+LeGy+8n+LFfT9kJafB89hlFGTlolO/6qT+/dM3cH3PSQAAi82Gpr6O0IOnJA+OtBQ09XUgw5UBAHTq54ySwiLcO3YZ2akZiA4MxZMr9+DQv0ez1cMz6jmcje3Q3agDtBXVMMauL9R4ioKZB4fb9MK0zu51tnM2skVsdgpSRJwfOCw22ilrop2yJqTYHCjLKaKdsiY05FWapQ6P4oLRWd8Kju0soSmvgsFWzlCWVcDT+FAAwECLrhhr5yIoH5wShZLyUoy2c4GmvAqMVHUwyLIb/BPDBV1U+5jaw0y9HVTlFKEhr4wexnaw17No1klCOg50RpiPP8J8/JGTkoFHpzxQmJ0H677VExw9PX8HnvvPC8q/uPMYcQGhyEvLQnZyOp6ev4NY/1B0cHUCAEhJS0OtnbbQg8uThTRXBmrttJslwQsAdyOfoadJRzgb2UJHUQ3jOrpClackaIU0skNvzOhSd5zNnsZ2iM1KRnJ+3ZbRgyy7wUrLCBryytBWVEP/9l3Q3agDnsa/apY63Ix4ij4m9uhl0hG6iur4zH4A1HhK8Ir2BwCMtXPBXKfhdbbrbdIJ0VlJSMrPqLMuKCUKrmaOcDKwgYa8Mmy0jTHKtg8CkyNF9qZoaXLSXLTX0BdM5qOnpIH2GvrQVmj+GXjf5VP8LJrdfy2zW+XjE0XdVAkhrdr06dNRUlICJycncDgcLFmyBPPnzweLxcLBgwfxv//9D9u2bYOjoyP+/PNPjBgxos5rzJkzBxs3bnxnqzgA4PF4uHnzJpYtW4auXbuCx+Nh7Nix2Lx5s6DM/v37MX/+fDg4OMDQ0BAbN27E6tWrBevZbDYuXLiAOXPmwMnJCcbGxti2bRvc3ete1DS3gOQI8GRkMciyO5S4PKQUZGGP7yXBxbiSrDxU5YTvkMtKyaCTrjnOvzWYdXPpO8AVBfn5OH7gCLKzsmFsaowf//wF2jrVic/srCykp71p7aijp4sf/9yIvdt24cr5y1DXUMeC5YvRy7WPoMykGVPBYrFweO8BZGVkQllVBd16dseM+XOE3jvAzx/paelwG9oyn8uD2CAocnmCH5Ovc1Kx/tY+QdcbVZ4SNN+6YGWz2Bht2wftlDVRxa9CcEo0vry6E+mFOaLfoJmUXb4Blow05GZPBUteHlVRMSjcuBkoLX0Tq4aa0A+p0vNXwTCA7MRRYKupgskvQMXzIJSeenMxyeLJQXbS2Or1hUWoePocJScvAFVVzV4n487WKC8qwYsbD1GSXwQVXQ24fDEeCmrVE1aU5heiKPtNN1xprgz6LZ6IZ2du48bvh8CVl4OhoxU6Devd7LHWeBgXDCUuDxPt+0NVThHxOanYcOegYP9R4ylBU0FFUP5e1HPISXExxKoHZnUdiqLyUgSnRAslc08H3QPDMJji4AY1njLyS4vglxCKYwE3W6xeT+JfQUGGh5Ed+kBFTgGJeenY5H0cWcXV3aJVZBWgzlMWlPeJDYKclAwGWHTFJAc3FJeX4lV6LE4H3m2xmK262aOksBiPL91BUW4+NNrpYMzK2VDWqL5wLcrLR3527ge9ppK6CsZ/OQ+ex6/g0PdboKCiBEe3XnAa6tL0FfiPf1IE5GXk4G7ZHUqy8kjJz8Lfjy4Izg/KsvJQrdU1WlZKBvZ67XHuhZfI11SWU8A3/d6MzTmgfRcMaN8FkRkJ2OZzpsnr8DI1BjxpWbiYO0KRy0NaQTaOPL8h6K6swOVBWe5NV8/yqkocfHYNQ617YkGPMSgpL8XL1BhBV22geibr4Ta9oCQrj4qqSmQW5eJs8D28TI2p8/5NxayrLUqLiuF/zRvFeYVQ09PC4CVToKiuAgAozitAYfaboQKqKqvge/YWinILICUtBVU9LbgvmQxDO9ETurSU54nhkJeRw1DrHv/tU5nY+fCcoMuvsqwC1Hh19ymHdhY4HSR6nEouRxqTHAZCRU4BFVWVSC3IxgG/a3ieGC6yfGP5JYRCQUYOI2x6QVlWAUl5Gdj64JRgRs7qOgj/bpKT5qKzvhVOBN4W+ZpXXvmAYRiM/u+GaEFZMYJSour9HrU0K00j7Bi9UvB8aa/qcZWvhz7Gz/cOiSusT/KzIJ8eFvNJpIEJIW2Ri4sL7O3tsXXr1ka9zsOHD+Hi4oLExERBC7e2YvmlreIOodG2jlyOmMx3dyto7Uw19DFs/5fiDqPRrs7+A7mfzXl/wVZM5eQ+/Hh7v7jDaLS1A2dj1MFvxB1Go12c+Sumn/hR3GE0yuFJa/FPrVn32qJ53UdiyYXN7y/Yim0fvRJrPPaKO4xG2+A+H5u8T4g7jEZb1XcSFp4TPQN9W/H32C8x+/RGcYfRaPsn/A89d7bM7LjN5eGi3RLzWbRFufOXizuEeqns3SruEMSCWsYRQiRWWVkZEhISsGbNGkyYMKHNJeIIIYQQQgghpNH44pt0h4hGY8YRQiTWiRMnYGlpiby8PPz+++/iDocQQgghhBBCCKGWcYSQ1svLy6tR28+cORMzZ85sklgIIYQQQgghhJCmQMk4QgghhBBCCCGEEElFUwW0OtRNlRBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVNRNtdWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKTiUzfV1oZaxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpISyGoWk1CCGEEEIIIYQQQiRR7pT54g6hXirH9oo7BLGgMeMIIaQVO+x3XdwhNNr0rkNQEBkl7jAaRbG9OQbuXSbuMBrt9vy/sNbjH3GH0Sg/us/DqIPfiDuMRrs481f037NU3GE02t3Pt6EgNU3cYTSKoo62xBxrt94/Je4wGmV5n4m4GuIj7jAabViHXkjJyxB3GI2mq6wJ939WiDuMRvGYtwV9/14k7jAazXvhTsw+vVHcYTTK/gn/Q8+dC8QdRqM9XLRb3CEQCUHdVAkhhBBCCCGEEEIIaSHUMo4QQgghhBBCCCFEUvH54o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQScUw4o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgohk/dVFsbahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUDM2m2tpQyzhCCPnPzJkzMWrUqA/axtjYGFu3bm2WeAghhBBCCCGESB5qGUfIJ2rmzJk4dOhQneWDBg2Ch4dHs793bm4uLl682Kzv86H++usvME181yguLg4mJiYICAiAvb19k752bc9u+8D3uicKc/Oh2U4HA6eOgqGV2Xu3S4iIwZGfdkJTXwfzNn4pWB7mF4yHl28jJy0T/Co+VLU10H2IC+x6dW3OaoBhGOw9fhwXbnqgoLAQHSws8fXChTAzMqp3m+jXr7H72FGERUUhJT0dK+fNw+SRo+otf+D0aew8fAiTRozEqvnzm7wOw216YXzHflDnKSEuJxV/Pz6Pl6kx9ZYfYdMLIzv0hraiGtILc3A84DbuRPqJLOti5oDv+s/Ew7hgrL+1r8ljf1tXA2v0MukEBa4cMgpzcCPMF69zUustz2Gx4WLuiE565lDg8pBfWgTv6AAEJEUAADrrW8JezwJaiqoAgOS8TNyJ9ENSXkaz1WGwZXeMsu0DVZ4iEnLSsO/pVbxKj6u3fB9Te4y27Qs9JXUUlZciICkCB59dR0FZsaDMcJuecLfsDg15FRSUFeFR3Esc8fdARVVls9VjhE0vTOjUX7BP7Xp0Di/esU+N7NAbIzv0hs5/+9Qx/1u4/dY+NcjCCV+5Tq2znfu/K5u0HgzDYO/BA7hw5QoKCgrQwcYGXy9fATMTk3dud9fbC7v37UNicjL09fTwxdx5cO3TR7B+z4H9+OfgQaFt1NXUcPPCRcHzrOxsbN+zG75+figoLIRjp074ctkyGOobNKpOknKsfen5FIE3fVCcVwhVPU30nDgYehbGIssmhcfi8p8H6iz/7MclUNXVBAC8uv8M4Y8DkZ2cDgDQNNJDt9EDoG2i32x1eHjjHrwu3UR+Ti50DNph5OzPYGpjIbJsTGgkrh0+i/SkFJSXl0NVUx3Obn3Rd7iboIzvbW8883qM1PgkAIC+mRGGTBkDw/amTRr3xbPncfLICWRlZcHE1BiLVyxDR4dO9ZYP9A/Arq3bERsTBw0NdXw2bQpGjh0lWH/f0xtHDxxGUmISqior0c5AHxOnfAa3Ie6CMpWVlTj4z37c8biN7OwsqKurw33YEEybPQNsdtO0zxhm3RPjOrlCTU4Jr3NSsdv3IkLecZwabtMTw216Q1tRFRmFuTgReBt3I58J1rtbdscAi64wUtUBAERlJuKA3zVEZMQ3SbyijOrQG5/ZD4AaTxlxOSnY8fAsglOi31G+D8bY9YWOohrSCnNw9LkHbkY8FazfOmIZHNrV3Scfv36Jb67/3Sx1AABXM0e4W3aHipwCkvIycCLwDiIzE0SWnd11GHqZdKyzPCkvA2tu/iN4PrB9V7iaOUKNp4TC8hI8SwzD2WBPVPKrmq0eDdFJ1xyTHdxgpWUIDXkVfHP9bzyIDRJrTIQ0BCXjCPmEubu748AB4R/XXC5XTNGIn7KysrhD+GivfANw++hFuM8cBwMLE/jfe4STf+zF5799A2UN1Xq3Ky0uweXdx2HSoT0K8wqE1snJ89BzxEBo6GmDI8VBZEAIruw9CZ6SIsw6WjVbXQ6dO4vjFy9g3YoVMNRrh32nTmHRmu9xbvceyPN4outRVgZ9HR0M6NkLm//9R2SZGiEREbhw0wPtjd+dDPhYfU0dsNB5NLb7nEFIWiyGWvfAxsELMOf0L8goyqlTfph1T8x2Go4t908iPCMeVlqGWNH7MxSWFcM3PkSorJaCKuZ3G4XglKhmif1ttjqmGGztjKuvHiI+Jw1dDawwtbM7dvicQV5pkchtJtj3hwJXDhdf3kd2cT7kZeTAZrEE643V9BCcEoWE0DRU8qvQy6QTpncZjB0+Z4WSXU2lp3FHzHYahj2+lxCWHodBlt2wZuAsLLm4GZlFeXXKW2sZYVmvCdjvdxV+CaFQ5ylhgfNoLOoxFr96HgFQnayb1tkdO3zOIiwjHnpKGljaazwAYL/f1SavA1CdgP2ixxhs8zmDl6kxGGbTE78MWYjZpzcivbDuPjXcphfmOA3H5vsnEJ4eDystI6zs8xkKy0vw+PVLQbnCshLMPPWT0LZNnVA8dOI4jp8+jXXffgtDfQPsO3IYi1atxLmjx+r9Pge/fIn//fADFsyeA9feveH54AG+Wb8O+3bshK2NjaCcqYkJdm3aLHjO4XAE/2cYBqu/+w5SUhxs+nkj5OXlcez0KXyxciXOHDoMOTm5j6qPpBxro/xe4OGpG+g9ZRh0zQ0R4u2Ha9uO4rMfFkNRXaXe7SZtWAoZuTe/E2QV5QX/Tw6PQ3unjtAxMwBHWgqBN31wdcthTPxhMRRUlZq8DgE+T3HpwEmMmTcVJtbmeHzTG//8tBVf/bUBqprqdcrLcGXQc0g/6BnpQ0aWi9jQSJzdfRgyXC6c3foCAKJehsOhlxOMrcwhJS0Nz4s3sOeHzfjqrw1QVq//8/0Q927fxY7N27D8q1Ww62SHyxcu4avlq3Ho1BFo6+jUKZ+SlIxvln+JoaOG47sf1uJF0Ats/X0TVFRV0LefCwBAUUkR02ZNh6GxEaSkpfHY5yF+3fALVFRV4eTcDQBw4vAxXD5/Cd+u+w7GpiYIDw3Dbxs2Ql5BHuM+m9DoevUxtcfnzqOw8+FZhKTFYohVD/zkPh/zz/yKjKLcOuWHWvfAzK7D8NeDU4jISIClpiGW9Z6AwrISPPnv3NdRzxxeUf54lRaL8qpKjO/UDxsHL8DnZ39DVnHdY3hjuZo5YnHPcdjy4BRepkRjeIde+G3oIsw4uUHksXZkh96Y330E/vA6jrD017DWNsaXfSejoKwYj/471q65+Q+k2W8uuZVk5bFvwrfwig5o8vhrdDWwxiT7gTji74GozES4mDlgRe+J+P7mXmQX59cpfyLwNs6+8BQ857DY+MFtDp4lhgmWdTfsgHEdXbHf7yqiMpOgo6iGOU7DAAAnA+80W10aQk6ai6isRFwPe4SNgxeINZZWjU/dVFsb6qZKyCeMy+VCR0dH6KGq+ubHJovFwp49ezBs2DDweDxYW1vj8ePHiIqKgouLC+Tl5eHs7Izo6Dd3DNevXw97e3vs2bMHBgYG4PF4GD9+PHJzcwXrDx06hEuXLoHFYoHFYsHLywv9+vXD4sWLheLLysoCl8vFvXv36sSel5cHDoeD58+fA6i+8FJTU0PXrm9aEpw4cQK6urqC50lJSZg4cSJUVVWhrq6OkSNHIi4uTrC+djfVgoICTJkyBfLy8tDV1cWWLVvg4uKC5cuXC8VSXFyM2bNnQ1FREYaGhti7d69gncl/rT8cHBzAYrHg4uLy7g/lIz254QV7l25wcO0OjXbacJs2GkrqKvC/+/Cd293YfwYdnB3Rzty4zjojG3NYde0IjXbaUNXWgJN7X2gZ6CIhvP673I3FMAxOXLqEWRMnol+PnjA3NsYPK1eitKwMHt7e9W7XwcICy2bPwaC+fSEjLV1vueKSEqz58w98t2QJFBUUmqMKGNvRBR7hvrgR7ov43DT8/fgCMgpzMNymp8jyA9p3xbXQh/COCUBqQRa8ogPgEe6LifYDhMqxWSx82286Dj+/gdT8rGaJ/W09jO3gnxgO/8RwZBbl4kaYL/JLC9HV0EZkeXMNfRir6eLo85uIyUpGbkkhkvIykJCbLihzLtgTfgmhSC3IRmZRHi69fAAWiwVT9XbNUoeRHXrhTuQz3In0Q2JeBvY9vYrMojy4W3YXWd5C0xAZhTm4FvoI6YU5CE1/jVvhT2Gu8SY+S01DhKW9xv3YIKQX5iAwORIPYoKEyjS1cXauuBHmi+thjxGfm4Zdj84jvTAHw216iSw/sH1XXA19CK/oAKQUZMEz2h83wn0xsVP/WiUZ5JQUCD2aEsMwOHHmDGZNm4Z+ffrC3NQUP3z7v+rv853b9W534uwZdOvcBbOmToWxkRFmTZ0Kp86dcfzMGaFyUhwONNTVBQ9VFRXBuvjERLx4FYJvVq5CB2trGBsa4psVK1FSUoKbd+9+dJ0k5VgbdPsRrHo5wqZ3Z6jqaqLXZ0OgoKqEEG/RLXJryCnJg6esKHi83aJqwLxxsHV1goahLlR1NdF3+kgwDIOk0Oapx/0rt+DUvze6D+wDbX09jJozCSrqanh000tkeX1TIzj27gYdw3ZQ09JA577OsLS3RWxohKDM1BXz0XNwP7QzMYS2vi4mLJwJhmEQGRzaZHGfOX4SQ0YMw7BRw2FkYowlK5dBS1sLl85dFFn+8vmL0NLRxpKVy2BkYoxho4Zj8PChOHX0hKCMQ2dH9HbtCyMTY7TTb4dxn02AmbkZXgQFC8qEvAhBrz694NyrB3T1dOHS3xVduzkhPDS8Seo1xs4FN8OfwCP8CRJy07HH9yIyCnMxrJ5zX//2XXAj9BHuxwQitSAL3jEBuBn+BBM69ROU+d3zKK6GPkRMdjIS89Lx14NTYLFYsG/Xvklirm1Cp/64HvYY10If4XVuGnY8PIeMwhyM7NBbZHk3CydcfvUQntH+SCnIwr2o57gW9giTHN60tiwoK0Z2Sb7g0cXACmWV5fCK9m+WOgDVLZ8fxAbhQWwQUgqycCLwDrJL8uFq5iiyfElFGfJLiwQPY1Vd8GTk4PNW6zIz9XaIzEzEk/hXyCrOQ0haLJ7Ev4Kxqq7I12xJvvEh+OfJZXjHBIo7FEI+CCXjCCHvtGHDBkyfPh2BgYGwsrLC5MmT8fnnn+Pbb7/Fs2fVXQlqJ9GioqJw+vRpXLlyBR4eHggMDMSiRYsAAKtXr8aECRPg7u6OlJQUpKSkoEePHpg7dy6OHz+OsrIywescO3YMenp6cHV1rROXsrIy7O3t4eXlBQAIDg4W/JufX33Xz8vLC337Vt/tLi4uhqurKxQUFHD//n34+PhAQUEB7u7uKC8vF1n3lStX4uHDh7h8+TJu376NBw8ewN+/7o+nTZs2oUuXLggICMAXX3yBhQsXIiys+m7i06fVXRXu3LmDlJQUnD9/vmF/+A9QVVmJlNhEmNhaCi03tbVEYmRcvdsFeT9BTlom+owZ9N73YBgGsS8jkJ2a0aDuWB8rKS0VWTk56O7w5gejjLQ0HG1tERza+Iuh3/7+Gz27dkU3e4dGv5YoUmwOLDQM8DxR+OLmeWI4OmiLboknzZFCea3WSGWVFbDUNASH9eY0PdXRHbklhfAI9236wGvhsNjQVdJAdGaS0PKozCQYqmiL3MZKywjJeZnoZdIRq10mY2nvCRhk2Q1SbI7I8kB13TksNkoqyuot87Gk2ByYqbdDYHKk0PLA5EhYaYnu8hyW/hrq8sro3K76u6QsqwBnY1uh1gGh6XEw02iH9hrVXe+0FdTgqG8pVKap62GhaVDn9Z8nhr17n6qsEFpWVlkBKy0jcN5KnshJc3F88nqcnPIjfnafD3P1pu1OmJSSgqzsbHTv8uYmiYyMDBw7dULwy5f1bhccEoJuXYW7aHbv6oTgEOFt4hMT4T5mNEZMnIBvf1iPxORkwbqK/47rXBkZwTIOhwMpKSkEvgjGx5CUY21VZSUyXqfAwEb49Q06mCM1+t3d/878+DcOrf4dlzcdQFLYu5NsleUV4FdVgSv/ca0Q3/naFZVIjH4Ny04dhJZb2tsgLqxhLYcTY14jLjwKpjaW9ZYpLy9DVVUVeG+1AGyMiooKhIdFoGs34f27a7euCAkW/Z0IeRFSp7xTdyeEh4ahsrJuS1aGYfD86TMkvI5HJwd7wXI7ezs8f/YcCa+rP+OoiEi8CApG9x6ib058CCk2B+019OGfJHzu808Kh7W2schtpNl1z33lVRWwqHXuextXSgZSbHaztKSuOdb6JQj/1vBLCIWtjuhuyvUda61rHWvfNtTKGfeinqO0UvRvz8bisNkwUtVFSJrw9zMkNbbBx/jepp3wKi0WWW+1oovMTISxqg5M1KqTb5ryKrDTNWuRlvqESCrqpkrIJ+zq1atQqNU66Ouvv8aaNWsEz2fNmoUJEyYI1jk7O2PNmjUYNKj6omLZsmWYNWuW0GuUlpbi0KFD0NevPulv374dQ4cOxaZNm6CjowM5OTmUlZVB563uGGPHjsWSJUtw6dIlwfsdOHAAM2fOBOutbm5vc3FxgZeXF1atWgUvLy/0798fMTEx8PHxwZAhQ+Dl5YUVK1YAAE6ePAk2m41///1X8HoHDhyAiooKvLy84ObmJvTaBQUFOHToEI4fP47+/fsLyuvp6dWJY8iQIfjiiy8Ef6MtW7bAy8sLVlZW0NSsHktHXV1dqL61lZWVCSUigYZ3GS4uKALD50NBWVFoubyyIgpz63ZHAIDs1Ax4nrqKaWuWgM2pP1lSWlyCbUvWo6qyEiw2G+4zx8HUrv4Ll8bKyqnuBqL+VguXmucp6Y0bV+ymtzfCoqNweMvWRr3OuyjLyoPD5iCnRPjvnlNSAFWeoshtnieGYbBVdzyKC0ZkZiIsNAzgbtkd0hwpKMsqILskHx20TeBu2R0Lzv3ebLG/jScjCw6bjcJy4QueovISKHBFX1iryinCUFUblfwqnAi4DZ60LIZ16Ak5aS4uvrwvcpuBFl2RX1qEmKwkkesbQ5HLA4fNQW6t1l55JQVQlRM9plR4Rjw23z+J1S6TIc2RghSbgyfxr/CP72VBGZ/YYChzFbBx8AKwWCxIsTm4EfYY51/U33KzMd7sU8L1yCkpgFo9+9SzxFAMsXLGw7gXiMxMgIWGAQZbdnuzTxXnIz43Hb97HUNMVjLkZWQxxs4Ff41cjvlnf0NSftOM4ZeVXd2CU11NTWi5uqoaUtLqH3swKzsb6qrCXQLVVVWRlZ0teG5rbYMf/vc/GOkbICsnB/uOHMacRV/g1MFDUFFWhrGREXR1dLBj7178b/VqyMnK4tjpU8jKzkZm1se1LJWUY21pYTEYPh88JeHzv5yiPIrzCkVuw1NWRN9pI6BppIeqykpE+Abh8uZDGLl6Vr3jzPmeuw15FSXo2zTteGsAUFRQAD6fDwUV4e6vCsrKKMitP9ELAD/OXY3C/ALw+VUYNGEkug/sU2/Za0fOQVlNFe07im4R/KHycvPAr6qCqrrwd0JVTQ3Z9eyX2VlZUFXrJlxeXQ1VVVXIy82FuoYGAKCwsBDjho5GRXk52BwOVny1El3eSuJNnj4VRYVFmD5hCthsNvh8PuYunI/+gwY2ul5KNcepYhHHKTnRXZSfJ4bB3ao7Hr1+gajMRLTXMICbRTehc19ts7sOQ1ZRnmAc0qakLKsAKTanTjfO6mOt6Dr4JYRimHUP+MQGISKzuqvtECtnoWPt26y0jGCq3g6/eR1r8vhrKMrwwGGz6wwnkV9WBGXZ9yeVlWXlYadjhr2+l4SWP014BUUuD9+6TgdY1cnLe1HPcT3scZPGT5oRwxd3BKQWSsYR8glzdXXF338LDx6rVuuiqWPHNwO6amtXt4ixs7MTWlZaWor8/HwoKVX/WDE0NBQk4gDA2dkZfD4f4eHh9SakuFwupk6div3792PChAkIDAxEUFDQOyd5cHFxwb59+8Dn8+Ht7Y3+/fvD0NAQ3t7ecHR0REREhKBl3PPnzxEVFQVFReGLqNLSUqFutjViYmJQUVEBJycnwTJlZWVYWta9OHr7b8RisaCjo4P09PQ65d7ll19+wQ8//CC0bN26dTAd6lTPFiLUSloy/8VTG5/Px8WdR9B7rDvUdbXe+ZJcWS7m/rwa5WXliAuJwJ1jF6GqqQ4jG/OGx/UONzw9sXHnDsHzrevWAyLiZpg61fsgqRkZ2PTPXuz4cYNQS5nmUnseEBar+vMQ5aj/TajyFLFt1EqwUP3D/1bEE0y0HwA+w4ecNBdfu07DlgcnkV8meqy2llTfHCc1n9nZ4Hso+6+lgEdYdXfbq68e1hnguZdJR9jpmuHA02stO/gziwWmnk9DX1kL87qNwKnAuwhIjoCqnCJmdhmChc6jsePROQDVY+mN6+SKPb6XEJkRDx0lDcx1Go6cjgU4HVy3S33TqR0zq97P4sjzm1CVU8KOUSvBYlXvUzcjnuIz+wHg86t/jIemxyH0rYksXqbGYvfYLzHKtg92/lfXD3Xj9i1s3LRJ8Hzrr79VR1rru8swTL03WQTqHM+Et+nZ/U1rHnMAHTt0wKjJk3DVwwNTJ06ElJQUfv9xAzb8/hv6DRsKDocDp86d0aObcFLjo7TBY61IIj6C+j4XVR0NqOpoCJ7rmBmiMDsPgbceikzGBXg8QNTTFxj55SxIvWPogMaqG+77TxaLfv4a5aVleB0RjWtHzkFdVwuOvevuF/cu3ECAzxN88eNXkJZp2jqwUPsc9+64654Ta778b5bzeDz8e/QASkpK4O/3DDu37oBuOz04dK5uaX7v9l3cvnEL329YBxNTE0RFRGLH5m1Q19CA+7DBTVOxWscpFlDv8fZ4wG2o8pSwdeRywbnvduRTTOjUH1UikgbjOvaDi5kDvrq2s1knyxGlvsm9Dj27ATU5Jfw95kuABeQUF8Aj3BeTHdzAF1GHoVY9EJOVhLD0180dch3Vn8X79TTuiOKKUvgnC7dytNQ0xDDrHjji74GY7GRoK6hikv1A5NkU4sqrd3fTJ4SIRsk4Qj5h8vLyMDd/9w996bd+RNf8GBS1rOYCT5SaMu+7+Jo7dy7s7e2RmJiI/fv3o3///jB6xwyaffr0QUFBAfz9/fHgwQNs2LABBgYG2LhxI+zt7aGlpQVra2tBfJ07d8axY3XvRta0XntbzQ+v+n8AvyFd60KDxWK98+8hyrfffouVK1cKLeNyuTgV/P6xjXiK8mCx2XVaZhTnFUBeuW7LmfKSMqTEJiD1dRJuHqruNsswDMAw2Dh9FSZ/vQDGHarHY2Gx2VDTqf776Bi1Q2ZSGh5dudNkF4h9unWD7VsJzvKK6iROZk4ONN5KDGfn5UJN5eMHzw6LikJ2bi6mLV8mWFbF5yMg5CVOX72CRxcuCg3+/rHySotQxa+qcxddRVYRucWix+Mqr6rAJu8T2Hr/FFR5isguzscQqx4oKi9FXmkRTNX1oKukjg2D5gm2qdkvPeZuxqxTPyOloGnHkCsuL0UVnw8FGeEB9uVl5FBUXiJym4KyYuSXFgkScQCQUZgLNosFJVl5oRYCPY3t0NvUHof8riOtMFvUyzVaQVkxqvhVUJET/g4oyyogt0R0659xHV0Qmh6HiyHVLfle56Rij+9F/DJkIY4F3EJOSQEmOwyEV7S/YLbb17lpkJWSxhc9xuBMsGe9F54fq2afUq3VukRVTqHeMd7Kqyrwp/dxbHlwEqpySsguzsNQ656CfUoUBgzCM+Khr1z3eNhQfXr2gq31mxZEgu9zVjY01N8kcrJzc6CmWv/3WV1NTagVHABk5+S+cxs5OTmYmZgiITFRsMza0hLH9+1HYWEhKioroaqighkLPoeNiJsqDdGWj7Vvk1XggcVm12kFV1JQBDmlhnfH1DY1QIRv3RkLA2/6wP/6AwxfOQPq+vW3CG8MecXq8eoKcoQ/i8K8fCgqv3uyCHXt6r+zrpE+CnLzcevUpTrJOM+LHrh77hoWrF8NPePGzb77NmUVZbA5nDqt4HJzcurcDK2hpq5et3x2DjgcDpRV3kw8xWazoW9QfSO0vUV7vI59jeMHjwqScbu37cLkGVPQ3616PFJTczOkpqTi2KEjjU7G5dccp2qf++QU33mc2nL/JLY9OC049w22ckZReSnyax2nxtq54DP7Afj2+t+IzU5pVKz1ySstRKWI87fqe+rwm9dR/Hn/ONTklJBVnIfhNr1QVF6CvBLhOnClpNHPvHOzTfRTo6C8GFV8fp1WcIpc+Tp/V1F6m3TC49cvUVXrd+xo27549PqlYJbSpLwMyHCkMaPLEFx99bCJz3yEfBooGUcIaXLx8fFITk4WdOl8/Pgx2Gw2LCyqu4bJyMigqqpuSxg7Ozt06dIF//zzD44fP47t27e/831qxo3bsWMHWCwWbGxsoKenh4CAAFy9elXQKg4AHB0dcerUKWhpaQla8L2LmZkZpKWl8fTpUxgYVP8Qz8/PR2RkpNDrvo/Mf62wRNX3bVwu96NnsuVISUHXRB+xLyNg1fVNK73YlxGw6Gxb973kuJj3y1dCy57feYjXryIxZulMqGiKviCoUVnRdHek5Xk8oRkVGYaBuqoqngQEwMqsejyjiooK+L98iSUzZ9X3Mu/VtVMnnNyxU2jZj39thZG+PmaMHdckiTgAqORXISIzAY7tLPEw7s24VI76lngU9+Kd21YxfMEMn65mjngSHwIGDOJz0zDvzK9CZWd2HQKetCx2PTovcpa6xqpi+EjJz4SZRjuh1lNmGu3qvaMfn5OGDjqmkHlrDDwNeWXwGb7QBUBP447oa+aAw89uIDk/s8ljr1HJr0J0VhLs9cwFM/MB+O/5K5HbcDkyqGKEv6v8Wgl4Lke6TlK+ugyrugVkE1+RVPKrEJGRgM76wvtUZ30rPHzfPsXnI/O//cPVzBG+r1++M1lopt6uURe6Ir/Pamp48uwZrP47/ldUVMA/KAhLPv+83tfp2KEDnjzzw5QJb2Z4fOLnh44d6h7PapSXlyMu/jUc3mqpXKNmOIb4xASEhodj4Zw5H1w3oG0fa9/GkZKCppEuEkOjYer4Jnma+CoaxvYNn701Mz4FvFpJyICbPvC/5o2hy6ZDy7j5JjWRkpaCvpkRIoJCYNf9zRijEUGv0MHpA8YEZer+nT0veuDO2auYv2YFDERMuNEY0tLSsLSywLOnfujt+ua3xLOnz9Czj+gJWTrYdcAjn0dCy/ye+MHS2gpSUu+4lGMYlFe8GZesrLQU7FpjsXE4HDAfePNQlEp+FSIzE+HQzkLoXOfQzgK+r9/dbfjtc19fMwc8/e/cV2NcR1dMchiI727sQWRmQqNjrU/NsbaLvpUg4QQAXfSt4PPWsVeUKj5fcC7uZ94Zj0Uca13NOkOaI4XbEe+eJKWxqvh8vM5JgY22Cfzf6s7bQdsEAcnv7t5rqWkIbUU1PHhYN8kuw5GqUyeGYarbZjbHyY80PfqMWh1KxhHyCSsrK0NqqvC4PVJSUtDQ0Khni4aRlZXFjBkz8OeffyI/Px9Lly7FhAkTBF1UjY2NcfPmTYSHh0NdXR3KysqC1mVz587F4sWLwePxMHr06Pe+l4uLC/766y+MHj0aLBYLqqqqsLGxwalTp7Bt2zZBuSlTpuCPP/7AyJEj8eOPP0JfXx/x8fE4f/48vvzyS6FutQCgqKiIGTNm4Msvv4Samhq0tLSwbt06sNns93eveouWlhbk5OTg4eEBfX19yMrKQllZ+f0bfqBug11w6e9j0DU1gL65MQI8HyEvKweO/XsAADxPXUVBTh5GLJgCFpsNLQPh2a/klRTAkZYSWv7w8h3omhhAVVsdVZVViA4MxQsfP7jPHN/k8ddgsViYNHIkDpw5DUM9PRjo6eHAmdOQ5XLh/lYSdO2mTdBSV8fimTMBVF/gxyRUD0pdUVmJjKwshMdEgycrBwM9PcjzeDA3NhZ6L1muLFQUleosb6xzwV742nUqIjLjEZoWhyHWPaCloIqrodXdOGZ3HQYNeWX8/t+YMe2UNWGlaYSw9NdQ4MphbEdXGKvpCtZXVFUiLkc4QVJUVt06rfbypvQo7gXGdHQRzIjaxcAKyrIK8IuvHtx6gEVXKHHlcf6FFwDgRUoUXMwcMMquLzwjn4MnIws3y27wT4wQdEPtZdIR/dp3wdmge8gtKYCCTPX4c+VVFXUG8m4Kl0J8sLz3BERlJiE84zXcLLpBQ14FN8OfAACmOg6COk8Zf/mcBgD4JYbiix5j4G7ZDQFJkVDlKWKO0zBEZMQLWkb4JYZhhE0vxGQnIyIjAbqK6pjsMBB+Ca/qJO6aytkXnvjGdRoiMhLwKi0WQ//bp6688gEAzHEaDg15ZfzmeRQAoK+sCSstI4SmVe9T4zu6wkRNV7AeAKZ1dkdoWhyS8jLAk5HFaNu+MFfXxzafMyJj+BgsFguTxo/HgWNHYaivDwN9fRw4erT6+zzgzThVa3/+GVqaGlg8vzpB99m4cZi/dCkOHj8Gl5694PXQB0+eP8O+txLqW3ftRO8ePaGjrYWcnFzsO3wYRUVFGObuLihzx9MTKioq0NHWRlRMNDZt346+vXqhe9cP6P5fi6QcazsN7IG7+85D06gddMwM8Or+MxRk56FD3+oxxnzP30ZRTj76zxkLAAi68whK6qpQ1dMCv7IKEU+CEOP/CoMWfiZ4zQCPB3h66R4GzB0HJQ0VFOdVf2ekuTKQlv24m03v0me4G05s+xf65sYwtjSD7637yMnMhrNb9bni2tFzyMvKweRlcwEAPjfuQVVDDVrtqv/2saGR8Lp8E72GvJm9896FG/A4cRFTV8yDqpYG8nOqk0RcWS64crJNEvf4yZ9h47oNsLS2Qgc7W1y5cBlpqWkYMWYUAGDvzt3ITM/A/36oHr93xJhRuHDmPHZu2Y5ho4Yj5MVLXL98FWt+Wi94zWMHj8DS2gp6+nqoqKjEk4ePcfO6B1Z8vVpQxrl3Txw5eBhaOtowNjVBVHgETh8/hSHDhzRJvc6/8MKXLlMQmZGA0PQ4DLaqPk5dC61OJM7qOhTq8sr40+s4gOpzn6Wm4X/nPh7G2PWFsaouNv23Hqjumjq9y2D8du8I0gqyofpfS+eSirJmmQDhdNBdfNd/BsIz4hGSGoNhNr2gpaiGyyHVx9p53UZAU14FG+8dBlA9tIG1lhFepcdBkcvDhI79YKKmi1/+W/+2odbO8IkNapHhJm5GPMU8pxGIy0lBdGYS+po5QI2nJJjBdaydC1TlFPHv0ytC2/U26YTorCSR44YGpUTBzcIJ8TlpiMlOgpaCKkbZ9kFgcmS93Xhbipw0V6hVt56SBtpr6CO/tAhphTlijIyQd6NkHCGfMA8PD+jqCl8oWFpaCmYC/Vjm5uYYM2YMhgwZguzsbAwZMgS7du0SrJ83bx68vLzQpUsXFBYWwtPTEy4uLgCASZMmYfny5Zg8eTJkZd//w9fV1RWbN28WbA8Affv2RWBgoFALNh6Ph/v37+Prr7/GmDFjUFBQgHbt2qF///71tpTbvHkzFixYgGHDhkFJSQlfffUVEhISGhRXDSkpKWzbtg0//vgj1q5di969ewtmgG1KNt0dUFxQBJ8LN1GYmw9NfV189uV8KGtUt7wozM1HXuaH/SCpKCuHx8GzKMjOg5SMNNT1tDBy4VTYdG+emUhrzBg7DmVl5fj1710oKCyEraUldvy4QajFTWpGBtjsN0nRjOxsTFm6VPD8yPnzOHL+PBxt7bD3V+FWZc3NOyYASrLymOo4CGo8ZcRlp+C7G3uQ/t8PQnWeErQU3nS347DYGNfRFfoqWqjiVyEwORLLLm1ttu6bDfUyNQZy0ly4mDtCkctDekE2jj73QF5pddc2RS4PynJvusGUV1Xi0LPrGGrdA5/3GI2S8lK8TI3B3chngjJdDW0gxebgMwfhAcM9o57DM6ruTMWN9TAuGEpcHiba94eqnCLic1Kx4c5BQQsGNZ4SNBVUBOXvRT2HnBQXQ6x6YFbXoSgqL0VwSjQOP78hKHM66B4YhsEUBzeo8ZSRX1oEv4RQHAu42eTx1/CKDoASVx7TOr/Zp769sbvefYrNYmNcx34wUNZCJb8KQcmRWHJxi9A+pSAjh5V9PoMqTwlF5SWIykzEiit/ITzj3bNpfqgZkyajrKwMv27ZXP19trbGjj83CX+f09OEvs+dbO3w89p1+Hvfv9i9bx/09fTwy/r1sLV504orLSMD3/34A3Lz8qCqogJbGxsc+Hs3dN8alzQzKwtbdu5AVk4ONNTVMXTQIMydPqNR9ZGUY615VzuUFpbg+VUvFOUVQE1PC0OXToWiugoAoDi3AIXZeYLy/MoqPDpzE0W5+ZCSloaqniaGLJ0KI7s3k6GEePmBX1mFW7tPCb1Xl+Eu6DqiH5qaQy8nFBcU4vbpK8jPyYOuYTvM/W4Z1LSqbyjm5+QiN/PNPs/wGVw/eg7Z6ZlgczhQ19bE0Klj0d3tzW+FRx6eqKqsxKE/hMfTdZswAoM+G9kkcfcb2B/5eXk4tO8gsjOzYGJmgt+2/AEd3ep9NyszC2lpaYLyuu308OvWP7Bzy3ZcPHse6hoaWLJqOfr2cxGUKSkpwZbfNyEjPR1cLheGRkb47se16Dewv6DMstUrsG/PP9j6+ybk5ORAQ0MDw0ePwIy5H9/q/G33YwKhxJXHFMdBUOUp4XV2CtZ47BUcp9R4StCSf/s4xcIYOxfBuS8oOQorL/8llDwZbtMTMhwprBkoHOPR5x446t/0x1zPaH8oy8pjeufBUJdXQmx2Cr6+tktw7FTnKdc6f7MwsVN/GKhUT14UkByBRRc2IbVA+Pytr6yFjrrmWHXl3T0+mopfQigUZOQwwqYXlGUVkJSXga0PTglmR1WWVajTHVdOmovO+lY4EXhb5GteeeUDhmEw2rYPVOUUUVBWjKCUKJx74dXMtXk/K00j7Bj9ZqiXpb2qb2RcD32Mn+8dEldYhLwXixF3KpsQIlHWr1+PixcvIjAw8KO2T0hIgLGxMfz8/ODo6Pj+DVpQUVER2rVrh02bNmHOR3Zz+lCH/a63yPs0p+ldh6AgMkrcYTSKYntzDNy77P0FW7nb8//CWo9/xB1Go/zoPg+jDn4j7jAa7eLMX9F/z9L3F2zl7n6+DQWpae8v2Iop6mhLzLF26/1T7y/Yii3vMxFX/2uF1JYN69ALKXlNMyuxOOkqa8L9nxXiDqNRPOZtQd+/F4k7jEbzXrgTs09vFHcYjbJ/wv/Qc+cCcYfRaA8X7RZ3CB8lZ/gkcYdQL9UrJ8QdglhQyzhCSKtQUVGBlJQUfPPNN+jevXurSMQFBAQgLCwMTk5OyMvLw48//ggAGDmyae6OE0IIIYQQQgj59FAyjhDSKjx8+BCurq6wsLDA2bNnxR2OwJ9//onw8HDIyMigc+fOePDgQaPH1COEEEIIIYQQ8umiZBwhpEmtX78e69ev/+DtXFxcxD4AbG0ODg54/vy5uMMghBBCCCGEkI/Xyq6zCMB+fxFCCCGEEEIIIYQQQkhToGQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUfJpNtbWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKRiqJtqa0Mt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCJEYP//8M3r06AEejwcVFZUGbcMwDNavXw89PT3IycnBxcUFISEhQmXKysqwZMkSaGhoQF5eHiNGjEBiYuIHx0fJOEIIIYQQQgghhBBJxee33kczKS8vx/jx47Fw4cIGb/P7779j8+bN2LFjB/z8/KCjo4OBAweioKBAUGb58uW4cOECTp48CR8fHxQWFmLYsGGoqqr6oPhozDhCCCGEEEIIIYQQIjF++OEHAMDBgwcbVJ5hGGzduhXfffcdxowZAwA4dOgQtLW1cfz4cXz++efIy8vDvn37cOTIEQwYMAAAcPToURgYGODOnTsYNGhQg+OjlnGEEEIIIYQQQgghpMWVlZUhPz9f6FFWVtbiccTGxiI1NRVubm6CZVwuF3379sWjR48AAM+fP0dFRYVQGT09Pdja2grKNBhDCCHkk1RaWsqsW7eOKS0tFXcoH00S6sAwVI/WRBLqwDCSUQ9JqAPDUD1aE0moA8NIRj0koQ4MQ/VoTSShDp+qdevWMQCEHuvWrWuy1z9w4ACjrKz83nIPHz5kADBJSUlCy+fNm8e4ubkxDMMwx44dY2RkZOpsO3DgQGb+/PkfFBeLYWiOW0II+RTl5+dDWVkZeXl5UFJSEnc4H0US6gBQPVoTSagDIBn1kIQ6AFSP1kQS6gBIRj0koQ4A1aM1kYQ6fKrKysrqtITjcrngcrl1yq5fv17Q/bQ+fn5+6NKli+D5wYMHsXz5cuTm5r5zu0ePHqFnz55ITk6Grq6uYPm8efOQkJAADw8PHD9+HLNmzaoT78CBA2FmZobdu3e/8z3eRmPGEUIIIYQQQgghhJAWV1/iTZTFixfjs88+e2cZY2Pjj4pDR0cHAJCamiqUjEtPT4e2tragTHl5OXJycqCqqipUpkePHh/0fpSMI4QQQgghhBBCCCGtmoaGBjQ0NJrltU1MTKCjo4Pbt2/DwcEBQPWMrN7e3vjtt98AAJ07d4a0tDRu376NCRMmAABSUlLw8uVL/P777x/0fpSMI4QQQgghhBBCCCESIz4+HtnZ2YiPj0dVVRUCAwMBAObm5lBQUAAAWFlZ4ZdffsHo0aPBYrGwfPlybNy4Ee3bt0f79u2xceNG8Hg8TJ48GQCgrKyMOXPmYNWqVVBXV4eamhpWr14NOzs7weyqDUXJOEII+URxuVysW7euwc3CWyNJqANA9WhNJKEOgGTUQxLqAFA9WhNJqAMgGfWQhDoAVI/WRBLqQJrW2rVrcejQIcHzmtZunp6ecHFxAQCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KBbt264desWFBUVBWW2bNkCKSkpTJgwASUlJejfvz8OHjwIDofzQfHRBA6EEEIIIYQQQgghhLQQtrgDIIQQQgghhBBCCCHkU0HJOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQMo4QQkibxDAMaA4i0lSioqJw8+ZNlJSUAADtW2JWWloq7hCahKTUgxBCWpt+/fohNze3zvL8/Hz069ev5QMi5APRbKqEEPKJKCsrw9OnTxEXF4fi4mJoamrCwcEBJiYm4g7tgxw+fBh//PEHIiMjAQAWFhb48ssvMW3aNDFH1nBVVVXYsmULTp8+jfj4eJSXlwutz87OFlNkHy4xMRGXL18WWY/NmzeLKaqGy8rKwsSJE3Hv3j2wWCxERkbC1NQUc+bMgYqKCjZt2iTuEBssISFB6PvdoUMHcLlccYfVYHw+Hz///DN2796NtLQ0REREwNTUFGvWrIGxsTHmzJkj7hAbRFLq0db3p7y8PFy4cAEPHjyoc94bNGgQevToIe4QG0RS6kFIU2Oz2UhNTYWWlpbQ8vT0dLRr1w4VFRViioyQhpESdwCEEEKa16NHj7B9+3ZcvHgR5eXlUFFRgZycHLKzs1FWVgZTU1PMnz8fCxYsgKKiorjDfafNmzdjzZo1WLx4MXr27AmGYfDw4UMsWLAAmZmZWLFihbhDbJAffvgB//77L1auXIk1a9bgu+++Q1xcHC5evIi1a9eKO7wGu3v3LkaMGAETExOEh4fD1tYWcXFxYBgGjo6O4g6vQVasWAEpKSnEx8fD2tpasHzixIlYsWJFq0/GvX79Grt378aJEyeQkJAg1KJPRkYGvXv3xvz58zF27Fiw2a27Q8RPP/2EQ4cO4ffff8e8efMEy+3s7LBly5Y2k8Rqy/WQhP0pJSUFa9euxbFjx6CjowMnJyfY29sLznuenp74888/YWRkhHXr1mHixIniDlkkSalHbX5+fjhz5ozIGzjnz58XU1QfTlLq0RYFBwcL/v/q1SukpqYKnldVVcHDwwPt2rUTR2iEfBiGEEKIxBoxYgSjq6vLrFq1ivH29maKioqE1kdHRzMHDx5kBg0axOjo6DC3bt0SU6QNY2xszBw6dKjO8oMHDzLGxsZiiOjjmJqaMlevXmUYhmEUFBSYqKgohmEY5q+//mImTZokztA+SNeuXZk1a9YwDFNdj+joaKagoIAZMWIEs2vXLjFH1zDa2tpMYGAgwzBv6sAwDBMTE8PIy8uLM7T3Wrp0KaOoqMiMHTuWOXToEBMaGsrk5+czFRUVTFpaGnP37l1m/fr1jKWlJdOhQwfm6dOn4g75nczMzJg7d+4wDCP8WYSGhjIqKiriDO2DtNV6SMr+pKmpyaxatYp58eJFvWWKi4uZ48ePM05OTswff/zRgtE1nKTU420nTpxgpKWlmaFDhzIyMjLMsGHDGEtLS0ZZWZmZOXOmuMNrsLZcj0uXLjX40VqxWCyGzWYzbDabYbFYdR48Ho/Zt2+fuMMk5L0oGUcIIRJsx44dTFlZWYPKvnz5stUn47hcLhMZGVlneUREBMPlcsUQ0cfh8XjM69evGYZhGB0dHeb58+cMw1QnR5WUlMQZ2gd5O5GooqLCvHz5kmEYhgkMDGSMjIzEGFnDKSgoMBEREYL/1yROnj59yqipqYkztPdavXo1k55bMlIvAAC8QUlEQVSe3qCy165dY86cOdPMETWOrKwsExcXxzCM8GcREhLS6hOjb2ur9ZCU/amhdfjY8i1FUurxNjs7O2bHjh0Mw7z5bvD5fGbevHnM2rVrxRxdw7XletROXNVOaNUkudhstrhDrVdcXBwTGxvLsFgsxs/Pj4mLixM8kpOTmcrKSnGHSEiDtM725YQQQprEokWLICMj06CyHTp0wMCBA5s5osYxNzfH6dOn6yw/deoU2rdvL4aIPo6+vj5SUlIAVNfp1q1bAKq7vbSlMZnk5eVRVlYGANDT00N0dLRgXWZmprjC+iB9+vTB4cOHBc9ZLBb4fD7++OMPuLq6ijGy9/vjjz+gqanZoLJDhgzBuHHjmjmixunQoQMePHhQZ/mZM2fg4OAghog+Tluth6TsTw2tw8eWbymSUo+3RUdHY+jQoQAALpeLoqIisFgsrFixAnv37hVzdA3XluvB5/MFj1u3bsHe3h43btxAbm4u8vLycP36dTg6OsLDw0PcodbLyMgIxsbG4PP56NKlC4yMjAQPXV1dcDgccYdISIPQmHGEEPIJKi0txalTp1BUVISBAwe2mUTWDz/8gIkTJ+L+/fvo2bMnWCwWfHx8cPfuXZFJutZq9OjRuHv3Lrp164Zly5Zh0qRJ2LdvH+Lj49vMuHcA0L17dzx8+BA2NjYYOnQoVq1ahRcvXuD8+fPo3r27uMNrkD/++AMuLi549uwZysvL8dVXXyEkJATZ2dl4+PChuMN7r++//x79+vVDjx49ICsrK+5wGmXdunWYNm0akpKSwOfzcf78eYSHh+Pw4cO4evWquMNrMEmpx9u8vb1RVFQEZ2dnqKqqijuc94qKikJeXh46d+4sWHb37l389NNPKCoqwqhRo/C///1PjBE2jKTUo4aamhoKCgoAAO3atcPLly9hZ2eH3NxcFBcXizm6hpOUeixfvhy7d+9Gr169BMsGDRoEHo+H+fPnIzQ0VIzRNUxERAS8vLyQnp4OPp8vtK4tjcFLPlHibppHCCGkea1evZpZunSp4HlZWRljb2/PSEtLM8rKyoy8vDzz6NEjMUb4YZ49e8ZMmTKFcXR0ZBwcHJgpU6Yw/v7+4g6rUR4/fsxs2rSpVY/RIkp0dDQTFBTEMAzDFBUVMQsXLmTs7OyY0aNHC7rptQUpKSnM2rVrmaFDhzKDBw9mvvvuOyY5OVncYTWIqakpw2KxGC6Xy/Tp04dZt24d4+3t3eDu6a2Nh4cH06dPH0ZeXp6Rk5Njevbsydy8eVPcYX2wtlqP33//XaibHZ/PZwYNGiTowqatrS3ojt6ajRo1ivn+++8Fz2NiYhg5OTnGzc2NWbp0KaOgoMBs2bJFfAE2kKTUo8akSZOYTZs2MQzDMD/99BOjqanJzJ07lzEyMmJGjx4t5ugaTlLqISsrywQHB9dZHhQUxMjKyoohog+zd+9ehsPhMNra2kynTp0Ye3t7wcPBwUHc4RHyXiyGeWuaJEIIIRLH1tYWGzduxIgRIwAABw4cwKpVqxAQEABDQ0PMnj0b6enpuHbtmpgjJYR8jKSkJNy7dw9eXl7w8vJCbGws5OTk4OzsDFdXV7i6uqJHjx7iDpO0AY6Ojvj6668FM3OeOXMGM2bMwO3bt2FtbY3p06eDx+O1+pbIBgYGOH36NJydnQFUz3B79uxZBAYGAgD27duH7du3C563VpJSjxrZ2dkoLS2Fnp4e+Hw+/vzzT/j4+MDc3Bxr1qxpE60uAcmpR58+fSAtLY2jR49CV1cXAJCamopp06ahvLwc3t7eYo7w3YyMjPDFF1/g66+/FncohHwUSsYRQoiEU1JSgr+/P8zNzQEAkyZNgqKiomBck8DAQAwZMgTJycniDPODpKeni+yS0LFjRzFF9H6XL19ucNmaxClpHsHBwbC1tQWbzUZwcPA7yyooKMDAwADS0tItFF3jJSQkwNPTE15eXjh37hyKiopQWVkp7rDea9asWZg6dSr69esHFosl7nA+Wluuh6qqKh49egRra2sA1XWprKzEkSNHAAC+vr4YP348EhISxBnme8nJySEiIgIGBgYAgP79+6NHjx7YsGEDgOoxvzp37ozc3FwxRvl+klIPAKisrMSxY8cwaNAg6OjoiDscgupu0KNHj0Z4eDgMDQ0BAPHx8bCwsMDFixcFvxtbKyUlJQQGBsLU1FTcoRDyUWjMOEIIkXBsNhtv33fx9fXFmjVrBM9VVFSQk5MjjtA+2PPnzzFjxgyEhoai9r0kFouFqqoqMUX2fqNGjWpQudZeD1VV1QYnGLKzs5s5mo9jb2+P1NRUaGlpwd7eHiwWq87+9DZlZWXs3r1b0FqoNYuOjoaXl5egpVxVVVWrn4iiRlZWFoYOHQp1dXV89tlnmDp1aque8KA+bbkeFRUVQpPIPH78GMuWLRM819PTaxOTs6ipqSElJQUGBgbg8/l49uyZ0Hic5eXl7/zOtxaSUg8AkJKSwsKFC9vEOGSi5OfnN7iskpJSM0bSdMzNzREcHIzbt28jLCwMDMPAxsYGAwYMaBM3EsaPH49bt25hwYIF4g6FkI9CyThCCJFwVlZWuHLlClauXImQkBDEx8cLXZy/fv0a2traYoyw4WbNmgULCwvs27cP2trabeLHYo3arfjaqq1bt4o7hEaLjY0VzDwYGxv7zrJlZWU4c+aMUNe91iQ2Nhaenp6ClnB5eXno2bMn+vbti8WLF6Nr166QkmobP/cuX76M3NxcnD59GsePH8fWrVthaWmJqVOnYvLkyTA2NhZ3iA3Sluthbm6O+/fvw9TUFPHx8YiIiEDfvn0F6xMTE6Guri7GCBumb9++2LBhA3bt2oUzZ86Az+cLnfdevXrVqj+HGpJSjxrdunVDQEAAjIyMxB3KB1NRUWnwb47WfEOtNhaLBTc3N7i5uYk7lAbZtm2b4P813YJ9fX1hZ2dXpwX70qVLWzo8Qj4IdVMlhBAJd+7cOUyaNAm9e/dGSEgIunbtiitXrgjWf/3114iNjW31YwABgKKiIgICAlp91wkiWXJycjBnzhycP39e3KHUwWazYWhoiC+++AKurq5wdHQEh8MRd1hNIjExESdOnMD+/fsRGRnZJrraitKW6rFnzx6sWrUKEydOhK+vL1RUVIRmFf7pp5/w5MkToXNIaxQbG4uBAwciNjYWbDYb27Ztw8KFCwXrR40aBRMTE2zZskWMUb6fpNSjxpkzZ/DNN99gxYoV6Ny5M+Tl5YXWt+ahJt4ePy0uLg7ffPMNZs6cKRjP7/Hjxzh06BB++eUXzJgxQ1xhfrCioiJ4e3sjPj4e5eXlQutaYzLLxMSkQeVYLBZiYmKaORpCGoeScYQQ8gm4c+cOrl27Bh0dHSxZsgQ8Hk+w7ocffoCLi4tQ64fWatSoUZg2bRrGjh0r7lAara39AH6fkpISVFRUCC1rK111AKC4uFjkZ9GaLw4BYOLEibh//z5KS0vRu3dv9O3bF66urnBwcGhTLUdrq6iowLVr13D06FFcu3YNampqSEpKEndYH6wt1mPfvn24evUqdHR0sG7dOqHxvb744gsMGDAAY8aMEWOEDVNRUYFXr15BU1MTenp6QuuCgoJgYGAANTU1MUXXcJJSD6D65kFtNcMEtPYhGt7Wv39/zJ07F5MmTRJafvz4cezduxdeXl7iCewDBQQEYMiQISguLkZRURHU1NSQmZkJHo8HLS0tSmYR0swoGUcIIQSBgYGwt7cXdxjvlZmZiRkzZsDJyQm2trZ1uiS0lYkPJOUHcFFREb7++mucPn0aWVlZdda3hQurjIwMzJo1Czdu3BC5vi3UAQDCwsIEXVW9vb1RWlqKXr16oW/fvnBxcUHXrl3FHWKDeHp64vjx4zh37hyqqqowZswYTJkyBf369RN5Id9aSUo9RMnIyBB0826rXrx4gX379rX5bvdtrR6vX79+5/q20n2Vx+MhKCgI7du3F1oeEREBe3t7FBcXiymyD+Pi4gILCwv8/fffUFFRQVBQEKSlpTF16lQsW7asTSTdCWnLKBlHCCGfqLy8PBw7dgz79u1DYGBgm0g6XL58GdOmTUNBQUGddW3prrqk/ABetGgRPD098eOPP2L69OnYuXMnkpKSsGfPHvz666+YMmWKuEN8rylTpiAuLg5bt26Fq6srLly4gLS0NPz000/YtGkThg4dKu4QP8qrV69w/PhxbN++vc3Mpqqvr4+srCwMGjQIU6ZMwfDhwyErKyvusD6YpNTjbQzD4MaNG4JWc2VlZeIO6YPl5+fjxIkT2LdvH549e4aOHTsiMDBQ3GF9MEmpR1tmaWmJYcOGYdOmTULLV61ahatXryI8PFxMkX0YFRUVPHnyBJaWllBRUcHjx49hbW2NJ0+eYMaMGQgLCxN3iO+0cuVKkctZLBZkZWVhbm6OkSNHtpmWo+TT0zZG9CWEENJk7t27h/379+P8+fMwMjLC2LFj8e+//4o7rAZZunQppk2bhjVr1rSZSSdECQwMxJ49e8DhcMDhcFBWVgZTU1P8/vvvmDFjRptJxl25cgWHDx+Gi4sLZs+ejd69e8Pc3BxGRkY4duxYm0jG3bt3D5cuXULXrl3BZrNhZGSEgQMHQklJCb/88kubSsalpaXBy8sLXl5e8PT0REREBLhcLnr37i3u0Bpk7dq1GD9+PFRVVcUdSqNISj0AICYmBvv378ehQ4dQWFiIoUOH4uTJk+IO64N4e3tj3759OHfuHEpLS/Hll1/i+PHjbW7sUUmox+HDh9+5fvr06S0USeNs2bIFY8eOxc2bN9G9e3cA1TPVR0dH49y5c2KOruGkpaUFwxloa2sjPj4e1tbWUFZWRnx8vJije7+AgAD4+/ujqqoKlpaWYBgGkZGR4HA4sLKywq5du7Bq1Sr4+PjAxsZG3OESUgcl4wgh5BOQmJiIgwcPYv/+/SgqKsKECRNQUVGBc+fOtakfKFlZWVixYkWbTsQBbf8HcI3s7GzBYMpKSkrIzs4GAPTq1UtokPHWrKioCFpaWgAANTU1ZGRkwMLCAnZ2dvD39xdzdO935swZQffU8PBwSElJwcnJCRMmTICrqyt69OgBLpcr7jAbZP78+eIOoUm09XqUlpbi7Nmz+Pfff+Hr64uBAwciJSUFgYGBsLW1FXd4DZKSkoIDBw4IznmTJk2Ct7c3nJ2dMX369DaTwJKUetRYtmyZ0POKigoUFxdDRkYGPB6vzSTjhgwZgsjISPz9998IDQ0FwzAYOXIkFixYAAMDA3GH12AODg549uwZLCws4OrqirVr1yIzMxNHjhyBnZ2duMN7r5pWbwcOHBCMUZufn485c+agV69emDdvHiZPnowVK1bg5s2bYo6WkLooGUcIIRJuyJAh8PHxwbBhw7B9+3a4u7uDw+Fg9+7d4g7tg40ZMwaenp4wMzMTdyiN0tZ/ANcwNTVFXFwcjIyMYGNjg9OnT8PJyQlXrlyBioqKuMNrEEtLS4SHh8PY2Bj29vbYs2cPjI2NsXv3bujq6oo7vPeaMmUKunTpgtGjR8PV1RU9e/aEnJycuMP6aH5+fjhz5ozIyTRa42y29Wmr9fjiiy9w8uRJWFpaYurUqTh37hzU1dUhLS3dpsa6MzExwfjx47Fz504MHDiwTcX+NkmpR42cnJw6yyIjI7Fw4UJ8+eWXYojow1VUVMDNzQ179uzBzz//LO5wGmXjxo2CYT82bNiAGTNmYOHChTA3N8eBAwfEHN37/fHHH7h9+7bQZFFKSkpYv3493NzcsGzZMqxduxZubm5ijJKQ+lEyjhBCJNytW7ewdOlSLFy4sM5gw22NhYUFvv32W/j4+MDOzq7OBA5tZRbStv4DuMasWbMQFBSEvn374ttvv8XQoUOxfft2VFZWYvPmzeIOr0GWL1+OlJQUAMC6deswaNAgHDt2DDIyMjh48KB4g2uAnJwcyMvLizuMJnHy5ElMnz4dbm5uuH37Ntzc3BAZGYnU1FSMHj1a3OE1WFuux969e/H111/jm2++gaKiorjD+WhGRkbw8fGBoaEhjIyMYGVlJe6QPoqk1ONd2rdvj19//RVTp05t9WOUAdUt21++fNmmZ6uu0aVLF8H/NTU1cf36dTFG8+Hy8vKQnp5ep4dHRkYG8vPzAVSPi1f7hgghrQUl4wghRMI9ePAA+/fvR5cuXWBlZYVp06Zh4sSJ4g7ro/z7779QUFCAt7c3vL29hdaxWKw2k4xr6z+Aa6xYsULwf1dXV4SFheHZs2cwMzNDp06dxBhZw709rp2DgwPi4uIQFhYGQ0NDaGhoiDGyhqlJxCUlJeHcuXOIiIgAi8VC+/btMXbsWLRr107METbcxo0bsWXLFixatAiKior466+/YGJigs8//7xNtFKs0ZbrcfjwYRw4cAC6uroYOnQopk2bBnd3d3GH9cHCw8Px8OFD7Nu3D127doWFhQWmTp0KAG0qiSIp9XgfDoeD5ORkcYfRYNOnT8e+ffvw66+/ijuUJpGRkYHw8HCwWCxYWlq2iXMfUN1Ndfbs2di0aRO6du0KFouFp0+fYvXq1Rg1ahQA4OnTp7CwsBBvoITUg2ZTJYSQT0RxcTFOnjyJ/fv34+nTp6iqqsLmzZsxe/bsNt0CgpBP3a5du7By5UqUl5dDWVkZDMMgPz8fMjIy2Lx5M7744gtxh9gg8vLyCAkJgbGxMTQ0NODp6Qk7OzuEhoaiX79+ghaMrZ0k1CMuLg4HDhzAwYMHUVxcjOzsbJw6dQrjxo0Td2gfrLCwECdOnMD+/fvx5MkT9O3bF5MnT8aoUaOgqakp7vAaTBLqcfnyZaHnDMMgJSUFO3bsgIGBAW7cuCGmyD7MkiVLcPjwYZibm6NLly51Wie3lZbhRUVFWLJkCY4cOSKYjZ7D4WD69OnYvn07eDyemCN8t8LCQqxYsQKHDx8WzBguJSWFGTNmYMuWLZCXlxfMNGxvby++QAmpByXjCCFEwsXHx8PAwEDoLnp4eDj27duHI0eOIDc3FwMHDqzzI5kQSbVy5coGl23tF1XXrl3DyJEjsXz5cqxatUrQ8iolJQV//PEHtm/fjkuXLmHIkCFijvT9DAwMcP36ddjZ2aFTp0745ptvMGnSJDx+/Bju7u7Iy8sTd4gNIin1AKqTJTdv3sT+/ftx+fJlaGhoYMyYMdi2bZu4Q/sooaGhgnNfdnY2KioqxB3SR2mr9ag95h2LxYKmpib69euHTZs2tfqWozVcXV3rXcdisXDv3r0WjObjff7557hz5w527NiBnj17AgB8fHywdOlSDBw4EH///beYI2yYwsJCxMTEgGEYmJmZQUFBQdwhEdIglIwjhBAJx+FwkJKSIpgx8m1VVVW4cuWK4EKrNVq5ciU2bNgAeXn59yZRWnvihLQO77qQeltbuKjq27cvevfujZ9++knk+u+//x4PHjyo0627NZo8eTK6dOmClStX4ueff8Zff/2FkSNH4vbt23B0dGzVEx+8TVLqUVt2dragG2tQUJC4w2mUyspKXL58GWPGjBF3KI0iKfUg4qGhoYGzZ8/CxcVFaLmnpycmTJiAjIwM8QRGyCeCknGEECLh2Gw2UlNTRSbj2gJXV1dcuHABKioqEnM3mpCmoqSkBD8/P1haWopcHx4eji5duggmDGnNsrOzUVpaCj09PfD5fPz555/w8fGBubk51qxZA1VVVXGH2CCSUo+2LDk5GZs3b8batWuFZloEqgd9/+mnn7B69Wpoa2uLKcKGkZR6SKqoqChER0ejT58+kJOTA8MwbWosPx6Ph+fPn8Pa2lpoeUhICJycnFBUVCSmyOo3ZswYHDx4EEpKSu9NQrfVGx/k00HJOEIIkXBtPRlHSEtoqxdVCgoKCA4Ohqmpqcj1MTEx6NixIwoLC1s4MtIWNaQLN4vFwqZNm1ogmo+3evVq5OfnY+/evSLXL1iwAMrKyvjtt99aOLIPIwn1kKRhAWpkZWVhwoQJ8PT0BIvFQmRkJExNTTFnzhyoqKi0+u9Hjf79+0NdXR2HDx+GrKwsAKCkpAQzZsxAdnY27ty5I+YI65o1axa2bdsGRUVFzJo1651l29Ls9OTTRLOpEkLIJ6BmFtJ3aQszkaalpdXbAiA4OBgdO3Zs4Yga7kPGWGrNn0V+fn6Dy9ZuydEa1XdRNXfu3DZxUdWhQwdcunRJaGbbt128eBEdOnRo4ag+Hp/PR1RUFNLT08Hn84XW9enTR0xRfbi2Wo+AgABxh9AkPDw8sHv37nrXT58+HfPmzWvVSSxAMupRe596/vw5qqqqBK15IyIiwOFw0LlzZ3GE91FWrFgBaWlpxMfHC7UqmzhxIlasWNHqzxs1/vrrL7i7u0NfXx+dOnUCi8VCYGAgZGVlcfPmTXGHJ9LbCTZKtpG2jlrGEUKIhGOz2dDX1weHw6m3DIvFQkxMTAtG9XG0tLTw77//YsSIEULL//zzT6xZswYlJSViiuz9TExMGlSutX8WbDb7vS3GalqV1czO1ppNnz4d6enp+Pfff2FtbY2goCCYmpri1q1bWLFiBUJCQsQd4jsdOnQICxcuxJ9//on58+dDSqr6PmtlZSX27NmDL7/8Ert27cLMmTPFG2gD+Pr6YvLkyXj9+jVq/zxtK/sTIDn1aMvk5eURGhoKQ0NDketrkiitsRve2ySlHjU2b94MLy8vHDp0SNBdOycnB7NmzULv3r2xatUqMUfYMDo6Orh58yY6deoERUVFwXkjNjYWdnZ2baolcklJCY4ePYqwsDAwDAMbGxtMmTIFcnJy4g6tQSorK+Hl5YXo6GhMnjwZioqKSE5OhpKSEk3kQFo9ahlHCCGfgGfPnklEN9Wvv/4aEydOFExbn52djWnTpiEkJASnTp0Sd3jvFBsbK+4QmoSnp6e4Q2hSt27dws2bN6Gvry+0vH379nj9+rWYomq4GTNm4MWLF1i8eDG+/fZbmJmZAQCio6NRWFiIpUuXtolEHFDd5a5Lly64du0adHV120Q3YVHacj28vLzqDOZe2xdffIFdu3a1TEAfSU5ODnFxcfUmseLi4tpEskFS6lFj06ZNuHXrltC4iaqqqvjpp5/g5ubWZpJxRUVF4PF4dZZnZmaCy+WKIaKPJycnh3nz5ok7jI/y+vVruLu7Iz4+HmVlZRg4cCAUFRXx+++/o7S09J2tSglpDSgZRwghpM1YtWoVBgwYgKlTp6Jjx47Izs5G9+7dERwc3CYHsC4vL0dsbCzMzMwELZpau759+4o7hCYlCRdVf/75J8aNG4cTJ04gMjISQHVXyM8++wzdu3cXc3QNFxkZibNnz8Lc3FzcoTRKW67HyJEj4enpCUdHR5HrFy1ahGPHjrX6ZFy3bt1w5MiRersEHz58GE5OTi0c1YeTlHrUyM/PR1paWp2u8+np6W1ikpkaffr0weHDh7FhwwYA1S1e+Xw+/vjjjwbP1i0uly9fbnDZ2r0QWptly5ahS5cuCAoKgrq6umD56NGjMXfuXDFGRkgDMYQQQiQai8Vi0tLS3lnm6NGjLRRN4+Xn5zMTJ05kpKSkGCkpKebgwYPiDumDFRUVMbNnz2Y4HA7D4XCY6OhohmEYZsmSJcwvv/wi5ug+zP3795kpU6Ywzs7OTGJiIsMwDHP48GHmwYMHYo6sYYYMGcJ8//33DMMwjIKCAhMTE8NUVVUx48ePZ8aOHSvm6N7vhx9+YIqKisQdRpNwdXVlbty4Ie4wGq0t12PlypWMlpYWEx4eXmfdokWLGAUFBeb+/ftiiOzD3Lt3j+FwOMyqVauY1NRUwfLU1FRm5cqVDIfDYe7evSvGCBtGUupRY9q0aYyhoSFz5swZJiEhgUlISGDOnDnDGBsbM9OnTxd3eA0WEhLCaGpqMu7u7oyMjAwzbtw4xtramtHW1maioqLEHd47sVisBj3YbLa4Q30vdXV1JiwsjGGY6vN3zW+p2NhYRk5OTpyhEdIglIwjhBAJZ2VlxSQnJ9e7/tixY4y0tHQLRvTxfHx8GGNjY6Zz587Mq1evmH/++YdRVFRkxo8fz2RnZ4s7vAZbunQp07lzZ+bBgweMvLy84AfkpUuXGHt7ezFH13Bnz55l5OTkmLlz5zJcLldQj507dzKDBw8Wc3QN05YvqhiGYdhs9nuT7W3F+fPnGRsbG+bAgQPMs2fPmKCgIKFHW9HW6zFr1izG0NBQkFxnmOobBfLy8oyXl5cYI/swu3fvZrhcLsNmsxkVFRVGVVWVYbPZDJfLZXbt2iXu8BpMUurBMNU3ohYuXCioD5vNZmRkZJiFCxcyhYWF4g7vg6SkpDBr165lhg4dygwePJj57rvv3vlbizQ9VVVVJiQkhGEY4WTcgwcPGC0tLXGGRkiD0AQOhBAi4VxcXFBSUoJ79+5BXl5eaN3Jkycxffp0/Pbbb/XOxtiacLlcrFixAhs2bIC0tDSA6rGxpk2bhvj4eCQmJoo5woYxMjLCqVOn0L17d6HBn6OiouDo6PhBM5aKk4ODA1asWIHp06cL1SMwMBDu7u5ITU0Vd4gNkpqair///hvPnz8Hn8+Ho6MjFi1aBF1dXXGH9l5sNhupqakSMSYkm82us4zFYrWpCUGAtl8PPp+PcePGITQ0FA8ePMDPP/+MvXv34urVq62+C16NiooKSEtLIykpCadPn0ZUVBQYhoGFhQXGjRsHfX19vHz5Era2tuIO9Z0kpR61FRUVITo6GgzDwNzcvM5vE9IyYmNjGzy5VGs0ceJEKCsrY+/evVBUVERwcDA0NTUxcuRIGBoa0myrpNWjZBwhhEi4wsJCuLi4QEVFBTdu3BAksU6fPo2pU6di48aNWL16tZijbBhvb2+RY5bx+Xz8/PPPWLNmjRii+nA8Hg8vX76EqampUBIrKCgIffr0QV5enrhDbBAej4dXr17B2NhYqB4xMTGwsbFBaWmpuEOUeGw2G2lpadDU1BR3KI32vgkzjIyMWiiSxpGEepSXl2Po0KEICgpCUVERLl++jP79+4s7rAYbN24czpw5U+/kGS9fvkT//v2RlpbWwpF9GEmph6S5f//+O9fXN8Zfa8PhcNCnTx/MmTMH48aNg6ysrLhD+iDJyclwdXUFh8NBZGQkunTpgsjISGhoaOD+/fsScZOKSDZKxhFCyCcgIyMDffr0gY2NDc6ePYuzZ89iypQp2LBhA77++mtxh/fJ6du3L8aNG4clS5YI7uaamJhg8eLFiIqKgoeHh7hDbBAzMzPs2bMHAwYMEErGHT58GL/++itevXol7hDfy8PDAwoKCujVqxcAYOfOnfjnn39gY2ODnTt3Cs361xqx2WzY2tq+dwIQf3//FoqItGXbtm0T/L+goAAbNmzAoEGD6iTili5d2tKhfRADAwMMHjwYe/furbMuJCQE/fr1+z97dx5Wc/r+Afx9StqkhbIkaRE1Qin7FlLD2E2GKMkytpK1maEwlmZsiSEkZYvKMhn7UhE1aJWSnCJLEU2hheqc3x9+zteZwimm53w69+u6uq7Ocz5/vD8zdXTu8zz3jb59+yIsLIxBOsnVl/v40I0bNxAWFoacnBy8fftW7LmjR48ySlUzH9v9+p607359LzU1FYGBgThw4ADevHmDcePGwdXVlVNDQUpLSxESEoKEhATRznZHR0dOTRkmsouKcYQQIiMePnyI3r17w9jYGDExMfDy8sIvv/zCOlaNFRcXIzo6uto/5KX9DeJ7165dg729PRwdHREUFIQZM2bg9u3biI2NRXR0NLp06cI6okR+//13BAcHIzAwELa2tjh16hQePHgADw8PeHl5Yc6cOawjfpa5uTl+++03DBkyBLdu3YKVlRUWLFiAS5cuwdTUVOqPucjJyWHBggVo1KjRJ6/z9vauo0Rfhs/nw9fXF+np6eDxeDA1NYW7uzuMjIxYR6sRrt6HJEfWeDwesrKy6iBN7aWnp4t2/Pj4+Iit29jYoGfPnggLC4O8vDzDlJ9XX+7jvfetMQYPHozz589j8ODByMzMRF5eHkaNGiX1r7fv/Xv3enl5ORITE7Fs2TKsXr2aU7tIAaCiogInTpxAUFAQTp8+jbZt28LV1RWTJk2qF7uuCZFaTDrVEUIIqTMfNg4/fPiwUFFRUThu3DhONBXPyckRe5yQkCBs3ry5UE1NTdigQQOhtra2kMfjCVVVVYUGBgaMUtZOSkqK0MnJSfjNN98ITU1NhY6OjsKUlBTWsWrs559/FiorK4smsCkpKYmmk3KBqqqqMDs7WygUCoXe3t6iCarx8fHCZs2aMUwmGUmmJXPFmTNnhA0bNhR27dpV6OHhIZw3b56wa9euQkVFReG5c+dYx5NYfbkPrrt+/bpQTU1N+PvvvwuFQqEwPT1d2Lx5c+Hw4cOFFRUVjNNJrr7ch1AoFJqbmwu3bt0qFAr/13BfIBAIp02bJvTy8mKc7stFR0cLLS0tWceotbKyMuHGjRuFioqKQh6PJ2zYsKFw0qRJUjuYokWLFsLx48cLd+zYUe0EaEKkHe2MI4SQek5OTk6sefj7l/1/fy+NxypWrVqF3NxcbN26FTweD/3794eRkRF27tyJVq1aITk5GaWlpZg4cSI8PDwwevRo1pFlUklJCdLS0iAQCGBmZvbZXVrSREtLCzExMTAzM0Pv3r3h5OSE6dOn4/79+zAzM0NJSQnriJ8kLy+P3NzcetEbx8LCAnZ2dmI7gADA09MT586d48xR2/pyH/XBpUuX8N1332Hx4sXYtWsXLC0tcfToUVHvVK6oL/ehqqqK27dvo02bNmjatCkiIyNhbm6O9PR0DBgwALm5uawjfpH09HRYW1vj9evXrKPUyM2bNxEYGIhDhw5BVVUVzs7OcHV1xZMnT+Dl5YVXr17h+vXrrGNWERISgujoaERFReHu3bto1qwZ+vXrh/79+6Nfv34wNTVlHZGQT6JiHCGE1HOfayb+njQ2FS8tLcWcOXOQn5+PiIgIaGhoIC4uDu3bt0erVq0QGxsLPT09xMXFYfLkybhz5w7ryB9VkwmpjRs3/g+TkA8NHz4cb9++Ra9evfDrr78iOzsburq6OHfuHObMmYO7d++yjvhJ9WmaqpKSEm7duoW2bduKrd+9excdO3bkzEAQrt7HoUOH8MMPP0h07cOHD5GTk4NevXr9x6m+3PHjx/H9999j8ODBOH78OOcKWO/Vh/vQ09PDqVOnYG5ujk6dOsHT0xPjx49HbGws7O3tOTO8KCUlReyxUChEbm4ufHx8UF5ejqtXrzJKVjMbN27Enj17kJGRgSFDhmDq1KkYMmSIWE+8e/fuoX379qioqGCY9POePn2KyMhI/PXXXzh8+DAEAoFUfshMyIc+3e2XEEII50ljkU1SysrK2L17Nw4dOgQAUFBQEP2RqKOjgwcPHkBPTw8aGhrIyclhGfWzNDQ0PjoR79+k+Q/Imuw+5EIz7q1bt2LWrFkIDw/H9u3boaurCwA4ffo07O3tGaf7vOzs7HrT00dbWxtJSUlVilhJSUmcKjZy9T62b9+O5cuXw8XFBcOHD6+yq6SoqAhXr17F/v37ceHCBezevZtR0s/T1NSs8np75coVNGvWTGytoKCgLmPVWH25j/f69OmD8+fPw9zcHA4ODnB3d8elS5dw/vx5TvVZ69y5s9jpgve6d++OwMBARqlqbvv27ZgyZQpcXFzQvHnzaq9p3bq1VP+uv379GjExMaIdcomJiTA3N0e/fv1YRyPks6gYRwgh9VhOTg5at24t8fWPHz8WFSOkyfvdGhYWFrhx4wZMTEzQr18//PTTT5g5cyaCg4Nhbm7OOOWnRUZGir6/f/8+PD09MXnyZPTo0QMAEBsbi+DgYKxdu5ZVRImoq6uLvhcKhTh27BjU1dVhZWUFAIiPj0dhYSFnjgy3bt0af/31V5X1TZs2MUhTc8HBwRJd5+Xl9R8n+XLTpk3D9OnTkZWVhZ49e4LH4yEmJga//fYbFixYwDqexLh6H9HR0fjrr7+wZcsW/Pzzz1BVVUWzZs2gpKSEf/75B3l5edDW1oaLiwtSU1OlurDo6+vLOsJXUV/u472tW7eKdob+9NNPUFBQQExMDEaPHo1ly5YxTie57OxsscdycnLQ1taGkpISo0S1k5mZ+dlrGjZsCGdn5zpIU3PdunVDSkoKOnTogP79++Pnn39Gnz59oKGhwToaIRKhY6qEEFKPNWvWDMOHD8e0adM+Oqq+qKgIoaGh2Lx5M2bMmIG5c+fWcUrJ3bx5Ey9fvsSAAQNQUFCAyZMnIyoqCkZGRggKCkKnTp1YR5TIwIEDMXXqVIwfP15s/eDBg9i5cyeioqLYBKuhJUuWoKCgAP7+/qJpfpWVlZg1axYaN26MdevWMU74eZ/bUVmTYjYLcnJyaNmyJXR0dKrs0niPx+Nxok+ZUCiEr68vNmzYgCdPngAAWrZsiUWLFsHNzU3inaWs1Yf7ePHiBWJiYnD//n2UlpaiadOmsLCwgIWFhdgRNkJkyaVLlzBnzhzExcVVaSdRVFSEnj17wt/fH3369GGUsHZKSkqqnVDfsWNHRokko6WlBR6Ph0GDBqF///7o378/9YkjnELFOEIIqccKCgqwZs0aBAYGQkFBAVZWVmjZsqVop0NaWhpu374NKysrLF26FN9++y3ryDJBRUUFycnJ1faU6ty5s9QPDXhPW1sbMTExaNeundh6RkYGevbsiRcvXjBKJrn3A04+RpqPDAPAkCFDEBkZCTs7O0yZMgVDhw4VFUa5pKKiAgcOHICdnR2aN2+OV69eAQDU1NQYJ6uZ+nIfsuT9cCOu48J9fKx3Ko/Hg6KiIho2bFjHiWpm+PDhsLGxgYeHR7XP+/n5ITIyEseOHavjZLWTn5+PyZMn48yZM9U+L+3//gHv+vdFRUUhOjoaV65cgZycHPr16wcbGxv8+OOPrOMR8kn00RYhhNRjWlpaWL9+PZ48eYLt27fDxMQEz58/Fx1NcHR0RHx8PK5evUqFuDqkp6cHf3//Kus7duyAnp4eg0S1U1FRgfT09Crr6enpEAgEDBLVXGJiIhISEkRff//9N/z9/WFiYoKwsDDW8T7r1KlTyMrKQrdu3bBo0SK0atUKS5YsQUZGButoNdKgQQPMnDkTb968AfCueMXFAlZ9uQ8uMzU1xcGDB6vs8vm3zMxMzJw5E7/99lsdJauZ+nIfH9LQ0ICmpmaVLw0NDSgrK0NfXx/e3t5S++9HcnLyJ3uJDh48GPHx8XWY6MvMmzcPhYWFiIuLg7KyMs6cOYPg4GC0bdsWERERrONJpGPHjnBzc8ORI0dw+vRpfPvttzh69Chmz57NOhohn0U94wghRAYoKSlh9OjRnOnj9TEvXryAl5cXIiMj8ezZsyp/sHOlifWmTZswZswYnD17Ft27dwcAxMXFgc/n48iRI4zTSc7FxQVTpkzBvXv3xO7Dx8cHLi4ujNNJprqjze93kK5bt44TvzMtWrTATz/9hJ9++gmXL1/Gnj17YG1tDXNzc1y4cAHKysqsI0qkW7duSExM5PTQGaD+3AdX/fHHH1iyZAlmz56NwYMHV7sjPCYmBmlpaZgzZw5mzZrFOnK16st9fCgoKAi//PILJk+ejK5du0IoFOLGjRsIDg7G0qVLkZ+fj/Xr10NRURE///wz67hVPH369JNTbBs0aID8/Pw6TPRlLl26hD///BPW1taQk5ODvr4+bG1t0bhxY6xduxZDhw5lHfGTEhMTERUVhaioKFy5cgWvXr1Cp06d4O7uDhsbG9bxCPksKsYRQgjhjIkTJ4LP58PV1RXNmjWT+iM5HzNkyBBkZmZi+/btSE9Ph1AoxIgRI/Djjz9yamfc+vXr0bx5c2zatAm5ubkA3hWGFi9eLNWN6iVhYmKCGzdusI5RY9bW1rh//z7S0tKQmJiI8vJyzhTjZs2ahQULFuDRo0fo0qULVFVVxZ6X9v5F79WX++CqAQMG4MaNG7h27RoOHz6MgwcPVul95+TkhIkTJ0p1o/f6ch8fCg4OxoYNG+Dg4CBaGz58OMzNzbFjxw5cvHgRrVu3xurVq6WyGKerq4tbt27B2Ni42udTUlLQokWLOk5Ve8XFxaJBLFpaWsjPz4eJiQnMzc050WfU2toaFhYW6NevH6ZNm4a+fftW6eVHiDSjnnGEEEI4Q01NDTExMZwZ1CBL3vcC4tofwv/uYSQUCpGbm4vly5fjzp07SEpKYhOshmJjYxEYGIjQ0FCYmJjAxcUFEyZM4MybdADVDgbg8XiiXlhc6F8E1J/7IORr+1i/1MzMTHTq1AklJSXIzs7GN998I5W9U+fOnYuoqCjcuHGjyuTU0tJSdO3aFTY2NvDz82OUsGasra2xatUq2NnZYeTIkaIdcX5+fggPDwefz2cd8ZNevnzJub85CPkQ7YwjhBDCGe3bt0dpaSnrGKQaXP2DWENDo8oOS6FQCD09PRw6dIhRKsn9/vvv2LNnD168eAFHR0fExMTA3Nycdaxayc7OZh3hq6gv90HI19aqVSvs3r0bPj4+Yuu7d+8W7Qp/8eIFNDU1WcT7rKVLl+Lo0aMwMTHBnDlz0K5dO/B4PKSnp+OPP/5AZWUlfvnlF9YxJTZv3jzRrnZvb2/Y2dlh//79aNiwIYKDgxmn+zyu/t1ByHu0M44QQghn3LhxA56envDy8kKHDh2q9G6hP8xITUVHR4s9lpOTg7a2NoyNjdGggfR/ZiknJ4fWrVvju+++++Qkwo0bN9ZhKlIfPHr0CBEREcjJyakyRIB+nkhtRERE4Pvvv0f79u1hbW0NHo+HGzdu4M6dOwgPD8d3332H7du3IzMzU2p/xh48eICZM2fi7NmzeP82msfjwc7ODtu2bUObNm3YBqwloVCI0tJS3LlzB61bt0bTpk1ZRyKk3qNiHCGEEM7IzMzE+PHjkZiYKLZOx79ITVhaWuLixYvQ1NTEypUrsXDhQqioqLCOVSv9+/f/bO9EHo+HS5cu1VGiL7Nv3z74+/sjOzsbsbGx0NfXh6+vLwwMDDBixAjW8STG9fu4ePEihg8fDgMDA2RkZKBDhw64f/8+hEIhLC0tOfPzRKTPgwcP4O/vj4yMDAiFQrRv3x4zZszgXBHrn3/+wb179yAUCtG2bVup3c33Obt378amTZuQmZkJAGjbti3mzZuHqVOnMk5GSP1HxThCCJEhfD4fvr6+SE9PB4/Hg6mpKdzd3WFkZMQ6mkS6du2KBg0awN3dvdoBDv369WOUjHCJsrIyMjMz0apVK8jLyyMvLw/a2tqsY8m87du3w8vLC/PmzcPq1auRmpoKQ0NDBAUFITg4GJGRkawjSqQ+3EfXrl1hb2+PlStXQk1NDcnJydDR0YGjoyPs7e0xc+ZM1hEJx5SXl2Pw4MHYsWMHTExMWMchAJYtW4ZNmzZh7ty56NGjB4B3/Ue3bt0Kd3d3rFq1inFCQuo3KsYRQoiMOHv2LIYPH47OnTujV69eEAqFuHbtGpKTk3HixAnY2tqyjvhZKioqSExMRLt27VhHIRzWo0cPNGrUCL1798aKFSuwcOFCNGrUqNprvby86jid7DIzM8OaNWswcuRIUQHI0NAQqamp6N+/P54/f846okTqw32oqakhKSkJRkZG0NTURExMDL755hskJydjxIgRuH//PuuIhIO0tbVx7dq1KgMcCBtNmzbFli1bMH78eLH1kJAQzJ07V+pfq6KiotC/f3/WMQipNelvhkIIIeSr8PT0hIeHR5XGyZ6enliyZAkninFWVlZ4+PBhvSjGhYeHIzQ0tNp+TAkJCYxS1Vx0dDTWr18vttty0aJF6NOnD+toHxUUFARvb2/89ddf4PF4OH36dLX94Xg8nlQX43x8fDB37lyoqqp+9tq///4bz58/x9ChQ+sgWe1kZ2fDwsKiyrqioiKKi4sZJKqd+nAfqqqqePPmDQCgZcuW4PP5+OabbwBA6t+gf0xpaSnKy8vF1rjYZ5TL9+Hk5FTtAAfCRmVlJaysrKqsd+nSBRUVFQwS1Yy9vT10dXXh4uICZ2dn0RAQQriCinGEECIj0tPTERoaWmV9ypQp8PX1rftAtTB37ly4u7tj0aJFMDc3rzLAoWPHjoyS1Yyfnx9++eUXODs7488//4SLiwv4fD5u3LiB2bNns44nsf3798PFxQWjR4+Gm5ubaLflwIEDERQUhAkTJrCOWK127dqJJqXKycnh4sWL0NHRYZyq5tLS0qCvr4/vv/8ew4cPh5WVlei4bUVFBdLS0hATE4P9+/cjNzcXe/fuZZz40wwMDJCUlAR9fX2x9dOnT8PMzIxRqpqrD/fRvXt3XL16FWZmZhg6dCgWLFiAW7du4ejRo+jevTvreBIrKSnB4sWLERoaihcvXlR5nit9RuvLfbx9+xYBAQE4f/48rKysqnyQIK1DG+qriRMnYvv27VX+u+/cuROOjo6MUknuyZMn2L9/P4KCgrB8+XIMHDgQrq6uGDly5CcHGhEiLeiYKiGEyAg9PT1s3LgR33//vdh6aGgoFi5ciJycHEbJJCcnJ1dljcfjcW6AQ/v27eHt7Y3x48eLHWPz8vJCQUEBtm7dyjqiRExNTTF9+nR4eHiIrW/cuBG7du1Ceno6o2SyIyUlBX/88QfCwsJQVFQEeXl5KCoqoqSkBABgYWGB6dOnw9nZGYqKiozTftqePXuwbNkybNiwAa6urggICACfz8fatWsREBCAH374gXVEidSH+8jKysLr16/RsWNHlJSUYOHChYiJiYGxsTE2bdpUpdAorWbPno3IyEisXLkSTk5O+OOPP/D48WPs2LEDPj4+nCg4APXnPmxsbD76HJcGzdQXc+fOxd69e6GnpycqssfFxeHhw4dwcnIS+8BT2gulSUlJCAwMREhICAQCARwdHeHq6opOnTqxjkbIR1ExjhBCZMTKlSuxadMmeHp6omfPnuDxeIiJicFvv/2GBQsWYOnSpawjftaDBw8++TxX3iCqqKggPT0d+vr60NHRwfnz59GpUydkZmaie/fu1e58kEaKioq4ffs2jI2Nxdbv3buHDh06oKysjFEy2SMUCpGSkoL79++jtLQUTZs2RefOndG0aVPW0Wpk165dWLVqFR4+fAgA0NXVxfLly+Hq6so4Wc3Ul/vgutatW2Pv3r3o378/GjdujISEBBgbG2Pfvn0ICQnBqVOnWEeUSH25DyJdPlUc/RBXCqVPnjzBzp074ePjgwYNGqCsrAw9evSAv7+/6Jg9IdKEjqkSQoiMWLZsGdTU1LBhwwb89NNPAN71Alq+fDnc3NwYp5MMV4ptn9O8eXO8ePEC+vr60NfXR1xcHDp16oTs7Gxw6TMyPT09XLx4sUox7uLFi9S7pY7xeDx06tSJ87sApk2bhmnTpuH58+cQCAScPD4M1J/7AIDXr19DIBCIrXGlR1lBQQEMDAwAvMtcUFAAAOjduzenJsLWl/t47969e+Dz+ejbty+UlZVFu9tJ3eLCZOfPKS8vx59//onAwEDR8eetW7di/PjxKCgowJIlS/D9998jLS2NdVRCqqBiHCGEyICKigocOHAA48ePh4eHB169egXg3cQ8UvcGDBiAEydOwNLSEq6urvDw8EB4eDhu3ryJ0aNHs44nsQULFsDNzQ1JSUliuy2DgoKwefNm1vEIh3FtR9/HcPU+srOzMWfOHERFRYntcOVaSwBDQ0Pcv38f+vr6MDMzQ2hoKLp27YoTJ05AQ0ODdTyJ1Zf7ePHiBRwcHBAZGQkej4fMzEwYGhpi6tSp0NDQwIYNG1hHJBwyd+5chISEAHjX/+73339Hhw4dRM+rqqrCx8cHbdq0YZSQkE+jY6qEECIjPjwaSdgSCAQQCASiCZ6hoaGifkw//vgjpxoPHzt2DBs2bBD1h3s/TXXEiBGMkxEuqi9Thrl+Hz179gQAuLu7o1mzZlV2LfXr149FrBrbtGkT5OXl4ebmhsjISAwdOhSVlZWoqKjAxo0b4e7uzjqiROrLfTg5OeHZs2cICAiAqampqF/quXPn4OHhgdu3b7OOSDhk4MCBmDp1KsaMGfPRv5sqKipw9epVzrxmEdlCxThCCJERNjY2cHd3x8iRI1lHIYSQKj6cMrxr164qU4ZXr17NOqJE6sN9NGrUCPHx8WjXrh3rKF9VTk4Obt68CSMjI04f6ebqfTRv3hxnz55Fp06dxIYXZWdnw9zcHK9fv2YdkXDI5cuX0bNnT9EHm+9VVFTg2rVr6Nu3L6NkhEiGjqkSQoiMmDVrFhYsWIBHjx6hS5cuUFVVFXu+Y8eOjJLJpitXrmDHjh3g8/kIDw+Hrq4u9u3bBwMDA/Tu3Zt1PIkYGhrixo0baNKkidh6YWEhLC0tkZWVxSjZp2lqakrcn+h9byby39u2bRt27tyJ8ePHIzg4GIsXLxabMswV9eE+rK2t8fDhw3pXjGvdujVat27NOsYX4+p9FBcXQ0VFpcr68+fPpX7aM5E+NjY2yM3NrdKTs6ioCDY2Npw5Tk9kFxXjCCFERowbNw4AxIY18Hg8zvUAAoD4+Hikp6eDx+PB1NQUlpaWrCPVyJEjRzBp0iQ4OjoiMTERb968AQC8evUKa9as4cxkvPv371f7c/PmzRs8fvyYQSLJ+Pr6so7wn+FyY/ScnBzR8UhlZWVRb8tJkyahe/fu2Lp1K8t4EqsP9xEQEIAff/wRjx8/RocOHaCgoCD2vDR/eOPn5yfxtdI8vMjPzw/Tp0+HkpLSZ+9Jmu/jQ3379sXevXvx66+/Anj3N4hAIMC6desknuxJyHsf+/ftxYsXVT5wJkQaUTGOEEJkRHZ2NusIX+zZs2f44YcfEBUVBQ0NDQiFQtEnoIcOHYK2tjbriBJZtWoV/P394eTkhEOHDonWe/bsiZUrVzJMJpmIiAjR92fPnoW6urrocWVlJS5evCjVDZOdnZ1ZR/jqXrx4gXHjxuHSpUucbYxeX6YM14f7yM/PB5/Ph4uLi2iNKx/ebNq0Sexxfn4+SkpKRIMOCgsLoaKiAh0dHakuYm3atAmOjo5QUlKqck8f4vF4Un0fH1q3bh369++Pmzdv4u3bt1i8eDFu376NgoICXL16lXU8whHvB13xeDxMnjxZbFdlZWUlUlJSRB+IECLNqBhHCCEyoj4Mbpg7dy5evnyJ27dvw9TUFACQlpYGZ2dnuLm5iaZqSbuMjIxqe5k0btwYhYWFdR+oht73HeTxeFUKWwoKCmjTpg0nij/v8fl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjScTDwwMNGjRATk6O6HcDeLcj1sPDgxP/P+rLlOH6cB9TpkyBhYUFQkJCqh3gIM0+/ODp4MGD2LZtG3bv3i06cpuRkYFp06ZhxowZrCJK5MP7qA8fpgGAmZkZUlJSsH37dsjLy6O4uBijR4/G7Nmz0aJFC9bxCEe8/wBQKBRCTU0NysrKoucaNmyI7t27Y9q0aaziESIxGuBACCEyZN++ffD390d2djZiY2Ohr68PX19fGBgYcGL6pbq6Oi5cuABra2ux9evXr2Pw4MGcKGQBgJGREXbs2IFBgwaJNbHeu3cvfHx8kJaWxjqiRAwMDHDjxg00bdqUdZRai46OxrfffotevXrh8uXLSE9Ph6GhIX7//Xdcv34d4eHhrCNKpD40Rq8vU4brw32oqqoiOTkZxsbGrKN8ESMjI4SHh8PCwkJsPT4+HmPHjuVkkev9WzcuFUgJ+S+sWLECCxcupCOphLPkWAcghBBSN7Zv34758+djyJAhKCwsFB0z0tDQ4EwPLYFAUKV3EfBuN5ZAIGCQqHZmzJgBd3d3/P333+DxeHjy5AkOHDiAhQsXYtasWazjSSw7O5vThTgA8PT0xKpVq3D+/HmxIomNjQ1iY2MZJquZ+tAYXU5OTmwqnoODA/z8/ODm5saJAtZ79eE+BgwYgOTkZNYxvlhubi7Ky8urrFdWVuLp06cMEtXe7t270aFDBygpKUFJSQkdOnRAQEAA61g1YmBggGXLliEjI4N1FFIPeHt7Q1VVFc+ePcOVK1cQExODZ8+esY5FiMSoGEcIITJiy5Yt2LVrF3755RfIy8uL1q2srHDr1i2GySQ3YMAAuLu748mTJ6K1x48fw8PDAwMHDmSYrGYWL16MkSNHwsbGBq9fv0bfvn0xdepUzJgxA3PmzGEdT2Jubm7VNhbfunUr5s2bV/eBauHWrVsYNWpUlXVtbW28ePGCQaLaed8Y/T1qjE6+xLBhw+Dh4YHly5fjyJEjiIiIEPviioEDB2LatGm4efOmaEfZzZs3MWPGDAwaNIhxOsktW7YM7u7uGDZsGMLCwhAWFib6f7R06VLW8SQ2d+5cnDlzBqampujSpQt8fX2Rm5vLOhbhqJcvX2LSpEnQ1dVFv3790LdvX+jq6mLixIkoKipiHY+Qz6JjqoQQIiOUlZVx584d6Ovrix1jy8zMRMeOHVFaWso64mc9fPgQI0aMQGpqKvT09MDj8ZCTkwNzc3P8+eefaNWqFeuIn1VZWYmYmBiYm5tDSUkJaWlpEAgEMDMzQ6NGjVjHqxFdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ5Fq1aoXQ0FD07NlT7Pfi2LFjWLhwIfh8PuuIEklLS0P//v3RpUsXXLp0CcOHDxdrjG5kZMQ6IuEQObmPf14v7QMcPpSfnw9nZ2ecOXNGtKu6oqICdnZ2CAoKgo6ODuOEkmnatCm2bNmC8ePHi62HhIRg7ty5eP78OaNktXP37l0cOHAAhw4dQlZWFmxsbDBx4kQ4OTmxjkY4xMHBAUlJSdiyZQt69OgBHo+Ha9euwd3dHR07dkRoaCjriIR8EhXjCCFERpiZmWHt2rUYMWKEWNHBz88PwcHBiI+PZx1RYufPn8edO3cgFAphZmbGqR0OAKCkpIT09HQYGBiwjvJFlJSUkJqaWqWv1L1799ChQweUlZUxSia5xYsXIzY2FmFhYTAxMUFCQgKePn0KJycnODk5wdvbm3VEieXl5WH79u2Ij4+HQCCApaUlNUYnBO+KP+//zTA1NYWJiQnrSDWiqamJ69evo23btmLrd+/eRdeuXTnTL7U6cXFxmDlzJlJSUjhT5CXSQVVVFWfPnkXv3r3F1q9cuQJ7e3sUFxczSkaIZGiaKiGEyIhFixZh9uzZKCsrg1AoxPXr1xESEoK1a9dyru+Mra0tbG1tWceoNXNzc2RlZXG+GGdsbIwzZ85UOVp7+vRpGBoaMkpVM6tXr8bkyZOhq6srKu5WVlZiwoQJnDr+Bbwb4rBixQrWMQiROiYmJpwrwH1o4sSJ2L59OzZu3Ci2vnPnTjg6OjJK9WWuX7+OgwcP4vDhwygqKsLYsWNZRyIc06RJE9Fk1Q+pq6tDU1OTQSJCaoZ2xhFCiAzZtWsXVq1ahYcPHwJ4d8xw+fLlcHV1ZZzs4/z8/DB9+nQoKSlV25/sQ25ubnWU6sucO3cOS5Yswa+//oouXbpUmQTWuHFjRslqJjAwEHPmzMGiRYswYMAAAMDFixexYcMG+Pr6Ytq0aYwTSo7P5yMxMRECgQAWFhZVdqBIu8uXL3/y+b59+9ZREsJV9eW1dv78+fj111+hqqqK+fPnf/Lafxe3pNXcuXOxd+9e6OnpoXv37gDe7Sh7+PAhnJycxAYbSfM9vT+eevDgQdy/fx82NjZwdHTE6NGjoaamxjoe4ZidO3ciLCwMe/fuFe0Az8vLg7OzM0aPHo0ZM2YwTkjIp1ExjhBCZNDz588hEAg40S/HwMAAN2/eRJMmTT65k4zH4yErK6sOk9Xeh/2YeDye6HuhUMipfkzAuym9q1evFg3VaNOmDZYvX069f+pYdT2+PvzZ4srPVHh4OEJDQ5GTk4O3b9+KPZeQkMAoVc1x8T7qy2utjY0Njh07Bg0NjU8OL+HxeLh06VIdJqs9SYewSPs9ycnJwcrKChMmTMAPP/yA5s2bs45EOMzCwgL37t3Dmzdv0Lp1awBATk4OFBUVq3ygJq2vu0S20TFVQgiREdnZ2aioqEDbtm3RtGlT0XpmZiYUFBTQpk0bduE+ITs7u9rvuSwyMpJ1hK9m5syZmDlzJvLz86GsrMyJIRSf2y3zIWneZfKhf/75R+xxeXk5EhMTsWzZMqxevZpRqprx8/PDL7/8AmdnZ/z5559wcXEBn8/HjRs3MHv2bNbxJMbV+6gvr7Ufvr7Wl9fa+nIfd+7c4fRxYSJdRo4cyToCIV+EdsYRQoiM6NevH6ZMmQJnZ2ex9f379yMgIABRUVFsghExSUlJ6Ny5M+sYEquoqEBUVBT4fD4mTJgANTU1PHnyBI0bN5bawty/d5nEx8ejsrIS7dq1A/DuKJW8vLxoMimXXb58GR4eHpwY0NK+fXt4e3tj/PjxYkNmvLy8UFBQgK1bt7KOKJH6cB+lpaVQVlau9rnc3FwaCkK+yNu3b/Hs2TMIBAKx9fe7mwghRBZQMY4QQmRE48aNkZCQUO3kSysrK05MYxs7diysrKzg6ekptr5u3Tpcv34dYWFhjJJ9maKiIhw4cAABAQFITk7mzJHCBw8ewN7eHjk5OXjz5g3u3r0LQ0NDzJs3D2VlZfD392cd8bM2btyIqKgoBAcHixo+//PPP3BxcUGfPn2wYMECxgm/THp6OqytrfH69WvWUT5LRUUF6enp0NfXh46ODs6fP49OnTohMzMT3bt3x4sXL1hHlEh9uI/27dvj4MGDsLS0FFsPDw8X7YSVVqNHj5b42qNHj/6HSb6esrIybNmyBZGRkdUWsbhyBC8zMxNTpkzBtWvXxNa52KKBSJfXr19X+b3gSv9dIrvomCohhMgIHo+HV69eVVkvKirizB/A0dHR8Pb2rrJub2+P9evXM0j0ZS5duoTAwEAcPXoU+vr6GDNmDHbv3s06lsTc3d1hZWWF5ORkNGnSRLQ+atQoTJ06lWEyyW3YsAHnzp0Tm7ymqamJVatWYfDgwZwpxqWkpIg9FgqFyM3NhY+PDzp16sQoVc00b94cL168gL6+PvT19REXF4dOnTohOzsbXPrsuD7ch62tLXr27Inly5djyZIlKC4uxpw5cxAWFgYfHx/W8T7pw+mKQqEQx44dg7q6OqysrAC82wlbWFhYo6Ida1OmTMH58+cxduxYdO3aVawfJJdMnjwZDRo0wF9//YUWLVpw9j6IdMjOzsacOXMQFRWFsrIy0ToVdwlXUDGOEEJkRJ8+fbB27VqEhIRAXl4ewLum7mvXrkXv3r0Zp5PM69ev0bBhwyrrCgoKePnyJYNEn5afnw9tbW2xtUePHiEoKAiBgYEoLi6Gg4MDysvLceTIEZiZmTFKWjsxMTG4evVqlf8n+vr6ePz4MaNUNfPy5Us8ffoU33zzjdj6s2fPqi1eS6vOnTuDx+NVKfZ0794dgYGBjFLVzIABA3DixAlYWlrC1dUVHh4eCA8Px82bNzlVOKkP97FlyxYMHToULi4uOHnypOjo+Y0bN6T+dWrPnj2i75csWQIHBwf4+/uL/bs3a9YsTu2aOXnyJE6dOoVevXqxjvJFkpKSEB8fj/bt27OOQuoBR0dHAO8muzdr1oyKu4RzqBhHCCEy4vfff0ffvn3Rrl079OnTBwBw5coVvHz5kjN9sTp06IDDhw/Dy8tLbP3QoUNS+QZx586dePToEfz8/KCgoIAhQ4YgJiYG3333HbZs2QJ7e3vIy8tz4jhndQQCQbWfPD969AhqamoMEtXcqFGj4OLigg0bNqB79+4AgLi4OCxatIgzhROgasN9OTk5aGtrQ0lJiVGimtu5c6fomNGPP/4ILS0txMTEYNiwYfjxxx8Zp5NcfbmPwYMHY/To0di+fTsaNGiAEydOSOXr7KcEBgYiJiZGVIgDAHl5ecyfPx89e/bEunXrGKaTnK6uLmdeUz/FzMwMz58/Zx2D1BMpKSmIj48X9XslhGuoZxwhhMiQJ0+eYOvWrUhOToaysjI6duyIOXPmQEtLi3U0iURERGDMmDGYMGECBgwYAAC4ePEiQkJCEBYWJnWTtd68eYNly5ahadOmWLx4MRo0aAA3NzfMnDkTbdu2FV2noKCA5ORkzr3RHTduHNTV1bFz506oqakhJSUF2traGDFiBFq3bi22Q0ValZSUYOHChQgMDER5eTkAoEGDBnB1dcW6deugqqrKOCEhde/9QJa8vDwEBAQgOjoa69evh5ubG1avXg0FBQXWESWiqamJPXv2VPm34fjx43BxcakyhVhanT59Gn5+fvD394e+vj7rOLV26dIlLF26FGvWrIG5uXmVnyMu7VYk7NnY2OCXX37BoEGDWEchpFaoGEcIIYRTTp48iTVr1iApKUlUUPT29ka/fv1YR/uot2/fomHDhoiNjUVgYCBCQ0PRvn17TJo0CePGjUPLli05WYx78uQJbGxsIC8vj8zMTFhZWSEzMxNNmzbF5cuXoaOjwzqixIqLi8Hn8yEUCmFsbMy5Ipyfn1+16zweD0pKSjA2Nkbfvn3FdghJg3/3uvuUjh07/odJvkx9uY/31NTUMHToUPj7+0NDQwMAcO3aNTg5OUFNTQ2JiYlsA0po/vz5CAoKws8//yy289XHxwdOTk7YuHEj44SSyc/Ph4ODAy5fvgwVFZUqRayCggJGyWpGTk5O9P2HRwqpxxepDT6fjx9//BETJ05Ehw4dqvxecOG1lsg2KsYRQoiMuHz58ief79u3bx0lISUlJTh06BACAwNx/fp1VFZWYuPGjZgyZQrnjiKVlpYiJCQECQkJEAgEsLS0hKOjI5SVlVlHkykGBgbIz89HSUkJNDU1IRQKUVhYCBUVFTRq1AjPnj2DoaEhIiMjoaenxzquiJycXLW97v5N2t+o15f7eG/fvn2YNGlSlfVXr15h3rx5nBk0IxAIsH79emzevBm5ubkAgBYtWsDd3R0LFiyQuuL0xwwaNAg5OTlwdXWttjeWs7Mzo2Q1Ex0d/cnnpflDNSJ94uLiMGHCBNy/f1+09v51mCuvtUS2UTGOEEJkxIefSL/34R/09EcLGxkZGdi9ezf27duHwsJC2NraIiIignUswjEhISHYuXMnAgICYGRkBAC4d+8eZsyYgenTp6NXr1744Ycf0Lx5c4SHhzNO+z8PHjyQ+FppPp5XX+6jPqmoqMCBAwdgZ2eH5s2bi4b8cPEopIqKCmJjYzkzGflTrly5gh07doDP5yM8PBy6urrYt28fDAwMODNMikgHMzMzmJqaYvHixdUWqem1lkg7KsYRQoiMKCoqEntcXl6OxMRELFu2DKtXr8bAgQMZJfs0LS0t3L17F02bNoWmpuYnp2Vx5ahOdSorK3HixAkEBgZyqhiXkZGBLVu2ID09HTweD+3bt8ecOXNoWl4dMzIywpEjR9C5c2ex9cTERIwZMwZZWVm4du0axowZI9ohRMjnpKWlIScnB2/fvhWt8Xg8DBs2jGEqyamoqCA9PZ3zb8otLS2xbds20VFbrjpy5AgmTZoER0dH7Nu3D2lpaTA0NMS2bdvw119/4dSpU6wjEg5RVVVFcnIyjI2NWUchpFZomiohhMgIdXX1Kmu2trZQVFSEh4cH4uPjGaT6vE2bNomObm7atKnejq6Xl5fHyJEjpW4IxaeEh4dj/PjxsLKyQo8ePQC8OzZibm6OgwcP4vvvv2ecUHbk5uaioqKiynpFRQXy8vIAAC1btsSrV6/qOhrhgKKiIrF/I7KysjB69GikpKSIHb99//rLlZ3U3bp1Q2JiIueLcT4+PliwYAFWr17N6cEHq1atgr+/P5ycnHDo0CHRes+ePbFy5UqGyQgXDRgwgIpxhNNoZxwhhMi49PR0WFtb4/Xr16yjEI4xNDTExIkTq7yJ8vb2xr59+5CVlcUomewZOnSoaPKlhYUFgHe74qZNm4bmzZvjr7/+wokTJ/Dzzz/j1q1bjNMSafPrr79CSUkJixYtAgDRzreAgAB07twZf//9N7Kzs7Fw4UJs3LgRffr0YRlXYmFhYfD09ISHhwe6dOlSZTALVxq8v28z8e8Po7jWG0tFRQVpaWlo06YN1NTUkJycDENDQ2RlZcHMzAxlZWWsIxIO2blzJ1atWoUpU6ZUW6QePnw4o2SESIaKcYQQIiP+Pe1PKBQiNzcXPj4+KC8vx9WrVxklk5yNjQ0mTpyIsWPHVrvTj9QtFRUVpKSkVPlUOjMzE506dUJJSQmjZJ9Wk2PAXPljPi8vD5MmTcLFixdFb0gqKiowcOBA7Nu3D82aNUNkZCTKy8sxePBgxmmJtHn27BkmTZoEY2Nj/PHHH2jatCkuXryITp06QVdXF9evX4euri4uXryIhQsXcmaa6sd6pXKtiFVfBh8YGRlhx44dGDRokFgxbu/evfDx8UFaWhrriIRDqvv9fo9Lv99EdtExVUIIkRGdO3eudtpf9+7dERgYyChVzZibm2Pp0qWYM2cOhgwZgkmTJmHIkCFo2LAh62gyqX///rhy5UqVYlxMTIxU75z591Hgf/9ecHGwSfPmzXH+/HncuXMHd+/ehVAoRPv27dGuXTvRNTY2NgwTEmmmo6ODs2fPYu3atQDe/dy/bw/QtGlTPHnyBLq6umjTpg0yMjJYRq2R7Oxs1hG+Cq4U2z5nxowZcHd3R2BgIHg8Hp48eYLY2FgsXLgQXl5erOMRjhEIBKwjEPJFaGccIYTIiH9P+5OTk4O2tjaUlJQYJaodgUCACxcu4ODBgzh27Bjk5eUxduxYODo61ps3LFzh7+8PLy8vODg4iBqLx8XFISwsDCtWrEDLli1F10rrDrMLFy5gyZIlWLNmDXr06AEej4dr165h6dKlWLNmDWxtbVlHrJG3b98iOzsbRkZGaNCAe5+5FhYWIjw8HHw+H4sWLYKWlhYSEhLQrFkz6Orqso4nMa7fR58+fTB//nyMGjUK06dPR35+PhYtWgR/f38kJCQgNTWVdcR6LyUlBR06dICcnFyVne3/xpXjtgDwyy+/YNOmTaIjqYqKili4cCF+/fVXxskIIaRuUTGOEEJkwPujaTt27ICJiQnrOF9NWVkZTpw4gdWrV+PWrVuc2cVUX3zqiMiHpPm4SIcOHeDv74/evXuLrV+5cgXTp09Heno6o2Q1U1JSgrlz5yI4OBgAcPfuXRgaGsLNzQ0tW7aEp6cn44Sfl5KSgkGDBkFdXR33799HRkYGDA0NsWzZMjx48AB79+5lHVEi9eE+zp49i1evXmHs2LF4+PAhhg4ditTUVGhpaSE0NBQDBgxgHVFi+/btg7+/P7KzsxEbGwt9fX34+vrCwMAAI0aMYB3vo+Tk5JCXlwcdHR3IyclVu7MdkO7X148pKSlBWloaBAIBzMzM0KhRI9aRCIcMGTIEISEhonYlq1evxuzZs6GhoQEAePHiBfr06UPHnonUk+yvaEIIIZymoKCA1NTUejWJNC8vD/7+/vjtt9+QkpICKysr1pFkjkAgkOhLmt8o8vn8avsPvi+kcMVPP/2E5ORkREVFie12HTRoEA4fPswwmeTmz5+PyZMnIzMzU+wevv32W1y+fJlhspqpD/dhZ2eHsWPHAgD09PSQkpKC58+f49mzZ1JdiDt79iyKiopEj7dv34758+djyJAhKCwsFL0WaWhowNfXl1FKyWRnZ0NbW1v0fVZWFrKzs6t8cXFQjoqKCqysrNC1a1cqxJEaO3v2LN68eSN6/Ntvv6GgoED0uKKiglPH6YnsomIcIYTICCcnJ+zevZt1jC/y8uVL7NmzB7a2ttDT08P27dsxbNgw3L17F3///TfreATvjudxibW1NebNm4fc3FzRWl5eHhYsWICuXbsyTFYzx48fx9atW9G7d2+xoruZmRn4fD7DZJK7ceMGZsyYUWVdV1cXeXl5DBLVTn25j3/T0tKSeDcsK3l5eejVqxcePXoEANiyZQt27dqFX375BfLy8qLrrKyspH6qsL6+vuh3WV9f/5NfhMiSf+8QpYN+hKu410yEEEJIrbx9+xYBAQE4f/48rKysoKqqKvb8xo0bGSWTXLNmzaCpqQkHBwesWbMG1tbWrCPJtN9++w1t2rTBuHHjAADff/89jhw5ghYtWuDUqVPo1KkT44SfFxgYiFGjRkFfXx+tW7cGAOTk5MDExATHjx9nG64G8vPzoaOjU2W9uLiYMztilZSU8PLlyyrrGRkZoh1CXFAf7qOsrAxbtmxBZGQknj17VqVRekJCAqNkn+bs7Aw1NTXY29sjNTUV2dnZsLCwqHKdoqIiiouLGSSUXH2c+kwIIeR/qBhHCCEyIjU1FZaWlgDe9ZP6EBferAuFQmzevBkTJ06EiooK6zgEwI4dO7B//34AwPnz53HhwgWcOXMGoaGhWLRoEc6dO8c44ecZGxsjJSVFNIlUKBTCzMwMgwYN4sTvxXvW1tY4efIk5s6dC+B/v9O7du1Cjx49WEaT2IgRI7By5UqEhoYCeHcPOTk58PT0xJgxYxink1x9uI8pU6bg/PnzGDt2LLp27cqp34XRo0eLCnAGBgZISkqqsnvs9OnTMDMzYxFPYv+e+vwxXOwZR8iX4PF4VV6TuPQaRch7NMCBEEIIJwgEAigpKeH27dto27Yt6zgEgLKyMu7evQs9PT24u7ujrKwMO3bswN27d9GtWzf8888/rCPKjGvXrsHe3h6Ojo4ICgrCjBkzcPv2bcTGxiI6OhpdunRhHfGzXr58iSFDhuD27dt49eoVWrZsiby8PPTo0QOnTp2qsptXWtWH+1BXV8epU6fQq1cv1lG+yJ49e7Bs2TJs2LABrq6uCAgIAJ/Px9q1axEQEIAffviBdURCSA3Jycnh22+/haKiIgDgxIkTGDBggOi19c2bNzhz5gwVqYnUo51xhBAiI4qKilBZWQktLS2x9YKCAjRo0ACNGzdmlEwycnJyaNu2LV68eEHFOCmhqamJhw8fQk9PD2fOnMGqVasAvNvFyJU/gleuXPnJ5728vOooyZfp2bMnrl69ivXr18PIyAjnzp2DpaUlYmNjYW5uzjqeRBo3boyYmBhcunQJCQkJEAgEsLS0xKBBg1hHq5H6cB+6urpQU1NjHeOLubi4oKKiAosXL0ZJSQkmTJgAXV1dbN68mQpxhHCUs7Oz2OOJEydWucbJyamu4hBSa7QzjhBCZMS3336LYcOGYdasWWLr/v7+iIiIwKlTpxglk9zJkyfh4+OD7du3o0OHDqzjyLw5c+bgr7/+Qtu2bZGYmIj79++jUaNGOHz4MH777Tep7Sv1oX/3kyovL0d2djYaNGgAIyMjTtwDIV/b6dOn4efnB39//3ozIOD58+cQCATV9lYkhBBC6hoV4wghREZoaWnh6tWrMDU1FVu/c+cOevXqhRcvXjBKJjlNTU2UlJSgoqICDRs2hLKystjzH462J/+98vJybN68GQ8fPsTkyZNFhS1fX180atQIU6dOZZywdl6+fInJkydj1KhRmDRpEus4EqusrMSxY8eQnp4OHo8HU1NTjBgxAg0aSO9BCD8/P4mvdXNz+w+TfJn6ch/v5efnw8HBAZcvX4aKigoUFBTEnufaa+2zZ8+QkZEBHo+Hdu3acWaQBiGEkPqLinGEECIjVFVVERcXV+XI2q1bt9CtWzeUlJQwSia54ODgTz7/76MLhNRWamoqvvvuO9y/f591FImkpqZixIgRyMvLQ7t27QC8G9Sira2NiIgIqT2qamBgIPY4Pz8fJSUl0NDQAAAUFhZCRUUFOjo6yMrKYpBQMvXlPt4bNGgQcnJy4OrqimbNmlVpjs6V19qXL19i9uzZCAkJEU2ElZeXx7hx4/DHH39AXV2dcUJCCCGyiopxhBAiI/r37w9zc3Ns2bJFbH327NlISUnBlStXGCUjXJeWloacnBy8fftWbH348OGMEn25mJgYDBs2jDNDKLp37w4dHR0EBwdDU1MTAPDPP/9g8uTJePbsGWJjYxkn/LyDBw9i27Zt2L17t6igmJGRgWnTpmHGjBlwdHRknFAy9eE+VFRUEBsbi06dOrGO8kUcHByQlJSELVu2oEePHuDxeLh27Rrc3d3RsWNH0cRbQgghpK5RMY4QQmTE1atXMWjQIFhbW2PgwIEAgIsXL+LGjRs4d+4c+vTpwzihZPh8Pvbs2QM+n4/NmzdDR0cHZ86cgZ6eHr755hvW8WRKVlYWRo0ahVu3boHH4+H9nxTvd9FwYYjDv48XCoVC5ObmYt++fejbty9CQkIYJasZZWVl3Lx5s8rvQGpqKqytrVFaWsoomeSMjIwQHh5epY9ffHw8xo4di+zsbEbJaqY+3IelpSW2bduG7t27s47yRVRVVXH27Fn07t1bbP3KlSuwt7dHcXExo2S1V1paivLycrE1aR/ARAghpCo51gEIIYTUjV69eiE2NhZ6enoIDQ3FiRMnYGxsjJSUFM4U4qKjo2Fubo6///4bR48exevXrwEAKSkp8Pb2ZpxO9ri7u8PAwABPnz6FiooKbt++jcuXL8PKygpRUVGs40lk06ZNYl9+fn6IioqCs7Mzdu7cyTqexNq1a4enT59WWX/27BmMjY0ZJKq53NzcKkUG4F1Rt7p7k1b14T58fHywYMECREVF4cWLF3j58qXYF1c0adKk2qOo6urqoh2kXFBSUoI5c+ZAR0cHjRo1gqamptgXIYQQ7qGdcYQQQjijR48e+P777zF//nyoqakhOTkZhoaGuHHjBkaOHInHjx+zjihTmjZtikuXLqFjx45QV1fH9evX0a5dO1y6dAkLFixAYmIi64gy49SpU1i8eDGWL18u2s0UFxeHlStXwsfHR2xnkLTuohk2bBhycnKwe/dudOnSBTweDzdv3sS0adOgp6eHiIgI1hElUh/uQ07u3ef1/+4VJxQKwePxOLHrFQB27tyJsLAw7N27Fy1atAAA5OXlwdnZGaNHj8aMGTMYJ5TM7NmzERkZiZUrV8LJyQl//PEHHj9+jB07dsDHx4cTR58JIYSIo2IcIYQQzmjUqBFu3boFAwMDsWLc/fv30b59e5SVlbGOKFM0NTURHx8PQ0NDGBkZISAgADY2NuDz+TA3N+fEUJApU6Zg8+bNUFNTE1svLi7G3LlzERgYyChZzbwvngD/K6D8+9iwtBdS8vPz4ezsjDNnzoimd1ZUVMDOzg5BQUHQ0dFhnFAy9eE+oqOjP/l8v3796ijJl7GwsMC9e/fw5s0btG7dGgCQk5MDRUVFtG3bVuzahIQEFhEl0rp1a+zduxf9+/dH48aNkZCQAGNjY+zbtw8hISE4deoU64iEEEJqSHpn3RNCCCH/oqGhgdzc3CqTCxMTE6Grq8solezq0KEDUlJSYGhoiG7duuH3339Hw4YNsXPnThgaGrKOJ5Hg4GD4+PhUKcaVlpZi7969nCnGRUZGso7wxbS1tXHq1ClkZmYiPT0dQqEQpqamMDExYR2tRurDfXCl2PY5I0eOZB3hqygoKBD9u9e4cWMUFBQAAHr37o2ZM2eyjEYIIaSWqBhHCCGEMyZMmIAlS5YgLCwMPB4PAoEAV69excKFC+Hk5MQ6nsxZunSpqAH6qlWr8N1336FPnz5o0qQJDh8+zDjdp718+RJCoRBCoRCvXr2CkpKS6LnKykqcOnWKEzuY3qsvxRMAaNu2bZVdS1xUX+6Dy+pLL9H3O8D19fVhZmaG0NBQdO3aFSdOnICGhgbreIQQQmqBjqkSQgjhjPLyckyePBmHDh2CUChEgwYNUFlZiQkTJiAoKAjy8vKsI8q8goICaGpqVuk1JW3k5OQ+mZHH42HFihX45Zdf6jBV7Z05cwaNGjUS9Yb7448/sGvXLpiZmeGPP/6gJu+EcNimTZsgLy8PNzc3REZGYujQoaisrERFRQU2btwId3d31hEJIYTUEBXjCCGEcE5WVhYSEhIgEAhgYWFBu09IjUVHR0MoFGLAgAE4cuQItLS0RM81bNgQ+vr6aNmyJcOENWNubo7ffvsNQ4YMwa1bt2BlZYUFCxbg0qVLMDU1xZ49e1hHJIR8JTk5Obh58yaMjIzQqVMn1nEIIYTUAhXjCCGkHhs9erTE1x49evQ/TPLfqKysxK1bt6Cvr087f0itPHjwAK1bt5b6nXyf06hRI6SmpqJNmzZYvnw5UlNTER4ejoSEBAwZMgR5eXmsIxJCCCGEkP9HPeMIIaQeU1dXZx3hq5o3bx7Mzc3h6uqKyspK9OvXD9euXYOKigr++usv9O/fn3VEwgEpKSno0KED5OTkUFRUhFu3bn302o4dO9Zhstpr2LChaHrthQsXRD0UtbS08PLlS5bRCCG14OfnJ/G1bm5u/2ESQggh/wXaGUcIIYQzWrVqhePHj8PKygrHjx/HrFmzEBUVhb179yIyMhJXr15lHZFwgJycHPLy8qCjoyPqHVfdn0M8Hg+VlZUMEtbc8OHD8fbtW/Tq1Qu//vorsrOzoauri3PnzmHOnDm4e/cu64gSuXLlCnbs2AE+n4/w8HDo6upi3759MDAwEPXD44qSkhLk5OTg7du3YuvSWuC1sLCQeIdoQkLCf5zm63r79i2ys7NhZGSEBg24sRfh31PD8/PzUVJSIhrYUFhYCBUVFejo6CArK4tBQkIIIV9CjnUAQgghdaeiogIXLlzAjh078OrVKwDAkydP8Pr1a8bJJPP8+XM0b94cAHDq1Ck4ODjAxMQErq6un9zdRMiHsrOzoa2tLfo+KysL2dnZVb649AZ369ataNCgAcLDw7F9+3bo6uoCAE6fPg17e3vG6SRz5MgR2NnZQVlZGYmJiXjz5g0A4NWrV1izZg3jdJLLz8/Hd999BzU1NXzzzTewsLAQ+5JWI0eOxIgRIzBixAjY2dmBz+dDUVER/fv3R//+/aGkpAQ+nw87OzvWUSVWUlICV1dXqKio4JtvvkFOTg6AdzvJfHx8GKf7tA9fi1avXo3OnTsjPT0dBQUFKCgoQHp6OiwtLfHrr7+yjkoIIaQWaGccIYTIiAcPHsDe3h45OTl48+YN7t69C0NDQ8ybNw9lZWXw9/dnHfGz9PX1sWvXLgwcOBAGBgbYtm0bvvvuO9y+fRu9e/fGP//8wzqizNm3bx/8/f2RnZ2N2NhY6Ovrw9fXFwYGBhgxYgTreIRDLCws4OHhAScnJ6ipqSE5ORmGhoZISkqCvb09Z/reOTo64v79+/D19YWNjQ2OHTuGp0+fYtWqVdiwYQOGDh3KOuJnTZ06FS1atKhS6PH29sbDhw8RGBjIKFnNuLu74+rVq/D19YW9vT1SUlJgaGiIiIgIeHt7IzExkXVEiRgZGSE8PLxKMTc+Ph5jx45FdnY2o2SEEEJqixv7tAkhhHwxd3d3WFlZITk5GU2aNBGtjxo1ClOnTmWYTHIuLi5wcHBAixYtwOPxYGtrCwD4+++/0b59e8bpZM/27dvh5eWFefPmYfXq1aIjnRoaGvD19eVEMS4iIqLadR6PByUlJRgbG1c5Liat+Hw+9uzZAz6fj82bN0NHRwdnzpyBnp4evvnmG9bxPisjIwN9+/atst64cWMUFhbWfaBaunTpEv78809YW1tDTk4O+vr6sLW1RePGjbF27VpOFOPCwsJw8+bNKusTJ06ElZUVZ4pxx48fx+HDh9G9e3exI7hmZmbg8/kMk9VMbm4uysvLq6xXVlbi6dOnDBIRQgj5UlSMI4QQGRETE4OrV6+iYcOGYuv6+vp4/Pgxo1Q1s3z5cnTo0AEPHz7E999/D0VFRQCAvLw8PD09GaeTPVu2bMGuXbswcuRIsSNfVlZWWLhwIcNkkhs5cmS1PePer/F4PPTu3RvHjx+X6om90dHR+Pbbb9GrVy9cvnwZq1evho6ODlJSUhAQEIDw8HDWET+rRYsWuHfvHtq0aSO2HhMTA0NDQzahaqG4uBg6OjoA3g3QyM/Ph4mJCczNzTnTa01ZWRkxMTFo27at2HpMTAyUlJQYpaq5/Px80f+LDxUXF3NqgvLAgQMxbdo07N69G126dAGPx8PNmzcxY8YMDBo0iHU8QgghtUA94wghREYIBIJqm9E/evQIampqDBLVztixY+Hh4YFWrVqJ1pydnTmxC6u+yc7OrrYHlqKiIoqLixkkqrnz58/D2toa58+fR1FREYqKinD+/Hl07doVf/31Fy5fvowXL15IfXHR09MTq1atwvnz58UK7jY2NoiNjWWYTHIzZsyAu7s7/v77b/B4PDx58gQHDhzAwoULMWvWLNbxJNauXTtkZGQAADp37owdO3bg8ePH8Pf3R4sWLRink8y8efMwc+ZMzJkzB/v378f+/fsxZ84czJ49Gx4eHqzjScza2honT54UPX5fgNu1axd69OjBKlaNBQYGQldXF127doWSkhIUFRXRrVs3tGjRAgEBAazjEUIIqQXaGUcIITLC1tYWvr6+2LlzJ4B3b0pev34Nb29vDBkyhHE6wkUGBgZISkqCvr6+2Prp06dhZmbGKFXNuLu7Y+fOnejZs6dobeDAgVBSUsL06dNx+/Zt+Pr6YsqUKQxTft6tW7dw8ODBKuva2tp48eIFg0Q1t3jxYhQVFcHGxgZlZWXo27cvFBUVsXDhQsyZM4d1PInNmzcPubm5AN71WLOzs8OBAwfQsGFDBAUFsQ0nIU9PTxgaGmLz5s2inytTU1MEBQXBwcGBcTrJrV27Fvb29khLS0NFRQU2b96M27dvIzY2FtHR0azjSUxbWxunTp3C3bt3cefOHQiFQpiamsLExIR1NEIIIbVEAxwIIURGPHnyBDY2NpCXl0dmZiasrKyQmZmJpk2b4vLly9Ue5SHkU/bs2YNly5Zhw4YNcHV1RUBAAPh8PtauXYuAgAD88MMPrCN+lrKyMm7cuIEOHTqIrd+6dQtdu3ZFaWkpHjx4AFNTU5SUlDBK+XmtWrVCaGgoevbsKTb84NixY1i4cCGn+mOVlJQgLS0NAoEAZmZmaNSoEetIn1ReXg4FBYWPPl9SUoI7d+6gdevWaNq0aR0mI8C73+X169cjPj4eAoEAlpaWWLJkCczNzVlHI4QQIsOoGEcIITKktLQUhw4dEntT4ujoCGVlZdbRCEft2rULq1atwsOHDwEAurq6WL58OVxdXRknk0zv3r2hpqaGvXv3QltbG8C7PlNOTk4oLi7G5cuXceHCBcyaNQt3795lnPbjFi9ejNjYWISFhcHExAQJCQl4+vQpnJyc4OTkBG9vb9YRP6uoqAiVlZXQ0tISWy8oKECDBg3QuHFjRsk+zcfHB4aGhpzaMUak3/z58/Hrr79CVVUV8+fP/+S1GzdurKNUhBBCvhYqxhFCCCHkiz1//hwCgYBzOywzMjIwYsQIZGdnQ09PDzweDzk5OTA0NMSff/4JExMTHD9+HK9evcKkSZNYx/2o8vJyTJ48GYcOHYJQKESDBg1QWVmJCRMmICgoCPLy8qwjfta3336LYcOGVekP5+/vj4iICJw6dYpRsk+7e/cuRo0ahenTp8Pd3b1eFE4qKyuxadMmhIaGIicnB2/fvhV7vqCggFGyz3v58qXE10prgRd41+/x2LFj0NDQgI2NzUev4/F4uHTpUh0mI4QQ8jVQMY4QQgin8Pl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjEQ4SCoU4e/Ys7t69C6FQiPbt28PW1hZyctybc8Xn85GYmAiBQAALC4sq0zClmZaWFq5evQpTU1Ox9Tt37qBXr15S3fvu1atXmDx5Mo4cOVIvCideXl4ICAjA/PnzsWzZMvzyyy+4f/8+jh8/Di8vL7i5ubGO+FFycnIST0qtbqgRIYQQUheoGEcIIYQzoqOj8e2336JXr164fPky0tPTYWhoiN9//x3Xr19HeHg464j1noWFhcRvdBMSEv7jNKQ+UVVVRVxcXJVeXrdu3UK3bt2kumdffWNkZAQ/Pz8MHToUampqSEpKEq3FxcVVOyxEWnw4mOH+/fvw9PTE5MmTRdNTY2NjERwcjLVr18LZ2ZlVTEIIITKOinGEEEI4o0ePHvj+++8xf/58sSb1N27cwMiRI/H48WPWEeu9FStWiL4vKyvDtm3bYGZmJnqjGxcXh9u3b2PWrFlYu3Ytq5g1cvHiRVy8eBHPnj2DQCAQey4wMJBRqs/73HHID3HhaGT//v1hbm6OLVu2iK3Pnj0bKSkpuHLlCqNkskdVVRXp6elo3bo1WrRogZMnT8LS0hJZWVmwsLBAUVER64gSGThwIKZOnYrx48eLrR88eBA7d+5EVFQUm2ASGD16tMTXHj169D9MQggh5L/QgHUAQgghRFK3bt2qdkeGtra2VB9hq08+HAQwdepUuLm54ddff61yzfuBDtJuxYoVWLlyJaysrNCiRQuJd/1Jg8TERLHH8fHxqKysRLt27QC862UmLy+PLl26sIhXY6tXr8agQYOQnJyMgQMHAnhXKL1x4wbOnTvHOJ3kysrKsGXLFkRGRlZb4OXCjtFWrVohNzcXrVu3hrGxMc6dOwdLS0vcuHEDioqKrONJLDY2Fv7+/lXWraysMHXqVAaJJKeuri76XigU4tixY1BXV4eVlRWAd7/vhYWFNSraEUIIkR5UjCOEEMIZGhoayM3NhYGBgdh6YmIidHV1GaWSXWFhYbh582aV9YkTJ8LKykqqd5W95+/vj6CgIKkezvAxkZGRou83btwINTU1BAcHQ1NTEwDwzz//wMXFBX369GEVsUZ69eqF2NhYrFu3DqGhoVBWVkbHjh2xe/duTvW+mzJlCs6fP4+xY8eia9eunCrwvjdq1ChcvHgR3bp1g7u7O8aPH4/du3cjJycHHh4erONJTE9PD/7+/tiwYYPY+o4dO6Cnp8colWT27Nkj+n7JkiVwcHCAv7+/aBhLZWUlZs2aJdVDKAghhHwcHVMlhBAZweXpeO8tXrwYsbGxCAsLg4mJCRISEvD06VM4OTnByclJbNcW+e81b94ca9euhYuLi9j6nj174OnpiadPnzJKJrkmTZrg+vXrMDIyYh3li+jq6uLcuXNVhpikpqZi8ODBePLkCaNkskddXR2nTp1Cr169WEf5auLi4nDt2jUYGxtj+PDhrONI7NSpUxgzZgyMjIzQvXt3AO/uhc/n48iRIxgyZAjjhJLR1tZGTEyMaNfrexkZGejZsyftDCeEEA6inXGEECIjVqxY8cnpeFywevVqTJ48Gbq6uhAKhTAzM0NlZSUmTJiApUuXso4nc+bNm4eZM2ciPj5e7I1uYGAgZ36mpk6dioMHD2LZsmWso3yRly9f4unTp1WKcc+ePcOrV68Ypao5gUCAe/fuVXu8s2/fvoxS1Yyuri7U1NRYx/iqunfvLvod55IhQ4YgMzMT27dvR3p6OoRCIUaMGIEff/xR6nfGfaiiogLp6elVinHp6elVfk8IIYRwA+2MI4QQGcHl6Xj/xufzkZiYCIFAAAsLC04dYatvQkNDsXnzZqSnpwMATE1N4e7uDgcHB8bJJOPu7o69e/eiY8eO6NixIxQUFMSe58LgAwBwcnJCdHQ0NmzYIFYYXbRoEfr27Yvg4GDGCT8vLi4OEyZMwIMHD/DvP095PB4qKysZJauZ06dPw8/PD/7+/tDX12cdR2IRERESX8ul3XH1wfz58xEUFISff/5Z7Pfbx8cHTk5OnHmdIoQQ8j9UjCOEEBlRX6bjEfI12djYfPQ5Ho+HS5cu1WGa2ispKcHChQsRGBiI8vJyAECDBg3g6uqKdevWQVVVlXHCz+vcuTNMTEywYsWKaodpfNjQXprl5+fDwcEBly9fhoqKSpUCr7S2BJCTkxN7zOPxqi2KAuBMYbS+EAgEWL9+PTZv3ozc3FwAQIsWLeDu7o4FCxaI+sgRQgjhDjqmSgghMoKr0/Hmz58v8bW0O4DU1IdDELhMRUUF27Ztw7p168Dn8yEUCmFsbMyJItx7mZmZCA8Ph7GxMesoX2T8+PF4/Pgx1qxZg2bNmnFmgMOHxx0vXLiAJUuWYM2aNejRowd4PB6uXbuGpUuXYs2aNQxTyp6KigocOHAATk5OWLx4MV6+fAkANLiBEEI4jopxhBAiI7g6HS8xMVHscXx8PCorK0W9c+7evQt5eXl06dKFRTxSjzx69Ag8Ho/Tk3lVVVXRsWNH1jFqpVu3brh37x7ni3HXrl1DbGwsOnXqxDpKrc2bNw/+/v7o3bu3aM3Ozg4qKiqYPn266Fg6+e81aNAAM2fOFP03pyIcIYTUD1SMI4QQGeHj4yP6fuzYsdDT08PVq1elfjrehzuXNm7cCDU1NQQHB0NTUxMA8M8//8DFxQV9+vRhFZFwmEAgwKpVq7Bhwwa8fv0aAKCmpoYFCxbgl19+qXJ0j/x35s6diwULFiAvLw/m5uZVjndypcjYvn17lJaWso7xRfh8frXHgtXV1XH//v26DyTjunXrhsTERE71ICSEEPJp1DOOEEIIZ+jq6uLcuXNVJkampqZi8ODBePLkCaNkhKt++ukn7N69GytWrECvXr0gFApx9epVLF++HNOmTcPq1atZR5QZ1RU+3/ct49IAh3PnzmHFihVYvXp1tUVFLuxs6tu3LxQUFLB//360aNECAJCXl4dJkybh7du3iI6OZpxQtoSFhcHT0xMeHh7o0qVLlePnXClUE0II+R8qxhFCiIyQl5dH3759ceTIEWhpaYnWnz59ipYtW3Lija6amhr+/PNPDBgwQGz90qVLGDFiBF69esUoGeGqli1bwt/fv8ru0D///BOzZs3C48ePGSWTPQ8ePPjk81zZFfS+qPjvXnFcKireu3cPo0aNQkZGBlq3bg0AyMnJgYmJCY4fPy7VR4ktLCwk7tOXkJDwH6f5OupLoZoQQsj/0DFVQgiREUKhEG/evIGVlRUiIiLQoUMHsee4YNSoUXBxccGGDRvQvXt3AEBcXBwWLVqE0aNHM04neyorKxEUFISLFy/i2bNnYg3gAXBiEmlBQQHat29fZb19+/ZSO/WyvuJKse1z6sNQEGNjY6SkpOD8+fO4c+cOhEIhzMzMMGjQIKkfSDFy5EjR92VlZdi2bRvMzMzQo0cPAO/+zbh9+zZmzZrFKGHNZWdns45ACCHkK6OdcYQQIiPk5eXx6NEj+Pj4YM+ePdi3bx9GjBjBqZ1xJSUlWLhwIQIDA1FeXg7gXXNrV1dXrFu3jlOTI+uDOXPmICgoCEOHDkWLFi2qvEnftGkTo2SS69atG7p16wY/Pz+x9blz5+LGjRuIi4tjlOzzIiIiJL5WmvtC/ltaWhpycnLw9u1bsXUu3QORDlOnTkWLFi3w66+/iq17e3vj4cOHCAwMZJSMEEKIrKNiHCGEyAg5OTnk5eVBR0cHO3fuhJubG5YuXYqpU6dCV1eXE8W494qLi8Hn8yEUCmFsbExFOEaaNm2KvXv3YsiQIayj1Fp0dDSGDh2K1q1bo0ePHuDxeLh27RoePnyIU6dOSfVgEEmHS3DlGFtWVhZGjRqFW7duiY7gAf877smFe3ivsLAQu3fvRnp6Ong8HszMzDBlypRqhyJICz8/P0yfPh1KSkpVitP/5ubmVkepvoy6ujpu3ryJtm3biq1nZmbCysoKRUVFjJLV3L59++Dv74/s7GzExsZCX18fvr6+MDAwwIgRI1jHI4QQUkNUjCOEEBnxYTEOAKKiojB27FhYWFjg0qVLnHqjS6RDy5YtERUVBRMTE9ZRvsiTJ0/wxx9/iB3HmzVrFlq2bMk6mkwZNmwY5OXlsWvXLhgaGuL69et48eIFFixYgPXr10t1YfRDN2/ehJ2dHZSVldG1a1cIhULcvHkTpaWlOHfuHCwtLVlHrJaBgQFu3ryJJk2awMDA4KPX8Xg8ZGVl1WGy2mvevDnWrl0LFxcXsfU9e/bA09MTT58+ZZTs086ePYvu3buLirfbt2+Hl5cX5s2bh9WrVyM1NRWGhoYICgpCcHBwvTgaTQghsoaKcYQQIiM+fKP13r179zBs2DDcvXuXinGkxjZs2ICsrCxs3bpV6vtI1dTDhw/h7e1Nx9jqUNOmTXHp0iV07NgR6urquH79Otq1a4dLly5hwYIFSExMZB1RIn369IGxsTF27dqFBg3etWeuqKjA1KlTkZWVhcuXLzNOKDt8fHywfPlyTJ06VazPaGBgILy8vODp6ck4YfWCg4Oxbt06nDlzBq1atYKZmRnWrFmDkSNHQk1NDcnJyTA0NERqair69++P58+fs45MCCGkhqgYRwghMq6srAxPnz6tN83TSd0ZNWoUIiMjoaWlhW+++QYKCgpizx89epRRsi+XnJwMS0tLThWpi4uLER0dXW2/NS4cK9TU1ER8fDwMDQ1hZGSEgIAA2NjYgM/nw9zcHCUlJawjSkRZWRmJiYlVBoOkpaXBysqKM/dRX4SGhmLz5s1IT08HAJiamsLd3R0ODg6Mk33a0aNH4eXlhdTUVCgrK+POnTvQ19cXK8ZlZmaiY8eOKC0tZR2XEEJIDdE0VUIIkXFKSkpUiCO1oqGhgVGjRrGOQQAkJiZiyJAhKCkpQXFxMbS0tPD8+XOoqKhAR0eHE8W4Dh06ICUlBYaGhujWrRt+//13NGzYEDt37oShoSHreBJr3LgxcnJyqhTjHj58CDU1NUapambs2LGwsrKqsnNs3bp1uH79OsLCwhglqzkHBwepL7xVZ/To0bCwsADwbmd7UlJSlX+rT58+DTMzMxbxCCGEfCEqxhFCSD2mpaWFu3fvomnTptDU1PzkUcKCgoI6TEbqgz179rCOQP6fh4cHhg0bhu3bt0NDQwNxcXFQUFDAxIkT4e7uzjqeRJYuXYri4mIAwKpVq/Ddd9+hT58+aNKkCQ4fPsw4neTGjRsHV1dXrF+/Hj179gSPx0NMTAwWLVqE8ePHs44nkejoaHh7e1dZt7e3x/r16xkkkk3ve/ctWrQIs2fPRllZGYRCIa5fv46QkBCsXbsWAQEBjFMSQgipDSrGEUJIPbZp0ybRTgxfX1+2Yb4SPp8PX19f0ZTC90eOjIyMWEeTWfn5+cjIyACPx4OJiQm0tbVZR5I5SUlJ2LFjB+Tl5SEvL483b97A0NAQv//+O5ydnTF69GjWET/Lzs5O9L2hoSHS0tJQUFDw2Q8SpM369evB4/Hg5OSEiooKAICCggJmzpwJHx8fxukk8/r1azRs2LDKuoKCAl6+fMkgUe1UVlZi06ZNCA0Nrfb4Nlc+hHJxcUFFRQUWL16MkpISTJgwAbq6uti8eTN++OEH1vEIIYTUAvWMI4QQwhlnz57F8OHD0blzZ/Tq1QtCoRDXrl1DcnIyTpw4AVtbW9YRZUpxcTHmzp2LvXv3QiAQAADk5eXh5OSELVu2QEVFhXHCj/tccaqwsBDR0dGc6Rmnra2Nq1evwsTEBO3atYOfnx/s7Oxw584dWFpacqJPWVFRESorK6GlpSW2XlBQgAYNGqBx48aMktVOSUkJ+Hw+hEIhjI2Npfr34d+sra0xbNgweHl5ia0vX74cJ06cQHx8PKNkNePl5YWAgADMnz8fy5Ytwy+//IL79+/j+PHj8PLy4sTx7X97/vw5BAKBaDI6IYQQbqJiHCGE1GM12cHAhTe6FhYWsLOzq7K7xNPTE+fOnUNCQgKjZLLB19cX5ubmGDhwIABgxowZuHDhArZu3YpevXoBAGJiYuDm5gZbW1ts376dZdxPcnFxkeg6rhzFHTx4MCZPnowJEybgxx9/RGJiItzc3LBv3z78888/+Pvvv1lH/Kxvv/0Ww4YNw6xZs8TW/f39ERERgVOnTjFKJnsiIiIwZswYTJgwAQMGDAAAXLx4ESEhIQgLC8PIkSPZBpSQkZER/Pz8MHToUKipqSEpKUm0FhcXh4MHD7KOWCPPnj0T7UJu164d7UImhBAOo2IcIYTUY3Jycp893iUUCsHj8TixA0hJSQm3bt1C27Ztxdbv3r2Ljh07oqysjFEy2RAfHw8HBwcsX74ckyZNQtOmTREeHo7+/fuLXRcZGQkHBwfk5+ezCSqDbt68iVevXsHGxgb5+flwdnZGTEwMjI2NsWfPHnTq1Il1xM/S0tLC1atXYWpqKrZ+584d9OrVCy9evGCUrGaKi4vh4+ODixcv4tmzZ6Jdo+9lZWUxSlYzJ0+exJo1a5CUlARlZWV07NgR3t7e6NevH+toElNVVUV6ejpat26NFi1a4OTJk7C0tERWVhYsLCxQVFTEOqJEXr58idmzZyMkJERsF/K4cePwxx9/QF1dnXFCQgghNUU94wghpB6LjIxkHeGr0tbWRlJSUpViXFJSEh3ZqQNdunTB33//DWdnZ0yaNAklJSVo1qxZlet0dHQ4cSyyPrGyshJ9r62tzcldZG/evBH1WPtQeXk5SktLGSSqnalTpyI6OhqTJk1CixYtONXv7kNDhw7F0KFDWcf4Iq1atUJubi5at24NY2NjnDt3DpaWlrhx4wYUFRVZx5PY1KlTkZSUhJMnT6JHjx7g8Xi4du0a3N3dMW3aNISGhrKOSAghpIZoZxwhhBDOWLlyJTZt2gRPT0+xKYW//fYbFixYgKVLl7KOKFMGDhyIJk2aYO/evVBSUgIAlJaWwtnZGQUFBbhw4QLjhIRL+vfvD3Nzc2zZskVsffbs2UhJScGVK1cYJasZDQ0NnDx5UnR0m8vi4+NFw3LMzMxgYWHBOlKNeHp6onHjxvj5558RHh6O8ePHo02bNsjJyYGHhwdnBmqoqqri7Nmz6N27t9j6lStXYG9vL5pCTAghhDuoGEcIITKmpKSk2qlyHTt2ZJRIckKhEL6+vtiwYQOePHkCAGjZsiUWLVoENzc3zu5A4arU1FTY29ujrKwMnTp1Ao/HQ1JSEpSUlHD27Fl88803rCMSDrl69SoGDRoEa2trUV/Cixcv4saNGzh37hz69OnDOKFkDAwMcOrUqSrHbbnk2bNn+OGHHxAVFQUNDQ0IhUIUFRXBxsYGhw4d4myvsri4OFy7dg3GxsYYPnw46zgSa926NU6ePAlzc3Ox9ZSUFAwZMgSPHj1ilIwQQkhtUTGOEEJkRH5+PlxcXHD69Olqn+dCz7gPvXr1CgCgpqbGOIlsKy0txf79+3Hnzh0IhUKYmZnB0dERysrKrKMRDkpKSsK6devE+pT99NNPVY6mS7P9+/fjzz//RHBwMKcmqH5o3Lhx4PP52Ldvn6iomJaWBmdnZxgbGyMkJIRxQtmyc+dOhIWFYe/evWjRogUAIC8vD87Ozhg9ejRmzJjBOCEhhJCaomIcIYTICEdHR9y/fx++vr6wsbHBsWPH8PTpU6xatQobNmzgfG8gQgiRBhYWFuDz+RAKhWjTpg0UFBTEnufC1Gd1dXVcuHAB1tbWYuvXr1/H4MGDUVhYyCaYBCIiIiS+liu74ywsLHDv3j28efMGrVu3BgDk5ORAUVGxSqGaCz9fhBBCaIADIYTIjEuXLuHPP/+EtbU15OTkoK+vD1tbWzRu3Bhr167lRDHu6dOnWLhwoWhK4b8/T+La7j4uioiIwLfffgsFBYXPvunlyhtdws7Lly8lvrZx48b/YZKvZ+TIkawjfDGBQFCliAgACgoKVabDSpt///fn8XhV/q1439KAK/9m1IefKUIIIeJoZxwhhMiIxo0bIyUlBW3atEGbNm1w4MAB9OrVC9nZ2fjmm284Mf3y22+/RU5ODubMmVPtlMIRI0YwSiY75OTkkJeXBx0dHcjJyX30Oh6Px5k3uvVFdHQ01q9fL2q4b2pqikWLFkl1rzU5ObnP9noUCoX081THRowYgcLCQoSEhKBly5YAgMePH8PR0RGampo4duwY44SSuXDhApYsWYI1a9aITSFdunQp1qxZA1tbW9YRCSGEyCjaGUcIITKiXbt2yMjIQJs2bdC5c2fs2LEDbdq0gb+/v6gHjbSLiYnBlStX0LlzZ9ZRZNaHu2KkfYeMLNm/fz9cXFwwevRouLm5QSgU4tq1axg4cCCCgoIwYcIE1hGrFRkZyTrCf4bLk0i3bt2KESNGoE2bNtDT0wOPx0NOTg7Mzc2xf/9+1vEkNm/ePPj7+4tNIbWzs4OKigqmT5+O9PR0hukIIYTIMtoZRwghMuLAgQMoLy/H5MmTkZiYCDs7O7x48QINGzZEUFAQxo0bxzriZ5mZmeHAgQOcelNLSF0wNTXF9OnT4eHhIba+ceNG7Nq1i/NFh6SkJM4U4evTJNLz58+LDWcZNGgQ60g1oqysjOvXr1c7hbRbt24oLS1llIwQQoiso2IcIYTIqJKSEty5cwetW7dG06ZNWceRyLlz57BhwwbRrj7ClpubG4yNjeHm5ia2vnXrVty7dw++vr5sgskgRUVF3L59G8bGxmLr9+7dQ4cOHVBWVsYoWe0VFRXhwIEDCAgIQHJyMmeOqdIkUunRt29fKCgoYP/+/WJTSCdNmoS3b98iOjqacUJCCCGyiopxhBAiY96+fYvs7GwYGRmhQQPp71agqakp1lOquLgYFRUVUFFRqdJgvKCgoK7jyTRdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ7DE2NsaiRYswY8YMsfUdO3Zg/fr1yMzMZJSs5i5duoTAwEAcPXoU+vr6GDNmDMaMGcOZHbFcnUTq5+cn8bX/LsBLq3v37mHUqFHIyMgQm0JqYmKC48ePVyleE0IIIXVF+t+FEUII+SpKSkowd+5cBAcHAwDu3r0LQ0NDuLm5oWXLlvD09GScsHq0u0p6vXjxAurq6lXWGzdujOfPnzNIJLsWLFgANzc3JCUloWfPnuDxeIiJiUFQUBA2b97MOt5nPXr0CEFBQQgMDERxcTEcHBxQXl6OI0eOwMzMjHW8GuHqJNJNmzZJdB2Px+NMMc7Y2BgpKSnVHrf93OAQacS1D9MIIYR8HO2MI4QQGeHu7o6rV6/C19cX9vb2SElJgaGhISIiIuDt7Y3ExETWEQnHdOjQAT/++CPmzJkjtr5lyxZs374daWlpjJLJpmPHjmHDhg2i/nDvp6lK+5ThIUOGICYmBt999x0cHR1hb28PeXl5KCgoIDk5mXPFuPoyiZRID65+mEYIIeTj6CMVQgiREcePH8fhw4fRvXt3sR0BZmZm4PP5DJNJ7tSpU5CXl4ednZ3Y+rlz51BZWYlvv/2WUTLZNH/+fMyZMwf5+fkYMGAAAODixYvYsGED7WhkYNSoURg1ahTrGDV27tw5uLm5YebMmWjbti3rOF+svkwiBbi5E8vPzw/Tp0+HkpLSZ4/ecmWH308//YTk5GRERUXB3t5etD5o0CB4e3tTMY4QQjiIG/+qEkII+WL5+fnQ0dGpsl5cXMyZ4zqenp7w8fGpsi4QCODp6UnFuDo2ZcoUvHnzBqtXr8avv/4KAGjTpg22b98OJycnxulk1+vXr6sch2zcuDGjNJ935coVBAYGwsrKCu3bt8ekSZM4Md35Y/T09JCQkMDpSaRc3om1adMmODo6QklJ6ZNHb7l03LY+fJhGCCFEnBzrAIQQQuqGtbU1Tp48KXr8/g/6Xbt2oUePHqxi1UhmZma1R9bat2+Pe/fuMUhEZs6ciUePHuHp06d4+fIlsrKyqBDHQHZ2NoYOHQpVVVWoq6tDU1MTmpqa0NDQgKamJut4n9SjRw/s2rULubm5mDFjBg4dOgRdXV0IBAKcP38er169Yh2xRvbu3Ys3b97A1tYWc+fOhZubGwYNGoS3b99i7969rONJ5MOdWEpKSqL1QYMG4fDhwwyTfV52djaaNGki+v5jX1lZWYyTSq4+fJhGCCFEHPWMI4QQGXHt2jXY29vD0dERQUFBmDFjBm7fvo3Y2FhER0dXmYgpjZo3b46DBw+KjkS+d+HCBUyYMAHPnj1jlIwQtnr27AngXW/IZs2aVXmD3q9fPxaxai0jIwO7d+/Gvn37UFhYCFtbW0RERLCOJRF5eXnk5uZWKZ68ePECOjo6qKysZJRMcvr6+qKdWGpqakhOToahoSHu3bsHS0tLvHz5knVEmdKvXz+MHTsWc+fOhZqaGlJSUmBgYIA5c+bg3r17OHPmDOuIhBBCaoiOqRJCiIzo2bMnrl27hnXr1sHIyAjnzp2DpaUlYmNjYW5uzjqeRIYPH4558+bh2LFjMDIyAgDcu3cPCxYswPDhwxmnk03h4eEIDQ1FTk4O3r59K/ZcQkICo1SyJyUlBfHx8WjXrh3rKF9Fu3bt8Pvvv2Pt2rU4ceIEAgMDWUeSmFAorHa30qNHj6qdPiyN6stOrLFjx8LKyqrKsdp169bh+vXrCAsLY5SsZtauXQt7e3ukpaWhoqICmzdvFvswjRBCCPfQMVVCCJEB5eXlcHFxgYqKCoKDg5Gamoq0tDTs37+fM4U44N0bKFVVVbRv3x4GBgYwMDCAqakpmjRpgvXr17OOJ3P8/Pzg4uICHR0dJCYmomvXrmjSpAmysrKof18ds7a2xsOHD1nH+Ork5eUxcuRITuyKs7CwgKWlJXg8HgYOHAhLS0vRV6dOndCnTx/O9I2rD20NACA6OhpDhw6tsm5vb4/Lly8zSFQ7PXv2xNWrV1FSUiL6MK1Zs2aIjY3lxK52QgghVdHOOEIIkQEKCgo4duwYli1bxjrKF1FXV8e1a9dw/vx5JCcnQ1lZGR07dkTfvn1ZR5NJ27Ztw86dOzF+/HgEBwdj8eLFMDQ0hJeXFwoKCljHkykBAQH48ccf8fjxY3To0AEKCgpiz3fs2JFRMtkxcuRIAEBSUhLs7OzQqFEj0XMNGzZEmzZtMGbMGEbpaqa+7MR6/fo1GjZsWGVdQUGBc0dtzc3NRQM1CCGEcB/1jCOEEBnh4uICc3NzzJ8/n3WUr6KsrAyKioqcOjJV36ioqCA9PR36+vrQ0dHB+fPn0alTJ2RmZqJ79+548eIF64gyIy4uDhMmTMD9+/dFazweT3Rkkgt9yuqL4OBgjBs3TmzwAVckJSWhc+fOAIBbt25h/fr1iI+Ph0AggKWlJZYsWcKp3dTW1tYYNmwYvLy8xNaXL1+OEydOID4+nlGyz6tJsVCapyUTQgipHu2MI4QQGWFsbIxff/0V165dQ5cuXaCqqir2vJubG6NkkhMIBFi9ejX8/f3x9OlT3L17F4aGhli2bBnatGkDV1dX1hFlSvPmzfHixQvo6+tDX18fcXFx6NSpE7Kzs0Gf9dWtKVOmwMLCAiEhIdUOcCB1x9nZmXWEWrO0tISFhQWmTp2KCRMmcH4n1rJlyzBmzBjw+XzR4J+LFy8iJCRE6vvFaWhoSPx7TMV2QgjhHtoZRwghMsLAwOCjz/F4PGRlZdVhmtpZuXIlgoODsXLlSkybNg2pqakwNDREaGgoNm3ahNjYWNYRZcrUqVOhp6cHb29v+Pv7Y/78+ejVqxdu3ryJ0aNHY/fu3awjygxVVVUkJyfD2NiYdRSZJycn98kiijQXTmJjYxEYGIjQ0FCUl5djzJgxmDJlCmxsbFhHq7WTJ09izZo1SEpKErU28Pb2lvoJwx8eB75//z48PT0xefJkUc++2NhYBAcHY+3atZwuABNCiKyiYhwhhBDOMDY2xo4dOzBw4ECoqakhOTkZhoaGuHPnDnr06IF//vmHdUSZIhAIIBAI0KDBu432oaGhiImJgbGxMX788cdqezWR/8awYcMwefJkzvQkq8+OHz8uVowrLy9HYmIigoODsWLFCk7s4C0tLUVoaCj27NmDK1euoE2bNpgyZQqcnZ3RqlUr1vFkzsCBAzF16lSMHz9ebP3gwYPYuXMnoqKi2AQjhBBSa1SMI4QQwhnKysq4c+cO9PX1xYpxaWlp6Nq1K16/fs06IiFM7Ny5E6tWrcKUKVNgbm5eZYDD8OHDGSUj7x08eBCHDx/Gn3/+yTpKjfD5fOzZswd79+5Fbm4ubG1tcerUKdaxaiQ+Ph7p6eng8XgwMzODhYUF60g1oqKiguTkZLRt21Zs/e7du+jcuTNKSkoYJSOEEFJbVIwjhBDCGVZWVpg3bx4mTpwoVoxbsWIFLly4gCtXrrCOWO+lpKRIfC1N8Kw7cnJyH32OBjhIBz6fj44dO6K4uJh1lBp7/fo1Dhw4gJ9//hmFhYWc+Xl69uwZfvjhB0RFRUFDQwNCoRBFRUWwsbHBoUOHoK2tzTqiRNq1a4fvvvsOGzZsEFtfsGAB/vrrL2RkZDBKRgghpLZogAMhhBCpN2XKFGzevBne3t6YNGkSHj9+DIFAgKNHjyIjIwN79+7FX3/9xTqmTOjcubNoSuenUAGobgkEAtYRyCeUlpZiy5YtnDviGR0djcDAQBw5cgTy8vJwcHDgxDHb9+bOnYuXL1/i9u3bMDU1BQCkpaXB2dkZbm5uCAkJYZxQMps2bcKYMWNw9uxZdO/eHcC7Ccp8Ph9HjhxhnI4QQkht0M44QgghUk9eXh65ubnQ0dHB2bNnsWbNGsTHx0MgEMDS0hJeXl4YPHgw65gy4cGDBxJfq6+v/x8mIUQ6aWpqivWMEwqFePXqFVRUVLB//36pPzL88OFDBAUFISgoCNnZ2ejZsydcXV3h4OBQZQq3tFNXV8eFCxdgbW0ttn79+nUMHjwYhYWFbILVwqNHj7B9+3akp6dDKBTCzMwMP/74I/T09FhHI4QQUgtUjCOEECL15OTkkJeXBx0dHdZRCJEafn5+mD59OpSUlODn5/fJa93c3OooFQkODhZ7LCcnB21tbXTr1g2ampqMUknG1tYWkZGR0NbWhpOTE6ZMmYJ27dqxjlVrampquHLlCjp37iy2npiYiH79+uHly5dsghFCCJF5VIwjhBAZcuXKFezYsQN8Ph/h4eHQ1dXFvn37YGBggN69e7OO91FycnJ4+vQpZ/r7yJJ9+/bB398f2dnZiI2Nhb6+Pnx9fWFgYIARI0awjlevGRgY4ObNm2jSpAkMDAw+eh2Px0NWVlYdJiMfk5SUVKUwJE2GDx8OV1dXfPfdd5CXl2cd54uNGDEChYWFCAkJQcuWLQEAjx8/hqOjIzQ1NXHs2DHGCQkhhMiqj3f7JYQQUq8cOXIEdnZ2UFZWRmJiIt68eQMAePXqFdasWcM43eeZmJhAS0vrk1+kbm3fvh3z58/HkCFDxJq6a2howNfXl204GZCdnY0mTZqIvv/YFxXi2CoqKsK2bdtgaWmJLl26sI7zSRERERgxYkS9KMQBwNatW/Hq1Su0adMGRkZGMDY2hoGBAV69eoUtW7awjkcIIUSG0c44QgiRERYWFvDw8ICTk5PYJNKkpCTY29sjLy+PdcSPkpOTg6+vL9TV1T95nbOzcx0lIgBgZmaGNWvWYOTIkWI/U6mpqejfvz+eP3/OOqLMKC0thbKycrXP5ebmokWLFnWciFy6dAmBgYE4evQo9PX1MWbMGIwZMwYWFhaso8mc8+fP486dO6Jea4MGDWIdiRBCiIyjaaqEECIjMjIy0Ldv3yrrjRs35kQT6x9++IF6xkmZ7OzsagsLioqKKC4uZpBIdllYWODgwYOwtLQUWw8PD8fMmTORn5/PKJlsefToEYKCghAYGIji4mI4ODigvLwcR44cgZmZGet4MsvW1ha2trasYxBCCCEiVIwjhBAZ0aJFC9y7dw9t2rQRW4+JiYGhoSGbUBL6cDIhkR4GBgZISkqqMjX19OnTVHioY7a2tujZsyeWL1+OJUuWoLi4GHPmzEFYWBh8fHxYx5MJQ4YMQUxMDL777jts2bIF9vb2kJeXh7+/P+toMuVzw0w+RINNCCGEsELFOEIIkREzZsyAu7s7AgMDwePx8OTJE8TGxmLhwoXw8vJiHe+TqKOCdFq0aBFmz56NsrIyCIVCXL9+HSEhIVi7di0CAgJYx5MpW7ZswdChQ+Hi4oKTJ0/iyZMnaNy4MW7cuEGF0Tpy7tw5uLm5YebMmWjbti3rODJr06ZNEl3H4/GkuhhnYWEh8QdRCQkJ/3EaQgghXxsV4wghREYsXrwYRUVFsLGxQVlZGfr27QtFRUUsXLgQc+bMYR3vkwQCAesIpBouLi6oqKjA4sWLUVJSggkTJkBXVxebN2/GDz/8wDqezBk8eDBGjx6N7du3o0GDBjhx4gQV4urQlStXEBgYCCsrK7Rv3x6TJk3CuHHjWMeSOdnZ2awjfBUjR44UfV9WVoZt27bBzMwMPXr0AADExcXh9u3bmDVrFqOEhBBCvgQNcCCEEBlTUlKCtLQ0CAQCmJmZoVGjRqwjkXrg+fPnEAgEor5+jx8/hq6uLuNUsoPP52PChAnIy8tDQEAAoqOjsX79eri5uWH16tVQUFBgHVFmlJSU4NChQwgMDMT169dRWVmJjRs3YsqUKVBTU2MdTya9ffsW2dnZMDIyQoMG3NuLMHXqVLRo0QK//vqr2Lq3tzcePnyIwMBARskIIYTUFhXjCCFERr18+RKXLl1Cu3btYGpqyjoOqSfy8vKwevVqBAQEoLS0lHUcmaGmpoahQ4fC398fGhoaAIBr166JpicnJiayDSijMjIysHv3buzbtw+FhYWwtbVFREQE61gyo6SkBHPnzkVwcDAA4O7duzA0NISbmxtatmwJT09Pxgklo66ujps3b1Y5/pyZmQkrKysUFRUxSkYIIaS25FgHIIQQUjccHBywdetWAEBpaSmsra3h4OCAjh074siRI4zTES4pLCyEo6MjtLW10bJlS/j5+UEgEMDLywuGhoaIi4ujnRp1bNu2bTh06JCoEAcAPXv2RGJiYpUJq6TutGvXDr///jsePXqEkJAQ1nFkzk8//YTk5GRERUVBSUlJtD5o0CAcPnyYYbKaUVZWRkxMTJX1mJgYsfsihBDCHbQzjhBCZETz5s1x9uxZdOrUCQcPHoS3tzeSk5MRHByMnTt30s4ZIrFZs2bhxIkTGDduHM6cOYP09HTY2dmhrKwM3t7e6NevH+uIhBACfX19HD58GN27d4eamhqSk5NhaGiIe/fuwdLSEi9fvmQdUSI+Pj5Yvnw5pk6diu7duwOA6EMPLy8vzuzwI4QQ8j/ca5pACCGkVoqKiqClpQUAOHPmDMaMGQMVFRUMHToUixYtYpyOcMnJkyexZ88eDBo0CLNmzYKxsTFMTEzg6+vLOprMS0tLQ05ODt6+fSta4/F4GDZsGMNUhLCRn58v6mP5oeLiYoknlUoDT09PGBoaYvPmzTh48CAAwNTUFEFBQXBwcGCcjhBCSG1QMY4QQmSEnp4eYmNjoaWlhTNnzuDQoUMAgH/++YeOuZAaefLkiWhKp6GhIZSUlDB16lTGqWRLUVER1NXVRY+zsrIwevRopKSkgMfj4f3Bh/cFh8rKSiY5CWHJ2toaJ0+exNy5cwH87/dh165doqmkXOHg4ECFN0IIqUeoGEcIITJi3rx5cHR0RKNGjaCvr4/+/fsDAC5fvgxzc3O24QinCAQCsemc8vLyUFVVZZhI9vj5+UFJSUm0q9Xd3R16eno4e/YsOnfujL///hvZ2dlYuHAhNm7cyDgtIWysXbsW9vb2SEtLQ0VFBTZv3ozbt28jNjYW0dHRrOMRQgiRYdQzjhBCZEh8fDxycnJga2uLRo0aAXh35FBDQwO9evVinI5whZycHL799lsoKioCAE6cOIEBAwZUKcgdPXqURTyZ8OzZM0yaNAnGxsb4448/0LRpU1y8eBGdOnWCrq4url+/Dl1dXVy8eBELFy6knpBEpiQlJaFz584AgFu3bmH9+vWIj4+HQCCApaUllixZwqkPoSorK7Fp0yaEhoZWOYYOAAUFBYySEUIIqS3aGUcIITKkS5cu6NKli9ja0KFDGaUhXOXs7Cz2eOLEiYySyC4dHR2cPXsWa9euBfDuzbqamhoAoGnTpnjy5Al0dXXRpk0bZGRksIxKSJ2ztLSEhYUFpk6digkTJiA4OJh1pC+yYsUKBAQEYP78+Vi2bBl++eUX3L9/H8ePH4eXlxfreIQQQmqBdsYRQgghhHBcnz59MH/+fIwaNQrTp09Hfn4+Fi1aBH9/fyQkJCA1NZV1RELqTGxsLAIDAxEaGory8nKMGTMGU6ZMgY2NDetotWJkZAQ/Pz8MHToUampqSEpKEq3FxcWJhjoQQgjhDirGEUIIIYRw3NmzZ/Hq1SuMHTsWDx8+xNChQ5GamgotLS2EhoZiwIABrCMSUudKS0sRGhqKPXv24MqVK2jTpg2mTJkCZ2dntGrVinU8iamqqiI9PR2tW7dGixYtcPLkSVhaWiIrKwsWFhYoKipiHZEQQkgNybEOQAghhBBCvoydnR3Gjh0L4N3k5JSUFDx//hzPnj2jQhyRWcrKynB2dkZUVBTu3r2L8ePHY8eOHTAwMMCQIUNYx5NYq1atkJubCwAwNjbGuXPnAAA3btwQ9e4khBDCLbQzjhBCCCGEEFLvvX79GgcOHMDPP/+MwsJCVFZWso4kEU9PTzRu3Bg///wzwsPDMX78eLRp0wY5OTnw8PCAj48P64iEEEJqiIpxhBAiQ65cuYIdO3aAz+cjPDwcurq62LdvHwwMDNC7d2/W8QghtVRWVoYtW7YgMjISz549g0AgEHs+ISGBUTJC2IuOjkZgYCCOHDkCeXl5ODg4wNXVFd27d2cdrVbi4uJw7do1GBsbY/jw4azjEEIIqQWapkoIITLiyJEjmDRpEhwdHZGYmIg3b94AAF69eoU1a9bg1KlTjBMSQmprypQpOH/+PMaOHYuuXbuCx+OxjkQIUw8fPkRQUBCCgoKQnZ2Nnj17YsuWLXBwcICqqirreF+ke/funC0kEkIIeYd2xhFCiIywsLCAh4cHnJycoKamhuTkZBgaGiIpKQn29vbIy8tjHZEQUkvq6uo4deoUevXqxToKIczZ2toiMjIS2tracHJywpQpU9CuXTvWsWokIiJC4mtpdxwhhHAP7YwjhBAZkZGRgb59+1ZZb9y4MQoLC+s+ECHkq9HV1YWamhrrGIRIBWVlZRw5cgTfffcd5OXlWceplZEjR4o95vF4+Pceivc7YLnS+44QQsj/0DRVQgiRES1atMC9e/eqrMfExMDQ0JBBIkLI17JhwwYsWbIEDx48YB2FEOYiIiIwYsQIzhbiAEAgEIi+zp07h86dO+P06dMoLCxEUVERTp8+DUtLS5w5c4Z1VEIIIbVAO+MIIURGzJgxA+7u7ggMDASPx8OTJ08QGxuLhQsXwsvLi3U8QsgXsLKyQllZGQwNDaGiogIFBQWx5wsKChglI4R8qXnz5sHf319s0JKdnR1UVFQwffp0pKenM0xHCCGkNqgYRwghMmLx4sUoKiqCjY0NysrK0LdvXygqKmLhwoWYM2cO63iEkC8wfvx4PH78GGvWrEGzZs1ogAMh9Qifz4e6unqVdXV1ddy/f7/uAxFCCPliNMCBEEJkTElJCdLS0iAQCGBmZoZGjRqxjkQI+UIqKiqIjY1Fp06dWEchhHxlffv2hYKCAvbv348WLVoAAPLy8jBp0iS8ffsW0dHRjBMSQgipKdoZRwghMkZFRQVWVlasYxBCvqL27dujtLSUdQxCyH8gMDAQo0aNgr6+Plq3bg0AyMnJgYmJCY4fP842HCGEkFqhnXGEECIjbGxsPnl07dKlS3WYhhDyNZ07dw4rVqzA6tWrYW5uXqVnXOPGjRklI4R8DUKhEOfPn8edO3cgFAphZmaGQYMG0ZF0QgjhKCrGEUKIjPDw8BB7XF5ejqSkJKSmpsLZ2RmbN29mlIwQ8qXk5OQAoMobc6FQCB6Ph8rKShaxCCGEEEJINeiYKiGEyIhNmzZVu758+XK8fv26jtMQQr6myMhI1hEIIV+Rn58fpk+fDiUlJfj5+X3yWjc3tzpKRQgh5GuhnXGEECLj7t27h65du6KgoIB1FEIIIYQAMDAwwM2bN9GkSRMYGBh89Doej4esrKw6TEYIIeRroJ1xhBAi42JjY6GkpMQ6BiGEEEL+X3Z2drXfE0IIqR+oGEcIITJi9OjRYo+FQiFyc3Nx8+ZNLFu2jFEqQgghhBBCCJEtcqwDEEIIqRvq6upiX1paWujfvz9OnToFb29v1vEIIYQQUo2xY8fCx8enyvq6devw/fffM0hECCHkS1HPOEIIIYQQQgiRUtra2rh06RLMzc3F1m/duoVBgwbh6dOnjJIRQgipLTqmSgghhBBST+Tn5yMjIwM8Hg8mJibQ1tZmHYkQ8oVev36Nhg0bVllXUFDAy5cvGSQihBDypeiYKiGEyAhNTU1oaWlJ9EUI4Zbi4mJMmTIFLVu2RN++fdGnTx+0bNkSrq6uKCkpYR2PEPIFOnTogMOHD1dZP3ToEMzMzBgkIoQQ8qVoZxwhhMiIZcuWYdWqVbCzs0OPHj0AvJukevbsWSxbtoyKcIRw2Pz58xEdHY2IiAj06tULABATEwM3NzcsWLAA27dvZ5yQEFJby5Ytw5gxY8Dn8zFgwAAAwMWLFxESEoKwsDDG6QghhNQG9YwjhBAZMWbMGNjY2GDOnDli61u3bsWFCxdw/PhxNsEIIV+sadOmCA8PR//+/cXWIyMj4eDggPz8fDbBCCFfxcmTJ7FmzRokJSVBWVkZHTt2hLe3N/r168c6GiGEkFqgYhwhhMiIRo0aISkpCcbGxmLrmZmZsLCwwOvXrxklI4R8KRUVFcTHx8PU1FRs/fbt2+jatSuKi4sZJSOEEEIIIf9GPeMIIURGNGnSBMeOHauyfvz4cTRp0oRBIkLI19KjRw94e3ujrKxMtFZaWooVK1aIjqUTQrgtPj4e+/fvx4EDB5CYmMg6DiGEkC9APeMIIURGrFixAq6uroiKihK9OY+Li8OZM2cQEBDAOB0h5Ets3rwZ9vb2aNWqFTp16gQej4ekpCQoKSnh7NmzrOMRQr7As2fP8MMPPyAqKgoaGhoQCoUoKiqCjY0NDh06RFOTCSGEg+iYKiGEyJC///4bfn5+SE9Ph1AohJmZGdzc3NCtWzfW0QghX6i0tBT79+/HnTt3RL/fjo6OUFZWZh2NEPIFxo0bBz6fj3379omOoqelpcHZ2RnGxsYICQlhnJAQQkhNUTGOEEIIIYQQQqSUuro6Lly4AGtra7H169evY/DgwSgsLGQTjBBCSK1RzzhCCCGEEI4LDg7GyZMnRY8XL14MDQ0N9OzZEw8ePGCYjBDypQQCARQUFKqsKygoQCAQMEhECCHkS1ExjhBCCCGE49asWSM6jhobG4utW7fi999/R9OmTeHh4cE4HSHkSwwYMADu7u548uSJaO3x48fw8PDAwIEDGSYjhBBSW3RMlRBCCCGE41RUVHDnzh20bt0aS5YsQW5uLvbu3Yvbt2+jf//+yM/PZx2REFJLDx8+xIgRI5Camgo9PT3weDzk5OTA3Nwcf/75J1q1asU6IiGEkBqiaaqEEEIIIRzXqFEjvHjxAq1bt8a5c+dEu+GUlJRQWlrKOB0h5Evo6ekhISEB58+fFxvQMmjQINbRCCGE1BIV4wghhBBCOM7W1hZTp06FhYUF7t69i6FDhwIAbt++jTZt2rANRwj5KmxtbWFra8s6BiGEkK+AinGEECJDbty4gbCwMOTk5ODt27dizx09epRRKkLIl/rjjz+wdOlSPHz4EEeOHEGTJk0AAPHx8Rg/fjzjdISQmvLz85P4Wjc3t/8wCSGEkP8C9YwjhBAZcejQITg5OWHw4ME4f/48Bg8ejMzMTOTl5WHUqFHYs2cP64iEEEIIAWBgYCDRdTweD1lZWf9xGkIIIV8bFeMIIURGdOzYETNmzMDs2bOhpqaG5ORkGBgYYMaMGWjRogVWrFjBOiIh5AtcuXIFO3bsQFZWFsLCwqCrq4t9+/bBwMAAvXv3Zh2PEEIIIYT8PznWAQghhNQNPp8v6iOlqKiI4uJi8Hg8eHh4YOfOnYzTEUK+xJEjR2BnZwdlZWUkJCTgzZs3AIBXr15hzZo1jNMRQr6Gt2/fIiMjAxUVFayjEEII+UJUjCOEEBmhpaWFV69eAQB0dXWRmpoKACgsLERJSQnLaISQL7Rq1Sr4+/tj165dUFBQEK337NkTCQkJDJMR8n/t3XtslvXdP/D3XQ5SdaBT2chAOamxigqKA1R8wDKPmYquHhBRiscpqFGmJuiWZc7EZU6yoZsZoJsHcBimQR3opLEI8cDwABUBcSXzMDMGRJGBtM8fbs364PP8/In0nlyvV9Kk9+e6evfd/kHIu9/v92J7bdy4MbW1tdl1111z8MEHp7GxMcknZ8XddtttZU4HwOehjAMoiGOPPTbz5s1LktTU1GTChAm5+OKLc+655+b4448vczpgeyxfvjxDhw7dZt65c+esW7eu7QMBX5gbb7wxL7/8cubPn59OnTq1zKurqzNjxowyJgPg8/I0VYCC+PnPf55NmzYl+eQ/9h06dEh9fX1GjhyZSZMmlTkdsD26deuWlStXpmfPnq3m9fX16d27d3lCAV+I2bNnZ8aMGRk0aFBKpVLLvKqqKqtWrSpjMgA+L2UcQEF89atfbfm8oqIiEydOzMSJE8uYCPiiXHrppZkwYUKmTp2aUqmUt99+OwsXLsx1112Xm2++udzxgO3w/vvvp2vXrtvM/3X2KwBfPso4gJ3Yhg0bPvO9nTt33oFJgB1p4sSJWb9+fYYNG5ZNmzZl6NCh2WWXXXLdddflyiuvLHc8YDsMHDgwc+bMyVVXXZUkLQXcPffck8GDB5czGgCfU6m5ubm53CEA2DEqKir+n381b25uTqlUytatW9soFbCjbNy4McuWLUtTU1Oqqqqy++67lzsSsJ2ee+65nHjiiRk1alSmT5+eSy+9NEuXLs3ChQtTV1eXI444otwRAfj/ZGUcwE7smWeeKXcEYAfauHFjrr/++syePTtbtmxJdXV1Jk+enL333rvc0YDttGTJkhx++OEZMmRIFixYkJ/85Cfp06dP5s6dmwEDBmThwoXp169fuWMC8DlYGQcA8CV1/fXXZ8qUKRk1alQ6deqUBx98MP/1X/+Vhx9+uNzRgO1UUVGR/v37Z9y4cTnvvPPSpUuXckcC4AuijAMA+JLq06dPfvSjH+Wcc85Jkjz//PM5+uijs2nTprRr167M6YDtsXDhwkydOjUzZ87Mli1bcuaZZ2bs2LEZNmxYuaMBsJ2UcQAAX1IdO3bM6tWr841vfKNlVllZmTfeeCM9evQoYzLgi/LRRx9l5syZmTZtWp599tn07NkzY8eOzZgxY9K9e/dyxwPgc6godwAAAD6frVu3pmPHjq1m7du3z8cff1ymRMAXrbKyMmPGjMn8+fPzxhtv5Nxzz80vf/nL9OrVKyeffHK54wHwOVgZBwDwJVVRUZGTTjopu+yyS8vssccey/Dhw7Pbbru1zB555JFyxAN2gA8++CD3339/brrppqxbt87T0AG+hDxNFQDgS2rMmDHbzM4///wyJAF2tLq6ukydOjWzZs1Ku3btUlNTk9ra2nLHAuBzsDIOoEB+97vfZebMmWlsbMzmzZtbXVu8eHGZUgEAn2bNmjWZPn16pk+fntWrV2fIkCGpra1NTU1Nq9WvAHy5ODMOoCAmT56ciy66KF27ds2f/vSnHHXUUdlrr73y5ptv5qSTTip3PADg34wYMSK9evXKlClTctZZZ6WhoSH19fW56KKLFHEAX3K2qQIUxJQpU/KrX/0q5557bu69995MnDgxvXv3zs0335y1a9eWOx4A8G8qKysza9asnHrqqWnXrl254wDwBbJNFaAgdt111zQ0NGS//fZL165dM2/evBx22GFZsWJFBg0alL/97W/ljggAALDTs00VoCC+/vWvtxRu++23XxYtWpQkWb16dfxdBgAAoG0o4wAKYvjw4XnssceSJLW1tbnmmmsyYsSInH322TnjjDPKnA4AAKAYbFMFKIimpqY0NTWlfftPjgudOXNm6uvr07dv31x22WXp2LFjmRMCAADs/JRxAAAAANBGbFMFAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANtK+3AEA2HH69++fUqn0me5dvHjxDk4DAACAMg5gJ3b66ae3fL5p06ZMmTIlVVVVGTx4cJJk0aJFWbp0aa644ooyJQQAACiWUnNzc3O5QwCw440bNy7dunXLD3/4w1bzW265JWvWrMnUqVPLlAwAAKA4lHEABdGlS5e8+OKL2X///VvNV6xYkSOPPDLr168vUzIAAIDi8AAHgIKorKxMfX39NvP6+vp06tSpDIkAAACKx5lxAAVx9dVX5/LLL89LL72UQYMGJfnkzLipU6fm5ptvLnM6AACAYrBNFaBAZs6cmTvvvDMNDQ1JkoMOOigTJkxITU1NmZMBAAAUgzIOAAAAANqIM+MAAAAAoI04Mw6gILZu3Zo77rgjM2fOTGNjYzZv3tzq+tq1a8uUDAAAoDisjAMoiB/84Af56U9/mpqamqxfvz7XXnttRo4cmYqKinz/+98vdzwAAIBCcGYcQEH06dMnkydPzimnnJKvfOUrWbJkScts0aJFeeCBB8odEQAAYKdnZRxAQbz77rvp169fkmT33XfP+vXrkySnnnpq5syZU85oAAAAhaGMAyiI7t2755133kmS9O3bN3Pnzk2SvPDCC9lll13KGQ0AAKAwlHEABXHGGWfk6aefTpJMmDAhkyZNyv77758LLrggY8eOLXM6AACAYnBmHEBBLVq0KM8991z69u2bb3/72+WOAwAAUAjKOAAAAABoI+3LHQCAHefRRx/9zPdaHQcAALDjWRkHsBOrqGh9NGipVMr//Ge/VColSbZu3dpmuQAAAIrKAxwAdmJNTU0tH3Pnzs3hhx+eJ554IuvWrcv69evzxBNPZMCAAXnyySfLHRUAAKAQrIwDKIhDDjkkd999d4455phW82effTaXXHJJGhoaypQMAACgOKyMAyiIVatWpUuXLtvMu3TpkrfeeqvtAwEAABSQlXEABTF06NB06NAhv/3tb9OtW7ckybvvvpvRo0dn8+bNqaurK3NCAACAnZ8yDqAgVq5cmTPOOCPLly/PvvvumyRpbGzMAQcckNmzZ6dv375lTggAALDzU8YBFEhzc3PmzZuX119/Pc3Nzamqqkp1dXXLE1UBAADYsZRxAAAAANBG2pc7AAA7zuTJk3PJJZekU6dOmTx58v957/jx49soFQAAQHFZGQewE+vVq1defPHF7LXXXunVq9f/el+pVMqbb77ZhskAAACKSRkHAAAAAG2kotwBAAAAAKAolHEABXHWWWfltttu22Z+++235zvf+U4ZEgEAABSPbaoABbHPPvvkj3/8Y/r169dq/uqrr6a6ujrvvfdemZIBAAAUh5VxAAXxwQcfpGPHjtvMO3TokA0bNpQhEQAAQPEo4wAK4pBDDsmMGTO2mT/00EOpqqoqQyIAAIDiaV/uAAC0jUmTJuXMM8/MqlWrMnz48CTJ008/nQcffDAPP/xwmdMBAAAUgzPjAApkzpw5ufXWW7NkyZJUVlbm0EMPzS233JLjjjuu3NEAAAAKQRkHAAAAAG3ENlWAgnnppZfS0NCQUqmUqqqq9O/fv9yRAAAACkMZB1AQf/3rX3POOedk/vz52WOPPdLc3Jz169dn2LBheeihh7LPPvuUOyIAAMBOz9NUAQriqquuyoYNG7J06dKsXbs2f//73/Paa69lw4YNGT9+fLnjAQAAFIIz4wAKokuXLnnqqacycODAVvPnn38+3/rWt7Ju3bryBAMAACgQK+MACqKpqSkdOnTYZt6hQ4c0NTWVIREAAEDxKOMACmL48OGZMGFC3n777ZbZX/7yl1xzzTU5/vjjy5gMAACgOGxTBSiINWvW5LTTTstrr72WHj16pFQqpbGxMf369cvvf//7dO/evdwRAQAAdnrKOICCmTdvXl5//fU0Nzenqqoq1dXV5Y4EAABQGMo4AAAAAGgj7csdAIAdZ/LkyZ/53vHjx+/AJAAAACRWxgHs1Hr16vWZ7iuVSnnzzTd3cBoAAACUcQAAAADQRirKHQCAtrV58+YsX748H3/8cbmjAAAAFI4yDqAgNm7cmNra2uy66645+OCD09jYmOSTs+Juu+22MqcDAAAoBmUcQEHceOONefnllzN//vx06tSpZV5dXZ0ZM2aUMRkAAEBxeJoqQEHMnj07M2bMyKBBg1IqlVrmVVVVWbVqVRmTAQAAFIeVcQAF8f7776dr167bzD/88MNW5RwAAAA7jjIOoCAGDhyYOXPmtLz+VwF3zz33ZPDgweWKBQAAUCi2qQIUxI9//OOceOKJWbZsWT7++OPceeedWbp0aRYuXJi6urpyxwMAACgEK+MAdnJLlixJkgwZMiQLFizIxo0b06dPn8ydOzdf+9rXsnDhwhxxxBHlDQkAAFAQpebm5uZyhwBgx6moqEj//v0zbty4nHfeeenSpUu5IwEAABSWlXEAO7kFCxZkwIABueGGG9KtW7eMHj06zzzzTLljAQAAFJKVcQAF8dFHH2XmzJmZNm1ann322fTs2TNjx47NmDFj0r1793LHAwAAKARlHEABrVq1KtOmTct9992Xd955JyNGjMjjjz9e7lgAAAA7PWUcQEF98MEHuf/++3PTTTdl3bp12bp1a7kjAQAA7PTalzsAAG2rrq4uU6dOzaxZs9KuXbvU1NSktra23LEAAAAKwco4gAJYs2ZNpk+fnunTp2f16tUZMmRIamtrU1NTk912263c8QAAAArDyjiAndyIESPyzDPPZJ999skFF1yQsWPH5sADDyx3LAAAgEJSxgHs5CorKzNr1qyceuqpadeuXbnjAAAAFJptqgAAAADQRirKHQAAAAAAikIZBwAAAABtRBkHAAAAAG1EGQcAADvQ/PnzUyqVsm7dus/8NT179szPfvazHZYJACgfZRwAAIV24YUXplQq5bLLLtvm2hVXXJFSqZQLL7yw7YMBADslZRwAAIXXo0ePPPTQQ/noo49aZps2bcqDDz6Yfffdt4zJAICdjTIOAIDCGzBgQPbdd9888sgjLbNHHnkkPXr0SP/+/Vtm//jHPzJ+/Ph07do1nTp1yjHHHJMXXnih1Xs9/vjjOeCAA1JZWZlhw4blrbfe2ub7Pffccxk6dGgqKyvTo0ePjB8/Ph9++OH/mq+xsTGnnXZadt9993Tu3Dk1NTV57733tv8HBwDanDIOAACSXHTRRZk2bVrL66lTp2bs2LGt7pk4cWJmzZqVe++9N4sXL07fvn1zwgknZO3atUmSNWvWZOTIkTn55JOzZMmSjBs3LjfccEOr93j11VdzwgknZOTIkXnllVcyY8aM1NfX58orr/zUXM3NzTn99NOzdu3a1NXVZd68eVm1alXOPvvsL/g3AAC0BWUcAAAkGT16dOrr6/PWW2/lz3/+cxYsWJDzzz+/5fqHH36Yu+66K7fffntOOumkVFVV5Z577kllZWV+/etfJ0nuuuuu9O7dO3fccUcOPPDAjBo1apvz5m6//facd955ufrqq7P//vtnyJAhmTx5cu67775s2rRpm1xPPfVUXnnllTzwwAM54ogj8s1vfjO/+c1vUldXt82qPADgP1/7cgcAAID/BHvvvXdOOeWU3HvvvWlubs4pp5ySvffeu+X6qlWrsmXLlhx99NEtsw4dOuSoo45KQ0NDkqShoSGDBg1KqVRquWfw4MGtvs9LL72UlStX5v7772+ZNTc3p6mpKatXr85BBx3U6v6Ghob06NEjPXr0aJlVVVVljz32SENDQwYOHPjF/AIAgDahjAMAgH8aO3Zsy3bRX/ziF62uNTc3J0mrou1f83/N/nXP/6WpqSmXXnppxo8fv821T3tYxL+//2eZAwD/2WxTBQCAfzrxxBOzefPmbN68OSeccEKra3379k3Hjh1TX1/fMtuyZUtefPHFltVsVVVVWbRoUauv+5+vBwwYkKVLl6Zv377bfHTs2HGbTFVVVWlsbMyaNWtaZsuWLcv69eu3WUUHAPznU8YBAMA/tWvXLg0NDWloaEi7du1aXdttt91y+eWX5/rrr8+TTz6ZZcuW5eKLL87GjRtTW1ubJLnsssuyatWqXHvttVm+fHkeeOCBTJ8+vdX7fO9738vChQvz3e9+N0uWLMmKFSvy6KOP5qqrrvrUTNXV1Tn00EMzatSoLF68OM8//3wuuOCCHHfccTnyyCN3yO8BANhxlHEAAPBvOnfunM6dO3/qtdtuuy1nnnlmRo8enQEDBmTlypX5wx/+kD333DPJJ9tMZ82alcceeyyHHXZY7r777tx6662t3uPQQw9NXV1dVqxYkWOPPTb9+/fPpEmT0q1bt0/9nqVSKbNnz86ee+6ZoUOHprq6Or17986MGTO+2B8cAGgTpebPcrAFAAAAALDdrIwDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA28t+vkhTTEyLM9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -21407,7 +23095,7 @@ "

Tabla de correlaciones con filtro de umbral de correlación

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21434,6 +23122,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21465,6 +23194,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21478,7 +23213,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21494,6 +23229,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21523,6 +23264,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21552,6 +23299,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21581,6 +23334,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21610,6 +23369,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21639,6 +23404,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21668,6 +23439,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21697,6 +23474,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21726,11 +23509,17 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21740,11 +23529,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21768,7 +23563,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21784,6 +23579,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21813,6 +23614,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21842,6 +23649,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21871,6 +23684,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21900,6 +23719,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21913,7 +23738,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21929,6 +23754,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21958,6 +23789,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21987,6 +23824,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22016,6 +23859,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22045,6 +23894,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22074,6 +23929,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22103,6 +23964,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22132,6 +23999,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22161,6 +24034,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22190,6 +24069,222 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Capacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
nannannan0.735nannannannannan
Altitud a la que se realiza el cruceronannannan-0.952-0.955nannannannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannannan
Techo de servicio máximonannannannannannannannannan
Velocidad de pérdida limpia (KCAS)nannannannannannannannannan
Área del ala1.000nan0.899nannannannannannan
Relación de aspecto del alanannannannannannannannannan
Longitud del fuselaje0.929nannannannannannannannan
Ancho del fuselajenannannan0.794nannannannannan
Peso máximo al despegue (MTOW)0.9760.758nannannannannannannan
Alcance de la aeronavenan-0.952-0.955nannannan0.982nannannan0.843nannannan-0.7550.804nannannannannannannannannannannannan0.843nannannannan-0.732nannannannannannannan
Velocidad máxima (KIAS)0.7050.910nannannannannannannan
Velocidad de pérdida (KCAS)nannannannannannannannannan
envergaduranannannannannannannannannan
Cuerdanannannannannannannannannan
payloadnan0.8680.875nan0.804nan0.715nan0.7110.846nannannannannannannan
duracion en VTOLnannannannan-0.904nannannannan
Crucero KIASnannannannannannannannannan
RTF (Including fuel & Batteries)nannannannannannannannannan
Empty weight0.995nannannannannannannannan
Maximum Crosswindnannannannan-0.943nannannannan
Rango de comunicaciónnannannannannannannannannan
Capacidad combustiblenannan0.817nannannannannannan
Consumonannan0.998nannannannannannan
Precio0.8170.998nannannannannannannan
Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" @@ -22210,10 +24305,10 @@ "\n", "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", "Ecuación de regresión: y = -3.588x + 72.195\n", @@ -22223,7 +24318,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.723) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [27.344, 27.344, 27.344, 18.091, 21.875, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.104x + 21.164\n", @@ -22237,7 +24332,7 @@ "--- Imputación para aeronave: **AAI Aerosonde** ---\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892]\n", "Ecuación de regresión: y = -3.686x + 73.696\n", @@ -22247,7 +24342,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.607x + 4.971\n", @@ -22257,7 +24352,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", "Valores para Cuerda: [0.239, 0.318, 0.352]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", "Ecuación de regresión: y = 77.731x + -2.949\n", @@ -22271,7 +24366,7 @@ "--- Imputación para aeronave: **Orbiter 4** ---\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.625x + 4.123\n", @@ -22285,7 +24380,7 @@ "--- Imputación para aeronave: **Orbiter 3** ---\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.625x + 4.123\n", @@ -22313,7 +24408,7 @@ "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.625x + 4.123\n", @@ -22392,7 +24487,7 @@ "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 36.094, 30.625]\n", "Ecuación de regresión: y = 93.547x + -1.195\n", @@ -22402,7 +24497,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", "Ecuación de regresión: y = 0.625x + 4.123\n", @@ -22412,7 +24507,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Crucero KIAS (r = 1.0) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 33.0, 24.0, 30.0]\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 36.094, 26.25, 32.813]\n", "Ecuación de regresión: y = 1.094x + 0.0\n", @@ -23091,10 +25186,10 @@ "\n", "=== Imputación para el parámetro: **Área del ala** ===\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", "Ecuación de regresión: y = -0.219x + 4.203\n", @@ -23104,7 +25199,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.022x + 0.512\n", @@ -23114,7 +25209,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.084x + 0.605\n", @@ -23128,7 +25223,7 @@ "--- Imputación para aeronave: **Fulmar X** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.546x + 0.007\n", @@ -23138,7 +25233,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.022x + 0.514\n", @@ -23148,7 +25243,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.082x + -1.305\n", @@ -23158,7 +25253,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.46x + -0.446\n", @@ -23172,7 +25267,7 @@ "--- Imputación para aeronave: **Orbiter 4** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.521x + 0.078\n", @@ -23182,7 +25277,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.022x + 0.513\n", @@ -23192,7 +25287,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.057x + -0.607\n", @@ -23202,7 +25297,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.46x + -0.445\n", @@ -23212,7 +25307,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.084x + 0.605\n", @@ -23226,7 +25321,7 @@ "--- Imputación para aeronave: **Orbiter 3** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.45x + 0.279\n", @@ -23236,7 +25331,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.512\n", @@ -23246,7 +25341,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.058x + -0.629\n", @@ -23256,7 +25351,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.417x + -0.317\n", @@ -23266,7 +25361,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.084x + 0.605\n", @@ -23280,7 +25375,7 @@ "--- Imputación para aeronave: **Mantis** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.423x + 0.354\n", @@ -23290,7 +25385,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.512\n", @@ -23300,7 +25395,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.057x + -0.594\n", @@ -23310,7 +25405,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.398x + -0.27\n", @@ -23324,7 +25419,7 @@ "--- Imputación para aeronave: **ScanEagle** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.432x + 0.325\n", @@ -23334,7 +25429,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.524\n", @@ -23344,7 +25439,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.058x + -0.649\n", @@ -23354,7 +25449,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.381x + -0.202\n", @@ -23364,7 +25459,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.083x + 0.619\n", @@ -23378,7 +25473,7 @@ "--- Imputación para aeronave: **Integrator** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.432x + 0.325\n", @@ -23388,7 +25483,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.522\n", @@ -23398,7 +25493,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.049x + -0.376\n", @@ -23408,7 +25503,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.38x + -0.191\n", @@ -23418,7 +25513,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.083x + 0.622\n", @@ -23432,7 +25527,7 @@ "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.53\n", @@ -23442,7 +25537,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.081x + 0.628\n", @@ -23456,7 +25551,7 @@ "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.46x + 0.297\n", @@ -23466,7 +25561,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.53\n", @@ -23476,7 +25571,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.049x + -0.376\n", @@ -23486,7 +25581,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.397x + -0.238\n", @@ -23496,7 +25591,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.081x + 0.628\n", @@ -23510,7 +25605,7 @@ "--- Imputación para aeronave: **ScanEagle 3** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.46x + 0.297\n", @@ -23520,7 +25615,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.53\n", @@ -23530,7 +25625,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.049x + -0.376\n", @@ -23540,7 +25635,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.397x + -0.238\n", @@ -23550,7 +25645,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.081x + 0.628\n", @@ -23561,10 +25656,10 @@ "Valores imputados: ['Longitud del fuselaje: 1.401', 'Peso máximo al despegue (MTOW): 1.286', 'Velocidad máxima (KIAS): 1.625', 'envergadura: 1.349', 'payload: 1.326']\n", "**Mediana calculada:** 1.349\n", "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.458x + 0.299\n", @@ -23574,7 +25669,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.533\n", @@ -23584,7 +25679,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.31\n", @@ -23594,7 +25689,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.397x + -0.238\n", @@ -23604,7 +25699,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.081x + 0.63\n", @@ -23618,7 +25713,7 @@ "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.476x + 0.281\n", @@ -23628,7 +25723,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.533\n", @@ -23638,7 +25733,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.405x + -0.261\n", @@ -23648,7 +25743,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.08x + 0.635\n", @@ -23662,7 +25757,7 @@ "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.477x + 0.279\n", @@ -23672,7 +25767,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.537\n", @@ -23682,7 +25777,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.405x + -0.259\n", @@ -23692,7 +25787,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.08x + 0.631\n", @@ -23706,7 +25801,7 @@ "--- Imputación para aeronave: **V32** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.477x + 0.279\n", @@ -23716,7 +25811,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.537\n", @@ -23726,7 +25821,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.3\n", @@ -23736,7 +25831,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.405x + -0.259\n", @@ -23746,7 +25841,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.08x + 0.631\n", @@ -23780,7 +25875,7 @@ "--- Imputación para aeronave: **V35** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.459x + 0.325\n", @@ -23790,7 +25885,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.538\n", @@ -23800,7 +25895,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.324\n", @@ -23810,7 +25905,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.405x + -0.26\n", @@ -23820,7 +25915,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.08x + 0.631\n", @@ -23844,7 +25939,7 @@ "--- Imputación para aeronave: **V39** ---\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.538\n", @@ -23854,7 +25949,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.324\n", @@ -23864,7 +25959,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.405x + -0.257\n", @@ -23874,7 +25969,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.08x + 0.622\n", @@ -23898,7 +25993,7 @@ "--- Imputación para aeronave: **Volitation VT370** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.459x + 0.326\n", @@ -23908,7 +26003,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.548\n", @@ -23918,7 +26013,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.324\n", @@ -23928,7 +26023,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.403x + -0.255\n", @@ -23938,7 +26033,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.079x + 0.636\n", @@ -23972,7 +26067,7 @@ "--- Imputación para aeronave: **Volitation VT510** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.461x + 0.329\n", @@ -23982,7 +26077,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.021x + 0.549\n", @@ -23992,7 +26087,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.046x + -0.299\n", @@ -24002,7 +26097,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", "Ecuación de regresión: y = 0.313x + 0.036\n", @@ -24012,7 +26107,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", "Ecuación de regresión: y = 0.076x + 0.65\n", @@ -24046,7 +26141,7 @@ "--- Imputación para aeronave: **Ascend** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", "Ecuación de regresión: y = 0.485x + 0.296\n", @@ -24056,7 +26151,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993]\n", "Ecuación de regresión: y = 0.019x + 0.589\n", @@ -24066,7 +26161,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993]\n", "Ecuación de regresión: y = 0.046x + -0.299\n", @@ -24076,7 +26171,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", "Ecuación de regresión: y = 0.329x + -0.009\n", @@ -24086,7 +26181,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", "Ecuación de regresión: y = 0.071x + 0.685\n", @@ -24096,7 +26191,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8]\n", "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84]\n", "Ecuación de regresión: y = 0.025x + 0.682\n", @@ -24120,7 +26215,7 @@ "--- Imputación para aeronave: **Transition** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", "Ecuación de regresión: y = 0.492x + 0.273\n", @@ -24130,7 +26225,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771]\n", "Ecuación de regresión: y = 0.019x + 0.589\n", @@ -24140,7 +26235,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771]\n", "Ecuación de regresión: y = 0.047x + -0.36\n", @@ -24150,7 +26245,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", "Ecuación de regresión: y = 0.323x + 0.017\n", @@ -24160,7 +26255,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", "Ecuación de regresión: y = 0.07x + 0.689\n", @@ -24170,7 +26265,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9]\n", "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771]\n", "Ecuación de regresión: y = 0.026x + 0.624\n", @@ -24194,7 +26289,7 @@ "--- Imputación para aeronave: **Reach** ---\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.48x + 0.28\n", @@ -24204,7 +26299,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.019x + 0.592\n", @@ -24214,7 +26309,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.047x + -0.373\n", @@ -24224,7 +26319,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.323x + 0.017\n", @@ -24234,7 +26329,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.069x + 0.705\n", @@ -24244,7 +26339,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9, 16.5]\n", "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771, 0.986]\n", "Ecuación de regresión: y = 0.026x + 0.605\n", @@ -24270,7 +26365,7 @@ "--- Imputación para aeronave: **Fulmar X** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", "Ecuación de regresión: y = -0.27x + 19.967\n", @@ -24280,7 +26375,7 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", "Ecuación de regresión: y = -1.556x + 16.146\n", @@ -24290,7 +26385,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", "Ecuación de regresión: y = -1.519x + 18.038\n", @@ -24300,7 +26395,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754]\n", "Ecuación de regresión: y = -0.04x + 15.296\n", @@ -24310,7 +26405,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", "Ecuación de regresión: y = -0.176x + 19.272\n", @@ -24320,7 +26415,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", "Ecuación de regresión: y = -0.303x + 20.091\n", @@ -24334,7 +26429,7 @@ "--- Imputación para aeronave: **Orbiter 4** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", "Ecuación de regresión: y = -0.211x + 18.836\n", @@ -24344,7 +26439,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", "Ecuación de regresión: y = -1.355x + 15.647\n", @@ -24354,7 +26449,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", "Ecuación de regresión: y = -0.157x + 14.552\n", @@ -24364,7 +26459,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218]\n", "Ecuación de regresión: y = -0.036x + 14.967\n", @@ -24374,7 +26469,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", "Ecuación de regresión: y = -0.122x + 17.914\n", @@ -24384,7 +26479,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5]\n", "Ecuación de regresión: y = -0.158x + 15.309\n", @@ -24398,7 +26493,7 @@ "--- Imputación para aeronave: **Orbiter 3** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", "Ecuación de regresión: y = -0.208x + 18.787\n", @@ -24408,7 +26503,7 @@ "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", "Ecuación de regresión: y = -1.358x + 15.647\n", @@ -24418,7 +26513,7 @@ "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", "Ecuación de regresión: y = 0.102x + 13.89\n", @@ -24428,7 +26523,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443]\n", "Ecuación de regresión: y = -0.035x + 14.97\n", @@ -24437,18 +26532,8 @@ "\tR²: 0.5601880164889009, Desviación Estándar: 0.7722572050409231, Varianza: 0.5963811907376184, Incertidumbre: 0.25741906834697437\n", "\tNivel de confianza: Confianza Baja\n", "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = 0.0x + 14.293\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 14.299\n", - "\tR²: 0.021248458324993225, Desviación Estándar: 0.896822690408026, Varianza: 0.8042909380306901, Incertidumbre: 0.4010712999033189\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", "Ecuación de regresión: y = -0.123x + 17.936\n", @@ -24458,7 +26543,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443]\n", "Ecuación de regresión: y = -0.158x + 15.313\n", @@ -24466,73 +26551,73 @@ "Predicción obtenida: 14.446\n", "\tR²: 0.787811738102038, Desviación Estándar: 0.565704012619775, Varianza: 0.3200210298941146, Incertidumbre: 0.21381601900903846\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.263', 'Área del ala: 14.018', 'Longitud del fuselaje: 14.012', 'Peso máximo al despegue (MTOW): 13.857', 'Alcance de la aeronave: 14.299', 'Velocidad máxima (KIAS): 13.495', 'payload: 14.446']\n", - "**Mediana calculada:** 14.012\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.263', 'Área del ala: 14.018', 'Longitud del fuselaje: 14.012', 'Peso máximo al despegue (MTOW): 13.857', 'Velocidad máxima (KIAS): 13.495', 'payload: 14.446']\n", + "**Mediana calculada:** 13.934\n", "\n", "--- Imputación para aeronave: **Mantis** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = -0.198x + 18.646\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Ecuación de regresión: y = -0.199x + 18.661\n", "Valor del parámetro correlacionado para la aeronave: 18.266\n", - "Predicción obtenida: 15.033\n", - "\tR²: 0.8162307529020697, Desviación Estándar: 0.463001126334729, Varianza: 0.2143700429872277, Incertidumbre: 0.16369561806414812\n", + "Predicción obtenida: 15.029\n", + "\tR²: 0.8259424603654436, Desviación Estándar: 0.45023923501123037, Varianza: 0.2027153687434979, Incertidumbre: 0.1591836081163423\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = -1.357x + 15.646\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Ecuación de regresión: y = -1.354x + 15.633\n", "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 14.623\n", - "\tR²: 0.4900269781864812, Desviación Estándar: 0.7712927169798122, Varianza: 0.5948924552661006, Incertidumbre: 0.2726931552281109\n", + "Predicción obtenida: 14.611\n", + "\tR²: 0.48854653028077, Desviación Estándar: 0.7717914841458512, Varianza: 0.5956620950000557, Incertidumbre: 0.27286949605078054\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = 0.102x + 13.89\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Ecuación de regresión: y = 0.118x + 13.849\n", "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 14.041\n", - "\tR²: 0.0046993987852630426, Desviación Estándar: 1.008260850059533, Varianza: 1.0165899417627717, Incertidumbre: 0.3810867808485868\n", + "Predicción obtenida: 14.024\n", + "\tR²: 0.006260092700906439, Desviación Estándar: 1.0085765160538325, Varianza: 1.0172265887352867, Incertidumbre: 0.3812060913797692\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Ecuación de regresión: y = -0.035x + 14.982\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 14.767\n", - "\tR²: 0.5649822868921843, Desviación Estándar: 0.7340836887623863, Varianza: 0.538878862106992, Incertidumbre: 0.23213764496672915\n", + "Predicción obtenida: 14.755\n", + "\tR²: 0.5642432263469788, Desviación Estándar: 0.732986855728399, Varianza: 0.5372697306706048, Incertidumbre: 0.23179079590669788\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = 0.0x + 14.219\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934]\n", + "Ecuación de regresión: y = 0.0x + 14.449\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 14.223\n", - "\tR²: 0.03697239299019073, Desviación Estándar: 0.8249333692250005, Varianza: 0.680515063660911, Incertidumbre: 0.3367776377327012\n", + "Predicción obtenida: 14.451\n", + "\tR²: 0.00695796488843492, Desviación Estándar: 0.8160949284662801, Varianza: 0.6660109322683828, Incertidumbre: 0.36496874722868605\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Ecuación de regresión: y = -0.117x + 17.798\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Ecuación de regresión: y = -0.118x + 17.819\n", "Valor del parámetro correlacionado para la aeronave: 25.6\n", - "Predicción obtenida: 14.81\n", - "\tR²: 0.6133897598737705, Desviación Estándar: 0.6283946045669089, Varianza: 0.3948797790488017, Incertidumbre: 0.23751083555697344\n", + "Predicción obtenida: 14.805\n", + "\tR²: 0.6226111062384435, Desviación Estándar: 0.6215370810067415, Varianza: 0.38630834306638073, Incertidumbre: 0.23491893527840643\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218]\n", "Ecuación de regresión: y = -0.214x + 18.598\n", @@ -24540,1389 +26625,1379 @@ "Predicción obtenida: 15.024\n", "\tR²: 0.8546770471425846, Desviación Estándar: 0.4778243263623709, Varianza: 0.2283160868636535, Incertidumbre: 0.23891216318118544\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 15.033', 'Área del ala: 14.623', 'Longitud del fuselaje: 14.041', 'Peso máximo al despegue (MTOW): 14.767', 'Alcance de la aeronave: 14.223', 'Velocidad máxima (KIAS): 14.81', 'Crucero KIAS: 15.024']\n", - "**Mediana calculada:** 14.767\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 15.029', 'Área del ala: 14.611', 'Longitud del fuselaje: 14.024', 'Peso máximo al despegue (MTOW): 14.755', 'Alcance de la aeronave: 14.451', 'Velocidad máxima (KIAS): 14.805', 'Crucero KIAS: 15.024']\n", + "**Mediana calculada:** 14.755\n", "\n", "--- Imputación para aeronave: **ScanEagle** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = -0.192x + 18.474\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Ecuación de regresión: y = -0.193x + 18.483\n", "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 12.602\n", - "\tR²: 0.8235797866498076, Desviación Estándar: 0.4433751181910776, Varianza: 0.19658149543095202, Incertidumbre: 0.14779170606369255\n", + "Predicción obtenida: 12.586\n", + "\tR²: 0.8322301664609455, Desviación Estándar: 0.43196932859791437, Varianza: 0.18659750084933294, Incertidumbre: 0.14398977619930478\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = -1.383x + 15.694\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Ecuación de regresión: y = -1.38x + 15.68\n", "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 14.224\n", - "\tR²: 0.5237760149013296, Desviación Estándar: 0.7284550833069877, Varianza: 0.5306468083957905, Incertidumbre: 0.24281836110232924\n", + "Predicción obtenida: 14.213\n", + "\tR²: 0.5222926726573038, Desviación Estándar: 0.7289150646703415, Varianza: 0.5313171715033681, Incertidumbre: 0.24297168822344717\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = 0.031x + 14.11\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Ecuación de regresión: y = 0.046x + 14.071\n", "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 14.162\n", - "\tR²: 0.00041867860015110114, Desviación Estándar: 0.9721354662815678, Varianza: 0.9450473648024812, Incertidumbre: 0.34370179021982145\n", + "Predicción obtenida: 14.149\n", + "\tR²: 0.0009397134116212458, Desviación Estándar: 0.9728249313313656, Varianza: 0.9463883470198762, Incertidumbre: 0.34394555292587303\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Ecuación de regresión: y = -0.035x + 14.982\n", "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 14.067\n", - "\tR²: 0.6041711076219263, Desviación Estándar: 0.6999213418164504, Varianza: 0.48988988473014045, Incertidumbre: 0.21103422486975046\n", + "Predicción obtenida: 14.057\n", + "\tR²: 0.6034073830513715, Desviación Estándar: 0.698875551331174, Varianza: 0.48842703624845235, Incertidumbre: 0.21071890717438813\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = -0.116x + 17.772\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Ecuación de regresión: y = -0.117x + 17.789\n", "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 12.99\n", - "\tR²: 0.6343488080766746, Desviación Estándar: 0.5879646533380922, Varianza: 0.3457024335749829, Incertidumbre: 0.2078768967366813\n", + "Predicción obtenida: 12.97\n", + "\tR²: 0.6429053256386628, Desviación Estándar: 0.5816082132170911, Varianza: 0.3382681136815773, Incertidumbre: 0.20562955577979825\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012]\n", - "Ecuación de regresión: y = -0.151x + 15.186\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934]\n", + "Ecuación de regresión: y = -0.15x + 15.164\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.43\n", - "\tR²: 0.779730301455002, Desviación Estándar: 0.5464452282253737, Varianza: 0.29860238745028067, Incertidumbre: 0.19319756321259615\n", + "Predicción obtenida: 14.414\n", + "\tR²: 0.7728271432710303, Desviación Estándar: 0.5530726265073179, Varianza: 0.30588933019170317, Incertidumbre: 0.19554070234598958\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767]\n", - "Ecuación de regresión: y = -0.207x + 18.409\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755]\n", + "Ecuación de regresión: y = -0.207x + 18.401\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", "Predicción obtenida: 12.607\n", - "\tR²: 0.8557406648350283, Desviación Estándar: 0.43818596791937064, Varianza: 0.19200694248143574, Incertidumbre: 0.19596272221085095\n", + "\tR²: 0.8547867905694756, Desviación Estándar: 0.43920425690338755, Varianza: 0.19290037928205683, Incertidumbre: 0.19641811488865116\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.602', 'Área del ala: 14.224', 'Longitud del fuselaje: 14.162', 'Peso máximo al despegue (MTOW): 14.067', 'Velocidad máxima (KIAS): 12.99', 'payload: 14.43', 'Crucero KIAS: 12.607']\n", - "**Mediana calculada:** 14.067\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.586', 'Área del ala: 14.213', 'Longitud del fuselaje: 14.149', 'Peso máximo al despegue (MTOW): 14.057', 'Velocidad máxima (KIAS): 12.97', 'payload: 14.414', 'Crucero KIAS: 12.607']\n", + "**Mediana calculada:** 14.057\n", "\n", "--- Imputación para aeronave: **Integrator** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Ecuación de regresión: y = -0.157x + 17.776\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Ecuación de regresión: y = -0.157x + 17.782\n", "Valor del parámetro correlacionado para la aeronave: 30.953\n", - "Predicción obtenida: 12.923\n", - "\tR²: 0.6641740677951478, Desviación Estándar: 0.5805266763901159, Varianza: 0.3370112220005544, Incertidumbre: 0.18357865398802614\n", + "Predicción obtenida: 12.908\n", + "\tR²: 0.6712253814763909, Desviación Estándar: 0.5738697173551367, Varianza: 0.32932645249726444, Incertidumbre: 0.18147353870392907\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Ecuación de regresión: y = -1.374x + 15.667\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Ecuación de regresión: y = -1.371x + 15.653\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 13.095\n", - "\tR²: 0.5219103690121566, Desviación Estándar: 0.6926593947898028, Varianza: 0.47977703719057585, Incertidumbre: 0.2190381330249543\n", + "Predicción obtenida: 13.087\n", + "\tR²: 0.5204404709133397, Desviación Estándar: 0.6930832915381803, Varianza: 0.4803644490093982, Incertidumbre: 0.21917218094671553\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Ecuación de regresión: y = 0.033x + 14.095\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Ecuación de regresión: y = 0.049x + 14.056\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 14.178\n", - "\tR²: 0.000490016744001398, Desviación Estándar: 0.9170252395244427, Varianza: 0.8409352899248614, Incertidumbre: 0.3056750798414809\n", + "Predicción obtenida: 14.177\n", + "\tR²: 0.001042484555474843, Desviación Estándar: 0.917647035048045, Varianza: 0.8420760809324679, Incertidumbre: 0.305882345016015\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Ecuación de regresión: y = -0.035x + 14.994\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Ecuación de regresión: y = -0.035x + 14.982\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 12.376\n", - "\tR²: 0.6075184827366995, Desviación Estándar: 0.6701236710904337, Varianza: 0.4490657345557197, Incertidumbre: 0.19344804094720108\n", + "Predicción obtenida: 12.372\n", + "\tR²: 0.6067435478664236, Desviación Estándar: 0.669122407636399, Varianza: 0.4477247964011312, Incertidumbre: 0.19315900108484274\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Ecuación de regresión: y = -0.094x + 17.194\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Ecuación de regresión: y = -0.095x + 17.205\n", "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.823\n", - "\tR²: 0.526405227591237, Desviación Estándar: 0.6312351449660243, Varianza: 0.39845780824027766, Incertidumbre: 0.21041171498867475\n", + "Predicción obtenida: 12.803\n", + "\tR²: 0.5330694834785845, Desviación Estándar: 0.6273765557788624, Varianza: 0.39360134274094805, Incertidumbre: 0.20912551859295414\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067]\n", - "Ecuación de regresión: y = -0.146x + 15.095\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057]\n", + "Ecuación de regresión: y = -0.145x + 15.074\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.462\n", - "\tR²: 0.7754905637643377, Desviación Estándar: 0.5266918070184679, Varianza: 0.27740425958037895, Incertidumbre: 0.1755639356728226\n", + "Predicción obtenida: 12.46\n", + "\tR²: 0.7690943364673855, Desviación Estándar: 0.53238130110139, Varianza: 0.28342984976240887, Incertidumbre: 0.17746043370046335\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067]\n", - "Ecuación de regresión: y = -0.155x + 17.54\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057]\n", + "Ecuación de regresión: y = -0.156x + 17.537\n", "Valor del parámetro correlacionado para la aeronave: 28.3\n", - "Predicción obtenida: 13.14\n", - "\tR²: 0.663687056459504, Desviación Estándar: 0.6116803288548116, Varianza: 0.3741528247079305, Incertidumbre: 0.24971744856535041\n", + "Predicción obtenida: 13.136\n", + "\tR²: 0.6651166916698918, Desviación Estándar: 0.6098787538174729, Varianza: 0.3719520943579537, Incertidumbre: 0.2489819586362145\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.923', 'Área del ala: 13.095', 'Longitud del fuselaje: 14.178', 'Peso máximo al despegue (MTOW): 12.376', 'Velocidad máxima (KIAS): 12.823', 'payload: 12.462', 'Crucero KIAS: 13.14']\n", - "**Mediana calculada:** 12.923\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.908', 'Área del ala: 13.087', 'Longitud del fuselaje: 14.177', 'Peso máximo al despegue (MTOW): 12.372', 'Velocidad máxima (KIAS): 12.803', 'payload: 12.46', 'Crucero KIAS: 13.136']\n", + "**Mediana calculada:** 12.908\n", "\n", "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.157x + 17.776\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.157x + 17.782\n", "Valor del parámetro correlacionado para la aeronave: 21.463\n", - "Predicción obtenida: 14.411\n", - "\tR²: 0.6955131309495535, Desviación Estándar: 0.5535104680562337, Varianza: 0.3063738382478309, Incertidumbre: 0.16688968546150232\n", + "Predicción obtenida: 14.403\n", + "\tR²: 0.7022195601444223, Desviación Estándar: 0.5471633158350149, Varianza: 0.2993876941955682, Incertidumbre: 0.16497594706104288\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -1.406x + 15.693\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -1.404x + 15.68\n", "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 12.754\n", - "\tR²: 0.5643813137066285, Desviación Estándar: 0.6620561206988881, Varianza: 0.4383183069548606, Incertidumbre: 0.1996174311378599\n", + "Predicción obtenida: 12.745\n", + "\tR²: 0.5633237239923707, Desviación Estándar: 0.6625958144708088, Varianza: 0.43903321335423456, Incertidumbre: 0.199780154932692\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.033x + 14.943\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.033x + 14.932\n", "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 12.498\n", - "\tR²: 0.608454130768421, Desviación Estándar: 0.6573629374382771, Varianza: 0.4321260315174802, Incertidumbre: 0.18231967519410266\n", + "Predicción obtenida: 12.491\n", + "\tR²: 0.6086276801287058, Desviación Estándar: 0.6558904966751431, Varianza: 0.4301923436287659, Incertidumbre: 0.18191129360398245\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.139x + 15.064\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.138x + 15.044\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.555\n", - "\tR²: 0.7681447903007532, Desviación Estándar: 0.516359328939539, Varianza: 0.266626956582891, Incertidumbre: 0.16328715705250396\n", + "Predicción obtenida: 12.551\n", + "\tR²: 0.7628945280960475, Desviación Estándar: 0.5206483180033946, Varianza: 0.2710746710397639, Incertidumbre: 0.1646434544826377\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.411', 'Área del ala: 12.754', 'Peso máximo al despegue (MTOW): 12.498', 'payload: 12.555']\n", - "**Mediana calculada:** 12.654\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.403', 'Área del ala: 12.745', 'Peso máximo al despegue (MTOW): 12.491', 'payload: 12.551']\n", + "**Mediana calculada:** 12.648\n", "\n", "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", - "Ecuación de regresión: y = -0.14x + 17.225\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", + "Ecuación de regresión: y = -0.141x + 17.233\n", "Valor del parámetro correlacionado para la aeronave: 33.045\n", - "Predicción obtenida: 12.59\n", - "\tR²: 0.510023026717956, Desviación Estándar: 0.7136489244448807, Varianza: 0.509294787361335, Incertidumbre: 0.2060126993175694\n", + "Predicción obtenida: 12.574\n", + "\tR²: 0.5159927919290995, Desviación Estándar: 0.7087508493711017, Varianza: 0.502327766484258, Incertidumbre: 0.20459874683639073\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", - "Ecuación de regresión: y = -1.426x + 15.711\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", + "Ecuación de regresión: y = -1.423x + 15.698\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 13.042\n", - "\tR²: 0.6128293293992375, Desviación Estándar: 0.6343778425999941, Varianza: 0.40243524718182283, Incertidumbre: 0.18312910909652033\n", + "Predicción obtenida: 13.033\n", + "\tR²: 0.6116464984342147, Desviación Estándar: 0.6348648613448064, Varianza: 0.4030533921703601, Incertidumbre: 0.1832696992982292\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.175x + 14.359\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.163x + 14.323\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 13.92\n", - "\tR²: 0.013083522010913673, Desviación Estándar: 0.93913737855047, Varianza: 0.8819790157906487, Incertidumbre: 0.29698131520192456\n", + "Predicción obtenida: 13.917\n", + "\tR²: 0.011206334911924909, Desviación Estándar: 0.9412441639775184, Varianza: 0.8859405762217376, Incertidumbre: 0.2976475392509969\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", - "Ecuación de regresión: y = -0.032x + 14.931\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", + "Ecuación de regresión: y = -0.032x + 14.92\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 12.534\n", - "\tR²: 0.6320455971220006, Desviación Estándar: 0.6345600288026622, Varianza: 0.40266643015403547, Incertidumbre: 0.16959330136578327\n", + "Predicción obtenida: 12.528\n", + "\tR²: 0.6321568018371059, Desviación Estándar: 0.6331526544068619, Varianza: 0.4008822837824551, Incertidumbre: 0.16921716473692594\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Ecuación de regresión: y = 0.0x + 14.332\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755]\n", + "Ecuación de regresión: y = 0.0x + 14.526\n", "Valor del parámetro correlacionado para la aeronave: 500.0\n", - "Predicción obtenida: 14.381\n", - "\tR²: 0.017282284063206976, Desviación Estándar: 0.7854344289958513, Varianza: 0.6169072422520389, Incertidumbre: 0.2968663100387202\n", + "Predicción obtenida: 14.54\n", + "\tR²: 0.0015535116931560955, Desviación Estándar: 0.752709188227462, Varianza: 0.5665711220420449, Incertidumbre: 0.30729223931030347\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.092x + 17.137\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.093x + 17.144\n", "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.859\n", - "\tR²: 0.5980072707351919, Desviación Estándar: 0.5993741728944746, Varianza: 0.3592493991329355, Incertidumbre: 0.18953875570260967\n", + "Predicción obtenida: 12.84\n", + "\tR²: 0.6038367583191466, Desviación Estándar: 0.5957808601774445, Varianza: 0.35495483335377565, Incertidumbre: 0.18840245044950332\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654]\n", - "Ecuación de regresión: y = -0.138x + 15.058\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648]\n", + "Ecuación de regresión: y = -0.137x + 15.038\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.572\n", - "\tR²: 0.7800961130119188, Desviación Estándar: 0.4930778276036819, Varianza: 0.24312574407436624, Incertidumbre: 0.14866855878226887\n", + "Predicción obtenida: 12.567\n", + "\tR²: 0.7750989860654982, Desviación Estándar: 0.4971353116989971, Varianza: 0.24714351813805902, Incertidumbre: 0.14989193626745023\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.59', 'Área del ala: 13.042', 'Longitud del fuselaje: 13.92', 'Peso máximo al despegue (MTOW): 12.534', 'Alcance de la aeronave: 14.381', 'Velocidad máxima (KIAS): 12.859', 'payload: 12.572']\n", - "**Mediana calculada:** 12.859\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.574', 'Área del ala: 13.033', 'Longitud del fuselaje: 13.917', 'Peso máximo al despegue (MTOW): 12.528', 'Alcance de la aeronave: 14.54', 'Velocidad máxima (KIAS): 12.84', 'payload: 12.567']\n", + "**Mediana calculada:** 12.84\n", "\n", "--- Imputación para aeronave: **ScanEagle 3** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", - "Ecuación de regresión: y = -0.135x + 17.109\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", + "Ecuación de regresión: y = -0.136x + 17.118\n", "Valor del parámetro correlacionado para la aeronave: 25.703\n", - "Predicción obtenida: 13.643\n", - "\tR²: 0.535314561075031, Desviación Estándar: 0.6887523223637181, Varianza: 0.4743797615614151, Incertidumbre: 0.19102552418286836\n", + "Predicción obtenida: 13.632\n", + "\tR²: 0.5415803492274942, Desviación Estándar: 0.6840025560016795, Varianza: 0.4678594966168307, Incertidumbre: 0.18970817601634496\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", - "Ecuación de regresión: y = -1.448x + 15.728\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", + "Ecuación de regresión: y = -1.447x + 15.715\n", "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 13.774\n", - "\tR²: 0.6339313870790875, Desviación Estándar: 0.6113146322958206, Varianza: 0.37370557965897433, Incertidumbre: 0.16954817324492275\n", + "Predicción obtenida: 13.764\n", + "\tR²: 0.6330253270433377, Desviación Estándar: 0.6119897631287073, Varianza: 0.37453147017433136, Incertidumbre: 0.16973542084766274\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859]\n", - "Ecuación de regresión: y = -0.322x + 14.544\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84]\n", + "Ecuación de regresión: y = -0.311x + 14.512\n", "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 13.772\n", - "\tR²: 0.042345280621575165, Desviación Estándar: 0.9416884437522549, Varianza: 0.8867771250965437, Incertidumbre: 0.2839297488490841\n", + "Predicción obtenida: 13.765\n", + "\tR²: 0.039424169255703134, Desviación Estándar: 0.9449335704173759, Varianza: 0.8928994525017299, Incertidumbre: 0.2849081913532099\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", - "Ecuación de regresión: y = -0.031x + 14.911\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", + "Ecuación de regresión: y = -0.031x + 14.9\n", "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 13.783\n", - "\tR²: 0.6385049587577492, Desviación Estándar: 0.6178453553338438, Varianza: 0.3817328831076036, Incertidumbre: 0.15952698478263871\n", + "Predicción obtenida: 13.773\n", + "\tR²: 0.6393936966590913, Desviación Estándar: 0.6161349689692996, Varianza: 0.3796222999867998, Incertidumbre: 0.15908536492227474\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859]\n", - "Ecuación de regresión: y = -0.092x + 17.137\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84]\n", + "Ecuación de regresión: y = -0.093x + 17.144\n", "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 13.33\n", - "\tR²: 0.6473061906505011, Desviación Estándar: 0.5714808508233791, Varianza: 0.32659036285781323, Incertidumbre: 0.17230795973220137\n", + "Predicción obtenida: 13.314\n", + "\tR²: 0.6528561194484994, Desviación Estándar: 0.5680547657716968, Varianza: 0.32268621691593735, Incertidumbre: 0.1712749562216309\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859]\n", - "Ecuación de regresión: y = -0.135x + 15.044\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84]\n", + "Ecuación de regresión: y = -0.134x + 15.025\n", "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 13.883\n", - "\tR²: 0.7797023232836269, Desviación Estándar: 0.4782732644237212, Varianza: 0.22874531546252275, Incertidumbre: 0.13806559898061826\n", - "\tNivel de confianza: Confianza Alta\n", + "Predicción obtenida: 13.87\n", + "\tR²: 0.7755555066361247, Desviación Estándar: 0.4815099276447935, Varianza: 0.2318518104204943, Incertidumbre: 0.1389999431715994\n", + "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923]\n", - "Ecuación de regresión: y = -0.161x + 17.637\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908]\n", + "Ecuación de regresión: y = -0.161x + 17.639\n", "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 13.85\n", - "\tR²: 0.7175450779766854, Desviación Estándar: 0.5704794589847608, Varianza: 0.3254468131235454, Incertidumbre: 0.21562096807776418\n", + "Predicción obtenida: 13.844\n", + "\tR²: 0.7192364194160978, Desviación Estándar: 0.5692595198003065, Varianza: 0.32405640088327564, Incertidumbre: 0.2151598744068086\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.643', 'Área del ala: 13.774', 'Longitud del fuselaje: 13.772', 'Peso máximo al despegue (MTOW): 13.783', 'Velocidad máxima (KIAS): 13.33', 'payload: 13.883', 'Crucero KIAS: 13.85']\n", - "**Mediana calculada:** 13.774\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.632', 'Área del ala: 13.764', 'Longitud del fuselaje: 13.765', 'Peso máximo al despegue (MTOW): 13.773', 'Velocidad máxima (KIAS): 13.314', 'payload: 13.87', 'Crucero KIAS: 13.844']\n", + "**Mediana calculada:** 13.765\n", "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", - "Ecuación de regresión: y = -0.135x + 17.114\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", + "Ecuación de regresión: y = -0.135x + 17.123\n", "Valor del parámetro correlacionado para la aeronave: 33.797\n", - "Predicción obtenida: 12.563\n", - "\tR²: 0.5342243863228833, Desviación Estándar: 0.6645511147608912, Varianza: 0.44162818412994326, Incertidumbre: 0.17760875624528186\n", + "Predicción obtenida: 12.545\n", + "\tR²: 0.5404546291978183, Desviación Estándar: 0.6600090502158572, Varianza: 0.43561194636683787, Incertidumbre: 0.17639483843412967\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", - "Ecuación de regresión: y = -1.448x + 15.728\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", + "Ecuación de regresión: y = -1.447x + 15.715\n", "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 13.119\n", - "\tR²: 0.6340136541211301, Desviación Estándar: 0.5890775326049247, Varianza: 0.3470123394199061, Incertidumbre: 0.15743759294669885\n", + "Predicción obtenida: 13.108\n", + "\tR²: 0.6331129407716816, Desviación Estándar: 0.5897281920140293, Varianza: 0.3477793404561358, Incertidumbre: 0.15761148898843813\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774]\n", - "Ecuación de regresión: y = -0.322x + 14.544\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765]\n", + "Ecuación de regresión: y = -0.311x + 14.512\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 13.74\n", - "\tR²: 0.04429674165169528, Desviación Estándar: 0.9015982192102218, Varianza: 0.8128793488830431, Incertidumbre: 0.2602689872809544\n", + "Predicción obtenida: 13.734\n", + "\tR²: 0.04129311851250839, Desviación Estándar: 0.9047050168185119, Varianza: 0.8184911674565839, Incertidumbre: 0.2611658424986864\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", - "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", + "Ecuación de regresión: y = -0.031x + 14.9\n", "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 13.014\n", - "\tR²: 0.6395237688067317, Desviación Estándar: 0.598229831780838, Varianza: 0.35787893163252976, Incertidumbre: 0.1495574579452095\n", + "Predicción obtenida: 13.006\n", + "\tR²: 0.6404167494362927, Desviación Estándar: 0.5965733368182722, Varianza: 0.35589974620248765, Incertidumbre: 0.14914333420456805\n", "\tNivel de confianza: Confianza Media\n", "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859]\n", - "Ecuación de regresión: y = 0.0x + 14.115\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 14.128\n", - "\tR²: 0.022722235303102134, Desviación Estándar: 0.889761474449699, Varianza: 0.7916754814149023, Incertidumbre: 0.31457818611096156\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774]\n", - "Ecuación de regresión: y = -0.089x + 17.059\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765]\n", + "Ecuación de regresión: y = -0.09x + 17.066\n", "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.932\n", - "\tR²: 0.6311618765895944, Desviación Estándar: 0.5601049538041426, Varianza: 0.3137175592759407, Incertidumbre: 0.16168837292663232\n", + "Predicción obtenida: 12.914\n", + "\tR²: 0.6362072062495043, Desviación Estándar: 0.5573026681001448, Varianza: 0.31058626387154015, Incertidumbre: 0.16087942272385766\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774]\n", - "Ecuación de regresión: y = -0.134x + 15.028\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765]\n", + "Ecuación de regresión: y = -0.134x + 15.009\n", "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 12.649\n", - "\tR²: 0.7813316684515454, Desviación Estándar: 0.4604041822404213, Varianza: 0.21197201102447108, Incertidumbre: 0.12769314511583893\n", + "Predicción obtenida: 12.643\n", + "\tR²: 0.7773273437346053, Desviación Estándar: 0.46343938731299195, Varianza: 0.21477606571304134, Incertidumbre: 0.1285349595405083\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774]\n", - "Ecuación de regresión: y = -0.161x + 17.634\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765]\n", + "Ecuación de regresión: y = -0.162x + 17.636\n", "Valor del parámetro correlacionado para la aeronave: 30.9\n", - "Predicción obtenida: 12.645\n", - "\tR²: 0.7186963836121465, Desviación Estándar: 0.5342166106536912, Varianza: 0.28538738709831746, Incertidumbre: 0.18887409400785932\n", + "Predicción obtenida: 12.636\n", + "\tR²: 0.7203735267257434, Desviación Estándar: 0.533129992286115, Varianza: 0.2842275886749931, Incertidumbre: 0.18848991639972185\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.563', 'Área del ala: 13.119', 'Longitud del fuselaje: 13.74', 'Peso máximo al despegue (MTOW): 13.014', 'Alcance de la aeronave: 14.128', 'Velocidad máxima (KIAS): 12.932', 'payload: 12.649', 'Crucero KIAS: 12.645']\n", - "**Mediana calculada:** 12.973\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.545', 'Área del ala: 13.108', 'Longitud del fuselaje: 13.734', 'Peso máximo al despegue (MTOW): 13.006', 'Velocidad máxima (KIAS): 12.914', 'payload: 12.643', 'Crucero KIAS: 12.636']\n", + "**Mediana calculada:** 12.914\n", "\n", "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.128x + 16.957\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.129x + 16.982\n", "Valor del parámetro correlacionado para la aeronave: 18.091\n", - "Predicción obtenida: 14.65\n", - "\tR²: 0.5421915391164227, Desviación Estándar: 0.6489139037011813, Varianza: 0.42108925441670597, Incertidumbre: 0.16754884947714124\n", - "\tNivel de confianza: Confianza Baja\n", + "Predicción obtenida: 14.648\n", + "\tR²: 0.5523215209559584, Desviación Estándar: 0.6432370596243068, Varianza: 0.41375391487412394, Incertidumbre: 0.1660830946392245\n", + "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -1.461x + 15.737\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -1.465x + 15.728\n", "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 14.509\n", - "\tR²: 0.6465018935699594, Desviación Estándar: 0.5702151055687861, Varianza: 0.3251452666188218, Incertidumbre: 0.14722890717492082\n", + "Predicción obtenida: 14.498\n", + "\tR²: 0.6463458428923345, Desviación Estándar: 0.5717120330519926, Varianza: 0.3268546487364427, Incertidumbre: 0.14761541218911678\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.403x + 14.649\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.399x + 14.624\n", "Valor del parámetro correlacionado para la aeronave: 0.75\n", - "Predicción obtenida: 14.347\n", - "\tR²: 0.06842483962479096, Desviación Estándar: 0.8886738964344558, Varianza: 0.7897412942039979, Incertidumbre: 0.2464737923662158\n", + "Predicción obtenida: 14.325\n", + "\tR²: 0.06604254768080076, Desviación Estándar: 0.8947186094782155, Varianza: 0.8005213901466314, Incertidumbre: 0.24815029412196515\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.031x + 14.911\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.031x + 14.901\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 14.599\n", - "\tR²: 0.6468495695110492, Desviación Estándar: 0.5804480353649806, Varianza: 0.3369199217590657, Incertidumbre: 0.14077932705835708\n", + "Predicción obtenida: 14.589\n", + "\tR²: 0.64862940600494, Desviación Estándar: 0.5791516164367155, Varianza: 0.33541659482126046, Incertidumbre: 0.14046489928328137\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973]\n", - "Ecuación de regresión: y = 0.0x + 13.94\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84]\n", + "Ecuación de regresión: y = 0.0x + 14.236\n", "Valor del parámetro correlacionado para la aeronave: 270.0\n", - "Predicción obtenida: 13.997\n", - "\tR²: 0.04703203479609108, Desviación Estándar: 0.9111851551421984, Varianza: 0.8302583869515122, Incertidumbre: 0.30372838504739946\n", + "Predicción obtenida: 14.259\n", + "\tR²: 0.010075858581318875, Desviación Estándar: 0.9138813895344626, Varianza: 0.8351791941374402, Incertidumbre: 0.34541469778833345\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.131x + 15.014\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.131x + 14.998\n", "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 14.62\n", - "\tR²: 0.7771803589437556, Desviación Estándar: 0.45102082932177623, Varianza: 0.20341978848210282, Incertidumbre: 0.1205403869729095\n", + "Predicción obtenida: 14.604\n", + "\tR²: 0.7761013348288335, Desviación Estándar: 0.45173648062543886, Varianza: 0.2040658479278575, Incertidumbre: 0.12073165282910263\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.153x + 17.471\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.155x + 17.498\n", "Valor del parámetro correlacionado para la aeronave: 16.54\n", "Predicción obtenida: 14.941\n", - "\tR²: 0.7387286606060905, Desviación Estándar: 0.5118777159980322, Varianza: 0.26201879613536216, Incertidumbre: 0.1706259053326774\n", + "\tR²: 0.7453275443355423, Desviación Estándar: 0.5085476473721651, Varianza: 0.25862070964776396, Incertidumbre: 0.16951588245738836\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.65', 'Área del ala: 14.509', 'Longitud del fuselaje: 14.347', 'Peso máximo al despegue (MTOW): 14.599', 'Alcance de la aeronave: 13.997', 'payload: 14.62', 'Crucero KIAS: 14.941']\n", - "**Mediana calculada:** 14.599\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.648', 'Área del ala: 14.498', 'Longitud del fuselaje: 14.325', 'Peso máximo al despegue (MTOW): 14.589', 'Alcance de la aeronave: 14.259', 'payload: 14.604', 'Crucero KIAS: 14.941']\n", + "**Mediana calculada:** 14.589\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -0.128x + 16.957\n", "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 14.717\n", - "\tR²: 0.5673252249031574, Desviación Estándar: 0.6284176728117805, Varianza: 0.39490877150217396, Incertidumbre: 0.15710441820294513\n", + "Predicción obtenida: 14.714\n", + "\tR²: 0.5769309788482372, Desviación Estándar: 0.6229572635807227, Varianza: 0.38807575224798196, Incertidumbre: 0.15573931589518067\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -1.472x + 15.757\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -1.476x + 15.749\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 14.727\n", - "\tR²: 0.6655463732035445, Desviación Estándar: 0.5525041655219294, Varianza: 0.3052608529190835, Incertidumbre: 0.13812604138048235\n", + "Predicción obtenida: 14.716\n", + "\tR²: 0.6654453208012552, Desviación Estándar: 0.5539699350076821, Varianza: 0.3068826888924155, Incertidumbre: 0.13849248375192053\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -0.452x + 14.76\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -0.449x + 14.74\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 14.353\n", - "\tR²: 0.10767788693788138, Desviación Estándar: 0.8582189379484234, Varianza: 0.7365397454533199, Incertidumbre: 0.22936865918885752\n", + "Predicción obtenida: 14.335\n", + "\tR²: 0.10523063156350132, Desviación Estándar: 0.8642071856334788, Varianza: 0.746854059700538, Incertidumbre: 0.2309690857020446\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -0.031x + 14.901\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 14.717\n", - "\tR²: 0.668742738945738, Desviación Estándar: 0.5640940957956807, Varianza: 0.3182021489115466, Incertidumbre: 0.1329582534548066\n", + "Predicción obtenida: 14.707\n", + "\tR²: 0.6704861354330247, Desviación Estándar: 0.5628342077229468, Varianza: 0.3167823453831172, Incertidumbre: 0.13266129498821788\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599]\n", - "Ecuación de regresión: y = 0.0x + 14.014\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589]\n", + "Ecuación de regresión: y = 0.0x + 14.29\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 14.033\n", - "\tR²: 0.03658191201096572, Desviación Estándar: 0.8828624043127778, Varianza: 0.7794460249489389, Incertidumbre: 0.2791856058160841\n", + "Predicción obtenida: 14.297\n", + "\tR²: 0.006384217652188662, Desviación Estándar: 0.861582649338378, Varianza: 0.7423246616409385, Incertidumbre: 0.30461546694991914\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -0.131x + 15.009\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -0.131x + 14.994\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.852\n", - "\tR²: 0.7989376635956842, Desviación Estándar: 0.43575473105263046, Varianza: 0.1898821856347503, Incertidumbre: 0.11251138775986198\n", + "Predicción obtenida: 14.837\n", + "\tR²: 0.7981390800156483, Desviación Estándar: 0.43643291254269034, Varianza: 0.19047368715049562, Incertidumbre: 0.11268649346764252\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599]\n", - "Ecuación de regresión: y = -0.146x + 17.287\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589]\n", + "Ecuación de regresión: y = -0.148x + 17.309\n", "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 14.945\n", - "\tR²: 0.7422196460742506, Desviación Estándar: 0.4948955953255141, Varianza: 0.244921650272595, Incertidumbre: 0.15649972852136038\n", + "Predicción obtenida: 14.943\n", + "\tR²: 0.7479549673253836, Desviación Estándar: 0.49233652426651103, Varianza: 0.24239525312682883, Incertidumbre: 0.15569047919729348\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.717', 'Área del ala: 14.727', 'Longitud del fuselaje: 14.353', 'Peso máximo al despegue (MTOW): 14.717', 'Alcance de la aeronave: 14.033', 'payload: 14.852', 'Crucero KIAS: 14.945']\n", - "**Mediana calculada:** 14.717\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.714', 'Área del ala: 14.716', 'Longitud del fuselaje: 14.335', 'Peso máximo al despegue (MTOW): 14.707', 'Alcance de la aeronave: 14.297', 'payload: 14.837', 'Crucero KIAS: 14.943']\n", + "**Mediana calculada:** 14.714\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.128x + 16.957\n", "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 14.717\n", - "\tR²: 0.5929127107679053, Desviación Estándar: 0.6096546936267196, Varianza: 0.37167884546108937, Incertidumbre: 0.14786298217509053\n", + "Predicción obtenida: 14.714\n", + "\tR²: 0.6023394020952446, Desviación Estándar: 0.60435731717502, Varianza: 0.3652477668229877, Incertidumbre: 0.1465781796663248\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -1.476x + 15.748\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 14.726\n", - "\tR²: 0.685319780926233, Desviación Estándar: 0.5360124441675181, Varianza: 0.28730934030243677, Incertidumbre: 0.13000211317342153\n", + "Predicción obtenida: 14.716\n", + "\tR²: 0.6855376342976433, Desviación Estándar: 0.5374299221408195, Varianza: 0.2888309212122873, Incertidumbre: 0.13034590207965144\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.501x + 14.874\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.5x + 14.859\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 14.424\n", - "\tR²: 0.14520304942233875, Desviación Estándar: 0.8333946066823736, Varianza: 0.6945465704472683, Incertidumbre: 0.2151815621666609\n", + "Predicción obtenida: 14.409\n", + "\tR²: 0.14307201753173704, Desviación Estándar: 0.8395031403094158, Varianza: 0.7047655225893706, Incertidumbre: 0.21675877876714636\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.031x + 14.902\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 14.717\n", - "\tR²: 0.6901941411051212, Desviación Estándar: 0.5490488826768337, Varianza: 0.3014546755686795, Incertidumbre: 0.12596045235011777\n", + "Predicción obtenida: 14.708\n", + "\tR²: 0.692130699174681, Desviación Estándar: 0.54782447874912, Varianza: 0.300111659516745, Incertidumbre: 0.1256795548244873\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = 0.0x + 14.096\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714]\n", + "Ecuación de regresión: y = 0.0x + 14.354\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 14.111\n", - "\tR²: 0.0237018252029767, Desviación Estándar: 0.8638914663706774, Varianza: 0.7463084656680793, Incertidumbre: 0.2604730775946788\n", + "Predicción obtenida: 14.358\n", + "\tR²: 0.002361606473490707, Desviación Estándar: 0.8223839641550523, Varianza: 0.6763153844993783, Incertidumbre: 0.2741279880516841\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.129x + 14.981\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.129x + 14.969\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.826\n", - "\tR²: 0.8169712264348787, Desviación Estándar: 0.4230085386335259, Varianza: 0.17893622375687118, Incertidumbre: 0.10575213465838147\n", + "Predicción obtenida: 14.813\n", + "\tR²: 0.81671987260067, Desviación Estándar: 0.4234784703530429, Varianza: 0.17933401485255304, Incertidumbre: 0.10586961758826073\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.143x + 17.182\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.144x + 17.203\n", "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 14.9\n", - "\tR²: 0.7519794290280211, Desviación Estándar: 0.4758638703382313, Varianza: 0.22644642309328103, Incertidumbre: 0.14347835538165868\n", + "Predicción obtenida: 14.898\n", + "\tR²: 0.7575308845016266, Desviación Estándar: 0.4734960530805051, Varianza: 0.22419851228281648, Incertidumbre: 0.1427644316165672\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.717', 'Área del ala: 14.726', 'Longitud del fuselaje: 14.424', 'Peso máximo al despegue (MTOW): 14.717', 'Alcance de la aeronave: 14.111', 'payload: 14.826', 'Crucero KIAS: 14.9']\n", - "**Mediana calculada:** 14.717\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.714', 'Área del ala: 14.716', 'Longitud del fuselaje: 14.409', 'Peso máximo al despegue (MTOW): 14.708', 'Alcance de la aeronave: 14.358', 'payload: 14.813', 'Crucero KIAS: 14.898']\n", + "**Mediana calculada:** 14.714\n", "\n", "--- Imputación para aeronave: **V21** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.127x + 16.936\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.128x + 16.957\n", "Valor del parámetro correlacionado para la aeronave: 19.688\n", - "Predicción obtenida: 14.439\n", - "\tR²: 0.5929127107679053, Desviación Estándar: 0.6096546936267196, Varianza: 0.37167884546108937, Incertidumbre: 0.14786298217509053\n", + "Predicción obtenida: 14.434\n", + "\tR²: 0.6023394020952446, Desviación Estándar: 0.60435731717502, Varianza: 0.3652477668229877, Incertidumbre: 0.1465781796663248\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -1.476x + 15.748\n", "Valor del parámetro correlacionado para la aeronave: 0.8\n", - "Predicción obtenida: 14.578\n", - "\tR²: 0.685319780926233, Desviación Estándar: 0.5360124441675181, Varianza: 0.28730934030243677, Incertidumbre: 0.13000211317342153\n", + "Predicción obtenida: 14.568\n", + "\tR²: 0.6855376342976433, Desviación Estándar: 0.5374299221408195, Varianza: 0.2888309212122873, Incertidumbre: 0.13034590207965144\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.501x + 14.874\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.5x + 14.859\n", "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 14.409\n", - "\tR²: 0.14520304942233875, Desviación Estándar: 0.8333946066823736, Varianza: 0.6945465704472683, Incertidumbre: 0.2151815621666609\n", + "Predicción obtenida: 14.394\n", + "\tR²: 0.14307201753173704, Desviación Estándar: 0.8395031403094158, Varianza: 0.7047655225893706, Incertidumbre: 0.21675877876714636\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.031x + 14.91\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.031x + 14.902\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 14.599\n", - "\tR²: 0.6901941411051212, Desviación Estándar: 0.5490488826768337, Varianza: 0.3014546755686795, Incertidumbre: 0.12596045235011777\n", + "Predicción obtenida: 14.59\n", + "\tR²: 0.692130699174681, Desviación Estándar: 0.54782447874912, Varianza: 0.300111659516745, Incertidumbre: 0.1256795548244873\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973]\n", - "Ecuación de regresión: y = -0.089x + 17.046\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914]\n", + "Ecuación de regresión: y = -0.09x + 17.066\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.119\n", - "\tR²: 0.6582796109191538, Desviación Estándar: 0.5382312625669818, Varianza: 0.2896928920044473, Incertidumbre: 0.14927849348022884\n", + "Predicción obtenida: 14.107\n", + "\tR²: 0.6655168135921319, Desviación Estándar: 0.535439085733295, Varianza: 0.28669501453090684, Incertidumbre: 0.148504082961458\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.129x + 14.981\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.129x + 14.969\n", "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 14.787\n", - "\tR²: 0.8169712264348787, Desviación Estándar: 0.4230085386335259, Varianza: 0.17893622375687118, Incertidumbre: 0.10575213465838147\n", + "Predicción obtenida: 14.775\n", + "\tR²: 0.81671987260067, Desviación Estándar: 0.4234784703530429, Varianza: 0.17933401485255304, Incertidumbre: 0.10586961758826073\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = -0.143x + 17.182\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714]\n", + "Ecuación de regresión: y = -0.144x + 17.203\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 14.615\n", - "\tR²: 0.7519794290280211, Desviación Estándar: 0.4758638703382313, Varianza: 0.22644642309328103, Incertidumbre: 0.14347835538165868\n", + "Predicción obtenida: 14.61\n", + "\tR²: 0.7575308845016266, Desviación Estándar: 0.4734960530805051, Varianza: 0.22419851228281648, Incertidumbre: 0.1427644316165672\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.439', 'Área del ala: 14.578', 'Longitud del fuselaje: 14.409', 'Peso máximo al despegue (MTOW): 14.599', 'Velocidad máxima (KIAS): 14.119', 'payload: 14.787', 'Crucero KIAS: 14.615']\n", - "**Mediana calculada:** 14.578\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.434', 'Área del ala: 14.568', 'Longitud del fuselaje: 14.394', 'Peso máximo al despegue (MTOW): 14.59', 'Velocidad máxima (KIAS): 14.107', 'payload: 14.775', 'Crucero KIAS: 14.61']\n", + "**Mediana calculada:** 14.568\n", "\n", "--- Imputación para aeronave: **V25** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -0.128x + 16.971\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -0.129x + 16.992\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.173\n", - "\tR²: 0.606745390877248, Desviación Estándar: 0.5932915224926394, Varianza: 0.351994830661634, Incertidumbre: 0.13984015292501215\n", + "Predicción obtenida: 14.164\n", + "\tR²: 0.6159186819254363, Desviación Estándar: 0.5881023640765761, Varianza: 0.34586439063245766, Incertidumbre: 0.13861705655679563\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -1.471x + 15.755\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -1.476x + 15.748\n", "Valor del parámetro correlacionado para la aeronave: 0.52\n", - "Predicción obtenida: 14.99\n", - "\tR²: 0.6968457130521275, Desviación Estándar: 0.5209104729685736, Varianza: 0.2713477208483431, Incertidumbre: 0.12277977594239006\n", + "Predicción obtenida: 14.981\n", + "\tR²: 0.6970733829876015, Desviación Estándar: 0.5222880039127576, Varianza: 0.2727847590311727, Incertidumbre: 0.12310446309969901\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -0.519x + 14.918\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -0.519x + 14.904\n", "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 14.435\n", - "\tR²: 0.16853217384488628, Desviación Estándar: 0.807864743048595, Varianza: 0.6526454430609725, Incertidumbre: 0.20196618576214875\n", + "Predicción obtenida: 14.421\n", + "\tR²: 0.16641438018273524, Desviación Estándar: 0.8138274929561254, Varianza: 0.6623151882912524, Incertidumbre: 0.20345687323903136\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -0.031x + 14.908\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -0.031x + 14.899\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 14.519\n", - "\tR²: 0.703248032143867, Desviación Estándar: 0.5351650687571093, Varianza: 0.2864016508178016, Incertidumbre: 0.11966654729242453\n", + "Predicción obtenida: 14.509\n", + "\tR²: 0.7051231818210476, Desviación Estándar: 0.5339726907463312, Varianza: 0.2851268344628771, Incertidumbre: 0.11939992346372695\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578]\n", - "Ecuación de regresión: y = -0.09x + 17.131\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568]\n", + "Ecuación de regresión: y = -0.091x + 17.151\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.156\n", - "\tR²: 0.6564776133589556, Desviación Estándar: 0.5318209559369983, Varianza: 0.28283352917374266, Incertidumbre: 0.14213512915877488\n", + "Predicción obtenida: 14.144\n", + "\tR²: 0.6634608751199247, Desviación Estándar: 0.5293377198828594, Varianza: 0.2801984216907845, Incertidumbre: 0.14147145640698403\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -0.127x + 14.946\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -0.127x + 14.933\n", "Valor del parámetro correlacionado para la aeronave: 2.2\n", - "Predicción obtenida: 14.666\n", - "\tR²: 0.8258810341686761, Desviación Estándar: 0.41302279972648664, Varianza: 0.1705878330939055, Incertidumbre: 0.10017274288591961\n", + "Predicción obtenida: 14.653\n", + "\tR²: 0.8257579107606323, Desviación Estándar: 0.41340767338372525, Varianza: 0.17090590441254486, Incertidumbre: 0.100266088458938\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Ecuación de regresión: y = -0.142x + 17.171\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Ecuación de regresión: y = -0.144x + 17.191\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.326\n", - "\tR²: 0.7588352909196386, Desviación Estándar: 0.4557148035481193, Varianza: 0.20767598217290095, Incertidumbre: 0.13155353225110206\n", + "Predicción obtenida: 14.318\n", + "\tR²: 0.7641303564183091, Desviación Estándar: 0.45348228917663347, Varianza: 0.20564618659687983, Incertidumbre: 0.13090906086442852\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.173', 'Área del ala: 14.99', 'Longitud del fuselaje: 14.435', 'Peso máximo al despegue (MTOW): 14.519', 'Velocidad máxima (KIAS): 14.156', 'payload: 14.666', 'Crucero KIAS: 14.326']\n", - "**Mediana calculada:** 14.435\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.164', 'Área del ala: 14.981', 'Longitud del fuselaje: 14.421', 'Peso máximo al despegue (MTOW): 14.509', 'Velocidad máxima (KIAS): 14.144', 'payload: 14.653', 'Crucero KIAS: 14.318']\n", + "**Mediana calculada:** 14.421\n", "\n", "--- Imputación para aeronave: **V32** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.129x + 17.012\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.13x + 17.031\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.189\n", - "\tR²: 0.6110785668236963, Desviación Estándar: 0.5803950706423994, Varianza: 0.3368584380259958, Incertidumbre: 0.13315176106628257\n", + "Predicción obtenida: 14.18\n", + "\tR²: 0.6201449706987955, Desviación Estándar: 0.5752636617985344, Varianza: 0.3309282805858586, Incertidumbre: 0.13197453514057741\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -1.399x + 15.635\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -1.403x + 15.627\n", "Valor del parámetro correlacionado para la aeronave: 1.03\n", - "Predicción obtenida: 14.194\n", - "\tR²: 0.6872612258181625, Desviación Estándar: 0.5204555466744641, Varianza: 0.2708739760642153, Incertidumbre: 0.11940069118732659\n", + "Predicción obtenida: 14.182\n", + "\tR²: 0.6872369206933386, Desviación Estándar: 0.5219942765247394, Varianza: 0.27247802472458604, Incertidumbre: 0.11975370002515603\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.519x + 14.918\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.519x + 14.904\n", "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 14.399\n", - "\tR²: 0.18078496325464366, Desviación Estándar: 0.7837439261959693, Varianza: 0.614254541849073, Incertidumbre: 0.19008582300836904\n", + "Predicción obtenida: 14.385\n", + "\tR²: 0.17855538005879423, Desviación Estándar: 0.7895286400719489, Varianza: 0.623355473493861, Incertidumbre: 0.1914888222039361\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.031x + 14.898\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.031x + 14.889\n", "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 14.171\n", - "\tR²: 0.7106634123093627, Desviación Estándar: 0.5225600649328873, Varianza: 0.27306902146266343, Incertidumbre: 0.11403195489123787\n", + "Predicción obtenida: 14.16\n", + "\tR²: 0.7123924260887753, Desviación Estándar: 0.5214279546204159, Varianza: 0.2718871118596305, Incertidumbre: 0.11378490816733594\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.091x + 17.178\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.092x + 17.198\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.177\n", - "\tR²: 0.6583687729951575, Desviación Estándar: 0.5184390004821812, Varianza: 0.26877899722096305, Incertidumbre: 0.1338603743261271\n", + "Predicción obtenida: 14.164\n", + "\tR²: 0.6652782895416913, Desviación Estándar: 0.5160037700308047, Varianza: 0.2662598906860036, Incertidumbre: 0.1332316005273032\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.125x + 14.913\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.125x + 14.9\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.287\n", - "\tR²: 0.8297829718090136, Desviación Estándar: 0.4046033990551174, Varianza: 0.16370391052695454, Incertidumbre: 0.09536593572100009\n", + "Predicción obtenida: 14.274\n", + "\tR²: 0.8296041524851132, Desviación Estándar: 0.4050204961761552, Varianza: 0.16404160232277895, Incertidumbre: 0.09546424645523317\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Ecuación de regresión: y = -0.143x + 17.19\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Ecuación de regresión: y = -0.144x + 17.209\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.335\n", - "\tR²: 0.760755459593193, Desviación Estándar: 0.43879195181776326, Varianza: 0.19253837698004228, Incertidumbre: 0.12169899088768228\n", + "Predicción obtenida: 14.327\n", + "\tR²: 0.7660206652821594, Desviación Estándar: 0.43655078246489853, Varianza: 0.19057658567071517, Incertidumbre: 0.12107740234777827\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.189', 'Área del ala: 14.194', 'Longitud del fuselaje: 14.399', 'Peso máximo al despegue (MTOW): 14.171', 'Velocidad máxima (KIAS): 14.177', 'payload: 14.287', 'Crucero KIAS: 14.335']\n", - "**Mediana calculada:** 14.194\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.18', 'Área del ala: 14.182', 'Longitud del fuselaje: 14.385', 'Peso máximo al despegue (MTOW): 14.16', 'Velocidad máxima (KIAS): 14.164', 'payload: 14.274', 'Crucero KIAS: 14.327']\n", + "**Mediana calculada:** 14.182\n", "\n", "--- Imputación para aeronave: **V35** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.129x + 17.012\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.13x + 17.032\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.484\n", - "\tR²: 0.6135185471717993, Desviación Estándar: 0.5657000289670463, Varianza: 0.320016522773317, Incertidumbre: 0.12649437196439156\n", + "Predicción obtenida: 13.467\n", + "\tR²: 0.6225279923162458, Desviación Estándar: 0.5606978547880688, Varianza: 0.31438208436394227, Incertidumbre: 0.12537585181444277\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -1.399x + 15.635\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -1.403x + 15.627\n", "Valor del parámetro correlacionado para la aeronave: 1.202\n", - "Predicción obtenida: 13.953\n", - "\tR²: 0.6892242356314006, Desviación Estándar: 0.5072773180656356, Varianza: 0.25733027742386405, Incertidumbre: 0.11343065666385432\n", + "Predicción obtenida: 13.941\n", + "\tR²: 0.6891992560944142, Desviación Estándar: 0.5087770862467862, Varianza: 0.25885412348976977, Incertidumbre: 0.11376601502420872\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.503x + 14.88\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.503x + 14.866\n", "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 13.934\n", - "\tR²: 0.17980664787964395, Desviación Estándar: 0.7630256503950571, Varianza: 0.5822081431607998, Incertidumbre: 0.1798468705378736\n", + "Predicción obtenida: 13.92\n", + "\tR²: 0.17769866949605284, Desviación Estándar: 0.768609327920775, Varianza: 0.5907602989668254, Incertidumbre: 0.18116295595200493\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.031x + 14.9\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.031x + 14.891\n", "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 13.909\n", - "\tR²: 0.7135650005961087, Desviación Estándar: 0.5105679278629256, Varianza: 0.26067960896224157, Incertidumbre: 0.10885344796857536\n", + "Predicción obtenida: 13.898\n", + "\tR²: 0.7152702339309572, Desviación Estándar: 0.5094595753554049, Varianza: 0.2595490589213094, Incertidumbre: 0.10861714641999741\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.091x + 17.181\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.092x + 17.201\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.178\n", - "\tR²: 0.6602446946044866, Desviación Estándar: 0.5019934524987022, Varianza: 0.25199742635156674, Incertidumbre: 0.12549836312467555\n", + "Predicción obtenida: 14.166\n", + "\tR²: 0.6671372923996113, Desviación Estándar: 0.4996364202272749, Varianza: 0.24963655241752605, Incertidumbre: 0.12490910505681872\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.125x + 14.903\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.125x + 14.891\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.656\n", - "\tR²: 0.8320650835497453, Desviación Estándar: 0.394342588657032, Varianza: 0.1555060772287291, Incertidumbre: 0.09046839437317004\n", + "Predicción obtenida: 13.643\n", + "\tR²: 0.8319028879241045, Desviación Estándar: 0.3947401644934259, Varianza: 0.15581979746429697, Incertidumbre: 0.09055960452544556\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Ecuación de regresión: y = -0.142x + 17.168\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Ecuación de regresión: y = -0.144x + 17.186\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.613\n", - "\tR²: 0.7592272998904299, Desviación Estándar: 0.4243796984927565, Varianza: 0.18009812849280288, Incertidumbre: 0.11342024526159432\n", + "Predicción obtenida: 13.598\n", + "\tR²: 0.7644167301146686, Desviación Estándar: 0.42230373151011547, Varianza: 0.1783404416473677, Incertidumbre: 0.11286541974764448\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.484', 'Área del ala: 13.953', 'Longitud del fuselaje: 13.934', 'Peso máximo al despegue (MTOW): 13.909', 'Velocidad máxima (KIAS): 14.178', 'payload: 13.656', 'Crucero KIAS: 13.613']\n", - "**Mediana calculada:** 13.909\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.467', 'Área del ala: 13.941', 'Longitud del fuselaje: 13.92', 'Peso máximo al despegue (MTOW): 13.898', 'Velocidad máxima (KIAS): 14.166', 'payload: 13.643', 'Crucero KIAS: 13.598']\n", + "**Mediana calculada:** 13.898\n", "\n", "--- Imputación para aeronave: **V39** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.127x + 16.984\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.128x + 17.003\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.51\n", - "\tR²: 0.6032988200454845, Desviación Estándar: 0.5593319783823425, Varianza: 0.3128522620411053, Incertidumbre: 0.12205624426411849\n", + "Predicción obtenida: 13.494\n", + "\tR²: 0.6120846873528347, Desviación Estándar: 0.5547180985616944, Varianza: 0.30771216887190167, Incertidumbre: 0.12104941314385424\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -1.399x + 15.632\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -1.403x + 15.625\n", "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 13.95\n", - "\tR²: 0.6891267288117411, Desviación Estándar: 0.4951418045804114, Varianza: 0.24516540664314632, Incertidumbre: 0.10804879996317941\n", + "Predicción obtenida: 13.937\n", + "\tR²: 0.6891124350538647, Desviación Estándar: 0.49659866715385637, Varianza: 0.24661023621898662, Incertidumbre: 0.10836671344032035\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.031x + 14.9\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.031x + 14.891\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 14.157\n", - "\tR²: 0.713892022390023, Desviación Estándar: 0.4993452842769774, Varianza: 0.24934571292965538, Incertidumbre: 0.10412068936317738\n", + "Predicción obtenida: 14.146\n", + "\tR²: 0.7155976388717264, Desviación Estándar: 0.4982613003458266, Varianza: 0.24826432342231405, Incertidumbre: 0.10389466308892618\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.09x + 17.141\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.091x + 17.161\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.161\n", - "\tR²: 0.6545775391356355, Desviación Estándar: 0.49107571880076345, Varianza: 0.2411553615956865, Incertidumbre: 0.11910335639950966\n", + "Predicción obtenida: 14.148\n", + "\tR²: 0.6615818300119434, Desviación Estándar: 0.488766926306414, Varianza: 0.2388931082510195, Incertidumbre: 0.11854339196881342\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.125x + 14.915\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.125x + 14.903\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.292\n", - "\tR²: 0.8291128061127491, Desviación Estándar: 0.38828624580477394, Varianza: 0.15076620868116533, Incertidumbre: 0.0868234440347667\n", + "Predicción obtenida: 14.28\n", + "\tR²: 0.8289103542494105, Desviación Estándar: 0.38872886000472096, Varianza: 0.15111012660056994, Incertidumbre: 0.08692241557865553\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.14x + 17.137\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.141x + 17.154\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.64\n", - "\tR²: 0.7524328660064801, Desviación Estándar: 0.4163959134902486, Varianza: 0.1733855567713786, Incertidumbre: 0.10751296255843715\n", + "Predicción obtenida: 13.625\n", + "\tR²: 0.7574536879812513, Desviación Estándar: 0.4146205350250817, Varianza: 0.17191018806448502, Incertidumbre: 0.10705456180985003\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.51', 'Área del ala: 13.95', 'Peso máximo al despegue (MTOW): 14.157', 'Velocidad máxima (KIAS): 14.161', 'payload: 14.292', 'Crucero KIAS: 13.64']\n", - "**Mediana calculada:** 14.054\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.494', 'Área del ala: 13.937', 'Peso máximo al despegue (MTOW): 14.146', 'Velocidad máxima (KIAS): 14.148', 'payload: 14.28', 'Crucero KIAS: 13.625']\n", + "**Mediana calculada:** 14.042\n", "\n", "--- Imputación para aeronave: **Volitation VT370** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -0.125x + 16.949\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -0.126x + 16.968\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.542\n", - "\tR²: 0.5871778945845514, Desviación Estándar: 0.5579448935987363, Varianza: 0.3113025042929052, Incertidumbre: 0.11895425100220543\n", + "Predicción obtenida: 13.525\n", + "\tR²: 0.5957680406681929, Desviación Estándar: 0.5537225849540539, Varianza: 0.3066087010881995, Incertidumbre: 0.11805405177448465\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -1.4x + 15.638\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -1.404x + 15.631\n", "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 13.645\n", - "\tR²: 0.6890363238184001, Desviación Estándar: 0.4842444656090505, Varianza: 0.2344927024729949, Incertidumbre: 0.10324126695908932\n", + "Predicción obtenida: 13.632\n", + "\tR²: 0.6890205544749124, Desviación Estándar: 0.48567165393621425, Varianza: 0.23587695543713788, Incertidumbre: 0.103545544532815\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Ecuación de regresión: y = -0.504x + 14.879\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Ecuación de regresión: y = -0.504x + 14.866\n", "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 13.862\n", - "\tR²: 0.18057230208723418, Desviación Estándar: 0.7426949723818971, Varianza: 0.5515958220013469, Incertidumbre: 0.1703859121309695\n", + "Predicción obtenida: 13.848\n", + "\tR²: 0.17842685862395946, Desviación Estándar: 0.7481250281419246, Varianza: 0.5596910577323555, Incertidumbre: 0.17163165235811428\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -0.031x + 14.893\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -0.031x + 14.883\n", "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 13.657\n", - "\tR²: 0.7145635232521227, Desviación Estándar: 0.4892582472099815, Varianza: 0.2393736324629834, Incertidumbre: 0.09986942150941053\n", + "Predicción obtenida: 13.645\n", + "\tR²: 0.7162472212244984, Desviación Estándar: 0.48820758180424606, Varianza: 0.2383466429311496, Incertidumbre: 0.09965495533154001\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -0.09x + 17.126\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -0.091x + 17.146\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.154\n", - "\tR²: 0.6540169951205086, Desviación Estándar: 0.47786020803476664, Varianza: 0.22835037842303046, Incertidumbre: 0.11263273118686595\n", + "Predicción obtenida: 14.142\n", + "\tR²: 0.6610410820046247, Desviación Estándar: 0.47561618075428896, Varianza: 0.22621075139529648, Incertidumbre: 0.11210380888446815\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -0.124x + 14.893\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -0.124x + 14.881\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.67\n", - "\tR²: 0.8273716345066311, Desviación Estándar: 0.38222671429420746, Varianza: 0.1460972611201457, Incertidumbre: 0.08340870718511739\n", + "Predicción obtenida: 12.657\n", + "\tR²: 0.8271914508346105, Desviación Estándar: 0.3826399844398456, Varianza: 0.1464133576921253, Incertidumbre: 0.08349889012439606\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Ecuación de regresión: y = -0.137x + 17.097\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Ecuación de regresión: y = -0.138x + 17.114\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.675\n", - "\tR²: 0.7375431593293715, Desviación Estándar: 0.41513917051541654, Varianza: 0.1723405308962281, Incertidumbre: 0.10378479262885414\n", + "Predicción obtenida: 13.66\n", + "\tR²: 0.7425159710448364, Desviación Estándar: 0.41365132002637955, Varianza: 0.17110741455956627, Incertidumbre: 0.10341283000659489\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.542', 'Área del ala: 13.645', 'Longitud del fuselaje: 13.862', 'Peso máximo al despegue (MTOW): 13.657', 'Velocidad máxima (KIAS): 14.154', 'payload: 12.67', 'Crucero KIAS: 13.675']\n", - "**Mediana calculada:** 13.657\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.525', 'Área del ala: 13.632', 'Longitud del fuselaje: 13.848', 'Peso máximo al despegue (MTOW): 13.645', 'Velocidad máxima (KIAS): 14.142', 'payload: 12.657', 'Crucero KIAS: 13.66']\n", + "**Mediana calculada:** 13.645\n", "\n", "--- Imputación para aeronave: **Skyeye 2600** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -0.124x + 16.942\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -0.125x + 16.96\n", "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 12.462\n", - "\tR²: 0.5876976210919462, Desviación Estándar: 0.5461828235331814, Varianza: 0.29831567672267834, Incertidumbre: 0.11388699141705999\n", + "Predicción obtenida: 12.435\n", + "\tR²: 0.5961936628210269, Desviación Estándar: 0.5420953383497691, Varianza: 0.2938673558605506, Incertidumbre: 0.1130346918390738\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -1.399x + 15.638\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -1.403x + 15.631\n", "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 14.407\n", - "\tR²: 0.6899904903283296, Desviación Estándar: 0.4736064692670731, Varianza: 0.22430308773162308, Incertidumbre: 0.09875377543286375\n", + "Predicción obtenida: 14.396\n", + "\tR²: 0.6899612272653157, Desviación Estándar: 0.4750038307207795, Varianza: 0.22562863919941495, Incertidumbre: 0.09904514543760928\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657]\n", - "Ecuación de regresión: y = -0.51x + 14.88\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645]\n", + "Ecuación de regresión: y = -0.51x + 14.867\n", "Valor del parámetro correlacionado para la aeronave: 2.05\n", - "Predicción obtenida: 13.834\n", - "\tR²: 0.18539329015630057, Desviación Estándar: 0.725250008930158, Varianza: 0.5259875754531943, Incertidumbre: 0.16217083206501628\n", + "Predicción obtenida: 13.821\n", + "\tR²: 0.18318737073904479, Desviación Estándar: 0.7305092307354947, Varianza: 0.5336437361897641, Incertidumbre: 0.16334682981156448\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -0.031x + 14.893\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -0.031x + 14.883\n", "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 14.429\n", - "\tR²: 0.714747401512647, Desviación Estándar: 0.4793732254945338, Varianza: 0.22979868932103314, Incertidumbre: 0.09587464509890677\n", + "Predicción obtenida: 14.419\n", + "\tR²: 0.7164307643262642, Desviación Estándar: 0.4783437902243881, Varianza: 0.2288127816462334, Incertidumbre: 0.09566875804487762\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -0.116x + 14.861\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -0.116x + 14.849\n", "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 14.398\n", - "\tR²: 0.7784792227330228, Desviación Estándar: 0.42305623788558205, Varianza: 0.17897658041390221, Incertidumbre: 0.09019589297591563\n", + "Predicción obtenida: 14.385\n", + "\tR²: 0.7782311439723943, Desviación Estándar: 0.42352889042939196, Varianza: 0.17937672102835192, Incertidumbre: 0.0902966628368432\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -0.137x + 17.098\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -0.138x + 17.115\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 12.578\n", - "\tR²: 0.7417224511187792, Desviación Estándar: 0.40276642319311073, Varianza: 0.16222079165177197, Incertidumbre: 0.09768520619278931\n", + "Predicción obtenida: 12.553\n", + "\tR²: 0.7465935530165513, Desviación Estándar: 0.4013165330809285, Varianza: 0.16105495972409598, Incertidumbre: 0.0973335561881972\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.462', 'Área del ala: 14.407', 'Longitud del fuselaje: 13.834', 'Peso máximo al despegue (MTOW): 14.429', 'payload: 14.398', 'Crucero KIAS: 12.578']\n", - "**Mediana calculada:** 14.116\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.435', 'Área del ala: 14.396', 'Longitud del fuselaje: 13.821', 'Peso máximo al despegue (MTOW): 14.419', 'payload: 14.385', 'Crucero KIAS: 12.553']\n", + "**Mediana calculada:** 14.103\n", "\n", "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Ecuación de regresión: y = -0.1x + 16.412\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Ecuación de regresión: y = -0.101x + 16.425\n", "Valor del parámetro correlacionado para la aeronave: 26.25\n", - "Predicción obtenida: 13.779\n", - "\tR²: 0.45776737032064685, Desviación Estándar: 0.6141620658053559, Varianza: 0.37719504307430235, Incertidumbre: 0.12536530671639556\n", + "Predicción obtenida: 13.765\n", + "\tR²: 0.4647548108442666, Desviación Estándar: 0.6119553027249928, Varianza: 0.37448929253323754, Incertidumbre: 0.12491485308888704\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Ecuación de regresión: y = -1.382x + 15.604\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Ecuación de regresión: y = -1.386x + 15.597\n", "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 14.223\n", - "\tR²: 0.686240688916129, Desviación Estándar: 0.4671845538323762, Varianza: 0.21826140733955643, Incertidumbre: 0.0953636477165951\n", + "Predicción obtenida: 14.211\n", + "\tR²: 0.6861710827108773, Desviación Estándar: 0.4685865248148631, Varianza: 0.21957333123807035, Incertidumbre: 0.0956498238450352\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116]\n", - "Ecuación de regresión: y = -0.501x + 14.877\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103]\n", + "Ecuación de regresión: y = -0.501x + 14.864\n", "Valor del parámetro correlacionado para la aeronave: 2.03\n", - "Predicción obtenida: 13.861\n", - "\tR²: 0.1804114233108679, Desviación Estándar: 0.7102825050039291, Varianza: 0.5045012369146565, Incertidumbre: 0.1549963497134931\n", + "Predicción obtenida: 13.847\n", + "\tR²: 0.17824780030191256, Desviación Estándar: 0.7154090188937324, Varianza: 0.5118100643144928, Incertidumbre: 0.1561150467587915\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Ecuación de regresión: y = -0.03x + 14.866\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Ecuación de regresión: y = -0.031x + 14.856\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 14.013\n", - "\tR²: 0.7118496958649173, Desviación Estándar: 0.47380475199318356, Varianza: 0.2244909430113222, Incertidumbre: 0.09292075677100896\n", + "Predicción obtenida: 14.001\n", + "\tR²: 0.7134393100886465, Desviación Estándar: 0.4728662953123409, Varianza: 0.22360253324241802, Incertidumbre: 0.0927367102737675\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Ecuación de regresión: y = -0.089x + 17.061\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Ecuación de regresión: y = -0.09x + 17.081\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.392\n", - "\tR²: 0.6368881023118692, Desviación Estándar: 0.47811022561640054, Varianza: 0.2285893878389654, Incertidumbre: 0.10968600828080638\n", + "Predicción obtenida: 14.383\n", + "\tR²: 0.6440323429773995, Desviación Estándar: 0.4759723084801662, Varianza: 0.2265496384399385, Incertidumbre: 0.10919553645204273\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Ecuación de regresión: y = -0.114x + 14.834\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Ecuación de regresión: y = -0.114x + 14.822\n", "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 14.148\n", - "\tR²: 0.776389170737342, Desviación Estándar: 0.41760392510378513, Varianza: 0.17439303826208777, Incertidumbre: 0.0870764377509503\n", + "Predicción obtenida: 14.136\n", + "\tR²: 0.7761269966964691, Desviación Estándar: 0.4180768449775009, Varianza: 0.17478824830634132, Incertidumbre: 0.0871750483613141\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Ecuación de regresión: y = -0.107x + 16.512\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Ecuación de regresión: y = -0.109x + 16.524\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 13.932\n", - "\tR²: 0.5759571817973563, Desviación Estándar: 0.5016106192563546, Varianza: 0.25161321335074355, Incertidumbre: 0.11823075679711727\n", + "Predicción obtenida: 13.919\n", + "\tR²: 0.5802472498582693, Desviación Estándar: 0.5020212903739392, Varianza: 0.25202537598871494, Incertidumbre: 0.11832755290781109\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.779', 'Área del ala: 14.223', 'Longitud del fuselaje: 13.861', 'Peso máximo al despegue (MTOW): 14.013', 'Velocidad máxima (KIAS): 14.392', 'payload: 14.148', 'Crucero KIAS: 13.932']\n", - "**Mediana calculada:** 14.013\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.765', 'Área del ala: 14.211', 'Longitud del fuselaje: 13.847', 'Peso máximo al despegue (MTOW): 14.001', 'Velocidad máxima (KIAS): 14.383', 'payload: 14.136', 'Crucero KIAS: 13.919']\n", + "**Mediana calculada:** 14.001\n", "\n", "--- Imputación para aeronave: **Skyeye 3600** ---\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -1.374x + 15.586\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -1.378x + 15.578\n", "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 13.759\n", - "\tR²: 0.684015300708086, Desviación Estándar: 0.45956965580498865, Varianza: 0.21120426853671576, Incertidumbre: 0.09191393116099773\n", + "Predicción obtenida: 13.746\n", + "\tR²: 0.6839560448092026, Desviación Estándar: 0.46094201511946703, Varianza: 0.21246754130239498, Incertidumbre: 0.0921884030238934\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -0.496x + 14.877\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -0.496x + 14.863\n", "Valor del parámetro correlacionado para la aeronave: 2.488\n", - "Predicción obtenida: 13.641\n", - "\tR²: 0.17871439167546932, Desviación Estándar: 0.6946713690287201, Varianza: 0.4825683109482361, Incertidumbre: 0.14810443350865574\n", + "Predicción obtenida: 13.628\n", + "\tR²: 0.17653575217536233, Desviación Estándar: 0.6996903479356846, Varianza: 0.48956658299435946, Incertidumbre: 0.14917448340699427\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -0.03x + 14.866\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -0.031x + 14.856\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 14.013\n", - "\tR²: 0.7125790322691798, Desviación Estándar: 0.4649478109590719, Varianza: 0.21617646691563286, Incertidumbre: 0.08947924793878247\n", + "Predicción obtenida: 14.001\n", + "\tR²: 0.7141618045464115, Desviación Estándar: 0.46402689980399064, Varianza: 0.21532096374170276, Incertidumbre: 0.08930201850435383\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -0.114x + 14.824\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -0.114x + 14.812\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.686\n", - "\tR²: 0.7764391254855179, Desviación Estándar: 0.4096931753354857, Varianza: 0.16784849791647305, Incertidumbre: 0.08362826922271187\n", + "Predicción obtenida: 13.673\n", + "\tR²: 0.7761914041781102, Desviación Estándar: 0.41014763806155546, Varianza: 0.16822108500747268, Incertidumbre: 0.08372103603821063\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 13.759', 'Longitud del fuselaje: 13.641', 'Peso máximo al despegue (MTOW): 14.013', 'payload: 13.686']\n", - "**Mediana calculada:** 13.722\n", + "Valores imputados: ['Área del ala: 13.746', 'Longitud del fuselaje: 13.628', 'Peso máximo al despegue (MTOW): 14.001', 'payload: 13.673']\n", + "**Mediana calculada:** 13.71\n", "\n", "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -0.1x + 16.413\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -0.101x + 16.427\n", "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 13.132\n", - "\tR²: 0.45509872448190547, Desviación Estándar: 0.6034999397625862, Varianza: 0.36421217729344524, Incertidumbre: 0.12069998795251724\n", + "Predicción obtenida: 13.112\n", + "\tR²: 0.46205070143923843, Desviación Estándar: 0.6013720296168469, Varianza: 0.36164831800548575, Incertidumbre: 0.12027440592336938\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", - "Ecuación de regresión: y = -1.374x + 15.585\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", + "Ecuación de regresión: y = -1.378x + 15.578\n", "Valor del parámetro correlacionado para la aeronave: 1.32\n", - "Predicción obtenida: 13.771\n", - "\tR²: 0.6844716239481952, Desviación Estándar: 0.45070169488409495, Varianza: 0.2031320177713958, Incertidumbre: 0.08838987450089776\n", + "Predicción obtenida: 13.758\n", + "\tR²: 0.6844100847233376, Desviación Estándar: 0.4520440536186202, Varianza: 0.20434382641195398, Incertidumbre: 0.08865313270788183\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722]\n", - "Ecuación de regresión: y = -0.491x + 14.87\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71]\n", + "Ecuación de regresión: y = -0.49x + 14.856\n", "Valor del parámetro correlacionado para la aeronave: 2.42\n", - "Predicción obtenida: 13.682\n", - "\tR²: 0.18314058790644772, Desviación Estándar: 0.6795903299866143, Varianza: 0.4618430166113153, Incertidumbre: 0.14170437945601297\n", + "Predicción obtenida: 13.669\n", + "\tR²: 0.18085287153910534, Desviación Estándar: 0.6845046469228117, Varianza: 0.4685466116589231, Incertidumbre: 0.14272908537245493\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", - "Ecuación de regresión: y = -0.03x + 14.851\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", + "Ecuación de regresión: y = -0.03x + 14.841\n", "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 13.637\n", - "\tR²: 0.7086441586316434, Desviación Estándar: 0.4597355870860578, Varianza: 0.2113568100333622, Incertidumbre: 0.08688185944828475\n", + "Predicción obtenida: 13.625\n", + "\tR²: 0.7102145115795546, Desviación Estándar: 0.45885229575829384, Varianza: 0.21054542932265677, Incertidumbre: 0.0867149330776788\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717]\n", - "Ecuación de regresión: y = 0.0x + 14.096\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714]\n", + "Ecuación de regresión: y = 0.0x + 14.354\n", "Valor del parámetro correlacionado para la aeronave: 300.0\n", - "Predicción obtenida: 14.141\n", - "\tR²: 0.0237018252029767, Desviación Estándar: 0.8638914663706774, Varianza: 0.7463084656680793, Incertidumbre: 0.2604730775946788\n", + "Predicción obtenida: 14.367\n", + "\tR²: 0.002361606473490707, Desviación Estándar: 0.8223839641550523, Varianza: 0.6763153844993783, Incertidumbre: 0.2741279880516841\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013]\n", - "Ecuación de regresión: y = -0.087x + 16.976\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001]\n", + "Ecuación de regresión: y = -0.088x + 16.996\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.103\n", - "\tR²: 0.6259343281303104, Desviación Estándar: 0.47309816529550813, Varianza: 0.22382187400597592, Incertidumbre: 0.1057879657631188\n", + "Predicción obtenida: 14.091\n", + "\tR²: 0.6330464973659589, Desviación Estándar: 0.4711473913359555, Varianza: 0.22197986436267603, Incertidumbre: 0.1053517594448892\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", - "Ecuación de regresión: y = -0.114x + 14.826\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", + "Ecuación de regresión: y = -0.114x + 14.813\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.687\n", - "\tR²: 0.7763699681724744, Desviación Estándar: 0.40147919692479167, Varianza: 0.16118554556337567, Incertidumbre: 0.08029583938495834\n", + "Predicción obtenida: 13.674\n", + "\tR²: 0.7761192880267639, Desviación Estándar: 0.4019269643743591, Varianza: 0.16154528469118734, Incertidumbre: 0.08038539287487181\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Ecuación de regresión: y = -0.107x + 16.512\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Ecuación de regresión: y = -0.108x + 16.524\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 13.292\n", - "\tR²: 0.5754628990444985, Desviación Estándar: 0.48856755387819806, Varianza: 0.23869825470252598, Incertidumbre: 0.11208508391831203\n", + "Predicción obtenida: 13.274\n", + "\tR²: 0.579753910323783, Desviación Estándar: 0.488970938859074, Varianza: 0.2390925790487243, Incertidumbre: 0.11217762677973205\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.132', 'Área del ala: 13.771', 'Longitud del fuselaje: 13.682', 'Peso máximo al despegue (MTOW): 13.637', 'Alcance de la aeronave: 14.141', 'Velocidad máxima (KIAS): 14.103', 'payload: 13.687', 'Crucero KIAS: 13.292']\n", - "**Mediana calculada:** 13.684\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.112', 'Área del ala: 13.758', 'Longitud del fuselaje: 13.669', 'Peso máximo al despegue (MTOW): 13.625', 'Alcance de la aeronave: 14.367', 'Velocidad máxima (KIAS): 14.091', 'payload: 13.674', 'Crucero KIAS: 13.274']\n", + "**Mediana calculada:** 13.672\n", "\n", "--- Imputación para aeronave: **Skyeye 5000** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684]\n", - "Ecuación de regresión: y = -0.095x + 16.308\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672]\n", + "Ecuación de regresión: y = -0.096x + 16.32\n", "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 12.878\n", - "\tR²: 0.4401977193966343, Desviación Estándar: 0.6005761559399635, Varianza: 0.36069171908362335, Incertidumbre: 0.11778267455909297\n", + "Predicción obtenida: 12.855\n", + "\tR²: 0.44669483333289495, Desviación Estándar: 0.5987984426089217, Varianza: 0.35855957487087003, Incertidumbre: 0.11743403629122542\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", - "Ecuación de regresión: y = -1.375x + 15.584\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", + "Ecuación de regresión: y = -1.379x + 15.576\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 11.987\n", - "\tR²: 0.6847809364305605, Desviación Estándar: 0.4425842972237917, Varianza: 0.19588086014907763, Incertidumbre: 0.08517538771375249\n", + "Predicción obtenida: 11.969\n", + "\tR²: 0.6847227318034814, Desviación Estándar: 0.4438937988851134, Varianza: 0.19704170468865748, Incertidumbre: 0.08542740142597527\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684]\n", - "Ecuación de regresión: y = -0.491x + 14.87\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672]\n", + "Ecuación de regresión: y = -0.49x + 14.856\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.153\n", - "\tR²: 0.18887857116834583, Desviación Estándar: 0.6652816445821408, Varianza: 0.44259966661791794, Incertidumbre: 0.13580004703882315\n", + "Predicción obtenida: 13.14\n", + "\tR²: 0.18648513764579755, Desviación Estándar: 0.6700926766915704, Varianza: 0.4490241953556735, Incertidumbre: 0.13678209485584383\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", "Ecuación de regresión: y = -38.708x + 23.253\n", @@ -25932,527 +28007,527 @@ "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", - "Ecuación de regresión: y = -0.03x + 14.852\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", + "Ecuación de regresión: y = -0.03x + 14.842\n", "Valor del parámetro correlacionado para la aeronave: 90.0\n", - "Predicción obtenida: 12.123\n", - "\tR²: 0.7086905843429328, Desviación Estándar: 0.4518198530718025, Varianza: 0.20414117962982523, Incertidumbre: 0.08390084041127426\n", + "Predicción obtenida: 12.108\n", + "\tR²: 0.710260620996489, Desviación Estándar: 0.45095219827945476, Varianza: 0.20335788513307268, Incertidumbre: 0.0837397209611883\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684]\n", - "Ecuación de regresión: y = -0.086x + 16.93\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672]\n", + "Ecuación de regresión: y = -0.087x + 16.95\n", "Valor del parámetro correlacionado para la aeronave: 42.0\n", - "Predicción obtenida: 13.305\n", - "\tR²: 0.6139919598950958, Desviación Estándar: 0.4702102654821254, Varianza: 0.22109769376477087, Incertidumbre: 0.10260829210081529\n", + "Predicción obtenida: 13.284\n", + "\tR²: 0.6211901244543757, Desviación Estándar: 0.4683247546231655, Varianza: 0.21932807579284816, Incertidumbre: 0.102196839899156\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", - "Ecuación de regresión: y = -0.114x + 14.826\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", + "Ecuación de regresión: y = -0.114x + 14.813\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 12.548\n", - "\tR²: 0.7763982091486223, Desviación Estándar: 0.39368317088871674, Varianza: 0.15498643904099454, Incertidumbre: 0.07720762194364038\n", + "Predicción obtenida: 12.535\n", + "\tR²: 0.7761469380573378, Desviación Estándar: 0.39412206749545337, Varianza: 0.15533220408689072, Incertidumbre: 0.07729369664987883\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684]\n", - "Ecuación de regresión: y = -0.103x + 16.426\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672]\n", + "Ecuación de regresión: y = -0.104x + 16.437\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 13.035\n", - "\tR²: 0.5683584083709616, Desviación Estándar: 0.4831583112495382, Varianza: 0.2334419537295056, Incertidumbre: 0.10803748278479687\n", + "Predicción obtenida: 13.014\n", + "\tR²: 0.5722804312940908, Desviación Estándar: 0.4837831260054291, Varianza: 0.23404611300758488, Incertidumbre: 0.10817719561154858\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.878', 'Área del ala: 11.987', 'Longitud del fuselaje: 13.153', 'Ancho del fuselaje: 8.737', 'Peso máximo al despegue (MTOW): 12.123', 'Velocidad máxima (KIAS): 13.305', 'payload: 12.548', 'Crucero KIAS: 13.035']\n", - "**Mediana calculada:** 12.713\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.855', 'Área del ala: 11.969', 'Longitud del fuselaje: 13.14', 'Ancho del fuselaje: 8.737', 'Peso máximo al despegue (MTOW): 12.108', 'Velocidad máxima (KIAS): 13.284', 'payload: 12.535', 'Crucero KIAS: 13.014']\n", + "**Mediana calculada:** 12.695\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.097x + 16.349\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.098x + 16.36\n", "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 13.383\n", - "\tR²: 0.47992913317978514, Desviación Estándar: 0.590075692205931, Varianza: 0.34818932253230866, Incertidumbre: 0.11356011991244967\n", + "Predicción obtenida: 13.366\n", + "\tR²: 0.4861597087141194, Desviación Estándar: 0.5882900301706695, Varianza: 0.3460851595982073, Incertidumbre: 0.11321646909353636\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", - "Ecuación de regresión: y = -1.253x + 15.452\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", + "Ecuación de regresión: y = -1.257x + 15.445\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 12.175\n", - "\tR²: 0.6860448617033243, Desviación Estándar: 0.4503815543594209, Varianza: 0.202843544507208, Incertidumbre: 0.08511411342326757\n", + "Predicción obtenida: 12.157\n", + "\tR²: 0.6861946820655023, Desviación Estándar: 0.4516214364570259, Varianza: 0.2039619218675075, Incertidumbre: 0.085348429115075\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.545x + 14.955\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.546x + 14.942\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.046\n", - "\tR²: 0.2643820653371962, Desviación Estándar: 0.6563198967362653, Varianza: 0.43075580685190196, Incertidumbre: 0.13126397934725306\n", + "Predicción obtenida: 13.032\n", + "\tR²: 0.2617903079866821, Desviación Estándar: 0.6611047129721297, Varianza: 0.437059441513962, Incertidumbre: 0.13222094259442593\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.713]\n", - "Ecuación de regresión: y = -16.3x + 18.292\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.695]\n", + "Ecuación de regresión: y = -16.401x + 18.314\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 12.179\n", - "\tR²: 0.700384799125958, Desviación Estándar: 0.742124944233944, Varianza: 0.5507494328542346, Incertidumbre: 0.371062472116972\n", + "Predicción obtenida: 12.164\n", + "\tR²: 0.7048037347079352, Desviación Estándar: 0.7388896951434575, Varianza: 0.5459579815891915, Incertidumbre: 0.36944484757172874\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.029x + 14.809\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.029x + 14.8\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 11.945\n", - "\tR²: 0.7105088370955781, Desviación Estándar: 0.45476821765148717, Varianza: 0.20681413178591043, Incertidumbre: 0.08302893708137953\n", + "Predicción obtenida: 11.929\n", + "\tR²: 0.7123076858370674, Desviación Estándar: 0.45382550140258615, Varianza: 0.20595758572330874, Incertidumbre: 0.08285682142976294\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684]\n", - "Ecuación de regresión: y = 0.0x + 14.051\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672]\n", + "Ecuación de regresión: y = 0.0x + 14.269\n", "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 14.182\n", - "\tR²: 0.027074923206067303, Desviación Estándar: 0.8366422137567701, Varianza: 0.699970193839829, Incertidumbre: 0.24151780366393782\n", + "Predicción obtenida: 14.323\n", + "\tR²: 0.005851871754970817, Desviación Estándar: 0.8072016250304093, Varianza: 0.6515744634517334, Incertidumbre: 0.2552595666085276\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.09x + 17.04\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.091x + 17.059\n", "Valor del parámetro correlacionado para la aeronave: 42.0\n", - "Predicción obtenida: 13.251\n", - "\tR²: 0.6306274945350463, Desviación Estándar: 0.47489583792466356, Varianza: 0.22552605687816832, Incertidumbre: 0.10124813283983614\n", + "Predicción obtenida: 13.23\n", + "\tR²: 0.6374089155434113, Desviación Estándar: 0.4729515606700395, Varianza: 0.22368317874022606, Incertidumbre: 0.10083361153635637\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.112x + 14.818\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.113x + 14.806\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 12.006\n", - "\tR²: 0.7868817244212251, Desviación Estándar: 0.3874643871417889, Varianza: 0.15012865130316205, Incertidumbre: 0.07456755607256839\n", + "Predicción obtenida: 11.992\n", + "\tR²: 0.7868234537491392, Desviación Estándar: 0.3878273476620516, Varianza: 0.15041005159458187, Incertidumbre: 0.07463740785726136\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713]\n", - "Ecuación de regresión: y = -0.107x + 16.516\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695]\n", + "Ecuación de regresión: y = -0.108x + 16.526\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 13.514\n", - "\tR²: 0.6195025656212503, Desviación Estándar: 0.4757969201229366, Varianza: 0.22638270919847214, Incertidumbre: 0.10382740009001022\n", + "Predicción obtenida: 13.498\n", + "\tR²: 0.6230065242149951, Desviación Estándar: 0.47633025955044683, Varianza: 0.22689051616339603, Incertidumbre: 0.10394378429466117\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.383', 'Área del ala: 12.175', 'Longitud del fuselaje: 13.046', 'Ancho del fuselaje: 12.179', 'Peso máximo al despegue (MTOW): 11.945', 'Alcance de la aeronave: 14.182', 'Velocidad máxima (KIAS): 13.251', 'payload: 12.006', 'Crucero KIAS: 13.514']\n", - "**Mediana calculada:** 13.046\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.366', 'Área del ala: 12.157', 'Longitud del fuselaje: 13.032', 'Ancho del fuselaje: 12.164', 'Peso máximo al despegue (MTOW): 11.929', 'Alcance de la aeronave: 14.323', 'Velocidad máxima (KIAS): 13.23', 'payload: 11.992', 'Crucero KIAS: 13.498']\n", + "**Mediana calculada:** 13.032\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.098x + 16.379\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.099x + 16.39\n", "Valor del parámetro correlacionado para la aeronave: 33.885\n", - "Predicción obtenida: 13.042\n", - "\tR²: 0.4912217506212547, Desviación Estándar: 0.5827288503285376, Varianza: 0.33957291300521925, Incertidumbre: 0.11012540141084928\n", + "Predicción obtenida: 13.022\n", + "\tR²: 0.49733952651439894, Desviación Estándar: 0.5809229222603671, Varianza: 0.33747144160752457, Incertidumbre: 0.10978411308555996\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -1.137x + 15.327\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -1.141x + 15.319\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 12.354\n", - "\tR²: 0.6639527907853231, Desviación Estándar: 0.4654542390243011, Varianza: 0.21664764862569122, Incertidumbre: 0.08643268232155993\n", + "Predicción obtenida: 12.337\n", + "\tR²: 0.6639636558875286, Desviación Estándar: 0.4668168117669745, Varianza: 0.21791793574828286, Incertidumbre: 0.0866857057278015\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.545x + 14.955\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.546x + 14.942\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.046\n", - "\tR²: 0.30031202594013184, Desviación Estándar: 0.643574609531079, Varianza: 0.4141882780330809, Incertidumbre: 0.12621536509430112\n", + "Predicción obtenida: 13.032\n", + "\tR²: 0.2974987662982014, Desviación Estándar: 0.6482665064635713, Varianza: 0.4202494634024835, Incertidumbre: 0.12713552178716822\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.713, 13.046]\n", - "Ecuación de regresión: y = -13.682x + 17.712\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.695, 13.032]\n", + "Ecuación de regresión: y = -13.779x + 17.734\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 12.582\n", - "\tR²: 0.6751786720121111, Desviación Estándar: 0.7218724853677485, Varianza: 0.5210998851310104, Incertidumbre: 0.3228311896738016\n", + "Predicción obtenida: 12.567\n", + "\tR²: 0.6797443662647868, Desviación Estándar: 0.7194173301196193, Varianza: 0.5175612948764412, Incertidumbre: 0.3217332108677751\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.026x + 14.728\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.026x + 14.718\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 12.163\n", - "\tR²: 0.672459148806959, Desviación Estándar: 0.48114314921165147, Varianza: 0.2314987300333055, Incertidumbre: 0.08641586063227229\n", + "Predicción obtenida: 12.147\n", + "\tR²: 0.6741658765761376, Desviación Estándar: 0.48040741723701913, Varianza: 0.2307912865363434, Incertidumbre: 0.08628371926875769\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.091x + 17.075\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.092x + 17.093\n", "Valor del parámetro correlacionado para la aeronave: 38.0\n", - "Predicción obtenida: 13.6\n", - "\tR²: 0.6449500428703554, Desviación Estándar: 0.4662598472902855, Varianza: 0.21739824519516038, Incertidumbre: 0.09722189885607506\n", + "Predicción obtenida: 13.583\n", + "\tR²: 0.6514471014044674, Desviación Estándar: 0.4642468173732389, Varianza: 0.21552510744118147, Incertidumbre: 0.09680215310244272\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.102x + 14.742\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.102x + 14.73\n", "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 13.216\n", - "\tR²: 0.7459460023089699, Desviación Estándar: 0.41981136981986106, Varianza: 0.17624158623002814, Incertidumbre: 0.0793368915786228\n", + "Predicción obtenida: 13.203\n", + "\tR²: 0.74595960714623, Desviación Estándar: 0.42014445536437306, Varianza: 0.17652136337342567, Incertidumbre: 0.07939983882977203\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046]\n", - "Ecuación de regresión: y = -0.11x + 16.561\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032]\n", + "Ecuación de regresión: y = -0.111x + 16.571\n", "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 12.711\n", - "\tR²: 0.6278560933803895, Desviación Estándar: 0.47470648197778126, Varianza: 0.22534624403172154, Incertidumbre: 0.10120776201631464\n", + "Predicción obtenida: 12.689\n", + "\tR²: 0.6312746472246312, Desviación Estándar: 0.47515011887040703, Varianza: 0.22576763546256193, Incertidumbre: 0.10130234571962422\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.042', 'Área del ala: 12.354', 'Longitud del fuselaje: 13.046', 'Ancho del fuselaje: 12.582', 'Peso máximo al despegue (MTOW): 12.163', 'Velocidad máxima (KIAS): 13.6', 'payload: 13.216', 'Crucero KIAS: 12.711']\n", - "**Mediana calculada:** 12.876\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.022', 'Área del ala: 12.337', 'Longitud del fuselaje: 13.032', 'Ancho del fuselaje: 12.567', 'Peso máximo al despegue (MTOW): 12.147', 'Velocidad máxima (KIAS): 13.583', 'payload: 13.203', 'Crucero KIAS: 12.689']\n", + "**Mediana calculada:** 12.856\n", "\n", "--- Imputación para aeronave: **Volitation VT510** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.1x + 16.407\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.101x + 16.417\n", "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 13.134\n", - "\tR²: 0.5120481249262255, Desviación Estándar: 0.5733507354534118, Varianza: 0.32873106584496814, Incertidumbre: 0.1064685587140827\n", + "Predicción obtenida: 13.115\n", + "\tR²: 0.5181009063264552, Desviación Estándar: 0.5715788333906897, Varianza: 0.3267023627802618, Incertidumbre: 0.10613952476132892\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -1.079x + 15.265\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -1.083x + 15.257\n", "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 13.114\n", - "\tR²: 0.6668961846597724, Desviación Estándar: 0.46579848190753764, Varianza: 0.21696822574736668, Incertidumbre: 0.08504277859747346\n", + "Predicción obtenida: 13.099\n", + "\tR²: 0.6672340951247093, Desviación Estándar: 0.4670272390002237, Varianza: 0.21811444196817206, Incertidumbre: 0.08526711792325965\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.56x + 14.977\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.56x + 14.965\n", "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 13.351\n", - "\tR²: 0.3416103143456418, Desviación Estándar: 0.632254792757014, Varianza: 0.3997461229642147, Incertidumbre: 0.12167749159823103\n", + "Predicción obtenida: 13.337\n", + "\tR²: 0.3389580451352642, Desviación Estándar: 0.6369033781917752, Varianza: 0.40564591315209547, Incertidumbre: 0.12257211228226782\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.024x + 14.684\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.024x + 14.674\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 12.281\n", - "\tR²: 0.6638393025961682, Desviación Estándar: 0.4873610039590521, Varianza: 0.23752074817997518, Incertidumbre: 0.08615406769633238\n", + "Predicción obtenida: 12.265\n", + "\tR²: 0.6659304816788436, Desviación Estándar: 0.4864938763937024, Varianza: 0.236676291768571, Incertidumbre: 0.08600077975092925\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.093x + 17.103\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.094x + 17.121\n", "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 12.449\n", - "\tR²: 0.632488199457406, Desviación Estándar: 0.4786898436308466, Varianza: 0.2291439663953244, Incertidumbre: 0.09771215516235353\n", + "Predicción obtenida: 12.421\n", + "\tR²: 0.6386649948497098, Desviación Estándar: 0.4770137198562853, Varianza: 0.22754208893113068, Incertidumbre: 0.09737001782956828\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.103x + 14.741\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.103x + 14.729\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 12.172\n", - "\tR²: 0.7481817504133035, Desviación Estándar: 0.41708148056338223, Varianza: 0.173956961428943, Incertidumbre: 0.07745008658060275\n", + "Predicción obtenida: 12.157\n", + "\tR²: 0.7481095898704668, Desviación Estándar: 0.41758688156853935, Varianza: 0.1743788036581373, Incertidumbre: 0.07754393719117042\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876]\n", - "Ecuación de regresión: y = -0.108x + 16.515\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856]\n", + "Ecuación de regresión: y = -0.109x + 16.525\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 13.281\n", - "\tR²: 0.6540354444609318, Desviación Estándar: 0.4653103999726643, Varianza: 0.21651376832272087, Incertidumbre: 0.09702392540496321\n", + "Predicción obtenida: 13.263\n", + "\tR²: 0.6572957320511896, Desviación Estándar: 0.4657670897559235, Varianza: 0.2169389818997025, Incertidumbre: 0.09711915180752535\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.134', 'Área del ala: 13.114', 'Longitud del fuselaje: 13.351', 'Peso máximo al despegue (MTOW): 12.281', 'Velocidad máxima (KIAS): 12.449', 'payload: 12.172', 'Crucero KIAS: 13.281']\n", - "**Mediana calculada:** 13.114\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.115', 'Área del ala: 13.099', 'Longitud del fuselaje: 13.337', 'Peso máximo al despegue (MTOW): 12.265', 'Velocidad máxima (KIAS): 12.421', 'payload: 12.157', 'Crucero KIAS: 13.263']\n", + "**Mediana calculada:** 13.099\n", "\n", "--- Imputación para aeronave: **Ascend** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.1x + 16.409\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.101x + 16.419\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.225\n", - "\tR²: 0.5225539026607045, Desviación Estándar: 0.5637250248651999, Varianza: 0.31778590365927023, Incertidumbre: 0.10292163744961022\n", + "Predicción obtenida: 14.216\n", + "\tR²: 0.5284756398961317, Desviación Estándar: 0.5619789405509674, Varianza: 0.3158203296227878, Incertidumbre: 0.10260284752753986\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -1.079x + 15.265\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -1.083x + 15.257\n", "Valor del parámetro correlacionado para la aeronave: 0.771\n", - "Predicción obtenida: 14.433\n", - "\tR²: 0.6740457304881754, Desviación Estándar: 0.4582240184158411, Varianza: 0.20996925105316108, Incertidumbre: 0.08229946322349961\n", + "Predicción obtenida: 14.422\n", + "\tR²: 0.6743723185855064, Desviación Estándar: 0.4594327962255891, Varianza: 0.21107849424766364, Incertidumbre: 0.08251656612710266\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.571x + 14.991\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.572x + 14.979\n", "Valor del parámetro correlacionado para la aeronave: 1.562\n", - "Predicción obtenida: 14.1\n", - "\tR²: 0.3593175354516496, Desviación Estándar: 0.6223578212520778, Varianza: 0.3873292576736333, Incertidumbre: 0.11761457296635622\n", + "Predicción obtenida: 14.086\n", + "\tR²: 0.3566167414715793, Desviación Estándar: 0.6269166459626101, Varianza: 0.39302448098500864, Incertidumbre: 0.1184761098559851\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.022x + 14.64\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.022x + 14.63\n", "Valor del parámetro correlacionado para la aeronave: 9.5\n", - "Predicción obtenida: 14.427\n", - "\tR²: 0.6427542977157497, Desviación Estándar: 0.4983661335008928, Varianza: 0.24836880302062972, Incertidumbre: 0.08675440832753979\n", + "Predicción obtenida: 14.417\n", + "\tR²: 0.6448304134719163, Desviación Estándar: 0.49760568948205036, Varianza: 0.24761142220490673, Incertidumbre: 0.08662203201525417\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.086x + 16.872\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.087x + 16.885\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.293\n", - "\tR²: 0.6198077286916189, Desviación Estándar: 0.4840831085935595, Varianza: 0.23433645602560393, Incertidumbre: 0.0968166217187119\n", + "Predicción obtenida: 14.284\n", + "\tR²: 0.6250452670025234, Desviación Estándar: 0.4830714233111504, Varianza: 0.23335800001986062, Incertidumbre: 0.09661428466223007\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.095x + 14.682\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.095x + 14.67\n", "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 14.626\n", - "\tR²: 0.7144699709998399, Desviación Estándar: 0.4395959045047289, Varianza: 0.19324455925733075, Incertidumbre: 0.08025886436137562\n", + "Predicción obtenida: 14.614\n", + "\tR²: 0.7145248980811096, Desviación Estándar: 0.44003758459985504, Varianza: 0.19363307586047457, Incertidumbre: 0.08033950374514283\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Ecuación de regresión: y = -0.109x + 16.535\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Ecuación de regresión: y = -0.11x + 16.544\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.357\n", - "\tR²: 0.6656187134909644, Desviación Estándar: 0.45668281214871304, Varianza: 0.20855919091205674, Incertidumbre: 0.0932199886719708\n", + "Predicción obtenida: 14.349\n", + "\tR²: 0.6687656157013713, Desviación Estándar: 0.45709955119724055, Varianza: 0.20893999970471874, Incertidumbre: 0.09330505517403626\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.225', 'Área del ala: 14.433', 'Longitud del fuselaje: 14.1', 'Peso máximo al despegue (MTOW): 14.427', 'Velocidad máxima (KIAS): 14.293', 'payload: 14.626', 'Crucero KIAS: 14.357']\n", - "**Mediana calculada:** 14.357\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.216', 'Área del ala: 14.422', 'Longitud del fuselaje: 14.086', 'Peso máximo al despegue (MTOW): 14.417', 'Velocidad máxima (KIAS): 14.284', 'payload: 14.614', 'Crucero KIAS: 14.349']\n", + "**Mediana calculada:** 14.349\n", "\n", "--- Imputación para aeronave: **Transition** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.1x + 16.428\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.101x + 16.438\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.232\n", - "\tR²: 0.5298654936239107, Desviación Estándar: 0.5550399694090079, Varianza: 0.30806936764155246, Incertidumbre: 0.09968812134263677\n", + "Predicción obtenida: 14.223\n", + "\tR²: 0.5357657902510582, Desviación Estándar: 0.5533318320555499, Varianza: 0.30617611636595127, Incertidumbre: 0.09938133081736573\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -1.075x + 15.258\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -1.079x + 15.25\n", "Valor del parámetro correlacionado para la aeronave: 0.986\n", - "Predicción obtenida: 14.197\n", - "\tR²: 0.6793546401299544, Desviación Estándar: 0.45119534421783186, Varianza: 0.2035772386438478, Incertidumbre: 0.07976082188405685\n", + "Predicción obtenida: 14.186\n", + "\tR²: 0.6797569865020562, Desviación Estándar: 0.4523706806342405, Varianza: 0.20463923269748602, Incertidumbre: 0.07996859397161137\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.577x + 15.013\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.578x + 15.001\n", "Valor del parámetro correlacionado para la aeronave: 2.3\n", - "Predicción obtenida: 13.686\n", - "\tR²: 0.3655687526307442, Desviación Estándar: 0.6133106646584037, Varianza: 0.37614997138373285, Incertidumbre: 0.11388893128133473\n", + "Predicción obtenida: 13.672\n", + "\tR²: 0.36290901642874207, Desviación Estándar: 0.6178541362486212, Varianza: 0.3817437336795298, Incertidumbre: 0.11473263277477799\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.022x + 14.635\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.022x + 14.625\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 14.233\n", - "\tR²: 0.6493187979493635, Desviación Estándar: 0.4911193487224634, Varianza: 0.2411982146895766, Incertidumbre: 0.08422627344201288\n", + "Predicción obtenida: 14.222\n", + "\tR²: 0.6514348621062943, Desviación Estándar: 0.4903621688911602, Varianza: 0.2404550566796427, Incertidumbre: 0.08409641817224593\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.086x + 16.884\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.087x + 16.898\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.297\n", - "\tR²: 0.6276324914013882, Desviación Estándar: 0.4748361245225159, Varianza: 0.22546934515156222, Incertidumbre: 0.09312302556534931\n", + "Predicción obtenida: 14.288\n", + "\tR²: 0.6328453004599623, Desviación Estándar: 0.47385313335474916, Varianza: 0.22453679199011367, Incertidumbre: 0.09293024513665193\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.093x + 14.657\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.093x + 14.645\n", "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 14.517\n", - "\tR²: 0.7184307080462207, Desviación Estándar: 0.43488206123514683, Varianza: 0.18912240718412998, Incertidumbre: 0.07810712395416497\n", + "Predicción obtenida: 14.505\n", + "\tR²: 0.7186695306905169, Desviación Estándar: 0.43524135975547956, Varianza: 0.18943504124179877, Incertidumbre: 0.0781716558734271\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Ecuación de regresión: y = -0.109x + 16.535\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Ecuación de regresión: y = -0.11x + 16.544\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.357\n", - "\tR²: 0.670906735462538, Desviación Estándar: 0.44745594752331586, Varianza: 0.20021682497398838, Incertidumbre: 0.08949118950466317\n", + "Predicción obtenida: 14.349\n", + "\tR²: 0.6740321107300629, Desviación Estándar: 0.4478642716421813, Varianza: 0.20058240581358153, Incertidumbre: 0.08957285432843626\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.232', 'Área del ala: 14.197', 'Longitud del fuselaje: 13.686', 'Peso máximo al despegue (MTOW): 14.233', 'Velocidad máxima (KIAS): 14.297', 'payload: 14.517', 'Crucero KIAS: 14.357']\n", - "**Mediana calculada:** 14.233\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.223', 'Área del ala: 14.186', 'Longitud del fuselaje: 13.672', 'Peso máximo al despegue (MTOW): 14.222', 'Velocidad máxima (KIAS): 14.288', 'payload: 14.505', 'Crucero KIAS: 14.349']\n", + "**Mediana calculada:** 14.223\n", "\n", "--- Imputación para aeronave: **Reach** ---\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.1x + 16.428\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.101x + 16.438\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.683\n", - "\tR²: 0.5344512568573817, Desviación Estándar: 0.5462986887260068, Varianza: 0.2984422573037545, Incertidumbre: 0.09657287683786958\n", + "Predicción obtenida: 13.669\n", + "\tR²: 0.5403248300026882, Desviación Estándar: 0.544617405388324, Varianza: 0.29660811825191014, Incertidumbre: 0.09627566512557671\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -1.077x + 15.26\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -1.08x + 15.252\n", "Valor del parámetro correlacionado para la aeronave: 2.329\n", - "Predicción obtenida: 12.753\n", - "\tR²: 0.6824488751728104, Desviación Estándar: 0.444348541369244, Varianza: 0.19744562621697476, Incertidumbre: 0.07735115250889142\n", + "Predicción obtenida: 12.736\n", + "\tR²: 0.6828633114546836, Desviación Estándar: 0.44550944206432913, Varianza: 0.19847866296846983, Incertidumbre: 0.07755323938068918\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.569x + 15.015\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.57x + 15.003\n", "Valor del parámetro correlacionado para la aeronave: 4.712\n", - "Predicción obtenida: 12.334\n", - "\tR²: 0.3541273256305937, Desviación Estándar: 0.6109197380467731, Varianza: 0.3732229263351379, Incertidumbre: 0.11153817378445491\n", + "Predicción obtenida: 12.318\n", + "\tR²: 0.35147007195166013, Desviación Estándar: 0.615443744042397, Varianza: 0.3787710020809235, Incertidumbre: 0.11236414049581885\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.022x + 14.635\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.022x + 14.625\n", "Valor del parámetro correlacionado para la aeronave: 91.0\n", - "Predicción obtenida: 12.602\n", - "\tR²: 0.6533839808972084, Desviación Estándar: 0.4840525196077455, Varianza: 0.2343068417386068, Incertidumbre: 0.08181980929170896\n", + "Predicción obtenida: 12.587\n", + "\tR²: 0.6554972240005492, Desviación Estándar: 0.4833062580516597, Varianza: 0.23358493907189748, Incertidumbre: 0.08169366806585572\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.086x + 16.872\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.087x + 16.886\n", "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 13.864\n", - "\tR²: 0.6317983869828936, Desviación Estándar: 0.46611492225485973, Varianza: 0.21726312074865395, Incertidumbre: 0.08970385861238159\n", + "Predicción obtenida: 13.85\n", + "\tR²: 0.6369900213647028, Desviación Estándar: 0.46515224472263894, Varianza: 0.2163666107705098, Incertidumbre: 0.08951859123492475\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.092x + 14.633\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.092x + 14.621\n", "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 13.991\n", - "\tR²: 0.7193105569936625, Desviación Estándar: 0.4307419939368637, Varianza: 0.18553866534070512, Incertidumbre: 0.07614514621364275\n", + "Predicción obtenida: 13.978\n", + "\tR²: 0.7196334122958243, Desviación Estándar: 0.4310592638988115, Varianza: 0.1858120889929852, Incertidumbre: 0.07620123214903278\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.767, 14.067, 12.923, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Ecuación de regresión: y = -0.108x + 16.516\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Ecuación de regresión: y = -0.109x + 16.525\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.808\n", - "\tR²: 0.6725895092170291, Desviación Estándar: 0.4393983706690954, Varianza: 0.19307092814665575, Incertidumbre: 0.08617311024163819\n", + "Predicción obtenida: 13.795\n", + "\tR²: 0.67567314504279, Desviación Estándar: 0.43981688532599306, Varianza: 0.1934388926178577, Incertidumbre: 0.08625518771864765\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.683', 'Área del ala: 12.753', 'Longitud del fuselaje: 12.334', 'Peso máximo al despegue (MTOW): 12.602', 'Velocidad máxima (KIAS): 13.864', 'payload: 13.991', 'Crucero KIAS: 13.808']\n", - "**Mediana calculada:** 13.683\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.669', 'Área del ala: 12.736', 'Longitud del fuselaje: 12.318', 'Peso máximo al despegue (MTOW): 12.587', 'Velocidad máxima (KIAS): 13.85', 'payload: 13.978', 'Crucero KIAS: 13.795']\n", + "**Mediana calculada:** 13.669\n", "\n", "=== Imputación para el parámetro: **Longitud del fuselaje** ===\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", "\n", "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 1.343x + 0.345\n", @@ -26462,17 +28537,17 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.648x + 11.093\n", + "Ecuación de regresión: y = -0.642x + 11.003\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 2.991\n", - "\tR²: 0.281158048672818, Desviación Estándar: 0.7756999486858921, Varianza: 0.6017104103912956, Incertidumbre: 0.13931982356588346\n", + "Predicción obtenida: 2.974\n", + "\tR²: 0.27906683530984955, Desviación Estándar: 0.7768274399509152, Varianza: 0.6034608714606927, Incertidumbre: 0.13952232697507047\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 0.025x + 1.186\n", @@ -26482,7 +28557,7 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.94) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", "Valores para Longitud del fuselaje: [3.0, 3.0, 3.0, 0.75, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 0.044x + 1.202\n", @@ -26490,13 +28565,13 @@ "Predicción obtenida: 4.329\n", "\tR²: 0.8836944979649586, Desviación Estándar: 0.39788597040864104, Varianza: 0.15831324544802597, Incertidumbre: 0.150386761123267\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 3.707', 'Relación de aspecto del ala: 2.991', 'Peso máximo al despegue (MTOW): 3.482', 'RTF (Including fuel & Batteries): 4.329']\n", + "Valores imputados: ['Área del ala: 3.707', 'Relación de aspecto del ala: 2.974', 'Peso máximo al despegue (MTOW): 3.482', 'RTF (Including fuel & Batteries): 4.329']\n", "**Mediana calculada:** 3.594\n", "\n", "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 1.328x + 0.361\n", @@ -26506,17 +28581,17 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.69x + 11.683\n", - "Valor del parámetro correlacionado para la aeronave: 12.654\n", - "Predicción obtenida: 2.958\n", - "\tR²: 0.3242880012094823, Desviación Estándar: 0.7699928935334471, Varianza: 0.5928890560920104, Incertidumbre: 0.13611679912073793\n", + "Ecuación de regresión: y = -0.684x + 11.599\n", + "Valor del parámetro correlacionado para la aeronave: 12.648\n", + "Predicción obtenida: 2.947\n", + "\tR²: 0.3216836388295986, Desviación Estándar: 0.7714753386968983, Varianza: 0.595174198217494, Incertidumbre: 0.13637886087769133\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 0.025x + 1.181\n", @@ -26534,642 +28609,1566 @@ "Predicción obtenida: 1.922\n", "\tR²: 0.46781484146630226, Desviación Estándar: 1.0520768032800647, Varianza: 1.1068656, Incertidumbre: 0.47050304993697967\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 3.135', 'Relación de aspecto del ala: 2.958', 'Peso máximo al despegue (MTOW): 3.049', 'Maximum Crosswind: 1.922']\n", - "**Mediana calculada:** 3.004\n", + "Valores imputados: ['Área del ala: 3.135', 'Relación de aspecto del ala: 2.947', 'Peso máximo al despegue (MTOW): 3.049', 'Maximum Crosswind: 1.922']\n", + "**Mediana calculada:** 2.998\n", "\n", "--- Imputación para aeronave: **V39** ---\n", "\n", "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 1.317x + 0.37\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = 1.316x + 0.371\n", "Valor del parámetro correlacionado para la aeronave: 1.203\n", "Predicción obtenida: 1.954\n", - "\tR²: 0.6599199989051069, Desviación Estándar: 0.5314530046626257, Varianza: 0.2824422961649329, Incertidumbre: 0.09702959963587277\n", + "\tR²: 0.6597115958770696, Desviación Estándar: 0.5314985507982902, Varianza: 0.28249070950068267, Incertidumbre: 0.09703791518450966\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.692x + 11.72\n", - "Valor del parámetro correlacionado para la aeronave: 14.054\n", - "Predicción obtenida: 1.993\n", - "\tR²: 0.3405258074673375, Desviación Estándar: 0.758274848598365, Varianza: 0.5749807460168733, Incertidumbre: 0.13199870821416507\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Ecuación de regresión: y = -0.687x + 11.639\n", + "Valor del parámetro correlacionado para la aeronave: 14.042\n", + "Predicción obtenida: 1.994\n", + "\tR²: 0.3377422956329197, Desviación Estándar: 0.759743862528399, Varianza: 0.5772107366495708, Incertidumbre: 0.13225443071567164\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", "Ecuación de regresión: y = 0.025x + 1.181\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", "Predicción obtenida: 1.778\n", - "\tR²: 0.6242739779894806, Desviación Estándar: 0.5673572653887533, Varianza: 0.32189426658940423, Incertidumbre: 0.09876422284830895\n", + "\tR²: 0.6241247541602877, Desviación Estándar: 0.5673714496579856, Varianza: 0.32191036188700406, Incertidumbre: 0.09876669201264836\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Área del ala: 1.954', 'Relación de aspecto del ala: 1.993', 'Peso máximo al despegue (MTOW): 1.778']\n", + "Valores imputados: ['Área del ala: 1.954', 'Relación de aspecto del ala: 1.994', 'Peso máximo al despegue (MTOW): 1.778']\n", "**Mediana calculada:** 1.954\n", "\n", "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", "\n", "=== Imputación para el parámetro: **Alcance de la aeronave** ===\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.978x + 36149.4\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.907x + 35759.111\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 280.964\n", - "\tR²: 0.936732753505972, Desviación Estándar: 214.69795555899483, Varianza: 46095.21212121212, Incertidumbre: 61.97796121822399\n", + "Predicción obtenida: 316.444\n", + "\tR²: 0.941347558801303, Desviación Estándar: 221.17418977408332, Varianza: 48918.02222222222, Incertidumbre: 69.94141993284252\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 118.915x + -1120.395\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 43.142x + 16.54\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 366.039\n", - "\tR²: 0.01562311222731727, Desviación Estándar: 816.7749459018694, Varianza: 667121.3122530016, Incertidumbre: 226.53261138180895\n", + "Predicción obtenida: 555.818\n", + "\tR²: 0.0017873010996798389, Desviación Estándar: 871.652385533205, Varianza: 759777.8812057271, Incertidumbre: 262.81308276653186\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 106.024x + -335.63\n", + "Valor del parámetro correlacionado para la aeronave: 19.8\n", + "Predicción obtenida: 1763.644\n", + "\tR²: 0.7148030071984908, Desviación Estándar: 487.71248080374903, Varianza: 237863.46393174725, Incertidumbre: 154.2282282630995\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 21.387x + 171.916\n", + "Valor del parámetro correlacionado para la aeronave: 14.5\n", + "Predicción obtenida: 482.027\n", + "\tR²: 0.6151852469174406, Desviación Estándar: 137.60082187743836, Varianza: 18933.986181346518, Incertidumbre: 48.64923712318945\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 280.964', 'Relación de aspecto del ala: 366.039']\n", - "**Mediana calculada:** 323.501\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 316.444', 'Relación de aspecto del ala: 555.818', 'Autonomía de la aeronave: 1763.644', 'payload: 482.027']\n", + "**Mediana calculada:** 518.922\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.971x + 36110.407\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.867x + 35536.386\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 284.508\n", - "\tR²: 0.9368275882693853, Desviación Estándar: 206.58415814438524, Varianza: 42677.01439622437, Incertidumbre: 57.29613652985713\n", + "Predicción obtenida: 336.692\n", + "\tR²: 0.9369828282191571, Desviación Estándar: 218.68983155385746, Varianza: 47825.242425054545, Incertidumbre: 65.9374651572882\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 124.04x + -1194.892\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 48.512x + -61.995\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 355.606\n", - "\tR²: 0.020800876574606608, Desviación Estándar: 787.1259997898155, Varianza: 619567.3395451166, Incertidumbre: 210.3682722453848\n", + "Predicción obtenida: 544.404\n", + "\tR²: 0.002995498991272716, Desviación Estándar: 834.5905621601189, Varianza: 696541.4064467433, Incertidumbre: 240.92554286313288\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 86.745x + -257.466\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 783.47\n", + "\tR²: 0.5747433288658067, Desviación Estándar: 568.0998879939582, Varianza: 322737.4827387478, Incertidumbre: 171.28856108353526\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 21.739x + 172.796\n", + "Valor del parámetro correlacionado para la aeronave: 11.3\n", + "Predicción obtenida: 418.452\n", + "\tR²: 0.6350137109462142, Desviación Estándar: 130.21864982605558, Varianza: 16956.896762520882, Incertidumbre: 43.40621660868519\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 284.508', 'Relación de aspecto del ala: 355.606']\n", - "**Mediana calculada:** 320.057\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 336.692', 'Relación de aspecto del ala: 544.404', 'Autonomía de la aeronave: 783.47', 'payload: 418.452']\n", + "**Mediana calculada:** 481.428\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.966x + 36080.328\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.84x + 35391.65\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 287.243\n", - "\tR²: 0.9369459484148608, Desviación Estándar: 199.27864216054778, Varianza: 39711.97722135165, Incertidumbre: 53.25945739044961\n", + "Predicción obtenida: 349.85\n", + "\tR²: 0.934808022871879, Desviación Estándar: 213.13565980536123, Varianza: 45426.80948066667, Incertidumbre: 61.526965281266904\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 127.479x + -1244.887\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 55.512x + -164.373\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 348.604\n", - "\tR²: 0.02541188671800909, Desviación Estándar: 760.4804439476538, Varianza: 578330.5056268207, Incertidumbre: 196.3552063017124\n", + "Predicción obtenida: 529.525\n", + "\tR²: 0.004730674917466038, Desviación Estándar: 801.9939500096699, Varianza: 643194.2958521128, Incertidumbre: 222.43310072090526\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 800.0]\n", - "Ecuación de regresión: y = 2097.004x + -112.685\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 800.0]\n", + "Ecuación de regresión: y = 2261.812x + -85.496\n", "Valor del parámetro correlacionado para la aeronave: 0.277\n", - "Predicción obtenida: 468.185\n", - "\tR²: 0.5286444916758515, Desviación Estándar: 123.60775336921141, Varianza: 15278.876692983793, Incertidumbre: 55.279067815917074\n", + "Predicción obtenida: 541.026\n", + "\tR²: 0.9065116987148334, Desviación Estándar: 45.342194867988525, Varianza: 2055.914635446645, Incertidumbre: 20.27764599477289\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 85.849x + -273.589\n", + "Valor del parámetro correlacionado para la aeronave: 19.8\n", + "Predicción obtenida: 1426.214\n", + "\tR²: 0.56549691959356, Desviación Estándar: 550.2441974157556, Varianza: 302768.67678970896, Incertidumbre: 158.84181774900804\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde']\n", "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 3270.0]\n", - "Ecuación de regresión: y = -14120.22x + 5060.052\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0]\n", + "Ecuación de regresión: y = -13031.161x + 4813.896\n", "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 89.735\n", - "\tR²: 0.582808463771481, Desviación Estándar: 751.8715055818252, Varianza: 565310.7609058806, Incertidumbre: 336.2471593652147\n", + "Predicción obtenida: 226.928\n", + "\tR²: 0.5279015132670961, Desviación Estándar: 775.5687627719914, Varianza: 601506.9057876774, Incertidumbre: 346.8448949567162\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 287.243', 'Relación de aspecto del ala: 348.604', 'Ancho del fuselaje: 468.185', 'Cuerda: 89.735']\n", - "**Mediana calculada:** 317.924\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 21.957x + 177.064\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 565.695\n", + "\tR²: 0.6360380648248155, Desviación Estándar: 124.96189515821898, Varianza: 15615.475241533713, Incertidumbre: 39.5164209431139\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 349.85', 'Relación de aspecto del ala: 529.525', 'Ancho del fuselaje: 541.026', 'Autonomía de la aeronave: 1426.214', 'Cuerda: 226.928', 'payload: 565.695']\n", + "**Mediana calculada:** 535.276\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.961x + 36056.221\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.809x + 35221.676\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 289.434\n", - "\tR²: 0.9370683744644833, Desviación Estándar: 192.6727401288566, Varianza: 37122.7847887619, Incertidumbre: 49.74788758581407\n", + "Predicción obtenida: 365.302\n", + "\tR²: 0.9310643157348193, Desviación Estándar: 210.61070207807703, Varianza: 44356.86782982052, Incertidumbre: 58.412898884921304\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 129.959x + -1280.934\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 54.995x + -156.81\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 343.556\n", - "\tR²: 0.029508936760294757, Desviación Estándar: 736.3653975548689, Varianza: 542233.99871614, Incertidumbre: 184.09134938871722\n", + "Predicción obtenida: 530.624\n", + "\tR²: 0.005326717468706943, Desviación Estándar: 772.8219439192726, Varianza: 597253.7570031633, Incertidumbre: 206.5453525090388\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 74.895x + -223.348\n", + "Valor del parámetro correlacionado para la aeronave: 14.0\n", + "Predicción obtenida: 825.177\n", + "\tR²: 0.48851416333887676, Desviación Estándar: 573.687248269721, Varianza: 329117.05882728443, Incertidumbre: 159.11221459356298\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 289.434', 'Relación de aspecto del ala: 343.556']\n", - "**Mediana calculada:** 316.495\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 21.59x + 178.007\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 668.093\n", + "\tR²: 0.6515452684663989, Desviación Estándar: 119.43474251813149, Varianza: 14264.657720372366, Incertidumbre: 36.01092980594082\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 365.302', 'Relación de aspecto del ala: 530.624', 'Autonomía de la aeronave: 825.177', 'payload: 668.093']\n", + "**Mediana calculada:** 599.358\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.773x + 35023.629\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 383.306\n", + "\tR²: 0.9250199701732349, Desviación Estándar: 211.66135430129737, Varianza: 44800.52890465933, Incertidumbre: 56.5688764154304\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 49.807x + -80.929\n", + "Valor del parámetro correlacionado para la aeronave: 13.443\n", + "Predicción obtenida: 588.62\n", + "\tR²: 0.004857101152760834, Desviación Estándar: 746.7939888417249, Varianza: 557701.2617701343, Incertidumbre: 192.82137878878717\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 73.997x + -229.547\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 1546.391\n", + "\tR²: 0.48293085237829836, Desviación Estándar: 555.8314018926295, Varianza: 308948.5473299259, Incertidumbre: 148.55219076374803\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 20.566x + 183.705\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 430.493\n", + "\tR²: 0.6713351729638166, Desviación Estándar: 115.62496967809123, Varianza: 13369.133613059515, Incertidumbre: 33.378053684344145\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 383.306', 'Relación de aspecto del ala: 588.62', 'Autonomía de la aeronave: 1546.391', 'payload: 430.493']\n", + "**Mediana calculada:** 509.556\n", "\n", "--- Imputación para aeronave: **ScanEagle** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.958x + 36036.377\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.755x + 34924.433\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 291.238\n", - "\tR²: 0.9371872042106679, Desviación Estándar: 186.6690299794889, Varianza: 34845.32675348333, Incertidumbre: 46.667257494872224\n", + "Predicción obtenida: 392.324\n", + "\tR²: 0.9233053265797887, Desviación Estándar: 206.88287418840918, Varianza: 42800.523632457145, Incertidumbre: 53.41692842314887\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 131.837x + -1308.237\n", - "Valor del parámetro correlacionado para la aeronave: 14.067\n", - "Predicción obtenida: 546.322\n", - "\tR²: 0.03315730870908751, Desviación Estándar: 714.4052565199124, Varianza: 510374.87054328184, Incertidumbre: 173.26872541929876\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 51.148x + -104.281\n", + "Valor del parámetro correlacionado para la aeronave: 14.057\n", + "Predicción obtenida: 614.707\n", + "\tR²: 0.0051433547185812944, Desviación Estándar: 723.3321143254109, Varianza: 523209.34761446924, Incertidumbre: 180.83302858135272\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 59.997x + -131.637\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 948.312\n", + "\tR²: 0.38436660533416545, Desviación Estándar: 586.1422469494127, Varianza: 343562.73365890625, Incertidumbre: 151.3412773962447\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 20.645x + 188.896\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 292.121\n", + "\tR²: 0.6654030506878479, Desviación Estándar: 113.06733122345928, Varianza: 12784.22138999545, Incertidumbre: 31.359235408157918\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 291.238', 'Relación de aspecto del ala: 546.322']\n", - "**Mediana calculada:** 418.78\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 392.324', 'Relación de aspecto del ala: 614.707', 'Autonomía de la aeronave: 948.312', 'payload: 292.121']\n", + "**Mediana calculada:** 503.516\n", "\n", "--- Imputación para aeronave: **Integrator** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.942x + 35948.692\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.741x + 34842.892\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 299.21\n", - "\tR²: 0.9354925794506871, Desviación Estándar: 183.555632392381, Varianza: 33692.67018296691, Incertidumbre: 44.51878003122549\n", + "Predicción obtenida: 399.737\n", + "\tR²: 0.9219836638407033, Desviación Estándar: 202.10566728677685, Varianza: 40846.70074943334, Incertidumbre: 50.52641682169421\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 129.193x + -1279.073\n", - "Valor del parámetro correlacionado para la aeronave: 12.923\n", - "Predicción obtenida: 390.493\n", - "\tR²: 0.03207230824276419, Desviación Estándar: 694.8866935211308, Varianza: 482867.5168327301, Incertidumbre: 163.78636438169661\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 49.053x + -82.026\n", + "Valor del parámetro correlacionado para la aeronave: 12.908\n", + "Predicción obtenida: 551.147\n", + "\tR²: 0.004755791997559489, Desviación Estándar: 702.2196991834805, Varianza: 493112.5059213379, Incertidumbre: 170.31329365429116\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 57.271x + -125.878\n", + "Valor del parámetro correlacionado para la aeronave: 24.0\n", + "Predicción obtenida: 1248.627\n", + "\tR²: 0.3634971486006614, Desviación Estándar: 577.2791780254325, Varianza: 333251.2493817191, Incertidumbre: 144.31979450635814\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 19.14x + 220.22\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 564.734\n", + "\tR²: 0.5908236954277724, Desviación Estándar: 121.25887543058778, Varianza: 14703.714870690805, Incertidumbre: 32.407797640482855\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 299.21', 'Relación de aspecto del ala: 390.493']\n", - "**Mediana calculada:** 344.852\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 399.737', 'Relación de aspecto del ala: 551.147', 'Autonomía de la aeronave: 1248.627', 'payload: 564.734']\n", + "**Mediana calculada:** 557.94\n", "\n", "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.936x + 35919.159\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -5.721x + 34734.128\n", "Valor del parámetro correlacionado para la aeronave: 5000.0\n", - "Predicción obtenida: 6238.105\n", - "\tR²: 0.9353863278088558, Desviación Estándar: 178.6890627548751, Varianza: 31929.78114821569, Incertidumbre: 42.11741599928025\n", + "Predicción obtenida: 6130.375\n", + "\tR²: 0.9191867670939571, Desviación Estándar: 199.55997470891685, Varianza: 39824.18350582354, Incertidumbre: 48.40040319826195\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 131.099x + -1307.522\n", - "Valor del parámetro correlacionado para la aeronave: 12.654\n", - "Predicción obtenida: 351.406\n", - "\tR²: 0.034068577542197054, Desviación Estándar: 676.4273006220689, Varianza: 457553.8930268587, Incertidumbre: 155.183065582295\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 48.743x + -77.408\n", + "Valor del parámetro correlacionado para la aeronave: 12.648\n", + "Predicción obtenida: 539.096\n", + "\tR²: 0.004881178077821846, Desviación Estándar: 682.436587225711, Varianza: 465719.69558427547, Incertidumbre: 160.8518461857017\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 50.082x + -73.061\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 728.245\n", + "\tR²: 0.31645626386358894, Desviación Estándar: 580.3838962714162, Varianza: 336845.4670511901, Incertidumbre: 140.76377104321017\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 6238.105', 'Relación de aspecto del ala: 351.406']\n", - "**Mediana calculada:** 3294.755\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 19.086x + 220.367\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 563.922\n", + "\tR²: 0.6034520565797792, Desviación Estándar: 117.1587675681931, Varianza: 13726.176818097896, Incertidumbre: 30.250263710253165\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 6130.375', 'Relación de aspecto del ala: 539.096', 'Autonomía de la aeronave: 728.245', 'payload: 563.922']\n", + "**Mediana calculada:** 646.084\n", "\n", "--- Imputación para aeronave: **ScanEagle 3** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -1.252x + 7989.744\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 477.332\n", + "\tR²: 0.21041072214297474, Desviación Estándar: 606.3660387299609, Varianza: 367679.7729250645, Incertidumbre: 142.9218459557267\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 42.949x + 7.261\n", + "Valor del parámetro correlacionado para la aeronave: 13.765\n", + "Predicción obtenida: 598.458\n", + "\tR²: 0.004016554225731106, Desviación Estándar: 664.640093521826, Varianza: 441746.45391670155, Incertidumbre: 152.4788948151085\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 49.863x + -74.747\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 822.786\n", + "\tR²: 0.31605998443356176, Desviación Estándar: 564.3431464817085, Varianza: 318483.18698087503, Incertidumbre: 133.01695526445639\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 19.662x + 218.783\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 387.873\n", + "\tR²: 0.6221596490324965, Desviación Estándar: 115.08764274935331, Varianza: 13245.165513602775, Incertidumbre: 28.771910687338327\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 477.332', 'Relación de aspecto del ala: 598.458', 'Autonomía de la aeronave: 822.786', 'payload: 387.873']\n", + "**Mediana calculada:** 537.895\n", + "\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -3.54x + 21578.882\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -1.248x + 7967.914\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 336.12\n", - "\tR²: 0.8611383209194157, Desviación Estándar: 346.9605684495537, Varianza: 120381.63605883742, Incertidumbre: 79.59821343500164\n", + "Predicción obtenida: 480.853\n", + "\tR²: 0.21016964286508355, Desviación Estándar: 590.3473792395638, Varianza: 348510.02817502135, Incertidumbre: 135.43497724680736\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = -19.565x + 891.271\n", - "Valor del parámetro correlacionado para la aeronave: 13.774\n", - "Predicción obtenida: 621.78\n", - "\tR²: 0.0004364512856569469, Desviación Estándar: 908.1994401400673, Varianza: 824826.2230707316, Incertidumbre: 203.07956852804415\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 42.563x + 9.506\n", + "Valor del parámetro correlacionado para la aeronave: 12.914\n", + "Predicción obtenida: 559.164\n", + "\tR²: 0.003946364727999141, Desviación Estándar: 647.945383208715, Varianza: 419833.21962148865, Incertidumbre: 144.88499225618375\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 48.663x + -73.639\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 704.969\n", + "\tR²: 0.30722335636758213, Desviación Estándar: 552.8882334214711, Varianza: 305685.3986559151, Incertidumbre: 126.84125981878523\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 336.12', 'Relación de aspecto del ala: 621.78']\n", - "**Mediana calculada:** 478.95\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 19.184x + 233.095\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 572.66\n", + "\tR²: 0.5902643693999969, Desviación Estándar: 117.04644073196869, Varianza: 13699.869288022259, Incertidumbre: 28.387931661206128\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 480.853', 'Relación de aspecto del ala: 559.164', 'Autonomía de la aeronave: 704.969', 'payload: 572.66']\n", + "**Mediana calculada:** 565.912\n", "\n", "--- Imputación para aeronave: **V21** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -3.531x + 21530.226\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = -1.242x + 7938.938\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 343.967\n", - "\tR²: 0.8601185501470221, Desviación Estándar: 339.5976064847731, Varianza: 115326.53433018681, Incertidumbre: 75.93633330961761\n", + "Predicción obtenida: 485.527\n", + "\tR²: 0.20937029275663177, Desviación Estándar: 575.6964484514262, Varianza: 331426.4007595857, Incertidumbre: 128.72963931425926\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = -20.697x + 899.894\n", - "Valor del parámetro correlacionado para la aeronave: 14.578\n", - "Predicción obtenida: 598.169\n", - "\tR²: 0.0004884279001442504, Desviación Estándar: 886.8330331916383, Varianza: 786472.8287598814, Incertidumbre: 193.52283349466512\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 42.313x + 13.229\n", + "Valor del parámetro correlacionado para la aeronave: 14.568\n", + "Predicción obtenida: 629.646\n", + "\tR²: 0.004008828742622317, Desviación Estándar: 632.3315354155332, Varianza: 399843.1706809657, Incertidumbre: 137.98605358806336\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0]\n", + "Ecuación de regresión: y = 48.351x + -76.37\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 68.684\n", + "\tR²: 0.3050591302831972, Desviación Estándar: 539.7354115699455, Varianza: 291314.3145025785, Incertidumbre: 120.68850701342247\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 343.967', 'Relación de aspecto del ala: 598.169']\n", - "**Mediana calculada:** 471.068\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0, 800.0]\n", + "Ecuación de regresión: y = 19.143x + 233.214\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 261.928\n", + "\tR²: 0.5985890782746399, Desviación Estándar: 113.75879351787289, Varianza: 12941.063102642038, Incertidumbre: 26.813204772029398\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 485.527', 'Relación de aspecto del ala: 629.646', 'Autonomía de la aeronave: 68.684', 'payload: 261.928']\n", + "**Mediana calculada:** 373.727\n", "\n", "--- Imputación para aeronave: **V25** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 300.0]\n", - "Ecuación de regresión: y = -3.523x + 21489.183\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0]\n", + "Ecuación de regresión: y = -1.249x + 7975.04\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 350.587\n", - "\tR²: 0.8593439743794986, Desviación Estándar: 332.51164306024987, Varianza: 110563.99277062701, Incertidumbre: 72.55998922751108\n", + "Predicción obtenida: 479.704\n", + "\tR²: 0.21171906549957753, Desviación Estándar: 562.3240970485209, Varianza: 316208.3901214344, Incertidumbre: 122.70917808678767\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 300.0, 800.0]\n", - "Ecuación de regresión: y = -26.566x + 974.331\n", - "Valor del parámetro correlacionado para la aeronave: 14.435\n", - "Predicción obtenida: 590.85\n", - "\tR²: 0.0008406961271735236, Desviación Estándar: 866.829936711758, Varianza: 751394.1391797104, Incertidumbre: 184.80876346543525\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0, 800.0]\n", + "Ecuación de regresión: y = 30.498x + 162.947\n", + "Valor del parámetro correlacionado para la aeronave: 14.421\n", + "Predicción obtenida: 602.758\n", + "\tR²: 0.0021672955940218452, Desviación Estándar: 619.98780177568, Varianza: 384384.87435064, Incertidumbre: 132.1818434703152\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0]\n", + "Ecuación de regresión: y = 45.798x + -28.528\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 154.662\n", + "\tR²: 0.2987687873424638, Desviación Estándar: 530.3673768842218, Varianza: 281289.5544630502, Incertidumbre: 115.73565003367233\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0, 800.0]\n", + "Ecuación de regresión: y = 18.099x + 250.896\n", + "Valor del parámetro correlacionado para la aeronave: 2.2\n", + "Predicción obtenida: 290.713\n", + "\tR²: 0.5851882087506547, Desviación Estándar: 113.23855604202713, Varianza: 12822.970574483317, Incertidumbre: 25.978706436824385\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 350.587', 'Relación de aspecto del ala: 590.85']\n", - "**Mediana calculada:** 470.718\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 479.704', 'Relación de aspecto del ala: 602.758', 'Autonomía de la aeronave: 154.662', 'payload: 290.713']\n", + "**Mediana calculada:** 385.208\n", "\n", "--- Imputación para aeronave: **V32** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 300.0]\n", - "Ecuación de regresión: y = -3.516x + 21452.311\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0]\n", + "Ecuación de regresión: y = -1.255x + 8004.043\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 356.534\n", - "\tR²: 0.8586543866843019, Desviación Estándar: 325.82488395990157, Varianza: 106161.85500748333, Incertidumbre: 69.46609866673465\n", + "Predicción obtenida: 475.026\n", + "\tR²: 0.21371901155960438, Desviación Estándar: 549.7463712197905, Varianza: 302221.07266932767, Incertidumbre: 117.20632015795667\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 300.0, 800.0]\n", - "Ecuación de regresión: y = -30.914x + 1028.68\n", - "Valor del parámetro correlacionado para la aeronave: 14.194\n", - "Predicción obtenida: 589.888\n", - "\tR²: 0.0011695676261578303, Desviación Estándar: 848.1204843005861, Varianza: 719308.3558902608, Incertidumbre: 176.8453458337392\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0, 800.0]\n", + "Ecuación de regresión: y = 22.662x + 260.76\n", + "Valor del parámetro correlacionado para la aeronave: 14.182\n", + "Predicción obtenida: 582.152\n", + "\tR²: 0.0012253357519550478, Desviación Estándar: 607.9363047663803, Varianza: 369586.55065300124, Incertidumbre: 126.76348237238503\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0]\n", + "Ecuación de regresión: y = 44.24x + 1.63\n", + "Valor del parámetro correlacionado para la aeronave: 4.5\n", + "Predicción obtenida: 200.71\n", + "\tR²: 0.2958075456148329, Desviación Estándar: 520.2584796289456, Varianza: 270668.88562582195, Incertidumbre: 110.91948054697195\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0, 800.0]\n", + "Ecuación de regresión: y = 17.374x + 263.474\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 350.346\n", + "\tR²: 0.5751384226627532, Desviación Estándar: 112.14449166524236, Varianza: 12576.387010855611, Incertidumbre: 25.07627066656405\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 356.534', 'Relación de aspecto del ala: 589.888']\n", - "**Mediana calculada:** 473.211\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 475.026', 'Relación de aspecto del ala: 582.152', 'Autonomía de la aeronave: 200.71', 'payload: 350.346']\n", + "**Mediana calculada:** 412.686\n", "\n", "--- Imputación para aeronave: **V35** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 300.0]\n", - "Ecuación de regresión: y = -3.509x + 21418.189\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0]\n", + "Ecuación de regresión: y = -1.258x + 8022.275\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 362.038\n", - "\tR²: 0.8579938416630444, Desviación Estándar: 319.5466969999151, Varianza: 102110.09156355557, Incertidumbre: 66.63009228881091\n", + "Predicción obtenida: 472.085\n", + "\tR²: 0.21522284145385784, Desviación Estándar: 537.8122565548367, Varianza: 289242.0233006055, Incertidumbre: 112.14160754824495\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 300.0, 800.0]\n", - "Ecuación de regresión: y = -33.601x + 1060.685\n", - "Valor del parámetro correlacionado para la aeronave: 13.909\n", - "Predicción obtenida: 593.334\n", - "\tR²: 0.0013961398337015707, Desviación Estándar: 830.5869011959195, Varianza: 689874.6004382401, Incertidumbre: 169.54284124745584\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0, 800.0]\n", + "Ecuación de regresión: y = 18.768x + 307.082\n", + "Valor del parámetro correlacionado para la aeronave: 13.898\n", + "Predicción obtenida: 567.923\n", + "\tR²: 0.0008476663567767995, Desviación Estándar: 596.0879860214709, Varianza: 355320.88707913324, Incertidumbre: 121.6759506296563\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0]\n", + "Ecuación de regresión: y = 43.01x + 25.948\n", + "Valor del parámetro correlacionado para la aeronave: 2.8\n", + "Predicción obtenida: 146.377\n", + "\tR²: 0.29271465280738995, Desviación Estándar: 510.56947779344574, Varianza: 260681.19165427188, Incertidumbre: 106.461095497527\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0, 800.0]\n", + "Ecuación de regresión: y = 17.075x + 269.602\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 440.357\n", + "\tR²: 0.5701248711886335, Desviación Estándar: 110.22167028805497, Varianza: 12148.8166010887, Incertidumbre: 24.052340348546522\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 362.038', 'Relación de aspecto del ala: 593.334']\n", - "**Mediana calculada:** 477.686\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 472.085', 'Relación de aspecto del ala: 567.923', 'Autonomía de la aeronave: 146.377', 'payload: 440.357']\n", + "**Mediana calculada:** 456.221\n", "\n", "--- Imputación para aeronave: **V39** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 300.0]\n", - "Ecuación de regresión: y = -3.503x + 21385.89\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0]\n", + "Ecuación de regresión: y = -1.259x + 8026.705\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 367.247\n", - "\tR²: 0.857327553569526, Desviación Estándar: 313.6680914974852, Varianza: 98387.67162367476, Incertidumbre: 64.02723106345546\n", + "Predicción obtenida: 471.371\n", + "\tR²: 0.21604447260306026, Desviación Estándar: 526.4981352259283, Varianza: 277200.2863963799, Incertidumbre: 107.47098181919851\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 300.0, 800.0]\n", - "Ecuación de regresión: y = -34.612x + 1069.947\n", - "Valor del parámetro correlacionado para la aeronave: 14.054\n", - "Predicción obtenida: 583.507\n", - "\tR²: 0.001482621639041004, Desviación Estándar: 814.1206017478742, Varianza: 662792.3541903207, Incertidumbre: 162.82412034957483\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0, 800.0]\n", + "Ecuación de regresión: y = 17.789x + 316.05\n", + "Valor del parámetro correlacionado para la aeronave: 14.042\n", + "Predicción obtenida: 565.84\n", + "\tR²: 0.0007617532043836528, Desviación Estándar: 584.4539259103746, Varianza: 341586.3915120496, Incertidumbre: 116.89078518207491\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0]\n", + "Ecuación de regresión: y = 41.038x + 62.298\n", + "Valor del parámetro correlacionado para la aeronave: 4.5\n", + "Predicción obtenida: 246.97\n", + "\tR²: 0.28329338577170626, Desviación Estándar: 503.409990644059, Varianza: 253421.61868025156, Incertidumbre: 102.7581340414332\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0, 800.0]\n", + "Ecuación de regresión: y = 17.068x + 270.401\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 355.741\n", + "\tR²: 0.5697467595123673, Desviación Estándar: 107.73817669253191, Varianza: 11607.514717031225, Incertidumbre: 22.969856449695133\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 367.247', 'Relación de aspecto del ala: 583.507']\n", - "**Mediana calculada:** 475.377\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 471.371', 'Relación de aspecto del ala: 565.84', 'Autonomía de la aeronave: 246.97', 'payload: 355.741']\n", + "**Mediana calculada:** 413.556\n", "\n", "--- Imputación para aeronave: **Volitation VT370** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 300.0]\n", - "Ecuación de regresión: y = -3.498x + 21356.994\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0]\n", + "Ecuación de regresión: y = -1.262x + 8042.156\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 371.908\n", - "\tR²: 0.8567535916512802, Desviación Estándar: 308.05792801553093, Varianza: 94899.68701322205, Incertidumbre: 61.611585603106185\n", + "Predicción obtenida: 468.879\n", + "\tR²: 0.21731767317513662, Desviación Estándar: 515.9847025403219, Varianza: 266240.21325562446, Incertidumbre: 103.19694050806439\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 300.0, 800.0]\n", - "Ecuación de regresión: y = -36.248x + 1088.263\n", - "Valor del parámetro correlacionado para la aeronave: 13.657\n", - "Predicción obtenida: 593.228\n", - "\tR²: 0.0016327181254005563, Desviación Estándar: 798.5803788241736, Varianza: 637730.6214429607, Incertidumbre: 156.61449749218386\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0, 800.0]\n", + "Ecuación de regresión: y = 15.491x + 341.739\n", + "Valor del parámetro correlacionado para la aeronave: 13.645\n", + "Predicción obtenida: 553.116\n", + "\tR²: 0.0005791285523265577, Desviación Estándar: 573.8483135876736, Varianza: 329301.8870074169, Incertidumbre: 112.54091341637921\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0]\n", + "Ecuación de regresión: y = 40.24x + 78.213\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 681.814\n", + "\tR²: 0.2817793757671705, Desviación Estándar: 494.2799550877504, Varianza: 244312.67400154856, Incertidumbre: 98.85599101755008\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0, 800.0]\n", + "Ecuación de regresión: y = 16.811x + 275.566\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 578.158\n", + "\tR²: 0.5654386769863811, Desviación Estándar: 106.0114127800309, Varianza: 11238.419639618098, Incertidumbre: 22.104907619190833\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 371.908', 'Relación de aspecto del ala: 593.228']\n", - "**Mediana calculada:** 482.568\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 468.879', 'Relación de aspecto del ala: 553.116', 'Autonomía de la aeronave: 681.814', 'payload: 578.158']\n", + "**Mediana calculada:** 565.637\n", "\n", "--- Imputación para aeronave: **Skyeye 2600** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 300.0]\n", - "Ecuación de regresión: y = -3.492x + 21328.643\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0]\n", + "Ecuación de regresión: y = -1.257x + 8017.366\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 376.481\n", - "\tR²: 0.8561269585544401, Desviación Estándar: 302.82209622289093, Varianza: 91701.22196082582, Incertidumbre: 59.38829914567665\n", + "Predicción obtenida: 472.877\n", + "\tR²: 0.2163014350450687, Desviación Estándar: 506.30564828630486, Varianza: 256345.40948661542, Incertidumbre: 99.29470694054284\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 300.0, 800.0]\n", - "Ecuación de regresión: y = -35.81x + 1078.147\n", - "Valor del parámetro correlacionado para la aeronave: 14.116\n", - "Predicción obtenida: 572.657\n", - "\tR²: 0.0015929682850825966, Desviación Estándar: 783.9308450787514, Varianza: 614547.5698658854, Incertidumbre: 150.86756147742264\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0, 800.0]\n", + "Ecuación de regresión: y = 15.442x + 342.884\n", + "Valor del parámetro correlacionado para la aeronave: 14.103\n", + "Predicción obtenida: 560.656\n", + "\tR²: 0.0005756116510963194, Desviación Estándar: 563.1261939754822, Varianza: 317111.1103413124, Incertidumbre: 108.37368655982469\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0]\n", + "Ecuación de regresión: y = 39.985x + 76.738\n", + "Valor del parámetro correlacionado para la aeronave: 2.0\n", + "Predicción obtenida: 156.708\n", + "\tR²: 0.28030070432195453, Desviación Estándar: 485.1921720016292, Varianza: 235411.44377165852, Incertidumbre: 95.15401357226055\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0, 800.0]\n", + "Ecuación de regresión: y = 16.737x + 275.831\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 342.778\n", + "\tR²: 0.5745690871363021, Desviación Estándar: 103.8081239768202, Varianza: 10776.126603586874, Incertidumbre: 21.1897445748988\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 376.481', 'Relación de aspecto del ala: 572.657']\n", - "**Mediana calculada:** 474.569\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 472.877', 'Relación de aspecto del ala: 560.656', 'Autonomía de la aeronave: 156.708', 'payload: 342.778']\n", + "**Mediana calculada:** 407.828\n", "\n", "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 300.0]\n", - "Ecuación de regresión: y = -3.487x + 21304.51\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0]\n", + "Ecuación de regresión: y = -1.261x + 8033.37\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 380.373\n", - "\tR²: 0.8556590461143002, Desviación Estándar: 297.7366014374206, Varianza: 88647.08383550543, Incertidumbre: 57.2994356624997\n", + "Predicción obtenida: 470.296\n", + "\tR²: 0.21750101210992656, Desviación Estándar: 496.99258866565987, Varianza: 247001.63318859378, Incertidumbre: 95.64626828378923\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 300.0, 800.0]\n", - "Ecuación de regresión: y = -37.527x + 1098.259\n", - "Valor del parámetro correlacionado para la aeronave: 14.013\n", - "Predicción obtenida: 572.395\n", - "\tR²: 0.0017597629068930587, Desviación Estándar: 770.0185720471395, Varianza: 592928.6012975158, Incertidumbre: 145.51983189555736\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0, 800.0]\n", + "Ecuación de regresión: y = 12.779x + 374.006\n", + "Valor del parámetro correlacionado para la aeronave: 14.001\n", + "Predicción obtenida: 552.929\n", + "\tR²: 0.0003958766704269534, Desviación Estándar: 553.7010119743468, Varianza: 306584.8106614157, Incertidumbre: 104.63965559777989\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0]\n", + "Ecuación de regresión: y = 38.499x + 102.922\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 218.418\n", + "\tR²: 0.2751249042805085, Desviación Estándar: 478.34320573310276, Varianza: 228812.2224710215, Incertidumbre: 92.0571928650118\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0, 800.0]\n", + "Ecuación de regresión: y = 16.416x + 281.755\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 380.25\n", + "\tR²: 0.5695278609951793, Desviación Estándar: 102.48058029141457, Varianza: 10502.269336865067, Incertidumbre: 20.496116058282915\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 380.373', 'Relación de aspecto del ala: 572.395']\n", - "**Mediana calculada:** 476.384\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 470.296', 'Relación de aspecto del ala: 552.929', 'Autonomía de la aeronave: 218.418', 'payload: 380.25']\n", + "**Mediana calculada:** 425.273\n", "\n", "--- Imputación para aeronave: **Skyeye 3600** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 300.0]\n", - "Ecuación de regresión: y = -3.483x + 21281.79\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0]\n", + "Ecuación de regresión: y = -1.263x + 8044.025\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 384.038\n", - "\tR²: 0.8552047822769252, Desviación Estándar: 292.9125600732201, Varianza: 85797.76784864777, Incertidumbre: 55.355270702929126\n", + "Predicción obtenida: 468.577\n", + "\tR²: 0.218442742826649, Desviación Estándar: 488.10836630332125, Varianza: 238249.77725529726, Incertidumbre: 92.24381072061483\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 300.0, 800.0]\n", - "Ecuación de regresión: y = -38.687x + 1110.907\n", - "Valor del parámetro correlacionado para la aeronave: 13.722\n", - "Predicción obtenida: 580.05\n", - "\tR²: 0.0018749021692411327, Desviación Estándar: 756.8280680927438, Varianza: 572788.7246529949, Incertidumbre: 140.5394440463669\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0, 800.0]\n", + "Ecuación de regresión: y = 11.241x + 390.755\n", + "Valor del parámetro correlacionado para la aeronave: 13.71\n", + "Predicción obtenida: 544.869\n", + "\tR²: 0.0003067365701517888, Desviación Estándar: 544.5675096094902, Varianza: 296553.7725222822, Incertidumbre: 101.12364785716923\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0]\n", + "Ecuación de regresión: y = 37.488x + 121.496\n", + "Valor del parámetro correlacionado para la aeronave: 4.5\n", + "Predicción obtenida: 290.19\n", + "\tR²: 0.2715724467015357, Desviación Estándar: 471.2257714097305, Varianza: 222053.72764069558, Incertidumbre: 89.05330017962268\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0, 800.0]\n", + "Ecuación de regresión: y = 16.272x + 284.956\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 447.672\n", + "\tR²: 0.5668554579176148, Desviación Estándar: 100.85760609280737, Varianza: 10172.256706771894, Incertidumbre: 19.779803906210745\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 384.038', 'Relación de aspecto del ala: 580.05']\n", - "**Mediana calculada:** 482.044\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 468.577', 'Relación de aspecto del ala: 544.869', 'Autonomía de la aeronave: 290.19', 'payload: 447.672']\n", + "**Mediana calculada:** 458.124\n", "\n", "--- Imputación para aeronave: **Skyeye 5000** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0]\n", - "Ecuación de regresión: y = -3.479x + 21259.45\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", + "Ecuación de regresión: y = -1.263x + 8046.407\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 387.641\n", - "\tR²: 0.8547134757322701, Desviación Estándar: 288.37174235566516, Varianza: 83158.26178924213, Incertidumbre: 53.54928821744092\n", + "Predicción obtenida: 468.193\n", + "\tR²: 0.21896917958386974, Desviación Estándar: 479.6226611274876, Varianza: 230037.89706701285, Incertidumbre: 89.06369225544637\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 800.0]\n", - "Ecuación de regresión: y = -38.509x + 1105.191\n", - "Valor del parámetro correlacionado para la aeronave: 12.713\n", - "Predicción obtenida: 615.631\n", - "\tR²: 0.0018568156686025183, Desviación Estándar: 744.3152856692884, Varianza: 554005.2444809544, Incertidumbre: 135.89275728565698\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 800.0]\n", + "Ecuación de regresión: y = 11.399x + 385.692\n", + "Valor del parámetro correlacionado para la aeronave: 12.695\n", + "Predicción obtenida: 530.401\n", + "\tR²: 0.00031517259985813784, Desviación Estándar: 535.6408225987375, Varianza: 286911.0908342521, Incertidumbre: 97.79418708598382\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 800.0]\n", - "Ecuación de regresión: y = 2039.363x + -122.195\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 800.0]\n", + "Ecuación de regresión: y = 2259.606x + -85.86\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 642.567\n", - "\tR²: 0.4608128378817138, Desviación Estándar: 125.92632805453587, Varianza: 15857.440097298588, Incertidumbre: 51.409208152655864\n", + "Predicción obtenida: 761.493\n", + "\tR²: 0.9064132760257113, Desviación Estándar: 41.446819545787584, Varianza: 1717.8388504610796, Incertidumbre: 16.920593224732006\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 387.641', 'Relación de aspecto del ala: 615.631', 'Ancho del fuselaje: 642.567']\n", - "**Mediana calculada:** 615.631\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", + "Ecuación de regresión: y = 36.858x + 134.106\n", + "Valor del parámetro correlacionado para la aeronave: 8.0\n", + "Predicción obtenida: 428.972\n", + "\tR²: 0.2689650439391573, Desviación Estándar: 464.0178425419368, Varianza: 215312.5581972736, Incertidumbre: 86.16595019101095\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 800.0]\n", + "Ecuación de regresión: y = 16.27x + 285.358\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 610.76\n", + "\tR²: 0.5667205055911326, Desviación Estándar: 98.99193323862133, Varianza: 9799.402846319661, Incertidumbre: 19.051006434306494\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 468.193', 'Relación de aspecto del ala: 530.401', 'Ancho del fuselaje: 761.493', 'Autonomía de la aeronave: 428.972', 'payload: 610.76']\n", + "**Mediana calculada:** 530.401\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631]\n", - "Ecuación de regresión: y = -3.469x + 21209.325\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", + "Ecuación de regresión: y = -1.26x + 8032.73\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 395.726\n", - "\tR²: 0.8517129591346262, Desviación Estándar: 286.4568510267121, Varianza: 82057.52750013994, Incertidumbre: 52.29962635307571\n", + "Predicción obtenida: 470.399\n", + "\tR²: 0.21853303784795208, Desviación Estándar: 471.6931077514649, Varianza: 222494.38790023504, Incertidumbre: 86.11898511173075\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0]\n", - "Ecuación de regresión: y = -38.509x + 1105.19\n", - "Valor del parámetro correlacionado para la aeronave: 12.876\n", - "Predicción obtenida: 609.354\n", - "\tR²: 0.0019510827495129446, Desviación Estándar: 732.2117914662525, Varianza: 536134.1075622188, Incertidumbre: 131.5091199538622\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", + "Ecuación de regresión: y = 11.399x + 385.691\n", + "Valor del parámetro correlacionado para la aeronave: 12.856\n", + "Predicción obtenida: 532.237\n", + "\tR²: 0.0003313628990518902, Desviación Estándar: 526.9306352412358, Varianza: 277655.89435573225, Incertidumbre: 94.63953588966253\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 615.631, 800.0]\n", - "Ecuación de regresión: y = 1955.637x + -102.217\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 530.401, 800.0]\n", + "Ecuación de regresión: y = 1541.282x + 85.542\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 631.147\n", - "\tR²: 0.5379529179260039, Desviación Estándar: 116.84090594745173, Varianza: 13651.797302621262, Incertidumbre: 44.16171144234927\n", + "Predicción obtenida: 663.523\n", + "\tR²: 0.6272402531593875, Desviación Estándar: 76.59759898413333, Varianza: 5867.192170134103, Incertidumbre: 28.95117113381007\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", + "Ecuación de regresión: y = 15.727x + 288.21\n", + "Valor del parámetro correlacionado para la aeronave: 15.0\n", + "Predicción obtenida: 524.112\n", + "\tR²: 0.5615645241082226, Desviación Estándar: 98.27029747742641, Varianza: 9657.05136630188, Incertidumbre: 18.57134059925773\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 395.726', 'Relación de aspecto del ala: 609.354', 'Ancho del fuselaje: 631.147']\n", - "**Mediana calculada:** 609.354\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 470.399', 'Relación de aspecto del ala: 532.237', 'Ancho del fuselaje: 663.523', 'payload: 524.112']\n", + "**Mediana calculada:** 528.174\n", "\n", "--- Imputación para aeronave: **Volitation VT510** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354]\n", - "Ecuación de regresión: y = -3.46x + 21163.965\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174]\n", + "Ecuación de regresión: y = -1.258x + 8020.463\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 403.042\n", - "\tR²: 0.8490722687449495, Desviación Estándar: 284.3101426544714, Varianza: 80832.2572162059, Incertidumbre: 51.0636090407318\n", + "Predicción obtenida: 472.377\n", + "\tR²: 0.21815805928069354, Desviación Estándar: 464.1348278963494, Varianza: 215421.1384663739, Incertidumbre: 83.36107594546903\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354]\n", - "Ecuación de regresión: y = -38.509x + 1105.19\n", - "Valor del parámetro correlacionado para la aeronave: 13.114\n", - "Predicción obtenida: 600.189\n", - "\tR²: 0.002013297608376652, Desviación Estándar: 720.6801764312006, Varianza: 519379.91670090647, Incertidumbre: 127.39945995530485\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", + "Ecuación de regresión: y = 11.548x + 383.526\n", + "Valor del parámetro correlacionado para la aeronave: 13.099\n", + "Predicción obtenida: 534.792\n", + "\tR²: 0.0003511194348928548, Desviación Estándar: 518.6324629138196, Varianza: 268979.63158805453, Incertidumbre: 91.68213286746061\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", + "Ecuación de regresión: y = 36.695x + 139.245\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 322.718\n", + "\tR²: 0.2678068616286219, Desviación Estándar: 456.58017132018756, Varianza: 208465.45284277183, Incertidumbre: 83.35975304721335\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 403.042', 'Relación de aspecto del ala: 600.189']\n", - "**Mediana calculada:** 501.616\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", + "Ecuación de regresión: y = 15.739x + 288.219\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 681.696\n", + "\tR²: 0.5652992923691292, Desviación Estándar: 96.5639245470936, Varianza: 9324.591523936788, Incertidumbre: 17.931470624475867\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 472.377', 'Relación de aspecto del ala: 534.792', 'Autonomía de la aeronave: 322.718', 'payload: 681.696']\n", + "**Mediana calculada:** 503.585\n", "\n", "--- Imputación para aeronave: **Ascend** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616]\n", - "Ecuación de regresión: y = -3.456x + 21143.728\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585]\n", + "Ecuación de regresión: y = -1.257x + 8014.056\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 406.306\n", - "\tR²: 0.848548280437885, Desviación Estándar: 280.35664298808086, Varianza: 78599.84726754623, Incertidumbre: 49.56052085189198\n", + "Predicción obtenida: 473.411\n", + "\tR²: 0.21812584611652552, Desviación Estándar: 456.8573681831264, Varianza: 208718.65486321275, Incertidumbre: 80.76173576933198\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616]\n", - "Ecuación de regresión: y = -36.069x + 1068.826\n", - "Valor del parámetro correlacionado para la aeronave: 14.357\n", - "Predicción obtenida: 550.983\n", - "\tR²: 0.00179166089086924, Desviación Estándar: 709.8750011918696, Varianza: 503922.5173171569, Incertidumbre: 123.57337622902887\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", + "Ecuación de regresión: y = 12.322x + 372.003\n", + "Valor del parámetro correlacionado para la aeronave: 14.349\n", + "Predicción obtenida: 548.807\n", + "\tR²: 0.00040559910055537607, Desviación Estándar: 510.74155237825306, Varianza: 260856.9333257478, Incertidumbre: 88.90869223718056\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585]\n", + "Ecuación de regresión: y = 36.114x + 151.21\n", + "Valor del parámetro correlacionado para la aeronave: 6.0\n", + "Predicción obtenida: 367.893\n", + "\tR²: 0.2642430210503296, Desviación Estándar: 450.27008149115517, Varianza: 202743.14628605152, Incertidumbre: 80.87089397983948\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 406.306', 'Relación de aspecto del ala: 550.983']\n", - "**Mediana calculada:** 478.644\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", + "Ecuación de regresión: y = 14.216x + 299.289\n", + "Valor del parámetro correlacionado para la aeronave: 0.6\n", + "Predicción obtenida: 307.818\n", + "\tR²: 0.5236857913768209, Desviación Estándar: 99.5530852483226, Varianza: 9910.816782459788, Incertidumbre: 18.17582348658036\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 473.411', 'Relación de aspecto del ala: 548.807', 'Autonomía de la aeronave: 367.893', 'payload: 307.818']\n", + "**Mediana calculada:** 420.652\n", "\n", "--- Imputación para aeronave: **Transition** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616, 478.644]\n", - "Ecuación de regresión: y = -3.453x + 21129.353\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585, 420.652]\n", + "Ecuación de regresión: y = -1.259x + 8024.54\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 408.624\n", - "\tR²: 0.8483145072965955, Desviación Estándar: 276.3539789058695, Varianza: 76371.52165710577, Incertidumbre: 48.10705286196413\n", + "Predicción obtenida: 471.72\n", + "\tR²: 0.21891613091083528, Desviación Estándar: 449.9727679396905, Varianza: 202475.4918873066, Incertidumbre: 78.33020468683851\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644]\n", - "Ecuación de regresión: y = -38.096x + 1094.475\n", - "Valor del parámetro correlacionado para la aeronave: 14.233\n", - "Predicción obtenida: 552.251\n", - "\tR²: 0.0020361613553377955, Desviación Estándar: 699.4625257506076, Varianza: 489247.82492941944, Incertidumbre: 119.95683352643485\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", + "Ecuación de regresión: y = 8.718x + 417.57\n", + "Valor del parámetro correlacionado para la aeronave: 14.223\n", + "Predicción obtenida: 541.562\n", + "\tR²: 0.00020665375027828503, Desviación Estándar: 503.6313668149641, Varianza: 253644.55363990893, Incertidumbre: 86.37206684215421\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652]\n", + "Ecuación de regresión: y = 35.981x + 154.244\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 586.014\n", + "\tR²: 0.2649729523763782, Desviación Estándar: 443.27273842243636, Varianza: 196490.7206285257, Incertidumbre: 78.36028981340885\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", + "Ecuación de regresión: y = 13.547x + 310.162\n", + "Valor del parámetro correlacionado para la aeronave: 1.5\n", + "Predicción obtenida: 330.483\n", + "\tR²: 0.5062493497217644, Desviación Estándar: 99.81827758318798, Varianza: 9963.688539674367, Incertidumbre: 17.927891893120933\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 408.624', 'Relación de aspecto del ala: 552.251']\n", - "**Mediana calculada:** 480.438\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 471.72', 'Relación de aspecto del ala: 541.562', 'Autonomía de la aeronave: 586.014', 'payload: 330.483']\n", + "**Mediana calculada:** 506.641\n", "\n", "--- Imputación para aeronave: **Reach** ---\n", "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.952) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 609.354, 501.616, 478.644, 480.438]\n", - "Ecuación de regresión: y = -3.451x + 21115.526\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585, 420.652, 506.641]\n", + "Ecuación de regresión: y = -1.258x + 8017.816\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 410.855\n", - "\tR²: 0.8480781165196773, Desviación Estándar: 272.52939729083585, Varianza: 74272.27238770625, Incertidumbre: 46.73840604511903\n", + "Predicción obtenida: 472.804\n", + "\tR²: 0.2188220660556668, Desviación Estándar: 443.34533244312075, Varianza: 196555.08379910127, Incertidumbre: 76.03309724353042\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644, 480.438]\n", - "Ecuación de regresión: y = -39.663x + 1113.914\n", - "Valor del parámetro correlacionado para la aeronave: 13.683\n", - "Predicción obtenida: 571.205\n", - "\tR²: 0.002231863535378964, Desviación Estándar: 689.5003938693345, Varianza: 475410.79314596736, Incertidumbre: 116.54683830313121\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", + "Ecuación de regresión: y = 7.955x + 427.025\n", + "Valor del parámetro correlacionado para la aeronave: 13.669\n", + "Predicción obtenida: 535.762\n", + "\tR²: 0.0001740848142732787, Desviación Estándar: 496.4181896725954, Varianza: 246431.01903781694, Incertidumbre: 83.90998902528435\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0, 12.0]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652, 506.641]\n", + "Ecuación de regresión: y = 35.911x + 152.567\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 870.792\n", + "\tR²: 0.2643013375727117, Desviación Estándar: 436.7165278868632, Varianza: 190721.3257295574, Incertidumbre: 76.02258949165629\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 410.855', 'Relación de aspecto del ala: 571.205']\n", - "**Mediana calculada:** 491.03\n", + "\n", + "--- Correlación: payload (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", + "Ecuación de regresión: y = 12.668x + 324.924\n", + "Valor del parámetro correlacionado para la aeronave: 7.0\n", + "Predicción obtenida: 413.601\n", + "\tR²: 0.46249934976527396, Desviación Estándar: 102.70373401095995, Varianza: 10548.056979794012, Incertidumbre: 18.155626693082308\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 472.804', 'Relación de aspecto del ala: 535.762', 'Autonomía de la aeronave: 870.792', 'payload: 413.601']\n", + "**Mediana calculada:** 504.283\n", "\n", "=== Imputación para el parámetro: **Autonomía de la aeronave** ===\n", "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = 0.843) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652, 506.641, 504.283]\n", + "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0, 12.0, 20.0]\n", + "Ecuación de regresión: y = 0.007x + 6.874\n", + "Valor del parámetro correlacionado para la aeronave: 528.174\n", + "Predicción obtenida: 10.747\n", + "\tR²: 0.2498408369463081, Desviación Estándar: 6.374288748814379, Varianza: 40.63155705326158, Incertidumbre: 1.093181501711479\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Alcance de la aeronave: 10.747']\n", + "**Mediana calculada:** 10.747\n", + "\n", + "=== Imputación para el parámetro: **Velocidad máxima (KIAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.072x + 7.262\n", + "Valor del parámetro correlacionado para la aeronave: 27.892\n", + "Predicción obtenida: 37.163\n", + "\tR²: 0.6785150773380106, Desviación Estándar: 4.266538520956066, Varianza: 18.20335095080197, Incertidumbre: 0.8896347797490924\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.786x + 25.969\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 42.955\n", + "\tR²: 0.32230308247682127, Desviación Estándar: 5.586912076398391, Varianza: 31.213586549406177, Incertidumbre: 1.0956836037800992\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -7.332x + 136.73\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 45.084\n", + "\tR²: 0.6353583924337338, Desviación Estándar: 4.212708115387483, Varianza: 17.746909665451557, Incertidumbre: 0.7961270013870624\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.629x + 28.996\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 43.264\n", + "\tR²: 0.4900615381264627, Desviación Estándar: 4.799869922083653, Varianza: 23.03875126892334, Incertidumbre: 0.9797693450697835\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.067x + 30.152\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 34.84\n", + "\tR²: 0.733701886636262, Desviación Estándar: 0.9740665033476542, Varianza: 0.9488055529439255, Incertidumbre: 0.39766098478979256\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 37.163', 'Área del ala: 42.955', 'Relación de aspecto del ala: 45.084', 'payload: 43.264', 'RTF (Including fuel & Batteries): 34.84']\n", + "**Mediana calculada:** 42.955\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.078x + 7.331\n", + "Valor del parámetro correlacionado para la aeronave: 21.463\n", + "Predicción obtenida: 30.477\n", + "\tR²: 0.6650554114482713, Desviación Estándar: 4.333938589551439, Varianza: 18.78302369800311, Incertidumbre: 0.8846615100798704\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.786x + 25.969\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 40.152\n", + "\tR²: 0.3552344429430916, Desviación Estándar: 5.48247460485476, Varianza: 30.057527792877355, Incertidumbre: 1.0551027296460609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -7.182x + 134.601\n", + "Valor del parámetro correlacionado para la aeronave: 12.648\n", + "Predicción obtenida: 43.762\n", + "\tR²: 0.6458631582625831, Desviación Estándar: 4.155986642108519, Varianza: 17.272224969384443, Incertidumbre: 0.7717473449656517\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.626x + 29.01\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 40.28\n", + "\tR²: 0.5133079427191782, Desviación Estándar: 4.703245083983008, Varianza: 22.12051432001033, Incertidumbre: 0.9406490167966016\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 30.477', 'Área del ala: 40.152', 'Relación de aspecto del ala: 43.762', 'payload: 40.28']\n", + "**Mediana calculada:** 40.216\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.013x + 9.471\n", + "Valor del parámetro correlacionado para la aeronave: 18.091\n", + "Predicción obtenida: 27.799\n", + "\tR²: 0.6038420321629009, Desviación Estándar: 4.640881006314369, Varianza: 21.537776514769465, Incertidumbre: 0.9281762012628738\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.79x + 25.965\n", + "Valor del parámetro correlacionado para la aeronave: 0.84\n", + "Predicción obtenida: 31.669\n", + "\tR²: 0.3670434992715419, Desviación Estándar: 5.3836956297320535, Varianza: 28.98417863359601, Incertidumbre: 1.0174228407668775\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.983x + 131.755\n", + "Valor del parámetro correlacionado para la aeronave: 14.589\n", + "Predicción obtenida: 29.879\n", + "\tR²: 0.6423683336309061, Desviación Estándar: 4.132395523343531, Varianza: 17.076692761349655, Incertidumbre: 0.7544687482228727\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.626x + 29.011\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 30.888\n", + "\tR²: 0.5208842290733458, Desviación Estándar: 4.611927331533329, Varianza: 21.26987371134414, Incertidumbre: 0.904473363798475\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.065x + 9.368\n", + "Valor del parámetro correlacionado para la aeronave: 16.54\n", + "Predicción obtenida: 26.99\n", + "\tR²: 0.6084339451187571, Desviación Estándar: 4.787548453222305, Varianza: 22.920620191951283, Incertidumbre: 1.0705283786979045\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 42.955, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.119x + 29.159\n", + "Valor del parámetro correlacionado para la aeronave: 6.8\n", + "Predicción obtenida: 29.971\n", + "\tR²: 0.5655356424763149, Desviación Estándar: 2.661463952850547, Varianza: 7.0833903723228575, Incertidumbre: 1.0059388203722117\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.799', 'Área del ala: 31.669', 'Relación de aspecto del ala: 29.879', 'payload: 30.888', 'Crucero KIAS: 26.99', 'RTF (Including fuel & Batteries): 29.971']\n", + "**Mediana calculada:** 29.925\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.993x + 10.094\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 27.466\n", + "\tR²: 0.6132641570429134, Desviación Estándar: 4.567543566658289, Varianza: 20.862454233321525, Incertidumbre: 0.8957689913683001\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.88x + 25.782\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 30.598\n", + "\tR²: 0.3791246211706657, Desviación Estándar: 5.299352481306049, Varianza: 28.083136721124575, Incertidumbre: 0.9840650511355258\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.981x + 131.729\n", + "Valor del parámetro correlacionado para la aeronave: 14.714\n", + "Predicción obtenida: 29.009\n", + "\tR²: 0.6511684506287918, Desviación Estándar: 4.065205545483665, Varianza: 16.525896127031146, Incertidumbre: 0.7301324697975139\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.631x + 28.923\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 29.68\n", + "\tR²: 0.5347441062393511, Desviación Estándar: 4.529221125565367, Varianza: 20.51384400426761, Incertidumbre: 0.8716490120215014\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.031x + 10.342\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 26.846\n", + "\tR²: 0.6136657296272687, Desviación Estándar: 4.709745503173601, Varianza: 22.181702704663962, Incertidumbre: 1.0277507272509956\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.466', 'Área del ala: 30.598', 'Relación de aspecto del ala: 29.009', 'payload: 29.68', 'Crucero KIAS: 26.846']\n", + "**Mediana calculada:** 29.009\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.979x + 10.518\n", + "Valor del parámetro correlacionado para la aeronave: 17.5\n", + "Predicción obtenida: 27.645\n", + "\tR²: 0.6257444320590095, Desviación Estándar: 4.490845524887884, Varianza: 20.167693528405533, Incertidumbre: 0.8642636242276819\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.975x + 25.6\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 30.483\n", + "\tR²: 0.3948008000513574, Desviación Estándar: 5.217765466886563, Varianza: 27.225076467433954, Incertidumbre: 0.9526292819950818\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.981x + 131.729\n", + "Valor del parámetro correlacionado para la aeronave: 14.714\n", + "Predicción obtenida: 29.009\n", + "\tR²: 0.6615824796144654, Desviación Estándar: 4.001182559565268, Varianza: 16.00946187496927, Incertidumbre: 0.707315830158487\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.634x + 28.859\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 29.621\n", + "\tR²: 0.5513156760951279, Desviación Estándar: 4.4492527659965795, Varianza: 19.795850175728216, Incertidumbre: 0.8408297384923719\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.008x + 11.001\n", + "Valor del parámetro correlacionado para la aeronave: 16.0\n", + "Predicción obtenida: 27.134\n", + "\tR²: 0.6236400148434393, Desviación Estándar: 4.621454678981261, Varianza: 21.35784334987779, Incertidumbre: 0.9852974481637925\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.645', 'Área del ala: 30.483', 'Relación de aspecto del ala: 29.009', 'payload: 29.621', 'Crucero KIAS: 27.134']\n", + "**Mediana calculada:** 29.009\n", + "\n", + "--- Imputación para aeronave: **Skyeye 2600** ---\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.979x + 10.518\n", + "Valor del parámetro correlacionado para la aeronave: 36.094\n", + "Predicción obtenida: 45.843\n", + "\tR²: 0.6257444320590095, Desviación Estándar: 4.490845524887884, Varianza: 20.167693528405533, Incertidumbre: 0.8642636242276819\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.975x + 25.6\n", + "Valor del parámetro correlacionado para la aeronave: 0.88\n", + "Predicción obtenida: 31.738\n", + "\tR²: 0.3948008000513574, Desviación Estándar: 5.217765466886563, Varianza: 27.225076467433954, Incertidumbre: 0.9526292819950818\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.981x + 131.729\n", + "Valor del parámetro correlacionado para la aeronave: 14.103\n", + "Predicción obtenida: 33.275\n", + "\tR²: 0.6615824796144654, Desviación Estándar: 4.001182559565268, Varianza: 16.00946187496927, Incertidumbre: 0.707315830158487\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.634x + 28.859\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 31.397\n", + "\tR²: 0.5513156760951279, Desviación Estándar: 4.4492527659965795, Varianza: 19.795850175728216, Incertidumbre: 0.8408297384923719\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.775) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 1.008x + 11.001\n", + "Valor del parámetro correlacionado para la aeronave: 33.0\n", + "Predicción obtenida: 44.275\n", + "\tR²: 0.6236400148434393, Desviación Estándar: 4.621454678981261, Varianza: 21.35784334987779, Incertidumbre: 0.9852974481637925\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 45.843', 'Área del ala: 31.738', 'Relación de aspecto del ala: 33.275', 'payload: 31.397', 'Crucero KIAS: 44.275']\n", + "**Mediana calculada:** 33.275\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.737) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 6.912x + 25.735\n", + "Valor del parámetro correlacionado para la aeronave: 1.33\n", + "Predicción obtenida: 34.927\n", + "\tR²: 0.394519537415028, Desviación Estándar: 5.139955848128364, Varianza: 26.419146120708966, Incertidumbre: 0.9231633225073828\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = -6.981x + 131.729\n", + "Valor del parámetro correlacionado para la aeronave: 13.71\n", + "Predicción obtenida: 36.018\n", + "\tR²: 0.6627761679084383, Desviación Estándar: 3.9400922159021547, Varianza: 15.524326669812753, Incertidumbre: 0.6858820171935385\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.715) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Ecuación de regresión: y = 0.627x + 28.996\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 35.27\n", + "\tR²: 0.550504283331907, Desviación Estándar: 4.3849564059962995, Varianza: 19.227842682487985, Incertidumbre: 0.8142659627031128\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Capacidad combustible (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", + "Valores para Velocidad máxima (KIAS): [33.0, 33.0, 42.0, 38.0, 50.0]\n", + "Ecuación de regresión: y = 0.607x + 26.384\n", + "Valor del parámetro correlacionado para la aeronave: 11.5\n", + "Predicción obtenida: 33.369\n", + "\tR²: 0.487882729041738, Desviación Estándar: 4.5575735331497516, Varianza: 20.77147651006711, Incertidumbre: 2.038208846515347\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 34.927', 'Relación de aspecto del ala: 36.018', 'payload: 35.27', 'Capacidad combustible: 33.369']\n", + "**Mediana calculada:** 35.098\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Stalker XE** ---\n" ] }, { @@ -27217,7 +30216,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Autonomía de la aeronave' para la aeronave 'Skyeye 5000 VTOL octo'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker XE'.\n", " \n", " \n", "" @@ -27234,379 +30233,7 @@ "output_type": "stream", "text": [ "\n", - "=== Imputación para el parámetro: **Velocidad máxima (KIAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.072x + 7.262\n", - "Valor del parámetro correlacionado para la aeronave: 27.892\n", - "Predicción obtenida: 37.163\n", - "\tR²: 0.6785150773380106, Desviación Estándar: 4.266538520956066, Varianza: 18.20335095080197, Incertidumbre: 0.8896347797490924\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.786x + 25.969\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 42.955\n", - "\tR²: 0.32230308247682127, Desviación Estándar: 5.586912076398391, Varianza: 31.213586549406177, Incertidumbre: 1.0956836037800992\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -7.338x + 136.927\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 45.197\n", - "\tR²: 0.6301640775969515, Desviación Estándar: 4.242607000059795, Varianza: 17.99971415695638, Incertidumbre: 0.8017773594814295\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.629x + 28.996\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 43.264\n", - "\tR²: 0.4900615381264627, Desviación Estándar: 4.799869922083653, Varianza: 23.03875126892334, Incertidumbre: 0.9797693450697835\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.067x + 30.152\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 34.84\n", - "\tR²: 0.733701886636262, Desviación Estándar: 0.9740665033476542, Varianza: 0.9488055529439255, Incertidumbre: 0.39766098478979256\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 37.163', 'Área del ala: 42.955', 'Relación de aspecto del ala: 45.197', 'payload: 43.264', 'RTF (Including fuel & Batteries): 34.84']\n", - "**Mediana calculada:** 42.955\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.078x + 7.331\n", - "Valor del parámetro correlacionado para la aeronave: 21.463\n", - "Predicción obtenida: 30.477\n", - "\tR²: 0.6650554114482713, Desviación Estándar: 4.333938589551439, Varianza: 18.78302369800311, Incertidumbre: 0.8846615100798704\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.786x + 25.969\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 40.152\n", - "\tR²: 0.3552344429430916, Desviación Estándar: 5.48247460485476, Varianza: 30.057527792877355, Incertidumbre: 1.0551027296460609\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -7.178x + 134.644\n", - "Valor del parámetro correlacionado para la aeronave: 12.654\n", - "Predicción obtenida: 43.812\n", - "\tR²: 0.6405623970503131, Desviación Estándar: 4.186974758785706, Varianza: 17.530757630708617, Incertidumbre: 0.7775016937714918\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.626x + 29.01\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 40.28\n", - "\tR²: 0.5133079427191782, Desviación Estándar: 4.703245083983008, Varianza: 22.12051432001033, Incertidumbre: 0.9406490167966016\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 30.477', 'Área del ala: 40.152', 'Relación de aspecto del ala: 43.812', 'payload: 40.28']\n", - "**Mediana calculada:** 40.216\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.013x + 9.471\n", - "Valor del parámetro correlacionado para la aeronave: 18.091\n", - "Predicción obtenida: 27.799\n", - "\tR²: 0.6038420321629009, Desviación Estándar: 4.640881006314369, Varianza: 21.537776514769465, Incertidumbre: 0.9281762012628738\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.79x + 25.965\n", - "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 31.669\n", - "\tR²: 0.3670434992715419, Desviación Estándar: 5.3836956297320535, Varianza: 28.98417863359601, Incertidumbre: 1.0174228407668775\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.974x + 131.719\n", - "Valor del parámetro correlacionado para la aeronave: 14.599\n", - "Predicción obtenida: 29.911\n", - "\tR²: 0.6369164293284615, Desviación Estándar: 4.163774471385446, Varianza: 17.337017848561153, Incertidumbre: 0.760197734113986\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.626x + 29.011\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 30.888\n", - "\tR²: 0.5208842290733458, Desviación Estándar: 4.611927331533329, Varianza: 21.26987371134414, Incertidumbre: 0.904473363798475\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.065x + 9.368\n", - "Valor del parámetro correlacionado para la aeronave: 16.54\n", - "Predicción obtenida: 26.99\n", - "\tR²: 0.6084339451187571, Desviación Estándar: 4.787548453222305, Varianza: 22.920620191951283, Incertidumbre: 1.0705283786979045\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 42.955, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.119x + 29.159\n", - "Valor del parámetro correlacionado para la aeronave: 6.8\n", - "Predicción obtenida: 29.971\n", - "\tR²: 0.5655356424763149, Desviación Estándar: 2.661463952850547, Varianza: 7.0833903723228575, Incertidumbre: 1.0059388203722117\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.799', 'Área del ala: 31.669', 'Relación de aspecto del ala: 29.911', 'payload: 30.888', 'Crucero KIAS: 26.99', 'RTF (Including fuel & Batteries): 29.971']\n", - "**Mediana calculada:** 29.941\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.993x + 10.098\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 27.468\n", - "\tR²: 0.61316433334016, Desviación Estándar: 4.56779675046761, Varianza: 20.864767153582456, Incertidumbre: 0.8958186447984638\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.879x + 25.784\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 30.599\n", - "\tR²: 0.3790835645732169, Desviación Estándar: 5.299182924288052, Varianza: 28.081339665066075, Incertidumbre: 0.9840335651877286\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.972x + 131.702\n", - "Valor del parámetro correlacionado para la aeronave: 14.717\n", - "Predicción obtenida: 29.09\n", - "\tR²: 0.6458059150589619, Desviación Estándar: 4.096069672218646, Varianza: 16.777786759669365, Incertidumbre: 0.7356758306015428\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.631x + 28.924\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 29.681\n", - "\tR²: 0.5346940437266139, Desviación Estándar: 4.529105693357664, Varianza: 20.51279838160481, Incertidumbre: 0.8716267970827714\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.031x + 10.348\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 26.848\n", - "\tR²: 0.6135394527933391, Desviación Estándar: 4.710154634609254, Varianza: 22.185556681931036, Incertidumbre: 1.0278400070497131\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.468', 'Área del ala: 30.599', 'Relación de aspecto del ala: 29.09', 'payload: 29.681', 'Crucero KIAS: 26.848']\n", - "**Mediana calculada:** 29.09\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.978x + 10.544\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 27.656\n", - "\tR²: 0.6252054405389704, Desviación Estándar: 4.492004783483308, Varianza: 20.178106974836926, Incertidumbre: 0.8644867236483915\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.969x + 25.611\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 30.489\n", - "\tR²: 0.3944990966454992, Desviación Estándar: 5.216865762262041, Varianza: 27.215688381461913, Incertidumbre: 0.9524650191557678\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.972x + 131.702\n", - "Valor del parámetro correlacionado para la aeronave: 14.717\n", - "Predicción obtenida: 29.09\n", - "\tR²: 0.6561408230541541, Desviación Estándar: 4.031560606462846, Varianza: 16.25348092358307, Incertidumbre: 0.712685960898607\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.634x + 28.868\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 29.629\n", - "\tR²: 0.5509617835923953, Desviación Estándar: 4.448771765099154, Varianza: 19.791570217943438, Incertidumbre: 0.8407388378670155\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.007x + 11.03\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 27.147\n", - "\tR²: 0.6229712190050097, Desviación Estándar: 4.623329335321638, Varianza: 21.375174142845616, Incertidumbre: 0.9856971262384814\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.656', 'Área del ala: 30.489', 'Relación de aspecto del ala: 29.09', 'payload: 29.629', 'Crucero KIAS: 27.147']\n", - "**Mediana calculada:** 29.09\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.978x + 10.544\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 45.837\n", - "\tR²: 0.6252054405389704, Desviación Estándar: 4.492004783483308, Varianza: 20.178106974836926, Incertidumbre: 0.8644867236483915\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.969x + 25.611\n", - "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 31.744\n", - "\tR²: 0.3944990966454992, Desviación Estándar: 5.216865762262041, Varianza: 27.215688381461913, Incertidumbre: 0.9524650191557678\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.972x + 131.702\n", - "Valor del parámetro correlacionado para la aeronave: 14.116\n", - "Predicción obtenida: 33.28\n", - "\tR²: 0.6561408230541541, Desviación Estándar: 4.031560606462846, Varianza: 16.25348092358307, Incertidumbre: 0.712685960898607\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.634x + 28.868\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 31.404\n", - "\tR²: 0.5509617835923953, Desviación Estándar: 4.448771765099154, Varianza: 19.791570217943438, Incertidumbre: 0.8407388378670155\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.007x + 11.03\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 44.27\n", - "\tR²: 0.6229712190050097, Desviación Estándar: 4.623329335321638, Varianza: 21.375174142845616, Incertidumbre: 0.9856971262384814\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 45.837', 'Área del ala: 31.744', 'Relación de aspecto del ala: 33.28', 'payload: 31.404', 'Crucero KIAS: 44.27']\n", - "**Mediana calculada:** 33.28\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.906x + 25.745\n", - "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 34.93\n", - "\tR²: 0.3942174961747027, Desviación Estándar: 5.139063743940044, Varianza: 26.409976164279065, Incertidumbre: 0.9230030958652002\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.972x + 131.702\n", - "Valor del parámetro correlacionado para la aeronave: 13.722\n", - "Predicción obtenida: 36.028\n", - "\tR²: 0.6573526772786173, Desviación Estándar: 3.9700064488669455, Varianza: 15.760951204045135, Incertidumbre: 0.6910894167477619\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.627x + 29.005\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 35.274\n", - "\tR²: 0.5501540266725506, Desviación Estándar: 4.384458563749019, Varianza: 19.223476897232118, Incertidumbre: 0.8141735157186453\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Capacidad combustible (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [33.0, 33.0, 42.0, 38.0, 50.0]\n", - "Ecuación de regresión: y = 0.607x + 26.384\n", - "Valor del parámetro correlacionado para la aeronave: 11.5\n", - "Predicción obtenida: 33.369\n", - "\tR²: 0.487882729041738, Desviación Estándar: 4.5575735331497516, Varianza: 20.77147651006711, Incertidumbre: 2.038208846515347\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 34.93', 'Relación de aspecto del ala: 36.028', 'payload: 35.274', 'Capacidad combustible: 33.369']\n", - "**Mediana calculada:** 35.102\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Stalker XE** ---\n" + "--- Imputación para aeronave: **Stalker VXE30** ---\n" ] }, { @@ -27654,7 +30281,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker XE'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker VXE30'.\n", " \n", " \n", "" @@ -27671,7 +30298,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Stalker VXE30** ---\n" + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n" ] }, { @@ -27719,7 +30346,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker VXE30'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 Fixed Wing'.\n", " \n", " \n", "" @@ -27736,7 +30363,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n" + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n" ] }, { @@ -27784,7 +30411,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 Fixed Wing'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 VTOL'.\n", " \n", " \n", "" @@ -27801,7 +30428,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n" + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n" ] }, { @@ -27849,7 +30476,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 VTOL'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 Fixed wing'.\n", " \n", " \n", "" @@ -27866,7 +30493,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n" + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n" ] }, { @@ -27914,7 +30541,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 Fixed wing'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 VTOL FTUAS'.\n", " \n", " \n", "" @@ -27931,7 +30558,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n" + "--- Imputación para aeronave: **AAI Aerosonde** ---\n" ] }, { @@ -27979,7 +30606,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 VTOL FTUAS'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'AAI Aerosonde'.\n", " \n", " \n", "" @@ -27996,7 +30623,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **AAI Aerosonde** ---\n" + "--- Imputación para aeronave: **Fulmar X** ---\n" ] }, { @@ -28044,7 +30671,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'AAI Aerosonde'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.\n", " \n", " \n", "" @@ -28061,7 +30688,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" + "--- Imputación para aeronave: **Orbiter 4** ---\n" ] }, { @@ -28109,7 +30736,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.\n", " \n", " \n", "" @@ -28126,7 +30753,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n" + "--- Imputación para aeronave: **Orbiter 3** ---\n" ] }, { @@ -28174,7 +30801,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 3'.\n", " \n", " \n", "" @@ -28191,7 +30818,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n" + "--- Imputación para aeronave: **Mantis** ---\n" ] }, { @@ -28239,7 +30866,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 3'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.\n", " \n", " \n", "" @@ -28256,7 +30883,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Mantis** ---\n" + "--- Imputación para aeronave: **ScanEagle** ---\n" ] }, { @@ -28304,7 +30931,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle'.\n", " \n", " \n", "" @@ -28321,7 +30948,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n" + "--- Imputación para aeronave: **Integrator** ---\n" ] }, { @@ -28369,7 +30996,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.\n", " \n", " \n", "" @@ -28386,7 +31013,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Integrator** ---\n" + "--- Imputación para aeronave: **Integrator VTOL** ---\n" ] }, { @@ -28434,7 +31061,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.\n", " \n", " \n", "" @@ -28451,7 +31078,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n" + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" ] }, { @@ -28499,7 +31126,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.\n", " \n", " \n", "" @@ -28516,7 +31143,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + "--- Imputación para aeronave: **ScanEagle 3** ---\n" ] }, { @@ -28564,7 +31191,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.\n", " \n", " \n", "" @@ -28581,7 +31208,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n" ] }, { @@ -28629,7 +31256,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQ Nan 21A Blackjack'.\n", " \n", " \n", "" @@ -28646,7 +31273,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n" + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" ] }, { @@ -28694,7 +31321,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQNan21A Blackjack'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Evo'.\n", " \n", " \n", "" @@ -28711,7 +31338,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" ] }, { @@ -28759,7 +31386,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Evo'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.\n", " \n", " \n", "" @@ -28776,7 +31403,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" ] }, { @@ -28824,7 +31451,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.\n", " \n", " \n", "" @@ -28841,7 +31468,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" + "--- Imputación para aeronave: **V35** ---\n" ] }, { @@ -28889,7 +31516,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V35'.\n", " \n", " \n", "" @@ -28906,7 +31533,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **V35** ---\n" + "--- Imputación para aeronave: **V39** ---\n" ] }, { @@ -28954,7 +31581,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V35'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V39'.\n", " \n", " \n", "" @@ -28971,7 +31598,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **V39** ---\n" + "--- Imputación para aeronave: **Volitation VT370** ---\n" ] }, { @@ -29019,7 +31646,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V39'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Volitation VT370'.\n", " \n", " \n", "" @@ -29036,7 +31663,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n" + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" ] }, { @@ -29084,7 +31711,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Volitation VT370'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.\n", " \n", " \n", "" @@ -29101,7 +31728,9 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" + "=== Imputación para el parámetro: **Velocidad de pérdida limpia (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Stalker XE** ---\n" ] }, { @@ -29149,7 +31778,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Stalker XE'.\n", " \n", " \n", "" @@ -29166,1678 +31795,3433 @@ "output_type": "stream", "text": [ "\n", - "=== Imputación para el parámetro: **envergadura** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 1.904x + 1.375\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 6.14\n", - "\tR²: 0.6550202920419386, Desviación Estándar: 0.6922900390325586, Varianza: 0.47926549814370145, Incertidumbre: 0.1285550329147554\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.032x + 2.598\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 5.614\n", - "\tR²: 0.6048248274212248, Desviación Estándar: 0.7257069176330723, Varianza: 0.5266505303004948, Incertidumbre: 0.12828807065308317\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.114x + 2.88\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 5.476\n", - "\tR²: 0.5142554083484681, Desviación Estándar: 0.8073085344120734, Varianza: 0.6517470697345699, Incertidumbre: 0.1499134313108701\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para envergadura: [4.4, 4.4, 4.4, 2.69, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.048x + 2.326\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 5.674\n", - "\tR²: 0.8762967968830506, Desviación Estándar: 0.44130001156979004, Varianza: 0.1947457002114968, Incertidumbre: 0.16679572631194156\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 6.14', 'Peso máximo al despegue (MTOW): 5.614', 'payload: 5.476', 'RTF (Including fuel & Batteries): 5.674']\n", - "**Mediana calculada:** 5.644\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 1.835x + 1.446\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 5.281\n", - "\tR²: 0.6787677993689816, Desviación Estándar: 0.6854337532513997, Varianza: 0.46981943009630067, Incertidumbre: 0.12514250944374053\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.032x + 2.596\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 5.033\n", - "\tR²: 0.6331651979245666, Desviación Estándar: 0.7146435397246005, Varianza: 0.5107153888701067, Incertidumbre: 0.12440347223914108\n", - "\tNivel de confianza: Confianza Media\n", + "--- Imputación para aeronave: **Stalker VXE30** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Stalker VXE30'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: payload (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.116x + 2.873\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 4.954\n", - "\tR²: 0.5454308932616603, Desviación Estándar: 0.794258196699784, Varianza: 0.6308460830247928, Incertidumbre: 0.14501104360528233\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 5.281', 'Peso máximo al despegue (MTOW): 5.033', 'payload: 4.954']\n", - "**Mediana calculada:** 5.033\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 Fixed Wing'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "=== Imputación para el parámetro: **Cuerda** ===\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 Fixed wing'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.0x + -0.975\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.5584422980021864, Desviación Estándar: 0.04101181707874288, Varianza: 0.0016819691401002662, Incertidumbre: 0.02050590853937144\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 VTOL FTUAS'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.009x + 0.094\n", - "Valor del parámetro correlacionado para la aeronave: 27.892\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.37089288437785595, Desviación Estándar: 0.04895280456579205, Varianza: 0.0023963770748566308, Incertidumbre: 0.024476402282896024\n", - "\tNivel de confianza: Confianza Media\n", + "--- Imputación para aeronave: **AAI Aerosonde** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'AAI Aerosonde'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.167x + 0.103\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 0.521\n", - "\tR²: 0.9567278474032922, Desviación Estándar: 0.012838655021740699, Varianza: 0.00016483106276726767, Incertidumbre: 0.006419327510870349\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = -0.031x + 0.725\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 0.338\n", - "\tR²: 0.33955370790059436, Desviación Estándar: 0.050157286426532284, Varianza: 0.0025157533816731995, Incertidumbre: 0.025078643213266142\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.125x + -0.016\n", - "Valor del parámetro correlacionado para la aeronave: 3.594\n", - "Predicción obtenida: 0.432\n", - "\tR²: 0.9863480800941506, Desviación Estándar: 0.007211276455846646, Varianza: 5.2002508122648166e-05, Incertidumbre: 0.003605638227923323\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "--- Imputación para aeronave: **Fulmar X** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Fulmar X'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.003x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 0.481\n", - "\tR²: 0.736966419457739, Desviación Estándar: 0.03164979554992154, Varianza: 0.0010017095583518332, Incertidumbre: 0.012920974926786248\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Orbiter 4'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 3270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", - "Ecuación de regresión: y = -0.0x + 0.338\n", - "Valor del parámetro correlacionado para la aeronave: 316.495\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.5966603871244396, Desviación Estándar: 0.0391922998443847, Varianza: 0.0015360363670921572, Incertidumbre: 0.01600018941081718\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Orbiter 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.074x + -0.018\n", - "Valor del parámetro correlacionado para la aeronave: 5.644\n", - "Predicción obtenida: 0.402\n", - "\tR²: 0.8190779024483189, Desviación Estándar: 0.026251920869893277, Varianza: 0.0006891633493591382, Incertidumbre: 0.013125960434946638\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Mantis'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 0.394\n", - "\tR²: 0.6020929401336428, Desviación Estándar: 0.027642283534153083, Varianza: 0.0007640958389825106, Incertidumbre: 0.012362005007137885\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.521', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.481', 'Alcance de la aeronave: 0.325', 'envergadura: 0.402', 'payload: 0.394']\n", - "**Mediana calculada:** 0.394\n", + "--- Imputación para aeronave: **ScanEagle** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'ScanEagle'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", + "--- Imputación para aeronave: **Integrator** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.0x + -1.225\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.326\n", - "\tR²: 0.5082545132230825, Desviación Estándar: 0.05085224756183586, Varianza: 0.002585951082090241, Incertidumbre: 0.022741816471382584\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.012x + 0.047\n", - "Valor del parámetro correlacionado para la aeronave: 30.407\n", - "Predicción obtenida: 0.4\n", - "\tR²: 0.5916034080971878, Desviación Estándar: 0.0463426661702313, Varianza: 0.0021476427077655007, Incertidumbre: 0.020725070363043403\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.1x + 0.166\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.8603589273995997, Desviación Estándar: 0.027098580959037145, Varianza: 0.0007343330899934905, Incertidumbre: 0.0121188538236377\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = -0.041x + 0.884\n", - "Valor del parámetro correlacionado para la aeronave: 13.218\n", - "Predicción obtenida: 0.336\n", - "\tR²: 0.5556998392410524, Desviación Estándar: 0.048336833461136076, Varianza: 0.0023364494690496043, Incertidumbre: 0.02161688908723734\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.108x + 0.02\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.15\n", - "\tR²: 0.9729483577129217, Desviación Estándar: 0.011927152694253538, Varianza: 0.00014225697139203943, Incertidumbre: 0.005333984840474135\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.002x + 0.229\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.7196970118630204, Desviación Estándar: 0.034754348458380345, Varianza: 0.0012078647367665242, Incertidumbre: 0.013135908999850775\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = -0.0x + 0.352\n", - "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.561672057764841, Desviación Estándar: 0.04346051474042987, Varianza: 0.001888816341503122, Incertidumbre: 0.016426530550576326\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'ScanEagle 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.072x + -0.01\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.207\n", - "\tR²: 0.8941942208767555, Desviación Estándar: 0.023588192102840765, Varianza: 0.0005564028066805194, Incertidumbre: 0.010548960201655131\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'RQ Nan 21A Blackjack'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352]\n", - "Ecuación de regresión: y = 0.008x + 0.145\n", - "Valor del parámetro correlacionado para la aeronave: 27.8\n", - "Predicción obtenida: 0.378\n", - "\tR²: 0.5951449532870101, Desviación Estándar: 0.03013201386753742, Varianza: 0.0009079382597134674, Incertidumbre: 0.017396726317648267\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.4', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.15', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.313', 'envergadura: 0.207', 'Crucero KIAS: 0.378']\n", - "**Mediana calculada:** 0.313\n", + "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Evo'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.0x + -1.197\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.5059374879835691, Desviación Estándar: 0.04665619290169541, Varianza: 0.0021768003360802136, Incertidumbre: 0.019047310991669373\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.008x + 0.114\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 0.329\n", - "\tR²: 0.4394712393952719, Desviación Estándar: 0.04969552664305181, Varianza: 0.002469645368330272, Incertidumbre: 0.020288113795727262\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **V35** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'V35'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.093x + 0.184\n", - "Valor del parámetro correlacionado para la aeronave: 1.608\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.779679530445362, Desviación Estándar: 0.031156292404129815, Varianza: 0.0009707145563716373, Incertidumbre: 0.012719503111178239\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = -0.04x + 0.855\n", - "Valor del parámetro correlacionado para la aeronave: 13.443\n", - "Predicción obtenida: 0.322\n", - "\tR²: 0.5431294809153299, Desviación Estándar: 0.04486574816022439, Varianza: 0.0020129353579766787, Incertidumbre: 0.01831636498679382\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.058x + 0.165\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.235\n", - "\tR²: 0.4883148244734046, Desviación Estándar: 0.047480989850069766, Varianza: 0.002254444397142428, Incertidumbre: 0.019384032935823015\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.002x + 0.24\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.6707432653466199, Desviación Estándar: 0.035236075624649296, Varianza: 0.0012415810254260045, Incertidumbre: 0.012457834008295764\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **V39** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'V39'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = -0.0x + 0.352\n", - "Valor del parámetro correlacionado para la aeronave: 150.0\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.5617138568209437, Desviación Estándar: 0.04065360565285314, Varianza: 0.0016527156525776928, Incertidumbre: 0.014373220118408109\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Volitation VT370** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Volitation VT370'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313]\n", - "Ecuación de regresión: y = 0.053x + 0.087\n", - "Valor del parámetro correlacionado para la aeronave: 5.2\n", - "Predicción obtenida: 0.361\n", - "\tR²: 0.6218579555553649, Desviación Estándar: 0.040817446367584644, Varianza: 0.0016660639279706489, Incertidumbre: 0.01666365270066685\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.7240526671985225, Desviación Estándar: 0.02523396237425335, Varianza: 0.0006367528571052337, Incertidumbre: 0.010301722000918372\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.323', 'Velocidad a la que se realiza el crucero (KTAS): 0.329', 'Área del ala: 0.334', 'Relación de aspecto del ala: 0.322', 'Longitud del fuselaje: 0.235', 'Peso máximo al despegue (MTOW): 0.346', 'Alcance de la aeronave: 0.344', 'envergadura: 0.361', 'payload: 0.335']\n", - "**Mediana calculada:** 0.334\n", + "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Skyeye 5000 VTOL octo'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", + "--- Imputación para aeronave: **Ascend** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Ascend'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.0x + -1.217\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.518160981799697, Desviación Estándar: 0.04335452050989663, Varianza: 0.001879614448643048, Incertidumbre: 0.016386468497090814\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Transition** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Transition'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.008x + 0.113\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 0.33\n", - "\tR²: 0.45672010492785353, Desviación Estándar: 0.046035749855102136, Varianza: 0.0021192902647215366, Incertidumbre: 0.017399877933568286\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Reach** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Reach'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.093x + 0.184\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.296\n", - "\tR²: 0.7867060876798443, Desviación Estándar: 0.028845138922881017, Varianza: 0.0008320420394803054, Incertidumbre: 0.010902437731864672\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "=== Imputación para el parámetro: **envergadura** ===\n", "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = -0.04x + 0.865\n", - "Valor del parámetro correlacionado para la aeronave: 14.012\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.5529769564137459, Desviación Estándar: 0.041758833679074646, Varianza: 0.001743800190236619, Incertidumbre: 0.015783355564991417\n", - "\tNivel de confianza: Confianza Alta\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.038x + 0.223\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.269\n", - "\tR²: 0.2664980716684373, Desviación Estándar: 0.05349140864008716, Varianza: 0.0028613307983007914, Incertidumbre: 0.020217852077171767\n", + "--- Correlación: Área del ala (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 1.904x + 1.375\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 6.14\n", + "\tR²: 0.6550202920419386, Desviación Estándar: 0.6922900390325586, Varianza: 0.47926549814370145, Incertidumbre: 0.1285550329147554\n", "\tNivel de confianza: Confianza Media\n", "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.002x + 0.24\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.6702878820787533, Desviación Estándar: 0.033427806129933846, Varianza: 0.0011174182226604426, Incertidumbre: 0.011142602043311281\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.032x + 2.598\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 5.614\n", + "\tR²: 0.6048248274212248, Desviación Estándar: 0.7257069176330723, Varianza: 0.5266505303004948, Incertidumbre: 0.12828807065308317\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.114x + 2.88\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 5.476\n", + "\tR²: 0.5142554083484681, Desviación Estándar: 0.8073085344120734, Varianza: 0.6517470697345699, Incertidumbre: 0.1499134313108701\n", + "\tNivel de confianza: Confianza Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para envergadura: [4.4, 4.4, 4.4, 2.69, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.048x + 2.326\n", + "Valor del parámetro correlacionado para la aeronave: 70.3\n", + "Predicción obtenida: 5.674\n", + "\tR²: 0.8762967968830506, Desviación Estándar: 0.44130001156979004, Varianza: 0.1947457002114968, Incertidumbre: 0.16679572631194156\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Área del ala: 6.14', 'Peso máximo al despegue (MTOW): 5.614', 'payload: 5.476', 'RTF (Including fuel & Batteries): 5.674']\n", + "**Mediana calculada:** 5.644\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.841) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 1.835x + 1.446\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 5.281\n", + "\tR²: 0.6787677993689816, Desviación Estándar: 0.6854337532513997, Varianza: 0.46981943009630067, Incertidumbre: 0.12514250944374053\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.032x + 2.596\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 5.033\n", + "\tR²: 0.6331651979245666, Desviación Estándar: 0.7146435397246005, Varianza: 0.5107153888701067, Incertidumbre: 0.12440347223914108\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: payload (r = 0.734) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Ecuación de regresión: y = 0.116x + 2.873\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 4.954\n", + "\tR²: 0.5454308932616603, Desviación Estándar: 0.794258196699784, Varianza: 0.6308460830247928, Incertidumbre: 0.14501104360528233\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Área del ala: 5.281', 'Peso máximo al despegue (MTOW): 5.033', 'payload: 4.954']\n", + "**Mediana calculada:** 5.033\n", + "\n", + "=== Imputación para el parámetro: **Cuerda** ===\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.0x + -0.975\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.5584422980021864, Desviación Estándar: 0.04101181707874288, Varianza: 0.0016819691401002662, Incertidumbre: 0.02050590853937144\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.009x + 0.094\n", + "Valor del parámetro correlacionado para la aeronave: 27.892\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.37089288437785595, Desviación Estándar: 0.04895280456579205, Varianza: 0.0023963770748566308, Incertidumbre: 0.024476402282896024\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.167x + 0.103\n", + "Valor del parámetro correlacionado para la aeronave: 2.503\n", + "Predicción obtenida: 0.521\n", + "\tR²: 0.9567278474032922, Desviación Estándar: 0.012838655021740699, Varianza: 0.00016483106276726767, Incertidumbre: 0.006419327510870349\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = -0.031x + 0.725\n", + "Valor del parámetro correlacionado para la aeronave: 12.5\n", + "Predicción obtenida: 0.338\n", + "\tR²: 0.33955370790059436, Desviación Estándar: 0.050157286426532284, Varianza: 0.0025157533816731995, Incertidumbre: 0.025078643213266142\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.125x + -0.016\n", + "Valor del parámetro correlacionado para la aeronave: 3.594\n", + "Predicción obtenida: 0.432\n", + "\tR²: 0.9863480800941506, Desviación Estándar: 0.007211276455846646, Varianza: 5.2002508122648166e-05, Incertidumbre: 0.003605638227923323\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.003x + 0.204\n", + "Valor del parámetro correlacionado para la aeronave: 93.0\n", + "Predicción obtenida: 0.481\n", + "\tR²: 0.736966419457739, Desviación Estándar: 0.03164979554992154, Varianza: 0.0010017095583518332, Incertidumbre: 0.012920974926786248\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", + "Ecuación de regresión: y = -0.0x + 0.342\n", + "Valor del parámetro correlacionado para la aeronave: 599.358\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.5312147113857546, Desviación Estándar: 0.04225248902560736, Varianza: 0.0017852728288590702, Incertidumbre: 0.01724950641254734\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 2.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", + "Ecuación de regresión: y = 0.074x + -0.018\n", + "Valor del parámetro correlacionado para la aeronave: 5.644\n", + "Predicción obtenida: 0.402\n", + "\tR²: 0.8190779024483189, Desviación Estándar: 0.026251920869893277, Varianza: 0.0006891633493591382, Incertidumbre: 0.013125960434946638\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 22.7\n", + "Predicción obtenida: 0.394\n", + "\tR²: 0.6020929401336428, Desviación Estándar: 0.027642283534153083, Varianza: 0.0007640958389825106, Incertidumbre: 0.012362005007137885\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.521', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.481', 'Alcance de la aeronave: 0.316', 'envergadura: 0.402', 'payload: 0.394']\n", + "**Mediana calculada:** 0.394\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.0x + -1.225\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.326\n", + "\tR²: 0.5082545132230825, Desviación Estándar: 0.05085224756183586, Varianza: 0.002585951082090241, Incertidumbre: 0.022741816471382584\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.012x + 0.047\n", + "Valor del parámetro correlacionado para la aeronave: 30.407\n", + "Predicción obtenida: 0.4\n", + "\tR²: 0.5916034080971878, Desviación Estándar: 0.0463426661702313, Varianza: 0.0021476427077655007, Incertidumbre: 0.020725070363043403\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.1x + 0.166\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.8603589273995997, Desviación Estándar: 0.027098580959037145, Varianza: 0.0007343330899934905, Incertidumbre: 0.0121188538236377\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = -0.041x + 0.884\n", + "Valor del parámetro correlacionado para la aeronave: 13.218\n", + "Predicción obtenida: 0.336\n", + "\tR²: 0.5556998392410524, Desviación Estándar: 0.048336833461136076, Varianza: 0.0023364494690496043, Incertidumbre: 0.02161688908723734\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.108x + 0.02\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.15\n", + "\tR²: 0.9729483577129217, Desviación Estándar: 0.011927152694253538, Varianza: 0.00014225697139203943, Incertidumbre: 0.005333984840474135\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.002x + 0.229\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.7196970118630204, Desviación Estándar: 0.034754348458380345, Varianza: 0.0012078647367665242, Incertidumbre: 0.013135908999850775\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = -0.0x + 0.356\n", + "Valor del parámetro correlacionado para la aeronave: 800.0\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.4747254035414423, Desviación Estándar: 0.04757606143631944, Varianza: 0.002263481621792442, Incertidumbre: 0.017982060988633097\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", + "Ecuación de regresión: y = 0.072x + -0.01\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 0.207\n", + "\tR²: 0.8941942208767555, Desviación Estándar: 0.023588192102840765, Varianza: 0.0005564028066805194, Incertidumbre: 0.010548960201655131\n", + "\tNivel de confianza: Confianza Muy Alta\n", + "\n", + "--- Correlación: Crucero KIAS (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352]\n", + "Ecuación de regresión: y = 0.008x + 0.145\n", + "Valor del parámetro correlacionado para la aeronave: 27.8\n", + "Predicción obtenida: 0.378\n", + "\tR²: 0.5951449532870101, Desviación Estándar: 0.03013201386753742, Varianza: 0.0009079382597134674, Incertidumbre: 0.017396726317648267\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.4', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.15', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.319', 'envergadura: 0.207', 'Crucero KIAS: 0.378']\n", + "**Mediana calculada:** 0.319\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.0x + -1.21\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.5124560667085087, Desviación Estándar: 0.04648787282808511, Varianza: 0.0021611223200802133, Incertidumbre: 0.018978594609367214\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.008x + 0.11\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 0.331\n", + "\tR²: 0.46337237262389996, Desviación Estándar: 0.048771859040965634, Varianza: 0.0023786942343118215, Incertidumbre: 0.019911028076218723\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.092x + 0.186\n", + "Valor del parámetro correlacionado para la aeronave: 1.608\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.7613504476982165, Desviación Estándar: 0.032524685665416886, Varianza: 0.0010578551776341746, Incertidumbre: 0.013278147320780956\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = -0.04x + 0.863\n", + "Valor del parámetro correlacionado para la aeronave: 13.443\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.5527436088338049, Desviación Estándar: 0.044525732581881805, Varianza: 0.001982540861953251, Incertidumbre: 0.018177554208204372\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.056x + 0.17\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.238\n", + "\tR²: 0.45536965068723667, Desviación Estándar: 0.04913418031682804, Varianza: 0.0024141676754065723, Incertidumbre: 0.020058945117688236\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.002x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.6561535955657221, Desviación Estándar: 0.03601567329003582, Varianza: 0.0012971287225345997, Incertidumbre: 0.01273346340619177\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = -0.0x + 0.356\n", + "Valor del parámetro correlacionado para la aeronave: 509.556\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.4749907143714427, Desviación Estándar: 0.044503358493513535, Varianza: 0.0019805489172021835, Incertidumbre: 0.01573431328816968\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: envergadura (r = 0.885) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", + "Ecuación de regresión: y = 0.052x + 0.093\n", + "Valor del parámetro correlacionado para la aeronave: 5.2\n", + "Predicción obtenida: 0.361\n", + "\tR²: 0.5927043159163219, Desviación Estándar: 0.04249009480284112, Varianza: 0.0018054081563544256, Incertidumbre: 0.01734650856490736\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: payload (r = 0.776) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394]\n", + "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.7240526671985225, Desviación Estándar: 0.02523396237425335, Varianza: 0.0006367528571052337, Incertidumbre: 0.010301722000918372\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.324', 'Velocidad a la que se realiza el crucero (KTAS): 0.331', 'Área del ala: 0.335', 'Relación de aspecto del ala: 0.323', 'Longitud del fuselaje: 0.238', 'Peso máximo al despegue (MTOW): 0.346', 'Alcance de la aeronave: 0.332', 'envergadura: 0.361', 'payload: 0.335']\n", + "**Mediana calculada:** 0.332\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.0x + -1.224\n", + "Valor del parámetro correlacionado para la aeronave: 6000.0\n", + "Predicción obtenida: 0.326\n", + "\tR²: 0.5234700162931528, Desviación Estándar: 0.043118399156113214, Varianza: 0.001859196345785905, Incertidumbre: 0.016297223014041837\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.008x + 0.109\n", + "Valor del parámetro correlacionado para la aeronave: 26.611\n", + "Predicción obtenida: 0.331\n", + "\tR²: 0.4773971261284471, Desviación Estándar: 0.0451547465914678, Varianza: 0.0020389511397396727, Incertidumbre: 0.017066889999309325\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Área del ala (r = 0.984) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.092x + 0.186\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.297\n", + "\tR²: 0.7673579176782551, Desviación Estándar: 0.030127399803337826, Varianza: 0.0009076602189101601, Incertidumbre: 0.011387086789806877\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = -0.041x + 0.87\n", + "Valor del parámetro correlacionado para la aeronave: 13.934\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.5618645680480575, Desviación Estándar: 0.0413448766429335, Varianza: 0.001709398824619388, Incertidumbre: 0.01562689451197787\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", + "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.037x + 0.225\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.25541759559597876, Desviación Estándar: 0.053898154753589445, Varianza: 0.0029050110858418765, Incertidumbre: 0.02037158765761021\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.002x + 0.241\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.6530681193804526, Desviación Estándar: 0.034246989275220595, Varianza: 0.0011728562744170745, Incertidumbre: 0.011415663091740198\n", + "\tNivel de confianza: Confianza Alta\n", + "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = -0.0x + 0.35\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = -0.0x + 0.356\n", "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 0.348\n", - "\tR²: 0.5635487874211478, Desviación Estándar: 0.038459910779187215, Varianza: 0.0014791647371430407, Incertidumbre: 0.012819970259729072\n", + "Predicción obtenida: 0.354\n", + "\tR²: 0.47924291008106135, Desviación Estándar: 0.04195830043487889, Varianza: 0.0017604989753835579, Incertidumbre: 0.013986100144959629\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334]\n", - "Ecuación de regresión: y = 0.049x + 0.099\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", + "Ecuación de regresión: y = 0.048x + 0.105\n", "Valor del parámetro correlacionado para la aeronave: 4.4\n", "Predicción obtenida: 0.315\n", - "\tR²: 0.6143266200258906, Desviación Estándar: 0.03878762933713736, Varianza: 0.0015044801895951585, Incertidumbre: 0.014660345881688361\n", + "\tR²: 0.5811309424136593, Desviación Estándar: 0.04042561655887864, Varianza: 0.0016342304741654829, Incertidumbre: 0.015279446858749655\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332]\n", "Ecuación de regresión: y = 0.005x + 0.269\n", "Valor del parámetro correlacionado para la aeronave: 5.5\n", "Predicción obtenida: 0.299\n", - "\tR²: 0.7239573172494923, Desviación Estándar: 0.02336635054679909, Varianza: 0.0005459863378758981, Incertidumbre: 0.008831650370569787\n", + "\tR²: 0.7234996015016496, Desviación Estándar: 0.02339015181341113, Varianza: 0.0005470992018544201, Incertidumbre: 0.008840646403761759\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.325', 'Velocidad a la que se realiza el crucero (KTAS): 0.33', 'Área del ala: 0.296', 'Relación de aspecto del ala: 0.301', 'Longitud del fuselaje: 0.269', 'Peso máximo al despegue (MTOW): 0.301', 'Alcance de la aeronave: 0.348', 'envergadura: 0.315', 'payload: 0.299']\n", - "**Mediana calculada:** 0.301\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.331', 'Área del ala: 0.297', 'Relación de aspecto del ala: 0.304', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.301', 'Alcance de la aeronave: 0.354', 'envergadura: 0.315', 'payload: 0.299']\n", + "**Mediana calculada:** 0.304\n", "\n", "--- Imputación para aeronave: **Mantis** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.0x + -1.179\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.0x + -1.19\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.322\n", - "\tR²: 0.5005474478510711, Desviación Estándar: 0.04131034033551268, Varianza: 0.001706544218635886, Incertidumbre: 0.014605410892182586\n", + "Predicción obtenida: 0.323\n", + "\tR²: 0.5088584866234673, Desviación Estándar: 0.04095418731504614, Varianza: 0.0016772454586358862, Incertidumbre: 0.014479491784226604\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.008x + 0.119\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.008x + 0.114\n", "Valor del parámetro correlacionado para la aeronave: 18.266\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.43089375042529565, Desviación Estándar: 0.04409692764157503, Varianza: 0.0019445390274263038, Incertidumbre: 0.015590618282425106\n", + "Predicción obtenida: 0.26\n", + "\tR²: 0.4544871001518501, Desviación Estándar: 0.043161596731449474, Varianza: 0.00186292343240827, Incertidumbre: 0.015259928867823522\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.093x + 0.185\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.092x + 0.188\n", "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 0.255\n", - "\tR²: 0.7861394448447504, Desviación Estándar: 0.027031926600075157, Varianza: 0.0007307250557118509, Incertidumbre: 0.009557229303725078\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.257\n", + "\tR²: 0.7657531148702028, Desviación Estándar: 0.0282834186887527, Varianza: 0.0007999517727232854, Incertidumbre: 0.009999698574977681\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = -0.04x + 0.865\n", - "Valor del parámetro correlacionado para la aeronave: 14.767\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.553435246087135, Desviación Estándar: 0.03906194604657353, Varianza: 0.0015258356289454217, Incertidumbre: 0.013810483467937597\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = -0.041x + 0.87\n", + "Valor del parámetro correlacionado para la aeronave: 14.755\n", + "Predicción obtenida: 0.271\n", + "\tR²: 0.5620081314167932, Desviación Estándar: 0.038674794449433975, Varianza: 0.0014957397257059691, Incertidumbre: 0.013673604708095305\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.033x + 0.237\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.032x + 0.24\n", "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 0.286\n", - "\tR²: 0.2386332689505225, Desviación Estándar: 0.05100451268256031, Varianza: 0.002601460313985455, Incertidumbre: 0.01803281839447683\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.22407617799783763, Desviación Estándar: 0.051475969281914856, Varianza: 0.002649775413512642, Incertidumbre: 0.018199503473696203\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.002x + 0.24\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.002x + 0.242\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.252\n", - "\tR²: 0.6726769802088182, Desviación Estándar: 0.03171272006589414, Varianza: 0.0010056966139777646, Incertidumbre: 0.010028442620755052\n", + "Predicción obtenida: 0.254\n", + "\tR²: 0.654616976883781, Desviación Estándar: 0.0325002987324586, Varianza: 0.00105626941769905, Incertidumbre: 0.01027749686304525\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = -0.0x + 0.343\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = -0.0x + 0.347\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.342\n", - "\tR²: 0.5063410592901572, Desviación Estándar: 0.03894562904032464, Varianza: 0.001516762021346578, Incertidumbre: 0.012315689267542349\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.414987640780789, Desviación Estándar: 0.042297955918060494, Varianza: 0.0017891170748461885, Incertidumbre: 0.013375788107046958\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.049x + 0.099\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.047x + 0.105\n", "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.201\n", - "\tR²: 0.6088855002504914, Desviación Estándar: 0.036556416184119006, Varianza: 0.0013363715642265182, Incertidumbre: 0.012924644889834101\n", + "Predicción obtenida: 0.204\n", + "\tR²: 0.5774901913231636, Desviación Estándar: 0.037985109973381545, Varianza: 0.0014428685796898902, Incertidumbre: 0.013429764423147424\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313]\n", - "Ecuación de regresión: y = 0.005x + 0.208\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319]\n", + "Ecuación de regresión: y = 0.005x + 0.202\n", "Valor del parámetro correlacionado para la aeronave: 16.7\n", "Predicción obtenida: 0.285\n", - "\tR²: 0.37218727831824217, Desviación Estándar: 0.03267385114997177, Varianza: 0.0010675805489705115, Incertidumbre: 0.016336925574985884\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.322', 'Velocidad a la que se realiza el crucero (KTAS): 0.261', 'Área del ala: 0.255', 'Relación de aspecto del ala: 0.27', 'Longitud del fuselaje: 0.286', 'Peso máximo al despegue (MTOW): 0.252', 'Alcance de la aeronave: 0.342', 'envergadura: 0.201', 'Crucero KIAS: 0.285']\n", - "**Mediana calculada:** 0.27\n", + "\tR²: 0.42206898443002183, Desviación Estándar: 0.031616100972920246, Varianza: 0.0009995778407298887, Incertidumbre: 0.015808050486460123\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.323', 'Velocidad a la que se realiza el crucero (KTAS): 0.26', 'Área del ala: 0.257', 'Relación de aspecto del ala: 0.271', 'Longitud del fuselaje: 0.288', 'Peso máximo al despegue (MTOW): 0.254', 'Alcance de la aeronave: 0.346', 'envergadura: 0.204', 'Crucero KIAS: 0.285']\n", + "**Mediana calculada:** 0.271\n", "\n", "--- Imputación para aeronave: **ScanEagle** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.0x + -1.108\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.0x + -1.119\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.4389240659793703, Desviación Estándar: 0.042140017620528936, Varianza: 0.001775781085058489, Incertidumbre: 0.014046672540176311\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.4467125550050872, Desviación Estándar: 0.041829866636606275, Varianza: 0.0017497377428362668, Incertidumbre: 0.013943288878868759\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.008x + 0.125\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.008x + 0.121\n", "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 0.356\n", - "\tR²: 0.4515433062124382, Desviación Estándar: 0.04166343402845906, Varianza: 0.0017358417350437604, Incertidumbre: 0.013887811342819687\n", + "Predicción obtenida: 0.359\n", + "\tR²: 0.4733288036155826, Desviación Estándar: 0.040811340123434084, Varianza: 0.0016655654826706208, Incertidumbre: 0.013603780041144695\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.09x + 0.19\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.089x + 0.192\n", "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 0.286\n", - "\tR²: 0.7885748390015039, Desviación Estándar: 0.025867962774747247, Varianza: 0.0006691514981157094, Incertidumbre: 0.008622654258249082\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.287\n", + "\tR²: 0.7694013001888904, Desviación Estándar: 0.027004708852321632, Varianza: 0.0007292543001986583, Incertidumbre: 0.009001569617440544\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = -0.04x + 0.865\n", - "Valor del parámetro correlacionado para la aeronave: 14.067\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.5714606764166177, Desviación Estándar: 0.03682809308680053, Varianza: 0.0013563084404100449, Incertidumbre: 0.01227603102893351\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = -0.041x + 0.87\n", + "Valor del parámetro correlacionado para la aeronave: 14.057\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.5795819419058201, Desviación Estándar: 0.0364629459060155, Varianza: 0.0013295464241450125, Incertidumbre: 0.012154315302005168\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.035x + 0.232\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.034x + 0.235\n", "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.26160299392487774, Desviación Estándar: 0.04834247216917272, Varianza: 0.0023369946154272393, Incertidumbre: 0.01611415738972424\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.24695440685743675, Desviación Estándar: 0.04880021191080425, Varianza: 0.0023814606825394006, Incertidumbre: 0.016266737303601415\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.002x + 0.244\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.002x + 0.246\n", "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.683688240941903, Desviación Estándar: 0.03060819392233029, Varianza: 0.000936861535186977, Incertidumbre: 0.00922871770461874\n", + "Predicción obtenida: 0.294\n", + "\tR²: 0.6670417777815097, Desviación Estándar: 0.03132273145396624, Varianza: 0.000981113505737286, Incertidumbre: 0.009444158876533569\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = -0.0x + 0.334\n", - "Valor del parámetro correlacionado para la aeronave: 418.78\n", - "Predicción obtenida: 0.317\n", - "\tR²: 0.39569557326663285, Desviación Estándar: 0.042306580420532675, Varianza: 0.0017898467468789986, Incertidumbre: 0.012755913947082096\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = -0.0x + 0.336\n", + "Valor del parámetro correlacionado para la aeronave: 503.516\n", + "Predicción obtenida: 0.318\n", + "\tR²: 0.2988770873999306, Desviación Estándar: 0.04545292487076436, Varianza: 0.0020659683793073495, Incertidumbre: 0.013704572492776236\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27]\n", - "Ecuación de regresión: y = 0.037x + 0.154\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", + "Ecuación de regresión: y = 0.036x + 0.158\n", "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.5307410102435243, Desviación Estándar: 0.03853809056250838, Varianza: 0.0014851844242040975, Incertidumbre: 0.012846030187502792\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.5074952168946643, Desviación Estándar: 0.03946538087998614, Varianza: 0.0015575162880023757, Incertidumbre: 0.01315512695999538\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.297\n", - "\tR²: 0.7420743779557686, Desviación Estándar: 0.02186230804623738, Varianza: 0.0004779605131085757, Incertidumbre: 0.0077294931359418355\n", + "Predicción obtenida: 0.298\n", + "\tR²: 0.7373011137977019, Desviación Estándar: 0.021931062094591367, Varianza: 0.0004809714845968222, Incertidumbre: 0.007753801362854401\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27]\n", - "Ecuación de regresión: y = 0.005x + 0.196\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271]\n", + "Ecuación de regresión: y = 0.005x + 0.191\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.338\n", - "\tR²: 0.4325324299944552, Desviación Estándar: 0.02977768882484922, Varianza: 0.0008867107517495501, Incertidumbre: 0.013316987285039737\n", + "Predicción obtenida: 0.342\n", + "\tR²: 0.4796840662294731, Desviación Estándar: 0.028777205287537983, Varianza: 0.0008281275441611041, Incertidumbre: 0.012869557445080261\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.315', 'Velocidad a la que se realiza el crucero (KTAS): 0.356', 'Área del ala: 0.286', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.292', 'Peso máximo al despegue (MTOW): 0.293', 'Alcance de la aeronave: 0.317', 'envergadura: 0.268', 'payload: 0.297', 'Crucero KIAS: 0.338']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.316', 'Velocidad a la que se realiza el crucero (KTAS): 0.359', 'Área del ala: 0.287', 'Relación de aspecto del ala: 0.299', 'Longitud del fuselaje: 0.293', 'Peso máximo al despegue (MTOW): 0.294', 'Alcance de la aeronave: 0.318', 'envergadura: 0.27', 'payload: 0.298', 'Crucero KIAS: 0.342']\n", "**Mediana calculada:** 0.298\n", "\n", "--- Imputación para aeronave: **Integrator** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.0x + -1.087\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.0x + -1.097\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.43003046301994163, Desviación Estándar: 0.040303167474752155, Varianza: 0.0016243453084979203, Incertidumbre: 0.012744980613943357\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.4368458746527305, Desviación Estándar: 0.04005051770019304, Varianza: 0.001604043968053476, Incertidumbre: 0.012665085740149871\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.006x + 0.152\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.006x + 0.15\n", "Valor del parámetro correlacionado para la aeronave: 30.953\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.3626732282190418, Desviación Estándar: 0.042618134717395714, Varianza: 0.0018163054067900897, Incertidumbre: 0.013477037533486688\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.37779542591176063, Desviación Estándar: 0.04209796464341744, Varianza: 0.0017722386271184249, Incertidumbre: 0.013312545313043725\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.09x + 0.192\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.089x + 0.194\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", "Predicción obtenida: 0.36\n", - "\tR²: 0.78420367371009, Desviación Estándar: 0.02479906919480939, Varianza: 0.0006149938329289441, Incertidumbre: 0.007842154250771557\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "\tR²: 0.765873381903867, Desviación Estándar: 0.025823784879448163, Varianza: 0.0006668678655000155, Incertidumbre: 0.008166197802527291\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = -0.04x + 0.865\n", - "Valor del parámetro correlacionado para la aeronave: 12.923\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.5716670205992819, Desviación Estándar: 0.03493848859723169, Varianza: 0.0012206979854588887, Incertidumbre: 0.011048520197107344\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = -0.041x + 0.87\n", + "Valor del parámetro correlacionado para la aeronave: 12.908\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.5798392420052842, Desviación Estándar: 0.034594116470138235, Varianza: 0.0011967528943494896, Incertidumbre: 0.010939620168678112\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.034x + 0.233\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.034x + 0.236\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", "Predicción obtenida: 0.32\n", - "\tR²: 0.2607143040447977, Desviación Estándar: 0.045900721121043486, Varianza: 0.0021068761994318076, Incertidumbre: 0.014515082498669469\n", + "\tR²: 0.24668522140873417, Desviación Estándar: 0.04632151372017501, Varianza: 0.002145682633328362, Incertidumbre: 0.014648148802249251\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.002x + 0.245\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.002x + 0.247\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 0.381\n", - "\tR²: 0.6843844359896646, Desviación Estándar: 0.029343086738118862, Varianza: 0.000861016739320767, Incertidumbre: 0.008470619513553731\n", + "Predicción obtenida: 0.38\n", + "\tR²: 0.6682782058720445, Desviación Estándar: 0.030013941218469384, Varianza: 0.0009008366674657355, Incertidumbre: 0.008664278520962451\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = -0.0x + 0.332\n", - "Valor del parámetro correlacionado para la aeronave: 344.852\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.38810758348194185, Desviación Estándar: 0.040856779150680644, Varianza: 0.0016692764025674925, Incertidumbre: 0.01179433622043328\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = -0.0x + 0.334\n", + "Valor del parámetro correlacionado para la aeronave: 557.94\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.29101241634623853, Desviación Estándar: 0.0438788603845218, Varianza: 0.0019253543886443567, Incertidumbre: 0.012666735927368835\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.035x + 0.165\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.034x + 0.169\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", "Predicción obtenida: 0.332\n", - "\tR²: 0.5045938666189362, Desviación Estándar: 0.03757457234940652, Varianza: 0.0014118484872407847, Incertidumbre: 0.011882123073090872\n", + "\tR²: 0.4843054651463291, Desviación Estándar: 0.03832575894901321, Varianza: 0.0014688637990178664, Incertidumbre: 0.012119669133346282\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", "Predicción obtenida: 0.368\n", - "\tR²: 0.7571933066563912, Desviación Estándar: 0.02061381414434731, Varianza: 0.0004249293335776932, Incertidumbre: 0.006871271381449103\n", + "\tR²: 0.7530217831084923, Desviación Estándar: 0.020677312991762044, Varianza: 0.00042755127255929146, Incertidumbre: 0.006892437663920681\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298]\n", - "Ecuación de regresión: y = 0.004x + 0.22\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298]\n", + "Ecuación de regresión: y = 0.004x + 0.217\n", "Valor del parámetro correlacionado para la aeronave: 28.3\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.3103699929495912, Desviación Estándar: 0.029966938700525643, Varianza: 0.0008980174150810615, Incertidumbre: 0.01223395149492497\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.33548537835814285, Desviación Estándar: 0.02969296652169765, Varianza: 0.0008816722608586575, Incertidumbre: 0.012122102821283785\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.344', 'Área del ala: 0.36', 'Relación de aspecto del ala: 0.345', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.319', 'envergadura: 0.332', 'payload: 0.368', 'Crucero KIAS: 0.323']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.36', 'Relación de aspecto del ala: 0.346', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.38', 'Alcance de la aeronave: 0.315', 'envergadura: 0.332', 'payload: 0.368', 'Crucero KIAS: 0.325']\n", "**Mediana calculada:** 0.338\n", "\n", "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.0x + -1.114\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.0x + -1.123\n", "Valor del parámetro correlacionado para la aeronave: 5000.0\n", "Predicción obtenida: 0.077\n", - "\tR²: 0.4346058124858284, Desviación Estándar: 0.03907455742847307, Varianza: 0.0015268210382310403, Incertidumbre: 0.011781422349039958\n", + "\tR²: 0.44147114715305336, Desviación Estándar: 0.03879212590736499, Varianza: 0.0015048290324128585, Incertidumbre: 0.011696266041359519\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.006x + 0.155\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.006x + 0.153\n", "Valor del parámetro correlacionado para la aeronave: 21.463\n", "Predicción obtenida: 0.285\n", - "\tR²: 0.3877365879710747, Desviación Estándar: 0.040661889117598014, Varianza: 0.0016533892266118358, Incertidumbre: 0.012260020860918912\n", + "\tR²: 0.40064049329349527, Desviación Estándar: 0.040185046321322214, Varianza: 0.0016148379478468121, Incertidumbre: 0.012116247348261574\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.086x + 0.195\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.085x + 0.197\n", "Valor del parámetro correlacionado para la aeronave: 2.09\n", "Predicción obtenida: 0.374\n", - "\tR²: 0.7800260398164971, Desviación Estándar: 0.024372721993982313, Varianza: 0.0005940295773959491, Incertidumbre: 0.007348652179425639\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "\tR²: 0.7619020614155911, Desviación Estándar: 0.025327865532937314, Varianza: 0.0006415007724545539, Incertidumbre: 0.007636638792120725\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = -0.04x + 0.857\n", - "Valor del parámetro correlacionado para la aeronave: 12.654\n", - "Predicción obtenida: 0.354\n", - "\tR²: 0.5878792449550165, Desviación Estándar: 0.03336035330709108, Varianza: 0.0011129131727739424, Incertidumbre: 0.010058524981210274\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = -0.04x + 0.86\n", + "Valor del parámetro correlacionado para la aeronave: 12.648\n", + "Predicción obtenida: 0.355\n", + "\tR²: 0.5944802102759923, Desviación Estándar: 0.03305421142567004, Varianza: 0.001092580892972896, Incertidumbre: 0.009966219730911451\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.036x + 0.232\n", - "Valor del parámetro correlacionado para la aeronave: 3.004\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.035x + 0.235\n", + "Valor del parámetro correlacionado para la aeronave: 2.998\n", "Predicción obtenida: 0.34\n", - "\tR²: 0.2807426506714811, Desviación Estándar: 0.044071776010299636, Varianza: 0.0019423214407020225, Incertidumbre: 0.01328814044279547\n", + "\tR²: 0.2663264749195765, Desviación Estándar: 0.044460280463140905, Varianza: 0.001976716538861149, Incertidumbre: 0.01340527894274609\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.002x + 0.249\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.002x + 0.251\n", "Valor del parámetro correlacionado para la aeronave: 75.0\n", "Predicción obtenida: 0.371\n", - "\tR²: 0.6495168189859627, Desviación Estándar: 0.030035459570872714, Varianza: 0.0009021288316335293, Incertidumbre: 0.008330337658839016\n", + "\tR²: 0.6338748805446468, Desviación Estándar: 0.030614286662563286, Varianza: 0.0009372345478576003, Incertidumbre: 0.008490875409509635\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = -0.0x + 0.334\n", - "Valor del parámetro correlacionado para la aeronave: 3294.755\n", - "Predicción obtenida: 0.204\n", - "\tR²: 0.3910118106632742, Desviación Estándar: 0.03959178893133063, Varianza: 0.0015675097507830348, Incertidumbre: 0.01098078654455848\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = -0.0x + 0.336\n", + "Valor del parámetro correlacionado para la aeronave: 646.084\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.2906940367251767, Desviación Estándar: 0.04261143763873455, Varianza: 0.0018157346176397638, Incertidumbre: 0.011818286409822586\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.035x + 0.164\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.034x + 0.168\n", "Valor del parámetro correlacionado para la aeronave: 5.033\n", "Predicción obtenida: 0.341\n", - "\tR²: 0.5236198578383562, Desviación Estándar: 0.03586701404683303, Varianza: 0.0012864426966357181, Incertidumbre: 0.010814311631250163\n", + "\tR²: 0.5033510515754096, Desviación Estándar: 0.036580154402799485, Varianza: 0.0013381076961326505, Incertidumbre: 0.011029331538850273\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.005x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.005x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", "Predicción obtenida: 0.362\n", - "\tR²: 0.713775236159582, Desviación Estándar: 0.02131006366987268, Varianza: 0.00045411881361402743, Incertidumbre: 0.006738833828000416\n", + "\tR²: 0.7098078178906966, Desviación Estándar: 0.021340119345216565, Varianza: 0.00045540069366808625, Incertidumbre: 0.006748338267070541\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.077', 'Velocidad a la que se realiza el crucero (KTAS): 0.285', 'Área del ala: 0.374', 'Relación de aspecto del ala: 0.354', 'Longitud del fuselaje: 0.34', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.204', 'envergadura: 0.341', 'payload: 0.362']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.077', 'Velocidad a la que se realiza el crucero (KTAS): 0.285', 'Área del ala: 0.374', 'Relación de aspecto del ala: 0.355', 'Longitud del fuselaje: 0.34', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.313', 'envergadura: 0.341', 'payload: 0.362']\n", "**Mediana calculada:** 0.341\n", "\n", "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.0x + 0.183\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.0x + 0.178\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", "Predicción obtenida: 0.311\n", - "\tR²: 0.015512130588261508, Desviación Estándar: 0.0503497708973624, Varianza: 0.002535099429416882, Incertidumbre: 0.014534726890614086\n", + "\tR²: 0.01698088208648929, Desviación Estándar: 0.05021794969223678, Varianza: 0.002521842471292024, Incertidumbre: 0.014496673386481996\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.006x + 0.172\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.006x + 0.171\n", "Valor del parámetro correlacionado para la aeronave: 33.045\n", - "Predicción obtenida: 0.355\n", - "\tR²: 0.3206948627028712, Desviación Estándar: 0.041823922738469466, Varianza: 0.0017492405132334633, Incertidumbre: 0.01207352652581073\n", + "Predicción obtenida: 0.357\n", + "\tR²: 0.333272374733811, Desviación Estándar: 0.04135730400423518, Varianza: 0.001710426594498727, Incertidumbre: 0.011938825299901186\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.079x + 0.201\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.078x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", "Predicción obtenida: 0.349\n", - "\tR²: 0.7610795576292256, Desviación Estándar: 0.02480384274196969, Varianza: 0.0006152306147683624, Incertidumbre: 0.007160252642006673\n", + "\tR²: 0.7434863405092712, Desviación Estándar: 0.025652709521725176, Varianza: 0.0006580615058060095, Incertidumbre: 0.007405299373905654\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 12.859\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.5993334622949501, Desviación Estándar: 0.03212061490919684, Varianza: 0.0010317339021449184, Incertidumbre: 0.009272422832180553\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = -0.039x + 0.841\n", + "Valor del parámetro correlacionado para la aeronave: 12.84\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.60452940995621, Desviación Estándar: 0.03185188148615243, Varianza: 0.0010145423542079, Incertidumbre: 0.009194846175113082\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.036x + 0.232\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.035x + 0.235\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", "Predicción obtenida: 0.322\n", - "\tR²: 0.3085407372763075, Desviación Estándar: 0.04219642069079446, Varianza: 0.001780537919114507, Incertidumbre: 0.012181057422334439\n", + "\tR²: 0.2936236395084689, Desviación Estándar: 0.04256925734185804, Varianza: 0.0018121416706373347, Incertidumbre: 0.012288686092762097\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.002x + 0.251\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.001x + 0.253\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", "Predicción obtenida: 0.365\n", - "\tR²: 0.6361662614209418, Desviación Estándar: 0.029827965241118803, Varianza: 0.0008897075104253915, Incertidumbre: 0.00797185903406204\n", + "\tR²: 0.6208094760432097, Desviación Estándar: 0.030354867452664958, Varianza: 0.0009214179780688584, Incertidumbre: 0.008112679573486267\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = -0.0x + 0.327\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = -0.0x + 0.338\n", "Valor del parámetro correlacionado para la aeronave: 500.0\n", - "Predicción obtenida: 0.318\n", - "\tR²: 0.12689970642513138, Desviación Estándar: 0.04620662103794288, Varianza: 0.002135051827744066, Incertidumbre: 0.01234923892317737\n", + "Predicción obtenida: 0.321\n", + "\tR²: 0.285409813514665, Desviación Estándar: 0.04167044389712285, Varianza: 0.0017364258945832627, Incertidumbre: 0.01113689458698706\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.035x + 0.164\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.034x + 0.168\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", "Predicción obtenida: 0.333\n", - "\tR²: 0.5420506031887378, Desviación Estándar: 0.0343400608030557, Varianza: 0.0011792397759575624, Incertidumbre: 0.009913121674316162\n", + "\tR²: 0.5218690773685137, Desviación Estándar: 0.03502284412908208, Varianza: 0.001226599610889979, Incertidumbre: 0.010110224242855922\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.005x + 0.273\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341]\n", + "Ecuación de regresión: y = 0.005x + 0.274\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", "Predicción obtenida: 0.358\n", - "\tR²: 0.6939116284562865, Desviación Estándar: 0.021115874286876224, Varianza: 0.00044588014689916043, Incertidumbre: 0.006366675648171076\n", + "\tR²: 0.6901146819400841, Desviación Estándar: 0.02113001704290527, Varianza: 0.0004464776202334672, Incertidumbre: 0.006370939849557429\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.355', 'Área del ala: 0.349', 'Relación de aspecto del ala: 0.344', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.365', 'Alcance de la aeronave: 0.318', 'envergadura: 0.333', 'payload: 0.358']\n", - "**Mediana calculada:** 0.344\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.357', 'Área del ala: 0.349', 'Relación de aspecto del ala: 0.345', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.365', 'Alcance de la aeronave: 0.321', 'envergadura: 0.333', 'payload: 0.358']\n", + "**Mediana calculada:** 0.345\n", "\n", "--- Imputación para aeronave: **ScanEagle 3** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.0x + 0.165\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.0x + 0.16\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", "Predicción obtenida: 0.314\n", - "\tR²: 0.02067125389564617, Desviación Estándar: 0.04917798086065571, Varianza: 0.002418473801531019, Incertidumbre: 0.013639517816683143\n", + "\tR²: 0.022373451375729103, Desviación Estándar: 0.049063741225926084, Varianza: 0.002407250703084639, Incertidumbre: 0.013607833442782533\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.005x + 0.177\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.005x + 0.176\n", "Valor del parámetro correlacionado para la aeronave: 25.703\n", "Predicción obtenida: 0.314\n", - "\tR²: 0.34315816593670323, Desviación Estándar: 0.04027512016870371, Varianza: 0.0016220853046035242, Incertidumbre: 0.011170308530287316\n", + "\tR²: 0.3555220685191681, Desviación Estándar: 0.0398362264992534, Varianza: 0.0015869249416998186, Incertidumbre: 0.011048581328004266\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.077x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 1.349\n", "Predicción obtenida: 0.308\n", - "\tR²: 0.7692709885882784, Desviación Estándar: 0.023870281740101265, Varianza: 0.0005697903503518118, Incertidumbre: 0.0066204249825928384\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "\tR²: 0.7527768409004458, Desviación Estándar: 0.024672817339078838, Varianza: 0.0006087479154475493, Incertidumbre: 0.0068430083097081335\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 13.774\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.61434850961859, Desviación Estándar: 0.030860570433120724, Varianza: 0.000952374807457605, Incertidumbre: 0.008559182237437285\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = -0.039x + 0.841\n", + "Valor del parámetro correlacionado para la aeronave: 13.765\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.6196701372371902, Desviación Estándar: 0.03060232203692826, Varianza: 0.000936502114051865, Incertidumbre: 0.00848755701941588\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.037x + 0.232\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.036x + 0.234\n", "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.3208426833611422, Desviación Estándar: 0.04095355757307659, Varianza: 0.0016771938778912987, Incertidumbre: 0.011358473210953401\n", + "Predicción obtenida: 0.321\n", + "\tR²: 0.30616062286953594, Desviación Estándar: 0.04133363874625755, Varianza: 0.0017084696920061232, Incertidumbre: 0.011463888761625898\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.001x + 0.254\n", "Valor del parámetro correlacionado para la aeronave: 36.3\n", "Predicción obtenida: 0.306\n", - "\tR²: 0.6342327638509584, Desviación Estándar: 0.02924076794795075, Varianza: 0.0008550225101859038, Incertidumbre: 0.007549933819515259\n", + "\tR²: 0.6206727625327728, Desviación Estándar: 0.029696344075245393, Varianza: 0.0008818728514353621, Incertidumbre: 0.007667563069778047\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = -0.0x + 0.329\n", - "Valor del parámetro correlacionado para la aeronave: 478.95\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.1300366441647196, Desviación Estándar: 0.045095878725376695, Varianza: 0.0020336382780138827, Incertidumbre: 0.011643705819064886\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = -0.0x + 0.34\n", + "Valor del parámetro correlacionado para la aeronave: 537.895\n", + "Predicción obtenida: 0.321\n", + "\tR²: 0.2869258951677305, Desviación Estándar: 0.04071583119142121, Varianza: 0.0016577789096083083, Incertidumbre: 0.01051278240875779\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344]\n", - "Ecuación de regresión: y = 0.036x + 0.163\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", + "Ecuación de regresión: y = 0.035x + 0.166\n", "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 0.305\n", - "\tR²: 0.5556874366655828, Desviación Estándar: 0.0331246073597043, Varianza: 0.0010972396127345763, Incertidumbre: 0.009187113101155824\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.5360863917912162, Desviación Estándar: 0.033798134019578256, Varianza: 0.001142313863205373, Incertidumbre: 0.009373915786353326\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345]\n", "Ecuación de regresión: y = 0.005x + 0.274\n", "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.6868798679185576, Desviación Estándar: 0.020578680684602713, Varianza: 0.00042348209871884076, Incertidumbre: 0.005940553416411365\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.6852525799649505, Desviación Estándar: 0.020536902802633098, Varianza: 0.0004217643767247992, Incertidumbre: 0.0059284931807107\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.212\n", "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.39462657346290686, Desviación Estándar: 0.028144814550039556, Varianza: 0.0007921305860561183, Incertidumbre: 0.01063773999934813\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.314', 'Área del ala: 0.308', 'Relación de aspecto del ala: 0.308', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.306', 'Alcance de la aeronave: 0.32', 'envergadura: 0.305', 'payload: 0.313', 'Crucero KIAS: 0.308']\n", - "**Mediana calculada:** 0.31\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.4148261927182897, Desviación Estándar: 0.027776222407102834, Varianza: 0.0007715185312088415, Incertidumbre: 0.01049842526428771\n", + "\tNivel de confianza: Confianza Alta\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.314', 'Área del ala: 0.308', 'Relación de aspecto del ala: 0.309', 'Longitud del fuselaje: 0.321', 'Peso máximo al despegue (MTOW): 0.306', 'Alcance de la aeronave: 0.321', 'envergadura: 0.306', 'payload: 0.314', 'Crucero KIAS: 0.309']\n", + "**Mediana calculada:** 0.312\n", "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.0x + 0.166\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.0x + 0.161\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.02032631380959693, Desviación Estándar: 0.04739774340606181, Varianza: 0.0022465460799868755, Incertidumbre: 0.012667579766550504\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.022227755119382575, Desviación Estándar: 0.04728280334178578, Varianza: 0.002235663491857988, Incertidumbre: 0.012636860742226598\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.005x + 0.177\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.005x + 0.176\n", "Valor del parámetro correlacionado para la aeronave: 33.797\n", - "Predicción obtenida: 0.356\n", - "\tR²: 0.34279456368656225, Desviación Estándar: 0.03882107144365238, Varianza: 0.0015070755880331622, Incertidumbre: 0.010375367766401489\n", + "Predicción obtenida: 0.358\n", + "\tR²: 0.3553724238219026, Desviación Estándar: 0.03839182920470344, Varianza: 0.0014739325496831198, Incertidumbre: 0.010260647952538724\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.077x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 0.343\n", - "\tR²: 0.7691040437079356, Desviación Estándar: 0.023010449764320217, Varianza: 0.0005294807983563044, Incertidumbre: 0.0061498013809756745\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.7523839535914149, Desviación Estándar: 0.02379434517349416, Varianza: 0.0005661708622353848, Incertidumbre: 0.00635930624156095\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 12.973\n", - "Predicción obtenida: 0.339\n", - "\tR²: 0.6142874133845568, Desviación Estándar: 0.029740539979987123, Varianza: 0.0008844997183012125, Incertidumbre: 0.007948493650197468\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = -0.039x + 0.841\n", + "Valor del parámetro correlacionado para la aeronave: 12.914\n", + "Predicción obtenida: 0.342\n", + "\tR²: 0.6194315138686619, Desviación Estándar: 0.02949855729552859, Varianza: 0.000870164882517583, Incertidumbre: 0.007883821057427777\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.037x + 0.232\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.036x + 0.234\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.3177456232267585, Desviación Estándar: 0.039553972672793015, Varianza: 0.0015645167542000567, Incertidumbre: 0.010571243859100757\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.303899170137669, Desviación Estándar: 0.03989518107787113, Varianza: 0.0015916254732361262, Incertidumbre: 0.010662435641192892\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.001x + 0.255\n", "Valor del parámetro correlacionado para la aeronave: 61.0\n", "Predicción obtenida: 0.342\n", - "\tR²: 0.6340700925234075, Desviación Estándar: 0.028333016378777862, Varianza: 0.0008027598171200946, Incertidumbre: 0.007083254094694466\n", + "\tR²: 0.6200226373551951, Desviación Estándar: 0.0287868395998115, Varianza: 0.0008286821341452756, Incertidumbre: 0.007196709899952875\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = -0.0x + 0.328\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 0.326\n", - "\tR²: 0.12800904485497755, Desviación Estándar: 0.04373708652402515, Varianza: 0.0019129327376100622, Incertidumbre: 0.010934271631006288\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = -0.0x + 0.339\n", + "Valor del parámetro correlacionado para la aeronave: 565.912\n", + "Predicción obtenida: 0.319\n", + "\tR²: 0.28524296729075405, Desviación Estándar: 0.0394815636598884, Varianza: 0.00155879386902982, Incertidumbre: 0.0098703909149721\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.036x + 0.163\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.035x + 0.167\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.5550912173963352, Desviación Estándar: 0.03194128864413451, Varianza: 0.0010202459202479162, Incertidumbre: 0.008536668471314606\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.5351265760294277, Desviación Estándar: 0.032602561615663286, Varianza: 0.001062927023903121, Incertidumbre: 0.008713401106928507\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.005x + 0.273\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312]\n", + "Ecuación de regresión: y = 0.005x + 0.274\n", "Valor del parámetro correlacionado para la aeronave: 17.7\n", "Predicción obtenida: 0.355\n", - "\tR²: 0.6934350662495181, Desviación Estándar: 0.019790488440900297, Varianza: 0.00039166343272940834, Incertidumbre: 0.005488893910780262\n", + "\tR²: 0.6911388597155106, Desviación Estándar: 0.01973554103206761, Varianza: 0.00038949157982842426, Incertidumbre: 0.005473654241549482\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31]\n", - "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312]\n", + "Ecuación de regresión: y = 0.004x + 0.212\n", "Valor del parámetro correlacionado para la aeronave: 30.9\n", - "Predicción obtenida: 0.338\n", - "\tR²: 0.39635942215753095, Desviación Estándar: 0.026334104723749873, Varianza: 0.0006934850716014253, Incertidumbre: 0.009310512013320114\n", + "Predicción obtenida: 0.34\n", + "\tR²: 0.41681296972136983, Desviación Estándar: 0.025997834126762907, Varianza: 0.000675887379282678, Incertidumbre: 0.009191622403598547\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.356', 'Área del ala: 0.343', 'Relación de aspecto del ala: 0.339', 'Longitud del fuselaje: 0.323', 'Peso máximo al despegue (MTOW): 0.342', 'Alcance de la aeronave: 0.326', 'envergadura: 0.334', 'payload: 0.355', 'Crucero KIAS: 0.338']\n", - "**Mediana calculada:** 0.338\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.358', 'Área del ala: 0.344', 'Relación de aspecto del ala: 0.342', 'Longitud del fuselaje: 0.324', 'Peso máximo al despegue (MTOW): 0.342', 'Alcance de la aeronave: 0.319', 'envergadura: 0.335', 'payload: 0.355', 'Crucero KIAS: 0.34']\n", + "**Mediana calculada:** 0.341\n", "\n", "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.0x + 0.166\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.0x + 0.148\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.02032631380959693, Desviación Estándar: 0.04739774340606181, Varianza: 0.0022465460799868755, Incertidumbre: 0.012667579766550504\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.026268244411726593, Desviación Estándar: 0.04616322786282365, Varianza: 0.0021310436067149777, Incertidumbre: 0.011919294181326279\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = 0.005x + 0.184\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.005x + 0.182\n", "Valor del parámetro correlacionado para la aeronave: 18.091\n", "Predicción obtenida: 0.274\n", - "\tR²: 0.3487363165953775, Desviación Estándar: 0.037739302980328356, Varianza: 0.0014242549894410209, Incertidumbre: 0.00974424612935251\n", + "\tR²: 0.3645845882344463, Desviación Estándar: 0.03729111540765529, Varianza: 0.0013906272883470658, Incertidumbre: 0.00962852459568985\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = 0.078x + 0.202\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.077x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.7732658196981622, Desviación Estándar: 0.02226762719794307, Varianza: 0.0004958472210265739, Incertidumbre: 0.005749476619812589\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.269\n", + "\tR²: 0.7583546241989619, Desviación Estándar: 0.02299671197634162, Varianza: 0.0005288487617228141, Incertidumbre: 0.00593772550012665\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = -0.038x + 0.838\n", - "Valor del parámetro correlacionado para la aeronave: 14.599\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 14.589\n", "Predicción obtenida: 0.277\n", - "\tR²: 0.622452460235022, Desviación Estándar: 0.02873434266164246, Varianza: 0.0008256624481966859, Incertidumbre: 0.007419175372850569\n", + "\tR²: 0.6288651605214148, Desviación Estándar: 0.028499836195337802, Varianza: 0.0008122406631610867, Incertidumbre: 0.007358626063612177\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.037x + 0.232\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.037x + 0.234\n", "Valor del parámetro correlacionado para la aeronave: 0.75\n", - "Predicción obtenida: 0.259\n", - "\tR²: 0.3177456232267585, Desviación Estándar: 0.039553972672793015, Varianza: 0.0015645167542000567, Incertidumbre: 0.010571243859100757\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.31289865533826733, Desviación Estándar: 0.038778133438712926, Varianza: 0.0015037436329906255, Incertidumbre: 0.010012471000342941\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = 0.001x + 0.253\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.001x + 0.255\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.6384849427043453, Desviación Estándar: 0.027500732010490584, Varianza: 0.0007562902611128215, Incertidumbre: 0.0066699072271210235\n", + "Predicción obtenida: 0.269\n", + "\tR²: 0.626055259624176, Desviación Estándar: 0.027928418897225495, Varianza: 0.0007799965820989021, Incertidumbre: 0.006773636533515119\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = -0.0x + 0.329\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = -0.0x + 0.341\n", "Valor del parámetro correlacionado para la aeronave: 270.0\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.135868427381171, Desviación Estándar: 0.04251782061135894, Varianza: 0.001807765069539699, Incertidumbre: 0.01031208619715862\n", + "Predicción obtenida: 0.331\n", + "\tR²: 0.2841904292217742, Desviación Estándar: 0.03864037972786521, Varianza: 0.0014930789455136165, Incertidumbre: 0.009371668648939038\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31]\n", - "Ecuación de regresión: y = 0.036x + 0.163\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.035x + 0.166\n", "Valor del parámetro correlacionado para la aeronave: 2.69\n", - "Predicción obtenida: 0.259\n", - "\tR²: 0.5550912173963352, Desviación Estándar: 0.03194128864413451, Varianza: 0.0010202459202479162, Incertidumbre: 0.008536668471314606\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.5455548123174172, Desviación Estándar: 0.03153677328028606, Varianza: 0.000994568068932165, Incertidumbre: 0.008142759847177798\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.274\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.004x + 0.275\n", "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.287\n", - "\tR²: 0.6800173021314551, Desviación Estándar: 0.0195304404540393, Varianza: 0.00038143810432877473, Incertidumbre: 0.005219729770843197\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.6833444264392312, Desviación Estándar: 0.019334288653334628, Varianza: 0.00037381471773046413, Incertidumbre: 0.0051673059969835075\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.214\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341]\n", + "Ecuación de regresión: y = 0.004x + 0.212\n", "Valor del parámetro correlacionado para la aeronave: 16.54\n", - "Predicción obtenida: 0.28\n", - "\tR²: 0.45458778022246527, Desviación Estándar: 0.02482812939297037, Varianza: 0.0006164360091540792, Incertidumbre: 0.008276043130990124\n", + "Predicción obtenida: 0.281\n", + "\tR²: 0.47839540504657707, Desviación Estándar: 0.02451160448637781, Varianza: 0.0006008187544966167, Incertidumbre: 0.008170534828792602\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.274', 'Área del ala: 0.268', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.259', 'Peso máximo al despegue (MTOW): 0.268', 'Alcance de la aeronave: 0.324', 'envergadura: 0.259', 'payload: 0.287', 'Crucero KIAS: 0.28']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.316', 'Velocidad a la que se realiza el crucero (KTAS): 0.274', 'Área del ala: 0.269', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.261', 'Peso máximo al despegue (MTOW): 0.269', 'Alcance de la aeronave: 0.331', 'envergadura: 0.261', 'payload: 0.288', 'Crucero KIAS: 0.281']\n", "**Mediana calculada:** 0.276\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", - "Ecuación de regresión: y = 0.0x + 0.184\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.0x + 0.166\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.0147264484768026, Desviación Estándar: 0.04671466282025224, Varianza: 0.002182259722409857, Incertidumbre: 0.012061674075102113\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.01967074482098219, Desviación Estándar: 0.04573470982394311, Varianza: 0.0020916636826802783, Incertidumbre: 0.011433677455985777\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", "Valor del parámetro correlacionado para la aeronave: 17.5\n", "Predicción obtenida: 0.272\n", - "\tR²: 0.3724780157591121, Desviación Estándar: 0.03654331382237015, Varianza: 0.0013354137851202294, Incertidumbre: 0.009135828455592538\n", + "\tR²: 0.3888938502611704, Desviación Estándar: 0.03610923381670675, Varianza: 0.0013038767668295981, Incertidumbre: 0.009027308454176687\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = 0.077x + 0.204\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.076x + 0.206\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 0.258\n", - "\tR²: 0.7798191830856929, Desviación Estándar: 0.021646276131902738, Varianza: 0.0004685612703785822, Incertidumbre: 0.0054115690329756844\n", + "Predicción obtenida: 0.259\n", + "\tR²: 0.7664145517248199, Desviación Estándar: 0.02232455641736923, Varianza: 0.0004983858192323016, Incertidumbre: 0.005581139104342307\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.714\n", "Predicción obtenida: 0.272\n", - "\tR²: 0.6362481550089567, Desviación Estándar: 0.02782249399108439, Varianza: 0.000774091171883927, Incertidumbre: 0.006955623497771097\n", + "\tR²: 0.6430546942477204, Desviación Estándar: 0.027596930750302347, Varianza: 0.0007615905868369832, Incertidumbre: 0.006899232687575587\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", - "Ecuación de regresión: y = 0.034x + 0.238\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.034x + 0.239\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.33427169926483846, Desviación Estándar: 0.03839930074605216, Varianza: 0.0014745062977857622, Incertidumbre: 0.009914656819698003\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.33445042360589083, Desviación Estándar: 0.037683406226531636, Varianza: 0.0014200391048338034, Incertidumbre: 0.009420851556632909\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = 0.001x + 0.254\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.001x + 0.256\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.263\n", - "\tR²: 0.6523551364390465, Desviación Estándar: 0.02678966328890024, Varianza: 0.0007176860591326491, Incertidumbre: 0.006314384192428556\n", + "Predicción obtenida: 0.265\n", + "\tR²: 0.6416207643515126, Desviación Estándar: 0.027185535937675302, Varianza: 0.0007390533642186353, Incertidumbre: 0.006407692270573599\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = -0.0x + 0.325\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = -0.0x + 0.336\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.11453431205818987, Desviación Estándar: 0.042754833055918345, Varianza: 0.0018279757496394483, Incertidumbre: 0.010077410794112875\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.23999230022385276, Desviación Estándar: 0.03958908605237062, Varianza: 0.0015672957344620058, Incertidumbre: 0.009331237069536345\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276]\n", - "Ecuación de regresión: y = 0.034x + 0.17\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.034x + 0.172\n", "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.251\n", - "\tR²: 0.5630614192360759, Desviación Estándar: 0.03110892493285136, Varianza: 0.000967765210477781, Incertidumbre: 0.00803228987889\n", + "Predicción obtenida: 0.252\n", + "\tR²: 0.5575576859088149, Desviación Estándar: 0.030724744065250335, Varianza: 0.0009440098978751357, Incertidumbre: 0.007681186016312584\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", "Ecuación de regresión: y = 0.005x + 0.272\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.277\n", - "\tR²: 0.7184184742433418, Desviación Estándar: 0.019057576632793602, Varianza: 0.0003631912271148008, Incertidumbre: 0.004920645127858749\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.721730846976111, Desviación Estándar: 0.018890410688664185, Varianza: 0.00035684761598639805, Incertidumbre: 0.004877483066680998\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276]\n", - "Ecuación de regresión: y = 0.004x + 0.211\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276]\n", + "Ecuación de regresión: y = 0.004x + 0.209\n", "Valor del parámetro correlacionado para la aeronave: 16.0\n", "Predicción obtenida: 0.277\n", - "\tR²: 0.49980090608872974, Desviación Estándar: 0.023585011510380487, Varianza: 0.0005562527679447801, Incertidumbre: 0.0074582355014090294\n", + "\tR²: 0.5239745729502132, Desviación Estándar: 0.023290105844576407, Varianza: 0.0005424290302515721, Incertidumbre: 0.007364978141526098\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.31', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.258', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.268', 'Peso máximo al despegue (MTOW): 0.263', 'Alcance de la aeronave: 0.324', 'envergadura: 0.251', 'payload: 0.277', 'Crucero KIAS: 0.277']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.259', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.265', 'Alcance de la aeronave: 0.333', 'envergadura: 0.252', 'payload: 0.278', 'Crucero KIAS: 0.277']\n", "**Mediana calculada:** 0.272\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.0x + 0.201\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.0x + 0.183\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.010249079511174597, Desviación Estándar: 0.04616981560043625, Varianza: 0.0021316518725782866, Incertidumbre: 0.011542453900109063\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.014305682652152818, Desviación Estándar: 0.04541585750246479, Varianza: 0.002062600112684187, Incertidumbre: 0.01101496338592133\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", "Valor del parámetro correlacionado para la aeronave: 17.5\n", "Predicción obtenida: 0.272\n", - "\tR²: 0.3967685182755928, Desviación Estándar: 0.03545237044618538, Varianza: 0.0012568705702535586, Incertidumbre: 0.008598462825185189\n", - "\tNivel de confianza: Confianza Media\n", + "\tR²: 0.41353937190981327, Desviación Estándar: 0.03503126520298072, Varianza: 0.001227189541721568, Incertidumbre: 0.008496329801818471\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.075x + 0.207\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.075x + 0.209\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 0.26\n", - "\tR²: 0.7836164664637315, Desviación Estándar: 0.021233196730497346, Varianza: 0.0004508486433960032, Incertidumbre: 0.005149806640550596\n", + "Predicción obtenida: 0.261\n", + "\tR²: 0.771939412802745, Desviación Estándar: 0.021845475954437206, Varianza: 0.0004772248196758942, Incertidumbre: 0.005298306164825611\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.717\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.714\n", "Predicción obtenida: 0.272\n", - "\tR²: 0.6503309577441012, Desviación Estándar: 0.026991801495547467, Varianza: 0.0007285573479750386, Incertidumbre: 0.006546473446579232\n", + "\tR²: 0.6574483990804236, Desviación Estándar: 0.0267731451760295, Varianza: 0.0007168013026167517, Incertidumbre: 0.006493441499456798\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.034x + 0.239\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.034x + 0.24\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.269\n", - "\tR²: 0.35785791364325414, Desviación Estándar: 0.037188678863664754, Varianza: 0.0013829978356247857, Incertidumbre: 0.009297169715916188\n", + "Predicción obtenida: 0.27\n", + "\tR²: 0.3612099344091373, Desviación Estándar: 0.03656078137464094, Varianza: 0.0013366907347242916, Incertidumbre: 0.008867291962515261\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.001x + 0.256\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.001x + 0.257\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.265\n", - "\tR²: 0.6662199673897068, Desviación Estándar: 0.02614021892802073, Varianza: 0.0006833110456048533, Incertidumbre: 0.005996977508909025\n", + "Predicción obtenida: 0.266\n", + "\tR²: 0.6569798349980132, Desviación Estándar: 0.026507694611626824, Varianza: 0.0007026578736232697, Incertidumbre: 0.006081282212543103\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.0x + 0.322\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.0x + 0.331\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.08980696350170814, Desviación Estándar: 0.04316639678565242, Varianza: 0.0018633378114563837, Incertidumbre: 0.009903050597128307\n", + "Predicción obtenida: 0.328\n", + "\tR²: 0.18759571893960836, Desviación Estándar: 0.0407941824996777, Varianza: 0.0016641653258170103, Incertidumbre: 0.009358827315813186\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.032x + 0.179\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.032x + 0.18\n", "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.255\n", - "\tR²: 0.5680260142996714, Desviación Estándar: 0.030501695390844595, Varianza: 0.0009303534217158704, Incertidumbre: 0.007625423847711149\n", + "Predicción obtenida: 0.256\n", + "\tR²: 0.5664966665882962, Desviación Estándar: 0.030118449655234383, Varianza: 0.000907121009634888, Incertidumbre: 0.007304797012257599\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.276\n", - "\tR²: 0.7521146796518272, Desviación Estándar: 0.018488012959664887, Varianza: 0.00034180662319673684, Incertidumbre: 0.004622003239916222\n", + "Predicción obtenida: 0.277\n", + "\tR²: 0.7555202520970645, Desviación Estándar: 0.01833377542330803, Varianza: 0.0003361273212722936, Incertidumbre: 0.004583443855827008\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", "Valor del parámetro correlacionado para la aeronave: 16.0\n", "Predicción obtenida: 0.276\n", - "\tR²: 0.5394259957381201, Desviación Estándar: 0.02253063800021863, Varianza: 0.0005076296486968957, Incertidumbre: 0.0067932429576407745\n", + "\tR²: 0.5632456052929734, Desviación Estándar: 0.022253056728350776, Varianza: 0.0004951985337551978, Incertidumbre: 0.006709549055130292\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.26', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.269', 'Peso máximo al despegue (MTOW): 0.265', 'Alcance de la aeronave: 0.32', 'envergadura: 0.255', 'payload: 0.276', 'Crucero KIAS: 0.276']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.266', 'Alcance de la aeronave: 0.328', 'envergadura: 0.256', 'payload: 0.277', 'Crucero KIAS: 0.276']\n", "**Mediana calculada:** 0.272\n", "\n", "--- Imputación para aeronave: **V21** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.0x + 0.201\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.0x + 0.183\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.010249079511174597, Desviación Estándar: 0.04616981560043625, Varianza: 0.0021316518725782866, Incertidumbre: 0.011542453900109063\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.014305682652152818, Desviación Estándar: 0.04541585750246479, Varianza: 0.002062600112684187, Incertidumbre: 0.01101496338592133\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.185\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.005x + 0.183\n", "Valor del parámetro correlacionado para la aeronave: 19.688\n", - "Predicción obtenida: 0.282\n", - "\tR²: 0.3967685182755928, Desviación Estándar: 0.03545237044618538, Varianza: 0.0012568705702535586, Incertidumbre: 0.008598462825185189\n", - "\tNivel de confianza: Confianza Media\n", + "Predicción obtenida: 0.283\n", + "\tR²: 0.41353937190981327, Desviación Estándar: 0.03503126520298072, Varianza: 0.001227189541721568, Incertidumbre: 0.008496329801818471\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.075x + 0.207\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.075x + 0.209\n", "Valor del parámetro correlacionado para la aeronave: 0.8\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.7836164664637315, Desviación Estándar: 0.021233196730497346, Varianza: 0.0004508486433960032, Incertidumbre: 0.005149806640550596\n", + "Predicción obtenida: 0.269\n", + "\tR²: 0.771939412802745, Desviación Estándar: 0.021845475954437206, Varianza: 0.0004772248196758942, Incertidumbre: 0.005298306164825611\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.578\n", - "Predicción obtenida: 0.277\n", - "\tR²: 0.6503309577441012, Desviación Estándar: 0.026991801495547467, Varianza: 0.0007285573479750386, Incertidumbre: 0.006546473446579232\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.568\n", + "Predicción obtenida: 0.278\n", + "\tR²: 0.6574483990804236, Desviación Estándar: 0.0267731451760295, Varianza: 0.0007168013026167517, Incertidumbre: 0.006493441499456798\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.034x + 0.239\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.034x + 0.24\n", "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.35785791364325414, Desviación Estándar: 0.037188678863664754, Varianza: 0.0013829978356247857, Incertidumbre: 0.009297169715916188\n", + "Predicción obtenida: 0.271\n", + "\tR²: 0.3612099344091373, Desviación Estándar: 0.03656078137464094, Varianza: 0.0013366907347242916, Incertidumbre: 0.008867291962515261\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.001x + 0.256\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.001x + 0.257\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.6662199673897068, Desviación Estándar: 0.02614021892802073, Varianza: 0.0006833110456048533, Incertidumbre: 0.005996977508909025\n", + "Predicción obtenida: 0.271\n", + "\tR²: 0.6569798349980132, Desviación Estándar: 0.026507694611626824, Varianza: 0.0007026578736232697, Incertidumbre: 0.006081282212543103\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.0x + 0.322\n", - "Valor del parámetro correlacionado para la aeronave: 471.068\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.08980696350170814, Desviación Estándar: 0.04316639678565242, Varianza: 0.0018633378114563837, Incertidumbre: 0.009903050597128307\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = -0.0x + 0.331\n", + "Valor del parámetro correlacionado para la aeronave: 373.727\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.18759571893960836, Desviación Estándar: 0.0407941824996777, Varianza: 0.0016641653258170103, Incertidumbre: 0.009358827315813186\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.032x + 0.179\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.032x + 0.18\n", "Valor del parámetro correlacionado para la aeronave: 2.15\n", - "Predicción obtenida: 0.248\n", - "\tR²: 0.5680260142996714, Desviación Estándar: 0.030501695390844595, Varianza: 0.0009303534217158704, Incertidumbre: 0.007625423847711149\n", + "Predicción obtenida: 0.25\n", + "\tR²: 0.5664966665882962, Desviación Estándar: 0.030118449655234383, Varianza: 0.000907121009634888, Incertidumbre: 0.007304797012257599\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 1.5\n", "Predicción obtenida: 0.278\n", - "\tR²: 0.7521146796518272, Desviación Estándar: 0.018488012959664887, Varianza: 0.00034180662319673684, Incertidumbre: 0.004622003239916222\n", + "\tR²: 0.7555202520970645, Desviación Estándar: 0.01833377542330803, Varianza: 0.0003361273212722936, Incertidumbre: 0.004583443855827008\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.004x + 0.209\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", "Predicción obtenida: 0.285\n", - "\tR²: 0.5394259957381201, Desviación Estándar: 0.02253063800021863, Varianza: 0.0005076296486968957, Incertidumbre: 0.0067932429576407745\n", + "\tR²: 0.5632456052929734, Desviación Estándar: 0.022253056728350776, Varianza: 0.0004951985337551978, Incertidumbre: 0.006709549055130292\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.282', 'Área del ala: 0.268', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.315', 'envergadura: 0.248', 'payload: 0.278', 'Crucero KIAS: 0.285']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.283', 'Área del ala: 0.269', 'Relación de aspecto del ala: 0.278', 'Longitud del fuselaje: 0.271', 'Peso máximo al despegue (MTOW): 0.271', 'Alcance de la aeronave: 0.32', 'envergadura: 0.25', 'payload: 0.278', 'Crucero KIAS: 0.285']\n", "**Mediana calculada:** 0.278\n", "\n", "--- Imputación para aeronave: **V25** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.0x + 0.213\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.0x + 0.195\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.007624668273402024, Desviación Estándar: 0.04532987951030284, Varianza: 0.0020547979764185733, Incertidumbre: 0.010994110659852962\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.011044881710893129, Desviación Estándar: 0.044760694317023265, Varianza: 0.0020035197557419985, Incertidumbre: 0.010550196827395105\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.005x + 0.184\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.005x + 0.182\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", "Predicción obtenida: 0.293\n", - "\tR²: 0.41034339711447, Desviación Estándar: 0.03446795427732797, Varianza: 0.0011880398720639715, Incertidumbre: 0.008124174734375492\n", + "\tR²: 0.42735666066806766, Desviación Estándar: 0.034060469502456774, Varianza: 0.0011601155827277879, Incertidumbre: 0.008028129651861593\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.074x + 0.209\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.074x + 0.211\n", "Valor del parámetro correlacionado para la aeronave: 0.52\n", - "Predicción obtenida: 0.248\n", - "\tR²: 0.7859555597017408, Desviación Estándar: 0.020766719698698297, Varianza: 0.0004312566470443038, Incertidumbre: 0.004894762773983275\n", + "Predicción obtenida: 0.249\n", + "\tR²: 0.7753395291556694, Desviación Estándar: 0.021333978629353077, Varianza: 0.0004551386441576937, Incertidumbre: 0.005028466986168149\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = -0.038x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.435\n", - "Predicción obtenida: 0.283\n", - "\tR²: 0.6584792308147298, Desviación Estándar: 0.02623158211259663, Varianza: 0.0006880959001298995, Incertidumbre: 0.006182843197689607\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.421\n", + "Predicción obtenida: 0.284\n", + "\tR²: 0.6658371155959888, Desviación Estándar: 0.02601882192873693, Varianza: 0.0006769790945593217, Incertidumbre: 0.00613269514143171\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.033x + 0.24\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.034x + 0.241\n", "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 0.271\n", - "\tR²: 0.3698412259519205, Desviación Estándar: 0.03612198254213046, Varianza: 0.001304797622773978, Incertidumbre: 0.008760867613407119\n", + "Predicción obtenida: 0.272\n", + "\tR²: 0.3758370724436967, Desviación Estándar: 0.035559652505826406, Varianza: 0.0012644888863351262, Incertidumbre: 0.008381490474502354\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.001x + 0.257\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.001x + 0.258\n", "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 0.274\n", - "\tR²: 0.6742199186237361, Desviación Estándar: 0.025535772267198973, Varianza: 0.0006520756652822481, Incertidumbre: 0.005709972264741082\n", + "Predicción obtenida: 0.275\n", + "\tR²: 0.6659897422136262, Desviación Estándar: 0.0258798006020757, Varianza: 0.0006697640792031978, Incertidumbre: 0.005786899339038125\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = -0.0x + 0.32\n", - "Valor del parámetro correlacionado para la aeronave: 470.718\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.08349677643343056, Desviación Estándar: 0.04283055788146815, Varianza: 0.0018344566884377933, Incertidumbre: 0.009577203893720215\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = -0.0x + 0.328\n", + "Valor del parámetro correlacionado para la aeronave: 385.208\n", + "Predicción obtenida: 0.317\n", + "\tR²: 0.17038629659156324, Desviación Estándar: 0.040786738838416804, Varianza: 0.0016635580650732177, Incertidumbre: 0.009120192062323078\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.03x + 0.189\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.03x + 0.19\n", "Valor del parámetro correlacionado para la aeronave: 2.45\n", - "Predicción obtenida: 0.263\n", - "\tR²: 0.5567962058793969, Desviación Estándar: 0.03029342092653269, Varianza: 0.0009176913514320887, Incertidumbre: 0.007347233778905335\n", + "Predicción obtenida: 0.264\n", + "\tR²: 0.5591647654062968, Desviación Estándar: 0.029884546712702416, Varianza: 0.0008930861322236928, Incertidumbre: 0.007043855211079342\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 2.2\n", "Predicción obtenida: 0.281\n", - "\tR²: 0.7713758958351147, Desviación Estándar: 0.017936323591463472, Varianza: 0.00032171170397768915, Incertidumbre: 0.004350197453109518\n", + "\tR²: 0.7749229114992245, Desviación Estándar: 0.017786382883709647, Varianza: 0.00031635541608591945, Incertidumbre: 0.004313831489836053\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.5559821413548826, Desviación Estándar: 0.021644010407351307, Varianza: 0.0004684631865135317, Incertidumbre: 0.00624808761751367\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.5795655402783035, Desviación Estándar: 0.02138953366069156, Varianza: 0.00045751215022185723, Incertidumbre: 0.006174626508420417\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", @@ -30849,109 +35233,109 @@ "Predicción obtenida: 0.253\n", "\tR²: 0.037864541216720005, Desviación Estándar: 0.04025536882356717, Varianza: 0.001620494719121424, Incertidumbre: 0.018002748229764387\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.248', 'Relación de aspecto del ala: 0.283', 'Longitud del fuselaje: 0.271', 'Peso máximo al despegue (MTOW): 0.274', 'Alcance de la aeronave: 0.313', 'envergadura: 0.263', 'payload: 0.281', 'Crucero KIAS: 0.292', 'Empty weight: 0.253']\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.249', 'Relación de aspecto del ala: 0.284', 'Longitud del fuselaje: 0.272', 'Peso máximo al despegue (MTOW): 0.275', 'Alcance de la aeronave: 0.317', 'envergadura: 0.264', 'payload: 0.281', 'Crucero KIAS: 0.293', 'Empty weight: 0.253']\n", "**Mediana calculada:** 0.281\n", "\n", "--- Imputación para aeronave: **V32** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.0x + 0.222\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.0x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.005879006239630669, Desviación Estándar: 0.044414071195000175, Varianza: 0.0019726097201145446, Incertidumbre: 0.010468496974028912\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.008806840766555024, Desviación Estándar: 0.0439986702137573, Varianza: 0.0019358829805789736, Incertidumbre: 0.010093987216417957\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.005x + 0.182\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.005x + 0.18\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.41638810258008374, Desviación Estándar: 0.03365333043822183, Varianza: 0.0011325466495841479, Incertidumbre: 0.007720603499673174\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.4333816032073342, Desviación Estándar: 0.03326639487281157, Varianza: 0.001106653027833824, Incertidumbre: 0.007631834392973959\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", "Ecuación de regresión: y = 0.07x + 0.217\n", "Valor del parámetro correlacionado para la aeronave: 1.03\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.764143155594072, Desviación Estándar: 0.021393912896673372, Varianza: 0.0004576995090304473, Incertidumbre: 0.004908100227553197\n", + "Predicción obtenida: 0.289\n", + "\tR²: 0.7555854161374564, Desviación Estándar: 0.021848617461412912, Varianza: 0.00047736208497515723, Incertidumbre: 0.005012416608967213\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 14.194\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.663976576642759, Desviación Estándar: 0.02553587580427515, Varianza: 0.000652080953091365, Incertidumbre: 0.0058583316876653045\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = -0.039x + 0.843\n", + "Valor del parámetro correlacionado para la aeronave: 14.182\n", + "Predicción obtenida: 0.293\n", + "\tR²: 0.6714366085489721, Desviación Estándar: 0.025332029736691172, Varianza: 0.0006417117305806058, Incertidumbre: 0.005811566192473899\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.033x + 0.242\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.033x + 0.243\n", "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 0.275\n", - "\tR²: 0.3766225687592737, Desviación Estándar: 0.03517033453390517, Varianza: 0.0012369524312268022, Incertidumbre: 0.00828972734850792\n", + "Predicción obtenida: 0.276\n", + "\tR²: 0.3848860095207083, Desviación Estándar: 0.0346607699064813, Varianza: 0.00120136897051004, Incertidumbre: 0.00795172596461409\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.6799609284870747, Desviación Estándar: 0.02496000967487211, Varianza: 0.0006230020829697093, Incertidumbre: 0.0054467206515205506\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.6724626600573362, Desviación Estándar: 0.025285590185798745, Varianza: 0.0006393610710441618, Incertidumbre: 0.005517768143716917\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = -0.0x + 0.318\n", - "Valor del parámetro correlacionado para la aeronave: 473.211\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.07878328572710314, Desviación Estándar: 0.04234714665946332, Varianza: 0.0017932808301980953, Incertidumbre: 0.00924090500154224\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = -0.0x + 0.326\n", + "Valor del parámetro correlacionado para la aeronave: 412.686\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.15808515960741942, Desviación Estándar: 0.04053934883017473, Varianza: 0.0016434388035745891, Incertidumbre: 0.008846411173261676\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.029x + 0.194\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.029x + 0.195\n", "Valor del parámetro correlacionado para la aeronave: 3.2\n", - "Predicción obtenida: 0.287\n", - "\tR²: 0.5552407456896347, Desviación Estándar: 0.02970731891220461, Varianza: 0.0008825247969514297, Incertidumbre: 0.007002082217897084\n", + "Predicción obtenida: 0.288\n", + "\tR²: 0.5599804935133099, Desviación Estándar: 0.029315436669585263, Varianza: 0.0008593948271284642, Incertidumbre: 0.00672542241728888\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", "Predicción obtenida: 0.294\n", - "\tR²: 0.7842231008826372, Desviación Estándar: 0.017431002224719133, Varianza: 0.00030383983855816337, Incertidumbre: 0.004108526625325565\n", + "\tR²: 0.7878383281156356, Desviación Estándar: 0.01728531402736029, Varianza: 0.0002987820810244584, Incertidumbre: 0.004074187587895138\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", + "Ecuación de regresión: y = 0.004x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.5586324629674886, Desviación Estándar: 0.021009020466072784, Varianza: 0.00044137894094386517, Incertidumbre: 0.005826853887515214\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.5815487606672278, Desviación Estándar: 0.020794956088832327, Varianza: 0.0004324301987364647, Incertidumbre: 0.005767483111485157\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", @@ -30963,811 +35347,811 @@ "Predicción obtenida: 0.264\n", "\tR²: 0.009256571042910555, Desviación Estándar: 0.03798189451706237, Varianza: 0.0014426243111052524, Incertidumbre: 0.015506043505169485\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.304', 'Velocidad a la que se realiza el crucero (KTAS): 0.292', 'Área del ala: 0.288', 'Relación de aspecto del ala: 0.292', 'Longitud del fuselaje: 0.275', 'Peso máximo al despegue (MTOW): 0.29', 'Alcance de la aeronave: 0.311', 'envergadura: 0.287', 'payload: 0.294', 'Crucero KIAS: 0.291', 'Empty weight: 0.264']\n", - "**Mediana calculada:** 0.291\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.293', 'Longitud del fuselaje: 0.276', 'Peso máximo al despegue (MTOW): 0.291', 'Alcance de la aeronave: 0.315', 'envergadura: 0.288', 'payload: 0.294', 'Crucero KIAS: 0.292', 'Empty weight: 0.264']\n", + "**Mediana calculada:** 0.292\n", "\n", "--- Imputación para aeronave: **V35** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.0x + 0.227\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.0x + 0.21\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.00512115327712892, Desviación Estándar: 0.043329805954573745, Varianza: 0.0018774720840610147, Incertidumbre: 0.009940539231537572\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.00781429009993051, Desviación Estándar: 0.0430085862012688, Varianza: 0.001849738487031969, Incertidumbre: 0.00961701223621965\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.005x + 0.182\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.005x + 0.18\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.4192571699084816, Desviación Estándar: 0.032802224457642644, Varianza: 0.0010759859293695694, Incertidumbre: 0.007334800370049512\n", + "Predicción obtenida: 0.321\n", + "\tR²: 0.4360697755321421, Desviación Estándar: 0.03242435670008977, Varianza: 0.0010513389074146564, Incertidumbre: 0.007250306570810149\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.07x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 1.202\n", "Predicción obtenida: 0.301\n", - "\tR²: 0.7651489951552293, Desviación Estándar: 0.02085967698747946, Varianza: 0.0004351261240219801, Incertidumbre: 0.00466436557326921\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "\tR²: 0.7565518672120739, Desviación Estándar: 0.021304036943021673, Varianza: 0.0004538619900696323, Incertidumbre: 0.0047637274799763275\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 13.909\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.6656139724811423, Desviación Estándar: 0.02489060361542516, Varianza: 0.000619542148340216, Incertidumbre: 0.005565708168509269\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = -0.039x + 0.843\n", + "Valor del parámetro correlacionado para la aeronave: 13.898\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.6729848491652715, Desviación Estándar: 0.024691224016505753, Varianza: 0.0006096565434332705, Incertidumbre: 0.005521125534858225\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.37241241226406685, Desviación Estándar: 0.03441429034951141, Varianza: 0.0011843433802604744, Incertidumbre: 0.007895179676167752\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.38147480268763256, Desviación Estándar: 0.03395763069177028, Varianza: 0.001153120682198659, Incertidumbre: 0.007593157058163155\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", "Valor del parámetro correlacionado para la aeronave: 32.0\n", "Predicción obtenida: 0.302\n", - "\tR²: 0.682451786672694, Desviación Estándar: 0.024387054383523732, Varianza: 0.0005947284215049441, Incertidumbre: 0.005199337464370489\n", + "\tR²: 0.6749008669048356, Desviación Estándar: 0.024705639698818668, Varianza: 0.0006103686329278449, Incertidumbre: 0.005267260081811748\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = -0.0x + 0.317\n", - "Valor del parámetro correlacionado para la aeronave: 477.686\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.0764508060932585, Desviación Estándar: 0.04158957925260002, Varianza: 0.0017296931024082978, Incertidumbre: 0.008866928089582757\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = -0.0x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 456.221\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.15274102701798387, Desviación Estándar: 0.03988377763537778, Varianza: 0.0015907157184682607, Incertidumbre: 0.008503249962830417\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", "Ecuación de regresión: y = 0.029x + 0.195\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.296\n", - "\tR²: 0.5565499378750433, Desviación Estándar: 0.028928372807546923, Varianza: 0.0008368507532924203, Incertidumbre: 0.00663662387732458\n", + "Predicción obtenida: 0.297\n", + "\tR²: 0.5616690703122301, Desviación Estándar: 0.028586418069702225, Varianza: 0.0008171832980557979, Incertidumbre: 0.006392117403708249\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", "Predicción obtenida: 0.317\n", - "\tR²: 0.7895139994440685, Desviación Estándar: 0.0169782050018478, Varianza: 0.0002882594450847696, Incertidumbre: 0.003895067360303755\n", + "\tR²: 0.7929138648348985, Desviación Estándar: 0.016831546785257487, Varianza: 0.0002833009671843116, Incertidumbre: 0.0038614216579165406\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", + "Ecuación de regresión: y = 0.004x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.5604899238980319, Desviación Estándar: 0.020244967299597776, Varianza: 0.0004098587009617832, Incertidumbre: 0.005410695102966922\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.5832259382889582, Desviación Estándar: 0.020038522534308566, Varianza: 0.00040154238535799216, Incertidumbre: 0.005355520418609409\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.32', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.303', 'Longitud del fuselaje: 0.304', 'Peso máximo al despegue (MTOW): 0.302', 'Alcance de la aeronave: 0.31', 'envergadura: 0.296', 'payload: 0.317', 'Crucero KIAS: 0.313']\n", - "**Mediana calculada:** 0.304\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.321', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.304', 'Longitud del fuselaje: 0.306', 'Peso máximo al despegue (MTOW): 0.302', 'Alcance de la aeronave: 0.312', 'envergadura: 0.297', 'payload: 0.317', 'Crucero KIAS: 0.314']\n", + "**Mediana calculada:** 0.306\n", "\n", "--- Imputación para aeronave: **V39** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.0x + 0.227\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.0x + 0.21\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.007839382716985033, Desviación Estándar: 0.04197210135142703, Varianza: 0.001761657291854463, Incertidumbre: 0.009159063405679652\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.005x + 0.181\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.4130031365050483, Desviación Estándar: 0.03218362230740495, Varianza: 0.0010357855448256935, Incertidumbre: 0.00702304216007393\n", + "Predicción obtenida: 0.32\n", + "\tR²: 0.4305554307690891, Desviación Estándar: 0.031797681030392426, Varianza: 0.0010110925189105782, Incertidumbre: 0.006938822868849272\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.07x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.7648474342748249, Desviación Estándar: 0.0203700405430836, Varianza: 0.0004149385517268696, Incertidumbre: 0.004445107271333332\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.302\n", + "\tR²: 0.7560017518320579, Desviación Estándar: 0.02081436063167048, Varianza: 0.000433237608505234, Incertidumbre: 0.00454206586365423\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 14.054\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = -0.039x + 0.843\n", + "Valor del parámetro correlacionado para la aeronave: 14.042\n", "Predicción obtenida: 0.298\n", - "\tR²: 0.6655940393757499, Desviación Estándar: 0.024291483455634172, Varianza: 0.0005900761684753486, Incertidumbre: 0.005300836270391003\n", + "\tR²: 0.6728675905615071, Desviación Estándar: 0.024100802676844793, Varianza: 0.0005808486896682092, Incertidumbre: 0.005259226313135029\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 1.954\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.3724510383824907, Desviación Estándar: 0.03354292212178016, Varianza: 0.0011251276244678085, Incertidumbre: 0.007500425402828191\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.381487984139919, Desviación Estándar: 0.033139335158115936, Varianza: 0.0010982155347219389, Incertidumbre: 0.007231595802027506\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.001x + 0.258\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.001x + 0.259\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.6824856544856703, Desviación Estándar: 0.02385554248252102, Varianza: 0.0005690869071353651, Incertidumbre: 0.004974224462756526\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.6746862184494904, Desviación Estándar: 0.02417354407482776, Varianza: 0.0005843602331376403, Incertidumbre: 0.0050405323784455825\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = -0.0x + 0.317\n", - "Valor del parámetro correlacionado para la aeronave: 475.377\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.07597157149437128, Desviación Estándar: 0.04069586533624133, Varianza: 0.001656153455465489, Incertidumbre: 0.008485674515131983\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = -0.0x + 0.324\n", + "Valor del parámetro correlacionado para la aeronave: 413.556\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.1520436185450239, Desviación Estándar: 0.03902796009378789, Varianza: 0.0015231816690822997, Incertidumbre: 0.008137892230799079\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.029x + 0.195\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.029x + 0.196\n", "Valor del parámetro correlacionado para la aeronave: 3.9\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.5548768238027968, Desviación Estándar: 0.02824991788942962, Varianza: 0.0007980578607595157, Incertidumbre: 0.006316873675955201\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.5595879139438245, Desviación Estándar: 0.027964002682235915, Varianza: 0.0007819854460120975, Incertidumbre: 0.006102245667871153\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", "Ecuación de regresión: y = 0.005x + 0.27\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.7844930543930171, Desviación Estándar: 0.016790498176847062, Varianza: 0.0002819208290267045, Incertidumbre: 0.0037544695299516315\n", + "Predicción obtenida: 0.294\n", + "\tR²: 0.7889957205554606, Desviación Estándar: 0.016594408157668158, Varianza: 0.00027537438210328347, Incertidumbre: 0.003710622468692305\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.004x + 0.206\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", + "Ecuación de regresión: y = 0.004x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.5561091968076497, Desviación Estándar: 0.019679701564958057, Varianza: 0.00038729065368581255, Incertidumbre: 0.005081277094627639\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.5799398889644451, Desviación Estándar: 0.01946734334447621, Varianza: 0.0003789774568917221, Incertidumbre: 0.005026446437870543\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.306', 'Peso máximo al despegue (MTOW): 0.291', 'Alcance de la aeronave: 0.31', 'envergadura: 0.308', 'payload: 0.293', 'Crucero KIAS: 0.312']\n", - "**Mediana calculada:** 0.304\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.32', 'Área del ala: 0.302', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.292', 'Alcance de la aeronave: 0.313', 'envergadura: 0.309', 'payload: 0.294', 'Crucero KIAS: 0.314']\n", + "**Mediana calculada:** 0.307\n", "\n", "--- Imputación para aeronave: **Volitation VT370** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.0x + 0.227\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.0x + 0.21\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.007920162700700728, Desviación Estándar: 0.04100745249090813, Varianza: 0.0016816111597940874, Incertidumbre: 0.008742818246980276\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.005x + 0.181\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", "Predicción obtenida: 0.319\n", - "\tR²: 0.4130031365050483, Desviación Estándar: 0.03218362230740495, Varianza: 0.0010357855448256935, Incertidumbre: 0.00702304216007393\n", + "\tR²: 0.4264004008303849, Desviación Estándar: 0.031181277073957195, Varianza: 0.0009722720399628886, Incertidumbre: 0.0066478706090504465\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", - "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.069x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.764585109854175, Desviación Estándar: 0.019912811825215336, Varianza: 0.0003965200747864357, Incertidumbre: 0.00424542574579038\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.317\n", + "\tR²: 0.7552866449539557, Desviación Estándar: 0.020366589706083574, Varianza: 0.00041479797625594946, Incertidumbre: 0.004342171515057819\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 13.657\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.6645264748338366, Desviación Estándar: 0.023770852184850387, Varianza: 0.0005650534135940064, Incertidumbre: 0.00506796271419343\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 13.645\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.6709647919313728, Desviación Estándar: 0.023616235156659383, Varianza: 0.0005577265629746346, Incertidumbre: 0.005034998253022332\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.37232112301089393, Desviación Estándar: 0.032738858426763454, Varianza: 0.0010718328510876604, Incertidumbre: 0.007144204614623162\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.3815211319149636, Desviación Estándar: 0.03237814111230407, Varianza: 0.0010483440218882747, Incertidumbre: 0.006903042879406268\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.001x + 0.26\n", "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.6786409596766527, Desviación Estándar: 0.023499467179320575, Varianza: 0.0005522249577119649, Incertidumbre: 0.004796808651384641\n", + "Predicción obtenida: 0.314\n", + "\tR²: 0.6693148854310667, Desviación Estándar: 0.023860379147788803, Varianza: 0.0005693176930762347, Incertidumbre: 0.004870479498452192\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", - "Ecuación de regresión: y = -0.0x + 0.316\n", - "Valor del parámetro correlacionado para la aeronave: 482.568\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.0755252570158883, Desviación Estándar: 0.03985752064225148, Varianza: 0.0015886219517475032, Incertidumbre: 0.00813588233216365\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = -0.0x + 0.324\n", + "Valor del parámetro correlacionado para la aeronave: 565.637\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.15125833221890828, Desviación Estándar: 0.038225905277819265, Varianza: 0.001461219834308811, Incertidumbre: 0.007802830240551638\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", - "Ecuación de regresión: y = 0.029x + 0.195\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.029x + 0.196\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.383\n", - "\tR²: 0.5544873995856561, Desviación Estándar: 0.027581937552100175, Varianza: 0.0007607632791279538, Incertidumbre: 0.006018872221240193\n", + "Predicción obtenida: 0.384\n", + "\tR²: 0.5595332664978436, Desviación Estándar: 0.027324110665788853, Varianza: 0.0007466070236762762, Incertidumbre: 0.005825519967726159\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", "Ecuación de regresión: y = 0.005x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", "Predicción obtenida: 0.354\n", - "\tR²: 0.7813065689753644, Desviación Estándar: 0.016547337226329974, Varianza: 0.0002738143692818858, Incertidumbre: 0.003610925018553225\n", + "\tR²: 0.7831688836414169, Desviación Estándar: 0.01644167434806251, Varianza: 0.00027032865536773677, Incertidumbre: 0.0035878674881814365\n", "\tNivel de confianza: Confianza Muy Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.004x + 0.206\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", + "Ecuación de regresión: y = 0.004x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.5561091968076497, Desviación Estándar: 0.019679701564958057, Varianza: 0.00038729065368581255, Incertidumbre: 0.005081277094627639\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.578641185644784, Desviación Estándar: 0.018914583583003738, Varianza: 0.0003577614721184345, Incertidumbre: 0.0047286458957509344\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.316', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.313', 'Alcance de la aeronave: 0.31', 'envergadura: 0.383', 'payload: 0.354', 'Crucero KIAS: 0.312']\n", - "**Mediana calculada:** 0.313\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.317', 'Relación de aspecto del ala: 0.314', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.314', 'Alcance de la aeronave: 0.309', 'envergadura: 0.384', 'payload: 0.354', 'Crucero KIAS: 0.313']\n", + "**Mediana calculada:** 0.314\n", "\n", "--- Imputación para aeronave: **Skyeye 2600** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304]\n", - "Ecuación de regresión: y = 0.0x + 0.227\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.0x + 0.208\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.005176120015587982, Desviación Estándar: 0.04223283027110972, Varianza: 0.001783611952708361, Incertidumbre: 0.00944354793684122\n", + "Predicción obtenida: 0.307\n", + "\tR²: 0.008376532013914084, Desviación Estándar: 0.04013734006562043, Varianza: 0.001611006067543259, Incertidumbre: 0.008369213945592396\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.005x + 0.182\n", "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 0.362\n", - "\tR²: 0.41332607845278324, Desviación Estándar: 0.03146617256189972, Varianza: 0.0009901200156952508, Incertidumbre: 0.006708610531166274\n", + "Predicción obtenida: 0.363\n", + "\tR²: 0.4268824074716687, Desviación Estándar: 0.03051385371109099, Varianza: 0.0009310952683018614, Incertidumbre: 0.006362578327191434\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", - "Ecuación de regresión: y = 0.07x + 0.217\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.069x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.7647651611026156, Desviación Estándar: 0.019487043559427698, Varianza: 0.00037974486668703253, Incertidumbre: 0.004063329469498759\n", - "\tNivel de confianza: Confianza Muy Alta\n", + "Predicción obtenida: 0.279\n", + "\tR²: 0.7555152040915233, Desviación Estándar: 0.019929716367540293, Varianza: 0.0003971935944906035, Incertidumbre: 0.0041556331307013574\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.116\n", - "Predicción obtenida: 0.295\n", - "\tR²: 0.6651927379024003, Desviación Estándar: 0.023248373246514756, Varianza: 0.000540486858609263, Incertidumbre: 0.004847620925277197\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.103\n", + "Predicción obtenida: 0.296\n", + "\tR²: 0.6716280796932008, Desviación Estándar: 0.02309713944013369, Varianza: 0.0005334778503169791, Incertidumbre: 0.004816086496754028\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 2.05\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.3735742379948259, Desviación Estándar: 0.03200010007033279, Varianza: 0.0010240064045113127, Incertidumbre: 0.006822444258446171\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.38238206414682874, Desviación Estándar: 0.03167635049099469, Varianza: 0.0010033911804283393, Incertidumbre: 0.006604975662096291\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.001x + 0.26\n", "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 0.279\n", - "\tR²: 0.6788110572536825, Desviación Estándar: 0.023024764599624735, Varianza: 0.0005301397848681324, Incertidumbre: 0.004604952919924947\n", + "Predicción obtenida: 0.28\n", + "\tR²: 0.6695041439455878, Desviación Estándar: 0.02337831313115393, Varianza: 0.0005465455248582842, Incertidumbre: 0.004675662626230786\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", - "Ecuación de regresión: y = -0.0x + 0.317\n", - "Valor del parámetro correlacionado para la aeronave: 474.569\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.07577157816533575, Desviación Estándar: 0.039057511178466925, Varianza: 0.001525489179456069, Incertidumbre: 0.007811502235693385\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = -0.0x + 0.324\n", + "Valor del parámetro correlacionado para la aeronave: 407.828\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.15110158401290597, Desviación Estándar: 0.03746778536542462, Varianza: 0.0014038349401895272, Incertidumbre: 0.007493557073084923\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", "Ecuación de regresión: y = 0.023x + 0.215\n", "Valor del parámetro correlacionado para la aeronave: 2.6\n", - "Predicción obtenida: 0.274\n", - "\tR²: 0.456917343395016, Desviación Estándar: 0.02979541908647188, Varianza: 0.0008877669985384927, Incertidumbre: 0.006352404693351432\n", + "Predicción obtenida: 0.276\n", + "\tR²: 0.4627661042213257, Desviación Estándar: 0.029543156346368924, Varianza: 0.0008727980869059985, Incertidumbre: 0.006160173934959667\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313]\n", - "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 0.289\n", - "\tR²: 0.7248069548381981, Desviación Estándar: 0.018136863954327922, Varianza: 0.0003289458340977995, Incertidumbre: 0.0038667923875069623\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.7275683615430203, Desviación Estándar: 0.018006770737420567, Varianza: 0.0003242437923900256, Incertidumbre: 0.0038390564204693082\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313]\n", - "Ecuación de regresión: y = 0.004x + 0.206\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", + "Ecuación de regresión: y = 0.004x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.5625917571382832, Desviación Estándar: 0.01905614616302398, Varianza: 0.00036313670658653355, Incertidumbre: 0.004764036540755995\n", + "Predicción obtenida: 0.348\n", + "\tR²: 0.5842116709677524, Desviación Estándar: 0.018351270832188404, Varianza: 0.0003367691411563289, Incertidumbre: 0.004450836941495841\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292]\n", "Ecuación de regresión: y = 0.0x + 0.265\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", "Predicción obtenida: 0.268\n", - "\tR²: 0.003649740403420809, Desviación Estándar: 0.03643263340678523, Varianza: 0.0013273367769532033, Incertidumbre: 0.013770241085933945\n", + "\tR²: 0.003486790166087661, Desviación Estándar: 0.03652495038432548, Varianza: 0.001334072000577438, Incertidumbre: 0.013805133623699752\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.362', 'Área del ala: 0.278', 'Relación de aspecto del ala: 0.295', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.279', 'Alcance de la aeronave: 0.31', 'envergadura: 0.274', 'payload: 0.289', 'Crucero KIAS: 0.346', 'Empty weight: 0.268']\n", - "**Mediana calculada:** 0.295\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.363', 'Área del ala: 0.279', 'Relación de aspecto del ala: 0.296', 'Longitud del fuselaje: 0.311', 'Peso máximo al despegue (MTOW): 0.28', 'Alcance de la aeronave: 0.313', 'envergadura: 0.276', 'payload: 0.29', 'Crucero KIAS: 0.348', 'Empty weight: 0.268']\n", + "**Mediana calculada:** 0.296\n", "\n", "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295]\n", - "Ecuación de regresión: y = 0.0x + 0.23\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.0x + 0.211\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.004769951987118937, Desviación Estándar: 0.04125452439215927, Varianza: 0.0017019357828232645, Incertidumbre: 0.009002475275546283\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.007814506493702633, Desviación Estándar: 0.03934894530801304, Varianza: 0.0015483394968530018, Incertidumbre: 0.008032069826776185\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.004x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 26.25\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.31968876592912787, Desviación Estándar: 0.03317908352641865, Varianza: 0.0011008515836530652, Incertidumbre: 0.006918317160461927\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.3329612516575994, Desviación Estándar: 0.03226355293122838, Varianza: 0.0010409368477461755, Incertidumbre: 0.006585770164232172\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = 0.069x + 0.219\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.068x + 0.22\n", "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.7583363925473515, Desviación Estándar: 0.01935863479576612, Varianza: 0.0003747567411558467, Incertidumbre: 0.003951564780542887\n", + "Predicción obtenida: 0.289\n", + "\tR²: 0.7491292552639982, Desviación Estándar: 0.019786166950727165, Varianza: 0.00039149240260204785, Incertidumbre: 0.0040388344162334755\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 14.013\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.6659813449336012, Desviación Estándar: 0.02275906736360552, Varianza: 0.000517975147261134, Incertidumbre: 0.0046456751718719266\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 14.001\n", + "Predicción obtenida: 0.3\n", + "\tR²: 0.6723851116250787, Desviación Estándar: 0.022610932560392084, Varianza: 0.000511254271250599, Incertidumbre: 0.004615437281786883\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = 0.031x + 0.245\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 2.03\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.36900063185025456, Desviación Estándar: 0.03143801363195717, Varianza: 0.0009883487011231248, Incertidumbre: 0.006555278991585878\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.3778731110352854, Desviación Estándar: 0.031158471570466775, Varianza: 0.0009708503506075861, Incertidumbre: 0.0063601963760549695\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = 0.001x + 0.26\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.001x + 0.261\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.674546027930947, Desviación Estándar: 0.022774473008881708, Varianza: 0.0005186766208322815, Incertidumbre: 0.00446644162631077\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.66526195767342, Desviación Estándar: 0.023117889975755625, Varianza: 0.0005344368369311424, Incertidumbre: 0.00453379123459496\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = -0.0x + 0.316\n", - "Valor del parámetro correlacionado para la aeronave: 476.384\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.074422965024465, Desviación Estándar: 0.03840695118941138, Varianza: 0.0014750938996658278, Incertidumbre: 0.00753222282970824\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = -0.0x + 0.324\n", + "Valor del parámetro correlacionado para la aeronave: 425.273\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.14767582813821534, Desviación Estándar: 0.036889099953161315, Varianza: 0.0013608056953543263, Incertidumbre: 0.007234547711540164\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", "Ecuación de regresión: y = 0.022x + 0.219\n", "Valor del parámetro correlacionado para la aeronave: 2.93\n", - "Predicción obtenida: 0.284\n", - "\tR²: 0.44716444549394097, Desviación Estándar: 0.029426500593546755, Varianza: 0.0008659189371820075, Incertidumbre: 0.006135849529013565\n", + "Predicción obtenida: 0.285\n", + "\tR²: 0.4538529022461858, Desviación Estándar: 0.029193856890482952, Varianza: 0.0008522812801419989, Incertidumbre: 0.005959171083793167\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", "Ecuación de regresión: y = 0.004x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.7276037635441446, Desviación Estándar: 0.01777586747096132, Varianza: 0.00031598146434518075, Incertidumbre: 0.0037065245900637154\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.7300492378182392, Desviación Estándar: 0.0176537442574639, Varianza: 0.0003116546863079396, Incertidumbre: 0.0036810601397585336\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295]\n", - "Ecuación de regresión: y = 0.003x + 0.226\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", + "Ecuación de regresión: y = 0.003x + 0.224\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.41805913592782484, Desviación Estándar: 0.021338848229013108, Varianza: 0.00045534644374085583, Incertidumbre: 0.005175430892779141\n", + "Predicción obtenida: 0.305\n", + "\tR²: 0.4379735968192333, Desviación Estándar: 0.020751260149570606, Varianza: 0.0004306147977951571, Incertidumbre: 0.0048911189233091824\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296]\n", "Ecuación de regresión: y = 0.0x + 0.27\n", "Valor del parámetro correlacionado para la aeronave: 7.1\n", "Predicción obtenida: 0.272\n", - "\tR²: 0.001017512275129695, Desviación Estándar: 0.03522803474762737, Varianza: 0.001241014432180041, Incertidumbre: 0.012454991128961318\n", + "\tR²: 0.0008846968281794876, Desviación Estándar: 0.03538270380705628, Varianza: 0.0012519357286978749, Incertidumbre: 0.012509674899342281\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.309', 'Área del ala: 0.288', 'Relación de aspecto del ala: 0.299', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.298', 'Alcance de la aeronave: 0.309', 'envergadura: 0.284', 'payload: 0.298', 'Crucero KIAS: 0.304', 'Empty weight: 0.272']\n", - "**Mediana calculada:** 0.299\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.31', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.3', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.299', 'Alcance de la aeronave: 0.312', 'envergadura: 0.285', 'payload: 0.299', 'Crucero KIAS: 0.305', 'Empty weight: 0.272']\n", + "**Mediana calculada:** 0.3\n", "\n", "--- Imputación para aeronave: **Skyeye 3600** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.0x + 0.231\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.0x + 0.212\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.0046024842532983445, Desviación Estándar: 0.040314820357117226, Varianza: 0.0016252847404266335, Incertidumbre: 0.008595148579885139\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.007526495051969895, Desviación Estándar: 0.03857245496275595, Varianza: 0.001487834281853836, Incertidumbre: 0.00771449099255119\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.068x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.7551997675782928, Desviación Estándar: 0.0190968572628113, Varianza: 0.0003646899573161887, Incertidumbre: 0.0038193714525622596\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.745993216225064, Desviación Estándar: 0.019513738354102667, Varianza: 0.0003807859845523774, Incertidumbre: 0.0039027476708205335\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 13.722\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.6662095809690938, Desviación Estándar: 0.022299386888745724, Varianza: 0.0004972626556139646, Incertidumbre: 0.004459877377749145\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 13.71\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.6726026581884519, Desviación Estándar: 0.02215416542630856, Varianza: 0.0004908070457362455, Incertidumbre: 0.004430833085261712\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.031x + 0.244\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.032x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 2.488\n", - "Predicción obtenida: 0.322\n", - "\tR²: 0.3669311075827396, Desviación Estándar: 0.030832212553008696, Varianza: 0.0009506253309139069, Incertidumbre: 0.006293599032992129\n", + "Predicción obtenida: 0.324\n", + "\tR²: 0.37576047664868784, Desviación Estándar: 0.030590984286507895, Varianza: 0.000935808319617373, Incertidumbre: 0.006118196857301579\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.001x + 0.26\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.001x + 0.261\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.6751025711511651, Desviación Estándar: 0.0223500545446565, Varianza: 0.0004995249381491208, Incertidumbre: 0.00430127000258675\n", + "Predicción obtenida: 0.299\n", + "\tR²: 0.6658077862482688, Desviación Estándar: 0.02268722584632889, Varianza: 0.0005147102166023337, Incertidumbre: 0.0043661586498479395\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = -0.0x + 0.315\n", - "Valor del parámetro correlacionado para la aeronave: 482.044\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.07362847696573804, Desviación Estándar: 0.03773966564722344, Varianza: 0.001424282363164217, Incertidumbre: 0.007263002040183641\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = -0.0x + 0.323\n", + "Valor del parámetro correlacionado para la aeronave: 458.124\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.1458113421289795, Desviación Estándar: 0.03627105024977506, Varianza: 0.0013155890862217073, Incertidumbre: 0.006980366875166025\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", "Ecuación de regresión: y = 0.022x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 3.6\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.44117112031756955, Desviación Estándar: 0.02896800757279921, Varianza: 0.0008391454627377525, Incertidumbre: 0.0059130697848697586\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.4484176985315972, Desviación Estándar: 0.028755636237230698, Varianza: 0.0008268866154079353, Incertidumbre: 0.00575112724744614\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", "Ecuación de regresión: y = 0.004x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.7298053627667499, Desviación Estándar: 0.01740232203287305, Varianza: 0.0003028408121358188, Incertidumbre: 0.0035522341100110203\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.7321183484558058, Desviación Estándar: 0.017283518765307298, Varianza: 0.00029872002091072946, Incertidumbre: 0.0035279834945684007\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3]\n", "Ecuación de regresión: y = 0.0x + 0.274\n", "Valor del parámetro correlacionado para la aeronave: 11.5\n", - "Predicción obtenida: 0.275\n", - "\tR²: 0.000345064333019951, Desviación Estándar: 0.03430275891623664, Varianza: 0.0011766792692654523, Incertidumbre: 0.01143425297207888\n", + "Predicción obtenida: 0.276\n", + "\tR²: 0.0002618966283592927, Desviación Estándar: 0.03450249234670619, Varianza: 0.0011904219781345188, Incertidumbre: 0.011500830782235396\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Área del ala: 0.311', 'Relación de aspecto del ala: 0.311', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.298', 'Alcance de la aeronave: 0.309', 'envergadura: 0.299', 'payload: 0.315', 'Empty weight: 0.275']\n", - "**Mediana calculada:** 0.309\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Área del ala: 0.312', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.324', 'Peso máximo al despegue (MTOW): 0.299', 'Alcance de la aeronave: 0.311', 'envergadura: 0.301', 'payload: 0.316', 'Empty weight: 0.276']\n", + "**Mediana calculada:** 0.311\n", "\n", "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = 0.0x + 0.229\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = 0.0x + 0.211\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.004885808051522722, Desviación Estándar: 0.03944852241805123, Varianza: 0.0015561859209674905, Incertidumbre: 0.008225585537417332\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.0077910339066047385, Desviación Estándar: 0.037836352063430036, Varianza: 0.0014315895374678261, Incertidumbre: 0.0074203191344075535\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.004x + 0.203\n", "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.3176237816578882, Desviación Estándar: 0.03254110628346504, Varianza: 0.0010589235981517682, Incertidumbre: 0.006642425505013738\n", + "Predicción obtenida: 0.336\n", + "\tR²: 0.33106974113438137, Desviación Estándar: 0.03166709614118016, Varianza: 0.001002804978014747, Incertidumbre: 0.0063334192282360315\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = 0.068x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 1.32\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.7552867180720797, Desviación Estándar: 0.018728748952686985, Varianza: 0.0003507660373327738, Incertidumbre: 0.003673009860574284\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.7462264643720709, Desviación Estándar: 0.019135104991392145, Varianza: 0.0003661522430316006, Incertidumbre: 0.003752702836375202\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 13.684\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.6663591073897637, Desviación Estándar: 0.021868532210116903, Varianza: 0.0004782327010249204, Incertidumbre: 0.004288772018193017\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = -0.039x + 0.842\n", + "Valor del parámetro correlacionado para la aeronave: 13.672\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.6729065655813421, Desviación Estándar: 0.021724190260569178, Varianza: 0.0004719404424774087, Incertidumbre: 0.0042604642329094064\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", "Ecuación de regresión: y = 0.031x + 0.245\n", "Valor del parámetro correlacionado para la aeronave: 2.42\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.3631026056008778, Desviación Estándar: 0.03031715002312391, Varianza: 0.0009191295855246022, Incertidumbre: 0.006063430004624782\n", + "Predicción obtenida: 0.321\n", + "\tR²: 0.37206338538349726, Desviación Estándar: 0.030099937089659884, Varianza: 0.0009060062128014827, Incertidumbre: 0.005903083329926576\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = 0.001x + 0.261\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = 0.001x + 0.262\n", "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.6721978753808997, Desviación Estándar: 0.02204574905530395, Varianza: 0.00048601505140943494, Incertidumbre: 0.004166254961890813\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.6623522424362198, Desviación Estándar: 0.02239505431218533, Varianza: 0.0005015384576457308, Incertidumbre: 0.004232267450559075\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = -0.0x + 0.315\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = -0.0x + 0.323\n", "Valor del parámetro correlacionado para la aeronave: 300.0\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.07367366337637671, Desviación Estándar: 0.037059621839270106, Varianza: 0.0013734155708697057, Incertidumbre: 0.007003610219200486\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.1459436125708079, Desviación Estándar: 0.03561750202712675, Varianza: 0.0012686064506523779, Incertidumbre: 0.006731075191794021\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = 0.022x + 0.221\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = 0.022x + 0.222\n", "Valor del parámetro correlacionado para la aeronave: 3.6\n", - "Predicción obtenida: 0.3\n", - "\tR²: 0.43919899422207664, Desviación Estándar: 0.02844841198320688, Varianza: 0.0008093121443662688, Incertidumbre: 0.005689682396641376\n", + "Predicción obtenida: 0.301\n", + "\tR²: 0.4461253083393548, Desviación Estándar: 0.028269195215371138, Varianza: 0.0007991473981247625, Incertidumbre: 0.005544045309105432\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309]\n", - "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.7285836979639178, Desviación Estándar: 0.017095423279435584, Varianza: 0.0002922534971030681, Incertidumbre: 0.003419084655887117\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.7313295857648042, Desviación Estándar: 0.016962299070521318, Varianza: 0.00028771958975780837, Incertidumbre: 0.0033924598141042636\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299]\n", - "Ecuación de regresión: y = 0.003x + 0.226\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", + "Ecuación de regresión: y = 0.003x + 0.224\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.41660766587250275, Desviación Estándar: 0.020763504630057248, Varianza: 0.0004311231245224087, Incertidumbre: 0.004894004975037253\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.4365151702095247, Desviación Estándar: 0.02022420538915309, Varianza: 0.00040901848362264885, Incertidumbre: 0.004639750921301526\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311]\n", "Ecuación de regresión: y = 0.001x + 0.272\n", "Valor del parámetro correlacionado para la aeronave: 11.0\n", "Predicción obtenida: 0.281\n", - "\tR²: 0.00958847480002567, Desviación Estándar: 0.03395743305078767, Varianza: 0.0011531072593987265, Incertidumbre: 0.010738283193316921\n", + "\tR²: 0.009760346923073815, Desviación Estándar: 0.03428498479253269, Varianza: 0.0011754601822241977, Incertidumbre: 0.010841864148863874\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.334', 'Área del ala: 0.31', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.319', 'Peso máximo al despegue (MTOW): 0.314', 'Alcance de la aeronave: 0.311', 'envergadura: 0.3', 'payload: 0.315', 'Crucero KIAS: 0.323', 'Empty weight: 0.281']\n", - "**Mediana calculada:** 0.312\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.336', 'Área del ala: 0.311', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.321', 'Peso máximo al despegue (MTOW): 0.315', 'Alcance de la aeronave: 0.315', 'envergadura: 0.301', 'payload: 0.316', 'Crucero KIAS: 0.325', 'Empty weight: 0.281']\n", + "**Mediana calculada:** 0.315\n", "\n", "--- Imputación para aeronave: **Skyeye 5000** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = 0.0x + 0.227\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = 0.0x + 0.209\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.005277507804714032, Desviación Estándar: 0.03865833333585721, Varianza: 0.0014944667363062491, Incertidumbre: 0.007891099248272937\n", + "Predicción obtenida: 0.306\n", + "\tR²: 0.008217398892604644, Desviación Estándar: 0.03716734216604148, Varianza: 0.001381411323687605, Incertidumbre: 0.007152858334875658\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312]\n", - "Ecuación de regresión: y = 0.004x + 0.209\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.3066672465334307, Desviación Estándar: 0.032165160212105026, Varianza: 0.0010345975314703841, Incertidumbre: 0.006433032042421005\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.32262835377535615, Desviación Estándar: 0.031288239037149196, Varianza: 0.0009789539020457867, Incertidumbre: 0.006136128515245357\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = 0.068x + 0.22\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = 0.068x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.398\n", - "\tR²: 0.7555609689379138, Desviación Estándar: 0.018382843455420142, Varianza: 0.0003379289335064831, Incertidumbre: 0.003537779872485856\n", + "Predicción obtenida: 0.399\n", + "\tR²: 0.7464203816084714, Desviación Estándar: 0.01879361973555014, Varianza: 0.00035320014276445967, Incertidumbre: 0.0036168338044557788\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = -0.039x + 0.839\n", - "Valor del parámetro correlacionado para la aeronave: 12.713\n", - "Predicción obtenida: 0.349\n", - "\tR²: 0.6668851212909376, Desviación Estándar: 0.0214597386033369, Varianza: 0.00046052038092354804, Incertidumbre: 0.004129928619791854\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = -0.039x + 0.843\n", + "Valor del parámetro correlacionado para la aeronave: 12.695\n", + "Predicción obtenida: 0.351\n", + "\tR²: 0.6736164896021335, Desviación Estándar: 0.02132148100602976, Varianza: 0.0004546055522904879, Incertidumbre: 0.004103320932784258\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = 0.03x + 0.245\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = 0.031x + 0.246\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.352\n", - "\tR²: 0.36315238206647993, Desviación Estándar: 0.02976054264839433, Varianza: 0.0008856898987268976, Incertidumbre: 0.005836522603818192\n", + "Predicción obtenida: 0.354\n", + "\tR²: 0.3726704559110734, Desviación Estándar: 0.02955977566670113, Varianza: 0.0008737803374656961, Incertidumbre: 0.005688781479451615\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", "Valores para Cuerda: [0.239, 0.318, 0.352]\n", "Ecuación de regresión: y = 0.883x + 0.101\n", @@ -31777,757 +36161,757 @@ "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = 0.001x + 0.261\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = 0.001x + 0.262\n", "Valor del parámetro correlacionado para la aeronave: 90.0\n", "Predicción obtenida: 0.381\n", - "\tR²: 0.67222934329996, Desviación Estándar: 0.021666156030378594, Varianza: 0.00046942231713271076, Incertidumbre: 0.004023304171057925\n", + "\tR²: 0.6626838320176878, Desviación Estándar: 0.022005551176023402, Varianza: 0.000484244282560585, Incertidumbre: 0.004086328267404087\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = -0.0x + 0.315\n", - "Valor del parámetro correlacionado para la aeronave: 615.631\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.07408169434278955, Desviación Estándar: 0.03641523910867908, Varianza: 0.0013260696393422703, Incertidumbre: 0.006762140141084367\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = -0.0x + 0.323\n", + "Valor del parámetro correlacionado para la aeronave: 530.401\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.14678275665337615, Desviación Estándar: 0.034998020711235714, Varianza: 0.0012248614537040841, Incertidumbre: 0.006498969291500381\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", "Ecuación de regresión: y = 0.022x + 0.222\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.33\n", - "\tR²: 0.4363264574290574, Desviación Estándar: 0.027998638079495427, Varianza: 0.0007839237343065714, Incertidumbre: 0.005490984689283431\n", + "Predicción obtenida: 0.332\n", + "\tR²: 0.4424360357921081, Desviación Estándar: 0.02786766696740896, Varianza: 0.0007766068622064165, Incertidumbre: 0.005363135008440135\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312]\n", - "Ecuación de regresión: y = 0.004x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", + "Ecuación de regresión: y = 0.004x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", "Predicción obtenida: 0.358\n", - "\tR²: 0.7282681597919514, Desviación Estándar: 0.016773711285579456, Varianza: 0.00028135739029197564, Incertidumbre: 0.0032895954292515833\n", + "\tR²: 0.731317018691535, Desviación Estándar: 0.016633562499201185, Varianza: 0.0002766754014148319, Incertidumbre: 0.00326210999092277\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312]\n", - "Ecuación de regresión: y = 0.003x + 0.228\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315]\n", + "Ecuación de regresión: y = 0.003x + 0.226\n", "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 0.331\n", - "\tR²: 0.4160144196233093, Desviación Estándar: 0.020338026156813578, Varianza: 0.00041363530795523323, Incertidumbre: 0.004665863196244067\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.43886786937390043, Desviación Estándar: 0.019812140290383477, Varianza: 0.00039252090288583623, Incertidumbre: 0.0044301292469059875\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315]\n", "Ecuación de regresión: y = 0.001x + 0.271\n", "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.02251377090831741, Desviación Estándar: 0.033563109667469955, Varianza: 0.0011264823305506154, Incertidumbre: 0.010119658324049803\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.023639785146452374, Desviación Estándar: 0.0340515934789817, Varianza: 0.001159511018457829, Incertidumbre: 0.01026694173486318\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.304', 'Velocidad a la que se realiza el crucero (KTAS): 0.344', 'Área del ala: 0.398', 'Relación de aspecto del ala: 0.349', 'Longitud del fuselaje: 0.352', 'Ancho del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.307', 'envergadura: 0.33', 'payload: 0.358', 'Crucero KIAS: 0.331', 'Empty weight: 0.311']\n", - "**Mediana calculada:** 0.346\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.346', 'Área del ala: 0.399', 'Relación de aspecto del ala: 0.351', 'Longitud del fuselaje: 0.354', 'Ancho del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.309', 'envergadura: 0.332', 'payload: 0.358', 'Crucero KIAS: 0.333', 'Empty weight: 0.312']\n", + "**Mediana calculada:** 0.348\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.0x + 0.215\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.0x + 0.199\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.305\n", - "\tR²: 0.0069178491819321675, Desviación Estándar: 0.03877743810622532, Varianza: 0.0015036897060821354, Incertidumbre: 0.007755487621245063\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.009824679618514076, Desviación Estándar: 0.03730259846752296, Varianza: 0.0013914838524292463, Incertidumbre: 0.00704952848582606\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.004x + 0.209\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.004x + 0.207\n", "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.3363378708178395, Desviación Estándar: 0.03154190924564428, Varianza: 0.0009948920388604602, Incertidumbre: 0.006185877336135111\n", + "Predicción obtenida: 0.325\n", + "\tR²: 0.35279566671506324, Desviación Estándar: 0.03070509946045511, Varianza: 0.0009428031328764408, Incertidumbre: 0.00590919914632933\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.059x + 0.229\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.059x + 0.231\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.385\n", - "\tR²: 0.7140844954505441, Desviación Estándar: 0.019953273741700576, Varianza: 0.00039813313301123777, Incertidumbre: 0.003770814297295355\n", + "Predicción obtenida: 0.386\n", + "\tR²: 0.7085123361490802, Desviación Estándar: 0.020239189952971352, Varianza: 0.00040962480995245654, Incertidumbre: 0.0038248473823542318\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = -0.038x + 0.836\n", - "Valor del parámetro correlacionado para la aeronave: 13.046\n", - "Predicción obtenida: 0.336\n", - "\tR²: 0.6808265849574946, Desviación Estándar: 0.021081847262580024, Varianza: 0.00044444428400275285, Incertidumbre: 0.003984094645331039\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 13.032\n", + "Predicción obtenida: 0.338\n", + "\tR²: 0.6878639211364455, Desviación Estándar: 0.02094377780954981, Varianza: 0.0004386418289357911, Incertidumbre: 0.003958001971304421\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.03x + 0.246\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.03x + 0.247\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.351\n", - "\tR²: 0.3920963576822901, Desviación Estándar: 0.02922109638467694, Varianza: 0.0008538724739225799, Incertidumbre: 0.0056236026212364105\n", - "\tNivel de confianza: Confianza Media\n", + "Predicción obtenida: 0.353\n", + "\tR²: 0.39957074018891947, Desviación Estándar: 0.029047847816911346, Varianza: 0.0008437774627944413, Incertidumbre: 0.0054895272460855635\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.346]\n", - "Ecuación de regresión: y = 0.4x + 0.207\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.348]\n", + "Ecuación de regresión: y = 0.411x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 0.358\n", - "\tR²: 0.38245795781242664, Desviación Estándar: 0.0353855035263058, Varianza: 0.0012521338598102006, Incertidumbre: 0.0176927517631529\n", + "Predicción obtenida: 0.359\n", + "\tR²: 0.3978508461679193, Desviación Estándar: 0.03522448950237247, Varianza: 0.001240764660702748, Incertidumbre: 0.017612244751186234\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.001x + 0.263\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.001x + 0.264\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.387\n", - "\tR²: 0.6598630268437224, Desviación Estándar: 0.02206649940336974, Varianza: 0.0004869303959189171, Incertidumbre: 0.004028773162799966\n", + "Predicción obtenida: 0.388\n", + "\tR²: 0.6531876768371664, Desviación Estándar: 0.02232772097728044, Varianza: 0.000498527124039289, Incertidumbre: 0.004076465478979263\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = -0.0x + 0.317\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = -0.0x + 0.324\n", "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.07051034083815089, Desviación Estándar: 0.03647781384637196, Varianza: 0.0013306309030105662, Incertidumbre: 0.0066599071640440705\n", + "Predicción obtenida: 0.303\n", + "\tR²: 0.14185181764220745, Desviación Estándar: 0.035121922429990356, Varianza: 0.0012335494351782598, Incertidumbre: 0.006412356392617459\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.022x + 0.22\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.022x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.4566675873516166, Desviación Estándar: 0.027625614100153503, Varianza: 0.0007631745544106001, Incertidumbre: 0.005316551912417449\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.4612182728347505, Desviación Estándar: 0.027516263885293008, Varianza: 0.0007571447782050803, Incertidumbre: 0.005200085089293802\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.004x + 0.274\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.377\n", - "\tR²: 0.7340964250736124, Desviación Estándar: 0.01659158262598554, Varianza: 0.0002752806140349053, Incertidumbre: 0.0031930515651315567\n", + "Predicción obtenida: 0.378\n", + "\tR²: 0.7386270567836593, Desviación Estándar: 0.01642870017516188, Varianza: 0.00026990218944536394, Incertidumbre: 0.003161704822855121\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346]\n", - "Ecuación de regresión: y = 0.003x + 0.224\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.003x + 0.222\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.317\n", - "\tR²: 0.4797563623056019, Desviación Estándar: 0.02006710184638167, Varianza: 0.0004026885765130546, Incertidumbre: 0.004487140383992096\n", + "Predicción obtenida: 0.318\n", + "\tR²: 0.5000484040159869, Desviación Estándar: 0.019560275570138758, Varianza: 0.0003826043803797671, Incertidumbre: 0.0042684020673503026\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.305', 'Velocidad a la que se realiza el crucero (KTAS): 0.324', 'Área del ala: 0.385', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.351', 'Ancho del fuselaje: 0.358', 'Peso máximo al despegue (MTOW): 0.387', 'Alcance de la aeronave: 0.306', 'envergadura: 0.332', 'payload: 0.377', 'Crucero KIAS: 0.317']\n", - "**Mediana calculada:** 0.336\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.325', 'Área del ala: 0.386', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.353', 'Ancho del fuselaje: 0.359', 'Peso máximo al despegue (MTOW): 0.388', 'Alcance de la aeronave: 0.303', 'envergadura: 0.333', 'payload: 0.378', 'Crucero KIAS: 0.318']\n", + "**Mediana calculada:** 0.338\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.0x + 0.207\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", + "Ecuación de regresión: y = 0.0x + 0.199\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.008204928681858958, Desviación Estándar: 0.038476561679856074, Varianza: 0.001480445798703769, Incertidumbre: 0.007545874570059327\n", + "Predicción obtenida: 0.308\n", + "\tR²: 0.009824679618514076, Desviación Estándar: 0.03730259846752296, Varianza: 0.0013914838524292463, Incertidumbre: 0.00704952848582606\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 33.885\n", - "Predicción obtenida: 0.337\n", - "\tR²: 0.3474595488240295, Desviación Estándar: 0.03103314635842597, Varianza: 0.000963056172903487, Incertidumbre: 0.005972331801279429\n", + "Predicción obtenida: 0.339\n", + "\tR²: 0.364003579646475, Desviación Estándar: 0.030242361656466255, Varianza: 0.0009146004385605004, Incertidumbre: 0.005715269143020364\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.053x + 0.236\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.053x + 0.237\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.375\n", - "\tR²: 0.6729975157002732, Desviación Estándar: 0.021200760020167443, Varianza: 0.0004494722254327303, Incertidumbre: 0.003936882301555514\n", + "Predicción obtenida: 0.376\n", + "\tR²: 0.6700337636483493, Desviación Estándar: 0.021406727235210983, Varianza: 0.0004582479709227237, Incertidumbre: 0.00397512945320641\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = -0.038x + 0.836\n", - "Valor del parámetro correlacionado para la aeronave: 12.876\n", - "Predicción obtenida: 0.343\n", - "\tR²: 0.6878032793029674, Desviación Estándar: 0.020715244926136148, Varianza: 0.00042912137234980943, Incertidumbre: 0.0038467244119793098\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 12.856\n", + "Predicción obtenida: 0.344\n", + "\tR²: 0.6950392482679, Desviación Estándar: 0.020579626973971723, Varianza: 0.0004235210463878245, Incertidumbre: 0.003821540790489258\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", "Ecuación de regresión: y = 0.029x + 0.248\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.348\n", - "\tR²: 0.4021070843542891, Desviación Estándar: 0.02880802670233707, Varianza: 0.0008299024024825657, Incertidumbre: 0.005444205315492288\n", + "Predicción obtenida: 0.351\n", + "\tR²: 0.40843076343231066, Desviación Estándar: 0.028662780269184288, Varianza: 0.0008215549727595402, Incertidumbre: 0.005322544675180707\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.335x + 0.222\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.347x + 0.219\n", "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 0.348\n", - "\tR²: 0.3819496237120672, Desviación Estándar: 0.032423341688487206, Varianza: 0.0010512730862483922, Incertidumbre: 0.01450015921463204\n", + "Predicción obtenida: 0.349\n", + "\tR²: 0.401178655632655, Desviación Estándar: 0.03226372501937835, Varianza: 0.001040947952126061, Incertidumbre: 0.014428776470138143\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.001x + 0.267\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.001x + 0.268\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.377\n", - "\tR²: 0.61787092141232, Desviación Estándar: 0.023196525022263995, Varianza: 0.0005380787731085197, Incertidumbre: 0.004166218882595367\n", + "Predicción obtenida: 0.378\n", + "\tR²: 0.6142108778582203, Desviación Estándar: 0.02336858751606866, Varianza: 0.0005460908824961601, Incertidumbre: 0.004197122218762633\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = -0.0x + 0.317\n", - "Valor del parámetro correlacionado para la aeronave: 609.354\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.0654907654203285, Desviación Estándar: 0.03627518909145652, Varianza: 0.0013158893436209262, Incertidumbre: 0.006515216292849419\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = -0.0x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 528.174\n", + "Predicción obtenida: 0.311\n", + "\tR²: 0.12969533614523188, Desviación Estándar: 0.03509886956318445, Varianza: 0.0012319306446134358, Incertidumbre: 0.00630394306869412\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.022x + 0.22\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.023x + 0.221\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.46936427126981495, Desviación Estándar: 0.027139388088225875, Varianza: 0.0007365463858033365, Incertidumbre: 0.005128862258279595\n", + "Predicción obtenida: 0.334\n", + "\tR²: 0.47311026916495147, Desviación Estándar: 0.027050505844431656, Varianza: 0.0007317298664396311, Incertidumbre: 0.005023152830642055\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.004x + 0.276\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.277\n", "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.6901097817245, Desviación Estándar: 0.01772848171904924, Varianza: 0.00031429906406266314, Incertidumbre: 0.0033503681250970823\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.6973906199473292, Desviación Estándar: 0.017512139839937605, Varianza: 0.00030667504177352985, Incertidumbre: 0.0033094833529329548\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336]\n", - "Ecuación de regresión: y = 0.003x + 0.222\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338]\n", + "Ecuación de regresión: y = 0.004x + 0.22\n", "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 0.342\n", - "\tR²: 0.4932580403474792, Desviación Estándar: 0.019996932601760886, Varianza: 0.00039987731347936734, Incertidumbre: 0.004363688443547595\n", + "Predicción obtenida: 0.345\n", + "\tR²: 0.5123468231062337, Desviación Estándar: 0.019530346323899706, Varianza: 0.00038143442753146275, Incertidumbre: 0.0041638838269285805\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348]\n", "Ecuación de regresión: y = 0.002x + 0.263\n", "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.23082193042213683, Desviación Estándar: 0.03253007300095766, Varianza: 0.0010582056494476341, Incertidumbre: 0.00939062320193054\n", + "Predicción obtenida: 0.346\n", + "\tR²: 0.23373450804691387, Desviación Estándar: 0.032994278206234205, Varianza: 0.0010886223943503814, Incertidumbre: 0.009524627702043362\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.337', 'Área del ala: 0.375', 'Relación de aspecto del ala: 0.343', 'Longitud del fuselaje: 0.348', 'Ancho del fuselaje: 0.348', 'Peso máximo al despegue (MTOW): 0.377', 'Alcance de la aeronave: 0.309', 'envergadura: 0.332', 'payload: 0.332', 'Crucero KIAS: 0.342', 'Empty weight: 0.344']\n", - "**Mediana calculada:** 0.342\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.339', 'Área del ala: 0.376', 'Relación de aspecto del ala: 0.344', 'Longitud del fuselaje: 0.351', 'Ancho del fuselaje: 0.349', 'Peso máximo al despegue (MTOW): 0.378', 'Alcance de la aeronave: 0.311', 'envergadura: 0.334', 'payload: 0.333', 'Crucero KIAS: 0.345', 'Empty weight: 0.346']\n", + "**Mediana calculada:** 0.344\n", "\n", "--- Imputación para aeronave: **Volitation VT510** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.0x + 0.199\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344]\n", + "Ecuación de regresión: y = 0.0x + 0.191\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.009671200460906637, Desviación Estándar: 0.038341789857909814, Varianza: 0.0014700928495081159, Incertidumbre: 0.007378880898558765\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.011265848190217476, Desviación Estándar: 0.037236364860275865, Varianza: 0.0013865468680075873, Incertidumbre: 0.006914619365213018\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.3657078235083421, Desviación Estándar: 0.030486197686657987, Varianza: 0.0009294082493899907, Incertidumbre: 0.005761349821346404\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.38259337108241265, Desviación Estándar: 0.029730535611440134, Varianza: 0.00088390474774311, Incertidumbre: 0.005520821864551259\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.049x + 0.24\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.049x + 0.241\n", "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 0.339\n", - "\tR²: 0.6607991636850806, Desviación Estándar: 0.021542829923793395, Varianza: 0.00046409352112548814, Incertidumbre: 0.003933164633919647\n", + "Predicción obtenida: 0.34\n", + "\tR²: 0.6594487293179985, Desviación Estándar: 0.021710134055956, Varianza: 0.00047132992072758054, Incertidumbre: 0.003963710049636075\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = -0.038x + 0.835\n", - "Valor del parámetro correlacionado para la aeronave: 13.114\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.6968007721860683, Desviación Estándar: 0.020367528893078666, Varianza: 0.00041483623321039427, Incertidumbre: 0.003718585005125804\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 13.099\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.704188353912186, Desviación Estándar: 0.020233866799229377, Varianza: 0.00040940936564895687, Incertidumbre: 0.0036941817571642614\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.028x + 0.249\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.029x + 0.249\n", "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 0.331\n", - "\tR²: 0.41997296733972356, Desviación Estándar: 0.028328973372175076, Varianza: 0.0008025307323214044, Incertidumbre: 0.005260558290554748\n", + "Predicción obtenida: 0.333\n", + "\tR²: 0.42514465313889094, Desviación Estándar: 0.028206587035388978, Varianza: 0.0007956115521849735, Incertidumbre: 0.005149794663171771\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.001x + 0.269\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.001x + 0.27\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.371\n", - "\tR²: 0.6038191426117239, Desviación Estándar: 0.02351157571063262, Varianza: 0.0005527941923968098, Incertidumbre: 0.004156298655342311\n", + "Predicción obtenida: 0.372\n", + "\tR²: 0.6021174048921634, Desviación Estándar: 0.023638617780023557, Varianza: 0.0005587842505500459, Incertidumbre: 0.004178756732532887\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = -0.0x + 0.318\n", - "Valor del parámetro correlacionado para la aeronave: 501.616\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.06342608491681201, Desviación Estándar: 0.03614981016848977, Varianza: 0.0013068087752178463, Incertidumbre: 0.006390443977186381\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = -0.0x + 0.326\n", + "Valor del parámetro correlacionado para la aeronave: 503.585\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.12714259346444579, Desviación Estándar: 0.035011946666754785, Varianza: 0.0012258364093956815, Incertidumbre: 0.006189296227651011\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.023x + 0.219\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.023x + 0.22\n", "Valor del parámetro correlacionado para la aeronave: 5.1\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.4836792530977432, Desviación Estándar: 0.026728002730142274, Varianza: 0.0007143861299424928, Incertidumbre: 0.004963265505770935\n", + "Predicción obtenida: 0.337\n", + "\tR²: 0.4865211118670584, Desviación Estándar: 0.026658305995461602, Varianza: 0.0007106652785476641, Incertidumbre: 0.004867118512863177\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.004x + 0.276\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.004x + 0.277\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.37\n", - "\tR²: 0.6941742799016253, Desviación Estándar: 0.01751465394968648, Varianza: 0.00030676310297726825, Incertidumbre: 0.0032523895882410683\n", + "Predicción obtenida: 0.371\n", + "\tR²: 0.7011767124714305, Desviación Estándar: 0.01732374391424772, Varianza: 0.00030011210320643483, Incertidumbre: 0.0032169384846488743\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.003x + 0.222\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344]\n", + "Ecuación de regresión: y = 0.004x + 0.22\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.5326016124134147, Desviación Estándar: 0.019537228035800464, Varianza: 0.0003817032793228677, Incertidumbre: 0.004165351012835574\n", + "Predicción obtenida: 0.327\n", + "\tR²: 0.5502375625525282, Desviación Estándar: 0.019101623043785508, Varianza: 0.00036487200290687756, Incertidumbre: 0.003982963736514053\n", "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.334', 'Área del ala: 0.339', 'Relación de aspecto del ala: 0.334', 'Longitud del fuselaje: 0.331', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.312', 'envergadura: 0.335', 'payload: 0.37', 'Crucero KIAS: 0.325']\n", - "**Mediana calculada:** 0.334\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.335', 'Área del ala: 0.34', 'Relación de aspecto del ala: 0.335', 'Longitud del fuselaje: 0.333', 'Peso máximo al despegue (MTOW): 0.372', 'Alcance de la aeronave: 0.313', 'envergadura: 0.337', 'payload: 0.371', 'Crucero KIAS: 0.327']\n", + "**Mediana calculada:** 0.335\n", "\n", "--- Imputación para aeronave: **Ascend** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342]\n", - "Ecuación de regresión: y = 0.0x + 0.199\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.0x + 0.185\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.009671200460906637, Desviación Estándar: 0.038341789857909814, Varianza: 0.0014700928495081159, Incertidumbre: 0.007378880898558765\n", + "Predicción obtenida: 0.31\n", + "\tR²: 0.012363783169715314, Desviación Estándar: 0.0368988404995783, Varianza: 0.0013615244302133194, Incertidumbre: 0.006736775762468075\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.004x + 0.205\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.3754279357663507, Desviación Estándar: 0.02995609491552544, Varianza: 0.0008973676225879692, Incertidumbre: 0.005562707175802361\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.3919925997911332, Desviación Estándar: 0.029230827578736365, Varianza: 0.0008544412809378144, Incertidumbre: 0.005336794546472675\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", "Ecuación de regresión: y = 0.049x + 0.241\n", "Valor del parámetro correlacionado para la aeronave: 0.771\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.6655989150459374, Desviación Estándar: 0.021207046925550192, Varianza: 0.00044973883930248784, Incertidumbre: 0.0038088980681594306\n", + "Predicción obtenida: 0.279\n", + "\tR²: 0.6641048421071282, Desviación Estándar: 0.021373342448267822, Varianza: 0.0004568197674109272, Incertidumbre: 0.003838765625742831\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = -0.038x + 0.836\n", - "Valor del parámetro correlacionado para la aeronave: 14.357\n", - "Predicción obtenida: 0.286\n", - "\tR²: 0.7014972579081873, Desviación Estándar: 0.02003643818748548, Varianza: 0.0004014588552409264, Incertidumbre: 0.003598650532204136\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 14.349\n", + "Predicción obtenida: 0.287\n", + "\tR²: 0.7086760340890808, Desviación Estándar: 0.019904839465063797, Varianza: 0.0003962026341299613, Incertidumbre: 0.0035750147039172522\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.028x + 0.248\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.029x + 0.249\n", "Valor del parámetro correlacionado para la aeronave: 1.562\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.4296493321511522, Desviación Estándar: 0.027858702470545647, Varianza: 0.0007761073033423862, Incertidumbre: 0.005086279921980917\n", + "Predicción obtenida: 0.294\n", + "\tR²: 0.43377431731307325, Desviación Estándar: 0.027750151250249728, Varianza: 0.0007700708944117365, Incertidumbre: 0.004984074296589788\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.001x + 0.271\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.001x + 0.272\n", "Valor del parámetro correlacionado para la aeronave: 9.5\n", - "Predicción obtenida: 0.28\n", - "\tR²: 0.582320619650718, Desviación Estándar: 0.023909852818436363, Varianza: 0.0005716810617992893, Incertidumbre: 0.0041621711328791375\n", + "Predicción obtenida: 0.281\n", + "\tR²: 0.5805077444550542, Desviación Estándar: 0.024037954911906977, Varianza: 0.0005778232763468728, Incertidumbre: 0.00418447084503352\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = -0.0x + 0.319\n", - "Valor del parámetro correlacionado para la aeronave: 478.644\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.06366520088212502, Desviación Estándar: 0.03579900590384107, Varianza: 0.0012815688237032483, Incertidumbre: 0.006231807033284842\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = -0.0x + 0.327\n", + "Valor del parámetro correlacionado para la aeronave: 420.652\n", + "Predicción obtenida: 0.316\n", + "\tR²: 0.1266463739361714, Desviación Estándar: 0.03468411410732085, Varianza: 0.001202987771409653, Incertidumbre: 0.0060377292827023645\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.023x + 0.219\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.023x + 0.22\n", "Valor del parámetro correlacionado para la aeronave: 2.0\n", - "Predicción obtenida: 0.265\n", - "\tR²: 0.4924880946399838, Desviación Estándar: 0.026279253552868982, Varianza: 0.000690599167295977, Incertidumbre: 0.004797913321768041\n", + "Predicción obtenida: 0.266\n", + "\tR²: 0.494252346723298, Desviación Estándar: 0.026226329343117413, Varianza: 0.0006878203508136613, Incertidumbre: 0.004710387802724272\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.003x + 0.278\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.003x + 0.279\n", "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 0.28\n", - "\tR²: 0.6596231201497137, Desviación Estándar: 0.018262602460999124, Varianza: 0.0003335226486484913, Incertidumbre: 0.0033342797755461936\n", + "Predicción obtenida: 0.281\n", + "\tR²: 0.6661275841307379, Desviación Estándar: 0.01809912723389064, Varianza: 0.00032757840662856185, Incertidumbre: 0.0033044334190526613\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334]\n", - "Ecuación de regresión: y = 0.003x + 0.221\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335]\n", + "Ecuación de regresión: y = 0.004x + 0.219\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", "Predicción obtenida: 0.291\n", - "\tR²: 0.5479865342925803, Desviación Estándar: 0.019192420183738294, Varianza: 0.0003683489925091651, Incertidumbre: 0.004001896248949366\n", + "\tR²: 0.5647788073941997, Desviación Estándar: 0.018767936696439058, Varianza: 0.00035223544784154386, Incertidumbre: 0.0038309890359276236\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344]\n", "Ecuación de regresión: y = 0.002x + 0.263\n", "Valor del parámetro correlacionado para la aeronave: 3.0\n", "Predicción obtenida: 0.27\n", - "\tR²: 0.3428931453094083, Desviación Estándar: 0.031257301972751485, Varianza: 0.000977018926615774, Incertidumbre: 0.008669215768878245\n", + "\tR²: 0.3462930840767372, Desviación Estándar: 0.031703647782123416, Varianza: 0.0010051212826929388, Incertidumbre: 0.008793009822899704\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.278', 'Relación de aspecto del ala: 0.286', 'Longitud del fuselaje: 0.293', 'Peso máximo al despegue (MTOW): 0.28', 'Alcance de la aeronave: 0.313', 'envergadura: 0.265', 'payload: 0.28', 'Crucero KIAS: 0.291', 'Empty weight: 0.27']\n", - "**Mediana calculada:** 0.286\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.31', 'Velocidad a la que se realiza el crucero (KTAS): 0.292', 'Área del ala: 0.279', 'Relación de aspecto del ala: 0.287', 'Longitud del fuselaje: 0.294', 'Peso máximo al despegue (MTOW): 0.281', 'Alcance de la aeronave: 0.316', 'envergadura: 0.266', 'payload: 0.281', 'Crucero KIAS: 0.291', 'Empty weight: 0.27']\n", + "**Mediana calculada:** 0.287\n", "\n", "--- Imputación para aeronave: **Transition** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286]\n", - "Ecuación de regresión: y = 0.0x + 0.204\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = 0.0x + 0.19\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.008560595514286895, Desviación Estándar: 0.03787184264181916, Varianza: 0.0014342764650867124, Incertidumbre: 0.0071571055230017794\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.011152514691267879, Desviación Estándar: 0.03652974557296492, Varianza: 0.0013344223116255503, Incertidumbre: 0.006560935986593608\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = 0.004x + 0.206\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = 0.004x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 21.875\n", "Predicción obtenida: 0.291\n", - "\tR²: 0.38249062220586694, Desviación Estándar: 0.029467308778454444, Varianza: 0.0008683222866447784, Incertidumbre: 0.0053799699089765\n", - "\tNivel de confianza: Confianza Media\n", + "\tR²: 0.39888174922260133, Desviación Estándar: 0.028766571435852473, Varianza: 0.0008275156321740035, Incertidumbre: 0.005166628751011079\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = 0.049x + 0.241\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = 0.049x + 0.242\n", "Valor del parámetro correlacionado para la aeronave: 0.986\n", - "Predicción obtenida: 0.289\n", - "\tR²: 0.6683533020403162, Desviación Estándar: 0.020914188913517928, Varianza: 0.00043740329791031626, Incertidumbre: 0.00369714120094126\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.6668892763992251, Desviación Estándar: 0.021077630404536665, Varianza: 0.00044426650347024837, Incertidumbre: 0.003726033847597907\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = -0.038x + 0.836\n", - "Valor del parámetro correlacionado para la aeronave: 14.233\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.7051191690209833, Desviación Estándar: 0.019720887637784245, Varianza: 0.0003889134092221115, Incertidumbre: 0.003486193344923798\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 14.223\n", + "Predicción obtenida: 0.292\n", + "\tR²: 0.7122103721028534, Desviación Estándar: 0.01959138083026252, Varianza: 0.0003838222028363777, Incertidumbre: 0.0034632995594716903\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", "Ecuación de regresión: y = 0.029x + 0.248\n", "Valor del parámetro correlacionado para la aeronave: 2.3\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.4350653976176332, Desviación Estándar: 0.027431632448403815, Varianza: 0.000752494458784321, Incertidumbre: 0.004926866630983046\n", + "Predicción obtenida: 0.315\n", + "\tR²: 0.43946734247407293, Desviación Estándar: 0.027341852629340847, Varianza: 0.000747576905204593, Incertidumbre: 0.0048334023511025365\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = 0.001x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = 0.001x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.5874164948558036, Desviación Estándar: 0.023575730786020113, Varianza: 0.0005558150820948966, Incertidumbre: 0.004043204473503137\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.585626194228399, Desviación Estándar: 0.023701762283004735, Varianza: 0.0005617735353200658, Incertidumbre: 0.004064818696919392\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = -0.0x + 0.318\n", - "Valor del parámetro correlacionado para la aeronave: 480.438\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.06137710301442201, Desviación Estándar: 0.035559431175592925, Varianza: 0.0012644731455317298, Incertidumbre: 0.006098392135086606\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = -0.0x + 0.326\n", + "Valor del parámetro correlacionado para la aeronave: 506.641\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.12137030661842563, Desviación Estándar: 0.03451337490962147, Varianza: 0.0011911730476520889, Incertidumbre: 0.005918994965493045\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", "Ecuación de regresión: y = 0.022x + 0.224\n", "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.289\n", - "\tR²: 0.4884294242049745, Desviación Estándar: 0.026103896782224575, Varianza: 0.0006814134272170345, Incertidumbre: 0.004688398265647203\n", + "Predicción obtenida: 0.29\n", + "\tR²: 0.49095069370026423, Desviación Estándar: 0.02605597944515681, Varianza: 0.0006789140648464343, Incertidumbre: 0.004606089939031919\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", "Ecuación de regresión: y = 0.003x + 0.279\n", "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 0.284\n", - "\tR²: 0.6689077573598308, Desviación Estándar: 0.017992987405351088, Varianza: 0.00032374759576912293, Incertidumbre: 0.0032316359373020394\n", + "Predicción obtenida: 0.285\n", + "\tR²: 0.6750655648466569, Desviación Estándar: 0.017835052168221725, Varianza: 0.0003180890858431905, Incertidumbre: 0.00320326993133675\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286]\n", - "Ecuación de regresión: y = 0.004x + 0.22\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", + "Ecuación de regresión: y = 0.004x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.5566215944971976, Desviación Estándar: 0.018811661715774402, Varianza: 0.00035387861650873226, Incertidumbre: 0.0038399143681247003\n", + "Predicción obtenida: 0.291\n", + "\tR²: 0.5731148377392137, Desviación Estándar: 0.018407788893284933, Varianza: 0.0003388466919397441, Incertidumbre: 0.0036815577786569868\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286]\n", - "Ecuación de regresión: y = 0.002x + 0.265\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287]\n", + "Ecuación de regresión: y = 0.002x + 0.266\n", "Valor del parámetro correlacionado para la aeronave: 5.8\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.33191540406967635, Desviación Estándar: 0.030388935680947273, Varianza: 0.0009234874118207502, Incertidumbre: 0.008121784690486755\n", + "Predicción obtenida: 0.279\n", + "\tR²: 0.3348753843733273, Desviación Estándar: 0.030833248903070595, Varianza: 0.000950689237918704, Incertidumbre: 0.008240532394029543\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.291', 'Longitud del fuselaje: 0.314', 'Peso máximo al despegue (MTOW): 0.288', 'Alcance de la aeronave: 0.312', 'envergadura: 0.289', 'payload: 0.284', 'Crucero KIAS: 0.29', 'Empty weight: 0.278']\n", - "**Mediana calculada:** 0.29\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.29', 'Relación de aspecto del ala: 0.292', 'Longitud del fuselaje: 0.315', 'Peso máximo al despegue (MTOW): 0.29', 'Alcance de la aeronave: 0.313', 'envergadura: 0.29', 'payload: 0.285', 'Crucero KIAS: 0.291', 'Empty weight: 0.279']\n", + "**Mediana calculada:** 0.291\n", "\n", "--- Imputación para aeronave: **Reach** ---\n", "\n", "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.0x + 0.208\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.0x + 0.194\n", "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.0077920393265346055, Desviación Estándar: 0.03734493173285593, Varianza: 0.0013946439261316697, Incertidumbre: 0.006934779727331597\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.010293782952762509, Desviación Estándar: 0.036097016178001054, Varianza: 0.00130299457695487, Incertidumbre: 0.006381111230016264\n", "\tNivel de confianza: Confianza Baja\n", "\n", "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.004x + 0.206\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.004x + 0.204\n", "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.38722452002086527, Desviación Estándar: 0.028988626049815485, Varianza: 0.0008403404402560409, Incertidumbre: 0.005206510937018345\n", - "\tNivel de confianza: Confianza Media\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.4034376616845361, Desviación Estándar: 0.02831358276093245, Varianza: 0.0008016589687601712, Incertidumbre: 0.005005181592485466\n", + "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.049x + 0.241\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.049x + 0.242\n", "Valor del parámetro correlacionado para la aeronave: 2.329\n", - "Predicción obtenida: 0.355\n", - "\tR²: 0.6708663750067654, Desviación Estándar: 0.02059524463122736, Varianza: 0.00042416410142009946, Incertidumbre: 0.0035851719092382297\n", + "Predicción obtenida: 0.356\n", + "\tR²: 0.6694211053194665, Desviación Estándar: 0.02075614850551406, Varianza: 0.0004308177007829536, Incertidumbre: 0.0036131816785082483\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.767, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = -0.038x + 0.836\n", - "Valor del parámetro correlacionado para la aeronave: 13.683\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.7073494265597657, Desviación Estándar: 0.01942028138024239, Varianza: 0.00037714732888778933, Incertidumbre: 0.0033806370606726797\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = -0.039x + 0.84\n", + "Valor del parámetro correlacionado para la aeronave: 13.669\n", + "Predicción obtenida: 0.313\n", + "\tR²: 0.7143961990441017, Desviación Estándar: 0.019292619508205277, Varianza: 0.00037220516748838283, Incertidumbre: 0.0033584139812335425\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.028x + 0.248\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.029x + 0.248\n", "Valor del parámetro correlacionado para la aeronave: 4.712\n", - "Predicción obtenida: 0.381\n", - "\tR²: 0.4260780462787932, Desviación Estándar: 0.027309060641999183, Varianza: 0.0007457847931483888, Incertidumbre: 0.004827605491948068\n", + "Predicción obtenida: 0.384\n", + "\tR²: 0.43033811917703635, Desviación Estándar: 0.027246943263226592, Varianza: 0.000742395917189489, Incertidumbre: 0.004743084015220378\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.001x + 0.272\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.001x + 0.273\n", "Valor del parámetro correlacionado para la aeronave: 91.0\n", - "Predicción obtenida: 0.357\n", - "\tR²: 0.5911374094922912, Desviación Estándar: 0.02323782088030035, Varianza: 0.0005399963192649228, Incertidumbre: 0.003927908637521\n", + "Predicción obtenida: 0.358\n", + "\tR²: 0.5893624930927692, Desviación Estándar: 0.023361993268515235, Varianza: 0.0005457827294781511, Incertidumbre: 0.003948897601964923\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 323.501, 320.057, 317.924, 316.495, 3270.0, 800.0, 150.0, 50.0, 25.0, 418.78, 344.852, 3294.755, 500.0, 478.95, 92.6, 270.0, 100.0, 471.068, 470.718, 473.211, 477.686, 475.377, 482.568, 474.569, 476.384, 482.044, 300.0, 615.631, 800.0, 609.354, 501.616, 478.644, 480.438]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = -0.0x + 0.318\n", - "Valor del parámetro correlacionado para la aeronave: 491.03\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.059744190947153664, Desviación Estándar: 0.03523949892053134, Varianza: 0.0012418222841701293, Incertidumbre: 0.005956562489437605\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = -0.0x + 0.325\n", + "Valor del parámetro correlacionado para la aeronave: 504.283\n", + "Predicción obtenida: 0.312\n", + "\tR²: 0.11957831865127477, Desviación Estándar: 0.03420786358834695, Varianza: 0.0011701779312789532, Incertidumbre: 0.005782184291372825\n", "\tNivel de confianza: Confianza Media\n", "\n", "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", "Ecuación de regresión: y = 0.022x + 0.224\n", "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 0.354\n", - "\tR²: 0.491966702458294, Desviación Estándar: 0.025693687153767065, Varianza: 0.0006601655595556547, Incertidumbre: 0.004542045105028593\n", + "Predicción obtenida: 0.356\n", + "\tR²: 0.4948146918700289, Desviación Estándar: 0.025658694953824956, Varianza: 0.0006583686267334423, Incertidumbre: 0.004466605472444141\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.003x + 0.279\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.003x + 0.28\n", "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.6746565418595589, Desviación Estándar: 0.01774066062848476, Varianza: 0.0003147310395350693, Incertidumbre: 0.0031361353582826925\n", + "Predicción obtenida: 0.304\n", + "\tR²: 0.6805607454161662, Desviación Estándar: 0.017587857145488283, Varianza: 0.00030933271897010323, Incertidumbre: 0.0031091232635287597\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.313, 0.27, 0.298, 0.338, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.313, 0.295, 0.299, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29]\n", - "Ecuación de regresión: y = 0.004x + 0.22\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", + "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", + "Ecuación de regresión: y = 0.004x + 0.218\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.5621478971519628, Desviación Estándar: 0.018431786174629827, Varianza: 0.0003397307415872752, Incertidumbre: 0.0036863572349259653\n", + "Predicción obtenida: 0.309\n", + "\tR²: 0.5784019179791874, Desviación Estándar: 0.018050324796678542, Varianza: 0.0003258142252655882, Incertidumbre: 0.0035399599371135236\n", "\tNivel de confianza: Confianza Alta\n", "\n", "--- Correlación: Empty weight (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291]\n", "Ecuación de regresión: y = 0.002x + 0.267\n", "Valor del parámetro correlacionado para la aeronave: 31.0\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.32516791212624563, Desviación Estándar: 0.029506663193114138, Varianza: 0.0008706431727918767, Incertidumbre: 0.007618587676605494\n", + "Predicción obtenida: 0.335\n", + "\tR²: 0.3279695994564351, Desviación Estándar: 0.02994220141823091, Varianza: 0.0008965354257699091, Incertidumbre: 0.0077310431627730936\n", "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.312', 'Área del ala: 0.355', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.381', 'Peso máximo al despegue (MTOW): 0.357', 'Alcance de la aeronave: 0.311', 'envergadura: 0.354', 'payload: 0.303', 'Crucero KIAS: 0.308', 'Empty weight: 0.333']\n", - "**Mediana calculada:** 0.312\n", + "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.313', 'Área del ala: 0.356', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.384', 'Peso máximo al despegue (MTOW): 0.358', 'Alcance de la aeronave: 0.312', 'envergadura: 0.356', 'payload: 0.304', 'Crucero KIAS: 0.309', 'Empty weight: 0.335']\n", + "**Mediana calculada:** 0.313\n", "\n", "=== Imputación para el parámetro: **payload** ===\n", "\n", "--- Imputación para aeronave: **AAI Aerosonde** ---\n", "\n", "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", "Ecuación de regresión: y = 10.406x + -4.881\n", @@ -32537,17 +36921,17 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.847x + 117.681\n", + "Ecuación de regresión: y = -7.839x + 117.46\n", "Valor del parámetro correlacionado para la aeronave: 14.754\n", - "Predicción obtenida: 1.896\n", - "\tR²: 0.7149957845485787, Desviación Estándar: 3.9667001777935313, Varianza: 15.734710300507235, Incertidumbre: 0.6905138688293478\n", + "Predicción obtenida: 1.804\n", + "\tR²: 0.7152857656186882, Desviación Estándar: 3.964681680105561, Varianza: 15.718700824564651, Incertidumbre: 0.6901624934832739\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", "Ecuación de regresión: y = 0.204x + 1.036\n", @@ -32556,18 +36940,28 @@ "\tR²: 0.7186101745846443, Desviación Estándar: 3.7341950529878645, Varianza: 13.944212693759042, Incertidumbre: 0.6706812303187741\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", + "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.036x + -6.191\n", + "Valor del parámetro correlacionado para la aeronave: 3270.0\n", + "Predicción obtenida: 111.989\n", + "\tR²: 0.4516735209888093, Desviación Estándar: 5.50203492994826, Varianza: 30.272388370370752, Incertidumbre: 0.9577813435917653\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.878x + -20.785\n", + "Ecuación de regresión: y = 0.877x + -20.776\n", "Valor del parámetro correlacionado para la aeronave: 30.846\n", - "Predicción obtenida: 6.284\n", - "\tR²: 0.5501898082120762, Desviación Estándar: 5.100088235913723, Varianza: 26.01090001410555, Incertidumbre: 0.9311444573588917\n", + "Predicción obtenida: 6.288\n", + "\tR²: 0.5505400445815896, Desviación Estándar: 5.098102304668767, Varianza: 25.99064710886899, Incertidumbre: 0.9307818775787194\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", "Ecuación de regresión: y = 4.794x + -9.245\n", @@ -32577,13 +36971,13 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 198.875x + -52.199\n", + "Ecuación de regresión: y = 199.636x + -52.626\n", "Valor del parámetro correlacionado para la aeronave: 0.197\n", - "Predicción obtenida: -13.11\n", - "\tR²: 0.6722158191575872, Desviación Estándar: 4.2540023843702155, Varianza: 18.096536286227476, Incertidumbre: 0.7405267635011167\n", + "Predicción obtenida: -13.387\n", + "\tR²: 0.6780488774864877, Desviación Estándar: 4.21598158894776, Varianza: 17.77450075834648, Incertidumbre: 0.7339081925564045\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Empty weight (r = 0.778) ---\n", @@ -32595,140 +36989,160 @@ "Predicción obtenida: 5.053\n", "\tR²: 0.6045881019855628, Desviación Estándar: 3.3770579595870056, Varianza: 11.404520462409948, Incertidumbre: 0.8719526157771782\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 1.05', 'Relación de aspecto del ala: 1.896', 'Peso máximo al despegue (MTOW): 3.714', 'Velocidad máxima (KIAS): 6.284', 'envergadura: 4.659', 'Cuerda: -13.11', 'Empty weight: 5.053']\n", - "**Mediana calculada:** 3.714\n", + "Valores imputados: ['Área del ala: 1.05', 'Relación de aspecto del ala: 1.804', 'Peso máximo al despegue (MTOW): 3.714', 'Alcance de la aeronave: 111.989', 'Velocidad máxima (KIAS): 6.288', 'envergadura: 4.659', 'Cuerda: -13.387', 'Empty weight: 5.053']\n", + "**Mediana calculada:** 4.186\n", "\n", "--- Imputación para aeronave: **Fulmar X** ---\n", "\n", "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 10.219x + -4.535\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 10.186x + -4.474\n", "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 5.071\n", - "\tR²: 0.7043549197034407, Desviación Estándar: 4.019442149271862, Varianza: 16.155915191343205, Incertidumbre: 0.699695067594778\n", + "Predicción obtenida: 5.101\n", + "\tR²: 0.702030027451888, Desviación Estándar: 4.0288222779643945, Varianza: 16.231408947422214, Incertidumbre: 0.7013279384101367\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.761x + 116.556\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = -7.725x + 115.975\n", "Valor del parámetro correlacionado para la aeronave: 13.218\n", - "Predicción obtenida: 13.965\n", - "\tR²: 0.7200402040647889, Desviación Estándar: 3.9193674746851532, Varianza: 15.361441401619876, Incertidumbre: 0.6721659765620716\n", + "Predicción obtenida: 13.864\n", + "\tR²: 0.7182610183328181, Desviación Estándar: 3.9255462621148403, Varianza: 15.409913456003792, Incertidumbre: 0.6732256298641592\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.204x + 1.036\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.204x + 1.071\n", "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 5.125\n", - "\tR²: 0.7248470361708765, Desviación Estándar: 3.675385156868235, Varianza: 13.508456051327343, Incertidumbre: 0.649722441973478\n", + "Predicción obtenida: 5.151\n", + "\tR²: 0.7237880605522922, Desviación Estándar: 3.67627307760161, Varianza: 13.514983741098414, Incertidumbre: 0.6498794056664093\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.001x + 9.864\n", + "Valor del parámetro correlacionado para la aeronave: 800.0\n", + "Predicción obtenida: 10.419\n", + "\tR²: 0.002146729462209951, Desviación Estándar: 7.387712262058516, Varianza: 54.578292466969756, Incertidumbre: 1.266982200382999\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.887x + -21.192\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.885x + -21.108\n", "Valor del parámetro correlacionado para la aeronave: 41.7\n", - "Predicción obtenida: 15.784\n", - "\tR²: 0.5574907931449841, Desviación Estándar: 5.037319182991233, Varianza: 25.374584551331463, Incertidumbre: 0.9047292332664074\n", + "Predicción obtenida: 15.791\n", + "\tR²: 0.5575443463725547, Desviación Estándar: 5.028702836489781, Varianza: 25.287852217720367, Incertidumbre: 0.9031816917506468\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 4.819x + -9.371\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 4.807x + -9.308\n", "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 5.085\n", - "\tR²: 0.5654022085753986, Desviación Estándar: 4.9488715578269735, Varianza: 24.491329695868778, Incertidumbre: 0.8748451594401715\n", + "Predicción obtenida: 5.112\n", + "\tR²: 0.5643721514307216, Desviación Estándar: 4.946883176427056, Varianza: 24.471653161217034, Incertidumbre: 0.8744936599473048\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 155.509x + -38.199\n", - "Valor del parámetro correlacionado para la aeronave: 0.313\n", - "Predicción obtenida: 10.475\n", - "\tR²: 0.5775590357480013, Desviación Estándar: 4.814499686360729, Varianza: 23.179407229967552, Incertidumbre: 0.8256798843799175\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 154.23x + -37.928\n", + "Valor del parámetro correlacionado para la aeronave: 0.319\n", + "Predicción obtenida: 11.271\n", + "\tR²: 0.573081677467914, Desviación Estándar: 4.832245905238442, Varianza: 23.350600488693686, Incertidumbre: 0.8287233358090745\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 5.071', 'Relación de aspecto del ala: 13.965', 'Peso máximo al despegue (MTOW): 5.125', 'Velocidad máxima (KIAS): 15.784', 'envergadura: 5.085', 'Cuerda: 10.475']\n", - "**Mediana calculada:** 7.8\n", + "Valores imputados: ['Área del ala: 5.101', 'Relación de aspecto del ala: 13.864', 'Peso máximo al despegue (MTOW): 5.151', 'Alcance de la aeronave: 10.419', 'Velocidad máxima (KIAS): 15.791', 'envergadura: 5.112', 'Cuerda: 11.271']\n", + "**Mediana calculada:** 10.419\n", "\n", "--- Imputación para aeronave: **Mantis** ---\n", "\n", "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 10.116x + -4.31\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 9.986x + -4.035\n", "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 3.318\n", - "\tR²: 0.7011908920545251, Desviación Estándar: 3.986164457115577, Varianza: 15.889507079171521, Incertidumbre: 0.6836215645406782\n", + "Predicción obtenida: 3.494\n", + "\tR²: 0.687066646727224, Desviación Estándar: 4.067760372560328, Varianza: 16.546674448572137, Incertidumbre: 0.6976151485928609\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 14.012, 14.067, 12.923, 12.654, 12.859, 13.774, 12.973, 14.599, 14.717, 14.578, 14.435, 14.194, 13.909, 14.054, 13.657, 14.116, 14.013, 13.722, 13.684, 12.713, 13.046, 12.876, 13.114, 14.357, 14.233, 13.683]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.633x + 114.627\n", - "Valor del parámetro correlacionado para la aeronave: 14.767\n", - "Predicción obtenida: 1.904\n", - "\tR²: 0.701365229774406, Desviación Estándar: 3.9958441696300517, Varianza: 15.96677062796648, Incertidumbre: 0.6754209402389949\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = -7.656x + 114.927\n", + "Valor del parámetro correlacionado para la aeronave: 14.755\n", + "Predicción obtenida: 1.967\n", + "\tR²: 0.712125594047297, Desviación Estándar: 3.9109945361870477, Varianza: 15.29587826208494, Incertidumbre: 0.6610787344956929\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.202x + 1.199\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.2x + 1.393\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 2.515\n", - "\tR²: 0.7210133339229867, Desviación Estándar: 3.6477290781179126, Varianza: 13.305927427346957, Incertidumbre: 0.6349881274802048\n", + "Predicción obtenida: 2.693\n", + "\tR²: 0.7070179545639659, Desviación Estándar: 3.729320581026571, Varianza: 13.90783199606836, Incertidumbre: 0.6491913850524466\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.001x + 9.864\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 9.882\n", + "\tR²: 0.002163345486388857, Desviación Estándar: 7.281408701826373, Varianza: 53.01891268303283, Incertidumbre: 1.2307827089531607\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.941, 29.09, 33.0, 33.0, 33.0, 33.0, 33.0, 33.28, 30.0, 35.102, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.849x + -20.097\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 0.859x + -20.372\n", "Valor del parámetro correlacionado para la aeronave: 25.6\n", - "Predicción obtenida: 1.635\n", - "\tR²: 0.5252245995470497, Desviación Estándar: 5.143299088683377, Varianza: 26.453525515651258, Incertidumbre: 0.9092154158196514\n", + "Predicción obtenida: 1.629\n", + "\tR²: 0.5422563989605891, Desviación Estándar: 5.034375894779248, Varianza: 25.34494064993435, Incertidumbre: 0.8899603335601247\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 4.759x + -9.051\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 4.69x + -8.682\n", "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.943\n", - "\tR²: 0.5626551847696982, Desviación Estándar: 4.894993387759511, Varianza: 23.960960266209337, Incertidumbre: 0.852108974859816\n", + "Predicción obtenida: 1.167\n", + "\tR²: 0.5495595055917364, Desviación Estándar: 4.953710222200966, Varianza: 24.539244965538344, Incertidumbre: 0.8623302637645233\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.334, 0.286, 0.29, 0.312]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 155.416x + -38.247\n", - "Valor del parámetro correlacionado para la aeronave: 0.27\n", - "Predicción obtenida: 3.715\n", - "\tR²: 0.5751366916639009, Desviación Estándar: 4.766098029962729, Varianza: 22.715690431214608, Incertidumbre: 0.8056176056952402\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", + "Ecuación de regresión: y = 154.107x + -37.914\n", + "Valor del parámetro correlacionado para la aeronave: 0.271\n", + "Predicción obtenida: 3.849\n", + "\tR²: 0.5727096856576819, Desviación Estándar: 4.764827757793928, Varianza: 22.703583561443512, Incertidumbre: 0.8054028905096152\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 3.318', 'Relación de aspecto del ala: 1.904', 'Peso máximo al despegue (MTOW): 2.515', 'Velocidad máxima (KIAS): 1.635', 'envergadura: 0.943', 'Cuerda: 3.715']\n", - "**Mediana calculada:** 2.21\n", + "Valores imputados: ['Área del ala: 3.494', 'Relación de aspecto del ala: 1.967', 'Peso máximo al despegue (MTOW): 2.693', 'Alcance de la aeronave: 9.882', 'Velocidad máxima (KIAS): 1.629', 'envergadura: 1.167', 'Cuerda: 3.849']\n", + "**Mediana calculada:** 2.693\n", "\n", "=== Imputación para el parámetro: **Empty weight** ===\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 Fixed Wing** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", @@ -32772,22 +37186,22 @@ "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 168.652x + -36.821\n", + "Ecuación de regresión: y = 166.311x + -36.293\n", "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 22.545\n", - "\tR²: 0.3232917045220116, Desviación Estándar: 8.579771360926884, Varianza: 73.61247660578115, Incertidumbre: 2.144942840231721\n", + "Predicción obtenida: 22.248\n", + "\tR²: 0.32488694567254894, Desviación Estándar: 8.569652613963415, Varianza: 73.43894592400999, Incertidumbre: 2.1424131534908537\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para payload: [2.495, 2.495, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.551x + 3.249\n", + "Ecuación de regresión: y = 1.555x + 3.179\n", "Valor del parámetro correlacionado para la aeronave: 14.5\n", - "Predicción obtenida: 25.745\n", - "\tR²: 0.6053918907187015, Desviación Estándar: 6.551759806427765, Varianza: 42.92555656112239, Incertidumbre: 1.6379399516069413\n", + "Predicción obtenida: 25.733\n", + "\tR²: 0.6059393093606185, Desviación Estándar: 6.547213776970333, Varianza: 42.86600824135013, Incertidumbre: 1.6368034442425832\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", @@ -32799,13 +37213,13 @@ "Predicción obtenida: 13.161\n", "\tR²: 0.6929626692113744, Desviación Estándar: 2.790886287308021, Varianza: 7.78904626868395, Incertidumbre: 1.1393745556725372\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.253', 'Longitud del fuselaje: 19.796', 'Peso máximo al despegue (MTOW): 15.517', 'envergadura: 20.292', 'Cuerda: 22.545', 'payload: 25.745', 'Rango de comunicación: 13.161']\n", + "Valores imputados: ['Área del ala: 17.253', 'Longitud del fuselaje: 19.796', 'Peso máximo al despegue (MTOW): 15.517', 'envergadura: 20.292', 'Cuerda: 22.248', 'payload: 25.733', 'Rango de comunicación: 13.161']\n", "**Mediana calculada:** 19.796\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 15.104x + -5.974\n", @@ -32815,7 +37229,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.792x + -6.58\n", @@ -32825,7 +37239,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", "Ecuación de regresión: y = 113.452x + -9.6\n", @@ -32835,7 +37249,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.327x + 1.985\n", @@ -32845,7 +37259,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.53x + -17.284\n", @@ -32855,27 +37269,27 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 161.947x + -35.001\n", + "Ecuación de regresión: y = 160.56x + -34.733\n", "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 22.004\n", - "\tR²: 0.3392826165393894, Desviación Estándar: 8.345019309965002, Varianza: 69.63934728368875, Incertidumbre: 2.02396447428263\n", + "Predicción obtenida: 21.784\n", + "\tR²: 0.34149882368086004, Desviación Estándar: 8.331011939712234, Varianza: 69.4057599396278, Incertidumbre: 2.0205671879832594\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.457x + 3.507\n", + "Ecuación de regresión: y = 1.461x + 3.44\n", "Valor del parámetro correlacionado para la aeronave: 11.3\n", - "Predicción obtenida: 19.967\n", - "\tR²: 0.600650247472835, Desviación Estándar: 6.487781114213371, Varianza: 42.091303785943694, Incertidumbre: 1.5735180476346566\n", + "Predicción obtenida: 19.946\n", + "\tR²: 0.6012377913575799, Desviación Estándar: 6.483006778963267, Varianza: 42.029376896083676, Incertidumbre: 1.5723601012506396\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 6.8, 8.9, 16.5, 84.0]\n", "Valores para Empty weight: [19.796, 4.8, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.356x + 2.621\n", @@ -32885,7 +37299,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", "Ecuación de regresión: y = 0.09x + 2.413\n", @@ -32893,13 +37307,13 @@ "Predicción obtenida: 14.967\n", "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.49', 'envergadura: 20.246', 'Cuerda: 22.004', 'payload: 19.967', 'RTF (Including fuel & Batteries): 17.662', 'Rango de comunicación: 14.967']\n", + "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.49', 'envergadura: 20.246', 'Cuerda: 21.784', 'payload: 19.946', 'RTF (Including fuel & Batteries): 17.662', 'Rango de comunicación: 14.967']\n", "**Mediana calculada:** 19.796\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 15.104x + -5.974\n", @@ -32909,7 +37323,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.792x + -6.58\n", @@ -32919,7 +37333,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", "Ecuación de regresión: y = 113.452x + -9.6\n", @@ -32929,7 +37343,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.328x + 1.989\n", @@ -32939,7 +37353,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.53x + -17.284\n", @@ -32949,27 +37363,27 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 161.947x + -35.001\n", + "Ecuación de regresión: y = 160.56x + -34.733\n", "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 22.004\n", - "\tR²: 0.3392826165393894, Desviación Estándar: 8.345019309965002, Varianza: 69.63934728368875, Incertidumbre: 2.02396447428263\n", + "Predicción obtenida: 21.784\n", + "\tR²: 0.34149882368086004, Desviación Estándar: 8.331011939712234, Varianza: 69.4057599396278, Incertidumbre: 2.0205671879832594\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.455x + 3.508\n", + "Ecuación de regresión: y = 1.459x + 3.441\n", "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 29.263\n", - "\tR²: 0.6105487089694287, Desviación Estándar: 6.305105946732535, Varianza: 39.75436099952198, Incertidumbre: 1.4861277236780677\n", + "Predicción obtenida: 29.272\n", + "\tR²: 0.6111249176575178, Desviación Estándar: 6.300439892571702, Varianza: 39.69554283990892, Incertidumbre: 1.4850279241652313\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 6.8, 8.9, 16.5, 84.0]\n", "Valores para Empty weight: [19.796, 19.796, 4.8, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.362x + 2.802\n", @@ -32979,7 +37393,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", "Ecuación de regresión: y = 0.09x + 2.413\n", @@ -32987,13 +37401,13 @@ "Predicción obtenida: 14.967\n", "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.809', 'envergadura: 20.246', 'Cuerda: 22.004', 'payload: 29.263', 'RTF (Including fuel & Batteries): 16.09', 'Rango de comunicación: 14.967']\n", + "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.809', 'envergadura: 20.246', 'Cuerda: 21.784', 'payload: 29.272', 'RTF (Including fuel & Batteries): 16.09', 'Rango de comunicación: 14.967']\n", "**Mediana calculada:** 19.809\n", "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 VTOL FTUAS** ---\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 15.199x + -5.963\n", @@ -33003,7 +37417,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.793x + -6.581\n", @@ -33013,7 +37427,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.328x + 1.989\n", @@ -33023,7 +37437,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.513x + -17.25\n", @@ -33033,27 +37447,27 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 157.473x + -33.787\n", + "Ecuación de regresión: y = 156.666x + -33.677\n", "Valor del parámetro correlacionado para la aeronave: 0.394\n", - "Predicción obtenida: 28.257\n", - "\tR²: 0.35355225050821804, Desviación Estándar: 8.123678231024497, Varianza: 65.9941480012213, Incertidumbre: 1.9147693217783197\n", + "Predicción obtenida: 28.049\n", + "\tR²: 0.35611948927363, Desviación Estándar: 8.10753139727324, Varianza: 65.73206535777136, Incertidumbre: 1.9109634765649177\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.302x + 4.121\n", + "Ecuación de regresión: y = 1.306x + 4.062\n", "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 33.679\n", - "\tR²: 0.5820027961619212, Desviación Estándar: 6.42836622157291, Varianza: 41.32389227865957, Incertidumbre: 1.4747683543108792\n", + "Predicción obtenida: 33.704\n", + "\tR²: 0.5824993045960247, Desviación Estándar: 6.424547193133453, Varianza: 41.27480663679893, Incertidumbre: 1.4738922090987687\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", "Valores para Empty weight: [19.796, 19.796, 19.809, 4.8, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.366x + 3.198\n", @@ -33061,13 +37475,13 @@ "Predicción obtenida: 28.95\n", "\tR²: 0.8686932854431193, Desviación Estándar: 3.5123478434354816, Varianza: 12.336587373285877, Incertidumbre: 1.3275427016691874\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 32.08', 'Longitud del fuselaje: 25.02', 'Peso máximo al despegue (MTOW): 32.453', 'envergadura: 30.798', 'Cuerda: 28.257', 'payload: 33.679', 'RTF (Including fuel & Batteries): 28.95']\n", + "Valores imputados: ['Área del ala: 32.08', 'Longitud del fuselaje: 25.02', 'Peso máximo al despegue (MTOW): 32.453', 'envergadura: 30.798', 'Cuerda: 28.049', 'payload: 33.704', 'RTF (Including fuel & Batteries): 28.95']\n", "**Mediana calculada:** 30.798\n", "\n", "--- Imputación para aeronave: **Fulmar X** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 15.024x + -5.798\n", @@ -33077,7 +37491,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 9.152x + -7.113\n", @@ -33087,7 +37501,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.323x + 2.09\n", @@ -33097,7 +37511,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.513x + -17.25\n", @@ -33107,31 +37521,31 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 164.068x + -35.656\n", - "Valor del parámetro correlacionado para la aeronave: 0.313\n", - "Predicción obtenida: 15.697\n", - "\tR²: 0.4401012275044295, Desviación Estándar: 7.922310441477786, Varianza: 62.76300273114796, Incertidumbre: 1.8175026638820404\n", + "Ecuación de regresión: y = 163.675x + -35.666\n", + "Valor del parámetro correlacionado para la aeronave: 0.319\n", + "Predicción obtenida: 16.546\n", + "\tR²: 0.44192713119646354, Desviación Estándar: 7.9093820433108375, Varianza: 62.558324307047926, Incertidumbre: 1.814536685928799\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.254x + 4.367\n", - "Valor del parámetro correlacionado para la aeronave: 7.8\n", - "Predicción obtenida: 14.145\n", - "\tR²: 0.6338082409254504, Desviación Estándar: 6.288836818337574, Varianza: 39.54946852767826, Incertidumbre: 1.406226662520631\n", + "Ecuación de regresión: y = 1.257x + 4.312\n", + "Valor del parámetro correlacionado para la aeronave: 10.419\n", + "Predicción obtenida: 17.406\n", + "\tR²: 0.6341935967623096, Desviación Estándar: 6.28552697067258, Varianza: 39.50784929905242, Incertidumbre: 1.4054865580832214\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 8.325', 'Longitud del fuselaje: 3.87', 'Peso máximo al despegue (MTOW): 8.545', 'envergadura: 8.289', 'Cuerda: 15.697', 'payload: 14.145']\n", + "Valores imputados: ['Área del ala: 8.325', 'Longitud del fuselaje: 3.87', 'Peso máximo al despegue (MTOW): 8.545', 'envergadura: 8.289', 'Cuerda: 16.546', 'payload: 17.406']\n", "**Mediana calculada:** 8.435\n", "\n", "--- Imputación para aeronave: **Orbiter 4** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 15.019x + -5.786\n", @@ -33141,7 +37555,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.927x + -6.373\n", @@ -33151,7 +37565,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 0.323x + 2.081\n", @@ -33161,7 +37575,7 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", "Ecuación de regresión: y = 8.51x + -17.23\n", @@ -33171,27 +37585,27 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 162.214x + -35.455\n", - "Valor del parámetro correlacionado para la aeronave: 0.334\n", - "Predicción obtenida: 18.724\n", - "\tR²: 0.4250328821813467, Desviación Estándar: 7.881879841341832, Varianza: 62.124029833350754, Incertidumbre: 1.7624419115725594\n", + "Ecuación de regresión: y = 160.493x + -35.101\n", + "Valor del parámetro correlacionado para la aeronave: 0.332\n", + "Predicción obtenida: 18.183\n", + "\tR²: 0.42120352079680623, Desviación Estándar: 7.908083494559376, Varianza: 62.53778455692244, Incertidumbre: 1.7683012265578852\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.255x + 4.083\n", + "Ecuación de regresión: y = 1.234x + 4.074\n", "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 19.144\n", - "\tR²: 0.6253889798074073, Desviación Estándar: 6.256578342524824, Varianza: 39.14477255615067, Incertidumbre: 1.3652973260019692\n", + "Predicción obtenida: 18.877\n", + "\tR²: 0.6052009839355558, Desviación Estándar: 6.422951508721367, Varianza: 41.25430608338608, Incertidumbre: 1.401602927321261\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 2.65, 3.45, 6.45]\n", "Ecuación de regresión: y = 0.099x + 2.179\n", @@ -33199,955 +37613,955 @@ "Predicción obtenida: 16.991\n", "\tR²: 0.7177783310839329, Desviación Estándar: 3.4856268169459126, Varianza: 12.149594307012496, Incertidumbre: 1.2323551794740677\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.365', 'Longitud del fuselaje: 4.34', 'Peso máximo al despegue (MTOW): 19.838', 'envergadura: 27.02', 'Cuerda: 18.724', 'payload: 19.144', 'Rango de comunicación: 16.991']\n", - "**Mediana calculada:** 18.724\n", + "Valores imputados: ['Área del ala: 18.365', 'Longitud del fuselaje: 4.34', 'Peso máximo al despegue (MTOW): 19.838', 'envergadura: 27.02', 'Cuerda: 18.183', 'payload: 18.877', 'Rango de comunicación: 16.991']\n", + "**Mediana calculada:** 18.365\n", "\n", "--- Imputación para aeronave: **Orbiter 3** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.031x + -5.784\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.019x + -5.786\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 12.253\n", - "\tR²: 0.9136497392693784, Desviación Estándar: 2.996311656277053, Varianza: 8.977883541541738, Incertidumbre: 0.6538488081222905\n", + "Predicción obtenida: 12.237\n", + "\tR²: 0.9135790496566742, Desviación Estándar: 2.995343734099099, Varianza: 8.972084085406735, Incertidumbre: 0.6536375901867048\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.282x + -4.258\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.298x + -4.311\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.68\n", - "\tR²: 0.7127494541740498, Desviación Estándar: 5.464942394654294, Varianza: 29.865595376889807, Incertidumbre: 1.192548199622692\n", + "Predicción obtenida: 5.647\n", + "\tR²: 0.7165705648434354, Desviación Estándar: 5.424498885276192, Varianza: 29.42518815636265, Incertidumbre: 1.183722702332463\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.322x + 2.067\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.322x + 2.063\n", "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 12.368\n", - "\tR²: 0.9094761068700505, Desviación Estándar: 3.0184944982890896, Varianza: 9.111309036201503, Incertidumbre: 0.6435451893507028\n", + "Predicción obtenida: 12.354\n", + "\tR²: 0.9089579741392599, Desviación Estándar: 3.0250631475449667, Varianza: 9.15100704663466, Incertidumbre: 0.6449456300775446\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.083x + -16.034\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.064x + -15.982\n", "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 19.531\n", - "\tR²: 0.8563105110981454, Desviación Estándar: 3.8651616084856775, Varianza: 14.93947425971159, Incertidumbre: 0.8434474116248993\n", + "Predicción obtenida: 19.501\n", + "\tR²: 0.8536528012452334, Desviación Estándar: 3.8978879953283716, Varianza: 15.193530824125032, Incertidumbre: 0.850588894716759\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 162.214x + -35.455\n", - "Valor del parámetro correlacionado para la aeronave: 0.301\n", - "Predicción obtenida: 13.371\n", - "\tR²: 0.4309374492611131, Desviación Estándar: 7.691927112179356, Varianza: 59.16574269907985, Incertidumbre: 1.6785161062688088\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 160.622x + -35.131\n", + "Valor del parámetro correlacionado para la aeronave: 0.304\n", + "Predicción obtenida: 13.698\n", + "\tR²: 0.4262936940175942, Desviación Estándar: 7.717594578111506, Varianza: 59.56126607209612, Incertidumbre: 1.6841172065322267\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.253x + 4.079\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.232x + 4.068\n", "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 10.972\n", - "\tR²: 0.6286868594150173, Desviación Estándar: 6.113345437183864, Varianza: 37.37299243433677, Incertidumbre: 1.3033696265369021\n", + "Predicción obtenida: 10.841\n", + "\tR²: 0.6081114488646513, Desviación Estándar: 6.2761711228549695, Varianza: 39.39032396335861, Incertidumbre: 1.3380841793630753\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.102x + 2.062\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.101x + 2.086\n", "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 7.156\n", - "\tR²: 0.7467331385836531, Desviación Estándar: 3.326478501613054, Varianza: 11.065459221693828, Incertidumbre: 1.1088261672043513\n", + "Predicción obtenida: 7.148\n", + "\tR²: 0.7460116085943318, Desviación Estándar: 3.3116063271343945, Varianza: 10.966736465916554, Incertidumbre: 1.103868775711465\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.253', 'Longitud del fuselaje: 5.68', 'Peso máximo al despegue (MTOW): 12.368', 'envergadura: 19.531', 'Cuerda: 13.371', 'payload: 10.972', 'Rango de comunicación: 7.156']\n", - "**Mediana calculada:** 12.253\n", + "Valores imputados: ['Área del ala: 12.237', 'Longitud del fuselaje: 5.647', 'Peso máximo al despegue (MTOW): 12.354', 'envergadura: 19.501', 'Cuerda: 13.698', 'payload: 10.841', 'Rango de comunicación: 7.148']\n", + "**Mediana calculada:** 12.237\n", "\n", "--- Imputación para aeronave: **Mantis** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.031x + -5.784\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.019x + -5.786\n", "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 5.549\n", - "\tR²: 0.913778739631991, Desviación Estándar: 2.9274217216946905, Varianza: 8.569797936649906, Incertidumbre: 0.6241284081402825\n", + "Predicción obtenida: 5.538\n", + "\tR²: 0.913708191825763, Desviación Estándar: 2.9264760519606896, Varianza: 8.564262082699425, Incertidumbre: 0.6239267906755577\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.012x + -3.374\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.028x + -3.425\n", "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 8.484\n", - "\tR²: 0.695106219357537, Desviación Estándar: 5.50493747043158, Varianza: 30.304336553361637, Incertidumbre: 1.1736566121888548\n", + "Predicción obtenida: 8.456\n", + "\tR²: 0.6987989734892859, Desviación Estándar: 5.467495240618404, Varianza: 29.893504206184897, Incertidumbre: 1.1656739019707343\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.322x + 2.061\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.322x + 2.056\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 4.154\n", - "\tR²: 0.9096439599147235, Desviación Estándar: 2.952238871692774, Varianza: 8.715714355533823, Incertidumbre: 0.6155843584875383\n", + "Predicción obtenida: 4.147\n", + "\tR²: 0.9091268370272325, Desviación Estándar: 2.9586655428005026, Varianza: 8.753701794154992, Incertidumbre: 0.6169244120479039\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.922x + -15.761\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.904x + -15.71\n", "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.876\n", - "\tR²: 0.8337456079246974, Desviación Estándar: 4.065038574534986, Varianza: 16.524538612457434, Incertidumbre: 0.8666691361040485\n", + "Predicción obtenida: 0.889\n", + "\tR²: 0.8311430591942646, Desviación Estándar: 4.0937342671353925, Varianza: 16.758660249918545, Incertidumbre: 0.8727870783227756\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 162.348x + -35.547\n", - "Valor del parámetro correlacionado para la aeronave: 0.27\n", - "Predicción obtenida: 8.287\n", - "\tR²: 0.43124218687960514, Desviación Estándar: 7.518683358339971, Varianza: 56.530599442978435, Incertidumbre: 1.6029886780490887\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 160.716x + -35.226\n", + "Valor del parámetro correlacionado para la aeronave: 0.271\n", + "Predicción obtenida: 8.327\n", + "\tR²: 0.42621839297901487, Desviación Estándar: 7.54629017734252, Varianza: 56.94649544065621, Incertidumbre: 1.6088744716367318\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.25x + 4.165\n", - "Valor del parámetro correlacionado para la aeronave: 2.21\n", - "Predicción obtenida: 6.926\n", - "\tR²: 0.6286967759718571, Desviación Estándar: 5.984629370732705, Varianza: 35.81578870503653, Incertidumbre: 1.2478814865870902\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.227x + 4.163\n", + "Valor del parámetro correlacionado para la aeronave: 2.693\n", + "Predicción obtenida: 7.469\n", + "\tR²: 0.6080299406703621, Desviación Estándar: 6.144753971108537, Varianza: 37.758001365454135, Incertidumbre: 1.28126977381058\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.095x + 3.264\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.094x + 3.287\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 5.627\n", - "\tR²: 0.6914792906735672, Desviación Estándar: 3.4830980292244655, Varianza: 12.131971881187356, Incertidumbre: 1.1014523085993035\n", + "Predicción obtenida: 5.633\n", + "\tR²: 0.6902774142105856, Desviación Estándar: 3.4693600600060193, Varianza: 12.03645922596497, Incertidumbre: 1.0971079812837463\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 5.549', 'Longitud del fuselaje: 8.484', 'Peso máximo al despegue (MTOW): 4.154', 'envergadura: 0.876', 'Cuerda: 8.287', 'payload: 6.926', 'Rango de comunicación: 5.627']\n", - "**Mediana calculada:** 5.627\n", + "Valores imputados: ['Área del ala: 5.538', 'Longitud del fuselaje: 8.456', 'Peso máximo al despegue (MTOW): 4.147', 'envergadura: 0.889', 'Cuerda: 8.327', 'payload: 7.469', 'Rango de comunicación: 5.633']\n", + "**Mediana calculada:** 5.633\n", "\n", "--- Imputación para aeronave: **ScanEagle** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.026x + -5.775\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.014x + -5.775\n", "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 10.198\n", - "\tR²: 0.9163529546189084, Desviación Estándar: 2.863117876012014, Varianza: 8.197443971939547, Incertidumbre: 0.5970013462929816\n", + "Predicción obtenida: 10.185\n", + "\tR²: 0.916273259509183, Desviación Estándar: 2.8622130745125545, Varianza: 8.19226368391061, Incertidumbre: 0.5968126821384838\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.091x + -3.666\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.105x + -3.713\n", "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 10.169\n", - "\tR²: 0.7008193572895111, Desviación Estándar: 5.414778194269882, Varianza: 29.319822893140607, Incertidumbre: 1.12905930242721\n", + "Predicción obtenida: 10.147\n", + "\tR²: 0.7044409378663876, Desviación Estándar: 5.377643509962671, Varianza: 28.919049720243635, Incertidumbre: 1.1213161854876974\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.32x + 2.202\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.319x + 2.199\n", "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 10.676\n", - "\tR²: 0.9116020723584356, Desviación Estándar: 2.90434700702091, Varianza: 8.435231537191319, Incertidumbre: 0.5928473502650619\n", + "Predicción obtenida: 10.664\n", + "\tR²: 0.9110745074819713, Desviación Estándar: 2.910850755492127, Varianza: 8.473052120749086, Incertidumbre: 0.5941749223625525\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.684x + -14.677\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.667x + -14.628\n", "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 9.144\n", - "\tR²: 0.8299304395789938, Desviación Estándar: 4.0825096549566275, Varianza: 16.66688508281408, Incertidumbre: 0.8512621085856318\n", + "Predicción obtenida: 9.139\n", + "\tR²: 0.827398243173229, Desviación Estándar: 4.1095330263226915, Varianza: 16.888261694436938, Incertidumbre: 0.8568968710318733\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 164.778x + -36.401\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 163.16x + -36.089\n", "Valor del parámetro correlacionado para la aeronave: 0.298\n", - "Predicción obtenida: 12.703\n", - "\tR²: 0.44533403577557296, Desviación Estándar: 7.372752999831995, Varianza: 54.35748679653168, Incertidumbre: 1.5373252717475088\n", + "Predicción obtenida: 12.533\n", + "\tR²: 0.44031188669232135, Desviación Estándar: 7.400190688413107, Varianza: 54.76282222487606, Incertidumbre: 1.54304642530508\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.257x + 4.049\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.238x + 4.003\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 10.336\n", - "\tR²: 0.6396223521327932, Desviación Estándar: 5.8641677511942225, Varianza: 34.38846341414631, Incertidumbre: 1.1970182297091787\n", + "Predicción obtenida: 10.192\n", + "\tR²: 0.618870296719052, Desviación Estándar: 6.026195235106751, Varianza: 36.31502901162332, Incertidumbre: 1.2300919513669042\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.095x + 3.264\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.094x + 3.287\n", "Valor del parámetro correlacionado para la aeronave: 101.86\n", - "Predicción obtenida: 12.891\n", - "\tR²: 0.7190956882541144, Desviación Estándar: 3.321003665545642, Varianza: 11.029065346567588, Incertidumbre: 1.0013202805463481\n", + "Predicción obtenida: 12.848\n", + "\tR²: 0.7179611867018045, Desviación Estándar: 3.307905028059083, Varianza: 10.942235674658562, Incertidumbre: 0.9973708927456391\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 10.198', 'Longitud del fuselaje: 10.169', 'Peso máximo al despegue (MTOW): 10.676', 'envergadura: 9.144', 'Cuerda: 12.703', 'payload: 10.336', 'Rango de comunicación: 12.891']\n", - "**Mediana calculada:** 10.336\n", + "Valores imputados: ['Área del ala: 10.185', 'Longitud del fuselaje: 10.147', 'Peso máximo al despegue (MTOW): 10.664', 'envergadura: 9.139', 'Cuerda: 12.533', 'payload: 10.192', 'Rango de comunicación: 12.848']\n", + "**Mediana calculada:** 10.192\n", "\n", "--- Imputación para aeronave: **Integrator** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.023x + -5.765\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.013x + -5.774\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 22.358\n", - "\tR²: 0.9167346130104, Desviación Estándar: 2.8029703167934756, Varianza: 7.856642596825316, Incertidumbre: 0.5721539200259446\n", + "Predicción obtenida: 22.331\n", + "\tR²: 0.9166944834584114, Desviación Estándar: 2.801949594727719, Varianza: 7.850921531394829, Incertidumbre: 0.5719455660067526\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.088x + -3.653\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.104x + -3.71\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 16.567\n", - "\tR²: 0.702201492451173, Desviación Estándar: 5.300874285112574, Varianza: 28.099268186567745, Incertidumbre: 1.0820364324305303\n", + "Predicción obtenida: 16.551\n", + "\tR²: 0.7059270986898859, Desviación Estándar: 5.264424973725865, Varianza: 27.714170303988578, Incertidumbre: 1.0745962478994258\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.32x + 2.183\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.32x + 2.172\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 26.113\n", - "\tR²: 0.9120249989617861, Desviación Estándar: 2.846441429999798, Varianza: 8.102228814419295, Incertidumbre: 0.5692882859999596\n", + "Predicción obtenida: 26.082\n", + "\tR²: 0.9114909858720777, Desviación Estándar: 2.8535287759093366, Varianza: 8.142626474942638, Incertidumbre: 0.5707057551818673\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.663x + -14.551\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.648x + -14.516\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.234\n", - "\tR²: 0.8301280134060601, Desviación Estándar: 4.003567260287771, Varianza: 16.02855080764813, Incertidumbre: 0.8172247448847872\n", + "Predicción obtenida: 22.195\n", + "\tR²: 0.8278014537455741, Desviación Estándar: 4.028451857224602, Varianza: 16.22842436597635, Incertidumbre: 0.8223042919639589\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 165.132x + -36.607\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 163.568x + -36.31\n", "Valor del parámetro correlacionado para la aeronave: 0.338\n", - "Predicción obtenida: 19.208\n", - "\tR²: 0.44554931519439944, Desviación Estándar: 7.232987396297254, Varianza: 52.316106674994934, Incertidumbre: 1.476427369742511\n", + "Predicción obtenida: 18.976\n", + "\tR²: 0.4408083829979076, Desviación Estándar: 7.259450756578375, Varianza: 52.69962528718634, Incertidumbre: 1.4818291805398596\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.257x + 4.049\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.238x + 4.003\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 26.683\n", - "\tR²: 0.6415415848013848, Desviación Estándar: 5.74568750261759, Varianza: 33.01292487773596, Incertidumbre: 1.149137500523518\n", + "Predicción obtenida: 26.284\n", + "\tR²: 0.6210511278262185, Desviación Estándar: 5.904441366561173, Varianza: 34.86242785115877, Incertidumbre: 1.1808882733122346\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.094x + 3.136\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.093x + 3.153\n", "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 11.799\n", - "\tR²: 0.7062398188700879, Desviación Estándar: 3.2566903822374726, Varianza: 10.606032245758056, Incertidumbre: 0.9401255344260351\n", + "Predicción obtenida: 11.754\n", + "\tR²: 0.7040073224712778, Desviación Estándar: 3.250633447126605, Varianza: 10.566617807578197, Incertidumbre: 0.9383770478676734\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 22.358', 'Longitud del fuselaje: 16.567', 'Peso máximo al despegue (MTOW): 26.113', 'envergadura: 22.234', 'Cuerda: 19.208', 'payload: 26.683', 'Rango de comunicación: 11.799']\n", - "**Mediana calculada:** 22.234\n", + "Valores imputados: ['Área del ala: 22.331', 'Longitud del fuselaje: 16.551', 'Peso máximo al despegue (MTOW): 26.082', 'envergadura: 22.195', 'Cuerda: 18.976', 'payload: 26.284', 'Rango de comunicación: 11.754']\n", + "**Mediana calculada:** 22.195\n", "\n", "--- Imputación para aeronave: **Integrator VTOL** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.016x + -5.76\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 15.005x + -5.769\n", "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 25.622\n", - "\tR²: 0.9193277412989592, Desviación Estándar: 2.7464421762175815, Varianza: 7.542944627306766, Incertidumbre: 0.5492884352435163\n", + "Predicción obtenida: 25.592\n", + "\tR²: 0.9192804737551298, Desviación Estándar: 2.745463286837539, Varianza: 7.537568659372784, Incertidumbre: 0.5490926573675078\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.172x + -3.606\n", - "Valor del parámetro correlacionado para la aeronave: 3.004\n", - "Predicción obtenida: 20.942\n", - "\tR²: 0.6983801297433365, Desviación Estándar: 5.310535615782573, Varianza: 28.201788526495196, Incertidumbre: 1.0621071231565147\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.188x + -3.662\n", + "Valor del parámetro correlacionado para la aeronave: 2.998\n", + "Predicción obtenida: 20.885\n", + "\tR²: 0.7020575415560586, Desviación Estándar: 5.274636514397158, Varianza: 27.821790359011803, Incertidumbre: 1.0549273028794315\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.313x + 2.281\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.313x + 2.27\n", "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 25.783\n", - "\tR²: 0.9088807177212644, Desviación Estándar: 2.882816344795206, Varianza: 8.310630077818393, Incertidumbre: 0.5653667998544224\n", + "Predicción obtenida: 25.751\n", + "\tR²: 0.9083231176697067, Desviación Estándar: 2.889927154659528, Varianza: 8.351678959238516, Incertidumbre: 0.5667613444027156\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.663x + -14.551\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.648x + -14.516\n", "Valor del parámetro correlacionado para la aeronave: 5.033\n", - "Predicción obtenida: 24.019\n", - "\tR²: 0.835430712623076, Desviación Estándar: 3.922678776357705, Varianza: 15.387408782487181, Incertidumbre: 0.7845357552715411\n", + "Predicción obtenida: 23.977\n", + "\tR²: 0.833162024179038, Desviación Estándar: 3.947060601866186, Varianza: 15.579287394804256, Incertidumbre: 0.7894121203732372\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 167.757x + -37.286\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 166.269x + -37.008\n", "Valor del parámetro correlacionado para la aeronave: 0.341\n", - "Predicción obtenida: 19.919\n", - "\tR²: 0.45920799755943364, Desviación Estándar: 7.110882159300929, Varianza: 50.56464508346425, Incertidumbre: 1.4221764318601857\n", + "Predicción obtenida: 19.69\n", + "\tR²: 0.45407381641801514, Desviación Estándar: 7.1399192582523305, Varianza: 50.97844701436251, Incertidumbre: 1.4279838516504662\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.215x + 4.222\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.199x + 4.165\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 26.093\n", - "\tR²: 0.6447227222524704, Desviación Estándar: 5.692401793705153, Varianza: 32.403438180977645, Incertidumbre: 1.1163718394351212\n", + "Predicción obtenida: 25.75\n", + "\tR²: 0.6258944719318421, Desviación Estándar: 5.837864906102878, Varianza: 34.08066666190756, Incertidumbre: 1.144899502843734\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 25.622', 'Longitud del fuselaje: 20.942', 'Peso máximo al despegue (MTOW): 25.783', 'envergadura: 24.019', 'Cuerda: 19.919', 'payload: 26.093']\n", - "**Mediana calculada:** 24.82\n", + "Valores imputados: ['Área del ala: 25.592', 'Longitud del fuselaje: 20.885', 'Peso máximo al despegue (MTOW): 25.751', 'envergadura: 23.977', 'Cuerda: 19.69', 'payload: 25.75']\n", + "**Mediana calculada:** 24.784\n", "\n", "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.956x + -5.711\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.945x + -5.72\n", "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 22.286\n", - "\tR²: 0.9228857881228267, Desviación Estándar: 2.697264613869004, Varianza: 7.275236397229909, Incertidumbre: 0.5289771115169755\n", + "Predicción obtenida: 22.258\n", + "\tR²: 0.9228323594939006, Desviación Estándar: 2.6963684551592366, Varianza: 7.2704028459778085, Incertidumbre: 0.5288013603343454\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.3x + -3.735\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.316x + -3.791\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 17.015\n", - "\tR²: 0.7068456492535431, Desviación Estándar: 5.25901627247607, Varianza: 27.657252154168102, Incertidumbre: 1.031377945986826\n", + "Predicción obtenida: 17.0\n", + "\tR²: 0.7102604918578905, Desviación Estándar: 5.224749658509504, Varianza: 27.298008994095174, Incertidumbre: 1.024657710091431\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.312x + 2.303\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.312x + 2.292\n", "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 25.631\n", - "\tR²: 0.912609810603614, Desviación Estándar: 2.834428027141342, Varianza: 8.033982241044361, Incertidumbre: 0.5454859281562245\n", + "Predicción obtenida: 25.599\n", + "\tR²: 0.9120674450382346, Desviación Estándar: 2.8414417914279144, Varianza: 8.073791454073076, Incertidumbre: 0.5468357277225196\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.693x + -14.63\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.677x + -14.595\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.295\n", - "\tR²: 0.8429342446881969, Desviación Estándar: 3.8494359348535636, Varianza: 14.818157016541928, Incertidumbre: 0.7549364980055233\n", + "Predicción obtenida: 22.256\n", + "\tR²: 0.8407587886499855, Desviación Estándar: 3.873373378087582, Varianza: 15.003021326077608, Incertidumbre: 0.7596310168576687\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 172.075x + -38.42\n", - "Valor del parámetro correlacionado para la aeronave: 0.344\n", - "Predicción obtenida: 20.773\n", - "\tR²: 0.4755347143919866, Desviación Estándar: 7.034200066776385, Varianza: 49.479970579436895, Incertidumbre: 1.3795201308849407\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 170.626x + -38.15\n", + "Valor del parámetro correlacionado para la aeronave: 0.345\n", + "Predicción obtenida: 20.716\n", + "\tR²: 0.4698496594948569, Desviación Estándar: 7.067424038440677, Varianza: 49.94848253912913, Incertidumbre: 1.3860358878016823\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.204x + 4.266\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.191x + 4.199\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 25.944\n", - "\tR²: 0.6600077706694365, Desviación Estándar: 5.590730903029895, Varianza: 31.256272030093463, Incertidumbre: 1.0759366639436898\n", + "Predicción obtenida: 25.639\n", + "\tR²: 0.6422377954896081, Desviación Estándar: 5.73140563845551, Varianza: 32.84901059251961, Incertidumbre: 1.1030095293990758\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 22.286', 'Longitud del fuselaje: 17.015', 'Peso máximo al despegue (MTOW): 25.631', 'envergadura: 22.295', 'Cuerda: 20.773', 'payload: 25.944']\n", - "**Mediana calculada:** 22.29\n", + "Valores imputados: ['Área del ala: 22.258', 'Longitud del fuselaje: 17.0', 'Peso máximo al despegue (MTOW): 25.599', 'envergadura: 22.256', 'Cuerda: 20.716', 'payload: 25.639']\n", + "**Mediana calculada:** 22.257\n", "\n", "--- Imputación para aeronave: **ScanEagle 3** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.956x + -5.712\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.945x + -5.72\n", "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 14.464\n", - "\tR²: 0.9247777030959305, Desviación Estándar: 2.6468441167859273, Varianza: 7.005783778564275, Incertidumbre: 0.5093853877764442\n", + "Predicción obtenida: 14.441\n", + "\tR²: 0.9247233040619992, Desviación Estándar: 2.645964603028454, Varianza: 7.001128680479524, Incertidumbre: 0.5092161252748997\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.366x + -3.684\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.382x + -3.74\n", "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 16.395\n", - "\tR²: 0.7034262913324543, Desviación Estándar: 5.255588982695431, Varianza: 27.6212155550296, Incertidumbre: 1.0114385713030796\n", + "Predicción obtenida: 16.377\n", + "\tR²: 0.7068047947675931, Desviación Estándar: 5.221943728574231, Varianza: 27.268696304395736, Incertidumbre: 1.00496353912847\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.373\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.362\n", "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 13.524\n", - "\tR²: 0.9106032203613208, Desviación Estándar: 2.8482011972816106, Varianza: 8.1122500601964, Incertidumbre: 0.5382594322773969\n", + "Predicción obtenida: 13.503\n", + "\tR²: 0.9100626005198136, Desviación Estándar: 2.854969820151899, Varianza: 8.150852673978166, Incertidumbre: 0.5395385817654803\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.692x + -14.629\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.677x + -14.596\n", "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 16.14\n", - "\tR²: 0.8467876896895489, Desviación Estándar: 3.7774776218534605, Varianza: 14.269337183603675, Incertidumbre: 0.7269759072782942\n", + "Predicción obtenida: 16.114\n", + "\tR²: 0.8446608947110245, Desviación Estándar: 3.800967492809924, Varianza: 14.447353881397758, Incertidumbre: 0.7314965350516088\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 173.426x + -38.78\n", - "Valor del parámetro correlacionado para la aeronave: 0.31\n", - "Predicción obtenida: 14.982\n", - "\tR²: 0.4875507277051119, Desviación Estándar: 6.908448268587538, Varianza: 47.726657479750145, Incertidumbre: 1.329531489183873\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 171.998x + -38.517\n", + "Valor del parámetro correlacionado para la aeronave: 0.312\n", + "Predicción obtenida: 15.147\n", + "\tR²: 0.4819605292975089, Desviación Estándar: 6.941209958097174, Varianza: 48.18039568238737, Incertidumbre: 1.3358364792697046\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.177x + 4.379\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.166x + 4.305\n", "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 14.499\n", - "\tR²: 0.6631553407358013, Desviación Estándar: 5.528719549623086, Varianza: 30.566739858384498, Incertidumbre: 1.044829785494551\n", + "Predicción obtenida: 14.33\n", + "\tR²: 0.6464449368019647, Desviación Estándar: 5.6605664016485475, Varianza: 32.042011987472385, Incertidumbre: 1.0697464984664153\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 14.464', 'Longitud del fuselaje: 16.395', 'Peso máximo al despegue (MTOW): 13.524', 'envergadura: 16.14', 'Cuerda: 14.982', 'payload: 14.499']\n", - "**Mediana calculada:** 14.74\n", + "Valores imputados: ['Área del ala: 14.441', 'Longitud del fuselaje: 16.377', 'Peso máximo al despegue (MTOW): 13.503', 'envergadura: 16.114', 'Cuerda: 15.147', 'payload: 14.33']\n", + "**Mediana calculada:** 14.794\n", "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.956x + -5.701\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.945x + -5.707\n", "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 21.249\n", - "\tR²: 0.9247492382330068, Desviación Estándar: 2.59965345007093, Varianza: 6.758198060465689, Incertidumbre: 0.4912883231313392\n", + "Predicción obtenida: 21.224\n", + "\tR²: 0.9246771071689462, Desviación Estándar: 2.599110307951027, Varianza: 6.7553743928972825, Incertidumbre: 0.49118567891878007\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.353x + -3.713\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.369x + -3.768\n", "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 17.168\n", - "\tR²: 0.7023810376902668, Desviación Estándar: 5.16999718239943, Varianza: 26.728870866018045, Incertidumbre: 0.9770376302523951\n", + "Predicción obtenida: 17.155\n", + "\tR²: 0.7058504559348706, Desviación Estándar: 5.136239966459277, Varianza: 26.380960993053595, Incertidumbre: 0.9706581160858557\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.423\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.415\n", "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 21.149\n", - "\tR²: 0.9100414966060446, Desviación Estándar: 2.8074428350263565, Varianza: 7.881735271940825, Incertidumbre: 0.5213290466629605\n", + "Predicción obtenida: 21.123\n", + "\tR²: 0.9094286866168957, Desviación Estándar: 2.8151847172798137, Varianza: 7.925264992405825, Incertidumbre: 0.5227666781061432\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.685x + -14.651\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.67x + -14.615\n", "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.237\n", - "\tR²: 0.8460378541791183, Desviación Estándar: 3.7184931434823216, Varianza: 13.827191258125037, Incertidumbre: 0.7027291506823602\n", + "Predicción obtenida: 22.202\n", + "\tR²: 0.8439953830988041, Desviación Estándar: 3.740502434777401, Varianza: 13.991358464575665, Incertidumbre: 0.7068885157751859\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 173.412x + -38.784\n", - "Valor del parámetro correlacionado para la aeronave: 0.338\n", - "Predicción obtenida: 19.829\n", - "\tR²: 0.48753313542114285, Desviación Estándar: 6.784110329613901, Varianza: 46.024152964374025, Incertidumbre: 1.2820763427844863\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 171.97x + -38.52\n", + "Valor del parámetro correlacionado para la aeronave: 0.341\n", + "Predicción obtenida: 20.121\n", + "\tR²: 0.481923663962755, Desviación Estándar: 6.816447496640321, Varianza: 46.46395647445409, Incertidumbre: 1.2881874929313626\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.177x + 4.387\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.166x + 4.322\n", "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 25.215\n", - "\tR²: 0.6631333634856997, Desviación Estándar: 5.432738626672287, Varianza: 29.514648985737086, Incertidumbre: 1.0088342365074427\n", + "Predicción obtenida: 24.954\n", + "\tR²: 0.6463635003419814, Desviación Estándar: 5.562757206524997, Varianza: 30.944267738745786, Incertidumbre: 1.0329780806624915\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.095x + 3.847\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.094x + 3.865\n", "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 12.606\n", - "\tR²: 0.5786689229639067, Desviación Estándar: 4.18551671444084, Varianza: 17.51855016686364, Incertidumbre: 1.160853471402155\n", + "Predicción obtenida: 12.561\n", + "\tR²: 0.5755594637290282, Desviación Estándar: 4.182273841525787, Varianza: 17.491414485510862, Incertidumbre: 1.1599540602809986\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 21.249', 'Longitud del fuselaje: 17.168', 'Peso máximo al despegue (MTOW): 21.149', 'envergadura: 22.237', 'Cuerda: 19.829', 'payload: 25.215', 'Rango de comunicación: 12.606']\n", - "**Mediana calculada:** 21.149\n", + "Valores imputados: ['Área del ala: 21.224', 'Longitud del fuselaje: 17.155', 'Peso máximo al despegue (MTOW): 21.123', 'envergadura: 22.202', 'Cuerda: 20.121', 'payload: 24.954', 'Rango de comunicación: 12.561']\n", + "**Mediana calculada:** 21.123\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.941x + -5.705\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 4.767\n", - "\tR²: 0.9259690891919676, Desviación Estándar: 2.554502626662271, Varianza: 6.525483669624441, Incertidumbre: 0.4743592291322177\n", + "Predicción obtenida: 4.754\n", + "\tR²: 0.9258976032052461, Desviación Estándar: 2.5539701136688935, Varianza: 6.522763341513901, Incertidumbre: 0.4742603439518288\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.399x + -3.679\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.416x + -3.734\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 3.88\n", - "\tR²: 0.7012558792426988, Desviación Estándar: 5.131560941639433, Varianza: 26.332917697759388, Incertidumbre: 0.9529069444338854\n", + "Predicción obtenida: 3.84\n", + "\tR²: 0.704696721359465, Desviación Estándar: 5.098398969474347, Varianza: 25.993672051937075, Incertidumbre: 0.9467489207980716\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.423\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.307x + 2.415\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 4.326\n", - "\tR²: 0.9114139885923979, Desviación Estándar: 2.760255561189478, Varianza: 7.61901076307744, Incertidumbre: 0.5039514117808528\n", + "Predicción obtenida: 4.317\n", + "\tR²: 0.9108095208047919, Desviación Estándar: 2.7678673189624066, Varianza: 7.661089495380141, Incertidumbre: 0.5053411222590188\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.657x + -14.58\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.642x + -14.545\n", "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 3.413\n", - "\tR²: 0.8481057631774891, Desviación Estándar: 3.659067788491134, Varianza: 13.388777080773398, Incertidumbre: 0.6794718303966184\n", + "Predicción obtenida: 3.414\n", + "\tR²: 0.846101938815913, Desviación Estándar: 3.680579963754588, Varianza: 13.546668869591723, Incertidumbre: 0.6834665410570895\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 174.337x + -39.024\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 172.715x + -38.717\n", "Valor del parámetro correlacionado para la aeronave: 0.272\n", - "Predicción obtenida: 8.395\n", - "\tR²: 0.49522154420699915, Desviación Estándar: 6.670374425052742, Varianza: 44.493894970397704, Incertidumbre: 1.2386574346277268\n", + "Predicción obtenida: 8.262\n", + "\tR²: 0.4899739920102165, Desviación Estándar: 6.700324629668004, Varianza: 44.89435014293567, Incertidumbre: 1.24421904800223\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.15x + 4.498\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.14x + 4.428\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.878\n", - "\tR²: 0.6624428309267374, Desviación Estándar: 5.388158809639675, Varianza: 29.032255357897643, Incertidumbre: 0.9837387078199448\n", + "Predicción obtenida: 5.796\n", + "\tR²: 0.6465679119191974, Desviación Estándar: 5.509840252613488, Varianza: 30.358339609319863, Incertidumbre: 1.0059545982021234\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.095x + 4.388\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.095x + 4.407\n", "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 9.156\n", - "\tR²: 0.518357595351121, Desviación Estándar: 4.594228397572152, Varianza: 21.106934569058385, Incertidumbre: 1.2278591871644609\n", + "Predicción obtenida: 9.141\n", + "\tR²: 0.5148731942546723, Desviación Estándar: 4.5938015964161, Varianza: 21.103013107235103, Incertidumbre: 1.2277451197574445\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 4.767', 'Longitud del fuselaje: 3.88', 'Peso máximo al despegue (MTOW): 4.326', 'envergadura: 3.413', 'Cuerda: 8.395', 'payload: 5.878', 'Rango de comunicación: 9.156']\n", - "**Mediana calculada:** 4.767\n", + "Valores imputados: ['Área del ala: 4.754', 'Longitud del fuselaje: 3.84', 'Peso máximo al despegue (MTOW): 4.317', 'envergadura: 3.414', 'Cuerda: 8.262', 'payload: 5.796', 'Rango de comunicación: 9.141']\n", + "**Mediana calculada:** 4.754\n", "\n", "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.941x + -5.705\n", "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 4.767\n", - "\tR²: 0.9286912161672043, Desviación Estándar: 2.5115667515700397, Varianza: 6.3079675475920824, Incertidumbre: 0.4585472548382948\n", + "Predicción obtenida: 4.754\n", + "\tR²: 0.9286220934085586, Desviación Estándar: 2.511043189243422, Varianza: 6.305337898245776, Incertidumbre: 0.4584516658727787\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.358x + -3.56\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.373x + -3.612\n", "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 3.962\n", - "\tR²: 0.7119717257129345, Desviación Estándar: 5.047667874355293, Varianza: 25.47895096979848, Incertidumbre: 0.9215738525261822\n", + "Predicción obtenida: 3.924\n", + "\tR²: 0.7152679648938791, Desviación Estándar: 5.015225272771336, Varianza: 25.15248453664432, Incertidumbre: 0.9156506709556202\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.452\n", "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 4.359\n", - "\tR²: 0.9146821995211808, Desviación Estándar: 2.7164377856628272, Varianza: 7.379034243376764, Incertidumbre: 0.4878866289309157\n", + "Predicción obtenida: 4.35\n", + "\tR²: 0.9141014032234078, Desviación Estándar: 2.7239052914347277, Varianza: 7.419660036706109, Incertidumbre: 0.4892278325604646\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.593x + -14.314\n", "Valor del parámetro correlacionado para la aeronave: 2.35\n", "Predicción obtenida: 3.53\n", - "\tR²: 0.8530601734425255, Desviación Estándar: 3.605312977255013, Varianza: 12.998281663963407, Incertidumbre: 0.6582370815028935\n", + "\tR²: 0.851141505775779, Desviación Estándar: 3.626261257188199, Varianza: 13.149770705384139, Incertidumbre: 0.6620616966563397\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 177.343x + -40.07\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 175.676x + -39.747\n", "Valor del parámetro correlacionado para la aeronave: 0.272\n", - "Predicción obtenida: 8.167\n", - "\tR²: 0.5091333952756019, Desviación Estándar: 6.589537801021175, Varianza: 43.42200843108698, Incertidumbre: 1.203079499050762\n", + "Predicción obtenida: 8.037\n", + "\tR²: 0.5043808003522512, Desviación Estándar: 6.616774593333738, Varianza: 43.78170601898685, Incertidumbre: 1.2080522342319868\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.156x + 4.406\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.146x + 4.34\n", "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.794\n", - "\tR²: 0.6747265207014675, Desviación Estándar: 5.304009156303675, Varianza: 28.132513130153214, Incertidumbre: 0.952628166470701\n", + "Predicción obtenida: 5.716\n", + "\tR²: 0.6594997555877751, Desviación Estándar: 5.423225746126612, Varianza: 29.411377493450544, Incertidumbre: 0.9740400980924518\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.1x + 3.711\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.099x + 3.73\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 6.705\n", - "\tR²: 0.5369948479446686, Desviación Estándar: 4.566261608746338, Varianza: 20.850745079510695, Incertidumbre: 1.17900367767339\n", + "Predicción obtenida: 6.703\n", + "\tR²: 0.5336804190590896, Desviación Estándar: 4.565757595526708, Varianza: 20.846142421109825, Incertidumbre: 1.1788735420196639\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 4.767', 'Longitud del fuselaje: 3.962', 'Peso máximo al despegue (MTOW): 4.359', 'envergadura: 3.53', 'Cuerda: 8.167', 'payload: 5.794', 'Rango de comunicación: 6.705']\n", - "**Mediana calculada:** 4.767\n", + "Valores imputados: ['Área del ala: 4.754', 'Longitud del fuselaje: 3.924', 'Peso máximo al despegue (MTOW): 4.35', 'envergadura: 3.53', 'Cuerda: 8.037', 'payload: 5.716', 'Rango de comunicación: 6.703']\n", + "**Mediana calculada:** 4.754\n", "\n", "--- Imputación para aeronave: **V35** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.941x + -5.705\n", "Valor del parámetro correlacionado para la aeronave: 1.202\n", - "Predicción obtenida: 12.273\n", - "\tR²: 0.9286912161672043, Desviación Estándar: 2.5115667515700397, Varianza: 6.3079675475920824, Incertidumbre: 0.4585472548382948\n", + "Predicción obtenida: 12.254\n", + "\tR²: 0.9286220934085586, Desviación Estándar: 2.511043189243422, Varianza: 6.305337898245776, Incertidumbre: 0.4584516658727787\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.358x + -3.56\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.373x + -3.612\n", "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 12.153\n", - "\tR²: 0.7119717257129345, Desviación Estándar: 5.047667874355293, Varianza: 25.47895096979848, Incertidumbre: 0.9215738525261822\n", + "Predicción obtenida: 12.13\n", + "\tR²: 0.7152679648938791, Desviación Estándar: 5.015225272771336, Varianza: 25.15248453664432, Incertidumbre: 0.9156506709556202\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.452\n", "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 12.265\n", - "\tR²: 0.9146821995211808, Desviación Estándar: 2.7164377856628272, Varianza: 7.379034243376764, Incertidumbre: 0.4878866289309157\n", + "Predicción obtenida: 12.248\n", + "\tR²: 0.9141014032234078, Desviación Estándar: 2.7239052914347277, Varianza: 7.419660036706109, Incertidumbre: 0.4892278325604646\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.593x + -14.314\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 12.278\n", - "\tR²: 0.8530601734425255, Desviación Estándar: 3.605312977255013, Varianza: 12.998281663963407, Incertidumbre: 0.6582370815028935\n", + "Predicción obtenida: 12.262\n", + "\tR²: 0.851141505775779, Desviación Estándar: 3.626261257188199, Varianza: 13.149770705384139, Incertidumbre: 0.6620616966563397\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 177.343x + -40.07\n", - "Valor del parámetro correlacionado para la aeronave: 0.304\n", - "Predicción obtenida: 13.842\n", - "\tR²: 0.5091333952756019, Desviación Estándar: 6.589537801021175, Varianza: 43.42200843108698, Incertidumbre: 1.203079499050762\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 175.676x + -39.747\n", + "Valor del parámetro correlacionado para la aeronave: 0.306\n", + "Predicción obtenida: 14.01\n", + "\tR²: 0.5043808003522512, Desviación Estándar: 6.616774593333738, Varianza: 43.78170601898685, Incertidumbre: 1.2080522342319868\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.156x + 4.406\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.146x + 4.34\n", "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 15.967\n", - "\tR²: 0.6747265207014675, Desviación Estándar: 5.304009156303675, Varianza: 28.132513130153214, Incertidumbre: 0.952628166470701\n", + "Predicción obtenida: 15.804\n", + "\tR²: 0.6594997555877751, Desviación Estándar: 5.423225746126612, Varianza: 29.411377493450544, Incertidumbre: 0.9740400980924518\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 4.767, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.102x + 3.372\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 4.754, 2.65, 3.45, 6.45]\n", + "Ecuación de regresión: y = 0.102x + 3.389\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 6.444\n", - "\tR²: 0.5669527647105395, Desviación Estándar: 4.444173630434083, Varianza: 19.750679257445654, Incertidumbre: 1.1110434076085207\n", + "Predicción obtenida: 6.441\n", + "\tR²: 0.5638096764017799, Desviación Estándar: 4.443968751728997, Varianza: 19.74885826634378, Incertidumbre: 1.1109921879322493\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.273', 'Longitud del fuselaje: 12.153', 'Peso máximo al despegue (MTOW): 12.265', 'envergadura: 12.278', 'Cuerda: 13.842', 'payload: 15.967', 'Rango de comunicación: 6.444']\n", - "**Mediana calculada:** 12.273\n", + "Valores imputados: ['Área del ala: 12.254', 'Longitud del fuselaje: 12.13', 'Peso máximo al despegue (MTOW): 12.248', 'envergadura: 12.262', 'Cuerda: 14.01', 'payload: 15.804', 'Rango de comunicación: 6.441']\n", + "**Mediana calculada:** 12.254\n", "\n", "--- Imputación para aeronave: **V39** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.941x + -5.705\n", "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 12.288\n", - "\tR²: 0.9288175658243848, Desviación Estándar: 2.470725546458319, Varianza: 6.104484725921759, Incertidumbre: 0.4437554079969149\n", + "Predicción obtenida: 12.269\n", + "\tR²: 0.9287486031571285, Desviación Estándar: 2.4702104975198655, Varianza: 6.101939902057342, Incertidumbre: 0.4436629024767654\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.357x + -3.554\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.372x + -3.605\n", "Valor del parámetro correlacionado para la aeronave: 1.954\n", - "Predicción obtenida: 12.775\n", - "\tR²: 0.7124768203038293, Desviación Estándar: 4.965631866447997, Varianza: 24.657499833083815, Incertidumbre: 0.8918538111271705\n", + "Predicción obtenida: 12.754\n", + "\tR²: 0.7157670307935512, Desviación Estándar: 4.933719987077154, Varianza: 24.341592910884593, Incertidumbre: 0.8861222683945283\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.46\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.306x + 2.452\n", "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 9.814\n", - "\tR²: 0.9148561084451423, Desviación Estándar: 2.6736569224974254, Varianza: 7.148441339218403, Incertidumbre: 0.47264023511607123\n", + "Predicción obtenida: 9.799\n", + "\tR²: 0.9142766506576697, Desviación Estándar: 2.6810066815314575, Varianza: 7.187796826416317, Incertidumbre: 0.47393950122933404\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.607x + -14.346\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.593x + -14.314\n", "Valor del parámetro correlacionado para la aeronave: 3.9\n", - "Predicción obtenida: 15.321\n", - "\tR²: 0.8533205216960276, Desviación Estándar: 3.5466862107514427, Varianza: 12.578983077534426, Incertidumbre: 0.6370036480762108\n", + "Predicción obtenida: 15.299\n", + "\tR²: 0.8514053187249602, Desviación Estándar: 3.567294004696238, Varianza: 12.725586515941725, Incertidumbre: 0.6407049171317712\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 177.47x + -40.16\n", - "Valor del parámetro correlacionado para la aeronave: 0.304\n", - "Predicción obtenida: 13.791\n", - "\tR²: 0.5091069267607173, Desviación Estándar: 6.488309232157318, Varianza: 42.098156692097895, Incertidumbre: 1.1653347392847273\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 175.776x + -39.835\n", + "Valor del parámetro correlacionado para la aeronave: 0.307\n", + "Predicción obtenida: 14.129\n", + "\tR²: 0.5041358522783776, Desviación Estándar: 6.516563415932599, Varianza: 42.46559875387115, Incertidumbre: 1.1704093404952065\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.153x + 4.318\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.144x + 4.253\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 10.083\n", - "\tR²: 0.6704748222680529, Desviación Estándar: 5.259848463722186, Varianza: 27.666005861320635, Incertidumbre: 0.9298186291779004\n", + "Predicción obtenida: 9.972\n", + "\tR²: 0.6556479703357065, Desviación Estándar: 5.373405979420902, Varianza: 28.8734918196763, Incertidumbre: 0.9498929515292154\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQNan21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35']\n", "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.724, 12.253, 5.627, 10.336, 22.234, 21.149, 4.767, 4.767, 2.65, 3.45, 6.45, 12.273]\n", - "Ecuación de regresión: y = 0.095x + 4.271\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 4.754, 2.65, 3.45, 6.45, 12.254]\n", + "Ecuación de regresión: y = 0.095x + 4.285\n", "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 7.135\n", - "\tR²: 0.5259965377098035, Desviación Estándar: 4.511169408629526, Varianza: 20.35064943335487, Incertidumbre: 1.0941192921667469\n", + "Predicción obtenida: 7.13\n", + "\tR²: 0.5227923448909729, Desviación Estándar: 4.50989094884209, Varianza: 20.339116370447805, Incertidumbre: 1.093809220123117\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.288', 'Longitud del fuselaje: 12.775', 'Peso máximo al despegue (MTOW): 9.814', 'envergadura: 15.321', 'Cuerda: 13.791', 'payload: 10.083', 'Rango de comunicación: 7.135']\n", - "**Mediana calculada:** 12.288\n", + "Valores imputados: ['Área del ala: 12.269', 'Longitud del fuselaje: 12.754', 'Peso máximo al despegue (MTOW): 9.799', 'envergadura: 15.299', 'Cuerda: 14.129', 'payload: 9.972', 'Rango de comunicación: 7.13']\n", + "**Mediana calculada:** 12.269\n", "\n", "--- Imputación para aeronave: **Volitation VT370** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.952x + -5.699\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.941x + -5.705\n", "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 15.592\n", - "\tR²: 0.9289339624984088, Desviación Estándar: 2.4318140515483493, Varianza: 5.913719581307998, Incertidumbre: 0.4298880516086425\n", + "Predicción obtenida: 15.571\n", + "\tR²: 0.9288651463121561, Desviación Estándar: 2.4313071135199693, Varianza: 5.911254280252805, Incertidumbre: 0.4297984367792653\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.36x + -3.576\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.375x + -3.627\n", "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 13.311\n", - "\tR²: 0.7128606994643418, Desviación Estándar: 4.888162469550296, Varianza: 23.894132328720048, Incertidumbre: 0.8641132074401486\n", + "Predicción obtenida: 13.291\n", + "\tR²: 0.7161464221538233, Desviación Estándar: 4.856750413201213, Varianza: 23.58802457613015, Incertidumbre: 0.858560287926286\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.305x + 2.59\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.305x + 2.582\n", "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 14.79\n", - "\tR²: 0.9128312102468352, Desviación Estándar: 2.6664750643886856, Varianza: 7.110089269006646, Incertidumbre: 0.4641737288731009\n", + "Predicción obtenida: 14.771\n", + "\tR²: 0.9122573197462216, Desviación Estándar: 2.6735124201413973, Varianza: 7.147668660650313, Incertidumbre: 0.46539877526665924\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.598x + -14.407\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 7.584x + -14.375\n", "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 34.979\n", - "\tR²: 0.8502155711682761, Desviación Estándar: 3.5304709885139887, Varianza: 12.46422540073894, Incertidumbre: 0.6241049941901538\n", + "Predicción obtenida: 34.922\n", + "\tR²: 0.8483051549539458, Desviación Estándar: 3.5504549853464953, Varianza: 12.605730602971782, Incertidumbre: 0.6276376991090227\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 177.588x + -40.243\n", - "Valor del parámetro correlacionado para la aeronave: 0.313\n", - "Predicción obtenida: 15.342\n", - "\tR²: 0.5090877540596378, Desviación Estándar: 6.391477230982371, Varianza: 40.85098119416608, Incertidumbre: 1.129864222956763\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 175.837x + -39.912\n", + "Valor del parámetro correlacionado para la aeronave: 0.314\n", + "Predicción obtenida: 15.301\n", + "\tR²: 0.503687273356439, Desviación Estándar: 6.42208878399288, Varianza: 41.24322434948715, Incertidumbre: 1.1352756321358586\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.147x + 4.438\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.137x + 4.381\n", "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 25.083\n", - "\tR²: 0.6693635088936598, Desviación Estándar: 5.193168453194595, Varianza: 26.968998583255537, Incertidumbre: 0.9040145913151921\n", + "Predicción obtenida: 24.85\n", + "\tR²: 0.6544160881835673, Desviación Estándar: 5.30583225901069, Varianza: 28.151855960758482, Incertidumbre: 0.923626842542706\n", "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 15.592', 'Longitud del fuselaje: 13.311', 'Peso máximo al despegue (MTOW): 14.79', 'envergadura: 34.979', 'Cuerda: 15.342', 'payload: 25.083']\n", - "**Mediana calculada:** 15.467\n", + "Valores imputados: ['Área del ala: 15.571', 'Longitud del fuselaje: 13.291', 'Peso máximo al despegue (MTOW): 14.771', 'envergadura: 34.922', 'Cuerda: 15.301', 'payload: 24.85']\n", + "**Mediana calculada:** 15.436\n", "\n", "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.951x + -5.702\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.94x + -5.708\n", "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 33.395\n", - "\tR²: 0.928961023163967, Desviación Estándar: 2.394780806275851, Varianza: 5.734975110107215, Incertidumbre: 0.41687782928419626\n", + "Predicción obtenida: 33.36\n", + "\tR²: 0.9288907011950363, Desviación Estándar: 2.394297517401611, Varianza: 5.7326606018355175, Incertidumbre: 0.41679369948981904\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.351x + -3.491\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.366x + -3.542\n", "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 25.737\n", - "\tR²: 0.7113023376551475, Desviación Estándar: 4.827686425855041, Varianza: 23.306556226385016, Incertidumbre: 0.8403923367019864\n", + "Predicción obtenida: 25.738\n", + "\tR²: 0.714598445858678, Desviación Estándar: 4.796705817916089, Varianza: 23.008386703630055, Incertidumbre: 0.8349993050918911\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375, 0.375]\n", "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 32.0, 35.0]\n", "Ecuación de regresión: y = 114.066x + -10.111\n", @@ -34157,132 +38571,15355 @@ "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.305x + 2.609\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.305x + 2.601\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 33.112\n", - "\tR²: 0.9126951112649697, Desviación Estándar: 2.6294562235715246, Varianza: 6.914040031679023, Incertidumbre: 0.45094802203668083\n", + "Predicción obtenida: 33.074\n", + "\tR²: 0.9121259725181001, Desviación Estándar: 2.6363012992791948, Varianza: 6.950084540581171, Incertidumbre: 0.45212194283573964\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 6.49x + -10.713\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 6.477x + -10.686\n", "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 21.735\n", - "\tR²: 0.7330823891778183, Desviación Estándar: 4.642009599703794, Varianza: 21.548253123742178, Incertidumbre: 0.8080701500402837\n", + "Predicción obtenida: 21.7\n", + "\tR²: 0.7313279100692804, Desviación Estándar: 4.653998017305745, Varianza: 21.659697545085802, Incertidumbre: 0.8101570656750493\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 177.604x + -40.244\n", - "Valor del parámetro correlacionado para la aeronave: 0.336\n", - "Predicción obtenida: 19.431\n", - "\tR²: 0.5093083046494281, Desviación Estándar: 6.293928048096407, Varianza: 39.61353027461465, Incertidumbre: 1.0956322413664432\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 175.854x + -39.913\n", + "Valor del parámetro correlacionado para la aeronave: 0.338\n", + "Predicción obtenida: 19.526\n", + "\tR²: 0.5039052742482211, Desviación Estándar: 6.324078061960279, Varianza: 39.993963333767276, Incertidumbre: 1.1008806851068977\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.088x + 4.692\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.079x + 4.633\n", "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 31.883\n", - "\tR²: 0.6380380391473043, Desviación Estándar: 5.353997072660648, Varianza: 28.665284654058784, Incertidumbre: 0.9182029228184352\n", + "Predicción obtenida: 31.618\n", + "\tR²: 0.624328313685615, Desviación Estándar: 5.450909982107748, Varianza: 29.712419633041897, Incertidumbre: 0.934823349670657\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Capacidad combustible (r = 0.995) ---\n", "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0]\n", - "Valores para Empty weight: [15.467, 11.5, 11.0, 32.0, 35.0]\n", - "Ecuación de regresión: y = 1.31x + -3.112\n", + "Valores para Empty weight: [15.436, 11.5, 11.0, 32.0, 35.0]\n", + "Ecuación de regresión: y = 1.311x + -3.129\n", "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 33.57\n", - "\tR²: 0.98508534505441, Desviación Estándar: 1.2666533895780039, Varianza: 1.6044108093294462, Incertidumbre: 0.566464616605388\n", + "Predicción obtenida: 33.569\n", + "\tR²: 0.9852719437774983, Desviación Estándar: 1.259106590568882, Varianza: 1.5853494064139946, Incertidumbre: 0.5630895854860032\n", "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 33.395', 'Longitud del fuselaje: 25.737', 'Ancho del fuselaje: 32.663', 'Peso máximo al despegue (MTOW): 33.112', 'envergadura: 21.735', 'Cuerda: 19.431', 'payload: 31.883', 'Capacidad combustible: 33.57']\n", - "**Mediana calculada:** 32.273\n", + "Valores imputados: ['Área del ala: 33.36', 'Longitud del fuselaje: 25.738', 'Ancho del fuselaje: 32.663', 'Peso máximo al despegue (MTOW): 33.074', 'envergadura: 21.7', 'Cuerda: 19.526', 'payload: 31.618', 'Capacidad combustible: 33.569']\n", + "**Mediana calculada:** 32.14\n", "\n", "--- Imputación para aeronave: **Volitation VT510** ---\n", "\n", "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.841x + -5.584\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 14.821x + -5.579\n", "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 23.995\n", - "\tR²: 0.9360251057500628, Desviación Estándar: 2.3659573340086495, Varianza: 5.597754106349317, Incertidumbre: 0.4057583352900256\n", + "Predicción obtenida: 23.959\n", + "\tR²: 0.9358207202237538, Desviación Estándar: 2.3667022774990354, Varianza: 5.601279670319122, Incertidumbre: 0.4058860920446379\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 3.004, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.649x + -3.948\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 1.562, 2.3, 4.712]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 8.658x + -3.99\n", "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 21.176\n", - "\tR²: 0.7283975003859964, Desviación Estándar: 4.874936932144367, Varianza: 23.765010092385136, Incertidumbre: 0.8360447865217215\n", + "Predicción obtenida: 21.161\n", + "\tR²: 0.7315519871473125, Desviación Estándar: 4.840344870982094, Varianza: 23.42893847004267, Incertidumbre: 0.8301122969752286\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.303x + 2.653\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 0.303x + 2.649\n", "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 32.99\n", - "\tR²: 0.9213940860587302, Desviación Estándar: 2.5949358780767224, Varianza: 6.733692211329811, Incertidumbre: 0.4386242196208442\n", + "Predicción obtenida: 32.939\n", + "\tR²: 0.920742065863033, Desviación Estándar: 2.6024670945613564, Varianza: 6.772834978274627, Incertidumbre: 0.4398972275518982\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 6.733x + -11.353\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 6.719x + -11.32\n", "Valor del parámetro correlacionado para la aeronave: 5.1\n", - "Predicción obtenida: 22.986\n", - "\tR²: 0.7256919483141002, Desviación Estándar: 4.899157460266217, Varianza: 24.001743820482126, Incertidumbre: 0.8401985728260232\n", + "Predicción obtenida: 22.945\n", + "\tR²: 0.7244083786781033, Desviación Estándar: 4.904324680873634, Varianza: 24.052400575426272, Incertidumbre: 0.8410847438493143\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.313, 0.334, 0.301, 0.27, 0.298, 0.338, 0.341, 0.344, 0.31, 0.338, 0.276, 0.272, 0.278, 0.281, 0.291, 0.304, 0.304, 0.313, 0.295, 0.299, 0.309, 0.312, 0.346, 0.336, 0.342, 0.286, 0.29, 0.312]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 185.703x + -42.364\n", - "Valor del parámetro correlacionado para la aeronave: 0.334\n", - "Predicción obtenida: 19.661\n", - "\tR²: 0.5077463639535145, Desviación Estándar: 6.562912085594877, Varianza: 43.07181504324729, Incertidumbre: 1.1255301370941933\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.287, 0.291, 0.313]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 184.0x + -42.063\n", + "Valor del parámetro correlacionado para la aeronave: 0.335\n", + "Predicción obtenida: 19.577\n", + "\tR²: 0.5041716405668544, Desviación Estándar: 6.578272967275993, Varianza: 43.27367523199409, Incertidumbre: 1.128164506569046\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.778) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", + "Ecuación de regresión: y = 1.084x + 4.602\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 31.707\n", + "\tR²: 0.6621543183227474, Desviación Estándar: 5.373076933587957, Varianza: 28.869955734254965, Incertidumbre: 0.9082157662811027\n", "\tNivel de confianza: Confianza Muy Baja\n", "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde® Mk. 4.7 Fixed Wing', 'Aerosonde® Mk. 4.7 VTOL', 'Aerosonde® Mk. 4.8 Fixed wing', 'Aerosonde® Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQNan21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.714, 7.8, 12.0, 5.5, 2.21, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.724, 12.253, 5.627, 10.336, 22.234, 24.82, 22.29, 14.74, 21.149, 4.8, 4.767, 2.65, 3.45, 6.45, 12.273, 12.288, 15.467, 6.5, 7.1, 11.5, 11.0, 32.0, 32.273, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.091x + 4.669\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 31.949\n", - "\tR²: 0.674893773503893, Desviación Estándar: 5.277298544902269, Varianza: 27.849879932027605, Incertidumbre: 0.8920262637393525\n", - "\tNivel de confianza: Confianza Muy Baja\n", + "--- Correlación: Capacidad combustible (r = 0.995) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 28.0]\n", + "Valores para Empty weight: [15.436, 11.5, 11.0, 32.0, 32.14, 35.0]\n", + "Ecuación de regresión: y = 1.281x + -2.774\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 29.251\n", + "\tR²: 0.9855262376673756, Desviación Estándar: 1.244330432674912, Varianza: 1.5483582256809336, Incertidumbre: 0.5079957719116919\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Área del ala: 23.959', 'Longitud del fuselaje: 21.161', 'Peso máximo al despegue (MTOW): 32.939', 'envergadura: 22.945', 'Cuerda: 19.577', 'payload: 31.707', 'Capacidad combustible: 29.251']\n", + "**Mediana calculada:** 23.959\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Reporte Final de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
8Aerosonde Mk. 4.8 VTOL FTUASÁrea del ala2.5030.804
9Fulmar XÁrea del ala0.9400.804
10Orbiter 4Área del ala1.6080.804
11Orbiter 3Área del ala1.2000.804
12MantisÁrea del ala0.7540.804
13ScanEagleÁrea del ala1.0630.804
14IntegratorÁrea del ala1.8720.804
15Integrator VTOLÁrea del ala2.0900.804
16Integrator Extended Range (ER)Área del ala1.8720.804
17ScanEagle 3Área del ala1.3490.804
18RQ Nan 21A BlackjackÁrea del ala1.8020.804
19DeltaQuad Pro #MAPÁrea del ala0.7000.804
20DeltaQuad Pro #CARGOÁrea del ala0.7000.804
21V32Área del ala1.0300.804
29Fulmar XRelación de aspecto del ala13.2180.963
30Orbiter 4Relación de aspecto del ala13.4430.752
31Orbiter 3Relación de aspecto del ala13.9340.752
32MantisRelación de aspecto del ala14.7550.752
33ScanEagleRelación de aspecto del ala14.0570.776
34IntegratorRelación de aspecto del ala12.9080.632
35Integrator VTOLRelación de aspecto del ala12.6480.677
36Integrator Extended Range (ER)Relación de aspecto del ala12.8400.677
37ScanEagle 3Relación de aspecto del ala13.7650.677
38RQ Nan 21A BlackjackRelación de aspecto del ala12.9140.697
39DeltaQuad EvoRelación de aspecto del ala14.5890.720
40DeltaQuad Pro #MAPRelación de aspecto del ala14.7140.730
41DeltaQuad Pro #CARGORelación de aspecto del ala14.7140.743
42V21Relación de aspecto del ala14.5680.743
43V25Relación de aspecto del ala14.4210.755
44V32Relación de aspecto del ala14.1820.764
45V35Relación de aspecto del ala13.8980.770
46V39Relación de aspecto del ala14.0410.771
47Volitation VT370Relación de aspecto del ala13.6450.766
48Skyeye 2600Relación de aspecto del ala14.1030.773
49Skyeye 2930 VTOLRelación de aspecto del ala14.0010.671
50Skyeye 3600Relación de aspecto del ala13.7100.677
51Skyeye 3600 VTOLRelación de aspecto del ala13.6710.677
52Skyeye 5000Relación de aspecto del ala12.6950.676
53Skyeye 5000 VTOLRelación de aspecto del ala13.0320.700
54Skyeye 5000 VTOL octoRelación de aspecto del ala12.8550.705
55Volitation VT510Relación de aspecto del ala13.0990.719
56AscendRelación de aspecto del ala14.3490.727
57TransitionRelación de aspecto del ala14.2230.733
58ReachRelación de aspecto del ala13.6690.737
59Aerosonde Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5950.831
60Integrator VTOLLongitud del fuselaje2.9980.831
61V39Longitud del fuselaje1.9540.831
95Aerosonde Mk. 4.8 VTOL FTUASenvergadura5.6440.805
96Integrator VTOLenvergadura5.0330.805
97Aerosonde Mk. 4.8 VTOL FTUASCuerda0.3940.827
98Fulmar XCuerda0.3190.827
99Orbiter 4Cuerda0.3320.758
100Orbiter 3Cuerda0.3040.758
101MantisCuerda0.2710.758
102ScanEagleCuerda0.2980.782
103IntegratorCuerda0.3390.725
104Integrator VTOLCuerda0.3410.757
105Integrator Extended Range (ER)Cuerda0.3450.757
106ScanEagle 3Cuerda0.3110.757
107RQ Nan 21A BlackjackCuerda0.3410.759
108DeltaQuad EvoCuerda0.2760.784
109DeltaQuad Pro #MAPCuerda0.2720.803
110DeltaQuad Pro #CARGOCuerda0.2720.819
111V21Cuerda0.2780.819
112V25Cuerda0.2810.602
113V32Cuerda0.2920.591
114V35Cuerda0.3060.590
115V39Cuerda0.3070.590
116Volitation VT370Cuerda0.3140.590
117Skyeye 2600Cuerda0.2960.590
118Skyeye 2930 VTOLCuerda0.3000.589
119Skyeye 3600Cuerda0.3110.590
120Skyeye 3600 VTOLCuerda0.3150.594
121Skyeye 5000Cuerda0.3480.599
122Skyeye 5000 VTOLCuerda0.3380.684
123Skyeye 5000 VTOL octoCuerda0.3440.684
124Volitation VT510Cuerda0.3350.729
125AscendCuerda0.2870.729
126TransitionCuerda0.2910.725
127ReachCuerda0.3130.723
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveCantidad de Valores Imputados
0Aerosonde Mk. 4.8 VTOL FTUAS4.000
1Ascend2.000
2DeltaQuad Evo2.000
3DeltaQuad Pro #CARGO3.000
4DeltaQuad Pro #MAP3.000
5Fulmar X3.000
6Integrator3.000
7Integrator Extended Range (ER)3.000
8Integrator VTOL5.000
9Mantis3.000
10Orbiter 33.000
11Orbiter 43.000
12RQ Nan 21A Blackjack3.000
13Reach2.000
14ScanEagle3.000
15ScanEagle 33.000
16Skyeye 26002.000
17Skyeye 2930 VTOL2.000
18Skyeye 36002.000
19Skyeye 3600 VTOL2.000
20Skyeye 50002.000
21Skyeye 5000 VTOL2.000
22Skyeye 5000 VTOL octo2.000
23Transition2.000
24V212.000
25V252.000
26V323.000
27V352.000
28V393.000
29Volitation VT3702.000
30Volitation VT5102.000
TotalTotal80.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 30.228668858925072 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - AAI Aerosonde = 36.09414654431562 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 4 = 30.466419244333917 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 3 = 27.426371766294327 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator Extended Range (ER) = 31.89437620999355 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 5000 VTOL octo = 30.290908946357952 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 4 = 9403.635180379342 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 3 = 6839.1446057940275 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2600 = 14972.955913461341 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2930 VTOL = 15999.999999999998 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 VTOL = 16959.091874090493 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL = 16009.435943246384 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL octo = 16009.476366047784 (Similitud)\n", + "Imputación final aplicada: Área del ala - Aerosonde Mk. 4.8 VTOL FTUAS = 2.503 (Correlación)\n", + "Imputación final aplicada: Área del ala - Fulmar X = 0.94 (Correlación)\n", + "Imputación final aplicada: Área del ala - Orbiter 4 = 1.608 (Correlación)\n", + "Imputación final aplicada: Área del ala - ScanEagle 3 = 1.349 (Correlación)\n", + "Imputación final aplicada: Área del ala - RQ Nan 21A Blackjack = 1.802 (Correlación)\n", + "Imputación final aplicada: Área del ala - V32 = 1.03 (Correlación)\n", + "Imputación final aplicada: Área del ala - V35 = 1.202 (Correlación)\n", + "Imputación final aplicada: Área del ala - V39 = 1.203 (Correlación)\n", + "Imputación final aplicada: Área del ala - Volitation VT370 = 1.424 (Correlación)\n", + "Imputación final aplicada: Área del ala - Volitation VT510 = 1.993 (Correlación)\n", + "Imputación final aplicada: Área del ala - Ascend = 0.771 (Correlación)\n", + "Imputación final aplicada: Área del ala - Transition = 0.986 (Correlación)\n", + "Imputación final aplicada: Área del ala - Reach = 2.329 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Fulmar X = 13.217500000000001 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Orbiter 4 = 13.443 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - ScanEagle 3 = 13.765 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - RQ Nan 21A Blackjack = 12.914 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V25 = 14.421 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2600 = 14.103 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL = 13.032 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL octo = 12.8555 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Volitation VT510 = 13.099 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Reach = 13.669 (Correlación)\n", + "Imputación final aplicada: Longitud del fuselaje - Aerosonde Mk. 4.8 VTOL FTUAS = 3.5945 (Correlación)\n", + "Imputación final aplicada: Longitud del fuselaje - V39 = 1.954 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.8 VTOL FTUAS = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Integrator = 499.99999999999994 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - ScanEagle 3 = 50.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V21 = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V25 = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT370 = 300.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 2600 = 3270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 VTOL octo = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT510 = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Ascend = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Reach = 800.0 (Similitud)\n", + "Imputación final aplicada: Autonomía de la aeronave - Skyeye 5000 VTOL octo = 11.672906868436865 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 42.25267526977939 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Evo = 33.0 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 2600 = 30.8342888378733 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 18.90746548752 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V35 = 18.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V39 = 17.397389995852386 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Skyeye 5000 VTOL = 19.109224697504906 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V35 = 18.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V39 = 17.397389995852386 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL octo = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Ascend = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Transition = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Reach = 25.0 (Similitud)\n", + "Imputación final aplicada: envergadura - Aerosonde Mk. 4.8 VTOL FTUAS = 5.644 (Correlación)\n", + "Imputación final aplicada: Cuerda - Fulmar X = 0.319 (Correlación)\n", + "Imputación final aplicada: Cuerda - Orbiter 4 = 0.332 (Correlación)\n", + "Imputación final aplicada: Cuerda - ScanEagle 3 = 0.3115 (Correlación)\n", + "Imputación final aplicada: Cuerda - RQ Nan 21A Blackjack = 0.341 (Correlación)\n", + "Imputación final aplicada: Cuerda - V25 = 0.281 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 2600 = 0.296 (Correlación)\n", + "Imputación final aplicada: payload - AAI Aerosonde = 4.0 (Similitud)\n", + "Imputación final aplicada: payload - Fulmar X = 2.4947559999999998 (Similitud)\n", + "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.8 VTOL FTUAS = 31.0 (Similitud)\n", + "Imputación final aplicada: Empty weight - Fulmar X = 17.463292 (Similitud)\n", + "Imputación final aplicada: Empty weight - V35 = 7.1 (Similitud)\n", + "Imputación final aplicada: Empty weight - V39 = 6.708303497304052 (Similitud)\n", + "Imputación final aplicada: Empty weight - Volitation VT370 = 10.999999999999998 (Similitud)\n", + "Imputación final aplicada: Empty weight - Skyeye 5000 VTOL = 32.140499999999996 (Correlación)\n", + "Imputación final aplicada: Empty weight - Volitation VT510 = 23.959 (Correlación)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator VTOL = 21.463 (Correlación)\n", + "Imputación final aplicada: Techo de servicio máximo - Integrator VTOL = 7013.834 (Correlación)\n", + "Imputación final aplicada: Área del ala - Orbiter 3 = 1.2 (Correlación)\n", + "Imputación final aplicada: Área del ala - Mantis = 0.754 (Correlación)\n", + "Imputación final aplicada: Área del ala - ScanEagle = 1.063 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator = 1.872 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator VTOL = 2.0895 (Correlación)\n", + "Imputación final aplicada: Área del ala - Integrator Extended Range (ER) = 1.872 (Correlación)\n", + "Imputación final aplicada: Área del ala - DeltaQuad Pro #MAP = 0.7 (Correlación)\n", + "Imputación final aplicada: Área del ala - DeltaQuad Pro #CARGO = 0.7 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Orbiter 3 = 13.9345 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Mantis = 14.755 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - ScanEagle = 14.057 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator = 12.908 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator VTOL = 12.648 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Integrator Extended Range (ER) = 12.84 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Evo = 14.589 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #MAP = 14.714 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #CARGO = 14.714 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V21 = 14.568 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V32 = 14.182 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V35 = 13.898 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - V39 = 14.0415 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Volitation VT370 = 13.645 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2930 VTOL = 14.001 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 = 13.7095 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 VTOL = 13.6715 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 = 12.695 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Ascend = 14.349 (Correlación)\n", + "Imputación final aplicada: Relación de aspecto del ala - Transition = 14.223 (Correlación)\n", + "Imputación final aplicada: Longitud del fuselaje - Integrator VTOL = 2.998 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.7 Fixed Wing = 518.9225 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.7 VTOL = 481.428 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.8 Fixed wing = 535.2755 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Orbiter 4 = 509.5565 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - ScanEagle = 503.5155 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Integrator VTOL = 646.0835 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - RQ Nan 21A Blackjack = 565.912 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - V32 = 412.68600000000004 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - V35 = 456.221 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - V39 = 413.556 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 2930 VTOL = 425.273 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 3600 = 458.1245 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 = 530.401 (Correlación)\n", + "Imputación final aplicada: Alcance de la aeronave - Transition = 506.641 (Correlación)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Integrator VTOL = 40.216 (Correlación)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #MAP = 29.009 (Correlación)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #CARGO = 29.009 (Correlación)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 3600 = 35.0985 (Correlación)\n", + "Imputación final aplicada: envergadura - Integrator VTOL = 5.033 (Correlación)\n", + "Imputación final aplicada: Cuerda - Aerosonde Mk. 4.8 VTOL FTUAS = 0.394 (Correlación)\n", + "Imputación final aplicada: Cuerda - Orbiter 3 = 0.304 (Correlación)\n", + "Imputación final aplicada: Cuerda - Mantis = 0.271 (Correlación)\n", + "Imputación final aplicada: Cuerda - ScanEagle = 0.2985 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator = 0.3385 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator VTOL = 0.341 (Correlación)\n", + "Imputación final aplicada: Cuerda - Integrator Extended Range (ER) = 0.345 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Evo = 0.2755 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Pro #MAP = 0.272 (Correlación)\n", + "Imputación final aplicada: Cuerda - DeltaQuad Pro #CARGO = 0.272 (Correlación)\n", + "Imputación final aplicada: Cuerda - V21 = 0.278 (Correlación)\n", + "Imputación final aplicada: Cuerda - V32 = 0.292 (Correlación)\n", + "Imputación final aplicada: Cuerda - V35 = 0.306 (Correlación)\n", + "Imputación final aplicada: Cuerda - V39 = 0.307 (Correlación)\n", + "Imputación final aplicada: Cuerda - Volitation VT370 = 0.314 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 2930 VTOL = 0.3 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 3600 = 0.311 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 3600 VTOL = 0.315 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 = 0.3485 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL = 0.338 (Correlación)\n", + "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL octo = 0.3445 (Correlación)\n", + "Imputación final aplicada: Cuerda - Volitation VT510 = 0.335 (Correlación)\n", + "Imputación final aplicada: Cuerda - Ascend = 0.287 (Correlación)\n", + "Imputación final aplicada: Cuerda - Transition = 0.291 (Correlación)\n", + "Imputación final aplicada: Cuerda - Reach = 0.313 (Correlación)\n", + "Imputación final aplicada: payload - Mantis = 2.693 (Correlación)\n", + "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.7 Fixed Wing = 19.796 (Correlación)\n", + "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.7 VTOL = 19.796 (Correlación)\n", + "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.8 Fixed wing = 19.809 (Correlación)\n", + "Imputación final aplicada: Empty weight - Orbiter 4 = 18.365 (Correlación)\n", + "Imputación final aplicada: Empty weight - Orbiter 3 = 12.237 (Correlación)\n", + "Imputación final aplicada: Empty weight - Mantis = 5.633 (Correlación)\n", + "Imputación final aplicada: Empty weight - ScanEagle = 10.192 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator = 22.195 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator VTOL = 24.7845 (Correlación)\n", + "Imputación final aplicada: Empty weight - Integrator Extended Range (ER) = 22.256999999999998 (Correlación)\n", + "Imputación final aplicada: Empty weight - ScanEagle 3 = 14.794 (Correlación)\n", + "Imputación final aplicada: Empty weight - RQ Nan 21A Blackjack = 21.123 (Correlación)\n", + "Imputación final aplicada: Empty weight - DeltaQuad Pro #MAP = 4.754 (Correlación)\n", + "Imputación final aplicada: Empty weight - DeltaQuad Pro #CARGO = 4.754 (Correlación)\n", + "\n", + "=== Iteración 1: Resumen después de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Después de Iteración 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE2.000
1Stalker VXE302.000
2Aerosonde Mk. 4.7 Fixed Wing2.000
3Aerosonde Mk. 4.7 VTOL2.000
4Aerosonde Mk. 4.8 Fixed wing2.000
5Aerosonde Mk. 4.8 VTOL FTUAS0.000
6AAI Aerosonde0.000
7Fulmar X2.000
8Orbiter 42.000
9Orbiter 32.000
10Mantis3.000
11ScanEagle2.000
12Integrator2.000
13Integrator VTOL2.000
14Integrator Extended Range (ER)2.000
15ScanEagle 32.000
16RQ Nan 21A Blackjack2.000
17DeltaQuad Evo0.000
18DeltaQuad Pro #MAP2.000
19DeltaQuad Pro #CARGO2.000
20V210.000
21V250.000
22V320.000
23V350.000
24V390.000
25Volitation VT3700.000
26Skyeye 26000.000
27Skyeye 2930 VTOL0.000
28Skyeye 36002.000
29Skyeye 3600 VTOL0.000
30Skyeye 50001.000
31Skyeye 5000 VTOL0.000
32Skyeye 5000 VTOL octo0.000
33Volitation VT5100.000
34Ascend0.000
35Transition0.000
36Reach0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes38.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "================================================================================\n", + "\u001b[1m=== FIN DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 2 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 2: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Antes de Iteración 2

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE32.000
1Stalker VXE3033.000
2Aerosonde Mk. 4.7 Fixed Wing30.000
3Aerosonde Mk. 4.7 VTOL29.000
4Aerosonde Mk. 4.8 Fixed wing33.000
5Aerosonde Mk. 4.8 VTOL FTUAS33.000
6AAI Aerosonde30.000
7Fulmar X36.000
8Orbiter 436.000
9Orbiter 336.000
10Mantis36.000
11ScanEagle35.000
12Integrator35.000
13Integrator VTOL34.000
14Integrator Extended Range (ER)37.000
15ScanEagle 335.000
16RQ Nan 21A Blackjack34.000
17DeltaQuad Evo28.000
18DeltaQuad Pro #MAP32.000
19DeltaQuad Pro #CARGO32.000
20V2128.000
21V2528.000
22V3228.000
23V3531.000
24V3931.000
25Volitation VT37030.000
26Skyeye 260033.000
27Skyeye 2930 VTOL32.000
28Skyeye 360034.000
29Skyeye 3600 VTOL31.000
30Skyeye 500030.000
31Skyeye 5000 VTOL30.000
32Skyeye 5000 VTOL octo30.000
33Volitation VT51030.000
34Ascend29.000
35Transition29.000
36Reach29.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes1179.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Modelo
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440530.22866936.09414730.40658430.46641927.42637218.26582630.62533630.95346521.46331.89437625.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.62533630.29090932.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429403.635186839.144606NaN19500.019500.07013.83419500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.014972.95591316000.0NaN16959.091874NaN16009.43594316009.47636617000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaN25.010.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.0NaNNaN14.015.517.018.017.3973924.010.018.012.524.015.025.025.025.014.010.025.0
Área del ala0.871.1582831.551.551.552.5030.570.941.6081.20.7541.0631.8722.08951.8721.3491.8020.840.70.70.80.521.031.2021.2031.4240.881.01.331.322.6152.6152.6151.9930.7710.9862.329
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44313.934514.75514.05712.90812.64812.8413.76512.91414.58914.71414.71414.56814.42114.18213.89814.041513.64514.10314.00113.709513.671512.69513.03212.855513.09914.34914.22313.669
Longitud del fuselaje2.12.59083.03.03.03.59451.71.21.21.21.481.712.52.9982.52.42.50.750.90.90.930.931.01.881.9542.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0518.9225481.428535.2755800.03270.0800.0509.556550.025.0503.5155500.0646.0835500.050.0565.912270.0100.0100.0270.0270.0412.686456.221413.556300.03270.0425.273458.1245300.0530.401800.0800.0800.0270.0506.641800.0
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.011.6729075.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388642.25267530.84572541.736.036.025.641.246.340.21646.341.246.333.029.00929.00933.033.033.033.033.033.030.83428930.035.098533.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaN18.90746510.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.0NaNNaN14.015.517.018.017.3973924.010.018.012.524.015.019.10922524.025.013.013.013.0
Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.45.6442.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3190.3320.3040.2710.29850.33850.3410.3450.31150.3410.27550.2720.2720.2780.2810.2920.3060.3070.3140.2960.30.3110.3150.34850.3380.34450.3350.2870.2910.313
payload2.4947562.49475614.511.317.722.74.02.49475612.05.52.6935.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.46329219.79619.79619.80931.010.017.46329218.36512.2375.63310.19222.19524.784522.25714.79421.1234.84.7544.7542.653.456.457.16.70830311.06.57.111.511.032.032.140535.023.9593.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
Distancia de carrera requerida para despegue1.0000.0630.427nan-0.3420.269-0.2500.2220.4250.1680.054-0.0780.241-0.3110.1050.2000.229nan0.389nan0.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
Altitud a la que se realiza el crucero0.0631.0000.0110.0900.331-0.0750.105-0.092nan-0.095-0.309-0.278-0.0640.343-0.0800.109-0.114nannannan-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
Velocidad a la que se realiza el crucero (KTAS)0.4270.0111.0000.1220.2080.497-0.6070.4280.9170.5530.5450.4230.6340.1610.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.2900.0630.5630.120-0.076nannan
Techo de servicio máximonan0.0900.1221.0000.0070.083-0.0170.1210.5460.1170.1010.0160.0050.0260.0170.0180.107-0.8750.0990.579-0.018-0.961-0.118-0.7570.515-0.1710.1740.058-0.1740.176nannan
Velocidad de pérdida limpia (KCAS)-0.3420.3310.2080.0071.0000.711-0.6890.595nan0.768-0.3430.1600.5870.8170.7740.6700.705-0.1810.4280.9360.662-0.181-0.8740.2240.5320.118-0.2530.261-0.2530.365nannan
Área del ala0.269-0.0750.4970.0830.7111.000-0.7780.8350.9840.970-0.0230.3830.6480.4570.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
Relación de aspecto del ala-0.2500.105-0.607-0.017-0.689-0.7781.000-0.624-0.681-0.790-0.003-0.456-0.730-0.567-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.2960.024-0.001-0.471-0.1410.075nannan
Longitud del fuselaje0.222-0.0920.4280.1210.5950.835-0.6241.0000.9380.8060.1400.4030.3630.2450.7190.6230.660-0.6170.5740.9260.834-0.6960.6460.9290.036-0.2030.1380.6120.0340.040nannan
Ancho del fuselaje0.425nan0.9170.546nan0.984-0.6810.9381.0000.9860.833-0.0890.940nan0.6710.5570.868nan0.944nan0.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
Peso máximo al despegue (MTOW)0.168-0.0950.5530.1170.7680.970-0.7900.8060.9861.0000.0300.4200.7170.5230.8110.7510.882-0.4010.7080.9790.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
Alcance de la aeronave0.054-0.3090.5450.101-0.343-0.023-0.0030.1400.8330.0301.0000.2240.013-0.429-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
Autonomía de la aeronave-0.078-0.2780.4230.0160.1600.383-0.4560.403-0.0890.4200.2241.0000.378-0.0980.5410.2690.400-0.5940.3370.6340.486-0.7150.8020.056-0.7320.033-0.4200.4780.353-0.314nannan
Velocidad máxima (KIAS)0.241-0.0640.6340.0050.5870.648-0.7300.3630.9400.7170.0130.3781.0000.5000.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.067-0.0570.3000.178-0.141nannan
Velocidad de pérdida (KCAS)-0.3110.3430.1610.0260.8170.457-0.5670.245nan0.523-0.429-0.0980.5001.0000.5570.5570.6401.0000.4140.4340.3701.000-0.8740.0360.5320.121-0.2220.211-0.2220.381nannan
envergadura0.105-0.0800.4210.0170.7740.825-0.6300.7190.6710.811-0.0430.5410.4910.5571.0000.6860.775-0.2580.5010.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
Cuerda0.2000.1090.3960.0180.6700.787-0.8620.6230.5570.751-0.2240.2690.6270.5570.6861.0000.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
payload0.229-0.1140.5670.1070.7050.854-0.8260.6600.8680.8820.0190.4000.7180.6400.7750.7581.000-0.0240.6700.5590.784-0.1420.4890.7110.846-0.0080.0530.4620.100-0.055nannan
duracion en VTOLnannan-0.694-0.875-0.181-0.3830.519-0.617nan-0.401-0.525-0.594-0.0771.000-0.258-0.499-0.0241.000-0.694-0.402-0.3151.000nannannannan-0.188-0.9040.188-0.188nannan
Crucero KIAS0.389nan0.9730.0990.4280.692-0.7690.5740.9440.7080.5240.3370.7000.4140.5010.7300.670-0.6941.0000.7230.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
RTF (Including fuel & Batteries)nannan0.7900.5790.9360.965-0.4970.926nan0.9790.9360.6340.7260.4340.9500.5950.559-0.4020.7231.0000.948-0.402nannannannan0.0970.428-0.0970.097nannan
Empty weight0.225-0.1210.503-0.0180.6620.944-0.7460.8340.9540.9330.0810.4860.6130.3700.8060.7240.784-0.3150.6360.9481.000-0.3860.7850.9800.2510.023-0.0290.4800.195-0.070nannan
Maximum Crosswindnan0.038-0.854-0.961-0.181-0.4660.432-0.696nan-0.464-0.711-0.715-0.2231.000-0.414-0.498-0.1421.000-0.855-0.402-0.3861.000nannannannannan-0.943nannannannan
Rango de comunicaciónnan-0.3250.480-0.118-0.8740.491-0.4090.6460.3230.5140.4670.8020.151-0.8740.6480.3550.489nan0.359nan0.785nan1.000nannannan-0.4300.6040.430-0.430nannan
Capacidad combustible-0.018nan0.365-0.7570.2240.974-0.9700.929nan0.9760.8480.0560.7270.0360.2970.9750.711nan0.581nan0.980nannan1.0000.3770.817-0.080nan-0.0800.270nannan
Consumo-0.240nan0.4610.5150.5320.2880.2960.0361.0000.7580.837-0.7320.9100.5320.085-0.2280.846nan0.461nan0.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
Precio-0.156nan-0.290-0.1710.1180.0360.024-0.203nan0.052-0.1480.0330.0670.1210.032-0.041-0.008nan-0.243nan0.023nannan0.8170.9981.000-0.1380.217-0.1380.134nannan
Despegue0.735-0.1190.0630.174-0.2530.125-0.0010.1380.7940.0900.157-0.420-0.057-0.222-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
Propulsión horizontal0.154-0.1090.5630.0580.2610.476-0.4710.612nan0.4670.3170.4780.3000.2110.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
Propulsión vertical0.6710.1870.120-0.174-0.2530.072-0.1410.034-0.5350.023-0.2130.3530.178-0.2220.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1760.3650.0370.0750.0400.5740.0750.210-0.314-0.1410.381-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores1024.000
1Valores numéricos820.000
2Valores NaN204.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
Velocidad a la que se realiza el crucero (KTAS)1.0000.1220.497-0.6070.4280.5530.5450.4230.6340.1610.2080.4210.3960.5670.503
Techo de servicio máximo0.1221.0000.083-0.0170.1210.1170.1010.0160.0050.0260.0070.0170.0180.107-0.018
Área del ala0.4970.0831.000-0.7780.8350.970-0.0230.3830.6480.4570.7110.8250.7870.8540.944
Relación de aspecto del ala-0.607-0.017-0.7781.000-0.624-0.790-0.003-0.456-0.730-0.567-0.689-0.630-0.862-0.826-0.746
Longitud del fuselaje0.4280.1210.835-0.6241.0000.8060.1400.4030.3630.2450.5950.7190.6230.6600.834
Peso máximo al despegue (MTOW)0.5530.1170.970-0.7900.8061.0000.0300.4200.7170.5230.7680.8110.7510.8820.933
Alcance de la aeronave0.5450.101-0.023-0.0030.1400.0301.0000.2240.013-0.429-0.343-0.043-0.2240.0190.081
Autonomía de la aeronave0.4230.0160.383-0.4560.4030.4200.2241.0000.378-0.0980.1600.5410.2690.4000.486
Velocidad máxima (KIAS)0.6340.0050.648-0.7300.3630.7170.0130.3781.0000.5000.5870.4910.6270.7180.613
Velocidad de pérdida (KCAS)0.1610.0260.457-0.5670.2450.523-0.429-0.0980.5001.0000.8170.5570.5570.6400.370
Velocidad de pérdida limpia (KCAS)0.2080.0070.711-0.6890.5950.768-0.3430.1600.5870.8171.0000.7740.6700.7050.662
envergadura0.4210.0170.825-0.6300.7190.811-0.0430.5410.4910.5570.7741.0000.6860.7750.806
Cuerda0.3960.0180.787-0.8620.6230.751-0.2240.2690.6270.5570.6700.6861.0000.7580.724
payload0.5670.1070.854-0.8260.6600.8820.0190.4000.7180.6400.7050.7750.7581.0000.784
Empty weight0.503-0.0180.944-0.7460.8340.9330.0810.4860.6130.3700.6620.8060.7240.7841.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores225.000
1Valores numéricos225.000
2Valores NaN0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannannannannannannannannan
Techo de servicio máximonannannannannannannannannannannannannannannan
Área del alanannannan-0.7780.8350.970nannannannan0.7110.8250.7870.8540.944
Relación de aspecto del alanannan-0.778nannan-0.790nannan-0.730nannannan-0.862-0.826-0.746
Longitud del fuselajenannan0.835nannan0.806nannannannannan0.719nannan0.834
Peso máximo al despegue (MTOW)nannan0.970-0.7900.806nannannan0.717nan0.7680.8110.7510.8820.933
Alcance de la aeronavenannannannannannannannannannannannannannannan
Autonomía de la aeronavenannannannannannannannannannannannannannannan
Velocidad máxima (KIAS)nannannan-0.730nan0.717nannannannannannannan0.718nan
Velocidad de pérdida (KCAS)nannannannannannannannannannan0.817nannannannan
Velocidad de pérdida limpia (KCAS)nannan0.711nannan0.768nannannan0.817nan0.774nan0.705nan
envergaduranannan0.825nan0.7190.811nannannannan0.774nannan0.7750.806
Cuerdanannan0.787-0.862nan0.751nannannannannannannan0.7580.724
payloadnannan0.854-0.826nan0.882nannan0.718nan0.7050.7750.758nan0.784
Empty weightnannan0.944-0.7460.8340.933nannannannannan0.8060.7240.784nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores225.000
1Valores numéricos62.000
2Valores NaN163.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwUzR8H8M/R3Q3SLaCo2IGBKHYnKHY9to/d3diJIAY2BiKKKCYqKAaKigiiEiodkre/P5CT4+4Iycff9+3rXi/Zm52d2dnZ25ubYDEMw4AQQgghhBBCCCGEEFLjhOo6AYQQQgghhBBCCCGE/L+gxjhCCCGEEEIIIYQQQmoJNcYRQgghhBBCCCGEEFJLqDGOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEmqMI4QQQgghhBBCCCGkllBjHCGEEEIIIYQQQgghtYQa4wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hxjhCCCH/aZ6enmCxWAgNDeX7fs+ePaGvr1+jaXj48CFWrFiB1NTUGj1OXVixYgVYLFa1x/vy5Uu4urrCwMAAEhISkJGRQZMmTbBp0yYkJydX+/GqIigoCCwWC0FBQTUSf0xMDFgsFjw9PWsk/ro2evToaquDtra20NbWRmFhocAwbdq0gYqKCvLy8qp8vKqUfXn3ppKq8xxVFMMwOHXqFNq1awc1NTVISEhAR0cHjo6OOHz48B/FaW9vD3t7++pNaCXV1D2rurFYLKxYsaLWj3vv3j2Ii4vj06dPnG36+vro2bMn3/ChoaHVfn+qTN2oDv+Va6JYZmYmZs6cCS0tLUhISKBx48Y4depUhfa1t7cHi8US+EpISAAA5Ofnw8jICG5ubjWYE0JIWagxjhBCCKmihw8fYuXKlX9lY1xNOHToEJo2bYqQkBDMmzcP/v7+8PHxwaBBg7B//36MHTu2rpNYqzQ1NREcHIwePXrUdVLqvbFjxyIuLg7Xr1/n+/779+/x8OFDODs7Q0xMrMrHa9KkCYKDg9GkSZMqx1XfLFy4EMOGDYOFhQUOHz6Ma9euYc2aNVBXV8elS5fqOnl/bNy4cQgODq7rZNRLDMNg5syZGD9+PPT09Oo6OUSA/v374+jRo1i+fDmuXbsGOzs7DBs2DCdPnix337179yI4OJjrFRgYCFFRUbRs2RIaGhoAAFFRUSxbtgyrVq1CUlJSTWeJEMKHSF0ngBBCCCH/P4KDgzF58mQ4ODjg4sWLEBcX57zn4OCAOXPmwN/fv1qOlZ2dDSkpKZ7thYWFKCgo4Dp2XRIXF0fLli3rOhn/CSNGjMC8efNw5MgRODk58bx/5MgRAMCYMWOqdJz8/HywWCzIycn9lWXz8+dPuLm5wcXFBQcPHuR6b/To0WCz2XWUsqrT0dGBjo5OXSejXvL398ezZ88q1KhTnwm6t1dVfHw8pKWlIScnV+1xV5Sfnx8CAgJw8uRJDBs2DADQsWNHfPr0CfPmzcOQIUMgLCwscH9LS0uebUePHkV+fj7GjRvHtX3YsGGYPXs2Dhw4gEWLFlVvRggh5aKecYQQQv7vMAyDvXv3onHjxpCUlISioiIGDhyIjx8/coULCAhAnz59oKOjAwkJCRgbG2PixIn48eMHJ8yKFSswb948AICBgQFnKEjxsLbi4T++vr6wtbWFpKQkLCws4OvrC6BouI6FhQWkpaXRvHlznmE7oaGhGDp0KPT19SEpKQl9fX0MGzaMa4hRcTwsFgsBAQFwdXWFkpISpKWl0atXL558CXL16lU0btwY4uLiMDAwwJYtW6p0/vhZt24dWCwWDh48yLcxTExMDL179+b8zWazsWnTJpibm0NcXBxqampwcXHBly9fuPazt7eHlZUV7t69i9atW0NKSgpjxozhDAHdtGkT1qxZAwMDA4iLi+P27dsAis5v7969oaSkBAkJCdja2uLMmTPl5qOi5QIAX79+xYQJE9CgQQOIiYlBS0sLAwcORGJiIgDBw1Tv37+Pzp07Q1ZWFlJSUmjdujWuXr3KFaa43G/fvo3JkydDRUUFysrK6N+/P+Li4njScvr0abRq1QrS0tKQkZGBo6MjwsLCuMJ8/PgRQ4cOhZaWFsTFxaGuro7OnTvj+fPn5Z4XT09PmJmZQVxcHBYWFvDy8uIbLi8vD2vWrOGUq6qqKlxdXfH9+/cy41dUVES/fv1w5coVnt4chYWFOHbsGOzs7GBtbY0PHz7A1dUVJiYmkJKSgra2Nnr16oVXr15x7Vc8FPXYsWOYM2cOtLW1IS4ujg8fPvAdplqZsgeAlJSUP6qTFa1nYWFh6NmzJ9TU1CAuLg4tLS306NGDp46UlJWVhdzcXGhqavJ9X0iI+yvCn5ZXZfc9efIkWrVqBRkZGcjIyKBx48Zwd3fnCuPv74/OnTtDXl4eUlJSsLCwwPr16znv8xuSWNn7SEhICNq1awcpKSkYGhpiw4YNXA2UOTk5mDNnDho3bgx5eXkoKSmhVatWfHsUpqenY/z48VBWVoaMjAy6deuG9+/f84Sr6PXKZrOxZs0amJmZQVJSEgoKCrCxscGOHTvKKIUi+/btg52dHczMzMoNW5bRo0dDRkYGb9++haOjI6SlpaGpqYkNGzYAAB49eoS2bdtCWloapqamOHr0KN94KlI3BN3bgaL7WdeuXaGpqcn5bF2wYAGysrL+KF/Xr1+Huro6Bg4ciAsXLiAnJ+eP4qkKHx8fyMjIYNCgQVzbXV1dERcXh8ePH1c6Tnd3d8jIyGDIkCFc28XExDBkyBAcPHgQDMNUKd2EkMqjxjhCCCF/heLeTqVf/B4wJ06ciJkzZ6JLly64ePEi9u7di9evX6N169acBhIAiIqKQqtWrbBv3z7cuHEDy5Ytw+PHj9G2bVvk5+cDKBoS9c8//wAALly4wBkWUnJY24sXL7Bw4ULMnz8fFy5cgLy8PPr374/ly5fj8OHDWLduHU6cOIG0tDT07NkTP3/+5OwbExMDMzMzuLm54fr169i4cSPi4+NhZ2fH1ShYbOzYsRASEsLJkyfh5uaGJ0+ewN7evtwhtIGBgejTpw9kZWVx6tQpbN68GWfOnIGHh8cfnz9+ZXTr1i00bdoUDRo0KDM9xSZPnoz58+fDwcEBly9fxurVq+Hv74/WrVvz5D8+Ph4jR47E8OHD4efnhylTpnDe27lzJ27duoUtW7bg2rVrMDc3x+3bt9GmTRukpqZi//79uHTpEho3bowhQ4aUOz9SRcvl69evsLOzg4+PD2bPno1r167Bzc0N8vLySElJERj/nTt30KlTJ6SlpcHd3R3e3t6QlZVFr169cPr0aZ7w48aNg6ioKE6ePIlNmzYhKCgII0eO5Aqzbt06DBs2DJaWljhz5gyOHTuGjIwMtGvXDm/evOGEc3JywtOnT7Fp0yYEBARg3759sLW1Lfca8vT0hKurKywsLHD+/HksWbIEq1evxq1bt7jCsdls9OnTBxs2bMDw4cNx9epVbNiwAQEBAbC3t+e6/vkZO3Ys8vLycPz4ca7t169fR1xcHGeYc1xcHJSVlbFhwwb4+/tjz549EBERQYsWLfDu3TueeBcuXIjY2Fjs378fV65cgZqaGt/j11adrEg9y8rKgoODAxITE7Fnzx4EBATAzc0Nurq6yMjIEBi3iooKjI2NsXfvXmzbtg1v374V+GW8KuVVmX2XLVuGESNGQEtLC56envDx8cGoUaO4Gjnd3d3h5OQENpvNKafp06eX2fAIVO4+kpCQgBEjRmDkyJG4fPkyunfvjoULF3Jdb7m5uUhOTsbcuXNx8eJFeHt7o23btujfvz9XAzTDMOjbty+nodfHxwctW7ZE9+7dedJY0et106ZNWLFiBYYNG4arV6/i9OnTGDt2bLnXU15eHm7evImOHTuWGa6i8vPz0b9/f/To0QOXLl3inKdFixZh1KhRGDNmDHx8fGBmZobRo0fj6dOnPHFUtG4IurdHRkbCyckJ7u7u8Pf3x8yZM3HmzBn06tXrj/LUr18/7Ny5EykpKRg8eDDU1dUxevRoXL9+vcx5KhmG4fv8we9VnvDwcFhYWEBEhHsAm42NDef9yoiMjMS9e/cwdOhQyMjI8Lxvb2+PT58+VTpeQkg1YAghhJD/MA8PDwZAmS89PT1O+ODgYAYAs3XrVq54Pn/+zEhKSjL//vsv3+Ow2WwmPz+f+fTpEwOAuXTpEue9zZs3MwCY6Ohonv309PQYSUlJ5suXL5xtz58/ZwAwmpqaTFZWFmf7xYsXGQDM5cuXBea3oKCAyczMZKSlpZkdO3bwnId+/fpxhX/w4AEDgFmzZo3AOBmGYVq0aMFoaWkxP3/+5GxLT09nlJSUmJKPC396/hiGYRISEhgAzNChQ8tMS7GIiAgGADNlyhSu7Y8fP2YAMIsWLeJs69ChAwOACQwM5AobHR3NAGCMjIyYvLw8rvfMzc0ZW1tbJj8/n2t7z549GU1NTaawsJBhGIa5ffs2A4C5ffu2wLQKKpcxY8YwoqKizJs3bwTuW5xGDw8PzraWLVsyampqTEZGBtcxrKysGB0dHYbNZjMM87vcS5+jTZs2MQCY+Ph4hmEYJjY2lhEREWH++ecfrnAZGRmMhoYGM3jwYIZhGObHjx8MAMbNzU1gevkpLCxktLS0mCZNmnDSxjAMExMTw4iKinLVQW9vbwYAc/78ea44QkJCGADM3r17yzwWm81mDAwMGBsbG67tAwYMYKSkpJi0tDS++xUUFDB5eXmMiYkJM2vWLM724vJt3749zz5VKfvK1MlRo0b90X0qNDSUAcBcvHhRYPoEefLkCaOrq8u5T8rKyjI9e/ZkvLy8uMqwMuXVoUMHpkOHDpXe9+PHj4ywsDAzYsQIgenNyMhg5OTkmLZt23Klr7Tly5dz3bP+5D7y+PFjrrCWlpaMo6OjwGMWFBQw+fn5zNixYxlbW1vO9mvXrjEAuK4LhmGYtWvXMgCY5cuXlxknv+u1Z8+eTOPGjQXuJ0hxfk+dOsXznp6eHtOjRw+++xWXVcn706hRo3jKNT8/n1FVVWUAMM+ePeNsT0pKYoSFhZnZs2dztlWmbgi6t5dW/Bl9584dBgDz4sULznulr4mKSEhIYHbt2sW0adOGYbFYjJqaGjN16lTm/v37PNdfRZ5Dil/lMTEx4XutxcXFMQCYdevWVSof8+fPZwAwwcHBfN+PjIxkADD79u2rVLyEkKqjnnGEEEL+Cl5eXggJCeF5tW3bliucr68vWCwWRo4cyfVrtYaGBho1asQ1HO3bt2+YNGkSGjRoABEREYiKinImvY6IiKhw2ho3bgxtbW3O3xYWFgCKfpEuOe9N8faSPUEyMzMxf/58GBsbQ0REBCIiIpCRkUFWVhbfNIwYMYLr79atW0NPT48zLJOfrKwshISEoH///pCQkOBsL+6JVVJlzl9VFad59OjRXNubN28OCwsLBAYGcm1XVFREp06d+MbVu3dviIqKcv7+8OED3r59yzlfJfPi5OSE+Ph4vr2nilW0XK5du4aOHTtyyrYisrKy8PjxYwwcOJCrJ4OwsDCcnZ3x5csXnrSVHNoL/O5FUXwtXb9+HQUFBXBxceHKq4SEBDp06MApNyUlJRgZGWHz5s3Ytm0bwsLCKjR/2Lt37xAXF4fhw4dzDRHU09ND69atucL6+vpCQUEBvXr14kpL48aNoaGhUe41xGKx4OrqipcvX3J62yQlJeHKlSsYMGAAZ76ngoICrFu3DpaWlhATE4OIiAjExMQQGRnJt+4MGDCg3HwCtVMnK1rPjI2NoaioiPnz52P//v1cPRzLY2dnhw8fPsDf3x+LFi1Cq1atEBgYCBcXF/Tu3ZvTU64q5VXRfQMCAlBYWIipU6cKjOvhw4dIT0/HlClTKrUyZmXvIxoaGmjevDnXNhsbG55hyGfPnkWbNm0gIyPD+Xxwd3fnugaKj136Ghg+fDhPOit6vTZv3hwvXrzAlClTcP36daSnp1foPBQPWxfU47OyWCwW17yNIiIiMDY2hqamJmxtbTnblZSUoKamxncYd0XrhqB7+8ePHzF8+HBoaGhAWFgYoqKi6NChA4DKfUbzo66ujmnTpuH+/fv49OkT/v33X07PeAMDA66hsL169eL7/MHvVRFlXd+VufYLCgpw9OhRNGzYUODcl8XXw9evXyscLyGketACDoQQQv4KFhYWaNasGc92eXl5fP78mfN3YmIiGIaBuro633gMDQ0BFA2v6tq1K+Li4rB06VJYW1tDWloabDYbLVu2LHcoXUlKSkpcfxev8ihoe8l5aoYPH47AwEAsXboUdnZ2kJOT43wJ4peG4pXSSm8ra7W0lJQUsNlsgfuWVNHzx4+KigqkpKQQHR0tMExJxWnmN6+VlpYWz5c7QfNf8XuveJjf3LlzMXfuXL778BtyWKyi5fL9+/dKTyafkpIChmEE5hsAT3kqKytz/V08H19xWorza2dnx/eYxXOEsVgsBAYGYtWqVdi0aRPmzJkDJSUljBgxAmvXroWsrCzf/YvTI+gaiomJ4fydmJiI1NRUgaudlnXei7m6umLFihXw8PBA06ZNceLECeTl5XGtxDt79mzs2bMH8+fPR4cOHaCoqAghISGMGzeOb90p6/opqTbqZEXrmby8PO7cuYO1a9di0aJFSElJgaamJsaPH48lS5ZwNUDzIyoqCkdHRzg6OgIoKseBAwfC19cX165dg5OTU5XKq6L7Fs8fV1ZdqUgYfip7Hyldl4Ci+lSybC9cuIDBgwdj0KBBmDdvHjQ0NCAiIoJ9+/ZxFhEpPraIiAhPnPyuiYperwsXLoS0tDSOHz+O/fv3Q1hYGO3bt8fGjRv5fgYWK46j5A8uxURERAQOwyweWln6WpKSkuKJS0xMjOdzrXg7v/nXKlo3+JVdZmYm2rVrBwkJCaxZswampqaQkpLC58+f0b9//0p9RpcnLS0NqampSEtLAwBO2RRTUlKCvLx8tRxLWVmZ770hOTmZc6yK8vPzQ0JCAubPny8wTHEZVuf5IoRUDDXGEUII+b+ioqICFouFe/fu8V1AoHhbeHg4Xrx4AU9PT4waNYrz/ocPH2otrWlpafD19cXy5cuxYMECzvbi+Yr4SUhI4LvN2NhY4HEUFRXBYrEE7ltSRc8fP8LCwujcuTOuXbuGL1++lPuluvgLbHx8PE/YuLg4qKiocG2rTG+C4n0XLlyI/v37891H0CTnlSkXVVXVcuezKq34i158fDzPe8W9W0rnvTzF4c+dO8fp3SmInp4eZ9L89+/f48yZM1ixYgXy8vKwf/9+vvsUl1VFryFlZWWBq+YKavArSUdHB127dsXJkyexdetWeHh4wNjYGO3bt+eEOX78OFxcXLBu3TqufX/8+AEFBQWeOCvS46S26mRl6pm1tTVOnToFhmHw8uVLeHp6YtWqVZCUlORKY0UoKytj5syZCAoKQnh4OJycnKpUXhXdV1VVFQDw5csXgfNJlgxTGZW9j1TE8ePHYWBggNOnT3NdN7m5uTzHLigoQFJSEleDHL9roqLXq4iICGbPno3Zs2cjNTUVN2/exKJFi+Do6IjPnz8LXGW0OJ/8rlN1dXWBPaOKtwtqGK6KitYNfnXz1q1biIuLQ1BQEKc3HIBy586rqPfv3+P06dM4deoU3rx5A2NjYwwbNgzDhw+Hubk5V9ijR4/C1dW1QvEy5SyUYG1tDW9vbxQUFHDNG1e8kIeVlVWF8+Du7g4xMTE4OzsLDFN8PfxJPSCEVA0NUyWEEPJ/pWfPnmAYBl+/fkWzZs14XtbW1gB+P/yX/iJ84MABnjhL90KqLiwWCwzD8KTh8OHDAnsxnDhxguvvhw8f4tOnT7C3txd4nOKVXEuvHpeRkYErV65wha3o+RNk4cKFYBgG48ePR15eHs/7+fn5nGMWD0sqPVF/SEgIIiIi0Llz5zKPVRYzMzOYmJjgxYsXfPPRrFkzgY0MlSmX7t274/bt22UOeS1NWloaLVq0wIULF7iuKTabjePHj0NHRwempqaVyC3g6OgIERERREVFCcwvP6ampliyZAmsra3x7NkzgfGbmZlBU1MT3t7eXF82P336hIcPH3KF7dmzJ5KSklBYWMg3HRVd6XHs2LFISUnBsmXL8Pz5c7i6unJ9aWexWDxldPXq1SoNx6qtOvkn9YzFYqFRo0bYvn07FBQUyiyv/Px8gT3ziof3FffCrEp5VXTfrl27QlhYGPv27RMYV+vWrSEvL4/9+/dXauXHmriPsFgsiImJcV1vCQkJPKupFi+WUPoaOHnyJN84K3u9KigoYODAgZg6dSqSk5O5eqCWVjxUPioqiue9Ll26IDw8nO8w5zNnzkBGRgYtWrQQGPef+pO6Uawyn9EV9e3bN2zcuBG2trYwMzPD/v370bVrVzx58gSRkZFYtWoVT0McUL3DVPv164fMzEycP3+ea/vRo0ehpaVV4XJISEiAn58f+vbty7e3Z7Hi1WstLS0rFC8hpPpQzzhCCCH/V9q0aYMJEybA1dUVoaGhaN++PaSlpREfH4/79+/D2toakydPhrm5OYyMjLBgwQIwDAMlJSVcuXIFAQEBPHEWfzHesWMHRo0aBVFRUZiZmVWoh09Z5OTk0L59e2zevBkqKirQ19fHnTt34O7uzrdnDwCEhoZi3LhxGDRoED5//ozFixdDW1uba2VRflavXo1u3brBwcEBc+bMQWFhITZu3AhpaWmunhQVPX+CFK9OO2XKFDRt2hSTJ09Gw4YNkZ+fj7CwMBw8eBBWVlbo1asXzMzMMGHCBOzatQtCQkLo3r07YmJisHTpUjRo0ACzZs36o/Na7MCBA+jevTscHR0xevRoaGtrIzk5GREREXj27BnOnj3Ld7/KlMuqVatw7do1tG/fHosWLYK1tTVSU1Ph7++P2bNn8/1iBwDr16+Hg4MDOnbsiLlz50JMTAx79+5FeHg4vL29KzVvEADo6+tj1apVWLx4MT5+/Ihu3bpBUVERiYmJePLkCaSlpbFy5Uq8fPkS06ZNw6BBg2BiYgIxMTHcunULL1++LLOXlZCQEFavXo1x48ahX79+GD9+PFJTU7FixQqeoWhDhw7FiRMn4OTkhBkzZqB58+YQFRXFly9fcPv2bfTp0wf9+vUrN0+9e/eGiooKNm/eDGFhYa4erEBRQ5CnpyfMzc1hY2ODp0+fYvPmzZUe5lhSbdXJitYzX19f7N27F3379oWhoSEYhsGFCxeQmpoKBwcHgfGnpaVBX18fgwYNQpcuXdCgQQNkZmYiKCgIO3bsgIWFBafHaFXKq6L76uvrY9GiRVi9ejV+/vyJYcOGQV5eHm/evMGPHz+wcuVKyMjIYOvWrRg3bhy6dOmC8ePHQ11dHR8+fMCLFy+we/duvmmoiftIz549ceHCBUyZMgUDBw7E58+fsXr1amhqaiIyMpITrmvXrmjfvj3+/fdfZGVloVmzZnjw4AGOHTvGN86KXK+9evWClZUVmjVrBlVVVXz69Alubm7Q09ODiYmJwDTr6OjA0NAQjx49wvTp07nemzFjBry8vGBvb8+5T6WkpOD06dM4d+4ctm3bVuXPM37+9PMKKGqcVVRUxKRJk7B8+XKIiorixIkTePHixR+nx8/PDxs2bMCAAQOwZcsWdOzYkWs4qiDKysplNnhVRvfu3eHg4IDJkycjPT0dxsbG8Pb2hr+/P44fPw5hYWFO2LFjx+Lo0aOIiori6fF89OhRFBQUYNy4cWUe79GjR5yhzoSQWlbbK0YQQggh1al4FbOQkBC+7/fo0YNrlcJiR44cYVq0aMFIS0szkpKSjJGREePi4sKEhoZywrx584ZxcHBgZGVlGUVFRWbQoEFMbGws31XwFi5cyGhpaTFCQkJcqy8KWqUOADN16lSubcWram7evJmz7cuXL8yAAQMYRUVFRlZWlunWrRsTHh7O6OnpMaNGjeI5Dzdu3GCcnZ0ZBQUFRlJSknFycmIiIyPLOYtFLl++zNjY2DBiYmKMrq4us2HDBoGr0FXk/JXl+fPnzKhRoxhdXV1GTEyMkZaWZmxtbZlly5Yx375944QrLCxkNm7cyJiamjKioqKMiooKM3LkSObz589c8XXo0IFp2LAhz3H4ndOSXrx4wQwePJhRU1NjREVFGQ0NDaZTp07M/v37OWH4rahZ0XJhmKIVMMeMGcNoaGgwoqKijJaWFjN48GAmMTGRK40lVytkGIa5d+8e06lTJ845btmyJXPlyhWuMIKuf0GrgF68eJHp2LEjIycnx4iLizN6enrMwIEDmZs3bzIMwzCJiYnM6NGjGXNzc0ZaWpqRkZFhbGxsmO3btzMFBQV8z2FJhw8fZkxMTBgxMTHG1NSUOXLkCM9KoQxTtPLili1bmEaNGjESEhKMjIwMY25uzkycOLHC1yvDMMysWbMYAIyTkxPPeykpKczYsWMZNTU1RkpKimnbti1z7949nhU/i8/V2bNneeKoStlXpk7yO0cMU349e/v2LTNs2DDGyMiIkZSUZOTl5ZnmzZsznp6eZZ633NxcZsuWLUz37t0ZXV1dRlxcnJGQkGAsLCyYf//9l0lKSuIKX9HyKn1uK7MvwzCMl5cXY2dnxwlna2vLUy/8/PyYDh06MNLS0oyUlBRjaWnJbNy4kfM+v3tWVe8j/Mpnw4YNjL6+PiMuLs5YWFgwhw4d4nvs1NRUZsyYMYyCggIjJSXFODg4MG/fvuX5HKno9bp161amdevWjIqKCudePXbsWCYmJoYn3aUtXbqUUVRUZHJycnjeS0hIYCZPnszo6uoyIiIijKysLNO2bVu+9WLUqFGMtLQ0z3ZB56/052Bl6oagOBmGYR4+fMi0atWKkZKSYlRVVZlx48Yxz54947mfVnQ11R8/fjC5ubnlhqtpGRkZzPTp0xkNDQ1GTEyMsbGxYby9vXnCFa9qy28ld1NTU0ZfX7/MlYcZhmHatWvH9OrVq7qSTgipBBbDVKKfNyGEEELqJU9PT7i6uiIkJKTMSbwJIYT8f4qLi4OBgQG8vLwwZMiQuk4OqWNRUVEwMTHB9evXy+xJSwipGTRnHCGEEEIIIYT85bS0tDBz5kysXbsWbDa7rpND6tiaNWvQuXNnaogjpI7QnHGEEEIIIYQQ8n9gyZIlkJKSwtevXwWuXEv+fgUFBTAyMsLChQvrOimE/N+iYaqEEEIIIYQQQgghhNQSGqZKCCGEEEIIIYQQQuq1u3fvolevXtDS0gKLxcLFixfL3efOnTto2rQpJCQkYGhoiP379/OEOX/+PCwtLSEuLg5LS0v4+PjUQOq5UWMcIYQQQgghhBBCCKnXsrKy0KhRI+zevbtC4aOjo+Hk5IR27dohLCwMixYtwvTp03H+/HlOmODgYAwZMgTOzs548eIFnJ2dMXjwYDx+/LimsgGAhqkSQgghhBBCCCGEkP8QFosFHx8f9O3bV2CY+fPn4/Lly4iIiOBsmzRpEl68eIHg4GAAwJAhQ5Ceno5r165xwnTr1g2Kiorw9vausfRTzzhCCCGEEEIIIYQQUutyc3ORnp7O9crNza2WuIODg9G1a1eubY6OjggNDUV+fn6ZYR4+fFgtaRCEVlMlhBBCCCGEEEII+Uu12TOprpMgkMN3DaxcuZJr2/Lly7FixYoqx52QkAB1dXWuberq6igoKMCPHz+gqakpMExCQkKVj18WaowjhJB6rD5/cFbUg6n78TYxuq6TUSXm6gbY8+BcXSejyqa2GYi0jW51nYwqkZ8/E14hfnWdjCpzsXPC5tvH6zoZVTav40hsCTpR18mokrn2I/6aa2rxtQN1nYwqWdt9Il58fV/XyaiyRtqmeBwTXtfJqLIW+lY4Fnqt/ID1mHOz7vB+dqOuk1Flw5p0xYZbXnWdjCpZ0MkFu+6fretkVNk/bQfVdRL+OgsXLsTs2bO5tomLi1db/CwWi+vv4pnaSm7nF6b0tupGjXGEEEIIIYQQQgghpNaJi4tXa+NbSRoaGjw93L59+wYREREoKyuXGaZ0b7nqRnPGEUIIIYQQQgghhPylWPX4X01q1aoVAgICuLbduHEDzZo1g6ioaJlhWrduXaNpo55xhBBCCCGEEEIIIaRey8zMxIcPHzh/R0dH4/nz51BSUoKuri4WLlyIr1+/wsuraFj3pEmTsHv3bsyePRvjx49HcHAw3N3duVZJnTFjBtq3b4+NGzeiT58+uHTpEm7evIn79+/XaF6oZxwhhBBCCCGEEEIIqddCQ0Nha2sLW1tbAMDs2bNha2uLZcuWAQDi4+MRGxvLCW9gYAA/Pz8EBQWhcePGWL16NXbu3IkBAwZwwrRu3RqnTp2Ch4cHbGxs4OnpidOnT6NFixY1mhfqGUcIIYQQQgghhBDylxKq4cUIaou9vT1nAQZ+PD09ebZ16NABz549KzPegQMHYuDAgVVNXqVQzzhCCCGEEEIIIYQQQmoJNcYRQgghhBBCCCGEEFJLaJgqIYQQQgghhBBCyF+K9ZcMU/2bUM84QgghhBBCCCGEEEJqCTXGEUIIIYQQQgghhBBSS2iYKiGEEEIIIYQQQshf6m9ZTfVvQj3jCCGEEEIIIYQQQgipJdQYRwghhBBCCCGEEEJILaFhqoQQQgghhBBCCCF/KRZomGp9Qz3jCCGEEEIIIYQQQgipJdQYRwghhBBCCCGEEEJILaFhqoQQQgghhBBCCCF/KRatplrv/Od7xunr68PNza1W42OxWLh48WKVjrNixQo0bty4SnGUFhQUBBaLhdTU1GqNl3ArfZ49PT2hoKBQp2kaPXo0+vbtW6dpqA+SkpKgpqaGmJiYuk4Kl927d6N37951nQxCCCGEEEIIIfVAnfWM69WrF37+/ImbN2/yvBccHIzWrVvj6dOnaNKkSa2mKyQkBNLS0rV6TPLfNmTIEDg5OdV1MgiA9evXo1evXtDX1wcAxMTEwMDAAGFhYZzG74yMDPTq1QsJCQl49+5dmfFFR0dDX18fDx8+RLt27eDg4AB/f3+ecOfPn8emTZvw9u1bsNls6Orqolu3bti6dSsAYPz48Vi7di3u37+Ptm3bVmue/0QjTWMMt+0KczVdqEgrYIHfPtyLflHXyeLw87kCH+9zSElOhq6+Hsb+MwkNG1nxDZv8Iwkeew/hw7tIxH+JQ88BfTBu+iSuMDeuXMPt6zfx6eMnAICRmTGcx7vC1NKsxvNS0stbj/DM/z6yUjOgpK2G9sN6QNtUn2/YL28/4sImd57tI9fOhJKmag2nlJt4m5YQa2QFloQECuMT8DPgFtg/ksvZSRwS7VtD1NQYLAlxsNPSkXPrLgo+xgAAhHW0Id6iKYTV1SAkK4OsC1dQEBlVI+kPDbiPR363kZmaDlVtDTiM7Atdc6Ny9/v8/iOOrdkDVR0NjF83j7P9bchLPLgcgJTEH2AXsqGoroKWTvawbmtXI+kv9iYoFC8DgvEzLQMKWqpoNcgRGia6fMPGvYuB3/ZjPNsHrpgMBQ0VAMD7hy9w1+syT5jRuxZCRLTmHg/fBIXgxY2ifChqqaHl4K7QNNHjGzbuXQyubvPi2T5o5RROPkqKCgnHrcMXoNfIDF2nDKn2tBer7msq7HYwXt0LwfcvCQAADQMd2A/uAW0j/uelurTQtURbg0aQFZfCt8wUXI14iE8pCQLDCwsJoZNRUzTSNoGsuBTScjJxJyoMT78UfZZaqhvA3sgWSlJyEGYJISk7DfejX+J5XGSN5eH6pau4fPoCUpNSoKOvi9FTx8PCpiHfsClJyfDa546P76OQ8DUO3fv1wuhp43nCZWVmwtv9GJ7cC0ZWRibUNNXhPGksmrRsVmP5uHnFH35nLyEtOQXaeg0wYpIrzKwt+YYNuf8It3yvI/ZjDPLz86Gt1wD9Rg6GTTNbTpgvMbG44HUKMR8+4kfidwyf6Ipu/XvWWPqLhQbcR/DVW5y60dW5X8XqxruP8FqzG2o6Ghi//l/O9me3gvHqfgi+f44HAGgYNEDHITVfN0p7cuMuHvoGIiM1HWo6mujm0h965sbl7hf77iM8Vu2AWgNNTN6woBZS+lvEnVCEBzzCz7RMKGiqovkgB4GfGfHvP8F/+3Ge7f2WT+Tca69tO4aEyFieMDpWRnCYOrR6E1+GV7ce49n1e8hOzYSSthraDXWCVhnPUhc3H+HZPmLNDCjW8rMUIfzUWWPc2LFj0b9/f3z69Al6etw31CNHjqBx48a13hAHAKqqVDH/Vnl5eRATE6v2eCUlJSEpKVnt8dalmjpXFZGfnw9RUdFK7/fz50+4u7vDz89PYJjv37+je/fuAICbN29CROT3LdDOzg4TJkzA+PG/H8yL7wdHjhzBP//8g8OHDyM2Nha6ur8fZm7evImhQ4di3bp16N27N1gsFt68eYPAwEBOGHFxcQwfPhy7du2qF41xkqLi+JD0BX5vH2Jd90nl71CL7gXegfuuA5g4eyosrBri+mU/rPp3CXZ7HYSquhpP+Pz8fMjJy2OQ8zBcPuvDN85XYS/RrrM9xs+whJiYGC54n8WKuYuw6+gBKKvyfqGvCe+fvMRdbz/YO/eClrEewoNCcHn7UYxcMwOyygoC93NeNwtikuKcvyVla/fHIrEWzSBuZ4tsvxtgJ6dCvHVzSA/uj4zDR4G8fP47CQlBekg/MNk/kX3RF+yMTAjJyoLJy+MEYYmJovDbd+S9eg3pfr1qLP1vHoUh4PhFdBs9EA1MDfDs1kOc2nwQEzcugLyKosD9crJ/4vL+kzBoaILMtAyu9ySlpdCmtwNUtNQhLCKMyLDXuHLwFKTkZGFkY14j+YgKfY1HZ6+j9TAnqBvp4O29Z/DffRIDl0+GjJK8wP0GrZwCUYnf14+ErBTX+6IS4hi0cgrXtppsiIsKeY3gM9fRZrgT1I0a4O3dZ/DfdRKDVkwpOx+rpkKsjHwAQEZSKh6fC4CGMf8vm9WlJq6pTxEfYNmqCXRMDSAiKoJg31vw3rgfEzbMh5ySQo3kw1rDCE4WrXHl9X18SkmAna4lRjVzwo57Z5CWk8l3n2GNHSAtLgmfV3eQlJ0GGTFJCLF+D7L5mZ+DoKhn+J6ZikKGDTNVXfS3tkdm3k98+PGl2vPw8PY9eO45jHEzJsHMyhI3r/hj3YIV2O6xByqCPi8U5NF/5GBcPXeJb5wF+flYM28p5BQUMHvFAiirqCDp+3dISPFec9XlUdADnNjvgVHTxsOkoTluX72BLUvWYv0hN6io8X4veffqDayaNMIg1xGQkpHCveu3sX35BizfsR76xoYAgLzcPKhqqqN5+9Y4ccCjxtJe0uvgZ7hxzAfdXX/XDe9NBzBp08Jy68al/Sdg0NAEWXzqRsNWTaDjog8RMVEE+wbi5IZ9mLhxQY3VjdLCg5/C3+sCeowZDF0zQ4TefIDjG/Zh6pbFUFBRErhfTvZP+Ow9BkMrU546X9M+hr7Bk7MBaDW0G9SMGuDdvWcI2HMK/ZZNLPNe23/FJIGfGZ0mDkRhQSHn79ysn7i09hD0m1jUTCb4iHzyCvdO+aHDyF7QNNbF6zshuOLmheGrp5f5LDVi7cw6fZaqL4RomGq9U2fDVHv27Ak1NTV4enpybc/Ozsbp06cxduxYAMDDhw/Rvn17SEpKokGDBpg+fTqysrIExhsbG4s+ffpARkYGcnJyGDx4MBITE7nCXL58Gc2aNYOEhARUVFTQv39/znulh6lGRkaiffv2kJCQgKWlJQICAniOOX/+fJiamkJKSgqGhoZYunQp8vO5v6Rs2LAB6urqkJWVxdixY5GTk1Pm+SksLMTYsWNhYGAASUlJmJmZYceOHWXuU1pSUhKGDRsGHR0dSElJwdraGt7e3uXu5+npCV1dXUhJSaFfv37YunUr1zBMfkMiZ86cCXt7e87fDMNg06ZNMDQ0hKSkJBo1aoRz586Vedy9e/fCxMQEEhISUFdXx8CBA6sUn76+PtasWYPRo0dDXl6e08hS3jV1/PhxNGvWDLKystDQ0MDw4cPx7du3Ms9XyfOjr68PFovF8ypWkeultK9fv2LIkCFQVFSEsrIy+vTpU+mhmA8ePECHDh0gJSUFRUVFODo6IiUlBQBgb2+PadOmYfbs2VBRUYGDgwNiYmLAYrHw/PlzThypqalgsVgICgribHv9+jV69OgBOTk5yMrKol27doiK+t3DxcPDAxYWFpCQkIC5uTn27t3Lea/4GGfOnIG9vT0kJCRw/PhxsNlsrFq1Cjo6OhAXF0fjxo359kgr6dq1axAREUGrVq34vv/582e0a9cOsrKyuH37NnR0dKChocF5CQsLc8q85LasrCycOXMGkydPRs+ePXnuWb6+vmjbti3mzZsHMzMzmJqaom/fvti1axdXuN69e+PixYv4+fNnmfmoDY9iX+PQ48u48/F5XSeFx6UzF9ClhyO69uyOBvq6GDd9ElRUVXHtoi/f8OqaGhg/YzI6desCaWn+X5bmLJsPp369YGhiBB29Bpg6bwbYbAYvnj6vwZxwC7v+AA3bNYVVezsoaamh/fAekFGSx8vbj8vcT0pOGtLyspyXkFDtfmyLN7NFTnAICt5Hgf0jCT+v3gBLVBRiFoIbncRsGoIlIYHsC1dQ+DUeTHoGCr/Ggf39BydMwccY5N4LRsH7mukNV+zxtSA0tm8B244toaKtjq7O/SCnrIBngQ/K3O/akbNo2KoJtI31ed7TszSGuZ0NVLTVoaiugubdOkCtgSY+v/tYQ7kAwm8+gmkbW5i3tYWipipaDXaEtKIcIu6ElrmfhKw0pORlOK/S1w+LBa73peRlaiwPAPDqZjDM2tjCvG2TonwMcYSMojzelJMPyXLywWazcdvdB0162UNWVfCX/upQE9dU3ynOaObQFhp62lDRUkePcUPAsBnEvK65HmVtDKzx9MtbhH55i+9ZqfCLeIi0nEy00OXfG8tEpQH0lTThFXoNUUlfkfozE1/SviM29fczdnRyPN4kxuB7ViqSs9MR/CkciRlJ0FfUqJE8+J69iE7dHdC5hyN09Bpg9LTxUFFTwY3L1/iGV9NQh+u0CejQtROkBHxe3Lp2E5npmZi3ejHMrSyhqqEGc+uG0DcyqJE8AID/hSvo4NgJ9t27QFtXByMnj4GSqjJu+V7nG37k5DHoMbgvDM2MoaGthUFjRkBDSwPPH/2uR4Zmxhg2fhRa2rf9ox84/8TvutEKKtoa6OrcH3LKCnh6836Z+/m5n4FV66bQNtHnea/f1F91Q1/nV90Y+qtuvK+hXPAKvnobTTq2QtNOraGqrYHuowZAXlkRoQFl5+vK4VOwbtMUOiY1d+0I8jrwMUxaN4ZpW1soaKqgxeCukFaUw9u7z8rcr6zPDHFpSa734iKiISImWquNcc9vPIBlu6Zo2L4ZlLTU0G5Y0bPUq6AnZe5X189ShAhSZ1eiiIgIXFxc4OnpCYZhONvPnj2LvLw8jBgxAq9evYKjoyP69++Ply9f4vTp07h//z6mTZvGN06GYdC3b18kJyfjzp07CAgIQFRUFIYM+T1U4erVq+jfvz969OiBsLAwBAYGolkz/t3O2Ww2+vfvD2FhYTx69Aj79+/H/PnzecLJysrC09MTb968wY4dO3Do0CFs376d8/6ZM2ewfPlyrF27FqGhodDU1ORqkBB0bB0dHZw5cwZv3rzBsmXLsGjRIpw5c6bM/UrKyclB06ZN4evri/DwcEyYMAHOzs54/Fjwl7/Hjx9jzJgxmDJlCp4/f46OHTtizZo1FT5msSVLlsDDwwP79u3D69evMWvWLIwcORJ37tzhGz40NBTTp0/HqlWr8O7dO/j7+6N9+/Z/HF+xzZs3w8rKCk+fPsXSpUsrdE3l5eVh9erVePHiBS5evIjo6GiMHj26wnkPCQlBfHw84uPj8eXLF7Rs2RLt2rXjvF/e9VJadnY2OnbsCBkZGdy9exf379+HjIwMunXrhrwSPU3K8vz5c3Tu3BkNGzZEcHAw7t+/j169eqGw8PcvXEePHoWIiAgePHiAAwcOVCjer1+/chqrb926hadPn2LMmDEoKCgAABw6dAiLFy/G2rVrERERgXXr1mHp0qU4evQoVzzz58/H9OnTERERAUdHR+zYsQNbt27Fli1b8PLlSzg6OqJ3796IjBT8xeTu3bsC6/K7d+/Qpk0bmJubw9/fH7KyshXKHwCcPn0aZmZmMDMzw8iRI+Hh4cF1z9LQ0MDr168RHh5eZjzNmjVDfn4+njwp+4Hh/1l+fj6i3keisR13r+jGdk3wNjyi2o6Tm5uLwoICyMpV/DqoisKCAnz7FAfdhtxDWnQbGiP+A++Qj5K8V+zB4VnrcWGzOz5H1FxjDz8seTkIyUijIPrT742FhSj4/AXC2poC9xMxNkRhXDwkHTpCdtp4yIwZCfGWdkUtP7WosKAA8dFfYGDFPRzZ0MoMXyJjBO734s5jpCT+QPv+juUeg2EYRIe/R3LC9woNxfoThQWF+BEbDx0LQ67tOhZGSPxYdm8jn7WHcOLf7fDbfgxx72J43s/PzcOpRTtxcoEbru85hR+x8dWZdC7F+dC25D5P2paGSIz6XOa+F9YcxPF523B1mxfi3kXzvB/mexcSslIwb2vLZ+/qUxvXFFBULuxCNiRlaqY3ljBLCFpyqjy91T78+AJdRXW++1io6eFr2ne0M2iE+R1HYlb7Iehm1hIiQsICj2OorA0VaQVEJ1f/dVWQn4+P7z+gUTPuMrdpZot3r//88+Lpw8cwaWgO9x37MX6AM+aMmYoLJ86AXeJ5qToV5OcjJjIKVk0bc223btoIkW/KnkqjGJvNxs+fOZCWrdnG9LIU1w1Da+4fagytzcusG8/vPEbKtz+oG7U0pVBBQQHioj/z9Ho2sjHH5/e896JiYUGPkJL4Ax0GdK/pJPIoLChEUmw8tC25GwG1LAzxrZzPjMvrDuPUfDf4u51APJ/PjJLeP3wOg2aWEBWvnZE0xc9SDUo9SzWwNEZCOc9Sp1buwZHZG3Bx8xF8eVu7z1KElKVOV1MdM2YMNm/ejKCgIHTs2BFA0XCw/v37Q1FRETNmzMDw4cMxc+ZMAICJiQl27tyJDh06YN++fZCQkOCK7+bNm3j58iWio6PRoEEDAMCxY8fQsGFDhISEwM7ODmvXrsXQoUOxcuVKzn6NGjXim76bN28iIiICMTEx0NHRAQCsW7eOM8yt2JIlSzj/19fXx5w5c3D69Gn8+2/RnAdubm4YM2YMxo0bBwBYs2YNbt68WWbvOFFRUa40GhgY4OHDhzhz5gwGDx4s+KSWoK2tjblz53L+/ueff+Dv74+zZ8+iRYsWfPfZsWMHHB0dsWBB0bwGpqamePjwYbm9kkrKysrCtm3bcOvWLU4vJUNDQ9y/fx8HDhxAhw4dePaJjY2FtLQ0evbsCVlZWejp6cHW1vaP4yvWqVMnrnPg4uJS7jU1ZswYTnhDQ0Ps3LkTzZs3R2ZmJmRkyn/QKTnUecaMGYiPj0dISAhnW3nXS2mnTp2CkJAQDh8+zOlh5+HhAQUFBQQFBaFr167lpmnTpk1o1qwZVyNww4bcc6oYGxtj06ZNnL8r0vNuz549kJeXx6lTpzi/vJqamnLeX716NbZu3crpfWpgYIA3b97gwIEDGDVqFCfczJkzuXqobtmyBfPnz8fQoUVzUGzcuBG3b9+Gm5sb9uzZwzctMTEx0NLS4vuei4sLWrdujfPnz0NYWPAXB37c3d0xcuRIAEC3bt2QmZmJwMBAdOnSBUBRvbp37x6sra2hp6eHli1bomvXrhgxYgTExX93iZeWloaCggJiYmLKvGb/n6WnpYNdyIaCInfPFgUlRaQklzNHWSV47T8CJVVlNGpas1/ci/3MyAbDZvP0OpKSk0F2Gv/hYNLysug0qi/U9LVQmF+It8Fh8NlyBAP+HQtts9r5lV1IpujLDpOdzbWdycoGS15O8H4K8hCSb4D8N2+RdfYShJUUIOHQERASQu7DsnsCVqfsjCwwbDZk5LkbXaXlZZGZms53n+SE77h92hfOS/+BUBn3ipzsn9j5zwoUFhSAJSSEbqMHwtC6ZuYgzMnMBsNmICnH/eVTUk4aP9P5Xz9S8jJoO6IHVPQ0UVhQiA+PXsLP7Rh6zHbhzM+moKGM9qN6Q0lbDfk/8xB+6zGubPZE/yUTIK+uXGP5kCqdD1lp/EznP+JBSl4G7Ub2LMpHfgEiH7/C1e3H0HP2KGiaFuUj4UMs3j0IQ/+lE6s9zaXV5DVV0u3TvpBVlIdBQ9PyA/8BKTEJCAsJITOXu6d2Zu5PyIjxbwBUlJKDnqIGCtiFOPHsOqTEJNDbsh2kxMRx4dXvH0bFRcQwv+NIiAgJgc0wuPLmPqKSvlZ7HtLT0sFmsyGvqMC1XV5RAanJqX8cb2J8Ar6HvUTbLvZYuH454r/EwX3nfrALCzHQZVjVEs1HRnpGUT4UuIcOyikoIC0ltUJxXDt/Gbk5OWjRoU21p6+iiuuGNL+6kVZG3Th1BS7Lple4btw65QtZJXkYWNVM3SgtO73y+UqK/4ab3pfhumJmpZ85q0Pur3utRKnGWUlZafwU8MwhJSeD1iOcoKyrAXZBIaIev4L/jhPoPsuZ7zxz32O+IjXuO9o696iRPPDDeZaSK/UsJS+N7HABz1IKsujo0geq+toozC/Au+DnuLjFA/3mjam1Z6n6hFZTrX/qtDHO3NwcrVu3xpEjR9CxY0dERUXh3r17uHHjBgDg6dOn+PDhA06cOMHZh2EYsNlsREdHw8KCu1tsREQEGjRowGmIAwBLS0soKCggIiICdnZ2eP78OdecUGWJiIiArq4upyEOAN8hcOfOnYObmxs+fPiAzMxMFBQUQE5OjiueSZO452Vq1aoVbt++Xebx9+/fj8OHD+PTp0/4+fMn8vLyKrUCa2FhITZs2IDTp0/j69evyM3NRW5ubpkLVERERKBfv348aa1MY9ybN2+Qk5MDBwcHru15eXmcBrbSHBwcoKenB0NDQ3Tr1g3dunVDv379ICUl9UfxFSvdU6oi11RYWBhWrFiB58+fIzk5GWw2G0BRg6GlJf/hG/wcPHgQ7u7uePDgAVcDXXnXS2nFaS7dmysnJ4drOGhZnj9/jkGDBpUZRlCvsvLibdeuHd8hEN+/f8fnz58xduxYrjpXUFAAeXnuh86Sx05PT0dcXBzatOF+qGzTpg1evBC8yMDPnz95GuiL9enTBz4+Pjh//nyFG7OBoh51T548wYULFwAU9egdMmQIjhw5wmmMk5aWxtWrVxEVFYXbt2/j0aNHmDNnDnbs2IHg4GBIlZhnRlJSEtmlGjaKFdfPkko25v0/Kf2swDBMtT1AXDh5FvcCg7B25yaI1dKvub/xZExgZzFFTVWuyYU1jXWRkZyGZ9fv19gDpKilGSQdO3P+ziqeU6lET1AARdkovY3rfRaY7Gz89A8EGAbsxG9gyUhDvHmzWm2MK5mekhjwfyBls9m4uOcY2g3oBmVN3vmmShKXEMe4tXORl5uHmNfvcfPERSiqKkPPsvwJvf9Y6XwwDHiuqV8UNFS4FjhQN9RBZko6XgUEcxrj1Ax1oGb4+/lG3agBfNYdwuugELQe0q360/8HePJh1ABZyWl4GRAMTVM95OXk4vaRi2jn3BMSNdSLjK8auKaKBfsG4nVwGEYungoRsZodXli6FhdlgX/dLs7emRe3kFtQ1Cvf720whtk64PLr+yhgF/UcyyvIw+4H5yAuLApDZW10N2+F5Oz0GukdV5Suit9XK4JhGMgpymPi7KkQEhaGoakxUpKScfn0hRppjOPgl48K7BZ8+x58jp3BzBXzIacgeC6w2sJz7hkGLD45YbPZ8NnjhfYDule4bjy8EojXwc/gvGRajdeN0njyIOD2y2azcX73UdgPdIJKBfNVU3jrgeBnKXkNZchr/P4RRs1QB1kp6QgPeMS3Me79gxdQ0FKFqr52Nab4Dwn+KISihioUNbifpTJT0hB2/cH/ZWMcqX/qtDEOKFrIYdq0adizZw88PDygp6eHzp2Lvgyw2WxMnDgR06dP59mv5ATqxQR9YSu5vTIT7TN8vmyUjv/Ro0ecnnaOjo6cXkLFqyj+qTNnzmDWrFnYunUrWrVqBVlZWWzevLnMIaalbd26Fdu3b4ebmxusra0hLS2NmTNnljm0kV+eSxMSEuIJV3LOs+LGq6tXr0Jbm/smLahxQVZWFs+ePUNQUBBu3LiBZcuWYcWKFQgJCfmj+IqVbngs75rKyspC165d0bVrVxw/fhyqqqqIjY2Fo6NjhYeEAkBQUBD++ecfeHt7c/W8/JPrhc1mo2nTplwNiMUquuBIRa770ueqeD6FkmVdem67suItLrdDhw7x9MQs/Ushvwbi0nWtvAYZFRUVzhx4pS1atAg2NjYYMWIEGIbhGrpeFnd3dxQUFHBddwzDQFRUFCkpKVAs0YPLyMgIRkZGGDduHBYvXgxTU1OcPn0arq6unDDJyckCy2z9+vVcvWEBYPny5cD/0ZoycvJyEBIWQkoydzmmpaTy9Jb7Ez7e53Du+Cms3LYe+kaG5e9QTSRlpcASEkJ2qQmcszOyIClX8WFFmoYN8PZRza16m//hIwrjSqykKFJUT1nS0mCyfjcis6SkuP4ujcks6klQssGOnZRS1NNOSAj4dW+oaVKy0mAJCfH0WMpOy+Dp5QAAeT9zER/9GQmfvuL60aIGeIZhAIbBOpc5GD5/EvQbmgAAWEJCUPr1gK+hp40fXxPx8MrNGmmMk5CRAkuIxdOjIScjm6e3XFnUDLTx4ckrge+zhFhQ1dNC+rfq64VaUnE+skv1gvuZkVW5fBjq4MPjonxkfE9BZlIqru85xXm/+DPr8OTVGLxqKuRUBU+wXlk1eU0BwKOrt/Hg8k0MXzAZ6rr8e3pXh+y8HBSy2ZAV5/4MlxaTRGYe/3lNM3KykZ6TxWmIA4DvmSkQYrEgLyGNpOyic8IASP71//iMJKjJKKCDoW21N8bJyctBSEgIqaU/L1LTeHrLVYaCkiJERES4empp6+ogNTkFBfn5EKnm+ddk5YrmryrdCy49LQ1y5eTjUdADuG/fi2mL58KqCf9RPrXld93g/pzLSs8UUDdyEP/xMxJivsL/6HkAv+vGWufZGL5gElfP0OCrt/DgcgBGLJxSo3WjNCm5X/kq1QsuKz0DMnx+SM/9mYO4j7GIj/kCP8+zAH7na+WIGXBeOAWGVjXTi7qYePFnRqme0z8zsiFRiXutqoE2op7wTsFSkJeP6NA3sO3Vns9eNYfzLFUqX9npWTy95cqiYdgA72rwWYqQyqjzxrjBgwdjxowZOHnyJI4ePYrx48dzvnA3adIEr1+/hrFxxR5uLS0tERsbi8+fP3N6x7158wZpaWmcXnQ2NjYIDAzk+oJcXnxxcXGc4W/BwcFcYR48eAA9PT0sXryYs+3Tp09cYSwsLPDo0SO4uLhwtj169KjMY9+7dw+tW7fGlCm/VzmraC+oknH06dOHM8SOzWYjMjKSp0dhSZaWljxpK/23qqoqz/xYz58/5/SOsrS0hLi4OGJjYys1HE9ERARdunRBly5dsHz5cigoKODWrVtwcHD4o/j4Ke+aevXqFX78+IENGzZwrqHQ0LInli7tw4cPGDBgABYtWsQ19BKo2PXCL82nT5+GmppamT3oylJ83Zdu7ClLcaNRfHw8pwdiycUciuM9evQo3xVQ1dXVoa2tjY8fP2LEiBEVPq6cnBy0tLRw//59rnkDHz58iObNmwvcz9bWFseP8y7LXmzJkiUQERHBiBEjwGazMWxY2b9wFxQUwMvLC1u3buUZCjxgwACcOHFC4PyV+vr6kJKS4loYJCoqCjk5OQJ7cy5cuBCzZ8/m2iYuLo6AwzPKTOffRFRUFEamJngRGoZW7X/3jHweGoYWbVtWKe4L3mdx1ssbK7ashYl57QxvKSYsIgI1PS3EvvkAo6a/h4fHvv4AQ9uKT3z8LTae75eaapOXD3ZeGtcmdmYWRPR1kffte9EGISGINNBBTpDgiasLvsZBzJJ7fh0hRQWwMzJrrSEOKDrvmgY6iA5/D3M7G8726PD3MG1qxRNeXFIc49dzTxfw9OYDfHoTif7TR0OhnEadgvyC6kl4KcIiwlDR1cTXiI/Qt/19Xr9GfIReo4pfy0mfEyBVxvXDMAySviRASbtmenOUzIcBTz4q/uU06XMCJH8N+ZbXUMGAZdwjD0Iv3UZ+Ti5aDekGacXq7SlUk9dUsO8tPLgUgGHzJ0LLsGZXhC1k2IhL/w5jZR28SYzhbDdW0UFEib9Lik1NhJWmIcSERZBXWHStq0jLg82wkZYjeGE1gAXhMuaV+1MioqIwNDXGy6dhaN7u96iVl0+fw641/6lYKsLMyhIPAu+AzWZzfpSM/xIHRWWlam+IA4ryoW9ihPBnL9Csze90hz97iSat7ATuF3z7Hg5v24spC2eicYum1Z6uyvpdN95x141X7wTUDQlM2MA9D/fTm/cR8zoSA2a48tSN+xdvYNj8STVeN0oTERGBlkEDRL18Cwu73w2eUa/ewbypNU94cUkJTN60kGtbyI17iH7zHoNnjoWiavVPAVCasIgwlHU1ERcRDb3Gv++1cRHR0K3UZ0Yi3x8Mo5++AbugAEbNecu1JhU/S31+/QFGTX6PVPr85gMMKvEs9T02vsYXK6qvhCrU35bUpjpvjJORkcGQIUOwaNEipKWlcU2UP3/+fLRs2RJTp07F+PHjIS0tjYiICAQEBPCsVAgAXbp04fR+cXNzQ0FBAaZMmYIOHTpwhsEtX74cnTt3hpGREYYOHYqCggJcu3aN73xdXbp0gZmZGVxcXLB161akp6dzNaIARfNsxcbG4tSpU7Czs8PVq1fh4+PDFWbGjBkYNWoUmjVrhrZt2+LEiRN4/fo1DA0F98wwNjaGl5cXrl+/DgMDAxw7dgwhISEwMKh4l1pjY2OcP38eDx8+hKKiIrZt24aEhIQyG+OmT5+O1q1bY9OmTejbty9u3LjBM0S1U6dO2Lx5M7y8vNCqVSscP34c4eHhnEYGWVlZzJ07F7NmzQKbzUbbtm2Rnp6Ohw8fQkZGhmuusGK+vr74+PEj2rdvD0VFRfj5+YHNZsPMzOyP4hOkvGtKV1cXYmJi2LVrFyZNmoTw8HCsXr26wvH//PkTvXr1QuPGjTFhwgQkJPzuZaKhoVGh66W0ESNGYPPmzejTpw9nhdHY2FhcuHAB8+bN4xpGLcjChQthbW2NKVOmYNKkSRATE8Pt27cxaNAgqKio8N1HUlISLVu2xIYNG6Cvr48fP35wzXcHANOmTcOuXbswdOhQLFy4EPLy8nj06BGaN28OMzMzrFixAtOnT4ecnBy6d++O3NxchIaGIiUlhafhqaR58+Zh+fLlMDIyQuPGjeHh4YHnz5/z7R1YzNHREQsXLuTpsVbSggULICwsDGdnZ7DZ7DIbCX19fZGSkoKxY8fyDKsdOHAg3N3dMW3aNKxYsQLZ2dlwcnKCnp4eUlNTsXPnTuTn53MNrb537x4MDQ1hZMR/kndxcfFaG5YqKSoOHfnfXe605FRgoqKD9JwsJGby711YW/oM7g+3tZthbGYCs4YWuH7lGn58+4ZufYrmJfE6cARJP5Iwa/E8zj4fI4t+qPj5MwdpqWn4GBkFEVER6OoXDce7cPIsTrh7Yc7S+VDTUEdKUlHPHwlJSUhKVby3dFXYOrbBjUPnoKavDU0jXYTfCUFmchqs7YsamB+cu46slHR0HV80nDzsxgPIqShCWVsNhQWFeBv8HFFPX8Np6vBaSW+x3NAwSLRqDnZKKtgpqRBvZQcmPx95EW85YSR7dAU7Iwu5d4tWk8wLewnxJo0h0cUeeU+fQ0hRAeKt7JBXcvVaUVEIlej1ISQvByE1VTA/c8BkcPesqIoW3e1xad8JaBo2gI6xPsJuP0RaUgqadG4NoGhuroyUNPSeNAIsISGoNeBemEJaTgbCoiJc2x9cvglNgwZQVFdGYUEhop5H4NX9EHQbXfZUAFVh1aUl7nhchIqeFtQMtfHuXhgyU9Jg3r7oS3iITyCyUjNg79oXABAe+BgyyvJQ1FQFu7AQHx6/QkzYW3Se+HuV8me+d6BmoAM5NSXk5+Ti9e0nSPqciNZDa27CcesurRDk4QNVPU2oGerg7b1nyExOg8WvfDz5lY+Ov/Lx6uYjyKooQFFTFYW/8hH9LAJdJhadaxFREZ7GQzGpoukKaqpRsSauqWDfQNw5dw19pzhDXkWJ0/NOTEIcYhI187nwIPoVBjbqiK/p3xGbkgi7BhaQl5DBk9g3AICups0hJyGNcy+LplR5ERcJe6Mm6G9tj8APoZAWlUQ385Z4+uUdZ4hqe8PG+Jr2HcnZ6RAWEoaZagPYapvg8uuyV538Uz0H9cWu9dtgaGYCU0tz3PT1x4/E73DoVXQNnzx0FMk/kjBt4e/njZgPRZO35/zMQXpaGmI+fISIiAh09Isaebr27g5/H1947j6Ebv16IuFrHHxOnkX3fj1rJA8A0K1/LxzYvBMGpkYwtjBDkF8Akr79QKceRT8EnjlyHCk/kjHx36JRHcG37+Hg5l0YMXkMjMxNOb0DxcTFIPVrpEFBfj6+xn759f8CpCQl4VNUNCQkJKBexgI8VcGpGwYNoGOij2e3gn/VjaIf126duoKMlDT0mTySb92QkpOBSKm68fBKIO6c80PfqS5QUK2dulFaqx4dcWHPMWgZ6qKBqQGeBj5A2o9kNOvSFgBw0/sy0lNS0X+KC4SEhKDegLvnnrS8LERERXm216SGnVvgnuclKOtpQs1AB+/uhyErJQ3m7YoWyAq9eBvZqRloP7o3AOB14BPIKMtDQUu1aM64J+H4FPYWHScM4Ik78sEL6DYyq92pAX5p3LUNAg4XPUtpGDXA67uhyExOg1WHoobrh+dvICslHQ7jij7rngc8hJyyApR+PUu9e/QCUU9fo/uUGhxyTkgl1HljHFA0VNXd3R1du3blGn5qY2ODO3fuYPHixWjXrh0YhoGRkZHAIWYsFgsXL17EP//8g/bt20NISAjdunXjarizt7fH2bNnsXr1amzYsAFycnJcvW9KEhISgo+PD8aOHYvmzZtDX18fO3fuRLduv+dS6dOnD2bNmoVp06YhNzcXPXr0wNKlS7FixQpOmCFDhiAqKgrz589HTk4OBgwYgMmTJ+P6df5LlgPApEmT8Pz5cwwZMgQsFgvDhg3DlClTcO0a/+Xa+Vm6dCmio6Ph6OgIKSkpTJgwAX379kVaWprAfVq2bInDhw9j+fLlWLFiBbp06YIlS5ZwNUg5Ojpi6dKl+Pfff5GTk4MxY8bAxcUFr179Hv6yevVqqKmpYf369fj48SMUFBTQpEkTLFq0iO9xFRQUcOHCBaxYsQI5OTkwMTGBt7c3Z5GBysYnSHnXlKqqKjw9PbFo0SLs3LkTTZo0wZYtW9C7d+8KxZ+YmIi3b9/i7du3PIsJMAxToeulNCkpKdy9exfz589H//79kZGRAW1tbXTu3LnCPeVMTU1x48YNLFq0CM2bN4ekpCRatGhRbu+wI0eOYMyYMWjWrBnMzMywadMmrl5iysrKuHXrFubNm4cOHTpAWFgYjRs35sz3Nm7cOEhJSWHz5s34999/IS0tDWtra84CGoJMnz4d6enpmDNnDr59+wZLS0tcvnwZJiYmAvextrZGs2bNcObMGUycKHgi73nz5kFYWBijRo0Cm82Gs7Mz33Du7u7o0qULT0McUNQzbt26dXj27Bk6dOiAPXv2wMXFBYmJiVBUVIStrS1u3LgBM7PfvT28vb0rPF9lTTNX1cPufr+/nExvW/TF1i8iGGtvHRW0W61o17kDMtLTcfroCSQnpUDPQA/LNq6GmkbRCn8pScn4kfiNa59ZY6dy/h/1LhJ3b96GmoYaDp3xAgBcu3gFBfn52LiMe2XooaNHYNgY/uVf3Uyb2yAnMxtPLt9GVloGlLXV0XumC+RUihqOs9MykJH8+97MLizE/TPXkJmSDhExUShrqaH3TBfo29Ts8JbS8h6HgiUiAsmuncCSEEdhXAKyzvgAeb+HrAvJyXFNM8VkZCLrjA8kOreHzJiRYGdkIi/0OXIf/+5lLKyhDpnhvxuGJDsX9XrOe/UGP/1uVFv6LVvaIjsjC/d9riMzNR2qOpoYOm8C5FWKel1kpqYj7UflGqDzc/Pg73kOGclpnLLpM3kkLFvW3IIgRs0aIjfzJ8Ku3kV2eiYUtVThOG0YZJUVAADZaZnITP49jKqwoBBPzt9EVmoGRERFoKClCsepQ9HA+vc9NC87F/dPXEV2eibEJMWh3EADPeeOgppBzc0BZGTXELlZ2Xh29S6y0zKhpKWGbtOGc+Ujq1Q9eHwugDsf04ZB11rwZ0FNq4lr6unNBygsKMT5nZ5c29v1c0T7ATUzf9+rhChIiYmjo1FTyEpIITEjGV6h15CaUzQETFZcCvISv3uP5BUWwCPkKnpZtsGU1v2RnZeL8IQoBLz/vUCVmLAoejdsB3kJaeQXFuB7VirOvriNVwmVG9lRUa07tkNGejrOe51CSnIyGujrYeH65VDVKGqITUlOxo/iXr2//Dvhd2/zj+8/4H7gHaiqq2GPtzsAQEVNFUs2rcLRvYcxb9w/UFJRRvf+vdB3KG+jRHVpad8GmRkZuHTiLFKTU6Cjp4s5axZBRb0oH6nJKUj6/oMT/rZfAAoLC+G1+xC8dh/ibG/rYI8Jc/8pyntSCpZO+b2A2bVzl3Ht3GWY2zTEos2raiQfDVs1wc/MbNzjqhsTOb3cMlPTkZZU2bpxv6hu7PDg2t6uv2OtrVRq1aopsjOycOeCPzJT06HWQBMj5k/m5CsjNa3Sdb6mGTazRG5WNl5cvV/0maGpCoepQyGjXPRM+5PPvTbkQiCyUzMgLCoCRU1VdJk6BA2suEcSpSUmITHqM7pOr5vGLJPm1sjJzEbIld/PUj1nOP9+lkrNQEaJBVzYBYV4cNa/6FlKVBRK2mroOcO51p+lCBGExVRkkjDyf83T0xMzZ85EampqXSeFkDL5+flh7ty5CA8P5wwvqQ/Cw8PRuXNnvH//nm/jXlna7JlUfqB67sHU/XibGF3XyagSc3UD7Hlwrq6TUWVT2wxE2ka3uk5GlcjPnwmvEL+6TkaVudg5YfNtwUPr/yvmdRyJLUGCey3/F8y1H/HXXFOLrx2o62RUydruE/Hi6/u6TkaVNdI2xeMY3vm2/mta6FvhWGjFOwLUR87NusP7WfX9yFNXhjXpig23vOo6GVWyoJMLdt0/W9fJqLJ/2tZcT/ia1P2w4FFJde3auG11nYQ6US96xhFCSHVwcnJCZGQkvn79yrWqcl2Li4uDl5dXpRviCCGEEEIIIYT8fagxjhDyV5kxo/4teFB6AQhCCCGEEEIIIf+/6s84LlJvjR49moaoEkIIIYQQQggh/0EsllC9ff2/+v/NOSGEEEIIIYQQQgghtYwa4wghhBBCCCGEEEIIqSU0ZxwhhBBCCCGEEELIX0qIxarrJJBSqGccIYQQQgghhBBCCCG1hBrjCCGEEEIIIYQQQgipJTRMlRBCCCGEEEIIIeQvxQINU61vqGccIYQQQgghhBBCCCG1hBrjCCGEEEIIIYQQQgipJTRMlRBCCCGEEEIIIeQvRaup1j/UM44QQgghhBBCCCGEkFpCjXGEEEIIIYQQQgghhNQSGqZKCCGEEEIIIYQQ8pdi0TDVeod6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lI0TLX+oZ5xhBBCCCGEEEIIIYTUEmqMI4QQQgghhBBCCCGklrAYhmHqOhGEEEIIIYQQQgghpPoNOLqorpMg0PlR6+o6CXWC5owjhJB67G1idF0nocrM1Q3QZs+kuk5GlTyYuh/RP77WdTKqzEBFGxkpKXWdjCqRVVT8a+rFu8SYuk5GlZmp6+PD9891nYwqMVZtgG/pSXWdjCpTk1NGakZaXSejShRk5ZGY/qOuk1Fl6nIq//myAIrK479eN9TklP/zeQCK8hH5Lbauk1ElJmq6//lnEKDoOYSQ6kDDVAkhhBBCCCGEEEIIqSXUM44QQgghhBBCCCHkL0WrqdY/1DOOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEhqmSgghhBBCCCGEEPKXEqJhqvUO9YwjhBBCCCGEEEIIIaSWUGMcIYQQQgghhBBCCCG1hIapEkIIIYQQQgghhPylaDXV+od6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lIs0DDV+oZ6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lJCtJpqvUM94wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hxjhCyF8pOzsbq1evxqdPn+o6KYQQQgghhBBSZ1gsVr19/b+ixjjyf8/T0xMKCgq1cix7e3vMnDmzVo5VnSp7jvT19eHm5lZj6amIf/75B3FxcdDT06vUfv/VMiKEEEIIIYQQ8t9ACziQ/4TyWsxHjRoFT0/P2knM/6EhQ4bAycmpwuFDQkIgLS1dgykqm7e3NxITE3Hp0qVK73vhwgWIiorWQKpqnp/PFfh4n0NKcjJ09fUw9p9JaNjIim/Y5B9J8Nh7CB/eRSL+Sxx6DuiDcdMncYW5ceUabl+/iU8fi3oXGpkZw3m8K0wtzWo8L+VppGmM4bZdYa6mCxVpBSzw24d70S/qLD1XLlzCuZOnkZyUBD0DfUyaPhVWjW0Ehn8Z9gIHd+3Fp+gYKKuoYNDwIejRrzdXGJ/T5+DrcxnfE79BTkEe7ezbw3XSeIiJiwEAfH0uwdfnCr7FJwAAdA30McLVGXatWvxxPhiGwcHDh+Fz6RIyMjLQ0NIS8+fNg5GhYZn7Bd66hf0HD+LL16/Q0dbGlEmT0NHenvP+s7AwHDt+HBHv3uHHjx/YsnEj7Dt04IqjWcuWfOOePm0aXEaO/OM8/S31ws/nCi54n+XkY9w/k9CwkbXAfBzZexBR7z4g7stX9BzQB+OnT+YKc/2KH1c+jDn5MK/RfJTme+ESLnifRXJSEnT19TFhxhRYlZGvw7v348O7SMR9+YreA/thwowpNZ5Gn7Pn4X38JJJ+JEHf0ADTZ89AI9vGAsOHPQ3DbrediPkYDWUVFQx3GYG+A/px3o+O+gj3A4fx7u1bJMQn4J9ZMzB4+BCeeL5/+459u/bgcfAj5ObkooGuLhYsXQgzi/LL6NzZczh+7BiSfiTBwNAQs+bMgq2trcDwz54+g9t2N0R//AgVVRU4Ozuj/8ABXGFuBd7Cgf0H8PXLF2jr6GDylEmw79iRb3yeHp7Yt2cvhgwbitlzZnO2r1qxEld9r3KFbWhlhSOeR8rNEwD4nL0A7+MnkfyrLP6ZPb3Msnj+NAy73XaVKIvh6FOiLK74XMZ1v2v4GBUNADAzN8P4qRNh2dCSK57v375j/669JcqiAebX87L49u0b9uzajYcPHyI3Jxe6erpYvHQJLCwsAAAtmjXne/xp0/+Bs4tzufmqi3oxqHd/JPz6zCup38D+mD1/brlpri/5KCgogMchdwT430BSUhKUlVXQvacTRo0dDSGh6ukrc9XnMte9dfz0yWXeW933HODcW3sN7IsJ07nvrZ+iY3DC/Sg+vIvEt4REjP9nMvoM7l8taS1Wl88g2dnZ2LV3L+7cuYO09HRoamhg6ODBGDhgAAipKdQzjvwnxMfHc15ubm6Qk5Pj2rZjx466TuJ/UmFhIdhsdrnhJCUloaamVuF4VVVVISUlVZWkVcmwYcPg6+sLYWHhSu+rpKQEWVnZGkhVzboXeAfuuw5gkMtQbD+8B5Y2Vlj17xJ8T/zGN3x+fj7k5OUxyHkY9I35P+S8CnuJdp3tsWbHRmzatx2q6mpYMXcRkr7/qMmsVIikqDg+JH3Btrun6jopuHPzNg7s2IOhLiOwx+MgrGyssWTuAnxLSOQbPiEuHkvnLoSVjTX2eBzEEOfh2Oe2G/dv3+WEuXX9Jo7sP4SRY0bh4ElPzFowF3cCg+Cx/xAnjIqqKsZMGoed7vuw030fGje1xcoFSxHzMfqP83L02DGc9PbGv3Pm4OiRI1BWVsbU6dORlZUlcJ+Xr15h0dKlcOreHd7HjsGpe3csWLwY4eHhnDA/f/6EiYkJ/p0zR2A8/levcr2WLVkCFouFTgK+7FfE31Iv7gUG4fCu/RjsMgxuh/fC0sYKK8vJh7y8AgY5DxWYj/Cwl2jfuSPW7tiEzfu2Q0VdDctruX7fDbyNQzv3YYjLcOw8sh9WjayxfO5CgXUnPz8f8goKGOIyHAYC8lXdAm/cxM5tO+DsOgruxz3RqHEjzJsxB4kJvA0CABD3NQ7/zpyDRo0bwf24J5xdXbBjy3YE3brNCZOTkwNNbS1MnDYZSsrKfOPJSE/HlHETISIigs07tuHYmZOYOvMfyMjKlJvmgBsB2L51G1zHuMLrxDE0tm2MWdNnIkFgmr9i1oyZaGzbGF4njmG062hs3bIVtwJvccK8evkSSxYtRnen7jjufQLdnbpj0YJFXPW82JvXb3DRxwfGJsZ8j9eqdSv4+ftxXtt3bC83T0BRWezatgMuri44fNwDNo1t8O+MueWUxVzYNLbB4eMecHZ1xo4tblxlEfb0GTp3dcCOfTux78gBqGuoY+60Wfj+7TsnTEZ6OqaOmwQRERFs2rEVXmdO1PuySE9Px4Sx4yEsIgK3HTtw6uxpzJg5g+v5pmQZ+Pn7YcmypUX33E6dys1XXdWLg0fdcfHaFc5r++6i5/+OXcpPc33Kx0mv47h0/iJmzpuN42e8MXn6FHgfP4nzp8/+UT5KuxsYhEM792Gw8zDsdN+Hho2ssGLeInwr67NPQR6Dy7i35ubkQkNTE6MmjoWiklK1pLO0unwG2ebmhuBHj7BqxQqc9fbG8GHDsHnbNgTdvStwn/8aIRar3r7+X1FjHPlP0NDQ4Lzk5eXBYrG4tt29exdNmzaFhIQEDA0NsXLlShQUFHD2T01NxYQJE6Curg4JCQlYWVnB19eX6xjXr1+HhYUFZGRk0K1bN8THx3PeY7PZWLVqFXR0dCAuLo7GjRvD39+/zDRnZWXBxcUFMjIy0NTUxNatW3nC5OXl4d9//4W2tjakpaXRokULBAUFlRnvihUroKurC3FxcWhpaWH69OkVjq94uKmvry8sLS0hLi6OQ4cOQUJCAqmpqVzHmT59Ojr8+tWI3zDVy5cvo1mzZpCQkICKigr69//961jpYaqxsbHo06cPZGRkICcnh8GDByMxkf+XLQCIiYkBi8XCmTNn0K5dO0hKSsLOzg7v379HSEgImjVrximn799/PzCHhITAwcEBKioqkJeXR4cOHfDs2TPO+0FBQRATE8O9e/c427Zu3QoVFRVOeZcepqqvr481a9ZwylJPTw+XLl3C9+/fOXmytrZGaGgoVx7Onz+Phg0bQlxcHPr6+nzLvzpdOnMBXXo4omvP7migr4tx0ydBRVUV1y768g2vrqmB8TMmo1O3LpCW5t9wOmfZfDj16wVDEyPo6DXA1HkzwGYzePH0eQ3mpGIexb7GoceXcedj3aflwumzcOzZHd1794Cuvh4mzZwGVTU1+Ppc5hv+6sUrUFNXw6SZ06Crr4fuvXuga4/uOOd9hhMmIvw1GlpboWPXztDQ1EDTFnawd+iE92/fc8K0bNsazVu3hI5uA+joNsDoiWMhISmJt68j/igfDMPA+/RpuI4ejU4dO8LYyAgrly1DTk4O/G/cELif96lTaGFnB9dRo6Cvrw/XUaPQ3M4OJ0+f5oRp07o1pkyaVGbDmoqyMtfrzt27aNa0KXS0tf8oP8DfUy9K52P89MlQUVWFX7n5cBDYS3nOsgUl8qGLafNm/spHWI3lozSfU+fRtWc3OPZygq6+HibMmAIVNTX4XbzCN7y6pgYmzpyKzt271lrv69MnT6FHn17o1bc39A30MX3OTKipq8HnnA/f8Jcu+EBdQx3T58yEvoE+evXtjR69e+LU8ZOcMBYNLTF1xjR06eoAMTH+PbFPHD0ONXV1LFq+BJYNLaGppYlmzZtBW0en3DR7nziJ3n16o0/fvjAwMMDsObOhrq6O8+fO8w1/4fwFaGhoYPac2TAwMECfvn3Rq3cvnDh+nBPmlPcpNG/RHKNdR0NfXx+jXUfDrrkdTp3k/kEkOzsby5YuxaLFiyEnK8f3eKKiolBWUeG85OXly80TAJw5eRo9+vREzxJloaquhosCy+Ii1EqURc++veHUuwdOH/fmhFm2ZgX6DeoPEzNT6OnrYd7i+WAzbDwN+f2ZfuLoCaipq2Hh8sWcsmhaz8vi2FEvqKmrYdnyZWho1RBaWlqwa94cOiXSXLIMlFVUcPfOHTRt1hTaOuXfc+uqXigqKkJZRZnzenj/AbR1tNG4ieCehvUxH+GvwtG2Qzu0btsGmlqa6Ni5E5q3aI63EW//KB+lXTx9Hg49iu6tDfT1MGH6FKioqcLPp4x764yp6NzNAVIC7q2mFmYYM3UCOnTpCFEB+aqKun4GeRkejp5OTmjWtCm0tLTQv29fmBgbIyLiz56pCKkIaowj/3nXr1/HyJEjMX36dLx58wYHDhyAp6cn1q5dC6CoIa179+54+PAhjh8/jjdv3mDDhg1cvaays7OxZcsWHDt2DHfv3kVsbCzmzv3d3X3Hjh3YunUrtmzZgpcvX8LR0RG9e/dGZGSkwHTNmzcPt2/fho+PD27cuIGgoCA8ffqUK4yrqysePHiAU6dO4eXLlxg0aBC6desmMN5z585h+/btOHDgACIjI3Hx4kVYW1tXKr7s7GysX78ehw8fxuvXrzFy5EgoKCjg/PnfD4aFhYU4c+YMRowYwTcdV69eRf/+/dGjRw+EhYUhMDAQzZo14xuWYRj07dsXycnJuHPnDgICAhAVFYUhQ3iH5JS2fPlyLFmyBM+ePYOIiAiGDRuGf//9Fzt27MC9e/cQFRWFZcuWccKnp6fDxcUF9+7dQ3BwMAwNDeHk5ISMjAwAvxvanJ2dkZaWhhcvXmDx4sU4dOgQNDU1BaZj+/btaNOmDcLCwtCjRw84OzvDxcUFI0eOxLNnz2BsbAwXFxcwDAMAePr0KQYPHoyhQ4fi1atXWLFiBZYuXVpjQ6nz8/MR9T4Sje2acG1vbNcEb8Or7yEiNzcXhQUFkJX77/UcrCn5+fmIfPceTZpzX/9NmjdDRPhrvvtEhL/mCd+0RTNEvn3H+RGhYSNrRL57j3dvisov/mscQoIfo3lr/kNQCwsLEXTzFnJzcmBhZck3THm+xsUhKSkJLVv8PoaYmBia2Nri5atXAvd7GR6OFi2409WyRYsy9ylPUlIS7j94gD69ev1xHH9LvcjPz8eH95GwtWvKtd3Wrinehr+ptuPUdv0uytd72NqVqjt2TRFRjfmqivz8fLx/+w7NW3AP57Nr0RzhL/lf369fhcOuVPjmLVvg7Zu3XD8Sluf+vfswszDH0gWL0aurE8aMGIXLPuVPvZCfn4+3b9+iRUvuOtm8ZQu8evmS7z6vXr1C81LhW7ZqiYg3EZw0v3r5ireet2zJE+fmjZvQpk0bnnNW0rOnz9DNwRED+w/AujVrkZycXKF8vX/7jufcFpUFb+884M/KIjcnBwUFBZCT+92Q+OBXWSxbsAS9u/bA2BGjcUXAjy2l01xXZXH37j1YWFhg4fwF6ObgCOfhI3HR56LAtCYlJeHB/Qfo3ae3wDAl81VX9aJ0Om5cuw6n3j3/aAL4usyHTSMbPA0JReynWADAh/eRePniBVq1aVXJXPDi3Fub8/vM4P9cUh/U9TNI40aNcPfePXz79g0MwyD06VPEfv6MVi3+fOoPQspDc8aR/7y1a9diwYIFGDVqFADA0NAQq1evxr///ovly5fj5s2bePLkCSIiImBqasoJU1J+fj72798PIyMjAMC0adOwatUqzvtbtmzB/PnzMXToUADAxo0bcfv2bbi5uWHPnj08acrMzIS7uzu8vLzg4OAAADh69CjXL5JRUVHw9vbGly9foKWlBQCYO3cu/P394eHhgXXr1vHEGxsbCw0NDXTp0gWioqLQ1dVF8+bNKxVffn4+9u7di0aNGnHiHTJkCE6ePImxY8cCAAIDA5GSkoJBgwYJPOdDhw7FypUrOdtKxlfSzZs38fLlS0RHR6NBgwYAgGPHjqFhw4YICQmBnZ0d3/2K0+/o6AgAmDFjBoYNG4bAwEC0adMGADB27FiuBq7OnTtz7X/48GEoKCjgzp076NmzJwBgzZo1uHnzJiZMmIDXr1/D2dkZ/fr1Q1mcnJwwceJEAMCyZcuwb98+2NnZcc7P/Pnz0apVKyQmJkJDQwPbtm1D586dsXTpUgCAqakp3rx5g82bN2P06NFlHutPpKelg13IhoKiItd2BSVFpFTgS05Fee0/AiVVZTRq+me/QP+N0lPTwC5kQ1GJ+9wrKioiOYn/uU9JToFiqbJSVFJEYWEh0lLToKyiDPsunZCWkoo5k2eAYRgUFhaiZ7/eGOI8nGu/6KiPmDVxGvLy8iApKYml61ZCz0D/j/KSlJQEAFAuNfxEWUkJ8QKG7BTvx2+f4vj+hK+fH6SlpbnmfKmsv6Ve/M6HAtd2eSUFpCanVNtxfuejSfmBq0F6WlHdUVDiUz4C6k5tS0tNRWFhIc+QLEVlJYH1OykpGc2VS4VXUkJhYSFSU1OhoqJSoWPHf43DpfM+GDx8KJxdXRDxOgI7tm6HmJgYuvXoLnC/1F9pVlLiHh6nrKSERz/410l+dVhJSZkrzUlJSVAqlS8lZe56fuP6Dbx7+w4eXp4C09eqdWt06tIZmhqaiIuLw4H9+zF10hQcPe4FMTExgfsJKgslZUUkC7jXJCclQ0m59L227LLYv3s/VFVV0bTEDyZFZXERg4cPwUhXF0S8foMdW7dDVEy03pZF3NevuHD+AoaNGI7Rrq54/fo1tm3ZCjFRUTj17MFzXD/fq5CWlhY4B2BJdVkvSroXdBeZmZlw6lnxOY1Lqst8jBjljMzMLIwcNAxCQkJgs9kYP3kiujh2/aO8lFR8b+V5zlBUxLNq/MyobnX9DDJv9mysWb8eTr17Q1hYGEJCQliyaBEaN25cqXjqMxb+f4eD1lfUGEf+854+fYqQkBBOTzigqJdITk4OsrOz8fz5c+jo6HAa4viRkpLiNMQBgKamJr59K5pXIT09HXFxcZwGoGJt2rTBixf8J4yPiopCXl4eWrX6/QuXkpISzMx+T/D97NkzMAzDk67c3FwoC5hjYtCgQXBzc4OhoSG6desGJycn9OrVCyIiIhWOT0xMDDY23BPLjxgxAq1atUJcXBy0tLRw4sQJODk58XyQF3v+/DnGjx/P973SIiIi0KBBA05DHABYWlpCQUEBERERZTbGlUynuro6AHD1BFRXV+eUE1D0gbxmzRoEBQXh27dvKCwsRHZ2NmJjY7nyf/z4cdjY2EBPT69Cq75WJB1A0WTJGhoaiIiIQJ8+fbjiaNOmDdzc3FBYWMh3Lrvc3Fzk5uZybRMXFy83bSWV/mGYYZhqWy78wsmzuBcYhLU7N3EWECAllDrPDMo596XDM8Wbi7a/ePYcp7xOYOqcGTBvaIG4L1+xf8ceKHocwwjX3xNr6+g2wF7PQ8jMyMT9oLvYunYjNu3eXqEGuWv+/li3cSPnb7dfQ6lLp7tC19Gf7FOGy76+6Na1a6XrAD9/S73gSTPDoLqeq8+fPIO7gbexdufmWq/ff3S91TKe5DAM77aS4cF7P+C3vSxsNhvmFuaYOLVoARFTMzNEf/yIi+cvlNkAJCjN5Z5XPuVQlGauQKXC/C6/xIREbNu6DTt37yyz3jp0deD838jYCBaWFujTszce3H+Ajp3KbwjivV7KXuSL95wLLouTXicQeCMAO/fv5soDm82GmYU5JnDKwhQxH6Nx6bxPvSyL4jRbWFpgytSiSfjNzIuun/Pnz/NtjLty+QocuzlW6p5bF/WiJN/LV9CiVUuoqKr+0f6cdNVBPgIDbiLg2nUsW7MCBoaGiHz/Hru27YCKatFCDtWiss8ltay+PYOcOnMGr8LDsW3zZmhqaODZ8+fYuHkzVJSV0aK54J6+hFQFNcaR/zw2m42VK1dyzVlWTEJCApKSkuXGUXr1TBaLxXn4KbmtpLJu9KX35YfNZkNYWBhPnz7laZyRkeE/KXCDBg3w7t07BAQE4ObNm5gyZQo2b96MO3fuVDg+SUlJnnQ3b94cRkZGOHXqFCZPngwfHx94eHgITHtFzmkxQeepIh+UJculOGzpbSUXoHB1dUVSUhJ27NgBPT09iIuLw9raGnl5eVzxPnz4EACQnJyM5OTkcuceqkg6AHDSwi9v5V0T69ev5+ppCBQN0x06eVSZ+wGAnLwchISFkFLqF8+0lFSeXkF/wsf7HM4dP4WV29ZD36h2Jk3/r5BTkC8696V+RU9NSeXpLVdMkU/PrNSUFAgLC0NOvmholNchD3RydED33kVfmgyMDJGTk4OdG7dh2KgRnNXWREVFofVrfh9TCzO8f/sOF89ewIx/Z6M87du1g1XDhpy/8/LzAQA/kpK4ft1PTkmBUhmTNSsrK/P8Al3ePmUJe/4cnz59wvo1a/5o/2J/S70QnI+0asrHWZw7fgqrtm2AQS3Wbzl5/nUnLSWVp7dcXZFXUICwsDBPL5mU5BSBE5grKyvx9NRKTS6q3/IKFZsbDQCUVZShZ2jAtU1PXx93bgWVuZ/CrzTzrZPKgtLMW4dTUpJ/pVmBE6Z0vlKSkzn1/O3bCKQkJ2O08+/PrMLCQoSFheHcmbO49/A+3x+iVFRUoKGpic8lfjTj53dZlE6D4LIo6i3GW3b8ysL72Ekc9/DCtj1uMCq18ISyijL0DfW5ttXnsgCKzquBAff1o2+gj9slFhooFhYWhk+fPmHN+rU87/FTl/WiWEJ8PJ4+CcWaTbyjSCqqLvOxb8cejBjljC6/GqeNjI2QGJ+A455eVW6M49xbeZ4zUnl6WNel+vQMkpOTgz379mHLxo1o+6vzhYmJCd6/f4/jJ09SYxypMTRnHPnPa9KkCd69ewdjY2Oel5CQEGxsbPDlyxe8f/++/Mj4kJOTg5aWFu7fv8+1/eHDh5zl4UszNjaGqKgoHj16xNmWkpLClQZbW1sUFhbi27dvPOnW0NAQmB5JSUn07t0bO3fuRFBQEIKDg/Hq1as/jq/Y8OHDceLECVy5cgVCQkLo0YP3l9NiNjY2CAwMLDdOoKgXXGxsLD5//szZ9ubNG6SlpQk8f3/q9u3bmDx5Mtq3bw89PT3k5ubixw/ulQGjoqIwa9YsHDp0CC1btoSLi0uFVpStDEtLS77Xi6mpqcAVXhcuXIi0tDSu18KFCyt0PFFRURiZmuBFKPfE689Dw2BuVbVzfMH7LM54ncTyzWtgYi64d+n/K1FRUZiYmSIshHs+yLCQp7Cwash3Hwurhjzhnz0JhYm5GUREin4jy83N4TS4FRMSEgLDMGU37DIM8vPyK5R2aWlpTq/VBg0awNDAAMrKynj85AknTH5+Pp6FhcGmRE/Q0mysrLj2AYDHjx+XuU9ZLl2+DAtzc5iamPzR/sX+lnohKioKY1MTPA99xrX9eegzmP/h/IDFLnifxWmvk1i+eW2t1++ifPGpO6FP/3jew+omKioKU3MzhDzmvr5DnoTAyob/9d3Q2gohT0K4tj15/ATmluac+l0R1o1s8PkTdwPV59jP5X6ei4qKwtzcHE9KpfnJ4yewLtUrnnMsa2ue8I8fPYaFpQUnzdY21nhcOszjx5w4m9nZ4eQpbxw7cZzzsrC0gGO3bjh24rjAz7601FR8S0wsd3hfcVmEPuY+t6FPQmBlY8V3n4bWVggtVRYhfMrC+9gJeLl7YvPOrTC35L038C+LWKjX07IAiuYk+/TpE1eY2E+x0NDkTfOVS5dhbmFe5giS0vmqq3pRzO/KVSgoKqJVm9aV3rdYXeYjJzcHLCHuH22FhITBrsCP+eUpvrc+Dyn1mRHyDOYCnkvqQn16BikoLERBQQHPD+lCwsLV/h2hLrFYrHr7+n9FjXHkP2/ZsmXw8vLCihUr8Pr1a0REROD06dNYsmQJAKBDhw5o3749BgwYgICAAERHR+PatWvlroZa0rx587Bx40acPn0a7969w4IFC/D8+XPMmDGDb3gZGRmMHTsW8+bNQ2BgIMLDwzF69GiuL9empqYYMWIEXFxccOHCBURHRyMkJAQbN26En58f33g9PT3h7u6O8PBwfPz4EceOHYOkpCT09PT+KL6SRowYgWfPnmHt2rUYOHAgJCQkBIZdvnw5vL29sXz5ckRERODVq1fYtGkT37BdunSBjY0NJ/4nT57AxcUFHTp0ELjow58yMjLC0aNHERERgUePHmHEiBFcvfgKCwvh7OyMrl27wtXVFR4eHggPD6/2lU7nzJmDwMBArF69Gu/fv8fRo0exe/durkVBShMXF4ecnBzXqzLDRfoM7o8AX3/cvHodn2NicXjXAfz49g3d+hQ1qnodOILtazdz7fMxMgofI6Pw82cO0lLT8DEyCrExvx/eL5w8ixOHvfDP/NlQ01BHSlIyUpKS8TP7ZyXPSPWTFBWHiYoOTFSK5mHUklOBiYoO1GVqv0dN/yGD4H/FD9d9ryE25hMO7NiDb4mJ6NGvaPGBI/sOYfPq9ZzwPfr2QmJCIg7s3IvYmE+47nsN132vYeCwwZwwLdq0wlWfywi6eQsJcfF49iQUXoc80LJta86XWo/9hxH+/CUS4hMQHfURngfc8TLsBTp15Z47saJYLBaGDRkCj6NHcTsoCB+iorBi9WpISEigW9ff89gsW7kSu/fu5fw9dMgQPH7yBJ5eXoiJiYGnlxceh4RgeIlFWrKzs/Hu/Xu8+/WDxNe4OLx7/x4JpeaByczKws1bt9Cnd/mTiFfE31IvivMRwMnHfnz/9g3df+Xj6IEj2L6W+x5cnI+cnz+Rzicf50+ewfHDRzF9/myo11H97jd0AG74XsONX3Xn4M69+J74DU59i+qO5/7D2Lp6A9c+UZEfEBX54Vf5pCIq8gNioz/xi75aDBk+FL6XruDqZV/ERMdg57Yd+JaQiL4D+gIA9u/ehzXLf88x26d/PyTGJ2DX9h2IiY7B1cu+uHrpCoaO/D3fY/HCL5Hv3iM/vwDfv39H5Lv3+PL5CyfM4GFD8PpVOLw8juLL5y8I8L+BKz6X0G/QgHLTPGzEcFy6eAmXL11GdHQ0tm/dhsSEBPQfUDSCYM/uPVixbDknfP8B/ZEQHw+3bdsRHR2Ny5cu4/KlyxgxcuTv8zB0KJ48fgwvz6OIiYmBl+dRPHn8BEOHF82lKy0tDSNjI66XpIQk5BXkYWRcNA1IdnY2drjtwKuXLxEXF4enoU8xZ/YcyCsooENH+3LzNXj4EK6y2PWrLPoMKJr39cDufVi7fHWJsuiLxPgE7N6+s0RZ+GLIyGGcMCe9TuDwvkOYv2whNDQ1kfQjCUk/kpCdnc0JM2jYELx+9RrHuMriMvoN4h2RUR/KAgCGDR+O8Ffh8Dzigc+fP+O6vz8u+lzEwFJzAWdmZiLwZiDP1Brlqat6ARSNQvC7chXde3T/o4a8+pCP1m3b4pjHUTy8/wDxcfG4e/sOTp88hfb27auUn2J9h/y6t171x+eYTzi0cx++f/sGp75F8yd77nfH1jUbufb5GPkBHyM/IOfnz1+ffdz31vz8fE6Ygvx8JH3/gY+RHxD35Wu1pLkun0FkpKXRxNYWO3bvRujTp/gaF4crvr7wu3YNHTt0qJb8EcIPDVMl/3mOjo7w9fXFqlWrsGnTJs4vkePGjeOEOX/+PObOnYthw4YhKysLxsbG2LBhQxmxcps+fTrS09MxZ84cfPv2DZaWlrh8+TJMyui5sXnzZmRmZqJ3796QlZXFnDlzkJaWxhXGw8MDa9aswZw5c/D161coKyujVatWcHLi30VdQUEBGzZswOzZs1FYWAhra2tcuXKFMydcZeMrycTEBHZ2dggJCSl3HjV7e3ucPXsWq1evxoYNGyAnJ4f27fk/QLBYLFy8eBH//PMP2rdvDyEhIXTr1g27du0qN02V5eHhgQkTJsDW1ha6urpYt24dVwPY2rVrERMTgytXipZ219DQwOHDhzF48GA4ODhU2yStTZo0wZkzZ7Bs2TKsXr0ampqaWLVqVY0s3lCsXecOyEhPx+mjJ5CclAI9Az0s27gaahpF89mlJCXjR+I3rn1mjZ3K+X/Uu0jcvXkbahpqOHTGCwBw7eIVFOTnY+My7uGCQ0ePwLAxzqhL5qp62N3v91DM6W2LvmD4RQRj7a2jtZqWDl06Ij09HSc8vJCSlAw9Q32s3rKe02siOSkZ30qcew0tTazesh4Hdu6B74VLUFJRxuSZ09C24+86NHyUM1gsFo4ePIKk7z8gr6iAFm1aYfSEsZwwKSkp2LR6PVKSkiElLQ0DY0Os2bqBZ6XWyhjl7Izc3Fxs2LwZGRkZsGrYELt37OAayp2QkAChEr9iNrKxwdrVq7HvwAHsP3gQOtraWL9mDaysfvdWeRMRgUlTf19v23fsAAD0dHLCihIrIt8ICADDMFwP3lXxt9SLdp3tkZGe8Ssfyb/ysYYrH98Tv3PtM3PsFM7/P7yLxJ2bt6GmoY7DnHz4oiA/Hxt48jESw2upfrfv3BHpaenw9jz+K1/6WLl5HSdfyUnJ+F6qfKa7TuL8/8O79wgKuAU1DXV4nDtRI2ns3LUL0tPS4Hn4CJJ+JMHAyBCb3LZA49cK3Ek/kpCYkMgJr6WthU1uW7Fr+w74nL0AFVUVzJg7C/Yl5kP78f0Hxowczfn71PGTOHX8JBo3scWuA0WLQlk0tMTazRtwcM8+HD3sAU0tTfwzewa6dncsN80OXR2QlpaGI4fd8ePHDxgaGWH7ju2cVcOTfvwolWZtbN/hBrdt23Hu7DmoqKpgztw56NS5EyeMTSMbrF67Bgf27ceB/Qego6ODtevXcdXz8ggJCSHqwwdcu+qHjIwMqKiooGmzpli7bl2500UAxWWRjqOHPThlsdFtC6e3F/+y2IJd23fC5+wFKKuqYMbcmVxlcfHcBeTn52PZ/CVcxxo9fgzG/LrfWjS0wNrN63Fgz34cPewJjf9AWVg2tMSmLZuwd/deuB92h5aWFmbNmY1u3btxpS/gRtE9t2u38vNSUl3VC6CoN2RiQiKcevesVJrrUz5mzZuFw/sPYdvGLUhJSYGKigr69O+D0ePGVDlPANC+sz0y0tNxqsS9dcWmtSU+M5J4761jJnP+/+FdJO78urceOXscAJD8I4krzIVTZ3Hh1FlYNbbBhl3V86N2XT6DrFuzBnv27sXSFSuQnp4ODQ0NTJ44EQP4TINESHVhMRWZ3IoQQkideJsYXddJqDJzdQO02TOp/ID12IOp+xH9o3p+/a1LBirayEipv6upVYSsouJfUy/eJcbUdTKqzExdHx++fy4/YD1mrNoA39L/fPXf+kJNThmpGWnlB6zHFGTlkZj+o/yA9Zy6nMp/viyAovL4r9cNNTnl/3wegKJ8RH4re27F+s5ETfc//wwCFD2H/Be5nq7YvJB1wWPI4rpOQp2gYaqEEEIIIYQQQgghhNQSaowjhBBCCCGEEEIIIaSW0JxxhBBCCCGEEEIIIX+p/+dVS+sr6hlHCCGEEEIIIYQQQkgtocY4QgghhBBCCCGEEEJqCQ1TJYQQQgghhBBCCPlLCYGGqdY31DOOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEhqmSgghhBBCCCGEEPKXotVU6x/qGUcIIYQQQgghhBBCSC2hxjhCCCGEEEIIIYQQ8p+wd+9eGBgYQEJCAk2bNsW9e/cEhh09ejRYLBbPq2HDhpwwnp6efMPk5OTUWB6oMY4QQgghhBBCCCHkL8Wvoam+vCrr9OnTmDlzJhYvXoywsDC0a9cO3bt3R2xsLN/wO3bsQHx8POf1+fNnKCkpYdCgQVzh5OTkuMLFx8dDQkLij853RVBjHCGEEEIIIYQQQgip97Zt24axY8di3LhxsLCwgJubGxo0aIB9+/bxDS8vLw8NDQ3OKzQ0FCkpKXB1deUKx2KxuMJpaGjUaD6oMY4QQgghhBBCCCGE1Lrc3Fykp6dzvXJzc/mGzcvLw9OnT9G1a1eu7V27dsXDhw8rdDx3d3d06dIFenp6XNszMzOhp6cHHR0d9OzZE2FhYX+WoQqixjhCCCGEEEIIIYSQv5QQWPX2tX79esjLy3O91q9fzzcfP378QGFhIdTV1bm2q6urIyEhodzzEB8fj2vXrmHcuHFc283NzeHp6YnLly/D29sbEhISaNOmDSIjI//8pJdDpMZiJoQQQgghhBBCCCFEgIULF2L27Nlc28TFxcvcp/RccwzDVGj+OU9PTygoKKBv375c21u2bImWLVty/m7Tpg2aNGmCXbt2YefOneXG+yeoMY4QQgghhBBCCCGE1DpxcfFyG9+KqaioQFhYmKcX3Ldv33h6y5XGMAyOHDkCZ2dniImJlRlWSEgIdnZ2NdozjoapEkIIIYQQQgghhPyl6nrF1OpaTVVMTAxNmzZFQEAA1/aAgAC0bt26zH3v3LmDDx8+YOzYseUeh2EYPH/+HJqampVKX2VQzzhCCCGEEEIIIYQQUu/Nnj0bzs7OaNasGVq1aoWDBw8iNjYWkyZNAlA07PXr16/w8vLi2s/d3R0tWrSAlZUVT5wrV65Ey5YtYWJigvT0dOzcuRPPnz/Hnj17aiwf1BhHCCGEEEIIIYQQQuq9IUOGICkpCatWrUJ8fDysrKzg5+fHWR01Pj4esbGxXPukpaXh/Pnz2LFjB984U1NTMWHCBCQkJEBeXh62tra4e/cumjdvXmP5oMY4QgghhBBCCCGEkL+UUCWHg9Z3U6ZMwZQpU/i+5+npybNNXl4e2dnZAuPbvn07tm/fXl3JqxAWwzBMrR6REEIIIYQQQgghhNSKqRe21HUSBNrTf25dJ6FOUM84Qgipx/Y8OFfXSaiyqW0GIvrH17pORpUYqGijzZ5JdZ2MKnswdT9Sp86r62RUicKezRh6fFldJ6PKTo1chQ77ptZ1MqrszuQ9yEhJqetkVImsoiJOhwWUH7CeG2LrgEV+++s6GVWyzmkSDj+6XNfJqLJxLXtjxsXa7WFRE3b0nYXhJ5bXdTKq5OSIlXA9vbauk1FlHkMWY6DX4rpORpWcc1kLh4Mz6joZVRYwgf8wR0IqixrjCCGEEEIIIYQQQv5SlV21lNQ8obpOACGEEEIIIYQQQggh/y+oMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lIs0DDV+oZ6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lJCtJpqvUM94wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hYaqEEEIIIYQQQgghfykWDVOtd6hnHCGEEEIIIYQQQgghtYQa4wghhBBCCCGEEEIIqSU0TJUQQgghhBBCCCHkL0XDVOsf6hlHCCGEEEIIIYQQQkgtocY4QsgfycnJwZo1a5CYmFjXSSGEEEIIIYQQQv4zaJgqIeSPLF26FOnp6VBXV6/rpBBCCCGEEEIIEUAINEy1vqGecYSQSsvNzYWysjJ27txZ10khhBBCCCGEEEL+U6gxjhBSaeLi4liwYAHExcXrOik8goKCwGKxkJqaWuF99PX14ebmVqXjslgsXLx4sUpxEEIIIYQQQgj5+9EwVUJIpT18+BDt2rWDg4MD/P396zo5pAwvbz3CM//7yErNgJK2GtoP6wFtU32+Yb+8/YgLm9x5to9cOxNKmqo1kr4rFy7h3MnTSE5Kgp6BPiZNnwqrxjYCw78Me4GDu/biU3QMlFVUMGj4EPTo15srjM/pc/D1uYzvid8gpyCPdvbt4TppPMTExQAAvj6X4OtzBd/iEwAAugb6GOHqDLtWLWokj2VppGmM4bZdYa6mCxVpBSzw24d70S9qPR1lkXBygFibFmBJSaEwJhbZZ3zAjhc8V6TMjEkQMTXi2Z4fHoGsfUeK/hASgoSTA0TtmkBIThbs9HTkPQpFrn8gwDDVmn4HUzv0smwLBUkZfEn9Dq/Qa3j7/ZPA8G30bdC7YVtoyCohOz8XL+IicfzpdWTm/eQJ20rPCjPaDUbI5whsveNdrekurW/DdhjauAuUpOQRkxKP3Q/O4WV8VBnh26O/dQdoyCohMTMFx5/64/r7J5z33XrPgK22Kc9+wZ/CscBvX7Wlm2EYHDx8GD6XLiEjIwMNLS0xf948GBkalrlf4K1b2H/wIL58/QodbW1MmTQJHe3tOe97HD2K20FBiPn0CeLi4rCxtsY/U6dCX0+PE+bAoUO4cfMmEhMTISoqCgszM0yZNAlWVlZVytOTG3dx/0ogMlPToKqjie4uA6BvYcw37Ke3Ubhx8hJ+xCUgPzcfCqpKaNa5DVr36MQV7qHfbYQE3EPajxRIyUqjYQtbdBnWG6JiolVKa1la6DZEO8NGkBWXwrfMFFx98wAxKQkCwwsLCaGTcTM01jaBrJgU0nIyERT1DE+/vAMANNE2w8BGHXn2W+Z/CAXswhrJQ1jgQ4T4BSEzLQMqWuroNKI3dMzKvrYA4Mv7aJxavx8qOuoYvXo213s5WT9x7/w1RIaGIyf75//Yu+voqI63gePf3chuXAmEuEAgBAvu7tYWWipQqNPSlpa6QZWWtlRpseJQXEpxd3cLFiSBhLj7yvvHhk022QRJAvz6Pp9z9pzk7szdmd175+7OfWYGJ3dXOj3Vl8CGdaukDgBtAxrQObgpjmo7bmYksfzUDi4n3TCb9unw7rTwrVdqe2x6Et9tnQNADQc3etdthbezB262Tiw/tZ0dkceqrPy3dK3VjL6hbXC2sedGagJzjqzjfEJUmenb+Nenb2hRe3sy5hLzjxa1t52CmtAusCE+Th4AXEmOYdGJLUSW8d5Uhk7BTegV0tJQh7QE/j62iYuJ0WbTvtC8L20DGpbafiMtgU/XTwXAQqGkT93WtAlogIuNA7EZSSw5sZXTNy9XWR0AeoS0oH9oW1xsHYhOjWfWoTVExJd97WsX0JAB9drh6ehGdn4ex2IuMOfIOjLzDJ9Fx6DGvN5mUKl8T80bS4FOUyV16BfalscbdMbN1pGrKTeZtG95ue9b/9C2DKjXjuoOrsRnpvD3sU1svnjIbNqOQY35pMtw9lw9yecbS3/3/S+S1VQfPtIZJ4S4azNmzOCNN97gr7/+IioqCl9f3zLT6vV6tFotlpbS3NxvFw6eZOeCtXQc2o+awX6c3n6IVT/PZsjXo3Bwcy4z39Bxb2NtUxT1aONgVyXl27F5G1N+/YOR74yiXoMw1q78l0/f/ZCp82biUaP0XIQ3Y2L57N2P6NWvN++P+ZgzJ0/zx4RfcXJ2pm2n9gBs3bCZGZOnMfqj96lbvx43oqKZ8M33ALwyaiQA7tWq8fyIF6np7QXA5nUb+eLDz5g4cwr+gQFVUtey2FipuJR0nbXn9jKu14j7+tp3QtWtI6rO7cmeuwhtfALqnl2xf/0l0r/8AfLyzObJmjYbip3vCjtbHD56m4JjJ032a92uFdlzFqKLjcPCzxvbIU+gz8klf/vuSit/K78whjXpxfRDqzkfH0XXWs34sPMQ3vl3IknZaaXSh1TzZWTrx5hzZB1Hrp/H1daRF1v04+WWA/hp50KTtO52TgwJ70FE3NVKK29ZOgWF83qbQfy8axGnYyPpV68t4/uMZNjCr4jPTCmVfkC9drzcsj8/bP+bc/HXqFvdn/c6PE1GXjZ7r50G4LMN07BSFn1Ojmo7pj/xEdsr+Qf77Llz+XvBAsZ+9hm+vr5MnzmTkW++ybJFi7CzM9+2nDx1io8/+4wRL79Mpw4d2LZjBx9+8gnTp0wxdqQdPXaMxwcOJDQ0FK1Wy5+TJ/P6qFEsWbAAGxsbAPx8fXn/nXfw8vIiLy+PvxcsYOSoUaxcuhQXF5d7qs+pvUdYN3sZfV8YjG9IIIc272bed3/y+oRPcXZ3LZXeWmVNix7tqeHrhZXKmqjzkaz6ayHWKmuadm0LwIndh9i84B8eeeUZfGoHkhQbz4rJcwHoNWzgPZXzdup7BtEntDWrTu/iWspNmvuGMqxZH37ZuYi03EyzeZ5q3A17a1uWn9xOUnY69tY2KEv8uMstyOOnHabnSlV1xJ07cJyt81fR7dlH8artz4lt+1k6YTrPf/sujm5lf7552TmsnboQv9BgstIzTJ7TajQs+WEqto729H99KA6uzmQkp2KtrrqRAI29avNo/Y4sObGVK0kxtA6oz4hWj/Dtljmk5GSUSr/85Hb+PVPUTioVSj7oPITjMReM26wtLEnMSuPYjQs8Wr9jlZW9uJZ+9Xi2SU9mHFrDhYQoutRqygedhvDe6j/KbG9fbfUYc4+u52hhe/t887681HIAPxe2t6HV/dl79RQXE6Mp0GroG9qGDzsP5f3Vf5h9byqquU9dnm7UjblH13MxIZqOweGMbv8kn6yfQnJ2eqn0fx/bxJKT24z/WyiUfNnjRQ5FRxi3PVa/A6386jPr8Bpi05MIqxHIG20G8c2W2USlVs0iaK396zO8aW/+OvAv5xKu0a1WMz7uMoy3V/1KYlbpz6KOhx+vtxnE7MNrOXz9HK62jrzcYgCvtnqMH7bPN6bLys9l1MqfTfJWVUdch8DGvNrqUX7fvYQzcVfoU7c143qN4IXF35KQVfq617duG55v3o+fdy7kfEIUdTx8ebvdk2TmZbM/6oxJWg97F15u8QgnYy9VSdmFuFMyTFUIcVeysrJYvHgxr776Kn379mXWrFkmz98aJrphwwaaNm2KSqVi165d6PV6vv/+ewIDA7GxsaFhw4YsXbrUmE+r1fLCCy8QEBCAjY0NISEh/Prrr7ctz9q1a6lduzY2NjZ06tSJq1evlkqzd+9e2rdvj42NDT4+Prz55ptkZWXdcZ0PHTpEt27dcHd3x8nJiQ4dOnD06NFy83zwwQfUrl0bW1tbAgMD+eyzzygoKLjj16wMxzbsoV67JoS1b4ZrTQ/aP90He1cnTm47UG4+W0c77JwcjA+lsmouFcsXLaFH31706t8HX38/Rrz1OtU8PFi9YpXZ9GtW/otHdQ9GvPU6vv5+9Orfh+59erF0wWJjmojTZ6hXP4xO3btQw7MGTVo0o2O3zlw4V/QjpWXb1jRv3RJvXx+8fX0Y/soLqG1sOHcmwtzLVqn9UWeYdmAVOy4fv++vfSdUndqRu2ELBSdOo4uNI3vuQhTW1lg3a1xmHn12Dvr0DOPDqk4tyC8g/2hRxJ9lgB8FJ8+gOXMOXXIKBcdOURBxEUs/70otf5+6rdkWeZRtl44Sk57InCPrSMpOp1vtZmbT13L3ISErlfXnD5CQlcr5hCg2XzxMkJuXSTqFQsHrbQax9OQ2s51hle2Jhl1Ye24fayL2ci01jol7lpGQmcKAeu3Mpu9euzmrzu5hW+RRYjOS2HrpCGvO7eWpxt2NaTLysknOSTc+mvrUIU+Tz/bI8tu2u6HX61mwaBHPDR9O506dCA4K4osxY8jNzWX9xo1l5luwcCEtmjXjuWHD8Pf357lhw2jerBl/L1pkTPP7L7/Qr29fggIDqV2rFmM//ZSbN28Sce6cMU3PHj1o0bw53l5eBAUG8vZbb5GVlcXFS/f+A2zvmq2Ed2pFk86tqeZVg97DBuHo5sKhTbvMpvcM8KFBm6Z4+Hji4uFGw3bNCW5Ql2vniqIaoy9cwad2IA3aNsPFw43ghnWp37opNy6XHVFUUW0DGnAk+hyHr58jISuVNRF7ScvNpIVfqNn0tdx9CHCtyezDa4lMukFqTgbX0+JLdSbogcz8HJNHVTm8fif12zejQccWuNWsTudnBuDg6szxLfvKzbdx1jJCWzWmZrBfqedO7TxETmY2j7w5HO/aATi5u+BdOwAP35pVVQ06BoWz/9pp9l87TVxmMitO7SAlJ4M2AeajxHM1+WTkZRsfvi7VsbFSc+BaUYdDVGocq87s4tiNC2iqqLOkpN51WrM98hjbIw3t7dwj60nKTqdrGe1tsLs3CVmpbCjW3m65eIRA16L3+o+9y9h88RDXUm4Sk57ItAOrUCgUhNW4ffTjvege0oKdV46z8/JxYjOSWHBsE8k56XQOCjebPqcgj/TcLOPD39UTW2sbdheLcG/lX5/VEXs4GRtJQlYq2yKPcvrmZXqGVF00fr+6bdh66QhbLh3mRloCsw6vJSkrje61zb9mbXcfErJSWHtuH/GZKZyLv8amiwcJcit53OtJzc00eVSVgQ06sv78ftad309UahyT9q0gITOFfqFtzKbvWqsZayL2sOPyMW5mJLE98hjrz+9ncKOuJumUCgUfdX6WOUfWcTM9qcrKL8SdkM44IcRdWbRoESEhIYSEhDBkyBBmzpyJ3sywsvfff59vv/2WiIgIGjRowKeffsrMmTOZNGkSZ86c4e2332bIkCHs2LEDAJ1Oh7e3N4sXL+bs2bOMGTOGjz/+mMWLF5fa9y3R0dE89thj9O7dm+PHj/Piiy/y4YcfmqQ5deoUPXr04LHHHuPkyZMsWrSI3bt38/rrr99xnTMyMhg2bBi7du1i//791KpVi969e5ORUfZdWQcHB2bNmsXZs2f59ddfmTZtGj///HOZ6SubVqMh/loMvvVMh0751gsm9lL5P/AWfP4Hf739Lct/mE50RNUMoygoKODi+QuEN29qsj28eVMiTp8xmyfi9JlS6Zu0aMrFc+fRaAw/Nuo1rM/F8xc4f9bQsRZ7I4ZD+w7QvLX5L6BarZbtm7eSl5tL3TDzP0L/v1K6uaJ0ckQTUdSRiUaL5tJlLANK/4gti3Wr5uQfOQ75RZ3RmsirWIUEo/RwN7yWlyeWQf4UnD5Xxl7unoXSggBXz1JDOU/GXqJ2NfPRvBcSonC1daRRzVoAOKntaOFbj6M3LpikG1i/I+m5WWyrxI6rslgqLahdzcck0gLgUHREmT9IrSwsydeYdv7naQqo6+GHRRmd633qtGLrpSPkavIrp+DAjZgYkpKSaNmi6PyztrYmvHFjTp46VWa+k6dP06KF6TnbskWLcvNkZhp+FDo6Opp9vqCggBUrV2Jvb0/tWrXuphpGGo2G2CvRBDUwHa4Y3KAuUReu3NE+Yq9EE33hMv6hRWXwqxNI7JVorl+6CkByXCIXjp2hdnjpoYiVwUKhpKZjtVJD7y4lXMfPuYbZPHWr+3MjLYH2gY34oPNQRnd4kl51WmKptDBJZ21hxXudnuGDTkN4tmkvPB3dqqQOWo2Gm1dv4B9mOtTaP6w2Ny6VPRTv1M5DpMYn0fqRbmafv3TsLDWD/dg8ZwV/vPEFMz/+kf3/bkGn01Vq+W+xUCjxca7O+RLDB8/HRxHgemcdgC39wriQEFUlkWJ3qqi9Ne3oPhUbSW13H7N5LiREm7S3jmo7WviGcizmgtn0ACoLKywVFlXSyWuhVOLv4smZm6bn8pmblwlyv7MbRe0DGnE27gpJxaLorJQWFGhNO0TztRpqVTP/vlSUpdKCQLeanIgx/SxOxF4ipIxr3/mEKNxsnYxTFzip7WjpG8bR66afhdrSmkmPvcuUge/zUeehBLh6Vlkdarv7GIfA33Lk+nnqVTc/gsHKwpL8Eu9znqaAkGq+WCiKrntDwnuSmpPJ+vP7K7/gDzmlQvHQPv6/knFjQoi7Mn36dIYMGQJAz549yczMZMuWLXTtanrn6csvv6RbN8OX3aysLH766Se2bt1Kq1atAAgMDGT37t1MmTKFDh06YGVlxRdffGHMHxAQwN69e1m8eDFPPPGE2bJMmjSJwMBAfv75ZxQKBSEhIZw6dYrx48cb0/zwww88/fTTvPXWWwDUqlWL3377jQ4dOjBp0iTUavVt69y5s+ncPlOmTMHFxYUdO3bQt29fs3k+/fRT49/+/v688847LFq0iPfff99s+ry8PPJKDPuryAIZORnZ6HU6bJ3sTbbbOtqTnWb+TqadkwOdhz2Ch39NtAVazu07xoofZzDw/RfwCqnc4ZvpqWnotDpcXE2HErm4uJCclGw2T0pySqmhZS6uLmi1WtJS03Bzd6Nj186kpaTyzqujjEOk+z7an8FDnzbJdyXyMm+/8jr5+fnY2Njw2bgv8Avwr9Q6/q9TODoAoMswPV506RkoXe9siJ+Fnw8WXp5kz19isj1v0zYUNmocPnvPMEecQkHuv+spOHK8UsoO4KiyxUJpQVqOafnTcrJwrmlvNs+FxGgm7lnKqHZPYGVhiaXSgsPREcw6tMaYpnY1XzoFhVfqvGrlcVLbY6m0KDVEKiUnA1db8x1Ph6Ij6Fu3NbuvnOBCYjQh1XzpXacVVhaWOKntS+2rjocfgW5ejC82HKkyJCUZog7cXE2Hb7q5uhJ7s+y5yZKSkszmubW/kvR6PT/9+iuNGjYkOMh0vsJdu3fz8WefkZubi7u7O3/89hvOzs73UBvITs9Ep9Nh7+Rgst3OyYHM1NJD2Ir78bVPyUrPRKfV0mlQb5p0bm18rn7rpmSlZzJ97M/o0aPT6mjWrR3tB3QvZ4/3ztZajYVSaZwL6paM/Gxqqcx3ELjaOuDnUgONTsv8IxuwtVYzoF47bKzULD+1HYCErBSWndzGzYxk1JZWtPavzyutHuH3XUvNDlOsiJyMLPQ6HXalPgt7stLMd0ql3Exg55K1PPXJaygtLMymSUtIIioihdBWjRk4+gVS4hLZPGcFOq2uzA68irBT2WChVJKel22yPSMvCwfV7W96OKrsqOvhz5zD6yq9bHfD4VZ7m2s66iAtNxMnG/Pt7cXEaP7Ys4w32j5erL09x+xDa8t8nScbdyM5J53TsZV/o9DB2tbwWZSI9krLzSJMbb4OxTmp7anvGcSU/StNtp++eZkeIS24kBBFfGYKdasH0NirdpV1QBR9FiWvfZllXvvOJ0Tx667FjG7/pPGzOBQdwfSD/xrT3EhLZOKeZUSlxmFrpaJ33dZ83fNl3vl3IjczKjfCzElth4XSgpSc0tc9F1sHs3mOXD9Hrzot2Xv1JBcTr1Pb3YeeIS2Lrns56dSrHkDPkJaMWPZ9pZZXiHslnXFCiDt2/vx5Dh48yPLlywGwtLRk8ODBzJgxo1RnXNOmRRFMZ8+eJTc319g5d0t+fj6NGxcNd5s8eTJ//fUX165dIycnh/z8fBo1alRmeSIiImjZsqXJhKS3OvtuOXLkCJcuXWL+/KIfmXq9Hp1Ox5UrV6hb9/YTMsfHxzNmzBi2bt1KXFwcWq2W7OxsoqLKjjBbunQpv/zyC5cuXSIzMxONRlNmxAbAt99+a9IZCTB27FiqdavYRONQ4sueXk9Z3/9cPKvhUmyhBs9gXzKS0zi6YXeld8YVFc+0MHr05U8wWzK9/tZmw/YTR4+zcM58Rr4zijr16hJz/QaTf/0Dl5lzeea5ocZ83r4+/DlrGpkZmezevpMJ34zn+4k//7/ukLNq1hjbp4rmp8r8s3CxhZKRr3fxA8K6dXO0N2LRXjONwLFq0hDr5uFkz/obbWwcFt41sRnYH11aOgUHjtxzHcwpFberwGw0L4CXUzWGNe3NslPbORlzCWcbB54J786LLfoxZf8/qC2teb3NQKYdWEVGiR/PD0JZ9Zh9eB2uNo5Meuw9UEBKdgbrz+/n6cbd0elLR/j0qdOay0k3OFfO5N53Yt369YwrdjPklwkTgNKTRuv1tznPDZnuOM/3P/7IpUuX+Gvq1FLPNW3ShL/nzCE1LY0V//zDR598wqzp03F1LT2/2x0rVYzb1+eFz98iPzeP6ItX2bTgH1xrVKNBG8N18sqZC+xcsYG+LwzGO9iPpJuJrJu9lO3OjnQc2Ovey3kbJY8eBQozW4s/B4uObyGvMHpybcRengrvzqozu9DotESnxhOdGm/Mcy3lJiPbDqKVfxirz+6piiqYu8SZbaJ0Oh2rJ/9Nm0e741qj7AWJ9Do9tg72dH9uEEqlkhoB3mSmpnFo7Y4q6YwreuGSG+6snW3uG0pOQR6nHpq5r0ofVWUtyuPlWI1hTXux4tQOTsRewsXGnqcbd+f55v2YduCfUun7hrahtV8YX22eVWXzlMHdnRfFtQ1oQHZBLkdvmEZz/X1sE8Ob9mZcrxHogfjMFHZfOWF24YfKVOr6UE4b5e1Ujeeb92XJya2cuHERZ1sHnm3Si5dbDmDSvhWAofO0eDTtufgovu87kt51WjKj2A2ryq1D6SqU9UnMO7oBF1sHfntkNAoMHXcbLxxgcKOu6PQ6bKxUfNBpKD/vWkh63p1PVSNEVZLOOCHEHZs+fToajQYvr6L5k/R6PVZWVqSkmEYtFZ+Y+9bwjjVr1pjkhaLor8WLF/P2228zYcIEWrVqhYODAz/88AMHDpQ9v1lZP0SL0+l0vPLKK7z55pulnitv4Ynihg8fTkJCAr/88gt+fn6oVCpatWpFfr754Vz79+/nySef5IsvvqBHjx44OTmxcOFCJhT+MDXno48+YvRo0xXdVCoVfx3+t4wc5bNxsEWhVJJdIkIgOyMLG8fb3+G9xTPQh3P7K391T0dnJ5QWSlJKRMGlpqSWipa7xcXVhZTkkulTsLCwwNHJ0NE5Z9pMOvfoRq/+fQAICAokNzeX38b/xFPDnjHOf2dlZWVcwKF23RAunDvPyiXLGfW+6Wfw/0nBybNkXC3WwVy4CIPS0QFtsUnOlQ726NPvYDiUlRXWTRqSs7r03GA2j/Yld+M2Co4Yji1dzE2Uri6ou3eutM649LxstDotziWiMpzUdqWiN255pF47LiREGTsOolLjyDuYzxc9XmTRiS04qe3xsHfhvY5FkZa3OmHmPz2W0at+I66S55BLy81Eo9OWioJzsXEoc1havraA8dvn8ePOv3G1cSQpO41+oW3Jys8hLce07ipLKzoHN2HGodUVLmv7du0Iq1c0tDK/cJ7MxKQk3N3djduTU1LK7Qxzc3MrFQVXVp7vf/yRnbt2MXXyZKp7eJR6/tZcoT4+PtQPC+PRQYP4599/eW7YsLuun62jPUqlksxU0/c9Ky2zVIRWSS6FQ7Kr+3qRmZbBtqVrjZ1xWxavoWG75sZoueq+XhTk5bFq2gLaP9qj0uftzM7PRavT4aCyMdlub21TKlruloy8bNJzs4wdcWDoVFAqFDip7c1GvumBG6kJuNk6VWr5wbCwkEKpJKvEZ5GdnomtY+nPIj8nj5tXrhN3LYbNc1cayqfXg17Pj899wOPvvYRfaDB2zo4oLZQm77mbZ3Wy0jLQajRYVPJiVFl5OWh1OhzVtibbHVS2d9Th39KvHoejI9Ca6WS/nzIK21sn9Z23t/3D2nEhIZrVEYb2Njo1jjzNGsZ2f4ElJ7aYzEfWp25rBtRrx7gtc4iuokUPMvKz0ep0pergqLYtsw7FtQtoyN6rp9CWGNKckZfN73uWYqm0wF5lS2pOBo836ERiVmplFt/k9QzXPtPzwEltR2qO+ZERj4Z14Hz8NVYVLgxyLTWOaZpVfN3zZRYc30yqmWuNHj2RSdfxdHQv9VxFpeVmoTVz3XNWO5CaXfZ1b8KOBfyycxEutg4kZ6fTu05rsvJzScvNItCtJp6ObnzV4yVjnlvX7/Uv/sRzi74htpIj/B42CoXMUPawkc44IcQd0Wg0zJkzhwkTJtC9u+nQmYEDBzJ//vwy52ELDQ1FpVIRFRVFhw4dzKbZtWsXrVu35rXXXjNui4yMNJu2+H5Xrlxpsm3/ftM5IMLDwzlz5gzBwaZzp92NXbt28eeff9K7d2/AMFddYmJimen37NmDn58fn3zyiXHbtWvlR5yoVKoKDUstycLSEg+/mkSdvURQk6Ifx1FnLhHY+PbRgLfER8Xe9kfmvbCysqJWSG2OHTpCmw5Fk9AfO3SElm1bm81TN6weB/aYTsx99OBhatUJMa7Wm5eXW+qHq1KpRK/Xl995q9dTkH9/F9h46OTloUswHSqtS0vHsk5ttNdjDBssLLAMDiTnn7KHEd1i3aQhWFpScMjMvGpWVqVveet0dxV1dztanZYrybHUrxFkMt9a/RpBHL5ufm46a0urUnND6QrLqUBBTFoi7/470eT5wY26YGOpYtbhtSSaWW2vojQ6LRcSomnqXYddxSYFb+pdh91XT5aTE7Q6HQmFP/g6Bzdh37XT6EvEFXQKaoKVhSWbLhyqcFnt7OxMbsTo9Xrc3Nw4cPAgdUJCAMPcbUePHeONkSPL3E+DsDAOHDzIM089Zdx24MABGtSvb7Lv7ydMYPuOHUz54w+8at7Z/Fp6KPNGyu1YWlriGeBD5KlzhDYvimqJPHWOOk3rl5OzZCH0aAuKInsK8vNLRdYplMqyAooqTKvXEZOeQLC7D2eLrQYc7O7F2firZvNcS7lJmGcg1sXmZXK3c0an15W5+iqAp6MbNzPMTz1QERaWltTw9+LamYvULvbeXztzgeDGpefaU9moGP7NOybbjm/ZS1TEJfq//ixO1QwdvV61/InYfwy9Toei8FqSEpeAnbNjpXfEgeGziE6NI6San8n8liHVfDl1s/zvQMHu3lSzd2H/tXu7aVeZjO2tp2n7GuYZWGrer1tUFlalOhGNkbvFzoe+ddvwSFh7vts6lyvJMZVf+EJanY6rKbHUqxFgEt0WWj2A4zfKnscODJ9XdQdXkza6JI1OS2pOBhYKJU2865SaB7SyaHRaLifF0KBmMAejzxq3N/AMLvM1VZZmPovCa2F5V2V/F88qWRFWo9NyITGacK8Q9hS7zoV7h7D3atlzh4LhnLq1YmynoHAORJ1Bj56o1DheWvKdSdrhzXpja6Xmz73LjddKIe4n6YwTQtyR1atXk5KSwgsvvICTk+ld7kGDBjF9+vQyO+McHBx49913efvtt9HpdLRt25b09HT27t2Lvb09w4YNIzg4mDlz5rBhwwYCAgKYO3cuhw4dIiCg7OGRI0aMYMKECYwePZpXXnmFI0eOlFrd9YMPPqBly5aMHDmSl156CTs7OyIiIti0aRO///77HdU9ODiYuXPn0rRpU9LT03nvvfewsbEpN31UVBQLFy6kWbNmrFmzhhUrVtzRa1Wmxj3asHHaUjz8vfAM8uX0jkNkJqdRv2NzAPYs3UBWSjrdX3ocgGMb9+Do7oKblwdajZZz+44TeeQMvUc+Xd7L3LPHBj/OD199S606IdQNC2XdP6uJj4ujz6P9AJgxaRpJiYm899lHAPR5pB+rlq1kym9/0qt/HyJOn2XD6nV8+HnR/Hwt2rRixcKlBNUOpk6oYZjqnGkzadm2NRaFcwTNnPwXzVo2x726BznZ2ezYvI2Tx07w9YTvSheyitlYqfB2KhoyVdPRnVru3qTnZlV6hNW9yNu2C3WPzugSEtHGJ6Du0QV9fj75h44Z09g++yS61DRyV5nOWWTdqhkFJ86gzyod3aE5HWHYb3IKutg4LHy8UHVuT/6+incIFbcmYi8jWz/G5eQbXEiIpmutprjbObH5ouF1nmzUFVdbR/7caxh6f/T6eV5qOYButZpxItYwTHVY015cSrxujEK7nhZv8hrZ+blmt1emxSe28EmXYZxPiOLMzcv0DW2Lh4OrMYrhpRb9qWbnzLitcwDwdvKgrocfZ+Ov4qCy5YkGnQlw9eTbwueL61O3FbuvnKiSYTsKhYKnBg9m5uzZ+BZGp82cPRu1Wk3PYjd1xnzxBR7VqvF64c2YJwcP5uVXX2XWnDl0bN+e7Tt3cuDQIaZPmWLMM/6HH1i/cSMTvv8eWzs7Egsj6ezt7FCr1eTk5DBj1izat2uHu5sbaWlpLFm2jPj4eLp26XLPdWrdpzPL/5iDV6AvPrUDOLx5D2mJyTTraripsGnBP6QnpzFw5LMAHNiwAyd3V6rVrA7AtfOR7Fm9hRY9i25MhYSHsW/tNjwDvPEO9ifpZgJbF6+mTpP6Vbaa9e4rJ3m8YWdupMUTlRJHM99QnGwcOHjN8OO9e0hzHFV2LD25DYATMRfpFNyEgQ06seXiYWyt1PSq25Ij0efR6LSAocM3OjWOxKw01JbWtPKvj6ejm/E4rWxNe7ZnzZSF1AjwpmawHye2HSA9KZWGnQ3TVexcvJaMlDT6vPIUCqWSat6mi1PYOtpjYWVpsr1R51Yc3byHLfNXEd6tDSk3E9n/71bCu7WtkjoAbI88ypAmPYlKjeNqciyt/evjYuvAniuGToi+oW1wUtsz/+gGk3wt/cK4mhxrNprHQqGkRuHiGZYKC5zU9ng5VSNPk2/sqKhsa8/t5bVWj3E5KYaLidF0Dm6Ku60TWwrb28GNuuJq42Ac9nj0xnlebNGfrrWacTL2Es429gxtYmhvb0Vi9Q1tw+MNOjNxz1ISslKNUWu5mnyTKM3KsvH8AV5qMYCrybFcSrxOh6DGuNk6GRfrGVS/I862Dvx1wLQDtH1gIyKTbnAjLaHUPgNda+Ji40BUahzONg48EtYOhULB2nPlr/pbEf9G7OGNNoO4nHSD8wlRdKvVDHc7JzZeOAjA042742bryO97lgJw+Po5RrR6lO61m3M85iIuNg4816wPFxOijde+xxt05kJiFLHpSdhaqeldtxX+rp6l3ovKsuzkdj7oNIQLiVFExF2ld93WeNi7GCMpn2/WF3c7J74vnOvUy6kadar5cS7+GvYqGwY26IS/q6fx+QKthqspsSavkVUYCVxyuxD3i3TGCSHuyPTp0+natWupjjgwRMaNGzeOo0fLXlnwq6++wsPDg2+//ZbLly/j7OxMeHg4H3/8MWDoWDt+/DiDBw82/IB76ilee+011q0re1JiX19fli1bxttvv82ff/5J8+bNGTduHM8//7wxTYMGDdixYweffPIJ7dq1Q6/XExQUxODBg++47jNmzODll1+mcePG+Pr6Mm7cON59990y0w8YMIC3336b119/nby8PPr06cNnn33G559/fsevWRlqN29AbmY2B1dtIystAzev6vR/61kc3Q3DQLPTMshILvpSrtNq2b14HZkp6VhaW+FW04P+bz2Lf4OQKilfh66dSE9PZ/7MOaQkJeMX6M9XP35L9RqGH0bJScnExxV1cNSo6clXP37LlN/+YPXyf3B1d+PVt16nbaf2xjRPDxuKQqFg9tQZJCUk4uTiTIs2rRj+8gvGNCkpKXz/1bekJCVja2dHQHAgX0/4rtRKrfdDnWp+THy0aGjsm20NHaNrI/bxzdbZ9708JeVt2o7CygqbwY+isLVBezWKzInToNhiI0oX51JRbkoPdyyDA8n8vfQcXgDZi1di07cHtk8+hsLeHl1aOvm795O7bnOlln/ftdOGL+X1O+Js40B0ajzfbZtn/DHqYuOAu11Rm7bj8nHUViq6h7RgSJMeZOXncibuCn8fLT3U9n7aFnkUJ7UdzzbphZudI1eSY/lgzZ/EZRoijtxsnfCwLxrebaFQMLhhF3ycq6PRaTkWc4GRKyaUilDydvKggWcw7/x7Zzcm7sWwoUPJy8vjux9+ICMjg7B69Zj4668mEXQ3b940mcy8YYMGfPPVV0yaMoXJU6fi7eXFt19/TVhY0RyaSwvnLn2lWDQ1wNhPP6Vf374olUquXr3K6rVrSU1NxcnJidC6dZk2eTJBgeZXob0T9Vs3ISczi+3L1pGRmo6HjydDPnwN58LIqoyUdNISi95nvV7P5gWrSElIQqlU4lrdnW5PDaBp1zbGNB0e64lCoWDLotWkJ6dh52hPSJMwugzud8/lvJ1TsZHYWqnpHNwUB5UtcZnJzD601jg00EFlZzLMLV+rYebB1fSt15bX2jxGdn4ep2Ij2VT44x5AbaXikfodcLC2JVeTT0x6IlP3r6qyjuo6LRqRk5nN3n82k5WajrtXDQaOfgGnwmtcZlo6Gcmpd7VPRzdnHn/vRbb9/S+zPv0Je2dHmnRvS/M+naqgBgbHblzAzlpNjzotcFLZEZuRxJR9K42dII5qu1KT1qstrWnoGWxcPKMkJxt73u80xPh/l1pN6VKrKRcTo5m4e2mV1GP/tTPYW9vyWP0OONs4cD01nu+3zze2t85qe9yKtbc7Lx9Hbamie+3mPBPenezC9nbBsU3GNN1qNcPKwpK32z9p8lrLTm5j2antlV6Hg9ER2Kls6V+vLU5qe26kJfDzroXG1VGdbOxLDbu2sVLRxLsOfx8zf52wsrDk0fod8LB3IVeTz8nYS0zbv4qcgjyz6SvD3quncFDZMqhBJ2NH4Lgtc4xDY0te+7ZHHsPGSkWvOi0Z1rQXWfm5nL55mXlHijqA7azVjGj5CM42DmTn53IlJZYx66dxKel6ldRhx+VjOKrtGBLeA1dbJ64mx/LJuinEF96odLN1LHHdUzKoQSe8nT3Q6rQcj7nIqH9+MV4nRdHcn+LhodDfyaRLQgghHog/9lTNl+b7aWSbQVxJvPGgi1EhAe5etPljxIMuRoXtGTmZ1JHvPehiVIjzHz/w5LwxD7oYFbZwyJd0mFT2UM3/FTte/YOMlAcfxVkRDi4uLCrWAfC/anDjbny8dvKDLkaFjOs9gr/2r3rQxaiwF1v2Z9TKnx90MSrs10fe5un5Yx90MSrk72e+4LlF3zzoYlTYzMGfMGjOJ7dP+BBb+uw3dJs66kEXo8I2vfzrgy7CPflwzf1ZBf5efNfn1QddhAdCZvETQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9RykpcJEtUDomME0IIIYQQQgghhBDiPpHOOCGEEEIIIYQQQggh7hMZpiqEEEIIIYQQQgjxH6WQYaoPHYmME0IIIYQQQgghhBDiPpHOOCGEEEIIIYQQQggh7hMZpiqEEEIIIYQQQgjxHyWrqT58JDJOCCGEEEIIIYQQQoj7RDrjhBBCCCGEEEIIIYS4T2SYqhBCCCGEEEIIIcR/lAIZpvqwkcg4IYQQQgghhBBCCCHuE+mME0IIIYQQQgghhBDiPpFhqkIIIYQQQgghhBD/UQpZTfWhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSLDVIUQQgghhBBCCCH+o5QyTPWhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSLDVIUQQgghhBBCCCH+o2Q11YePQq/X6x90IYQQQgghhBBCCCFE5fty04wHXYQyjen2/IMuwgMhkXFCCPEQSxv/y4MuQoU5ffAWGSkpD7oYFeLg4kLqyPcedDEqzPmPH2jzx4gHXYwK2TNyMmnjfnrQxagwp49Hkzpi9IMuRoU5T/6JjPT0B12MCnFwdCRt7qIHXYwKcxo6mNR3Pn3QxagQ5wlfk/bLpAddjApzeutVUj/+8kEXo8Kcx40h7ZsJD7oYFeL0yTukDnnlQRejwpznTSH1hTcedDEqxHn676S+/fGDLkaFOf887kEXQfxHyJxxQgghhBBCCCGEEELcJxIZJ4QQQgghhBBCCPEfpUTmjHvYSGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KIVChqk+bCQyTgghhBBCCCGEEEKI+0Q644QQQgghhBBCCCGEuE9kmKoQQgghhBBCCCHEf5QMU334SGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KKUMU33oSGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KAUyTPVhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSKdcULcpcOHD/Pzzz+j0+kedFGEEEIIIYQQQohyKRWKh/bx/5V0xon/eVevXkWhUHD8+PFK26dCoWDlypWlticmJvLEE08QFhaGUln5p8/nn39Oo0aNKn2//58MHz6cRx555I7Tb9++HYVCQWpq6j2/5qxZs3B2dr7n/EIIIYQQQggh/v+QBRzEAzV8+HBmz54NgIWFBTVr1qRPnz6MGzcOFxeXB1au2NjYUq+v1+t59tlnGTNmDN26dXtAJftvUCgUrFix4q46zcSdUbVpiXXDMBRqNdrYm+Rs2oouMfk2mVSo27fGqnYwCrUKXVo6uVt3orl8FQALby9ULZpgUd0DpYM9Wcv/RXMxstLKrNfrmfrXX6z45x8yMjKoFxrKB++9R1BgYLn5tmzdyuSpU7l+4wbeXl68NmIEnTp2ND5/9Ngx5s6bR8T58yQmJvLj+PF07NDBZB9NW7Y0u+83X3+dZ4cMqXDd1L27Yd2mBQpbW7RXo8hevAJdbFyZ6e1HjcCydlCp7QWnI8iaNMPwj1KJunc3rJqFo3R0QJeeTv7+w+St3wJ6fYXLfC8aegbzdOPu1PHwxd3OmQ/XTmLXlRMPpCxlUbVrhXWj+oZzIyaWnA1b0SUm3SaTCnXHNliFBKNQq9GlppG7ZSeayCuGp1s1wzKkFhZurug1GrTXY8jdtgtdckqV1EHdtwfWbVsWHk/XyF6wrPzjafRrWNYOLrW94NRZsv74y1hHm/69sGoUhsLBAW30dXIWr0R7Lfquy6fX65k6bRorVqwwnMv16vHB++8TFFT6mC5uy9atTJ48mevXr+Pt7c1rr75Kp06dTNIsWbKEufPmkZiYSGBgIO+MHk3jxo2Nz0+ZOpWNGzcSFxeHlZUVdevU4bXXXiMsLMxsOUeNGsXeffv48Ycf6Ne//z3VddrObaw8doSM3Bzq1fTmvV59CarmcUf5N545xacrltC+dh1+fOJpk+fi09OZuHUjeyMvklegwdfNjU/7PkJdz5p3Xc7bUXfvjHXLpihsbdBeu0728n/RxcWXmd7+1RewDA4otb3g7Hmyps8FwLpVc1Stm6N0dQZAezOe3E3b0Jy7WOnlv0XVsinWYaEo1Cq0N+PI2Vr+eWgVGoJt986ltqf9PhW0WgAcnn8GpaNjqTR5J06Tu21X5RW+kLpLB6ybhaOwUaONvkH2qnXo4hPKzaNQq1B374xVaB0UNjboUlLIWbsJzYVLhgTW1th062h43t4ObcxNclZvQHsjptLLf4uqXSusGzcwfBYxN8lZv+UO29q2WNUp1tZu3mFsa63DG2Id3hCls+Hz0CYkkbd7H5rIq1VWD/VjfbHu1A6FnS3ayCtkz1qA7kZs+dXo0QXrru1Rurmiz8gk/+BRchevgAKNMY3CxRmbJx/DskE9FNbW6G7GkT1tDtqrUZVfh/69sO7QxnB+X75G9vzF6GJull+Hrh2x7tQWpasL+sws8g8fJ3fZKtAY6mDdsS2qjm1RursCoI25Se6q9WhOn6308hvr0aML1q2aobCxQRsVTfayVehultNOjXwRy+DS3yELzp4ja9oc4z7VPbuYPK9LzyB97LeVW3ghyiGdceKB69mzJzNnzkSj0XD27Fmef/55UlNTWbBgwQMrU40aNUptUygUrF279gGURog7Y92iKapmjcleuxFdciqq1s2xe+IxMv6aDfkF5jMpldgNfhR9dg7ZK1ejy8hE6eCAPj/fmERhbYU2PoH8U2ewe7RfpZd79ty5/L1gAWM/+wxfX1+mz5zJyDffZNmiRdjZ2ZnNc/LUKT7+7DNGvPwynTp0YNuOHXz4ySdMnzLF+OM7JyeHWrVq0a9vX97/6COz+1m/Zo3J/3v37eOrb76hc4mOgHuh6tYRVef2ZM9dhDY+AXXPrti//hLpX/4AeXlm82RNmw2WRZdmhZ0tDh+9TcGxkyb7tW7Xiuw5C9HFxmHh543tkCfQ5+SSv313hct9L2ysVFxKus7ac3sZ12vEAylDeaxbNkPVPJzs1RvQJaegatMCu6cGkjFlZvnnxlMD0Wdnk718Nbr0DJSOpueGha8P+UeOo42NA6UCdYe2hv1OnWXy46syqLp3RtWlA9mzFxiOp17dsB81gvSx35V9PE2eBZYWxv8VdrY4fPouBUeLOkpthz6BRU1Psmb+jT4tHesWTbB/awTpX3yPPjXtrso4e84c/v77b8aOGWM4l2fMYOTrr7Ns6dKyz+WTJ/n4448Z8cordOrUiW3btvHhRx8x/a+/jOfyxo0bmfDTT3z4wQc0bNiQ5cuX8+aoUSxZvNh4vfbz9eX9997Dy8uLvLw8/l6wgJGvv87KFStK3Vz7e8ECqOCwmDn7drPgwD7G9H8UX1c3ZuzewRvzZ7Pk1TexU6nKzRubmspvmzfQyMev1HPpOTm8NPsvmvgF8OuTQ3Gxs+N6SjIOKnWFymuOqlM7VB1ak71wOdqERNRdO2L/ynDSx/8Ceflm82TN+tv0mLK1xeGdkRScPG3cpktLI2fNRmMHjHWzxtg99wwZP/1ZbkffvbJu2ghV44Zkb9yKLjUNVfNw7B7rR8bsBVBQxvkN6PPyDGmKK+yIA8hcsMzkOFG6uWI/sD8FlXgz6hZV+9ao2rQke9k/aBOTUHdqh/3zQ0j/6Q/IN/9ZYKHE7vkh6DOzyfp7Kbr0dJROjuiLfXa2j/XDono1spasRJ+egXXjBti/MIT0XyahT8+o9HpYt2qGqkUTsv9dX9jWtsTu6UFkTJ5Rflv79CBDW7vs38K21tGkrdVlZBhudKSkAmDVIBTbxx8h86+5t+/ouweqvj1Q9epK9pTZaG/GoR7QG/sP3yL9vTGQa769tWrdHPXgR8meNhvtxcsoa3hg+8pwAHLnLwEKz5cx71EQcYGsH35Hn56Bsno19NnZlV+HXl1Rde9E9oz5aOPiUfftgf07r5P+yVdl16FFU9SD+pM9cz7aS1cMdXjecGMyd9FyAHQpqeQsW2XsKLZu3QK7N14i44vxt+3ou6d6dG6PqmMbsv9eZminunXCfsTzpH/7U9nt1Mz5YFHi2vfuGxQcP22SThsbR+ak6UUbdA/mhub9ovh/PBz0YSXDVMUDp1KpqFGjBt7e3nTv3p3BgwezceNGkzQzZ86kbt26qNVq6tSpw59//lnm/rRaLS+88AIBAQHY2NgQEhLCr7/+WirdjBkzqFevHiqVCk9PT15//XXjcyWHqZ46dYrOnTtjY2ODm5sbL7/8MpmZmcbnbw2N/PHHH/H09MTNzY2RI0dSUM6XQIDvvvuO6tWr4+DgwAsvvEBubm6pNHdTd4D169fTtm1bnJ2dcXNzo2/fvkRGFn1xzM/P5/XXX8fT0xO1Wo2/vz/fflt0F0ihUDBp0iR69eqFjY0NAQEBLFmyxOQ1bty4weDBg3FxccHNzY0BAwZw9erVO3p//f39AXj00UdRKBTG/wEmTZpEUFAQ1tbWhISEMHfu3HLrqtVqGT16tLGu77//PvoSkUF6vZ7vv/+ewMBAbGxsaNiwIUuXLi13vyX99NNP1K9fHzs7O3x8fHjttddMPv+SIiMjGTBgANWrV8fe3p5mzZqxefPmu3rNe6Fq2pjcfYfQXIhEl5hEzpqNKKyssK5bp8w81g3qoVCryV7+L9obsejTM9DeiEGXkGhMo7l8lbxd+9BcqPwfIHq9ngWLFvHc8OF07tSJ4KAgvhgzhtzcXNaXaAeKW7BwIS2aNeO5YcPw9/fnuWHDaN6sGX8vWmRM06Z1a14bMaLcjjV3NzeTx46dO2napAneXl4VrpuqUztyN2yh4MRpdLFxZM9diMLaGutmjcvMo8/OQZ+eYXxY1akF+QXkF+s8sQzwo+DkGTRnzqFLTqHg2CkKIi5i6edd4TLfq/1RZ5h2YBU7Lh9/YGUoj6p5Y3L3HERz/hK6hCRy/t2AwsoS63rlnBsNw1DYqMleugrt9RjDuXE9Bl180bmRvWg5BafOoktMQhefSM6aDSidHLGoUb3y69ClPbnrNlNw/BS6mJtkz/7bcDw1Dy8zjz472/R4qhtiOJ6OFB5PVlZYNW5AzvJ/0V66jC4hkdzVG9AlJqNq3/quyqfX61mwYAHPPfccnTt3Jjg4mC8+/9xwLm/YUGa+BQsW0KJ5c5577jnDufzcc4ZzudgNufl//82AAQN45JFHCAgI4J133qF69eombXnPnj1p0aIF3t7eBAUF8fZbb5GVlcXFi6bRWBcuXODv+fMZ89lnd1W/knVdeHAfw9u2p1OdUII8qjO2/2PkFhSw4fTJcvNqdTrGrFzKS+074WVmBMCcfbvwcHRkTP9HqeflTU1nF5oHBOHt6nrP5S2Lqn1rcjfvMBzDN+PJXrAMhbUV1o0blplHn5ODPiPT+LCqHQQFBeSfKPqRqzl7Hs25C4bzIjGJ3HWb0efnY+nnU+l1AFA1bkDuoSNoIq+gS0omZ+NWw/ldp9Zt8+qzc0weJs/l5Jo8ZxXojzY1De31yo8qU7VuQe72XRScOYcuLoHsJf8Yrt+NSkd23mLdpDEKGxuy5i1CGxWNPjUN7bVodDcLo2UtLbGqV5ec9VvQXo1Cl5xC7pYdhpt1LZpWeh0AVM3Dyd1zoFhbu76wra1bdj0aFba1S/4p1tbeMIkK1Fy8bPh8k1PQJaeQt30P+vx8LLw8q6YePbuQ+886Cg4fQ3c9huwpswztbevmZeaxDA5EczGSgn2H0CUmoTkdQf6+Q1gGFnW6q/r1QJecQs7U2WgvXzWkO3PO5LpSaXXo2pHcNRspOHoC3Y1YsqfPM5zf5Xz2lkEBaC5dpuDAEXRJyWjOnCP/wBEs/X2NaTQnTqM5dRZdXAK6uARyV6xGn5eHZaB/pdcBQNWhNbmbtlNw6owhivDvJYZ6hDcqM48+u2Q7FVzYTp0yTajTmqTTZ2VVSR2EKIt0xomHyuXLl1m/fj1WVlbGbdOmTeOTTz7hm2++ISIignHjxvHZZ58Zh7eWpNPp8Pb2ZvHixZw9e5YxY8bw8ccfs3jxYmOaSZMmMXLkSF5++WVOnTrFqlWrCA4uPZQHIDs7m549e+Li4sKhQ4dYsmQJmzdvNum8A9i2bRuRkZFs27aN2bNnM2vWLGbNmlVmXRcvXszYsWP55ptvOHz4MJ6enqU62u627gBZWVmMHj2aQ4cOsWXLFpRKJY8++qhxwYnffvuNVatWsXjxYs6fP8+8efNMOsQAPvvsMwYOHMiJEycYMmQITz31FBEREcb3o1OnTtjb27Nz5052796Nvb09PXv2JL/wLmZ57++hQ4cAQydjbGys8f8VK1YwatQo3nnnHU6fPs0rr7zCc889x7Zt28qs64QJE5gxYwbTp09n9+7dJCcns2LFCpM0n376KTNnzmTSpEmcOXOGt99+myFDhrBjx44y91uSUqnkt99+4/Tp08yePZutW7fy/vvvl5k+MzOT3r17s3nzZo4dO0aPHj3o168fUVGVPwThFoWTI0p7OzRXrhVt1GrRRF8v98uqZXAg2phYbLp1wuH1l7B/fgiqls0qHDVyp27ExJCUlETLFi2M26ytrQlv3JiTp06Vme/k6dO0KJYHoGWLFuXmuZ2kpCR279nDgH4Vj/5TurmidHJEE3GhaKNGi+bSZSwDSkfDlMW6VXPyjxw3iSjQRF7FKiQYpYe74bW8PLEM8qfg9LkKl/u/SOHshNLeHs2Vq0UbtVo0Udex8Cp72J9lrSC0N2Kx6dEZh1GvYP/Ss6haNy/33FAURkTpzdxYqQil+63j6XzRRo0WzcXIu/oBZN2mBfmHjxVF2iiVKCwsSkXx6QsKzA5FLM+NGzcM53Kxod/W1taEh4dz8mTZHVQnT52iRYnh4i1btTLmKSgo4Ny5cyZtBBSe72Xst6CggBUrVmBvb0/t2rWN23Nzc/nk00957/33cXd3v6v6FReTmkJSZiYtA4u+N1hbWhLu58/J6+UP752+azvOdnYMaNzE7PO7LpynrqcXHy5bRI+fxjNk2p+sPHr4nstaFqWrC0pHh6LhjGA4LyKvmvzwvh3rFk3IP3aq7KgnhQKrRvVRWFujuVb510CFowNKOzs0164XbdTq0FyPwcKz9CgHE1ZWODw/BIcXhmLbvxfKauUcE0olVnVqUXCm8ttZpYuz4bO4eLloo1aL5so1LH3L7sC0qlsbbdR1bPr3wvHj0TiMGoGqQ9uiNkqpRGGhNA4vvEWv0VRJx6ixrb1c4ntI1HUsvG/T1l6PwaZnFxxGjcD+pWHlt7UKBVahISisrKpkuK2ymjtKZyc0p4oNu9Ro0Jy7gGWtsofcay5cwtLfF4vCNllZzR2rhmEUHC/6XmIV3gDN5WvYvvEyjn/8gP3Xn2DdsW3l18HdzVCH4serRoPm/CUsg8pu2zWXIrH088Gi8HuK0t0Nq/qhFJw8Yz6DQoFV83DD+V0FQ4aVbi4oHR3RnC92U0WrRXPpCpYBd9NONSX/2MlS7ZTS3R3Hzz/E4dN3sR36JEq3BzdFkvj/SYapigdu9erV2Nvbo9VqjZFhP/30k/H5r776igkTJvDYY48BEBAQwNmzZ5kyZQrDhg0rtT8rKyu++OIL4/8BAQHs3buXxYsX88QTTwDw9ddf88477zBq1ChjumbNmpkt3/z588nJyWHOnDnGYTYTJ06kX79+jB8/nurVDREQLi4uTJw4EQsLC+rUqUOfPn3YsmULL730ktn9/vLLLzz//PO8+OKLxjJt3rzZJDrubusOMHDgQJP/p0+fjoeHB2fPniUsLIyoqChq1apF27ZtUSgU+PmV7hh4/PHHjeX66quv2LRpE7///jt//vknCxcuRKlU8tdffxnDnWfOnImzszPbt2+ne/fu5b6/1apVA8DZ2dlkOPCPP/7I8OHDee211wAYPXo0+/fv58cffyw1d1Dx9/Cjjz4y1nny5MlsKBaBkZWVxU8//cTWrVtp1aoVAIGBgezevZspU6bQocT8YWV56623jH8HBATw1Vdf8eqrr5YZpdiwYUMaNiyKLPj6669ZsWIFq1atKtWJW1mU9oZjs+RQB31WNgqn0nPeGPM5O6F08jHMo7HkHyxcnVF36wRKJXl7D1RJWYtLSjIML3ErEfXh5upK7M2yhzskJSWZzXNrf/di9dq12NnZmcw7d68Ujg4A6DJMIyh16RkoXe/sy56Fnw8WXp5kzzeNTM3btA2FjRqHz94zzBGnUJD773oKjhyvcLn/i5R2toDhXCjutueGS+G5cfocWYtWYOHqgrp7Z8O5sXu/2TzqLh3QRF9Hl1C5w6YUhfNW6UoMK7ur48nf13A8zS2KHiUvD03kFdR9upF1M84QPdcsHAt/37uO1Kiqczk1NRWtVotriTSubm4kljjfd+3axceffEJubi7u7u78MXGiyeI6E376iQYNGpSaO/JuJRVGRruWGHrramdHbFpqmflORF9j1fGjzHvp1TLT3EhJYfmRQzzdohXPtWnPmRvXmbBxLVaWlvRp0KhC5S5O4WgPmGmjMjKNc73djoWPFxaeNchetKLUc8oa1XF482XDsPv8fLJm/o0urvz5z+6F8fwuee3LzjHW0Rxdcio5G7eiTUxGYW2NqnF97J94hMz5S9CZGZ5tFRSAQqUi/2zld8YpHAo/ixIR97rMTJTlLA6ldHVBGRhA/olTZM1agNLdFZv+vcBCSd7WnZCfj+ZaNOpO7ciKT0CfmYVVwzAsvL3QVeBaWWZ5Cs+HktFF+qxsYxtmNp+zM0p/R8PcqIuWG9raHl1KtbXKau7YD3/KeExlL111+zlx74GicF46XVq6yXZdWoZxnjRzCvYfJsfBAfsx7wEKFJYW5G3eTt6/Rd9LldWqoerSgbz1m8latQ6LIH9snh2MXqOhoIzryj3VwenWNaNEHdIzULqVU4eDR8mxt8f+w7eK6rBtF3nrNpmkU3p54vDxO2BlCXl5ZP3xF7rYyh+iqnAo47tUZiZKF+c72oeFrzcWNWuQXTjM9hbNtWi0fy9Bm5CI0sHeMPz1zRFkjP+lVJTsf4VCIXFYDxvpjBMPXKdOnZg0aRLZ2dn89ddfXLhwgTfeeAOAhIQEoqOjeeGFF0w6tTQaDU5OTmXuc/Lkyfz1119cu3aNnJwc8vPzjauUxsfHExMTQ5cuXcrMX1xERAQNGzY0me+mTZs26HQ6zp8/b+yMq1evHhbF5ifw9PTkVDlROhEREYwYYTq3UqtWrYyRYPda98jISD777DP2799PYmKiMSIuKiqKsLAwhg8fTrdu3QgJCaFnz5707duX7t27lypHyf9vrVZ75MgRLl26hEPhBfKW3NxcIiMj7/r9Lf5+vPzyyybb2rRpY3aIMUBaWhqxsbEmZbW0tKRp06bGoapnz54lNze31IIb+fn5JhN/3862bdsYN24cZ8+eJT09HY1GQ25uLllZWWbnQcrKyuKLL75g9erVxMTEoNFoyMnJKTcyLi8vj7wS8z6pypl3yCo0BJseRe9x1tJ/DH+UnMBfYWabyfMK9NnZ5BRO/q+Li0dhb4eqedMq6Yxbt34948aPN/7/y4QJhcUwvQOu1+tvP7fFveQpx6rVq+nZvXu573tZrJo1xvapoo7wzD9n3CqUacK7KJ916+Zob8SWmkjfqklDrJuHkz3rb7SxcVh418RmYH90aekUHDhy12X/r7GqVwebXl2N/2ctXmn4o9RpoDCzzfR5fVY2Oes2Gc6Nm4XnRsumZjvj1D06Y+HhTmbxzq57ZNU8HNunHzf+n3lrsYUKHU8tDMdTiUnCs2f+je2zT+I0/nP0Wi3a6BsUHDqGhW/5Q7XX37zBdxdOoWi8Db1ezy8//1xYJDPn5e0Kdwfn8p20EU2bNuXv+fNJTU1lxcqVfPTxx8yaORNXV1d27NjB4cOHmT9v3u1KU8r6Uyf4du2/xv9/fvIZQ5koWabS227JystjzMplfNynP8625ufPA9Dp9dStWZPXOhuuWyE1PLmcGM+yIwcr1BlnFd4Q20FFC1Vk/jW3qNDFKRR3vBCMdYumaGNvoo2+Ueo5XUIiGRP+QGGjxqpBPWyfGkjmn39VuEPOKqQWNl2KOlOz/imc99NckcuphvZmHNqbRYufZMfEYv/M41g3DCN3x57SrxtWB83VqFKd+vfCqmEYto/0Nf6fOaeMOZIVCsqthEKBPiuLnBWrQa9HGxOL0sEBVbtWhs44IHvJSmwH9sfpo9HotTq0MbEUnDhVKcM7rerVwaZ30ferLDOdskXKq4ehwy5nbfG21h5VK9O2VpeUTOZfc1GoVViG1MKmX0+y5i2qcIecVevm2D7/jPH/zB8nmi/zbRoyy7q1UQ/oRc6sv9FcuoJFDQ9shgxG90gaeSsL55xWKtBevkZu4XVJey0aC6+aqLp0qFBnnFWLptg++2RRHX6dbLYKtzu/LUOCUfftQc68xWguX8XCoxo2Tw1E17cHeauLOhV1N+PJ+OI7FDY2WDVphO0LQ8gc/1uFO+Sswhti+8QjRfUoXGyhtNtdv4tYt2iKNuYm2qjrJts154pGLuhi48i8GoXjJ+9i3SycPDNtgBBVQTrjxANnZ2dnHML422+/0alTJ7744gu++uorY0fStGnTSg1JK97xVdzixYt5++23mTBhAq1atcLBwYEffviBAwcMHQs2NjZ3Vb7yfuAX3158aO2t526V/17cS90B+vXrh4+PD9OmTaNmzZrodDrCwsKMQ0jDw8O5cuUK69atY/PmzTzxxBN07dr1tvOo3aqrTqejSZMmzJ8/v1SaatWqoVTe+12Xe+qQKcet93DNmjV4lZgD7E47XK5du0bv3r0ZMWIEX331Fa6uruzevZsXXnihzDkB33vvPTZs2MCPP/5IcHAwNjY2DBo0yPgZmPPtt9+aRHQCjB07lrdtnM2mL7h0GW3xiXILJ9RW2NmZ/FhQ2NqW++NBn5mFXqcz+XKmS0oxRNoplVCBY9ic9u3aEVavnvH//ML3MDEpyWTYWHJKSqlImOLc3NxKRcHdLk95jh0/zrVr1/j266/vKX/BybNkFO/kKFyEQenogLZYNJPSwf7OJs22ssK6SUNyVpeeN8/m0b7kbtxGQeG8X7qYmygLo7akMw4KLkaanhuF7aXC3tYkYkNhZ1Pu/DD6rCz0Wq3puZGYjNLevtS5oe7eCataQWTOXYS+xB38e6rDiTNkXCl+PBnqoHRyvPfjqVkjcv5dX+opXWISmT/9AdbWKNQq9OkZ2L449LY/cNu5V6eeozOOX31MVmamsX0zey67uZW5n9udy87OzlhYWJRKk5KcXCqizsbGBh8fH3x8fKhfvz6PPvYY//zzD8899xyHDx/m+vXrdOpsuoLm+x98wOIlS5jYvS9laVe7DvW8iuZkzC+c5D8pKxP3YjemUrKzcLUzH411IyWZ2LRU3ln0t3GbrvDYavXN5yx59U28XV1xt7cnwL2aSV5/92psO1exlQoLzkSQUbxjv3gbVeyYVdrboc+4g3mTrKywblSfnA1bzD+v1aJLMhxD2usxWPh4o2rXmpxbN47uUcHlqyadaMbz287WJDpOYWtz19Et2pvxZqNtFA72WPp4k7267LkP70ZBxAUyoqcUbbj1Wdjbm34WdnboM8tpozIy0ZVoo7QJiSgdHcBCCVoduuQUMqfNBisrw/mdkYntkwPRJadWvB4XI9H+ZaatLVFuhd29fA9JKt3W6nTGBRy0sXFY1qyBdbNwctdVbE7egqMnyChctRUo+jycnNCmFkWWKR0d0JeIlitOPag/+XsOkL/d0JGjux4DKhW2zw8h7591oNcb5vWLMV2RVRsTi1U5c8neUR1OnCLji6tm6uCItliZb3fNUD/Sl/x9B8nftc9QhxuxoLLG9tmnyFuzsegz0mqN0dPaa9FYBPih6tqBnArejCo4E0HGj2baKQd702ufvR36cuZuNrKywrpxA3LW38Exkl+ANvZm+cPVhahk0hknHjpjx46lV69evPrqq9SsWRMvLy8uX77MM888c/vMGIaptG7d2jjcETBZwMDBwQF/f3+2bNlS5vDH4kJDQ5k9e7ZJFNSePXtQKpUmc9Hcrbp167J//36effZZ47b9+4vuilWvXv2u656UlERERARTpkyhXbt2AOzeXXp1RUdHRwYPHszgwYMZNGgQPXv2JDk52fjjx1y5bkWShYeHs2jRIjw8PHAsY9jB7d5fKysrtMVWLAPD+7F7926T1927dy9165qf9NfJyQlPT0/2799P+/btAUPU4JEjRwgPN0xoHhoaikqlIioq6o6HpJZ0+PBhNBoNEyZMMHY0Fp9/0Jxdu3YxfPhwHn30UcAwh1zJBS5K+uijjxg9erTJNpVKRe4vk8xnyC9Al286lEaXmYWlvy/5tyY9Viqx9PEmt5wVNjU3YrAONZ3EXunibBgSUMkdcWDofC8eTajX63Fzc+PAwYPUCQkBDPM9HT12jDdGjixzPw3Cwjhw8CDPPPWUcduBAwdoUL/+PZXrn1WrqFunDrVr3X7Cb7Py8tAlmEY26tLSsaxTu2iybwsLLIMDyfnn9qsyWzdpCJaWFBw6WvpJK6vSd7Z1uvs2z99DL78AXX6qySZdZiaWAX7kxxU7N3y9yd22q8zdaKJvlFrgQenmUurcUHfvjFVIMFnzFpf7Q+2ulHU81a1dFIVkYYFlrSBDVMxtWDdtZDieyuuszc9Hn5+PwtYGq9A65Cz/t+y0gJ2lJXaWljj7+ZGRnl50Lh84YHouHz1qjHY3p0H9+hw4cIBnnn7auO3A/v00aNAAMFwv6tSpw4EDB0yuKQcOHqRDYdtfFr1eb+zwHzZsGAMGDDB5/smnnmL022/Ts1cv2L637LqqVCYrpOr1etzs7Tlw+RIhNQwRRgVaDUevXeX1zt3M7sPP3Z0FL5u2aZO2byE7P493uvemeuGwsgY+vlxLMh0iHJWURA0n53Lrelt5+ejyTDtYdekZWNY2zI0IGI6pIH+zNwFKsm4UBpYWdz48XgEKy7JvJN6xggJ0aaY3wnRZWVj6epN/a+EhpRJL75rk3mWkkbKau9nhm9b16qDPyTGdk7Ui8vPRJZvenNOlZxjmcL0VWWShxDLAj5wNZXciaK5FY90wrDACvrAO7q6G4ezaEtfvggL0BQUo1GqsagXdWefEbetRXltbuGrurbZ2azlt7fWY0m2ta+m21hxFOTen71huHrpc04hNXWoalmF1iyLTLSywrFObnBJDHU1YW5dejVOnM4mo01yIxMLTdIEfZY3qFR9um5uHrsQKqbrUNCxDQ4oiwiwssAwJJmfpqrL3Y23u+4X+tlGBKEBRIijhnphtp9KxDAk2baeCA8j59/ad49aN6hvaqcPHbv/aFhZYVPcwnfPwP0Z5+zh1cZ9JZ5x46HTs2JF69eoxbtw4Jk6cyOeff86bb76Jo6MjvXr1Ii8vj8OHD5OSklKq8wIgODiYOXPmsGHDBgICApg7dy6HDh0iIKBowtLPP/+cESNG4OHhQa9evcjIyGDPnj1mfzA888wzjB07lmHDhvH555+TkJDAG2+8wdChQ41DVO/FqFGjGDZsGE2bNqVt27bMnz+fM2fOEBgYaFLOu6n7rdVNp06diqenJ1FRUXz44YcmaX7++Wc8PT1p1KgRSqWSJUuWUKNGDZN5dZYsWWJSroMHDzJ9+nTj+/HDDz8wYMAAvvzyS7y9vYmKimL58uW89957eHt73/b9vdVZ16ZNG1QqFS4uLrz33ns88cQThIeH06VLF/7991+WL19e7iqko0aN4rvvvqNWrVrUrVuXn376idTUVOPzDg4OvPvuu7z99tvodDratm1Leno6e/fuxd7evsx594oLCgpCo9Hw+++/069fP/bs2cPkyZPLzRMcHMzy5cvp168fCoWCzz777LZRkiqVymy03t1MA593+BjqVs3RpaSiS0lF1aoZ+oIC8iOK5rix6dMdXUYWeTsNd27zj51EFd4IddeO5B85jtLFGVWrZoZFA26xsjKJFlA6OaL0qGZYaS7jDqJyyqFQKHhq8GBmzp6Nb2FEy8zZs1Gr1fQsNnx6zBdf4FGtGq8XdrI/OXgwL7/6KrPmzKFj+/Zs37mTA4cOMX1KUbRBdnY20deLhiXciInh/IULODk6msxXmJmVxeatW3nrzTcrVJeS8rbtQt2jM7qERLTxCah7dEGfn0/+oaIvhbbPPokuNY3cVetM8lq3akbBiTNmowk0pyMM+01OQRcbh4WPF6rO7cnfd6hSy383bKxUeDsVRfPUdHSnlrs36blZxGWmPLBy3ZJ38Bjq1s3RJaeiS0lB1boF+gIN+cUmt7bp1xNdRiZ5hZ3X+UdPoGraGHX3TuQfPobSxQVV6+Ymn5+6R2es69Uha+kqQ0fWrfmr8vJLTZpe4Tps2Ym6Z1d08YXHU8+uhuPpYFGHre3wp9ClppO7co1JXuvWLSg4ftrs8WQZGgIo0MXFo/Rwx+axfmjj4snfe/CuyqdQKHjqqaeYOXNm0bk8a5bhXO7Rw5huzNixhnO5cP7MJ598kpdfeYVZs2fTsUMHtu/YwYGDB5n+11/GPM88/TRjxo6lbmgoDerXZ/mKFdy8edM4X2hOTg4zZsygffv2uLu7k5aWxpKlS4mPj6dr4ZQJ7u7uZhdtqFGjBj4+PpSeJaz8uj7ZvBWz9uzCx9UNX1c3Zu7ZidrKih5hDYzpxv6zDA8HR0Z27obK0oogD9PvDA5qNYDJ9qdbtOaFWdOYuXsHXUPDOBNzg5XHDvNx7/5Utryde1F36YAuIQltYhLqLh3Q5xeQf6xo9WbbpwaiS0snd63pnFHWzZtQcDrCbPSZulc3Cs5dQJ+aBioV1o3rYxkUQNa0shefqlA9jp1E3TwcXWoautQ0VM3CDef3uaJJ3226d0aXlUXeHsMoCVWLpoahqimpKFTWqBrVx6Kam9kOeuvQOuSfPX/Hw3fvqQ57D6Du2BZdUhLapGTUHdsart/Hi1aptR00AF16BrkbtxryHDiMqlUzbPr2JG/vQZTubqg7tiWv2Ll7a8EBXWISSjdXbHp2RZuYZHqNr8x6HDyKuk1zdCmGVU+L2toIY5pSbe2RW21tZ0Nb6+qMqnXhYjOFVB3bGlZTTc9AYW2NVb0QLPx8yFtYTudYReqxfgvq/r3QxcWjvRmPun8vQ3tb7L21fWU4upRU45BTzbGTqHp1RXstCm3kFZTVPVAP6k/B0ZPGYydv/Wbsx3yAqn8vCg4cxiLQH1WndmTPuPvh87etw+btqPt0RxeXYLhm9O5uOL8PFC0IY/vCUEMdCm++aE6cRtW9E9qo62gvX0Pp4Y76kT4UHD9trIP6sX4UnDqLPjkF1CqsmzfBMqQWWT+bn0e5wvXYsRd1146GdiohCXXXjoZ6HD1eVI+nBxnaqTWmNxKsWzal4FQZ7VT/XhScOYc+JRWFvR3q7p1QqFXkm7sJKkQVkc448VAaPXo0zz33HB988AEvvvgitra2/PDDD7z//vvY2dlRv359k0n1ixsxYgTHjx9n8ODBxh8Hr732GuvWFf3YHTZsGLm5ufz888+8++67uLu7M2jQILP7s7W1ZcOGDYwaNYpmzZpha2vLwIEDTRaZuBeDBw8mMjKSDz74gNzcXAYOHMirr75qsgDB3dZdqVSycOFC3nzzTcLCwggJCeG3336jY7EJ6e3t7Rk/fjwXL17EwsKCZs2asXbtWpPhpV988QULFy7ktddeo0aNGsyfP5/Q0FDj+7Fz504++OADHnvsMTIyMvDy8qJLly7GSLnbvb8TJkxg9OjRTJs2DS8vL65evcojjzzCr7/+yg8//MCbb75JQEAAM2fONCl7Se+88w6xsbEMHz4cpVLJ888/z6OPPkpaWtHPqq+++goPDw++/fZbLl++jLOzM+Hh4Xz88cd39Dk1atSIn376ifHjx/PRRx/Rvn17vv32W5MIvpJ+/vlnnn/+eVq3bo27uzsffPAB6emVFDFTjvwDh1FYWmLTvTMKtQptzE2yFq8wWT1K6ehoMs+GPiOTrMUrUHdpj/3zQ9BlZJJ/+Dh5xb6sWdSojv3TRZ/frfl68k+dJWft7SMobmfY0KHk5eXx3Q8/kJGRQVi9ekz89VeTCLqbN2+iLBb51bBBA7756ismTZnC5KlT8fby4tuvvyYsLMyY5mxEBCOKRdf9XDj/YN/evfl8zBjj9o2bNqHX6006/ypD3qbtKKyssBn8KApbG7RXo8icOA2KzQ2odHEu9QNP6eGOZXAgmb9PNbvf7MUrsenbA9snH0Nhb48uLZ383fsrPFSnIupU82Pio0U3CN5sa5jvbG3EPr7ZWjU/wO9G/v5DKKwssenZGYVabTg3Fi4rcW44mHwW+oxMshYuQ921I/YvPms4Nw4dI69Yp6eqSSMA7Ic8YfJ62f+up+BUxYYVlpS3cSsKaytsnhpoOJ6uRJH52xTT48nVxczxVA3LWoFFcwiVoLBRo36kD0pnZ/TZ2RQcO0nOyrX3FBk77NlnDefy+PFF5/Lvv5d/LjdsyDfffMOkSZOYPHky3t7efDtunMm53L17d9LS0vjrr79ITEwkKCiIX3/5BU9PQ1SaUqnk6tWrrF6zhtTUVJycnAgNDWXa1KkEBZW9+mFFPNuqLXkFBXy/fjUZObnU8/Li96efNYmgi0tLM6nrnQit6cX3jz/Fn1s3MX3XDmo6OzO6Wy961m94+8x3KW/bLkMbNbA/Chs12qjrZE6dBXlFUVtKZ+fSx5S7G5aB/mROmWl2vwoHe+yeHoTC0QF9Ti7a2Diyps1GcyHSbPqKyj983HDt69wOhUqF9mY8WStWQ0Hx89ue4hc/hcoamy4dDFM55OejTUgga+k/aG9FdBWy9PVG6ehQJauoFpe3c6/hs+jfG4WNDdrrN8icOa9o5WMMCy6ZtFFp6WTOmI9Nn+44vDkCXXo6eXsOGm+2ASjUKtTdO6N0ckSfnUPBmQhyNm6rksh3gPx9hwyfRc8uhrb2RixZC5aatrVOjiXa2gyyFixF3a0j9i/damuPmrS1SjtbbPv3QmFvhz4vH118AtkLl1detGIJeas3GNrb4U+jsLVFG3mFzPG/QrHoM6W7q0k9cleuRa8H9eMDULo4o0/PpODYSXKXrDSm0V6+RtYvk7AZ/CjqR/qgS0gkZ95iCu7y5scd1WHdZsMxNeQJFHa2aC9fNUxJkFv2NSN39Qb0GIarKl2c0GdkUnDiNLnLiyKwFY4O2L04FIWTo+H8vh5D1s9/ojl7nqqQt3WnoR6D+hvOjWvXyZw807SdMvddqlphOzVphtn9Kp2csBs62DCMOjMLzbVoMn6ZjL5wKLQQ94NCr6/C2zxCiP85CoWCFStW8MgjjzzoogggbfwvD7oIFeb0wVtkpDz46KiKcHBxIXXkew+6GBXm/McPtPljxO0TPsT2jJxM2riK3Qx5GDh9PJrUEaUjnP/XOE/+iYz7cLOhKjk4OpJWCQtvPGhOQweT+s6nD7oYFeI84WvSypqe4X+I01uvkvrxlw+6GBXmPG4Mad9MeNDFqBCnT94hdcgrD7oYFeY8bwqpL5Q95P9/gfP030l9+85uhj/MnH8e96CLcE9+2fnwXufeaj/4QRfhgZD1bYUQQgghhBBCCCGEuE+kM04IIYQQQgghhBBCiPtE5owTQpiQketCCCGEEEII8d9xt3OYiqonkXFCCCGEEEIIIYQQ4n/Cn3/+SUBAAGq1miZNmrBrV+nVsG/Zvn07CoWi1OPcOdPFeZYtW0ZoaCgqlYrQ0FBWrFhRpXWQzjghhBBCCCGEEEII8dBbtGgRb731Fp988gnHjh2jXbt29OrVi6ioqHLznT9/ntjYWOOjVq1axuf27dvH4MGDGTp0KCdOnGDo0KE88cQTHDhwoMrqIZ1xQgghhBBCCCGEEP9R5iLDHpbH3frpp5944YUXePHFF6lbty6//PILPj4+TJpU/mrcHh4e1KhRw/iwsLAwPvfLL7/QrVs3PvroI+rUqcNHH31Ely5d+OWXX+66fHdKOuOEEEIIIYQQQgghxEMtPz+fI0eO0L17d5Pt3bt3Z+/eveXmbdy4MZ6ennTp0oVt27aZPLdv375S++zRo8dt91kRsoCDEEIIIYQQQgghhLjv8vLyyMvLM9mmUqlQqVSl0iYmJqLVaqlevbrJ9urVq3Pz5k2z+/f09GTq1Kk0adKEvLw85s6dS5cuXdi+fTvt27cH4ObNm3e1z8ognXFCCCGEEEIIIYQQ/1EP82qq3377LV988YXJtrFjx/L555+Xmafk8Fa9Xl/mkNeQkBBCQkKM/7dq1Yro6Gh+/PFHY2fc3e6zMkhnnBBCCCGEEEIIIYS47z766CNGjx5tss1cVByAu7s7FhYWpSLW4uPjS0W2ladly5bMmzfP+H+NGjUqvM+7JXPGCSGEEEIIIYQQQoj7TqVS4ejoaPIoqzPO2tqaJk2asGnTJpPtmzZtonXr1nf8mseOHcPT09P4f6tWrUrtc+PGjXe1z7slkXFCCCGEEEIIIYQQ/1FVOdzyfhs9ejRDhw6ladOmtGrViqlTpxIVFcWIESMAQ6TdjRs3mDNnDmBYKdXf35969eqRn5/PvHnzWLZsGcuWLTPuc9SoUbRv357x48czYMAA/vnnHzZv3szu3burrB7SGSeEEEIIIYQQQgghHnqDBw8mKSmJL7/8ktjYWMLCwli7di1+fn4AxMbGEhUVZUyfn5/Pu+++y40bN7CxsaFevXqsWbOG3r17G9O0bt2ahQsX8umnn/LZZ58RFBTEokWLaNGiRZXVQzrjhBBCCCGEEEIIIcT/hNdee43XXnvN7HOzZs0y+f/999/n/fffv+0+Bw0axKBBgyqjeHdEOuOEEEIIIYQQQggh/qOUslzAQ0c+ESGEEEIIIYQQQggh7hPpjBNCCCGEEEIIIYQQ4j6RYapCCCGEEEIIIYQQ/1H/pdVU/yskMk4IIYQQQgghhBBCiPtEOuOEEEIIIYQQQgghhLhPFHq9Xv+gCyGEEEIIIYQQQgghKt+0/f886CKU6aWWAx50ER4ImTNOCCEeYnMOrX3QRaiwZ5v15lzclQddjAqpUz2AJ+eNedDFqLCFQ74kbdxPD7oYFeL08Wja/DHiQRejwvaMnMzQBV886GJU2NynxnImNvJBF6NC6nkG8ffRDQ+6GBX2dHgPlp3Y+qCLUSEDG3ZmZ+TRB12MCmsfFM6Xm2Y86GJU2Jhuz/P6igkPuhgVMvHRdxizftqDLkaFfdnzJT5Y8+eDLkaFjO/z2n/mu5QQlUGGqQohhBBCCCGEEEIIcZ9IZJwQQgghhBBCCCHEf5QCWU31YSORcUIIIYQQQgghhBBC3CfSGSeEEEIIIYQQQgghxH0iw1SFEEIIIYQQQggh/qMUChmm+rCRyDghhBBCCCGEEEIIIe4T6YwTQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9RShmm+tCRyDghhBBCCCGEEEIIIe4T6YwTQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9Rsprqw0ci44QQQgghhBBCCCGEuE+kM04IIYQQQgghhBBCiPtEhqkKIYQQQgghhBBC/EcpkWGqDxuJjBNCCCGEEEIIIYQQ4j6RzjghhBBCCCGEEEIIIe4TGaYqhBBCCCGEEEII8R8lq6k+fCQyToj/UVevXkWhUHD8+PEq2b9CoWDlypV3ladjx4689dZbd5x+1qxZODs7l5vm3LlztGzZErVaTaNGje6qPPfqbutR1Z+FEEIIIYQQQoj/DomME+IeDB8+nNTU1LvurKpMPj4+xMbG4u7uDsD27dvp1KkTKSkpt+3g+l8yduxY7OzsOH/+PPb29g+6OGaV/CwelMObdrN/7TYyU9Op5lWDbkMewbdO0G3zRV+4zNyv/6Cadw1eGveecfu5QyfZs2oTKXGJ6LQ6XKq707J3R+q3bVaV1WDtin9ZsWApKcnJ+Pr78cIbI6jXMMxs2uTEJGb+OY1L5y8Sez2GvgMH8OKbI0zSbPx3Hds2bOba5WsABIUEM/Sl56gdGlJldehWuxn9QtvibGPP9dQE5hxex7mEa2Wmb+PfgP712lLDwZXsgjxOxFxk3pENZObnlErbyi+MUe2e4FB0BBN2LKiyOtyiatcK60b1UajVaGNiydmwFV1i0m0yqVB3bINVSDAKtRpdahq5W3aiibxieLpVMyxDamHh5opeo0F7PYbcbbvQJadUeX3K0tAzmKcbd6eOhy/uds58uHYSu66ceGDlKalLcFP61G2Nk40DN9LimXd0AxcSospM39qvPn3qtqa6gxs5BbmcjL3EgmObjMeUl2M1BjboiL9LTarZOzPv6Ho2nD9Q5fVYt3I1/yxcRkpSMj4Bfjz/+suENijj/E5KZvaf04i8cInY6zH0fqw/L7zxSpn73r1lBz99NZ7mbVry4TdjqqoKZh3auIu9q7eQkZqOh3cNejw7EL87aH+jzl9m1pe/4eHjyYjvPrgPJS2yf8MOdq3aREZqGh7envQZ/jgBdWuZTXv13CXWz19Bwo04CvLyca7mSvOu7Wjbt4tJupysbDYu+IezB4+Tk5WNi4c7vYcOJCTc/GdcUdtWb2TDstWkJadS08+bwS8/S+2wOmbTHt1zkO1rNhF9+RqaAg01/bzp98xAwpo0NKbZs2kHs36eXCrvnytnY2VtXSV1ALiw8yhntxwkJy0TZ093mgzsgkewj9m0cRei2Pxb6ba/76cv4lTDDQCdVsuZjfu5fOA02akZOFZ3pfGAjtQMDayyOgC0C2hIl1rNcFLbEZuexLJT24hMumE27ZDwHrT0K31cxKYn8s2W2QC09q9Pc59Qajoavl9Fpcbx79ndXEu5WWV1aOZTl7YBDbFX2ZCQmcK6c/vLfT0LhZKOweE0rBmMvcqW9NwsdkQe49iNCwA08Q6hUc3aeDi4ABCTlsjmi4e4kZZQZXUAaOlXjw6BjXFQ2RKXmcy/Z/ZwNSW27HoolXSt1YzGNWvjoLIlLTeTrZeOcPj6OWMataU1PUJaEFYjEBsrFSk5Gaw+u4fz5VyLKqKyv0s186nLI2HtqeHgioXSgpvpSayJ2PtQXevF/y/SGSfE/ygLCwtq1KjxoItR5SIjI+nTpw9+fn4Puihlehg+i7P7j7Fp3kp6Dh+ET+0Ajm7dy8IfpvLK+A9xcncpM19udg6rJv9NQL1aZKZlmDxnY2dLm/7dcK9ZHQtLCy4eO8O/Uxdi6+hAUAPzP3YqateWHUz/fQqvjB5J3bB6bFi1li/f/5SJc6ZSrbpHqfQFBQU4Ojnx+NCnWLVkhdl9njp2knZdOvLSqFCsra1ZvmAJn7/7Mb/PnoJbtcrvQG3lF8awJr2Yfmg15+Oj6FqrGR92HsI7/04kKTutVPqQar6MbP0Yc46s48j187jaOvJii3683HIAP+1caJLW3c6JIeE9iIi7WunlNse6ZTNUzcPJXr0BXXIKqjYtsHtqIBlTZkJ+gflMSiV2Tw1En51N9vLV6NIzUDo6oM/PNyax8PUh/8hxtLFxoFSg7tDWsN+ps6BAc1/qVpKNlYpLSddZe24v43qNuH2G+6iFbz2GhPdk1uE1XEyMplNwE97r8Awfrv2DpOz0Uulru/vwSstHmH9sA8duXMDFxoHnmvXlheb9+HX3YgCsLa2Iz0zlYNRZngnvcV/qsXvrDmZOnMpLb71G3fqhbFi1jq/fH8OvsyebPb81+QU4OjsxcMiTrC7j/L4l/mYcsyb9RWiDelVV/DKd3neU9XOW0+f5x/EJCeTI5j3M/24SI3/8GCd31zLz5WbnsPLPuQSG1S7V/la1k3sPs2bWEvq/+CR+IUEc3LyL2eP+4K2fx+BspszWKhWtenSkhp8X1ioVV89dYuW0v7FWW9O8azsANBoNM77+DXtHB54e/TKObs6kJaWgUqurpA6Hduxj0dQ5PPPa8wSHhrBj3WZ+G/MdX0z+ETeP0m37hdMRhDauz6PDn8TWzpY9m3Yw8Ysf+Pjnr/ANCjCms7G14aupP5nkrcqOuKtHIjiybAvNBnenWqAXF3cfZ9ufS+j76YvYuTqWma/fZy9hZVNULpW9rfHvE//u4sqhM7R4uieO1d2IjbjCzmkr6D56CK4+1aukHuFeIQxs0IlFx7dwOfkGbf0b8Frrx/h68yxSckof30tPbuOfM7uM/1solHzU5VljJxZALXcfjlw/x5LkGDRaLV1rN2Nk64F8s2U2abmZlV6HsBqB9KrbitVn9xCVEkcznzoMadKTibuXkJabZTbPE426YK+yYeXpnSRnp2NnbYOy2HBAf9eanIy9RHREHBqdlrYBDXm2aS8m7l5KRl52pdcBoIFnMP1C27Ly9E6updykhW8ozzfvy087FpBaxvv2TOMeOKhsWHpyG0nZadhZ22ChLBpEZ6FQ8mKL/mTm5zDv6AbScjNxVtuTpynju0AFVcV3qaz8HFae3smNtAS0Oi3hXiGMaPUIablZnIy9VCX1eJjIMNWHjwxTFaIK7Nixg+bNm6NSqfD09OTDDz9Eoyn6gdmxY0fefPNN3n//fVxdXalRowaff/65yT7OnTtH27ZtUavVhIaGsnnzZpOho8WHRl69epVOnToB4OLigkKhYPjw4QD4+/vzyy+/mOy7UaNGJq938eJF2rdvb3ytTZs23baOWVlZPPvss9jb2+Pp6cmECRNKpcnPz+f999/Hy8sLOzs7WrRowfbt22+771sUCgVHjhzhyy+/RKFQ8Pnnn7N9+3YUCgWpqanGdMePH0ehUHD16lUArl27Rr9+/XBxccHOzo569eqxdu1aY/qzZ8/Su3dv7O3tqV69OkOHDiUxMbHMcsybN4+mTZvi4OBAjRo1ePrpp4mPjzc+b26Y6t2+RkUdWLedRh1b0LhTS9y9qtN96KM4ujlzdMuecvOtm7GEeq3C8Qr2L/WcX2gwdZo1wN2rOi7V3WneswMePp5En79cRbWAfxYvp2ufHnTv2wsff19efHME7tWqsW7larPpq3vW4KVRr9K5Z1fs7GzNpnlnzAf0frQfgbWC8PbzYeR7o9Dp9Jw4crxK6tCnbmu2RR5l26WjxKQnMufIOpKy0+lW23xEYS13HxKyUll//gAJWamcT4hi88XDBLl5maRTKBS83mYQS09uIz7z/kSQqZo3JnfPQTTnL6FLSCLn3w0orCyxrld2Z6x1wzAUNmqyl65Cez0GfXoG2usx6OKLjv/sRcspOHUWXWISuvhEctZsQOnkiEWNqvmReCf2R51h2oFV7Lh8/IGVoSy9Qlqy4/Ixdlw+Rkx6IvOPbiApO40utcwfU8Hu3iRkpbLxwkESslK5kBjN1ktHCHCtaUxzJTmGhcc3sT/qDAVa7X2px79LVtCld3e69e2Jt58vL7zxCm4e1djwzxqz6T08q/PCGyPo1KMLtnZ2Ze5Xq9Xyy9c/8ORzQ6ju6VlVxS/T/jXbaNypJeGdW1PNqwY9hw3Eyc2FQ5t2l5tv9V+LCGvTFO9a/venoMXsXr2FJp1b06xLWzy8Pek7/Amc3F04sHGn2fQ1A3xo2LYZ1X1q4uLhRuP2LajVMJSrEUU/YI9s3UtOZhZD3huBX50gXKq54V8nGE9/7yqpw6YVa2jbvRPtenbG09eLJ18Zhks1N3asMf8d5slXhtHz8f4E1A6iupcnjw1/Eo+aNThx4KhpQoUCJ1dnk0dVOrf1EEGtGhDcuiFONdxpOqgrti4OXNh1rNx8agdbbBztjQ9lsY6TKwfPUK97K7zqBeHg7kztdo3xrBtAxNaDVVaPzsFN2Hf1FPuunSIuI5llp7aTkpNBu4CGZtPnavLJyMs2PnxdamBjpWbftdPGNLMPr2XXlRPcSEsgLjOZv49uRKFQEFLNt0rq0Nq/Pkevn+fo9fMkZqWy7tx+0nMzaeYbajZ9sLs3/q6ezDuygctJMaTmZHIjLYHo1KLviMtObuNQdAQ3M5JJzErjn9O7UCgUBJa4xlemdgENORQdwaHoCOIzU/j37B7ScjPNRiIC1K7mQ6BbTWYcWsOlpOuk5GRwPS3eJCKwqU9dbK1UzDm8jmspN0nNyeRqyk1iM24TKX+PquK71Nm4qxyKjiAmPZG4zBTWnd9PVGocdTyq5ngS4nakM06ISnbjxg169+5Ns2bNOHHiBJMmTWL69Ol8/fXXJulmz56NnZ0dBw4c4Pvvv+fLL780doLpdDoeeeQRbG1tOXDgAFOnTuWTTz4p8zV9fHxYtmwZAOfPnyc2NpZff/31jsqr0+l47LHHsLCwYP/+/UyePJkPPrj9UJn33nuPbdu2sWLFCjZu3Mj27ds5cuSISZrnnnuOPXv2sHDhQk6ePMnjjz9Oz549uXjx4h2VLTY2lnr16vHOO+8QGxvLu+++e0f5Ro4cSV5eHjt37uTUqVOMHz/eOMQ1NjaWDh060KhRIw4fPsz69euJi4vjiSeeKHN/+fn5fPXVV5w4cYKVK1dy5coVY2dnWeW+29eoCK1GQ+yV6wSEmQ67DAwL4frFq2XmO7HjAClxibR/7PZRMXq9niunL5B8M+GOhr7ei4KCAiIvXKRRs3CT7Y2ahXPudESlvU5eXh5ajQYHR4dK2+ctFkoLAlw9ORkbabL9ZOwlapfx4+FCQhSuto40qmkYHuaktqOFbz2OFosOABhYvyPpuVlsizxqbjeVTuHshNLeHs2Vq0UbtVo0Udex8KpZZj7LWkFob8Ri06MzDqNewf6lZ1G1bg7l3JFVqFQA6HNzK6v4/xkWSiX+rjU5ddP0mDp98zK13M13clxMjMbV1pGGnsEAOKrtaO5bl+Mxd9b2VoWCggIiz1+iYanzuzHnzlTs/F4yZwGOzk507XN/IvyK02o0xFyJLhUtHNigDtcvXCkz37Ht+0mJS6TjwJ5VXcRSNBoNMZejqNXQtIMhuEFdrt3hzZaYK9FEnb9MQGjRsNaIIyfxrRXIqukL+eal9/nlnS/ZvnwdOp2uUssPoCnQcO3SFULDG5hsr9e4AZERF8rIZUqn05GXk4udg+kUGHk5uXww7A3eGzqS38Z+T1Rk2Z9jRWk1WpKjb+JZN8Bku2fdABKvmB/eecva8bNY9vFENv+2kJsXTIfuaTUaLKwsTLZZWFmSEHm9cgpegoVCiY9zdSLiTcsREXeNALeyrxfFtfIL43z8NbNRdLdYW1pioVSSXVD51woLhRJPR3ciE03f90uJN/B1Nn+jqI6HHzFpibQNaMC7HZ/mzXZP0COkBZZKC7PpAawsLLFQKMkpyKvU8t9ioVDi5VSNiwnRJtsvJETj52K+HqHVA7ieFk+HwMZ83OVZ3u3wNH3qtjapR2h1f66lxvFIWDs+7Tqct9sPplNQOAoqP9qqKr9LFRdWIxBPR3ci4soe+ipEVZJhqkJUsj///BMfHx8mTpyIQqGgTp06xMTE8MEHHzBmzBjjncsGDRowduxYAGrVqsXEiRPZsmUL3bp1Y+PGjURGRrJ9+3bj8MdvvvmGbt26mX1NCwsLXF0Nw0o8PDzuas64zZs3ExERwdWrV/H2NvywGzduHL169SozT2ZmJtOnT2fOnDnGMs2ePduYHwzDSxcsWMD169epWdPwRezdd99l/fr1zJw5k3Hjxt22bDVq1MDS0hJ7e/u7GgYaFRXFwIEDqV+/PgCBgUVzpEyaNInw8HCT158xYwY+Pj5cuHCB2rVrl9rf888/b/w7MDCQ3377jebNm5OZmWl2Hrt7eY2KyM7IQq/TYe9k2rlk5+RAZmrpIWwAyTcT2LZoNUM/ewOlRdlfGnOzc/jtjc/RajQolEp6Dh9EYP2qmWstPS0dnVaHs4vpsFpnVxdSkpMr7XXmTJ6BazU3GjZpXGn7vMVRZYuF0oK0HNNhIGk5WTjXND/n4YXEaCbuWcqodk9gZWGJpdKCw9ERzDpUFC1Uu5ovnYLC+XDtpEovc1mUhZGG+izTYTT6rGwUTmUPnVK6OKF08qHg9DmyFq3AwtUFdffOoFSSt3u/2TzqLh3QRF9Hl1A1d9j/lzmobLFQKkkvMbQoLTcTJ7X5jvGLideZtG85I9sMMh5TR66fY+6RdfejyGZlpKWj0+lwdnE22e7k4kJqBeYKjDh1hs1rNvDTXxMrWMJ7k51uvv21d3Igsoyhp0mx8WxZ8C/PfT6q3Pa3qmSnZ6IzU2YHJwcuppYe/lXcdyM+Iis9E51WS5fH+9KsS1vjc8lxiVxOOE/Dts0Z/tFIEmPjWTV9EVqdji6D+lRqHTLTDceTo7OTaR1cnEhLKb8Ot2xavoa83Dyatmtp3FbDpybPjR6Bl78vOdk5bPlnHePf/ZwxE7+julflR13mZWaj1+lRO5hGdqsd7MhJNz8s0sbJjhZP9cDVtwbaAi1XDp1hy+8L6TrqaaoXzjPnWTeAc1sP4RHsg4O7CzfPX+X6yYvo9fpKrwOAvcowpLHksMuMvCwcVf63ze+osiO0egCzDpuPkr1lQL32pOVkci6+8jtPbK3VWCiVZOab1iErPwd7lY3ZPC42Dvi6VEej07Lg2CZsrdT0rdcGGysVK0+bjzLtVrsZ6blZXC5jLr2KKqqH6ZyzmXnZOKjMz0PoauOIv4snGq2WOYfXY2et5pGw9thYqVh6cpshja0jQTYOHI+5yMyDa3C3c2JAWHuUCiVbLh2u1DpU1XcpMExJMemxd7G0sESn1zHj4OpSN7v+q5QykO6AwAABAABJREFUTPWhI51xQlSyiIgIWrVqZTIuv02bNmRmZnL9+nV8fQ13dBo0ML2b6+npaRz6eP78eXx8fEw6oJo3b15l5fX19TXpSGvVqlW5eSIjI8nPzzdJ5+rqSkhIUSfN0aNH0ev1pTqe8vLycHNzq6TSm/fmm2/y6quvsnHjRrp27crAgQON7/eRI0fYtm2b2U60yMhIsx1lx44d4/PPP+f48eMkJycb7/JHRUURGlp66MK9vEZeXh55eaZ3SVWF0UJ3rMRFVo/5+SF0Oh0r/5hLu4E9cfMsPU+TSRnUKl785l3y8/K5euYCm+evxKWaG36hwXdXtrtQssh6vb7S5rlY/vcSdm3Zzje/fY+1qurmACr1c0dBmT+CvJyqMaxpb5ad2s7JmEs42zjwTHh3XmzRjyn7/0Ftac3rbQYy7cCqKptfBsCqXh1senU1/p+1eKXhD7OVKW9PCvRZ2eSs2wR6Pbqb8Sjs7VC1bGq2M07dozMWHu5kzl1UwRr8t5U8fBQoyvwYajq6MzS8FytP7+TUzUs4qx14snE3nmvWl78Orqryspan1Lms199zZEVOdja/fvMjr733ZqlOmfuvRPur15fcBBja3+UT59BxUK/btr9VreRnoTdsLDfPy1++Q35uHtEXrrD+75W41ahGw8JFffR6PXaODjz6yjMolUq8Av3ISElj16pNld4ZV1SHEhvu8HpxYPseVs1fxsgx75gcO0F1ahFUpyjaLzi0Nl+9+TFb/93AUyOGV1KpzTFzXpRRDcfqbjhWL/oeVS3Qi+yUdCI2HzR2xjUd1JUDC9az+qu/QAH27i4EtqzP5f2nqqoCtwpu8l957VRxLf3qkVOQx8mYsuft6lqrGU28Q/h112I0uvsztP6Wsvowbx1rS09uNc6dtv7cfgY36srqs3tKlbNtQAPqewYx8+CaKq9Dqe8cirI/i1v1WHh8M7kaw/yuqyP2MiS8BytP70Sj06JAQVZ+DstObkePnhvpCTiq7Wgf2KjSO+OMdShV0Hv/LnVLbkE+H6yZhNrKmrAagQxt0pP4zBTO3qe5eIUoTjrjhKhk5joObl04im+3srIySaNQKIydPJXZ+aBUKktduAoKiiZbNXdRu91r38mdVZ1Oh4WFBUeOHMGixJ3/iqyKeiuysHgZitcH4MUXX6RHjx6sWbOGjRs38u233zJhwgTeeOMNdDod/fr1Y/z48aX27WlmrqGsrCy6d+9O9+7dmTdvHtWqVSMqKooePXqQX2xC+uLu9jUAvv32W7744guTbWPHjiWwz+07YW0d7FAolaWi4LLTMrBzKj0UMz8nj9gr0dy8doMNs5cDhe+nXs+4Z9/h6Q9G4F/P8GNEoVTiWqMaADX8vEi8EcfefzdXSWeco5MjSgslKSWiZNJSUktFy92LFQuWsnTeQr746Vv8g6pmRbn0vGy0Oi3ONqbHuJParszJnx+p144LCVGsPmuY3y8qNY68g/l80eNFFp3YgpPaHg97F97r+LQxz61zdP7TYxm96jfiKmEOuYKLkWhjiq0YV3jeKuxt0WcVlV1hZ2Pyf0n6rCz0Wq3JrxddYjJKe3tQKqHYkDV1905Y1Qoic+4i9BmVPxn3f0FGXjZanQ6nEseUo9quVLTcLf1C23IxMYq15/YCEE08eYfy+azb8yw5ubVKJj6/HQcnR5RKM+d3auo9z8l180Ys8TfjGPdRUdt569owqHNfJs6dRo0qiGYqztaxsP1NM21/s9IzsTczFD4/J5eYy1HEXr3O2llLi8qs1/PlM28x9KPXCAir3Ojp0mU2zC+WUeKakZmWgX05Ua8AroULI9Tw9SIjLZ0tS1YbO+McnJ2wsFSazF1WzasGGanpaDQaLC0r72eHvaPheCoZBZeRmo6jc/l1OLRjH3N+ncorH40itHH9ctMqlUoCagUSf6NqVu9U2duiUCrIzTBtU3Mzs1E7lD1PYknu/jW5cuiM8X+1gy0dXn4MbYGGvKwcbJzsOf7PDuzdqqbTOjMvB61Oh4PKtMz2Klsy8sq+XtzS0i+Mg9Fn0erND2nuEtyU7rWbM3HPUmLSq2b+3ez8XLQ6HfbWplGKdtY2ZJlZ2RwM7XN6bpbJIgYJmakoFQoc1XYkF1tgp41/fdoFNmL2obXEZVZetH9Jt+rhoDKth721DZll3NDLyMsiLTfL2BEHkJCZglKhwEltT1J2Ghl5WWj1OvTFusjiM1NwVNthoVCW+dndi6r4LpVaGGWnR298/6+l3MTLqRoD6rWXzjjxQEhnnBCVLDQ0lGXLlpl0qO3duxcHBwe8vO5sstY6deoQFRVFXFwc1asb5nc4dOhQuXmsC1f60paYiLtatWrExhYtZZ6ens6VK0Xzn4SGhhIVFUVMTIxxOOm+ffvKfa3g4GCsrKzYv3+/MdIvJSWFCxcu0KFDBwAaN26MVqslPj6edu3a3Um170i1aoaOodjYWFwKO2iKL5xwi4+PDyNGjGDEiBF89NFHTJs2jTfeeIPw8HCWLVuGv7//Hf0wOHfuHImJiXz33Xf4+BjuOB8+XP4dwLt9DYCPPvqI0aNHm2xTqVQsOrnltnktLC3xDPDmyukL1GlWFHF55fQFajcpPVmvykbFS9++b7LtyOY9XDt7kcfeHI5ztbJX/wPDXD1VwcrKiqDatThx+Bit2rcxbj9++Bgt2rYsJ+ftLV+whCVzFvD5j99Qq07V/dDV6rRcSY6lfo0gDkUXzYNVv0YQh6+fM5vH2tKq1JxKulsd+CiISUvk3X9Nh+ANbtQFG0sVsw6vJdHMapr3JL8AXX6qaTkyM7EM8CM/LsGwQanE0teb3G27SucvpIm+UWqBB6WbC7qMzBIdcZ2xCgkma95i9GmVVIf/IK1Ox9XkGMJqBHKk2DEUViOQozfOm82jsrRCW9Yx9YBGqVhZWREUEsyJw8do2a61cfuJw8do3ubezm8vXx9+nvGnybYF0+eQk5PD86+/YnZFzcpmYWlJzQAfLp88T91mRRPVXz51jpAmpTt6VDZqXv3+Q5Nthzbu5srZCzzx1vM4V6vayHEAS0tLagb6culkBPWaNzJuv3QygtBidbgtPSaLU/mFBHJizyF0Op2xQy4xNh4HF6dK7YgDsLSyxC84gIhjJwlvXTSh+9ljp2jUskmZ+Q5s38PsX6bw0vtv0KB5eJnpbtHr9URdvoa3v/nhfRVlYWmBq08NYs9dxadh0bUp9txVvOvXKienqeTrcdg4lb7RaWFlia2zAzqtlqjj5/ELr5qV0LV6HdGpcdTx8DNZlbKOhx+nbrNKZS13bzzsXdh31XzUXpdaTekZ0pI/9iwjKjWuUstdnFavIzY9kSB3LyLirxq3B7l7lTksNioljno1ArG2sCRfazgX3O2c0Ol1pBfrNGrj34AOQY2Zc3hdlXUmFq/HjbQEalXz4Uxc0ff9Wu7eZXY4XU2+SX3PILP1uHXz5mrKTRrVrIWCoog1dztn0nOzKrUjDqrmu1RZFIDVA5gu4EGoivn9RMXIAg5C3KO0tDSOHz9u8oiKiuK1114jOjqaN954g3PnzvHPP/8wduxYRo8ebXK3uDzdunUjKCiIYcOGcfLkSfbs2WNcwKGsqDU/Pz8UCgWrV68mISGBzEzDxbNz587MnTuXXbt2cfr0aYYNG2YSqda1a1dCQkJ49tlnOXHiBLt27Sp3sQgwRLa98MILvPfee2zZsoXTp08zfPhwk/rVrl2bZ555hmeffZbly5dz5coVDh06xPjx401WNr1bwcHB+Pj48Pnnn3PhwgXWrFlTaiXXt956iw0bNnDlyhWOHj3K1q1bqVu3LmBY3CE5OZmnnnqKgwcPcvnyZTZu3Mjzzz9fqiMTwNfXF2tra37//XcuX77MqlWr+Oqrr8ot492+Bhg63hwdHU0edzNMtUWvjhzfvp/jOw6QeCOOTfNWkJaUQngXw4/ebYtWs2ryfMAQ7ebh42nysHO0x8LKEg8fT6zVhtfds2ozl0+dJyU+kcSYOA6s3c6p3YcIa9P0jst1twY88RibVq9n85oNRF+N4q/fp5AYH0/PAYYhTnOmzODnb34wyXP5YiSXL0aSk5NLWmoaly9GEnW16Ivz8r+XMP+vObzxwWg8alQnJSmZlKRkcrLN3+muqDURe+kcHE7HoMbUdHTn2SY9cbdzYvNFQ4f6k4268lrrx4zpj14/TzPfULrVaoaHvQu1q/kyvFlvLiUaVjQr0Gm4nhZv8sjOzyVHk8f1tHi0VTjUJe/gMdStm2NZOxhlNTds+vVEX6Ah/0zRl2Gbfj1RdSyaNyr/6AkUNjaou3dC6eqMZVAAqtbNyS+2eq26R2esw+qQ/c9a9Pn5KOxsUdjZQiX/YL8bNlYqarl7GxdFqOnoTi13b6rbVzwqs6LWnd9Px8Bw2gc2oqajO8807oGbrRNbLhpuDDzRsAuvtHzEmP7YjQs09alLl+CmVLNzppa7D0Ob9CQy8boxOsBCqcTXuTq+ztWxVFrgYuOIr3N1PKqwvv0ef5QtazawZe1Grl+LYsbEqSTGJdC9f28A5k2dya/jfjTJc+ViJFcuRpKbk0N6WhpXLkYSfTUKAGuVNX6B/iYPO3t7bGxs8Av0LxWBXlVa9unE0W37OLZtHwk3brJ+znLSElNo2tVwXmxesIoVf84FbrW/NU0edk72WFpZ4eFT09j+VrW2fbtweMseDm/dS/z1WNbMWkJaYgrNuxlunm34eyVLJs4ypt+3fjsRh0+SGBtPYmw8R7btZde/m2jUrih6u0X39mRnZLF61hISY+I4d/QU21esp2WPDlVSh26P9mHXhm3s3riN2KgbLJo6h+SERDr0Ngy3Xz5zwf+xd5fRUV1dAIbfuLsbUUhC0ODu7qW4ldJSihcttIVCWyjFrUCRBHd3D8UJ7u4a4u7z/QhMGCYJlhDKt58u1mrunHNn35lrs+8R5k/ITNYeDzpMwMRZtPqmIx4+BYkKjyQqPJL4V8bF3LR0DRdPneP5k2fcv3WXhVPm8PD2PeU684JPzTLcOnKOW0fPE/U0lFNr9xIfHk3BKiUAOLPxAEcWZc4ofnV/MA/OXSc6JJzIJ885s/EAD85ep1DVzORi6N3H3D97jZjQSEJuPmDfzNWgUFC4drk82459N09R0a0o5V2LYGdiyRdFq2NpaMLBO+cAaFq4Mp1KqU9YUsG1KHfCH2c5K2ftgmVo7FtJOYO0iZ4hJnqG6GrlzbF95O4F/J29KelUCGsjc+r7lMdM35jg+xkJodqFyvBF0erK8hee3CQhOZHmRathY2SOq4U9db3LcfrhdWU31MruxahVqDQbLh4gMiEGY10DjHUN0NXKu+vdwTvnKOPiS2lnH2yNLWjsWwlzAxOO3c+Yqba+d3laF6+lLH/28XXik5NoVbwmtsYWuFs60NCnIicfXFVux7F7lzDS1aeJX2WsjczwsXWlhpc/R16Z/TY35fa9FEAzvyoUtffE1tgCR1NrGvpWpIpHCeU+KsTHJi3jhHhPQUFBlCypOgB8ly5dCAwMZNu2bQwePJjixYtjaWlJt27d+Pnnn9963VpaWmzYsIFvvvmGMmXK4OHhwfjx42nSpAn6+vpZ1nFycmLUqFH8+OOPdO3alc6dOxMYGMiwYcO4ffs2jRs3xszMjN9++02lZZympibr16+nW7dulC1bFjc3N6ZNm0b9+jnP8DZ+/HhiY2Np2rQpJiYmDBw4kKgo1e4iAQEB/P777wwcOJBHjx5hZWVFhQoVaNiw4Vt/Fq/T0dFh+fLlfP/99xQvXpwyZcrw+++/06pVK2WZtLQ0evXqxcOHDzE1NaV+/fpMnjwZAEdHRw4fPszQoUOpV68eSUlJuLq6Ur9+/SyTpTY2NgQGBjJ8+HCmTZuGv78/EyZMoGnTptnG+K7vkRsKly9JfEwch9bvJDYyGhtnB9oO7o6ZdUYrt9jIaKJC360rY0pSMjsC1xATHoW2rg5WjrY0+74jhcvn/sQHL1WpVY2Y6GhWLlxKeFgEru6ujBj3G7b2GS1EI8LCCX0WolLnh269lP9/69oN/t2zH1t7W+auWgTA9g2bSU1JYdwI1RmN237VgXZfd8r1bTh67yLGega0LFodcwMTHkSG8Of+JYTGZRwfFgYmWBtldhU6cPss+jp61PUuR8dS9YhLTuTSszssO70r12N7V8nHgtHQ0cagfk009PVJe/yUuBVrITmzS46mqYlKl1RFTCxxK9aiX7s6xt90Jj0mluTgMyQdzWzdq1eqBADGHVVnGI7fvIOUC5fzdqOy4WPjyowWma1T+1bOOKdsu3KUP/YtzJeYXjp+/xLGugY096uGuYExD6NCmHBgKWHxGfuUub4xVoaZ+9TBO+fQ19ajdqEytCtZl/jkRC6H3GHl2T3KMhYGJvzRoIfy70a+FWnkW5Erz+4yJo+2t3LNasREx7Bq4TIiwsMp4O7GT+NGvXJ8RxD6shXmCwO/7aP8/1vXb3JwTxA2drbMWRmYJzG+jyIV/EmIiePAup3ERkZh6+JAh6E9lK2M3+f8m9eKVSxNfEwc+9ZuJSYiGjsXB7oM64XFi5Z5MRFRRIZmdqVTKBTsXL6BiJAwNDU1sbK3oV6H5pStndny3dzakq9/7svWhauZNvh3TC3NqdSgBlWb580st2WqVSA2JoYty9YRFR6Jo5sLfUcNxcouowV9ZEQk4c8zWyH9u30vaWlpLPs7gGV/ByiXV6hdla8HfA9AQlw8i6fNIzoiEgMjQ1w83Rj81wjcvfNunFS3Ur4kxyVwYfthEqLjMHewpnrPVhhbZhzTidGxxIVnth5OS03n9Pr9JETFoqWjjZmDNdW//xInv8wJXdJSUjm35SCxoZHo6Oni6OdBxc6N0DXM+h4yN5x+dA0jXX0aeJfHVN+IJ9Fh/H1knTIRYqpvhKWBahdifW1dSjgWZM2F/Vmus4p7cXS0tPmmnOo917YrR9h2NedeHO/j4tPbGOjoUd3LHxM9Q0JiwllyaoeydZiJniFmBpldcZPTUll4chuNfCvyXcUWJCQncvHpbeWDEoAyBQqjralF25Kqk7Dtv3mK/TfzZnb0809uYqirR62CpTHVM+JpbBgBwVuUD2NM9AxVuoAmp6Uy7/gmmvlVoU/lL4lPTuL8k5vsvHZcWSYqMZZ5xzfTpHAl+ldpQ3RiHIfvnCfo1pk82Ya8uJfS09bl67KNsTI0JTkthcfRocw8vJajeZRQFOJNNBR5Na2OECJXHT58mMqVK3Pz5k08PbOeQU/kj2vXruHj48ONGzfw8srdG/ZFwe/fivBT0blMQ66+0lXiv8jHzp22S0bkdxgfbEXH0USNmZTfYXwQs+EDqDSzx5sLfuIO95pNp+Wj3lzwE7e43UguPflvz0Tn5+DJstM78zuMD9bevx5rz+3L7zA+SMviNfn3Vt4kKD6mqp7+jN69IL/D+GAj6nxN7/UT31zwEzajxUBG7Jib32F8sNH1v2Xo1r/fXPATNq5Rz8/mXuq/aOWZ3fkdQrbavJas/n8hLeOE+EStX78eY2NjChYsyM2bN+nXrx+VKlWSRNwnJjw8nDVr1mBqaqocU04IIYQQQgghhMiOJOOE+ETFxMQwZMgQHjx4gLW1NbVr11YbG03kv27dunHq1ClmzZr1TmO8CSGEEEIIIYT4/yTJOCE+UZ07d6Zz5875HYZ4g/Xr1+d3CEIIIYQQQgiRrewmART5R2ZTFUIIIYQQQgghhBDiI5FknBBCCCGEEEIIIYQQH4l0UxVCCCGEEEIIIYT4TEk31U+PtIwTQgghhBBCCCGEEOIjkWScEEIIIYQQQgghhBAfiXRTFUIIIYQQQgghhPhMaSLdVD810jJOCCGEEEIIIYQQQoiPRJJxQgghhBBCCCGEEEJ8JNJNVQghhBBCCCGEEOIzpaEh7bA+NfKNCCGEEEIIIYQQQgjxkUgyTgghhBBCCCGEEEKIj0S6qQohhBBCCCGEEEJ8pjQ1ZDbVT420jBNCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpSDfVT460jBNCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpIN1UPzUaCoVCkd9BCCGEEEIIIYQQQojct+niwfwOIVtNi1TJ7xDyhbSME0KIT9j4/UvyO4QPNrhGR649u5vfYXwQbzs3qs3qld9hfLAD388ksseA/A7jg5jPnkSn5aPyO4wPtrjdSCrN7JHfYXyww71m8yw6NL/D+CB2ptYsPrk9v8P4YJ1KN6DP+kn5HcYHmd5iAFP+XZnfYXyw/lXb8M2qsfkdxgeb13rYf/58u7jdSLqvGZffYXywf74cSvPAH/M7jA+y4as/qTu3f36H8cF2fTslv0MQnwlJxgkhhBBCCCGEEEJ8pjRlNtVPjkzgIIQQQgghhBBCCCHERyLJOCGEEEIIIYQQQgghPhLppiqEEEIIIYQQQgjxmdKQbqqfHGkZJ4QQQgghhBBCCCHERyLJOCGEEEIIIYQQQgghPhLppiqEEEIIIYQQQgjxmZJuqp8eaRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0kS6qX5qpGWcEEIIIYQQQgghhBAfiSTjhBBCCCGEEEIIIYT4SKSbqhBCCCGEEEIIIcRnSmZT/fRIyzghhBBCCCGEEEIIIT4SScYJIYQQQgghhBBCCPGRSDdVIYQQQgghhBBCiM+UpnRT/eRIyzjxSXj27BmjR48mIiIiv0MRQgghhBBCCCGEyDOSjBP5TqFQ0KlTJ/T09LCwsHinum5ubkyZMiVvAvtAGhoabNiw4Z3qVK9enf79++dJPP9VnTp1YsyYMfkdxgcZNGgQffv2ze8whBBCCCGEEEJ8AqSb6n/QV199xcKFCwHQ1tbGxcWFL774glGjRmFkZJTP0b27sWPH4uHhwdChQ9+5bnBw8H9ym8XbOX/+PFu3buXvv/9WLqtevToHDhxg7Nix/PjjjyrlGzZsyPbt2xk5ciRfffUV7u7uOa5/5MiR/PrrrwAsXLiQmTNncunSJTQ1NSlZsiRDhgyhcePGAMTGxmJhYcGSJUto06aNch1t2rRh1apV3Lx5E09PT+VyT09P2rRpw5gxYxgyZAienp788MMPb4zpQ1wOOsn53UdJiIrB3NGGCq3qYV+wQJZlH1+7y7bJi9WWf/nr95jbWwNw/cg5/l20Sa3MV9OHoa2Td5ePbes3s275aiLCwyng5so3fXrgV7xolmXDQ8NY8Pc/3Lp2k8cPH9G4ZTO+7fu9Spmdm7exf+ce7t2+B4CXtxedvu1KocI+ebYNzf2q0LZEbSwNzbgb8YQZh9dw/smtHMpX5Yui1bA3seRZbARLTu1g5/UTytenNO1HSadCavWO3rvIj9tm5ck2vKTfuB66lcujYWhI2t17xC9fS/qTZ9mWNx7QE+1CXmrLUy5cJm7mvIw/9PQwaNoAnRJF0DAxIe3BQxJWbSDt3oNcj7+WV2ka+VbEzMCER1EhLDm9k+vP72dbvqJrURr5VsTOxIqElETOP7nJ8jO7iU1OAMDJ1IaWxarjZuGIjbE5S07vYOe147ke9/sq7uBF+5J18bEtgLWROT9um8XBO+fyOyyl9avXsXzJMsJDw3DzcKfPgL4UL1ki2/JnT51hxpTp3L19Bytra9p3bk+zli2Urx/YF8SSwEU8evCI1NRUnF2cadOxHfUa1s+zbTi5+xBHt+4jNjIaGyd76nZqQQEfzzfWe3DtNot+n4Gtsz3fjh2iXH5631EuHArm+YMnANi7u1CjTSOcPF3zbBsAqrgXp1bB0pjqG/EkOox1F4K4FfYoy7Id/etRztVPbfmT6FDG7F0EQEW3opR18cXBNOMa8iDyGZsvH+ZexNM824aL+09wduch4qNisXC0oVKbBjgWcsuy7KNrd9g0IUBtedvRfbBwsAHg8r8nuXb0LOGPQwCwcXWkXIva2Lk759k2AFT39KeedznMDYx5HPWcFWf3cCP0YZZlu5ZpRCX3YmrLH0U9Z+TOjHPs4Ort8bZV33/OP77JtEOrczf4V3wO59tqHiWp510WM31jHkeHsvLcXm5m8118VbohFd3U708eR4Xy6+75AFRwLULXMo3UyvRcN4HU9LTcDf4VDbzL07xIVSwMTXgQ8Yz5J7ZwOeRutuWrepSgRZFqOJpaEZecyJlH1wk8uY2YpHhlmSaFK1HfuzzWRubEJMVx5O5FFp/eQUpaap5sQxPfSrQqXhNLA1PuRTxl1rH1XHx6O/vyhSvTrHAV7EwsCImNZPnZ3ey5Eax8vZJbMdqVqI2jqQ3ampo8ig5lzfn97L15Mk/i/9TIbKqfHknG/UfVr1+fgIAAUlJSOHjwIN988w1xcXHMmpW3P8rywvDhw9+7ro2NTS5GIj41M2bMoFWrVpiYmKgsd3FxISAgQCUZ9/jxY/bt24eDg4OyzJMnT5SvT5gwgR07drBnzx7lMmNjYyCj5dqMGTP4/fffad68OSkpKSxZsoRmzZoxdepUevfujbGxMaVLl2b//v0qybgDBw7g4uLC/v37lcm4hw8fcvv2bWrUqAGAra0tdevWZfbs2YwbNy6XP6UMt05e4tjqnVRs1xA7T2euHjzNjhnL+HLk9xhbmmVbr9Wonujo6yn/1jcxVHldR1+PVqN6qizLy0Tcwb1BzJs+mx4DeuNbxI8dm7YyasjPzFw0Fxs7W7XyKSkpmJmZ06pTWzauXp/lOi+eOU/VWjXw6VcYXV0d1i5fzchBw5mx8B+sbKxzfRtqePrTu9KXTD64kotPbtHErzLjGvWiy4rfCIlV74rfzK8K3cs3ZXzQMq6G3MPXzo3B1doTkxTPkXsXAfhl51x0NDM/d1N9I+a3HkbQrTO5Hv+r9OrWRK9WNeIXLict5Dn6Depg3K8H0SP/hKSkLOvEzQ4EbS3l3xpGhpj8PIiU05kJIcNOrdFydCAuYBmKqGh0y5XCuH8Pokf9hSIyKtfiL1fAj47+9Qk8uZUboQ+o4VWKwdU68OO2mYTFR6uVL2Ttwnflm7P0zE7OPLqOhYEJXcs0plvZJkw9tAoAXW0dQmIjOXH/Mh386+VarLnFQEePm2EP2Xb1CGMa9MjvcFTs3bWH6ZOmMmDoQIoUL8amdRsY0m8Qi1Ytwc7eXq3840ePGdJ/EI2bN+Hn0SO4eO48k8ZNxMzCnOo1M86vpmamdOrahQJurujoaHPk4BH+HD0GCwsLylYol+vbcOnoaXYtXk+Drl/iUsid0/uOsPyvOfT4axhm1tm37k+MT2Dj7KW4+xUkLipG5bV7V27iV8Ef585uaOvqcHTLXpb9OYvvxv2IqaV5rm8DgL9TIb4oVp1VZ/dyO/wxldyK8X3FFvyxZyERCTFq5dec38/GSweVf2tpaPJjrU6ceXRDuczL2plTD69xO3w/qWmp1CpUhp4Vv2DM3kVEJcbm+jbcDL7A4ZXbqdKhMQ5eBbh0IJit05bQdlRvTKzMs63X7re+6Bq8et3LfKj7+NpdCpYthr2nC1o62pzdeYgtkxfRZlRvjC1Mc30bAMq4+NK2RG2Wnt7JzdCHVPUsSb8qbRixcy7hWZynVpzdw9oLQcq/tTQ0GVm3G6ceXlUu+/vIOrQ0M8/DxroGjKzbjZOvlMltn8P5trSzD21K1GLZ6V3cDHtEVY8S9K3cil93ziM8i+Ni5dk9rLtwQPm3pqYmI2p35dQj1c85ISWJX3bMVVmWl4m4Sm7F+LpsY+Yc28jVkLvU8y7HL3W60mfDJELj1K+xvrau9KvcmgXBWwh+cAUrQ1N6VGhBr4ot+XN/xoPbqh4l6FSqPjMOreHq8/s4mlrTt3IrABYEb8n1bajmUZIeFVow/fAaLj27QyOfivxR/zu+WT2W53GRauUb+1bi6zKNmXJwJdee38fHpgD9q7QhNimeY/cvARCTFM/ys7u5HxlCaloq5Qr4MahaOyITY1WOHyE+Fumm+h+lp6eHvb09Li4utG/fng4dOii7RCoUCv766y88PDwwMDCgePHirFmzRlk3IiKCDh06YGNjg4GBAQULFiQgIPNJ4YULF6hZsyYGBgZYWVnRvXt3YmOzv4kKCgpCQ0ODnTt3UrJkSQwMDKhZsyYhISFs374dX19fTE1NadeuHfHxmU9XduzYQeXKlTE3N8fKyorGjRtz61Zmy5FFixZhbGzMjRuZN3p9+vShUKFCxMXFAerdVDU0NJgzZw6NGzfG0NAQX19fjh49ys2bN6levTpGRkZUqFBB5X0AZs2ahaenJ7q6unh7e7N4sXqLoVcFBwdTp04drK2tMTMzo1q1apw+fTrHOq+Li4ujc+fOGBsb4+DgwMSJE9XKJCcnM2TIEJycnDAyMqJcuXIEBQUpX7937x5NmjTBwsICIyMj/Pz82LZtG5D5vWzdupXixYujr69PuXLluHDhgsp7HDlyhKpVq2JgYICLiwt9+/ZVfr4AT548oVGjRhgYGODu7s6yZctUPve7d++ioaHB2bNnlXUiIyPR0NBQifXy5cs0bNgQY2Nj7Ozs6NSpE6Ghodl+Punp6axevZqmTZuqvda4cWPCwsI4fPiwcllgYCB169bF1jYjYaOlpYW9vb3yn7GxMdra2mrLjh07xsSJExk/fjyDBg3Cy8sLX19f/vjjD/r378+AAQN48CCjtU6NGjVUtunKlSskJCTQs2dPleX79+9HR0eHSpUqKZc1bdqU5cuXZ7u9H+rinmMUqlQSn8olsXCwoULrehhZmHLlQM5P+/RNjDA0M1b+09RUvSxoaKDyuqGZcZ5tA8DGVeuo3agedRs3wMWtAN/2/R5rGxu2bcj6Rs/OwZ5v+31Pzfp1sm0lO3DEjzRs0QSPgp44uxag9+D+pKcrOHcqbxJZrYvXYtvVo2y9coR7kc+YcXgtz2MjaOZXJcvydQuVZdPlw+y/dZonMWHsu3mKrVeP0K5kXWWZmKR4whOilf9Ku/iQlJpM0K13O++8K71aVUncvoeUsxdIf/yU+IXL0NDVRbesf7Z1FPHxKKJjlP90fL0hOYXkUy+ScTo66JQsRsK6zaTdvE3681ASt+wkPTQcvaoVczX+Bt7lOXD7DAdun+FxdChLT+8kLD6KWgXLZFney9qZ53GR7Lp+gudxkVwPfcC+m6dwt3RUlrkT/pgVZ3dz7P4lUtLy7sfU+zp2/xJzj2/iwO2z+R2KmlXLVtKoWWMaN2+Km7sbfQf2x8bOlg1rsk6kb1y3AVt7O/oO7I+buxuNmzelYdNGrFySeS4tWcqfqjWq4ebuhpOzM63atcbDy5PzZ/OmNeDx7UGUqF6OkjUqYO1kT91OX2BqZc6pPYdyrLdt/iqKVCyFU0E3tdda9OpE6TqVsXdzxtrRjkbftEWRruDupet5sg0ANbxKcfTuRY7eu8izmHDWXQgiIiGGyu7FsyyfmJpMTFK88l8BCzsMdPQ59uKBAcCik9s5eOccj6Ke8yw2guWnd6OhoYG3jUuebMO53UfwqexP4SqlsHCwoXLbhhhbmHLpQHCO9QxMjTA0M1H+e/W6V/vbLylSoyzWBRywcLChWudmKBQKHl3JvjXOh6pTqCyH7pzj4J1zPIkJY+XZPUQkRFPds2SW5RNSkohOjFP+c7Wwx1BXn0N3zivLxCUnqpQpbOdOcloKJx/kXcLhczjf1ilUhkN3znPo7nmexoSx6txeIuJjqJbdd5GaTHRSnPKf24vv4vBd1XtthUKhUi46KS7L9eWWZn6V2XPjJHtuBPMw6jnzT2whNC6K+t7lsyxfyKYAz2Mj2HrlCCGxEVwJuceuayfwsnZSlvG2KcDVZ/f49845QmIjOPv4Bgdvn1Mpk5taFq3OjmvH2XHtGA8inzH72Hqex0bSpHDlLMvXKliabVeOcOD2GZ7GhBF0+ww7rh2ndfFayjLnn9zk8N0LPIh8xpOYMDZc+pfb4Y8pYpd3vVaEyIkk4z4TBgYGpKSkAPDzzz8TEBDArFmzuHTpEj/88AMdO3bkwIGMJze//PILly9fZvv27Vy5coVZs2ZhbZ3ROiQ+Pp769etjYWFBcHAwq1evZs+ePfTu3fuNMfz666/MmDGDI0eO8ODBA1q3bs2UKVNYtmwZW7duZffu3UyfPl1ZPiYmhh9++IHg4GD27NmDQqGgRYsWpKenA9C5c2caNmxIhw4dSE1NZceOHcyZM4elS5fm2DX1t99+o3Pnzpw9exYfHx/at2/Pd999x7Bhwzh5MiMx8er2rF+/nn79+jFw4EAuXrzId999R9euXdm/f3+27xETE0OXLl04ePAgx44do2DBgjRs2JCYGPWnZtkZPHgw+/fvZ/369ezatYugoCBOnTqlUqZr164cPnyYFStWcP78eVq1akX9+vWVCcpevXqRlJTEv//+y4ULFxg3bpyytder7zNhwgSCg4OxtbWladOmyn3lwoUL1KtXjy+++ILz58+zcuVKDh06pPL5dO7cmcePHxMUFMTatWv5559/CAkJeevthIyEXrVq1ShRogQnT55kx44dPHv2jNatW2db5/z580RGRlK6dGm113R1denQoYNKEjkwMJCvv/76neICWL58OcbGxnz33Xdqrw0cOJCUlBTWrl0LZCTjrl27pmxxt3//fqpUqULNmjXVknHlypXD0DCzlVnZsmV58OAB9+7de+cY3yQtNY3Q+09w9vVQWe7s68mz21l3rXhp/R9zWTpkMtsmL+bxtbtqr6ckJbNi+DSW/TiFnTNXEHr/ifpKcklKSgo3r9+gZJlSKstLlinF1YuXc+19kpKSSEtNxcTU5M2F35G2phaFbFwIfnBFZXnwgysUsffIso6OljbJqSmqMaam4GvripZm1pfpRj4V2HfzFImpybkTeBY0rS3RNDMl9cq1zIWpaaTeuIW2h9tbr0e3UjmST56B5BexamqioaUFKardWhQpKWh75d4NsZamJm6Wjlx4qvrw5eLT2xS0zrrL2Y3QB1gamlLcIaObram+EWUL+HL28Y0sy4u3l5KSwvWr1yhTrqzK8jLlynLx/MUs61y6cFGtfNny5bh6+SqpqerdohQKBadOnOTBvfsU9y+Ra7G/lJaaypM7D/EoqtrF3aOoDw9v3M223tkDx4kICaXqF2/XsiclKZn0tHQM8mgYDi0NTVzM7bgaono9uvrsHu5WjtnUUlXetQjXQu5l2YruJV1tbbQ0tYhLSfygeLOSlprK83tPcCms2j3Yxc+Lp7ey7xYJsHr0LBYO+otNEwN4dDXnJFtqcgrpaWnoGRl8cMxZ0dLUxNXCnkvP7qgsv/T0Dp5Wb9c1topHca48u5tlK7qXKrsX48T9yySnpWRb5kN8DudbLQ1NCpjbc/m17+Lyszt4Wr1dwqmSWzGuhqh/F3rauoxt0INxDXvSu1JLXMzVW/rnFm1NLTytnNQ+x7OPb+CTRddlgKsh97AyMqOUkzcAZvrGVHArotKS8krIXTytnZTfp52xJf7O3nnS2lJbU4uC1s6cfq2F4alHVyls55ZlHV1NbbX9OzktBW+bAmhpZH0vVcKxIC5mtmr77edK4xP+7/+VdFP9DJw4cYJly5ZRq1Yt4uLimDRpEvv27aNChQoAeHh4cOjQIebMmUO1atW4f/8+JUuWVCY53NzclOtaunQpCQkJLFq0SJnwmjFjBk2aNGHcuHHY2dllG8fvv/+ubAnUrVs3hg0bxq1bt/DwyPgB+uWXX7J//37l2HCtWrVSqb9gwQLs7e25fPkyRYoUAWDOnDkUK1aMvn37sm7dOkaOHEmZMlk/YXupa9euyiTP0KFDqVChAr/88gv16mXcBPfr14+uXbsqy0+YMIGvvvqKnj0zuuINGDCAY8eOMWHCBGU3w9fVrFlT5e85c+ZgYWHBgQMHlGOM5SQ2Npb58+ezaNEi6tSpA2SMWebsnHnDcuvWLZYvX87Dhw9xdMy4OR40aBA7duwgICCAMWPGcP/+fVq2bEnRohnjVbz8rF81cuRItfdYv349rVu3Zvz48bRv3145aUTBggWZNm0a1apVY9asWdy9e5c9e/YQHBys3F/mzZtHwYIF37iNr5o1axb+/v4qEzEsWLAAFxcXrl+/TqFC6mNh3b17Fy0tLWVLt9d169aNypUrM3XqVE6dOkVUVBSNGjVSjgH3tq5fv65sFfk6R0dHzMzMuH49o3VCpUqV0NHRISgoiHbt2hEUFES1atXw9/cnKiqKGzduULBgQYKCgujYsaPKupycnJTb5eqqfjOUlJRE0mvd/vT09NTKZSUxNh5FugIDU9UfbgamRiREZ92q1dDMmModGmHt6kBaaho3j51n25TFNBrQGYeCGfGZ21tRtUtTLJ1sSUlI5uK+42weH8gXP3fHzM7qrWJ7F9FR0aSnpWNuYa6y3MzSnMjw3JtpedHsBVjaWFG8VPatu96Xmb4x2ppaajfiEQkxWBpm3cUp+MEVGvtW5NCdc1wPfYC3TQEa+lRAR0sbM31jtXX52LriYeXEuKCluR7/qzRMM+JNj1b9sZ0eHYOm5dtNtqPlVgAtJwfiF6/MXJiUROqtO+g3qkPc02cZrefK+KPlVoD0kOxby74rEz1DtDQ1iX6te1xUYixm+lmP73Uj9CGzjq6jV6Uv0dHSRltTi1MPr7L41PZci+v/VVRkJGlpaVhYWqost7SyIDwsLMs64WHhWFqp7msWlpakpaURGRmpfJAYGxtLy4bNSU5ORktLix+GDlRL4uWG+Jg4FOnpGJmpJvKNzEyIjco6ERL+9Dn7V2ym84i+aGppZVnmdftWbMHE0gz3IurXxtxgpGeAlqYmMa+1zolJisdUzzCbWplM9YwobOfOwpPbcizX1K8KUQmxXAvJOTn2PjKue+kYmqo+gDQwMSI+KrvrngnVOjXFxtWRtNRUrh87x6ZJC2k2qGu248wdW7sbI3NTnAtn/TDlQxnrvjxPqX4X0UlxmOm/ORlrpm9EEXtP5h7bmG0Zd0sHnM1t3/h9fYjP4Xxr/HIbXhkjDTK+C9O3/i48mHdis8rypzHhBJ7cyqOo5+jr6FHLqzRDq3dk9J6ALIeu+FAZ34UWka8lyqMSYrAwyPqccu35fSb9u4JB1dsrv4vj9y8z91jmuMGH7pzHTM+YMQ16oKGhgbamFtuvHlXppptbTPWN0NLUIiJedRsiEmKwMMj6Xurkw6vU9ynPkXsXuBH6kILWLtQrVC7zXioh4xxtqKPP8g6j0NHSJj09nemH13D6Ud61QhYiJ5KM+4/asmULxsbGpKamkpKSQrNmzZg+fTqXL18mMTFRmXx5KTk5mZIlM5pYf//997Rs2ZLTp09Tt25dmjdvTsWKGV2Drly5QvHixVVanlWqVIn09HSuXbuWYzKuWLHMwWTt7OwwNDRUSQ7Z2dlx4kTmgOT379/nt99+4/jx44SGhipbxN2/f1+ZjLOwsGD+/PnUq1ePihUrqg3Y/zZxAMpk1ctliYmJREdHY2pqypUrV+jevbvKOipVqsTUqVOzfY+QkBBGjBjBvn37ePbsGWlpacTHx3P//tvdcN66dYvk5GRlwhTA0tISb29v5d+nT59GoVCoJaqSkpKwsspIhPTt25fvv/+eXbt2Ubt2bVq2bKmy/UCW73HlSkarnVOnTnHz5k2WLs38Ua9QKEhPT+fOnTtcv34dbW1t/P0zkxZeXl7vPOvtqVOn2L9/v1qrvZefRVbJuISEBPT09LIdbLRYsWIULFiQNWvWsH//fjp16oSOjs47xfU2FAqFMgZDQ0PKli2rTMYdOHCAwYMHo62tTaVKlQgKCkJPT487d+6oJWwNDDKeqr/aVftVY8eOZdSoUSrLRo4ciVE19YHws/XaZ6VQKCCbp03m9tbKiRoA7DyciY2I5sLuo8pknK2HM7YemQliO08X1o+Zy6WgYCq2ybvB0dW+c4Uiu814Z2uXreLfvfv5Y9p4dPXUE7B5KeP7ULfw5HYsDUyZ9cVg0ICI+Bh2XDtG+5J1SVekq5Vv5FOR22GP1Fq1fCidsv4Yts98SBL7crKF1+N+hwGAdSuWI+3RE9Luqp4b4wOWYdi5LWbjfkWRlkbag0ekBJ9Bq0Dud3dRCx8Nsv4mwNHUmk7+Ddhw8V8uPL2Jub4JbUvWoWuZxsw7oT6ZiXh3rx/fCkXOg0qrPzFXqC03NDRk/tJAEuLjORV8ipmTp+Po5EjJPEi4QxaHgEKR5ZP99PR01s9cRNWWDbByeLuWMEc27+XS0dN0+rk32rq5f017VXbHwZuUcy1MQkoS5x/fzLZMrYKlKeXsw7SDq/J0bKysrg3Z7U8W9tZYvHLds/csQGx4FGd3Hc4yGXdmx0FunrhAs8Fd0c6D+4tXvf5d5HSeelVFt2LEpyRy5nH2yYTK7sV5GBnCnfC8a9n+0mdxvn1tIzTQeKuDpYJrURJSEjn7WmLnTvhj7oQ/Vv59K/QhP9f+ihqe/qw8tzdXQn4rGhoostkQZzNbvi3XlJVn93Lmccb4fV+Vbsj3FVow40hG75Ai9h58WbwGc45t5Mbz+9ibWvNN2SZEFIth1fl9eRJyVsdFdl/G0jO7sDA0ZWqzH9AgI3G368YJ2hSvpXIvlZCSxPfrxqOvrUdJp4J8V745T2LCOP8k+/OZEHlFknH/UTVq1GDWrFno6Ojg6OioTELcuZPRtHrr1q3KljgvvWxl06BBA+7du8fWrVvZs2cPtWrVolevXkyYMEEl8fC6N83A8moiRENDQy0xoqGhoUy4Qca4X+7u7sydOxdHR0fS09Nxc3MjOVm129W///6LlpYWjx8/Ji4uDlPTnAfQfT2O7Ja9Gov6j4PsPwfImNH2+fPnTJkyBVdXV/T09KhQoYJa7NnJ7kf5q9LT09HS0uLUqVNovfY0/WVS65tvvqFevXps3bqVXbt2MXbsWCZOnEifPn1yXPern8F3331H37591coUKFCAa9euqS1/Pf6XY628uuxlN9hXt+Vl68rXvZxw4XXW1tbEx8eTnJycZas1gK+//pqZM2dy+fJllUTvuyhUqBCHDh3K8n0eP35MdHS0SkvAGjVqsHLlSi5dukRCQoIyUVmtWjX279+Prq4u+vr6lC+vOi5HeHg4kP2kI8OGDWPAgAEqy/T09Jh25M2znukbG6KhqUHCa60BEmPi1VrL5cTW3YmbJy5k+7qGpgY2ro5Eh4S/9TrfhamZKZpamkS81gouKiIK83dMAGdl/fLVrFmygtGT/sTdM29aOUQlxpKanqbWCs7CwCTb7lzJaSmMC1rChH+XYWlgSlh8FE0KVyYuOYGoBNXWEnraOtT0KpUngyWnnLtEzJ1XkmYvJmHQNDMl7ZXWcZomxiii36JLvo4OumVKkLB5h9pL6aFhxE6aCbq6aOjroYiOwfCbTqSH5t6+FZMUT1p6OmYGqg8BTPWN1FpvvNSkcGVuhN5n29UjADwghKTgZH6p8zWrz+/Lk0Ho/1+YmZujpaWl1gouIjxCrbXcS5ZWloSFhauV19LSwsw8c2IaTU1NnF0yHhwU9C7Evbt3WRK4ONeTcYYmRmhoahIbqbr/x0XHqrWWA0hOSOTJ7Qc8vfuIHQszftAqFApQKPij0wDa/9gDd7/Mh1FHt+7j8KbddBjWE7sCb9dd9H3EJSWQlp6OqZ7q9cFEz1CtVVBWyrsWIfjBZdKyeFgAUNOrFHULlWXG4bU8js691q6vyrjuaaq1gkuIiXun656dhwvXj6mPL3h25yFObztIkwFdsHJWn1wkt8QmvzhP6WfxXSS+eVyxyu7FOHbvImnpWX8XulralHHxVZl8Iy98Dufb2Bfb8HoruIzj4s3fRSW3ohy7fynb4+IlBXA3/Cl2Jlmf9z5UxneRhrmB6jnJTN+YyISsP9Mvi1XnSshdNlz6F4B7EU+Zc2wDYxt+z9Izu4hIiKF9yToE3TqtnJ30XuQz9LV16FnxC1af359tou99RCfGkZaehqWh6jaYGxjneC816d/lTD24EgtDE8Ljo2noU5G45ESiXjmWFCiU56Xb4Y8oYG5H2xK1/y+ScZoym+onR8aM+48yMjLCy8sLV1dXlURT4cKF0dPT4/79+3h5ean8c3HJHEDXxsaGr776iiVLljBlyhT++ecfZf2zZ8+qDOB/+PBhNDU1s2y99L7CwsK4cOECgwcPply5cri4uHD37l21ckeOHOGvv/5i8+bNmJqavjHJ9D58fX05dEh14OUjR47g6+ubbZ2DBw/St29fGjZsiJ+fH3p6ejlORvA6Ly8vdHR0OHbsmHJZRESEsjskQMmSJUlLSyMkJETtu7R/ZdY5FxcXevTowbp16xg4cCBz56rO1pTVe/j4ZIx34+/vz6VLl9TW7+Xlha6uLj4+PqSmpnLmTOZA9zdv3iQyMlL598vk0qszl746mcOr7+Pm5qb2PtmN/1eiRAkgY+KH7LRv354LFy5QpEgRChcunG25nLRt25bY2FjmzJmj9tqECRPQ0dGhZcuWymU1atTgxo0bLFu2jMqVKysTpdWqVSMoKIigoCAqVKiAvr6+yrouXryIjo4Ofn5+Wcahp6eHqampyr+37aaqpa2FdQEHtQGmH125jZ3H2405AxD24CmGWfygfEmhUBD28GmeTeKgo6ODV6GCnD2pOinB2ZOn8Snyft/vS+uWr2blomWMHP8HBX3ypusXZMyOdv35A0o7q44pVdrZh4tPcx6bKC09nedxkaQrFNT0KsXRexfVbm5reJZCR0ub3ddzHqD8vSQlkf48NPPfk2ekR0Wj7fvK56WlhXZBT1Jv333j6nRLlwBtbVKOn8q+UHIyiugYNAwN0CnsQ8q5rMcOex9p6encDX+sNlZfEXsPboRmPZainrYO6a89LHn5t9zDfhgdHR0K+Xhz8rjqvnvyRDBFihXJso5f0SKcPKFaPvj4CXwK+6Ctnf3zZIUCUpJzf2wsLW1tHNyduXNR9UHVnQvXcM5iYgY9A326/zmUb8cMVv4rVasiVg62fDtmME6emUMWHN2yj0Prd9FuSA8cPQrkeuyvSlOk8yDyGT62qu/jbevKnbDH2dTK4GXtjK2xBUfvZn2s1ipYmvo+5Zl1ZD0PIp/lWsyv09LWxsbVgYdXVMd6enj5Fvaeb//5hd5/onbdO7PzEKe2HqBRv07YuuXN4PQvpaWncy/iKYVfG0C+sJ07t8JyHvPV26YAdiaWHLyd/WQlpV180dHS5ti9S7kSb3Y+h/NtmiKd+5FP1cYk87Vz41bYoxzrFrJxwc7EUmUSjZy4mNsSlU1i7EOlpqdxK+wRJRxVe1aUcPTKtkW9npauWkOB178bPS2dbMpo5Pr3lZqexo3Qh/g7eass93fy5vKzuznWTVOkExoXRbpCQXXPkhy/fynHRKGGhobKbPVCfEySjPvMmJiYMGjQIH744QcWLlzIrVu3OHPmDDNnzmThwoUAjBgxgo0bN3Lz5k0uXbrEli1blImnDh06oK+vT5cuXbh48SL79++nT58+dOrUKccuqu/K3NwcS0tLZs+ezc2bN9m7dy8DBw5UKRMTE0OnTp3o06cPDRo0YNmyZaxatYrVq9/cUuhdDB48mMDAQGbPns2NGzeYNGkS69atY9CgQdnW8fLyYvHixVy5coXjx4/ToUMHZTfEt2FsbEy3bt0YPHgwe/fu5eLFi3z11VcqM3oVKlSIDh060LlzZ9atW8edO3cIDg5m3LhxyhlT+/fvz86dO7lz5w6nT59m3759aknE0aNHq7yHtbU1zZs3BzLG1Dt69Ci9evXi7Nmz3Lhxg02bNimTnj4+PtSuXZvu3btz4sQJzpw5Q/fu3TEwMFC2rjMwMKB8+fL8+eefXL58mX///Zeff/5ZJYZevXoRHh5Ou3btOHHiBLdv32bXrl18/fXXpGUzO5aNjQ3+/v5qidJXWVhY8OTJE/buff9m/hUqVKBfv34MHjyYiRMncuvWLa5evcrPP//M1KlTmThxokoiu2LFiujp6TF9+nSqVaumXF6mTBmioqJYu3ZtlmMNHjx4kCpVqrzTfvIuitQuz7XDZ7h2+CwRT55zbNUuYiOi8KmaMRlC8Pq9BAVsUJa/uPc4d89eJepZGBGPQwhev5e7Z65SuHrmhBmntxzg4aVbRD+PIOzBUw4u3kzYg2f4VCn1+tvnmmatv2D3lh3s3rqTB3fvM2/6bJ6HhNCgWSMAFs5ZwOQ//lKpc/vGLW7fuEViQgLRkVHcvnGL+3czbzjXLlvFknkL6Tt0AHb2dkSEhRMRFk5CfEKebMOqc3tp5FuRhj4VcDW3o1fFltiaWLLpUsa+/G25pgyv2VlZ3tnMljoFy+BkZoOPrSsjanfF3dKBucfVu+k08q3AoTvn8nwmtpeS9v6Lfv3a6JQoiqajPYZd2qFITib5RGbC1PCrdug3b6RWV7diOVLOXkQRp97SRruwN9qFfdC0skTbtxDGP/Qk7VkIyUfer4VrdrZfO0Z1D3+qepTA0dSaDiXrYWVoxt4bGZP5tC5ei+/KN1eWP/PoOqVdfKnlVRobI3MKWrvQqVR9boU+VLYo0NLUpIC5HQXM7dDW1MLCwJQC5nbYGn94683cYKCjR0FrZ+Ug246m1hS0dsbuE4ivdfs2bNm4ma2btnD3zl2mT5pKyNNnNGvZAoA5M2bxx8jflOWbfdGcZ0+eMmPyNO7eucvWTVvYunELbTq2U5ZZErCI4OMnePzwEffu3mPl0hXs3Lqdug3qqr1/bijXoDpn9h/jbNAxQh89Zdfi9USFReBfK2PM3H0rNrNx1hIANDQ1sXVxUPlnaGqMto42ti4O6OpnPHA5snkvQau30rh7O8xtLImNjCY2MprkxKRs4/hQ+2+eooJbUcq7+mFnYskXRathaWjCoTsZiZ0mhSvTqZT6cAQVXItwJ/wJT2LUx/mrVbA0jXwrsvT0LsLiozDRM8REzxBdrbzp4lm8TkWuHDzNlUOniXjynMMrtxMTHoVftYyxhY+t283e+WuV5c/tOcKdM1eIfBZG+KMQjq3bze3Tlylas5yyzJkdBzmxYS/VuzTH1Nqc+KgY4qNiSMnD72L39RNUcS9OJfdiOJhY0aZELSwNTQm6lfEg9Iui1fi6rPp4xJXdi3Mr7FGOrQ8ruxfnzKPrxCXnzfXuVZ/D+Xb39WAquxenkltR7E2saF28JpaGpsrZqVsUqUrXMurXu8puxbgd9jjL76KxbyUK27ljbWSGs5ktXUo1wMXcNk9nvN546RC1C5ahlldpnM1s+LpMY6yNzNl57TgAHf3r0a9y5iRqwQ+vUN61CPW9y2FnbImPrSvflGvC9ef3lS3Rgh9epb53eSq7F8PW2ILiDl60L1mH4AeX1RJ3uWHthSDqe5enXqFyuJjb0aN8c2yNLdhy5TAAX5dpzODqHZTlncxsqOVVCkdTa7xtCjC8ZmfcLBwICN6qLNO2eG38nQphb2KFi5ktLYtWp3bBMuy9eTLX4xd57++//8bd3R19fX1KlSrFwYPZtwBet24dderUwcbGBlNTUypUqMDOnTtVygQGBqKhoaH2LzEx9ycheknSwJ+h3377DVtbW8aOHcvt27cxNzfH39+f4cOHAxkzUQ4bNoy7d+9iYGBAlSpVWLFiBZAx7srOnTvp168fZcqUwdDQkJYtWzJp0qRcjVFLS4uVK1fSt29fihQpgre3N9OmTaN69erKMv369cPIyEg56L+fnx/jxo2jR48eVKxYUa0b7vtq3rw5U6dOZfz48fTt2xd3d3cCAgJUYnndggUL6N69OyVLlqRAgQKMGTMmx+RdVsaPH09sbCxNmzbFxMSEgQMHEhUVpVImICCA33//nYEDB/Lo0SOsrKyoUKECDRs2BCAtLY1evXrx8OFDTE1NqV+/PpMnT1ZZx59//km/fv24ceMGxYsXZ9OmTcrumMWKFePAgQP89NNPVKlSBYVCgaenJ23atFHWX7RoEd26daNq1arY29szduxYLl26pNLya8GCBXz99deULl0ab29v/vrrL+rWzfwh5OjoyOHDhxk6dCj16tUjKSkJV1dX6tevr5KAfF337t0JDAzMcTZfc3PzN3/YbzBlyhSKFSvGrFmz+OWXX9DQ0MDf358NGzbQpEkTlbIvu6AeOHBAZR/R0dGhQoUK7N27N8tk3PLly9XGhMtNnqX9SIpN4MzWf4mPjsXC0YZ6vdthYmUOQHxULLHhmQOMp6WmcWLtHuIiY9DW0cbc0YZ6vdriUjSzS25yfBKHlm4lPjoWXQM9rFzsaTyoC7bueddSoEqt6sREx7By4VLCw8JxdXdlxLjfsbXPeBgQERbO82fPVer079ZT+f83r93gwJ792NrbMW/VIgC2b9hCakoKf474XaVe26860v7rTrm+DftvncZM34jOpRpgZWTKnfAnDN36N89iM7rbWRmaqfyQ0NLQoE3xWriY25GansaZx9fptX4iT2NUu+c5m9lSzMGLgZun87Ek7dqHhq4OBu1aomFoQNqd+8ROmwOvTDaiaWmhNsaOpq0N2gU9iJ06O8v1ahjoo9+8EZrm5iji40k5c56EDdsgm65W7+v4/UsY6xrQ3K8a5gbGPIwKYcKBpYTFZ5xrzfWNsTLM7O548M459LX1qF2oDO1K1iU+OZHLIXdYeXaPsoyFgQl/NOih/LuRb0Ua+VbkyrO7jNm3MFfjfx8+Nq7MaJHZ5b1v5YxxALddOcof+Rxfrbq1iY6KZuG8AMJCw3D39GDclAnYO2S09g4LDePZ08zWVI5Ojvw1ZQLTJ09j/ep1WNlY029Qf6rXzDzHJiQmMmncRJ6HhKCnp0cBV1d+Hj2CWnVr58k2+FXwJyE2noPrdxIbGY2NswNtB3+HuU1Gl7PYyGiiwt5tUPZTew6RlprG2qkBKsurfFGPai0b5Frsrzr96DpGugbU9y6Pqb4RT6LDmHVkvfKHt5m+ERavdXPT19alhGNB1l4IynKdVdyLo6OlzTflVK+b264cZfvVo7m+DV5lipIYm8CpLUHERcVg6WhLo74dM697kTHEhmfeV6WnpnFk9U7iIqPR1tHBwtGGhn074lo0s/XvpaBg0lPT2DV7pcp7lW5SnTJNVceCzS3BD65gpGtAk8KVMNM35nHUc6YeXKWcvMdM3xir14Y+MNDRw9/ZmxVnd2e7XjtjSwrZuDDpwPI8ift1n8P59uTDqxjpGtDItxJm+kY8jg5l+qHVKt/F68NQGGjr4u/kzYpsxn8z1NWjk389TPWNSEhJ4kFkCOODlnE3Iu/G8Dt89zymeoa0KVELCwMT7kc85bc9gTyPiwTA0tAUG2NzZfl9N09hoK1HQ5+KdC3TiLjkRM4/ucWiVybTWHVuHwqFgg4l62JpaEZ0YhzBD66w9MxO8sKB22cw1TOkg389LA1NuRf+hJ93zFFOemFpaIqtUea9lKaGJi2L1sDZ3Ja09DTOPb5J/01TlfdeAPo6uvSp1AprIzOSUlN4EBXCuP1LOHD7jNr7f47eNOTUf8nKlSvp378/f//9N5UqVWLOnDk0aNCAy5cvU6CAeuvof//9lzp16jBmzBjMzc0JCAigSZMmHD9+XDmuPoCpqanaME2v93bKTRqKtxm8SgjxnxMUFESNGjWIiIjIlYTVSw8fPsTFxUU53mBeSkxMxNvbmxUrVqhMRPFfs3XrVgYPHsz58+dz7FqVlfH7l+RRVB/P4BodufaGbgWfOm87N6rN6pXfYXywA9/PJLLHgDcX/ISZz55Ep+V5l9j+WBa3G0mlmT3eXPATd7jXbJ7l0bhgH4udqTWLT/73Z8ztVLoBfdbn7sPTj216iwFM+Xflmwt+4vpXbcM3q8bmdxgfbF7rYf/58+3idiPpvkZ9zOL/mn++HErzwDdPZPcp2/DVn9Sd2z+/w/hgu76dkt8hvJegmzkMG5LPqnu9W6+bcuXK4e/vz6xZs5TLfH19ad68OWPHvt2518/PjzZt2jBixAggo2Vc//79VYZjymvSTVUIkaN9+/axadMm7ty5w5EjR2jbti1ubm5UrVo1z99bX1+fRYsWvdN4fJ+iuLg4AgIC3jkRJ4QQQgghhBCfs6SkJKKjo1X+JSVlPTxAcnIyp06dUumFBVC3bl2OHDnyVu+Xnp5OTEwMlq9NIBUbG4urqyvOzs40btxYZdz0vCDJOCFEjlJSUhg+fDh+fn60aNECGxsbgoKC1GbLzSvVqlVT6yr6X9O6dWvKlSv35oJCCCGEEEIIkcs0NTQ+2X9jx47FzMxM5V92LdxCQ0NJS0tTG8/ezs6Op0+fvtVnMXHiROLi4mjdOnPsRB8fHwIDA9m0aRPLly9HX1+fSpUqcePGjff/0N9AmmkI8ZmqXr262qxH76NevXrUq1cvFyISQgghhBBCCCEyDRs2jAEDVIdR0dPTy7HO62PgKRSKtxoXb/ny5fz6669s3LgRW1tb5fLy5ctTvnx55d+VKlXC39+f6dOnM23atLfZjHcmyTghhBBCCCGEEEII8dHp6em9Mfn2krW1NVpaWmqt4EJCQtRay71u5cqVdOvWjdWrV1O7ds4TPWlqalKmTJk8bRkn3VSFEEIIIYQQQgghPlMan/B/70JXV5dSpUqxe7fqbNK7d++mYsWK2dZbvnw5X331FcuWLaNRo0ZvfB+FQsHZs2dxcHB4p/jehbSME0IIIYQQQgghhBCfvAEDBtCpUydKly5NhQoV+Oeff7h//z49emTMUj9s2DAePXrEokWLgIxEXOfOnZk6dSrly5dXtqozMDDAzMwMgFGjRlG+fHkKFixIdHQ006ZN4+zZs8ycOTPPtkOScUIIIYQQQgghhBDik9emTRvCwsIYPXo0T548oUiRImzbtg1XV1cAnjx5wv3795Xl58yZQ2pqKr169aJXr17K5V26dCEwMBCAyMhIunfvztOnTzEzM6NkyZL8+++/lC1bNs+2Q5JxQgghhBBCCCGEEJ8pDY3Pa4Synj170rNnzyxfe5lgeykoKOiN65s8eTKTJ0/Ohcje3uf1jQghhBBCCCGEEEII8QmTZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExparzbrKUi70nLOCGEEEIIIYQQQgghPhJJxgkhhBBCCCGEEEII8ZFIN1UhhBBCCCGEEEKIz5SGdFP95EjLOCGEEEIIIYQQQgghPhJJxgkhhBBCCCGEEEII8ZFIN1UhhBBCCCGEEEKIz5Qm0k31UyMt44QQQgghhBBCCCGE+EgkGSeEEEIIIYQQQgghxEci3VSFEEIIIYQQQgghPlMym+qnR0OhUCjyOwghhBBCCCGEEEIIkftO3LuU3yFkq6yrX36HkC+kZZwQQnzCJgQtze8QPtig6h24+fxBfofxQbxsXIiJiMjvMD6YiYUFMdHR+R3GBzExNeXSk1v5HcYH83Pw5Fl0aH6H8cHsTK2pNLNHfofxQQ73ms2RO+fzO4wPVtG9GM9jwvM7jA9iY2JJ9Mp1+R3GBzNt8wXRO/bkdxgfzLR+bWKeP8/vMD6IiY0N0SfP5HcYH8y0dElCosPyO4wPYmtqxZ3QR/kdxgdzt3bK7xDEZ0KScUIIIYQQQgghhBCfKemm+umRCRyEEEIIIYQQQgghhPhIJBknhBBCCCGEEEIIIcRHIt1UhRBCCCGEEEIIIT5TmtJN9ZMjLeOEEEIIIYQQQgghhPhIJBknhBBCCCGEEEIIIcRHIt1UhRBCCCGEEEIIIT5TGkg31U+NtIwTQgghhBBCCCGEEOIjkWScEEIIIYQQQgghhBAfiXRTFUIIIYQQQgghhPhMyWyqnx5pGSeEEEIIIYQQQgghxEciyTghhBBCCCGEEEIIIT4S6aYqhBBCCCGEEEII8ZnSkG6qnxxpGSeEEEIIIYQQQgghxEciyTghhBBCCCGEEEIIIT4S6aYqhBBCCCGEEEII8ZmSbqqfHmkZJ4QQQgghhBBCCCHERyLJOCFeExQUhIaGBpGRkfkdSq5zc3NjypQp713/7t27aGhocPbs2VyLSQghhBBCCCGE+H8i3VTF/6UjR45QpUoV6tSpw44dO/I7HCFyxeWgYM7tOkpCVAwWjraUb10Xh4KuWZZ9fO0uWyctUlvealRPzO2t1ZbfCr7IvnnrcC3uTd2ebXI99pxsWbeRdctXEx4WRgE3N7r360mR4kWzLBseGsa8GbO5ee0Gjx8+oumXLejer2eex6hQKPhn3jzWb9xITEwMfoULM3TwYDw9PHKst3ffPmb/8w8PHz3C2cmJnj16UKN6deXrAQsXsj8oiLv37qGnp0exokXp06sXbq6Z3+ucuXPZtWcPz549Q0dHB19vb3r26EGRIkXeHPPcuaxfvz4jZj8/hg4Zgqen55tjnj2bhw8f4uzsTM/vv6dGjRoqZVavXs3iJUsIDQ3Fw8ODgQMGULJkycyY//mHXbt2Zcbs40PPnj2zjFmhUNCvXz+OHD3KhPHjadK0aY7xvW77hi1sXLGWiLBwXNxd+bp3dwoXy/qzCQ8LZ+Hfc7l1/SZPHj6m4RdN6dbnu2zXfWjvASb9No6ylcrz4x8j3imud7V+9TqWL1lGeGgYbh7u9BnQl+IlS2Rb/uypM8yYMp27t+9gZW1N+87tadayhfL1A/uCWBK4iEcPHpGamoqzizNtOrajXsP6ebodb6O4gxftS9bFx7YA1kbm/LhtFgfvnMvvsJT2bd7J9jUbiQyPxMnVmfY9ulKoiG+WZU8eOs7+rTu5f/suqSmpOBVwplnH1hQtXUJZ5sD2PRzec4BH9x4A4OblQcuu7fDwLphrMa9bvZbli5cS9mL/6Tewf477z5lTp5k+eVrG/mNjTYdOHWj+5RfK12/fus382XO5dvUqT588pe+AfrRu31ZlHevXrGPDmnU8efIEAHcPD7765msqVKqQa9sFGeeIufv3sv7UCWISEvBzdmFI42Z42tq9Vf1dF87x0+oVVPMpzIT2nZTL15w4xtrg4zyJjADAw8aWbtVrUamQd67Gr9yGHdtYf+QwMQnx+Lm6MeTL1ng6OGZbZ9+5swTu3smD0OekpqXhYmNDxxq1aFimXJblA3bv5O8tm2hbrQYDv/gy1+L+Z8EC1m/alHntGzDgzde+oCBmz5uXee379ltqVKuWddyLFzNzzhzatWrFwH79lMvnzJ/Prr17eRYSgo62dsa1r3t3ivj55cp2zV23hvX79hETF4uflxdDvvoaT2eXbOus37eXbYf+5daDhwD4uLvTq01b/Dy9Mrdl4wb2nzzBvceP0dPVpVjBQvRu2x43x+y/57exfvVali9Zpjy++w7o94bj+wwzpkx75frQgeavXB/u3LrN/DnzlMd3nx/60bq96r1ffFwc82bP5d+gA0RERFCoUCH6DuyPr1/h996Ozes2smbZSsLDwnB1d6NH314UKVEs2/Lnz5zjn+l/c+/OXaysrWnVvg2NWqjeI6xfuYYt6zfx/FkIpuZmVKlela49vkVXTxeAC2fPsWbZSm5cvUF4WBgjxo6mYtXK770NnzJNpJvqp0Zaxon/SwsWLKBPnz4cOnSI+/fv53c4IhekpKTkdwj56lbwJY6u2knJhpVp8XN37L0KsGP6MmLDo3Ks12p0Lzr8NUD5z9TWUq1MTFgkx9fsxt6rQF6Fn61/9+5n7rRZtOncnmkLZlOkeFFGDhpGyNNnWZZPSUnBzNycNp3b4+6V84+B3LRw8WKWLV/OkIEDWbhgAVZWVvTq25e4uLhs65y/cIHhv/xCwwYNWL54MQ0bNODHn37i4sWLyjKnz5yhVcuWBMybx8xp00hLS6N3v34kJCQoy7gWKMCQgQNZsXQp8+bMwcHBgV79+hEREZFzzIsWsWzZMoYMHszCwMCMmHv3zjnm8+cZPnx4RszLlmXEPGyYSsy7du1i4qRJfN21K0uXLKFkiRL07dePp0+fqsY8eDArli9n3ty5ODg60qt37yxjXrZ8ObznOCeH9h0gYMY/tOzYhonzpuNb1I/fh4zg+bOQLMunJqdgam5Gy45tcfN0z3HdIU+fEThrHoWLffgPvzfZu2sP0ydNpXPXzsxbEkCxEsUY0m8Qz175TF/1+NFjhvQfRLESxZi3JIBOXTsxdcIUgvbtV5YxNTOlU9cu/L1gDgHLF9KgSSP+HD2GE0eP5/n2vImBjh43wx4y6d8V+R2KmuMHDrNsTgCN27Zk1My/KFTEl0k//0FYyPMsy1+/eBk//+L8MHo4I6ePw6d4Eab++if3bt5Rlrl6/hLlq1dm6LiR/Dz5DyxtrZkw/HciQsNyJea9u/YwbeIUOn/9FQuWLqR4yeIM6jtA5Zh81eNHjxncbyDFSxZnwdKFdO7ahSkTJhO0N3P/SUpMxNHZkR69e2JlZZXlemxsbejRuyfzFgUwb1EA/qVLMWzgEG7fup0r2/XSokP/suzoIQY3akrgd72wMjah98L5xCUlvbHuk8gIpu7cRklXN7XXbE3N6F2nHgu/68XC73pR2sOTQcsXcysk6+vPB23D3t0s27+PwV+2JnDAEKxMTOn99wziEhOzrWNmaEjXOvVY0H8Qy4cOp0nZCoxetoSjVy6rlb107x4bjhymoKNTrsa9cOlSlq1cyZABA1g4b17GdeSHH4iLj8+2zvmLFxk+ciQN69VjeWAgDevV48cRI7h46ZJ63FeusH7TJgpm8ZDI1cWFIT/8wIqFC5n3998Z174BA9547Xsbi7ZsYtm2bQz+qiuBv43Bysyc3mPHEPfKtfd1p65cpm6FSsz66RcWjBqNvbU1vf8cQ0h4uLLM6atXaFW7LgtG/caMH38iLS2NPn+OISGH7/lN9u7aw7RJU+nUtQvzlwRSvERxBvcb+Ibrw0CKlyjO/CWBdOramakTJqtcHxITE3FwcuS73t9jmc3xPe73Pwk+HszPo0awcPkSypQvyw+9+vE8m3PhmxzYs585U2fStnMHZgb8Q5FiRfl50I/Z3u89ffyEXwYNo0ixoswM+Ic2ndoza8oMDu3/V1lm3849LJg9l45fd+GfZYH88OMgDuwNImD23MxtTUjE3cuTngP6vFfcQnwIScaJ/ztxcXGsWrWK77//nsaNGxMYGPjGOocPH6ZatWoYGhpiYWFBvXr1lBf7HTt2ULlyZczNzbGysqJx48bcunVLWfdl185169ZRo0YNDA0NKV68OEePHn3r91AoFPz11194eHhgYGBA8eLFWbNmTY4xh4SE0KRJEwwMDHB3d2fp0qVqZaKioujevTu2traYmppSs2ZNzp17+9YHaWlpdOvWDXd3dwwMDPD29mbq1Km5UicgIABfX1/09fXx8fHh77//Vr728jNdtWoV1atXR19fnyVLlpCens7o0aNxdnZGT0+PEiVKqLR8fJvvIiwsjHbt2uHs7IyhoSFFixZl+fLlytfnzJmDk5MT6enpKvE2bdqULl26KP/evHkzpUqVQl9fHw8PD0aNGkVqaupbf7bv6sKeo3hXKolPZX8sHGyo0KYexhZmXD5wMsd6BiZGGJoZK/9paqpeFtLT09k/fz3+TapjYmORZ/FnZ/2KtdRtXJ96TRpSwM2V7v16Ym1ry7YNm7Msb+dgz3f9e1GrQV2MjIw+SowKhYLlK1fS9auvqFmjBl6enowaMYLExER27NqVbb3lK1ZQrkwZunbpgpubG127dKFsmTIsW7lSWWb6lCk0adwYTw8PChUsyMiff+bp06dcuXpVWaZ+vXqUK1sWZycnPD08+KF/f+Li4rhx82bOMS9fTteuXalZsyZeXl6M+vXXjJh37sw+5uXLKVe2LF27ds2IuWvXjJhfOUaWLltGs2bNaN68Oe7u7gwcOBA7OzuVc1b9+vUpV64czs7OeHp6ZsZ844bK+12/fp1lS5cy4pdfso0pJ5tXr6dWw7rUaVwfZ9cCdOvzHVa2NuzcuDXL8rYOdnTr04Ma9WphmMP+k5aWxpTfx9O2a0fsHBzeK7Z3sWrZSho1a0zj5k1xc3ej78D+2NjZsmHN+izLb1y3AVt7O/oO7I+buxuNmzelYdNGrFyS+T2VLOVP1RrVcHN3w8nZmVbtWuPh5cn5s/nfAu3Y/UvMPb6JA7fP5ncoanat20LVejWp1qAWjgUyWsVZ2lizb0vWx3r7Hl1p2KoZHt5e2Ds58GXX9tg5OnD2eOa5+buh/ajZpB4FPN1xcHGia7/vUCgUXD57Mct1vqsVS5fTuFkTmrzYf/oN/AFbO1s2rFmXZfkNa9djZ29Hv4E/4ObuRpPmTWnUtDHLlyxTlvH1K0yvfn2oXa8OOro6Wa6nctUqVKhckQKuBSjgWoDvevXAwNCAyxdyZ7vgxbns6GG6Vq1BzcJF8LKz59cvWpGYksLO82dzrJuWns4va1bSvUZtHC3UH0RV9fGlUiEfXK1tcLW2oWftehjq6nLxQe4+xFUoFCw/sJ+udetRs3gJvBwd+bVjJxJTktl5KjjbeqUKFqJG8RK429vjbG1Du+o18HJ04uztWyrl4pMSGbE4kOFt22NiaJi7ca9eTdfOnalZrRpeHh6M+uknEpOScr72rVpFudKl6dqpE26urnTt1ImypUqxbNUq1bjj4/ll1Ch+GjIEExMTtfXUr1uXcmXKZF77+vTJuI7cuqVW9p23a8d2ujZvTs0yZfFyceHXHj1JTE5i55HD2db7vVcfWtWpi7ebG26OTvz0TXcU6QqCL2Xu79OHDqNJtep4OrtQyNWVEd99z9OwUK7cuZPtet9k5bIVNHrl+O47sD+2drasz/b6kHF8v7w+vDy+V6gd372pXbcOulkc30mJSRzYH8T3fXtSwr8kzi7OfN39GxwcHdmwNuvzypusW7maeo0b0KBpIwq4udKjf29sbG3Zsn5TluW3btiMrZ0tPfr3poCbKw2aNqJuowasWZ65H125eAm/okWoUbcW9g72lCpXhup1anL96nVlmTIVyvFV925Url71veIW4kNIMk7831m5ciXe3t54e3vTsWNHAgICUCgU2ZY/e/YstWrVws/Pj6NHj3Lo0CGaNGlCWloakJHcGzBgAMHBwezduxdNTU1atGihlqz56aefGDRoEGfPnqVQoUK0a9dOmZx503v8/PPPBAQEMGvWLC5dusQPP/xAx44dOXDgQLZxf/XVV9y9e5d9+/axZs0a/v77b0JCMluDKBQKGjVqxNOnT9m2bRunTp3C39+fWrVqEf7KU7ycpKen4+zszKpVq7h8+TIjRoxg+PDhrHrthupd68ydO5effvqJP/74gytXrjBmzBh++eUXFi5cqLKuoUOH0rdvX65cuUK9evWYOnUqEydOZMKECZw/f5569erRtGlTtR/4OX0XiYmJlCpVii1btnDx4kW6d+9Op06dOH48o7VIq1atCA0NZf/+zCeIERER7Ny5kw4dOgCwc+dOOnbsSN++fbl8+TJz5swhMDCQP/74460+13eVlppG6P0nOBVWfXLsVNiDZ7ce5Fh33e//sGTwJLZOWsTja+o3g2e2/Iu+iSE+lUtmUTtvpaSkcPP6dUqWKa2y3L9MKa5cVH/yn18ePX5MWFgY5ctldg3S1dXFv2RJzl+4kG298xcvUq6canei8uXK5VgnNjYWAFNT0yxfT0lJYf2GDRgbG1OoYPZd3B49epQRc/nyqjH7+3P+/PnsY75wgXKv1AEoX6GCsk5KSgpXr15V+SyU25XNelNSUli/fn1GzIUKKZcnJiby088/M3jIEKyt1btOv0lKSgq3rt2keBl/leUlypTk6qUr77y+V61etBxTczNqN6r3Qet5GykpKVy/eo0y5cqqLC9TriwXz2ed1Lh04aJa+bLly3H18tUsHwooFApOnTjJg3v3Ke5fItdi/9ykpqRw98Zt/PyLqyz38y/GrSvX3mod6enpJCYkYGRinG2ZpKRk0lJTcyzztpT7T/nX9p/y5bh4PutzzaULFylTXvUYLluhHFcvX3nvh0ppaWns2bmbxIRE/IplPczA+3gUEUFYbAzlvTLPd7ra2vi7uXP+wb0c684L2ouFkRHNSpV54/ukpaez68I5EpKTKeqSu63EH4WFERYdTXmfzK7Outo6+Ht6cf4tkzQKhYIT165yL+QZ/q90iwT4a/UqKhX2o5y3T+7G/fLaVzZz39LV1cW/RAnOX8w+4Xr+4kXKlVXdH8uXK6dWZ9ykSVSqWJFyZd78/aSkpLB+48aM64iX1xvL5+TR8xDCIiMpXzSze6Sujg7+Pr6cv3E9h5qqEpOSSE1LxTSHBzuxL1oQmhq/37H+8vgum+X1IYfj+x2uD1lJS0slLS0NXV09leV6+rqcP5v9PUR2UlJSuHHtOv5lX7vfK1uaKxfVW0xCRqLt9fKlypXmxtVryu3wK16UG9euc+1yxjX/yaPHBB89TtmKWXfl/txpaGh8sv/+X8mYceL/zvz58+nYsSOQ0TojNjaWvXv3Urt27SzL//XXX5QuXVqlZZbfK+NRtGzZUm39tra2XL58WWX8o0GDBtGoUSMARo0ahZ+fHzdv3sTHxyfH94iLi2PSpEns27ePChUyxlnx8PDg0KFDzJkzh2pZjLFx/fp1tm/fzrFjx5Q/9ufPn4+vb+aN3v79+7lw4QIhISHo6WVcTCdMmMCGDRtYs2YN3bt3f9NHiY6ODqNGjVL+7e7uzpEjR1i1ahWtW7d+7zq//fYbEydO5IsvvlCWeZnUerX1Wf/+/ZVlXsY/dOhQ2rbNGLdm3Lhx7N+/nylTpjBz5kxluZy+CycnJwYNGqQs26dPH3bs2MHq1aspV64clpaW1K9fn2XLllGrVi0gY3wsS0tL5d9//PEHP/74ozJWDw8PfvvtN4YMGcLIkSPf+Lm+q8TYeBTpCgxNVW/4DEyMSIjOusuhoZkxVTo2xtrVgbSUVG4cv8DWyYtpPKALDoUyxiN7evM+1w6f4Ytfsh8zKy9FR0WRnpaOuaVqizxzSwsiwt4uYfwxhIVldCWzslRtWWFlacmTbLqJvKyXVZ2X63udQqFg0tSplCheHK/XuuwcPHSI4b/8QmJiItbW1sycNg1zc/OPHnNkZCRpaWlYvlbG0sqK0Ne26+DBgwz/6afMmGfMUIl54qRJFCtWjOrZjCP0JjFR0aSnp2NuYa6y3MzCgsjw9+/GdOXCJfZs3cmkeTPeex3vIurFZ2qh9plaEJ7NvhIeFo6llepxY2FpSVpaGpGRkcrkZmxsLC0bNic5ORktLS1+GDpQ7UeayBQTHUN6ejqmavuUORfDI99qHTvXbiYpMYmyVStmW2bNgqVYWFniV/LDk1ZR2R2TlhaEhWZ9Hg0LC6Pca+ddyyz2n7dx6+ZNenTtTnJyMgYGBowZ/yfuHjl3AX8XYbExGfEZqSYzLI2MeZrDRFzn7t1l0+mTLP2+b47rv/nsKV/PnUVyaioGurqMb9cRj7cci+5thcVEA2D5WusvSxNTnkbkfK2LTUig4YjhJKemoqWpydBWbSj3SlJv1+mTXH34gIUDh+RqzABhLx7cql0TLCx48iz7rrxh4eFYWajuX1YWFsr1Aezcs4er16+zaO7c16urOHj4MMNftOq2trJi5uTJOV773kbYi/3G0sxMZbmlmRlPQ0Pfej0zVizHxtKSskWyPo4VCgWTly6mhLc3Xi7Zj0WXk+yuDxZWloRnc58UFhZOWavXyr/j8W1oZESRokVYOD8AN3dXLCwt2bNzN5cvXsb5PbYlOjLjfs/itfOOhYVFttsRER6BhcXr1zkL0tLSiIqMwsraiuq1axIVEcnA7/uhUChIS0ujcYumtOnU/p1jFCIvSDJO/F+5du0aJ06cYN26jCbU2tratGnThgULFmSbjDt79iytWrXKdp23bt3il19+4dixY4SGhipbxN2/f18lGVesWOYTNocX3ZpCQkLw8fHJ8T0uX75MYmIiderUUVmenJysMiD6q65cuYK2tjalS2c+MfLx8VG5QTl16hSxsbFqY70kJCSodLN9k9mzZzNv3jzu3btHQkICycnJlChR4r3rPH/+nAcPHtCtWze+/fZbZZ3U1FTMXrsxenX7oqOjefz4MZUqVVIpU6lSJbWutzl9F2lpafz555+sXLmSR48ekZSURFJSkkqXxw4dOtC9e3f+/vtv9PT0WLp0KW3btkVLSwvI+GyDg4NVWsKlpaWRmJhIfHw8hll0E3n5Pq96mSTNC+b21ioTNdh5uhAXHsX53UdxKORKcmIS+xdsoEqnxugb5163lvfx+hMzhUKRr0/Rtu/YwZhx45R/T5k4EXjPON+hzl8TJnDz5k3m/fOP2mulS5Vi2aJFREZFsX7jRob99BOB8+crf4C/jFlDQwOFQsGUyZOzjznniN8q5rf5LEqXLs2ypUuJjIxk/YYNDBs+nMCAACwtLTlw4AAnT55k6ZIlb4rmjdQ+T4UCjfccxDghPp6pf0yg5+C+mJqbvblCLlL/TLPYtlfLq22jQm25oaEh85cGkhAfz6ngU8ycPB1HJ0dKlvJHZE/tk834Mt5Y79j+Q2xYspq+I4dku/9sW72R40GHGPrXKHR0dXMh2gxZ7z/vUl59/3kbBVxdCVi2kNiYWIL27eePX39j+j9/v3dCbvu5M4zdvEH59+QOXV7Eq1pOkRFsluKSkhixdhXDm36B+RuGM3C1smbp932ISUxk3+WL/LpuDXO+/vaDEnLbT55g7MrMLuOTv8uYZOj1z1ZB9r02XjLU02PpkGHEJyURfP0akzesw8nKmlIFC/E0IoKJa9cwvWdv9HSy7kr8TnHv2sWY8eOVf0/5668XcatSZLFMzev7F5n73NNnz5g4dSozJk16431QaX9/lgUEZFxHNm9m2IgRBP7zD5avJWlysv3wIcbOz0z6TR48NCPE178PhXrc2Vm0eRO7jh5m9s8j0MvmOP4rMICb9+8xd8SoLF9/F2phKRQ5H9/Z7Gvvcnz/PHoEY0ePoUXDZmhpaVHIuxC169Xh+rW3bz2oHph6XDneR2VxXstYnLH83OmzrFi0lF4D++Hj58vjh4+YPXUmFgGL6dC10+trE+Kjk2Sc+L8yf/58UlNTcXLKHMBWoVCgo6NDRIT6ExYAAwODHNfZpEkTXFxcmDt3Lo6OjqSnp1OkSBGSk5NVyum8ciP08iLxMnGX03u8LLN161aVuCH7ZI3ypjmHC1h6ejoODg4EBQWpvfa2TxVXrVrFDz/8wMSJE6lQoQImJiaMHz9e2aXzfeq83N65c+eqdeF7mex6Kasxwd4mCZDTdzFx4kQmT57MlClTKFq0KEZGRvTv31/l+2zSpAnp6els3bqVMmXKcPDgQSZNmqR8PT09nVGjRqm02ntJX18/y89l7NixKi0GAUaOHIlx9TfPpqdvbIiGpgbxr7WCS4iJw8D07cdNs/Vw5ubxjG4NMc8jiA2LZOfMzAHUX+5X877/jdaje2Fqoz7GTm4yNTNDU0tTrRVcVESkWmu5j6lqlSoqs7Ulv5g8JDQsTOWJcnhEhFprlFdZWVmptYLLrs5fEybw78GD/DN7Nna2tmqvGxgY4OLigouLC0WLFKHFl1+ycfNmur5onfkyZiMzM+JiY5X7c5YxZzNY89vEbG5ujpaWllqZiPBwtdYTKjEXLUqLL75g48aNdO3alZMnT/Lw4UNq1KypUmfI0KGsWr2aH//6NdsYXzIxM0VTU5OI11rBRUVGYmZp/sb6WXn66AkhT58xZljmsfryuPiyZmNmLJ6LvVPujiFn9uIzfb0VXER4hFpriJcsrSwJe+24iQiPQEtLC7NXkkCampo4uzgDUNC7EPfu3mVJ4GJJxmXDxNQETU1NoiIiVZZHR0ZhZpFzcvb4gcMETJlFz+ED8PPPenbA7Ws2sWXFOgaPHYGLR9YzYb8rs+yOyYgILK2y3n8yjvNwtfKv7z9vQ0dHR9lSxqewL1cuX2H18pUM+enHd1rPS1V9ClPklRktk18M5xEWG4u1SWb3/Yi4WKyy6fr3MDyMx5ERDFyWOaN4+ovjuPyvP7Gm7wCcLTPOgzra2rhYZZwjCzs5c/nRQ1YcO8Lwpi3UV/y221CkGEVemTAi+UWXurCYaKxfeegYERODlUnWQxK8pKmpiYtNxjXB29mFu8+eEbhnF6UKFuLqg/uEx8bQeULmw6O09HTO3LrJ6oMHODxxKlqvjRObY9yVK1OkcOZMmcrrSHj4u137LC1VWsEp67y4B7967RrhERF0+uabzLjT0jhz7hyr1q3jyL59yvtBAwMDXJydcXF2zrj2tW3Lxi1b6Nrp7RMtVf1LUeSVrr3JqRnX9LCoSKxf+V0QER2Fldmb9//FWzcTsGkDM4f9RMECWR/H4xcG8O/pk/zzy6/Y5XDNfZPM64P6+T6764OVlaXa9SQyi+vDmzg5OzPjn79JSEggLi4Oa2trRg77BQfHd78Gmppnfb8XGRGp1lruJQtLCyLCXy+fsR2mZhnHzaK5AdSsV4cGTTN6w7h7epCYmMi0cZNo16WD2jjJnzvN/+PuoJ8qScaJ/xupqaksWrSIiRMnUrduXZXXWrZsydKlS+ndu7davWLFirF37161RAlkdOW4cuUKc+bMoUqVKgAcOnTonWPL6T0KFy6Mnp4e9+/fz7JLalZ8fX1JTU3l5MmTlH0xLse1a9eIfKXLhr+/P0+fPkVbWxs3N7d3jhkyuplVrFiRnj17Kpe9qVXdm+rY2dnh5OTE7du3lWOwvQ1TU1McHR05dOgQVatmDsJ65MgR5WfwNg4ePEizZs2UXZnT09O5ceOGShdfAwMDvvjiC5YuXcrNmzcpVKgQpUqVUr7u7+/PtWvX8HqHcUuGDRvGgAEDVJbp6ekx/WjOE3UAaGlrYV3AgUdXbuNeMnNMmEdXbuNa3PutYwh78BQDs4wfL2b21rQc0UPl9ZMb95OSmESFNvUxesMPz9ygo6ODV6FCnAk+RcVqmdPMnzl5ivKVs+/ildeMjIxUEsEKhQIrKyuOnziBj3fG552SksLpM2fo06tXtuspVqQIx0+coEO7dsplx48fp1jRzC4tCoWCvyZOJOjAAebMnImTo+NbxagAlQTyy5hNLCyIiY7OjPn4cdWYT5+mT5/sZxQrVrQox48fp0P7zC4ex48dU7Y21dHRwcfHh+PHj1OjRo3MMidOUO2V4zLLmBUKZWKzS5cuNGvWTOX1tu3aMeCHH6jfoAHRJGe1ChU6Ojp4entx7uQZylfJ3F/OnTxD2Urlc6iZPacCLkxe8LfKsuXzF5GQkMDXvb/Dyvbdx7Z7Ex0dHQr5eHPyeDBVa2ReA06eCKZy1cpZ1vErWoQjB1UHGg8+fgKfwj5oa2d/66dQQEry//fM1DnR1tHBraAHl86cp1SlzIdFl8+cp0T57Me1Orb/EAsm/02PH/tTvFypLMtsX72RzcvXMvCPn3EvpD5z5Pt6uf8EHw+mWo3qyuUnj5+gcrUqWdbJ2H9U72WCj53Ap7BvjvvPW1EoPmj2cyM9PYxeeRCpUCiwMjbh+M0beDtknB9TUlM5ffcOferUz3IdbtY2LO/VT2XZ7L27iUtKYmDDxtiZZn99Uygyk2fvvQ36+hi98mBOoVBgZWrK8WtX8X6RaExJTeX0rZv0adIsu9VkE59CGV+ZQt4sH/qTyuujly3Gzc6OzrXqvlMiDsDI0BCjV1r2K68jwcH4vBjvMyUlhdNnz9KnR4/sVpNx7QsOpkObNsplx0+coNiL3iRlSpdmxaJFKnVGjxmDq6srXTp0UHsw+yqFQqH2MPyN22VggNErD8UVCgVW5uYcv3ABb7eMFpwpqamcvnqFPm1z7t64eMtm5m9Yx/ShwynsoX4cKxQKxi8MIOhkMLN/HoFTFg/X3kXm8X1C5foQfCKYylWzP74Pv3Z9OPEW14fsGBgYYGBgQEx0NCeOHef7Pj3fXOk1Ojo6FPTOuN+r9Mp56Uxw9vd7vkX8OH5YdTK80ydOUtDHW7kdSUmJagk3TU1NFApFjuOFC/GxSDJO/N/YsmULERERdOvWTa2745dffsn8+fOzTMYNGzaMokWL0rNnT3r06IGuri779++nVatWWFpaYmVlxT///IODgwP379/nxx/f/WlvTu9hbW3NoEGD+OGHH0hPT6dy5cpER0dz5MgRjI2NVcZQe8nb25v69evz7bff8s8//6CtrU3//v1VWuDVrl2bChUq0Lx5c8aNG4e3tzePHz9m27ZtNG/eXKULaHa8vLxYtGgRO3fuxN3dncWLFxMcHIy7e/bdT96mzq+//krfvn0xNTWlQYMGJCUlcfLkSSIiItQSVq8aPHgwI0eOxNPTkxIlShAQEMDZs2eznEk2p/jWrl3LkSNHsLCwYNKkSTx9+lQlGQcZXVWbNGnCpUuXlIm7l0aMGEHjxo1xcXGhVatWaGpqcv78eS5cuMDvv/+e5fvq6el9ULfUorUrEBSwHhtXB2w9nLl68DSx4VH4Vs344Xdi/V7iImOo0bU5ABf2HMPE2hwLBxvS0tK4efwCd05fofZ3Gd2ltXW0sXRSvUnUNcz48fD68rzUom1LJv42joI+hfApUpgdm7by/FkIDZs3ASBw9jzCnocy8JfM4+7WjYxZRBMSEomKjOTWjZvoaOtQwD13Wpq8TkNDg3Zt2hCwcCEFXrT0Cli4EH19feq/kvgfMWoUtjY29H6RiG7bpg3dv/+ewEWLqF61KkH//svx4GDmz5mjrDNu/Hh27NrFxL/+wtDISDnumrGREfr6+iQkJLAgMJCqVapgbWVFVFQUq9euJSQkhNovxjDMNuZ27QgICMiMOTAwI+Z6mZMSjBg5MiPmF+fGtm3b0v277whcuJDq1aoRdOAAx0+cYP68eco6Hdq3Z8TIkfgWLkyxokVZt349T58+VY6vmZCQwIIFC6hatSrW1tYZMa9ZoxKztbV1luPW2Nvb4+LiwqUnb9eVvkmrFkwbMxEv74J4+/mwa/MOQp89p27ThgAs+SeAsNAw+g3PHCfyzo2MdScmJBAdFcWdG7fQ1tHBxa0Aunq6uHq4qbyH0YvWN68vz02t27fhj5G/4V3YB7+iRdi8fiMhT5/RrGVG65w5M2YR+jyUn0ZlzDrb7IvmrF+1lhmTp9G4eVMuXbjI1o1bGPHHr8p1LglYhHfhjHEyU1JTOXb4KDu3bmfgj4OyCuGjMtDRw9nMRvm3o6k1Ba2diU6M41ns+4/3lxvqftGYueOn41bQEy/fQhzYvoewkFBqNMo41lcvWEpkWDjfDs5Iah/bf4h5E2bQvkdXPH0KEvWipaaOnq5yxt5tqzeyftEKvhvaD2s7G2UZPQN99N/QOv9ttO3Qjt9GjMLH14cixYqyad0Gnj19RvMX+8/sGX/zPOQ5v4zOGNO0ecsWrFu1humTptKkRTMunr/Alo2b+fWP0cp1pqSkcPf2nRf/n8rz58+5ce06BoYGypZwc2bOonzFCtja2REfH8eenXs4c+oME6dN/uBteklDQ4N2FSoRcDAIFytrXKysCPw3CH0dHeoVK6EsN3LtKmxMTeldpz56Ojp42dmrrMf4RXLs1eUzd++kYsFC2JmZE5+cxK4L5zh99zbTOnXNtfiV21CtBgG7d+JibYOLjS2Bu3eir6NLvVcmlxi5ZCE2Zub0fpGgC9i9k8IuBXCytiE1LZXDly+xNfg4P7bOGDfXSF8fr9ce4Bjo6WFmZKy2/L3jbtWKgMWLKeDsnHEdWbQIfT091Wvfb79lXEdeJOjatmpF9969CVyyhOpVqhB08CDHT55k/otxk40MDfHy8FB5L319fcxNTZXLExISWLBoEVUrVcq8jqxfT8jz59R+5UHQe29X/QYEbNqAi709LvYOBG5cj76uHvUqZg6FMnLWTGwsLOndNuOB2qLNm5i9ZhW/9+qDg40NoS8egBvq62P4Yv8aF7iAnUcOM2HAIAz1DZRljA0N0X/Pbult2rfl95Gj8Snsi1/RImx6cX1o3rI5ALNnzCL0+XN+HjUCgGZftGDdqrVMnzyVJs2bvbg+bGbkH5kNArI/vg2VramPHz0GCnBxLcCjhw/5e+pMXFwL0LBp4/faji/atGL8b2Mp6OONb5HCbN+4hZBnz2jUIuN+b8GsuYSFhjL4l2EANGrehE1rNzBn2t80aNqIKxcvs3PLdn789WflOstVqsD6FWvwLOSFT+GMbqqL5gZQvnJFZVI3IT6Bxw8fKes8ffyEW9dvYmJqgq197o4PKcTrJBkn/m/Mnz+f2rVrqyXiIKNl3JgxYzh9+rTaa4UKFWLXrl0MHz6csmXLYmBgQLly5WjXrh2ampqsWLGCvn37UqRIEby9vZk2bRrVq1d/p9hyeg/ImNDA1taWsWPHcvv2bczNzfH392f48OHZrjMgIIBvvvmGatWqYWdnx++//84vv/yifF1DQ4Nt27bx008/8fXXX/P8+XPs7e2pWrUqdnZvd/Hp0aMHZ8+epU2bNsof9z179mT79u0fVOebb77B0NCQ8ePHM2TIEIyMjChatCj9+/fPMZ6+ffsSHR3NwIEDCQkJoXDhwmzatImCOcwq+bpffvmFO3fuUK9ePQwNDenevTvNmzcnKipKpVzNmjWxtLTk2rVrtG+v+qS0Xr16bNmyhdGjR/PXX38pWwt980qXi9zmWcaPpLh4Tm/9l/ioWCwdbanfuz0mVuYAxEfFEheeuQ3paWkcX7ObuMgYtHW0MXe0oV7vdhQo+vaf1cdQtVYNoqOiWR64hPCwcFzd3Rg1fozyBik8LJznz0JU6vTtmvlE/ua16wTt3oetvR0Ba94+KfuuunTqRFJSEn+OH09MTAxF/PyYMXWqSgu6p0+fqnQRKF6sGH/89huz5sxh9j//4OzkxNjff1cZa3LNi/Etv+up+qR55M8/06RxYzQ1Nbl79y5btm0jMjISMzMzCvv6Mnf2bDxf+zGjFnPnzhkxjxuXGfP06TnHXLw4f/zxB7NmzWL27Nk4OzszdswYlZjr1q1LVFQU8+bNIzQ0FE9PT6ZOmaIcn1EZ89atmTEXLszcf/7B0zP3WgQBVK5ZjZjoGFYtXEZEeDgF3N34adwo5f4TERZB6LPnKnUGfpvZMvDW9Zsc3BOEjZ0tc1YG5mps76JW3dpER0WzcF5G8tDd04NxUyZg75CROAgLDePZ08wB0x2dHPlrygSmT57G+tXrsLKxpt+g/lSvmfkjNSExkUnjJvL8xSQ+BVxd+Xn0CGrVzXr81I/Jx8aVGS0yH7z0rZzxkGDblaP8sW9hdtU+inLVKhEXHcumpWuIiojAydWFH34bjrVdRvIwKjyCsJDMQd6Dtu0mLS2NxTPnsXhmZtK6Uu1qfDMoI8m9b/NOUlNSmfn7RJX3atahFc07ZT0Z0ruoVbc2UVFRBM5boNx/xk+diP2LYzKr/Wf81IlMnzSVdavXYm1jTf9BP1C9Vub+E/o8lK4dMh8GLl+8jOWLl1HCvyQz/slIqoSHhfPbiFGEhYZhZGyMZ0FPJk6brDaz64fqXLkqSSkpjNuykZjEBPycXJje+WuVFnRPoyLfeazR8LhYRq5bRWhMDMb6+njZ2TOtU1fKeeX+dbJzrToZ27BmJTHx8fi5ujH9+94qLeieRkSobENicjLjVq8kJCoSPR0dXG3tGN3pK+r6Z936Mi906dAh4zoyaVLGdaRwYWZMnqzSgu7ps2cqrZOKFy3KH7/+yqy5c5k9b17GtW/0aJXhH95EU1OTu/fusWX7diKjojAzNc249s2c+cZr39vo3LgpScnJjAtcQExcHH6eXkz/cbhKC7qnYaEq38eaPbtISU1l6FTVZPO3X7Ske8uMc9jaPbsB6PH7aJUyI7r3oEm16u8Va8b1QfX4/mvKhByP77+mTGT65KmsX70Oaxtr+g36QeX6EPo8lK87fqX8e8WSZaxYknF8T5+TMSFaXGwcc2bO4nnIc0xMTaleszrf9vzuvVvPVqtdg+joaJYGLCIiLBxXDzd+mzAWO/uM61x4WDghr9zv2Ts68NuEscyZNpMt6zZiaW3F9/17U7lGZiv89l06oaGhwcJ/FhD2PBQzC3PKVarAV927Kctcv3qNoX0yrzf/TJ8FQO0G9Rj089D32pZP1f/zrKWfKg2FtNEUQohP1oSgvEsgfSyDqnfg5vMH+R3GB/GycSEmIn9b5OSGl91U/8tMTE3fumXcp8zPwZNn0W8/M9+nys7Umkozs++S9l9wuNdsjtw5n99hfLCK7sV4HvPpzDT9PmxMLIleuS6/w/hgpm2+IHrHnvwO44OZ1q9NzPPnby74CTOxsSH65Jn8DuODmZYuSUh01jNo/1fYmlpxJ/TRmwt+4tytnd5c6BN09dmd/A4hWz52uTfL9n/J/9eohUIIIYQQQgghhBBC5CPppiqEEEIIIYQQQgjxmdJAuql+aqRlnBBCCCGEEEIIIYQQH4kk44QQQgghhBBCCCGE+Eikm6oQQgghhBBCCCHEZ0pTQ9phfWrkGxFCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpaMhsqp8aaRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0pRuqp8caRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0kC6qX5qpGWcEEIIIYQQQgghhBAfiSTjhBBCCCGEEEIIIYT4SKSbqhBCCCGEEEIIIcRnSkNmU/3kSMs4IYQQQgghhBBCCCE+EknGCSGEEEIIIYQQQgjxkUg3VSGEEEIIIYQQQojPlKZ0U/3kaCgUCkV+ByGEEEIIIYQQQgghct/98Cf5HUK2Clg65HcI+UJaxgkhxCdsUfC2/A7hg3Uu05CQ6LD8DuOD2JpasfLM7vwO44O1KVmHqMUr8zuMD2LWqQ3LTu/M7zA+WHv/eiw+uT2/w/hgnUo34Mid8/kdxgep6F6MSjN75HcYH+xwr9msOrsnv8P4IK1L1Cbm/oP8DuODmRRw4dyj6/kdxgcr7lSICUFL8zuMDzKoegf2Xg/O7zA+WK1CZf7z1772/vX4+8ja/A7jg/Ws2DK/QxCfCUnGCSGEEEIIIYQQQnymZDbVT49M4CCEEEIIIYQQQgghxEfyQS3jTp06xZUrV9DQ0MDX1xd/f//ciksIIYQQQgghhBBCiM/OeyXjQkJCaNu2LUFBQZibm6NQKIiKiqJGjRqsWLECGxub3I5TCCGEEEIIIYQQQrwjDaSb6qfmvbqp9unTh+joaC5dukR4eDgRERFcvHiR6Oho+vbtm9sxCiGEEEIIIYQQQgjxWXivlnE7duxgz549+Pr6KpcVLlyYmTNnUrdu3VwLTgghhBBCCCGEEEKIz8l7JePS09PR0dFRW66jo0N6evoHByWEEEIIIYQQQgghPpymzKb6yXmvbqo1a9akX79+PH78WLns0aNH/PDDD9SqVSvXghNCCCGEEEIIIYQQ4nPyXsm4GTNmEBMTg5ubG56ennh5eeHu7k5MTAzTp0/P7RiFEEIIIYQQQgghhPgsvFc3VRcXF06fPs3u3bu5evUqCoWCwoULU7t27dyOTwghhBBCCCGEEEK8Jw3ppvrJea9k3Et16tShTp06uRWLEEIIIYQQQgghhBCftbdOxk2bNu2tV9q3b9/3CkYIIYQQQgghhBBCiM/ZWyfjJk+e/FblNDQ0JBknhBBCCCGEEEII8QmQ2VQ/PW+djLtz505exiGEEEIIIYQQQgghxGfvvWZTfSk5OZlr166RmpqaW/EIIYQQQgghhBBCCPHZeq9kXHx8PN26dcPQ0BA/Pz/u378PZIwV9+eff+ZqgEIIIYQQQgghhBDi/Wh8wv/9v3qvZNywYcM4d+4cQUFB6OvrK5fXrl2blStX5lpwQvw/u3btGmPHjiUpKSm/QxFCCCGEEEIIIUQuea9k3IYNG5gxYwaVK1dG45WBAAsXLsytW7dyLTgh/l/FxMTQokUL3N3d0dPTy7X1urm5MWXKlPeuf/fuXTQ0NDh79myuxSSEEEIIIYQQQvw/eesJHF71/PlzbG1t1ZbHxcWpJOeEyA1HjhyhSpUq1KlThx07drxz/V9//ZUNGzb8pxJIXbp04ZtvvqFt27b5HYr4Dzm5+xDHtu0nNjIaGyd76nRsTgEfzzfWe3D9Not/n4mNsz3fjhmsXH5m/1EuHAzm+cOnANi7O1O9dSOcPF1zLeb1q9eyfMkywkLDcPNwp++AfhQvWSLb8mdOnWHGlGncvX0HK2tr2nfuQPOWLZSv37l1m/lz5nHt6lWePnlKnx/60bp9G7X1PA95zqzpMzl+9BhJiUm4FCjAj78Mw9vXJ1e268Sufzm0eS+xkVHYODvQoHNL3Hy9six77+otdi3bSOjjp6QkpWBuY0npWpWo2KimSrkj2/YTvPsgUaERGJoY4VeuJLXbNUVHVydXYs6KQqFg7r/72XDmFDGJCfg5OjO4QWM8bdTvAbKy69IFfl6/mqqFfJjQur3KayHR0czYt4sjt26QlJJKASsrfm7cHF8Hx7zYFBXBuw5yZMteYiKjsXW2p17nlri+xbFy/9ptAkdPw9bFgR5/Ds3zOF91cvchjm7dpzy+63Zq8XbH97XbLPp9BrbO9nw7dohy+el9R7lwKJjnD54AYO/uQo02uXt8Z2Xf5p1sX7ORyPBInFydad+jK4WK+GZZ9uSh4+zfupP7t++SmpKKUwFnmnVsTdHSJZRlDmzfw+E9B3h07wEAbl4etOzaDg/vgnm6HW+juIMX7UvWxce2ANZG5vy4bRYH75zL77CUju/8l0Ob9xAbGYWtswMNunyZw3nqJruWbuT542ekJCVjbmNJmdqV1c9TW/dx4uV5yjTjPFWnXbNcO08pFAr+WbyI9Vu3ERMbg5+PD0P79MXTzS3HensP/svswEAePnmCs4MDPbt+TY3KlZWvx8XHMzswkP2HDxERGYm3lxcDe/bEzzvzmhCfkMD0efM4cOQwUdHRONjZ07ZFc75s0vSDt2vnxq1sWrmOyLAInN0K8FWvb/Et5pdl2YiwcBbNms/t67d4+ugxDVo04ave36qVi4uNZfn8xZw4eJS4mFhsHezo1KMb/uVLf3C82bkcFMy5XUdJiIrBwtGW8q3r4lAw63PK42t32TppkdryVqN6Ym5vrbb8VvBF9s1bh2txb+r2VL+u55YDW3ezZ902oiIicSjgRKtvO+Lll/W9wZkjwRzcvpeHt++RmpKCQwFnGrX/gsL+xZRlJg/7nRsXr6rV9StdnF4jB6stzyv/xeveuX3HOL39IHGRMVg52VK1fSOcCrm/sd7jG/dY8+dcrJzs6DC6j3J5WmoaJ7cGceXwGWIjorFwsKZSq/q4FS2Ul5vxyZA8zafnvZJxZcqUYevWrfTpk7Fzv/xi586dS4UKFXIvOiGABQsW0KdPH+bNm8f9+/cpUKBAfoeU59atW5ffIfznpKSkoKOTd0mJT93lY2fYvWQD9b/6EpdC7pzed4QV4//hu3E/YmZtkW29xPgENs1ehrtfQWKjYlReu3flJoUr+ONcyB1tHW2ObtnH8nGz6f7nUEwtzT845r279jBt0lQGDB1E0eLF2LRuA4P7DWTxqqXY2durlX/86DFD+g+kSfOm/DJ6JBfOnWfSuAmYW5hTvWaNjO1JTMTByZHqtWswfdK0LN83Jjqant98R8lS/oyfOgkLCwsePXyEsYnxB28TwIUjp9i+cC2Nu7WhgLcHwXsOseTPv+k98WfMrS3Vyuvq6VKuXlXsCziho6fL/Wu32DRvBbp6upSunfFj8dyhYPYs30jz7zrgUsiDsCchrJ+9GIAGXVrmStxZWXT0EMuPH2VE0xYUsLRiwaED9Fm6kNXf98XoDa12n0RGMm3PTkq4qP8Qi05I4NuF8yjl6s7Utp2wMDLiYUQ4Jnr6Wawpd108epodi9bR6OtWuHh7cGrPYZb+OYteE4ZjlsX381JifAIb/l6MR5FCasdKXrt09DS7Fq+nQdfM43v5X3Po8dewNx7fG2cvxd2vIHFZHN9+Ffxx7uyGtq4OR7fsZdmfs/hu3I+5cnxn5fiBwyybE0CnXt9S0M+boG27mfTzH/zxz2SsbG3Uyl+/eBk//+K0/Ko9hsZGHNq1n6m//skvU8bi6pXxg+zq+UuUr14Zr8KF0NHVZdvqjUwY/jt/zJmEhbVVnmzH2zLQ0eNm2EO2XT3CmAY98jWW12Wcp9a8OE95cnLPIRaPnUmfSb9keZ7S0dOjXP1q2BVwRFdPj3vXbrFp7nJ09HQp8/I8dfAEu5dvpHmPjhR4cZ5aNyvjPNWwy5e5EvfClStZtnYtIwcNpoCzM/OXLaXX0KGsDQjAyNAwyzrnL19m+O+/0+Orr6hRqTL7Dx/ix99/Y/7kKRTxzUgE/z5pIrfu3mX00B+xsbJi29499BwyhNXzF2BrnZEYmjTrb06eO8foH3/E0c6eY6dOMm7aNKytrKhesdJ7b9OR/QcJnDmPb/r1wLtIYfZs3sGYH39lcsBMrO3UH3ykpKRgam7GFx1bs3XNxizXmZqSwu+Df8HU3JwBv/6IlbU1Yc+fo5/NZ5QbbgVf4uiqnVRq3xA7Txeu/nuaHdOX0erXnhhbmmVbr9XoXujqZ15P9E3UY4wJi+T4mt3Ye+Xtb4CTB4+xZt4S2vb4Co/ChTi0Yx8zfx3PLzPHYWmrniC8eekqPiWK0LRTKwyNjTi65wCzfpvIkAmjcPF0A6D78P4qkx3GRccypu9w/CuVy9NtedV/8bp3/fh5/l22lRqdmuJY0JULQSfYOGkhHf/oj6mVebb1kuIT2TV3NS6+nsRHx6q8dnTdbq4ePUutr1pg6WDDvYvX2TJ9Ca1/6oGta94/CBTide/VTXXs2LH89NNPfP/996SmpjJ16lTq1KlDYGAgf/zxR27HKP6PxcXFsWrVKr7//nsaN25MYGCgyuuBgYGYm5urLNuwYYMyQRwYGMioUaM4d+4cGhoaaGhoKNdx//59mjVrhrGxMaamprRu3Zpnz54p1/Prr79SokQJFi9ejJubG2ZmZrRt25aYmMyLUVJSEn379sXW1hZ9fX0qV65McHCw8vWgoCA0NDTYuXMnJUuWxMDAgJo1axISEsL27dvx9fXF1NSUdu3aER8fr6xXvXp1+vfvr/x7yZIllC5dGhMTE+zt7Wnfvj0hISE5fnYhISE0adIEAwMD3N3dWbp0qVqZqKgounfvjq2tLaamptSsWZNz597+qX1aWhrdunXD3d0dAwMDvL29mTp1aq7UCQgIwNfXF319fXx8fPj777+Vr73sLrtq1SqqV6+Ovr4+S5YsIT09ndGjR+Ps7Iyenh4lSpRQaU35st66deuoUaMGhoaGFC9enKNHjyrLhIWF0a5dO5ydnTE0NKRo0aIsX75c+fqcOXNwcnIiPT1dJd6mTZvSpUsX5d+bN2+mVKlS6Ovr4+HhwahRo/J05unj24MoUb0cJWuUx9rJjrqdWmBqZc7pvYdzrLd9wWr8Kvjj5OWm9lrznp0oXacy9q5OWDva0eibNijSFdy9dCNXYl65bAWNmjWhSfOmuLm70Xdgf2ztbFm/Zn2W5TeuW4+dvR19B/bHzd2NJs2b0qhpY1YsWaYs4+tXmF79elO7bh10s2mJsXThEmzt7Bg+8mcK+xXGwdGB0mVL4+TsnCvbdWTrPvxrVKBUzYrYONnTsMuXmFpZELz7YJblHdxdKFapNLYuDljYWlG8Slm8ivly72rmsA8Prt/BpZAHxSqXwcLWCq/ivhStWJpHt+/nSsxZUSgUrDhxlK8qV6WGT2E8be0Y2fQLElNS2HnxfI5109LTGbFhDd9WrYGThXqyaNHRg9iamjKiaQv8nJxxNLegrLsnzpbZ/yjILce27qdkjfL4v/h+6ndpiZmVBcG7D+VYb8u8lRSpVBrngm55HuPrMo/vClg72VO30xeYWplzak/OMW+bv4oiFUvhlEXMLXq9OL7dnF8c321fHN/X82grYNe6LVStV5NqDWrhWCCjVZyljTX7tuzKsnz7Hl1p2KoZHt5e2Ds58GXX9tg5OnD2+Ellme+G9qNmk3oU8HTHwcWJrv2+Q6FQcPnsxTzbjrd17P4l5h7fxIHbZ/M7FDVHtu7Fv2YFSteqhK2zPQ2/yjhPndiV9XnK8cV5ys7FEQtbK0ooz1M3lWUe3LhDAW8Piqucp0rxOJfOUwqFguXr19G1XXtqVqmCl7s7owYPITEpkR379mVbb/m6tZQrVYqu7drjVqAAXdu1p2zJkix78eAzMSmJfQcP0vfbb/EvVgwXJye+69wFJ3sH1mzepFzP+StXaFynLqWLl8DR3p4vGjWmoKcnV65/2DGzZfUGajaoQ61G9XB2deGr3t9ibWvNrk3bsyxva29H197d/8fefUdFdbwNHP/Se+8gVaQKNuy99941GktMjBpjNNGoMZpYkl8SSzTFxNhj772jRAULNlSwgCCooNJ7WXbfP9CFZRdEwZK88zlnz4G7c+/O3Vv3uc/M0LJDG/QNVAfXAg8dJzM9ky/mzsSrpg9WttZ4+fniUv3FWUWv6vrxEDyb1sGrWV3M7KxoPLAjhmYmhAeFljufnpEB+iaG8pe6uuLPU6lUysmVu6jbvRVGVmU/fKgKgbsP0aR9K5p2bI2dowP9xwzD1NKCfw6dUFm+/5hhdOjbDReP6ljb29Jz+ECs7Wy5fuGKvIyBkSEmZqby162rN9DW0aZuswavdV1K+jde9y4fPYNvi3rUbFkfc3trWg7phqG5CdcDz5c7X+DaXXg2qoWdu6PSe7dCrlC/W0tca3liYm2Of5tGONesweXD5X8Pwrvpt99+w9XVFV1dXerVq8fp06qvX88FBQUp/DZbvny5UpkdO3bg4+ODjo4OPj4+7Nql+jdJVXmlYFyTJk04e/Ys2dnZVK9enaNHj2JjY0NISAj16tWr6joK/49t2bIFT09PPD09ee+991i9ejUymazC8w8cOJApU6bg6+tLfHw88fHxDBw4EJlMRq9evUhOTiYoKIhjx44RFRXFwIGKae9RUVHs3r2b/fv3s3//foKCghRGDJ46dSo7duxg7dq1XL58GXd3dzp27EhycrLCcubMmcMvv/xCcHAwcXFxDBgwgCVLlrBx40YOHDjAsWPHWLZsWZnrkZ+fz9y5c7l27Rq7d+8mOjqaESNGlLvuI0aMICYmhsDAQLZv385vv/2mEMCTyWR07dqVhIQEDh48yKVLl6hbty5t27ZVqn9ZpFIp1apVY+vWrYSHh/P1118zY8YMtm7dWql5VqxYwcyZM5k/fz4REREsWLCAWbNmsXbtWoVlTZs2jYkTJxIREUHHjh35+eefWbhwIT/99BNhYWF07NiRHj16cPeuYvBo5syZfP7551y9ehUPDw8GDx4sD5Tl5uZSr1499u/fz40bN/jwww8ZNmwY588XXfz79+9PYmIiJ0+elC8vJSWFI0eOMHToUACOHDnCe++9x8SJEwkPD+ePP/54rQ8rCiUS4qMf4FrTU2G6W01PHtyNKXO+a0HnSXmcSIs+HSv0OQV5+UgLpegZVv7JekFBAXdu3aZBQ8Wb0foNG3Aj7LrKeW5ev0H9UuUbNGrIrfBbLxXoPHP6DJ7eXsz6cibdO3Rh1ND32btLdXbBy5JIJMRHx1HdX7HZnbu/N7F3oiu0jPjoOOLu3MPFp7iZnbOXG/HRcTyIjAEg+XEid67cxKOu6mZMVeFRagpJmZk0citutqatqUldZxfCHsSVO+/K06cwNTCgZx3V9wSn79zG286BL3dsoeOi//Heit/Yfbn8H2xVoVAi4VF0HNX9FZscufl78aCc7XPl1DlSHifSqm+n111FJc+Pbze/UnX28yr3+L4adJ6UJ69wfBsYVKa6ZZIUFBBz9x6+dWspTPet609UxO0KLUMqlZKbk4NBOVmseXn5FEok5Zb5/04ikfDoXhzupc9TtbyJu3OvQst49Pw85V18nnLyrM6jeyrOU3VqVkm9HybEk5ScTKOA4vOKtrY2df39CQu/WeZ8YeHhNCz1+6RRQIB8nsLCQgqlUrS1tBXK6Ohoc/VGcVC3tm9N/gkJ5kliIjKZjNCrV4l98IDGAa/e7FNSUMC9O5HUCqijMN0/oA63b0a88nIvBZ+nhq8XK39ezpi+w5gyajw7N2xFWlj4ysssT6GkkMTYeBx8FJs9Ovi48Tiq/OvFznl/8vcXiziwaB2Pbiufh6/s/wddI328mtVRMXfVkRRIiI2MxrvU/updpyb3Iir2ELLoHJWLvlHZ59HgY6eo16IxOrqvPxMc/r3XvScxj3DyVexuwNnXnfio+2XOd/P0JVKfJNOwZxuV7xcWSNAo1YpGU1uLR+VcS/9LtNB4Z18va8uWLUyaNImZM2dy5coVmjdvTufOnYmNVf3wJzo6mi5dutC8eXOuXLnCjBkzmDhxIjt27JCXCQkJYeDAgQwbNoxr164xbNgwBgwYIP8N+Dq8UjNVAD8/P6UfxoJQ1VauXMl7770HQKdOncjMzOTEiRO0a9euQvPr6elhaGiIpqYmtiWavR07doywsDCio6NxdCx6crJ+/Xp8fX25ePEi9evXB4ouqmvWrMHIyAiAYcOGceLECebPn09WVha///47a9asoXPnzkBREOnYsWOsXLmSL74o7gdi3rx5NG1a1IRh9OjRTJ8+naioKNzc3ADo168fJ0+eZNo01X0xjBo1Sv63m5sbS5cupUGDBmRmZmJoqPyD486dOxw6dIhz587RsGFD+Xfp7V18433y5EmuX7/OkydP5INE/PTTT+zevZvt27fz4YcfvvD71dLS4ptvvpH/7+rqSnBwMFu3bmXAgAGvPM/cuXNZuHAhffr0kZd5HtQqmX02adIkeZnn9Z82bZq8r73//e9/nDx5kiVLlvDrr7/Ky33++ed07doVgG+++QZfX18iIyPx8vLCwcGBzz//XF72k08+4fDhw2zbto2GDRtibm5Op06d2LhxI23btgVg27ZtmJuby/+fP38+X375pbyubm5uzJ07l6lTpzJ79uwXfq8vKzsjC5lUiqGJkcJ0AxMjMlPTVc6TnPCUk1v2M2zWJ6hrVOwieHLLfozMTHD1rXzfGmmpqRQWFmJWKhPKzMKc5CTVweCkpGQaWJQqb25OYWEhqampWFoqNyFRJf7hI/bs2MWAIYMYNnI4ETcj+HnhYrS1tenUtfOrrdAz2emZSF9yWzz307ivyErPRFpYSOt+XajXpon8Pb8mAWSlZ7Jy9mJkyJAWSqnfvjktenaoVH3Lk5RZ1LzDvFRwxtzAgPi01DLnuxZ3n71XL/P3mI/LLPMwJYWdly4ypGFjRjZtwc2HD1h49CBampp09a9dFdVXKTtd9bFiaGJEVBlNcJLin3Bi0z5Gzvm0wsdKVXp+fBuo2qfSyjm+N+9j+NcTK1znwM37MTI3wbXm6+k7JyM9A6lUirGZqcJ0EzNTbiSnVmgZR3bsIy83jwYtmpRZZvuqDZhZmONbx68Stf1vKz5PGStMNzQxIuMF56kfP55ZfJ7q35WAtsXNM/2bBpCdnslfXy+Sn6catG9Oi15Vc55KSk4BwMJUMTvKwsyM+BItG5TmS0nBwkx5nqSUouUZ6Ovj7+PDXxv+xtXJCXMzM46cPMmNW7dwdHCQz/PF+PHMW7yILoMHoaGhgbq6Ol99NpnaNV99X0tPS0cqlWKi4rhIreBxocrj+ASeXgmjWbtWTP9uNvEPHrFy6XKkhYX0Gz74lZdbltzMbGRSGfrGitcLPSMDctKzVM6jb2JI8/e6YelsR2GBhLvnr3Ng8Xq6TX4fO4+i7g0SImO5ffYKfWZ9VOV1Li3z2TnKyFSxSa2xqQnpqakVWsaJ3QfJz8ujXjPVTVBj7kTx6P4D3puo3Mff6/JvvO7lZGQjk0rRN1b8jaNnYkTWDdWB0ZSERM5uP0z/6R+VWWenmjW4cuQMDh4umFqbExsRxb0rEchKtXYR3n2LFi1i9OjRfPDBBwAsWbKEI0eO8Pvvv/Pdd98plV++fDlOTk7ygQy9vb0JDQ3lp59+om/fvvJltG/fnunTpwMwffp0goKCWLJkiUIrqapU4WBcenr5F+eSjI2NX1xIEF7g9u3bXLhwQd5/mqamJgMHDmTVqlUVDsaVJSIiAkdHR3kgDopGAzY1NSUiIkIejHNxcZEH4gDs7Ozk2WVRUVEUFBTIg2xQFGhq0KABERGKTzP9/Ys7crWxsUFfX18eiHs+7cKFC2XW98qVK8yZM4erV6+SnJwsbyIZGxuLj4+PyvXT1NQkoMTTWi8vL4UmvZcuXSIzMxMLC8U+dXJycl5qVOTly5fz119/cf/+fXJycsjPz6d27dqvPM/Tp0+Ji4tj9OjRjBlTfLMikUgwMVG8QSq5funp6Tx69EhhewA0bdpUqeltye1hZ2cHFDXr9fLyorCwkO+//54tW7bw8OFD8vLyyMvLw6BEQGLo0KF8+OGH/Pbbb+jo6LBhwwYGDSq6OYei7/bixYsKmXCFhYXk5uaSnZ2Nvoo+W55/TkkvPZJuqY5ZZajurFUqlbL71/U079sJC7uKdcQfsv8EN0Ou8N7M8WhW4YABStWTyZSnlSxP6XWUqZxeHqlUipe3Fx+NL+rDycPTk+h799i9Y2elg3ElKlqK7IUd546eM4n83Dzi7sZwbNMezG2t8G9atI9H37zDP7uO0G30QKq5O5OUkMihtds5ZWpMq75VU+fD16/x3cF98v8XDxr6bFVKfeeysr/vrLw8vt69gxlde2CqX3ZmgFQmw9vennFt2gPgaWvHvcQn7Lh04bUG44qVXieZim1WtK/s/GUdrfp1rvCx8rqoPFZUVFoqlbLr13W06FvxOgfvO8HNkMsM+2pClR7fqiivhkzFyik7d/IMu//exsTZUzE2Vd3/1MFtezh/6gzTfvgGLW1tlWWEEkp97UWbovxt8cE3n5GXm8eDuzEc3bgHi1LnqaBdh4vOUzVcSE54ysE12zHccYjWr3CeOnTiBAuWLJb/v2Re0TW1dB1lshefX5WPecUp3077km9/+onOgwehoa6OZ40adGrThlslMus3797F9YgIFn07FzsbGy6HhfG/ZUuxtDCnYd3KtQxSqv8LroUvIpPJMDYz4aPJ41HX0MDNw52UpGT2btn5WoJxr8LU1lJhoAab6o5kJacRdiwEOw9n8nPzOLlqN82HdUO3CjLyK0p5/6rYPcbFoGAObNzF2K8+UwroPRd89BT2ztVw8XjxwAlV79943VNxXKgoJ5VKOfzHFhr1aoeZisE/nms5pBsn1uxi/YzFoKaGibU5Ps3qEn7mctVWXHhpZf0OUvVbKD8/n0uXLvHll18qTO/QoQPBwcEqlx8SEkKHDooPhjp27MjKlSvl/Y6HhITw2WefKZV5HsB7HSocjDM1Na3wCByFrykFWvj/ZeXKlUgkEhxKPJWUyWRoaWmRkpKCmZkZ6urqSs1WCwoKXrjssm7cSk8vPSCAmpqaPBD2/HMrclNYcjlqamrlLre0rKwsOnToQIcOHfj777+xsrIiNjaWjh07kp+fX+b6qapbSVKpFDs7O06dOqX0Xul++MqydetWPvvsMxYuXEjjxo0xMjLixx9/LDed90XzPP8eVqxYIc/qe06j1JMuAxXNqV5le5T83IULF7J48WKWLFmCn58fBgYGTJo0SeG77t69O1KplAMHDlC/fn1Onz7NokWL5O9LpVK++eYbhay953TLaJbw3XffKWQMAsyePRu3ri/uU0TfyAA1dXWlzKvstAylbBqA/Jw84qPjSLj/kCNri4LdMpkMZDIWDJ/CkGljcSnRNODcgZOc3XucIV9+jI1T1XRwa2JqioaGhlIWXEpyilK23HMWFuYkJyUpTEtNTkFDQwOTMm58VS7H0gJnN8V+c5xdXAgKPFXhZZRF37iov5vMVMWnzVlpmSq3RUlmzzqHtnFyIDMtg5PbD8p/5J7YeoBazRvIs+VsnBwoyMtj74pNtOjdUamPnVfR3MMLX4fifvPyn13Lk7IysSzxUCIlOwtzA9VNAB+mJBOflsqULcX9+EmfnY8az5/Dto8nUs3cHEtDQ1wtFTvsd7G04uSt8EqvR3n0jZ8dK6UyyrLSMzE0VnWs5PLoXizxMQ84uGY7UHysfDt0EsOmj3ttmWTyOsuP71L7VLrqfSo/J5f4e3EkxDzk8NodCnWeP2wyQ74cq5DdGnIgkLN7jzF0+rgqO75VMTI2Ql1dnbSUVIXp6alpmJiVf/yeDzrL6iW/M27GZHxLjFJY0qHte9m/eSdffPc1jm6vd0TYf7vi81Tp4yBDKXumtOfnKVsnBzJT0wncdqDEeWo/tVo0kGfL2To5kJ+Xz94/N9LyFc5TLRo3pqZXcdO6/Gf3d4kpyViWeJCYnJqKuYq+KZ8ryoJTvNYkp6YozFPN3p4/Fy0iJyeHrOxsLC0smD5vLvbPWlXk5uXx66pV/DRnDs0aNgKghpsbd6Ki+HvbtlcOxhmbGKOurk7qs6y/59JS05Sy5V6GqbkZmpqaChlCDk7VSE1OQVJQgGYVD3ila6iPmroa2aWy4HIystAzrnjTd2u3akSeL+qqIuNpCplJqRz5dbP8/ef3t399PJcB347H2Krq+hk1fHaOSi91jspISyszuPZc6Olz/L30Lz748hO8aqtulp2fm0fo6XN0G/r6Bl1S5d943dMz0kdNXV1p4KGc9Ez0TZTvPwpy83gS85CnsfGc+nufQp2Xjv6K3lNG4uhTHX1jQ7pPHIakoIDczGwMTI05u+0IxuUMhPRfoiF7d0dTLet30Jw5c5TKJiYmUlhYiI2NjcJ0GxsbEhISVC4/ISFBZXmJREJiYiJ2dnZllilrmVWhwsG4kv0jxcTE8OWXXzJixAj56KkhISGsXbtWZVqgILwsiUTCunXrWLhwoVIUu2/fvmzYsIEJEyZgZWVFRkYGWVlZ8sDM1atXFcpra2srBYh9fHyIjY0lLi5Onh0XHh5OWlqaQlPO8ri7u6Otrc2ZM2cYMmQIUBQIDA0NVRh8obJu3bpFYmIi33//vbyuoaHl963k7e2NRCIhNDSUBg2Kgjm3b98mtUSafd26dUlISEBTUxMXF5dXqtvp06dp0qQJ48aNk097UVbdi+axsbHBwcGBe/fuyftgqwhjY2Ps7e05c+YMLVq0kE8PDg6WfwcVcfr0aXr27ClvHi2VSrl7967CfqGnp0efPn3YsGEDkZGReHh4KPSXWbduXW7fvo27u7vS8ssyffp0Jk+erDBNR0eHLWGqOw0uSUNTEzvXakTfuINX/eIfqtE37uBRT/mmUEdPhzHfTVWYdun4We6H36XPxBGYlri5DdkfyNk9xxg87SPs3apuFDMtLS08vDy5eP4CLVq3lE+/eOEizVo0VzmPr19Nzp5WHJDiwvkLePl4oalZ8V4X/Gr5E3dfsU+JuNg4habsr0pTUxM7V0eirt/Cp0Fx31hR12/hFfASTZlkMgoLivvBK8jPVwoqq6mr8xJdaL6QgY6OwgipMpkMC0NDzt+LxNO2KIO0oFDC5fsxTHiW0Vaas6Ulmz4crzDt91MnyM7PY0qHLtg8axbn7+jE/aREhXKxSUnYmphW3QqpoKGpib2rI/fCbuNdv3j73Lt+C896yttHR0+Xj39QfPJ68egZosPvMGDSKEytXv9oncXH923F4/v67TKOb10+/F6xy4NLx88Qc/MufT8dqXR8n9l9lMHTxlbp8a2KppYWLjXcuHkljHolRhEMvxJG7Ub1y5zv3MkzrFr8G2O/nESthqoDHoe27WHfph1Mmf8Vrm8l4+TfRVNTE3s3R6LCbuHToLZ8elTYLbwCVAc7VZFR1LfTcwV5+aipKQbc1CtxnjLQ11cYIVUmk2Fhbs75S5fxci96YFRQUMDlsDA++aDsZn/+Pj6cv3SZoX2LR3Q9f+kS/j7KfW7q6emhp6dHekYGIaGhTHyWoS+RSJBIJMrrp6GOVPrqJ2JNLS3cPNwJu3SFBs0by6eHXbpK/SavPtqmZ00fzp4IQiqVyoOg8Q8eYWZhXuWBOAANTQ0snex4GHEP1zrFAdSHEfdwruVZzpyKkuIS0HsWbDGxtaTv14qjEIfuOUlBbh6NB3bC4AVB/JelqaWJk7srEVduULtx8Tnp1tUb+Jdx7oGijLi/l65g5Ofj8atfdr92l86cR1IgoUGrVx9591X8W6971i72xN6MxL1e8XEaGx6JW23lFkHaujoMnTtRYVpY4HkeRETRZfwQTEoFbTW1tDA0M6FQUkjkpRvUqC+6NXjbyvodVJ6XzZJWVb709FfLvH51Ff710rJl8Y+lb7/9lkWLFjF4cHGac48ePfDz8+PPP/9U6NNJEF7F/v37SUlJYfTo0UpNE/v168fKlSuZMGECDRs2RF9fnxkzZvDJJ59w4cIFpRFXXVxciI6O5urVq1SrVg0jIyPatWuHv78/Q4cOZcmSJUgkEsaNG0fLli0Vmj6Wx8DAgI8//pgvvvgCc3NznJyc+OGHH8jOzmb06NFV9VXg5OSEtrY2y5YtY+zYsdy4cYO5c+eWO4+npyedOnVizJgx/Pnnn2hqajJp0iT09PTkZdq1a0fjxo3p1asX//vf//D09OTRo0ccPHiQXr16Veh7cHd3Z926dRw5cgRXV1fWr1/PxYsXcXUte7SuiswzZ84cJk6ciLGxMZ07dyYvL4/Q0FBSUlKUTtQlffHFF8yePZvq1atTu3ZtVq9ezdWrV1WOJFte/Xbs2EFwcDBmZmYsWrSIhIQEpSDt0KFD6d69Ozdv3pQH7p77+uuv6datG46OjvTv3x91dXXCwsK4fv068+bNU/m5ZaViV1TDzq3Y8/sG7NwcqebuwpWTwaQlpVC3bVEm1ckt+8lISaPH2KGoqatj7WinML+BsSEaWpoK00P2nyBo+yF6jRuGiaW5PItCW1cHbd1Xr+tzA4cMYt7sb/Hy8cbXryZ7d+3hScJjevXtBcDyX34n8elTvvrmawB69unNzq07WLb4Z7r36snN6zc4sGcfs+cXP0krKCgg5l70s78lPH36lLu376Cnr081x6KsrwGDB/Lx6I9Yt3otbdq1JeJmOPt27eGLGar7bHxZTbq2Yeev63Bwc8LRw5XQ42dJS0ymfruiIOOxTXtIT06j7/jhAJw/EoSJpTlW9kVP4+7fjuLs/hM07FR83fWsW5OQgyexc61GNXcXkhKeErh1P171/KokK04VNTU1BjVozJqzp3E0t8DJ3ILVZ/9BV0uLjjWLf7DP3rMDayNjxrdpj46mFtWtFZ8qGj3LBi05fUjDJoxes4LVZ4Jo51OTm48esvtKKDO69Hgt61JSo66t2fXreuzdHKnm4cqlE8GkJaYQ0K4ZAMc37SUjJY3e44Y9O1YUs8UMTAzR1NJSmv46yY9vV0eq1XDhcmDIs+O76Edd4OZ9ZKSk0fPj91Qe3/rGhmiWOr6D950gaPtBeo0fjqlV1R/fqnTo040VPy7DpUZ13L09CDp0nKQnibTuWvTQbduqDaQmJTPmi0+AokDcXz/9wpCxI6nuVYO0Z9lDWjra6D97AHdw2x52rdvMR9M+xdLGSl5GR08X3RLXvLdBT0uHaibFGaD2xpbUsKxGem4WjzNTypnz9WvStS07flmLfXUnHGu4EXriDGmJyTRoX3QcHN24h/TkVPpNKLqnVzpP3Yri7L7jNOrUSr5Mz3p+BB8IxM6lGo41is5TJ7bswyugas5TampqDO7dh9WbNuLk4ICjgwOrN21EV0eXTm2KO2z/+n/fY21pyYTRRX0JDerdhw8nf8aazZtp1aQJp4KDOX/5MisXL5HPE3LxIjJkOFdzJO7RI5b++SfOjo706FjUeb2hgQF1/f35ecWf6OhoY2dd1Ez14LFjfDZWMWD0srr178Wy7xbh5lkDDx8vju8/TOLjp7TvXtS0d+OKtSQnJjFhevH9T0xk0UAbuTm5pKelERN5D01NTaq5FAXVO/TozOFd+1nzywo69e5GwsNH7Nq4jc69u1WqruXxa9eYU6t3YeVsh7VbNW6dvkxmchreLYoCWRd2nSArNYPWI3sBcP34OYwsTTGzs6KwsJDI89eJvhxBu4/6A0XBMXMHxWaS2vpF15PS06tKm16dWbvod5xruOHq5c7ZwydJeZpE885FfQLvXruF1KQURkwu2uYXg4JZu/gP+o95D1cvd3nmr7a2NnqlRroNPnaKWo3qqcxGe93+jde9uh2acWTFNmxcHLBzd+J60EUyktLwa130gP3stiNkpqbTcUx/1NTVsaym+EBV39gADS0thekJUXFkpqRh5WRPZmoa53afQCaTEdClBcLb9TK/gywtLdHQ0FDKWHvy5IlSZttztra2KstramrKu2wqq0xZy6wKrzSAQ0hIiMqhYAMCAuSd6AlCZaxcuZJ27dopBeKgKDNuwYIFXL58mbp16/L333/zxRdf8Oeff9KuXTvmzJmjMPhA37592blzJ61btyY1NZXVq1czYsQIdu/ezSeffEKLFi1QV1enU6dO5Y5oqsr333+PVCpl2LBhZGRkEBAQwJEjRzArp7nEy7KysmLNmjXMmDGDpUuXUrduXX766Sd69Cj/R+vq1av54IMPaNmyJTY2NsybN49Zs2bJ31dTU+PgwYPMnDmTUaNG8fTpU2xtbWnRokWFTzpjx47l6tWrDBw4sOgmefBgxo0bx6FDhyo1zwcffIC+vj4//vgjU6dOxcDAAD8/vxdmHE6cOJH09HSmTJnCkydP8PHxYe/evdSoUaPc+UqaNWsW0dHRdOzYEX19fT788EN69epFWlqaQrk2bdpgbm7O7du35ZmRz3Xs2JH9+/fz7bff8sMPP6ClpYWXl9drPT/6NKpDdkYWZ3YV3ZxYVbNj0BcfYmJZ9DQwMzWdtMSX+/F36fhZCiWF7Fi6RmF6894daVEFo2u17dCO9LQ01vy1iqTEJFyru/HDkp+wfdaPX1JiEo8Tijvltnew54clC1m2+Gd2bduJpZUln37+Ga3atJaXSXyayKj3Rsj/3/z3Rjb/vZHadeuw7I+iQTy8fX2Y/+P3/Pnr76z9azV29nZ8MvlTOnSu2KiTL+LXpB45mVmc2nGIjNR0rB3teO/LcfKMpIyUdNISi5tMyWQyjm/aS8rTJNTV1TG3saT94J4EtCt+et6yTyfU1NQ4sWU/6clpGBgb4lmvJm0Hdq+SOpdleONm5BUU8MPh/WTk5OLr4MCyIcMVMugep6Wh/pJPDX3sHfih/2B+CzzGytNB2JuaMrl9Zzr51XrxzJVUs3FdcjKyCNp5hMzUNKwd7Rg6bax8+7zKsfK6+TauS05mNqcVju+PFOuc9LLH95mi4/vn1QrTm/fpSMsq6oewtIYtm5KVnsneDdtJS0nBwdmRz+bOwNKmKGCVlpxC0pPijMlTB49RWFjI+l//Yv2vf8mnN23Xkg8+nwBA4L4jSAok/DpvocJn9Rzan17DVA8k9KZ4WTnzS+/iAMrEZkVBhoMRIcwPfLuDoPk1qUd2xrPzVEo6No52DPtynDzrJTM1TWGfkkllHNu4p8R5yooOQ3rKf8xD0XkK4MSWfSXOU360G1R156n3Bw4kLz+P75ctJSMjg5pe3vzy/fcKGXQJT56gXiKDrZavL/NnfsXva1azfO0aqtnZ893Mr6hZ4iFbZnYWv6xcyZPERIyNjGjTrDnjR41UyLpeMPMrfl25klnffUd6Rga2NjZ8PHIUfbtVbv2atG5ORno6O9ZtJiU5GUcXZ6Z/Nxsr26KAU0pyMolPnirMM/XDT+V/37sTyZkTQVjZWPPrppUAWFpb8dUP37L2t7/44oNPMLe0oHOf7vQa9PqaSFav70teVjaXD/xDdlom5vbWdJowBCMLUwCy0zLJSi6+l5IWFnJ++zGyUjPQ1NLE1N6KjhMG4+RX8Xu2qhbQvBFZ6Rkc3LyL9ORU7JyrMW72F1g8a56dnpxKytPic9SZw4FICwvZsnwtW5YXH9ON2jRn+GfFg048fhhPVPgdPvm2ah76vax/43XPo6E/OVnZnN8bSHZaBhYONvT87H15k9KstAwyklJfapmSggJCdh0j7UkKWrrauPh70nHMAHT03+6DmzfmPzJQhba2NvXq1ePYsWP07t1bPv3YsWP07NlT5TyNGzdm3759CtOOHj1KQECAvPuixo0bc+zYMYV+444ePUqTJmUPGlVZarLSHW5VgKenJ926dWPhQsUbnylTprB//35u367YEPWCIAhC+dZdPPi2q1Bpw+t34Ul60osLvsOsjS3YcuXY265GpQ2s05609VvedjUqxWTYQDZePvK2q1FpQ+p2ZH1o2Q8u/i2GBXQmODrsbVejUpq4+tP018plN70Lzo5fztarx992NSplQO12ZMTGve1qVJqRkyPXHt5529WotFoOHvx0quKtC95Fn7cayok7F992NSqtrUf9f/21b0jdjvwWvONtV6PSxjV5s/3+VZWMCo4K/DYYVbC/8ue2bNnCsGHDWL58OY0bN+bPP/9kxYoV3Lx5E2dnZ6ZPn87Dhw9Zt24dANHR0dSsWZOPPvqIMWPGEBISwtixY9m0aZN8NNXg4GBatGjB/Pnz6dmzJ3v27OGrr77izJkzSv2YV5VXyoxbvHgxffv25ciRIzRqVNSJ6blz54iKimLHjn//ASYIgiAIgiAIgiAIgiC8WwYOHEhSUhLffvst8fHx1KxZk4MHD+LsXDSAU3x8PLGxxf1Du7q6cvDgQT777DN+/fVX7O3tWbp0qTwQB9CkSRM2b97MV199xaxZs6hevTpbtmx5bYE4eMVgXJcuXbh79y6//fYbt27dQiaT0bNnT8aOHSvvYF4QBEEQBEEQBEEQBEF4y6py1K93wLhx4xQGBCypdB/yUDQGwuXLl8tdZr9+/ejXr1+5ZarSKwXjAKpVq8aCBQuqsi6CIAiCIAiCIAiCIAiC8J/2ysG41NRUVq5cSUREBGpqavj4+DBq1CiVHe4LgiAIgiAIgiAIgiAIggCvNM54aGgo1atXZ/HixSQnJ5OYmMiiRYuoXr36C1P/BEEQBEEQBEEQBEEQhDdEJnt3X/9PvVJm3GeffUaPHj1YsWKFfMhviUTCBx98wKRJk/jnn3+qtJKCIAiCIAiCIAiCIAiC8F/wSsG40NBQhUAcgKamJlOnTiUgIKDKKicIgiAIgiAIgiAIgiAI/yWv1EzV2NhYYajY5+Li4jAyMqp0pQRBEARBEARBEARBEIQqIJW9u6//p14pGDdw4EBGjx7Nli1biIuL48GDB2zevJkPPviAwYMHV3UdBUEQBEEQBEEQBEEQBOE/4ZWaqf7000+oqakxfPhwJBIJMpkMbW1tPv74Y77//vuqrqMgCIIgCIIgCIIgCIIg/Ce8UjBOW1ubn3/+me+++46oqChkMhnu7u7o6+tXdf0EQRAEQRAEQRAEQRCEVyWTvu0aCKW8VDBu1KhRFSq3atWqV6qMIAiCIAiCIAiCIAiCIPyXvVQwbs2aNTg7O1OnTh1ksv+/He0JgiAIgiAIgiAIgiAIwqt4qWDc2LFj2bx5M/fu3WPUqFG89957mJubv666CYIgCIIgCIIgCIIgCJUhkqneOS81mupvv/1GfHw806ZNY9++fTg6OjJgwACOHDkiMuUEQRAEQRAEQRAEQRAE4QVeKhgHoKOjw+DBgzl27Bjh4eH4+voybtw4nJ2dyczMfB11FARBEARBEARBEARBEIT/hFcaTfU5NTU11NTUkMlkSKVidA5BEARBEARBEARBEIR3ilS0ZHzXvHRmXF5eHps2baJ9+/Z4enpy/fp1fvnlF2JjYzE0NHwddRQEQRAEQRAEQRAEQRCE/4SXyowbN24cmzdvxsnJiZEjR7J582YsLCxeV90EQRAEQRAEQRAEQRAE4T/lpYJxy5cvx8nJCVdXV4KCgggKClJZbufOnVVSOUEQBEEQBEEQBEEQBKESxICb75yXCsYNHz4cNTW111UXQRAEQRAEQRAEQRAEQfhPU5PJRIhUEARBEARBEARBEAThvygjPuFtV6FMRna2b7sKb0WlRlMVBEEQXq+Zh/5421WotPmdPyI1I+1tV6NSTI1MmHFw+duuRqUt6DKW1Clfve1qVIrpwnnsuBb4tqtRaX1rteGTXYvedjUqbVnvyTzNSH7b1agUKyNztl49/rarUWkDarej6a9j33Y1KuXs+OUsO7PtbVej0j5p1p95x1a/7WpU2lftR/Jb8I63XY1KGdekL7MO//m2q1Fpczt9+K+/ZizrPZnZR/5629WotG86fvC2q/BqZNK3XQOhlJceTVUQBEEQBEEQBEEQBEEQhFcjgnGCIAiCIAiCIAiCIAiC8IaIZqqCIAiCIAiCIAiCIAj/VVIxVMC7RmTGCYIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1Uy0Uz1XSMy4wRBEARBEARBEARBEAThDRHBOEEQBEEQBEEQBEEQBEF4Q0QzVUEQBEEQBEEQBEEQhP8q0Uz1nSMy4wRBEARBEARBEARBEAThDRHBOEEQBEEQBEEQBEEQBEF4Q0QzVUEQBEEQBEEQBEEQhP8qqfRt10AoRWTGCYIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1ViNNV3jsiMEwShXI8fP+bbb78lJSXlbVdFEARBEARBEARBEP71RDBOEAAXFxeWLFnyRpenpqbG7t27K/U5c+bMoXbt2pVaRnlkMhnDhg1DR0cHMzOzl5q3qr/Tl9WiRQs2btz41j6/pM8//5yJEye+7WoIgiAIgiAIgiAI7wARjBP+1bp37067du1UvhcSEoKamhqXL19+w7WCixcv8uGHH77xz61q3333HW5ubkybNu2l532b38H+/ftJSEhg0KBB8mmlg4MymYwpU6ZgZGREYGAgAK1atWLSpElKy9u4cSMaGhqMHTtW5ef98ccf1KpVCwMDA0xNTalTpw7/+9//5O9PnTqV1atXEx0dXTUrKAiCIAiCIAiCUFFS2bv7+n9K9Bkn/KuNHj2aPn36cP/+fZydnRXeW7VqFbVr16Zu3bpvvF5WVlZv/DNfhxkzZrzyvG/zO1i6dCkjR45EXV3184bCwkLGjBnDvn37CAwMpH79+uUub9WqVUydOpXff/+dRYsWoa+vL39v5cqVTJ48maVLl9KyZUvy8vIICwsjPDxcXsba2poOHTqwfPlyhSBdVWvo5EMz11oY6ejzJDOFAxHB3E9JKLO8hro6barXo5ZDDYx09EnLzSQo6gqXHtwGwMfGlVbV62Cub4yGmjpJ2WmciQ7j6qO7r1zH7du28/f69SQlJuHq5sZnUz6jTp06ZZa/fOkySxYvIfrePSytLBk2bBh9+vVVKBN4IpA/lv/BwwcPcKhWjY/HjaVV69Yql7dm9Rp+//U3Bg4exOQpk+XTv53zDQf2H1Ao61uzJqvWrHql9Wzo5EtztxLbIvwsMS/aFu4B1HaogZF20bY4FXVZvi3qOnjSr5byOn19eAUSaeEr1bGidDu0QbtRAGr6ehTef0D2zn1IHz8ps7zhx6PRdHdVml4QfpuslesB0G7cAJ0mDVA3NwWgMOEJucdOIrn16vtWWc4dCeL03mNkpKZhXc2OriP64+pdQ2XZmFuRHN6wi6cPH1OQl4+plTkN2jWnWbe2CuVysrI5umkP4ReukpOVjZm1JV2G9cWzbs0qr/9zzV1r0bZGAMa6BsSnJ7Hz+imikh6qLPte3Y40dPZVmh6fnsiCE+sAaOLiRwNHb+yMLQGIS33MvvCz5Z4zXtbObTvYtH4DSYlJuLi58umUSdSqU7vM8lcuXWbZ4qXE3IvGwsqSocOG0qtfH/n796LusXL5Cm7fukVCfAITJ3/KgCGDFJaxa/tOdm/fSXx8PACubm6M+GAUjZs2rrL1On/kH87sO07ms32q8/v9cPF2V1n2/q1Ijm7Yw9NHxftU/XbNaNK1jUK54AOBXDh2mrTEFPSNDfBtWIf2g3uipa1VZfV+VbXs3BlSpwNe1k5YGpjy5cHfOR197W1Xq0zXA89z+chpslMzMXewpvmgLth7uKgs++DWPXb/qHyeHzrvU8zs3tx9zO1/LnPzxHly0jIxtbMkoG87bNwdVZZNuHOfY0s3KU3v8dUYTGwtAJAWFnLjaAhR52+QnZqBiY05dXq2xsHH7bWux7XAc1w+dJqs1AwsHKxpMaQrDh7K14PSHt29z/bvV2DhYMPQbz+RTy+UFBJ64BQRZ6+QmZKOmZ0lTft3wsXP47WtQwNHH5q5+mP47Pp96FZI+fdSauq0dq9HLXt3DHX0Sc/NIijqCpcfPr+XcqGFm+K91NmY61yrxL1URfwbrxml3T19hVsnLpKTnomJrSV1+rbBunq1MssXFki4eSSEmIvh5KZnoWdqiG+Hxrg19gMgLT6R6wfPkBz3mOzkdOr0bo1n64DXVn9BeBGRGSf8q3Xr1g1ra2vWrFmjMD07O5stW7YwevRoAIKDg2nRogV6eno4OjoyceJEsrKyylxubGwsPXv2xNDQEGNjYwYMGMDjx48Vyuzdu5eAgAB0dXWxtLSkT5/iHwyls7Du3r1LixYt0NXVxcfHh2PHjil95rRp0/Dw8EBfXx83NzdmzZpFQUGBQpnvv/8eGxsbjIyMGD16NLm5ueV+P6dOnUJNTY0jR45Qp04d9PT0aNOmDU+ePOHQoUN4e3tjbGzM4MGDyc7Ols93+PBhmjVrhqmpKRYWFnTr1o2oqCj5++vWrcPQ0JC7d4tvJD755BM8PDzk32vp70BNTY0//viDbt26oa+vj7e3NyEhIURGRtKqVSsMDAxo3LixwudERUXRs2dPbGxsMDQ0pH79+hw/frzcdU5MTOT48eP06NFD5ft5eXn079+fY8eO8c8//7wwEBcTE0NwcDBffvklXl5ebN++XeH9ffv2MWDAAEaPHo27uzu+vr4MHjyYuXPnKpTr0aMHmzYp3zxXFT/b6nTxbkJQ1BV+PbuDmJQE3g/ogomuYZnzDK7dHjdLB3ZdD2LxP5vZevUETzNT5e/nFORyKuoyf4TsZtnZ7Vx6cJs+fq1wtyz7Rqg8x44eY/HCRYwcNZJ1G9ZTu05tPps4iYQE1Tdyjx4+5LNPJ1G7Tm3WbVjPiJEjWPjTQgJPBMrLXA8L46sZM+ncpTN/b9pA5y6dmfHlDG7cuKG0vPCb4ezetQv3Gqp/NDdu0piDhw/KX4t/XvxK6+lnV52uPk04FXmZX85sJyY5nvfrdy1/W9RpT3ULB3aGnWLRP5vZUmpbAOQW5LHg+FqF1+sOxOm0bo5Oyybk7NpPxpLfkWZkYPjRCNDRLnOerDUbSZvzvfyV/sNSZIWFFIQVbxNpWho5B46Ssfh3Mhb/jiTyHgYjh6JuY12l9Q8LDuXAmm206tOJCf+bgYu3O2sX/EpqYrLK8to6OjTu2IoPv5nMZ4tn07pPZ45t2cuF46flZSQSCavmLSX1aTJDJn/IZ0vm0PujoRg/Cyy+DnUdPOjj34ojt8/zv5N/E5X0kI+b9MZMz0hl+e1hJ5lxcLn8NevQn2Tl53DlYfE5292yGpce3GbpmW0sCtpEck4G45r0KXc/fRknjh5n6cIlDB81glUb1lKrTi0+nzi5nOP9EV98OoVadWqxasNaho98nyU/LebUiZPyMnm5udhXs2fshHFYWFioXI6VtRVjJ4zjr3Wr+WvdauoG1GP6lKnci7pXJet1PfgSh9Zup2Xvjnz8/XScvdxZ/13Z+5SWjg4NO7Vk9JxJTFw0i5Z9OnF8yz4uHj8jL3Pt9AWObdpD635dmLhoFr0/eo8bIZc5tmlPldS5svS0dIhMesCifza/7aq80N0L1zm9+SABXVsxcPY47Gs4s2/JOjKSUsudb+j8SYxcNE3+MrFRvX+9DjGXIgjdcRy/jk3o9uVIrKs7EvjbVrKS08qdr+esD+m3YIL8ZWRd3J3I1X3/cOfMVRr0b0+Pr8ZQo1kdglbsJDnu9QVO7pwP45+NB6jfrRVDvpmAvYcLexatJf0F331edi5HV2zD0bu60nshO49x/dRFWg7tzrD5k/Br1YD9y/7myf1Hr2Udatq60dm7MUH3rvB78E7upyQwrF5nTHQNypxnYO12uFnYs+vGP/x8egtbr53gaVaq/P3sgjyCoq6w4twefjm7ncsP79C7ZstXvpeqiH/jNaO02Mu3uLIzEJ8Ojeg49X2sqlfjn9+3k5WcXuY8wav38fj2fRoM6UiXr0bTZER3jG3M5e9L8gswtDClVvcW6BqXvU0F4U0RwTjhX01TU5Phw4ezZs0aZCVGiNm2bRv5+fkMHTqU69ev07FjR/r06UNYWBhbtmzhzJkzTJgwQeUyZTIZvXr1Ijk5maCgII4dO0ZUVBQDBw6Ulzlw4AB9+vSha9euXLlyhRMnThAQoPrJilQqpU+fPmhoaHDu3DmWL1+ustmnkZERa9asITw8nJ9//pkVK1aweHFxMGDr1q3Mnj2b+fPnExoaip2dHb/99luFvqc5c+bwyy+/EBwcTFxcHAMGDGDJkiVs3LiRAwcOcOzYMZYtWyYvn5GRwWeffcbFixc5fvw4MpmM3r17I5VKARg+fDhdunRh6NChSCQSDh8+zB9//MGGDRswMCj74jZ37lyGDx/O1atX8fLyYsiQIXz00UdMnz6d0NBQAIXtkpmZSZcuXTh+/DhXrlyhY8eOdO/endjY2DI/48yZM/JgX2mZmZl07dqVmzdvcvbsWZVlSlu1ahVdu3bFxMSE9957j5UrVyq8b2try7lz57h//365y2nQoAFxcXEvLPeqmrr6cenBLUIf3OJpVioHI4JJy82koZOPyvI1LB1xMbdjXeghopIekpqTyYO0p8SmFgedo5PjCX8cw9OsVJKz0wm5f4PHGUm4mNm+Uh03bdhIj5496NmrF66urkyeMhkbGxt2bN+hsvzOHTuxtbVl8pTJuLq60rNXL7r36M6Gv/+Wl9m8aTMNGjZgxMgRuLi4MGLkCOo3qM/mjYo/GrOzs/l61ixmzJyJsZGxys/T0tLCwtJS/jIxMXml9Wzm6s+luOJtceD5tnAue1u4mtuzNvTgs22RwYO0JwrbAkAGZObnKLxeN50WTcg9HkTB9XCkCU/I3rQDNW0ttOvUKnMeWU4OsoxM+UvLozoUFJB/rTgYJwm/jeTWHaSJSUgTk8g9dBxZfj6azqozQV7Vmf0nqNemCfXbNsO6mh3dRgzAxNKM80f/UVne3tWRWs3qY+Noj5m1BXVaNKRGLR9iIiLlZS4FBpOTmcV7X4zF2as6ZlYWuHi5Y+fy+n5YtXavR0jMjWfHYDI7r58iJSeDZq6qt0OuJJ+MvGz5y8nMBj0tXc7dL94G60IPcTr6Gg/TnvI4M4VNl4+hpqaGp1XVbIPNGzbRrWd3uvfqgYurC59O+QxrG2t2b9+psvzuHbuwsbXh0ymf4eLqQvdePejaoxub/i7u+9Pb14fxn35Cu47ty8wYa9aiOY2bNcHJ2QknZyc+Gj8WPX09wq8rB+hfRfCBE9Rt05iAtk2xrmZLlxH9MLYw48LR0yrL27s64t80QL5P1W7eAHd/b+7fKt6n4u5G4+TpRq1m9TGztsC9ljd+Terx6F7Z17o36VzsTVac30vQvatvuyovdPXoWXya18O3RQDm9tY0H9wVQ3MTrp+6UO58+sYGGJgYyV9lZda/DuGBF3BvXIsaTWphYmtJ/X7t0Dcz5vbpK+XOp2ukj56xofxVss73LtzEr0NjHHyrY2Rpimfzuth5uxIeePG1rcflo2fwbVGPmi3rY25vTcsh3Yq++8Dz5c4XuHYXno1qYaciE/BWyBXqd2uJay1PTKzN8W/TCOeaNbh8+IyKJVVeExd/Lj+4zaUHt3malcqhWyGk52bSoIx7KXfLariY27H+0mHuPbuXepj2lLgS1++Y5HginhTdS6XkZHDu2Xnc2fTV7qUq4t94zSjt1slQ3Br5Ub2JPya2FtTt2wZ9MyMiz1xVWT4+PJonUXG0GNsXW08XDC1MsHC2w9LNQV7GwtmO2r1a4VzPG3VNjddS73eaTPbuvv6fEs1UhX+9UaNG8eOPP3Lq1ClaP2uatmrVKvr06YOZmRmffvopQ4YMkfcFVqNGDXmTwt9//x1dXV2F5R0/fpywsDCio6NxdCy6wKxfvx5fX18uXrxI/fr1mT9/PoMGDeKbb76Rz1erluoL3PHjx4mIiCAmJoZq1Yp+rC1YsIDOnTsrlPvqq6/kf7u4uDBlyhS2bNnC1KlTAViyZAmjRo3igw8+AGDevHkcP378hdlxz8s2bdoUKGraO336dKKionBzK2qu0K9fP06ePCkPEvbv319h/lWrVmFra0t4eDg1axY1w/rjjz/w9/dn4sSJ7Ny5k9mzZ78wy2zkyJEMGDAAKMoEbNy4MbNmzaJjx44AfPrpp4wcOVJevlatWgrf67x589i1axd79+4tM5gaExODjY2NyhvpuXPnYmRkRHh4ONbWL87AkUqlrFmzRh6oHDRoEJMnTyYyMhJ396LsqtmzZ9OnTx9cXFzw8PCgcePGdOnShX79+inUwcHBQV6/0k2qK0tDTR17Yyv+KfVDKTLxAU5mNirn8bZ25mHaU5q71qKOgwf5hQVEPL7P8bsXy8y2crNwwNLAlMO3y7+xVqWgoIBbt24xfMRwhekNGjXkeliYynmuX79Og0YNFaY1atyIvXv2IpFI0NTU5HrYdQYPGaxYplEjNm9SDMb9+L8faNq0KQ0aNmD1StVNTy9fukyn9h0xNDKkbt26jB33Mebm5irLluX5tgiKUvwRFfn0QZk33t42LjxMe0oLt9rUdvCgoLCAiMcxHLujuC20NbT4ovVQ1FEjPiOJY3cuEJ+e9FL1exnq5maoGxshuVMcNKCwEElUDJouTuSfq9iPOu2G9ci/ch3yC1QXUFNDq1ZN1LS1kdyvuuCDRCLh0b1YWvbqqDDd3d+b+7crliX1KDqO2Nv3aD+ou3xaxKUwnGq4sXflZsJDr2FgbEjtpvVp0avja/kBr6GmjqOpDcfuKH7ftx7fx9XCvkLLaORck9tP7pOSk1FmGW1NTTTUNcgqePE15UUKCgq4c+s2740YpjC9fqOG3Ai7rnKem9dvUL/U8d6gcUP279knP95fVmFhISePB5Kbk4uvv99Lz19a0T4VR/OeHRSmu9fyJu5OxfepuDv3aDuweJ9y8qzOtdMXeRAZQzV3F5IfJ3Lnyk3qtGxU6Tr/f1IokfDk/iPqdmmhMN3Rx52EyPLPLZu/+ZXCAgnmdtYEdG9FNa/X25zzuUJJIclxCdTsoLit7b1deBqtuknhc/v/txppgQQTW0v8OjXB1qP43qJQIkFdS/GY0dTS5ElUXNVVvoRCiYQnMY8I6NJSYbqzrzvxUWU/hLx5+hKpT5Lp+OEALuw7qfR+YYEEDS3FwLumthaP7sZUSb1LKrp+W3Jaxb2Uo6nqeykva2cepT2lmWstatvXIL+wgFtP7nPibmjZ91Lm9lgamHD0TnxVrwLw77xmlFYoKSQlLgGfdg0Uptt6uZBYxnHx8EYk5o423DpxgZiL4Whqa2HvVx2/Ls3QfAea+wuCKiIYJ/zreXl50aRJE1atWkXr1q2Jiori9OnTHD16FIBLly4RGRnJhg0b5PPIZDKkUinR0dFK2VERERE4OjrKA3EAPj4+mJqaEhERQf369bl69SpjxoypUP0iIiJwcnKSB+IAGjdW7rtm+/btLFmyhMjISDIzM5FIJBgbGyssp/QAAo0bN+bkSeWbl9L8/f3lf9vY2MibwpacduFC8VPj2NhY5s6dy/nz50lMTJRnxMXGxsqDcWZmZqxcuZKOHTvSpEkTvvzyy5euB4Cfn5/CtNzcXNLT0zE2NiYrK4tvvvmG/fv38+jRIyQSCTk5OeVmxuXk5CgFWJ/r0KEDx48fZ8GCBRUa6fXo0aNkZWXJA6eWlpZ06NCBVatWsWDBAgDs7OwICQnhxo0bBAUFERwczPvvv89ff/3F4cOH5T/O9fT0ABSaA5eUl5dHXl6ewjQdHZ0X1hFAX1sXDXV1MvMUM6Uy83Iw1NZXOY+ZvjHOZrZIpIVsuHwEfW1devg0R19bh53Xg4rroKnNtNbvoamujlQmY1/4mTL7HClPamoqhYWFmJsrNv2xMDfnXKLqgFJSUhIWpYJh5uYWFBYWkpqaiqWlJUlJSZhblCpjYU5SUvEyjx45yu1bt1m9bk2Z9WvcpAlt2rXFztaOR48e8cfy5YwfO461f69DW7vsJpmllbUtMvKzqaGj+umxub5R8ba4VLQtevo2R09Ll53XTwHwNCuFHWEnSchIRldTiyYufnzUuBfLTm8nKbv8pkyvSs24qOmJNCNTYbo0I1Pe19uLaDg6oGFnS/aWXUrvqdvaYDTxQ9DUhPx8slZvRPr4aaXr/Vx2eiZSqRRDE8VmOUYmRtxNLf87+37sdLLSM5EWFtK2fzfqt20mfy/5cSL3nt6mVrMGjJg+nsT4J+xduYVCqZS2/bpWWf2fM9DRQ0NdnYw8xa4VMvKyMdZRfXyXZKxjgI+NK2tDD5Zbrodvc9JyMrn9pPIB0TT58V76+DUjqYzmnElJSTQ0NytV3lzheK+oqMhIxo78kPz8fPT09Fjw4/e4ur2436oXKd6nFLNrDU2MyEgtu+kUwI8fz5TvU637dyWgbVP5e/5NA8hOz+SvrxchQ4a0UEqD9s1p0atDOUsUSsvJyEYmlaJvrNhsTt/EgOwbmSrnMTA1ovXwnli5OFBYIOF2yFV2/7Sa3l+MwsGz8vvMi+RlZiOTytA1UmxVoGtkQG666u5U9EwMaTS4E+ZOtkgLCrl38QbHlm2iw6dDsHF3AsDe242IwIvYuDtiZGlG/O0Y4sLuKrQiqUplffd6JkZk3VDdN1pKQiJntx+m//SPUNdQnaXkVLMGV46cwcHDBVNrc2Ijorh3JQLZs/vSqiS/fpfKOs/Mz8GojHOtuZ4xTs+u3xuvHEVfS5fuvs3Q09Jl942S91JafNHqPTTVNZDKpOwPP/tK91IV8W+8ZpSWn5Wj8rjQMTIgN0P1cZGZmMrTew/R0NKk2Qe9yMvMIXTbMfKzcmk4tLPKeQThbRPBOOE/YfTo0UyYMIFff/2V1atX4+zsTNu2RR1uS6VSPvroIyZOnKg0n5OTk9I0mUyGmppaudOfB1YqQtWNT+nlnzt3Tp5p17FjR0xMTNi8eTMLFy6s8OeUR6vEU0U1NTWF/59Pk5a4senWrRuurq6sWLECe3t7pFIpLi4u5OfnK8z3zz//oKGhwaNHj8jKylIIHlakHmVNe16XL774giNHjvDTTz/h7u6Onp4e/fr1U6pHSZaWlqSkpKh8r23btkycOJGePXtSWFio0DRXlVWrVpGcnKwwYINUKuXKlSvMnTsXjRI3jzVr1qRmzZqMHz+eM2fO0Lx5c4KCguTZmsnJRT9AyxrY4rvvvlPItISirDsa2pVbx5JK72lFX6fqG+/nu+DWa4HkSYq+z4O3Qhhcpz17b56RP9HNl+Tzy9nt6Gho4WbhQGevxiRnpxOd/GpPdEsfWmUdb2XN8Px4UpxaukzxvvQ44TGLFi5i6S9Lyw1utu/QXv53dffqePt407NbD86eOUvrNqoHgyiP0rZATcXUku/BlqsnirdFRDCD63Zg783TSKSFxKU+IS61eNCE+ykJjG/Wj8YuNdkffval66eKVt1a6Pcr7msx86/1z1amVL3V1CrcpEC7YQCF8QkUxin/6JA+TSRj4a+o6emi5e+L/uC+ZP72V5UG5IqqW2r/KJpY7jwffjuF/Nw84u5Ec3jjbixsrajVrCjzVyaTYWBsRO+PhqKuro6DmzMZKWmc3nvstQTjFOr9Cho6+5BTkEfYo8gyy7StEUC9al4sPb21SvshVPruZeV/9crlnx/v5W+v0pycnVm9cS2ZGZmcCjzJ/DlzWfbnb1USkHtWoVL1VK57aR988xl5uXk8uBvD0Y17sLC1wr9pUfcW0TfvELTrMN1GD6RaDReSE55ycM12DHcconVf8SOy0mQobbPnzGytMLMtvi7buTuRmZLGlSNn30gw7jmlfbycOpvYWCj0aWfl5kBWSjrhxy/Ig3H1+7UjZNMh9s5dAWpgZGlG9Ub+RJ1TnYleVZSOA5lM5WpIpVIO/7GFRr3aYWZbdqC95ZBunFizi/UzFoOaGibW5vg0q0v4mctVW3EFimdbNdTKvOQ9X99tYYHkSYqyvw/fCmFg7fbsDy95L1XAb8E70NbQws3Cnk5ejUjOSSfmFe+lXn4tKu5tXjOUlN55ZGUfGM/vJxsN74a2XtH9Xh1Ja86u2kO9/u1EdhyArOqD2ELliGCc8J8wYMAAPv30UzZu3MjatWsZM2aM/AJZt25dbt68KW9W+CI+Pj7ExsYSFxcnz44LDw8nLS1NnkXn7+/PiRMnFJpUvmh5jx49wt6+KD08JCREoczZs2dxdnZm5syZ8mml+xbz9vbm3LlzDB9e3Mzv3LlzFVqnl5GUlMT169f57bffaNiwqMlQUFCQUrng4GB++OEH9u3bx5dffsknn3zC2rVrq7Qup0+fZsSIEfTu3Rso6vMtJiam3Hnq1KlDQkICKSkpmJmZKb3fvn179u/fT/fu3ZFKpfzyyy8qf0QlJSWxZ88eNm/ejK9v8QhTUqmU5s2bc+jQIbp166ayDj4+RX2LlBwk5MaNG2hpaSksq6Tp06czefJkhWk6Ojp8G7im3PUFyM7PpVAqxUhHMUhsoK1XZr9iGbnZpOdmyYM/AE8zU1BXU8NE14Ck7KIsDxmQ/Ozv+IwkrA1NaelW56WDcaampmhoaChkrAEkp6QoZbY9Z2FhoVQ+JSUZDQ0NTExN5WWSS5dJTpZn5Ny6FUFKcjIjhr0vf7+wsJArV66wfes2TgefUQiqPmdpaYmtnR1x5WRhqlLWtjDU1lPKlnsuI095WzyRbwtDlZlvMuBh6lMs9F+tXztVCm5GkHG/RBOmZ80C1Y2NKCyRHaduaICsjCfTCrS00K7tR86RE6rfLyxEmlQUpC588AgNx2roNG9Czvaq6bRe/1kfSqUzljLTMpQym0ozty76cWjr5EBGWjontu2XB+OMTE3Q0FRXaJJq5WBLRmr6KzenLE9WXg6FUinGOooZAkY6+qTnqc60LamRc00uxoVTWMZNeBv3enTwaMAvZ3fwKD2xSupsUsbxnvLC4z1ZqXzR8f5y+7mWlhbVnl2/vXy8iQiPYNumLUyd+eIM7vI836cyS+1TWekZShmYpZmV2KcyU9MJ3HZAHow7sXU/tVo0kGfL2To5kJ+Xz94/N9Ky9+tp/vxfpGekj5q6Otnpillw2elZShlb5bF1c+T2uTczWqyOoT5q6mrklMpAzs3MUsoKKo+ViwP3Lt6U/69rpE/rD/tSWCAhLysHPRNDruw5haGFaVVVXcHz7z4rTbFZY056Jvomyt99QW4eT2Ie8jQ2nlN/7wOeBd9lMpaO/oreU0bi6FMdfWNDuk8chqSggNzMbAxMjTm77QjGlsr3d5X1/PpdukWBgbYumfmqz7XF1+/ibhieZqairqaGsa6B/P6p5L1UQkYSVgZmtHCr/VqCcf/Ga0Zp2gZ6qKmrKWWH5mVmo2ukOrtPz8QQPRNDeSAOwNjGAmSQk5qpMMCJILwrxNVd+E8wNDRk4MCBzJgxg0ePHjFixAj5e9OmTSMkJITx48dz9epV7t69y969e/nkk09ULqtdu3b4+/szdOhQLl++zIULFxg+fDgtW7aUD9Iwe/ZsNm3axOzZs4mIiOD69ev88MMPZS7P09OT4cOHc+3aNU6fPq0QdANwd3cnNjaWzZs3ExUVxdKlS9m1S7FZ16effsqqVatYtWoVd+7cYfbs2dy8eZOqZmpqirm5OcuXLycyMpITJ04wZcoUhTIZGRkMGzaMTz75hM6dO7Nx40a2bt3Ktm3bqrQu7u7u7Ny5k6tXr3Lt2jWGDBmikMGnSp06dbCysuLs2bKzhdq0acOBAwdYu3Yt48ePV5m9uH79eiwsLOjfv788661mzZr4+/vTrVs3+UAOH3/8MXPnzuXs2bPcv39fHjC1srJSaI58+vRpmjdvXmZWpY6ODsbGxgqvijZTLZRJeZT+FHcLxQ7k3S2rEZvyWOU8samPMdLVR1ujOHBgaWCCVCYlLbe8QIsaGuov3+mtlpYWXl5eXDiv2In2hfMX8CvRfLkkPz8/pfLnz53H28dbHvDw8/fjfOky58/LlxlQvz4bN29i/Ya/5S9vH286durE+g1/qwzEQVEzuyePH79U0zgosS0sFZukuls6cD9V9Sh291MSVGwL02fbQnXTKgA7YwsyKnBjXWF5+UiTkotfj58gTc9A06PECHcaGmhWd0ES8+IgpXbtmqCpQcGlqxX7fDVQq8IOlTU1NbF3cyIyLEJhemRYBM6eL9EflKyor7DnnD3dSEp4qnAuSox/gpGZSZUH4qBon4pLfYyXtWImt6e1M9FJ5Y8o6G5ZDWtDM0JiVA9e0LZGAJ28GvF78C6FDscrS0tLCw8vTy6eV+yzKPT8BWqW0Xebr19NQksdyxfPXcCrxPH+ymQypdHJX0XRPuVIVNgthelRYbdw9Kj4PiWjqI+t5wry8lFTU7wlV1dX///cp/Ur0dDUxNrZnribihk9ceGR2Lort4Qoy9PYeJUBpNdBQ1MDc0db4m/FKEyPvxWDlauD6plUSH7wGD0T5eCdhpYm+qZGyKRSYq/extG/RmWrrJKGpibWLvbElvruY8Mjsauu3E+utq4OQ+dOZMg3E+Qvv1YNMLO1ZMg3E7CtrngN1dTSwtDMBGmhlMhLN3Cr8+IBuF5W0fU7keqWit97dctqZZ4fY1MSMNI1ULh+Wzy7l0ov515KTQ00X+FeqiL+jdeM0jQ0NTBztCXhtmJiQsKt+1iWcVxYujqQk5ZJQV7xg82MJ8moqamhZ/pmjmdBeFkiGCf8Z4wePZqUlBTatWun0PzU39+foKAg7t69S/PmzalTpw6zZs3Czk518z81NTV2796NmZkZLVq0oF27dri5ubFlyxZ5mVatWrFt2zb27t1L7dq1adOmDefPq+7UXl1dnV27dpGXl0eDBg344IMPmD9/vkKZnj178tlnnzFhwgRq165NcHAws2bNUigzcOBAvv76a6ZNm0a9evW4f/8+H3/88at+XWXS0NBgy5YtXL58mZo1azJ58mSl5rKffvopBgYG8n7TfH19+d///sfYsWN5+LDq+sBYvHgxZmZmNGnShO7du9OxY0fq1q37wvqPGjVKoY9AVVq1asXBgwdZv349H3/8sVJAbtWqVfTu3VtlRkLfvn3Zv38/jx8/pl27dpw7d47+/fvj4eFB37590dXV5cSJE1hYFDcj2bRpU4X7GXwVZ6OvU8/Ri3rVPLEyMKWLV2NMdA25EBsOQAePBvTzL25uee3RXbLz8+jj1worQ1NczOzo5NWISw9uy5sctHCrTXULB8z0jLA0MKWpix91HGpw7ZHq/l9eZPDQIezZvYe9e/YSHR3N4oWLeJyQQJ++fQD49ZdfmfP1bHn5Pn37kBAfz5JFi4mOjmbvnr3s3bOXoe+9Jy8zcNAgLpw/z7o1a4mJiWHdmrVcOH+BQUMGAWBgYEB19+oKLz1dPUxMTajuXhRkys7O5uclP3M9LIxHjx5xKfQSUyZPwcTUlJatW730ep6JDiOg5LbwboKJnhEX7j/bFp6qt0Vf/9ZYG5rhYmZHZ+9GXIor3hZt3OtRw7IaZnpG2BlZ0MevFXbGFvLt+7rk/ROMbtuWaNX0Rt3WGv1BfZDlF5B/pThrRH9wX3S7tFeaV7tBPQpuRCDLVs4I1O3cHg1XZ9TNTFG3tUG3czs0q7uSf7lqs1GadWtL6ImzhAYG8+RBPAfWbCMtMYUG7ZsDcGTjbrb9skZePuTwKSJCw0iMf0Ji/BMunQzm9L5j1G5e3Il0ww4tyM7IYv+abSQ+esyty9c5teswjTq2LP3xVeZk5CUau/jRyNkXGyNz+vi1xFzfiDPRRd9Xd59mDKvXSWm+xs41iU6OJz5DuV/GtjUC6OrdhA2Xj5KUnYaRjj5GOvpoa1RNU55BQwezf/de9u/ZR0x0DEsXLuFxwmN69S3KdF7+y2/M/bq4aX6vvr1JiE9g2aKfiYmOYf+efezfs4/B7w2RlykoKODu7TvcvX2HggIJT58+5e7tOzyIK87o/OPX37l25Srxj+KJiozkj1+Xc+XSFTp0UhzI41U16dqWS4HBXDoZzJMHCRxcu520xGQatC/qV/Doxj1s/6U4S/z8kSBuXbpOUvwTkuKfcPlkCGf3HadWs+J9yrOeHxePnSbsbCgpTxKJDIvgxJZ9eAX4vRNZcXpaOtSwrEYNy6IHPvbGltSwrIaN4buXaVK7Q1PCT18i/PQlkh894fTmg2Qmp1GzZVFma/COoxz7a7u8/NVjwdy7HE7q40SSHj4meMdRoi7dxL/Nmxs8w6dNAyKDrxEZco20hEQu7jhOVnI6Hs3rAHB5zynOrtsnLx9x8iKx1+6Q/iSZ1PinXN5zitirt/FqUU9e5mnMI2Kv3iYjMZXHkXGc+HUrMpkM33YNlT6/qtTt0Iyb/4Ry859Qkh89IWjTATKS0vBrXbSvn912hCMrih7aqqmrY1nNVuGlb2yAhpYWltVs0dIp6qs1ISqOyNAbpD1J5uGdaHYvWo1MJiOg1CAdVSU4Jox61byo61B0/e4sv5cqeqjT3qM+ff1aycuHxUeSk59Lb79WWBmY4mxmS0fPhlwu817KhCYuftS293jle6mK+DdeM0rzah3AvZAw7oVcJy0hics7A8lOSce9WdHAbtf2/sO59Qfk5Z0DvNE20OPChkOkxSfyJDKOa3uCcG3kJ2+iWigpJOXBY1IePEYqKSQnLZOUB4/JeKq6e5v/HKns3X39PyWaqQr/GY0bNy6zY9r69evLB3RQpXTTRycnJ/bsKb+pVJ8+fejTp0+Flufh4cHp06cVppWu6w8//KCUXfd8BNjnZsyYwYwZMxSm/e9//yuzjq1atVL6nBEjRihkDgLMmTOHOXPmyP9v164d4eGKP/JLLmfVKuXRKCdOnKjQL1/p76B0PVxcXJSmla6vi4sLgYGBCmXGjx+v9NmlTZo0CV9fX+7fvy8fuVRV89YWLVqQkVHcpOLUqVPyv8PKGOETirb98yyLvn370rdv33Lrc+DAATQ0NOjXr98L6/6qridEoa+tQ+vq9TDS1edxRjLrQg+R+iyzykhHHxPd4ieD+YUSVl88QHefpoxr0ofs/DxuJEQpjL6lraFFD9/mmOgaUFAo4WlWKtuuneR6QtQr1bF9h/akpaWx6q+VJCYm4la9Oot/XiwPjCclJvI4ofhJq72DA4t/XsKSRYvZvm07llaWTPl8Cm3atpGX8a/lz9z58/jj9+X8sfwPqlWrxvzvFsgHGqkIdXV1oiIjOXTgIBkZGVhaWlIvoB7zFyzAwKDizYSeux4fhb6WLm3cAzDS0edxZjJrLx4ssS0MMNUrbtKWXyhh9YX9dPNtxrimRdvienwUx+4UZwnpaunQy68lRtr65EryeZSeyJ/n9vIg7YnS51elvJOnUdPSQq9vD9T0dCmMfUDmn2ugxJNndVNTpT7k1C0t0HRzIfOP1SqXq2ZkiMGQfqgZGyHLyaUw/jFZK9YiufNq+1ZZ/JsEkJ2RReCOA2SkpGPjaMf708djZlUUKM9ISSO1xIACMpmMI5t2k/IkCXV1dSxsreg4tBcN2jWXlzG1NGfUVxM5sHYbS7+Yh7G5KU07t6ZFr6oJ9qhy+eEdDLT16OTZCGNdA+LTk/g9eJd8pDsTXQPM9BSbSepqalPbvgY7rp9SuczmrrXQ0tDkg4bdFaYfjAjh0K0QlfO8jLYd2pGWlsaav1aRlJiEa3U3fvx5Ibby4z2p1PFuz48/L2TZop/ZuW0HllaWTPr8M1q1LQ5cJz5NZOTQ4ibnm9ZvZNP6jdSuW4df/vwNgOSkZOZ+/Q1JiUkYGBpSvUZ1Fi5dTP1GiqPyvSq/JvXIzsji1I5D8n1q2JfjMH22T2WmppGWVPzDTiaVcWzjHlKeFu1T5jZWdBjSk4B2xYOCtOxT9KP4xJZ9pCenYWBsiGc9P9oNUtw2b4uXlTO/9C7uRmFis6IR1w9GhDA/sGq7p6isGg38yM3M5uK+k2SlZWDhYEO3T4fJmzVmp2aQkZwqLy+VFHJ222EyU9LR1NLC3MGabp8Ow8Xf843V2aWeN3lZOYQdOktOehamdpa0GdcfQ/Oi5tk56ZlkJRc3jZZKCrm8K5DstEw0tDSLyn/cHwff4ixmaYGEq/v/ISMxFS0dbRx83Wg6vBva+qoHuKoKHg39ycnK5vzeQLKfffc9P3tf/t1npWWQkZT6UsuUFBQQsusYaU9S0NLVxsXfk45jBqCjX/G+m1/GjYR76Gvp0sq9btH1OyOZ9ZcOybPUDXX0MdFTvJdaE3qArt5NGdukDzn5udxIuMfxu8X3UloamnT3aYbxs3upxKxUtocFciOhYiMwv4p/4zWjNKe6XuRl5XDjSDC5aVmY2FnSYmxfDEoeFynF9/BaOtq0Ht+fS9tPcPSn9Wgb6OFUxxO/rsXn2py0TI78sE7+/63Ai9wKvIiVuyNtJw6q8nUQhBdRk72uYXUEQRDeoj179mBubk7z5s1fXPg127p1K87OzvI++F7GzEN/vIYavVnzO39EasbrGfHzTTE1MmHGweVvuxqVtqDLWFKnfPW2q1EppgvnseNa4IsLvuP61mrDJ7sWve1qVNqy3pN5mqF6hNR/Cysjc7ZePf62q1FpA2q3o+mvY19c8B12dvxylp2p2i4v3oZPmvVn3jHVDyP+Tb5qP5Lfgne87WpUyrgmfZl1+M+3XY1Km9vpw3/9NWNZ78nMPvLX265GpX3T8YO3XYVXknH79WVjVpaR5+tpQv+uE5lxgiD8J/Xs2fNtV0FuwIABb7sKgiAIgiAIgiD8fyVysN45b78jCkEQBEEQBEEQBEEQBEH4f0IE4wRBEARBEARBEARBEAThDRHNVAVBEARBEARBEARBEP6rRDPVd47IjBMEQRAEQRAEQRAEQRCEN0QE4wRBEARBEARBEARBEAThDRHNVAVBEARBEARBEARBEP6rpNK3XQOhFJEZJwiCIAiCIAiCIAiCIAhviAjGCYIgCIIgCIIgCIIgCMIbIpqpCoIgCIIgCIIgCIIg/FeJ0VTfOSIzThAEQRAEQRAEQRAEQRDeEBGMEwRBEARBEARBEARBEIQ3RDRTFQRBEARBEARBEARB+K8SzVTfOSIzThAEQRAEQRAEQRAEQRDeEBGMEwRBEARBEARBEARBEIQ3RDRTFQRBEARBEARBEARB+K+Simaq7xqRGScIgiAIgiAIgiAIgiAIb4gIxgmCIAiCIAiCIAiCIAjCGyKaqQqCIAiCIAiCIAiCIPxXyaRvuwZCKSIzThAEQRAEQRAEQRAEQRDeEDWZTCZ68hMEQRAEQRAEQRAEQfgPyrga9rarUCaj2v5vuwpvhWimKgiC8A679vDO265CpdVy8OBxeuLbrkal2Bhb8te5vW+7GpX2QaMepC35/W1Xo1JMJn3MP1GX33Y1Kq1F9bos+WfL265GpU1qMZD0LTvfdjUqxXhgHzJi4952NSrNyMmRZWe2ve1qVMonzfrT9Nexb7salXZ2/HKGbpzztqtRaRuGzOF/gevfdjUqZVqbYf/6dYCi9Zh56I+3XY1Kmd/5I7ZdO/G2q1Fp/Wu1fdtVeDUiB+udI5qpCoIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1EyqWim+q4RmXGCIAiCIAiCIAiCIAiC8IaIYJwgCIIgCIIgCIIgCIIgvCGimaogCIIgCIIgCIIgCMJ/lRhN9Z0jMuMEQRAEQRAEQRAEQRAE4Q0RwThBEARBEARBEARBEARBeENEM1VBEARBEARBEARBEIT/Kpn0bddAKEVkxgmCIAiCIAiCIAiCIAjCGyKCcYIgCIIgCIIgCIIgCILwhohmqoIgCIIgCIIgCIIgCP9VUjGa6rtGZMYJgiAIgiAIgiAIgiAIwhsignGCIAiCIAiCIAiCIAjCf0ZKSgrDhg3DxMQEExMThg0bRmpqapnlCwoKmDZtGn5+fhgYGGBvb8/w4cN59OiRQrlWrVqhpqam8Bo0aNBL108E4wRBEARBEARBEARBEP6rZLJ39/WaDBkyhKtXr3L48GEOHz7M1atXGTZsWJnls7OzuXz5MrNmzeLy5cvs3LmTO3fu0KNHD6WyY8aMIT4+Xv76448/Xrp+os84QRAEQRAEQRAEQRAE4T8hIiKCw4cPc+7cORo2bAjAihUraNy4Mbdv38bT01NpHhMTE44dO6YwbdmyZTRo0IDY2FicnJzk0/X19bG1ta1UHUVmnCAIAKxZs4ZDhw697WoIgiAIgiAIgiAI/0/k5eWRnp6u8MrLy6vUMkNCQjAxMZEH4gAaNWqEiYkJwcHBFV5OWloaampqmJqaKkzfsGEDlpaW+Pr68vnnn5ORkfHSdRTBOOFfwcXFhSVLlrzR5ampqbF79+5Kfc6cOXOoXbv2S81z6tQp1NTUym3PXtV27tzJDz/8QKNGjV5p/hEjRtCrVy/5/61atWLSpEnlzlNV2zQwMBAvLy+kUmmll/U6PHnyBCsrKx4+fPi2qyIIgiAIgiAIwv9HUtk7+/ruu+/k/bo9f3333XeVWt2EhASsra2VpltbW5OQkFChZeTm5vLll18yZMgQjI2N5dOHDh3Kpk2bOHXqFLNmzWLHjh306dPnpesomqkKr1X37t3Jycnh+PHjSu+FhITQpEkTLl26RN26dd9ovS5evIiBgcEb/cx31b179/jqq684dOgQZmZmVbLMnTt3oqWlVSXLepGpU6cyc+ZM1NWLni2sWbOGSZMmKQQzIyIiaN++PQ0aNGDTpk3o6Ohw8uRJfvzxR86fP09OTg4uLi507tyZyZMn4+DgoPAZnp6eREdHEx0drfTevXv3mDlzJkFBQSQnJ2NpaUm9evX48ccf8fDwwNrammHDhjF79mz++uuv1/pdHNlzgL1bdpKalEI1FydGjB+Dt7+vyrIpScms+30l9+5EkfDwEZ17d2fEhDFK5bIyM9m0cj0XToeQlZGJtZ0Nw8aOpm6jgCqp865tO9n090aSE5NwcXPlk8kTqVWndpnlr166wi9LlhFzLxoLS0uGDB9Cz7695e/v27WXIwcPcS8qGgBPL0/GjP8IH18fheU8ffKU5ct+43zIOfJy83B0cmTarOl4entVyXpdORHMxYOnyEzLwNLehjZDe1DN0+2F8z24E83m75ZjWc2GEXMnK7yXm5XD6R2HuBt6g9zsHEwszWk9uBtutbyrpM5l0WkUgHZNH9R0dShMeExO4GmkySllltfy8US/Qxul6WnL/oTCQgCMRg1FvcRNzXN5126Qe/J01VUeOLn/KEd27CctORV752oM/HA4HjVVb+fLZy9w6sAx4u7dR1Igwd65Gt2H9qVmvVryMmePBbFm8XKleX/bvRYtbe0qrXtJN05e4OqRM2SnZWJmb0XTgZ2x93BRWfbh7Wj2/rRaafqgbz/BzM4KgPB/QrkdcpXkR08AsHK2p2Hvdti4Vntt6wAgk8lYcfIEuy5dICMnB99qjkzt1pPq1jYVmv/o9WvM3LaZll4+/DSkuN+X7RfOsePieeJTi/ZNNytrRrdqS1MP5WYor1LnP9evY9eBg2RkZuDr5cW0TyZS3cWl3PlOnP6H5WvW8CA+nmp2dowbOYrWzZrJ38/Kzmb5mjWcPHuGlNRUPN3dmTJuHL6exftndk4Oy/76i6Dgs6Slp2NnY8ug3r3o1125/5rKuh54nstHTpOdmom5gzXNB3Upcx97cOseu39cpTR96LxP5fvYu6SWnTtD6nTAy9oJSwNTvjz4O6ejr73tasm1q1Gfrt5NMNUz4mHaE9ZfOsztp7Fllm/i4kc376bYGlmQXZBL2KNINl45SmZ+DgCtq9elmWstHE2LfohGJ8ez5doJ7iW93geDEUGhXD8WQk5aJqZ2VjTs3wHbGk4qy8bfieHQ4r+VpveZPRZTW0v5/3nZuVzac5L7V2+Tn52DoaUpDfq2x7Gmu1iHcjR08qGZay2MdPR5kpnCgYhg7qeUHYDQUFenTfV61HKogZGOPmm5mQRFXeHSg9tKZf3sqjOodjvCH0ez4fLR17YO548EcXrvcTJT07CuZkeXEf1x8Vb9ncXciuToht08ffiYgrx8TK3Mqd+uGU27tZWX+WvOYmLC7yrN61HHl+HTx7+29RBebPr06UyerHjfq6Ojo7LsnDlz+Oabb8pd3sWLF4Gi5JrSZDKZyumlFRQUMGjQIKRSKb/99pvCe2PGFP9mqlmzJjVq1CAgIIDLly+/VFxDBOOE12r06NH06dOH+/fv4+zsrPDeqlWrqF279hsPxAFYWb17N4pvi5ubG+Hh4RUqW1BQUKEgm7m5eWWrVSHBwcHcvXuX/v37l1nm4sWLdO7cmZ49e/Lnn3+ioaHBH3/8wbhx43j//ffZsWMHLi4uxMbGsm7dOhYuXMiiRYvk8585c4bc3Fz69+/PmjVrmDlzpvy9/Px82rdvj5eXFzt37sTOzo4HDx5w8OBB0tLS5OVGjhxJgwYN+PHHH6ss4Kn0XZw8zZpf/+KDT8fiWdOH4/sOs+DLOSxe/SuWNspPhQoKCjA2NaHPewM4sH2PymVKCgqY98UsjE1NmTznSywsLUl6+hRdff0qqfOJo8dZtuhnJk+bQs1a/uzduZupn37Ouq1/Y6OiD4ZHDx8xddLndOvVna++/Zob18JY9L+FmJiZ0qpNawCuXLpM2w7t+dS/Jto6Omxat4HPJ3zG2i1/Y2VddNxnpKcz/oOx1KlXlx9+XoiZmRmPHjzE0MiwStbr1vmrBG7YS/vhvXHwcOHayXNsX7iSUd99jrFF2ds/LzuHg39uxtnHnax0xVT3QomEbT/+ib6xIT0mDMPI3JSM5FS0dVXfqFQV7YDa6NSpRfbRQKSpaeg0qItBn+5krN0EBQVlzifLyysqo7AShfI/MzftgBI3QuoW5hj27UHB3agqrf/FoBC2/LmOoeNG4e7jSdCh4yz9+nu+Wf4TFtaWSuXv3IjAp44fvUcMQt9An7PHgvjlmx+ZsXguTtVd5eX09PWY++cihXlfZyAu8uJ1zm45RPOh3bBzd+Jm0EUOLP2bQd9MwMjCtMz5Bs+diLZe8T6ia1T8EOrR7RhqNPDHtrojGlqaXD1yhv2L1zHwmwkYmikHSqvKujP/sDHkDF/37oeThSWrgk4yYe1Ktk+cgkEZN97Pxaem8PORg9RxdlF6z9rYhAntO1LN3AKAA1cv8/mm9fz98ScVDvSVZe2WLWzcsYPZn3+BU7VqrNy4gfHTprFj9WoMyjgfhoWHM2PePMaOGEHrps04efYMX86by8rFS6jpXRRAn7doIVExMXw77UusLCw4eOI446ZOZdvKVVhbFu2fi37/jdBr1/j2yy+xt7Hl3KVQ/rd0KZYWFrRq0rRS61XS3QvXOb35IC3f6y7fx/YtWceQuRPL3ceGzp+ksI/pGb2bDzr1tHSITHrAwVvBLOg89m1XR0EjJ1+G1e3E6tAD3HkaSxv3AKa2eo+pB34lKTtNqbyHlRMfN+rN35ePcPnhbcz0jRlVvxsfNOzBktNbAPC2cSHk/g3WhcaRL5XQzbspX7YexrQDv5KS8/JNqSriXuhNzm87SuNBnbGp7sit05c5+usm+nw9FkNzkzLn6zvnY7R0S56nio+pQkkhR5ZuQNfIgDYf9sXA1IjMlHSF8mIdlPnZVqeLdxP23TzD/ZQE6jv58H5AF34+vZW03EyV8wyu3R4DHT12XQ8iKTsNQ2091NWUG9GZ6hrS2asR0cnxr63+ANeDQzm4ZjvdPxiEk6cbF4+fYd2CX5m4eBamlsq/M7R1dGjYsSW2zg5o6+hw/1Yke1ZsQltXh/rtih6CDPn8QwolEvk82RlZ/PrFAmo2fvO/RQVFOjo6ZQbfSpswYcILRy51cXEhLCyMx48fK7339OlTbGzKvy8oKChgwIABREdHExgYqJAVp0rdunXR0tLi7t27LxXbEM1UhdeqW7duWFtbs2bNGoXp2dnZbNmyhdGjRwNFQZUWLVqgp6eHo6MjEydOJCsrq8zlxsbG0rNnTwwNDTE2NmbAgAFKB9vevXsJCAhAV1cXS0tLhdTR0k0k7969S4sWLdDV1cXHx0ep40aAadOm4eHhgb6+Pm5ubsyaNYuCUj9Gv//+e2xsbDAyMmL06NHk5ua+8Ds6ePAgHh4e6Onp0bp1a2JiYpTKvOz387x57B9//IGjoyP6+vr0799fqenr6tWr8fb2RldXFy8vL4Wof0xMDGpqamzdupVWrVqhq6vL33//TWFhIZMnT8bU1BQLCwumTp2KrNQoOKWbqT558oTu3bujp6eHq6srGzZsUKrzokWL5MNIOzo6Mm7cODIzVd8wPLd582Y6dOiArq6uyvcDAwNp06YNI0eOZOXKlWhoaPDgwQMmTpzIxIkTWbVqFa1atcLFxYUWLVrw119/8fXXXyssY+XKlQwZMoRhw4axatUqhXUNDw/n3r17/PbbbzRq1AhnZ2eaNm3K/PnzqV+/vrycn58ftra27Nq1q9z1qYz923bTpnN72nbtSDVnR0ZMGIOltSVH96ruB9Da1oaREz6kZYc26Buo/jEZeOg4memZfDF3Jl41fbCytcbLzxeXEkGJyti6cQtde3ajW68euLi6MHHKJKxsrNm9XfX3tGfnbqxtbZg4ZRIuri5069WDLj26suXv4qDP1/Pm0Lt/H2p4euDs4swXM6chlUm5dDFUXmbD2g1Y21gzffZMfHx9sLO3o16DAByqVU1GUOjhf/BrUR//Vg2xsLehzdCeGJmbcvVESLnzHV2zA5/GdbB3d1Z67/o/F8nJzKbXxBFU83DFxNKMah6uWDvZV0mdy6JTx5/ci5eQREUjTUom52ggalqaaHvVeOG8suwchZfCezm5Cu9publQmJpG4YNHZSzt1RzbdYBmHVrTvFMb7JwcGPTR+5hZWRB0QPkcDzDoo/fp1L8Hrh7VsXGwo8+IQVjb23Lt/GXFgmpqmJibKrxep2vHgvFqVhef5vUws7Oi2aAuGJoZczPoYrnz6RkboG9iJH89zyAGaDemHzVbN8DSyQ4zOytaDu+JTCbjYcS917YeMpmMTSFnGdmiNW18auJuY8ucPv3JLSjgSNjVcuctlEqZtX0LH7Zuh72Z8g+xFl7eNPXwwtnSCmdLK8a164i+tjY34srOLqpwnek0VbEAAQAASURBVHftZOTgIbRp3hx3V1e++WIquXm5HA4MLHO+TTt30LBePUYOHoKLkxMjBw+hQZ06bNy5E4DcvDwCT59m4pgx1PX3x9HBgY+Gv4+DrR3b9+2VLycsIoJu7TsQUKs29ra29OnajRrVqxNx506l1qu0q0fP4tO8Hr4tAjC3t6b54K4Ymptw/dSFcufTNzbAwMRI/iq5j71LzsXeZMX5vQTdu/q2q6Kks1djTt27zKmoyzxKT+Tvy4dJyk6jXQ3VGejuFtV4mpXKkTvneZqVyp2nsQRGhuJmXnw9+C14J8fvXuR+agLx6Yn8dWEv6mpq+Nq+OEP7Vd04cR6PJrXxbFYHUztLGg3ogIGZMbf+uVTufLpGBuibGMpfJfehu8FXycvKod3Y/thUd8TQwhRbdycsqlUuwP5fXgeApq5+XHpwi9AHt3ialcrBiGDScjNp6OSjsnwNS0dczO1YF3qIqKSHpOZk8iDtKbGpir+t1FCjf602nLgbSkp2+murP8DZ/YHUa9OEgLZNsa5mR9cR/TGxNOXC0X9Ulrd3daRWs/rYONpjZm1B7RYNqVHLm5iISHkZfUMDjExN5K+osFto6WhTs9H/k2CcTPruvl6CpaUlXl5e5b50dXVp3LgxaWlpXLhQfB07f/48aWlpNGnSpMzlPw/E3b17l+PHj2NhYfHCOt28eZOCggLs7Oxeal3ezSum8J+hqanJ8OHDWbNmjUIQY9u2beTn5zN06FCuX79Ox44d6dOnD2FhYWzZsoUzZ84wYcIElcuUyWT06tWL5ORkgoKCOHbsGFFRUQwcOFBe5sCBA/Tp04euXbty5coVTpw4QUCA6psaqVRKnz590NDQ4Ny5cyxfvpxp06YplTMyMmLNmjWEh4fz888/s2LFChYvXix/f+vWrcyePZv58+cTGhqKnZ2dUkpraXFxcfTp04cuXbpw9epVPvjgA7788kuFMi/7/TwXGRnJ1q1b2bdvn3wo5/Hji1OwV6xYwcyZM5k/fz4REREsWLCAWbNmsXbtWoXlTJs2jYkTJxIREUHHjh1ZuHAhq1atYuXKlZw5c4bk5OQXBplGjBhBTEwMgYGBbN++nd9++40nT54olFFXV2fp0qXcuHGDtWvXEhgYyNSpU8td7j///FPmdt21axddu3Zl5syZ/Pjjj/Lpz/e9spZdsnPOjIwMtm3bxnvvvUf79u3Jysri1KlT8vetrKxQV1dn+/btFJbI+lGlQYMGnD5dtc3vnpMUFHDvTiS1AuooTPcPqMPtmxGvvNxLweep4evFyp+XM6bvMKaMGs/ODVuRvmBdK6KgoIA7t25Tv2EDhen1GzbgRtgNlfPcvH5DqXyDRg25FX4LSYknnSXl5eYikUgUnmidPX0GT28vvv7yK3p06MrooSPYt2uvyvlfVqFEQkLMQ1xqeihMd6npwcPI+2XOd/2fi6Q+SaJJr/Yq34+8Eo69uzPH1+3i10++YfWMnzi378Rr7StRzdgIdQMDJPcfFE8slCJ58AgNuxeMHqWlhdGo9zAaPQz9Hp1Rt1LOQpNTV0fLqwYFN29VTcWfkRRIuB8ZjU9df4XpvnX8iYqoWCBDKpWSl5OLQamsybycXKa9/wlfDBvP0tk/EPusWfTrUCiR8PR+PI4+1RWmO/q6kxBVfqBp27e/s/bzH9i7cDUPb5UfZJPkFyAtLETHQK/SdS7Lw5QUkjIzaOReHMzV1tSkrosrYXFlHx8Af506gZmBAT3r1S+3HBQF7o5ev0ZOfj5+jqqbl1W4zgnxJCUn0yigXnGdtbWp6+9PWPjNMucLCw+nYb16CtMaBQTI5yksLKRQKkVbSzGjUkdHm6s3is+BtX1r8k9IME8SE5HJZIRevUrsgwc0LuPa9yoKJRKe3H+Eo69i8y9HH3cSIsvfxzZ/8yurJn/P7h9X8eAF+5igTENdA1dze67HK2YFX0+Iooalo8p57ibGYa5vTC37ouPIWNeABo4+XH2k3PzuOR0NLTTU1MnKyymzTGUUSgpJio3H3kcx2Ofg7caTew/KmKvIngUr2DRtCYeW/E387RiF92LD7mDtVo3gzYfZOHUxO7/9g2uHzryWa99/YR0ANNTUsTe2IjJRsc6RiQ9wMlMdAPS2duZh2lOau9ZiWuv3+KzFQDp5NkJTXUOhXBv3emTn56psulqVJBIJj+7F4l6qGw53f29ib1fsPPMoOo7Y29G4+pT98PBSYDB+Teq99lYGwtvh7e1Np06dGDNmDOfOnePcuXOMGTOGbt26KYyk6uXlJf8tK5FI6NevH6GhoWzYsIHCwkISEhJISEggPz8fgKioKL799ltCQ0OJiYnh4MGD9O/fnzp16tC06ctlrItmqsJrN2rUKH788UdOnTpF69ZFTclWrVpFnz59MDMz49NPP2XIkCHyTKoaNWqwdOlSWrZsye+//66U9XT8+HHCwsKIjo7G0bHoRmX9+vX4+vpy8eJF6tevz/z58xk0aJBCe/JatWqhyvHjx4mIiCAmJoZqzzJjFixYQOfOnRXKffXVV/K/XVxcmDJlClu2bJEHdZYsWcKoUaP44IMPAJg3bx7Hjx8vNzvu999/x83NjcWLF6OmpoanpyfXr1/nf//7n7zMjz/++FLfz3O5ubmsXbtWvk7Lli2ja9euLFy4EFtbW+bOncvChQvlGYOurq6Eh4fzxx9/8P7778uXM2nSJIWswiVLljB9+nT69u0LwPLlyzly5EiZ63jnzh0OHTqkMKz0ypUr8fZWvMCWzKRzdXVl7ty5fPzxx+UGNGNiYrC3V84MyszMpH///syYMUMpuHn37l2MjY0r9ORi8+bN1KhRA1/fon7XBg0axMqVK+X7sYODA0uXLmXq1Kl88803BAQE0Lp1a4YOHYqbW6mbOQcHrly58sLPfBXpaelIpVJMzEwVppuYmZKanPrKy30cn8DTK2E0a9eK6d/NJv7BI1YuXY60sJB+wwdXqs5pqakUFhZiVqpJs7mFGclJSSrnSU5KxrxUM08zc3MKCwtJTU3F0lI54LP8l+VYWVlRr0HxD9f4h4/Ys2M3A4YM5L2Rw4m4Gc7PCxejpa1Fp66dlZbxMnIyspBJpRiYGClMNzAxJCtNddOglISn/LPtIINnjkNdQ0NlmbSnScRGpODTuA59J48m5XEix9ftQlooLTOAV1nqzzImZdnZCtNl2TmoGZfdpFeanErO0UAKE5NR09ZGp44fhgN6kblhG9JU5SZXWtVdUdPRIT+8aoNxmelFx4WxqWLTIiMzE9JSlOuhyrGdB8jLzSOgefHgNraO9oycPBYHFydysnM4secQ//t8Dl//8j02Di/3RLQicjOzkUml6Jf6zvWMDMhOU509rG9iRMthPbBytqdQIuHOuWvsXbSWnp+PLLMPsHM7jmFgakw1n9eXOZOUWXQMmBsorou5gSEJ5QxadO1+DHsvh7Lh44nlLj/ycQKjVvxOvkSCnrY2Pw5+D7dKNlFNetY/ooWp4rnHwsyMeBXNX+TzpaRgYaY8T1JK0fIM9PXx9/Hhrw1/4+rkhLmZGUdOnuTGrVs4luib9Ivx45m3eBFdBg9CQ0MDdXV1vvpsMrVr+lVqvUrKyVC9j+mbGJB9Q/U+ZmBqROvhPbFycaCwQMLtkKvs/mk1vb8YhYNn1WRP/39gpKOPhro6abmKrR3ScrIwsVN9nr2bGMdvwTv5pGk/tDQ00VTX4NKDW6wNPVjm5wyq3Y7knAxuJLyegGleZjYyqUypmXK55yljI5oO7YKFkx1SSSGR569z6Oe/6fLZMGxrFGWIZySmEn87BrcGNekwfhDpT5IJ2XIYqVRKna4txDqoqpO2Lhrq6mSWCrxm5uVgqK26JYSZvjHOZrZIpIVsuHwEfW1devg0R19bh53XgwBwMrWhnqMnv5zZUeV1Li07PROpVIqh0r2UMZmp5Wfk/TB2BlnpmUgLC2nTvysBbVUHRx5ExvA47hG9P36vyuotvHs2bNjAxIkT6dChAwA9evTgl19+UShz+/ZtefdCDx48YO/eogf0pQdhPHnyJK1atUJbW5sTJ07w888/k5mZiaOjI127dmX27NlolHEfXxYRjBNeOy8vL5o0acKqVato3bo1UVFRnD59mqNHizr8vHTpEpGRkQpNF2UyGVKplOjoaKWgTUREBI6OjvJAHICPjw+mpqZERERQv359rl69qtCxYnkiIiJwcnKSB60AGjdurFRu+/btLFmyhMjISDIzM5WybSIiIhg7VrEfksaNG3Py5MlyP7tRo0YKnUiW/uyX/X6eU7VOUqmU27dvo6GhQVxcHKNHj1b4niQSCSYmij9cS2aepaWlER8fr1BHTU1NAgIClJqqllzH52We8/LyUhoe+uTJkyxYsIDw8HDS09ORSCTk5uaSlZVV5mAbOTk5KoORenp6NGvWjBUrVjB48GCF76iinXZCUdDwvfeKL9LvvfceLVq0IDU1VV7/8ePHM3z4cE6ePMn58+fZtm0bCxYsYO/evbRvXxwk0dPTI7tUUKOkvLw8pSG8K9p3wnNK6yWTUcFVVUkmk2FsZsJHk8ejrqGBm4c7KUnJ7N2ys9LBuOdK11kmU93Zqrw8pd+TlTEdNq7bwImjx1i6/BeF71IqleLp7cWH44uOVw9PD2LuRbNnx65KB+NKVFSxljJUbgupVMr+5Rtp2rsD5rZl92Upk8rQNzKkw8h+qKurY+tajczUNC4eDKqyYJyWZw302raU/5+158CzD1dVobKXU5jwmMKE4iBF9qN4DIf2R7tWTXKDzip/bk0vJDGxyLLKPj4qQ+l7r+A54Pyps+zdsIPxX09RCOhV96pB9RLNdN19PJg7cQaB+44weOyIKqq1CiqqXNZ6mNlaYlai83Db6k5kJqdx9ehZlcG4K4dPE3nhOj2/GIlmFQ6+c+jaFb7bt1v+/+Kh7z+rt2I5GahcP4CsvDy+3rGVGT36YPqCgZecLSzZ8PEnZOTmEhh+gzk7t/PHqDEvFZA7dOIEC5YUZ70vmTf/WZ1Ln6sqsh+pOL+V+P/baV/y7U8/0XnwIDTU1fGsUYNObdpw625xhtPm3bu4HhHBom/nYmdjw+WwMP63bCmWFuY0rKuYeVflZEqrIGdma4VZiXOWnbsTmSlpXDlyVgTjXoGs1ElVTY0yz7MOxlYMr9eZXTeCCIuPwlTPkCG1OzCqQTdWnFfO8u7m3ZTGzn7MO7GGAqnqLPKqonScqJj2nImtBSa2xc2/rN2qkZWSzvVj5+SBLJlMhq6RAU2HdkVdXR1LZzuy0zK4fuzcawlk/VfW4Xm9SypaBdU71fPV23otkDxJUfbPwVshDK7Tnr03z6Cupk7/Wm3Yff0fsgte3AVPlVG+gKu+mSrhg28nk5+bR9ydaI5u3IO5rRW1milnVIcGBmPjaE81d5eqq++7rozfav9l5ubm/P238iArJZX8Devi4lLmb9rnHB0dCQoKqpL6iWCc8EaMHj2aCRMm8Ouvv7J69WqcnZ1p27ZodBupVMpHH33ExInKT7ydnJSbl5R1A1xyup5exZvZqDrgSi//3Llz8ky7jh07YmJiwubNm1m4cGGFP6ein13ay34/ZXm+TmpqavLU+BUrVsiz1Z4rHdGv7Kizz9exvB8t9+/fp0uXLowdO5a5c+dibm7OmTNnGD16tFK/fCVZWlqSkqI8qqOGhga7d++mb9++tG7dmsDAQHx8ivrJ8PDwkAcVy8uOCw8P5/z581y8eFGh2XJhYSGbNm3i448/lk8zMjKiR48e9OjRg3nz5tGxY0fmzZunEIxLTk4ud+CQ7777TmlkoNmzZ9N7zJAy53nO2MQYdXV1UkuNcJmWmqaULfcyTM3N0NTUVMjWcnCqRmpyCpKCgkr9aDcxNUVDQ0MpCy4lOUUpW+45cwtzkpKSlcpraGhgUir7adP6jfy9eh2Lfl1C9RqKTa8sLC1wcXNRmObs4kJQ4KlXW5kS9IwMUFNXJytVMQsuOz0TfWMjpfL5OXkkRD/g8f1HHF+/G3h2zMhk/DRyGv2/GIOzjzsGpsaoa6gr9ENjYWdDVloGhRIJGpqVv5wX3ItRCKLxbLurGegrZMep6esp9QH3IoUJT1BXsS+qGRmi6ViN7P1lZ9e+KkPjouOidBZcRmo6xqbld8R7MSiEdT//yUfTP8WnTvkZSOrq6rjWcOPJw7JHqasMXUN91NTVlTIzcjKy0DOu+PnZxs2RO+eUR4+8euQMlw+epvvk97Go9oLmxy+phZcPNasVPzjLf9bEPSkzE0uj4m2QkpWJhaHqLKAHyUk8Sk1hysZ18mnSZ9eVRnNmsn3iZPmgDVqamjhaFAUhfRyqEf7wAZvPBTOjR2/lBZdV58aNqelVPJpp/rNrUGJKMpYl+o1JTk3FvJwBeYqy4BTPV8mpKQrzVLO3589Fi8jJySErOxtLCwumz5uL/bMBbHLz8vh11Sp+mjOHZg2LsjNruLlxJyqKv7dtq7JgnJ7Rs30sXXEfy07PUsqWK4+tmyO3VexjQtky8rIplEox1VX8no11DcrsaL+HbzPuJMZyICIYgLjUx6yWHGB2+1FsuxZIaon5ung1oYdvc74LXEdcatmZnJWlY6iPmrqa0j6U+5LnKStXB6IuXJf/r29iiJq64rXPxNaSnPRMCiWFaGi+XBZKef4L6wCQnZ9LoVSKkY7ibyEDbT35aLulZeRmk56bJQ/EATzNTEFdTQ0TXQO0NbQw1zfmvXqd5O8/v6//tuMYlpzeQnIV9iGnb1zU717pLListAylbLnSzJ8NzmTr5EBmWgYntx1QCsbl5+Vz/WwobQd2q7I6C8KrEH3GCW/EgAED0NDQYOPGjaxdu5aRI0fKT+J169bl5s2buLu7K720VYxO5+PjQ2xsLHFxcfJp4eHhpKWlyTOg/P39OXHiRIXq9nx5jx4VdxweEqLY0frZs2dxdnZm5syZBAQEUKNGDe7fV+zfxtvbm3PnzilMK/2/qs9+0Twv+/08p2qd1NXV8fDwwMbGBgcHB+7du6e0TFfXsp9om5iYYGdnp1BHiUTCpUtld2zr7e2NRCIhNLS4A/3bt28rDCYRGhqKRCJh4cKFNGrUCA8PD4W6l6VOnTpljgSro6PDzp07adCgAa1bt+bGsz54+vXrh7a2Nj/88IPK+Z7Xa+XKlbRo0YJr165x9epV+Wvq1KmsXLmyzDqpqanh5eWlNMDGjRs3qFOnThlzFQ3pnZaWpvCaPn16easvp6mlhZuHO2GXFJvBhl26iqev6szJivCs6UPCw3iFfk3iHzzCzMK80tkzWlpaeHh5EnpesQP60AsXqelfU+U8vn41Cb2gWP7i+Qt4+XihWSIYtWn9BtatXMOPSxfi5aO8/n61/Im7r9gPUlxsrMoRXF+WhqYmti4O3L+p2HfP/Zt3cFAxMIOOng4j5k/h/bmfyV+1WzfC3M6K9+d+hl31ooC7Qw0XUp8kISuxLVIeP8XA1LhKAnEAFBQgTUsvfiWnIM3KQtOpxMAW6upoVrOnMP7lAk/qVpbIVAw6o+3rhSwnB0l0+f2FvQpNLU2c3V2JuBKmMD38ynWqe3uUMVdRRtzqxb/zwRcT8G/w4k6dZTIZsffuv7ZBHDQ0NbFytuNBhGKfUg/Co7CtXvEHMomx8eiX+hFz5cgZLh0Iouunw7B2cShjzldnoKODo4Wl/OVmZY2FoRHnI4uPjwKJhMsx0fg7Kh8fAC6WVmwa/yl/f/yJ/NXC05t6Lm78/fEn2BiXPcKhTAb5ZfQnWWad9fVxdHCQv9ycnbEwN+f8peJBPAoKCrgcFoa/j2+Zy/H38VGYB+D8pUsq59HT08PSwoL0jAxCQkNp+axjaYlEgkQiQa3UiIbqGupIpVWX4aChqYm1sz1xNyMVpseFR2LrXvF97GlsPPomVTMq9f8XhdJCopMfUdNWsU9IP9vq3E2MUzmPtoaW0sNc6fMO0Es8+Ozq3YTeNVvww8m/iU6u2sFxStPQ1MDCyY5HEYr9Zz6KiMbareKDIyXHJSgEgK3dqpHxNAVZif09/UkyeiaGVR7E+i+sA0ChTMqj9Ke4WyjW2d2yGrEpqgOysamPMdLVR1uj+H7C0sAEqUxKWm4WT7NS+fn0Vn45u13+uvUkhuikR/xydjtpOeUPuPayNDU1sXdzIjJMsd/jyLBbOHm+RFcKMpnKPoVvhFyiUCKhdvMGKmYShDdHZMYJb4ShoSEDBw5kxowZpKWlMWLECPl706ZNo1GjRowfP54xY8ZgYGBAREQEx44dY9myZUrLateuHf7+/gwdOpQlS5YgkUgYN24cLVu2lDeFnD17Nm3btqV69eoMGjQIiUTCoUOHVHba365dOzw9PRk+fDgLFy4kPT2dmTNnKpRxd3cnNjaWzZs3U79+fQ4cOKA0aMGnn37K+++/T0BAAM2aNWPDhg3cvHlTqe+wksaOHcvChQuZPHkyH330EZcuXVIaefZlv5/ndHV1ef/99/npp59IT09n4sSJDBgwANtnAYc5c+YwceJEjI2N6dy5M3l5eYSGhpKSksLkyZPLXO6nn37K999/T40aNfD29mbRokVKo7SW5OnpKe88888//0RTU5NJkyYpZC9Wr14diUTCsmXL6N69O2fPnmX58uVlLvO5jh07Kg04UZK2tjY7duxgwIABtGnThhMnTuDn58fixYuZMGEC6enpDB8+HBcXFx48eMC6deswNDTk+++/Z/369Xz77bfUrKkYGPrggw/44YcfuHbtGjKZjNmzZzNs2DB8fHzQ1tYmKCiIVatWKWTTZWdnc+nSJRYsWFBmXV9mSG9VuvXvxbLvFuHmWQMPHy+O7z9M4uOntO9e1Oxy44q1JCcmMWF68baNiSzqOyY3J5f0tDRiIu+hqalJNZeiH18denTm8K79rPllBZ16dyPh4SN2bdxG595V8yRxwJCBzJ89F08fL3z9arJv1x6eJDymZ9+iLJY/fvmdxKeJzPxmFgA9+/Ri19Yd/LJ4Kd169eDm9Rsc2LOfr+fPkS9z47oNrFy+glnzZmNrZ0dSYlHmnZ6+Hvr6RX2l9B88kHGjP2L96rW0bteWiJvh7Nu1l89nlD9gSEUFdGrBgT82Y+v6f+zddXQU59fA8e9u3N0IIR5ICBYgOASHIkUKxdsCVSiltIW2VKhAlVJv+VG0uENxCO4aLMETCBAh7rr7/hHYsMkGS0KA937O2XOS2eeZvbOzM7N755HqVPNx5+SOQ6QlplCvXVH37t1LN5CenEq31weiUCpxKNEaydTSHD0Dfa3l9ds14/i2fYQuWEtQxxYkxyZw8L/tBHVsWSExlyX3xCmMg4NQpaSiSknFqHEQ6vwC8s4VJ1NMOrVDlZlJ7r5DABg1aVTUVTU5BYWRIUb166DnYEfOjtITmBgG1CIv/HyldZ3o2LsbM6f+gbuvF961/Ni9KZSkWwm0ea4DACtnLyI5MZkR778F3E7ETf2LF18fhlctX1Jvj7loYGSomXV47YLleNXyxamaM9lZ2Wxfu4nrV64y+K1XKmUbAOp1bE7ozJU4uLvi7O1G+O6jpCelUrtN0d3+gyu3kpmcRvsRRWN5nty2H0s7G2yqOaIqKOTCoZNcOR5O5zcHaNZ5YtMeDq/ZToeRL2Bpb03W7TENDYwMMaikwawVCgUDm7Vg9p6dtxN0dszZvRNjAwM6162vKff5iqU4WFoyumMXjAwM8HHSPkbMbw9PcPfyP7ZuprmvH05W1mTl5bLl9EmOR13h16Hl2y8KhYKBvfswe9FCatxO0M1etBBjI2O6tGunKffZd9/iaG/P6BFF48YO6N2H18a9y5zFiwlp3pyd+/dz6PhxZk77WVPnwJEjqFHjXt2N6Js3+fV//8PdzY2enYtan5ibmRFUty6/zPgfRkaGuDgWdVPdsHUr75YYFqO86ndqwdZ/luPoUfQZO7v7KBlJqQTe/oztX7GFzOQ0Oo58AYCwrfuxtLPG1tWRwoJCzh88yeVjZ+n6VsUMYVDRTAyMqG5V3Dq9mqU9vvbVScvJJC6jdAv7x2njuQO82awPkUk3uZgQTTufhtiZWhF6segm5ov12mNjasnfB4q+d564cYERTXrQ3qcRp2IuY2NizpCGXbiUcJ2U7KLjuLt/C16o25Y/9q/gVmYKVrdb3uUU5Gm1fqpIge2bsHvOGuzdXXD0rM75vcfJSE6lVquimxpHV28nMyWdNi8/D8DZ0EOY21ljXc0BVUEhlw+fJurEOdq99oJmnbVaNyR851EOLttMQEhj0uKTOLlpHwFt7z+Ry//XbQDYF3maF+q15UbaLa4lx9HYzR8rY3MOXyu6gd3JLxhLYzOWnyoaSufkzYuEeAfRp04IoZeOYmZgQpdaTTl2/TwFqqIWzfEljpOc/DydyytKi+7tWP7bXFy93HHz8+Totn2kJiTTuGMrALYsXE1aUgovjH4ZgIObdmFtb4O9a9F14eq5y+z9bxtNu4aUWvex7fvxb1wPU4v/ZzcPKvAmjqgYkowTj82IESOYOXMmnTp10upeWbduXXbt2sXEiRNp1aoVarUab29vrdlR76ZQKFi9ejVvv/02rVu3RqlU0qVLF63EVEhICMuWLeOrr77i22+/xdLSktatdY/LoFQqWbVqFSNGjCA4OBgPDw9+/fVXunQpbor9/PPP8+677zJ69Ghyc3Pp1q0bn376KZMmTdKUefHFF7l8+TITJkwgJyeHvn378uabb95zcoMaNWqwYsUK3n33Xf7880+Cg4OZMmUKw4cPf+T35w4fHx/NTK1JSUk899xzWpMhjBw5ElNTU3744QfGjx+PmZkZderU0ZpIQZf33nuPmJgYXn75ZZRKJcOHD6d3796agS91mT17NiNHjqRNmzY4OTnx9ddf8+mnn2qer1+/Pj/99BPfffcdH330Ea1bt+abb75h2LBh94xlyJAhTJgwgfPnz2vNinM3AwMDli5dysCBAzUJubfeegs/Pz9+/PFHevfuTXZ2Nh4eHnTv3p1x48axdu1aEhMT6d27dNcmX19f6tSpw8yZM/nss8/w8PDgiy++ICoqCoVCofn/3Xff1dRZs2YNNWrUoFWrVvfcnvJo3rYV6WlprJi3mOSkJNw83Pnom89xcHYEIDkpiYT4W1p1xr/2jubvKxcusTd0Fw5OjvyxqKjln72jA598/yVz//yHD0a+ja29HV379KDXgL4VEnP7Th1IS01j7j+zSUxIxNPbi+9+/hHn2zN1JiYkEndXt8lqrtX4/ucf+W3ar6xathI7B3veeX8sIe3aasqsXr6S/Px8PpvwidZrvfzqcIa/NgIA/9r+TP7hG6b/8Tdz/5mDczUX3h73Dp26dq6Q7arVpD7ZGVnsX7ONzJQ07F2d6TtuBFb2Rd3TMlLTSH/IiTUs7azp98FIdiz8jzmf/IS5tSUNO7UkuFvb+1cuh7yjYSj09TFp1wqFkRGFsfFkrloHd3UfV1qac/c4NAojQ0zat0Fhaoo6L4/CW7fIXL6GwjjtGZT1a1RHaWlR4bOo3q1xm2ZkpKezbuFKUpNSqObhxpgvJmDnVPSjPCU5haRbCZryuzeGUlhYyMI/Z7Pwz9ma5c06tGb4uKKu6dmZWfz76z+kJadgYmaKm7cHH3z/GZ41tbtDVySfxnXIycjm2LqdZKamY1vNkW5jhmBhZw1AVko6GUnF52BVQSH7l20mMyUNfQMDbKo58NyYIbjXKW4ReHbnEVQFhWz5e4nWazXqEULjnu2oLMNatiY3P5/v1q0hPSeb2q5u/DZsOGZ33YyITU154LE970jKzODzlUtJSE/H3NgYHydnfh36Ck18yp5J70G99OKL5Obl8u1vv5Kenk5gLX9+//ZbzEyLB0OPjY9HeVcLtnq1azN54if8NWc2f8+dQ3WXanwz8RMC7xrDNCMrk99nziQ+IQFLCwvatWzFqOGvaLX0nTLxE/6YOZNPv/mGtPR0nJ2cePOV4fTt3qPc23U33+A65GRkceS/HWSmpmPn6kT3d4Ziefu8lZWSrnXeUhUUsm/ZJjKSiz5jtq6OdH9nKB51dV+Lq1otB3d+7118M2pMy34AbIg4wOTtZd/UexwOXjuLuZEpvQPbYG1izvXUeH7YuYCErKJj2trEAjvT4haguyPDMDYwpJNfMIODOpOVl8PZuEgWh23VlOng2xgDPX3GttL+rrji9E5Wnt5ZKdvh1ag2uZnZhK3fQ1ZaBjYuDnQaNQDzO+ep1Awy7zpPFRYWcnjlNrJS0tEz0MfGxYGOowbgFlh8LjW3taLLmEEcWraV1V//D1NrC2q3bUydzs1lG+7hdOxlTA2NaOvdEAtjU+LSk5h3dKOmC7OFkakmQQuQV1jA7CPr6RHQgrea9yErL5czsZfZeuFIWS9R6eo0b0RWeiY7VmwgPTkNJzcXhn70FjYORcMFpCenkZJQnAhUq1VsWbSG5PhElEolts4OdBrci8YdtG9aJtyM4+q5y7z8yduPdXuE0EWhfpBBq4QQT5VJkyaxevVqwsLCqjqUSjd+/HhSU1OZPn16VYdSpuDgYMaOHcugQfcf/62kkzcuVEJEj1c9Vz/i0hLuX/AJ5mRpzz8HSw+M/bQZ2bQnqT//VdVhlIvV2DfZffn4/Qs+4Vp7B/Hz7iX3L/iEG9v6RdKWrKzqMMrF8sU+pF/T3SXwaWJRw43f9i6r6jDK5e2W/WjxR8W2+qsK+0b9zeCFk6o6jHJbMGgS323/t6rDKJcJ7YY+9dsARdsxceOT+133QUzu+jrLTj7YMEJPsn712ld1CI8kbff+qg6hTJatKy85/SSTMeOEEE+1iRMn4u7uTuHtgcGfNPHx8bzwwgsMHPhkdt0RQgghhBBCPOPUqif38f+UdFMVQjzVrKys+Pjjj6s6jDI5OjrqHKtQCCGEEEIIIcT/T9IyTohn0KRJk/5fdFEVQgghhBBCCCGeNtIyTgghhBBCCCGEEOJZJVMFPHGkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKJd1UnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lkls6k+caRlnBBCCCGEEEIIIYQQj4kk44QQQgghhBBCCCGEeEykm6oQQgghhBBCCCHEs0qtquoIRAnSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lmlktlUnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lmllm6qTxppGSeEEEIIIYQQQgghxGOiUKslRSqEEEIIIYQQQgjxLErbHFrVIZTJsnP7qg6hSkg3VSGEeIIdijpT1SGUWxOPQFLSU6s6jHKxtrDindXTqjqMcvul17ukfPxlVYdRLtZTPuPLrbOqOoxy+6zjcEYu/aaqwyi3f/p/RNqmbVUdRrlYdunAyRsXqjqMcqvn6sfXW2dXdRjl8knHVxi8cFJVh1FuCwZNosUfb1R1GOW2b9TfDF86parDKJdZ/T9m/LrfqzqMcvu+++in/nvIL73eZcL6P6s6jHL7rttbVR3Co5E2WE8c6aYqhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGsUqmqOgJRgrSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGskm6qTxxpGSeEEEIIIYQQQgghxGMiyTghhBBCCCGEEEIIIR4T6aYqhBBCCCGEEEII8axSSTfVJ420jBNCCCGEEEIIIYQQ4jGRZJwQQgghhBBCCCGEEI+JdFMVQgghhBBCCCGEeFapVVUdgShBWsYJIYQQQgghhBBCCPGYSDJOCCGEEEIIIYQQQojHRLqpClGB5syZg5OTE127dq3qUIQQQgghhBBCCJlN9Qkkybj/Rzw8PBg7dixjx459bOtTKBSsWrWKXr16PfLrTJo0idWrVxMWFvbAdXbu3Enbtm1JTk7G2tr6kV/7YaxcuZLvv/+effv2PVL9l19+mZSUFFavXg1ASEgI9evX5+effy6zTkXs07v3UVRUFJ6enpw4cYL69es/8jofREV9Hrdv385bb71FeHg4SuWT19g3Pj6e2rVrExYWhqura6W+1rb/NrFh2RpSk5JxdXdj8BuvULNOgM6yR/YeZPu6zVy7EkV+fj6u7m70HtKfuo0aaMpcj7rGynmLibp0hYS4Wwx6/RW69OlerhiXL1vO/H//JTEhEU8vL959710aNGhQZvnjx47z87SfibxyBXsHe4YOHUqfF/pqldkeup3pf0/nxvXruFavzptvvUFI27ZaZeLj4/njt9/Zv38/uTm51HCvwcRPP8Hf3x+AJo2Cdb7+6DFvM3TY0IfezpaedWnn0whLYzNi0xNZeXoXVxJv6Cw7KKgTTWrULrU8Ji2Rb7fPA8DZwo7n/JtR3doRO1MrVp7eya7LJx46rkdh3L4Nho2DUJgYUxh9g6y1G1HF37pnHYWxEcad2mEQUAuFiQmq5GSyN2yl4MKlogKGhph0DCl63tyMwpuxZK/bTOGNmxUe/4XdxwkPPUx2agbWLvY07NseRx83nWXjLlxj26+LSi3v/slIrJztAFAVFnJ2y0GuHDpDVko6lk62NHg+hGoBXhUe+91CvIPoXLMJ1ibm3Ey9xeKwbVxMuK6z7CuNu9HCs26p5TdSb/H55n8A+CBkEDUd3UuVOXXzEr/uXVaxwd9FrVYzY9MGVu3fR3p2FrXdPRj/Qn+8XaqVWWf7yTDmbN1MdMItCgoLcXNwYEjb9jzXuInO8rO3bubPdWsZ0KYt7/V5ocK3YfOa9axdspKUxGSqe9Tg5VGv4l+39DEMkJyYxLy/ZnLlwmVib9yka+8evDz61VLlMjMyWDTzXw7vOUBmegaOLk4MfWMEQU0bVXj8d5zffZyzoYc0x0ajvh1wKuPYiL1wla06jo2en7yqdWyc2XKAy7ePDSsnWxo83xbXSjw2Ovg2ppt/c6xNLLiRGs+/xzZx/ta1Mss396hDd/8WOFvYkZWfw6mbl1h4YgsZedkAtPUOoqVnPdysHQGITIphycnQMs/fj1s9Fx8GNehELcca2JtZ8+GGv9gTebKqw9Jo6x1El5pNsTYx50bqLRaFbeNiQrTOssMbd6dlGeepTzfPAGB8yGBq6ThPnbx5iV/2Lq3Y4G9r5h5IG+8gLIxMiUtPYm34HqKSYsosr6dU0sE3mCBXPyyMzEjNySD00lGORkcA8Hqz3njblf7+FxEXxewj6yplG3Sp6O8lj0NT99q08WpQtC8ykvjv7D6iku+3LxrToJofFkampOZksP3SMY5eP6cpY6xvSOeaTQh09sLEwIjk7HTWhe+753lDiMoiybinQI8ePcjOzmbbtm2lnjtw4ADNmzfn2LFjBAUFPda4jhw5gpmZ2WN9zSfVlStX+OSTT9i4cSM2NjYVss6VK1diYGBQIet6UG5ubsTExGBvb1/pr1VRn5/x48czceJETSJuzpw5jB07lpSUFE2ZiIgIOnbsSHBwMIsWLcLIyIgdO3bwww8/cOjQIbKzs/Hw8KBr166MGzeuVNKsZs2aREZGEhkZWeq5K1euMHHiRHbt2kVSUhL29vY0bNiQH374AT8/PxwdHRk6dCiff/45//zzT7m3tywHd+5jwd+zeWn0q/jWrsWO9Vv48ZPJfDPjZ+wdHUqVP386nMCgevR7ZTCm5qbs2byDaZ9/y+e/fIOHT9EPp7zcPBxcnAhu3ZwF02eXO8atW7YybepPjP9wPHXr1WPVylW8O2Ysi5ctwdnZuVT5mzdu8O47Y3m+dy+++OoLTp08yffffo+1jQ3t2rcD4PSpU3zy8URee+N1QtqGsHPHTj7+8GP+N3MGgYGBAKSlpfHaiFcJatSQn3/5BRtbG25cv46FhYXmtTZs2qD12vv3H2DyV1/Trl27h97OBq5+9K4TwrKT24lMvElzzzq80awX34TOIzk7vVT5lad28t/ZvZr/lQolE9oNIezmBc0yQz19EjJTOXHjAr3rhDx0TI/KqHVzjFo0JWvFGgoTEjFu2wrz4UNI++kPyMvTXUlPidnwIagzsshcuBxVWhpKK0vUucXlTfv0QM/Jgcxlq1GnpWPYoC7mI4aQ9vNfqNNKv0ePKupYBMdWhNL4xU44eLlycW8YO/5cRvdPRmJma1lmvR6fvoqBiWHx+2Buqvn75H97iDxyliaDumDpZEdMRCS7Z6yi07gh2Lo5VVjsd2vs5s+A+h1YcHwzlxKu09q7Ae+0epHPNs8gKSutVPnFYdtYcXqn5n89hZLPO43g2F0/SP7cvxI9pZ7mf3NDEz7vNELrR0tlmBe6lYU7tvPZ4KHUcHBk1pZNjP7zd5ZP/AwzY2OddaxMTXmlY2c8nJwx0Ndjz5kzfLlwPjbmFjTz177hcPbqVVbv34dvtcq5+bF/xx7m/PEPI995g5qBAWz7bxNTPpzEtNl/YO/kWKp8fn4+ltZW9BnSn/XL1+hcZ0F+Pl9/8CmW1taMm/Qhdvb2JN66hbGpqc7yFSHqWARHV2wj+MXOOHq5cmFvGNv/XErPT0ZiZmtVZr3nP32tzGMj7L/dXDlylmaDumLpZMfNiCvsmrGSLuOGYOtW+hxfXk1r1GZoUBdmH13PhVvXaOfTiPEhQxi//g8Ss1JLlfdzqMGbTXsz//hmjt84j42pJcMbd2dkk578vGcJAP5OHhy4eoZ5R6PJUxXQ3b8FH7YdyoT1f+g8fz9uJgZGXEq8zoZz+5nS9Y2qDkdLYzd/BtbvyL/HN3Ep4Toh3g14t9WLfLL5fzrPU4vCtrL89A7N/3oKJV+UOAf9sX9FqfPUF51GcvR6RKVsQz0XH3rUbsXq07uISo6hSY3ajAjuwdSdC0nJydBZZ0hQF8yNTFl2ajuJmamYG5mgVBTfHJ53dIPWNpgZGDO29QBOxVyqlG3QpTK+l1S2ui4+9Ahoyeozu7maHEuTGgEMD+7OT7sWlbkvBjfojIWRCctP7SAxKxUzQxP07rpRr6dQMrJJTzLyspl/fDOpORlYG5uTW5D/uDZLCC1PXjMSUcqIESPYvn07V69eLfXcrFmzqF+//mNPxAE4ODhgWolfFJ8mXl5ehIeH4+5e+u5dSfn5D3bCt7W11UoWPA56eno4Ozujr1/5efqK+Pzs37+fixcv0q9fvzLLHDlyhFatWtG5c2eWLVuGkZER06dPp0OHDjg7O7NixQrCw8P5+++/SU1NZerUqVr19+7dS05ODv369WPOnDlaz+Xl5dGxY0fS0tJYuXIl58+fZ8mSJQQGBpKaWvxD4JVXXmHBggUkJyeXa3vvZdPK/2jTuR0hXTvgWqM6Q94cjq2DHdvXbdZZfsibw+nWvxdeNX1wdq1Gv+GDca7mTNjBo5oyXjV9GPjqSzQNaVkhieFFCxbS8/mePN+rF56enox7bxxOTk6sWL5CZ/mVK1bi7OzMuPfG4enpyfO9etGjZw8WzJ+vKbN40WKCmwTz8isv4+HhwcuvvEzj4MYsXrhYU+bfufNwdHLks88/o3ZgbapVq0bj4GCqV6+uKWNnb6/12L1rFw0bNcS1+sP/oA/xDuLg1TMcvHqGuIwkVp3eRXJ2us6WSgA5BXmk52ZpHjVsnDAxMObQ1bOaMtdS4lh7dg8nblygQFXw0DE9KqPmTcjZuYf8s+dQxd0ia9kaFAYGGNYPLLOOYcMGKExMyJy/hMJr0ahTUim8Go0qNq6ogL4+BrX9yd4USmHUNVRJyeSE7kKVlIJRk4ptBXRu+xG8m9XFp3k9rJztafRCB0xtLLiw596tCo0tTDGxNNc87m51G3n4LLU7NcO1tjcW9tb4tWqAi78nEdsPV2jsd+voF8zeyJPsiTxJTHoiS8K2kZydRoi37lal2fm5pOVkah7uNs6YGhqzN/KUpkxmXo5WmQAnT/IK8zkaXXnJOLVazaJdO3ilU2fa1auPT7VqTBoylJz8PDYfO1JmvYa+frStVx9PZ2eq2zswMKQtPtVcCbtyWatcVm4On/07h48HDMKikr6frFu2mnZdO9K+W2equ7vx8uhXsXe0Z8vajTrLOzo78cro12jTqR2mZrpj2r5xGxlpGXzw1URqBQbg4OxIrTq18fD2rJRtAAjffhifZvXwvX1sNH6hA6Y2lpwvx7Fx5fBZ6tx1bNRsFYSLvyfh28vet+XRtVYzdl45zs7Lx7mZlsD845tIzEqlg6/u84iPXXVuZaaw+cIhbmWmcOHWNbZfOoqXbXGrzD/3r2TbxSNcTYklJi2Bfw6vRalQUNu5clu+PqiD184y49Badl0Jq+pQSunsF8yeu85Ti8K2kZSdRltv3b9RSp6nPGxcMDU0Ye9dLf1Knqdq3z5PHamk81Qrr/ocuRbO4ehw4jOS+S98LynZGTT1qKOzvJ9DDbzsXJl1+D8uJVwnOTud6JR4ribHam1nRm6W5uHr4EZ+YcFjTcZVxveSytbKsx5HoiM4Eh1xe1/sIzUng6buur9/+Dm44WVXjVlH1nMpsWhfXE/V3heN3PwxNTBi3tGNXE2OJSU7g6jkWGLSEx/XZlUttfrJffw/Jcm4p0D37t1xdHQslQjIyspiyZIljBgxAihKTLRu3RoTExPc3NwYM2YMmZmZZa732rVrPP/885ibm2NpaUn//v2Ji4vTKrN27VoaNWqEsbEx9vb29OnTR/Och4eHVhfKixcv0rp1a4yNjQkICGDr1q2lXnPChAn4+flhamqKl5cXn376aank1LfffouTkxMWFhaMGDGCnJyc+75HGzZswM/PDxMTE9q2bUtUVFSpMg/7/kyaNIn69eszffp03NzcMDU1pV+/flotrgBmz56Nv78/xsbG1KpViz///FPzXFRUFAqFgqVLlxISEoKxsTHz58+nsLCQcePGYW1tjZ2dHePHj0dd4kQUEhKi1YUzPj6eHj16YGJigqenJwsWLCgV808//USdOnUwMzPDzc2Nt956i4wM3XePdLkT750uwTt37kShULB582YaNGiAiYkJ7dq1Iz4+no0bN+Lv74+lpSUDBw4kKytLK/bRo0czevRozTZ+8sknWttY8vPzKLEvXryYTp06YVxGa4rt27fTrl07XnnlFWbOnImenh7Xr19nzJgxjBkzhlmzZhESEoKHhwetW7fmn3/+4bPPPtNax8yZMxk0aBBDhw5l1qxZWtsQHh7OlStX+PPPP2natCnu7u60aNGCyZMn07hxY025OnXq4OzszKpVq+67Dx5FQX4+URcvE9iwvtbyOg3rcTH8/AOtQ6VSkZ2dg5mFeSVEWJSEPnfuHE2aancrC27ahNOnTumsc/r0aYJLlG/arCkR4REUFBQlpE6fOk2TJiXKNG2qtc7du/fg7+/PRxM+pEvHzgwdNITVq1aXGWtiYiL79u6j5/M9H2YTgaK7rm7WTpyP1755cj7+Gp62ZXfD04rfPZALt65VeSsMpY01SksLCi5eKV5YWEhB5FX0a+juygZg4O9H4bXrmPTsiuXH47B45w2M2rQEheL2ipUo9JRQoJ1UVBcUoO9e9nofVmFBIUnRsbj4ayc0XPw9SYi8d5ezDd/NYcXHv7Pt18XEXtDel4UFBegZ6Gkt0zPQ59Zl3V1Gy0tPqcTdxpmzcZFay8/GRuJtV72MWtpaedUjIi5KZ+uUO1p61uXwtXDyCiuvhcCNxEQS09JoWstfs8xQ34Agbx9ORUbeo2YxtVrN4fPnuBofR5C3j9Zz3y9bSouA2jSpWatC476jID+fKxcuUa+RdhK0bqMGnD/76C11ju0/hG/tWsz85W9e7TuU94aPYuWCpagKC8sbsk7Fx4aH1vJq/h7cus+xse672Sz/+De2/rpI57GhNNC+madvoE/8Zd3dFMtDT6mHp201TsdoJ2RPx17G1173eeRiQjS2ppbUq+YLgKWxGcFuAYTdvFjm6xjpGaCnUJKZm11xwT+Dis5TLpyNu6K1/GxsJD4PcZ4Kj4sk8R7nqVae9SrtPKWnUOJq5ciFEt1qLyZE42Gju2VngJMn11PiCfEOYmKHl/kgZAjd/Fugr9TTWR6gsVsAJ29eJL/w8dxYexq/lxTtCwcu3tLeFxduReNuo7sFeoCTJ9dT42nj1YCP2w/j/TaD6ObfXGtfBDh5cDUljl6Brfikw8u82/pF2noHoUBRqdsjRFkkGfcU0NfXZ9iwYcyZM0crEbBs2TLy8vIYPHgwp0+fpnPnzvTp04dTp06xZMkS9u7dy+jRo3WuU61W06tXL5KSkti1axdbt27l8uXLvPjii5oy69evp0+fPnTr1o0TJ04QGhpKo0a67zaqVCr69OmDnp4eBw8e5O+//2bChAmlyllYWDBnzhzCw8P55ZdfmDFjBtOmTdM8v3TpUj7//HMmT57M0aNHcXFx0Upu6RIdHU2fPn147rnnCAsLY+TIkXz44YdaZR72/bnj0qVLLF26lP/++49NmzYRFhbGqFGjNM/PmDGDiRMnMnnyZCIiIpgyZQqffvopc+fO1VrPhAkTGDNmDBEREXTu3JmpU6cya9YsZs6cyd69e0lKSrpvoubll18mKiqK7du3s3z5cv7880/i4+O1yiiVSn799VfOnDnD3Llz2b59O+PHj7/neh/EpEmT+P33ovG2oqOj6d+/Pz///DMLFy5k/fr1bN26ld9++02rzty5c9HX1+fQoUP8+uuvTJs27Z7dNB8l9t27d5f5mVy1ahXdunVj4sSJ/PDDD5rld46bstZ99xiD6enpLFu2jCFDhtCxY0cyMzPZuXOn5nkHBweUSiXLly+n8D4/moKDg9mzZ889yzyq9LR0VCoVVtbaXYssra1JTU55oHVsXLGW3JwcmrRpUQkRQkpKCoWFhdja2mktt7O1JTFB9x3JxMRE7GxttZbZ2tpRWFioSYonJiZia1eijJ0tiYnF67x54wYrV6zErUYNfvntV3r37cNPP05lw7r1Ol93w7r1mJmZlRp37kGYGRV1iUjLzdJanp6biYXR/VvqWBqZ4e/owYGoMw/92hVNcTsxqyqRFFdlZKAwLztpq7S1wSAwAJRKMucsImfHHoxaNcWobauiAnl5FFyNxrhtq6LXUCgwqF8HvequmtesCLkZWahVaowttN93YwszstN034gxsTKjycDOtB7Zi9Yje2PpZEvob4uJu1T8g8DF35Nz24+QFp+EWqUmJiKS66culrnO8jI3NC36TOVorz8tNxMr4/t39bcyNiPQ2Zs992hJ42nrQnVrR60WKZUhMb3oR7ZtiVbfthaWmufKkpGdTesP3qXZuDG8+7+/+KBvP5rcldTbcvwo565HM6rH8xUf+G1pqWlF51oba63lVjbWpCSlPPJ642JiObRrHyqVio+++Zw+Q15k3bLVrFxQOWNiFR8b2p8fYwszcso8NsxpOrALbUb2ps3IPlg62bL1t0XEXSoeZ6mavxcRdx0bNyMiia6kY8PCqOi4SC1xXKRmZ2Jlovs8cjEhmj/3r+TtFi8wd8Cn/NXnA7Lyc5h7dIPO8gAD6ncgKTudM7FXyiwjwMJQ9/54mPNUHWdv9lwp+xx05zy1OzKsvOHqdKdLY0ap63dWmddvO1NLPGxdcLawY97RDfwXvoc6Lt70Dmyjs7ybtSMulnYcjn58Lcyexu8lpobGRfsiTzsJnnGPfWFrYomHjQvOFrbMO7qJ/8L3EujsRa/A1sVlTC2p4+yFUqFk9uH1bL94jFZe9Wnn07BSt0eIssiYcU+J4cOH88MPP2gmJoCiLqp9+vTBxsaGd955h0GDBmlaUvn6+vLrr7/Spk0b/vrrr1Ith7Zt28apU6eIjIzEza3oDuK///5L7dq1OXLkCI0bN2by5MkMGDCAL774QlOvXr16OuPbtm0bERERREVFabp+TZkypdSsop988onmbw8PD9577z2WLFmiSYz8/PPPDB8+nJEjRwLw9ddfs23btnu2jvvrr7/w8vJi2rRpKBQKatasyenTp/nuu+80ZX744YeHen/uyMnJYe7cuZpt+u233+jWrRtTp07F2dmZr776iqlTp2paDHp6ehIeHs706dN56aWXNOsZO3asVqvCn3/+mY8++oi+fYsGov/777/ZvFl3d0KACxcusHHjRg4ePKhpBTRz5kzN4PN3v84dnp6efPXVV7z55pv3TWjez9dff02LFkVJmhEjRvDRRx9x+fJlvLyKum288MIL7NixQysB6+bmVmqfTJs2jVdfLT1w9aPGHhUVRbVqpe/qZWRk0K9fPz7++ONSidmLFy9iaWmJi4vLfbd78eLF+Pr6Urt20SC2AwYMYObMmZpj0NXVlV9//ZXx48fzxRdf0KhRI9q2bcvgwYM1780drq6unDhRdvef3NxccnNztZYZGRndN0YtihJ39tTqB7rXd2DHHlb9u5SxkyZgWSKhV9FKh6hGUXLhPSrcuSGhvbRkGbTWqVKp8A/w561RbwFQs1ZNIq9cYcWKFTzXvVupl/xv7X907tL54d9/rSBKLniwu67BNQLIzs/l9GPsvnKHQb1ATHsVT9CRMa/0YO3A7X1yjy4FCgXqzEyyV60DtZrCmzEoLSwwatWM3O27AchathrTvj2x+mgc6kIVhTdjyD95Gj3X+x+XD0/HcVHG7rB0ssPSqThh7ODlSlZyGhHbDmsGtm/0QgcOLdrEuq/+AQWY29vg1bQOVw6eroTY7wq7xP8KFPfaCxrNPeqSlZ/DiXuM9dPSsx7XU+KJvMcg5Y9i49HDfLOk+HM07fWiY7BkKwT1A2yJqZERC8Z/RFZuLkcunGfa6pW42tnT0NeP2ORkpq5Yzm9vjcboMYy1WuqcdY/P1INQq9VY2ljx+rhRKPX08PLzITkxibVLVvLCsIHlC/YeSrUGUVPmqcrKyQ6rEsdGZnIa4dsO4+RTA4DGL3TgwKKNrP1qBijAwt4G76Z1uXxQd+vnilDys3Ov05OrpQPDGnZl1ZldnIq5jLWJOYPqd2J4cHdmHFpbqnx3/xY0c6/D16FzyH+MwwM8S+5ztdBocfs8dfxm2a35W3nWr5TzVEkle8zdaxvunAsWndhCTkHRuKjrwvcy5PbnrEClfaO2sVsAMWmJRKfEl1pXpXsKv5eU7DWEouzr3p19sThsW/G+iNjPkKDOrD6zmwJVIQoUZOZls+LUTtSouZF2C0tjM1p71Sf00tEy1vwM+X/cHfRJJcm4p0StWrVo3rw5s2bNom3btly+fJk9e/awZcsWAI4dO8alS5e0ui6q1WpUKhWRkZGlkjYRERG4ublpEnEAAQEBWFtbExERQePGjQkLCyszcVJSREQENWrU0BqDqVmzZqXKLV++nJ9//plLly6RkZFBQUEBlpaWWut54w3tAWmbNWvGjh07Sq5Kq07Tpk21vhyXfO2HfX/u0LVNKpWK8+fPo6enR3R0NCNGjNB6nwoKCrCy0k5o3N16KzU1lZiYGK0Y9fX1adSoUemLzl3beKfMHbVq1So1U+yOHTuYMmUK4eHhpKWlUVBQQE5ODpmZmeWaLKFu3eIxJZycnDTdjO9edviw9nhJuvbJ1KlTKSwsRE+vdPP9R4k9OztbZyLVxMSEli1bMmPGDAYOHKi1f++b/LnLzJkzGTJkiOb/IUOG0Lp1a1JSUjTv/ahRoxg2bBg7duzg0KFDLFu2jClTprB27Vo6duyoFdPdXXlL+uabb7QS3wCff/45XV++/0yAFpYWKJXKUq3g0lJTsSzRgqOkgzv3MXPan4ye+D6BQbqT7RXB2toaPT09rRZrAEnJyaVatt1hZ2dXqnxychJ6enpY3X7/7ezsSCpZJikJ27ta1Nnb2+Ppqd1V0cPTgx3bS59XTpw4wdWrV/n6m8kPvG13y8zNplClwtJY+86thZEp6bll7/87mrrX5mh0BIVq1SO9fnnkR1wgPXp68YLbY0cqzc0pTC9uHac0M0OdUXZLF3V6RlH3urvOZ4W3ElBaWoCeEgpVqJKSyZgxFwwMUBgboU7PwHRAX1TlaF1UkpG5KQqlgpx07VhzMrJKtQi6F3uPakQeKW7FYGxhSpvX+lCYX0BuZjYmVuaErdmFuV3lJLIz8rIoVKlKtS6xMDIt1VpOl5aedTl49QyFKt2fKUM9fRq7+bPmbMW33G0dWJdAdw/N/3m3uyYnpqdhf9d1Mjk9HTuLsifUgKLW024ORRMk1KzuRlRcHHO2baGhrx/noq+RlJHOsB+Lb8IVqlScuHyJZXt2sW/qL1qDeD8qSytLlEolKUna43+mpqSWai33MKxtbdDX10d517XRtUZ1UpKSKcjPR7+CE4x3jo3sdO1WrzkZmQ91bDh4uHKlxLHR9rW+WsfGiTU7MbezrqjQNdJzi44La2PtVnCWxkWzWerSs3ZLLiRcY33EfgCiU+KYXbCezzsOZ9nJ7VqDwj9Xqzk9a7fim+3ziE6J07k+USy9zPOU2QOdp1p51uPAfc5TwW7+rK6E89QdmXlF12+LEtdvcyPTUq3l7kjLySI1J0OT/AGIz0hGqVBgbWJOQmbx+MEGSn3qVfNly4VDlbMBZXgav5dk5eUU7YsSreDMDU3K3BfpuZmk5mRq7Ytbt/eFlbE5iVmppOdmUqhWaSXx4zOSsTQ2Q0+hrJLvXuL/N+mm+hQZMWIEK1asIC0tjdmzZ+Pu7k779u2BopYfr7/+OmFhYZrHyZMnuXjxIt7e3qXWVVZC4u7lJiYmDxybriRSyfUfPHiQAQMG0LVrV9atW8eJEyeYOHEieWXNyFeO1y7pYd+fstzZJoVCger2F4YZM2ZorffMmTMcPHhQq155Zw3VtAa6RxLp6tWrPPfccwQGBrJixQqOHTvGH3/8ATz4pBFluXvwfoVCUWow/7vfj0fxqLHb29vrnBRBT0+P1atX07BhQ9q2bUt4eLjmOT8/P01C9F7Cw8M5dOgQ48ePR19fH319fZo2bUp2djaLFmm3GLKwsKBnz55MnjyZkydP0qpVK77++mutMklJSTg4lJ7V9I6PPvqI1NRUrcdHH310zxjv0DcwwMPXmzPHtbt3nDl+Ct+AmmXWO7BjDzOm/s6bH46lfpPKbaJvYGBArVq1OHxIO2l7+NBh6tTVPYBwnTp1SpU/dPAQ/gH+mklG6tStw6GSZQ4d0lpn3Xp1S02Ac+3qNZxdSo8B89+atdTyr4Wfn9+Db9xdCtUqolPiqOmgPZlLTYcaRCbdvGddH/vqOJjbcPBqFXVRzctDlZRc/Ii/hSotHX2fu1p56inR93Sn4FrZY0AVXI1Gz85W66a70t4WVVo6FJY4T+Tno07PQGFsjIGvN/kRDzbG4YPQ09fD1s2ZmHNRWstjzkVh7/ngE3MkXY/DxKp0tzc9A31MrS1Qq1RcCztP9bq+5Q1Zp0KViqvJsQQ4aSeUA5w8uZx473HqajrUwMnC9p5dvxq5+WOgp8/BShiY28zYGDcHR83Dy9kFO0tLDp0vHnw9v6CA45cvUbdEwvx+1Gq1JrnX2K8miyZMZP4HH2ke/m416NKwEfM/+KhCEnFQdK718vPh1DHtVs6njoVRs7bum3oPomZgALE3YrSuozHXb2JjZ1vhiTi497Hh8NDHRunvNyWPDbdKODYKVYVEJt0k0Fn7O1wdZ28uJug+PxnqGZT6zqi68+P7ru9X3fyb0zuwNd/vmH/f87YoUnSeiil1nqrt5MmlCjhPNb59njpQidfHQrWKG6nxpcYc9LV3I+quSQDudjU5BktjMwz1io9TezNrVGoVKdnaSeG61XzQV+px4vrjm5EUns7vJUX74ha+DiX3RXWuJutOjkclxWJpbIqhXnFbI3szK1RqlSZBH5Uci52plVabQHsza9JyMiURJ6qEJOOeIv3790dPT4+FCxcyd+5cXnnlFU1yJigoiLNnz+Lj41PqYWhoWGpdAQEBXLt2jejo4i8s4eHhpKamaloR1a1bl9DQ0AeK7c76bt4sPqkfOHBAq8y+fftwd3dn4sSJNGrUCF9f31I/kP39/Uslskr+r+u171fnYd+fO3Rtk1KpxM/PDycnJ1xdXbly5UqpdZZshXM3KysrXFxctGIsKCjg2LFjZdbx9/enoKCAo0eLm1CfP39eazKJo0ePUlBQwNSpU2natCl+fn5asT9uuvaJr6+vzlZxjxp7gwYNtBJtdzMyMmLlypUEBwfTtm1bzpwp+iLxwgsvYGhoyPfff6+z3p33dObMmbRu3ZqTJ09qJVvHjx/PzJkzy4xJoVBQq1atUpODnDlzhgYNdM98eCdeS0tLrcfDdJPs0qcHuzaFsmtzKDeuXWfB37NJjE+gXbdOACydNZ/p3/+qKX9gxx7+98NvDHztJbxr+ZGSlExKUjJZd8VdkJ/P1cuRXL0cSUF+AcmJiVy9HEncjUfrIjJw8CDWrF7D2jVriYyMZNrUn4iLjaVP36Iu3H/8/geTPvtcU75P3z7ExsTw80/TiIyMZO2ataxds5bBd7VWfHHAAA4fOsS8OXOJiopi3py5HD50mAGDBhS/7qBBnDl9hjmzZhMdHc3mTZtYvWo1L5SYhTcjI4PQbaE8/3z5xpzaefk4TT0CaVKjNk7mtvQObIONqQX7bs9k2T2gBYODOpeq19Q9kKikGJ2zet0ZzNjVygF9hR5Wxua4Wjlgb1a53Ypz9x/COKQlBgE1UTo5YPrC86jz88kLK/5ibvrC8xh3aldc59BRFKYmmHTvgtLOFv2avhiHtCT3YPGMivq+3uj7eqO0sUbfxwvzkcMoTEgk71hYhcZfq11jLu8/yeUDp0iNTeDYilCyktLwbVUfgBNrdrF/3jpN+XM7jhB98gJp8UmkxNzixJpdRIddwK918WyACVE3uRZ2nvSEFOIvRbP9j2WgVhPQoUnJl68wWy8cppVnPVp41sXFwo4X67fH1tSSnZeLkkJ96rRheHD3UvVaetbjcuINbqYllLnulp71OHHjApl5lT9AvUKhYGCbtszeupkdJ8O4dPMmXyz4F2MDQzo3LJ705vP5c/n9vzWa/2dv3cyhcxFcT0ggKi6WBTtCWX/kEF0bFdUxMzbGp1o1rYeJkRFWZub46BjKoDy69+tF6IatbN+4letXo5nzxwwS4m7RsUfRsBwLZ8zl929+0qoTdekKUZeukJOdQ1pqKlGXrnA9qnistU49u5Kels6c32dwM/oGxw8eYdXCZXR+/rkKjf1uAe2CubT/JJcOnCQ1NoEjK7aRmZSGX6ui69TxNTvZN+8/TfmIHUe4dtexcXzNTq6FnadW6+IbObfuOjbiLkUT+sdS1Go1tSvp2Nh47gBtvYNo49WAapb2DAnqjJ2pFaEXi74rvVivPW80660pf+LGBRq5+dPepxEOZjb42bsxrGFXLiVcJ+X2wPTd/VvQr247/ndoDbcyU7AyNsfK2Bwj/bK/Kz5OJgZG+NpXx9e+qNdGNUt7fO2r42RuU8WRweYLh2ntWZ+Wt89TA+p3uH2eOg5A3zohjAzuUapeq9vnqRtpt8pcdyvP+hx/DOepPVfCCK4RQCM3fxzNbegR0BJrE3NNMqpLrWa8WL+DpvyJGxfIysuhf732OJrb4GlbjW7+LTgSHVGqi2qwWwBnY6+QlX//iekqWmV8L6lseyJP0tjNn0bVa+FobkN3/xZYm1hw8NrtfVGzKf3rtdeUD7t5gay8XPrVa3d7X7jwXK3mHI0+p9kXB6+exczQmB61W2JvZkUtR3fa+gSxv6pugor/96Sb6lPE3NycF198kY8//pjU1FRefvllzXMTJkygadOmjBo1ildffRUzMzMiIiJ0DqwP0KFDB+rWrcvgwYP5+eefKSgo4K233qJNmzaarpCff/457du3x9vbmwEDBlBQUMDGjRt1DnzfoUMHatasybBhw5g6dSppaWlMnDhRq4yPjw/Xrl1j8eLFNG7cmPXr15eatOCdd97hpZdeolGjRrRs2ZIFCxZw9uzZUuNv3e2NN95g6tSpjBs3jtdff51jx46Vmnn2Yd+fO4yNjXnppZf48ccfSUtLY8yYMfTv3x9n56IWNZMmTWLMmDFYWlrStWtXcnNzOXr0KMnJyYwbN67M9b7zzjt8++23+Pr64u/vz08//VRqlta71axZky5duvDqq6/yv//9D319fcaOHavVetHb25uCggJ+++03evTowb59+/j777/LXGdli46O1uyT48eP89tvvzF16lSdZR819s6dO5eaLONuhoaGrFixgv79+9OuXTtCQ0OpU6cO06ZNY/To0aSlpTFs2DA8PDy4fv068+bNw9zcnG+//ZZ///2XL7/8ksBA7SnUR44cyffff8/JkydRq9V8/vnnDB06lICAAAwNDdm1axezZs3SGj8vKyuLY8eOMWXKlAd89x5e05AWZKSns2bBMlKSkqnuXoP3vv4Ye6eibl0pSckk3ir+Qb5jw1YKCwuZ9/sM5v0+Q7O8ZccQXnv/bQCSE5P59K33Nc9tXL6WjcvXUqtubT7+4cuHjrFjp46kpqYy65+ZJCQk4OXtzbRfpmnG70tMSCAutviOZzVXV6b98jM//zSN5cuWY+9gz3vvv0e79sWJn7r16vLV5K+Z/tffTP97OtWrV2fyN1O09ltA7QC+//F7/vz9T2b+M5Nq1arx7nvj6NK1i1Z8W7dsRa1W06lL6S+kD+PEjQuYGRrTuVYTrIzMiElPZPqB1ZpZyCyNzbAx1R7A3ljfkHouPqw8vVPnOq1MzBnftjgJ2d63Ee19G3ExIZrf9y4vV7z3krt7PwoDA0x6PofCxITC6zfImD0f7mrRrLS20uqSqk5NI2PWAky6dcJizBuo0tLI3XeY3N37NGUUxkYYd2qH0soSdVY2+WcjyN6yA8rRwlYXj4b+5GVmc3rjPrLTMrF2sSfkrX6Y2xYlMXPSMshMKp44oLBAxfFVO8hOzUDPQB8rF3tC3nwB19rFrW8K8ws4uW4PGQkpGBgZUq22F82HdcPQVPfYoxXhSHQEZoYm9AhogZWxOTdTb/HLnqWa2VGtjM2xM9Xu5mliYERQ9ZosDis9s/kdTua2+Dm48dOuMsYHrATD2nckNz+f75YvIT0ri9ruHvz25mjM7hpyIDY5WasleE5eHt8tW0J8agpGBga4Ozrx5dCX6RT0+Afdbt62FelpaayYt5jkpCTcPNz56JvPcXAuOtcmJyWREK+dVBj/2juav69cuMTe0F04ODnyx6KiGzv2jg588v2XzP3zHz4Y+Ta29nZ07dODXgP6Vtp2eDT0Jzczm1N3HRvt7jo2skscG6qCQo6v2k7W7WPD2sWedm/20zo2VPkFhK3bTfrtY8O1thcthnWvtGPj4LWzmBuZ0juwDdYm5lxPjeeHnQtIyCrqGmhtYoGdafENi92RYRgbGNLJL5jBQZ3JysvhbFyk1jHSwbcxBnr6jG31otZrrTi9s8zz8+NUy8Gd33sXf78c07LoptKGiANM3l7296HH4Uh0BOaGJvQMaImVsTk3Um/x854lmtlRrYzNsdVxnmpYvRaLHuA89eOuhZUaP8DJmEuYGhrTwbcxlkZmxKYnMuvwOk2y1tLIFGuT4ut3XmE+Mw6u4fnA1oxp1Z+svBxO3bzEpvPaN6TtzazxtKvGjINrqAqV8b2ksp2KuYSpoRHtfRsV7YuMRGYfWadpcWhhZIr1XZO15BUW8M+htTxfuxVvt3yBrLxcTsVcYvP54m7BqTkZ/HPoP3oEtGBsqxdJy8lkX+QpzY2tZ14Ff8cS5adQP0gfP/HEOHDgAM2bN6dTp06lBvw/cuQIEydO5MCBA6jVary9vTXJOyiaMGHs2LGagfKvXbvG22+/TWhoKEqlki5duvDbb7/h5FQ8ZfTKlSv56quvCA8Px9LSktatW7NixQqd67tw4QIjRozg8OHDeHh48Ouvv9KlSxdWrVpFr169ABg/fjyzZs0iNzeXbt260bRpUyZNmqSViJoyZQrTpk0jJyeHvn374uTkxObNmwkLCyvzfVm3bh3vvvsu0dHRBAcH88orrzB8+HCSk5M1Y3vd7/0padKkSaxevZrXX3+dr7/+mqSkJJ577jn++ecfbGyK70AuXLiQH374gfDwcMzMzKhTpw5jx46ld+/eREVF4enpyYkTJ6hfv76mTkFBAe+//z6zZ89GqVQyfPhwEhISSE1NZfXq1QCEhIRQv359fv75ZwBiY2MZOXIk27Ztw8nJia+//ppPP/1Uax9MmzaNH374gZSUFFq3bs3gwYMZNmyY1vtQkkKh0OyjkvHemTDk7vpz5sxh7NixWvvsznt1Zx+FhIRQu3ZtVCoVCxcuRE9Pj9dff50pU6ZofmCV/Pw8SuzJycmaiRFq1qxZZnz5+fkMHDiQXbt2ERoaSt26ddm2bRs//vgjhw8fJjs7Gw8PD7p37864cePYv38//fv35+bNm1rHwx1169YlJCSEzz77jK+++ort27cTFRWFQqHAw8ODl156iXfffRfl7a5RixYt4osvvuDcuXOl1nU/h56AWTXLq4lHICnpqfcv+ASztrDindXT7l/wCfdLr3dJ+fjhE6lPEuspn/Hl1llVHUa5fdZxOCOXflPVYZTbP/0/Im3TtqoOo1wsu3Tg5I3H23WsMtRz9ePrrbOrOoxy+aTjKwxeOKmqwyi3BYMm0eKPN+5f8Am3b9TfDF9aeTcSH4dZ/T9m/LrfqzqMcvu+++in/nvIL73eZcL68k0q9yT4rttbVR3CI0lbtrqqQyiTZb9eVR1ClZBknBBlKJlgEg+uZCKxMo0fP57U1FSmT59+/8JVJDg4mLFjxzJo0KCHrivJuCeDJOOeHJKMe7JIMu7JIcm4J4ck454ckox7ckgyrmpJMu7JI2PGCSGeahMnTsTd3Z3CwsL7F64C8fHxvPDCCwwcOLCqQxFCCCGEEEL8f6RWP7mP/6dkzDghxFPNysqqzK7GTwJHR0ed4ywKIYQQQgghhPj/SZJxQpRh0qRJTJo0qarDeCrt3LmzqkMQQgghhBBCCCGeSJKME0IIIYQQQgghhHhW/T/uDvqkkjHjhBBCCCGEEEIIIYR4TCQZJ4QQQgghhBBCCCHEYyLdVIUQQgghhBBCCCGeVSrppvqkkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKLVaVdUhiBKkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKLbOpPmmkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKJd1UnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lkls6k+caRlnBBCCCGEEEIIIYQQj4lCrZYUqRBCCCGEEEIIIcSzKHXe4qoOoUxWwwZUdQhVQrqpCiHEE+zfoxurOoRyG9qoK/FpiVUdRrk4WtoxaMHnVR1GuS0c/AWpk6dWdRjlYjXxPUaverq3AeD33u8xdNEXVR1Guf078HPSb92q6jDKxcLBgR93LqjqMMrt/ZDB/Ll/RVWHUS5vNe/Ld9v/reowym1Cu6EMXzqlqsMot1n9P6bFH29UdRjlsm/U37y39teqDqPcpvYc89R/pmb1//iZue49ldSqqo5AlCDdVIUQQgghhBBCCCGEeEwkGSeEEEIIIYQQQgghxGMi3VSFEEIIIYQQQgghnlUqmSrgSSMt44QQQgghhBBCCCGEeEwkGSeEEEIIIYQQQgghxGMi3VSFEEIIIYQQQgghnlVq6ab6pJGWcUIIIYQQQgghhBDimZGcnMzQoUOxsrLCysqKoUOHkpKScs86L7/8MgqFQuvRtGlTrTK5ubm8/fbb2NvbY2ZmRs+ePbl+/fpDxyfJOCGEEEIIIYQQQgjxzBg0aBBhYWFs2rSJTZs2ERYWxtChQ+9br0uXLsTExGgeGzZs0Hp+7NixrFq1isWLF7N3714yMjLo3r07hYWFDxWfdFMVQgghhBBCCCGEeFb9P5tNNSIigk2bNnHw4EGaNGkCwIwZM2jWrBnnz5+nZs2aZdY1MjLC2dlZ53OpqanMnDmTf//9lw4dOgAwf/583Nzc2LZtG507d37gGKVlnBBCCCGEEEIIIYR4Jhw4cAArKytNIg6gadOmWFlZsX///nvW3blzJ46Ojvj5+fHqq68SHx+vee7YsWPk5+fTqVMnzbJq1aoRGBh43/WWJC3jhBBCCCGEEEIIIcRjl5ubS25urtYyIyMjjIyMHnmdsbGxODo6llru6OhIbGxsmfW6du1Kv379cHd3JzIykk8//ZR27dpx7NgxjIyMiI2NxdDQEBsbG616Tk5O91yvLtIyTgghhBBCCCGEEOJZpVY9sY9vvvlGM8nCncc333yjczMmTZpUaoKFko+jR48CoFAoSr8NarXO5Xe8+OKLdOvWjcDAQHr06MHGjRu5cOEC69evv/fbe5/16iIt44QQQgghhBBCCCHEY/fRRx8xbtw4rWVltYobPXo0AwYMuOf6PDw8OHXqFHFxcaWeu3XrFk5OTg8cm4uLC+7u7ly8eBEAZ2dn8vLySE5O1modFx8fT/PmzR94vSDJOCGEEEIIIYQQQghRBR6mS6q9vT329vb3LdesWTNSU1M5fPgwwcHBABw6dIjU1NSHSpolJiYSHR2Ni4sLAA0bNsTAwICtW7fSv39/AGJiYjhz5gzff//9A68XpJuqEEIIIYQQQgghxLNLpXpyH5XA39+fLl268Oqrr3Lw4EEOHjzIq6++Svfu3bVmUq1VqxarVq0CICMjg/fff58DBw4QFRXFzp076dGjB/b29vTu3RsAKysrRowYwXvvvUdoaCgnTpxgyJAh1KlTRzO76oOSlnFCCCGEEEIIIYQQ4pmxYMECxowZo5n5tGfPnvz+++9aZc6fP09qaioAenp6nD59mnnz5pGSkoKLiwtt27ZlyZIlWFhYaOpMmzYNfX19+vfvT3Z2Nu3bt2fOnDno6ek9VHySjBNCCCGEEEIIIYQQzwxbW1vmz59/zzJqtVrzt4mJCZs3b77veo2Njfntt9/47bffyhWfdFMVQojbQkJCGDt2bFWHIYQQQgghhBAVR61+ch//T0nLOCGEeEYc3bqXA+u3k5GShoOrM52G9qZGLe/71os+f4V5X/+OY3VnXv1mvGb58e0HOL33CLeiYwBw9nSj7YvdcPV2r7CYVy1bwaL5C0lMSMTDy5Mx496hXoP6ZZY/cewEv//8K1FXIrGzt2fQsMH06ttb83zk5SvMnP4P58+dIzYmlrfffYf+g17UWke/nn2IjYktte7eL/Rh3IT3K2S7Ovg2pntAC6xNzLmRcot5xzZy/ta1Msu38KhD94CWOFvYkpWfy6mbl1hwfDMZedkAtPVuSCuverhZORZtZ9JNlpwM5XLijQqJ916MWjXDsEFdFMZGFN6MJXtTKKqExPtUMsI4pCUGtXxQGBujSkklZ9suCi5HAmAYVA/DoHoorS0BKLyVSO7eAxRcjqrw+Ft51qO9b2OsjM2ISUtkxekdZb5vQ4I609Q9sNTymLQEJofOBaC5Rx2C3QKoZlk0ePC1lDj+C9/L1eTSn6mK1N6nEd38m2NlYsGN1HjmH9/MhXt8ppq716Gbf3OcLOzIzs/hVMwlFp3YqvlMuVo60LduCB421XAwt2b+8U1sPn+owuNWq9X8b9YsVq1dS3p6OrUDApgwbhzeXl73rBe6cyd///MP12/coLqrK2+9+ipt27TRWXb2v//yx/TpDOzXj/feeUezfPrMmWwJDSUuPh4DfX38a9bkrddeI7B27XJtU/jOI5zccoDs1HRsqjnStH8nXHx1nxdvno9i/U/zSi3v98VbWDuXHoD68pEzbP9nJe71atLprRdLPV+RTm4/yPGNe8hMScfO1ZHWg7rh6ud533o3L15l+bczsHN1YvCXb2uWFxYUcnT9TiL2nSAjOQ0bF3ta9OuCRx2/StuGiF1HOb31ANmpGVi7ONCkXyecfWvoLBtzIYqN00q3kOjz+Rta+yI3K4dja3ZwNew8eVnZmNtbE9y3I26BPpW2HW29g+hSs2nRNSP1FovCtnExIVpn2eGNu9PSs26p5TdSb/Hp5hkAjA8ZTC3H0p/Jkzcv8cvepRUb/EOq5+LDoAadqOVYA3szaz7c8Bd7Ik9WaUx3a+5RhxDvICyNzYhNT2LNmd1EJt0ss7yeUo9OfsEEVa+JpZEZKTkZhF44wuHocACUCiXtfRvRyM0fK2MzbmUksy58P+dvXa3U7ajozxRAR9/GtPUOwtbUkoy8bI5eP8fyUzsoUBVWyjY8rdc9IR6UJOOEEE+NvLw8DA0NqzqMe8rPz8fAwOCxv+7ZA8fZ8u8qur7yAm5+nhzfvp9F30/nje8/wsrepsx6OVnZrPl7AZ61fclMTdd67mrEJWo3C6L6MA/0DQ04sC6Uhd/+xevffYilrXW5Yw7dso1ff/qFcRPep069uqxduZoP3nmPf5cuwMnZuVT5mzduMn7se/To1ZNPv/yc0ydP8dN3P2JtY01Iu7ZF25OTg4trNUI6tOW3n37V+br/mzsTVWHxYLGRl6/w7uh3aNuhXbm3CaCpe22GNezCrCPruXDrGu19GzGh7RA+WPcHiVmppcrXdKjBm8368O/xTRy/fh5bU0uGB3fn1abPM233YgACnDzYH3WaiwnR5BcW0D2gBR+2G8r4dX+QnJ1eap0VxbBZY4yaNCTrv02okpIxatEUs0EvkP73LMjL111JqcRs0Auos7LIWvEfqrR0lJaWqPPyNEVU6enk7NiDKjkFAIO6AZj260XGP//eP9H3EIJca9K3bluWhIVyJekGLT3q8lbzPny9bY7O9235qR2sObtH87+eQslH7Ydx4sYFzTJfezeOXT/HsqSbFBQW0sGvMaOa92Vy6FxSczIqLPa7NalRmyFBXZhzdD0XE6Jp69OQD9oM5sMNf5CYlVaqvJ+9G6837cWCE5s5ceMCNiYWvNK4OyOCe2h+iBvqGxCfkcLha+EMDupcKXEDzF2wgIVLlvD5xInUcHNj5ty5jHr3XVYsWoSZqanOOqfOnOHjzz/njZEjadu6NTt27+bDzz5j5p9/lkqknY2IYNXatfh6l77x4O7mxvh338W1WjVyc3NZuHQpo8aNY/XixdjYlH1evJfLR85yYOlmWgx6DidvN87tPs6m3xbSb9JbmNtalVmv35ejMDQuninO2KL0tqcnpnBo+VacfXQnkyrShUOn2L1wPW2H9qSarzundx5mzU9zGTJ5LJZ21mXWy83KYcuMZbj5e5OVpv15P7ByK+cOhNH+5d7Yujhw9cwF1v02n/4T38DRvVqFb8OVo2c5tGwLzQZ0LdoXe46z5Y9F9PnsjXvui76T3sSgjH1RWFDI5l8XYGxhRrvX+mJmbUFGcppW+YrW2M2fgfU78u/xTVxKuE6IdwPebfUin2z+H0k6ju9FYVtZfnqH5n89hZIvOo3g6PVzmmV/7F+BnrJ47CJzQxO+6DSSo9cjKm07HpSJgRGXEq+z4dx+pnR9o6rD0VK/mi/PB7Zm5amdRCbdpJl7IK827cn3O+aTkq37/D6sYVcsjExZGhZKQmYK5kam6CkUmue71mpKw+q1WHoylPiMZGo6uvNKcDd+27OMG2m3KmU7KuMz1bRGbV6o25ZZR9ZxKeEGzha2jAjuDsDisG0Vvg1P83VPiAcl3VSFEDqp1Wq+//57vLy8MDExoV69eixfvhyAnTt3olAoCA0NpVGjRpiamtK8eXPOnz8PFA2EqVAoOHfunNY6f/rpJzw8PDR988PDw3nuuecwNzfHycmJoUOHkpCQoCkfEhLC6NGjGTduHPb29nTs2BGAtWvX4uvri4mJCW3btmXu3LkoFApSUlKAoimoBw4cSPXq1TE1NaVOnTosWrRIK5bMzEyGDRuGubk5Li4uTJ06tdR7oFAoWL16tdYya2tr5syZA0BUVBQKhYKlS5cSEhKCsbEx8+fPf6DXr2iHNu6kfkgTGrRthr2rM52G9sHSzppj2/bes96GmUsJbN4QV1+PUs/1HjWURh1b4uxRHftqTnQbOQC1Sk3U2QulV/QIlixcTLfne9CjV088PD0Y895YHJ0cWbV8lc7ya1auwsnZiTHvjcXD04MevXrSrWd3Fs9fqCnjXzuAUe+MpkOnjhga6k6K2tjYYGdvp3ns37sP1+qu1A9qUCHb9Vyt5uy8fIKdl49zMy2Bf49tIjErjQ5+jXWW97Gvzq3MFDafP8StzBTO37pG6MVjeNkW/3j9Y/8Ktl08wtXkWG6mJTDj0FoUCgWBzvduXVReRsFB5Ow7RMH5S6huJZL93yYUBvoY1vYvs45h/UAUJsZkLVtD4fWbqNPSKbx+A1V88Y+OgotXKLgciSopGVVSMrk796HOy0PP1aVC42/n05ADUac5cPU0celJrDi9k+TsdFp51tNZPqcgj/TcLM2jho0zJgbGHLh6RlNm7tEN7Ik8yY3UW8RlJLHw+BYUCgU1HSovgdK1ZlN2XTnBrisnuJmWwILjm0nMSqW9770/U1suHOZWZgoXEqLZfukYnnd9piKTbrI4bCsHr50lv7ByWjWo1WoWLVvGK8OG0a5NG3y8vPhi4kRycnPZtGVLmfUWLV1Kk0aNeGXoUDzc3Xll6FCCGzZk4VLtFj1ZWVl8+sUXTBw/Xmtg5Tu6dOpEk8aNqe7qireXF+++/TaZmZlcvHz5kbfp9LYD1GzRgFotg7BxcaDZi50xt7EifNfRe9YzsTDD1Mpc81Aqtb+Cq1QqdsxcRVCPECwcHi1R+DCOb9lL7dYNCWzTGNtqjrQZ1B1zWytOb793K5Htc1dRs2k9XHzcSj137sAJGndvg2e9mlg52lK3XVPcA305vune16FHdSb0EH7N61OzZQOsXexp2r8TZjaWnNt97J71jO+xLy7uDyM3M5sOb/TDydsNcztrnH1qYFfdqVK2AaCzXzB7Ik+yJ/IkMemJLArbRlJ2Gm29g3SWz87PJS0nU/PwsHHB1NCEvXe1LsvMy9EqU9vJk7zCfI5En9O5zsfp4LWzzDi0ll1Xwqo6lFJaezfg8LWzHLp2lviMZNac3UNKdgbNPUq3GgOo6eCOt70rMw6t4WJCNMnZ6USnxBF1V0vphm61CL14lHPxV0nKSuNA1GnOx1+ljU/FfOfQpTI+U952rlxMuM6ha+EkZqVyNi6SQ9fC8bCp2Ov2HU/rde+JplI/uY//pyQZJ4TQ6ZNPPmH27Nn89ddfnD17lnfffZchQ4awa9cuTZmJEycydepUjh49ir6+PsOHDwegZs2aNGzYkAULFmitc+HChQwaNAiFQkFMTAxt2rShfv36HD16lE2bNhEXF0f//v216sydOxd9fX327dvH9OnTiYqK4oUXXqBXr16EhYXx+uuvM3HiRK06OTk5NGzYkHXr1nHmzBlee+01hg4dyqFDxT8yPvjgA3bs2MGqVavYsmULO3fu5Nixe3+BL8uECRMYM2YMERERdO7c+YFevyIVFhQQE3kdrzq1tJZ71anF9YtRZdYL23WI5PgEWvd5sLuD+bl5qApVmJiZlSfconXl53Ph3HmCmwRrLW/cJJgzp07rrHP29Bkalygf3LQJ58LPUVBQ8MhxbNm4med6dkdx153sR6Wn1MPT1oVTMZe0lp+OuYyffekfrwAXbkVja2pJ/Wq+AFgam9GkRgAnbpad9DTSM0BfoafpelEZFNZWKM3NKbhyV1eawkIKrl1Hr3rZrVz0fb0pvH4Tky7tsXjnDcxffQmj5sFQ1vurUGAQUBOFgQGFN8ruCvSw9BRK3KydiIjX7goUEXcVT7sHa6XTzD2Q8/FX79n60FBfHz2lkqz8nHLFWxY9pRIP22qcjtVOIJ2JvYKvfXWddS4mFH2m6rkUdauzNDYjuIY/YTcvVkqMZblx8yaJiYk0DS4+bg0NDQmqX59TZ86UWe/UmTM0CdY+1ps2aVKqznc//USL5s1p0lj3j7O75efns2rNGszNzfHzebTuhoUFhSRci8E1QLsVnmuAF3GXdXf/umPl1/9j/gc/sf6nedw8H1nq+RPrdmNsYUqtlpX3A/2OwoIC4qNuUqO2r9Zy99o+xFwuu+vc2T3HSIlPosnzulsRF+YXoFeiZbi+oQE373EdelSFBYUkXouhWoD2DQlXfy/ir1y/Z901U2awaMLPbPx5PjHntWO7duoCjl7V2b94EwvHT2Pll9M5uXEvKpVK98rKSU+pxN3GhbNxV7SWn42NxMdO9/FdUiuveoTHRepsLaQp41mPw9fCySsso0WzQE+hpLqVI+fjtbtBnr91rcyEU21nT6JT4mjn05DPOg7nw3ZD6RHQEv27WiXqK/XIV2l/R8kvLNBKElWkyvpMXUy4joeNM562Re+Fg5k1dVy8S33fqQhP83VPiIch3VSFEKVkZmby008/sX37dpo1awaAl5cXe/fuZfr06bz22msATJ48mTa3x/D58MMP6datGzk5ORgbGzN48GB+//13vvrqKwAuXLjAsWPHmDevaOycv/76i6CgIKZMmaJ53VmzZuHm5saFCxfw8ysaY8bHx4fvv/9eU+bDDz+kZs2a/PDDD0BR4u/MmTNMnjxZU8bV1ZX33y8e++vtt99m06ZNLFu2jCZNmpCRkcHMmTOZN2+eprXd3LlzqV79wb6klDR27Fj69Omjtexer69Lbm4uubm5WsuMjB6sW0xWeiZqlQozK+2WIWZWFmSk6v5ynhR7ix2L/2PYZ2NQPuA03NsXr8PC1grPwPKP/5OakkJhYSE2trZay23sbElKTNJZJzExiWC7EuVtbSksLCQlJQV7+9LjL93Pnp27ycjI4Lnuzz10XV0sjEzRU+qRmpOptTw1JwMrE3OddS4mRPPHvhW83bIfBnr66Cv1OBp9jrlHNpT5OgMadCQpO40zMVfKLFNeyttJV3Wm9raoM7NQWFqWXc/aGqWHJflnIshcshI9WxuMO7cHpZLcvQeLyznYY/7yQNDXh7w8spavRZWge98/CnMjE/SUStJzs7SWp+dmYmnkcd/6lkZmBDh5Mufo+nuWe752a1KzMzgXXznj/xR9ppSklegCm5qTgZWx7jEhLyZc568DKxnV4gXNZ+rY9XP8e2xjpcRYlsSkov1pV+I4t7OxISYu7p717Ep0I7WzsdGsD2Dztm2cu3CBeTNmlKyuZc++fXw8aRI5OTnY29nxx7RpWFtbP+SWFMnJyEKtUmNqqX1DwsTCjOy0TJ11TK3MaTWkO/buLhTmF3Dx0GnWT/uX7uNewsWvaEyv2EvXOL/vBH0+ff2R4npY2elZqFUqTC21z0kmVhZkntH9wzU5NoF9yzfR76PXy7xm1Aj05cTmvbj6eWDtaMu1iMtcORGBuhISWbm394WJRel9kZWquzuhqaUFLQY/h10NF1QFhVw6dJqNv8znuXeH4nx7zL/0hBRizkfhFRxIp1EDSItP4sCSTahUKhp0a13h22FhWHR8l7xmpOVmYmV8/xtfVsZm1HH25n8H15RZxtPWherWjsy+z7ns/zszw6JrRkaJa0ZGbhYWxrq71NuZWeFpW42CwkJmH1mPmaExfeu2xdTQiCVhoQCcj79GG68GXEm8QWJmKr4ObtR29kKpqJw2MZX1mTocHY6FkSkftR0GiqIk4/ZLx9hw7kCFxg9P93VPiIchyTghRCnh4eHk5ORoElV35OXl0aBB8V37unWLm+27uBTdKYuPj6dGjRoMGDCADz74gIMHD9K0aVMWLFhA/fr1CQgIAODYsWPs2LEDc/PSCYrLly9rknGNGjXSeu78+fM0LtEKIrhEC4rCwkK+/fZblixZwo0bNzSJLrPbyYXLly+Tl5enSTRC0dTXNWvWfLA3qISSMd7v9XX55ptv+OKLL7SWff7553h3152806VUwyO1GgWlWyOpVCpW/TGP1n27Yufi+EDr3v9fKGcPHGfoJ6PRL6P756PQGfM9GqiV3B41ap3LH9S6tf/RpFlT7B0cHql+2Uo2uVeUOVuUq6UDLzXqyqrTuzgZcwkbE3MGNejE8OAezDhU+gdW94AWNHcP5Kttc0rdbS8Pg9q1MHmu+JjPXKK7u3CRe3QpUBQl7LI3bAW1GlVsPApzc4yaNdJKxqkSk8j4518Uxkbo1/TFpEcXMucvqdCEnK5YFSjuFb1GU/faZN+eTKMsHXwb07B6TX7Zs7TSBrC+o+TH517bUc3SnqFBXVl9ZjenYy9hbWzBgAYdeaVxd/45vLbSYty4ZQtTbt8oAfj59o2UUoe5jmWlKEoe62har8bGxTH1l1/4/aef7nvTolFQEAtnzyYlJYVV//3HR599xpz//Q/bRxwz7mFZO9trTQ7g5O1GZlIqp7YewMXPnbycXHbMWk2rod0xNtf9g7+ylGoNrFbr3C8qlYpN05fQtFcHbHRMOnFHm0HdCZ2zin8/ngYKBVaOtgS0DCJ87/GKDfwuJbdBrWPZHVbOdlg522n+d/SqTmZyGqe3HtQk49RqNcYWZrQY3A2lUom9uwtZqemc3nqwUpJxZVFwz7OsRguPumTl53D85vkyy7TyrM/1lHgik2IqLL5nmc73vYzr953vHguObyanoGhc1LVn9zCs0XOsOLWTAlUhq8/spn+9dkxoNxS1GhKzUjkSHUFjt7KHe6gM5f1M1XSoQXf/5vx7fBNXkm7iZG7DwPodSQ3I4L/wfZUS89Nw3Xuq/D+etfRJJck4IUQpd7pjrF+/HldXV63njIyMuHx7vJ27Jyq48+X3Tl0XFxfatm3LwoULadq0KYsWLeL114vv+qtUKnr06MF3331X6vXvJPaAUgkstVpd+st3iYvL1KlTmTZtGj///DN16tTBzMyMsWPHknd7APmS5cuiUChKlc3PL93Fo2SM93t9XT766CPGjRuntczIyIilp7ffN05TCzMUSiUZKdpd6TLTMkq1lgPIy84h5ko0sVE32DR3BXD7PVGrmTx0HIM+fAPP2sWt3w6s386+tVsZ/NFbONWomG4VVtbW6OnplWoFl5yUXKq13B12drYkJWoP7p+SlIyenh5W1mUP1l2W2JgYjh0+ytffT7l/4QeUnptFoaoQK2PtJLOVsVmpu9R39AxsxYVb0ayLKPoyG50SR27Bej7vNIJlJ0NJuevOcDf/5jxfuxVTQucRnVJ2y6JHkX/xMoX/3DUj6O3WLwozM9QZxbErzExRZ2aVrK6hzihqqXn3lz5VYiJKc3NQKuFOKxmVSjOBQ2FMHPrVnDFsHETOxooZCDojN5tClQoLI+3j09zIlPRc3fvibk3dAzkcHU6hWnernvY+jejkF8zv+5ZzMy1BZ5mKUPSZUpVqWWlpbFaq1cAdPQJacjHhGhvO7Qcgmnhyj+TxacfhLDu1vdImmmjdsiWBt2+4AJpzXkJSklbL1aTkZGzLOM6hqCXd3a3gNHVuJ9DOnT9PUnIyQ0eO1DxfWFjIiZMnWbpyJfu3b0fv9ufXxMQEt+rVcatenTqBgfQeMIA169bxytChD719xuamKJQKskq0gstOz8TE8sG77zt6VefSoaLu+Om3kslITGHzH4s1z9+57vzz5lf0/3IUlg5lv1ePwsTCFIVSWWrSnuy0DEytSt8gy8/JJT7qBreuxbBz/n/FMarV/DriE3q/9wpuAd6YWprTY8xQCvLzycnIwszakn3LNmN5j0mEHpWRZl9of5ZzHnJfOHi6cvlw8dAIplbmKJRKrXHkrJztyU7LoLCgED39B2tJ/qDS824f3yVaLFkYmZFWxjXjbq0863Hg6hkKy2h9aKinT7CbP6vvmphG6JaZd+eaoZ0UL7pm6B4SIi03k9ScDE0iDiAuPQmlQoG1iTkJmalk5mUz+8h69JV6mBoak5aTSTf/5jonUqgIlfWZ6h3Yhv1Xz2hmvr2RegtDPQNeavQc68L3PVCi70E9Tdc9IcpDknFCiFICAgIwMjLi2rVrmm6od7v8gINfDx48mAkTJjBw4EAuX77MgAEDNM8FBQWxYsUKPDw80Nd/8FNRrVq12LBBu/ve0aPaA2fv2bOH559/niFDhgBFib+LFy/i7190F9LHxwcDAwMOHjxIjRpFg64nJydz4cIFre11cHAgJqb4TvLFixfJyio7CfGgr6+LkZHRA3dLLUlPXx8Xz+pEnjlPrcbFrRUjT5/Hr2Fg6dcyMea1bydoLTu2bS9RZy/S951XsL7rh9+BddvZu3oLAye8QTWvihug3sDAAL9aNTly6DCt2xa/50cOH6Fl61Y669SuE8i+Pdp3Xw8fOkytgFoP9Rm6Y8N/67G2saFZi+YPXbcshapCIpNiqOPirTULWaCLF8eu6265YKRnUCrho7rz/12J5+7+LegV2Jpvt/9LZFLFja2mkZePKi9FO46MDPQ93cmLiy9aoFSiX6M6OdvL/mFXcP0mhrW1xy9U2tqgSs8oTsSVQfGAXaYfRKFaRXRKHLUc3bXGtKnl6M7p+4xx42tfHUdzGw5E6R6/sL1vI7rUbMof+1ZwrYKToiUVqlREJd0k0NmLY3d/ppy9OH6jjM+UvkGpH1Kq2wmeChgasUxmpqZaM6Sq1Wrs7Ow4dOQItW63ds7Pz+d4WBhvv1H2LIp1AwM5dOQIg198UbPs0OHD1A0sOp81btSIxbeHPLjjyylTcHd356XBgzWJOF3UavU9b4zci56+HvY1XLgRcQXPBsWf8RsRV3Cv9+AtqxOjYzG5nfSycran72fa78XRNTvIz8ml2YtdMLN5+BsN96Onr4+jRzWunb2ET8Pi2WmvhV/Cq35AqfKGxkYM/mqM1rJT2w9xPeIyz40ahFWJZKG+gQHmNlYUFhRy6dgZfBvXqYRt0MOuhgs3IyLxqF+8L25GRFKj3oMPpZAUHavVXdfRqzpXjpxFrVKjUBYdLGnxSZhYmVd4Ig6Kju+ryTEEOHly/K5Zm2s7ed5z3FAoaqnkZGHLnn0nyyzT2M0fAz19rUlohG6FahXXU+Pxc6jBmdjiISD8HGpwNlb3kBBRSTep5+KDoZ6BZjw+B3MbVGpVqdlXC1SFpOVkolQoqVvNh7AblTOWWWV9pgz19DW9Ee5Q32lNqyi79f+jeJque0KUhyTjhBClWFhY8P777/Puu++iUqlo2bIlaWlp7N+/H3Nzc9zd3R9oPX369OHNN9/kzTffpG3btlqt7EaNGsWMGTMYOHAgH3zwAfb29ly6dInFixczY8aMMn9Mvf766/z0009MmDCBESNGEBYWppnd9E6LOR8fH1asWMH+/fuxsbHhp59+IjY2VpMMMzc3Z8SIEXzwwQfY2dnh5OTExIkTS81u165dO37//XeaNm2KSqViwoQJWq0By3K/168MTbqGsOavBbh4ulHd14Pj2w+QmphMUPsWAGxf/B/pyak8/+YQFEoljm7agxGbWpqjb6CvtXz/f6HsWr6BXqOGYe1gS0ZK0V1cQ2MjDI0fLXF4txcHDeDrz7+kVoA/tesEsnbVGuJj4+jVtxcAf//+Fwm3bvHJF58B8Hyf3qxcuoLfpv1Cj17Pc/b0Gdav+Y/PJxd3783PzyfqSuTtvwu4desWF89fwMTUlOpuxWMCqlQqNvy3nq7duj5SIu9eNpzbz1vN+nAl8SYXE6Jp59MIe1MrQi8eKdru+h2wNbHgrwNF3UCP3zjPyCY96eDbmFMxl7A2MWdow65cSrhOyu2JA7oHtKBf3Xb8vm85tzJTNC3vcgryyC14tMTCg8g9fBzjFsGokotmPTVq3gR1fgF5ZyM0ZUx6dEGVnkHuzqIZE/OOncSoUQOMO7Uj7+gJlLbWGDVvQt7RE5o6RiEti2ZTTUtHYWiIQe2a6Lm7kbt4ZYXGv/3SMYY16sq1lDgik27SwqMutqYWmjv7PQNaYmVizr/HNmnVa+Zeh8ikm8SkJ5ZaZwffxnTzb87coxtIzErVtKLILcivtMHRN54/yBtNexOZdJNLCddp690QO1MrQi8W3YjoX689NiYWTD+4GoATNy4wPLgH7X0a3f5MWTAkqDOXE65rfiDqKZW4WhZ1z9ZX6mFjYkkNaydyCvKIz0iukLgVCgUD+/Vj9r//UqN6ddzc3Jg9bx7GRkZ06dRJU+6zr77C0cGB0bcTdAP69eO10aOZM38+Ia1asXPPHg4dPcrMP/8EipJ+Pl7aA/cbGxtjbWmpWZ6dnc2sefNo3aIF9vb2pKamsmzVKuJv3aJD27aPvE11OjRj5+xVOLi74OhVnXN7jpORlIp/64YAHF4VSmZKOm1f6QXA6W0HsbC3xsbFgcLConHKIo9H0OH1fgDoG+hj66o9XIChqTFAqeUVKahTSzbPWIaThysuPjU4vesI6Ymp1GlbNOzDvmWbyUhJo/Or/VAoldhXd9aqb2pphp6Bgdby2MvRZCSn4lCjGhkpqRxcHYparabRc5XTvTOwfRN2z1mDvbsLjp7VOb/3OBnJqdRqVTRj5NHV28lMSafNy88DcDb0EOZ21lhXc0BVUMjlw6eJOnGOdq+9oFlnrdYNCd95lIPLNhMQ0pi0+CRObtpHQNv7TxLyqDZfOMyrwT2JSo7hcsIN2ng3wNbUkp2Xi7r39q0Tgo2JBf8c/k+rXivPelxOvMGNtFu6Vnu7TH2O37hAZiVO9vOwTAyMqG5VPDRENUt7fO2rk5aTSVwFnXse1e7LJxgY1InrKfFEJcfQ1D0QGxNzzY2Z5/ybY2VsxqITWwE4fv0CHf2CGdCgA5vPHcLM0JgeAS04fC1cM3RBDWsnrEzMuZF6CytjczrXbIICBTsuPdqkYQ+iMj5TJ2Mu0ckvmGvJcVxJuoGjuQ29AlsTdvPiA/c4eRhP63XviVZGS39RdSQZJ4TQ6auvvsLR0ZFvvvmGK1euYG1tTVBQEB9//PEDzypmaWlJjx49WLZsGbNmzdJ6rlq1auzbt48JEybQuXNncnNzcXd3p0uXLqWSYnfz9PRk+fLlvPfee/zyyy80a9aMiRMn8uabb2paln366adERkbSuXNnTE1Nee211+jVqxepqama9fzwww9kZGTQs2dPLCwseO+997Seh6Lupq+88gqtW7emWrVq/PLLLw804+qDvH5Fq90siOyMLPasKvoB5VDdhQEfvK5p5ZaRkkZq4sN90Ti2bS+FBYWs+GW21vJWfTrTpm/XcsfcvlMH0lJTmfPPLBITEvH09uL7n3/E+XY35cSEROJii1sdVXOtxvc/T+W3ab+watlK7B3seef9dwlpV/zDOuFWAsOHvKz5f/H8hSyev5D6QQ34bfofmuVHDx8hLjaO53p2L/d2lHTw6lnMDU3pU6cN1iYWXE+J5/udC0jILNr/1sbm2JkVt3bZfSUMY30jOvkFMzioE1l5OZyNi9R82Qfo6NsYAz193m09QOu1VpzawYrTOyt8G+7IO3AEhb4+Jl3aozA2pvBGDJmLlkNecdJJaWWpdUdcnZ5O5qLlGHcMwfzVYajSM8g7cpzcA0eK65iZYtqzKwpzM9S5eajib5G1eCUFkRU7CcLxG+cxMzSma82mWBqbEZOWyJ/7V2pmR7U0NsPWRHsyCmN9Q+pX82X56R0619nKsx4GevqMbNJTa/mGiP2VMpA1wKFrZzE3NKFX7TZYm5hzPTWeH3ctIDHrrs+UafFnak/kSYz1jejg15iBDYo+U+HxkSwJK+4CbGNiweSuxS2yuvk3p5t/cyLiopiyfW6Fxf7S4MHk5uby7U8/kZ6eTmBAAL9Pm6bVgi42Lk7rvF+vTh0mT5rEXzNm8Pc//1Dd1ZVvvvySwNq1db2ETkqlkqirV1m3cSMpqalYWVoS4O/PjD/+wLtEIu9heDeuTW5mFsfX7yYrNQPbao50GT0ICztrALJSM8hMKj7XqwoLObR8K5kp6egb6GNdzYHOowdSo45vGa/wePg1qUt2ZhaH1m4nKzUdO1cnnn/3JU2X0szUdNITUx5qnQX5+RxYtZXU+GQMjA3xqFuTzq/2x8jUpBK2ALwa1SY3M5uw9XvISsvAxsWBTqMGYF7GvigsLOTwym1kpaSjZ6CPjYsDHUcNwC2weHZdc1sruowZxKFlW1n99f8wtbagdtvG1OlccS2oSzoSHYG5oUnRzQHjoqTNz3uWaGaytDI2x9ZU+zxlYmBEw+q1WBS2VdcqAXAyt8XPwY0fdy2stNgfRS0Hd37vXTwsx5iWRYnpDREHmFyB555HEXbzIqaGxnSsGYylkRkx6Yn8c3Bt8TXDyBRrk+LhP/IK85l+YDW967RhbOsXycrPIezmRTZGFF8L9PX06VKrGXamluQV5BMRH8XC41u0urZWtMr4TP0Xvhe1Wk3vwNbYmFiQnpvFyZhLlfYd5Gm+7gnxoBTqykhlCyHEYzR58mT+/vtvoqOjqzqUCvfv0ad/FqihjboSn1a6hdHTxNHSjkELPq/qMMpt4eAvSJ08tarDKBerie8xetXTvQ0Av/d+j6GLvrh/wSfcvwM/J/1W2S1zngYWDg78uHNBVYdRbu+HDObP/SuqOoxyeat5X77b/m9Vh1FuE9oNZfjSihuPtKrM6v8xLf4ou0v502DfqL95b+2vVR1GuU3tOeap/0zN6v/xM3Pdexql/v6/qg6hTFajX6vqEKqEtIwTQjx1/vzzTxo3boydnR379u3jhx9+YPTo0VUdlhBCCCGEEEI8eVTSButJI8k4IcRT5+LFi3z99dckJSVRo0YN3nvvPT766KOqDksIIYQQQgghhLgvScYJIZ4606ZNY9q0aVUdhhBCCCGEEEII8dAkGSeEEEIIIYQQQgjxrJKpAp44ZU9ZKIQQQgghhBBCCCGEqFCSjBNCCCGEEEIIIYQQ4jGRbqpCCCGEEEIIIYQQzyrppvrEkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKpWqqiMQJUjLOCGEEEIIIYQQQgghHhNJxgkhhBBCCCGEEEII8ZhIN1UhhBBCCCGEEEKIZ5XMpvrEkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKumm+sSRlnFCCCGEEEIIIYQQQjwmkowTQgghhBBCCCGEEOIxkW6qQgghhBBCCCGEEM8qlXRTfdJIyzghhBBCCCGEEEIIIR4ThVotI/kJIYQQQgghhBBCPItSv/+1qkMok9X4MVUdQpWQbqpCCPEEW3R8S1WHUG4DgzoRn5ZY1WGUi6OlHa8smVzVYZTb7BcnkjLk9aoOo1ys50/ns00zqjqMcvuyy6u8tvy7qg6j3P73wgTSjp6o6jDKxbJRA0IvHKnqMMqtvV9jPt30v6oOo1y+6vIa323/t6rDKLcJ7YYyft3vVR1GuX3ffTTvrX1yf8A/iKk9x9DijzeqOoxy2zfqb15d9m1Vh1EuM/p9yOhVU6s6jHL7vfd7VR3Co1GrqjoCUYJ0UxVCCCGEEEIIIYQQ4jGRZJwQQgghhBBCCCGEEI+JdFMVQgghhBBCCCGEeFbJVAFPHGkZJ4QQQgghhBBCCCHEYyLJOCGEEEIIIYQQQgghHhPppiqEEEIIIYQQQgjxrFJJN9UnjbSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGsUqmqOgJRgrSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE0nGCSFEOe3cuROFQkFKSkpVhyKEEEIIIYQQ2tTqJ/fx/5SMGSeEeCrFxsYyefJk1q9fz40bN3B0dKR+/fqMHTuW9u3bV3V4T4zDW3azf10o6SlpOFZ3ocuwPrjX8rlvvWvnrzD7y19wdHPhzW8/rLT4Vi1bwaL5C0lMSMTDy5Mx496hXoP6ZZY/cewEv//8K1FXIrGzt2fQsMH06ttb83zk5SvMnP4P58+dIzYmlrfffYf+g17UWkdBQQGzZ8xk66YtJCYmYmdnT9fuz/HSiJdRKivmHlVbn4Z0rdkUaxNzbqTeYuGJrVxMiNZZdkRwd1p61iu1/EbqLT7Z9D8A9BRKuvk3p4VnXWxMLIhJT2TZye2cib1SIfHei3Gf7hi2bYXCzJTCy5FkzVmE6kbMPesYdW6PYYfWKO1sUadnkHf4ODlLV0F+gaaMwsYakwF90K9bG4WhIarYOLJmzKMw6lqFxt/YzZ+WnvUwNzLhVkYyG88d5GpybJnl9RRKQnyCqFfNB3MjU9JyMtl1+QQnblwAoGH1mtSv5oejhQ0AN1MT2HbxCDdSb1Vo3CW18WpA55rBWBmbczMtgSUnQ7mUcF1n2ZcbPUdzjzqllt9MTWDS1pkANHMP5JXG3UqVeWvljxSoCis2+Luo1WpmrFzOqu3bSc/MoLaPD+NfHo53dbcy66zaHsqGvbu5HF20vbU8PRn14gBqexefy2avWc2Oo4e5evMmRoaG1PX1Y/SAQXhUq1bh27Br/Va2rdxAanIKLjVc6ffqEHxq19JZ9sT+I+zZGMr1K1cpyM/HpUZ1ug3qQ0BQXU2ZaR99zcUz50rVrd2oHqM+/6DC478j2C2Alp51MTcyJT4jmY3nDtz32Gjr07DUsXH8xnkAApw8aO3VAFtTS/QUShKzUtkXdZqTNy9W2jZE7DrK6a0HyE7NwNrFgSb9OuHsW0Nn2ZgLUWycNr/U8j6fv4G1s73m/9ysHI6t2cHVsPPkZWVjbm9NcN+OuAXe/9r5qJq5B9LGOwgLI1Pi0pNYG76HqKSyz7N6SiUdfIMJcvXDwsiM1JwMQi8d5Wh0BACvN+uNt51rqXoRcVHMPrKu0rajuUcdQryDsDQ2IzY9iTVndhOZdPMe26FHJ79ggqrXxNLIjJScDEIvHOFwdDgASoWS9r6NaOTmj5WxGbcyklkXvp/zt65W2jY8qHouPgxq0IlajjWwN7Pmww1/sSfyZFWHpRHi3YDONZsUXzPCtnGxjGvGK427lXHNuMXnW2Zq/jcxMKJ3YGsauNbEzNCYhMwUllbid5FWnvVo79sYK2MzYtISWXF6B5cTb+gsOySoM03dA0stj0lLYHLoXKDo8xnsFkA1y6Lj/VpKHP+F773neU+IyiTJOCHEUycqKooWLVpgbW3N999/T926dcnPz2fz5s2MGjWKc+dK/6ipCHl5eRgaGlbKuivDmQPH2DRvJd2G96dGTS+ObtvH/G//YtSPE7G2ty2zXk5WNqv+/BevQD8yUtMrLb7QLdv49adfGDfhferUq8valav54J33+HfpApycnUuVv3njJuPHvkePXj359MvPOX3yFD999yPWNtaEtGtbFHtODi6u1Qjp0JbffvpV5+sunDefNStW8/GkT/D08uJcRATffDkFc3Mz+g18UWedhxHs5s+g+h359/gmLt6KJsQniHGtBzBx03SSstJKx3NiK8tO7dD8r6dQ8mXnkRy5/aMKoE+dNjRzr8Oco+uJSUsk0NmLt1u8wOTQuVxLiSt3zGUx6t4Zo64dyJo+l8LYOIyffw7zD8eS9sFnkJOrs45B82CMX+xN1oy5FF68gtLZEdPXXwYgZ8EyABSmplh89gH5ERfI/OE31GnpKJ0cUGdlVWj8gc5edPVvxrrwfVxLjqOxWy2GNOzC73uXkZqTqbNO//rtMTcyYfWZ3SRlpWFmaIJSodA872FbjVMxl4iOiKNAVUhLz3oMa9SV3/cuJz23YuO/o1H1WrxYvz0Lj2/hUuINWnvVZ0zLfkza/A9J2aWP0SVh21h5epfmf6VSyWcdXuHYDe1zY3Z+Lp9umqG1rDITcQDz1q1l4YYNfPbGm9RwdmHW6pWM/mYKy3/8CTMTE511jkWE06lZC+oO88PI0IB56/5j9LdTWPLdjzjaFp3Ljp+LoF+HTgR4e1NYqOKvpYt5+9spLP3+R0yMjSss/qN7DrL8n/kMeONlvAL82LtpO39M+oFP//gOW0f7UuUvnT1HrfqB9BzaD1NzMw5s28VfX01l/I9f4ObtAcBrH4+loKA4UZ2ZlsGUMR8T1KJJhcVdUvGxsZdryXE0cvNnaMOu/LZ3aZnHxov1O2BuZMKqM7tJykq9fWwU38DIys9l1+UTJGSmUKAqpKajO70D25CZl11m4rg8rhw9y6FlW2g2oCtO3m6c23OcLX8sos9nb2Bua1Vmvb6T3sTA2Ejzv7GFqebvwoJCNv+6AGMLM9q91hczawsyktO0yle0ei4+9KjditWndxGVHEOTGrUZEdyDqTsXkpKTobPOkKAumBuZsuzUdhIzUzE30t4X845uQE+pp/nfzMCYsa0HcCrmUqVtR/1qvjwf2JqVp3YSmXSTZu6BvNq0J9/vmE9Ktu7tGNawKxZGpiwNCyUhMwVzI1P07jrfdq3VlIbVa7H0ZCjxGcnUdHTnleBu/LZnGTfSKvcGyP2YGBhxKfE6G87tZ0rXN6o0lpKKrhkdWHB8M5cSbtDGqz5jWvXn803/kJRd+nvI4hPbWHFqp+Z/PaWSzzoO5+j188XLFErGtR5AWm4mfx9YRXJ2OrYmluQU5FXKNgS51qRv3bYsCQvlStINWnrU5a3mffh62xySdVz3lp/awZqze7Ti/aj9MM2NNABfezeOXT/HsqSbFBQW0sGvMaOa92Vy6FxSyzjWhKhM0k1VCPHUeeutt1AoFBw+fJgXXngBPz8/ateuzbhx4zh48CBRUVEoFArCwsI0dVJSUlAoFOzcuVOzLDw8nOeeew5zc3OcnJwYOnQoCQkJmudDQkIYPXo048aNw97eno4dOwKwYcMG/Pz8MDExoW3btkRFRWnFl5iYyMCBA6levTqmpqbUqVOHRYsWVeZbotOB9TsIatuMhu2a4+DqTNeX+mJlZ8PRrXvvWe+/fxZTp0VDqvt6Vmp8SxYuptvzPejRqycenh6MeW8sjk6OrFq+Smf5NStX4eTsxJj3xuLh6UGPXj3p1rM7i+cv1JTxrx3AqHdG06FTRwwNDXSu58zpM7Rs04rmLVvgUs2Ftu3bEdwkmHMRFZPE7VSzCbsjw9h9JYyY9EQWndhKUnYa7byDdJbPzs8lLSdT8/CwdcHU0IS9d91hb+ZRh3UR+zgVc5lbmSnsuHycM7FX6FKz8n6sAxh1aU/Omo3kHz2B6vpNsqbPQWFoiGHz4DLr6Pt4UXDxMvkHjqBKSKTgTAR5B46g7+VevN4enVElJZP9v7kUXokqKnf2HKr4hDLX+yiae9Th+PXzHL9+noTMFDaeO0haTgaNawToLO9jXx0PWxfmH9vMlcSbpGRncCP1FtEp8ZoyK07t4Eh0BLHpSSRkprLmzB4UCgVeOlqhVJSOfo3ZG3mKvVGniE1PZOnJUJKz0mnj3UBn+eyCPNJyMzUPDxtnTA2N2Rd1WqucWq3WKpeWqzsJU1HUajWLNm3klV69aNc4GB83Nya98RY5ebls3r+vzHpfj3qbfh07UdPDA49qrkwc+RpqlZojZ89oyvw24SN6tAnBu7obfu7ufPb6m8QmJhARGVmh27B99UaadwyhRee2uLi50u/VoVjb27F7Y6jO8v1eHUqnvt3x8PPGsZozzw97EUcXZ04fPqEpY2ZhjpWNteZxLuwMhkaGBLUs+zgrr+YedTl+/TzHrp/nVmYKG88dIC0ng+D7HBv/HtvElcQbdx0bxTcDopJiiIiP4lZmCsnZ6Ry8eoa49CTcrUvfXKkIZ0IP4de8PjVbNsDaxZ6m/TthZmPJud3H7lnP2MIMUytzzePuFtEX94eRm5lNhzf64eTthrmdNc4+NbCr7lQp2wDQyqs+R66Fczg6nPiMZP4L30tKdgZNdbRUAvBzqIGXnSuzDv/HpYTrJGenE50Sr9W6Jzs/l4zcLM3D18GN/MKCSk3GtfZuwOFrZzl07SzxGcmsObuHlOwMmnvU1Vm+poM73vauzDi0hosJ0be3I46ou7ajoVstQi8e5Vz8VZKy0jgQdZrz8Vdp46P73Pc4Hbx2lhmH1rLrSlhVh1JKR79g9kaeZG9k0TVjyclQkrPS7nHNyNW6DrhrrhmnNGVaetbF1NCYP/et5HLiDZKy0riUeJ3rqfE611le7XwaciDqNAeuniYuPYkVp3eSnJ1OKx09CQByCvJIz83SPGrYOGNiYMyBq8XXiblHN7An8iQ3Um8Rl5HEwuNbUCgU1HTQ3Zr2maNSPbmP/6ckGSeEeKokJSWxadMmRo0ahZmZWannra2tH2g9MTExtGnThvr163P06FE2bdpEXFwc/fv31yo3d+5c9PX12bdvH9OnTyc6Opo+ffrw3HPPERYWxsiRI/nwQ+1unDk5OTRs2JB169Zx5swZXnvtNYYOHcqhQ4ceebsfVkFBATcjo/Guq911yrtuLaIvlP3j9MTOgyTHJdCmb9dKjS8/P58L584T3ET7x2bjJsGcOXVaZ52zp8/QuET54KZNOBd+TqtVyf3UrVeXY0eOcu1qUXfISxcucurkSZq1aPaQW1GanlKJh40LZ2O13+OzsVfwtq/+QOto7Vmf8LhIEu9qRWeg1CO/UHsb8woL8HUou2tfeSkd7FFaW1FwOrx4YUEBBecuoO/rXWa9gguX0PeogZ6Xh2Y9BvUCyQ8r3q8GQXUpuHIV07dfw/KPHzD/eiKGIS0rNH49hRIXS3suJ2h3abmUcIMa1rp/WNdydOdmagItPevyfsggxrTqT+eaTdC/q4VJSQZ6+ugplGTn624pWF56CiU1rJ0Jj9P+TIXHRershqZLC4+6nIuPKtUy00jfkG+6vsF3z73F6BZ9cbN2rLC4dblxK57ElBSa1in+cW5oYEBQLX9OXbxwj5racnJzKSgswFLHNeCOjNutLC3NzR894BIK8gu4dikS/wbaXaH8GwRyJeLBumKqVCpysnMwtSg79v1bd9KwdTOMKrBF3930FEqqWdqXaq12KeE6bvc8Nm7R0rMeH4QM5p0HODa8bKthb2ZFVPK9u7U/isKCQhKvxVAtwEtruau/F/FX7t0Kb82UGSya8DMbf55PzPkoreeunbqAo1d19i/exMLx01j55XRObtyLqpJ+LOoplLhaOXKhxDAGFxOi8bDRncQMcPLkeko8Id5BTOzwMh+EDKGbf4t77ovGbgGcvHmx1HWkougplFS3cuR8vPYwA+dvXcPDxkVnndrOnkSnxNHOpyGfdRzOh+2G0iOgpdZ26Cv1yFdpx5xfWICnbcV3P39W6CmUuNs4Ex4bpbX8bFwU3vYPds1o6VmPiDjta0a9ar5cSbzBoKBOTO3xNpM6jeC5Ws1QoLjHmh6NnkKJm7UTEfHa3ZEj4q7iafdg+76ZeyDn46/qbEV3h6G+PnpKJVn5OeWKV4hHJd1UhRBPlUuXLqFWq6lVS/f4PA/qr7/+IigoiClTpmiWzZo1Czc3Ny5cuICfnx8APj4+fP/995oyH3/8MV5eXkybNq3oblrNmpw+fZrvvvtOU8bV1ZX3339f8//bb7/Npk2bWLZsGU2aVG5Lpjuy0jJRq1SYWVloLTezsiAjtXQXBYDEmHi2LVrLK5PGoqdX9pf6ipCakkJhYSE2ttrdZW3sbElKTNIdX2ISwXYlytvaUlhYSEpKCvb2pbuI6TL4paFkZGQypN9AlEolKpWKV998nQ6dOz3axtzFwtAUPaWStBLdHVJzMgk0vn9SwMrYnDou3kw/uFpr+ZnYK3Su2YQLt64Rn5GMv5MnDVz9tLpPVjSFtSUAqhKfF1VqOsp7dHPOP3iUbAsLzD/7AFCg0Ncjd9tOcv/brCmjdHDAqH0bcjdtI3PtRvS8PTAZ9iLqggLy9x6skPhNDY3RUyrJyNPuOpqZl425ke7ukDYmFtSwcaJAVciiE1sxNTCme+0WmBgYsfrMbp11Ovo1Ji0nkytljGNTXuZGtz9TJbrApuVmYmlcdkLnDitjMwKdvfjn8H9ay2PTk5jzf+zdd1iTV/vA8W/CCIS9hzIFUQRF3Bv3ttrW2mptrW2t3fP99e3ee9i9W0cdtbbWOuree+NEBAXZe29I8vsDDQaCooBY3vtzXbk0T87z5D7kPBnnuc85h9aQnJ+JhZmKoQHdeT7ibt7cNJeMotwmrcMl2RcXuXG0MxxC6GhnR1pWw7Miv/ptCS6OjvQMMZ45pNPpmLPoV8KCggjwaroO66KCQrRaLTb2hvHb2ttR0MAFfDav+IeK8nK69Tf+WRB/9hwpF5K4+4kHGxtuvWrOjVKD7UUVpdio1Eb3cbS0xdvBnSqthsVHN6A2s2B8p/5Ymlmw4mTNkGiVqRn/ibgbU6UJWp2W1ad31zvHU2OUF5Wg0+qwrNWpaWljRUm+8eFmalsb+k0bg5O3B9oqDbH7T7D284WMeXo67oHVmbuFWXmkRsfj3zOEEY/eSUFGDnuXrkOr1dJ17MAmr4eVuWX1a1Hr/C4sL6n3tXBS2+Lr6EGVVsOCQ/9gZW7JxJBBqM1ULDu+pU55L3tXPGyd+OO48ezNplBfPYrKS7CxqKceVnb4OXpSpdEw9+AarMwtuK3zYNTmKpZGVscanZHAIP+unM9OJrs4n0AXLzq5+xsMyRWGaj4zDDOdC8uKsbuWz4z9Kw22O1vZ08HVh/0Jp/h85++42TgytesIlAolq6Pqz2y+vjpUt6faUz8Ulhdjq/K96v62KiuC3fyYd2jNFcvd0mkg+aVFnMlo+TkIxf8m6YwTQvyr6C6uuKNoZCfE4cOH2bp1K9ZGsibOnTun74zr3r27wWNRUVH07t3b4Pn79DHMqNJoNLz//vssXbqU5ORkysvLKS8vN5rJd8mlMpdTqRo/R02dK5Y6MHYRU6vV8udX84m4fQzOHs2bHXO5Oi+jTld32+XlawWvQ2d0+5Vs3riJjWvX8+rbr+Pn70/M2bN8+ennOLtUL+TQFGqvC1Ud39VXi+rv15mSyjL9hOiXLD66kRndx/Du6NnogIyiXHbFHTO68MP1MuvbE/XMafr7RR9/dfF/teK+yp/atGN7LG4ZTem8xVTFxmHi7orl3VPQTsynfMU/1YWUCjTnL1D2+woANBcSMWnjiWrooCbrjLuS+hbuunRe/3F8C+VVlQCsO7OPKWHDWH16d5351Pr7dSbUox1zD6xp9rnWagetQNGQJkUfn1BKK8uITDbMPIvLSTGYWP1cVhIvD5vB4HbhLD3WND/a1+7exXs/18xJN+c/z9fEfhmdDiNvBsYtWLWSDXt3893Lr6KqZw7PD+fNJTbhAj+++sb1BX4VtT9/dLqGvQcd3L6HNYv/YvbLT9fp0Ltkz4ZtePq0xbd9/dmnTadum7raubHM4NzYy5Sw4aw+vUvf/iuqKvlmz5+Ym5jh7+TJqA69ySktuOJiBI1R57Uwsu0SO3cn7Nyd9Pdd/dtSnFvAiY379J1xOp0OCxsr+k0bi1KpxNnHg5L8Qk5s3NcsnXH6uI28zdZ3el+q35KjG/Tzda0+vYu7u43mr5Pb67wX9fAKJrUg22C4fXMxGnM9jerSObPoyHp9PVae2sk93cfw5/FtVGk1rDi5gzu6DOH5IdPR6SC7JJ+DiVH08OrYTDVoPXRG/u4NWbSyr28oJZVlBnOtASgVCgrKi1lwaB06dCTkpWNvYc2IoF5N3hl3WcQG9xQoGvKxR2+fTpRWlnM8pf5h2cMCe9CtbRCf7/y9+T+/bxLG2oRoWdIZJ4T4VwkMDEShUBAVFcXEiRONlrk0/8vlHzqVlZUGZbRaLePHjzfIaLvEw6NmSEXtDrSGfJB98sknzJkzh88++4zQ0FCsrKx46qmnqKiof5Lb9957jzfeMPzh+NprrxE0oe9Vn88Yta0VCqWyThZccUEh1ra2dcqXl5aRcj6B1Pgk/plXPcm+7uJy429Me5LpLzyCf0jQdcVijJ29PSYmJnWy4HJzcutky13i5ORITna2wba8nFxMTEywq+eHrTHffv410+6dzrAR1XMAtgtoR3pqGgvnLWh0Z1xhRQkarRa7WllwthbqeidFv9wAvy7siT+BptaQqMLyEr7c/QemShOsVWrySguZ3HkwWcV5jYr3cpVHjlF47rKhkKbVXxGUdnZo8mrakdLWBl092ZUAFrdPoGL3fiq2VX851yalgEqFeubdlP+9FnQ6dHn5aFIMf5xrUlIx69F08wCVVJSh0WqxNjfMyrAyt6S4VkbQJYXlJRSUFes7GwAyi/JQKhTYWlgZDNnp5xvKAP8w5h/8h/Qi49mcTaGovLpN1c6Cs1GpGzTHWz/fUPYlnEKju/IwOx0Qn5OGm039WY/XamB4N0IuW/G04uLfNTs/D2cHB/323IJ8nOyufg7/umYVc1eu4OsXXiLQ28domY/mz2XHkUP88MrruDk5GS1zvaxtbVAqlRTk5hlsL8zPr7dz7ZJDO/ex8IufeOC/j9MhrO6KfwAVZeUc2rmPcdNua6qQjar/3LCok0l6SUPPDR3o/59WmI2LlQMD/cOavDNOZa1GoVRQUmCYBVdWWIyl7dWzfy5x8WvDuQM1Q+jVdtYolEqDeeTs3J0pLShCU6XBxLRps8aLK0rRaLV1ssesVeo6WWaXFJSVkF9WZDBxfkZRLkqFAntLa7KK8/XbzZSmdPEMZMPZ5p0mQ18PVd16FJYbf78tKC+uU4/0whyDehRXlDL34BpMlSaozS0oKCtmbMe+RhdDEtUufWbU/h5iY2HVwM+Mzuy7UPczI6+sCI1Wq78ICpBamI29pTUmCuVVP2OuRVH5pfZkeC5Xt6er16G3TwgHEk/XG9PQgO6MaN+Tr3b/QUpB085VK8S1kBxfIcS/iqOjIyNHjuTrr7+muLjuB3JeXh4uLi5A9bxwl1y+mANAeHg4p06dwtfXl4CAAIPblTLYgoOD2bfPMHOn9v2dO3dyyy23cPfdd9OlSxf8/f2JibnyfEIvvPAC+fn5BrcXXnjhivtciampKZ5+Xpw7brgowbkT0Xi1r7swg8rSgoc/fIHZ7z+vv3Uf2g8nT1dmv/88bQN8rzsWY8zMzGjfIYiD+w8YbD944CAhnY0PPesUGsLBAwcNth3Yf4AOwR0wNW34taWy8jIUSsPMCaXSBG0TXDHUaLXE56bSyd3wbxzs5se5q6wmGOTijZuNIzsvW7ihtiqthrzSQkwUSrq17VDnynWjlJWjTc+suSWnos3LxzTksgwEExNMO7SnKuZc/ccxNwdtrb+lVmuQUVd19hwmHoZzUynd3dBmNV2nlkanJbUgq84cOe2c29S7Am1Cbjo2FlaYm9S0J2crO7Q6LQWXdab28+3MoHbh/HpoXbN/kdfotCTkpRHs5muwvaOb71WH/7V38cLNxpFdccevWO4SL3tX8utZ9fB6WFla4uXurr/5t2mLk709+0/UdH5UVlVx5EwUnQPbX/FYv65exc9/LeeL/3uBYP+6WWM6nY4P5/3C1oMH+PalV2jj2vQZvqZmpngH+BF19KTB9jORJ/HvGFjvfge37+HXz77nvuceIfQKHc6Hd+2nqrKKnhH9mixmYzQ6LSlGz422BgsyXC4hN63OueFk5NyoTaHginOZXS8TUxOcvD1IiTKcSzElKg5X/4bNzwmQk5iG2ram08LVvy2FmbnoLnsPK8jIwdLOusk74qD6tUjOzyDQ2XA4daCzl8FCBpe7kJuKrYUV5iY1ixQ5W9mj1WnrrFra2TMAU6UJR5Oa8LPCCI1OS1J+Bu1rTYTf3sW73jkD43NSsFUZ1sPF2sFoPaq0GgrKilEqlHT2DOBk2vmmr0QrodFpuZCbRsdanxnBbr515lCtrf3F7yG7jHwPOZeVhKu1g0EOsJu1I3mlhU3aEQfVdUjMS6eDq+FFlw6uPsRlp9SzV7VA57a4WjuwN974/MNDA7szqkNvvtmzvFlXoxeiIaQzTgjxr/PNN9+g0Wjo2bMnf/75JzExMURFRfHFF1/Qp08fLC0t6d27N++//z6nT59mx44dvPzyywbHePTRR8nJyeGuu+7iwIEDnD9/ng0bNjBz5kw0mvrT1WfPns25c+d45plniI6OZvHixcybN8+gTEBAABs3bmTPnj1ERUXx0EMPkZZm/Ev1JSqVCltbW4NbY4ep9hk7mCNb93Jk614yk9NYt+BP8rNy6D6seqL8TUtWsvybBUB1NqGbl6fBzcrOBlMzM9y8PDG3aPyQ2dqmTL2T1X+vYs3K1cTHxfPFp5+TkZbOxNsmAvDdV9/y9mtv6svfcusk0lPT+HLO58THxbNm5WrW/L2KO++eqi9TWVlJTPRZYqLPUllZRWZmJjHRZ0lKrOkI69u/P7/Onc+eXbtJTUllx9btLF38GwMjmmYI0obo/Qz0C2OAXxc8bJy4M2wYTmo7tp47AsDtoRE80Gt8nf0G+odxLjuZ5PzMOo/5O3rSrU0QLlb2BDp78cygO1EoFPxzZm+TxFyf8nWbsZgwGrPuYSjbeqJ+aAa6igoq9tR0oqofmoHFHRP196uOHkc1bCBmvbujdHHCNKQjFrdPoPLIcf0YmfJ1mzBp549qwmiUbi6Y9emBavAAyjdta9L498SfILxtEF3btMfZyp5RHXpjZ2HNwYQoAIa178GtoRH68idSYymtKGNi6CBcrOzxcXBnRFAvjiSd1Q9j6e/XmaHtu7Pi5HbySguxNrfE2tzSoJOiqW08e5D+fl3o5xuKu40Td3QZgqPaVr+K36SQgdzXY2yd/fr7duZ8dorRDsNxHfsR7OaHs5Udbe1cubfbaLzsXZt1ZUCFQsFdo0Yzd+UKth48QGxiIm989w0W5ipG9q3pgHrt26/56reaFagXrFrJt8uW8uqs2Xi4uJCVl0dWXh4lZTWTbn8w7xfW7t7FW48+jtrCUl+m7AoZyddjyMTR7Nm4jT0bt5OamMwfPy4kNzObAaOHArBi/lLmffqdvvzB7XuYP+d7bp05Fb8OAeTn5pGfm0dpcd2spz0bt9GldzesbW3qPNbU9sQfp1vbDoRffF8Z3aEPdhbWHLh4bgxv34PbLjs3jl88NyaFRujPjZFBvTiSFK0/Nwb6h9HOqQ0OljY4W9nR1zeUMM/2HEtp2OIW1ypkaC/O7j7K2T2R5KVmsX/ZBopy8+kwoHrl6kMrtrB93t/68qc27+dCZDT5GTnkpmRyaMUW4o+eoWNED32ZDgO7UVZcyr5l68lPzybxRAzH1u2m46DudZ6/qew8H0lP72C6e3XE1dqB8cH9sbe0Zt/FVSBHdejDlLBh+vJHk89SUlHGHV2G4mrtgJ+jJ2M79uNgYlSd4XY9vYI5lXb+hkxQv+PcUXr5dKKnVzCu1g5M6DQAB0trfafImI59uavrcH35I0lnKaks486uw3CzdsTf0ZPxwf04kHBaXw9vezdCPdrhqLbFz9GTWb1vQYGCrbFXXjH3RrA0UxHo3JbAi4szedo6E+jcFjdrh6vs2fw2nj3AAP8u9PPtfPEzY+jFz4zqVZwnhQxiZo9xdfbr79eZ89nJRj8ztp07irW5BXeGDcfN2oFQ93aM6diHrbFHmqUOW2IP09c3lN4+IbjZOHJraASOahv9BcsJwf2Z3m1Unf36+IQSl5NCamF2nceGBfZgXMd+LDqynuySfGxUamxUaoMO4Vbt4oiXm/L2P0qGqQoh/nX8/Pw4cuQI77zzDs8++yypqam4uLjQrVs3vv32W6B6MYaZM2fSvXt3goKC+PDDDxkxomaCfk9PT3bv3s3zzz/PyJEjKS8vx8fHh1GjRhkMT6nN29ubP//8k6effppvvvmGnj178u677zJz5kx9mVdeeYW4uDhGjhyJWq1m1qxZTJw4kfz8/HqP2xxC+nSjpLCY7cvXUZRXgKuXB9Oefxh7l+phaIV5+eRnNc9E7Q0xdMQwCvLzmffTL2RnZePXzp8PP/sY94vDhLOzsklPq7lq6dnGkw8/+4Qv53zOX8uW4+zizJPPPU3EkMH6MlmZWcy8e4b+/m8LF/PbwsWEhXfly++/BuDp/zzNT9/9yKcffExubi7Ozs7ccustzHig5jVsjAOJUVip1Ezo1B87C2uS8zOZs/M3/eqodpbWOKkNh7RZmqno1rYDi49uMHpMMxNTJoUOwtXagbKqCo6nxvLjvpXNtoLnJeWr16MwN8NyxlQUajWac3EUffA5lNU8r9LZ0eCLVNmKf9DpwGLyLSgd7NEVFFF59Dhly1boy2jOX6D4s2+xnDIJi4lj0WZmUbrwdyr3GGZKNtbJtPNYmqmICAjHRqUmozCHhYfXkX9xgQ0blRo7y5pM2ApNFfMP/cPYjn15qO8kSivKOJl2ns0xh/RlengHY6o04c7LflQCbI093Gw/Sg4lncHK3JKxHfthZ2FFSkEWX+5aph+qZWdhjaPacPi5pak54W2C+K2e+d/U5iqmh4/E1sKK0spyEvMy+Gjb4mZZ+fJy94ybQHlFBR/M+4XC4mI6tQvgy/++iJVlzaIaadlZBvN+/bFpA5VVVTz/+RyDYz14623Mum0yAH9u2gjA7LffNCjz6qzZjB8U0WTxdx/Qm+KCQv757S8KcvLw8GnLI6/9ByfX6gVkCnLyyM2s+SG7a90WtBoNS7+bz9Lv5uu39x4ygHuefkh/Pz05lXOnz/L4m883WaxXcjLtPGozC/25kV6Yw6+H1+rPDWuVGjvLmoyxCk0V8w6tYWzHfszue6v+3NgUU5OtbGZiyvjg/thaWFGpqSKrOI8/jm9ptiwm/+6dKC8uJXLNTkoKinDwcGHEo3di7WQPQEl+EcU5NZ+7Go2GA8s3UZJXiImZKQ4eLgx/9E68QmqGUls72jHqiansX7aRFW//gNrehk6DexA68vqmjGiIY6mxqM0tGBbYA1uVFWmF2fxyYDV5F1eBtFWpsbes6aCt0FTy476/uSVkIE8MuIOSijKOp8SyLtowS9/Zyh4/J09+3Pc3N0JkSgxqcwuGB/XEVmVFamE2P+1bqV/N0lg9vt+7gkmhg3hq4BRKKsuITIlhbVTNRSZTE1NGdeiDk9qWiqpKojLiWXxkg8HQ1pbSwcWHryY9o7//RP/q96J/ovbyzpb59e12QxxKOoO1ypJxwTWfGV/srPnMsLc09pmhIrxNEEsjNxk9Zm5pIXN2LGVK2FBeG3E/uaWFbI45xNozzTPP65HkaKzMLRgd1BtbCytSC7L5Zs/ymvZkYYWjpWEdLEzNCfMM5I8TW40ec4BfF8xMTHmg1wSD7f9E7Wn2i5tCGKPQyUx+Qghx01pyxHjnzL/JXeEjyCioe4Xy38TV1on7lr7T0mE02twpL5F390NXL3gTs1/4Pa+u+/HqBW9yb456kFl/1J2z8t/mh9ufp+DQ0ZYOo1Fsu3dl89mDVy94kxvavgevrPuhpcNolLdGzeKDLb+2dBiN9vyQ6fzf6q+uXvAm9+G4x3h25RctHUajfDLhCfp9Pbulw2i03Y9+x4PL3m/pMBrlx8n/5bG/PmnpMBrtq0nPtnQI1yXvlZv3e6z9Wy+1dAgtQjLjhBBCCCGEEEIIIVqr2vP5ihYnc8YJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGitdNqWjkDUIplxQgghhBBCCCGEEELcINIZJ4QQQgghhBBCCCHEDSLDVIUQQgghhBBCCCFaK52spnqzkcw4IYQQQgghhBBCCCFuEOmME0IIIYQQQgghhBDiBpFhqkIIIYQQQgghhBCtlVaGqd5sJDNOCCGEEEIIIYQQQogbRDrjhBBCCCGEEEIIIYS4QWSYqhBCCCGEEEIIIURrJaup3nQkM04IIYQQQgghhBBCiBtEOuOEEEIIIYQQQgghhLhBZJiqEEIIIYQQQgghRGul07Z0BKIWyYwTQgghhBBCCCGEEOIGkc44IYQQQgghhBBCCCFuEBmmKoQQQgghhBBCCNFaaWU11ZuNZMYJIYQQQgghhBBCCHGDKHQ6nXSRCiGEEEIIIYQQQrRCec++3NIh1Mv+k7dbOoQWIcNUhRDiJvb+lgUtHUKj/XfIPcRkJLR0GI0S6OrN7QteaukwGu2Pe94h7/7HWzqMRrH/+UueX/NNS4fRaB+MfYSJ8/7b0mE02ooZ75NRkN3SYTSKq60Ti4+sb+kwGm1q+Ege/+vTlg6jUb6c9Awvrf2+pcNotHdGP8STK+a0dBiN9vnEp5n5+7stHUaj/HLHizy47P2WDqPRfpz8X/p9Pbulw2iU3Y9+x31L32npMBpt7pR/6fdBycG66cgwVSGEEEIIIYQQQgghbhDpjBNCCCGEEEIIIYQQrUZubi7Tp0/Hzs4OOzs7pk+fTl5e3hX3USgURm8fffSRvkxERESdx++8885rjk+GqQohhBBCCCGEEEK0Vv+Dw1SnTp1KUlIS69atA2DWrFlMnz6dVatW1btPamqqwf21a9dy//33c9tttxlsf/DBB3nzzTf19y0tLa85PumME0IIIYQQQgghhBCtQlRUFOvWrWPfvn306tULgB9//JE+ffoQHR1NUFCQ0f3c3d0N7v/9998MHjwYf39/g+1qtbpO2Wslw1SFEEIIIYQQQgghxA1XXl5OQUGBwa28vLxRx9y7dy92dnb6jjiA3r17Y2dnx549exp0jPT0dNasWcP9999f57FFixbh7OxMp06deO655ygsLLzmGKUzTgghhBBCCCGEEKK10mpv2tt7772nn9ft0u29995rVHXT0tJwdXWts93V1ZW0tLQGHWP+/PnY2Nhw6623GmyfNm0aS5YsYdu2bbzyyiv8+eefdco0hAxTFUIIIYQQQgghhBA33AsvvMAzzzxjsE2lUhkt+/rrr/PGG29c8XgHDx4EqhdjqE2n0xndbswvv/zCtGnTsLCwMNj+4IMP6v8fEhJCYGAg3bt358iRI4SHhzfo2CCdcUIIIYQQQgghhBCiBahUqno732p77LHHrrpyqa+vL8ePHyc9Pb3OY5mZmbi5uV31eXbu3El0dDRLly69atnw8HDMzMyIiYmRzjghhBBCCCGEEEIIQatZTdXZ2RlnZ+erluvTpw/5+fkcOHCAnj17ArB//37y8/Pp27fvVff/+eef6datG126dLlq2VOnTlFZWYmHh8fVK3AZmTNOCCGEEEIIIYQQQrQKHTt2ZNSoUTz44IPs27ePffv28eCDDzJu3DiDlVQ7dOjAX3/9ZbBvQUEBy5Yt44EHHqhz3HPnzvHmm29y6NAh4uPj+eeff5g8eTJdu3alX79+1xSjdMYJIYQQQgghhBBCiFZj0aJFhIaGMmLECEaMGEHnzp359ddfDcpER0eTn59vsO23335Dp9Nx11131Tmmubk5mzdvZuTIkQQFBfHEE08wYsQINm3ahImJyTXFJ8NUhRBCCCGEEEIIIVorbesYpnotHB0dWbhw4RXL6IwM3501axazZs0yWt7Ly4vt27c3SXySGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorVqJauptiaSGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwg0hknhPifplAoWLFiRat5HiGEEEIIIYQwoNPevLf/UTJnnBBCtBJR2w9xcuM+SvOLsPdwoefk4bgHehstm3r2Auvm1F3qe9JrD2Hv7gzA2k9/JS0moU6ZtiHtGP7onU0b/GXW/LWS5UuWkZOdjbevLw8+8TAhXUKNls3Jyubnr78nNjqGlKRkxt8+kVlPPGJQ5kJcPIt+nk9sdAwZaek8+PjD3HLHrc0WP8DIoF5MCO6Pg9qGxLwM5h1cQ1TGhXrLD/Drwi2dBuBh60RJRTlHU86y4PBaispLAYho15XH+t1eZ7+7Fr5Gpbaq2eoBYDFhNOaD+qFQW6I5f4GSRb+jTUm74j6qYRGYD+6P0tEBXVExFYciKftzJVRVx2oe0R9VRH+Uzo4AaFLSKFu5jqqTp5s8/t4+nRjk3xUblZr0ohxWndpNfG5qveVNlEqGBfagq2d7bFRq8suK2BJ7mENJZ/RlLEzNGRnUixB3fyzNVOSWFrL69G6iM+ueL01ldFBvJoYMrG5Tuen8fGA1pzPi6y0/0D+MSSGD8LR1oriijKPJZ5l36B8Ky0v0ZcYH92NUUG+crewpLC9mT/xJfj2yjkpN07Spv5b9yZKFi8nOysbX348nnnmSLl3D6i1/9PBRvvrsC+LPx+Hk7MzUe6Yx8bZJ+sfjzp3n5+9/IvrMGdJS03j86Se5Y+oUg2OUFBfz03c/smPbdnJzc2nfvj1PPPsUHTsFN0md6nNww072rN5MYV4Brm3dGXnPbfh0aHfV/RKizzPvzS9w9fJg9vvPN2uMtQ3w68LQwO7YWliRWpDN8hPbOJedbLTs3eEj6eXTqc721IIs3t28AIC+vqH09OqIh231Z0hiXjqrTu/mQu6V3y8ao5d3MP39umCjUpNRlMuaqD1XfD4TpZIh7brRpU2g/vzefu4oh5Oi65QN9WjHnWHDOJ0ex6IjG5qtDvXp79eZIQHVr09aYTbLT2znfD2vz9TwEfTyNvb6ZPP+lgXNHare4HbhjArqjb2lNcn5mSyJ3ERMVqLRsjN7jKO/X+c625PzM3ll/Y/6+8MDezC4XTiOaluKKko5lHSGP45vpUqraZY6RLTrysigXthZWJNSkMXSyE3EZCUZLXtfj7H09a37/SQlP5PXNvysv29ppmJSyEC6tgnCytyCrOI8fj+2hZNp55ulDteii0cAU7uOoIOrN85W9vz3n2/ZGXespcMCYHBAN0Zf1p4WH91Yb3u6v+c4+vt1qbM9OT+Tl9f9oL8/vH0PBrfrhtPF9nQwMapZ25MQVyKdcUII0QqcP3SaA8s20ufOUbi28yJ65xE2fv0bk159CGtHu3r3u/X12ZhZqPT3LWzU+v8Peeh2NFU1X07Ki0v5+50f8Q3v2DyVAHZs3saPX3zLw888TnBoJ9auXMPr/3mRb379GVc31zrlKysrsbW34457pvL3738aPWZ5WTnuHh70ixjIT19+12yxX9LXN5QZ3cfw0/5VnMm8wPDAHrw49F6eXvk5WcX5dcp3cPXhsX63M//QPxxKOoOj2pZZvW7h4T638tG2RfpyxRVlPLlijsG+zd0Rpxo9DNWIwZT8sghNegYW40Zi/exjFLz0FpSVG93HrFd3LG6fQMncRWhi41C6u6KeeTcAZUuXA6DNzaP0z5VoMzIBMO/bC6vHH6TwjQ+u2tF3LTp7BDA+uD8rTu7gQm4avbyDmdlzHJ9uX0JeWZHRfaZ1HYmNypI/jm8luyQfK3NLTJQ1AwlMFEoe6DWBoopSFh5ZT35ZEfYW1pRXVTZZ3LX18+3MzJ7j+H7f35zJiGdkUC9eGX4fj6/41Gib6ujqw5P97+CXg6s5mBiFk9qW2X0m8Wjf23h/669AdWfd9G6j+GrXH5zJTMDT1pkn+k8G4JeDqxsd8+YNm/ji08955vnnCO3SmZXLV/CfJ5/l198X4ebuXqd8SnIK//fUs4yfOIFX3nyNE8eO8+kHH2PvYE/EkMEAlJWV4dHGk4hhg/ny0y+MPu8Hb7/P+XPnefmNV3F2cWHD2nU8/eiT/Pr7YlxcXRpdL2NO7j3CugXLGTtzMl5B/hzetJtF73/Lox+/iN3FDmdjykpKWfHNr/iHtKcov7BZYqtPeJv23No5gt8jN3M+J4V+vp15uO8k3tk0n9zSurH8cXwrf5/aqb9volDy36HTOZoco98W4NyWw0nRnM/ZSpWmiqHte/BI31t5d/MC8us53xoj1L0dYzr2ZdWpXVzITaOHdzD3dh/D5zt/r/f57gobjpXKkr9ObCe7JB9rc0uUiroDhewtrBndoTdxOfV33Denrm3aMyk0gmXHthCXnUJfv1Bm95nIe5sXGH19lh/fxqpTu/T3lQolzw+5m8iUszcs5h5eHbkrbDi/HllHbFYSEe268vSAKby8/gdySgrqlF8SuZE/TmzV3zdRKHljxP0GFz56e3fi9s6D+eXgamKzknG3ceT+nuMA+C1yU5PXoXvbDkwJG8aiI+uJzUpmkH8YTwy4g9fW/UROad06/HZ0E38e31ZTB6WSV4fP5NBlnbsmCiXPDLyTgvJivtv7F7mlhTha2lJWVdHk8V8PSzMVsdlJ/HNmD++Ont3S4ej19OrI1IvtKSYzkYiAcJ4ZeCcvrfveaHtafHQjy44btqc3Rz7AwcQo/bbePp2Y3HkIvxxYTUxWUnV76jUeaJ72JMTVyDBVIcRNKyIigscee4zHHnsMe3t7nJycePnll9FdXA1o4cKFdO/eHRsbG9zd3Zk6dSoZGRkA6HQ6AgIC+Pjjjw2OefLkSZRKJefOnTP6nCdOnGDIkCFYWlri5OTErFmzKCqq+VJ/8OBBhg8fjrOzM3Z2dgwaNIgjR44YHCMmJoaBAwdiYWFBcHAwGzdubMo/i1GnNu8nsG8Y7ft3xd7DmV53jMDKwZYzO45ccT8LGyvUdtb6m/KyTgeVlaXBYylRcZiamzVrZ9yKpX8yfOwoRo4fg5evD7OeeARnVxf++WuV0fJuHu489OSjDB01HLWVldEy7TsGMfPRWQwaNhgzc7Nmi/2S8R37sSX2MJtjD5Gcn8m8Q/+QXZzPiPa9jMfn7EVmcS7/nNlLRlEuZzIusDHmAO2cPGuV1JFXVmRwa26qYRGUrdlA5ZFjaJNTKfl5IQpzM8x7da93H9N2flTFnqdy/2G02TlUnTpDxf7DmPrWZGlWHTtJ1YnTaNMz0aZnUvbXanTl5Zj6+zZp/AP8unAwMYqDiVFkFOWy6vRu8suK6O0TYrR8excv/J08+eXgGmKzk8gtLSQpP8Mg06a7V0fUZioWHFrLhdw08kqLiM9NI7Uwu0ljv9wtnfqzKeYQm2IOkpSfyc8HVpNVnM+ooN711MObzItZQhlFuURlXGBD9AECnNvoywS5eHMm/QI74o6RUZRLZEoMO88fMyjTGEsX/8bYW8YzfuIEfP18eeLZp3B1c+WvP/4yWv7v5X/h5u7GE88+ha+fL+MnTmDshHH8tnCxvkzHTsE8+uRjDBsxHHMj53J5WTnbt27j4SceISy8K2292jJz1gN4eHqy4s/lTVIvY/at2UrXwb0JH9IXlzbujLr3NuycHDi4cdcV91v901JC+nWnbaBvs8VWn8EB3dgbf5K9F06SXpjD8hPbyC0tNJpZAlBWVUFheYn+5u3ghqWZBfsunNSXWXBoLTvjjpGcn0l6US5LjmxEoVAQ5OLVLHXo5xfK4aQzHEo6Q2ZxHv9E7SG/rIhe3sazIAOdvfB19GDBobWcy04mr7SIpPxMEvLSDcopUDC5yxA2xxwi18iP/hshol04+y6cZN+Fk6QX5fDXie3klhbSz0gmGdT/+uy/cOqGxTyyfU92xh1jZ9wxUguzWRK5iZzSAga3CzdavrSynIKyYv3N18EDtbkluy7Lymrn1IaYrCT2J5wmuySfU+lx7E84ja+DR7PUYXj7nuyKO8auuOOkFWaz9NhmcksKGNSuq/E6VJVTUF6sv/k4uKM2t2B3/HF9mf5+nVGbW/DN7uWcy04mp6SA2OwkkvIzmqUO12pfwil+3L+S7ecjWzoUAyOCerEjLpId5yOr29PRjeSUFjCkoe3JsW57CnBqS0xWIvsSTl3Wnk7h59g87emmo9XdvLf/UdIZJ4S4qc2fPx9TU1P279/PF198wZw5c/jpp58AqKio4K233uLYsWOsWLGCuLg4ZsyYAVTP0TZz5kzmzp1rcLxffvmFAQMG0K5d3eFDJSUljBo1CgcHBw4ePMiyZcvYtGkTjz32mL5MYWEh9957Lzt37mTfvn0EBgYyZswYCgurr1RrtVpuvfVWTExM2LdvH9999x3PP9+8Q480VRqyE1JpE+xnsN2zoz8Z540Prbhk5bs/8dvzn7Hus0WkRsdfsezZPZH4dQ/GTGXe2JCNqqysJPbsWbr27GawvWuPbpw5eeN+UDSGqdIEfydPjqXEGmw/lhpLkIvxIcPRmQk4qe3o2qY9AHYWVvT2DuFIkmFGg4WpOd/e+hzf3/Z/vDBkerN/eVQ6O6G0t6PqVE2WAlVVVEXHYtrOr979qmLPYerjhYmfj/44ZqHBVB6v5zVUKDDrGY7C3Jyqc/FNFr+JQkkbOxdiMg2HtJzNTMTHwc3oPsFufiTlZzDIvysvDr2H5wZNZWzHvpgqTS4r48uFvHQmhgzg5WEzeHrgFAa3C0eBosliv5yp0oR2Tm2ITIkx2B6ZEkMHVx+j+5zJuICTlR3d2gQBYGdhTR/fEIOMk6iMeNo5tyHQuS0AbtaOhLcNMihzvSorKzl7JpqevXoabO/Rqycnj58wus+pEyfpUat8z969OHP6DFVVDcsA1Wiq0Gg0mJurDLarLMw5Hnm8nr0aR1NVRUpcIu06dzDY7t+5A0ln4+rd7+i2feSmZxFx26hmietKTBRKvOzdOFNr6PyZ9Av41bkIYFxvnxCiMy4YzdK6xNzUFBOlCcWVZY2K1xgThRJPWxdiaw0fjM1Kwrue87ujqw/J+ZkM8OvC84Pv5umBUxgV1Nvg/AYYEtCNkooyo0NXb4RLr090rdcnOiMBP8eGvz5nMxOu+Po0JROlEh8HD06lGw67PJUWR4BT2wYdY4B/F06nx5F9WQdoTFYSvg7u+s87Fyt7Qj3acTw1tr7DXDcThRIfB3dOp8UbbD+VXv1e2RD9/boQlR5vkLnVxTOQ89nJTA0fwSfjH+f1EfczpkOfZvvMaA1MlEp8HTw4lWb4Hnoq7TztnBvWngb6hdVpT2czE/F18NCfRy5W9nT2CKjznU2IG0WGqQohbmpeXl7MmTOn+up6UBAnTpxgzpw5PPjgg8ycOVNfzt/fny+++IKePXtSVFSEtbU19913H6+++ioHDhygZ8+eVFZWsnDhQj766COjz7Vo0SJKS0tZsGABVhezrL766ivGjx/PBx98gJubG0OGDDHY5/vvv8fBwYHt27czbtw4Nm3aRFRUFPHx8bRtW/2F4d1332X06NHN9BeC8qISdFodFjbWBtstbawozTeePaW2tabvtDE4ebujrdJwbv8J1n2+iNFPTzc6z1xmfDJ5KZn0nz62WeoAUJCfj1ajxcHBwWC7g4MDR3Jym+15m5KNSo2J0qTOEKn80iLsPa2N7hOdmcDnO3/nmYF3YmZiiqnShIOJUfx8oCYbMDk/i692/0lCXjpqMxVjOvbl7VGzeHbVV6Q1U0aWws4WAG2BYWaItqAQpVP9Q+8qDxyh1Noa6/8+BShQmJpQvnUn5WsNM0SVbTywefFZMDOF8nKKv/4JbWrTDVFVm1tgolRSVFFqsL2ovAQblfFMHUdLW3wdPKjSaFhwaB1W5hZMDBmIpZmKPy4Of3FU29LO0obIlBjmHliDs5Udt4QMRKlQsjn2UJPFf8mlNpVX60d1fmkhDpbtje4TnZnApzt+47mIqfo2tT/hND/uW6kvsyvuOHYqa94dPRuFQoGp0oS1Z/ay/MT2Rsecn5eHRqPBwdGwnTg4OZKTnWN0n+zsHHrWalcOjo5oNBry8vJwdna+6vOqrawICQ1h/s9z8fXzwcHRkU3rN3L65GnaejVPdlZJQTE6rRZrOxuD7dZ2NpyrZ+hpdmoGm5es4r7Xn0RpYmK0THOyUlUPvS4sLzbYXlhegq1KXc9eNWxVVgS7+TH/0D9XLDeh0wDyS4uIzmj6uRT153d57fO7FGtz43VwUNvi4+BOlVbDoiPrUZtbMCF4AGpzlb7de9u70c0riK92GZ/24Ea49PoUXDa/I0BheTE2KuMd8JezVVnR0dWXBYfWNleIddiYqzFRKskvM2xTBeXF2FkYz1q/nJ2FFaHu7fhh398G2w8knsZGpeaFwfeAovrixJbYw/xzZm+Txg9grVJf/LvXOi/KGl6HEHd/ftq/0mC7s5U9HVx92J9wis93/o6bjSNTu45AqVCyOmp3k9ahtbjUngpqf5cqKybEwvh3qcvZWVgT6tGO7/etMNh+IPE0NhZqXhzS/O1JiIaQzjghxE2td+/eKBQ1Vw/79OnDJ598gkaj4fjx47z++utERkaSk5ODVlu9Gk9CQgLBwcF4eHgwduxYfvnlF3r27Mnq1aspKytj8uTJRp8rKiqKLl266DviAPr164dWqyU6Oho3NzcyMjJ49dVX2bJlC+np6Wg0GkpKSkhISNAfw9vbW98RdynmqykvL6e83HAOLpVKVU9p4xR1LrLqDP52l7Nzd8LO3Ul/39W/LcW5BZzcuM9oZ9zZ3cew93TBxbdphrBdUa2YdVeox83q0lBqvSvE39bOhZk9x7Hs+BaOJcdgr7bhnm6jmdX7Fr7dWz2kLyYr0WDS4jMZCXw47lHGdOjNLwfXNEnMZr26o76nZmGOos8vzq9Xe/SAQgG163cZ06AALMaNpHTh71Sdj8fE1QXLu25DO24k5avX68tp0zIofON9FJaWmHULQ33/3RR98EWTdsiB8deivugvtbPfIjfp5/NZHbWHu8NHsuLkDqq0GhQoKK4o5c/j29ChI7kgE1sLKwb6hzVLZ1y9FAp09dSkrZ0rD/aawNLIzRxNOYuDpQ0zuo/h4T6T+GpPdSdDiLs/t3cZzPf7/iYmMwF3W2ce6Dme3M6F/H58S1OFaEinu9KpUCdT5FL9riWD5OU3X+W9N99l0phbMDExoX1Qe4aNHM7Z6OaeO6tW7Dpd7U1Adfb08q8WEHH7aJw86s6DeSNd78CgXj7BlFaWc/wK2SRDA7vTrW0Hvtj5e7NOjG7s7am+ml1qe78f20L5xfP7nzN7uavrcFae2oVSoWRylyGsOLGDkmbI5rtmdarRsPOgp3f163OiGbLHrpWChrWzfr6dKaks40iKYTZikIs34zr25dcj6zifk4KbtQN3hQ0nP7iIVaebpyOrzmcGV/zI0+vrG0pJZfViOZdTKhQUlBez4NA6dOhIyEvH3sKaEUG9pDPuKuqc3w1sUf39Lran5LrtaXzHftXtKTsZV2tHpnYdTl5wf1advvK0Aq1CQxqyuKGkM04I8a9UVlbGiBEjGDFiBAsXLsTFxYWEhARGjhxJRUXNpLgPPPAA06dPZ86cOcydO5cpU6agVhu/aq7T1d/pc2n7jBkzyMzM5LPPPsPHxweVSkWfPn30z2nsS1xDOpLee+893njjDYNtr732GhYD/a+6r8pajUKpoLTA8ApiaWEJFrZXv5p7iYtfG84dOFlne1VFJXGHTtN1/MAGH+t62NrZoTRRkptjmDmTl5uHvYN9sz53UyksL0Gj1WBvaZglY2dhRV6p8SzFSSGDiM64wMqLk29fyEvnx6qVvD1qFksiN9XJiILqTopz2Un6VQubQuWxExS+EV+zwbT6K4LSzhZNfk12nNLGGl1B/UOfLCaOo2LvASp2Vl9p1iangsoc9T13Ub5mQ82XQY0GbUZW9X8vJGLi54Nq2CBKf13aJPUpqShDo9ViUyvTx9rckqJaGSeXFJYXk19WbDCxdmZRLkqFAjsLa7JL8iksL0aj0xp0hGUU5WJrYYWJQolGp22S+Gtiqq9NWdfbpm7vHEFURjwrTu0A4EJuGt/vW8F7Yx5m0dEN5JYWMrXrcLadO8KmmIPVZfLSsTA145G+t7Ls+NZ6O/oaws7eHhMTkzpZcLk5uXWy5S5xcnIkJ9swyzMvJxcTExPs7OtfhKa2Nm3b8tUP31BaWkpxcTHOzs689sIreHg2z7Buta0VCqWSonzDDNLigiKsbW3qlK8oLSPlfAKp8Un8M+8P4OLnhk7Hm9OeYvoLj+AXYjzjsakUl5ei0WqxVRl+Ptio1HWysYzp7RPCwcTT9bb1IQHdGNG+J1/t/pOUgqwmibm2mvPb0mC7lbllnWzYSwrLSigoK9Z3xMHl57cV5iZmOKptubtbzdDhS5/fb458kM92LjU6cXxT078+FobvXTYqtcFqyPXp7dOJQ4lRTf5edCWFFSVotNo6GWQ2KisKamXLGTPArwt7L5xEozWMeVLIIPZcOKlf3TM5PxNzEzPu7T6G1ad3N+Jdqq6i8kt1MMy8srGwqpMtZ0w/387su3Cqzt89r6wIjdbwMyO1MBt7S+tm+cxoDWrak+FrYWuhrpN9acwAvy7siT9Rpz3dGjqIPRdOsOPi/HhJ+ZmoTC+1p11N2p6EaAiZM04IcVPbt29fnfuBgYGcOXOGrKws3n//fQYMGECHDh30izdcbsyYMVhZWfHtt9+ydu1ag6GttQUHBxMZGUlxcc0H/e7du1EqlbRvX/3jaOfOnTzxxBOMGTOGTp06oVKpyMrKMjhGQkICKSkp+m179149/f2FF14gPz/f4PbCCy9cdT8AE1MTnLw9SIkynFsjJSoOV/+Gza0BkJ2YjqVt3fT/uMOn0VZV0a6n8Unvm4qZmRkB7dsTedBw0YnIg0foENKpWZ+7qVRpNZzPTqGzZ4DB9s4eAURnGh+qpTI1Q1vrK+ClLM8rdeP6Ong07XxAZeVoM7JqbilpaPPyMQ0OqiljYoJpUABV5+qfCwtzs7pXX7XGs4QMKEBh1nQLbGh0WpLzMwmsNXl8oHNbLuSmG90nPicNWws15iY11yqdrezQ6rT6ocfxuWk4qe0MquNsZU9BWXGz/Kiq0mo4l51MWK02FeYZUGfOr0tUJuZ1Lgxoa91XmZjVU0Zxxey1hjAzM6N9hyAO7j9gsP3ggYOEdA41uk+n0BAOHjhosO3A/gN0CO6Aqem1Xzu2tLTE2dmZwoICDuzbz4CBA675GA1hYmqKp58X548bZmCcP3GGtu3rzq2osrTg4Q//y+z3/09/6z60H06ersx+//9oE3D1YYiNpdFpScxLp4OrYRZ0kKsPcdkp9exVLcC5La7WDuyNr3vhBqoz4kZ16M23e/4iMc/4edYUNDotKQWZdeYjC3BuS0I953dCXjo29Z7fxWQW5/H5zt/5avcf+tuZjHjislP4avcf5NfT+d3ULr0+QS6GbSHIxZu4nKu/Pi7WDgYLa9wIGq2WC7mpBLsZtvlObn7EZl957togF2/cbBzZef5YncfMTUzrXBjQ6XTV779NnDGv0Wm5kJtGRzdfg+3Bbr6cy0q+4r7tL9bh8sUCLjmXlYSrtYPBZ4abtSN5pYXSEVcPjVZLfG4qndwN21Owmx/nshrYnoy8FuZGP/e0zdKehGgI6YwTQtzUEhMTeeaZZ4iOjmbJkiV8+eWXPPnkk3h7e2Nubs6XX37J+fPnWblyJW+99Vad/U1MTJgxYwYvvPACAQEBVxwyOm3aNCwsLLj33ns5efIkW7du5fHHH2f69Om4uVVPCB0QEMCvv/5KVFQU+/fvZ9q0aVha1lyZHzZsGEFBQdxzzz0cO3aMnTt38tJLL121niqVCltbW4PbtQxT7TS0F2d3R3J2TyR5qVnsX7aR4tx8OgyoXnXq0Iqt7JhXM4/Jqc0HuBAZTX5GDrkpmRxasZULR8/QMaLuKpkxu4/h3SUIC+urzyXUWBOn3MaG1WvZsGYdifEX+PGLb8nMyGDMxHEAzPvuZz55+wODfc7HxHI+Jpay0lLy8/I5HxNLQlxNJ0VlZaW+TFVlJdmZWZyPiSUl6cpfrq/XqqjdDA3oxpCAbrSxc2FG9zE4W9mx4Wx1x8TUriN4vN/t+vKHks7Qy7sTI9r3xNXagSAXb2b2HEdMZqK+s21y5yF08QzA1doBXwcPHul7K76OHmyIPmA0hqZSvmkbFmNHYNa1M8o2Hqhn3o2uopKK/TXDMdX3T8fi1vH6+1XHTqKK6I9Zz3CUzk6YBgdhMXEslZEn9Z10FreOxySwHUonR5RtPLCYNA7ToEAq9h2sE0Nj7Iw7Rg+vjnRv2wFXawfGdeyHvaUN+xKqf6iOCurNHV2G6stHppylpKKcyV2G4GrtgJ+jB2M69OVQ4hn9ULt9F05hZW7B+E79cbayo4OrD4MDwtnTjD9+/z61i2GBPRga0L16WHOPcThb2bM+ej8Ad4eP5Mn+d+jLH0yKordPCKOCeuFm7UgHVx8e6DXeYEL3g0lnGBXUm/5+nXG1dqCLRwBTuw7nYOLpOh1312PK1DtZ/fcq1qxcTXxcPF98+jkZaelMvG0iAN999S1vv/amvvwtt04iPTWNL+d8TnxcPGtWrmbN36u48+6p+jKVlZXERJ8lJvoslZVVZGZmEhN9lqTEmh9n+/fuY/+efaQkp3Bw/wGemP04Xj7ejJkwrtF1qk/vsYM5snUvR7fuJTM5jXULlpOflUv3Yf0B2LRkJX998ysACqUSVy9Pg5uVnTWmZma4enlibnFt0xNcr62xh+njG0pvn0642Thya+ggHNU2+s6E8cH9md6t7uISfXxCiMtJNbp68NDA7ozt2JdFRzaQXZKPjUqNjUqNuUnzrGK9O+4E3bw60K1tEC5W9ozp0Ac7C2sOJJwGYET7ntzeebC+/LGUGEoqyrk1NAIXa3t8HTwY1aE3h5OiqdJqqNJqyCjKNbiVVVZQrqkgoyj3hnacbDt3hN6+IfTy7oSbtSOTQgbhoLZhd1z1QiTjgvsxLXxknf16+4QQX8/r09zWnz3AQL8w+vt1xsPGiTvDhuGotmXbueoLbLeFRvBAz/F19hvg14Vz2ckkF2TWeexYaiyD24XT0ysYZys7gt18mRgykMiUGKMjERpr49kDDPDvQj/fzrjbOHFHl6E4qm3Zfv4oUJ2pN7NH3feS/n6dOZ+dbDQTdNu5o1ibW3Bn2HDcrB0IdW/HmI592Bp75dXubxRLMxWBzm31i/l42joT6NwWN2uHq+zZvDZE72egXxgD/Lro25OT2o6tF9vT7aERPNCrbnsa6B9W3Z7y67anyJQYBgd0u6w9+TEpZFCztaebzsUs7Jvy9j9KhqkKIW5q99xzD6WlpfTs2RMTExMef/xxZs2ahUKhYN68ebz44ot88cUXhIeH8/HHHzNhwoQ6x7j//vt59913r5gVB6BWq1m/fj1PPvkkPXr0QK1Wc9ttt/Hpp5/qy/zyyy/MmjWLrl274u3tzbvvvstzzz2nf1ypVPLXX39x//3307NnT3x9ffniiy8YNap5V8zz7x5MeXEJx9bsoqSgCAcPF4Y/eifWTtXDu0rziyjOydeX12o0HFy+mZK8QkzMTHHwcGHYo1PwCjHMvslPzyb9XCIjnrirWeO/ZODQCAoLCvht3kJysnPw8fPl9Q/fwdW9ujM0NzubzHTDDMgnZj6s/39sdAzbN27B1d2NX5YtBCAnK9ugzPLflrH8t2WEhHXm/S8/afI67Ik/gY1Kze2dB+NgaUNCXjrvbl5AVnEeAA6WNjhb1Qy723buKJZmKkZ36M293UdTXFHGybTzLDxcM7+albkFs3tPxN7ShpKKMuJyU3l13Y9XzThorPK1m1CYmWF59x0orNRozsdT9OnXUFYzv6HS0cHgi1TZ6vXoqB6uqnSwQ1dYROWxk5QtX60vo7C1weqB6SjsbNGVlqFJSqF4zjdUnW7a1QuPp8aiNlcxNLA7tior0oqymXtwtX54p41Kjb1lTTZohaaKn/av5JZOA3i8/+2UVJRzPDVW3+kFkF9WxE/7VzE+uB9PDZhCQVkxu+OOs+3c0SaN/XK7449jq1IzJWxodZvKTeOtTfPIvNimHNW2uFjb68tviT2MpamKMR36cl+PsRRXlHE89RwLDtdM6P77sS3odDqmdR2Bo9qOgrJiDiZGsejoeprC0BHDKMjPZ95Pv5CdlY1fO38+/Oxj3D2qh4tmZ2WTnlaTweTZxpMPP/uEL+d8zl/LluPs4syTzz1NxJCazpSszCxm3j1Df/+3hYv5beFiwsK78uX3XwNQXFTM919/S2ZGJja2tkQMieDBRx66ruy6hgrpE05pYTHbl6+nKC8fVy8Ppj0/G3uX6iG5RXkF5GfdXIvQHEk+i5W5JaOCemNrYUVqQTbf7vlL31lrZ2GFQ62h0Ram5oR5BvLniW1GjznArwtmJqZ1fiD/E7WXtc0wQfqJtHOozVUMbtcNGws16YU5LDi0lryymvP78mFuFZoq5h5cw/jgfjzS91ZKKso5mXaOjWeb9iJAUziafBYrcwtGduiFncqK1MJsvt+7Qv/62FpY4aCu+/p08Qhg+YltNz5g4GBiFNbmlkwI7o+dhTXJ+Zl8tnOpfjVLOwtrHNW2BvtYmqno1rYDSyI3Gjskq07vQqfTMSlkIA6WNhSWl3AsNbbeNthYh5LOYK2yZFxwP+wsrEgpyOKLncv0w5PtLY3UwVRFeJsglkZuMnrM3NJC5uxYypSwobw24n5ySwvZHHOItWf2GS1/o3Vw8eGrSc/o7z/Rv3pe5X+i9vLOlvktFRYHEqOwUqmZ0KmmPc3Z+VtNe7K0xkltOIXBpfa0+OgGo8e8NC/craGD9O0pMiWm2dqTEFej0P1PdAMLIf6NIiIiCAsL47PPPmvUcXbv3k1ERARJSUn6DLd/i/e3LGjpEBrtv0PuIaYZVtO7kQJdvbl9wdUzHG92f9zzDnn3P97SYTSK/c9f8vyab1o6jEb7YOwjTJz335YOo9FWzHifjIIbn4XTlFxtnVh8pGk6IVvS1PCRPP7Xp1cveBP7ctIzvLT2+5YOo9HeGf0QT66Y09JhNNrnE59m5u/vtnQYjfLLHS/y4LL3WzqMRvtx8n/p9/Xslg6jUXY/+h33LX2npcNotLlT/p3fB/NmPdXSIdTL/ofPWjqEFiGZcUKIVqu8vJzExEReeeUV7rjjjn9dR5wQQgghhBBCNJpW5ii82ciccUKIVmvJkiUEBQWRn5/Phx9+2NLhCCGEEEIIIYQQkhknhLh5bdu2rVH7z5gxgxkzZjRJLEIIIYQQQgghRFOQzjghhBBCCCGEEEKI1kqWCrjpyDBVIYQQQgghhBBCCCFuEOmME0IIIYQQQgghhBDiBpFhqkIIIYQQQgghhBCtlQxTvelIZpwQQgghhBBCCCGEEDeIdMYJIYQQQgghhBBCCHGDyDBVIYQQQgghhBBCiNZKK8NUbzaSGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorXSaVs6AlGLZMYJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGitdLKa6s1GMuOEEEIIIYQQQgghhLhBpDNOCCGEEEIIIYQQQogbRIapCiGEEEIIIYQQQrRWWhmmerORzDghhBBCCCGEEEIIIW4Q6YwTQgghhBBCCCGEEOIGUeh0sqyGEEIIIYQQQgghRGuUN21WS4dQL/tFP7R0CC1C5owTQoib2Je7lrV0CI32eP/JFObmtnQYjWLj4MDwH55s6TAabeOsz8l7+sWWDqNR7Oe8y50LX23pMBrtt7vfZMSPT7V0GI224cHPiMtKbukwGsXPuQ3f7PmzpcNotEf63sZr639q6TAa5Y2RD7Ds2OaWDqPRJncZyvNrvmnpMBrtg7GPMH3JGy0dRqP8etdrPPbXJy0dRqN9NelZ7lv6TkuH0Shzp7xEv69nt3QYjbb70e9aOgTRSsgwVSGEEEIIIYQQQgghbhDJjBNCCCGEEEIIIYRorbTalo5A1CKZcUIIIYQQQgghhBBC3CDSGSeEEEIIIYQQQgghxA0iw1SFEEIIIYQQQgghWiudrqUjELVIZpwQQgghhBBCCCGEEDeIdMYJIYQQQgghhBBCCHGDyDBVIYQQQgghhBBCiNZKhqnedCQzTgghhBBCCCGEEEKIG0Q644QQQgghhBBCCCGEuEFkmKoQQgghhBBCCCFEK6XTyjDVm41kxgkhhBBCCCGEEEIIcYNIZ5wQQgghhBBCCCGEEDeIDFMVQgghhBBCCCGEaK102paOQNQimXFCCCGEEEIIIYQQQtwg0hknhBBCCCGEEEIIIcQNIsNUhRBCCCGEEEIIIVornaymerORzDghhLhoxowZTJw48Zr28fX15bPPPmuWeIQQQgghhBBCtD6SGSfE/6gZM2Ywf/78OttHjhzJunXrmv258/LyWLFiRbM+z7X6/PPP0TXxVaP4+Hj8/Pw4evQoYWFhTXrshjixZT9H1u+kJK8IxzauDLhzDJ7tfY2WTTpznhUf/VJn+7S3n8TBw6XZYtTpdPzw00/89fffFBYW0ik4mOf/8x/a+ftfcb/NW7bw3Q8/kJScTNs2bXhk9mwGR0ToHz9y9Ci/LlxIVHQ0WVlZfPzBB0QMGmRwjJKSEr785hu2b99OfkEBHu7u3HnHHdx+222NqtP44P5M7jwEJ7Ut8blpfLt3OSfTztdbfkJwf27pNAA3G0cyinJZfHQjm2IOGi0b0a4rLw2dwe7447y+4edGxdkQFiOHYt6nBwpLSzQJiZT8uRJtWka95a0ffQDTgLqvXeXpMxT/uEB/TItRQw0e1xYUUvDae00bPDC8fQ/GB/fH3tKapLxMFhxay5nMC/WW7+fbmQmd+uNu40hJZTnHUmJYeHg9RRWlAPTw6sjEkIG42zhiojQhrSCbNVF72Bl3rMljv9z4jv2Y3GUIjpa2XMhN49t9f12xTY0P7s8twQNws3EgoyiPJZGGbaqfb2fuChuGp60LpkolyQVZ/HF8K5tjDzVZzKuW/80fi5eSk52Nj58vs594lJCwzvWWP370GD98+Q0X4uJxcnZm8tQpjJ00waDMX0v/YPVfK8lMz8DW3o4BEQO5b/aDmKvMATgReYw/Fi8l5kwMOdnZvPrem/Qd2L/J6gRwbMs+jqzdSXFeIU5tXBk4dSxt2vtddb+UmAv88f6POLVxY9qbj+u3a6o0HFqzjajdRynKLcDBw5l+k0fhG9q+SeOuLWbnUc5sPkhpQRF27s50vW0Iru3a1lteU1nFqfV7iT94mrKCYiztrek0og/+fUIByE/N4sQ/u8hJTKckp4CukwYTNLh7s9Zh//rt7Fy5iaK8fFzbejBmxmR8OwYYLRt/JpYNi1aQmZxOZXkF9i6O9BjWn37jat6Lfnp9DvGnY+rs275rJ+554dFmq0dvn04M8u+KjUpNelEOq07tJj43td7yJkolwwJ70NWzPTYqNfllRWyJPcyhpDP6Mham5owM6kWIuz+WZipySwtZfXo30ZkJzVaPoQHdGduxL3aWNiTnZ7DwyHrOXuH5+vqEMrZjX9xsnCitLON4aixLjm7Uv9+2sXXhts4R+Dp44mJtz8Ij61gfvb/Z4gcY4NeFoYE9sLOwIrUgmz9PbOVcdrLRsneHj6S3T0id7akFWbyzufo7dl/fUHp6BeNp6wxAQl46q07v4kJuWvNVAhgc0I3RQb2xt7QmOT+TxUc3EpOVaLTs/T3H0d+vS53tyfmZvLzuB/394e17MLhdN5zUthRVlHIwMYo/jm+lSqtptno0RBePAKZ2HUEHV2+crez57z/fNvtnshBNQTrjhPgfNmrUKObOnWuwTaVStVA0Lc/Ozq6lQ2hSMQdOsPO3fxh093g8Arw5tf0gqz5bwNS3nsDGyb7e/aa98xTmljXtwNLGqlnjnP/rryxesoTXXnkFb29vfp47l0efeII/ly7Fysr4cx8/cYIXX3mF2bNmMXjQILZu385/X3qJn7//npCQ6i/GpaWlBAYGMn7cOP7vhReMHufTzz7j0JEjvPn663h6eLDvwAE++OgjnF1ciBg48LrqM8i/Kw/3mcSXu5ZxKj2OsR378u7o2dz/+3tkFufWKT+uYz9m9hzPnB2/EZ2ZQAdXb54ecCdF5SXsSzhlUNbV2oFZvSZyPDX2umK7VqohA1FF9KNk8Z9oMrOwGD4Y69kzKXjvUyivMLpP8dxFYGKiv6+wUmPz3ONURp40KKdJTafo28s6E7VNP3yij08I93Ybzc8HVxOdkcCwwB78d8jdPLvqK7JL8uuUD3Lx5tG+t7Lg8FoOJ0XjqLblgV7jmdX7Fj7d8Vt1/SpKWXFyB8n5mWi0GsLbBDG7z0Tyy4qb7XUZ5N+V2X0m8eXuP6rbVIe+vDPqIR5Y9h6ZxXl1yo/r2I+ZPcbx2c6l1W3KxZunBkwxaFOF5SUsidxIQl4GVZoqenl34rlBd5FXVsThy37QX6/tm7by/edf8+izT9Kpcwj/rFjFy8/9lx8WzsXV3a1O+bSUVF557gVGjx/D/736IqeOn+TrTz7Hzt6e/oOrz8Ut6zfxy3c/8swL/0fH0E4kJyTyyTsfAvDQk9UdJWWlZfgFtGP4mFG8/dLrja5HbWf3H2fH4jUMnj4Bz0AfTmw7wN+fzufud57C9grvq+UlZWz4cRleHdtRUlBk8Nje5Rs5szeSoTMm4ejhwoWTZ1n95ULueGk2rj6eTV4HgIQjZzi6fAvdJg/H2b8N53YfY8e3fzD6xZlYOdoa3WfP3FWUFRbTc+pIrJ0dKC8qQaepWZ2vqqISayd7vMKCOPrX1maJ+3In9hzin3l/MP6BO/EO8ufgpl0sePdrnpjzCvbOjnXKm6tU9Bo5CHefNpirVFw4E8vfPy7B3EJFj2HVHbZTn5uFpqpKv09JYTFf/+ddQvqEN1s9OnsEMD64PytO7uBCbhq9vIOZ2XMcn25fQl5ZkdF9pnUdiY3Kkj+ObyW7JB8rc0tMlDUDnkwUSh7oNYGiilIWHllPflkR9hbWlFdVNls9enl34u7wUcw7tIaYrEQGB3TjP4Om8d9/via7pKBO+fbOXjzUeyKLjq7naPJZHCxtuK/HOO7vOZ7Pd/0OgLmpGRlFeRxIOM208JHNFvsl4W2CuK3zYJZGbuZ8TjL9fTvzSN9beXvTPHJLC+uU/+P4Vv4+tVN/30Sh5IWh93A0+ax+W6CzF4eTzrAsJ4UqjYZh7XvwaN/beGfzfPLreX0bq6dXR6aGDefXI+uIyUwkIiCcZwbeyUvrvifHyGux+OhGlh2vOWdNFEreHPkABxOj9Nt6+3Ricuch/HJgNTFZSbjbOHJ/r/EA/Ba5qVnq0VCWZipis5P458we3h09u0Vjuak1w/cs0TgyTFWI/2EqlQp3d3eDm4ODg/5xhULB999/z7hx41Cr1XTs2JG9e/cSGxtLREQEVlZW9OnTh3Pnzun3ef311wkLC+P777/Hy8sLtVrN5MmTycvL0z8+f/58/v77bxQKBQqFgm3btjFkyBAee+wxg/iys7NRqVRs2bKlTuz5+fmYmJhw+PBhoDq7ytHRkR49eujLLFmyBA8PD/395ORkpkyZgoODA05OTtxyyy3Ex8frH689TLWwsJBp06ZhZWWFh4cHc+bMISIigqeeesoglpKSEmbOnImNjQ3e3t788EPNVUQ/v+psia5du6JQKIi4LHOruUVu2E3wgG50GtgdR09XBtw1FmtHO05sO3DF/dS2VljZ2ehvSmXzfVTodDqWLF3KfTNmMGTwYALateONV1+lrKyMdRs21Lvfkt9+o1ePHtx37734+vpy37330rNHDxYvXaov069vXx6ZPZshgwfXe5zjJ08ybswYunfrhqenJ7dOnEhgQABRUVH17nM1t3WOYF30PtZG7yMhL51v9/5FZlEu44P7GS0/LLAHa6J2s/38UdIKs9l27ijrovcxJWyYQTmlQsELQ+5hweG1pBVkX3d810I1qC9lG7dReeIU2rR0ShYvQ2Fuhnl4WL376EpK0RUW6W9m7QOgspKKYycMC2o1BuV0xcVNHv/Yjn3Zeu4IW2OPkFKQxYLDa8kuKWB4+x5Gywc6e5FZnMe66P1kFucRnZnApphDtHNqoy9zOj2eg4lRpBRkkV6Uq3+dO7h6N3n8l9wWGsG66P2si95HYl463+37i8yiPMYHG8/4GhrYnX+i9tS0qfNHWRe9nzu61GQAHU+NZXf8CRLz0kktzGbFqR2cz0khxO3qGV4NsXzpMkaOG83oCWPx9vVh9lOP4eLqyuq/Vhotv2bFKlzdXJn91GN4+/owesJYRowdzR9LfteXiTp5ik6hIQweMRR3D3e69epBxPAhnD1T88O3R59ezJh1P/0jrq8z/WqObNhFp4HdCBnUA0dPVwZNHVf9vrrlytk6W+b/RVDvLngEeNV57Mzeo/QYNwi/LkHYuTrSeUhvfEICObJuV7PUAeDM1kP49w6lXd/O2Lk7EX7bENQONsTuijRaPvV0HBnnEhk4+zbcg3yxdrLDyccDZ/+ac8PJx4OwiRH4dOuI0tTE6HGa0u7VW+g2pC/dh/bDta0HY2dMxs7ZngMbdhgt7+nnRZf+PXDz8sTB1Ymwgb0I7NKR+KiaTnS1tRU29nb627njZzBTmRPSu/k64wb4deFgYhQHE6PIKMpl1end5JcVGc24Amjv4oW/kye/HFxDbHYSuaWFJOVnGGRadffqiNpMxYJDa7mQm0ZeaRHxuWmkFjbfZ8fooN5sP3+U7eePklKQxaIj68kuyWdooPH32wDntmQW57Hh7AEyi/M4m5XIltjD+DnWdEDH5aTwW+RG9iWcolLT/NlXQwK6sTf+BHsvnCC9MIc/T2wjt7SQAUayxgDKqiooLC/R37wd3LE0s2DvhZqLT/MP/cPOuGMk52eSXpTD4iMbUCgUBLk032fGiKBe7IiLZMf5SFILs1lydCM5pQUMaWe8HZdWllNQVqy/+Tp6oDa3ZNdl2WUBTm2JyUpkX8IpskvyOZUex/6EU/g5ehg95o20L+EUP+5fyfbzkS0dihDXRDrjhBBX9NZbb3HPPfcQGRlJhw4dmDp1Kg899BAvvPAChw5VD2eq3YkWGxvL77//zqpVq1i3bh2RkZE8+mh11sJzzz3HHXfcwahRo0hNTSU1NZW+ffvywAMPsHjxYsrLy/XHWbRoEZ6engw20pliZ2dHWFgY27ZtA+D48eP6fwsKqq/6bdu2jUEXhyWWlJQwePBgrK2t2bFjB7t27cLa2ppRo0ZRUWE8w+eZZ55h9+7drFy5ko0bN7Jz506OHDlSp9wnn3xC9+7dOXr0KI888ggPP/wwZ85UZ5YcOFDd8bVp0yZSU1NZvnx5w/7wjaSpqiLjQgpenQyH63gFB5AWe+UhKr+98TW/PPM+Kz76haQz9Q+DawrJKSlkZ2fTu1cv/TZzc3PCu3bl+IkT9e53/ORJel22D0DvXr2uuI8xYV26sGPnTjIyMtDpdBw6fJiExET61Dp2Q5kqTWjv7MXhpGiD7YeToulUTyeHmYkpFZoqg23lVZUEuXhjoqj5mL47fBR5pUWsi953XbFdK6WTA0pbW6qiLxuypdFQFRuHqV/Df0SY9+pOxdHjUGGYkaF0dsb29f9i8/JzqKffidLJoZ4jXB8TpQl+jh4cTz1nsP14aizt6/kRdDYzAUe1LWGegQDYWVjRy7sTRy7LcqgtxN0fD1tnotLrH/raGKZKEwKd23Ik2TBb7XDyGYLdfI3uY640pUJj+Peu0NRtU5cL8wzEy86VE2nnjD5+LSorK4mJPkt4T8MhiuE9uxN18pTRfaJOnqpTvluv7sSciabqYqZSpy6hxESfJfp0dWd5anIKB/fup2ff6ztfr5WmqoqM+BS8OwUabPfpFEDqufpf/1M7D5OXkUOvW4YYP25lFSZmZgbbTM3NSImJb3TMRp+vSkNuYhruHXwNtrt38CUrzvhwvOSTsTh6uXFm8wH+fuVb1rz1E0dXbKWqovkyra6kqqqKlPMJBHTpaLA9oHNHEqIb9rmVEpdIQnQcfsGB9ZY5vGUPoX27YW7RPKMGTBRK2ti5EJNpOHzwbGYiPg51M0gBgt38SMrPYJB/V14ceg/PDZrK2I59MVWaXFbGlwt56UwMGcDLw2bw9MApDG4XjgJF89RDqcTX0bPO+8fJtPMEOhsf+hyTlYij2pYuHtXfU2wtrOjp3ZHIlLrDhG8EE4USL3s3ojIMz+Wo9Av4OTUsQ7WPTwjRGReMZtFdYm5qiolSSUllWaPirY+JUomvgwen0uIMtp9KO0+7el6L2gb6hXE6Pc4go/FsZiK+Dh76zlIXK3s6ewRwLOXGZOoL0RrJMFUh/oetXr0aa2trg23PP/88r7zyiv7+fffdxx133KF/rE+fPrzyyiuMHFk9XODJJ5/kvvvuMzhGWVkZ8+fPp23b6g/9L7/8krFjx/LJJ5/g7u6OpaUl5eXluLu76/e57bbbePzxx/n777/1zzd37lxmzJiBQmH8y2NERATbtm3j2WefZdu2bQwdOpTz58+za9cuxowZw7Zt23j66acB+O2331Aqlfz000/6482dOxd7e3u2bdvGiBEjDI5dWFjI/PnzWbx4MUOHDtWX9/Ss+4VszJgxPPLII/q/0Zw5c9i2bRsdOnTAxaV6rjUnJyeD+tZWXl5u0BEJjRsyXFpYgk6rRW1r+Pqq7awoOWl8WISVvQ2D77kFF982aCqriN4byYqP5zLpPzNpE9Q02TK1ZWdXX6V3cjQcUuTk6EhqWv3zqWRnZxvd59LxGuo/zzzD2++9x5gJEzAxMUGpVPLyiy9e9/x+dhZWmChNyC01HAaSW1qIg9rG6D6Hk84wukNv9sQfJyYrifbOXowK6o2ZiSl2FtbklBbQyc2PUUG9mf3nh9cV1/VQ2FTHqy00bC/aoiKUDvYNOoaJd1tMPN0pWWrYCV11IRHN4mVoMrNQ2lhXD399YjaFH3yGrqS0SeK3VakxUZqQX2oYf35pMfae1kb3OZuVyFe7/+DJAXdgZmKKqdKEQ4lRzDu4xqCcpZmKb299DlMTU7Q6Lb8cWN0knVhG63GpTZUY/rjLLS3EwdL4cMJDSWcY1aE3ey6cICYriUBnL0a272XQpgDUZhYsmfYGZiamaLVavtz9xxU7HhuqIC8frUaLg6NhB6uDgwM52TlG98nNyTXIzAZwcHRAo9GQn5ePk7MTEcOGkJ+bx7MPP4lOp0Oj0TBu0gSmTJ/a6Jgbor73VUs7G4pPGu9AyE3LYvcf65j8wkMoTYxni3mHBHJ0/S7atPfF3tWRhKhznD8ahU6rNVq+sSqKS9FpdVjUmoJAZWNFWaHxDNWirDwyzydjYmZK/wcmUl5UyqFlG6koLqPXtNHNEueVlBQUodVqsbYzfF+1srOlKK/uMLzLfTj7RYoLitBqNAyZPJbuQ41nLSfFxpOemMKkh+9usrhrU5tbYKJU6udIu6SovAQbVd0sSgBHS1t8HTyo0mhYcGgdVuYWTAwZiKWZij8uDjV0VNvSztKGyJQY5h5Yg7OVHbeEDESpUDbpvJCX2KjUmCiVFNQadplfVoSdRTuj+8RkJfHt3uU82u92/fvt4aQz/Hp4bZPH1xDWquqhvoXlJQbbC8uLsVX5XnV/W5UVwW5+zDu05orlbuk0kPzSIs5kNM8FHBvz+l6LYkIsjH/2Xc7OwppQj3Z8v2+FwfYDiaexsVDz4pB7QFF9oWhL7GH+ObO3KcMXzUnXPJ8p4vpJZ5wQ/8MGDx7Mt99+a7DNsVYHR+fONZNtu7lVX6UNDQ012FZWVkZBQQG2ttU/DL29vfUdcQB9+vRBq9USHR1db4eUSqXi7rvv5pdffuGOO+4gMjKSY8eOXXGRh4iICH7++We0Wi3bt29n6NCheHt7s337dsLDwzl79qw+M+7w4cPExsZiY2P4xb2srMxgmO0l58+fp7Kykp49e+q32dnZERQUVKfs5X8jhUKBu7s7GRn1T3BvzHvvvccbb7xhsO21117DaVinazrOVemgvgvjDu4uOLjXLNTgEeBNUW4+R9fvbrLOuLXr1vHuBx/o73/2yScAdTpcdTpdvZ2wetezTy2//f47J06e5NOPPsLD3Z0jkZHVc8Y5OdHrstf+WtVeB0ShqP7TG7PwyHoc1DZ8MfEZFFR3smw4u58pYcPQ6rRYmql4fvB05uz8jYLyph/KeYlZeBfUd0zU3y+6uNhCXVeoTC3mvbqjSUlDk5BksL3qsmGF2tR0iuITsH3pOcx7hFO+ffc1Rn5ldUJVUO9CLW3sXLi3+xj+PLGN4ymx2FvaMC18BA/0Gs/3+/7WlyurrOD5Nd9iYWZOiLs/07uNIqMol9Pp8U0a++VqR1yd4WK8HouObsBBbcvntzxd06ZiDjCly1C0l30ZL60s5+HlH2FhqqJrm0Ae6j2R1MLsppv7rvY5ylXO0Trn9KXN1duPHYnktwWLePTZJ+nQqSMpScl89/nXOMz9lWn3TW+amBugTh10OqNvq1qtlnXfL6X3xGE4uDvXe7xBU8exed5f/PriHFAosHN1JLh/OKd31c3EblK1g9bV/wFx6f219z3j9HOKdq0azO5f/qbb5GGYmpsZ3a/Z1WlPOiPbDD3w5jNUlJWTeDaODYv/xtHdhS796w6lPLRlD25enrQN8G26eOtR5z1Joaj3bfZS+/stchNlVdWZ/auj9nB3+EhWnNxBlVaDAgXFFaX8eXwbOnQkF2Ria2HFQP+wZumMq6lHrVipvx6ets5MDx/NipM7OJEWi72FDXd2Hc59Pcbx0wHjw9lvDMOIr1SHy/X26URpZTnHr5ApNiywB93aBvH5zt+bfdGDa/nMuFx/v86UVJZxJNkwwz/IxZvxHfvx65F1nM9OxtXakaldh5MX3J9Vp5tvSL0QrZl0xgnxP8zKyoqAAOOrjl1idtnQmUtfAI1t017hCv6lMlfrKHnggQcICwsjKSmJX375haFDh+Lj41Nv+YEDB1JYWMiRI0fYuXMnb731Fl5eXrz77ruEhYXh6upKx44d9fF169aNRYsW1TnOpey1y136Ymysk6g2s1rDixQKxRX/Hsa88MILPPPMMwbbVCoVPxy8vi+kljZqFEplnYnCSwqK62R1XIm7vxfR+5puRaqBAwYQ0qmmg7GisnqIU1Z2Ns7ONT9Wc3Jz63QMX87JyalOFtzV9qmtrKyMr7/9lo8/+ID+/aozIwIDAzl79iwLFy++rs64/LJiNFoNjmrDjCV7CxvySowPW6nQVPLJ9iV8tmMpDmobckoKGNOhL8UVZeSXFePv5ImHrRNvjXxQv8+ldrnugU+5b+k7TTIPUOWpKAo/vmyolGn1VwSljTWagprYldZW6IoaMOm0mRnmXTtTuq4BEztXVKJJTUPpUn+HxbUqKC9Bo9Vgb2nY3u0srMgvM96pObHTAM5mJrD6dHWHYEJeOuUHKnhj5AMsPbaZvItZdjp0pBdVZ3hdyE2jjZ0Lt3Qa2CydcQX6NmV4IcHe0rreoVAVmko+3bGEz3cab1OX6NCRUpAFwPmcZLzt3bgzbFijO+Ns7e1QmijJrZUFl5ebVydb7hIHRwdyc2qXz8XExARbu+rzacGPcxkycjijJ4wFwK+dP2VlZXzxwafcde+0Zp3fEmreV4vzDf/upQVFqO3qvq9WlpWTEZ9MZkIq2xauAi5+huh0fHH/y0wzDSsQAADWRklEQVR69j68gtuhtrVm/BPTqaqspKyoBCt7W3YvW4+tc9MO3b7E3MoShVJBWYHheVBeVIKFjdroPpZ21ljaWRss7mPr5gQ6KM0rwsa1eWKtj9rWGqVSWScLrji/sE62XG2OrtXvM+7ebSjKL2TrsjV1OuMqyis4sfsQQ6eMa9rAaympKEOj1WKjMvy7W5tbUlQrQ+uSwvJi8suK9R1xAJlFuSgVCuwsrMkuyaewvBiNTovuss6XjKLc6kxbhRJNE2fIFJaXoNFqsav1fmtrYVUnQ+uS8cH9iclK4J8zewBIJIPygxW8Mnwmy45vabbFDepTVF568bUwzBi1VqkpbMCFsN4+IRxIPF3v33ZoQHdGtO/JV7v/0L/vNofCiouvhUXt10Jd72ff5Qb4dWFP/Ak0tb7H3ho6iD0XTrDj4rxsSfmZqEzNuLf7GFaf3tXQa3RCiMvInHFCiCaXkJBASkqK/v7evXtRKpW0b98eqJ4TTGNkIt7Q0FC6d+/Ojz/+yOLFi5k5c+YVn+fSvHFfffUVCoWC4OBgBgwYwNGjR1m9erU+Kw4gPDycmJgYXF1dCQgIMLgZW0W1Xbt2mJmZ6ed8AygoKCAm5trmMjE3NwcwWt/LqVQqbG1tDW6NGaZqYmqKq48niacMf1Qnno7FPaDh831lJqQa/ZF5vaysrPDy8tLf/P38cHJyYv9lf+fKykqOHD1K58syMGvrHBJisA/A/v37r7hPbVUaDVVVVXU6XJUmJtfcmao/plbD2axEwtsYZlCGtw3iVHpcPXtV0+i0ZBXno9XpGNwunP0Jp9ChIyEvnQeXvc/sPz/S3/ZeOMmxlFhm//mR0dU0r0t5BdqsnJpbWgbaggJMgy7rsDcxwTTAj6q4K887CGAeFgqmJlQeOnr15zYxwcTNFW1B/fPsXCuNVkNcTiqh7oZDpELd23E203j85qZmdTrctZc65q8w15ICMKtnCGJjVWk1xGQl1W1TbYKu2vl3eZuKaNdV36bqo1AoMFM2/jqtmZkZgUHtOXrwsMH2owcP0zHEeLZvx5BOdcofOXCIwA5BmF7sGC4vL6vT4aZUKtHpdPVmOzYlE1NTXH09Saj1vppwOhaPdnUvHJlbqJj21hNMfeMx/S00oicO7s5MfeMx3NsZDkM0NTPD2sEOrUZL7OGT+HftWOeYTVMPExy83EmLNhwml3bmAs5+bYzu4+zXhtL8IiovW0W5MCMHhUKBpX3TfUY0lKmpKZ7+3sQeN1xsJ/b4GbyD/Bt+IJ1OPyfh5U7uPYymqoqwAdefId0QGp2W5PxMAl0M20Kgc1su5KYb3Sc+Jw1bCzXmJjXnqrOVHVqdVt+BFZ+bhpPazuBdy9nKvrpzvxmGqmm0WuJzUghxN/zbh7j7E5OVZHQflamZ/v31Ev37bfNMbXdFGp2WxLx0OrganssdXH2Iy06pZ69qgc5tcbV2YG+88XlrhwZ2Z1SH3nyzZzkJecZf16ai0WqJz02lk7vhiIZgNz/O1fNaXBLk4o2bjSM74+pehDU3Mfb5qK1uYy3xgolrd/Fi0E15+x8lnXFC/A8rLy8nLS3N4JaV1firdRYWFtx7770cO3aMnTt38sQTT3DHHXfoh6j6+vpy/PhxoqOjycrKorKyZgLoBx54gPfffx+NRsOkSZOu+lwREREsXLiQQYMGoVAocHBwIDg4mKVLlxqsXDpt2jScnZ255ZZb2LlzJ3FxcWzfvp0nn3ySpKS6X05sbGy49957+c9//sPWrVs5deoUM2fORKlUXtNQSFdXVywtLVm3bh3p6enk5+c3eN/GChvRj9M7D3N652FyUjLY+ds/FOXkEzKoOgNgz58b2PjTH/rykRv3cP7IafLSs8hOTmfPnxs4d/gUnYf0brYYFQoFd02Zwtz589m6bRux587x+ltvYWFhwajL5vF79Y03+Oqbb/T375wyhf0HDjBvwQLi4+OZt2AB+w8eZOqUKfoyJSUlRJ89S/TZ6iGRySkpRJ89S9rFueisrawI79qVz7/6ikOHD5OcksKq1av5Z+1aBl/WkXut/jy+jdEdejMyqBfe9m7M7jMJV2sHVkdVZ1vN7DGO/4uYpi/fxs6FoQHdaWPrQpCLNy8OvRdfRw9+ObAagEpNFfG5qQa34vJSSirLiM9NbdahLuXb92AxLAKz0GCU7m6o77odXUUlFUci9WXUU2/HYuyIOvua9+5O5Ykoo3PAWUwYjUk7P5SODph4t8XqvqkoLFRUHGzaYXlrovYwJCCciHZd8bR15p5uo3C2smNTzEEA7gwbxiN9b9WXP5IUTQ/vYIYH9sDV2oH2Lt7M6DGG2KwkfRbaLZ0GEOreDldrBzxtnRnTsS8D/MOM/nhpKn+e2MaooN6MbN8LL3s3ZveeWKdN/adOm+qGp61zdZsacg++Dh7MvWzuuzu7DCO8TXvcbZzwsnPlttAIhgX2aLIhbLdOmcy6Vf+wfvVaEuIv8P3nX5ORns7YSeMB+OXbH/norff05cdOHE96Wjrff/ENCfEXWL96LetXr+X2u+7Ql+nVrw9r/lrJtk1bSEtJ5ciBQyz4cS69+/fF5GJnaGlJKefOxnLubHWHWVpKKufOxpKR1jQ/gMNH9OfUjkOc2nGInJQMti9ZQ2F2PqGDqzttdi9bz/oflwGgUCpxbutucFPbWmFiZoZzW3fMVNUXa9LOJRJ76CT5GTkkn41jxadz0el0dB/TPCvCAnQY3J3ze49zfu8J8tOyObJ8CyW5BQT0r1418tjKHez7taa9+HTviLmVJQcWrSU/NYuM2ESO/b0dv96h+iGqmioNuUnp5Calo63SUJpfRG5SOoWZuc1Sh37jhnB48x4Ob9lDRlIq/8z7g/ysXHoMHwDAhsUr+OOrefry+9Zt58yh42SlZpCVmsHhrXvZtWoTXYx0uB3esoeOPbqgtmn+jsadccfo4dWR7m074GrtwLiO/bC3tGFfQvWKnKOCehushByZcpaSinImdxmCq7UDfo4ejOnQl0OJZ/SfB/sunMLK3ILxnfrjbGVHB1cfBgeEs+eyVT6b2trofUT4hzPQPwxPW2emdR2Jk9qOzTHV7yl3dBnKQ70n6ssfTT5Ld6+ODA3ojouVPYHOXkzvNopzWUn6LGQTpRJveze87d0wVZrgYGmLt70brtbNk4m5JfYwfX1D6e0TgpuNI7eGRuCottG/v08I7s/0bqPq7NfHJ5S4nBSjWerDAnswrmM//eqyNio1Nio15ibNN7R7Q/R+BvqFMcCvCx42TtwZNgwntR1bz1V/xt4eGsEDvcbX2W+gfxjnspNJzs+s81hkSgyDA7rR0ysYZys7gt38mBQyiMiUmBtyMeRKLM1UBDq31S8W4mnrTKBzW9yaqZ0I0VRkmKoQ/8PWrVuHh4fhkuRBQUH6lUCvV0BAALfeeitjxowhJyeHMWPG8M1lHSkPPvgg27Zto3v37hQVFbF161Z9x9ldd93FU089xdSpU7GwsLjqcw0ePJhPP/3UoONt0KBBREZGGmTGqdVqduzYwfPPP8+tt95KYWEhbdq0YejQofq57mr79NNPmT17NuPGjcPW1pb/+7//IzExsUFxXWJqasoXX3zBm2++yauvvsqAAQP0K8A2t8CeoZQVlXBw1VaK8wtxauPGuCen64c+leQVUpiTpy+vrdKwe9k6inILMDUzw7GNK+OenI5v57rz5DWle6dPp7y8nPc/+ojCwkJCOnXiq88/x8qqZqhIWloayss6Qbt07sw7b73Ft99/z3c//EDbNm147+23CQkJ0Zc5HRXF7Iur+ALM+fxzAMaNGcPrr74KwLtvv83X33zDK6+/TkFBAe7u7jz80EPcdmtNB8212n7+KLYWVtwdPhJHtR3xOam8tPZ7Moqqf5A6qW0NfkiYKJTc3nkwbe1d0Wg1RKbE8OTfn+mHQbak8i07UJiZYXn7BBSWlmguJFH03Vy4LDtG6WBf56qm0sUJU39fir79xehxlXZ2WE2fgsJKja6omKoLiRR+9h263LwmjX/vhZNYqyy5LTQCe0sbEvMyeH/rQrKKqzvFHSxtcLaqyYzdfj4SCzMVI4J6cXe3kRRXlHEqPY7FRzboy6hMzZnZcxxOalsqNJWkFGTx9e4/2duMP3K3nz+KrUrNtPCROKptuZCTysvratqUo9oWV6uaNqVUKLkttKZNHUuJ5amVnxu0KQszcx7vNxlnKzvKqypJzM/gg60L2X6+AZmMDTBo2GAKCgpYNHcBudk5+Pj78tbH7+F28aJMTnYOGek1c2u6e3rw1sfv8f0XX7N6+d84Ojvx8FOP0X9wTYfU1Huno1AomP/DL2RnZmHnYE+vfn2YMet+fZmzZ6J5/vGaIf8/fFk9L+qw0SN57uXnG12v9r06U1pcwv6VWyi5+L56y9P36t9Xi/MLKczOu6ZjVlVWsvevjeRn5GJmYY5v5yBGPngHKrVlo+Otj3d4B8qLSzm5fg9l+cXYeTgzcPZtWDlWnw+lBUUU59ZkqpqpzBn86GQO/7GZDR//irmVJd5dgwgd219fpjS/iPUf1sw1eWbLQc5sOYhLgBdDn7izyesQ2rc7JYXFbP3zHwpzC3Dz8mD6C4/g4OIEQGFuAXlZNR2BOp2WDUv+JjcjG6VSiaO7CyOmTaTHsP4Gx81KSefCmXPMePnxJo/ZmOOpsajNVQwN7I6tyoq0omzmHlyt75CyUakNhttXaKr4af9Kbuk0gMf7305JRTnHU2NZH71fXya/rIif9q9ifHA/nhowhYKyYnbHHWfbuaY5v43Zn3AKa3NLJnYahL2lNUn5GXy8fRHZJdXvt/YW1jipa95vd8Ydw8JUxbD2Pbir6whKKso4nRHH0siaqQ0cLG14Z/Rs/f2xHfsytmNfotLjeXfL/Cavw5HkaKzMLRgd1BtbCytSC7L5Zs9y/cUYWwsrHGstnGNhak6YZyB/nNhq9JgD/LpgZmLKA70mGGz/J2pPsy1+cCAxCiuVmgmd+mNnYU1yfiZzdv6mXx3VztLwtYDqDq1ubTuw+OgGY4fUzwt3a+ggHCxtKCwvITIlhj9PbGuWOlyLDi4+fDWp5n3/if6TAfgnai/vNEM7EaKpKHQt3ZUthGhVXn/9dVasWEFkZOR17Z+YmIivry8HDx4kPDy8aYNrpOLiYtq0acMnn3zC/ffff/UdmsCXu5bdkOdpTo/3n0xhbvNkRtwoNg4ODP/hyZYOo9E2zvqcvKdfbOkwGsV+zrvcufDVlg6j0X67+01G/PhUS4fRaBse/Iy4rOSWDqNR/Jzb8M2eP1s6jEZ7pO9tvLb+p5YOo1HeGPkAy45tbukwGm1yl6E8v+abqxe8yX0w9hGmL3nj6gVvYr/e9RqP/fVJS4fRaF9Nepb7lr7T0mE0ytwpL9Hv69lXL3iT2/3ody0dwnXJHX9XS4dQL4dVS1o6hBYhmXFCiJtCZWUlqamp/Pe//6V37943RUfc0aNHOXPmDD179iQ/P58333wTgFtuuaWFIxNCCCGEEEII8W8lnXFCiJvC7t27GTx4MO3bt+ePP/64+g43yMcff0x0dDTm5uZ069aNnTt3Gqz6KYQQQgghhBBCXAvpjBNCNKnXX3+d119//Zr3i4iIaPEJYGvr2rUrhw8fvnpBIYQQQgghhLhZ3WS/s4SspiqEEEIIIYQQQgghxA0jnXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorXSaVs6AlGLZMYJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGittLKa6s1GMuOEEEIIIYQQQgghhLhBpDNOCCGEEEIIIYQQQogbRIapCiGEEEIIIYQQQrRWOhmmerORzDghhBBCCCGEEEIIIW4Q6YwTQgghhBBCCCGEEOIGkWGqQgghhBBCCCGEEK2VDFO96UhmnBBCCCGEEEIIIYQQN4h0xgkhhBBCCCGEEEKIVuOdd96hb9++qNVq7O3tG7SPTqfj9ddfx9PTE0tLSyIiIjh16pRBmfLych5//HGcnZ2xsrJiwoQJJCUlXXN80hknhBBCCCGEEEII0VpptTfvrZlUVFQwefJkHn744Qbv8+GHH/Lpp5/y1VdfcfDgQdzd3Rk+fDiFhYX6Mk899RR//fUXv/32G7t27aKoqIhx48ah0WiuKT6ZM04IIYQQQgghhBBCtBpvvPEGAPPmzWtQeZ1Ox2effcZLL73ErbfeCsD8+fNxc3Nj8eLFPPTQQ+Tn5/Pzzz/z66+/MmzYMAAWLlyIl5cXmzZtYuTIkQ2OTzLjhBBCCCGEEEIIIcQNV15eTkFBgcGtvLz8hscRFxdHWloaI0aM0G9TqVQMGjSIPXv2AHD48GEqKysNynh6ehISEqIv02A6IYQQ/5PKysp0r732mq6srKylQ7luraEOOp3U42bSGuqg07WOerSGOuh0Uo+bSWuog07XOurRGuqg00k9biatoQ7/q1577TUdYHB77bXXmuz4c+fO1dnZ2V213O7du3WALjk52WD7gw8+qBsxYoROp9PpFi1apDM3N6+z7/Dhw3WzZs26prgUOp2scSuEEP+LCgoKsLOzIz8/H1tb25YO57q0hjqA1ONm0hrqAK2jHq2hDiD1uJm0hjpA66hHa6gDSD1uJq2hDv+rysvL62TCqVQqVCpVnbKvv/66fvhpfQ4ePEj37t319+fNm8dTTz1FXl7eFffbs2cP/fr1IyUlBQ8PD/32Bx98kMTERNatW8fixYu577776sQ7fPhw2rVrx3fffXfF57iczBknhBBCCCGEEEIIIW64+jrejHnssce48847r1jG19f3uuJwd3cHIC0tzaAzLiMjAzc3N32ZiooKcnNzcXBwMCjTt2/fa3o+6YwTQgghhBBCCCGEEDc1Z2dnnJ2dm+XYfn5+uLu7s3HjRrp27QpUr8i6fft2PvjgAwC6deuGmZkZGzdu5I477gAgNTWVkydP8uGHH17T80lnnBBCCCGEEEIIIYRoNRISEsjJySEhIQGNRkNkZCQAAQEBWFtbA9ChQwfee+89Jk2ahEKh4KmnnuLdd98lMDCQwMBA3n33XdRqNVOnTgXAzs6O+++/n2effRYnJyccHR157rnnCA0N1a+u2lDSGSeEEP+jVCoVr732WoPTwm9GraEOIPW4mbSGOkDrqEdrqANIPW4mraEO0Drq0RrqAFKPm0lrqINoWq+++irz58/X37+U7bZ161YiIiIAiI6OJj8/X1/m//7v/ygtLeWRRx4hNzeXXr16sWHDBmxsbPRl5syZg6mpKXfccQelpaUMHTqUefPmYWJick3xyQIOQgghhBBCCCGEEELcIMqWDkAIIYQQQgghhBBCiP8V0hknhBBCCCGEEEIIIcQNIp1xQgghhBBCCCGEEELcINIZJ4QQQgghhBBCCCHEDSKdcUIIIf6VdDodsgaRaCqxsbGsX7+e0tJSAGlbLaysrKylQ2gSraUeQghxsxkyZAh5eXl1thcUFDBkyJAbH5AQ10hWUxVCiP8R5eXlHDhwgPj4eEpKSnBxcaFr1674+fm1dGjXZMGCBXz00UfExMQA0L59e/7zn/8wffr0Fo6s4TQaDXPmzOH3338nISGBiooKg8dzcnJaKLJrl5SUxMqVK43W49NPP22hqBouOzubKVOmsGXLFhQKBTExMfj7+3P//fdjb2/PJ5980tIhNlhiYqLB+d2pUydUKlVLh9VgWq2Wd955h++++4709HTOnj2Lv78/r7zyCr6+vtx///0tHWKDtJZ6/NvbU35+Pn/99Rc7d+6s87k3cuRI+vbt29IhNkhrqYcQTU2pVJKWloarq6vB9oyMDNq0aUNlZWULRSZEw5i2dABCCCGa1549e/jyyy9ZsWIFFRUV2NvbY2lpSU5ODuXl5fj7+zNr1ixmz56NjY1NS4d7RZ9++imvvPIKjz32GP369UOn07F7925mz55NVlYWTz/9dEuH2CBvvPEGP/30E8888wyvvPIKL730EvHx8axYsYJXX321pcNrsM2bNzNhwgT8/PyIjo4mJCSE+Ph4dDod4eHhLR1egzz99NOYmpqSkJBAx44d9dunTJnC008/fdN3xl24cIHvvvuOJUuWkJiYaJDRZ25uzoABA5g1axa33XYbSuXNPSDi7bffZv78+Xz44Yc8+OCD+u2hoaHMmTPnX9OJ9W+uR2toT6mpqbz66qssWrQId3d3evbsSVhYmP5zb+vWrXz88cf4+Pjw2muvMWXKlJYO2ajWUo/aDh48yLJly4xewFm+fHkLRXXtWks9/o2OHz+u///p06dJS0vT39doNKxbt442bdq0RGhCXBudEEKIVmvChAk6Dw8P3bPPPqvbvn27rri42ODxc+fO6ebNm6cbOXKkzt3dXbdhw4YWirRhfH19dfPnz6+zfd68eTpfX98WiOj6+Pv761avXq3T6XQ6a2trXWxsrE6n0+k+//xz3V133dWSoV2THj166F555RWdTlddj3PnzukKCwt1EyZM0H3zzTctHF3DuLm56SIjI3U6XU0ddDqd7vz58zorK6uWDO2qnnjiCZ2NjY3utttu082fP18XFRWlKygo0FVWVurS09N1mzdv1r3++uu6oKAgXadOnXQHDhxo6ZCvqF27drpNmzbpdDrD1yIqKkpnb2/fkqFdk39rPVpLe3JxcdE9++yzuhMnTtRbpqSkRLd48WJdz549dR999NENjK7hWks9LrdkyRKdmZmZbuzYsTpzc3PduHHjdEFBQTo7OzvdjBkzWjq8Bvs31+Pvv/9u8O1mpVAodEqlUqdUKnUKhaLOTa1W637++eeWDlOIq5LOOCGEaMW++uorXXl5eYPKnjx58qbvjFOpVLqYmJg628+ePatTqVQtENH1UavVugsXLuh0Op3O3d1dd/jwYZ1OV905amtr25KhXZPLOxLt7e11J0+e1Ol0Ol1kZKTOx8enBSNrOGtra93Zs2f1/7/UcXLgwAGdo6NjS4Z2Vc8995wuIyOjQWXXrFmjW7ZsWTNH1DgWFha6+Ph4nU5n+FqcOnXqpu8Yvdy/tR6tpT01tA7XW/5GaS31uFxoaKjuq6++0ul0NeeGVqvVPfjgg7pXX321haNruH9zPWp3XNXu0LrUyaVUKls61HrFx8fr4uLidAqFQnfw4EFdfHy8/paSkqKrqqpq6RCFaJCbM79cCCFEk3j00UcxNzdvUNlOnToxfPjwZo6ocQICAvj999/rbF+6dCmBgYEtENH1adu2LampqUB1nTZs2ABUD3v5N83JZGVlRXl5OQCenp6cO3dO/1hWVlZLhXVNBg4cyIIFC/T3FQoFWq2Wjz76iMGDB7dgZFf30Ucf4eLi0qCyY8aM4fbbb2/miBqnU6dO7Ny5s872ZcuW0bVr1xaI6Pr8W+vRWtpTQ+twveVvlNZSj8udO3eOsWPHAqBSqSguLkahUPD000/zww8/tHB0DfdvrodWq9XfNmzYQFhYGGvXriUvL4/8/Hz++ecfwsPDWbduXUuHWi8fHx98fX3RarV0794dHx8f/c3DwwMTE5OWDlGIBpE544QQ4n9QWVkZS5cupbi4mOHDh/9rOrLeeOMNpkyZwo4dO+jXrx8KhYJdu3axefNmo510N6tJkyaxefNmevXqxZNPPsldd93Fzz//TEJCwr9m3juA3r17s3v3boKDgxk7dizPPvssJ06cYPny5fTu3bulw2uQjz76iIiICA4dOkRFRQX/93//x6lTp8jJyWH37t0tHd5VvfzyywwZMoS+fftiYWHR0uE0ymuvvcb06dNJTk5Gq9WyfPlyoqOjWbBgAatXr27p8BqstdTjctu3b6e4uJg+ffrg4ODQ0uFcVWxsLPn5+XTr1k2/bfPmzbz99tsUFxczceJEXnzxxRaMsGFaSz0ucXR0pLCwEIA2bdpw8uRJQkNDycvLo6SkpIWja7jWUo+nnnqK7777jv79++u3jRw5ErVazaxZs4iKimrB6Brm7NmzbNu2jYyMDLRarcFj/6Y5eMX/qJZOzRNCCNG8nnvuOd0TTzyhv19eXq4LCwvTmZmZ6ezs7HRWVla6PXv2tGCE1+bQoUO6adOm6cLDw3Vdu3bVTZs2TXfkyJGWDqtR9u7dq/vkk09u6jlajDl37pzu2LFjOp1OpysuLtY9/PDDutDQUN2kSZP0w/T+DVJTU3WvvvqqbuzYsbrRo0frXnrpJV1KSkpLh9Ug/v7+OoVCoVOpVLqBAwfqXnvtNd327dsbPDz9ZrNu3TrdwIEDdVZWVjpLS0tdv379dOvXr2/psK7Zv7UeH374ocEwO61Wqxs5cqR+CJubm5t+OPrNbOLEibqXX35Zf//8+fM6S0tL3YgRI3RPPPGEztraWjdnzpyWC7CBWks9Lrnrrrt0n3zyiU6n0+nefvttnYuLi+6BBx7Q+fj46CZNmtTC0TVca6mHhYWF7vjx43W2Hzt2TGdhYdECEV2bH374QWdiYqJzc3PTdenSRRcWFqa/de3ataXDE+KqFDrdZcskCSGEaHVCQkJ49913mTBhAgBz587l2Wef5ejRo3h7ezNz5kwyMjJYs2ZNC0cqhLgeycnJbNmyhW3btrFt2zbi4uKwtLSkT58+DB48mMGDB9O3b9+WDlP8C4SHh/P888/rV+ZctmwZ9957Lxs3bqRjx47cc889qNXqmz4T2cvLi99//50+ffoA1Svc/vHHH0RGRgLw888/8+WXX+rv36xaSz0uycnJoaysDE9PT7RaLR9//DG7du0iICCAV1555V+RdQmtpx4DBw7EzMyMhQsX4uHhAUBaWhrTp0+noqKC7du3t3CEV+bj48MjjzzC888/39KhCHFdpDNOCCFaOVtbW44cOUJAQAAAd911FzY2Nvp5TSIjIxkzZgwpKSktGeY1ycjIMDokoXPnzi0U0dWtXLmywWUvdZyK5nH8+HFCQkJQKpUcP378imWtra3x8vLCzMzsBkXXeImJiWzdupVt27bx559/UlxcTFVVVUuHdVX33Xcfd999N0OGDEGhULR0ONft31wPBwcH9uzZQ8eOHYHqulRVVfHrr78CsG/fPiZPnkxiYmJLhnlVlpaWnD17Fi8vLwCGDh1K3759eeutt4DqOb+6detGXl5eC0Z5da2lHgBVVVUsWrSIkSNH4u7u3tLhCKqHQU+aNIno6Gi8vb0BSEhIoH379qxYsUL/vfFmZWtrS2RkJP7+/i0dihDXReaME0KIVk6pVHL5dZd9+/bxyiuv6O/b29uTm5vbEqFds8OHD3PvvfcSFRVF7WtJCoUCjUbTQpFd3cSJExtU7mavh4ODQ4M7GHJycpo5musTFhZGWloarq6uhIWFoVAo6rSny9nZ2fHdd9/ps4VuZufOnWPbtm36TDmNRnPTL0RxSXZ2NmPHjsXJyYk777yTu++++6Ze8KA+/+Z6VFZWGiwis3fvXp588kn9fU9Pz3/F4iyOjo6kpqbi5eWFVqvl0KFDBvNxVlRUXPGcv1m0lnoAmJqa8vDDD/8r5iEzpqCgoMFlbW1tmzGSphMQEMDx48fZuHEjZ86cQafTERwczLBhw/4VFxImT57Mhg0bmD17dkuHIsR1kc44IYRo5Tp06MCqVat45plnOHXqFAkJCQY/zi9cuICbm1sLRthw9913H+3bt+fnn3/Gzc3tX/Fl8ZLaWXz/Vp999llLh9BocXFx+pUH4+Lirli2vLycZcuWGQzdu5nExcWxdetWfSZcfn4+/fr1Y9CgQTz22GP06NEDU9N/x9e9lStXkpeXx++//87ixYv57LPPCAoK4u6772bq1Kn4+vq2dIgN8m+uR0BAADt27MDf35+EhATOnj3LoEGD9I8nJSXh5OTUghE2zKBBg3jrrbf45ptvWLZsGVqt1uBz7/Tp0zf163BJa6nHJb169eLo0aP4+Pi0dCjXzN7evsHfOW7mC2q1KRQKRowYwYgRI1o6lAb54osv9P+/NCx43759hIaG1slgf+KJJ250eEJcExmmKoQQrdyff/7JXXfdxYABAzh16hQ9evRg1apV+seff/554uLibvo5gABsbGw4evToTT90QrQuubm53H///SxfvrylQ6lDqVTi7e3NI488wuDBgwkPD8fExKSlw2oSSUlJLFmyhF9++YWYmJh/xVBbY/5N9fj++/9n787jakz//4G/TkmbVChLKi2iCKXsW9YwdsMQJevYSrI0nyE7zdizJUllr2wZ+1IRGbSiJC2yFKkhWmi5f3/4db6OolNmXOc+5/18PHo86rrvP14XndM573Nd13s3XF1dMXbsWNy6dQsaGhoiXYVXr16Nv//+W+RviCRKS0tDv379kJaWBjk5OXh6emLmzJnC68OHD4eBgQE2b97MMGXVpGUe5YKCguDm5gYXFxe0b98eqqqqItcl+aiJz89PS09Ph5ubGyZNmiQ8zy8yMhL+/v5Yt24dHBwcWMWstvz8fISHhyMjIwMfP34UuSaJxSwDAwOx7hMIBEhNTf2P0xDyfagYRwghMuDy5cs4c+YMGjVqhLlz50JFRUV4bcWKFejVq5fI6gdJNXz4cEycOBGjRo1iHeW78e0FcFUKCwtRXFwsMsaXrToAUFBQUOn/hSS/OQSAsWPH4tq1aygqKkL37t3Rs2dP2NjYwMLCglcrR79UXFyMM2fO4MCBAzhz5gzq1auH58+fs45VbXycx969e/HXX3+hUaNGWLZsmcj5XrNmzULfvn0xcuRIhgnFU1xcjISEBGhpaaFJkyYi1+Li4qCrq4t69eoxSic+aZkH8OnDgy+VHxMg6Uc0fK5Pnz6YOnUqxo0bJzJ+6NAheHt7IywsjE2waoqJicGgQYNQUFCA/Px81KtXD69fv4aKigq0tbWpmEXIf4yKcYQQQhAbG4t27dqxjlGl169fw8HBAR06dEDr1q0rbEngS+MDaXkBnJ+fj8WLFyMwMBA5OTkVrvPhjVV2djYcHR1x7ty5Sq/zYQ4A8PDhQ+FW1fDwcBQVFaFbt27o2bMnevXqBWtra9YRxRIaGopDhw7h2LFjKC0txciRI2FnZ4fevXtX+kZeUknLPCqTnZ0t3ObNV/fu3cPevXt5v+2eb/N48uTJN6/zZfuqiooK4uLi0Lx5c5HxR48eoV27digoKGCUrHp69eoFExMT7Nq1CxoaGoiLi4OCggImTJgAZ2dnXhTdCeEzKsYRQoiMevv2LQ4ePIi9e/ciNjaWF0WHkJAQTJw4Ee/evatwjU+fqkvLC+DZs2cjNDQUK1euhL29PXbs2IHnz59j9+7d8PDwgJ2dHeuIVbKzs0N6ejq2bNkCGxsbnDhxAi9fvsTq1auxceNGDB48mHXEGklISMChQ4ewbds23nRTbdq0KXJycjBgwADY2dlhyJAhUFJSYh2r2qRlHp/jOA7nzp0Trpr78OED60jVlpeXh8OHD2Pv3r24e/cu2rRpg9jYWNaxqk1a5sFnLVq0wE8//YSNGzeKjLu6uuKvv/5CUlISo2TVo6Ghgb///hstWrSAhoYGIiMjYWpqir///hsODg54+PAh64jfNH/+/ErHBQIBlJSUYGxsjGHDhvFm5SiRPfw40ZcQQsi/5urVq/D19cXx48ehr6+PUaNGwcfHh3UssTg5OWHixIlYunQpb5pOVCY2Nha7d++GvLw85OXl8eHDBxgaGuLPP/+Eg4MDb4pxp0+fRkBAAHr16oXJkyeje/fuMDY2hr6+Pg4ePMiLYtzVq1dx6tQpWFtbQ05ODvr6+ujXrx/q1q2LdevW8aoY9/LlS4SFhSEsLAyhoaF49OgRFBUV0b17d9bRxOLu7o6ff/4ZmpqarKN8F2mZBwCkpqbC19cX/v7+eP/+PQYPHowjR46wjlUt4eHh2Lt3L44dO4aioiIsXLgQhw4d4t3Zo9Iwj4CAgG9et7e3/0FJvs/mzZsxatQoXLhwAZ06dQLwqVN9SkoKjh07xjid+BQUFITHGTRs2BAZGRkwNTWFuro6MjIyGKerWkxMDKKjo1FaWooWLVqA4zgkJydDXl4eLVu2xM6dO+Hq6oqIiAiYmZmxjktIBVSMI4QQGfDs2TP4+fnB19cX+fn5GDNmDIqLi3Hs2DFevUDJycmBi4sLrwtxAP9fAJfLzc0VHqZct25d5ObmAgC6desmcsi4JMvPz4e2tjYAoF69esjOzoaJiQnMzc0RHR3NOF3VgoKChNtTk5KSUKtWLXTo0AFjxoyBjY0NunTpAkVFRdYxxTJ9+nTWEf4VfJ9HUVERgoOD4ePjg1u3bqFfv37IzMxEbGwsWrduzTqeWDIzM7Fv3z7h37xx48YhPDwcnTt3hr29PW8KWNIyj3LOzs4iPxcXF6OgoAC1a9eGiooKb4pxgwYNQnJyMnbt2oXExERwHIdhw4bh119/ha6uLut4YrOwsMDdu3dhYmICGxsbuLu74/Xr19i/fz/Mzc1Zx6tS+aq3ffv2Cc+ozcvLw5QpU9CtWzdMmzYN48ePh4uLCy5cuMA4LSEVUTGOEEKk3KBBgxAREYGffvoJ27Ztg62tLeTl5eHl5cU6WrWNHDkSoaGhMDIyYh3lu/D9BXA5Q0NDpKenQ19fH2ZmZggMDESHDh1w+vRpaGhosI4nlhYtWiApKQnNmjVDu3btsHv3bjRr1gxeXl5o3Lgx63hVsrOzg5WVFUaMGAEbGxt07doVysrKrGPV2J07dxAUFFRpMw1J7Gb7NXydx6xZs3DkyBG0aNECEyZMwLFjx1C/fn0oKCjw6qw7AwMD/Pzzz9ixYwf69evHq+yfk5Z5lPvnn38qjCUnJ2PmzJlYuHAhg0TVV1xcjP79+2P37t1Ys2YN6zjfZe3atcJjP1atWgUHBwfMnDkTxsbG2LdvH+N0VVu/fj0uXbok0iyqbt26WL58Ofr37w9nZ2e4u7ujf//+DFMS8nVUjCOEECl38eJFODk5YebMmRUOG+YbExMT/Pbbb4iIiIC5uXmFBg586ULK9xfA5RwdHREXF4eePXvit99+w+DBg7Ft2zaUlJRg06ZNrOOJZd68ecjMzAQALFu2DAMGDMDBgwdRu3Zt+Pn5sQ0nhn/++QeqqqqsY/wrjhw5Ant7e/Tv3x+XLl1C//79kZycjKysLIwYMYJ1PLHxeR7e3t5YvHgx3NzcoKamxjpOjenr6yMiIgJ6enrQ19dHy5YtWUeqEWmZx7c0b94cHh4emDBhgsSfUQZ8Wtl+//59XnerLmdlZSX8XktLC2fPnmWYpvrevn2LV69eVdjhkZ2djby8PACfzsX78gMRQiQFFeMIIUTKXb9+Hb6+vrCyskLLli0xceJEjB07lnWsGvHx8UGdOnUQHh6O8PBwkWsCgYA3xTi+vwAu5+LiIvzexsYGDx8+xN27d2FkZIS2bdsyTCa+z8+1s7CwQHp6Oh4+fAg9PT00aNCAYTLxlBfinj9/jmPHjuHRo0cQCARo3rw5Ro0aBR0dHcYJxbd27Vps3rwZs2fPhpqaGrZu3QoDAwPMmDGDF6sUy/F5HgEBAdi3bx8aN26MwYMHY+LEibC1tWUdq9qSkpJw48YN7N27F9bW1jAxMcGECRMAgFdFFGmZR1Xk5eXx4sUL1jHEZm9vj71798LDw4N1lH9FdnY2kpKSIBAI0KJFC1787QM+bVOdPHkyNm7cCGtrawgEAty+fRsLFizA8OHDAQC3b9+GiYkJ26CEfAV1UyWEEBlRUFCAI0eOwNfXF7dv30ZpaSk2bdqEyZMn83oFBCGybufOnZg/fz4+fvwIdXV1cByHvLw81K5dG5s2bcKsWbNYRxSLqqoqHjx4gGbNmqFBgwYIDQ2Fubk5EhMT0bt3b+EKRkknDfNIT0/Hvn374Ofnh4KCAuTm5uLo0aMYPXo062jV9v79exw+fBi+vr74+++/0bNnT4wfPx7Dhw+HlpYW63hik4Z5hISEiPzMcRwyMzOxfft26Orq4ty5c4ySVc/cuXMREBAAY2NjWFlZVVidzJeV4fn5+Zg7dy72798v7EYvLy8Pe3t7bNu2DSoqKowTftv79+/h4uKCgIAAYcfwWrVqwcHBAZs3b4aqqqqw03C7du3YBSXkK6gYRwghUi4jIwO6uroin6InJSVh79692L9/P968eYN+/fpVeJFMiLSaP3++2PdK+puqM2fOYNiwYZg3bx5cXV2FK68yMzOxfv16bNu2DadOncKgQYMYJ62arq4uzp49C3Nzc7Rt2xZubm4YN24cIiMjYWtri7dv37KOKBZpmQfwqVhy4cIF+Pr6IiQkBA0aNMDIkSPh6enJOlqNJCYmCv/25ebmori4mHWkGuHrPL48804gEEBLSwu9e/fGxo0bJX7laDkbG5uvXhMIBLh69eoPTFNzM2bMwOXLl7F9+3Z07doVABAREQEnJyf069cPu3btYpxQPO/fv0dqaio4joORkRHq1KnDOhIhYqFiHCGESDl5eXlkZmYKO0Z+rrS0FKdPnxa+0ZJE8+fPx6pVq6CqqlplEUXSCydEMnzrjdTn+PCmqmfPnujevTtWr15d6fUlS5bg+vXrFbZ1S6Lx48fDysoK8+fPx5o1a7B161YMGzYMly5dgqWlpUQ3PvictMzjS7m5ucJtrHFxcazjfJeSkhKEhIRg5MiRrKN8F2mZB2GjQYMGCA4ORq9evUTGQ0NDMWbMGGRnZ7MJRoiMoGIcIYRIOTk5OWRlZVVajOMDGxsbnDhxAhoaGlLzaTQh/5a6devizp07aNGiRaXXk5KSYGVlJWwYIslyc3NRVFSEJk2aoKysDBs2bEBERASMjY2xdOlSaGpqso4oFmmZB5+9ePECmzZtgru7u0inReDToe+rV6/GggUL0LBhQ0YJxSMt85BWjx8/RkpKCnr06AFlZWVwHMers/xUVFQQFRUFU1NTkfEHDx6gQ4cOyM/PZ5Ts60aOHAk/Pz/UrVu3yiI0Xz/4ILKDinGEECLl+F6MI+RH4Oubqjp16iA+Ph6GhoaVXk9NTUWbNm3w/v37H5yM8JE4W7gFAgE2btz4A9LU3IIFC5CXlwdvb+9Kr//6669QV1fHH3/88YOTVY80zEOajgUol5OTgzFjxiA0NBQCgQDJyckwNDTElClToKGhIfGPj3J9+vRB/fr1ERAQACUlJQBAYWEhHBwckJubi8uXLzNOWJGjoyM8PT2hpqYGR0fHb97Lp+70RDZRN1VCCJEB5V1Iv4UPnUhfvnz51RUA8fHxaNOmzQ9OJL7qnLEkyf8XeXl5Yt/75UoOSfS1N1VTp07lxZuqVq1a4dSpUyKdbT938uRJtGrV6genqrmysjI8fvwYr169QllZmci1Hj16MEpVfXydR0xMDOsI/4rz58/Dy8vrq9ft7e0xbdo0iS5iAdIxjy9/p6KiolBaWipczfvo0SPIy8ujffv2LOLViIuLCxQUFJCRkSGyqmzs2LFwcXGR+L8b5bZu3QpbW1s0bdoUbdu2hUAgQGxsLJSUlHDhwgXW8Sr1eYGNim2E72hlHCGESDk5OTk0bdoU8vLyX71HIBAgNTX1B6aqGW1tbfj4+GDo0KEi4xs2bMDSpUtRWFjIKFnVDAwMxLpP0v8v5OTkqlwxVr6qrLw7mySzt7fHq1ev4OPjA1NTU8TFxcHQ0BAXL16Ei4sLHjx4wDriN/n7+2PmzJnYsGEDpk+fjlq1Pn3OWlJSgt27d2PhwoXYuXMnJk2axDaoGG7duoXx48fjyZMn+PLlKV9+nwDpmQefqaqqIjExEXp6epVeLy+iSOI2vM9JyzzKbdq0CWFhYfD39xdu1/7nn3/g6OiI7t27w9XVlXFC8TRq1AgXLlxA27ZtoaamJvy7kZaWBnNzc16tRC4sLMSBAwfw8OFDcBwHMzMz2NnZQVlZmXU0sZSUlCAsLAwpKSkYP3481NTU8OLFC9StW5caORCJRyvjCCFEBty9e1cqtqkuXrwYY8eOFbatz83NxcSJE/HgwQMcPXqUdbxvSktLYx3hXxEaGso6wr/q4sWLuHDhApo2bSoy3rx5czx58oRRKvE5ODjg3r17mDNnDn777TcYGRkBAFJSUvD+/Xs4OTnxohAHfNpyZ2VlhTNnzqBx48a82CZcGT7PIywsrMJh7l+aNWsWdu7c+WMC1ZCysjLS09O/WsRKT0/nRbFBWuZRbuPGjbh48aLIuYmamppYvXo1+vfvz5tiXH5+PlRUVCqMv379GoqKigwS1ZyysjKmTZvGOkaNPHnyBLa2tsjIyMCHDx/Qr18/qKmp4c8//0RRUdE3V5USIgmoGEcIIYQ3XF1d0bdvX0yYMAFt2rRBbm4uOnXqhPj4eF4eYP3x40ekpaXByMhIuKJJ0vXs2ZN1hH+VNLyp2rBhA0aPHo3Dhw8jOTkZwKetkL/88gs6derEOJ34kpOTERwcDGNjY9ZRvguf5zFs2DCEhobC0tKy0uuzZ8/GwYMHJb4Y17FjR+zfv/+rW4IDAgLQoUOHH5yq+qRlHuXy8vLw8uXLClvnX716xYsmM+V69OiBgIAArFq1CsCnFa9lZWVYv3692N26WQkJCRH73i93IUgaZ2dnWFlZIS4uDvXr1xeOjxgxAlOnTmWYjBAxcYQQQqSaQCDgXr58+c17Dhw48IPSfL+8vDxu7NixXK1atbhatWpxfn5+rCNVW35+Pjd58mROXl6ek5eX51JSUjiO47i5c+dy69atY5yueq5du8bZ2dlxnTt35p49e8ZxHMcFBARw169fZ5xMPIMGDeKWLFnCcRzH1alTh0tNTeVKS0u5n3/+mRs1ahTjdFVbsWIFl5+fzzrGv8LGxoY7d+4c6xjfjc/zmD9/Pqetrc0lJSVVuDZ79myuTp063LVr1xgkq56rV69y8vLynKurK5eVlSUcz8rK4ubPn8/Jy8tzV65cYZhQPNIyj3ITJ07k9PT0uKCgIO7p06fc06dPuaCgIK5Zs2acvb0963hie/DgAaelpcXZ2tpytWvX5kaPHs2ZmppyDRs25B4/fsw63jcJBAKxvuTk5FhHrVL9+vW5hw8fchz36e93+WuptLQ0TllZmWU0QsRCxThCCJFyLVu25F68ePHV6wcPHuQUFBR+YKKai4iI4Jo1a8a1b9+eS0hI4Pbs2cOpqalxP//8M5ebm8s6nticnJy49u3bc9evX+dUVVWFLyBPnTrFtWvXjnE68QUHB3PKysrc1KlTOUVFReE8duzYwQ0cOJBxOvHw+U0Vx3GcnJxclcV2vjh+/DhnZmbG7du3j7t79y4XFxcn8sUXfJ+Ho6Mjp6enJyyuc9ynDwpUVVW5sLAwhsmqx8vLi1NUVOTk5OQ4DQ0NTlNTk5OTk+MUFRW5nTt3so4nNmmZB8d9+iBq5syZwvnIyclxtWvX5mbOnMm9f/+edbxqyczM5Nzd3bnBgwdzAwcO5H7//fdvvtYi/z5NTU3uwYMHHMeJFuOuX7/OaWtrs4xGiFiogQMhhEi5Xr16obCwEFevXoWqqqrItSNHjsDe3h5//PHHV7sxShJFRUW4uLhg1apVUFBQAPDpbKyJEyciIyMDz549Y5xQPPr6+jh69Cg6deokcvjz48ePYWlpWa2OpSxZWFjAxcUF9vb2IvOIjY2Fra0tsrKyWEcUS1ZWFnbt2oWoqCiUlZXB0tISs2fPRuPGjVlHq5KcnByysrKk4kxIOTm5CmMCgYBXDUEA/s+jrKwMo0ePRmJiIq5fv441a9bA29sbf/31l8RvwStXXFwMBQUFPH/+HIGBgXj8+DE4joOJiQlGjx6Npk2b4v79+2jdujXrqN8kLfP4Un5+PlJSUsBxHIyNjSu8NiE/RlpamtjNpSTR2LFjoa6uDm9vb6ipqSE+Ph5aWloYNmwY9PT0qNsqkXhUjCOEECn3/v179OrVCxoaGjh37pywiBUYGIgJEyZg7dq1WLBgAeOU4gkPD6/0zLKysjKsWbMGS5cuZZCq+lRUVHD//n0YGhqKFLHi4uLQo0cPvH37lnVEsaioqCAhIQHNmjUTmUdqairMzMxQVFTEOqLUk5OTw8uXL6GlpcU6ynerqmGGvr7+D0ryfaRhHh8/fsTgwYMRFxeH/Px8hISEoE+fPqxjiW306NEICgr6avOM+/fvo0+fPnj58uUPTlY90jIPaXPt2rVvXv/aGX+SRl5eHj169MCUKVMwevRoKCkpsY5ULS9evICNjQ3k5eWRnJwMKysrJCcno0GDBrh27ZpUfEhFpBsV4wghRAZkZ2ejR48eMDMzQ3BwMIKDg2FnZ4dVq1Zh8eLFrOPJnJ49e2L06NGYO3eu8NNcAwMDzJkzB48fP8b58+dZRxSLkZERdu/ejb59+4oU4wICAuDh4YGEhATWEat0/vx51KlTB926dQMA7NixA3v27IGZmRl27Ngh0vVPEsnJyaF169ZVNgCJjo7+QYkIn3l6egq/f/fuHVatWoUBAwZUKMQ5OTn96GjVoquri4EDB8Lb27vCtQcPHqB3797o0aMHgoKCGKQTn7TM43N37txBUFAQMjIy8PHjR5Frx48fZ5Sqer62+rWcpK9+LXf//n34+vri4MGD+PDhA8aOHYspU6bwqilIYWEhDh8+jOjoaOHKdjs7O151GSayi4pxhBAiI54+fYpu3brB2NgYERERcHd3x++//846VrXl5+cjPDy80hfykv4GsdzNmzdha2sLOzs7+Pn5YcaMGXjw4AEiIyMRHh6O9u3bs44olj///BP+/v7w9fVFv379cPbsWTx58gQuLi5wd3fHnDlzWEeskrm5Of744w8MGjQI9+7dg5WVFVxdXXH16lWYmppK/DYXOTk5uLq6ok6dOt+8b9myZT8o0fdJSUnBli1bkJiYCIFAAFNTUzg7O8PIyIh1tGrh6zzE2bImEAiQmpr6A9LUXGJionDFj4eHh8i4jY0NunTpgqCgIMjLyzNMWTVpmUe58qMx+vfvj0uXLqF///5ITk5GVlYWRowYIfHPt+W+XL1eXFyMmJgYLF26FGvWrOHVKlIAKCkpwenTp+Hn54dz586hefPmmDJlCiZOnCgVq64JkVhMTqojhBDyw3x+cPjRo0c5RUVFbuzYsbw4VDwjI0Pk5+joaK5Ro0acmpoaV6tWLU5LS4sTCAScqqoqZ2BgwChlzcTHx3P29vZcq1atOFNTU87Ozo6Lj49nHava/ve//3HKysrCDmxKSkrC7qR8oKqqyqWlpXEcx3HLli0TdlCNioriGjZsyDCZeMTplswX58+f52rXrs116NCBc3Fx4ebNm8d16NCBU1RU5C5evMg6ntikZR58d/v2bU5NTY37888/OY7juMTERK5Ro0bc0KFDuZKSEsbpxCct8+A4jjM3N+e2b9/Ocdz/HbhfVlbGTZs2jXN3d2ec7vuFh4dzlpaWrGPUWFFREbdp0yZOUVGREwgEXO3atbmJEydKbGOKxo0bc+PGjeN2795daQdoQiQdrYwjhBApJycnJ3J4ePnT/pffS+K2itWrVyMzMxPbt2+HQCBAr169YGRkBG9vbzRt2hRxcXEoLCzEhAkT4OLigpEjR7KOLJMKCgqQkJCAsrIymJmZVblKS5LUq1cPERERMDMzQ7du3WBvb4/p06cjPT0dZmZmKCgoYB3xm+Tl5ZGZmSkVZ+NYWFhgwIABIiuAAMDNzQ0XL17kzVZbaZmHNLh69Sp++uknLFq0CHv27IGlpSWOHz8uPDuVL6RlHqqqqnjw4AGaNWuGBg0aIDQ0FObm5khMTETv3r2RmZnJOuJ3SUxMhLW1Nd6/f886SrXcvXsXvr6+OHLkCFRVVeHg4IApU6bgxYsXcHd3x7t373D79m3WMSs4fPgwwsPDERYWhkePHqFhw4bo2bMnevXqhZ49e8LU1JR1REK+iYpxhBAi5ao6TLycJB4qXlhYiDlz5iA7OxshISHQ0NDArVu30LJlSzRt2hSRkZHQ1dXFrVu3MGnSJDx8+JB15K+qTofUunXr/odJyOeGDh2Kjx8/omvXrli1ahXS0tKgo6ODixcvYs6cOXj06BHriN8kTd1UlZSUcO/ePTRv3lxk/NGjR2jTpg1vGoLwdR5HjhzBL7/8Ita9T58+RUZGBrp27fofp/p+J0+exM8//4z+/fvj5MmTvCtglZOGeejq6uLs2bMwNzdH27Zt4ebmhnHjxiEyMhK2tra8aV4UHx8v8jPHccjMzISHhweKi4tx48YNRsmqZ9OmTdi3bx+SkpIwaNAgTJ06FYMGDRI5E+/x48do2bIlSkpKGCat2suXLxEaGoq//voLR48eRVlZmUR+yEzI57592i8hhBDek8Qim7iUlZWxd+9eHDlyBACgoKAgfJGora2NJ0+eQFdXFxoaGsjIyGAZtUoaGhpf7Yj3JUl+AVmd1Yd8OIx7+/btmDVrFoKDg7Fr1y7o6OgAAM6dOwdbW1vG6aqWlpYmNWf6aGlpITY2tkIRKzY2llfFRr7OY9euXVi+fDkcHR0xdOjQCqtK3r59ixs3buDAgQO4fPky9u7dyyhp1TQ1NSs8316/fh0NGzYUGcvNzf2RsapNWuZRrnv37rh06RLMzc0xZswYODs74+rVq7h06RKvzllr166dyO6Ccp06dYKvry+jVNW3a9cuTJ48GY6OjmjUqFGl9+jp6Un0Y/39+/eIiIgQrpCLiYmBubk5evbsyToaIVWiYhwhhEixjIwM6OnpiX3/8+fPhcUISVK+WsPCwgJ37tyBiYkJevbsid9++w0zZ86Ev78/zM3NGaf8ttDQUOH36enpcHNzw6RJk9C5c2cAQGRkJPz9/bFu3TpWEcWirq4u/J7jOJw4cQLq6uqwsrICAERFReHNmze82TKsp6eHv/76q8L45s2bGaSpPn9/f7Huc3d3/4+TfL9p06Zh+vTpSE1NRZcuXSAQCBAREYE//vgDrq6urOOJja/zCA8Px19//YVt27bhf//7H1RVVdGwYUMoKSnhn3/+QVZWFrS0tODo6Ij79+9LdGFxy5YtrCP8K6RlHuW2b98uXBn622+/QUFBARERERg5ciSWLl3KOJ340tLSRH6Wk5ODlpYWlJSUGCWqmeTk5CrvqV27NhwcHH5Amurr2LEj4uPj0bp1a/Tq1Qv/+9//0L17d2hoaLCORohYaJsqIYRIsYYNG2Lo0KGYNm3aV1vVv337FoGBgdi6dStmzJiBuXPn/uCU4rt79y7y8vLQu3dv5ObmYtKkSQgLC4ORkRH8/PzQtm1b1hHF0qdPH0ydOhXjxo0TGT906BC8vb0RFhbGJlg1LV68GLm5ufDy8hJ28ystLcWsWbNQt25drF+/nnHCqlW1orI6xWwW5OTk0KRJE2hra1dYpVFOIBDw4pwyjuOwZcsWbNy4ES9evAAANGnSBAsXLoSTk5PYK0tZk4Z55OTkICIiAunp6SgsLESDBg1gYWEBCwsLkS1shMiSq1evYs6cObh161aF4yTevn2LLl26wMvLC927d2eUsGYKCgoq7VDfpk0bRonEU69ePQgEAvTt2xe9evVCr1696Jw4witUjCOEECmWm5uLtWvXwtfXFwoKCrCyskKTJk2EKx0SEhLw4MEDWFlZYcmSJRg4cCDryDJBRUUFcXFxlZ4p1a5dO4lvGlBOS0sLERERaNGihch4UlISunTpgpycHEbJxFfe4ORrJHnLMAAMGjQIoaGhGDBgACZPnozBgwcLC6N8UlJSgoMHD2LAgAFo1KgR3r17BwBQU1NjnKx6pGUesqS8uRHf8WEeXzs7VSAQQFFREbVr1/7Biapn6NChsLGxgYuLS6XXPT09ERoaihMnTvzgZDWTnZ2NSZMm4fz585Vel/S/f8Cn8/vCwsIQHh6O69evQ05ODj179oSNjQ1+/fVX1vEI+Sb6aIsQQqRYvXr1sGHDBrx48QK7du2CiYkJXr9+LdyaYGdnh6ioKNy4cYMKcT+Qrq4uvLy8Kozv3r0burq6DBLVTElJCRITEyuMJyYmoqysjEGi6ouJiUF0dLTw6++//4aXlxdMTEwQFBTEOl6Vzp49i9TUVHTs2BELFy5E06ZNsXjxYiQlJbGOVi21atXCzJkz8eHDBwCfild8LGBJyzz4zNTUFIcOHaqwyudLycnJmDlzJv74448flKx6pGUen9PQ0ICmpmaFLw0NDSgrK0NfXx/Lli2T2L8fcXFx3zxLtH///oiKivqBib7PvHnz8ObNG9y6dQvKyso4f/48/P390bx5c4SEhLCOJ5Y2bdrAyckJx44dw7lz5zBw4EAcP34cs2fPZh2NkCrRmXGEECIDlJSUMHLkSN6c4/U1OTk5cHd3R2hoKF69elXhBTtfDrHevHkzRo0ahQsXLqBTp04AgFu3biElJQXHjh1jnE58jo6OmDx5Mh4/fiwyDw8PDzg6OjJOJ57KtjaXryBdv349Lx4zjRs3xm+//YbffvsN165dw759+2BtbQ1zc3NcvnwZysrKrCOKpWPHjoiJieF10xlAeubBVzt27MDixYsxe/Zs9O/fv9IV4REREUhISMCcOXMwa9Ys1pErJS3z+Jyfnx9+//13TJo0CR06dADHcbhz5w78/f2xZMkSZGdnY8OGDVBUVMT//vc/1nErePny5Te72NaqVQvZ2dk/MNH3uXr1Kk6dOgVra2vIyclBX18f/fr1Q926dbFu3ToMHjyYdcRviomJQVhYGMLCwnD9+nW8e/cObdu2hbOzM2xsbFjHI6RKVIwjhBDCGxMmTEBKSgqmTJmChg0bSvyWnK8ZNGgQkpOTsWvXLiQmJoLjOAwbNgy//vorr1bGbdiwAY0aNcLmzZuRmZkJ4FNhaNGiRRJ9UL04TExMcOfOHdYxqs3a2hrp6elISEhATEwMiouLeVOMmzVrFlxdXfHs2TO0b98eqqqqItcl/fyictIyD77q3bs37ty5g5s3b+Lo0aM4dOhQhbPv7O3tMWHCBIk+6F1a5vE5f39/bNy4EWPGjBGODR06FObm5ti9ezeuXLkCPT09rFmzRiKLcTo6Orh37x6MjY0rvR4fH4/GjRv/4FQ1l5+fL2zEUq9ePWRnZ8PExATm5ua8OGfU2toaFhYW6NmzJ6ZNm4YePXpUOMuPEElGZ8YRQgjhDTU1NURERPCmUYMsKT8LiG8vhL88w4jjOGRmZmL58uV4+PAhYmNj2QSrpsjISPj6+iIwMBAmJiZwdHTE+PHjefMmHUCljQEEAoHwLCw+nF8ESM88CPm3fe281OTkZLRt2xYFBQVIS0tDq1atJPLs1Llz5yIsLAx37typ0Dm1sLAQHTp0gI2NDTw9PRklrB5ra2usXr0aAwYMwPDhw4Ur4jw9PREcHIyUlBTWEb8pLy+Pd685CPkcrYwjhBDCGy1btkRhYSHrGKQSfH1BrKGhUWGFJcdx0NXVxZEjRxilEt+ff/6Jffv2IScnB3Z2doiIiIC5uTnrWDWSlpbGOsK/QlrmQci/rWnTpti7dy88PDxExvfu3StcFZ6TkwNNTU0W8aq0ZMkSHD9+HCYmJpgzZw5atGgBgUCAxMRE7NixA6Wlpfj9999ZxxTbvHnzhKvaly1bhgEDBuDAgQOoXbs2/P39GaerGl9fdxBSjlbGEUII4Y07d+7Azc0N7u7uaN26dYWzW+iFGamu8PBwkZ/l5OSgpaUFY2Nj1Kol+Z9ZysnJQU9PDz/99NM3OxFu2rTpB6Yi0uDZs2cICQlBRkZGhSYC9PtEaiIkJAQ///wzWrZsCWtrawgEAty5cwcPHz5EcHAwfvrpJ+zatQvJyckS+zv25MkTzJw5ExcuXED522iBQIABAwZg586daNasGduANcRxHAoLC/Hw4UPo6emhQYMGrCMRIvWoGEcIIYQ3kpOTMW7cOMTExIiM0/YvUh2Wlpa4cuUKNDU1sXLlSixYsAAqKiqsY9VIr169qjw7USAQ4OrVqz8o0ffZv38/vLy8kJaWhsjISOjr62PLli0wMDDAsGHDWMcTG9/nceXKFQwdOhQGBgZISkpC69atkZ6eDo7jYGlpyZvfJyJ5njx5Ai8vLyQlJYHjOLRs2RIzZszgXRHrn3/+wePHj8FxHJo3by6xq/mqsnfvXmzevBnJyckAgObNm2PevHmYOnUq42SESD8qxhFCiAxJSUnBli1bkJiYCIFAAFNTUzg7O8PIyIh1NLF06NABtWrVgrOzc6UNHHr27MkoGeETZWVlJCcno2nTppCXl0dWVha0tLRYx5J5u3btgru7O+bNm4c1a9bg/v37MDQ0hJ+fH/z9/REaGso6olikYR4dOnSAra0tVq5cCTU1NcTFxUFbWxt2dnawtbXFzJkzWUckPFNcXIz+/ftj9+7dMDExYR2HAFi6dCk2b96MuXPnonPnzgA+nT+6fft2ODs7Y/Xq1YwTEiLdqBhHCCEy4sKFCxg6dCjatWuHrl27guM43Lx5E3FxcTh9+jT69evHOmKVVFRUEBMTgxYtWrCOQnisc+fOqFOnDrp164YVK1ZgwYIFqFOnTqX3uru7/+B0ssvMzAxr167F8OHDhQUgQ0ND3L9/H7169cLr169ZRxSLNMxDTU0NsbGxMDIygqamJiIiItCqVSvExcVh2LBhSE9PZx2R8JCWlhZu3rxZoYEDYaNBgwbYtm0bxo0bJzJ++PBhzJ07V+Kfq8LCwtCrVy/WMQipMck/DIUQQsi/ws3NDS4uLhUOTnZzc8PixYt5UYyzsrLC06dPpaIYFxwcjMDAwErPY4qOjmaUqvrCw8OxYcMGkdWWCxcuRPfu3VlH+yo/Pz8sW7YMf/31FwQCAc6dO1fp+XACgUCii3EeHh6YO3cuVFVVq7z377//xuvXrzF48OAfkKxm0tLSYGFhUWFcUVER+fn5DBLVjDTMQ1VVFR8+fAAANGnSBCkpKWjVqhUASPwb9K8pLCxEcXGxyBgfzxnl8zzs7e0rbeBA2CgtLYWVlVWF8fbt26OkpIRBouqxtbWFjo4OHB0d4eDgIGwCQghfUDGOEEJkRGJiIgIDAyuMT548GVu2bPnxgWpg7ty5cHZ2xsKFC2Fubl6hgUObNm0YJaseT09P/P7773BwcMCpU6fg6OiIlJQU3LlzB7Nnz2YdT2wHDhyAo6MjRo4cCScnJ+Fqyz59+sDPzw/jx49nHbFSLVq0EHZKlZOTw5UrV6Ctrc04VfUlJCRAX18fP//8M4YOHQorKyvhdtuSkhIkJCQgIiICBw4cQGZmJgICAhgn/jYDAwPExsZCX19fZPzcuXMwMzNjlKr6pGEenTp1wo0bN2BmZobBgwfD1dUV9+7dw/Hjx9GpUyfW8cRWUFCARYsWITAwEDk5ORWu8+WcUWmZx8ePH+Hj44NLly7BysqqwgcJktq0QVpNmDABu3btqvDv7u3tDTs7O0apxPfixQscOHAAfn5+WL58Ofr06YMpU6Zg+PDh32xoRIikoG2qhBAiI3R1dbFp0yb8/PPPIuOBgYFYsGABMjIyGCUTn5ycXIUxgUDAuwYOLVu2xLJlyzBu3DiRbWzu7u7Izc3F9u3bWUcUi6mpKaZPnw4XFxeR8U2bNmHPnj1ITExklEx2xMfHY8eOHQgKCsLbt28hLy8PRUVFFBQUAAAsLCwwffp0ODg4QFFRkXHab9u3bx+WLl2KjRs3YsqUKfDx8UFKSgrWrVsHHx8f/PLLL6wjikUa5pGamor379+jTZs2KCgowIIFCxAREQFjY2Ns3ry5QqFRUs2ePRuhoaFYuXIl7O3tsWPHDjx//hy7d++Gh4cHLwoOgPTMw8bG5qvX+NRoRlrMnTsXAQEB0NXVFRbZb926hadPn8Le3l7kA09JL5TGxsbC19cXhw8fRllZGezs7DBlyhS0bduWdTRCvoqKcYQQIiNWrlyJzZs3w83NDV26dIFAIEBERAT++OMPuLq6YsmSJawjVunJkyffvM6XN4gqKipITEyEvr4+tLW1cenSJbRt2xbJycno1KlTpSsfJJGioiIePHgAY2NjkfHHjx+jdevWKCoqYpRM9nAch/j4eKSnp6OwsBANGjRAu3bt0KBBA9bRqmXPnj1YvXo1nj59CgDQ0dHB8uXLMWXKFMbJqkda5sF3enp6CAgIQK9evVC3bl1ER0fD2NgY+/fvx+HDh3H27FnWEcUiLfMgkuVbxdHP8aVQ+uLFC3h7e8PDwwO1atVCUVEROnfuDC8vL+E2e0IkCW1TJYQQGbF06VKoqalh48aN+O233wB8Ogto+fLlcHJyYpxOPHwptlWlUaNGyMnJgb6+PvT19XHr1i20bdsWaWlp4NNnZLq6urhy5UqFYtyVK1fo7JYfTCAQoG3btrxfBTBt2jRMmzYNr1+/RllZGS+3DwPSMw8AeP/+PcrKykTG+HJGWW5uLgwMDAB8ypybmwsA6NatG686wkrLPMo9fvwYKSkp6NGjB5SVlYWr28mPxYfOzlUpLi7GqVOn4OvrK9z+vH37dowbNw65ublYvHgxfv75ZyQkJLCOSkgFVIwjhBAZUFJSgoMHD2LcuHFwcXHBu3fvAHzqmEd+vN69e+P06dOwtLTElClT4OLiguDgYNy9excjR45kHU9srq6ucHJyQmxsrMhqSz8/P2zdupV1PMJjfFvR9zV8nUdaWhrmzJmDsLAwkRWufDsSwNDQEOnp6dDX14eZmRkCAwPRoUMHnD59GhoaGqzjiU1a5pGTk4MxY8YgNDQUAoEAycnJMDQ0xNSpU6GhoYGNGzeyjkh4ZO7cuTh8+DCAT+ff/fnnn2jdurXwuqqqKjw8PNCsWTNGCQn5NtqmSgghMuLzrZGErbKyMpSVlQk7eAYGBgrPY/r11195dfDwiRMnsHHjRuH5cOXdVIcNG8Y4GeEjaekyzPd5dOnSBQDg7OyMhg0bVli11LNnTxaxqm3z5s2Ql5eHk5MTQkNDMXjwYJSWlqKkpASbNm2Cs7Mz64hikZZ52Nvb49WrV/Dx8YGpqanwvNSLFy/CxcUFDx48YB2R8EifPn0wdepUjBo16quvm0pKSnDjxg3ePGcR2ULFOEIIkRE2NjZwdnbG8OHDWUchhJAKPu8yvGfPngpdhtesWcM6olikYR516tRBVFQUWrRowTrKvyojIwN3796FkZERr7d083UejRo1woULF9C2bVuR5kVpaWkwNzfH+/fvWUckPHLt2jV06dJF+MFmuZKSEty8eRM9evRglIwQ8dA2VUIIkRGzZs2Cq6srnj17hvbt20NVVVXkeps2bRglk03Xr1/H7t27kZKSguDgYOjo6GD//v0wMDBAt27dWMcTi6GhIe7cuYP69euLjL958waWlpZITU1llOzbNDU1xT6fqPxsJvLf27lzJ7y9vTFu3Dj4+/tj0aJFIl2G+UIa5mFtbY2nT59KXTFOT08Penp6rGN8N77OIz8/HyoqKhXGX79+LfHdnonksbGxQWZmZoUzOd++fQsbGxvebKcnsouKcYQQIiPGjh0LACLNGgQCAe/OAAKAqKgoJCYmQiAQwNTUFJaWlqwjVcuxY8cwceJE2NnZISYmBh8+fAAAvHv3DmvXruVNZ7z09PRKf28+fPiA58+fM0gkni1btrCO8J/h88HoGRkZwu2RysrKwrMtJ06ciE6dOmH79u0s44lNGubh4+ODX3/9Fc+fP0fr1q2hoKAgcl2SP7zx9PQU+15Jbl7k6emJ6dOnQ0lJqco5SfI8PtejRw8EBARg1apVAD69BikrK8P69evF7uxJSLmv/X3Lycmp8IEzIZKIinGEECIj0tLSWEf4bq9evcIvv/yCsLAwaGhogOM44SegR44cgZaWFuuIYlm9ejW8vLxgb2+PI0eOCMe7dOmClStXMkwmnpCQEOH3Fy5cgLq6uvDn0tJSXLlyRaIPTHZwcGAd4V+Xk5ODsWPH4urVq7w9GF1augxLwzyys7ORkpICR0dH4RhfPrzZvHmzyM/Z2dkoKCgQNjp48+YNVFRUoK2tLdFFrM2bN8POzg5KSkoV5vQ5gUAg0fP43Pr169GrVy/cvXsXHz9+xKJFi/DgwQPk5ubixo0brOMRnihvdCUQCDBp0iSRVZWlpaWIj48XfiBCiCSjYhwhhMgIaWjcMHfuXOTl5eHBgwcwNTUFACQkJMDBwQFOTk7CrlqSLikpqdKzTOrWrYs3b978+EDVVH7uoEAgqFDYUlBQQLNmzXhR/CmXkpKCffv2ISUlBVu3boW2tjbOnz8PXV1dtGrVinU8sbi4uKBWrVrIyMgQPjaATytiXVxcePH/IS1dhqVhHpMnT4aFhQUOHz5caQMHSfb5B0+HDh3Czp07sXfvXuGW26SkJEybNg0zZsxgFVEsn89DGj5MAwAzMzPEx8dj165dkJeXR35+PkaOHInZs2ejcePGrOMRnij/AJDjOKipqUFZWVl4rXbt2ujUqROmTZvGKh4hYqMGDoQQIkP2798PLy8vpKWlITIyEvr6+tiyZQsMDAx40f1SXV0dly9fhrW1tcj47du30b9/f14UsgDAyMgIu3fvRt++fUUOsQ4ICICHhwcSEhJYRxSLgYEB7ty5gwYNGrCOUmPh4eEYOHAgunbtimvXriExMRGGhob4888/cfv2bQQHB7OOKBZpOBhdWroMS8M8VFVVERcXB2NjY9ZRvouRkRGCg4NhYWEhMh4VFYXRo0fzsshV/taNTwVSQv4LK1aswIIFC2hLKuEtOdYBCCGE/Bi7du3C/PnzMWjQILx580a4zUhDQ4M3Z2iVlZVVOLsI+LQaq6ysjEGimpkxYwacnZ3x999/QyAQ4MWLFzh48CAWLFiAWbNmsY4ntrS0NF4X4gDAzc0Nq1evxqVLl0SKJDY2NoiMjGSYrHqk4WB0OTk5ka54Y8aMgaenJ5ycnHhRwConDfPo3bs34uLiWMf4bpmZmSguLq4wXlpaipcvXzJIVHN79+5F69atoaSkBCUlJbRu3Ro+Pj6sY1WLgYEBli5diqSkJNZRiBRYtmwZVFVV8erVK1y/fh0RERF49eoV61iEiI2KcYQQIiO2bduGPXv24Pfff4e8vLxw3MrKCvfu3WOYTHy9e/eGs7MzXrx4IRx7/vw5XFxc0KdPH4bJqmfRokUYPnw4bGxs8P79e/To0QNTp07FjBkzMGfOHNbxxObk5FTpweLbt2/HvHnzfnygGrh37x5GjBhRYVxLSws5OTkMEtVM+cHo5ehgdPI9hgwZAhcXFyxfvhzHjh1DSEiIyBdf9OnTB9OmTcPdu3eFK8ru3r2LGTNmoG/fvozTiW/p0qVwdnbGkCFDEBQUhKCgIOH/0ZIlS1jHE9vcuXNx/vx5mJqaon379tiyZQsyMzNZxyI8lZeXh4kTJ0JHRwc9e/ZEjx49oKOjgwkTJuDt27es4xFSJdqmSgghMkJZWRkPHz6Evr6+yDa25ORktGnTBoWFhawjVunp06cYNmwY7t+/D11dXQgEAmRkZMDc3BynTp1C06ZNWUesUmlpKSIiImBubg4lJSUkJCSgrKwMZmZmqFOnDut41aKjo4OQkBC0b99eZDw6OhpDhw7Fs2fPGCUTX9OmTREYGIguXbqIPC5OnDiBBQsWICUlhXVEsSQkJKBXr15o3749rl69iqFDh4ocjG5kZMQ6IuERObmvf14v6Q0cPpednQ0HBwecP39euKq6pKQEAwYMgJ+fH7S1tRknFE+DBg2wbds2jBs3TmT88OHDmDt3Ll6/fs0oWc08evQIBw8exJEjR5CamgobGxtMmDAB9vb2rKMRHhkzZgxiY2Oxbds2dO7cGQKBADdv3oSzszPatGmDwMBA1hEJ+SYqxhFCiIwwMzPDunXrMGzYMJGig6enJ/z9/REVFcU6otguXbqEhw8fguM4mJmZ8WqFAwAoKSkhMTERBgYGrKN8FyUlJdy/f7/CuVKPHz9G69atUVRUxCiZ+BYtWoTIyEgEBQXBxMQE0dHRePnyJezt7WFvb49ly5axjii2rKws7Nq1C1FRUSgrK4OlpSUdjE4IPhV/yv9mmJqawsTEhHWkatHU1MTt27fRvHlzkfFHjx6hQ4cOvDkvtTK3bt3CzJkzER8fz5siL5EMqqqquHDhArp16yYyfv36ddja2iI/P59RMkLEQ91UCSFERixcuBCzZ89GUVEROI7D7du3cfjwYaxbt453587069cP/fr1Yx2jxszNzZGamsr7YpyxsTHOnz9fYWvtuXPnYGhoyChV9axZswaTJk2Cjo6OsLhbWlqK8ePH82r7F/CpicOKFStYxyBE4piYmPCuAPe5CRMmYNeuXdi0aZPIuLe3N+zs7Bil+j63b9/GoUOHcPToUbx9+xajR49mHYnwTP369YWdVT+nrq4OTU1NBokIqR5aGUcIITJkz549WL16NZ4+fQrg0zbD5cuXY8qUKYyTfZ2npyemT58OJSWlSs8n+5yTk9MPSvV9Ll68iMWLF2PVqlVo3759hU5gdevWZZSsenx9fTFnzhwsXLgQvXv3BgBcuXIFGzduxJYtWzBt2jTGCcWXkpKCmJgYlJWVwcLCosIKFEl37dq1b17v0aPHD0pC+Epanmvnz5+PVatWQVVVFfPnz//mvV8WtyTV3LlzERAQAF1dXXTq1AnApxVlT58+hb29vUhjI0meU/n21EOHDiE9PR02Njaws7PDyJEjoaamxjoe4Rlvb28EBQUhICBAuAI8KysLDg4OGDlyJGbMmME4ISHfRsU4QgiRQa9fv0ZZWRkvzssxMDDA3bt3Ub9+/W+uJBMIBEhNTf2ByWru8/OYBAKB8HuO43h1HhPwqUvvmjVrhE01mjVrhuXLl9PZPz9YZWd8ff67xZffqeDgYAQGBiIjIwMfP34UuRYdHc0oVfXxcR7S8lxrY2ODEydOQEND45vNSwQCAa5evfoDk9WcuE1YJH1OcnJysLKywvjx4/HLL7+gUaNGrCMRHrOwsMDjx4/x4cMH6OnpAQAyMjKgqKhY4QM1SX3eJbKNtqkSQoiMSEtLQ0lJCZo3b44GDRoIx5OTk6GgoIBmzZqxC/cNaWlplX7PZ6Ghoawj/GtmzpyJmTNnIjs7G8rKyrxoQlHVapnPSfIqk8/9888/Ij8XFxcjJiYGS5cuxZo1axilqh5PT0/8/vvvcHBwwKlTp+Do6IiUlBTcuXMHs2fPZh1PbHydh7Q8137+/Cotz7XSMo+HDx/yerswkSzDhw9nHYGQ70Ir4wghREb07NkTkydPhoODg8j4gQMH4OPjg7CwMDbBiIjY2Fi0a9eOdQyxlZSUICwsDCkpKRg/fjzU1NTw4sUL1K1bV2ILc1+uMomKikJpaSlatGgB4NNWKnl5eWFnUj67du0aXFxceNGgpWXLlli2bBnGjRsn0mTG3d0dubm52L59O+uIYpGGeRQWFkJZWbnSa5mZmdQUhHyXjx8/4tWrVygrKxMZL1/dRAghsoCKcYQQIiPq1q2L6OjoSjtfWllZ8aIb2+jRo2FlZQU3NzeR8fXr1+P27dsICgpilOz7vH37FgcPHoSPjw/i4uJ4s6XwyZMnsLW1RUZGBj58+IBHjx7B0NAQ8+bNQ1FREby8vFhHrNKmTZsQFhYGf39/4YHP//zzDxwdHdG9e3e4uroyTvh9EhMTYW1tjffv37OOUiUVFRUkJiZCX18f2trauHTpEtq2bYvk5GR06tQJOTk5rCOKRRrm0bJlSxw6dAiWlpYi48HBwcKVsJJq5MiRYt97/Pjx/zDJv6eoqAjbtm1DaGhopUUsvmzBS05OxuTJk3Hz5k2RcT4e0UAky/v37ys8Lvhy/i6RXbRNlRBCZIRAIMC7d+8qjL99+5Y3L4DDw8OxbNmyCuO2trbYsGEDg0Tf5+rVq/D19cXx48ehr6+PUaNGYe/evaxjic3Z2RlWVlaIi4tD/fr1heMjRozA1KlTGSYT38aNG3Hx4kWRzmuamppYvXo1+vfvz5tiXHx8vMjPHMchMzMTHh4eaNu2LaNU1dOoUSPk5ORAX18f+vr6uHXrFtq2bYu0tDTw6bNjaZhHv3790KVLFyxfvhyLFy9Gfn4+5syZg6CgIHh4eLCO902fd1fkOA4nTpyAuro6rKysAHxaCfvmzZtqFe1Ymzx5Mi5duoTRo0ejQ4cOIudB8smkSZNQq1Yt/PXXX2jcuDFv50EkQ1paGubMmYOwsDAUFRUJx6m4S/iCinGEECIjunfvjnXr1uHw4cOQl5cH8OlQ93Xr1qFbt26M04nn/fv3qF27doVxBQUF5OXlMUj0bdnZ2dDS0hIZe/bsGfz8/ODr64v8/HyMGTMGxcXFOHbsGMzMzBglrZmIiAjcuHGjwv+Jvr4+nj9/zihV9eTl5eHly5do1aqVyPirV68qLV5Lqnbt2kEgEFQo9nTq1Am+vr6MUlVP7969cfr0aVhaWmLKlClwcXFBcHAw7t69y6vCiTTMY9u2bRg8eDAcHR1x5swZ4dbzO3fuSPzz1L59+4TfL168GGPGjIGXl5fI371Zs2bxatXMmTNncPbsWXTt2pV1lO8SGxuLqKgotGzZknUUIgXs7OwAfOrs3rBhQyruEt6hYhwhhMiIP//8Ez169ECLFi3QvXt3AMD169eRl5fHm3OxWrdujaNHj8Ld3V1k/MiRIxL5BtHb2xvPnj2Dp6cnFBQUMGjQIEREROCnn37Ctm3bYGtrC3l5eV5s56xMWVlZpZ88P3v2DGpqagwSVd+IESPg6OiIjRs3olOnTgCAW7duYeHChbwpnAAVD9yXk5ODlpYWlJSUGCWqPm9vb+E2o19//RX16tVDREQEhgwZgl9//ZVxOvFJyzz69++PkSNHYteuXahVqxZOnz4tkc+z3+Lr64uIiAhhIQ4A5OXlMX/+fHTp0gXr169nmE58Ojo6vHlO/RYzMzO8fv2adQwiJeLj4xEVFSU875UQvqEz4wghRIa8ePEC27dvR1xcHJSVldGmTRvMmTMH9erVYx1NLCEhIRg1ahTGjx+P3r17AwCuXLmCw4cPIygoSOI6a3348AFLly5FgwYNsGjRItSqVQtOTk6YOXMmmjdvLrxPQUEBcXFxvHujO3bsWKirq8Pb2xtqamqIj4+HlpYWhg0bBj09PZEVKpKqoKAACxYsgK+vL4qLiwEAtWrVwpQpU7B+/XqoqqoyTkjIj1fekCUrKws+Pj4IDw/Hhg0b4OTkhDVr1kBBQYF1RLFoampi3759Ff42nDx5Eo6OjhW6EEuqc+fOwdPTE15eXtDX12cdp8auXr2KJUuWYO3atTA3N6/we8Sn1YqEPRsbG/z+++/o27cv6yiE1AgV4wghhPDKmTNnsHbtWsTGxgoLisuWLUPPnj1ZR/uqjx8/onbt2oiMjISvry8CAwPRsmVLTJw4EWPHjkWTJk14WYx78eIFbGxsIC8vj+TkZFhZWSE5ORkNGjTAtWvXoK2tzTqi2PLz85GSkgKO42BsbMy7Ipynp2el4wKBAEpKSjA2NkaPHj1EVghJgi/PuvuWNm3a/IdJvo+0zKOcmpoaBg8eDC8vL2hoaAAAbt68CXt7e6ipqSEmJoZtQDHNnz8ffn5++N///iey8tXDwwP29vbYtGkT44Tiyc7OxpgxY3Dt2jWoqKhUKGLl5uYySlY9cnJywu8/31JIZ3yRmkhJScGvv/6KCRMmoHXr1hUeF3x4riWyjYpxhBAiI65du/bN6z169PhBSUhBQQGOHDkCX19f3L59G6Wlpdi0aRMmT57Mu61IhYWFOHz4MKKjo1FWVgZLS0vY2dlBWVmZdTSZYmBggOzsbBQUFEBTUxMcx+HNmzdQUVFBnTp18OrVKxgaGiI0NBS6urqs4wrJyclVetbdlyT9jbq0zKPc/v37MXHixArj7969w7x583jTaKasrAwbNmzA1q1bkZmZCQBo3LgxnJ2d4erqKnHF6a/p27cvMjIyMGXKlErPxnJwcGCUrHrCw8O/eV2SP1QjkufWrVsYP3480tPThWPlz8N8ea4lso2KcYQQIiM+/0S63Ocv6OlFCxtJSUnYu3cv9u/fjzdv3qBfv34ICQlhHYvwzOHDh+Ht7Q0fHx8YGRkBAB4/fowZM2Zg+vTp6Nq1K3755Rc0atQIwcHBjNP+nydPnoh9ryRvz5OWeUiTkpISHDx4EAMGDECjRo2ETX74uBVSRUUFkZGRvOmM/C3Xr1/H7t27kZKSguDgYOjo6GD//v0wMDDgTTMpIhnMzMxgamqKRYsWVVqkpudaIumoGEcIITLi7du3Ij8XFxcjJiYGS5cuxZo1a9CnTx9Gyb6tXr16ePToERo0aABNTc1vdsviy1adypSWluL06dPw9fXlVTEuKSkJ27ZtQ2JiIgQCAVq2bIk5c+ZQt7wfzMjICMeOHUO7du1ExmNiYjBq1Cikpqbi5s2bGDVqlHCFECFVSUhIQEZGBj5+/CgcEwgEGDJkCMNU4lNRUUFiYiLv35RbWlpi586dwq22fHXs2DFMnDgRdnZ22L9/PxISEmBoaIidO3fir7/+wtmzZ1lHJDyiqqqKuLg4GBsbs45CSI1QN1VCCJER6urqFcb69esHRUVFuLi4ICoqikGqqm3evFm4dXPz5s1S27peXl4ew4cPl7gmFN8SHByMcePGwcrKCp07dwbwaduIubk5Dh06hJ9//plxQtmRmZmJkpKSCuMlJSXIysoCADRp0gTv3r370dEID7x9+1bkb0RqaipGjhyJ+Ph4ke235c+/fFlJ3bFjR8TExPC+GOfh4QFXV1esWbOG140PVq9eDS8vL9jb2+PIkSPC8S5dumDlypUMkxE+6t27NxXjCK/RyjhCCJFxiYmJsLa2xvv371lHITxjaGiICRMmVHgTtWzZMuzfvx+pqamMksmewYMHCztfWlhYAPi0Km7atGlo1KgR/vrrL5w+fRr/+9//cO/ePcZpiaRZtWoVlJSUsHDhQgAQrnzz8fFBu3bt8PfffyMtLQ0LFizApk2b0L17d5ZxxRYUFAQ3Nze4uLigffv2FRqz8OWA9/JjJr78MIpvZ2OpqKggISEBzZo1g5qaGuLi4mBoaIjU1FSYmZmhqKiIdUTCI97e3li9ejUmT55caZF66NChjJIRIh4qxhFCiIz4stsfx3HIzMyEh4cHiouLcePGDUbJxGdjY4MJEyZg9OjRla70Iz+WiooK4uPjK3wqnZycjLZt26KgoIBRsm+rzjZgvryYz8rKwsSJE3HlyhXhG5KSkhL06dMH+/fvR8OGDREaGori4mL079+fcVoiaV69eoWJEyfC2NgYO3bsQIMGDXDlyhW0bdsWOjo6uH37NnR0dHDlyhUsWLCAN91Uv3ZWKt+KWNLS+MDIyAi7d+9G3759RYpxAQEB8PDwQEJCAuuIhEcqe3yX49Pjm8gu2qZKCCEyol27dpV2++vUqRN8fX0Zpaoec3NzLFmyBHPmzMGgQYMwceJEDBo0CLVr12YdTSb16tUL169fr1CMi4iIkOiVM19uBf7yccHHxiaNGjXCpUuX8PDhQzx69Agcx6Fly5Zo0aKF8B4bGxuGCYkk09bWxoULF7Bu3ToAn37vy48HaNCgAV68eAEdHR00a9YMSUlJLKNWS1paGusI/wq+FNuqMmPGDDg7O8PX1xcCgQAvXrxAZGQkFixYAHd3d9bxCM+UlZWxjkDId6GVcYQQIiO+7PYnJycHLS0tKCkpMUpUM2VlZbh8+TIOHTqEEydOQF5eHqNHj4adnZ3UvGHhCy8vL7i7u2PMmDHCg8Vv3bqFoKAgrFixAk2aNBHeK6krzC5fvozFixdj7dq16Ny5MwQCAW7evIklS5Zg7dq16NevH+uI1fLx40ekpaXByMgItWrx7zPXN2/eIDg4GCkpKVi4cCHq1auH6OhoNGzYEDo6OqzjiY3v8+jevTvmz5+PESNGYPr06cjOzsbChQvh5eWF6Oho3L9/n3VEqRcfH4/WrVtDTk6uwsr2L/Fluy0A/P7779i8ebNwS6qioiIWLFiAVatWMU5GCCE/FhXjCCFEBpRvTdu9ezdMTExYx/nXFBUV4fTp01izZg3u3bvHm1VM0uJbW0Q+J8nbRVq3bg0vLy9069ZNZPz69euYPn06EhMTGSWrnoKCAsydOxf+/v4AgEePHsHQ0BBOTk5o0qQJ3NzcGCesWnx8PPr27Qt1dXWkp6cjKSkJhoaGWLp0KZ48eYKAgADWEcUiDfO4cOEC3r17h9GjR+Pp06cYPHgw7t+/j3r16iEwMBC9e/dmHVFs+/fvh5eXF9LS0hAZGQl9fX1s2bIFBgYGGDZsGOt4XyUnJ4esrCxoa2tDTk6u0pXtgGQ/v35NQUEBEhISUFZWBjMzM9SpU4d1JMIjgwYNwuHDh4XHlaxZswazZ8+GhoYGACAnJwfdu3enbc9E4on3KpoQQgivKSgo4P79+1LViTQrKwteXl74448/EB8fDysrK9aRZE5ZWZlYX5L8RjElJaXS8wfLCyl88dtvvyEuLg5hYWEiq1379u2Lo0ePMkwmvvnz52PSpElITk4WmcPAgQNx7do1hsmqRxrmMWDAAIwePRoAoKuri/j4eLx+/RqvXr2S6ELchQsX8PbtW+HPu3btwvz58zFo0CC8efNG+FykoaGBLVu2MEopnrS0NGhpaQm/T01NRVpaWoUvPjbKUVFRgZWVFTp06ECFOFJtFy5cwIcPH4Q///HHH8jNzRX+XFJSwqvt9ER2UTGOEEJkhL29Pfbu3cs6xnfJy8vDvn370K9fP+jq6mLXrl0YMmQIHj16hL///pt1PIJP2/P4xNraGvPmzUNmZqZwLCsrC66urujQoQPDZNVz8uRJbN++Hd26dRMpupuZmSElJYVhMvHduXMHM2bMqDCuo6ODrKwsBolqRlrm8aV69eqJvRqWlaysLHTt2hXPnj0DAGzbtg179uzB77//Dnl5eeF9VlZWEt9VWF9fX/hY1tfX/+YXIbLkyxWitNGP8BX/DhMhhBBSIx8/foSPjw8uXboEKysrqKqqilzftGkTo2Tia9iwITQ1NTFmzBisXbsW1tbWrCPJtD/++APNmjXD2LFjAQA///wzjh07hsaNG+Ps2bNo27Yt44RV8/X1xYgRI6Cvrw89PT0AQEZGBkxMTHDy5Em24aohOzsb2traFcbz8/N5syJWSUkJeXl5FcaTkpKEK4T4QBrmUVRUhG3btiE0NBSvXr2qcFB6dHQ0o2Tf5uDgADU1Ndja2uL+/ftIS0uDhYVFhfsUFRWRn5/PIKH4pLHrMyGEkP9DxThCCJER9+/fh6WlJYBP50l9jg9v1jmOw9atWzFhwgSoqKiwjkMA7N69GwcOHAAAXLp0CZcvX8b58+cRGBiIhQsX4uLFi4wTVs3Y2Bjx8fHCTqQcx8HMzAx9+/blxeOinLW1Nc6cOYO5c+cC+L/H9J49e9C5c2eW0cQ2bNgwrFy5EoGBgQA+zSEjIwNubm4YNWoU43Tik4Z5TJ48GZcuXcLo0aPRoUMHXj0WRo4cKSzAGRgYIDY2tsLqsXPnzsHMzIxFPLF92fX5a/h4Zhwh30MgEFR4TuLTcxQh5aiBAyGEEF4oKyuDkpISHjx4gObNm7OOQwAoKyvj0aNH0NXVhbOzM4qKirB79248evQIHTt2xD///MM6osy4efMmbG1tYWdnBz8/P8yYMQMPHjxAZGQkwsPD0b59e9YRq5SXl4dBgwbhwYMHePfuHZo0aYKsrCx07twZZ8+erbCaV1JJwzzU1dVx9uxZdO3alXWU77Jv3z4sXboUGzduxJQpU+Dj44OUlBSsW7cOPj4++OWXX1hHJIRUk5ycHAYOHAhFRUUAwOnTp9G7d2/hc+uHDx9w/vx5KlITiUcr4wghREa8ffsWpaWlqFevnsh4bm4uatWqhbp16zJKJh45OTk0b94cOTk5VIyTEJqamnj69Cl0dXVx/vx5rF69GsCnVYx8eRG8cuXKb153d3f/QUm+T5cuXXDjxg1s2LABRkZGuHjxIiwtLREZGQlzc3PW8cRSt25dRERE4OrVq4iOjkZZWRksLS3Rt29f1tGqRRrmoaOjAzU1NdYxvpujoyNKSkqwaNEiFBQUYPz48dDR0cHWrVupEEcITzk4OIj8PGHChAr32Nvb/6g4hNQYrYwjhBAZMXDgQAwZMgSzZs0SGffy8kJISAjOnj3LKJn4zpw5Aw8PD+zatQutW7dmHUfmzZkzB3/99ReaN2+OmJgYpKeno06dOjh69Cj++OMPiT1X6nNfnidVXFyMtLQ01KpVC0ZGRryYAyH/tnPnzsHT0xNeXl5S0yDg9evXKCsrq/RsRUIIIeRHo2IcIYTIiHr16uHGjRswNTUVGX/48CG6du2KnJwcRsnEp6mpiYKCApSUlKB27dpQVlYWuf55a3vy3ysuLsbWrVvx9OlTTJo0SVjY2rJlC+rUqYOpU6cyTlgzeXl5mDRpEkaMGIGJEyeyjiO20tJSnDhxAomJiRAIBDA1NcWwYcNQq5bkboTw9PQU+14nJ6f/MMn3kZZ5lMvOzsaYMWNw7do1qKioQEFBQeQ6355rX716haSkJAgEArRo0YI3jTQIIYRILyrGEUKIjFBVVcWtW7cqbFm7d+8eOnbsiIKCAkbJxOfv7//N619uXSCkpu7fv4+ffvoJ6enprKOI5f79+xg2bBiysrLQokULAJ8atWhpaSEkJERit6oaGBiI/JydnY2CggJoaGgAAN68eQMVFRVoa2sjNTWVQULxSMs8yvXt2xcZGRmYMmUKGjZsWOFwdL481+bl5WH27Nk4fPiwsCOsvLw8xo4dix07dkBdXZ1xQkIIIbKKinGEECIjevXqBXNzc2zbtk1kfPbs2YiPj8f169cZJSN8l5CQgIyMDHz8+FFkfOjQoYwSfb+IiAgMGTKEN00oOnXqBG1tbfj7+0NTUxMA8M8//2DSpEl49eoVIiMjGSes2qFDh7Bz507s3btXWFBMSkrCtGnTMGPGDNjZ2TFOKB5pmIeKigoiIyPRtm1b1lG+y5gxYxAbG4tt27ahc+fOEAgEuHnzJpydndGmTRthx1tCCCHkR6NiHCGEyIgbN26gb9++sLa2Rp8+fQAAV65cwZ07d3Dx4kV0796dcULxpKSkYN++fUhJScHWrVuhra2N8+fPQ1dXF61atWIdT6akpqZixIgRuHfvHgQCAcpfUpSvouFDE4cvtxdyHIfMzEzs378fPXr0wOHDhxklqx5lZWXcvXu3wmPg/v37sLa2RmFhIaNk4jMyMkJwcHCFc/yioqIwevRopKWlMUpWPdIwD0tLS+zcuROdOnViHeW7qKqq4sKFC+jWrZvI+PXr12Fra4v8/HxGyWqusLAQxcXFImOS3oCJEEJIRXKsAxBCCPkxunbtisjISOjq6iIwMBCnT5+GsbEx4uPjeVOICw8Ph7m5Of7++28cP34c79+/BwDEx8dj2bJljNPJHmdnZxgYGODly5dQUVHBgwcPcO3aNVhZWSEsLIx1PLFs3rxZ5MvT0xNhYWFwcHCAt7c363hia9GiBV6+fFlh/NWrVzA2NmaQqPoyMzMrFBmAT0XdyuYmqaRhHh4eHnB1dUVYWBhycnKQl5cn8sUX9evXr3Qrqrq6unAFKR8UFBRgzpw50NbWRp06daCpqSnyRQghhH9oZRwhhBDe6Ny5M37++WfMnz8fampqiIuLg6GhIe7cuYPhw4fj+fPnrCPKlAYNGuDq1ato06YN1NXVcfv2bbRo0QJXr16Fq6srYmJiWEeUGWfPnsWiRYuwfPly4WqmW7duYeXKlfDw8BBZGSSpq2iGDBmCjIwM7N27F+3bt4dAIMDdu3cxbdo06OrqIiQkhHVEsUjDPOTkPn1e/+VZcRzHQSAQ8GLVKwB4e3sjKCgIAQEBaNy4MQAgKysLDg4OGDlyJGbMmME4oXhmz56N0NBQrFy5Evb29tixYweeP3+O3bt3w8PDgxdbnwkhhIiiYhwhhBDeqFOnDu7duwcDAwORYlx6ejpatmyJoqIi1hFliqamJqKiomBoaAgjIyP4+PjAxsYGKSkpMDc350VTkMmTJ2Pr1q1QU1MTGc/Pz8fcuXPh6+vLKFn1lBdPgP8roHy5bVjSCynZ2dlwcHDA+fPnhd07S0pKMGDAAPj5+UFbW5txQvFIwzzCw8O/eb1nz54/KMn3sbCwwOPHj/Hhwwfo6ekBADIyMqCoqIjmzZuL3BsdHc0iolj09PQQEBCAXr16oW7duoiOjoaxsTH279+Pw4cP4+zZs6wjEkIIqSbJ7XVPCCGEfEFDQwOZmZkVOhfGxMRAR0eHUSrZ1bp1a8THx8PQ0BAdO3bEn3/+idq1a8Pb2xuGhoas44nF398fHh4eFYpxhYWFCAgI4E0xLjQ0lHWE76alpYWzZ88iOTkZiYmJ4DgOpqamMDExYR2tWqRhHnwptlVl+PDhrCP8K3Jzc4V/9+rWrYvc3FwAQLdu3TBz5kyW0QghhNQQFeMIIYTwxvjx47F48WIEBQVBIBCgrKwMN27cwIIFC2Bvb886nsxZsmSJ8AD01atX46effkL37t1Rv359HD16lHG6b8vLywPHceA4Du/evYOSkpLwWmlpKc6ePcuLFUzlpKV4AgDNmzevsGqJj6RlHnwmLWeJlq8A19fXh5mZGQIDA9GhQwecPn0aGhoarOMRQgipAdqmSgghhDeKi4sxadIkHDlyBBzHoVatWigtLcX48ePh5+cHeXl51hFlXm5uLjQ1NSucNSVp5OTkvplRIBBgxYoV+P33339gqpo7f/486tSpIzwbbseOHdizZw/MzMywY8cOOuSdEB7bvHkz5OXl4eTkhNDQUAwePBilpaUoKSnBpk2b4OzszDoiIYSQaqJiHCGEEN5JTU1FdHQ0ysrKYGFhQatPSLWFh4eD4zj07t0bx44dQ7169YTXateuDX19fTRp0oRhwuoxNzfHH3/8gUGDBuHevXuwsrKCq6srrl69ClNTU+zbt491RELIvyQjIwN3796FkZER2rZtyzoOIYSQGqBiHCGESLGRI0eKfe/x48f/wyT/jdLSUty7dw/6+vq08ofUyJMnT6CnpyfxK/mqUqdOHdy/fx/NmjXD8uXLcf/+fQQHByM6OhqDBg1CVlYW64iEEEIIIeT/ozPjCCFEiqmrq7OO8K+aN28ezM3NMWXKFJSWlqJnz564efMmVFRU8Ndff6FXr16sIxIeiI+PR+vWrSEnJ4e3b9/i3r17X723TZs2PzBZzdWuXVvYvfby5cvCMxTr1auHvLw8ltEIITXg6ekp9r1OTk7/YRJCCCH/BVoZRwghhDeaNm2KkydPwsrKCidPnsSsWbMQFhaGgIAAhIaG4saNG6wjEh6Qk5NDVlYWtLW1hWfHVfZySCAQoLS0lEHC6hs6dCg+fvyIrl27YtWqVUhLS4OOjg4uXryIOXPm4NGjR6wjiuX69evYvXs3UlJSEBwcDB0dHezfvx8GBgbC8/D4oqCgABkZGfj48aPIuKQWeC0sLMReIRodHf0fp/l3ffz4EWlpaTAyMkKtWvxYi/Bl1/Ds7GwUFBQIGza8efMGKioq0NbWRmpqKoOEhBBCvocc6wCEEEJ+nJKSEly+fBm7d+/Gu3fvAAAvXrzA+/fvGScTz+vXr9GoUSMAwNmzZzFmzBiYmJhgypQp31zdRMjn0tLSoKWlJfw+NTUVaWlpFb749AZ3+/btqFWrFoKDg7Fr1y7o6OgAAM6dOwdbW1vG6cRz7NgxDBgwAMrKyoiJicGHDx8AAO/evcPatWsZpxNfdnY2fvrpJ6ipqaFVq1awsLAQ+ZJUw4cPx7BhwzBs2DAMGDAAKSkpUFRURK9evdCrVy8oKSkhJSUFAwYMYB1VbAUFBZgyZQpUVFTQqlUrZGRkAPi0kszDw4Nxum/7/LlozZo1aNeuHRITE5Gbm4vc3FwkJibC0tISq1atYh2VEEJIDdDKOEIIkRFPnjyBra0tMjIy8OHDBzx69AiGhoaYN28eioqK4OXlxTpilfT19bFnzx706dMHBgYG2LlzJ3766Sc8ePAA3bp1wz///MM6oszZv38/vLy8kJaWhsjISOjr62PLli0wMDDAsGHDWMcjPGJhYQEXFxfY29tDTU0NcXFxMDQ0RGxsLGxtbXlz7p2dnR3S09OxZcsW2NjY4MSJE3j58iVWr16NjRs3YvDgwawjVmnq1Klo3LhxhULPsmXL8PTpU/j6+jJKVj3Ozs64ceMGtmzZAltbW8THx8PQ0BAhISFYtmwZYmJiWEcUi5GREYKDgysUc6OiojB69GikpaUxSkYIIaSm+LFOmxBCyHdzdnaGlZUV4uLiUL9+feH4iBEjMHXqVIbJxOfo6IgxY8agcePGEAgE6NevHwDg77//RsuWLRmnkz27du2Cu7s75s2bhzVr1gi3dGpoaGDLli28KMaFhIRUOi4QCKCkpARjY+MK28UkVUpKCvbt24eUlBRs3boV2traOH/+PHR1ddGqVSvW8aqUlJSEHj16VBivW7cu3rx58+MD1dDVq1dx6tQpWFtbQ05ODvr6+ujXrx/q1q2LdevW8aIYFxQUhLt371YYnzBhAqysrHhTjDt58iSOHj2KTp06iWzBNTMzQ0pKCsNk1ZOZmYni4uIK46WlpXj58iWDRIQQQr4XFeMIIURGRERE4MaNG6hdu7bIuL6+Pp4/f84oVfUsX74crVu3xtOnT/Hzzz9DUVERACAvLw83NzfG6WTPtm3bsGfPHgwfPlxky5eVlRUWLFjAMJn4hg8fXumZceVjAoEA3bp1w8mTJyW6Y294eDgGDhyIrl274tq1a1izZg20tbURHx8PHx8fBAcHs45YpcaNG+Px48do1qyZyHhERAQMDQ3ZhKqB/Px8aGtrA/jUQCM7OxsmJiYwNzfnzVlrysrKiIiIQPPmzUXGIyIioKSkxChV9WVnZwv/Lz6Xn5/Pqw7Kffr0wbRp07B37160b98eAoEAd+/exYwZM9C3b1/W8QghhNQAnRlHCCEyoqysrNLD6J89ewY1NTUGiWpm9OjRcHFxQdOmTYVjDg4OvFiFJW3S0tIqPQNLUVER+fn5DBJV36VLl2BtbY1Lly7h7du3ePv2LS5duoQOHTrgr7/+wrVr15CTkyPxxUU3NzesXr0aly5dEim429jYIDIykmEy8c2YMQPOzs74+++/IRAI8OLFCxw8eBALFizArFmzWMcTW4sWLZCUlAQAaNeuHXbv3o3nz5/Dy8sLjRs3ZpxOPPPmzcPMmTMxZ84cHDhwAAcOHMCcOXMwe/ZsuLi4sI4nNmtra5w5c0b4c3kBbs+ePejcuTOrWNXm6+sLHR0ddOjQAUpKSlBUVETHjh3RuHFj+Pj4sI5HCCGkBmhlHCGEyIh+/fphy5Yt8Pb2BvDpTcn79++xbNkyDBo0iHE6wkcGBgaIjY2Fvr6+yPi5c+dgZmbGKFX1ODs7w9vbG126dBGO9enTB0pKSpg+fToePHiALVu2YPLkyQxTVu3evXs4dOhQhXEtLS3k5OQwSFR9ixYtwtu3b2FjY4OioiL06NEDioqKWLBgAebMmcM6ntjmzZuHzMxMAJ/OWBswYAAOHjyI2rVrw8/Pj204Mbm5ucHQ0BBbt24V/l6ZmprCz88PY8aMYZxOfOvWrYOtrS0SEhJQUlKCrVu34sGDB4iMjER4eDjreGLT0tLC2bNn8ejRIzx8+BAcx8HU1BQmJiasoxFCCKkhauBACCEy4sWLF7CxsYG8vDySk5NhZWWF5ORkNGjQANeuXat0Kw8h37Jv3z4sXboUGzduxJQpU+Dj44OUlBSsW7cOPj4++OWXX1hHrJKysjLu3LmD1q1bi4zfu3cPHTp0QGFhIZ48eQJTU1MUFBQwSlm1pk2bIjAwEF26dBFpfnDixAksWLCAV+djFRQUICEhAWVlZTAzM0OdOnVYR/qm4uJiKCgofPV6QUEBHj58CD09PTRo0OAHJiPAp8fyhg0bEBUVhbKyMlhaWmLx4sUwNzdnHY0QQogMo2IcIYTIkMLCQhw5ckTkTYmdnR2UlZVZRyM8tWfPHqxevRpPnz4FAOjo6GD58uWYMmUK42Ti6datG9TU1BAQEAAtLS0An86Zsre3R35+Pq5du4bLly9j1qxZePToEeO0X7do0SJERkYiKCgIJiYmiI6OxsuXL2Fvbw97e3ssW7aMdcQqvX37FqWlpahXr57IeG5uLmrVqoW6desySvZtHh4eMDQ05NWKMSL55s+fj1WrVkFVVRXz58//5r2bNm36QakIIYT8W6gYRwghhJDv9vr1a5SVlfFuhWVSUhKGDRuGtLQ06OrqQiAQICMjA4aGhjh16hRMTExw8uRJvHv3DhMnTmQd96uKi4sxadIkHDlyBBzHoVatWigtLcX48ePh5+cHeXl51hGrNHDgQAwZMqTC+XBeXl4ICQnB2bNnGSX7tkePHmHEiBGYPn06nJ2dpaJwUlpais2bNyMwMBAZGRn4+PGjyPXc3FxGyaqWl5cn9r2SWuAFPp33eOLECWhoaMDGxuar9wkEAly9evUHJiOEEPJvoGIcIYQQXklJScG+ffuQkpKCrVu3QltbG+fPn4euri5atWrFOh7hIY7jcOHCBTx69Agcx6Fly5bo168f5OT41+cqJSUFMTExKCsrg4WFRYVumJKsXr16uHHjBkxNTUXGHz58iK5du0r02Xfv3r3DpEmTcOzYMakonLi7u8PHxwfz58/H0qVL8fvvvyM9PR0nT56Eu7s7nJycWEf8Kjk5ObE7pVbW1IgQQgj5EagYRwghhDfCw8MxcOBAdO3aFdeuXUNiYiIMDQ3x559/4vbt2wgODmYdUepZWFiI/UY3Ojr6P05DpImqqipu3bpV4Syve/fuoWPHjhJ9Zp+0MTIygqenJwYPHgw1NTXExsYKx27dulVpsxBJ8XljhvT0dLi5uWHSpEnC7qmRkZHw9/fHunXr4ODgwComIYQQGUfFOEIIIbzRuXNn/Pzzz5g/f77IIfV37tzB8OHD8fz5c9YRpd6KFSuE3xcVFWHnzp0wMzMTvtG9desWHjx4gFmzZmHdunWsYlbLlStXcOXKFbx69QplZWUi13x9fRmlqlpV2yE/x4etkb169YK5uTm2bdsmMj579mzEx8fj+vXrjJLJHlVVVSQmJkJPTw+NGzfGmTNnYGlpidTUVFhYWODt27esI4qlT58+mDp1KsaNGycyfujQIXh7eyMsLIxNMDGMHDlS7HuPHz/+HyYhhBDyX6jFOgAhhBAirnv37lW6IkNLS0uit7BJk88bAUydOhVOTk5YtWpVhXvKGzpIuhUrVmDlypWwsrJC48aNxV71JwliYmJEfo6KikJpaSlatGgB4NNZZvLy8mjfvj2LeNW2Zs0a9O3bF3FxcejTpw+AT4XSO3fu4OLFi4zTia+oqAjbtm1DaGhopQVePqwYbdq0KTIzM6GnpwdjY2NcvHgRlpaWuHPnDhQVFVnHE1tkZCS8vLwqjFtZWWHq1KkMEolPXV1d+D3HcThx4gTU1dVhZWUF4NPj/c2bN9Uq2hFCCJEcVIwjhBDCGxoaGsjMzISBgYHIeExMDHR0dBilkl1BQUG4e/duhfEJEybAyspKoleVlfPy8oKfn59EN2f4mtDQUOH3mzZtgpqaGvz9/aGpqQkA+Oeff+Do6Iju3buzilgtXbt2RWRkJNavX4/AwEAoKyujTZs22Lt3L6/Ovps8eTIuXbqE0aNHo0OHDrwq8JYbMWIErly5go4dO8LZ2Rnjxo3D3r17kZGRARcXF9bxxKarqwsvLy9s3LhRZHz37t3Q1dVllEo8+/btE36/ePFijBkzBl5eXsJmLKWlpZg1a5ZEN6EghBDydbRNlRBCZASfu+OVW7RoESIjIxEUFAQTExNER0fj5cuXsLe3h729vciqLfLfa9SoEdatWwdHR0eR8X379sHNzQ0vX75klEx89evXx+3bt2FkZMQ6ynfR0dHBxYsXKzQxuX//Pvr3748XL14wSiZ71NXVcfbsWXTt2pV1lH/NrVu3cPPmTRgbG2Po0KGs44jt7NmzGDVqFIyMjNCpUycAn+aSkpKCY8eOYdCgQYwTikdLSwsRERHCVa/lkpKS0KVLF1oZTgghPEQr4wghREasWLHim93x+GDNmjWYNGkSdHR0wHEczMzMUFpaivHjx2PJkiWs48mcefPmYebMmYiKihJ5o+vr68ub36mpU6fi0KFDWLp0Keso3yUvLw8vX76sUIx79eoV3r17xyhV9ZWVleHx48eVbu/s0aMHo1TVo6OjAzU1NdYx/lWdOnUSPsb5ZNCgQUhOTsauXbuQmJgIjuMwbNgw/PrrrxK/Mu5zJSUlSExMrFCMS0xMrPA4IYQQwg+0Mo4QQmQEn7vjfSklJQUxMTEoKyuDhYUFr7awSZvAwEBs3boViYmJAABTU1M4OztjzJgxjJOJx9nZGQEBAWjTpg3atGkDBQUFket8aHwAAPb29ggPD8fGjRtFCqMLFy5Ejx494O/vzzhh1W7duoXx48fjyZMn+PLlqUAgQGlpKaNk1XPu3Dl4enrCy8sL+vr6rOOILSQkROx7+bQ6ThrMnz8ffn5++N///ify+Pbw8IC9vT1vnqcIIYT8HyrGEUKIjJCW7niE/JtsbGy+ek0gEODq1as/ME3NFRQUYMGCBfD19UVxcTEAoFatWpgyZQrWr18PVVVVxgmr1q5dO5iYmGDFihWVNtP4/EB7SZadnY0xY8bg2rVrUFFRqVDgldQjAeTk5ER+FggElRZFAfCmMCotysrKsGHDBmzduhWZmZkAgMaNG8PZ2Rmurq7Cc+QIIYTwB21TJYQQGcHX7njz588X+15aHUCq6/MmCHymoqKCnTt3Yv369UhJSQHHcTA2NuZFEa5ccnIygoODYWxszDrKdxk3bhyeP3+OtWvXomHDhrxp4PD5dsfLly9j8eLFWLt2LTp37gyBQICbN29iyZIlWLt2LcOUsqekpAQHDx6Evb09Fi1ahLy8PACgxg2EEMJzVIwjhBAZwdfueDExMSI/R0VFobS0VHh2zqNHjyAvL4/27duziEekyLNnzyAQCHjdmVdVVRVt2rRhHaNGOnbsiMePH/O+GHfz5k1ERkaibdu2rKPU2Lx58+Dl5YVu3boJxwYMGAAVFRVMnz5duC2d/Pdq1aqFmTNnCv/NqQhHCCHSgYpxhBAiIzw8PITfjx49Grq6urhx44bEd8f7fOXSpk2boKamBn9/f2hqagIA/vnnHzg6OqJ79+6sIhIeKysrw+rVq7Fx40a8f/8eAKCmpgZXV1f8/vvvFbbukf/O3Llz4erqiqysLJibm1fY3smXImPLli1RWFjIOsZ3SUlJqXRbsLq6OtLT0398IBnXsWNHxMTE8OoMQkIIId9GZ8YRQgjhDR0dHVy8eLFCx8j79++jf//+ePHiBaNkhK9+++037N27FytWrEDXrl3BcRxu3LiB5cuXY9q0aVizZg3riDKjssJn+bllfGrgcPHiRaxYsQJr1qyptKjIh5VNPXr0gIKCAg4cOIDGjRsDALKysjBx4kR8/PgR4eHhjBPKlqCgILi5ucHFxQXt27evsP2cL4VqQggh/4eKcYQQIiPk5eXRo0cPHDt2DPXq1ROOv3z5Ek2aNOHFG101NTWcOnUKvXv3Fhm/evUqhg0bhnfv3jFKRviqSZMm8PLyqrA69NSpU5g1axaeP3/OKJnsefLkyTev82VVUHlR8cuz4vhUVHz8+DFGjBiBpKQk6OnpAQAyMjJgYmKCkydPSvRWYgsLC7HP6YuOjv6P0/w7pKVQTQgh5P/QNlVCCJERHMfhw4cPsLKyQkhICFq3bi1yjQ9GjBgBR0dHbNy4EZ06dQIA3Lp1CwsXLsTIkSMZp5M9paWl8PPzw5UrV/Dq1SuRA+AB8KITaW5uLlq2bFlhvGXLlhLb9VJa8aXYVhVpaApibGyM+Ph4XLp0CQ8fPgTHcTAzM0Pfvn0lviHF8OHDhd8XFRVh586dMDMzQ+fOnQF8+pvx4MEDzJo1i1HC6ktLS2MdgRBCyL+MVsYRQoiMkJeXx7Nnz+Dh4YF9+/Zh//79GDZsGK9WxhUUFGDBggXw9fVFcXExgE+HW0+ZMgXr16/nVedIaTBnzhz4+flh8ODBaNy4cYU36Zs3b2aUTHwdO3ZEx44d4enpKTI+d+5c3LlzB7du3WKUrGohISFi3yvJ50J+KSEhARkZGfj48aPIOJ/mQCTD1KlT0bhxY6xatUpkfNmyZXj69Cl8fX0ZJSOEECLrqBhHCCEyQk5ODllZWdDW1oa3tzecnJywZMkSTJ06FTo6OrwoxpXLz89HSkoKOI6DsbExFeEYadCgAQICAjBo0CDWUWosPDwcgwcPhp6eHjp37gyBQICbN2/i6dOnOHv2rEQ3BhG3uQRftrGlpqZixIgRuHfvnnALHvB/2z35MIdyb968wd69e5GYmAiBQAAzMzNMnjy50qYIksLT0xPTp0+HkpJSheL0l5ycnH5Qqu+jrq6Ou3fvonnz5iLjycnJsLKywtu3bxklq779+/fDy8sLaWlpiIyMhL6+PrZs2QIDAwMMGzaMdTxCCCHVRMU4QgiREZ8X4wAgLCwMo0ePhoWFBa5evcqrN7pEMjRp0gRhYWEwMTFhHeW7vHjxAjt27BDZjjdr1iw0adKEdTSZMmTIEMjLy2PPnj0wNDTE7du3kZOTA1dXV2zYsEGiC6Ofu3v3LgYMGABlZWV06NABHMfh7t27KCwsxMWLF2Fpack6YqUMDAxw9+5d1K9fHwYGBl+9TyAQIDU19Qcmq7lGjRph3bp1cHR0FBnft28f3Nzc8PLlS0bJvu3ChQvo1KmTsHi7a9cuuLu7Y968eVizZg3u378PQ0ND+Pn5wd/fXyq2RhNCiKyhYhwhhMiIz99olXv8+DGGDBmCR48eUTGOVNvGjRuRmpqK7du3S/w5UtX19OlTLFu2jLax/UANGjTA1atX0aZNG6irq+P27dto0aIFrl69CldXV8TExLCOKJbu3bvD2NgYe/bsQa1an45nLikpwdSpU5Gamopr164xTig7PDw8sHz5ckydOlXknFFfX1+4u7vDzc2NccLK+fv7Y/369Th//jyaNm0KMzMzrF27FsOHD4eamhri4uJgaGiI+/fvo1evXnj9+jXryIQQQqqJinGEECLjioqK8PLlS6k5PJ38OCNGjEBoaCjq1auHVq1aQUFBQeT68ePHGSX7fnFxcbC0tORVkTo/Px/h4eGVnrfGh22FmpqaiIqKgqGhIYyMjODj4wMbGxukpKTA3NwcBQUFrCOKRVlZGTExMRUagyQkJMDKyoo385AWgYGB2Lp1KxITEwEApqamcHZ2xpgxYxgn+7bjx4/D3d0d9+/fh7KyMh4+fAh9fX2RYlxycjLatGmDwsJC1nEJIYRUE3VTJYQQGaekpESFOFIjGhoaGDFiBOsYBEBMTAwGDRqEgoIC5Ofno169enj9+jVUVFSgra3Ni2Jc69atER8fD0NDQ3Ts2BF//vknateuDW9vbxgaGrKOJ7a6desiIyOjQjHu6dOnUFNTY5SqekaPHg0rK6sKK8fWr1+P27dvIygoiFGy6hszZozEF94qM3LkSFhYWAD4tLI9Nja2wt/qc+fOwczMjEU8Qggh34mKcYQQIsXq1auHR48eoUGDBtDU1PzmVsLc3NwfmIxIg3379rGOQP4/FxcXDBkyBLt27YKGhgZu3boFBQUFTJgwAc7OzqzjiWXJkiXIz88HAKxevRo//fQTunfvjvr16+Po0aOM04lv7NixmDJlCjZs2IAuXbpAIBAgIiICCxcuxLhx41jHE0t4eDiWLVtWYdzW1hYbNmxgkEg2lZ/dt3DhQsyePRtFRUXgOA63b9/G4cOHsW7dOvj4+DBOSQghpCaoGEcIIVJs8+bNwpUYW7ZsYRvmX5KSkoItW7YIuxSWbzkyMjJiHU1mZWdnIykpCQKBACYmJtDS0mIdSebExsZi9+7dkJeXh7y8PD58+ABDQ0P8+eefcHBwwMiRI1lHrNKAAQOE3xsaGiIhIQG5ublVfpAgaTZs2ACBQAB7e3uUlJQAABQUFDBz5kx4eHgwTiee9+/fo3bt2hXGFRQUkJeXxyBRzZSWlmLz5s0IDAysdPs2Xz6EcnR0RElJCRYtWoSCggKMHz8eOjo62Lp1K3755RfW8QghhNQAnRlHCCGENy5cuIChQ4eiXbt26Nq1KziOw82bNxEXF4fTp0+jX79+rCPKlPz8fMydOxcBAQEoKysDAMjLy8Pe3h7btm2DiooK44RfV1Vx6s2bNwgPD+fNmXFaWlq4ceMGTExM0KJFC3h6emLAgAF4+PAhLC0teXFO2du3b1FaWop69eqJjOfm5qJWrVqoW7cuo2Q1U1BQgJSUFHAcB2NjY4l+PHzJ2toaQ4YMgbu7u8j48uXLcfr0aURFRTFKVj3u7u7w8fHB/PnzsXTpUvz+++9IT0/HyZMn4e7uzovt2196/fo1ysrKhJ3RCSGE8BMV4wghRIpVZwUDH97oWlhYYMCAARVWl7i5ueHixYuIjo5mlEw2bNmyBebm5ujTpw8AYMaMGbh8+TK2b9+Orl27AgAiIiLg5OSEfv36YdeuXSzjfpOjo6NY9/FlK27//v0xadIkjB8/Hr/++itiYmLg5OSE/fv3459//sHff//NOmKVBg4ciCFDhmDWrFki415eXggJCcHZs2cZJZM9ISEhGDVqFMaPH4/evXsDAK5cuYLDhw8jKCgIw4cPZxtQTEZGRvD09MTgwYOhpqaG2NhY4ditW7dw6NAh1hGr5dWrV8JVyC1atKBVyIQQwmNUjCOEECkmJydX5fYujuMgEAh4sQJISUkJ9+7dQ/PmzUXGHz16hDZt2qCoqIhRMtkQFRWFMWPGYPny5Zg4cSIaNGiA4OBg9OrVS+S+0NBQjBkzBtnZ2WyCyqC7d+/i3bt3sLGxQXZ2NhwcHBAREQFjY2Ps27cPbdu2ZR2xSvXq1cONGzdgamoqMv7w4UN07doVOTk5jJJVT35+Pjw8PHDlyhW8evVKuGq0XGpqKqNk1XPmzBmsXbsWsbGxUFZWRps2bbBs2TL07NmTdTSxqaqqIjExEXp6emjcuDHOnDkDS0tLpKamwsLCAm/fvmUdUSx5eXmYPXs2Dh8+LLIKeezYsdixYwfU1dUZJySEEFJddGYcIYRIsdDQUNYR/lVaWlqIjY2tUIyLjY2lLTs/QPv27fH333/DwcEBEydOREFBARo2bFjhPm1tbV5si5QmVlZWwu+1tLR4uYrsw4cPwjPWPldcXIzCwkIGiWpm6tSpCA8Px8SJE9G4cWNenXf3ucGDB2Pw4MGsY3yXpk2bIjMzE3p6ejA2NsbFixdhaWmJO3fuQFFRkXU8sU2dOhWxsbE4c+YMOnfuDIFAgJs3b8LZ2RnTpk1DYGAg64iEEEKqiVbGEUII4Y2VK1di8+bNcHNzE+lS+Mcff8DV1RVLlixhHVGm9OnTB/Xr10dAQACUlJQAAIWFhXBwcEBubi4uX77MOCHhk169esHc3Bzbtm0TGZ89ezbi4+Nx/fp1RsmqR0NDA2fOnBFu3eazqKgoYbMcMzMzWFhYsI5ULW5ubqhbty7+97//ITg4GOPGjUOzZs2QkZEBFxcX3jTUUFVVxYULF9CtWzeR8evXr8PW1lbYhZgQQgh/UDGOEEJkTEFBQaVd5dq0acMokfg4jsOWLVuwceNGvHjxAgDQpEkTLFy4EE5OTrxdgcJX9+/fh62tLYqKitC2bVsIBALExsZCSUkJFy5cQKtWrVhHJDxy48YN9O3bF9bW1sJzCa9cuYI7d+7g4sWL6N69O+OE4jEwMMDZs2crbLflk1evXuGXX35BWFgYNDQ0wHEc3r59CxsbGxw5coS3Z5XdunULN2/ehLGxMYYOHco6jtj09PRw5swZmJubi4zHx8dj0KBBePbsGaNkhBBCaoqKcYQQIiOys7Ph6OiIc+fOVXqdD2fGfe7du3cAADU1NcZJZFthYSEOHDiAhw8fguM4mJmZwc7ODsrKyqyjER6KjY3F+vXrRc4p++233ypsTZdkBw4cwKlTp+Dv78+rDqqfGzt2LFJSUrB//35hUTEhIQEODg4wNjbG4cOHGSeULd7e3ggKCkJAQAAaN24MAMjKyoKDgwNGjhyJGTNmME5ICCGkuqgYRwghMsLOzg7p6enYsmULbGxscOLECbx8+RKrV6/Gxo0beX82ECGESAILCwukpKSA4zg0a9YMCgoKItf50PVZXV0dly9fhrW1tcj47du30b9/f7x584ZNMDGEhISIfS9fVsdZWFjg8ePH+PDhA/T09AAAGRkZUFRUrFCo5sPvFyGEEGrgQAghMuPq1as4deoUrK2tIScnB319ffTr1w9169bFunXreFGMe/nyJRYsWCDsUvjl50l8W93HRyEhIRg4cCAUFBSqfNPLlze6hJ28vDyx761bt+5/mOTfM3z4cNYRvltZWVmFIiIAKCgoVOgOK2m+/PcXCAQV/laUH2nAl78Z0vA7RQghRBStjCOEEBlRt25dxMfHo1mzZmjWrBkOHjyIrl27Ii0tDa1ateJF98uBAwciIyMDc+bMqbRL4bBhwxglkx1ycnLIysqCtrY25OTkvnqfQCDgzRtdaREeHo4NGzYID9w3NTXFwoULJfqsNTk5uSrPeuQ4jn6ffrBhw4bhzZs3OHz4MJo0aQIAeP78Oezs7KCpqYkTJ04wTiiey5cvY/HixVi7dq1IF9IlS5Zg7dq16NevH+uIhBBCZBStjCOEEBnRokULJCUloVmzZmjXrh12796NZs2awcvLS3gGjaSLiIjA9evX0a5dO9ZRZNbnq2IkfYWMLDlw4AAcHR0xcuRIODk5geM43Lx5E3369IGfnx/Gjx/POmKlQkNDWUf4z/C5E+n27dsxbNgwNGvWDLq6uhAIBMjIyIC5uTkOHDjAOp7Y5s2bBy8vL5EupAMGDICKigqmT5+OxMREhukIIYTIMloZRwghMuLgwYMoLi7GpEmTEBMTgwEDBiAnJwe1a9eGn58fxo4dyzpilczMzHDw4EFevakl5EcwNTXF9OnT4eLiIjK+adMm7Nmzh/dFh9jYWN4U4aWpE+mlS5dEmrP07duXdaRqUVZWxu3btyvtQtqxY0cUFhYySkYIIUTWUTGOEEJkVEFBAR4+fAg9PT00aNCAdRyxXLx4ERs3bhSu6iNsOTk5wdjYGE5OTiLj27dvx+PHj7FlyxY2wWSQoqIiHjx4AGNjY5Hxx48fo3Xr1igqKmKUrObevn2LgwcPwsfHB3FxcbzZpkqdSCVHjx49oKCggAMHDoh0IZ04cSI+fvyI8PBwxgkJIYTIKirGEUKIjPn48SPS0tJgZGSEWrUk/7QCTU1NkTOl8vPzUVJSAhUVlQoHjOfm5v7oeDJNR0cHISEhaN++vch4dHQ0hg4dimfPnjFKJnuMjY2xcOFCzJgxQ2R89+7d2LBhA5KTkxklq76rV6/C19cXx48fh76+PkaNGoVRo0bxZkUsXzuRenp6in3vlwV4SfX48WOMGDECSUlJIl1ITUxMcPLkyQrFa0IIIeRHkfx3YYQQQv4VBQUFmDt3Lvz9/QEAjx49gqGhIZycnNCkSRO4ubkxTlg5Wl0luXJycqCurl5hvG7dunj9+jWDRLLL1dUVTk5OiI2NRZcuXSAQCBAREQE/Pz9s3bqVdbwqPXv2DH5+fvD19UV+fj7GjBmD4uJiHDt2DGZmZqzjVQtfO5Fu3rxZrPsEAgFvinHGxsaIj4+vdLttVY1DJBHfPkwjhBDydbQyjhBCZISzszNu3LiBLVu2wNbWFvHx8TA0NERISAiWLVuGmJgY1hEJz7Ru3Rq//vor5syZIzK+bds27Nq1CwkJCYySyaYTJ05g48aNwvPhyrupSnqX4UGDBiEiIgI//fQT7OzsYGtrC3l5eSgoKCAuLo53xThp6URKJAdfP0wjhBDydfSRCiGEyIiTJ0/i6NGj6NSpk8iKADMzM6SkpDBMJr6zZ89CXl4eAwYMEBm/ePEiSktLMXDgQEbJZNP8+fMxZ84cZGdno3fv3gCAK1euYOPGjbSikYERI0ZgxIgRrGNU28WLF+Hk5ISZM2eiefPmrON8N2npRArwcyWWp6cnpk+fDiUlpSq33vJlhd9vv/2GuLg4hIWFwdbWVjjet29fLFu2jIpxhBDCQ/z4q0oIIeS7ZWdnQ1tbu8J4fn4+b7bruLm5wcPDo8J4WVkZ3NzcqBj3g02ePBkfPnzAmjVrsGrVKgBAs2bNsGvXLtjb2zNOJ7vev39fYTtk3bp1GaWp2vXr1+Hr6wsrKyu0bNkSEydO5EV356/R1dVFdHQ0rzuR8nkl1ubNm2FnZwclJaVvbr3l03ZbafgwjRBCiCg51gEIIYT8GNbW1jhz5ozw5/IX9Hv27EHnzp1ZxaqW5OTkSrestWzZEo8fP2aQiMycORPPnj3Dy5cvkZeXh9TUVCrEMZCWlobBgwdDVVUV6urq0NTUhKamJjQ0NKCpqck63jd17twZe/bsQWZmJmbMmIEjR45AR0cHZWVluHTpEt69e8c6YrUEBATgw4cP6NevH+bOnQsnJyf07dsXHz9+REBAAOt4Yvl8JZaSkpJwvG/fvjh69CjDZFVLS0tD/fr1hd9/7Ss1NZVxUvFJw4dphBBCRNGZcYQQIiNu3rwJW1tb2NnZwc/PDzNmzMCDBw8QGRmJ8PDwCh0xJVGjRo1w6NAh4ZbIcpcvX8b48ePx6tUrRskIYatLly4APp0N2bBhwwpv0Hv27MkiVo0lJSVh79692L9/P968eYN+/fohJCSEdSyxyMvLIzMzs0LxJCcnB9ra2igtLWWUTHz6+vrClVhqamqIi4uDoaEhHj9+DEtLS+Tl5bGOKFN69uyJ0aNHY+7cuVBTU0N8fDwMDAwwZ84cPH78GOfPn2cdkRBCSDXRNlVCCJERXbp0wc2bN7F+/XoYGRnh4sWLsLS0RGRkJMzNzVnHE8vQoUMxb948nDhxAkZGRgCAx48fw9XVFUOHDmWcTjYFBwcjMDAQGRkZ+Pjxo8i16OhoRqlkT3x8PKKiotCiRQvWUf4VLVq0wJ9//ol169bh9OnT8PX1ZR1JbBzHVbpa6dmzZ5V2H5ZE0rISa/To0bCysqqwrXb9+vW4ffs2goKCGCWrnnXr1sHW1hYJCQkoKSnB1q1bRT5MI4QQwj+0TZUQQmRAcXExHB0doaKiAn9/f9y/fx8JCQk4cOAAbwpxwKc3UKqqqmjZsiUMDAxgYGAAU1NT1K9fHxs2bGAdT+Z4enrC0dER2traiImJQYcOHVC/fn2kpqbS+X0/mLW1NZ4+fco6xr9OXl4ew4cP58WqOAsLC1haWkIgEKBPnz6wtLQUfrVt2xbdu3fnzblx0nCsAQCEh4dj8ODBFcZtbW1x7do1BolqpkuXLrhx4wYKCgqEH6Y1bNgQkZGRvFjVTgghpCJaGUcIITJAQUEBJ06cwNKlS1lH+S7q6uq4efMmLl26hLi4OCgrK6NNmzbo0aMH62gyaefOnfD29sa4cePg7++PRYsWwdDQEO7u7sjNzWUdT6b4+Pjg119/xfPnz9G6dWsoKCiIXG/Tpg2jZLJj+PDhAIDY2FgMGDAAderUEV6rXbs2mjVrhlGjRjFKVz3SshLr/fv3qF27doVxBQUF3m21NTc3FzbUIIQQwn90ZhwhhMgIR0dHmJubY/78+ayj/CuKioqgqKjIqy1T0kZFRQWJiYnQ19eHtrY2Ll26hLZt2yI5ORmdOnVCTk4O64gy49atWxg/fjzS09OFYwKBQLhlkg/nlEkLf39/jB07VqTxAV/ExsaiXbt2AIB79+5hw4YNiIqKQllZGSwtLbF48WJeraa2trbGkCFD4O7uLjK+fPlynD59GlFRUYySVa06xUJJ7pZMCCGkcrQyjhBCZISxsTFWrVqFmzdvon379lBVVRW57uTkxCiZ+MrKyrBmzRp4eXnh5cuXePToEQwNDbF06VI0a9YMU6ZMYR1RpjRq1Ag5OTnQ19eHvr4+bt26hbZt2yItLQ30Wd+PNXnyZFhYWODw4cOVNnAgP46DgwPrCDVmaWkJCwsLTJ06FePHj+f9SqylS5di1KhRSElJETb+uXLlCg4fPizx58VpaGiI/TimYjshhPAPrYwjhBAZYWBg8NVrAoEAqampPzBNzaxcuRL+/v5YuXIlpk2bhvv378PQ0BCBgYHYvHkzIiMjWUeUKVOnToWuri6WLVsGLy8vzJ8/H127dsXdu3cxcuRI7N27l3VEmaGqqoq4uDgYGxuzjiLz5OTkvllEkeTCSWRkJHx9fREYGIji4mKMGjUKkydPho2NDetoNXbmzBmsXbsWsbGxwqMNli1bJvEdhj/fDpyeng43NzdMmjRJeGZfZGQk/P39sW7dOl4XgAkhRFZRMY4QQghvGBsbY/fu3ejTpw/U1NQQFxcHQ0NDPHz4EJ07d8Y///zDOqJMKSsrQ1lZGWrV+rTQPjAwEBERETA2Nsavv/5a6VlN5L8xZMgQTJo0iTdnkkmzkydPihTjiouLERMTA39/f6xYsYIXK3gLCwsRGBiIffv24fr162jWrBkmT54MBwcHNG3alHU8mdOnTx9MnToV48aNExk/dOgQvL29ERYWxiYYIYSQGqNiHCGEEN5QVlbGw4cPoa+vL1KMS0hIQIcOHfD+/XvWEQlhwtvbG6tXr8bkyZNhbm5eoYHD0KFDGSUj5Q4dOoSjR4/i1KlTrKNUS0pKCvbt24eAgABkZmaiX79+OHv2LOtY1RIVFYXExEQIBAKYmZnBwsKCdaRqUVFRQVxcHJo3by4y/ujRI7Rr1w4FBQWMkhFCCKkpKsYRQgjhDSsrK8ybNw8TJkwQKcatWLECly9fxvXr11lHlHrx8fFi30sdPH8cOTm5r16jBg6SISUlBW3atEF+fj7rKNX2/v17HDx4EP/73//w5s0b3vw+vXr1Cr/88gvCwsKgoaEBjuPw9u1b2NjY4MiRI9DS0mIdUSwtWrTATz/9hI0bN4qMu7q64q+//kJSUhKjZIQQQmqKGjgQQgiReJMnT8bWrVuxbNkyTJw4Ec+fP0dZWRmOHz+OpKQkBAQE4K+//mIdUya0a9dO2KXzW6gA9GOVlZWxjkC+obCwENu2bePdFs/w8HD4+vri2LFjkJeXx5gxY3ixzbbc3LlzkZeXhwcPHsDU1BQAkJCQAAcHBzg5OeHw4cOME4pn8+bNGDVqFC5cuIBOnToB+NRBOSUlBceOHWOcjhBCSE3QyjhCCCEST15eHpmZmdDW1saFCxewdu1aREVFoaysDJaWlnB3d0f//v1Zx5QJT548EftefX39/zAJIZJJU1NT5Mw4juPw7t07qKio4MCBAxK/Zfjp06fw8/ODn58f0tLS0KVLF0yZMgVjxoyp0IVb0qmrq+Py5cuwtrYWGb99+zb69++PN2/esAlWA8+ePcOuXbuQmJgIjuNgZvb/2rvz6J7vfI/jr18iJIjYZyJCEinjN7UkltoaSxMUt9aJrRiJoVWiXFt7L+rMVJ1pbxFqKRNUbSHGcOy15ErFWKNFbBFNxlI6JrEkaZDf/aPT3MlN26sJv4/k+3yck3Py+/y+4skpp975fD9fu1577TX5+vqaTgMAFAHDOADAM8/FxUU3btxQzZo1TacAz4zo6GiNHDlS7u7uio6O/slro6KinFSFlStXFnjt4uKiGjVq6IUXXlCVKlUMVT2esLAw7d+/XzVq1NDQoUMVERGhBg0amM4qMk9PTx08eFBNmzYtsH7y5Em1b99ed+7cMRMGALA8hnEAYCEHDx7UkiVLlJKSoo0bN8rHx0erVq2Sv7+/2rVrZzrvR7m4uOjrr78uMef7WMmqVau0ePFipaamKjExUXXr1tXcuXPl7++vnj17ms4r1fz9/XXs2DFVq1ZN/v7+P3qdzWbT5cuXnViGH5OUlFRoMPQseeWVVxQZGakePXrI1dXVdE6x9ezZUxkZGVq7dq1q1aolSbp69aoGDx6sKlWq6M9//rPhQgCAVf34ab8AgFIlLi5OXbp0kYeHh06ePKlvv/1WknT37l3NmjXLcN3/r379+qpatepPfsC5Fi1apAkTJqhbt24FDnWvXLmy5s6dazbOAlJTU1WtWrX8z3/sg0GcWZmZmVq4cKGCg4PVrFkz0zk/acuWLerZs2epGMRJ0oIFC3T37l35+fmpXr16CgwMlL+/v+7evav58+ebzgMAWBg74wDAIoKCgjR+/HgNHTq0wJNIk5KS1LVrV924ccN04o9ycXHR3Llz5eXl9ZPXDRs2zElFkCS73a5Zs2apV69eBf6bOn36tDp06KBvvvnGdKJlZGdny8PD4wffu379ury9vZ1chH379ikmJkabNm1S3bp11bdvX/Xt21dBQUGm0yxnz549OnfuXP5Za6GhoaaTAAAWx9NUAcAizp8/r5CQkELrlSpVKhGHWA8YMIAz454xqampPzhYKFeunO7fv2+gyLqCgoK0Zs0aBQcHF1jfuHGjXn/9dd26dctQmbX87W9/04oVKxQTE6P79+8rPDxcDx48UFxcnOx2u+k8ywoLC1NYWJjpDAAA8jGMAwCL8Pb21qVLl+Tn51dgPSEhQQEBAWaiHtO/PpkQzw5/f38lJSUVemrqjh07GDw4WVhYmNq0aaN33nlHU6ZM0f379zVmzBht2LBBs2fPNp1nCd26dVNCQoJ69Oih+fPnq2vXrnJ1ddXixYtNp1nK//cwk3/Fg00AAKYwjAMAixg1apTGjRunmJgY2Ww2Xbt2TYmJiZo4caKmT59uOu8ncaLCs2nSpEl64403lJOTI4fDoSNHjmjt2rV67733tGzZMtN5ljJ//nx1795dw4cP17Zt23Tt2jVVqlRJR48eZTDqJLt371ZUVJRef/11Pffcc6ZzLGvOnDmPdZ3NZnumh3FBQUGP/Y2oEydOPOUaAMCTxjAOACxi8uTJyszMVMeOHZWTk6OQkBCVK1dOEydO1JgxY0zn/aS8vDzTCfgBw4cP18OHDzV58mRlZWVp0KBB8vHx0bx58zRgwADTeZbTuXNn9enTR4sWLVKZMmW0detWBnFOdPDgQcXExKh58+b61a9+pSFDhqh///6msywnNTXVdMIT0atXr/zPc3JytHDhQtntdrVu3VqSdPjwYZ05c0ajR482VAgAKA4e4AAAFpOVlaWzZ88qLy9PdrtdFStWNJ2EUuCbb75RXl5e/rl+V69elY+Pj+Eq60hJSdGgQYN048YNLVu2TPHx8frggw8UFRWld999V25ubqYTLSMrK0vr1q1TTEyMjhw5okePHunDDz9URESEPD09TedZUm5urlJTU1WvXj2VKVPy9iKMGDFC3t7e+v3vf19gfcaMGUpPT1dMTIyhMgBAUTGMAwCLunPnjvbt26cGDRqoYcOGpnNQSty4cUPvvvuuli1bpuzsbNM5luHp6anu3btr8eLFqly5siTp0KFD+U9PPnnypNlAizp//rz+9Kc/adWqVcrIyFBYWJi2bNliOssysrKyNHbsWK1cuVKSdOHCBQUEBCgqKkq1atXS1KlTDRc+Hi8vLx07dqzQ7c8XL15U8+bNlZmZaagMAFBULqYDAADOER4ergULFkiSsrOz1aJFC4WHh6tx48aKi4szXIeSJCMjQ4MHD1aNGjVUq1YtRUdHKy8vT9OnT1dAQIAOHz7MTg0nW7hwodatW5c/iJOkNm3a6OTJk4WesArnadCggf74xz/qb3/7m9auXWs6x3LeeustnTp1SgcOHJC7u3v+emhoqNavX2+w7Ofx8PBQQkJCofWEhIQCvy4AQMnBzjgAsIhf/vKX2rVrl5o0aaI1a9ZoxowZOnXqlFauXKmPP/6YnTN4bKNHj9bWrVvVv39/7dy5U8nJyerSpYtycnI0Y8YMtW/f3nQiAKhu3bpav369WrVqJU9PT506dUoBAQG6dOmSgoODdefOHdOJj2X27Nl65513NGLECLVq1UqS8r/pMX369BKzww8A8L9K3qEJAIAiyczMVNWqVSVJO3fuVN++fVW+fHl1795dkyZNMlyHkmTbtm1avny5QkNDNXr0aAUGBqp+/fqaO3eu6TTLO3v2rNLS0pSbm5u/ZrPZ9G//9m8GqwAzbt26lX+O5b+6f//+Yz+p9FkwdepUBQQEaN68eVqzZo0kqWHDhlqxYoXCw8MN1wEAioJhHABYhK+vrxITE1W1alXt3LlT69atkyT94x//4DYX/CzXrl3Lf0pnQECA3N3dNWLECMNV1pKZmSkvL6/815cvX1afPn30xRdfyGaz6fsbH74fODx69MhIJ2BSixYttG3bNo0dO1bS//55WLp0af5TSUuK8PBwBm8AUIowjAMAi3jzzTc1ePBgVaxYUXXr1lWHDh0kSf/93/+tRo0amY1DiZKXl1fg6Zyurq6qUKGCwSLriY6Olru7e/6u1nHjxsnX11e7du1S06ZN9de//lWpqamaOHGiPvzwQ8O1gBnvvfeeunbtqrNnz+rhw4eaN2+ezpw5o8TERMXHx5vOAwBYGGfGAYCFHD9+XGlpaQoLC1PFihUlfXfLYeXKldW2bVvDdSgpXFxc9PLLL6tcuXKSpK1bt6pTp06FBnKbNm0ykWcJN2/e1JAhQxQYGKiPPvpI1atX1969e9WkSRP5+PjoyJEj8vHx0d69ezVx4kTOhISlJCUlqWnTppKkL7/8Uh988IGOHz+uvLw8BQcHa8qUKSXqm1CPHj3SnDlzFBsbW+g2dEm6ffu2oTIAQFGxMw4ALKRZs2Zq1qxZgbXu3bsbqkFJNWzYsAKvX331VUMl1lWzZk3t2rVL7733nqTv/rHu6ekpSapevbquXbsmHx8f+fn56fz58yZTAacLDg5WUFCQRowYoUGDBmnlypWmk4pl5syZWrZsmSZMmKBp06bpP/7jP3TlyhVt3rxZ06dPN50HACgCdsYBAACUcC+++KImTJig3r17a+TIkbp165YmTZqkxYsX68SJEzp9+rTpRMBpEhMTFRMTo9jYWD148EB9+/ZVRESEOnbsaDqtSOrVq6fo6Gh1795dnp6eSkpKyl87fPhw/kMdAAAlB8M4AACAEm7Xrl26e/eu+vXrp/T0dHXv3l2nT59W1apVFRsbq06dOplOBJwuOztbsbGxWr58uQ4ePCg/Pz9FRERo2LBhql27tum8x1ahQgUlJyerTp068vb21rZt2xQcHKzLly8rKChImZmZphMBAD+Ti+kAAAAAFE+XLl3Ur18/Sd89OfmLL77QN998o5s3bzKIg2V5eHho2LBhOnDggC5cuKCBAwdqyZIl8vf3V7du3UznPbbatWvr+vXrkqTAwEDt3r1bknT06NH8szsBACULO+MAAAAAlHr37t3T6tWr9fbbbysjI0OPHj0ynfRYpk6dqkqVKuntt9/Wxo0bNXDgQPn5+SktLU3jx4/X7NmzTScCAH4mhnEAYCEHDx7UkiVLlJKSoo0bN8rHx0erVq2Sv7+/2rVrZzoPQBHl5ORo/vz52r9/v27evKm8vLwC7584ccJQGWBefHy8YmJiFBcXJ1dXV4WHhysyMlKtWrUynVYkhw8f1qFDhxQYGKhXXnnFdA4AoAh4mioAWERcXJyGDBmiwYMH6+TJk/r2228lSXfv3tWsWbO0fft2w4UAiioiIkJ79uxRv3791LJlS9lsNtNJgFHp6elasWKFVqxYodTUVLVp00bz589XeHi4KlSoYDqvWFq1alViB4kAgO+wMw4ALCIoKEjjx4/X0KFD5enpqVOnTikgIEBJSUnq2rWrbty4YToRQBF5eXlp+/btatu2rekUwLiwsDDt379fNWrU0NChQxUREaEGDRqYzvpZtmzZ8tjXsjsOAEoedsYBgEWcP39eISEhhdYrVaqkjIwM5wcBeGJ8fHzk6elpOgN4Jnh4eCguLk49evSQq6ur6Zwi6dWrV4HXNptN/3cPxfc7YEvK2XcAgP/F01QBwCK8vb116dKlQusJCQkKCAgwUATgSfmv//ovTZkyRV999ZXpFMC4LVu2qGfPniV2ECdJeXl5+R+7d+9W06ZNtWPHDmVkZCgzM1M7duxQcHCwdu7caToVAFAE7IwDAIsYNWqUxo0bp5iYGNlsNl27dk2JiYmaOHGipk+fbjoPQDE0b95cOTk5CggIUPny5eXm5lbg/du3bxsqA1Bcb775phYvXlzgQUtdunRR+fLlNXLkSCUnJxusAwAUBcM4ALCIyZMnKzMzUx07dlROTo5CQkJUrlw5TZw4UWPGjDGdB6AYBg4cqKtXr2rWrFn6xS9+wQMcgFIkJSVFXl5ehda9vLx05coV5wcBAIqNBzgAgMVkZWXp7NmzysvLk91uV8WKFU0nASim8uXLKzExUU2aNDGdAuAJCwkJkZubmz799FN5e3tLkm7cuKEhQ4YoNzdX8fHxhgsBAD8XO+MAwGLKly+v5s2bm84A8AT96le/UnZ2tukMAE9BTEyMevfurbp166pOnTqSpLS0NNWvX1+bN282GwcAKBJ2xgGARXTs2PEnb13bt2+fE2sAPEm7d+/WzJkz9e6776pRo0aFzoyrVKmSoTIAT4LD4dCePXt07tw5ORwO2e12hYaGcks6AJRQDOMAwCLGjx9f4PWDBw+UlJSk06dPa9iwYZo3b56hMgDF5eLiIkmF/mHucDhks9n06NEjE1kAAAD4AdymCgAWMWfOnB9cf+edd3Tv3j0n1wB4kvbv3286AcATFB0drZEjR8rd3V3R0dE/eW1UVJSTqgAATwo74wDA4i5duqSWLVvq9u3bplMAAIAkf39/HTt2TNWqVZO/v/+PXmez2XT58mUnlgEAngR2xgGAxSUmJsrd3d10BgAA+KfU1NQf/BwAUDowjAMAi+jTp0+B1w6HQ9evX9exY8c0bdo0Q1UAAAAAYC0upgMAAM7h5eVV4KNq1arq0KGDtm/frhkzZpjOAwAAP6Bfv36aPXt2ofX3339fv/nNbwwUAQCKizPjAAAAAOAZVaNGDe3bt0+NGjUqsP7ll18qNDRUX3/9taEyAEBRcZsqAABAKXHr1i2dP39eNptN9evXV40aNUwnASime/fuqWzZsoXW3dzcdOfOHQNFAIDi4jZVALCIKlWqqGrVqo/1AaBkuX//viIiIlSrVi2FhIToxRdfVK1atRQZGamsrCzTeQCK4fnnn9f69esLra9bt052u91AEQCguNgZBwAWMW3aNP3hD39Qly5d1Lp1a0nfPUl1165dmjZtGkM4oASbMGGC4uPjtWXLFrVt21aSlJCQoKioKP37v/+7Fi1aZLgQQFFNmzZNffv2VUpKijp16iRJ2rt3r9auXasNGzYYrgMAFAVnxgGARfTt21cdO3bUmDFjCqwvWLBAn332mTZv3mwmDECxVa9eXRs3blSHDh0KrO/fv1/h4eG6deuWmTAAT8S2bds0a9YsJSUlycPDQ40bN9aMGTPUvn1702kAgCJgGAcAFlGxYkUlJSUpMDCwwPrFixcVFBSke/fuGSoDUFzly5fX8ePH1bBhwwLrZ86cUcuWLXX//n1DZQAAAPi/ODMOACyiWrVq+vOf/1xoffPmzapWrZqBIgBPSuvWrTVjxgzl5OTkr2VnZ2vmzJn5t6UDKNmOHz+uTz/9VKtXr9bJkydN5wAAioEz4wDAImbOnKnIyEgdOHAg/x/nhw8f1s6dO7Vs2TLDdQCKY968eeratatq166tJk2ayGazKSkpSe7u7tq1a5fpPADFcPPmTQ0YMEAHDhxQ5cqV5XA4lJmZqY4dO2rdunU8NRkASiBuUwUAC/nrX/+q6OhoJScny+FwyG63KyoqSi+88ILpNADFlJ2drU8//VTnzp3L//M9ePBgeXh4mE4DUAz9+/dXSkqKVq1alX8r+tmzZzVs2DAFBgZq7dq1hgsBAD8XwzgAAAAAeEZ5eXnps88+U4sWLQqsHzlyRJ07d1ZGRoaZMABAkXFmHAAAQAm3cuVKbdu2Lf/15MmTVblyZbVp00ZfffWVwTIAxZWXlyc3N7dC625ubsrLyzNQBAAoLoZxAAAAJdysWbPyb0dNTEzUggUL9Mc//lHVq1fX+PHjDdcBKI5OnTpp3LhxunbtWv7a1atXNX78eL300ksGywAARcVtqgAAACVc+fLlde7cOdWpU0dTpkzR9evX9cknn+jMmTPq0KGDbt26ZToRQBGlp6erZ8+eOn36tHx9fWWz2ZSWlqZGjRrpL3/5i2rXrm06EQDwM/E0VQAAgBKuYsWK+vvf/646depo9+7d+bvh3N3dlZ2dbbgOQHH4+vrqxIkT2rNnT4EHtISGhppOAwAUEcM4AACAEi4sLEwjRoxQUFCQLly4oO7du0uSzpw5Iz8/P7NxAJ6IsLAwhYWFmc4AADwBDOMAwEKOHj2qDRs2KC0tTbm5uQXe27Rpk6EqAMX10Ucf6T//8z+Vnp6uuLg4VatWTZJ0/PhxDRw40HAdgJ8rOjr6sa+Niop6iiUAgKeBM+MAwCLWrVunoUOHqnPnztqzZ486d+6sixcv6saNG+rdu7eWL19uOhEAAEjy9/d/rOtsNpsuX778lGsAAE8awzgAsIjGjRtr1KhReuONN+Tp6alTp07J399fo0aNkre3t2bOnGk6EUAxHDx4UEuWLNHly5e1YcMG+fj4aNWqVfL391e7du1M5wEAAOCfXEwHAACcIyUlJf8cqXLlyun+/fuy2WwaP368Pv74Y8N1AIojLi5OXbp0kYeHh06cOKFvv/1WknT37l3NmjXLcB2AJyE3N1fnz5/Xw4cPTacAAIqJYRwAWETVqlV19+5dSZKPj49Onz4tScrIyFBWVpbJNADF9Ic//EGLFy/W0qVL5ebmlr/epk0bnThxwmAZgOLKyspSZGSkypcvr1//+tdKS0uT9N1ZcbNnzzZcBwAoCoZxAGARL774ovbs2SNJCg8P17hx4/S73/1OAwcO1EsvvWS4DkBxnD9/XiEhIYXWK1WqpIyMDOcHAXhi3nrrLZ06dUoHDhyQu7t7/npoaKjWr19vsAwAUFQ8TRUALGLBggXKycmR9N3/2Lu5uSkhIUF9+vTRtGnTDNcBKA5vb29dunRJfn5+BdYTEhIUEBBgJgrAE7F582atX79erVq1ks1my1+32+1KSUkxWAYAKCqGcQBgEVWrVs3/3MXFRZMnT9bkyZMNFgF4UkaNGqVx48YpJiZGNptN165dU2JioiZOnKjp06ebzgNQDLdu3VLNmjULrX9/9isAoORhGAcApdidO3ce+9pKlSo9xRIAT9PkyZOVmZmpjh07KicnRyEhISpXrpwmTpyoMWPGmM4DUAwtWrTQtm3bNHbsWEnKH8AtXbpUrVu3NpkGACgim8PhcJiOAAA8HS4uLv/vd80dDodsNpsePXrkpCoAT0tWVpbOnj2rvLw82e12VaxY0XQSgGI6dOiQunbtqsGDB2vFihUaNWqUzpw5o8TERMXHx6tZs2amEwEAPxM74wCgFNu/f7/pBABPUVZWliZNmqTNmzfrwYMHCg0NVXR0tKpXr246DUAxJSUlqWnTpmrTpo0+//xzffDBB6pXr552796t4OBgJSYmqlGjRqYzAQBFwM44AACAEmrSpElauHChBg8eLHd3d61du1YdOnTQhg0bTKcBKCYXFxcFBQVpxIgRGjRokLy8vEwnAQCeEIZxAAAAJVS9evX07rvvasCAAZKkI0eOqG3btsrJyZGrq6vhOgDFkZiYqJiYGMXGxurBgwfq27evIiIi1LFjR9NpAIBiYhgHAABQQpUtW1apqany8fHJX/Pw8NCFCxfk6+trsAzAk5Kdna3Y2FgtX75cBw8elJ+fnyIiIjRs2DDVrl3bdB4AoAhcTAcAAACgaB49eqSyZcsWWCtTpowePnxoqAjAk+bh4aFhw4bpwIEDunDhggYOHKglS5bI399f3bp1M50HACgCdsYBAACUUC4uLnr55ZdVrly5/LWtW7eqU6dOqlChQv7apk2bTOQBeAru3bun1atX6+2331ZGRgZPQweAEoinqQIAAJRQw4YNK7T26quvGigB8LTFx8crJiZGcXFxcnV1VXh4uCIjI01nAQCKgJ1xAGAhGzduVGxsrNLS0pSbm1vgvRMnThiqAgAAPyQ9PV0rVqzQihUrlJqaqjZt2igyMlLh4eEFdr8CAEoWzowDAIuIjo7W8OHDVbNmTZ08eVItW7ZUtWrVdPnyZb388sum8wAAwL8ICwuTv7+/Fi5cqH79+ik5OVkJCQkaPnw4gzgAKOG4TRUALGLhwoX6+OOPNXDgQK1cuVKTJ09WQECApk+frtu3b5vOAwAA/8LDw0NxcXHq0aOHXF1dTecAAJ4gblMFAIsoX768kpOTVbduXdWsWVN79uxRkyZNdPHiRbVq1Up///vfTScCAAAAQKnHbaoAYBG//OUv8wdudevW1eHDhyVJqamp4vsyAAAAAOAcDOMAwCI6deqkrVu3SpIiIyM1fvx4hYWFqX///urdu7fhOgAAAACwBm5TBQCLyMvLU15ensqU+e640NjYWCUkJCgwMFCvvfaaypYta7gQAAAAAEo/hnEAAAAAAACAk3CbKgAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASRjGAQAAAAAAAE5SxnQAAODpCQoKks1me6xrT5w48ZRrAAAAAAAM4wCgFOvVq1f+5zk5OVq4cKHsdrtat24tSTp8+LDOnDmj0aNHGyoEAAAAAGuxORwOh+kIAMDTN2LECHl7e+v3v/99gfUZM2YoPT1dMTExhsoAAAAAwDoYxgGARXh5eenYsWN67rnnCqxfvHhRzZs3V2ZmpqEyAAAAALAOHuAAABbh4eGhhISEQusJCQlyd3c3UAQAAAAA1sOZcQBgEW+++aZef/11HT9+XK1atZL03ZlxMTExmj59uuE6AAAAALAGblMFAAuJjY3VvHnzlJycLElq2LChxo0bp/DwcMNlAAAAAGANDOMAAAAAAAAAJ+HMOAAAAAAAAMBJODMOACzi0aNHmjNnjmJjY5WWlqbc3NwC79++fdtQGQAAAABYBzvjAMAiZs6cqQ8//FDh4eHKzMzUhAkT1KdPH7m4uOidd94xnQcAAAAAlsCZcQBgEfXq1VN0dLS6d+8uT09PJSUl5a8dPnxYa9asMZ0IAAAAAKUeO+MAwCJu3LihRo0aSZIqVqyozMxMSVKPHj20bds2k2kAAAAAYBkM4wDAImrXrq3r169LkgIDA7V7925J0tGjR1WuXDmTaQAAAABgGQzjAMAievfurb1790qSxo0bp2nTpum5557T0KFDFRERYbgOAAAAAKyBM+MAwKIOHz6sQ4cOKTAwUK+88orpHAAAAACwBIZxAAAAAAAAgJOUMR0AAHh6tmzZ8tjXsjsOAAAAAJ4+dsYBQCnm4lLwaFCbzab/+9e+zWaTJD169MhpXQAAAABgVTzAAQBKsby8vPyP3bt3q2nTptqxY4cyMjKUmZmpHTt2KDg4WDt37jSdCgAAAACWwM44ALCI559/XosXL1a7du0KrB88eFAjR45UcnKyoTIAAAAAsA52xgGARaSkpMjLy6vQupeXl65cueL8IAAAAACwIHbGAYBFhISEyM3NTZ9++qm8vb0lSTdu3NCQIUOUm5ur+Ph4w4UAAAAAUPoxjAMAi7h06ZJ69+6t8+fPq06dOpKktLQ01a9fX5s3b1ZgYKDhQgAAAAAo/RjGAYCFOBwO7dmzR+fOnZPD4ZDdbldoaGj+E1UBAAAAAE8XwzgAAAAAAADAScqYDgAAPD3R0dEaOXKk3N3dFR0d/ZPXRkVFOakKAAAAAKyLnXEAUIr5+/vr2LFjqlatmvz9/X/0OpvNpsuXLzuxDAAAAACsiWEcAAAAAAAA4CQupgMAAAAAAAAAq2AYBwAW0a9fP82ePbvQ+vvvv6/f/OY3BooAAAAAwHq4TRUALKJGjRrat2+fGjVqVGD9yy+/VGhoqL7++mtDZQAAAABgHeyMAwCLuHfvnsqWLVto3c3NTXfu3DFQBAAAAADWwzAOACzi+eef1/r16wutr1u3Tna73UARAAAAAFhPGdMBAADnmDZtmvr27auUlBR16tRJkrR3716tXbtWGzZsMFwHAAAAANbAmXEAYCHbtm3TrFmzlJSUJA8PDzVu3FgzZsxQ+/btTacBAAAAgCUwjAMAAAAAAACchNtUAcBijh8/ruTkZNlsNtntdgUFBZlOAgAAAADLYBgHABZx8+ZNDRgwQAcOHFDlypXlcDiUmZmpjh07at26dapRo4bpRAAAAAAo9XiaKgBYxNixY3Xnzh2dOXNGt2/f1j/+8Q+dPn1ad+7cUVRUlOk8AAAAALAEzowDAIvw8vLSZ599phYtWhRYP3LkiDp37qyMjAwzYQAAAABgIeyMAwCLyMvLk5ubW6F1Nzc35eXlGSgCAAAAAOthGAcAFtGpUyeNGzdO165dy1+7evWqxo8fr5deeslgGQAAAABYB7epAoBFpKenq2fPnjp9+rR8fX1ls9mUlpamRo0a6S9/+Ytq165tOhEAAAAASj2GcQBgMXv27NG5c+fkcDhkt9sVGhpqOgkAAAAALINhHAAAAAAAAOAkZUwHAACenujo6Me+Nioq6imWAAAAAAAkdsYBQKnm7+//WNfZbDZdvnz5KdcAAAAAABjGAQAAAAAAAE7iYjoAAOBcubm5On/+vB4+fGg6BQAAAAAsh2EcAFhEVlaWIiMjVb58ef36179WWlqapO/Oips9e7bhOgAAAACwBoZxAGARb731lk6dOqUDBw7I3d09fz00NFTr1683WAYAAAAA1sHTVAHAIjZv3qz169erVatWstls+et2u10pKSkGywAAAADAOtgZBwAWcevWLdWsWbPQ+v379wsM5wAAAAAATw/DOACwiBYtWmjbtm35r78fwC1dulStW7c2lQUAAAAAlsJtqgBgEe+99566du2qs2fP6uHDh5o3b57OnDmjxMRExcfHm84DAAAAAEtgZxwAlHJJSUmSpDZt2ujzzz9XVlaW6tWrp927d+sXv/iFEhMT1axZM7ORAAAAAGARNofD4TAdAQB4elxcXBQUFKQRI0Zo0KBB8vLyMp0EAAAAAJbFzjgAKOU+//xzBQcHa+rUqfL29taQIUO0f/9+01kAAAAAYEnsjAMAi8jOzlZsbKyWL1+ugwcPys/PTxERERo2bJhq165tOg8AAAAALIFhHABYUEpKipYvX65PPvlE169fV1hYmLZv3246CwAAAABKPYZxAGBR9+7d0+rVq/X2228rIyNDjx49Mp0EAAAAAKVeGdMBAADnio+PV0xMjOLi4uTq6qrw8HBFRkaazgIAAAAAS2BnHABYQHp6ulasWKEVK1YoNTVVbdq0UWRkpMLDw1WhQgXTeQAAAABgGeyMA4BSLiwsTPv371eNGjU0dOhQRUREqEGDBqazAAAAAMCSGMYBQCnn4eGhuLg49ejRQ66urqZzAAAAAMDSuE0VAAAAAAAAcBIX0wEAAAAAAACAVTCMAwAAAAAAAJyEYRwAAAAAAADgJAzjAAAAgKfowIEDstlsysjIeOwf4+fnp7lz5z61JgAAYA7DOAAAAFjab3/7W9lsNr322muF3hs9erRsNpt++9vfOj8MAACUSgzjAAAAYHm+vr5at26dsrOz89dycnK0du1a1alTx2AZAAAobRjGAQAAwPKCg4NVp04dbdq0KX9t06ZN8vX1VVBQUP7at99+q6ioKNWsWVPu7u5q166djh49WuBrbd++XfXr15eHh4c6duyoK1euFPr5Dh06pJCQEHl4eMjX11dRUVG6f//+j/alpaWpZ8+eqlixoipVqqTw8HB9/fXXxf+FAwAAp2MYBwAAAEgaPny4li9fnv86JiZGERERBa6ZPHmy4uLitHLlSp04cUKBgYHq0qWLbt++LUlKT09Xnz591K1bNyUlJWnEiBGaOnVqga/x5ZdfqkuXLurTp4+++OILrV+/XgkJCRozZswPdjkcDvXq1Uu3b99WfHy89uzZo5SUFPXv3/8J/w4AAABnYBgHAAAASBoyZIgSEhJ05coVffXVV/r888/16quv5r9///59LVq0SO+//75efvll2e12LV26VB4eHvrTn/4kSVq0aJECAgI0Z84cNWjQQIMHDy503tz777+vQYMG6c0339Rzzz2nNm3aKDo6Wp988olycnIKdX322Wf64osvtGbNGjVr1kwvvPCCVq1apfj4+EK78gAAwLOvjOkAAAAA4FlQvXp1de/eXStXrpTD4VD37t1VvXr1/PdTUlL04MEDtW3bNn/Nzc1NLVu2VHJysiQpOTlZrVq1ks1my7+mdevWBX6e48eP69KlS1q9enX+msPhUF5enlJTU9WwYcMC1ycnJ8vX11e+vr75a3a7XZUrV1ZycrJatGjxZH4DAACAUzCMAwAAAP4pIiIi/3bRjz76qMB7DodDkgoM2r5f/37t+2t+Sl5enkaNGqWoqKhC7/3QwyL+9es/zjoAAHi2cZsqAAAA8E9du3ZVbm6ucnNz1aVLlwLvBQYGqmzZskpISMhfe/DggY4dO5a/m81ut+vw4cMFftz/fR0cHKwzZ84oMDCw0EfZsmULNdntdqWlpSk9PT1/7ezZs8rMzCy0iw4AADz7GMYBAAAA/+Tq6qrk5GQlJyfL1dW1wHsVKlTQ66+/rkmTJmnnzp06e/asfve73ykrK0uRkZGSpNdee00pKSmaMGGCzp8/rzVr1mjFihUFvs6UKVOUmJioN954Q0lJSbp48aK2bNmisWPH/mBTaGioGjdurMGDB+vEiRM6cuSIhg4dqvbt26t58+ZP5fcBAAA8PQzjAAAAgH9RqVIlVapU6Qffmz17tvr27ashQ4YoODhYly5d0q5du1SlShVJ391mGhcXp61bt6pJkyZavHixZs2aVeBrNG7cWPHx8bp48aJefPFFBQUFadq0afL29v7Bn9Nms2nz5s2qUqWKQkJCFBoaqoCAAK1fv/7J/sIBAIBT2ByPc7AFAAAAAAAAgGJjZxwAAAAAAADgJAzjAAAAAAAAACdhGAcAAAAAAAA4CcM4AAAAAAAAwEkYxgEAAAAAAABOwjAOAAAAAAAAcBKGcQAAAAAAAICTMIwDAAAAAAAAnIRhHAAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASf4HbjzXLfQkEFEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de correlaciones con filtro de umbral de correlación

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan0.735nannannannannan
Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannan0.917nannannannannannannannannan0.9730.790nan-0.854nannannannannannannannannannan
Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nan-0.757nannannannannannannannan
Velocidad de pérdida limpia (KCAS)nannannannannan0.711nannannan0.768nannannan0.8170.774nan0.705nannan0.936nannan-0.874nannannannannannannannannan
Área del alanannannannan0.711nan-0.7780.8350.9840.970nannannannan0.8250.7870.854nannan0.9650.944nannan0.974nannannannannannannannan
Relación de aspecto del alanannannannannan-0.778nannannan-0.790nannan-0.730nannan-0.862-0.826nan-0.769nan-0.746nannan-0.970nannannannannannannannan
Longitud del fuselajenannannannannan0.835nannan0.9380.806nannannannan0.719nannannannan0.9260.834nannan0.929nannannannannannannannan
Ancho del fuselajenannan0.917nannan0.984nan0.938nan0.9860.833nan0.940nannannan0.868nan0.944nan0.954nannannannannan0.794nannannannannan
Peso máximo al despegue (MTOW)nannannannan0.7680.970-0.7900.8060.986nannannan0.717nan0.8110.7510.882nan0.7080.9790.933nannan0.9760.758nannannannannannannan
Alcance de la aeronavenannannannannannannannan0.833nannannannannannannannannannan0.936nan-0.711nan0.8480.837nannannannannannannan
Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nannannannannannannan
Velocidad máxima (KIAS)nannannannannannan-0.730nan0.9400.717nannannannannannan0.718nannan0.726nannannan0.7270.910nannannannannannannan
Velocidad de pérdida (KCAS)nannannannan0.817nannannannannannannannannannannannan1.000nannannan1.000-0.874nannannannannannannannannan
envergaduranannannannan0.7740.825nan0.719nan0.811nannannannannannan0.775nannan0.9500.806nannannannannannannannannannannan
Cuerdanannannannannan0.787-0.862nannan0.751nannannannannannan0.758nan0.730nan0.724nannan0.975nannannannannannannannan
payloadnannannannan0.7050.854-0.826nan0.8680.882nannan0.718nan0.7750.758nannannannan0.784nannan0.7110.846nannannannannannannan
duracion en VTOLnannannan-0.875nannannannannannannannannan1.000nannannannannannannannannannannannannan-0.904nannannannan
Crucero KIASnannan0.973nannannan-0.769nan0.9440.708nannannannannan0.730nannannan0.723nan-0.855nannannannannannannannannannan
RTF (Including fuel & Batteries)nannan0.790nan0.9360.965nan0.926nan0.9790.936nan0.726nan0.950nannannan0.723nan0.948nannannannannannannannannannannan
Empty weightnannannannannan0.944-0.7460.8340.9540.933nannannannan0.8060.7240.784nannan0.948nannan0.7850.980nannannannannannannannan
Maximum Crosswindnannan-0.854-0.961nannannannannannan-0.711-0.715nan1.000nannannannan-0.855nannannannannannannannan-0.943nannannannan
Rango de comunicaciónnannannannan-0.874nannannannannannan0.802nan-0.874nannannannannannan0.785nannannannannannannannannannannan
Capacidad combustiblenannannan-0.757nan0.974-0.9700.929nan0.9760.848nan0.727nannan0.9750.711nannannan0.980nannannannan0.817nannannannannannan
Consumonannannannannannannannannan0.7580.837-0.7320.910nannannan0.846nannannannannannannannan0.998nannannannannannan
Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998nannannannannannannan
Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n", + "\n", + "--- Correlación: Capacidad combustible (r = -0.757) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", + "Valores para Techo de servicio máximo: [17000.0, 16959.092, 16009.436, 16009.476, 17000.0]\n", + "Ecuación de regresión: y = -49.503x + 17640.121\n", + "Valor del parámetro correlacionado para la aeronave: 11.5\n", + "Predicción obtenida: 17070.833\n", + "\tR²: 0.5733448646440649, Desviación Estándar: 312.7585032074662, Varianza: 97817.88132857464, Incertidumbre: 139.8698547425961\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Capacidad combustible: 17070.833']\n", + "**Mediana calculada:** 17070.833\n", + "\n", + "--- Imputación para aeronave: **Skyeye 5000** ---\n", + "\n", + "--- Correlación: Capacidad combustible (r = -0.757) ---\n", + "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", + "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 25.0]\n", + "Valores para Techo de servicio máximo: [17000.0, 17070.833, 16959.092, 16009.436, 16009.476, 17000.0]\n", + "Ecuación de regresión: y = -49.503x + 17640.121\n", + "Valor del parámetro correlacionado para la aeronave: 28.0\n", + "Predicción obtenida: 16254.028\n", + "\tR²: 0.6335143266174253, Desviación Estándar: 285.5081454305007, Varianza: 81514.90110716393, Incertidumbre: 116.5582122855099\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Capacidad combustible: 16254.028']\n", + "**Mediana calculada:** 16254.028\n", + "\n", + "=== Área del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Stalker XE** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 59.0\n", + "Predicción obtenida: 14.838\n", + "\tR²: 0.7638900941970123, Desviación Estándar: 1.321784213429975, Varianza: 1.747113506872698, Incertidumbre: 0.5396161454949092\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Rango de comunicación: 14.838']\n", + "**Mediana calculada:** 14.838\n", + "\n", + "--- Imputación para aeronave: **Stalker VXE30** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 161.0\n", + "Predicción obtenida: 9.415\n", + "\tR²: 0.7649280338966065, Desviación Estándar: 1.2237343949682917, Varianza: 1.4975258694284113, Incertidumbre: 0.4625281256974559\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Rango de comunicación: 9.415']\n", + "**Mediana calculada:** 9.415\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 10.532\n", + "\tR²: 0.8590346121694943, Desviación Estándar: 1.1446987113646354, Varianza: 1.3103351397998568, Incertidumbre: 0.40471211061071805\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 10.532']\n", + "**Mediana calculada:** 10.532\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 10.532\n", + "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 10.532']\n", + "**Mediana calculada:** 10.532\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 10.532\n", + "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 10.532']\n", + "**Mediana calculada:** 10.532\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 150.0\n", + "Predicción obtenida: 10.0\n", + "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 10.0']\n", + "**Mediana calculada:** 10.0\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 15.316\n", + "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 15.316']\n", + "**Mediana calculada:** 15.316\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 16.645\n", + "\tR²: 0.8833653923911279, Desviación Estándar: 1.02384966328724, Varianza: 1.048268133013395, Incertidumbre: 0.32376969175841563\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 16.645']\n", + "**Mediana calculada:** 16.645\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 101.86\n", + "Predicción obtenida: 12.559\n", + "\tR²: 0.8900166558794294, Desviación Estándar: 0.9762023543141057, Varianza: 0.9529710365684029, Incertidumbre: 0.29433608442922443\n", + "\tNivel de confianza: Confianza Baja\n", + "Valores imputados: ['Rango de comunicación: 12.559']\n", + "**Mediana calculada:** 12.559\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 13.051\n", + "\tR²: 0.8935698204333948, Desviación Estándar: 0.934642599085376, Varianza: 0.8735567880250669, Incertidumbre: 0.26980807808901663\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Rango de comunicación: 13.051']\n", + "**Mediana calculada:** 13.051\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 13.051\n", + "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Rango de comunicación: 13.051']\n", + "**Mediana calculada:** 13.051\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 15.316\n", + "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Rango de comunicación: 15.316']\n", + "**Mediana calculada:** 15.316\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Maximum Crosswind (r = 1.0) ---\n", + "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend']\n", + "Valores para Maximum Crosswind: [45.0, 50.0, 15.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.0, 15.316, 13.0]\n", + "Ecuación de regresión: y = 0.055x + 12.099\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 14.835\n", + "\tR²: 0.7950904219131606, Desviación Estándar: 0.42932620726909115, Varianza: 0.18432099224806262, Incertidumbre: 0.24787160133697086\n", + "\tNivel de confianza: Confianza Media\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 16.379\n", + "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Maximum Crosswind: 14.835', 'Rango de comunicación: 16.379']\n", + "**Mediana calculada:** 15.607\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida limpia (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Stalker XE** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.382x + 10.202\n", + "Valor del parámetro correlacionado para la aeronave: 0.87\n", + "Predicción obtenida: 14.884\n", + "\tR²: 0.4584975382227796, Desviación Estándar: 3.9626586397738124, Varianza: 15.70266349537404, Incertidumbre: 0.9090962399222311\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.118x + 12.28\n", + "Valor del parámetro correlacionado para la aeronave: 13.6\n", + "Predicción obtenida: 13.882\n", + "\tR²: 0.5362410361538301, Desviación Estándar: 3.548785552305845, Varianza: 12.5938788962547, Incertidumbre: 0.8871963880764613\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.983x + 1.727\n", + "Valor del parámetro correlacionado para la aeronave: 14.838\n", + "Predicción obtenida: 16.309\n", + "\tR²: 0.6019452091484776, Desviación Estándar: 3.479540061453548, Varianza: 12.107199039260163, Incertidumbre: 0.869885015363387\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 3.108x + 5.81\n", + "Valor del parámetro correlacionado para la aeronave: 3.657\n", + "Predicción obtenida: 17.174\n", + "\tR²: 0.5835699593207654, Desviación Estándar: 3.4750212924510513, Varianza: 12.075772982988175, Incertidumbre: 0.7972245600234859\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.46x + 13.713\n", + "Valor del parámetro correlacionado para la aeronave: 2.495\n", + "Predicción obtenida: 14.86\n", + "\tR²: 0.43900880754018157, Desviación Estándar: 3.9112272862931547, Varianza: 15.297698885044115, Incertidumbre: 0.921885112299916\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.974\n", + "Valor del parámetro correlacionado para la aeronave: 59.0\n", + "Predicción obtenida: 14.838\n", + "\tR²: 0.7638900941970123, Desviación Estándar: 1.321784213429975, Varianza: 1.747113506872698, Incertidumbre: 0.5396161454949092\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 14.884', 'Peso máximo al despegue (MTOW): 13.882', 'Velocidad de pérdida (KCAS): 16.309', 'envergadura: 17.174', 'payload: 14.86', 'Rango de comunicación: 14.838']\n", + "**Mediana calculada:** 14.872\n", + "\n", + "--- Imputación para aeronave: **Stalker VXE30** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.383x + 10.201\n", + "Valor del parámetro correlacionado para la aeronave: 1.158\n", + "Predicción obtenida: 16.435\n", + "\tR²: 0.4650980437290636, Desviación Estándar: 3.86232278712243, Varianza: 14.917537311925178, Incertidumbre: 0.8636416303052202\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.39\n", + "Valor del parámetro correlacionado para la aeronave: 19.958\n", + "Predicción obtenida: 14.713\n", + "\tR²: 0.5383061046948842, Desviación Estándar: 3.4504190564798676, Varianza: 11.905391665319419, Incertidumbre: 0.8368495425006189\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.992x + 1.495\n", + "Valor del parámetro correlacionado para la aeronave: 9.415\n", + "Predicción obtenida: 10.831\n", + "\tR²: 0.606805757387085, Desviación Estándar: 3.392334540315432, Varianza: 11.507933633417112, Incertidumbre: 0.8227619780677445\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 3.115x + 5.665\n", + "Valor del parámetro correlacionado para la aeronave: 4.877\n", + "Predicción obtenida: 20.858\n", + "\tR²: 0.5796228985588339, Desviación Estándar: 3.4239782633031473, Varianza: 11.723627147572437, Incertidumbre: 0.765624815022751\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.46x + 13.714\n", + "Valor del parámetro correlacionado para la aeronave: 2.495\n", + "Predicción obtenida: 14.861\n", + "\tR²: 0.44918896341251313, Desviación Estándar: 3.806910014724386, Varianza: 14.492563860208826, Incertidumbre: 0.8733650548071861\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.053x + 17.978\n", + "Valor del parámetro correlacionado para la aeronave: 161.0\n", + "Predicción obtenida: 9.423\n", + "\tR²: 0.7647638318484331, Desviación Estándar: 1.2237926717855518, Varianza: 1.4976685035160195, Incertidumbre: 0.4625501522639803\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 16.435', 'Peso máximo al despegue (MTOW): 14.713', 'Velocidad de pérdida (KCAS): 10.831', 'envergadura: 20.858', 'payload: 14.861', 'Rango de comunicación: 9.423']\n", + "**Mediana calculada:** 14.787\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.414x + 10.08\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 18.472\n", + "\tR²: 0.466757382312631, Desviación Estándar: 3.7854894974433573, Varianza: 14.32993073525396, Incertidumbre: 0.8260615316425965\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.397\n", + "Valor del parámetro correlacionado para la aeronave: 42.2\n", + "Predicción obtenida: 17.306\n", + "\tR²: 0.5422143559645116, Desviación Estándar: 3.3532462483094934, Varianza: 11.244260401801691, Incertidumbre: 0.7903677203893309\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.915x + 2.961\n", + "Valor del parámetro correlacionado para la aeronave: 10.532\n", + "Predicción obtenida: 12.6\n", + "\tR²: 0.5897032702850062, Desviación Estándar: 3.402063815159601, Varianza: 11.5740382024183, Incertidumbre: 0.8018741312429105\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.93x + 6.085\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 18.977\n", + "\tR²: 0.5244094532346639, Desviación Estándar: 3.5750014852544703, Varianza: 12.780635619571669, Incertidumbre: 0.7801292817027697\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.46x + 13.707\n", + "Valor del parámetro correlacionado para la aeronave: 14.5\n", + "Predicción obtenida: 20.38\n", + "\tR²: 0.4585425146715313, Desviación Estándar: 3.710550701599703, Varianza: 13.768186509142046, Incertidumbre: 0.8297043602736472\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [70.3, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 14.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.176x + 11.018\n", + "Valor del parámetro correlacionado para la aeronave: 27.7\n", + "Predicción obtenida: 15.906\n", + "\tR²: 0.8767961918805747, Desviación Estándar: 2.18187881096421, Varianza: 4.760595145734596, Incertidumbre: 0.9757658679964775\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.03x + 17.168\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 12.918\n", + "\tR²: 0.46532681815645593, Desviación Estándar: 1.7295254821806558, Varianza: 2.99125839351223, Incertidumbre: 0.6114795983424375\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 18.472', 'Peso máximo al despegue (MTOW): 17.306', 'Velocidad de pérdida (KCAS): 12.6', 'envergadura: 18.977', 'payload: 20.38', 'RTF (Including fuel & Batteries): 15.906', 'Rango de comunicación: 12.918']\n", + "**Mediana calculada:** 17.306\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.387x + 10.063\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 18.413\n", + "\tR²: 0.46446962919077694, Desviación Estándar: 3.7063812757992287, Varianza: 13.737262161595117, Incertidumbre: 0.7902031430874169\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.397\n", + "Valor del parámetro correlacionado para la aeronave: 53.5\n", + "Predicción obtenida: 18.62\n", + "\tR²: 0.5426110461297494, Desviación Estándar: 3.2638102308142223, Varianza: 10.652457222767586, Incertidumbre: 0.7487694193164923\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.849x + 4.269\n", + "Valor del parámetro correlacionado para la aeronave: 10.532\n", + "Predicción obtenida: 13.21\n", + "\tR²: 0.5520283845821775, Desviación Estándar: 3.4611244919244952, Varianza: 11.979382748599594, Incertidumbre: 0.7940364153322332\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.904x + 6.111\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 18.886\n", + "\tR²: 0.5197301153510105, Desviación Estándar: 3.5099482875201593, Varianza: 12.319736981065699, Incertidumbre: 0.748323489270446\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.445x + 13.696\n", + "Valor del parámetro correlacionado para la aeronave: 11.3\n", + "Predicción obtenida: 18.723\n", + "\tR²: 0.4414953610991542, Desviación Estándar: 3.6781026044838465, Varianza: 13.528438769110855, Incertidumbre: 0.8026277904219737\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 70.3, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [17.306, 25.0, 14.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.174x + 11.323\n", + "Valor del parámetro correlacionado para la aeronave: 42.2\n", + "Predicción obtenida: 18.685\n", + "\tR²: 0.8685070668946828, Desviación Estándar: 2.0580697312416656, Varianza: 4.235651018653141, Incertidumbre: 0.840203449434832\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.02x + 16.878\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 14.112\n", + "\tR²: 0.22114113946870317, Desviación Estándar: 2.053329630048995, Varianza: 4.2161625696371425, Incertidumbre: 0.6844432100163317\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 18.413', 'Peso máximo al despegue (MTOW): 18.62', 'Velocidad de pérdida (KCAS): 13.21', 'envergadura: 18.886', 'payload: 18.723', 'RTF (Including fuel & Batteries): 18.685', 'Rango de comunicación: 14.112']\n", + "**Mediana calculada:** 18.62\n", + "\n", + "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.392x + 10.066\n", + "Valor del parámetro correlacionado para la aeronave: 1.55\n", + "Predicción obtenida: 18.423\n", + "\tR²: 0.4660005657286891, Desviación Estándar: 3.6251561480011025, Varianza: 13.141757097390192, Incertidumbre: 0.7558973100658521\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.397\n", + "Valor del parámetro correlacionado para la aeronave: 54.4\n", + "Predicción obtenida: 18.725\n", + "\tR²: 0.5461903226551696, Desviación Estándar: 3.181168711678456, Varianza: 10.119834372161968, Incertidumbre: 0.7113309487208457\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.782x + 5.601\n", + "Valor del parámetro correlacionado para la aeronave: 10.532\n", + "Predicción obtenida: 13.832\n", + "\tR²: 0.5015824133754161, Desviación Estándar: 3.5602796721277223, Varianza: 12.675591343765882, Incertidumbre: 0.796102736578825\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.9x + 6.115\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 18.873\n", + "\tR²: 0.5210484825351553, Desviación Estándar: 3.4332236552626645, Varianza: 11.78702466705513, Incertidumbre: 0.715876618803983\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.445x + 13.693\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 21.564\n", + "\tR²: 0.44248774210834096, Desviación Estándar: 3.5936014722335075, Varianza: 12.913971541238833, Incertidumbre: 0.7661584081767601\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", + "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 70.3, 6.8, 8.9, 16.5, 84.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [17.306, 18.62, 25.0, 14.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.174x + 11.317\n", + "Valor del parámetro correlacionado para la aeronave: 36.7\n", + "Predicción obtenida: 17.716\n", + "\tR²: 0.8691516645551287, Desviación Estándar: 1.9055366919971601, Varianza: 3.63107008454748, Incertidumbre: 0.7202251715904527\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.011x + 16.644\n", + "Valor del parámetro correlacionado para la aeronave: 140.0\n", + "Predicción obtenida: 15.076\n", + "\tR²: 0.0684597878447748, Desviación Estándar: 2.3220684254768322, Varianza: 5.392001772596454, Incertidumbre: 0.7343025107267749\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 18.423', 'Peso máximo al despegue (MTOW): 18.725', 'Velocidad de pérdida (KCAS): 13.832', 'envergadura: 18.873', 'payload: 21.564', 'RTF (Including fuel & Batteries): 17.716', 'Rango de comunicación: 15.076']\n", + "**Mediana calculada:** 18.423\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.392x + 10.066\n", + "Valor del parámetro correlacionado para la aeronave: 0.94\n", + "Predicción obtenida: 15.134\n", + "\tR²: 0.4670451470194883, Desviación Estándar: 3.5488285233364496, Varianza: 12.594183888046365, Incertidumbre: 0.7244015889007506\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.393\n", + "Valor del parámetro correlacionado para la aeronave: 20.0\n", + "Predicción obtenida: 14.714\n", + "\tR²: 0.5485403649598684, Desviación Estándar: 3.1051599496166142, Varianza: 9.642018312703055, Incertidumbre: 0.677601453050638\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.893x + 6.121\n", + "Valor del parámetro correlacionado para la aeronave: 3.0\n", + "Predicción obtenida: 14.8\n", + "\tR²: 0.5216461178243376, Desviación Estándar: 3.362129644762508, Varianza: 11.30391574819087, Incertidumbre: 0.6862918398960846\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.423x + 13.759\n", + "Valor del parámetro correlacionado para la aeronave: 2.495\n", + "Predicción obtenida: 14.814\n", + "\tR²: 0.42567155526653766, Desviación Estándar: 3.5690658775926396, Varianza: 12.738231238596118, Incertidumbre: 0.7442016801973287\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 15.134', 'Peso máximo al despegue (MTOW): 14.714', 'envergadura: 14.8', 'payload: 14.814']\n", + "**Mediana calculada:** 14.807\n", + "\n", + "--- Imputación para aeronave: **Orbiter 4** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.406x + 10.034\n", + "Valor del parámetro correlacionado para la aeronave: 1.608\n", + "Predicción obtenida: 18.727\n", + "\tR²: 0.4728295759055522, Desviación Estándar: 3.477707911789329, Varianza: 12.094452319722095, Incertidumbre: 0.6955415823578658\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.4\n", + "Valor del parámetro correlacionado para la aeronave: 55.0\n", + "Predicción obtenida: 18.779\n", + "\tR²: 0.552600150975832, Desviación Estándar: 3.033828161728033, Varianza: 9.204113314894094, Incertidumbre: 0.6468143373802413\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.73x + 6.614\n", + "Valor del parámetro correlacionado para la aeronave: 10.0\n", + "Predicción obtenida: 13.916\n", + "\tR²: 0.46468134584634513, Desviación Estándar: 3.601724880792143, Varianza: 12.972422116917178, Incertidumbre: 0.7859608046969426\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.893x + 6.122\n", + "Valor del parámetro correlacionado para la aeronave: 5.2\n", + "Predicción obtenida: 21.165\n", + "\tR²: 0.5269957515236472, Desviación Estándar: 3.2942010830487516, Varianza: 10.851760775559567, Incertidumbre: 0.6588402166097503\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.423x + 13.758\n", + "Valor del parámetro correlacionado para la aeronave: 12.0\n", + "Predicción obtenida: 18.835\n", + "\tR²: 0.43464239567025376, Desviación Estándar: 3.4939195040094204, Varianza: 12.207473500497436, Incertidumbre: 0.7131933322650971\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.006x + 16.501\n", + "Valor del parámetro correlacionado para la aeronave: 150.0\n", + "Predicción obtenida: 15.606\n", + "\tR²: 0.019263283730102443, Desviación Estándar: 2.3959493405082912, Varianza: 5.7405732422821165, Incertidumbre: 0.7224059071968609\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 18.727', 'Peso máximo al despegue (MTOW): 18.779', 'Velocidad de pérdida (KCAS): 13.916', 'envergadura: 21.165', 'payload: 18.835', 'Rango de comunicación: 15.606']\n", + "**Mediana calculada:** 18.753\n", + "\n", + "--- Imputación para aeronave: **Orbiter 3** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.407x + 10.034\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 16.522\n", + "\tR²: 0.47471713659572623, Desviación Estándar: 3.4101769025502042, Varianza: 11.629306506686904, Incertidumbre: 0.6687907142656497\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.4\n", + "Valor del parámetro correlacionado para la aeronave: 32.0\n", + "Predicción obtenida: 16.111\n", + "\tR²: 0.5562407359989936, Desviación Estándar: 2.9671471323451786, Varianza: 8.803962104984215, Incertidumbre: 0.6186929457220847\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.677x + 7.652\n", + "Valor del parámetro correlacionado para la aeronave: 15.316\n", + "Predicción obtenida: 18.014\n", + "\tR²: 0.42421279321722494, Desviación Estándar: 3.651853558055984, Varianza: 13.33603440948615, Incertidumbre: 0.7785777946033205\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.811x + 6.35\n", + "Valor del parámetro correlacionado para la aeronave: 4.4\n", + "Predicción obtenida: 18.718\n", + "\tR²: 0.5194126656316639, Desviación Estándar: 3.261868529196971, Varianza: 10.639786301765609, Incertidumbre: 0.6397050492749827\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.423x + 13.756\n", + "Valor del parámetro correlacionado para la aeronave: 5.5\n", + "Predicción obtenida: 16.082\n", + "\tR²: 0.4360376843534042, Desviación Estándar: 3.4233658161858984, Varianza: 11.719433511430143, Incertidumbre: 0.6846731632371796\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.001x + 16.326\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 16.269\n", + "\tR²: 0.0007196998998141302, Desviación Estándar: 2.438000130498692, Varianza: 5.943844636311639, Incertidumbre: 0.7037900158138813\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 16.522', 'Peso máximo al despegue (MTOW): 16.111', 'Velocidad de pérdida (KCAS): 18.014', 'envergadura: 18.718', 'payload: 16.082', 'Rango de comunicación: 16.269']\n", + "**Mediana calculada:** 16.396\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.409x + 10.026\n", + "Valor del parámetro correlacionado para la aeronave: 0.754\n", + "Predicción obtenida: 14.105\n", + "\tR²: 0.47548065381933924, Desviación Estándar: 3.346513898608693, Varianza: 11.199155273581153, Incertidumbre: 0.6440369000695176\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.116x + 12.416\n", + "Valor del parámetro correlacionado para la aeronave: 6.5\n", + "Predicción obtenida: 13.169\n", + "\tR²: 0.5562776352004176, Desviación Estándar: 2.9052327113675602, Varianza: 8.440377107200106, Incertidumbre: 0.59302814390775\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.676x + 7.585\n", + "Valor del parámetro correlacionado para la aeronave: 16.645\n", + "Predicción obtenida: 18.842\n", + "\tR²: 0.4219605998717829, Desviación Estándar: 3.586786423534771, Varianza: 12.865036848053354, Incertidumbre: 0.7478966694512236\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.782x + 6.377\n", + "Valor del parámetro correlacionado para la aeronave: 2.1\n", + "Predicción obtenida: 12.22\n", + "\tR²: 0.5111829799239707, Desviación Estándar: 3.230613748948095, Varianza: 10.436865194892464, Incertidumbre: 0.6217319058676296\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.422x + 13.776\n", + "Valor del parámetro correlacionado para la aeronave: 2.693\n", + "Predicción obtenida: 14.913\n", + "\tR²: 0.4374652379037306, Desviación Estándar: 3.357422336000781, Varianza: 11.272284742276943, Incertidumbre: 0.6584446925630868\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = -0.001x + 16.346\n", + "Valor del parámetro correlacionado para la aeronave: 25.0\n", + "Predicción obtenida: 16.315\n", + "\tR²: 0.0009110570695874953, Desviación Estándar: 2.342591413436464, Varianza: 5.48773453030625, Incertidumbre: 0.6497179583543717\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 14.105', 'Peso máximo al despegue (MTOW): 13.169', 'Velocidad de pérdida (KCAS): 18.842', 'envergadura: 12.22', 'payload: 14.913', 'Rango de comunicación: 16.315']\n", + "**Mediana calculada:** 14.509\n", + "\n", + "--- Imputación para aeronave: **ScanEagle** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.385x + 10.072\n", + "Valor del parámetro correlacionado para la aeronave: 1.063\n", + "Predicción obtenida: 15.797\n", + "\tR²: 0.4820128146718825, Desviación Estándar: 3.2870383565993335, Varianza: 10.804621157755248, Incertidumbre: 0.6211918601065917\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.114x + 12.545\n", + "Valor del parámetro correlacionado para la aeronave: 26.5\n", + "Predicción obtenida: 15.561\n", + "\tR²: 0.5577729360322713, Desviación Estándar: 2.858039912868348, Varianza: 8.168392143548514, Incertidumbre: 0.5716079825736695\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.664x + 7.593\n", + "Valor del parámetro correlacionado para la aeronave: 12.559\n", + "Predicción obtenida: 15.932\n", + "\tR²: 0.3998213157109771, Desviación Estándar: 3.6160406734700388, Varianza: 13.07575015218965, Incertidumbre: 0.7381212115959697\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.684x + 6.837\n", + "Valor del parámetro correlacionado para la aeronave: 3.1\n", + "Predicción obtenida: 15.158\n", + "\tR²: 0.5095357739591448, Desviación Estándar: 3.198518978768509, Varianza: 10.230523657542346, Incertidumbre: 0.6044632701101256\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.424x + 13.745\n", + "Valor del parámetro correlacionado para la aeronave: 5.0\n", + "Predicción obtenida: 15.864\n", + "\tR²: 0.44688240705153315, Desviación Estándar: 3.295517822105962, Varianza: 10.860437715818021, Incertidumbre: 0.6342227005706954\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = 0.001x + 16.018\n", + "Valor del parámetro correlacionado para la aeronave: 101.86\n", + "Predicción obtenida: 16.133\n", + "\tR²: 0.0007471972665133997, Desviación Estándar: 2.300874321451344, Varianza: 5.294022643114182, Incertidumbre: 0.614934528635493\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 15.797', 'Peso máximo al despegue (MTOW): 15.561', 'Velocidad de pérdida (KCAS): 15.932', 'envergadura: 15.158', 'payload: 15.864', 'Rango de comunicación: 16.133']\n", + "**Mediana calculada:** 15.83\n", + "\n", + "--- Imputación para aeronave: **Integrator** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.384x + 10.075\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 20.154\n", + "\tR²: 0.4836358210043519, Desviación Estándar: 3.2298738173488455, Varianza: 10.432084875995603, Incertidumbre: 0.5997725107817994\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.114x + 12.56\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 21.063\n", + "\tR²: 0.5584094722839654, Desviación Estándar: 2.803013662480037, Varianza: 7.856885592049752, Incertidumbre: 0.5497162062251112\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.665x + 7.58\n", + "Valor del parámetro correlacionado para la aeronave: 13.051\n", + "Predicción obtenida: 16.253\n", + "\tR²: 0.40384854496261013, Desviación Estándar: 3.543037251696186, Varianza: 12.553112966906864, Incertidumbre: 0.7086074503392372\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.673x + 6.905\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 19.733\n", + "\tR²: 0.51034062753414, Desviación Estándar: 3.145245417564829, Varianza: 9.892568736712557, Incertidumbre: 0.5840574114645236\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.424x + 13.743\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 21.375\n", + "\tR²: 0.44959491624800174, Desviación Estándar: 3.2361405160283896, Varianza: 10.47260543948049, Incertidumbre: 0.6115730723622395\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = 0.001x + 16.008\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 16.101\n", + "\tR²: 0.0006009919023085564, Desviación Estándar: 2.2241277836738833, Varianza: 4.946744398110101, Incertidumbre: 0.5742673244004108\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 20.154', 'Peso máximo al despegue (MTOW): 21.063', 'Velocidad de pérdida (KCAS): 16.253', 'envergadura: 19.733', 'payload: 21.375', 'Rango de comunicación: 16.101']\n", + "**Mediana calculada:** 19.944\n", + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.373x + 10.083\n", + "Valor del parámetro correlacionado para la aeronave: 2.09\n", + "Predicción obtenida: 21.309\n", + "\tR²: 0.49007651885627856, Desviación Estándar: 3.1758029669681096, Varianza: 10.085724485003448, Incertidumbre: 0.5798196410667559\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.112x + 12.592\n", + "Valor del parámetro correlacionado para la aeronave: 75.0\n", + "Predicción obtenida: 20.973\n", + "\tR²: 0.5653829737578795, Desviación Estándar: 2.7581885003227513, Varianza: 7.607603803312669, Incertidumbre: 0.5308136243790236\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.677x + 6.895\n", + "Valor del parámetro correlacionado para la aeronave: 5.033\n", + "Predicción obtenida: 20.368\n", + "\tR²: 0.5164434789260648, Desviación Estándar: 3.092606517663101, Varianza: 9.56421507309229, Incertidumbre: 0.5646301170705265\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.415x + 13.775\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 21.244\n", + "\tR²: 0.45243459789702367, Desviación Estándar: 3.1899291559574228, Varianza: 10.175648020027236, Incertidumbre: 0.5923549733763512\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 21.309', 'Peso máximo al despegue (MTOW): 20.973', 'envergadura: 20.368', 'payload: 21.244']\n", + "**Mediana calculada:** 21.108\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.359x + 10.095\n", + "Valor del parámetro correlacionado para la aeronave: 1.872\n", + "Predicción obtenida: 20.127\n", + "\tR²: 0.5020709354180335, Desviación Estándar: 3.1243525541900556, Varianza: 9.761578882873925, Incertidumbre: 0.5611502841334306\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.112x + 12.589\n", + "Valor del parámetro correlacionado para la aeronave: 74.8\n", + "Predicción obtenida: 20.963\n", + "\tR²: 0.5809327536697524, Desviación Estándar: 2.7085965129650105, Varianza: 7.336495070046214, Incertidumbre: 0.5118766268087254\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.696x + 6.845\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 19.785\n", + "\tR²: 0.5270307946868045, Desviación Estándar: 3.045038079257076, Varianza: 9.272256904125623, Incertidumbre: 0.5469049839079977\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.414x + 13.778\n", + "Valor del parámetro correlacionado para la aeronave: 18.0\n", + "Predicción obtenida: 21.233\n", + "\tR²: 0.46486409456400923, Desviación Estándar: 3.1364030940850203, Varianza: 9.837024368586087, Incertidumbre: 0.5726262413531211\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 20.127', 'Peso máximo al despegue (MTOW): 20.963', 'envergadura: 19.785', 'payload: 21.233']\n", + "**Mediana calculada:** 20.545\n", + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.378x + 10.082\n", + "Valor del parámetro correlacionado para la aeronave: 1.349\n", + "Predicción obtenida: 17.337\n", + "\tR²: 0.509633634350891, Desviación Estándar: 3.0759861908690347, Varianza: 9.461691046416995, Incertidumbre: 0.543762673599918\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.111x + 12.598\n", + "Valor del parámetro correlacionado para la aeronave: 36.3\n", + "Predicción obtenida: 16.641\n", + "\tR²: 0.5907860344296275, Desviación Estándar: 2.6625239079484526, Varianza: 7.089033560397101, Incertidumbre: 0.49441827749097367\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.711x + 6.811\n", + "Valor del parámetro correlacionado para la aeronave: 4.0\n", + "Predicción obtenida: 17.653\n", + "\tR²: 0.5335788768451615, Desviación Estándar: 2.9999440120772443, Varianza: 8.999664075598112, Incertidumbre: 0.5303201885299493\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.41x + 13.791\n", + "Valor del parámetro correlacionado para la aeronave: 8.6\n", + "Predicción obtenida: 17.321\n", + "\tR²: 0.4719735374132813, Desviación Estándar: 3.0876799487134994, Varianza: 9.533767465687397, Incertidumbre: 0.5545636897507049\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 17.337', 'Peso máximo al despegue (MTOW): 16.641', 'envergadura: 17.653', 'payload: 17.321']\n", + "**Mediana calculada:** 17.329\n", + "\n", + "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.378x + 10.081\n", + "Valor del parámetro correlacionado para la aeronave: 1.802\n", + "Predicción obtenida: 19.773\n", + "\tR²: 0.5096506431121606, Desviación Estándar: 3.0290221145859624, Varianza: 9.174974970650814, Incertidumbre: 0.5272850695450955\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.111x + 12.626\n", + "Valor del parámetro correlacionado para la aeronave: 61.0\n", + "Predicción obtenida: 19.412\n", + "\tR²: 0.5899119116525353, Desviación Estándar: 2.6206837047329836, Varianza: 6.867983080252995, Incertidumbre: 0.47846919372282115\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.649x + 7.958\n", + "Valor del parámetro correlacionado para la aeronave: 13.051\n", + "Predicción obtenida: 16.427\n", + "\tR²: 0.38497447747770597, Desviación Estándar: 3.545344634636701, Varianza: 12.569468578347243, Incertidumbre: 0.695299287477847\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.71x + 6.803\n", + "Valor del parámetro correlacionado para la aeronave: 4.8\n", + "Predicción obtenida: 19.812\n", + "\tR²: 0.53342997768055, Desviación Estándar: 2.954663687517189, Varianza: 8.730037506332673, Incertidumbre: 0.5143409288604107\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.41x + 13.792\n", + "Valor del parámetro correlacionado para la aeronave: 17.7\n", + "Predicción obtenida: 21.056\n", + "\tR²: 0.4721125878507184, Desviación Estándar: 3.039052343695801, Varianza: 9.235839147722942, Incertidumbre: 0.5372336301520427\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = 0.002x + 16.192\n", + "Valor del parámetro correlacionado para la aeronave: 92.6\n", + "Predicción obtenida: 16.346\n", + "\tR²: 0.0013961471345631526, Desviación Estándar: 2.3455650352893986, Varianza: 5.501675334772157, Incertidumbre: 0.5863912588223497\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 19.773', 'Peso máximo al despegue (MTOW): 19.412', 'Velocidad de pérdida (KCAS): 16.427', 'envergadura: 19.812', 'payload: 21.056', 'Rango de comunicación: 16.346']\n", + "**Mediana calculada:** 19.592\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.371x + 10.086\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 13.846\n", + "\tR²: 0.5130352786837467, Desviación Estándar: 2.984299405987304, Varianza: 8.906042944576173, Incertidumbre: 0.5118031257684521\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.111x + 12.626\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 13.317\n", + "\tR²: 0.5946184657373111, Desviación Estándar: 2.5782613181332947, Varianza: 6.647431424582433, Incertidumbre: 0.4630694027472812\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.636x + 8.268\n", + "Valor del parámetro correlacionado para la aeronave: 15.316\n", + "Predicción obtenida: 18.011\n", + "\tR²: 0.3707919802946765, Desviación Estándar: 3.529606447333878, Varianza: 12.458121673060882, Incertidumbre: 0.6792730775005511\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.706x + 6.812\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 13.172\n", + "\tR²: 0.5366242582049442, Desviación Estándar: 2.9111212195272542, Varianza: 8.474626754781848, Incertidumbre: 0.49925317032725897\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.403x + 13.817\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.301\n", + "\tR²: 0.4717960925463479, Desviación Estándar: 3.002745499394878, Varianza: 9.016480534136194, Incertidumbre: 0.5227108979661816\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = 0.002x + 16.338\n", + "Valor del parámetro correlacionado para la aeronave: 50.0\n", + "Predicción obtenida: 16.448\n", + "\tR²: 0.0021729000438440726, Desviación Estándar: 2.4001143739811432, Varianza: 5.760549008190895, Incertidumbre: 0.5821132398522036\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 13.846', 'Peso máximo al despegue (MTOW): 13.317', 'Velocidad de pérdida (KCAS): 18.011', 'envergadura: 13.172', 'payload: 14.301', 'Rango de comunicación: 16.448']\n", + "**Mediana calculada:** 14.074\n", + "\n", + "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", + "\n", + "--- Correlación: Área del ala (r = 0.711) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 5.358x + 10.11\n", + "Valor del parámetro correlacionado para la aeronave: 0.7\n", + "Predicción obtenida: 13.861\n", + "\tR²: 0.5219079320200679, Desviación Estándar: 2.941594049068034, Varianza: 8.65297554951247, Incertidumbre: 0.4972201452507867\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.11x + 12.69\n", + "Valor del parámetro correlacionado para la aeronave: 6.2\n", + "Predicción obtenida: 13.374\n", + "\tR²: 0.6010085744446478, Desviación Estándar: 2.5409184754535725, Varianza: 6.456266698901308, Incertidumbre: 0.4491751711088513\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 13.051, 14.0, 15.316, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 14.074, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.634x + 8.16\n", + "Valor del parámetro correlacionado para la aeronave: 15.607\n", + "Predicción obtenida: 18.054\n", + "\tR²: 0.3591533059239339, Desviación Estándar: 3.5421565229641567, Varianza: 12.546872833177526, Incertidumbre: 0.669404661759172\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: envergadura (r = 0.774) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 2.677x + 6.953\n", + "Valor del parámetro correlacionado para la aeronave: 2.35\n", + "Predicción obtenida: 13.244\n", + "\tR²: 0.5439573083064899, Desviación Estándar: 2.87296092523383, Varianza: 8.253904477920424, Incertidumbre: 0.4856190299260294\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: payload (r = 0.705) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", + "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", + "Ecuación de regresión: y = 0.404x + 13.799\n", + "Valor del parámetro correlacionado para la aeronave: 1.2\n", + "Predicción obtenida: 14.285\n", + "\tR²: 0.48382243545428616, Desviación Estándar: 2.95849521726017, Varianza: 8.7526939505513, Incertidumbre: 0.5073777439109984\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "\n", + "--- Correlación: Rango de comunicación (r = -0.874) ---\n", + "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", + "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", + "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397]\n", + "Ecuación de regresión: y = 0.004x + 16.06\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 16.179\n", + "\tR²: 0.006797842032161827, Desviación Estándar: 2.3934134703855308, Varianza: 5.72842804022291, Incertidumbre: 0.5641329650309457\n", + "\tNivel de confianza: Confianza Muy Baja\n", + "Valores imputados: ['Área del ala: 13.861', 'Peso máximo al despegue (MTOW): 13.374', 'Velocidad de pérdida (KCAS): 18.054', 'envergadura: 13.244', 'payload: 14.285', 'Rango de comunicación: 16.179']\n", + "**Mediana calculada:** 14.073\n", + "\n", + "=== envergadura: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Cuerda: No hay valores faltantes para imputar. ===\n", + "\n", + "=== payload: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Empty weight: No hay valores faltantes para imputar. ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Reporte Final de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
5Aerosonde Mk. 4.7 VTOLVelocidad de pérdida (KCAS)10.5320.512
6Aerosonde Mk. 4.8 Fixed wingVelocidad de pérdida (KCAS)10.5320.512
7Orbiter 4Velocidad de pérdida (KCAS)10.0000.512
8Orbiter 3Velocidad de pérdida (KCAS)15.3160.512
9MantisVelocidad de pérdida (KCAS)16.6450.547
10ScanEagleVelocidad de pérdida (KCAS)12.5590.577
11IntegratorVelocidad de pérdida (KCAS)13.0510.602
12RQ Nan 21A BlackjackVelocidad de pérdida (KCAS)13.0510.623
13DeltaQuad Pro #MAPVelocidad de pérdida (KCAS)15.3160.623
14DeltaQuad Pro #CARGOVelocidad de pérdida (KCAS)15.6070.623
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AeronaveCantidad de Valores Imputados
0Aerosonde Mk. 4.7 VTOL1.000
1Aerosonde Mk. 4.8 Fixed wing1.000
2DeltaQuad Pro #CARGO1.000
3DeltaQuad Pro #MAP1.000
4Integrator1.000
5Mantis1.000
6Orbiter 31.000
7Orbiter 41.000
8RQ Nan 21A Blackjack1.000
9ScanEagle1.000
TotalTotal10.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 = 17070.833 (Correlación)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 = 16254.028 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker XE = 14.838 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker VXE30 = 9.415 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.7 Fixed Wing = 10.532 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.7 VTOL = 10.532 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.8 Fixed wing = 10.532 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 4 = 10.0 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 3 = 15.316 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Mantis = 16.645 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle = 12.559 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Integrator = 13.051 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - RQ Nan 21A Blackjack = 13.051 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Pro #MAP = 15.316 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Pro #CARGO = 15.607000000000001 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Stalker XE = 14.872 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Stalker VXE30 = 14.786999999999999 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.7 Fixed Wing = 17.306 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.7 VTOL = 18.62 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.8 Fixed wing = 18.423 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Fulmar X = 14.807 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Orbiter 4 = 18.753 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Orbiter 3 = 16.3955 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Mantis = 14.509 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - ScanEagle = 15.8305 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator = 19.9435 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator VTOL = 21.1085 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator Extended Range (ER) = 20.545 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - ScanEagle 3 = 17.329 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - RQ Nan 21A Blackjack = 19.5925 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Pro #MAP = 14.0735 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Pro #CARGO = 14.073 (Correlación)\n", + "\n", + "=== Iteración 2: Resumen después de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Después de Iteración 2

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE0.000
1Stalker VXE300.000
2Aerosonde Mk. 4.7 Fixed Wing0.000
3Aerosonde Mk. 4.7 VTOL0.000
4Aerosonde Mk. 4.8 Fixed wing0.000
5Aerosonde Mk. 4.8 VTOL FTUAS0.000
6AAI Aerosonde0.000
7Fulmar X1.000
8Orbiter 40.000
9Orbiter 30.000
10Mantis1.000
11ScanEagle0.000
12Integrator0.000
13Integrator VTOL1.000
14Integrator Extended Range (ER)1.000
15ScanEagle 31.000
16RQ Nan 21A Blackjack0.000
17DeltaQuad Evo0.000
18DeltaQuad Pro #MAP0.000
19DeltaQuad Pro #CARGO0.000
20V210.000
21V250.000
22V320.000
23V350.000
24V390.000
25Volitation VT3700.000
26Skyeye 26000.000
27Skyeye 2930 VTOL0.000
28Skyeye 36001.000
29Skyeye 3600 VTOL0.000
30Skyeye 50000.000
31Skyeye 5000 VTOL0.000
32Skyeye 5000 VTOL octo0.000
33Volitation VT5100.000
34Ascend0.000
35Transition0.000
36Reach0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes6.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "================================================================================\n", + "\u001b[1m=== FIN DE ITERACIÓN 2 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 3 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 3: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Valores Faltantes Antes de Iteración 3

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ColumnaValores Faltantes
0Stalker XE30.000
1Stalker VXE3031.000
2Aerosonde Mk. 4.7 Fixed Wing28.000
3Aerosonde Mk. 4.7 VTOL27.000
4Aerosonde Mk. 4.8 Fixed wing31.000
5Aerosonde Mk. 4.8 VTOL FTUAS33.000
6AAI Aerosonde30.000
7Fulmar X35.000
8Orbiter 434.000
9Orbiter 334.000
10Mantis34.000
11ScanEagle33.000
12Integrator33.000
13Integrator VTOL33.000
14Integrator Extended Range (ER)36.000
15ScanEagle 334.000
16RQ Nan 21A Blackjack32.000
17DeltaQuad Evo28.000
18DeltaQuad Pro #MAP30.000
19DeltaQuad Pro #CARGO30.000
20V2128.000
21V2528.000
22V3228.000
23V3531.000
24V3931.000
25Volitation VT37030.000
26Skyeye 260033.000
27Skyeye 2930 VTOL32.000
28Skyeye 360033.000
29Skyeye 3600 VTOL31.000
30Skyeye 500029.000
31Skyeye 5000 VTOL30.000
32Skyeye 5000 VTOL octo30.000
33Volitation VT51030.000
34Ascend29.000
35Transition29.000
36Reach29.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de Valores Faltantes1147.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 3 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 3 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Modelo
Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440530.22866936.09414730.40658430.46641927.42637218.26582630.62533630.95346521.46331.89437625.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.62533630.29090932.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429403.635186839.144606NaN19500.019500.07013.83419500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.014972.95591316000.017070.83316959.09187416254.02816009.43594316009.47636617000.010000.013000.016000.0
Velocidad de pérdida limpia (KCAS)14.87214.78717.30618.6218.42325.010.014.80718.75316.395514.50915.830519.943521.108520.54517.32919.592514.014.073514.07314.015.517.018.017.3973924.010.018.012.524.015.025.025.025.014.010.025.0
Área del ala0.871.1582831.551.551.552.5030.570.941.6081.20.7541.0631.8722.08951.8721.3491.8020.840.70.70.80.521.031.2021.2031.4240.881.01.331.322.6152.6152.6151.9930.7710.9862.329
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44313.934514.75514.05712.90812.64812.8413.76512.91414.58914.71414.71414.56814.42114.18213.89814.041513.64514.10314.00113.709513.671512.69513.03212.855513.09914.34914.22313.669
Longitud del fuselaje2.12.59083.03.03.03.59451.71.21.21.21.481.712.52.9982.52.42.50.750.90.90.930.931.01.881.9542.022.052.032.4882.423.53.53.52.9051.5622.34.712
Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0518.9225481.428535.2755800.03270.0800.0509.556550.025.0503.5155500.0646.0835500.050.0565.912270.0100.0100.0270.0270.0412.686456.221413.556300.03270.0425.273458.1245300.0530.401800.0800.0800.0270.0506.641800.0
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.011.6729075.06.012.020.0
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388642.25267530.84572541.736.036.025.641.246.340.21646.341.246.333.029.00929.00933.033.033.033.033.033.030.83428930.035.098533.042.042.038.050.030.030.035.0
Velocidad de pérdida (KCAS)14.8389.41510.53210.53210.53218.90746510.0NaN10.015.31616.64512.55913.051NaNNaNNaN13.05114.015.31615.60714.015.517.018.017.3973924.010.018.012.524.015.019.10922524.025.013.013.013.0
Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
envergadura3.6574.87684.44.44.45.6442.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3190.3320.3040.2710.29850.33850.3410.3450.31150.3410.27550.2720.2720.2780.2810.2920.3060.3070.3140.2960.30.3110.3150.34850.3380.34450.3350.2870.2910.313
payload2.4947562.49475614.511.317.722.74.02.49475612.05.52.6935.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
Empty weight10.88620817.46329219.79619.79619.80931.010.017.46329218.36512.2375.63310.19222.19524.784522.25714.79421.1234.84.7544.7542.653.456.457.16.70830311.06.57.111.511.032.032.140535.023.9593.05.831.0
Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Potencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
Distancia de carrera requerida para despegue1.0000.0630.4270.082-0.2730.269-0.2500.2220.4250.1680.054-0.0780.241-0.1950.1050.2000.229nan0.389nan0.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
Altitud a la que se realiza el crucero0.0631.0000.0110.0950.008-0.0750.105-0.092nan-0.095-0.309-0.278-0.0640.216-0.0800.109-0.114nannannan-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
Velocidad a la que se realiza el crucero (KTAS)0.4270.0111.0000.1340.3160.497-0.6070.4280.9170.5530.5450.4230.6340.1060.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.2900.0630.5630.120-0.076nannan
Techo de servicio máximo0.0820.0950.1341.0000.1030.096-0.0290.1350.5900.1220.0970.0010.0140.1050.0220.0280.118-0.8750.1120.579-0.004-0.961-0.118-0.8190.461-0.1560.1960.068-0.1360.140nannan
Velocidad de pérdida limpia (KCAS)-0.2730.0080.3160.1031.0000.753-0.5980.5940.6750.798-0.2300.2600.5160.6440.7470.6430.731-0.1900.4930.9310.678-0.2370.1290.2240.6300.118-0.0280.322-0.1600.232nannan
Área del ala0.269-0.0750.4970.0960.7531.000-0.7780.8350.9840.970-0.0230.3830.6480.3050.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
Relación de aspecto del ala-0.2500.105-0.607-0.029-0.598-0.7781.000-0.624-0.681-0.790-0.003-0.456-0.730-0.149-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.2960.024-0.001-0.471-0.1410.075nannan
Longitud del fuselaje0.222-0.0920.4280.1350.5940.835-0.6241.0000.9380.8060.1400.4030.3630.1170.7190.6230.660-0.6170.5740.9260.834-0.6960.6460.9290.036-0.2030.1380.6120.0340.040nannan
Ancho del fuselaje0.425nan0.9170.5900.6750.984-0.6810.9381.0000.9860.833-0.0890.9400.7110.6710.5570.868nan0.944nan0.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
Peso máximo al despegue (MTOW)0.168-0.0950.5530.1220.7980.970-0.7900.8060.9861.0000.0300.4200.7170.3510.8110.7510.882-0.4010.7080.9790.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
Alcance de la aeronave0.054-0.3090.5450.097-0.230-0.023-0.0030.1400.8330.0301.0000.2240.013-0.258-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
Autonomía de la aeronave-0.078-0.2780.4230.0010.2600.383-0.4560.403-0.0890.4200.2241.0000.378-0.3430.5410.2690.400-0.5940.3370.6340.486-0.7150.8020.056-0.7320.033-0.4200.4780.353-0.314nannan
Velocidad máxima (KIAS)0.241-0.0640.6340.0140.5160.648-0.7300.3630.9400.7170.0130.3781.0000.2610.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.067-0.0570.3000.178-0.141nannan
Velocidad de pérdida (KCAS)-0.1950.2160.1060.1050.6440.305-0.1490.1170.7110.351-0.258-0.3430.2611.0000.2340.1680.3740.6720.2840.3230.1620.934-0.9610.0360.6850.1210.3010.005-0.4330.508nannan
envergadura0.105-0.0800.4210.0220.7470.825-0.6300.7190.6710.811-0.0430.5410.4910.2341.0000.6860.775-0.2580.5010.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
Cuerda0.2000.1090.3960.0280.6430.787-0.8620.6230.5570.751-0.2240.2690.6270.1680.6861.0000.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
payload0.229-0.1140.5670.1180.7310.854-0.8260.6600.8680.8820.0190.4000.7180.3740.7750.7581.000-0.0240.6700.5590.784-0.1420.4890.7110.846-0.0080.0530.4620.100-0.055nannan
duracion en VTOLnannan-0.694-0.875-0.190-0.3830.519-0.617nan-0.401-0.525-0.594-0.0770.672-0.258-0.499-0.0241.000-0.694-0.402-0.3151.000nannannannan-0.188-0.9040.188-0.188nannan
Crucero KIAS0.389nan0.9730.1120.4930.692-0.7690.5740.9440.7080.5240.3370.7000.2840.5010.7300.670-0.6941.0000.7230.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
RTF (Including fuel & Batteries)nannan0.7900.5790.9310.965-0.4970.926nan0.9790.9360.6340.7260.3230.9500.5950.559-0.4020.7231.0000.948-0.402nannannannan0.0970.428-0.0970.097nannan
Empty weight0.225-0.1210.503-0.0040.6780.944-0.7460.8340.9540.9330.0810.4860.6130.1620.8060.7240.784-0.3150.6360.9481.000-0.3860.7850.9800.2510.023-0.0290.4800.195-0.070nannan
Maximum Crosswindnan0.038-0.854-0.961-0.237-0.4660.432-0.696nan-0.464-0.711-0.715-0.2230.934-0.414-0.498-0.1421.000-0.855-0.402-0.3861.000nannannannannan-0.943nannannannan
Rango de comunicaciónnan-0.3250.480-0.1180.1290.491-0.4090.6460.3230.5140.4670.8020.151-0.9610.6480.3550.489nan0.359nan0.785nan1.000nannannan-0.4300.6040.430-0.430nannan
Capacidad combustible-0.018nan0.365-0.8190.2240.974-0.9700.929nan0.9760.8480.0560.7270.0360.2970.9750.711nan0.581nan0.980nannan1.0000.3770.817-0.080nan-0.0800.270nannan
Consumo-0.240nan0.4610.4610.6300.2880.2960.0361.0000.7580.837-0.7320.9100.6850.085-0.2280.846nan0.461nan0.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
Precio-0.156nan-0.290-0.1560.1180.0360.024-0.203nan0.052-0.1480.0330.0670.1210.032-0.041-0.008nan-0.243nan0.023nannan0.8170.9981.000-0.1380.217-0.1380.134nannan
Despegue0.735-0.1190.0630.196-0.0280.125-0.0010.1380.7940.0900.157-0.420-0.0570.301-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
Propulsión horizontal0.154-0.1090.5630.0680.3220.476-0.4710.612nan0.4670.3170.4780.3000.0050.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
Propulsión vertical0.6710.1870.120-0.136-0.1600.072-0.1410.034-0.5350.023-0.2130.3530.178-0.4330.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1400.2320.0370.0750.0400.5740.0750.210-0.314-0.1410.508-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores1024.000
1Valores numéricos826.000
2Valores NaN198.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
Velocidad a la que se realiza el crucero (KTAS)1.0000.1340.497-0.6070.4280.5530.5450.4230.6340.1060.3160.4210.3960.5670.503
Techo de servicio máximo0.1341.0000.096-0.0290.1350.1220.0970.0010.0140.1050.1030.0220.0280.118-0.004
Área del ala0.4970.0961.000-0.7780.8350.970-0.0230.3830.6480.3050.7530.8250.7870.8540.944
Relación de aspecto del ala-0.607-0.029-0.7781.000-0.624-0.790-0.003-0.456-0.730-0.149-0.598-0.630-0.862-0.826-0.746
Longitud del fuselaje0.4280.1350.835-0.6241.0000.8060.1400.4030.3630.1170.5940.7190.6230.6600.834
Peso máximo al despegue (MTOW)0.5530.1220.970-0.7900.8061.0000.0300.4200.7170.3510.7980.8110.7510.8820.933
Alcance de la aeronave0.5450.097-0.023-0.0030.1400.0301.0000.2240.013-0.258-0.230-0.043-0.2240.0190.081
Autonomía de la aeronave0.4230.0010.383-0.4560.4030.4200.2241.0000.378-0.3430.2600.5410.2690.4000.486
Velocidad máxima (KIAS)0.6340.0140.648-0.7300.3630.7170.0130.3781.0000.2610.5160.4910.6270.7180.613
Velocidad de pérdida (KCAS)0.1060.1050.305-0.1490.1170.351-0.258-0.3430.2611.0000.6440.2340.1680.3740.162
Velocidad de pérdida limpia (KCAS)0.3160.1030.753-0.5980.5940.798-0.2300.2600.5160.6441.0000.7470.6430.7310.678
envergadura0.4210.0220.825-0.6300.7190.811-0.0430.5410.4910.2340.7471.0000.6860.7750.806
Cuerda0.3960.0280.787-0.8620.6230.751-0.2240.2690.6270.1680.6430.6861.0000.7580.724
payload0.5670.1180.854-0.8260.6600.8820.0190.4000.7180.3740.7310.7750.7581.0000.784
Empty weight0.503-0.0040.944-0.7460.8340.9330.0810.4860.6130.1620.6780.8060.7240.7841.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores225.000
1Valores numéricos225.000
2Valores NaN0.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannannannannannannannannan
Techo de servicio máximonannannannannannannannannannannannannannannan
Área del alanannannan-0.7780.8350.970nannannannan0.7530.8250.7870.8540.944
Relación de aspecto del alanannan-0.778nannan-0.790nannan-0.730nannannan-0.862-0.826-0.746
Longitud del fuselajenannan0.835nannan0.806nannannannannan0.719nannan0.834
Peso máximo al despegue (MTOW)nannan0.970-0.7900.806nannannan0.717nan0.7980.8110.7510.8820.933
Alcance de la aeronavenannannannannannannannannannannannannannannan
Autonomía de la aeronavenannannannannannannannannannannannannannannan
Velocidad máxima (KIAS)nannannan-0.730nan0.717nannannannannannannan0.718nan
Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannan
Velocidad de pérdida limpia (KCAS)nannan0.753nannan0.798nannannannannan0.747nan0.731nan
envergaduranannan0.825nan0.7190.811nannannannan0.747nannan0.7750.806
Cuerdanannan0.787-0.862nan0.751nannannannannannannan0.7580.724
payloadnannan0.854-0.826nan0.882nannan0.718nan0.7310.7750.758nan0.784
Empty weightnannan0.944-0.7460.8340.933nannannannannan0.8060.7240.784nan
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de la Tabla

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ResumenCantidad
0Total de valores225.000
1Valores numéricos60.000
2Valores NaN165.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", "\n", - "--- Correlación: Capacidad combustible (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 28.0]\n", - "Valores para Empty weight: [15.467, 11.5, 11.0, 32.0, 32.273, 35.0]\n", - "Ecuación de regresión: y = 1.283x + -2.79\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 29.289\n", - "\tR²: 0.9857968254239403, Desviación Estándar: 1.2345889100883332, Varianza: 1.5242097769130982, Incertidumbre: 0.504018811969206\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 23.995', 'Longitud del fuselaje: 21.176', 'Peso máximo al despegue (MTOW): 32.99', 'envergadura: 22.986', 'Cuerda: 19.661', 'payload: 31.949', 'Capacidad combustible: 29.289']\n", - "**Mediana calculada:** 23.995\n" + "=== Generando heatmap ===\n" ] }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwUzR8H8M/R3d1dCoKCYmMQYicWKGJ3+9jtY4udCCY2diGKiYqBiQEGKqF0Sd7+/kAOjrsjpHz8fd++7vWSvdnZmduZ3b25CRbDMAwIIYQQQgghhBBCCCG1Tqi+E0AIIYQQQgghhBBCyP8LaowjhBBCCCGEEEIIIaSOUGMcIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipI9QYRwghhBBCCCGEEEJIHaHGOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkeoMY4QQgghhBBCCCGEkDpCjXGEEEIIIYQQQgghhNQRaowjhBDynxYQEAAWi4VHjx7xfb9Lly4wMDCo1TTcu3cPixYtQmpqaq0epz4sWrQILBarxuN9/vw5vL29YWhoCAkJCcjIyKBx48ZYvXo1kpOTa/x41REaGgoWi4XQ0NBaif/Tp09gsVgICAiolfjr29ChQ2usDtrZ2UFbWxuFhYUCw7Rs2RIqKirIy8ur9vGqc+4rujaVVpOfUWUxDIMjR46gdevWUFNTg4SEBHR0dODq6oo9e/b8VpxOTk5wcnKq2YRWUW1ds2oai8XCokWL6vy4t2/fhri4OD5//szZZmBggC5duvAN/+jRoxq/PlWlbtSE/0qZKJaZmYnJkydDS0sLEhISsLW1xZEjRyq1r5OTE1gslsBXfHw8ACA/Px/Gxsbw9fWtxZwQQspDjXGEEEJINd27dw+LFy/+KxvjasPu3bvRpEkThIeHY8aMGbh8+TKCgoLQt29f7NixAz4+PvWdxDqlqamJsLAwdO7cub6T8sfz8fFBbGwsrly5wvf9d+/e4d69e/D09ISYmFi1j9e4cWOEhYWhcePG1Y7rTzN79mwMGDAAlpaW2LNnDy5duoRly5ZBXV0dZ86cqe/k/bbhw4cjLCysvpPxR2IYBpMnT8aIESOgr69f38khAvTq1Qv79u3DwoULcenSJTg4OGDAgAE4fPhwhftu27YNYWFhXK+QkBCIiorC0dERGhoaAABRUVEsWLAAS5YsQVJSUm1niRDCh0h9J4AQQggh/z/CwsIwZswYODs74/Tp0xAXF+e85+zsjGnTpuHy5cs1cqzs7GxISUnxbC8sLERBQQHXseuTuLg4HB0d6zsZ/wmDBg3CjBkzsHfvXri7u/O8v3fvXgDAsGHDqnWc/Px8sFgsyMnJ/ZXn5ufPn/D19YWXlxd27drF9d7QoUPBZrPrKWXVp6OjAx0dnfpOxh/p8uXLePLkSaUadf5kgq7t1RUXFwdpaWnIycnVeNyVdfHiRQQHB+Pw4cMYMGAAAKBdu3b4/PkzZsyYAQ8PDwgLCwvc38rKimfbvn37kJ+fj+HDh3NtHzBgAKZOnYqdO3dizpw5NZsRQkiFqGccIYSQ/zsMw2Dbtm2wtbWFpKQkFBUV0adPH3z48IErXHBwMLp37w4dHR1ISEjAxMQEo0aNQmJiIifMokWLMGPGDACAoaEhZyhI8bC24uE/58+fh52dHSQlJWFpaYnz588DKBquY2lpCWlpaTRt2pRn2M6jR4/Qv39/GBgYQFJSEgYGBhgwYADXEKPieFgsFoKDg+Ht7Q0lJSVIS0uja9euPPkS5MKFC7C1tYW4uDgMDQ2xdu3aan1+/KxYsQIsFgu7du3i2xgmJiaGbt26cf5ms9lYvXo1LCwsIC4uDjU1NXh5eeHr169c+zk5OaFhw4a4desWWrRoASkpKQwbNowzBHT16tVYtmwZDA0NIS4ujhs3bgAo+ny7desGJSUlSEhIwM7ODseOHaswH5U9LwDw7ds3jBw5Erq6uhATE4OWlhb69OmDhIQEAIKHqd65cwcdOnSArKwspKSk0KJFC1y4cIErTPF5v3HjBsaMGQMVFRUoKyujV69eiI2N5UnL0aNH0bx5c0hLS0NGRgaurq54+vQpV5gPHz6gf//+0NLSgri4ONTV1dGhQwdERERU+LkEBATA3Nwc4uLisLS0xP79+/mGy8vLw7JlyzjnVVVVFd7e3vjx40e58SsqKqJnz544d+4cT2+OwsJCHDhwAA4ODrC2tkZUVBS8vb1hamoKKSkpaGtro2vXrnjx4gXXfsVDUQ8cOIBp06ZBW1sb4uLiiIqK4jtMtSrnHgBSUlJ+q05Wtp49ffoUXbp0gZqaGsTFxaGlpYXOnTvz1JHSsrKykJubC01NTb7vCwlxf0X43fNV1X0PHz6M5s2bQ0ZGBjIyMrC1tYWfnx9XmMuXL6NDhw6Ql5eHlJQULC0t8e+//3Le5zcksarXkfDwcLRu3RpSUlIwMjLCypUruRooc3JyMG3aNNja2kJeXh5KSkpo3rw53x6F6enpGDFiBJSVlSEjIwM3Nze8e/eOJ1xlyyubzcayZctgbm4OSUlJKCgowMbGBhs3biznLBTZvn07HBwcYG5uXmHY8gwdOhQyMjJ48+YNXF1dIS0tDU1NTaxcuRIAcP/+fbRq1QrS0tIwMzPDvn37+MZTmboh6NoOFF3PXFxcoKmpybm3/vPPP8jKyvqtfF25cgXq6uro06cPTp06hZycnN+KpzqCgoIgIyODvn37cm339vZGbGwsHjx4UOU4/fz8ICMjAw8PD67tYmJi8PDwwK5du8AwTLXSTQipOmqMI4QQ8lco7u1U9sXvAXPUqFGYPHkyOnbsiNOnT2Pbtm149eoVWrRowWkgAYDo6Gg0b94c27dvx9WrV7FgwQI8ePAArVq1Qn5+PoCiIVETJkwAAJw6dYozLKT0sLZnz55h9uzZmDVrFk6dOgV5eXn06tULCxcuxJ49e7BixQocOnQIaWlp6NKlC37+/MnZ99OnTzA3N4evry+uXLmCVatWIS4uDg4ODlyNgsV8fHwgJCSEw4cPw9fXFw8fPoSTk1OFQ2hDQkLQvXt3yMrK4siRI1izZg2OHTsGf3//3/78+J2j69evo0mTJtDV1S03PcXGjBmDWbNmwdnZGWfPnsXSpUtx+fJltGjRgif/cXFxGDx4MAYOHIiLFy9i7NixnPc2bdqE69evY+3atbh06RIsLCxw48YNtGzZEqmpqdixYwfOnDkDW1tbeHh4VDg/UmXPy7dv3+Dg4ICgoCBMnToVly5dgq+vL+Tl5ZGSkiIw/ps3b6J9+/ZIS0uDn58fAgMDISsri65du+Lo0aM84YcPHw5RUVEcPnwYq1evRmhoKAYPHswVZsWKFRgwYACsrKxw7NgxHDhwABkZGWjdujVev37NCefu7o7Hjx9j9erVCA4Oxvbt22FnZ1dhGQoICIC3tzcsLS1x8uRJzJs3D0uXLsX169e5wrHZbHTv3h0rV67EwIEDceHCBaxcuRLBwcFwcnLiKv/8+Pj4IC8vDwcPHuTafuXKFcTGxnKGOcfGxkJZWRkrV67E5cuXsXXrVoiIiKBZs2Z4+/YtT7yzZ89GTEwMduzYgXPnzkFNTY3v8euqTlamnmVlZcHZ2RkJCQnYunUrgoOD4evrCz09PWRkZAiMW0VFBSYmJti2bRvWr1+PN2/eCPwyXp3zVZV9FyxYgEGDBkFLSwsBAQEICgrCkCFDuBo5/fz84O7uDjabzTlPEydOLLfhEajadSQ+Ph6DBg3C4MGDcfbsWXTq1AmzZ8/mKm+5ublITk7G9OnTcfr0aQQGBqJVq1bo1asXVwM0wzDo0aMHp6E3KCgIjo6O6NSpE08aK1teV69ejUWLFmHAgAG4cOECjh49Ch8fnwrLU15eHq5du4Z27dqVG66y8vPz0atXL3Tu3BlnzpzhfE5z5szBkCFDMGzYMAQFBcHc3BxDhw7F48ePeeKobN0QdG1///493N3d4efnh8uXL2Py5Mk4duwYunbt+lt56tmzJzZt2oSUlBT069cP6urqGDp0KK5cuVLuPJUMw/B9/uD3qsjLly9haWkJERHuAWw2Njac96vi/fv3uH37Nvr37w8ZGRme952cnPD58+cqx0sIqQEMIYQQ8h/m7+/PACj3pa+vzwkfFhbGAGDWrVvHFc+XL18YSUlJZubMmXyPw2azmfz8fObz588MAObMmTOc99asWcMAYD5+/Mizn76+PiMpKcl8/fqVsy0iIoIBwGhqajJZWVmc7adPn2YAMGfPnhWY34KCAiYzM5ORlpZmNm7cyPM59OzZkyv83bt3GQDMsmXLBMbJMAzTrFkzRktLi/n58ydnW3p6OqOkpMSUflz43c+PYRgmPj6eAcD079+/3LQUi4yMZAAwY8eO5dr+4MEDBgAzZ84czra2bdsyAJiQkBCusB8/fmQAMMbGxkxeXh7XexYWFoydnR2Tn5/Ptb1Lly6MpqYmU1hYyDAMw9y4cYMBwNy4cUNgWgWdl2HDhjGioqLM69evBe5bnEZ/f3/ONkdHR0ZNTY3JyMjgOkbDhg0ZHR0dhs1mMwxTct7LfkarV69mADBxcXEMwzBMTEwMIyIiwkyYMIErXEZGBqOhocH069ePYRiGSUxMZAAwvr6+AtPLT2FhIaOlpcU0btyYkzaGYZhPnz4xoqKiXHUwMDCQAcCcPHmSK47w8HAGALNt27Zyj8VmsxlDQ0PGxsaGa3vv3r0ZKSkpJi0tje9+BQUFTF5eHmNqaspMmTKFs734/LZp04Znn+qc+6rUySFDhvzWderRo0cMAOb06dMC0yfIw4cPGT09Pc51UlZWlunSpQuzf/9+rnNYlfPVtm1bpm3btlXe98OHD4ywsDAzaNAggenNyMhg5OTkmFatWnGlr6yFCxdyXbN+5zry4MEDrrBWVlaMq6urwGMWFBQw+fn5jI+PD2NnZ8fZfunSJQYAV7lgGIZZvnw5A4BZuHBhuXHyK69dunRhbG1tBe4nSHF+jxw5wvOevr4+07lzZ777FZ+r0tenIUOG8JzX/Px8RlVVlQHAPHnyhLM9KSmJERYWZqZOncrZVpW6IejaXlbxPfrmzZsMAObZs2ec98qWicqIj49nNm/ezLRs2ZJhsViMmpoaM27cOObOnTs85a8yzyHFr4qYmpryLWuxsbEMAGbFihVVysesWbMYAExYWBjf99+/f88AYLZv316leAkh1Uc94wghhPwV9u/fj/DwcJ5Xq1atuMKdP38eLBYLgwcP5vq1WkNDA40aNeIajvb9+3eMHj0aurq6EBERgaioKGfS68jIyEqnzdbWFtra2py/LS0tART9Il163pvi7aV7gmRmZmLWrFkwMTGBiIgIREREICMjg6ysLL5pGDRoENffLVq0gL6+PmdYJj9ZWVkIDw9Hr169ICEhwdle3BOrtKp8ftVVnOahQ4dybW/atCksLS0REhLCtV1RURHt27fnG1e3bt0gKirK+TsqKgpv3rzhfF6l8+Lu7o64uDi+vaeKVfa8XLp0Ce3ateOc28rIysrCgwcP0KdPH66eDMLCwvD09MTXr1950lZ6aC9Q0ouiuCxduXIFBQUF8PLy4sqrhIQE2rZtyzlvSkpKMDY2xpo1a7B+/Xo8ffq0UvOHvX37FrGxsRg4cCDXEEF9fX20aNGCK+z58+ehoKCArl27cqXF1tYWGhoaFZYhFosFb29vPH/+nNPbJikpCefOnUPv3r058z0VFBRgxYoVsLKygpiYGERERCAmJob379/zrTu9e/euMJ9A3dTJytYzExMTKCoqYtasWdixYwdXD8eKODg4ICoqCpcvX8acOXPQvHlzhISEwMvLC926deP0lKvO+arsvsHBwSgsLMS4ceMExnXv3j2kp6dj7NixVVoZs6rXEQ0NDTRt2pRrm42NDc8w5OPHj6Nly5aQkZHh3B/8/Py4ykDxscuWgYEDB/Kks7LltWnTpnj27BnGjh2LK1euID09vVKfQ/GwdUE9PquKxWJxzdsoIiICExMTaGpqws7OjrNdSUkJampqfIdxV7ZuCLq2f/jwAQMHDoSGhgaEhYUhKiqKtm3bAqjaPZofdXV1jB8/Hnfu3MHnz58xc+ZMTs94Q0NDrqGwXbt25fv8we9VGeWV76qU/YKCAuzbtw8NGjQQOPdlcXn49u1bpeMlhNQMWsCBEELIX8HS0hL29vY82+Xl5fHlyxfO3wkJCWAYBurq6nzjMTIyAlA0vMrFxQWxsbGYP38+rK2tIS0tDTabDUdHxwqH0pWmpKTE9XfxKo+Ctpeep2bgwIEICQnB/Pnz4eDgADk5Oc6XIH5pKF4prey28lZLS0lJAZvNFrhvaZX9/PhRUVGBlJQUPn78KDBMacVp5jevlZaWFs+XO0HzX/F7r3iY3/Tp0zF9+nS++/Abclissuflx48fVZ5MPiUlBQzDCMw3AJ7zqayszPV38Xx8xWkpzq+DgwPfYxbPEcZisRASEoIlS5Zg9erVmDZtGpSUlDBo0CAsX74csrKyfPcvTo+gMvTp0yfO3wkJCUhNTRW42ml5n3sxb29vLFq0CP7+/mjSpAkOHTqEvLw8rpV4p06diq1bt2LWrFlo27YtFBUVISQkhOHDh/OtO+WVn9Lqok5Wtp7Jy8vj5s2bWL58OebMmYOUlBRoampixIgRmDdvHlcDND+ioqJwdXWFq6srgKLz2KdPH5w/fx6XLl2Cu7t7tc5XZfctnj+uvLpSmTD8VPU6UrYuAUX1qfS5PXXqFPr164e+fftixowZ0NDQgIiICLZv385ZRKT42CIiIjxx8isTlS2vs2fPhrS0NA4ePIgdO3ZAWFgYbdq0wapVq/jeA4sVx1H6B5diIiIiAodhFg+tLFuWpKSkeOISExPjua8Vb+c3/1pl6wa/c5eZmYnWrVtDQkICy5Ytg5mZGaSkpPDlyxf06tWrSvfoiqSlpSE1NRVpaWkAwDk3xZSUlCAvL18jx1JWVuZ7bUhOTuYcq7IuXryI+Ph4zJo1S2CY4nNYk58XIaRyqDGOEELI/xUVFRWwWCzcvn2b7wICxdtevnyJZ8+eISAgAEOGDOG8HxUVVWdpTUtLw/nz57Fw4UL8888/nO3F8xXxEx8fz3ebiYmJwOMoKiqCxWIJ3Le0yn5+/AgLC6NDhw64dOkSvn79WuGX6uIvsHFxcTxhY2NjoaKiwrWtKr0JivedPXs2evXqxXcfQZOcV+W8qKqqVjifVVnFX/Ti4uJ43ivu3VI27xUpDn/ixAlO705B9PX1OZPmv3v3DseOHcOiRYuQl5eHHTt28N2n+FxVtgwpKysLXDVXUINfaTo6OnBxccHhw4exbt06+Pv7w8TEBG3atOGEOXjwILy8vLBixQqufRMTE6GgoMATZ2V6nNRVnaxKPbO2tsaRI0fAMAyeP3+OgIAALFmyBJKSklxprAxlZWVMnjwZoaGhePnyJdzd3at1viq7r6qqKgDg69evAueTLB2mKqp6HamMgwcPwtDQEEePHuUqN7m5uTzHLigoQFJSEleDHL8yUdnyKiIigqlTp2Lq1KlITU3FtWvXMGfOHLi6uuLLly8CVxktzie/cqquri6wZ1TxdkENw9VR2brBr25ev34dsbGxCA0N5fSGA1Dh3HmV9e7dOxw9ehRHjhzB69evYWJiggEDBmDgwIGwsLDgCrtv3z54e3tXKl6mgoUSrK2tERgYiIKCAq5544oX8mjYsGGl8+Dn5wcxMTF4enoKDFNcHn6nHhBCqoeGqRJCCPm/0qVLFzAMg2/fvsHe3p7nZW1tDaDk4b/sF+GdO3fyxFm2F1JNYbFYYBiGJw179uwR2Ivh0KFDXH/fu3cPnz9/hpOTk8DjFK/kWnb1uIyMDJw7d44rbGU/P0Fmz54NhmEwYsQI5OXl8byfn5/POWbxsKSyE/WHh4cjMjISHTp0KPdY5TE3N4epqSmePXvGNx/29vYCGxmqcl46deqEGzdulDvktSxpaWk0a9YMp06d4ipTbDYbBw8ehI6ODszMzKqQW8DV1RUiIiKIjo4WmF9+zMzMMG/ePFhbW+PJkycC4zc3N4empiYCAwO5vmx+/vwZ9+7d4wrbpUsXJCUlobCwkG86KrvSo4+PD1JSUrBgwQJERETA29ub60s7i8XiOUcXLlyo1nCsuqqTv1PPWCwWGjVqhA0bNkBBQaHc85Wfny+wZ17x8L7iXpjVOV+V3dfFxQXCwsLYvn27wLhatGgBeXl57Nixo0orP9bGdYTFYkFMTIyrvMXHx/Osplq8WELZMnD48GG+cVa1vCooKKBPnz4YN24ckpOTuXqgllU8VD46OprnvY4dO+Lly5d8hzkfO3YMMjIyaNasmcC4f9fv1I1iVblHV9b379+xatUq2NnZwdzcHDt27ICLiwsePnyI9+/fY8mSJTwNcUDNDlPt2bMnMjMzcfLkSa7t+/btg5aWVqXPQ3x8PC5evIgePXrw7e1ZrHj1Wisrq0rFSwipOdQzjhBCyP+Vli1bYuTIkfD29sajR4/Qpk0bSEtLIy4uDnfu3IG1tTXGjBkDCwsLGBsb459//gHDMFBSUsK5c+cQHBzME2fxF+ONGzdiyJAhEBUVhbm5eaV6+JRHTk4Obdq0wZo1a6CiogIDAwPcvHkTfn5+fHv2AMCjR48wfPhw9O3bF1++fMHcuXOhra3NtbIoP0uXLoWbmxucnZ0xbdo0FBYWYtWqVZCWlubqSVHZz0+Q4tVpx44diyZNmmDMmDFo0KAB8vPz8fTpU+zatQsNGzZE165dYW5ujpEjR2Lz5s0QEhJCp06d8OnTJ8yfPx+6urqYMmXKb32uxXbu3IlOnTrB1dUVQ4cOhba2NpKTkxEZGYknT57g+PHjfPerynlZsmQJLl26hDZt2mDOnDmwtrZGamoqLl++jKlTp/L9YgcA//77L5ydndGuXTtMnz4dYmJi2LZtG16+fInAwMAqzRsEAAYGBliyZAnmzp2LDx8+wM3NDYqKikhISMDDhw8hLS2NxYsX4/nz5xg/fjz69u0LU1NTiImJ4fr163j+/Hm5vayEhISwdOlSDB8+HD179sSIESOQmpqKRYsW8QxF69+/Pw4dOgR3d3dMmjQJTZs2haioKL5+/YobN26ge/fu6NmzZ4V56tatG1RUVLBmzRoICwtz9WAFihqCAgICYGFhARsbGzx+/Bhr1qyp8jDH0uqqTla2np0/fx7btm1Djx49YGRkBIZhcOrUKaSmpsLZ2Vlg/GlpaTAwMEDfvn3RsWNH6OrqIjMzE6Ghodi4cSMsLS05PUarc74qu6+BgQHmzJmDpUuX4ufPnxgwYADk5eXx+vVrJCYmYvHixZCRkcG6deswfPhwdOzYESNGjIC6ujqioqLw7NkzbNmyhW8aauM60qVLF5w6dQpjx45Fnz598OXLFyxduhSampp4//49J5yLiwvatGmDmTNnIisrC/b29rh79y4OHDjAN87KlNeuXbuiYcOGsLe3h6qqKj5//gxfX1/o6+vD1NRUYJp1dHRgZGSE+/fvY+LEiVzvTZo0Cfv374eTkxPnOpWSkoKjR4/ixIkTWL9+fbXvZ/z87v0KKGqcVVRUxOjRo7Fw4UKIiori0KFDePbs2W+n5+LFi1i5ciV69+6NtWvXol27dlzDUQVRVlYut8GrKjp16gRnZ2eMGTMG6enpMDExQWBgIC5fvoyDBw9CWFiYE9bHxwf79u1DdHQ0T4/nffv2oaCgAMOHDy/3ePfv3+cMdSaE1LG6XjGCEEIIqUnFq5iFh4fzfb9z585cqxQW27t3L9OsWTNGWlqakZSUZIyNjRkvLy/m0aNHnDCvX79mnJ2dGVlZWUZRUZHp27cvExMTw3cVvNmzZzNaWlqMkJAQ1+qLglapA8CMGzeOa1vxqppr1qzhbPv69SvTu3dvRlFRkZGVlWXc3NyYly9fMvr6+syQIUN4PoerV68ynp6ejIKCAiMpKcm4u7sz79+/r+BTLHL27FnGxsaGERMTY/T09JiVK1cKXIWuMp9feSIiIpghQ4Ywenp6jJiYGCMtLc3Y2dkxCxYsYL5//84JV1hYyKxatYoxMzNjREVFGRUVFWbw4MHMly9fuOJr27Yt06BBA57j8PtMS3v27BnTr18/Rk1NjREVFWU0NDSY9u3bMzt27OCE4beiZmXPC8MUrYA5bNgwRkNDgxEVFWW0tLSYfv36MQkJCVxpLL1aIcMwzO3bt5n27dtzPmNHR0fm3LlzXGEElX9Bq4CePn2aadeuHSMnJ8eIi4sz+vr6TJ8+fZhr164xDMMwCQkJzNChQxkLCwtGWlqakZGRYWxsbJgNGzYwBQUFfD/D0vbs2cOYmpoyYmJijJmZGbN3716elUIZpmjlxbVr1zKNGjViJCQkGBkZGcbCwoIZNWpUpcsrwzDMlClTGACMu7s7z3spKSmMj48Po6amxkhJSTGtWrVibt++zbPiZ/Fndfz4cZ44qnPuq1In+X1GDFNxPXvz5g0zYMAAxtjYmJGUlGTk5eWZpk2bMgEBAeV+brm5uczatWuZTp06MXp6eoy4uDgjISHBWFpaMjNnzmSSkpK4wlf2fJX9bKuyL8MwzP79+xkHBwdOODs7O556cfHiRaZt27aMtLQ0IyUlxVhZWTGrVq3ivM/vmlXd6wi/87Ny5UrGwMCAERcXZywtLZndu3fzPXZqaiozbNgwRkFBgZGSkmKcnZ2ZN2/e8NxHKlte161bx7Ro0YJRUVHhXKt9fHyYT58+8aS7rPnz5zOKiopMTk4Oz3vx8fHMmDFjGD09PUZERISRlZVlWrVqxbdeDBkyhJGWlubZLujzK3sfrErdEBQnwzDMvXv3mObNmzNSUlKMqqoqM3z4cObJkyc819PKrqaamJjI5ObmVhiutmVkZDATJ05kNDQ0GDExMcbGxoYJDAzkCVe8qi2/ldzNzMwYAwODclceZhiGad26NdO1a9eaSjohpApYDFOFft6EEEII+SMFBATA29sb4eHh5U7iTQgh5P9TbGwsDA0NsX//fnh4eNR3ckg9i46OhqmpKa5cuVJuT1pCSO2gOeMIIYQQQggh5C+npaWFyZMnY/ny5WCz2fWdHFLPli1bhg4dOlBDHCH1hOaMI4QQQgghhJD/A/PmzYOUlBS+ffsmcOVa8vcrKCiAsbExZs+eXd9JIeT/Fg1TJYQQQgghhBBCCCGkjtAwVUIIIYQQQgghhBDyR7t16xa6du0KLS0tsFgsnD59usJ9bt68iSZNmkBCQgJGRkbYsWMHT5iTJ0/CysoK4uLisLKyQlBQUC2knhs1xhFCCCGEEEIIIYSQP1pWVhYaNWqELVu2VCr8x48f4e7ujtatW+Pp06eYM2cOJk6ciJMnT3LChIWFwcPDA56ennj27Bk8PT3Rr18/PHjwoLayAYCGqRJCCCGEEEIIIYSQ/xAWi4WgoCD06NFDYJhZs2bh7NmziIyM5GwbPXo0nj17hrCwMACAh4cH0tPTcenSJU4YNzc3KCoqIjAwsNbSTz3jCCGEEEIIIYQQQkidy83NRXp6OtcrNze3RuIOCwuDi4sL1zZXV1c8evQI+fn55Ya5d+9ejaRBEFpNlRBCCCGEEEIIIeQv1XLr6PpOgkDOPzSwePFirm0LFy7EokWLqh13fHw81NXVubapq6ujoKAAiYmJ0NTUFBgmPj6+2scvDzXGEULIH+xPvnFW1t1xO/AqLrq+k1EtDTSNsfXuifpORrWNa9kHaat86zsZ1SI/azL2h1+s72RUm5eDO9bcOFjfyai2Ge0GY23oofpORrVMdxr015SpuZd21ncyqmV5p1F4/z2mvpNRbaZqerjw+m59J6PaOlu1xIFHlyoO+AfztO+EwCdX6zsZ1TagsQtWXt9f38moln/ae2HzneP1nYxqm9Cqb30n4a8ze/ZsTJ06lWubuLh4jcXPYrG4/i6eqa30dn5hym6radQYRwghhBBCCCGEEELqnLi4eI02vpWmoaHB08Pt+/fvEBERgbKycrlhyvaWq2k0ZxwhhBBCCCGEEELIX4r1B/+rTc2bN0dwcDDXtqtXr8Le3h6ioqLlhmnRokWtpo16xhFCCCGEEEIIIYSQP1pmZiaioqI4f3/8+BERERFQUlKCnp4eZs+ejW/fvmH//qJh3aNHj8aWLVswdepUjBgxAmFhYfDz8+NaJXXSpElo06YNVq1ahe7du+PMmTO4du0a7ty5U6t5oZ5xhBBCCCGEEEIIIeSP9ujRI9jZ2cHOzg4AMHXqVNjZ2WHBggUAgLi4OMTElMw9amhoiIsXLyI0NBS2trZYunQpNm3ahN69e3PCtGjRAkeOHIG/vz9sbGwQEBCAo0ePolmzZrWaF+oZRwghhBBCCCGEEPKXEqrlxQjqipOTE2cBBn4CAgJ4trVt2xZPnjwpN94+ffqgT58+1U1elVDPOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkdomCohhBBCCCGEEELIX4r1lwxT/ZtQzzhCCCGEEEIIIYQQQuoINcYRQgghhBBCCCGEEFJHaJgqIYQQQgghhBBCyF/qb1lN9W9CPeMIIYQQQgghhBBCCKkj1BhHCCGEEEIIIYQQQkgdoWGqhBBCCCGEEEIIIX8pFmiY6p+GesYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6QsNUCSGEEEIIIYQQQv5SLFpN9Y/zn+8ZZ2BgAF9f3zqNj8Vi4fTp09U6zqJFi2Bra1utOMoKDQ0Fi8VCampqjcZLuJX9nAMCAqCgoFCvaRo6dCh69OhRr2n4EyQlJUFNTQ2fPn2q76Rw2bJlC7p161bfySCEEEIIIYQQ8geot55xXbt2xc+fP3Ht2jWe98LCwtCiRQs8fvwYjRs3rtN0hYeHQ1pauk6PSf7bPDw84O7uXt/JIAD+/fdfdO3aFQYGBgCAT58+wdDQEE+fPuU0fmdkZKBr166Ij4/H27dvy43v48ePMDAwwL1799C6dWs4Ozvj8uXLPOFOnjyJ1atX482bN2Cz2dDT04ObmxvWrVsHABgxYgSWL1+OO3fuoFWrVjWa59/RSNMEA+1cYKGmBxVpBfxzcTtuf3xW38niuHT6PM4cOYmUpGToGupj2PiRsLJpyDdsclIy9m3bjeh3UYj7Ggv3Xt3gM2EUV5j7t+7i5MGjiPsWh8LCAmhqa6ObR084uXSoi+xwPL9+H08u30FWagaUtNXQZkBnaJsZ8A379c0HnFrtx7N98PLJUNJUreWUchNv6QixRg3BkpBAYVw8fgZfBzsxuYKdxCHRpgVEzUzAkhAHOy0dOddvoeDDJwCAsI42xJs1gbC6GoRkZZB16hwK3kfXSvofBd/B/Ys3kJmaDlVtDTgP7gE9C+MK9/vy7gMOLNsKVR0NjFgxg7P9Tfhz3D0bjJSERLAL2VBUV4GjuxOsWznUSvqLvQ59hOfBYfiZlgEFLVU07+sKDVM9vmFj337CxQ0HeLb3WTQGChoqAIB3957h1v6zPGGGbp4NEdHaezx8HRqOZ1eL8qGopQbHfi7QNNXnGzb27SdcWL+fZ3vfxWM5+SgtOvwlru85Bf1G5nAZ61HjaS9W02Xq6Y0wvLgdjh9f4wEAGoY6cOrXGdrG/D+XmtJMzwqtDBtBVlwK3zNTcCHyHj6nxAsMLywkhPbGTdBI2xSy4lJIy8nEzeinePy16F5qpW4IJ2M7KEnJQZglhKTsNNz5+BwRse9rLQ8Xgs7iVOBxJCclQc/AACMmjkHDRtZ8wyYnJsFv605EvX2P2K/f0LVPD4ycOJYrzOePn3DIbx+i3r7H9/gEjJgwBt379aq19Be7e+k6bpy+jPSUVGjoaqOHzwAYWZnxDfvh9TucP3AC37/GIS8vD0qqymju4oS23Vw4YcKu3sSj0HuIj/kGANAx1of7oN7QNzOq1Xw8Cr6DsAvXOXXDxbNn5erG2w/Yv2wL1HQ0MOLfmZztT66H4cWdcPz4EgcA0DDURTuP2q8bZT28egv3zocgIzUdajqacPPqBX0Lkwr3i3n7Af5LNkJNVxNjVv5TByktEXnzEV4G38fPtEwoaKqiaV9ngfeMuHefcXnDQZ7tPReO4lxrL60/gPj3MTxhdBoaw3lc/5pNfDleXH+AJ1duIzs1E0raamjd3x1a5TxLnV6zl2f7oGWToFjHz1KE8FNvjXE+Pj7o1asXPn/+DH197gvq3r17YWtrW+cNcQCgqkoV82+Vl5cHMTGxGo9XUlISkpKSNR5vfaqtz6oy8vPzISoqWuX9fv78CT8/P1y8eFFgmB8/fqBTp04AgGvXrkFEpOQS6ODggJEjR2LEiBGcbcXXg71792LChAnYs2cPYmJioKdX8jBz7do19O/fHytWrEC3bt3AYrHw+vVrhISEcMKIi4tj4MCB2Lx58x/RGCcpKo6opK+4+OYeVnQaXd/J4XLn+k34b9mFEZPHwtLaClfOXsKymQuwcd8OqKqr8YQvyMuHnII8eg/uj/PHg/jGKSMri96e/aGjpwMREVE8CnuALSs3QF5BAXZNm9R2lgAA7x4+x63Ai3Dy7AotE328DA3H2Q37MHjZJMgqKwjcz3PFFIhJinP+lpSt2x+LxJrZQ9zBDtkXr4KdnArxFk0h3a8XMvbsA/Ly+e8kJARpj55gsn8i+/R5sDMyISQrCyYvjxOEJSaKwu8/kPfiFaR7dq219L++/xTBB0/DbWgf6JoZ4sn1eziyZhdGrfoH8iqKAvfLyf6JszsOw7CBKTLTMrjek5SWQstuzlDRUoewiDDeP32Fc7uOQEpOFsY2FrWSj+hHr3D/+BW0GOAOdWMdvLn9BJe3HEafhWMgoyQvcL++i8dCVKKk/EjISnG9Lyohjr6LuRsjarMhLjr8FcKOXUHLge5QN9bFm1tPcHnzYfRdNLb8fCwZB7Fy8gEAGUmpeHAiGBom/L9s1pTaKFOfI6Ng1bwxdMwMISIqgrDz1xG4agdGrpwFOSWFWsmHtYYx3C1b4NyrO/icEg8HPSsMsXfHxtvHkJaTyXefAbbOkBaXRNCLm0jKToOMmCSEWCWDbH7m5yA0+gl+ZKaikGHDXFUPvaydkJn3E1GJX2s8D7dCQrF703aMmToBVtYNcOnsBSyaMQfbDvhBjc/9Ij+/6H7Rz2sgzhw7yTfO3JxcaGhqoqVTG+zZvKPG08zP0zsPcXpvIHqP9IShhQnuXQ3FrqUbMGvTMiiqKvOEF5MQRyv39tDS14WYhDg+vH6PEzv2QUxCDM1dnAAA0a/eonHrZjCwMIGIqChuBF3CzsXrMHPTMigoCy6n1fEq7AmuHghCJ++SuhG4eidGr55dYd04s+MQDBuYIotP3WjQvDF0vAwgIiaKsPMhOLxyO0at+qfW6kZZL8Me4/L+U+g8rB/0zI3w6NpdHFy5HePWzoWCipLA/XKyfyJo2wEYNTTjqfO17cOj13h4PBjN+7tBzVgXb28/QfDWI+i5YFS519pei0YLvGe0H9UHhQWFnL9zs37izPLdMGhsWTuZ4OP9wxe4feQi2g7uCk0TPby6GY5zvvsxcOnEcp+lBi2fXK/PUn8KIRqm+sept2GqXbp0gZqaGgICAri2Z2dn4+jRo/Dx8QEA3Lt3D23atIGkpCR0dXUxceJEZGVlCYw3JiYG3bt3h4yMDOTk5NCvXz8kJCRwhTl79izs7e0hISEBFRUV9OpV8otX2WGq79+/R5s2bSAhIQErKysEBwfzHHPWrFkwMzODlJQUjIyMMH/+fOTnc39JWblyJdTV1SErKwsfHx/k5OSU+/kUFhbCx8cHhoaGkJSUhLm5OTZu3FjuPmUlJSVhwIAB0NHRgZSUFKytrREYGFjhfgEBAdDT04OUlBR69uyJdevWcQ3D5DckcvLkyXBycuL8zTAMVq9eDSMjI0hKSqJRo0Y4ceJEucfdtm0bTE1NISEhAXV1dfTp06da8RkYGGDZsmUYOnQo5OXlOY0sFZWpgwcPwt7eHrKystDQ0MDAgQPx/fv3cj+v0p+PgYEBWCwWz6tYZcpLWd++fYOHhwcUFRWhrKyM7t27V3ko5t27d9G2bVtISUlBUVERrq6uSElJAQA4OTlh/PjxmDp1KlRUVODs7IxPnz6BxWIhIiKCE0dqaipYLBZCQ0M52169eoXOnTtDTk4OsrKyaN26NaKjS3q4+Pv7w9LSEhISErCwsMC2bds47xUf49ixY3BycoKEhAQOHjwINpuNJUuWQEdHB+Li4rC1teXbI620S5cuQUREBM2bN+f7/pcvX9C6dWvIysrixo0b0NHRgYaGBuclLCzMOeelt2VlZeHYsWMYM2YMunTpwnPNOn/+PFq1aoUZM2bA3NwcZmZm6NGjBzZv3swVrlu3bjh9+jR+/vxZbj7qwv2YV9j94Cxufoio76TwOHc8CB3cXeDcxQ06+nrwmTAKymqquHLmAt/waprq8JkwGu1cO0BKQK/mhnY2cGzdAjr6etDQ1kSXPj2gb2yIyBevajMrXJ5euYsGrZugYRsHKGmpoc3AzpBRksfzGw/K3U9KThrS8rKcl5BQ3d62xe3tkBMWjoJ30WAnJuHnhatgiYpCzFJwo5OYTQOwJCSQfeocCr/FgUnPQOG3WLB/JHLCFHz4hNzbYSh4Vzu94Yo9uBQKW6dmsGvnCBVtdbh49oScsgKehNwtd79Le4+jQfPG0DYx4HlP38oEFg42UNFWh6K6Cpq6tYWaria+vP1QS7kAXl67D7OWdrBoZQdFTVU07+cKaUU5RN58VO5+ErLSkJKX4bzKlh8WC1zvS8nL1FoeAODFtTCYt7SDRavGRfnwcIWMojxeV5APyQrywWazccMvCI27OkFWtXYaGorVRpnqMdYT9s6toKGvDRUtdXQe7gGGzeDTq9rrUdbS0BqPv77Bo69v8CMrFRcj7yEtJxPN9Kz4hjdV0YWBkib2P7qE6KRvSP2Zia9pPxCTWvKM/TE5Dq8TPuFHViqSs9MR9vklEjKSYKCoUSt5OH30JJw7u8G1qzt0DfQxcuJYqKip4mLQOb7h1TU1MGrSOHRwcxZ4vzCzNMewcSPRtmM7iIpV/YfB33Hz7BU069Aajs5toK6rhZ4+A6GgrIS7l2/wDa9jpI/GrR2hoacNJTUV2Ds1h7ltQ3x4XVJeBk8ZiZad2kPbUA/qOproN3YoGIbB++evay0fJXWjOVS0NeDi2Qtyygp4fO1Ouftd9DuGhi2aQNvUgOe9nuN+1Q0DnV91o/+vuvGulnLBK+zCDTRu1xxN2reAqrYGOg3pDXllRTwKLj9f5/YcgXXLJtAxNayjlJZ4FfIApi1sYdbKDgqaKmjWzwXSinJ4c+tJufuVd88Ql5bkei828iNExETrtDEu4updWLVuggZt7KGkpYbWA4qepV6EPix3v/p+liJEkHoriSIiIvDy8kJAQAAYhuFsP378OPLy8jBo0CC8ePECrq6u6NWrF54/f46jR4/izp07GD9+PN84GYZBjx49kJycjJs3byI4OBjR0dHw8CgZqnDhwgX06tULnTt3xtOnTxESEgJ7e3u+8bHZbPTq1QvCwsK4f/8+duzYgVmzZvGEk5WVRUBAAF6/fo2NGzdi9+7d2LBhA+f9Y8eOYeHChVi+fDkePXoETU1NrgYJQcfW0dHBsWPH8Pr1ayxYsABz5szBsWPHyt2vtJycHDRp0gTnz5/Hy5cvMXLkSHh6euLBA8Ff/h48eIBhw4Zh7NixiIiIQLt27bBs2bJKH7PYvHnz4O/vj+3bt+PVq1eYMmUKBg8ejJs3b/IN/+jRI0ycOBFLlizB27dvcfnyZbRp0+a34yu2Zs0aNGzYEI8fP8b8+fMrVaby8vKwdOlSPHv2DKdPn8bHjx8xdOjQSuc9PDwccXFxiIuLw9evX+Ho6IjWrVtz3q+ovJSVnZ2Ndu3aQUZGBrdu3cKdO3cgIyMDNzc35JXqaVKeiIgIdOjQAQ0aNEBYWBju3LmDrl27orCw5Beuffv2QUREBHfv3sXOnTsrFe+3b984jdXXr1/H48ePMWzYMBQUFAAAdu/ejblz52L58uWIjIzEihUrMH/+fOzbt48rnlmzZmHixImIjIyEq6srNm7ciHXr1mHt2rV4/vw5XF1d0a1bN7x/L/iLya1btwTW5bdv36Jly5awsLDA5cuXISsrW6n8AcDRo0dhbm4Oc3NzDB48GP7+/lzXLA0NDbx69QovX74sNx57e3vk5+fj4cPyHxj+n+Xn5yP6bRQaOXD3irZ1sMObV5E1cgyGYfD8cQRiv3yFVSP+Q19rWmFBAb5/joVeA+4hLXoNTBAXxTvko7TARVuxZ8q/OLXGD18ia6+xhx+WvByEZKRR8PFzycbCQhR8+QphbU2B+4mYGKEwNg6Szu0gO34EZIYNhrijQ1HLTx0qLChA3MevMGxozrXdqKE5vr7/JHC/ZzcfICUhEW16uVZ4DIZh8PHlOyTH/6jUUKzfUVhQiMSYOOhYcg8v07E0RsKH8nsbBS3fjUMzN+DihgOIffuJ5/383DwcmbMJh//xxZWtR5AYE1eTSedSnA9tK+7PSdvKCAnRX8rd99SyXTg4Yz0urN+P2Lcfed5/ev4WJGSlYNHKrkbTXFZdlCmg6LywC9mQlOHtAVgThFlC0JJT5emtFpX4FXqK6nz3sVTTx7e0H2ht2Aiz2g3GlDYecDN3hIiQsMDjGClrQ0VaAR+Ta75c5efnI+rdO57ezXYOTfDmZd390FJdBfkF+Br9GWa2Dbi2m9s2wKc3UZWK4+uHz/j0NgrGDcwFhsnLy0VhYSGkZGqnR1Bx3TCy5v6hxsjaoty6EXHzAVK+/0bdqKMphQoKChD78QtPr2djGwt8ecd7LSr2NPQ+UhIS0bZ3p9pOIo/CgkIkxcRB24q7EVDL0gjfK7hnnF2xB0dm+eKy7yHE8blnlPbuXgQM7a0gKl43I2mKn6V0yzxL6VqZIL6CZ6kji7di79SVOL1mL76+qdtnKULKU6+rqQ4bNgxr1qxBaGgo2rVrB6BoOFivXr2gqKiISZMmYeDAgZg8eTIAwNTUFJs2bULbtm2xfft2SEhIcMV37do1PH/+HB8/foSuri4A4MCBA2jQoAHCw8Ph4OCA5cuXo3///li8eDFnv0aNGvFN37Vr1xAZGYlPnz5BR0cHALBixQrOMLdi8+bN4/zfwMAA06ZNw9GjRzFzZtGcB76+vhg2bBiGDx8OAFi2bBmuXbtWbu84UVFRrjQaGhri3r17OHbsGPr16yf4Qy1FW1sb06dP5/w9YcIEXL58GcePH0ezZs347rNx40a4urrin3+K5jUwMzPDvXv3KuyVVFpWVhbWr1+P69evc3opGRkZ4c6dO9i5cyfatm3Ls09MTAykpaXRpUsXyMrKQl9fH3Z2dr8dX7H27dtzfQZeXl4Vlqlhw4ZxwhsZGWHTpk1o2rQpMjMzISNTca+B0kOdJ02ahLi4OISHh3O2VVReyjpy5AiEhISwZ88eTg87f39/KCgoIDQ0FC4uLnz3K2316tWwt7fnagRu0ID7wc/ExASrV6/m/F2Znndbt26FvLw8jhw5whlaamZWMsfJ0qVLsW7dOk7vU0NDQ7x+/Ro7d+7EkCFDOOEmT57M1UN17dq1mDVrFvr3L5qDYtWqVbhx4wZ8fX2xdetWvmn59OkTtLS0+L7n5eWFFi1a4OTJkxAWFvzFgR8/Pz8MHjwYAODm5obMzEyEhISgY8eOAIrq1e3bt2FtbQ19fX04OjrCxcUFgwYNgrh4SZd4aWlpKCgo4NOnT+WW2f9nGWnpYLPZUFBU4Nour6iI1OSUasWdlZmFEX08kZ+fDyEhIYycMg629nUzFcLPjGwwbDZPryMpORlkp/EfDiYtL4v2Q3pAzUALhfmFeBP2FEFr96L3TB9om9fNr+xCv760MdnZXNuZrGyw5OUE76cgDyF5XeS/foOs42cgrKQACed2gJAQcu+V3xOwJmVnZIFhsyEjz934Li0vi8zUdL77JMf/wI2j5+E5fwKEyrlW5GT/xKYJi1BYUACWkBDchvaBkbXgL8LVkZOZDYbNQFKO+8unpJw0fqbzLz9S8jJoNagzVPQ1UVhQiKj7z3HR9wA6T/XizM+moKGMNkO6QUlbDfk/8/Dy+gOcWxOAXvNGQl6dd2hcTeVDqmw+ZKXxM53/iAcpeRm0HtylKB/5BXj/4AUubDiALlOHQNOsKB/xUTF4e/cpes0fxTeOmlSbZaq0G0fPQ1ZRHoYN+M8ZVl1SYhIQFhJCZi53T+3M3J+QEePfAKgoJQd9RQ0UsAtx6MkVSIlJoJtVa0iJiePUi5IfRsVFxDCr3WCICAmBzTA49/oOopO+1Xge0tPSiuZsVOTuCamoqIgn1bxf1KWsjAyw2WzIKnAPHZRVkENGalq5+y4ePg2ZaRlgswvh6tEdjs5tBIa9sP8E5JUUYdaogcAw1VFcN6T51Y20curGkXPwWjCx0nXj+pHzkFWSh2HD2qkbZWWnVz1fSXHfcS3wLLwXTa7yM2dNyP11rZWQ5X7mkJSVxk8BzxxScjJoMcgdynoaYBcUIvrBC1zeeAidpnjynWfux6dvSI39gVaenWslD/xwnqXkyjxLyUsj+6WAZykFWbTz6g5VA20U5hfgbVgETq/1R88Zw+rsWepPQqup/nnqtTHOwsICLVq0wN69e9GuXTtER0fj9u3buHr1KgDg8ePHiIqKwqFDhzj7MAwDNpuNjx8/wtKSu1tsZGQkdHV1OQ1xAGBlZQUFBQVERkbCwcEBERERXHNClScyMhJ6enqchjgAfIfAnThxAr6+voiKikJmZiYKCgogJyfHFc/o0dzzMjVv3hw3bvDvfl5sx44d2LNnDz5//oyfP38iLy+vSiuwFhYWYuXKlTh69Ci+ffuG3Nxc5ObmlrtARWRkJHr27MmT1qo0xr1+/Ro5OTlwdnbm2p6Xl8dpYCvL2dkZ+vr6MDIygpubG9zc3NCzZ09ISUn9VnzFyvaUqkyZevr0KRYtWoSIiAgkJyeDzWYDKGowtLLiP3yDn127dsHPzw93797laqCrqLyUVZzmsr25cnJyuIaDliciIgJ9+/YtN4ygXmUVxdu6dWu+c7z9+PEDX758gY+PD1edKygogLw890Nn6WOnp6cjNjYWLVu25ArTsmVLPHsmeJGBnz9/8jTQF+vevTuCgoJw8uTJSjdmA0U96h4+fIhTp04BKOrR6+Hhgb1793Ia46SlpXHhwgVER0fjxo0buH//PqZNm4aNGzciLCwMUlIlX2wkJSWRXaZho1hx/SytdGPe/xOehwWGAQvVe4CQlJLEuj1bkPPzJ54/eQb/rbuhrqmBhnY21Yq3avjkS0C2FDVVuSYX1jTRQ0ZyGp5cuVNrD5CiVuaQdC1Z1CLrxBlOOrmw+Gzjep8FJjsbPy+HAAwDdsJ3sGSkId7Uvk4b40qnpzQG/B9I2Ww2Tm89gNa93aCsyTvfVGniEuIYvnw68nLz8OnVO1w7dBqKqsrQt6p4Qu/fVjYfDAOeMvWLgoYK1wIH6kY6yExJx4vgME5jnJqRDtSMSp5v1I11EbRiN16FhqOFh1vNp/838OTDWBdZyWl4HhwGTTN95OXk4sbe02jt2QUStdSLjK9aKFPFws6H4FXYUwyeOw4itTxMsmwtLsoC/7pdnL1jz64jt6CoV/7FN2EYYOeMs6/uoIBd1NM+ryAPW+6egLiwKIyUtdHJojmSs9NrpXccV8J+YcD8J79wlk0xw1Scj/HL/0FuTi4+v43GhQMnoKKphsatHXnCXQ+6hCd3HmLc0pm1PvSWJ8kC7t9sNhtBW/ejTe9Ola4b986F4FXYE3jOG1/rdaMsnjwIuPyy2Wyc3LIPTn3coVLJfNUW3uIjuEzJayhDXqPkRxg1Ix1kpaTjZfB9vo1x7+4+g4KWKlQNtGswxb9J8K0QihqqUNTgfpbKTEnD0yt3/y8b48ifp14b44CihRzGjx+PrVu3wt/fH/r6+ujQoejLAJvNxqhRozBx4kSe/UpPoF5M0I2r9PaqTLTP8PmyUTb++/fvc3raubq6cnoJFa+i+LuOHTuGKVOmYN26dWjevDlkZWWxZs2acoeYlrVu3Tps2LABvr6+sLa2hrS0NCZPnlzu0EZ+eS5LSEiIJ1zpOc+KG68uXLgAbW3ui7SgxgVZWVk8efIEoaGhuHr1KhYsWIBFixYhPDz8t+IrVrbhsaIylZWVBRcXF7i4uODgwYNQVVVFTEwMXF1dKz0kFABCQ0MxYcIEBAYGcvW8/J3ywmaz0aRJE64GxGKVXXCkMuW+7GdVPJ9C6XNddm678uItPm+7d+/m6YlZ9pdCfg3EZetaRQ+mKioqnDnwypozZw5sbGwwaNAgMAzDNXS9PH5+figoKOAqdwzDQFRUFCkpKVy/yBsbG8PY2BjDhw/H3LlzYWZmhqNHj8Lb25sTJjk5WeA5+/fff7l6wwLAwoULgf+jNWVk5eUgJCSElDK9GtJSUyFfzYmahYSEoKlT1HPS0NQYXz/H4NThY3XSGCcpKwWWkBCyy0zgnJ2RBUm5ys/RpWmkizf3a2/V2/yoDyiMLbWSokhRPWVJS4PJKmlEZklJcf1dFpNZ1JOgdIMdOymlqKedkBDw69pQ26RkpcESEuLpsZSdlsHTywEA8n7mIu7jF8R//oYr+4oa4BmGARgGK7ymYeCs0TBoYAoAYAkJQenXA76GvjYSvyXg3rlrtdIYJyEjBZYQi6dHQ05GNk9vufKoGWoj6uELge+zhFhQ1ddC+vcKVsr9TcX5yC7TC+5nRlbV8mGkg6gHRfnI+JGCzKRUXNl6hPN+8T1rz5il6LdkHORUBU+wXlW1WaYA4P6FG7h79hoG/jMG6nr8e3rXhOy8HBSy2ZAV576HS4tJIjOP/7ymGTnZSM/J4jTEAcCPzBQIsViQl5BGUnbRZ8IASP71/7iMJKjJKKCtkV2NN8bJyctDSFgIKcnc5TU1JZWnd/WfTFq2aP6q9DK94DLTMiBTTg9kAFBWL7oGaenrIDMtHVeOnOFpjLtx+jKunTiPMYunQ8tAl180NaKkbnDf57LSMwXUjRzEffiC+E/fcHlf0WIaxXVjuedUDPxnNFfP0LAL13H3bDAGzR5bq3WjLCm5X/kq0wsuKz0DMnx+SM/9mYPYDzGI+/QVFwOOAyjJ1+JBk+A5eyyMGtZOL+pi4sX3jDI9p39mZEOiCtdaVUNtRD/knYKlIC8fHx+9hl1XwT0xawPnWapMvrLTs3h6y5VHw0gXb2vxWYqQqqj3xrh+/fph0qRJOHz4MPbt24cRI0ZwvnA3btwYr169golJ5R5uraysEBMTgy9fvnB6x71+/RppaWmcXnQ2NjYICQnh+oJcUXyxsbGc4W9hYWFcYe7evQt9fX3MnTuXs+3z589cYSwtLXH//n14eXlxtt2/f7/cY9++fRstWrTA2LElq5xVthdU6Ti6d+/OGWLHZrPx/v17nh6FpVlZWfGkrezfqqqqPPNjRUREcHpHWVlZQVxcHDExMVUajiciIoKOHTuiY8eOWLhwIRQUFHD9+nU4Ozv/Vnz8VFSmXrx4gcTERKxcuZJThh49Kn9i6bKioqLQu3dvzJkzh2voJVC58sIvzUePHoWamlq5PejKU1zuyzb2lKe40SguLo7TA7H0Yg7F8e7bt4/vCqjq6urQ1tbGhw8fMGjQoEofV05ODlpaWrhz5w7XvIH37t1D06ZNBe5nZ2eHgwd5l2UvNm/ePIiIiGDQoEFgs9kYMGBAuekoKCjA/v37sW7dOp6hwL1798ahQ4cEzl9pYGAAKSkproVBoqOjkZOTI7A35+zZszF16lSubeLi4gjeM6ncdP5NREVFYWxugmePnsKxdQvO9mePnqJpS95f+6srX9BqoDVMWEQEavpaiHkdBeMmJUOEYl5Fwciu8hMff4+J4/ulpsbk5YOdx/2FkJ2ZBREDPeR9/1G0QUgIIro6yAkVPHF1wbdYiFlxz68jpKgAdkZmnTXEAUWfu6ahDj6+fAcLh5JG148v38GsCe98geKS4hjxL/d0AY+v3cXn1+/Ra+JQKFTQqFOQX1AzCS9DWEQYKnqa+Bb5AQZ2JZ/rt8gP0G9U+aFaSV/iIVVO+WEYBklf46GkXTu9OUrnw5AnH5X/cpr0JR6Sv4Z8y2uooPcC7pEHj87cQH5OLpp7uEFaUfCqgb+jNstU2PnruHsmGANmjYKWUe2uCFvIsBGb/gMmyjp4nfCJs91ERQeRpf4uLSY1AQ01jSAmLIK8wqKyriItDzbDRlqO4IXVABaEy5lX7neJiorCxMwMEeFP0KJNySrlEeFP0KxVi3L2/LOIiIpAx1gf7569ho1jyfx37569QoOmlZ8DkWEYnmvQ9aBLuHbiPEYumApdk9rtBVRSN95y140XbwXUDQmMXMk9D/fja3fw6dV79J7kzVM37py+igGzRtd63ShLREQEWoa6iH7+BpYOJT+uR794C4sm1jzhxSUlMGb1bK5t4Vdv4+Prd+g32Yfv6rg1TVhEGMp6moiN/Ah925JrbWzkR+hV6Z6RwPcHw4+PX4NdUADjpnUz726x4mepL6+iYNy4ZKTSl9dRMKzCs9SPmLhaX6zoTyVUzVEmpObVe2OcjIwMPDw8MGfOHKSlpXFNlD9r1iw4Ojpi3LhxGDFiBKSlpREZGYng4GCelQoBoGPHjpzeL76+vigoKMDYsWPRtm1bzjC4hQsXokOHDjA2Nkb//v1RUFCAS5cu8Z2vq2PHjjA3N4eXlxfWrVuH9PR0rkYUoGierZiYGBw5cgQODg64cOECgoKCuMJMmjQJQ4YMgb29PVq1aoVDhw7h1atXMDLinoy5bLz79+/HlStXYGhoiAMHDiA8PByGhpW/mZqYmODkyZO4d+8eFBUVsX79esTHx5fbGDdx4kS0aNECq1evRo8ePXD16lWeIart27fHmjVrsH//fjRv3hwHDx7Ey5cvOY0MsrKymD59OqZMmQI2m41WrVohPT0d9+7dg4yMDNdcYcXOnz+PDx8+oE2bNlBUVMTFixfBZrNhbm7+W/EJUlGZ0tPTg5iYGDZv3ozRo0fj5cuXWLp0aaXj//nzJ7p27QpbW1uMHDkS8fElvUw0NDQqVV7KGjRoENasWYPu3btzVhiNiYnBqVOnMGPGDK5h1ILMnj0b1tbWGDt2LEaPHg0xMTHcuHEDffv2hYqKCt99JCUl4ejoiJUrV8LAwACJiYlc890BwPjx47F582b0798fs2fPhry8PO7fv4+mTZvC3NwcixYtwsSJEyEnJ4dOnTohNzcXjx49QkpKCk/DU2kzZszAwoULYWxsDFtbW/j7+yMiIoJv78Birq6umD17Nk+PtdL++ecfCAsLw9PTE2w2u9xGwvPnzyMlJQU+Pj48w2r79OkDPz8/jB8/HosWLUJ2djbc3d2hr6+P1NRUbNq0Cfn5+VxDq2/fvg0jIyMYG/Of5F1cXLzOhqVKiopDR76ky52WnApMVXSQnpOFhMz6nWuna9+e2LRiHUzMTWHewAJXz11GYsIPuHRzBwAc3OWPpMQkTJpTMhfkx/dFP1Tk/PyJ9LQ0fHwfDRFRUegaFD20nzx0FMbmptDQ0kRBfgGePAhH6JUQjJwyrs7yZefaEld3n4CagTY0jfXw8mY4MpPTYO1U1MB898QVZKWkw2VE0XDyp1fvQk5FEcraaigsKMSbsAhEP34F93ED6yzNAJD76CkkmjcFOyUV7JRUiDd3AJOfj7zIN5wwkp1dwM7IQu6totUk854+h3hjW0h0dELe4wgIKSpAvLkD8h5HlEQsKgqhUr1XhOTlIKSmCuZnDpgM7p4V1dGskxPObD8ETSNd6JgY4OmNe0hLSkHjDkVf1m8cPY+MlDR0Gz0ILCEhqOlyL0whLScDYVERru13z16DpqEuFNWVUVhQiOiISLy4Ew63oeVPBVAdDTs64qb/aajoa0HNSBtvbz9FZkoaLNoUfXkPDwpBVmoGnLx7AABehjyAjLI8FDVVwS4sRNSDF/j09A06jCpZpfzJ+ZtQM9SBnJoS8nNy8erGQyR9SUCL/rU34bh1x+YI9Q+Cqr4m1Ix08Ob2E2Qmp8HyVz4e/spHu1/5eHHtPmRVFKCoqYrCX/n4+CQSHUcVfdYioiI8jYdiUkXTFdRWo2JtlKmw8yG4eeISeoz1hLyKEqfnnZiEOMQkaue+cPfjC/Rp1A7f0n8gJiUBDrqWkJeQwcOYotU2XcyaQk5CGieeF02p8iz2PZyMG6OXtRNCoh5BWlQSbhaOePz1LWeIahsjW3xL+4Hk7HQICwnDXFUXdtqmOPuq/FUnf1cPj95Yv2wVTCzMYNnAEpfPXsSP79/h3qMLACBghx+SEhMxbV5Jo8+H90WLIuT8/Im01DR8eB8FERFR6BkWDd/Oz8/Hl09FP5IW5Ocj6UciPryPgoSkJLR0amdIXtturji8cTd0jQ1gYG6MsOCbSElMRgtXJwDA+QMnkJ6cgoGTiqb8uHMxBIqqylD7tZDOx8h3CD1zBa3cS6YZuB50CZcOB2Hw1JFQUlNBekrRDy3iEuIQl+Q/pUd1ceqGoS50TA3w5HrYr7pRNO3I9SPnkJGShu5jBvOtG1JyMhApUzfunQvBzRMX0WOcFxRU66ZulNW8czuc2noAWkZ60DUzxOOQu0hLTIZ9x6JG4GuBZ5GekopeY70gJCQEdV3unnvS8rIQERXl2V6bGnRohtsBZ6Csrwk1Qx28vfMUWSlpsGhdNFfuo9M3kJ2agTZDuwEAXoU8hIyyPBS0VIvmjHv4Ep+fvkG7kb154n5/9xn0GpnX7dQAv9i6tETwnqJnKQ1jXby69QiZyWlo2NYBAHDv5FVkpaTDeXjRvS4i+B7klBWg9OtZ6u39Z4h+/Aqdxpb/gzwhdaXeG+OAoqGqfn5+cHFx4Rp+amNjg5s3b2Lu3Llo3bo1GIaBsbGxwCFmLBYLp0+fxoQJE9CmTRsICQnBzc2Nq+HOyckJx48fx9KlS7Fy5UrIyclx9b4pTUhICEFBQfDx8UHTpk1hYGCATZs2wc2tZC6V7t27Y8qUKRg/fjxyc3PRuXNnzJ8/H4sWLeKE8fDwQHR0NGbNmoWcnBz07t0bY8aMwZUrVwR+JqNHj0ZERAQ8PDzAYrEwYMAAjB07FpcuXarsx4r58+fj48ePcHV1hZSUFEaOHIkePXogLU3whLCOjo7Ys2cPFi5ciEWLFqFjx46YN28eV4OUq6sr5s+fj5kzZyInJwfDhg2Dl5cXXrwoGf6ydOlSqKmp4d9//8WHDx+goKCAxo0bY86cOXyPq6CggFOnTmHRokXIycmBqakpAgMDOYsMVDU+QSoqU6qqqggICMCcOXOwadMmNG7cGGvXrkW3bt0qFX9CQgLevHmDN2/e8CwmwDBMpcpLWVJSUrh16xZmzZqFXr16ISMjA9ra2ujQoUOle8qZmZnh6tWrmDNnDpo2bQpJSUk0a9aswt5he/fuxbBhw2Bvbw9zc3OsXr2aq5eYsrIyrl+/jhkzZqBt27YQFhaGra0tZ7634cOHQ0pKCmvWrMHMmTMhLS0Na2trzgIagkycOBHp6emYNm0avn//DisrK5w9exampqYC97G2toa9vT2OHTuGUaMET+Q9Y8YMCAsLY8iQIWCz2fD09OQbzs/PDx07duRpiAOKesatWLECT548Qdu2bbF161Z4eXkhISEBioqKsLOzw9WrV2FuXtLbIzAwsNLzVdY2C1V9bOlZ0hg6sVXRF9uLkWFYfn2foN3qRKv2bZGRnoFj+w4jJTkZeoYGmLtqMdQ0ilb4S0lKQWLCD659po2YwPl/9Lso3L4WClV1New8GgCgaNjI7g3bkPQjEWLiYtDW08WkudPRqn3dLaRh1tQGOZnZeHj2BrLSMqCsrY5uk70gp1LUcJydloGM5JJrM7uwEHeOXUJmSjpExEShrKWGbpO9YGBTu8Nbysp78AgsERFIurQHS0IchbHxyDoWBJTqVSgkJ8c1zRSTkYmsY0GQ6NAGMsMGg52RibxHEch9UNLLWFhDHTIDSxqGJDsUnYu8F6/x8+LVGku/laMdsjOycCfoCjJT06Gqo4n+M0ZCXqWo10VmajrSEqvWAJ2fm4fLASeQkZzGOTfdxwyGlWPtreRpbN8AuZk/8fTCLWSnZ0JRSxWu4wdAVlkBAJCdlonM5JJhVIUFhXh48hqyUjMgIioCBS1VuI7rD13rkmtoXnYu7hy6gOz0TIhJikNZVwNdpg+BmmHtzQFk7NAAuVnZeHLhFrLTMqGkpQa38QO58pFVph48OBHMnY/xA6BnLfheUNtqo0w9vnYXhQWFOLkpgGt7656uaNO7dubvexEfDSkxcbQzbgJZCSkkZCRj/6NLSM0pGgImKy4FeYmS3iN5hQXwD7+ArlYtMbZFL2Tn5eJlfDSC35UsUCUmLIpuDVpDXkIa+YUF+JGViuPPbuBFfNVGdlRWmw5OyEhPx5GAg0hOSoa+oQEWrV5e6n6RhB8J37n2mThsDOf/UW/f42bwdahpqGPv8aKe9cmJSVxhTh05jlNHjqOhrQ1Wbq7eFDSC2LVqiuyMTFw9dhbpKWnQ1NPGiHmToaRW9GNpRkoaUn6UDMdlGAYXDpxE8vcfEBIWhrKGKjp79kFzl5J72t1L11FYUIB9q7dxHcvFoxvc+veolXw0aN4YPzOzcZurbozi9HLLTE1HWlJV68adorqx0Z9re+ternW2UmnD5k2QnZGFm6cuIzM1HWq6mhg0awwnXxmpaVWu87XNyN4KuVnZeHbhTtE9Q1MVzuP6Q0a56Jn2J59rbfipEGSnZkBYVASKmqroOM4Dug25RxKlJSQhIfoLXCbWT2OWaVNr5GRmI/xcybNUl0meJc9SqRnISE7lhGcXFOLu8ctFz1KiolDSVkOXSZ51/ixFiCAspjKThJH/awEBAZg8eTJSU1PrOymElOvixYuYPn06Xr58yZnz7k/w8uVLdOjQAe/evePbuFeelltHVxzoD3d33A68iqudL2N1pYGmMbbePVHfyai2cS37IG2Vb30no1rkZ03G/vCL9Z2MavNycMeaG4KH1v9XzGg3GGtDBfda/i+Y7jTorylTcy/trO9kVMvyTqPw/ntMfSej2kzV9HDh9d36Tka1dbZqiQOPKt8R4E/kad8JgU9q7kee+jKgsQtWXt9f38moln/ae2HzneP1nYxqm9Cq9nrC16ZOewSPSqpvl4avr+8k1Is/omccIYTUBHd3d7x//x7fvn3jWlW5vsXGxmL//v1VbogjhBBCCCGEEPL3ocY4QshfZdKkP2/Bg7ILQBBCCCGEEEII+f/154zjIn+soUOH0hBVQgghhBBCCCHkP4jFEvpjX/+v/n9zTgghhBBCCCGEEEJIHaPGOEIIIYQQQgghhBBC6gjNGUcIIYQQQgghhBDylxJiseo7CaQM6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlLsUDDVP801DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKXotVU/zzUM44QQgghhBBCCCGEkDpCjXGEEEIIIYQQQgghhNQRGqZKCCGEEEIIIYQQ8pdi0TDVPw71jCOEEEIIIYQQQgghpI5QYxwhhBBCCCGEEEIIIXWEhqkSQgghhBBCCCGE/KVomOqfh3rGEUIIIYQQQgghhBBSR6gxjhBCCCGEEEIIIYSQOsJiGIap70QQQgghhBBCCCGEkJrXe9+c+k6CQCeHrKjvJNQLmjOOEEL+YK/ious7CdXWQNMYLbeOru9kVMvdcTsQ9eNLfSej2kxUdZGRnFzfyagWWSWlv6ZevEn4WN/JqDYLdcP/fN0wUdVFakZafSej2hRk5fEj479dv1VllfD+e0x9J6PaTNX0/pp8fE9Pqu9kVIuanDIS0hPrOxnVpi6n8p+/Z1ioGyIjPb2+k1FtsnJy9Z0E8pegYaqEEEIIIYQQQgghhNQR6hlHCCGEEEIIIYQQ8pei1VT/PNQzjhBCCCGEEEIIIYSQOkKNcYQQQgghhBBCCCGE1BEapkoIIYQQQgghhBDylxKiYap/HOoZRwghhBBCCCGEEEJIHaHGOEIIIYQQQgghhBBC6ggNUyWEEEIIIYQQQgj5S9Fqqn8e6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlLsUDDVP801DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKXEqLVVP841DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUEWqMI4T8lbKzs7F06VJ8/vy5vpNCCCGEEEIIIfWGxWL9sa//V9QYR/7vBQQEQEFBoU6O5eTkhMmTJ9fJsWpSVT8jAwMD+Pr61lp6KmPChAmIjY2Fvr5+lfb7r54jQgghhBBCCCH/DbSAA/lPqKjFfMiQIQgICKibxPwf8vDwgLu7e6XDh4eHQ1pauhZTVL7AwEAkJCTgzJkzVd731KlTEBUVrYVU1b5Lp8/jzJGTSElKhq6hPoaNHwkrm4Z8wyYnJWPftt2IfheFuK+xcO/VDT4TRnGFuX/rLk4ePIq4b3EoLCyAprY2unn0hJNLh7rITrkaaZpgoJ0LLNT0oCKtgH8ubsftj8/qLT3nT53BqcDjSE5Kgp6BAUZOGouGjawFhn/x9Bl2b96BmE+foKSsjD6DPODeoyvn/YKCAhw7EIiQS1eRlJgIHV1dDB0zHPaOTbniSfyRCP/tu/H4/kPk5eZBS1cHk/6ZBlMLs9/KB8Mw2OXnh6AzZ5CRno4GDRpg1vTpMDYyKne/kBs3sGPXLnz99g062toYO2oU2jk5cd7337cPN27exKfPnyEuLg4ba2tMGDsWBqUay5OSk7F561bcf/gQGRkZaGxrixnTpkFPV/e38lKsputFaXdCbmL90lVo2tIR/yxfUK10VuRi0DkEBZ5ASnIy9Az04TNhNBo0EpCPxCT4b9uNqLfvEfc1Fl16d8fwiaO5wlw9dwk3rlzD5w9FvYeNzU3gOcIbZlbmNZbm+qgX3n0G4Xt8Ak/cnXt2w9hpE/mm8ezRU/jx4wcMjYwwZdoU2NnZCUzjk8dP4LvBFx8/fICKqgo8PT3Rq09vrjDXQ65j546d+Pb1K7R1dDBm7Gg4tWvHFebE8RM4eOAAkhKT+B43KSkJWzdvwYP7D5CRkQG7xnaYNmM69PT0uD+z58+xfdt2vHr5CqKiojA2NcG6TeshLiHBFe7U8ZMIPHAISYlJMDAyxKRpk9HIzlZgPp8+foLNGzbh04ePUFZVwSDPQejRpxfn/Q/RH+C3YzfevnmD+Lh4TJw6Cf0G9hcY3wH/fdi5dQf6DuiHSdOmCAxXEy4EneUqdyMmjhFY7pITk+C3dSei3r5H7Ndv6NqnB0ZOHFur6ausPz0fQcdPIvDgYU6Zmjh1UgVl6im2+P4qUyoqGOg1CD169+S8fzboDK5cvIwP0R8AAOYW5hg5bjSsGlhxwhzw349bN0Lx+XMMxMXF0NDGGmPGj4WeQdV+eOXOxykEHjyM5F/5mDB1Yrn5iHj8FFt8N5fKx0B0L5WPc0FnceXiJXyI/sjJx4hxo7jyUVBQAP/dexF8+SqSk5KgrKyCTl06wctnKISEaqavzH/hnsEwDHbt3o2goCBkZGQUPXPMnAljY+Ny9wu5fh07duzA169foaOjg7FjxqBdmWvs8ePHceDgQSQmJsLIyAjTpk7lusbu3LULV69eRUJCAkRFRWFpYYGxY8eiYcOSz+jr16/w3bgRERERyM/PR/PmzTFj+nTIysn9dp4JKY16xpH/hLi4OM7L19cXcnJyXNs2btxY30n8TyosLASbza4wnKSkJNTU1Codr6qqKqSkpKqTtGoZMGAAzp8/D2Fh4Srvq6SkBFlZ2VpIVe26c/0m/LfsQu/BHli3ZzMsrRtg2cwF+JHwnW/4grx8yCnIo/fg/jAwNuQbRkZWFr09+2PltnXY4LcN7Tt1xJaVG/D04ePazEqlSIqKIyrpK9bfOlLfScGtkBvYvWk7PLwGYtPeHWjYyBoLp8/m2yAAAPGxcVg4Yy4aNrLGpr074OE1EDt9t+Ju6C1OmP27/HH5zHmMnjIe2w/4oVOPLlg+ZxGi373nhMlIz8CMMZMgIiKCxWv/xfaDfhg+fhRkZGV+Oy/7Dh7E4cBAzJw2Dfv27oWysjLGTZqErKwsgfs8f/ECc+bPh7ubGwL374e7mxv+mTcPL1+94oR58vQp+vbuDf/du7F140YUFhRg/OTJ+PnzJ4CiB/Lps2bhW2ws1q1ahUP79kFDQwNjJ07khPkdtVEvin2PT0DA9j2wsmnw2+mrrNshN+G3eSf6evXHhj1bYWXTEEtmzhOYj/z8fMjJy6Ov5wAYmPBvSH3x9Dlad3DCso2rsHr7Bqiqq2HR9DlI+pFYI2mur3rhu3srDpw5xnkt27AKANCqXRuBaRwzZgz2HzoAWztbTJk4GfHx8XzTGPvtG6ZMmgxbO1vsP3QAQ72HYt3adbgecp0T5sXz55g3Zy46uXfCwcBD6OTeCXP+mYOXL19ywgRfDcaGdevhPcyb73EZhsHM6TPw7ds3rFm3FgcOHYSGhiYmjB3PVR9ePH+OSRMmoZmjI/z3+ePEiRPo3a8PWGW+zIdcvYZN63zhNWwo9h7ah0Z2jTB94tRy8hmLGZOmoZFdI+w9tA9e3kPgu3YDQkNucMLk5uRAS0cLo8ePhbKyMt94ikW+eo2zQWdgbGpSbriacCskFLs3bUc/zwHY5LcdDRo1xKIZc/C9vLqiII9+XgNhKKCu1Ic/PR8hV69h0/qN8PQeAr+DAWhk2wgzJk1DQjllaubkaWhk2wh+BwPg6e2FjWs3IPR6SZmKePwUHV06YtP2zdixdyfUNdQxbfxk/Pj+oyTMk6fo2bc3du7dhQ1bNqKwsBBTJ0z+7ftEyNVr2Lx+I7y8vbDnoD9sbG0wc9L0CvIxHTa2Nthz0B+e3p7YuNaXKx9PHz9BBxdnbNy+Cdt/5WP6+Clc+Ti8/xDOnjyNKTOm4sCxwxgzcSwCDx7GyaMnfisfZf1X7hn79u/H4cOHMXPGDOwLCCh65hg/vvxnjufPMWfOHLh36oTAw4fh3qkT/pk9m+sae/XqVaxbvx7DvL1x6OBB2NnaYuKkSVzXPH09PcycMQNHAgOxZ/duaGppYdz48UhJSQEA/Pz5E+PGjwcLwI7t2+G3Zw/y8/MxZerUSn13+hMJsVh/7Ov/FTXGkf8EDQ0NzkteXh4sFotr261bt9CkSRNISEjAyMgIixcvRkFBAWf/1NRUjBw5Eurq6pCQkEDDhg1x/vx5rmNcuXIFlpaWkJGRgZubG+Li4jjvsdlsLFmyBDo6OhAXF4etrS0uX75cbpqzsrLg5eUFGRkZaGpqYt26dTxh8vLyMHPmTGhra0NaWhrNmjVDaGhoufEuWrQIenp6EBcXh5aWFiZOLPmlv6L4ioebnj9/HlZWVhAXF8fu3bshISGB1NRUruNMnDgRbdu25dqvtLNnz8Le3h4SEhJQUVFBr14lv5iXHaYaExOD7t27Q0ZGBnJycujXrx8SEvh/IQOAT58+gcVi4dixY2jdujUkJSXh4OCAd+/eITw8HPb29pzz9ONHycNNeHg4nJ2doaKiAnl5ebRt2xZPnjzhvB8aGgoxMTHcvn2bs23dunVQUVHhnO+yw1QNDAywbNkyzrnU19fHmTNn8OPHD06erK2t8ejRI648nDx5Eg0aNIC4uDgMDAz4nv+adO54EDq4u8C5ixt09PXgM2EUlNVUceXMBb7h1TTV4TNhNNq5doCUgF6MDe1s4Ni6BXT09aChrYkufXpA39gQkS9e8Q1fl+7HvMLuB2dx80NEfScFQUdOwqWLG1y7ukPPQB8jJ42FipoaLp4+xzf8xdPnoaquhpGTin7Nd+3qDufObjgVeJwT5saVa+jnORAOzZtBU1sLnXt2Q+Nm9jh1pORB/cShI1BVU8WUOTNgbmUBdU0N2No3hqa21m/lg2EYBB49Cu+hQ9HeyQkmxsZYPH8+cnJycPnqVYH7BR49imYODvAeMgQGBgbwHjIETe3tcfjoUU6Yzb6+6Nq5M4yNjGBmaoqF8+YhPj4ekW/eAABivnzBi5cv8c+MGWhgZQUDfX38M2MGfmZn40pw8G/lB6idegEU/ZDhu2wN+nsPhrqm5m+nr7LOHDuFjp1d4dKlE3QN9DB84mioqKri0unzfMOra2pgxKQxaO/WEdLS/H8YmbZgFtx7doWRqTF09HUxbsYksNkMnj2OqJE011e9kFdUgJKyEucVfu8BNLW1YG3XSGAa+/btC0NDQ0ydNhXq6uo4eeIk3zSeOnkKGhoamDptKgwNDdG9Rw907dYVhw4e5IQ5EngETZs1xVDvoTAwMMBQ76FwaOqAI4dLfjgIPHQY3bp3Q/cePfge90tMDF6+eIlZ/8yCVQMr6BvoY+Y/M5H9MxtXr1zhxLNhvS/69ffAkKFDYGRsDAMDA7Tr2B5iYmJc6T5yKBBdundF1x7dYGBogEnTpkBNXQ2nT5zim8/TJ4OgrqGOSdOmwMDQAF17dEPnbl0QePAwJ4xlAyuMmzQBHV2dISomuDd5dnY2Fs9fhJlz/6mTH7pOHz0J585F5U7XQB8jJ46FipoqLgbxL3fqmhoYNWkcOrg5l1vn69qfno+jh4+gc6kyNXHaZKipqyHoRBDf8GdOFZWpidMmc5WpI6XK1IJli9Czb2+YmptB38AAM+f+AzbDxuPwkuerdZs3wL1rZxgaG8HEzBSzF8xFQnwC3ka++a18HDt8FJ27d0GXUvlQVVfDaYH5OA21Uvno0qMb3Lt1xtGDgWXy0etXPvQxY+4snny8evESLdu2RvNWLaCppQmnDu3g0Kzpb+eDJ53/gXsGwzAIDAyEt7c32rdvDxMTEyxetKjomaPUda6swMBANGvaFN7e3kXPHN7eaOrggMOBJefg0OHD6N69O3r8usZOmzYN6urqOHGi5F7h5uaGZs2aQUdHB8bGxpgyeTKysrLw/n3RjzvPnj1DXFwcFi5cCBMTE5iYmGDhggV4/fo17t+//1t5JqQsaowj/3lXrlzB4MGDMXHiRLx+/Ro7d+5EQEAAli9fDqCoIa1Tp064d+8eDh48iNevX2PlypVcvaays7Oxdu1aHDhwALdu3UJMTAymT5/OeX/jxo1Yt24d1q5di+fPn8PV1RXdunXjXLD5mTFjBm7cuIGgoCBcvXoVoaGhePyYu0eRt7c37t69iyNHjuD58+fo27cv3NzcBMZ74sQJbNiwATt37sT79+9x+vRpWFtbVym+7Oxs/Pvvv9izZw9evXqFwYMHQ0FBASdPlnz5KCwsxLFjxzBo0CC+6bhw4QJ69eqFzp074+nTpwgJCYG9vT3fsAzDoEePHkhOTsbNmzcRHByM6OhoeHh4CPzsii1cuBDz5s3DkydPICIiggEDBmDmzJnYuHEjbt++jejoaCxYUDI0LD09HV5eXrh9+zbCwsJgZGQEd3d3ZGRkAChpaPP09ERaWhqePXuGuXPnYvfu3dAs5wv1hg0b0LJlSzx9+hSdO3eGp6cnvLy8MHjwYDx58gQmJibw8vICwzAAgMePH6Nfv37o378/Xrx4gUWLFmH+/Pm1NpQ6Pz8f0W+j0MihMdd2Wwc7vHkVWSPHYBgGzx9HIPbLV1gJGObw/yg/Px9R797BzoG7/Dd2aILIl6/57vPm1Ws0dmjCHb6pPd6/ecf5ESE/Pw+i4txfqMXExPH6eckvvw/uhsHEwgwr5i3BwC59MMF7FC6f5d/IVBnfYmORlJQEx6YlQ/7ExMTQ2M4Oz1+8ELjf85cv0awp9/BZx2bNyt0nMzMTACD3a6hHfl4eAEC8VCOCsLAwRERFEfHs94Yf12a9OL4/EHIK8ujY2bVa8VRGfn4+ot+9hy1PPhrjzcuaqd8AkJubi8KCAsjKVb/BpD7rRdl03Lh6Dc6d3XimuxCUxqaOzfDi+XO+8b148QJNHZtxbXNs7ojI15GcNL54/gLNmpUJ4+jIiTM/Px9v3rxBszLxlD5uXn5+Ud7ExTnvCwsLQ1REFM8iiupDcnIyXr18CSVFRQwf5gM3FzcMHjyY837pfL578xYOZYa4Ozg2w8vn/Ovoqxcv4VA2fc2b4U2pfFbW+lVr0aJlCzg0a1px4GrinNOm3OXIzqEJ3rys/x+RKutPz0dxmWpa5pw6NGtafpkqE76pYzO8ef1GYJnKzclBQUFBuUMCszKLelDJ/cawQU7d4JsP/teU6uSjdBqtG9ngSfgjfPkcAwCIevceL549h2PL5lXOR1n/lXvGt2/fip45HB0528TExNC4cWM8F3ANBop64zcrtQ8AODZvztmn+BrrWPY63KyZwHjz8/MRFBQEGRkZmJkVTfORl5cHFovF9eOGmJgYhISEeL7PEfK7aM448p+3fPly/PPPPxgyZAgAwMjICEuXLsXMmTOxcOFCXLt2DQ8fPkRkZCTnAmtUZv6j/Px87NixgzNHwfjx47FkyRLO+2vXrsWsWbPQv3/RfCirVq3CjRs34Ovri61bt/KkKTMzE35+fti/fz+cnZ0BAPv27YOOjg4nTHR0NAIDA/H161doaRX1ZJk+fTouX74Mf39/rFixgifemJgYaGhooGPHjhAVFYWenh6a/voSXNn48vPzsW3bNjRqVNJLwMPDA4cPH4aPjw8AICQkBCkpKejbt6/Az7x///5YvHgxZ1vp+Eq7du0anj9/jo8fP0L319xPBw4cQIMGDRAeHg4HBwe++xWn39W16MvupEmTMGDAAISEhKBly5YAAB8fH64Grg4duOcy27NnDxQUFHDz5k106dIFALBs2TJcu3YNI0eOxKtXr+Dp6YmePXuiPO7u7hg1qmjeqAULFmD79u1wcHDgfD6zZs1C8+bNkZCQAA0NDaxfvx4dOnTA/PnzAQBmZmZ4/fo11qxZg6FDh5Z7rN+RkZYONpsNBUUFru3yiopITU6pVtxZmVkY0ccT+fn5EBISwsgp42Br37jiHf9PpKelgV3IhoKSItd2BSVFpCQl890nJSkZCs14wxcWFiI9NQ1KKspo3NQep4+cQMNG1tDU1sKzx0/x4M49FJYaGhEfG4eLp8+hp0cfeHgNwLvXb7HTdytERUXRoZNLlfOSlJQEAFBWUuLarqykhDgBQ3aK9+O3T3F8ZTEMg/WbNsG2USOY/LrmGhgYQFNDA1u2b8ecWbMgKSmJQ4GBSEpKQqKAeCpSW/Ui8sUrXLtwBev3bPntOKoiPS29qIwp8iljyfzL2O/Yv2MvlFSV0aiJ4PnSKqs+60Vp92/dRWZmJjq689YHQWlUVlLC/UT+ZY5fWVdSUkZhYSFSU1OhoqKCpKQkKCmXCaNcUh9SU1NRWFgIJSXuoZ2lj2tgYABNTU1s27IV/8yZDUlJSRw+dLioPiQWDQn79u0bAGD37t2YOGkSzMzMEBJ8DZPHTMD+o4egq1d0v03jHK9suhWRlMj/XCQlJaFZmc9FSUmJK5+Vce1KMN69eYvd+/dWKnx1FZ9TxTJ1RVFREU+qeS+sS396PorLlGKZMqWorIRkAfU7KSkZTcvUC8UKytSOLduhqqoK+6aCf+zdsmETbGwbwcik/DnGqpIPJWVFJAu47yQnJUNJucx5qTAfO6CqqoompfIxaMhgZGVmYnDfgRASEgKbzcaIMSPR0dW5yvko679yz6itZ45UQdc8ZWWe54nbt29jzty5yMnJgYqKCrZu2cIZCWRtbQ0JCQls3rwZ48aNA8Mw2LR5M9hsNteonP8SFv5/h4P+qagxjvznPX78GOHh4ZyecEBRz66cnBxkZ2cjIiICOjo6nIY4fqSkpLgmC9XU1MT370XzKqSnpyM2NpbTAFSsZcuWeCagx0Z0dDTy8vLQvHnJL1xKSkowNy+Z5PTJkydgGIYnXbm5uQLnX+nbty98fX1hZGQENzc3uLu7o2vXrhAREal0fGJiYrCxseEKM2jQIDRv3hyxsbHQ0tLCoUOH4O7uzvMgWCwiIgIjRozg+15ZkZGR0NXV5TTEAYCVlRUUFBQQGRlZbmNc6XSqq6sDAFdPQHV1dc55Aopu0MuWLUNoaCi+f/+OwsJCZGdnIyYmhiv/Bw8ehI2NDfT19Su16mtl0gEA379/h4aGBiIjI9G9e3euOFq2bAlfX18UFhbyncsuNzcXubm5XNvES/WKqAyehU4Ypto3XkkpSazbswU5P3/i+ZNn8N+6G+qaGmhoZ1Pxzv9Hyn72DMOUu/AMz1u/elUWvzFq0jhsWr0eowcNA1iAppYWOrq74trFkqEbDJuBiYUZhowqakQ3NjPF50+fcPH0uUo1xl26cgUrVq3i/O27dq3gvFQUWdl9+MRTbPXatYiKisKenTs520RERLD633+xdMUKtHd1hbCwMJra26NF8+r3EqjJevEzOxsbl6/F2BkTIacgX+20VQVvNsovY1Vx6vBx3A4JxfJNqyFWpudZddRHvSjt6oVLsG/WFMrlNB5VNY08Zf1XGrm3lg3De5zyzqeIiAj+Xb0Sy5cug3P7jhAWFoZDUwc0b9GiJDy76Lg9e/VC125Fi1w0c2iKO3fv4MLZcxg9nnvyft588vm8yw1fnM/KlbmE+ARsXLcB67dsrPK9rNp4rkc1V1fq1B+eD371tdwyVbZeQHCZOrT/IK5dDcamHVsFlp8Nq9chOioKW3fvqFK6edLFt26Uc53iSa/gfBzefwghV4OxaccWrnxcDw7B1UtXsWDZIhgYGSLq3XtsXr8Ryqoq6NSl8gumledPu2eEXr2OAeu3cK4lvhs2/EpnDTxz8MlbZa7t9vb2OHzoEFJTUxF0+jRmz5mDAH9/KCkpQVFREatWrsS/K1fiyNGjEBISgouLCywsLGpskQ1CqDGO/Oex2WwsXryYa86yYhISEpCUlKwwjrKrZ7JYLM7NovS20sq7qZXdlx82mw1hYWE8fvyYp3FGRob/BOy6urp4+/YtgoODce3aNYwdOxZr1qzBzZs3Kx2fpKQkT7qbNm0KY2NjHDlyBGPGjEFQUBD8/f0Fpr0yn2kxQZ9TZR4KSp+X4rBlt5WeRNXb2xtJSUnYuHEj9PX1IS4uDmtra+T9GgJX7N69ewCKhvkkJydXuPJrZdIBgJMWfnmrqEz8+++/XD0NgaJhun1HeZa7HwDIystBSEgIKWV+MU9LTYW8kkKF+5dHSEgImjpFPS0NTY3x9XMMTh0+Ro1xv8jJy0NIWIint09aSipPj5tiispKSEniPlepKakQFhaGnHzRMBZ5RQXM/3cJ8nLzkJ6eDmUVZfhv3wN1TQ2ueMquIKerr4d7obdRGW1atUJDq5LV3YqHxiUmJXH9up+cksLzC3NpysrKPL3gkpOT+e6zet063LpzB7u2b4d6mUVhLC0scHj/fmRmZiI/Px+KiooY4uMDKwuLSuWnrNqoF/Hf4vA9PgErZpfU1eK63ad9F2w5sBsa2jU7h5ycvFxRGSubj5RUnp4PvyMo8AROHDyCxev/hYFxzUz8Xp/1otj3+AREPHqKOcsXVimNySkpPD3bivEr6ykpyRAWFob8r94UysrKPL1qUkrVBwUFBQgLC/PWmTLHtbS0xMHDh7jqw7Ah3rCwsgQAqKgU/chmaMi90Ii+oQESSi2SIS/geCkV5jOZJ3xRPivXCP32zRukJKdguKc3Z1thYSGePY3AqWMncf3ezd9aZKk8nHNapvdPakoqTw/ZP9mfno/iMlW2F1xKcgpPL7NiyspKPPUiNZl/mQo8cBgH/fdjw9aNMBGw6MeGNetx99YdbN61DWrqlV9gjH8+ytZXwfko6uXKm+/y8rF+qy/P4iXbNm7FoCGD0cGlIwDA2MQY8XHxOBRwoNqNcX/qPaNpK0d0atMRWb+mqSh+Nuf7zFHOojB8nzlKPacIusamJCfz9KiTlJTkdBiwtrZGz169cObMGXh7F123HB0dceb0aaSmFt2LZGVl4erqyjXSiZDqoGZd8p/XuHFjvH37ljO5ZumXkJAQbGxs8PXrV7x79+634peTk4OWlhbu3LnDtf3evXuwtLTku4+JiQlERUW5JvhMSUnhSoOdnR0KCwvx/ft3nnRraPB+sSgmKSmJbt26YdOmTQgNDUVYWBhevHjx2/EVGzhwIA4dOoRz585BSEgInTt3FhjWxsYGISEhFcYJFPWCi4mJwZcvXzjbXr9+jbS0NIGf3++6ceMGxowZgzZt2kBfXx+5ubmcIT3FoqOjMWXKFOzevRuOjo7w8vKq8VWRrKys+JYXMzMzgV8+Zs+ejbS0NK7X7NmzK3U8UVFRGJub4Nmjp1zbnz16CosGNfsZA0B+Xn6Nx/lfJSoqChMzMzwN554/5Omjx7BsaMV3H4sGVnj6qEz48EcwtTCDiAj3b2Ri4mJQUVVBYWEh7t28DcfWJT1jrKwb4FvMF67w3758haqGeqXSLi0tzXkI1dXVhZGhIZSVlfEgPJwTJj8/H0+ePoVNqZ6gZdk0bMi1DwA8ePiQax+GYbBq7VrcCA3F9i1boK0leJEJGRkZKCoqIubLF0S+eYO2bXhXwayM2qgX2nq62LB3G9bt2cJ5ObRohoZ2Nli3ZwuU1So3fK8qREVFYWxmypOPiEdPYdGwevX7VOBxHNt/GAvXLIOpheDe41VVn/WiWPCFy5BXVEDT5o4875WXxocPHsLahv+PDdbW1nj44CHXtgf3H8DSypKTRmsbazwoG+bBA06coqKisLCw4IlH0HE59SEmBpGRkWjTtqg+aGppQVVVFZ8/f+YK/+VzDDRKNU6KiorCzMIc4Q+46+ijBw/R0IZ/vW5g3RCPyqQv/P5DWJTKZ0XsHeyx/8hB+B/ax3lZWFnCxc0V/of21XhDHFByTiPCn3Btjwh/AouGtb/qcU350/NRUqbKlJGH4eWWqfCH3GXw4YOHsLCy4CpThw8cwj4/f6zdtJ7T8FwawzDYsHodbt0Ihe/2zdD6zQWLSufjUdm68TAcDW34z43bwLohHpXJRziffAQeOIT9fgFYs2kd33zk5ubw9K4SFhICuxI/5lfkT71nSElJQV9fv+SZw8io6JnjwQNOmPz8fDx58oRnBE9pNtbWXPsAwIP79zn7FF9jecI8fFhuvEBR+Sr+YbI0BQUFyMrKIjw8HMkpKWjfvn2F+f0TsVisP/b1/4p6xpH/vAULFqBLly7Q1dVF3759ISQkhOfPn+PFixdYtmwZ2rZtizZt2qB3795Yv349TExM8ObNG7BYLLi5uVXqGDNmzMDChQthbGwMW1tb+Pv7IyIiAocOHeIbXkZGBj4+PpgxYwaUlZWhrq6OuXPnct14zczMMGjQIHh5eWHdunWws7NDYmIirl+/Dmtra7i78/4yFhAQgMLCQjRr1gxSUlI4cOAAJCUloa+vD2Vl5SrHV9qgQYOwePFiLF++HH369IGEhITAsAsXLkSHDh1gbGyM/v37o6CgAJcuXcLMmTN5wnbs2BE2NjYYNGgQfH19UVBQgLFjx6Jt27YCF334XcbGxti3bx+aNGmCtLQ0TJ8+nasXX2FhITw9PeHi4gJvb2906tQJ1tbWWLduHWbMmFFj6Zg2bRocHBywdOlSeHh4ICwsDFu2bMG2bdsE7iMuLl6toTxd+/bEphXrYGJuCvMGFrh67jISE37ApVvReT+4yx9JiUmYNKdkYZKP76MBADk/fyI9LQ0f30dDRFQUugZ6AICTh47C2NwUGlqaKMgvwJMH4Qi9EoKRU8b9djpriqSoOHTkVTl/a8mpwFRFB+k5WUjIrNs5dXr27411S1fB1MIMFg2tcPnsBfxI+A73HkVDxwJ27EHSj0RMm/8PAMC9RxecP3UGuzdvh2tXd7x5+RpXz1/GzEVzOHG+eRWJpMREGJkYIykxCYf37gebzUbvgSULn/Tw6I3poyfh6P7DaN2+Ld69foPLZy9iwswpv5UPFouFAR4e8N+3D3o6OtDV1YX/vn2QkJCAm0vJsNcFixdDTVUV48cWDYPr368fRo4di4ADB+DUujVCb9/Gg/Bw+JUahrpq7VpcvnoV61atgpSUFGfeFhlpac615lpICBQUFaGhro6o6Gis27ABbdu04ZmEuSpqul6IiYtB38iA6xjSv3oel91ek7r36wXf5Wt+5cMSV85dQuL373DrXvSjyf6de5GUmIQpc0uuYx9+5ePnzxykpabhw/toiIiKcHpTnjp8HIf89mPa/FlQ01Dn9BCTkJSEpFTlez8LUl/1AijqpRx88Qo6uDlDWERwo09xGk84OMLYzASnTwUhIT4evXoX9bTfumUrfnz/jkVLinpC9urdC8ePHYfv+g3o3rMHXjx/gbNnzmLp8mWcOD3698fokaOwP2Af2ji1xa3Qm3j44CF2+e3mhBkwaCAWLVgIC0tLWNtY8xwXAEKuXYOCgiI0NDQQFRWFDevWo03btpzJzlksFgZ5DsbunbtgamoKM3MzBFz1x+fPn7FsNfecs/0HDcDSBYthYWmBhjbWOHvqNBLiE9Cjd9F8qTu2bMOP7z8wf0lRL8IevXvi1LET2Lx+I7r27I6Xz1/g/JlzWLS8ZC7d/Px8fPrw8df/C/Djxw+8f/sOklKS0NHVhZS0NM88XhISEpBTkPut+b0qq4dHb6xftgomFmawbGCJy2cv4sf373DvUTRvbMAOPyQlJmLavFmcfT68jwJQVOeL6koUREREoWeoz/cYdeFPz4fHwP5YtnAJLKws0cC6Ic4GncH3+AT06N0DQNF8b4k/fmDe4qJFtrr36olTx05i84aN6NqjO169eIkLZ85h4fKSXsaH9h+E347dWLBsETQ0NZH0aw5FSSlJSEkVrfC5ftVaXLsSjBVri+4lxWFkZGQgLlH1Z6h+Az2wfOFSmFtZoIF1Q5z7lY/uv+rGzi3bkfgjEXMXz/+Vjx4IOnYSWzZsQpce3X7l4zwWLF/EifPw/kPw27Eb85ctFJiPFq1a4oD/PqhrqMPAyBDv377D0cNH4d5N8A/hVfFfuGewWCwMGDAA/v7+0PvVQOcfEFD0zOFasjjSgoULi545xo8HAPTv3x8jR41CwL59cGrbFqE3b+LBw4fw27OHs8+ggQOxYOFCWFpZwcbaGqeCghAfH4/evXv/yuNP7N27F23atIGKigrS0tJw/MQJfP/+HR1LzT999uxZGBoaQlFREc+fP8e69esxcMAAnrnHCfld1BhH/vNcXV1x/vx5LFmyBKtXr+b8IjJ8+HBOmJMnT2L69OkYMGAAsrKyYGJigpUrV1b6GBMnTkR6ejqmTZuG79+/w8rKCmfPnoWpqanAfdasWYPMzEx069YNsrKymDZtGtLS0rjC+Pv7Y9myZZg2bRq+ffsGZWVlNG/eXGDDmYKCAlauXImpU6eisLAQ1tbWOHfuHGdOuKrGV5qpqSkcHBwQHh5e4TxqTk5OOH78OJYuXYqVK1dCTk4ObQT0XmGxWDh9+jQmTJiANm3aQEhICG5ubti8eXOFaaoqf39/jBw5EnZ2dtDT08OKFSu4VsVdvnw5Pn36hHPnzgEANDQ0sGfPHvTr1w/Ozs6wtbWtkXQ0btwYx44dw4IFC7B06VJoampiyZIltbJ4Q7FW7dsiIz0Dx/YdRkpyMvQMDTB31WKo/eollZKUgsQE7glnp42YwPl/9Lso3L4WClV1New8GgAAyP2Zg90btiHpRyLExMWgraeLSXOno1X7trWWj8qyUNXHlp5TOX9PbFW0mMbFyDAsv76vTtPSpkM7pKelIzDgIJKTkqFvaIDFa1ZwPvvkpGT8SCiZ21BDSxOL1yzH7s3bcf7UWSirKGPU5HFo6VRSh/Lz8nBgtz/iY+MgKSkJe8emmDZ/FmRkS4acm1laYN6KxQjYuQeBAQegrqmJkRPHoJ0L90ImVTFk8GDk5uZi5dq1yMjIQEMrK2zx9eUayh2fkMD1w0IjGxssX7IE23fuxI5du6CjrY1/ly1DwwYlPThOnDoFABg1jrshd+G8eej6qxduYlISNmzahKTkZKioqKCzmxuGDxv223kBaqde1IfWHdoiIz0dR/cdQnJSCvQN9bFg1dJS+UhGYqkyBgBTfEo+6+i373Hr2g2oaahh97H9AIBLp8+hID8fqxYs49qv/9BBGDCs4uHxFamvegEAEY+e4EfCd7h07lSpNG7btg3fv3+HkbExNmzcwFldOykxkWvIp5a2NjZs9IXv+g04cfwEVFRVMG36NLTvUNJLwqaRDZYuX4ad23dg546d0NHRwfJ/V6Bhw5KeNs4uzkhLS8PePX5ITEzkOS4AJCYmwXeDL5KTiupDp87u8Bnuw5X+AQMHIC8vD74bNiA9LR2WlpbYsHUTtMsMoerg0hFpaWkI2FP0BdzQ2AhrNq6DBiefSWXyqYU1G9dh8/qNOHX8JFRUVTB5+hQ4dWhXkr4fifAeNITzd+CBwwg8cBi2je2wZZfgH55qW5sOTshIT8eRUuVu0erlpepKEle5A4CJw8Zw/h/19j1uBl+HmoY69h4/WKdpL+1Pz0cHl45IL1OmVvuuLbdMrfZdh80bNiLo+CmoqKpg0vQpcGpfUqZOnziF/Px8zJ81l+tY3iOGYdjIomf60yeDivI6mvteMnvBXLh3rXpDVlE+0rFvjz8nH6t813J6l/LPx1ps3rAJQcdPQVlVBZOmT+abjwWz5nEda+iIYRg2sqgOT54xBXt27Mb6VWuRkpICFRUVdOvVHUOHe6Mm/FfuGUO8vIqeOVatKnrmaNAAWzZv5n7miI+HUKmeU40aNcLy5cuxfft27NixAzo6Ovh3Bfc11sXFBWlpadizZw8SExNhbGyMjb6+nGuskJAQPn36hPMXLiA1NRXy8vKwsrLC7l27uOYQ//z5M7Zu3Yq09HRoaWnB29sbgwYO/K28EsIPi6nM5FaEEELqxau46PpOQrU10DRGy62j6zsZ1XJ33A5E/fhSccA/nImqLjJqcDW1+iCrpPTX1Is3CR/rOxnVZqFu+J+vGyaqukjNSKs44B9OQVYePzL+2/VbVVYJ77/HVBzwD2eqpvfX5ON7+u+taP2nUJNTRkJ6YsUB/3Dqcir/+XuGhbohMtLT6zsZ1SYrJ1ffSfgt3keXVxyonvh7zK040F+I5owjhBBCCCGEEEIIIaSOUGMcIYQQQgghhBBCCCF1hOaMI4QQQgghhBBCCPlL/T+vWvqnop5xhBBCCCGEEEIIIYTUEWqMI4QQQgghhBBCCCGkjtAwVUIIIYQQQgghhJC/lBBomOqfhnrGEUIIIYQQQgghhBBSR6gxjhBCCCGEEEIIIYSQOkLDVAkhhBBCCCGEEEL+UrSa6p+HesYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhPwnbNu2DYaGhpCQkECTJk1w+/ZtgWGHDh0KFovF82rQoAEnTEBAAN8wOTk5tZYHaowjhBBCCCGEEEII+Uvxa2j6U15VdfToUUyePBlz587F06dP0bp1a3Tq1AkxMTF8w2/cuBFxcXGc15cvX6CkpIS+fftyhZOTk+MKFxcXBwkJid/6vCuDGuMIIYQQQgghhBBCyB9v/fr18PHxwfDhw2FpaQlfX1/o6upi+/btfMPLy8tDQ0OD83r06BFSUlLg7e3NFY7FYnGF09DQqNV8UGMcIYQQQgghhBBCCKlzubm5SE9P53rl5ubyDZuXl4fHjx/DxcWFa7uLiwvu3btXqeP5+fmhY8eO0NfX59qemZkJfX196OjooEuXLnj69OnvZaiSqDGOEEIIIYQQQggh5C8lBNYf+/r3338hLy/P9fr333/55iMxMRGFhYVQV1fn2q6uro74+PgKP4e4uDhcunQJw4cP59puYWGBgIAAnD17FoGBgZCQkEDLli3x/v373//QKyBSazETQgghhBBCCCGEECLA7NmzMXXqVK5t4uLi5e5Tdq45hmEqNf9cQEAAFBQU0KNHD67tjo6OcHR05PzdsmVLNG7cGJs3b8amTZsqjPd3UGMcIYQQQgghhBBCCKlz4uLiFTa+FVNRUYGwsDBPL7jv37/z9JYri2EY7N27F56enhATEys3rJCQEBwcHGq1ZxwNUyWEEEIIIYQQQgj5S9X3iqk1tZqqmJgYmjRpguDgYK7twcHBaNGiRbn73rx5E1FRUfDx8anwOAzDICIiApqamlVKX1VQzzhCCCGEEEIIIYQQ8sebOnUqPD09YW9vj+bNm2PXrl2IiYnB6NGjARQNe/327Rv279/PtZ+fnx+aNWuGhg0b8sS5ePFiODo6wtTUFOnp6di0aRMiIiKwdevWWssHNcYRQgghhBBCCCGEkD+eh4cHkpKSsGTJEsTFxaFhw4a4ePEiZ3XUuLg4xMTEcO2TlpaGkydPYuPGjXzjTE1NxciRIxEfHw95eXnY2dnh1q1baNq0aa3lgxrjCCGEEEIIIYQQQv5SQlUcDvqnGzt2LMaOHcv3vYCAAJ5t8vLyyM7OFhjfhg0bsGHDhppKXqWwGIZh6vSIhBBCCCGEEEIIIaROjDu1tr6TINDWXtPrOwn1gnrGEULIH2zr3RP1nYRqG9eyD6J+fKnvZFSLiaouWm4dXd/JqLa743YgddyM+k5GtShsXYP+BxfUdzKq7cjgJWi7fVx9J6Pabo7ZioyUlPpORrXIKiri6NPgigP+4TzsnDHn4o76Tka1rHAfjYuR9+o7GdXmbtkCI0+squ9kVNuuPrMw8NDC+k5GtRwetBjeR5fXdzKqzd9jLvrsn1vfyaiWE17L4bxrUn0no9qCR/If5khIVVFjHCGEEEIIIYQQQshfqqqrlpLaJ1TfCSCEEEIIIYSQ/7F33+FNVf8Dx99JR9I9KZTSXSi0ZRXK3nsqCooDBTeCiqKIGyeKiqKiIEOm7C17I0P2HmUUSgst3Xs3ye+PlLRp0zLaAl9+n9fz9Hmam3NuzknuPTc593POEUIIIf6/kM44IYQQQgghhBBCCCHuERmmKoQQQgghhBBCCPGQUiDDVB80EhknhBBCCCGEEEIIIcQ9Ip1xQgghhBBCCCGEEELcIzJMVQghhBBCCCGEEOIhpZTVVB84EhknhBBCCCGEEEIIIcQ9Ip1xQgghhBBCCCGEEELcIzJMVQghhBBCCCGEEOIhpZBhqg8ciYwTQgghhBBCCCGEEOIekc44IYQQQgghhBBCCCHuERmmKoQQQgghhBBCCPGQkmGqDx6JjBNCCCGEEEIIIYQQ4h6RzjghxF3Jzc3l66+/Ji4u7n4XRQghhBBCCCGE+J8hw1SFEHfl008/JT09nZo1a97vogghhBBCCCGEKIcSGab6oJHIOCHEHcvLy8PFxYVff/31fhdFCCGEEEIIIYT4nyKdcUKIO6ZSqfjggw9QqVT3uyhl7Ny5E4VCQWpq6m3n8fHxYdKkSZV6XYVCwapVqyq1DyGEEEIIIYQQDz8ZpiqEuGP79u2jffv2dO/enY0bN97v4ogKnNy+n6Mb95CVmoGzhxsdnu6LRz0fk2mvhV9mxfczy2wf8s3bOLvXqJbyrV2xmhULl5KclISXjw+vjhpBSOOG5aY/dewE03+bSlRkJM4uLgx6djB9BvQ3PF9YWMiSeQvZtmEzSYmJ1PH0ZNjrL9O8VQuj/SQmJDJrynSO7D9Ifl4+tT3rMOqDd6lbv1611LM8jd0DeKZpD+q7eeFq48gH66ew+8qJe1qGW1H36Y5l25YorK3RREaRvWQl2tjy54q0HTUc83r+ZbYXnD5H1pS/9A+UStR9umMRForS3g5tejr5+w+Tt3Eb6HRVWv7u9cLoH9QORytbrqUmMPfwBsITrpabvq1PIx4JbkctO2eyC/I4EXOR+Uc2kZmfUyZta+8QRrV/kkPR55i4a2GVlru0AcHteapJN5ytHYhMiWXy3mWcjI2oIH0HHm/YkVp2zsRlpjD/yEY2XThoeH7SI6No6lH2eP/v6mk+WD+lysqt0+mYNmMGK1evJiMjg+CgIMaOGYO/n1+F+bZt387UadO4dv06dTw8GDF8OJ07dTI8P2vOHHbs3Enk1auoVCoaNWzImyNH4uPtbUjz5/TpbN66lbi4OCwsLGgQGMiI4cMJCQmpVJ0Obv6XPf9sIzM1jRp13On9/EB8GgSYTHs1PILNC1aTGHODgrwCHGs407xrW9r07WKUbt/6HRzaspu0xBSs7WwIbtmUbk8/goWlRaXKWpGWXsG092uMncqa+MwU1p3dS2TKjXLTmymVdAloThOPuthZWpOWm8nOiKMcuXYegFCPQAY17lwm32cbp1Oo1VRbPUrbs347O1ZtID0llVqeHgx46Rn8g0237ZfPXuCfuUuJvx5LQV4+TjVcaN2zE50e6XnPygvQ0a8pPQNb4KC2JSY9kcUntnEp8ZrJtMOa96GNT9nrZExaIp9v0V/DW3uH8EJY3zJpRqz4sVo/i251w+gX1BZHK1uupyYw98gGzidElZu+rU9D+gUVt7cnYy7x99Hi9razfzPa+zXG08ENgCvJMSw+sY2IpOvVVofOAc3oHdhKX4e0BBYc28LFxGiTaV9q0Y92vo3LbL+elsAnG6cBYKZQ0rdBG9r6NsLJyo7YjCSWntjO6RuXq60OAD0DW/JIUDucrO2ITo1n9qF1nIsv/9rX3rcxjwa3x93ehez8PI7FXGDukQ1k5uk/i07+TXmj7aAy+Z6eP44CbWG11KF/UDueaNQFF2t7IlNuMOW/FRW+b48EtePR4PbUtHMmPjOFBce2sPXiIZNpO/k35eOuw9gbeZLPN5f97vswktVUHzzSGSeEuGN//fUXb775JjNmzCAqKgovL69y0+p0OjQaDebm0tzcaxcOnuTfhevp9Fx/agd4c3rnIdb8PIchX4/CzsWx3HzPjX8HS6viqEcrO5tqKd+/23Yw/dcpjHj3LRo0DGbj6nWMe+9DpsybiVutsnMR3oiJZdyYj+nVvw/vffYB506d4Y+Jv+Lg6EDbTh0AmDttFjs3b+XNsaOp4+XJ0YOH+eajz/lx6i/416sLQEZ6BmNeH0Wj0CZ88eO3ODo5Ens9Bls722qpZ0WsLFRcSrrG+vB9jO89/J6//q2oundC1aUD2fMWo4lPQN2rG7ZvvEL6lz9AXp7JPFnT50CJ811hY43dh+9QcOyk0X4t27cme+4itLFxmHnXwXrIk+hycsnfuafKyt/aO4ShzXoz89BazsdH0a1uGB90GcK7/0wmKTutTPrAGl6MbPM4c49s4Mi18zhb2/Nyy/682upRfvp3kVFaVxsHhoT25FxcZJWVtzyd/UN5o+0gft69mNOxEfQPbseEviMZuugr4jNTyqR/NLg9r7Z6hB92LiA8/ioNavowpuMzZORls+/qaQA+3TQdC2Xx52SvtmHmkx+yM+JYlZZ9zrx5LFi4kHGffoqXlxczZ81i5FtvsXzxYmxsTLctJ0+d4qNPP2X4q6/SuWNHduzaxQcff8zMP/80dKQdPXaMJwYOJCgoCI1Gwx9Tp/LGqFEsXbgQKysrALy9vHj/3Xfx8PAgLy+PBQsXMnLUKFYtW4aTk9Nd1efUviNsmLOcfi8NxivQj0Nb9zD/uz94Y+InOLo6l0lvqbKkZc8O1PLywEJlSdT5CNbMWISlypLm3doBcGLPIbYuXM2A157Fs54fSbHxrJw6D4DeQwfeVTlvpaG7P32D2rDm9G6uptyghVcQQ8P6MunfxaTlZprM83TT7thaWrPi5E6SstOxtbRCWerHXW5BHj/tMj5X7mVH3LE9B1j11wIGvfYcvvXrsm/TTqZ99RMf/PYNTjVcyqS3VKto36cr7j6eqFQqLp+7wNIpc7BUqWjTs9M9KXPzOvUZ3KQrC45u5lLSdTr4NeGtdk/w+aYZJOdklEm/+PhWVpzaZXisVCr5rNsLHLkebpQupyCPTzdON9pWnZ9FK+9gnm/Wi78OreNCQhRd6zZnbOchjFn7e7nt7eutH2fe0Y0cLWpvX2zRj1daPcrPRe1tUE0f9kWe4mJiNAWaQvoFteWDLs/x/trfSTHx3lRWC88GPNOkO/OObuRiQjSdAkIZ3eEpPt74J8nZ6WXSLzi2haUndxgemymUfNnzZQ5FnzNse7xhR1p7N2T24XXEpicRUsuPN9sO4pttc4hKrZ5F0Nr4NGRY8z7MOPAP4QlX6V43jI+6DuWdNb+QmFX2s6jv5s0bbQcx5/B6Dl8Lx9nanldbPsrrrR/nh51/G9Jl5ecyatXPRnmrqyOuo19TXm/9GL/tWcqZuCv0bdCG8b2H89KSb0nIKnvd69egLS+26M/P/y7ifEIU9d28eKf9U2TmZbM/6oxRWjdbJ15tOYCTsZeqpexC3C4ZpiqEuCNZWVksWbKE119/nX79+jF79myj528OE920aRPNmzdHpVKxe/dudDod33//PX5+flhZWdG4cWOWLVtmyKfRaHjppZfw9fXFysqKwMBAfvnll1uWZ/369dSrVw8rKys6d+5MZGRkmTT79u2jQ4cOWFlZ4enpyVtvvUVWVtZt1/nQoUN0794dV1dXHBwc6NixI0ePHq0wz9ixY6lXrx7W1tb4+fnx6aefUlBQcNuvWRWObdpLcPtmhHQIw7m2Gx2e6YutswMndxyoMJ+1vQ02DnaGP6Wyei4VKxctp0e/XvTs3wcvH29eHTUCVzc31q/6x2T69avWUqOmG6+OGoGXjzc9+/ehe99erFi41JBmx6atPPncM4S1bom7R236PvYIoS2bs2JR8bG27O9F1HCrwTsfjSEwqD413WvRpHko7h61q6WeFdkfdYbpB9aw6/Lxe/7at0PVuT25m7ZRcOI02tg4suctQmFpiWVY03Lz6LJz0KVnGP4s6teF/ALyjxZH/Jn7elNw8gyFZ8LRJqdQcOwUBecuYu5dp0rL37dBG3ZEHGXHpaPEpCcy98gGkrLT6V4vzGT6uq6eJGSlsvH8ARKyUjmfEMXWi4fxd/EwSqdQKHij7SCWndxhsjOsqj3ZuCvrw/9j3bl9XE2NY/Le5SRkpvBocHuT6XvUa8Gas3vZEXGU2Iwktl86wrrwfTzdtIchTUZeNsk56Ya/5p71ySvMZ2dExW3bndDpdCxcvJgXhg2jS+fOBPj788Vnn5Gbm8vGzZvLzbdw0SJahoXxwtCh+Pj48MLQobQIC2PB4sWGNL9NmkT/fv3w9/OjXt26jPvkE27cuMG58OIOiV49e9KyRQvqeHjg7+fHO2+/TVZWFhcv3f0PsH3rthPauTXNurShhkct+gwdhL2LE4e27DaZ3t3Xk0Ztm+Pm6Y6TmwuN27cgoFEDroYXRzVGX7iCZz0/GrULw8nNhYDGDWjYpjnXL5cfUVRZ7XwbcSQ6nMPXwknISmXduX2k5WbS0jvIZPq6rp74OtdmzuH1RCRdJzUng2tp8WU6E3RAZn6O0d+9tHP1Zlp260Cr7h2p6Vmbx15+BkdXZ/Zu3G4yfR0/b0I7tMLdywPnmq4079SGwKYhXD574Z6VuXu9MPZcOcmeyJPcyEhiyYltpGRn0NHfdDubU5hPel6W4c/HqRbWlmr2Rp4ySqfT6YzSpefd/veeu9Gnfht2RhxjZ4S+vZ13ZCNJ2el0K6e9DXCtQ0JWKptKtLfbLh7Bz7n4Wvz7vuVsvXiIqyk3iElPZPqBNSgUCkJqVRxZe7d6BLbk3yvH+ffycWIzklh4bAvJOel08Q81mT6nII/03CzDn4+zO9aWVuwpEeHe2qcha8/t5WRsBAlZqeyIOMrpG5fpFdiyWuoA0L9BW7ZfOsK2S4e5npbA7MPrScpKo0c9069Zz9WThKwU1of/R3xmCuHxV9ly8SD+LqW/F+lIzc00+qsuAxt1YuP5/Ww4v5+o1Dim/LeShMwU+ge1NZm+W90w1p3by67Lx7iRkcTOiGNsPL+fwU26GaVTKhR82OV55h7ZwI30pGorvxC3QzrjhBB3ZPHixQQGBhIYGMiQIUOYNWsWOhPDyt5//32+/fZbzp07R6NGjfjkk0+YNWsWU6ZM4cyZM7zzzjsMGTKEXbv0d3e1Wi116tRhyZIlnD17ls8++4yPPvqIJUuWlFuW6OhoHn/8cfr06cPx48d5+eWX+eCDD4zSnDp1ip49e/L4449z8uRJFi9ezJ49e3jjjTduu84ZGRkMHTqU3bt3s3//furWrUufPn3IyCj/rqydnR2zZ8/m7Nmz/PLLL0yfPp2ff/653PRVTVNYSPzVGLyCjYdOeQUHEHup4h94Cz//nRnvfMuKH2YSfa56hlEUFBRw6cIFmoY1N9oeGtaMc6fPmswTfuYsoWHNjNO3aM7F8AsUFhYW7TcfC5WlURpLSxVnT542PD6w9z8C6tdj/Cdf8ky/Qbz5wmtsXLOuKqr1UFG6OKN0sKfwXIkfpYUaCi9dxtzXu/yMpVi2bkH+keOQX9wZXRgRiUVgAEo3V/1rebhj7u9DwenwcvZy58yUZvg6u5cZynky9hL1apiO5r2QEIWztT1NauujKB3UNrT0CubodeMf5gMbdiI9N4sdVdhxVR5zpRn1angaRVoAHIo+V+4PUgszc/ILjTv/8woLaODmjVk5net967dm+6Uj5BbmV03BgesxMSQlJdGqZfEPQEtLS0KbNuXkqVPl5jt5+jQtWxr/aGzVsmWFeTIz9T8K7e3tTT5fUFDAylWrsLW1pV7dundSDYPCwkJir0Tj36iB0faARg2IunDltvYReyWa6AuX8QkqLoN3fT9ir0Rz7VIkAMlxiVw4doZ6ocF3Vc5bMVMoqW1fo8zQu0sJ1/B2rGUyT4OaPlxPS6CDXxPGdnmO0R2fonf9VpgrzYzSWZpZMKbzs4ztPITnm/fG3b5sNFp1KSwo5FpEJIFNjN+3wCbBRIaXP6S7pGuXrxIZfomAkMDqKGIZZgolXo61OBtnfPycjbtS5iZAedr6NCI8PrJM5JbK3JJvew9nQp8RvNF2IJ6OblVW7tKK21vjju5TsRHUc/U0medCQrRRe2uvtqGlVxDHYsrvCFWZWWCuMKuWTl4zpRIfJ3fO3DD+LM7cuIy/6+3dKOrg24SzcVdIKvFZWCjNKNAYR4/lawqpW8P0+1JZ5koz/FxqcyLG+LM4EXuJwHKufecTonCxdjBMXeCgtqGVVwhHrxl/FmpzS6Y8/h5/DnyfD7s8h6+ze7XVoZ6rp2EI/E1Hrp0nuKavyTwWZubkl3qf8woLCKzhhZmi+Lo3JLQXqTmZbDy/v+oL/oBTKhQP7N//VzJuTAhxR2bOnMmQIUMA6NWrF5mZmWzbto1u3YzvPH355Zd0794d0EfT/fTTT2zfvp3WrVsD4Ofnx549e/jzzz/p2LEjFhYWfPHFF4b8vr6+7Nu3jyVLlvDkk0+aLMuUKVPw8/Pj559/RqFQEBgYyKlTp5gwYYIhzQ8//MAzzzzD22+/DUDdunX59ddf6dixI1OmTEGtVt+yzl26GM/t8+eff+Lk5MSuXbvo16+fyTyffPKJ4X8fHx/effddFi9ezPvvv28yfV5eHnmlhv1VZoGMnIxsdFot1g7GQy+t7W3JTjN9J9PGwY4uQwfg5lMbTYGG8P+OsfLHvxj4/kt4BJr+8nO30tPS0Gq0ODobDxVzdHYiJSnZZJ6UpGQcW5ZNr9FoSE9Nw9nVhdAWzVm1aBkhjRvi7lGbE0eOcWDPPjRarSHPjZhY1q/6h8cGD2Lw809z4ex5/pz0OxYWFnTt3aP0y/6/pbC3A0CbYXy8aNMzUDrf3hA/M29PzDzcyf57qdH2vC07UFipsft0jH6OOIWC3H82UnDkeJWUHcBeZY2Z0oy0HOPyp+Vk4Vjb9JDkC4nRTN67jFHtn8TCzBxzpRmHo88x+1BxZ229Gl509g+t0nnVKuKgtsVcaVbmh3ZKTgbO1qY7ng5Fn6NfgzbsuXKCC4nRBNbwok/91liYmeOgti2zr/pu3vi5eDChxHCkqpCUpI86cHE2Hr7p4uxM7I3y5yZLSkoymefm/krT6XT89MsvNGncmAB/4/kKd+/Zw0effkpubi6urq78/uuvODo63kVtIDs9E61Wi62DndF2Gwc7MlPLDmEr6ccRn5CVnolWo6HzoD4069LG8FzDNs3JSs9k5rif0aFDq9ES1r09HR6tnvbI2lKNmVJpmAvqpoz8bOqqTHcQOFvb4e1Ui0Kthr+PbMLaUs2jwe2xslCz4tROABKyUlh+cgc3MpJRm1vQxqchr7UewG+7l5kcpljVsjIy0Gq12Dkanxd2Dg6kp5wuJ5fe5y+NJjMtA61WQ6/BA2jVvWN1FtXAVmWNmVJJel620fb0vCzs1beeIsJBbUNILT9mHDSOKL+Rkczsw+u4npaA2kJF14DmjO00hC+3zqqWaF67m+1trnH0XVpuJg5Wptvbi4nR/L53OW+2e6JEexvOnEPry32dp5p2JzknndOxVX+j0M6y6LMoFe2VlptFiPrW01g4qG1p6O7Pn/tXGW0/feMyPQNbciEhivjMFBrU9KWpR71q64Ao/ixKX/syy732nU+I4pfdSxjd4SnDZ3Eo+hwzSxxX19MSmbx3OVGpcVhbqOjToA1f93qVd/+ZzI2Mqo0wc1DbYKY0IyWn7HXPydrOZJ4j18LpXb8V+yJPcjHxGvVcPekV2Kr4upeTTnBNX3oFtmL48u+rtLxC3C3pjBNC3Lbz589z8OBBVqxYAYC5uTmDBw/mr7/+KtMZ17x5ccTT2bNnyc3NNXTO3ZSfn0/TpsXDMKZOncqMGTO4evUqOTk55Ofn06RJk3LLc+7cOVq1amU0IenNzr6bjhw5wqVLl/j77+IfmTqdDq1Wy5UrV2jQwDjCwZT4+Hg+++wztm/fTlxcHBqNhuzsbKKiyo8wW7ZsGZMmTeLSpUtkZmZSWFhYbsQGwLfffmvUGQkwbtw4anSv3ETjUOrLnk5Hed//nNxr4FRioQb3AC8yktM4umlPlXfGGUpXqjA6na7CCWbLPHUzKrPoiddGjeTX739i+LMvggLca9emW5+ebF2/qTiLVkdA/XoMfe0lAPzr1eVqZCTrV/3z/7ozziKsKdZPF89PlflH0WILpSNf7+AHhGWbFmiux6K5ahyBY9GsMZYtQsmevQBNbBxmdWpjNfARtGnpFBw4ctd1MKVM3K4Ck9G8AB4ONRjavA/LT+3kZMwlHK3seDa0By+37M+f+1ejNrfkjbYDmX5gDRmlfjzfD+XVY87hDThb2TPl8TGggJTsDDae388zTXug1WnLpO9bvw2Xk64TXsHk3rdjw8aNjC9xM2TSxInAnZ/nRZluO8/3P/7IpUuXmDFtWpnnmjdrxoK5c0lNS2Pl6tV8+PHHzJ45E2fnsvO73bYyxbh1fV76/G3yc/OIvhjJloWrca5Vg0Zt9dfJK2cu8O/KTfR7aTB1ArxJupHIhjnL2OloT6eBve++nLdQ+uhRoDCxteRzsPj4NvKKoifXn9vH06E9WHNmN4VaDdGp8USnxhvyXE25wch2g2jtE8Las3urowoVlrVY+de9m94c/yF5OblcvXCZtfOW4uruRmiHVtVWxjJKncsKFOV9FEZaezckpyCX46Wid68kx3AlOcbwOCLxGp90G0Zn/1AWn9hWJUU2rexRVd6iPB72NRjavDcrT+3iROwlnKxseaZpD15s0Z/pB1aXSd8vqC1tvEP4auvsapunDO7svCipnW8jsgtyOXrdOJprwbEtDGveh/G9h6MD4jNT2HPlhMmFH6pSmetDBSdBHYcavNiiH0tPbufE9Ys4WtvxfLPevNrqUab8txLQd56WjKYNj4/i+34j6VO/FX8dqp7RBaaqUN4nMf/oJpys7fh1wGgU6DvuNl84wOAm3dDqtFhZqBjb+Tl+3r2o2odsC3G7pDNOCHHbZs6cSWFhIR4exUMndDodFhYWpKSkGE2IXXJibm1RVNK6deuM8kJx9NeSJUt45513mDhxIq1bt8bOzo4ffviBAwfKn9+svB+iJWm1Wl577TXeeuutMs9VtPBEScOGDSMhIYFJkybh7e2NSqWidevW5OebHs61f/9+nnrqKb744gt69uyJg4MDixYtYmLRD1NTPvzwQ0aPHm20TaVSMeOw6fnTbsXKzhqFUkl2mvFQ2uyMLKzsb3+hAnc/T8L3V/3qnvYODijNlGWi4NJSUstEy93k5OJMSpLxHf3UlFTMzMywd9B3dDo4OfLpt1+Sn5dPeno6Lq4uzJoyg5rutYz24+VjPMzS09uLfTtNz/n0/0XBybNkRJboYC5ahEFpb4cmvfg4UtrZoku/jYmzLSywbNaYnLVl5wazeqwfuZt3UHBEf2xpY26gdHZC3aNLlXXGpedlo9FqcCwVleGgtikTvXHTgOD2XEiIMnQcRKXGkXcwny96vsziE9twUNviZuvEmE7PGPLc7IT5+5lxjF7zK3FVHHWSlptJoVZTJgrOycqu3AnM8zUFTNg5nx//XYCzlT1J2Wn0D2pHVn4OaTnGdVeZW9AloBl/HVpb6bJ2aN+ekODiIYL5RfNkJiYl4erqatienJJSYWeYi4tLmSi48vJ8/+OP/Lt7N9OmTqWmW9lheDfnCvX09KRhSAiPDRrE6n/+4YWhQ++4ftb2tiiVSjJTjd/3rLRMbBxMR2vc5FQ0JLumlweZaRnsWLbe0Bm3bck6GrdvYYiWq+nlQUFeHmumL6TDYz2rfN7O7PxcNFotdioro+22llZlouVuysjLJj03y9ARB/pOBaVCgYPa1mTkmw64npqAi7VDlZa/PDZ2+jlO01ONy5KRlo6dY8VlcKmpvxFV28eTjNQ0Ni5afU864zLzstFotWWi4OxU1rfVYdDWpyH7o86gMdHJXpIOiEy+QU27SnRCVyCjqL11UN9+e/tISHsuJESz9py+vY1OjSOvcB3jerzE0hPbjOYj69ugDY8Gt2f8trlEV9OiBxn5+s+idB3s1dbl1qGk9r6N2Rd5yigSH/TvzW97l2GuNMNWZU1qTgZPNOpMYlZqVRbf6PX01z7jNslBbUNqjumREY+FdOR8/FXWnNEvoHQ1NY7phWv4uterLDy+lVQT1xodOiKSruFu71rmucpKy81CY+K656i2IzW7/OvexF0LmfTvYpys7UjOTqdP/TZk5eeSlpuFn0tt3O1d+KrnK4Y8N6/fG1/+iRcWf0NsFUf4PWgUCpmh7EEjnXFCiNtSWFjI3LlzmThxIj16GEcPDRw4kL///rvcediCgoJQqVRERUXRsaPpoR+7d++mTZs2jBgxwrAtIqLiOV6CgoJYtWqV0bb9+43ngAgNDeXMmTMEBBjPnXYndu/ezR9//EGfPn0A/Vx1iYmJ5abfu3cv3t7efPzxx4ZtV69WHHGiUqkqNSy1NDNzc9y8axN19hL+zYp/HEeduYRf01tHA94UHxV7yx+Zd8PCwoKAevU4dugIbTq2M2w/dvgIrdq1MZmnfnAQB/f9Z7Tt2KHD1K1fr8xqvZYqS1xruFJYWMi+Xbtp36X4uAtqGMz1KONIrevR16hhYgXX/1fy8tAmGA+V1qalY16/HpprRREWZmaYB/iRs7r8YUQ3WTZrDObmFBwyMa+ahUXZW95a7R1F3d2KRqvhSnIsDWv5G8231rCWP4evmZ6bztLcwnDzwFCsonIqUBCTlsh7/0w2en5wk65YmauYfXg9iSZW26usQq2GCwnRNK9Tn90lJgVvXqc+eyJPVpATNFotCUU/+LoENOO/q6fRlYor6OzfDAszc7ZcOFTpstrY2BjdiNHpdLi4uHDg4EHqB+rn4CooKODosWO8OXJkuftpFBLCgYMHefbppw3bDhw4QKOGDY32/f3EiezctYs/f/8dj9q3twCLDsq9kXIr5ubmuPt6EnEqnKAWxVEtEafCqd+8YQU5SxdCh6agOLKnID+/TGSdQqksL6Co0jQ6LTHpCQS4enK2xGrAAa4enI2PNJnnasoNQtz9sCwxL5OrjSNanbbc1VcB3O1duJFheuqBqmZuYU4dfx8uHD9Do1bF84teOH6WkJZNbn9HOii8RwsuaXRaolJvEFTTh+MxFw3bG9T04USJx6bUq+FJTTtnQ+TSrXg6unE9LaFS5S2Pob11N25fQ9z9ysz7dZPKzKJMJ6IhcrfE+dCvQVsGhHTgu+3zjKL9qppGqyUyJZbgWr5G0W1BNX3LRB6WFljDi5p2zkZtdGmFWg2pORmYKZQ0q1O/zDygVaVQq+FyUgyNagdwMLp4Dt5G7gHlvqbK3MRnUXQtrOiq7OPkXi0rwhZqNVxIjCbUI5C9Ja5zoXUC2RdZ/tyhoD+nbq4Y29k/lANRZ9ChIyo1jleWfmeUdlhYH6wt1Pyxb4XhWinEvSSdcUKI27J27VpSUlJ46aWXcHAwvsM8aNAgZs6cWW5nnJ2dHe+99x7vvPMOWq2Wdu3akZ6ezr59+7C1tWXo0KEEBAQwd+5cNm3ahK+vL/PmzePQoUP4+pY/PHL48OFMnDiR0aNH89prr3HkyJEyq7uOHTuWVq1aMXLkSF555RVsbGw4d+4cW7Zs4bfffrutugcEBDBv3jyaN29Oeno6Y8aMwcrKqsL0UVFRLFq0iLCwMNatW8fKlbf3ZbkqNe3Zls3Tl+Hm44G7vxendx0iMzmNhp1aALB32SayUtLp8coTABzbvBd7VydcPNzQFGoI/+84EUfO0GfkMxW9zF177KmBTPxqAnXr16N+SBAb16wjIS6ePgP6AzB76gySEhJ591P9ohx9BvRj7YrVTP9tCj379yH89Fk2r93I+59/ZNhn+JlzJCUm4hfgT1JiEgv+motWq2XgM4MNaQYMHsh7w0exeO4C2nfpyIWz4Wxcs54333+nWupZESsLFXUciocG17Z3pa5rHdJzs6o8wupu5O3YjbpnF7QJiWjiE1D37IouP5/8Q8cMaayffwptahq5azYY5bVsHUbBiTPossoO5yw8fU6/3+QUtLFxmHl6oOrSgfz/Kt8hVNK6c/sY2eZxLidf50JCNN3qNsfVxoGtF/Wv81STbjhb2/PHPv3Q+6PXzvNKq0fpXjeME7H6YapDm/fmUuI1QxTatbR4o9fIzs81ub0qLTmxjY+7DuV8QhRnblymX1A73OycDVEMr7R8hBo2jozfPheAOg5uNHDz5mx8JHYqa55s1AVfZ3e+LXq+pL4NWrPnyolqGbajUCh4evBgZs2Zg1dRdNqsOXNQq9X0KnFT57MvvsCtRg3eKLoZ89Tgwbz6+uvMnjuXTh06sPPffzlw6BAz//zTkGfCDz+wcfNmJn7/PdY2NiQWRdLZ2tigVqvJycnhr9mz6dC+Pa4uLqSlpbF0+XLi4+Pp1rXrXdepTd8urPh9Lh5+XnjW8+Xw1r2kJSYT1k2/su2WhatJT05j4MjnATiwaRcOrs7UqK3v7L96PoK9a7fRslfxDYLA0BD+W78Dd9861AnwIelGAtuXrKV+s4bVtpr1nisneaJxF66nxROVEkeYVxAOVnYcvKr/8d4jsAX2KhuWndwBwImYi3QOaMbARp3ZdvEw1hZqejdoxZHo8xRqNYC+wzc6NY7ErDTU5pa09mmIu72L4Ti9Fzo92oO/J03HM8AHn8AA9m3eRUpiEm16dgZg7bylpCWl8uzb+uiYPeu34ejqQs06+ujpy+cusmP1Rtr3vftj5E5tuXCIF1v042rKDSKSYujg1xhna3vDKtuPhXTA0cqOWaWGArbzacTlpBhi0sveHOzXoC2Xk2OIz0xGba6ia0AzPB3dWHBsS7XVY334Pka0fpzLSTFcTIymS0BzXK0d2FbU3g5u0g1nKztD5+HR6+d5ueUjdKsbxsnYSzha2fJcM317ezMSq19QW55o1IXJe5eRkJVqiFrLLcw3itKsKpvPH+CVlo8SmRzLpcRrdPRviou1g2GxnkENO+FobceMA8ajFjr4NSEi6brJzk4/59o4WdkRlRqHo5UdA0Lao1AoWB/+X5m0VeWfc3t5s+0gLidd53xCFN3rhuFq48DmCwcBeKZpD1ys7fltr36l+cPXwhne+jF61GvB8ZiLOFnZ8UJYXy4mRBuufU806sKFxChi05OwtlDTp0FrfJzdy7wXVWX5yZ2M7TyEC4lRnIuLpE+DNrjZOhkiKV8M64erjQPfF8116uFQg/o1vAmPv4qtyoqBjTrj4+xueL5AU0hkSqzRa2QVRQKX3i7EvSKdcUKI2zJz5ky6detWpiMO9JFx48eP5+jR8lcW/Oqrr3Bzc+Pbb7/l8uXLODo6Ehoaykcf6TtShg8fzvHjxxk8eLD+B9zTTzNixAg2bNhQ7j69vLxYvnw577zzDn/88QctWrRg/PjxvPjii4Y0jRo1YteuXXz88ce0b98enU6Hv78/gwcPLne/pf3111+8+uqrNG3aFC8vL8aPH897771XbvpHH32Ud955hzfeeIO8vDz69u3Lp59+yueff37br1kV6rVoRG5mNgfX7CArLQMXj5o88vbz2Lvqh4Fmp2WQkVw8nEer0bBnyQYyU9Ixt7TApbYbj7z9PD6NqmdVuQ5dO5Oels7C2fNJTkrG29eHL34Yj1tRhFpyUjIJccUdHLVqu/PFD98w/bcprF2xBhdXF157eyRtO3UwpCnIz2fe9FnciInFysqK5q1a8O6nY7G1Kx52Uq9BfT4Z/wWz/5zBwtnzqOnuzqtvvU7nHvfux9dN9Wt4M/mx4uHJb7XTd4yuP/cf32yfc8/LU1relp0oLCywGvwYCmsrNJFRZE6eDiUWG1E6OZaJclO6uWIe4Efmb2Xn8ALIXrIKq349sX7qcRS2tmjT0snfs5/cDVurtPz/XT2t/1LesBOOVnZEp8bz3Y75hrvmTlZ2uNoUt2m7Lh9HbaGiR2BLhjTrSVZ+LmfirrDgaNmhtvfSjoijOKhteL5Zb1xs7LmSHMvYdX8Ql6mPOHKxdsDNtnh4t5lCweDGXfF0rEmhVsOxmAuMXDmxTIRSHQc3GrkH8O4/t3dj4m4Mfe458vLy+O6HH8jIyCAkOJjJv/xiFEF348YNo8nMGzdqxDdffcWUP/9k6rRp1PHw4NuvvyYkpHgOzWVFc5e+ViKaGmDcJ5/Qv18/lEolkZGRrF2/ntTUVBwcHAhq0IDpU6fi72d6Fdrb0bBNM3Iys9i5fAMZqem4eboz5IMRONbQD//LSEknLbH4fdbpdGxduIaUhCSUSiXONV3p/vSjNO/W1pCm4+O9UCgUbFu8lvTkNGzsbQlsFkLXwf3vupy3cio2AmsLNV0CmmOnsiYuM5k5h9YbhgbaqWyMhrnlawqZdXAt/YLbMaLt42Tn53EqNoItRT/uAdQWKgY07IidpTW5hfnEpCcybf+aau2oLq1pu5ZkpWexafEa0lPScPfy4NVP38G5aJhwenIaKQnFQ9G0Wh3r5i8jOS4BpZkZLrVq0O+5QbTu2emelfnwtXBsLK3o26AtDmobYtIT+W3PUsNCKw5q2zLD9azMLQn1CGRROfO/WVuqeC60J/ZqG3IK8ohOjeeHnQuqtdNh/9Uz2Fpa83jDjjha2XEtNZ7vd/5taG8d1ba4lGhv/718HLW5ih71WvBsaA+yi9rbhSU6DLvXDcPCzJx3Ojxl9FrLT+5g+amdVV6Hg9HnsFFZ80hwOxzUtlxPS+Dn3YsMq6M6WNmWGXZtZaGiWZ36LDhm+jphYWbOYw074mbrRG5hPidjLzF9/xpyCvJMpq8K+yJPYaeyZlCjzoaOwPHb5hqGxpa+9u2MOIaVhYre9VsxtHlvsvJzOX3jMvOPFM+3a2OpZnirATha2ZGdn8uVlFg+2zidS0nXqqUOuy4fw15tw5DQnjhbOxCZHMvHG/40LEDiYm1f6rqnZFCjztRxdEOj1XA85iKjVk8yXCeFqfk0xf2m0N3OpEtCCCHui9+L7lr+LxvZdhCXEqJvnfABFlDDk7a/D7/fxai0vSOnkjpyzP0uRqU4/v4DT83/7H4Xo9IWDfmSjlPKH6r5v2LX67+TkXL/ozgrw87JicXVGDF0rwxu2p2P1k+938WolPF9hrP+3L77XYxK69OgDa8um3DrhA+4aYPG8szf4+53MSplwbNf8MLib+53MSpt1uCPGTT341snfIAte/4buk8bdb+LUWlbXv3lfhfhrnyw7t6sAn83vuv7+v0uwn0hs/gJIYQQQgghhBBCCHGPyDBVIYQQQgghhBBCiIeUsgoXyRJVQyLjhBBCCCGEEEIIIYS4R6QzTgghhBBCCCGEEEKIe0SGqQohhBBCCCGEEEI8pBQyTPWBI5FxQgghhBBCCCGEEELcI9IZJ4QQQgghhBBCCCHEPSLDVIUQQgghhBBCCCEeUrKa6oNHIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykFMgw1QeNRMYJIYQQQgghhBBCCHGPSGecEEIIIYQQQgghhBD3iAxTFUIIIYQQQgghhHhIKWQ11QeORMYJIYQQQgghhBBCCHGPSGecEEIIIYQQQgghhBD3iAxTFUIIIYQQQgghhHhIKWWY6gNHIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykZDXVB49Cp9Pp7nchhBBCCCGEEEIIIUTV+3LLX/e7COX6rPuL97sI94VExgkhxAMsbcKk+12ESnMY+zYZycn3uxiVYufsTOrIMfe7GJXm+PsPtP19+P0uRqXsHTmVtPE/3e9iVJrDR6NJHT76fhej0hyn/kRGevr9Lkal2NnbkzZv8f0uRqU5PDeY1Hc/ud/FqBTHiV+TEX7hfhej0uzq1yPt+1/vdzEqzeH9t0j7ZuL9LkalOHz8LqlDXrvfxag0x/l/kvrSm/e7GJXiOPM3Ut/56H4Xo9Icfx5/v4sgHhIyZ5wQQgghhBBCCCGEEPeIRMYJIYQQQgghhBBCPKSUyJxxDxqJjBNCCCGEEEIIIYQQ4h6RzjghhBBCCCGEEEIIIe4RGaYqhBBCCCGEEEII8ZBSKGSY6oNGIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykZJjqg0ci44QQQgghhBBCCCGEuEekM04IIYQQQgghhBBCiHtEhqkKIYQQQgghhBBCPKSUMkz1gSORcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD0iw1SFEEIIIYQQQgghHlIKZJjqg0Yi44QQQgghhBBCCCGEuEekM04IIYQQQgghhBBCiHtEOuOEuEOHDx/m559/RqvV3u+iCCGEEEIIIYQQFVIqFA/s3/9X0hkn/udFRkaiUCg4fvx4le1ToVCwatWqMtsTExN58sknCQkJQams+tPn888/p0mTJlW+3/9Phg0bxoABA247/c6dO1EoFKSmpt71a86ePRtHR8e7zi+EEEIIIYQQ4v8PWcBB3FfDhg1jzpw5AJiZmVG7dm369u3L+PHjcXJyum/lio2NLfP6Op2O559/ns8++4zu3bvfp5I9HBQKBStXrryjTjNxe1RtW2HZOASFWo0m9gY5W7ajTUy+RSYV6g5tsKgXgEKtQpuWTu72fym8HAmAWR0PVC2bYVbTDaWdLVkr/qHwYkSVlVmn0zFt5kxWrl5NRno6wcHBjH3vPfz9/CrMt23HDqZOm8a169ep4+HBiNdeo3OnTobnZ82Zw45du4i8ehWVSkWjhg15c8QIfLy9DWmSkpP57fff2X/wIBkZGYQ2acKYd9/Fy9OzSuqm7tMdy7YtUVhbo4mMInvJSrSxceWmtx01HPN6/mW2F5w+R9aUv/QPlErUfbpjERaK0t4ObXo6+fsPk7dxG+h0VVLuO9XYPYBnmvagvpsXrjaOfLB+CruvnLgvZSmPqn1rLJs01J8bMbHkbNqONjHpFplUqDu1xSIwAIVajTY1jdxt/1IYcUX/dOswzAPrYubijK6wEM21GHJ37EabnFItdVD364llu1ZFx9NVshcur/h4Gj0C83oBZbYXnDpL1u8zDHW0eqQ3Fk1CUNjZoYm+Rs6SVWiuRt9x+XQ6HdOmT2flypVkZGToz+X338ffv+wxXdK27duZOnUq165do06dOox4/XU6d+5slGbp0qXMmz+fxMRE/Pz8eHf0aJo2bWp4/s9p09i8eTNxcXFYWFjQoH59RowYQUhIiMlyjho1in3//cePP/xA/0ceuau6Tv93B6uOHSEjN4fg2nUY07sf/jXcbiv/5jOn+GTlUjrUq8+PTz5j9Fx8ejqTt29mX8RF8goK8XJx4ZN+A2jgXvuOy3kr6h5dsGzVHIW1FZqr18he8Q/auPhy09u+/hLmAb5lthecPU/WzHkAWLZugapNC5TOjgBobsSTu2UHheEXq7z8UHTcLVrIyk2byMjKJLhePca+Nhx/L+9y80REXWXqgr8Jj4ggNj6e0S+9zDOPPGqU5s+FC5i+aKHRNhdHRzbNmVct9TBF1bYllo2DUahuXtN3ok261TXdEnX7NljU8y++pu/YTeHlq/emzO1bY9m0EQq1Ck3MDXI2brvNtrYdFvVLtLVbdxnaWsvQxliGNkbpaA+AJiGJvD3/URgRWW31UD/eD8vO7VHYWKOJuEL27IVor8dWXI2eXbHs1gGlizO6jEzyDx4ld8lKKCg0pFE4OWL11OOYNwpGYWmJ9kYc2dPnoomMqvo6PNIby45t9ef35atk/70EbcyNiuvQrROWnduhdHZCl5lF/uHj5C5fA4X6Olh2aoeqUzuUrs4AaGJukLtmI4Wnz1Z5+Q316NkVy9ZhKKys0ERFk718DdobFbRTI1/GPKDsd8iCs+FkTZ9r2Ke6V1ej57XpGaSP+7ZqCy9EBaQzTtx3vXr1YtasWRQWFnL27FlefPFFUlNTWbhw4a0zV5NatWqV2aZQKFi/fv19KI0Qt8eyZXNUYU3JXr8ZbXIqqjYtsHnycTJmzIH8AtOZlEpsBj+GLjuH7FVr0WZkorSzQ5efb0iisLRAE59A/qkz2DzWv8rLPWf+fBYsXMi4Tz/Fy9OTmbNnM3LUKJYvWoSNjY3JPCdPneKjTz9l+Cuv0LljR3bs2sUHn3zCzD//JCQ4GICjx47xxMCBBDVogEaj4Y+pU3nj7bdZumABVlZW6HQ63hs7FnNzcyZOmICNjQ1/L1zIiLfeMqSpDFX3Tqi6dCB73mI08Qmoe3XD9o1XSP/yB8jLM5kna/ocMC++NCtsrLH78B0Kjp002q9l+9Zkz12ENjYOM+86WA95El1OLvk791SqzHfLykLFpaRrrA/fx/jew+9LGSpi2SoMVYtQstduQpucgqptS2yeHkjGn7MqPjeeHoguO5vsFWvRpmegtDc+N8y8PMk/chxNbBwoFag7ttPvd9psox9fVUHVowuqrh3JnrNQfzz17o7tqOGkj/uu/ONp6mwwNzM8VthYY/fJexQcLe4otX7uScxqu5M1awG6tHQsWzbD9u3hpH/xPbrUtDsq45y5c1mwYAHjPvsMLy8vZv71FyPfeIPly5aVfy6fPMlHH33E8Ndeo3PnzuzYsYMPPvyQmTNmGDrSNm/ezMSffuKDsWNp3LgxK1as4K1Ro1i6ZInheu3t5cX7Y8bg4eFBXl4eCxYuZOQbb7Bq5coyN9cWLFwIlRwWM/e/PSw88B+fPfIYXs4u/LVnF2/+PYelr7+FjUpVYd7Y1FR+3bqJJp5lO4vSc3J4Zc4Mmnn78stTz+FkY8O1lGTsVOpKldcUVef2qDq2IXvRCjQJiai7dcL2tWGkT5gEefkm82TNXmB8TFlbY/fuSApOnjZs06alkbNus6EDxjKsKTYvPEvGT39U2NF3t+asWM6C1asYN+ptvGp7MHPJYkZ+9hnL/5iCjbW1yTy5eXnUqVmLbm3a8dNfM8rdt5+XF398+bXhsVk1jIooj2WLZqiaNyV7/Ra0KSmoWrfAZvAAMmbMq7jdevIxfbu1en3RNd0WXXnpq7rMrcNQtWxG9j8bi9raVtg8M4iMqX9VXOZnBunLvPyforbW3qit1WZk6G90pKQCYNEoCOsnBpA5Y96tO/rugqpfT1S9u5H95xw0N+JQP9oH2w/eJn3MZ5Brur21aNMC9eDHyJ4+B83FyyhruWH92jAAcv9eChSdL5+NoeDcBbJ++A1degbKmjXQZWdXfR16d0PVozPZf/2NJi4edb+e2L77Bukff1V+HVo2Rz3oEbJn/Y3m0hV9HV4coq/D4hUAaFNSyVm+Bm18AgCWbVpi8+YrZHwx4ZYdfXdVjy4dUHVqS/aC5fp2qntnbIe/SPq3P5XfTs36G8xKXfvee5OC46eN0mli48icMrN4g/b+3NC8VxT/j4eDPqhkmKq471QqFbVq1aJOnTr06NGDwYMHs3nzZqM0s2bNokGDBqjVaurXr88ff/xR7v40Gg0vvfQSvr6+WFlZERgYyC+//FIm3V9//UVwcDAqlQp3d3feeOMNw3Olh6meOnWKLl26YGVlhYuLC6+++iqZmZmG528Ojfzxxx9xd3fHxcWFkSNHUlBQ8Zef7777jpo1a2JnZ8dLL71Ebm5umTR3UneAjRs30q5dOxwdHXFxcaFfv35ERBRHMeXn5/PGG2/g7u6OWq3Gx8eHb78tvgukUCiYMmUKvXv3xsrKCl9fX5YuXWr0GtevX2fw4ME4OTnh4uLCo48+SmRk5G29vz4+PgA89thjKBQKw2OAKVOm4O/vj6WlJYGBgcybV/HdZ41Gw+jRow11ff/999GVigzS6XR8//33+Pn5YWVlRePGjVm2bFmF+y3tp59+omHDhtjY2ODp6cmIESOMPv/SIiIiePTRR6lZsya2traEhYWxdevWO3rNu6Fq3pTc/w5ReCECbWISOes2o7CwwLJB/XLzWDYKRqFWk73iHzTXY9GlZ6C5HoM2IdGQpvByJHm7/6PwQtVFw92k0+lYuHgxLwwbRpdOnQjw9+eLTz8lNzeXjaXagZIWLl5My7AwXhg6FB8fH14YOpQWzZuzYPFiQ5rfJk2if9+++Pv5Ua9uXcZ98gk3btzgXHg4AFHR0Zw6fZoPxowhOCgIH29vPhgzhpzsbDZt2VLpuqk6tyd30zYKTpxGGxtH9rxFKCwtsQxrWm4eXXYOuvQMw59F/bqQX0B+ic4Tc19vCk6eofBMONrkFAqOnaLg3EXMvetUusx3a3/UGaYfWMOuy8fvWxkqomrRlNy9Byk8fwltQhI5/2xCYWGOZXAF50bjEBRWarKXrUFzLUZ/blyLQRtffG5kL15BwamzaBOT0MYnkrNuE0oHe8xq1az6OnTtQO6GrRQcP4U25gbZcxboj6cWoeXm0WVnGx9PDQL1x9ORouPJwgKLpo3IWfEPmkuX0SYkkrt2E9rEZFQd2txR+XQ6HQsXLuSFF16gS5cuBAQE8MXnn+vP5U2bys23cOFCWrZowQsvvKA/l194gRZhYfoOsyJ/L1jAo48+yoABA/D19eXdd9+lZs2aRm15r169aNmyJXXq1MHf35933n6brKwsLl40jsa6cOECC/7+m88+/fSO6le6rosO/sewdh3oXD8If7eajHvkcXILCth0+mSFeTVaLZ+tWsYrHTrjYWIEwNz/duNmb89njzxGsEcdajs60cLXnzrOzndd3vKoOrQhd+su/TF8I57shctRWFpg2bRxuXl0OTnoMjINfxb1/KGggPwTxT9yC8+epzD8gv68SEwid8NWdPn5mHtXTcSxUXl0Ohb+s4YXnniSLq3bEODtzRdvv0Nufh4b/91Vbr7guvUY9cKL9OzQAUsLi3LTmZuZ4erkZPhzcnCo8jqUR9W8if6afjECbWIyOeu3oDC3wLJBYLl5LBsF6a/pK9eVuKbHGl3Tq7XMLULJ3XugRFu7saitbVB+mZsUtbVLV5doa68bOnsACi9epjDiCtrkFLTJKeTt3IsuPx8zD/fqqUevruSu3kDB4WNor8WQ/edsfXvbpkW5ecwD/Ci8GEHBf4fQJiZRePoc+f8dwtyvuNNd1b8n2uQUcqbNQXM5Up/uTLjRdaXK6tCtE7nrNlNw9ATa67Fkz5yvP79bNi+/Dv6+FF66TMGBI2iTkik8E07+gSOY+3gZ0hSeOE3hqbNo4xLQxiWQu3Iturw8zP18qrwOAKqObcjdspOCU2f0UYQLlurrEdqk3Dy67NLtVEBRO3XKOKFWY5ROl5VVLXUQojzSGSceKJcvX2bjxo1YlPhiNH36dD7++GO++eYbzp07x/jx4/n0008Nw1tL02q11KlThyVLlnD27Fk+++wzPvroI5YsWWJIM2XKFEaOHMmrr77KqVOnWLNmDQEBZYfyAGRnZ9OrVy+cnJw4dOgQS5cuZevWrUaddwA7duwgIiKCHTt2MGfOHGbPns3s2bPLreuSJUsYN24c33zzDYcPH8bd3b1MR9ud1h0gKyuL0aNHc+jQIbZt24ZSqeSxxx4zLDjx66+/smbNGpYsWcL58+eZP3++UYcYwKeffsrAgQM5ceIEQ4YM4emnn+bcuXOG96Nz587Y2try77//smfPHmxtbenVqxf5RXcxK3p/Dx06BOg7GWNjYw2PV65cyahRo3j33Xc5ffo0r732Gi+88AI7duwot64TJ07kr7/+YubMmezZs4fk5GRWrlxplOaTTz5h1qxZTJkyhTNnzvDOO+8wZMgQdu0q/0t6aUqlkl9//ZXTp08zZ84ctm/fzvvvv19u+szMTPr06cPWrVs5duwYPXv2pH///kRFVf0QhJsUDvYobW0ovFJiGIpGQ2H0tQq/rJoH+KGJicWqe2fs3ngF2xeHoGoVVumokdt1PSaGpKQkWrUo/oJraWlJaNOmnDx1qtx8J0+fpmUL4y/FrVq2rDDPzQ5Ue3v9MJeCouNVZWlpSGNmZoa5hQXHT1RuiKXSxRmlgz2F5y4UbyzUUHjpMua+5Q+dKs2ydQvyjxw3iigojIjEIjAApZur/rU83DH396HgdHilyvywUjg6oLS1pfBKZPFGjYbCqGuYeZQ/7M+8rj+a67FY9eyC3ajXsH3leVRtWlR4biiKIqJ0Jm6sVIbS9ebxdL54Y6GGwosRd/QDyLJtS/IPH4ObESdKJQozszJRfLqCApNDESty/fp1/bncqlXx61laEhoaysmT5XdQnTx1ipYl8gC0at3akKegoIDw8HBatWxpnKZly3L3W1BQwMqVK7G1taVevXqG7bm5uXz8ySeMef99XF1d76h+JcWkppCUmUkrv+LvDZbm5oR6+3DyWsXDe2fu3omjjQ2PNm1m8vndF87TwN2DD5YvpudPExgy/Q9WHT1812Utj9LZCaW9HYUXLhVv1GgojIg0+uF9K5Ytm5F/7FT5UU8KBRZNGqKwtKTwatVfA6/HxZGUkkKrEkOWLS0sCA0O4WR45dvEqJgYeg0byiOvvMSHP3zPtRtVH/ljiuGaXnLookZDYfT1iq/p/jev6Z2wG/kyti88i6pV83tyTTe0tZdLfQ+JuoZZnVu0tddisOrVFbtRw7F9ZWjFba1CgUVQIAoLCzTXY6q4FqCs4YrS0YHCUyWGXRYWUhh+AfO65Q+5L7xwCXMfL8yK2mRlDVcsGodQcLz4e4lFaCMKL1/F+s1Xsf/9B2y//hjLTu2qvg6uLvo6nClxDhQWUnj+Eub+5bfthZciMPf2xKzoe4rS1QWLhkEUnDxjOoNCgUWLUP35XQ1DhpUuTijt7Sk8X+KmikZD4aUrmPveSTvVnPxjJ8u0U0pXV+w//wC7T97D+rmnULrcvymSxP9PMkxV3Hdr167F1tYWjUZjiAz76aefDM9/9dVXTJw4kccffxwAX19fzp49y59//snQoUPL7M/CwoIvvvjC8NjX15d9+/axZMkSnnzySQC+/vpr3n33XUaNGmVIFxYWZrJ8f//9Nzk5OcydO9cwzGby5Mn079+fCRMmULOmPgLCycmJyZMnY2ZmRv369enbty/btm3jlVdeMbnfSZMm8eKLL/Lyyy8byrR161aj6Lg7rTvAwIEDjR7PnDkTNzc3zp49S0hICFFRUdStW5d27dqhUCjw9i7bMfDEE08YyvXVV1+xZcsWfvvtN/744w8WLVqEUqlkxowZhnDnWbNm4ejoyM6dO+nRo0eF72+NGjUAcHR0NBoO/OOPPzJs2DBGjBgBwOjRo9m/fz8//vhjmbmDSr6HH374oaHOU6dOZVOJCIysrCx++ukntm/fTuvWrQHw8/Njz549/Pnnn3Ts2NHkfkt7++23Df/7+vry1Vdf8frrr5cbpdi4cWMaNy6OLPj6669ZuXIla9asKdOJW1WUtvpjs/RQB11WNgoH+/LzOTqgdPDUz6OxdDVmzo6ou3cGpZK8fQeqpawlJSXph5e4lIr6cHF2JraCHz1JSUkm89zcX2k6nY6ffv2VJo0bE1A0f5WPjw/utWoxecoUPho7FisrK/5euJCkpCQSy9nP7VLY2wGgzTCOoNSmZ6B0vr0ve2benph5uJP9t3Fkat6WHSis1Nh9OkY/R5xCQe4/Gyk4crxSZX5YKW30w9R0WXd4bjgVnRunw8lavBIzZyfUPbroz409+03mUXftSGH0NbQJVTtsSlHUgaxNzzDafkfHk4+X/niaVxw9Sl4ehRFXUPftTtaNOH30XFgoZj5edxypUV3ncmpqKhqNBudSaZxdXMqcp7t37+ajjz8mNzcXV1dXfp882WhxnYk//USjRo3odJttf7llLurYdy419NbZxobYtNRy852Ivsqa40eZ/8rr5aa5npLCiiOHeKZla15o24Ez168xcfN6LMzN6duoSaXKXZLC3hYw0UZlZBrmersVM08PzNxrkb14ZZnnlLVqYvfWq/ph9/n5ZM1agDYuwcReKicpRT8/o4uDo9F2F0dHYuMrNyQ2pF49vnj7Hbxre5CUmsrMpYt5aewYFv/2O4725bcdVcHQbpW+pmdnG64vJvM52qN0qKOfw2/ZasycHFF371R0TT9YnUVGWXQ+lI4u0mVlG9owk/kcHVH62OvnRl28Qt/W9uxapq1V1nDFdtjThmMqe9maW8+JexcURfPSadPSjbZr0zIM86SZUrD/MDl2dth+NgZQoDA3I2/rTvL+Kf5eqqxRA1XXjuRt3ErWmg2Y+ftg9fxgdIWFFJRzXbmrOjjcvGaUqkN6BkqXCupw8Cg5trbYfvB2cR127CZvg/FoAaWHO3YfvQsW5pCXR9bvM9DGVn1HtcKunO9SmZkonRxvax9mXnUwq12L7KJhtjcVXo1Gs2ApmoRElHa2+uGvbw0nY8IkdNk5VVL+B41CIXFYDxrpjBP3XefOnZkyZQrZ2dnMmDGDCxcu8OabbwKQkJBAdHQ0L730klGnVmFhIQ4VDBWYOnUqM2bM4OrVq+Tk5JCfn29YpTQ+Pp6YmBi6du1abv6Szp07R+PGjY3mu2nbti1arZbz588bOuOCg4MxKzE/gbu7O6cqiNI5d+4cw4cbz63UunVrQyTY3dY9IiKCTz/9lP3795OYmGiIiIuKiiIkJIRhw4bRvXt3AgMD6dWrF/369aNHjx5lylH68c3Vao8cOcKlS5ewszP+Mpibm0tERMQdv78l349XX33VaFvbtm1NDjEGSEtLIzY21qis5ubmNG/e3DBU9ezZs+Tm5pZZcCM/P99o4u9b2bFjB+PHj+fs2bOkp6dTWFhIbm4uWVlZJudBysrK4osvvmDt2rXExMRQWFhITk5OhZFxeXl55JWa90lVwbxDFkGBWPUsfo+zlq3W/1N6An+FiW1GzyvQZWeTUzT5vzYuHoWtDaoWzaulM27Dpk2MnzDB8HjSjz8WFcP4DrhOp+OW9/FL5zGxn5u+//FHLl26xIw//zRsMzc35/tvv+Wr8ePp0rMnZmZmtGjenDaljv/bYRHWFOunizvCM//462ZFKixzRSzbtEBzPbbMRPoWzRpj2SKU7NkL0MTGYVanNlYDH0Gblk7BgSN3XPaHjUVwfax6dzM8zlqySv9PmdNAYWKb8fO6rGxyNmzRnxs3is6NVs1Ndsape3bBzM2VzJKdXXfJokUo1s88YXiceXOxhUodTy31x1OpScKzZy3A+vmncJjwOTqNBk30dQoOHcPMy6PC/W28cZ3vLpxC0XQHOp2OST//XFSkKjiXdboy+zG531LbmjdvzoK//yY1NZWVq1bx4UcfMXvWLJydndm1axeHDx/m7/nzb1WaMjaeOsG36/8xPP75qWf1ZaJ0mcpuuykrL4/PVi3no76P4Ghtev48AK1OR4PatRnRRX/dCqzlzuXEeJYfOVipzjiL0MZYDypeqCJzxrziQpekUNz2QjCWLZujib2BJvp6mee0CYlkTPwdhZUai0bBWD89kMw/ZlS6Q27Dzp2Mn/K74fGkTz8rKvatj4871bZZ8XC+AKBR/foMeO0V1u7YzpBHB1Rq36VZBAVi1aP4xmPW8qLjzdRnUdHHo1Cgy84hZ9P2omt6AgpbW1QtQqu8M84iuD5WfYq/X2WZ6JQtVtH3EH2HXc76km2tLarWxm2tNimZzBnzUKhVmAfWxap/L7LmL650h5xFmxZYv/is4XHmj5NNl/kWh5N5g3qoH+1NzuwFFF66glktN6yGDEY7II28VUVzTisVaC5fJbfouqS5Go2ZR21UXTtWqjPOomVzrJ9/qrgOv0w1WYVbnd/mgQGo+/UkZ/4SCi9HYuZWA6unB6Lt15O8tcWditob8WR88R0KKyssmjXB+qUhZE74tdIdchahjbF+ckBxPYoWWyjrVtfvYpYtm6OJuYEm6prR9sLw4pEL2tg4MiOjsP/4PSzDQsnbtfcOSy7E3ZHOOHHf2djYGIYw/vrrr3Tu3JkvvviCr776ytCRNH36dFqWGqJSsuOrpCVLlvDOO+8wceJEWrdujZ2dHT/88AMHDug7Fu50UvaKvtCV3G5Ras4RhUJhKP/duJu6A/Tv3x9PT0+mT59O7dq10Wq1hISEGIaQhoaGcuXKFTZs2MDWrVt58skn6dat2y3nUbtZV61WS7Nmzfj777/LpKlRowbKSkxuXNVfpm++h+vWrcPDw/iHZUUdXSVdvXqVPn36MHz4cL766iucnZ3Zs2cPL730UrlzAo4ZM4ZNmzbx448/EhAQgJWVFYMGDTJ8BqZ8++23RhGdAOPGjeMdK0eT6QsuXUZTcqLcogm1FTY2RhFACmvrMhFBJekys9BptUZfzrRJKfpIO6USKnEMm9KhXTtCgoIMj/OL3sPEpCSjYWPJKSllImFKcnFxKRMFl5ycbDLP9xMn8u+ePUybMoWabsYrHTaoX58Fc+eSmZlJQUEBTk5ODH3pJYLqlz+XmCkFJ8+SUbKTo2gRBqW9HZoS0UxKO1t0paKbTLKwwLJZY3LWlp03z+qxfuRu3kFB0bxf2pgbKIuitqQzDgouRhifG0XtpcLW2ihiQ2FjVeH8MLqsLHQajfG5kZiM0ta2zLmh7tEZi7r+ZM5bjK7UHfy7qsOJM2RcKXk86eugdLC/++MprAk5/2ws85Q2MYnMn34HS0sUahW69AysX37ulj9w27vWJNjeEfuvPiIrM9PQvpk8l11cyt2PyXO5xPnv6OiImZlZmTQpycllIuqsrKzw9PTE09OThg0b8tjjj7N69WpeeOEFDh8+zLVr1+jcpYtRnvfHjmXJ0qVM7tGv/LrWq0+wR/GcjPkaDQBJWZm4lrgxlZKdhbONrcl9XE9JJjYtlXcXLzBs0xYdW62/+Zylr79FHWdnXG1t8XWtYZTXx7UGO8Irt1JhwZlzZJTs2C/ZRpU4ZpW2NugybmPeJAsLLJs0JGfTNtPPazSGVT8112Iw86yDqn0bcm7eOLpLHVq0ICSweOix4RqSmoJrieMhOS0N5xJRkVXBSq3G39uH6JiqHxpZ5ppuVsE1vYLJ/nVZ2WXbraTkarmmF1yMQDOjnDJnlmxr7+Z7SFLZtlarNSzgoImNw7x2LSzDQsndULk5eQuOniCjaNVWoPjccHBAk1ocWaa0t0NXKlquJPWgR8jfe4D8nfqOHO21GFCpsH5xCHmrN4BOhy41DU2M8YqsmphYLCqYS/a26nDiFBlfRJqogz2aEmW+1TVDPaAf+f8dJH/3f/o6XI8FlSXWzz9N3rrNxZ+RRmOIntZcjcbM1xtVt47kVPJmVMGZc2T8aKKdsrM1vvbZ2qCrYO5mAwsLLJs2ImfjbRwj+QVoYm+grHH3UxgIcaekM048cMaNG0fv3r15/fXXqV27Nh4eHly+fJlnn3321pnRD1Np06aNYbgjYLSAgZ2dHT4+Pmzbtq3c4Y8lBQUFMWfOHKMoqL1796JUKo3morlTDRo0YP/+/Tz//POGbfv3F98Vq1mz5h3XPSkpiXPnzvHnn3/Svn17APbsKbu6or29PYMHD2bw4MEMGjSIXr16GXVkmCrXzUiy0NBQFi9ejJubm2HurdJu9f5aWFigKfoxc1ODBg3Ys2eP0evu27ePBg1MT/rr4OCAu7s7+/fvp0OHDoA+avDIkSOEhuonNA8KCkKlUhEVFXXbQ1JLO3z4MIWFhUycONHQ0Vhy/kFTdu/ezbBhw3jssccA/VxlpRe4KO3DDz9k9OjRRttUKhW5k6aYzpBfgDbfeKVDbWYW5j5e5N+c9FipxNyzDrkVrLBZeD0GyyDjjielk6N+SEAVd8SBvvO9ZDShTqfDxcWFA4cOUT9QPyl1QUEBR48d480S53BpjUJCOHDoEM8+/bRh24GDB2nUsKHRvr+fOJGdu3bx5x9/4FG7/DlrbG31P6CjoqM5Fx7O66WiNG8pLw9tgnFkozYtHfP69dBcK/rhZmaGeYAfOatvvSqzZbPGYG5OwaGjZZ+0sCh7Z1urvWfz/D3w8gvQ5qcabdJmZmLu601+XIlzw6sOuTt2l7ubwujrZRZ4ULo4lTk31D26YBEYQNb8JRX+ULsj5R1PDeoVRyGZmWFe15+clWtvuTvL5k30x1NFnbX5+ejy81FYW2ERVJ+cFf+UnxawMTfHxtwcR29vMtLTi8/lAweMz+WjRw3R7qY0atiQAwcO8Owzzxi2Hdi/n0aNGgH660X9+vU5cOCA0TXlwMGDdCxq+8uj0+kMnTVDhw7l0UcfNXr+qaefZvQ779Crd2/Yua/8uqpURiuk6nQ6XGxtOXD5EoG19PN3FWgKOXo1kje6dDe5D29XVxa+OtJo25Sd28jOz+PdHn2oWTSsrJGnF1eTjIcIRyUlUavUMMw7lpePNs+4g1WbnoF5Pf3ciID+mPL3MXkToDTLJiFgbnb7w+MVoDAv/0bi7bKxtjZaIVWn0+Hi5MSB48ep76efgqCgoICjZ07z5vOmp/O4W/kFBURei6ZpiRtKVbjzcq7pnqWu6R7kVhC1U3gtBssg4wUelM6OaDOr4ZpeYVsbX1xmrzrkbq+grb0WU7atdS7b1pqiqODm9G3LzUObaxyxqU1NwzykQXFkupkZ5vXrkVNqqKMRS8uyq3FqtUYRdYUXIjBzN17gR1mrZuWH2+bmoS21Qqo2NQ3zoMDiiDAzM8wDA8hZtqb8/Via+n6hu2VUIApQVLAQym0z2U6lYx4YYNxOBfiS80/5CwPdZNmkob6dOnzs1q9tZoZZTTfjOQ8fMspbx6mLe0w648QDp1OnTgQHBzN+/HgmT57M559/zltvvYW9vT29e/cmLy+Pw4cPk5KSUqbzAiAgIIC5c+eyadMmfH19mTdvHocOHcLXt3jC0s8//5zhw4fj5uZG7969ycjIYO/evSZ/MDz77LOMGzeOoUOH8vnnn5OQkMCbb77Jc889ZxiiejdGjRrF0KFDad68Oe3atePvv//mzJkz+Pn5GZXzTup+c3XTadOm4e7uTlRUFB988IFRmp9//hl3d3eaNGmCUqlk6dKl1KpVy2henaVLlxqV6+DBg8ycOdPwfvzwww88+uijfPnll9SpU4eoqChWrFjBmDFjqFOnzi3f35uddW3btkWlUuHk5MSYMWN48sknCQ0NpWvXrvzzzz+sWLGiwlVIR40axXfffUfdunVp0KABP/30E6mpqYbn7ezseO+993jnnXfQarW0a9eO9PR09u3bh62tbbnz7pXk7+9PYWEhv/32G/3792fv3r1MnTq1wjwBAQGsWLGC/v37o1Ao+PTTT28ZJalSqUxG693JNPB5h4+hbt0CbUoq2pRUVK3D0BUUkH+ueAJfq7490GZkkfev/st8/rGTqEKboO7Wifwjx1E6OaJqHaZfNOAmCwujuTmUDvYo3Wqgy8lFl3EbUTkVUCgUPD14MLPmzMGrTh08PT2ZNWcOarWaXiWGT3/2xRe41ajBG0UddE89+SSvjhjB7Hnz6NS+PTt37+bAoUPMLDEMdcKPP7Jx82YmTpiAtbW1YX4pWxsb1Go1AFu3bcPRyYlaNWtyKSKCiT//TMcOHcpMFn838nbsRt2zC9qERDTxCah7dkWXn0/+oeIvhdbPP4U2NY3cNRuM8lq2DqPgxBmT0QSFp8/p95ucgjY2DjNPD1RdOpD/36FKl/luWVmoqONQHM1T296Vuq51SM/NIi4z5b6V66a8g8dQt2mBNjkVbUoKqjYt0RUUkl9icmur/r3QZmSSV9R5nX/0BKrmTVH36Ez+4WMonZxQtWlh9Pmpe3bBMrg+WcvW6Duybs7zlJcPhcaLIlS6Dtv+Rd2rG9r4ouOpVzf98XSwuMPWetjTaFPTyV21ziivZZuWFBw/bfJ4Mg8KBBRo4+JRurli9Xh/NHHx5N/hkDaFQsHTTz/NrFmz8CqKTps1e7b+XO7Z05Dus3Hj9Ody0fyZTz31FK++9hqz58yhU8eO7Ny1iwMHDzJzxgxDnmefeYbPxo2jQVAQjRo2ZMXKldy4ccMwX2hOTg5//fUXHTp0wNXVlbS0NJYuW0Z8fDzdiqZMcHV1NbloQ61atfD09CStzDMV1/WpFq2ZvXc3ns4ueDm7MGvvv6gtLOgZ0siQbtzq5bjZ2TOyS3dU5hb4uxl/Z7AraodKbn+mZRtemj2dWXt20S0ohDMx11l17DAf9XmEqpb37z7UXTuiTUhCk5iEumtHdPkF5B8rXsDG+umBaNPSyV1vPGeUZYtmFJw+Z3JuJXXv7hSEX0CXmgYqFZZNG2Lu70vW9PIXn7pbCoWCp/s/wqxlS/Fyr41n7drMWrYEtaWKXh2Kb8J99vNPuLm48EZRB11BQQGXo6OL/i8kISmJ85cvY22lxtNdf+Nm0qyZtA9rQa0aNUhJTWPm0sVkZWfTr8udTcNxt/IOH0fdKqz4mt4qDF1hAfklFnKx6tMdbWYWef/qO5Pzj59C1awx6q4dyT96Qn9Nb1Xqml6dZT54FHXbFmhT9KueFre154rLXLqtPXKzre2ib2udHVG1KVpspoiqUzv9aqrpGSgsLbEIDsTM25O8RRV0jlWmHhu3oX6kN9q4eDQ34lE/0lvf3pZoF61fG4Y2JdUw5LTw2ElUvbuhuRqFJuIKyppuqAc9QsHRk4YOrryNW7H9bCyqR3pTcOAwZn4+qDq3J/uvOx8+f8s6bN2Jum8PtHEJ+mtGnx768/tA8YIw1i89p69D0c2XwhOnUfXojCbqGprLV1G6uaIe0JeC46cNdVA/3p+CU2fRJaeAWoVli2aYB9Yl62fT8yhXuh679qHu1knfTiUkoe7WSV+Po8eL6/HMIH07tc74RoJlq+YUnCqnnXqkNwVnwtGlpKKwtUHdozMKtYp8UzdBhagm0hknHkijR4/mhRdeYOzYsbz88stYW1vzww8/8P7772NjY0PDhg2NJtUvafjw4Rw/fpzBgwcbfhyMGDGCDRuKf+wOHTqU3Nxcfv75Z9577z1cXV0ZNGiQyf1ZW1uzadMmRo0aRVhYGNbW1gwcONBokYm7MXjwYCIiIhg7diy5ubkMHDiQ119/3WgBgjutu1KpZNGiRbz11luEhIQQGBjIr7/+SqdOnQxpbG1tmTBhAhcvXsTMzIywsDDWr19vNLz0iy++YNGiRYwYMYJatWrx999/E1R0J9ja2pp///2XsWPH8vjjj5ORkYGHhwddu3Y1RMrd6v2dOHEio0ePZvr06Xh4eBAZGcmAAQP45Zdf+OGHH3jrrbfw9fVl1qxZRmUv7d133yU2NpZhw4ahVCp58cUXeeyxx0hLK/5Z9dVXX+Hm5sa3337L5cuXcXR0JDQ0lI8++ui2PqcmTZrw008/MWHCBD788EM6dOjAt99+axTBV9rPP//Miy++SJs2bXB1dWXs2LGkp1dRxEwF8g8cRmFujlWPLijUKjQxN8hastJo9Silvb3RPBu6jEyylqxE3bUDti8OQZuRSf7h4+SV+LJmVqsmts8Uf35WXfU/cPJPnSVn/a0jKG5l6JAh5OXl8d2PP5KRkUFIUBCTJ00yiqC7ERdndIw2btSIb778kil//snUadOo4+HBt19/TUhwsCHNshX6L+mvjTSORhn3ySf079sX0A+p+/nXX0lKTsbV1ZW+vXrx8osvVrpOAHlbdqKwsMBq8GMorK3QREaROXk6lJgbUOnkWOYutNLNFfMAPzJ/m2Zyv9lLVmHVryfWTz2OwtYWbVo6+Xv2V3qoTmXUr+HN5MeKbxC81U4/39n6c//xzfaq/wF+p/L3H0JhYY5Vry4o1Gr9ubFoealzw87os9BlZJK1aDnqbp2wffl5/blx6Bh5JTo9Vc2aAGA75Emj18v+ZyMFpyo3rLC0vM3bUVhaYPX0QP3xdCWKzF//ND6enJ1MHE81MK/rVzyHUCkKKzXqAX1ROjqiy86m4NhJclatv6somqHPP68/lydM0J/LwcFM/u0343P5xg2UJaI4GzduzDfffMOUKVOYOnUqderU4dvx4wkJCTGk6dGjB2lpacyYMYPExET8/f35ZdIk3N31UWlKpZLIyEjWrltHamoqDg4OBAUFMX3aNPz9y1/9sDKeb92OvIICvt+4loycXII9PPjtmeeNIuji0tKM6no7gmp78P0TT/PH9i3M3L2L2o6OjO7em14NG9868x3K27Fb30YNfASFlRpN1DUyp82GvOIpFZSOjmWPKVcXzP18yPxzlsn9KuxssXlmEAp7O3Q5uWhi48iaPofCCxEm01fW0McHkpefz3d/TiEjM5OQevWY/MWXRhF0NxITUCqLP4uE5GSefad4kal5q1Yyb9VKQkNCmPbNtwDEJSbx8Y8/kpqRjpO9PSGBgcz6/kfcS013UF3yDx7Rt1vd9Z0Emtg4/RyYt2q3lqxC3aUDti88gzYji/wjx8m7R1MY5P93SP89pFdXfVt7PZashcuMy+xgX6rMGWQtXIa6eydsX7nZ1h41amuVNtZYP9Ibha0Nurx8tPEJZC9aYbyCfBXKW7tJ394OewaFtTWaiCtkTvgFSkSfKV2djeqRu2o9Oh2on3gUpZMjuvRMCo6dJHfpKkMazeWrZE2agtXgx1AP6Is2IZGc+UsoqIbFNfI2bNWf30OeRGFjjeZypH5Kgtzyrxm5azehQz9cVenkgC4jk4ITp8ldURyBrbC3w+bl51A42OvP72sxZP38B4Vnz1Md8rb/q6/HoEdQWFmhuXqNzKmzjNspU9+lahS1U1P+MrlfpYMDNs8N1g+jzsyi8Go0GZOmoisaCi3EvaDQ6SqYxVEI8f+OQqFg5cqVDBgw4H4XRQBpEybd7yJUmsPYt8lIrvoVz+4lO2dnUkeOud/FqDTH33+g7e/Db53wAbZ35FTSxlfuZsiDwOGj0aQOLxvh/L/GcepPZNyDmw3Vyc7enrQqWHjjfnN4bjCp735yv4tRKY4TvyajxMTq/6vs6tcj7ftf73cxKs3h/bdI+2bi/S5GpTh8/C6pQ16738WoNMf5f5L6UvlD/v8XOM78jdR3bu9m+IPM8efx97sId2XSvw/ude7tDoPvdxHuC1nfVgghhBBCCCGEEEKIe0Q644QQQgghhBBCCCGEuEdkzjghhBEZuS6EEEIIIYQQD487ncNUVD+JjBNCCCGEEEIIIYQQ/xP++OMPfH19UavVNGvWjN27d5ebdufOnSgUijJ/4eHhRumWL19OUFAQKpWKoKAgVq5cWa11kM44IYQQQgghhBBCCPHAW7x4MW+//TYff/wxx44do3379vTu3ZuoqKgK850/f57Y2FjDX926dQ3P/ffffwwePJjnnnuOEydO8Nxzz/Hkk09y4MCBaquHdMYJIYQQQgghhBBCPKRMRYY9KH936qeffuKll17i5ZdfpkGDBkyaNAlPT0+mTJlSYT43Nzdq1apl+DMzMzM8N2nSJLp3786HH35I/fr1+fDDD+natSuTJk264/LdLumME0IIIYQQQgghhBAPtPz8fI4cOUKPHj2Mtvfo0YN9+/ZVmLdp06a4u7vTtWtXduzYYfTcf//9V2afPXv2vOU+K0MWcBBCCCGEEEIIIYQQ91xeXh55eXlG21QqFSqVqkzaxMRENBoNNWvWNNpes2ZNbty4YXL/7u7uTJs2jWbNmpGXl8e8efPo2rUrO3fupEOHDgDcuHHjjvZZFaQzTgghhBBCCCGEEOIh9SCvpvrtt9/yxRdfGG0bN24cn3/+ebl5Sg9v1el05Q55DQwMJDAw0PC4devWREdH8+OPPxo64+50n1VBOuOEEEIIIYQQQgghxD334YcfMnr0aKNtpqLiAFxdXTEzMysTsRYfH18msq0irVq1Yv78+YbHtWrVqvQ+75TMGSeEEEIIIYQQQggh7jmVSoW9vb3RX3mdcZaWljRr1owtW7YYbd+yZQtt2rS57dc8duwY7u7uhsetW7cus8/Nmzff0T7vlETGCSGEEEIIIYQQQjykqnO45b02evRonnvuOZo3b07r1q2ZNm0aUVFRDB8+HNBH2l2/fp25c+cC+pVSfXx8CA4OJj8/n/nz57N8+XKWL19u2OeoUaPo0KEDEyZM4NFHH2X16tVs3bqVPXv2VFs9pDNOCCGEEEIIIYQQQjzwBg8eTFJSEl9++SWxsbGEhISwfv16vL29AYiNjSUqKsqQPj8/n/fee4/r169jZWVFcHAw69ato0+fPoY0bdq0YdGiRXzyySd8+umn+Pv7s3jxYlq2bFlt9ZDOOCGEEEIIIYQQQgjxP2HEiBGMGDHC5HOzZ882evz+++/z/vvv33KfgwYNYtCgQVVRvNsinXFCCCGEEEIIIYQQDymlLBfwwJFPRAghhBBCCCGEEEKIe0Q644QQQgghhBBCCCGEuEdkmKoQQgghhBBCCCHEQ+phWk31YSGRcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD2i0Ol0uvtdCCGEEEIIIYQQQghR9abvX32/i1CuV1o9er+LcF/InHFCCPEAm3to/f0uQqU9H9aHM7ER97sYlRLs7s9T8z+738WotEVDviRt/E/3uxiV4vDRaNr+Pvx+F6PS9o6cynMLv7jfxai0eU+PeyjO7wVHN93vYlTaM6E9WX5i+/0uRqUMbNyF83GR97sYlRZY04cvt/x1v4tRaZ91f5E3Vk6838WolMmPvctnG6ff72JU2pe9XmHsuj/udzEqZULfEQ/NdykhqoIMUxVCCCGEEEIIIYQQ4h6RyDghhBBCCCGEEEKIh5QCWU31QSORcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD0iw1SFEEIIIYQQQgghHlIKhQxTfdBIZJwQQgghhBBCCCGEEPeIdMYJIYQQQgghhBBCCHGPyDBVIYQQQgghhBBCiIeUUoapPnAkMk4IIYQQQgghhBBCiHtEOuOEEEIIIYQQQgghhLhHZJiqEEIIIYQQQgghxENKVlN98EhknBBCCCGEEEIIIYQQ94h0xgkhhBBCCCGEEEIIcY/IMFUhhBBCCCGEEEKIh5QSGab6oJHIOCGEEEIIIYQQQggh7hHpjBNCCCGEEEIIIYQQ4h6RYapCCCGEEEIIIYQQDylZTfXBI5FxQvyPioyMRKFQcPz48WrZv0KhYNWqVXeUp1OnTrz99tu3nX727Nk4OjpWmCY8PJxWrVqhVqtp0qTJHZXnbt1pPar7sxBCCCGEEEII8fCQyDgh7sKwYcNITU29486qquTp6UlsbCyurq4A7Ny5k86dO5OSknLLDq7/JePGjcPGxobz589ja2t7v4tjUunP4n45vGUP+9fvIDM1nRoeteg+ZABe9f1vmS/6wmXmff07NerU4pXxYwzbww+dZO+aLaTEJaLVaHGq6UqrPp1o2C6sOqvBhlVrWb1oOSlJyXj6evPiG68S1CjEZNrkpGTm/DGdiAuXiL0WQ5/HH+GlN18rd997tu3ip68m0KJtKz745rPqqgLd64XRP6gdjla2XEtNYO7hDYQnXC03fVufRjwS3I5ads5kF+RxIuYi849sIjM/p0za1t4hjGr/JIeizzFx18Jqq8NNqvatsWzSEIVajSYmlpxN29EmJt0ikwp1p7ZYBAagUKvRpqaRu+1fCiOu6J9uHYZ5YF3MXJzRFRaiuRZD7o7daJNTqr0+5WnsHsAzTXtQ380LVxtHPlg/hd1XTty38pTWNaA5fRu0wcHKjutp8cw/uokLCVHlpm/j3ZC+DdpQ086FnIJcTsZeYuGxLYZjysO+BgMbdcLHqTY1bB2Zf3Qjm84fqPZ6PAzntymHNu9m39ptZKSm41anFj2fH4j3bbS/UecvM/vLX3HzdGf4d2PvQUmL7d+0i91rtpCRmoZbHXf6DnsC3wZ1TaaNDL/Exr9XknA9joK8fBxrONOiW3va9etqlC4nK5vNC1dz9uBxcrKycXJzpc9zAwkMNf0ZV9b6lf+wYuFSUpKT8fLx5uU3hxPcuKHJtMmJSfz1xzQizl8i5tp1+g18lFfeet0ozaZ/1rNj01auXta31wGBATz3ygvUC6pfLeW/6cK/Rzm77SA5aZk4urvSbGBX3AI8TaaNuxDF1l/Ltv39PnkZh1ouAGg1Gs5s3s/lA6fJTs3AvqYzTR/tRO0gv2qtR3vfxnStG4aD2obY9CSWn9pBRNJ1k2mHhPaklXfZ4yI2PZFvts0BoI1PQ1p4BlHbXv/9Kio1jn/O7uFqyo1qq0OYZwPa+TbGVmVFQmYKG8L3V/h6ZgolnQJCaVw7AFuVNem5WeyKOMax6xcAaFYnkCa16+Fm5wRATFoiWy8e4npaQrXVAaCVdzAd/Zpip7ImLjOZf87sJTIltvx6KJV0qxtG09r1sFNZk5abyfZLRzh8LdyQRm1uSc/AloTU8sPKQkVKTgZrz+7lfAXXosqo6u9SYZ4NGBDSgVp2zpgpzbiRnsS6c/seqGu9+P9FOuOE+B9lZmZGrVq17ncxql1ERAR9+/bF29v7fhelXA/CZ3F2/zG2zF9Fr2GD8Kzny9Ht+1j0wzRem/ABDq5O5ebLzc5hzdQF+AbXJTMtw+g5Kxtr2j7SHdfaNTEzN+PisTP8M20R1vZ2+Deqnh8me7bvYtbkabzy9ggaNAxi05oNfP3+Z/wyZyo1arqVSV+YX4C9owMDhzzF2qUrK9x3/I04Zk+ZQVCj4Gop+02tvUMY2qw3Mw+t5Xx8FN3qhvFBlyG8+89kkrLTyqQPrOHFyDaPM/fIBo5cO4+ztT0vt+zPq60e5ad/FxmldbVxYEhoT87FRVZrHW6ybBWGqkUo2Ws3oU1OQdW2JTZPDyTjz1mQX2A6k1KJzdMD0WVnk71iLdr0DJT2dujy8w1JzLw8yT9yHE1sHCgVqDu20+932mwoKLwndSvNykLFpaRrrA/fx/jew+9LGcrT0iuYIaG9mH14HRcTo+kc0IwxHZ/lg/W/k5SdXiZ9PVdPXms1gL+PbeLY9Qs4WdnxQlg/XmrRn1/2LAHA0tyC+MxUDkad5dnQnvekHg/D+W3K6f+OsnHuCvq++ASegX4c2bqXv7+bwsgfP8LB1bncfLnZOaz6Yx5+IfXKtL/V7eS+w6ybvZRHXn4K70B/Dm7dzZzxv/P2z5/haKLMlioVrXt2opa3B5YqFZHhl1g1fQGWaktadGsPQGFhIX99/Su29nY8M/pV7F0cSUtKQaVWV0sddm/byYzfpjJ89Bs0CAlm45p1fPH+J/w+d7rJ46mgoAAHB0eeeO4pVpdzPJ0+dpIOXTtTf1QQlpYWLF+4lHHvfcTkOdNwqVE9N9wij5zjyPJthA3uQQ0/Dy7uOc6OP5bS75OXsXG2Lzdf/09fwcLK0vBYZWtt+P/EP7u5cugMLZ/phX1NF2LPXeHf6SvpMXoIzp41q6UeoR6BDGzUmcXHt3E5+TrtfBoxos3jfL11Nik5ZY/vZSd3sPrMbsNjM4WSD7s+b+jEAqjr6smRa+EsTY6hUKOhW70wRrYZyDfb5pCWm1nldQip5UfvBq1Ze3YvUSlxhHnWZ0izXkzes5S03CyTeZ5s0hVblRWrTv9LcnY6NpZWKEsMB/Rxrs3J2EtEn4ujUKuhnW9jnm/em8l7lpGRl13ldQBo5B5A/6B2rDr9L1dTbtDSK4gXW/Tjp10LSS3nfXu2aU/sVFYsO7mDpOw0bCytMFMWD6IzUyh5ueUjZObnMP/oJtJyM3FU25JXWM53gUqqju9SWfk5rDr9L9fTEtBoNYR6BDK89QDScrM4GXupWurxIJFhqg8eGaYqRDXYtWsXLVq0QKVS4e7uzgcffEBhYfEPzE6dOvHWW2/x/vvv4+zsTK1atfj888+N9hEeHk67du1Qq9UEBQWxdetWo6GjJYdGRkZG0rlzZwCcnJxQKBQMGzYMAB8fHyZNmmS07yZNmhi93sWLF+nQoYPhtbZs2XLLOmZlZfH8889ja2uLu7s7EydOLJMmPz+f999/Hw8PD2xsbGjZsiU7d+685b5vUigUHDlyhC+//BKFQsHnn3/Ozp07USgUpKamGtIdP34chUJBZGQkAFevXqV///44OTlhY2NDcHAw69evN6Q/e/Ysffr0wdbWlpo1a/Lcc8+RmJhYbjnmz59P8+bNsbOzo1atWjzzzDPEx8cbnjc1TPVOX6OyDmzYSZNOLWnauRWuHjXp8dxj2Ls4cnTb3grzbfhrKcGtQ/EI8CnznHdQAPXDGuHqUROnmq606NURN093os9frqZawD9LV9K1Tw+69+tFHW8vXnrzNVzcarBp9TqT6d3ca/LSm8Pp3LMr1jY25e5Xo9Ew6esfeOqFIdR0d6+u4gPQt0EbdkQcZcelo8SkJzL3yAaSstPpXs90RGFdV08SslLZeP4ACVmpnE+IYuvFw/i7eBilUygUvNF2EMtO7iA+895EkKlaNCV370EKz19Cm5BEzj+bUFiYYxlcfmesZeMQFFZqspetQXMtBl16BpprMWjji4//7MUrKDh1Fm1iEtr4RHLWbULpYI9Zrer5kXg79kedYfqBNey6fPy+laE8vQNbsevyMXZdPkZMeiJ/H91EUnYaXeuaPqYCXOuQkJXK5gsHSchK5UJiNNsvHcHXubYhzZXkGBYd38L+qDMUaDT3pB4Pw/ltyv51O2jauRWhXdpQw6MWvYYOxMHFiUNb9lSYb+2MxYS0bU6duj73pqAl7Fm7jWZd2hDWtR1uddzpN+xJHFydOLD5X5Ppa/t60rhdGDU9a+Pk5kLTDi2p2ziIyHPFP2CPbN9HTmYWQ8YMx7u+P041XPCpH4C7T51qqcPqJSvo1rcnPfr1xtPHi1feeh3XGjVYv2qtyfQ13WvxyqjX6dKrOzblHE/vfvYBfR7rj19df+p4e/HGmLfRanWcOHKsWuoAEL79EP6tGxHQpjEOtVxpPqgb1k52XNhd8Wuq7ayxsrc1/ClLdJxcOXiG4B6t8Qj2x87VkXrtm+LewJdz2w9WWz26BDTjv8hT/Hf1FHEZySw/tZOUnAza+zY2mT63MJ+MvGzDn5dTLaws1Px39bQhzZzD69l95QTX0xKIy0xmwdHNKBQKAmt4VUsd2vg05Oi18xy9dp7ErFQ2hO8nPTeTMK8gk+kDXOvg4+zO/CObuJwUQ2pOJtfTEohOLf6OuPzkDg5Fn+NGRjKJWWmsPr0bhUKBX6lrfFVq79uYQ9HnOBR9jvjMFP45u5e03EyTkYgA9Wp44udSm78OreNS0jVScjK4lhZvFBHY3LMB1hYq5h7ewNWUG6TmZBKZcoPYjFtEyt+l6vgudTYukkPR54hJTyQuM4UN5/cTlRpHfbfqOZ6EuBXpjBOiil2/fp0+ffoQFhbGiRMnmDJlCjNnzuTrr782SjdnzhxsbGw4cOAA33//PV9++aWhE0yr1TJgwACsra05cOAA06ZN4+OPPy73NT09PVm+fDkA58+fJzY2ll9++eW2yqvVann88ccxMzNj//79TJ06lbFjbz1UZsyYMezYsYOVK1eyefNmdu7cyZEjR4zSvPDCC+zdu5dFixZx8uRJnnjiCXr16sXFixdvq2yxsbEEBwfz7rvvEhsby3vvvXdb+UaOHEleXh7//vsvp06dYsKECYYhrrGxsXTs2JEmTZpw+PBhNm7cSFxcHE8++WS5+8vPz+err77ixIkTrFq1iitXrhg6O8sr952+RmVoCguJvXIN35BAo+1+IYFcuxhZbr4Tuw6QEpdIh8dvHRWj0+m4cvoCyTcSbmvo690oKCgg4vwlGoeFGm1vEtaU8DPnKrXvpXMXYu/oQLe+1RsBZKY0w9fZnZOxEUbbT8Zeol45Px4uJEThbG1Pk9r64WEOahtaegVztER0AMDAhp1Iz81iR8TR6il8KQpHB5S2thReiSzeqNFQGHUNM4/a5eYzr+uP5nosVj27YDfqNWxfeR5VmxZQwR1ZhUoFgC43t6qK/9AwUyrxca7NqRvGx9TpG5ep62q6k+NiYjTO1vY0dg8AwF5tQwuvBhyPub22tzo8DOe3KZrCQmKuRJeJFvZrVJ9rF66Um+/Yzv2kxCXSaWCv6i5iGYWFhcRcjqJuY+MOhoBGDbh6mzdbYq5EE3X+Mr5BxcNazx05iVddP9bMXMQ3r7zPpHe/ZOeKDWi12iotP+iPp0sXLtI0rJnR9qZhzQg/fbbKXicvLw9NYSF29nZVts+SNIUakqNv4N7A12i7ewNfEq+YHt550/oJs1n+0WS2/rqIGxeMh+5pCgsxszAz2mZmYU5CxLWqKXgpZgolno41ORdvXI5zcVfxdSn/elFSa+8QzsdfNRlFd5OluTlmSiXZBVV/rTBTKHG3dyUi0fh9v5R4HS9H0zeK6rt5E5OWSDvfRrzX6Rneav8kPQNbYq40M5kewMLMHDOFkpyCvCot/01mCiUeDjW4mBBttP1CQjTeTqbrEVTTl2tp8XT0a8pHXZ/nvY7P0LdBG6N6BNX04WpqHANC2vNJt2G802Ewnf1DUVD10VbV+V2qpJBafrjbu3Iurvyhr0JUJxmmKkQV++OPP/D09GTy5MkoFArq169PTEwMY8eO5bPPPjPcuWzUqBHjxo0DoG7dukyePJlt27bRvXt3Nm/eTEREBDt37jQMf/zmm2/o3r27ydc0MzPD2Vk/rMTNze2O5ozbunUr586dIzIykjp19D/sxo8fT+/evcvNk5mZycyZM5k7d66hTHPmzDHkB/3w0oULF3Lt2jVq19Z/EXvvvffYuHEjs2bNYvz48bcs7n3EQAABAABJREFUW61atTA3N8fW1vaOhoFGRUUxcOBAGjbUzxvj51c8R8qUKVMIDQ01ev2//voLT09PLly4QL169crs78UXXzT87+fnx6+//kqLFi3IzMw0OY/d3bxGZWRnZKHTarF1MP6xYONgR2Zq2SFsAMk3EtixeC3PffomSrPyvzTmZufw65ufoyksRKFU0mvYIPwaBpabvjIy0tLRarU4OjkabXdwciK1EnOJnTt1hq3rNvHTjMmVLOGt2ausMVOakZZjPAwkLScLx9qm5zy8kBjN5L3LGNX+SSzMzDFXmnE4+hyzDxVHC9Wr4UVn/1A+WD+lWstfktJGP+RJl2U8jEaXlY3CofyhU0onB5QOnhScDidr8UrMnJ1Q9+gCSiV5e/abzKPu2pHC6GtoE6rnDvv/MjuVNWZKJemlhhal5WbioDbdMX4x8RpT/lvByLaDDMfUkWvhzDuy4V4U2aSH4fw2JTvddPtr62BHRDlDT5Ni49m28B9e+HxUhe1vdclOz0Rrosx2DnZcTC07/Kuk74Z/SFZ6JlqNhq5P9COsazvDc8lxiVxOOE/jdi0Y9uFIEmPjWTNzMRqtlq6D+lZpHdLT0tFqTBxPzo6VOp5Kmzv1L5xruNC4WeitE9+FvMxsdFodajtro+1qOxty0k0Pi7RysKHl0z1x9qqFpkDDlUNn2PbbIrqNeoaaRfPMuTfwJXz7IdwCPLFzdeLG+UiunbyITqerlnrYqvRDGksPu8zIy8Je5XPL/PYqG4Jq+jL7sOko2ZseDe5AWk4m4fFV33libanGTKkkM9+4Dln5OdiqrEzmcbKyw8upJoVaDQuPbcHaQk2/4LZYWahYddp0lGn3emGk52ZxuZy59CqruB7Gc85m5mVjpzI9D6GzlT0+Tu4UajTMPbwRG0s1A0I6YGWhYtnJHfo01vb4W9lxPOYisw6uw9XGgUdDOqBUKNl26XCV1qG6vkuBfkqKKY+/h7mZOVqdlr8Ori1zs+thpZRhqg8c6YwTooqdO3eO1q1bG43Lb9u2LZmZmVy7dg0vL/0dnUaNGhnlc3d3Nwx9PH/+PJ6enkYdUC1atKi28np5eRl1pLVu3brCPBEREeTn5xulc3Z2JjCwuJPm6NGj6HS6Mh1PeXl5uLi4VFHpTXvrrbd4/fXX2bx5M926dWPgwIGG9/vIkSPs2LHDZCdaRESEyY6yY8eO8fnnn3P8+HGSk5MNd/mjoqIICio7dOFuXiMvL4+8POO7pKqiaKHbVuoiq8P0/BBarZZVv8+j/cBeuLiXnVfHqAxqFS9/8x75eflEnrnA1r9X4VTDBe+ggDsr2x0oU2ad7q7vvOZkZ/PLNz8yYsxb2Ds6VEHpbk+ZnzsKyv0R5OFQg6HN+7D81E5OxlzC0cqOZ0N78HLL/vy5fzVqc0veaDuQ6QfWVNv8MgAWwfWx6t3N8DhrySr9PyYrU9GeFOiyssnZsAV0OrQ34lHY2qBq1dxkZ5y6ZxfM3FzJnLe4kjV4uJU+fBQoyv0Yatu78lxob1ad/pdTNy7hqLbjqabdeSGsHzMOrqn2slbkYTi/TSvV/up0pTcB+vZ3xeS5dBrU+5btb3Ur/Vno9BsrzPPql++Sn5tH9IUrbFywCpdaNWhctKiPTqfDxt6Ox157FqVSiYefNxkpaexes6XKO+PKqwPlvO93Y/mCJfy7bQff/PoDlirLW2eoFBPnRTn1sK/pgn3N4u9RNfw8yE5J59zWg4bOuOaDunFg4UbWfjUDFGDr6oRfq4Zc3n+quipws+BGjypqp0pq5R1MTkEeJ2PKn7erW90wmtUJ5JfdSyjU3puh9TeV14d58/hbdnK7Ye60jeH7GdykG2vP7i1Tzna+jWjo7s+sg+uqvQ5lvnMoyv8sbtZj0fGt5Bbq53dde24fQ0J7sur0vxRqNShQkJWfw/KTO9Gh43p6AvZqGzr4NanyzjhDHcoU9O6/S92UW5DP2HVTUFtYElLLj+ea9SI+M4Wz92guXiFKks44IaqYTqcr+wW36MJRcruFhYVRGoVCYejkMbWPu6VUKstcuAoKiidbNXVRu9Vr386dVa1Wi5mZGUeOHMGs1J3/yqyKejOysGQZStYH4OWXX6Znz56sW7eOzZs38+233zJx4kTefPNNtFot/fv3Z8KECWX27W5irqGsrCx69OhBjx49mD9/PjVq1CAqKoqePXuSX2JC+pLu9DUAvv32W7744gujbePGjcOv7607Ya3tbFAolWWi4LLTMrBxKDu0Jj8nj9gr0dy4ep1Nc1YARe+nTsf459/lmbHD8QnWh/krlEqca9UAoJa3B4nX49j3z9Zq6Yyzc7BHqVSSUiqqIS01FQdnx7va543rscTfiGP8h8Xv7c1jZ1CXfkyeN51aHlU3x1R6XjYarQZHK+Nj3EFtU+7kzwOC23MhIYq1Z/Xz+0WlxpF3MJ8ver7M4hPbcFDb4mbrxJhOzxjy3DxH/35mHKPX/EpcFcwhV3AxAk1MiRXjis5bha01uqzisitsrIwel6bLykKn0Rj9etEmJqO0tQWlEkoMWVP36IxFXX8y5y1Gl1H1k3E/DDLystFotTiUOqbs1TZlouVu6h/UjouJUawP3wdANPHkHcrn0+4vsvTk9mqZ+PxWHobz2xRr+6L2N824/c1Kz8TWxNDG/JxcYi5HERt5jfWzlxWXWafjy2ff5rkPR+AbUrXR02XLrJ9fLKPUNSMzLQPbCqJeAZzd9IsY1PLyICMtnW1L1xo64+wcHTAzVxrNXVbDoxYZqekUFhZibl51PzvsHexRmpk4nlLScHQqf9Gi27Vy4VKWzV/Elz99h69/9a1AqrK1RqFUkJth3KbmZmajtit/nsTSXH1qc+XQGcNjtZ01HV99HE1BIXlZOVg52HJ89S5sXaqn0zozLweNVoudyrjMtiprMvLKv17c1Mo7hIPRZ9HoTA9p7hrQnB71WjB57zJi0qtn/t3s/Fw0Wi22lsZRijaWVmSZWNkc9O1zem6W0SIGCZmpKBUK7NU2JJdYYKetT0Pa+zVhzqH1xGUmV0sdoLgedirjethaWpFZzg29jLws0nKzDB1xAAmZKSgVChzUtiRlp5GRl4VGp0VXoossPjMFe7UNZgpluZ/d3aiO71KpRVF2OnSG9/9qyg08HGrwaHAH6YwT94V0xglRxYKCgli+fLlRh9q+ffuws7PDw+P2JmutX78+UVFRxMXFUbOmfn6HQ4cOVZjH0lJ/11ZTaiLuGjVqEBtbvJR5eno6V64Uz2MTFBREVFQUMTExhuGk//33X4WvFRAQgIWFBfv37zdE+qWkpHDhwgU6duwIQNOmTdFoNMTHx9O+ffvbqfZtqVFD3zEUGxuLU9EX7pILJ9zk6enJ8OHDGT58OB9++CHTp0/nzTffJDQ0lOXLl+Pj43NbPwzCw8NJTEzku+++w9NTf8f58OGK7wDe6WsAfPjhh4wePdpom0qlYvHJbbfMa2ZujrtvHa6cvkD9sOKIyyunL1CvWdnJelVWKl759n2jbUe27uXq2Ys8/tYwHGuUv/ofQGE1rXZpYWGBf2AAJw4fo1X7NobtJw4fo0XbVne1Tw8vT37+6w+jbQtnziUnJ4cX33gNF7eqXR1Po9VwJTmWhrX8ORRdPA9Ww1r+HL4WbjKPpblFmTmVtDc78FEQk5bIe/8YD8Eb3KQrVuYqZh9eT6KJ1TTvSn4B2vxU43JkZmLu601+XIJ+g1KJuVcdcnfsLpu/SGH09TILPChdnNBmZJbqiOuCRWAAWfOXoEurojo8hDRaLZHJMYTU8uNIiWMopJYfR6+fN5lHZW6Bprxj6j6NUnkYzm9TzMzNqe3ryeWT52kQVjxR/eVT4QQ2a1gmvcpKzevff2C07dDmPVw5e4En334RxxrVGzkOYG5uTm0/Ly6dPEdwiyaG7ZdOniOoRB1uSYfR4lTegX6c2HsIrVZr6JBLjI3HzsmhSjviQH88BdSry/HDR2ndoa1h+/HDR2nRruLo/ltZsXApS+Yu4PMfx1O3fvV2jJqZm+HsWYvY8Eg8Gxe/Vmx4JHUa1q0gp7Hka3FYOZS90WlmYY61ox1ajYao4+fxDq2eldA1Oi3RqXHUd/M2WpWyvps3p26xSmVd1zq42TrxX6TpqL2udZvTK7AVv+9dTlRqXJWWuySNTktseiL+rh6ci480bPd39Sh3WGxUShzBtfywNDMnX6M/F1xtHNDqtKSX6DRq69OIjv5NmXt4Q7V1Jpasx/W0BOrW8ORMXPH3/bqudcrtcIpMvkFDd3+T9bh58yYy5QZNatdFQXHEmquNI+m5WVXaEQfV812qPArA4j5MF3A/VMf8fqJyZAEHIe5SWloax48fN/qLiopixIgRREdH8+abbxIeHs7q1asZN24co0ePNrpbXJHu3bvj7+/P0KFDOXnyJHv37jUs4FBe1Jq3tzcKhYK1a9eSkJBAZqb+4tmlSxfmzZvH7t27OX36NEOHDjWKVOvWrRuBgYE8//zznDhxgt27d1e4WAToI9teeuklxowZw7Zt2zh9+jTDhg0zql+9evV49tlnef7551mxYgVXrlzh0KFDTJgwwWhl0zsVEBCAp6cnn3/+ORcuXGDdunVlVnJ9++232bRpE1euXOHo0aNs376dBg0aAPrFHZKTk3n66ac5ePAgly9fZvPmzbz44otlOjIBvLy8sLS05LfffuPy5cusWbOGr776qsIy3ulrgL7jzd7e3ujvToaptuzdieM793N81wESr8exZf5K0pJSCO2q/9G7Y/Fa1kz9G9BHu7l5uhv92djbYmZhjpunO5Zq/evuXbOVy6fOkxKfSGJMHAfW7+TUnkOEtG1+2+W6U/2feIxt6zaxbf1mrl2N4q/J00iMS6DHI30AmD9tFr+M/9Eoz5WLEVy5GEFuTg7paWn8H3t3HR3V0QZw+BdX4i5EIYGgwd3dS/FipaUUdwqlUChSijsUSXAt7pZQnODuriHuvt8fgQ3LJsECoXzvw9lzyN2Zu+/s1Z07cvfmbR7eewCArp4uLu6uKi8jY2MMDAxwcXdVa6GaE7ZfPUp1T1+qehTHwcSKDiXqYmVkyr6b6RXqrYvVpHv5b5Tpzzy6Tqm8BamVrxQ2xubkt85Lp1L1uRWSPqNZcloKjyKDVV5xSQnEpyTyKDKY1E/Y1SXx5Fn0y5dGO78nmtaWGDSqiyI5haTLGTfDBo3qolc1Y9yopDPn0TAwQL92NTQtzND2cEOvfGmSTp9TptGvUx3dQt7Ebd6BIikJDSNDNIwMIYd/sL8PAx098lk5KSdFcDCxIp+VE7bGH9/K5mPtvH6cqu6+VHYvhoOJFe2K18HS0JT9N9MfDLQsWoOfyjZVpj/7+AYlnQtQw7Mk1kZm5LNypn2JutwOeaRsHaClqUleM1vymtmiramFuYEJec1ssfmE5f0aju/MlG1QjTMBxzgbcIwXj5+xa+kGIkPCKVkz/bjYt2oLG+csA16dfx1UXkamxmjr6GDj7KA8/35qFRvW4NT+I5w6cJTgR0/Z7r+OyJBwStdKf3i2e+Um1s3yV6Y/tiuQq6cuEPI0mJCnwZwOOMqhrXspVimj9XaZ2pWJi45lm/86Qp4859qZiwRu3EXZOlU+SRmatPyGvdt2sXf7bh7ee8DCmfN4ERxMvSbpXWKXzF/M1LF/qeS5c/M2d17tTxGR3Ll5mwf3Mipa/lm5luULl9B7SH9s7WwJDw0jPDSM+LjMW0blBO/qpbh99Dy3j10g8lkIp//ZT1xYFPkqFQPg7OaDHF2aMUPstYAgHp6/QVRwGBFPX3B280EenrtB/soZ49qF3HvCg3PXiQ6JIPjWQw7MXgcKBQVrlvlk5Thw6zTlXQtT1qUQtnks+KZwVSwM83Do7nkAGhesSPsS6hOWlHMpzN2wJ5nOylkzXykaFqignEE6j54hefQM0dX6NMf20XsX8XXyorhjfqyMzKjrXRZTfWOCHqRXCNXMX4pvCldVpr/49BbxSQk0LVwFayMzXMztqO1VhjOPbii7oVZ0K0KN/CXZdOkgEfHRGOsaYKxrgK7Wp7veHbp7nlLOBSjp5I2NsTkNC1TAzCAPxx+kz1Rb16ssLYvWUKY/9+QGcUmJtChaHRtjc9ws7KnvXZ5TD68py3H8/mWMdPVp5FMRKyNTvG1cqObpy9HXZr/NSTl9LwXQxKcShe08sDE2x8HEivoFylPJvZhyHxXic5OWcUJ8oMDAQIoXL66yrGPHjvj7+7Njxw4GDRpE0aJFsbCwoEuXLgwfPvyd162lpcWmTZv44YcfKFWqFO7u7kycOJFGjRqhr6+faR5HR0dGjRrFL7/8QufOnenQoQP+/v4MHTqUO3fu0LBhQ0xNTfnjjz9UWsZpamqyceNGunTpQunSpXF1dWXGjBnUrZv9DG8TJ04kJiaGxo0bkydPHgYMGEBkpOrAz35+fowZM4YBAwbw+PFjLC0tKVeuHPXr13/n7+JNOjo6rFq1ip9//pmiRYtSqlQpxowZQ4sWLZRpUlNT6dGjB48ePcLExIS6desydepUABwcHDhy5AhDhgyhTp06JCYm4uLiQt26dTOtLLW2tsbf359hw4YxY8YMfH19mTRpEo0bN84yxvf9jJxQsGxx4qJjObxxNzERUVg72dN6UFdMrdJbucVERBEZ8n5dGZMTk9jlv57osEi0dXWwdLChyc/fUbBs8bdn/kAVq1chOiqatUtWEh4WRl43V36dMAobu/QWouGh4YS8aqX10oAfeyn/f/vGLQ7tC8Ta1ob5a/w/WZzZOXb/EsZ6BjQvXBUzgzw8jAjmz4DlhMSmHx/mBnmwMsroKnTwzjn0dfSo7VWG70rUITYpgcvP77LyzJ5cif91SceD0NDRxqBudTT09Ul98ozY1f9AUkaXHE2TPCpdUhXRMcSu/gf9mlUx/qEDadExJAWdJfFYRutevRLFADD+TnWG4bitu0i+mHMzIb4Pb2sXZjXLaJ3au2L6OWXH1WOMPbAkV2J65cSDyxjrGtDUpwpmBsY8igxm0sEVhMal71Nm+sZYGmbsU4funkdfW4+a+UvRpnht4pISuBJ8lzXn9inTmBvkYWy9bsq/GxQoT4MC5bn6/B7jPlF5v4bjOzOFyvkSHx3LwQ27iYmIxMbZnnZDuilbGX/I+fdTK1K+JHHRsRz4ZzvR4VHYOtvTcWgPzF+2zIsOjyQiJKMrnUKhYPeqTYQHh6KpqYmlnTV12jWldM2Mlu9mVhZ8P7w325esY8agMZhYmFGhXjUqN/00s9xWqlGV6Kho1ixZQVhoGC5uLoyYMOa1/SmMF2/sT327dFf+/9b1mxzcF4CNnS0L1y4FYOembaQkJ/PniDEq+Vp3+o6237f/JOVwLVGApNh4Lu48QnxULGb2VlTt3gJji/RjOiEqhtiwjNbDqSlpnNkYQHxkDFo62pjaW1H1529x9MmY0CU1OYXz2w4RExKBjp4uDj7ulO/QAF3DzO8hc8KZx9cx0tWnnldZTPSNeBoVypyjG5QVISb6RlgYqHaD1tfWpZhDPtZfDMh0nZXciqKjpc0PZVTvuXZcPcqOa9n34vgQl57dwUBHj6qevuTRMyQ4Oozlp3cpW4fl0TPE1CCjK25SagpLTu2gQYHy/FS+GfFJCVx6dkf5oASgVN6CaGtq0bq46iRsAbdOE3Dr08yOfuHpLQx19aiRryQmekY8iwnFL2ib8mFMHj1DlS6gSakpLDyxhSY+lehV8VvikhK58PQWu6+fUKaJTIhh4YmtNCpYgb6VWhGVEMuRuxcIvH32k5ThU9xL6Wnr8n3phlgampCUmsyTqBBmH/mHY5+oQlGIt9FQfKppdYQQOerIkSNUrFiRW7du4eGR+Qx6Indcv34db29vbt68iadnzo6ltjTow1sRfik6lKrP5af/7ZmqfOw9aL18RG6H8dFWfzeayHFTcjuMj2I6rD8VZnd7e8Iv3JEe82i/atTbE37hlrUZ+VUc3yvP7M7tMD5aW986/HP+QG6H8VGaF63O9a9g7CYvW1dG712c22F8tBG1vqfnxslvT/gFm9VsACN2LcjtMD7a6Lo/MmT7nLcn/IJNaND9q7mX+i9ac3ZvboeQpVZvVFb/v5CWcUJ8oTZu3IixsTH58uXj1q1b9OnThwoVKkhF3BcmLCyM9evXY2JiohxTTgghhBBCCCGEyIpUxgnxhYqOjmbw4ME8fPgQKysratasqTY2msh9Xbp04fTp08ydO/e9xngTQgghhBBCCPH/SSrjhPhCdejQgQ4dOuR2GOItNm7cmNshCCGEEEIIIUSWspoEUOQemU1VCCGEEEIIIYQQQojPRCrjhBBCCCGEEEIIIYT4TKSbqhBCCCGEEEIIIcRXSrqpfnmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UJtJN9UsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnylNDSkHdaXRraIEEIIIYQQQgghhBCfiVTGCSGEEEIIIYQQQgjxmUg3VSGEEEIIIYQQQoivlKaGzKb6pZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlIa0k31iyMt44QQQgghhBBCCCGE+EykMk4IIYQQQgghhBBCiM9EuqkKIYQQQgghhBBCfKU0kG6qXxoNhUKhyO0ghBBCCCGEEEIIIUTO23LpUG6HkKXGhSrldgi5QlrGCSHEF2xiwPLcDuGjDar2Hdee383tMD6Kt60bVeb2yO0wPtrBn2cT0a1/bofxUczmTaH9qlG5HcZHW9ZmJBVmd8vtMD7akR7zeB4VktthfBRbEyuWndqZ22F8tPYl69Fr45TcDuOjzGzWn00XD+Z2GB+taeEqdFg1OrfD+GhL24z4z59vl7UZSdf1E3I7jI/297dDaOr/S26H8VE2dfqT2gv65nYYH23Pj9NyOwTxlZDKOCGEEEIIIYQQQoivlKbMpvrFkQkchBBCCCGEEEIIIYT4TKQyTgghhBBCCCGEEEKIz0S6qQohhBBCCCGEEEJ8pTSkm+oXR1rGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4Skk31S+PtIwTQgghhBBCCCGEEOIzkco4IYQQQgghhBBCCCE+E+mmKoQQQgghhBBCCPGV0kS6qX5ppGWcEEIIIYQQQgghhBCfiVTGCSGEEEIIIYQQQgjxmUg3VSGEEEIIIYQQQoivlMym+uWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5SmtJN9YsjLePEF+H58+eMHj2a8PDw3A5FCCGEEEIIIYQQ4pORyjiR6xQKBe3bt0dPTw9zc/P3yuvq6sq0adM+TWAfSUNDg02bNr1XnqpVq9K3b99PEs9/Vfv27Rk3blxuh/FRBg4cSO/evXM7DCGEEEIIIYQQXwDppvof1KlTJ5YsWQKAtrY2zs7OfPPNN4waNQojI6Ncju79jR8/Hnd3d4YMGfLeeYOCgv6TZRbv5sKFC2zfvp05c+Yol1WtWpWDBw8yfvx4fvnlF5X09evXZ+fOnYwcOZJOnTrh5uaW7fpHjhzJ77//DsCSJUuYPXs2ly9fRlNTk+LFizN48GAaNmwIQExMDObm5ixfvpxWrVop19GqVSvWrl3LrVu38PDwUC738PCgVatWjBs3jsGDB+Ph4UG/fv3eGtPHuBJ4igt7jxEfGY2ZgzXlWtTBLl/eTNM+uX6PHVOXqS3/9vefMbOzAuDG0fP8u3SLWppOM4eirfPpLh87Nm5l46r1hIeFkdfVhS69uuFTtFCmacNCQvGbs4Bb12/y9NETGjZvwg+9u6mk2bN1JwG793H/zn0APLw8af9jZ/IX9PpkZWjqU4nWxWpiYWjKvfCnzDqyngtPb2eTvjLfFK6CXR4LnseEs/z0LnbfOKl8f1rjPhR3zK+W79j9S/yyY+4nKcMr+g3roFuxLBqGhqTeu0/cqn9Ie/o8y/TG/bujnd9TbXnyxSvEzl6Y/oeeHgaN66FTrBAaefKQ+vAR8Ws3kXr/YY7HX8OzJA0KlMfUIA+PI4NZfmY3N148yDJ9eZfCNChQHts8lsQnJ3Dh6S1Wnd1LTFI8AI4m1jQvUhVXcwesjc1YfmYXu6+fyPG4P1RRe0/aFq+Nt01erIzM+GXHXA7dPZ/bYSltXLeBVctXEhYSiqu7G73696Zo8WJZpj93+iyzps3k3p27WFpZ0bZDW5o0b6Z8/+CBQJb7L+Xxw8ekpKTg5OxEq+/aUKd+3U9WhlN7D3Ns+wFiIqKwdrSjdvtm5PX2eGu+h9fvsHTMLGyc7Phx/GDl8jMHjnHxcBAvHj4FwM7NmWqtGuDo4fLJygBQya0oNfKVxETfiKdRoWy4GMjt0MeZpv3Otw5lXHzUlj+NCmHc/qUAlHctTGnnAtibpF9DHkY8Z+uVI9wPf/bJynBsVyAHt+wmOjwSW2cHGnVqhVvBfJmmvXv1JjuXb+DF42ckJSVhbmVBmVqVqdSoljLNqYCjrJvtr5Z3zMrZ6OjqfKpiZKqGZ0nqFyinPHetOLMn23NXOZdCb5y7brP6tXPX54r5v36+reJenDpepTHVN+ZJVAhrzu/nVsijTNN2Klmf8q6F1ZY/iQzh972LgPTt0rlUA7U03TdMIiUtNWeDf009r7I0LVQZc8M8PAx/zqKT27gSfC/L9JXdi9GsUBUcTCyJTUrg7OMb+J/aQXRinDJNo4IVqOtVFisjM6ITYzl67xLLzuwiOTXlk5ShUYEKtChaHQsDE+6HP2Pu8Y1cenYn6/QFK9KkYCVs85gTHBPBqnN72XczSPl+BdcitClWEwcTa7Q1NXkcFcL6CwHsv3Xqk8T/pZHZVL88Uhn3H1W3bl38/PxITk7m0KFD/PDDD8TGxjJ37qf9UfYpDBs27IPzWltb52Ak4ksza9YsWrRoQZ48eVSWOzs74+fnp1IZ9+TJEw4cOIC9vb0yzdOnT5XvT5o0iV27drFv3z7lMmNjYyC95dqsWbMYM2YMTZs2JTk5meXLl9OkSROmT59Oz549MTY2pmTJkgQEBKhUxh08eBBnZ2cCAgKUlXGPHj3izp07VKtWDQAbGxtq167NvHnzmDBhQg5/S+lun7rM8XW7Kd+mPrYeTlw7dIZds1by7cifMbYwzTJfi1Hd0dHXU/6tn8dQ5X0dfT1ajOqusuxTVsQd2n+QRTPn81P/HhQo5MPuLTsYPXg4s5b+jbWtjVr65ORkTExNadG+DVvWbcx0nRfPXqBSjar82Kcgurq6bFi1jt8HDmPmkvlYWlvleBmqefjSs8K3TD20hktPb9PIpyITGvSg4+o/CI5R74rfxKcSXcs2ZmLgSq4F36eArSuDqrQlOjGOo/cvAfDb7gXoaGZ87yb6RixqOZTA22dzPP7X6dWujl6NKsQtWUVq8Av069XCuE83okb+CYmJmeaJnecP2lrKvzWMDMkzfCDJZzIqhAzbt0TLwZ5Yv5UoIqPQLVMC477diBr1F4qIyByLv0xeH77zrYv/qe3cDHlINc8SDKrSjl92zCY0LkotfX4rZ34q25QVZ3dz9vENzA3y0LlUQ7qUbsT0w2sB0NXWITgmgpMPrtDOt06OxZpTDHT0uBX6iB3XjjKuXre3Z/iM9u/Zx8wp0+k/ZACFihZhy4ZNDO4zkKVrl2NrZ6eW/snjJwzuO5CGTRsxfPQILp2/wJQJkzE1N6Nq9fTzq4mpCe07dySvqws6OtocPXSUP0ePw9zcnNLlyuR4GS4fO8OeZRup1/lbnPO7cebAUVb9NZ9ufw3F1Crr1v0JcfFsnrcCN598xEZGq7x3/+otfMr54tTBFW1dHY5t28/KP+fy04RfMLEwy/EyAPg65uebIlVZe24/d8KeUMG1CD+Xb8bYfUsIj49WS7/+QgCbLx9S/q2lockvNdpz9vFN5TJPKydOP7rOnbAAUlJTqJG/FN3Lf8O4/UuJTIjJ8TKcPxLEVv81NP2hLS7enpzY+y+Lx82g/9TfMbe2VEuvq6dH+XrVsHNxQldPl3vXbrFh/nJ09fUoU6uyMp2eoT6Dpv+hkvdzV8SVyVuQdr51WHJqx8tzly8Dq7Rl6I45bzl37eHs4xtYGOShU6kGfF+6ETNenrs+fcz//fNtSSdvWhWrwcoze7gV+pjK7sXoXbEFv+9eSFgmx8Wac/vYcPGg8m9NTU1G1OzM6cfXVNLFJyfy264FKss+ZUVcBdcifF+6IfOPb+Za8D3qeJXht1qd6bVpCiGx6tfYAjYu9KnYksVB2wh6eBVLQxO6lWtGj/LN+TMg/cFtZfditC9Rl1mH13PtxQMcTKzoXbEFAIuDtuV4Gaq4F6dbuWbMPLKey8/v0sC7PGPr/sQP68bzIjZCLX3DAhX4vlRDph1aw/UXD/C2zkvfSq2ISYzj+IPLAEQnxrHq3F4eRASTkppCmbw+DKzShoiEGE4/uqa2TiE+Nemm+h+lp6eHnZ0dzs7OtG3blnbt2im7RCoUCv766y/c3d0xMDCgaNGirF+/Xpk3PDycdu3aYW1tjYGBAfny5cPPz0/5/sWLF6levToGBgZYWlrStWtXYmKyvokKDAxEQ0OD3bt3U7x4cQwMDKhevTrBwcHs3LmTAgUKYGJiQps2bYiLy3i6smvXLipWrIiZmRmWlpY0bNiQ27czWo4sXboUY2Njbt7MuNHr1asX+fPnJzY2FlDvpqqhocH8+fNp2LAhhoaGFChQgGPHjnHr1i2qVq2KkZER5cqVU/kcgLlz5+Lh4YGuri5eXl4sW6beYuh1QUFB1KpVCysrK0xNTalSpQpnzpzJNs+bYmNj6dChA8bGxtjb2zN58mS1NElJSQwePBhHR0eMjIwoU6YMgYGByvfv379Po0aNMDc3x8jICB8fH3bs2AFkbJft27dTtGhR9PX1KVOmDBcvXlT5jKNHj1K5cmUMDAxwdnamd+/eyu8X4OnTpzRo0AADAwPc3NxYuXKlyvd+7949NDQ0OHfunDJPREQEGhoaKrFeuXKF+vXrY2xsjK2tLe3btyckJCTL7yctLY1169bRuHFjtfcaNmxIaGgoR44cUS7z9/endu3a2NikV9hoaWlhZ2enfBkbG6Otra227Pjx40yePJmJEycycOBAPD09KVCgAGPHjqVv377079+fhw/TW+tUq1ZNpUxXr14lPj6e7t27qywPCAhAR0eHChUqKJc1btyYVatWZVnej3Vp33HyVyiOd8XimNtbU65lHYzMTbh6MPunffp5jDA0NVa+NDVVLwsaGqi8b2hq/MnKALB57QZqNqhD7Yb1cHbNyw+9u2Flbc3OTZnf6Nna2/Fjn5+pXrcmRkaGmaYZMGII9Zs1wj2fB04uzvQY1Ie0NAXnT5/7JGVoWbQGO64dY/vVo9yPeM6sI//wIiacJj6VMk1fO39ptlw5QsDtMzyNDuXArdNsv3aUNsVrK9NEJ8YRFh+lfJV09iYxJYnA2+933nlfejUqk7BzH8nnLpL25BlxS1aioauLbmnfLPMo4uJQREUrXzoFvCApmaTTLyvjdHTQKV6E+A1bSb11h7QXISRs201aSBh6lcvnaPz1vMpy8M5ZDt45y5OoEFac2U1oXCQ18pXKNL2nlRMvYiPYc+MkL2IjuBHykAO3TuNm4aBMczfsCavP7eX4g8skp366H1Mf6viDyyw4sYWDd87ldihq1q5cQ4MmDWnYtDGubq70HtAXa1sbNq3PvCJ984ZN2NjZ0ntAX1zdXGnYtDH1GzdgzfKMc2nxEr5UrlYFVzdXHJ2caNGmJe6eHlw492laA57YGUixqmUoXq0cVo521G7/DSaWZpzedzjbfDsWraVQ+RI45nNVe69Zj/aUrFURO1cnrBxsafBDaxRpCu5dvvFJygBQzbMEx+5d4tj9SzyPDmPDxUDC46Op6FY00/QJKUlEJ8YpX3nNbTHQ0ef4ywcGAEtP7eTQ3fM8jnzB85hwVp3Zi4aGBl7Wzp+kDIe27qVU9YqUrlkJWyd7GnduhamlOcf3HMw0vaN7XopVLI2dswMWNlb4Vi5L/qI+3L16UyWdBhrkMTdVeX1udb3KvXHu2kNYXCTV85XMNL3Hy3PX3hsnCXl57gq4dRo3C/vPFvPXcL6tlb8Uh+9e4PC9CzyLDmXt+f2Ex0VTxaN4punjU5KISoxVvlzN7TDU1efIPdV7bYVCoZIuKjE20/XllCY+Fdl38xT7bgbxKPIFi05uIyQ2krpeZTNNn986Ly9iwtl+9SjBMeFcDb7Pnusn8bRyVKbxss7Ltef3+ffueYJjwjn35CaH7pxXSZOTmheuyq7rJ9h1/TgPI54z7/hGXsRE0KhgxUzT18hXkh1Xj3LwzlmeRYcSeOcsu66foGXRGso0F57e4si9izyMeM7T6FA2Xf6XO2FPKGT76XqtCJEdqYz7ShgYGJCcnAzA8OHD8fPzY+7cuVy+fJl+/frx3XffcfBg+s3Jb7/9xpUrV9i5cydXr15l7ty5WFmltw6Ji4ujbt26mJubExQUxLp169i3bx89e/Z8awy///47s2bN4ujRozx8+JCWLVsybdo0Vq5cyfbt29m7dy8zZ85Upo+OjqZfv34EBQWxb98+FAoFzZo1Iy0tDYAOHTpQv3592rVrR0pKCrt27WL+/PmsWLEi266pf/zxBx06dODcuXN4e3vTtm1bfvrpJ4YOHcqpU+kVE6+XZ+PGjfTp04cBAwZw6dIlfvrpJzp37kxAQECWnxEdHU3Hjh05dOgQx48fJ1++fNSvX5/oaPWnZlkZNGgQAQEBbNy4kT179hAYGMjp06dV0nTu3JkjR46wevVqLly4QIsWLahbt66ygrJHjx4kJiby77//cvHiRSZMmKBs7fX650yaNImgoCBsbGxo3Lixcl+5ePEiderU4ZtvvuHChQusWbOGw4cPq3w/HTp04MmTJwQGBvLPP//w999/Exwc/M7lhPQKvSpVqlCsWDFOnTrFrl27eP78OS1btswyz4ULF4iIiKBkSfUbT11dXdq1a6dSiezv78/333//XnEBrFq1CmNjY3766Se19wYMGEBycjL//PMPkF4Zd/36dWWLu4CAACpVqkT16tXVKuPKlCmDoWFG5VDp0qV5+PAh9+/ff+8Y3yY1JZWQB09xKuCustypgAfP72TeteKVjWMXsGLwVHZMXcaT6/fU3k9OTGL1sBms/GUau2evJuTBU/WV5JDk5GRu37hJsVKqFT3FSvly7dLVHPucxMREUlNSyGOS5+2J35O2phb5rZ0Jeqgab9DDqxSyc880j46WNkkpyaoxpiRTwMYFLc3ML9MNvMtx4NZpElKScibwTGhaWaBpakLK1esZC1NSSbl5G21313dej26FMiSdOgtJL2PV1ERDSwuSVbu1KJKT0fbMuRtiLU1NXC0cuPhM9eHLpWd3yGfllGmemyEPsTA0oah9ejdbE30jSuctwLknNzNNL95dcnIyN65dp1SZ0irLS5UpzaULlzLNc/niJbX0pcuW4dqVa6SkqHeLUigUnD55iof3H1DUt1iOxf5KakoKT+8+wr2wt8py98LePLp5L8t85w6eIDw4hMrfvFvLnuTEJNJS0zD4RMNwaGlo4mxmy7Vg1evRtef3cbN0yCKXqrIuhbgefD/TVnSv6Gpro6WpRWxywkfFm5mU5BQe33lAvqIFVZbnL1qQ+9ezHhLgdY/vPOD+jdu4F1QdAiApIZHx3X5hbNfB+I2byeM7WXez/BTSz132XHrj3HXx2R3yWWVesfnq3FXktXNXqbwFOf+Zzl1fw/lWS0OTvGZ2XHl+V2X5led38bB8twqnCq5FuBZ8j7A3WgLqaesyvl43JtTvTs8KzXE2U2/pn1O0NbXwsHRU+x7PPbmJt03mXd+vBd/H0siUEo7pw3eY6htTzrUQp15rLXY1+B4eVo7K7WlrbIGvk5dKmpwsQz4rJ8680cLw9ONrFLR1zTSPrqY2Samq91JJqcl4WedFSyPze6liDvlwNrVR22+/Vhpf8L//V9JN9Stw8uRJVq5cSY0aNYiNjWXKlCkcOHCAcuXKAeDu7s7hw4eZP38+VapU4cGDBxQvXlxZyeHq6qpc14oVK4iPj2fp0qXKCq9Zs2bRqFEjJkyYgK2tbZZxjBkzRtkSqEuXLgwdOpTbt2/j7p7+A/Tbb78lICBAOTZcixYtVPIvXrwYOzs7rly5QqFC6eNDzZ8/nyJFitC7d282bNjAyJEjKVUq8ydsr3Tu3FlZyTNkyBDKlSvHb7/9Rp066TfBffr0oXPnzsr0kyZNolOnTnTvnt4Vr3///hw/fpxJkyYpuxm+qXr16ip/z58/H3Nzcw4ePKgcYyw7MTExLFq0iKVLl1KrVvpYJUuWLMHJKeOG5fbt26xatYpHjx7h4JB+czxw4EB27dqFn58f48aN48GDBzRv3pzChdPHq3j1Xb9u5MiRap+xceNGWrZsycSJE2nbtq1y0oh8+fIxY8YMqlSpwty5c7l37x779u0jKChIub8sXLiQfPkyH48lK3PnzsXX11dlIobFixfj7OzMjRs3yJ9ffSyse/fuoaWlpWzp9qYuXbpQsWJFpk+fzunTp4mMjKRBgwbKMeDe1Y0bN5StIt/k4OCAqakpN26kt06oUKECOjo6BAYG0qZNGwIDA6lSpQq+vr5ERkZy8+ZN8uXLR2BgIN99953KuhwdHZXlcnFRvxlKTEwk8Y1uf3p6emrpMpMQE4ciTYGBieoPNwMTI+KjMm/VamhqTMV2DbBysSc1JZVbxy+wY9oyGvTvgH2+9PjM7Cyp3LExFo42JMcncenACbZO9Oeb4V0xtVXvAvSxoiKjSEtNw+yNiVzMLMwJDwvLsc9ZOm8xFtaWFC2R+ZPuj2Gqb4y2ppbajXh4fDQWhiaZ5gl6eJWGBcpz+O55boQ8xMs6L/W9y6GjpY2pvrHaurxtXHC3dGRC4Iocj/91Gibp8aZFqf7YTouKRtPi3Sbb0XLNi5ajPXHL1mQsTEwk5fZd9BvUIvbZ8/TWc6V80XLNS1pw1q1l31cePUO0NDWJeqN7XGRCDKb6mY/vdTPkEXOPbaBHhW/R0dJGW1OL04+usez0zhyL6/9VZEQEqampmFtYqCy3sDQnLDQ00zxhoWFYWKrua+YWFqSmphIREaF8kBgTE0Pz+k1JSkpCS0uLfkMGqFXi5YS46FgUaWkYmapW5BuZ5iEmUr0bHkDYsxcErN5KhxG90dTSyjTNmw6s3kYeC1PcCqlfG3OCkZ4BWpqaRL/ROic6MQ4TvcxbGL/ORM+IgrZuLDm1I9t0jX0qERkfw/XgnK/MiouOIS0tDWNT1fOqsakJ0RGZb4tXxnYdTGxUDGlpqdRs0YjSNTNaLVs72tGiZyfs8jqSGJfA4R37mTt8An0nj8DKPut74Jz06twVmaC6faISYjHVz7yC9lbII+Yd20iPCs2V564zj66z7PSuzxHyV3G+NX5VhtfGSAOISozFJIvv/XWm+kYUsnNn4cmtKsufRYfhf2o7jyNfoK+jRw3Pkgyp+h2j9/llOnTFx0rfFlpEvFFRHhkfjblB5ueU6y8eMOXf1Qys2la5LU48uMKC4xnjBh++ewFTPWPG1euGhoYG2ppa7Lx2TKWbbk4x0TdCS1OL8DjVMoTHR2NukPm91KlH16jrXZaj9y9yM+QR+aycqZO/TMa9VHz6ecFQR59V7Uaho6VNWloaM4+s58zjT9cKWYjsSGXcf9S2bdswNjYmJSWF5ORkmjRpwsyZM7ly5QoJCQnKypdXkpKSKF48/Yfnzz//TPPmzTlz5gy1a9emadOmlC+f3jXo6tWrFC1aVKXlWYUKFUhLS+P69evZVsYVKVJE+X9bW1sMDQ1VKodsbW05eTJjQPIHDx7wxx9/cOLECUJCQpQt4h48eKCsjDM3N2fRokXUqVOH8uXLqw3Y/y5xAMrKqlfLEhISiIqKwsTEhKtXr9K1a1eVdVSoUIHp06dn+RnBwcGMGDGCAwcO8Pz5c1JTU4mLi+PBg3e74bx9+zZJSUnKClMACwsLvLwyBpQ/c+YMCoVCraIqMTERS8v0ipDevXvz888/s2fPHmrWrEnz5s1Vyg9k+hlXr6a32jl9+jS3bt1ixYqMH/UKhYK0tDTu3r3LjRs30NbWxtc3o6WSp6fne896e/r0aQICAtRa7b36LjKrjIuPj0dPTy/LwUaLFClCvnz5WL9+PQEBAbRv3x4dnZwf00WhUChjMDQ0pHTp0srKuIMHDzJo0CC0tbWpUKECgYGB6OnpcffuXbUKWwMDAwCVrtqvGz9+PKNGjVJZNnLkSIyqqA+En6U3viuFQgFZPG0ys7NSTtQAYOvuREx4FBf3HlNWxtm4O2HjnlFBbOvhzMZxC7gcGET5Vp9ucPQ3N/nr2+BjbVi5jkP7Axk74y909dQrYD+l9O2hbsmpnVgYmDD3m0GgAeFx0ey6fpy2xWuTpkhTS9/Auzx3Qh+rtWr5WDqlfTFsm/GQJObVZAtvxv0e20K3fBlSHz8l9Z7quTHObyWGHVpjOuF3FKmppD58THLQWbTy5nx3F7Xw0SDzLQEOJla0963Hpkv/cvHZLcz089C6eC06l2rIwpPqk5mI9/fmsaxQZD+otPoTc4XackNDQxat8Cc+Lo7TQaeZPXUmDo4OFC+RdXfqj6EWrkKR6ZP9tLQ0Ns5eSuXm9bC0f7eWMEe37ufysTO0H94T7U88TllWx8HblHEpSHxyIhee3MoyTY18JSnh5M2MQ2s/6dhY6ruO4q1tLH7+YzCJCQk8uHGXXSs2YGVvQ7GK6ZW3Lvndccmfce/q4u3BjMFjOLIjgCZdWudo7G+VyQbK7tz1nW9dNl/6l4vPbmOmn4dWxWvSqVQDFr1ROfQpfRXn2zcKoYHGOx0s5VwKE5+cwLk3Knbuhj3hbtgT5d+3Qx4xvGYnqnn4sub8/hwJ+Z1oaKDIoiBOpjb8WKYxa87t5+yT9PH7OpWsz8/lmjHraHrvkEJ27nxbtBrzj2/m5osH2JlY8UPpRoQXiWbthQOfJOQ3o00/z2ZehhVn92BuaML0Jv3QIL3ibs/Nk7QqWkPlXio+OZGfN0xEX1uP4o75+KlsU55Gh3LhadbnMyE+FamM+4+qVq0ac+fORUdHBwcHB2UlxN276U2rt2/frmyJ88qrVjb16tXj/v37bN++nX379lGjRg169OjBpEmTsv3R+7Yfw69XhGhoaKhVjGhoaCgr3CB93C83NzcWLFiAg4MDaWlpuLq6kpSk2u3q33//RUtLiydPnhAbG4uJSeZPRLKKI6tlr8ei/uMg+x//nTp14sWLF0ybNg0XFxf09PQoV66cWuxZyepH+evS0tLQ0tLi9OnTaL3xNP1VpdYPP/xAnTp12L59O3v27GH8+PFMnjyZXr16Zbvu17+Dn376id69e6ulyZs3L9evX1db/mb8r8YYe33Zq26wr5flVevKN72acOFNVlZWxMXFkZSUlGmrNYDvv/+e2bNnc+XKFZWK3veRP39+Dh8+nOnnPHnyhKioKJWWgNWqVWPNmjVcvnyZ+Ph4ZUVllSpVCAgIQFdXF319fcqWVR2XI+xly66sJh0ZOnQo/fv3V1mmp6fHjKPr3loGfWNDNDQ1iI9UfSKdEB2n1louOzZujtw6eTHL9zU0NbB2cSAqOOdaqb3OxNQETS1NwsNUnxRHhkeotZb7EBtXrWf98tWMmjIeV4/Mu4x+rMiEGFLSUtVawZkb5MmyO1dSajITApcz6d+VWBiYEBoXSaOCFYlNiicyXrVlhJ62DtU9S3ySwZKTz18m+u5rlWYvJ2HQNDUh9bXWcZp5jFFEvUOXfB0ddEsVI36resuMtJBQYqbMBl1dNPT1UERFY/hDe9JCcm7fik6MIzUtDVMD1YcAJvpGaq03XmlUsCI3Qx6w49pRAB4STGJQEr/V+p51Fw58kkHo/1+YmpmhpaWl1gouPCxcrbXcKxaWFoSGhqml19LSwtQsYxwvTU1NnJzTHxzk88rP/Xv3WO6/LMcr4wzzGKGhqUlMhOr+HxsVo9ZaDiApPoGndx7y7N5jdi1J/0GrUChAoWBs+/60/aUbbj4ZD6OObT/AkS17aTe0O7Z536276IeITYwnNS0NEz3V60MePUO1VkGZKetSiKCHV0jN5GEBQHXPEtTOX5pZR/7hSVTOtXZ9nWGe9DFO32wFFxMZjbFZ9veJFrbpD6LsXZyIiYxi79qtysq4N2lqauLk4UpINjNI57SMc5fq9kk/d2U+1lj6ueshO64dAzLOXcNrdWb9hYBPfu76Gs63MS/L8GYruPTj4u1jvFVwLczxB5ezPC5eUQD3wp5hmyfz897HSt8WqZgZqJ6TTPWNiYjP/Dv9tkhVrgbfY9PlfwG4H/6M+cc3Mb7+z6w4u4fw+GjaFq9F4O0zytlJ70c8R19bh+7lv2HdhYAsK/o+RFRCLKlpqVgYqpbBzMA423upKf+uYvqhNZgb5iEsLor63uWJTUpQaWWqQKE8L90Je0xeM1taF6v5f1EZpymzqX5xZMy4/ygjIyM8PT1xcXFRqWgqWLAgenp6PHjwAE9PT5WXs3PGOBPW1tZ06tSJ5cuXM23aNP7++29l/nPnzqkM4H/kyBE0NTUzbb30oUJDQ7l48SKDBg2iTJkyODs7c+/ePbV0R48e5a+//mLr1q2YmJi8tZLpQxQoUIDDh1UHXj569CgFChTIMs+hQ4fo3bs39evXx8fHBz09vWwnI3iTp6cnOjo6HD9+XLksPDxc2R0SoHjx4qSmphIcHKy2Le1em3XO2dmZbt26sWHDBgYMGMCCBaqzNWX2Gd7e6ePd+Pr6cvnyZbX1e3p6oquri7e3NykpKZw9mzFj461bt4iIiFD+/apy6fWZS1+fzOH1z3F1dVX7nKzG/ytWrBiQPvFDVtq2bcvFixcpVKgQBQsWzDJddlq3bk1MTAzz589Xe2/SpEno6OjQvHlz5bJq1apx8+ZNVq5cScWKFZUVpVWqVCEwMJDAwEDKlSuHvr6+yrouXbqEjo4OPj4+mcahp6eHiYmJyutdu6lqaWthldeex1dVp3t/fPUOtu6Zj9WSmdCHzzDM5AflKwqFgtBHzz7ZJA46Ojp45M/H+VOqM4SeO3UW70JZH4/vYsOqdaxdupKRE8eQz/vTdP2C9NnRbrx4SEkn1TGlSjp5c+nZnSxypUtNS+NFbARpCgXVPUtw7P4ltZvbah4l0NHSZu+NoByPncRE0l6EZLyePictMgrtAq99X1paaOfzIOXOvbeuTrdkMdDWJvnE6awTJSWhiIpGw9AAnYLeJJ/PfOywD5Galsa9sCdqY/UVsnPnZkjmYynqaeuQ9sbDkld/yz3sx9HR0SG/txenTqjuu6dOBlGoSKFM8/gULsSpk6rpg06cxLugN9raWT9PViggOSk5y/c/lJa2NvZuTty9pPqg6u7F6zhlMjGDnoE+Xf8cwo/jBilfJWqUx9Lehh/HDcLRI2PIgmPbDnB44x7aDO6Gg3veHI/9damKNB5GPMfbRvVzvGxcuBv6JItc6TytnLAxNufYvcyP1Rr5SlLXuyxzj27kYcSnq8DS1tHG0T0vNy+o3iPcvHAVF6/Mu0VmRqFQkJqsPv7g6+8/vfcQk884iUP6uetpFueuh5nm0dXWUXvQ+znPXV/D+TZVkcaDiGdqY5IVsHXldujjbPPmt3bGNo8Fh+9eeKfPcjazITKLirGPlZKWyu3QxxRzUO1ZUczBM8sW9XpaulnuPxlpstrHNHJ8e6WkpXIz5BG+jl4qy30dvbjy/F62eVMVaYTERpKmUFDVozgnHlzOtqJQQ0NDZbZ6IT4nqYz7yuTJk4eBAwfSr18/lixZwu3btzl79iyzZ89myZIlAIwYMYLNmzdz69YtLl++zLZt25QVT+3atUNfX5+OHTty6dIlAgIC6NWrF+3bt8+2i+r7MjMzw8LCgnnz5nHr1i3279/PgAEDVNJER0fTvn17evXqRb169Vi5ciVr165l3bq3txR6H4MGDcLf35958+Zx8+ZNpkyZwoYNGxg4cGCWeTw9PVm2bBlXr17lxIkTtGvXTtkN8V0YGxvTpUsXBg0axP79+7l06RKdOnVSmckyf/78tGvXjg4dOrBhwwbu3r1LUFAQEyZMUM6Y2rdvX3bv3s3du3c5c+YMBw4cUKtEHD16tMpnWFlZ0bRpUyB9TL1jx47Ro0cPzp07x82bN9myZYuy0tPb25uaNWvStWtXTp48ydmzZ+natSsGBgbK1nUGBgaULVuWP//8kytXrvDvv/8yfPhwlRh69OhBWFgYbdq04eTJk9y5c4c9e/bw/fffk5rF7FjW1tb4+vqqVZS+ztzcnKdPn7J//4c38y9Xrhx9+vRh0KBBTJ48mdu3b3Pt2jWGDx/O9OnTmTx5skpFdvny5dHT02PmzJlUqVJFubxUqVJERkbyzz//ZDrW4KFDh6hUqdJ77Sfvo1DNslw/cpbrR84R/vQFx9fuISY8Eu/KJQAI2rifQL9NyvSX9p/g3rlrRD4PJfxJMEEb93Pv7DUKVs2YMOPMtoM8unybqBfhhD58xqFlWwl9+BzvSiU+SRkAmrT8hr3bdrFv+24e3nvAwpnzCQkOpm6TBgAsnb+YqWMnquS5c/M2d27eJj4+gciISO7cvM2Dexk3nBtWrmPFwqX0GtIfGztbwkPDCA8NIz4u/pOUYe35/TQoUJ763uVwMbOlR/nm2OSxYMvl9H35xzKNGVa9gzK9k6kNtfKVwtHUGm8bF0bU7IybhT0LTqh302lQoByH757/5DOxvZK4/1/069ZEp1hhNB3sMOzYBkVSEkknM2ZxNezUBv2mDdTy6pYvQ/K5Syhi1VvaaBf0QrugN5qWFmgXyI9xv+6kPg8m6eiHtXDNys7rx6nq7ktl92I4mFjRrngdLA1N2X8zfTKflkVr8FPZpsr0Zx/foKRzAWp4lsTayIx8Vs60L1GX2yGPlC0KtDQ1yWtmS14zW7Q1tTA3MCGvmS02xh/fejMnGOjokc/KSTnItoOJFfmsnLD9AuJr2bYV2zZvZfuWbdy7e4+ZU6YT/Ow5TZo3A2D+rLmMHfmHMn2Tb5ry/OkzZk2dwb2799i+ZRvbN2+j1XdtlGmW+y0l6MRJnjx6zP1791mzYjW7t++kdr3aap+fE8rUq8rZgOOcCzxOyONn7Fm2kcjQcHxrpI+Ze2D1VjbPXQ6AhqYmNs72Ki9DE2O0dbSxcbZHVz/9gcvRrfsJXLedhl3bYGZtQUxEFDERUSQlJGYZx8cKuHWacq6FKevig20eC74pXAULwzwcvps+C22jghVpX0J9OIJyLoW4G/aUp9Hq4/zVyFeSBgXKs+LMHkLjIsmjZ0gePUN0tT5Nd9tKjWoRtP8wQfsP8/zRU7b6rSEiJIyytdOvzTtXbGDNjMXK9Ed3BnDl1HlCnj4n5Olzgg4c4d+teyheuYwyzd61W7l+7jKhz1/w5O5D1s9ZwpN7D5Xr/Fx2XT9GldfOXW2L18bS0JQDN9MfbrQoWp2uZZso0599fIMSzt5U9yyhPHd9V6IOt0MeZ9kaKqd9DefbvTeCqOhWlAquhbHLY0nLotWxMDRRzk7drFBlOpdSv95VdC3CndAnmbYEbVigAgVt3bAyMsXJ1IaOJerhbGbzSWe83nz5MDXzlaKGZ0mcTK35vlRDrIzM2H39BADf+dahT8WMSdSCHl2lrEsh6nqVwdbYAm8bF34o04gbLx4oW6IFPbpGXa+yVHQrgo2xOUXtPWlbvBZBD6+oVdzlhH8uBlLXqyx18pfB2cyWbmWbYmNszrarRwD4vlRDBlVtp0zvaGpNDc8SOJhY4WWdl2HVO+Bqbo9f0HZlmtZFa+LrmB+7PJY4m9rQvHBVauYrxf5bp3I8fvHpzZkzBzc3N/T19SlRogSHDh3KMu2GDRuoVasW1tbWmJiYUK5cOXbv3q2Sxt/fHw0NDbVXQkLOT0L0ilQDf4X++OMPbGxsGD9+PHfu3MHMzAxfX1+GDRsGpM9EOXToUO7du4eBgQGVKlVi9erVQPq4K7t376ZPnz6UKlUKQ0NDmjdvzpQpU3I0Ri0tLdasWUPv3r0pVKgQXl5ezJgxg6pVqyrT9OnTByMjI+Wg/z4+PkyYMIFu3bpRvnx5tW64H6pp06ZMnz6diRMn0rt3b9zc3PDz81OJ5U2LFy+ma9euFC9enLx58zJu3LhsK+8yM3HiRGJiYmjcuDF58uRhwIABREZGqqTx8/NjzJgxDBgwgMePH2NpaUm5cuWoX78+AKmpqfTo0YNHjx5hYmJC3bp1mTp1qso6/vzzT/r06cPNmzcpWrQoW7ZsUXbHLFKkCAcPHuTXX3+lUqVKKBQKPDw8aNWqlTL/0qVL6dKlC5UrV8bOzo7x48dz+fJllZZfixcv5vvvv6dkyZJ4eXnx119/Ubt2xg8hBwcHjhw5wpAhQ6hTpw6JiYm4uLhQt25dlQrIN3Xt2hV/f/9sZ/M1MzN7+5f9FtOmTaNIkSLMnTuX3377DQ0NDXx9fdm0aRONGjVSSfuqC+rBgwdV9hEdHR3KlSvH/v37M62MW7VqldqYcDnJo6QPiTHxnN3+L3FRMZg7WFOnZxvyWJoBEBcZQ0xYRnee1JRUTv6zj9iIaLR1tDFzsKZOj9Y4F87okpsUl8jhFduJi4pB10APS2c7Gg7siI3bp5nGHqBSjSpER0WxZskKwkLDcXFzYcSEP7CxS38YEB4aRshz1dl8+3Xpofz/7es3+XdfADZ2NixYuxSAnZu2kpKczIQRY1Tyte7Ujjbft8/xMgTcPoOpvhEdStTD0siEu2FPGbJ9Ds9j0rvbWRqaqvyQ0NLQoFXRGjib2ZKSlsrZJzfosXEyz6JVu+c5mdpQxN6TAVtn8rkk7jmAhq4OBm2ao2FoQOrdB8TMmA+vTTaiaWGuNsaOpo012vnciZk+L9P1ahjoo9+0AZpmZiji4kg+e4H4TTsgLfvuPe/rxIPLGOsa0NSnCmYGxjyKDGbSwRWExqWfa830jbE0zGjxcujuefS19aiZvxRtitcmLimBK8F3WXNunzKNuUEextbrpvy7QYHyNChQnqvP7zHuwJIcjf9DeFu7MKtZRpf33hXTxwHccfUYY3M5vhq1axIVGcWShX6EhoTi5uHOhGmTsLNPb+0dGhLK82cZrakcHB34a9okZk6dwcZ1G7C0tqLPwL5UrZ5xjo1PSGDKhMm8CA5GT0+PvC4uDB89ghq1a36SMviU8yU+Jo5DG3cTExGFtZM9rQf9hJl1epezmIgoIkPfb1D20/sOk5qSyj/T/VSWV/qmDlWa18ux2F935vENjHQNqOtVFhN9I55GhTL36EblD29TfSPM3+jmpq+tSzGHfPxzMTDTdVZyK4qOljY/lFG9bu64eoydL7tP5qSiFUoRFx3L/vXbiQqPxC6vA52H9cLcOn1c3ejwSCJe6/quUCjYtWIjYcEhaGppYmlrTb1231CmVmVlmoTYODbMW0Z0RBT6hgY4uDnTbfQgnPPl3EzP7+LEgysY6xrSxKey8tw1+eDKLM9dh++ex0BbV+3ctfbc5xuT7Gs43556dA0jXQMaFKiAqb4RT6JCmHl4nXIiJVN9Y7VhKAy0dfF19GJ1FuO/Gerq0d63Dib6RsQnJ/IwIpiJgSu5F/7pZqc/cu8CJnqGtCpWA3ODPDwIf8Yf+/x5ERsBgIWhCdbGZsr0B26dxkBbj/re5elcqgGxSQlceHqbpa9NprH2/AEUCgXtitfGwtCUqIRYgh5eZcXZ3XwKB++cxUTPkHa+dbAwNOF+2FOG75qvnPTCwtAEG6OMeylNDU2aF66Gk5kNqWmpnH9yi75bpivvvQD0dXTpVaEFVkamJKYk8zAymAkByzl456za53+Ncmr85S/BmjVr6Nu3L3PmzKFChQrMnz+fevXqceXKFfLmVW9d/u+//1KrVi3GjRuHmZkZfn5+NGrUiBMnTijH1QcwMTFRG6bpzd5OOUlD8S6DVwkh/nMCAwOpVq0a4eHhOVJh9cqjR49wdnZWjjf4KSUkJODl5cXq1atVJqL4r9m+fTuDBg3iwoUL2XatyszEgOWfKKrPZ1C177j2/G5uh/FRvG3dqDK3x9sTfuEO/jybiG79357wC2Y2bwrtV326iu3PZVmbkVSY3e3tCb9wR3rM4/knGhfsc7E1sWLZqf/+jLntS9aj18acfXj6uc1s1p9Nn2B2xs+taeEqdFg1OrfD+GhL24z4z59vl7UZSdf16mMW/9f8/e0Qmvq/fSK7L9mmTn9Se0Hf3A7jo+35cVpuh/BBAm9lM2xILqvq+X69bsqUKYOvry9z585VLitQoABNmzZl/Pjx77QOHx8fWrVqxYgRI4D0lnF9+/ZVGY7pU5NuqkKIbB04cIAtW7Zw9+5djh49SuvWrXF1daVy5cpvz/yR9PX1Wbp06XuNx/clio2Nxc/P770r4oQQQgghhBDia5aYmEhUVJTKKzEx86EakpKSOH36tEovLIDatWtz9OjRd/q8tLQ0oqOjsXhjAqmYmBhcXFxwcnKiYcOGKuOmfwpSGSeEyFZycjLDhg3Dx8eHZs2aYW1tTWBgoNpsuZ9KlSpV1LqK/te0bNmSMmXKvD2hEEIIIYQQQuQwTQ2NL/Y1fvx4TE1NVV5ZtXALCQkhNTVVbTx7W1tbnj179k7fxeTJk4mNjaVly4yxE729vfH392fLli2sWrUKfX19KlSowM2bNz/8S38LaaYhxFeqatWqarMefYg6depQp06dHIhICCGEEEIIIYTIMHToUPr3Vx1GRU9PL9s8b46Bp1Ao3mlcvFWrVvH777+zefNmbGxslMvLli1L2bJllX9XqFABX19fZs6cyYwZM96lGO9NKuOEEEIIIYQQQgghxGenp6f31sq3V6ysrNDS0lJrBRccHKzWWu5Na9asoUuXLqxbt46aNbOf6ElTU5NSpUp90pZx0k1VCCGEEEIIIYQQ4iul8QX/ex+6urqUKFGCvXv3qizfu3cv5cuXzzLfqlWr6NSpEytXrqRBgwZv/RyFQsG5c+ewt7d/r/jeh7SME0IIIYQQQgghhBBfvP79+9O+fXtKlixJuXLl+Pvvv3nw4AHduqXPUj906FAeP37M0qVLgfSKuA4dOjB9+nTKli2rbFVnYGCAqakpAKNGjaJs2bLky5ePqKgoZsyYwblz55g9e/YnK4dUxgkhhBBCCCGEEEKIL16rVq0IDQ1l9OjRPH36lEKFCrFjxw5cXFwAePr0KQ8ePFCmnz9/PikpKfTo0YMePXool3fs2BF/f38AIiIi6Nq1K8+ePcPU1JTixYvz77//Urp06U9WDqmME0IIIYQQQgghhPhKaWh8XSOUde/ene7du2f63qsKtlcCAwPfur6pU6cyderUHIjs3X1dW0QIIYQQQgghhBBCiC+YVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+Upsb7zVoqPj1pGSeEEEIIIYQQQgghxGcilXFCCCGEEEIIIYQQQnwm0k1VCCGEEEIIIYQQ4iulId1UvzjSMk4IIYQQQgghhBBCiM9EKuOEEEIIIYQQQgghhPhMpJuqEEIIIYQQQgghxFdKE+mm+qWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5SMpvql0dDoVAocjsIIYQQQgghhBBCCJHzTt6/nNshZKm0i09uh5ArpGWcEEJ8wSYFrsjtED7awKrtuPXiYW6H8VE8rZ2JDg/P7TA+Wh5zc6KjonI7jI+Sx8SEy09v53YYH83H3oPnUSG5HcZHszWxosLsbrkdxkc50mMeR+9eyO0wPlp5tyK8iA7L7TA+inUeC6KOnsztMD6aSfnSRAWdzu0wPppJqRJEv3iR22F8lDzW1kSdOpvbYXw0k5LFCY4Kze0wPoqNiSV3Qx7ndhgfzc3KMbdDEF8JqYwTQgghhBBCCCGE+EpJN9Uvj0zgIIQQQgghhBBCCCHEZyKVcUIIIYQQQgghhBBCfCbSTVUIIYQQQgghhBDiK6Up3VS/ONIyTgghhBBCCCGEEEKIz0Qq44QQQgghhBBCCCGE+Eykm6oQQgghhBBCCCHEV0oD6ab6pZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlIym+qXR1rGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlIN9UvjrSME0IIIYQQQgghhBDiM5HKOCGEEEIIIYQQQgghPhPppiqEEEIIIYQQQgjxlZJuql8eaRknhBBCCCGEEEIIIcRnIpVxQrwhMDAQDQ0NIiIicjuUHOfq6sq0adM+OP+9e/fQ0NDg3LlzORaTEEIIIYQQQgjx/0S6qYr/S0ePHqVSpUrUqlWLXbt25XY4QuSIK4FBnN9zjPjIaMwdbCjbsjb2+VwyTfvk+j22T1mqtrzFqO6Y2VmpLb8ddIkDCzfgUtSL2t1b5VjM2zZsZsOqdYSFhpLX1ZWufbpTqGjhLNNfPHueBTPn8eDePSwsLfm2XSvqN22kfD8lJYW1y1axf+ceQkNCcHJ2ptPPP1CybGllms7ftiP42XO1dTdo1pjuA3p/UDkUCgV/L1zIxs2biY6OxqdgQYYMGoSHu3u2+fYfOMC8v//m0ePHODk60r1bN6pVrap832/JEgICA7l3/z56enoUKVyYXj164OqSsV3nL1jAnn37eP78OTo6OhTw8qJ7t24UKlTo7TEvWMDGjRvTY/bxYcjgwXh4eLw95nnzePToEU5OTnT/+WeqVaumkmbdunUsW76ckJAQ3N3dGdC/P8WLF8+I+e+/2bNnT0bM3t50794905gVCgV9+vTh6LFjTJo4kUaNG2cb35t2btrG5tX/EB4ahrObC9/37ErBIpl/N2GhYSyZs4DbN27x9NET6n/TmC69fspy3Yf3H2TKHxMoXaEsv4wd8V5xva+N6zawavlKwkJCcXV3o1f/3hQtXizL9OdOn2XWtJncu3MXSysr2nZoS5PmzZTvHzwQyHL/pTx++JiUlBScnJ1o9V0b6tSv+0nL8S6K2nvStnhtvG3yYmVkxi875nLo7vncDkvpwNbd7Fy/mYiwCBxdnGjbrTP5CxXINO2pwycI2L6bB3fukZKcgmNeJ5p815LCJYsp0xzcuY8j+w7y+P5DAFw93WneuQ3uXvlyLOYN6/5h1bIVhL7cf/oM6Jvt/nP29BlmTp2Rvv9YW9GufTuafvuN8v07t++waN4Crl+7xrOnz+jdvw8t27ZWWcfG9RvYtH4DT58+BcDN3Z1OP3xPuQrlcqxckH6OWLB5IxsPBhAdG4uPuweD23fEw9EpyzwbDwaw48hhbj9+BIC3qxs9mrfAx131/BccHsbMtWs4dvECCclJ5LW147fvf6CAq1vOl2HDP2wMOJBeBg9PBnfqjIdTNmUIOMCOQ4e4/Sh9v/F2c6NHy1b4eHgq06zft5d/9u/j6YsQANydHOnS7BsqFC2WY3H/vXgxG7dsybj29e//9mtfYCDzFi7MuPb9+CPVqlTJNK3fsmXMnj+fNi1aMKBPH+Xy+YsWsWf/fp4HB6OjrZ1+7evalUI+PjlSrgUb1rPxwAGiY2Pw8fRkcKfv8XByzjLPxgP72XH4X24/fLlPubnRo1Vrle3ht3kTAadOcv/JE/R0dSmSLz89W7fF1cHho+LduO4fVi1fqTy+e/fv85bj+yyzps147frQjqavXR/u3r7DovkLlcd3r359aNlW9d4vLjaWhfMW8G/gQcLDw8mfPz+9B/SlgE/BDy7H1g2bWb9yDWGhobi4udKtdw8KFSuSZfoLZ8/z98w53L97D0srK1q0bUWDZqr3CBvXrGfbxi28eB6MiZkplapWpnO3H9HV0wXg4rnzrF+5hpvXbhIWGsqI8aMpX7niB5fhS6aJdFP90kjLOPF/afHixfTq1YvDhw/z4MGD3A5H5IDk5OTcDiFX3Q66zLG1uylevyLNhnfFzjMvu2auJCYsMtt8LUb3oN1f/ZUvExsLtTTRoRGcWL8XO8+8ORrzv/sDWDBjLq06tGXG4nkUKlqYkQOHZlpRBvDsyVNGDvqVQkULM2PxPFp1aMv8abM5EvivMs3Sv/3YtXkb3fr1ZO6yRdRr2pCxw37n9o2byjTTFsxm2ea1yteYqRMAqFit8geXZcmyZaxctYrBAwawZPFiLC0t6dG7N7GxsVnmuXDxIsN++4369eqxatky6terxy+//sqlS5eUac6cPUuL5s3xW7iQ2TNmkJqaSs8+fYiPj1emccmbl8EDBrB6xQoWzp+Pvb09Pfr0ITw8PPuYly5l5cqVDB40iCX+/ukx9+yZfcwXLjBs2LD0mFeuTI956FCVmPfs2cPkKVP4vnNnVixfTvFixejdpw/Pnj1TjXnQIFavWsXCBQuwd3CgR8+emca8ctUq+MBxTg4fOIjfrL9p/l0rJi+cSYHCPowZPIIXz4MzTZ+SlIyJmSnNv2uNq0f2P7aDnz3Hf+5CChb5+B9+b7N/zz5mTplOh84dWLjcjyLFijC4z0Cev/advu7J4ycM7juQIsWKsHC5H+07t2f6pGkEHghQpjExNaF9547MWTwfv1VLqNeoAX+OHsfJYyc+eXnexkBHj1uhj5jy7+rcDkXNiYNHWDnfj4atmzNq9l/kL1SAKcPHEhr8ItP0Ny5dwce3KP1GD2PkzAl4Fy3E9N//5P6tu8o01y5cpmzVigyZMJLhU8diYWPFpGFjCA8JzZGY9+/Zx4zJ0+jwfScWr1hC0eJFGdi7v8ox+bonj58wqM8AihYvyuIVS+jQuSPTJk0lcH/G/pOYkICDkwPdenbH0tIy0/VY21jTrWd3Fi71Y+FSP3xLlmDogMHcuX0nR8r1ytId21m5eyeD2nXAf8QoLE1N6TlpArGvnSffdPraVWqXLcfcIcNYPHwkdhaW9Jz0F8HhYco0UbGx/DD2D7S1tZjefyBrx/5J39ZtyWNomKPxAyzdtpWVO3cyqGMn/EePwdLMlJ5/jsu+DFevULtceeb+OpzFv4/CztKKnhP+JDgsoww2Fhb0bNWaJX+MYckfYyhZ0IeBUyZz+9GjHIl7yYoVrFyzhsH9+7Nk4cL060i/fsTGxWWZ58KlSwwbOZL6deqwyt+f+nXq8MuIEVy6fFkt7eWrV9m4ZQv5MnlI5OLszOB+/Vi9ZAkL58xJv/b17//Wa9+7WLptCyt37GBQp874/zEOS1Mzeo5/l+1Rgbm//sbiUaOxs7Ki55/jVLbHmWtXaVGzNotH/cGsX34lNTWVXn+OIz4h4YNj3b9nHzOmTKd9544sWu5P0WJFGdRnwFuuDwMoWqwoi5b7075zB6ZPmqpyfUhISMDe0YGfev6MRRbH94QxfxJ0Iojho0awZNVySpUtTb8efXiRxbnwbQ7uC2D+9Nm07tCO2X5/U6hIYYYP/CXbe8LfBg6lUJHCzPb7m1bt2zJ32iwOB2TcEx7YvY/F8xbw3fcd+XulP/1+GcjB/YH4zVuQUdb4BNw8Pejev9cHxS3Ex5DKOPF/JzY2lrVr1/Lzzz/TsGFD/P3935rnyJEjVKlSBUNDQ8zNzalTp47yYr9r1y4qVqyImZkZlpaWNGzYkNu3byvzvurauWHDBqpVq4ahoSFFixbl2LFj7/wZCoWCv/76C3d3dwwMDChatCjr16/PNubg4GAaNWqEgYEBbm5urFixQi1NZGQkXbt2xcbGBhMTE6pXr8758+/e+iA1NZUuXbrg5uaGgYEBXl5eTJ8+PUfy+Pn5UaBAAfT19fH29mbOnDnK9159p2vXrqVq1aro6+uzfPly0tLSGD16NE5OTujp6VGsWDGVlo/vsi1CQ0Np06YNTk5OGBoaUrhwYVatWqV8f/78+Tg6OpKWlqYSb+PGjenYsaPy761bt1KiRAn09fVxd3dn1KhRpKSkvPN3+74u7juGV4XieFf0xdzemnKt6mBsbsqVg6eyzWeQxwhDU2PlS1NT9bKQlpZGwKKN+DaqSh5r8xyNeePqf6jdsC51GtUnr6sLXft0x8rGhh2btmaafsembVjb2tC1T3fyurpQp1F9ajWoy4ZV65RpAnbvo2X7tpQqVwZ7RwcaNGuMb5mSbFidcbyYmpthYWmhfAUdPYG9owOFixf9oHIoFApWrVlD506dqF6tGp4eHowaMYKEhAR27dmTZb5Vq1dTplQpOnfsiKurK507dqR0qVKsXLNGmWbmtGk0atgQD3d38ufLx8jhw3n27BlXr11Tpqlbpw5lSpfGydERD3d3+vXtS2xsLDdv3co+5lWr6Ny5M9WrV8fT05NRv/+eHvPu3VnHvGoVZUqXpnPnzukxd+6cHvNrx8iKlStp0qQJTZs2xc3NjQEDBmBra6tyzqpbty5lypTByckJDw+PjJhv3lT5vBs3brByxQpG/PZbljFlZ+u6jdSoX5taDevi5JKXLr1+wtLGmt2bt2ea3sbeli69ulGtTg0MjYyyXG9qairTxkykdefvsLW3/6DY3sfalWto0KQhDZs2xtXNld4D+mJta8Om9RszTb95wyZs7GzpPaAvrm6uNGzamPqNG7BmecZ2Kl7Cl8rVquDq5oqjkxMt2rTE3dODC+dyvwXa8QeXWXBiCwfvnMvtUNTs2bCNynWqU6VeDRzypreKs7C24sC2zI/1tt06U79FE9y9PLFztOfbzm2xdbDn3ImMc/NPQ/pQvVEd8nq4Ye/sSOc+P6FQKLhy7lKm63xfq1esomGTRjR6uf/0GdAPG1sbNq3fkGn6Tf9sxNbOlj4D+uHq5kqjpo1p0Lghq5avVKYp4FOQHn16UbNOLXR0dTJdT8XKlShXsTx5XfKS1yUvP/XohoGhAVcu5ky54OW5bO8uOjdsQvWSpfB0cub3H34iITGJ3cePZZlvzE/daVG9Jl55XXC1d+DXzl1QKNIIunJFmWbJjm3YWlgwsktXfNw9cLCypnRBH5xsbHMsfmUZdu2ic5MmVC9VGk9nZ37/6WcSkpLYffRo1mXo3pMWtWrh5eKKq4Mjv/7wI4o0BUGXM77fyr4lqFCsOC729rjY29O9ZSsM9fW5dOtmlut9r7jXraNzhw5Ur1IFT3d3Rv36KwmJidlf+9aupUzJknRu3x5XFxc6t29P6RIlWLl2rUq6uLg4fhs1il8HDyZPnjxq66lbuzZlSpXKuPb16pV+HXntHvyDy7VrJ52bNs3YHt26k5CUyO6jR7LMN6ZHL1rUqo2X66vt0VVte8wcMpRGVari4eRMfhcXRvz0M89CQ7h6926W632bNStX0+C147v3gL7Y2NqwMcvrQ/rx/er68Or4Xq12fPekZu1a6GZyfCcmJHIwIJCfe3enmG9xnJyd+L7rD9g7OLDpn8zPK2+zYc066jSsR73GDcjr6kK3vj2xtrFh28YtmabfvmkrNrY2dOvbk7yuLtRr3IDaDeqxflXGfnT10mV8CheiWu0a2NnbUaJMKarWqs6NazeUaUqVK0Onrl2oWPXDH8gK8aGkMk7831mzZg1eXl54eXnx3Xff4efnh0KhyDL9uXPnqFGjBj4+Phw7dozDhw/TqFEjUlNTgfTKvf79+xMUFMT+/fvR1NSkWbNmapU1v/76KwMHDuTcuXPkz5+fNm3aKCtn3vYZw4cPx8/Pj7lz53L58mX69evHd999x8GDB7OMu1OnTty7d48DBw6wfv165syZQ3BwRmsQhUJBgwYNePbsGTt27OD06dP4+vpSo0YNwl57ipedtLQ0nJycWLt2LVeuXGHEiBEMGzaMtW/cUL1vngULFvDrr78yduxYrl69yrhx4/jtt99YsmSJyrqGDBlC7969uXr1KnXq1GH69OlMnjyZSZMmceHCBerUqUPjxo3VfuBnty0SEhIoUaIE27Zt49KlS3Tt2pX27dtz4kR6a5EWLVoQEhJCQEDGE8Tw8HB2795Nu3btANi9ezffffcdvXv35sqVK8yfPx9/f3/Gjh37Tt/r+0pNSSXkwVMcC6o+OXYs6M7z2w+zzbthzN8sHzSF7VOW8uS6+s3g2W3/op/HEO+KxTPJ/eGSk5O5deMGxUuVVFnuW6oEVy9dyTTPtctX8C1VQjV96ZLcvHZDuf2Sk5PQedn14BVdXT2uXMj8x19ycjIBe/ZRq0HdD55l6vGTJ4SGhlK2TJnXPlMX3+LFuXDxYpb5Lly6RJnX8gCULVMm2zwxMTEAmJiYZPp+cnIyGzdtwtjYmPz5su7i9vjx4/SYy5ZVjdnXlwsXLmQd88WLlHktD0DZcuWUeZKTk7l27ZrKd6EsVxbrTU5OZuPGjekx58+vXJ6QkMCvw4czaPBgrKzUu06/TXJyMrev36JoKV+V5cVKFefa5avvvb7XrVu6ChMzU2o2qPNR63kXycnJ3Lh2nVJlSqssL1WmNJey2K8vX7yklr502TJcu3It04cCCoWC0ydP8fD+A4r6Fsux2L82KcnJ3Lt5Bx9f1Yp7H98i3L56/Z3WkZaWRkJ8PEZ5jLNMk5iYRGpKSrZp3pVy/yn7xv5TtgyXLmR+rrl88RKlyqoew6XLleHalasf/FApNTWVfbv3khCfgE+RrIcieF+PX7wgNDKSsq91cdfV0cHXy5sL71HhlJCYSEpqKiavVcIfOneGAm5u/DJ7BrV7d6fdyOFsPBiQzVo+zOMXwYRGRlC2cEZ3PF0dHXy9C3Dh5o1scqpKL0MKJsaZ7zepaWnsOXaU+MRECmdzfXjnuF9d+0pn7Fu6urr4FivGhUtZV7heuHSJMqVV98eyZcqo5ZkwZQoVypenTKlSb40lOTmZjZs3p19HPD3fmj47j18EExqRg9sjmwc7MS9bEGa1zd7m1fFdOtPrQzbH93tcHzKTmppCamoqurp6Ksv19HW5cC7re4isJCcnc/P6DXxLv3FPWLokVy+pt5iE9Iq2N9OXKFOSm9euK8vhU7QwN6/f4PqV9Gv+08dPCDp2gtLly6it7/+BhobGF/v6fyVjxon/O4sWLeK7774D0ltnxMTEsH//fmrWrJlp+r/++ouSJUuqtMzyeW08iubNm6ut38bGhitXrqiMfzRw4EAaNGgAwKhRo/Dx8eHWrVt4e3tn+xmxsbFMmTKFAwcOUK5c+jgr7u7uHD58mPnz51MlkzE2bty4wc6dOzl+/Ljyx/6iRYsoUCBjTJuAgAAuXrxIcHAwenrpF9NJkyaxadMm1q9fT9euXd/2VaKjo8OoUaOUf7u5uXH06FHWrl1Ly5YtPzjPH3/8weTJk/nmm2+UaV5Var3e+qxv377KNK/iHzJkCK1bp49bM2HCBAICApg2bRqzZ89WpstuWzg6OjJw4EBl2l69erFr1y7WrVtHmTJlsLCwoG7duqxcuZIaNWoA6eNjWVhYKP8eO3Ysv/zyizJWd3d3/vjjDwYPHszIkSPf+r2+r4SYOBRpCgxNVG/4DPIYER+VeZdDQ1NjKn3XECsXe1KTU7h54iLbpy6jYf+O2OdPH4/s2a0HXD9ylm9+y3rMrA8VFRlJWmoaZhaqre3MLMwJD828Mjg8NAyzMurpU1NTiYqIxMLKEt/SJdm0ej2FihbG3tGB86fPcuLwUVLfqBx/5fi/R4iJiaFm/dofXJbQ0PSuZJYWql18LS0seJpFN5FX+TLL82p9b1IoFEyZPp1iRYvi+UaXnUOHDzPst99ISEjAysqK2TNmYGZm9tljjoiIIDU1FYs30lhYWhLyRrkOHTrEsF9/zYh51iyVmCdPmUKRIkWomsU4Qm8THRlFWloaZuZmKstNzc2JCPvwbkxXL15m3/bdTFk464PX8T4iX36n5mrfqTlhWewrYaFhWFiqHivmFhakpqYSERGhrNyMiYmhef2mJCUloaWlRb8hA9R+pIkM0VHRpKWlYaK2T5lxKSzindax+5+tJCYkUrpy+SzTrF+8AnNLC3yKf3ylVWRWx6SFOaEhmZ9rQ0NDKfPGudkik/3nXdy+dYtunbuSlJSEgYEB4yb+iZt7zo23FhoZkR6fialqvKYmPHuPbr6z1q/B2tyc0q/d3z0OfsE/Bw7Qtk5dOjdszOU7d5i8Yhm62jo0qJBzY0qFRkS+jDmzMoS883pmrVmNtbkFpX1Ux8S89fAB3/8+kqTkZAz09ZnYtx/u2Yyn985xv3xwq3ZNMDfn6fPMuxa+ymdprrp/WZqbK9cHsHvfPq7duMHSBQvezK7i0JEjDHvZqtvK0pLZU6dme+17F6EvJ3BT3x6m77c9Vq/C2sKC0oUyP44VCgVTVyyjmJcXns5Zj0WXnayuD+aWFoRlcS8VGhpGacs30r/n8W1oZEShwoVYssgPVzcXzC0s2Ld7L1cuXcHpA8oSFZF+T2j+xnnH3Nw8y3KEh4Vjbv7mdS79njAyIhJLK0uq1qxOZHgEA37ug0KhIDU1lYbNGtOqfdv3jlGIT0Eq48T/levXr3Py5Ek2bEhvQq2trU2rVq1YvHhxlpVx586do0WLFlmu8/bt2/z2228cP36ckJAQZYu4Bw8eqFTGFSmS8YTN/mW3puDgYLy9vbP9jCtXrpCQkECtWrVUliclJakMiP66q1evoq2tTcmSGU+MvL29VW5QTp8+TUxMjNpYL/Hx8SrdbN9m3rx5LFy4kPv37xMfH09SUhLFihX74DwvXrzg4cOHdOnShR9//FGZJyUlBdM3boxeL19UVBRPnjyhQoUKKmkqVKig1vU2u22RmprKn3/+yZo1a3j8+DGJiYkkJiZi9NqTzXbt2tG1a1fmzJmDnp4eK1asoHXr1mhpaQHp321QUJBKS7jU1FQSEhKIi4vDMJPxZl59zuteVZJ+CmZ2VioTNdh6OBMbFsmFvcewz+9CUkIiAYs3Ual9Q/SNc358nFfefBqmUCiyfUKm9tarVq0v3/ipTw9m/DWFbu2+Bw2wd3CgZv067NuRedfLPdt3UrJMaSzf48flzl27GDdhgvLvaZMnf1BZMitQdnn+mjSJW7dusfDvv9XeK1miBCuXLiUiMpKNmzcz9Ndf8V+0SPkD/FXMGhoaKBQKpk2dmnXM2Uf8TjG/y3dRsmRJVq5YQUREBBs3bWLosGH4+/lhYWHBwYMHOXXqFCuWL39bNG+l9n0qFGh84CDG8XFxTB87ie6DemNiZvr2DDlI/TvNpGyvp1cro0JtuaGhIYtW+BMfF8fpoNPMnjoTB0cHipfwRWRN/TSkeKdxDY8HHGbT8nX0Hjk4y/1nx7rNnAg8zJC/RqGjq5tpmg+R+f7zPunV9593kdfFBb+VS4iJjiHwQABjf/+DmX/P+eAKuZ3HjjB+iZ/y76l9B2QRL+obKgtLd2xjz4njzBsyDD2djO88TZFGAVc3enyb/qDQy8WVO08e8U/A/o+qjNt55DDjFy/KKMPAwelleCNd+lf+boVYum0re44dZd6vv6H3xn7jYu/AirHjiY6L40DQSX6fP4/5w3977wq5nXv2MG7iROXf0/76K/O43yXqN7cXGdvw2fPnTJ4+nVlTprz1Pqikry8r/fzSryNbtzJ0xAj8//4bizcqabKz88hhxi/KqPSbOmhIeohktk+94/bYuoU9x44wb/gIte3xyl/+ftx6cJ8FI0Zl+v77yOzeKNvj+82yZXJ9eJvho0cwfvQ4mtVvgpaWFvm98lOzTi1uXH/31oPqganHle19VGbHPRn70vkz51i9dAU9BvTB26cATx49Zt702Zj7LaNd5/YfHqcQOUQq48T/lUWLFpGSkoKjo6NymUKhQEdHh/Bw9ScsAAYGBtmus1GjRjg7O7NgwQIcHBxIS0ujUKFCJCUlqaTT0ckYc+HVReJVxV12n/Eqzfbt21Xihqwra5Q3zdlcwNLS0rC3tycwMFDtvXd9qrh27Vr69evH5MmTKVeuHHny5GHixInKLp0fkudVeRcsWKDWhe9VZdcrRpk0/X+XSoDstsXkyZOZOnUq06ZNo3DhwhgZGdG3b1+V7dmoUSPS0tLYvn07pUqV4tChQ0yZMkX5flpaGqNGjVJptfeKvr5+pt/L+PHjVVoMAowcORLjqm/vSqJvbIiGpgZxb7SCi4+OxcAk6+4Rb7Jxd+LWifRuDdEvwokJjWD37IwB1F/tVwt//oOWo3tgYq0+2cO7MjE1RVNLU60VXGR4hFpruVfMLS0ID1Vt0RQRHoGWlhYmpundNk3Nzfht/GiSEpOIiorC0soSv7kLsbW3U1tf8LPnnDt1lmFj36+1YuVKlVRma0t6OXlISGioyhPlsPBwtdYor7O0tFRrBZdVnr8mTeLfQ4f4e948bG1s1N43MDDA2dkZZ2dnChcqRLNvv2Xz1q10ftk681XMRqamxMbEKPfnTGPOYrDmd4nZzMwMLS0ttTThYWFqrSdUYi5cmGbffMPmzZvp3Lkzp06d4tGjR1SrXl0lz+AhQ1i7bh2//PV7ljG+ksfUBE1NTcLfaAUXGRGBqYXZW/Nn5tnjpwQ/e864oRnH6qvj4tvqDZm1bAF2jjk7hpzpy+/0zVZw4WHhaq0hXrGwtCD0jWMrPCwcLS0tTF+rBNLU1MTJOf0HeT6v/Ny/d4/l/sukMi4LeUzyoKmpSWR4hMryqIhITM2zr5w9cfAIftPm0n1Yf3x8M58dcOf6LWxbvYFB40fg7J75TNjvyzSrYzI8HAvLzPef9OM8TC39m/vPu9DR0VG2lPEuWICrV66ybtUaBv/6y3ut55XKxXwp5J7RDTEpJf38GxoZgdVr9y7hUVFYmrw91mU7t+O3bSuzBw0hn7PqJEVWZma4O6jed7naO3DgVPZjsb5NZd8SFPJ4vQzpXepCIyOxeu0+NDwqCkvTdyjD9m34bdnM7F+GkS+v+kRLOtraONulXwMLurtz5c5tVu/axbAuP7xf3BUrUqhgxkyZyutIWNj7XfssLFRawSnzvCz7tevXCQsPp/0PGfGlpqZy9vx51m7YwNEDB5T3gwYGBjg7OeHs5JR+7Wvdms3bttG5/btXtKhvj9f2KZXtEfmO22Mrfls2MXvor+TLm/lxPHGJH/+eOcXfv/2ObTbX3LfJuD6on++zuj5YWlqoXU8iMrk+vI2jkxOz/p5DfHw8sbGxWFlZMXLob9g7vP810MQs83vCiPAItdZyr5hbmBMe9mb6cJV7wqUL/Khepxb1Gqf3hnHzcCchIYEZE6bQpmM7tXGSv3aa/8fdQb9UUhkn/m+kpKSwdOlSJk+eTO3aql3SmjdvzooVK+jZs6daviJFirB//361ihJI78px9epV5s+fT6VKlQA4fPjwe8eW3WcULFgQPT09Hjx4kGmX1MwUKFCAlJQUTp06RemX43Jcv36diJdN7wF8fX159uwZ2trauLq6vnfMkN7NrHz58nTv3l257G2t6t6Wx9bWFkdHR+7cuaMcg+1dmJiY4ODgwOHDh6lcOWMQ1qNHjyq/g3dx6NAhmjRpouzKnJaWxs2bN1W6+BoYGPDNN9+wYsUKbt26Rf78+SlRImMsM19fX65fv47ne4xbMnToUPr376+yTE9Pj5nHsp+oA0BLWwurvPY8vnoHt+LeyuWPr97BpajXO8cQ+vAZBqbp45aY2lnRfEQ3lfdPbQ4gOSGRcq3qYvSWH55vo6Ojg2f+/JwNOk35KhktDM6eOk3Zipl33/L2KcjJo6oDcp8NOkU+7/xoa6teznT1dLGytiIlJYWjBw9Rqbr6sbN3+y5Mzc0oXa6s2nvZMTIyUqkIVigUWFpacuLkSby90r/v5ORkzpw9S68ePbJcT5FChThx8iTt2rRRLjtx4gRFCmd0aVEoFPw1eTKBBw8yf/ZsHB0c3ilGBahUIL+KOY+5OdFRURkxnzihGvOZM/TqlfWMYkUKF+bEiRO0a5vRxePE8ePK1qY6Ojp4e3tz4sQJqlWrlpHm5EmqvHZcZhqzQqGs2OzYsSNNmjRReb91mzb079ePuvXqEUVSZqtQoaOjg4eXJ+dPnaVspYx96vyps5Su8H7b/BXHvM5MXTxHZdmqRUuJj4/n+54/YWnz/mPbvY2Ojg75vb04dSKIytUy9uNTJ4OoWDnz1jk+hQtx9JDqQONBJ07iXdBb7Vh5nUIByUn/3zNTZ0dbRwfXfO5cPnuBEhUyHhZdOXuBYmWzHtfqeMBhFk+dQ7df+lK0TIlM0+xct5mtq/5hwNjhuOVXnznyQ73af4JOBFGlWlXl8lMnTlKxSqVM86TvP6r3MkHHT+JdsEC2+887USg+avZzIwMDjF57gKlQKLA0NeXE5Ut4ubgCkJySwpnr1+jVolW261q2czuLtm5m5oDBFHRzV3u/qGd+7j97qrLswfNn2H1E5UnWZTDjxKWLeLm+VoZrV+nVqk0Wa3lZhm1bWbR5EzOH/EJBd/UyZEahyKgAfK+4DQ0xeq1lv/I6EhSE98vxPpOTkzlz7hy9unXLajXp176gINq1ytg+J06epMjL3iSlSpZk9dKlKnlGjxuHi4sLHdu1U3swq1o2hdrD8LeWK7PtYWbGiYsX8XJNb8Gp3B6ts+/euGzbVhZt2sDMIcMo6K5+HCsUCiYu8SPwVBDzho/AMZOHa+8j4/g+qXJ9CDoZRMXKWR/fR964Ppx8h+tDVgwMDDAwMCA6KoqTx0/wc6/ub8/0Bh0dHfJ5pd8TVnjtvHQ2KOt7wgKFfDhxRPWe8MzJU+Tz9lKWIzExQa3CTVNTE4VCke144UJ8LlIZJ/5vbNu2jfDwcLp06aLW3fHbb79l0aJFmVbGDR06lMKFC9O9e3e6deuGrq4uAQEBtGjRAgsLCywtLfn777+xt7fnwYMH/PLL+z/tze4zrKysGDhwIP369SMtLY2KFSsSFRXF0aNHMTY2VhlD7RUvLy/q1q3Ljz/+yN9//422tjZ9+/ZVaYFXs2ZNypUrR9OmTZkwYQJeXl48efKEHTt20LRpU5UuoFnx9PRk6dKl7N69Gzc3N5YtW0ZQUBBubll3P3mXPL///ju9e/fGxMSEevXqkZiYyKlTpwgPD1ersHrdoEGDGDlyJB4eHhQrVgw/Pz/OnTuX6Uyy2cX3zz//cPToUczNzZkyZQrPnj1TqYyD9K6qjRo14vLly8qKu1dGjBhBw4YNcXZ2pkWLFmhqanLhwgUuXrzImDFjMv1cPT29j+qWWrhmOQL9NmLtYo+NuxPXDp0hJiySApXTf/id3Lif2IhoqnVuCsDFfcfJY2WGub01qamp3DpxkbtnrlLzp/Tu0to62lg4qt4k6hqmt+p7c/mHata6OZP/mEA+7/x4FyrIri3befE8mPpNGwHgP28hoS9CGPBb+jFVv2lDtm3YzIKZc6nTqD7XLl1hz7ZdDP59mHKd1y5fJTQkBHdPD0JDQlm5eClpaWk0b6v6oywtLY29O3ZTo24ttLSzvrF/FxoaGrRp1Qq/JUvI+7Kll9+SJejr61P3tYr/EaNGYWNtTc+XFdGtW7Wi688/4790KVUrVybw3385ERTEovnzlXkmTJzIrj17mPzXXxgaGSnHXTM2MkJfX5/4+HgW+/tTuVIlrCwtiYyMZN0//xAcHEzNl2MYZhlzmzb4+fllxOzvnx5znYxJCUaMHJke88tzY+vWren600/4L1lC1SpVCDx4kBMnT7Jo4UJlnnZt2zJi5EgKFCxIkcKF2bBxI8+ePVOOrxkfH8/ixYupXLkyVlZW6TGvX68Ss5WVVabj1tjZ2eHs7Mzlp+/Wlb5Ri2bMGDcZT698ePl4s2frLkKev6B24/oALP/bj9CQUPoMyxgn8u7N9HUnxMcTFRnJ3Zu30dbRwdk1L7p6uri4u6p8htHLgbffXJ6TWrZtxdiRf+BV0BufwoXYunEzwc+e06R5MwDmz5pLyIsQfh2VPutsk2+asnHtP8yaOoOGTRtz+eIltm/exoixvyvXudxvKV4F08fJTE5J4fiRY+zevpMBvwzMLITPykBHDydTa+XfDiZW5LNyIiohlucxHz7eX06o/U1DFkyciWs+DzwL5Ofgzn2EBodQrUH6sb5u8QoiQsP4cVB6pfbxgMMsnDSLtt064+Gdj8iXLTV19HSVM/buWLeZjUtX89OQPljZWivT6Bnoo/+W1vnvonW7NvwxYhTeBbwpVKQwWzZs4vmz5zR9uf/MmzWHF8Ev+G10eivhps2bsWHtemZOmU6jZk24dOEi2zZv5fexo5XrTE5O5t6duy//n8KLFy+4ef0GBoYGypZw82fPpWz5ctjY2hIXF8u+3fs4e/osk2dM/egyvaKhoUGbWnXx27YVZ1s7nG1t8d+2FX09XeqULadMN3LBPKzNzOn5soJu6Y5tzNv4D2N+6o69lRUhL8eeM9TTx/BlC/Y2tevSZdxo/LZtoWapMly+c5uNgQEM6/R9jsWvLEPduvht2ZxeBjs7/LdsRl9XlzrlMyoiRs6bg7W5BT1bpY+Lu3TbVuatX8eY7j2xt7Im5OUDV0P9jDLMXrOa8kWLYWtpSVxCPHuOHePM1SvMGPxhLRPV4m7RAr9ly8jr5JR+HVm6FH09PdVr3x9/pF9HXlbQtW7Rgq49e+K/fDlVK1Ui8NAhTpw6xaKX4yYbGRri+UbFor6+PmYmJsrl8fHxLF66lMoVKmRcRzZuJPjFC2q+9iDog8tVtx5+WzbhbGeHs509/ps3oq+rR53yGUOhjJw7O317tE6vMF26dQvz1q9lTI9e2Ftnvj0m+C9m99EjTOo/EEN9A2UaY0ND9D+wW3qrtq0ZM3I03gUL4FO4EFteXh+aNm8KwLxZcwl58YLho0YA0OSbZmxY+w8zp06nUdMmL68PWxk5NqNBQNbHt6GyNfWJY8dBAc4ueXn86BFzps/G2SUv9Rs3/KByfNOqBRP/GE8+by8KFCrIzs3bCH7+nAbN0u8JF89dQGhICIN+GwpAg6aN2PLPJubPmEO9xg24eukKu7ft5JffhyvXWaZCOTauXo9Hfk+8C6Z3U126wI+yFcsrK3Xj4+J58uixMs+zJ0+5feMWeUzyYGOXszMnC/EmqYwT/zcWLVpEzZo11SriIL1l3Lhx4zhz5ozae/nz52fPnj0MGzaM0qVLY2BgQJkyZWjTpg2ampqsXr2a3r17U6hQIby8vJgxYwZVq1Z9r9iy+wxIn9DAxsaG8ePHc+fOHczMzPD19WXYsGFZrtPPz48ffviBKlWqYGtry5gxY/jtt9+U72toaLBjxw5+/fVXvv/+e168eIGdnR2VK1fG1vbdLj7dunXj3LlztGrVSvnjvnv37uzcufOj8vzwww8YGhoyceJEBg8ejJGREYULF6Zv377ZxtO7d2+ioqIYMGAAwcHBFCxYkC1btpDvPWYN++2337h79y516tTB0NCQrl270rRpUyIjI1XSVa9eHQsLC65fv07btqpPSuvUqcO2bdsYPXo0f/31l7K10A8/vF+XkPfhUcqHxNg4zmz/l7jIGCwcbKjbsy15LM0AiIuMITYsowxpqamcWL+X2IhotHW0MXOwpk7PNuQt/PEzrL2ryjWqERUZxSr/5YSFhuHi5sqoieOUNz9hoWG8eJ4xA7Cdgz2jJo5lwcy5bNuwBUsrS37q24MKr01Hn5yUxLIFfjx78hQDAwNKli3NgN+GYPzGrITnTp3hxfNgajeolyNl6di+PYmJifw5cSLR0dEU8vFh1vTpKi3onj17ptJFoGiRIoz94w/mzp/PvL//xsnRkfFjxqiMNbn+5fiWP3VXfdI8cvhwGjVsiKamJvfu3WPbjh1ERERgampKwQIFWDBvHh5vaSXRsUOH9JgnTMiIeebM7GMuWpSxY8cyd+5c5s2bh5OTE+PHjVOJuXbt2kRGRrJw4UJCQkLw8PBg+rRpyvEZlTFv354Rc8GCLPj7bzw8cq5FEEDF6lWIjopm7ZKVhIeFkdfNlV8njFLuY+Gh4YQ8f6GSZ8CPGS0Db9+4xaF9gVjb2jB/jX+OxvY+atSuSVRkFEsWplceunm4M2HaJOxedr8ODQnl+bOMAdMdHB34a9okZk6dwcZ1G7C0tqLPwL5UrZ7xIzU+IYEpEybz4uUkPnldXBg+egQ1amc+furn5G3twqxmGQ9eeldMf0iw4+oxxh5YklW2z6JMlQrERsWwZcV6IsPDcXRxpt8fw7CyTa88jAwLJzQ4Y5D3wB17SU1NZdnshSybnVFpXaFmFX4YmF7JfWDrblKSU5g9ZrLKZzVp14Km7TOfDOl91Khdk8jISPwXLlbuPxOnT8bu5TGZ2f4zcfpkZk6ZzoZ1/2BlbUXfgf2oWiNj/wl5EULndhkPA1ctW8mqZSsp5lucWX+nV6qEhYbxx4hRhIaEYmRsjEc+DybPmKo2s+vH6lC/AYnJSUxY5k90bBw+Hu7MHDBYpbXTs9BQlSEr1h/YT3JKCkNmz1BZ149NmtG1afoQEz7u7kzs2YfZ69eycPMmHKyt6d/2O+qVUx2bNkfK0LARiUlJTPD3IzouFh8PD2YOGapahpBQNDQyWvms37c3vQwzpqmWodk3dG3+LQBhUVGMnDeHkIgIjA0N8XR2ZsbgXyjzWgvsj9GxXbv068iUKenXkYIFmTV1qkoLumfPn6u0TipauDBjf/+duQsWMG/hwvRr3+jRKsM/vI2mpib37t9n286dRERGYmpikn7tmz37rde+d9GhYeOX22Mx0bGx+Hh4MvOXYW/sUyGq+9S+PenbY7pqZfOP3zSna/P0c9g/+/YC0G3MaJU0I7p2o1GVqh8Ua/r1QfX4/mvapGyP77+mTWbm1OlsXLcBK2sr+gzsp3J9CHkRwvffdVL+vXr5SlYvTz++Z85PnxAtNiaW+bPn8iL4BXlMTKhavSo/dv/pg1vPVqlZjaioKFb4LSU8NAwXd1f+mDQe25ddrMNCwwh+457wj0njmT9jNts2bMbCypKf+/akYrWMe8K2HdujoaHBkr8XE/oiBFNzM8pUKEenrl2UaW5cu86QXhnXm79nzgWgZr06DBw+5IPK8qX6f5619EuloZA2mkII8cWaFPjurfq+VAOrtuPWi4e5HcZH8bR2Jjo8d1vk5IRX3VT/y/KYmLxzy7gvmY+9B8+j3n1mvi+VrYkVFWZn3SXtv+BIj3kcvXsht8P4aOXdivAiOvOZB/8rrPNYEHX0ZG6H8dFMypcmKuh0bofx0UxKlSD6xYu3J/yC5bG2JurU2dwO46OZlCxOcNS7zxD8JbIxseRuyOO3J/zCuVk5vj3RF+ja87u5HUKWvG1zbpbt/5L/r1ELhRBCCCGEEEIIIYTIRdJNVQghhBBCCCGEEOIrpYF0U/3SSMs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKU0NaYf1pZEtIoQQQgghhBBCCCHEZyKVcUIIIYQQQgghhBBCfCbSTVUIIYQQQgghhBDiK6WhIbOpfmmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UpnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8pDaSb6pdGWsYJIYQQQgghhBBCCPGZSGWcEEIIIYQQQgghhBCfiXRTFUIIIYQQQgghhPhKachsql8caRknhBBCCCGEEEIIIcRnIpVxQgghhBBCCCGEEEJ8JtJNVQghhBBCCCGEEOIrpSndVL84GgqFQpHbQQghhBBCCCGEEEKInPcg7Gluh5ClvBb2uR1CrpCWcUII8QVbGrQjt0P4aB1K1SciOjK3w/goZnlMWXN2b26H8dFaFa9F5LI1uR3GRzFt34qVZ3bndhgfra1vHZad2pnbYXy09iXrcfTuhdwO46OUdytChdndcjuMj3akxzzWntuX22F8lJbFahK1679dBgCTujUJuHkqt8P4aNXylWRS4IrcDuOjDKzajv03gnI7jI9WI3+p//y1r61vHeYc/Se3w/ho3cs3z+0QxFdCKuOEEEIIIYQQQgghvlIym+qXRyZwEEIIIYQQQgghhBDiM/molnGnT5/m6tWraGhoUKBAAXx9fXMqLiGEEEIIIYQQQgghvjofVBkXHBxM69atCQwMxMzMDIVCQWRkJNWqVWP16tVYW1vndJxCCCGEEEIIIYQQ4j1pIN1UvzQf1E21V69eREVFcfnyZcLCwggPD+fSpUtERUXRu3fvnI5RCCGEEEIIIYQQQoivwge1jNu1axf79u2jQIECymUFCxZk9uzZ1K5dO8eCE0IIIYQQQgghhBDia/JBlXFpaWno6OioLdfR0SEtLe2jgxJCCCGEEEIIIYQQH09TZlP94nxQN9Xq1avTp08fnjx5olz2+PFj+vXrR40aNXIsOCGEEEIIIYQQQgghviYfVBk3a9YsoqOjcXV1xcPDA09PT9zc3IiOjmbmzJk5HaMQQgghhBBCCCGEEF+FD+qm6uzszJkzZ9i7dy/Xrl1DoVBQsGBBatasmdPxCSGEEEIIIYQQQogPpCHdVL84H1QZ90qtWrWoVatWTsUihBBCCCGEEEIIIcRX7Z0r42bMmPHOK+3du/cHBSOEEEIIIYQQQgghxNfsnSvjpk6d+k7pNDQ0pDJOCCGEEEIIIYQQ4gsgs6l+ed65Mu7u3bufMg4hhBBCCCGEEEIIIb56HzSb6itJSUlcv36dlJSUnIpHCCGEEEIIIYQQQoiv1gdVxsXFxdGlSxcMDQ3x8fHhwYMHQPpYcX/++WeOBiiEEEIIIYQQQgghPozGF/zv/9UHVcYNHTqU8+fPExgYiL6+vnJ5zZo1WbNmTY4FJ8T/s+vXrzN+/HgSExNzOxQhhBBCCCGEEELkkA+qjNu0aROzZs2iYsWKaLw2EGDBggW5fft2jgUnxP+r6OhomjVrhpubG3p6ejm2XldXV6ZNm/bB+e/du4eGhgbnzp3LsZiEEEIIIYQQQoj/J+88gcPrXrx4gY2Njdry2NhYlco5IXLC0aNHqVSpErVq1WLXrl3vnf/3339n06ZN/6kKpI4dO/LDDz/QunXr3A5F/Iec2nuY4zsCiImIwtrRjlrfNSWvt8db8z28cYdlY2Zj7WTHj+MGKZefDTjGxUNBvHj0DAA7NyeqtmyAo4fLe8UzMXIIbu7u9BvQj+LFi2eZ/szpM0ybOo27d+5gZW1F+/bt+ebb5ippDuw/wPx583n86BGOTk783L0bVatVU0mzft16li9bRmhIaKafGxoayuyZszhx/ATR0dEU9y3OgEEDyZs3r8p6Ll64wNw5c7l86TI6OjpYOtnSfmh3dHR131r2k3v+5fDW/cRERGLtZE+9Ds1xLeCZadr7126zZ+VmQp48IzkxGTNrC0rWqED5BtVV0h3dEUDQ3kNEhoRjmMcInzLFqdmmMTq6Om+N50MpFAoW/BvAprOniU6Ix8fBiUH1GuJhrX4PkJk9ly8yfOM6Kuf3ZlLLtirvBUdFMevAHo7evklicgp5LS0Z3rApBewdPkVRVATtOcTRbfuJjojCxsmOOh2a4/IOx8qD63fwHz0DG2d7uv055JPH+bpTew9zbPsB5fFdu32zdzu+r99h6ZhZ2DjZ8eP4wcrlZw4c4+LhIF48fAqAnZsz1Vq9+/H9oQ5s3c3O9ZuJCIvA0cWJtt06k79QgUzTnjp8goDtu3lw5x4pySk45nWiyXctKVyymDLNwZ37OLLvII/vPwTA1dOd5p3b4O6V75OW410UtfekbfHaeNvkxcrIjF92zOXQ3fO5HZbSid3/cnjrPmIiIrFxsqdex2+zOU/dYs+Kzbx48pzkxCTMrC0oVbOi+nlq+wFOvjpPmaSfp2q1afLpz1O7drDx6BGi4+PwcXFl8Lct8cjmXHLg/Dn89+7mYcgLUlJTcba25rtqNahfqkym6f327mbOti20rlKNAd98m+NlCNy+l70bthMZFoFDXkda/NiefIW8M0179mgQB3fs49Gd+6QkJ2Of14mGbZvjU6KISrq4mFg2L1vL2aOniIuJxcrWmuZd2lG4VLEcj/+VK4FBnN9zjPjIaMwdbCjbsjb2+TI/pzy5fo/tU5aqLW8xqjtmdlZqy28HXeLAwg24FPWidvdWOR77Kwe372Xfhh1Ehkdgn9eRFj9+h6dP1tvi0M79KtuiQdtvKOibsS2mDh3DzUvX1PL6lCxKj5GD1JZ/Kv/F6975A8c5s/MQsRHRWDraULltAxzzu70135Ob91n/5wIsHW1pN7qXcnlqSiqntgdy9chZYsKjMLe3okKLurgWzv8pi/HFkHqaL88HVcaVKlWK7du306tX+s79asMuWLCAcuXK5Vx0QgCLFy+mV69eLFy4kAcPHqj9YP4abdiwIbdD+M9JTk5GR+fT3ex/6a4cP8ve5Zuo2+lbnPO7cebAUVZP/JufJvyCqZV5lvkS4uLZMm8lbj75iImMVnnv/tVbFCzni1N+N7R1tDm27QCrJsyj659DMLEwe+d4ejbvyJJlS+nXuy+r163Bzs5OLf2Tx4/p16cvTZo1ZdQfo7hw/jx//fkXZubmVK+R/mPv4oULDB/2K127/UTValUJDAhk2C/D+HvRAgoVKgTA3j17mTp5CoN/GUyRokXZuGGjyucqFAoGDxyEtrY2EydPwsjIiJUrVtKre09Wr1uDgYGB8rP69OpDx86dGDhoIBZmFizeufadbmQuHj3NziX/0LBLK/J6uRO07zDL/5xDz8nDMbOyUEuvq6dLmTqVscvriI6eLg+u32bLwtXo6ulSsmZFAM4fDmLfqs00/akdzvndCX0azMZ5ywCo17G52jpzytJjh1l14hgjGjcjr4Uliw8fpNeKJaz7uTdGb2m1+zQighn7dlPMWf2HWFR8PD8uWUgJFzemt26PuZERj8LDyKOnn8mactalY2fYtXQDDb5vgbOXO6f3HWHFn3PpMWkYpplsn1cS4uLZNGcZ7oXyqx0rn9rlY2fYs2wj9TpnHN+r/ppPt7+GvvX43jxvBW4++YjN5Pj2KeeLUwdXtHV1OLZtPyv/nMtPE3556/H9oU4cPMLK+X607/Ej+Xy8CNyxlynDxzL276lY2lirpb9x6Qo+vkVp3qkthsZGHN4TwPTf/+S3aeNx8Uz/QXbtwmXKVq2IZ8H86OjqsmPdZiYNG8PY+VMwt7L8JOV4VwY6etwKfcSOa0cZV69brsbypvTz1PqX5ykPTu07zLLxs+k15bdMz1M6enqUqVsF27wO6Orpcf/6bbYsWIWOni6lXp2nDp1k76rNNO32HXlfnqc2zE0/T9XvmPMVWK8s3b+XlQEHGNGuPXmtbVi8Zxc958xi/a8jMNLP/JxiamhI51p1cLW1Q0dbi0OXLjF65XLMjfNQrkBBlbSX799n09Ej5HNw/CTxn/r3GOsWLKPNz53xKJifQzsPMOv3vxg55y8sbNQrpW5eukaBYoVo2qElBkZGHNt3kDl/TGLI5NHk9XAFICU5hem//UkeUxO6Du2NuZUF4S/C0Df4dOfY20GXObZ2NxXa1sfWw5lr/55h18yVtPi9O8YWplnmazG6B7r6GdcT/TyGammiQyM4sX4vdp6f9jfAqUPHWb9wOa27dcK9YH4O7zrA7N8n8tvsCZlui1uXr+FdrBCN27fA0Dh9W8z9YzKDJ43C+eW26Dqsr8pkh7FRMYzrPQzfCplX/H4K/8Xr3o0TF/h35XaqtW+MQz4XLgaeZPOUJXw3ti8mlmZZ5kuMS2DPgnU4F/AgLipG5b1jG/Zy7dg5anRqhoW9Nfcv3WDbzOW0/LUbNi6f/kGgEG/6oG6q48eP59dff+Xnn38mJSWF6dOnU6tWLfz9/Rk7dmxOxyj+j8XGxrJ27Vp+/vlnGjZsiL+/v8r7/v7+mJmZqSzbtGmT8gezv78/o0aN4vz582hoaKChoaFcx4MHD2jSpAnGxsaYmJjQsmVLnj9/rlzP77//TrFixVi2bBmurq6YmprSunVroqMzLkaJiYn07t0bGxsb9PX1qVixIkFBQcr3AwMD0dDQYPfu3RQvXhwDAwOqV69OcHAwO3fupECBApiYmNCmTRvi4uKU+apWrUrfvn2Vfy9fvpySJUuSJ08e7OzsaNu2LcHBwdl+d8HBwTRq1AgDAwPc3NxYsWKFWprIyEi6du2KjY0NJiYmVK9enfPn3/2pfWpqKl26dMHNzQ0DAwO8vLyYPn16juTx8/OjQIEC6Ovr4+3tzZw5c5Tvveouu3btWqpWrYq+vj7Lly8nLS2N0aNH4+TkhJ6eHsWKFVNpTfkq34YNG6hWrRqGhoYULVqUY8eOKdOEhobSpk0bnJycMDQ0pHDhwqxatUr5/vz583F0dCQtLU0l3saNG9OxY0fl31u3bqVEiRLo6+vj7u7OqFGjPunM0yd2BlKsahmKVyuLlaMttds3w8TSjDP7j2Sbb+fidfiU88XR01Xtvabd21OyVsX/sXfX0VEdbwPHv3F3d3fcNTjBobgXihQrpdCipdBSaH9tkdIWKcWLu0uwIMGCQ4KFQLAAcSOy2X3/WNhkk00IJCGUdz7n7DnJ3bl35+7Vfe4zM9i6OGBpb0PbwT2QSWXcv3Hnrerj4eHB2HFjsbGxYcvmLSrLb92yFVtbW8aOG4ubmxsdO3WifYf2rPn3X0WZ9evWU6t2LQYMHICrqysDBg6gZq2arF+7XlFm3Zq1dOjYgY6dOuHm5lbgcx9GR3P92nUmTJyAf4A/Lq4ujJ84nvSX6Rw8cECxnLlz5tG9Zw8+HfAp7h4euLq6ElCnKprFCPiG7jlCtSZ1qd60HlYOtrT5tCvGFmacDz6hsrydmxOV6tfA2skOM2sLKjeshWclPx7czO324eHtKJy83anUoCZm1hZ4VvajYr0aPL4X/cb6vCuZTMb6c6cZ0CCQJr7+eFjbMK1DZzKyszlw/WqR8+ZIpXy3fTNDApvgYFYwWLTq9AmsjY35rsMnBDg4Ym9qRi03DxzNC/9RUFrO7DlK1SZ1qPZq+7T6tAsmFmacDz5Z5Hy7/9lAhfo1cPRyLfM65pd7PNXF0sGWlv06Y2xhyoVDRdd579KNVKhXHQcVdf5k5Kvj29Xx1fHd89XxfbuM1gIObt1NYFBTGrVuhr2zPCvO3MqSI7sPqizfe9hA2nTriLuPJ7YOdnQd2Bsbezsunw1TlPl8wpc0bR+Es4cbdk4ODPzyc2QyGeGXr5fZehTXmegbLDm7k5B7l8u7KgWE7jlMtaZ1qdGsPtaOtrQZID9PnTuo+jxl/+o8ZeNkj5m1BVUU56m7ijIP70Th7ONOZaXzVHWelPF5al3IUQa2DKJp5Sp42tszvW8/MrKzOHDhfKHzVffypknlKrjZ2uJoaUWvxk3wtHfg8j3l7nbSMzP4bvUKJvfsjZF+wSBRaTi0fR/1WzSmQVAT7Jwc6D60H2aWFoTsPaSyfPeh/Qjq2h5Xbw9sHGzp9GkPrO1tuXbuoqJMaPAx0lJSGf7tV3j6+2BhbYVngA+O7mWX+Xrt0Gl86lfFt0E1zOysqNsjCEMzE8JDwoqcT8/IAH0TQ8VLXV3556lUKuXo0m1Ua98YI6vCHz6UhiPb91GvRWPqv9oW3Yb0w9TSguP7Dqss321IP1p2aYertwfW9rZ07N8Daztbrp27pChjYGSIiZmp4nXz8nW0dbSp1qBWma5LXv/F697FgycJCKxOhUY1Mbe3plHvdhiam3DtyNki5zuychs+dSpj5+lU4L2bpy9Rs10j3Cr7YGJtTqWmdXCp4MXF/UV/D8KHacGCBbi5uaGrq0v16tU5cUL19eu1kJAQpd9mixYtKlBmy5Yt+Pv7o6Ojg7+/P9u2bSur6gPvGIyrV68ep06dIj09HQ8PDw4ePIiNjQ2nT5+mevXqpV1H4f+xDRs24OPjg4+PD3379mX58uXIZLJiz9+jRw/GjRtHQEAAT58+5enTp/To0QOZTEanTp2Ij48nJCSE4OBgIiMj6dFDOe09MjKS7du3s3v3bnbv3k1ISIjSiMHjx49ny5YtrFy5kosXL+Lp6UlQUBDx8fFKy5k+fTp//vknoaGhPHz4kO7duzNv3jzWrl3Lnj17CA4O5o8//ih0PbKyspgxYwZXrlxh+/btREVFMWDAgCLXfcCAAdy/f58jR46wefNmFixYoBTAk8lktG3blpiYGPbu3cuFCxeoVq0azZo1K1D/wkilUhwdHdm4cSPh4eF89913TJ48mY0bN5ZoniVLljBlyhRmzpxJREQEs2bNYurUqaxcuVJpWRMmTGD06NFEREQQFBTE77//zuzZs/ntt9+4evUqQUFBdOjQgTt3lINHU6ZM4euvv+by5ct4e3vTq1cvRaAsIyOD6tWrs3v3bq5fv87QoUPp168fZ8/KL/7dunUjNjaWo0ePKpaXkJDAgQMH6NOnDwAHDhygb9++jB49mvDwcBYvXlymDytyJBKeRj3CrYKP0nT3Cj48unO/0PmuhJwl4VksgZ2DivU52ZlZSHOk6BkW/YOksPrUqlOba1dVB3GuXbtGrTrKT4nr1K1DRHiEYttcu3qN2rXzlalTR7HM7Oxsbt68Se18y8n7uVnZ2QBo58nq0tDQQEtTiyuX5YHo+Ph4bly/jrmZGYM/G0Srlq3o27evUnCsMBKJhKdRD/GopNzszrOSH9G3o944P8DTqIc8vH0PV//cZnYuvu48jXrIo7v35XV8FsvtSzfwrhZQrGW+iyeJCcSlplLHPbfZmramJtVcXLn66GGR8y49cQxTAwM6VlV9T3Di9i387ByYuGUDQXP+R98lC9h+segfbKUhRyLhSdRDPCopNzlyr+TLoyK2z6VjZ0h4FkvjLq3KuooFvD6e3Cvmq3NF3yKP78shZ0l4/g7Ht4FBSapbKEl2Nvfv3COgWmWl6QHVKhEZcatYy5BKpWS8fImBkWGhZTIzs8iRSIos8/+dRCLhyb2HeOY/T1X24+Hte8VaxpPX5ym/3POUs48HT+6pOE9VrVBqdc/vcVwcccnJ1PHNXRdtTS2qeXhyNap451yZTMa5Wzd58PwZ1TyUm+n+smkj9f0DqO2jupliSUmyJUTfjcKvakWl6X5VK3Lv5psffMHr4yIDfcPcff7K2Yu4+3qxbuEKvuk7nB9GTGDfxh1Ic6RFLOnd5UhyiI1+ioO/crNHB393nkUWfb3Y+uPf/PvNHPbMWcWTWwW32aXdx9E10se3QeHdXJSG3G2hvL/6Va3AvYi33BZGhZ9HQ4OPUT2wLjqFZG2Wtv/qde/5/Sc4Byh3N+AS4MnTyAeFznfjxAUSn8dTu2NTle/nZEvQyPdQVVNbiydFXEs/JlpofLCvt7VhwwbGjBnDlClTuHTpEg0bNqR169ZER6t++BMVFUWbNm1o2LAhly5dYvLkyYwePZotW3KTBE6fPk2PHj3o168fV65coV+/fnTv3l3xG7AsvFMzVYCKFSsW+GEsCKVt6dKl9O3bF4BWrVqRmprK4cOHad68ebHm19PTw9DQEE1NTaWmccHBwVy9epWoqCicnORPTlavXk1AQADnz5+nZs2agPyiumLFCoyMjADo168fhw8fZubMmaSlpbFw4UJWrFhB69atAXkQKTg4mKVLl/LNN7n9QPz444/Ur18fgEGDBjFp0iQiIyNxd3cHoGvXrhw9epQJE1T3xfDZZ58p/nZ3d2f+/PnUqlWL1NRUDA0L/uC4ffs2+/bt48yZM4rgxdKlS/Hzy71ZPXr0KNeuXeP58+eKQSJ+++03tm/fzubNmxk6dOgbv18tLS2+//57xf9ubm6EhoayceNGunfv/s7zzJgxg9mzZ9O5c2dFmddBrbzZZ2PGjFGUeV3/CRMmKPra+9///sfRo0eZN28ef/31l6Lc119/Tdu2bQH4/vvvCQgI4O7du/j6+uLg4MDXX3+tKPvFF1+wf/9+Nm3aRO3atTE3N6dVq1asXbuWZs2aAbBp0ybMzc0V/8+cOZOJEycq6uru7s6MGTMYP34806ZNe+P3+rbSU9KQSaUYmhgpTTcwMSI1MVnlPPExLzi6YTf9pn6BukbxLoJHN+zGyMwEt4Ci+9YorD4W5uaciY1TOU9cXBwW+bKizM0tyMnJITExEUtLS+Li4jC3yFfGwpy4OPkyExMTycnJwdxcuWla3s91dXXFzs6OBX/+xcTJk9DT02PtmrXExcURGxsLwOPHjwH58Tz6yy/x9vbmcPAhVvz4B6N+nYyFXeH9paUnpyJ9y23x2m8jviUtORVpTg5NurahetN6ivcq1qtBWnIqS6fNRYYMaY6Umi0aEtixZZHLLIm4VHnzDvN8wRlzAwOeJiUWOt+Vhw/Yefki/w4ZXmiZxwkJbL1wnt616zKwfiA3Hj9i9sG9aGlq0rZSldKovkrpyar3TUMTIyILaYIT9/Q5h9ftYuD0L4t9rJSm18eTgap9KqmI43v9Lvp/N7rYdT6yfjdG5ia4VSibvnNSklOQSqUYm5kqTTcxM+V6fGKxlnFgyy4yMzKpFViv0DKbl63BzMKcgHzBDSFX7nnKWGm6oYkRKW84T/06fErueapbW2o0q694r1L9GqQnp/LPd3MU56laLRoS2KkMz1Mp8vqaGykfH+ZGxsQkFP1gMfXlS9p8N5ksiQQNdXUmdOtB7TxBvYMXw7j56CErx40vYiklk6o4LpSbcRqbmZB8MalYyzi0bS9ZGZlUb5j7ICr22XNuXQ2nVuN6jJo+nuePY1i/aAXSnBza9upcxNLeTUZqOjKpDH1j5euFnpEBL5PTVM6jb2JIw77tsHSxIydbwp2z19gzdzXtxn6Knbc8gy/mbjS3Tl2i89TPS73O+b3eFkam+baFqQnJiYnFWsbh7XvJysykegPVTVDv347kyYNH9B09pKTVLbb/4nXvZUo6MqkUfWPl3zh6JkakXVcdGE2IieXU5v10m/R5oXV2ruDFpQMncfB2xdTanOiISO5dikAmLZsgtVB25syZw6BBgxg8eDAA8+bN48CBAyxcuJCffvqpQPlFixbh7OysGMjQz8+PsLAwfvvtN7p06aJYRosWLZg0aRIAkyZNIiQkhHnz5im1kipNxQ7GJScXfXHOy9jY+M2FBOENbt26xblz5xT9p2lqatKjRw+WLVtW7GBcYSIiInByclIE4kA+GrCpqSkRERGKYJyrq6siEAdgZ2enyC6LjIwkOztbEWQDeaCpVq1aREREKH1epUq5Hbna2Nigr6+vCMS9nnbu3LlC63vp0iWmT5/O5cuXiY+PVzSRjI6Oxt/fv0D5iIgINDU1qVGjhmKar6+vUpPeCxcukJqaioWFcuDi5cuXbzUq8qJFi/jnn3948OABL1++JCsriypVqrzzPC9evODhw4cMGjSIIUNyb1YkEgkmJso3SHnXLzk5mSdPnihtD4D69esXaHqbd3vY2dkB8ma9vr6+5OTk8PPPP7NhwwYeP35MZmYmmZmZGOQJSPTp04ehQ4eyYMECdHR0WLNmDT179kTj1cX/woULnD9/XikTLicnh4yMDNLT09FX0dTl9efk9dYj6ebrz0yG6s5apVIp2/9aTcMurYoMLOV1evdhbpy+RN8pI9Esbkfc+esjkxXd55qK8gDKU/OXKbiO+T8i7+dqamry0y8/M3PGj7Ro2hwNDQ1q1qpJ3Xq5P+5lUvnnftK5M+07tAegds1a7D8azMVjp2nRq2Ph66C6msAb1h0YNH0MWRmZPLxzn+B1OzC3taJSffk+HnXjNse3HaDdoB44eroQFxPLvpWbOWZqTOMurd9cn2LYf+0KP+3dpfh/bs8+r1ZFxXdecAUBSMvM5LvtW5jctgOm+oVnBkhlMvzs7RnRtAUAPrZ23It9zpYL58o0GJdLxb6mYpWkUilb/1xF466ti32slJUCu49MpnI7SKVStv21isAuxa9z6K7D3Dh9kX7fjir+8f2OCq6GTMXKFXTm6Em2/7uJ0dPGY2yquv+pvZt2cPbYSSb88n2xBlr5f6/AufLNHXwP/v4rMjMyeXTnPgfX7sAi33kqZNt++XnKy5X4mBfsXbEZwy37aFJK56l9Yef4aUPuj6K5n494tSr5r39vbkWhr6PDmvGTSM/M5PztW8zdvhUHC0uqe3kTk5DA7C2b+WPEKHTeQ3+0Bc+zqs9J+Z0PCWX32q0MnzpW6biQSWUYmRrTd9Rg1DXUcfF0Iyk+gYNb95RJMO5dmNpaKg3UYOPhRFp8EleDT2Pn7UJWRiZHl22nYb926L4hI7805T8Girrm5XU+JJQ9a7cx7NuvCgT0Xgs9eAx7F0dcvd88cELp+y9e9wqepFRtCalUyv7FG6jTqTlmKgb/eK1R73YcXrGN1ZPngpoaJtbm+DeoRvjJi4XOI7wfhf0OUvVbKCsriwsXLjBx4kSl6S1btiQ0NFTl8k+fPk3LlsoPhoKCgli6dKmi3/HTp0/z1VdfFSjzOoBXFoodjDM1NS32CBw5OTnvXCFBeG3p0qVIJBIcHHI7zJXJZGhpaZGQkICZmRnq6uoFmq1mv2qGVpTCggL5p+cfEEBNTU0RCFMECooRcMi7HDU1tSKXm19aWhotW7akZcuW/Pvvv1hZWREdHU1QUBBZWVmFrp+quuUllUqxs7Pj2LFjBd7L3w9fYTZu3MhXX33F7NmzqVu3LkZGRvz6669FpvO+aZ7X38OSJUsKNEnUyPeky0BFc6p32R55P3f27NnMnTuXefPmUbFiRQwMDBgzZozSd92+fXukUil79uyhZs2anDhxgjlz5ijel0qlfP/990pZe6/pFtIs4aefflLKGASYNm0a7m3f3KeIvpEBaurqBTKv0pNSCmTTAGS9zORp1ENiHjzmwEp5sFsmk4FMxqz+4+g9YRiueZoGnNlzlFM7D9F74nBsnN/cwW1h9YlPSCiQ2faahYWFIsPttYSEeDQ0NDB5tT9aWFgQn79MfDzmrzLqTE1N0dDQKLCc/J/r5+fHv2vXkJqaSnZ2NmZmZnz26UB8/eUZEZavOn13c1MescvK3pak2ISi191Y3t9NaqLy0+a0pFSV2yIvs1edQ9s4O5CalMLRzXsVP3IPb9xD5Ya1FNlyNs4OZGdmsnPJOgI/CSrQx867aOjtS4CDo+L/rFfX8ri0VCzzPJRISE/D3EB1E8DHCfE8TUpk3Ia1imnSV+ejujOns2n4aBzNzbE0NMTNUrnDfldLK47eDC/xehRF3/jVvpkvoywtORVDY1XHSgZP7kXz9P4j9q7YDOQeKz/0GUO/SSPKLJNMUWfF8ZRvn0pWvU9lvczg6b2HxNx/zP6VW5TqPLPfWHpPHKaU3Xp6zxFO7Qymz6QRxTq+35WRsRHq6uokJSQqTU9OTMLETPUP19fOhpxi+byFjJg8loBqlVSW2bd5J7vXb+Wbn77DqQz7xfoY5J6n8h8HKQWyZ/J7fZ6ydXYgNTGZI5v25DlP7aZyYC1FtpytswNZmVns/HstjUrpPBVYoRIVXFwV/2e96sYgLiUZyzwP7BJSUrAwKjo5QF1dHadXI0P7ODpx/9kzVhw6SHUvb24+jCY+NYX+v/1PUT5HKuVS5F02nQjh1Ozf0SiF9TEs5LhISUwuNOj8Wtjx06yav4ShE0fjV0W5aaWJufx6qK6RW0dbJ3uSExKRZEvQ1HrnxlEq6Rrqo6auRnq+LLiXKWnoGRe/6bu1uyN3z14DIOVFAqlxiRz4K7df2Nf3t/8Mn0H3H0ZibFV6/Yy+3hbJ+bdFUlKhwbXXwk6c4d/5/zB44hf4VlHdLDsrI5OwE2do16fsBl1S5b943dMz0kdNXb3AwEMvk1PRNyl4/5Gdkcnz+495Ef2UY//uUqrz/EHf8sm4gTj5e6BvbEj70f2QZGeTkZqOgakxpzYdwLiIgZA+JhqyD3c01cJ+B02fPr1A2djYWHJycrCxsVGabmNjQ0xMjMrlx8TEqCwvkUiIjY3Fzs6u0DKFLbM0FPtMnLd/pPv37zNx4kQGDBigGD319OnTrFy5UmVaoCC8LYlEwqpVq5g9e3aBKHaXLl1Ys2YNo0aNwsrKipSUFNLS0hSBmcuXLyuV19bWLhAg9vf3Jzo6mocPHyqy48LDw0lKSlJqylkUT09PtLW1OXnyJL179wbkgcCwsDClwRdK6ubNm8TGxvLzzz8r6hoWVnTfSn5+fkgkEsLCwqhVSx7MuXXrFol50uyrVatGTEwMmpqauLq6vlPdTpw4Qb169RgxYoRi2puy6t40j42NDQ4ODty7d0/RB1txGBsbY29vz8mTJwkMDFRMDw0NVXwHxXHixAk6duyoaB4tlUq5c+eO0n6hp6dH586dWbNmDXfv3sXb21upv8xq1apx69YtPD09Cyy/MJMmTWLs2LFK03R0dNhwVXWnwXlpaGpi5+ZI1PXb+NbM/aEadf023tUL3hTq6Okw5CflZjcXDp3iQfgdOo8egGmem9vTu49wakcwvSZ8jr178UYxK6w+586eI7BRoMp5KlasyIkTyh3onj1zFj9/PzQ15ZeqipUqcvbsOXr16Z1b5uxZKr7KdNTS0sLX15dzZ8/RuEmTN37u6ybe0dHRREREMHS4vBmMnb09VlZWPHig3C9JbMxzvCoXzETNS1NTEzs3JyKv3cS/Vm7fWJHXbuJb4y2azclk5GTnDviRnZVVMANQXZ236ELzjQx0dJRGSJXJZFgYGnL23l18bOUZpNk5Ei4+uM+oVxlt+blYWrJu6EilaQuPHSY9K5NxLdtg86pZXCUnZx7ExSqVi46Lw9bEtPRWSAUNTU3s3Zy4d/UWfjVzt8+9azfxqV5w++jo6TL8F+Unr+cPniQq/Dbdx3yGqVXZj9aZezzdUj6+r90q5PjWZejPyl0eXDh0kvs37tDly4EFju+T2w/Sa8KwYh/f70pTSwtXL3duXLpK9TyjCIZfukqVOjULne/M0ZMsm7uAYRPHULm26j4I923awa51Wxg381vcyiXj5L9FU1MTe3cnIq/exL9WFcX0yKs38a2hOtipigx5306vZWdmoaamHKBSL+3zlK6u0gipMpkMC2Njzt66iY+j/B4pWyLhYuRdvmhfjCzmPGQymSK4V9Pbh3UTpii9/8Pa1bja2NC/WctSCcQBaGpp4uzpRsTl61Stl3scRFy+Vuj+DvIsrFW//82gb0ZRsWbBvtQ8/Lw5FxKKVCpVBEGfPY7BxNy01ANxABqaGlg62/E44h5uVXP7JnsccQ+Xyj5FzKks7mEMeq+CLSa2lnT5TnkU4rAdR8nOyKRuj1YYvCGI/7YU2+LSdarUzd0WNy9fp9IbtsW/85cw8OuRKrfFaxdOnkWSLaFW4/qFlikL/9XrnrWrPdE37uJZPbdv3Ojwu7hXKXgfpq2rQ58Zo5WmXT1ylkcRkbQZ2RuTfEFbTS0tDM1MyJHkcPfCdbxqim4Nylthv4OKUpwEjDeVzz/9bZdZUsU+Gzdq1Ejx9w8//MCcOXPo1auXYlqHDh2oWLEif//9t1KfToLwLnbv3k1CQgKDBg0q0DSxa9euLF26lFGjRlG7dm309fWZPHkyX3zxBefOnSsw4qqrqytRUVFcvnwZR0dHjIyMaN68OZUqVaJPnz7MmzcPiUTCiBEjaNSokVLTx6IYGBgwfPhwvvnmG8zNzXF2duaXX34hPT2dQYMGldZXgbOzM9ra2vzxxx8MGzaM69evM2PGjCLn8fHxoVWrVgwZMoS///4bTU1NxowZg56enqJM8+bNqVu3Lp06deJ///sfPj4+PHnyhL1799KpU6difQ+enp6sWrWKAwcO4ObmxurVqzl//nyBjKK3nWf69OmMHj0aY2NjWrduTWZmJmFhYSQkJBQ4Uef1zTffMG3aNDw8PKhSpQrLly/n8uXLKkeSLap+W7ZsITQ0FDMzM+bMmUNMTEyBIG2fPn1o3749N27cUATuXvvuu+9o164dTk5OdOvWDXV1da5evcq1a9f48ccfVX5uYanYxVW7dWN2LFyDnbsTjp6uXDoaSlJcAtWayTOpjm7YTUpCEh2G9UFNXR1rJzul+Q2MDdHQ0lSafnr3YUI276PTiH6YWJorsii0dXXQ1i26rnnrU9/ch1WrV/EsJobOXeTZgn/9+Rcvnj9n+g/yp2Cdu3Rm08ZNzJszl46fdOLa1Wvs3LGTGTNzv68ePXsybOjnrFqxksDGjTh+LIRzZ8/x99IlijK9+vRm+nfT8PXzo2Klimzfuk3pcwEOHzqEqakZtra23L17l7mz5xDYqBF16tQB5BfiPv36smTx33h5eeHt482Kg8uJffyMnmPefGzXa9uUrX+twsHdGSdvN8IOnSIpNp6azRsCELxuB8nxSXQZ2R+AswdCMLE0x8pe/jTuwa1ITu0+TO1Wudddn2oVOL33KHZujjh6uhIX84IjG3fjW71iqWSbqKKmpkbPWnVZceoETuYWOJtbsPzUcXS1tAiqkPuDfdqOLVgbGTOyaQt0NLXwsFZ+qmj06odz3um9a9dj0IolLD8ZQnP/Ctx48pjtl8KY3KZDmaxLXnXaNmHbX6uxd3fC0duNC4dDSYpNoEbzBgAcWreTlIQkPhnR79WxopwtZmBiiKaWVoHpZUlxPLk54ejlysUjp18d3/IfdUfW7yIlIYmOw/uqPL71jQ3RzHd8h+46TMjmvXQa2R9Tq7c7vt9Vy87tWPLrH7h6eeDp503IvkPEPY+lSVv5Q7dNy9aQGBfPkG++AOSBuH9++5Pewwbi4etFUrw8M1VLRxv9Vw/g9m7awbZV6/l8wpdY2lgpyujo6aKb55pXHvS0dHA0yc0AtTe2xMvSkeSMNJ6lFp1lW9bqtW3Glj9XYu/hjJOXO2GHT5IUG0+tFvLj4ODaHSTHJ9J1lPyevsB56mYkp3Ydok6rxopl+lSvSOieI9i5OuLkJT9PHd6wC98aZXue6tWoCcuDD+BkaYWTlTUrgg+gq6VNUPXcgMq0f1diZWLKqFcBuuXBB/B3csbB0gpJjoRT4TfYc/4sE7vL+5w10NXF0175GNfT0cHEwLDA9JJq3qk1y+csxMXTDXc/L07sP0LCizgC28j7od22Yj2JcQkMHCfvh/N8SCjL5yyi+9B+uPl6KrLqtLW10TOQN+cMbNOco7sPsvHv1TRp35LnT2LYv2kHTdoXb0CXd1GxeV2OLd+GlYsd1u6O3DxxkdT4JPwC5YGsc9sOk5aYQpOBnQC4dugMRpammNlZkZOTw92z14i6GEHzz7sB8uCYuYNyM0ltffn1JP/00tK0U2tWzlmIi5c7br6enNp/lIQXcTRsLd8W21duIDEugQFj5UHC8yGhrJy7mG5D+ha6LV4LDT5G5TrVVWajlbX/4nWvWssGHFiyCRtXB+w8nbkWcp6UuCQqNpE/YD+16QCpickEDemGmro6lo62SvPrGxugoaWlND0m8iGpCUlYOduTmpjEme2Hkclk1Gij+kGx8P68ze8gS0tLNDQ0CmSsPX/+vEBm22u2trYqy2tqaiq6bCqsTGHLLA3v9Gjk9OnTKoeCrVGjhqITPUEoiaVLl9K8efMCgTiQZ8bNmjWLixcvUq1aNf7991+++eYb/v77b5o3b8706dOVBh/o0qULW7dupUmTJiQmJrJ8+XIGDBjA9u3b+eKLLwgMDERdXZ1WrVoVOaKpKj///DNSqZR+/fqRkpJCjRo1OHDgAGZmpZfubGVlxYoVK5g8eTLz58+nWrVq/Pbbb3ToUPSP1uXLlzN48GAaNWqEjY0NP/74I1OnTlW8r6amxt69e5kyZQqfffYZL168wNbWlsDAwGKfdIYNG8bly5fp0aOH/Ia4Vy9GjBjBvn37SjTP4MGD0dfX59dff2X8+PEYGBhQsWLFN2Ycjh49muTkZMaNG8fz58/x9/dn586deHl5FTlfXlOnTiUqKoqgoCD09fUZOnQonTp1IilJuSPlpk2bYm5uzq1btxSZka8FBQWxe/dufvjhB3755RdFxlZZnh/961QlPSWNk9vkNydWjnb0/GYoJpbyp4GpiclvbGKZ34VDp8iR5LBl/gql6Q0/CSLwDaNr5a3PwRVbcPfwYO7vcxV99MXFxvIs5pmivL2DA3N/n8e8OXPZvGkzllaWjPt6HE2b5Y6IValyJWbM/JHFCxexeNFiHB0dmfnTLCpUyM0OatGyBUlJSSz7ZymxsbEFPhcgNjaOeXPnER8Xj6WlJa3btmHQYOUgW6/evcjKymLe3LkkJyXj5+fHp1NGYW6r3LRSlYr1qvMyNY1jW/aRkpiMtZMdfSeOUGQkpSQkkxSb27G4TCbj0LqdJLyIQ11dHXMbS1r06kiN5rlPzxt1boWamhqHN+wmOT4JA2NDfKpXoFmP9m+sT0n0r9uAzOxsftm/m5SXGQQ4OPBH7/5KGXTPkpJQf8unhv72DvzSrRcLjgSz9EQI9qamjG3RmlYVK7955hKqULcaL1PSCNl6gNTEJKyd7OgzYZhi+7zLsVLWAupW42VqOieUju/Plesc97bH90n58f37cqXpDTsH0aiU+vfKr3aj+qQlp7JzzWaSEhJwcHHiqxmTsbSRH1dJ8QnEPc/NmDy2N5icnBxW//UPq//6RzG9fvNGDP56FABHdh1Aki3hrx9nK31Wxz7d6NRP9UBC74uvlQt/fpL7AGl0A3mQYW/EaWYeKd9B0CrWq056yqvzVEIyNk529Js4QpH1kpqYpLRPyaQygtfuyHOesqJl746KH/MgP08BHN6wK895qiLNe5bxeapZCzKzs/nf5g2kpKcT4OLKH8NHKWXQxSQkKGU3ZGRl8b9NG3ielIiOlhYu1jb80G8ALasVngFVVmoE1iU1JZU967eRHJ+IvYsjo6Z/g4X1q+MiIZH4F7ndLxzfdwRpTg7rF65g/cIViul1mjVkwFfyIJG5lQVf/jCRTf+sZsaoSZhamNG0QyuCupTdtvCoGUBmWjoX9xwnPSkVc3trWo3qjZGFKQDpSamkxefeS0lzcji7OZi0xBQ0tTQxtbciaFQvnCsW/56ttNVoWIe05BT2vtoWdi6OjJj2DRavmmcnxyeS8CL3HHVyv3xbbFi0kg2Lco/pOk0b0v+r3EEnnj1+SmT4bb74QfVAbWXtv3jd865diZdp6ZzdeYT0pBQsHGzo+NWniialaUkppMQlvtUyJdnZnN4WTNLzBLR0tXGt5EPQkO7o6Jfvg5v35iMZqEJbW5vq1asTHBzMJ598opgeHBxMx46qM6Lr1q3Lrl27lKYdPHiQGjVqKLovqlu3LsHBwUr9xh08eJB69QofNKqk1GT5O9wqBh8fH9q1a8fs2co3PuPGjWP37t3culW8IeoFQRCEoq06v7e8q1Bi/Wu2ITGleKPCfahMjUzYcCm4vKtRYj2qtiBp9YbyrkaJmPTrwdqLB8q7GiXWu1oQq8MKf3DxX9GvRmtCo66WdzVKpJ5bJer/NezNBT9wp0YuYuPlQ+VdjRLpXqU5yfv/2+sAYNyqOUfvFN2lyH9BE68a/Has+K0LPkRfN+7D4dvny7saJdbMu+Z//trXu1oQC0K3lHc1SmxEvffb719pSSnmqMDlwaiY/ZW/tmHDBvr168eiRYuoW7cuf//9N0uWLOHGjRu4uLgwadIkHj9+zKpVqwCIioqiQoUKfP755wwZMoTTp08zbNgw1q1bpxhNNTQ0lMDAQGbOnEnHjh3ZsWMH3377LSdPnizQj3lpeafMuLlz59KlSxcOHDigaNZz5swZIiMj2bLlv3+ACYIgCIIgCIIgCIIgCB+WHj16EBcXxw8//MDTp0+pUKECe/fuxcVFPoDT06dPiY6OVpR3c3Nj7969fPXVV/z111/Y29szf/58RSAOoF69eqxfv55vv/2WqVOn4uHhwYYNG8osEAfvGIxr06YNd+7cYcGCBdy8eROZTEbHjh0ZNmyYooN5QRAEQRAEQRAEQRAEoZyV5mg6H4ARI0YoDQiYV/4+5EE+BsLFixeLXGbXrl3p2rVraVSvWN55OB1HR0dmzZpVmnURBEEQBEEQBEEQBEEQhI/aOwfjEhMTWbp0KREREaipqeHv789nn32mssN9QRAEQRAEQRAEQRAEQRDgncYZDwsLw8PDg7lz5xIfH09sbCxz5szBw8Pjjal/giAIgiAIgiAIgiAIwnsik324r/+n3ikz7quvvqJDhw4sWbIETU35IiQSCYMHD2bMmDEcP368VCspCIIgCIIgCIIgCIIgCB+DdwrGhYWFKQXiADQ1NRk/fjw1atQotcoJgiAIgiAIgiAIgiAIwsfknZqpGhsbKw0V+9rDhw8xMjIqcaUEQRAEQRAEQRAEQRCEUiCVfbiv/6feKRjXo0cPBg0axIYNG3j48CGPHj1i/fr1DB48mF69epV2HQVBEARBEARBEARBEATho/BOzVR/++031NTU6N+/PxKJBJlMhra2NsOHD+fnn38u7ToKgiAIgiAIgiAIgiAIwkfhnYJx2tra/P777/z0009ERkYik8nw9PREX1+/tOsnCIIgCIIgCIIgCIIgvCuZtLxrIOTzVsG4zz77rFjlli1b9k6VEQRBEARBEARBEARBEISP2VsF41asWIGLiwtVq1ZFJvv/29GeIAiCIAiCIAiCIAiCILyLtwrGDRs2jPXr13Pv3j0+++wz+vbti7m5eVnVTRAEQRAEQRAEQRAEQSgJkUz1wXmr0VQXLFjA06dPmTBhArt27cLJyYnu3btz4MABkSknCIIgCIIgCIIgCIIgCG/wVsE4AB0dHXr16kVwcDDh4eEEBAQwYsQIXFxcSE1NLYs6CoIgCIIgCIIgCIIgCMJH4Z1GU31NTU0NNTU1ZDIZUqkYnUMQBEEQBEEQBEEQBOGDIhUtGT80b50Zl5mZybp162jRogU+Pj5cu3aNP//8k+joaAwNDcuijoIgCIIgCIIgCIIgCILwUXirzLgRI0awfv16nJ2dGThwIOvXr8fCwqKs6iYIgiAIgiAIgiAIgiAIH5W3CsYtWrQIZ2dn3NzcCAkJISQkRGW5rVu3lkrlBEEQBEEQBEEQBEEQhBIQA25+cN4qGNe/f3/U1NTKqi6CIAiCIAiCIAiCIAiC8FFTk8lEiFQQBEEQBEEQBEEQBOFjlPI0pryrUCgjO9vyrkK5KNFoqoIgCELZmrJvcXlXocRmtv6cFynx5V2NErEyMmfy3kXlXY0Sm9VmGInjvi3vapSI6ewf2XLlSHlXo8S6VG7KF9vmlHc1SuyPT8Z+FMf3xsuHyrsaJda9SnPq/zWsvKtRIqdGLuLonbDyrkaJNfGqwbzjG8q7GiU2JrAHC0K3lHc1SmREvS5M3f93eVejxGa0Gvqfv2b88clYph34p7yrUWLfBw0u7yq8G5m0vGsg5PPWo6kKgiAIgiAIgiAIgiAIgvBuRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyUVQwV8aERmnCAIgiAIgiAIgiAIgiC8JyIYJwiCIAiCIAiCIAiCIAjviWimKgiCIAiCIAiCIAiC8LGSiWaqHxqRGScIgiAIgiAIgiAIgiAI74kIxgmCIAiCIAiCIAiCIAjCeyKaqQqCIAiCIAiCIAiCIHysRDPVD47IjBMEQRAEQRAEQRAEQRCE90QE4wRBEARBEARBEARBEAThPRHNVAVBEARBEARBEARBED5WUml510DIR2TGCYIgCIIgCIIgCIIgCMJ7IoJxgiAIgiAIgiAIgiAIgvCeiGaqgiAIgiAIgiAIgiAIHysxmuoHR2TGCYJQpGfPnvHDDz+QkJBQ3lURBEEQBEEQBEEQhP88EYwTBMDV1ZV58+a91+Wpqamxffv2En3O9OnTqVKlSomWURSZTEa/fv3Q0dHBzMzsreYt7e/0bQUGBrJ27dpy+/y8vv76a0aPHl3e1RAEQRAEQRAEQRA+ACIYJ/yntW/fnubNm6t87/Tp06ipqXHx4sX3XCs4f/48Q4cOfe+fW9p++ukn3N3dmTBhwlvPW57fwe7du4mJiaFnz56KafmDgzKZjHHjxmFkZMSRI0cAaNy4MWPGjCmwvLVr16KhocGwYcNUft7ixYupXLkyBgYGmJqaUrVqVf73v/8p3h8/fjzLly8nKiqqdFZQEARBEARBEAShuKSyD/f1/5ToM074Txs0aBCdO3fmwYMHuLi4KL23bNkyqlSpQrVq1d57vaysrN77Z5aFyZMnv/O85fkdzJ8/n4EDB6Kurvp5Q05ODkOGDGHXrl0cOXKEmjVrFrm8ZcuWMX78eBYuXMicOXPQ19dXvLd06VLGjh3L/PnzadSoEZmZmVy9epXw8HBFGWtra1q2bMmiRYuUgnSlrbazPw3cKmOko8/z1AT2RITyICGm0PIa6uo09ahOZQcvjHT0ScpIJSTyEhce3QLA38aNxh5VMdc3RkNNnbj0JE5GXeXykzulVuetm7awbvUa4mLjcHV348txY6hctUqh5S9duMgfc+dz/14UFlaW9OnXh05dOyvevxd5j6WLlnDr5k1insYweuyXdO/ds9DlrV6+ksV/LaJbr+58Oe6rUluv2s4BNHTPsy3CT3H/TdvCswZVHLww0pZvi2ORFxXbopqDD10rNykw33f7lyCR5pRavVXRbdkU7To1UNPXI+fBI9K37kL67Hmh5Q2HD0LT063A9OzwW6QtXQ2Adt1a6NSrhbq5KQA5Mc/JCD6K5Gbp7VuvnTkQwomdwaQkJmHtaEfbAd1w8/NSWfb+zbvsX7ONF4+fkZ2ZhamVObWaN6RBu2ZK5V6mpXNw3Q7Cz13mZVo6ZtaWtOnXBZ9qFUq9/q81dKtMM68aGOsa8DQ5jq3XjhEZ91hl2b7VgqjtElBg+tPkWGYdXgVAPdeK1HLyw87YEoCHic/YFX6qyHPG2yqP43vb5q1s37yVp0+fAuDm7s6AwZ9Rt37dUluvsweOc3LXIVJf7VOtP+2Kq5+nyrIPbt7l4JodvHiSu0/VbN6Aem2bKpUL3XOEc8EnSIpNQN/YgIDaVWnRqyNa2lqlVu93VdnOk95VW+Jr7YylgSkT9y7kRNSV8q4WAMf2BBO8dQ9J8YnYOzvQbUg/vCr4qix7KfQ8IXsP8ejeAyTZ2dg5O9KudxcCqldSKpeemsaO1Ru5FBpGemoaljZWdBnUh4o1q5TZelw/eo7LB06SnpSKmb0V9Xu0xt7bVWXZx7ei2Pnb8gLTe/7wBWZ28nuv8ONh3Dp9mfgn8nO1lYs9tT9pjo2bY5mtA8CVI2e4uO8EaYkpWDhYE9i7LQ7eBa8H+T2584DNPy/BwsGGPj98oZieI8khbM8xIk5dIjUhGTM7S+p3a4VrRe8yW4daTv40cKuE4avr976bp4u+l1JTp4lndSrbe2Koo09yRhohkZe4+Pj1vZQrge7K91Kn7l/jSineS6nyX7xm5HfnxCVuHj7Py+RUTGwtqdqlKdYehe/DOdkSbhw4zf3z4WQkp6FnakhAy7q4160IQNLTWK7tPUn8w2ekxydT9ZMm+DSpUWb1F4Q3EZlxwn9au3btsLa2ZsWKFUrT09PT2bBhA4MGDQIgNDSUwMBA9PT0cHJyYvTo0aSlpRW63OjoaDp27IihoSHGxsZ0796dZ8+eKZXZuXMnNWrUQFdXF0tLSzp3zv3BkD8L686dOwQGBqKrq4u/vz/BwcEFPnPChAl4e3ujr6+Pu7s7U6dOJTs7W6nMzz//jI2NDUZGRgwaNIiMjIwiv59jx46hpqbGgQMHqFq1Knp6ejRt2pTnz5+zb98+/Pz8MDY2plevXqSnpyvm279/Pw0aNMDU1BQLCwvatWtHZGSk4v1Vq1ZhaGjInTu5NxJffPEF3t7eiu81/3egpqbG4sWLadeuHfr6+vj5+XH69Gnu3r1L48aNMTAwoG7dukqfExkZSceOHbGxscHQ0JCaNWty6NChItc5NjaWQ4cO0aFDB5XvZ2Zm0q1bN4KDgzl+/PgbA3H3798nNDSUiRMn4uvry+bNm5Xe37VrF927d2fQoEF4enoSEBBAr169mDFjhlK5Dh06sG7duiI/qyQq2nrQxq8eIZGX+OvUFu4nxPBpjTaY6BoWOk+vKi1wt3Rg27UQ5h5fz8bLh3mRmqh4/2V2BsciL7L49Hb+OLWZC49u0bliYzwtS+dm/vDBQ8yfPY/+nw1g2ZqVVK5ama9HjyUmRvWN3ZPHT/jmy3FUrlqZZWtW0n/gp8z7bS7HDh9VlMnMyMDe0Z5ho0ZgYWFR5OdH3Ahn57YdeHip/hH9riraedDWvx7H7l7kz5ObuR//lE9rti16W1RtgYeFA1uvHmPO8fVsyLctADKyM5l1aKXSq6wDcTpNGqLTqB4vt+0mZd5CpCkpGH4+AHS0C50nbcVakqb/rHgl/zIfWU4O2VevK8pIk5J4uecgKXMXkjJ3IZK79zAY2Ad1G+tSrf/V0DD2rNhE486tGPW/ybj6ebJy1l8kxsarLK+to0PdoMYM/X4sX82dRpPOrQnesJNzh04oykgkEpb9OJ/EF/H0HjuUr+ZN55PP+2D8KrBYFqo5eNO5UmMO3DrL/47+S2TcY4bX+wQzPSOV5TdfPcrkvYsUr6n7/iYt6yWXHueesz0tHbnw6BbzT25iTsg64l+mMKJe5yL307dRXse3lbUVw0aN4J9Vy/ln1XKq1ajOpHHjuRd5r1TW61roBfat3EyjT4IY/vMkXHw9Wf1T4fuUlo4OtVs1YtD0MYyeM5VGnVtxaMMuzh86qShz5cQ5gtftoEnXNoyeM5VPPu/L9dMXCV63o1TqXFJ6WjrcjXvEnOPry7sqSsKOn2bTktW07t6RKfNn4hngy5/TfyH+eazK8neu38SvSgVGTf+GSfNm4lPJnwUzfiM68r6ijCRbwu9TfybuWSxDJ43m+8W/0veLwZhZvF1XHW/j7vlrnNqwj2ptG9Htu+HYebmwZ/6/pMQlFjlfrxmj+fS3bxQvE5vcY+LJrft41apEx3ED6TxxCEbmJuyeu4rUhOQyW4/bZ69yfO0earZrTO/vR2Hv7cqOOStJfsN6ZKZncHDJJpz8PAq8d3prMNeOnadRn/b0mzmGio1rsfuPf3n+4EmZrEMFW3da+9Ul5N4lFoZu5UFCDP2qt8ZE16DQeXpUaY67hT3brh/n9xMb2HjlMC/SEhXvp2dnEhJ5iSVndvDnqc1cfHybTyo0KrV7KVX+i9eM/KIv3uTS1iP4t6xD0PhPsfJw5PjCzaTFF74Phy7fxbNbD6jVO4g23w6i3oD2GNuYK96XZGVjaGFK5faB6BoXvk0F4X0RwTjhP01TU5P+/fuzYsUKZHlGiNm0aRNZWVn06dOHa9euERQUROfOnbl69SobNmzg5MmTjBo1SuUyZTIZnTp1Ij4+npCQEIKDg4mMjKRHjx6KMnv27KFz5860bduWS5cucfjwYWrUUP1kRSqV0rlzZzQ0NDhz5gyLFi1S2ezTyMiIFStWEB4ezu+//86SJUuYO3eu4v2NGzcybdo0Zs6cSVhYGHZ2dixYsKBY39P06dP5888/CQ0N5eHDh3Tv3p158+axdu1a9uzZQ3BwMH/88YeifEpKCl999RXnz5/n0KFDyGQyPvnkE6RSKQD9+/enTZs29OnTB4lEwv79+1m8eDFr1qzBwKDwi9uMGTPo378/ly9fxtfXl969e/P5558zadIkwsLCAJS2S2pqKm3atOHQoUNcunSJoKAg2rdvT3R0dKGfcfLkSUWwL7/U1FTatm3LjRs3OHXqlMoy+S1btoy2bdtiYmJC3759Wbp0qdL7tra2nDlzhgcPHhS5nFq1avHw4cM3lntX9d0qcuHRTcIe3eRFWiJ7I0JJykiltrO/yvJelk64mtuxKmwfkXGPSXyZyqOkF0Qn5gado+KfEv7sPi/SEolPT+b0g+s8S4nD1cy2VOq8fs062nVsT/tOHXB1c+XLcV9hbWPN9s1bVZbfvmUbNrY2fDnuK1zdXGnfqQNtO7Rj3b+5fQP6Bfgz8ssvaB7UosiMkvT0dL6fOp3xUyZiZKT65vRdNXCrxIWHudtiz+tt4VL4tnAzt2dl2N5X2yKFR0nPlbYFgAxIzXqp9CprOoH1yDgUQva1cKQxz0lftwU1bS20q1YudB7Zy5fIUlIVLy1vD8jOJutKbjBOEn4Lyc3bSGPjkMbGkbHvELKsLDRdnEq1/id3H6Z603rUbNYAa0c72g3ojomlGWcPHldZ3t7NicoNamLjZI+ZtQVVA2vjVdmf+xF3FWUuHAnlZWoafb8ZhouvB2ZWFrj6emLnWnY/rJp4Vuf0/euvjsF4tl47RsLLFBq4qd4OGZIsUjLTFS9nMxv0tHQ58yB3G6wK28eJqCs8TnrBs9QE1l0MRk1NDR+r0tkG5XV8NwhsSN0G9XB2ccbZxZnPRw5DT1+P8GvXVZZ/W6F7DlOtaV1qNKuPtaMtbQZ0xdjCjHMHT6gsb+/mRKX6NRT7VJWGtfCs5MeDm7n71MM7UTj7uFO5QU3MrC3wrOxHxXrVeXKv8Gvd+3Qm+gZLzu4k5N7l8q6KkkPb91G/RWMaBDXBzsmB7kP7YWZpQche1Q/tug/tR1DX9rh6e2DjYEunT3tgbW/LtXO53ZmEBh8jLSWV4d9+hae/DxbWVngG+ODo7qJymaXhSnAovg2q4d+wOmZ2VjTo2QZDM2NuhJwvcj49YwP0TYwUr7ytAZoP6UqFJrWwdLbDzM6KRv07IpPJeBxROkFpVS4ePElAYHUqNKqJub01jXq3w9DchGtHzhY535GV2/CpUxk7z4LnnpunL1GzXSPcKvtgYm1OpaZ1cKngxcX9J1UsqeTquVbi4qNbXHh0ixdpiey7eZrkjFRqFXIv5WnpiKu5Hasv7Ofeq3upx0kveJjn+n0//ikRz+X3UgkvUzjz6jzuYlo691Kq/BevGfndPBqGe52KeNSrhImtBdW6NEXfzIi7Jy+rLP80PIrnkQ8JHNYFWx9XDC1MsHCxw9LdQVHGwsWOKp0a41LdD3VNjTKp9wdNJvtwX/9PiWaqwn/eZ599xq+//sqxY8do0kTejGvZsmV07twZMzMzvvzyS3r37q3oC8zLy0vRpHDhwoXo6uoqLe/QoUNcvXqVqKgonJzkF5jVq1cTEBDA+fPnqVmzJjNnzqRnz558//33ivkqV1Z9gTt06BARERHcv38fR0f5j7VZs2bRunVrpXLffvut4m9XV1fGjRvHhg0bGD9+PADz5s3js88+Y/DgwQD8+OOPHDp06I3Zca/L1q9fH5A37Z00aRKRkZG4u7sD0LVrV44ePaoIEnbr1k1p/mXLlmFra0t4eDgVKsibYS1evJhKlSoxevRotm7dyrRp096YZTZw4EC6d+8OyDMB69aty9SpUwkKCgLgyy+/ZODAgYrylStXVvpef/zxR7Zt28bOnTsLDabev38fGxsblU1UZ8yYgZGREeHh4VhbvzkDRyqVsmLFCkWgsmfPnowdO5a7d+/i6SnPppo2bRqdO3fG1dUVb29v6tatS5s2bejatatSHRwcHBT1y9+kuqQ01NSxN7bieL4fSndjH+FsZqNyHj9rFx4nvaChW2WqOniTlZNNxLMHHLpzvtBsK3cLBywNTNl/q+gb6+LIzs7m9s1b9B3QT2l6zTq1uX71msp5bly7Ts06tZWm1apbm907diGRSNDULP4lbc7/fqNe/XrUrF2LlUtXvHX9C/N6W4REXlKafvfFo0JvvP1sXHmc9IJA9ypUcfAmOyebiGf3Cb6tvC20NbT4pkkf1FHjaUocwbfP8TQ5rtTqnp+6uRnqxkZIbucGDcjJQRJ5H01XZ7LOFP1D8TXt2tXJunQNsrJVF1BTQ6tyBdS0tZE8KL3gg0Qi4cm9aBp1ClKa7lnJjwe3iveD9EnUQ6Jv3aNFz/aKaREXruLs5c7OpesJD7uCgbEhVerXJLBTUKFN40tCQ00dJ1Mbgm8rf983nz3AzcK+WMuo41KBW88fkPAypdAy2pqaaKhrkJb95mvKm5T38f1aTk4ORw8dIeNlBgGVKr71/PnJ96mHNOzYUmm6Z2U/Ht4u/j718PY9mvXI3aecfTy4cuI8j+7ex9HTlfhnsdy+dIOqjeqUuM4fK0m2hOi7UQR1ba803a9qRe4Vs7m7VCol42UG+oa5mT1Xzl7E3deLdQtXcOXsBYyMjanZuB5BXdqjrlH6x3eORMKLB0+p2qqh0nSnAE9iIos+H276YSE5EglmdlZUb9sIB1/3QstKsrKR5uSgY6BXKvXOL0ci4fn9J9Ro00hpukuAJ08jC38IeePEBRKfxxM0tDvndh0t8H5OtgQNLeXAu6a2Fk/u3C+Veuclv35bckLFvZSTqep7KV9rF54kvaCBW2Wq2HuRlZPNzecPOHwnrPB7KXN7LA1MOHj7aWmvAvDfvGbklyPJIeFhDP7NaylNt/V1JTZKdVPbx9fvYu5kw83D57h/PhxNbS3sK3pQsU0DND+A5v6CoIoIxgn/eb6+vtSrV49ly5bRpEkTIiMjOXHiBAcPHgTgwoUL3L17lzVr1ijmkclkSKVSoqKiCmRHRURE4OTkpAjEAfj7+2NqakpERAQ1a9bk8uXLDBkypFj1i4iIwNnZWRGIA6hbt2DfNZs3b2bevHncvXuX1NRUJBIJxsbGSsvJP4BA3bp1OXq04M1LfpUq5faHYmNjo2gKm3fauXPnFP9HR0czY8YMzp49S2xsrCIjLjo6WhGMMzMzY+nSpQQFBVGvXj0mTpz41vUAqFixotK0jIwMkpOTMTY2Ji0tje+//57du3fz5MkTJBIJL1++LDIz7uXLlwUCrK+1bNmSQ4cOMWvWrGKN9Hrw4EHS0tIUgVNLS0tatmzJsmXLmDVrFgB2dnacPn2a69evExISQmhoKJ9++in//PMP+/fvV/w419OT3wDnbQ6cV2ZmJpmZmUrTdHR03lhHAH1tXTTU1UnNVM6USs18iaG2vsp5zPSNcTGzRSLNYc3FA+hr69LBvyH62jpsvRaSWwdNbSY06YumujpSmYxd4ScL7XPkbSQlJpKTk4O5ubnSdHNzM+IKae4VFxdHbXOzfOXNycnJITExEUtLy2J99qEDwdy+eYslq5a9W+WLUNi2SMlKx0tH9dNjc32j3G1xQb4tOgY0RE9Ll63XjgHwIi2BLVePEpMSj66mFvVcK/J53U78cWIzcelJpb4eAGrG8h+o0pRUpenSlFRFX29vouHkgIadLekbthV4T93WBqPRQ0FTE7KySFu+FumzFyWu92vpyalIpVIMTZQzH41MjLiTWPR39vOwSaQlpyLNyaFZt3bUbNZA8V78s1juvbhF5Qa1GDBpJLFPn7Nz6QZypFKadW1bavV/zUBHDw11dVIylbtWSMlMx1hH9fGdl7GOAf42bqwM21tkuQ4BDUl6mcqt5yUPiJbn8Q0QefcuwwYOJSsrCz09PWb9+jNu7m/ut+pNcvcpY6XphiZGpCQW3fzv1+FTFPtUk25tqdGsvuK9SvVrkJ6cyj/fzUGGDGmOlFotGhLYqWURS/z/LTU5BalUirGZidJ0YzMTki8W75x4aNtesjIyqd4wNwgc++w5t66GU6txPUZNH8/zxzGsX7QCaU4ObXt1LmJp7yYjNR2ZVIq+sXJTPz0jA9KTUlXOo29iRKN+HbBysSdHIuH2mSvsnLOSjl8PLLSfuTNbgjEwNcbRv/CAXUm8TClkPUyMSLuuOjiaEBPLqc376Tbpc9Q1VGcpOVfw4tKBkzh4u2JqbU50RCT3LkUge3VfWpoU1+98WeepWS8xKuRca65njPOr6/faSwfR19KlfUAD9LR02X49772UFt807oumugZSmZTd4adK5V5Klf/iNSO/rLSXyKQydI2UW9voGBmQkaK6m6HU2ERe3HuMhpYmDQZ3IjP1JWGbgslKy6B2n9Yq5xGE8iaCccJHYdCgQYwaNYq//vqL5cuX4+LiQrNm8g63pVIpn3/+OaNHjy4wn7Ozc4FpMpkMNTW1Iqe/DqwUh0xF6m3+5Z85c0aRaRcUFISJiQnr169n9uzZxf6comjleaqopqam9P/radI8Nzbt2rXDzc2NJUuWYG9vj1QqxdXVlaysLKX5jh8/joaGBk+ePCEtLU0peFicehQ27XVdvvnmGw4cOMBvv/2Gp6cnenp6dO3atUA98rK0tCQhIUHle82aNWP06NF07NiRnJwcpaa5qixbtoz4+HilARukUimXLl1ixowZaOS5eaxQoQIVKlRg5MiRnDx5koYNGxISEqLI1oyPl/8ALWxgi59++kkp0xLkWXfUtiuyjnnl39PkX6fq1O/Xu+DGK0fIlMi/z703T9Oragt23jipeKKbJcniz1Ob0dHQwt3Cgda+dYlPTyYqvnSe6OY/FmSy3LoVr7x8/dQoYqY8nsU84/fZc5nz5+/FDna+iwLbAjUVU/O+BxsuH87dFhGh9KrWkp03TiCR5vAw8TkPE3MHTXiQEMPIBl2p61qB3eGnSqXOWtUqo981t6/F1H9Wv1qZfPVWUyt2kwLt2jXIeRpDzsOCPzqkL2JJmf0Xanq6aFUKQL9XF1IX/FOqATl5dfPtM/KJRc4z9IdxZGVk8vB2FPvXbsfC1orKDeSZvzKZDANjIz75vA/q6uo4uLuQkpDEiZ3BZRKMU6r3O6jt4s/L7EyuPrlbaJlmXjWo7ujL/BMbS7Ufwvd9fL/m7OLC8rUrSU1J5diRo8ycPoM//l5QKgG5VxXKV8+Cdc9v8PdfkZmRyaM79zm4dgcWtlZUqi/v3iLqxm1Ctu2n3aAeOHq5Eh/zgr0rNmO4ZR9NuogfkUXJv2/IZLIC20eV8yGh7F67leFTx2JsmhvQk0llGJka03fUYNQ11HHxdCMpPoGDW/eUSTBOQUWdC9unzGwtMbPNDU7bejiTGp/E5YOnVAbjLu0/wd1z1+j4zUA0tco2Q6hAnWUylZtDKpWyf/EG6nRqrrQu+TXq3Y7DK7axevJcUFPDxNoc/wbVCD95sdB5Sk75bKuGWqGXvNfru+nqETIl8uzv/TdP06NKC3aH572XymZB6Ba0NbRwt7CnlW8d4l8mc7+U7qXevBbFV57XjALy7zwymYqJr9+S/06r078d2nry+7uqkiacWraD6t2ai+w4AFnpB7GFkhHBOOGj0L17d7788kvWrl3LypUrGTJkiOICWa1aNW7cuKFoVvgm/v7+REdH8/DhQ0V2XHh4OElJSYosukqVKnH48GGlJpVvWt6TJ0+wt5enh58+fVqpzKlTp3BxcWHKlCmKafn7FvPz8+PMmTP0799fMe3MmTPFWqe3ERcXx7Vr11iwYAG1a8ufFoeEhBQoFxoayi+//MKuXbuYOHEiX3zxBStXrizVupw4cYIBAwbwySefAPI+3+7fv1/kPFWrViUmJoaEhATMzAp2uNyiRQt2795N+/btkUql/PnnnypveOPi4tixYwfr168nICB3hCmpVErDhg3Zt28f7dq1U1kHf3953yJ5Bwm5fv06WlpaSsvKa9KkSYwdO1Zpmo6ODj8cWVHk+gKkZ2WQI5VipKMcJDbQ1iu0X7GUjHSSM9IUwR+AF6kJqKupYaJrQFy6PMtDBsS/+vtpShzWhqY0cq9a4mCciakpGhoaxMUpN7NMSEjA3MJc5TwWFhbExcUXKK+hoYGJqYnKefK7dfMmCfEJDO6Xe+zm5ORw5dJltm7cwpHQEKUg69sqbFsYausVyJZ7LSWz4LZ4rtgWhioz32TA48QXWOgXb72LI/tGBCkPHuZOeNUsUN3YiJw82XHqhgbICnkyrURLC+0qFXl54LDq93NykL7anjmPnqDh5IhOw3q83Fw6ndbrGxuirq5eIGMpNSmlQGZTfubW8h+Hts4OpCQlc3jTbkUwzsjUBA1NdaUmqVYOtqQkJr9zc8qipGW+JEcqxVhHOUPASEef5EzVmbZ51XGpwPmH4eQUchPe1LM6Lb1r8eepLTxJVt3x/dsqr+P7NS0tLRxfXb99/f2ICI9g07oNjJ/y5gzuorzep1Lz7VNpySkFMjDzM8uzT6UmJnNk0x5FMO7wxt1UDqylyJazdXYgKzOLnX+vpdEnZdP8+b/O0FjeR1pSQqLS9JTEZKXgmiphx0+zav4Shk4cjV8V5RGQTczl+27eJqm2TvYkJyQiyZagqVW6x7euoT5q6uoFsuBepqSh9xYdzNu4O3H7TMERbi8fOMnFvSdoP/ZTLBzLro8yPSP5eqQlKTdrfJmcir5JwQ7+szMyeX7/MS+in3Ls313Aq0CqTMb8Qd/yybiBOPl7oG9sSPvR/ZBkZ5ORmo6BqTGnNh3A2LL0B9R4ff3O36LAQFuX1CzV59rc63duNwwvUhNRV1PDWNdAcf+U914qJiUOKwMzAt2rlEkw7r94zchP20APNXU1MpKV7zUyU9PRNVKd3adnYoieiaEiEAdgbGMBMniZmIqRddkNwiII70pc3YWPgqGhIT169GDy5Mk8efKEAQMGKN6bMGECp0+fZuTIkVy+fJk7d+6wc+dOvvjiC5XLat68OZUqVaJPnz5cvHiRc+fO0b9/fxo1aqQYpGHatGmsW7eOadOmERERwbVr1/jll18KXZ6Pjw/9+/fnypUrnDhxQinoBuDp6Ul0dDTr168nMjKS+fPns22bcrOuL7/8kmXLlrFs2TJu377NtGnTuHHjRgm+NdVMTU0xNzdn0aJF3L17l8OHDzNu3DilMikpKfTr148vvviC1q1bs3btWjZu3MimTZtKtS6enp5s3bqVy5cvc+XKFXr37q2UwadK1apVsbKy4tSpwrOFmjZtyp49e1i5ciUjR45Umb24evVqLCws6NatmyLrrUKFClSqVIl27dopBnIYPnw4M2bM4NSpUzx48EARMLWyslJqjnzixAkaNmxYaFaljo4OxsbGSq/iZm7lyKQ8SX6Bp4VyB/Kelo5EJzxTOU904jOMdPXR1sj9YWFpYIJUJiUpo6hAixoa6iXv9FZLSwtvXx/On1Xu0yTs7DkqFNK3U0DFCoSdPac07fyZc/j6+xU7AFKjZg1Wrf+X5WtWKl6+/n60bBXE8jUrSxSIgzzbwlK5SaqnpQMPElWPIvkgIUbFtjB9tS1UN1MCsDO2IKUYN9bFlpmFNC4+9/XsOdLkFDS984xwp6GBpocrkvtvbpaiXaUCaGqQfeFy8T5fDdRKsUNlTU1N7N2duXs1Qmn63asRuPi8RVMtmbyvsNdcfNyJi3mhdC6KffocIzOTUg/EgXyfepj4DF9r5UxuH2sXouKKHlHQ09IRa0MzTt9XPXhBM68atPKtw8LQbUodjpdUeR3fhZLJCoxO/i7k+5QTkVdvKk2PvHoTJ+/i71My5H1svZadmYWamvItubq6+v/nPq3fSFNLE2dPNyIuK+/bEZev4e7rVeh850NCWTlvMYO+HknFmlULvO/h583zp8+Uju9nj2MwMTct9UAcgIamJlYudjyKiFSa/ig8EluPgq03ChMb/RT9fAHhSwdOcmFPCG2/7Ie1q0Mhc5YODU1NrF3tib6hnE0VHX4XO4+C/eRq6+rQZ8Zoen8/SvGq2LgWZraW9P5+FLYeytdQTS0tDM1MkOZIuXvhOu5V3zwA19uSX79j8bBU/q48LB0LPT9GJ8RgpGugdP22eHUvlVzEvZSaGmiWwr2UKv/Fa0Z+GpoamDnZEnNLOTEh5uYDLN1U78uWbg68TEolOzP3wWbK83jU1NTQMy2bEV8FoaREME74aAwaNIiEhASaN2+u1Py0UqVKhISEcOfOHRo2bEjVqlWZOnUqdnaqm/+pqamxfft2zMzMCAwMpHnz5ri7u7NhwwZFmcaNG7Np0yZ27txJlSpVaNq0KWfPqu7UXl1dnW3btpGZmUmtWrUYPHgwM2fOVCrTsWNHvvrqK0aNGkWVKlUIDQ1l6tSpSmV69OjBd999x4QJE6hevToPHjxg+PDh7/p1FUpDQ4MNGzZw8eJFKlSowNixYws0l/3yyy8xMDBQ9JsWEBDA//73P4YNG8bjx6XXB8bcuXMxMzOjXr16tG/fnqCgIKpVq/bG+n/22WdKfQSq0rhxY/bu3cvq1asZPnx4gYDcsmXL+OSTT1RmJHTp0oXdu3fz7NkzmjdvzpkzZ+jWrRve3t506dIFXV1dDh8+jIWFhWKedevWFbufwXdxKuoa1Z18qe7og5WBKW1862Kia8i56HAAWnrXomulJoryV57cIT0rk84VG2NlaIqrmR2tfOtw4dEtRZODQPcqeFg4YKZnhKWBKfVdK1LVwYsrT4rXOfab9OzTi93bd7J7xy7uR91n/ux5PIt5Rqcu8kzIRX8uYMZ3uU13O3X5hJinMfwx53fuR91n945d7N6xi159eyvKZGdnc+fWbe7cuk12toQXL15w59ZtHj2UZ3zpGxjg7umh9NLV1cXY1Bh3Tw9Kw8moq9TIuy386mGiZ8S5B6+2hY/qbdGlUhOsDc1wNbOjtV8dLjzM3RZNPavjZemImZ4RdkYWdK7YGDtjC8X2LSuZx0PRbdYIrQp+qNtao9+zM7KsbLIu5WZg6Pfqgm6bFgXm1a5VnezrEcjSC2YE6rZugYabC+pmpqjb2qDbujmaHm5kXSyY2VESDdo1I+zwKcKOhPL80VP2rNhEUmwCtVrIO0s/sHY7m/5coSh/ev8xIsKuEvv0ObFPn3PhaCgndgVTpWFuJ9K1WwaSnpLG7hWbiH3yjJsXr3Fs237qBDXK//Gl5ujdC9R1rUgdlwBsjMzpXLER5vpGnIySf1/t/RvQr3qrAvPVdalAVPxTnqYUHOijmVcN2vrVY83Fg8SlJ2Gko4+Rjj7aGqXTlKc8jm+AxX8t5Mqlyzx98pTIu3dZ/NciLl24RMtWygN5vKt6bZtx4UgoF46G8vxRDHtXbiYpNp5aLeT9Ch5cu4PNf+ZmiZ89EMLNC9eIe/qcuKfPuXj0NKd2HaJyg9x9yqd6Rc4Hn+DqqTASnsdy92oEhzfswrdGxQ8iK05PSwcvS0e8LOUPfOyNLfGydMTGsHwzTZp3as2pg0c5dfAYTx8+ZuOS1SS8iCOwjbybkm0r1rN89kJF+fMhoSyfs4gug/rg5utJUkIiSQmJvEzLfagR2KY5aSmpbPx7Nc8eP+Xa+Uvs37SDRm0LnuNKS+UW9Yg4cZGIkxdJePqCUxv2kRKfREAjeTbuma3BHF66RVH+yqFQoi5FkPgsjvjHzzmzNZh7F8Op2DS377tL+09wbvthGn/aCWNLU9KTUkhPSiE7I7PA55eWai0bcON4GDeOhxH/5Dkh6/aQEpdExSbyff3UpgMcWCJ/aKumro6lo63SS9/YAA0tLSwdbdHS0QYgJvIhd8Ouk/Q8nse3o9g+ZzkymYwabQLLZB1C71+luqMv1Rzk1+/Winsp+UOdFt416VKxsaL81ad3eZmVwScVG2NlYIqLmS1BPrW5WOi9lAn1XCtSxd671O6lVPkvXjPy821Sg3unr3Lv9DWSYuK4uPUI6QnJeDaQD+x2ZedxzqzeoyjvUsMPbQM9zq3ZR9LTWJ7ffciVHSG41amoaKKaI8kh4dEzEh49QyrJ4WVSKgmPnpHyQnX3Nh8dqezDff0/JZqpCh+NunXrqsxwAqhZs6ZiQAdV8jd9dHZ2ZseOoptKde7cmc6dVfcfkn953t7enDhxQmla/rr+8ssvBbLrXo8A+9rkyZOZPHmy0rT//e9/hdaxcePGBT5nwIABSpmDANOnT2f69OmK/5s3b054uPKP/LzLWbasYMf3o0ePVuqXL/93kL8erq6uBablr6+rqytHjhxRKjNy5MgCn53fmDFjCAgI4MGDB4qRS1U1bw0MDCQlJbdJxbFjxxR/X716tdDld+7cWZFl0aVLF7p06VJkffbs2YOGhgZdu3Z9Y93f1bWYSPS1dWjiUR0jXX2epcSzKmwfia8yq4x09DHRzX0ymJUjYfn5PbT3r8+Iep1Jz8rkekyk0uhb2hpadAhoiImuAdk5El6kJbLpylGuxUQW+Px30axlc5KSkljxzzLiYuNw83Dn199nY/sqUB4XG8ezmNwnr/YO9vz6+2z+mPM7WzdtwdLKkjFff0XjZrmBrdgXsQzs86ni/3Wr17Ju9VqqVKvKn38vKJV6v8m1p5Hoa+nS1LMGRjr6PEuNZ+X5vXm2hQGmerkZDFk5Epaf2027gAaMqC/fFteeRhJ8OzdLSFdLh04VG2GkrU+GJIsnybH8fWYnj5KeF/j80pR59ARqWlrodemAmp4uOdGPSP17BeR58qxualqgDzl1Sws03V1JXbxc5XLVjAwx6N0VNWMjZC8zyHn6jLQlK5HcLp1967VK9WqQnpLGkS17SElIxsbJjk8njcTMSh4oT0lIIjHPgAIymYwD67aT8DwOdXV1LGytCOrTiVrNc0c6NLU057NvR7Nn5Sbmf/Mjxuam1G/dhMBOpRPsUeXi49sYaOvRyqcOxroGPE2OY2HoNsVIdya6BpjpKWfF6GpqU8Xeiy3XjqlcZkO3ymhpaDK4tvJolHsjTrPv5mmV87yN8jq+4+PimfHd98TFxmFgaIiHlwez58+lZh3lUfneVcV61UlPSePYln2KfarfxBGYvtqnUhOTSIrL/WEnk8oIXruDhBfyfcrcxoqWvTtSo3nuoCCNOst/FB/esIvk+CQMjA3xqV6R5j2Vt0158bVy4c9PcrtRGN1APuL63ojTzDxSut1TvI0agXVJTUllz/ptJMcnYu/iyKjp32BhLe+bNSkhkfgXuUGF4/uOIM3JYf3CFaxfuEIxvU6zhgz4Sj5AlrmVBV/+MJFN/6xmxqhJmFqY0bRDK4K6lN228KxZkYzUl1zYfYy0pBTM7a1pO7ovRhamAKQnppAan9tdgVSSQ+imA6QlJqOppYWZvRVtRvfFpaK3osyNY+eRSnI4uGiD0mfVaN+Ymh2alsl6eNeuxMu0dM7uPEJ6UgoWDjZ0/OpTRZPStKQUUuIS32qZkuxsTm8LJul5Alq62rhW8iFoSHd09MtmVNjrMffQ19KlsWc1+fU7JZ7VF/YpstQNdfQx0VO+l1oRtoe2fvUZVq8zL7MyuB5zj0N3cu+ltDQ0ae/fAONX91KxaYlsvnqE6zHFG4H5XfwXrxn5OVfzJTPtJdcPhJKRlIaJnSWBw7pgYC5vhv4yOZW0hNx7eC0dbZqM7MaFzYc5+NtqtA30cK7qQ8W2uefal0mpHPhlleL/m0fOc/PIeaw8nWg2umepr4MgvImarLDohSAIwn/Yjh07MDc3p2HDhm8uXMY2btyIi4uLog++tzFl3+IyqNH7NbP157xIUT2C4n+FlZE5k/cuKu9qlNisNsNIHPdteVejRExn/8iWK0feXPAD16VyU77YNqe8q1Fif3wy9qM4vjdePlTe1Six7lWaU/+vYW8u+AE7NXIRR++ElXc1SqyJVw3mHd/w5oIfuDGBPVgQuuXNBT9gI+p1Yer+v8u7GiU2o9XQ//w1449PxjLtwD/lXY0S+z5ocHlX4Z2k3Cq7bMySMvIpvHuBj5nIjBME4aPUsWPH8q6CQvfu3cu7CoIgCIIgCIIg/H8lcrA+OOXfEYUgCIIgCIIgCIIgCIIg/D8hgnGCIAiCIAiCIAiCIAiC8J6IZqqCIAiCIAiCIAiCIAgfK9FM9YMjMuMEQRAEQRAEQRAEQRAE4T0RwThBEARBEARBEARBEARBeE9EM1VBEARBEARBEARBEISPlVRa3jUQ8hGZcYIgCIIgCIIgCIIgCILwnohgnCAIgiAIgiAIgiAIgiC8J6KZqiAIgiAIgiAIgiAIwsdKjKb6wRGZcYIgCIIgCIIgCIIgCILwnohgnCAIgiAIgiAIgiAIgiC8J6KZqiAIgiAIgiAIgiAIwsdKNFP94IjMOEEQBEEQBEEQBEEQBEF4T0QwThAEQRAEQRAEQRAEQRDeE9FMVRAEQRAEQRAEQRAE4WMlFc1UPzQiM04QBEEQBEEQBEEQBEEQ3hMRjBMEQRAEQRAEQRAEQRCE90Q0UxUEQRAEQRAEQRAEQfhYyaTlXQMhH5EZJwiCIAiCIAiCIAiCIAjviZpMJhM9+QmCIAiCIAiCIAiCIHyEUi5fLe8qFMqoSqXyrkK5EM1UBUEQPmB3nkeXdxVKzMva+T+/Hl7WzuyNCC3vapRYG796pNy8Xd7VKBEjX29uPbtf3tUoMR8bV7ZfCynvapRYp4qNSA49V97VKBHjerVI3n+ovKtRYsatmnP0Tlh5V6NEmnjVoP5fw8q7GiV2auQiJu9dVN7VKLFZbYZx8t6V8q5GiTRwr8zlR7fKuxolVsXRh01XDpd3NUqkW+VmXHn8374HAajs4F3eVXg3IgfrgyOaqQqCIAiCIAiCIAiCIAjCeyKCcYIgCIIgCIIgCIIgCILwnohmqoIgCIIgCIIgCIIgCB8pmVQ0U/3QiMw4QRAEQRAEQRAEQRAEQXhPRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyVGU/3giMw4QRAEQRAEQRAEQRAEQXhPRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyWTlncNhHxEZpwgCIIgCIIgCIIgCIIgvCciGCcIgiAIgiAIgiAIgiAI74lopioIgiAIgiAIgiAIgvCxkorRVD80IjNOEARBEARBEARBEARBEN4TEYwTBEEQBEEQBEEQBEEQPhoJCQn069cPExMTTExM6NevH4mJiYWWz87OZsKECVSsWBEDAwPs7e3p378/T548USrXuHFj1NTUlF49e/Z86/qJYJwgCIIgCIIgCIIgCMLHSib7cF9lpHfv3ly+fJn9+/ezf/9+Ll++TL9+/Qotn56ezsWLF5k6dSoXL15k69at3L59mw4dOhQoO2TIEJ4+fap4LV68+K3rJ/qMEwRBEARBEARBEARBED4KERER7N+/nzNnzlC7dm0AlixZQt26dbl16xY+Pj4F5jExMSE4OFhp2h9//EGtWrWIjo7G2dlZMV1fXx9bW9sS1VFkxgmCAMCKFSvYt29feVdDEARBEARBEARB+H8iMzOT5ORkpVdmZmaJlnn69GlMTEwUgTiAOnXqYGJiQmhoaLGXk5SUhJqaGqampkrT16xZg6WlJQEBAXz99dekpKS8dR1FME74T3B1dWXevHnvdXlqamps3769RJ8zffp0qlSp8lbzHDt2DDU1tSLbs5e2rVu38ssvv1CnTp13mn/AgAF06tRJ8X/jxo0ZM2ZMkfOU1jY9cuQIvr6+SKXSEi+rLDx//hwrKyseP35c3lURBEEQBEEQBOH/I6nsg3399NNPin7dXr9++umnEq1uTEwM1tbWBaZbW1sTExNTrGVkZGQwceJEevfujbGxsWJ6nz59WLduHceOHWPq1Kls2bKFzp07v3UdRTNVoUy1b9+ely9fcujQoQLvnT59mnr16nHhwgWqVav2Xut1/vx5DAwM3utnfqju3bvHt99+y759+zAzMyuVZW7duhUtLa1SWdabjB8/nilTpqCuLn+2sGLFCsaMGaMUzIyIiKBFixbUqlWLdevWoaOjw9GjR/n11185e/YsL1++xNXVldatWzN27FgcHByUPsPHx4eoqCiioqIKvHfv3j2mTJlCSEgI8fHxWFpaUr16dX799Ve8vb2xtramX79+TJs2jX/++adMv4s923aydd0m4uPicHZ1Zcjo4VSoXFFl2fjYOJb+tZi7t+7w5NFj2nftxNDRI5TKPIi6z5qlK7l76w7PY54x5IvhdOz+9heakirt9SovJ/ce4ej2fSQnJGLr5ECnQb3xCPBWWfZe+G12rdrE88dPyc7MwszKgrpBjWncIei91lkmk/H3+nVsO3CAlLRUAry9mfD5MDycXQqdJzL6AYvWruFmZCRPnz9n7KDB9O7QUanM4nVrWbJ+ndI0C1NTDqxcXerrsHfbLrau20RCfDzOri4M/mIYAUXsP8sW/E3krbs8efSYdl06MmT0cKUyB3bt5eiBQzy49wAATx9P+g0ZiLe/b6nXPa/T+48RsvMAKQlJ2DjZ035AD9z8vVSWjYq4w75/t/LicQxZWVmYWZpTu0UgDdu3UJQJOxrKpr9WFJj3x7V/oaVddudvmUzGkh3b2BZylJS0NALcPRjf71M8HBwLnWdbyFH2njpJ5ONHAPi6ujGySzcC3D2Uyj1PiOePjRs4fe0qGdlZONvYMvWzwfi5upXNeuzfy7bQU6S8TCfAxZXxXbvjYWdf6DxHrlxmRfABHsa+QJKTg5OVFX2bNKNNzdoqyy8PPsCC3Tvp2agJ4zp3LfV1OLYnmOCte0iKT8Te2YFuQ/rhVUH1fnwp9Dwhew/x6N4DJNnZ2Dk70q53FwKqV1Iql56axo7VG7kUGkZ6ahqWNlZ0GdSHijWrlHr930ZlO096V22Jr7UzlgamTNy7kBNRV8q1TnnVdg6goXtljHT0eZ6awJ7wU9xPKPzHooa6Ok09a1DFwQsjbX2SMlI5FnmRC49uFShbyc6DnlVbEB4Txb8XD5TlanBk9wEObN5JYnwiDi6O9Px8AN4V/FSWvXDqLMf2HCQ68j6SbAn2Lo507NuNCtWrKJXZs2Ebz5/EkCPJwcbBlpad21OvWWCZrcOBHXvZtXEriXEJOLo68+mIwfhVClBZNiEuntWLlnHvdiQxj5/Q6pN2DBg5RKnM92MnE37leoF5q9auwcRZ35XJOgCcPRDCiZ2HSE1MwtrRjjYDuuHq56my7P2bdzm4ZjsvHj8jOzMLUytzajZvQP12zRRl/pk+l/vhdwrM6101gP6TRpbJOhzYsYedG3K3xYCRQ4rcFqsWLlVsi9aftGfAqCEFyqWlprJu6WrOnThNWkoq1nY29Bs2iGp1apTJOgjFM2nSJMaOHas0TUdHR2XZ6dOn8/333xe5vPPnzwPy5Jr8ZDKZyun5ZWdn07NnT6RSKQsWLFB6b8iQ3H2rQoUKeHl5UaNGDS5evPhWcQ0RjBPK1KBBg+jcuTMPHjzAxUX5x9uyZcuoUqXKew/EAVhZWb33z/xQubu7Ex4eXqyy2dnZxQqymZubl7RaxRIaGsqdO3fo1q1boWXOnz9P69at6dixI3///TcaGhosXryYESNG8Omnn7JlyxZcXV2Jjo5m1apVzJ49mzlz5ijmP3nyJBkZGXTr1o0VK1YwZcoUxXtZWVm0aNECX19ftm7dip2dHY8ePWLv3r0kJSUpyg0cOJBatWrx66+/llrAM7/jh4+xZP5Cho/9Av+KAezbuYfp30xmweqlWNsUfCqUnZ2NsakJ3fv3ZsfGLSqXmZmRia2dHfUbB/LPH4vKpN5vUhbrVR4unTzL9mVr6fp5P9x8vQg9cIy/Z8xh4h8zMbOyKFBeW1eHhm2aYefqhI6ODvcibrNp4Uq0dXSoF9T4vdV75dYtrN2xnWlfjsHZ3oGlGzcw8rvv2LJgIQb6+irnycjMxNHGlub1GjBnWeEBaHdnZxb88KPifw310k/WP3H4GP/8sYhhY0fhVyGA/Tv38P34b/lr1RKsCtl/TExM6davJzs2bVO5zOuXrhLYrAm+X/qjra3FlnWbmPb1ZP5c+TcWVpalvg4AV06dZ9eKDXQa3BsXX0/OBh9n2az5jJ07XfX+o6NDvdZNsHVxRFtHm/s377J18b9o6+pQu0Xuj1gdfV2++X2G0rxlGYgDWLV3D2sP7OO7QUNxtrVl2a4djPrtf2ye9QsGenoq57lwM4KWdepSydMLHS0tVu3dw6jffmHDzJ+wNpNfb5LT0hg8cwbV/fz4fezXmBkb8+j5c4wK2U9LvB6Hg1l79Ajf9emHs5U1yw7uZ9SCP9k85TsMdHVVzmOir8/AFkG42tiipanBievX+WHtv5gZGlHXz1+p7I0HD9geegoveweVyyqpsOOn2bRkNb2GD8TD35sT+47w5/RfmLbgF8ytC+7Hd67fxK9KBTr1746egQGnD4WwYMZvTJj9A84ergBIsiX8PvVnjEyMGTppNGaW5iS8iEdXT/X38T7paelwN+4Re2+GMqv1sPKujpKKdh609a/HzusneJAQQy1nfz6t2ZZ5xzeQlJGqcp5eVVtgqK3P1qvHiEtPxlBbD3UVPy5NdQ1p7VuXqPgnKpZSus6FhLJ+8Qr6jhyMp78PIXsPMW/qLGYsnouFin3q9rUI/KtWovOnvdA3NOBk8FHmT/8fU+bOwsVTHkA3MDKkXY/O2DrZo6mpyZVzF1k+ZwHGpsZKQbvSEnr0BCsX/MOg0cPwqeDHod37+WnS98xZ9heWNgV/O2RnZ2NsYsInfbqxd8sOlcscN30SEolE8X9Kcgrjh4ymTmD9Uq//a9dCw9i7YjPtB/fE2ced84dOsmrWX4yeOxVTy4L36No6OtQOaoStiwPaOjo8uHmXHUvWoa2rQ83mDQDo/fVQcvKsR3pKGn99M4sKdcvmd1zo0ROs+OsfBn85DJ8K/hzatZ9ZE6czd/lfWBZx/9e5b3f2bFa9LSTZ2fz4zVSMTU0ZO30iFpaWxL14gW4ZXSeE4tPR0Sk0+JbfqFGj3jhyqaurK1evXuXZs2cF3nvx4gU2NjZFzp+dnU337t2JioriyJEjSllxqlSrVg0tLS3u3LnzVrEN0UxVKFPt2rXD2tqaFStWKE1PT09nw4YNDBo0CJAHVQIDA9HT08PJyYnRo0eTlpZW6HKjo6Pp2LEjhoaGGBsb07179wIH286dO6lRowa6urpYWloqpY7mbyJ5584dAgMD0dXVxd/fv0DHjQATJkzA29sbfX193N3dmTp1KtnZ2Uplfv75Z2xsbDAyMmLQoEFkZGS88Tvau3cv3t7e6Onp0aRJE+7fv1+gzNt+P6+bxy5evBgnJyf09fXp1q1bgaavy5cvx8/PD11dXXx9fZWi/vfv30dNTY2NGzfSuHFjdHV1+ffff8nJyWHs2LGYmppiYWHB+PHjkeUbBSd/M9Xnz5/Tvn179PT0cHNzY82aNQXqPGfOHMUw0k5OTowYMYLUVNU3oa+tX7+eli1bolvID58jR47QtGlTBg4cyNKlS9HQ0ODRo0eMHj2a0aNHs2zZMho3boyrqyuBgYH8888/fPed8lPKpUuX0rt3b/r168eyZcuU1jU8PJx79+6xYMEC6tSpg4uLC/Xr12fmzJnUrFlTUa5ixYrY2tqybZvqH/elYfuGLbRo24qg9m1wcnVh6OgRWFpbsXfbLpXlbexs+fzLkTRr1QL9QrJEvf18+GzkUBo1b1LmP9ALUxbrVR6O7ThI7eaB1GnRCBsnez4Z3BtTS3NO7T+isryjuwvVAutg5+yAuY0lNRrXw6dqBe6F335vdZbJZKzbtZOB3brTtG49PF1c+H7MV2RkZbL/eEih8wV4efPlwM8ICgxEu4jgvaaGBpZmZoqXmYlJqa/Djo1bad42iJbtWuPk6syQ0cOxtLJi7xlVEzgAAQAASURBVPbdKsvb2Nky5MvhNG3VotDs6XHfTaTNJ+1x9/LA0cWZUd+MQSqVceXCpVKv/2sndgVTs2kDajVviI2jHR0G9sDEwowzB1VvBwd3Z6o0qIWtkz3m1pZUC6yDd+UAoiKUsxrUUMPIzETpVZZkMhnrgvczsF1HmtaoiaejE9MHf05GZhYHzpwudL4fPx9Bt6bN8XF2wdXOnikDByGTSTmf50HSyr27sTE3Z9qgoQS4e2BvaUUt/wAcrYu+4X7n9Qg5ysCWQTStXAVPe3um9+1HRnYWBy6cL3S+6l7eNKlcBTdbWxwtrejVuAme9g5cvhepVC49M4PvVq9gcs/eZRZMPLR9H/VbNKZBUBPsnBzoPrQfZpYWhOwt2JIBoPvQfgR1bY+rtwc2DrZ0+rQH1va2XDt3UVEmNPgYaSmpDP/2Kzz9fbCwtsIzwAdH98Izad+XM9E3WHJ2JyH3Lpd3VQpo4FaJCw9vEvboJi/SEtkTEUpSRiq1XfxVlveydMLN3J6VYXuJjHtM4ssUHiU9JzpR+T5YDTW6V2nGoTthxKe/fV9Gb+vgtt00bNmUwFbNsHd2pNewAZhbWXJsz0GV5XsNG0Drbh1x8/HExsGOLgN6Y2Nvx5WzFxRlfCsFUK1+LeydHbG2t6VFpzY4urlw58bNMlmHPZt30LR1c5q1bYmjixMDRg7BwtqSg7v2qixvbWvDgFFDaNSyaaH3HIbGRpiamyleVy9cQkdXhzqNyi4Yd2r3Eao3rUeNZvWxdrSj7YBumFiacu7gcZXl7d2cqNygJjZO9phZW1AlsDZelf24H3FXUUbf0AAjUxPFK/LqTbR0tKlQp2yCcbs3badp6xY0axsk3xajhmBpbcnBnar7t7a2tWHgqKGvtoXq8+aRfYdITU7lmxlT8K3gj5WtNb4VA3D1KP3s6Q+STPrhvt6CpaUlvr6+Rb50dXWpW7cuSUlJnDt3TjHv2bNnSUpKol69eoUu/3Ug7s6dOxw6dAgLi4IPPfO7ceMG2dnZ2NnZvdW6iGCcUKY0NTXp378/K1asUApibNq0iaysLPr06cO1a9cICgqic+fOXL16lQ0bNnDy5ElGjRqlcpkymYxOnToRHx9PSEgIwcHBREZG0qNHD0WZPXv20LlzZ9q2bculS5c4fPgwNWqoTj+WSqV07twZDQ0Nzpw5w6JFi5gwYUKBckZGRqxYsYLw8HB+//13lixZwty5cxXvb9y4kWnTpjFz5kzCwsKws7MrkNKa38OHD+ncuTNt2rTh8uXLDB48mIkTJyqVedvv57W7d++yceNGdu3apRjKeeTI3DTyJUuWMGXKFGbOnElERASzZs1i6tSprFy5Umk5EyZMYPTo0URERBAUFMTs2bNZtmwZS5cu5eTJk8THx78xyDRgwADu37/PkSNH2Lx5MwsWLOD58+dKZdTV1Zk/fz7Xr19n5cqVHDlyhPHjxxe53OPHjxe6Xbdt20bbtm2ZMmUKv/76q2L6632vsGXn7ZwzJSWFTZs20bdvX1q0aEFaWhrHjh1TvG9lZYW6ujqbN28mJyenyLrWqlWLEydOFFnmXWVnZ3P39m2q1qquNL1qzercvH6jTD7zffhY1kuSLeFR5H18qig3rfCpEsD9m5GFzKXs0b0H3L95F88KBUd+KiuPnz0jLiGBOlWrKqZpa2lRLaACV2+W/IdQ9JMntBrwKR2GDGLSr7/wqJj9dxSXfP+5Q9Waqvaf4mUDF0dmZiY5EglGxkaltsy8JNkSHt+Lxquy8g9z78r+PLhVvP3n8b1oHtyOxN1fuVl0VkYmPw2byMyh41k+6w8e34sutXqrrMeLF8QlJVGnQgXFNG0tLar5+HL1bsHmT4XJyMxEkpODcZ4fvycuX8TPzY2Jf82n5egR9Jn2LdtCjpZq/V97HBdHXHIydXxzm99pa2pRzcOTq1FRxVqGTCbj3K2bPHj+jGoeyk3Hftm0kfr+AdT2KZumz5JsCdF3o/Crqtxc269qRe7dLN52kEqlZLzMQN/QUDHtytmLuPt6sW7hCr7pO5wfRkxg38YdSHM+zD5dPwQaaurYG1txJ/ah0vS7Lx7hYqp6lD4/G1ceJ70g0L0KE5r2Y2yjnrT2rYOmuoZSuaZe1UnLyuDCo7IJXOUlyZbw4M49AqpVVpruX60Sd8MLNp1VRb5PvcTAyFDl+zKZjPBL14h59ATvCqoDlSUhyc7m3u27VKpRVWl65epVuV2Kwb+j+w5Rr0nDMssYlUgkPLkXjWdl5ebBnpX8iL51r1jLeBL1kOhbUYV2hQBw4UgoFetVR1u3eNlMb+P1tqicb1tUqlGVWzci3nm5F0LP4hXgy9LfFzGkSz/GfTaSrWs2In3DPbzw3+Tn50erVq0YMmQIZ86c4cyZMwwZMoR27dopjaTq6+ur+C0rkUjo2rUrYWFhrFmzhpycHGJiYoiJkXf7ARAZGckPP/xAWFgY9+/fZ+/evXTr1o2qVatSv/7bBdlFM1WhzH322Wf8+uuvHDt2jCZNmgDyJqqdO3fGzMyML7/8kt69eysyqby8vJg/fz6NGjVi4cKFBbKeDh06xNWrV4mKisLJyQmA1atXExAQwPnz56lZsyYzZ86kZ8+eSu3JK1dWvkHIu7yIiAju37+Po6O8z5pZs2bRunVrpXLffvut4m9XV1fGjRvHhg0bFEGdefPm8dlnnzF48GAAfvzxRw4dOlRkdtzChQtxd3dn7ty5qKmp4ePjw7Vr1/jf//6nKPPrr7++1ffzWkZGBitXrlSs0x9//EHbtm2ZPXs2tra2zJgxg9mzZysyBt3c3AgPD2fx4sV8+umniuWMGTNGKatw3rx5TJo0iS5dugCwaNEiDhwovA+S27dvs2/fPqVhpZcuXYqfn/JNQt5MOjc3N2bMmMHw4cOLDGjev38fe/uC/fOkpqbSrVs3Jk+eXCC4eefOHYyNjYv15GL9+vV4eXkRECAPovTs2ZOlS5cq9mMHBwfmz5/P+PHj+f7776lRowZNmjShT58+uLu7Ky3LwcGBS5fKJnMmOSkJaY60QBNYMzMzLsYnlMlnvg8fy3qlpaQglUoxMlVOcTcyMSE5oWA/MnlNHzSW1KQUpNIcWvXoRJ0WjcqyqkriEuTfsYWJqdJ0C1NTnuYLpr+tCt7efD/mK1zsHYhLTGTppg0MmvANG/74C9M3NAUoruSkZKQ5UkzNTJWmm5ibkliK+8+qRcswt7KgcvWyyQ5IT0lFKpViaKL8vRiaGJOSmFzkvDOHjictORWpNIfm3dpTq3lDxXtWDrZ0GzUAW2cHMtMzOLn3MAu//R9jZn+HpV3pZ5MBxCUlAmBurJyBZ25iTExsXLGX8+fmDViZmVErIDfA/fj5C7YcOULvoFYMbNeBG/fuMXvNarQ1tWhbv0Gp1P+1uBT5925upByANTcyJiYhvsh5U1++pM13k8mSSNBQV2dCtx7UzhPUO3gxjJuPHrJyXNEPo0oiNVl+TjLOlwlpbGZC8sWkQuZSdmjbXrIyMqneMLe/u9hnz7l1NZxajesxavp4nj+OYf2iFUhzcmjb6/33N/pfoK+ti4a6OqmZL5Wmp2Sl46XjpHIec30jXMxskUhzWHPhAPraunQMaIieli5brx0DwNnMlhqOvvxxcnMZr8Gr+iYnq9ynTExNuJ6QWKxlHNy6m8yMTGoG1lWanp6Wztd9P0eSLUFNXZ2+IwcRUK1SIUt5d8lJ8nUwyX/NMDMhMT6xVD7j7s3bPIx6wLCvvyiV5amSnvz6mqF8fjIwMSb1DdeMX4ZNll8zcnJo2q0tNZqpDiw8unufZw+f8MnwvqVW77wK3xamJdoWz57G8OLSVRo0b8ykn6bx9NETls5fhDQnh679e5Ws0sIHac2aNYwePZqWLVsC0KFDB/7880+lMrdu3VJ0L/To0SN27twJUGAQxqNHj9K4cWO0tbU5fPgwv//+O6mpqTg5OdG2bVumTZuGhobyQ5E3EcE4ocz5+vpSr149li1bRpMmTYiMjOTEiRMcPChPW79w4QJ3795Varook8mQSqVERUUVCNpERETg5OSkCMQB+Pv7Y2pqSkREBDVr1uTy5ctKHSsWJSIiAmdnZ0XQCqBu3boFym3evJl58+Zx9+5dUlNTkUgkSu3HIyIiGDZMuR+SunXrcvRo4U/mIyIiqFOnjlInkvk/+22/n9dUrZNUKuXWrVtoaGjw8OFDBg0apPQ9SSQSTPI1FcubeZaUlMTTp0+V6qipqUmNGjUKNFXNu46vy7zm6+tbYHjoo0ePMmvWLMLDw0lOTkYikZCRkUFaWlqhzcVevnypMhipp6dHgwYNWLJkCb169VL6jorbaSfIg4Z9++beaPTt25fAwEASExMV9R85ciT9+/fn6NGjnD17lk2bNjFr1ix27txJixa5naXr6emRnp5e6GdlZmYWGMK7uH0nKORbLxnFX9cP2keyXmrkr7Ms/6oV8MWsSWS+zODB7XvsXr0JSztrqgW+26jHb7Lv2DFmLfxL8f+8qfIm2/m/67c5hgpTv3ru+cATqOTrS6fPh7D76BH6duxUomXnV6CuMhkFNsU72rJ2I8cPH2Xm/F/R1tEunYUWouBXLnvjagyfMZ7MjAyib0exf81WLO2sqdKgFgAu3u64eOc+NHDx9WD++B85tfcoHQcV3RdLce07fYqfVi5X/D93zDhA1T5FsbfJqr27OXj2DIsmTEZHK/c7l8qk+Lm6MbJrdwB8XFy59+QRW44eLnEwbl/YOX7akDvgyNzP5YPC5D+mZai+Dualr6PDmvGTSM/M5PztW8zdvhUHC0uqe3kTk5DA7C2b+WPEKHTewyBIBepfzGPjfEgou9duZfjUsRib5t4zyKQyjEyN6TtqMOoa6rh4upEUn8DBrXtEMO4N8u858m2jen96vd02XD5MpkSeqbE3IpRe1Vqy88YJ1NXU6V65Kduuh5Ce/ebuUkqVimO7ONeLs8dOsuPfTXwx7RulfQpAV0+XaX/9SubLDCIuX2PDklVY2dngW0hH/iVV8LhWdf59N0f2BuPk5oKnr+rBm0pVgUrL3rgig38YS1ZGJg9vR3Fw7Q7Mba2o3KBmgXJhR0KxcbLH0dO19Oqrgqrrd0m2hUwmw9jMhM/HjkRdQwN3b08S4uLZuWHr/49gXCG/1T5m5ubm/Pvvv0WWyfsb1tXVtdDftK85OTkRElJ4dy1vQwTjhPdi0KBBjBo1ir/++ovly5fj4uJCs2byEXqkUimff/45o0ePLjCfs7NzgWmF/RDMO12vkE6gVVF1wOVf/pkzZxSZdkFBQZiYmLB+/Xpmz55d7M8p7mfn97bfT2Fer5OamhpSqbzJyJIlSxTZaq/lj+iXdNTZ1+tY1M3YgwcPaNOmDcOGDWPGjBmYm5tz8uRJBg0aVKBfvrwsLS1JSCiY4aKhocH27dvp0qULTZo04ciRI/j7y5s0eHt7K4KKRWXHhYeHc/bsWc6fP6/UbDknJ4d169YxfHjuCItGRkZ06NCBDh068OOPPxIUFMSPP/6oFIyLj48vcuCQn376qcDIQNOmTaPPiM8Knec1YxMT1DXUSYhXzshITEgskBX0X/KxrJeBkRHq6uokJypnnKQkJWOU70dHfhavOoy2d3UiJTGJ/et3lFkwLrBWLSr45P5AyHp17MUmJmCZZ1CW+KQkzPMF00tKT1cXDxdXHj4pvU7GjU2MX+0/yueIpIQkTEthIJVt6zax+d/1/DDnZ9w83N88wzvSNzJEXV29QBZcalIKhqZFZxGa28g7TbdzcSQ1KZngjbsUwbj81NXVcfRwJfZpwc6O31VglWpUcM9tgpklke9TcUmJWObZhxKSk7EwLvpYAFi9bw/Ld+/ir28m4OWkfP2zNDXFPd9gB6529hwJCyvBGsgFVqhEBRdXxf9Zrzoxj0tJxjLPA6yElBQsjIreJurq6jhZyTsf93F04v6zZ6w4dJDqXt7cfBhNfGoK/X/LzY7PkUq5FHmXTSdCODX791IZ6MTQWH5OSsqXsZSSmFwgEJJf2PHTrJq/hKETR+NXpYLSeybmpmhoaKCukVtHWyd7khMSkWRL0NQSPzvyS8/KIEcqxUhH+b7VUFuvQLbcaymZ6SRnpCkCcQDPUxNQV1PDRNcQbQ1NzPWN6Vc9t4XH63uwGa2GMvf4euLTi86QeltGxsby61y+rKXkpKQ37lPnQkJZMW8RwyaPxb9qwYw3dXV1bOzlTXadPVx5+vAxezdsL/VgnLGJfB0S891XJickFcjQeheZGZmEHjtB9097l3hZRdE3ll8z8mfBpSWlFMiWy+/14C22zg6kJqVwdNOeAsG4rMwsrp0Ko1mPdqVb8TwU2yL/9TuxZNvC1NwMTU1N1PP81nFwdiQxPgFJdjaa7+EhiCDkJfqME96L7t27o6Ghwdq1a1m5ciUDBw5U3BhUq1aNGzdu4OnpWeClrV0w08Df35/o6GgePsztXyM8PJykpCRFBlSlSpU4fPhwser2enlP8vwIPH1auSPpU6dO4eLiwpQpU6hRowZeXl48ePBAqYyfnx9nzpxRmpb/f1Wf/aZ53vb7eU3VOqmrq+Pt7Y2NjQ0ODg7cu3evwDLd3ArvxNTExAQ7OzulOkokEi5cuFDoPH5+fkgkEsLy/CC6deuW0mASYWFhSCQSZs+eTZ06dfD29laqe2GqVq1a6EiwOjo6bN26lVq1atGkSROuX5c3B+zatSva2tr88ssvKud7Xa+lS5cSGBjIlStXuHz5suI1fvx4li5dWmid1NTU8PX1LTDAxvXr16map++t/CZNmkRSUpLSa9KkSUWtvoKWlhae3t5cPn9Rafrl8xfxrVA2T47fh49lvTS1NHH0cOX2ZeV+7m5fDsfV16P4C5LJ+1EpKwb6+jjZ2Ste7k7OWJiZcfbyZUWZ7OxsLt64TiXf0u3LKis7m/uPHmJZiqMNy/cfLy6H5dt/wi7iW8L+hrau28SGVWuZ9utMvMo4w0FTSxMHd2fuXFU+1925GoGLT/H3H5lMRk62pMj3n95/WKCZWUkY6OnhZGOjeLnbO2BhYsLZG7nNs7MlEi7eukklz8L7JgJ5IG7prh3MH/cN/m4Fg5+VPb15EPNUaVr0sxhsi9Hx8hvXQ1cXJytrxcvd1g4LY2PO3srtRypbIuFi5F0qFXENVUUmkymCezW9fVg3YQr/fjNJ8fJzcqZV9Rr8+82kUhtxWFNLE2dPNyIuKzeTj7h8DXffwrfD+ZBQVs5bzKCvR1KxZsHrmYefN8+fPlM88AN49jgGE3NTEYgrRI5MypPkF3haKjdJ9bR04EGi6n40HyTEYKSrj7ZG7ndqaWCKVCYlKSOVF2mJ/H58A3+e3KR43Xx2n6i4x/x5chNJL4seHOtdaGpp4uLlzo1LV5Wmh1+8iqd/4X2dnj12kmVz/mLI+NFUrlW8pv4ymaxMroWaWlq4e3ty9cJlpelXL1zGO6Dk17zTx04iycqmYfPGJV5WUTQ1NbF3d+buVeW+1e5evYmzz1s8OJLJlEaBfe366QvkSCRUaaj6wU5pyN0Wyt27XL1wGZ8A1S2CisOngj8xj58qnaOePnqCmYW5CMQJ5UJcGYX3wtDQkB49ejB58mSSkpIYMGCA4r0JEyZQp04dRo4cyZAhQzAwMCAiIoLg4GD++OOPAstq3rw5lSpVok+fPsybNw+JRMKIESNo1KiRoinktGnTaNasGR4eHvTs2ROJRMK+fftUdtrfvHlzfHx86N+/P7NnzyY5OZkpU6YolfH09CQ6Opr169dTs2ZN9uzZU2DQgi+//JJPP/2UGjVq0KBBA9asWcONGzcK9B2W17Bhw5g9ezZjx47l888/58KFCwVGnn3b7+c1XV1dPv30U3777TeSk5MZPXo03bt3x9ZW/nRx+vTpjB49GmNjY1q3bk1mZiZhYWEkJCQwduzYQpf75Zdf8vPPP+Pl5YWfnx9z5swpMEprXj4+PorOM//++280NTUZM2aMUvaih4cHEomEP/74g/bt23Pq1CkWLVpU6DJfCwoKKjDgRF7a2tps2bKF7t2707RpUw4fPkzFihWZO3cuo0aNIjk5mf79++Pq6sqjR49YtWoVhoaG/Pzzz6xevZoffviBChWUn/wPHjyYX375hStXriCTyZg2bRr9+vXD398fbW1tQkJCWLZsmVI2XXp6OhcuXGDWrFmF1vVthvRWpVOPLsz58X94+nrjF+DH/p17efH8OW06yZ9crli0lLjYWMZ9m1uve3fko2RlvHxJUmIS9+7cRVNTC2c3+ch32dnZPLwvDzpLsrOJexHLvTt30dXTw97RgfehLNarPDTu2JI185bg5OmKq48noQdDSIiNo16QvP/B3as3kRSXSJ8x8mbjJ/cextTSAhtH+fF6L+IOR3fsp2HbZu+tzmpqavRq34HlmzfhbGePk709yzdvRFdbh1aBuX3XfTd3DtYWFozqL+9rMjs7m3uvHpZkZ0t4ERfHrXv30NfTxclO3sfjvOVLaVizFrZWViQkJrF00wbS0tNp17R0169j987Mnfkrnj7e+Ab4cWCXfP9p3bEtACsXLyM+NpavpuReG+7dkQ+KkPHyJcmJSdy7EykPXrjK958tazeyZukqvp46ARtbGxLi5Jmbunp66OkXPyv7bTRs34INfyzD0d0FZx8PzgUfJzE2njot5dth35qtJMcl0mO0PJM2dN9RTK3MsXaQ7z9REXc5vusg9Vs3VSwzeOMunL3dsbSzJjM9g1N7D/Pk/kM6DS67rA01NTV6tWjF8t27cLKxxcnGhhW7d6Gro01QndzuD6YtWYSVqRmjuskHZlq1dzeLtm3hx89HYGdpSeyrvuf0dXTRf9VVQa+WrRg06weW795J85q1uXEvkm3HjjJ5wJuzi99pPRo1YXnwAZwsrXCysmZF8AF0tbQJqp6bRTLt35VYmZgyqn1HAJYHH8DfyRkHSyskORJOhd9gz/mzTOwubxZsoKuLZ75+UPV0dDAxMCwwvaSad2rN8jkLcfF0w93PixP7j5DwIo7ANvJjcNuK9STGJTBwnDwL/HxIKMvnLKL70H64+Xoqsuq0tbXRezVyYWCb5hzdfZCNf6+mSfuWPH8Sw/5NO2jSPqhU6/4u9LR0cDTJzU63N7bEy9KR5Iw0nqWWbx+kJ6Ou0q1yUx4nPSc64Rk1nf0x0TPi3AN5AL6lTy2MdQzYfFXe7cmVJ3do4lmdLpWacPhOGPpaurT2q8OFh7eQSOUd0edfp5evsujKcl1bftKOf377A1cvdzz8vDm+7xDxL2Jp1EbeSmDL8rX/x95dhzd1vg0c/yZ1F6qUUhegOBR3tw0ZLhtjzGCMsQ22MWECU8Z87MdgyHBnuLtLsRYopYVSoKXumrx/FFLSpFgNeO/PdeW62pPnnNwnOclJ7nM/z0NSQiKvvFc4AdmR3fuZ/cPvDHr9JXwC/Um5U1VnZGKsmQ1zw9LVePr54OTqTH5+PmeOneLQjr0MG/tKuexDjxee57dvZuDj74tfzUB2bNhCfNxtOvUqrDJc9Pc8EuMTGfvBO5p1oi4XToqQnZVNakoqUZevYGhoSDVP7erdXZu20ahFU6xsymZc1Ptp0bM9K36dh5u3B+7+XhzffoCU+CQadyocN3TrojWkJibzwtiXADi8eQ+2DnY43DlnXL0Qwf7/ttO0W1udbZ/YeZAajetiXsJEG2WlZ//e/Pr1j3gH+OFfM5Dt6zcTH3vPazFrHonxCYz9sOg3i/ZrkaLzWnR+rhubV69n7m+z6NqnJ7dibrB60XK69Sm/Kr8niur/XzfVJ50k40SFGTVqFLNnz6Zz585a3Svr1KnDnj17mDx5Mq1atUKtVuPj46M1O+q9FAoFa9as4a233qJ169YolUq6du2qlZhq27Yty5cv58svv+Sbb77B2tqa1q1b692eUqlk9erVjBo1iuDgYDw9Pfnll1/o2rWrps3zzz/PO++8w9ixY8nJyaFHjx588sknTJkyRdNm4MCBREREMGnSJLKzs+nXrx9vvPHGfSc3qF69OitXruSdd97hjz/+IDg4mGnTpvHyy0U/Hh71+bnL19dXM1NrYmIi3bt315oM4ZVXXsHc3Jzvv/+eiRMnYmFhQe3atbUmUtDn3Xff5ebNm7z00ksolUpefvll+vTpoxn4Up9//vmHV155hTZt2uDs7MxXX33FJ598orm/Xr16/Pjjj3z77bd8+OGHtG7dmq+//poRI0bcN5Zhw4YxadIkLl68qDUrzr2MjIxYtmwZgwcP1iTk3nzzTfz9/fnhhx/o06cPWVlZeHp60rNnTyZMmMC6detISEigT58+Otvz8/Ojdu3azJ49m08//RRPT08+//xzoqKiUCgUmv/feafoi9ratWupXr06rVq10tleWWndoS1pqaksmfsviQmJeHh5MuW7qTi5FA7EnpSQwO1Y7UH3x71c1NX28sVw9mzbiZOLM3OWF46tkBifoNVm1ZLlrFqynKB6dfjm19J10X5Y5bFflaF+yyZkpGawZek6UpNScK3uxqufvKPpEpKamELS7aIB7FUqNRv+XUFi7G2UBgZUcXGk5/AXaNalbYXG/WLffuTk5vLNX3+Slp5OkL8/v33+BRbm5po2t+Jvo1QWdUO/nZjI0Hfe1vy/YM1qFqxZTYOgIP439WsAYuMTmPzDDySnpWJnbU1QQAD/fPcDrk5OZRp/qw5tSUtNY+m8hXeOHw8+/fare46fRG7H3tZaZ/yoNzV/X74Yzp7tu3BycebvZfMB2LRmPfl5eXzz6Vda6w16aRhDXh5epvHfVbdFYzLTMtixYgOpSSm4VK/KyI/ews6xsOorLSmF5Pii7txqtZrNC1eTGBeP0kBJFWdHug3tS5NORefB7IxMVs1cQFpyKqbmZlT1cuf1L97H3e/RKrse1YjuPcjJy+XbBXNJy8iklo83v747EYt7LtDcSkjQGtpgxc4d5OXnM+n3X7S2Nfr5Przau3Asslre3nw/9m1+X7GMv9euoaqjIxOGDKNbs0eb2eyh96NDJ3Ly8vh2xVLSMjOp5eHJr2+MxeKecUxvJSVp7Ud2bi7fLl9KXEoyJkZGeDg588Xwl+jcoKG+hyhXjVo3Iz0tnQ1LVpOamExVj2qMnfI+VZwKE1YpSckk3vOZtHfTTlQFBSz5cy5L/pyrWd60QyteeqdwvFx7xyq8/cUHLP97AV+O/RDbKna0f64rXfr1qtB90yfQ0YPf+hT9aB/Xsj8AG8MOMXVnyRf1KsLZmxGYG5nS3rcRVibmxKYnMu/YRpKzCyvYrEwssDUr6l6YW5DPP0fX07NWS95s0ZfM3BzO3oxg26WjlbULAAS3aU56Whr/LVpJSmISbp7uvP3FhzjcGW4hOTGJxLh4Tfs9G7dTUFDAwt9ns/D3oh4HzTu2YdS7Y4DCrp3//v43SfEJGBkb4+ruxivvv0Vwm+blsg/N27UiLTWNlQuWkpSYiLunBx98/SmOzoXnpuSEJBLitM8Zk14br/n7yqXLHNixB0dnJ35b9Ldm+Y3oGC6cC2Xyt9rDkZSX2s0bkZmWwa6VG0lLSsXZ3ZXhH755zzkjleT4osSsWq1i6+K1JMUloFQqsXdxpPPQ3jTuqD3eZvyNWK5eiOClj8tvAoq7Cl+LVFbOX6J5LT78+jMcXQpfi6TEROKLvRYTXy367nHl0mX233ktfl9ceHw5ODny8XdfMO+Pv3n/lbewd6hCt7696D2oX7nvjxD6KNQPM2iVEOKpMmXKFNasWUPIPd3LnlUTJ04kJSWFv/76q7JDKVFwcDDjx49nyJBHrzgJj7tWDhFVLD+n6k/9fvg5VWdj2MHKDqPUutdoTtqFS5UdRqlYBfpzMTaqssMotQBnT9acLZsBgCtT79ptSD1YuUmA0rJuHkzq5u2VHUapWXftyK7w0o+RV5na+TWixe+vP7jhE+7AmJl8tPHBFf5PumndX2f/ldOVHUaptPSuS8j1i5UdRqnVqxbA8tMPNwTPk6p/3Q6cjnm6v4MA1HWrgAk4ykHq3if3e6x16/JJsD/pZMw4IcRTbfLkyXh4eFBQUFDZoegVFxfHCy+8wODB/w9maRJCCCGEEEI8edSqJ/f2/5R0UxVCPNVsbGz46KOPKjuMEjk5Oekdq1AIIYQQQgghxP9PUhknxDNoypQp/y+6qAohhBBCCCGEEE8bqYwTQgghhBBCCCGEeFbJVAFPHKmME0IIIYQQQgghhBCigkgyTgghhBBCCCGEEEKICiLdVIUQQgghhBBCCCGeVSrppvqkkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZJbOpPnGkMk4IIYQQQgghhBBCiAoiyTghhBBCCCGEEEIIISqIdFMVQgghhBBCCCGEeFapVZUdgShGKuOEEEIIIYQQQgghhKggkowTQgghhBBCCCGEEKKCSDdVIYQQQgghhBBCiGeVSmZTfdJIZZwQQgghhBBCCCGEEBVEknFCCCGEEEIIIYQQQlQQ6aYqhBBCCCGEEEII8axSSzfVJ41UxgkhhBBCCCGEEEIIUUEUarWkSIUQQgghhBBCCCGeRalbdlR2CCWy7tKhskOoFNJNVQghnmAbQg9Udgil1qNmC8LjrlV2GKXi51SdV1d8W9lhlNr/XphEyne/VHYYpWIzcRxfbJtT2WGU2qedXmbE4i8qO4xSmz/4U1KPnajsMErFunFDdoUfr+wwSq2dXyN+2ru0ssMolfGtB/LRxpmVHUapTev+Oi1+f72ywyi1A2Nm8vqK7yo7jFKZ+cLEZ+aYGrPqh8oOo1R+7/se7/33a2WHUWo/9HqrskN4PFKD9cSRbqpCCCGEEEIIIYQQQlQQScYJIYQQQgghhBBCCFFBpJuqEEIIIYQQQgghxLNKparsCEQxUhknhBBCCCGEEEIIIUQFkWScEEIIIYQQQgghhBAVRLqpCiGEEEIIIYQQQjyrZDbVJ45UxgkhhBBCCCGEEEIIUUEkGSeEEEIIIYQQQgghRAWRbqpCCCGEEEIIIYQQzyrppvrEkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZpZJuqk8aqYwTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5ValVlRyCKkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVYgyNHfuXJydnenWrVtlhyKEEEIIIYQQQshsqk8gScb9P+Lp6cn48eMZP358hW1PoVCwevVqevfu/diPM2XKFNasWUNISMhDr7N7927atWtHUlIStra2j/3Yj2LVqlV89913HDhw4LHWf+mll0hOTmbNmjUAtG3blnr16vHTTz+VuE5ZvKb3vkZRUVF4eXlx6tQp6tWr99jbfBhldTzu3LmTN998k9DQUJTKJ6/YNy4ujlq1ahESEoKbm1u5PtaBTTvZtWYzqUnJuLi70XvUYLxr+utteyX0EusXrCDu+k1yc3Oxd6xCs85tafNcZ02bQ1v3cHz3QW5diwGgmo8H3Yf2w8Pfu1z3o7gNq9exavFyEhMSqO7pyehxbxBUt7betonxCcz+/S8uXwznxvUYer3Qm1fHvVmh8QK08a5Pl4BgbEwtuZEaz9LTO7gcf11v25cadae5p+7+3EiJZ8q22QA08whiZOMeOm3eXPUD+aqCsg3+IZi0aIJx3VooTEwpuHmLrG27USUkPmAlY0xbNcfI3weFqQmqlFSyd+0j/8rVco310t6ThO44SlZKOrauDjTs1wEnX3e9bWMvXWP7L4t1lvf8+BVsXKoAoCoo4PzWw1w5co7M5DSsne2p/3xbqtas2PcFQAffRnSv0QwbMytiUuJYeHIrl25fK7F9M48getRojrNVFbLysjlzM4Ilp7aRnptVYTGr1WpmrVrJ6l07ScvIoJaPLxNfGolPtWolrrN610427ttHxPVoAAK9vBgzYCC1fHw1bVZs38bKHdu5eTseAO9qbozq05cWdeuV+T7s3rCNbas2kJKYTNXqbvQfPRy/oEC9bU8dPMaejdu5fuUq+Xl5uFavRs8h/ajVsI5Wu8z0DNYuWMapg8fJTM/AwdmRfqOGUrtx2cd/17ldRwnZsp/MlHTsqjrSYmA3qvp76m0bczGSdT/8o7N80BdvYefqCEDo3uNcPBRC4o04ABw9qtKkT0ecvUp+bUurSfVatPKui5WJOXHpSWwIPUBU0q0S2xsolbT3bUQ9Nz+sjM1JyU5nd8RJTly/qNO2jqsPg+p3IvRWJP+e3FJu+/Ao6rr6MqR+ZwKdquNgYcsHG/9kX+Tpyg5Lo413PTrdc+5bfnpniee+Fxt1o1kJ574vts0BCj+zXmzcXafN2FXTy+3c96wcU62869HRrzE2phbcTI1nxZldRCTE6G07vGFXmnoE6Sy/mRrPV9vnAlC3qh9dAprgaGGLgdKA2+lJ7Ag/ztHo0HLbh+YetWnrWx8rEwti0xJZe34fkYk3SmxvoFTSyT+Yhm4BWJlYkJydzo7wYxyLDtO0aeVVl2aetbEzsyIjN4szNy+zMexQpXyXEkKScU+BXr16kZWVxfbt23XuO3ToEM2bN+fEiRM0aNCgQuM6duwYFhYWFfqYT6orV67w8ccfs2nTJuzs7Mpkm6tWrcLIyKhMtvWw3N3duXnzJg4ODuX+WGV1/EycOJHJkydrEnFz585l/PjxJCcna9qEhYXRqVMngoODWbx4MSYmJuzatYvvv/+eI0eOkJWVhaenJ926dWPChAk6SbOAgAAiIyOJjIzUue/KlStMnjyZPXv2kJiYiIODAw0bNuT777/H398fJycnhg8fzmeffcbff/9d6v0tyan9R1kzZzH9Xh2OV6AvB7fu5n9fzmDSL19h51hFp72xqQktu7enqoc7xqYmXAkNZ8XMeRibGtOsc1sAIs5fpEGrJngG+mJoZMSu1Zv46/PpTPzlK2yrlM1x/iB7d+xm1i9/8saEt6hZuxab1m1gyvsf8ceC2Tg5O+m0z8vLw9rWhgEjhrB22coKibG4RtUCGVivA4tObuVyQgytvesxrmV/pmz5m8SsNJ32S0O2s+rsHs3/SqWSTzuO5ETMBa12WXk5fLJ5ltayyvjyaBzcEJNG9cncuA1VUhImzYKxGNibtL8XQG6e/pWUSiwG9EGdmUnm2o2o0tJRWlmiLql9GYk6EcaJlTtoPLAzjt5uhO8PYdcfy+n58StY2FuXuF6vT0ZjZGas+d/E0lzz9+n/9hF57DxNhnTF2rkKN8Mi2TtrNZ0nDMPe3blc9+deTarXZGiDLsw7vpHw+Gja+TbgvTZD+HDjHyRkpuq093dw57WmvVl4aiunYi5hb2bFS4178HJwL37Zv6zC4p6//j8WbdrEp6+9RnUXV+asXc3Yb6ax4vvpWJiZ6V3nRFgonZs1p46/HyZGRsxfv56x337D0m++w8neHgAne3vGDhxENWcXADbs28t7P07n36lf3zfR96iO7z3E8lkLGPzGSHxq+rNv005+m/Idn/3xHfZOuufO8HMXqFEviN4jBmBmYcGh7Xv448sfmDT9C6r7eAKQn5fPz598g5WNNa9+OA47B3uSbidiamZaZnEXd/nYWQ4s3USroT1x9a3O+T3H2PDLvwz6fCxWVWxLXG/wl+MwNjPR/G9qVXQev3ExCr/gOrj4uGNgZEjIlv2snzGfgZ+PxdKu5Pfb46rt6kOPms1Zd24fV5NuEVy9Ji827sFPe5eSkp2uP/76nbA0NmfVmd0kZKZiaWyGUqHQaWdrakm3wGb3/eFfGcyMTLiccJ2NFw4yrdvrlR2OlobVAulfrwOLT24jIuE6rbzrMbblC3y+ZTZJes99O1h9dq/mf6VSwccdR3IyRjuJlZWXw2ebtb8/lde571k5phq4BfBCnXYsDdlOREIMLb3qMqZFP77c9o/e12L56Z2sPXfva6Hkw/YvcjLmkmZZZm42Wy4e5lZaIgWqAoJcfBjWsCtpOZmExUWV+T7UrerHc0GtWHV2N1GJN2nqEcQrTXrx/e6FJGfpfy2GN+yGlYk5y07vJD4jGUsTc63Xor6bP91rNGfZ6R1EJd7E0dKWgfU6ArDu/P4y3wchHuTJKyMROkaNGsXOnTu5elW3emDOnDnUq1evwhNxAI6Ojpibmz+44f8D3t7ehIaG4uHh8cC2eXkP9+PT3t4eKyur0ob2SAwMDHBxccHQsPzz9GVx/Bw8eJDw8HD69+9fYptjx47RqlUrunTpwvLlyzExMeGvv/6iY8eOuLi4sHLlSkJDQ5k5cyYpKSlMnz5da/39+/eTnZ1N//79mTt3rtZ9ubm5dOrUidTUVFatWsXFixdZunQpQUFBpKSkaNqNHDmShQsXkpSUVKr9vZ8967bQpEMrmnZqjbN7VfqMGoJtFXsObN6lt301bw8atGqKS3U37J0caNS2GQH1grgSGq5pM+ydV2nRrT1uXtVxrubKgDdfQq1WE36m/K6CFrdm6Uo69ehKl17dcff04NVxb+Lg5MjG1f/pbe/s6sJrb4+hQ9dOmFfSxYJO/o3ZH3mG/VFnuJWWwLLTO0jKTKONT3297bPyc0nNydDcPO1cMDc25UDUWa12arVaq11qTkZF7I4Ok0b1yD50jPzwCFTxiWRt3IbC0AjjGgElrmNcpyYKU1MyV2+gIOYm6tQ0CmJuorpTxVReLuw8hk+zOvg2r4uNiwONXuiIuZ0Vl/aduu96plbmmFlbam73Vt1GHj1Prc7NcKvlg5WDLf6t6uNaw4uwnUfLdV+K6xrQjD1XTrHnyilupMaz8ORWEjNTaO/XSG97H4dq3M5IZtulo8RnJHMpPppdl0/gZe9aYTGr1WoWb97MyOefp33jYHzd3Zny2htk5+ay5eDBEtf76s2x9O/UiQAPTzyrujH5ldGoVWqOnT+nadO6QUNa1KuPh6srHq6uvDlgIOamppy7HF7idh/H9jWbaNGpLS27tMPV3Y0Brw7HzqEKezbqXjAFGPDqcLq80AtPfx+c3Vzo/eJAnKq6cPboSU2bg9t2k5GWzhsfv4NvzQCqODniWyuAat4P/k7xuE5vO0hgywbUbNUQO1dHWg7qjqWdNef3HLvvembWFpjbWGlu9743Oo5+gaB2wThUd8XO1ZE2I55HrVYTE3alXPahpVcdTkRf4Pj1C9zOSGZD2EFSstNp4lFTb3s/B3e87Ksy7/hGIhJiSM5K43pKHNeSY7XaKVAwoF4HtocfJzFTN3FRmQ5fO8+sI+vYcyWkskPR0dG/EQciz3Ag6gy30hJZfnrnfc992cXOfR53zn0HK/Hc96wcUx38GnEo6iwHo84Sm5bIyjO7SMpMo5V3Pb3tC1+LTM2tum3ha3E4qugzNjw+mtM3LhOblkh8Rgq7I04Sk3obH4fy6fXRxrseR6+FcvRaKHHpSaw7v4/krHSaeejvGRHgWB2fKm78fWQd4fHRJGWlEZ0cy9V7qho97VyJSrzJqZhLJGWlcel2NCEx4VSzqbgLaZVKrX5yb/9PSTLuKdCzZ0+cnJx0EgGZmZksXbqUUaNGAYWJidatW2NmZoa7uzvjxo0jI6PkE9a1a9d4/vnnsbS0xNramgEDBhAbq33yWLduHY0aNcLU1BQHBwf69u2ruc/T01OrC2V4eDitW7fG1NSUmjVrsm3bNp3HnDRpEv7+/pibm+Pt7c0nn3yik5z65ptvcHZ2xsrKilGjRpGdnf3A52jjxo34+/tjZmZGu3btiIqK0mnzqM/PlClTqFevHn/99Rfu7u6Ym5vTv39/rYorgH/++YcaNWpgampKYGAgf/zxh+a+qKgoFAoFy5Yto23btpiamvLvv/9SUFDAhAkTsLW1pUqVKkycOBF1sQ+itm3banXhjIuLo1evXpiZmeHl5cXChQt1Yv7xxx+pXbs2FhYWuLu78+abb5Kerv/qkT53473bJXj37t0oFAq2bNlC/fr1MTMzo3379sTFxbFp0yZq1KiBtbU1gwcPJjMzUyv2sWPHMnbsWM0+fvzxx1r7WPz4eZzYlyxZQufOnTE11V89sHPnTtq3b8/IkSOZPXs2BgYGXL9+nXHjxjFu3DjmzJlD27Zt8fT0pHXr1vz99998+umnWtuYPXs2Q4YMYfjw4cyZM0drH0JDQ7ly5Qp//PEHTZs2xcPDgxYtWjB16lQaN26saVe7dm1cXFxYvXr1A1+Dx5Gfl8/1iKv416ultTygXi2iLlx+qG1cv3KVqIuX8alVckIlNzeHgoICzC0rJsmVl5fH5UuXqB/cUGt5/cYNuXDufIXE8KgMFEqq27oQGhuptTw0NhKfKg/3hbWFZx0uxEWRWKy6ycTQmK+7vc633d9kbIt+uNvqVgaWN4WNNUpLC/Kj7ukKWVBAfnQMBm4lJ3UMfbwpuHETs05tsRrzCpYjh2LStBHoqR4oKwX5BSRG38K1hpfWctcaXsRH6u+qc9fGb+ey8qPf2P7LEm5d0r4QVpCfj4GRgdYyAyNDbkfo74pVHgyUSjztXTl3K0Jr+dlbV/Bz0N8FNzw+Gntza+q4FnbttDa1oHH1mpy+UbbJqvuJuR1HQkoyTWsXddE0NjKiQWANzoRfus+a2rJzcsgvyMfa0lLv/QUqFVsPHSQrJ4fafn6ljvuu/Lx8rl2OpEZ97R+DNerX5sqFh3seVSoV2VnZmN8T++kjJ/EO9GPxn3N5f9gbfPHmJDYtW4uqQFVmsd+rID+f21dv4l7TR2u5ey1fbkWU3M0ZYPkXfzLvve9YN/0fYi7cP8mWn5uHqqAAEwv9FY+lYaBQUtXakfD4aK3ll29fx8PWRe86NZw9iUm5TWvvekxqP5wJbQbRLbAphkrt93N7v4Zk5GZz4voFvdsRuu6e+8Jio7SWh8VG4l0G576p3V7j6+5v8GY5nvuelWPKQKHE3dZZp1otLC4Kb/uqD7WN5p61uRh3lcQs3SrruwIcq+NsaV9iN+TSMFAocbNx0hl24dLta3iWcAGplosX0clxtPNpyCcdRzKp3TB61myh9VpEJt6gmq0T7raFyTd7c2sCnTzKpbJPiIchybingKGhISNGjGDu3LlaiYDly5eTm5vL0KFDOXv2LF26dKFv376cOXOGpUuXsn//fsaOHat3m2q1mt69e5OYmMiePXvYtm0bERERDBw4UNNmw4YN9O3blx49enDq1Cl27NhBo0b6r7irVCr69u2LgYEBhw8fZubMmUyaNEmnnZWVFXPnziU0NJSff/6ZWbNmMWPGDM39y5Yt47PPPmPq1KkcP34cV1dXreSWPtHR0fTt25fu3bsTEhLCK6+8wgcffKDV5lGfn7suX77MsmXL+O+//9i8eTMhISGMGTNGc/+sWbOYPHkyU6dOJSwsjGnTpvHJJ58wb948re1MmjSJcePGERYWRpcuXZg+fTpz5sxh9uzZ7N+/n8TExAcmal566SWioqLYuXMnK1as4I8//iAuLk6rjVKp5JdffuHcuXPMmzePnTt3MnHixPtu92FMmTKF3377jYMHDxIdHc2AAQP46aefWLRoERs2bGDbtm38+uuvWuvMmzcPQ0NDjhw5wi+//MKMGTPu203zcWLfu3dvicfk6tWr6dGjB5MnT+b777/XLL/7vilp2/eOMZiWlsby5csZNmwYnTp1IiMjg927d2vud3R0RKlUsmLFCgoK7t9lIjg4mH379t23zePKSEtDpVJhZWujtdzK1pq05JQS1ir0+Svv8n7/V5nx/he06Naepp1al9h2w/wV2Njb4V+3VoltylJqSgqqApVO1287OzuSEsuvyrA0LE3MMVAqSc3J1FqempOBtemDk5g2phYEuXizL/KM1vJbaYnMPb6B3w+uZNbRdeQVFDCp7TCcLCumu/BdSovCalZ1pvb+qTMzUViUXOmqtLXGKMAXFAoyVqwl59BRjBvXx6RZ4xLXKa2c9EzUKjWmVtpxmVpZkJWq/0KMmY0FTQZ3ofUrvWn9Sh+sne3Z8esSYi8X/ThzreHFhZ3HSI1LRK1SczMskutnwkvcZnmwunOcpWRrP2ZqdgY2JRxnl+OvM/PQasa06MecgZP5rc+7ZOZms+DE5ooIGYCEO59H9jban1X2NtYkpCQ/9HZ+W7oERzt7gmtpj3F0OfoarUeNpMVLI/j6nzl8P/4dvN3KrotqemrhZ621nXb81nY2pCbd/7P2ru2rN5KbnUPDVk00y+Jj4zh54CgqlYqxUybSbWBvtq/eyKZla8os9ntlp2eiVqkwt9ZOZppZWZCZov8imLmNFW2GP0eXNwbR5Y1B2Lo4sO7Hedy4FFXi4xxeuQ0LW2uqlcN4iubGphgolaTnaI93mJabiaWJ/s8ie3MrPOxccLayZ+GJLawPPUiQiw/P1WqlaVPdzoVG1QJZfc/QAeLBis59xT6TcjIf6txnbWpBLRdvDuic+xKYd3wjfxxcxeyj/5FfkM/7bYeWy7nvWTmmLE3MCl+LbO3zdNojvBY1nb10KhQBTA2N+fG5cfzS+x3eaN6X5ad3cCGu7Md9tTAu3Ie0nOL7kIVVia+FDV72rrhY2zP3+EbWnt9HHVdf+tZuq2kTciOczRcOM6ZFP77t8SYfdXiRiITr7Lp8osz3QYiHIWPGPSVefvllvv/+e83EBFDYRbVv377Y2dnx9ttvM2TIEE0llZ+fH7/88gtt2rThzz//1Kkc2r59O2fOnCEyMhJ398Kr6AsWLKBWrVocO3aMxo0bM3XqVAYNGsTnn3+uWa9u3bp649u+fTthYWFERUVR7c7YLNOmTdOZVfTjjz/W/O3p6cm7777L0qVLNYmRn376iZdffplXXnkFgK+++ort27fftzruzz//xNvbmxkzZqBQKAgICODs2bN8++23mjbff//9Iz0/d2VnZzNv3jzNPv3666/06NGD6dOn4+Liwpdffsn06dM1FYNeXl6Ehoby119/8eKLL2q2M378eK2qwp9++okPP/yQfv36ATBz5ky2bCl5INdLly6xadMmDh8+TJMmhV/gZ8+eTY0aNbTa3VtJ5+XlxZdffskbb7zxwITmg3z11Ve0aNECKOw2/eGHHxIREYG3d+EX7BdeeIFdu3ZpJWDd3d11XpMZM2YwevRovY/xOLFHRUVRtaruVb709HT69+/PRx99pJOYDQ8Px9raGlfXB3fNWrJkCX5+ftSqVZh8GjRoELNnz9a8B93c3Pjll1+YOHEin3/+OY0aNaJdu3YMHTpU89zc5ebmxqlTJXeNy8nJIScnR2uZiYlJCa31K15jpFarUTyg8mjs1A/Iyc7h6sUINixYgYOrEw1aNdVpt3P1Jk7uP8qYLydiZFyxYxkWr55S8+D9qnTFKl0VKOAhqvCbedQmKy+bkBjtKqHIxBta48xExF/n444v0c6nAUtP7yiTkPUxqhmAWed2mv8zVt7pHqyvS8H99k+hQJ2ZRdaWnaBWo4q9jcLSEpPgBuQcLO/uncWOFbW6xII8a+cqWDsXjbHo6O1GZlIqYduP4nxn0odGL3TkyOLNrP/yb1CApYMd3k1rc+Ww7g+XcvcIL0NVaweGNejK2nN7OXsrAltTKwbW78hLjXsw+6j+bt+ltenAfr6eM1vz/4z3Cs/1up9V+pbqN3/9f2w9dJCZkz/BxNhY6z4P16osnPo1aZmZ7Dx2lCl/zeSvjz8p04RcYaTFPpPU6ocK/9ieg6xftIo3PpmA9T0XT9QqNVa21gwb+wpKAyUevl6kJCaxddUGegzue58tlpKemEv6bLVzccDOpWhMPBef6qQnphCy9YDeSR9Obd7H5aNnef79kRiW4/i3xY/3wtdG/7vg7uu2NGQHOfm5AGwMO8jgBp1Zd34fSoWSAXXbs/rcHjLzHtwrQ+gqfmpQ6FuoRzOPoDvnPu0K08jEm0Qm3tT8HxF/nY86vkhbnwYsK6dz37NzTOnGrH6ILyJNq9ciKy9bb9V0Tn4uX++Yj4mhEQGOHvSt3Zb4jBSdasLycr+vfnc/uxad3Er2nddi3fn9jGjUjVVnd5OvKsCnihsd/Bqx6uxuriXF4mBhw/NBremYncn28Pt30X8m/D/uDvqkkmTcUyIwMJDmzZszZ84c2rVrR0REBPv27WPr1q0AnDhxgsuXL2t1XVSr1ahUKiIjI3WSNmFhYbi7u2sScQA1a9bE1taWsLAwGjduTEhISImJk+LCwsKoXr26JmkF0KxZM512K1as4KeffuLy5cukp6eTn5+PtbW11nZef117QNpmzZqxa5f+ca/urtO0aVOtL5DFH/tRn5+79O2TSqXi4sWLGBgYEB0dzahRo7Sep/z8fGyKXfW/t3orJSWFmzdvasVoaGhIo0aNdLqq3ruPd9vcFRgYqDNT7K5du5g2bRqhoaGkpqaSn59PdnY2GRkZpZosoU6doi5Fzs7Omm7G9y47elT7B7W+12T69OkUFBRgYKBdvv+4sWdlZelNpJqZmdGyZUtmzZrF4MGDtV7fh0lQ3TV79myGDRum+X/YsGG0bt2a5ORkzXM/ZswYRowYwa5duzhy5AjLly9n2rRprFu3jk6dOmnFlFmsmuheX3/9tVbiG+Czzz6j8YBOJaxRxMKqcNye1GJVcOkpaVja3H/Q7CrOhbPgVfWoRnpKKluWrNVJxu1as5ntK9bzxufvUdVTfxe48mBtY4PSQElSovYsnclJydja2VZYHI8iPSeTApVK5+qzlYn5Q41z08KzNoevnadAff/uaWogKvEWzlb2pQn3gfIuX6Hgxj2zyN157yosLFBnFB3PCnNznWq5e6kzMlEXFGh9EVQlJKK0tAClElRl3x3PxNIchVJBdpr2856dnqk16PyDOHhWJfJYUbdoUytz2rzal4K8fHIysjCzsSRk7R4sq9jcZytlK+3OcWZjpr0f1qYWpGbrP8561WxJeHw0Gy8cAiCaOHKO5fJxp5GsOLOrxMHJS6N1g4YE3TPjaW5+PgAJKSk43FPxmpSaShWbBz9/Czas5591a/n9g4/wq15d534jQ0PcXQq7k9X09ib0SgRLNm/mo1GvlHZXALC0LvysTUlK1lqelpyqlVzT5/jeQ8z/ZRavfjCOGvW0K/ps7G0xMDBAaVDUYcXFvSqpScnk5+VjaFS2X9dNLc1RKJU6VXBZaRmYWT/8e8PZ251Lh3Vn8gzZsp+TG/fRa8KLVKmmv3tfaWXmZlOgUmFlot0F1tLYTKey6a60nExSszM0SROAuPQklAoFNqaWGBsYYm9uzfCGRReS735f+LLrq8zYu0SnC6UodPfcV7wyt/DcV/K54a4WnnU4ci30oc59VxNv4WRV9pVxz8oxlZ6TVeL3kLTsB78WzTxrc7SE10IN3M5IBuB6ym2cre3pHBBc5sm4jNysO6+FdhWcpbGZTrXcXWnZGaRkp2sScQBx6YkoFQpszSyJz0ihS0BTTl6/yNFrhWMf30pLwNjAiBfqtmNH+LGHuWYqRJmSbqpPkVGjRrFy5UpSU1P5559/8PDwoEOHDkBhN9HXXnuNkJAQze306dOEh4fj4+Ojs62SEhL3LjcrYVYzffQlkYpv//DhwwwaNIhu3bqxfv16Tp06xeTJk8nNzdVZ91GUlMC616M+PyW5u08KhQLVnR+Ps2bN0truuXPnOHz4sNZ6pZ019O4+3i+JdPXqVbp3705QUBArV67kxIkT/P7778DDTxpRkntndVUoFDqzvN77fDyOx43dwcFB76QIBgYGrFmzhoYNG9KuXTtCQ4smHPD399ckRO8nNDSUI0eOMHHiRAwNDTE0NKRp06ZkZWWxePFirbZWVlY899xzTJ06ldOnT9OqVSu++uorrTaJiYk4OjqW+HgffvghKSkpWrcPP/zwvjHeZWhkSDUfDy6d1p5Y4dLp83gG+pawli61Wk1+Xr7Wsp2rN7Ft+X+8+ukE3H29SlizfBgZGeHr70/IsZNay0OOnSQwqGK6yj6qArWKa8m3qOnsqbW8hrMnEQn3H6fM39EdZyt79hfrplMSd1snUkqYUazM5OahSk4puiUkokrPwPDepKxSiaG7GwUxJb+n8q/fQFksgaq0t0WVnl4uiTgAA0MD7N1duHkhSmv5zQtROHg9/IDTiddjMbPRHZvMwMgQc1sr1CoV10IuUq1O2Y1N9iAFKhVRiTcJctGuwA1y8S7xR5GxoZHO+VKlObeUT5wWZma4u7hobt5ublSxseXIuaIqwrz8fE5eCKOOn/99t7Vg/X/MXrOaXyZOoqb3w3V7VKuLEoBlwdDIkOq+XoSFnNNaHhZyFu/Akl//Y3sOMu+nvxj13hhqN9YdzN6nhj9xN2O1zqOxMbewsbct80QcgIGhIY4erlwP0x5z8HpoBC4+uknOksRfu4m5jfZEU6e27OfEhj30eHs4Tp7lM7A7FH7W3ki9jW+xMRJ9Hdy4mnxL7zpXk25hZWqOsUHRc+pgYYtKrSIlO53bGcn8vHcpv+1frrldiI0iMiGG3/YvL//P26fY3XNfDT3nvisPce5zsrLT6aJakmrldO57Vo6pArWK6ORYAp08tZYHOnly5QEzufo5uONkacfBq+fu2+4uBQoMlWX/GVWgVhGTEoe/o/Zr4e9YnahE/d81IhNvYm1qgbFB0W8Uxzuvxd3ZV40NDHWqA1Vq1Z0Kxye8x4V4Jkky7ikyYMAADAwMWLRoEfPmzWPkyJGa5EyDBg04f/48vr6+OjfjYt04oLAK7tq1a0RHF31pDw0NJSUlRVNFVKdOHXbseLgS8Lvbu3Gj6EP+0KFDWm0OHDiAh4cHkydPplGjRvj5+enMEFujRg2dRFbx//U99oPWedTn5y59+6RUKvH398fZ2Rk3NzeuXLmis00vr5KTFjY2Nri6umrFmJ+fz4kTJY9XUKNGDfLz8zl+/Lhm2cWLF7Umkzh+/Dj5+flMnz6dpk2b4u/vrxV7RdP3mvj5+emtinvc2OvXr6+VaLuXiYkJq1atIjg4mHbt2nHuXOEXixdeeAFjY2O+++47vevdfU5nz55N69atOX36tFaydeLEicyePVvvulCYmAwMDNSZHOTcuXPUr69/RrG78VpbW2vdHqWbapvnunBk+16ObN9HbPQN1sxZTFJ8Is27tAVg/YIVLPp5lqb9/o07OH8shNs3Yrl9I5ajO/axe+0WGrYpqtjcuXoTmxatZuDYkdg7OZCalEJqUgo5WRXX1aL3wH5sXb+JrRs2Ex11lVm//MntuDi69+4JwNyZs5n+1bda61wJv8yV8MtkZ2WRkpzClfDLXIss+zFNSrLt0jFaetWlhWdtXKyqMKBue+zNrTWz3/UJas3Ixj101mvpWYcrCTe4kao7w2jPGi2o6eyFg4UN1WyceLFhN9xtnSplRr2c4yGYNm2MoZ83Sgd7zLp3Qp2fR27YRU0bs+6dMGndXPN/bshZFGammHZog9LOFkNvT0yaNib35MP9+Hpcge0bE3HwNBGHzpByK54TK3eQmZiKX6t6AJxau4eD89dr2l/YdYzo05dIjUsk+eZtTq3dQ3TIJfxbF81YHh91g2shF0mLTybucjQ7f18OajU1OzYp/vDlavPFQ7TxbkBr73pUtXZgSP3OVDG3YWd44bmkf932vNr0eU37UzGXaOgeSHvfhjha2OLn4M6whl2IiI/R/FApbwqFgsFdu/LPurXsOnaMy9HRfP7XTEyNjenSvOh4+WzmH/y2dInm//nr/+PPFcv5dPRruDo4Ep+cTHxyMpn3DGHx+9IlnLpwgRu3b3M5+hp/LFvKybBQujVvUab70LF3Nw5s3cWBrbu5GR3DslkLSLqdQOvuhRdHV89dwj/T/9S0P7bnIP/8OJN+o4biFehLSlIyKUnJZN1TWdq6e0cy0tJZ9r8FxMbc5OyxU2xevpY2PR5cGf246nZqTti+k4TtP0nSzdscWLqJtMQUarUpHMfx8Kpt7Ji9UtP+9PaDRJ4KIzk2gcSYOA6v2saVk6HUbl903J/avI+ja3bQ9sXeWDvYkpmSRmZKGnnZOTqPXxb2R56hkXsgDasF4GhhS/cazbExs+Lo1cLvBZ0DgnmhTlE3+9M3wsnMzaFfnXY4WdrhaedKtxpNORF9kXxVAfmqAmLTk7RuWfm55OTnEZue9MCqrYpgZmSCn0M1/BwKe21UtXbAz6EazhU8fqg+2y8dp4VXHZp71sbFyp7+ddtjZ27N3jvnqd5BrXmpcXed9Zrf59zXo0Zzajp7as59wxt2xd3WiX3ldO57Vo6pHeHHae5Zm2YeQThb2dOvdlvsza3Yf6WwkvW5Wq0Y0bCbznrNPYOITLzBTT2vRWf/YAKdPKhiboOzpT3tfRvSpHpNjkXr/x5eWnuuhBBcvRaN3WvgZGnHc7VaYmtmyeE7icJugc0YVK/oM/JUzCUyc7MZWK8DzpZ2eNtXpWfNFhy9Fka+qnBc59DYSJp51KZeVT/szazxc3Cna2BTzt+KfKguvEKUNemm+hSxtLRk4MCBfPTRR6SkpPDSSy9p7ps0aRJNmzZlzJgxjB49GgsLC8LCwvQOrA/QsWNH6tSpw9ChQ/npp5/Iz8/nzTffpE2bNpqukJ999hkdOnTAx8eHQYMGkZ+fz6ZNm/QOfN+xY0cCAgIYMWIE06dPJzU1lcmTJ2u18fX15dq1ayxZsoTGjRuzYcMGnUkL3n77bV588UUaNWpEy5YtWbhwIefPn9cZf+ter7/+OtOnT2fChAm89tprnDhxQmfm2Ud9fu4yNTXlxRdf5IcffiA1NZVx48YxYMAAXO50g5kyZQrjxo3D2tqabt26kZOTw/Hjx0lKSmLChAklbvftt9/mm2++wc/Pjxo1avDjjz/qzNJ6r4CAALp27cro0aP53//+h6GhIePHj9eqXvTx8SE/P59ff/2VXr16ceDAAWbOnFniNstbdHS05jU5efIkv/76K9OnT9fb9nFj79Kli85kGfcyNjZm5cqVDBgwgPbt27Njxw5q167NjBkzGDt2LKmpqYwYMQJPT0+uX7/O/PnzsbS05JtvvmHBggV88cUXBAVpdyd65ZVX+O677zh9+jRqtZrPPvuM4cOHU7NmTYyNjdmzZw9z5szRGj8vMzOTEydOMG3atId89h5d/ZbBZKals3XZOlKTUnCt7sboj8dj71Q4xk9aUgpJt4u6e6rVajYsWEli3G2UBgZUcXGkx/AXaNa5jabNgU07KcjPZ9532uP2dR74HF0H9S63fblX6w5tSUtNZcncf0lMSMTDy5Mp303FyaVwJqykhARux2pPZDLu5Tc0f1++GM6ebTtxcnFmzvJ/KyTm49cvYGFsRo8aLbAxteBGajy/7l+u6YpiY2qJvbl292EzQ2MauAWwpIQxcMyNTRjeoAvWphZk5eUQnRzH97sXEZV0/wrP8pB79AQKI0PMOrVDYWpCwc1YMpatgdyiKlaltZVWl1R1WjoZy9Zg2r41liOHoErLIPdECDlHynfQZM+GNcjNyOLspgNkpWZg6+pA2zf7Y2lf2KUwOzWdjMSiLkIF+SpOrt5FVko6BkaG2Lg60PaNF3CrVVRBXZCXz+n1+0iPT8bIxJiqtbxpPqIHxub6xx4tL0euhWJpbM7ztVpja2bJ9ZQ4pu9ZREJmYXd1W1NLqpgXdZ3cH3kaM0NjOvo3ZnD9zmTmZhMaF8mykPIbc1CfET17kZOby7dz/yEtM4NaPj78OulDLO45n92KT0ChKLpevGL7NvLy85n0y09a2xrdpy+v9nsBgMTUVD6b+QfxyclYmpvj6+7OLxM/oElt7ZlPS6tR62akp6WzYclqUhOTqepRjbFT3qeKU2Hlc0pSMom3EzTt927aiaqggCV/zmXJn3M1y5t2aMVL7xQOy2HvWIW3v/iA5X8v4MuxH2JbxY72z3WlS79eZRr7vXwb1yY7PYsT63eTkZKGfVUneowbhlUVWwAyk9NITywa+kCVX8DB5VvISE7F0MgIu6qOdB83DI/aRRWN53cfQ5VfwNaZS7Ueq1GvtjR+rn2Z78PZmxGYG5nS3rcRVibmxKYnMu/YRpLvdLm2MrHA1qyoci+3IJ9/jq6nZ62WvNmiL5m5OZy9GcG2S+U9bmXZCXT04Lc+Rd8vx7XsD8DGsENM3Vny96GKcOL6BSyNTelRoznWd859v+1fcc+5z0Ln3GdqaEwDN/8Sx38zNzZlaLFz3w+7FxOVpL9SrbSelWPqZMxFLEzM6BbYDGtTC26mxvPHgVWa2VFtTC2w0/Na1Kvqz/IzO/Vu09jQiIH1OmJrZkleQT6xaYnMPbaRkzEX9bYvrdM3wrEwMqWTfzDWJhbcSktg9pH/SMpKAwqHZbAzK6pazy3I46/Da+kT1Jq3Ww8kMzeb0zcus+lCUXHI9jtdUbsGNsXG1JL03CxCb0VqtXmmlVNPBPH4FOqH6eMnnhiHDh2iefPmdO7cWWfA/2PHjjF58mQOHTqEWq3Gx8dHk7yDwgkTxo8frxko/9q1a7z11lvs2LEDpVJJ165d+fXXX3F2dtZsc9WqVXz55ZeEhoZibW1N69atWblypd7tXbp0iVGjRnH06FE8PT355Zdf6Nq1K6tXr6Z3794ATJw4kTlz5pCTk0OPHj1o2rQpU6ZM0UpETZs2jRkzZpCdnU2/fv1wdnZmy5YthISElPi8rF+/nnfeeYfo6GiCg4MZOXIkL7/8MklJSZqxvR70/BQ3ZcoU1qxZw2uvvcZXX31FYmIi3bt35++//9aa3XHRokV8//33hIaGYmFhQe3atRk/fjx9+vQhKioKLy8vTp06Rb169TTr5Ofn89577/HPP/+gVCp5+eWXiY+PJyUlhTVr1gDQtm1b6tWrx08//QTArVu3eOWVV9i+fTvOzs589dVXfPLJJ1qvwYwZM/j+++9JTk6mdevWDB06lBEjRmg9D8UpFArNa1Q83rsThty7/ty5cxk/frzWa3b3ubr7GrVt25ZatWqhUqlYtGgRBgYGvPbaa0ybNk1TzVn8+Hmc2JOSkjQTIwQEBJQYX15eHoMHD2bPnj3s2LGDOnXqsH37dn744QeOHj1KVlYWnp6e9OzZkwkTJnDw4EEGDBjAjRs3tN4Pd9WpU4e2bdvy6aef8uWXX7Jz506ioqJQKBR4enry4osv8s4776BUFv6YXLx4MZ9//jkXLjz6lPYbQg888jpPmh41WxAed+3BDZ9gfk7VeXXFtw9u+IT73wuTSPnul8oOo1RsJo7ji21zKjuMUvu008uMWPxFZYdRavMHf0rqsad7Jjrrxg3ZFX78wQ2fcO38GvHT3qUPbvgEG996IB9trLwLiWVlWvfXafH76w9u+IQ7MGYmr6/Q35PgaTHzhYnPzDE1ZtUPlR1Gqfze9z3e+6/kIoinxQ+93qrsEB5L6vI1lR1Ciaz7967sECqFJOOEKEHxBJN4eMUTieVp4sSJpKSk8Ndff5X7Yz2u4OBgxo8fz5AhQx55XUnGPRkkGffkkGTck0WScU8OScY9OSQZ9+SQZNyTQ5JxlUuScU8eGTNOCPFUmzx5Mh4eHhQUFFR2KHrFxcXxwgsvMHjw4MoORQghhBBCCPH/kVr95N7+n5Ix44QQTzUbG5sSuxo/CZycnPSOsyiEEEIIIYQQ4v8nScYJUYIpU6YwZcqUyg7jqbR79+7KDkEIIYQQQgghhHgiSTJOCCGEEEIIIYQQ4ln1/7g76JNKxowTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5VKumm+qSRyjghhBBCCCGEEEIIISqIJOOEEEIIIYQQQgghhKgg0k1VCCGEEEIIIYQQ4hmlVqsqOwRRjFTGCSGEEEIIIYQQQghRQSQZJ4QQQgghhBBCCCFEBZFuqkIIIYQQQgghhBDPKrXMpvqkkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZpZJuqk8aqYwTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5VMpvqE0cq44QQQgghhBBCCCGEqCAKtVpSpEIIIYQQQgghhBDPopT5Syo7hBLZjBhU2SFUCummKoQQT7AFxzdVdgilNrxRN+JSEyo7jFJxsq7CkIWfVXYYpbZo6OekTJ1e2WGUis3kdxm7+uneB4Df+rzL8MWfV3YYpbZg8Gek3b5d2WGUipWjIz/sXljZYZTae22H8sfBlZUdRqm82bwf+6+cruwwSq2ld11eX/FdZYdRajNfmEiL31+v7DBK5cCYmby77pfKDqPUpj83jpeXTavsMEplzoCPnpnz3lNJrarsCEQx0k1VCCGEEEIIIYQQQogKIsk4IYQQQgghhBBCCCEqiHRTFUIIIYQQQgghhHhWqWSqgCeNVMYJIYQQQgghhBBCCFFBJBknhBBCCCGEEEIIIUQFkW6qQgghhBBCCCGEEM8qtXRTfdJIZZwQQgghhBBCCCGEeGYkJSUxfPhwbGxssLGxYfjw4SQnJ993nZdeegmFQqF1a9q0qVabnJwc3nrrLRwcHLCwsOC5557j+vXrjxyfJOOEEEIIIYQQQgghxDNjyJAhhISEsHnzZjZv3kxISAjDhw9/4Hpdu3bl5s2bmtvGjRu17h8/fjyrV69myZIl7N+/n/T0dHr27ElBQcEjxSfdVIUQQgghhBBCCCGeVf/PZlMNCwtj8+bNHD58mCZNmgAwa9YsmjVrxsWLFwkICChxXRMTE1xcXPTel5KSwuzZs1mwYAEdO3YE4N9//8Xd3Z3t27fTpUuXh45RKuOEEEIIIYQQQgghxDPh0KFD2NjYaBJxAE2bNsXGxoaDBw/ed93du3fj5OSEv78/o0ePJi4uTnPfiRMnyMvLo3PnzpplVatWJSgo6IHbLU4q44QQQgghhBBCCCFEhcvJySEnJ0drmYmJCSYmJo+9zVu3buHk5KSz3MnJiVu3bpW4Xrdu3ejfvz8eHh5ERkbyySef0L59e06cOIGJiQm3bt3C2NgYOzs7rfWcnZ3vu119pDJOCCGEEEIIIYQQ4lmlVj2xt6+//lozycLd29dff613N6ZMmaIzwULx2/HjxwFQKBS6T4NarXf5XQMHDqRHjx4EBQXRq1cvNm3axKVLl9iwYcP9n94HbFcfqYwTQgghhBBCCCGEEBXuww8/ZMKECVrLSqqKGzt2LIMGDbrv9jw9PTlz5gyxsbE6992+fRtnZ+eHjs3V1RUPDw/Cw8MBcHFxITc3l6SkJK3quLi4OJo3b/7Q2wVJxgkhhBBCCCGEEEKISvAoXVIdHBxwcHB4YLtmzZqRkpLC0aNHCQ4OBuDIkSOkpKQ8UtIsISGB6OhoXF1dAWjYsCFGRkZs27aNAQMGAHDz5k3OnTvHd99999DbBemmKoQQQgghhBBCCPHsUqme3Fs5qFGjBl27dmX06NEcPnyYw4cPM3r0aHr27Kk1k2pgYCCrV68GID09nffee49Dhw4RFRXF7t276dWrFw4ODvTp0wcAGxsbRo0axbvvvsuOHTs4deoUw4YNo3bt2prZVR+WVMYJIYQQQgghhBBCiGfGwoULGTdunGbm0+eee47ffvtNq83FixdJSUkBwMDAgLNnzzJ//nySk5NxdXWlXbt2LF26FCsrK806M2bMwNDQkAEDBpCVlUWHDh2YO3cuBgYGjxSfJOOEEEIIIYQQQgghxDPD3t6ef//9975t1Gq15m8zMzO2bNnywO2ampry66+/8uuvv5YqPummKoQQd7Rt25bx48dXdhhCCCGEEEIIUXbU6if39v+UVMYJIcQz4vi2/RzasJP05FQc3VzoPLwP1QN9Hrhe9MUrzP/qN5yquTD664ma5Sd3HuLs/mPcjr4JgIuXO+0G9sDNx6PMYl69fCWL/11EQnwCnt5ejJvwNnXr1yux/akTp/jtp1+IuhJJFQcHhowYSu9+fTT3r1u9li0bN3Ml4goAAYEBvDrmdWrWqqlps+Cf+ezdtZurV69hYmJMUJ3avDH2Tap7lt1+dfRrTM+aLbA1syQm+TbzT2zi4u1rJbZv4VmbnjVb4mJlT2ZeDmduXGbhyS2k52YB0M6nIa286+Ju4wRAZOINlp7eQURCTJnFXBKTVs0wrl8HhakJBTdukbV5B6r4hAesZIJp25YYBfqiMDVFlZxC9vY95EdEAmDcoC7GDeqitLUGoOB2Ajn7D5EfEVXm8bfyqksHv8bYmFpwMzWBlWd3lfi8DWvQhaYeQTrLb6bGM3XHPACae9Ym2L0mVa0LBw++lhzLf6H7uZp0q8xjv1cH30b0qNEcGzMrYlLi+PfkFi7d55hq7lGbHjWa42xVhay8bM7cvMziU9s0x5SbtSP96rTF064qjpa2/HtyM1suHinzuNVqNf+bM4fV69aRlpZGrZo1mTRhAj7e3vddb8fu3cz8+2+ux8RQzc2NN0ePpl2bNnrb/rNgAb//9ReD+/fn3bff1iz/a/Zstu7YQWxcHEaGhtQICODNV18lqFatUu1T6O5jnN56iKyUNOyqOtF0QGdc/fR/fty4GMWGH+frLO//+ZvYuugOQB1x7Bw7/16FR90AOr85sFRxPsjpnYc5uWkfGclpVHFzovWQHrj5ez1wvRvhV1nxzSyquDkz9Iu3NMsL8gs4vmE3YQdOkZ6Uip2rAy36d8Wztn+57cPO9VvYsmIdyYnJuHlUY9BrL+EfVENv2xMHjrB7w1auRUSRn5dPVY9qPD+sP0EN62m12bB0NXE3blGQX4Czmwud+/aieYfW5bYPAG2869EpIBgbU0tupMaz/PROLsdf19v2xUbdaOZZW2f5jZR4vtg2B4BmHkG82Li7Tpuxq6aTryoo2+AfUV1XX4bU70ygU3UcLGz5YOOf7Is8Xakx3au5Z23a+jTA2tSCW2mJrD23l8jEGyW2N1Aa0Nk/mAbVArA2sSA5O50dl45xNDoUAKVCSQe/RjRyr4GNqQW305NYH3qQi7evlut+tPNpQNeApoXfQ1JuszhkO+Hx0Xrbvty4Jy296ugsj0m5zSdbZmn+7+TXmHY+DbA3tyY9N4vj1y+w4syucjumntbznhAPS5JxQoinRm5uLsbGxpUdxn3l5eVhZGRU4Y97/tBJti5YTbeRL+Du78XJnQdZ/N1fvP7dh9g42JW4XnZmFmtnLsSrlh8ZKWla910Nu0ytZg2oNsITQ2MjDq3fwaJv/uS1bz/A2t621DHv2LqdX378mQmT3qN23TqsW7WG999+lwXLFuLs4qLT/kbMDSaOf5devZ/jky8+4+zpM/z47Q/Y2tnStn07AEJOnKJj544E1amNsYkxi+Yv5N2x45m/dCGOTo6FbU6eok//ftSoWYOCggL+9+dfTHhrPAuWLcLMzKzU+9XUoxYjGnZlzrENXLp9jQ5+jZjUbhjvr/+dhMwUnfYBjtV5o1lfFpzczMnrF7E3t+bl4J6Mbvo8M/YuAaCmsycHo84SHh9NXkE+PWu24IP2w5m4/neSstJ0tllWjJs1xqRJQzL/24wqMQmTFk2xGPICaTPnQG6e/pWUSiyGvIA6M5PMlf+hSk1DaW2NOjdX00SVlkb2rn2okpIBMKpTE/P+vUn/e8GDE32PoIFbAP3qtGNpyA6uJMbQ0rMObzbvy1fb5+p93lac2cXa8/s0/xsolHzYYQSnYi5plvk5uHPi+gWWJ94gv6CAjv6NGdO8H1N3zCMlO73MYr9Xk+q1GNagK3OPbyA8Ppp2vg15v81QPtj4OwmZqTrt/R3cea1pbxae2sKpmEvYmVkxsnFPRgX34uf9ywAwNjQiLj2Zo9dCGdqgS7nEDTBv4UIWLV3KZ5MnU93dndnz5jHmnXdYuXgxFubmetc5c+4cH332Ga+/8grtWrdm1969fPDpp8z+4w+dRNr5sDBWr1uHn4/uhQcPd3cmvvMOblWrkpOTw6JlyxgzYQJrlizBzq7kz8X7iTh2nkPLttBiSHecfdy5sPckm39dRP8pb2Jpb1Piev2/GIOxadFMcaZWuvuelpDMkRXbcPGt/lixPYpLR86wd9EG2g1/jqp+HpzdfZS1P85j2NTxWFexLXG9nMxsts5ajnsNHzJTtY/3Q6u2ceFQCB1e6oO9qyNXz11i/a//MmDy6zh5VC3zfTi65yBL/prLsDGv4FszgD0bt/PTJ9P48q8ZVHHSTXReOhtGzfp16PviYMwtLdi/bRe/TPmWyTOm4eFbmIS0sLKk58C+uLhXxdDQkNNHT/LPj39gbWutlbQrSw2rBdK/XgcWn9xGRMJ1WnnXY2zLF/h8y2y9n1NLQ3aw+uxezf9KpYKPO47kZMxFrXZZeTl8tvlvrWWVnYgDMDMy4XLCdTZeOMi0bq9Xdjha6lX14/mg1qw6s5vIxBs08whidNPn+G7XvyRn6f98H9GwG1Ym5iwL2UF8RjKWJuYYKBSa+7sFNqVhtUCWnd5BXHoSAU4ejAzuwa/7lhOTertc9qOxew0G1+vEgpObuRx/nbY+9Xmn1UA+3vI/EvWcMxaHbGPF2V2a/w0USj7vPIrj1y9oljWtXosX6rRjzrH1XI6PwcXKnlHBPQFYErK9zPfhaT7vCfGwpJuqEEIvtVrNd999h7e3N2ZmZtStW5cVK1YAsHv3bhQKBTt27KBRo0aYm5vTvHlzLl4s/CJ48eJFFAoFFy5c0Nrmjz/+iKenp6ZvfmhoKN27d8fS0hJnZ2eGDx9OfHy8pn3btm0ZO3YsEyZMwMHBgU6dOgGwbt06/Pz8MDMzo127dsybNw+FQkFycjJQOAX14MGDqVatGubm5tSuXZvFixdrxZKRkcGIESOwtLTE1dWV6dOn6zwHCoWCNWvWaC2ztbVl7ty5AERFRaFQKFi2bBlt27bF1NSUf//996Eev6wd2bSbem2bUL9dMxzcXOg8vC/WVWw5sX3/fdfbOHsZQc0b4ubnqXNfnzHDadSpJS6e1XCo6kyPVwahVqmJOn9Jd0OPYemiJfR4vhe9ej+Hp5cn494dj5OzE6tXrNbbfu2q1Ti7ODPu3fF4ennSq/dz9HiuJ0v+XaRp8+lXU+jTvx9+Af54eHoycfIHqNQqThw7rmkz/dcZdO/VAy8fb3z9/fjw08nE3orlYtgFfQ/7yLoHNmd3xCl2R5zkRmo8C05sJiEzlY7+jfW293Woxu2MZLZcPMLtjGQu3r7GjvATeNsX/Xj9/eBKtocf42rSLW6kxjPryDoUCgVBLvevLiotk+AGZB84Qv7Fy6huJ5D132YURoYY19JfeQJgXC8IhZkpmcvXUnD9BurUNAqux6CKK/rRkR9+hfyISFSJSagSk8jZfQB1bi4Gbq5lGn9734YcijrLoatniU1LZOXZ3SRlpdHKq67e9tn5uaTlZGpu1e1cMDMy5dDVc5o2845vZF/kaWJSbhObnsiik1tRKBQEOJZfAqVbQFP2XDnFniunuJEaz8KTW0jITKGD3/2Pqa2XjnI7I5lL8dHsvHwCr3uOqcjEGywJ2cbha+fJKyifH+hqtZrFy5czcsQI2rdpg6+3N59Pnkx2Tg6bt24tcb3Fy5bRpFEjRg4fjqeHByOHDye4YUMWLVum1S4zM5NPPv+cyRMnag2sfFfXzp1p0rgx1dzc8PH25p233iIjI4PwiIjH3qez2w8R0KI+gS0bYOfqSLOBXbC0syF0z/H7rmdmZYG5jaXmplRqfwVXqVTsmr2aBr3aYuX4eInCR3Fy635qtW5IUJvG2Fd1os2Qnlja23B25/2rRHbOW01A07q4+rrr3Hfh0Cka92yDV90AbJzsqdO+KR5BfpzcfP/z0OPauno9rTq3p3XXDlStXo3Br7+EvaMDuzfoP7YGv/4S3fo/j1eAL85urvR7aQjOVV05feSEpk1gnVo0aBFM1erVcKrqQqfe3anm5UH4+bI5P+jT0b8RByLPcCDqDLfSEll+eidJmWm08amvt312fi6pORmam4edC+bGphyMOqvVTq1Wa7VLzckot314FIevnWfWkXXsuRJS2aHoaO1Tn6PXznPk2nni0pNYe34fyVnpNPfUrRoDCHD0wMfBjVlH1hIeH01SVhrRybFE3VMp3dA9kB3hx7kQd5XEzFQORZ3lYtxV2vjqf33LQhf/YPZFnmZf5GlupiWwOGQ7iVmptPNpoLd9Vl4OqdkZmpunnSvmxmbsv6di0aeKG+Hx1zlyLZSEzBTOx0Zy5FoonnZle96+62k97z3RVOon9/b/lCTjhBB6ffzxx/zzzz/8+eefnD9/nnfeeYdhw4axZ88eTZvJkyczffp0jh8/jqGhIS+//DIAAQEBNGzYkIULF2ptc9GiRQwZMgSFQsHNmzdp06YN9erV4/jx42zevJnY2FgGDBigtc68efMwNDTkwIED/PXXX0RFRfHCCy/Qu3dvQkJCeO2115g8ebLWOtnZ2TRs2JD169dz7tw5Xn31VYYPH86RI0U/Mt5//3127drF6tWr2bp1K7t37+bEiRM8jkmTJjFu3DjCwsLo0qXLQz1+WSrIz+dm5HW8awdqLfeuHcj18KgS1wvZc4SkuHha9324q4N5ObmoClSYWViUJtzCbeXlcenCRYKbBGstb9wkmHNnzupd5/zZczQu1j64aRMuhF4gPz9f7zo52dnk5+djZW1dYiwZ6YU/UKzv0+ZhGSgN8LJ35czNy1rLz96MwN9B98crwKXb0dibW1Ovql9hHKYWNKlek1M3Sk56mhgYYagw0HS9KA8KWxuUlpbkX7mnK01BAfnXrmNQreQqF0M/Hwqu38Csawes3n4dy9EvYtI8GO6pFNB+IAVGNQNQGBlREFNyV6BHZaBQ4m7rTFicdlegsNireFV5uCqdZh5BXIy7et/qQ2NDQwyUSjLzsksVb0kMlEo87aty9pZ2AuncrSv4OVTTu054fOExVdfVFyg8poKr1yDkRni5xFiSmBs3SEhIoGlw0fvW2NiYBvXqcebcuRLXO3PuHE2Ctd/rTZs00Vnn2x9/pEXz5jRprP/H2b3y8vJYvXYtlpaW+Pv6PuKeFCrILyD+2k3campX4bnV9CY2Qn/3r7tWffU//n3/Rzb8OJ8bFyN17j+1fi+mVuYEtiy/H+h3FeTnExd1g+q1/LSWe9Ty5WZEyV3nzu87QXJcIk2eb69/u3n5GBSrDDc0NuLGfc5Djys/L5+r4Veo1UA7sV6zQR0uh14sYS1tKpWK7KwsLKws9d6vVqsJPXWWW9dv4B9UU2+b0jJQKKlu60JYbJTW8rDYSLyruD3UNlp41uFCXJROxZOJoTFTu73G193f4M0W/XC3dSqrsJ9JBgol1WycuBin3Q3y4u1rJSacarl4EZ0cS3vfhnza6WU+aD+cXjVbYqgsmlHRUGlAnkr7O0peQb5WkqgsGSiVeNi5cj72itby87ci8a2i/5xRXCvvuoTGRmpVoIXHX8fTzgUv+8LnwtHCltquPjrfd8rC03zeE+JRSDdVIYSOjIwMfvzxR3bu3EmzZs0A8Pb2Zv/+/fz111+8+uqrAEydOpU2d8bw+eCDD+jRowfZ2dmYmpoydOhQfvvtN7788ksALl26xIkTJ5g/v3DsnD///JMGDRowbdo0zePOmTMHd3d3Ll26hL9/4Rgzvr6+fPfdd5o2H3zwAQEBAXz//fdAYeLv3LlzTJ06VdPGzc2N9957T/P/W2+9xebNm1m+fDlNmjQhPT2d2bNnM3/+fE213bx586hW7eG+pBQ3fvx4+vbtq7Xsfo+vT05ODjk5OVrLTExM9LYtLjMtA7VKhYWNdmWIhY0V6Sm6pfwAibdus2vJf4z4dBzKh5yGe+eS9VjZ2+AVVPrxf1KSkykoKMDO3l5ruV0VexITEvWuk5CQSHCVYu3t7SkoKCA5ORkHB91uSTN/+xNHR0caBTfSu021Ws1vM36hTr26ePs+eHy9B7EyMcdAaUBKtnYFQkp2OjZm+n/whcdH8/uBlbzVsj9GBoYYKg04Hn2Becc2lvg4g+p3IjErlXM3r5TYprSUd5Ku6gztfVFnZKK4T+JSaWuL0tOavHNhZCxdhYG9HaZdOoBSSc7+w0XtHB2wfGkwGBpCbi6ZK9ahitf/2j8OSxMzDJRK0nIytZan5WRgbeL5wPWtTSyo6ezF3OMb7tvu+VqtSclK50Jc+Yz/U3hMKUkt1gU2JTsdG1P9x2x4/HX+PLSKMS1e0BxTJ65fYMGJTeUSY0kSEgtfzyrF3udV7Oy4GRt73/WqFOtGWsXOTrM9gC3bt3Ph0iXmz5pVfHUt+w4c4KMpU8jOzsahShV+nzEDW1vbR9yTQtnpmahVasyttS9ImFlZkJWqv+rI3MaSVsN64uDhSkFePuFHzrJhxgJ6TngRV//CceZuXb7GxQOn6PvJa48V16PKSstErVJhbq39mWRmY0XGOf0/XJNuxXNgxWb6f/haieeM6kF+nNqyHzd/T2yd7LkWFsGVU2GoVaoy34e01FRUKhXWdtpdg21sbTh3p/v7g2xdtZ6c7Bwat26mtTwzI5P3hr1Gfl4+CqWSYWNGUauB/sqo0rK8+/4uVrWWmpOJtemDL3xZm1pQy8WbOUf/01p+Ky2Becc3EpNyGzMjE9r7NuT9tkP5avtc4tKTynQfnhUWxoXnjPRi54z0nEysTPV3qa9iYYOXfVXyCwr459gGLIxN6VenHebGJiwN2QHAxbhrtPGuz5WEGBIyUvBzdKeWizdKRfnUxFgZFx5Txb+HpOZkYPMQx5SNqQW1XXz43+G1WsuPRodiZWLOh+1GgKIwybjz8gk2XjhUpvHD033eE+JRSDJOCKEjNDSU7OxsTaLqrtzcXOrXL7pqX6dO0ZdTV9fCK2VxcXFUr16dQYMG8f7773P48GGaNm3KwoULqVevHjVrFl5dPnHiBLt27cLSUjdBERERoUnGNWqknUS5ePEijYtVQQQXq6AoKCjgm2++YenSpcTExGgSXRZ3kgsRERHk5uZqEo1QOPV1QEDAwz1BxRSP8UGPr8/XX3/N559/rrXss88+w6en/uSdPjqFR2o1CnSrkVQqFat/n0/rft2o4vpwV8oP/reD84dOMvzjsRgal92YeHpjLqGACtDZHzVqvcsBFs7/l+1bt/HLzN9LTGzO+G46EZcv8/usmY8U94MVL7lXlDhblJu1Iy826sbqs3s4ffMydmaWDKnfmZeDezHryFqd9j1rtqC5RxBfbp+rc7W9NIxqBWLWveg9n7FUf3fhQvfpUqAoTNhlbdwGajWqW3EoLC0xadZIKxmnSkgk/e8FKExNMAzww6xXVzL+XVqmCTl9sSpQ3C96jaYetci6M5lGSTr6NaZhtQB+3res3MdiKn743G8/qlo7MLxBN9ac28vZW5exNbViUP1OjGzck7+Priu3GDdt3cq0OxdKAH66cyFF522uZ5kORfH3euHQAQC3YmOZ/vPP/Pbjjw+8aNGoQQMW/fMPycnJrP7vPz789FPm/u9/2D/mmHGPytbFQWuiBmcfdzISUziz7RCu/h7kZuewa84aWg3viaml/h/85UVR/MNWrdb7uqhUKjb/tZSmvTtip2fSibvaDOnJjrmrWfDRDFAosHGyp2bLBoTuP1m2gd+r+HGi1rNfehzZvZ+1/y7nrc/ex9pWO6FnambKZ79/T05WNmEhZ1k6az6Ors4E1indxB/3o/v+1rNQj2YeQWTlZRMSo51EjUy8SWTiTc3/EfHX+ajji7T1acCy0zvKIOJnl95nvYTX4u53j4Unt5CdXzgu6rrz+xjRqDsrz+wmX1XAmnN7GVC3PZPaD0ethoTMFI5Fh9HYveThHsqDgvueuTVaeNYhMy+bkze0K0wDHKvTs0ZzFpzczJXEGzhb2jG4XidSaqbzX+iBcon5aTjvPVX+H89a+qSSZJwQQofqzlXsDRs24Oam3U3CxMSEiDvj7dw7UcHdL79313V1daVdu3YsWrSIpk2bsnjxYl57reiqv0qlolevXnz77bc6j383sQfoJLDUarXOF211sZPL9OnTmTFjBj/99BO1a9fGwsKC8ePHk3tnAPni7UuiUCh02ubl6Q5aXzzGBz2+Ph9++CETJkzQWmZiYsKyszsfGKe5lQUKpZL0ZO2udBmp6TrVcgC5WdncvBLNragYNs9bCdx5TtRqpg6fwJAPXserVlH126ENOzmwbhtDP3wT5+pl063CxtYWAwMDnSq4pMQknWq5u6pUsScxQXtw/+TEJAwMDLAp9mNq8YJF/PvPfGb8/jO+fvq7pM34/kcO7N3Pr//7Ayfnsum+k5aTSYGqABtT7SSzjamFzlXqu54LasWl29GsDyv8MhudHEtO/gY+6zyK5ad3kHzPleEeNZrzfK1WTNsxn+jkkiuLHkdeeAQFf98zI+id6heFhQXq9KLYFRbmqDMyi6+uoU4vrNS890ufKiEBpaUlKJVwt0pGpdJM4FBwMxbDqi4YN25A9qayGQg6PSeLApUKKxPt96eliTlpDzF2UlOPII5Gh1Kg1l/V08G3EZ39g/ntwApupMbrbVMWCo8plU5lpbWphU7VwF29arYkPP4aGy8cBCCaOHKO5fJJp5dZfmZnuU000bplS4JqFnXnu/uZF5+YqFW5mpiUhH0J73MorKS7twpOs86dBNqFixdJTEpi+CuvaO4vKCjg1OnTLFu1ioM7d2Jw5/g1MzPDvVo13KtVo3ZQEH0GDWLt+vWMHD78kffP1NIchVJBZrEquKy0DMysH777vpN3NS4fKeyOn3Y7ifSEZLb8vkRz/93zzt9vfMmAL8Zg7Vjyc/U4zKzMUSiVOpP2ZKWmY26je4EsLzuHuKgYbl+7ye5//yuKUa3ml1Ef0+fdkbjX9MHc2pJe44aTn5dHdnomFrbWHFi+Bev7TCL0uKysrVEqlaQmJmstT01J0UmuFXd0z0Hm/jST1z+aQM36uhVvSqUS56qFkwhV9/HkZnQMG5euKZdkXPrd93exiiUrE3NSc0r+nL2rhWcdjlwr+XPqLjVwNfEWTlYVk4R+GmXk3j1naCfFC88Z+oeESM3JICU7XZOIA4hNS0SpUGBrZkl8RgoZuVn8c2wDhkoDzI1NSc3OoEeN5nonUigLabklHVMWpJbwPeRerbzqcujqOQqKVbT2CWrDwavnNDPfxqTcxtjAiBcbdWd96IGHSvQ9rKfpvCdEaUgyTgiho2bNmpiYmHDt2jVNN9R7RTzk4NdDhw5l0qRJDB48mIiICAYNGqS5r0GDBqxcuRJPT08MDR/+oygwMJCNG7W77x0/rj1w9r59+3j++ecZNmwYUJj4Cw8Pp0aNwquQvr6+GBkZcfjwYapXLxx0PSkpiUuXLmntr6OjIzdvFl1ZDg8PJzPzwV+OH/T4+piYmDx0t9TiDAwNcfWqRuS5iwQ2LvphEXn2Iv4Ng3Qfy8yUV7+ZpLXsxPb9RJ0Pp9/bI7G954ffofU72b9mK4MnvU5V77IboN7IyAj/wACOHTlK63ZFz/mxo8do2bqV3nVq1Q7iwD7tq69HjxwlsGag1jG0aMFC5s+ey/RfZxBYU/c5V6vV/PT9j+zdvYdfZv5OVbeyG7elQFVAZOJNarv6aM1CFuTqzYnr+scxMjEw0vkhpbr7/z2J5541WtA7qDXf7FxAZGLZja2mkZuHKjdZO470dAy9PMiNjStcoFRiWL0a2Tv36a5/R/71GxjX0h6/UGlvhyotvSgRVwLFQ3aZfhgFahXRybEEOnlojWkT6OTB2QeMcePnUA0nSzsORekfv7CDXyO6BjTl9wMruVbGSdHiClQqohJvEOTizYl7jykXb53ZE+8yMTTS+SGlupPgeYiiocdmYW6uNUOqWq2mSpUqHDl2jMA71c55eXmcDAnhrddLnkWxTlAQR44dY+jAgZplR44epU5Q4edZ40aNWHJnyIO7vpg2DQ8PD14cOlSTiNNHrVbf98LI/RgYGuBQ3ZWYsCt41S86xmPCruBR9+ErqxOib2F2J+ll4+JAv0+1n4vja3eRl51Ds4FdsbC7f2LpcRgYGuLkWZVr5y/j27AowXQt9DLe9XTHRjM2NWHol+O0lp3ZeYTrYRF0HzMEm2LJQkMjIyztbCjIL+DyiXP4Na5d5vtgaGSIh58350+doUGLour40JNnqN+s5DEEj+zezz8z/uTVSW9TN1j/YPbFqdVq8vVciCsLBWoV15JvUcPZU2tsqxrOnpy+T1UugL+jO05Wdhw4dOahHquarRMxKeUze+ezoECt4npKHP6O1Tl3q2gICH/H6py/pX9IiKjEG9R19cXYwIjcgsJjxNHSDpVapTP7ar6qgNTsDJQKJXWq+upUM5bZfqhUXE26SU1nL07eMxN4LWev+45FC4XVb85W9uw7cFrnPmMDQ01vhLvUd6tpFSVX/z+Op+m8J0RpSDJOCKHDysqK9957j3feeQeVSkXLli1JTU3l4MGDWFpa4uHh8VDb6du3L2+88QZvvPEG7dq106qyGzNmDLNmzWLw4MG8//77ODg4cPnyZZYsWcKsWbNK/DH12muv8eOPPzJp0iRGjRpFSEiIZnbTuxVzvr6+rFy5koMHD2JnZ8ePP/7IrVu3NMkwS0tLRo0axfvvv0+VKlVwdnZm8uTJOrPbtW/fnt9++42mTZuiUqmYNGmSVjVgSR70+OWhSbe2rP1zIa5e7lTz8+TkzkOkJCTRoEMLAHYu+Y+0pBSef2MYCqUSJ3ftwYjNrS0xNDLUWn7wvx3sWbGR3mNGYOtoT3py4VVcY1MTjE0fL3F4r4FDBvHVZ18QWLMGtWoHsW71WuJuxdK7X2+gcLy3+Nu3+fjzTwF4vm8fVi1bya8zfqZX7+c5f/YcG9b+x2dTi7r3Lpz/L7NnzuLTr6bg4upKQnxhJZ2ZuRnmd5IEP377A9u3bGPaD99ibm6uaWNpaYlJGezXxgsHebNZX64k3CA8Ppr2vo1wMLdhR/ixwv2u1xF7Myv+PFTYDfRkzEVeafIcHf0ac+bmZWzNLBnesBuX46+TfGfigJ41W9C/Tnt+O7CC2xnJmsq77PxccvIfL7HwMHKOnsS0RTCqpMJZT02aN0Gdl0/u+TBNG7NeXVGlpZOzu3DGxNwTpzFpVB/Tzu3JPX4Kpb0tJs2bkHv8lGYdk7YtC2dTTU1DYWyMUa0ADDzcyVmyqkzj33n5BCMadeNaciyRiTdo4VkHe3MrzZX952q2xMbMkgUnNmut18yjNpGJN7iZlqCzzY5+jelRoznzjm8kITNFU0WRk5+n+TFW1jZdPMzrTfsQmXiDy/HXaefTkCrmNuwIL7wQMaBuB+zMrPjr8BoATsVc4uXgXnTwbXTnmLJiWIMuRMRf1/xANFAqcbN2BArH/rEzs6a6rTPZ+bllNqaUQqFgcP/+/LNgAdWrVcPd3Z1/5s/H1MSErp07a9p9+uWXODk6MvZOgm5Q//68OnYsc//9l7atWrF73z6OHD/O7D/+AAqTfr7e2jMJm5qaYmttrVmelZXFnPnzad2iBQ4ODqSkpLB89Wribt+mY7t2j71PtTs2Y/c/q3H0cMXJuxoX9p0kPTGFGq0bAnB09Q4yktNoN7I3AGe3H8bKwRY7V0cKCgq4fOQskSfD6Phaf6AwqWTvpl2Za2xuCqCzvCw16NySLbOW4+zphqtvdc7uOUZaQgq12xUmtg4s30J6cipdRvdHoVTiUM1Fa31zawsMjIy0lt+KiCY9KQXH6lVJT07h8JodqNVqGnVvXS770LlPT/7+4Vc8/bzxqeHP3k3bSbwdT5s73e1X/rOIpIREXnlvLFCYiJv9w+8Mev0lfAL9SblTVWdkYoy5ReH7eMPS1Xj6+eDk6kx+fj5njp3i0I69DBv7it4YysL2S8cZGdyDq0m3uJIQQyvvetiZW7P3zmyjvYNaY2tmydxi44g296zDlYQbeitze9RoTmTiDeLSkzA1NKGdbwPcbZ1Ycmpbue3HwzIzMqGajaPm/6rWDvg5VCM1O4PYSh7Pbm/EKQY36Mz15Diikm7S1CMIOzNLzYWZ7jWaY2NqweI7z+PJ65fo5B/MoPod2XLhCBbGpvSq2YKj10I1QxdUt3XGxsySmJTb2Jha0iWgCQoU7Lr8eJOGPYwtl44yOvg5opJuEhEfQxuf+tibW7M7orDLeL/abbEzs+LvYmMNtvKqS0RCDDGpuknb0zcv09k/mGtJsVxJjMHJ0o7eQa0JuRH+0D1OHsXTet57oj2gglZUPEnGCSH0+vLLL3FycuLrr7/mypUr2Nra0qBBAz766CNNV9QHsba2plevXixfvpw5c+Zo3Ve1alUOHDjApEmT6NKlCzk5OXh4eNC1a1edpNi9vLy8WLFiBe+++y4///wzzZo1Y/LkybzxxhuayrJPPvmEyMhIunTpgrm5Oa+++iq9e/cmJSVFs53vv/+e9PR0nnvuOaysrHj33Xe17ofC7qYjR46kdevWVK1alZ9//vmhZlx9mMcva7WaNSArPZN9qwt/QDlWc2XQ+69pqtzSk1NJSXi0Lxontu+nIL+AlT//o7W8Vd8utOnXrdQxd+jckdSUFOb+PYeE+AS8fLz57qcfcLnTTTkhPoHYW0VVR1XdqvLdT9P5dcbPrF6+CgdHB95+7x3ati/6Yb1mxSry8vL4ZJL2DLsjR7/My68W/phas7IwCTbu9TFabT78dDLde/Uo9X4dvnoeS2Nz+tZug62ZFdeT4/hu90LiMwpff1tTS6pYFFW77L0SgqmhCZ39gxnaoDOZudmcj43UfNkH6OTXGCMDQ95pPUjrsVae2cXKs7tLHXNJcg8dQ2FoiFnXDihMTSmIuUnG4hWQW5R0UtpYa10RV6elkbF4Baad2mI5egSqtHRyj50k59CxonUszDF/rhsKSwvUObmo4m6TuWQV+ZFlOwnCyZiLWBib0i2gKdamFtxMTeCPg6s0s6Nam1pgb6Y9GYWpoTH1qvqx4uwuvdts5VUXIwNDXmnynNbyjWEHy2Uga4Aj185jaWxG71ptsDWz5HpKHD/sWUhC5j3HlHnRMbUv8jSmhiZ09G/M4PqFx1RoXCRLQ4q6ANuZWTG1W1FFVo8azelRozlhsVFM2zmvzGJ/cehQcnJy+ObHH0lLSyOoZk1+mzFDq4LuVmys1ud+3dq1mTplCn/OmsXMv/+mmpsbX3/xBUG1Hr6boFKpJOrqVdZv2kRySgo21tbUrFGDWb//jk+xRN6j8Glci5yMTE5u2EtmSjr2VZ3oOnYIVlVsAchMSScjseizXlVQwJEV28hITsPQyBDbqo50GTuY6rX9SniEiuHfpA5ZGZkcWbeTzJQ0qrg58/w7L2q6lGakpJGWkPxI28zPy+PQ6m2kxCVhZGqMZ50AuowegIm5WTnsAQS3aU56Whr/LVpJSmISbp7uvP3Fhzg4F/7YTk5MIjGuKFG1Z+N2CgoKWPj7bBb+PluzvHnHNox6t/B8kJOdw7+//01SfAJGxsa4urvxyvtvEdymebnsA8CJ6xewNDalR43mWJtacCM1nt/2r9B0Y7QxtcDeXPdzqoGbf4njv5kbmzK0QResTS3IysshOjmOH3YvJirplt72FSnQ0YPf+hQNyzGuZWFiemPYIaaW4WfP4wi5EY65sSmdAoKxNrHgZloCfx9eV3TOMDHH1qxo+I/cgjz+OrSGPrXbML71QDLzsgm5Ec6msKJzgaGBIV0Dm1HF3Jrc/DzC4qJYdHKrVtfWsnYsOgxLY7PCC06mhYnAn/Yt1cyOamNqqXNMmRmZ0LBaIItD9Cds/wvdj1qtpk9Qa+zMrEjLyeT0zcvl9h3kaT7vCfGwFOrySGULIUQFmjp1KjNnziQ6OrqyQylzC44//bNADW/UjbhU3Qqjp4mTdRWGLPysssMotUVDPydl6vTKDqNUbCa/y9jVT/c+APzW512GL/78wQ2fcAsGf0ba7ae765uVoyM/7F5Y2WGU2ntth/LHwZWVHUapvNm8H/uv6HaRe9q09K7L6yu+e3DDJ9zMFybS4veSu5Q/DQ6Mmcm7636p7DBKbfpz43h52bTKDqNU5gz46Jk57z2NUn77X2WHUCKbsa9WdgiVQirjhBBPnT/++IPGjRtTpUoVDhw4wPfff8/YsWMrOywhhBBCCCGEePKopAbrSSPJOCHEUyc8PJyvvvqKxMREqlevzrvvvsuHH35Y2WEJIYQQQgghhBAPJMk4IcRTZ8aMGcyYMaOywxBCCCGEEEIIIR6ZJOOEEEIIIYQQQgghnlUyVcATp+QpC4UQQgghhBBCCCGEEGVKknFCCCGEEEIIIYQQQlQQ6aYqhBBCCCGEEEII8aySbqpPHKmME0IIIYQQQgghhBCigkgyTgghhBBCCCGEEEKICiLdVIUQQgghhBBCCCGeVSpVZUcgipHKOCGEEEIIIYQQQgghKogk44QQQgghhBBCCCGEqCDSTVUIIYQQQgghhBDiWSWzqT5xpDJOCCGEEEIIIYQQQogKIsk4IYQQQgghhBBCCCEqiHRTFUIIIYQQQgghhHhWSTfVJ45UxgkhhBBCCCGEEEIIUUEkGSeEEEIIIYQQQgghRAWRbqpCCCGEEEIIIYQQzyqVdFN90khlnBBCCCGEEEIIIYQQFUShVstIfkIIIYQQQgghhBDPopTvfqnsEEpkM3FcZYdQKaSbqhBCPMEWn9xa2SGU2uAGnYlNja/sMErF2dqBkUunVnYYpfbPwMkkD3utssMoFdt//+LTzbMqO4xS+6LraF5d8W1lh1Fq/3thEqnHT1V2GKVi3ag+Oy4dq+wwSq2Df2M+2fy/yg6jVL7s+ioh1y9WdhilVq9aAB9tnFnZYZTatO6v8+66J/cH/MOY/tw4Wvz+emWHUWoHxsxk9PJvKjuMUpnV/wPGrp5e2WGU2m993q3sEB6PWlXZEYhipJuqEEIIIYQQQgghhBAVRJJxQgghhBBCCCGEEEJUEOmmKoQQQgghhBBCCPGskqkCnjhSGSeEEEIIIYQQQgghRAWRZJwQQgghhBBCCCGEEBVEuqkKIYQQQgghhBBCPKtU0k31SSOVcUIIIYQQQgghhBBCVBBJxgkhhBBCCCGEEEIIUUGkm6oQQgghhBBCCCHEs0pmU33iSGWcEEIIIYQQQgghhBAVRJJxQgghhBBCCCGEEEJUEOmmKoQQQgghhBBCCPGsUqkqOwJRjFTGCSGEEEIIIYQQQghRQSQZJ4QQQgghhBBCCCFEBZFuqkIIIYQQQgghhBDPKplN9YkjlXFCCCGEEEIIIYQQQlQQScYJIYQQQgghhBBCCFFBJBknhBCltHv3bhQKBcnJyZUdihBCCCGEEEJoU6uf3Nv/UzJmnBDiqXTr1i2mTp3Khg0biImJwcnJiXr16jF+/Hg6dOhQ2eE9MY5u3cvB9TtIS07FqZorXUf0xSPQ94HrXbt4hX+++Bknd1fe+OaDcotv9fJVLP53EYnxCXh6e/HWhHHUrV+vxPYhJ07x20+/EnUlkioODgwZMYTn+/XR3P/f6nVs2biJKxGRAAQEBjB6zGvUrFVT0yY/P59/Zs1h2+atJCYkUKWKA916dmPEqJdQKsvmGlU734Z0C2iKrZklMSm3WXRqG+Hx0XrbjgruSUuvujrLY1Ju8/Hm/wFgoFDSo0ZzWnjVwc7MiptpCSw/vZNzt66USbz3Y9q3J8btWqGwMKcgIpLMuYtRxdy87zomXTpg3LE1yir2qNPSyT16kuxlqyEvX9NGYWeL2aC+GNaphcLYGNWtWDJnzacg6lqZxt/YvQYtvepiaWLG7fQkNl04zNWkWyW2N1AoaevbgLpVfbE0MSc1O4M9Eac4FXMJgIbVAqhX1R8nKzsAbqTEsz38GDEpt8s07uLaeNenS0AwNqaW3EiNZ+npHVyOv6637UuNutPcs7bO8hsp8UzZNhuAZh5BjGzcQ6fNm6t+IF9VULbB30OtVjNr1QpW79xJWkY6tXx9mfjSy/hUcy9xndU7d7Bx/14iogv3N9DLizEDB1HLp+iz7J+1a9h1/ChXb9zAxNiYOn7+jB00BM+qVct8H/Zs2Mb2VRtJSUrGtbob/UcPw7dWoN62pw4eY9+mHVy/cpX8vDxcq1ejx5C+1GxQR9NmxodfEX7ugs66tRrVZcxn75d5/HcFu9ekpVcdLE3MiUtPYtOFQw98b7Tzbajz3jgZcxGAms6etPauj725NQYKJQmZKRyIOsvpG+Hltg9b1m7kv2WrSE5IoppndV588xVq1Kmlt21SQiILZs7hyqUIbsXcoGufnrw0ZrRWm88nfETo6XM669Zv0ogPpn1aLvsA0KR6LVp518XqzmuxIfQAUfd7LZRK2vs2op6bH1bG5qRkp7M74iQnrl/UaVvH1YdB9TsReiuSf09uKbd9AGjuWZu2Pg2wNrXgVloia8/tJTLxRontDZQGdPYPpkG1AKxNLEjOTmfHpWMcjQ4FQKlQ0sGvEY3ca2BjasHt9CTWhx7k4u2r5bofD6Ouqy9D6ncm0Kk6Dha2fLDxT/ZFnq7ssDTa+tSnS0CTonNGyHbCSzhnjGzco4Rzxm0+2zpb87+ZkQl9glpT3y0AC2NT4jOSWVaO30VaedWlg19jbEwtuJmawMqzu4hIiNHbdliDLjT1CNJZfjM1nqk75gGFx2ewe02qWjsAcC05lv9C99/3c0+I8iTJOCHEUycqKooWLVpga2vLd999R506dcjLy2PLli2MGTOGCxd0f9SUhdzcXIyNjctl2+Xh3KETbJ6/ih4vD6B6gDfHtx/g32/+ZMwPk7F1sC9xvezMLFb/sQDvIH/SU9LKLb4dW7fz648/M2HSuwTVrcO6VWuY+PZ7zF/2L84uLjrtb8TcYOL49+jZuxcff/Ep506f4cdvp2NjZ0vb9u0AOHXiJB06d+LtOkEYm5iweP5C3hv7DvOW/oujkyMAi+YvZN3KNXw05WM8vb24GHaBr7+YioWlJf0HDyj1fgW712BIvU4sOLmZ8NvRtPVtwITWg5i8+S8SM1N12i86tY3lZ3Zp/jdQKPmiyysciw7TLOtbuw3NPGoz9/gGbqYmEOTizVstXmDqjnlcS44tdcwlMenZBZNuHcn8ax4Ft2Ixfb47lh+MJ/X9TyE7R+86Rs2DMR3Yh8xZ8ygIv4LSxQnz114CIHvhcgAU5uZYffo+eWGXyPj+V9SpaSidHVFnZpZp/EEu3nSr0Yz1oQe4lhRLY/dAhjXsym/7l5OSnaF3nQH1OmBpYsaac3tJzEzFwtgMpUKhud/Tvipnbl4mOiyWfFUBLb3qMqJRN37bv4K0nLKN/65G1QIZWK8Di05u5XJCDK296zGuZX+mbPmbxCzd9+jSkO2sOrtH879SqeTTjiM5EaP92ZiVl8Mnm2dpLSvPRBzA/PXrWLRxI5++/gbVXVyZs2YVY7+exooffsTCzEzvOifCQuncrAV1RvhjYmzE/PX/MfabaSz99gec7As/y05eCKN/x87U9PGhoEDFn8uW8NY301j23Q+YmZqWWfzH9x1mxd//Muj1l/Cu6c/+zTv5fcr3fPL7t9g7Oei0v3z+AoH1gnhueH/MLS04tH0Pf345nYk/fI67jycAr340nvz8okR1Rmo608Z9RIMWTcos7uKK3hv7uZYUSyP3Ggxv2I1f9y8r8b0xsF5HLE3MWH1uL4mZKXfeG0UXMDLzctgTcYr4jGTyVQUEOHnQJ6gNGblZJSaOS+Pgrn3M++NvRo17nYCgGmxfv5mvP/ycH+f8joOzo077vLw8rG1s6DO0PxtXrtW7zXenfKj1WqSlpjFx9Diatm5R5vHfVdvVhx41m7Pu3D6uJt0iuHpNXmzcg5/2LiUlO13vOoPrd8LS2JxVZ3aTkJmKZbHPqbtsTS3pFtjsvgmxslKvqh/PB7Vm1ZndRCbeoJlHEKObPsd3u/4lOUv/foxo2A0rE3OWhewgPiMZSxNzDO7Zj26BTWlYLZBlp3cQl55EgJMHI4N78Ou+5cSklu8FkAcxMzLhcsJ1Nl44yLRur1dqLMUVnjM6svDkFi7Hx9DGux7jWg3gs81/k5il+z1kyantrDyzW/O/gVLJp51e5vg9yV0DhZIJrQeRmpPBzEOrScpKw97Mmuz83HLZhwZuAfSr046lITu4khhDS886vNm8L19tn0uSnvPeijO7WHt+n1a8H3YYobmQBuDn4M6J6xdYnniD/IICOvo3ZkzzfkzdMa/E95oQ5Um6qQohnjpvvvkmCoWCo0eP8sILL+Dv70+tWrWYMGEChw8fJioqCoVCQUhIiGad5ORkFAoFu3fv1iwLDQ2le/fuWFpa4uzszPDhw4mPj9fc37ZtW8aOHcuECRNwcHCgU6dOAGzcuBF/f3/MzMxo164dUVFRWvElJCQwePBgqlWrhrm5ObVr12bx4sXl+ZTodWjDLhq0a0bD9s1xdHOh24v9sKlix/Ft+++73n9/L6F2i4ZU8/Mq1/iWLVpKj+d70rP3c3h6eTLu3fE4OjuxZsVqve3XrlqDk4sz494dj6eXJz17P0f353qw9N+i5/bTr6bQp39f/AL88fD04P3Jk1CpVZw4dlzT5vzZc7Ro04pmLZvjWtWVth3a0bhJMBfDyiaJ2zmgCXsjQ9h7JYSbaQksPrWNxKxU2vs00Ns+Ky+H1OwMzc3T3hVzYzP233OFvZlnbdaHHeDMzQhuZySzK+Ik525doWtA+f1YBzDp2oHstZvIO34K1fUbZP41F4WxMcbNg0tcx9DXm/zwCPIOHUMVn0D+uTByDx3D0NujaLu9uqBKTCLrf/MouBJV2O78BVRx8SVu93E096zNyesXOXn9IvEZyWy6cJjU7HQaV6+pt72vQzU87V3598QWriTcIDkrnZiU20Qnx2narDyzi2PRYdxKSyQ+I4W15/ahUCjwruJWprHfq5N/Y/ZHnmF/1BlupSWw7PQOkjLTaONTX2/7rPxcUnMyNDdPOxfMjU05EHVWq51ardZql5qjPwlTVtRqNYs3b2Jk7960bxyMr7s7U15/k+zcHLYcPFDiel+NeYv+nToT4OmJZ1U3Jr/yKmqVmmPniyqYfp30Ib3atMWnmjv+Hh58+tob3EqIJywyskz3YeeaTTTv1JYWXdrh6u5G/9HDsXWowt5NO/S27z96OJ379cTT3wenqi48P2IgTq4unD16StPGwsoSGztbze1CyDmMTYxp0LLk91lpNfesw8nrFzlx/SK3M5LZdOEQqdnpBD/gvbHgxGauJMTc894ouhgQlXiTsLgobmckk5SVxuGr54hNS8TDVvfiSlnYsGIt7bt1pEOPzlTzcOelMaOp4uTA1v826m3v5OLMS2NH06Zze8wtLPS2sbS2wtbeTnM7c+IUJqYmNG1Tfsm4ll51OBF9gePXL3A7I5kNYQdJyU6niYf+18LPwR0v+6rMO76RiIQYkrPSuJ4Sp3NhRoGCAfU6sD38OImZ5Xdh7a7WPvU5eu08R66dJy49ibXn95GclU5zzzp62wc4euDj4MasI2sJj48mKSuN6ORYrYrAhu6B7Ag/zoW4qyRmpnIo6iwX467Sxlf/Z19FOnztPLOOrGPPlZDKDkVHJ/9g9keeZn9k4Tlj6ekdJGWm3ueckaN1HvDQnDPOaNq09KqDubEpfxxYRURCDImZqVxOuM71lDi92yyt9r4NORR1lkNXzxKblsjKs7tJykqjlZ6eBADZ+bmk5WRqbtXtXDAzMuXQ1aLzxLzjG9kXeZqYlNvEpiey6ORWFAoFAY7Vy2Ufnjgq1ZN7+39KknFCiKdKYmIimzdvZsyYMVjo+TJta2v7UNu5efMmbdq0oV69ehw/fpzNmzcTGxvLgAHalVHz5s3D0NCQAwcO8NdffxEdHU3fvn3p3r07ISEhvPLKK3zwgXY3zuzsbBo2bMj69es5d+4cr776KsOHD+fIkSOPvd+PKj8/nxuR0fjU0e465VMnkOhLJf84PbX7MEmx8bTp161c48vLy+PShYs0bqL9Y7Nxk2DOndHtIgSFSbTi7YObNuFC6AWtSoZ75WRnk5+fj7W1tWZZ7bp1OHnsONFXC7tDXr4UztnTZ2jaollpdgkovJrsaefK+Vvaz/H5W1fwcaj2UNto7VWP0NhIEu6pojNSGpBXoL2PuQX5+DmW3LWvtJSODihtbcg/G1q0MD+f/AuXMPTzKXG9/EuXMfSsjoG3p2Y7RnWDyAspSgQZNahD/pWrmL/1Kta/f4/lV5MxbtuyTOM3UChxtXYgIl67S8vl+Biq2zrrXSfQyYMbKfG09KrDe22HMK7VALoENMFQaVDi4xgZGGKgUJKVp79SsLQMFEqq27oQGqt9TIXGRuLzkAnAFp51uBAXpVOZaWJozNfdXufb7m8ytkU/3G2dyixufWJux5GQnEzT2kU/zo2NjGgQWIMz4Zfus6a27Jwc8gvysS4hoQKQfqfK0trS8vEDLiY/L59rlyOpUV+7K1SN+kFcCXu4rpgqlYrsrGzMrUqO/eC23TRs3QyTMqzou5eBQklVawedarXL8ddxv+974zYtveryftuhvP0Q7w1v+6o4WNgQlXT/bu2PIz8vjyuXLlOnkXZyoW7D+lw6X3bV8bs2bad5u1aYmpXna+GoM4zB5dvXS0xi1nD2JCblNq296zGp/XAmtBlEt8CmOq9Fe7+GZORmc+J6+fQWuJeBQkk1GycuxmkPM3Dx9jU87Vz1rlPLxYvo5Fja+zbk004v80H74fSq2VJrPwyVBuSptM99eQX5eNmXfffzZ4WBQomHnQuht6K0lp+PjcLH4eHOGS296hIWq33OqFvVjysJMQxp0Jnpvd5iSudRdA9shgLdiszSMlAocbd1JixOuztyWOxVvKo83GvfzCOIi3FX9VbR3WVsaIiBUklmXnap4hXicUk3VSHEU+Xy5cuo1WoCA/WPz/Ow/vzzTxo0aMC0adM0y+bMmYO7uzuXLl3C398fAF9fX7777jtNm48++ghvb29mzJhReDUtIICzZ8/y7bffatq4ubnx3nvvaf5/66232Lx5M8uXL6dJk/KtZLorMzUDtUqFhY2V1nILGyvSU3S7KAAk3Ixj++J1jJwyHgODkn9glYWU5GQKCgqws9fuLmtfxY7EhAS96yQmJGJfxU5rmZ29PQUFBSQnJ+PgoNtFbOZvM3F0dKRhcCPNsqEvDiMjPZ1h/YegVCpRqVSMfuNVOnbpVOr9sjI2x0CpJLVYd4eU7AyCTB+cFLAxtaS2qw9/HV6jtfzcrSt0CWjCpdvXiEtPooazF/Xd/PV2SyorCtvCBKaq2PGiSklDeZ9uznmHj5NlZYXlp+8DChSGBuRs303Of0VjFSkdHTHp0IaczdvJWLcJAx9PzEYMRJ2fT97+w2USv7mxKQZKJem52l1HM3KzsDTR3x3SzsyK6nbO5KsKWHxqG+ZGpvSs1QIzIxPWnNurd51O/o1Jzc7gSgnj2JSWpcmdY6pYF9jUnAysTUtO6NxlY2pBkIs3fx/9T2v5rbRE5h7fQEzKbUyNTOjg24hJbYfxxfZ/iEtPKtN9uCvhziQ39jY2WsvtbWy4Ff/wVZG/LVmMo709wUG6YxxBYQXejIULqBcQgK972SWs01PTUKlUWNlqx29ta0PqQ07gs2PNRnJzcmjYUv+5IOpSBDeuXmfYuNF67y8LRe+NLK3l6blZWJmY613H3sya6nYu5KsKWHRqK+ZGpvSq1RIzI1PWnCvqEm1iaMT7bYdhqDRApVaxPvRAiWM8lUZqSioqlQobO1ut5TZ2NiQnJpfJY1y+cInoyKu8/t5bZbI9fTSvRY72a5GWm4mfif5j197cCo87r8XCE1swNzbl+VqtMDMyZdXZ3QBUt3OhUbVAft2/otxiv5eFsdmd/dD+nErPycTKVP8xVcXCBi/7quQXFPDPsQ1YGJvSr047zI1NWBpSWGl6Me4abbzrcyUhhoSMFPwc3anl4q3VPVpoKzpnaFc6p2VnYPMo54wj67SWO1jYEujkwZFr5/l53zKcrewZUr8zSoWS9WElVzY/3j4UHk/Fh35Iy8nA2sTzgetbm1hQ09mLucc33Lfd87Vak5KVzoW4yh+DUPz/JMk4IcRTRX1nxh1FKZMQJ06cYNeuXVjqqZqIiIjQJOMaNWqkdV9YWBhNmzbVevxmzbQrqgoKCvjmm29YunQpMTEx5OTkkJOTo7eS7667be5lYmLyyPtVnM4VSzXou4ipUqlY+ds82r7QHQfX8q2OuVfx11Gtvv9rq3sFVl3C8sKx4XZs3cYvM3/Tei53btvB1k1b+fSrKXh6e3H5Uji//vgzVRwd6Naz++PvjE5UxeN+8GxRLb3qkJmXrRkQ/a5Fp7bxUqPuTPs/9u47rqnrfeD4J2HvPZUpCCoo4t64t3XUWrW2aqu1e/6+3bV7t3bY1i5XHbXOqrXuvSfiRFCQvfceye8PNBgIigJi6fN+vfLS3Jx78xxykpuc+5xzhs5CDaTkZbI/6rTOhR/ulEH3zphOn6y5n/fF3Gv/qxL3Ld56+q1aYnzfUAoXLqMsMgo9Z0dMHpqAanQ2xeuuDR9TKii/cpWiP9cBUH41Fr1mrhj171NvnXE3U9PCXdfb3qqwnRSXlQKw+eJhJgQNYOP5A9XmU+vp1ZZAlxYsOPp3g8+1VjVoBYraNCm6eQRSWFpEaLx25llURoLWPFKX0+J4c8BU+rYIZsVp3UMub9c/B/bz8W+Vc9LN+b9XKmO/gVoN1PIzffGG9Ww9dIB5b76NUQ1zeH62cAGRMVf55e137yzwW9D5uVWL7JBjew7y97K1zHrzhWodetcd3LobV4/meLasOfu0/lRvU7d6b6zUem8cYkLQQDae369p/yVlpfxwcDWGegZ427kyxL8rGYU5RGfUf3bc9ZhvdBtN6ZZ2btqGm5cHPv4t6+eAN3E754zrdV4RuoPia/N1bbpwkInBg1h/bh9KhZIH2vVj7dk9dz3jR2fENTSq6/VYenKLZt6x9ef28XDHYawO202Zqpx1Z/fyQLt+vNJvCmo1pBdkcyz2Ap3cWjVQDZoOtY6/e20WrezuGUhBaZHWXGsASoWCnOJ8Fh/fjBo1MVnJWBubM8ivS713xt0QsdY9BYranPbo6tGGwtJiwhIiaywzwLcTHZr78c2+Pxv+/H2P0NUmROOSzjghxL+Kr68vCoWCCxcuMHr0aJ1lrq+IeeNJp7S0VKuMSqVi5MiRWhlt17m4VA6pqNqBVpsT2ZdffsmcOXP4+uuvCQwMxMzMjOeff56Skponuf344495913tH46zZ8/Gb1T3Wz6fLqaWZiiUympZcPk5uZjfMGTzuuLCIhKuxJAYHcemhRWT7KuvLTf+7uTnmPLak3gH+N1RLLpYWVujp6dXLQsuMyOzWrbcdbZ2tqSnZ1Qrr6enh1WVH7bLf1/GkgWL+er7r2nhq7167A/ffM/kRx6i/6ABALTwaUFSYhJLF/5e58643JICylUqrKpkwVkam9Y4KfqNenm142D0GcqrzJ+RW1zAdwdWoa/Uw9zIlKzCXMa37Utaflad4r1R6cnT5F6+YSikfsVXBKWVFeVZle1IaWmBuobsSgDj+0dRcuAIJbsrvpyr4hLAyAjT6Q9R/Nc/oFajzsqmPEH7x3l5QiIGnepvHqCCkiLKVSrMDbWzMswMTcivkhF0XW5xATlF+ZrOBoDUvCyUCgWWxmZaQ3Z6eAbSyzuIRcc2kZyXoetw9SKvuKJNVc2CszAyrdUcbz08Azkcc45y9c3nZFED0RlJOFnUnPV4u3oHdyDghhVPS679XdOzs7C3qcxyzczJxs5Kd+fUjX7/ewML1q/j+9fewNfdQ2eZzxctYO/J4/z81js42dnVsQbazC0tUCqV5GRmaW3Pzc6usXPtuuP7DrPk21957NVn8A+qvuIfQElRMcf3HWbE5HH1FbJONb83jKtlkl5X2/eGGjT/T8pNx8HMht7eQfXeGWdpZYlSqSQrUzuLMyczu1q23J0oLirm4O59PPDIpDof62auvxYWVbJ1zQ1NqmXLXVf5WlR+p0jJy0SpUGBlbI6hnj62ppZM6VA53cT1ztT3h8xkzt4/dC4mVBf5JYXX6qHdpsyNTMmtoR45xflkF+VpLQCQnJuBUqHA2sSctPxs8ksKWXDsb/SVepgaGpNTlM/wVt3rPf6m5Po5o+r3EAtjs1qeM9py+Gr1c0ZWUR7lKhXqG7rDEnPTsTYxR0+hvOU55nbkFV9vT9rnvYr2dOs6dPUI4Gjs+Rpj6u/TkUEtOzP3wCoScup3rlohbofk+Aoh/lVsbW0ZPHgw33//Pfn51U/IWVlZODhUrKKWmFj55f/GxRwAgoODOXfuHJ6envj4+GjdbpbB1rp1aw4f1s7cqXp/37593HfffTz00EO0a9cOb29vIiJuPp/Qa6+9RnZ2ttbttddeu+k+N6Ovr4+rlxuXw7Tnirl8Jhy3ltUXZjAyMeaJz15j1ievaG4d+/fAztWRWZ+8QnMfzzuORRcDAwNa+vtx/Mgxre3Hjx4joK3uH6ptAgM4flS7/LEjR/Fv7Y++fuW1peW/L2Xxbwv5/Nsv8W9d/ep5cXGRpsP2Oj2lElU9XDEsV6mIzkykjbP237i1kxeXb7GaoJ+DO04Wtuy7YeGGqspU5WQV5qKnUNKhuX+1K9d1UlSMKjm18hafiCorG/2AG/6Genro+7ekLOJyzccxNARVlb+lSqWVUVd26TJ6LtpzUymdnVCl1V+nVrlaRWJOWrU5clrYN6txBdqYzGQsjM0w1KtsT/ZmVqjUKnJu6Ezt4dmWPi2C+f345gb/Il+uVhGTlURrJ0+t7a2cPG85/K+lgxtOFrbsjwq7abnr3Kwdya5h1cM7YWZigpuzs+bm3aw5dtbWHDlTOX9gaVkZJy9eoK3vzbOPft+4gd/WruHb/71Ga+/qWWNqtZrPFs5n17Gj/PjGWzRzrP8MX30Dfdx9vLhwSntey4uhZ/Fu5Vvjfsf2HOT3r39i2stPEniTDucT+49QVlpG55CGWywAKtpUgs73RnOtBRluFJOZVO29YafjvVGVQsFN55W7U/oGBni39CHsRKjW9rATobRsU7dpLAAO7d5PWUkpvQaE1PlYN1PxWqTiY689JNXHvhlXs5J07nM1MwkLY9Mqn1PWqNQqsovySM3P4pu9K5i7f6XmdjE5mqj0+IqVpOvxPX5jPeKyU2hZZSL8lg7uNc4ZGJ2RgKWRGYZ6BpptDuY2qNSqaquvlqnKySnKR6lQ0tbVh7NJV+q9Dk1FuVrF1cwkWlU5Z7R28qw2h2pVLa99D9mv43vI5bQ4HM1ttHJRncxtySrMrdeOOKioQ2xWMv6O2hdd/B09iEq/+crAvvbNcTS34VCVBYuu6+/bkSH+Xfnh4JoGXY1eiNqQzjghxL/ODz/8QHl5OZ07d2b16tVERERw4cIFvv32W7p164aJiQldu3blk08+4fz58+zdu5c333xT6xhPPfUUGRkZTJw4kaNHj3LlyhW2bt3K9OnTKS+vOV191qxZXL58mRdffJHw8HCWLVvGwoULtcr4+Piwbds2Dh48yIULF3j88cdJStL9pfo6IyMjLC0ttW51HababXhfTu46xMldh0iNT2Lz4tVkp2XQcUDFRPnbl69nzQ+LgYpsQic3V62bmZUF+gYGOLm5Ymhc9yGzVT0waQIb/9rA3+s3Eh0VzXdffUNKUjL3jRsDwE9zf+TD2e9ryt83djTJiUnMnfMt0VHR/L1+I3//tZEJD03UlFm2eCm//vgLr7z9Gs4uLqSnpZOelk5BQWW2R/eePfh9wSIO7T9IYkIie3ftYcWyFfQK6V0v9doafoTeXkH08mqHi4UdDwYNwM7Uil2XTwJwf2AIj3UZWW2/3t5BXE6PJz47tdpj3raudGjmh4OZNb72brzY50EUCgWbLh6ql5hrUrx5B8ajhmLQMQhlc1dMH5+KuqSEkoNHNWVMH5+K8QOjNffLToVhNKA3Bl07onSwQz+gFcb3j6L0ZJhmjEzx5u3otfDGaNRQlE4OGHTrhFHfXhRv312v8R+MPkNwcz/aN2uJvZk1Q/y7YmVszrGYCwAMaNmJsYEhmvJnEiMpLClidGAfHMys8bBxZpBfF07GXdIMY+np1Zb+LTuy7uwesgpzMTc0wdzQROuHcX3bdukYPb3a0cMzEGcLOx5o1w9bU0vNKn5jAnozrdPwavv19GzLlfQEnR2GI1r1oLWTF/ZmVjS3cuSRDkNxs3Zs0JUBFQoFE4cMZcH6dew6dpTI2FjenfcDxoZGDO5e2QE1+8fvmftH5SrJizes58eVK3h75ixcHBxIy8oiLSuLgqLKIXifLpzPPwf28/5Tz2BqbKIpU3STjOQ70W/0UA5u283BbXtIjI1n1S9LyExNp9fQ/gCsW7SChV/N05Q/tucgi+b8xNjpk/Dy9yE7M4vszCwK86tnoB3ctpt2XTtgbmlR7bH6djA6jA7N/Qm+9rky1L8bVsbmHL323hjYshPjbnhvhF17b4wJDNG8Nwb7deFkXLjmvdHbO4gWds2wMbHA3syK7p6BBLm25HRC7Ra3uF3D77+PnZu2seufbcRdjWXRD7+SlpLKwJEVGWHLfl3E3E/maO0THXmF6MgrFBUWkZOdQ3TkFeKiY6ode9c/2+jYoysWVtUzyevb/qgwOrr506F5xWsxrFV3rEwsOHq1YvGcQX6dub9tX0350wkRFJQUM65tXxzNbfC0cWFoq66ciK14LcpU5STnZWrdCstKKC4rJTkvs947Tq7be/kUXTza0NmtNY7mNoxq0wsbE3NNp8iwVt2Z2L5ybtaTcZcoKC3iwfYDcDK3xdvWlZGte3A05rymTblbOxHo0gJbU0u8bF2Z2fU+FCjYFXmiQepwO0wMjPC1b47vtcWZXC3t8bVvjpO5zS32bHjbLh2ll3c7eni2vXbO6H/tnFGxivOYgD5M7zSi2n49vdpyJT1e5zlj9+VTmBsa82DQQJzMbQh0bsGwVt3YFXmyQeqwM/IE3T0D6eoRgJOFLWMDQ7A1tdBcsBzVuidTOgyptl83j0CiMhJIzK0+//AA306MaNWDpSe3kF6QjYWRKRZGplodwk3atREv9+TtP0qGqQoh/nW8vLw4efIkH374IS+99BKJiYkVk/R36MCPP/4IVCzGMH36dDp27Iifnx+fffYZgwYN0hzD1dWVAwcO8MorrzB48GCKi4vx8PBgyJAh1bKmbuTu7s7q1at54YUX+OGHH+jcuTMfffQR06dP15R56623iIqKYvDgwZiamjJz5kxGjx5NdnZ2w/1RdAjo1oGC3Hz2rNlMXlYOjm4uTH7lCawdKoah5WZlk53WMBO110b/QQPIyc5h0a8LSE9Lx6uFN59+/QXOLhUryKWnpZOcVHnV0rWZK599/QXfzfmWtSvXYOdgz3MvP09Iv8ofKetWraG0tJS3X9HufJ06YzrTZz4KwPP/9wK/zvuFrz79gszMTOzt7Rk19j6mPjatXup1NPYCZkamjGrTEytjc+KzU5mz7w/N6qhWJubYmWoPaTMxMKJDc3+Wndqq85gGevqMCeyDo7kNRWUlhCVG8svh9Q22gud1xRu3oDA0wGTqJBSmppRfjiLv02+gqPJ5lfa2Wl+kitZtQq0G4/H3obSxRp2TR+mpMIpWrtOUKb9ylfyvf8RkwhiMRw9HlZpG4ZI/Kb2hk68+nE26gomBESE+wVgYmZKSm8GSE5vJvrbAhoWRKVYmlZmwJeVlLDq+ieGtuvN49zEUlhRxNukKOyKOa8p0cm+NvlKPB9trL/ixK/JEg/0oOR53ETNDE4a36oGVsRkJOWl8t3+lZqiWlbE5tqbanQYm+oYEN/PjjxrmfzM1NGJK8GAsjc0oLC0mNiuFz3cva5CVL2/08IhRFJeU8OnC+eTm59OmhQ/fvfo6ZiaVw/SS0tO05mVbtX0rpWVlvPKNdsfKjLHjmDluPACrt28DYNYH72mVeXvmLEb2Cam3+Dv26kp+Ti6b/lhLTkYWLh7NeXL2/2HnWLGATE5GFpmplT9k92/eiaq8nBXzFrFi3iLN9q79evHwC49r7ifHJ3L5/CWeee+Veov1Zs4mXcHUwFjz3kjOzeD3E/9o3hvmRqZYmVQOcyspL2Ph8b8Z3qoHs7qP1bw3tkdUZisb6OkzsnVPLI3NKC0vIy0/i1VhOxssi6l7317k5uSy+vcVZGZk4Obpwasfv42DU0VWZFZ6Jukp2hc3Xnn8ec3/r1yK5MCOPTg4OTJ32a+a7Qmx8Vw8e543Pm2YOQerOpN4GVMDY/r5dKx4LfIyWHRsE1mazykzrE0qO2hLystYcHQjI9r05MkeYykoKeZM4mW2Xarfz8/bFZoQgamhMQP9OmNpZEZibjq/Hl6vWc3S0si0Sj1K+enQOsYE9uH53hMoKC0iNCGCfy5UXmTS19NniH837EwtKSkr5UJKNMtObtUa2tpY/B08mDvmRc39Z3tWfBZtunCID3cuqmm3u+J43EXMjUwY0brynPHtvspzhrWJrnOGEcHN/FgRul3nMTMLc5mzdwUTgvoze9CjZBbmsiPiOP9cbJh5Xk/Gh2NmaMxQv65YGpuRmJPODwfXVLYnYzNsTbTrYKxvSJCrL6vO7NJ5zF5e7TDQ0+exLqO0tm+6cLDBL24KoYtCLTP5CSHEPWv5Sd2dM/8mE4MHkfwvn5PDydKeaSs+bOww6mzBhDfIeujxWxe8h1kv+Ym3N/9y64L3uPeGzGDmqupzVv7b/Hz/K+QcP9XYYdSJZcf27Lh07NYF73H9W3birc0/N3YYdfL+kJmExoXfuuA9Lqi5H69vmnfrgve4j4bN4qX13zZ2GHXy5ahn6fH9rMYOo84OPDWPGSs/aeww6uSX8a/y9NovGzuMOps75qXGDuGOZL11736PtX7/jcYOoVFIZpwQQgghhBBCCCFEU1V1Pl/R6GTOOCGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQ4i6RYapCCCGEEEIIIYQQTVUDraQs7pxkxgkhhBBCCCGEEEIIcZdIZ5wQQgghhBBCCCGEEHeJDFMVQgghhBBCCCGEaKrUsprqvUYy44QQQgghhBBCCCGEuEukM04IIYQQQgghhBBCiLtEhqkKIYQQQgghhBBCNFUqGaZ6r5HMOCGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQ4i6RYapCCCGEEEIIIYQQTZWspnrPkcw4IYQQQgghhBBCCCHuEumME0IIIYQQQgghhBDiLpFhqkIIIYQQQgghhBBNlVrV2BGIKiQzTgghhBBCCCGEEEKIu0Q644QQQgghhBBCCCGEuEtkmKoQQgghhBBCCCFEU6WS1VTvNZIZJ4QQQgghhBBCCCHEXaJQq9XSRSqEEEIIIYQQQgjRBGW99GZjh1Aj6y8/aOwQGoUMUxVCiHvYJzsXN3YIdfZqv4e5mBzV2GHUib+TF/cvfqOxw6izVQ9/SNajzzR2GHVi/dt3vPL3D40dRp19OvxJRi98tbHDqLN1Uz8hJSe9scOoE0dLO5ad3NLYYdTZpODBPLP2q8YOo06+G/MiK0/vaOww6mx8u/48teaLxg6jzr4f+zLT//yoscOok/kPvM6MlZ80dhh19sv4V+nx/azGDqNODjw1j2krPmzsMOpswYR/6fdBycG658gwVSGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQTUZmZiZTpkzBysoKKysrpkyZQlZW1k33USgUOm+ff/65pkxISEi1xx988MHbjk+GqQohhBBCCCGEEEI0Vf/BYaqTJk0iLi6OzZs3AzBz5kymTJnChg0batwnMTFR6/4///zDo48+yrhx47S2z5gxg/fee09z38TE5Lbjk844IYQQQgghhBBCCNEkXLhwgc2bN3P48GG6dOkCwC+//EK3bt0IDw/Hz89P537Ozs5a9//66y/69u2Lt7e31nZTU9NqZW+XDFMVQgghhBBCCCGEEHddcXExOTk5Wrfi4uI6HfPQoUNYWVlpOuIAunbtipWVFQcPHqzVMZKTk/n777959NFHqz22dOlS7O3tadOmDS+//DK5ubm3HaN0xgkhhBBCCCGEEEI0VSrVPXv7+OOPNfO6Xb99/PHHdapuUlISjo6O1bY7OjqSlJRUq2MsWrQICwsLxo4dq7V98uTJLF++nN27d/PWW2+xevXqamVqQ4apCiGEEEIIIYQQQoi77rXXXuPFF1/U2mZkZKSz7DvvvMO777570+MdO3YMqFiMoSq1Wq1zuy7z589n8uTJGBsba22fMWOG5v8BAQH4+vrSsWNHTp48SXBwcK2ODdIZJ4QQQgghhBBCCCEagZGRUY2db1U9/fTTt1y51NPTk7CwMJKTk6s9lpqaipOT0y2fZ9++fYSHh7NixYpblg0ODsbAwICIiAjpjBNCCCGEEEIIIYQQNJnVVO3t7bG3t79luW7dupGdnc3Ro0fp3LkzAEeOHCE7O5vu3bvfcv/ffvuNDh060K5du1uWPXfuHKWlpbi4uNy6AjeQOeOEEEIIIYQQQgghRJPQqlUrhgwZwowZMzh8+DCHDx9mxowZjBgxQmslVX9/f9auXau1b05ODitXruSxxx6rdtzLly/z3nvvcfz4caKjo9m0aRPjx4+nffv29OjR47ZilM44IYQQQgghhBBCCNFkLF26lMDAQAYNGsSgQYNo27Ytv//+u1aZ8PBwsrOztbb98ccfqNVqJk6cWO2YhoaG7Nixg8GDB+Pn58ezzz7LoEGD2L59O3p6ercVnwxTFUIIIYQQQgghhGiqVE1jmOrtsLW1ZcmSJTcto9YxfHfmzJnMnDlTZ3k3Nzf27NlTL/FJZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKaqiaym2pRIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXSGecEOI/TaFQsG7duibzPEIIIYQQQgihRa26d2//UTJnnBBCNBEX9hzn7LbDFGbnYe3iQOfxA3H2dddZNvHSVTbPqb7U95jZj2PtbA/AP1/9TlJETLUyzQNaMPCpB+s3+BtsWruBtctXkZmRgbunB48+M4s27QJ0ls1IS2fBD78QGR5BYlwCI8bdx2PPztIqs3XDP+zasp2rV64C0MLPhykzptGytV+D1WGwXxdGte6JjakFsVkpLDz2NxdSrtZYvpdXO+5r0wsXSzsKSoo5lXCJxSf+Ia+4EICQFu15usf91fabuGQ2paqyBqsHgPGooRj26YHC1ITyK1cpWPonqoSkm+5jNCAEw749UdraoM7Lp+R4KEWr10NZRayGIT0xCumJ0t4WgPKEJIrWb6bs7Pl6j7+rRxv6eLfHwsiU5LwMNpw7QHRmYo3l9ZRKBvh2or1rSyyMTMkuymNn5AmOx13UlDHWN2SwXxcCnL0xMTAiszCXjecPEJ5a/f1SX4b6dWV0QO+KNpWZzG9HN3I+JbrG8r29gxgT0AdXSzvyS4o4FX+Jhcc3kVtcoCkzsnUPhvh1xd7MmtzifA5Gn+X3k5spLa+fNrV25WqWL1lGelo6nt5ePPvic7RrH1Rj+VMnTjH362+JvhKFnb09kx6ezOhxYzSPR12+wm8//Ur4xYskJSbxzAvP8cCkCVrHKMjP59d5v7B39x4yMzNp2bIlz770PK3atK6XOtXk2NZ9HNy4g9ysHBybOzP44XF4+Le45X4x4VdY+N63OLq5MOuTVxo0xqp6ebWjv29HLI3NSMxJZ82Z3VxOj9dZ9qHgwXTxaFNte2JOGh/tWAxAd89AOru1wsWy4hwSm5XMhvMHuJp588+LujiyZQ/71m8nLysbx+YuDJs6Hs9WPjrLRl+MZOvSdaTGJ1NaXIK1gy2dBvSkx4j+mjK/vjOH6PMR1fZt2b4ND7/2VIPVo5d3EAN8O2FlbEZiThqrwnbV+FpM6TCErh7Vz4mJOWl8sH0hAO1cfRns1wUHM2v0lHqk5mWyI+I4R2Pr/zP2Rn1bBDPEryvWJubEZ6eyPHQ7EWmxOstO7zSCnl5tq22Pz07lrS2/aO4P9O1E3xbB2JpakldSyPG4i6wK20WZqrxB6hDSoj2D/bpgZWxOQk4aK0K3E5EWp7PstE7D6e4ZWG17QnYqs7f+prlvYmDEmIDetG/mh5mhMWn5Wfx5eidnk640SB1uRzsXHya1H4S/ozv2Zta8uulH9kWdbuywAOjr04GhN7SnZae21dieHu08gp5e7aptj89O5c3NP2vuD2zZib4tOmB3rT0di73QoO1JiJuRzjghhGgCrhw/z9GV2+j24BAcW7gRvu8k277/gzFvP465rVWN+419ZxYGxkaa+8YWppr/93v8fsrLKr+cFOcX8teHv+AZ3KphKgHs27GH3777icdffIpWAW3Ysn4T7/3vTeYu/hkHJ8dq5UtLS7G0smL8lImsX7lW5zHPnAqjV/8QZjzXGkNDQ9YsX8k7L7/Od4t+ws7Bvt7r0N0zkKkdh/HrkQ1cTL3KQN9OvN7/EV5Y/w1p+dnVyvs7evB0j/tZdHwTx+MuYmtqycwu9/FEt7F8vnupplx+SRHPrZujtW9Dd8QZDR2A0aC+FMxfSnlyCsYjBmP+0tPkvPE+FBXr3MegS0eM7x9FwYKllEdGoXR2xHT6QwAUrVgDgCozi8LV61GlpAJg2L0LZs/MIPfdT2/Z0Xc72rr4MLJ1T9ad3cvVzCS6uLdmeucRfLVnOVlFeTr3mdx+MBZGJqwK20V6QTZmhiboKSsHEugplDzWZRR5JYUsObmF7KI8rI3NKS4rrbe4q+rh2ZbpnUfw0+G/uJgSzWC/Lrw1cBrPrPtKZ5tq5ejBcz0fYP6xjRyLvYCdqSWzuo3hqe7j+GTX70BFZ92UDkOYu38VF1NjcLW059me4wGYf2xjnWPesXU73371DS++8jKB7dqyfs06/u+5l/j9z6U4OTtXK58Qn8D/nn+JkaNH8dZ7szlzOoyvPv0CaxtrQvr1BaCoqAiXZq6EDOjLd199q/N5P/3gE65cvsKb776NvYMDW//ZzAtPPcfvfy7DwdGhzvXS5eyhk2xevIbh08fj5ufNie0HWPrJjzz1xetYXetw1qWooJB1P/yOd0BL8rJzGyS2mgQ3a8nYtiH8GbqDKxkJ9PBsyxPdx/Dh9kVkFlaPZVXYLv46t09zX0+h5NX+UzgVX9lx5WPfnBNx4VzJ2EVZeRn9W3biye5j+WjHYrJreL/VxZmDx9m0cBUjH3sQdz9vjm3fz+KPvufZOW9hrePvbmhkRJfBfXD2aIahkRFXL0by1y/LMTQ2otOAngBMenkm5WWVn6sFufl8/38fEdAtuN7jvy64mR/3t+3LitDtXE6Pp6dXO57qMY73ty3Q+VqsPL2Tv87u1dxXKpW81u8RTsZfqoy7pIgt4YdJys2gXFVOgHMLHuowhNziAi7cpBO/Ljq5tWJi0EB+P7mZyLQ4Qlq054VeE3hzy89kFORUK788dBurzuzS3NdTKHl30KNaFz66urfh/rZ9mX9sI5Fp8Thb2PJo5xEA/BG6vd7r0LG5PxOCBrD05BYi0+Lp4x3Es70eYPbmX8korF6HP05tZ3XY7so6KJW8PXA6x+PCter1Yu8HySnOZ96htWQW5mJrYklRWUm9x38nTAyMiEyPY9PFg3w0dNatd7hLOru1YtK19hSRGkuITzAv9n6QNzb/pLM9LTu1jZVh2u3pvcGPcSz2gmZbV482jG/bj/lHNxKRFlfRnrqMBBqmPQlxKzJMVQhxzwoJCeHpp5/m6aefxtraGjs7O958803U11YDWrJkCR07dsTCwgJnZ2cmTZpESkoKAGq1Gh8fH7744gutY549exalUsnly5d1PueZM2fo168fJiYm2NnZMXPmTPLyKn9EHDt2jIEDB2Jvb4+VlRV9+vTh5MmTWseIiIigd+/eGBsb07p1a7Zt21affxadzu04gm/3IFr2bI+1iz1dHhiEmY0lF/eevOl+xhZmmFqZa27KGzodjMxMtB5LuBCFvqFBg3bG/fXnGgYMH8ygEUNx83TnsWdnYe/gwD/rdHcOOLk4M+O5J+g3ZABmZqY6y7z09isMGzMSb98WNPdw46n/ew6VSs3pE6ENUoeRrXqwM/IEOyKPE5+dysLjm0jPz2ZQyy46y7e0dyM1P5NNFw+RkpfJxZSrbIs4Sgs71yol1WQV5WndGprRgBCK/t5K6cnTqOITKfhtCQpDAwy7dKxxH/0WXpRFXqH0yAlU6RmUnbtIyZET6HtWZmmWnT5L2ZnzqJJTUSWnUrR2I+riYvS9Pes1/l5e7TgWe4FjsRdIyctkw/kDZBfl6cwqAWjp4Ia3nSvzj/1NZHocmYW5xGWnaGX2dHRrhamBEYuP/8PVzCSyCvOIzkwiMTe9XmO/0X1terI94jjbI44Rl53Kb0c3kpafzRC/rjXUw53UvEz+vnCQlLxMLqRcZWv4UXzsm2nK+Dm4czH5KnujTpOSl0loQgT7rpzWKlMXK5b9wfD7RjJy9Cg8vTx59qXncXRyZO0q3Z3mf61Zi5OzE8++9DyeXp6MHD2K4aNG8MeSZZoyrdq05qnnnmbAoIEYGhpUO0ZxUTF7du3miWefJCi4Pc3dmjN95mO4uLqybvWaeqmXLof/3kX7vl0J7tcdh2bODHlkHFZ2Nhzbtv+m+238dQUBPTrS3NezwWKrSV+fDhyKPsuhq2dJzs1gzZndZBbm6swsASgqKyG3uEBzc7dxwsTAmMNXz2rKLD7+D/uiThOfnUpyXibLT25DoVDg5+DWIHU4sHEnHfp1p2P/Hjg2d2H41PFY2VtzdOteneVdvdxo17MTTm6u2DjaEdS7C77tWhF9IVJTxtTcDAtrK83tcthFDIwMCejacJ1x/X07cij6DAejz5Ccm8HqsF1kFuTSyztIZ/mishJyigs0N3drZ0wNjTkcXflaRKTFcjohkuTcDNLys9l9+STxOam0qKf3ty6DW3ZmX9Rp9kWdJjE3neWh28kozKFvC91/u8LSYnKK8jU3TxsXTA1N2H9DVlYLu2ZEpMVxJOY86QXZnEuO4kjMeTxtXBqkDgNbdmZ/1Gn2R4WRlJvOitM7yCzIoU+L9rrrUFZMTnG+5uZhU/FaHIgO05Tp6dUWU0Njfjiwhsvp8WQU5BCZHkdcdkqD1OF2HY45xy9H1rPnSmhjh6JlkF8X9kaFsvdKaEV7OrWNjMIc+tW2PdlWb08+ds2JSIvlcMy5G9rTObxsG6Y93XNU6nv39h8lnXFCiHvaokWL0NfX58iRI3z77bfMmTOHX3/9FYCSkhLef/99Tp8+zbp164iKimLq1KlAxRxt06dPZ8GCBVrHmz9/Pr169aJFi+rDhwoKChgyZAg2NjYcO3aMlStXsn37dp5++mlNmdzcXB555BH27dvH4cOH8fX1ZdiwYeTmVly9VqlUjB07Fj09PQ4fPsy8efN45ZWGHXpUXlZOekwizVp7aW13beVNyhXdQyuuW//Rr/zxytds/nopieHRNy176WAoXh1bY2BkWNeQdSotLeXypQiCOml/0QrqFMzFsxdq2Ov2FRcXU15WhoWlRb0d8zp9pR7edq6cTojU2n46MRI/B91DhsNTY7AztaJ9s5YAWBmb0dU9gJNxl7TKGesb8uPYl/lp3P94rd+UBv/yqLS3Q2ltRdm5yiwFysooC49Ev4VXjfuVRV5G38MNPS8PzXEMAltTGnZO9w4KBQadg1EYGlJ2Obre4tdTKGlm5UBEqvaQlkupsXjYOOncp7WTF3HZKfTxbs/r/R/m5T6TGN6qO/pKvRvKeHI1K5nRAb14c8BUXug9gb4tglGgqLfYb6Sv1KOFXTNCE7SHzoUmRODv6KFzn4spV7Ezs6JDs4qh2FbG5nTzDNDKOLmQEk0L+2b42jcHwMncluDmflpl7lRpaSmXLobTuUtnre2dunTmbNgZnfucO3OWTlXKd+7ahYvnL1JWVrsM0PLyMsrLyzE0NNLabmRsSFhoWA171U15WRkJUbG0aOuvtd27rT9xl6Jq3O/U7sNkJqcRMm5Ig8R1M3oKJW7WTlysMnT+YvJVvKpdBNCtq0cA4SlXdWZuXWeor4+eUo/80qI6xatLWVkZCVdi8GmnfXHIp20rYsJrN/QvISqWmPAovFr71ljmxM6DBHbvgKGxUY1l6uL6a1E1W+1CSjTetrV7Lbp7BhKeclVn5tZ1fg7uOJnbElnDcMu60lMq8bBx4Vyy9t/+XFIUPnbNa3WMXt7tOJ8cRfoNWU8RaXF42jhrzncOZtYEurQgLDGypsPcMT2FEg8bZ84nRWttP5ccXetOzJ5e7biQHK2VudXO1Zcr6fFMCh7ElyOf4Z1BjzLMv1uDnTOaAj2lEk8bF84laX+Gnku6Qgv72rWn3l5B1drTpdRYPG1c8Lr23nIws6ati0+172xC3C0yTFUIcU9zc3Njzpw5FVfX/fw4c+YMc+bMYcaMGUyfPl1Tztvbm2+//ZbOnTuTl5eHubk506ZN4+233+bo0aN07tyZ0tJSlixZwueff67zuZYuXUphYSGLFy/GzMwMgLlz5zJy5Eg+/fRTnJyc6Nevn9Y+P/30EzY2NuzZs4cRI0awfft2Lly4QHR0NM2bV3xh+Oijjxg6dGgD/YWgOK8AtUqNsYW51nYTCzMKs3VnT5lamtN98jDs3J1RlZVz+cgZNn+zlKEvTNE5z1xqdDxZCan0nDK8QeoAkJOdg6pchbWNjdZ2a1sbMjMy6u15Fs+bj62DHe066L7SXRcWRqboKfWqDcnKLszD2tVc5z7hqTF8s+9PXuz9IAZ6+ugr9TgWe4Hfjm7QlInPTmPugdXEZCVjamDEsFbd+WDITF7aMJekBsrIUlhZAqDK0f6Bp8rJRWlX89C70qMnKTQ3x/zV5wEFCn09infto/gf7QxRZTMXLF5/CQz0obiY/O9/RZVYf0NUTQ2N0VMqySsp1NqeV1yAhZHuTB1bE0s8bVwoKy9n8fHNmBkaMzqgNyYGRqy6NvzF1tSSFiYWhCZEsODo39ibWXFfQG+UCiU7Io/XW/zXXW9TWVU6PbILc7Exaalzn/DUGL7a+wcvh0zStKkjMef55fB6TZn9UWFYGZnz0dBZKBQK9JV6/HPxEGvO7KlzzNlZWZSXl2Njq91ObOxsyUjX/V5OT8+gc5V2ZWNrS3l5OVlZWdjb33pIuamZGQGBASz6bQGeXh7Y2Nqyfcs2zp89T3O3hsnOKsjJR61SYW6l3blvbmXB5RqGnqYnprBj+QamvfMcSj09nWUakplRxdDr3OJ8re25xQVYGunOML6RpZEZrZ28WHR8003LjWrTi+zCPMJT6n8uxYKcPFQ6/u5mVpbkZdXcKQXw2azXyc/JQ1VeTr/xw+nYv4fOcnGR0STHJjDmiYfqLe6qzK+9FjlFBVrbc4sLsDQ2u+X+lsYVr8XCY39Xe8xY35CPhs1CX6mHSq1mRej2ah2w9cXC0BQ9pZLsIu02lVOcj1Ut6mFlbEagcwt+PvyX1vajseexMDLltb4Pg6Li4sTOyBNsunioXuMHMDeqqENO1fdFUe3rEODsza9H1mtttzezxt/RgyMx5/hm3584Wdgyqf0glAolGy8cqNc6NBXX21NO1e9SRfkEGOv+LnUjK2NzAl1a8NPhdVrbj8aex8LYlNf7NXx7EqI2pDNOCHFP69q1KwpF5dXDbt268eWXX1JeXk5YWBjvvPMOoaGhZGRkoFJVrMYTExND69atcXFxYfjw4cyfP5/OnTuzceNGioqKGD9+vM7nunDhAu3atdN0xAH06NEDlUpFeHg4Tk5OpKSk8Pbbb7Nz506Sk5MpLy+noKCAmJgYzTHc3d01HXHXY76V4uJiiou15+AyMrq9K/GKahdZ1Vp/uxtZOdth5Wynue/o3Zz8zBzObjusszPu0oHTWLs64ODZcENcrqsaslpdcz1u15plK9m3YzcffvsZhg2U4QdohlJr3CT+5lYOTO88gpVhOzkdH4G1qQUPdxjKzK738eOhiiF9EWmxWpMWX0yJ4bMRTzHMvyvzdfwIuxMGXTpi+nDlwhx538y7VpkqBRUKqFq/G+j7+WA8YjCFS/6k7Eo0eo4OmEwch2rEYIo3btGUUyWlkPvuJyhMTDDoEITpow+R9+m39dohB7pfi5qiv97O/gjdrpnPZ+OFgzwUPJh1Z/dSpipHgYL8kkJWh+1GjZr4nFQsjc3o7R3UIJ1xNVIoUNdQk+ZWjszoMooVoTs4lXAJGxMLpnYcxhPdxjD34GoAApy9ub9dX346/BcRqTE4W9rzWOeRZLbN5c+wnfUVoja1+mZvhWqZItfrdzsZJG++9zYfv/cRY4bdh56eHi39WjJg8EAuhV+69c51UiV2tbrqJqAie3rN3MWE3D8UO5fq82DeTXc6MKiLR2sKS4sJu0k2SX/fjnRo7s+3+/5s2InRqzeym37eAjz23ouUFBUTeymKrcv+wtbZgXY9O1Urd3znQZzcXGnu41l/8dao+qtR0/v7Rl3d21BYWsTphOqLThSXlfDxjsUY6Rvg5+DB2MAQ0vKza5wAvyEoqF076+HZloLSIk4mhGtt93NwZ0Sr7vx+cjNXMhJwMrdhYtBAslvnseF8w3RkVTtncNNTnkZ3z0AKSisWy7mRUqEgpzifxcc3o0ZNTFYy1sbmDPLrIp1xt1Dt60ctW1RPr2vtKb56exrZqkdFe0qPx9HclkntB5LVuicbzt98WoEmoTYNWdxV0hknhPhXKioqYtCgQQwaNIglS5bg4OBATEwMgwcPpqSkclLcxx57jClTpjBnzhwWLFjAhAkTMDXVfeX/Zp0+17dPnTqV1NRUvv76azw8PDAyMqJbt26a59T1Ja42HUkff/wx7777rta22bNnY9zb+5b7GpmbolAqKMzRvoJYmFuAseWtr+Ze5+DVjMtHz1bbXlZSStTx87Qf2bvWx7oTllaWKPWUZGZkam3Pzsyqli13J9YuX8WqJX/w7lcf49ni1n/XO5FbXEC5qhxrE+1sDStjM7IKdWcpjgnoQ3jKVdafq/gieDUrmV/K1vPBkJksD91eLSMKKn6kXU6P06xaWB9KT58h993oyg36FV8RlFaWlGdXZpooLcxR59Q8NM149AhKDh2lZF/FlWZVfCIYGWL68ESK/95a+WWwvBxVSlrFf6/GouflgdGAPhT+vqJe6lNQUkS5SoVFlUwfc0MT8ooLdO6TW5xPdlG+1sTaqXmZKBUKrIzNSS/IJrc4n3K1SuuHckpeJpbGZugplJSrVfUSf2VMNbUp8xrb1P1tQ7iQEs26cxVzZ13NTOKnw+v4eNgTLD21lczCXCa1H8juyyfZHnGsokxWMsb6BjzZfSwrw3bVqiOgJlbW1ujp6VXLgsvMyKyWLXednZ0tGenaWZ5ZGZno6elhZV3zIjRVNWvenLk//0BhYSH5+fnY29sz+7W3cHFtmGHdppZmKJRK8rK1s7Hyc/Iw1zEUvqSwiIQrMSRGx7Fp4Srg2nlDrea9yc8z5bUn8QrQnfFYX/KLCylXqbA00j4/WBiZklPDe+NGXT0COBZ7vsa23s+nA4NadmbugdUk5KTVS8xVmVpWzHFaNQsuPzu3WrZcVbaOFZ+bzu7NyMvOZdfKv6t1xpUUl3DmwHH6TxhRv4FXkXf9tTCu/lrkFt36tejmGcjRGN2vhRpIzc8CIC47FSdLWwb5dW6QzrjckgLKVapqGWQWRmbkVMmW06WXVzsOXT1LuUq7HmMC+nDw6lnN6p7x2akY6hnwSMdhbDx/oA6fUtXlFV+vg3bmlYWxWbVsOV16eLbl8NVz1V6LrKI8ylXa54zE3HSsTcwb5JzRFFS2J+3XwtLYtFr2pS69vNpxMPpMtfY0NrAPB6+eYe+1+fHislMx0r/envbXa3sSojZkzjghxD3t8OHD1e77+vpy8eJF0tLS+OSTT+jVqxf+/v6axRtuNGzYMMzMzPjxxx/5559/tIa2VtW6dWtCQ0PJz6880R84cAClUknLlhU/jvbt28ezzz7LsGHDaNOmDUZGRqSlpWkdIyYmhoSEBM22Q4dunf7+2muvkZ2drXV77bXXbrkfgJ6+HnbuLiRc0J5bI+FCFI7etZtbAyA9NhkTy+rp/1EnzqMqK6NFZ92T3tcXAwMDWrT05fTxU1rbQ4+fwj+gbotGrFm+kj8XL2P25x/g699wP3TLVOVcSU+grauP1va2Lj6Ep+oeqmWkb4CqylfA61meN+vG9bRxuel8TbetqBhVSlrlLSEJVVY2+q39Ksvo6aHv50PZ5ZrnwsLQoPrVV5XuLCEtClAYVJ+U/06Vq1XEZ6fiW2XyeF/75lzNTNa5T3RGEpbGphjqVV6rtDezQqVWaYYeR2cmYWdqpVUdezNrcoryG+RHVZmqnMvp8QRVaVNBrj41Djkz0jOsdmFAVeW+kZ5BDWUUt0osuiUDAwNa+vtx7MhRre3Hjh4joG2gzn3aBAZw7OgxrW1HjxzFv7U/+vq3f+3YxMQEe3t7cnNyOHr4CL1697rtY9SGnr4+rl5uXAnTzsC4cuYizVtWn1vRyMSYJz57lVmf/E9z69i/B3aujsz65H8089E9D2B9KleriM1Kxt9ROwvaz9GDqPSEGvaq4GPfHEdzGw5FV79wAxUZcUP8u/LjwbXEZul+n9UHfX19XL3diQzTnk80Muwi7n63cbFFrdY5J+HZQycoLysjqFdnHTvVn8rXwlNru7+jJ1cybv5a+Nq74Whuw8Grul+LqhQo0Fc2TB5GuUrF1cxEWjtpt/k2Tl5Ept98njo/B3ecLGzZd+V0tccM9fSrXRhQq9UVn7/1lDF/XblaxdXMJFo5eWptb+3kyeW0+Jvu2/JaHW5cLOC6y2lxOJrbaJ0znMxtySrMlY64GpSrVERnJtLGWbs9tXby4vIt5j3UtCcdr4WhzvOeqkHakxC1IZ1xQoh7WmxsLC+++CLh4eEsX76c7777jueeew53d3cMDQ357rvvuHLlCuvXr+f999+vtr+enh5Tp07ltddew8fH56ZDRidPnoyxsTGPPPIIZ8+eZdeuXTzzzDNMmTIFJ6eKCd99fHz4/fffuXDhAkeOHGHy5MmYmJhojjFgwAD8/Px4+OGHOX36NPv27eONN964ZT2NjIywtLTUut3OMNU2/btw6UAolw6GkpWYxpGV28jPzMa/V8ViCMfX7WLvwsp5TM7tOMrV0HCyUzLITEjl+LpdXD11kVYh1VfJjDhwGvd2fhib33ouobq674GxbNu4me1/byE2OoZfv/uJtJQUhtxXMVfd4p/mM+dD7Tn/rkRc5krEZQoLi8jOyuZKxGViois7KdYsW8nSXxfzzCsv4ujsRGZ6BpnpGRQWaM8lVl82XDhAf58O9PPpQDMrB6Z2HIa9mRVbL1V0TExqP4hnetyvKX887iJd3NswqGVnHM1t8HNwZ3rnEUSkxmo628a37Uc7Vx8czW3wtHHhye5j8bR1YWv4UZ0x1Jfi7bsxHj4Ig/ZtUTZzwXT6Q6hLSik5Ujkc0/TRKRiPHam5X3b6LEYhPTHoHIzS3g791n4Yjx5OaehZTSed8diR6Pm2QGlni7KZC8ZjRqDv50vJ4WPVYqiLfVGn6eTWio7N/XE0t2FEqx5Ym1hwOKbix+sQv6480K6/pnxowiUKSooZ364fjuY2eNm6MMy/O8djL2qG2h2+eg4zQ2NGtumJvZkV/o4e9PUJrvUP4jvx17n9DPDtRH+fjhXDmjuNwN7Mmi3hRwB4KHgwz/V8QFP+WNwFunoEMMSvC07mtvg7evBYl5FcSo3RtKljcRcZ4teVnl5tcTS3oZ2LD5PaD+RY7PlqHXd3YsKkB9n41wb+Xr+R6Khovv3qG1KSkhk9bjQA8+b+yAez39OUv2/sGJITk/huzjdER0Xz9/qN/P3XBh58aJKmTGlpKRHhl4gIv0RpaRmpqalEhF8iLrbyx9mRQ4c5cvAwCfEJHDtylGdnPYObhzvDRjVchlPX4X05uesQp3YdIjU+ic2L15CdlknHAT0B2L58PWt/+B0AhVKJo5ur1s3Myhx9AwMc3VwbbKGAqnZFnqCbZyBdPdrgZGHL2MA+2JpaaDoTRrbuyZQO1ReX6OYRQFRGos7Vg/v7dmR4q+4sPbmV9IJsLIxMsTAyxVCv/jrZb9RjRD9O7DjIiZ0HSYlLZNPCVWSnZdJpYEXH69Zl61g1d6Gm/OHNe7h4PIy0xBTSElM4sesQ+zdsp52ODrcTOw/SqlM7TC1uPT9VXe2IOE53z0C6eQTgZGHLuMCQitfiWufUqDa9eLhD9Xlnu3sGEJWRQKKO7MNBLTvj7+iBnakVTua29PPpQBf31hyLPd9g9dhy6Si9vYLo6dUWFws7HgwagK2pJbsvV6zqPi4whMc6j6y2Xy+vdlxOjyc+J7XaY6cTI+nbIpjObq2xN7OitZMnowN6E5oQoXMkQl1tu3SUXt7t6OHZFmcLOx5o1x9bU0v2XKm4SDgmoA/TO1X/LOnp1ZYr6fE6M0F3Xz6FuaExDwYNxMnchkDnFgxr1Y1dkTdf7f5uMTEwwte+uWYxH1dLe3ztm+NkXvcRCXWxNfwIvb2C6OXVTtOe7Eyt2HWtPd0fGMJjXaq3p97eQRXtKbt6ewpNiKCvT4cb2pMXYwL6NFh7uudcy8K+J2//UTJMVQhxT3v44YcpLCykc+fO6Onp8cwzzzBz5kwUCgULFy7k9ddf59tvvyU4OJgvvviCUaNGVTvGo48+ykcffXTTrDgAU1NTtmzZwnPPPUenTp0wNTVl3LhxfPXVV5oy8+fPZ+bMmbRv3x53d3c++ugjXn75Zc3jSqWStWvX8uijj9K5c2c8PT359ttvGTKkYVfM8+7YmuL8Ak7/vZ+CnDxsXBwY+NSDmNtVDO8qzM4jPyNbU15VXs6xNTsoyMpFz0AfGxcHBjw1AbcA7eyb7OR0ki/HMujZiQ0a/3W9+vchNyeHFYuWkpGeiYeXB29/+j6OzhWdoZnpGaQla2dAvvDoU5r/Xw6PYO/2XTg6O/LLn4sB+GfdBspKS/n07Q+09ntw6mQmTp9S73U4GH0GCyNT7m/bFxsTC2Kykvlox2LSrg0XsjGxwN6sctjd7sunMDEwYqh/Vx7pOJT8kiLOJl1hyYnK+dXMDI2Z1XU01iYWFJQUEZWZyNubf7llxkFdFf+zHYWBASYPPYDCzJTyK9HkffU9FFXOb6i0tdH6IlW0cQtqKoarKm2sUOfmUXr6LEVrNmrKKCwtMHtsCgorS9SFRZTHJZA/5wfKzmtnF9VVWGIkpoZG9PftiKWRGUl56Sw4tlEzvNPCyBRrk8of2yXlZfx6ZD33tenFMz3vp6CkmLDESE2nF0B2UR6/HtnAyNY9eL7XBHKK8jkQFcbuy6eqPX99ORAdhqWRKROC+le0qcwk3t++UDMEzdbUEgdza035nZEnMNE3Yph/d6Z1Gk5+SRFhiZdZfOIfTZk/T+9ErVYzuf0gbE2tyCnK51jsBZae2kJ96D9oADnZ2Sz8dT7pael4tfDms6+/wNmlYrhoelo6yUmVmVOuzVz57Osv+W7ON6xduQZ7B3uee/kFQvr11ZRJS01j+kNTNff/WLKMP5YsIyi4Pd/99D0A+Xn5/PT9j6SmpGJhaUlIvxBmPPn4HWXX1VZAt2AKc/PZs2YLeVnZOLq5MPmVWVg7VAzJzcvKITst8xZHubtOxl/CzNCEIX5dsTQ2IzEnnR8PrtV01loZm2FTZWi0sb4hQa6+rD6zW+cxe3m1w0BPv9oP5E0XDvFPA0yQHti9IwW5+exavYnczByc3FyY8tqT2DhUzIeam5lD1g1/d7Vaxdblf5GZko5SqcTW2YFBk0fT6Vqn6XVpCclcvXiZqW8+U+8x63IyPhwzIxOG+ne79lqk8cOBNZrVUa2MzbAxtdTap+K1aMnKGuZ3NNQ3YELQAKxNzCktLyM5N4OFxzZVm0OrPh2LvYC5oQmjWvfEytic+OxUvt63QrOapZWxObZV6mFiYESH5v4sD92m65BsOL8ftVrNmIDe2JhYkFtcwOnEyBrbYF0dj7uIuZEJI1r3wMrYjIScNL7dt1KzOqq1iY466BsR3MyPFaHbdR4zszCXOXtXMCGoP7MHPUpmYS47Io7zz8XDOsvfbf4OHswd86Lm/rM9K+ZV3nThEB/uXNRYYXE09gJmRqaMalPZnubs+6OyPZmYY2eqPYXB9fa07NRWnce8Pi/c2MA+mvYUmhDRYO1JiFtRqP8T3cBCiH+jkJAQgoKC+Prrr+t0nAMHDhASEkJcXJwmw+3f4pOdixs7hDp7td/DXEy+ybDGfwF/Jy/uX3zrDMd73aqHPyTr0bvzA7OhWP/2Ha/8/UNjh1Fnnw5/ktELX23sMOps3dRPSMlpmBV97xZHSzuWnayfTsjGNCl4MM+s/erWBe9h3415kZWndzR2GHU2vl1/nlrzRWOHUWffj32Z6X9+1Nhh1Mn8B15nxspPGjuMOvtl/Kv0+H5WY4dRJweemse0FR82dhh1tmDCv/P7YNbM5xs7hBpZ//x1Y4fQKCQzTgjRZBUXFxMbG8tbb73FAw888K/riBNCCCGEEEKIOlPJHIX3GpkzTgjRZC1fvhw/Pz+ys7P57LPPGjscIYQQQgghhBBCMuOEEPeu3bt312n/qVOnMnXq1HqJRQghhBBCCCGEqA/SGSeEEEIIIYQQQgjRVMlSAfccGaYqhBBCCCGEEEIIIcRdIp1xQgghhBBCCCGEEELcJTJMVQghhBBCCCGEEKKpkmGq9xzJjBNCCCGEEEIIIYQQ4i6RzjghhBBCCCGEEEIIIe4SGaYqhBBCCCGEEEII0VSpZJjqvUYy44QQQgghhBBCCCGEuEukM04IIYQQQgghhBBCiLtEhqkKIYQQQgghhBBCNFVqVWNHIKqQzDghhBBCCCGEEEIIIe4S6YwTQgghhBBCCCGEEOIukWGqQgghhBBCCCGEEE2VWlZTvddIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKZKJcNU7zWSGSeEEEIIIYQQQgghxF0inXFCCCGEEEIIIYQQQtwlCrValtUQQgghhBBCCCGEaIqyJs9s7BBqZL3058YOoVHInHFCCHEP+27/ysYOoc6e6Tme3Jycxg6jTiwsLRn483ONHUadbZv5DVkvvN7YYdSJ9ZyPeHDJ240dRp398dB7DPrl+cYOo862zviaqLT4xg6jTrzsm/HDwdWNHUadPdl9HLO3/NrYYdTJu4Mf43T8pcYOo87aNWvJyxu+a+ww6uyLkc8wZfm7jR1Gnfw+cTZPr/2yscOos7ljXmLaig8bO4w6WTDhDXp8P6uxw6izA0/Na+wQRBMhw1SFEEIIIYQQQgghhLhLJDNOCCGEEEIIIYQQoqlSqRo7AlGFZMYJIYQQQgghhBBCCHGXSGecEEIIIYQQQgghhBB3iQxTFUIIIYQQQgghhGiq1OrGjkBUIZlxQgghhBBCCCGEEELcJdIZJ4QQQgghhBBCCCHEXSLDVIUQQgghhBBCCCGaKhmmes+RzDghhBBCCCGEEEIIIe4S6YwTQgghhBBCCCGEEOIukWGqQgghhBBCCCGEEE2UWiXDVO81khknhBBCCCGEEEIIIcRdIp1xQgghhBBCCCGEEELcJTJMVQghhBBCCCGEEKKpUqsaOwJRhWTGCSGEEEIIIYQQQghxl0hnnBBCCCGEEEIIIYQQd4kMUxVCCCGEEEIIIYRoqtSymuq9RjLjhBDimqlTpzJ69Ojb2sfT05Ovv/66QeIRQgghhBBCCNH0SGacEP9RU6dOZdGiRdW2Dx48mM2bNzf4c2dlZbFu3boGfZ7b9c0336Cu56tG0dHReHl5cerUKYKCgur12LVxZucRTm7ZR0FWHrbNHOn14DBcW3rqLBt38QrrPp9fbfvkD57DxsWhXuJRq9X8/MsvrF27ltzcXNq0acMr//sfLVq0uOl+O3buZN68ecTFxdG8eXOefOIJ+vbtq1Vm5cqV/L5kCWlpaXh7e/PSiy/Svn17zeM//fwzW7duJTk5GQMDA1r5+/Pkk08SEBCgKRMXF8fX33xDaGgopaWldOvWjf97+WUsLC1vq54jW/dkfNt+2JlaEp2ZxI+H1nA26UqN5Ue17sl9bXrhZGFLSl4my05tY3vEMZ1lQ1q0543+UzkQHcY7W3+7rbjuhPHg/hh264TCxITymFgKVq9HlZRSY3nzpx5D38e72vbS8xfJ/2Wx5pjGQ/prPa7KySVn9sf1GzwwsGUnRrbuibWJOXFZqSw+/g8XU6/WWL6HZ1tGtemJs4UtBaXFnE6IYMmJLeSVFALQya0VowN642xhi55Sj6ScdP6+cJB9UafrPfYbjWzVg/Ht+mFrYsnVzCR+PLz2pm1qZOue3Ne6F04WNqTkZbE8VLtN9fBsy8SgAbhaOqCvVBKfk8aqsF3siDxebzFvWPMXq5atICM9HQ8vT2Y9+xQBQW1rLB926jQ/f/cDV6OisbO3Z/ykCQwfM0qrzNoVq9i4dj2pySlYWlvRK6Q302bNwNDIEIAzoadZtWwFERcjyEhP5+2P36N77571VieA0zsPc/KffeRn5WLXzJHek4bTrKXXLfdLiLjKqk9+wa6ZE5Pfe0azvbysnON/7+bCgVPkZeZg42JPj/FD8AxsWa9xVxWx7xQXdxyjMCcPK2d72o/rh2OL5jWWLy8t49yWQ0QfO09RTj4m1ua0GdQN726BAGQnpnFm034yYpMpyMih/Zi++PXt2KB12PLX36xfsYas9Eyae7oz9akZtGrbRmfZzPQMFv/4G1cuXSYpPoGhY0Yy9ekZ1crl5+Wx/LffObrvEPm5eTi6ODFl1qMEd224unT3CCTEpz0WRmYk52bw17l9RGUk1FheT6lkYMvOdGjmh4WRGVlFeeyIOMax2AuaMr282tHNMxAbEwvySwoJS4xk04VDlKnKG6we/X06MrxVd6xMLIjPTmHJyS1cSo2psXx3j0CGt+qOk4UdhaVFhCVGsvzUNs3nbTNLB8a1DcHTxhUHc2uWnNzMlvAjDRY/VPzd+vt2wsrYjMScdFaf2cXl9HidZR8KHkxXj4Bq2xNz0vhwR8V37O6egXR2a42rpT0AMVnJbDi/n6uZSQ1XCaCvTweG+nXF2sSc+OxUlp3aRkRarM6yj3YeQU+vdtW2x2en8ubmnzX3B7bsRN8WHbAztSSvpJBjsRdYFbarQdtUbbRz8WFS+0H4O7pjb2bNq5t+bPBzshD1QTrjhPgPGzJkCAsWLNDaZmRk1EjRND4rK6vGDqFeRRw9w74/NtHnoZG4+Lhzbs8xNny9mEnvP4uFnXWN+03+8HkMTSrbgYmFWb3FtGjxYpYtW8bst9/G3d2d3+bP56mnn2b1qlWYmel+nrCwMF5//XVmPf44ffv2ZdeuXbz62mv89uuvmo60rVu38uVXX/HqK6/Qrl071qxZw7PPPcfKP//E2dkZAA93d/73f/9Hs2bNKC4uZtny5Tz19NOsW7sWGxsbCgsLeerpp2np68u8H38E4Md583jhxRdZvXp1revYx7s9T3Qbw3f7V3IuOYrhrbrz0dBZPPrnx6TmZ1YrP6JVD6Z3HsmcvX8QnhqDv6M7L/R6kLziAg7HnNMq62huw8wuowlLjKx1PHVh1K83RiE9KFi2mvLUNIwH9sV81nRyPv4Kikt07pO/YCno6WnuK8xMsXj5GUpDz2qVK09MJu/HGzoTVfU/fKKbRwCPdBjKb8c2Ep4SwwDfTrza7yFe2jCX9ILsauX9HNx5qvtYFp/4hxNx4diaWvJYl5HM7HofX+39o6J+JYWsO7uX+OxUylXlBDfzY1a30WQX5TfY69LHuz2zuo3huwOrKtqUf3c+HPI4j638mNT8rGrlR7TqwfROI/h634qKNuXgzvO9Jmi1qdziApaHbiMmK4Wy8jK6uLfh5T4TySrK40TcxTrHvGf7Ln765nueeuk52rQNYNO6Dbz58qv8vGQBjs5O1conJSTy1suvMXTkMP739uucCzvL919+g5W1NT379gZg55btzJ/3Cy++9j9aBbYhPiaWLz/8DIDHn3sKgKLCIrx8WjBw2BA+eOOdOtejqktHwti77G/6ThmFq68HZ3Yf5a+vFvHQh89jeZPP1eKCIrb+shK3Vi0oyMnTeuzQmm1cPBRK/6ljsHVx4OrZS2z8bgkPvDELRw/Xeq8DQMzJi5xas5MO4wdi792MywdOs/fHVQx9fTpmtrovPhxcsIGi3Hw6TxqMub0NxXkFqMsrV+crKynF3M4atyA/Tq3d1SBxa8Wzax8Lv/+Vx56bhV9Aa7Zv2MxHr77DnAXfY+/kWK18aWkpltZWjH3oAf5e9ZfOY5aVlvLB/72FpbU1L77zKnb29qSnpmJsatpg9Wjn6suogF6sObOb6IxEunoE8FiXkXy+eylZhXk695nSYSgWRqb8eXonaflZmBuZolQoNI+3b9aSYa268+fpHURnJOJgbs2EoAEArD+3v0Hq0cW9DQ8FD2Hh8b+JSIulr08H/q/PZF7d9D3pBTnVyre0d+PxrqNZemoLp+IvYWNiwbROI3i080i+2f8nAIb6BqTkZXE05jyTgwc3SNw3Cm7mx7i2fVkRuoMrGfH09GzLk93H8sH2hWQW5lYrvypsF3+d26e5r6dQ8lr/hzkVf0mzzdfejRNxF1mZkUBZeTkDWnbiqe7j+HDHIrKLdL++ddXZrRWTggby+8nNRKTGEuITzIu9H+SNzT+RoeO1WHZqGyvDKt+zegol7w1+TKtzt6tHG8a37cf8oxuJSIvD2cKWR7uMBOCP0O0NUo/aMjEwIjI9jk0XD/LR0FmNGss9rQG+Z4m6kWGqQvyHGRkZ4ezsrHWzsbHRPK5QKPjpp58YMWIEpqamtGrVikOHDhEZGUlISAhmZmZ069aNy5cva/Z55513CAoK4qeffsLNzQ1TU1PGjx9PVlaW5vFFixbx119/oVAoUCgU7N69m379+vH0009rxZeeno6RkRE7d+6sFnt2djZ6enqcOHECqMi4srW1pVOnTpoyy5cvx8XFRXM/Pj6eCRMmYGNjg52dHffddx/R0dGax6sOU83NzWXy5MmYmZnh4uLCnDlzCAkJ4fnnn9eKpaCggOnTp2NhYYG7uzs//1x5FdHLqyJbon379igUCkJCQm7+otSj0K0HaN2rA216d8TW1ZFeE4djbmvFmd1Hb7qfqaUZZlYWmptSWT+nCrVazfLly5k2bRr9+vXDx8eHd995h6KiIjZv2VLjfsuXL6dL585MmzYNT09Ppk2bRudOnVi2fLmmzNJly7jvvvsYPXo0Xl5evPTSSzg5ObFq1SpNmSFDhtClSxeaN29OixYteOH558nPzyciIgKA06dPk5iYyOzZs/Hx8cHHx4fZb7/N+fPnOXz4cK3rOa5tCJvDD/NP+GFispL58dBaUvMyGdm6h87yA3w78feFA+y5coqk3HR2Xz7F5vDDmh9O1ykVCl7r9zCLT/xDUk56reOpC6M+3SnatpvSM+dQJSVTsGwlCkMDDIODatxHXVCIOjdPczNo6QOlpZScPqNdUFWuVU6dn1/v8Q9v1Z1dl0+yK/IkCTlpLD7xD+kFOQxs2UlneV97N1Lzs9gcfoTU/CzCU2PYHnGcFnbNNGXOJ0dzLPYCCTlpJOdlal5nf0f3eo//unGBIWwOP8Lm8MPEZiUz7/BaUvOyGNlad8ZXf9+ObLpwsLJNXTnF5vAjPNCuMhsxLDGSA9FniM1KJjE3nXXn9nIlI4EAp1tneNXGmhUrGTxiKENHDcfd04NZzz+Ng6MjG9eu11n+73UbcHRyZNbzT+Pu6cHQUcMZNHwoq5b/qSlz4ew52gQG0HdQf5xdnOnQpRMhA/tx6WLlD99O3bowdeaj9AzpXS/1qOrk1v206d2BgD6dsHV1pM+kERWfqztvnq2zc9Fa/Lq2w8XHrdpjFw+dotOIPni188PK0Za2/briEeDLyc0N02kCcHHXcby7BtKie1usnO0IHtcPUxsLIveH6iyfeD6KlMux9J41Dmc/T8ztrLDzcMHeu/K9YefhQtDoEDw6tEKpr6fzOPVp48p19Bs6kP7DB9Pcw42pT8/A3tGerev/0Vne0dmJaU/PpM+gfpia6e5c2/nPdvJy8vi/99/AP6A1Ds6O+Ae2wbNF/bwvdOnjHcTRmPMcjTlPSl4m68/tI6swj24egTrL+zm408KuGb8eWU9EWiyZhbnEZiVrZVp52rgQnZHIqfhLZBbmcik1ltD4CJpbVe8Iry9D/bqy58op9lw5RUJOGktPbiG9IJv+vro/b33sm5Oan8XWS0dJzc/iUlosOyNP4GVb2QEdlZHAH6HbOBxzjtLyhs++6ufTgUPRZzh09QzJuRmsPrObzMJceunIGgMoKisht7hAc3O3ccbEwJhDVysvPi06vol9UaeJz04lOS+DZSe3olAo8HNouHPGIL8u7I0KZe+VUBJz01l+ahsZhTn0axGss3xhaTE5Rfmam6etC6aGJuy/IbvMx645EWmxHI45R3pBNueSozgScw4vWxedx7ybDsec45cj69lzJbSxQxHitkhnnBDipt5//30efvhhQkND8ff3Z9KkSTz++OO89tprHD9eMZypaidaZGQkf/75Jxs2bGDz5s2Ehoby1FMVWQsvv/wyDzzwAEOGDCExMZHExES6d+/OY489xrJlyyguLtYcZ+nSpbi6ulYbjggVWWxBQUHs3r0bqMieuv5vTk7FVb/du3fTp08foKLDrG/fvpibm7N3717279+Pubk5Q4YMoaREd4bPiy++yIEDB1i/fj3btm1j3759nDx5slq5L7/8ko4dO3Lq1CmefPJJnnjiCS5erMgsOXq0ouNr+/btJCYmsmbNmtr94euovKyMlKsJuLXx0dru1tqHpMiah4wA/PHu98x/8RPWfT6fuIs1D4O7XfHx8aSnp9O1a1fNNkNDQ4KDgzWvny5hZ87Q5YZ9ALp266bZp7S0lIsXL9K1SxftMl261Hjc0tJS1q5di7m5OS1bVgwFKykpQaFQYGhoqBWfUqnUdPreir5Sj5b2bpyIC9fafiIunDY1dHIY6OlTUl6mta24rBQ/B3f0FJWn6YeCh5BVmMfm8Np3DNaF0s4GpaUlZeERlRvLyymLjELfq/Y/Igy7dKTkVBiUlGof394ey3dexeLNlzGd8iBKO5sajnBn9JR6eNm6EJZ4WWt7WGIkLWv4EXQpNQZbU0uCXH0BsDI2o4t7G07ekOVQVYCzNy6W9lxIrnnoa13oK/XwtW/OyXjtbLUT8Rdp7eSpcx9DpT4l5dp/75Ly6m3qRkGuvrhZOXIm6bLOx29HaWkpEeGXCO6sPawvuHNHLpw9p3OfC2fPVSvfoUtHIi6GU1ZW8f5o0y6QiPBLhJ+vyNZIjE/g2KEjdO7epdrxGkJ5WRkp0Qm4t/HV2u7RxofEyzW//uf2nSArJYMu9/XTfdzSMvQMDLS26RsakBARXeeYdT5fWTmZsUk4+3tqbXf29yQtSvdwvPizkdi6OXFxx1H+eutH/n7/V06t20VZlff13VJWWsqVS5G069hea3vbju0JP3ehhr1u7cTBI/i28ee3b+YxY9wUXpr+FGuW/omqgTqC9BRKmlk5VhvKeSk1Bs8aOjnaOHsRm5VC3xYdeGvANF7p+xAjWvdAX1nZARqVkUBza0fcrCs632xNLfF39OBCSnTD1EOpxNPWtdrnx9mkK/ja6x76HJEWi62pJe1cKr6nWBqb0dm9FaEJETrLNzQ9hRI3aycupGi/ly8kX8XLrnYZqt08AghPuaozi+46Q3199JRKCkqL6hRvTfSUSjxtXDiXFKW1/VzSFVrU8FpU1dsriPPJUVoZjZdSY/G0cdF0ljqYWdPWxYfTCXcnU1+IpkiGqQrxH7Zx40bMzc21tr3yyiu89dZbmvvTpk3jgQce0DzWrVs33nrrLQYPrhgu8NxzzzFt2jStYxQVFbFo0SKaN6846X/33XcMHz6cL7/8EmdnZ0xMTCguLtYMHwQYN24czzzzDH/99Zfm+RYsWMDUqVNR3DD04kYhISHs3r2bl156id27d9O/f3+uXLnC/v37GTZsGLt37+aFF14A4I8//kCpVPLrr79qjrdgwQKsra3ZvXs3gwYN0jp2bm4uixYtYtmyZfTv319T3tW1+heyYcOG8eSTT2r+RnPmzGH37t34+/vj4FAx15qdnZ1WfasqLi7W6oiEug0ZLswtQK1SYWqp/fqaWplRcFb3sAgzawv6PnwfDp7NKC8tI/xQKOu+WMCY/5tOM7+6ZwWkp1dkc9nZ2mptt7O1JTGp5rlT0tPTde5z/XhZWVmUl5djW6WMrZ0daenaGWT79u3j9TfeoKioCHt7e76fOxdra2sAAgMDMTY25rvvvuOpp55CrVbz7XffoVKpSE1NhVp8h7UyNkNPqUdmofYwkMzCXGxMLXTucyLuIkP9u3IwOoyItDha2rsxxK8rBnr6WBmbk1GYQxsnL4b4dWXW6s9uHUQ9UVhUxKvK1W4vqrw8lDbWtTqGnntz9FydKVih3QlddjWW8mUrKU9NQ2lhXjH89dlZ5H76NeqCwnqJ39LIFD2lHtlVhnllF+Zj7Wquc59LabHMPbCK53o9gIGePvpKPY7HXmDhsb+1ypkYGPHj2JfR19NHpVYx/+jGeunE0lmP622qQPvHXWZhLjYmuocTHo+7yBD/rhy8eoaItDh87d0Y3LKLVpsCMDUwZvnkdzHQ00elUvHdgVU37XisrZysbFTlKmxstTtYbWxsyEjP0LlPZkamVmY2gI2tDeXl5WRnZWNnb0fIgH5kZ2bx0hPPoVarKS8vZ8SYUUyYMqnOMddGTZ+rJlYW5J/V3YGQmZTGgVWbGf/a4yj1dGeLuQf4cmrLfpq19MTa0ZaYC5e5cuoCapVKZ/m6KskvRK1SY1xlCgIjCzOKcnVnqOalZZF6JR49A316Pjaa4rxCjq/cRkl+EV0mD22QOG8mJzsHlUqFVZXPIisba7Iysu74uMmJSaSeCqPngBBe+3g2iXEJ/PbtPFTl5dz/8MS6Ba2DmaEJekolucUFWttziwuxMNKdvWdraoWXrQtlqjIWHt+EmaExYwNDMDUw5s/TOwAITYjAzNCEp3qMQ0HFxYmD0WHsiqzdhaXbZWFkip5SSU6VYZfZRXlYGeueEzYiLY4fD63hqR73az5vT8Rd5PcTujMbG5q5UU2vRT6WRp633N/SyIzWTl4sPP73Tcvd16Y32YV5XExpmAs4FoY1vRb5BBjrPvfdyMrYnECXFvx0eJ3W9qOx57EwNuX1fg+DouJC0c7IE2y6eKg+wxcNSd0w5xRx56QzToj/sL59+/LjtbmxrqvaodG2beVk205OFVdYAwMDtbYVFRWRk5OD5bVJ7t3d3TUdcQDdunVDpVIRHh5eY4eUkZERDz30EPPnz+eBBx4gNDSU06dP33SRh5CQEH777TdUKhV79uyhf//+uLu7s2fPHoKDg7l06ZImM+7EiRNERkZiYaHdIVJUVKQ1zPa6K1euUFpaSufOnTXbrKys8PPzq1b2xr+RQqHA2dmZlJSaJ7jX5eOPP+bdd9/V2jZ79mzsBuieiPqOqQHdfZvYODtg41y5UIOLjzt5mdmc2nLgjjrjwg+HsnvxeubrfYRarebrOXMAqnWuqtXqmkKqpGufKtt0HrfKto4dO7Js6VKysrJYu24dr73+OgsXLMDW1hYbGxs+/eQTPv7kE/5YsQKlUsmgQYPw9/e/7aG6VdcBUSgq/vS6LDm5BRtTC74d/SIKKjpZtl46woSgAajUKkwMjHil7xTm7PuDnOL6H8p5nUFwO0wfGK25n3dtsYXqblKZKgy7dKQ8IYnymDit7WU3DCtUJSaTFx2D5RsvY9gpmOI9B24z8purFqqCGhdqaWblwCMdh7H6zG7CEiKxNrFgcvAgHusykp8OV84xVVRawit//4ixgSEBzt5M6TCElLxMzidH12vsN6oasQKFjq0Vlp7aio2pJd/c90Jlm4o4yoR2/VHd8GW8sLSYJ9Z8jrG+Ee2b+fJ419Ek5qbX39x3Vd+TVH9P3rS8+vrmiu2nT4byx+KlPPXSc/i3aUVCXDzzvvkemwW/M3nalPqJuRaq1aGGzzCVSsXmn1bQdfQAbJztazxen0kj2LFwLb+/PgcUCqwcbWndM5jz+6tnYterqkGraz5BXP887frwCM2cou3L+nJg/l90GD8AfUMDnfs1NJ2vxS1PKDVTq9VY2ljx+ItPodTTw7ulD5npGaxfsaZBOuNqcvO3ScWDy05upaisIrN//bn9PNxxKGvO7KZMVU4Lu2b09+3ImjO7iclMxt7MivsCejOgqKDGxYHqQ7VzH4oaTxeulvZMCR7KurN7OZMUibWxBQ+2H8i0TiP49aju4ex3h3bEN6vDjbp6tKGwtJiwm2SKDfDtRIfmfnyz788GX/Tgds4ZN+rp1ZaC0iJOxmtn+Ps5uDOyVQ9+P7mZK+nxOJrbMqn9QLJa92TD+YYbUi9EUyadcUL8h5mZmeHj43PTMgY3DJ25/gVQ1zbVTa7gXy9z0x9hwGOPPUZQUBBxcXHMnz+f/v374+HhUWP53r17k5uby8mTJ9m3bx/vv/8+bm5ufPTRRwQFBeHo6EirVq008XXo0IGlS5dWO8717LUbXf+xrquDpyqDKsOLFArFTf8eurz22mu8+OKLWtuMjIz4+didfSE1sTBFoVRWmyi8ICe/WlbHzTh7uxF++M5WpPJq1wqn2W483HEo+Xl5muHAaenp2NtX/jDNyMzE1s6uxuPY2dlpsuC09rnWcWxtbY2enl61MpkZGdUy6kxMTHBzc8PNzY3AwEDGjB3LX3/9pcnu7Nq1K3+tW0dWVhZ6enpYWFgwePDgis5lVfXFF6rKLsqnXFWOral2xpK1sQVZBbqHrZSUl/LlnuV8vXcFNqYWZBTkMMy/O/klRWQX5eNt54qLpR3vD65c9e96u9z82FdMW/Ehibl1n0Ou9NwFcr+4YaU1/YqvCEoLc8pzKmNXmpuhzqvFpNMGBhi2b0vh5lpM7FxSSnliEkqHmjssbldOcQHlqnKsTbTbu5WxGdlFujs1R7fpxaXUGDaer+gQjMlKpvhoCe8OfowVp3doJlNXoyY5ryLD62pmEs2sHLivTe8G6YzL0bQp7QsJ1ibmNQ6FKikv5au9y/lmn+42dZ0aNQk5aQBcyYjH3dqJB4MG1LkzztLaCqWekswqWXBZmVnVsuWus7G1ITOjavlM9PT0sLSqeD8t/mUB/QYPZOio4QB4tfCmqKiIbz/9iomPTK63+S1rcv1zNT9b++9emJOHqVX1z9XSomJSouNJjUlk95INwLVziFrNt4++yZiXpuHWugWmluaMfHYKZaWlFOUVYGZtyYGVW7C0r9+h29cuwOlsAADWfUlEQVQZmpmgUCooytF+HxTnFWBsoTsby8TKHBMrc63FfSyd7EANhVl5WDg2TKw1sbSyRKlUkpWh/bmcnZVdLVvudljb2qCvr6+VxdjMvTlZGZmUlZaib1C/nY75JYWUq1TVsuDMDU2qZWhdl1uUT3ZRnqYjDiAlLwOlQoG1iTlp+dkM9uvKybhwjsacByApNx1DPQPub9eXHRHHans9pdZyiwsoV6mwqvJ5a2lsVi1D67qRrXsSkRbDposHAYglheJjJbw1cDorw3Y22OIGNckrvv5aaGeMmhuZkluLC2FdPQI4Gnue8hqyj/r7dGRQy87MPbBK87nbEHJLrr0WxlVfC9Maz3036uXVjoPRZyiv8j12bGAfDl49w95r87LFZadipG/AIx2HsfH8/npvU0L8F8iccUKIehcTE0NCQoLm/qFDh1AqlZq5uQwNDSnXMf9KYGAgHTt25JdffmHZsmVMnz79ps9zfd64uXPnolAoaN26Nb169eLUqVNs3LhRkxUHEBwcTEREBI6OjprJ+a/fdK2i2qJFCwwMDDRzvgHk5ORoJvuvrevzj+mq742MjIywtLTUutVlmKqevj6OHq7EntP+UR17PhJnn9rP95Uak6jzR2ZtGJoYYe1kh4eHB25ubnh7e2NnZ8eRI5UTnZeWlnLy5Emt7MKq2gYGau0DcOTwYc0+BgYG+Pv7Vy9z9OhNjwsVP4xLSqvPeWRtbY2FhQXHjh0jIzOTfv10z/VUVZmqnEtpsQQ3086gDG7ux7nkqBr2qlCuVpGWn41KraZvi2COxJxDjZqYrGRmrPyEWas/19wOXT3L6YRIZq3+XOdqmnekuARVWkblLSkFVU4O+n43dNjr6aHv40VZ1M3nHQQwDAoEfT1Kj5+69XPr6aHn5Igqp+Z5dm5XuaqcqIxEAp21h0gFOreoNj/TdYb6BtU63FXXO+Zvkr+pAAxqGIJYV2WqciLS4qq3qWZ+t+z8u7FNhbRor2lTNVEoFBgo636d1sDAAF+/lpw6pj0k7tSxE7QK0J3t2yqgTbXyJ48ex9ffD/1rHcPFxUXVOtyUSiVqtbrGbMf6pKevj6OnKzFVPldjzkfi0qL6hSNDYyMmv/8sk959WnMLDOmMjbM9k959GucW2os56BsYYG5jhapcReSJs3i3b9VA9dDDxs2ZpHDtYXJJF69i79VM5z72Xs0ozM6j9IZVlHNTMlAoFJhY39k5oi70DQzwbulD2Antz5ewE6H4tbnzv5tfQGuS4hO1LqglxiVgY2db7x1xUPEejc9OoaWDdlto6eBOdEaizn2iMhKxNDbDUK8yHgcza1RqleaCgaGefrX3ukqtuvY5VofUwRqUq1REZyQQ4OyttT3A2ZuItDid+xjpG2g+XytjvH4htN5DvKVytYrYrGT8HbXfy/6OHkSlJ9SwVwVf++Y4mttwKPqMzsf7+3ZkiH9Xfji4hpis5HqLWZdylYrozETaOGuPaGjt5MXlGl6L6/wc3HGysGVfVPWLsIZ6us6PqorW1BgvmLh91y4G3ZO3/yjpjBPiP6y4uJikpCStW1pa3a/WGRsb88gjj3D69Gn27dvHs88+ywMPPKAZourp6UlYWBjh4eGkpaVRekNnyGOPPcYnn3xCeXk5Y8aMueVzhYSEsGTJEvr06YNCocDGxobWrVuzYsUKrZVLJ0+ejL29Pffddx/79u0jKiqKPXv28NxzzxEXV/3LiYWFBY888gj/93//x65duzh37hzTp09HqVTeMsPvRo6OjpiYmLB582aSk5PJzs6u9b51FTSoB+f3neD8vhNkJKSw749N5GVkE9CnYmWzg6u3su3XytVGQ7cd5MrJ82Qlp5Een8zB1Vu5fOIcbft1rekpbotCoWDixIksWLCAXbt2ERkZyTvvvouxsTFDrs1BCPD27NnMnTtXc//BBx/kyJEjLFy0iOjoaBYuWsSRo0eZNLFyyNDkSZNY99df/LV+PVFRUXz51VckJSUxbtw4AAoLC/n+++85c+YMiYmJXLx4kfc/+ICUlBQG9K9cYXL9+vWcOXOGuLg4Nm3axKuvvcakiRPx9tb+gXEzq8N2M9S/K4P9uuBu7cSsbmNwNLdh44WKbKvpnUbwv5DJmvLNrBzo79ORZpYO+Dm483r/R/C0dWH+0Y0AlJaXEZ2ZqHXLLy6koLSI6MzEBh3qUrznIMYDQjAIbI3S2QnTifejLiml5GSopozppPsxHj6o2r6GXTtSeuaCzjngjEcNRa+FF0pbG/Tcm2M2bRIKYyNKjtXvsLy/Lxykn08wIS3a42ppz8MdhmBvZqUZpvVg0ACe7D5WU/5kXDid3Fsz0LcTjuY2tHRwZ2qnYUSmxWmy0O5r04tA5xY4mtvgamnPsFbd6eUdpPPHS31ZfWY3Q/y6MrhlF9ysnZjVdXS1NvV/1dpUB1wt7SvaVL+H8bRxYcENc9892G4Awc1a4mxhh5uVI+MCQxjg24kdkcfrJeaxE8azecMmtmz8h5joq/z0zfekJCczfMxIAOb/+Aufv/+xpvzw0SNJTkrmp29/ICb6Kls2/sOWjf9w/8QHNGW69OjG32vXs3v7TpISEjl59DiLf1lA157d0bvWGVpYUMjlS5FcvlTRYZaUkMjlS5GkJNXPD+DgQT05t/c45/YeJyMhhT3L/yY3PZvAvhVTGhxYuYUtv6wEQKFUYt/cWetmammGnoEB9s2dMTCquFiTdDmWyONnyU7JIP5SFOu+WoBarabjsIZZERbAv29HrhwK48qhM2QnpXNyzU4KMnPw6VmxauTp9Xs5/Htle/Ho2ApDMxOOLv2H7MQ0UiJjOf3XHry6BmqGqJaXlZMZl0xmXDKqsnIKs/PIjEsmN/XWWcV3YsT40ezYtI2d/2wj7mosC7//hbTkVAaOrJjDbtkvi5j78Vda+0RHXiE68gpFhUXkZGcTHXmFuOjKzvlBo4aSm5PLwrm/kBAbz8nDx1i7bCWD7xvWIHUA2HMllM7ubejk1gpHcxtGtemJtYk5h6+tyDnUvxsPBg3UlD8Vf4mCkiImBPXHydwGb1tXRrTuwdGYC5rzwfnkKLp5BBLk6outiSW+9m4M8e/KuaSom3bI18U/4YcJ8Q6mt3cQrpb2TG4/GDtTK3ZEVHymPNCuP493Ha1Vj45urejv0xEHM2t87d2Y0mEIl9PiNJ2Kekol7tZOuFs7oa/Uw8bEEndrJxzNGyYTc2fkCbp7BtLVIwAnC1vGBoZga2qh+Xwf1bonUzoMqbZfN49AojISdGapD/DtxIhWPTSry1oYmWJhZKrVmVrftoYfobdXEL282uFiYceDQQOwM7Vi1+WKc+z9gSE81mVktf16ewdxOT2e+OzUao+FJkTQ16cDnd1aY29mRWsnL8YE9CE0IeKuXAy5GRMDI3ztm2sWC3G1tMfXvjlODdROhKgvMkxViP+wzZs34+KivVqXn5+fZiXQO+Xj48PYsWMZNmwYGRkZDBs2jB9++EHz+IwZM9i9ezcdO3YkLy+PXbt2aTrOJk6cyPPPP8+kSZMwNja+5XP17duXr776SqvjrU+fPoSGhmplxpmamrJ3715eeeUVxo4dS25uLs2aNaN///6aue6q+uqrr5g1axYjRozA0tKS//3vf8TGxtYqruv09fX59ttvee+993j77bfp1auXZgXYhubbOZCivAKObdhFfnYuds2cGPHcFM3Qp4KsXHJvmOhaVVbOgZWbycvMQd/AANtmjox4bgqebavPk3enHnn4YYqLi/nk00/Jzc0loE0b5n73HWZmlcNCkpKSUN7Q4dmuXTs+/PBDfvzxR+bNm0fz5s35+KOPCAgI0JQZNGgQ2dnZ/Prrr6SlpdGiRQu++fprTftWKpVER0ez8e+/ycrKwsrKitatW/PLzz/TokVl5tTVq1f5/vvvyc7JwdXVlWnTpjF50u1NDr/nyiksjc14KHgwtqZWRGck8sY/P5GSV/GD1M7UUuuHhJ5Cyf1t+9Lc2pFyVTmhCRE899fXmmGQjal4514UBgaY3D8KhYkJ5VfjyJu3AG7IjlHaWFe7qql0sEPf25O8H+frPK7SygqzKRNQmJmizsun7GosuV/PQ52ZVa/xH7p6FnMjE8YFhmBtYkFsVgqf7FpCWn5Fp7iNiQX2ZpWZsXuuhGJsYMQgvy481GEw+SVFnEuOYtnJrZoyRvqGTO88AjtTS0rKS0nISeP7A6s5dO2Hc0PYc+UUlkamTA4ejK2pJVczEnlzc2WbsjW1xNGssk0pFUrGBVa2qdMJkTy//hutNmVsYMgzPcZjb2ZFcVkpsdkpfLprCXuu1CKTsRb6DOhLTk4OSxcsJjM9Aw9vT97/4mOcrl2UyUjPICW5cm5NZ1cX3v/iY3769ns2rvkLW3s7nnj+aXr2reyQmvTIFBQKBYt+nk96ahpWNtZ06dGNqTMf1ZS5dDGcV56pHPL/83cV86IOGDqYl998pc71atmlLYX5BRxZv5OCa5+r973wiOZzNT87l9z0rNs6ZllpKYfWbiM7JRMDY0M82/oxeMYDGJma1DnemrgH+1OcX8jZLQcpys7HysWe3rPGYWZb8X4ozMkjP7MyU9XAyJC+T43nxKodbP3idwzNTHBv70fg8J6aMoXZeWz5rHKuyYs7j3Fx5zEcfNzo/+yD9V6H7n17kZuTw+rFf5CZkYGbpwevfTwbB2dHoGKqgrQU7U6F/818TvP/K5ci2b9jDw5Ojny//DcA7B0dePOz91j0w6/832PPYGtvx9CxIxn94Lh6j/+60wkRmBkYM7BlZyyNzEjKTee3Ixs0FwAsjc2wuWH4Z0l5KT8d/osxAb15rvcECkqKOJ0QyT83TKS//dpQ1CH+XbEyNievpJDzSVFaZerbkZhzmBuaMLpNH6xNzInLTuGLPUtJL6j4vLU2NsfOtPLzdl/UaYz1jRjQshMT2w+ioKSI8ylRrAitnNrAxsSCD4fO0twf3qo7w1t150JyNB/tXFTvdTgZH46ZoTFD/bpiaWxGYk46Pxxco/Va2FZZOMdY35AgV19Wndml85i9vNphoKfPY11GaW3fdOFggy1+cDT2AmZGpoxq0xMrY3Pis1OZs+8PzeqoVibarwVUdGh1aO7PslNbdR1SMy/c2MA+2JhYkFtcQGhCBKvP7G6QOtwOfwcP5o6p/Nx/tud4ADZdOMSHDdBOhKgvCnVjd2ULIZqUd955h3Xr1hEaGnpH+8fGxuLp6cmxY8cIDg6u3+DqKD8/n2bNmvHll1/y6KOP3nqHevDd/pV35Xka0jM9x5Obk3PrgvcwC0tLBv783K0L3uO2zfyGrBdeb+ww6sR6zkc8uOTtxg6jzv546D0G/fJ8Y4dRZ1tnfE1UWnxjh1EnXvbN+OHg6sYOo86e7D6O2Vt+beww6uTdwY9xuh5W9G1s7Zq15OUN3zV2GHX2xchnmLL83VsXvIf9PnE2T6/9srHDqLO5Y15i2ooPGzuMOlkw4Q16fD/r1gXvcQeemtfYIdyRzJF3bxGa22WzYXljh9AoJDNOCHFPKC0tJTExkVdffZWuXbveEx1xp06d4uLFi3Tu3Jns7Gzee+89AO67775GjkwIIYQQQgghxL+VdMYJIe4JBw4coG/fvrRs2ZJVq1bdeoe75IsvviA8PBxDQ0M6dOjAvn37tFYCFUIIIYQQQgghbod0xgkh6tU777zDO++8c9v7hYSENPoEsFW1b9+eEydO3LqgEEIIIYQQQtyr7rHfWUJWUxVCCCGEEEIIIYQQ4q6RzjghhBBCCCGEEEIIIe4SGaYqhBBCCCGEEEII0VSpVY0dgahCMuOEEEIIIYQQQgghhLhLpDNOCCGEEEIIIYQQQoi7RIapCiGEEEIIIYQQQjRVKllN9V4jmXFCCCGEEEIIIYQQQtwl0hknhBBCCCGEEEIIIcRdIsNUhRBCCCGEEEIIIZoqtQxTvddIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKZKhqnecyQzTgghhBBCCCGEEEKIu0Q644QQQgghhBBCCCFEk/Hhhx/SvXt3TE1Nsba2rtU+arWad955B1dXV0xMTAgJCeHcuXNaZYqLi3nmmWewt7fHzMyMUaNGERcXd9vxSWecEEIIIYQQQgghRFOlUt27twZSUlLC+PHjeeKJJ2q9z2effcZXX33F3LlzOXbsGM7OzgwcOJDc3FxNmeeff561a9fyxx9/sH//fvLy8hgxYgTl5eW3FZ/MGSeEEEIIIYQQQgghmox3330XgIULF9aqvFqt5uuvv+aNN95g7NixACxatAgnJyeWLVvG448/TnZ2Nr/99hu///47AwYMAGDJkiW4ubmxfft2Bg8eXOv4JDNOCCGEEEIIIYQQQtx1xcXF5OTkaN2Ki4vvehxRUVEkJSUxaNAgzTYjIyP69OnDwYMHAThx4gSlpaVaZVxdXQkICNCUqTW1EEKI/6SioiL17Nmz1UVFRY0dyh1rCnVQq6Ue95KmUAe1umnUoynUQa2WetxLmkId1OqmUY+mUAe1WupxL2kKdfivmj17thrQus2ePbvejr9gwQK1lZXVLcsdOHBADajj4+O1ts+YMUM9aNAgtVqtVi9dulRtaGhYbd+BAweqZ86ceVtxKdRqWeNWCCH+i3JycrCysiI7OxtLS8vGDueONIU6gNTjXtIU6gBNox5NoQ4g9biXNIU6QNOoR1OoA0g97iVNoQ7/VcXFxdUy4YyMjDAyMqpW9p133tEMP63JsWPH6Nixo+b+woULef7558nKyrrpfgcPHqRHjx4kJCTg4uKi2T5jxgxiY2PZvHkzy5YtY9q0adXiHThwIC1atGDevHk3fY4byZxxQgghhBBCCCGEEOKuq6njTZenn36aBx988KZlPD097ygOZ2dnAJKSkrQ641JSUnByctKUKSkpITMzExsbG60y3bt3v63nk844IYQQQgghhBBCCHFPs7e3x97evkGO7eXlhbOzM9u2baN9+/ZAxYqse/bs4dNPPwWgQ4cOGBgYsG3bNh544AEAEhMTOXv2LJ999tltPZ90xgkhhBBCCCGEEEKIJiMmJoaMjAxiYmIoLy8nNDQUAB8fH8zNzQHw9/fn448/ZsyYMSgUCp5//nk++ugjfH198fX15aOPPsLU1JRJkyYBYGVlxaOPPspLL72EnZ0dtra2vPzyywQGBmpWV60t6YwTQoj/KCMjI2bPnl3rtPB7UVOoA0g97iVNoQ7QNOrRFOoAUo97SVOoAzSNejSFOoDU417SFOog6tfbb7/NokWLNPevZ7vt2rWLkJAQAMLDw8nOztaU+d///kdhYSFPPvkkmZmZdOnSha1bt2JhYaEpM2fOHPT19XnggQcoLCykf//+LFy4ED09vduKTxZwEEIIIYQQQgghhBDiLlE2dgBCCCGEEEIIIYQQQvxXSGecEEIIIYQQQgghhBB3iXTGCSGEEEIIIYQQQghxl0hnnBBCCCGEEEIIIYQQd4l0xgkhhPhXUqvVyBpEor5ERkayZcsWCgsLAaRtNbKioqLGDqFeNJV6CCHEvaZfv35kZWVV256Tk0O/fv3ufkBC3CZZTVUIIf4jiouLOXr0KNHR0RQUFODg4ED79u3x8vJq7NBuy+LFi/n888+JiIgAoGXLlvzf//0fU6ZMaeTIaq+8vJw5c+bw559/EhMTQ0lJidbjGRkZjRTZ7YuLi2P9+vU66/HVV181UlS1l56ezoQJE9i5cycKhYKIiAi8vb159NFHsba25ssvv2zsEGstNjZW6/3dpk0bjIyMGjusWlOpVHz44YfMmzeP5ORkLl26hLe3N2+99Raenp48+uijjR1irTSVevzb21N2djZr165l37591c57gwcPpnv37o0dYq00lXoIUd+USiVJSUk4OjpqbU9JSaFZs2aUlpY2UmRC1I5+YwcghBCiYR08eJDvvvuOdevWUVJSgrW1NSYmJmRkZFBcXIy3tzczZ85k1qxZWFhYNHa4N/XVV1/x1ltv8fTTT9OjRw/UajUHDhxg1qxZpKWl8cILLzR2iLXy7rvv8uuvv/Liiy/y1ltv8cYbbxAdHc26det4++23Gzu8WtuxYwejRo3Cy8uL8PBwAgICiI6ORq1WExwc3Njh1coLL7yAvr4+MTExtGrVSrN9woQJvPDCC/d8Z9zVq1eZN28ey5cvJzY2Viujz9DQkF69ejFz5kzGjRuHUnlvD4j44IMPWLRoEZ999hkzZszQbA8MDGTOnDn/mk6sf3M9mkJ7SkxM5O2332bp0qU4OzvTuXNngoKCNOe9Xbt28cUXX+Dh4cHs2bOZMGFCY4esU1OpR1XHjh1j5cqVOi/grFmzppGiun1NpR7/RmFhYZr/nz9/nqSkJM398vJyNm/eTLNmzRojNCFuj1oIIUSTNWrUKLWLi4v6pZdeUu/Zs0edn5+v9fjly5fVCxcuVA8ePFjt7Oys3rp1ayNFWjuenp7qRYsWVdu+cOFCtaenZyNEdGe8vb3VGzduVKvVarW5ubk6MjJSrVar1d9884164sSJjRnabenUqZP6rbfeUqvVFfW4fPmyOjc3Vz1q1Cj1Dz/80MjR1Y6Tk5M6NDRUrVZX1kGtVquvXLmiNjMza8zQbunZZ59VW1hYqMeNG6detGiR+sKFC+qcnBx1aWmpOjk5Wb1jxw71O++8o/bz81O3adNGffTo0cYO+aZatGih3r59u1qt1n4tLly4oLa2tm7M0G7Lv7UeTaU9OTg4qF966SX1mTNnaixTUFCgXrZsmbpz587qzz///C5GV3tNpR43Wr58udrAwEA9fPhwtaGhoXrEiBFqPz8/tZWVlXrq1KmNHV6t/Zvr8ddff9X6dq9SKBRqpVKpViqVaoVCUe1mamqq/u233xo7TCFuSTrjhBCiCZs7d666uLi4VmXPnj17z3fGGRkZqSMiIqptv3TpktrIyKgRIrozpqam6qtXr6rVarXa2dlZfeLECbVaXdE5amlp2Zih3ZYbOxKtra3VZ8+eVavVanVoaKjaw8OjESOrPXNzc/WlS5c0/7/ecXL06FG1ra1tY4Z2Sy+//LI6JSWlVmX//vtv9cqVKxs4oroxNjZWR0dHq9Vq7dfi3Llz93zH6I3+rfVoKu2ptnW40/J3S1Opx40CAwPVc+fOVavVle8NlUqlnjFjhvrtt99u5Ohq799cj6odV1U7tK53cimVysYOtUbR0dHqqKgotUKhUB87dkwdHR2tuSUkJKjLysoaO0QhauXezC8XQghRL5566ikMDQ1rVbZNmzYMHDiwgSOqGx8fH/78889q21esWIGvr28jRHRnmjdvTmJiIlBRp61btwIVw17+TXMymZmZUVxcDICrqyuXL1/WPJaWltZYYd2W3r17s3jxYs19hUKBSqXi888/p2/fvo0Y2a19/vnnODg41KrssGHDuP/++xs4orpp06YN+/btq7Z95cqVtG/fvhEiujP/1no0lfZU2zrcafm7panU40aXL19m+PDhABgZGZGfn49CoeCFF17g559/buToau/fXA+VSqW5bd26laCgIP755x+ysrLIzs5m06ZNBAcHs3nz5sYOtUYeHh54enqiUqno2LEjHh4empuLiwt6enqNHaIQtSJzxgkhxH9QUVERK1asID8/n4EDB/5rOrLeffddJkyYwN69e+nRowcKhYL9+/ezY8cOnZ1096oxY8awY8cOunTpwnPPPcfEiRP57bffiImJ+dfMewfQtWtXDhw4QOvWrRk+fDgvvfQSZ86cYc2aNXTt2rWxw6uVzz//nJCQEI4fP05JSQn/+9//OHfuHBkZGRw4cKCxw7ulN998k379+tG9e3eMjY0bO5w6mT17NlOmTCE+Ph6VSsWaNWsIDw9n8eLFbNy4sbHDq7WmUo8b7dmzh/z8fLp164aNjU1jh3NLkZGRZGdn06FDB822HTt28MEHH5Cfn8/o0aN5/fXXGzHC2mkq9bjO1taW3NxcAJo1a8bZs2cJDAwkKyuLgoKCRo6u9ppKPZ5//nnmzZtHz549NdsGDx6MqakpM2fO5MKFC40YXe1cunSJ3bt3k5KSgkql0nrs3zQHr/iPauzUPCGEEA3r5ZdfVj/77LOa+8XFxeqgoCC1gYGB2srKSm1mZqY+ePBgI0Z4e44fP66ePHmyOjg4WN2+fXv15MmT1SdPnmzssOrk0KFD6i+//PKenqNFl8uXL6tPnz6tVqvV6vz8fPUTTzyhDgwMVI8ZM0YzTO/fIDExUf3222+rhw8frh46dKj6jTfeUCckJDR2WLXi7e2tVigUaiMjI3Xv3r3Vs2fPVu/Zs6fWw9PvNZs3b1b37t1bbWZmpjYxMVH36NFDvWXLlsYO67b9W+vx2WefaQ2zU6lU6sGDB2uGsDk5OWmGo9/LRo8erX7zzTc1969cuaI2MTFRDxo0SP3ss8+qzc3N1XPmzGm8AGupqdTjuokTJ6q//PJLtVqtVn/wwQdqBwcH9WOPPab28PBQjxkzppGjq72mUg9jY2N1WFhYte2nT59WGxsbN0JEt+fnn39W6+npqZ2cnNTt2rVTBwUFaW7t27dv7PCEuCWFWn3DMklCCCGanICAAD766CNGjRoFwIIFC3jppZc4deoU7u7uTJ8+nZSUFP7+++9GjlQIcSfi4+PZuXMnu3fvZvfu3URFRWFiYkK3bt3o27cvffv2pXv37o0dpvgXCA4O5pVXXtGszLly5UoeeeQRtm3bRqtWrXj44YcxNTW95zOR3dzc+PPPP+nWrRtQscLtqlWrCA0NBeC3337ju+++09y/VzWVelyXkZFBUVERrq6uqFQqvvjiC/bv34+Pjw9vvfXWvyLrEppOPXr37o2BgQFLlizBxcUFgKSkJKZMmUJJSQl79uxp5AhvzsPDgyeffJJXXnmlsUMR4o5IZ5wQQjRxlpaWnDx5Eh8fHwAmTpyIhYWFZl6T0NBQhg0bRkJCQmOGeVtSUlJ0Dklo27ZtI0V0a+vXr6912esdp6JhhIWFERAQgFKpJCws7KZlzc3NcXNzw8DA4C5FV3exsbHs2rWL3bt3s3r1avLz8ykrK2vssG5p2rRpPPTQQ/Tr1w+FQtHY4dyxf3M9bGxsOHjwIK1atQIq6lJWVsbvv/8OwOHDhxk/fjyxsbGNGeYtmZiYcOnSJdzc3ADo378/3bt35/333wcq5vzq0KEDWVlZjRjlrTWVegCUlZWxdOlSBg8ejLOzc2OHI6gYBj1mzBjCw8Nxd3cHICYmhpYtW7Ju3TrN98Z7laWlJaGhoXh7ezd2KELcEZkzTgghmjilUsmN110OHz7MW2+9pblvbW1NZmZmY4R2206cOMEjjzzChQsXqHotSaFQUF5e3kiR3dro0aNrVe5er4eNjU2tOxgyMjIaOJo7ExQURFJSEo6OjgQFBaFQKKq1pxtZWVkxb948TbbQvezy5cvs3r1bkylXXl5+zy9EcV16ejrDhw/Hzs6OBx98kIceeuieXvCgJv/mepSWlmotInPo0CGee+45zX1XV9d/xeIstra2JCYm4ubmhkql4vjx41rzcZaUlNz0PX+vaCr1ANDX1+eJJ574V8xDpktOTk6ty1paWjZgJPXHx8eHsLAwtm3bxsWLF1Gr1bRu3ZoBAwb8Ky4kjB8/nq1btzJr1qzGDkWIOyKdcUII0cT5+/uzYcMGXnzxRc6dO0dMTIzWj/OrV6/i5OTUiBHW3rRp02jZsiW//fYbTk5O/4ovi9dVzeL7t/r6668bO4Q6i4qK0qw8GBUVddOyxcXFrFy5Umvo3r0kKiqKXbt2aTLhsrOz6dGjB3369OHpp5+mU6dO6Ov/O77urV+/nqysLP7880+WLVvG119/jZ+fHw899BCTJk3C09OzsUOslX9zPXx8fNi7dy/e3t7ExMRw6dIl+vTpo3k8Li4OOzu7Roywdvr06cP777/PDz/8wMqVK1GpVFrnvfPnz9/Tr8N1TaUe13Xp0oVTp07h4eHR2KHcNmtr61p/57iXL6hVpVAoGDRoEIMGDWrsUGrl22+/1fz/+rDgw4cPExgYWC2D/dlnn73b4QlxW2SYqhBCNHGrV69m4sSJ9OrVi3PnztGpUyc2bNigefyVV14hKirqnp8DCMDCwoJTp07d80MnRNOSmZnJo48+ypo1axo7lGqUSiXu7u48+eST9O3bl+DgYPT09Bo7rHoRFxfH8uXLmT9/PhER/8/encfVmP7/A3+dkjapUJZUWkQRStm3rGHshiFK1rGVZGk+Q3aasWdLkspe2TL2pSIyaEVJWmQpUkO00HL//vDrfB1Fp8y4zn3O+/l49HjUdd9/vC46p3Pe57qudzIvttpWhk/z2L17N1xdXTF27FjcunULGhoaIl2FV69ejb///lvkb4gkSktLQ79+/ZCWlgY5OTl4enpi5syZwuvDhw+HgYEBNm/ezDBl1aRlHuWCgoLg5uYGFxcXtG/fHqqqqiLXJfmoic/PT0tPT4ebmxsmTZokPM8vMjIS/v7+WLduHRwcHFjFrLb8/HyEh4cjIyMDHz9+FLkmicUsAwMDse4TCARITU39j9MQ8n2oGEcIITLg8uXLOHPmDBo1aoS5c+dCRUVFeG3FihXo1auXyOoHSTV8+HBMnDgRo0aNYh3lu/HtBXBVCgsLUVxcLDLGl606AFBQUFDp/4UkvzkEgLFjx+LatWsoKipC9+7d0bNnT9jY2MDCwoJXK0e/VFxcjDNnzuDAgQM4c+YM6tWrh+fPn7OOVW18nMfevXvx119/oVGjRli2bJnI+V6zZs1C3759MXLkSIYJxVNcXIyEhARoaWmhSZMmItfi4uKgq6uLevXqMUonPmmZB/Dpw4MvlR8TIOlHNHyuT58+mDp1KsaNGycyfujQIXh7eyMsLIxNsGqKiYnBoEGDUFBQgPz8fNSrVw+vX7+GiooKtLW1qZhFyH+MinGEEEIQGxuLdu3asY5RpdevX8PBwQEdOnRA69atK2xJ4EvjA2l5AZyfn4/FixcjMDAQOTk5Fa7z4Y1VdnY2HB0dce7cuUqv82EOAPDw4UPhVtXw8HAUFRWhW7du6NmzJ3r16gVra2vWEcUSGhqKQ4cO4dixYygtLcXIkSNhZ2eH3r17V/pGXlJJyzwqk52dLdzmzVf37t3D3r17eb/tnm/zePLkyTev82X7qoqKCuLi4tC8eXOR8UePHqFdu3YoKChglKx6evXqBRMTE+zatQsaGhqIi4uDgoICJkyYAGdnZ14U3QnhMyrGEUKIjHr79i0OHjyIvXv3IjY2lhdFh5CQEEycOBHv3r2rcI1Pn6pLywvg2bNnIzQ0FCtXroS9vT127NiB58+fY/fu3fDw8ICdnR3riFWys7NDeno6tmzZAhsbG5w4cQIvX77E6tWrsXHjRgwePJh1xBpJSEjAoUOHsG3bNt50U23atClycnIwYMAA2NnZYciQIVBSUmIdq9qkZR6f4zgO586dE66a+/DhA+tI1ZaXl4fDhw9j7969uHv3Ltq0aYPY2FjWsapNWubBZy1atMBPP/2EjRs3ioy7urrir7/+QlJSEqNk1aOhoYG///4bLVq0gIaGBiIjI2Fqaoq///4bDg4OePjwIeuI3zR//vxKxwUCAZSUlGBsbIxhw4bxZuUokT38ONGXEELIv+bq1avw9fXF8ePHoa+vj1GjRsHHx4d1LLE4OTlh4sSJWLp0KW+aTlQmNjYWu3fvhry8POTl5fHhwwcYGhrizz//hIODA2+KcadPn0ZAQAB69eqFyZMno3v37jA2Noa+vj4OHjzIi2Lc1atXcerUKVhbW0NOTg76+vro168f6tati3Xr1vGqGPfy5UuEhYUhLCwMoaGhePToERQVFdG9e3fW0cTi7u6On3/+GZqamqyjfBdpmQcApKamwtfXF/7+/nj//j0GDx6MI0eOsI5VLeHh4di7dy+OHTuGoqIiLFy4EIcOHeLd2aPSMI+AgIBvXre3t/9BSb7P5s2bMWrUKFy4cAGdOnUC8KlTfUpKCo4dO8Y4nfgUFBSExxk0bNgQGRkZMDU1hbq6OjIyMhinq1pMTAyio6NRWlqKFi1agOM4JCcnQ15eHi1btsTOnTvh6uqKiIgImJmZsY5LSAVUjCOEEBnw7Nkz+Pn5wdfXF/n5+RgzZgyKi4tx7NgxXr1AycnJgYuLC68LcQD/XwCXy83NFR6mXLduXeTm5gIAunXrJnLIuCTLz8+HtrY2AKBevXrIzs6GiYkJzM3NER0dzThd1YKCgoTbU5OSklCrVi106NABY8aMgY2NDbp06QJFRUXWMcUyffp01hH+FXyfR1FREYKDg+Hj44Nbt26hX79+yMzMRGxsLFq3bs06nlgyMzOxb98+4d+8cePGITw8HJ07d4a9vT1vCljSMo9yzs7OIj8XFxejoKAAtWvXhoqKCm+KcYMGDUJycjJ27dqFxMREcByHYcOG4ddff4Wuri7reGKzsLDA3bt3YWJiAhsbG7i7u+P169fYv38/zM3NWcerUvmqt3379gnPqM3Ly8OUKVPQrVs3TJs2DePHj4eLiwsuXLjAOC0hFVExjhBCpNygQYMQERGBn376Cdu2bYOtrS3k5eXh5eXFOlq1jRw5EqGhoTAyMmId5bvw/QVwOUNDQ6Snp0NfXx9mZmYIDAxEhw4dcPr0aWhoaLCOJ5YWLVogKSkJzZo1Q7t27bB79240a9YMXl5eaNy4Met4VbKzs4OVlRVGjBgBGxsbdO3aFcrKyqxj1didO3cQFBRUaTMNSexm+zV8ncesWbNw5MgRtGjRAhMmTMCxY8dQv359KCgo8OqsOwMDA/z888/YsWMH+vXrx6vsn5OWeZT7559/KowlJydj5syZWLhwIYNE1VdcXIz+/ftj9+7dWLNmDes432Xt2rXCYz9WrVoFBwcHzJw5E8bGxti3bx/jdFVbv349Ll26JNIsqm7duli+fDn69+8PZ2dnuLu7o3///gxTEvJ1VIwjhBApd/HiRTg5OWHmzJkVDhvmGxMTE/z222+IiIiAubl5hQYOfOlCyvcXwOUcHR0RFxeHnj174rfffsPgwYOxbds2lJSUYNOmTazjiWXevHnIzMwEACxbtgwDBgzAwYMHUbt2bfj5+bENJ4Z//vkHqqqqrGP8K44cOQJ7e3v0798fly5dQv/+/ZGcnIysrCyMGDGCdTyx8Xke3t7eWLx4Mdzc3KCmpsY6To3p6+sjIiICenp60NfXR8uWLVlHqhFpmce3NG/eHB4eHpgwYYLEn1EGfFrZfv/+fV53qy5nZWUl/F5LSwtnz55lmKb63r59i1evXlXY4ZGdnY28vDwAn87F+/IDEUIkBRXjCCFEyl2/fh2+vr6wsrJCy5YtMXHiRIwdO5Z1rBrx8fFBnTp1EB4ejvDwcJFrAoGAN8U4vr8ALufi4iL83sbGBg8fPsTdu3dhZGSEtm3bMkwmvs/PtbOwsEB6ejoePnwIPT09NGjQgGEy8ZQX4p4/f45jx47h0aNHEAgEaN68OUaNGgUdHR3GCcW3du1abN68GbNnz4aamhq2bt0KAwMDzJgxgxerFMvxeR4BAQHYt28fGjdujMGDB2PixImwtbVlHavakpKScOPGDezduxfW1tYwMTHBhAkTAIBXRRRpmUdV5OXl8eLFC9YxxGZvb4+9e/fCw8ODdZR/RXZ2NpKSkiAQCNCiRQte/O0DPm1TnTx5MjZu3Ahra2sIBALcvn0bCxYswPDhwwEAt2/fhomJCdughHwFdVMlhBAZUVBQgCNHjsDX1xe3b99GaWkpNm3ahMmTJ/N6BQQhsm7nzp2YP38+Pn78CHV1dXAch7y8PNSuXRubNm3CrFmzWEcUi6qqKh48eIBmzZqhQYMGCA0Nhbm5ORITE9G7d2/hCkZJJw3zSE9Px759++Dn54eCggLk5ubi6NGjGD16NOto1fb+/XscPnwYvr6++Pvvv9GzZ0+MHz8ew4cPh5aWFut4YpOGeYSEhIj8zHEcMjMzsX37dujq6uLcuXOMklXP3LlzERAQAGNjY1hZWVVYncyXleH5+fmYO3cu9u/fL+xGLy8vD3t7e2zbtg0qKiqME37b+/fv4eLigoCAAGHH8Fq1asHBwQGbN2+GqqqqsNNwu3bt2AUl5CuoGEcIIVIuIyMDurq6Ip+iJyUlYe/evdi/fz/evHmDfv36VXiRTIi0mj9/vtj3SvqbqjNnzmDYsGGYN28eXF1dhSuvMjMzsX79emzbtg2nTp3CoEGDGCetmq6uLs6ePQtzc3O0bdsWbm5uGDduHCIjI2Fra4u3b9+yjigWaZkH8KlYcuHCBfj6+iIkJAQNGjTAyJEj4enpyTpajSQmJgr/9uXm5qK4uJh1pBrh6zy+PPNOIBBAS0sLvXv3xsaNGyV+5Wg5Gxubr14TCAS4evXqD0xTczNmzMDly5exfft2dO3aFQAQEREBJycn9OvXD7t27WKcUDzv379HamoqOI6DkZER6tSpwzoSIWKhYhwhhEg5eXl5ZGZmCjtGfq60tBSnT58WvtGSRPPnz8eqVaugqqpaZRFF0gsnRDJ8643U5/jwpqpnz57o3r07Vq9eXen1JUuW4Pr16xW2dUui8ePHw8rKCvPnz8eaNWuwdetWDBs2DJcuXYKlpaVENz74nLTM40u5ubnCbaxxcXGs43yXkpIShISEYOTIkayjfBdpmQdho0GDBggODkavXr1ExkNDQzFmzBhkZ2ezCUaIjKBiHCGESDk5OTlkZWVVWozjAxsbG5w4cQIaGhpS82k0If+WunXr4s6dO2jRokWl15OSkmBlZSVsGCLJcnNzUVRUhCZNmqCsrAwbNmxAREQEjI2NsXTpUmhqarKOKBZpmQefvXjxAps2bYK7u7tIp0Xg06Hvq1evxoIFC9CwYUNGCcUjLfOQVo8fP0ZKSgp69OgBZWVlcBzHq7P8VFRUEBUVBVNTU5HxBw8eoEOHDsjPz2eU7OtGjhwJPz8/1K1bt8oiNF8/+CCyg4pxhBAi5fhejCPkR+Drm6o6deogPj4ehoaGlV5PTU1FmzZt8P79+x+cjPCROFu4BQIBNm7c+APS1NyCBQuQl5cHb2/vSq//+uuvUFdXxx9//PGDk1WPNMxDmo4FKJeTk4MxY8YgNDQUAoEAycnJMDQ0xJQpU6ChoSHxj49yffr0Qf369REQEAAlJSUAQGFhIRwcHJCbm4vLly8zTliRo6MjPD09oaamBkdHx2/ey6fu9EQ2UTdVQgiRAeVdSL+FD51IX758+dUVAPHx8WjTps0PTiS+6pyxJMn/F3l5eWLf++VKDkn0tTdVU6dO5cWbqlatWuHUqVMinW0/d/LkSbRq1eoHp6q5srIyPH78GK9evUJZWZnItR49ejBKVX18nUdMTAzrCP+K8+fPw8vL66vX7e3tMW3aNIkuYgHSMY8vf6eioqJQWloqXM376NEjyMvLo3379izi1YiLiwsUFBSQkZEhsqps7NixcHFxkfi/G+W2bt0KW1tbNG3aFG3btoVAIEBsbCyUlJRw4cIF1vEq9XmBjYpthO9oZRwhhEg5OTk5NG3aFPLy8l+9RyAQIDU19QemqhltbW34+Phg6NChIuMbNmzA0qVLUVhYyChZ1QwMDMS6T9L/L+Tk5KpcMVa+qqy8O5sks7e3x6tXr+Dj4wNTU1PExcXB0NAQFy9ehIuLCx48eMA64jf5+/tj5syZ2LBhA6ZPn45atT59zlpSUoLdu3dj4cKF2LlzJyZNmsQ2qBhu3bqF8ePH48mTJ/jy5Slffp8A6ZkHn6mqqiIxMRF6enqVXi8vokjiNrzPScs8ym3atAlhYWHw9/cXbtf+559/4OjoiO7du8PV1ZVxQvE0atQIFy5cQNu2baGmpib8u5GWlgZzc3NerUQuLCzEgQMH8PDhQ3AcBzMzM9jZ2UFZWZl1NLGUlJQgLCwMKSkpGD9+PNTU1PDixQvUrVuXGjkQiUcr4wghRAbcvXtXKrapLl68GGPHjhW2rc/NzcXEiRPx4MEDHD16lHW8b0pLS2Md4V8RGhrKOsK/6uLFi7hw4QKaNm0qMt68eXM8efKEUSrxOTg44N69e5gzZw5+++03GBkZAQBSUlLw/v17ODk58aIQB3zacmdlZYUzZ86gcePGvNgmXBk+zyMsLKzCYe5fmjVrFnbu3PljAtWQsrIy0tPTv1rESk9P50WxQVrmUW7jxo24ePGiyLmJmpqaWL16Nfr378+bYlx+fj5UVFQqjL9+/RqKiooMEtWcsrIypk2bxjpGjTx58gS2trbIyMjAhw8f0K9fP6ipqeHPP/9EUVHRN1eVEiIJqBhHCCGEN1xdXdG3b19MmDABbdq0QW5uLjp16oT4+HheHmD98eNHpKWlwcjISLiiSdL17NmTdYR/lTS8qdqwYQNGjx6Nw4cPIzk5GcCnrZC//PILOnXqxDid+JKTkxEcHAxjY2PWUb4Ln+cxbNgwhIaGwtLSstLrs2fPxsGDByW+GNexY0fs37//q1uCAwIC0KFDhx+cqvqkZR7l8vLy8PLlywpb51+9esWLJjPlevTogYCAAKxatQrApxWvZWVlWL9+vdjdulkJCQkR+94vdyFIGmdnZ1hZWSEuLg7169cXjo8YMQJTp05lmIwQMXGEEEKkmkAg4F6+fPnNew4cOPCD0ny/vLw8buzYsVytWrW4WrVqcX5+fqwjVVt+fj43efJkTl5enpOXl+dSUlI4juO4uXPncuvWrWOcrnquXbvG2dnZcZ07d+aePXvGcRzHBQQEcNevX2ecTDyDBg3ilixZwnEcx9WpU4dLTU3lSktLuZ9//pkbNWoU43RVW7FiBZefn886xr/CxsaGO3fuHOsY343P85g/fz6nra3NJSUlVbg2e/Zsrk6dOty1a9cYJKueq1evcvLy8pyrqyuXlZUlHM/KyuLmz5/PycvLc1euXGGYUDzSMo9yEydO5PT09LigoCDu6dOn3NOnT7mgoCCuWbNmnL29Pet4Ynvw4AGnpaXF2dracrVr1+ZGjx7NmZqacg0bNuQeP37MOt43CQQCsb7k5ORYR61S/fr1uYcPH3Ic9+nvd/lrqbS0NE5ZWZllNELEQsU4QgiRci1btuRevHjx1esHDx7kFBQUfmCimouIiOCaNWvGtW/fnktISOD27NnDqampcT///DOXm5vLOp7YnJycuPbt23PXr1/nVFVVhS8gT506xbVr145xOvEFBwdzysrK3NSpUzlFRUXhPHbs2MENHDiQcTrx8PlNFcdxnJycXJXFdr44fvw4Z2Zmxu3bt4+7e/cuFxcXJ/LFF3yfh6OjI6enpycsrnPcpw8KVFVVubCwMIbJqsfLy4tTVFTk5OTkOA0NDU5TU5OTk5PjFBUVuZ07d7KOJzZpmQfHffogaubMmcL5yMnJcbVr1+ZmzpzJvX//nnW8asnMzOTc3d25wYMHcwMHDuR+//33b77WIv8+TU1N7sGDBxzHiRbjrl+/zmlra7OMRohYqIEDIYRIuV69eqGwsBBXr16FqqqqyLUjR47A3t4ef/zxx1e7MUoSRUVFuLi4YNWqVVBQUADw6WysiRMnIiMjA8+ePWOcUDz6+vo4evQoOnXqJHL48+PHj2FpaVmtjqUsWVhYwMXFBfb29iLziI2Nha2tLbKyslhHFEtWVhZ27dqFqKgolJWVwdLSErNnz0bjxo1ZR6uSnJwcsrKypOJMSDk5uQpjAoGAVw1BAP7Po6ysDKNHj0ZiYiKuX7+ONWvWwNvbG3/99ZfEb8ErV1xcDAUFBTx//hyBgYF4/PgxOI6DiYkJRo8ejaZNm+L+/fto3bo166jfJC3z+FJ+fj5SUlLAcRyMjY0rvDYhP0ZaWprYzaUk0dixY6Gurg5vb2+oqakhPj4eWlpaGDZsGPT09KjbKpF4VIwjhBAp9/79e/Tq1QsaGho4d+6csIgVGBiICRMmYO3atViwYAHjlOIJDw+v9MyysrIyrFmzBkuXLmWQqvpUVFRw//59GBoaihSx4uLi0KNHD7x9+5Z1RLGoqKggISEBzZo1E5lHamoqzMzMUFRUxDqi1JOTk8PLly+hpaXFOsp3q6phhr6+/g9K8n2kYR4fP37E4MGDERcXh/z8fISEhKBPnz6sY4lt9OjRCAoK+mrzjPv376NPnz54+fLlD05WPdIyD2lz7dq1b17/2hl/kkZeXh49evTAlClTMHr0aCgpKbGOVC0vXryAjY0N5OXlkZycDCsrKyQnJ6NBgwa4du2aVHxIRaQbFeMIIUQGZGdno0ePHjAzM0NwcDCCg4NhZ2eHVatWYfHixazjyZyePXti9OjRmDt3rvDTXAMDA8yZMwePHz/G+fPnWUcUi5GREXbv3o2+ffuKFOMCAgLg4eGBhIQE1hGrdP78edSpUwfdunUDAOzYsQN79uyBmZkZduzYIdL1TxLJycmhdevWVTYAiY6O/kGJCJ95enoKv3/37h1WrVqFAQMGVCjEOTk5/eho1aKrq4uBAwfC29u7wrUHDx6gd+/e6NGjB4KCghikE5+0zONzd+7cQVBQEDIyMvDx40eRa8ePH2eUqnq+tvq1nKSvfi13//59+Pr64uDBg/jw4QPGjh2LKVOm8KopSGFhIQ4fPozo6GjhynY7OztedRkmsouKcYQQIiOePn2Kbt26wdjYGBEREXB3d8fvv//OOla15efnIzw8vNIX8pL+BrHczZs3YWtrCzs7O/j5+WHGjBl48OABIiMjER4ejvbt27OOKJY///wT/v7+8PX1Rb9+/XD27Fk8efIELi4ucHd3x5w5c1hHrJK5uTn++OMPDBo0CPfu3YOVlRVcXV1x9epVmJqaSvw2Fzk5Obi6uqJOnTrfvG/ZsmU/KNH3SUlJwZYtW5CYmAiBQABTU1M4OzvDyMiIdbRq4es8xNmyJhAIkJqa+gPS1FxiYqJwxY+Hh4fIuI2NDbp06YKgoCDIy8szTFk1aZlHufKjMfr3749Lly6hf//+SE5ORlZWFkaMGCHxz7flvly9XlxcjJiYGCxduhRr1qzh1SpSACgpKcHp06fh5+eHc+fOoXnz5pgyZQomTpwoFauuCZFYTE6qI4QQ8sN8fnD40aNHOUVFRW7s2LG8OFQ8IyND5Ofo6GiuUaNGnJqaGlerVi1OS0uLEwgEnKqqKmdgYMAoZc3Ex8dz9vb2XKtWrThTU1POzs6Oi4+PZx2r2v73v/9xysrKwg5sSkpKwu6kfKCqqsqlpaVxHMdxy5YtE3ZQjYqK4ho2bMgwmXjE6ZbMF+fPn+dq167NdejQgXNxceHmzZvHdejQgVNUVOQuXrzIOp7YpGUefHf79m1OTU2N+/PPPzmO47jExESuUaNG3NChQ7mSkhLG6cQnLfPgOI4zNzfntm/fznHc/x24X1ZWxk2bNo1zd3dnnO77hYeHc5aWlqxj1FhRURG3adMmTlFRkRMIBFzt2rW5iRMnSmxjisaNG3Pjxo3jdu/eXWkHaEIkHa2MI4QQKScnJydyeHj50/6X30vitorVq1cjMzMT27dvh0AgQK9evWBkZARvb280bdoUcXFxKCwsxIQJE+Di4oKRI0eyjiyTCgoKkJCQgLKyMpiZmVW5SkuS1KtXDxERETAzM0O3bt1gb2+P6dOnIz09HWZmZigoKGAd8Zvk5eWRmZkpFWfjWFhYYMCAASIrgADAzc0NFy9e5M1WW2mZhzS4evUqfvrpJyxatAh79uyBpaUljh8/Ljw7lS+kZR6qqqp48OABmjVrhgYNGiA0NBTm5uZITExE7969kZmZyTrid0lMTIS1tTXev3/POkq13L17F76+vjhy5AhUVVXh4OCAKVOm4MWLF3B3d8e7d+9w+/Zt1jErOHz4MMLDwxEWFoZHjx6hYcOG6NmzJ3r16oWePXvC1NSUdURCvomKcYQQIuWqOky8nCQeKl5YWIg5c+YgOzsbISEh0NDQwK1bt9CyZUs0bdoUkZGR0NXVxa1btzBp0iQ8fPiQdeSvqk6H1Lp16/6HScjnhg4dio8fP6Jr165YtWoV0tLSoKOjg4sXL2LOnDl49OgR64jfJE3dVJWUlHDv3j00b95cZPzRo0do06YNbxqC8HUeR44cwS+//CLWvU+fPkVGRga6du36H6f6fidPnsTPP/+M/v374+TJk7wrYJWThnno6uri7NmzMDc3R9u2beHm5oZx48YhMjIStra2vGleFB8fL/Izx3HIzMyEh4cHiouLcePGDUbJqmfTpk3Yt28fkpKSMGjQIEydOhWDBg0SORPv8ePHaNmyJUpKShgmrdrLly8RGhqKv/76C0ePHkVZWZlEfshMyOe+fdovIYQQ3pPEIpu4lJWVsXfvXhw5cgQAoKCgIHyRqK2tjSdPnkBXVxcaGhrIyMhgGbVKGhoaX+2I9yVJfgFZndWHfDiMe/v27Zg1axaCg4Oxa9cu6OjoAADOnTsHW1tbxumqlpaWJjVn+mhpaSE2NrZCESs2NpZXxUa+zmPXrl1Yvnw5HB0dMXTo0AqrSt6+fYsbN27gwIEDuHz5Mvbu3csoadU0NTUrPN9ev34dDRs2FBnLzc39kbGqTVrmUa579+64dOkSzM3NMWbMGDg7O+Pq1au4dOkSr85Za9euncjugnKdOnWCr68vo1TVt2vXLkyePBmOjo5o1KhRpffo6elJ9GP9/fv3iIiIEK6Qi4mJgbm5OXr27Mk6GiFVomIcIYRIsYyMDOjp6Yl9//Pnz4XFCElSvlrDwsICd+7cgYmJCXr27InffvsNM2fOhL+/P8zNzRmn/LbQ0FDh9+np6XBzc8OkSZPQuXNnAEBkZCT8/f2xbt06VhHFoq6uLvye4zicOHEC6urqsLKyAgBERUXhzZs3vNkyrKenh7/++qvC+ObNmxmkqT5/f3+x7nN3d/+Pk3y/adOmYfr06UhNTUWXLl0gEAgQERGBP/74A66urqzjiY2v8wgPD8dff/2Fbdu24X//+x9UVVXRsGFDKCkp4Z9//kFWVha0tLTg6OiI+/fvS3RhccuWLawj/CukZR7ltm/fLlwZ+ttvv0FBQQEREREYOXIkli5dyjid+NLS0kR+lpOTg5aWFpSUlBglqpnk5OQq76lduzYcHBx+QJrq69ixI+Lj49G6dWv06tUL//vf/9C9e3doaGiwjkaIWGibKiGESLGGDRti6NChmDZt2ldb1b99+xaBgYHYunUrZsyYgblz5/7glOK7e/cu8vLy0Lt3b+Tm5mLSpEkICwuDkZER/Pz80LZtW9YRxdKnTx9MnToV48aNExk/dOgQvL29ERYWxiZYNS1evBi5ubnw8vISdvMrLS3FrFmzULduXaxfv55xwqpVtaKyOsVsFuTk5NCkSRNoa2tXWKVRTiAQ8OKcMo7jsGXLFmzcuBEvXrwAADRp0gQLFy6Ek5OT2CtLWZOGeeTk5CAiIgLp6ekoLCxEgwYNYGFhAQsLC5EtbITIkqtXr2LOnDm4detWheMk3r59iy5dusDLywvdu3dnlLBmCgoKKu1Q36ZNG0aJxFOvXj0IBAL07dsXvXr1Qq9eveicOMIrVIwjhBAplpubi7Vr18LX1xcKCgqwsrJCkyZNhCsdEhIS8ODBA1hZWWHJkiUYOHAg68gyQUVFBXFxcZWeKdWuXTuJbxpQTktLCxEREWjRooXIeFJSErp06YKcnBxGycRX3uDkayR5yzAADBo0CKGhoRgwYAAmT56MwYMHCwujfFJSUoKDBw9iwIABaNSoEd69ewcAUFNTY5yseqRlHrKkvLkR3/FhHl87O1UgEEBRURG1a9f+wYmqZ+jQobCxsYGLi0ul1z09PREaGooTJ0784GQ1k52djUmTJuH8+fOVXpf0v3/Ap/P7wsLCEB4ejuvXr0NOTg49e/aEjY0Nfv31V9bxCPkm+miLEEKkWL169bBhwwa8ePECu3btgomJCV6/fi3cmmBnZ4eoqCjcuHGDCnE/kK6uLry8vCqM7969G7q6ugwS1UxJSQkSExMrjCcmJqKsrIxBouqLiYlBdHS08Ovvv/+Gl5cXTExMEBQUxDpelc6ePYvU1FR07NgRCxcuRNOmTbF48WIkJSWxjlYttWrVwsyZM/HhwwcAn4pXfCxgScs8+MzU1BSHDh2qsMrnS8nJyZg5cyb++OOPH5SseqRlHp/T0NCApqZmhS8NDQ0oKytDX18fy5Ytk9i/H3Fxcd88S7R///6Iior6gYm+z7x58/DmzRvcunULysrKOH/+PPz9/dG8eXOEhISwjieWNm3awMnJCceOHcO5c+cwcOBAHD9+HLNnz2YdjZAq0ZlxhBAiA5SUlDBy5EjenOP1NTk5OXB3d0doaChevXpV4QU7Xw6x3rx5M0aNGoULFy6gU6dOAIBbt24hJSUFx44dY5xOfI6Ojpg8eTIeP34sMg8PDw84OjoyTieeyrY2l68gXb9+PS8eM40bN8Zvv/2G3377DdeuXcO+fftgbW0Nc3NzXL58GcrKyqwjiqVjx46IiYnhddMZQHrmwVc7duzA4sWLMXv2bPTv37/SFeERERFISEjAnDlzMGvWLNaRKyUt8/icn58ffv/9d0yaNAkdOnQAx3G4c+cO/P39sWTJEmRnZ2PDhg1QVFTE//73P9ZxK3j58uU3u9jWqlUL2dnZPzDR97l69SpOnToFa2tryMnJQV9fH/369UPdunWxbt06DB48mHXEb4qJiUFYWBjCwsJw/fp1vHv3Dm3btoWzszNsbGxYxyOkSlSMI4QQwhsTJkxASkoKpkyZgoYNG0r8lpyvGTRoEJKTk7Fr1y4kJiaC4zgMGzYMv/76K69Wxm3YsAGNGjXC5s2bkZmZCeBTYWjRokUSfVC9OExMTHDnzh3WMarN2toa6enpSEhIQExMDIqLi3lTjJs1axZcXV3x7NkztG/fHqqqqiLXJf38onLSMg++6t27N+7cuYObN2/i6NGjOHToUIWz7+zt7TFhwgSJPuhdWubxOX9/f2zcuBFjxowRjg0dOhTm5ubYvXs3rly5Aj09PaxZs0Yii3E6Ojq4d+8ejI2NK70eHx+Pxo0b/+BUNZefny9sxFKvXj1kZ2fDxMQE5ubmvDhn1NraGhYWFujZsyemTZuGHj16VDjLjxBJRmfGEUII4Q01NTVERETwplGDLCk/C4hvL4S/PMOI4zhkZmZi+fLlePjwIWJjY9kEq6bIyEj4+voiMDAQJiYmcHR0xPjx43nzJh1ApY0BBAKB8CwsPpxfBEjPPAj5t33tvNTk5GS0bdsWBQUFSEtLQ6tWrSTy7NS5c+ciLCwMd+7cqdA5tbCwEB06dICNjQ08PT0ZJawea2trrF69GgMGDMDw4cOFK+I8PT0RHByMlJQU1hG/KS8vj3evOQj5HK2MI4QQwhstW7ZEYWEh6xikEnx9QayhoVFhhSXHcdDV1cWRI0cYpRLfn3/+iX379iEnJwd2dnaIiIiAubk561g1kpaWxjrCv0Ja5kHIv61p06bYu3cvPDw8RMb37t0rXBWek5MDTU1NFvGqtGTJEhw/fhwmJiaYM2cOWrRoAYFAgMTEROzYsQOlpaX4/fffWccU27x584Sr2pctW4YBAwbgwIEDqF27Nvz9/RmnqxpfX3cQUo5WxhFCCOGNO3fuwM3NDe7u7mjdunWFs1vohRmprvDwcJGf5eTkoKWlBWNjY9SqJfmfWcrJyUFPTw8//fTTNzsRbtq06QemItLg2bNnCAkJQUZGRoUmAvT7RGoiJCQEP//8M1q2bAlra2sIBALcuXMHDx8+RHBwMH766Sfs2rULycnJEvs79uTJE8ycORMXLlxA+dtogUCAAQMGYOfOnWjWrBnbgDXEcRwKCwvx8OFD6OnpoUGDBqwjESL1qBhHCCGEN5KTkzFu3DjExMSIjNP2L1IdlpaWuHLlCjQ1NbFy5UosWLAAKioqrGPVSK9evao8O1EgEODq1as/KNH32b9/P7y8vJCWlobIyEjo6+tjy5YtMDAwwLBhw1jHExvf53HlyhUMHToUBgYGSEpKQuvWrZGeng6O42Bpacmb3ycieZ48eQIvLy8kJSWB4zi0bNkSM2bM4F0R659//sHjx4/BcRyaN28usav5qrJ3715s3rwZycnJAIDmzZtj3rx5mDp1KuNkhEg/KsYRQogMSUlJwZYtW5CYmAiBQABTU1M4OzvDyMiIdTSxdOjQAbVq1YKzs3OlDRx69uzJKBnhE2VlZSQnJ6Np06aQl5dHVlYWtLS0WMeSebt27YK7uzvmzZuHNWvW4P79+zA0NISfnx/8/f0RGhrKOqJYpGEeHTp0gK2tLVauXAk1NTXExcVBW1sbdnZ2sLW1xcyZM1lHJDxTXFyM/v37Y/fu3TAxMWEdhwBYunQpNm/ejLlz56Jz584APp0/un37djg7O2P16tWMExIi3agYRwghMuLChQsYOnQo2rVrh65du4LjONy8eRNxcXE4ffo0+vXrxzpilVRUVBATE4MWLVqwjkJ4rHPnzqhTpw66deuGFStWYMGCBahTp06l97q7u//gdLLLzMwMa9euxfDhw4UFIENDQ9y/fx+9evXC69evWUcUizTMQ01NDbGxsTAyMoKmpiYiIiLQqlUrxMXFYdiwYUhPT2cdkfCQlpYWbt68WaGBA2GjQYMG2LZtG8aNGycyfvjwYcydO1fin6vCwsLQq1cv1jEIqTHJPwyFEELIv8LNzQ0uLi4VDk52c3PD4sWLeVGMs7KywtOnT6WiGBccHIzAwMBKz2OKjo5mlKr6wsPDsWHDBpHVlgsXLkT37t1ZR/sqPz8/LFu2DH/99RcEAgHOnTtX6flwAoFAootxHh4emDt3LlRVVau89++//8br168xePDgH5CsZtLS0mBhYVFhXFFREfn5+QwS1Yw0zENVVRUfPnwAADRp0gQpKSlo1aoVAEj8G/SvKSwsRHFxscgYH88Z5fM87O3tK23gQNgoLS2FlZVVhfH27dujpKSEQaLqsbW1hY6ODhwdHeHg4CBsAkIIX1AxjhBCZERiYiICAwMrjE+ePBlbtmz58YFqYO7cuXB2dsbChQthbm5eoYFDmzZtGCWrHk9PT/z+++9wcHDAqVOn4OjoiJSUFNy5cwezZ89mHU9sBw4cgKOjI0aOHAknJyfhass+ffrAz88P48ePZx2xUi1atBB2SpWTk8OVK1egra3NOFX1JSQkQF9fHz///DOGDh0KKysr4XbbkpISJCQkICIiAgcOHEBmZiYCAgIYJ/42AwMDxMbGQl9fX2T83LlzMDMzY5Sq+qRhHp06dcKNGzdgZmaGwYMHw9XVFffu3cPx48fRqVMn1vHEVlBQgEWLFiEwMBA5OTkVrvPlnFFpmcfHjx/h4+ODS5cuwcrKqsIHCZLatEFaTZgwAbt27arw7+7t7Q07OztGqcT34sULHDhwAH5+fli+fDn69OmDKVOmYPjw4d9saESIpKBtqoQQIiN0dXWxadMm/PzzzyLjgYGBWLBgATIyMhglE5+cnFyFMYFAwLsGDi1btsSyZcswbtw4kW1s7u7uyM3Nxfbt21lHFIupqSmmT58OFxcXkfFNmzZhz549SExMZJRMdsTHx2PHjh0ICgrC27dvIS8vD0VFRRQUFAAALCwsMH36dDg4OEBRUZFx2m/bt28fli5dio0bN2LKlCnw8fFBSkoK1q1bBx8fH/zyyy+sI4pFGuaRmpqK9+/fo02bNigoKMCCBQsQEREBY2NjbN68uUKhUVLNnj0boaGhWLlyJezt7bFjxw48f/4cu3fvhoeHBy8KDoD0zMPGxuar1/jUaEZazJ07FwEBAdDV1RUW2W/duoWnT5/C3t5e5ANPSS+UxsbGwtfXF4cPH0ZZWRns7OwwZcoUtG3blnU0Qr6KinGEECIjVq5cic2bN8PNzQ1dunSBQCBAREQE/vjjD7i6umLJkiWsI1bpyZMn37zOlzeIKioqSExMhL6+PrS1tXHp0iW0bdsWycnJ6NSpU6UrHySRoqIiHjx4AGNjY5Hxx48fo3Xr1igqKmKUTPZwHIf4+Hikp6ejsLAQDRo0QLt27dCgQQPW0aplz549WL16NZ4+fQoA0NHRwfLlyzFlyhTGyapHWubBd3p6eggICECvXr1Qt25dREdHw9jYGPv378fhw4dx9uxZ1hHFIi3zIJLlW8XRz/GlUPrixQt4e3vDw8MDtWrVQlFRETp37gwvLy/hNntCJAltUyWEEBmxdOlSqKmpYePGjfjtt98AfDoLaPny5XBycmKcTjx8KbZVpVGjRsjJyYG+vj709fVx69YttG3bFmlpaeDTZ2S6urq4cuVKhWLclStX6OyWH0wgEKBt27a8XwUwbdo0TJs2Da9fv0ZZWRkvtw8D0jMPAHj//j3KyspExvhyRllubi4MDAwAfMqcm5sLAOjWrRuvOsJKyzzKPX78GCkpKejRoweUlZWFq9vJj8WHzs5VKS4uxqlTp+Dr6yvc/rx9+3aMGzcOubm5WLx4MX7++WckJCSwjkpIBVSMI4QQGVBSUoKDBw9i3LhxcHFxwbt37wB86phHfrzevXvj9OnTsLS0xJQpU+Di4oLg4GDcvXsXI0eOZB1PbK6urnByckJsbKzIaks/Pz9s3bqVdTzCY3xb0fc1fJ1HWloa5syZg7CwMJEVrnw7EsDQ0BDp6enQ19eHmZkZAgMD0aFDB5w+fRoaGhqs44lNWuaRk5ODMWPGIDQ0FAKBAMnJyTA0NMTUqVOhoaGBjRs3so5IeGTu3Lk4fPgwgE/n3/35559o3bq18Lqqqio8PDzQrFkzRgkJ+TbapkoIITLi862RhK2ysjKUlZUJO3gGBgYKz2P69ddfeXXw8IkTJ7Bx40bh+XDl3VSHDRvGOBnhI2npMsz3eXTp0gUA4OzsjIYNG1ZYtdSzZ08Wsapt8+bNkJeXh5OTE0JDQzF48GCUlpaipKQEmzZtgrOzM+uIYpGWedjb2+PVq1fw8fGBqamp8LzUixcvwsXFBQ8ePGAdkfBInz59MHXqVIwaNeqrr5tKSkpw48YN3jxnEdlCxThCCJERNjY2cHZ2xvDhw1lHIYSQCj7vMrxnz54KXYbXrFnDOqJYpGEederUQVRUFFq0aME6yr8qIyMDd+/ehZGREa+3dPN1Ho0aNcKFCxfQtm1bkeZFaWlpMDc3x/v371lHJDxy7do1dOnSRfjBZrmSkhLcvHkTPXr0YJSMEPHQNlVCCJERs2bNgqurK549e4b27dtDVVVV5HqbNm0YJZNN169fx+7du5GSkoLg4GDo6Ohg//79MDAwQLdu3VjHE4uhoSHu3LmD+vXri4y/efMGlpaWSE1NZZTs2zQ1NcU+n6j8bCby39u5cye8vb0xbtw4+Pv7Y9GiRSJdhvlCGuZhbW2Np0+fSl0xTk9PD3p6eqxjfDe+ziM/Px8qKioVxl+/fi3x3Z6J5LGxsUFmZmaFMznfvn0LGxsb3mynJ7KLinGEECIjxo4dCwAizRoEAgHvzgACgKioKCQmJkIgEMDU1BSWlpasI1XLsWPHMHHiRNjZ2SEmJgYfPnwAALx79w5r167lTWe89PT0Sn9vPnz4gOfPnzNIJJ4tW7awjvCf4fPB6BkZGcLtkcrKysKzLSdOnIhOnTph+/btLOOJTRrm4ePjg19//RXPnz9H69atoaCgIHJdkj+88fT0FPteSW5e5OnpienTp0NJSanKOUnyPD7Xo0cPBAQEYNWqVQA+vQYpKyvD+vXrxe7sSUi5r/19y8nJqfCBMyGSiIpxhBAiI9LS0lhH+G6vXr3CL7/8grCwMGhoaIDjOOEnoEeOHIGWlhbriGJZvXo1vLy8YG9vjyNHjgjHu3TpgpUrVzJMJp6QkBDh9xcuXIC6urrw59LSUly5ckWiD0x2cHBgHeFfl5OTg7Fjx+Lq1au8PRhdWroMS8M8srOzkZKSAkdHR+EYXz682bx5s8jP2dnZKCgoEDY6ePPmDVRUVKCtrS3RRazNmzfDzs4OSkpKFeb0OYFAINHz+Nz69evRq1cv3L17Fx8/fsSiRYvw4MED5Obm4saNG6zjEZ4ob3QlEAgwadIkkVWVpaWliI+PF34gQogko2IcIYTICGlo3DB37lzk5eXhwYMHMDU1BQAkJCTAwcEBTk5Owq5aki4pKanSs0zq1q2LN2/e/PhA1VR+7qBAIKhQ2FJQUECzZs14Ufwpl5KSgn379iElJQVbt26FtrY2zp8/D11dXbRq1Yp1PLG4uLigVq1ayMjIED42gE8rYl1cXHjx/yEtXYalYR6TJ0+GhYUFDh8+XGkDB0n2+QdPhw4dws6dO7F3717hltukpCRMmzYNM2bMYBVRLJ/PQxo+TAMAMzMzxMfHY9euXZCXl0d+fj5GjhyJ2bNno3HjxqzjEZ4o/wCQ4zioqalBWVlZeK127dro1KkTpk2bxioeIWKjBg6EECJD9u/fDy8vL6SlpSEyMhL6+vrYsmULDAwMeNH9Ul1dHZcvX4a1tbXI+O3bt9G/f39eFLIAwMjICLt370bfvn1FDrEOCAiAh4cHEhISWEcUi4GBAe7cuYMGDRqwjlJj4eHhGDhwILp27Ypr164hMTERhoaG+PPPP3H79m0EBwezjigWaTgYXVq6DEvDPFRVVREXFwdjY2PWUb6LkZERgoODYWFhITIeFRWF0aNH87LIVf7WjU8FUkL+CytWrMCCBQtoSyrhLTnWAQghhPwYu3btwvz58zFo0CC8efNGuM1IQ0ODN2dolZWVVTi7CPi0GqusrIxBopqZMWMGnJ2d8ffff0MgEODFixc4ePAgFixYgFmzZrGOJ7a0tDReF+IAwM3NDatXr8alS5dEiiQ2NjaIjIxkmKx6pOFgdDk5OZGueGPGjIGnpyecnJx4UcAqJw3z6N27N+Li4ljH+G6ZmZkoLi6uMF5aWoqXL18ySFRze/fuRevWraGkpAQlJSW0bt0aPj4+rGNVi4GBAZYuXYqkpCTWUYgUWLZsGVRVVfHq1Stcv34dERERePXqFetYhIiNinGEECIjtm3bhj179uD333+HvLy8cNzKygr37t1jmEx8vXv3hrOzM168eCEce/78OVxcXNCnTx+Gyapn0aJFGD58OGxsbPD+/Xv06NEDU6dOxYwZMzBnzhzW8cTm5ORU6cHi27dvx7x58358oBq4d+8eRowYUWFcS0sLOTk5DBLVTPnB6OXoYHTyPYYMGQIXFxcsX74cx44dQ0hIiMgXX/Tp0wfTpk3D3bt3hSvK7t69ixkzZqBv376M04lv6dKlcHZ2xpAhQxAUFISgoCDh/9GSJUtYxxPb3Llzcf78eZiamqJ9+/bYsmULMjMzWcciPJWXl4eJEydCR0cHPXv2RI8ePaCjo4MJEybg7du3rOMRUiXapkoIITJCWVkZDx8+hL6+vsg2tuTkZLRp0waFhYWsI1bp6dOnGDZsGO7fvw9dXV0IBAJkZGTA3Nwcp06dQtOmTVlHrFJpaSkiIiJgbm4OJSUlJCQkoKysDGZmZqhTpw7reNWio6ODkJAQtG/fXmQ8OjoaQ4cOxbNnzxglE1/Tpk0RGBiILl26iDwuTpw4gQULFiAlJYV1RLEkJCSgV69eaN++Pa5evYqhQ4eKHIxuZGTEOiLhETm5r39eL+kNHD6XnZ0NBwcHnD9/XriquqSkBAMGDICfnx+0tbUZJxRPgwYNsG3bNowbN05k/PDhw5g7dy5ev37NKFnNPHr0CAcPHsSRI0eQmpoKGxsbTJgwAfb29qyjER4ZM2YMYmNjsW3bNnTu3BkCgQA3b96Es7Mz2rRpg8DAQNYRCfkmKsYRQoiMMDMzw7p16zBs2DCRooOnpyf8/f0RFRXFOqLYLl26hIcPH4LjOJiZmfFqhQMAKCkpITExEQYGBqyjfBclJSXcv3+/wrlSjx8/RuvWrVFUVMQomfgWLVqEyMhIBAUFwcTEBNHR0Xj58iXs7e1hb2+PZcuWsY4otqysLOzatQtRUVEoKyuDpaUlHYxOCD4Vf8r/ZpiamsLExIR1pGrR1NTE7du30bx5c5HxR48eoUOHDrw5L7Uyt27dwsyZMxEfH8+bIi+RDKqqqrhw4QK6desmMn79+nXY2toiPz+fUTJCxEPdVAkhREYsXLgQs2fPRlFRETiOw+3bt3H48GGsW7eOd+fO9OvXD/369WMdo8bMzc2RmprK+2KcsbExzp8/X2Fr7blz52BoaMgoVfWsWbMGkyZNgo6OjrC4W1paivHjx/Nq+xfwqYnDihUrWMcgROKYmJjwrgD3uQkTJmDXrl3YtGmTyLi3tzfs7OwYpfo+t2/fxqFDh3D06FG8ffsWo0ePZh2J8Ez9+vWFnVU/p66uDk1NTQaJCKkeWhlHCCEyZM+ePVi9ejWePn0K4NM2w+XLl2PKlCmMk32dp6cnpk+fDiUlpUrPJ/uck5PTD0r1fS5evIjFixdj1apVaN++fYVOYHXr1mWUrHp8fX0xZ84cLFy4EL179wYAXLlyBRs3bsSWLVswbdo0xgnFl5KSgpiYGJSVlcHCwqLCChRJd+3atW9e79Gjxw9KQvhKWp5r58+fj1WrVkFVVRXz58//5r1fFrck1dy5cxEQEABdXV106tQJwKcVZU+fPoW9vb1IYyNJnlP59tRDhw4hPT0dNjY2sLOzw8iRI6GmpsY6HuEZb29vBAUFISAgQLgCPCsrCw4ODhg5ciRmzJjBOCEh30bFOEIIkUGvX79GWVkZL87LMTAwwN27d1G/fv1vriQTCARITU39gclq7vPzmAQCgfB7juN4dR4T8KlL75o1a4RNNZo1a4bly5fT2T8/WGVnfH3+u8WX36ng4GAEBgYiIyMDHz9+FLkWHR3NKFX18XEe0vJca2NjgxMnTkBDQ+ObzUsEAgGuXr36A5PVnLhNWCR9TnJycrCyssL48ePxyy+/oFGjRqwjER6zsLDA48eP8eHDB+jp6QEAMjIyoKioWOEDNUl93iWyjbapEkKIjEhLS0NJSQmaN2+OBg0aCMeTk5OhoKCAZs2asQv3DWlpaZV+z2ehoaGsI/xrZs6ciZkzZyI7OxvKysq8aEJR1WqZz0nyKpPP/fPPPyI/FxcXIyYmBkuXLsWaNWsYpaoeT09P/P7773BwcMCpU6fg6OiIlJQU3LlzB7Nnz2YdT2x8nYe0PNd+/vwqLc+10jKPhw8f8nq7MJEsw4cPZx2BkO9CK+MIIURG9OzZE5MnT4aDg4PI+IEDB+Dj44OwsDA2wYiI2NhYtGvXjnUMsZWUlCAsLAwpKSkYP3481NTU8OLFC9StW1diC3NfrjKJiopCaWkpWrRoAeDTVip5eXlhZ1I+u3btGlxcXHjRoKVly5ZYtmwZxo0bJ9Jkxt3dHbm5udi+fTvriGKRhnkUFhZCWVm50muZmZnUFIR8l48fP+LVq1coKysTGS9f3UQIIbKAinGEECIj6tati+jo6Eo7X1pZWfGiG9vo0aNhZWUFNzc3kfH169fj9u3bCAoKYpTs+7x9+xYHDx6Ej48P4uLieLOl8MmTJ7C1tUVGRgY+fPiAR48ewdDQEPPmzUNRURG8vLxYR6zSpk2bEBYWBn9/f+GBz//88w8cHR3RvXt3uLq6Mk74fRITE2FtbY3379+zjlIlFRUVJCYmQl9fH9ra2rh06RLatm2L5ORkdOrUCTk5OawjikUa5tGyZUscOnQIlpaWIuPBwcHClbCSauTIkWLfe/z48f8wyb+nqKgI27ZtQ2hoaKVFLL5swUtOTsbkyZNx8+ZNkXE+HtFAJMv79+8rPC74cv4ukV20TZUQQmSEQCDAu3fvKoy/ffuWNy+Aw8PDsWzZsgrjtra22LBhA4NE3+fq1avw9fXF8ePHoa+vj1GjRmHv3r2sY4nN2dkZVlZWiIuLQ/369YXjI0aMwNSpUxkmE9/GjRtx8eJFkc5rmpqaWL16Nfr378+bYlx8fLzIzxzHITMzEx4eHmjbti2jVNXTqFEj5OTkQF9fH/r6+rh16xbatm2LtLQ08OmzY2mYR79+/dClSxcsX74cixcvRn5+PubMmYOgoCB4eHiwjvdNn3dX5DgOJ06cgLq6OqysrAB8Wgn75s2bahXtWJs8eTIuXbqE0aNHo0OHDiLnQfLJpEmTUKtWLfz1119o3Lgxb+dBJENaWhrmzJmDsLAwFBUVCcepuEv4gopxhBAiI7p3745169bh8OHDkJeXB/DpUPd169ahW7dujNOJ5/3796hdu3aFcQUFBeTl5TFI9G3Z2dnQ0tISGXv27Bn8/Pzg6+uL/Px8jBkzBsXFxTh27BjMzMwYJa2ZiIgI3Lhxo8L/ib6+Pp4/f84oVfXk5eXh5cuXaNWqlcj4q1evKi1eS6p27dpBIBBUKPZ06tQJvr6+jFJVT+/evXH69GlYWlpiypQpcHFxQXBwMO7evcurwok0zGPbtm0YPHgwHB0dcebMGeHW8zt37kj889S+ffuE3y9evBhjxoyBl5eXyN+9WbNm8WrVzJkzZ3D27Fl07dqVdZTvEhsbi6ioKLRs2ZJ1FCIF7OzsAHzq7N6wYUMq7hLeoWIcIYTIiD///BM9evRAixYt0L17dwDA9evXkZeXx5tzsVq3bo2jR4/C3d1dZPzIkSMS+QbR29sbz549g6enJxQUFDBo0CBERETgp59+wrZt22Brawt5eXlebOesTFlZWaWfPD979gxqamoMElXfiBEj4OjoiI0bN6JTp04AgFu3bmHhwoW8KZwAFQ/cl5OTg5aWFpSUlBglqj5vb2/hNqNff/0V9erVQ0REBIYMGYJff/2VcTrxScs8+vfvj5EjR2LXrl2oVasWTp8+LZHPs9/i6+uLiIgIYSEOAOTl5TF//nx06dIF69evZ5hOfDo6Orx5Tv0WMzMzvH79mnUMIiXi4+MRFRUlPO+VEL6hM+MIIUSGvHjxAtu3b0dcXByUlZXRpk0bzJkzB/Xq1WMdTSwhISEYNWoUxo8fj969ewMArly5gsOHDyMoKEjiOmt9+PABS5cuRYMGDbBo0SLUqlULTk5OmDlzJpo3by68T0FBAXFxcbx7ozt27Fioq6vD29sbampqiI+Ph5aWFoYNGwY9PT2RFSqSqqCgAAsWLICvry+Ki4sBALVq1cKUKVOwfv16qKqqMk5IyI9X3pAlKysLPj4+CA8Px4YNG+Dk5IQ1a9ZAQUGBdUSxaGpqYt++fRX+Npw8eRKOjo4VuhBLqnPnzsHT0xNeXl7Q19dnHafGrl69iiVLlmDt2rUwNzev8HvEp9WKhD0bGxv8/vvv6Nu3L+sohNQIFeMIIYTwypkzZ7B27VrExsYKC4rLli1Dz549WUf7qo8fP6J27dqIjIyEr68vAgMD0bJlS0ycOBFjx45FkyZNeFmMe/HiBWxsbCAvL4/k5GRYWVkhOTkZDRo0wLVr16Ctrc06otjy8/ORkpICjuNgbGzMuyKcp6dnpeMCgQBKSkowNjZGjx49RFYISYIvz7r7ljZt2vyHSb6PtMyjnJqaGgYPHgwvLy9oaGgAAG7evAl7e3uoqakhJiaGbUAxzZ8/H35+fvjf//4nsvLVw8MD9vb22LRpE+OE4snOzsaYMWNw7do1qKioVChi5ebmMkpWPXJycsLvP99SSGd8kZpISUnBr7/+igkTJqB169YVHhd8eK4lso2KcYQQIiOuXbv2zes9evT4QUlIQUEBjhw5Al9fX9y+fRulpaXYtGkTJk+ezLutSIWFhTh8+DCio6NRVlYGS0tL2NnZQVlZmXU0mWJgYIDs7GwUFBRAU1MTHMfhzZs3UFFRQZ06dfDq1SsYGhoiNDQUurq6rOMKycnJVXrW3Zck/Y26tMyj3P79+zFx4sQK4+/evcO8efN402imrKwMGzZswNatW5GZmQkAaNy4MZydneHq6ipxxemv6du3LzIyMjBlypRKz8ZycHBglKx6wsPDv3ldkj9UI5Ln1q1bGD9+PNLT04Vj5c/DfHmuJbKNinGEECIjPv9EutznL+jpRQsbSUlJ2Lt3L/bv3483b96gX79+CAkJYR2L8Mzhw4fh7e0NHx8fGBkZAQAeP36MGTNmYPr06ejatSt++eUXNGrUCMHBwYzT/p8nT56Ifa8kb8+TlnlIk5KSEhw8eBADBgxAo0aNhE1++LgVUkVFBZGRkbzpjPwt169fx+7du5GSkoLg4GDo6Ohg//79MDAw4E0zKSIZzMzMYGpqikWLFlVapKbnWiLpqBhHCCEy4u3btyI/FxcXIyYmBkuXLsWaNWvQp08fRsm+rV69enj06BEaNGgATU3Nb3bL4stWncqUlpbi9OnT8PX15VUxLikpCdu2bUNiYiIEAgFatmyJOXPmULe8H8zIyAjHjh1Du3btRMZjYmIwatQopKam4ubNmxg1apRwhRAhVUlISEBGRgY+fvwoHBMIBBgyZAjDVOJTUVFBYmIi79+UW1paYufOncKttnx17NgxTJw4EXZ2dti/fz8SEhJgaGiInTt34q+//sLZs2dZRyQ8oqqqiri4OBgbG7OOQkiNUDdVQgiREerq6hXG+vXrB0VFRbi4uCAqKopBqqpt3rxZuHVz8+bNUtu6Xl5eHsOHD5e4JhTfEhwcjHHjxsHKygqdO3cG8GnbiLm5OQ4dOoSff/6ZcULZkZmZiZKSkgrjJSUlyMrKAgA0adIE7969+9HRCA+8fftW5G9EamoqRo4cifj4eJHtt+XPv3xZSd2xY0fExMTwvhjn4eEBV1dXrFmzhteND1avXg0vLy/Y29vjyJEjwvEuXbpg5cqVDJMRPurduzcV4wiv0co4QgiRcYmJibC2tsb79+9ZRyE8Y2hoiAkTJlR4E7Vs2TLs378fqampjJLJnsGDBws7X1pYWAD4tCpu2rRpaNSoEf766y+cPn0a//vf/3Dv3j3GaYmkWbVqFZSUlLBw4UIAEK588/HxQbt27fD3338jLS0NCxYswKZNm9C9e3eWccUWFBQENzc3uLi4oH379hUas/DlgPfyYya+/DCKb2djqaioICEhAc2aNYOamhri4uJgaGiI1NRUmJmZoaioiHVEwiPe3t5YvXo1Jk+eXGmReujQoYySESIeKsYRQoiM+LLbH8dxyMzMhIeHB4qLi3Hjxg1GycRnY2ODCRMmYPTo0ZWu9CM/loqKCuLj4yt8Kp2cnIy2bduioKCAUbJvq842YL68mM/KysLEiRNx5coV4RuSkpIS9OnTB/v370fDhg0RGhqK4uJi9O/fn3FaImlevXqFiRMnwtjYGDt27ECDBg1w5coVtG3bFjo6Orh9+zZ0dHRw5coVLFiwgDfdVL92VirfiljS0vjAyMgIu3fvRt++fUWKcQEBAfDw8EBCQgLriIRHKnt8l+PT45vILtqmSgghMqJdu3aVdvvr1KkTfH19GaWqHnNzcyxZsgRz5szBoEGDMHHiRAwaNAi1a9dmHU0m9erVC9evX69QjIuIiJDolTNfbgX+8nHBx8YmjRo1wqVLl/Dw4UM8evQIHMehZcuWaNGihfAeGxsbhgmJJNPW1saFCxewbt06AJ9+78uPB2jQoAFevHgBHR0dNGvWDElJSSyjVktaWhrrCP8KvhTbqjJjxgw4OzvD19cXAoEAL168QGRkJBYsWAB3d3fW8QjPlJWVsY5AyHehlXGEECIjvuz2JycnBy0tLSgpKTFKVDNlZWW4fPkyDh06hBMnTkBeXh6jR4+GnZ2d1Lxh4QsvLy+4u7tjzJgxwoPFb926haCgIKxYsQJNmjQR3iupK8wuX76MxYsXY+3atejcuTMEAgFu3ryJJUuWYO3atejXrx/riNXy8eNHpKWlwcjICLVq8e8z1zdv3iA4OBgpKSlYuHAh6tWrh+joaDRs2BA6Ojqs44mN7/Po3r075s+fjxEjRmD69OnIzs7GwoUL4eXlhejoaNy/f591RKkXHx+P1q1bQ05OrsLK9i/xZbstAPz+++/YvHmzcEuqoqIiFixYgFWrVjFORgghPxYV4wghRAaUb03bvXs3TExMWMf51xQVFeH06dNYs2YN7t27x5tVTNLiW1tEPifJ20Vat24NLy8vdOvWTWT8+vXrmD59OhITExklq56CggLMnTsX/v7+AIBHjx7B0NAQTk5OaNKkCdzc3BgnrFp8fDz69u0LdXV1pKenIykpCYaGhli6dCmePHmCgIAA1hHFIg3zuHDhAt69e4fRo0fj6dOnGDx4MO7fv4969eohMDAQvXv3Zh1RbPv374eXlxfS0tIQGRkJfX19bNmyBQYGBhg2bBjreF8lJyeHrKwsaGtrQ05OrtKV7YBkP79+TUFBARISElBWVgYzMzPUqVOHdSTCI4MGDcLhw4eFx5WsWbMGs2fPhoaGBgAgJycH3bt3p23PROKJ9yqaEEIIrykoKOD+/ftS1Yk0KysLXl5e+OOPPxAfHw8rKyvWkWROWVmZWF+S/EYxJSWl0vMHywspfPHbb78hLi4OYWFhIqtd+/bti6NHjzJMJr758+dj0qRJSE5OFpnDwIEDce3aNYbJqkca5jFgwACMHj0aAKCrq4v4+Hi8fv0ar169kuhC3IULF/D27Vvhz7t27cL8+fMxaNAgvHnzRvhcpKGhgS1btjBKKZ60tDRoaWkJv09NTUVaWlqFLz42ylFRUYGVlRU6dOhAhThSbRcuXMCHDx+EP//xxx/Izc0V/lxSUsKr7fREdlExjhBCZIS9vT327t3LOsZ3ycvLw759+9CvXz/o6upi165dGDJkCB49eoS///6bdTyCT9vz+MTa2hrz5s1DZmamcCwrKwuurq7o0KEDw2TVc/LkSWzfvh3dunUTKbqbmZkhJSWFYTLx3blzBzNmzKgwrqOjg6ysLAaJakZa5vGlevXqib0alpWsrCx07doVz549AwBs27YNe/bswe+//w55eXnhfVZWVhLfVVhfX1/4WNbX1//mFyGy5MsVorTRj/AV/w4TIYQQUiMfP36Ej48PLl26BCsrK6iqqopc37RpE6Nk4mvYsCE0NTUxZswYrF27FtbW1qwjybQ//vgDzZo1w9ixYwEAP//8M44dO4bGjRvj7NmzaNu2LeOEVfP19cWIESOgr68PPT09AEBGRgZMTExw8uRJtuGqITs7G9ra2hXG8/PzebMiVklJCXl5eRXGk5KShCuE+EAa5lFUVIRt27YhNDQUr169qnBQenR0NKNk3+bg4AA1NTXY2tri/v37SEtLg4WFRYX7FBUVkZ+fzyCh+KSx6zMhhJD/Q8U4QgiREffv34elpSWAT+dJfY4Pb9Y5jsPWrVsxYcIEqKiosI5DAOzevRsHDhwAAFy6dAmXL1/G+fPnERgYiIULF+LixYuME1bN2NgY8fHxwk6kHMfBzMwMffv25cXjopy1tTXOnDmDuXPnAvi/x/SePXvQuXNnltHENmzYMKxcuRKBgYEAPs0hIyMDbm5uGDVqFON04pOGeUyePBmXLl3C6NGj0aFDB149FkaOHCkswBkYGCA2NrbC6rFz587BzMyMRTyxfdn1+Wv4eGYcId9DIBBUeE7i03MUIeWogQMhhBBeKCsrg5KSEh48eIDmzZuzjkMAKCsr49GjR9DV1YWzszOKioqwe/duPHr0CB07dsQ///zDOqLMuHnzJmxtbWFnZwc/Pz/MmDEDDx48QGRkJMLDw9G+fXvWEauUl5eHQYMG4cGDB3j37h2aNGmCrKwsdO7cGWfPnq2wmldSScM81NXVcfbsWXTt2pV1lO+yb98+LF26FBs3bsSUKVPg4+ODlJQUrFu3Dj4+Pvjll19YRySEVJOcnBwGDhwIRUVFAMDp06fRu3dv4XPrhw8fcP78eSpSE4lHK+MIIURGvH37FqWlpahXr57IeG5uLmrVqoW6desySiYeOTk5NG/eHDk5OVSMkxCampp4+vQpdHV1cf78eaxevRrAp1WMfHkRvHLlym9ed3d3/0FJvk+XLl1w48YNbNiwAUZGRrh48SIsLS0RGRkJc3Nz1vHEUrduXURERODq1auIjo5GWVkZLC0t0bdvX9bRqkUa5qGjowM1NTXWMb6bo6MjSkpKsGjRIhQUFGD8+PHQ0dHB1q1bqRBHCE85ODiI/DxhwoQK99jb2/+oOITUGK2MI4QQGTFw4EAMGTIEs2bNEhn38vJCSEgIzp49yyiZ+M6cOQMPDw/s2rULrVu3Zh1H5s2ZMwd//fUXmjdvjpiYGKSnp6NOnTo4evQo/vjjD4k9V+pzX54nVVxcjLS0NNSqVQtGRka8mAMh/7Zz587B09MTXl5eUtMg4PXr1ygrK6v0bEVCCCHkR6NiHCGEyIh69erhxo0bMDU1FRl/+PAhunbtipycHEbJxKepqYmCggKUlJSgdu3aUFZWFrn+eWt78t8rLi7G1q1b8fTpU0yaNElY2NqyZQvq1KmDqVOnMk5YM3l5eZg0aRJGjBiBiRMnso4jttLSUpw4cQKJiYkQCAQwNTXFsGHDUKuW5G6E8PT0FPteJyen/zDJ95GWeZTLzs7GmDFjcO3aNaioqEBBQUHkOt+ea1+9eoWkpCQIBAK0aNGCN400CCGESC8qxhFCiIxQVVXFrVu3KmxZu3fvHjp27IiCggJGycTn7+//zetfbl0gpKbu37+Pn376Cenp6ayjiOX+/fsYNmwYsrKy0KJFCwCfGrVoaWkhJCREYreqGhgYiPycnZ2NgoICaGhoAADevHkDFRUVaGtrIzU1lUFC8UjLPMr17dsXGRkZmDJlCho2bFjhcHS+PNfm5eVh9uzZOHz4sLAjrLy8PMaOHYsdO3ZAXV2dcUJCCCGyiopxhBAiI3r16gVzc3Ns27ZNZHz27NmIj4/H9evXGSUjfJeQkICMjAx8/PhRZHzo0KGMEn2/iIgIDBkyhDdNKDp16gRtbW34+/tDU1MTAPDPP/9g0qRJePXqFSIjIxknrNqhQ4ewc+dO7N27V1hQTEpKwrRp0zBjxgzY2dkxTigeaZiHiooKIiMj0bZtW9ZRvsuYMWMQGxuLbdu2oXPnzhAIBLh58yacnZ3Rpk0bYcdbQggh5EejYhwhhMiIGzduoG/fvrC2tkafPn0AAFeuXMGdO3dw8eJFdO/enXFC8aSkpGDfvn1ISUnB1q1boa2tjfPnz0NXVxetWrViHU+mpKamYsSIEbh37x4EAgHKX1KUr6LhQxOHL7cXchyHzMxM7N+/Hz169MDhw4cZJaseZWVl3L17t8Jj4P79+7C2tkZhYSGjZOIzMjJCcHBwhXP8oqKiMHr0aKSlpTFKVj3SMA9LS0vs3LkTnTp1Yh3lu6iqquLChQvo1q2byPj169dha2uL/Px8RslqrrCwEMXFxSJjkt6AiRBCSEVyrAMQQgj5Mbp27YrIyEjo6uoiMDAQp0+fhrGxMeLj43lTiAsPD4e5uTn+/vtvHD9+HO/fvwcAxMfHY9myZYzTyR5nZ2cYGBjg5cuXUFFRwYMHD3Dt2jVYWVkhLCyMdTyxbN68WeTL09MTYWFhcHBwgLe3N+t4YmvRogVevnxZYfzVq1cwNjZmkKj6MjMzKxQZgE9F3crmJqmkYR4eHh5wdXVFWFgYcnJykJeXJ/LFF/Xr1690K6q6urpwBSkfFBQUYM6cOdDW1kadOnWgqakp8kUIIYR/aGUcIYQQ3ujcuTN+/vlnzJ8/H2pqaoiLi4OhoSHu3LmD4cOH4/nz56wjypQGDRrg6tWraNOmDdTV1XH79m20aNECV69ehaurK2JiYlhHlBlnz57FokWLsHz5cuFqplu3bmHlypXw8PAQWRkkqatohgwZgoyMDOzduxft27eHQCDA3bt3MW3aNOjq6iIkJIR1RLFIwzzk5D59Xv/lWXEcx0EgEPBi1SsAeHt7IygoCAEBAWjcuDEAICsrCw4ODhg5ciRmzJjBOKF4Zs+ejdDQUKxcuRL29vbYsWMHnj9/jt27d8PDw4MXW58JIYSIomIcIYQQ3qhTpw7u3bsHAwMDkWJceno6WrZsiaKiItYRZYqmpiaioqJgaGgIIyMj+Pj4wMbGBikpKTA3N+dFU5DJkydj69atUFNTExnPz8/H3Llz4evryyhZ9ZQXT4D/K6B8uW1Y0gsp2dnZcHBwwPnz54XdO0tKSjBgwAD4+flBW1ubcULxSMM8wsPDv3m9Z8+ePyjJ97GwsMDjx4/x4cMH6OnpAQAyMjKgqKiI5s2bi9wbHR3NIqJY9PT0EBAQgF69eqFu3bqIjo6GsbEx9u/fj8OHD+Ps2bOsIxJCCKkmye11TwghhHxBQ0MDmZmZFToXxsTEQEdHh1Eq2dW6dWvEx8fD0NAQHTt2xJ9//onatWvD29sbhoaGrOOJxd/fHx4eHhWKcYWFhQgICOBNMS40NJR1hO+mpaWFs2fPIjk5GYmJieA4DqampjAxMWEdrVqkYR58KbZVZfjw4awj/Ctyc3OFf/fq1q2L3NxcAEC3bt0wc+ZMltEIIYTUEBXjCCGE8Mb48eOxePFiBAUFQSAQoKysDDdu3MCCBQtgb2/POp7MWbJkifAA9NWrV+Onn35C9+7dUb9+fRw9epRxum/Ly8sDx3HgOA7v3r2DkpKS8FppaSnOnj3LixVM5aSleAIAzZs3r7BqiY+kZR58Ji1niZavANfX14eZmRkCAwPRoUMHnD59GhoaGqzjEUIIqQHapkoIIYQ3iouLMWnSJBw5cgQcx6FWrVooLS3F+PHj4efnB3l5edYRZV5ubi40NTUrnDUlaeTk5L6ZUSAQYMWKFfj9999/YKqaO3/+POrUqSM8G27Hjh3Ys2cPzMzMsGPHDjrknRAe27x5M+Tl5eHk5ITQ0FAMHjwYpaWlKCkpwaZNm+Ds7Mw6IiGEkGqiYhwhhBDeSU1NRXR0NMrKymBhYUGrT0i1hYeHg+M49O7dG8eOHUO9evWE12rXrg19fX00adKEYcLqMTc3xx9//IFBgwbh3r17sLKygqurK65evQpTU1Ps27ePdURCyL8kIyMDd+/ehZGREdq2bcs6DiGEkBqgYhwhhEixkSNHin3v8ePH/8Mk/43S0lLcu3cP+vr6tPKH1MiTJ0+gp6cn8Sv5qlKnTh3cv38fzZo1w/Lly3H//n0EBwcjOjoagwYNQlZWFuuIhBBCCCHk/6Mz4wghRIqpq6uzjvCvmjdvHszNzTFlyhSUlpaiZ8+euHnzJlRUVPDXX3+hV69erCMSHoiPj0fr1q0hJyeHt2/f4t69e1+9t02bNj8wWc3Vrl1b2L328uXLwjMU69Wrh7y8PJbRCCE14OnpKfa9Tk5O/2ESQggh/wVaGUcIIYQ3mjZtipMnT8LKygonT57ErFmzEBYWhoCAAISGhuLGjRusIxIekJOTQ1ZWFrS1tYVnx1X2ckggEKC0tJRBwuobOnQoPn78iK5du2LVqlVIS0uDjo4OLl68iDlz5uDRo0esI4rl+vXr2L17N1JSUhAcHAwdHR3s378fBgYGwvPw+KKgoAAZGRn4+PGjyLikFngtLCzEXiEaHR39H6f5d338+BFpaWkwMjJCrVr8WIvwZdfw7OxsFBQUCBs2vHnzBioqKtDW1kZqaiqDhIQQQr6HHOsAhBBCfpySkhJcvnwZu3fvxrt37wAAL168wPv37xknE8/r16/RqFEjAMDZs2cxZswYmJiYYMqUKd9c3UTI59LS0qClpSX8PjU1FWlpaRW++PQGd/v27ahVqxaCg4Oxa9cu6OjoAADOnTsHW1tbxunEc+zYMQwYMADKysqIiYnBhw8fAADv3r3D2rVrGacTX3Z2Nn766SeoqamhVatWsLCwEPmSVMOHD8ewYcMwbNgwDBgwACkpKVBUVESvXr3Qq1cvKCkpISUlBQMGDGAdVWwFBQWYMmUKVFRU0KpVK2RkZAD4tJLMw8ODcbpv+/y5aM2aNWjXrh0SExORm5uL3NxcJCYmwtLSEqtWrWIdlRBCSA3QyjhCCJERT548ga2tLTIyMvDhwwc8evQIhoaGmDdvHoqKiuDl5cU6YpX09fWxZ88e9OnTBwYGBti5cyd++uknPHjwAN26dcM///zDOqLM2b9/P7y8vJCWlobIyEjo6+tjy5YtMDAwwLBhw1jHIzxiYWEBFxcX2NvbQ01NDXFxcTA0NERsbCxsbW15c+6dnZ0d0tPTsWXLFtjY2ODEiRN4+fIlVq9ejY0bN2Lw4MGsI1Zp6tSpaNy4cYVCz7Jly/D06VP4+voySlY9zs7OuHHjBrZs2QJbW1vEx8fD0NAQISEhWLZsGWJiYlhHFIuRkRGCg4MrFHOjoqIwevRopKWlMUpGCCGkpvixTpsQQsh3c3Z2hpWVFeLi4lC/fn3h+IgRIzB16lSGycTn6OiIMWPGoHHjxhAIBOjXrx8A4O+//0bLli0Zp5M9u3btgru7O+bNm4c1a9YIt3RqaGhgy5YtvCjGhYSEVDouEAigpKQEY2PjCtvFJFVKSgr27duHlJQUbN26Fdra2jh//jx0dXXRqlUr1vGqlJSUhB49elQYr1u3Lt68efPjA9XQ1atXcerUKVhbW0NOTg76+vro168f6tati3Xr1vGiGBcUFIS7d+9WGJ8wYQKsrKx4U4w7efIkjh49ik6dOolswTUzM0NKSgrDZNWTmZmJ4uLiCuOlpaV4+fIlg0SEEEK+FxXjCCFERkRERODGjRuoXbu2yLi+vj6eP3/OKFX1LF++HK1bt8bTp0/x888/Q1FREQAgLy8PNzc3xulkz7Zt27Bnzx4MHz5cZMuXlZUVFixYwDCZ+IYPH17pmXHlYwKBAN26dcPJkyclumNveHg4Bg4ciK5du+LatWtYs2YNtLW1ER8fDx8fHwQHB7OOWKXGjRvj8ePHaNasmch4REQEDA0N2YSqgfz8fGhrawP41EAjOzsbJiYmMDc3581Za8rKyoiIiEDz5s1FxiMiIqCkpMQoVfVlZ2cL/y8+l5+fz6sOyn369MG0adOwd+9etG/fHgKBAHfv3sWMGTPQt29f1vEIIYTUAJ0ZRwghMqKsrKzSw+ifPXsGNTU1BolqZvTo0XBxcUHTpk2FYw4ODrxYhSVt0tLSKj0DS1FREfn5+QwSVd+lS5dgbW2NS5cu4e3bt3j79i0uXbqEDh064K+//sK1a9eQk5Mj8cVFNzc3rF69GpcuXRIpuNvY2CAyMpJhMvHNmDEDzs7O+PvvvyEQCPDixQscPHgQCxYswKxZs1jHE1uLFi2QlJQEAGjXrh12796N58+fw8vLC40bN2acTjzz5s3DzJkzMWfOHBw4cAAHDhzAnDlzMHv2bLi4uLCOJzZra2ucOXNG+HN5AW7Pnj3o3Lkzq1jV5uvrCx0dHXTo0AFKSkpQVFREx44d0bhxY/j4+LCORwghpAZoZRwhhMiIfv36YcuWLfD29gbw6U3J+/fvsWzZMgwaNIhxOsJHBgYGiI2Nhb6+vsj4uXPnYGZmxihV9Tg7O8Pb2xtdunQRjvXp0wdKSkqYPn06Hjx4gC1btmDy5MkMU1bt3r17OHToUIVxLS0t5OTkMEhUfYsWLcLbt29hY2ODoqIi9OjRA4qKiliwYAHmzJnDOp7Y5s2bh8zMTACfzlgbMGAADh48iNq1a8PPz49tODG5ubnB0NAQW7duFf5emZqaws/PD2PGjGGcTnzr1q2Dra0tEhISUFJSgq1bt+LBgweIjIxEeHg463hi09LSwtmzZ/Ho0SM8fPgQHMfB1NQUJiYmrKMRQgipIWrgQAghMuLFixewsbGBvLw8kpOTYWVlheTkZDRo0ADXrl2rdCsPId+yb98+LF26FBs3bsSUKVPg4+ODlJQUrFu3Dj4+Pvjll19YR6ySsrIy7ty5g9atW4uM37t3Dx06dEBhYSGePHkCU1NTFBQUMEpZtaZNmyIwMBBdunQRaX5w4sQJLFiwgFfnYxUUFCAhIQFlZWUwMzNDnTp1WEf6puLiYigoKHz1ekFBAR4+fAg9PT00aNDgByYjwKfH8oYNGxAVFYWysjJYWlpi8eLFMDc3Zx2NEEKIDKNiHCGEyJDCwkIcOXJE5E2JnZ0dlJWVWUcjPLVnzx6sXr0aT58+BQDo6Ohg+fLlmDJlCuNk4unWrRvU1NQQEBAALS0tAJ/OmbK3t0d+fj6uXbuGy5cvY9asWXj06BHjtF+3aNEiREZGIigoCCYmJoiOjsbLly9hb28Pe3t7LFu2jHXEKr19+xalpaWoV6+eyHhubi5q1aqFunXrMkr2bR4eHjA0NOTVijEi+ebPn49Vq1ZBVVUV8+fP/+a9mzZt+kGpCCGE/FuoGEcIIYSQ7/b69WuUlZXxboVlUlIShg0bhrS0NOjq6kIgECAjIwOGhoY4deoUTExMcPLkSbx79w4TJ05kHferiouLMWnSJBw5cgQcx6FWrVooLS3F+PHj4efnB3l5edYRqzRw4EAMGTKkwvlwXl5eCAkJwdmzZxkl+7ZHjx5hxIgRmD59OpydnaWicFJaWorNmzcjMDAQGRkZ+Pjxo8j13NxcRsmqlpeXJ/a9klrgBT6d93jixAloaGjAxsbmq/cJBAJcvXr1ByYjhBDyb6BiHCGEEF5JSUnBvn37kJKSgq1bt0JbWxvnz5+Hrq4uWrVqxToe4SGO43DhwgU8evQIHMehZcuW6NevH+Tk+NfnKiUlBTExMSgrK4OFhUWFbpiSrF69erhx4wZMTU1Fxh8+fIiuXbtK9Nl37969w6RJk3Ds2DGpKJy4u7vDx8cH8+fPx9KlS/H7778jPT0dJ0+ehLu7O5ycnFhH/Co5OTmxO6VW1tSIEEII+RGoGEcIIYQ3wsPDMXDgQHTt2hXXrl1DYmIiDA0N8eeff+L27dsIDg5mHVHqWVhYiP1GNzo6+j9OQ6SJqqoqbt26VeEsr3v37qFjx44SfWaftDEyMoKnpycGDx4MNTU1xMbGCsdu3bpVabMQSfF5Y4b09HS4ublh0qRJwu6pkZGR8Pf3x7p16+Dg4MAqJiGEEBlHxThCCCG80blzZ/z888+YP3++yCH1d+7cwfDhw/H8+XPWEaXeihUrhN8XFRVh586dMDMzE77RvXXrFh48eIBZs2Zh3bp1rGJWy5UrV3DlyhW8evUKZWVlItd8fX0ZpapaVdshP8eHrZG9evWCubk5tm3bJjI+e/ZsxMfH4/r164ySyR5VVVUkJiZCT08PjRs3xpkzZ2BpaYnU1FRYWFjg7du3rCOKpU+fPpg6dSrGjRsnMn7o0CF4e3sjLCyMTTAxjBw5Uux7jx8//h8mIYQQ8l+oxToAIYQQIq579+5VuiJDS0tLorewSZPPGwFMnToVTk5OWLVqVYV7yhs6SLoVK1Zg5cqVsLKyQuPGjcVe9ScJYmJiRH6OiopCaWkpWrRoAeDTWWby8vJo3749i3jVtmbNGvTt2xdxcXHo06cPgE+F0jt37uDixYuM04mvqKgI27ZtQ2hoaKUFXj6sGG3atCkyMzOhp6cHY2NjXLx4EZaWlrhz5w4UFRVZxxNbZGQkvLy8KoxbWVlh6tSpDBKJT11dXfg9x3E4ceIE1NXVYWVlBeDT4/3NmzfVKtoRQgiRHFSMI4QQwhsaGhrIzMyEgYGByHhMTAx0dHQYpZJdQUFBuHv3boXxCRMmwMrKSqJXlZXz8vKCn5+fRDdn+JrQ0FDh95s2bYKamhr8/f2hqakJAPjnn3/g6OiI7t27s4pYLV27dkVkZCTWr1+PwMBAKCsro02bNti7dy+vzr6bPHkyLl26hNGjR6NDhw68KvCWGzFiBK5cuYKOHTvC2dkZ48aNw969e5GRkQEXFxfW8cSmq6sLLy8vbNy4UWR89+7d0NXVZZRKPPv27RN+v3jxYowZMwZeXl7CZiylpaWYNWuWRDehIIQQ8nW0TZUQQmQEn7vjlVu0aBEiIyMRFBQEExMTREdH4+XLl7C3t4e9vb3Iqi3y32vUqBHWrVsHR0dHkfF9+/bBzc0NL1++ZJRMfPXr18ft27dhZGTEOsp30dHRwcWLFys0Mbl//z769++PFy9eMEome9TV1XH27Fl07dqVdZR/za1bt3Dz5k0YGxtj6NChrOOI7ezZsxg1ahSMjIzQqVMnAJ/mkpKSgmPHjmHQoEGME4pHS0sLERERwlWv5ZKSktClSxdaGU4IITxEK+MIIURGrFix4pvd8fhgzZo1mDRpEnR0dMBxHMzMzFBaWorx48djyZIlrOPJnHnz5mHmzJmIiooSeaPr6+vLm9+pqVOn4tChQ1i6dCnrKN8lLy8PL1++rFCMe/XqFd69e8coVfWVlZXh8ePHlW7v7NGjB6NU1aOjowM1NTXWMf5VnTp1Ej7G+WTQoEFITk7Grl27kJiYCI7jMGzYMPz6668SvzLucyUlJUhMTKxQjEtMTKzwOCGEEMIPtDKOEEJkBJ+7430pJSUFMTExKCsrg4WFBa+2sEmbwMBAbN26FYmJiQAAU1NTODs7Y8yYMYyTicfZ2RkBAQFo06YN2rRpAwUFBZHrfGh8AAD29vYIDw/Hxo0bRQqjCxcuRI8ePeDv7884YdVu3bqF8ePH48mTJ/jy5alAIEBpaSmjZNVz7tw5eHp6wsvLC/r6+qzjiC0kJETse/m0Ok4azJ8/H35+fvjf//4n8vj28PCAvb09b56nCCGE/B8qxhFCiIyQlu54hPybbGxsvnpNIBDg6tWrPzBNzRUUFGDBggXw9fVFcXExAKBWrVqYMmUK1q9fD1VVVcYJq9auXTuYmJhgxYoVlTbT+PxAe0mWnZ2NMWPG4Nq1a1BRUalQ4JXUIwHk5OREfhYIBJUWRQHwpjAqLcrKyrBhwwZs3boVmZmZAIDGjRvD2dkZrq6uwnPkCCGE8AdtUyWEEBnB1+548+fPF/teWh1AquvzJgh8pqKigp07d2L9+vVISUkBx3EwNjbmRRGuXHJyMoKDg2FsbMw6yncZN24cnj9/jrVr16Jhw4a8aeDw+XbHy5cvY/HixVi7di06d+4MgUCAmzdvYsmSJVi7di3DlLKnpKQEBw8ehL29PRYtWoS8vDwAoMYNhBDCc1SMI4QQGcHX7ngxMTEiP0dFRaG0tFR4ds6jR48gLy+P9u3bs4hHpMizZ88gEAh43ZlXVVUVbdq0YR2jRjp27IjHjx/zvhh38+ZNREZGom3btqyj1Ni8efPg5eWFbt26CccGDBgAFRUVTJ8+Xbgtnfz3atWqhZkzZwr/zakIRwgh0oGKcYQQIiM8PDyE348ePRq6urq4ceOGxHfH+3zl0qZNm6CmpgZ/f39oamoCAP755x84Ojqie/furCISHisrK8Pq1auxceNGvH//HgCgpqYGV1dX/P777xW27pH/zty5c+Hq6oqsrCyYm5tX2N7JlyJjy5YtUVhYyDrGd0lJSal0W7C6ujrS09N/fCAZ17FjR8TExPDqDEJCCCHfRmfGEUII4Q0dHR1cvHixQsfI+/fvo3///njx4gWjZISvfvvtN+zduxcrVqxA165dwXEcbty4geXLl2PatGlYs2YN64gyo7LCZ/m5ZXxq4HDx4kWsWLECa9asqbSoyIeVTT169ICCggIOHDiAxo0bAwCysrIwceJEfPz4EeHh4YwTypagoCC4ubnBxcUF7du3r7D9nC+FakIIIf+HinGEECIj5OXl0aNHDxw7dgz16tUTjr98+RJNmjThxRtdNTU1nDp1Cr179xYZv3r1KoYNG4Z3794xSkb4qkmTJvDy8qqwOvTUqVOYNWsWnj9/ziiZ7Hny5Mk3r/NlVVB5UfHLs+L4VFR8/PgxRowYgaSkJOjp6QEAMjIyYGJigpMnT0r0VmILCwuxz+mLjo7+j9P8O6SlUE0IIeT/0DZVQgiRERzH4cOHD7CyskJISAhat24tco0PRowYAUdHR2zcuBGdOnUCANy6dQsLFy7EyJEjGaeTPaWlpfDz88OVK1fw6tUrkQPgAfCiE2lubi5atmxZYbxly5YS2/VSWvGl2FYVaWgKYmxsjPj4eFy6dAkPHz4Ex3EwMzND3759Jb4hxfDhw4XfFxUVYefOnTAzM0Pnzp0BfPqb8eDBA8yaNYtRwupLS0tjHYEQQsi/jFbGEUKIjJCXl8ezZ8/g4eGBffv2Yf/+/Rg2bBivVsYVFBRgwYIF8PX1RXFxMYBPh1tPmTIF69ev51XnSGkwZ84c+Pn5YfDgwWjcuHGFN+mbN29mlEx8HTt2RMeOHeHp6SkyPnfuXNy5cwe3bt1ilKxqISEhYt8ryedCfikhIQEZGRn4+PGjyDif5kAkw9SpU9G4cWOsWrVKZHzZsmV4+vQpfH19GSUjhBAi66gYRwghMkJOTg5ZWVnQ1taGt7c3nJycsGTJEkydOhU6Ojq8KMaVy8/PR0pKCjiOg7GxMRXhGGnQoAECAgIwaNAg1lFqLDw8HIMHD4aenh46d+4MgUCAmzdv4unTpzh79qxENwYRt7kEX7axpaamYsSIEbh3755wCx7wf9s9+TCHcm/evMHevXuRmJgIgUAAMzMzTJ48udKmCJLC09MT06dPh5KSUoXi9JecnJx+UKrvo66ujrt376J58+Yi48nJybCyssLbt28ZJau+/fv3w8vLC2lpaYiMjIS+vj62bNkCAwMDDBs2jHU8Qggh1UTFOEIIkRGfF+MAICwsDKNHj4aFhQWuXr3Kqze6RDI0adIEYWFhMDExYR3lu7x48QI7duwQ2Y43a9YsNGnShHU0mTJkyBDIy8tjz549MDQ0xO3bt5GTkwNXV1ds2LBBogujn7t79y4GDBgAZWVldOjQARzH4e7duygsLMTFixdhaWnJOmKlDAwMcPfuXdSvXx8GBgZfvU8gECA1NfUHJqu5Ro0aYd26dXB0dBQZ37dvH9zc3PDy5UtGyb7twoUL6NSpk7B4u2vXLri7u2PevHlYs2YN7t+/D0NDQ/j5+cHf318qtkYTQoisoWIcIYTIiM/faJV7/PgxhgwZgkePHlExjlTbxo0bkZqaiu3bt0v8OVLV9fTpUyxbtoy2sf1ADRo0wNWrV9GmTRuoq6vj9u3baNGiBa5evQpXV1fExMSwjiiW7t27w9jYGHv27EGtWp+OZy4pKcHUqVORmpqKa9euMU4oOzw8PLB8+XJMnTpV5JxRX19fuLu7w83NjXHCyvn7+2P9+vU4f/48mjZtCjMzM6xduxbDhw+Hmpoa4uLiYGhoiPv376NXr154/fo168iEEEKqiYpxhBAi44qKivDy5UupOTyd/DgjRoxAaGgo6tWrh1atWkFBQUHk+vHjxxkl+35xcXGwtLTkVZE6Pz8f4eHhlZ63xodthZqamoiKioKhoSGMjIzg4+MDGxsbpKSkwNzcHAUFBawjikVZWRkxMTEVGoMkJCTAysqKN/OQFoGBgdi6dSsSExMBAKampnB2dsaYMWMYJ/u248ePw93dHffv34eysjIePnwIfX19kWJccnIy2rRpg8LCQtZxCSGEVBN1UyWEEBmnpKREhThSIxoaGhgxYgTrGARATEwMBg0ahIKCAuTn56NevXp4/fo1VFRUoK2tzYtiXOvWrREfHw9DQ0N07NgRf/75J2rXrg1vb28YGhqyjie2unXrIiMjo0Ix7unTp1BTU2OUqnpGjx4NKyurCivH1q9fj9u3byMoKIhRsuobM2aMxBfeKjNy5EhYWFgA+LSyPTY2tsLf6nPnzsHMzIxFPEIIId+JinGEECLF6tWrh0ePHqFBgwbQ1NT85lbC3NzcH5iMSIN9+/axjkD+PxcXFwwZMgS7du2ChoYGbt26BQUFBUyYMAHOzs6s44llyZIlyM/PBwCsXr0aP/30E7p374769evj6NGjjNOJb+zYsZgyZQo2bNiALl26QCAQICIiAgsXLsS4ceNYxxNLeHg4li1bVmHc1tYWGzZsYJBINpWf3bdw4ULMnj0bRUVF4DgOt2/fxuHDh7Fu3Tr4+PgwTkkIIaQmqBhHCCFSbPPmzcKVGFu2bGEb5l+SkpKCLVu2CLsUlm85MjIyYh1NZmVnZyMpKQkCgQAmJibQ0tJiHUnmxMbGYvfu3ZCXl4e8vDw+fPgAQ0ND/Pnnn3BwcMDIkSNZR6zSgAEDhN8bGhoiISEBubm5VX6QIGk2bNgAgUAAe3t7lJSUAAAUFBQwc+ZMeHh4ME4nnvfv36N27doVxhUUFJCXl8cgUc2UlpZi8+bNCAwMrHT7Nl8+hHJ0dERJSQkWLVqEgoICjB8/Hjo6Oti6dSt++eUX1vEIIYTUAJ0ZRwghhDcuXLiAoUOHol27dujatSs4jsPNmzcRFxeH06dPo1+/fqwjypT8/HzMnTsXAQEBKCsrAwDIy8vD3t4e27Ztg4qKCuOEX1dVcerNmzcIDw/nzZlxWlpauHHjBkxMTNCiRQt4enpiwIABePjwISwtLXlxTtnbt29RWlqKevXqiYzn5uaiVq1aqFu3LqNkNVNQUICUlBRwHAdjY2OJfjx8ydraGkOGDIG7u7vI+PLly3H69GlERUUxSlY97u7u8PHxwfz587F06VL8/vvvSE9Px8mTJ+Hu7s6L7dtfev36NcrKyoSd0QkhhPATFeMIIUSKVWcFAx/e6FpYWGDAgAEVVpe4ubnh4sWLiI6OZpRMNmzZsgXm5ubo06cPAGDGjBm4fPkytm/fjq5duwIAIiIi4OTkhH79+mHXrl0s436To6OjWPfxZStu//79MWnSJIwfPx6//vorYmJi4OTkhP379+Off/7B33//zTpilQYOHIghQ4Zg1qxZIuNeXl4ICQnB2bNnGSWTPSEhIRg1ahTGjx+P3r17AwCuXLmCw4cPIygoCMOHD2cbUExGRkbw9PTE4MGDoaamhtjYWOHYrVu3cOjQIdYRq+XVq1fCVcgtWrSgVciEEMJjVIwjhBApJicnV+X2Lo7jIBAIeLECSElJCffu3UPz5s1Fxh89eoQ2bdqgqKiIUTLZEBUVhTFjxmD58uWYOHEiGjRogODgYPTq1UvkvtDQUIwZMwbZ2dlsgsqgu3fv4t27d7CxsUF2djYcHBwQEREBY2Nj7Nu3D23btmUdsUr16tXDjRs3YGpqKjL+8OFDdO3aFTk5OYySVU9+fj48PDxw5coVvHr1SrhqtFxqaiqjZNVz5swZrF27FrGxsVBWVkabNm2wbNky9OzZk3U0samqqiIxMRF6enpo3Lgxzpw5A0tLS6SmpsLCwgJv375lHVEseXl5mD17Ng4fPiyyCnns2LHYsWMH1NXVGSckhBBSXXRmHCGESLHQ0FDWEf5VWlpaiI2NrVCMi42NpS07P0D79u3x999/w8HBARMnTkRBQQEaNmxY4T5tbW1ebIuUJlZWVsLvtbS0eLmK7MOHD8Iz1j5XXFyMwsJCBolqZurUqQgPD8fEiRPRuHFjXp1397nBgwdj8ODBrGN8l6ZNmyIzMxN6enowNjbGxYsXYWlpiTt37kBRUZF1PLFNnToVsbGxOHPmDDp37gyBQICbN2/C2dkZ06ZNQ2BgIOuIhBBCqolWxhFCCOGNlStXYvPmzXBzcxPpUvjHH3/A1dUVS5YsYR1RpvTp0wf169dHQEAAlJSUAACFhYVwcHBAbm4uLl++zDgh4ZNevXrB3Nwc27ZtExmfPXs24uPjcf36dUbJqkdDQwNnzpwRbt3ms6ioKGGzHDMzM1hYWLCOVC1ubm6oW7cu/ve//yE4OBjjxo1Ds2bNkJGRARcXF9401FBVVcWFCxfQrVs3kfHr16/D1tZW2IWYEEIIf1AxjhBCZExBQUGlXeXatGnDKJH4OI7Dli1bsHHjRrx48QIA0KRJEyxcuBBOTk68XYHCV/fv34etrS2KiorQtm1bCAQCxMbGQklJCRcuXECrVq1YRyQ8cuPGDfTt2xfW1tbCcwmvXLmCO3fu4OLFi+jevTvjhOIxMDDA2bNnK2y35ZNXr17hl19+QVhYGDQ0NMBxHN6+fQsbGxscOXKEt2eV3bp1Czdv3oSxsTGGDh3KOo7Y9PT0cObMGZibm4uMx8fHY9CgQXj27BmjZIQQQmqKinGEECIjsrOz4ejoiHPnzlV6nQ9nxn3u3bt3AAA1NTXGSWRbYWEhDhw4gIcPH4LjOJiZmcHOzg7KysqsoxEeio2Nxfr160XOKfvtt98qbE2XZAcOHMCpU6fg7+/Pqw6qnxs7dixSUlKwf/9+YVExISEBDg4OMDY2xuHDhxknlC3e3t4ICgpCQEAAGjduDADIysqCg4MDRo4ciRkzZjBOSAghpLqoGEcIITLCzs4O6enp2LJlC2xsbHDixAm8fPkSq1evxsaNG3l/NhAhhEgCCwsLpKSkgOM4NGvWDAoKCiLX+dD1WV1dHZcvX4a1tbXI+O3bt9G/f3+8efOGTTAxhISEiH0vX1bHWVhY4PHjx/jw4QP09PQAABkZGVBUVKxQqObD7xchhBBq4EAIITLj6tWrOHXqFKytrSEnJwd9fX3069cPdevWxbp163hRjHv58iUWLFgg7FL45edJfFvdx0chISEYOHAgFBQUqnzTy5c3uoSdvLw8se+tW7fuf5jk3zN8+HDWEb5bWVlZhSIiACgoKFToDitpvvz3FwgEFf5WlB9pwJe/GdLwO0UIIUQUrYwjhBAZUbduXcTHx6NZs2Zo1qwZDh48iK5duyItLQ2tWrXiRffLgQMHIiMjA3PmzKm0S+GwYcMYJZMdcnJyyMrKgra2NuTk5L56n0Ag4M0bXWkRHh6ODRs2CA/cNzU1xcKFCyX6rDU5Obkqz3rkOI5+n36wYcOG4c2bNzh8+DCaNGkCAHj+/Dns7OygqamJEydOME4onsuXL2Px4sVYu3atSBfSJUuWYO3atejXrx/riIQQQmQUrYwjhBAZ0aJFCyQlJaFZs2Zo164ddu/ejWbNmsHLy0t4Bo2ki4iIwPXr19GuXTvWUWTW56tiJH2FjCw5cOAAHB0dMXLkSDg5OYHjONy8eRN9+vSBn58fxo8fzzpipUJDQ1lH+M/wuRPp9u3bMWzYMDRr1gy6uroQCATIyMiAubk5Dhw4wDqe2ObNmwcvLy+RLqQDBgyAiooKpk+fjsTERIbpCCGEyDJaGUcIITLi4MGDKC4uxqRJkxATE4MBAwYgJycHtWvXhp+fH8aOHcs6YpXMzMxw8OBBXr2pJeRHMDU1xfTp0+Hi4iIyvmnTJuzZs4f3RYfY2FjeFOGlqRPppUuXRJqz9O3bl3WkalFWVsbt27cr7ULasWNHFBYWMkpGCCFE1lExjhBCZFRBQQEePnwIPT09NGjQgHUcsVy8eBEbN24UruojbDk5OcHY2BhOTk4i49u3b8fjx4+xZcsWNsFkkKKiIh48eABjY2OR8cePH6N169YoKipilKzm3r59i4MHD8LHxwdxcXG82aZKnUglR48ePaCgoIADBw6IdCGdOHEiPn78iPDwcMYJCSGEyCoqxhFCiIz5+PEj0tLSYGRkhFq1JP+0Ak1NTZEzpfLz81FSUgIVFZUKB4zn5ub+6HgyTUdHByEhIWjfvr3IeHR0NIYOHYpnz54xSiZ7jI2NsXDhQsyYMUNkfPfu3diwYQOSk5MZJau+q1evwtfXF8ePH4e+vj5GjRqFUaNG8WZFLF87kXp6eop975cFeEn1+PFjjBgxAklJSSJdSE1MTHDy5MkKxWtCCCHkR5H8d2GEEEL+FQUFBZg7dy78/f0BAI8ePYKhoSGcnJzQpEkTuLm5MU5YOVpdJblycnKgrq5eYbxu3bp4/fo1g0Syy9XVFU5OToiNjUWXLl0gEAgQEREBPz8/bN26lXW8Kj179gx+fn7w9fVFfn4+xowZg+LiYhw7dgxmZmas41ULXzuRbt68Waz7BAIBb4pxxsbGiI+Pr3S7bVWNQyQR3z5MI4QQ8nW0Mo4QQmSEs7Mzbty4gS1btsDW1hbx8fEwNDRESEgIli1bhpiYGNYRCc+0bt0av/76K+bMmSMyvm3bNuzatQsJCQmMksmmEydOYOPGjcLz4cq7qUp6l+FBgwYhIiICP/30E+zs7GBrawt5eXkoKCggLi6Od8U4aelESiQHXz9MI4QQ8nX0kQohhMiIkydP4ujRo+jUqZPIigAzMzOkpKQwTCa+s2fPQl5eHgMGDBAZv3jxIkpLSzFw4EBGyWTT/PnzMWfOHGRnZ6N3794AgCtXrmDjxo20opGBESNGYMSIEaxjVNvFixfh5OSEmTNnonnz5qzjfDdp6UQK8HMllqenJ6ZPnw4lJaUqt97yZYXfb7/9hri4OISFhcHW1lY43rdvXyxbtoyKcYQQwkP8+KtKCCHku2VnZ0NbW7vCeH5+Pm+267i5ucHDw6PCeFlZGdzc3KgY94NNnjwZHz58wJo1a7Bq1SoAQLNmzbBr1y7Y29szTie73r9/X2E7ZN26dRmlqdr169fh6+sLKysrtGzZEhMnTuRFd+ev0dXVRXR0NK87kfJ5JdbmzZthZ2cHJSWlb2695dN2W2n4MI0QQogoOdYBCCGE/BjW1tY4c+aM8OfyF/R79uxB586dWcWqluTk5Eq3rLVs2RKPHz9mkIjMnDkTz549w8uXL5GXl4fU1FQqxDGQlpaGwYMHQ1VVFerq6tDU1ISmpiY0NDSgqanJOt43de7cGXv27EFmZiZmzJiBI0eOQEdHB2VlZbh06RLevXvHOmK1BAQE4MOHD+jXrx/mzp0LJycn9O3bFx8/fkRAQADreGL5fCWWkpKScLxv3744evQow2RVS0tLQ/369YXff+0rNTWVcVLxScOHaYQQQkTRmXGEECIjbt68CVtbW9jZ2cHPzw8zZszAgwcPEBkZifDw8AodMSVRo0aNcOjQIeGWyHKXL1/G+PHj8erVK0bJCGGrS5cuAD6dDdmwYcMKb9B79uzJIlaNJSUlYe/evdi/fz/evHmDfv36ISQkhHUsscjLyyMzM7NC8SQnJwfa2tooLS1llEx8+vr6wpVYampqiIuLg6GhIR4/fgxLS0vk5eWxjihTevbsidGjR2Pu3LlQU1NDfHw8DAwMMGfOHDx+/Bjnz59nHZEQQkg10TZVQgiREV26dMHNmzexfv16GBkZ4eLFi7C0tERkZCTMzc1ZxxPL0KFDMW/ePJw4cQJGRkYAgMePH8PV1RVDhw5lnE42BQcHIzAwEBkZGfj48aPItejoaEapZE98fDyioqLQokUL1lH+FS1atMCff/6JdevW4fTp0/D19WUdSWwcx1W6WunZs2eVdh+WRNKyEmv06NGwsrKqsK12/fr1uH37NoKCghglq55169bB1tYWCQkJKCkpwdatW0U+TCOEEMI/tE2VEEJkQHFxMRwdHaGiogJ/f3/cv38fCQkJOHDgAG8KccCnN1Cqqqpo2bIlDAwMYGBgAFNTU9SvXx8bNmxgHU/meHp6wtHREdra2oiJiUGHDh1Qv359pKam0vl9P5i1tTWePn3KOsa/Tl5eHsOHD+fFqjgLCwtYWlpCIBCgT58+sLS0FH61bdsW3bt35825cdJwrAEAhIeHY/DgwRXGbW1tce3aNQaJaqZLly64ceMGCgoKhB+mNWzYEJGRkbxY1U4IIaQiWhlHCCEyQEFBASdOnMDSpUtZR/ku6urquHnzJi5duoS4uDgoKyujTZs26NGjB+toMmnnzp3w9vbGuHHj4O/vj0WLFsHQ0BDu7u7Izc1lHU+m+Pj44Ndff8Xz58/RunVrKCgoiFxv06YNo2SyY/jw4QCA2NhYDBgwAHXq1BFeq127Npo1a4ZRo0YxSlc90rIS6/3796hdu3aFcQUFBd5ttTU3Nxc21CCEEMJ/dGYcIYTICEdHR5ibm2P+/Pmso/wrioqKoKioyKstU9JGRUUFiYmJ0NfXh7a2Ni5duoS2bdsiOTkZnTp1Qk5ODuuIMuPWrVsYP3480tPThWMCgUC4ZZIP55RJC39/f4wdO1ak8QFfxMbGol27dgCAe/fuYcOGDYiKikJZWRksLS2xePFiXq2mtra2xpAhQ+Du7i4yvnz5cpw+fRpRUVGMklWtOsVCSe6WTAghpHK0Mo4QQmSEsbExVq1ahZs3b6J9+/ZQVVUVue7k5MQomfjKysqwZs0aeHl54eXLl3j06BEMDQ2xdOlSNGvWDFOmTGEdUaY0atQIOTk50NfXh76+Pm7duoW2bdsiLS0N9FnfjzV58mRYWFjg8OHDlTZwID+Og4MD6wg1ZmlpCQsLC0ydOhXjx4/n/UqspUuXYtSoUUhJSRE2/rly5QoOHz4s8efFaWhoiP04pmI7IYTwD62MI4QQGWFgYPDVawKBAKmpqT8wTc2sXLkS/v7+WLlyJaZNm4b79+/D0NAQgYGB2Lx5MyIjI1lHlClTp06Frq4uli1bBi8vL8yfPx9du3bF3bt3MXLkSOzdu5d1RJmhqqqKuLg4GBsbs44i8+Tk5L5ZRJHkwklkZCR8fX0RGBiI4uJijBo1CpMnT4aNjQ3raDV25swZrF27FrGxscKjDZYtWybxHYY/3w6cnp4ONzc3TJo0SXhmX2RkJPz9/bFu3TpeF4AJIURWUTGOEEIIbxgbG2P37t3o06cP1NTUEBcXB0NDQzx8+BCdO3fGP//8wzqiTCkrK0NZWRlq1fq00D4wMBAREREwNjbGr7/+WulZTeS/MWTIEEyaNIk3Z5JJs5MnT4oU44qLixETEwN/f3+sWLGCFyt4CwsLERgYiH379uH69eto1qwZJk+eDAcHBzRt2pR1PJnTp08fTJ06FePGjRMZP3ToELy9vREWFsYmGCGEkBqjYhwhhBDeUFZWxsOHD6Gvry9SjEtISECHDh3w/v171hEJYcLb2xurV6/G5MmTYW5uXqGBw9ChQxklI+UOHTqEo0eP4tSpU6yjVEtKSgr27duHgIAAZGZmol+/fjh79izrWNUSFRWFxMRECAQCmJmZwcLCgnWkalFRUUFcXByaN28uMv7o0SO0a9cOBQUFjJIRQgipKSrGEUII4Q0rKyvMmzcPEyZMECnGrVixApcvX8b169dZR5R68fHxYt9LHTx/HDk5ua9eowYOkiElJQVt2rRBfn4+6yjV9v79exw8eBD/+9//8ObNG978Pr169Qq//PILwsLCoKGhAY7j8PbtW9jY2ODIkSPQ0tJiHVEsLVq0wE8//YSNGzeKjLu6uuKvv/5CUlISo2SEEEJqiho4EEIIkXiTJ0/G1q1bsWzZMkycOBHPnz9HWVkZjh8/jqSkJAQEBOCvv/5iHVMmtGvXTtil81uoAPRjlZWVsY5AvqGwsBDbtm3j3RbP8PBw+Pr64tixY5CXl8eYMWN4sc223Ny5c5GXl4cHDx7A1NQUAJCQkAAHBwc4OTnh8OHDjBOKZ/PmzRg1ahQuXLiATp06AfjUQTklJQXHjh1jnI4QQkhN0Mo4QgghEk9eXh6ZmZnQ1tbGhQsXsHbtWkRFRaGsrAyWlpZwd3dH//79WceUCU+ePBH7Xn19/f8wCSGSSVNTU+TMOI7j8O7dO6ioqODAgQMSv2X46dOn8PPzg5+fH9LS0tClSxdMmTIFY8aMqdCFW9Kpq6vj8uXLsLa2Fhm/ffs2+vfvjzdv3rAJVgPPnj3Drl27kJiYiP/X3p1H93znexx//RIhQcQ+ExGSSBm/qSWx1NZYmqC4tU5sxUgMrRLl2tp7UWem6kx7i1BLmaBqCzGGY68lVyrGGi1ii2gyltIxiSVJg/zuH53mTm7aXk34fSTf5+OcnJPf5/cVT0459c7n+/k6HA7Z7Xa99tpr8vX1NZ0GACgChnEAgGeei4uLbty4oZo1a5pOAZ4Z0dHRGjlypNzd3RUdHf2T10ZFRTmpCitXrizw2sXFRTVq1NALL7ygKlWqGKp6PGFhYdq/f79q1KihoUOHKiIiQg0aNDCdVWSenp46ePCgmjZtWmD95MmTat++ve7cuWMmDABgeQzjAMBCDh48qCVLliglJUUbN26Uj4+PVq1aJX9/f7Vr18503o9ycXHR119/XWLO97GSVatWafHixUpNTVViYqLq1q2ruXPnyt/fXz179jSdV6r5+/vr2LFjqlatmvz9/X/0OpvNpsuXLzuxDD8mKSmp0GDoWfLKK68oMjJSPXr0kKurq+mcYuvZs6cyMjK0du1a1apVS5J09epVDR48WFWqVNGf//xnw4UAAKv68dN+AQClSlxcnLp06SIPDw+dPHlS3377rSTp7t27mjVrluG6/1/9+vVVtWrVn/yAcy1atEgTJkxQt27dChzqXrlyZc2dO9dsnAWkpqaqWrVq+Z//2AeDOLMyMzO1cOFCBQcHq1mzZqZzftKWLVvUs2fPUjGIk6QFCxbo7t278vPzU7169RQYGCh/f3/dvXtX8+fPN50HALAwdsYBgEUEBQVp/PjxGjp0aIEnkSYlJalr1666ceOG6cQf5eLiorlz58rLy+snrxs2bJiTiiBJdrtds2bNUq9evQr8N3X69Gl16NBB33zzjelEy8jOzpaHh8cPvnf9+nV5e3s7uQj79u1TTEyMNm3apLp166pv377q27evgoKCTKdZzp49e3Tu3Ln8s9ZCQ0NNJwEALI6nqQKARZw/f14hISGF1itVqlQiDrEeMGAAZ8Y9Y1JTU39wsFCuXDndv3/fQJF1BQUFac2aNQoODi6wvnHjRr3++uu6deuWoTJr+dvf/qYVK1YoJiZG9+/fV3h4uB48eKC4uDjZ7XbTeZYVFhamsLAw0xkAAORjGAcAFuHt7a1Lly7Jz8+vwHpCQoICAgLMRD2mf30yIZ4d/v7+SkpKKvTU1B07djB4cLKwsDC1adNG77zzjqZMmaL79+9rzJgx2rBhg2bPnm06zxK6deumhIQE9ejRQ/Pnz1fXrl3l6uqqxYsXm06zlP/vYSb/igebAABMYRgHABYxatQojRs3TjExMbLZbLp27ZoSExM1ceJETZ8+3XTeT+JEhWfTpEmT9MYbbygnJ0cOh0NHjhzR2rVr9d5772nZsmWm8yxl/vz56t69u4YPH65t27bp2rVrqlSpko4ePcpg1El2796tqKgovf7663ruuedM51jWnDlzHus6m832TA/jgoKCHvsbUSdOnHjKNQCAJ41hHABYxOTJk5WZmamOHTsqJydHISEhKleunCZOnKgxY8aYzvtJeXl5phPwA4YPH66HDx9q8uTJysrK0qBBg+Tj46N58+ZpwIABpvMsp3PnzurTp48WLVqkMmXKaOvWrQzinOjgwYOKiYlR8+bN9atf/UpDhgxR//79TWdZTmpqqumEJ6JXr175n+fk5GjhwoWy2+1q3bq1JOnw4cM6c+aMRo8ebagQAFAcPMABACwmKytLZ8+eVV5enux2uypWrGg6CaXAN998o7y8vPxz/a5evSofHx/DVdaRkpKiQYMG6caNG1q2bJni4+P1wQcfKCoqSu+++67c3NxMJ1pGVlaW1q1bp5iYGB05ckSPHj3Shx9+qIiICHl6eprOs6Tc3FylpqaqXr16KlOm5O1FGDFihLy9vfX73/++wPqMGTOUnp6umJgYQ2UAgKJiGAcAFnXnzh3t27dPDRo0UMOGDU3noJS4ceOG3n33XS1btkzZ2dmmcyzD09NT3bt31+LFi1W5cmVJ0qFDh/Kfnnzy5EmzgRZ1/vx5/elPf9KqVauUkZGhsLAwbdmyxXSWZWRlZWns2LFauXKlJOnChQsKCAhQVFSUatWqpalTpxoufDxeXl46duxYodufL168qObNmyszM9NQGQCgqFxMBwAAnCM8PFwLFiyQJGVnZ6tFixYKDw9X48aNFRcXZ7gOJUlGRoYGDx6sGjVqqFatWoqOjlZeXp6mT5+ugIAAHT58mJ0aTrZw4UKtW7cufxAnSW3atNHJkycLPWEVztOgQQP98Y9/1N/+9jetXbvWdI7lvPXWWzp16pQOHDggd3f3/PXQ0FCtX7/eYNnP4+HhoYSEhELrCQkJBX5dAICSg51xAGARv/zlL7Vr1y41adJEa9as0YwZM3Tq1CmtXLlSH3/8MTtn8NhGjx6trVu3qn///tq5c6eSk5PVpUsX5eTkaMaMGWrfvr3pRABQ3bp1tX79erVq1Uqenp46deqUAgICdOnSJQUHB+vOnTumEx/L7Nmz9c4772jEiBFq1aqVJOV/02P69OklZocfAOB/lbxDEwAARZKZmamqVatKknbu3Km+ffuqfPny6t69uyZNmmS4DiXJtm3btHz5coWGhmr06NEKDAxU/fr1NXfuXNNplnf27FmlpaUpNzc3f81ms+nf/u3fDFYBZty6dSv/HMt/df/+/cd+UumzYOrUqQoICNC8efO0Zs0aSVLDhg21YsUKhYeHG64DABQFwzgAsAhfX18lJiaqatWq2rlzp9atWydJ+sc//sFtLvhZrl27lv+UzoCAALm7u2vEiBGGq6wlMzNTXl5e+a8vX76sPn366IsvvpDNZtP3Nz58P3B49OiRkU7ApBYtWmjbtm0aO3aspP/987B06dL8p5KWFOHh4QzeAKAUYRgHABbx5ptvavDgwapYsaLq1q2rDh06SJL++7//W40aNTIbhxIlLy+vwNM5XV1dVaFCBYNF1hMdHS13d/f8Xa3jxo2Tr6+vdu3apaZNm+qvf/2rUlNTNXHiRH344YeGawEz3nvvPXXt2lVnz57Vw4cPNW/ePJ05c0aJiYmKj483nQcAsDDOjAMACzl+/LjS0tIUFhamihUrSvrulsPKlSurbdu2hutQUri4uOjll19WuXLlJElbt25Vp06dCg3kNm3aZCLPEm7evKkhQ4YoMDBQH330kapXr669e/eqSZMm8vHx0ZEjR+Tj46O9e/dq4sSJnAkJS0lKSlLTpk0lSV9++aU++OADHT9+XHl5eQoODtaUKVNK1DehHj16pDlz5ig2NrbQbeiSdPv2bUNlAICiYmccAFhIs2bN1KxZswJr3bt3N1SDkmrYsGEFXr/66quGSqyrZs2a2rVrl9577z1J3/1j3dPTU5JUvXp1Xbt2TT4+PvLz89P58+dNpgJOFxwcrKCgII0YMUKDBg3SypUrTScVy8yZM7Vs2TJNmDBB06ZN03/8x3/oypUr2rx5s6ZPn246DwBQBOyMAwAAKOFefPFFTZgwQb1799bIkSN169YtTZo0SYsXL9aJEyd0+vRp04mA0yQmJiomJkaxsbF68OCB+vbtq4iICHXs2NF0WpHUq1dP0dHR6t69uzw9PZWUlJS/dvjw4fyHOgAASg6GcQAAACXcrl27dPfuXfXr10/p6enq3r27Tp8+rapVqyo2NladOnUynQg4XXZ2tmJjY7V8+XIdPHhQfn5+ioiI0LBhw1S7dm3TeY+tQoUKSk5OVp06deTt7a1t27YpODhYly9fVlBQkDIzM00nAgB+JhfTAQAAACieLl26qF+/fpK+e3LyF198oW+++UY3b95kEAfL8vDw0LBhw3TgwAFduHBBAwcO1JIlS+Tv769u3bqZzntstWvX1vXr1yVJgYGB2r17tyTp6NGj+Wd3AgBKFnbGAQAAACj17t27p9WrV+vtt99WRkaGHj16ZDrpsUydOlWVKlXS22+/rY0bN2rgwIHy8/NTWlqaxo8fr9mzZ5tOBAD8TAzjAMBCDh48qCVLliglJUUbN26Uj4+PVq1aJX9/f7Vr1850HoAiysnJ0fz587V//37dvHlTeXl5Bd4/ceKEoTLAvPj4eMXExCguLk6urq4KDw9XZGSkWrVqZTqtSA4fPqxDhw4pMDBQr7zyiukcAEAR8DRVALCIuLg4DRkyRIMHD9bJkyf17bffSpLu3r2rWbNmafv27YYLARRVRESE9uzZo379+qlly5ay2WymkwCj0tPTtWLFCq1YsUKpqalq06aN5s+fr/DwcFWoUMF0XrG0atWqxA4SAQDfYWccAFhEUFCQxo8fr6FDh8rT01OnTp1SQECAkpKS1LVrV924ccN0IoAi8vLy0vbt29W2bVvTKYBxYWFh2r9/v2rUqKGhQ4cqIiJCDRo0MJ31s2zZsuWxr2V3HACUPOyMAwCLOH/+vEJCQgqtV6pUSRkZGc4PAvDE+Pj4yNPT03QG8Ezw8PBQXFycevToIVdXV9M5RdKrV68Cr202m/7vHorvd8CWlLPvAAD/i6epAoBFeHt769KlS4XWExISFBAQYKAIwJPyX//1X5oyZYq++uor0ymAcVu2bFHPnj1L7CBOkvLy8vI/du/eraZNm2rHjh3KyMhQZmamduzYoeDgYO3cudN0KgCgCNgZBwAWMWrUKI0bN04xMTGy2Wy6du2aEhMTNXHiRE2fPt10HoBiaN68uXJychQQEKDy5cvLzc2twPu3b982VAaguN58800tXry4wIOWunTpovLly2vkyJFKTk42WAcAKAqGcQBgEZMnT1ZmZqY6duyonJwchYSEqFy5cpo4caLGjBljOg9AMQwcOFBXr17VrFmz9Itf/IIHOAClSEpKiry8vAqte3l56cqVK84PAgAUGw9wAACLycrK0tmzZ5WXlye73a6KFSuaTgJQTOXLl1diYqKaNGliOgXAExYSEiI3Nzd9+umn8vb2liTduHFDQ4YMUW5uruLj4w0XAgB+LnbGAYDFlC9fXs2bNzedAeAJ+tWvfqXs7GzTGQCegpiYGPXu3Vt169ZVnTp1JElpaWmqX7++Nm/ebDYOAFAk7IwDAIvo2LHjT966tm/fPifWAHiSdu/erZkzZ+rdd99Vo0aNCp0ZV6lSJUNlAJ4Eh8OhPXv26Ny5c3I4HLLb7QoNDeWWdAAooRjGAYBFjB8/vsDrBw8eKCkpSadPn9awYcM0b948Q2UAisvFxUWSCv3D3OFwyGaz6dGjRyayAAAA8AO4TRUALGLOnDk/uP7OO+/o3r17Tq4B8CTt37/fdAKAJyg6OlojR46Uu7u7oqOjf/LaqKgoJ1UBAJ4UdsYBgMVdunRJLVu21O3bt02nAAAASf7+/jp27JiqVasmf3//H73OZrPp8uXLTiwDADwJ7IwDAItLTEyUu7u76QwAAPBPqampP/g5AKB0YBgHABbRp0+fAq8dDoeuX7+uY8eOadq0aYaqAAAAAMBaXEwHAACcw8vLq8BH1apV1aFDB23fvl0zZswwnQcAAH5Av379NHv27ELr77//vn7zm98YKAIAFBdnxgEAAADAM6pGjRrat2+fGjVqVGD9yy+/VGhoqL7++mtDZQCAouI2VQAAgFLi1q1bOn/+vGw2m+rXr68aNWqYTgJQTPfu3VPZsmULrbu5uenOnTsGigAAxcVtqgBgEVWqVFHVqlUf6wNAyXL//n1FRESoVq1aCgkJ0YsvvqhatWopMjJSWVlZpvMAFMPzzz+v9evXF1pft26d7Ha7gSIAQHGxMw4ALGLatGn6wx/+oC5duqh169aSvnuS6q5duzRt2jSGcEAJNmHCBMXHx2vLli1q27atJCkhIUFRUVH693//dy1atMhwIYCimjZtmvr27auUlBR16tRJkrR3716tXbtWGzZsMFwHACgKzowDAIvo27evOnbsqDFjxhRYX7BggT777DNt3rzZTBiAYqtevbo2btyoDh06FFjfv3+/wsPDdevWLTNhAJ6Ibdu2adasWUpKSpKHh4caN26sGTNmqH379qbTAABFwDAOACyiYsWKSkpKUmBgYIH1ixcvKigoSPfu3TNUBqC4ypcvr+PHj6thw4YF1s+cOaOWLVvq/v37hsoAAADwf3FmHABYRLVq1fTnP/+50PrmzZtVrVo1A0UAnpTWrVtrxowZysnJyV/Lzs7WzJkz829LB1CyHT9+XJ9++qlWr16tkydPms4BABQDZ8YBgEXMnDlTkZGROnDgQP4/zg8fPqydO3dq2bJlhusAFMe8efPUtWtX1a5dW02aNJHNZlNSUpLc3d21a9cu03kAiuHmzZsaMGCADhw4oMqVK8vhcCgzM1MdO3bUunXreGoyAJRA3KYKABby17/+VdHR0UpOTpbD4ZDdbldUVJReeOEF02kAiik7O1uffvqpzp07l//ne/DgwfLw8DCdBqAY+vfvr5SUFK1atSr/VvSzZ89q2LBhCgwM1Nq1aw0XAgB+LoZxAAAAAPCM8vLy0meffaYWLVoUWD9y5Ig6d+6sjIwMM2EAgCLjzDgAAIASbuXKldq2bVv+68mTJ6ty5cpq06aNvvrqK4NlAIorLy9Pbm5uhdbd3NyUl5dnoAgAUFwM4wAAAEq4WbNm5d+OmpiYqAULFuiPf/yjqlevrvHjxxuuA1AcnTp10rhx43Tt2rX8tatXr2r8+PF66aWXDJYBAIqK21QBAABKuPLly+vcuXOqU6eOpkyZouvXr+uTTz7RmTNn1KFDB926dct0IoAiSk9PV8+ePXX69Gn5+vrKZrMpLS1NjRo10l/+8hfVrl3bdCIA4GfiaaoAAAAlXMWKFfX3v/9dderU0e7du/N3w7m7uys7O9twHYDi8PX11YkTJ7Rnz54CD2gJDQ01nQYAKCKGcQAAACVcWFiYRowYoaCgIF24cEHdu3eXJJ05c0Z+fn5m4wA8EWFhYQoLCzOdAQB4AhjGAYCFHD16VBs2bFBaWppyc3MLvLdp0yZDVQCK66OPPtJ//ud/Kj09XXFxcapWrZok6fjx4xo4cKDhOgA/V3R09GNfGxUV9RRLAABPA2fGAYBFrFu3TkOHDlXnzp21Z88ede7cWRcvXtSNGzfUu3dvLV++3HQiAACQ5O/v/1jX2Ww2Xb58+SnXAACeNIZxAGARjRs31qhRo/TGG2/I09NTp06dkr+/v0aNGiVvb2/NnDnTdCKAYjh48KCWLFmiy5cva8OGDfLx8dGqVavk7++vdu3amc4DAADAP7mYDgAAOEdKSkr+OVLlypXT/fv3ZbPZNH78eH388ceG6wAUR1xcnLp06SIPDw+dOHFC3377rSTp7t27mjVrluE6AE9Cbm6uzp8/r4cPH5pOAQAUE8M4ALCIqlWr6u7du5IkHx8fnT59WpKUkZGhrKwsk2kAiukPf/iDFi9erKVLl8rNzS1/vU2bNjpx4oTBMgDFlZWVpcjISJUvX16//vWvlZaWJum7s+Jmz55tuA4AUBQM4wDAIl588UXt2bNHkhQeHq5x48bpd7/7nQYOHKiXXnrJcB2A4jh//rxCQkIKrVeqVEkZGRnODwLwxLz11ls6deqUDhw4IHd39/z10NBQrV+/3mAZAKCoeJoqAFjEggULlJOTI+m7/7F3c3NTQkKC+vTpo2nTphmuA1Ac3t7eunTpkvz8/AqsJyQkKCAgwEwUgCdi8+bNWr9+vVq1aiWbzZa/brfblZKSYrAMAFBUDOMAwCKqVq2a/7mLi4smT56syZMnGywC8KSMGjVK48aNU0xMjGw2m65du6bExERNnDhR06dPN50HoBhu3bqlmjVrFlr//uxXAEDJwzAOAEqxO3fuPPa1lSpVeoolAJ6myZMnKzMzUx07dlROTo5CQkJUrlw5TZw4UWPGjDGdB6AYWrRooW3btmns2LGSlD+AW7p0qVq3bm0yDQBQRDaHw+EwHQEAeDpcXFz+3++aOxwO2Ww2PXr0yElVAJ6WrKwsnT17Vnl5ebLb7apYsaLpJADFdOjQIXXt2lWDBw/WihUrNGrUKJ05c0aJiYmKj49Xs2bNTCcCAH4mdsYBQCm2f/9+0wkAnqKsrCxNmjRJmzdv1oMHDxQaGqro6GhVr17ddBqAYkpKSlLTpk3Vpk0bff755/rggw9Ur1497d69W8HBwUpMTFSjRo1MZwIAioCdcQAAACXUpEmTtHDhQg0ePFju7u5au3atOnTooA0bNphOA1BMLi4uCgoK0ogRIzRo0CB5eXmZTgIAPCEM4wAAAEqoevXq6d1339WAAQMkSUeOHFHbtm2Vk5MjV1dXw3UAiiMxMVExMTGKjY3VgwcP1LdvX0VERKhjx46m0wAAxcQwDgAAoIQqW7asUlNT5ePjk7/m4eGhCxcuyNfX12AZgCclOztbsbGxWr58uQ4ePCg/Pz9FRERo2LBhql27tuk8AEARuJgOAAAAQNE8evRIZcuWLbBWpkwZPXz40FARgCfNw8NDw4YN04EDB3ThwgUNHDhQS5Yskb+/v7p162Y6DwBQBOyMAwAAKKFcXFz08ssvq1y5cvlrW7duVadOnVShQoX8tU2bNpnIA/AU3Lt3T6tXr9bbb7+tjIwMnoYOACUQT1MFAAAooYYNG1Zo7dVXXzVQAuBpi4+PV0xMjOLi4uTq6qrw8HBFRkaazgIAFAE74wDAQjZu3KjY2FilpaUpNze3wHsnTpwwVAUAAH5Ienq6VqxYoRUrVig1NVVt2rRRZGSkwsPDC+x+BQCULJwZBwAWER0dreHDh6tmzZo6efKkWrZsqWrVquny5ct6+eWXTecBAIB/ERYWJn9/fy1cuFD9+vVTcnKyEhISNHz4cAZxAFDCcZsqAFjEwoUL9fHHH2vgwIFauXKlJk+erICAAE2fPl23b982nQcAAP6Fh4eH4uLi1KNHD7m6uprOAQA8QdymCgAWUb58eSUnJ6tu3bqqWbOm9uzZoyZNmujixYtq1aqV/v73v5tOBAAAAIBSj9tUAcAifvnLX+YP3OrWravDhw9LklJTU8X3ZQAAAADAORjGAYBFdOrUSVu3bpUkRUZGavz48QoLC1P//v3Vu3dvw3UAAAAAYA3cpgoAFpGXl6e8vDyVKfPdcaGxsbFKSEhQYGCgXnvtNZUtW9ZwIQAAAACUfgzjAAAAAAAAACfhNlUAAAAAAADASRjGAQAAAAAAAE7CMA4AAAAAAABwEoZxAAAAAAAAgJMwjAMAAAAAAACcpIzpAADA0xMUFCSbzfZY1544ceIp1wAAAAAAGMYBQCnWq1ev/M9zcnK0cOFC2e12tW7dWpJ0+PBhnTlzRqNHjzZUCAAAAADWYnM4HA7TEQCAp2/EiBHy9vbW73//+wLrM2bMUHp6umJiYgyVAQAAAIB1MIwDAIvw8vLSsWPH9NxzzxVYv3jxopo3b67MzExDZQAAAABgHTzAAQAswsPDQwkJCYXWExIS5O7ubqAIAAAAAKyHM+MAwCLefPNNvf766zp+/LhatWol6bsz42JiYjR9+nTDdQAAAABgDdymCgAWEhsbq3nz5ik5OVmS1LBhQ40bN07h4eGGywAAAADAGhjGAQAAAAAAAE7CmXEAAAAAAACAk3BmHABYxKNHjzRnzhzFxsYqLS1Nubm5Bd6/ffu2oTIAAAAAsA52xgGARcycOVMffvihwsPDlZmZqQkTJqhPnz5ycXHRO++8YzoPAAAAACyBM+MAwCLq1aun6Ohode/eXZ6enkpKSspfO3z4sNasWWM6EQAAAABKPXbGAYBF3LhxQ40aNZIkVaxYUZmZmZKkHj16aNu2bSbTAAAAAMAyGMYBgEXUrl1b169flyQFBgZq9+7dkqSjR4+qXLlyJtMAAAAAwDIYxgGARfTu3Vt79+6VJI0bN07Tpk3Tc889p6FDhyoiIsJwHQAAAABYA2fGAYBFHT58WIcOHVJgYKBeeeUV0zkAAAAAYAkM4wAAAAAAAAAnKWM6AADw9GzZsuWxr2V3HAAAAAA8feyMA4BSzMWl4NGgNptN//evfZvNJkl69OiR07oAAAAAwKp4gAMAlGJ5eXn5H7t371bTpk21Y8cOZWRkKDMzUzt27FBwcLB27txpOhUAAAAALIGdcQBgEc8//7wWL16sdu3aFVg/ePCgRo4cqeTkZENlAAAAAGAd7IwDAItISUmRl5dXoXUvLy9duXLF+UEAAAAAYEHsjAMAiwgJCZGbm5s+/fRTeXt7S5Ju3LihIUOGKDc3V/Hx8YYLAQAAAKD0YxgHABZx6dIl9e7dW+fPn1edOnUkSWlpaapfv742b96swMBAw4UAAAAAUPoxjAMAC3E4HNqzZ4/OnTsnh8Mhu92u0NDQ/CeqAgAAAACeLoZxAAAAAAAAgJOUMR0AAHh6oqOjNXLkSLm7uys6Ovonr42KinJSFQAAAABYFzvjAKAU8/f317Fjx1StWjX5+/v/6HU2m02XL192YhkAAAAAWBPDOAAAAAAAAMBJXEwHAAAAAAAAAFbBMA4ALKJfv36aPXt2ofX3339fv/nNbwwUAQAAAID1cJsqAFhEjRo1tG/fPjVq1KjA+pdffqnQ0FB9/fXXhsoAAAAAwDrYGQcAFnHv3j2VLVu20Lqbm5vu3LljoAgAAAAArIdhHABYxPPPP6/169cXWl+3bp3sdruBIgAAAACwnjKmAwAAzjFt2jT17dtXKSkp6tSpkyRp7969Wrt2rTZs2GC4DgAAAACsgTPjAMBCtm3bplmzZikpKUkeHh5q3LixZsyYofbt25tOAwAAAABLYBgHAAAAAAAAOAm3qQKAxRw/flzJycmy2Wyy2+0KCgoynQQAAAAAlsEwDgAs4ubNmxowYIAOHDigypUry+FwKDMzUx07dtS6detUo0YN04kAAAAAUOrxNFUAsIixY8fqzp07OnPmjG7fvq1//OMfOn36tO7cuaOoqCjTeQAAAABgCZwZBwAW4eXlpc8++0wtWrQosH7kyBF17txZGRkZZsIAAAAAwELYGQcAFpGXlyc3N7dC625ubsrLyzNQBAAAAADWwzAOACyiU6dOGjdunK5du5a/dvXqVY0fP14vvfSSwTIAAAAAsA5uUwUAi0hPT1fPnj11+vRp+fr6ymazKS0tTY0aNdJf/vIX1a5d23QiAAAAAJR6DOMAwGL27Nmjc+fOyeFwyG63KzQ01HQSAAAAAFgGwzgAAAAAAADAScqYDgAAPD3R0dGPfW1UVNRTLAEAAAAASOyMA4BSzd/f/7Gus9lsunz58lOuAQAAAAAwjAMAAAAAAACcxMV0AADAuXJzc3X+/Hk9fPjQdAoAAAAAWA7DOACwiKysLEVGRqp8+fL69a9/rbS0NEnfnRU3e/Zsw3UAAAAAYA0M4wDAIt566y2dOnVKBw4ckLu7e/56aGio1q9fb7AMAAAAAKyDp6kCgEVs3rxZ69evV6tWrWSz2fLX7Xa7UlJSDJYBAAAAgHWwMw4ALOLWrVuqWbNmofX79+8XGM4BAAAAAJ4ehnEAYBEtWrTQtm3b8l9/P4BbunSpWrdubSoLAAAAACyF21QBwCLee+89de3aVWfPntXDhw81b948nTlzRomJiYqPjzedBwAAAACWwM44ACjlkpKSJElt2rTR559/rqysLNWrV0+7d+/WL37xCyUmJqpZs2ZmIwEAAADAImwOh8NhOgIA8PS4uLgoKChII0aM0KBBg+Tl5WU6CQAAAAAsi51xAFDKff755woODtbUqVPl7e2tIUOGaP/+/aazAAAAAMCS2BkHABaRnZ2t2NhYLV++XAcPHpSfn58iIiI0bNgw1a5d23QeAAAAAFgCwzgAsKCUlBQtX75cn3zyia5fv66wsDBt377ddBYAAAAAlHoM4wDAou7du6fVq1fr7bffVkZGhh49emQ6CQAAAABKvTKmAwAAzhUfH6+YmBjFxcXJ1dVV4eHhioyMNJ0FAAAAAJbAzjgAsID09HStWLFCK1asUGpqqtq0aaPIyEiFh4erQoUKpvMAAAAAwDLYGQcApVxYWJj279+vGjVqaOjQoYqIiFCDBg1MZwEAAACAJTGMA4BSzsPDQ3FxcerRo4dcXV1N5wAAAACApXGbKgAAAAAAAOAkLqYDAAAAAAAAAKtgGAcAAAAAAAA4CcM4AAAAAAAAwEkYxgEAAABP0YEDB2Sz2ZSRkfHYP8bPz09z5859ak0AAMAchnEAAACwtN/+9rey2Wx67bXXCr03evRo2Ww2/fa3v3V+GAAAKJUYxgEAAMDyfH19tW7dOmVnZ+ev5eTkaO3atapTp47BMgAAUNowjAMAAIDlBQcHq06dOtq0aVP+2qZNm+Tr66ugoKD8tW+//VZRUVGqWbOm3N3d1a5dOx09erTA19q+fbvq168vDw8PdezYUVeuXCn08x06dEghISHy8PCQr6+voqKidP/+/R/tS0tLU8+ePVWxYkVVqlRJ4eHh+vrrr4v/CwcAAE7HMA4AAACQNHz4cC1fvjz/dUxMjCIiIgpcM3nyZMXFxWnlypU6ceKEAgMD1aVLF92+fVuSlJ6erj59+qhbt25KSkrSiBEjNHXq1AJf48svv1SXLl3Up08fffHFF1q/fr0SEhI0ZsyYH+xyOBzq1auXbt++rfj4eO3Zs0cpKSnq37//E/4dAAAAzsAwDgAAAJA0ZMgQJSQk6MqVK/rqq6/0+eef69VXX81///79+1q0aJHef/99vfzyy7Lb7Vq6dKk8PDz0pz/9SZK0aNEiBQQEaM6cOWrQoIEGDx5c6Ly5999/X4MGDdKbb76p5557Tm3atFF0dLQ++eQT5eTkFOr67LPP9MUXX2jNmjVq1qyZXnjhBa1atUrx8fGFduUBAIBnXxnTAQAAAMCzoHr16urevbtWrlwph8Oh7t27q3r16vnvp6Sk6MGDB2rbtm3+mpubm1q2bKnk5GRJUnJyslq1aiWbzZZ/TevWrQv8PMePH9elS5e0evXq/DWHw6G8vDylpqaqYcOGBa5PTk6Wr6+vfH1989fsdrsqV66s5ORktWjR4sn8BgAAAKdgGAcAAAD8U0RERP7toh999FGB9xwOhyQVGLR9v/792vfX/JS8vDyNGjVKUVFRhd77oYdF/OvXf5x1AADwbOM2VQAAAOCfunbtqtzcXOXm5qpLly4F3gsMDFTZsmWVkJCQv/bgwQMdO3Ysfzeb3W7X4cOHC/y4//s6ODhYZ86cUWBgYKGPsmXLFmqy2+1KS0tTenp6/trZs2eVmZlZaBcdAAB49jGMAwAAAP7J1dVVycnJSk5Olqura4H3KlSooNdff12TJk3Szp07dfbsWf3ud79TVlaWIiMjJUmvvfaaUlJSNGHCBJ0/f15r1qzRihUrCnydKVOmKDExUW+88YaSkpJ08eJFbdmyRWPHjv3BptDQUDVu3FiDBw/WiRMndOTIEQ0dOlTt27dX8+bNn8rvAwAAeHoYxgEAAAD/olKlSqpUqdIPvjd79mz17dtXQ4YMUXBwsC5duqRdu3apSpUqkr67zTQuLk5bt25VkyZNtHjxYs2aNavA12jcuLHi4+N18eJFvfjiiwoKCtK0adPk7e39gz+nzWbT5s2bVaVKFYWEhCg0NFQBAQFav379k/2FAwAAp7A5HudgCwAAAAAAAADFxs44AAAAAAAAwEkYxgEAAAAAAABOwjAOAAAAAAAAcBKGcQAAAAAAAICTMIwDAAAAAAAAnIRhHAAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASRjGAQAAAAAAAE7CMA4AAAAAAABwEoZxAAAAAAAAgJP8D7BjM8cdKntCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "text/html": [ @@ -34318,576 +53955,1268 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Reporte Final de Imputaciones

\n", + "

Tabla de correlaciones con filtro de umbral de correlación

\n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
ModeloAeronaveParámetroValor ImputadoNivel de Confianza
8Aerosonde® Mk. 4.8 VTOL FTUASÁrea del ala2.5030.804
9Fulmar XÁrea del ala0.9400.804
10Orbiter 4Área del ala1.6080.804
11Orbiter 3Área del ala1.2000.804
12MantisÁrea del ala0.7540.804
13ScanEagleÁrea del ala1.0630.804
14IntegratorÁrea del ala1.8720.804
15Integrator VTOLÁrea del ala2.0900.804
16Integrator Extended Range (ER)Área del ala1.8720.804
17ScanEagle 3Área del ala1.3490.804
18RQNan21A BlackjackÁrea del ala1.8020.804
19DeltaQuad Pro #MAPÁrea del ala0.7000.804
20DeltaQuad Pro #CARGOÁrea del ala0.7000.804
21V32Área del ala1.0300.804
29Fulmar XRelación de aspecto del ala13.2180.963
30Orbiter 4Relación de aspecto del ala13.4430.752
31Orbiter 3Relación de aspecto del ala14.0120.752
32MantisRelación de aspecto del ala14.7670.752
33ScanEagleRelación de aspecto del ala14.0670.777
34IntegratorRelación de aspecto del ala12.9230.631
35Integrator VTOLRelación de aspecto del ala12.6540.676
36Integrator Extended Range (ER)Relación de aspecto del ala12.8590.676
37ScanEagle 3Relación de aspecto del ala13.7740.676
38RQNan21A BlackjackRelación de aspecto del ala12.9730.695
39DeltaQuad EvoRelación de aspecto del ala14.5990.716
40DeltaQuad Pro #MAPRelación de aspecto del ala14.7170.726
41DeltaQuad Pro #CARGORelación de aspecto del ala14.7170.740
42V21Relación de aspecto del ala14.5780.740
43V25Relación de aspecto del ala14.4350.752
44V32Relación de aspecto del ala14.1940.761
45V35Relación de aspecto del ala13.9090.767
46V39Relación de aspecto del ala14.0530.768
47Volitation VT370Relación de aspecto del ala13.6570.764
48Skyeye 2600Relación de aspecto del ala14.1160.771
49Skyeye 2930 VTOLRelación de aspecto del ala14.0130.669
50Skyeye 3600Relación de aspecto del ala13.7230.675
51Skyeye 3600 VTOLRelación de aspecto del ala13.6840.675
52Skyeye 5000Relación de aspecto del ala12.7130.675
53Skyeye 5000 VTOLRelación de aspecto del ala13.0460.699
54Skyeye 5000 VTOL octoRelación de aspecto del ala12.8770.703
55Volitation VT510Relación de aspecto del ala13.1140.718
56AscendRelación de aspecto del ala14.3570.726
57TransitionRelación de aspecto del ala14.2330.732
58ReachRelación de aspecto del ala13.6830.736
59Aerosonde® Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5950.831
60Integrator VTOLLongitud del fuselaje3.0030.831
61V39Longitud del fuselaje1.9540.831Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan0.735nannannannannan
92Aerosonde® Mk. 4.8 VTOL FTUASenvergadura5.6440.805Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
93Integrator VTOLenvergadura5.0330.805Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannan0.917nannannannannannannannannan0.9730.790nan-0.854nannannannannannannannannannan
94Aerosonde® Mk. 4.8 VTOL FTUASCuerda0.3940.827Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nan-0.819nannannannannannannannan
95Fulmar XCuerda0.3130.827Velocidad de pérdida limpia (KCAS)nannannannannan0.753nannannan0.798nannannannan0.747nan0.731nannan0.931nannannannannannannannannannannannan
96Orbiter 4Cuerda0.3340.737Área del alanannannannan0.753nan-0.7780.8350.9840.970nannannannan0.8250.7870.854nannan0.9650.944nannan0.974nannannannannannannannan
97Orbiter 3Cuerda0.3010.737Relación de aspecto del alanannannannannan-0.778nannannan-0.790nannan-0.730nannan-0.862-0.826nan-0.769nan-0.746nannan-0.970nannannannannannannannan
98MantisCuerda0.2700.737Longitud del fuselajenannannannannan0.835nannan0.9380.806nannannannan0.719nannannannan0.9260.834nannan0.929nannannannannannannannan
99ScanEagleCuerda0.2970.763Ancho del fuselajenannan0.917nannan0.984nan0.938nan0.9860.833nan0.9400.711nannan0.868nan0.944nan0.954nannannannannan0.794nannannannannan
100IntegratorCuerda0.3380.714Peso máximo al despegue (MTOW)nannannannan0.7980.970-0.7900.8060.986nannannan0.717nan0.8110.7510.882nan0.7080.9790.933nannan0.9760.758nannannannannannannan
101Integrator VTOLCuerda0.3410.749Alcance de la aeronavenannannannannannannannan0.833nannannannannannannannannannan0.936nan-0.711nan0.8480.837nannannannannannannan
102Integrator Extended Range (ER)Cuerda0.3440.749Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nannannannannannannan
103ScanEagle 3Cuerda0.3100.749Velocidad máxima (KIAS)nannannannannannan-0.730nan0.9400.717nannannannannannan0.718nannan0.726nannannan0.7270.910nannannannannannannan
104RQNan21A BlackjackCuerda0.3390.750Velocidad de pérdida (KCAS)nannannannannannannannan0.711nannannannannannannannannannannannan0.934-0.961nannannannannannannannannan
105DeltaQuad EvoCuerda0.2760.774envergaduranannannannan0.7470.825nan0.719nan0.811nannannannannannan0.775nannan0.9500.806nannannannannannannannannannannan
106DeltaQuad Pro #MAPCuerda0.2720.793Cuerdanannannannannan0.787-0.862nannan0.751nannannannannannan0.758nan0.730nan0.724nannan0.975nannannannannannannannan
107DeltaQuad Pro #CARGOCuerda0.2720.809payloadnannannannan0.7310.854-0.826nan0.8680.882nannan0.718nan0.7750.758nannannannan0.784nannan0.7110.846nannannannannannannan
108V21Cuerda0.2780.809duracion en VTOLnannannan-0.875nannannannannannannannannannannannannannannannannannannannannannannan-0.904nannannannan
109V25Cuerda0.2810.602Crucero KIASnannan0.973nannannan-0.769nan0.9440.708nannannannannan0.730nannannan0.723nan-0.855nannannannannannannannannannan
110V32Cuerda0.2910.591RTF (Including fuel & Batteries)nannan0.790nan0.9310.965nan0.926nan0.9790.936nan0.726nan0.950nannannan0.723nan0.948nannannannannannannannannannannan
111V35Cuerda0.3030.590Empty weightnannannannannan0.944-0.7460.8340.9540.933nannannannan0.8060.7240.784nannan0.948nannan0.7850.980nannannannannannannannan
112V39Cuerda0.3040.590Maximum Crosswindnannan-0.854-0.961nannannannannannan-0.711-0.715nan0.934nannannannan-0.855nannannannannannannannan-0.943nannannannan
113Volitation VT370Cuerda0.3130.590Rango de comunicaciónnannannannannannannannannannannan0.802nan-0.961nannannannannannan0.785nannannannannannannannannannannan
114Skyeye 2600Cuerda0.2950.590Capacidad combustiblenannannan-0.819nan0.974-0.9700.929nan0.9760.848nan0.727nannan0.9750.711nannannan0.980nannannannan0.817nannannannannannan
115Skyeye 2930 VTOLCuerda0.2990.590Consumonannannannannannannannannan0.7580.837-0.7320.910nannannan0.846nannannannannannannannan0.998nannannannannannan
116Skyeye 3600Cuerda0.3090.590Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998nannannannannannannan
117Skyeye 3600 VTOLCuerda0.3120.594Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
118Skyeye 5000Cuerda0.3460.599Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
119Skyeye 5000 VTOLCuerda0.3360.683Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
120Skyeye 5000 VTOL octoCuerda0.3430.683Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
121Volitation VT510Cuerda0.3340.728Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
122AscendCuerda0.2860.728Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
123TransitionCuerda0.2900.724
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
Mensaje
124ReachCuerda0.3120.7220No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.
" @@ -34899,6 +55228,16 @@ "metadata": {}, "output_type": "display_data" }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", + "\n", + "--- Imputación para aeronave: **Mantis** ---\n" + ] + }, { "data": { "text/html": [ @@ -34934,174 +55273,385 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Resumen de Imputaciones

\n", + "

Imputación no Exitosa

\n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
AeronaveCantidad de Valores ImputadosMensaje
0Aerosonde® Mk. 4.8 VTOL FTUAS4.000No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.
1Ascend2.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Área del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
Mensaje
2DeltaQuad Evo2.0000No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
3DeltaQuad Pro #CARGO3.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **Integrator VTOL** ---\n", + "\n", + "--- Correlación: Maximum Crosswind (r = 0.934) ---\n", + "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'Ascend']\n", + "Valores para Maximum Crosswind: [45.0, 50.0, 50.0, 15.0]\n", + "Valores para Velocidad de pérdida (KCAS): [14.0, 15.316, 15.607, 13.0]\n", + "Ecuación de regresión: y = 0.064x + 11.929\n", + "Valor del parámetro correlacionado para la aeronave: 30.0\n", + "Predicción obtenida: 13.843\n", + "\tR²: 0.7881580184530225, Desviación Estándar: 0.48216925192301585, Varianza: 0.23248718750000075, Incertidumbre: 0.24108462596150793\n", + "\tNivel de confianza: Confianza Media\n", + "Valores imputados: ['Maximum Crosswind: 13.843']\n", + "**Mediana calculada:** 13.843\n", + "\n", + "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
Mensaje
4DeltaQuad Pro #MAP3.0000No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
5Fulmar X3.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--- Imputación para aeronave: **ScanEagle 3** ---\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Imputación no Exitosa

\n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
Mensaje
6Integrator3.0000No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
7Integrator Extended Range (ER)3.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Velocidad de pérdida limpia (KCAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== envergadura: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Cuerda: No hay valores faltantes para imputar. ===\n", + "\n", + "=== payload: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Empty weight: No hay valores faltantes para imputar. ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Reporte Final de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
AeronaveParámetroValor ImputadoNivel de Confianza
80Integrator VTOL5.000
9Mantis3.000
10Orbiter 33.000
11Orbiter 43.000
12RQNan21A Blackjack3.000
13Reach2.000
14ScanEagle3.000
15ScanEagle 33.000
16Skyeye 26002.000
17Skyeye 2930 VTOL2.000
18Skyeye 36002.000
19Skyeye 3600 VTOL2.000
20Skyeye 50002.000
21Skyeye 5000 VTOL2.000
22Skyeye 5000 VTOL octo2.000
23Transition2.000
24V212.000
25V252.000
26V323.000
27V352.000
28V393.000Velocidad de pérdida (KCAS)13.8430.630
29Volitation VT3702.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Resumen de Imputaciones

\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
AeronaveCantidad de Valores Imputados
30Volitation VT5102.0000Integrator VTOL1.000
TotalTotal80.0001.000
" @@ -35118,183 +55668,9 @@ "output_type": "stream", "text": [ "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 32.31596323465078 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - AAI Aerosonde = 21.624760478782665 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 4 = 27.26947572941752 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 3 = 26.566881229546517 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator VTOL = 30.93282942341402 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator Extended Range (ER) = 30.953465066791882 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 3600 = 27.344050412360318 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 5000 VTOL octo = 31.71909847833797 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Orbiter 4 = 9633.863636363636 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Orbiter 3 = 8010.3359375 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Mantis = 12.97158076923077 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Integrator VTOL = 19487.0 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 2600 = 13122.5 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 2930 VTOL = 16571.42857142857 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 = 16571.42857142857 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 VTOL = 14902.124999999998 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 = 16044.444444444443 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL = 15640.0 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL octo = 15640.0 (Similitud)\n", - "Imputación final aplicada: Área del ala - Aerosonde® Mk. 4.8 VTOL FTUAS = 2.503 (Correlación)\n", - "Imputación final aplicada: Área del ala - Fulmar X = 0.94 (Correlación)\n", - "Imputación final aplicada: Área del ala - Orbiter 4 = 1.608 (Correlación)\n", - "Imputación final aplicada: Área del ala - Orbiter 3 = 1.12859375 (Similitud)\n", - "Imputación final aplicada: Área del ala - ScanEagle = 1.1814858490566036 (Similitud)\n", - "Imputación final aplicada: Área del ala - ScanEagle 3 = 1.349 (Correlación)\n", - "Imputación final aplicada: Área del ala - V35 = 1.12859375 (Similitud)\n", - "Imputación final aplicada: Área del ala - Volitation VT370 = 1.4456562499999999 (Similitud)\n", - "Imputación final aplicada: Área del ala - Volitation VT510 = 2.615 (Similitud)\n", - "Imputación final aplicada: Área del ala - Ascend = 0.8307894736842105 (Similitud)\n", - "Imputación final aplicada: Área del ala - Transition = 1.1897828403221333 (Similitud)\n", - "Imputación final aplicada: Área del ala - Reach = 2.6796565934065932 (Similitud)\n", - "Imputación final aplicada: Relación de aspecto del ala - Fulmar X = 13.217500000000001 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Orbiter 4 = 13.443 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V25 = 14.435 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Volitation VT370 = 13.657 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 VTOL = 13.6845 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 = 12.713000000000001 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL = 13.046 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL octo = 12.8765 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Volitation VT510 = 13.114 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Transition = 14.233 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Reach = 13.683 (Correlación)\n", - "Imputación final aplicada: Longitud del fuselaje - Aerosonde® Mk. 4.8 VTOL FTUAS = 3.5658602150537635 (Similitud)\n", - "Imputación final aplicada: Longitud del fuselaje - Integrator VTOL = 3.0035 (Correlación)\n", - "Imputación final aplicada: Longitud del fuselaje - V39 = 1.3746614583333334 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.7 Fixed Wing = 296.09004739336496 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.7 VTOL = 123.4483644859813 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.8 Fixed wing = 122.9111213235294 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde® Mk. 4.8 VTOL FTUAS = 815.0537634408602 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Integrator = 500.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Integrator VTOL = 499.66666666666663 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - ScanEagle 3 = 178.08195592286503 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V21 = 270.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V25 = 1843.69 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V32 = 770.2127659574468 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V35 = 50.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Volitation VT370 = 300.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 2600 = 1763.9083333333333 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 2930 VTOL = 51.78571428571428 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 3600 = 51.78571428571428 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 = 822.2222222222222 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 VTOL octo = 800.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Volitation VT510 = 800.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Ascend = 273.55263157894734 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Transition = 633.4988526666666 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Reach = 819.7802197802197 (Similitud)\n", - "Imputación final aplicada: Autonomía de la aeronave - Skyeye 5000 VTOL octo = 8.0 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 41.66129032258065 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Integrator VTOL = 46.26913333333333 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Evo = 31.3125 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #MAP = 25.909677419354843 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #CARGO = 25.909677419354843 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 2600 = 24.701138406926347 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 3600 = 34.17857142857142 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker XE = 12.721966911764707 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker VXE30 = 12.68114837683525 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde® Mk. 4.7 Fixed Wing = 23.687203791469194 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde® Mk. 4.8 VTOL FTUAS = 19.66532258064516 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - AAI Aerosonde = 12.842557251908397 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Fulmar X = 12.674999999999999 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 3 = 14.7734375 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle = 16.5188679245283 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle 3 = 24.611570247933887 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Evo = 13.41875 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - V35 = 14.7734375 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - V39 = 16.911458333333332 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Skyeye 5000 VTOL = 19.3125 (Similitud)\n", - "Imputación final aplicada: envergadura - Aerosonde® Mk. 4.8 VTOL FTUAS = 5.094086021505376 (Similitud)\n", - "Imputación final aplicada: envergadura - Integrator VTOL = 5.033 (Correlación)\n", - "Imputación final aplicada: Cuerda - Fulmar X = 0.313 (Correlación)\n", - "Imputación final aplicada: Cuerda - Orbiter 4 = 0.334 (Correlación)\n", - "Imputación final aplicada: Cuerda - V25 = 0.22158417241379308 (Similitud)\n", - "Imputación final aplicada: Cuerda - Volitation VT370 = 0.35683999999999994 (Similitud)\n", - "Imputación final aplicada: Cuerda - Skyeye 2600 = 0.2118754597701149 (Similitud)\n", - "Imputación final aplicada: Cuerda - Skyeye 3600 VTOL = 0.35683999999999994 (Similitud)\n", - "Imputación final aplicada: Cuerda - Transition = 0.29 (Correlación)\n", - "Imputación final aplicada: payload - AAI Aerosonde = 2.518560923664122 (Similitud)\n", - "Imputación final aplicada: payload - Fulmar X = 1.9779738749767999 (Similitud)\n", - "Imputación final aplicada: payload - Mantis = 1.1861538461538461 (Similitud)\n", - "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.7 Fixed Wing = 10.856635071090047 (Similitud)\n", - "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.8 VTOL FTUAS = 31.741935483870968 (Similitud)\n", - "Imputación final aplicada: Empty weight - Fulmar X = 11.5545671248376 (Similitud)\n", - "Imputación final aplicada: Empty weight - Orbiter 3 = 9.009375 (Similitud)\n", - "Imputación final aplicada: Empty weight - ScanEagle = 7.200471698113207 (Similitud)\n", - "Imputación final aplicada: Empty weight - ScanEagle 3 = 11.280303030303031 (Similitud)\n", - "Imputación final aplicada: Empty weight - V35 = 9.009375 (Similitud)\n", - "Imputación final aplicada: Empty weight - V39 = 6.41640625 (Similitud)\n", - "Imputación final aplicada: Empty weight - Volitation VT370 = 11.0 (Similitud)\n", - "Imputación final aplicada: Empty weight - Skyeye 5000 VTOL = 31.2 (Similitud)\n", - "Imputación final aplicada: Empty weight - Volitation VT510 = 31.2 (Similitud)\n", - "Imputación final aplicada: Área del ala - Mantis = 0.754 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator = 1.872 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator VTOL = 2.0895 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator Extended Range (ER) = 1.872 (Correlación)\n", - "Imputación final aplicada: Área del ala - RQNan21A Blackjack = 1.802 (Correlación)\n", - "Imputación final aplicada: Área del ala - DeltaQuad Pro #MAP = 0.7 (Correlación)\n", - "Imputación final aplicada: Área del ala - DeltaQuad Pro #CARGO = 0.7 (Correlación)\n", - "Imputación final aplicada: Área del ala - V32 = 1.03 (Correlación)\n", - "Imputación final aplicada: Área del ala - V39 = 1.203 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Orbiter 3 = 14.012 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Mantis = 14.767 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - ScanEagle = 14.067 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator = 12.923 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator VTOL = 12.654499999999999 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator Extended Range (ER) = 12.859 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - ScanEagle 3 = 13.774 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - RQNan21A Blackjack = 12.972999999999999 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Evo = 14.599 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #MAP = 14.717 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #CARGO = 14.717 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V21 = 14.578 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V32 = 14.194 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V35 = 13.909 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V39 = 14.0535 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2600 = 14.116 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2930 VTOL = 14.013 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 = 13.7225 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Ascend = 14.357 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - ScanEagle = 418.78 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - V39 = 475.37699999999995 (Correlación)\n", - "Imputación final aplicada: Cuerda - Aerosonde® Mk. 4.8 VTOL FTUAS = 0.394 (Correlación)\n", - "Imputación final aplicada: Cuerda - Orbiter 3 = 0.301 (Correlación)\n", - "Imputación final aplicada: Cuerda - Mantis = 0.27 (Correlación)\n", - "Imputación final aplicada: Cuerda - ScanEagle = 0.2975 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator = 0.33799999999999997 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator VTOL = 0.341 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator Extended Range (ER) = 0.344 (Correlación)\n", - "Imputación final aplicada: Cuerda - ScanEagle 3 = 0.3105 (Correlación)\n", - "Imputación final aplicada: Cuerda - RQNan21A Blackjack = 0.3385 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Evo = 0.2755 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Pro #MAP = 0.272 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Pro #CARGO = 0.272 (Correlación)\n", - "Imputación final aplicada: Cuerda - V21 = 0.2775 (Correlación)\n", - "Imputación final aplicada: Cuerda - V32 = 0.291 (Correlación)\n", - "Imputación final aplicada: Cuerda - V35 = 0.3035 (Correlación)\n", - "Imputación final aplicada: Cuerda - V39 = 0.3045 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 2930 VTOL = 0.299 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 3600 = 0.309 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 = 0.3465 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL = 0.336 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL octo = 0.3425 (Correlación)\n", - "Imputación final aplicada: Cuerda - Volitation VT510 = 0.334 (Correlación)\n", - "Imputación final aplicada: Cuerda - Ascend = 0.286 (Correlación)\n", - "Imputación final aplicada: Cuerda - Reach = 0.312 (Correlación)\n", - "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.7 VTOL = 19.796 (Correlación)\n", - "Imputación final aplicada: Empty weight - Aerosonde® Mk. 4.8 Fixed wing = 19.809 (Correlación)\n", - "Imputación final aplicada: Empty weight - Orbiter 4 = 18.724 (Correlación)\n", - "Imputación final aplicada: Empty weight - Mantis = 5.627 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator = 22.234 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator VTOL = 24.8205 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator Extended Range (ER) = 22.2905 (Correlación)\n", - "Imputación final aplicada: Empty weight - RQNan21A Blackjack = 21.149 (Correlación)\n", - "Imputación final aplicada: Empty weight - DeltaQuad Pro #MAP = 4.767 (Correlación)\n", - "Imputación final aplicada: Empty weight - DeltaQuad Pro #CARGO = 4.767 (Correlación)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Integrator VTOL = 13.843 (Correlación)\n", "\n", - "=== Iteración 1: Resumen después de imputaciones ===\n" + "=== Iteración 3: Resumen después de imputaciones ===\n" ] }, { @@ -35332,7 +55708,7 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Resumen de Valores Faltantes Después de Iteración 1

\n", + "

Resumen de Valores Faltantes Después de Iteración 3

\n", " \n", " \n", " \n", @@ -35353,22 +55729,22 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35379,12 +55755,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35404,12 +55780,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35419,12 +55795,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -35434,12 +55810,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35484,7 +55860,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35583,7 +55959,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
2Aerosonde® Mk. 4.7 Fixed WingAerosonde Mk. 4.7 Fixed Wing0.000
3Aerosonde® Mk. 4.7 VTOL1.000Aerosonde Mk. 4.7 VTOL0.000
4Aerosonde® Mk. 4.8 Fixed wing1.000Aerosonde Mk. 4.8 Fixed wing0.000
5Aerosonde® Mk. 4.8 VTOL FTUASAerosonde Mk. 4.8 VTOL FTUAS0.000
7Fulmar X0.0001.000
8Orbiter 41.0000.000
9
12Integrator1.0000.000
13Integrator VTOL1.0000.000
14
15ScanEagle 30.0001.000
16RQNan21A Blackjack1.000RQ Nan 21A Blackjack0.000
17
18DeltaQuad Pro #MAP1.0000.000
19DeltaQuad Pro #CARGO1.0000.000
20
28Skyeye 36000.0001.000
29
0Total de Valores Faltantes10.0005.000
" @@ -35601,14 +55977,14 @@ "text": [ "\n", "================================================================================\n", - "\u001b[1m=== FIN DE ITERACIÓN 1 ===\u001b[0m\n", + "\u001b[1m=== FIN DE ITERACIÓN 3 ===\u001b[0m\n", "================================================================================\n", "\n", "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 2 ===\u001b[0m\n", + "\u001b[1m=== INICIO DE ITERACIÓN 4 ===\u001b[0m\n", "================================================================================\n", "\n", - "=== Iteración 2: Resumen antes de imputaciones ===\n" + "=== Iteración 4: Resumen antes de imputaciones ===\n" ] }, { @@ -35646,7 +56022,7 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Resumen de Valores Faltantes Antes de Iteración 2

\n", + "

Resumen de Valores Faltantes Antes de Iteración 4

\n", " \n", " \n", " \n", @@ -35658,908 +56034,246 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0Stalker XE32.00030.000
1Stalker VXE3033.00031.000
2Aerosonde® Mk. 4.7 Fixed Wing30.000Aerosonde Mk. 4.7 Fixed Wing28.000
3Aerosonde® Mk. 4.7 VTOL30.000Aerosonde Mk. 4.7 VTOL27.000
4Aerosonde® Mk. 4.8 Fixed wing34.000Aerosonde Mk. 4.8 Fixed wing31.000
5Aerosonde® Mk. 4.8 VTOL FTUAS35.000Aerosonde Mk. 4.8 VTOL FTUAS33.000
6AAI Aerosonde31.00030.000
7Fulmar X36.00035.000
8Orbiter 437.00034.000
9Orbiter 336.00034.000
10Mantis36.00034.000
11ScanEagle35.00033.000
12Integrator36.00033.000
13Integrator VTOL35.00032.000
14Integrator Extended Range (ER)38.00036.000
15ScanEagle 335.00034.000
16RQNan21A Blackjack35.000RQ Nan 21A Blackjack32.000
17DeltaQuad Evo30.00028.000
18DeltaQuad Pro #MAP33.00030.000
19DeltaQuad Pro #CARGO33.00030.000
20V2129.00028.000
21V2529.00028.000
22V3229.00028.000
23V3532.00031.000
24V3933.00031.000
25Volitation VT37031.00030.000
26Skyeye 260034.000
27Skyeye 2930 VTOL33.000
28Skyeye 360033.000
29Skyeye 3600 VTOL32.000
30Skyeye 500030.000
31Skyeye 5000 VTOL32.000
32Skyeye 5000 VTOL octo32.000
33Volitation VT51030.000
34Ascend31.000
35Transition31.000
36Reach31.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Sumatoria Total de Valores Faltantes

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ResumenCantidad
0Total de Valores Faltantes1212.000
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 2 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "Rango mínimo: 0.85, Rango máximo: 1.15, Confianza mínima: 0.5\n", - "\n", - "=== Verificación de 'df_resultado_por_similitud' ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Datos Filtrados por aeronaves seleccionadas antes de imputar(df_resultado_por_similitud)

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Stalker XEStalker VXE30Aerosonde® Mk. 4.7 Fixed WingAerosonde® Mk. 4.7 VTOLAerosonde® Mk. 4.8 Fixed wingAerosonde® Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQNan21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440532.31596321.6247630.40658427.26947626.56688118.26582630.62533630.95346530.93282930.95346525.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.25028827.3440532.8128636.09414730.62533631.71909832.8128621.8752421.8752427.34405
Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429633.8636368010.33593812.97158119500.019500.019487.019500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.013122.516571.42857116571.42857114902.12516044.44444415640.015640.017000.010000.013000.016000.0
Área del ala0.871.1582831.551.551.552.5030.570.941.6081.1285940.7541.1814861.8722.08951.8721.3491.8020.840.70.70.80.521.031.1285941.2031.4456560.881.01.331.322.6152.6152.6152.6150.8307891.1897832.679657
Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44314.01214.76714.06712.92312.654512.85913.77412.97314.59914.71714.71714.57814.43514.19413.90914.053513.65714.11614.01313.722513.684512.71313.04612.876513.11414.35714.23313.683
Longitud del fuselaje2.12.59083.03.03.03.565861.71.21.21.21.481.712.53.00352.52.42.50.750.90.90.930.931.01.881.3746612.022.052.032.4882.423.53.53.52.9051.5622.34.712
Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
Alcance de la aeronave370.0433.0296.090047123.448364122.911121815.0537633270.0800.0150.050.025.0418.78500.0499.666667500.0178.08195692.6270.0100.0100.0270.01843.69770.21276650.0475.377300.01763.90833351.78571451.785714300.0822.222222800.0800.0800.0273.552632633.498853819.7802227Skyeye 2930 VTOL32.000
Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.08.05.06.012.020.028Skyeye 360033.000
Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388641.6612930.84572541.736.036.025.641.246.346.26913346.341.246.331.312525.90967725.90967733.033.033.033.033.033.024.70113830.034.17857133.042.042.038.050.030.030.035.029Skyeye 3600 VTOL31.000
Velocidad de pérdida (KCAS)12.72196712.68114823.687204NaNNaN19.66532312.84255712.675NaN14.773438NaN16.518868NaNNaNNaN24.61157NaN13.41875NaNNaN14.015.517.014.77343816.91145824.010.018.012.524.015.019.312524.025.013.013.013.030Skyeye 500029.000
envergadura3.6574.87684.44.44.45.0940862.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.031Skyeye 5000 VTOL30.000
Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3130.3340.3010.270.29750.3380.3410.3440.31050.33850.27550.2720.2720.27750.2215840.2910.30350.30450.356840.2118750.2990.3090.356840.34650.3360.34250.3340.2860.290.31232Skyeye 5000 VTOL octo30.000
payload2.4947562.49475614.511.317.722.72.5185611.97797412.05.51.1861545.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.033Volitation VT51030.000
Empty weight10.88620817.46329210.85663519.79619.80931.74193510.011.55456718.7249.0093755.6277.20047222.23424.820522.290511.28030321.1494.84.7674.7672.653.456.459.0093756.41640611.06.57.111.511.032.031.235.031.23.05.831.034Ascend29.000
35Transition29.000
36Reach29.000
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

Sumatoria Total de Valores Faltantes

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
ResumenCantidad
0Total de Valores Faltantes1146.000
" @@ -36575,34 +56289,74 @@ "name": "stdout", "output_type": "stream", "text": [ - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.7 VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.7 VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Aerosonde® Mk. 4.8 Fixed wing'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Aerosonde® Mk. 4.8 Fixed wing.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Orbiter 4'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Orbiter 4.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Mantis'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Mantis.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator VTOL'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator VTOL.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'Integrator Extended Range (ER)'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para Integrator Extended Range (ER).\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'RQNan21A Blackjack'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para RQNan21A Blackjack.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #MAP'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #MAP.\n", - "Razón: Ninguna aeronave se encuentra dentro del rango MTOW de 'DeltaQuad Pro #CARGO'para el parametro 'Velocidad de pérdida (KCAS)'.\n", - "No se pudo imputar: Velocidad de pérdida (KCAS) para DeltaQuad Pro #CARGO.\n", - "\n", - "=== Generando reporte final ===\n", - "No se realizaron imputaciones con el nivel de confianza aceptable.\n", - "No se realizaron imputaciones con éxito.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 4 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 2 ***\u001b[0m\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 4 ***\u001b[0m\n", "--------------------------------------------------------------------------------\n", "\n", "=== DataFrame inicial ===\n" @@ -36649,10 +56403,10 @@ " \n", " Stalker XE\n", " Stalker VXE30\n", - " Aerosonde® Mk. 4.7 Fixed Wing\n", - " Aerosonde® Mk. 4.7 VTOL\n", - " Aerosonde® Mk. 4.8 Fixed wing\n", - " Aerosonde® Mk. 4.8 VTOL FTUAS\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", + " Aerosonde Mk. 4.7 VTOL\n", + " Aerosonde Mk. 4.8 Fixed wing\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", " AAI Aerosonde\n", " Fulmar X\n", " Orbiter 4\n", @@ -36663,7 +56417,7 @@ " Integrator VTOL\n", " Integrator Extended Range (ER)\n", " ScanEagle 3\n", - " RQNan21A Blackjack\n", + " RQ Nan 21A Blackjack\n", " DeltaQuad Evo\n", " DeltaQuad Pro #MAP\n", " DeltaQuad Pro #CARGO\n", @@ -36685,6 +56439,46 @@ " Transition\n", " Reach\n", " \n", + " \n", + " Modelo\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -36728,46 +56522,6 @@ " 0.0\n", " \n", " \n", - " Tasa de ascenso\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 2.49936\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 5.0\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", " Altitud a la que se realiza el crucero\n", " 6000.0\n", " 6000.0\n", @@ -36814,16 +56568,16 @@ " 27.34405\n", " 27.34405\n", " 27.34405\n", - " 32.315963\n", - " 21.62476\n", + " 30.228669\n", + " 36.094147\n", " 30.406584\n", - " 27.269476\n", - " 26.566881\n", + " 30.466419\n", + " 27.426372\n", " 18.265826\n", " 30.625336\n", " 30.953465\n", - " 30.932829\n", - " 30.953465\n", + " 21.463\n", + " 31.894376\n", " 25.703407\n", " 33.797246\n", " 18.090824\n", @@ -36837,11 +56591,11 @@ " 27.34405\n", " 36.094147\n", " 26.250288\n", - " 27.34405\n", + " NaN\n", " 32.81286\n", " 36.094147\n", " 30.625336\n", - " 31.719098\n", + " 30.290909\n", " 32.81286\n", " 21.87524\n", " 21.87524\n", @@ -36857,12 +56611,12 @@ " 15000.0\n", " 15000.0\n", " 9.842\n", - " 9633.863636\n", - " 8010.335938\n", - " 12.971581\n", + " 9403.63518\n", + " 6839.144606\n", + " NaN\n", " 19500.0\n", " 19500.0\n", - " 19487.0\n", + " 7013.834\n", " 19500.0\n", " 20.0\n", " 20.0\n", @@ -36875,13 +56629,13 @@ " 16000.0\n", " 16000.0\n", " 17000.0\n", - " 13122.5\n", - " 16571.428571\n", - " 16571.428571\n", - " 14902.125\n", - " 16044.444444\n", - " 15640.0\n", - " 15640.0\n", + " 14972.955913\n", + " 16000.0\n", + " 17070.833\n", + " 16959.091874\n", + " 16254.028\n", + " 16009.435943\n", + " 16009.476366\n", " 17000.0\n", " 10000.0\n", " 13000.0\n", @@ -36889,43 +56643,43 @@ " \n", " \n", " Velocidad de pérdida limpia (KCAS)\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", + " 14.872\n", + " 14.787\n", + " 17.306\n", + " 18.62\n", + " 18.423\n", + " 25.0\n", + " 10.0\n", + " 14.807\n", + " 18.753\n", + " 16.3955\n", + " 14.509\n", + " 15.8305\n", + " 19.9435\n", + " 21.1085\n", + " 20.545\n", + " 17.329\n", + " 19.5925\n", + " 14.0\n", + " 14.0735\n", + " 14.073\n", " 14.0\n", " 15.5\n", " 17.0\n", - " NaN\n", - " NaN\n", - " NaN\n", + " 18.0\n", + " 17.39739\n", + " 24.0\n", " 10.0\n", " 18.0\n", " 12.5\n", " 24.0\n", " 15.0\n", - " NaN\n", - " NaN\n", " 25.0\n", - " NaN\n", - " NaN\n", - " NaN\n", + " 25.0\n", + " 25.0\n", + " 14.0\n", + " 10.0\n", + " 25.0\n", " \n", " \n", " Área del ala\n", @@ -36938,9 +56692,9 @@ " 0.57\n", " 0.94\n", " 1.608\n", - " 1.128594\n", + " 1.2\n", " 0.754\n", - " 1.181486\n", + " 1.063\n", " 1.872\n", " 2.0895\n", " 1.872\n", @@ -36952,9 +56706,9 @@ " 0.8\n", " 0.52\n", " 1.03\n", - " 1.128594\n", + " 1.202\n", " 1.203\n", - " 1.445656\n", + " 1.424\n", " 0.88\n", " 1.0\n", " 1.33\n", @@ -36962,10 +56716,10 @@ " 2.615\n", " 2.615\n", " 2.615\n", - " 2.615\n", - " 0.830789\n", - " 1.189783\n", - " 2.679657\n", + " 1.993\n", + " 0.771\n", + " 0.986\n", + " 2.329\n", " \n", " \n", " Relación de aspecto del ala\n", @@ -36978,34 +56732,34 @@ " 14.754386\n", " 13.2175\n", " 13.443\n", - " 14.012\n", - " 14.767\n", - " 14.067\n", - " 12.923\n", - " 12.6545\n", - " 12.859\n", - " 13.774\n", - " 12.973\n", - " 14.599\n", - " 14.717\n", - " 14.717\n", - " 14.578\n", - " 14.435\n", - " 14.194\n", - " 13.909\n", - " 14.0535\n", - " 13.657\n", - " 14.116\n", - " 14.013\n", - " 13.7225\n", - " 13.6845\n", - " 12.713\n", - " 13.046\n", - " 12.8765\n", - " 13.114\n", - " 14.357\n", - " 14.233\n", - " 13.683\n", + " 13.9345\n", + " 14.755\n", + " 14.057\n", + " 12.908\n", + " 12.648\n", + " 12.84\n", + " 13.765\n", + " 12.914\n", + " 14.589\n", + " 14.714\n", + " 14.714\n", + " 14.568\n", + " 14.421\n", + " 14.182\n", + " 13.898\n", + " 14.0415\n", + " 13.645\n", + " 14.103\n", + " 14.001\n", + " 13.7095\n", + " 13.6715\n", + " 12.695\n", + " 13.032\n", + " 12.8555\n", + " 13.099\n", + " 14.349\n", + " 14.223\n", + " 13.669\n", " \n", " \n", " Longitud del fuselaje\n", @@ -37014,7 +56768,7 @@ " 3.0\n", " 3.0\n", " 3.0\n", - " 3.56586\n", + " 3.5945\n", " 1.7\n", " 1.2\n", " 1.2\n", @@ -37022,7 +56776,7 @@ " 1.48\n", " 1.71\n", " 2.5\n", - " 3.0035\n", + " 2.998\n", " 2.5\n", " 2.4\n", " 2.5\n", @@ -37033,7 +56787,7 @@ " 0.93\n", " 1.0\n", " 1.88\n", - " 1.374661\n", + " 1.954\n", " 2.02\n", " 2.05\n", " 2.03\n", @@ -37171,41 +56925,41 @@ " Alcance de la aeronave\n", " 370.0\n", " 433.0\n", - " 296.090047\n", - " 123.448364\n", - " 122.911121\n", - " 815.053763\n", + " 518.9225\n", + " 481.428\n", + " 535.2755\n", + " 800.0\n", " 3270.0\n", " 800.0\n", - " 150.0\n", + " 509.5565\n", " 50.0\n", " 25.0\n", - " 418.78\n", + " 503.5155\n", " 500.0\n", - " 499.666667\n", + " 646.0835\n", " 500.0\n", - " 178.081956\n", - " 92.6\n", + " 50.0\n", + " 565.912\n", " 270.0\n", " 100.0\n", " 100.0\n", " 270.0\n", - " 1843.69\n", - " 770.212766\n", - " 50.0\n", - " 475.377\n", + " 270.0\n", + " 412.686\n", + " 456.221\n", + " 413.556\n", " 300.0\n", - " 1763.908333\n", - " 51.785714\n", - " 51.785714\n", + " 3270.0\n", + " 425.273\n", + " 458.1245\n", " 300.0\n", - " 822.222222\n", + " 530.401\n", " 800.0\n", " 800.0\n", " 800.0\n", - " 273.552632\n", - " 633.498853\n", - " 819.78022\n", + " 270.0\n", + " 506.641\n", + " 800.0\n", " \n", " \n", " Autonomía de la aeronave\n", @@ -37241,7 +56995,7 @@ " 6.0\n", " 8.0\n", " 8.0\n", - " 8.0\n", + " 11.672907\n", " 5.0\n", " 6.0\n", " 12.0\n", @@ -37254,7 +57008,7 @@ " 33.43886\n", " 33.43886\n", " 33.43886\n", - " 41.66129\n", + " 42.252675\n", " 30.845725\n", " 41.7\n", " 36.0\n", @@ -37262,22 +57016,22 @@ " 25.6\n", " 41.2\n", " 46.3\n", - " 46.269133\n", + " 40.216\n", " 46.3\n", " 41.2\n", " 46.3\n", - " 31.3125\n", - " 25.909677\n", - " 25.909677\n", + " 33.0\n", + " 29.009\n", + " 29.009\n", " 33.0\n", " 33.0\n", " 33.0\n", " 33.0\n", " 33.0\n", " 33.0\n", - " 24.701138\n", + " 30.834289\n", " 30.0\n", - " 34.178571\n", + " 35.0985\n", " 33.0\n", " 42.0\n", " 42.0\n", @@ -37289,38 +57043,38 @@ " \n", " \n", " Velocidad de pérdida (KCAS)\n", - " 12.721967\n", - " 12.681148\n", - " 23.687204\n", - " NaN\n", - " NaN\n", - " 19.665323\n", - " 12.842557\n", - " 12.675\n", - " NaN\n", - " 14.773438\n", - " NaN\n", - " 16.518868\n", - " NaN\n", - " NaN\n", - " NaN\n", - " 24.61157\n", + " 14.838\n", + " 9.415\n", + " 10.532\n", + " 10.532\n", + " 10.532\n", + " 18.907465\n", + " 10.0\n", " NaN\n", - " 13.41875\n", + " 10.0\n", + " 15.316\n", + " 16.645\n", + " 12.559\n", + " 13.051\n", + " 13.843\n", " NaN\n", " NaN\n", + " 13.051\n", + " 14.0\n", + " 15.316\n", + " 15.607\n", " 14.0\n", " 15.5\n", " 17.0\n", - " 14.773438\n", - " 16.911458\n", + " 18.0\n", + " 17.39739\n", " 24.0\n", " 10.0\n", " 18.0\n", " 12.5\n", " 24.0\n", " 15.0\n", - " 19.3125\n", + " 19.109225\n", " 24.0\n", " 25.0\n", " 13.0\n", @@ -37328,6 +57082,46 @@ " 13.0\n", " \n", " \n", + " Tasa de ascenso\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", " Radio de giro\n", " NaN\n", " NaN\n", @@ -37374,7 +57168,7 @@ " 4.4\n", " 4.4\n", " 4.4\n", - " 5.094086\n", + " 5.644\n", " 2.9\n", " 3.0\n", " 5.2\n", @@ -37416,36 +57210,36 @@ " 0.352\n", " 0.394\n", " 0.196552\n", - " 0.313\n", - " 0.334\n", - " 0.301\n", - " 0.27\n", - " 0.2975\n", - " 0.338\n", - " 0.341\n", - " 0.344\n", - " 0.3105\n", + " 0.319\n", + " 0.332\n", + " 0.304\n", + " 0.271\n", + " 0.2985\n", " 0.3385\n", + " 0.341\n", + " 0.345\n", + " 0.3115\n", + " 0.341\n", " 0.2755\n", " 0.272\n", " 0.272\n", - " 0.2775\n", - " 0.221584\n", + " 0.278\n", + " 0.281\n", + " 0.292\n", + " 0.306\n", + " 0.307\n", + " 0.314\n", + " 0.296\n", + " 0.3\n", + " 0.311\n", + " 0.315\n", + " 0.3485\n", + " 0.338\n", + " 0.3445\n", + " 0.335\n", + " 0.287\n", " 0.291\n", - " 0.3035\n", - " 0.3045\n", - " 0.35684\n", - " 0.211875\n", - " 0.299\n", - " 0.309\n", - " 0.35684\n", - " 0.3465\n", - " 0.336\n", - " 0.3425\n", - " 0.334\n", - " 0.286\n", - " 0.29\n", - " 0.312\n", + " 0.313\n", " \n", " \n", " payload\n", @@ -37455,11 +57249,11 @@ " 11.3\n", " 17.7\n", " 22.7\n", - " 2.518561\n", - " 1.977974\n", + " 4.0\n", + " 2.494756\n", " 12.0\n", " 5.5\n", - " 1.186154\n", + " 2.693\n", " 5.0\n", " 18.0\n", " 18.0\n", @@ -37651,38 +57445,38 @@ " Empty weight\n", " 10.886208\n", " 17.463292\n", - " 10.856635\n", + " 19.796\n", " 19.796\n", " 19.809\n", - " 31.741935\n", + " 31.0\n", " 10.0\n", - " 11.554567\n", - " 18.724\n", - " 9.009375\n", - " 5.627\n", - " 7.200472\n", - " 22.234\n", - " 24.8205\n", - " 22.2905\n", - " 11.280303\n", - " 21.149\n", + " 17.463292\n", + " 18.365\n", + " 12.237\n", + " 5.633\n", + " 10.192\n", + " 22.195\n", + " 24.7845\n", + " 22.257\n", + " 14.794\n", + " 21.123\n", " 4.8\n", - " 4.767\n", - " 4.767\n", + " 4.754\n", + " 4.754\n", " 2.65\n", " 3.45\n", " 6.45\n", - " 9.009375\n", - " 6.416406\n", + " 7.1\n", + " 6.708303\n", " 11.0\n", " 6.5\n", " 7.1\n", " 11.5\n", " 11.0\n", " 32.0\n", - " 31.2\n", + " 32.1405\n", " 35.0\n", - " 31.2\n", + " 23.959\n", " 3.0\n", " 5.8\n", " 31.0\n", @@ -37808,7 +57602,7 @@ " NaN\n", " \n", " \n", - " Potencia/Peso\n", + " Potencia específica (P/W)\n", " NaN\n", " NaN\n", " NaN\n", @@ -37928,7 +57722,7 @@ " NaN\n", " \n", " \n", - " Potencia(W)\n", + " Potencia Watts\n", " NaN\n", " NaN\n", " 2980.0\n", @@ -37968,7 +57762,7 @@ " NaN\n", " \n", " \n", - " Potencia(HP)\n", + " Potencia HP\n", " NaN\n", " NaN\n", " 4.0\n", @@ -38128,6 +57922,246 @@ " NaN\n", " \n", " \n", + " Despegue\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 3.0\n", + " 2.0\n", + " 3.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " \n", + " \n", + " Propulsión horizontal\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " 2.0\n", + " \n", + " \n", + " Propulsión vertical\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 5.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", + " Cantidad de motores propulsión vertical\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 4.0\n", + " 8.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " \n", + " \n", + " Cantidad de motores propulsión horizontal\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", + " Misión\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", + " \n", + " \n", " Dimensiones de la bahía de carga útil\n", " NaN\n", " NaN\n", @@ -38368,7 +58402,7 @@ " NaN\n", " \n", " \n", - " Despegue\n", + " Despegue todos los tipos\n", " NaN\n", " NaN\n", " NaN\n", @@ -38688,47 +58722,7 @@ " NaN\n", " \n", " \n", - " Empresa\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " kjbk\n", + " indice_desconocido\n", " NaN\n", " NaN\n", " NaN\n", @@ -38830,7 +58824,7 @@ "

Tabla de Correlaciones con todos los parametros(tabla_completa)

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38857,6 +58851,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -38864,494 +58899,596 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -39359,18 +59496,18 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39381,112 +59518,136 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39497,122 +59658,362 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Capacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
Distancia de carrera requerida para despegue1.0000.0630.3460.058-0.5050.230-0.2490.2270.4270.082-0.2730.269-0.2500.2220.4250.168-0.014-0.0690.207-0.2350.1130.1510.054-0.0780.241-0.1850.1050.2000.229nan0.389nan0.2090.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
Altitud a la que se realiza el crucero0.0631.000-0.056-0.125nan-0.0590.108-0.0960.0110.0950.008-0.0750.105-0.092nan-0.095-0.324-0.281-0.1970.170-0.0840.079-0.101-0.309-0.278-0.0640.147-0.0800.109-0.114nannannan-0.127-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
Velocidad a la que se realiza el crucero (KTAS)0.346-0.0560.4270.0111.0000.1660.1390.672-0.7850.5550.9320.7020.1020.2720.7030.3690.5310.5420.708-0.6940.9820.7970.608-0.6020.3050.5950.1340.3160.497-0.6070.4280.9170.5530.5450.4230.6340.1140.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.272-0.2900.0630.5630.120-0.076nannan
Techo de servicio máximo0.058-0.1250.1661.000-0.1660.187-0.1290.1780.5530.2040.1470.0840.158-0.0020.1250.0820.0950.2000.1341.0000.1030.096-0.0290.1350.5900.1220.0970.0010.0140.1110.0220.0280.118-0.8750.1440.1120.5790.118-0.798-0.036-0.0900.469-0.138-0.004-0.961-0.118-0.8190.461-0.1560.1960.068-0.1360.140nannan
Velocidad de pérdida limpia (KCAS)-0.505nan0.139-0.166-0.2730.0080.3160.1031.0000.439-0.3700.753-0.5980.5940.6750.798-0.2300.260nan0.546-0.2890.4010.5931.0000.5050.6530.536nan0.128nan0.4110.5160.6290.7470.6430.731-0.1900.4930.9310.678-0.2370.1290.2240.6300.118-0.0280.322-0.1600.232nannan0.0681.0000.163
Área del ala0.230-0.0590.6720.1870.4390.269-0.0750.4970.0960.7531.000-0.7460.846-0.7780.8350.9840.979-0.0490.3460.6840.4620.8090.7230.845-0.4430.6720.9860.949-0.5430.5130.9920.6870.0480.970-0.0230.3830.6480.2870.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
Relación de aspecto del ala-0.2490.108-0.785-0.129-0.370-0.746-0.2500.105-0.607-0.029-0.598-0.7781.000-0.626-0.676-0.7890.108-0.444-0.740-0.572-0.618-0.779-0.8280.521-0.765-0.495-0.6960.429-0.416-0.624-0.681-0.790-0.003-0.456-0.730-0.132-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.3020.0250.2960.024-0.001-0.471-0.1410.075nannan
Longitud del fuselaje0.227-0.0960.5550.1780.2600.846-0.6260.222-0.0920.4280.1350.5940.835-0.6241.0000.9380.8080.0430.3930.3970.3120.7040.5770.6650.8060.1400.4030.3630.1070.7190.6230.660-0.6170.5640.9250.8320.5740.9260.834-0.6960.6820.6460.9290.036-0.186-0.2030.1380.6120.0340.040nannan
Ancho del fuselaje0.425nan0.9320.553nan0.9170.5900.6750.984-0.676-0.6810.9381.0000.9860.721-0.1940.833-0.0890.9400.5470.7110.6710.5360.5570.868nan0.944nan0.8820.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
Peso máximo al despegue (MTOW)0.168-0.0950.7020.2040.5460.979-0.7890.8080.5530.1220.7980.970-0.7900.8060.9861.0000.0130.3930.7360.5120.8020.7070.8840.0300.4200.7170.3330.8110.7510.882-0.4010.7080.9790.9580.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
Alcance de la aeronave-0.014-0.3240.1020.147-0.289-0.0490.1080.0430.7210.0130.054-0.3090.5450.097-0.230-0.023-0.0030.1400.8330.0301.0000.2000.001-0.227-0.095-0.492-0.074-0.5780.3320.6240.073-0.7860.1750.9660.6680.0370.2240.013-0.258-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
Autonomía de la aeronave-0.069-0.2810.2720.0840.4010.346-0.4440.393-0.1940.3930.200-0.078-0.2780.4230.0010.2600.383-0.4560.403-0.0890.4200.2241.0000.4220.2030.5300.3180.3800.378-0.3470.5410.2690.400-0.5940.3010.3370.6340.3840.486-0.7150.802-0.0930.056-0.7320.0210.033-0.4200.4780.353-0.314nannan
Velocidad máxima (KIAS)0.207-0.1970.7030.1580.5930.684-0.7400.3970.241-0.0640.6340.0140.5160.648-0.7300.3630.9400.7360.0010.4220.7170.0130.3781.0000.5150.5310.5930.732-0.2020.6640.7840.632-0.3390.1840.7420.2490.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.1140.067-0.0570.3000.178-0.141nannan
Velocidad de pérdida (KCAS)-0.2350.1700.369-0.0021.0000.462-0.5720.3120.5470.512-0.2270.2030.5151.0000.4930.6340.6540.5850.3940.1740.357-0.1850.1470.1140.1110.6290.287-0.1320.1070.7110.333-0.258-0.3470.2491.0000.0890.0420.3540.1360.2210.1570.3560.6720.2840.3230.1480.934-0.9610.0360.6850.1210.295-0.000-0.4210.498nannan
envergadura0.113-0.0840.5310.1250.5050.809-0.6180.7040.105-0.0800.4210.0220.7470.825-0.6300.7190.6710.802-0.0950.5300.5310.4930.811-0.0430.5410.4910.2211.0000.7190.7700.6860.775-0.2580.5010.9340.7930.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
Cuerda0.1510.0790.5420.0950.6530.723-0.7790.5770.5360.707-0.4920.3180.5930.6340.7190.2000.1090.3960.0280.6430.787-0.8620.6230.5570.751-0.2240.2690.6270.1570.6861.0000.754-0.4890.5000.5910.642-0.4810.4120.014-0.9220.0750.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
payload0.229-0.1010.7080.2000.5360.845-0.8280.665-0.1140.5670.1180.7310.854-0.8260.6600.8680.884-0.0740.3800.7320.6540.7700.7540.8820.0190.4000.7180.3560.7750.7581.000-0.0240.6710.6700.5590.8080.784-0.1420.4750.4890.7110.846-0.0080.0530.4620.100-0.055nannan
duracion en VTOLnan-0.694-0.875nan-0.4430.521-0.190-0.3830.519-0.617nan-0.401-0.578-0.525-0.594-0.2020.585-0.0770.672-0.258-0.489-0.499-0.0241.000-0.694nannannan-0.188-0.9040.188-0.188nannan
Crucero KIAS0.389nan0.9820.1440.1280.672-0.7650.5640.9730.1120.4930.692-0.7690.5740.9440.7080.3320.3010.6640.3940.5240.3370.7000.2840.5010.5000.6710.7300.670-0.6941.0000.7230.6200.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
RTF (Including fuel & Batteries)nannan0.7970.7900.579nan0.986-0.4950.9250.9310.965-0.4970.926nan0.9790.6240.9360.6340.7840.1740.9340.5910.7260.3230.9500.5950.559-0.4020.7231.0000.9730.948-0.402nannannannan0.0970.428-0.0970.097nannan
Empty weight0.209-0.1270.6080.1180.4110.949-0.6960.8320.8820.9580.0730.3840.6320.3570.7930.6420.8080.225-0.1210.503-0.0040.6780.944-0.7460.8340.9540.9330.0810.4860.6130.1480.8060.7240.784-0.3150.6200.9730.6360.9481.000-0.3860.7210.9890.6170.0280.7850.9800.2510.023-0.0290.4800.195-0.070nannan
Maximum Crosswindnan0.038-0.602-0.798nan-0.5430.429-0.854-0.961-0.237-0.4660.432-0.696nan-0.464-0.786-0.711-0.715-0.3391.000-0.2230.934-0.414-0.481-0.498-0.1421.000-0.855nannannannan-0.943nannannannan
Rango de comunicaciónnan-0.3250.305-0.036nan0.513-0.4160.6820.480-0.1180.1290.491-0.4090.6460.3230.5140.1750.4670.8020.1840.0890.151-0.9610.6480.4120.4750.3550.489nan0.359nan0.7210.785nan1.000nannannan-0.4300.6040.430-0.430nannan
Capacidad combustible-0.018nan0.595-0.0900.0680.9920.365-0.8190.2240.974-0.9700.929nan0.9760.966-0.0930.7420.0420.8480.0560.7270.0360.2970.0140.9750.711nan0.581nan0.9890.980nannan1.0000.3770.817-0.080nan-0.0800.270nannan
Consumo-0.240nan0.4610.4691.0000.6870.3020.4610.6300.2880.2960.0361.0000.7580.6680.837-0.7320.9100.3540.6850.085-0.922-0.2280.846nan0.461nan0.6170.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
Precio-0.156nan-0.272-0.1380.1630.0480.025-0.186-0.290-0.1560.1180.0360.024-0.203nan0.0520.0370.0210.1140.136-0.1480.0330.0670.1210.0320.075-0.041-0.008nan-0.243nan0.0280.023nannan0.8170.9981.000-0.1380.217-0.1380.134nannan
Despegue0.735-0.1190.0630.196-0.0280.125-0.0010.1380.7940.0900.157-0.420-0.0570.295-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
Propulsión horizontal0.154-0.1090.5630.0680.3220.476-0.4710.612nan0.4670.3170.4780.300-0.0000.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
Propulsión vertical0.6710.1870.120-0.136-0.1600.072-0.1410.034-0.5350.023-0.2130.3530.178-0.4210.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1400.2320.0370.0750.0400.5740.0750.210-0.314-0.1410.498-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" @@ -39671,17 +60072,17 @@ " \n", " 0\n", " Total de valores\n", - " 676.000\n", + " 1024.000\n", " \n", " \n", " 1\n", " Valores numéricos\n", - " 602.000\n", + " 826.000\n", " \n", " \n", " 2\n", " Valores NaN\n", - " 74.000\n", + " 198.000\n", " \n", " \n", "" @@ -39741,7 +60142,7 @@ "

Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39752,249 +60153,300 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40054,12 +60506,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -40114,7 +60566,7 @@ "

Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
Velocidad a la que se realiza el crucero (KTAS)1.0000.1660.672-0.7850.5550.7020.1020.2720.7030.3690.5310.5420.7080.6080.1340.497-0.6070.4280.5530.5450.4230.6340.1140.3160.4210.3960.5670.503
Techo de servicio máximo0.1660.1341.0000.187-0.1290.1780.2040.1470.0840.158-0.0020.1250.0950.2000.096-0.0290.1350.1220.0970.0010.0140.1110.1030.0220.0280.118-0.004
Área del ala0.6720.1870.4970.0961.000-0.7460.8460.979-0.0490.3460.6840.4620.8090.7230.8450.949-0.7780.8350.970-0.0230.3830.6480.2870.7530.8250.7870.8540.944
Relación de aspecto del ala-0.785-0.129-0.746-0.607-0.029-0.7781.000-0.626-0.7890.108-0.444-0.740-0.572-0.618-0.779-0.828-0.696-0.624-0.790-0.003-0.456-0.730-0.132-0.598-0.630-0.862-0.826-0.746
Longitud del fuselaje0.5550.1780.846-0.6261.0000.8080.0430.3930.3970.3120.7040.5770.6650.8320.4280.1350.835-0.6241.0000.8060.1400.4030.3630.1070.5940.7190.6230.6600.834
Peso máximo al despegue (MTOW)0.7020.2040.979-0.7890.8080.5530.1220.970-0.7900.8061.0000.0130.3930.7360.5120.8020.7070.8840.9580.0300.4200.7170.3330.7980.8110.7510.8820.933
Alcance de la aeronave0.1020.147-0.0490.1080.0430.0130.5450.097-0.023-0.0030.1400.0301.0000.2000.001-0.227-0.095-0.492-0.0740.0730.2240.013-0.258-0.230-0.043-0.2240.0190.081
Autonomía de la aeronave0.2720.0840.346-0.4440.3930.3930.2000.4230.0010.383-0.4560.4030.4200.2241.0000.4220.2030.5300.3180.3800.3840.378-0.3470.2600.5410.2690.4000.486
Velocidad máxima (KIAS)0.7030.1580.684-0.7400.3970.7360.0010.4220.6340.0140.648-0.7300.3630.7170.0130.3781.0000.5150.5310.5930.7320.6320.2490.5160.4910.6270.7180.613
Velocidad de pérdida (KCAS)0.369-0.0020.462-0.5720.3120.512-0.2270.2030.5150.1140.1110.287-0.1320.1070.333-0.258-0.3470.2491.0000.4930.6340.6540.3570.6290.2210.1570.3560.148
envergadura0.5310.1250.809-0.6180.7040.802-0.0950.5300.5310.493Velocidad de pérdida limpia (KCAS)0.3160.1030.753-0.5980.5940.798-0.2300.2600.5160.6291.0000.7470.6430.7310.678
envergadura0.4210.0220.825-0.6300.7190.7700.7930.811-0.0430.5410.4910.2210.7471.0000.6860.7750.806
Cuerda0.5420.0950.723-0.7790.5770.707-0.4920.3180.5930.6340.7190.3960.0280.787-0.8620.6230.751-0.2240.2690.6270.1570.6430.6861.0000.7540.6420.7580.724
payload0.7080.2000.845-0.8280.6650.884-0.0740.3800.7320.6540.7700.7540.5670.1180.854-0.8260.6600.8820.0190.4000.7180.3560.7310.7750.7581.0000.8080.784
Empty weight0.6080.1180.949-0.6960.8320.9580.0730.3840.6320.3570.7930.6420.8080.503-0.0040.944-0.7460.8340.9330.0810.4860.6130.1480.6780.8060.7240.7841.000
0Total de valores196.000225.000
1Valores numéricos196.000225.000
2
\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -40125,11 +60577,30 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40137,16 +60608,17 @@ " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40165,74 +60637,79 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40250,6 +60727,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -40267,22 +60745,24 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -40301,73 +60781,96 @@ " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40427,17 +60930,17 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
Modelo
nannannan-0.785nan0.702nannan0.703nannannan0.708nannannannannannan
nannannannan
Área del alanannannan-0.7460.8460.979-0.7780.8350.970nannannannan0.8090.7230.8450.9490.7530.8250.7870.8540.944
Relación de aspecto del ala-0.785nan-0.746nan-0.778nannan-0.789-0.790nannan-0.740-0.730nannan-0.779-0.828nan-0.862-0.826-0.746
Longitud del fuselajenannan0.8460.835nannan0.8080.806nannannannannan0.7040.719nannan0.8320.834
Peso máximo al despegue (MTOW)0.702nan0.979-0.7890.808nan0.970-0.7900.806nannan0.736nan0.8020.7070.8840.9580.717nan0.7980.8110.7510.8820.933
Alcance de la aeronavenannannannan
Autonomía de la aeronavenannannannan
Velocidad máxima (KIAS)0.703nannan-0.740nan0.736-0.730nan0.717nannannannannannannan0.7320.718nan
nannannannan
envergaduraVelocidad de pérdida limpia (KCAS)nannan0.8090.753nannan0.798nannan0.7040.802nannannan0.747nan0.731nan
envergaduranannan0.825nan0.7190.7700.7930.811nannannannan0.747nannan0.7750.806
Cuerdanannan0.723-0.7790.787-0.862nan0.7070.751nannannannan0.719nan0.754nannan0.7580.724
payload0.708nan0.845-0.828nan0.8840.854-0.826nan0.882nan0.732nan0.7700.7540.718nan0.8080.7310.7750.758nan0.784
Empty weightnannan0.949nan0.8320.9580.944-0.7460.8340.933nannannannan0.793nan0.8080.8060.7240.784nan
0Total de valores196.000225.000
1Valores numéricos58.00060.000
2Valores NaN138.000165.000
" @@ -40461,7 +60964,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUSx8H8O/S3d1dAoKCYoIFimIrdmF3e+3uQr0qXgu7scUWC1QMLDBAERUQ6a7d8/6BrCy7S+givPf+Pj77PHJ2zuzMzpw5u7MTLIZhGBBCCCGEEEIIIYQQQviI1XYCCCGEEEIIIYQQQgipq6jzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIajzjBBCyB8VGBgIFouFx48fC3y+U6dOMDExqdE0hIaGYtGiRUhPT6/R16kNixYtAovFEnm8L168wNChQ2FqagoZGRkoKCigQYMGWLNmDVJTU0X+er8jJCQELBYLISEhNRJ/bGwsWCwWAgMDayT+2jZkyBCRXYPOzs7Q19cHm80WGqZZs2bQ0NBAYWHhb7/e75R9ZW1TWaJ8j6qKYRgcPXoULVq0gJaWFmRkZGBgYAAvLy/s2rXrl+L08PCAh4eHaBNaTTXVZokai8XCokWL/vjr3r17F9LS0vj06RP3mImJCTp16iQw/OPHj0XePlXn2hCF/5c6USo7OxuTJ0+Gnp4eZGRk4OTkhKNHj1bpXA8PD7BYLKGPxMREAEBRURHMzc3h7+9fgzkhhFSEOs8IIYT854SGhmLx4sX/ys6zmrBz5040bNgQ4eHhmDFjBi5fvozTp0+jV69eCAgIgJ+fX20n8Y/S1dVFWFgYOnbsWNtJqfP8/PwQHx+PK1euCHz+3bt3CA0NxcCBAyElJfXbr9egQQOEhYWhQYMGvx1XXTN79mz07dsXtra22LVrF4KDg7Fs2TJoa2vj7NmztZ28XzZ8+HCEhYXVdjLqJIZhMHnyZIwYMQLGxsa1nRwiRPfu3bFv3z4sXLgQwcHBcHV1Rd++fXH48OFKz922bRvCwsJ4Hjdu3ICkpCTc3Nygo6MDAJCUlMSCBQuwZMkSpKSk1HSWCCECSNR2AgghhBBSd4WFhWHMmDFo164dzpw5A2lpae5z7dq1w7Rp03D58mWRvFZubi7k5OT4jrPZbBQXF/O8dm2SlpaGm5tbbSfj/0L//v0xY8YM7NmzB97e3nzP79mzBwAwbNiw33qdoqIisFgsKCkp/SvLJi8vD/7+/hg0aBD++ecfnueGDBkCDodTSyn7fQYGBjAwMKjtZNRJly9fxtOnT6vUCVOXCWvbf1dCQgLk5eWhpKQk8rir6tKlS7h27RoOHz6Mvn37AgBatWqFT58+YcaMGfD19YW4uLjQ8+3s7PiO7du3D0VFRRg+fDjP8b59+2Lq1KnYsWMH5syZI9qMEEIqRSPPCCGE1HkMw2Dbtm1wcnKCrKwsVFVV0bNnT3z48IEn3LVr19ClSxcYGBhARkYGFhYWGDVqFJKTk7lhFi1ahBkzZgAATE1NuVMjSqd5lU6HuXDhApydnSErKwtbW1tcuHABQMn0FVtbW8jLy6NRo0Z801geP36MPn36wMTEBLKysjAxMUHfvn15ptyUxsNisXDt2jUMHToUampqkJeXh4+PD1++hLl48SKcnJwgLS0NU1NTrFu37rfeP0FWrFgBFouFf/75R2DnlZSUFDp37sz9m8PhYM2aNbCxsYG0tDS0tLQwaNAgfPnyhec8Dw8P2Nvb486dO2jatCnk5OQwbNgw7pTINWvWYNmyZTA1NYW0tDRu3boFoOT97dy5M9TU1CAjIwNnZ2ccP3680nxUtVwA4OvXrxg5ciQMDQ0hJSUFPT099OzZE9++fQMgfNrmvXv30KZNGygqKkJOTg5NmzbFxYsXecKUlvutW7cwZswYaGhoQF1dHd27d0d8fDxfWo4dO4YmTZpAXl4eCgoK8PLywrNnz3jCfPjwAX369IGenh6kpaWhra2NNm3aICIiotL3JTAwENbW1pCWloatrS32798vMFxhYSGWLVvGLVdNTU0MHToU379/rzB+VVVVdOvWDefPn+cbLcFms3HgwAG4urrCwcEB0dHRGDp0KCwtLSEnJwd9fX34+Pjg5cuXPOeVTs08cOAApk2bBn19fUhLSyM6OlrgtM3qlD0ApKWl/dI1WdXr7NmzZ+jUqRO0tLQgLS0NPT09dOzYke8aKSsnJwcFBQXQ1dUV+LyYGO9H+l8tr+qee/jwYTRp0gQKCgpQUFCAk5MTdu/ezRPm8uXLaNOmDZSVlSEnJwdbW1usXLmS+7ygKXrVbUfCw8PRokULyMnJwczMDKtWreLpUMzPz8e0adPg5OQEZWVlqKmpoUmTJgJH7GVmZmLEiBFQV1eHgoIC2rdvj3fv3vGFq2p95XA4WLZsGaytrSErKwsVFRU4Ojpi06ZNFZRCie3bt8PV1RXW1taVhq3IkCFDoKCggDdv3sDLywvy8vLQ1dXFqlWrAAAPHjxA8+bNIS8vDysrK+zbt09gPFW5NoS17UBJe+bp6QldXV3uvfWvv/5CTk7OL+XrypUr0NbWRs+ePREUFIT8/Pxfiud3nD59GgoKCujVqxfP8aFDhyI+Ph4PHz6sdpy7d++GgoICfH19eY5LSUnB19cX//zzDxiG+a10E0KqjzrPCCGE1IrS0UTlH4I+EI4aNQqTJ09G27ZtcebMGWzbtg2vX79G06ZNuR0aABATE4MmTZpg+/btuHr1KhYsWICHDx+iefPmKCoqAlAyRWjChAkAgKCgIO40ibLTvJ4/f47Zs2dj1qxZCAoKgrKyMrp3746FCxdi165dWLFiBQ4dOoSMjAx06tQJeXl53HNjY2NhbW0Nf39/XLlyBatXr0ZCQgJcXV15OvFK+fn5QUxMDIcPH4a/vz8ePXoEDw+PSqeU3rhxA126dIGioiKOHj2KtWvX4vjx49i7d+8vv3+CyujmzZto2LAhDA0NK0xPqTFjxmDWrFlo164dzp07h6VLl+Ly5cto2rQpX/4TEhIwYMAA9OvXD5cuXcLYsWO5z23evBk3b97EunXrEBwcDBsbG9y6dQvNmjVDeno6AgICcPbsWTg5OcHX17fS9X2qWi5fv36Fq6srTp8+jalTpyI4OBj+/v5QVlZGWlqa0Phv376N1q1bIyMjA7t378aRI0egqKgIHx8fHDt2jC/88OHDISkpicOHD2PNmjUICQnBgAEDeMKsWLECffv2hZ2dHY4fP44DBw4gKysLLVq0QGRkJDect7c3njx5gjVr1uDatWvYvn07nJ2dK61DgYGBGDp0KGxtbXHq1CnMmzcPS5cuxc2bN3nCcTgcdOnSBatWrUK/fv1w8eJFrFq1CteuXYOHhwdP/RfEz88PhYWFOHjwIM/xK1euID4+njvtNz4+Hurq6li1ahUuX76MrVu3QkJCAo0bN8bbt2/54p09ezbi4uIQEBCA8+fPQ0tLS+Dr/6lrsirXWU5ODtq1a4dv375h69atuHbtGvz9/WFkZISsrCyhcWtoaMDCwgLbtm3Dhg0b8ObNG6Ffnn+nvKpz7oIFC9C/f3/o6ekhMDAQp0+fxuDBg3k6JXfv3g1vb29wOBxuOU2cOLHCjkKgeu1IYmIi+vfvjwEDBuDcuXPo0KEDZs+ezVPfCgoKkJqaiunTp+PMmTM4cuQImjdvju7du/N0GDMMg65du3I7Zk+fPg03Nzd06NCBL41Vra9r1qzBokWL0LdvX1y8eBHHjh2Dn59fpfWpsLAQ169fR6tWrSoMV1VFRUXo3r07OnbsiLNnz3Lfpzlz5mDw4MEYNmwYTp8+DWtrawwZMgRPnjzhi6Oq14awtv39+/fw9vbG7t27cfnyZUyePBnHjx+Hj4/PL+WpW7du2Lx5M9LS0tC7d29oa2tjyJAhuHLlSoXrLDIMI/Dzh6BHZV69egVbW1tISPBO6HJ0dOQ+Xx3v37/H3bt30adPHygoKPA97+HhgU+fPlU7XkKICDCEEELIH7R3714GQIUPY2NjbviwsDAGALN+/XqeeD5//szIysoyM2fOFPg6HA6HKSoqYj59+sQAYM6ePct9bu3atQwA5uPHj3znGRsbM7KyssyXL1+4xyIiIhgAjK6uLpOTk8M9fubMGQYAc+7cOaH5LS4uZrKzsxl5eXlm06ZNfO9Dt27deMLfv3+fAcAsW7ZMaJwMwzCNGzdm9PT0mLy8PO6xzMxMRk1NjSl7e//V949hGCYxMZEBwPTp06fCtJSKiopiADBjx47lOf7w4UMGADNnzhzuMXd3dwYAc+PGDZ6wHz9+ZAAw5ubmTGFhIc9zNjY2jLOzM1NUVMRzvFOnToyuri7DZrMZhmGYW7duMQCYW7duCU2rsHIZNmwYIykpyURGRgo9tzSNe/fu5R5zc3NjtLS0mKysLJ7XsLe3ZwwMDBgOh8MwzM9yL/8erVmzhgHAJCQkMAzDMHFxcYyEhAQzYcIEnnBZWVmMjo4O07t3b4ZhGCY5OZkBwPj7+wtNryBsNpvR09NjGjRowE0bwzBMbGwsIykpyXMNHjlyhAHAnDp1iieO8PBwBgCzbdu2Cl+Lw+EwpqamjKOjI8/xHj16MHJyckxGRobA84qLi5nCwkLG0tKSmTJlCvd4afm2bNmS75zfKfvqXJODBw/+pXbq8ePHDADmzJkzQtMnzKNHjxgjIyNuO6moqMh06tSJ2b9/P08ZVqe83N3dGXd392qf++HDB0ZcXJzp37+/0PRmZWUxSkpKTPPmzXnSV97ChQt52qxfaUcePnzIE9bOzo7x8vIS+prFxcVMUVER4+fnxzg7O3OPBwcHMwB46gXDMMzy5csZAMzChQsrjFNQfe3UqRPj5OQk9DxhSvN79OhRvueMjY2Zjh07CjyvtKzKtk+DBw/mK9eioiJGU1OTAcA8ffqUezwlJYURFxdnpk6dyj1WnWtDWNteXuk9+vbt2wwA5vnz59znyteJqkhMTGS2bNnCNGvWjGGxWIyWlhYzbtw45t69e3z1ryqfQ0oflbG0tBRY1+Lj4xkAzIoVK6qVj1mzZjEAmLCwMIHPv3//ngHAbN++vVrxEkJ+H408I4QQUiv279+P8PBwvkfz5s15wl24cAEsFgsDBgzg+TVYR0cH9evX55melZSUhNGjR8PQ0BASEhKQlJTkLrIcFRVV5bQ5OTlBX1+f+7etrS2Akl98y67bUnq87EiL7OxszJo1CxYWFpCQkICEhAQUFBSQk5MjMA39+/fn+btp06YwNjbmTlMUJCcnB+Hh4ejevTtkZGS4x0tHOpVVnffvd5WmeciQITzHGzVqBFtbW9y4cYPnuKqqKlq3bi0wrs6dO0NSUpL7d3R0NN68ecN9v8rmxdvbGwkJCQJHJ5WqarkEBwejVatW3LKtipycHDx8+BA9e/bkGSkgLi6OgQMH4suXL3xpKzvVFfg5SqG0Ll25cgXFxcUYNGgQT15lZGTg7u7OLTc1NTWYm5tj7dq12LBhA549e1al9a/evn2L+Ph49OvXj2fKnLGxMZo2bcoT9sKFC1BRUYGPjw9PWpycnKCjo1NpHWKxWBg6dChevHjBHc2SkpKC8+fPo0ePHtz1ioqLi7FixQrY2dlBSkoKEhISkJKSwvv37wVeOz169Kg0n8CfuSarep1ZWFhAVVUVs2bNQkBAAM8Iwsq4uroiOjoaly9fxpw5c9CkSRPcuHEDgwYNQufOnbkj0X6nvKp67rVr18BmszFu3DihcYWGhiIzMxNjx46t1s6J1W1HdHR00KhRI55jjo6OfNNyT5w4gWbNmkFBQYF7f9i9ezdPHSh97fJ1oF+/fnzprGp9bdSoEZ4/f46xY8fiypUryMzMrNL7UDqNW9iIyupisVg86w5KSEjAwsICurq6cHZ25h5XU1ODlpaWwGnNVb02hLXtHz58QL9+/aCjowNxcXFISkrC3d0dQPXu0YJoa2tj/PjxuHfvHj59+oSZM2dyR56bmpryTA318fER+PlD0KMqKqrf1an7xcXF2LdvH+rVqyd07cbS+vD169cqx0sIEQ3aMIAQQkitsLW1hYuLC99xZWVlfP78mfv3t2/fwDAMtLW1BcZjZmYGoGS6kaenJ+Lj4zF//nw4ODhAXl4eHA4Hbm5ulU4tK0tNTY3n79JdAIUdL7vOSr9+/XDjxg3Mnz8frq6uUFJS4n5pEZSG0p20yh+raDettLQ0cDgcoeeWVdX3TxANDQ3Iycnh48ePQsOUVZpmQesy6enp8X0ZE7Z+k6DnSqe9TZ8+HdOnTxd4jqApeKWqWi7fv3+v9uLlaWlpYBhGaL4B8JWnuro6z9+l68mVpqU0v66urgJfs3SNKxaLhRs3bmDJkiVYs2YNpk2bBjU1NfTv3x/Lly+HoqKiwPNL0yOsDsXGxnL//vbtG9LT04XuhlnR+15q6NChWLRoEfbu3YuGDRvi0KFDKCws5NmpderUqdi6dStmzZoFd3d3qKqqQkxMDMOHDxd47VRUf8r6E9dkVa8zZWVl3L59G8uXL8ecOXOQlpYGXV1djBgxAvPmzePpMBZEUlISXl5e8PLyAlBSjj179sSFCxcQHBwMb2/v3yqvqp5buv5ZRddKVcIIUt12pPy1BJRcT2XLNigoCL1790avXr0wY8YM6OjoQEJCAtu3b+duWlH62hISEnxxCqoTVa2vs2fPhry8PA4ePIiAgACIi4ujZcuWWL16tcB7YKnSOMr+QFJKQkJC6LTE0qmG5euSnJwcX1xSUlJ897XS44LWD6vqtSGo7LKzs9GiRQvIyMhg2bJlsLKygpycHD5//ozu3btX6x5dmYyMDKSnpyMjIwMAuGVTSk1NDcrKyiJ5LXV1dYFtQ2pqKve1qurSpUtITEzErFmzhIYpLUNRvl+EkKqhzjNCCCF1moaGBlgsFu7evStwwfrSY69evcLz588RGBiIwYMHc5+Pjo7+Y2nNyMjAhQsXsHDhQvz111/c46Xr7QiSmJgo8JiFhYXQ11FVVQWLxRJ6bllVff8EERcXR5s2bRAcHIwvX75U+iW49AtnQkICX9j4+HhoaGjwHKvOr/Wl586ePRvdu3cXeI6wRbWrUy6ampqVrsdUXukXs4SEBL7nSkePlM97ZUrDnzx5kjt6UhhjY2PuIu3v3r3D8ePHsWjRIhQWFiIgIEDgOaVlVdU6pK6uLnRXVWEddGUZGBjA09MThw8fxvr167F3715YWFigZcuW3DAHDx7EoEGDsGLFCp5zk5OToaKiwhdnVUZ0/KlrsjrXmYODA44ePQqGYfDixQsEBgZiyZIlkJWV5UljVairq2Py5MkICQnBq1ev4O3t/VvlVdVzNTU1AQBfvnwRuh5i2TDVUd12pCoOHjwIU1NTHDt2jKfeFBQU8L12cXExUlJSeDrQBNWJqtZXCQkJTJ06FVOnTkV6ejquX7+OOXPmwMvLC58/fxa6C2VpPgXVU21tbaEjj0qPC+vI/R1VvTYEXZs3b95EfHw8QkJCuKPNAFS69ltVvXv3DseOHcPRo0cRGRkJCwsL9O3bF/369YONjQ1P2H379mHo0KFVipepZGF+BwcHHDlyBMXFxTzrnpVuHGFvb1/lPOzevRtSUlIYOHCg0DCl9eFXrgNCyO+haZuEEELqtE6dOoFhGHz9+hUuLi58DwcHBwA/P6yX/+K6Y8cOvjjLj/IRFRaLBYZh+NKwa9cuoaMEDh06xPN3aGgoPn36BA8PD6GvU7rTZ/ndxbKysnD+/HmesFV9/4SZPXs2GIbBiBEjUFhYyPd8UVER9zVLp+mUXxg+PDwcUVFRaNOmTYWvVRFra2tYWlri+fPnAvPh4uIitFOgOuXSoUMH3Lp1q8IpoOXJy8ujcePGCAoK4qlTHA4HBw8ehIGBAaysrKqRW8DLywsSEhKIiYkRml9BrKysMG/ePDg4OODp06dC47e2toauri6OHDnC8+Xw06dPCA0N5QnbqVMnpKSkgM1mC0xHVXcC9PPzQ1paGhYsWICIiAgMHTqU50s2i8XiK6OLFy/+1vSkP3VN/sp1xmKxUL9+fWzcuBEqKioVlldRUZHQkW+l091KRzn+TnlV9VxPT0+Ii4tj+/btQuNq2rQplJWVERAQUK2dAWuiHWGxWJCSkuKpb4mJiXy7bZYuzl++Dhw+fFhgnNWtryoqKujZsyfGjRuH1NRUnhGe5ZVOHY+JieF7rm3btnj16pXAab/Hjx+HgoICGjduLDTuX/Ur10ap6tyjqyopKQmrV6+Gs7MzrK2tERAQAE9PTzx69Ajv37/HkiVL+DrOANFO2+zWrRuys7Nx6tQpnuP79u2Dnp5elcshMTERly5dQteuXQWOpixVurupnZ1dleIlhIgOjTwjhBBSpzVr1gwjR47E0KFD8fjxY7Rs2RLy8vJISEjAvXv34ODggDFjxsDGxgbm5ub466+/wDAM1NTUcP78eVy7do0vztIvsps2bcLgwYMhKSkJa2vrKo2gqYiSkhJatmyJtWvXQkNDAyYmJrh9+zZ2794tcOQMADx+/BjDhw9Hr1698PnzZ8ydOxf6+vo8O08KsnTpUrRv3x7t2rXDtGnTwGazsXr1asjLy/OMVKjq+ydM6e6lY8eORcOGDTFmzBjUq1cPRUVFePbsGf755x/Y29vDx8cH1tbWGDlyJLZs2QIxMTF06NABsbGxmD9/PgwNDTFlypRfel9L7dixAx06dICXlxeGDBkCfX19pKamIioqCk+fPsWJEycEnledclmyZAmCg4PRsmVLzJkzBw4ODkhPT8fly5cxdepUgV/EAGDlypVo164dWrVqhenTp0NKSgrbtm3Dq1evcOTIkWqtewMAJiYmWLJkCebOnYsPHz6gffv2UFVVxbdv3/Do0SPIy8tj8eLFePHiBcaPH49evXrB0tISUlJSuHnzJl68eFHhKCYxMTEsXboUw4cPR7du3TBixAikp6dj0aJFfFOz+vTpg0OHDsHb2xuTJk1Co0aNICkpiS9fvuDWrVvo0qULunXrVmmeOnfuDA0NDaxduxbi4uI8I0SBko6bwMBA2NjYwNHREU+ePMHatWurPe2vrD91TVb1Ortw4QK2bduGrl27wszMDAzDICgoCOnp6WjXrp3Q+DMyMmBiYoJevXqhbdu2MDQ0RHZ2NkJCQrBp0ybY2tpyR2T+TnlV9VwTExPMmTMHS5cuRV5eHvr27QtlZWVERkYiOTkZixcvhoKCAtavX4/hw4ejbdu2GDFiBLS1tREdHY3nz5/j77//FpiGmmhHOnXqhKCgIIwdOxY9e/bE58+fsXTpUujq6uL9+/fccJ6enmjZsiVmzpyJnJwcuLi44P79+zhw4IDAOKtSX318fGBvbw8XFxdoamri06dP8Pf3h7GxMSwtLYWm2cDAAGZmZnjw4AEmTpzI89ykSZOwf/9+eHh4cNuptLQ0HDt2DCdPnsSGDRt++34myK/er4CSzlRVVVWMHj0aCxcuhKSkJA4dOoTnz5//cnouXbqEVatWoUePHli3bh1atWrFMz1TGHV19Qo7qKqjQ4cOaNeuHcaMGYPMzExYWFjgyJEjuHz5Mg4ePAhxcXFuWD8/P+zbtw8xMTF8I4r37duH4uJiDB8+vMLXe/DgAXfqLyHkD/vTOxQQQgj5byvd5So8PFzg8x07duTZxa7Unj17mMaNGzPy8vKMrKwsY25uzgwaNIh5/PgxN0xkZCTTrl07RlFRkVFVVWV69erFxMXFCdwlbfbs2Yyenh4jJibGszufsF3MADDjxo3jOVa66+LatWu5x758+cL06NGDUVVVZRQVFZn27dszr169YoyNjZnBgwfzvQ9Xr15lBg4cyKioqDCysrKMt7c38/79+0rexRLnzp1jHB0dGSkpKcbIyIhZtWqV0F3KqvL+VSQiIoIZPHgwY2RkxEhJSTHy8vKMs7Mzs2DBAiYpKYkbjs1mM6tXr2asrKwYSUlJRkNDgxkwYADz+fNnnvjc3d2ZevXq8b2OoPe0rOfPnzO9e/dmtLS0GElJSUZHR4dp3bo1ExAQwA0jaMfFqpYLw5TskDhs2DBGR0eHkZSUZPT09JjevXsz375940lj2d3sGIZh7t69y7Ru3Zr7Hru5uTHnz5/nCSOs/gvbJfLMmTNMq1atGCUlJUZaWpoxNjZmevbsyVy/fp1hGIb59u0bM2TIEMbGxoaRl5dnFBQUGEdHR2bjxo1McXGxwPewrF27djGWlpaMlJQUY2VlxezZs4dvJ0mGKdmZb926dUz9+vUZGRkZRkFBgbGxsWFGjRpV5frKMAwzZcoUBgDj7e3N91xaWhrj5+fHaGlpMXJyckzz5s2Zu3fv8u0IWfpenThxgi+O3yn76lyTgt4jhqn8Onvz5g3Tt29fxtzcnJGVlWWUlZWZRo0aMYGBgRW+bwUFBcy6deuYDh06MEZGRoy0tDQjIyPD2NraMjNnzmRSUlJ4wle1vMq/t9U5l2EYZv/+/Yyrqys3nLOzM991cenSJcbd3Z2Rl5dn5OTkGDs7O2b16tXc5wW1Wb/bjggqn1WrVjEmJiaMtLQ0Y2try+zcuVPga6enpzPDhg1jVFRUGDk5OaZdu3bMmzdv+O4jVa2v69evZ5o2bcpoaGhw22o/Pz8mNjaWL93lzZ8/n1FVVWXy8/P5nktMTGTGjBnDGBkZMRISEoyioiLTvHlzgdfF4MGDGXl5eb7jwt6/8vfB6lwbwuJkGIYJDQ1lmjRpwsjJyTGamprM8OHDmadPn/K1p1XdbTM5OZkpKCioNFxNy8rKYiZOnMjo6OgwUlJSjKOjI3PkyBG+cKW7ngra6dvKyooxMTGpcGdahmGYFi1aMD4+PqJKOiGkGlgMU41x1IQQQggRicDAQAwdOhTh4eEVLhpNCCHkvyk+Ph6mpqbYv38/fH19azs5pJbFxMTA0tISV65cqXCkKiGkZtCaZ4QQQgghhBBSx+jp6WHy5MlYvnw5OBxObSeH1LJly5ahTZs21HFGSC2hNc8IIYQQQgghpA6aN28e5OTk8PXrV6E7m5J/v+LiYpibm2P27Nm1nRRC/rNo2iYhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYQQInJ37tyBj48P9PT0wGKxcObMmUrPuX37Nho2bAgZGRmYmZkhICCAL8ypU6dgZ2cHaWlp2NnZ4fTp0zWQ+p+o84wQQgghhBBCCCGEiFxOTg7q16+Pv//+u0rhP378CG9vb7Ro0QLPnj3DnDlzMHHiRJw6dYobJiwsDL6+vhg4cCCeP3+OgQMHonfv3nj48GFNZYOmbRJCCCGEEEIIIYSQmsVisXD69Gl07dpVaJhZs2bh3LlziIqK4h4bPXo0nj9/jrCwMACAr68vMjMzERwczA3Tvn17qKqq4siRIzWSdhp5RgghhBBCCCGEEEIqVVBQgMzMTJ5HQUGByOIPCwuDp6cnzzEvLy88fvwYRUVFFYYJDQ0VWTrKo902CSGEEEIIIYQQQuqQZltH13YSBGr3XQeLFy/mObZw4UIsWrRIJPEnJiZCW1ub55i2tjaKi4uRnJwMXV1doWESExNFkgZBqPOMEEJEqK7e5H7V/XEBiPjytraTIXJOBtaYfn5LbSdDpNb5TED62Gm1nQyRUtm2HqtvHqjtZIjUrNYDMfmsf20nQ6T8u0zG+6S42k6GSFlqGeHGu/DaToZItbFyxaQzG2s7GSK3qesUnHh+o7aTIVK96rfBxttHazsZIjXFvQ/WhRyq7WSI1HSP/v+6a2pT1ylYfHV3bSdDpBZ6+tV2Ev51Zs+ejalTp/Ick5aWFulrsFgsnr9LVxsre1xQmPLHRIk6zwghhBBCCCGEEEJIpaSlpUXeWVaWjo4O3wiypKQkSEhIQF1dvcIw5UejiRKteUYIIYQQQgghhBBSh7Dq6L+a1qRJE1y7do3n2NWrV+Hi4gJJSckKwzRt2rTG0kUjzwghhBBCCCGEEEKIyGVnZyM6Opr798ePHxEREQE1NTUYGRlh9uzZ+Pr1K/bv3w+gZGfNv//+G1OnTsWIESMQFhaG3bt38+yiOWnSJLRs2RKrV69Gly5dcPbsWVy/fh337t2rsXzQyDNCCCGEEEIIIYQQInKPHz+Gs7MznJ2dAQBTp06Fs7MzFixYAABISEhAXNzPtVNNTU1x6dIlhISEwMnJCUuXLsXmzZvRo0cPbpimTZvi6NGj2Lt3LxwdHREYGIhjx46hcePGNZYPGnlGCCGEEEIIIYQQUoeI1eDi93+Sh4cHd8F/QQIDA/mOubu74+nTpxXG27NnT/Ts2fN3k1dlNPKMEEIIIYQQQgghhBAhqPOMEEIIIYQQQgghhBAhaNomIYQQQgghhBBCSB3C+pdM2/y3oJFnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIYQIQdM2CSGEEEIIIYQQQuqQf8tum/8WNPKMEEIIIYQQQgghhBAhqPOMEEIIIYQQQgghhBAhaNomIYQQQgghhBBCSB3CAk3brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoRFu23WKTTyjBBCCCGEEEIIIYQQIajzjBBCCCGEEEIIIYQQIf5455mJiQn8/f3/aHwsFgtnzpz5rddZtGgRnJycfiuO8kJCQsBisZCeni7SeAmv8u9zYGAgVFRUajVNQ4YMQdeuXWs1DXVBSkoKtLS0EBsbW9tJ4fH333+jc+fOtZ0MQgghhBBCyH+UGItVJx//VVVe88zHxwd5eXm4fv0633NhYWFo2rQpnjx5ggYNGog0gZUJDw+HvLz8H31N8v/N19cX3t7etZ0MAmDlypXw8fGBiYkJACA2NhampqZ49uwZt7M6KysLPj4+SExMxNu3byuM7+PHjzAxMUFoaChatGiBdu3a4fLly3zhTp06hTVr1uDNmzfgcDgwMjJC+/btsX79egDAiBEjsHz5cty7dw/NmzcXaZ5/R31dC/Rz9oSNlhE05FXw16XtuPvxeW0nS6ArZy/h/PEgpKekwcDECIPHDoetYz2BYdNSUnEgYA8+vItB4td4tO/WCUPGjeAJs3jqHEQ+f8V3rnNjF/y1YkGN5EGQpsYO8LBwhqK0PL5lpeLs67v4mBovNLy4mBjaWTVCQ31rKErLIz0/GzfehyP8cxQAYEyTbjDXMOA7L+pbLHY/Ol9j+ShPpqMnpJq5gSUnB3bsJ+QeCwIn4ZvQ8AqTx0DCyoLveNGrSORs213yh5gYZDp6QtK1AcSUlMDJzERhWDgKLl8HGKamsgIAiLr9GC+vhSEvIxsquppo3MsTOpZGAsMmvItF8MaDfMe7LxwNFR0N7t8Fufl4cvYWPkW8RWFuHhQ0VNCoRzsY2vO/D39CMxNHtLZoCCUZeSRmpeD0y9v4IKQu9nP2RCMjO77jCZkpWH3rQE0ntVounj6HoCMnkJqSAiMTE4yYOAb29R0Ehk1NTsHurTsQ/fY94r98hU/Prhg5cewfTjGv2xev4XrQJWSkpUPXSB+9RgyART0bgWGfhYbjbvANfPnwCcVFRdA1MkDHft1h18CRG2bj7GV4/+oN37n1XOpj3MIZNZaPyjQ3dURrCxdu/Qt6eRsfUr4KDNuvgScaG/G3/wmZKVh1c39NJ1Woh1du4+6568hOz4CWgS68h/SCia3g6zn2TTSuHjqD71+/oaigECqaanBt2xzNOrXhhtm1aCNiI9/znWvlXA+DZo+rsXyU9SrkEZ5fuY/cjGyo6mmimW8H6FoaCwz79e1HnF8fyHfcd/F4qOpqAgA+PI3Es+C7yEhKBYfNhrKWOuq3awqrJvVrMhs8IkPC8fxqGPIysqCqpwW33p5C8xT/NhYXN/DXqV6Lx/K056Viwl/h5q4gGNe3hudYX5GnXRhRXz86iurwtm0CAxUtqMspI+hlCG7HPKvJLPB5d+cZom48Ql5mNpR1NdCwe2toWRgKDc8uKsary6H4GB6J/KwcyKkoop6nG8yblLR/6QnJeHnxHlI/JyInNRMNureGTSuXP5UdQgSqcueZn58funfvjk+fPsHYmLfB2rNnD5ycnP54xxkAaGpq/vHXJH9GYWEhpKSkRB6vrKwsZGVlRR5vbaqp96oqioqKICkpWe3z8vLysHv3bly6dElomO/fv6NDhw4AgOvXr0NC4meT5erqipEjR2LEiJ+dLKXtwZ49ezBhwgTs2rULcXFxMDL6+aX5+vXr6NOnD1asWIHOnTuDxWIhMjISN27c4IaRlpZGv379sGXLljrVeSYrKY3olC+49CYUKzqMru3kCBV66y72bdsFv4mjYW1vi+sXLmPl7MXYsGcrNLT52+yioiIoKSujW/9euHTqrMA4py2ajeLiYu7fWZlZmDliItxaNquxfJRXX88Sne1bIOhlCGJTE+BmbI/hjX2wNuQQ0vOyBZ4zsGEHKErL4fjzm0jOSYeCtBzPL3aBjy9BQkyc+7ecpAymuvfF83j+L2A1RbpdK0i3dkfugaNgf/sOmQ5toTBhFDIXrwYKCgSek/NPIFDmemTJy0FxzjQUPX3xM17PVpBq0RS5+4+AE58IcWNDyA30BZOfj8Jbd2ssPx8ev8bDE1fRpE8HaJsb4s3dp7i69Qi6LxgNBTVloef1WDQGkjLS3L9lFOW4/2cXs3Fl8yHIKMqj9cgekFdRRHZaJk/4P8lZzwrdHNxx8vlNfEyNR1MTR4xq0hUrbx5Ael4WX/iglyE4H3mP+7cYSwwzW/X/o/WsKu7cCMHOzdsxZuoE2DnUQ/C5i1g0Yw62HdgNLW0tvvBFRUVQUlFG70H9cPb4qVpIMa/Hdx/g5K6D6DN6CMzsrHDv8k1sXbQW87euhpoW/xf36NdvYONkj84De0FOQR5h129j+9L1mLluMQzNTQAAI+dM5mn7cjKzsWLiHDRo1vhPZYuPs74Vujl44MTzm/iYEo+mpg4Y3aQrVt7YjzRB9e9FCM6/5q1/s1oPQET8uz+ZbB4vQx/jUuBJ+AzvAyNrM4Rfv4f9K7Zi4sb5UNFQ4wsvJS2Nxl7u0DHWh5S0ND69icbZnUcgJSMN17YlnxP6TR8Jdpmyys3KwdYZK2Df5M98P4oOf4XQY5fRol9H6FgYIfLOY1zcfBC+i8ZBUV1F6Hl9lk6AFE/b93NQgrS8LBp4t4SKjgbExMXx6eVb3Np3BrJK8jCsV/M/HMSEv0bY8Sto1s+7pD2/8xSXtxxGr0VjK2zPey0ZVy5PcnxhslLS8fDkNehYCP5hpabUxPUjJS6B5JwMPPv6Dt0cPP5ENnh8ehKFp0E34NK7HTTNDBB9PwIh20+i41w/yKspCTzn3t5zyM/KgVu/9lDQVEV+Vi4YDof7PLuwCAoayjB0tsbToJt/KiuEVKjK0zY7deoELS0tBAYG8hzPzc3FsWPH4OfnBwAIDQ1Fy5YtISsrC0NDQ0ycOBE5OTlC442Li0OXLl2goKAAJSUl9O7dG9++8f7afe7cObi4uEBGRgYaGhro3r0797ny0zbfv3+Pli1bQkZGBnZ2drh27Rrfa86aNQtWVlaQk5ODmZkZ5s+fj6KiIp4wq1atgra2NhQVFeHn54f8/PwK3x82mw0/Pz+YmppCVlYW1tbW2LRpU4XnlJeSkoK+ffvCwMAAcnJycHBwwJEjRyo9LzAwEEZGRpCTk0O3bt2wfv16nmmJgqYITp48GR4eHty/GYbBmjVrYGZmBllZWdSvXx8nT56s8HW3bdsGS0tLyMjIQFtbGz179vyt+ExMTLBs2TIMGTIEysrK3E6RyurUwYMH4eLiAkVFRejo6KBfv35ISkqq8P0q+/6YmJiAxWLxPUpVpb6U9/XrV/j6+kJVVRXq6uro0qVLtacm3r9/H+7u7pCTk4Oqqiq8vLyQlpYGAPDw8MD48eMxdepUaGhooF27doiNjQWLxUJERAQ3jvT0dLBYLISEhHCPvX79Gh07doSSkhIUFRXRokULxMTEcJ/fu3cvbG1tISMjAxsbG2zbto37XOlrHD9+HB4eHpCRkcHBgwfB4XCwZMkSGBgYQFpaGk5OTgJHfJUVHBwMCQkJNGnSRODznz9/RosWLaCoqIhbt27BwMAAOjo63Ie4uDi3zMsey8nJwfHjxzFmzBh06tSJr826cOECmjdvjhkzZsDa2hpWVlbo2rUrtmzZwhOuc+fOOHPmDPLy8irMx5/0IO41dj48h9sfImo7KRW6ePIsWndoizYdPWFgbIgh40ZAXUsDV88L7ijV0tHGkPEj4O7ZGnJCRhIrKClCRU2V+3jx5BmkZaTh5v7nOs/czZzwKC4Sj+IikZSdhnOv7yI9LxtNjAWPirHWNIK5uj52PTyH98mfkZaXhc/p3/ApLZEbJq+oAFkFudyHlaYhitjFeJEQ/aeyBenWLZF/+TqKIl6Ck5CI3P1HwJKSgpSrs9BzmNw8MJlZ3IekjRVQWITCpz9HQkqYmqDoxSsUv4oCJzUNRc9eoCjqHSSM+EfaidKrGw9h1dQJ1s2doaKrAbfenpBXVcKbO08qPE9GUR5yygrch5jYz49I70MjUJCTh7aje0Hb3BAK6irQsTCCuoF2jeZFGA+LBnj46TUexL3Gt+w0nH51G+l52Whu4igwfH5xIU89M1LRhqykDB7Gvf7DKa/YmWOn0K5je3j5eMPQxBgjJ46FhpYmLp0WPApTW1cHoyaNQ5v27YS2HX/SzTPBaNrOA828WkHXUB+9RgyEioY67gTfEBi+14iB8OzRCSZW5tDS00GXQb7Q0tXBy0c/R4zIKypAWVWF+3gT8QpS0lJo0LzRn8oWHw/zBnjw6RUefHqFb9mpOP3yNtLystDMtIr1T/VH/ftUe/Xv/oWbaNi6KVzaNIOWgS46DukFZQ0VPLp6R2B4PVND1G/uCm1DPahqqcOpZWNY1rdFbNTPtlpOQR6KKsrcR8yLN5CUloK925/pPHtxLRQ2zZ1h26IhVHVLRp0pqCoh8nZ4hefJKspDTlmR+yjb9ulbm8LU2RaquppQ1lKDY5smUNfXRkL0p5rODgDg5fUwWDdzhk3zBlDV1UQTXy8oqCoj8vbjCs+TraA9BwAOh4Nbu0+jgY8HFDVVazILfGri+olL/4Zzr+/i2dd3KOYUC4ynJr259RhmTRxh0bQ+lHXU0bBHG8ipKuL9PcGj3+IjPyAp+jM8RveEjo0JFNSVoWGiC00zfW4YdWNdOHdtBZOGthCXEBcYz3+BoO+odeHxX1XlzjMJCQkMGjQIgYGBYMpMtzhx4gQKCwvRv39/vHz5El5eXujevTtevHiBY8eO4d69exg/frzAOBmGQdeuXZGamorbt2/j2rVriImJga/vz2GzFy9eRPfu3dGxY0c8e/YMN27cgIuL4CGbHA4H3bt3h7i4OB48eICAgADMmjWLL5yioiICAwMRGRmJTZs2YefOndi4cSP3+ePHj2PhwoVYvnw5Hj9+DF1dXZ4OBGGvbWBggOPHjyMyMhILFizAnDlzcPz48QrPKys/Px8NGzbEhQsX8OrVK4wcORIDBw7Ew4cPhZ7z8OFDDBs2DGPHjkVERARatWqFZcuWVfk1S82bNw979+7F9u3b8fr1a0yZMgUDBgzA7du3BYZ//PgxJk6ciCVLluDt27e4fPkyWrZs+cvxlVq7di3s7e3x5MkTzJ8/v0p1qrCwEEuXLsXz589x5swZfPz4EUOGDKly3sPDw5GQkICEhAR8+fIFbm5uaNGiBff5yupLebm5uWjVqhUUFBRw584d3Lt3DwoKCmjfvj0KCwurlKaIiAi0adMG9erVQ1hYGO7duwcfHx+w2WxumH379kFCQgL379/Hjh07qhTv169fuZ3LN2/exJMnTzBs2DDur9o7d+7E3LlzsXz5ckRFRWHFihWYP38+9u3bxxPPrFmzMHHiRERFRcHLywubNm3C+vXrsW7dOrx48QJeXl7o3Lkz3r8XPqrhzp07Qq/lt2/folmzZrCxscHly5ehqKhYpfwBwLFjx2BtbQ1ra2sMGDAAe/fu5WmzdHR08Pr1a7x6xT8FsCwXFxcUFRXh0aNHVX5tAhQXFeHDu2g4uvB2vNRv6Ix3r/mnHv2qW8HX0bRVC8jIyogszoqIs8Sgr6yFd9/jeI6/+x4HEzVdgefU0zHF5/QktDJviPlth2JWqwHoZNeMZ6RZeY2M7BAR/w6F7D/z4VdMXQ1iykoojiozAqSYjeL3MZAwM6lyPFJNG6PwyTOgTBtXHPMRktaWEPsx4kZMXxcS5qYoEmE9KI9dzEZKXAL07Mx4juvbmiHpw5cKzz27YieOzPJHsP9BJLyN5Xku7sU7aJkZIPToZRyeuRFBS3bgefA9cMr8Sv6niLPEYKCshTffeb+8vkn6JLQultfYuB7efY8TOMqhthQVFSH63Ts4N2rIc9zZtSHevKpbnXyCFBcVIy76I2yd7XmO2zrb40NU1Ub4cTgc5OflQ05ReEdg6LUQNGzZBNIyf6btK0+cJQZDFW28TeKtf2+T4mCqplelONyM7Wu1/hUXFyP+Qxws6tvyHLdwtEXc2w9ViiP+42fEvf0IUztLoWGe3AyFQ9OGPCOgagq7uBjf4xJgaMc7GszAzhyJMZ8rPPfk0gDsn74W5zcE4uubj0LDMQyDL1EfkP4tGbqWJqJIdoXYxWwkxyVA386c57i+nRm+VZKnoGX/4OCMDbi4YT/i3/Ln6dmFO5BRlINNc+E/EtWEf8P1Ux67mI3Uz4nQtTHhOa5jY4rkj4Knon59GQ01Qx1EXX+E0/O24fySnXh6+haKCysenEBIbavytE0AGDZsGNauXYuQkBC0atUKQMn0qO7du0NVVRWTJk1Cv379MHnyZACApaUlNm/eDHd3d2zfvh0y5W70169fx4sXL/Dx40cYGpbMiT5w4ADq1auH8PBwuLq6Yvny5ejTpw8WL17MPa9+fcHz7K9fv46oqCjExsbCwKDkl+0VK1Zwp32VmjdvHvf/JiYmmDZtGo4dO4aZM2cCAPz9/TFs2DAMHz4cALBs2TJcv369wtFnkpKSPGk0NTVFaGgojh8/jt69ewt/U8vQ19fH9OnTuX9PmDABly9fxokTJ9C4seDh+Zs2bYKXlxf++usvAICVlRVCQ0MrHfVTVk5ODjZs2ICbN29yRwGZmZnh3r172LFjB9zd3fnOiYuLg7y8PDp16gRFRUUYGxvD2dn5l+Mr1bp1a573YNCgQZXWqWHDhnHDm5mZYfPmzWjUqBGys7OhoKBQaf7LTv2dNGkSEhISEB7+81e6yupLeUePHoWYmBh27drF7Znfu3cvVFRUEBISAk9Pz0rTtGbNGri4uPB02tarx7vegYWFBdasWcP9uyoj27Zu3QplZWUcPXqUO9XSysqK+/zSpUuxfv167uhOU1NTREZGYseOHRg8eDA33OTJk3lGgK5btw6zZs1Cnz59AACrV6/GrVu34O/vj61btwpMS2xsLPT0BH9QGDRoEJo2bYpTp05BXLx6vzbt3r0bAwYMAAC0b98e2dnZuHHjBtq2bQug5Lq6e/cuHBwcYGxsDDc3N3h6eqJ///6Qlv75AVdeXh4qKiqIjY0VWGcLCgpQUG5KW9nz/6syMzLB4XCgrKrCc1xZVRnpqekieY3oN+/w+eMnjJ4+QSTxVYW8lCzExcSQVZDLczyrIA+K0vzTQQBATU4Zpmq6KOYUI/DxJchLyaC7gwfkJGVw/Dn/SBRDFW3oKmng+PM/Nz2BpVwynYKTxfshnJOVBTE1/qlLgogbG0JcXxe5B4/xHC+4ehMsWRkoLphVssYZi4X888Eoelxz67AUZOeC4TCQLdf5IKsoj9wMwVNr5ZQU0ay/N9SNdMEpZiP64UsEbzoI7ykDofNjXZ2s5HQkvI2FWSN7eI7rg8ykVIQduwwOhwPnji0FxltT5KV/1MX88nUxF0oygutiWUrScrDVMsGBJ8E1lcRfkpmRAQ6bA1VV3lEgqqqqeJqaVkupqrrszCxwOBwoqvBOJVNSUUZmFTeGunHmEgoLCtCwueDPfLHvYhD/6QsGTBwh8Pk/obT+ZfK1hTlQlBa8DlVZStLysNUywf7HtVf/cjOzweFwoKDM+8OcvLISstMzKzx3zeg5yMnMBofNRuteHeHSRvDo5y/Rsfj2OR7dxgwQWborkp9dMuVNVom37ZNTUsDnTMFtn7yyIloO9IGmkR7YxWy8e/Ac5zfuQ+dpQ6BnZcINV5CbjwOz1oNTVAyWmBha9OsIw3IdWjUh/0d7LqfE357nZQqe1SSnrIAWAzpBw1gX7KJivH/4Ehc3HkCnqYOha1VSPxOj4/D2/jN0nz+qxvNQ3r/h+imvIKeknGT47rtySBBSTtkpGfj+4QvEJcXRYng3FOTk4vHxayjMzYdb/w4CzyGkLqhW55mNjQ2aNm2KPXv2oFWrVoiJicHdu3dx9epVAMCTJ08QHR2NQ4cOcc9hGAYcDgcfP36ErS3vLzxRUVEwNDTkdpwBgJ2dHVRUVBAVFQVXV1dERETwrGlUkaioKBgZGXE7zgAInBJ28uRJ+Pv7Izo6GtnZ2SguLoaSkhJPPKNH864n1KRJE9y6davC1w8ICMCuXbvw6dMn5OXlobCwsFo7dLLZbKxatQrHjh3D169fuV/OK9oQISoqCt26deNLa3U6zyIjI5Gfn4927drxHC8sLOR2iJXXrl07GBsbw8zMDO3bt0f79u3RrVs3yMnJ/VJ8pcqPRKpKnXr27BkWLVqEiIgIpKamckcCxMXFwc6Of4FkYf755x/s3r0b9+/f5+lQq6y+lFea5vKjpfLz83mmR1YkIiICvXr1qjCMsFFblcXbokULgWuUff/+HZ8/f4afnx/PNVdcXAxlZd4vA2VfOzMzE/Hx8WjWjPcDZLNmzfD8ufDF7PPy8vg61Et16dIFp0+fxqlTp6rc+QyUjFh79OgRgoKCAJSMmPX19cWePXu4nWfy8vK4ePEiYmJicOvWLTx48ADTpk3Dpk2bEBYWBjm5n18+ZWVlkZubK/C1Vq5cydNhDgALFy4EaBlGAAALvEO6GQCiGuV989I1GJoaw8LGqvLANayiPJV2nh9+ehX5xSUjss69vodBLh0Q9DIExRw2T/hGRnZIyEzG53ThC/X/LknXBpDr+3OKffb2XSX/4VvAn1XlRf2lmjYG+2sC2J94RwJINnSCVKOGyN17COyERIgb6EO2Zxdw0jNR9LDiKTe/q/yUAkbAsVLKOupQ1lHn/q1lZoCctEy8vPaA23nGMCVfDJr17wgxMTFoGOsiNyMLL689+OOdZ8KwqlhkjYzqIa+oAC8TqnY/+uP4yo75v5oiwlf3GP72UJDw26G4ePg0Rs+bwtcBVyr0agj0jA1gYlXzHReV4qtrVSujRkZ2P+rfn5uaLhRfvWIqvVENXzIVhfkF+PzuI64ePgs1HU3Ub+7KF+7xzVBoG+rBwMJEdOmtkvL1jxFa/1R0NHgW0dcxN0ROWgaeXw3l6TyTkpFCr/mjUVRQiK9RHxB64goUNVWhb21aIzn4HeXzpG1uiJzUDLy4FgZdK2MU5hfg1p4zaDGwE2QUKv+xocb8G66f8splgYHwto9hStr1poN9ICVb8sMzpxsbd/ecgUuvtpCQqv5ayv9WYlWsG+TPqFbnGVCyccD48eOxdetW7N27F8bGxmjTpmSnGQ6Hg1GjRmHixIl855VdsLtU6YVT0fHqLOzOCPjUWD7+Bw8ecEeyeXl5cUfhlO6y96uOHz+OKVOmYP369WjSpAkUFRWxdu3aCqdclrd+/Xps3LgR/v7+cHBwgLy8PCZPnlzhVD9BeS5PTEyML1zZNbtKO5suXrwIfX19nnDCRtIoKiri6dOnCAkJwdWrV7FgwQIsWrQI4eHhvxRfqfIdhZXVqZycHHh6esLT0xMHDx6EpqYm4uLi4OXlVeUpkgAQEhKCCRMm4MiRIzwjG3+lvnA4HDRs2JCnw69UVTe4qEq9L/9ela7nULasy6/NVlG8peW2c+dOvpGO5Ud/CerQ5f/CUPEXHg0NDe4abuXNmTMHjo6O6N+/PxiG4ZnKXZHdu3ejuLiYp94xDANJSUmkpaXxjGgwNzeHubk5hg8fjrlz58LKygrHjh3D0KFDuWFSU1OFltns2bMxdepUnmPS0tK4tmtSldL6b6WkrAQxMTGklyvbzLQMvtFov6IgvwChIXfRe3C/346rOnIK88DmcPhGmSlIyfKNRiuVlZ+DjPxsbscZACRlp0KMxYKKrAKSczK4xyXFJeCkZ4krb6t+z/gVRS9eIyu2zHSRH4v+iykpgZ35c/SZmKICmKwqTAmRlISUixPyLlzhe0q2uw/yr9xE0ZMIAAAnPhFiaqqQ8WpTY51n0gpyYImxkFtupEV+Vg7fiIyKaJrqI+bRS+7fcsoKYImJ8aybo6yjgbzMbLCL2X90PZacgh91UaZ8XZQTWhfLamxkh8dfosBm/vyU04ooKStDTFwMaampPMfT09KhIoK2o6YpKJWsFZWZls5zPCsjQ2hnWKnHdx/g4OZdGP7XBNg42QsMU5hfgMd3H6BT/x6iSvIvKa1/5Uc5KkpXrf65GdfD48+1W//klErWwCo/yiwnI4tvNFp5pRs/6BjpIzsjC7dOXOTrPCssKMTL+4/RxreTaBNeARkFObDExJBXru3Lq2bbp2VqgPcPX/AcY4mJQVmr5AcGDUNdpCUm41nw3RrvPJPhtue8o5eqnSczA0Q/LGnPs76nITslHVe2HuU+X/q5edeYpei9ZByUNKs26vpX/Buun/Kk5UvKKb9cOeVn5UJGSXAHpaySPGSVFbgdZwCgpKMOMEBuehaUtGquDAj5HVVe86xU7969IS4ujsOHD2Pfvn0YOnQo9wtygwYN8Pr1a1hYWPA9BO0EaGdnh7i4OHz+/PPX6sjISGRkZHBHqTk6OvLsgleR0vji439u1R4WFsYT5v79+zA2NsbcuXPh4uICS0tLfPrEO+/c1tYWDx484DlW/u/y7t69i6ZNm2Ls2LFwdnaGhYVFlUcZlY2jS5cuGDBgAOrXrw8zM7MK14wCSvJcWVo1NTWRkJDAc6zsovJ2dnaQlpZGXFwcX7mVHRVYnoSEBNq2bYs1a9bgxYsXiI2Nxc2bN385PkEqq1Nv3rxBcnIyVq1ahRYtWsDGxqbCzQIEiY6ORo8ePTBnzhyeqYhA1eqLoDS/f/8eWlpafGkuP4JLmOrU+1KlnTxly7psOZfGe/fuXYEbHmhra0NfXx8fPnzgS7epqfAPSEpKStDT08O9e/d4joeGhvKNNi3L2dkZkZGRQp+fN28eli5div79+1dp44zi4mLs378f69evR0REBPfx/PlzGBsbC+zMLGViYgI5OTmejShiYmKQn58vdLSktLQ0lJSUeB40bROQkJSEmZUFXvzoMCn14kkErOrZ/Hb8YSH3UFxYhBZtPX47rupgMxx8zUiClSZvG2alaYTY1ASB53xMTYCSjDykxH/+gqoprwIOw+HbnbO+rgUkxMTx9Mtb0Se+rIICcL6n/HwkfAMnIxMStmVG8YmLQ8LSHMUfYiuNTqqhEyAhgaJHAhbjl5QEyn/AZziiG4IogLiEONSNdBEfxbvGTXzUR2iZVX2jgtTPiZBT+jntX8vMAFnf08Bwfv44kZmUClllhT++kDGb4eBLRhKsNXl/lLTWEl4XS1moG0BTQRUPanGhdmEkJSVhYWWFiPCnPMcjwp/Cxr6ekLPqDglJCRhZmCLqGe96mm8iXsHMVvi6WOG3Q3HAfweGTh8Lhwo26Xhy7yGKi4rRyOPPbZIiCJvh4HP6N1hr8k4xs9Y0wsfUeCFnlbDQKK1/Fa85WtMkJCSgZ2aE6BdRPMejX7yBkbWZkLMEYBienVBLvQp7AnZxMZxa/LlNHcQlJKBppIvPkbzfPb5GfYCOedU/e6d8ToRcJR2IYBiwi9kVhxEBcQlxaBjp4msU7zp0X6M+QLuaeZJVLmnPlXU00GPBaHSfN4r7MHa0hp6VCbrPGwV51ap9Tv9V/4brpzxxCXGoGeog8U0sz/HEt7HQMNUXeI6mmT7yMrJRVPDzx8WspFSwWCzIqVR9nWNC/rRqjzxTUFCAr68v5syZg4yMDJ6F2WfNmgU3NzeMGzcOI0aMgLy8PKKionDt2jW+newAoG3bttzRJf7+/iguLsbYsWPh7u7OnRa2cOFCtGnTBubm5ujTpw+Ki4sRHBwscL2ptm3bwtraGoMGDcL69euRmZmJuXPn8oSxsLBAXFwcjh49CldXV1y8eBGnT5/mCTNp0iQMHjwYLi4uaN68OQ4dOoTXr1/DzEz4DdXCwgL79+/HlStXYGpqigMHDiA8PLzCTgdBcZw6dQqhoaFQVVXFhg0bkJiYWGEHxMSJE9G0aVOsWbMGXbt2xdWrV/mmbLZu3Rpr167F/v370aRJExw8eBCvXr3idgooKipi+vTpmDJlCjgcDpo3b47MzEyEhoZCQUGBZ62rUhcuXMCHDx/QsmVLqKqq4tKlS+BwOLC2tv6l+ISprE4ZGRlBSkoKW7ZswejRo/Hq1SssXbq0yvHn5eXBx8cHTk5OGDlyJBITf+6Cp6OjU6X6Ul7//v2xdu1adOnShbsDZVxcHIKCgjBjxgyeacXCzJ49Gw4ODhg7dixGjx4NKSkp3Lp1C7169YKGBv9290DJqDI3NzesWrUKJiYmSE5O5lmvDQDGjx+PLVu2oE+fPpg9ezaUlZXx4MEDNGrUCNbW1li0aBEmTpwIJSUldOjQAQUFBXj8+DHS0tL4RlmVNWPGDCxcuBDm5uZwcnLC3r17ERERUWGHlZeXF2bPns03Iqysv/76C+Li4hg4cCA4HA769+8vNL4LFy4gLS0Nfn5+fJ2UPXv2xO7duzF+/HgsWrQIubm58Pb2hrGxMdLT07F582YUFRXxTDW+e/cuzMzMYG5eB6bH/CArKQ0D5Z8j4fSUNGCpYYDM/Bx8y647awJ17NkFf6/aCHMrC1ja2eDGxStITvqOdj4l61gc3rUPqcmpGP/XFO45sdElH47z8/KRmZGJ2OgPkJCQgIEJbwfBreBrcGnmBkVl4VOna8rtDxHo69wOn9OT8CktEW7G9aAiq8D9INvBpgmUZRRwNKJkl+dnX9+hnZUrfJ3a4Orbh5CXkkUnu2Z4FBclYMpmPbxK/IDcoop3dq4JBTfvQMarDThJ38FOSoZM+zZgCgtRGP5zbTK5wX3BSc9A/lneHVOlmjZC0fNXYHL4fzEvfhkJmfZtwUlLByc+EeKG+pBu7Y7CsJrdhMO+TWPcCTwLDWNdaJka4O29p8hOy4BNi5Id7x6fuYmc9Cy4D+kCAHh94yEU1FWgoqcJTjEbMY9eIvbZG7Qe+XN6q03LhogMeYwHJ67AzsMVmUmpeH75Puxa8U/X+hNCop+if0MvfE7/htjUBDQxcYCqrCLux5aMGOlk2wzKsvI49PQqz3mNjeshNjUBiVkptZHsSnX17YENy1bDwsYKtvVscfncJXxPSoJ315IRPIEBu5GSnIxp835uBvXhfcn0pfy8PGSkZ+DD+2hISEjCyLTy9YNErXXXDti3YTuMLc1gamOB+5dvIe17Clp0KJmhcWbfMaSnpGHI1JKlQcJvh2Lfxh3oNWIATG0skPFj1JqUlBRk5XlHbIReC0F9t4ZQUKr9L5YhMU8xoGF7xP2of01NHKAqp4j7H3/UP7tmUJZRwKGnvCNS3YztEZuagIQ6UP+adWqNk1v2Qd/MGIZWpnh8/T4yktPg2q5kw6irh88gMzUdPccPAQA8uHwbKhqq0NDXAQB8ehODe+evw62DB1/cT26Gwta1PuQUK193V5Qc2zXFzT1B0DLWg7a5ISLvPEZWagbs3EvaqYdB15CTnoXWw0p+KH5xPQyK6ipQ1dMCh83G+wfP8eFpJDxH/xzt/zT4DjSN9aGsqQp2MRtxr97jXdhztOj/Z0bVObRtgpC9p6FprAstMwO8ufsU2akZsG1ZsrHIo9M3kJOehVZDuwIAXl5/AEUNFajqaoLNLlnD8uPTKLQdVbIUioSkBNT0tXheQ0quZAmR8sdrSk1cP+IsMegolYwOlGCJQ1lGAfrKmigoLuQZ5V5TbFq5IOzARagZ6UDDVB/R9yOQm5oJy+ZOAICIc7eRm56NpoM6AgCMXezw6nIYHhwMhqN3MxTk5OHZmRCYuTlwp2yyi9nITEwGAHCK2cjLyELal2+QkJb64zuk1qb/p2UL/guq3XkGlEzd3L17Nzw9PXmmYzo6OuL27duYO3cuWrRoAYZhYG5uLnTKFYvFwpkzZzBhwgS0bNkSYmJiaN++PU9Hm4eHB06cOIGlS5di1apVUFJS4tnVsSwxMTGcPn0afn5+aNSoEUxMTLB582a0b9+eG6ZLly6YMmUKxo8fj4KCAnTs2BHz58/HokWLuGF8fX0RExODWbNmIT8/Hz169MCYMWNw5Qr/tJRSo0ePRkREBHx9fcFisdC3b1+MHTsWwcFVX9Bx/vz5+PjxI7y8vCAnJ4eRI0eia9euyMgQ3ui5ublh165dWLhwIRYtWoS2bdtyR+yU8vLywvz58zFz5kzk5+dj2LBhGDRoEF6+/DklZenSpdDS0sLKlSvx4cMHqKiooEGDBpgzZ47A11VRUUFQUBAWLVqE/Px8WFpa4siRI9xF7asbnzCV1SlNTU0EBgZizpw52Lx5Mxo0aIB169ahc+fOVYr/27dvePPmDd68ecO3eD3DMFWqL+XJycnhzp07mDVrFrp3746srCzo6+ujTZs2Fa6VVpaVlRWuXr2KOXPmoFGjRpCVlUXjxo3Rt2/fCs/bs2cPhg0bBhcXF1hbW2PNmjU8GxSoq6vj5s2bmDFjBtzd3SEuLg4nJyfuemXDhw+HnJwc1q5di5kzZ0JeXh4ODg7cDRuEmThxIjIzMzFt2jQkJSXBzs4O586dg6Wl8F/bHRwc4OLiguPHj2PUKOGLts6YMQPi4uIYPHgwOBwOBg4cKDDc7t270bZtW4Gj+3r06IEVK1bg6dOncHd3x9atWzFo0CB8+/YNqqqqcHZ2xtWrV2Ftbc0958iRI1Veb/FPsdE0xt/dfnZiTmxe8mHwUlQYlt/cJ+y0P65pqxbIyszCqQPHkJaaCkMTY/y1cgE0tUs+mKanpCEl6TvPObNGTeb+/8O7aNy/cRua2lr4+/Au7vH4z1/x5lUk5q7mXWvuT3ke/x7ykjJoZ9UIStLySMxKwe6H57k7XinJyENV9ueXpUJ2EXY8OItu9i0xqaUvcgvz8Tw+GsFveEdEa8irwExdDzvCzvzJ7HAVXLsFlpQkZPv0AEtOFuzYOGRv+QcosyGGmKoKwOGd/i+mpQEJCzNkbxa822/u8dOQ9WkPOd/uYCkqgpORgcJ7Yci/dK0mswMzl3ooyMlDxMW7yM3MhqquJjzH9YGCukpJujKykZP6877KZrPxKOg6ctOzIC4pAVVdTbQb1weG9j93rVNQU0b7if3w8MQ1nFn2D+RUFFGvlSscvJrWaF6EeRb/DnJSMvCydoOStBwSslKw48HZcnWR934jIyGF+roWCHpV8a7XtallGw9kZWbiaOBBpKakwtjUBIvWLIeWjjYAIC0lBd+/8Y4unzhsDPf/0W/f4/a1m9DS0caeEwf/aNoBwKWFG3Iys3Dp6GlkpqZD19gAYxfOgPqPqX6ZqelI+57MDX/v8k1w2GwcC9iHYwE/23C31i0waMrP++K3rwmIiXyHCUv4d5CvDc++voO8lAy8bBpDWVq+pP6FneGtf3K8nXzc+vcy5M8nWACHpi7IzcrBrVOXkJWWCW1DXQycPRaqmiUdEFlpmUhP/vmjFMNwcPXIWaQlpUBMTAxqOprw7N8Vrm2b88SbHP8Nn97EYMi8P7ehTSkLV3vk5+Ti8cXbyM3IgpqeFrwn9Ifij7YvJyMbWWXbvmI2wk5eRU56JiQkJaGqp4kOE/rD2OHnSOTigiLcPXwBOWklYVR0NNDarwcsXAVPLxY1c9d6KMjJxdOLd5CbkQ01PS20H9+Pm6fy7TmHzcbDkyWdhBKSElDR04TX+L4wchD+efRPq4nrR1lWATNb/dycoo2lC9pYuuB98mf8fe9kTWWFy7ihLQpy8vHqcijyMnOgrKsBjzE9Ia9W8pk8LyMHuWk/p0lLSkuh1bjeeHLyOi6v3Q9peVkYOVvDsVMLbpi8jGwEr/7ZLkbdCEfUjXBoWRii7aSKvw8RUlNYTFUWzSL/VwIDAzF58mSkV3F3J0Jqy6VLlzB9+nS8evWKZy2h2vbq1Su0adMG7969q/JU21LNto6uPND/kfvjAhBR01MJa4GTgTWmn+cfEf3/bJ3PBKSPnVbbyRAplW3rsfrmgdpOhkjNaj0Qk8/613YyRMq/y2S8T4qr7WSIlKWWEW68C6884P+RNlaumHRmY20nQ+Q2dZ2CEwJ2MP5/1qt+G2y8fbTygP9Hprj3wboQ4TMS/h9N9+j/r7umNnWdgsVXd9d2MkRqoadfbSfhl3XYJXzmT20KHr6htpNQK35p5BkhhIiCt7c33r9/j69fv1Z7PbyaFB8fj/3791e744wQQgghhBBCRIHFqjuDCwh1nhFCatmkSXVvd8qyU10JIYQQQgghhPy3UVfmv9CQIUNoyiYhhBBCCCGEEEKICNDIM0IIIYQQQgghhJA6RIx226xTaOQZIYQQQgghhBBCCCFCUOcZIYQQQgghhBBCCCFC0LRNQgghhBBCCCGEkDqEBZq2WZfQyDNCCCGEEEIIIYQQQoSgzjNCCCGEEEIIIYQQQoSgaZuEEEIIIYQQQgghdQjttlm30MgzQgghhBBCCCGEEEKEoM4zQgghhBBCCCGEEEKEoGmbhBBCCCGEEEIIIXUIi6Zt1ik08owQQgghhBBCCCGEECGo84wQQgghhBBCCCGEECFo2iYhhBBCCCGEEEJIHULTNusWGnlGCCGEEEIIIYQQQogQ1HlGCCGEEEIIIYQQQogQNG2TEEIIIYQQQgghpA4RA03brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoR226xbWAzDMLWdCEIIIYQQQgghhBBSouf+ubWdBIFODlpe20moFTTyjBBCRCjiy9vaToJIORlYo9nW0bWdDJG7Py4ATz5H1XYyRKqhoS2yoj/UdjJEStHCDE8/v6ntZIhUA0MbPIx9VdvJEKnGJvZ4FR9d28kQKXs9C3xM/lrbyRApUw19PP/6rraTIXL19a2QlZlZ28kQKUUlJUQl/rvac1sdM0R//1zbyRApC01DPPr0uraTIVKNjOvhzbePtZ0MkbLRNq3tJJB/Ceo8I4QQQgghhBBCCKlDxGjaZp1CGwYQQgghhBBCCCGEECIEdZ4RQgghhBBCCCGEECIETdskhBBCCCGEEEIIqUNot826hUaeEUIIIYQQQgghhBAiBHWeEUIIIYQQQgghhBAiBE3bJIQQQgghhBBCCKlDWKBpm3UJjTwjhBBCCCGEEEIIIUQI6jwjhBBCCCGEEEIIIUQImrZJCCGEEEIIIYQQUoeI0W6bdQqNPCOEEEIIIYQQQgghRAjqPCOEEEIIIYQQQgghRAiatkkIIYQQQgghhBBSh7Bo2madQiPPCCGEEEIIIYQQQggRgjrPCCGEEEIIIYQQQggRgqZtEkIIIYQQQgghhNQhtNtm3UIjzwghhBBCCCGEEEIIEYI6zwghhBBCCCGEEEIIEYI6zwghdUZubi6WLl2KT58+1XZSCCGEEEIIIaTWsOrov/8q6jwj/5cCAwOhoqLyR17Lw8MDkydP/iOvJUrVfY9MTEzg7+9fY+mpigkTJiA+Ph7GxsbVOu//tYwIIYQQQgghhNR9tGEAqTGsShY4HDx4MAIDA/9MYv6DfH194e3tXeXw4eHhkJeXr8EUVezIkSP49u0bzp49W+1zg4KCICkpWQOp+jOunL2E88eDkJ6SBgMTIwweOxy2jvUEhk1LScWBgD348C4GiV/j0b5bJwwZN4InzOKpcxD5/BXfuc6NXfDXigU1kodfVV/XAv2cPWGjZQQNeRX8dWk77n58XtvJEura2Uu4cOIM0lPSoG9iiEFj/WDjILysDgXsxcf3MUj8mgCvbh0xaOxwnjDFxcU4d+QU7ly9ibTkVOga6qPv8EGo36jBn8gOAIBhGPxz+BBOXw5GVnY26llbY9aYcTCvoBM75tMnBBw8gDfR75GQlISpI0aiX9duPGFOXryAk5cuIuHbNwCAmbExhvfth2YurjWaHwC4evYSLpw4zb2mKiungwF78fF99I9y6oTB5coJAC6dOofr54ORnJQMRWVFNG7RFH2GD4KUlFRNZ0eg6+cv49KJs8hITYO+sSH6jx4Kawc7gWHD7z3AzQtXEPchFkVFRdA3NkS3Ab3h6OL8h1PN6/KZCzh7LAhpKakwNDHC0PEjYedoLzBsWkoqArftwof30Uj4Eg/v7p0xbPxInjA3L1/D1tX+fOceuXK6xsrpfNBZnDx8DKkpKTA2NcHoieNg7+QoNPyLZ8/xz5Zt+PQxFuoaGujVzxcdu3XmCXP62ElcOH0O378lQUlFGS08WmLo6BGQkubPw9H9hxG4Yxe69uqO0ZPHizx/AHDl7EWcO/bzHjVk3IgK71H7t+/m3qM6dPPBkPEj+MLlZGfjyO4DeHQ3DDlZ2dDS1cbA0X5o4OYikjQzDIN/du7E6dOnkZWVhXr16mHWzJkwNzev8LwbN28iICAAX758gYGBAcaOGYNWrVrxhDlx4gQOHDyI5ORkmJmZYdrUqXB2LrmWiouLsW37dty/fx9fv36FgoICGjVqhAnjx0NTU5MbR1BQEC5fuYK3b98iJycHt27ehKKi4m/n+9LpCzhz9CTSUlNhaGIMv/GjUK++4GsqNSUVe7fuRMy790j4Eo+OPTpj+ITRPGHC7tzHyYPHkPA1HuziYuga6KNL7+5o5dXmt9MqyIWgswg6cgKpKSkwMjHByEljYV/fQWj4l8+eY+eWAMTFxkJNXR09+/vCu6sP9/ni4mIcP3AEN4KvIiU5GQaGhhgyZjhc3BpxwxzavQ+H9x7giVdFTRWHzp0QfQaFuH4uGBfLtOcDxgyrsD2/cf4ytz03MDZEt4G+td6eXzp9HqePlNQ9IxNj+E0YLbzuJadg77adiH5bUvc69eiC4RN5697V88G4deU6Pn0omY1ibm2BgSOGwsrOusbzQogwNPKM1JiEhATuw9/fH0pKSjzHNm3aVNtJ/L/EZrPB4XAqDScrKwstLa0qx6upqQk5ObnfSdpv6du3Ly5cuABxcfFqn6umpiaSD521IfTWXezbtgvd+vXGqh3+sHGww8rZi5H87bvA8EVFRVBSVka3/r1gbG4iMMy0RbOx48Q+7mPd7r8hJiYGt5bNajAnv0ZWUhrRKV+w4c7R2k5KpcJu3cP+7XvQtV8vrAjYABsHO6yevVRoWRUXFUFRRRld+vWCkZmJwDAn9h7CjQtXMHj8CKzZvQVtOnlhw6JViH3/oQZzwmvfyRM4fDoIM0ePxb6Nm6Cuqopx8+YgJzdX6Dn5Bfkw0NHB+CFDoa6qKjCMloYGxg8Ziv2bNmP/ps1wcayPaUuXIKaGp2WH3bqL/dt3o2u/XlgZsBHWDnZYNXtJheWkpKKErhWU070bITi6az96DOyD9Xv+xqhpExB2+x6O7tpfgzkR7kHIfRwK2IvOfXtgybZ1sLK3xbp5y5GcJDiPb19Gwr5BfUxbOhdL/l4DO0d7bFy4CrHRf66elXf/5h3s3boTPQb4Yt3OzbB1tMfyWQvx/VuSwPBFRUVQUlFGj/6+MDE3FRqvnLwcdp06wPOoqY6z29dvYcemregzqD+27v0H9o4OmDf9LyQlfhMYPjE+AfOnz4a9owO27v0HvgP7Ybv/37h36w43zM0r17EnYCcGDBuMfw4HYspf03H7Rgj2Buzki+9t1BsEn7sAUwuzGskfUHKPCty6C93798bqfzbB1qEeVvy1CMmVlFP3Ab1hLKSciouKsGzGfHxPTMLURX/Bf18ARk0bDzVNdZGle9/+/Th8+DBmzpiBfYGBUFdXx7jx45GTkyP0nBcvXmDOnDnw7tABRw4fhneHDvhr9my8evXzx6irV69i/YYNGDZ0KA4dPAhnJydMnDQJiYmJAID8/Hy8efMGw/38cPDAAaxdswZxcXGYOm0az2vl5+ejaZMmGDpkiMjyfO/mbez5ewd6DeyDDTv/hp1jPSydNV/4NVVYBGUVZfQa0EfoNaWgqIheA3yxeusG+O/ZhjYd2mHL6g149uiJyNJd6s6NW9i5eTt8B/XD5j0BsK/vgIXTZ1d4PS2cMRf29R2weU8AfAf1ww7/rbgf8vN62v/PXlw+ewGjp4zH9gO70aFrJyyfswgx797zxGVsaoIDZ49zH9v28V9vNeVByD0cDNiLLv16YOn29bB2sMXaucsqaM9fw75hfUxfNhdLt66FbX17bFiwslbb87s3bmP3lh3oNagPNu7aCjtHeyyZOa/i9lxZGb0G9oWJkPbr5bMXaNHGA8s2rcaa7Ruhqa2FRdPnIOV7ck1mpc5hsVh18vFfRZ1npMbo6OhwH8rKymCxWDzH7ty5g4YNG0JGRgZmZmZYvHgxiouLueenp6dj5MiR0NbWhoyMDOzt7XHhwgWe17hy5QpsbW2hoKCA9u3bIyEhgfsch8PBkiVLYGBgAGlpaTg5OeHy5csVpjknJweDBg2CgoICdHV1sX79er4whYWFmDlzJvT19SEvL4/GjRsjJCSkwngXLVoEIyMjSEtLQ09PDxMnTqxyfKXTLy9cuAA7OztIS0tj586dkJGRQXp6Os/rTJw4Ee7u7jznlXXu3Dm4uLhARkYGGhoa6N69O/e58tM24+Li0KVLFygoKEBJSQm9e/fGt2+CP8AAQGxsLFgsFo4fP44WLVpAVlYWrq6uePfuHcLDw+Hi4sItp+/ff34gCA8PR7t27aChoQFlZWW4u7vj6dOn3OdDQkIgJSWFu3fvco+tX78eGhoa3PIuP23TxMQEy5Yt45alsbExzp49i+/fv3Pz5ODggMePH/Pk4dSpU6hXrx6kpaVhYmIisPxF7eLJs2jdoS3adPSEgbEhhowbAXUtDVw9f0lgeC0dbQwZPwLunq0hJ2SkoIKSIlTUVLmPF0+eQVpGGm7uda/z7EHca+x8eA63P0TUdlIqdenUWXi0b4tW3u2gb2yIQWOHQ11LA9fPC25XNHW0MXjccLT0bAU5ecEd03evh6BLv55wbuwCbT0dtOvcAY4uTrh4svojMH8FwzA4cvYMhvr2QetmzWBhYoLFU6chv6AAl2+HCD2vnpU1JvkNh5e7B6SEjPps2dgNzV0bwVjfAMb6Bhg3eAjkZGTw8s2bGspNiYunzqJV+7Zo7e0JfWNDDP5RTtfOBwsMX1JOI9CygmvqfeRbWNnbolkbd2jqaMPRxRlNW7XEh3cxNZkVoS4HnYe7V2t4dGgLfSMDDBgzDGqa6rh54YrA8APGDEPH3l1hZm0BHX099BrWHzp6Ooh48Fhg+D/h/InTaO3tibYdvWBgbIRh40dCXUsDV84Jb/v8JoyCh1cboeVUggVVNTWeR00JOnYCXp06oEPnjjAyMcboyeOhqaWFC6fPCQx/8cx5aGlrYfTk8TAyMUaHzh3h2bEDTh45zg0T9eo16jnYo5VnG+jo6qBhY1d4tGuNd2/e8cSVl5uHNYtXYNKsaVCowR+PLpw4g9Yd2qFNR6+Se9T4EdDQ0sDVc4KvJy0dbQwdP/LHPUpwu3cz+DqyM7MxY+lc2NjbQVNHCzYO9SrsFK0OhmFw5MgRDB06FK1bt4aFhQUWL1qE/Px8XL4i+BoBSkbAN27UCEOHDoWJiQmGDh2KRq6uOHzkCDfMocOH0aVLF3Tt2hWmpqaYNm0atLW1cfLkSQCAgoICtm3dinbt2sHExAQODg6YMX06oqKiuB1sANCvXz8MGTIE9g7CR1VV19njp9HW2xPtOrWHoYkRhk8YDQ1NTVw+e1FgeG1dbQyfOBqt2reFnILga8rB2RFuLZvB0MQIuvp68OnZFSZmpoh8+Vpk6S51+ugpeHZqDy8fbxiZGGPkpLHQ0NLCpTPnBYa/dOYCNLW1MHLSWBiZGMPLxxvtOrZH0JGfI8ZuXbmO3gP7wbVJY+jq66Fjt85o0NgFQUdP8sQlJi4ONXU17kNZVUXk+RMm+NR5uLdvA48O7X60535Q11THjfPC2nM/dOrdDWbWltDR10PvYQOgo6+LZ7XYnp89HoS2Hb3g2alDSd2bWFL3gs9cEBheW1cHIyaNQev2bSEvpJ2YtmAWvLv5wMzSHAbGhhg3YxI4HAbPn0TUYE4IqRh1npFaceXKFQwYMAATJ05EZGQkduzYgcDAQCxfvhxAScdXhw4dEBoaioMHDyIyMhKrVq3iGZWUm5uLdevW4cCBA7hz5w7i4uIwffp07vObNm3C+vXrsW7dOrx48QJeXl7o3Lkz3r9/z5eeUjNmzMCtW7dw+vRpXL16FSEhIXjyhPfXtaFDh+L+/fs4evQoXrx4gV69eqF9+/ZC4z158iQ2btyIHTt24P379zhz5gwcynxYqkp8ubm5WLlyJXbt2oXXr19jwIABUFFRwalTp7hh2Gw2jh8/jv79+wtMx8WLF9G9e3d07NgRz549w40bN+DiInh6BMMw6Nq1K1JTU3H79m1cu3YNMTEx8PX1FfrelVq4cCHmzZuHp0+fQkJCAn379sXMmTOxadMm3L17FzExMViw4OfUwczMTAwaNAh3795FWFgYzMzM4O3tjaysLAA/O8YGDhyIjIwMPH/+HHPnzsXOnTuhq6srNB0bN25Es2bN8OzZM3Ts2BEDBw7EoEGDMGDAADx9+hQWFhYYNGgQGIYBADx58gS9e/dGnz598PLlSyxatAjz58+v0anFxUVF+PAumm+off2Gznj3WnQdDLeCr6NpqxaQkZURWZz/NcVFRfj4LgaOLk48xx0aOuFd5K+XVXFhMSSleDufpKSl8fZV5C/HWR1fExORkpYGtwY/p4lKSUqhgb0DXkSJLg1sNhtXbocgLz8fjrY2Iou3PGHl5Pib5WRtb4uP72IQ/aMD41t8IiIePYFz44a/k9xfUlxUhNj3MbBv6MRz3KFhfbyPfFulODgcDvLy8iGvqFADKaxcUVERYt5Fw6l82+fSAG9fRf1W3Pl5eRjVZwhG9BqEFbMX4cP7mungLCoqwvu379CgEe99tEEjF0S9EtyxEPXqNV/4ho1d8P7NW+6Ph/XqO+D923d4G1nyPiR8jUd42EM0atqY57yt6zehUZPGaOBac3Ww9B5Vv1w5Obo44+3rXy+nJ6EPYVnPBrs3BWBEj4GYNmwcgg4dB4fN/t0kAwC+fv2KlJQUuLm5cY9JSUmhQYMGePHihdDzXrx8icZlzgEAtyZNuOcUFRXhzZs3cGvMWxZujRtXGG92djZYLBYUFGrueiu5pt7DyZV3yr+TawO8EdH9hGEYPH/yDF8/f0E9IdOrf1VRURGi372Ds2u568m1IaKEpP/N60i++t+gkQvev3nHvZ6KigohWW66s5SUNCJf8C5tEf/lKwZ28cWwXgOweuEyJHyN/90sVUlpe+7QoD7PcfuGTnhfxXsWh8NBfm4eFGq1PRdW936vPS+roKAA7OJiKCr9f840If8OtOYZqRXLly/HX3/9hcGDBwMAzMzMsHTpUsycORMLFy7E9evX8ejRI0RFRcHKyoobpqyioiIEBARw168YP348lixZwn1+3bp1mDVrFvr06QMAWL16NW7dugV/f39s3bqVL03Z2dnYvXs39u/fj3bt2gEA9u3bBwMDA26YmJgYHDlyBF++fIGenh4AYPr06bh8+TL27t2LFStW8MUbFxcHHR0dtG3bFpKSkjAyMkKjRo2qFV9RURG2bduG+vV/3lx9fX1x+PBh+Pn5AQBu3LiBtLQ09OrVS+h73qdPHyxevJh7rGx8ZV2/fh0vXrzAx48fYWhoCAA4cOAA6tWrh/DwcLi6Cl+zaPr06fDy8gIATJo0CX379sWNGzfQrFnJqCc/Pz+eDqk2bXjXzdi1axdUVFRw+/ZtdOrUCQCwbNkyXL9+HSNHjsTr168xcOBAdOvGu75Sed7e3hg1ahQAYMGCBdi+fTtcXV2578+sWbPQpEkTfPv2DTo6OtiwYQPatGmD+fPnAwCsrKwQGRmJtWvXYoiAaRUFBQUoKCjgOSYtLV1hmsrLzMgEh8Ph+4VTWVUZ6anp1YpLmOg37/D54yeMnj5BJPH9V2VlZAktq4zUtF+O19HFCZdOnoONQz1o6+ng9bMXeBL6sEpTs0UhJa0k7eoqvFMv1VVUkPBd8HSL6oiO/Yih06aisLAQsrKyWDtvPsyMqrchSHUIv6ZUfqucmrZqicz0TCyaPBtgGLDZbLT16YAufXv+ZoqrLyvzR11UUeY5rqSigoy09CrFEXzqHAry89G4lkajZgkpJxVVFaSn/Xo5GRgZYvxfU2BsaoLc3FxcPHUOcyfMwPpdW6BnoP+bqeaVmZ4BDpsDVTXea0dVVRWpKakCz0lLTYNquWnOqmqqYLPZyEjPgLqGOjzatkZGWjqmjZkE5kdd69StM3wH9uOeE3L9JqLfvcfmXdtFmqfyKrqefuce9S0hEd+fvUDzth6YvXIhEr7EY/fmAHDYbPQc1Pf3Eg0gJSUFAKBebtShupoaEsqM/hJ0nqBzSuNLT08Hm82GWrkwaurqSP4RpryCggL8vXUr2nt51WjnWVZGJjhsDlTK1UdlVRWk/UbbBwA52Tnw6zkARYVFEBMXw6jJ4/g6Sn5XZkaGwPSrqKkiTdj1lJIKlcb84dlsNjLTM6CmoY4GjVxw5uhJ2Nd3gK6+Hp4/eYaH90LBLnOPtbazxbR5M6FvaIC01DQc23cI08dMwvYDu6CkrFz+ZUWqtD1XEvTZoqrt+cmS9rxRy6aiT2AVZJbWPVUBZZcquOx+xf6APVDTVEf9hrW7ttufJsaisU51CXWekVrx5MkThIeHc0eaASUjE/Lz85Gbm4uIiAgYGBhwO84EkZOT41n4VVdXF0lJJV/2MjMzER8fz+2wKdWsWTM8fy54MfKYmBgUFhaiSZMm3GNqamqwtv65MOXTp0/BMAxfugoKCqCuLnitjl69esHf3x9mZmZo3749vL294ePjAwkJiSrHJyUlBUdH3gWI+/fvjyZNmiA+Ph56eno4dOgQvL29+T6Yl4qIiMCIEfyL9goSFRUFQ0NDbscZANjZ2UFFRQVRUVEVdp6VTae2tjYA8Iy009bW5pYTUPJhddmyZQgJCUFSUhLYbDZyc3MRFxfHk/+DBw/C0dERxsbGVdoVtCrpAICkpCTo6OggKioKXbp04YmjWbNm8Pf3B5vN5luLbeXKlTwdkUDJqLuuw6v/wb/8ls8MAFEtJ3Dz0jUYmhrDwkb4tUSqoXy5/GZhDRo3HDs3bMX0YePBAqCtpwN3rza4feXG76RSqOBbN7Hi7y3cv/0XldTh8utXMOCvl7/CWN8Ah7dsRVZONm7ev49FG9bjn9VrarQDDQBfmTAM81trdERGvMSZwycwbOIoWNhY4Vt8AvZt3YUgdVV0H1D5iNwaUT4/DFOlEgu7dRenDxzH5EWzoKRSs18MK8Nf70pq3q+ysrOBld3PkY029naYMXIigoPOw6/cYtQiIyAPFdY1vrpZerjk+POnETi6/xDGTZsEm3q2iP/yFQGbtkJ17wH0HzoQ378lIcB/K1ZsXCNwA4GawJcfhvmtexTDMFBSVcaoqeMgJi4OMysLpKWk4tyxoF/qPDt37hzPiHb/jRsFppupyjVShbZDYLwC3pDi4mLMmTsXHA4Hs2bNquyVRYT/JvW76xPJysli466tyMvLw4unEdizbSe09XTh4Cx8Y4xfVdX39mf4cgd+XlAAgFGTxmHzmg0Y3X8YwAJ09fTQ1tsL1y/9nBLp0uTn5gEm5oCtvR38fAfhRvA1dOvzZ34g4c931e7BYbfuIujAMUxZ/NcfnWoqCH8z8ft1r1TQ4RO4eyMEyzf/uXaPEEGo84zUCg6Hg8WLF/OsuVVKRkYGsrKylcZRfndFFovFnYJX9lhZFTXk5c8VhMPhQFxcHE+ePOHrTBH2i6KhoSHevn2La9eu4fr16xg7dizWrl2L27dvVzk+WVlZvnQ3atQI5ubmOHr0KMaMGYPTp09j7969QtNelfe0lLD3qSo3wrLlUhq2/LGyo2qGDh2KlJQUbNq0CcbGxpCWloaDgwMKCwt54g0NDQUApKamIjU1tdKdQauSDgDctAjKW0V1Yvbs2Zg6dSrPMWlpaUR9j60wXWUpKStBTEyMb6RFZlqGSD4EFeQXIDTkLnoP7ld5YFIhRWVFiImJIaPcaIuM9N8rKyUVZUxbMgeFhYXIzsyCqroaju7aD00d7d9LsBAtG7vB3vpn50JhUREAIDktFRplRlOkpqdDTQR1UFJSEoY/RtXaWVoh8t07HDl7FnMnTKzkzF9Tek2VH2WWmZ7B98t+dRwPPIwWbT3Q2tsTAGBkZoL8/ALs2rgVXfv1gpjYn/tlWFHpR10sNyohM6PyPD4IuY/dG7dh/NzpsG8geOTxn6BY2vaVK6eMtAyoiPALoJiYGCxsrGpkCpaSijLExMX4RsWkp6XzjUYrpSpgJEZ6WhrExcWhpKwEANi/cy9ae7VDh84dAQCm5mbIz8/H5tUb0Hdwf7x/+w7paWkY7zeKGweHzcGriBc4F3QG529d+aWNdwTmUVg5/Wa7p6KmCgkJCYiVSae+kQHSU9NQXFQEiWrunt26dWtYlPkxtfTzQ3JKCjQ0NLjHU9PSoCbkh04AUFdX544y4znnR9uooqICcXFxvjBpqal8I9aKi4vx1+zZiI+Px/Zt22p01Bnw45oSF0N6ufolimtKTEwMugYl7biZpTm+fPqMU4eOibTzTElZ8PWUkZbONxqtlKq6GtJSeOtmelo6z/WkrKqC+SuXoLCgEJmZmVDXUMfe7bugrasjNC0ysrIwMTNF/Jcvv5mrynHbc4H3rIp/3HgQcg+7NmzFhHm1254r/ah75Uc4ZqSl841G+xWnj5zEyYNHsXjDSpiY19zmKIRUBY0DJLWiQYMGePv2LSwsLPgeYmJicHR0xJcvX/Du3bvKIxNASUkJenp6uHfvHs/x0NBQ2NraCjzHwsICkpKSePDgAfdYWloaTxqcnZ3BZrORlJTEl24dHeE3YllZWXTu3BmbN29GSEgIwsLC8PLly1+Or1S/fv1w6NAhnD9/HmJiYujYsaPQsI6Ojrhxo2qjWezs7BAXF4fPnz9zj0VGRiIjI0Po+/erbt26hTFjxqBly5YwNjZGQUEBkpN5d9KJiYnBlClTsHPnTri5uWHQoEEin9ZmZ2cnsL5YWVkJ/CIiLS0NJSUlnkd1p21KSErCzMoCL8otfvriSQSs6v3+ulBhIfdQXFiEFm09fjuu/zoJSUmYWpnjZbmyevUkgmeky6+SkpKCmoY62Gw2Ht0NQ8OmjSo/6RfIy8nBUE+P+zAzMoK6qioePnvGDVNUVISnr17C0dZO5K/PgEHRjw67mlBaTi+e8I4wfvmb5VRYUABWuQ4yMTGxkkEOVfjhRZQkJCVhYmmOV0958/jq6QtY2lkLOatkhMLO9X9jzF+T4VQLa7WVJSkpCXMrCzx//Izn+Isnz2BtL7p7DMMw+Bj9oUY2DZCUlISltRWehfOui/os/Als7esJPMfWvh5f+KePHsPSxhoSEiW/ZxcU5PN1xpbUNQYMw8CpYQMEHNiNbYE7uQ9LG2u08myDbYE7RdZxBpS9R5UvpwhY1/v1crK2t0Pi1wSe+3jCl3ioqqtVu+MMKPmxsXS0vKGhIczMzKCuro6HDx9ywxQVFeHp06d8o/jLcnRw4DkHAB4+eMA9R1JSEjY2NvxhHj3iibe04ywuLg7btm7l27ypJpRcU5aIKHdNRTx+Cht70bblDCP6dlxSUhIWVgKup8dPYCsk/Tb17PDscfnr7zEsbay411MpKWkpaGhqgM1mI/T2Xbi1ED7FsaiwEJ8/xUG1go5WURHenj+HZQX3rLBbd/HPur8x5q8pcGoseP3iP6W07pVvzyMeP4PNb7bnQUdO4Pj+w1i4dhks/6MzKGp7V03abZMXjTwjtWLBggXo1KkTDA0N0atXya/2L168wMuXL7Fs2TK4u7ujZcuW6NGjBzZs2AALCwu8efMGLBYL7du3r9JrzJgxAwsXLoS5uTmcnJywd+9eRERE4NChQwLDKygowM/PDzNmzIC6ujq0tbUxd+5cng+xVlZW6N+/PwYNGoT169fD2dkZycnJuHnzJhwcHODt7c0Xb2BgINhsNho3bgw5OTkcOHAAsrKyMDY2hrq6erXjK6t///5YvHgxli9fjp49e0JGRviC8AsXLkSbNm1gbm6OPn36oLi4GMHBwZg5cyZf2LZt28LR0RH9+/eHv78/iouLMXbsWLi7uwvdZOBXmZubY9++fWjYsCEyMjIwffp0nlFybDYbAwcOhKenJ4YOHYoOHTrAwcEB69evx4wZM0SWjmnTpsHV1RVLly6Fr68vwsLC8Pfff2Pbtm0iew1BOvbsgr9XbYS5lQUs7Wxw4+IVJCd9RzufDgCAw7v2ITU5FeP/msI9p3Q78vy8fGRmZCI2+gMkJCRgYGLEE/et4GtwaeYGxR+/wNZFspLSMFDW5P6tp6QBSw0DZObn4Fv2763TImrePbpg22p/mFlZwNLOGjcvXkVyUjLa+JSs8Xd01wGkJqdg7F+Tuedwyyo/H5npP8pKUhIGxiVToqOj3iE1OQXG5qZIS0nBqf1HweEw8PGteE0/UWGxWOjbpSv2Hj8GIz09GOrpY+/xY5CRlkZ7dw9uuAXr10FLXR3jhwwFUPJF9MOPqdVFxcX4npKCtzExkJOV5Y4027ovEE0bukBbUxO5ebm4cvs2nrx8ic1LltZonjr26IKtP8rJys76xzWVjLY+JfeOI7v2Iy05BWMFXVP5echKz/hRThIwMC65phq4ueLSqbMwsTCFhY01EuMTcCLwEBo2ceUZPfOntO/ugx1rN8PUyhwWttYIuXQNKUnJaN2xZGTc8T0HkZacilEzS0b4hd26i3/WbkH/McNgbmPFHUkkJS1Vyc6VNcenVzdsXrke5taWsK5ng2sXLiP523d4+pTc9w7uDETq9xRMnDONe87H6JLF//Pz8pCZnoGP0TGQkJCE4Y+27/i+w7C0tYaugR7ycnNx6dR5xEZ/wIhJY2okD919e2Ht0pWwtLGGrb0dgs9eQNK3b+jYzQcAsGf7TqQkJ2PG/NkAgI5dfXDu1Bns2LwNHTp3RNSrSFy5EIy/Fs3jxtm4WROcPnoS5lYWsLErmba5f+deuDVvCnFxccjJy8HEjHdXShlZGSgpKfEdF4VOvbpiy8oNMLO2hJWdDa7/KCfuPWrnPqQmp2D87J8jsXnvURl89yjPzh1w+fQFBP69E+27dULi13icPnwCHbp1EkmaWSwW+vbti71798LoR4fa3sBAyMjIoP2PNVkBYMHChdDS1MT48eMBAH369MHIUaMQuG8fPNzdEXL7Nh4+eoTdu3Zxz+nfrx8WLFwIWzs7ODo4IOj0aSQmJqJHjx4ASjrOZs6ahbdv3mDjxo1gs9ncHwSVlZW5I+CTk5ORkpKCLz9+pIyOjoacnBx3h/pf0aV3N/gvXwcLa0tY17PF1QvBSE76Dq/OJdfUgX/2IuV7CibP/bm5VumGGvl5+chMz8CH9zGQlJSAoUnJ1PqTB4/BwtoSOvq6KC4qxpMH4Qi5cgOjp47/pTRWpFufHli/dDUsbaxgY2+Hy+cu4vu3JHh3LbmeAgN2IeV7MqbN/wsA4N21Ey4EncXOLdvh5eONN68icfXCZcxcNIcb55vXUUhJToaZhTlSklNweM9+cDgc9Oj3c7r9rr93oHEzN2hqayE9LR3H9h1Cbk4u2nbwFHkeBenQwwcBazbD1MoCFnbWuHXxKlKSktGmU8nrH9t9EGkpKRg9cxKAkvZ8x5rNGDBmGCxs60Z73qV3d/gvX8ute1fOByM5KQntu5T8qL9/xx6kJKdgytyfn9tL615eXj4yftQ9CUkJGP2oe0GHT+DQ7v2YNn8WtHS0uaMSZWRlIStX9dk0hIgSdZ6RWuHl5YULFy5gyZIlWLNmDffXvOHDh3PDnDp1CtOnT0ffvn2Rk5MDCwsLrFq1qsqvMXHiRGRmZmLatGlISkqCnZ0dzp07B0tLS6HnrF27FtnZ2ejcuTMUFRUxbdo0ZGRk8ITZu3cvli1bhmnTpuHr169QV1dHkyZNhHZ0qaioYNWqVZg6dSrYbDYcHBxw/vx57ppm1Y2vLEtLS7i6uiI8PLzSdcA8PDxw4sQJLF26FKtWrYKSkhJatmwpMCyLxcKZM2cwYcIEtGzZEmJiYmjfvj22bNkiMPzv2Lt3L0aOHAlnZ2cYGRlhxYoVPLumLl++HLGxsTh/vmSrch0dHezatQu9e/dGu3bt4OTkJJJ0NGjQAMePH8eCBQuwdOlS6OrqYsmSJQI3CxClpq1aICszC6cOHENaaioMTYzx18oF0NTWAgCkp6QhJek7zzmzRk3m/v/Du2jcv3Ebmtpa+Pvwzw/48Z+/4s2rSMxdzbsuW11jo2mMv7v9/NI1sXnJhg6XosKw/Oa+2kqWQE1aNUd2ZiaCDh5DemoaDEyMMHPF/J9llZrKV1ZzRv/M28d3MQi9eQca2prYfGgngJJfuE/sPYSkhG+QlpWBU6OGGDtrCuRreIpPWYN79kJBYSFWbduKrOxs2Ftb4++lyyEv93P7+MTvSRAr80vj99RU9J/488vTgaBTOBB0Cg0cHPDPqjUASjYjWLB+LZJTU6EgLw9LE1NsXrIUbs6iXWi6vCY/rqmSciq5pmatKHNNpaYhOYl3dOvs0T870j6+i8H9m3egoa2FLT/KqduA3gCLheN7DyE1ORVKykpo0MQVvsMG1GhehHHzaIbsrCycPXSipC4aG2HasjnQKJPHlO8/83jr0jWw2Wzs/3sn9v+9k3u8eTsPjKylzUSatW6JrMxMnNh/BGmpqTAyMcacVYuhpVOSh7SUVCSXu56mj/g53TfmXTTu3giBprYWAo6WLFmQk52NgA1bkJ6aBjl5eZhamGPpptWwtBU+Iu93uLdthczMTBzaux9pKakwNjPB0nUrof1j5HhqSiqSvv1c41NHTxdL163Ejs1bcSHoLNQ01DFm8ng0b/XzXtxv8ECwWCzs+2cPUr4nQ1lVBY2bNcGQkX41kofKlNyjMnFq/1HuPWr2yoXQLC2nVP5ymjlyEvf/H95F496Pe9TWI7sBABpampi3Zgn2bduFGcMnQE1DHR26+6Brnx4iS/fgQYNQUFCAVatXIysrC/b16uHvLVt4lnxITEzkadfq16+P5cuXY/v27QgICICBgQFWrlgBe/ufO0t6enoiIyMDu3btQnJyMszNzbHJ35+7+3dSUhLu3LkDAOhXbvfzgIAAuDQsGfV5KigIO3f+vBZHjBwJAFi4YAF8fHx+Kc/NW7sjMyMLx/YfRlpKKoxMTTB/9RJo/VgGIDUlFd+TeDeCmTr8Zzse8/Y97lwPgaaOFnYeK7n/FuTnY8fGrUj5ngwpaSnoGxliyrwZaN7a/ZfSWJGWbVohMyMTRwIPIjUlFcamJli8dgVv+stdT4vXLsfOLdtxIegc1DXUMWryODTz+Hk9FRUW4sDOvUiMT4CsrCxc3Bph2vxZPDtTpnz/jjWLViAzIwPKKsqwrmeLDTu2cF+3prl5NEd2ZhbOHDrObc+nL5vL256XuWfdvHgVbDYb+/7eiX087XkrjJpRO+15izbuyMrMxLF9h5CakgZjU2MsWL2U+x6mpaQi+Rtv3ZviN477/5K6dwtaOlrYeXw/ACD4zHkUFxVh9YJlPOf1GdIffYcNrOEcESIYi6nKQk+EEEKqJOLL29pOgkg5GVij2dYaWmi7Ft0fF4Ann0W3hXpd0NDQFlk/Rnz8WyhamOHp5ze1nQyRamBog4exr2o7GSLV2MQer+KjazsZImWvZ4GPyV9rOxkiZaqhj+dff205jLqsvr4VsjIzazsZIqWopISoxH9Xe26rY4bo758rD/h/xELTEI8+va7tZIhUI+N6ePPtY20nQ6RstEU/KvdPGX58ZW0nQaBdvWfXdhJqBa15RgghhBBCCCGEEEKIENR5RgghhBBCCCGEEEKIELTmGSGEEEIIIYQQQkgd8l/e2bIuopFnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIaRGbNu2DaamppCRkUHDhg1x9+5doWGHDBkCFovF96hXrx43TGBgoMAw+fn5NZYH6jwjhBBCCCGEEEIIqUMEdQ7VhUd1HTt2DJMnT8bcuXPx7NkztGjRAh06dEBcXJzA8Js2bUJCQgL38fnzZ6ipqaFXr1484ZSUlHjCJSQkQEZG5pfe66qgzjNCCCGEEEIIIYQQInIbNmyAn58fhg8fDltbW/j7+8PQ0BDbt28XGF5ZWRk6Ojrcx+PHj5GWloahQ4fyhGOxWDzhdHR0ajQf1HlGCCGEEEIIIYQQQipVUFCAzMxMnkdBQYHAsIWFhXjy5Ak8PT15jnt6eiI0NLRKr7d79260bdsWxsbGPMezs7NhbGwMAwMDdOrUCc+ePfu1DFURdZ4RQgghhBBCCCGE1CFiYNXJx8qVK6GsrMzzWLlypcA8JCcng81mQ1tbm+e4trY2EhMTK30PEhISEBwcjOHDh/Mct7GxQWBgIM6dO4cjR45ARkYGzZo1w/v373/9Da+ERI3FTAghhBBCCCGEEEL+NWbPno2pU6fyHJOWlq7wnPJrpTEMU6X10wIDA6GiooKuXbvyHHdzc4Obmxv372bNmqFBgwbYsmULNm/eXGm8v4I6zwghhBBCCCGEEEJIpaSlpSvtLCuloaEBcXFxvlFmSUlJfKPRymMYBnv27MHAgQMhJSVVYVgxMTG4urrW6MgzmrZJCCGEEEIIIYQQUofU9q6aothtU0pKCg0bNsS1a9d4jl+7dg1Nmzat8Nzbt28jOjoafn5+lb4OwzCIiIiArq5utdJXHTTyjBBCCCGEEEIIIYSI3NSpUzFw4EC4uLigSZMm+OeffxAXF4fRo0cDKJkG+vXrV+zfv5/nvN27d6Nx48awt7fni3Px4sVwc3ODpaUlMjMzsXnzZkRERGDr1q01lg/qPCOEEEIIIYQQQgghIufr64uUlBQsWbIECQkJsLe3x6VLl7i7ZyYkJCAuLo7nnIyMDJw6dQqbNm0SGGd6ejpGjhyJxMREKCsrw9nZGXfu3EGjRo1qLB/UeUYIIYQQQgghhBBSh4hVc4pkXTZ27FiMHTtW4HOBgYF8x5SVlZGbmys0vo0bN2Ljxo2iSl6V0JpnhBBCCCGEEEIIIYQIQZ1nhBBCCCGEEEIIIYQIQdM2CSGEEEIIIYQQQuqQ6u5sSWoWjTwjhBBCCCGEEEIIIUQI6jwjhBBCCCGEEEIIIUQImrZJCCGEEEIIIYQQUoewQNM26xIaeUYIIYQQQgghhBBCiBAshmGY2k4EIYQQQgghhBBCCCkx4fSG2k6CQFu6Ta3tJNQKmrZJCCEiNP38ltpOgkit85mAJ5+jajsZItfQ0BbNto6u7WSI1P1xAUifMqe2kyFSKhtXoPeBebWdDJE6PnAZWm4bW9vJEKk7Y7chKymptpMhUopaWjjz8nZtJ0Okujq4Y9q5zbWdDJFb33kidj44W9vJEKkRbl0w8Mji2k6GSB3ouxDjT6+v7WSI1N/dpv0r71Ftdkys7WSI1I1R/7/tnhjttlmn0LRNQgghhBBCCCGEEEKEoM4zQgghhBBCCCGEEEKEoGmbhBBCCCGEEEIIIXUIi6Zt1ik08owQQgghhBBCCCGEECGo84wQQgghhBBCCCGEECFo2iYhhBBCCCGEEEJIHULTNusWGnlGCCGEEEIIIYQQQogQ1HlGCCGEEEIIIYQQQogQNG2TEEIIIYQQQgghpA4RA03brEto5BkhhBBCCCGEEEIIIUJQ5xkhhBBCCCGEEEIIIULQtE1CCCGEEEIIIYSQOoR226xbaOQZIYQQQgghhBBCCCFCUOcZIYQQQgghhBBCCCFC0LRNQgghhBBCCCGEkDpEjKZt1ik08owQQgghhBBCCCGEECGo84yQ/4j8/HwsW7YM3759q+2kEEIIIYQQQggh/zdo2iYh/xHz589HZmYmtLW1azsphBBCCCGEEEIqwGLRWKe6hEqDkP+AgoICqKurY/PmzbWdFEL+x95dhzd1vQEc/yaVpO6lhTqF4lLc3cdgg8EM2ZgwmAFzgxnMGIxtMIHBkGFDhru7eylSSgstdfcm+f0RSBuaFNhq2+/9PE+ep7k59+acJD333HPfc44QQgghhBBC/KtI55kQ/wdUKhXvvPMOKpWqsrNSwq5du1AoFKSmpt73PgEBAUyfPv0fva9CoWD16tX/6BhCCCGEEEIIIf77ZNimEP8HDhw4QIcOHejRowebNm2q7OyIu7T1b0jn4KY4qOyIy0jmr/N7uZYcYza9hVJJj9otaVYjBAeVHam5mWy/fJSj0WEAvNTmEWq6+5TYLywukjlH1pZbOYrb+tcG1i1fTWpSCjUCfBk+ZhR1GtY3mTYlKZlFP83l2uWr3LoZS69H+jF8zHNGaQoLC1mzeAV7tuwgJTEZb98aPPHccBq3DK2I4jyQxt7BPNm0J3U8/XC3c+adDbPYe+10ZWerVOpe3bBu0wKFjQ2aqGiyV6xBeyvebHr7sc9hGRxUYnvBhYtk/TrfcEx1725Gr2vTM0ifOKVsM29Cz9otebh+B5xt7LmRGs+8Yxu4GH/dbPr2gY15uF57vB3dyM7P41TMZRYc30hmfg4AnYKaMrbdoBL7PbVoEgXawnIrR3ED63fkiabdcbV1IjI5lu/3L+dM7FWz6R9p0JFHG3bGy8GVuIwUFpzYxObww0ZpHmvUhQH1O1LNwYW03Cx2XT3BL4f+Il9TPmXS6XT8Mncuq9asISMjg/r16vH2+PHUDAwsdb/tu3bx0+zZ3IiJwad6dca88AJdOnY0mXbuggX8+MsvPPHYY0x49VXD9qTkZL6fNYtDR4+SkZlJaOPGvPn66/j5+pZpGQ9u2sXuNZvJSEmjmm91+o8cSmC9WibTXgu7zMaFK0m4eYv8/Hxc3F1p1aMjHfr3MKQ5tvMAy3+cV2Lfz/74EStrqzLNuzltAxrSuWYojmo7bmUk89e5Pfc4R1nQs3ZLQn1CcLxzjrp0lCPRFwxpOgQ1oW1AQ1xsHMjKz+F0zBU2hB2gUKupiCIBcHL7AY5u2E1WWgbu1avR5amH8Qkp/bcIcPNSJEum/IS7TzVGfDrO6LXcrBz2rdjE5WPnyM3Owcndlc5P9COocd3yKoaRbsHN6Ve3LU42DtxMi2fhic1cSogym76tf0P61W1LNQc3cgpyORN7hcUntxrqvhqOHgxq1JkAl+p42Duz0EQ9Ut46BDamW60WOKntiE1PYsXZnVxNumky7dOhvWjt36DE9tj0RD7f/jug/z239K1HdUd3AKJS41h7YR/XU26VXyHuUtbnqOLaBjTk9Q5DORp9ga93/VGexTDycL32DGncDTdbRyJTbjHzwArO3oowm35A/Q4MqN8BLwdX4jNTWHRiC1svHzW83qt2S97q8nSJ/XrPHk9BOZ2jqiIFstpmVSKdZ0L8H/jtt9945ZVXmD17NlFRUfj5+ZlNq9Pp0Gg0WFpK9VARGlevxcMNOrDy7C4ik2Np7d+A51r15+tdi0jNyTS5z7BmfXBQ2bLs9A4Ss1KxV9kaLWU979gGLJUWhue2VmrGd3qC0zGXy7s4ABzcuY/5s37j2VdfpHb9Omxfv5kv3/2Ur+d8j3s1jxLpCwsKcHB2YsCTj7FxxRqTx1w+dxH7tu3mufFjqO7rw5ljJ/l20hd8/N0XBNQq2YlTmWysVFxJusGGiweY3Gd0ZWfnnlRdO6Lq3I7sP1agSUhE3aML9qOfJX3Kt5CXb3KfrLmLwKLoN6aws8XhjVcoOHXOKJ0mNo7MWXOKNmh15VKG4tr4N2Bk877MPrKW8PgoutduwXtdhzNuzQySstNKpA/x8OfltoP4/fgGjt0Ix9XGkedbP8zoNo/wze6iC4/s/Fxe+2u60b4V1XHWNbgZr7QfzLd7lnDuVgQP12vPVw+NZfjiT4nPTCmRfkD9DrzQegBf7/qDsPhI6noG8Fbnp8jIzebA9bMA9KjVghdaD+TLnQs4dysCX+dqvNt1GAA/7F9RLuX4/Y8/+GPpUia+9x5+vr7M+f13xo4bx4o//sDO1tbkPmfOneO9SZMYPWoUXTp2ZOeePbzz0UfM+fFHGtQ37pA/HxbGqrVrqVWzptF2nU7HG++9h6WlJVOnTMHOzo5FS5cyZtw4li9YgI2NTZmU7/T+o6ydt5SBzz2Jf51gDm/dw2+TZzB+2iRcPNxKpLdWqWjbpwte/j5Yq6yJvHiFlT8vxFqtolWPos5Bla2aN7/71Gjfiuo4a1K9FgMadGTlmV1cS46hjX8Dnm/9MF/tXGj2HDX8zjnq1HbDOcqi2DkqtEYI/eq2ZempbUQmx+Jh78LjTbsDsOb83gop18XDp9i5aC3dhw+kRu0ATu88zIqpc3hmygQc3VzM7peXncOGX5bgXy+YrPQMo9c0hYUs//pXbB3tefjlYdi7OpGRnIq1umKi/lv51efp0N7MO7aey4nRdAluxpudnuKdDT+SlJ1eIn1td19ebD2QRSc3c/LmJVxsHHimxUOMatmf7/YtA8Da0or4zFSORF3gqdBeFVKO4kJrhDCoUReWntpORPJN2gc0YkzbR/ls2zxScjJKpP/zzE7+KvYbslAoebfbcE7evGTYVsvdl+M3LrI8OYZCjYbutVswtu0gPt/+O2m5pn/TZam8zlEA7nbODAvtzYW4yHIvR3GdazZlTNtHmbFvOeduRfBQvXZM6fsSzy6bbPIc1b9ee0a17M+3exYTHh9FHU9/xnd8nMz8HA5eL2pHZOblMHLpZ0b7/j91nImqR4ZtCvEfl5WVxbJly3jppZd46KGHmDdvntHrd4ZNbt68mebNm6NSqdi7dy86nY6vvvqKoKAgbGxsaNy4MX/++adhP41Gw6hRowgMDMTGxoaQkBC+++67e+Znw4YN1K5dGxsbG7p06UJkZGSJNAcOHKBjx47Y2Njg6+vLq6++SlZW1n2X+ejRo/To0QN3d3ecnJzo1KkTJ06cKHWft99+m9q1a2Nra0tQUBAffvghBQUF9/2ef1enoCYcibrAkagLxGemsOb8XlJzMmnj39Bk+hAPP2q61WD24TVcTowmJSeD6NQ4ozumOQV5ZORlGx61PXwp0BRyJvZKuZcHYMOKv+jcuztd+vaghr8vw8c8h5unO9vWmo569PCqxoixz9GxZxds7UxfQO/dtosBTw6maavmVKvuRY+H+9CoeRPW//lXeRblbzkUdZ5fD69hd8Spys7KfVF1akvu1l0UnD2P9lYc2X8sR2FthXVoE7P76LJz0GVkGh5WtYOhoID802eNE2o1Rul0D/B//Hc9VK8dO64cZ8eV49xMT+D3YxtIzE6jZ0hLk+lre/gQn5XKxouHSMhMITzhOtsuHSXIrYZROh060nIzjR4VZUjjrqwPO8D6sANcT7nF9/v/JCEzlYENTEdf9QppxZrz+9hx5Tix6UnsuHKc9WEHeDK0KKKpvlcg525dZdvlY9zKSOZodBjbLx8jxMO/XMqg0+lYvGwZzwwfTtdOnQgOCuLj998nNy+PTVu3mt1v8fLltGrenGeGDSPA359nhg2jZbNm/LF8uVG67OxsPvzkE95/6y0cHByMXouKjubs+fO8M2EC9evWJcDPj3fGjycnJ4fN27aVWRn3rt1Ki67tadm9A9V8vHn4maE4ublwaMtuk+lrBPnRpH1LvHyr4+rpTmjH1tRuXJ9rYcY3OhQocHBxMnpUlI41m3Ik6jyHo84Tn5nCX7fPUW0DGplMH+LhT033Gvx6+C+jc1RksXOUv6sXkcmxnLx5iZScDC4lRHHy5iV8nT0rqlgc27SXhh1b0KhzK9yqV6PrUw/j4OrMqe2HSt1vy7yV1G3TFO/gkjchz+45Sm5mNgNfHUGN2gE4ubvgUzsQT7/q5VUMI31CWrM74iS7I04Sk57IohObScpOo1utFibTB7v7kJCVypZLR0jISuVSYjQ7rhwn0LUov9eSY1hyaiuHos5ToKm4qMA7ugY342DkWQ5eP0tcRjIrzu4iJSeDDoGNTabPLcw3av/4uXhhY6U26pD5/dgG9l47zc20BOIyk/njxBYUCgUhHuZvLJel8jpHKRQKXm3/GMvO7CA+M7kiimIwuGEXNl48xIaLB4lKjWPmgZXEZ6bQv157k+l71GrBurD97Lp6ktiMJHZePcHG8EMMbdztrpQ6UnIyjB5CVCbpPBPiP27p0qWEhIQQEhLC008/zdy5c9HpSkZ/vPXWW0yZMoWwsDAaNWrEBx98wNy5c5k1axbnz59n3LhxPP300+zerb8I0Gq1+Pj4sGzZMi5cuMBHH33Ee++9x7Jly8zmJTo6mkcffZS+ffty6tQpnnvuOd555x2jNGfPnqVXr148+uijnDlzhqVLl7Jv3z5efvnl+y5zRkYGI0aMYO/evRw6dIhatWrRt29fMjLMn3QdHByYN28eFy5c4LvvvuPXX39l2rRp9/2ef4eFQkkNJ88SQyouJUQR4Optcp/6XoFEp8bTpWYzPuz+DG93eZqH6rUzijS7W0u/epyKuVRuQ7GKKywo4NqlqzRq3sRoe8NmTbh04eLfP25+YYlIC2uVivBzF8zsIe6H0s0FpaMjheHFLtY1GgqvXMMy8P4vJKxbNSf/5BnIN+5wVrq74zjpHRw+eAPbYY+jLCWioyxYKC0Icq3O6bs6is/EXDF7YRSeEIWbrSNNq9cGwEltR2v/+py8GW6UTm1pzY+PvMGsR9/k7S5PE+Bi+n+0rFkqLajt4WcYln3H0egwGlQzHXVppbQkX2P8XeRpCqjrGYCFUt/0OxN7ldoeftT11HeWeTu60dq/AYeunytxvLJwMzaWpORkWrcoupC3trYmtEkTzpwz/55nzp2jVQvji//WLVuW2OfLadNo16YNrZo3L3GMOzdCVNbWhm0WFhZYWlpy6syZv1WeuxUWFHIzIopajesZba/duB7Xw80Pry3uZkQU1y9dJahebaPt+bl5TBn9Dp+/8BZzJ3/PzQjzw/DKkoVCiY+TJ+Hxxu8XnhBl9vevP0fF0TW4GR/1eJZ3ug6jf732Rueoa0kx+Dh74uusX/3b1daRup4BhFVQtIymsJC4yJsENDD+nAMa1CLmivk8nN1zlNT4JNoO7G7y9asnL1A92J/t81cx85VPmPveVA6t3YFWqy3L7JtkoVQS4Fqds7eMf2vnbkVQy8Q0DgCXE6NxtXWksXcwAI5qO1r61eVUBUWp34uFQomvczXC7hrOGBZ3nUC3++uQbOPfgPD466V2ulhbWmKhVJJdkPuP8ns/yvMcNbhhF9Jzs9h55Xj5ZN4M/TnKl2M3jNt4x29cpH4108OgrSwsyS+86xxVWEAdT3/DOQr0kfx/PDmJJU99wue9XyDYzfRv+b9MqVBUycf/KxmXJcR/3Jw5c3j6af2cAb179yYzM5Pt27fTvbtx4++TTz6hRw99VEJWVhbffvstO3bsoE2bNgAEBQWxb98+fv75Zzp16oSVlRUff/yxYf/AwEAOHDjAsmXLGDJkiMm8zJo1i6CgIKZNm6a/yxcSwtmzZ/nyyy8Nab7++muefPJJXn/9dQBq1arFjBkz6NSpE7NmzUKtVt+zzF27djV6/vPPP+Pi4sLu3bt56KGHTO7zwQcfGP4OCAhgwoQJLF26lLfeestk+ry8PPLy8oy2PeiCDHbWNlgolWTkZRttz8jLwUFlOgLL1daJQFdvCrWFzDu2ATtrNY827IytlZplp7eXSO/rXA1vR3eWnd7xQHn7uzLSMtBqtTi5OBttd3JxIi25ZOj+/WrUvAkb/lxDnYb1qVbdi/Mnz3D8wOEKuSj5L1PcjtDRZhhHUWkzM1He9R2aY+Hng0V1L7KXrjTaXng9Gs0fy9EkJKJ0sNcPB311NBlfTkeXXXKelrLgqLLFQmlRIiosLTcLZ7W9yX0uJUQzY99yXu84FCsLSyyVFhyNDuO3I+sMaWLSE5h5YCVRqXHYWKnoW6cNn/Z+njfX/citjKRyKcsdTmp7LJUWJS7+krPTcfV1NLnPkegLPFS3HXuvneZSQjQhHn70rdMGKwtLnNX2JGWns+PKcZxtHPjhkQkoUGBpYcGqc3tYdHJLuZQjKUn/Obm5uhptd3NxIfaW+bmGkpKTS+7j6kpSclFkxeZt27h46RLzf/nF5DEC/P3x9vLih59/5r0338RGrWbR0qUkJSeTmFQ23192RiZarRZ7J+PvxN7JkYzUkkPmivv8hbfISs9Eq9XQ/bH+tOzewfCaRw0vHnt5JF5+NcjLzmXfhu3M+uBLXp/6Ee7e1cok7+bcOUdl3nWOyszLxkFt+hzlZudEoGt1CjUa5h5dj521mkGNumBrrWLpKf056lTMZexVNrzcfjAK9B0K+6+dYUcFXfTnZGSh02qxdTKuE2ydHMhKM93JknIrgb3LN/L4+y+htDB9syotIZmosKvUbdOUR8c/S2pcItvmr0ar0dB2YA+T+5QVB5UtFkol6SXqvkyc1DVN7nM58QazDq5kbLvBhrrv+I2LLDi+sVzzer/sVebaSFk4qgLuub+jyo561QKZd2x9qekG1O9IWk5mqXOOlZXyOkeFePjRNbgZb63/sVzzb4qT2g4LE+eolJwMXG0dTO5z7EYYfeu0YX/kWS4nRlPb3Zc+Ia2wsrDESW1PcnY6UanxfLVrERFJMYa27ncDXueFP7/kZnpCRRRNiBKk80yI/7Dw8HCOHDnCypX6i1pLS0uGDh3Kb7/9VqLzrHmxu/UXLlwgNzfX0Jl2R35+Pk2bNjU8/+mnn5g9ezbXr18nJyeH/Px8mjRpYjY/YWFhtG7dGkWxOxZ3OufuOH78OFeuXGHRokWGbTqdDq1Wy7Vr16hb996T7sbHx/PRRx+xY8cO4uLi0Gg0ZGdnExVl/m79n3/+yfTp07ly5QqZmZkUFhbi6Gj6whRgypQpRp2HABMnToRmJee1eVCl3dC589n9cWILuYX6+ajWnN/H8OZ9WHl2V4nJllv61SM2PZHo1Lh/nK8HcncZdJResHsYPvY5fv32R9549mUUQLXqXnTq1Y3dm0t2GArzrEIbYztkoOF55u3J/UtS6L+z+2DdqjmamFtoom4YbS+8WDTHjDY2jszIKBzffwPrFqHk7d7/gDl/MCaCa80Wp4aTB8+06MefZ3ZyOuYyLjYOPN2sN8+3HsBPB1cB+ovMy4lF5QuPj+LLfmPoU6c1c4+WfmFWVu6OGFYoFOjMlOr3YxtxtXXkp0ffAgWkZGew6eIhngztiUan73BuUr0Ww5r14ts9SwiLi6SGkwevtn+MpGZ9mF8GF88bt2xh8jffGJ5Pv32TpETVoNMZnRNMuuv14vvciotj6owZ/PDtt2ZvYFhaWvLVZ5/x6Rdf0LVvXywsLGjZrBltW7d+sELdh5JF0d1zuueXPn2LvNxcoi5dY9Oilbh7e9KkvX4Il3/tIPxrF0UY+tepyYy3PmP/hp0MGPV4mebdHJO/MlP/ZBRNbr3oxOZi56i9DG/elxVn9Oeomm416FarBSvP7OJ6yi3c7ZwY2KAT6XlZbLt01ORxy0OJ352Z36JWq2XdT4tp+0gPXL1Kzttp2F2rw9bBnp7PDEKpVOIV6ENmajpHN+wu984zQx7u+loUKMzWfdUd3RkW2ofV5/Zw9tYVnNUOPN60B8+0eIjZR0zPP1o57qr7SilTca3965NTkMeZGPNTVnSv1YJmPiF8t3dZhS5WUZbnKLWlNa+0f4yfD60u0dFYse4ugcJcNcGC45txsXHkh4HjUSj0HW2bLx3h8SbdDTdFw+IjCYuPNOxz7tY1fhr0JgMbdOTHA+UzL6cQ9yKdZ0L8h82ZM4fCwkJq1CiaF0Gn02FlZUVKSgouLkVDqOzs7Ax/3zlxrV+/3mhfKIquWrZsGePGjWPq1Km0adMGBwcHvv76aw4fNr8Kk6nhonfTarW8+OKLvFpslbQ7SlvooLiRI0eSkJDA9OnT8ff3R6VS0aZNG/LzTU9+fujQIR5//HE+/vhjevXqhZOTE0uWLGHq1Klm3+Pdd99l/PjxRttUKhXvbzEd+WBKVn4OGq22RJSZvbWN2QZQRm4WabmZhosSgPjMZJQKBc429iRmFU02a2VhSZPqtSp0ZSwHJweUSiVpyalG29NS00pEoz0IR2cnJnzyHvn5+WSmZ+Di5sqS2fPx8CrfyIv/moLzYWR8E1204fbCIEoHezTFJr9W2tuhy7yPOb2srLBu2oicTfcxb1R+AZrYWyg93B802/ctPS8bjVaDs43xHXwntZ3ZOcoeadCJ8IQo1l7YB+hXXss9vJZPez/PklNbTU6KrkPH1aSbeDn8887ye0nLzaRQq8HV1rgz38XGgZRs01Ey+ZoCvty5kG92/4GrjSNJ2Wn0r9eerPwc0nL0886NatmfLeFHWB92AICI5BjUVire7PQkC45vMtsxd786tm9Pg3pFQxjzbw+dTExOxt296DeQnJqK612RZcW5uboaotYM+6Sk4Hr7/HUxPJzklBSGPVe0Qq9Go+Hk6dMsW7mSA9u3Y2FhQd2QEP6YO5fMzEwKCgpwcXFhxAsvUK9OnX9UzjtsHexRKpUloswy0zKwdzZ/IwbAtZr+8/D29yEzLZ2ty9YaOs/uplQq8akZQGJs+d8QMXuOUtmSkWc6ejQ9r+Q5Ki7D+BzVu05rjt+4yOGo8wDcykjC2tKKxxp1Zfulo//wl3dvNg52KJRKslKN/3+y0zOxdSwZ/ZOfk0fctRvEX49h+wL9PJs6nQ50OqY+8w6PvfkcfvWCsXN2QGlhgbLYsDNXb0+y0jLQFBZiUY4LMWXkZaPRanG6q+5zVNuViEa7o3+99lxOjGLDRX0dEE08eUfz+bDHsyw/s6NC53U0JTPvzu/Pzmi7/vd37/kzW/s34Ej0BcMNg7t1C25Oz9ot+WH/n8SkJ5ZJnu+lPM5RTmp7PO1deLvYypR3OoEXP/Uxr//1HXHlOAdaWm4WGq0GF5u7z1H2ZofL5msK+Gb3H0zbuwQXG0eSs9PoV7cdWfm5pOWa/m516AhPiMLHyXwH9n/RPW8uiQolnWdC/EcVFhYyf/58pk6dSs+ePY1eGzRoEIsWLTI7j1i9evVQqVRERUXRqVMnk2n27t1L27ZtGTNmjGHb1aulz+tSr149Vq9ebbTt0CHjyXlDQ0M5f/48wcHBpR6rNHv37mXmzJn07dsX0M+1lphovmG0f/9+/P39ef/99w3brl8vPXxfpVI98DDNu2l0Wm6mxVPbw5dzxZbzru3hZ/S8uGvJsTSqHoy1hZVhTiMPO2e0Om2Ji/zG3sFYKi04cSPc1KHKhaWVFYG1a3L2+ClatC+K6jh3/BTN2rb6x8e3trbG1d2NwsJCjuw9SKtO7f7xMf+v5OWjzTNuRGvT07EMCUZzM1a/wcICy+BActZuvufhrJs0BEsLCo6dvPd7W1hgUc2TwojyGxqj0WqISI6hkXew0RxhjbyDOXojzOQ+KgurEhdX2tvPS1si3t/Fq0IiOgu1Gi4lRNHcty57r502bG/uU4d9kaXP16XRaknISgX0F4oHIs8ZOsXUltYlbmhotVoUCn301H3c6yiVna2t0QqaOp0ON1dXDh89Sp3a+rl7CgoKOHHqFK+MNr8qbaMGDTh87BhPDR1q2Hb46FEaNWgAQIvmzVny++9G+3wyZQr+fn6MeOopLO4aYmdvr79ojYqOJiw8nJeKdbr9E5ZWltQI8uPymQs0aFUUoX35TBj1Wpie3NwUnU6HpsD8/JQ6nY7YyGi8/GqYTVNWNDotN9LiS5yTanv4cd7MOSoyOYbG3nedo+xdjM5RVhZWJX57RdGECu477PVvsrC0pFpADSLPX6ZW8wZFeT9/meCm9UukV9moGPG58c2yU9sPEh12hf4vD8PJQ9/5W6NWAGGHTqHTalHc7kBLiUvEztmhXDvOQP+/HpkcQwOvII4Xm3uqgVcQJ26abgOoLK3QaO+u+/SffVW4XtfotESnxlHH099owaM6nv6cvccCSLXcffC0d+Fg5FmTr3er1ZzeIa35cf8KoiowMr88zlExaYlMWDvD6PXHm3RHbali3rH1JJpYwbMs6c9R0TTzCWF/sXNSM5867Dfz+d+h0WpJvH2O6lIzlEPXz5V646amWw2uJceWSb6F+Duk80yI/6h169aRkpLCqFGjcHIyXplr8ODBzJkzx2znmYODA2+88Qbjxo1Dq9XSvn170tPTOXDgAPb29owYMYLg4GDmz5/P5s2bCQwMZMGCBRw9epTAQNOTgwKMHj2aqVOnMn78eF588UWOHz9eYvXPt99+m9atWzN27Fief/557OzsCAsLY+vWrXz//ff3Vfbg4GAWLFhA8+bNSU9P580338TGxqbU9FFRUSxZsoQWLVqwfv16Vq1adV/v9U/tjjjFE017EJ0az/WUW7T2r4+zjb1h0u4+ddrgpLZnySn9anQnb16iR+0WDG3SjS3hh7GztuGheu04EhVmYshmfc7diqiQSXCL6ztoADO/nE5Q7WBq1Qthx/otJMYn0q2/fpn7JbMXkJyYxJh3XjfsE3lFfyGWm5tLemo6kVcisLSywsffF4ArYZdITkzCv2YgKUlJrJi/BK1WR/+hj1Ro2e6HjZXK6M5odUd3arn7kJ6bRZyJJdsrW97uA6i7d0abkIQmIQl1987o8gvIP3HKkMb2ycFo09LJXW88H5Z16+YUnA0zOYeZ+uE+FJy/iC4lFYW9HeqeXVCoVeQfLX3l239q3YX9vNJuMBFJN7mUEE332s1xt3Ni6+3hYE807YGrjaNh2MexGxd5sc1AetRuaRgSM6J5X8NKgQCDG3XhckI0sRlJhjnPAly9mXNkbbmW5Y5lp3fwfrcRhMdf53zcNfrXa4engwt/ndsLwAutB+Bu58zk7fpOJB8nT+pWCyAs7hoOKluGNO5GoJs3k3cUdTIduH6WIY27cikx2jBsc1Srh9gfedZwAV2WFAoFTwwZwtyFC/Hz9cXXx4e5CxagVqnoXWyKgI8++wxPd3devt2h9vjgwbzwyivMW7SIzu3bs2vfPg4fO8acH/Vz+9jZ2hIcZLxwglqtxtnJyWj7tp07cXZ2xqtaNa5cvcrUGTPo1KEDrVuajvD6Ozr078HS73/DJ8gfv5CaHNm6h9TEZFr31N+E2rhoJelJqQx99VkADmzcibOHK541vAC4FnaFPWu30K5P0bydW5etxa92EO7enuRl57J/w3ZiIqMZ+NyTZZbv0uy5epInQntyIzWeyJRYWvs3wMXG3tAp0bduW5zUdiw+qT9HnbhxiR61W/J40+5svngYO2s1/eu140jUBcM56kLcNToFNeVmWgJRqXG42znRu05rzt+K+McRj/eree8ObPh5KV6BPlQP9uPMzsNkJKXSuKv+ps+eZRvJTEmj74uPo1Aq8fDxMtrf1tEOCytLo+2Nu7bhxLb97Fi0hqY92pFyK5HDa3cQ2qNibvJsDD/E6NaPcC05hiuJN+hSsxlutk5sv3wMgCGNu+Fi48DPh1YD+vbEsy370y24OWdir+Bs48DTob24mnjD0NFpoVRSw1F/PrNUWuBi44ifczVyC/OJr4Dz2Y4rxxnevA9RqXFcS46hXUAjXG0dDDcSHq7XHicbexYcN17Nu41/Q64lxxBrYk7K7rVa0K9uW34/toGk7DRDZGVeYUGJhVbKQ3mco6JT443eIys/1+T28vLn2Z2802UYlxKiuRB3jX512+Jp72KIlhvVsj/udk58uXMhAD5OHtTx9Ccs7jr2Khsea9SFQFdvw+sAw5r1JiwukptpCdhaq3mkQSeC3XyYsW+5yTwIURGk80yI/6g5c+bQvXv3Eh1noI88mzx5MidOmL+I/fTTT/H09GTKlClERETg7OxMaGgo7733HqDvCDt16hRDhw7VXxQ98QRjxoxh40bzc+X4+fmxYsUKxo0bx8yZM2nZsiWTJ0/m2WefNaRp1KgRu3fv5v3336dDhw7odDpq1qzJ0GJRB/fy22+/8cILL9C0aVP8/PyYPHkyb7zxhtn0AwYMYNy4cbz88svk5eXRr18/PvzwQyZNmnTf7/l3nY65jJ2Vmh61W+KosuNWRhJzDq81NIgc1Xa4FAvvz9cU8POhv3ikQUde6ziU7PxcTsdcYePFg0bHdbdzJsitOj8fXF3uZbhbmy7tyUxPZ+XCpaQmp+AT4Mdbkz/Eo5onAKnJySTFG0/2+t7oorv61y5d5cCOPbhX82DGol8BKMjPZ/ncRcTHxqGyUdOkZTPGvD0OO3vTE+xWpjoe/vzwSFF5Xm3/GAAbwg7y+Y7fze1WafJ27EFhZYXN4IdR2NiguX6DzJ/mQl7RsCuli3OJUCSlhxuWQQFkzvrN5HGVTk7YDRuKws4WXWYWhdejyZj+E7qU1HIsDRy8fg4HlS2DGnXBxcaB6NQ4puxYYLi77WLjgLudsyH97oiT2Fip6B3SiuHNepOVn8v5WxEsPFEUeWdnreaF1gNxtrEnuyCXa8mxTNw8m6tJN8u1LHfsuHIcR5UdI5r3xc3OkWtJsby9bqZhKI6brSPV7IuG4VsolQxt3A0/52oUajWcvHmJMSu/4VZGUdTh/GMb0el0PNeqPx52zqTmZHIg8iy/Hi6/uY5GPPkkeXl5fDF1KhmZmTSoW5cfvv3WKELtVlyc0UpejRs25POJE5k1ezY/zZ6NT40aTPn4YxrULxkhVJrEpCSm/fADScnJuLu50a93b54bMaLMygbQuF0LsjOy2P7netJT0vDyq84z772Ci4d+eG9GShqpiUXfgU6nY9OiVSTHJ6K0UOJWzYM+Tz1Kqx4dDWlys7JZ+dMCMlLTUdvaUD3Ql9GfvIlvLfM3qsrSqZjL2Fqr6RGiP0fFZiQx+9CaonOUyhZnm6JJwfM1Bfx8cDWPNOzE6x2Hkl2Qy6mYy2wMKzpHbbt0BHQ6+tTV3xzKzMvhQtw1NtweQlwR6rRqQk5mNgf/2kZWajruNbx4dPyzOLnr/4+y0tJJv2v6gXtxdHPmsTefZ+cfa/n9g2nYOzsS2rM9Lft1LvsCmHA46jz21jYMrN8JZxt7bqTF883uRSTdjjxyVtvjZlvUJtx77TRqSxXda7fgiaY9yc7P5UL8NZaeKhqG72LjwOd9iiJD+9VtS7+6bQmLizTqjC8vJ26GY2etpk9IaxzVdsSmJzHzwEqjNpLrXcMF1ZbWNKleiz/P7jR5zA6BjbGysOS5Vg8bbd8QdoANd7WlykN5nKMq266rJ3FU2TGsWS9cbZ2ITI7l3Y0/GTpY3Wwd8Sx2jlIqlAxu1BVfJ08KtRpOx1zmldXTjIaX2lvbML7j47jYOpKVn8OVxBuMW/sd4QkVs9pwVfH/vLJlVaTQ3c8kREIIIe7LG2vvLzru3+Kb/q9wPNr0UIJ/s2a+dWn3o/mhYv9G+8f+ROq49yo7G2XKedpkhiz44N4J/0WWDfuMjjPH3Dvhv8ieMTPJiK+YCIeK4uDpyeqzuys7G2VqYMNOTFgz494J/2WmPvwqvx76q7KzUaaebz2AYYs/vnfCf5EFT0zk5VXm55L9N/rhkQn/yXNUt59Lzjv8b7b9xX9vvffhpvufS7kifdr7hcrOQqVQ3juJEEIIIYQQQgghhBD/n2TYphBCCCGEEEIIIUQVUtrCRaLiSeSZEEIIIYQQQgghhBBmSOeZEEIIIYQQQgghhBBmyLBNIYQQQgghhBBCiCpEIattVikSeSaEEEIIIYQQQgghhBnSeSaEEEIIIYQQQgghhBkybFMIIYQQQgghhBCiClHKsM0qRSLPhBBCCCGEEEIIIYQwQzrPhBBCCCGEEEIIIYQwQ4ZtCiGEEEIIIYQQQlQhstpm1SKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqECUybLMqkcgzIYQQQgghhBBCCCHMkM4zIYQQQgghhBBCCCHMkGGbQgghhBBCCCGEEFWIrLZZtUjkmRBCCCGEEEIIIYQQZkjnmRBCCCGEEEIIIYQQZsiwTSGEEEIIIYQQQogqRIZtVi0SeSaEEEIIIYQQQgghhBnSeSaEEEIIIYQQQgghhBkKnU6nq+xMCCGEEEIIIYQQQgi9L3bMr+wsmPRO1+GVnYVKIXOeCSFEGUodM6Gys1CmnGdOJeNKRGVno8w5BAeROu69ys5GmXKeNpl2P46u7GyUqf1jfyLt86mVnY0y5fT+hP9kPXE5Pqqys1Gmann6kfbH8srORplyevIxUse/X9nZKHPO335O2rc/VnY2ypTT+LGkTf62srNRppzeG0/q2DcrOxtlyvnHr0kd9UplZ6NMOc/5ntR3P67sbJQp5ykTKzsL4j9Chm0KIYQQQgghhBBCCGGGRJ4JIYQQQgghhBBCVCEKZLXNqkQiz4QQQgghhBBCCCGEMEM6z4QQQgghhBBCCCGEMEOGbQohhBBCCCGEEEJUIUqFDNusSiTyTAghhBBCCCGEEEIIM6TzTAghhBBCCCGEEEIIM2TYphBCCCGEEEIIIUQVopBhm1WKRJ4JIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEIUCol1qkrk2xBCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhSiR1TarEok8E0IIIYQQQgghhBDCDOk8E0IIIYQQQgghhBDCDBm2KYQQQgghhBBCCFGFKBQybLMqkcgzIYQQQgghhBBCCCHMkM4z8X/h2LFjTJs2Da1WW9lZEUIIIYQQQgghxL+IdJ6JShEZGYlCoeDUqVNldkyFQsHq1atLbE9MTGTIkCE0aNAApbLsf/KTJk2iSZMmZX7c/ycjR45k4MCB951+165dKBQKUlNT//Z7zps3D2dn57+9vxBCCCGEEEKUF6VCUSUf/69kzjPxwEaOHMnvv/8OgIWFBdWrV6dfv35MnjwZFxeXSstXbGxsiffX6XQMHz6cjz76iB49elRSzv4bFAoFq1ateqBOLvFg1P16Yt2uNQpbWzSR18leuhJtbJzZ9Pavv4Rl7eAS2wvOXSBr5hz9E6USdb+eWLUIRenoiDY9nfyDR8nbtA10uvIqCqD///vlj0Ws2rSRjMxM6oeE8PZLY6np7292n6vXr/PTwgVcvHKZ2Ph4xj//Ak8OfMQozZ/r1/HnhvXExuk/myB/f5574knaNW9RruW5Q92rG9ZtWqCwsUETFU32ijVob8WbTW8/9jksg4NKbC+4cJGsX+cbjqnu3c3odW16BukTp5Rt5v+mxt7BPNm0J3U8/XC3c+adDbPYe+10ZWerVKoObbBu2giFWoUm5hY5m7ajTUy6x04q1J3bY1UnGIVajTY1jdxtuym8eg0A69DGWIc2RunsCIAmIYm8fQcpvBpZzqXRK5c6QqXCpn9vrBo3QOHggObGTXKWr0ZzPbq8imGwftUaVi5eTnJSEn4BATz/6ks0aNzQZNrkxCTm/PgzV8IvE3PjJv0HD+SFV8cYpbl+LZJFc37nSvhl4m/F8fwrLzFgyKPlXo676XQ6ft29g9XHj5GRm0P9Gj682bc/NT2r3df+W86d4YMVy+gYUpdvHn/KZJp5e3czc8dWHm/VhvG9+5Vl9s1S9+qKdesWKGxt0FyPJnvFWrRxpdR9Y0aZqfvCyZo9v8R2VbeO2PTrRd6e/eSs3lCmeTdH1aYF1g3r6+uJ2DhyduxBm5RsNr1VvTrY3lVXA6R99xNoNAA4jBqG0smxRJq8U2fJ3bGn7DJvhqpDG6ybNEShVqOJiSVn8477rPvaYRVSrO7bvsdQ96natMAypBYWbq7oCgvR3Ighd+detMkp5V4eAHXfHli3a3W77osie9mq0uu+10ZjWbtmie0F58LImvWb/olSibpvj9vtIwd9++jQMfI2bS/39hGA+uE+WHdqp/9/irhO9qJlaGNulbqPqntnrLu0R+nqgi4zi/xjp8hdsQYKCwGw7tweVef2KN1dAdDE3CJ3zSYKz10o9/KYo+7WCeuWzVDYqNFE3yT7rw1o4xPMprd/fgSWQQElthdcvETW74vLMadC3Jt0nom/pXfv3sydO5fCwkIuXLjAs88+S2pqKosXV16l5uXlVWKbQqFgw4aKaYAJ8U+oenRB1bUT2QuWoIlLQN2nO/avvEj6x19CXp7JfbJ+mQeWRdW4ws4Wh/cmUHDiTNFxe3bBukNbsucvRhtzCwt/X2yHDUWXm0v+zr3lWqbf/1zOH6tWMnHcBPxq1GDO0sWM/eA9Vvz8K3a2tib3yc3LxcfLi+7t2/Ptr7+YTOPp7s7LI5/Bt3p1ANZt28aETz9h0YwfSu2YKwuqrh1RdW5H9h8r0CQkou7RBfvRz5I+5VvIyze5T9bcRWBhYXiusLPF4Y1XKDh1ziidJjaOzFlzijZoy7/xfr9srFRcSbrBhosHmNxndGVn556s27RA1aoZ2Ws3oU1OQdWuNXZPDibjp98gv8D0Tkoldk8ORpedre8USM9A6eiILr/oe9VmZOgvGFNSAbBqVA/bxwaSOXvBvS9O/6HyqiNsnx6ChbcXWb8vRpeWhnXLZti/+iLpn3yFLi293MqzZ/sufp0xi5fGv0K9hvXZuGY9k958j5kL5uBZzbNE+oKCAhydnRgy/En+WrbC5DHzcvPw8vamXeeOzP7+p3LL+73M37+XxQcP8NHAR/Fzc+e3Pbt4ZcE8lr/8OnYqVan7xqamMGPLJpr4ma/LLty8waoTRwmuVrLdU15UXTug6tSO7MXF675nSP9imvm6b94fxnWfrS0Ob7xMwemzJdJa+NbAunULNDGx5VaGu1m3aIoqtAnZm7ejTUlF1ao5doMeJmPuIigwU08Aurw8Mub+YbzxdscZQOYfy0FRNNJB6e6K/eABFFy6UuZluJt16xaoWoaSvW7z7bqvFXZPDCLj57ml131PDNLXfSvX3a77HIzqPgs/X/KPn0ITGwdKBepO7fXH/WUeFBSWa5lUPTqj6tqR7AVL0cQnoO7dHfuXnyf9k6/N132//l6y7nt3HAUni7WPenTGukMbsucvQRsbh4W/D7ZPD0GXk0v+rn3lW6Y+3VH17EL2b4vQxMWjfqgX9hNeJv39TyHXdJmsWjVHPfhhsucuQnPlGkovT2yffRqA3KUrAdCmpJKzYo2hc8q6bSvsXnmejI+/vGfHXHlQdWyHqn0bsv9cjSYxCXWXjtiPGkb61B8g30y9sXBpyXrj1dEUnK28DkBRNmbOnMnXX39NbGws9evXZ/r06XTo0MFk2l27dtGlS5cS28PCwqhTp47h+YoVK/jwww+5evUqNWvW5PPPP+eRRx4psV9ZkWGb4m9RqVR4eXnh4+NDz549GTp0KFu2bDFKM3fuXOrWrYtaraZOnTrMnDnT7PE0Gg2jRo0iMDAQGxsbQkJC+O6770qk++2336hfvz4qlQpvb29efvllw2t3D9s8e/YsXbt2xcbGBjc3N1544QUyMzMNr98ZKvjNN9/g7e2Nm5sbY8eOpaCUBhPAF198QbVq1XBwcGDUqFHk5uaWSPMgZQfYtGkT7du3x9nZGTc3Nx566CGuXr1qeD0/P5+XX34Zb29v1Go1AQEBTJlSFJGiUCiYNWsWffr0wcbGhsDAQJYvX270Hjdv3mTo0KG4uLjg5ubGgAEDiIyMvK/PNyAgAIBHHnkEhUJheA4wa9YsatasibW1NSEhISxYsKDUsmo0GsaPH28o61tvvYXurjt8Op2Or776iqCgIGxsbGjcuDF//vlnqce927fffkvDhg2xs7PD19eXMWPGGH3/d7t69SoDBgygWrVq2Nvb06JFC7Zt2/ZA7/lPqLp2JHfTNgpOnUUbe4vs+YtRWFtj3aKp2X102Tno0jMMD6s6tSG/gPwTRRFBloEBFJw5R+G5MLTJKRScPENB2CUs/XzKtTw6nY7Ff63mmaGP07VdO4IDAvh4/ARy8/LYtHuX2f3q1w7htVHP0atTZ6ytrEym6diqNe1btMS/hg/+NXwYO2Iktmo1Zy9eLKfSFFF1akvu1l0UnD2P9lYc2X8sR2FthXVoE7P76LJz0GVkGh5WtYOhoID8uy8gtRqjdLqsrPItzAM4FHWeXw+vYXfEqcrOyn1RtQwld/9hCsOvoE1IImftJhRWlljXr2t2H+smDVDYqMle/heaGzHo0jPQ3LhpdIe88HIEhVevoU1OQZucQt6u/ejy87Go4V3+ZSqPOsLKEqsmDclZvQ7NlQi0CUnkrt+CNjEZVce25Vqe1UtX0KNfb3r174tvgD8vvDoGd08PNqxaazJ9NW8vXnxtLN1698DWzs5kmtp1Q3h27At06t4FK2vT9Ud50+l0LDl8gJEdOtGlbn1qelZj4sBB5BYUsPls6dGaGq2Wj1Yu5/nOXanh4moyTXZ+Hh+uXM77/QfiqFaXRxFMUnVsR+62XRScvYD2VjzZf/x5u+5rbHafEnVfyJ26z/jGAdbW2D41hJxlq9Fl55RzSYqomjYm98gxCq9EoE1KJmfzNhSWlljXqV36jjrQZWcbPYxezsk1es0qKABNahqaGzHlWBo9Vcum5O4/Uqzu23y77qtjdh/rxrfrvj/XFKv7YtDGJxrSZC9dqf/uE5PQxieSs34zSidHLLzuL5ryH5WpSwdyN2+n4PQ5tLFxZC9Y8jfqvlom2kf+FJw5T+H5i7fbR2cpCLuMpX/5to9AH0GWu34LBSdOo70ZS/achfr/p1bNze5jWTOQwisRFBw+jjYpmcLzF8k/fBzLAD9DmsLT5yg8ewFtXALauARyV61Dl5dnMpKrIqjatSJ3514Kzl9EG5dA9vLVKKyssG5iOsIYbv//ZGYZHla1gvT1xv9p55lCoaiSjwe1dOlSXn/9dd5//31OnjxJhw4d6NOnD1FRUaXuFx4eTmxsrOFRq1Ytw2sHDx5k6NChDBs2jNOnTzNs2DCGDBnC4cOHHzh/90s6z8Q/FhERwaZNm7AqdqH766+/8v777/P5558TFhbG5MmT+fDDDw3DPe+m1Wrx8fFh2bJlXLhwgY8++oj33nuPZcuWGdLMmjWLsWPH8sILL3D27FnWrFlDcHDJ4SgA2dnZ9O7dGxcXF44ePcry5cvZtm2bUWcbwM6dO7l69So7d+7k999/Z968ecybN89sWZctW8bEiRP5/PPPOXbsGN7e3iU6xh607ABZWVmMHz+eo0ePsn37dpRKJY888ohhgYMZM2awZs0ali1bRnh4OAsXLjTqwAL48MMPGTRoEKdPn+bpp5/miSeeICwszPB5dOnSBXt7e/bs2cO+ffuwt7end+/e5N++81Pa53v06FFA3ykYGxtreL5q1Spee+01JkyYwLlz53jxxRd55pln2Llzp9myTp06ld9++405c+awb98+kpOTWbVqlVGaDz74gLlz5zJr1izOnz/PuHHjePrpp9m9e7fZ495NqVQyY8YMzp07x++//86OHTt46623zKbPzMykb9++bNu2jZMnT9KrVy/69+9/z0q9LCjdXFE6OVIYdqloY6GGwstXH6jBY922FfnHTxrdzSu8eg2rkFooPd3171XDG8uagRScL9+Oppu3bpGUkkLr0NCi/FlZE9qgIWfCyq4BpNFo2Lx7Fzm5uTSqa/7ioCwo3VxQOjpSGH65eAYovHINy0A/8zvexbpVc/JPnikRBaB0d8dx0js4fPAGtsMeR+lWecPg/80Uzk4o7e0pjLhetFGjoTDqBhY+1c3uZ1mrJpobMdj07obDa6Oxf34EqrYtwVwjUaHAql4ICisrNDfL96K43OoIpQUKC4sSkSO6ggIsawaWQc5NKygo4MqlSzRt2cxoe9MWzbh47ny5vW9FiElNISkzk9Y1i9on1paWhAYEcOZG6eeTObt34mxnx4BQ8xfQX21YS7taIbQMMt3+KQ9KVxeUjg4UhheLnNJoKLwaaXThfi/WrZqRf/JsibrPdlB/CsLCKbx81cyeZU/h5IjS3o7CyGLDkzVaCm/EYFH9HhF91lY4PDcch+dHYDuwH0oPd/NplUqs6tam4FxY2WS8FIa671pk0cY7dV+Ne9R9N2Ox6dUVh9dexP754aXXfYDidgSlzsQN5LJktu67EoFl4P1Hmlu3aUn+8VNGv73Cq5FYhQTf1T4KoOBc+baPlO5uKJ2dKCzeDisspDD8Sqn1buGVq1j6+2Jxu9xKdzesGtaj4IyZOlOhwKplKApr6wqbWqA4pYuzvt4o/n+t0VB4LfKBOiitmzcl/8y5UqNBRdX37bffMmrUKJ577jnq1q3L9OnT8fX1ZdasWaXu5+npiZeXl+FhUSwqcfr06fTo0YN3332XOnXq8O6779KtWzemT59ebuWQYZvib1m3bh329vZoNBpD5NW3335reP3TTz9l6tSpPPqofq6RwMBALly4wM8//8yIESNKHM/KyoqPP/7Y8DwwMJADBw6wbNkyhgwZAsBnn33GhAkTeO211wzpWrQwPcfRokWLyMnJYf78+djdvkP9ww8/0L9/f7788kuqVdPfKXNxceGHH37AwsKCOnXq0K9fP7Zv387zzz9v8rjTp0/n2Wef5bnnnjPkadu2bUbRZw9adoBBgwYZPZ8zZw6enp5cuHCBBg0aEBUVRa1atWjfvj0KhQJ/E0PTHnvsMUO+Pv30U7Zu3cr333/PzJkzWbJkCUqlktmzZxvuFsydOxdnZ2d27dpFz549S/18PTw8AHB2djYaHvvNN98wcuRIxozRzzszfvx4Dh06xDfffGMy1PbOZ/juu+8ayvzTTz+xefNmw+tZWVl8++237NixgzZt2gAQFBTEvn37+Pnnn+nUqZPJ497t9ddfN/wdGBjIp59+yksvvWQ2CrBx48Y0blx0B/2zzz5j1apVrFmzpkSnK0BeXh55dw0XUN1jOI45ittzo2gzMoy2azMyULqajj64m4W/LxY1vMleuNQ4n1t2oLBR4/DR2/o5PBQKctdupODYyb+V1/uVlKKfB8XN2bgDyM3ZmdgE83Pk3K8rkdd4ZsJ48vPzsbGx4esPPiSolGFOZUHh4ACANsM4glGbmYnSxfm+jmHh54NFdS+ybw+xuKPwejSaP5ajSUhE6WCvHxL16mgyvpxeoZEY/wXK23X+3ZF7uqxsFI4l5yEy7OfsjDLAUT8nztKVWLi6oO7VDZRK8vYdKkrn4Y79yCf0Q4Ly88n+cw3aRPNzJJWFcqsj8vIojIhE3ac7Wbfi9BEaLZpiEeCHNiHR/MH+ofS0NLQabYl5Sl1cXDhRQXMolZek2xHOrvb2Rttd7eyJTUs1u9/pqOusOXmchaPHmk2z5dwZwmNjmfd8xQ6dVjiaqfsyHrDu8/Yie6nxzTKrJg2x8KlO9rTSL6DKmvL21AElosaysw3lNUWbkkLO5u1oEpJQqKxRNW2E/eOPkrlgKdrUtBLprYKDUKhU5J8v/84zpd3tMmXdVaasbEMdYnI/FyeUTr4UnLtI1tJV+rqvZ9cSdV9x6m6dKIy+gTahfIerm/3tpWegdL2/G0yGum+R8YiMvK079e2jD98s1j7aRMHxU2WSd3MM9Xm68bB4bXoGSjfz9XnBkRPk2Ntj/87rgAKFpQV5O/eSt3GrUTplDW8c3psAVpaQl0fWj7PRxlb8kE2Fg74O1Gbe3WbKQunsdF/HsPCpjoVXNbJXrCnz/Il/xtx1kKlrofz8fI4fP84777xjtL1nz54cOHCg1Pdp2rQpubm51KtXjw8++MDo+vLgwYOMGzfOKH2vXr2k80xUPV26dGHWrFlkZ2cze/ZsLl26xCuvvAJAQkIC0dHRjBo1yqgTqrCwECcn85XlTz/9xOzZs7l+/To5OTnk5+cbVrGMj48nJiaGbt1KTtJqSlhYGI0bNzZ0nAG0a9cOrVZLeHi4ofOsfv36Rj3Y3t7enD1bci6O4scdPdq40dqmTRtDpNXfLfvVq1f58MMPOXToEImJiYaIs6ioKBo0aMDIkSPp0aMHISEh9O7dm4ceeoiePXuWyMfdz++sZnr8+HGuXLmCg4NxgzA3N5erV68+8Odb/PN44YUXjLa1a9fO5JBbgLS0NGJjY43yamlpSfPmzQ1DNy9cuEBubm6JBR7y8/Np2tR8iP7ddu7cyeTJk7lw4QLp6ekUFhaSm5tLVlaW0e/ijqysLD7++GPWrVtHTEwMhYWF5OTkmI08mzJlilGHL8DEiRN5/T7yZtUiFNsnBhueZ86arf+jxAS1ivuetNa6bSs0N2NLTPJt1awJ1i2b6efIiL2FhU8NbAYPQJuaTsHhY/d17PuxcecOJv/wveH59En6z+bu0G4doOCfr9LjX8OHP77/kYysTHbs38+kb6fyy5dflWkHmlVoY2yHDDQ8z/y15ATXegp9we6DdavmaGJuoYm6YbS98GLRXXVtbByZkVE4vv8G1i1Cydu9/wFz/v/Fqn4dbPoW1RdZd12cGyvli1LoLzJzNmwFnQ7trXgU9vao2jQ3uoDUJiWTOXsBCrUKy5Ba2PTvTdbCpWXagVaRdUT2vD+wHTYUpykT0Wk0aKJvUnDsJBa+Nf5JEe5PifpB97eGg1SmTWdOMWVd0YXdtCeHASXrOZ1OZ7buy8rL46NVy3mv/0CcbU0PSY1LS+XbTeuZ8fRIVJblOyTVKrQxto8NMDzPvDO5v4mf3/1WftatmqGJNa77FM5O2DzyEJk/zzVMeF5erOrUxqZ7Z8PzrNXrTCe8R5k0sXH6eb9uy74Zi/3TQ7Fu2ohcE/OIWjWoS+G16yU6tMqCVf062PTpbnietWy1/o8S2b/XOUqhr/s2Fq/77FC1bm6y80zdqysWnu5kLlhq4lj/jFWLptg+UXRDOXPm7cn9767nHqCesG7b0kz7qDHWLUPJnvcHmtg4LHyqYzPoYbRp6RQcPv63y3A3q1bNsR3+uOF55ne352Ms8f9Uen1uGRKM+qFe5CxcRmFEJBaeHtg8MQjtQ73IW1d0E1p7K56Mj79AYWODVbMm2I56mswvZ5R7B5pVk4bYDnzI8Dzz9z/MpHyA7655KJpbcRUy5LmqqqorW5q7Dpo0aVKJtImJiWg0GsP19x3VqlXj1i3Tv0tvb29++eUXmjVrRl5eHgsWLKBbt27s2rWLjh07AnDr1q0HOmZZkM4z8bfY2dkZhvTNmDGDLl268PHHH/Ppp58aOn5+/fVXWrVqZbRf8Y6q4pYtW8a4ceOYOnUqbdq0wcHBga+//towZtnGxuaB8qfTmW+AF99uddecSgqFwpD/v+PvlB2gf//++Pr68uuvv1K9enW0Wi0NGjQwDKkMDQ3l2rVrbNy4kW3btjFkyBC6d+9+z3nA7pRVq9XSrFkzFi1aVCKNh4cHSuXfH8FdonOklM/+ftz5DNevX0+NGsYXb/cb2XX9+nX69u3L6NGj+fTTT3F1dWXfvn2MGjXK7Jx2b775Jps3b+abb74hODgYGxsbBg8ebPgO7vbuu+8yfvz4EvnLGffePfNXcOY8GZHFhpTdntRW6eiIJr0oskTpYI/urkgTk6yssG7ehJxijac7bB7tT+7mHYY7qdqYWyhvR9SUZedZx1ataRBSNGwy//bnnJiSjHuxyJjk1FRc7zNSoTRWVlaGBQPq1arNhUuXWPzXX7z/yqv/+Nh3FJwPI+ObYo3tO9+Tg73x92Rvh66U+fSKZRrrpo3I2XQfc+nlF6CJvVX6cCABQMHlq2hmF2so3a5rFXZ26DKLos8UdralXsDqMrPQabVGFy/apCSU9vagVMKdc4NWa1gwQBMbh2V1L6xbhJK7sezmSKzIOkKbmETmtJlgbY1CrUKXnoHtqGGlrjj4Tzk6OaG0UJKSbPweqSmpOJdB/VCROoTUpb6Pr+F5/u1OoKTMDNyL3bBKyc7C1d50x9jNlGRiU1OZsHihYZv29u+wzScfsfzl17gSH0dyVhYjfimK0NLotJy8fp3lRw6z74NJWPyDc3lxBefDyIgqVvdZ3Pn92aPJKF732aPLuM+6r0nJus/SpzpKB3scxhWtmqqwsMAiKADrdq1Je2tima16WHD1GppbxVZnvFNP2BrXCwobW3RZDxbtq4mLMxlJo3BwwNLPh+y1m/5epu+h4PJVNDEm6j57W6PIW4WdTalzaOqystBpNMZ1X2JyyboPUPfsglWtmmQuWHp/3/0DKjhzgYzIYjctDXWfQ8m6L/0+675mjclZt6XESzaPPETulp0UHNfPg2ZoH/XsWqadZwWnz5LxcWTRhjtlcnJEU2xRlnuVST3wIfIPHiF/70F9fm/Ggsoa2+FPkLd+S9H3p9EY5qvTXI/GItAfVfdO5JRDZ2dxBRfCyYgudmPwTr1hb4+m2G9FaW97n20mS6wb1ydn664yzqkoC+aug0rzINeMISEhhISEGJ63adOG6OhovvnmG0Pn2YMesyxI55koExMnTqRPnz689NJLVK9enRo1ahAREcFTT5leYv1ue/fupW3btobhf4DRhPkODg4EBASwfft2s8MBi6tXrx6///67UZTR/v37USqV1K59j4lgS1G3bl0OHTrE8OHDDdsOHSq6K1etWrUHLntSUhJhYWH8/PPPhhVH9u0rucqPo6MjQ4cOZejQoQwePJjevXuTnJyM6+2OCVP5uhOpFRoaytKlS/H09MTRzLCle32+VlZWaIqtJgX6z2Pfvn1G73vgwAHq1jU9KbeTkxPe3t4cOnTIUPEVFhZy/PhxQm/PjVWvXj1UKhVRUVH3PUTzbseOHaOwsJCpU6caOgaLz59nyt69exk5cqRhhZbMzMwSCyoUZy40+b6a3Hl5aBOMQ521aelY1q2N5sZN/QYLCyxr1STH3N3xYqybNQFLSwqOmGjsWVmB7q4OYZ32ge7a3g87W1ujFTR1Oh1uLi4cPnmSOrfn/ikoKODEubO88syzZfreoI9YuddiHw8sLx9tnvHFvTY9HcuQYDQ3b68IZ2GBZXAgOWtLdkrczbpJQ7C0uL8hsxYWWFTzNJ63S5iWX4A2P9VokzYzE8tAf/Ljbg8RViqx9PMhd4f5FWYLb8SUmFRb6eqiHy50j5sqilJujvwtFVlH3JGfjy4/Xx+tUDeEnFX3Pu7fZWVlRXDt2pw6eoK2Hdsbtp86eoJW7ct3oYKyZqdSGa2gqdPpcLO353DEVUK89R38BZpCTkRG8nL3niaP4e/uzuKXXjHaNmvHNrLz85jQux/VnJxwsbMvkeaTv1YS4O7O8HYdy6zjDDBT92VgWfuuuq9mgMkO2btZN2mgr/vuGg5XcPkq6V8ZR6rbPj4IbXwCuTv2lFnHmf7NCkoMq9RmZmHp70v+nSHKSiWWPtXJvd05cb+UHu4mI0+tG9RBl51DYUTk38116Uqt+24vdHKn7itlde3C6Jsl6z63knWfumdXrEKCyVq4rPxW4jVX99WpXRR9ZGGBZXAQOX9tuOfhrJs11td9R0+UfNHKquRvTFv27SNy89DetYKmNjUNy3ohRZGYFhZYhgST82cpwxOtTeVXd+9ALgUozCzAVKby89EmGd9w1qZnYFkrCM2dqDcLJZaBAfd1E9G6YX2wsKTg1Jl7phUVz9x1kCnu7u5YWFiUiAiLj48vETlWmtatW7NwYdFNJi8vr398zAclnWeiTHTu3Jn69eszefJkfvjhByZNmsSrr76Ko6Mjffr0IS8vj2PHjpGSklKilxogODiY+fPns3nzZgIDA1mwYAFHjx4lMLBo4sxJkyYxevRoPD096dOnDxkZGezfv98wXLS4p556iokTJzJixAgmTZpEQkICr7zyCsOGDftH/1CvvfYaI0aMoHnz5rRv355FixZx/vx5goKCjPL5IGW/s/rlL7/8gre3N1FRUSXGhE+bNg1vb2+aNGmCUqlk+fLleHl54ezsbEizfPlyo3wdOXKEOXPmGD6Pr7/+mgEDBvDJJ5/g4+NDVFQUK1eu5M0338THx+een++dzrV27dqhUqlwcXHhzTffZMiQIYSGhtKtWzfWrl3LypUrS12l8rXXXuOLL76gVq1a1K1bl2+//ZbU1FTD6w4ODrzxxhuMGzcOrVZL+/btSU9P58CBA9jb25udN664mjVrUlhYyPfff0///v3Zv38/P/30U6n7BAcHs3LlSvr3749CoeDDDz/8R1GIDypvxx7UvbqhjU9AE5+Iunc3dPn55B8t6mixHfEE2tQ0cu9qMFq3bUnB6XMmo2oKz15A3bs72pRUtDG3sPCtgaprJ/IPHinX8igUCp4YMJC5y5biV706vtVrMHfZUtQqFb07dTak+2jqN3i6ufHyyGcAfQdbxO2hsgWFhSQkJRF+9Sq2NjaGSLMff59H22bNqebhQXZONpt37+b42bPM+OTTci0TQN7uA6i7d0abkIQmIQl1987o8gvIP3HKkMb2ycFo09LJXW98p9u6dXMKzoaZnMNM/XAfCs5fRJeSisLeDnXPLijUKvJNNfgrgY2VCh8nD8Pz6o7u1HL3IT03i7jMqjdHVd6RE6jbtUSbol8VU9W2FbqCQqN5h2z690abkUneLv3Nivzjp1E1b4q6Z1fyj51E6eqMqm0r8ot1dqo6t9evtpmegcLaGqv6IVj4+5K3ZGWJPJR5mcqpjrCsGwIK0MYloPRwx+aRh9DExZd7HTFw6CC+/exLguvUpm79umxas4GE+Hj63h72M++nOSQlJjLhg7cN+0Rc1k9Yn5uTQ1pqGhGXr2BpaYXf7Qm0CwoKiL4dsVdYUEBSQiIRl6+gtrGhuk8FDENFX/c93qot8/buxtfVDT83N+bu3Y3ayopeDYvm1Zy46k88HRwZ270nKksranoat00cbq+keWe7lYVliTQ2VlY42diW2F4e8vbsR929E9rEJDQJicXqvqLVC22fGIw23UTd16o5BedM1H15+Whv3TUHZn4+uuzsktvLQd7J06hbNkObmoo2JQ1Vq2boCgvJLzaM3qZ3N7SZWYbhi6rWLfTDT1PTUFjr5zyz8HDXd/bdxbp+XfIvXCzbTsB7lenISdRtW6JNTkWbUrzuK5qcvkTdd+JO3ddFX/e5uKBq29KoblH36op1/Tpk/blG38l+Z361vPxyH3Kbt3Mv6l5d0SYkoolPQN3LRN03/HF93bdmo9G+1m1aUHD6vOn20bkw/XGTU9DGxt1uH3Uk/+DRci0PQN62Xaj79UQbl6AvU9+e+v+nYiMCbEcNQ5uSSu5K/QrEhafPoerZBU3UDTQR11F6uqMe2I+CU+cMvzH1o/0pOHsBXXIKqFVYt2yGZUgtsqaZnu+33Mu5/zDqzh3QJiajSUpC3bkDuoIC8k8VTZFj+9hAtOkZ5G7ebrSvdfOmFFy4+H8/7+u/bSoDU6ytrWnWrBlbt241BCkAbN26lQEDBpSyp7GTJ0/i7V20unmbNm3YunWr0bxnW7ZsoW3b8rsJJ51nosyMHz+eZ555hrfffpvnnnsOW1tbvv76a9566y3s7Oxo2LCh0STuxY0ePZpTp04xdOhQ/UX3E08wZswYNm4sOgmOGDGC3Nxcpk2bxhtvvIG7uzuDBw82eTxbW1s2b97Ma6+9RosWLbC1tWXQoEFGixr8HUOHDuXq1au8/fbb5ObmMmjQIF566SWjCe8ftOxKpZIlS5bw6quv0qBBA0JCQpgxYwadO3c2pLG3t+fLL7/k8uXLWFhY0KJFCzZs2GA03PLjjz9myZIljBkzBi8vLxYtWkS9evUMn8eePXt4++23efTRR8nIyKBGjRp069bNEIl2r8936tSpjB8/nl9//ZUaNWoQGRnJwIED+e677/j666959dVXCQwMZO7cuUZ5v9uECROIjY1l5MiRKJVKnn32WR555BHS0oruCH/66ad4enoyZcoUIiIicHZ2JjQ0lPfeu/eQSIAmTZrw7bff8uWXX/Luu+/SsWNHpkyZYhQhd7dp06bx7LPP0rZtW9zd3Xn77bdJTy+nO6sm5G3dicLaCpvHB6GwtUETGUXm979Asck4lS7O+ruMxSg93bEMDiJzxs8mj5u9bBU2/XtjO/RRFA4OaNPSyN93kNwNW02mL0sjBj9GXn4+X8z8kYzMTBqEhPDDp58bRajdSog3ms8hITmZp14tWqBhwcoVLFi5gtCGDfnli68A/WIEH039msTkZOzt7KgVEMiMTz6lddOilT3LS96OPSisrLAZ/DAKGxs012+Q+dNcyCu626p0cS5xsaT0cMMyKIDMWb+ZPK7SyQm7YUP1Qwszsyi8Hk3G9J/Q3R4eWNnqePjzwyNFnf+vtn8MgA1hB/l8h/mVhCtL/sGjKCwtsendDYVajeZmLFmL/zRaaU3p5Gj0PekyMsha/CfqHp2xf3442oxM8o+eIK/YhZTSzhbbh/ugsLdDl5ePNj6B7CUrKbxW/hGC5VVHKGzUqAf0RensjC47m4KTZ8hZs/Ge0Xb/VMdunclIT2fJvIUkJyXjHxjApK8+x9NL3xGUkpREQpxxB8qrz75k+PtK+GV2b92Bp1c1fluuvxOdnJhklGblkuWsXLKcBk0a8cX3U8u1PMUNb9eBvMICvtqwhoycXOr7+PD9sJFGEWpxaalVdi4bU/J27NXXfYMeRmGjRhN1Qz9XmVHd52S+7vvJdN1XmfKPntTXE107oVCr0NyKI2vFGqNV/ZQODkZlUqissenRRT/cMz8PTXwiWctWobmrs8/S3xelo0OFrLJZXP6hoyisLLHp3VVf98XcImvJCuO6z9Hhrrovk6wlK1B374z9c3fqvpNGdZ+qWRMA7J8eYvR+2Ws3UXC27FbQNiVv6y79b2/oI0V13w+/lqz77v7t3an7vv/F5HGzl63G5qFe2D7+KAp7e7Rp6eTvO1SmQ/DNydu4TV+mp4egsLNFExFJ5rc/QrEINaWri1GZctdtRod++KbSxQldRiYFp8+Ru7IoSljh6IDdc8NQODmiy8lFcyOGrGkzKbwQXu5lMiVvz37973FAX32bKfoGmb8tMFoVXulsot5wd8Uy0J/MOQsqOsuinIwfP55hw4bRvHlz2rRpwy+//EJUVJRhLvF3332XmzdvMn++fo7N6dOnExAQQP369cnPz2fhwoWsWLGCFStWGI752muv0bFjR7788ksGDBjAX3/9xbZt20yO4CorCp2uAm+HCCHKhUKhYNWqVQwcOLCys/J/L3XMhMrOQplynjmVjCsRlZ2NMucQHETqfcxP92/iPG0y7X6s2FX4ytv+sT+R9nnFdXpUBKf3J/wn64nL8aYXV/m3quXpR9ofy++d8F/E6cnHSB3/fmVno8w5f/s5ad/+WNnZKFNO48eSNvmf3fCtapzeG0/q2DcrOxtlyvnHr0kdVXIEzL+Z85zvSX3343sn/BdxnjKxsrPwt808sOLeiSrBmLaD7p3oLjNnzuSrr74iNjaWBg0aMG3aNMM0PiNHjiQyMpJdu3YB8NVXX/HLL79w8+ZNbGxsqF+/Pu+++y59+/Y1Ouaff/7JBx98QEREBDVr1uTzzz/n0Ucf/cflM0ciz4QQQgghhBBCCCGqECVlOJ9lJRszZozR/ObFzZs3z+j5W2+9xVtvvXXPYw4ePNjsSLTy8N/5NoQQQgghhBBCCCGEKGMSeSbEf4CMvhZCCCGEEEIIIcqHdJ4JIYQQQgghhBBCVCH/hdU2/0tk2KYQQgghhBBCCCGEEGZI55kQQgghhBBCCCGEEGbIsE0hhBBCCCGEEEKIKkQpwzarFIk8E0IIIYQQQgghhBDCDOk8E0IIIYQQQgghhBDCDBm2KYQQQgghhBBCCFGFKJBhm1WJRJ4JIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEIUstpmlSKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqEKUM26xSJPJMCCGEEEIIIYQQQggzpPNMCCGEEEIIIYQQQggzZNimEEIIIYQQQgghRBUiq21WLRJ5JoQQQgghhBBCCCGEGdJ5JoQQQgghhBBCCCGEGTJsUwghhBBCCCGEEKIKUSLDNqsShU6n01V2JoQQQgghhBBCCCGE3vyjGyo7CyYNb9G3srNQKSTyTAghytCXOxZUdhbK1Ntdh3Ei+mJlZ6PMhfrWYciCDyo7G2Vq2bDPSPt8amVno0w5vT+Bdj+OruxslKn9Y39i2OKPKzsbZWrBExOJSY2v7GyUqerOniw+saWys1Gmngjt+Z8rE+jLtSHsQGVno0z1rduW11ZPq+xslKnvBo5j8vbfKzsbZeq9biN4a90PlZ2NMvXVQy/z+MKPKjsbZWrJ059UdhbEf4R0ngkhhBBCCCGEEEJUIbLaZtUiCwYIIYQQQgghhBBCCGGGdJ4JIYQQQgghhBBCCGGGDNsUQgghhBBCCCGEqEJk2GbVIpFnQgghhBBCCCGEEEKYIZ1nQgghhBBCCCGEEEKYIcM2hRBCCCGEEEIIIaoQpQzbrFIk8kwIIYQQQgghhBBCCDOk80wIIYQQQgghhBBCCDNk2KYQQgghhBBCCCFEFaJAhm1WJRJ5JoQQQgghhBBCCCGEGdJ5JoQQQgghhBBCCCGEGTJsUwghhBBCCCGEEKIKkdU2qxaJPBNCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhShk2GaVIpFnQgghhBBCCCGEEEKYIZ1nQgghhBBCCCGEEEKYIcM2hRBCCCGEEEIIIaoQGbZZtUjkmRAVKDIyEoVCwalTp8rl+AqFgtWrVz/QPp07d+b111+/7/Tz5s3D2dm51DQXL16kdevWqNVqmjRp8kD5+bsetBzl/V0IIYQQQgghhPhvkMgz8X9j5MiRpKamPnDnUlny9fUlNjYWd3d3AHbt2kWXLl1ISUm5Z4fUv8nEiROxs7MjPDwce3v7ys6OSXd/F5UpbPcxzm49SE5aJs7eHrR6rCdetfxMpo29FMnGaQtLbH904micvYrKkpedy/G/dnL9VDj52TnYuzvTclAPfBsEl1s5itvy1wbWLV9FalIKPgF+DB8zijoN65tMm5KUzMKf5nLt8hVu3Yyl1yMPMWLMcyXSbVixhm1rN5IYn4iDkwOtOrTl8eeGY21tXd7FMehZuyUP1++As409N1LjmXdsAxfjr5tN3z6wMQ/Xa4+3oxvZ+XmcirnMguMbyczPAaBTUFPGthtUYr+nFk2iQFtYbuW4m6pDG6ybNkKhVqGJuUXOpu1oE5PusZMKdef2WNUJRqFWo01NI3fbbgqvXgPAOrQx1qGNUTo7AqBJSCJv30EKr0aWc2nuX2PvYJ5s2pM6nn642znzzoZZ7L12urKzZVK34Ob0q9sWJxsHbqbFs/DEZi4lRJlN39a/If3qtqWagxs5Bbmcib3C4pNbDb+9Go4eDGrUmQCX6njYO7PwxCY2hx8u1zKs/nMVSxcuJikpiYDAAF4e9yqNmjY2m/7UiZPMnP4DkdcicXd34/FhT/LwowNNpt2xZRuffvgx7Tq257Ovpxi2/7ViFWtWruZWzC0AAoICGT5qJK3ati7Tst1xZMseDqzbTkZqOp4+3vQe/ij+dUzXu9cvXmXb4r9IjImjIK8AJw8XmndrR5u+XQ1pNIUa9v61hdN7jpCekoq7tyfdnxhArSb1yiX/9+tByllcVHgEcz/5Dk9fb1764p0KyKl5+zbsYOfqjaSnpOLlW4OBo56kZv3aJtNGXLjE2vnLib8ZS0FePi4ebrTp1ZnOD/cypImNusmmP1YRfTWSlIQkBj77BJ0e7llRxTGpfWAjugY3x1Ftx62MJFae3U1E0k2TaZ8M7Ukrv5Ln6dj0JL7YMb+8s2rWxd3HOb/tENm320gtH+tOtWDTbaRbl66zefqiEtsHfvQCTsXaSBd2HCF8zwmyUtJR2dngH1qHZgO6YGFVMZfGbfwb0KlmKA4qW+IykllzYS+RybFm01solXSv1ZLQGrVxUNmRlpvJ9ivHOBYdZkijtrSmd53WNPCqiY2ViuTsdNaH7S+1jVKWetRuQf967W+3jxKYf2wjFxPMv3e7gEY8XL89Xg6uZBfkcTrmMguPbzaco1r41mVgg454ObhiobTgVnoS68MOVNlztPj/IJ1nQlQgCwsLvLy8Kjsb5e7q1av069cPf3//ys6KWVXlu4g4dp7Dy7fQ5vE+VKvpy8W9J9jy42Ie/Wg09q5OZvcbNOklrNQqw3O1g63hb02hhs0zFqF2sKPrC4Owc3YgMyXdKH15OrhzL/NnzeHZV18kpH5dtq3fzBfvfsI3c37AvZpHifSFBQU4Ojsy8MnH2LBijclj7tu+iyWz5/PiG69Qu34dYm/EMOvr7wAYbqKjrTy08W/AyOZ9mX1kLeHxUXSv3YL3ug5n3JoZJGWnlUgf4uHPy20H8fvxDRy7EY6rjSPPt36Y0W0e4ZvdfxjSZefn8tpf0432rciOM+s2LVC1akb22k1ok1NQtWuN3ZODyfjpN8gvML2TUondk4PRZWeTvWIt2vQMlI6O6PLzDUm0GRnk7tyLNiUVAKtG9bB9bCCZsxfcu2OugthYqbiSdIMNFw8wuc/oys6OWa386vN0aG/mHVvP5cRougQ3481OT/HOhh9Jyk4vkb62uy8vth7IopObOXnzEi42DjzT4iFGtezPd/uWAWBtaUV8ZipHoi7wVGivEscoazu2bufHaTN4/a3xNGjUkLWr1vD2uDeZt2QB1byqlUgfGxPDu+Peot+A/rz/8YecO3OW6V99i5OzM526djZKeyv2FrNmzKRRk5IdcR6enjw/ZjQ1fGsAsHn9Jj54811+WfAbgUGBZVrGcwePs2n+Svo9OwS/kCCObdvPwi9mMfab93F2dy2R3lplTcueHanmVwMrtTVRFyNYN2cJVioVzbu1A2DHsnWc2XeU/s8/gXv1alw9E8bSb2cz6uNxeAf6lmn+79eDlvOO3OwcVs1cQFCD2mSmZVRgjks6ue8wq3/7g8EvDiOwTi0ObN7FL59+yzvff46Lh1uJ9NZqFR36dsM7wBeVSkVE2CWWz/oda5WKtr06A1CQl4eblweN27Vg9W+LK7hEJTWtUZtHGnZm+ekdXEuKoW1gQ0a3GciU7fNJySn5+a88s4u15/cZnisVSt7u+jSnYi5VZLaNXDt2gaN/bqXV473xDPLh0r6TbPtxKQM+fKHUNtLAiS9iXazNoyrWRoo4co7jq3fSbthDeAbVIC0umf0L1gHQcnCP8ivMbY29g+lfvwOrz+4mMiWWVn71GdWyP1N3/UFqbqbJfZ4O7Y29ypblZ3aQlJWGvcoGpaJoAJmFQsnzrQeQmZfDguMbScvNwlltT15hvsnjlbU2/g0Y0awPc46u07eParXgna5PM2HtD2baR36Mbfso849v5PiNcFxtHXmuVX9eaD2Ab/csASArP4fV5/ZwMy0BjVZDaI0QRrcZSFpuFmdir1RIuaoCJTJssyqRYZtC3LZ7925atmyJSqXC29ubd955h8LCogvYzp078+qrr/LWW2/h6uqKl5cXkyZNMjrGxYsXad++PWq1mnr16rFt2zajoZTFhwpGRkbSpUsXAFxcXFAoFIwcORKAgIAApk+fbnTsJk2aGL3f5cuX6dixo+G9tm7des8yZmVlMXz4cOzt7fH29mbq1Kkl0uTn5/PWW29Ro0YN7OzsaNWqFbt27brnse9QKBQcP36cTz75BIVCwaRJk9i1axcKhYLU1FRDulOnTqFQKIiMjATg+vXr9O/fHxcXF+zs7Khfvz4bNmwwpL9w4QJ9+/bF3t6eatWqMWzYMBITE83mY+HChTRv3hwHBwe8vLx48skniY+PN7xuatjmg75HWTi3/TC12zYhpH1TnL3daT2kJ3Yujlzcc7zU/dQOdtg62RseSmVRdX75wCnysnLoPvoxqtX0xd7NGa9gP9x8Sl6glof1K/6iS+/udO3bkxr+vowY8xxunu5sXbvRZHoPr2qMGPs8HXt2xdbOzmSayxfCqd2gLu26dcLDqxqNmjelbZeORFy6Wp5FMfJQvXbsuHKcHVeOczM9gd+PbSAxO42eIS1Npq/t4UN8ViobLx4iITOF8ITrbLt0lCC3GkbpdOhIy800elQkVctQcvcfpjD8CtqEJHLWbkJhZYl1/bpm97Fu0gCFjZrs5X+huRGDLj0DzY2baOMTDGkKL0dQePUa2uQUtMkp5O3ajy4/H4sa3hVRrPtyKOo8vx5ew+6IU5WdlVL1CWnN7oiT7I44SUx6IotObCYpO41utVqYTB/s7kNCVipbLh0hISuVS4nR7LhynEDX6oY015JjWHJqK4eizlOg0ZR7GZYvXkrfh/vRb0B//AMDeHn8q3hW82TNilUm069Z+ReeXtV4efyr+AcG0G9Af/r078eyRUuM0mk0Gj7/6BNGvvAs3iZ+W207tKN1uzb4+vnh6+fHcy+9gI2tDRfOnS/zMh5cv5PQLm1o1rUtHjW86DNiEE5uLhzbus9keu9AXxq2a46nrzcuHm407tCCmo3qEHWxqF47vfcIHQb2pHbT+rhWc6dFjw7UbFyHA+t3lHn+79eDlvOOtbOX0LBdM3xqlW2n5d+x668ttOrekdY9OlHNtzqPPPckzu6u7N9k+nP1CfIntGNrvP1q4FrNnead2xLStAERF4o6lvxqBfHwyKGEdmiFpWXlxyd0rhnKoevnOHT9HHGZyaw6u5uUnAzaBTYymT63MJ+MvGzDw8+lGjZWag5fL/v/lft1YccRgts2pna7Jjh7u9PysR7YOTsSvudEqfvZONhh42RveBRvI8Vfu4lnTR+CWtTH3s2ZGvWCCGxej6Tr5iO/ylKHoCYcjbrAkegLxGemsPbCPlJzMmkd0NBk+toefgS51eC3I2u5kniDlJwMolPjuZ5yy5CmhW9dbK3U/H5sA9dTbpGak0FkSiyxGRVzo6pf3bbsvHqCnVdOEJOeyPzjG0nKTqdHbdPnqFruviRkpbIp/DAJWamEJ0Sx7fIxahZrH12Ii+RodBgx6YnEZaawMfwQUalx1PE0HXUoREWQzjMhgJs3b9K3b19atGjB6dOnmTVrFnPmzOGzzz4zSvf7779jZ2fH4cOH+eqrr/jkk08MnVZarZaBAwdia2vL4cOH+eWXX3j//ffNvqevry8rVqwAIDw8nNjYWL777rv7yq9Wq+XRRx/FwsKCQ4cO8dNPP/H222/fc78333yTnTt3smrVKrZs2cKuXbs4fty4k+aZZ55h//79LFmyhDNnzvDYY4/Ru3dvLl++fF95i42NpX79+kyYMIHY2FjeeOON+9pv7Nix5OXlsWfPHs6ePcuXX35pGPIZGxtLp06daNKkCceOHWPTpk3ExcUxZMgQs8fLz8/n008/5fTp06xevZpr164ZOifN5ftB3+Of0hRqSIqKpXq9IKPtNeoGER9xo9R9/5r8K4vfns7G6QuJDY80ei3qzCU8g3w4sGQTf7w1jZWf/MzpjfvQarVlXYQSCgsKuHbpKo2aNzHa3qhZEy5duPi3jxvSoC7XLl3lykX9hUpczC1OHTlO01bN/kl275uF0oIg1+qcvutu55mYK4R4mG7IhSdE4WbrSNPq+mFATmo7WvvX5+TNcKN0aktrfnzkDWY9+iZvd3maAJeK61xSODuhtLenMKLY0AqNhsKoG1j4VDe7n2WtmmhuxGDTuxsOr43G/vkRqNq2BHMT2yoUWNULQWFlheZmTBmX4r/NQqkkwLU6Z28ZdxSfuxVBLXcfk/tcTozG1daRxt76YXSOajta+tXlVMz91eNlraCggEsXL9G8lXFHc/OWLTh39pzJfS6cPU/zlsYXXi1atyQ87KLRja35c+bh7OJMv4cfumc+NBoNO7ZsIzcnl/oNTA8j/7sKCwuJuRZNzUZ1jLbXbFSH6EvX7usYsdeiib50Df+6RcMfNYWFWFpZGaWzsrIiKjzin2f6b/i75Ty56xApcYl0GtSnvLN4T4UFhdy4GklIE+PfQEiT+kRevL8bMjcirhN58QrBDULKI4v/mIVCia9zNcLvGrIXHh9l1Ilemtb+DbiUEGUySq0iGNpIdY3bSNXrBpJwjzbS2ilzWPbOd2z+blGJNlK1mj4kRd0iIVJ/LspITOHmuav4VMC0FhYKJTWcPLmUGG20/XJiNAEupkdD1KsWyI3UeDrXDOX97iN5s/PT9KvbDkulRVEar0Cup9zikQad+LDHs4zv+ARdgpuhqICoJQulBYGu3pyJNf7fORN7hdpm2keXEqJwtXWkSfVagL591MqvPidumo9ybOAVhLejO2FxFTMMVQhTKv+2iBBVwMyZM/H19eWHH35AoVBQp04dYmJiePvtt/noo48Md6waNWrExIkTAahVqxY//PAD27dvp0ePHmzZsoWrV6+ya9cuw3DAzz//nB49TIeAW1hY4OqqH97g6en5QHOebdu2jbCwMCIjI/Hx0V88TZ48mT59zDdKMzMzmTNnDvPnzzfk6ffffzfsD/rhlosXL+bGjRtUr65vXL3xxhts2rSJuXPnMnny5HvmzcvLC0tLS+zt7R9oWGRUVBSDBg2iYUP9nbegoKLG0qxZswgNDTV6/99++w1fX18uXbpE7dol5yh59tlnDX8HBQUxY8YMWrZsSWZmpsl52B70PfLy8sjLyzPaplI92LDIvMxsdFodNg7G0VY2DnZkp5mOPrJ1dKDdU31x8/NGW6jhyuGzbPxuIX3HDcOrln6YbEZiKrHhkQS1bEDPsY+THp/MwaWb0Gq1NO3X8YHy+KDS09LRarU4uTgbbXdycSYtOeVvH7dtl46kp6Yz6fV3QadDo9HQvX8fBjwx+B/m+P44qmyxUFqUiAq7MzTClEsJ0czYt5zXOw7FysISS6UFR6PD+O3IOkOamPQEZh5YSVRqHDZWKvrWacOnvZ/nzXU/cqsC7hgrb0f66bKyjLbrsrJRODqa38/ZGWWAIwXnwshauhILVxfUvbqBUknevkNF6TzcsR/5BFhaQn4+2X+uQZuYXD6F+Y9yUNlioVSSXuK3l4mTuqbJfS4n3mDWwZWMbTfY8Ns7fuMiC46bjv4sb2mpaWg1GlxcXYy2u7i5kHLI9O8hOSkJFzfjzjYXVxc0Gg1pqam4ubtz9vQZNqxZz+yFv5X6/hFXrjL2uZfIz8/HxsaGT778nIAyHrKZnZ6FTqvFzsnBaLudkwOZaSWH1hY3deyHZKdnotVo6Dy4L826tjW8VrNRXQ6u34F/nZq4VHPn2rlLXDx+Fp1WV6b5v19/p5xJsfFsW7yGZya9joWFhck0FSkrIwOtVouDs3Ed5+DkRHqK6c7cOyaNGk9mWgZarYbeQwfSuken8szq32anstHXG3nZRtsz8rJwUN17Sg1HlR11PQOYf6xy6gww30ZSO9qRk55lch8bJ3vaPNkHNz9vNIWFRBw+x5YZf9Dr9acNc8kGNq9PbkY2m6bOR6cDnVZLSIdQGvZqa/KYZcnOWv+9ZJb4XrJxUNma3MfN1pEAV28KtRrmH9uAnbUNAxt0wtZKxfIz+khJV1snaro5cPLmJX47shZ3O2cGNuiEhULJtstHy7VMhvZRzl3nqJwsnKubaR8lRvPD/j95rcMQwznqWHQY846uN0pnY6Vi1qNvYGlhiVan5bcj60rcSPqvUygk1qkqkc4zIYCwsDDatGljtBxwu3btyMzM5MaNG/j56U+4jRoZh7p7e3sbhgKGh4fj6+tr1GHUsqXp4VxlkV8/Pz+jjq82bdqUus/Vq1fJz883Sufq6kpISNFd0xMnTqDT6Ux2FLm5lZwDpCy9+uqrvPTSS2zZsoXu3bszaNAgw+d9/Phxdu7cabLT6+rVqyY7z06ePMmkSZM4deoUycnJhqirqKgo6tUrOdHyg77HlClT+Pjjj422TZw4EZuOpi9mS3P3MtQ6E9vucPJyw8mr6LvwDPIhKyWds1sPGTrPdDodagc72j3VD6VSibu/N9lpGZzdeqjcO88M7i6TTvePltu+cOosq/9YzrOvvkhwndrExcTy+4+zWenmwqNPD/2nub1vOhPXq+YuYWs4efBMi378eWYnp2Mu42LjwNPNevN86wH8dFA/VO1y4g0uJxbdQQ+Pj+LLfmPoU6c1c+9qRJYFq/p1sOlb1KGftdT0kDm9Ui7OFfoOtpwNW0GnQ3srHoW9Pao2zY06z7RJyWTOXoBCrcIypBY2/XuTtXCpdKD9DXf/9hQozH5D1R3dGRbah9Xn9nD21hWc1Q483rQHz7R4iNlHTM8rWBFK1AH6ys58ekrWI3eOk52VzeSJn/HGe2/hdI+bT77+fsxe8BuZmZns2bGLLz75nOmzvi/zDjRTedaXsfR9np34Gvm5+dy4fI1tS9bgWs2dhu2aA9BnxCDW/LqYHyZ8BgoFrtXcadqpNSd3Hyr9oOXsfsup1WpZ8cPvdB7cF3dvzwrJ2/0qGZWjK+3nCMArk98lLyeX65ciWLdgOe7enoR2LJ/FJ8pEiUri/s7DLf3qkVOQx9mqMLdUya/JbDGcqrnhVK1kG+n8tsOGzrNbl65zZvMBWj3eG4+A6qQnpHB0+VZOb9hH477ty6cMdylZn5s/496pNxef3ELu7TnM1l3Yx9PN+rDq3G4KtRoUKMjMz2HFmZ3o0HEzLQFHlR2dajYt986zO0z91HSmGk3o20cjmvdlxdldnIm5grONA0+F9uS5Vv35+dBfhnS5Bfm8vX4WaitrGngFMaxZb+IzU7gQF1lexRCiVNJ5JgSmL+yLN9LvsLpr6IRCoTB0yvzTzoHilEpliRNOQUHRxN2mTkb3em9zJ7DitFotFhYWHD9+vMTd4X+yauadyL3ieSheHoDnnnuOXr16sX79erZs2cKUKVOYOnUqr7zyClqtlv79+/Pll1+WOLa3d8khbllZWfTs2ZOePXuycOFCPDw8iIqKolevXuTnm5489UHf491332X8+PFG21QqFdP3LzN5fFNU9rYolAqy043v1uVmZGHjaHruL1M8Amtw9chZw3NbJ3sUSqXRHB9OXu7kpGeiKdRgYVl+d/4dnRxRKpUloszSU9NwvCsa7UEsm/cHHbp3pmtf/cplfkEB5ObmMXvajwx88jGjspaH9LxsNFoNzjbG/wdOajuzc5Q90qAT4QlRrL2gnwcoKjWO3MNr+bT38yw5tZXUnJL76dBxNekmXg7l01ldcPkqmtlF86Rw+/9cYWeHLrPoTr7CzhZdVvbduxflM1MffVL8CkCblITS3h6USrgzRFirNSwYoImNw7K6F9YtQsnduK3sCvUfl5GXjUarxemu356j2q5ENNod/eu153JiFBsuHgAgmnjyjubzYY9nWX5mR4XPq+fk7ITSwoLkJONO05TklBLRaHe4urmVSJ+akoqFhQWOTk5ERlzjVmws771RtGKj7vbvrlvbzsxftogaPvr5c6ysrKjhq7/ZFFK3DhfDLrJi6Z9MePfNMiujraMdCqWyRPRVVnoG9qVEcQK4eOpXAazmV53MtAx2rdho6Dyzc3TgiQkvUJBfQE5mFg4uTmxbvMbkpPYV4UHLmZeTS0xEFLGRN9gwbzlwuy2g0/HxU68x7N0xBFXw0Ec7BweUSiXpqcYTmWekpePgbH4SegC324veVA/wJSM1jU1L/qqSnWdZeTlotFoc1cbRTA4qWzLyzNftd7T2r8+x6DA0uvKf7sGcO22ku6PMcjOySkSjlcYjsAYRR4oiCk+u3U3Nlg2o3a4JAC41PCnMK+DgHxto1LsdCmX5DXXMytd/Lw53fS/2KtsS0Wh3pOdmk5abaeg4A4jPTEGpUOBsY09iVhoZeVlotFp0xbqw4jOTcVTbYaFQluv3WHr7yHSE4MD6HbiUEMW6C/sBffso70g+H/d6jqWntxvaRzp0xGXqzwPXU25Rw8mDAfU7SueZqDQSBygEUK9ePQ4cOGDUuXPgwAEcHByoUaNGKXsWqVOnDlFRUcTFxRm2HT1a+t0ea2trQD8PS3EeHh7ExhZNXJqens61a0VzidSrV4+oqChiYormDjp48GCp7xUcHIyVlRWHDhXdrU5JSeHSpaL5BZo2bYpGoyE+Pp7g4GCjxz9ZmdLDQ9/YLF6m4hP13+Hr68vo0aNZuXIlEyZM4NdffwUgNDSU8+fPExAQUCJfdiYmmL948SKJiYl88cUXdOjQgTp16hgtFmDKg76HSqXC0dHR6PGgwzYtLC1w8/MmJsx4npiYsGt4Bpmey8iU5Ohb2DoWNVo8g3zISEgxGtaTHp+MjZN9uXacAVhaWRFYuyZnjhsvJX72+Clq16tjZq97y8/LQ3FXB5m+kxnT4WBlTKPVEJEcQyNv4zlRGnkHE54QZXIflYVViU5r7e0GbGnzkPi7eJFaXnPM5BegTUkteiQmoc3MxDKw2DAepRJLPx80N8zPTVZ4IwblXZ2hSlcXtBmZRR1nZiiqwLCtfxONVktkcgwNvIzn/WngFWQUtVicytIKbYnf3p0bQuWTz9JYWVlRu05tjh0xPiceP3KUBg0bmNynXsP6HL8r/bHDRwipWwdLS0v8/P347Y/fmb3gN8OjbYd2NGnWlNkLfsOzmvkoJ51OR0FB2a5CZ2lpSfVAX66eMZ7b8erZcHxrP1iEW2FBydV2raytcHR1RqvRcuHIKUKam55cvLw9aDlVNmpe+updRn/xtuHRvFs73Kp7MvqLt/EJDqignBextLLEp2YAl04ZT4R/6dQFAuo8QPS4Tj/PZ1Wk0WmJTo0jxMN4iGaIhx/XkkufdzLY3QcPexcOXS99CGt5u9NGir27jXTxGh4P0ka6cQsbp6I2UmF+YYkbznc6zHSlRVyXAY1Oy820eGq5G6+UW8vdl8hiCwAUdz0lFke1HdYWRTfw3e2c0eq0hk6myORY3OycjFoW7vbOpOdmlXsHqEar4VpyLA29jP93GnrV5JKZ9pG1pan20e1zVCntIwVg9X/WhlAqFFXy8f9KOs/E/5W0tDROnTpl9IiKimLMmDFER0fzyiuvcPHiRf766y8mTpzI+PHj7zuipUePHtSsWZMRI0Zw5swZ9u/fb1gwwFxUmL+/PwqFgnXr1pGQkEBmpv4k2LVrVxYsWMDevXs5d+4cI0aMMIoE6969OyEhIQwfPpzTp0+zd+/eUhcnAH3k2KhRo3jzzTfZvn07586dY+TIkUblq127Nk899RTDhw9n5cqVXLt2jaNHj/Ll8ITttAABAABJREFUl18arXz5oIKDg/H19WXSpElcunSJ9evXl1jp8/XXX2fz5s1cu3aNEydOsGPHDurW1a/2N3bsWJKTk3niiSc4cuQIERERbNmyhWeffbZExyOAn58f1tbWfP/990RERLBmzRo+/fTTUvP4oO9RVhp0a8Wl/Se5dOAUqbGJHF6+hcyUNOp0CAXg2Ood7J5XFMJ+fvthrp8KJy0+mZSYBI6t3kHkyYvU7Vw0sXadjs3Izcrh0PLNpMUlEX32Mqc37adup+blVo7i+g0awM6NW9m5cRs3r0czf+ZsEuMT6d6/NwCLZ89n5hfTjPaJvBJB5JUIcnNzyEhNI/JKBDeuFzW6Qlu3YNvajRzYuYf42DjOHD/F8nmLaNamBcoKakitu7CfbsHN6FIzlBqOHoxo3gd3Oye2XtJf4D/RtAdj2w4ypD924yIt/erRo3ZLPO1dCPHw45kW/bicGG2YgHlwoy409g7G094FfxcvXmrzCAGu3my5dKRCygSQd+QE6nYtsQwJRunhhk3/3ugKCsk/H2ZIY9O/N6rORcNZ8o+fRmFjg7pnV5SuLlgGB6Jq24r846cMaVSd22PhWwOFkyNKD3dUndth4e9Lwfm/v3BEWbOxUlHL3ccw8X51R3dquftQzd50NFRl2Rh+iM5BoXQMakJ1R3eeatoLN1sntl8+BsCQxt14sfVAQ/qTNy/R3Lcu3YKb42HnTC13X4Y1683VxBuGiy0LpRI/52r4OVfDUmmBi40jfs7V8Cynsj/2xFA2/LWODWvWc/1aJD9Om0FcXDz9H9Xn+9cff2LypKJFeh5+dABxt+L4cfr3XL8WyYY169mwZj1DnnocAGuVisCaQUYPewd7bG1tCawZZIgU/3Xmz5w5eZpbMbFEXLnK7Fm/cPrEKbr36lnmZWzTrwsndh7kxM6DJNy8xab5K0hLTKZ5d/3/zrbFa1g5c74h/ZEtewg/fpak2HiSYuM5uesQB9Ztp1H7ovr8xpVILhw5RXJcItcvXmHhFzPR6XS069+9zPN/vx6knEqlkmq+1Y0edk4OWFpZUc23OtbqB7vpVFY6D+jJoW17OLxtD3HRMayas5iUxCTa9tKvgr5uwXIWTf/VkH7fhu2cO3KKhJhbJMTc4vD2vez8axPNOxdNhVFYUMjNiChuRkShKdSQlpzCzYgoEmLjSrx/Rdh19QStAxrQyq8+1exdeaRBJ1xsHdh/7QygX0H6qdBeJfZr7d+AyOSKW6mxNPW6tuTygVNcPnCa1NhEjvy5layUdEJut5GOr97J3nlFQ9Ev7DhC1Klw0m+3kY6v3sn1k+HU6VS0uJBvw2DC957g2rHzZCSmEhN2jVPr9uDbsFa5R7ED7I04RUu/ejT3rYunvQv967XH2cbe0FnZu04bhjYp+v8+efMS2fm5DGncDU97FwJdq9OvbjuORodRqNW3Tw9eP4edtZqH63fE3c6ZOp7+dA1uzoHIM+VeHoD1YQfoGhxK55pNqe7ozvBmvXG3czIMGX28SXfGtH3UkP7EjXBa+NWjR60WeNq7UNvDj5Et+hpWEwUYUL8DDb1q4mnvQnVHd/rWbUuHoCbsvXbaZB6EqAgybFP8X9m1axdNmzY12jZixAjmzZvHhg0bePPNN2ncuDGurq6MGjWKDz744L6PbWFhwerVq3nuuedo0aIFQUFBfP311/Tv3x+1Wm1ynxo1avDxxx/zzjvv8MwzzzB8+HDmzZvHu+++S0REBA899BBOTk58+umnRpFnSqWSVatWMWrUKFq2bElAQAAzZsygd+/epebx66+/JjMzk4cffhgHBwcmTJhAWprxsIW5c+fy2WefMWHCBG7evImbmxtt2rShb9++9/1Z3M3KyorFixfz0ksv0bhxY1q0aMFnn33GY489Zkij0WgYO3YsN27cwNHRkd69ezNtmr6DpXr16uzfv5+3336bXr16kZeXh7+/P7179zbZ0PHw8GDevHm89957zJgxg9DQUL755hsefvhhs3l80PcoK0HN65OXlcOp9XvJTs/ExduDnmMfx97NGYDstEyykou+I41Gw5GV28hOzcDCyhIXbw96jH0c32KrRNm7OtH71Sc5vHwrqz/7BVtnB+p3aVEhk+ECtOnSgYz0DFYuXEpqcjK+Af68PfkjPG5HgqQmp5AYn2i0z7ujxxn+vnbpKvt37MG9miffL9JfvDzy9BBQKFg2dxHJick4OjkS2qYFQ599ukLKBPrGqYPKlkGNuuBi40B0ahxTdiwgMSsVABcbB9ztnA3pd0ecxMZKRe+QVgxv1pus/FzO34pg4YnNhjR21mpeaD0QZxt7sgtyuZYcy8TNs7madLPCypV/8CgKS0tsendDoVajuRlL1uI/Ib8ookLp5GgU4afLyCBr8Z+oe3TG/vnhaDMyyT96gryDRZFCSjtbbB/ug8LeDl1ePtr4BLKXrKTwWtVZKauOhz8/PFI0/PrV9vo6aUPYQT7f8XtlZauEw1Hnsbe2YWD9Tjjb2HMjLZ5vdi8iKVtfNzir7XGzLRputvfaadSWKrrXbsETTXuSnZ/LhfhrLD1VNFzWxcaBz/uMNjzvV7ct/eq2JSwuksnlUPauPbqRnpbO/N/mkZyYREBQIF9M+wovb31Uc1JSEvHFIre9q1dnyrSvmDn9e/76cxVu7u68MuE1OnXt/EDvm5KcwuSPPyM5MQk7ezuCgmvy5fRvaN6qxb13fkAN2jQjOyOL3Ss3kZmajqevN0+9/RLOHvrFgTJS00hLLBrSrtPq2LZkLakJSSiVSlyqudP9iYdp1q2dIU1hfgE7lq0nJT4Ra5WKWk3r8ciY4djYmZ5cvCI8aDmroqbtW5GVnsXmpWtIT0nD268GL3w4DtfbQ2jTk9NISSjqPNJqdaxf+CfJcQkoLSxw8/LgoWGDadOrsyFNenIq34yfaHi+c/Umdq7eRM36Ibz8edHw4opy8uYl7KzV9KrTCieVHbEZSfx8cLWhc8JRbYeLrfHCD2pLaxp7B7Py7K4Kz68pgc3rkZeVw+kN+8hJz8TZ24NuY4Zi76av73LSM8lKKRpCrC3UcGzVDkMbydnbnW5jhhitpNmoT3tQKDi5dg/ZqRmo7W3xaRhM6MOdK6RMp2OvYGutpnutFjiq7LiVkcRvR9YZIs4dVbY42xR9L/maAn499BcDGnTk1Q5DyM7P5UzMFTaFF40kScvN5NdDa+hfvz3jOj5Oem4W+66dZteVExVSpoPXz2GvsmFQw8442zgQnRrPFzsXkpilP0fp20dF56jdEadQW6noGdKKp5v10reP4q7xx4kthjQqS2uebfkQbraO5GsKiElP5Mf9KzhYyRGR4v+bQnc/EyEJIf6W/fv30759e65cuULNmg8+kbwoP+Hh4dSpU4fLly8THFx2y5N/uWNBmR2rKni76zBORFedSKGyEupbhyEL7r9z/N9g2bDPSPt86r0T/os4vT+Bdj+OvnfCf5H9Y39i2OKP753wX2TBExOJSS19aPy/TXVnTxYXu5D7L3gitOd/rkygL9eGsAOVnY0y1bduW15bPe3eCf9Fvhs4jsnbq85NibLwXrcRvLXuh8rORpn66qGXeXzhR5WdjTK15OlPKjsLf9tf5/ZUdhZMGtCgghYgq2Ik8kyIMrRq1Srs7e2pVasWV65c4bXXXqNdu3bScVbFJCcn8+eff+Lo6Iivr++9dxBCCCGEEEII8X9LOs+EKEMZGRm89dZbREdH4+7uTvfu3UvM7SUq36hRozh+/DizZs164En+hRBCCCGEEEL8f5HOMyHK0PDhwxk+fHhlZ0Pcw6pVqyo7C0IIIYQQQghhVmmrj4qKJ6ttCiGEEEIIIYQQQghhhnSeCSGEEEIIIYQQQghhhgzbFEIIIYQQQgghhKhClAoZtlmVSOSZEEIIIYQQQgghhBBmSOeZEEIIIYQQQgghhBBmyLBNIYQQQgghhBBCiCpEIcM2qxSJPBNCCCGEEEIIIYQQwgzpPBNCCCGEEEIIIYQQwgwZtimEEEIIIYQQQghRhciwzapFIs+EEEIIIYQQQgghhDBDOs+EEEIIIYQQQgghhDBDhm0KIYQQQgghhBBCVCFKZNhmVSKRZ0IIIYQQQgghhBBCmCGdZ0IIIYQQQgghhBBCmCHDNoUQQgghhBBCCCGqEFlts2qRyDMhhBBCCCGEEEIIIcyQzjMhhBBCCCGEEEIIIcyQYZtCCCGEEEIIIYQQVYhShm1WKRJ5JoQQQgghhBBCCCGEGQqdTqer7EwIIYQQQgghhBBCCL2t4YcrOwsm9QhpVdlZqBQybFMIIcrQ639Nr+wslKnpA17ncOS5ys5GmWsV0ICOM//H3l1HR3G1ARz+xd09xJEkBA0a3F1LgWItBUqR4lagLQ4VoEDRUtzdXQLF3QkuQQIhbsTz/RHYsNldrAlJ+73POXsOmb0z+96dYebunffe6ZXXYeSov3vNJqrXoLwOI0dZzp5Cp1Vj8jqMHLWs3Sgqz+qR12HkqGO95/IiNiKvw8hRdmbWrDq/N6/DyFHt/OvRc8NveR1GjpvTaggzjqzN6zByVN+qbfhy1di8DiNHLW33E/02/57XYeSo6S0G0HzRsLwOI0dt+foXas3tk9dh5KiDPf7I6xA+mjxtM3+RYZtCCCGEEEIIIYQQQmggnWdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQggh8hEtZNhmfiKZZ0IIIYQQQgghhBBCaCCdZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCHyEW152ma+IplnQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEPmIlpZWvnx9jNmzZ+Pp6YmhoSFlypThyJEjGstu3LiRunXrYmdnh7m5OQEBAezZs0epzOLFi9XGlpiY+FHxvQ/pPBNCCCGEEEIIIYQQOW7NmjX079+fkSNHcuHCBapWrUrDhg0JDg5WW/7vv/+mbt267Ny5k3PnzlGzZk2aNm3KhQsXlMqZm5sTEhKi9DI0NMy1esgDA4QQQgghhBBCCCHEOyUlJZGUlKS0zMDAAAMDA7Xlp06dSteuXenWrRsA06ZNY8+ePcyZM4dJkyaplJ82bZrS3xMnTmTLli1s27aN0qVLK5ZraWnh6Oj4D2vz/iTzTAghhBBCCCGEECIf0dbSypevSZMmYWFhofRS1wkGkJyczLlz56hXr57S8nr16nH8+PH3+h7S09OJjY3F2tpaaXlcXBzu7u64uLjQpEkTlcy0nCaZZ0IIIYQQQgghhBDinYYPH87AgQOVlmnKOgsLCyMtLQ0HBwel5Q4ODjx79uy9Pm/KlCnEx8fTpk0bxTIfHx8WL15M8eLFiYmJYfr06VSuXJlLly5RuHDhD6zR+5HOMyGEEEIIIYQQQgjxTm8boqlJ9gcNZGRkvNfDB1atWsXo0aPZsmUL9vb2iuUVK1akYsWKir8rV66Mv78/f/zxBzNmzPig2N6XdJ4JIYQQQgghhBBC5CNafNyTLfMTW1tbdHR0VLLMQkNDVbLRsluzZg1du3Zl3bp11KlT561ltbW1KVeuHLdv3/7HMWv8jFzbshBCCCGEEEIIIYT4v6Svr0+ZMmXYt2+f0vJ9+/ZRqVIljeutWrWKzp07s3LlSho3bvzOz8nIyODixYs4OTn945g1kcwzIYQQQgghhBBCCJHjBg4cSKdOnShbtiwBAQH8+eefBAcH06NHDyBzDrUnT56wdOlSILPj7Msvv2T69OlUrFhRkbVmZGSEhYUFAGPGjKFixYoULlyYmJgYZsyYwcWLF5k1a1au1UM6z4QQQgghhBBCCCHyES2t/8ZAwbZt2xIeHs7YsWMJCQmhWLFi7Ny5E3d3dwBCQkIIDg5WlJ83bx6pqan07t2b3r17K5Z/9dVXLF68GICoqCi6d+/Os2fPsLCwoHTp0vz999+UL18+1+ohnWfiozx//px58+bRp08frKys8jocIYQQQgghhBBC5EO9evWiV69eat973SH22qFDh965vd9//53ff/89ByJ7f/+NrkzxSWVkZNCpUycMDAw+uOPMw8ODadOm5U5g/5CWlhabN2/+oHVq1KhB//79cyWef6tOnToxceLEvA7jHxk8eDB9+/bN6zCEEEIIIYQQQuQDknn2CXTu3JklS5YAoKuri6urK5999hljxozBxMQkj6P7cJMmTcLLy4thw4Z98Lpnzpz5V9ZZvJ/Lly+zY8cOZs+erVhWo0YNDh8+zKRJk/j++++Vyjdq1Ihdu3YxatQoOnfujKen51u3P2rUKEaPHg3AkiVLmDVrFteuXUNbW5vSpUszdOhQmjRpAkBcXBxWVlYsX76ctm3bKrbRtm1b1q5dy507dyhYsKBiecGCBWnbti0TJ05k6NChFCxYkAEDBrwzptxS2aMEtQqVwdzQhGex4Wy6cph7EU/Vlm1fuh7l3YqqLA+JCeeXwGW5Hep7279tNzvXbSE6IpIC7q506PE13sVV4wY4c/QkB7fvIfjeA1JSUijg7krLjm0oUbb0J45aWQu/arQrXQdrYwseRITwx7F1XA65q7F8y2LV+Kx4DRzNrHkeG8my87vZc/OUUpnWJWrS3K8aDmZWRCfGc+juef48uYXktNTcro6CYeN66FeuiJaxMWkPHpKwZiPpIc81ljft3xPdIoVUlqdcvU787AWZfxgYYNS0AXoli6FlZkba4ye8XLeZtIePcqsaCrULlaWxbyUsjMx4Eh3K8vN7uPUiWGP5Su7FaexbCQczG16mJHI55A6rLuwjLvklAAXM7WhVogYeVs7YmVqyXM1+zC9KOhWifel6+Ni7YWtiyfc753Dk/qW8DguAjes2sGrZCsLDwvHw8qTfoP6ULF1KY/kL587zx+8zeHDvPjZ2tnTo1IEWn3+meP/e3XssmDufmzdu8CzkGX0H9qNN+y+UtrFp/UY2r99ISEgIAJ5eXnTu1oWAygG5UsfTe//m+PYDxEbFYO/iRIMvP8PdR/X/CsDDG3fZv2oLYU+fk5KUgoWdFWVrVyagUS1FmbTUNI5s2culv08TExmFrZM9ddo1p3Ap9efO3FDNqxR1i5TDwtCUkJgw1l06yJ3wJ2rLflmmIQEexVSWP40JY9y+RSrLy7r40LVCUy4+vc28E5tzOvS3uhJ4igt7jpIQFYe1sz1VvmiIcxEPtWWf3LjP5skLVZa3H9cXKyc7AMKfPOf0loO8ePiU2PAoqrRtSMm6mifD/hRqFypLI98Axblwxfm9bz0XBrgXy3YuvMvqN86FeaGKZwlqFSqraA9tvHKYexqOv/b+9ajg5qeyPCQmnJ8PZs6l5GhmQyPfAFws7bExtmDjlUMcvnshN6ugoqFPRVoWq46VkRnBUc9ZcHob158/0Fi+ulcpWhavjrO5LfHJiVx4cotFZ3YQm5SgKNO0aBUa+lTE1sSS2KR4jj+4wtJzu0n5RG2JZn5VaVuyNjbG5jyIDGHWsY1ceaa5fdTcryotilXD0cya0LhIlp/fy75bp5XKmOgb0bV8E6p6lsTMwJiQ2HDmntjEqeDruV2dfENb69//tM3/Euk8+0QaNGjAokWLSElJ4ciRI3Tr1o34+HjmzJmT16F9sBEjRnz0unZ2djkYichvZs6cSevWrTEzM1Na7urqyqJFi5Q6z54+fcrBgwcVT0RxdXVV/LgBmDx5Mrt372b//v2KZaampkBmZtjMmTMZP348LVq0ICUlheXLl9O8eXOmT5/Od999h6mpKWXLliUwMFCp8+zw4cO4uroSGBio6Dx7/Pgx9+7do2bNmgDY29tTr1495s6dyy+//JLD39K7lXYuQsvi1Vl/6SD3I55SyaME3wa0YNLBZUS9jFUpv/HKIbZdP6r4W1tLm6E1O3Dpae49qvlDnTx0jBVzF/HVd99Q2M+HwB17mfzDBCbNn4atvep54eaV6xTzL0nrrztgbGrMkT2B/D7qZ0ZNn4RHIa88qAHUKlSGPlU+Z+rfq7n67B7Nilbh1ya9+XLVOELjIlXKN/erSveKzfnt0EqCQh/ga+/B0BodiE1M4PjDKwDULVyO7hVb8EvgMq4+u4erpQPDa3UCYOaxDZ+kXgZ1a2JQqzoJy1aT9vwFhg3rYNrnW2LG/AJJSWrXif9zMehmNSG0TIwxGzGIlPOXFcuMO7ZBx8mR+CWryIiORr98GUz7fkvM2F/JiI7JtfpUcPOjo38DFp/dwe2wR9QsVIYh1Tvw/c5ZhCeofm4RW1e+rdiCFRf2cOHJLayMzPi6XBO6lm/K9KNrAdDX1SM0LorTwdfp4F8/12LPCUZ6BtwJf8zOG8eZ2LBHXoejcGDvfmZMmcag74dQvGQJtmzcxOC+A1m2biWOjo4q5Z8+ecqQfoNo2rIZP40bzZVLl5ny829YWllRo3bmuTopMRFnF2dq1qnFH1Onq/1cO3s7enzXiwKuLgDs2r6T4YOGsnDFErwK5uy55OqJc+xeupHGXdrg5u3F2f3HWP7zHHpPHomlrbVKeX0DfcrXq4aDWwH0DPUJvnGP7QtWo2dgQNnalQE4uHY7l4+eoek37bB1duDu5SDWTP2LrmMG4OTpmqPxq1PGxZvWJWux+sI+7oY/oapnSXpX+ZyxexcSqeZ6tPbSATZf/Vvxt7a2FiNrd+b845sqZa2NzfmseA1uv8j9DvXsbp++wtHVu6jeoQmOhdy49vdZtk1fRvuxfTCzsdS4Xofx/dAzMlD8bWSWdUM4NTkFczsrCpX14+iaXbkZ/nup4FaUDv71WXJ256tzoT+Dq7dn+M7Z7zgX7uXCk1tYG5nRuVxjupRvyoxX58JPrXSBIrQsXoN1lw5yP/wplTyL0yOgBZMOLFV7/G28fIht15TbQ8NqdeTi01uKZfo6uoTFR3PhyS1aFq/xKaqhpIpnCbqWb8q8E5sJCn1Ife8K/FS3C99tmkpYfJRKeV97D/pVbcvC09s4/SgIG2MLelZqyXeVWzHpYOYN0upepfiyTAP+OLaeG6EPcTa3pV/VNgAsOL091+tUo6A/vSt9xvQja7n67B5Ni1bm58Y9+XrNBLXto2ZFq9CtQlOmHF7NzdCH+Ni7M6h6O+KSEjjx8CoAuto6/NakN1Ev4xi9bwFhcVHYmVqRkKK+XSLEpyDDNj8RAwMDHB0dcXV1pX379nTo0EExRDAjI4Nff/0VLy8vjIyMKFmyJOvXr1esGxkZSYcOHbCzs8PIyIjChQuzaFHW3bsrV65Qq1YtjIyMsLGxoXv37sTFxWmM5dChQ2hpabFnzx5Kly6NkZERtWrVIjQ0lF27duHr64u5uTnt2rUjISHrjsbu3bupUqUKlpaW2NjY0KRJE+7ezbqjsHTpUkxNTbl9O+sHe58+fShSpAjx8fGA6rBNLS0t5s2bR5MmTTA2NsbX15cTJ05w584datSogYmJCQEBAUqfAzBnzhwKFiyIvr4+3t7eLFv29uyaM2fOULduXWxtbbGwsKB69eqcP3/+retkFx8fz5dffompqSlOTk5MmTJFpUxycjJDhw6lQIECmJiYUKFCBaUx2w8fPqRp06ZYWVlhYmKCn58fO3fuBLL2y44dOyhZsiSGhoZUqFCBK1euKH3G8ePHqVatGkZGRri6utK3b1/F9wuZEy42btwYIyMjPD09WblypdL3/uDBA7S0tLh48aJinaioKLS0tJRivX79Oo0aNcLU1BQHBwc6depEWFiYxu8nPT2ddevW0axZM5X3mjRpQnh4OMeOHVMsW7x4MfXq1cPe3h4AHR0dHB0dFS9TU1N0dXVVlp08eZIpU6bw22+/MXjwYAoVKoSvry8TJkygf//+DBw4kEePMhviNWvWVKpTUFAQL1++pFevXkrLAwMD0dPTo3LlyoplzZo1Y9WqVRrrm5tqFPLn1MNrnAy+xvO4SDZdPUzUyziqeJRQWz4xNZnYpATFy83SASM9Q04FX/vEkWu2e+M2qtevRY2GdSjg5kLHnl2wtrPh4PY9ast37NmFxm1a4OVdCMcCzrTu0gFHZ0cunjz7iSPP0qZkLXYEHWdH0HEeRj7jj2PreREXRYti1dSWr+9dga3XjnLwzjlCYsI5eOccO4KO096/rqKMn6MnV5/dZf/tszyLjeDMoyAO3D6Lt537p6oWBrWqkbh7PykXr5Ae8oyEpavQ0tdHv5zmLL+MhJdkxMQqXno+RSA5heTzrzKc9HTRK1Wcl5u3k3bnHukvwkncsZf0sAgMquVuJkZD74ocvneBw/cu8DQmjBXn9xCeEE3twuXUli9k68KL+Cj23jrNi/goboU94uCdc3haOyvK3I94yuqL+zgZfI2UtLRcjf+fOhl8jfmntnL43sW8DkXJ6hWraNK8KU1bNMPD04N+gwZg72DP5vUb1ZbfvGETDo4O9Bs0AA9PD5q2aEbjZk1YtXylooyvX1F69+tDnfp10dPXU7udKtWqElClEm7ubri5u/Ft7x4YGRtx/crVHK/jiR2B+NcMoEytStgVcKThV62wsLHi7L6jass7ebpSvHJZ7F2dsLKzoWTVchQs4UPwjaw2z6Ujp6naoh5FSvth7WBLubpVKVjSh+M7DuZ4/OrULlyW4w+ucOzBFZ7FRrDuciCRCbFU8yqltnxiajIxSfGKl7uVI8b6hoofxK9pocXX5RqzPegYYfHRn6Amyi7uO45vFX+KViuLtbM9Vb9ohJmVOVcPnX7rekbmJphYmCle2tpZP6UcPF2o3LoBhcuXQEc37/MTGngHZDsX7iUiIZpahcuqLV/w1blw363ThL06FwbeOYentdMnjjxLjYL+nHx4lZMPr/I8LoJNVw4T+TKWyp7v2R6yetUeepjVHgqOes7Wa0e48OQWqemfLsP7teZ+Vdl/+wz7bp/hcXQoC05vIyw+moY+FdWW97Z3IzQuku1BxwmNiyQo9AF7bp6ikK3LG2XcCQp9yN/3LhIaF8nFp7f5+95FCtq4qN1mTmtdoia7bpxg540TBEc9Z9bxjYTGRdKsaBW15esWKcf268c4dPc8IbHhBN49z64bJ/iiVB1FmYY+FTE3MObHPX9y7dl9nsdFcvXZPY1Zh0J8CtJ5lkeMjIxISUkB4IcffmDRokXMmTOHa9euMWDAADp27Mjhw4cB+PHHH7l+/Tq7du0iKCiIOXPmYGtrC0BCQgINGjTAysqKM2fOsG7dOvbv38933333zhhGjx7NzJkzOX78OI8ePaJNmzZMmzaNlStXsmPHDvbt28cff/yhKB8bG8uAAQM4c+YM+/fvJyMjg5YtW5Keng7Al19+SaNGjejQoQOpqans3r2befPmsWLFircO1Rw3bhxffvklFy9exMfHh/bt2/Ptt98yfPhwzp7N/KH8Zn02bdpEv379GDRoEFevXuXbb7/l66+/JjAwUONnxMbG8tVXX3HkyBFOnjxJ4cKFadSoEbGxqnetNBkyZAiBgYFs2rSJvXv3cujQIc6dO6dU5uuvv+bYsWOsXr2ay5cv07p1axo0aKDoUOzduzdJSUn8/fffXLlyhV9++UWRTfXm50yePJkzZ85gb29Ps2bNFMfKlStXqF+/Pp999hmXL19mzZo1HD16VOn7+fLLL3n69CmHDh1iw4YN/Pnnn4SGhr53PSGzA6569eqUKlWKs2fPsnv3bp4/f06bNm00rnP58mWioqIoW1a1Uaavr0+HDh2UOn0XL15Mly5dPiguyHx0sampKd9++63Ke4MGDSIlJYUNGzIzdmrWrMnNmzcVGW2BgYFUrVqVWrVqqXSeVahQAWNjY8Wy8uXL8+jRIx4+fPjBMf4TOlrauFjYc+OF8ufeCH2Ix3s2YCu4+3HrRbDau7J5ITUlhQe371KsTCml5cXLlOT2ddVsBHXS09N5+TIREzPTdxfOBbraOhSxc+PMoyCl5WceBVHMQX32ip62LslpKUrLktJS8LX3QOfVD67LIXcpYueGr31mZ5mTuQ0V3Ytx8mHO/7BXR9vGGm0Lc1KDsu7Kk5pG6u276Hp5vPd29CtVIPncBUhOfrVhHbR0dCBF+YdJRkoKugVzbyi0jrY2HtbOKkNFrj67R2Fb9T8iboc9wtrYnJJOmUPrzA1NKO/my8V8lLn5b5eSksKtGzcpV1H5CVjlKlbg6uUrate5duUq5SpWUFpWPqACN64HkZr6cT9409LS2L9nH4kvE/ErUfyjtqFJamoqT+8/omAJH6XlBUv48OjW/ffaRsj9Rzy6dR9336xhnmmpqejqKXcM6unpEXzz3j8P+h10tLRxs3RUGU4WFPoAL5sC77WNSh7FuRH6kIhsmU6NfSsRl/SS4w/U7//clJaayouHT3HzUx5O6+pXiGd3354Ft2bsbBYN+oXNkxfx+Ebu74OPlXkudOJqtnPhlWf3KGyrPmPx9bmwxBvnwnJuRfMsi11HSxtXSwduhiq3h26GBivd3Hibiu7F8lV7SFdbh4I2Bbj4RPk7vfj0Fj726m+a3Qh9iK2JBWVcvAGwMDSlkkdxzj66oSgT9PwBBW0KKK5zDqbWlHHx4dzjG2q3mZMy20euSvEAnH18Az9H9dd7PR1dlakpklJT8LF3V7SPKnkU59rzB/Sr0ob1X05gQZvhtC9d7/9uGKOWlla+fP2/yvvbIv+HTp8+zcqVK6lduzbx8fFMnTqVgwcPEhCQOf+Gl5cXR48eZd68eVSvXp3g4GBKly6t6JTw8PBQbGvFihW8fPmSpUuXKjqoZs6cSdOmTfnll19wcHDQGMf48eMVmTZdu3Zl+PDh3L17Fy+vzB+Cn3/+OYGBgYq5zVq3bq20/sKFC3F0dOT69esUK5Y5v8W8efMoUaIEffv2ZePGjYwaNYpy5dTf7X/t66+/VnTKDBs2jICAAH788Ufq188cGtOvXz++/vprRfnJkyfTuXNnxdM6Bg4cyMmTJ5k8ebJi2F12tWrVUvp73rx5WFlZcfjwYcUcWW8TFxfHggULWLp0KXXrZmaNLFmyBBeXrB9jd+/eZdWqVTx+/Bhn58yL+uDBg9m9ezeLFi1i4sSJBAcH06pVK4oXz2y0v/6u3zRq1CiVz9i0aRNt2rTht99+o3379oqHFBQuXJgZM2ZQvXp15syZw4MHD9i/fz9nzpxRHC9//fUXhQsXfmcd3zRnzhz8/f2VJv5fuHAhrq6u3Lp1iyJFiqis8+DBA3R0dBSZZNl17dqVKlWqMH36dM6dO0d0dDSNGzdWzGH2vm7duqXIOszO2dkZCwsLbt3K7AioXLkyenp6HDp0iHbt2nHo0CGqV6+Ov78/0dHR3L59m8KFC3Po0CE6duyotK0CBQoo6vX6McpvSkpKIinbkDYDAwOVch/KxMAIHW1tYhMTlJbHJiVgbmisYa0s5gbG+Np7sOxc3g8ZeS02Jpb09HQsLC2UlptbWhIdGfVe29i1YStJiYlUqF753YVzgYWhKbraOioN8IiEGKxdzdWuc/rRdZr4VubI/UvcevEIbzs3GvkEoKeji6WhKeEJMRy8cw5LIzNmthyEFlro6uiw6erfrLiw91NUCy2LzNjTs91ISI+NRdtadZiZOjrurugUcCJh+ZqshUlJpN57gGHDOsQ/e56ZnVauNDoebqS/0JzB+k+ZGRijo61NTKJy9nV0YhwWhgXVrnM77DFzTmykd+XP0dPRRVdbh3OPb+Sr/0P/dtFRUaSlpWGd7ZiytrYiPCxC7Trh4eFUsLbKVt6atLQ0oqKiFDcR38fdO3fo8XV3kpOTMTIyYuJvP+PplbOduAkx8WSkp2NioTxtgYmFGXHvGKY8pfePJMTEkZ6WRo3PG1GmVlZ2ZsESvpzYcRB3n4JYOdhy/+otbpy7QkZ6Ro7Gr46p4noUr7Q8NjEeC4d3z19rbmiCn4MXC7MNG/OyKUAlj+JMOLAkR+N9X4lxCWSkp2NkrnwzxsjclIRo9Z0sxpam1PiyOfbuzqSlpnLzxCW2TFlMyyFdNM6Tlpdenwujs+27mMR4LAzV77s7YY+Ze2ITvSu3UpwLzz++ybJzuz9FyCpet4dikrK3h+IxM3h3dra5gQm+9h4sPZt/zuXmBsboaOsQle0aFfUyDisjM7Xr3Ah9yNTDqxlSo4Niv5wKvsafJ7coyhy5fwlzQxMmNeqJlpYWuto67Aw6wYYrh3KxNpksDE3QUdM+ikyI1dg+OvPoBo18Ajh6/zK3wx5RxM6VBj4V0dPRxcLQlIiEGJzMbCntbM3+22cZvnMuLhZ29K3aBh1t7Tw7JoWQzrNPZPv27ZiampKamkpKSgrNmzfnjz/+4Pr16yQmJio6S15LTk6mdOnMITM9e/akVatWnD9/nnr16tGiRQsqVcpsWAUFBVGyZEmlzK7KlSuTnp7OzZs339p5VqJEVsqzg4MDxsbGSp05Dg4OnD6dlb4eHBzMuHHjOHXqFGFhYYqMs+DgYEXnmZWVFQsWLKB+/fpUqlRJZYL494kDUHQuvV6WmJhITEwM5ubmBAUF0b17d6VtVK5cmenT1c93AhAaGspPP/3EwYMHef78OWlpaSQkJBAcrHnS1DfdvXuX5ORkRQcnZDbivb29FX+fP3+ejIwMlY6lpKQkbGxsAOjbty89e/Zk79691KlTh1atWinVH1D7GUFBmdku586d486dO6xYsUJRJiMjg/T0dO7fv8+tW7fQ1dXF399f8X6hQoU++Kmo586dIzAwUCUr7vV3oa7z7OXLlxgYGGi8G1GiRAkKFy7M+vXrCQwMpFOnTujpqR9m809kZGQoYjA2NqZ8+fKKzrPDhw8zZMgQdHV1qVy5MocOHcLAwID79++rdLAaGRkBKA1dftOkSZMYM2aM0rJRo0ZBacscrxOAlhZkvMdvpfJufrxMSeLKWyaxzzPZj42MDN7n3tWJwCNsWraW/qOHYZ6tA+5Ty8i2E7S0tMhA/Y5ZcnYX1sbmzP1sKGhlNiR33zhJe/96pGVknj9LORemU5n6TP17NUHPH1DAwo6+VVoTXqYhS3Oh80avnD/G7T5X/B0356/XFctW8j0PODKzztKehKg8CCBh8UqMO7XFYtIoMtLSSHv0hJSzF9Bxfb+MlX8ie+haaGnYS+Bsbksn/4Zsvvo3V57dwdLQjC9K1+Xrck346/TWXI/1/0n260NGhupp4e3lM/ei1nudObK4ubuzaOUS4mLjOHQwkAmjx/HHn7NzvANNbWwZ8K5wu4zqR3JiMo9v32f/6q1YO9hSvHLmDbCGX7Vi6/xVzBw0HrS0sHawpXT1ilw4fDLHY9dE9f+O5vPemwLci/EyJVEpc8lAV4+vyzVixfk9xOfhJPSg5th7ywFp5WiHlWPW/JyOBd2Ii4jmwp6j+bLzTEHNbnrbubCjfwO2XP2bK8/uYmloRtvSdehcrjELTm/L1TDfSiXg9/v/X96t6Kv20J0cD+mfUmlLqFn2mquFPd9UbMaai/s5/+QW1kbmdC7XiJ6VPmPmscxpfoo5etG6RC3mndjMrbBHOJnZ0K1CMyJfxrL20oHcrg6Ayjnhbe3WZed2Y21sxqyWg9DSgsiXsey5eYp2pesqfl9qaWkR+TKWqX+vIj0jg9thj7AxsaBtydrSeSbyjHSefSI1a9Zkzpw56Onp4ezsrOg0uH8/M5V/x44dikyX115nsTRs2JCHDx+yY8cO9u/fT+3atenduzeTJ09W6ijI7l0plW92XGhpaal0ZGhpaSlOYJA5b5Wnpyfz58/H2dmZ9PR0PDw8SH49TOeVv//+Gx0dHZ4+fUp8fDzm5urvOmiKQ9OyN2NR16B+W307d+7MixcvmDZtGu7u7hgYGBAQEKASuyaaLmhvSk9PR0dHh3PnzqGjo6P03utOqG7dulG/fn127NjB3r17mTRpElOmTKFPnz5v3fab38G3335L3759Vcq4ublx86b6IXBvxv96fo43l70eFvpmXV5nL2b3eoL/7GxtbUlISCA5OVltVhhAly5dmDVrFtevX1fqmP0QRYoU4ejRo2o/5+nTp8TExChl2tWsWZM1a9Zw7do1Xr58qehYrF69OoGBgejr62NoaEjFispzTUREZGZDaHrIxfDhwxk4cKDSMgMDA4bt/mcPAYlPeklaejpm2bLMTPWNlZ6qpEkFt6KcfRyk6JzJD8zMM+eFyZ5lFhMdjbmV5VvXPXnoGAt+n813IwdTzL9k7gX5DtGJcaSmp2FtrHw+szIyIzJBfaZCcloKvwQuZ/LhlVgbmROeEE3TolWIT35J9MvMbICu5Zuy9+ZpdgQdB+BexFMM9QwYUr09y87tfq8fqB8i5fI1Yh+8MQTm1bw82ubmpMVk1UPbzJSM9xnWrqeHftlSvFQzd116WDhxv88GfX20DA3IiInFuGsn0sPVZxrlhNikBNLS07EwUu74Nzc0UclGe61p0SrcDgtm543MffCIUJLOJPNj3S6su3yQaA3rifdnYWmJjo4O4eHhSssjIyOxtlGf4WhjY0N4tmMlMjISHR0dlSzWd9HT08PFNXOomk9RX4KuB7Fu1RqGjnz3Db73ZWxugpa2tkqWWXxMLKbvaAdZ2Wdm0Tm4ORMXHcuhDbsUnWcm5ma0G9SdlOQUXsbFY2Zlwf5VW7Gys8mx2DWJe3U9Ms+WqWRmaExM4ruvR5U8inMq+LrS9cjOxApbE0t6Vsp6aurrNs7MloMYvXeB2knTc5KhqTFa2tokRCv/334ZG4+x+ftPDeDg5cKtk/njSbbZZZ0Llfdd5rkwXu06mefCR+y8cQLIOhf+UPdr1l8O/OTnwnjF8afcHjIzeL/2UEV3P84+yl/toZikBNLS01SyzCyMTFWy0V5rVaImQc8fsOnVgzgeRj4j8UQyPzfuyYrze4h8GUv70vU4dPc8+26fUZQx0NWnd+XPWHfpYI63Jd4UnRhPWnoa1kbK5zlLIzMiX6rPuk1OS+G3QyuZ+vdqrIzMiUiIpolv5cz20avjMyIhmtT0dNLf+L0SHPkcGxMLdLV1SE3P3/OP5hTtD7xZJHKXzHn2iZiYmFCoUCHc3d2VOoaKFi2KgYEBwcHBFCpUSOnl6po1J4GdnR2dO3dm+fLlTJs2jT///FOx/sWLF5UmjD927Bja2tpqs4M+Vnh4OFeuXGHIkCFUqFABV1dXHjx4oFLu+PHj/Prrr2zbtg1zc/N3dgp9DF9fX44eVZ589/jx4/j6+mpc58iRI/Tt25dGjRrh5+eHgYHBWye/z65QoULo6elx8mTWnd7IyEjF8ECA0qVLk5aWRmhoqMq+fPNJYq6urvTo0YONGzcyaNAg5s+fr/RZ6j7DxydzDhV/f3+uXbumsv1ChQqhr6+Pj48PqampXLiQ9cjtO3fuEBUVpfj7dWfQm0+2fPPhAW9+joeHh8rnaJq/rlSpUkDmgwY0ad++PVeuXKFYsWIULVpUY7m3+eKLL4iLi2PevHkq702ePBk9PT1atWqlWFazZk1u377NypUrqVKliqJjs3r16hw6dIhDhw4REBCAoaGh0rauXr2Knp4efn6qjzyHzI4yc3NzpVdODNtMy0jncXQo3nZuSsu97d14EBGiYa1MhWxcsDO14uTD/POgAABdPT08Chfk6nnlHxlXz1+mcFFvDWtlZpzNnzKTnt/3p1SFMrkd5lulpqdx60UwZV2VzzNlXXy4+vzt896kpafzIj6K9IwMahcqy/EHVxUNWUNdfZXO+fT0dLS03p6R89GSkkh/EZ71CnlOenQMur5vXC90dNAtXJDUew/euTn9MqVAV5eU0+c0F0pOJiMmFi0jI/R8vUm5lHvHZ1p6Og8inlLMUXlIfDFHL26HPVa7joGunlLjHFD8/X88rUeO0tPTo4iPN2dOnVFafvbUaYppmHvMr3gxzp5Svsly5uRpfIr6ovtPJ2PPyFC5afRP6erq4uzpyt3LyvP+3L1yE9ciH5bhlpqiOqebnr4e5taWpKelc/30RbzL5uycbeqkZaQTHPVMMSfja7727u+ctLuwrSv2plYqc5o9iw1n3L5FTDywRPG6HHKHWy+CmXhgCZFqngKZ03R0dbFzd+bRdeUM7UfX7+JY8P2fYBr2KARjS/VD7fJa5rkwRMO5UP28bvq6eqrXozw8F6ZlpPMo6rnKA3S87dy4H/H0resWsn3dHvo084e+r9T0NO6GP6Gks/J0KqWcC3Mj29xurxno6ql0fqW/6hDUeqNMutoyWrm+7zLbR48o46o832OZAt5ce/b2+R7T0tMJe9U+qlnIn5MPrynqevXZfQpY2Cpl87pY2hEWH/1/03Em8h/JPMtjZmZmDB48mAEDBpCenk6VKlWIiYnh+PHjmJqa8tVXX/HTTz9RpkwZ/Pz8SEpKYvv27YqOog4dOjBq1Ci++uorRo8ezYsXL+jTpw+dOnV665DND2VpaYm1tTVz587F0dGRhw8fKuZCey02NpZOnTrRp08fGjZsiJubG2XLlqVJkyYq86X9E0OGDKFNmzb4+/tTu3Zttm3bxsaNG9m/f7/GdQoVKsSyZcsoW7YsMTExDBkyRDEs732YmprStWtXhgwZgo2NDQ4ODowcOVLpKUtFihShQ4cOfPnll0yZMoXSpUsTFhbGwYMHKV68OI0aNaJ///40bNiQIkWKEBkZycGDB1U6/caOHav0Gba2trRo0QLInBOuYsWK9O7dm2+++QYTExOCgoIUD3fw8fGhTp06dO/eXZHpOGjQIIyMjBR3do2MjKhYsSI///wzHh4ehIWF8cMPPyjF0Lt3b+bPn0+7du0YMmQItra23Llzh9WrVzN//nyVzDrI7JTz9/fn6NGjio607KysrAgJCflHwzUDAgLo168fQ4YMITk5mRYtWpCSksLy5cuZPn0606ZNU+p4rlSpEgYGBvzxxx+MHDlSsbxcuXJER0ezYcMGhgwZovI5R44coWrVqh90nOSUQ3fO06FMfR5FPedBRAgBHsWxMjLj2IPLADTxrYyFkQkrzivPi1XB3Y8HESE8iw1Xt9k81eCzpsz7bQaeRQpSyNebQzv3ER4aRq3G9QBYu3A5kWERfDs0M6vyROAR/vztDzr07EJBnyJERWQ+6lzfQB/jtzyAJDetvXSQkbW/4mboQ649v0/TopWxN7Niy9UjAHSv2BxbE0smvprHx8XCHl8HD4Ke38fMwJg2JWvjaePExINZ8/wcf3iFNiVrcSvskWLYZtcKTTj24IpKh05uSTr4N4b1a5Me+oK00DAMG9QmIzmZ5DNZnfDGX7UjPSqaxC07ldbVr1SelEtXyYhXzQLQ9fUGLUh//gJtO1uMWjYh7XkoySc+Luv0fe26eZIeFVtyP+Ipd8IeU7NgGWyMLThwO/MBNG1K1sbKyIx5JzcDcOHJLbqUb0rtQmW5HHIHSyMzOvrX527YY6JeZmYC6GhrU8A888aDrrYOVkbmuFk6kJiaTGhcZK7W50MZ6RngYpGVMetsbkthWxdiEuN5noexftGhHeN+GoOPrw/FShRn68bNPH/2nBatWgIwd+ZsXoS+4MexowBo0aolG9eu54+p02nasjlXL19h+5ZtjJ4wVrHNlJQUHty7/+rfqbx48YLbN29hZGykyDSbN2sOFSsFYO/gQEJCPPv37OfCuQtMmfF7jtcxoHFNNs5ahrOXG65FPDl34BjRYRGUrZP5xLn9q7YSExnFZ72+BOD03r+xsLHC1jmzvRZ88x7Htx+gfP3qim0+vvOAmIgoHN1diI2M4tD6XWRkZFC5aR3VAHLBgdtn6VyuMQ8jn3E/4ilVPEtiZWzOkfuZN0Oa+1XF0siMJWeVzw2VPYpzP/wpT2OUb1SmpqepLHuZnDl/aPblualU3UrsX7ABOw9nHL1cuf73WWIjovGrkflQixMb9hIfFUOdrpnD3C/tO46ZrSXWzg6kpaZy6+Ql7p67ToOeXyi2mZaaSsTTF6/+nUZcVAwvgkPQM9DH0iH3MwWz233zBN9WbMn9iBDuhD2mRkF/bIwtOHg782ZH65K1sDIyU8ydlXkubEKtQmW4EnIXSyMzOvjX427YE8W58FM7dPc8Hcs0IPhVe6iSR3GsjM04dv9Ve6hoZSwMTVlxXjn7uaJ7MR5EhBCipj2ko6WNo3nm/tDV0sHC0JQCFnYkpSZ/kie/brl2hP5V23In/DE3Q4Op710eWxNLdt/IvHneqUwDbIzNmXZkLZD5YKLelVvRwLsiF57cwsrYjG7lm3LrRTARr+YZO/MoiOZ+Vbkf/pSbL4JxMrelg389zjy6/knaEusuBzK8ViduhgZz/fl9mhStjIOZNduuZyY7dCvfFFsTS34OXAaAi4UdPq+eEGpmYMznJWriYe3Mz4HLFdvceu0ILYtV47vKrdh09TAFLOxpX7oem64ezvX6CKGJdJ7lA+PGjcPe3p5JkyZx7949LC0t8ff3Z8SIEUDmkwqHDx/OgwcPMDIyomrVqqxevRrInNNpz5499OvXj3LlymFsbEyrVq2YOnVqjsaoo6PDmjVr6Nu3L8WKFcPb25sZM2ZQo0YNRZl+/fphYmKimGTez8+PX375hR49elCpUiWVYakfq0WLFkyfPp3ffvuNvn374unpyaJFi5RiyW7hwoV0796d0qVL4+bmxsSJExk8ePAHfe5vv/1GXFwczZo1w8zMjEGDBhEdrXyRXbRoEePHj2fQoEE8efIEGxsbAgICaNSoEZD5pK/evXvz+PFjzM3NadCgAb//rtyA//nnn+nXrx+3b9+mZMmSbN26VTE8sUSJEhw+fJiRI0dStWpVMjIyKFiwIG3btlWsv3TpUrp27Uq1atVwdHRk0qRJXLt2TSmzauHChXTp0oWyZcvi7e3Nr7/+Sr169RTvOzs7c+zYMYYNG0b9+vVJSkrC3d2dBg0aKHUYZte9e3cWL1781qe9WlpavvvLfodp06ZRokQJ5syZw48//oiWlhb+/v5s3ryZpk2bKpV9PSTz8OHDSseInp4eAQEBHDhwQO2DJlatWqUyp9mncuHpLYz1DanvnfmY7pDYcOad3KKYjNXc0ASrbOnxhrr6lHQqxMZ82qioWKMycbGxbFmxjqiISFzc3Rg0fgS2DpkPmIiKiCT8jYnkA3fuIy0tjaUz57N0ZlZ2ZpW6Neg+OOczWt/HwTvnMDcw4auyjbAxMed+eAjDts/meVzm0DIbY3McTLPmF9TR1qZtydq4WTqQmp7GhSe36LVxMs9is4aiLT2b+UO4W4Wm2JlYEvUyjuMPrjD/1KebaytpXyBa+noYfdEKLWMj0h4EE/fHn/DGAzG0rSwh2wTl2va26BbyIm6GahYogJaRIYbNG6FtaUlGQgIpFy7zcusuSM/dITSngq9hqm9EC7/qWBqZ8jg6lMmHVxCekHm+tjQ0xcY4a9jfkfuXMNQ1oE6RcrQrXY+E5ESuh95nzcWsGzJWRmZMaNhD8Xdj30o09q1E0PMHSp2h+YGPnTszW2YNKe9bJfPm1c6gE0zIw1hr16tDdHQ0i/9aSHhYOJ4Fvfht+hQcX00FEB4WzvNnzxXlnQs489v0KfwxdTob123A1s6W/oMHUKN21vk67EUYX3f4SvH3qmUrWbVsJaX8SzPzz9kARIRHMO6nMYSHhWNiakrBwgWZMuN3lSd/5oRiAWVIiI3n8MbdxEXFYO/qRIdhPbG0yxyaGhsVTXRYVgdmRnoG+1dvI+pFONra2lg52FKnXTPK1M56MEpqcgoH1+4gMjQMfQMDCpcuSsteX2Jk8u4HyOSEc49vYqJvRGPfSpgbmhASE8asYxsUT8+0MDTF2lg5+8pQV5/SBYqw9tLBTxLjxyhcvjiJ8Qmc3XaI+OhYbJwdaNqvE+Y2lgAkRMcRG57VxktLTePY2j3ER8Wgq6eHdQF7GvfthEeJrKzd+KhY1o6drfj74p5jXNxzDOciHrQc2vVTVU3hVPB1TPWNae5XTXEunHJ4pcZz4dH7lzDS1Vc5F669+GnmzFLnwpNbmOgbUt+nAhYGJpntoRObldtDao6/kk6F2HjlkNptWhiZMrRm1kOiahcuS+3CZbkd9oiZR9fnVlUUjt6/jJmBMW1L1sba2JyHkc8Yu28RL14NV7YyMsPWxFJR/uCdcxjpGdDYtxJdyjcmPjmRyyF3WPLGgxDWXjpIBtDBvx7WxhbEJMZz5tF1lp9XnVIhNxy6ex5zQxO+LNsAa2NzHkSEMHznHMUNG2sTC+zNstpH2lratC5ZC1eLzPbRxae36btpKs/faB+9iI9i6I5Z9Kr0GX+1Hk5YfBQbrxxm9cV9n6RO+cX/85Mt8yOtjPeZzEkIkesOHTpEzZo1iYyMzJEOptceP36Mq6urYr683JSYmIi3tzerV69WevDBv82OHTsYMmQIly9f/uDhQf23TMudoPLItOb9OfUgfw17yAkVPIpRbXavvA4jR/3dazZRvQbldRg5ynL2FDqtyptO7NyyrN0oKs/q8e6C/yLHes/lRWzuzWWXF+zMrFl1/tM89fZTaedfj54bfsvrMHLcnFZDmPEqS+e/om/VNny5auy7C/6LLG33E/0253zGZ16a3mIAzRcNe3fBf5EtX/9Crbl5c5Mytxzs8Udeh/DRTuezqVheK++uflqb/zrJPBPiP+bgwYPExcVRvHhxQkJCGDp0KB4eHlSrVi3XP9vQ0JClS5d+0Hxy+VF8fDyLFi365/PqCCGEEEIIIYT415NfhkL8x6SkpDBixAju3buHmZkZlSpVYsWKFf9onrEPUb169XcXyufatGmT1yEIIYQQQggh/o/JsM38RTrPhMgnatSoofKUo49Rv3596tevnwMRCSGEEEIIIYQQQvPM30IIIYQQQgghhBBC/J+TzDMhhBBCCCGEEEKIfERbhm3mK5J5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECIf0UKGbeYnknkmhBBCCCGEEEIIIYQG0nkmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQIh+Rp23mL5J5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECIf0ZJhm/mKZJ4JIYQQQgghhBBCCKGBdJ4JIYQQQgghhBBCCKGBDNsUQgghhBBCCCGEyEdk2Gb+IplnQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIJ1nQgghhBBCCCGEEEJoIHOeCSGEEEIIIYQQQuQj2sicZ/mJZJ4JIYQQQgghhBBCCKGBVkZGRkZeByGEEEIIIYQQQgghMl19eievQ1CrmHOhvA4hT8iwTSGEyEG3Q4PzOoQcVdjeLd9euP+JYs6FiA0NzeswcpSZvf1/8vh7GvXf2k/Olva8iI3I6zBylJ2ZNZVn9cjrMHLUsd5zOf3wWl6HkaPKu/sRFRud12HkOEszC2LOnMvrMHKUebkyxAY/yuswcpSZmyvRfy3L6zBylEW3TsQ+fZrXYeQoM2dnHoT/t+rkYeOc1yF8NC0tGbaZn8iwTSGEEEIIIYQQQgghNJDOMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBD5iLYM28xXJPNMCCGEEEIIIYQQQggNpPNMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRD4iT9vMXyTzTAghhBBCCCGEEEIIDaTzTAghhBBCCCGEEEIIDWTYphBCCCGEEEIIIUQ+ooUM28xPJPNMCCGEEEIIIYQQQggNpPNMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRD6irSW5TvmJ7A0hhBBCCCGEEEIIITSQzjMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQ+YiWljxtMz+RzDMhhBBCCCGEEEIIITSQzjMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQ+Yi2DNvMVyTzTAghhBBCCCGEEEIIDaTzTPwnHDp0CC0tLaKiovI6lBzn4eHBtGnTPnr9Bw8eoKWlxcWLF3MsJiGEEEIIIYQQ4v+FDNsU/xrHjx+natWq1K1bl927d+d1OELkqh2btrJx1ToiwsNx8/Dgm749KVayuNqyEWHhLJg1jzs3b/P08ROaft6C7n17feKIle3evJ0tazYSGR6Bq4cbX3/XnaIliqktGxkeweLZf3Hv9h1CHj+l0WfN6PJdd6UyB3fvY9Yv01TWXbVnE/r6+rlRBTIyMvhz0SI2bd1KbGwsfkWLMmzgQAp6er51vQOHDjH3r794/PQpLs7O9OrenZrVqqktu2jZMmb9+SftWrdmUN++iuXhERH8MWcOJ8+cITYuDv+SJRnSvz9urq45WkfI+WPt4f0HrFiwhDs3bxP67Dnf9OlJ8zaf5Xjcr21ev4k1y1cRHh6Oh6cH3w3oS4nSJTWWv3j+ArOnzeTB/QfY2trwRaf2NPushdqyB/fuZ9yPY6hcrQrjf5ukWL5lwya2btzMs6fPAPDw8uTLrp2pUKlijtVr47oNrFq2gvCwcDy8POk3qD8lS5fSWP7CufP88fsMHty7j42dLR06daDF51nf+72791gwdz43b9zgWcgz+g7sR5v2XyhtY9P6jWxev5GQkBAAPL286NytCwGVA3KsXh+jpFMh2peuh4+9G7Ymlny/cw5H7l/K05g+xP6tu9ixbgvREZEUcHelY88ueBcvqrbsmaMnObBtN8H3HpCSkoKLuystO7WlRNnSuRbf+nXrWb5sGeFh4Xh6eTFg0ABKl9b8eefPnWfa79O4f+8etna2dOrUic8+b6VU5uCBg8ybO48njx9TwMWFnr16UKNmTcX7F86fZ/my5dwIukFYWBi/Tv6V6jVqKN5PTU1l7uw5HD92nCdPnmBqakq58uXo3ec77OzscqTeGRkZzN+4gU2BB4mNj8evYCGGdv6agi4uGtfZFHiQnUeOcPfxIwB8PD3p3aYtfgULKcqs37+PDQf2E/IiDAAvlwJ0bfkZlUuWypG4s9fhz2VL2bRjJ7Fxsfj5+DCsT18Keni8db0DR/5m7uLFPA4JwcXJiV5fd6FmlSqK9+MTEpi7eDGBx44SGRWFd6FCDOrVCz9vH0WZ0b/+yvZ9e5W2W8zHh8V/zMzxOs4//jebL10gNikRPydnhtRpSEHb9zsO9gZd44ftm6hWqAiTW7ZRLI9PTmLe0cMcun2DyIQEitg7MqhWPYo6Oedo/K/r8OeSJWzavj2zPeHry7B+/d7dnjh8mLmLFmW1J7p2pWbVqor3m37xBSHPn6us17p5c4b176+yfMKUKWzavp2BvXvT/vPP/1Gdtm3YzLqVa4gID8fd04Me/b6jeKkSGstfvnCReTNm8/D+A2xsbWnd4QuatGymeH9I7/5cvqB6Xi8fUIFxU37O/MyNW9ixaSvPQzKvve6eHnTo8iXlAir8o7rkZ1rIsM38RDLPxL/GwoUL6dOnD0ePHiU4ODivwxE5ICUlJa9DyJf+PnCI+TPm0KZTO2YsmINfyWKMHjKC0OehasunpKRgbmlBmy/b41nI6xNHq+rYwb9ZNGs+rTq2ZfL8GfiWKMaEYaN48Y74W3Voi0dBzQ1JYxNj/tqwTOmVWx1nAEtWrmTlmjUMHTCAJfPnY2NtTe8BA4hPSNC4zuWrVxkxejSN6tdn1aJFNKpfn+9/+omr166plL0WFMSmbdsoXLCg0vKMjAwGjxjBk5AQpkyaxIqFC3F0dKTXgAG8fPkyR+uYG8daUmISjk5OfPVtV6ysrXM03uwO7jvArN9n0PHrTsxfuoASpUoybMAQnj9T/TEBEPL0KcMHDKVEqZLMX7qADp078ceU6Rw+eEil7LOQZ8yZMZsSpVQ74uzs7fmmVw/mLpnP3CXzKV3Wnx+GDOf+vfs5Uq8De/czY8o0vuzSmYUrllCydEkG9x3Is2fP1JZ/+uQpQ/oNomTpkixcsYQvv/6KaZN/59CBQEWZpMREnF2c6fFdL2xsbNRux87ejh7f9eKvpYv4a+ki/MuWYfigody7ey9H6vWxjPQMuBP+mKl/r87TOD7GyUNHWT53Ec3bt2LcnCl4F/flt5HjCQt9obb8zSvXKFamJIPHj2TcrN/wLVmMqT9N4sGd3NkH+/bu4/cpU/m6y9csXbGMUqVLMaBv/7cca08Y0K8/pUqXYumKZXT+ujNTJk/h4IGDijJXLl/mhxEjadioIctXraBho4aM+H4EV69eVZR5+TKRwoULM3joELWfk5iYyM0bN+nSrQtLly/j599+ITj4EYMHDsqxui/dvo2Vu3Yx5KvOLB47HhtLC777eSLxbznPngu6Tr2ASswZ+QMLR4/B0caW7375mdCICEUZe2trvmv7BUvGjWfJuPGULerH4KlTuPv4cY7F/tqSNWtYuWEDQ7/7jiUzZ2Vep4YNe/t16vp1RowfT6M6dVg1dx6N6tTh+/HjuBoUpCgzfuoUTp0/x9hh37P6z/lUKFOGXkOHEhoWprStSuXKsXvNWsVr+oSJOV7HpadPsOrsKYbUacDijl2wMTGlz9oVxCcnvXPdkOgoZhzaTykX1RtPE3bv4NSDe4xu1JyVnbtTwcOT3mtXEBobk+N1WLJ6NSvXrWNo374smTs3cz8NGfL2/XTtGiPGjqVR3bqs+usvGtWty/djxnD1+nVFmaVz57J7wwbFa9bkyQDUfqMj+rVDR49yLSgIO1vbf1yfQ/sPMnf6LNp91ZHZi+dTrGQJfhg0jFAN195nT0P4YdBwipUswezF8/niyw7M+f0PjgQeVpT5cdJYVm3boHjNW74QbR1tqtbKqoudvR1den7DHwvn8sfCuZQsU5rRw37gQQ5de4V4F+k8E/8K8fHxrF27lp49e9KkSRMWL178znWOHTtG9erVMTY2xsrKivr16xMZGQnA7t27qVKlCpaWltjY2NCkSRPu3r2rWPf1UMeNGzdSs2ZNjI2NKVmyJCdOnHjvz8jIyODXX3/Fy8sLIyMjSpYsyfr1698ac2hoKE2bNsXIyAhPT09WrFihUiY6Opru3btjb2+Pubk5tWrV4tKl978Dn5aWRteuXfH09MTIyAhvb2+mT5+eI+ssWrQIX19fDA0N8fHxYfbs2Yr3Xn+na9eupUaNGhgaGrJ8+XLS09MZO3YsLi4uGBgYUKpUKaXMwvfZF+Hh4bRr1w4XFxeMjY0pXrw4q1atUrw/b948ChQoQHp6ulK8zZo146uvvlL8vW3bNsqUKYOhoSFeXl6MGTOG1NTU9/5uc8rmNRuo27gB9Zs2wtXDne59e2Frb8fOTdvUlndwcuTbfr2p3aAuxiYmnzhaVdvWbaJWo3rUaVwfF3c3unzXHRt7W/Zs3am2vL2jA137fEuN+rXfEb8WVtbWSq/ckpGRwaq1a/n6yy+pVb06hby8GDNyJIlJSezet0/jeqvWraNC2bJ83akTHu7ufN2pE+XLlGHlunVK5RISEvhx7FhGDh2KmZmZ0nvBjx5x5do1vh80CD9fXzzc3Ph+4EBevnzJnv37c7SeuXGsFfH1pkvv7lSvUxM9fb0cjTe7davW0KhZYxo3b4q7pwffDeyLvYM9WzdsUlt+68Yt2Ds68N3Avrh7etC4eVMaNm3M2hXKnTJpaWlM+Gksnbt3wamAk8p2KlWtTMXKAbi6ueHq5ka3nt0xMjbi+lXVTtKPsXrFKpo0b0rTFs3w8PSg36AB2DvYs3n9RrXlN2/YhIOjA/0GDcDD04OmLZrRuFkTVi1fqSjj61eU3v36UKd+XY37pUq1qgRUqYSbuxtu7m5827tHZr2uXFVb/lM5GXyN+ae2cvjexTyN42Ps2rCN6g1qU6NhXQq4udCxZ1ds7Gw4sG2P2vIde3alSZuWeHkXxrGAM226dMSxgBMXTp7NlfhWrVhJs+bNaN6iBZ6engwcNBAHBwc2rN+gtvzGDRtxdHRk4KCBeHp60rxFC5o2a8qK5csVZVavWk35CuXp/HVnPDw86Px1Z8qVL8fqlVn/zypVrkSPXj2pWaumuo/B1NSUP2bPpE7durh7uFO8eHEGDxnMjaAbGjv2PkRGRgardu/m6+bNqVWuPIVcXRn9bU8Sk5PZc/y4xvXG9/qO1nXr4u3ugYdzAUZ2+4aM9AzOXMv6P1LNvwyVS5XG3ckJdycnerVpi7GhIVfv3P7HcavUYdNGvm7XnlpVq1LI05MxQ4aSmJTI7oMHNa63auMGKpQpw9ft2uPh5sbX7dpTvnRpVm7MPL8kJiVx8MgR+n7zDf4lSuBaoADffvkVBRydWL9tq9K29PT0sLW2VrwszM1zvI6rz52mc8Uq1CziQ0E7e0Y1bEZiagp7rr/9vJSWns5POzbzTeVqFLCwUnovMSWFwFtB9KleG39Xd1ytrOleuTrOFpZsuHgux+uwav16vu7YkVrVqmXup++/JzExkd1vuaavWr8+sz3RoUPmfurQgfL+/qzckPV/08rSUun7P3riBC7OzpQpqXzTJ/TFC36dPp1xI0eiq6Pzj+u0cfU66jdtRMNmjXHzcKdn/++ws7dn+6atastv37QVewd7evb/DjcPdxo2a0y9Jg3ZsHKtooy5uTnWNtaK1/kz5zA0MKRareqKMhWrVKJ8pYq4uLni4ubK1z26YWhkxI1r19V9rBA5TjrPxL/CmjVr8Pb2xtvbm44dO7Jo0SIyMjI0lr948SK1a9fGz8+PEydOcPToUZo2bUpaWhqQ2Rk3cOBAzpw5w4EDB9DW1qZly5YqnSsjR45k8ODBXLx4kSJFitCuXTtFZ8q7PuOHH35g0aJFzJkzh2vXrjFgwAA6duzI4cOH0aRz5848ePCAgwcPsn79embPnk1oaFYGSEZGBo0bN+bZs2fs3LmTc+fO4e/vT+3atYl4467n26Snp+Pi4sLatWu5fv06P/30EyNGjGDt2rX/aJ358+czcuRIJkyYQFBQEBMnTuTHH39kyZIlStsaNmwYffv2JSgoiPr16zN9+nSmTJnC5MmTuXz5MvXr16dZs2bcvq3cyHzbvkhMTKRMmTJs376dq1ev0r17dzp16sSpU6cAaN26NWFhYQQGZmVhREZGsmfPHjp06ADAnj176NixI3379uX69evMmzePxYsXM2HChPf6XnNKSkoKd27donT5MkrLS5crw40c+mGem1JSUrh76w6lsg0xKlnWn5tXgzSs9X4SX77k2y86803rL5k4fDT3bt9990of6UlICOEREVQsV06xTF9fH/9Spbh8VXOD/fLVq1R4Yx2AiuXLq6zzy++/UzkggAply6ps43VGpsEbWXU6Ojro6upy8fLlj6qPOv+FY+3WjVuUrVBeaXnZ8uW4qqGz5/qVa5Qtr7x/ylUsz82gG0od5UsXLMbSypLGzZq8M460tDQO7t1P4stE/Ir5fURNlGXW6yblKirXq1zFCly9fEXtOteuXKVcReVhK+UDKnDjetBH3wBIS0tj/559mfUqoX4Yr3i71JQUHty+S3F/5R+yxcqU4vb1G++1jfT0dBITXmJqZprj8aWkpHDjxg0qZD92KlbgioZzzZUrVyifrXzFgIoEvXGsXbl8hQoVspWpWFHjNt9XXFwcWlpamJr+8+/iyYtQwqOjqFg8a5iZvp4e/j6+XL596723k5iURGpaKuYaYkpLT2fvieO8TEqieOHC/zjuNz159uo6VTbrHK6vr49/iRJcvq75HH75+nUqlFE+71csW1axTlpaGmnp6ejrKWd2GxjoczHbtezcpUvUbf05n3X+ivFTpxDx6gZyTnkaHUV4fBwVPbIynfV1dfF3defy07dn8i04fgRLIxOal1AdgpyWkU5aRgb6usozGBno6nLpyaOcCf4VRXvijeu9vr4+/iVLcllNVvprl69fV2kjVCxXTuM6KSkp7Ny3j2YNG6L1xhMa09PT+WnSJDq1bfvOYaLvIyUlhds3b1GmvHJsZcqX1XijJejqdZXyZSuU49aNmxqvUXu27aR6nZoYGhmpfT8tLY1D+w6SlJiIbw5ce/MrLS2tfPn6fyVznol/hQULFtCxY0cAGjRoQFxcHAcOHKBOnTpqy//666+ULVtWKfPJzy/rxNqqlfLcHAsWLMDe3p7r169TrFjWvEyDBw+mcePGAIwZMwY/Pz/u3LmDj4/PWz8jPj6eqVOncvDgQQICMueK8fLy4ujRo8ybN4/q1auT3a1bt9i1axcnT55UNDoXLFiAr6+vokxgYCBXrlwhNDQUAwMDACZPnszmzZtZv3493bt3V9ludnp6eowZM0bxt6enJ8ePH2ft2rW0adPmo9cZN24cU6ZM4bPPPlOUed0J9WZ2V//+/RVlXsc/bNgwvvgic+6dX375hcDAQKZNm8asWbMU5d62LwoUKMDgwYMVZfv06cPu3btZt24dFSpUwNramgYNGrBy5Upq164NwLp167C2tlb8PWHCBL7//ntFrF5eXowbN46hQ4cyatQole8kKSmJpCTlIQOv98k/ERMdTXpaOlZWyndJraysOB+Rs43S3BAbHUN6ejoWVpZKyy2tLIn6B41qFzdXvvt+AO6eHiQkJLBjw1ZG9hnClL/+wNmlwD+MWlV4eDgANtmy22ysrAh5S9ZDeESE6jrW1oS/0bm9Z/9+bty6xdI//1S7DQ93d5wcHZk5bx4jhgzByNCQFWvWEB4RQdiruHLCv/1Yi46KJj0tDSvrbPHbWBF5Uv3NhIjwcKxslDulrKytSEtLIzoqChtbW65cuszOrTv4a/nCt37+vTt36d2tJ8nJyRgZGTH2lwl4eP3zHybRUVGkpaVhne04sra2IjxMfb3Cw8OpkO17sLa2Ji0tjaioKGw/YJjO3Tt36PF1d0W9Jv72M545UK//R7ExsaSnp2Oe7XxoYWVBdGTUe21j1/qtJCUmUr5apRyPL0pxrCkP47WxtuZkmPpzTXh4uMo5ztraRulYCw8Px9omWxkba8V59WMkJSUxa+ZM6jeonyOdZ+FR0ZlxWVgoLbe2MOdZtqGJbzNzzWrsrKwp76c8p+edR8F0GT2K5JQUjAwN+a3/ALwKaJ5L7WOEvzpP21gq/9+3sbJSOw+WYr3ISGysVNcJf3WNNjE2pkTRovy1Yjmebm5YW1mxJzCQqzdu4Fog63pbqXw56lSvhqO9A0+fPWPu4sX0GDqE5bNm59iUCuHxcQBYZ8t0tjY2ISQmWuN6lx4/YuuViyz/6hu175voG1Dc2YWFJ47gaWOLtbEJe4OucS3kCa5WOZvV/vr6r+47f+t+iohQv5803Cw/dPQocXFxNG3QQGn5klWr0NHR4Ytsv30+VkxUZtvBMts1x9LaikgNbYfIiAi15TOvvdHY2Cqfg25cD+LBvfsMGKE6rPv+3Xv0795bcY36adJY3D09/lmlhHhPknkm8r2bN29y+vRpReeKrq4ubdu2ZeFCzT9sXmeFaXL37l3at2+Pl5cX5ubmeL66E5N9LrUSJbLuSDo5ZQ7deZ0J9rbPuH79OomJidStWxdTU1PFa+nSpUrDQ98UFBSErq4uZd+4y+Tj44OlpaXi73PnzhEXF4eNjY3Sdu/fv69xu+rMnTuXsmXLYmdnh6mpKfPnz3/nPHJvW+fFixc8evSIrl27KsU1fvx4lbjerF9MTAxPnz6lcuXKSmUqV65MUJByltLb9kVaWhoTJkygRIkSiu9m7969SnXq0KEDGzZsUHR4rVixgi+++AKdV+nr586dY+zYsUrxf/PNN4SEhJCgZk6KSZMmYWFhofSaNGmSSrmPlu2uTgYZ/6o7PdljzSAD/sGkp0WK+lC9bi08CnlRtEQxBo36HmcXZ3ZtVD+88EPt2ruXqvXqKV6v74Rmjzgj4z32Q/a6v7HOs+fPmTJjBuN+/FFjZ6uuri6/jh9P8KNH1GrUiCp163LuwgUqVayIdg4Mt3hnvP/yYy3zUNMcf/bJd19nMWtpaZEQn8DEUeMZPGIoFm+ce9VxdXfjr2ULmb1gLs0/a87PYyfk6LwrKv+HMt5aLTXlX9XrA//fubm7s2jlEuYtmk+Lz1syYfS4HJvL7f+V2n35HvvlROARNi5bQ++Rg1RuSOQklf9C7zrPaTzWlAplK6Pm/+p7Sk1N5YcRI8lIz2DIsKEftY1dx45SrevXilfqq1ECqud4dUvVW7p9G3tPHOfX/gOUMoUB3J2cWTFhEgtHj6VV7TqMnjeXe0/+2Zxnuw4coGrTJoqX4jr1lmuOZuqOySxjh30PGdCw3RdUatSQ1Zs30aBWLXS0s3461qtRkyoVKlLI05NqAQHMmDiR4MePOfoq6/9j7L5+herTflG8Ul+NCFHZT2Ro3EvxyUn8tHMzI+o3xtLYWONnjWnUjIwMaDxnOlWmTmLN+TPU9y2mVMePsWvfPqo2bKh4adxPapapULdvNRTdsnMnlSpUUJrTLOjmTVZv2MDoYcNy/Lquei19R3nVE4365WRmnXl4eeJT1FflPRc3V2Yv+Yvpf86mScvmTB7/Mw/vP/ig2IX4WJJ5JvK9BQsWkJqaSoE37nZlZGSgp6dHZGSkStYEgJGGFN/XmjZtiqurK/Pnz8fZ2Zn09HSKFStGcnKyUjk9vax5YV6f3F8P7XzbZ7wus2PHDqW4QXN2UsZbLiJvbtfJyYlDhw6pvGf5jh96r61du5YBAwYwZcoUAgICMDMz47ffflMMcfyYdV7Xd/78+SpDNXSy/dg3UTNP0vs0/N62L6ZMmcLvv//OtGnTKF68OCYmJvTv319pfzZt2pT09HR27NhBuXLlOHLkCFOnTlW8n56ezpgxY5Sy4l4zNDRUWTZ8+HAGDhyotMzAwIDgaM13Ed+HuYUF2jraRGa7sxgVGYVlLv54yilmFuZoa2sTle3uY3RkdI7Gr62tTSGfIoQ8eZoj26tWpQrFimY9/S751dDJsIgIpaydiKgolYygN9lYq2ZXRERGYv3qPHXj5k0iIiPp1K2b4v20tDQuXLrE2o0bOX7gADo6Ovh6e7Ny0SLi4uJISUnBysqKr7p3p6iPDznl336sWVhaoK2jQ0S4cvyREZEq2WivWdvYqJSPioxCR0cHcwsLHty7z7OQEEYM/l7xfsar80ztSjVYunYFBV5lOurp6VHANTOTxNvXhxtBN9iwZj2DhqufAP3962WJjo6OynEUGRmpks3zmo2NDeHZv4fISHR0dLCwtFC7jiZ6enq4vHqqq09RX4KuB7Fu1RqGjvz+HWuK7MzMzdDW1iY62/kwJioac6u375eTh47y19RZ9PlhMMWyDfvMKZYajrWIdx5r2Y/NiFfHmqWiTET2MhERbz13apKamsqI74fz9OlTZs+Z/dFZZ9X8y1DsjSdiJr/q0AiPjsb2jXZkZEwMNhbv/j+zbMd2Fm3dwqzvR1DYzU3lfT1dXVwdHQEo6uXF9Xt3Wb17NyO6dlMp+951CAig2BvXAMV1KjIC2zceAhIRFaW45qiTmWWmfL6IiIpUWsfF2Zk/p07l5cuXxCckYGtjw/Dx43B+VSd1bG1scLJ3IPjJkw+u22tVCxXBzymr3Zz8qpMzPD4eW9Os+UEjExJUstFeexIZSUh0NIM2rlEsS3/Vxg6YPIF1XXviYmWNi5U189p9ycvkZOKTk7A1NWPE1o04W1h+dPwA1SpXVm5PvGqLhkVk20+RkW/fT9my1kFzGyTk2TNOnz/Pr2+MEgG4cOUKEVFRNGnbVrEsLT2daXPmsGr9erat/vCHsJhbqm87REdqvvZaWVsTqfHaqzxPXmJiIof2B/Jlt85qt6Wnp6e4Dhfx9eZm0A02r91Av2E59zCR/ET7X3Qz8/+BdJ6JfC01NZWlS5cyZcoU6tWrp/Req1atWLFiBd99953KeiVKlODAgQNKQw1fCw8PJygoiHnz5lH11eOejx49+sGxve0zihYtmtmREhysdoimOr6+vqSmpnL27FnKl88cVnTz5k2ioqIUZfz9/Xn27Bm6urp4vOMx5JocOXKESpUq0atXL8Wyd2WtvWsdBwcHChQowL179xRziL0Pc3NznJ2dOXr0KNWqVVMsP378uOI7eB9HjhyhefPmiqG96enp3L59W2nIq5GREZ999hkrVqzgzp07FClShDJvzPnh7+/PzZs3KVSokMr21TEwMMiRYZrZ6enpUahIES6eOU+lalmPjb945jwVquT8sJ2cpqenR8Eihbh09gIVqmbFe/ncBcpVrphjn5ORkcH9O/dyLFXfxNgYkzfuUGdkZGBjbc2pM2fwKVIEyJzn4/zFi/Tp0UPjdkoUK8aps2fp8EZD9dSZM5R4NRy8XNmyrM42D+DYSZNwd3Pjqw4dVDqbX/9QDH70iKCbN+nZ7eN/eGX3XzjWivgU4ezpM1StkXX+OHf6DJXfqM+bihb348SRY0rLzp46jbevD7q6uri5u7FwpfL+WTB3PgkJCfQZ2A97B3uN8WRkZJCSkqzx/feVWS9vzpw6Q/WaNZTirFK9qtp1/IoX4/gR5evYmZOn8Snqi67uP2zqZWTIk5E/kq6eHh6FC3L1/CXKVsk6/109fwn/AM3XuBOBR5g/ZRa9hg+gVAXVeRFzip6eHj4+Ppw+dZoaNbMm7j996jTVqldTu07x4sU5ku1YO3XyFL5vHGvFSxTn1KnTtOvQPqvMqVMUfyOD/H287jh7FPyI2fPmvDMb9G1MjIwweeOmZ0ZGBjYWlpy6egXvV+2plNRUzt8Iok/bdm/d1rLt21iwZTN/DPueol7v94TrjIysDruPpfE6de48PoUy51NLSUnh/OXL9OmmfrgiQImiRTl17jwdWn2uWHbq3DlKFFWdN8rIyAgjIyNiYmM5cfYsfb/RvN2omGievwjFVkPH6/sw0TfARD+rbZWRkYGNiSmnHtzD2yGz4y4lLY3zjx7yXbVaarfhbmPLqs7K05jMOXqIhORkBtWqh4O5cueokb4+Rvr6xCS+5OSDu/SprnnkynvVQdN+OnsWn8Jv7KdLl+jzlulWMvfTOTq0bq1YdursWUr4qe6nrbt3Y2VpSZVXU8W81qhuXcpnm9+uz9ChNKpbV2V45/vS09OjsHcRzp8+S+U3rknnz5wjoGpltev4FivKqWPKD107d/osRXy8Va5Rfx84REpKMrUb1H2/gOQaJT4h6TwT+dr27duJjIyka9euWGS7E/j555+zYMECtZ1nw4cPp3jx4vTq1YsePXqgr69PYGAgrVu3xtraGhsbG/7880+cnJwIDg7m++8//I762z7D1taWwYMHM2DAANLT06lSpQoxMTEcP34cU1NTpTnAXvP29qZBgwZ88803/Pnnn+jq6tK/f3+lDLc6deoQEBBAixYt+OWXX/D29ubp06fs3LmTFi1aKA2J1KRQoUIsXbqUPXv24OnpybJlyzhz5oxi6OrHrjN69Gj69u2Lubk5DRs2JCkpibNnzxIZGamSofWmIUOGMGrUKAoWLEipUqVYtGgRFy9eVPuk0bfFt2HDBo4fP46VlRVTp07l2bNnSp1nkDl0s2nTply7dk3R0fbaTz/9RJMmTXB1daV169Zoa2tz+fJlrly5wvjx4987lpzQom0rpo7/hUI+RfD182X31p28CA2lUYvMycsXz11AeFgYg34Ypljn3u07QOak+tFR0dy7fQddXT3cPN0/aewATVu3ZMakKRT0Loy3nw/7tu8m7PkL6jVtBMDy+YuJeBFO3xFZdwnv37mriD8mKpr7d+6iq6uHq0fmHf21S1ZS2NcbJxdnXiYksHPDNh7cucc3/XrmSh20tLRo16YNi5Yvx83VFVcXFxYtW4ahgQEN6mY16H4aPx57W1u+e9Wh9sXnn9O9Tx8Wr1hBjSpVOHT0KKfOnmXBq/n7TIyNKZTtx5ahoSGWFhZKy/cHBmJpaYmjgwN37t5lyowZVK9alYof0Kn8PnLjWEtJSeHRg4dA5oTp4S/CuHf7DoZGRjk+P13rdm2ZNHo83j4++BX3Y/vmrTx/HkrTz1oAMH/WXF68CGPE6B8AaPZZczav28isaX/QpHlTrl25xs6tO/hhXOa8hvoGBngWVN4/rydqf3P5/NnzqBBQEXsHexISEji47wCXzl/kl2mTc6ReX3Rox7ifxuDj60OxEsXZunEzz589p0WrlgDMnTmbF6Ev+HFsZtwtWrVk49r1/DF1Ok1bNufq5Sts37KN0RPGKraZkpKiGFaakpLKixcvuH3zFkbGRopMs3mz5lCxUgD2Dg4kJMSzf89+Lpy7wJQZv+dIvT6WkZ4BLhZ2ir+dzW0pbOtCTGI8z+Py9/x8DVs1Ze6vM/AsUohCRb0J3LGX8NAwajfJvCG4ZsFyIsPD6TG0H5DZcTbv1xl07NmFQr5FFFm8+gb6ufI05XYd2jP6p1H4+PpSvERxNm/cxPNnz/isVWYW9qyZs3gRGsrosZk3Cj9r9Rnr1q5j2tTfad6yBVcuX2Hrlq2Mm5B1nWz7xRf06P4tSxcvoVqN6vx96DCnT53mzwXzFWUSEhJ4/ChrGOPTJ0+5dfMW5hbmODo6kpqayvdDv+fmzRtM+X0q6WlphL+ai8zcwkIpG/1jaGlp0a5BAxZt3YKrgyOujo4s3roFQ3196lfKunkwau5s7Kys+a5t5tQhS7dvY+76dYzv9R1OtnaEvbrBaWxoiPGrLPVZa1ZTqWQpHGxsSEh8yd4TJzgfdJ0ZQ3M2e1NLS4t2LT9j0aqVuBUogGuBAixatRJDA0Ma1MrqWPrpl58zr1Ovst6+aPkZ3QcOYPHq1dSoVIlDx49z6vx5Fvw+TbHOiTNnyCADdxdXHj19yow//8Td1ZVm9TM7XBJevuTPpUupVbUqttbWPH3+jNkLF2JpYUHNyupvXnxsHb8oU57Fp47hamWNm5U1i04dw1BXj/pFs+aZG7VjC/ZmZvSuVgsDXV0K2inf6DAzyNw3by4/cT+z3eFmZc3jqEhmHDqAu7UNTYvlbKanlpYW7T7/nEUrVuDm4pLZnli+HENDQxq8MXfzTxMnYm9nx3evOii/aNWK7v36sXjVKmpUrsyhY8c4de4cC2bMUNp+eno623bvpkn9+ipP0rS0sMAy2+8nXR0dbKyt8VCTMfm+PvuiNb+NnUQRX298i/mxc8t2Qp8/p3GLpgAsnDOfsBcvGPrTCACatGzG1g2bmTd9Fg2bNyHo6jX2bNvJ92N+UNn27u07qVS1CuZqMkAXzp1PuYoVsHOw52VCAof2HeTyhUuMn/rLR9dFiA8hnWciX1uwYAF16tRR6TiDzMyziRMncv78eZX3ihQpwt69exkxYgTly5fHyMiIChUq0K5dO7S1tVm9ejV9+/alWLFieHt7M2PGDGrUqPFBsb3tMyBzAn17e3smTZrEvXv3sLS0xN/fnxEjRmjc5qJFi+jWrRvVq1fHwcGB8ePH8+OPPyre19LSYufOnYwcOZIuXbrw4sULHB0dqVatGg4ODu8Vd48ePbh48SJt27bNvKC3a0evXr3YtWvXP1qnW7duGBsb89tvvzF06FBMTEwoXrw4/fv3f2s8ffv2JSYmhkGDBhEaGkrRokXZunUrhT/gqVQ//vgj9+/fp379+hgbG9O9e3datGhBdLTyZLK1atXC2tqamzdv0r59e6X36tevz/bt2xk7diy//vqr4o58txzM9Hlf1WrXIDYmhtWLlxMRHoG7pwejf52AvWPmPo4MD+fF81Cldfp2yepEunPzNof3HcTe0YGF65Z/0tgBKteqRmxMDOuWriIyIgI3D3dG/DwGe8fMRmtkeARhoS+U1hn8TV/Fv+/eusORA4ewc7Bn7upFAMTHxTF36h9ERURibGKCZ6GCjJv+C4V9vXOtHl+1b09SUhI/T5lCbFwcxXx9mTl1qtId5WfPnyul1JcsXpwJo0Yx56+/mPvXX7gUKMCkMWMopuZO8duEhYfz+8yZhL8a5tG4QQO6qel0/6dy41iLCAtXKrNx9To2rl5HsVIl+PmPKTkaf626tYmJjmHpwsVEhIXj4eXJz7//iqNTZoZCeHg4oW9MyOzk7Myk339l9rQ/2LJ+Eza2tvQZ1I/qtWp80OdGRkQyccx4IsLCMTE1watQQX6ZNpmyFcq9e+X3ULteHaKjo1n810LCw8LxLOjFb9On4PhqvsfwsHCeP8uql3MBZ36bPoU/pk5n47oN2NrZ0n/wAGrUzsomCnsRxtcdso6hVctWsmrZSkr5l2bmn5kPvokIj2DcT2MIDwvHxNSUgoULMmXG7ypP/vzUfOzcmdky6yZM3yqZmRg7g04w4eASTavlCxVrVCEuJpbNK9YSFRGJi7sbg8ePxPZVFmNURCThoVkT1B/csZe0tDSWzJzPkplZnU1V6tbk2yF9cjy+uvXqEh0dzcK/FhAWFoZXwYL8Pv13xdyi4WFh2Y61Avw+fRrTpv7O+nXrsbWzZdDgQdSqndVZU6JkCcZNGM+8OXOZN3ceLi4uTJg0UemBTEHXg+jVI+s8Me1Vx03jJo35afQoQkNDOfL33wB0aq98s2v23DmUKaucTfMxvmzSlKTkZH5ZvIjYhHj8Chbkj2HDlTLUnoWFo6WVNQfW+v37SElNZdiMaUrb+qblZ3R/lckVERPDqLmzCYuKwtTYmEKurswY+j0Viuf8U2u/atuWpOQkfv5jBrGxsRTz8WXmzz8rX6dCQ9F+ow4l/fyYMPIH5ixexNwli3FxcmbSyB8o9sYNx7iEeGYuWEBoWBjmZmbUqlKV3l2+VmQJaWtrc+f+PXbs30dsXBy21taULVmKiSN/UPrsnPBl+QCSUlP4df9uYhNf4udUgD9at1fKUHseG/3Bw9vikpKY/fdBQuNiMTc0olYRH3pWraHSAZUTvvrii8z2xLRpmfvJ15eZv/2mup/emG+tZLFiTPjpJ+YsWMDchQtxcXZm0k8/KQ0JBTh97hzPnj+nWcOGOR63JjXq1CI2OoYVC5dmth28PBg/+WccXl17I7K1HRydnRg/ZRLzps9m28YtWNva0HNAH6rWVB6d8zj4EdcuXWHitN/Ufm5URCS/jZ1IRHjEq7agF+On/qLyJM//kn/THLT/D7QyMt41vZ8QQoj3dTv07Q9e+LcpbO/G1ad38jqMHFfMuRCxoaHvLvgvYmZv/588/p5G/bf2k7OlPS9i1T8t7d/KzsyayrM0D2f+NzrWey6nH17L6zByVHl3P6JiNT+h8N/K0syCmDPn8jqMHGVergyxwY/yOowcZebmSvRfy/I6jBxl0a0TsU9zZu7V/MLM2ZkH4f+tOnnYOOd1CB/tUaTmJ7znJVcrzfMf/pfJ0zaFEEIIIYQQQgghhNBAhm0KIYQQQgghhBBC5CNayLDN/EQyz4QQQgghhBBCCCGE0EA6z4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEELkIx/6FFmRuyTzTAghhBBCCCGEEEIIDaTzTAghhBBCCCGEEEIIDWTYphBCCCGEEEIIIUQ+oiXDNvMVyTwTQgghhBBCCCGEEEID6TwTQgghhBBCCCGEEEIDGbYphBBCCCGEEEIIkY/I0zbzF8k8E0IIIYQQQgghhBBCA+k8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCJGPaCHDNvMTyTwTQgghhBBCCCGEEEID6TwTQgghhBBCCCGEEEIDGbYphBBCCCGEEEIIkY9oydM28xXJPBNCCCGEEEIIIYQQQgPpPBNCCCGEEEIIIYQQuWL27Nl4enpiaGhImTJlOHLkyFvLHz58mDJlymBoaIiXlxdz585VKbNhwwaKFi2KgYEBRYsWZdOmTbkVPiCdZ0IIIYQQQgghhBD5ih46+fL1odasWUP//v0ZOXIkFy5coGrVqjRs2JDg4GC15e/fv0+jRo2oWrUqFy5cYMSIEfTt25cNGzYoypw4cYK2bdvSqVMnLl26RKdOnWjTpg2nTp366O/7XaTzTAghhBBCCCGEEELkuKlTp9K1a1e6deuGr68v06ZNw9XVlTlz5qgtP3fuXNzc3Jg2bRq+vr5069aNLl26MHnyZEWZadOmUbduXYYPH46Pjw/Dhw+ndu3aTJs2LdfqIZ1nQgghhBBCCCGEEOKdkpKSiImJUXolJSWpLZucnMy5c+eoV6+e0vJ69epx/PhxteucOHFCpXz9+vU5e/YsKSkpby2jaZs5QZ62KYQQOaiwvVteh5DjijkXyusQcoWZvX1eh5Dj/ovHn7Plf28/2ZlZ53UIOe5Yb9W5SP7tyrv75XUIOc7SzCKvQ8gV5uXK5HUIOc7MzTWvQ8hxFt065XUIOc7M2TmvQ8hxHjb/vTr9W+lk5M+nbU6aNIkxY8YoLRs1ahSjR49WKRsWFkZaWhoODg5Kyx0cHHj27Jna7T979kxt+dTUVMLCwnByctJYRtM2c4J0ngkhRA46cOtMXoeQo2oXKcf9sCd5HUaO87QtwOYrh/M6jBzVonh1oleuy+swcpRF+9asOr83r8PIUe386/0n63T64bW8DiNHlXf3o/KsHnkdRo461nsuS8/szOswctyX5Rr9J4+/3w+vzuswctSA6l+w4/qxvA4jRzUuWpm1F/fndRg5qk2pOqy5sC+vw8hRbUvXzesQ/nOGDx/OwIEDlZYZGBi8dR0tLeWOwIyMDJVl7yqfffmHbvOfks4zIYQQQgghhBBCCPFOBgYG7+wse83W1hYdHR2VjLDQ0FCVzLHXHB0d1ZbX1dXFxsbmrWU0bTMnyJxnQgghhBBCCCGEEPlJenr+fH0AfX19ypQpw759yhmN+/bto1KlSmrXCQgIUCm/d+9eypYti56e3lvLaNpmTpDMMyGEEEIIIYQQQgiR4wYOHEinTp0oW7YsAQEB/PnnnwQHB9OjR+b0CMOHD+fJkycsXboUgB49ejBz5kwGDhzIN998w4kTJ1iwYAGrVq1SbLNfv35Uq1aNX375hebNm7Nlyxb279/P0aNHc60e0nkmhBBCCCGEEEIIIXJc27ZtCQ8PZ+zYsYSEhFCsWDF27tyJu7s7ACEhIQQHByvKe3p6snPnTgYMGMCsWbNwdnZmxowZtGrVSlGmUqVKrF69mh9++IEff/yRggULsmbNGipUqJBr9ZDOMyGEEEIIIYQQQoj85NUk+f8FvXr1olevXmrfW7x4scqy6tWrc/78+bdu8/PPP+fzzz/PifDei8x5JoQQQgghhBBCCCGEBtJ5JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEECI/+Q8N2/wvkMwzIYQQQgghhBBCCCE0kM4zIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEEPlJugzbzE8k80wIIYQQQgghhBBCCA2k80wIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFEfpKRntcRiDdI5pkQQgghhBBCCCGEEBpI55kQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKI/CRDnraZn0jmmRBCCCGEEEIIIYQQGkjnmRA56ObNm0yaNImkpKS8DkUIIYQQQgghhBA5QDrPhMghsbGxtGzZEk9PTwwMDHJsux4eHkybNu2j13/w4AFaWlpcvHgxx2ISQgghhBBCCJGL0jPy5+v/lMx5JnLF8ePHqVq1KnXr1mX37t0fvP7o0aPZvHnzv6rD56uvvqJbt2588cUXeR2K+Jc5vGMf+zfuJDoyCie3ArT+piOF/HzUlr1w/AxHdh3g8b2HpKak4OTmQuP2n1HUv4SizO/Dx3P76g2Vdf3KlqT3qCG5UodtG7ewfuUaIsLDcff0oEff3hQrVUJj+csXLvHnH7N5eP8BNra2tG7flsYtmymV2bRmPds3beXF81DMLS2oWqMaX/f4Bn0DfZXtrV66ksXz/qJF68/o0f+7HK/fayd2H+Lw1j3ERkbj4OpM085t8SxaWG3Z+0G32bV8Iy+ePCM5ORkrW2sq1K1G1aZ1FWXOBh5n3azFKuuOXzkLPX293KqGkoyMDOYfPsjmc2eJTXyJXwEXhjRqSkF7h/daf+/Vy/ywYS3VvH2Z/EUHtWUWHznM7IP7+KJCAAMbNM7J8NU6vfdvjm8/QGxUDPYuTjT48jPcfQqpLfvwxl32r9pC2NPnpCSlYGFnRdnalQloVEtRJi01jSNb9nLp79PEREZh62RPnXbNKVyqaK7X5bX/Yp3U2b91FzvWbSE6IpIC7q507NkF7+LqYzpz9CQHtu0m+N4DUlJScHF3pWWntpQoW/oTR/3hSjoVon3pevjYu2FrYsn3O+dw5P6lvA5LrbP7jnJyZyBxUTHYFXCkbscWuPkUfOd6j27dY9n4Wdi5OPLNxKxrz4XAE1w5coYXj58B4OjpQo02jSlQ0D3X6vA+/gvH3tVDp7m05xgJ0XFYOdtRuW1DnAqr/16f3LzPtimLVZa3HfMdVk52ANw7f50Lu44QHRpBeloaFvY2lKxbiSIBJXOzGkqO7TpI4ObdxERG4ehagBZd2+FVtIjasveu32L7svWEPg4hOTkZazsbAurVoHqzeooyJ/Ye5uyh4zwLfgKAS0F3GnVohXsRr09SH4BTe/7m6Lb9xEVFY+/iRMOvPsfDV9P5/A57V2zhxdPnpCQlY2lnTbk6VajUuJZSueM7DnJ63xGiwyIxNjfBr0Jp6rZr/snaEqf3/s3RbQeIi4rGzsWJhl+2ekud7rJ35RbCnj4jJSkFSztrytaurFqnnYGceV0ns8w61WnX7JPVSYjspPNM5IqFCxfSp08f/vrrL4KDg3Fzc8vrkHLdxo0b8zqEf52UlBT09P6/L4Bnj5xk/V/L+aJHZ7yKFuHo7oPMGv0bP876BWt7W5Xyd67dwKdUMZp1ao2xqQkn9h9mzrgpDJ08BteCHgB0H9Gf1NRUxTrxMXFM7DsC/8oVcqUOh/cHMm/6LHoP6odfiWLs3LyNHwZ/z5/LF2HvqNoB8+xpCD8OHk7Dpo0Y+tMIrl2+yqwp07GwtKRKzWoAHNyzn4Vz5zNw+FB8i/vxJPgRUyb8CsC3/Xorbe9m0A12bd2OZ6HcbfheOnaGbYvX0KJbe9x9CnFq398snDiDgb+PxsrORqW8voEBlRrWxNHdBX0DfR7cuMPGecvRNzSgQt1qinIGxoYMmT5Oad1P2TBceuwIq04c56cWn+FmY8vCvw/RZ9li1n3XH5N3ZNGGREUyY+9uSrlp/tF7/cljNp0/QyEHx5wOXa2rJ86xe+lGGndpg5u3F2f3H2P5z3PoPXkklrbWKuX1DfQpX68aDm4F0DPUJ/jGPbYvWI2egQFla1cG4ODa7Vw+eoam37TD1tmBu5eDWDP1L7qOGYCTp6vUKYecPHSU5XMX0bnPNxT28yVwxx5+Gzmen/+ajq29nUr5m1euUaxMSdp06YCxqQl/7znI1J8mMXrGz3jk8vngnzLSM+BO+GN23jjOxIY98jocja6fvMC+5Ztp0PlzXIt4cv7gcVb/9iff/vI9FrZWGtdLTHjJ1rkr8fQrTFx0rNJ7D4PuUDTAH5cinujq6XJi+0FW/TKX7j8Pw9zaMpdrpN5/4di7c+Yqx9fspmr7xjgWcuP632fZMWM5bUf3xszGUuN6X4zrg75h1rne0MxE8W8DEyP8G1XD0tEWbR0dHl65SeCSzRiZm+Dqp75jJCddOHqazQtX0ap7Jzx9CnF87yH+HPc7w2aMV3/dNTSgSqNaOLu7om9owL3rt1k/dwn6hvoE1KsBwN1rN/GvWgEPn0Lo6ukRuGkX88ZMYeiM8VjaaD6mc8qV4+fYtWQ9Tbq2xc27IGf3H2XZpFn0mfqj2vO5noEBFRpUx8HNGX0DAx7evMvW+avQM9CnXJ0qAFw6cpp9q7bQokdH3Ip4ER4SysY5ywBo9NXnn6hOG17VyYsz+4+y/OfZfDflB43XqAr1q+HoVgA9A32Cb95l61+r0TfQp+zrOh09w/5VW2jxbQdcX9Vp09zMOjX8qlWu10kIdWTYpshx8fHxrF27lp49e9KkSRMWL16s9P7ixYuxtLRUWrZ582a0tLQU748ZM4ZLly6hpaWFlpaWYhvBwcE0b94cU1NTzM3NadOmDc+fP1dsZ/To0ZQqVYply5bh4eGBhYUFX3zxBbGxWQ23pKQk+vbti729PYaGhlSpUoUzZ84o3j906BBaWlrs2bOH0qVLY2RkRK1atQgNDWXXrl34+vpibm5Ou3btSEhIUKxXo0YN+vfvr/h7+fLllC1bFjMzMxwdHWnfvj2hoaFv/e5CQ0Np2rQpRkZGeHp6smLFCpUy0dHRdO/eHXt7e8zNzalVqxaXLr3/3eq0tDS6du2Kp6cnRkZGeHt7M3369BxZZ9GiRfj6+mJoaIiPjw+zZ89WvPd6+OjatWupUaMGhoaGLF++nPT0dMaOHYuLiwsGBgaUKlVKKVvx9XobN26kZs2aGBsbU7JkSU6cOKEoEx4eTrt27XBxccHY2JjixYuzatUqxfvz5s2jQIECpKenK8XbrFkzvvrqK8Xf27Zto0yZMhgaGuLl5cWYMWOUOqFyw8HNu6hUtwaV69fEybUArb/phKWtDX/vOqC2fOtvOlGvVRM8ihTE3tmR5l+2xd7JkSunLyjKmJiZYmFlqXjduHgVfQN9/KuUz5U6bFyzjvpNGtKwWWPcPNzp0f877Ozt2b5pq9ryOzZvw97Bnh79v8PNw52GzRpTr3FD1q9aqygTdPUafsWLUbNebRydHClToRw16tbi1o1bStt6mfCSX8dMpN+wQZiameVK/V47sm0f5WpVoXydqji4ONHs67ZY2Fhxcu9hteULeLlRqkp5HF2dsba3xb9aRYqU9ON+0G2lclpoYWZlofT6VDIyMlh96jidq1anpq8fBe0dGNWiFYkpKey58vbzSlp6Oj9tXMc3NWpRwEq1cQyQkJzEjxvXMbJpC8wNDXOjCipO7AjEv2YAZWpVwq6AIw2/aoWFjRVn9x1VW97J05Xilcti7+qElZ0NJauWo2AJH4Jv3FWUuXTkNFVb1KNIaT+sHWwpV7cqBUv6cHzHQalTDtq1YRvVG9SmRsO6FHBzoWPPrtjY2XBg2x615Tv27EqTNi3x8i6MYwFn2nTpiGMBJy6cPPuJI/9wJ4OvMf/UVg7fu5jXobzVqV2HKFWjAqVrVsS2gAP1OrXE3MaS8weOvXW9XQvX4RfgT4FCHirvtejVibJ1q+DoXgBbZwcad2tLRnoGD67dVt3QJ/JfOPYu7zuOT5XS+FYtg5VTZtaZqZU51w+feet6RmYmGFuYKV7a2lk/Dwt4e+JZ2hcrJzss7K0pUTsAmwIOhNx5mNvVAeDw1j1UqF2VinWr4eDqTMuu7bG0sebY7kC15V283PGvWhFHtwJY29tStkYA3qWKce961rHVcUB3KjesRQFPNxxcnGjTqzMZGRncvnz9k9Tp+I4D+NcKoGztyti7ONKo8+eY21hxeu8RteWdPV0pUbksDq7OWNnbUKpqeQqV8OXhjTuKMo9u38fN24uSVcphZW9DoZK+FK9Uhqf3gj9RnQ4qXaMafZVZpzP71NfJ6VWd7F2dsLK3oaSiTlnXqEe37uNaxIsSSnUqy5NPVKd8IyMjf77+T0nnmchxa9aswdvbG29vbzp27MiiRYvI+ID/ZG3btmXQoEH4+fkREhJCSEgIbdu2JSMjgxYtWhAREcHhw4fZt28fd+/epW3btkrr3717l82bN7N9+3a2b9/O4cOH+fnnnxXvDx06lA0bNrBkyRLOnz9PoUKFqF+/PhEREUrbGT16NDNnzuT48eM8evSINm3aMG3aNFauXMmOHTvYt28ff/zxh8Z6JCcnM27cOC5dusTmzZu5f/8+nTt3fmvdO3fuzIMHDzh48CDr169n9uzZSh1uGRkZNG7cmGfPnrFz507OnTuHv78/tWvXVolfk/T0dFxcXFi7di3Xr1/np59+YsSIEaxdu/YfrTN//nxGjhzJhAkTCAoKYuLEifz4448sWbJEaVvDhg2jb9++BAUFUb9+faZPn86UKVOYPHkyly9fpn79+jRr1ozbt5Ub0SNHjmTw4MFcvHiRIkWK0K5dO0XHVmJiImXKlGH79u1cvXqV7t2706lTJ06dOgVA69atCQsLIzAwq7EVGRnJnj176NAhc5jZnj176NixI3379uX69evMmzePxYsXM2HChPf6Xj9GakoqwXfu41u6mNJy39LFuBf0fj8i0tPTSXyZiPEbd4qzO77vEGWqBWCQC50XKSkp3L55C//yZZWW+5cvS9DVa2rXCbp6TaV8mQpluX3jpmKf+pUszu2bt7h5PQiAkCdPOXPiFOUrKWfPzZoynfIBFfAvVyanqqRWakoqT+4FU7ik8hCeIiWL8vDmXQ1rKXtyL5iHt+6qDDdJTkxiUo/vmdB9KIsm/vFJG4ZPoyIJj4ujYsGsDAJ9XV38PTy4/PjtcSw4HIiliQnN/ctqLPPrzm1ULuxNea/cz1AASE1N5en9RxQsoTzsuWAJHx7duv9e2wi5/4hHt+7j/sZwk7TUVHSzZcnq6ekRfPPePw/6Hf6LdVInNSWFB7fvUtxfeThYsTKluH1ddRi6Ounp6SQmvMTUzDQ3Qvy/k5aaSsj9x3gW81Za7lXMm8e3H2hc79LhU0Q+D6PaZ/Xf63NSkpJJT0vHyNT4n4T70f4Lx15aaiovgkNwLap8rnUpWpBndx+9dd314+aydPBvbJu6mCc3NJ9TMjIyeBx0j6jnYTgV9siJsN8qNSWVx3cfUqSUn9Jy71J+PHij4+htHt97yIObdyjo562xTHJyEmlpaRibam5H5ZTU1FSe3ntEoRK+SssLlfTl0a33O/c+vf+IR7fu4eGbNWWEm3dBnt57xOM7DwCIeB7GrQvXKJKtfZkbUlNTCbn/iILZ61TCl+APukbdw+ONaTDcfbwIua+mTv5+GrYiRO6TYZsixy1YsICOHTsC0KBBA+Li4jhw4AB16tR5r/WNjIwwNTVFV1cXR8esYT779u3j8uXL3L9/H1fXzCEly5Ytw8/PjzNnzlCuXDkgswGzePFizF5loXTq1IkDBw4wYcIE4uPjmTNnDosXL6Zhw4ZAZqfPvn37WLBgAUOGZM3JMX78eCpXzhze0rVrV4YPH87du3fx8spMx//8888JDAxk2LBhauvRpUsXxb+9vLyYMWMG5cuXJy4uDlNT1cbVrVu32LVrFydPnqRChQqK79LXN+tiFBgYyJUrVwgNDVU8lGDy5Mls3ryZ9evX071793d+v3p6eowZM0bxt6enJ8ePH2ft2rW0adPmo9cZN24cU6ZM4bPPPlOUed0J9WZ2V//+/RVlXsc/bNgwxVxxv/zyC4GBgUybNo1Zs2Ypyg0ePJjGjTPnShozZgx+fn7cuXMHHx8fChQowODBgxVl+/Tpw+7du1m3bh0VKlTA2tqaBg0asHLlSmrXrg3AunXrsLa2Vvw9YcIEvv/+e0WsXl5ejBs3jqFDhzJq1CiV7yQpKUnlqaof+qCIuJhY0tPTMbNUzjQyt7QgJirqvbZxYPNOkpOSKFNF/ZDMB7fu8vThYzr2/eaDYntfMVHRpKelY2WtPNTBysqKiHD1HbqREZFYWWUrb21FWloa0VHR2NjaUKNOLaIjoxjUsx8ZGRmkpaXRpGUz2nZqr1jn0P6D3Ll1mxl/zcn5imWTEBtHeno6phbmSstNLcyJjYp567oTug8lPiaO9PQ06rRuSvk6VRXv2RVwpPV3nXF0K0BSQiJHdx5gzg+/0H/KT9g6vd+cY/9EeFwcANbZzknWJqaEREdpXO9S8EO2XjjH8h69NZbZe/UyN0NCWPzNpxuSlhATT0Z6OiYWylmIJhZmxEW/fT9N6f0jCTFxpKelUePzRpSpVUnxXsESvpzYcRB3n4JYOdhy/+otbpy7QsYnmDT3v1gndWJfnQ/NrSyVlltYWRAdGfVe29i1fitJiYmUr1bp3YXFOyXEZh57puqOPQ3nvYhnLwhcs51OP/ZBW0fnvT4ncM12zKws8PRTP49VbvsvHHuJcQlkpKdjZK7cAWRsbsqjmDi165hYmFGtU1Ps3JxJS03j1slLbPt9Cc0Gdca5iIeiXFJCIsuGTSE9JRUtbW2qtm+Ma9F3z3n3T8XHqm8jmVmaExsV/dZ1x3QbRFx0LOnpadRv25yKb0yVkN2OpeuxsLaiSMnc75RJiNHUljB7Z1vit54jM9sSaWnUbN1YMQQfoETlsiTExPHXT1PJIIP0tHTK161KtRb13rLFnJFVp/c/T7w2udcPWXXKdo0qXqks8TFxLBj1u6JO5epWpVrz3K+TEJpI55nIUTdv3uT06dOK+b90dXVp27YtCxcufO/OM02CgoJwdXVVdJwBFC1aFEtLS4KCghSdZx4eHoqOMwAnJydF9tbdu3dJSUlRdIpBZsdQ+fLlCQoKUvq8EiWyJjt3cHDA2NhY0XH2etnp06c1xnvhwgVGjx7NxYsXiYiIUAwZDA4OpmhR1Qlog4KC0NXVpWzZrCwOHx8fpSGu586dIy4uDhsb5XkeXr58yd2775f9AjB37lz++usvHj58yMuXL0lOTqZUqVIfvc6LFy949OgRXbt25ZtvsjppUlNTsbBQbvS8Wb+YmBiePn2qtD8AKleurDIU9c394eTkBGQOc/Xx8SEtLY2ff/6ZNWvW8OTJE0XHlolJViOyQ4cOdO/endmzZ2NgYMCKFSv44osv0HnVuD937hxnzpxRyjRLS0sjMTGRhIQEjI2V74hPmjRJqUMRYNSoUVRt/+GTob8esvxaRkbmUL53OXP4ODtWbqLHDwNUGpevHd97CGd3FzyK5HJDN3sdyFCp11vLZ7xenLn80vmLrF66gt6D+uHj58vTx0+YO30WVouW0eHrTrx4HsrcabOY+Puvah8gkFtUq5Txzj3Vc9xQkhITCb51n90rNmLrZE+pV0No3Yt4KU1S7O5TkBlDx3NsZyDNu+b8w0d2X77IpO1Zw2l/b98JUD3eMjIyNB6D8UlJ/LRpHSOatsDSWP2d+ufRUUzdvYMZHTtjoPvp5zVUiT0D3rWjuozqR3JiMo9v32f/6q1YO9hSvHLm+arhV63YOn8VMweNBy0trB1sKV29IhcOn8ydCqjxX6yTOh97PjwReISNy9YwYMz3WGTrBBH/kMr5XXU/QebNy82zllG1VQNsnOzfa9Mnth/g2okLdBzZG908ngT8v3Hsvf+53NLRFkvHrLlVHQu6Eh8ZzaW9x5U6z/QN9Wn9Yw9SkpJ5EnSP4+v2YGZnRQFvz1ypQXbZo8/IeEf7AvhuwvckJSbx8OZddixbj62TPf5VK6qUO7hpF+ePnqb3uKGfdhL67KfzDPX/p97UbcwAkhKTeHz7AXtXbsHG0Y4Sr87n96/d4vCm3TTp2haXwh5EPHvBzsXrMd2wi5qtGuZWLZSpax+9o05dR/cnOTGJR7cfsG/VFqyz1envTXsy61TInfBnYexasp5DlubU+FR1yg8y0t9dRnwy0nkmctSCBQtITU2lQIECimUZGRno6ekRGZmZbaKtra0yjDMlJeWd29Z0scy+PPsE9FpaWoqOq9efq9pAUt32m9vR0tJ663azi4+Pp169etSrV4/ly5djZ2dHcHAw9evXJzk5WWP91MX2pvT0dJycnDh06JDKe9nnkdNk7dq1DBgwgClTphAQEICZmRm//fabYojjx6zz+nuYP3++ImvuNZ1sd57f7NB67WP2x5ufO2XKFH7//XemTZtG8eLFMTExoX///krfddOmTUlPT2fHjh2UK1eOI0eOMHXqVMX76enpjBkzRikr7jVDNcMdhw8fzsCBA5WWGRgYcPThZZWympiaZ84tEpPtznZsdLTGzrDXzh45yfIZf9Ht+z74lFKflp+cmMTZIydp0iH3JlY1t7RAW0ebyGxZZlGRUSrZaK9ZWVsRGZG9fCQ6OjqYv7obu3T+ImrVr0vDZpmdkZ4FvUhMTGTGL1Np91UHbt+8RVRkJN91/VaxjfS0dK5evMzWjZvZFrhH5dj7J4zNTNHW1la5MxwXHYuppbmGtTJZO2T+OHFydyEuOoZ9a7cpOs+y09bWxqWgB2Ehz9W+/09V9fbFzyXrBkTyq2Gy4XGx2L5x0yEyIR5rDUNYnkRGEBIVxaBVyxXL0l+dvwLG/sS67/pxJ/Q5EfHxfPVnVlZgWkY6Fx4+ZN3pUxz9YTQ62jk/c4Sxucn/2Lvv6Ciqt4Hj3/Teey8kJJTQa+i9d+mCIKA0UVFBRQQFuyiiIIh06b33ANJ7T+iEHiC9l83u+0dgw7K7ATTt5/t8ztlzYObO7HN3JzOzd557LwaGhloZWWnJKVjbFvw9OTyZoMPN15PUpBT2rt6qbmiysrWh9wdvkZOdQ0ZqGjYOduxaukHngNWF7b9YJ11snpwPk+ITNJYnJyZh+4JxAI/sPcCfP03nnc8+pOJzXe/EP2dp8+TYe+68l56UopUJCZCdkcWDm3eIuXWP7QvyHqKqnoyP83X/D+gzdij+FfK7ZR3ZvIeDG3bR5+NhuPl6Fm1lCvBfOPbMrS0xMDQk47kss4yUNK1stIK4Bnhz9ajmfYyBoSF2rnnnBWcfDxJiYjm9dX+RN55Z2Ty5R3ouyyw1KUUrc+t5Tm55kzx4Prnubl+2XqvxbM+6bexatYlhX3yIp3/xTJJiaZt3L/H831RacopW5tbznp7P3X29SE1MJmLlZnVD0+4Vm6jcsJY6G83d14vsrGw2/LGERl1aaYxjV9jy66Q5MUhaUqrO88Sz8q9RXqQmpbBn1ZZn6rSZyg1qqbPR3Hy9yMnKYsPspTQs4joJoY80nolCo1AoWLhwIVOmTKFlS82U2m7durF48WJGjhyJi4sLKSkppKWlqRtSzpw5o1He1NSU3NxcjWXly5fn9u3b3LlzR519FhkZSVJSkkbXxoIEBQVhamrKgQMH6NMnr/tXTk4OJ06c0Bjs/9+6dOkSsbGxfPvtt+pYT5woeBDZcuXKoVAoOHHiBLVq5f2wvnz5MonPdN+rVq0aMTExGBsb4+/v/49i279/P+Hh4QwfPly97EVZay/axs3NDS8vL27cuKEeQ+xl2Nra4unpyYEDB2jYMD+l/tChQ+rP4GXs37+fTp06qbsLK5VKrl69qnFcWFhY0LVrVxYvXsy1a9coW7Ys1avnj5NVrVo1Ll++TFDQy43NZGZm9srdNJ9nbGKMb1AAUacvUKVuTfXyS2cuUKm2/jG8ju87xF/TZjPwwxGE1ayqt9zJA0dR5Cio1bie3jL/lomJCcEhZTl9/CT1GuV3Rzx9/CR16uvuvlKuYgWOHjyssezUsRMEh4ZgbJx3WcrKytS6MXra8K5SqahSvRozF83RWD/lq+/x8fOhx+u9C7XhDPK+K69AX66ei6Ri7fzP/Oq5KMrXfPkfTCqVitwc/ZNQqFQqHkTfwd3XS2+Zf8PKzExjBk2VSoWTtTVHb1wnxCPvx2tOroJT0dGMbK67a4SfszNLh72jsez3iF2kZ2fxQet2uNnZ4WBlrVXmy/Vr8Hd2pn+9hkXScAZ52c6eAT5cP3eJcs98L9fPXya0etgr7Uuh43syMTXBxNGeXEUukcfOUKGO/r+/wvJfrJMuxiYm+AeX4cKps9Son/8j98Kps1Srq/96cHjPfmZPmc7wT96nSm394++JV2dkbIxHgDc3L1whtGZ+9vfNC1coW137oY2ZhRlDvhmjsezkroPcirxK11EDsHfJn1jk8KYIDq7fSe+xb+MZWLIzsv8Xjj0jY2NcfD24E3mdgKr59z73om7gX1n/eF/Pi7sTg+ULGjxQqchV5BZcphAYmxjjXcaPK2cjqVQn/57oytmLVKj18ucplUqlde6LWLuVXas28dbno/EJKp4MOnhyPg/MO5+Xr1VFvfz6uUuE1qikf8PnqMgb5+6pnKxsDAx03TP924hfzNjYGI8AH66fv0T5Ws9eoy4RWuMVrlHP3R/lZGdrPUg3KKY6CaGPNJ6JQrNp0yYSEhIYNGiQVle91157jTlz5jBy5Ehq166NpaUln376Ke+88w7Hjh3TmpHT39+fmzdvcubMGby9vbGxsaF58+ZUqlSJvn37MnXqVBQKBcOHD6dRo0YaXQELYmVlxbBhw/joo49wdHTE19eX77//nvT0dAYNGlRYHwW+vr6Ympry66+/MnToUC5cuMCkSZMK3CYkJITWrVszZMgQ/vjjD4yNjXnvvfewsLBQl2nevDl169alc+fOfPfdd4SEhHD//n22bNlC586dX+pzCAoKYuHChWzfvp2AgAAWLVrE8ePHCQjQf/PwMttMnDiRUaNGYWtrS5s2bcjKyuLEiRMkJCRoZWg966OPPmLChAmUKVOGKlWqMG/ePM6cOaNzptGC4lu9ejWHDh3CwcGBn376iZiYGK1G1b59+9KhQwcuXryobmh76vPPP6d9+/b4+PjQvXt3DA0NOXfuHOfPn2fy5MkvHcuratq5DQt++h2/4EACQoM4uG0PCY/jaNAmbyy2dQuWkxiXwIDReeNGHd93iAU/z6L7kNcJCA1Sj8diamqKhZVm19JDO/dSuU51rG2LdhbKrj2788OkbwgODaFcxfJsXb+JRw8f0q5LBwDm/j6buNhYPhr/CQDtOndgw+p1zJo2gzYd2xF1IZLtm7by8cTP1PusXa8ua5etokzZIELL53XbXDh7HnXqh2NkZISllSX+gZrHrLmFOba2tlrLC0uDDi1Y/utcvAP98A0pw7Gdf5MYG0+dlo0A2Lp4DclxifQclTfe4aGte7B3ccTVK2/sxptR1/h74w7qtWmq3ufOFRvxLRuIs4crWemZHNyym/vRd+g8uI92AEXAwMCAXrXDmb9/Hz6OTvg6OTFv/z7MTUxoFZZ/Ezxh7SpcbWwZ0bwlZsYmlHHVHI/N5kl25tPlJkbGWmUsTEyws7DUWl7Y6rZrwprpi/AM9MWnbAAndx8kKTaeGs3rA7Br6QaSExLpOrw/AMd2/I2dkwPOnnlx3b58g0ObdlOrVSP1Pu9eiyY5PhF3P29SEhLZu2orKpWKeh3+3XAE/5/rpEubbh2Y+f00AsoGEVQ+hD2bdxD3KJZm7fMacpfP+YuEuDiGjnkXyGu8mPX9NF4f9iZB5cqS+CRzyNTMFEsdWc6liYWJGd52Lur/e9o6E+zsTXJmGg9TEwrYsnjVbtOY9b8vxiPQB+8gf07vOURSXALVmuU9HNmzfBMpCUl0HNoXA0NDXH08NLa3srXGyMRYY/nhTbvZt2ornYf3w87ZUZ2FY2puhqn5v3so9U/9F469Si3CiZi7Blc/T9zK+BD59wlS4pMo3yjv4dzRNTtJS0yh6Zt5Gfbndh3GxskeB09XlLm5XD1ylhunImk5NH8irlNb/8bFzws7FwdyFbncvnCVK4fP0qBv+2KpU6OOrVjyy2x8yvjjH1KGwzv3kRAbT3irxgBsWrSK5PgE+rybN2TIgS27cXBxwtUr73i7GXWFveu3U79tM/U+I9ZuZeuStbw++i0cXZ1JTsjLbDMzN8PMouhnhQ5v14zVvy3As4wvPsGBnNh9gKTYeGq1yDuf71iynuT4RF4bmTcG79Ht+7BzdsTlyfn81qXrHNy4izqtG6v3GVI9jEObI/Dw98Yn2J+4mMfsXr6R0BphxZKhFd6uKWumL8TryTXqxK68a1TNJ2O87ly6nuT4JLqN6K+7Tpevc3DTbmq3zr9GhVSryOEte/AI8MY7KK9OESs2EVq9eOpUapTQOKRCN2k8E4Vmzpw5NG/eXKvhDPIyz77++mtOnTpFtWrV+Ouvv/joo4/4448/aN68ORMnTtQY7L5bt26sWbOGJk2akJiYyLx58xgwYADr1q3jnXfeoWHDhhgaGtK6desCZ7zU5dtvv0WpVNKvXz9SUlKoUaMG27dv1xrA/N9wcXFh/vz5fPrpp0ybNo1q1arx448/0rFjxwK3mzdvHoMHD6ZRo0a4ubkxefJkxo8fr15vYGDAli1bGDduHG+++SaPHz/G3d2dhg0b4ub2cj9Ihw4dypkzZ+jZsycGBgb07t2b4cOHs3Xr1n+1zeDBg7G0tOSHH35gzJgxWFlZERYW9sKMvlGjRpGcnMwHH3zAo0ePKF++PBs2bCA4OLjA7Z41fvx4bt68SatWrbC0tOStt96ic+fOJCVppvo3bdoUR0dHLl++rM48fKpVq1Zs2rSJL7/8ku+//x4TExNCQ0MZPHjwS8fxT9RoUIe05BS2LFtLcnwiHn7eDJ/wEU5PUtmT4xNJeByrLn9gWwTK3FyWz1zA8pn5M5nWadqA/u/nd2F8eO8B1yOv8M6Xuie0KEyNmjchOTmZxfMWkhAXj1+gP5N+/Aa3JxN+xMfF8+hh/qyx7p4eTPrxG2ZNm86mNetxdHZi2Hsjqd8kP/uwzxv9MDAwYMEfc4l7HIudgz2169VlwFuF18j9qirXq0l6Shq7V20mOSEJd19PBn76jrqbW0pCEomx+d1RVSoV2xavJf5RLIZGhji5udCmb1dqPzNwcWZaOmtmLiIlMRlzSws8A3wY+uVH+AQX35Pw/vUakKXI4fstG0jJyKSCtze/9hugkaH2MCkRwxeMXVJaVKxbnfSUNPat2UZqYjKuPh70HTtMnfWSkphEUmx+44RKqWLXso0kPo7D0NAQBzdnmvfuSPVnBmNWZOcQsWIzCY9iMTUzI7hqeboM76/VYC11+nfqNK5PanIK6xavIDE+AW8/Xz6cPA5nt7zxsxLjE4h7lH8+jNi8g9zcXBb8NpsFv81WL6/foglvf/SO1v5Lk1AXP37rkv9gaVT97gBsiTrMVxEL9G1W7MrXqUp6ShoH1m4nNTEZF28Pen30FnbOecdeamKyxrH3Mk7uOkiuIpfV0+ZrLG/QpRUNu7UurNBfyX/h2AuqWZHMtHRObN5HelIKjp6utH2nLzZO9kBeN7qU+Pz7olxFLodX7SAtMRljExMcPF1o805f/MLyJ25QZOWwf8km0hLyyti7O9N0UDeCahb9LI4AVevXIj0llR0rNpCckISHrxdDPnsPxyf3SCkJSSQ81rzubl60mvhHjzE0MsLJ3YV2/V6jbsv8RpmDWyPIVShY8P0Mjfdq2bMjrXt1LvI6hYXnnc/3rt5KSkIybj4e9Pt4OPZP7iVSE5NIitM8n+9csp6EJ+dzRzcXWvbppH54AtCoa97fze7lG0mOT8LK1pqQ6mE079WhyOvztE4ZqU/q9OQa9frHw/OvUQnJJD13f7Rr6YZn6uRMi96dqNE8/xrVqGtrDAwM2L180zN1qkiznsVTJyF0MVA9P/iUEEKIf2z3leMlHUKhala2Jjdj75V0GIUuwNmLdef3lXQYhapzWCOSlqws6TAKlV2f7iw9taOkwyhUvau1/E/W6ditiyUdRqGq5VeBetOLb6bY4nBwxEwWHt9S0mEUuv412/4nj7+f9y0r6TAK1fuNerE58mBJh1Go2pWvx4ozu0o6jELVo0pzlp/eWdJhFKqeVVuUdAj/WMrd0nkPbuNdNMOLlHaSeSaEEEIIIYQQQghRmkieU6ny/6jDsBBCCCGEEEIIIYQQr0Yaz4QQQgghhBBCCCGE0EO6bQohhBBCCCGEEEKUJtJts1SRzDMhhBBCCCGEEEIIIfSQxjMhhBBCCCGEEEIIIfSQbptCCCGEEEIIIYQQpYlSWdIRiGdI5pkQQgghhBBCCCGEEHpI45kQQgghhBBCCCGEEHpIt00hhBBCCCGEEEKI0kRm2yxVJPNMCCGEEEIIIYQQQgg9pPFMCCGEEEIIIYQQQgg9pNumEEIIIYQQQgghRGmilG6bpYlkngkhhBBCCCGEEEIIoYc0ngkhhBBCCCGEEEIIoYd02xRCCCGEEEIIIYQoTWS2zVJFMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCYqZUlHIJ4hmWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOlzLZZmhioVDL/qRBCCCGEEEIIIURpkXL5akmHoJNNSHBJh1AiJPNMCCEK0bvrfi7pEArVL53f5+y9KyUdRqGr7FWWDzZMK+kwCtWUjqNIHD2upMMoVPY/fcXSUztKOoxC1btaS4at/qGkwyhUv3f7iMSUpJIOo1DZ29ix8PiWkg6jUPWv2ZZ604eWdBiF7uCImUzbv6KkwyhUoxr0YMq+pSUdRqH6oFFvJu+cV9JhFKrPWgxkxJofSzqMQjW964eM3/ZHSYdRqCa1fqukQxD/EdJ4JoQQQgghhBBCCFGaSCfBUkUmDBBCCCGEEEIIIYQQQg9pPBNCCCGEEEIIIYQQQg/ptimEEEIIIYQQQghRmki3zVJFMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCZKZUlHIJ4hmWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOZbbNUkcwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJdNssVSTzTAghhBBCCCGEEEIIPaTxTAghhBBCCCGEEEIIPaTbphBCCCGEEEIIIURpopRum6WJZJ4JIYQQQgghhBBCCKGHNJ4J8R/z8OFDvvzySxISEko6FCGEEEIIIYQQ4n+eNJ6J/0n+/v5MnTq1WPdnYGDAunXr/tX7TJw4kSpVqvyrfRREpVLRr18/zMzMcHBweKVtC/szfVUNGzZkyZIlJfb+z/rwww8ZNWpUSYchhBBCCCGE+P9KpSydr/+npPFMFKsOHTrQvHlznesOHz6MgYEBp06dKuao4Pjx47z11lvF/r6F7ZtvviEwMJCxY8e+8rYl+Rls2rSJmJgYevXqpV72fGOeSqXigw8+wMbGhoiICAAaN27Me++9p7W/JUuWYGRkxNChQ3W+36xZs6hcuTJWVlbY29tTtWpVvvvuO/X6MWPGMG/ePG7evFk4FRRCCCGEEEII8T9LJgwQxWrQoEF07dqVW7du4efnp7Fu7ty5VKlShWrVqhV7XC4uLsX+nkXh008//cfbluRnMG3aNAYOHIihoe72/NzcXIYMGcLGjRuJiIigZs2aBe5v7ty5jBkzht9//52ffvoJS0tL9bo5c+YwevRopk2bRqNGjcjKyuLcuXNERkaqy7i6utKyZUtmzpyp0ahWnOoHVKJpUA1sza2ISYljzfl93Ii7p7Nsn2otqe1bQWv5g+Q4vo1YWNSh6rR9/WY2LF9DYlwC3v6+DBgxhHKVtGMESIiLZ+Hvc7hx5Tox9+7TpksHBowcolUuLTWVpXMWcWz/YdJSUnH1cKPf0EFUq1OjqKujFu4fRuMy1Z58L/Gsv/A3N+Pv6y1vZGhEy7K1qOYdgq2ZFYmZqey+cpxjd/KPtwaBVQj3D8PBwoa07AzO3r/GlqhDKJS5xVElAMxbNcW0Tk0MLC3IvXWH9NUbUT58pLe89fBBGAcFai3PibxM2p/ax5xZs4ZYtGtF1t8HyVi3pVBjfxnHdvzNoU27SUlMxtXbg9b9u+IXGvTC7W5fvsG8L3/B1ceDYd9+XAyR6tcwsAotytbEztyaB8mxrDwbwTU954T+1dtQ17+i1vL7ybFM2jlPa3kN71AG1e7AmftXmXV4XaHEu2rlKv5atIi42DgCAgN5/4P3qVq1qt7yp06eYurPU7l54wbOLs7069ePrq910ygTsTuCWTNnce/uXby8vRk2fCiNmzRRrz996hR/LfqLS1GXiI2N5fsfv6dR48bq9QqFgpkzfufQwUPcu3cPa2trataqyYh3RhbaNfDEzgMc2bKH1MRkXLzcafF6Z3xDy7xwuztXbrBo8nRcvN0Z8vVH+XXac5jz+4/z+G4MAO4B3jTu0Q6vMn76dlViKnsE0adqS0JdfXG2sufjLb+z/+bZkg5Lr/N7jnJ6+wHSE1Nx9HSlfq82eJb111n23qWbrPtxrtbyPpNG4eCRd+zE3XvIsfURPL51n5S4ROr3bEPlFuFFWQUtF/ce49z2Q6QnpeDg6Urdnq3xCNZ9rNy/fJNNUxZoLe/xxQjsn9Tp5qlITm/dT/KjeJS5SuxcHQlrEU7ZupWLtB7Puvz3KS7uPkpGUir2Hs7U6NYctyAfnWVjrtxi57SlWss7fjYEO3cnAJS5uVzYcZjrRy+QnpiCnZsjVTs1wau89jWtqDQIrELz4JrYmVvxIDmWVef2cF3P+bxf9dbU8dM+nz9IjmXyrvkAVPYMplVIbVys7DEyNOJxagK7r57QuNcoarV8ylM/oBLWZpY8Sk1g66XD3EqI0VveyMCQJkHVqewZhLWZJcmZaey7fppT9y4DUN7Nn4aBVXG0tMXIwJC49CQORp/n7P2rxVUlIbRI5pkoVu3bt8fV1ZX58+drLE9PT2f58uUMGjQIgEOHDtGwYUMsLCzw8fFh1KhRpKWl6d3v7du36dSpE9bW1tja2tKjRw8ePnyoUWbDhg3UqFEDc3NznJ2d6dq1q3rd81lOV69epWHDhpibm1O+fHl27typ9Z5jx46lbNmyWFpaEhgYyPjx48nJydEo8+233+Lm5oaNjQ2DBg0iMzOzwM9n7969GBgYsH37dqpWrYqFhQVNmzbl0aNHbN26lXLlymFra0vv3r1JT09Xb7dt2zbq16+Pvb09Tk5OtG/fnuvXr6vXL1y4EGtra65ezb/gvPPOO5QtW1b9uT7/GRgYGDBr1izat2+PpaUl5cqV4/Dhw1y7do3GjRtjZWVF3bp1Nd7n+vXrdOrUCTc3t7wfJTVrsmvXrgLrHBsby65du+jYsaPO9VlZWXTv3p2dO3fy999/v7DhLDo6mkOHDvHxxx8TGhrKqlWrNNZv3LiRHj16MGjQIIKCgqhQoQK9e/dm0qRJGuU6duzI0qXaN2DFoapXWbqENWbHlWP8sGcx1+PuMbRuZxwsbHSWX3NuL59tnaV+fb5tNmnZGZy5f6WYI89zaM9+5k//k659e/DdH79QLqwCX388kVg9jTE5OTnY2tvR9fUe+JUJ0FlGkZPD5I/G8zjmEaMnfszUBTN5+4OROLo4FWVVNFTxDKZTxYbsvnqCn/Yt5WbcPYbU6Yi9hbXebfpXb0Owsw8rzuzm24iF/HVyG49S49Xrq3mF0K5cODsuH+W7iEUsP7ObKl7BtC1XfD+4zJo2wKxRPTLWbCTl5xkoU1KxHjoQzEz1bpM2fwlJE75Rv5K/+wVVbi45Z89rlTXy8cK0Tk1y7z8oymrodeHwSbYtXEODzq0Y+s1YfEPK8Ne3v5MYG1/gdpnpGaydsYjAimWLKVL9qnuH0L1yU7ZdOsLXuxdwLfYuI+q/pvecsOLsbsZumqF+fbLld1KzMjh197JWWUdLW7qGNebq4zuFFu/OHTv5ecpPDHxzIAsXL6JK1Sq8P+o9YmJ0/5C6f+8e77/7HlWqVmHh4kUMGDiAKT9OIWJ3hLrM+XPn+OzTcbRp24a/li6mTds2fPrxp1y4cEFdJiMjk+DgYD4c85GutyEzM5PLly7z5uA3WfjXIr794Ttu377Dh6M/KJR6Rx45zc6/1lGvYwsGT/4Qn5BAlv3wB0mxBY9BmpmewYaZSwioEKy17lbUNcrXrUbfcSN4Y+K72Do5sPS7mSTHJxZKzIXJwsSMa3F3+envZSUdygtdPXaeA8u2UqNtI3p8PgyPsn5s/GURKXGJBW7Xd/K7DJgyRv2yc8u/Bimyc7B1caButxZY2um/LhSV68cvcHj5Nqq2bUDX8UNxD/Zl67S/SH1BnXpMGsnrP3ygftk+UyczKwuqtm1Ip48H89rnwyhbryr7FqzjzsVrRVybPNEnozixehdhrcJp//FAXMv4EDFjBWnxSQVu12n8W7z29Uj1y8Y1fyiTMxv/5sqBM9Tq3oKOnw0huH5V9s1eQ/wd/Q09hamaVwivVWrC9stH+CZiIdfi7jGiXje95/OVZyP4ZPMM9Wvc1pl55/N7+fd46dmZbL98hB/3LeHr3fM5fOsCr1dvTTlX/2KpU0X3QNqUq8u+G6f5/dAabiXE0K96G+zMrfRu07NKcwKdPFl74W9+2b+cFWd38zgtUb0+PSeLfddPM/vIen47uIpT967QpWIjgpy9i6FGpYhKVTpf/09J45koVsbGxvTv35/58+ejeuYPb+XKlWRnZ9O3b1/Onz9Pq1at6Nq1K+fOnWP58uUcOHCAkSNH6tynSqWic+fOxMfHs2/fPnbu3Mn169fp2bOnuszmzZvp2rUr7dq14/Tp0+zevZsaNXRnqyiVSrp27YqRkRFHjhxh5syZOrtB2tjYMH/+fCIjI/nll1+YPXs2P//8s3r9ihUrmDBhAl999RUnTpzAw8ODGTNmvNTnNHHiRH777TcOHTrEnTt36NGjB1OnTmXJkiVs3ryZnTt38uuvv6rLp6Sk8P7773P8+HF27dqFSqWiS5cuKJV5fdL79+9P27Zt6du3LwqFgm3btjFr1iwWL16MlZX+C9ukSZPo378/Z86cITQ0lD59+vD222/zySefcOLECQCN7yU1NZW2bduya9cuTp8+TatWrejQoQO3b9/W+x4HDhxQN849LzU1lXbt2nHx4kUOHjyos8zz5s6dS7t27bCzs+P1119nzpw5Guvd3d05cuQIt27dKnA/tWrV4s6dOy8sVxQal6nGkVsXOHLrAg9T41l7fh8JGSnUC6iks3ymIpuUrHT1y9fBDQsTc47euljMkefZtHIdTdu0oFm7Vnj7+TBg5BCcXZ3ZsWGrzvKu7m4MHPkWjVo2xdLKUmeZiK27SE1O5aNJ4witWB4Xd1dCwyrgr6exrSg0LFOVY7cvcvT2RR6lJrD+4n4SM1IJ99f9vYS4+FHG2YvZR9dzNfYOCRkp3El8SPQzT2L9HN2Jjn/A6XtXSMhI4crj25y+dwUfe9fiqhZmDeuRuWsvOecjUcY8In3JKgxMTTCtpj+zQJWegSolVf0yCQmCnByyz17QLGhqimXfHmSsWIcqPaOIa6Lb4c17qNakLtWbhuPi5U6bN7ph5+TAiZ0HCtxu45/LCKtXHe/g4jvG9GkWXIND0ec5GH2emJR4Vp7bQ0J6Cg0Dq+gsn6nIJjkrTf3yc3DH0tScw7c0vx8DDBhYsx2bog4Sm1bwj9FXsXTxEjp26kinzp0JCAhg9AejcXNzY/Wq1TrLr1m9Bnd3d0Z/MJqAgAA6de5Mh44dWPzXX+oyy5Yuo1btWgwYOAB/f38GDBxAzVo1WbYkv6EmvF44Q4cPo0nTJrreBmtra36d8RvNW7TAz9+PsLAwPvzoQy5FXdLbsPcqjm7dS5XGtanapA7OXm607NcFWyd7Tu0+WOB2W+eupELdangF+Wut6zy8HzVa1MfdzwtnTzfaDe6JSqki+mLpy744cvsis49uYN+NMyUdygud2XmIcvWrUb5hDRw9XWnQqy02DrZc2HuswO0sbK2wsrNRv57NmHcL8KZe99YE16qEkXHxd+45t/MwIfWrEdqgOg4eLoT3bIO1gx2R+04UuJ2FjRWWdjbq17N18gwJIKBqORw8XLB1dSSsWR0cvdyIuab/vq4wRUYcI6huZYLDK2Pn7kzN15pj6WDL5f2nC9zO3MYSC1tr9evZOt04dpGwlnXxqlAGG2d7QhpUw6NcAJERx4u6OkDe+fxw9HkORZ/nYUo8q5+czxsUeD5PV7987fPO50ei88/nV2PvcPb+NR6mxBOblsTe66e4l/yYMs5exVKncP9KnLp7mZN3L/M4LZGtlw6TnJlKLd/yOssHOXvj7+jBopPbuBF3j8SMVO4lPeZOYn7iQ3T8A6IeRfM4LZGEjJS8e+KUePzs3YulTkLoIo1noti9+eabREdHs3fvXvWyuXPn0rVrVxwcHPjhhx/o06cP7733HsHBwYSHhzNt2jQWLlyoM3Nr165dnDt3jiVLllC9enVq167NokWL2LdvH8eP510Iv/rqK3r16sUXX3xBuXLlqFy5st4ujrt27SIqKopFixZRpUoVGjZsyNdff61V7rPPPiM8PBx/f386dOjABx98wIoVK9Trp06dyptvvsngwYMJCQlh8uTJlC+v+yLyvMmTJ1OvXj2qVq3KoEGD2LdvH7///jtVq1alQYMGvPbaa+zZs0ddvnv37nTr1o3g4GCqVq3K3LlzOX/+vEZXxFmzZvHgwQNGjRrFgAEDmDBhwguzuAYOHEiPHj0oW7YsY8eOJTo6mr59+9KqVSvKlSvHu+++q/E9Vq5cmbfffpuwsDCCg4OZPHkygYGBbNiwQe97REdH4+bmprPL5qRJkzhz5gz79+/H19f3hZ+bUqlk/vz5vP766wD06tVLnS331IQJE7C3t8ff35+QkBAGDBjAihUr1A2NT3l5eanjK05GBob42Ltx+ZFmo93lR7cJcPR8qX3U8avIlce3SchIKYoQC6TIyeHGlWtUrqHZPatSjapcvhj1j/d78tBRgiuEMueXmQzp1o8P3hzBmsUrUOYWT9dGIwNDvO1cufxI8wfD5ce38Xfw0LlNBfcA7iQ+pGlQdT5v8SYfN+1Hh/L1MTY0Upe5GXcfb3tXfOzdgLwsoHKu/kQ9jC6yujzL0NEBQ1sbFJefySLIzUVxPRpj/xf/zT1lWrs62afPQ7Zm9q1ltw7kRF1GcfW6ni2LlkKh4P7NO5SpFKqxvEylUO5c0T+m4em9R0h4GEujbm2KOsQXMjIwxNfencjnjomoR9EEOr3cD6Nw/zAuPbpFfHqyxvJ25cJJzcrgULR2xuA/lZOTw6VLl6hdp7bG8lp1anP+3Dmd25w/f55az5WvU7cOUZFRKBSKvDLnzlO79nNl6tTRu8+XlZqaioGBAdbW/y5TKFeh4MHNuwRUDNFYHlgxhLtXo/Vud3bfURIextKwa6uXep+crGyUuUosrHU/aBAvlqtQ8PjWfXwraHbd9qkQRMz1gjMwl385g3kffMe6H+dx99KNogzzleQqFMTevo93ec0uwt7ly/DwBXVaM2kWiz78kU0/LeD+Jf3nRZVKxb2oGyQ9jNPbFbQw5Spyib8Tg0c5f43lnuX8eXxTdxfHpzZ9N49Vn/7KzmlLibmieT+Vq1BgaKLZuGlsYsyjF3xOheHpPV7Uo2iN5VGPogl8yXu8cP8wLj+6RXxGst4yIS6+uFk7ci327r8J96UYGRjiaeus9V7XYu+q722eF+rqx/2kx9QPqMxHjfvyboMetAqprXF/9LxAR0+creyITiiZLHYhQMY8EyUgNDSU8PBw5s6dS5MmTbh+/Tr79+9nx44dAJw8eZJr166xePFi9TYqlQqlUsnNmze1so+ioqLw8fHBxyd//IPy5ctjb29PVFQUNWvW5MyZMwwZoj2Gki5RUVH4+vri7Z2fFly3bl2tcqtWrWLq1Klcu3aN1NRUFAoFtra2Gvt5fsD6unXrajR66VOpUn4mi5ubm7pr6LPLjh3Lfzp6+/ZtJk2axNGjR4mNjVU3BN2+fZuKFfPGSXBwcGDOnDm0atWK8PBwPv74xeP3PB8HQFhYmMayzMxMkpOTsbW1JS0tjS+++IJNmzZx//59FAoFGRkZBWaeZWRkYG5urnNdy5Yt2bVrF19//fVLzQS6Y8cO0tLSaNMm7wevs7MzLVu2ZO7cueoGUA8PDw4fPsyFCxfYt28fhw4d4o033uDPP/9k27Zt6kY8CwsLAI3usc/KysoiKytLY5mZmdkLY3wRKzMLjAwNSc7SfN+UrDRszF58s2prZkU5V38WntCd5VXUkpOSUSqV2DnYayy3c7An8V90M3r4IIbHp89Rv3ljPvlmAg/u3mfOtJkoc3N5rX/vfxf0S7AyzfteUp/7XlKz0rEx1/0j1snKjgBHTxS5ucw7vhkrU3O6VWqCpakZy8/sBuDM/atYm1kwsv5rGJA3RtrBm+eIuHayqKsEgIFtXjcRZUqqxnJlSiqGz32H+hj5emPk4U768rUay02qhGHk7Un6z78XSqz/RHpyGiqlEis7ze4wVnY2pCbp/uER9+ARu5ZuYODE9zAy0n8jX1ysn5wTUjI1hy5IyUzDzk1/5vBTtuZWVHALZO6xTRrLA528CPcP46vd2mMe/RuJiYnk5ubi6KjZpdrJ0ZEjsXE6t4mLi8PJ0VFjmaOjE7m5uSQmJuLs7ExcXByOTs+VcXIkLk73Pl9GVlYW03/7jVatW/3rxrP0lLxjzVrXsZao+1iLj3nMnuWb6Df+HQxf8ljbs3wTNg52BFQo+e7E/6syU9NRKZVY2Gp+5xa21qQn6X7oZGlvTeP+nXD18yRXoeDy4bOsnzKfLh+9qXectOKUVycVFraa5wQLWyvSk1N1bmNpZ0ODfh1w8fUgV5HL1SNn2fTzAjp8MACPZ+qUnZ7JX2OnkJuTi6GhAfX6tNNqpCsKWU/qZG6jWSdzGysyk3UP5WJhZ02d3q1x9HVHmZPLjeMX2PnrUlq+2we3oLwHQp7lAomKOI5bkA82zg48uBzNnXNXNXrEFJWn5/PkzOfv8dKxLaCL41O25laUdwtg/vHNWuvMjU35uu1QjA2NUKpULD+zi0uPir73hKWped79UbZmdnlqdgY2ZrrvjxwtbPF1cEehzGXJ6R1YmpjToUJ9LEzMWXdhn7qcmbEJHzV+/UmdlGyKPKh3bLj/KpXy/28XydJIGs9EiRg0aBAjR45k+vTpzJs3Dz8/P5o1awbkZQ+9/fbbjBo1Sms7XdlHKpUKAwODApc/bQh5Gbouns/v/8iRI+pMtlatWmFnZ8eyZcuYMmXKS79PQUxMTDTe+9n/P132bKZU+/btCQgIYPbs2Xh6eqJUKvH39yc7O1tju7///hsjIyPu379PWlqaRmPfy8Shb9nTWD766CO2b9/Ojz/+SFBQEBYWFrz22mtacTzL2dmZhATd48E0a9aMUaNG0alTJ3JzczW6quoyd+5c4uPjNSYIUCqVnD59mkmTJmn8EK5YsSIVK1ZkxIgRHDhwgAYNGrBv3z6aPBl8Oj4+bzwkfYNIf/PNN3zxxRcayyZMmABV7AqM8aVpHYbax7gutXzLk5GTxfkHxTMeiT5af5MqFTr+TF+aSqXC1sGOt0ePwNDIiMCyQSTExbNh+ZpiaTxTx6E7OJ1lDZ58Z4tPbSdTkfc3sOHifvrXaMvqc3tRKHMp4+RFs+CarDm3l1sJMThb2dG5YiOSs9LYdaXwu5CYVKuMZfdO6v+nPh3c//kqGOhaqJtp7erkPogh93b+U2cDezssurQnddY8eJI5VJIMnv/7UaHzT0qpVLL6twU0fq0tzh7F13X2Zei4MqF6ie+orl9FMnIyNQZZNjM2YWDNtiw+tZ207KLpTqt9CtB9rda3wdNrsebS58voONe8JIVCwWefjkOlVPHR2DH/aB86PV8PdMeoVCpZN30RDbq1xuklj7XDm3Zz8fBpXh83AmNTkxdvIAqk9bXkHVA6yzq4u+Dgnn8/4F7Gl9T4JE5vP1AqGs+eev5cV1B7kL27M/buzur/u5XxITUhmbM7Dmk0npmYm9Jt/FBysrK5H3WTIyu3Y+vigGdI8XRpf9nzN4Cdm5PGOHQugV6kJSQTueuYuvGs5mvNObx0KxsmzQYDsHF2oEydSlw/8u+yWF+N9hfzMufzOr4VtM7nT2Upsvlm90LMjE0IcfGja1hjYtOSuBpb9Bl1eTTjN8BA7/H39Jy48lwEWYq8jPVtlw7Ts0oLNkUeUE+YlK3IYcah1ZgamRDo5Enr0DrEZyQTHS/ZZ6JkSOOZKBE9evTg3XffZcmSJSxYsIAhQ4aoT6TVqlXj4sWLBAW9eCY0yMsyu337Nnfu3FFnn0VGRpKUlKTOUqtUqRK7d+9m4MCBL72/+/fv4+mZl0J9+PBhjTIHDx7Ez8+PcePGqZc9PzZWuXLlOHLkCP3791cvO3LkyEvV6VXExcVx/vx5ZsyYoe7Ssm/fPq1yhw4d4vvvv2fjxo18/PHHvPPOOyxYULgZB/v372fAgAF06dIFyOsO86Juj1WrViUmJoaEhAQcHBy01rdo0YJNmzbRoUMHlEolv/32m84fInFxcaxfv55ly5ZRoUL+rI5KpZIGDRqwdetW2rdvrzOGp91pn52U4sKFC5iYmGjs61mffPIJo0eP1lhmZmbGmK0vN66dPmlZGeQqldg+l81kY2ZJSpbuLLhn1fGrwIk7UeSqlC8sWxRs7WwxNDQkMV6zQTQpMUkrG+1V2Ds6YGxsrJGd4eXrTWJ8AoqcHIxNivaHZFp23vfy/FNUazNLUrJ0Nz4kZ6WRlJmqbjgDeJgSj6GBAfYW1sSmJdE6tA4n717i6O288eliUuIwNTahe6Wm7L5y/CWbr15ezsUoUm4/cyNtlHcbYGhrTW5KfsaFobU1qhTd2QoaTEwwrVKJjG2aE4MYe3tiaGONzfvD1csMjIwwCvTHtF4dksZMKJYBZy1trTAwNNTKMktLTsFax8ODrIxM7t+4zYPou2yZvxJ40oijUvFF33fp98lwAp/rllfUUtXnBM2sBBtzS63sBV3C/cM4ejtS45zgYuWAs5U9w8LzJ855el79rcsHTNwxh9hnBm5+Ffb29hgZGWllhMUnJGhljj3l5OSkVT4hIR4jIyPs7O3VZeKfLxMfj6Oj7n0WRKFQ8OnHn3D//n1m/D7jX2edAVjaPDnWnssyS09K0cp8BMjOyOLBzTvE3LrH9gVrgPxj7ev+H9Bn7FD8n5lA4MjmPRzcsIs+Hw/DzffluncJ3cytLTEwNCQ9SfMcl5GShqXtyx8LboHeXDlSOmYTzauTgVaWWeYr1sk1wJtrRzUbkQwMDbFzzWuQcvbxICHmMWe2HijyxjOzJ3XKeO5alJmappWNVhAXfy9uHM8fA9bcxpImb3UjN0dBVloGFnbWnF6/F2sn+8IKXS+953MzS1Je4nxe1z+MY8+dz59SgXrA/btJj3GzdaRlSK0ibzxLz84kV6nE2lTz/sjK1JzUbN11SslKJzkzTd1wBvA4NRFDAwNsza3UQwyoQP3vmJQ4XKwcaBhYRRrPRImRxjNRIqytrenZsyeffvopSUlJDBgwQL1u7Nix1KlThxEjRjBkyBCsrKyIiorSGiT/qebNm1OpUiX69u3L1KlTUSgUDB8+nEaNGqknBZgwYQLNmjWjTJky9OrVC4VCwdatWxkzRvtpc/PmzQkJCaF///5MmTKF5ORkjUYygKCgIG7fvs2yZcuoWbMmmzdvZu1azS5L7777Lm+88QY1atSgfv36LF68mIsXL2p0vywM9vb2ODo6MnPmTNzd3bl165bWBAcpKSn069ePd955hzZt2uDr60uNGjVo37493bt3L7RYgoKCWLNmDR06dMDAwIDx48drjSX2vKpVq+Li4sLBgwf1Nm41bdqUzZs30759e1QqFdOnT9dqQFu0aBFOTk50795da/y09u3bM2fOHNq3b8+wYcPw9PSkadOmeHt78+DBAyZPnoyLi4tG99z9+/fToEEDvVmLZmZmhdJN83m5KiV3Eh8S4uLHuQf540SFuPhyPqbgcaOCnL1xsXbgyK2NhR7XyzI2MSGwbBDnTp6mVoP8z/PcyTPUDK9dwJYFC6lYnoO796FUKtXf74O793FwcizyhjPI+17uJj2irIsvF2Lyx7kp6+LLxRjd495Ex9+nskcQpkYmZOfm3SC6WDugVClJzMj7MWBiZKKV7ZqfoWPAy2Z/vbSsbJRZmrNMKpNTMC4bRO69JzejRkYYl/EnY9P2F+7OtEpFMDYi5+QZjeU5V6+T/P0vGssse3VD+egxmRF/F9tMTcbGxngG+HD93CXK1cyfAOH6+cuEVg/TKm9mYc6w7z/RWHZ8x35uRl6hx3uDcCjG2V2fylUpuZ0YQzlXP41sg7z/F5xhGuzsg6u1g9aYZjEpcUzaOU9jWYcK9TE3NmXl2QgS0vWPpfMiJiYmhIaGcuzoMRo3yR+4/9jRYzRs1FDnNmFhYezfrzmBw9EjRylXvhzGTwZeD6sUxtGjx+jdt09+maNHCauke8IOfZ42nN25fYcZs35XN879W0bGxngEeHPzwhVCa+bHdPPCFcpWr6hV3szCjCHfaN6DnNx1kFuRV+k6agD2LvmNgoc3RXBw/U56j30bz8CXH4tQ6GZkbIyLnyd3Iq8TWC1/LNo7kdcJqBJawJaaYu88wNJe9wyJxc3I2BhnX0/uRV4noGr+8CZ3o67jX/nl6xR358GLZwpV5Y0bVtSMjI1w9HHnwaVofCvnP7R4cCka7zDtmWn1ib/7EAs77cY2IxNjLO1tUObmcvvMZfyqvXhSqn/r6T1eqKu/xvk71NWfcy/oMaA+nz838Ys+BhhgbFj0P/VzVUruJ8dSxtlLYyy3Ms7eXHpubLenbifEUME9EFMjY7Jz844lJys7lColyZm6u+RCXmJoQeOi/Sf9P57ZsjSSCQNEiRk0aBAJCQk0b95coztmpUqV2LdvH1evXqVBgwZUrVqV8ePH4+Ghe1BuAwMD1q1bh4ODAw0bNqR58+YEBgayfPlydZnGjRuzcuVKNmzYQJUqVWjatClHjx7VuT9DQ0PWrl1LVlYWtWrVYvDgwXz11VcaZTp16sT777/PyJEjqVKlCocOHWL8+PEaZXr27Mnnn3/O2LFjqV69Ordu3WLYsGH/9OPSy8jIiOXLl3Pq1CkqVqzI6NGjtbqPvvvuu1hZWanH/apQoQLfffcdQ4cO5d69whs74Oeff8bBwYHw8HA6dOhAq1atqFat2gvjf/PNNzXGuNOlcePGbNmyhUWLFjFs2DCtBoe5c+fSpUsXnRMPdOvWjU2bNvHw4UOaN2/OkSNH6N69O2XLlqVbt26Ym5uze/dunJzyfxgvXbr0pcfJK2x7r5+ijn9FavtWwM3akS4VG+FgacPBm3lPg9uXr0ffatqDS9fxq0h0/AMepPzzMYAKQ/vundm9ZScRW3dy99Yd5k+fTezDx7TokDcW3ZLZC/jtm580tom+doPoazfIzMgkOSmJ6Gs3uBudP1Zey45tSElOYf5vs7l/5x6njhxn7ZKVtOrUttjq9ff109T2q0Atn/K4WjvQsUIDHCysOfykYaJtuXB6V22hLn/q7hXSczLpVbU5btaOBDp60qF8PY7djlR3SYh8eJNw/0pU8QzG0dKWsi4+tA6tw8WYGy/VhaMwZP19EPPmjTAJK4+huyuWvbuhys4h+1R+RoVl79cwb9dSa1vT2jXIuRClPZNmVjbKmEcaL7KzUaWn5/27GNVt14RTew5zas9hHt+LYdvC1STFxlOjeX0Adi3dwJoZed1XDQ0NcfPx1HhZ2dlgbGKCm48npuaF32D+MnZfPUG9gErU9auIu40jr1VqgoOlLftv5n1HnSo04I0a2n8L9fzDuBl3n/vJsRrLFcpc7ifHarwysrPIVGRzPzn2X2eu9u7bh/Xr1rNh/QZu3rzJz1N+4mFMDF275WW6Tf9tOhM/n6Au37VbV2IePGDqTz9z8+ZNNqzfwIb1G+j7ZPIXgJ69enHs6FEWzl9AdHQ0C+cv4NjRY/Tq00tdJj09nSuXr3Dl8hUA7t+7z5XLV9QzaSoUCj4e8zFRUVF8MflLlLm5xMXGEhcbS06O5mQX/0TtNo05s/cIZ/YdJfbeQ3b+tZakuASqNQsH8sYr2zAz71pnYGiIq4+HxsvK1hojE2NcfTzUx9rhTbvZt2oL7Yf0ws7ZkdTEZFITk8nOzNIbR0mxMDEj2NmbYOe8MWM9bZ0JdvbGzVo7q7ykVWkRTuT+k0QeOEn8/UccWLaFlPgkKjSuBcDh1TvYNWeVuvzZnYe4cTqSxIdxxN17yOHVO7h+MpKwJvkPhXIVCh7ffsDj2w/IVeSSmpjM49sPSHxYPNfkSi3qcunAKS4dOEXCg8ccWr6N1PgkyjXKe5B8bM0u9sxdoy5/ftdhok9HkfQwjvj7jzi2Zhc3T0VRoUktdZnTW/dzN/I6yY/jSXzwmHM7D3Hl8FmCa79ao/U/Vb5pLa4dOsu1w2dJionl+OpdpMUnU7ZB3qREp9bv5eDC/AeGUXuOc/vsFZIf5cV7av1ebp+5TGjD6uoyj6Pvc/vMZVJiE3l47Q67p69ApVJRofk/f8D3KnZfPUG4fxh1/SriZuNIt7DGOFracOBG3vm8Y4UG9K+uPVlNuH9Fbsbf58Fz53OAlmVrEerqh5OlHW7WjjQNqk5t3/IcvxOpVbYoHIo+R3XvUKp5heBiZU+b0LrYmVtz7HbeRFEtytakW1hjdflzD66RkZ1Jl7DGuFjZ4+fgTquQ2py6e1l9f9QwsAplnLxwsLDB2cqOcP8wqniW1dllVYjiIplnosTUrVtX7+CcNWvWVE8goMvzXQF9fX1Zv359ge/XtWtXunbtqnPd8/srW7Ys+/fv11j2fKzff/8933//vcay9957T+P/n376qdasnt99953eGBs3bqz1PgMGDNDIzAOYOHEiEydOVP+/efPmGjNrPh/v3Llztd5r1KhRGuPKPf8ZPB+Hv7+/1rLn4/X39yciIkKjzIgRI7Te+3nvvfceFSpU4NatW/j5+emMB6Bhw4akPNO17NmZPs8VMONa165d1T+MunXrRrdu3QqMZ/PmzRgZGfHaa6+9MPaicPreFaxMzWkVWhs7MysepMQx6/A69eyZtuZWOFhqPu02NzalskcQa87vLf6AnxPepAEpycmsXriMhPh4fPz9+OSbCbi4543rkxAfT+yjxxrbjHnrXfW/b1y5xoHd+3Bxc2X60jkAOLu68Nn3X7Jgxp98NPgdHJ2daNO1A517FfxdFqYz969iaWpOi5Ba2D75Xv48siH/ezGzxN4i/3vJzs1h1uF1dAlrxHsNe5Kek8mZ+1fZGpXfDXzXlWOgUtGmXN6NZmpWBpEPb7Il6lCx1SsrYj8GJiZYdOuIgYU5ubfv5o1VlpXf3dTQwU7r6aehixPGgf6kztQ+v5QmFetWJz0ljX1rtpGamIyrjwd9xw5TZ/akJCaRFKt73MXS4uTdy1iZWtCuXDi25lY8SI5l+sHV6u4sdubWOOo4J1T1KsuKsxG6dlmkWrRsQVJSEnP/nENsbCyBZcrw8y8/qx+CxcXG8jDmobq8p5cXP/8ylak//cyqlatwdnHmgw8/oGmzpuoylSpXYtJXk5n1+0xmzZyFt7c3X33ztXpSHICoyCiGD81/SDX156kAtGvfjs8nTuDRo0fs//tvAPr1yW+YA5gx83eq16jOv1G+TlXSU9I4sHY7qYnJuHh70Oujt7BzzjvWUhOTX/lYO7nrILmKXFZPm6+xvEGXVjTs1vpfxVvYQl38+K1L/nAGo+rnZbZviTrMVxGFO0zEvxVcK4zMtHRObNxLWlIKTp5udHi3H7ZPuu6lJ6WSEpekLp+ryOXgiu2kJSZjbGKCo5cr7Ub1w79S/sQNaYkprPgyf+iGM9sPcmb7QTzL+tNlzKAir1OZmhXJTEvn1OZ9pCel4ujpSpt3+mKjrlMKqfGadTqyagdpiSkYmxjj4OlK63f64BuWXydFVjYHlmwmLSEZYxNj7N2daTqoK2VqamdTFgX/6uXISsvg3NaDZCSnYe/hTNPh3bF2zBtfNiM5lbT4/ExZpSKXU2sjSE9KxcjEOK/8sO54Vcif4ECZo+DMpr9JiU3ExMwUrwqB1OvfHlNL3ZNXFbZT9y5jZWZBm9C66vP5jINr1LNn2plb4WCpOayAubEpVTzLsvKc7vO5qbEJPas0x97CmpxcBQ9T4pl/fAun7l0u8voAXIi5gaWJOY2DqmFjZsnDlHgWndxKUmZelr21mSV2FvkZjdm5Cuaf2Ey7cvUYGt6VjOxMLsTcYNfV/LFeTYyM6VC+PrbmVuTkKohNS2TVuQiN7H8hipuBqjimFhFCiBdYv349jo6ONGjQoKRDYcWKFfj5+anHkHsV7677uQgiKjm/dH6fs/eulHQYha6yV1k+2DCtpMMoVFM6jiJx9LgXF/wfYv/TVyw9pf9Byv+i3tVaMmz1DyUdRqH6vdtHJKYkvbjg/xB7GzsWHt9S0mEUqv4121Jv+tAXF/wfc3DETKbtX1HSYRSqUQ16MGXf0pIOo1B90Kg3k5/rLv6/7rMWAxmx5seSDqNQTe/6IeO3/VHSYRSqSa3fKukQ/rHk48Uz+/qrsq357x42/a+SzDMhRKnQqVOnFxcqJj169CjpEIQQQgghhBBClBIy5pkQQgghhBBCCCGEEHpI5pkQQgghhBBCCCFEaaKUEbZKE8k8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBAlKiEhgX79+mFnZ4ednR39+vUjMTFRb/mcnBzGjh1LWFgYVlZWeHp60r9/f+7fv69RrnHjxhgYGGi8evXq9UqxSeOZEEIIIYQQQgghRGmiUpXOVxHq06cPZ86cYdu2bWzbto0zZ87Qr18/veXT09M5deoU48eP59SpU6xZs4YrV67QsWNHrbJDhgzhwYMH6tesWbNeKTYZ80wIIYQQQgghhBBClJioqCi2bdvGkSNHqF27NgCzZ8+mbt26XL58mZCQEK1t7Ozs2Llzp8ayX3/9lVq1anH79m18fX3Vyy0tLXF3d//H8UnmmRBCCCGEEEIIIYR4oaysLJKTkzVeWVlZ/3q/hw8fxs7OTt1wBlCnTh3s7Ow4dOjQS+8nKSkJAwMD7O3tNZYvXrwYZ2dnKlSowIcffkhKSsorxSeNZ0IIIYQQQgghhBCliVJVKl/ffPONekyyp69vvvnmX1c3JiYGV1dXreWurq7ExMS81D4yMzP5+OOP6dOnD7a2turlffv2ZenSpezdu5fx48ezevVqunbt+krxSbdNIYQQQgghhBBCCPFCn3zyCaNHj9ZYZmZmprf8xIkT+eKLLwrc5/HjxwEwMDDQWqdSqXQuf15OTg69evVCqVQyY8YMjXVDhgxR/7tixYoEBwdTo0YNTp06RbVq1V64b5DGMyGEEEIIIYQQQgjxEszMzApsLHveyJEjXzizpb+/P+fOnePhw4da6x4/foybm1uB2+fk5NCjRw9u3rxJRESERtaZLtWqVcPExISrV69K45kQQgghhBBCCCHE/ySVsqQjKBTOzs44Ozu/sFzdunVJSkri2LFj1KpVC4CjR4+SlJREeHi43u2eNpxdvXqVPXv24OTk9ML3unjxIjk5OXh4eLx0PWTMMyGEEEIIIYQQQghRYsqVK0fr1q0ZMmQIR44c4ciRIwwZMoT27dtrzLQZGhrK2rVrAVAoFLz22mucOHGCxYsXk5ubS0xMDDExMWRnZwNw/fp1vvzyS06cOEF0dDRbtmyhe/fuVK1alXr16r10fNJ4JoQQQgghhBBCCCFK1OLFiwkLC6Nly5a0bNmSSpUqsWjRIo0yly9fJikpCYC7d++yYcMG7t69S5UqVfDw8FC/ns7QaWpqyu7du2nVqhUhISGMGjWKli1bsmvXLoyMjF46Num2KYQQQgghhBBCCFGaqFQlHUGxc3R05K+//iqwjOqZz8Xf31/j/7r4+Piwb9++fx2bZJ4JIYQQQgghhBBCCKGHNJ4JIYQQQgghhBBCCKGHdNsUQgghhBBCCCGEKE2U//+6bZZmknkmhBBCCCGEEEIIIYQe0ngmhBBCCCGEEEIIIYQe0m1TCCGEEEIIIYQQojRRKUs6AvEMyTwTQgghhBBCCCGEEEIPA5VKJaPQCSGEEEIIIYQQQpQSyfsOlHQIOtk2ql/SIZQI6bYphBCFaOXZ3SUdQqHqXrkZKcnJJR1GobOxtWX2kfUlHUahGlKnE0k/TS/pMAqV3egRbIk6VNJhFKq25cKZtn9FSYdRqEY16EHy8ZMlHUahsq1ZnWO3LpZ0GIWqll+F/9yxB3nHX73pQ0s6jEJ1cMRMph9cVdJhFKoR9V5j3NZZJR1Gofqqzdt8vPn3kg6jUH3bbhhrzu0t6TAKVddKjUs6hH9O8pxKFem2KYQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0UUq3zdJEMs+EEEIIIYQQQgghhNBDGs+EEEIIIYQQQgghhNBDum0KIYQQQgghhBBClCYy22apIplnQgghhBBCCCGEEELoIY1nQgghhBBCCCGEEELoId02hRBCCCGEEEIIIUoTlbKkIxDPkMwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJUmbbLE0k80wIIYQQQgghhBBCCD2k8UwIIYQQQgghhBBCCD2k26YQQgghhBBCCCFEaaKSbpuliWSeCSGEEEIIIYQQQgihhzSeCSGEEEIIIYQQQgihh3TbFEIIIYQQQgghhChNpNtmqSKZZ0L8D5s/fz5bt24t6TCEEEIIIYQQQoj/LGk8E0XG39+fqVOnFuv+DAwMWLdu3b96n4kTJ1KlSpVX2mbv3r0YGBiQmJj4r977VaxZs4bvv/+eOnXq/KPtBwwYQOfOndX/b9y4Me+9916B2xTWdxoREUFoaChKpfJf76soPHr0CBcXF+7du1fSoQghhBBCCCGEKGHSbVNo6dChAxkZGezatUtr3eHDhwkPD+fkyZNUq1atWOM6fvw4VlZWxfqepdWNGzf47LPP2Lp1Kw4ODoWyzzVr1mBiYlIo+3qRMWPGMG7cOAwN89rv58+fz3vvvafR+BgVFUWLFi2oVasWS5cuxczMjD179vDDDz9w9OhRMjIy8Pf3p02bNowePRovLy+N9wgJCeHmzZvcvHlTa92NGzcYN24c+/btIz4+HmdnZ6pXr84PP/xA2bJlcXV1pV+/fkyYMIE///yzyD+Po9v3sX/DLlITk3D19qDtgO74lwvSWTb60jV2LF7H43sPycnKxt7FkZrN61OvfTN1mT8n/kx05FWtbctWrUD/T0YUSswqlYo/Zs9m7dq1pKSkUKFCBcaOGUOZMmUK3G53RAQzZ87k7t27eHt7M3zYMJo0aaJRZuXKlSz66y9iY2MJDAzkg9GjqVq1KgAKhYIZv//OwYMHuXfvHtbW1tSqVYt3Ro7ExcVFvY81a9awbft2Ll++TFpaGnsiIrCxsfnX9T69+xDHt+wjLSkFZ083mvTtiHdIwAu3u3clmmXfzMTZ2403Jr2vsS4zLYMDq7dx9cQFMtMzsHN2pHHvdgRWLvev431ZZnVrYhpWAQNzM3IfPCQj4m+UcfF6y5uUD8WydTOt5Um/zITcXABsBvXD0M5Wq0zWmfNkRvxdeMHrcGBLBHvWbSU5IRF3Hy86D+pDmQpldZa9EXmFjQtX8ujeA3KysnFwcaJuq8Y07thKXebB7XtsW7KWO9ejSXgcR+c3e9OoY8sircPzzu85yuntB0hPTMXR05X6vdrgWdZfZ9l7l26y7se5Wsv7TBqFg0fe30ncvYccWx/B41v3SYlLpH7PNlRuEV6UVdCiUqmYvWY1a/dEkJKWRoUyQYwZMJAy3t56t1m7J4It+/dz/e4dAEIDAhjRoycVyuSfM1ft2snq3bt48DgWgEBvLwZ16Uq9ylWKtD767Nqwlc0r15MUn4CXnw+vD3uTkLDyOsseP3CE3Ru3cftGNDk5OXj7+dClX08q1ahazFHn+y8eey+rskcQfaq2JNTVF2crez7e8jv7b54t6bD0OhdxhFPbDpCWmIKjlysNe7fDS8939az7V2+x+rs/cfJypc8X76iX5ypyObFlH1EHT5OWkIyDuzPh3VvhH6b7fFoUavuWp35AZWzMLHmUmsDmqEPcSojRW97I0JCmZapT2SsYGzNLkjJT2Xf9NCfvXgagvFsAjctUxdHSFiMDQ+LSkzhw8xxn7mvfNxWVOn4VaBhYBRszSx6mJrDp4kGiEx7oLW9kaEiz4BpU9SyrrtOea6c4cfcSANW9Q+heuanWdp9t/QOFMrfI6vGsw9v3sn/9DlISk3D19qT9wB4ElAvWWTY66hrbFq/h0b2YJ9ddR2q1aEj99s01ymWkpbNj6TouHj1NRlo6Dq7OtO3/GqHVwoqjSqVDKU00+P9KGs+ElkGDBtG1a1du3bqFn5+fxrq5c+dSpUqVYm84AzR+GP9/FxgYSGRk5EuVzcnJealGMUdHx38b1ks5dOgQV69epXv37nrLHD9+nDZt2tCpUyf++OMPjIyMmDVrFsOHD+eNN95g9erV+Pv7c/v2bRYuXMiUKVP46aef1NsfOHCAzMxMunfvzvz58xk3bpx6XXZ2Ni1atCA0NJQ1a9bg4eHB3bt32bJlC0lJSepyAwcOpFatWvzwww+F1kCpy/lDJ9gyfxUdBvfCNySQ47sOsPDr6Yz6eTz2ztrfiamZGbVbNcLdzwtTMzNuXbrG+tlLMTU3o2bz+gD0+fAtchUK9TbpKWlM/+hrKtYtvL/bBQsXsmTJEiZ8/jm+vr7MmTuXESNHsnrVKr2N3OfOnePTTz9l6Ntv06RJE/bs2cPHn3zCnD//pGLFigDs2LGDKT/9xMdjx1K5cmXWrFnDqHffZeWKFbi7u5OZmcmlS5cYPGgQwcHBpKSkMOWnnxj9wQcsWrhQ/V6ZmZmE161LeN26/DZ9eqHU+dLRM+xZvJHm/TvjVdafs3uOsnrKHAZ+8wG2TvqPkaz0DLb8sQy/8kGkJadorMtVKFj5w2wsba3pOLIf1o52pMQnYmpuVigxvwzTmlUxq1aF9O27USYkYla7BlbdOpIybzHk5OjdTpWVRcq8JZoLc/Nv0lOXrASD/AR3Q2dHrF/rRM6Va4Veh2edPnCUdXOX8Nrb/QgIDebQ9r38MeknPv71KxxcnLTKm5qb0aBtMzz8fTAzM+NG1BVW/r4AUzMzwls1BiAnKwsndxcq16vJurlLizR+Xa4eO8+BZVtp1Lc97kG+XPz7BBt/WUSfL9/Bxsle73Z9J7+LiUX+sWRhk/+3qcjOwdbFgaAaFTiwvGS6/y/ctJElW7fy+dtv4+vuwdz1axn57des+mEKVhYWOrc5GRVJy7rhVCobjJmJCQs3bWLkd9+y/NvvcX1yHXN1dGRkz154u7kDsHn/33z40xT++uqbAhvmisKRvQf4a+Y8BrwzhOAK5dizeTs/jJvMt3/+grOr9n3N5fMXqVi9Mj3e7IultRV/b4/gp8+/YeK0b/EPCizW2OG/e+y9LAsTM67F3WXLpUN83WZoSYdToCvHzvH30i007tcBzyA/Luw9zoafF/D65HcL/K6y0jPZ8ecqfMoFkp6cqrHuyNqdXDp8hmYDuuDg7sKti1fZ/Ntiun/6Nq5+nkVcIwhzL0PbcuFsvHiAWwkx1PQtzxs12vLL/hUkZabq3KZ3lRZYmVmw9vw+4tKTsDa1wPCZa1FGTiZ7r5/icWoiuSolIS6+dA1rTGp2Btdi7xZ5nSp5lKF9+Xqsv7Cf6IQH1PatwMBa7fhp3zK9depbtSXWZpasPreHuPRkrEwtMDQ00CiTmZPFj/s0r0/F1XB27uBxNs9bQachffALKcPRnX8z/6tfef/nidi76LiXNTelTuvGePh5Y2pmSvSla6z9YzGmZqbUatEwL/YcBXMmTcXa1oY+H7yNnZMDSbEJmFkU3/2REM+TbptCS/v27XF1dWX+/Pkay9PT01m+fDmDBg0C8hpBGjZsiIWFBT4+PowaNYq0tDS9+719+zadOnXC2toaW1tbevTowcOHDzXKbNiwgRo1amBubo6zszNdu3ZVr3u+y+DVq1dp2LAh5ubmlC9fnp07d2q959ixYylbtiyWlpYEBgYyfvx4cp77Mfjtt9/i5uaGjY0NgwYNIjMz84Wf0ZYtWyhbtiwWFhY0adKE6OhorTKv+vk87S46a9YsfHx8sLS0pHv37lpdQefNm0e5cuUwNzcnNDSUGTNmqNdFR0djYGDAihUraNy4Mebm5vz111/k5uYyevRo7O3tcXJyYsyYMaieG4Dy+W6bjx49okOHDlhYWBAQEMDixYu1Yv7pp58ICwvDysoKHx8fhg8fTmqq7gv/U8uWLaNly5aYm5vrXB8REUHTpk0ZOHAgc+bMwcjIiLt37zJq1ChGjRrF3Llzady4Mf7+/jRs2JA///yTzz//XGMfc+bMoU+fPvTr14+5c+dq1DUyMpIbN24wY8YM6tSpg5+fH/Xq1eOrr76iZs2a6nJhYWG4u7uzdu3aAuvzbx3cFEH1puHUaFYPV28P2g3ojp2zPcd26M7M8QzwoXL9mrj5eOLg6kSVhrUJrlyO6Kj8BglLayts7O3Ur+vnLmFiZkrFOoXTeKZSqVi6dCkDBw6kadOmBAUF8cXEiWRmZrJt+3a92y1dupTatWoxcOBA/P398xooa9ZkydL8m73FS5bQqVMnOnfuTEBAAB988AFubm6sWrUKAGtra2ZMn06LFi3w9/cnLCyMjz78kKioKGJi8p9E9+nThwEDBlAxrPCeTp7Ytp+whjWp1Lg2Tp5uNO3bERtHe87sPlLgdjvmr6Fc3ap4BPlqrTv/93EyU9PpPOoNvMr6Y+fsgHfZAFx9i/5HyVNmVSuTeewEims3UMbFk7F9FwbGxpiGviCzQAWq9HSNl8bqjEyNdSaB/uQmJpF7934R1gb2rt9B7eYNqdOiEW4+nnQZ3Ad7Z0cObovQWd470I9qDevg4euFo5szNRqHE1K1Ijcir6jL+AYH0nFAT6o1qI2xcfE/dzyz8xDl6lejfMMaOHq60qBXW2wcbLmw91iB21nYWmFlZ6N+Pc32BXAL8KZe99YE16qEUQnUSaVSsXTbNgZ26kTTmrUI8vFh4tvDyMzOZvuhQ3q3mzx8JN1btCDEzx9/Ty/GDR6CSqni+MUL6jINq1WnXpWq+Hl44OfhwfAePbE0N+fCteLLLHlq6+qNNGrdjMZtWuDl683rwwbh5OLE7o26z5WvDxtE+x5dCAwJxt3Lkx5vvo67lwenj5wo5sjz/BePvVdx5PZFZh/dwL4bZ0o6lBc6vf0gFRpUp2LDmjh6utKwTzusHe04t+dogdtFLFxHSO1KuJfRvkZdOnSGGu0a418pBDtXRyo1qY1fxWBObz9QVNXQUC8gjJN3L3Hi7iUepyWyJeoQSZmp1PbVnbkZ7OyDv6MHC09s5XrcPRIzUrmb9Jjbifm/N27GPyDyYTSP0xKJT0/m8K0LPEyJw9/BvVjqVD+gMifuXOL4nSgepyayKfIgSZmp1PGroLN8WRcfApw8mXd8M9fi7pGQkcLdpEfcTtD8DaUCUrMyNF7FZf+mXdRoWo+azerj6u1Bh4E9sXN24MiOfTrLewb4UqV+rSf3ss5UbViHspXLc/OZe9mTew6SkZpGvzHD8Q8NwsHFCf9yQXj4+xRXtYTQIo1nQouxsTH9+/dn/vz5Go0OK1euJDs7m759+3L+/HlatWpF165dOXfuHMuXL+fAgQOMHDlS5z5VKhWdO3cmPj6effv2sXPnTq5fv07Pnj3VZTZv3kzXrl1p164dp0+fZvfu3dSoUUPn/pRKJV27dsXIyIgjR44wc+ZMxo4dq1XOxsaG+fPnExkZyS+//MLs2bP5+eef1etXrFjBhAkT+Oqrrzhx4gQeHh4ajVG63Llzh65du9K2bVvOnDnD4MGD+fjjjzXKvOrn89S1a9dYsWIFGzduZNu2bZw5c4YRI/K72c2ePZtx48bx1VdfERUVxddff8348eNZsGCBxn7Gjh3LqFGjiIqKolWrVkyZMoW5c+cyZ84cDhw4QHx8/AsbhQYMGEB0dDQRERGsWrWKGTNm8OjRI40yhoaGTJs2jQsXLrBgwQIiIiIYM2ZMgfv9+++/9X6va9eupV27dowbN44ffvhBvfzpsadv3/b29up/p6SksHLlSl5//XVatGhBWloae/fuVa93cXHB0NCQVatWkZtb8BO5WrVqsX///gLL/BsKhYL7N24T9Fz3vKBK5bh9+cZL7eP+zTvcvnyTgPK6U+MBTkYcIiy8eqFlM927d4+4uDiN8fZMTU2pVq0a586d07vdufPnqf3cGH116tZVb5OTk8OlS5eoU7u2ZpnatQvcb2pqKgYGBlhbW/+T6ryUXIWCh9H38K+o2aDkXzGY+9ei9W53/u/jJD6KI7xzc53rr5+OxDPIj90L1zLjnS+Z9+kUjmyMKLbxAA3sbDG0tkIRfSd/Ya4Sxd37GHm+4IeEqQk2g/tjM+QNLDu3w9DFWX9ZQ0NMypUl50JU4QSuhyJHwd3r0YRU0fwRElKlAtGXrr/UPu7euEX0pWsEVQwpihBfWa5CweNb9/GtoNmV26dCEDHX7+jZKs/yL2cw74PvWPfjPO5eerlzSnG59/gRcUmJ1AmrpF5mamJCtdBynLt6pYAtNWVmZaHIVWCr5+8/V6lkx+FDZGRlERas/zxZFBQ5OURfvU5YtcoayytWr8LVyEsvtQ+lUklmegbWNkV3ftPnv3rs/RflKhQ80vFd+VYI4sG123q3i9x/kqRH8dTupN3l7+l+jU00GziNTUy4f/XWvw/6BYwMDPG0ddHKBrsWexdfBzed25Rz9eNe0mMaBFRmbJPXeb9hT1qH1MHY0Ejv+wQ6eeFsZc/NeP3dJguLkYEhXnYuXH2s+fdz9fEd/PQ03pVz8+du0mMaBVbhk2b9+KBRb9qWq6tVJ1MjE8Y2eZ1PmvbjjRpt8LQt4JpciBQ5efeywZU1GzSDK5Xn9uWXu+7ev3mbW5dvEPjM8AqRJ87hWzaQ9X8u4avBHzJ19BfsWbMFZe7/s26MKlXpfP0/Vbof94gS8+abb/LDDz+wd+9e9XhEc+fOpWvXrjg4OPDuu+/Sp08fdaZScHAw06ZNo1GjRvz+++9aWUW7du3i3Llz3Lx5Ex+fvCcGixYtokKFChw/fpyaNWvy1Vdf0atXL7744gv1dpUra95wPru/qKgooqOj8X7SBePrr7+mTZs2GuU+++wz9b/9/f354IMPWL58uboRZurUqbz55psMHjwYgMmTJ7Nr164Cs89+//13AgMD+fnnnzEwMCAkJITz58/z3Xffqcv88MMPr/T5PJWZmcmCBQvUdfr1119p164dU6ZMwd3dnUmTJjFlyhR1Rl5AQACRkZHMmjWLN954Q72f9957TyNrb+rUqXzyySd069YNgJkzZ7K9gAyhK1eusHXrVo4cOULtJw0Zc+bMoVw5zUaeZzPVAgICmDRpEsOGDSuwATI6OhpPT+2smtTUVLp3786nn36q1Rh59epVbG1t8fDw0Lvfp5YtW0ZwcDAVKuT9eO7Vqxdz5sxRH8deXl5MmzaNMWPG8MUXX1CjRg2aNGlC3759CQzU7BLj5eXF6dOndb5PVlYWWVlZGsvMzF6tcSo9ORWlUom1neZYXFZ2tqQmJhe47fdDPyUtORVlbi5Nu7ejRrN6OsvdvRbNwzv36TLs9VeKrSBxcXEAOD3X1dfJ0ZEHMfrHIYmLi9O5zdP9JSYmkpubq9WF2NHJidgnZZ6XlZXFb9On07pVqyJtPMtISUOlVGJpp/kelnY2pCWl6NwmIeYx+1dupde4YRga6b5xT3ocz+2o65SrW5Wuo98k8WEsuxauQ5mbS3jnFoVej+cZWloCaGeNpadjYKt/jDhlQgIZ23eT+zgOAzNTzKpWwrpXV1IXLUeZmKRV3iQoEAMzM7IvFm3jWVpKCkqlEht7zbHWbOzsSE64oGerPBMHjSY1KQWlMpfWPTtTp0Wjogz1pWWmpqNSKrGw1Tz2LGytSddz7FnaW9O4fydc/TzJVSi4fPgs66fMp8tHb+odq6q4xT05Thzt7DSWO9rZEhMb+9L7+W35MlwcHKlVoaLG8mt3bvPmxAlk5+RgYW7OD++9T6BX8XbZTEnOOx5tHew1lts52JGUkPhS+9i6agNZmZnUalj8Y4L9V4+9/6KMlHTd1yhba9KTdPcISHwYy8HV23nt47f0XqN8KwZzesdBvEL8sXNx5E7UDW6ciSqWBzyWpuYYGRpqZVClZmVgbWqpcxsHS1v8HNxRKHNZfGo7lqbmdCzfAEtTM9acz8+CMjM2ZWyT1zE2NESpUrEx8gDX44p+kqindUrJ1rzmpmRlUNZMd50cLWzxd3BHkatg0YntWJma07liAyxNzFh1bi8Aj1ITWXkugofJ8ZgZm1IvIIyh4Z355e+VxKVrX5MLU3rKk3vZ56671vY2pLzgXvabt8eq72Wb9ehAzWb11esSHj7mxoU4qtSvzYBP3iE25hHr/1yKMldJs+7ti6QuQryINJ4JnUJDQwkPD2fu3Lk0adKE69evs3//fnbs2AHAyZMnuXbtmkZXPpVKhVKp5ObNm1qNLFFRUfj4+KgbzgDKly+Pvb09UVFR1KxZkzNnzjBkyJCXii8qKgpfX191IxNA3bp1tcqtWrWKqVOncu3aNVJTU1EoFNja2mrsZ+hQzTEs6taty549ewp87zp16mBgYKCxzbNe9fN5SledlEolly9fxsjIiDt37jBo0CCNz0mhUGD33I+PZzO7kpKSePDggUaMxsbG1KhRQ6vr5rN1fFrmqdDQUI0ML4A9e/bw9ddfExkZSXJyMgqFgszMTNLS0vSOe5WRkaGz8dDCwoL69esze/ZsevfurfEZqVQqjc+7IHPmzOH11/Mbil5//XUaNmxIYmKiOv4RI0bQv39/9uzZw9GjR1m5ciVff/01GzZsoEWL/AYLCwsL0p9rVHjqm2++0WjoBZgwYQIVujR4qTg1aNVNpWOZpsFfjiY7M4s7V26yY8l6HN1dqFy/pla5ExGHcPPxxDvI/9XjemLr1q18/c036v9PfZK9+fx3olKpeOG3pGub55bp3K+Oz0OhUPDpuHEolUqdmadFQSsOPbEplUo2zVxKeJcWOLrrH69RpVRhaWNNy4HdMDQ0xD3Am9TEZI5v2VckjWcmoWWxaN5Y/f+0dZt0FzSAvE4guuU+eEjug/wuI+n3HmD9ek9Mq1Yic492tqZJxXIobt5Clab776mwGWgdiaoX/UnxztefkJWRya0rN9i0aCXOHq5Ua/jPZjMuCtqnCf3nCQd3FxyeOe7cy/iSGp/E6e0HSqwBY+vBA3wzd476/z9/mPcQS1e1tJfqtnDTRnYcPsTMceMxMzXVWOfn4cnir74hJT2diOPHmDhrJrM+G1/sDWig65ym6xjVdnjPftYsWs77X3yM3XMNcMXpf/3Y+/9F1zVKu5RSqWTbrBXU6dQMB3f9GUoNe7cnYsFaFn06FQwMsHNxpFy9akQdPFW4YRfg+SuRQQHXp6d1XXE2gixFNgBbLh2md9UWbLh4QD0GWLYim98OrsLMyIRAJy/ahNYlPj25WLLPAK3wDQxApbdOeZVadma3uk6bog7Rt1or1l3Yj0KZy53Eh9x5pmvqrYQHvFO/O+H+FdkYebBo6vAiL76V5e0vPyI7M4vbV2+wbfFanNxdqFK/FgBKlQorWxu6vP06hkaGeJXxIzk+kf0bdkjjmSgx0ngm9Bo0aBAjR45k+vTpzJs3Dz8/P5o1y5tdTalU8vbbbzNq1Cit7Xx9tcdM0Pfj99nlFnoGB9ZFV6PP8/s/cuSIOpOtVatW2NnZsWzZMqZMmfLS7/Oy7/28V/189HlaJwMDA/VTvtmzZ6uzwZ4yeu6J4b+dlfRpHQtqsLp16xZt27Zl6NChTJo0CUdHRw4cOMCgQYO0xpV7lrOzMwkJCVrLjYyMWLduHd26daNJkyZERERQvnxeCnjZsmXVjYAFZZ9FRkZy9OhRjh8/rtGYkpuby9KlSxk2bJh6mY2NDR07dqRjx45MnjyZVq1aMXnyZI3Gs/j4eL0TVXzyySeMHj1aY5mZmRkbLr38OCCWttYYGhpqZZmlJaVoZaM9z9E172bX3deL1KQU9qzcrNV4lp2VzfmDJ2jW89/dZDRs2FA9oD/kTboAEBsXh7Nz/k13fEICjk7aA7I/5eTkpM4y09jmSaaZvb09RkZGWmUS4uO1MtYUCgUff/IJ9+/f5/cZM4o06wzyBrs2MDQkLVEz2yI9ORVLW+33zs7I4uHNuzy6dZ/di9YDT/6uVCqmDPyY7h8Nxrd8EFb2NhgaGWmMB+To4UpaUgq5CkWhjweUc/0muTHPjJPy5NxhYGmp0bBlYGGJKu3VxkvJffgQQ3s7reUGNjYY+3qTvnHbPwv6FVjZ5I2tlPxc9ltKUjI2OmJ7lpNb3t+6p78PKYlJbFu2vlQ0nplbW2JgaKiVPZKRkqbz2NPHLdCbK0dKbpbAhtWqU/GZGTGzn0xqEpeUhPMzk7IkJCfjZFfwdwWwaPMm5m1Yz/SPPyVYx3XVxNgYH/e8blDlAwOJvHGdZdu28emgwf+2Ki/NxjbveEyK17zmJScmYetQcB2P7D3Anz9N553PPqRiNd1Z+EXtv3Ls/X9gYfP0u3ruGpWSppU5CJCTmcWj6Hs8vv2AvYvzHqI8vUb9Ong8nT8YgE+5MljaWtH+nddR5OSQmZqOlb0th1Ztx9a56CZSUseenUmuUomNmebvAytTC1KzdV+fUjLTSc5MUzcyATxOTcDQwAA7cyvi0vPut1RA/JN/P0iJw9XankaBVYu88Sy/TppZZtamFnrHKEvJSifpuTo9UtfJWmdmmQq4m/QIZyv7wgxfJ0sb3feyqUkpWOuYcftZjm5P7mX9vEhNSmb3ik3qxjNbezsMjY0wNMq/P3L19iAlMRlFjnZ34v+s/8ddJEsjGfNM6NWjRw+MjIxYsmQJCxYsYODAgerGlGrVqnHx4kWCgoK0XqbPPf2FvCyz27dvc+dOfh//yMhIkpKS1BlGlSpVYvfu3S8V29P93b+fP/D04cOHNcocPHgQPz8/xo0bR40aNQgODubWLc0xGsqVK8eRI5qDfT//f13v/aJtXvXzeUpXnQwNDSlbtixubm54eXlx48YNrX0GBATo3aednR0eHh4aMSoUCk6ePKl3m3LlyqFQKDhxIn+A4suXL2tMXnDixAkUCgVTpkyhTp06lC1bViN2fapWrap3plAzMzPWrFlDrVq1aNKkCRcu5HWzeu211zA1NeX777/Xud3TuObMmUPDhg05e/YsZ86cUb/GjBnDnDlzdG4LeY2EoaGhWhM6XLhwgapVq+qN1dbWVuP1qt02jY2N8Qz05do5za5s185dwjfkFWZVU6lQPDO7pjr+wyfJVSio0qDWK8X1vKcTQjx9BQYG4uTkxNGj+YMQ5+TkcOrUKSpVqqR3P5XCwjS2ATh65Ih6GxMTE0JDQ7XLHDumsd+nDWe3b99mxvTpWhmRRcHI2Bg3fy+iL2oOOB598SqeOrL6zCzMeOOr0fSf9J76VblJHRw9XOg/6T31wMxewf4kPopD9UwXmISHsVjZ2xTNQNo5OSgTk/JfcfEoU9Mw9ntmAF5DQ4y9Pcm9r78Lri6GLs46M8tMK4aiSs9AcSP6Xwb/YsYmxniX8efKmYsay6+cicQ/tMzL70iVN15VaWBkbIyLnyd3IjXHjrkTeR33Mi8/cHLsnQdY2hfcKF+UrCws8HF3V78CvbxwsrPn6IXz6jI5CgWnLkVRKbjgySoWbdrInHVrmTZmLOUDX+5cqVLlN9gVF2MTE/yDy3DhlGbD0YVTZwkuH6p3u8N79vPHj78x7OP3qVJb9xihxeG/cuz9f2BkbIyrnye3IzVnM7598ZrOyWpMzc3o++Uo+kwcqX6FNa6Jg7szfSaOxD1Q8/s1NjHB2sEOZa6SaycvElhVdw+KwpSrUnI/+TFBTprZokHO3lqD5T91O/EhNuaWmBrlXz+drexQqpQkZeqftAsMMCpgXLTCkqtSci/pMUEu2nW6laD7mnsr/gG2z9XJxcr+SZ30T9LlYetMSlZBdS4cxiZ597JXte5lo/ANefnrrkqFxr2sX2gZ4mIea3QRjr3/EBsHu/8/DWei1JEjT+hlbW1Nz549+fTTT0lKSmLAgAHqdWPHjqVOnTqMGDGCIUOGYGVlRVRUFDt37uTXX3/V2lfz5s2pVKkSffv2ZerUqSgUCoYPH06jRo3UXQMnTJhAs2bNKFOmDL169UKhULB161adg8Q3b96ckJAQ+vfvz5QpU0hOTmbcuHEaZYKCgrh9+zbLli2jZs2abN68WWuQ/HfffZc33niDGjVqUL9+fRYvXszFixe1xr561tChQ5kyZQqjR4/m7bff5uTJk1ozk77q5/OUubk5b7zxBj/++CPJycmMGjWKHj164P7k6fnEiRMZNWoUtra2tGnThqysLE6cOEFCQoJWFtTz9fz2228JDg6mXLly/PTTT1qzeD4rJCSE1q1bM2TIEP744w+MjY157733NLIDy5Qpg0Kh4Ndff6VDhw4cPHiQmTNn6t3nU61atdKa4OBZpqamrF69mh49etC0aVN2795NWFgYP//8MyNHjiQ5OZn+/fvj7+/P3bt3WbhwIdbW1nz77bcsWrSIL7/8UiNLCmDw4MF8//33nD17FpVKxYQJE+jXrx/ly5fH1NSUffv2MXfuXI1stfT0dE6ePMnXX3/9wjr9G/XaN2XVrwvwCvTDp2wAJ3YdJCk2gZot8rp/7liyjuT4RF4bOQCAI9v2Ye/sgLNX3jFx69J1DmzcRZ02jbX2fTLiEOVqVsaykAeaNjAwoHfv3sybNw/fJw1q8+bPx9zcnNatWqnLfT5hAq4uLuqJMnr16sVbb7/N/AULaNyoEXv37ePosWPM+fNP9TZ9+/Th8wkTKFe+PJXCwlizdi0xMTHq8foUCgVjxo7l8qVL/Pzzz+Tm5hL7ZHwkOzs7TExMAIiNjSUuLo67Txrsr127hqWlJe7u7lrdnF9WjdYN2DJrOe4B3ngG+XJuz1FS4hKp3DQvO+nvFVtJTUii7du9MDA0xMVbc/BfS1srjEyMNZZXblqXU7sOErF4A1Vb1CMhJpajGyOo1kL3GHZFIev0WcxrVUeZmIgyIQmz2tVRKRRkX8oftN2idTOUqWlkHchrhDerU5PcBzHkJiZhYJo35pmRizOZEdqzxJpWKEd25KVie3rauFNLFk+djU+QP/4hQRzasY+E2DjCW+WNe7hp0UqS4hLp+15e9/cDW3Zj7+yE25Pv5UbUVfas30aDds3U+1TkKHh4J+/hQK4il6T4BO7duI2phRkuHroHri5MVVqEs2vOalz8PXEP9CHy7xOkxCdRoXFew/jh1TtIS0ym+aDXADi78xA2zvY4erqRq1Bw5chZrp+MpPWwXup95ioUxN9/rK5TamIyj28/wMTMFHs3/RmkhcXAwIDerVszb8N6fNzyGtTmb1iPuakprcLzx/eaMHMGLg6OjOyZF/vCTRuZuWolk4ePxMPZhdgn1zJLc3MsnwwJMH35MsIrV8HNyYn0zAx2HD7MqahIpo35WCuOotamWwdmfj+NgLJBBJUPYc/mHcQ9iqVZ+5YALJ/zFwlxcQwd8y6Q13A26/tpvD7sTYLKlSXxSdaaqZkplv8yq/yf+C8ee6/CwsQMb7v8DHRPW2eCnb1JzkzjYap2Fn1JqtqqHjtmr8LV3wuPMr5c2Hec1Pgkwp58VwdXbSctIZmWQ7pjYGiIk7fmucvCxhojE2ON5THX75CamIyLjwepickcXb8blVJF9Tb/YIiKf+DgzfO8VrkJ95IfczvhITV9ymFnbs2x23kPYVuWrYWtuRWrzuUNt3L2/lUal6lG17DG7L52AisTC1qH1uHk3cvqLpsNA6twL+kx8enJGBkaEeLiQ1WvYDZcLJ4ZRA/cPEuPKs24l/iYW4kx1PYpj72FDUdv5z30aRVSGztzK+Jq3XEAAQAASURBVFaczZsh+sz9qzQNrsFrlZuy68pxrEzNaRNalxN3Lqnr1Cy4BrcTHhKXloiZiSn1/MPwtHVi/YWim/TqWQ3aN2fFr/PwLuOHb9lAju3aT2JsPLVbNgRg2+K1JMcn0uOdgQAc3rYHe2dHXJ7cy0Zfusb+DTsIb9NEvc/aLRtxaOseNs1bTt02TYl78Ii9a7cS3kb35BZCFAdpPBMFGjRoEHPmzKFly5Ya3Q0rVarEvn37GDduHA0aNEClUlGmTBmN2TOfZWBgwLp163jnnXdo2LAhhoaGtG7dWqMhqXHjxqxcuZJJkybx7bffYmtrS8OGDXXuz9DQkLVr1zJo0CBq1aqFv78/06ZNo3Xr1uoynTp14v3332fkyJFkZWXRrl07xo8fz8SJE9VlevbsyfXr1xk7diyZmZl069aNYcOGFTiYvq+vL6tXr+b9999nxowZ1KpVi6+//po333zzH38+TwUFBaln8oyPj6dt27Yag+8PHjwYS0tLfvjhB8aMGYOVlRVhYWEaA/fr8sEHH/DgwQMGDBiAoaEhb775Jl26dCEpSf8govPmzWPw4ME0atQINzc3Jk+ezPjx49Xrq1Spwk8//cR3333HJ598QsOGDfnmm2/o379/gbG8/vrrjB07lsuXLxMSons2OxMTE1asWEHv3r3VDWjDhw+nbNmy/Pjjj3Tp0oWMjAz8/f1p3749o0ePZsOGDcTFxdGlSxet/QUHBxMWFsacOXP4/PPP8ff354svviA6OhoDAwP1/99//331NuvXr8fX15cGDYr2BjEsvAbpKWnsWb2FlIRk3Hw86PfJcBxc8n5ApCQkkxibf4OuUinZsXQ9CY/iMDQ0xNHdhZZ9O1OzeX2N/cbef8itS9cZ8Nk7RRL3G/37k5WVxbfffUdKSgoVK1Tgt19/1egyHBMTg+EzXX8rV67MV199xe+//87MmTPx9vbmm6+/1mjsbNmyJUlJSfz555/ExsZSpkwZfpk6Vd1d99GjR/z9d14DTZ++fTVimjlzJjWqVwdg9Zo1zJ49W71uyFtvATDh88/p0KHDP6pzaO0qZKSmc3j9LtISk3H2cqfr6Dexe9J9JS0pmeT4xFfap62TPd0/GsKeJRtZ8NnPWNvbUq1lfWq1a/yPYvwnso+fxsDYGIumjTAwNyM35iFpqzfAM5lXhjY2Go1fBmamWLRoktfdMzuL3EexpK1YS26M5oy8xn4+GNraFPksm8+qWr82aclpbF++geSEJDx8vXhr/Pvqrs7J8UkkPM7vGqxUqtj81yriHz7G0MgIJ3cX2vd7jbqtGqvLJMcn8uPoCer/71m3jT3rtlGmQggjvyr6BpngWmFkpqVzYuNe0pJScPJ0o8O7/bB1sgcgPSmVlLj883muIpeDK7aTlpiMsYkJjl6utBvVD/9K+RldaYkprPgy//pyZvtBzmw/iGdZf7qMGVTkdQLo374DWdnZfDd/HinpaVQoU4Zfx36C1TMPamJi4zAwyO8osWrXTnIUCsZOm6qxryFduvJWt7wGnPjkZCbMnEFsYiLWlpYE+fgwbczH1A4LK5Z6PatO4/qkJqewbvEKEuMT8Pbz5cPJ43B2cwUgMT6BuEf5EyREbN5Bbm4uC36bzYLf8s9h9Vs04e2PiuZ8XpD/6rH3skJd/PitS/7DyVH1uwOwJeowX0XofxBYEsrWqkRmajrHNuzJ+6683Oj4Xn91F8v0pBRS4l9t8HiFQsHhNTtJfpyAibkp/mFlaTm4O2aWLz/Uyr9xPuY6lqZmNClTHRtzSx6mxLPwxFYSn2Rc2ZhZYmee/4AwO1fBvOOb6VC+HsPDu5KencWFmOvsvHJcXcbUyISOFRpgZ25FTq6Cx2mJrDy7h/MxLzcz5L917sF1LE3NaRZcHRszK2JS45l/fDOJGXl1sjWzxN5Cs05zjm6kY4X6jKzfjfTsLM4/uMb2y8fUZSyMTeka1ggbM0syFdncT37MrMPruZv0SOv9i0KlejVJS01j96rNpCQk4ebjyYBPRz5zL5tEYmy8urxKpWL7knXEP4rF0NAQJ3cXWvftSq0W+ffc9s6OvPnZu2xesJJpH36JraM94W2b0qhTa633/09TSrfN0sRA9TIDOAkhitzEiRNZt24dZ86cKelQityYMWNISkpi1qxZJR2KXrVq1eK9996jT58+r7TdyrMv1/X4f0X3ys1ISS54tqT/RTa2tsw+sr6kwyhUQ+p0Iumn6SUdRqGyGz2CLVGHSjqMQtW2XDjT9q8o6TAK1agGPUg+rn8ogP9FtjWrc+zWxRcX/B9Sy6/Cf+7Yg7zjr970oS8u+D/k4IiZTD+4qqTDKFQj6r3GuK2l977vn/iqzdt8vPn3kg6jUH3bbhhrnszi+V/RtVLjkg7hH0vesLWkQ9DJtmObkg6hRMiYZ0KIYjdu3Dj8/PzIzc0t6VB0evToEa+99hq9e/cu6VCEEEIIIYQQQpQw6bYphCh2dnZ2fPrppyUdhl6urq46x9oTQgghhBBCiGKhUr64jCg2knkmRCkxceLE/xddNoUQQgghhBBCiP8l0ngmhBBCCCGEEEIIIYQe0m1TCCGEEEIIIYQQojSR2TZLFck8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBBCD+m2KYQQQgghhBBCCFGaqKTbZmkimWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShPptlmqSOaZEEIIIYQQQgghhBB6SOOZEEIIIYQQQgghhBB6SLdNIYQQQgghhBBCiNJEqSzpCMQzJPNMCCGEEEIIIYQQQgg9pPFMCCGEEEIIIYQQQgg9pNumEEIIIYQQQgghRGkis22WKpJ5JoQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0kW6bpYpkngkhhBBCCCGEEEIIoYc0ngkhhBBCCCGEEEIIoYeBSiW5gEIIIYQQQgghhBClRfLS1SUdgk62vbuVdAglQsY8E0KIQvTzvmUlHUKher9RL6JibpR0GIWunHsg/ZZ+UdJhFKpFvSeQ9PVPJR1GobL7dDTvrvu5pMMoVL90fp/+S78s6TAK1cLen5Ny+05Jh1GobHx9/pPn8yn7lpZ0GIXug0a9mX5wVUmHUahG1HuNetOHlnQYhergiJmMXDulpMMoVL91+YDBK74p6TAK1Z89PuGNZZNKOoxCtaDX+JIOQfxHSLdNIYQQQgghhBBCCCH0kMwzIYQQQgghhBBCiFJEpVKWdAjiGZJ5JoQQQgghhBBCCCGEHtJ4JoQQQgghhBBCCCGEHtJtUwghhBBCCCGEEKI0UalKOgLxDMk8E0IIIYQQQgghhBBCD2k8E0IIIYQQQgghhBBCD+m2KYQQQgghhBBCCFGaKKXbZmkimWdCCCGEEEIIIYQQQughjWdCCCGEEEIIIYQQQugh3TaFEEIIIYQQQgghShOZbbNUkcwzIYQQQgghhBBCCCH0kMYzIYQQQgghhBBCCCH0kG6bQgghhBBCCCGEEKWJSlnSEYhnSOaZEEIIIYQQQgghhBB6SOOZEEIIIYQQQgghhBB6SLdNIYQQQgghhBBCiNJEKbNtliaSeSaEEEIIIYQQQgghhB7SeCaEEEIIIYQQQgghhB7SeCaE+J/VuHFj3nvvvZIOQwghhBBCCCEKl0pVOl//T8mYZ0IIUcIu7D3G2e0HSU9KxcHThXo92+AR7Kez7L3LN9k4Zb7W8p5fjMTBwwWAG6ciOb11P0mP4lHm5mLn6kTlFuGUrVu5KKuhYcvaTaxbtoqE+Hh8/P0YNPJtKlSuqLNsfFw886bP5vqVqzy4e5923Toy+J2hGmUO/32QVX8t58G9++QqFHh4e9GpR1eatGpWHNVRaxZUg3blwrGzsOFe0iP+OrWdK49v6y0f7hdGu3LhuNk4kZGTybkH11h6eiep2RkAeNm60K1SY/wdPHGxtuevU9vYfvlocVVHzaxBXUyrhGFgbk7u/QdkbI9AGRv3go3MMG9cD5OQIAzMzVEmJpG5+28U12/mra5bE+OQYIycHFEpFOTevU/mnv0o4xOKoUaa6gdUomlQDWzNrYhJiWPN+X3ciLuns2yfai2p7VtBa/mD5Di+jVhY1KG+tGZBNWhbrq76WFx8akeBx2Jdv4rPHYvXWfbMsVgcVCoVfyxayNrNW0hJTaFCaChj3xlFGX//Arfbvf9vZs6fz90HD/D28GD4wDdpUr++en1aejoz589nz8EDJCQmEhIUxAfDh1MhJFRdZuL337Np5w6N/VYMDWX+r78Vah3/i+fzi3uPcW77IdKTUnDwdKVuz9Z663T/8k02TVmgtbzHFyOwf1Knm0/qlPwoHmWuEjtXR8KKuU4A5yKOcGrbAdISU3D0cqVh73Z4lfV/4Xb3r95i9Xd/4uTlSp8v3lEvz1XkcmLLPqIOniYtIRkHd2fCu7fCP6xsEdbi1VX2CKJP1ZaEuvribGXPx1t+Z//NsyUdll4NAirTLLgmduZWPEiOY/X5PVzXc/5+vVor6vhp32s8SI7lq915x2W4fxi1fMrjaesMwO3Eh2yMPMCthJiiq8RzGpepRquQ2thbWHM/6THLzuziauxdnWUH1mxHvYBKWsvvJT1mwvY/AfiocR9CXLX/Js/dv8a0AysLN3g9mgZVp21o3jXpftJjFp/ezpXHd3SWHVy7Iw0CtP/e7yU95tOtMwEwMjCkffl61A+ohL2FLTHJcaw4u5vzMdeLtB5CFEQaz4QQRSY7OxtTU9OSDqNAOTk5mJiYlNj7Xzt+gUPLt9GgTzvcg3yJ/PsEm6f9Rc+JI7Bxste7Xa9J72Bqbqb+v7mNlfrfZlYWVGvbEHt3ZwyNjLh1/jJ7FqzDwtYKnwpBRVkdAA5E7GPub7N4+/0RhFYsz/aNW5g0djy/LpiFi5urVvmc7Bzs7O3o/novNqxcq3Of1jY2dH+9J16+PhibGHPi8DF+/e4n7B3sqVqrelFXCYDavhV4vVpr5p/YzNXYOzQJqs5Hjfry8ZbpxKUna5Uv6+zD23U6s/j0dk7fu4KDhQ0Da7ZnUK0O/HJgBQCmxiY8Sk3k2O1I+lZrVSz1eJ5pnZqY1apG+qbtKOMTMKtXG6ve3UiZNQ+yc3RvZGiIVe9uqNLTSV+zCWVyCoa2Nqiys9VFjHx9yD55htwHD8HQAPNG9fP2+8d8yFEUT+WAql5l6RLWmJVnI7gZd5/wgDCG1u3MN7sXkpCRolV+zbm9bLx4QP1/QwNDxjZ9nTP3rxRbzC9S27c8fau1YsGJLU+OxWp82KgPn2yZ8YJjcQen713B0cKGATXb8WatDkx7ciwWhwXLl7Nk9WomfPgRvt7ezFmymBFjx7J63jysLC11bnMuMpJPJ09m6IABNKlXnz0HD/Dx5EnM+XkqFcuVA2DyT1O4Hh3Nl2M/xsXJiS27dzF8zBhWzpmLq7Ozel/hNWvy+Ycfqf9vYly4t8H/xfP59eMXOLx8G/X7tMMtyJeov0+wddpf9Jg4AusC6tRj0sgC61T1SZ2MjIy4df4K+4qxTgBXjp3j76VbaNyvA55BflzYe5wNPy/g9cnvFvhdZaVnsuPPVfiUCyQ9OVVj3ZG1O7l0+AzNBnTBwd2FWxevsvm3xXT/9G1c/TyLuEYvz8LEjGtxd9ly6RBftxn64g1KUDWvELpVasLyM7u5EX+P+v6VGB7elcm75us8f686t4f1F/er/29kYMgnzfpz+l7++TvY2YeTdy+xMv4+itxcmpetyYjwbny1ewFJmala+yxsNX3K0atKcxaf2s612Ls0LFOVdxv05PPts4nXcf5edmYXq8/v1ajThJaDOHn3knrZjENrMDI0Uv/f2tSCCS0HceKZMkWplk95+lZtxcKTW7gSe5cmZarxQcM+fLL1d511WnxqOyvP7lb/39DAkMmt3+LYnUj1sm6VmhDuV5G5xzfzIDmWMI8yjKrfnUm75nM7sfgaOkXxS0hIYNSoUWzYsAGAjh078uuvv2Jvb693mwEDBrBggeaDm9q1a3PkyBH1/7Oysvjwww9ZunQpGRkZNGvWjBkzZuDt7f3SsUm3TSH+I1QqFd9//z2BgYFYWFhQuXJlVq1aBcDevXsxMDBg9+7d1KhRA0tLS8LDw7l8+TIAly9fxsDAgEuXNC+yP/30E/7+/qiepOdGRkbStm1brK2tcXNzo1+/fsTGxqrLN27cmJEjRzJ69GicnZ1p0aIFABs2bCA4OBgLCwuaNGnCggULMDAwIDExEYC4uDh69+6Nt7c3lpaWhIWFsXTpUo1Y0tLS6N+/P9bW1nh4eDBlyhStz8DAwIB169ZpLLO3t2f+/PkAREdHY2BgwIoVK2jcuDHm5ub89ddfL/X+ReXczkOE1q9KuQbVcfDIy1KwdrAlct/xArezsLHC0s5G/TI0zD+de4UEEFC1HA4eLti5OlKpWV2cvNx4cO1WUVcHgPUr1tK8bUtatG+Nj78vg98ZirOLC9vWb9ZZ3s3DjcGjhtKkdXMsra10lgmrWok6Devh4++Lh5cnHV7rjH9gAJHnLxZlVTS0CanDvhun2XfjNPeTY1l8ajtx6Uk0C66ps3yQszeP0xLZceUYj9MSuRJ7h4hrJwlwzP8RdTP+PsvO7OTI7Yvk5OYWV1U0mNWqSubBYyguX0P5OI6MjdsxMDHGtEKo3m1MK1fEwMKc9FUbyL17H1VyCrl376N8lH8+SF++hpzzkShj41A+iiVj83YM7WwxcncrjmqpNS5TjSO3LnDk1gUepsaz9vw+EjJSdD7JB8hUZJOSla5++Tq4YWFiztFbxXesvUjrkLrPHYs7iE9PomlwDZ3lyzw5FndeOUbsk2Nxz7WTBDh6FFvMKpWKpWvXMLB3H5o2aEBQQABffDSGzKxMtkVE6N1u6ZrV1K5enYG9++Dv68vA3n2oVbUqS9asASAzK4uI/fsZNWQI1SpVwsfLi7f7v4GXuwerNm7Q2JeJiQnOjo7ql52tbaHW8b94Pj+38zAh9asR+qRO4T3bYO1gR+S+EwVuV1CdPJ+pk62rI2HN6uDo5UbMNf2Zk4Xt9PaDVGhQnYoNa+Lo6UrDPu2wdrTj3J6CM38jFq4jpHYl3Mv4aq27dOgMNdo1xr9SSN531aQ2fhWDOb39gI49lZwjty8y++gG9t04U9KhvFDToOocjj7P4VvneZgSz+rze0nISNGZtQS6zt/uWJiYc/jWBXWZBSe2sP/mWe4lPeZhajxLTu3AwMCAEBft77QotChbiwM3z7L/5lkepMSx/MwuEjKSaVymqs7yGTlZJGemqV9+Du5Ymppz4OY5dZm07EyNMuXdAsjOzeHEneJpPGsdWoe/b5xm340zPEiOZcnpHcSnJ9MsSPc1KSMni6TMNPUrwNETS1ML9t/Iz4AM9w9jY+RBzj24xuO0RCKuneR8zA3ahNYpljqVGkpV6XwVoT59+nDmzBm2bdvGtm3bOHPmDP369Xvhdq1bt+bBgwfq15YtWzTWv/fee6xdu5Zly5Zx4MABUlNTad++PbmvcP8tjWdC/Ed89tlnzJs3j99//52LFy/y/vvv8/rrr7Nv3z51mXHjxjFlyhROnDiBsbExb7755v+xd9fhUR1tA4d/u5GNuxMnIYKHEIK7S2lpoS1Qo6UC9fajrm/lrVE32lJKsUKB4hQLxSU4BElISIi7++73R2DDJrshtLHyPvd17QU7O+fsTI7tmfPMDABBQUH06NGDRYsW6axz8eLF3H333SgUClJTUxk4cCDdunXj8OHDbNq0ifT0dCZPnqyzzIIFCzA2NmbPnj189913JCQkcPvttzNx4kSOHTvGww8/zMsvv6yzTFlZGT169GDdunWcOnWKmTNnMn36dA4cqP0R+/zzz7Njxw5WrVrFn3/+SVRUFNHR0X/rbzVnzhyeeOIJYmJiGDlyZKO+vzlUV1WRmZiKV6juk3bP0PakxekPdb9qxdvf8stzH7L2k59JPhtvMJ9Go+FyzEXy0rNwD/RtimI3qLKykrjzF+jWM0wnvVvPMM6eOmNgqRuj0Wg4Hn2U5KTLdOyivytoUzNSKvF18KjXXeBU2kUCnfQ/sbqQlYSDhQ1d3Wu2r42ZJRHeIRxLudDs5W0shZ0tSisrquITahOrq6lKvIxRO8OREsaB7alOTsV85BCsn3wYq4fuQdUnAhQKw9+lqolC0ZSVNVXxr8tIocTLzpVzGboNDecyEnUaMRsS6dOJ85mJeqMcWkPNvujOqTr74sm0iwQ6eeld5uq+2OWafbGndyjHW3BfTE5LJTsnh8jw2khRU1NTwrp04cQZww2TJ86coVcP3ejSyPBw7TLV1dVUq9WYmuhGOatUphw7dUonLfr4cYbfcTu33Xcv//nkY3Jym64L8c14Pq+uqiIrMQXP0PY66Z6h7Um/Tp1Wvv0dC5/7iHWfLCDlOnVKjrlIfnq2wa6gTa26qoqMSyl414ly8+4YQGoDDXhndkWTn5FDr1uGGFyvsYluNKOxiQkpF1qmofNmc/X8HVPn/B2Tfgk/x8adv3v7dOJcxqUGz9+mxsYYKZWUVDb/tclIqcTH3o3T6brHxOm0eNo7Ni76pb9/V2LSE/RGdF3Vz68LBxPPUFFtIHq8CRkplfjau3Mq7aJO+qm0OAIM/D6qa4B/N86kXyS7JF+bZqI0olKtG6VeWV1JoLP+65y4OcTExLBp0yZ++OEHevfuTe/evZk3bx7r1q3TBn0YolKpcHNz074cHBy0n+Xn5/Pjjz/y8ccfM2zYMLp3786vv/7KyZMn2bp1a6PLJ902hbgJFBcX88knn7B9+3Z69+4NgL+/P7t37+a7775j5syZALzzzjsMHDgQgBdeeIGxY8dSVlaGmZkZU6dO5csvv+Ttt98G4Pz580RHR/PLLzVj/HzzzTeEhYXx7rvvar/3p59+wsvLi/Pnz9OhQ82YHgEBAXzwwQfaPC+88AJBQUF8+OGHQE1D3alTp3jnnXe0edq1a8dzzz2nff/444+zadMmli9fTq9evSgqKuLHH3/kl19+0UazLViw4IbCbK/11FNPcdttt+mkNfT9+pSXl1NeXq6TplKp9OY1pKyoBI1ajbmNbrSVhY0VSQX6uw5Y2lozYPp4nL09qK6q5vz+46ydu4AJz96HxzVjtZSXlLFwzseoK6tQKJX0v3ssXnVugJpDYX4B6mo1dg72Oum29nbk/sOxroqLiplx+zQqKypRGil5+KlZ9Rrpmou1ygIjpZKCOl068suKsDXT/3e9kHWZb/atZFbf2zExMsZYaUT05bMsjN7YEkVuFKVlTVc5TXGJTrqmuASFreGoHKW9LUpbLypPnaV42SqMHOwxGzEElErKd+/Xu4zZ0IFUJV1GnXmdsdSakKXKvGa7levWr7C8GGvV9W/UbVSWhLj48svhtrPNru6L+WXFOukFZcXYmumP3IzNusy3+1Yxq+8k7b545PI5FkZvaokiA5B95fh3tNM9Nzja25Oanm54udxcHO3rL5N9peHL0sKCLqGh/LDoV/y8vXGwt2fzjh2cOnsWr3bttMv0iejJsIEDcHNxJSUtjW9//plH/u95fv3q6yYZXuBmPJ/X1ElTr07mNpb1uixeZWFrTf/p43H2dqe6qpoL+4+zbu4Cxj97H+7X1KmipIxf53xMdWU1SqWCvnePrddI11xKC2u2lYWtlW7Zbawoyddfr7z0LPb8vpnbX5iJ0shIbx7vToEc/XMP7YJ8sXV2ICnmIhePxaBWq5u8Dv8LrK6cvwv1nL9tVL7XXd5GZUmoqx8/H9Yf9X7VLR0HkF9axNmM5m/ktDK9+luizvm73PD5+1q2ZpZ0cmvPvP1/GMzj5+COp50LCw5vMJinKVmb6r8m5ZcXY2tmZWCpWrZmVnRxD+DbfbrDdpxMu8iooEjOZSSSUZRDqKsf3dsFoWzgIZ1oOYbug270Xqiuffv2YWtrq3P/FRkZia2tLXv37iUoKMjgslFRUbi4uGBnZ8fAgQN55513cHGpGS4mOjqayspKRowYoc3v4eFBp06d2Lt3LyNHNm7oFGk8E+ImcObMGcrKyrQNS1dVVFTQvXttGHiXLrXdlNzda7rrZGRk4O3tzZ133snzzz/P/v37iYyMZNGiRXTr1o3Q0FCg5qSzY8cOrKzqXwjj4uK0jWfh4boh2ufOnaNnT91ubRERETrvq6uref/991m2bBnJycnaE7KlpaV2/RUVFdqGQQAHB4cGT6ANqVvG632/Pu+99x5vvvmmTtrrr7+O7WDDXd0M0/0hoNFoUKD/x4GdmxN2brVj+Li196I4N5/jf+7VudkyNTPljlcfobK8guSYi+xdvhlrZ3vaBfn9jfL9HXXLr0HxD3/wmFuYM/eHrygtLeXEkWP89PU8XD3c6dxdf/e75lB3giEFCgwFr3vYODE9bDSrT/3FybRY7MysubP7cO7vOY4fDq4xsFTzMukYjPnoYdr3xb+trvlPvUoo9KTpfq4pLqF04xbQaFCnZaCwskQVGa638cxs5BCMXJwoWrjsH9bgb9JXv0aI8A6ltLKck6mxTV6kf0zP9mloX5wWNoo/Tv3FybQ47MysmdJ9GPf1HMuPB9c2S/E2btvGu5/O1b7/9D81D0zqngc0msacG+ouo5vy1pwXeOujjxh9150YKZUEBQYyasgQzl6ojawbMWiw9v8Bfn6EdujAuGlT2X3gAEP697+xyt1QWf/95/O65W9oorW6dXJt70VRbgHH/9yr03hmYmbKpCt1SomJZ//yzdg42+PRYtcoqHce0Gj0Bs+q1Wo2ffcbkbcMxf6autU14K5xbF+wioUvfQoKBbbODoT0DSNmz5GmLfb/HN0drqHr7rUifTpSWlnOiRTD5+9hgT3p4RnEZ7t+o0rdckMn1C1/Y+vUx7cLJZVlHG1gDM5+fl25nJdBfE7qPyrjjdLo3U7Xr1V/v66UVJYRnazbxXTRkc3c33Mc7495FA2QUZTLrvhj9Pfr1oSl/hfQtM3Gd0P3QW+88cY/Wm9aWpq2wetaLi4upKUZHutu9OjR3HHHHfj4+BAfH8+rr77KkCFDiI6ORqVSkZaWhqmpKfZ1Hsa5uro2uN66pPFMiJvA1aea69evp901T9qh5ilAXFxN955rB8a/erNydVl3d3cGDx7M4sWLiYyMZMmSJTz88MM63zF+/Hj++9//1vv+qw1xQL0GJ303Rpo6v7w//vhj5s6dy6effkrnzp2xtLTkqaeeouLK4ON18xuiUCjq5a2srB+yXreM1/t+fV588UWeeeYZnTSVSsXX+/UPeK+PmZUFCqWS0jpP8EsLi+s96W+Ii58nFw6c0ElTKJXYujgC4OTlTm5aFkc37mr2my1rWxuURkrycnJ00vNz87Gzt/tH61Yqlbh71nTV8A9sz+VLSfy+aFmLNJ4VlpdQrVZja67beGxjZlkvGu2q8aH9uJCVyIazewFIIoPyQxW8OvwBlp/Y3iIDE9dVeSGO6pRrfiRciaBQWFmgKa59aqywNNd5X5emuBhNdbXOXbQ6KwellRUolXBNpIXZiMGYBLanaOEyNIUtW+fi8lKq1WpszHQHo7dWWdSLZtAn0qcjh5NiqG5DP15r90Xdc0TNvqh/m9Xsi0lsOLsPqN0XXxl+PytO7GiWfXFA7950Cq59mFBx5VyclZuDk6OjNj0nLw+HOj9mr1UTZaZ7PsnJy9VZxtPDg+8/+YTS0lKKS0pwcnTkxf+8jYebm8H1Ojk64u7iSmKy/ln7btTNeD6vqZOiXpRZWWExFjbXjyi5ysXPk9jr1imTYxt3t0jjmbl1zbYqydftyldSWIy5nnpVlpWTkZBMZmIqUYvWAVd+l2g0fPHgq0x89j68QtpjYWPJuMenUVVZSVlRCZZ2NuxdsRkbJ8P7tzCs6Mr521qle/xYqSwoLDd8fboq0qcTB5POGDx/Dw0IZ0SHCL7cs4KUgiy9eZpaUcWV83edKDNrlYXB8/e1+vl1Yf+lU1QbiGY0NTKmp1eIzqQJza3wSp3s6kSZ2TSyTv39u7I34US9OhWWl/D57t8wURphpbIgt7SQyV2HklWc15TFF3+TofsgQ9544416jW11HTpUMz6ovgdq13vQNmXKFO3/O3XqRHh4OD4+Pqxfv75eb6MbWW9dMuaZEDeB0NBQVCoViYmJBAQE6Ly8vBo/NsDUqVNZtmwZ+/btIy4ujjvvvFP7WVhYGKdPn8bX17fedzQUoRUcHKw9GV51+LDuQMO7du3illtuYdq0aXTt2hV/f38uXBMxEBAQgImJic6MKbm5uZw/r/vkzdnZmdTU2idtFy5coKTk+jfI1/t+fVQqFTY2NjqvGw1VNjI2xtnbnaQzumMXJcdcxK1947dbdlIaFrbWDWfSaKiuav6nqiYmJrTvEMixw0d10o8dPkJwp9Am/S6NRqO3cbQ5VKvVJOSk0MnNXye9k5u/wenlVcYmqOs05l5932q9DioqUefm1b6yslEXFWHsd00XRqUSY29PqpNTDK6mKikZZZ3GUKWjPerCojoNZ0MwCQqkeNFyNPmGx2dpLtUaNUl56QQ563bRDHL2Jj7HcP2gZsIHZyt79l861WC+llazL6Ya2Bf1j0NlamxS78FCc++LlhYWeLVrp335+/jg6ODAgejaKJzKykqOnDhBl9COBtfTJTRUZxmAA9HRepcxNzfHydGRgsJC9h0+zMA+fQyuN68gn/TMDJwcHQzmuRE34/ncyNgYJ28PkuvU6XJMHK43VKfUel0k69HUjBnWEoyMjXHx8SDxjG5EUuLpWNwD6g8ab2qmYupbT3D3G7O1r86DemLv5sTdb8zGzV/3b2FsYoKVvS3qajWx0afx7x7SrPW5WV09fwe76J6/g118iM9u+Pwd6OSJi5U9+xJO6v18aGA4o4Ij+XrvShLzDHcbb2rVajWXctMIddVtJA519SMuW/9viauCnL1xtXbQGVS/rnCvEEyMjNnfghPcVKvVJOSm0rHONamjmz+xBn4fXRXs4oObtWODk1dUqqvJLS3ESKEk3DOYI8kNj3slWsaN3gfNnj2bmJiYBl+dOnXCzc2NdD1DOWRmZuLq2vgJp9zd3fHx8dHez7m5uVFRUUFunbFOMzIybmi9EnkmxE3A2tqa5557jqeffhq1Wk2/fv0oKChg7969WFlZ4ePTuEF4b7vtNh599FEeffRRBg8erBPFNmvWLObNm8ddd93F888/j5OTE7GxsSxdupR58+ZhZGAMkIcffphPPvmEOXPmMGPGDI4dO6ad/fJqS39AQAC///47e/fuxd7enk8++YS0tDRCQmp+cFpZWTFjxgyef/55HB0dcXV15eWXX9aZvQtgyJAhfPnll0RGRqJWq5kzZ45OtJ0h1/v+5tRleB+2/7QSFx8PXNt7ceavwxTm5BM6sKar64GVWyjOK2TIAzVPTU5s3Ye1ox32Hi6oq2vGk7l45AwjHql94nJk4184+7TD1tme6qpqEk9d4Py+4/SfOq7Z6wNwy+Rb+fSdjwgICiSoYwh/rttIVkYmIyeMAWDh9/PJzszmqZdrx5m7eKHm5qystIyCvHwuXojDxMQYL9+afXfFr8sICArErZ07VZVVRO8/RNTmbTzyzOwWqRPAxnP7eSTyVuJzUojNuszg9j1wtLBl24WaxuDJXYdib27Nd/tXA3A0+TwPRIxnaEA4J1JjsTO3ZlrYSOKyLpNXWhPJYaRU0s7GGQBjpRH25jZ427lSVlVBRlHTDWbekPKDRzHrE4E6Jw91bi6qPr3QVFZRcbq2C4X5+FGoC4soj6qZNa7iyHFU4d0xGzGYisNHUdrbo+oTQcWh2kZTs5FDMO0YTPGKNWgqKlBcHV+tvAJa6CYZICruCNN6jCIxL52EnFT6+HbG3sKaPVdmKhsX2hdbMysWHdmss1ykTycSclJJLWy5Mdoaa9O5fTwceSvxOanEZl1mUPswHC1s2X6hZhKVO7oOwd7cmu+vjItTsy+OY0hAD06mxmFnbs3UsBHEZSVr98XmplAouOvW25i/ZDHeVxrU5i9ZjJnKjFFDagdgf+2/7+Pi5MTsGQ8CcOettzHzmaf5eelSBvXpQ9TevRw4coQf536qXWbfoUNo0ODj6UVSSgqff/89Pl5eTBg5CoCS0lK+/+UXhvTvj5ODAynpaXz900/Y2doyuG+/JqvjzXg+7zK8Nzt+WonTlTrF/BVNUU4+IQNrhj84uHIrxXkFDL5Sp5PX1Km6uprY/SeIPxLD8EdqJxc6unEXzj4e2Djbo9ap09gWqRNA95F9+XPeClx82+He3ptTOw9RlJNP50E1w0rsWbGZ4twCRjx0BwqlEkdP3Zsrc2srjEyMddLT4pIoyivA2cudorwCDvyxDY1aQ4/RTdkt+J8zN1Hhaeusfe9h40SgkycFZcWkt9B1p7G2x0ZzT/hoEvPSic9Joa9vFxwsrNkVX9OANCG0H7bmVvXGb+zt05n4nBS95+9hgT0ZG9KHBYc3kF2Sj7Wq5tpUXlXZIgPsbzl/kBkR40nITeViVjID2nfDwcKGqLia6+dtnQdiZ27NTwfX6SzXz68rcdnJDUbJ9fPrytHk8xRXlDZrHeradHY/D0dOrPl9lJ3M4Pbda65JsVeuSV2uXJMO6I7VNsC/G7FZl0nOz6y3Tn8HD+wtbEjMTcPewpqJnQaiUCjYELO3RerUZtwkYyY6OTnh5GS42/tVvXv3Jj8/n4MHD2qH+Tlw4AD5+fn0aeCBWF3Z2dkkJSVpe0f16NEDExMTtmzZop3sLjU1lVOnTumM1X090ngmxE3i7bffxsXFhffee4+LFy9iZ2dHWFgYL730UqMHq7WxsWH8+PEsX76cn376SeczDw8P9uzZw5w5cxg5ciTl5eX4+PgwatSoeo1Y1/Lz82PFihU8++yzfPbZZ/Tu3ZuXX36ZRx99VPuE4tVXXyU+Pp6RI0diYWHBzJkzmThxIvn5tbPufPjhhxQVFTFhwgSsra159tlndT6Hmu6X999/PwMGDMDDw4PPPvusUTNyNub7m0tAz06UFZdweP1OSvILcfBwYczjU7F2tAOgOL+IwpzaclRXVbNvxZ8U5xVgbGKCvYczox+fik/nDto8VeWV7Fq8juLcmjx2bk4MmTGJgJ4tMzNlvyEDKcgvZNkvi8nNzsHbz5dX//sWLm41Nxk52TlkZmToLPPMg7WNYHHnLvDX1iic3VyYt2wBAOVlZXw39yuyM7MwVZnSztuLp195nn5DBrZInQAOJJ7GytSciR0HYmduxeX8DD7auUg7O5SdmRWOFrba/Lvij2NmrGJYh57c1X0EJRVlnMmIZ9mx2ll97M2teWf0I9r3Y0P6MDakDzHpCby7fUGL1Kti/yEUJsaYjxqCwsyM6pQ0ipf+DhW1NxFKG2udLpqawiKKl/6O2bBBWD14D+rCIioOHaV8X22UqapHNwCspunOyFuydhOVJ5tm5tXGOJp8HktTM0YG98JWZUlqYTbf7VutnX3NxswSewvdSB8zY1O6ugew8mRUi5XzRhxIPIOVqQW3dByg3Rc/3rnY4L64O/445sam9fbF345ta9Fy3ztlCuUV5bz/xecUFhbSKTiEL99/H0uL2m61aRkZKBW115SuHTvyzsuv8M3P8/l2wc94unvw3suv0OmahxtFJcV8+eOPZGRlYWNtzZB+/Zn1wP0YG9f8zFUqlcTGX2T91i0UFhXh5OBAeNduvPvyKzrf/U/djOfz9lfqdGT9Tkryi3DwcGH0NXUqyS+kqE6d9q/4k+K8QoxNjLH3cGHU43fjrVOnCnYvXn+lTsZX6nQb7VuoTgAdIrpQVlTCwTU7KM4vxLGdKxOeukfbxbIkv1BnWzVGVVUV+1ZuoSAzFxMzU3w7d2DEg3egsjBvjir8bcHOPnx5a213qyf63QHAhph9vNNC153GOpJ8DktTM0YHRWJjZklqQTZf712pc/52MNed3MbM2JRuHoGsOLlD7zr7+3XFxMiYB3tN0EnfELNX27W9OR1KisHS1JzxVx7cpORn8tmu37SzZ9qaWeFooVsncxMVYZ5BLD22xeB6Xa0c6ODsxSc7lzRr+fU5mHQGK5U5t3QagJ2ZFcn5mXzy1xLtNcnW3AoHy/p1CvcMqffg6ioTI2MmdR6Es5U95VUVnEiJ5ft9qympLNebX9wcQkJCGDVqFA899BDfffcdADNnzmTcuHE6Y10HBwfz3nvvceutt1JUVMQbb7zBpEmTcHd3JyEhgZdeegknJyduvfVWAGxtbZkxYwbPPvssjo6OODg48Nxzz9G5c2eGDRumtyz6KDSNHUxICCGayDvvvMO3335LUlLDU93/G83dubS1i9Cknh54JzF1ph+/GYS4+TN9ScNjL/zbLLzrdfLf/aS1i9GkbF96hidXz71+xn+RzyY+zT1L3mrtYjSpX+56jcLEm+t8bu3tdVOezz9uhRvr5vbswLv4as+K1i5Gk5rV93b6fvXI9TP+i+yZ9S2zV33c2sVoUl/e+iwP/vZeaxejSf0w+UXuXfp2axejSS2489XWLsLflv/d/NYugl62D9/fbOvOycnhiSeeYM2amsm1JkyYwJdffomdnZ02j0KhYP78+dx3332UlpYyceJEjh49Sl5ennYc77fffltn+KKysjKef/55Fi9eTGlpKUOHDuXrr7++oSGOJPJMCNHsvv76a3r27ImjoyN79uzhww8/ZPbslutuJ4QQQgghhBD/Kv+DcU4ODg78+uuvDea5Nv7L3NyczZv1RzBey8zMjC+++IIvvvjib5dNGs+EEM3uwoUL/Oc//yEnJwdvb2+effZZXnzxxdYulhBCCCGEEEIIcV3SeCaEaHZz585l7tybq+uVEEIIIYQQQoj/DdJ4JoQQQgghhBBCCNGWqP/3um22ZYanyBNCCCGEEEIIIYQQ4n+cNJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEv+B2fbbMsk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEW6JRt3YJxDUk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEW6KW2TbbEok8E0IIIYQQQgghhBDCAGk8E0IIIYQQQgghhBDCAOm2KYQQQgghhBBCCNGWaKTbZlsikWdCCCGEEEIIIYQQQhggjWdCCCGEEEIIIYQQQhgg3TaFEEIIIYQQQggh2hLpttmmSOSZEEIIIYQQQgghhBAGSOOZEEIIIYQQQgghhBAGSLdNIYQQQgghhBBCiLZErW7tEohrKDQa6UgrhBBCCCGEEEII0Vbkf/JVaxdBL9tnZrV2EVqFRJ4JIUQT+ihqUWsXoUk9N2gqsZlJrV2MJhfg7MXsVR+3djGa1Je3PkverOdbuxhNyu6rD3l324LWLkaTemnovTy5em5rF6NJfTbxafJ/WNjaxWhStg9OZ/2ZPa1djCY1NrQv/9kyv7WL0eReGX4/L2/8rrWL0aTeGf3wTXmN6vvVI61djCa1Z9a3zFzx39YuRpP6/vY5vLTh29YuRpN6d8zNtd+J1iONZ0IIIYQQQgghhBBtiXQSbFNkwgAhhBBCCCGEEEIIIQyQxjMhhBBCCCGEEEIIIQyQbptCCCGEEEIIIYQQbYl022xTJPJMCCGEEEIIIYQQQggDpPFMCCGEEEIIIYQQQggDpNumEEIIIYQQQgghRFuilm6bbYlEngkhhBBCCCGEEEIIYYA0ngkhhBBCCCGEEEIIYYB02xRCCCGEEEIIIYRoSzTq1i6BuIZEngkhhBBCCCGEEEIIYYA0ngkhhBBCCCGEEEIIYYB02xRCCCGEEEIIIYRoSzQy22ZbIpFnQgghhBBCCCGEEEIYII1nQgghhBBCCCGEEEIYIN02hRBCCCGEEEIIIdoStXTbbEsk8kwIIYQQQgghhBBCCAOk8UwIIYQQQgghhBBCCAOk26YQQgghhBBCCCFEWyKzbbYpEnkmhPifExUVhUKhIC8vr7WLIoQQQgghhBCijZPIMyFEi0hLS+Odd95h/fr1JCcn4+LiQrdu3XjqqacYOnRoaxevVZ2JOsTxP/dRml+IvYcLkZNH4B7oozdvyrkE1n/yS730O958DDs3p3rpcYdOsf2Hlfh0DWLEY1OavOxXrVv5ByuXLCcnOxtvX19mPvkYnbp2Npj/5NHjzPviWxITEnBwdOT2qVMYM3G89vOqqip+W7iEbRv/JDsrC08vL+579EHCIyO0eRb9uIDF8xfqrNfOwZ5Fa5Y3fQWv6O/XlaGBPbE1syS1IJvfT+4gLjtZb95pYSOJ9OlULz21IIt3ti0AoI9vZyK8QvGwqdl2iXnprD2zm0u5ac1WB33MxgzHtG8vFBYWVCckUvLbKtSp6QbzWz35CMYd2tdLrzwVQ/E3P9W8USoxGzMck55hKG2sURcUULH/MOWbtjX7k9SzO6M5vXU/JflF2Lk7E3HHMFwDvPXmTTt/ic2fLqqXPvG1mdhec0yd2X6Qc38doTi3AJWlOT5hwfS4ZTBGJi3zU6qfXxeGBIRjY2ZJWmE2K0/u5KKBfe/usBH08u5YLz21IJv3t9ecP9ysHRkT0htPOxccLWxZeTKKnXFHm7MK9Wg0Gubt/YvVx49SWF5GR3cPnh82mvZOzo1a/s+Y07yybhUDAjrw0a2TtenFFeV8t3snURfOkltSQgcXN54dMoJQd4/mqorWno3b2bF6EwW5ebh5tWPijLvwD+2gN+/FM+dZt3AFGZdTqaiowMHZkd4jBjFwwghtnn1/7uRw1F7SEmu2tWd7H8ZMnYRPB/9mr8tV5/46wultByjNL8LO3YnwScNwDfDSmzft/CW2fL6kXvqEVx7C1s0RAHV1Naf+3EfcgVOU5BVi6+pA91sG0y605eoE0Ms7lH5+XbFWWZBRlMv6mL0NnnuNlEqGtO9B13aBWKssyC8rYmfcUaIvnwMg1NWPQe2742Bhg5FCSXZJPrvjT3As5UJLVemmvUY1Rlf3AO7uPoJgF2+cLO14YcM37Io/3trF0mugf3dGBkVga2ZFSkEWy45vIzbrst6894WPoY9v/d9TKflZvLHlRwB6+3Ti/p5j6+V5bOVHVKmrm7bwBvTy7kh//2uOpzN7SLje8RQQTrd2gVib1hxPUXFHtMfTtbq4t+fO7sM5kxbPr0c2N2c1hGiQNJ4JIZpdQkICffv2xc7Ojg8++IAuXbpQWVnJ5s2bmTVrFmfPnm2W762oqMDU1LRZ1t1U4g6dZt9vm+l79xhc23tx9q8jbPpiMXe88RhWDrYGl7vjrVmYmqm0782sLerlKczO48CKLbgZaDRoKn9t28G8z7/hsWefIKRzRzb9sZ7Xn3uRbxb+iIuba738aSmpvP78y4waP4bnXnuBmJOn+frjz7G1s6XvoAEA/PL9fKL+3Mrjc57B09uLIwcP885Lb/DRt5/RvkOgdl0+fr7859MPtO+NlM0XUB3WLohJXQaz7Ng2LuYk08+3C4/1uY3/bP2Z3NLCevlXnNjBH6d31ZZNoeTFofdwNPm8Ni3QyYvoy2dZnpNCVXU1wzr0ZFafSbyzbQH5ZUXNVpdrqYYPQjVkACULl1GdkYnZqGFYzX6Igrc+hPJyvcsUz1sAxrU/IRSWFli/+DSVR0/orNe0f29KflmKOjUdIx9PLKZNRlNaRkXU7marT/zhMxxasYVed47Cxd+T87uPsvWrZdzy6swGj6mJrz+sc0yprjmmLh48RfTqHfSdPg4X/3bkp+ewZ+E6ACJuH95sdbmqe7sO3Np5EMuPbyc+O4U+fp15pPdE3tv2i959b+WJKNaerv0bKxVK5gyZxrGU2n3P1MiYrOJ8jiaf59bOg5q9Dvr8cnAfSw4f4LXRE/C2d+Cn/bt5/LdFLH/wUSxNVQ0um5qfx+dRW+nmWb8R551N64nLyuCNMbfgbGXNxjMnmfXbIpY98DAu1jbNVR2O7j7I6p+WMGnmdPyCA9j7ZxTfvz2XOZ//B3tnx3r5Tc1U9BszBA8fL0zNVFw8c4EV3y7A1MyU3iMGARB3+hxh/XvhGxyAsYkJO1Zt5Ls3P+b/Pv8Pdo72zVaXqxKiYzj8+1YipozExb8d53cfY/vXvzHhlQexbOB4uuXVmZiY115/VVa1x9OxtX9x8dBpet89GhtXR1JiLrJz3kpGPTMNBy+3Zq3PVZ3d2jMmpA9rT9c0BPX0DuXe8DF8tus3g+feu7oNx1JlzqqTO8kuycfK1BylovaaU1pZRlTcETKL8qjWqAly9ua2zoMoqig12DDSlG7Wa1RjmZuoiM2+zIaze3l39COtXRyDwj2DmdJtKIuP/ElsdjID/LvxRL87eGPzD+To2U7Ljm1l5cmd2vdKpZLXht1PdLLub+fSynJe3TRPJ62lGs46u7dnbGgf1pzaxaXcNCK8Q7m351g+/WuZ4eOp+3CsTC1YeSKK7JKCK8eTol4+OzMrRgf3Jj4npbmr0Tap1a1dAnEN6bYphGh2jz32GAqFgoMHD3L77bfToUMHOnbsyDPPPMP+/ftJSEhAoVBw7Ngx7TJ5eXkoFAqioqK0aWfOnGHMmDFYWVnh6urK9OnTycrK0n4+aNAgZs+ezTPPPIOTkxPDh9fc1G7YsIEOHTpgbm7O4MGDSUhI0ClfdnY2d911F56enlhYWNC5c2eWLKn/5Lw5nNy6j6C+3QnuF4a9uzO9p4zEyt6WMzsPN7icubUlFrZW2peyTqORWq1mx4+rCBs/CGvn5r3BWrX0d0aMG8XI8WPw9vVh5pOP4eTiwobVa/Xm37B6Hc6uLsx88jG8fX0YOX4Mw8eOYuWS2oixHZu3Mnn63fTs3Qv3dh6MvXUCYb3CWbl0hc66lEZGODg6aF+29nbNVs8hAT3Yl3CSfZdOkl6Yw+8no8gtLaS/X1e9+cuqKigsL9G+vO3dMDcxY9+lU9o8Cw5vYFf8cZLzM0kvymHxkT9RKBQEOTdvg+e1VIP7U7Z5G5XHT6FOTadk4VIUpqaY9uxucBlNSSmagkLtyyQ4ECoqqThS+5Tf2M+HyhOnqTp9FnVOLpVHT1IZcwFjH89mrc+Z7QcJ6NOVDn27YefuRMQdw7G0s+HcX0caXM7c2hJzWyvt69pjKiM+GZf2nvj37IiVox3tQv3xCw8l+1Jqs9blqkHtw9h/6RT7L50ivSiHVSd3kltaSF+/Lnrz19/3XDE3MePApdPaPIl56aw5vYujyeepUle1SD2updFoWBp9kPsi+zG4QzDtnV14ffQEyqoq2XzmVIPLVqvVvLZ+NQ/1HUA7W93zW1llJTvOx/D4wKGEefngZe/AzL4D8bC14/dj0c1ZJXau2Uyvof2JHD4AVy8Pbp1xN3aODuzZtENvfk9/H8L6R+Lm3Q4HFyfCB/UmqFsnLp6pjVSa9vRM+o4eQjs/b1w93Zn82H1oNBounDjTrHW56sz2gwT07kpgn67YujnR8/ZhWNjbcG5Xw1GKZtYWmNtYaV/XHk8XD56m84jetOvYHmsnO4L6h+Ee4seZ7Yeauzpaff06E335LIcvnyWzOI8NMXvJLyuil3eo3vyBTl74Orjzy+GNxGUnk1daxOX8TBLzaiN043NSOZOeQGZxHjklBey7dIr0wmx87VumQfBmvUY11v7E08w7sIadF4+1dlEaNLxDT3bHn2B3wgnSCrP57fg2cksKGdhe/zW3tKqCgvJi7cvX3g0LUzP2JJzUyafRaHTyFZQXt0R1gJrI6Oik2uNp/dXjycfw8eTn4MGCwxuuHE+FXM7P0DmeABQomNxtKFsvHCanpH7DohAtTRrPhBDNKicnh02bNjFr1iwsLS3rfW5nZ9eo9aSmpjJw4EC6devG4cOH2bRpE+np6UyePFkn34IFCzA2NmbPnj189913JCUlcdtttzFmzBiOHTvGgw8+yAsvvKCzTFlZGT169GDdunWcOnWKmTNnMn36dA4cOPC3690Y1VXVZCWm0i5Ut/tbu1B/0uOSGlx25X++59fnP2H9J7+Qci6+3udH1/2FmbUFwf0MN4A0hcrKSmLPn6d7z3Cd9LCePYg5pf/m7uzpM4T17KGbPyKcC2fPU1VVdWW9FZiodKMGTU1VnDmhe1OdcjmZ6bdM4YE7pvHf1/9DanLzPJk0UijxsnMlJuOSTnpM+iX8HBvXFay3TyfOZVzSGwFwlamxMUZKJSWVZf+ovI2ldHRAaWtDVUxtpAFV1VTFXsTYT3/XYX1Me0dQEX0MKiprVxOXgElQAEqXmu4+ynbuGLf3pfJU80SaQs0xlZ2YikeIbvcvjxA/Mi82HPmx9r0f+e2Fz9j82SJSzyXofOba3pPsxDQyE2r2r8KsXJJPxeHZKaBJy6/P1X3vXJ1971xGIn4Ojdv3In06cT4zscF9r6Wl5OeRXVxEpG/ttjI1NibMy4cTKQ1vqx/37sLO3JJbutQ/v1Vr1FRrNJga63auUBkbczy54fPqP1FVWcXluEt06KbbXTaoW0cSzsY2ah2XL14i4Vws7TsGGcxTUVFOdXU1Flb1r6dNrbqqmpykNNxDfHXSPUJ8yYzX3xXwqnX/nc+Kl75gy+dLSDuvu+9WV1WhrNPd2djEmIzrXPeaipFCiYeNc71osNisy3jb14+WBghx8SE5P5P+fl2ZM3gaTw+YwqigSIyVRga/x9+xHU6WdsTnNH8j+816jbrZGCmUeNu5cSZd93fbmfR42ju2a9Q6+vp24WxGAjklBTrpKmNT3hv9CP8d8xiz+07Cy86lycrdkKvH04Us3eM3NvMyPnb6G45DXH1Jzs9kgH835gyZzjMD72R0cP3jaUhgD4oryoi+3Hy/G4S4EdJtUwjRrGJjY9FoNAQHB/+j9XzzzTeEhYXx7rvvatN++uknvLy8OH/+PB061IwpExAQwAcf1Hbje+mll/D392fu3Lk1T0uDgjh58iT//e9/tXnatWvHc889p33/+OOPs2nTJpYvX06vXr30lqe8vJzyOl3aVKqGuxnVVVZUgkatwcJG9ybI3NqS0gL9TwwtbK3oP20cTj7uVFdWceHASdbPXci4Z+7FvUNNY0dabCLn9hzltlcfvqHy/B0F+fmoq9XYOehGf9g52JObnaN3mdzsHOx61c9fXV1NQV4+Dk6OhEWEs3rpCjp17Yx7Ow+ORx/lwO69VF8Tvh4UGsKzr/wf7bw8yc3JZdmCRTz36JN8s/AHbGwNdyf6O6xU5hgplRSWl+ikF5YXY6Pyve7yNipLQl39+Pnw+gbz3dJxAPmlRZytcwPUXBQ21gCoC3W7VagLClE6NC5i0cjHC6N27pQs0h1rrnzLDhTmZli/+nzNGGcKBWVrN1EZfaxJyq5P+ZVjytxa95gyszF8TJnbWtH77tE4ertTXVXFxQOn+PPzxYx8ahpugTXRFX7hHSkrLGHTx7+g0YBGrSaofxidR/ZptrpcZXll3yvQs+9Zq67fwGmjsiTExZdfDm9sriL+LdnFNfucQ52HKg4WlqQW5Btc7vjlJNacPMav9z6k93NLUxWdPTz5ad8u/BydcLCw5M+Y05xOTcbL3qHpKlBHcWEharUaazvdc4+1nQ2FeYbrA/Dmg89SlF+IWl3NyCm3EDl8gMG8639Zga2DPR261h/TrqldPZ7M6h5P1paUNXA8Rd41CgdvN9SV1Vw8dIotXyxhxJN3a8cd9AjxJ2b7IVwDvLB2sif1XAJJJy6gaaFZ5SxMzTBSKikqL9VJLyovxcq0/hAIAPYWNvjYu1GlrmbRkc1YmJoxIbQ/FqYqnS51KmNT5gyehrFSiVqjYe2Z3QbHHGtKN+s16mZjpbLQez4vKC/Gxuz6DeK2ZpZ0cvPnh4O6kf1phTn8fHg9yfmZmJmoGBoQzpxB03hr63wyinKbtA51GTqeCitKCFTpHxvRwcK69niKrjmebunYH3MTM1aejALA296NcM9gvti9Qu86/mfIbJttijSeCSGa1dUfwwo94xjciOjoaHbs2IGVlVW9z+Li4rSNZ+HhuhFQMTExREZG6nx/7969dfJUV1fz/vvvs2zZMpKTk7UNY/oi5a567733ePPNN3XSXn/9dawGBRpYomnYuTnpTAzg2t6L4px8TmzZh3sHHyrKytnx02r6Tx+HmZX+m4DmUHf7ajSaBrd5vY+u/ji48sHDT87i8w8+4ZGpD4AC3D08GDZmJFs31A4UG967dvIA3/YQ0imUGVPuYdvGLdx65+3/rEIG6f6IUaCgMT9rIn06UlpZzokUwxEowwJ70sMziM92/dZs45SY9OyOxV2TtO+Lvr4yuH/dH2c3cLya9omgOjmV6ku6T51NenTFNCKMkp8XU52ajpGnB+aTJqDOL6DyQPN2n6Pe/qUn7QpbV0dsXWvHo3Lx96Q4t4DTWw9oG8/Szl/ixOa99LpzFM6+HhRk5nJo+RaOb9hN1zH9mqcOddXb0Rq3jSK8QymtLOdkauOin5rLpjMnee/PDdr3cyfdCejbVBqDNSuuKOe1Dat5aeRY7CwMn9/eHDOBtzetY+w3n2GkUBDk6s7IkE6cy2j+Qc7rn9oaPhcCzH7nBcrLyrl0Lo71C1fg5O5CWP/Ievm2r9rIkd0HmfX2/2FiatKEpW6Yom6tbuB4cvZvR3FuAWe2HtQ2nvW8fRj7lmxkzdvzQAHWTva0j+xC3P4T+lfaTOoeUjWbSf8Z/eom/O34dsqrKgDYcHYfd3UfzprTu7Xn7IqqCr7cswKVkQn+ju0YHdybnJKCFok+q/Hvvkb9z9DU306N2VC9fTpTWlnGsWvGpQOIz0nRGRMsLusyrwy7j8Htw1h2fFuTFPl66h1PKPSkXvsZLDu2rfZ4itnLXWEjWHN6F0qFksldh7Dq1E6JchRtijSeCSGaVWBgIAqFgpiYGCZOnKg3z9WxUK596lxZWamTR61WM378eJ2Isavc3d21/6/b4NWYJ9kff/wxc+fO5dNPP6Vz585YWlry1FNPUVFRYXCZF198kWeeeUYnTaVS8cW+xj8hM7OyQKFUUFLnCX5pYTHmNo3vkuPi70nsgZqxLwozcynKzmPzV0u1n1/9G/zw6NtMfmsWNs5NF31hY2uL0khZL8osPzevXjTaVfaODuRm6z4JzcvNw8jICBvbmsG8be3tePW9t6gor6CgoABHJ0fmf/MDru6Gx44xMzfH19+PlMtNPzBzUXkp1Wo11ird7WKlsqCwEeOKRPp04mDSGao1+gd+HRoQzogOEXy5ZwUpBVl68zSFyhNnKExIrE240rVNaWNNdUFtVx2ltRWagkZ08TMxwbRHV0rX/VnvI/Nbx1H25w4qo2vGQVOnpKF0sMdsxJBmazxTXTmm6kaZlRUW14tGa4izXzsuHqztInx07U7aR3SiQ99uANi3c6GqvJJ9izfQZVRfFMp/9nCgIcVX9j0bM93GImuVRb0oE30ifTpyOCnG4L7XUvoHdKCje223pIrqmpvv7OJinKystem5JSX1otGuSs7NJTU/n2dXLtOmqa+c33p/9A7LZzyKp70DnvYOfHfXPZRWVFBcUY6TlTUvrVmJh61dM9SshqW1NUqlkoI6UWZF+YVY2TY8SYGja83soh4+nhTlF7B56R/1Gs92rN7E1hXrePTN5/Dw1R/N0dS0x1OdyNSyouJ60WgNcfZtx8VDtePtmVlbMHjmJKorqygvLsXc1oqjf0Rh5WjXVEVvUElF2ZXzublOuqWpOUUVpXqXKSwroaCsWHujD5BZlItSocDWzJLsK13oNKDtTpdamI2LlR0D/bs3e+PZzXKNutkVlZdcOZ/rbidrlUWjxijr69uZ/Ymnr3s+1wAJOWm4WjdftO1Vho4nK1PzetFoVxWW1z+eMrTHkxWmRsY4WNgwvcdo7edXH0K8PWomc/9aWq/bqhAtQRrPhBDNysHBgZEjR/LVV1/xxBNP1GvcysvLw9m55sYhNTWV7t1rxrC5dvIAgLCwMH7//Xd8fX0xNm78qSs0NJTVq1frpO3fv1/n/a5du7jllluYNm0aUNNQd+HCBUJCQgyuV6VS3XA3zbqMjI1w8nYnOeYift1ru7Umx1zEp6vhMW/qyk5Kw9y2JiLP1s2JSa/pzjJ1+I8dVJaV03vKKCztm7Y7o4mJCQEdOnD0UDR9BtZG4Bw9HE1kP/1d2oI7hnJw7z6dtKOHDhMY3KHetjVVmeLk7ERVVRV7d+6i/5CBBstSWVFB0qVEOnatP6X7P1WtUZOUl06wiw8nrongCXbxuW5ET6CTJy5W9uyrM7jvVUMDwxkVFMlXe36vN1hukysvR52p291YnV+AcXAHqi9feWptZIRxgD+lf2zQswJdpj26grExlYf0DMZvYlI/ok2tvqGothtlZGyEo7c7qTHx+HSrPYZSzsbj1aVDo9eTc7n2mAKoqqiqFz10tcGsJlKq+ep0dd8LcvbhRGqcNj3I2ZuTaXENLAkBTp44W9mz/5L+yTtakqWpSmcGTY1Gg6OlFQcSLhLkWtMoXlldzZGkS8weMETvOnwcnVhy30ydtG92R1FSUcGzQ0bgaqN7fjM3NcXc1JSCslL2J8Tx+MChTVyrWsYmxni29+H88TN0iawd0/H88dN0jGj82JMajYaqSt0JHLav2sjWFeuY+dozeAX4NVmZr8fI2AgHLzdSzybgfc01KfVsAp6dGx9lnXM5HXPb+o1tRibGWNhZo66uJvHYOXzCDF9zm1K1Rk1KQSYBjp6cSU/Qpgc4eRJzzftrJeal08ndH1MjYyqqa7aPk6Utao2a/LKGGj0UGDUwLlpTuWmuUTe5ao2axLw0Ql19OZZSOzFIiKsvx695r08HZy9crR34Zt+qRn2Xl50LyfmZ/6i8jaE9npy86hxP7TiTkaB3mUu5aXqOJ7srx1NNY/1nfy3TWWZ4hwhUxiasO7OH/NK2NdNrs5Jum22KNJ4JIZrd119/TZ8+fYiIiOCtt96iS5cuVFVVsWXLFr755htt18r3338fX19fsrKyeOWVV3TWMWvWLObNm8ddd93F888/j5OTE7GxsSxdupR58+ZhZKT/x+kjjzzCxx9/zDPPPMPDDz9MdHQ0P//8s06egIAAfv/9d/bu3Yu9vT2ffPIJaWlpDTaeNZXOw3oTNX8Vzj7uuPh7cnbXEYpy8gkZUHPzdXDVNorzChl8/0QATm7dj7WTHfbuzlRXVxN74CTxR2IY9vAdQM0NnEM73UFiTS3MAOqlN5Vb75zEx2//l8DgDgR3CmXTmvVkpmcwZuJ4AH7+9geyM7N49tWaiRrGTBzHupV/MO+Lbxg5fgxnT53hz3Wb+L83XtKu8+zpGLKzsvAPaE92VjaLf/oFtVrNpLunaPP88OV39OobibOrC3m5eSxbsIiS4hKGjR7RLPXcHhvNPeGjScxLJz4nhb6+XXCwsGZXfE1k1YTQftiaW7EwepPOcr19OhOfk0JqYXa9dQ4L7MnYkD4sOLyB7JJ8rFU10UXlVZVUVFfWy98cynfswmzkENSZWVRnZGI2ciiaigoqDtXOpmdxz52o8/IpW6M7bpZp755UHj+Nprh+BFTVqZia9ebkok5Nx8irHaohA6jY17wz6oUOiWD3gjU4+rjj7NeO83uOUpxbQFD/MACiV++gJK+Q/vdNAGpmE7RysMXOw5nqqmouHjzFpaPnGPTQbdp1enUO4Mz2gzh4ueLk247CzFyOrfsLr86B9Wa6bQ5RcUeY1mMUiXnpJOSk0se3M/YW1uyJr+nmNi60L7ZmViw6sllnuUifTiTkpOrd94wUStxsarrXGSuMsDWzop2tM+VVFWQVNzxGV1NQKBTc2SOCnw/swcveAW97B+Yf2IOZsQkjQztp872+/g9crK2ZNWAIKmNj2jvrnsesVTXnt2vT98XXNCp62ztwOS+Xz6O24ePgyPhO+mcdbCoDJ4xk8Wfz8Grvi29Qe/Zt2UluVg59Rg4CYN3CFRTk5HL3kzXjte3esA17Z0dc2tVET8fHnCfqj830G1PbyLd91UY2Ll7FtGdm4uDiREFuzbZRmalQmZs1a32g5nja88taHL3drhxPxyjOKaBD/5oGwSN/RFGaX0jfe2rO9zE7DmHpYIuduxPq6mouHjxN4rFzDHzwVu06MxNSKM0rxN7TlZK8Qk5s2I1Go6HjMP1jjDaHPfEnub3rYJILMknMTaenVwi2ZlYcTKyZ6GZEhwhszCxZcaJmptTjKRcY1D6M2zoPYlvsYSxNzBkVHEn05XPaLowD/LuRnJ9JTkkBRkojgpy96N4ukDWnd7dInW7Wa1RjmZuo8LR11r73sHEi0MmTgrJi0pt53K8bseX8IR6IGMel3DTislMY4N8VBwsb7Syht3YagJ25NfMP6Y4/18+3CxezU/RG/o0L6cvFnBQyinIwM1YxNKAHXnYuLD66pSWqxO74E9zRdQjJ+Rk1x5N3KLbm1hy8dOV4CorARqV7PA0O6MGkLoPZduEwFiZmjA6JJDqp9niqu81Kr0SptaVtKf73SOOZEKLZ+fn5ceTIEd555x2effZZUlNTcXZ2pkePHnzzzTdAzeD/DzzwAOHh4QQFBfHBBx8wYkRtI4iHhwd79uxhzpw5jBw5kvLycnx8fBg1alSDN6/e3t78/vvvPP3003z99ddERETw7rvv8sADD2jzvPrqq8THxzNy5EgsLCyYOXMmEydOJD+/+W8g2/fsSHlxCUfW/0VJfhEOHi6Mmn031le6r5TkF1GcU1sOdXU1B1ZsoTivEGMTY+w8nBk5+y68byAKoKkNGDqYgvwClvz8KznZOfj4+fLmh+/i4lYza1lOdg6Z6Rna/G4e7rz54TvM++Ib1q1cg6OTIw8/NYu+g2oHya6sqGDhvPmkpaRibm5OeGQEz746Byvr2mig7MxMPnjjXQry87G1syWoYwiffPeF9nub2pHkc1iamjE6KBIbM0tSC7L5eu9K7cxkNmaWOJjrds8yMzalm0cgK07u0LvO/n5dMTEy5sFeE3TSN8TsZcPZfXqXaWrlW6JQmJhgPuVWFBbmVCckUvTlPLhmQgylvV29p59KFyeMA/wp+uJ7vest+W015uNGYnHnbSisrFDnF1Cxez9lG7c2Z3XwCw+lvLiU4xt2U1pQhJ27M0Mfm4KVY01UUmlBEcW5td091FXVHF61nZK8QoxMjLFzd2LoY5N1ZtLsMrofKBQcXfsXJXmFmFlZ4Nk5gLAJg5q1LlcdTT6PpakZI4N7YauyJLUwm+/2rdbZ9+wtrHWWMTM2pat7gHbw5bpsza34v8HTtO+HBoYzNDCcC1lJfNlCAzTfE9Gb8qpKPti6icKyUjq6t+OLO+7WiVBLL8xHeYPRikXl5Xz913YyigqxMTNnSIdgHu0/CGMDD1maSvd+EZQUFvHnb2soyM3H3bsdD73yFA5XZpwtzM0nN7O2i7tGo2H9wt/JychEaWSEo5szY6ffTu8RtRG2ezZup7qqigUffK3zXSOmTGDUnRObtT4Avj1CKC8u5cTGPZQWFGPn7sSQx+7AyuGa4ylH93g6smo7JflF2uNpyKN30K5j7azS6soqjq37i8KsPExUprTr6E/fe8ZpH/S0hJNpcViYqhjcvgfWZhakF+bwy+GN5F2JerFWWWBrVnu9qaiuYv6h9YwP7ctjfW6jpKKcU2lxbDlf+zDA1MiECR37Y2tmSWV1FZnFeSw/vuO6EaJN5Wa9RjVWsLMPX95aO5zGE/1qHipuiNnHO9sXtFax6jl8+SyWpuaMDemLrZklKQVZfLF7ubYboq2ZFQ4WutvJ3NiUsHZBLDUwfpmFqYrpYSOxMbOktLKcpLwMPoxaTEJuy4y1dzI1DgsTM4YEhGOtsiC9KIcFhzZcczxZYmdee42qqK5i/sF1jOvYj8f61hxPJ1Pj2HL+YIuUV4i/S6FpqalthBDif8BHUYtauwhN6rlBU4nNTLp+xn+ZAGcvZq/6uLWL0aS+vPVZ8mY939rFaFJ2X33Iu9vazk1PU3hp6L08uXpuaxejSX028Wnyf1jY2sVoUrYPTmf9mT2tXYwmNTa0L//ZMr+1i9HkXhl+Py9v/K61i9Gk3hn98E15jer71SPXz/gvsmfWt8xcUX8s3n+z72+fw0sbvm3tYjSpd8f8e/e7/Nffa+0i6GX75outXYRW0fx9DYQQQgghhBBCCCGE+JeSxjMhhBBCCCGEEEIIIQyQMc+EEEIIIYQQQggh2hAZYattkcgzIYQQQgghhBBCCCEMkMYzIYQQQgghhBBCCCEMkG6bQgghhBBCCCGEEG2JdNtsUyTyTAghhBBCCCGEEEIIA6TxTAghhBBCCCGEEEIIA6TbphBCCCGEEEIIIURbopZum22JRJ4JIYQQQgghhBBCCGGANJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEs06tYugbiGRJ4JIYQQQgghhBBCCGGANJ4JIYQQQgghhBBCCGGAdNsUQgghhBBCCCGEaEs0MttmWyKRZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBCGCDdNoUQQgghhBBCCCHaErV022xLJPJMCCGEEEIIIYQQQggDpPFMCCGEEEIIIYQQQggDpNumEEIIIYQQQgghRFsis222KRJ5JoQQQgghhBBCCCGEAQqNRpozhRBCCCGEEEIIIdqKvP97vbWLoJfdB2+2dhFahXTbFEKIJvTk6rmtXYQm9dnEpzl46XRrF6PJRfh0ZPLCV1q7GE3qt+n/IW/G461djCZl9+MX/N+6L1u7GE3qg3GzuWX+nNYuRpP64/7/UpiS0trFaFLWHh78dmxraxejSU3uNoxZKz9q7WI0ua9ue44X1n/T2sVoUu+PfZQHf3uvtYvRpH6Y/CIzV/y3tYvRpL6/fQ59v3qktYvRpPbM+pbpS26uhpGFd7XNBqhG0ahbuwTiGtJtUwghhBBCCCGEEEIIA6TxTAghhBBCCCGEEEIIA6TbphBCCCGEEEIIIURbopbh6dsSiTwTQgghhBBCCCGEEMIAaTwTQgghhBBCCCGEEMIA6bYphBBCCCGEEEII0ZZopNtmWyKRZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBCGCCNZ0IIIYQQQgghhBBtiUbTNl/NKDc3l+nTp2Nra4utrS3Tp08nLy+vwWUUCoXe14cffqjNM2jQoHqf33nnnTdUNhnzTAghhBBCCCGEEEK0qrvvvpvLly+zadMmAGbOnMn06dNZu3atwWVSU1N13m/cuJEZM2YwadIknfSHHnqIt956S/ve3Nz8hsomjWdCCCGEEEIIIYQQ4rrKy8spLy/XSVOpVKhUqn+03piYGDZt2sT+/fvp1asXAPPmzaN3796cO3eOoKAgvcu5ubnpvP/jjz8YPHgw/v7+OukWFhb18t4I6bYphBBCCCGEEEII0Zao1W3y9d5772m7VV59vffee/+4uvv27cPW1lbbcAYQGRmJra0te/fubdQ60tPTWb9+PTNmzKj32aJFi3BycqJjx44899xzFBYW3lD5JPJMCCGEEEIIIYQQQlzXiy++yDPPPKOT9k+jzgDS0tJwcXGpl+7i4kJaWlqj1rFgwQKsra257bbbdNKnTp2Kn58fbm5unDp1ihdffJHjx4+zZcuWRpdPGs+EEEIIIYQQQgghxHXdaBfNN954gzfffLPBPIcOHQJqBv+vS6PR6E3X56effmLq1KmYmZnppD/00EPa/3fq1InAwEDCw8M5cuQIYWFhjVq3NJ4JIYQQQgghhBBCtCXNPLNlS5k9e/Z1Z7b09fXlxIkTpKen1/ssMzMTV1fX637Prl27OHfuHMuWLbtu3rCwMExMTLhw4YI0ngkhhBBCCCGEEEKI1uPk5ISTk9N18/Xu3Zv8/HwOHjxIREQEAAcOHCA/P58+ffpcd/kff/yRHj160LVr1+vmPX36NJWVlbi7u1+/AlfIhAFCCCGEEEIIIYQQotWEhIQwatQoHnroIfbv38/+/ft56KGHGDdunM5Mm8HBwaxatUpn2YKCApYvX86DDz5Yb71xcXG89dZbHD58mISEBDZs2MAdd9xB9+7d6du3b6PLJ41nQgghhBBCCCGEEG2JWtM2X81o0aJFdO7cmREjRjBixAi6dOnCwoULdfKcO3eO/Px8nbSlS5ei0Wi466676q3T1NSUbdu2MXLkSIKCgnjiiScYMWIEW7duxcjIqNFlk26bQgghhBBCCCGEEKJVOTg48OuvvzaYR6NnLLiZM2cyc+ZMvfm9vLzYuXPnPy6bRJ4JIf5VFAoFq1evvmm+RwghhBBCCCFE2yaRZ0II0cr6+XVhSEA4NmaWpBVms/LkTi5mJ+vNe3fYCHp5d6yXnlqQzfvbfwHAzdqRMSG98bRzwdHClpUno9gZd7Q5q9AoW9dsZP3yP8jPyaWdjxfTHn2AoM6hevMe2r2fbWs3kXgxgcrKSjx9vLh1+hS6hHdv4VLrGtEhggkd+2NnbsXlvAx+PryBsxmXDObv59eVCaH9cLdxpKSinGMpF1gYvZGiitJ6efv4duap/lM4lHSGD6MWN2c16jGbMBrTgX1RWJhTffESJYt+Q52S1uAyqmGDMB3cD6WDPZqiYioOH6Ps9zVQVQWA6aB+qAb1Q+nkAEB1ShplazZRdepMs9ent08nBrYPw1plQXphDmvO7CIhJ9VgfiOlkmGBEYS164C1ypL8siK2xR7mcFKMNo+ZsSmjgiPp5NYecxMVOSUFrI/Z0+D2b0qjgyO5tdNA7M2tScxL58eDazmTnmAw/0D/btzaeSAeNk4UV5RxNPk88w+tp7C8RJtnfGg/RgdH4mRpR2F5MXsTTvJL9CYqq6uapQ4ajYbvFyxg1bp1FBYW0jEkhDlPPkl7P78Gl9u2cyffzp/P5ZQUPD08eGzGDAb3719bjzvvJFXP7Fx33HILc556ql76Ox9/zKp163hm1izuvv32f1yvax3Y/Be7126lKC8fF093Rt97O74hAXrzXjoby5+L/iAzJZ3K8grsnB3oOawffcYO0cm3d/12Dm7ZRX5WLhY2lnTs1Z3hd92CialJk5bdkP7+3RgW2BNbM0tSC7JYcWIHcQauUdN7jCLSp1O99NSCLP6z9WcAunoEMjKoF86WdhgpjcgsymXbhcMcTGr+c8O1In06MsC/W815oiiXdaf3kJDb8HliaGA43T06YK2yIL+siB2xRzh8+SwAPTyDuKPrkHrLvbLxe6rU1c1Wj2sNah/GyKBe2JlbkZKfydJjW7mQdVlv3vt7jqWvX5d66cn5mby++QcAnh90N0EuPvXynEiJ5fPdy5u28AYM9O/OyKAIbM2sSCnIYtnxbcQaqNN94WPo49u5XnpKfhZvbPkRqLk+3N9zbL08j638qMW2U2N1dQ/g7u4jCHbxxsnSjhc2fMOu+OOtXSy9hgaEMzakD7bm1iTnZ/Drkc2cz0w0mL+PT2fGhvTB1dqR0soyTqTGsuToFu3vo3Y2zkzqMghfew+crez49cgmNp870FLVaTtuktk2bxbSeCaEEK2oe7sO3Np5EMuPbyc+O4U+fp15pPdE3tv2C7mlhfXyrzwRxdrTu7XvlQolc4ZM41jKeW2aqZExWcX5HE0+z62dB7VENa5rf9Rufv12Pvc9/hCBHUPYsX4zH778H97/4TOcXJzr5T938jSdenRl8gNTsbCy5K/N2/nktfd44/P38Q3wb4Ua1Pzgvi98DD8cXMu5jESGdejJS0Pu4ek1n5Ndkl8vf5CzD7P7TGJB9AYOXz6Hg7kND0VO4JHet/LRTt3GMSdLO6aHjWqwMaS5qEYPQzViMCU/LaI6PQOzcSOxenY2BS+/DWXlepcx6RWO2e0TKJm/iOrYeJRuLlg8MA2AsmUrAVDn5lH6+xrUGZkAmPbpheXjD1H45n+v2zD3T3R1D2B8x/6sPrmThNxUenl3ZEbEeD6OWkxeWZHeZaaFjcJKZcHyE9vJLs7HSmWOUlEbnG+kUPJQ5C0UlZeyMHoj+WXF2JlZUV5V0Wz1uFY/vy7MiBjPd/tWE5NxiZFBvXht+APMXvUJWcV59fKHuPjyZP8p/HRwLQeTYnC0sOXRPrcyu+8k3tteM27IQP9u3NNjFF/sWcHZjEt42DjxZP/JAPx4cF2z1GPB0qUsXr6c1+fMwdvLix8XLmTW88/z+y+/YGlhoXeZE6dP89Jbb/HIAw8wuH9/duzaxQtvvsmPn39Op9Caxvdfvv2WarVau0xcfDyznnuOoYMG1Vtf1O7dnI6JwbkRs37dqJN7o9m4YAXjZkzBO6g9h7fuZuF7X/H4J69id6UR+VomKhW9Rg3E1dsDU5WKS+fiWDNvCSYqU3oO6wfA8V0H2bLkDyY+Mg3vDv5kp2aw8puabTjm3qZt+NMnrF0Qt3cZzLJjW4nLTqafX1dm9Z3E21vm671GLT++nT9O/aV9r1QqeXHIvRxJrr1GlVSUsfncftIKc6hWV9PJrT3TeoyisLyEmIyEZq8TQBf39owL7csfp3ZpzxP3R4zlk51LyTdwnpjafQRWKgt+P7GD7JICLE3NUSoVOnnKKsv5aOcSnbSWapDp6RXCnd2GsejIZmKzLjOgfXee7D+F1zbPI6ekoF7+pce28vvJKO17I4WS10fMIPpKYyDA13tXYqSsHQ/IytSc10fM0DYYNrdwz2CmdBvK4iN/EpudzAD/bjzR7w7e2PwDOXr2v2XHtrLyZG3XLKVSyWvD7ic6Wbe8pZXlvLppnk5aW2s4AzA3URGbfZkNZ/fy7uhHWrs4BvXy7si0sFH8fHg9F7KSGBzQg+cHTuWFDV+RrWff6+DkxcORE1l0dDNHk89jb27N/T3HMSNiPJ/t/g0AU2MTMoryOJh4hqlhI1u6SkLoJd02hRBNZtCgQcyePZvZs2djZ2eHo6Mjr7zyirZf+q+//kp4eDjW1ta4ublx9913k5GRAdREJAQEBPDRRx/prPPUqVMolUri4uL0fufJkycZMmQI5ubmODo6MnPmTIqKan/4Hjp0iOHDh+Pk5IStrS0DBw7kyJEjOuu4cOECAwYMwMzMjNDQULZs2dKUf5YGDWofxv5Lp9h/6RTpRTmsOrmT3NJCvU+DAcqqKigsL9G+vO1dMTcx48Cl09o8iXnprDm9i6PJ56lSN08EyY3a+PtaBo4ayqDRw2nn7cm0R2fg6OzItrWb9eaf9ugMxk2+Ff+gQNzaeTD5gWm4tXPn6P7DLVzyWuNC+7I9NprtsdEkF2Sy4PAGskryGREUoTd/B2dPMorz2Hh2P5lFuZzLvMTW84fwd2ynk0+hUPBEvzv47cR2MopyWqIqOlTDBlG2/k8qjxxHnZxKyY+/ojA1wbRXuMFljNv7URV7kcoD0aizc6g6fZaKA9EY+3pr81QdP0XVyTOo0zNRp2dStmodmvJyjP19m7U+/f27cSjxDAeTzpBRlMvaM7vJKy0iUk80AkAHZ2/8Hdvx08G1xGZdJre0kKS8DC7l1jbw9fQKwcLEjAWHN3ApN4280kISclNJLcxu1rpcdUvH/my9cIgtFw5xOT+DHw+uJas4n9HBkXrzB7l4k1GUy7qYvWQU5RKTkcDmcwcIcPK8Jo8PMRmX+OviMTKKcjmWcoG/Lh6jvaOn3nX+UxqNhiUrVnD/tGkMGTCAAD8/3nzhBcrKyti0davB5ZasWEGv8HDunzoVX29v7p86lYiwMBb//rs2j72dHU4ODtrX7n378PTwoEedqeozMjP54LPPePvllzG+gQGCG2vv+m2EDelN+NC+uHi6Mea+27FxtOfgn7v05vfw86JL33BcvTywd3GkW/8IArqEcOlsrDZP0oV4vIP86dqvJ/YujgR0DaFznx6kXDQc0dGUhgaGsy/hJHsTTpJemMPvJ3aQW1JIf/9uevOXVVVQUF6ifXnbuWFhasb+hFPaPBeykjieEkt6YQ5ZxflExR0huSCT9k7t9K6zOfTz68rhpLMcSoohsyiPdWf2kF9WRKRP/chugA7OXvg5ejD/0Hpis5PJLS3kcn4Gibm6EY8aoKi8VOfVUoZ3iGB3/HF2xR8ntTCbZce2kltawKD2+iO2SyvLKSgr1r587Gu21e74E9o8xRVlOnlCXf2oqK7kcFLLNJ4N79CT3fEn2J1wgrTCbH47vo3ckkIGGqpTVQUF5cXal++VOu1JOKmTT6PR6OQrKC9uiercsP2Jp5l3YA07Lx5r7aI0aHRQJDsvHmXnxaOkFGSx6MhmskvyGRrYU2/+ACdPMovz+PP8QTKL8ziflcT22Gj8HDy0eeJzUlh6bAv7E09TWd32GjbF/yZpPBNCNKkFCxZgbGzMgQMH+Pzzz5k7dy4//FAT/l9RUcHbb7/N8ePHWb16NfHx8dx3331ATQPCAw88wPz583XW99NPP9G/f3/at29f77tKSkoYNWoU9vb2HDp0iOXLl7N161Zmz56tzVNYWMi9997Lrl272L9/P4GBgYwZM4bCwponlmq1mttuuw0jIyP279/Pt99+y5w5c5rpr6PLSKHEy86Vc3W6fZ3LSNT5AdGQSJ9OnM9M1BsB0FZUVVaScCGOzmG6N7KdenTjwpnG/QBXq9WUlZRiZW3VHEW8LiOlEf4OHhxPjdVJP5ESS5Czt95lzmUm4mhhQ3ePDgDYmlkS6dORo8nndPLd3nkwBWXF7IiNbp7CN0Dp5IjSzpaq09dsh6oqqs7FYtzecFe6qtg4jH28MPLz0a7HpHMolSdO619AocAkIgyFqSlVcQlNWANdRgol7WxdOJ+VpJN+ISsJX3s3vcuEuvpxOS+DQe3DeHnYfTw/aBpjQ/pifE20RaibH5dy07i100BeHf4Azwy4i8EBPVCg0LvOpmSsNKK9YzuOJV/QST+Wcp5gPd2pAM5mXMLJ0pYenjXTutuaWdHHt7PODW9MegLtHdsReKVBzdXKgR6ewTpRJ00pOTWV7JwcIsNrG2VNTU0J69qVE6cN7DfAiTNn6BWu25Ab2bOnwWUqKyvZsGULE0aPRqGo3T5qtZrX3nuP6VOmXLeb6N9RVVVFysUkArqE6KQHdA0h6fzFRq0jJT6JpPMX8Q0J1KZ5B7Un5WISl2MTAMhJz+L80dN06F6/a2RTu3qNqhsNFpORgH8jr1F9fDtzLuMSOaX1o0+uCnL2xtXKwWBXvKZWc55w5kJmnfNEZhI+Bs4TIa6+XM7PZKB/N14cOp1nB97FmJDeOucJAFMjE+YMnsaLQ6Zzb/hoPGyaPsJRHyOlEh97N06nx+ukn06Lb3SDeH//rsSkJ+iNUruqn18XDiaeoaK68h+VtzGMFEq87dw4U6dOZ9Ljae/YuIbWvr5dOJtRv04qY1PeG/0I/x3zGLP7TsLLzqXJyv2/xkipxNfBg5Npug+5T6Vd1F5f6rqQlYSDhQ1d3Wu6tNuYWRLhHcKxlAt68/9P06jb5ut/lHTbFEI0KS8vL+bOnYtCoSAoKIiTJ08yd+5cHnroIR544AFtPn9/fz7//HMiIiIoKirCysqK+++/n9dee42DBw8SERFBZWUlv/76Kx9++KHe71q0aBGlpaX88ssvWFpaAvDll18yfvx4/vvf/+Lq6sqQIbrjj3z33XfY29uzc+dOxo0bx9atW4mJiSEhIQFPz5qL/Lvvvsvo0aMbrGd5eTnl5bpd2lQq1Q39rSxV5hgplRRcMwYRQGF5MdYq/TfF17JRWRLi4ssvhzfe0Pe2tMKCQtRqNTb2djrptva25OfmNWodG1esobysjIgBfZq+gI1go7LASGlUrzvP1e57+pzPTOLz3ct5asAUTIyMMVYacSgphp+u6RIX5OzNkIAe/N/6r5q1/IYobG0AUBfo3lioCwpROtbvZnZV5cEjlFpZYfXCU4AChbER5Tt2Ub5RN2pT2c4d65eeBRNjKC+n+KsfUKc2X5dNS9OaY6qo3jFVgrVKf7dARwsbfB3cqVJX88vhDViamjOx00AsTFQsP7EdAAcLW9o7WnM0+Tw/HVyLk6UdEzsNxEihZOuFQ81WH6jd9+p2Oc0rLcLe3FrvMmczLvHJzqU8P2iqdt87kHia7/f/oc2zK/44NmaWvDfmURQKBcZKIzbE7NPpxtWUsnNqoiod7e110h3t7fWOV3btcvqWubq+uqJ276aoqIjxo0bppC9YsgQjIyPunDTp7xT/ukoKilCr1VhdOaausrK1pjDPcGMEwIePvkxxQRHq6moG3zGW8KF9tZ916RtOSUERP7z2CRo0qKvVRAzvz4CJI5qlHteyunqNKqt/PNmYWV53eRszS0Jd/fj50Pp6n5kZm/LumEcwVhqh1mhYdmxri40faGFqhpFSSWFF3XqV0sHAecLB3AZfezeqqqtYeHgzlqZmTOzUHwsTFStORAGQUZTH8hPbSS/IQWVsSl+/zjzSZyKf/bVcb9f+pmRlanFlW+lGUBWUF2PbiG1la2ZJJ7f2zLvmHFGXn4M7nnYuLDi84R+XtzGsVBZ6fyMVlBc3av+rqZM/Pxxcq5OeVpjDz4fXk5yfiZmJiqEB4cwZNI23ts4noyi3Sevwv8D66naq9/uoCFuz+g++AS5kXeabfSuZ1fd27TUq+vJZFka37d+zQkjjmRCiSUVGRuo87e/duzcff/wx1dXVnDhxgjfeeINjx46Rk5OD+soYNYmJiYSGhuLu7s7YsWP56aefiIiIYN26dZSVlXHHHXfo/a6YmBi6du2qbTgD6Nu3L2q1mnPnzuHq6kpGRgavvfYa27dvJz09nerqakpKSkhMTNSuw9vbW9twdrXM1/Pee+/x5ptv6qS9/vrr0M228X+sq+qNBdq4aJYI71BKK8s5WScaqq26dr+AmjFQGxO5s2/HLlYuXMbTb76AbZ0GuJamb9xWQ0O5trN15v6eY1lxYgfHUy5gb27NtB6jeCjyFr7dtwozY1Me73cH3+1frTOIe3My6RWOxT13at8XffZtzX/qVkKhaHCQWuOgAMzGjaT019+oupiAkYsz5ndNQj1uJOXrarviqtMyKHzzfRTm5pj06IbFjGkU/ffzZm1Ag/pFV2B4O13dL5cc/ZOyK2OYrTuzm2k9RrPq1E6q1NUoUFBUUcrvJ3agQUNyfiY2KksGtu/e7I1nV9Wdll2hJ+0qL1sXHoqcwLJjWzmSfB4Hcxvu6zmGR/vcxpd7VgDQyc2fO7oM4bt9qzmflYS7tSMP9ppAbmkhvx3f9o/Lu3HLFt795BPt+0/fe6+m3HXPA3rS6ql37tAYPHP8sWEDfXr10hnTLObcOZb+/ju/fv/99b/rn6qzeo3m+vV78M2nKS8r5/KFBP5c/AeObs506VsTbRd/+jw7V21i3IwpeAb6kpOWyYafV2D1+0YGT2r4IU/Tqb+faQweUbUivTtSWlnGcT3RJOVVFby37RdUxiYEOftwW+dBZBXnc6FO1GizqnueUBiu19VtuPTYNu1Yh+ti9jI1bCSrT+2iSl1NUl46SXm1DcGXclN5vN8d9PHtxNoze5qnDnXUO5WjaMSWgj6+XSipLOPoNeOn1tXPryuX8zKIb2DylWZR79ynMHxCv0Zvn86UVpZxLFm3TvE5KcTnpGjfx2Vd5pVh9zG4fRjLmuDc97+q/nXX8L7nYePE9LDRrD71FyfTYrEzs+bO7sO5v+c4fji4ptnLKsTfJY1nQogWUVZWxogRIxgxYgS//vorzs7OJCYmMnLkSCoqagfdfvDBB5k+fTpz585l/vz5TJkyBQsDA0lrNBqDNyVX0++77z4yMzP59NNP8fHxQaVS0bt3b+136rv5bMzN1Ysvvsgzzzyjk6ZSqfi/jV9fd9mristLqVarsTHTrZ+1yqJRjSmRPh05nBRDdRsPn7a2sUapVJKfo/tEtyAvHxv7hhsb90ft5odPvuLxV56jU51uny2poLyEanU1dua6UWa2ZpYGB5e+tdNAzmUmsvZMzQQPiXnplB1Yy9ujHmLpsS3YmlnhYmXPnMHTtMtoG3KmvslTf3xGehOPgVZ5/CSFbybUJhjX/AxQ2tpQnV8bHaO0tkJTYLgrsNnEcVTsO0jFrn0AqJNTQWWKxT13Ub7+z9pf0dXVqDOyav57KQkjPx9UwwZSunBZk9brquKKmmPKus4xZaWyqBeNdlVBWQn5ZUXahjOAjKJclAoFduZWZBXnU1heTLVarXNjnVGUg42ZJUYKZbMeg1f3vbpRZrbmVgYnQJjUZTAx6QmsujJw+6XcNMr2VfD+2EdZdGQzuaWF3N19BFFxR9hypfHvUm4aKmNTZvW9jeXHtzeqcaQhA/r21Q7oD2jPuVk5OTg5OmrTc3JzcagTWXYtRweHelFmOXl5ODjUj4xMTUvj4JEjfFDnwcbRkyfJyctj3JQp2rRqtZpPv/mGJStWsHbp0hurnB4WNlYolUqK6kSZFRcUYmWrP0LwKnuXmoY+N+92FOUVsH35em3j2bbf1tF1QIQ2Gs3Nux0V5RWs+X4xA28diVLZfCOwFGmvUbpRPtYqCwrLrn+N6u3bmYOJZ/QeHxog88pkF5fzM3G1cWBEUESLNJ6VVJTVnCfqRJlZmZobHKOssLyE/LJinUlCrp4nbM2s9EaWaYDL+Rk4Wdo1ZfH1KqoooVqtrhdlZq2yqBeNpk8/vy7sv3RKZ+KNa5kaGdPTK4Q/Tusfv685FJWXGNz/GjNGWV/fzuxPPH3d87MGSMhJw9XacLS1MKzwynayrfP7yMbMsl402lXjQ/txISuRDWf3ApBEBuWHKnh1+AMsP7Hd4O+q/0lqmW2zLZExz4QQTWr//v313gcGBnL27FmysrJ4//336d+/P8HBwdrJAq41ZswYLC0t+eabb9i4caNOV8+6QkNDOXbsGMXFtT+i9uzZg1KppEOHmnGmdu3axRNPPMGYMWPo2LEjKpWKrKwsnXUkJiaSklL7FHLfvn3XradKpcLGxkbndaPdNqs1apLy0gly1u2iGeTsrfNUVJ8AJ0+crezZf+lUg/naAmMTE3wD23PqiO706qeOHCcwNNjgcvt27OL7j77k0ReeplsDg9e3hGp1NRdzUuhyZXyOq7q4B3DOwFTsKiOTeo2z6is/4hUoSMnP4tm1n/N/67/SvqIvn+V0Wjz/t/4rspqjm09ZOeqMrNpXShrqvHyMQ4Nq8xgZYRwUQFVcvOH1mJrUf8ys1lw/aFIBChOTv13866nWqEnOzyDQyUsnPdDJi4Rc/dFul3JTsTGzxNSotlxOlnaoNWrySmt+wCfkpOJoaatTPScrOwrKipu98bpKXU1cdjJdPQJ10rt5BBrs5qYyNqnX+FW779XmUevNo6gb6PW3WFpY4NWunfbl7+uLo4MDBw7XTvpRWVnJkePH6dJR/yDtAF1CQzkQrTse4IHDh/Uus2bTJuzt7OhXJ3p4zPDhLPnxRxb98IP25ezkxPQpU/jigw/+YU1rGBsb4+HvRdwJ3THj4k6cxatD42cI1gDVVbUTvVSWV6BQ6P5cVyqVDQWGNpmr16hgF1+d9GAXXy5e5xoV6OSFi5U9ext5jVKgwFjZMs/0a84TmQQ4647HFODkqTNRyLUu5aRiY2aBqVFtGZ2vnCcautF3t3GisAUGo69Wq7mUm0aoq+54fqGufsRlNzyWXJCzN67WDuy6eNxgnnCvEEyMjNl/yfD4hE2tWqMmMS+NUFdfnfQQV1/ispMbXLaDsxeu1g46kx80xMvOhfxSabD5O6rVahJyUujkpnue6+TmzwUD4xiqjE1Q1/t9VPO+uYODhfgnpPFMCNGkkpKSeOaZZzh37hxLlizhiy++4Mknn8Tb2xtTU1O++OILLl68yJo1a3j77bfrLW9kZMR9993Hiy++SEBAQINdKKdOnYqZmRn33nsvp06dYseOHTz++ONMnz4dV1dXAAICAli4cCExMTEcOHCAqVOnYm5url3HsGHDCAoK4p577uH48ePs2rWLl19+uen/MAZExR0h0rcTvbw74mrlwK2dBmJvYc2eKz/4xoX21TtFd6RPJxJy9M/2d3Uw5Ha2zhgrjLA1s6KdrTNOln+jS2kTGT1pPFGbtrFz0zaSEy/z6zc/kZ2RxdBxNeP2LPvxV7794DNt/n07dvHdB59z98x7CQjpQF5OLnk5uZQUt96MWOvO7GFoQA8Gtw+jnY0z94aPxsnSli3nayJ37uo+nFl9asdTOnz5LBHeoQzvEIGLlT1Bzt7c33MsF7KSyC0tpFJdRVJehs6ruKKMsqpykvIyqFa3zOxS5VujMBs7ApPuXVC2c8figWloKiqpOFDbyGExYzpmt43Xvq86fgrVoH6YRIShdHLEODQIs4ljqTx2StuoZnbbeIwC26N0dEDZzh2zW8dhHBRIxf7m7ea46+IxIrxDCfcKwcXKnvGh/bAzt9I2NI8K7s2UbsO0+Y8mn6ekoozJXYfiYmWPn4MHY0P6cigphqor22DfpVNYmpoxoeMAnCztCHbxYUhAOHsTGndj9k/9cXoXwzv0ZGhgOJ62LsyIGIeTpR2bztY8rJjeYxRP9Z+szX8oKYZIn06MCorE1cqBYBcfHuo1gfOZieRcmVzkUFIMo4Mi6e/XFRcre7p6BDI1bASHks7Uu6lpCgqFgrtuv535ixaxY9cuYuPjeeP99zEzM2PUsNrt8dq77/LlvHna93dOmsSBQ4f4eckSEhIT+XnJEg5ER3N3nbHL1Go1azdtYtzIkfVm0rSztSXAz0/nZWxkhKODA77e+if8+Dv6jB1K9Pa9RO/YS8blNDYsWEF+Vg4Rw/sB8OfiP1jx5QJt/gObd3I2+iTZqRlkp2ZwZMc+9qzdStd+tTP4BvXozKEtuzix5zC5GVnEnohh27K1BId3btaos6u2XThMH9/O9PbphKu1A5M6D8LBwprdVxpaJnTszz096ncf7ePbificFFILsup9NqJDBMEuPjha2OJq5cCQgB708g7lUNKZZq/PVbvjj9PTK4Rwz2CcrewYF9IHO3NrDiTWNA6NDOrF5K61Y6YeS7lASUU5t3cdcuU84c7o4N4cTjqrPU8MDQwn0MkLB3Nr3G0cub3LIDxsHNl/qWXqteX8Qfr7daWvXxfcrR2Z0m0oDhY2RMUdBeC2zgN5IGJcveX6+XUlLjuZFD3b6to8R5PPU1zRcrOHAmw5f4h+fl3p69sZN2tHJncdgoOFjXb2yVs7DeD+nmPrl9e3CxezU/TWaVxIX0Jd/XCytMXT1oV7e4zGy86lTc5oaW6iItDJUzvwvoeNE4FOnrhaGY7WbQ0bz+1nkH8YA/y74WHjxNTuI3G0sGXbhZrfEZO7DuXhyIna/EeTzxPuFcLQgHCcLe0IdPJieo9RxGVd1j60MlIq8bZzxdvOFWOlEfbmNnjbueLSxuou/rdIt00hRJO65557KC0tJSIiAiMjIx5//HFmzpyJQqHg559/5qWXXuLzzz8nLCyMjz76iAkTJtRbx4wZM3j33XcbjDoDsLCwYPPmzTz55JP07NkTCwsLJk2axCfXjLPz008/MXPmTLp37463tzfvvvsuzz33nPZzpVLJqlWrmDFjBhEREfj6+vL5558zqs5g083laPJ5LE3NGBncC1uVJamF2Xy3b7V29kwbM0vsLXS7/JgZm9LVPYCVJ6P0rtPW3Ir/u6Yr4NDAcIYGhnMhK4kvd69orqo0KHJQP4oKClm96DfycnLx9PHmuf+8jJNrzQxXeTm5ZGfU/sjdvv5PqqurWfDlPBZ8WXsj3W/4YB5+/vEWLz/UNKBYqyyY1GUw9ubWJOWl8972hWRd6Xpkb26t0z1n58WjmJuoGBXUi3t6jKK4oozTaRf59chm/V/QSso3bkVhYoL5tMkoLC2ovphA0SdfQVnthBhKB3udSLOydZvRUNN9U2lvi6awiMrjpyhbWTsZgsLGGssHp6OwtUFTWkb15RSK535N1Rnd2Uab2vHUWCxMzRgW2BMblSVphdn8dHAdeVePKZUFdtd0gayormTe/j+4pdMAnug/mZKKMk6kxLLpXG0UbX5ZEfP2r2F8x348PeBOCsqK2R1/nKjYI81al6t2x5/AWmXBlK41N8OXctN4a8t8bbe3uvve9thozE1UjA3pwwMRYymuKONEaiwLrplc5Lfj29EAU8NG4GBhS0FZMYeSzjTr/nnvnXdSXl7O+59+SmFhIZ1CQvjyww+xvKZrflpGhk6jUNdOnXjntdf45scf+fann/D08OC9117T6RIKcDA6mrT0dCZcZ7KX5tS5Tw9KCouJ+n0jhbkFuHq5M/2Fx7BzrummWpSXT352bfd1jVrDlsV/kJuZjVKpxMHVmRF330L4sH7aPANvq7kWbVu2loKcfCxtrAjq0Zlhd46nJRxJPoelypzRwb2xMbMktSCLr/es1M6eaWtmib2F7iQJZsamdPPooJ1woy5TYxOmdBuGnbkVldVVpBfm8POhDRxJbt5zw7VOpMZhYWrG0MAeWKssSSvK4edD67U37jXnidpuaBXVVfx4YC0TOvZjdr9JlFTUjDe6+dxBbR5zY1Nu6zwQa5UFZVUVpBRk8t2+P7icXz/KvjkcSorB0tSc8aF9sTWzIiU/k892/aadadLWzArHOtvK3ERFmGcQS49t0bdKoGYm3g7OXnyyc0mzll+fw5fPYmlqztiQvtiaWZJSkMUXu5fr1Mmhbp2MTQlrF8RSA+OXWZiqmB42EhszS0orax5WfRi1mITcFh7LrRGCnX348tbaIUKe6FczBvCGmH28s32BocVa3IHE01iZmjOx40DszK24nJ/BRzsXabsz25lZ4WhR+wB3V/xxzIxVDOvQk7u6j6CkoowzGfEsO7ZVm8fe3Jp3Rj+ifT82pA9jQ/oQk57Au22o7s2uJcKMRaMpNIZGmxVCiBs0aNAgunXrxqeffvqP1rNnzx4GDRrE5cuXtRFk/xZPrp7b2kVoUp9NfJqDLdhNo6VE+HRk8sJXWrsYTeq36f8hb0brNCw2F7sfv+D/1n3Z2sVoUh+Mm80t8+e0djGa1B/3/5fClIa78f3bWHt48Ns1N3I3g8ndhjFr5UetXYwm99Vtz/HC+m9auxhN6v2xj/Lgb++1djGa1A+TX2Tmiv+2djGa1Pe3z6HvV49cP+O/yJ5Z3zJ9yZvXz/gvsvCu11u7CH9b3sNPt3YR9LL77ua632ksiTwTQrQZ5eXlJCUl8eqrrzJ58uR/XcOZEEIIIYQQQoibj4x5JoRoM5YsWUJQUBD5+fl80ESDOAshhBBCCCHEv45G0zZf/6Mk8kwI0WSioqL+0fL33Xcf9913X5OURQghhBBCCCGEaAoSeSaEEEIIIYQQQgghhAESeSaEEEIIIYQQQgjRlqjVrV0CcQ2JPBNCCCGEEEIIIYQQwgBpPBNCCCGEEEIIIYQQwgDptimEEEIIIYQQQgjRlvwPz2zZFknkmRBCCCGEEEIIIYQQBkjjmRBCCCGEEEIIIYQQBki3TSGEEEIIIYQQQoi2RLpttikSeSaEEEIIIYQQQgghhAHSeCaEEEIIIYQQQgghhAHSbVMIIYQQQgghhBCiLVFLt822RCLPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQLptCiGEEEIIIYQQQrQlGnVrl0BcQyLPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQBrPhBBCCCGEEEIIIYQwQMY8E0IIIYQQQgghhGhLNJrWLoG4hkSeCSGEEEIIIYQQQghhgEKjkeZMIYQQQgghhBBCiLYi755HWrsIetn98m1rF6FVSLdNIYRoQm/++WNrF6FJvT5iBmfT41u7GE0u2NWPod890drFaFLbHv6cvBffbO1iNCm7917nzl9fa+1iNKml095iyLePt3YxmtT2R74gITultYvRpHwdPVh2dEtrF6NJTek+nFc3fd/axWhyb4+aycoTUa1djCZ1W5dB3Lv07dYuRpNacOervLTh5rrhfnfMI0xfcnNddxfe9Tp9v2qbDTZ/155Z/+L9Ti1xTm2JdNsUQgghhBBCCCGEEMIAaTwTQgghhBBCCCGEEMIA6bYphBBCCCGEEEII0ZbI8PRtikSeCSGEEEIIIYQQQghhgDSeCSGEEEIIIYQQQghhgHTbFEIIIYQQQgghhGhL1OrWLoG4hkSeCSGEEEIIIYQQQghhgDSeCSGEEEIIIYQQQghhgHTbFEIIIYQQQgghhGhLZLbNNkUiz4QQQgghhBBCCCGEMEAaz4QQQgghhBBCCCGEMEC6bQohhBBCCCGEEEK0JdJts02RyDMhhBBCCCGEEEIIIQyQxjMhhBBCCCGEEEIIIQyQbptCCCGEEEIIIYQQbYhGLd022xKJPBNCCCGEEEIIIYQQwgBpPBNCCCGEEEIIIYQQwgDptimEEEIIIYQQQgjRlmjUrV0CcQ2JPBNCCCGEEEIIIYQQwgBpPBNC/Kvdd999TJw48YaW8fX15dNPP22W8gghhBBCCCGEuLlIt00h/kXuu+8+FixYUC995MiRbNq0qdm/Oy8vj9WrVzfr99yozz77DI2maWeiSUhIwM/Pj6NHj9KtW7cmXbc+5/86Ssy2g5QWFGHr7kSP24bgEuBlMH91ZRWnNu0l/tAZygqLsbCzpuOISNr37gJAXmoWJ9fvJicpjeKcAsJuG0Lw4PBmr8e1Nqxay6olK8jNycHb14cZjz9Cx66d9ObNycpm/tfziD13gdTLKYybdAsPPvGITp4/125kx+atXLp4CYD2QQFMf+h+OoQGNXtdrjUhtB+Tuw7F0cKGhNw0vt77OyfTLhrMf0vH/tzSsT9u1g5kFOWy6MifbLlwSPv5yA4R/N/gafWWG/XDM1RWVzVLHRrDbOhATCN6oDA3ozopmZI/NqDOyDSY3+qhezH2962XXnn2PMULljRjSfUb3qEn40P7YWduxeW8TH45vJGzmZcM5u/r24UJHfvhZu1ASWU5x1Mu8Gv0ZooqSgHo6RXCxE4DcLN2wEhpRFpBNutj9rIr/nhLVYkJHfszRbvvpfLVnpWcTIszmP+Wjv21Zc4oyuXXI3+y5fxBnTyWpubMiBhHf7+uWKssSC3M5tt9qziQeKZZ6rD299UsX7yMnOxsfPx8eeTJ2XTu1sVg/hNHj/Hd519zKT4BRycn7ph6J+NunaD9/PlZT3HiaP1tENG7F29//H7Nd678g/Wr1pCemgaAj58vUx+4h569ezVx7Woc/PMvdq/dRlFePs6e7oy+ZxK+IQF68146G8efi/8gKyWNyvJK7JwdCB/alz5jh+jk27thB4e27CI/KxcLa0s69urOsLsmYGJq0ix1qCvCK5R+fl2wUlmQUZTLxrP7uJSbZjC/kULJ4IAedPUIwEplQUFZMTvjjnIk+RwAoa6+DPDvjoOFDUYKJdkl+exJOMnxlAstUp+r9m2OYtcff1KYl4+Lpwfj7p+MX0ig3rwJMbFsWrSSjOQ0KssrsHd2IGL4APqNG6aTr7S4hD+XrOb0gaOUFpdg7+LEmHtuJzisc0tUiSEBPRgT3Btbc2tS8jNZdHQz5zOT9OZ9sNcE+vt1rZeenJ/JSxu/BWq25bjQvvTz64KduQ1pBdn8dnxbg+eeptbLuyP9/WvOURlFuaw/s4eEhvY/pZIhAeF0axeItakF+WVFRMUdIfryuXp5u7i3587uwzmTFs+vRzY3ZzV0DA0IZ2xIH2zNrUnOz+DXI5s5n5loMH8fn86MDemDq7UjpZVlnEiNZcnRLdprVDsbZyZ1GYSvvQfOVnb8emQTm88daKnq3JCu7gHc3X0EwS7eOFna8cKGb1r0Wvqv08T3OOKfkcYzIf5lRo0axfz583XSVCpVK5Wm9dna2rZ2Ef6RS9ExHFm5jfDJw3H29yR2zzGivlnB2JdnYOlgo3eZ3fPXUFZYTOTdo7BytqessASNunZMhOqKSqycbPHqHsSRldtbqipau7bt5McvvuPhZ2YR0qkjm9ds4K3/e4Uvf/keZ1eXevkrKyuxsbXljul3sWb5Kr3rPHn0BP2HDuKhJ0MxNTVl5ZLlvPHcS3yx4DscnZ2au0oADGrfncf63Mbnu5dzKu0i40L78t6YR3ngt3fJKMqtl398aD9mRIznk7+WcC4jkWAXH54ZcCdFFaXsu3RKm6+ovJT7lv1HZ9nWbDhTDeiLql9vSlaspjorG7PBA7CaMZ2Cj7+Eigq9yxT/ugyMjLTvFRYWWD/xCJUnm6cRpiG9fTpxb4/R/HhoHecyEhkW2JMXhkzj2bVfkl2SXy9/kLM3s/rcxi/RG4m+fA4HCxse7DWemZG38MlfSwEorihl9am/SM7PpFpdTVi7IB7pPZH8smJOpMY2e50GtQ9jVp/b+GzXb5xKu8j40L68P/ZR7l/2jt59b0JoPx7sNZ6Pdy7lXMYlgl18eHbgXRSVl2j3PWOlER+Om0VeaRFvbPmRrKI8nK3sKaksb5Y6RG3dzreffcXs556iY5dOrF+9lleencO8RT/j4uZaL39aSiqvPPsioyeMZc7rL3P6xCm+/OhTbO1s6T94IACvvvcWVZW1x0pBfj6P3vsg/YcM0qY5uzjzwKMP4eHZDoAtGzbzxpxX+Orn7/H192vSOp7cG83GBb8zbsYUvIP8ObR1N7++/zWzP34FOyeHevlNVab0GjkAN+92mKhMSTwXx5oflmKqMiV8WD8Aju8+xNYlfzDx4al4dfAnOzWDVd8uBGD0vZOatPz6dHLzZ3RIb9ad2U1ibjrhXiFM7zGaL3b/Rn5Zsd5lpnQbhpXKnFWn/iKnJB9LU3OUitrOLiWV5eyMO0pWcR5V6mqCXHy4tdNAiitKic263Ox1Ajix5xDr5//GLQ/djU9Qew5s+Yuf3/mCp+e+gZ2znm1lZkrkqEG4+3hiqjIl4Wwsq75fhKnKlIjhAwCoqqzix7c/xcrGmruffRhbR3vys3JRmbfMb7QIr1Cmdh/JL9EbOJ91mcHtw3h2wN28uPEbckoK6uVfdGQzy49v075XKpT8Z9RMDibVnrcndRlMH59O/HRoPakFWXR2b88T/e7g7a0/k5hnuAGrqXR2b8/Y0D6sObWLS7lpRHiHcm/PsXz61zLyy4r0LnNX9+FYmVqw8kQU2SUFWJmao1Qo6uWzM7NidHBv4nNSmrsaOnp5d2Ra2Ch+PryeC1lJDA7owfMDp/LChq/I1rOdOjh58XDkRBYd3czR5PPYm1tzf89xzIgYz2e7fwPA1NiEjKI8DiaeYWrYyBatz40yN1ERm32ZDWf38u7oR66/gBBtiHTbFOJfRqVS4ebmpvOyt7fXfq5QKPjuu+8YN24cFhYWhISEsG/fPmJjYxk0aBCWlpb07t2buLjap4ZvvPEG3bp147vvvsPLywsLCwvuuOMO8vLytJ8vWLCAP/74A4VCgUKhICoqiiFDhjB79myd8mVnZ6NSqdi+vX6jTX5+PkZGRkRHRwOg0WhwcHCgZ8+e2jxLlizB3d1d+z45OZkpU6Zgb2+Po6Mjt9xyCwkJCdrP63bbLCwsZOrUqVhaWuLu7s7cuXMZNGgQTz31lE5ZSkpKeOCBB7C2tsbb25vvv/9e+5mfX80NVffu3VEoFAwaNKjhjfIPnN1xGP/eXQjo0xVbN0d6TBqKhb01F3Yf1Zs/5cxFMmKTGPTI7bgF+2LlaIuTrzvO/u20eRx93Ok+cTC+PUIwMjbSu57m9MdvKxk2diQjxo3Gy9ebB594BCdnZzauXqc3v6u7Gw89+ShDRg3D0tJCb55nX5vDmFvH4x/YHk8fL2Y9/yRqtYbj0ceasSa6bu88mI1n97Ph7D4S89L5eu9KMopyGR/aT2/+4YE9WRezh6i4o6QWZrMj7ggbz+1nStehdXJqyC0t1Hm1JlXfXpTt2EXl6bOo0zMpWb4ahYkJpt0MR05oSsvQFBVrXyaB/lBZSUUrNJ6NDenDjrgj7Ig9QkpBFr9EbyS7pIDhHXrqzR/o5EVmcR6bzh0gsziPc5mJbL1wmPaOtcfUmfQEDiXFkFKQRXpRLhvP7ScxL51gF+8WqdMdXQaz8ew+7b731ZV9b4Khfa9DT9ad2UNU3JHafe/sPu7sVhslMzo4EhuVBa9u/p7TafGkF+VyKu0iF7OTm6UOK5cuZ+T4MYyeMBZvXx8efWo2zi4urFu1Rm/+davW4OLqwqNPzcbb14fRE8YyYtxofl/8mzaPjY0NDo4O2teRQ9GYqcwYMGSgNk9kvz5E9InE09sLT28v7n/kQczMzTl7uun3zb3rtxM2uDc9hvTBuZ0bY+69HRtHew5t2aU3v7ufF136huPi5Y69iyNd+0cQ0CWES2drr89J5+Px6uBPl349sXdxJKBrCJ37hJN80XCUSlPq49uFI5fPEX35HJnFeWw8u4+CsiIivEP15g9w8sTXwZ2F0Zu4mJ1MXmkRyfmZJOWla/Mk5KQSk5FAZnEeuaWF7L90ivTCHHzs3FqkTgC71m0lfEhfeg7th4unO+Pvn4Ktkz37/9ypN7+Hnzfd+kXg6uWBvYsT3QdE0qFrKPExtY3n0Tv2UFpUzPT/ewzf4ADsnR3xDQnA3ddwJHlTGhUcyV8Xj7Lz4jFSC7JYfPRPckoKGBqgP/K8tLKc/LJi7cvPwQMLU3N2XayNAurj25m1Z/ZwIjWWzOI8tsdGczLtIqODI1ukTv38uhCddJbDl8+SWZzH+pi95JcV0ctH//4X6OSFn4MHCw5vIC47mbzSQi7nZ5B4zf4HoEDB5G5D2XrhMDklLXvNHR0Uyc6LR9l58SgpBVksOrKZ7JJ8hgbqv0YFOHmSWZzHn+cPklmcx/msJLbHRuPn4KHNE5+TwtJjW9ifeJrK6uqWqsrfsj/xNPMOrGHnxWOtXRQhbpg0nglxE3r77be55557OHbsGMHBwdx99908/PDDvPjiixw+fBigXqNXbGwsv/32G2vXrmXTpk0cO3aMWbNmAfDcc88xefJkRo0aRWpqKqmpqfTp04cHH3yQxYsXU15eG6mwaNEiPDw8GDx4cL1y2dra0q1bN6KiogA4ceKE9t+CgpqnbVFRUQwcWHPjU1JSwuDBg7GysuKvv/5i9+7dWFlZMWrUKCoMRMA888wz7NmzhzVr1rBlyxZ27drFkSNH6uX7+OOPCQ8P5+jRozz22GM8+uijnD17FoCDB2u6Nm3dupXU1FRWrlzZuD/8DaquqiYnKQ33YF+ddLdgP7Li9d/AJp+MxcHLjZitB1n1ytesfWseR1btoKqislnKeKMqKyuJO3+Bbj3DdNK79Qzj7KmYJvue8vJyqquqsLaxbrJ1NsRYaUQHZy8OXz6rkx59+SwdXfVHr5gYGVNRpbtdyqsqCXbxwUhZe/k1N1Gx+O43WDr1Ld4ZNZMAR8+mr0AjKe3tUNpYU3Xhmi451dVUxSdg7NP4cpmGd6fixCmobNn90khphJ+DOydSdbsUnUiNpYOz/oau85mJOFjY0M2jpruWrZklvbw7ciT5vMHv6eTmj7uNEzHphruCNhXtvpeku+8dvnyWjm4N7Ht1ohfr7nt9fDtzOj2BJ/tNZsU97/Dj5Be5u/sIvREa/1RlZSUXzp2nR4TuTXyPiHDOnDyld5mYU2fq5Q/v1ZPzZ89RVaU/MnPz2g0MHDYYM3NzvZ9XV1cTtWU75WVlhHTq+DdqYlhVVRWp8Um07xKikx7QJYTE8/GNWkdqfBJJ5y/iG1rbddAn2J/U+CQuxyYAkJOexfmjp+kQ1rTl18dIocTDxqleNFhs1mW87OpHCwIEu/iQkp9JP7+uPD9oKk/2n8zIoF4YKw0/yPF38MDJ0paE3NQmLb8hVZVVpFxMJLCrbgNMYJdQEs81rjtiSnwil85dxL9jB23amcMn8O7gzx8/LOadB5/j02feZMfKDairm3+2PCOlEl97d07VGUbgVFocAU6NO3cP8O/GmfSLOhG6JkojKtW6x1tldSWBzs3fIFiz/zlzIUu322ls5mWDDa0hrr4k52cywL8bc4ZM55mBdzI6OLLe/jcksAfFFWVE17mmNzcjpRJfB4963V5PpV0k0MB2upCVhIOFDV3da7p/25hZEuEdwrEW7uYsWola0zZf/6Ok26YQ/zLr1q3DyspKJ23OnDm8+uqr2vf3338/kydP1n7Wu3dvXn31VUaOrAnlfvLJJ7n//vt11lFWVsaCBQvw9Ky5eH/xxReMHTuWjz/+GDc3N8zNzSkvL8fNrfYHy6RJk3j88cf5448/tN83f/587rvvPhQGbsAGDRpEVFQUzz77LFFRUQwdOpSLFy+ye/duxowZQ1RUFE8//TQAS5cuRalU8sMPP2jXN3/+fOzs7IiKimLEiBE66y4sLGTBggUsXryYoUOHavN7eHhQ15gxY3jssce0f6O5c+cSFRVFcHAwzs7OADg6OurU91rl5eU6jYZw491ny4tL0Kg1mFlb6qSbW1uQWqC/O0xRdj6ZFy9jZGJE/wdvpby4hMO/baGipIzIqaNv6PubQ0F+AepqNXbXREMC2DnYk5uT02Tf88u3P+Hg7EjXHt2bbJ0NsTWzxEhpVC8qLLe0EAcL/Q14hy/HMCa4N3sSTnIhK4kOTl6MDuqFiZExtmZW5JQUkJiXwQdRi7iYnYKlqRm3dR7EZ7c8xcwV/yW5wPAYY81FYV1zblEX6XaHURcVo7RrXBdpI08PjNxcKfldf0RRc7JRWWCkNCK/VLf8+aXF2HlY6V3mfFYSX+5ZwZP9J2NiZIyx0ojDSf/P3n1HRXV1bQB/Zui9CIgiIEWaooLYC6CiBI29RFGwd0XseY0l9sTesWHvaIwauwKKYlSqIiJSxALSpHfmfn/wMXEEFQbkcsf9W4u14MxFnyPjMLPnnH0icejxPyLXKcjIYfegeZCWkoaAEcD70eU66fvzxfteXjY09Svf2v34zQu4WHREQFx42X1PWx/OFh1E7nuNVLRg01gTt6Kf4NcrXmiipo1ZXYdBis/H0aDa7aGZlZFZ9rigWdnjQsVtpwDwMT290utLS0uRmZGJBloNRG578TwS8bFx8Pzf/Ap/VlxMLGZPmo6ioiIoKChg6doVMDRqWrNJfSYvKwcCgQDKaqKPB0pqKsjJqLgV61Mbpv2G3KwcCEpL4TjEBW26dxLeZt3JDrlZOTiwbDMYMBCUCtDWqSu69e/1lT+xdijKykOKzxf2VSqXU5QPFbnKVwlrKqjCQEMXJYJSnAi5AUUZefzcvAsUZORx4dl/q7rkpGUw32EUpPlSEDACXH5+HzHfadXj5/Ky//9npS76/0dZXQXZ3/hZrZ28UPiz6jHsZ7Tt8d/qz48fUhD7LA2tu7THmF9nIjUpGX/vPwlBqQA9hvb9LnMppyKrCCk+v8JW2szCXKjJV/7Y9yk1eWW0bGQKr0DR1glPk2LhbN4BUckJSM5Jh1VDI9jomX+XIvvnhPe/QtH7X3ZRHprJVV6801RUgeH/3/+OB12Hoqw8+jfvCgUZeZx/6gcAMNDQhV0TC2wP8PnOM6hIRa7s55T12ZbTzIIcqMmbVPo90alvsTvwPKZ3HiL8HRX09gWOBl2ti8iEkE9Q8YwQjnF0dMTu3btFxjQ1RftztGz5XwPmhg3L3h22trYWGSsoKEBWVhZUVcuePBoYGAgLZwDQsWNHCAQCREVFfbGAJCcnh1GjRsHb2xvDhg1DaGgowsLCvnqogIODAw4cOACBQAB/f3/06NEDBgYG8Pf3h62tLV6+fClceRYUFIRXr15BRUX0xUhBQYHIttNysbGxKC4uRrt27YRjampqMDev2FT+038jHo8HXV1dJCcnfzH359auXYvff/9dZGzZsmXgdRLj3djPnoMyKNtSUBmGYcDj8dDJ/WfI/n8fFcHAUtzzvgC7oT0hXUcNpL/l8+fV5blrw/kTZ3Hvth9Wb/sTsnKytfJnVt3n77bxvtjL9WjQdWgoqGLHgDng8coKbddfPsIvrXtC8P896iKT4xGZHC/8nmdJcfAaPB8DWnTDzgfnvs8UPiHT2hqKA/57UZdz+MQXrqz6z07WzhalSR9Q+rZu+8h8qsKPhIcvHiyip6YNdzsXnHvqh/D3r6CuoAJX216Y0P5n7Hn4t/C6guIiLPxnN+RlZNFC1xij2zgjOecjnn+I/17TEMF8Nise78t9hI8GXYOmogp2Dpz7330v6l+MsHES3vd4PB4+5mdj092TEDAMolPfoIGSGoa36lHrxTNh5s/uR9/qg1zhMeP/v6Gyx5Lrl66gqbERLKwsK9zWxEAfuw7vR252DgL87mLDqnVYv3NLrRfQysJ9PvDtx77xy2ejqKAQb6LjcfPk39DU1UbLzmWr7uIiXuLuX9fRd/xwNDE1RFpSKq4e9oGfuiocBtfVGyaf3fe+8rhXPtez4XdQ+P8rb6+9CMTw1k64/DwAJYKyLWVFJcXY9eAcZKVkYNygMZwtOiA9Pwvx6XWz+qxSTMXfXZ+bvGI+igoKkRAdi2vH/0IDXW207lL2nEPAMFBSVcHAyaPAl+JDz8QQWekZuHfxxncvnpWr8DgBXoWxynQ1aoW84gIEvRNdiXU8+DrGtu2LdS5TwQBIzvmIe3Gh6GrUuhZTf13F37q8SkY/vQ04HXobhSVlOxSuRD7ACNteuBhxD3weH8Nadcdfz/yRV1zwHVN/3ef/f8p+TpVrrKqF0bY/4cKzu3ia9Arq8ir4xcYJY9v2xf5Hdf8mFSE/MiqeEcIxSkpKMDWt/OSucjIy/xVQyp/IVjYmEHx5K0H5Nd960j9hwgS0bt0ab9++hbe3N3r06AFDQ8MvXt+tWzdkZ2cjODgY9+7dw8qVK6Gvr481a9agdevW0NHRgaWlpTBfmzZtcPz48Qp/TvnqsE8xX3hhVdmL5k//Pcq/52v/Hp/79ddfMWfOHJExOTk5rPM/VuU/Q05JETw+DwWfrTIryM6DvGrl7+orqCpBQU1ZWDgDAFXdBgAD5GVkQ1WnYqPjuqSqpgq+FL/CapLMjxkVVqOJ46+TPvA5dgq/b1qLpibGNf7zqiqzIBelglJoKIiuVNBQUP5ij7Ki0mJs8D+BzfdOQUNBFel5mehj2Rm5RQVfbLTNgEFUSgKaqFW8f38Pxc+jkP3mky1ZUmVPC/jKyijN/u+dcb6yIpicypszi5CRhmyr5si/6VfLSasmqzAPpYJSqCuIrrRQk1f64r/5gOZd8TIlAZef3wcAJGR8QOGjIvzeewJOh91Gxv+vYmPA4ENO2erJ1x+ToKemjf7Nu3334ln5fU/zs/ueuoIKPuZXvkqmqLQY6/1OYNPd/+57fS07I7coX/jvkJ6XiRKBAIJPHh8TPn5AAyU1SPOlhEWO2qCqrvb/jwuiq08zP36Ehmbljwsampr4mCZ6fcbHDEhJSUFVTfTfoqCgAH63fOE2YUylf5aMjAz0/v/AADNLc0RFvsCFM+fgsXCumDOqSFFVGXw+HzkZoo8HuZk5UFL7+vZyDZ2yQ08aGughJzMbvj5XhMWz22f+Qauu7YSr0Roa6KG4sBAX951Et4G9wed/vw4seUUFKBUIoCwr+vtISVYeOUV5lX5PdmEesgpyhYUzAEjJyQCfx4OqvJKwcT0DCD9Pyk6DtpIGuhm3rpPimaJK+c9K9P9PTmY2lNUqX81ZTrNh2c9K11APOZlZuH3msrB4pqquBr60FPhS//1MdJo0QnZGFkqKSyAt8/1edmUX5aFUIID6Z6vMVP//tNNv6WrcCg/iw1H62fOg7MI8bAs4Axm+FJTlFPExPxvDWvVAam5GbcavVPn9T0VOdBu2sqxChdVon+Ytu//919ojOecj+Dwe1OSVISslDU1FVYxu81/hufw540rnSdh891SlhyvUluzCsp+T2me/o1TllSqsRiv3s1UXRKcm4MqLBwCAN0hG4eMiLHEah7Phd754cAKREMz33/ZNqo56nhFCAAAJCQl4//6/lSKBgYHg8/kwMyvr5yErK4vSSpqQWltbw87ODvv27cOJEycwbty4r/495X3PduzYAR6PBysrK3Tt2hUhISG4fPmycNUZANja2iI6Oho6OjowNTUV+ajslE0TExPIyMgIe5YBQFZWFqKjq9cXQla2bDVTZfMtJycnB1VVVZGP6m7blJKWgqa+LpJexIuMJ0XFQ8tIr9Lv0TbWQ35mDooL/3timJ2cDh6PB0X1uun/9TUyMjIwMWuGsCeiBx6EPgmBRYuKK0Kq4/zJszhz5ASWrV+FZhZm3/6GWlQiKMXLlDdo00R0FWObJhaI+PD1fkalAgFSczMgYBg4mtji4etnX10JYNJAr9ITt76LoiII0j7+95GcAkFWNqSbfVKYlOJD2qgpSl5/+xQ8WevmgJQ0ikPDv2PoLysVlCIuPRHWuqLbX6x1TfAypfIG67LSMhUK7OUFpS+tAC27DZCR+v4Hcgjve/oWIuNt9MwRkVSN+56pLR6+jhDe954lxUFPTUtkjk3UtZGam1mrhTOg7HGhmbkZgh89ERkPfhwEK+sWlX6PZQsrBD8OEhkLevQEZhbmkJYWLULcve2H4uIi9HB2qloghkFxLffjk5aWRiMjfcQ8FV25E/P0BQzMqnGqJ8Og9JMTRIuLiiq8IcTj87+5aq82lDICvM9KhYmW6O8jE60mIgcAfCrhYxJU5JUgK/Xfz6iBkhoEjOCrRRweD1/ti1abpGWk0djYANHhon04X4VHwsC88q1zlWEYiPTfM7QwQVpSisgbcanvP0BFQ+27Fs6Asv/r8R8T0VxX9E2l5rrG3zzB1ELHELoqDb7awL1YUIqP+dmQ4vFh18QCwe+iaiP2V5Xd/1JgqiW6ot9USw+vv3DS5+uPSVCRVxS5/2kpqUPACJBZkIOU3AxsvXsaOwLOCj9efIhHXNo77Ag4W2HLf63PSSBAfPp7tPjs59RC1xjRX/g5yUnLiLzJAXzyO+r7754lhHyCimeEcExhYSGSkpJEPlJTU2v858rLy8Pd3R1hYWG4d+8eZs2ahWHDhgm3bDZt2hTh4eGIiopCamqqyAuPCRMmYN26dSgtLcXAgQO/+Xc5ODjg2LFjsLe3B4/Hg4aGBqysrHD69GmRky1dXV2hpaWF/v374969e4iLi4O/vz88PDzw9m3FJxkqKipwd3fH/Pnz4evri4iICIwbNw58Pr9aWwZ1dHSgoKCAa9eu4cOHD8jMzPz2N4nJwtEOMYHhiAkMR2ZSGoLO3UZeehaadWkNAAi96I8HR/7rvWRoZwU5JQU8PHYVmYmpSH71BiEX/GDcwVq4ZbO0pBQf337Ax7cfICgpRX5mNj6+/YDslMp7C9W2/sMG4ebla7j1z3W8iU/A/u17kJqcDOf+fQAAR/Z4Y/Pq9SLfExsdg9joGOTnFyAzIxOx0TFIiP+vGfv5E2dxfP8RzFw4Bzq6DfExLR0f09KRn1f5u8/fg89TX7hYdISzeQcYqDfE1I4DoaOsgUvPAwAA49v9jIWOo4TXN1HTRs9mdtBT1Ya5tgF+6+EOI81GOPDov1NHR7dxhl0TCzRSaQCTBnqYZz8Spg2aCP9MNhTe/xfyDl0hY2UBfkNtKA4ZAKa4GEWhT4XXKA4dAPnen58aWnZQQPHzF2Dq8OfyuX8iH6C7qS0cTGzQWFULbm2coaWkhlvRjwEAv7TuiWmdBgmvD34bhbYGVnBq1hY6yhow0zbAmLYueJX6VriqsH/zrrDWNYGOsgYaq2rBxbITuhq3xr24sEoz1Laz4aL3vWmdBqGhiqbwfjKh3c9Y5DhaeL3wvqemDQsdQ/zWcwyaajbG/keXhNdcjLgHVTklzOg8GE3UtNHeoDlG2vTC3xF3v8scBv0yFNcuXcH1y1eQEP8aXlt3IvnDB/QZ8DMAwHv3Pvy5Yo3w+r4D++FD0gfs2boTCfGvcf3yFVy/dAWDRw6r8Gdfu3wFnbp2gWolb6p4e+3D09BwJCUmIS4mFge99iM8JAyOvXpWuLamOvXpjuA7DxDsG4iUd0m4evgcMlPT0bZnVwDAzZN/49zOI8Lr/73ujxdBT5GWmIy0xGQE+wXi/uXbaNn1v1P3zG1b4PGtADx98AQfk1PxKjwSd85chkUb6++66qzcg/hwtGliAVs9c2grqeMni45Qk1fGo4SywpOTWVsMtnYQXh+e+Ar5RQUYaO0AbSV1GGroord5ewS/jRIWZbsZt4ZJAz1oKKhAS0kNnZpao3VjM4TVYQP0rn174sntADy5cx/JbxNx+dAZZKSmo32vbgCAa8f/wpntB4XXB17zReSTMKQmfkBq4gc88b2PexdvwKbrf20i2veyR152Di4fPI2U9x/wIugp/P66io69HepkTtdePIS9sQ26GrVCI1UtjLRxQgNFNdx5VVaEHtqyOya171/h+7oZt8ar1Ld4l1mxz6axZmO0aWIBbSV1mGnrY67DSPB4PFyJfPDd5wMAAXHhsNO3QJsmZfc/F8tOUFNQwaPXZafl9jJvhyEt/zugKux9NPKKCjG4pSN0lDXQVKMRfrLsgKA3Zfe/EkEpPuR8FPnILylCYUkxPuR8RGkdrPK5GvUQDsa26GbcGo1VteBq0xsNFNVwO7rszYVhrXpgcocBwutD3r2Enb4lepjaQVtJHc209DG6jTNiUt8KV0ZL8fkwUG8IA/WGkOZLQUNBFQbqDaGjXPMV/7VNQUYOzbSaCA9IaKyqhWZaTdCwHmYl5HO0bZMQjrl27RoaNWokMmZubi48KVJcpqamGDRoEFxcXJCeng4XFxfs2rVLePvEiRPh5+cHOzs75OTkwNfXV1joGjFiBGbPno2RI0dCXl7+m3+Xo6MjNm3aJFIos7e3R2hoqMjKM0VFRdy9excLFy7EoEGDkJ2dDT09PfTo0UPYq+1zmzZtwpQpU9C3b1+oqqpiwYIFePPmTZVylZOWlsa2bduwYsUKLF26FF27dhWeEFrbDNtYojC3AM+uPUB+Vi7UGmnBYeoQKGmWvQjMz8xF3sf/ViHJyMnCcfowBPncwrX1RyCnpAADG3O07NtVeE1+Zg6u/nFY+HXk7ceIvP0YOqb66Okx4rvM41Nde9gjOysLpw8fR3raRxgaGWLpHyuho1vWf+9jWjpSP4j2l/McP134eUxUNO7e8oWOrg72nSl7oXn1wiWUFBfjj6WrRL7vlzGuGDFuNOqCX0wIVOWUMLpNb2gqqiE+PRG/XvVCck5ZUbKBoqrIE1U+j48hLbtDX00HJYJShL2PxswLm4Vb/4Cy7Sdzuv0CDUVV5Bbl41XqW3he2oqoL6ySqguFd++DJyMNhf4u4CkooPTNW+R4HwU+OeGWr65WoWkLX0sT0kaGyDlwtK4jiwh8/QzKcgoYbO0AdQUVvMlIxjrfY0jNLSuCl79gL+cfGwp5GTn0Mm+PUW16I7eoABEf4nAi+IbwGjlpWYxr1xcNFFVRVFqM91mp2Hn/HAJfV35SZG3ziwmGqrwS3OycoamoWnbfu7IbH/7/vqeppAYdFdH73tBW3aGv1hAlglKEvo/GrL824UP2f/e9lNwMLPhnJ6Z1GoT9Q39Fam4Gzj/1x6nQm99lDg49uyM7MwvHvY8gPS0dhsZNsWrDOjRsVPYGTXpaGlI+eVzQbdwIqzauxZ6tu3Dp/N/Q1GqAqZ4z0dXRXuTPfZvwBhFhT7Fmi2hBvlxG+kesX7EG6WnpUFRSgpGpMVZt+qPCSZ61wbpTG+Tn5MLv3FVkZ2RBR78RRi2aBnXtsu302R+zkJn638+AYRjcOnkRH1PSwOfzodlQC04j+sOuZ2fhNfaDnMHj8XD79GVkpWdCSVUZ5m1aoMfwn2s9f2WeJcVCUUYeDqa2UJFTxIfsdBwNuircKqYspyiyBa2otASHnvyDPpadMaXTIOQXFeBZUqyweA2UnQb7s1UXqMorobi0BKm5GfAJv1PhpMjvqWXntsjNycVtn3+Q/TETDfUbY8z/ZkBDu+wgiuyPmcj47Gd1/cQFpCengs/no4GuNpxdB6Gd03+/e9W1NDHuNw/8c/gsts1bAVVNdXRy6Q77/s51MqdHb55DWU4B/Vt0g7q8Mt5lpmDT3ZPC0zPVFJShqST63ElBRg52TSxxPPh6pX+mjJQ0Bls7QFtZA4UlRQh//wp7Ay8gr7iw0utr29PEGCjKyKO7qV3Z/S8nHYcfX0HG/9//VOSUoK7w36r7otISHHx0GX2bd8G0zoOQV1SIp4kxuPny0Zf+ijr3b0IElGUVMKC5PdQVlPE2Mxkb/I8Lf07q8spooPjf76h7cWGQl5ZDT7O2GGHTC3lFBXieHIfTobeE12goqGD1T1OEX/ex7IQ+lp0Q+SEea+7893ywPrDQNsSOgf+1PZnVZSgA4EpkIFbXs6z1Ql0sMyZVxmO+1EGXEPLDWL58OS5cuIDQ0FCxvv/Nmzdo2rQpHj9+DFtb29oNV0O5ubnQ09PDxo0bMX78+O/+9/1+48B3/zvq0rJe4/HiG9sSuciioRF67JnFdoxadXvyNmT8+vu3L+QQ9bXL8MuxpWzHqFWnRq1Ad6+ZbMeoVXembEd8GnsHRHwPTRs0xumQ71NIZMtwGycsubaX7Ri1bqXzJJwP92M7Rq0a1NIB7qdWsh2jVh3+ZQn+d8WL7Ri1ao3LFIw+KVm/d4+OWIbOO6d8+0IOuT+du/e7j/1Hsh2hUhp/f+mAKclGK88IIWIrLi5GYmIiFi1ahA4dOtSLwllISAhevHiBdu3aITMzEytWrAAA9O9fcasCIYQQQgghhBDyLVQ8I4SI7f79+3B0dISZmRl8fHzYjiO0YcMGREVFQVZWFm3atMG9e/egpaXFdixCCCGEEEIIqRoBbRKsT6h4RgjB8uXLsXz58mp/n4ODQ4VT6thmY2ODoKCgb19ICCGEEEIIIYRUAZ22SQghhBBCCCGEEELIF9DKM0IIIYQQQgghhJD6pJ7t8PnR0cozQgghhBBCCCGEEEK+gIpnhBBCCCGEEEIIIYR8AW3bJIQQQgghhBBCCKlPGAHbCcgnaOUZIYQQQgghhBBCCCFfQMUzQgghhBBCCCGEEEK+gLZtEkIIIYQQQgghhNQnAjptsz6hlWeEEEIIIYQQQgghhHwBFc8IIYQQQgghhBBCCPkC2rZJCCGEEEIIIYQQUp8wtG2zPqGVZ4QQQgghhBBCCCGEfAEVzwghhBBCCCGEEEII+QLatkkIIYQQQgghhBBSn9C2zXqFVp4RQgghhBBCCCGEEPIFVDwjhBBCCCGEEEIIIaxavXo1OnXqBEVFRairq1fpexiGwfLly9G4cWMoKCjAwcEBERERItcUFhZi5syZ0NLSgpKSEvr164e3b99WKxsVzwghhBBCCCGEEELqE4Ggfn58R0VFRRg6dCimTp1a5e/5888/sWnTJuzYsQOPHz+Grq4unJyckJ2dLbxm9uzZ+Ouvv3Dq1CkEBAQgJycHffv2RWlpaZX/Hup5RgghhBBCCCGEEEJY9fvvvwMADh06VKXrGYbBli1bsHjxYgwaNAgAcPjwYTRs2BAnTpzA5MmTkZmZiQMHDuDo0aPo2bMnAODYsWPQ19fHrVu30Lt37yr9XbTyjBBCCCGEEEIIIYR8U2FhIbKyskQ+CgsLWckSFxeHpKQk9OrVSzgmJycHe3t7PHjwAAAQFBSE4uJikWsaN26MFi1aCK+pEoYQQginFBQUMMuWLWMKCgrYjlJraE7cQHPiDkmcF82JG2hO3EBz4g5JnJckzulHsmzZMgaAyMeyZctq9e84ePAgo6am9s3r7t+/zwBg3r17JzI+ceJEplevXgzDMMzx48cZWVnZCt/r5OTETJo0qcqZeAxD558SQgiXZGVlQU1NDZmZmVBVVWU7Tq2gOXEDzYk7JHFeNCduoDlxA82JOyRxXpI4px9JYWFhhZVmcnJykJOTq/T65cuXC7djfsnjx49hZ2cn/PrQoUOYPXs2MjIyvvp9Dx48QOfOnfH+/Xs0atRIOD5x4kS8efMG165dw4kTJzB27NgKmZ2cnGBiYgIvL6+v/h3lqOcZIYQQQgghhBBCCPmmrxXKKjNjxgz88ssvX72madOmYmXR1dUFACQlJYkUz5KTk9GwYUPhNUVFRfj48SM0NDRErunUqVOV/y4qnhFCCCGEEEIIIYSQWqelpQUtLa3v8mcbGRlBV1cXN2/ehI2NDYCyEzv9/f3xxx9/AADatGkDGRkZ3Lx5E8OGDQMAJCYm4tmzZ/jzzz+r/HdR8YwQQgghhBBCCCGEsCohIQHp6elISEhAaWkpQkNDAQCmpqZQVlYGAFhYWGDt2rUYOHAgeDweZs+ejTVr1qBZs2Zo1qwZ1qxZA0VFRYwcORIAoKamhvHjx2Pu3Llo0KABNDU1MW/ePFhbWwtP36wKKp4RQgjHyMnJYdmyZdVaLl3f0Zy4gebEHZI4L5oTN9CcuIHmxB2SOC9JnBOpHUuXLsXhw4eFX5evJvP19YWDgwMAICoqCpmZmcJrFixYgPz8fEybNg0fP35E+/btcePGDaioqAiv2bx5M6SlpTFs2DDk5+ejR48eOHToEKSkpKqcjQ4MIIQQQgghhBBCCCHkC/hsByCEEEIIIYQQQgghpL6i4hkhhBBCCCGEEEIIIV9AxTNCCCGEEEIIIYQQQr6AimeEEEIIIYQQQgghhHwBFc8IIYSwimEY0Nk1pK69evUK169fR35+PgDQfbCeKygoYDtCrZPEORFCSGW6d++OjIyMCuNZWVno3r173QciRAx02iYhhNRzhYWFePToEeLj45GXlwdtbW3Y2NjAyMiI7Wg1cuTIEaxfvx7R0dEAADMzM8yfPx+jR49mOZl4SktLsXnzZpw5cwYJCQkoKioSuT09PZ2lZDX39u1bXLx4sdJ5bdq0iaVU4klLS8Pw4cNx584d8Hg8REdHw9jYGOPHj4e6ujo2btzIdkSxvXnzRuRxonnz5pCTk2M7ltgEAgFWr14NLy8vfPjwAS9fvoSxsTGWLFmCpk2bYvz48WxHrDZJnBMgWfe9zMxM/PXXX7h3716F37u9e/dGp06d2I5ICOfw+XwkJSVBR0dHZDw5ORl6enooLi5mKRkhVSfNdgBCCCGVe/DgAbZv344LFy6gqKgI6urqUFBQQHp6OgoLC2FsbIxJkyZhypQpUFFRYTtutWzatAlLlizBjBkz0LlzZzAMg/v372PKlClITU2Fp6cn2xGr7ffff8f+/fsxZ84cLFmyBIsXL0Z8fDwuXLiApUuXsh1PbLdv30a/fv1gZGSEqKgotGjRAvHx8WAYBra2tmzHqzZPT09IS0sjISEBlpaWwvHhw4fD09OTc8Wz169fw8vLCydPnsSbN29EVtDJysqia9eumDRpEgYPHgw+n1sbDlatWoXDhw/jzz//xMSJE4Xj1tbW2Lx5MycLTZI0J0m77yUmJmLp0qU4fvw4dHV10a5dO7Ru3Vr4e9fX1xcbNmyAoaEhli1bhuHDh7MdWSyPHz/G2bNnK30z5Pz58yylqhlJnJOkCA8PF37+/PlzJCUlCb8uLS3FtWvXoKenx0Y0QqqPIYQQUu/069ePadSoETN37lzG39+fyc3NFbk9JiaGOXToENO7d29GV1eXuXHjBktJxdO0aVPm8OHDFcYPHTrENG3alIVENWdsbMxcvnyZYRiGUVZWZl69esUwDMNs3bqVGTFiBJvRaqRt27bMkiVLGIYpm1dMTAyTnZ3N9OvXj9m1axfL6aqvYcOGTGhoKMMw/82HYRgmNjaWUVJSYjNatc2aNYtRUVFhBg8ezBw+fJiJjIxksrKymOLiYubDhw/M7du3meXLlzPm5uZM8+bNmUePHrEduVpMTEyYW7duMQwj+rOKjIxk1NXV2YwmNkmZkyTe97S1tZm5c+cyT58+/eI1eXl5zIkTJ5h27dox69evr8N0tePkyZOMjIwM06dPH0ZWVpbp27cvY25uzqipqTFjxoxhO55YJGlOf//9d5U/uILH4zF8Pp/h8/kMj8er8KGoqMgcOHCA7ZiEVAmtPCOEkHqoV69eOHv2LGRlZSu93djYGMbGxnB3d0dERATev39fxwlrJjExsdKtL506dUJiYiILiWouKSkJ1tbWAABlZWVkZmYCAPr27YslS5awGa1GIiMjcfLkSQCAtLQ08vPzoaysjBUrVqB///6YOnUqywmrJzc3F4qKihXGU1NTObfNTFZWFjExMdDW1q5wm46ODrp3747u3btj2bJluHLlCl6/fo22bduykFQ87969g6mpaYVxgUDA2S0+kjInSbzvRUREVDqfTykoKGDEiBEYMWIEUlJS6ihZ7VmzZg02b96M6dOnQ0VFBVu3boWRkREmT56MRo0asR1PLJI0pwEDBoh8zePxRFZ08ng84eelpaV1FatG4uLiwDAMjI2N8ejRI5H/Y7KystDR0YGUlBSLCQmpuvq/hpoQQn5A06dP/2Lh7HPNmzeHk5PTd05Uu0xNTXHmzJkK46dPn0azZs1YSFRzTZo0ERb+TE1NcePGDQBl20m4VpT5lJKSEgoLCwEAjRs3RkxMjPC21NRUtmKJrVu3bjhy5Ijwax6PB4FAgPXr18PR0ZHFZNW3fv36b77YL+fi4oIhQ4Z850S1q3nz5rh3716F8bNnz8LGxoaFRDUnKXOSxPteVecj7vX1QUxMDPr06QMAkJOTQ25uLng8Hjw9PbF3716W04lHkuYkEAiEHzdu3EDr1q1x9epVZGRkIDMzE1euXIGtrS2uXbvGdtQqMzQ0RNOmTSEQCGBnZwdDQ0PhR6NGjahwRjiFVp4RQgiHFBQU4PTp08jNzYWTkxNnC02///47hg8fjrt376Jz587g8XgICAjA7du3Ky2qccHAgQNx+/ZttG/fHh4eHhgxYgQOHDiAhIQETvZwK9ehQwfcv38fVlZW6NOnD+bOnYunT5/i/Pnz6NChA9vxqm39+vVwcHDAkydPUFRUhAULFiAiIgLp6em4f/8+2/Gq7bfffkP37t3RqVMnyMvLsx2nVi1btgyjR4/Gu3fvIBAIcP78eURFReHIkSO4fPky2/HEIolz+py/vz9yc3PRsWNHaGhosB2nWl69eoXMzEy0adNGOHb79m2sWrUKubm5GDBgAP73v/+xmLBmNDU1kZ2dDQDQ09PDs2fPYG1tjYyMDOTl5bGcTjySOCcAmD17Nry8vNClSxfhWO/evaGoqIhJkyYhMjKSxXTiefnyJfz8/JCcnAyBQCByG5d7w5IfB522SQgh9dT8+fNRVFSErVu3AgCKiorQvn17REREQFFRESUlJbh58yY6duzIclLxBAUFYfPmzYiMjATDMLCyssLcuXM5tfriax4+fIgHDx7A1NQU/fr1YzuO2GJjY5GTk4OWLVsiLy8P8+bNQ0BAAExNTbF582YYGhqyHbHakpKSsHv3bgQFBUEgEMDW1hbTp0/n3BYfADAxMUFcXBxkZWXRvn17ODo6onv37ujQoUOVV6/WZ9evX8eaNWtEflZLly5Fr1692I4mNkmZ0/r165GTk4Pff/8dAMAwDH766SfhqlsdHR3cvn0bzZs3ZzNmtQwcOBAtWrTAypUrAZRtOWvevDm6du0KCwsLeHt7Y+XKlZg9eza7QcU0cuRI2NnZYc6cOVi9ejW2bt2K/v374+bNm7C1teVkc31JnBNQtkX40aNHwnYQ5cLDw9G+fXvk5+ezlEw8+/btw9SpU6GlpQVdXV2RLag8Hg/BwcEspiOkaqh4Rggh9VSLFi2wZs0aYeHl4MGDmDt3LkJCQmBgYIBx48YhOTkZ//zzD8tJCSFsevfuHe7cuQM/Pz/4+fkhLi4OCgoK6NixIxwdHeHo6Fhpj0FCasLW1hYLFy4Unjp59uxZuLu74+bNm7C0tISbmxsUFRU5tZpYX18fZ86cEb4ptWrVKvj4+CA0NBQAcODAAWzfvl34Ndekp6ejoKAAjRs3hkAgwIYNG4RvhixZsoRzKwUByZwTUNZiQEZGBseOHRO+sZOUlITRo0ejqKgI/v7+LCesHkNDQ0ybNg0LFy5kOwohYqPiGSGE1FOqqqoIDg4WNpceMWIEVFRUhD08QkND4eLiwrnDAj6VnJxc6fL9li1bspSoei5evFjla7m8+ozrwsPD0aJFC/D5fISHh3/1WmVlZejr60NGRqaO0tW+N2/ewNfXF35+fjh37hxyc3NRUlLCdqxqGzt2LEaNGoXu3buLrFLgMkmak4aGBh48eABLS0sAZXMrKSnB0aNHAZStvh06dCjevHnDZsxqUVBQwMuXL6Gvrw8A6NGjBzp16iRciRYTE4M2bdogIyODxZTiKSkpwfHjx9G7d2/o6uqyHYd8w6tXrzBw4EBERUXBwMAAAJCQkAAzMzNcuHCh0oNH6jNVVVWEhobC2NiY7SiEiI16nhFCSD3F5/NFTll6+PChyKmN6urq+PjxIxvRaiwoKAju7u7CLZuf4vF4nDlF6vOTsb6ES3MCyl4UV/WFfXp6+ndOU3OtW7dGUlISdHR00Lp16wonmH1OTU0NXl5ewhU1XBITEwM/Pz/hSrTS0lLOHYRQLi0tDX369EGDBg3wyy+/YNSoUZzf1i1JcyouLhY5DCUwMBAeHh7Crxs3bsy5Q0U0NTWRmJgIfX19CAQCPHnyRKRnZVFR0VcfO+ozaWlpTJ06lZO9sj6XlZVV5WtVVVW/Y5Lvx9TUFOHh4bh58yZevHghbG/Rs2dPThbehw4dihs3bmDKlClsRyFEbFQ8I4SQesrCwgKXLl3CnDlzEBERgYSEBJEXwa9fv0bDhg1ZTCi+sWPHwszMDAcOHEDDhg05+UQQQIUVc5Jiy5YtbEeoVXFxccKT8eLi4r56bWFhIc6ePSuyHa0+i4uLg6+vr3ClWWZmJjp37gx7e3vMmDEDbdu2hbQ0N5/uXbx4ERkZGThz5gxOnDiBLVu2wNzcHKNGjcLIkSPRtGlTtiNWmyTNydTUFHfv3oWxsTESEhLw8uVL2NvbC29/+/YtGjRowGLC6rO3t8fKlSuxa9cunD17FgKBQOT37vPnzzn1M/pc+/btERISwslelZ9SV1ev8vMGLr1x9Tkej4devXpxrh9iuW3btgk/L99G+/DhQ1hbW1dY3T1r1qy6jkdItdG2TUIIqafOnTuHESNGoGvXroiIiEDbtm1x6dIl4e0LFy5EXFwcp/rJlFNRUUFISAjnth2QH8PHjx8xfvx4TjSa5vP5MDAwwLRp0+Do6AhbW1tISUmxHeu7ePv2LU6ePAlvb29ER0dzcivq57g8pz179mDu3LkYPnw4Hj58CHV1dZETa1etWoV///1X5PdWfRcXFwcnJyfExcWBz+dj27ZtmDp1qvD2AQMGwMjICJs3b2YxpfjOnj2LRYsWwdPTE23atIGSkpLI7VxpmfBpv6/4+HgsWrQIY8aMEfaqCwwMxOHDh7F27Vq4u7uzFbPGcnNz4e/vj4SEBBQVFYncxoVik5GRUZWu4/F4iI2N/c5pCKk5Kp4RQkg9duvWLfzzzz/Q1dXFzJkzoaioKLzt999/h4ODg8g7/VwxYMAAjB49GoMHD2Y7Sq3i+hPdb8nPz0dxcbHIGFe3xOTl5VX6c+LKi8dyw4cPx927d1FQUICuXbvC3t4ejo6OsLGx4eyKzsoUFxfjn3/+wbFjx/DPP/9AU1MT7969YztWjUjCnA4cOIDLly9DV1cXy5YtE+mlNW3aNPTs2RODBg1iMWH1FRcX4/nz59DW1kbjxo1FbgsLC4O+vj40NTVZSlczfD6/wlj5NnautRco16NHD0yYMAEjRowQGT9x4gT27t0LPz8/doLVUEhICFxcXJCXl4fc3FxoamoiNTUVioqK0NHRoWITISyg4hkhhHBYaGgoWrduzXaMaktNTYW7uzvatWuHFi1aVFi+z8Xm+pL6RDc3NxcLFy7EmTNnkJaWVuF2rr3YSklJwdixY3H16tVKb+fafMq9ePFCuHXT398fBQUF6NKlC+zt7eHg4IC2bduyHVEsvr6+OHHiBM6dO4fS0lIMGjQIrq6u6N69e6WFAC6QxDl9SUpKinDLtCR4+vQpDhw4wNmt7a9fv/7q7VzczqmoqIiwsDA0a9ZMZPzly5do3bo18vLyWEpWMw4ODjAzM8Pu3buhrq6OsLAwyMjIYNSoUfDw8OBcUZoQSUDFM0II4ZjMzEwcP34cBw4cQGhoKCdf7F+8eBGjR49GdnZ2hdu4+u63pD7RnT59Onx9fbFixQq4ublh586dePfuHfbs2YN169bB1dWV7YjV4urqivj4eGzZsgWOjo7466+/8OHDB6xatQobN25Enz592I5YK54/f44TJ05g+/btnD1ts0mTJkhLS0Pv3r3h6uqKn3/+GfLy8mzHqhFJnNPnGIbB1atXhavSCgsL2Y5UI1lZWTh58iQOHDiAJ0+eoGXLlggNDWU7Fvl/5ubm6Nu3LzZu3CgyPnfuXFy+fBlRUVEsJasZdXV1/PvvvzA3N4e6ujoCAwNhaWmJf//9F+7u7njx4gXbEatlzpw5lY7zeDzIy8vD1NQU/fv35+yqTvJjoOIZIYRwxJ07d+Dt7Y3z58/D0NAQgwcPxuDBgzl5UlvTpk3Rt29fLFmyhLOHHnxO0p7oljMwMMCRI0fg4OAAVVVVBAcHw9TUFEePHsXJkydx5coVtiNWS6NGjfD333+jXbt2UFVVxZMnT2BmZoaLFy/izz//REBAANsRxfbhwwf4+fnBz88Pvr6+ePnyJeTk5NChQwf4+vqyHa/a9u7di6FDh0JDQ4PtKLVGEudULjY2Ft7e3jh8+DBycnLQp08fDB48GAMHDmQ7mlj8/f1x4MABnDt3DgUFBZg/fz4mTJjA6V6dR44c+ertbm5udZSk9ly5cgWDBw+GiYkJOnToAKDsdPKYmBicO3cOLi4uLCcUj7a2Nu7fvw8zMzOYm5tj27Zt6N27N168eAFbW1vOrahzdHREcHAwSktLYW5uDoZhEB0dDSkpKVhYWCAqKgo8Hg8BAQGwsrJiOy4hleLm8UuEEPKDePv2LQ4dOgRvb2/k5uZi2LBhKC4uxrlz5zj95CItLQ2enp4SUzgDABkZGWGPqYYNGyIhIQGWlpZQU1NDQkICy+nEl56eLmz6q6qqivT0dABAly5dRBppc0Vubi50dHQAAJqamkhJSYGZmRmsra0RHBzMcrrqO3v2rHC7ZlRUFKSlpdGuXTsMGzYMjo6O6NSpE+Tk5NiOKZZJkyaxHaHWSdqcCgoK4OPjg/379+Phw4dwcnJCYmIiQkND0aJFC7bjVVtiYiIOHjwo/J07YsQI+Pv7o2PHjnBzc+N04QwAPDw8RL4uLi5GXl4eZGVloaioyMnimYuLC6Kjo7F7925ERkaCYRj0798fU6ZMgb6+PtvxxGZjYyN8c8fR0RFLly5Famoqjh49Cmtra7bjVVv5qrKDBw8Ke6VmZWVh/Pjx6NKlCyZOnIiRI0fC09MT169fZzktIZWj4hkhhNRTLi4uCAgIQN++fbF9+3Y4OztDSkoKXl5ebEersUGDBsHX1xcmJiZsR6k1kvZEt5yxsTHi4+NhaGgIKysrnDlzBu3atcOlS5egrq7OdrxqMzc3R1RUFJo2bYrWrVtjz549aNq0Kby8vNCoUSO241Wbq6sr7OzsMHDgQDg6OqJz585QUFBgO1atefz4Mc6ePVvp4Q5cOA21MpIyp2nTpuHUqVMwNzfHqFGjcO7cOTRo0AAyMjKc7d1mZGSEoUOHYufOnXBycuLsPL7k48ePFcaio6MxdepUzJ8/n4VENVNcXIxevXphz549WL16NdtxatWaNWuErS1WrlwJd3d3TJ06Faampjh48CDL6apv/fr1uHnzpsghQ6qqqli+fDl69eoFDw8PLF26FL169WIxJSFfR8UzQgipp27cuIFZs2Zh6tSpFRrhcp2ZmRl+/fVXBAQEwNrausKBAVw8mVLSnuiWGzt2LMLCwmBvb49ff/0Vffr0wfbt21FSUoJNmzaxHa/aZs+ejcTERADAsmXL0Lt3bxw/fhyysrI4dOgQu+HE8PHjRygpKbEd47s4deoU3Nzc0KtXL9y8eRO9evVCdHQ0kpKSOLsVUJLmtHfvXixcuBCLFi2CiooK23FqhaGhIQICAmBgYABDQ0NYWFiwHem7a9asGdatW4dRo0Zxrr2AjIwMnj17JlEnC5ezs7MTfq6trc25Fgmfy8zMRHJycoVdEykpKcjKygJQ1v7i8zcUCKlPqOcZIYTUU4GBgfD29saZM2dgYWGB0aNHY/jw4WjcuDHCwsI4vW2zfBtgZXg8HmdPpvwRJCQk4MmTJzAxMUGrVq3YjlNjeXl5ePHiBQwMDKClpcV2HLG9e/cO586dw8uXL8Hj8dCsWTMMHjwYenp6bEcTW8uWLTF58mRMnz4dKioqCAsLg5GRESZPnoxGjRrh999/ZztitUnSnE6cOIGDBw8iMDAQffr0wejRo+Hs7AwFBQVO/466f/8+Dhw4gLNnz8LMzAyjRo3CggULEB4eDktLS7bjfRchISGwt7cXFjG4ZO7cuZCRkcG6devYjvJdpKSkCPuBmZubc/b3lKurKwIDA7Fx40a0bdsWPB4Pjx49wrx589CpUyccPXoUp06dwoYNG/DkyRO24xJSKSqeEUJIPZeXl4dTp07B29sbjx49QmlpKTZt2oRx48ZJzLv9hBDx7dq1C3PmzEFRURHU1NTAMAyysrIgKyuLTZs2Ydq0aWxHFIuSkhIiIiLQtGlTaGlpwdfXF9bW1oiMjET37t2FKwi5RBLnFB8fj4MHD+LQoUPIy8tDeno6Tp8+jSFDhrAdrUZycnJw8uRJeHt7499//4W9vT1GjhyJAQMGQFtbm+14Yrl48aLI1wzDIDExETt27IC+vj6uXr3KUjLxzZw5E0eOHIGpqSns7OwqrMTl4gppoKw/58yZM3H06FHhCeRSUlJwc3PD9u3boaioyHLC6snJyYGnpyeOHDkiPP1ZWloa7u7u2Lx5M5SUlISn2LZu3Zq9oIR8BRXPCCGknkpISIC+vr7IdoSoqCgcOHAAR48eRUZGBpycnCo8GSaEiJozZ06Vr+XaC61//vkH/fv3x+zZszF37lxh37bExESsX78e27dvx99//83JE+f09fVx5coVWFtbo1WrVli0aBFGjBiBwMBAODs7IzMzk+2I1SaJcyrHMAyuX78Ob29vXLx4EVpaWhg0aBC2bdvGdrQai4yMFP7uTU9PR3FxMduRxPJ5DzcejwdtbW10794dGzdu5GTfR0dHxy/exuPxcOfOnTpMU3smT56MW7duYceOHejcuTMAICAgALNmzYKTkxN2797NckLx5OTkIDY2FgzDwMTEBMrKymxHIqTKqHhGCCH1lJSUFBITE4UnA36qtLQUly5dEr5I4YI5c+Zg5cqVUFJS+mYxg2sFDFK/fe3F1ae4+ELL3t4eXbt2xapVqyq9/bfffsO9e/fg7+9fx8lqbuTIkbCzs8OcOXOwevVqbN26Ff3798fNmzdha2vLqeb65SRxTpVJT0/HkSNHcPDgQYSFhbEdp9aUlJTg4sWLGDRoENtRiITT0tKCj48PHBwcRMZ9fX0xbNgwpKSksBOMkB8YFc8IIaSe4vP5SEpKqrR4xkWOjo7466+/oK6uLrHvFBNS11RVVfH48WOYm5tXentUVBTs7OyEh1lwSXp6OgoKCtC4cWMIBAJs2LABAQEBMDU1xZIlS6ChocF2xGqTxDlJkvfv32PTpk1YunSpyKmAQFnD81WrVmHevHlo2LAhSwnJl7x69QoxMTHo1q0bFBQUwDAMpw8SUFRURFBQUIU+exEREWjXrh1yc3NZSlZ1gwYNwqFDh6CqqvrNgrOkvHFAJBsVzwghpJ6StOIZIfWJpLzQUlZWRnh4OIyNjSu9PTY2Fi1btkROTk4dJyOSrirboXk8HjZu3FgHaWrHvHnzkJWVhb1791Z6+5QpU6CmpoY//vijjpOJT5K3rQNAWloahg0bBl9fX/B4PERHR8PY2Bjjx4+Huro6p+5/n+rRowcaNGiAI0eOQF5eHgCQn58Pd3d3pKen49atWywn/LaxY8di27ZtUFFRwdixY796LZdPJSc/Dmm2AxBCCPmy/fv3f7MfxKxZs+ooTe358OHDF9+5Dw8PR8uWLes4kXiq08uHSz+n6py49vnqjPruSy+0JkyYwMkXWs2bN8fff/8NT0/PSm+/cOECmjdvXsepao9AIMCrV6+QnJwMgUAgclu3bt1YSlUzkjKnkJAQtiPUumvXrsHLy+uLt7u5uWHixImcKp59/nMKCgpCaWmpcLXqy5cvISUlhTZt2rARr8Y8PT0hIyODhIQEkVVaw4cPh6enJ+ce08tt3boVzs7OaNKkCVq1agUej4fQ0FDIy8vj+vXrbMerkk8LYlQcI5KAVp4RQkg9xefz0aRJE0hJSX3xGh6Ph9jY2DpMVTt0dHSwf/9+9OvXT2R8w4YNWLJkCfLz81lKVj1GRkZVuo5rPyc+n//NVVjlK7XKTwHjCjc3NyQnJ2P//v2wtLREWFgYjI2NcePGDXh6eiIiIoLtiNVy+PBhTJ06FRs2bMCkSZMgLV32vmhJSQn27NmD+fPnY9euXRgzZgy7QcXw8OFDjBw5Eq9fv8bnT1e5eN8DJHNOkkRJSQmRkZEwMDCo9PbyAg0XtsxVZtOmTfDz88Phw4eFW4Q/fvyIsWPHomvXrpg7dy7LCatPV1cX169fR6tWraCioiJ8TI+Li4O1tTWnV93m5+fj2LFjePHiBRiGgZWVFVxdXaGgoMB2NLGUlJTAz88PMTExGDlyJFRUVPD+/XuoqqrSwQGEE2jlGSGE1GNPnjyRyG2bCxcuxPDhw4VHlKenp2P06NGIiIjA6dOn2Y5XZXFxcWxH+C58fX3ZjvDd3LhxA9evX0eTJk1Exps1a4bXr1+zlEp87u7uePr0KWbMmIFff/0VJiYmAICYmBjk5ORg1qxZnCycAWVb5Ozs7PDPP/+gUaNGnNxW+zlJmpOfn1+FZuafmzZtGnbt2lU3gWqBgoIC4uPjv1g8i4+P52zhAgA2btyIGzduiPTW09DQwKpVq9CrVy9OFs9yc3OhqKhYYTw1NRVycnIsJKo9CgoKmDhxItsxasXr16/h7OyMhIQEFBYWwsnJCSoqKvjzzz9RUFDw1RWfhNQXVDwjhBBS5+bOnYuePXti1KhRaNmyJdLT09GhQweEh4dzvhFzUVER4uLiYGJiIlwFxDX29vZsR/huJPGF1oYNGzBkyBCcPHkS0dHRAMq2//3yyy/o0KEDy+nEFx0dDR8fH5iamrIdpdZI0pz69+8PX19f2NraVnr79OnTcfz4cU4Vz9q3b4+jR49+cfvskSNH0K5duzpOVXuysrLw4cOHClu5k5OTOXmoCFD2WHfkyBGsXLkSQNkKToFAgPXr11f5pOX6ojqnp3++cr++8/DwgJ2dHcLCwtCgQQPh+MCBAzFhwgQWkxFSddx8Vk8IIQQAcPz4cbi6urIdQyzGxsZo3rw5zp07BwAYNmwYpwtneXl5mDlzJg4fPgygrI+MsbExZs2ahcaNG2PRokUsJxTfvXv3sGfPHsTGxuLs2bPQ09PD0aNHYWRkhC5durAdr1ok6YUWAKxYsQLz5s1Dhw4dOF0oq0z79u3x6tUriSg0lZOkOU2YMAE//fQT7t27BzMzM5HbZsyYgSNHjuDKlSsspRPPvHnz4OTkBDU1NcyfP1/4O+nDhw/4888/cejQIdy4cYPllOIbOHAgxo4di40bNwofLx4+fIj58+d/8zTE+mr9+vVwcHDAkydPUFRUhAULFiAiIgLp6em4f/8+2/GqZcCAAVW6jotbvAMCAnD//n3IysqKjBsaGuLdu3cspSKkmhhCCCH1koWFBfP+/fsv3n78+HFGRkamDhPVnoCAAKZp06ZMmzZtmOfPnzP79u1jVFRUmKFDhzLp6elsxxPLrFmzmDZt2jD37t1jlJSUmJiYGIZhGObvv/9mWrduzXI68fn4+DAKCgrMhAkTGDk5OeG8du7cyfz0008sp6u+iIgIRltbm3F2dmZkZWWZIUOGMJaWlkzDhg2ZV69esR2v2vh8PvPhwwe2Y3wX58+fZ6ysrJiDBw8yT548YcLCwkQ+uEjS5jR27FjGwMCAefv2rXBs5syZjJKSEuPn58diMvF5eXkxcnJyDJ/PZ9TV1RkNDQ2Gz+czcnJyzK5du9iOVyO5ubnM1KlThfPj8/mMrKwsM3XqVCYnJ4fteGJLTExkli5dyvTp04f56aefmMWLF3/1+ROpexoaGkxERATDMAyjrKwsfC5x7949RkdHh81ohFQZHRhACCH1lIODA/Lz83Hnzh0oKSmJ3Hbq1Cm4ubnhjz/++OIpe/WZnJwcPD09sXLlSsjIyAAo69E0evRoJCQk4O3btywnrD5DQ0OcPn0aHTp0EGla/OrVK9ja2lbrBMv6xMbGBp6ennBzcxOZV2hoKJydnZGUlMR2xGpLSkrC7t27ERQUBIFAAFtbW0yfPh2NGjViO1q18fl8JCUlSWRvRD6fX2GMx+Nx9rAKQPLmJBAIMGTIEERGRuLevXtYvXo19u7di8uXL3NyJWdxcTFkZGTw7t07nDlzBq9evQLDMDAzM8OQIUPQpEkTPHv2DC1atGA7ao3k5uYiJiYGDMPA1NS0wnMMwr64uLgqH0rEBcOHD4eamhr27t0LFRUVhIeHQ1tbG/3794eBgQGdxkk4gYpnhBBST+Xk5MDBwQHq6uq4evWqsMh05swZjBo1CmvWrMG8efNYTikef3//SvtqCQQCrF69GkuWLGEhVc0oKiri2bNnMDY2FikyhYWFoVu3bsjMzGQ7olgUFRXx/PlzNG3aVGResbGxsLKyQkFBAdsRf2h8Ph8fPnyAtrY221Fq3bcOcDA0NKyjJLVHEudUVFSEPn36ICwsDLm5ubh48SJ69OjBdiyxDBkyBGfPnv3iQQ7Pnj1Djx498OHDhzpORr7k7t27X739S/3r6jspKSl069YN48ePx5AhQyAvL892pBp5//49HB0dISUlhejoaNjZ2SE6OhpaWlq4e/euRL4BRCQPFc8IIaQeS0lJQbdu3WBlZQUfHx/4+PjA1dUVK1euxMKFC9mORz5hb2+PIUOGYObMmcJ3VY2MjDBjxgy8evUK165dYzuiWExMTLBnzx707NlTpHh25MgRrFu3Ds+fP2c7YrVcu3YNysrKwl5tO3fuxL59+2BlZYWdO3eKnELHBXw+Hy1atPjm4RTBwcF1lIj8KLZt2yb8PDs7GytXrkTv3r0rFM5mzZpV19HEpq+vj59++gl79+6tcFtERAS6d++Obt264ezZsyykqx2PHz/G2bNnkZCQgKKiIpHbzp8/z1Iq8X1pNWc5rq3mLPfs2TN4e3vj+PHjKCwsxPDhwzF+/HhOH1iRn5+PkydPIjg4WLjq29XVldMn2JIfCxXPCCGknnvz5g26dOkCU1NTBAQEYOnSpVi8eDHbsWosNzcX/v7+lT6B59KLrXIPHjyAs7MzXF1dcejQIUyePBkREREIDAyEv78/2rRpw3ZEsfz55584fPgwvL294eTkhCtXruD169fw9PTE0qVLMWPGDLYjVou1tTX++OMPuLi44OnTp7Czs8PcuXNx584dWFpacm7rCJ/Px9y5c6GsrPzV65YtW1ZHiWpXTEwMtmzZgsjISPB4PFhaWsLDwwMmJiZsRxObpMypKlvKeDweYmNj6yBN7YiMjBSu9lm3bp3IuKOjIzp16oSzZ89CSkqKxZTiK2/50KtXL9y8eRO9evVCdHQ0kpKSMHDgQM49/gGosKq7uLgYISEhWLJkCVavXs3ZVZDlSkpKcOnSJRw6dAhXr15Fs2bNMH78eIwePVoiVxwTUp9R8YwQQuqp8PBw4ecvXryAm5sbBgwYgP/9738i17Vs2bKuo1XbmzdvoK+vL/w6JCQELi4uyM3NRX5+PjQ0NJCamgpFRUXo6Ohw6sXWp54+fYoNGzaI9NJauHAhrK2t2Y5WI4sXL8bmzZuFWzTl5OQwb9484YmVXKKsrIxnz56hadOmWL58OZ49ewYfHx8EBwfDxcWFcz3cJLnn2fXr19GvXz+0bt0anTt3BsMwePDgAcLCwnDp0iU4OTmxHbHaJHFOkubx48fo0aMHlixZgvnz5+PFixdwdHREu3btcP78ec4WzoCy5wuTJ0/G9OnThSuJjYyMMHnyZDRq1Ai///472xFrzd27d+Hp6YmgoCC2o9SKwsJC7Nq1C7/++iuKioogIyOD4cOH448//uBEv87GjRvDwcFB+PH5Cb2EcAEVzwghpJ7i8/kijaTLH64//5wLWxJWrVqFxMRE7NixAzweDw4ODjAxMcHevXvRpEkThIWFIT8/H6NGjYKnpycGDRrEdmTymby8PDx//hwCgQBWVlbfXOlUX2lqaiIgIABWVlbo0qUL3NzcMGnSJMTHx8PKygp5eXlsR6wWKSkpJCYmSmTxzMbGBr179xZZAQQAixYtwo0bNzi5FVUS5ySJ7ty5g759+2LBggXYt28fbG1tcf78eWHvUa5SUlJCREQEmjZtCi0tLfj6+sLa2hqRkZHo3r07EhMT2Y5YayIjI9G2bVvk5OSwHaVGnjx5Am9vb5w6dQpKSkpwd3fH+PHj8f79eyxduhTZ2dl49OgR2zG/6eTJk/D394efnx9evnyJhg0bwt7eHg4ODrC3t4elpSXbEQn5JiqeEUJIPfWtxtLluNBgOj8/HzNmzEBKSgouXrwIdXV1PHz4EBYWFmjSpAkCAwOhr6+Phw8fYsyYMXjx4gXbkaukOidoqqqqfsckpKr69euHoqIidO7cGStXrkRcXBz09PRw48YNzJgxAy9fvmQ7YrVI8sozeXl5PH36FM2aNRMZf/nyJVq2bMnJwyokZU6nTp3CL7/8UqVr37x5g4SEBHTu3Pk7p6pdFy5cwNChQ9GrVy9cuHCB84UzoKyn25UrV2BtbY1WrVph0aJFGDFiBAIDA+Hs7MzJg20+XaUPAAzDIDExEevWrUNxcTHu37/PUrKa2bRpEw4ePIioqCi4uLhgwoQJcHFxEenx9urVK1hYWKCkpITFpNX34cMH+Pr64vLlyzh9+jQEAgEn3ggm5OvdZQkhhLCGC0WxqlJQUMCBAwdw6tQpAICMjIzwCaCOjg5ev34NfX19qKurIyEhgc2o1aKurv7FU9k+x6UnhtVZ+ce1BtM7duzAtGnT4OPjg927d0NPTw8AcPXqVTg7O7Ocrvri4uIktu+NtrY2QkNDKxSaQkNDOVsslJQ57d69G8uXL8fYsWPRr1+/CqtGMjMzcf/+fRw7dgy3bt3CgQMHWEpaPRoaGhUe0+/du4eGDRuKjKWnp9dlrFrTtWtX3Lx5E9bW1hg2bBg8PDxw584d3Lx5k7O9wVq3bi2yIr9chw4d4O3tzVKqmtu9ezfGjRuHsWPHQldXt9JrDAwMOPN/Cyg7RT4gIEC4Ai0kJATW1taVnr5OSH1ExTNCCKmHEhISYGBgUOXr3717JywC1GflKxVsbGzw+PFjmJmZwd7eHr/++iumTp2Kw4cPc6o/mK+vr/Dz+Ph4LFq0CGPGjEHHjh0BAIGBgTh8+DDWrl3LVkSxqKmpCT9nGAZ//fUX1NTUYGdnBwAICgpCRkYGJ7fXGhgY4PLlyxXGN2/ezEKamjt8+HCVrlu6dOl3TlL7Jk6ciEmTJiE2NhadOnUCj8dDQEAA/vjjD8ydO5fteGKRlDn5+/vj8uXL2L59O/73v/9BSUkJDRs2hLy8PD5+/IikpCRoa2tj7NixePbsGWcKg1u2bGE7wne1Y8cO4erGX3/9FTIyMggICMCgQYOwZMkSltOJJy4uTuRrPp8PbW1tyMvLs5SodkRHR3/zGllZWbi7u9dBmppr3749wsPD0aJFCzg4OOB///sfunbtCnV1dbajEVJltG2TEELqoYYNG6Jfv36YOHHiF48lz8zMxJkzZ7B161ZMnjwZM2fOrOOU4nvy5AmysrLQvXt3pKenY8yYMfDz84OJiQkOHTqEVq1asR2x2nr06IEJEyZgxIgRIuMnTpzA3r174efnx06wGlq4cCHS09Ph5eUlbJRdWlqKadOmQVVVFevXr2c5YfV8a2VjdYrW9QGfz0fjxo2ho6NTYeVFOR6Px8leWgzDYMuWLdi4cSPev38PoKzp9Pz58zFr1qwqr/qsTyRxTmlpaQgICEB8fDzy8/OhpaUFGxsb2NjYiGwxI6Q23blzBzNmzMDDhw8rtEXIzMxEp06d4OXlha5du7KUsHbk5eVVeio5Fw6L+pSmpiZ4PB569uwpPDSA+pwRrqHiGSGE1EPp6elYs2YNvL29ISMjAzs7OzRu3Fj4rv7z588REREBOzs7/Pbbb/jpp5/YjvzDU1RURFhYWKW9jFq3bs25RvTltLW1ERAQAHNzc5HxqKgodOrUCWlpaSwlE0/5QRxfwqXttQDg4uICX19f9O7dG+PGjUOfPn04fRpguZKSEhw/fhy9e/eGrq4usrOzAQAqKiosJxOfJM7pR1Z+mA+XfKlPJ4/Hg5ycHGRlZes4kfj69esHR0dHeHp6Vnr7tm3b4Ovri7/++quOk9WOlJQUjBkzBteuXav0dq79rgLK+tP5+fnB398f9+7dA5/Ph729PRwdHTFlyhS24xHyTfR2ECGE1EOamprYsGED3r9/j927d8PMzAypqanCZfyurq4ICgrC/fv3qXBWT+jr68PLy6vC+J49e6Cvr89CotpRUlKCyMjICuORkZEQCAQsJKqZkJAQBAcHCz/+/fdfeHl5wczMDGfPnmU7XrVduXIFsbGxaN++PebPn48mTZpg4cKFiIqKYjtajUhLS2Pq1KkoLCwEUFZg4nqRSRLnJEksLS1x4sSJCit8PhcdHY2pU6fijz/+qKNktUddXR0aGhoVPtTV1aGgoABDQ0MsW7aME4/tYWFhX+1T2atXLwQFBdVhoto1e/ZsZGRk4OHDh1BQUMC1a9dw+PBhNGvWDBcvXmQ7nlhatmyJWbNm4dy5c7h69Sp++uknnD9/HtOnT2c7GiFVQj3PCCGkHpOXl8egQYM42Vvqa9LS0rB06VL4+voiOTm5whN1LjZj3rx5MwYPHozr16+jQ4cOAICHDx8iJiYG586dYzmd+MaOHYtx48bh1atXIvNat24dxo4dy3K66qtsS3D5ys7169dz8v9ao0aN8Ouvv+LXX3/F3bt3cfDgQbRt2xbW1ta4desWFBQU2I4olvbt2yMkJESiDk+RxDlJip07d2LhwoWYPn06evXqVemK74CAADx//hwzZszAtGnT2I5cbYcOHcLixYsxZswYtGvXDgzD4PHjxzh8+DB+++03pKSkYMOGDZCTk8P//vc/tuN+1YcPH756Aqq0tDRSUlLqMFHtunPnDv7++2+0bdsWfD4fhoaGcHJygqqqKtauXYs+ffqwHbFaQkJC4OfnBz8/P9y7dw/Z2dlo1aoVPDw84OjoyHY8QqqEimeEEELq3KhRoxATE4Px48ejYcOGnNv6UhkXFxdER0dj9+7diIyMBMMw6N+/P6ZMmcLplWcbNmyArq4uNm/ejMTERABlxZoFCxZwqsH5t5iZmeHx48dsx6ixtm3bIj4+Hs+fP0dISAiKi4s5WzybNm0a5s6di7dv36JNmzZQUlISuZ1rPX8AyZyTpOjevTseP36MBw8e4PTp0zhx4kSFPm5ubm4YNWoUZ5ucHz58GBs3bsSwYcOEY/369YO1tTX27NmD27dvw8DAAKtXr673xTM9PT08ffoUpqamld4eHh6ORo0a1XGq2pObmys8aENTUxMpKSkwMzODtbU1J3tYtm3bFjY2NrC3t8fEiRPRrVu3Cr3qCKnvqOcZIYSQOqeiooKAgABOHgzwIyvvl8PlJ7yf9/xhGAaJiYlYvnw5Xrx4gdDQUHaC1VBgYCC8vb1x5swZmJmZYezYsRg5ciRnX+QDqLTZPI/HE/aa4mLPH0mcE+GOL/XmjI6ORqtWrZCXl4e4uDg0b9683vfpnDlzJvz8/PD48eMKJ2vm5+ejXbt2cHR0xLZt21hKWDNt27bFqlWr0Lt3bwwYMEC44mzbtm3w8fFBTEwM2xGrJSsri9PPHQgBaOUZIYQQFlhYWCA/P5/tGKSaJOGJr7q6eoWVjgzDQF9fH6dOnWIplfj+/PNPHDx4EGlpaXB1dUVAQACsra3ZjlUr4uLi2I5Q6yRxToQ7mjRpggMHDmDdunUi4wcOHBCukE5LS4OGhgYb8arlt99+w/nz52FmZoYZM2bA3NwcPB4PkZGR2LlzJ0pLS7F48WK2Y4pt9uzZwtXey5YtQ+/evXHs2DHIysri8OHDLKerPkl4/kAIrTwjhBBS5x4/foxFixZh6dKlaNGiRYW+JfQki3wv/v7+Il/z+Xxoa2vD1NQU0tLce0+Rz+fDwMAAffv2/epJeZs2barDVORH8/btW1y8eBEJCQkVGu7Tfa/+uHjxIoYOHQoLCwu0bdsWPB4Pjx8/xosXL+Dj44O+ffti9+7diI6O5sTP7fXr15g6dSquX7+O8pe0PB4PvXv3xq5du9C0aVN2A9YShmGQn5+PFy9ewMDAAFpaWmxHIuSHRMUzQgghdS46OhojRoxASEiIyDhtXSLfg62tLW7fvg0NDQ2sWLEC8+bNg6KiItuxaoWDg8M3ewbyeDzcuXOnjhLVrqNHj8LLywtxcXEIDAyEoaEhtmzZAiMjI/Tv35/teGKRtDndvn0b/fr1g5GREaKiotCiRQvEx8eDYRjY2tpy9r4nqV6/fg0vLy9ERUWBYRhYWFhg8uTJnC40ffz4Ea9evQLDMGjWrBknVs5VxYEDB7B582bhSevNmjXD7NmzMWHCBJaTEfJjouIZIYRwQExMDLZs2YLIyEjweDxYWlrCw8MDJiYmbEcTS7t27SAtLQ0PD49KDwywt7dnKRmRRAoKCoiOjkaTJk0gJSWFpKQkaGtrsx2LfMPu3buxdOlSzJ49G6tXr8azZ89gbGyMQ4cO4fDhw/D19WU7YrVJ4pzatWsHZ2dnrFixAioqKggLC4OOjg5cXV3h7OyMqVOnsh2RACguLkavXr2wZ88emJmZsR2HfMOSJUuwefNmzJw5Ex07dgRQ1ttyx44d8PDwwKpVq1hOSMiPh4pnhBBSz12/fh39+vVD69at0blzZzAMgwcPHiAsLAyXLl2Ck5MT2xGrTVFRESEhITA3N2c7CvkBdOzYEcrKyujSpQt+//13zJs3D8rKypVeu3Tp0jpOR77EysoKa9aswYABA4RFGWNjYzx79gwODg5ITU1lO2K1SeKcVFRUEBoaChMTE2hoaCAgIADNmzdHWFgY+vfvj/j4eLYjkv+nra2NBw8eVDgwgNQ/Wlpa2L59O0aMGCEyfvLkScycOZNzjxV+fn5wcHBgOwYhNcK95h6EEPKDWbRoETw9PSs0+F20aBEWLlzIyeKZnZ0d3rx5I3HFMx8fH5w5c6bSvj9cPFq+nL+/PzZs2CCy8nH+/Pno2rUr29Gq5NChQ1i2bBkuX74MHo+Hq1evVtrfjMfjcap4tm7dOsycORNKSkrfvPbff/9Famoq+vTpUwfJakdcXBxsbGwqjMvJySE3N5eFRDUniXNSUlJCYWEhAKBx48aIiYlB8+bNAYBzL/Ark5+fj+LiYpExrvbldHNzq/TAAFL/lJaWws7OrsJ4mzZtUFJSwkKimnF2doaenh7Gjh0Ld3d34QEVhHAJFc8IIaSei4yMxJkzZyqMjxs3Dlu2bKn7QLVg5syZ8PDwwPz582FtbV3hwICWLVuylEx827Ztw+LFi+Hu7o6///4bY8eORUxMDB4/fozp06ezHU9sx44dw9ixYzFo0CDMmjVLuPKxR48eOHToEEaOHMl2xG8yNzcXnqTJ5/Nx+/Zt6OjosJyq5p4/fw5DQ0MMHToU/fr1g52dnXA7aklJCZ4/f46AgAAcO3YMiYmJOHLkCMuJq8fIyAihoaEwNDQUGb969SqsrKxYSlUzkjinDh064P79+7CyskKfPn0wd+5cPH36FOfPn0eHDh3YjieWvLw8LFiwAGfOnEFaWlqF27nal7OoqAj79+/HzZs3YWdnV6HwzoVDAn4Uo0aNwu7duyv8TPbu3QtXV1eWUonv/fv3OHbsGA4dOoTly5ejR48eGD9+PAYMGPDVw24IqU9o2yYhhNRz+vr62LRpE4YOHSoyfubMGcybNw8JCQksJRMfn8+vMMbj8Th9YICFhQWWLVuGESNGiGzHWrp0KdLT07Fjxw62I4rF0tISkyZNgqenp8j4pk2bsG/fPkRGRrKUjABAeHg4du7cibNnzyIzMxNSUlKQk5NDXl4eAMDGxgaTJk2Cu7s75OTkWE5bPQcPHsSSJUuwceNGjB8/Hvv370dMTAzWrl2L/fv345dffmE7YrVJ4pxiY2ORk5ODli1bIi8vD/PmzUNAQABMTU2xefPmCoVCLpg+fTp8fX2xYsUKuLm5YefOnXj37h327NmDdevWcbJ4AQCOjo5fvI3LB4tIopkzZ+LIkSPQ19cXFqEfPnyIN2/ewM3NTeRNR64VPUNDQ+Ht7Y2TJ09CIBDA1dUV48ePR6tWrdiORshXUfGMEELquRUrVmDz5s1YtGgROnXqBB6Ph4CAAPzxxx+YO3cufvvtN7YjVtvr16+/ejsXX2wpKioiMjIShoaG0NHRwc2bN9GqVStER0ejQ4cOla5e4AI5OTlERETA1NRUZPzVq1do0aIFCgoKWEpGPsUwDMLDwxEfH4/8/HxoaWmhdevW0NLSYjtajezbtw+rVq3CmzdvAAB6enpYvnw5xo8fz3Iy8UninCSNgYEBjhw5AgcHB6iqqiI4OBimpqY4evQoTp48iStXrrAdkUi4rxU6P8XVouf79++xd+9erFu3DtLS0igoKEDHjh3h5eUl3PZNSH1DxTNCCKnnGIbBli1bsHHjRrx//x5AWV+Z+fPnY9asWRVOqiTsMDY2ho+PD2xtbdG2bVtMmDABkydPxo0bN/DLL78gPT2d7YhiMTU1xfz58zF58mSR8T179mDDhg2Ijo5mKRn5kaSmpkIgEEjEdttykjinnJwcCAQCkTEu9gdTVlZGREQEDA0N0aRJE5w/fx7t2rVDXFwcrK2tkZOTw3bEGnn16hViYmLQrVs3KCgoCFd9E/I9FRcX4++//4a3t7dw6/D48eMxYsQIpKenY+HChQgNDcXz58/ZjkpIpajnGSGE1GMlJSU4fvw4RowYAU9PT2RnZwMoO92M1C/du3fHpUuXYGtri/Hjx8PT0xM+Pj548uQJBg0axHY8sc2dOxezZs1CaGioyMrHQ4cOYevWrWzHIz8Irq+gq4ykzCkuLg4zZsyAn5+fyEpULm/DNzY2Rnx8PAwNDWFlZYUzZ86gXbt2uHTpEtTV1dmOJ7a0tDQMGzYMvr6+4PF4iI6OhrGxMSZMmAB1dXVs3LiR7YhEQs2cORMnT54EUNbP7c8//0SLFi2EtyspKWHdunVo2rQpSwkJ+TZaeUYIIfXcp9sBSf0lEAggEAiEpzieOXNG2PdnypQpnG6I+9dff2Hjxo3C/mblp23279+f5WRE0kniCbaSNqdOnToBADw8PNCwYcMKK5js7e3ZiFUjmzdvhpSUFGbNmgVfX1/06dMHpaWlKCkpwaZNm+Dh4cF2RLG4ubkhOTkZ+/fvh6WlpbA3540bN+Dp6YmIiAi2IxIJ1aNHD0yYMAGDBw/+4vOhkpIS3L9/n5OPGeTHQMUzQgip5xwdHeHh4YEBAwawHYUQQurMpyfY7tu3r8IJtqtXr2Y7YrVJ4pyUlZURFBQEc3NztqN8NwkJCXjy5AlMTEw43dRcV1cX169fR6tWrUQOtpGU7aik/rp79y46deokfIOxXElJCR48eIBu3bqxlIyQqqNtm4QQUs9NmzYNc+fOxdu3b9GmTZsKR8u3bNmSpWTkc/fu3cOePXsQExMDHx8f6Onp4ejRozAyMkKXLl3YjicWY2NjPH78GA0aNBAZz8jIgK2tLWJjY1lKVnUaGhpV7ufD1d50kmjXrl3Yu3cvRowYgcOHD2PBggUiJ9hykSTOqW3btnjz5o1EF88MDAxgYGDAdoway83NhaKiYoXx1NRUzp3GS7jF0dERiYmJFXo8ZmZmwtHRkZPbu8mPh4pnhBBSzw0fPhwAMGvWLOEYj8fjdD+ZckFBQYiMjASPx4OlpSVsbW3ZjiS2c+fOYfTo0XB1dUVISAgKCwsBANnZ2VizZg1nT2eLj4+v9D5WWFiId+/esZCo+rZs2cJ2hDojSY3AExIShFsCFRQUhD0fR48ejQ4dOmDHjh1sxhOLJM5p//79mDJlCt69e4cWLVpARkZG5HauvMGzbdu2Kl/76e9jLunWrRuOHDmClStXAih7LiEQCLB+/foqn+5IiDi+9LsoLS2twpvChNRXVDwjhJB6Li4uju0ItS45ORm//PIL/Pz8oK6uDoZhhO8+njp1Ctra2mxHrLZVq1bBy8sLbm5uOHXqlHC8U6dOWLFiBYvJxHPx4kXh59evX4eamprw69LSUty+fZszjX3d3d3ZjvDdpaWlYfjw4bhz547ENALX1dVFWloaDA0NYWhoiIcPH6JVq1aIi4sDV7uOSOKcUlJSEBMTg7FjxwrHuPgGz+bNm0W+TklJQV5envCAgIyMDCgqKkJHR4ezxbP169fDwcEBT548QVFRERYsWICIiAikp6fj/v37bMcjEqj8wCQej4cxY8aIrHAsLS1FeHi48A0FQuo7Kp4RQkg9J4kHBcycORNZWVmIiIiApaUlAOD58+dwd3fHrFmzhCcycUlUVFSlPTtUVVWRkZFR94FqqLzHHo/Hq1B8kpGRQdOmTTlZkAGAmJgYHDx4EDExMdi6dSt0dHRw7do16Ovro3nz5mzHE4unpyekpaWRkJAg/D8FlK1c9fT05OTPShJPsJXEOY0bNw42NjY4efJkpQcGcMWnb1SdOHECu3btwoEDB4TbUaOiojBx4kRMnjyZrYg1ZmVlhfDwcOzevRtSUlLIzc3FoEGDMH36dDRq1IjteEQClb/xxjAMVFRUoKCgILxNVlYWHTp0wMSJE9mKR0i10IEBhBDCAUePHoWXlxfi4uIQGBgIQ0NDbNmyBUZGRpw88VBNTQ23bt1C27ZtRcYfPXqEXr16cbLYZGJigj179qBnz54ijZiPHDmCdevW4fnz52xHFIuRkREeP34MLS0ttqPUCn9/f/z000/o3Lkz7t69i8jISBgbG+PPP//Eo0eP4OPjw3ZEsUhiI3BJPMFWEuekpKSEsLAwmJqash2l1piYmMDHxwc2NjYi40FBQRgyZIhErggn5Hv6/fffMW/ePNqiSTiNz3YAQgghX7d7927MmTMHLi4uyMjIEG6BUVdX52wvJ4FAUKEvDlC2okkgELCQqOYmT54MDw8P/Pvvv+DxeHj//j2OHz+OefPmYdq0aWzHE1tcXJzEFM4AYNGiRVi1ahVu3rwpUqhwdHREYGAgi8lqRhIbgfP5fJGT2YYNG4Zt27Zh1qxZnCwyAZI5p+7duyMsLIztGLUqMTERxcXFFcZLS0vx4cMHFhLVDiMjIyxZsgRRUVFsRyE/mGXLlkFJSQnJycm4d+8eAgICkJyczHYsQqqFimeEEFLPbd++Hfv27cPixYshJSUlHLezs8PTp09ZTCa+7t27w8PDA+/fvxeOvXv3Dp6enujRoweLycS3YMECDBgwAI6OjsjJyUG3bt0wYcIETJ48GTNmzGA7nthmzZpVaSPtHTt2YPbs2XUfqIaePn2KgQMHVhjX1tZGWloaC4lqR3kj8HLUCJzUlZ9//hmenp5Yvnw5zp07h4sXL4p8cFGPHj0wceJEPHnyRNiL7smTJ5g8eTJ69uzJcjrxzZw5E9euXYOlpSXatGmDLVu2IDExke1Y5AeQlZWF0aNHQ09PD/b29ujWrRv09PQwatQoZGZmsh2PkCqhbZuEEFLPKSgo4MWLFzA0NBTZjhUdHY2WLVsiPz+f7YjV9ubNG/Tv3x/Pnj2Dvr4+eDweEhISYG1tjb///htNmjRhO2K1lJaWIiAgANbW1pCXl8fz588hEAhgZWUFZWVltuPViJ6eHi5evIg2bdqIjAcHB6Nfv354+/YtS8nE06RJE5w5cwadOnUS+f/0119/Yd68eYiJiWE7olieP38OBwcHtGnTBnfu3EG/fv1EGoGbmJiwHZFIKD7/y+/Fc+nAgE+lpKTA3d0d165dE66SLikpQe/evXHo0CHo6OiwnLBmXr58iePHj+PUqVOIjY2Fo6MjRo0aBTc3N7ajEQk1bNgwhIaGYvv27ejYsSN4PB4ePHgADw8PtGzZEmfOnGE7IiHfRMUzQgip56ysrLB27Vr0799f5MX+tm3bcPjwYQQFBbEdUWw3b97EixcvwDAMrKysOP2Ovry8PCIjI2FkZMR2lFolLy+PZ8+eVehn9OrVK7Ro0QIFBQUsJRPPggULEBgYiLNnz8LMzAzBwcH48OED3Nzc4ObmhmXLlrEdUWxJSUnYvXs3goKCIBAIYGtrS43ACamBly9fCn9HWVpawszMjO1Ite7hw4eYOnUqwsPDOVnoJNygpKSE69evo0uXLiLj9+7dg7OzM3Jzc1lKRkjV0WmbhBBSz82fPx/Tp09HQUEBGIbBo0ePcPLkSaxduxb79+9nO16NODk5wcnJie0YtcLa2hqxsbESVzwzNTXFtWvXKmw9vXr1KoyNjVlKJb7Vq1djzJgx0NPTExZtS0tLMXLkSPz2229sx6sRXV1d/P7772zHIERimJmZSWTBDCg7oOfEiRM4ffo0MjMzMWTIELYjEQnWoEED4cmbn1JTU4OGhgYLiQipPlp5RgghHLBv3z6sWrUKb968AVC2lW758uUYP348y8mqbtu2bZg0aRLk5eUr7aH1qVmzZtVRqtpz48YNLFy4ECtXrkSbNm0qnCilqqrKUrKa8fb2xowZMzB//nx0794dAHD79m1s3LgRW7Zs4ewR8zExMQgJCYFAIICNjQ2aNWvGdqQauXv37ldv79atWx0lIT8CSXw8nzNnDlauXAklJSXMmTPnq9du2rSpjlLVrvLtmidOnEB8fDwcHR3h6uqKQYMGQUVFhe14RILt3bsXZ8+exZEjR4SroZOSkuDu7o5BgwZh8uTJLCck5NuoeEYIIRySmpoKgUDAyX4rRkZGePLkCRo0aPDV1Vk8Hg+xsbF1mKx2fNr3h8fjCT9nGIazfX/K7d69G6tXrxYe8NC0aVMsX76c+uPUI5X1nfr0fsjV+5+Pjw/OnDmDhIQEFBUVidwWHBzMUqqakYQ5SeLjuaOjI/766y+oq6t/9ZANHo+HO3fu1GGy2sPn82FnZ4eRI0fil19+ga6uLtuRyA/CxsYGr169QmFhIQwMDAAACQkJkJOTq/DmFVceB8mPh7ZtEkJIPRcXF4eSkhI0a9YMWlpawvHo6GjIyMigadOm7IWrhri4uEo/lxS+vr5sR/hupk6diqlTpyIlJQUKCgqcOwThW6tIPsXVFSUfP34U+bq++WH7AABlBklEQVS4uBghISFYsmQJVq9ezVKqmtm2bRsWL14Md3d3/P333xg7dixiYmLw+PFjTJ8+ne14YpGUOUni4/mnj+GS+nj+4sULid2GSuq3AQMGsB2BkBqjlWeEEFLP2dvbY9y4cXB3dxcZP3bsGPbv3w8/Pz92gpEqCw0NRevWrdmOIbaSkhL4+fkhJiYGI0eOhIqKCt6/fw9VVVVOFNI+X0USFBSE0tJSmJubAyjbyiQlJSU8qVKS3L17F56enpw8WMTCwgLLli3DiBEjRA5LWbp0KdLT07Fjxw62I1abJM4pPz8fCgoKld6WmJhIB1bUQ0VFRUhOToZAIBAZL18RRAghpCIqnhFCSD2nqqqK4ODgSk87tLOzQ0ZGBjvBamDIkCGws7PDokWLRMbXr1+PR48e4ezZsywlqz2ZmZk4fvw49u/fj7CwMM5um3v9+jWcnZ2RkJCAwsJCvHz5EsbGxpg9ezYKCgrg5eXFdsRq2bRpE/z8/HD48GFhk+KPHz9i7Nix6Nq1K+bOnctywtoVGRmJtm3bIicnh+0o1aaoqIjIyEgYGhpCR0cHN2/eRKtWrRAdHY0OHTogLS2N7YjVJolzsrCwwIkTJ2Braysy7uPjI1yxygWDBg2q8rXnz5//jkm+n+joaIwbNw4PHjwQGZeE9gKEO3JycioUbrnaF5b8WCo2yCCEEFKv8Hg8ZGdnVxjPzMzk7BNdf39/9OnTp8K4s7PzNxuf13d37tzBqFGj0KhRI2zfvh0uLi548uQJ27HE5uHhATs7O3z8+FFkdcnAgQNx+/ZtFpOJZ+PGjVi7dq3I6V4aGhpYtWoVNm7cyGKymgkPDxf5CAsLw7Vr1zB16lS0atWK7Xhi0dXVFRaTDA0N8fDhQwBl2wS5+t6vJM7JyckJnTp1wrp168AwDHJycjBmzBi4u7tj6dKlbMerMjU1NeGHqqoqbt++LfLYHRQUhNu3b1d6YiBXjBkzBnw+H5cvX0ZQUBCCg4MRHByMkJAQ6jNFvqu4uDj06dMHSkpKwhM2NTQ0oK6uTqdtEs6gnmeEEFLPde3aFWvXrsXJkychJSUFoKz599q1a9GlSxeW04knJycHsrKyFcZlZGSQlZXFQqKqS0lJgba2tsjY27dvcejQIXh7eyM3NxfDhg1DcXExzp07BysrK5aS1o6AgADcv3+/ws/L0NAQ7969YymV+LKysvDhwwc0b95cZDw5ObnSIjVXtG7dGjwer0IBpkOHDvD29mYpVc10794dly5dgq2tLcaPHw9PT0/4+PjgyZMn1VolVJ9I4py2b9+OPn36YOzYsfjnn3+EW7ofP37Mqce/gwcPCj9fuHAhhg0bBi8vL5Hfu9OmTeP0CpnQ0FAEBQXBwsKC7SjkB+Pq6gqg7ATvhg0bihxoQwhXUPGMEELquT///BPdunWDubk5unbtCgC4d+8esrKyONufqUWLFjh9+nSFVQmnTp2q9y+29u7di7dv32Lbtm2QkZGBi4sLAgIC0LdvX2zfvh3Ozs6QkpLi3HbGLxEIBJWucHz79i1UVFRYSFQzAwcOxNixY7Fx40Z06NABAPDw4UPMnz+fs8ULoGLTdj6fD21tbcjLy7OUqOb27t0r3NozZcoUaGpqIiAgAD///DOmTJnCcjrxSOKcAKBXr14YNGgQdu/eDWlpaVy6dKneP5Z/jbe3NwICAoSFMwCQkpLCnDlz0KlTJ6xfv57FdOKzsrJCamoq2zHIDyg8PBxBQUHCXqOEcBH1PCOEEA54//49duzYgbCwMCgoKKBly5aYMWMGNDU12Y4mlosXL2Lw4MEYOXIkunfvDgC4ffs2Tp48ibNnz9brU5kKCwuxZMkSaGlpYcGCBZCWlsasWbMwdepUkePWZWRkEBYWxukXkAAwfPhwqKmpYe/evVBRUUF4eDi0tbXRv39/GBgYiKzW4IK8vDzMmzcP3t7eKC4uBgBIS0tj/PjxWL9+PZSUlFhOSAi3lB8kkpSUhP3798Pf3x8bNmzArFmzsHr1asjIyLAdsdo0NDRw8ODBCr+LLly4gLFjx1Y43ZYr7ty5g99++w1r1qyBtbV1hZ8Nl1fVkfrN0dERixcvRs+ePdmOQojYqHhGCCGEFf/88w/WrFmD0NBQYUFw2bJlsLe3ZztalRQVFUFWVhaBgYHw9vbGmTNnYGFhgdGjR2P48OFo3LixRBTP3r9/D0dHR0hJSSE6Ohp2dnaIjo6GlpYW7t69Cx0dHbYjiiU3NxcxMTFgGAampqacL5pt27at0nEejwd5eXmYmpqiW7duIitp6qPw8PAqX9uyZcvvmKT2SOKcPqWiooI+ffrAy8sL6urqAIAHDx7Azc0NKioqCAkJYTegGObMmYNDhw7hf//7n8gK1XXr1sHNzQ2bNm1iOaF4+Pz/2l1/um2ODgwg31tMTAymTJmCUaNGoUWLFhUKt1x87CM/HiqeEUJIPfetBvrdunWroyTka/Ly8nDq1Cl4e3vj0aNHKC0txaZNmzBu3DhObm/8VH5+Pk6ePIng4GAIBALY2trC1dVV5AABwi4jIyOkpKQgLy8PGhoaYBgGGRkZUFRUhLKyMpKTk2FsbAxfX1/o6+uzHfeL+Hx+pb3bPselF/qSOKdPHT16FKNHj64wnp2djdmzZ+PAgQMspKoZgUCADRs2YOvWrUhMTAQANGrUCB4eHpg7d269L0J/ib+//1dv58qbV4R7Hj58iJEjRyI+Pl44Vv64yNXHPvLjoeIZIYTUc5++U1zu03eM6QlH/RMVFYUDBw7g6NGjyMjIgJOTEy5evMh2LCLBTp48ib1792L//v0wMTEBALx69QqTJ0/GpEmT0LlzZ/zyyy/Q1dWFj48Py2m/7PXr11W+1tDQ8DsmqT2SOCdJVlJSguPHj6N3797Q1dUVHmIjKVsa7927hz179iAmJgY+Pj7Q09PD0aNHYWRkxNlDiEj9Z2VlBUtLSyxYsKDSAwPosY9wARXPCCGknsvMzBT5uri4GCEhIViyZAlWr16NHj16sJSsejQ1NfHy5UtoaWlBQ0Pjqyctpaen12Gy76e0tBSXLl2Ct7c3p4tnUVFR2L59OyIjI8Hj8WBhYYEZM2bQiW31iImJCc6dO4fWrVuLjIeEhGDw4MGIjY3FgwcPMHjwYOFKGkJq0/Pnz5GQkICioiLhGI/Hw88//8xiKvEoKioiMjJS4l7Qnzt3DqNHj4arqyuOHj2K58+fw9jYGLt27cLly5dx5coVtiMSCaWkpISwsDCYmpqyHYUQsdFpm4QQUs+pqalVGHNycoKcnBw8PT0RFBTEQqrq27x5s3D74ubNm3+IY8qlpKQwYMCAen0Awrf4+PhgxIgRsLOzQ8eOHQGUbb+wtrbGiRMnMHToUJYTEgBITExESUlJhfGSkhIkJSUBABo3bozs7Oy6jkYkTGZmpsjvpdjYWAwaNAjh4eEi21PLH+O5uDq6ffv2CAkJkbji2apVq+Dl5QU3NzecOnVKON6pUyesWLGCxWRE0nXv3p2KZ4TzqHhGCCEcpa2tjaioKLZjVJm7u7vw8zFjxrAXhFTLggUL8Ouvv1Z4YbVs2TIsXLiQimf1hKOjIyZPnoz9+/fDxsYGQNmqs6lTpwpPtH369CmMjIzYjEkkwLZt2yAvL4/58+cDADw8PKCvr4/r16+jdevW+PfffxEXF4d58+ZxtrH+tGnTMHfuXLx9+xZt2rSpcKAIV5ubR0VFVdonVVVVFRkZGXUfiPwwfv75Z3h6euLp06eVnvTar18/lpIRUnW0bZMQQuq5z09qYxgGiYmJWLduHYqLi3H//n2WkonP0dERo0aNwpAhQypdWUfqD0VFRYSHh1d4tzg6OhqtWrVCXl4eS8mqrjpbZrn6BD4pKQmjR4/G7du3hS9KSkpK0KNHDxw9ehQNGzaEr68viouL0atXL5bTEi5LTk7G6NGjYWpqip07d0JLSwu3b99Gq1atoKenh0ePHkFPTw+3b9/GvHnzOHna5pd6jXK9ubmJiQn27NmDnj17QkVFBWFhYTA2NsaRI0ewbt06PH/+nO2IREJV9n+qHJf/T5EfC608I4SQeq5169aVntTWoUMHeHt7s5SqZqytrfHbb79hxowZcHFxwejRo+Hi4gJZWVm2o5HPODg44N69exWKZwEBAejatStLqarn822zn/9/koQDOHR1dXHz5k28ePECL1++BMMwsLCwgLm5ufAaR0dHFhMSSaGjo4Pr169j7dq1AMr+z5RvydfS0sL79++hp6eHpk2bcmp19Kfi4uLYjvBdTJ48GR4eHvD29gaPx8P79+8RGBiIefPmYenSpWzHIxJMIBCwHYGQGqOVZ4QQUs99flIbn8+HtrY25OXlWUpUOwQCAW7duoUTJ07gr7/+gpSUFIYMGQJXV1fY29uzHY/8Py8vLyxduhTDhg1Dhw4dAJT1PDt79ix+//13NG7cWHgtF1Zt3bp1CwsXLsSaNWvQsWNH8Hg8PHjwAL/99hvWrFkDJycntiPWSFFREeLi4mBiYgJpae6/R5qRkQEfHx/ExMRg/vz50NTURHBwMBo2bAg9PT2244lF0ubUtWtXzJkzBwMHDsSkSZOQkpKC+fPnw8vLC8HBwXj27BnbEcknFi9ejM2bN6OgoAAAICcnh3nz5mHlypUsJyOEkPqNimeEEFKPlW+x2rNnD8zMzNiO890UFBTg0qVLWL16NZ4+fcrZ1T+S6GtbLT7FlW0XLVq0gJeXF7p06SIyfu/ePUyaNAmRkZEsJauZvLw8zJw5E4cPHwYAvHz5EsbGxpg1axYaN26MRYsWsZyw+sLDw9GzZ0+oqakhPj4eUVFRMDY2xpIlS/D69WscOXKE7YjVJolzun79OrKzszFkyBC8efMGffr0wbNnz6CpqYkzZ84Ie+5xzdGjR+Hl5YW4uDgEBgbC0NAQW7ZsgZGREfr37892vBrJy8vD8+fPIRAIYGVlBWVlZbYjEQnl4uKCkydPClt0rF69GtOnT4e6ujoAIC0tDV27dqUtw4QTqvaMmBBCCCtkZGTw7NkziT6ZMikpCV5eXvjjjz8QHh4OOzs7tiORTwgEgip9cKFwBgAxMTGV9tkrL2Zw1a+//oqwsDD4+fmJrErt2bMnTp8+zWIy8c2ZMwdjxoxBdHS0yJx++ukn3L17l8Vk4pPEOfXu3RtDhgwBAOjr6yM8PBypqalITk7mTOHs+vXryMzMFH69e/duzJkzBy4uLsjIyBA+vqmrq2PLli0spaw9ioqKsLOzQ7t27ahwRr6r69evo7CwUPj1H3/8gfT0dOHXJSUlnN3eTX48VDwjhJB6zs3NDQcOHGA7Rq3KysrCwYMH4eTkBH19fezevRs///wzXr58iX///ZfteOQbuHwqW9u2bTF79mwkJiYKx5KSkjB37ly0a9eOxWQ1c+HCBezYsQNdunQRKbZbWVkhJiaGxWTie/z4MSZPnlxhXE9PD0lJSSwkqjlJnFNlNDU1q7xqtT5ISkpC586d8fbtWwDA9u3bsW/fPixevBhSUlLC6+zs7PD06VO2YhLCOZ9vcqNNb4TLuN8MgxBCJFxRURH279+Pmzdvws7ODkpKSiK3b9q0iaVk4mvYsCE0NDQwbNgwrFmzBm3btmU7EvmCP/74A02bNsXw4cMBAEOHDsW5c+fQqFEjXLlyBa1atWI5YfV4e3tj4MCBMDQ0hIGBAQAgISEBZmZmuHDhArvhaiAlJQU6OjoVxnNzczm7clVeXh5ZWVkVxqOioqCtrc1CopqTxDkVFBRg+/bt8PX1RXJycoXG4MHBwSwlqzp3d3eoqKjA2dkZz549Q1xcHGxsbCpcJycnh9zcXBYSEkIIYRsVzwghpJ579uwZbG1tAZT1MfoUF18UMwyDrVu3YtSoUVBUVGQ7DvmGPXv24NixYwCAmzdv4tatW7h27RrOnDmD+fPn48aNGywnrB5TU1OEh4cLT6ZkGAZWVlbo2bMnJ/8/lWvbti3++ecfzJw5E8B/jw379u1Dx44d2Ywmtv79+2PFihU4c+YMgLI5JSQkYNGiRRg8eDDL6cQjiXMaN24cbt68iSFDhqBdu3ac/X80aNAgYcHMyMgIoaGhMDQ0FLnm6tWrsLKyYiMeIZzE4/EqPCZw9TGCEDowgBBCSJ0SCASQl5dHREQEmjVrxnYc8g0KCgp4+fIl9PX14eHhgYKCAuzZswcvX75E+/bt8fHjR7YjEgAPHjyAs7MzXF1dcejQIUyePBkREREIDAyEv78/2rRpw3bEasvKyoKLiwsiIiKQnZ2Nxo0bIykpCR07dsSVK1cqrMLlAkmck5qaGq5cuYLOnTuzHaXWHDx4EEuWLMHGjRsxfvx47N+/HzExMVi7di3279+PX375he2IhHACn8/HTz/9BDk5OQDApUuX0L17d+FjXWFhIa5du8aZvqnkx0YrzwghpJ7LzMxEaWkpNDU1RcbT09MhLS0NVVVVlpKJh8/no1mzZkhLS6PiGQdoaGjgzZs30NfXx7Vr17Bq1SoAZSsIufhkd8WKFV+9fenSpXWUpHZ16tQJ9+/fx4YNG2BiYoIbN27A1tYWgYGBsLa2ZjueWFRVVREQEIA7d+4gODgYAoEAtra26NmzJ9vRxCaJc9LT04OKigrbMWrV2LFjUVJSggULFiAvLw8jR46Enp4etm7dSoUzQqrB3d1d5OtRo0ZVuMbNza2u4hBSI7TyjBBC6rmffvoJP//8M6ZNmyYy7uXlhYsXL+LKlSssJRPfP//8g3Xr1mH37t1o0aIF23HIV8yYMQOXL19Gs2bNEBISgvj4eCgrK+P06dP4448/ONHP6FOf9zEqLi5GXFwcpKWlYWJiwrn5EMK2q1evYtu2bfDy8qqwzVESpKamQiAQVNpTkBBCyI+DimeEEFLPaWpq4v79+7C0tBQZf/HiBTp37oy0tDSWkolPQ0MDeXl5KCkpgaysLBQUFERu//QYc8Ku4uJibN26FW/evMGYMWOExactW7ZAWVkZEyZMYDlhzWVlZWHMmDEYOHAgRo8ezXYcsZWWluKvv/5CZGQkeDweLC0t0b9/f0hLc2ejwbZt26p87axZs75jktojiXP6VEpKCoYNG4a7d+9CUVERMjIyIrdz+fE8OTkZUVFR4PF4MDc35+yhDoQQQmqOimeEEFLPKSkp4eHDhxW2Xj19+hTt27dHXl4eS8nEd/jw4a/e/vkyf0K+t2fPnqFv376Ij49nO4pYnj17hv79+yMpKQnm5uYAyg4Y0dbWxsWLFzmzddPIyEjk65SUFOTl5UFdXR0AkJGRAUVFRejo6CA2NpaFhNUniXP6VM+ePZGQkIDx48ejYcOGFZqBc/HxPCsrC9OnT8fJkyeFp4dKSUlh+PDh2LlzJ9TU1FhOSAghpK5R8YwQQuo5BwcHWFtbY/v27SLj06dPR3h4OO7du8dSMvIjef78ORISElBUVCQy3q9fP5YS1a6AgAD8/PPPnD0AoUOHDtDR0cHhw4ehoaEBAPj48SPGjBmD5ORkBAYGspyw+k6cOIFdu3bhwIEDwoJgVFQUJk6ciMmTJ8PV1ZXlhNUniXNSVFREYGAgWrVqxXaUWjNs2DCEhoZi+/bt6NixI3g8Hh48eAAPDw+0bNlSeFoqIYSQHwcVzwghpJ67f/8+evbsibZt26JHjx4AgNu3b+Px48e4ceMGunbtynJC8cTExODgwYOIiYnB1q1boaOjg2vXrkFfXx/NmzdnOx75f7GxsRg4cCCePn0KHo+H8qcN5atLuHZowOdb6BiGQWJiIo4ePYpu3brh5MmTLCWrGQUFBTx58qTC/51nz56hbdu2yM/PZymZ+ExMTODj41OhT11QUBCGDBmCuLg4lpKJTxLnZGtri127dqFDhw5sR6k1SkpKuH79Orp06SIyfu/ePTg7OyM3N5elZIQQQtjCZzsAIYSQr+vcuTMCAwOhr6+PM2fO4NKlSzA1NUV4eDhnC2f+/v6wtrbGv//+i/PnzyMnJwcAEB4ejmXLlrGcjnzKw8MDRkZG+PDhAxQVFREREYG7d+/Czs4Ofn5+bMerts2bN4t8bNu2DX5+fnB3d8fevXvZjic2c3NzfPjwocJ4cnIyTE1NWUhUc4mJiSguLq4wXlpaWulcuUAS57Ru3TrMnTsXfn5+SEtLQ1ZWlsgHFzVo0KDSrZlqamrClZ2EEEJ+LLTyjBBCSJ3r2LEjhg4dijlz5kBFRQVhYWEwNjbG48ePMWDAALx7947tiOT/aWlp4c6dO2jZsiXU1NTw6NEjmJub486dO5g7dy5CQkLYjkgAXLlyBQsWLMDy5cuFK4AePnyIFStWYN26dSIraFRVVdmKWS0///wzEhIScODAAbRp0wY8Hg9PnjzBxIkToa+vj4sXL7IdsdokcU58ftl78Z/3OmMYBjwej3OrUwFg7969OHv2LI4cOYJGjRoBAJKSkuDu7o5BgwZh8uTJLCckhBBS16h4RgghpM4pKyvj6dOnMDIyEimexcfHw8LCAgUFBWxHJP9PQ0MDQUFBMDY2homJCfbv3w9HR0fExMTA2tqacwdWjBs3Dlu3boWKiorIeG5uLmbOnAlvb2+WktVMeQED+K+I8fkWW64VM1JSUuDu7o5r164JT3AsKSlB7969cejQIejo6LCcsPokcU7+/v5fvd3e3r6OktQeGxsbvHr1CoWFhTAwMAAAJCQkQE5ODs2aNRO5Njg4mI2IhBBC6hh3zi4nhBAiMdTV1ZGYmFjhFLqQkBDo6emxlIpUpkWLFggPD4exsTHat2+PP//8E7Kysti7dy+MjY3Zjldthw8fxrp16yoUz/Lz83HkyBHOFs98fX3ZjlDrtLW1ceXKFURHRyMyMhIMw8DS0hJmZmZsRxObJM6Ji8WxbxkwYADbEQghhNQztPKMEEJInVuwYAECAwNx9uxZmJmZITg4GB8+fICbmxvc3Nyo71k9cv36deTm5mLQoEGIjY1F37598eLFCzRo0ACnT59G9+7d2Y5YJVlZWWAYBhoaGoiOjoa2trbwttLSUly6dAmLFi3C+/fvWUxJCCGEEELqIyqeEUIIqXPFxcUYM2YMTp06BYZhIC0tjdLSUowcORKHDh2ClJQU2xHJV6Snp0NDQ6NCj6P6jM/nfzUvj8fD77//jsWLF9dhqtpz7do1KCsrC3ub7dy5E/v27YOVlRV27txJTc4JIYQQQmqAimeEEEJYExsbi+DgYAgEAtjY2FToJUNIbfH39wfDMOjevTvOnTsHTU1N4W2ysrIwNDRE48aNWUxYM9bW1vjjjz/g4uKCp0+fws7ODnPnzsWdO3dgaWmJgwcPsh2REEIIIYSzqHhGCCH10KBBg6p87fnz579jkrpRWlqKp0+fwtDQkFbIkO/q9evXMDAw4NSquapQVlbGs2fP0LRpUyxfvhzPnj2Dj48PgoOD4eLigqSkJLYjEkIIIYRwFh0YQAgh9ZCamhrbEb6r2bNnw9raGuPHj0dpaSns7e3x4MEDKCoq4vLly3BwcGA7IpEg4eHhaNGiBfh8PjIzM/H06dMvXtuyZcs6TFZ7ZGVlhSef3rp1C25ubgAATU1NZGVlsRmNEEIIIYTzaOUZIYSQOtekSRNcuHABdnZ2uHDhAqZNmwY/Pz8cOXIEvr6+uH//PtsRiQTh8/lISkqCjo6OsPdZZU9/eDweSktLWUhYc/369UNRURE6d+6MlStXIi4uDnp6erhx4wZmzJiBly9fsh1RLPfu3cOePXsQExMDHx8f6Onp4ejRozAyMhL2d+OivLw8JCQkoKioSGScK8VbGxubKq/eDA4O/s5pvp+ioiLExcXBxMQE0tK05oAQQn5kfLYDEEII+baSkhLcunULe/bsQXZ2NgDg/fv3yMnJYTmZeFJTU6GrqwsAuHLlCoYNGwYzMzOMHz/+q6uCCBFHXFyc8HTNuLg4xMbGIi4ursJHbGwsy0nFt2PHDkhLS8PHxwe7d++Gnp4eAODq1atwdnZmOZ14zp07h969e0NBQQEhISEoLCwEAGRnZ2PNmjUspxNPSkoK+vbtCxUVFTRv3hw2NjYiH1wxYMAA9O/fH/3790fv3r0RExMDOTk5ODg4wMHBAfLy8oiJiUHv3r3ZjiqWvLw8jB8/HoqKimjevDkSEhIAALNmzcK6detYTkcIIYQNtPKMEELqudevX8PZ2RkJCQkoLCzEy5cvYWxsjNmzZ6OgoABeXl5sR6w2Q0ND7Nu3Dz169ICRkRF27dqFvn37IiIiAl26dMHHjx/Zjkg+cfToUXh5eSEuLg6BgYEwNDTEli1bYGRkhP79+7Mdj0goGxsbeHp6ws3NDSoqKggLC4OxsTFCQ0Ph7OzMyT5urq6uiI+Px5YtW+Do6Ii//voLHz58wKpVq7Bx40b06dOH7YjVNmHCBDRq1AgrV64UGV+2bBnevHkDb29vlpKJz8PDA/fv38eWLVvg7OyM8PBwGBsb4+LFi1i2bBlCQkLYjkgIIaSO0fpjQgip5zw8PGBnZ4ewsDA0aNBAOD5w4EBMmDCBxWTiGzt2LIYNG4ZGjRqBx+PByckJAPDvv//CwsKC5XTkU7t378bSpUsxe/ZsrF69WritUV1dHVu2bOFc8ezixYuVjvN4PMjLy8PU1BRGRkZ1nKp2xMTE4ODBg4iJicHWrVuho6ODa9euQV9fH82bN2c7XrVFRUWhW7duFcZVVVWRkZFR94FqwZ07d/D333+jbdu24PP5MDQ0hJOTE1RVVbF27VpOFs/Onj2LJ0+eVBgfNWoU7OzsOFk8u3DhAk6fPo0OHTqIbE+1srJCTEwMi8kIIYSwhYpnhBBSzwUEBOD+/fuQlZUVGTc0NMS7d+9YSlUzy5cvR4sWLfDmzRsMHToUcnJyAAApKSksWrSI5XTkU9u3b8e+ffswYMAAke1KdnZ2mDdvHovJxDNgwIBKe56Vj/F4PHTp0gUXLlzg1Mmv/v7++Omnn9C5c2fcvXsXq1evho6ODsLDw7F//374+PiwHbHaGjVqhFevXqFp06Yi4wEBATA2NmYnVA3l5uZCR0cHQNlhDikpKTAzM4O1tTVne4MpKCggICAAzZo1ExkPCAiAvLw8S6lqJiUlRfhz+lRubq7EndRLCCGkaqjnGSGE1HMCgaDSJuZv376FiooKC4lqx5AhQ+Dp6YkmTZoIx9zd3Tm3kknSxcXFVdqLSU5ODrm5uSwkqpmbN2+ibdu2uHnzJjIzM5GZmYmbN2+iXbt2uHz5Mu7evYu0tDTOFQYXLVqEVatW4ebNmyKFdkdHRwQGBrKYTHyTJ0+Gh4cH/v33X/B4PLx//x7Hjx/HvHnzMG3aNLbjicXc3BxRUVEAgNatW2PPnj149+4dvLy80KhRI5bTiWf27NmYOnUqZsyYgWPHjuHYsWOYMWMGpk+fDk9PT7bjiaVt27b4559/hF+XF8z27duHjh07shWLEEIIi2jlGSGE1HNOTk7YsmUL9u7dC6DsSXxOTg6WLVsGFxcXltMRSWdkZITQ0FAYGhqKjF+9ehVWVlYspRKfh4cH9u7di06dOgnHevToAXl5eUyaNAkRERHYsmULxo0bx2LK6nv69ClOnDhRYVxbWxtpaWksJKq5BQsWIDMzE46OjigoKEC3bt0gJyeHefPmYcaMGWzHE8vs2bORmJgIoKwnWO/evXH8+HHIysri0KFD7IYT06JFi2BsbIytW7cK74OWlpY4dOgQhg0bxnI68axduxbOzs54/vw5SkpKsHXrVkRERCAwMBD+/v5sxyOEEMICKp4RQkg9t3nzZjg6OsLKygoFBQUYOXIkoqOjoaWlhZMnT7Idj0i4+fPnY/r06SgoKADDMHj06BFOnjyJtWvXYv/+/WzHq7aYmBioqqpWGFdVVRWettmsWTOkpqbWdbQaUVdXR2JiYoV+bSEhIcKTN7lo9erVWLx4MZ4/fw6BQAArKysoKyuzHavKiouLISMjI/za1dVV+LmNjQ3i4+Px4sULGBgYQEtLi42ItWLYsGGcLZRVplOnTrh//z42bNgAExMT3LhxA7a2tggMDIS1tTXb8QghhLCATtskhBAOyM/Px6lTpxAUFASBQABbW1u4urpCQUGB7WjkB7Bv3z6sWrUKb968AQDo6elh+fLlGD9+PMvJqq9Lly5QUVHBkSNHoK2tDaCsv5Gbmxtyc3Nx9+5d3Lp1C9OmTfu/9u49vuf6///4/b0Z2zRzLmeb5bAMW+RUIuaQIofPCjmNjw4fJqfSp5DK4RvC+LCkOeYwRPpQ5riMLcxGGDI0OUcbNgvb+/dHn/azRiH2fL/fu10vF5fL9ny//7i5fMTn/djz9Xzq8OHDhmvv3JtvvqmYmBgtW7ZMVatW1e7du3X27Fn16NFDPXr00KhRo0wn3rXU1FRlZmaqePHiOdYvXryoAgUK3HIIamvGjx8vb29vhxosAQCQHzE8AwAAd+Tnn39WVlbWLQ/StheHDh1S+/btdezYMVWoUEEWi0XJycny9vbWl19+qapVq2rVqlW6fPmyunfvbjr3jl2/fl29evXSkiVLZLVaVaBAAWVmZqpr166aO3eunJ2dTSfetTZt2uj555/Pdb5ZWFiYVq9erbVr1xoqu3OHDx9Whw4d1K9fPw0cOFCDBw/+0/d//PHHeVR2/2RmZmry5MmKiIhQcnKyrl27luP1ixcvGiq7O5cuXbrj99rD4BYAcH8xPAMAGJGUlKQ5c+YoKSlJU6dOVenSpfXNN9+oQoUKeuyxx0znwYFZrVatW7dOhw8fltVqVfXq1RUYGCgnJ/u/RykpKUnx8fHKysqSv79/rhsQ7Unx4sW1bds21ahRI8f6wYMH1bhxY7s5y+3y5cvq1auXVqxYoWbNmt32fRaLRZs2bcrDsvtj5MiRmj17tgYPHqwRI0bonXfe0fHjx7Vq1SqNHDlSISEhphPviJOT0x3fpHmrS3wAAI6N4RkAIM9FRUWpTZs2aty4sb799lslJibK29tbH330kXbs2KHly5ebTszX/P397/hD5O7dux9wDfKrwoULKzY2NtcZU99//73q16+v9PR0Q2W4WZUqVRQaGqq2bdvKw8NDCQkJ2WuxsbG3vMjCFt18EcDx48c1fPhw9erVK/t2zZiYGM2bN0/jxo1Tz549TWUCAAxheAYAyHMNGzbUP/7xDw0ePFgeHh7as2ePvL29tXPnTr3wwgs6efKk6cR8bfTo0dlfZ2RkaMaMGfL19c3+EBkbG6v9+/fr9ddf17hx40xl3rONGzdq48aNOnfunLKysnK8Fh4ebqjq7v3VI4A3s8fHAZs2bSo/Pz9NmzYtx/q//vUv7d27V1u3bjVUhpsVLlxYiYmJqlixosqUKaM1a9YoICBAR48elb+/v1JTU00n3rXmzZurb9++6tKlS471RYsWadasWdqyZYuZMACAMdy2CQDIc99///0tdyOUKlXKbh7FcmQ3Hy7ft29fhYSE6IMPPsj1nt8vELAno0eP1vvvv6+6deuqTJkyd7zDzhbFx8fn+D4uLk6ZmZmqVq2apN/O23J2dtbjjz9uIu9vGzNmjFq0aKE9e/aoefPmkn4bfO7cuVORkZGG6+5NRkaGpk2bps2bN99yeGuPOznLly+v06dPq2LFivLx8cm+mXLnzp0qVKiQ6bx7EhMTo7CwsFzrdevWVd++fQ0UAQBMY3gGAMhzRYsW1enTp+Xl5ZVjPT4+XuXKlTNUhVtZtmyZdu3alWv95ZdfVt26de1qp5b022Hzc+fOtavLAG5n8+bN2V9//PHH8vDw0Lx581SsWDFJ0i+//KLevXvrqaeeMpX4tzRu3FgxMTGaMGGCIiIi5Obmplq1aumzzz6z27PcgoODtX79enXu3FlPPPGEXQ9vf9ehQwdt3LhR9evX18CBA9WlSxd99tlnSk5O1qBBg0zn3ZMKFSooLCxMkyZNyrH+ySefqEKFCoaqAAAm8dgmANg4R7nJ7GZvvvmmYmJitGzZMlWtWlW7d+/W2bNn1aNHD/Xo0SPHzieY9cgjj2jcuHHq3bt3jvU5c+Zo+PDhOnv2rKGye1OiRAnt2LFDVapUMZ1yX5UrV06RkZG5LtvYt2+fWrZsqVOnThkqw808PT21du1aNW7c2HTKAxMbG6vt27fLx8dH7dq1M51zT9auXatOnTqpSpUqatCggaTffl9JSUlasWKFnn32WcOFAIC8xs4zALBxo0eP/tObzOzRmDFj1KtXL5UrV05Wq1W+vr7KzMxU165d9e6775rOw03eeOMNvfbaa4qLi8vxITI8PNwu//z17dtXixYt0ogRI0yn3FeXLl3S2bNncw3Pzp07p8uXLxuq+vuysrJ05MiRWz7i2KRJE0NV965cuXLy8PAwnfFANWjQIPvvCnv17LPP6ocfftDMmTOVmJgoq9Wq9u3b69VXX2XnGQDkU+w8AwAb5yg3md1KUlKS4uPjlZWVJX9/f7t9FMvRRUREaOrUqUpMTJQk1ahRQwMHDlRQUJDhsrs3cOBAzZ8/X7Vq1VKtWrXk4uKS43V7PFhfknr06KGoqChNmjQpx5Bz2LBhatKkiebNm2e48O7Fxsaqa9eu+vHHH/XH/7tqsViUmZlpqOzeff311woNDVVYWJgqVapkOueerV69+o7fa6+7zwAAuBnDMwCwcY54kxlgSrNmzW77msVi0aZNm/Kw5v5JT0/X0KFDFR4eruvXr0uSChQooD59+mjChAkqXLiw4cK7V6dOHVWtWlWjR4++5eUOnp6ehsru3fnz5xUUFKRvv/1W7u7uuYa39vIYvpOTU47vLRbLLQeckuxyyAkAwB/x2CYA2DhHucls8ODBd/xee939A9t38yH7jsTd3V0zZszQhAkTlJSUJKvVKh8fH7scmv3uhx9+0PLly+Xj42M65b7p0qWLTp48qbFjx+rhhx+22wsDbn6EdsOGDXrrrbc0duxYNWzYUBaLRdu3b9e7776rsWPHGqwEAOD+YXgGADbOUW4yi4+Pz/F9XFycMjMzVa1aNUnS4cOH5ezsrMcff9xEHvKhn376SRaLxaFueC1cuLBq1aplOuO+qF+/vo4cOeJQw7Pt27crJiZGtWvXNp1y37zxxhsKCwvTk08+mb3WqlUrubu7q1+/ftmPewMAYM8YngGAjRs/fnz21507d1aFChW0bds2u7vJ7OYdPx9//LE8PDw0b948FStWTJL0yy+/qHfv3nrqqadMJSIfyMrK0ocffqhJkybpypUrkiQPDw8NGTJE77zzTq7H0WDOgAEDNGTIEJ05c0Z+fn65HnG0xyFh9erVdfXqVdMZ91VSUtItH6H19PTU8ePH8z4IAIAHgDPPAAB5rly5coqMjMx1M+C+ffvUsmVLnTp1ylAZHN3bb7+tzz77TKNHj1bjxo1ltVq1bds2vffee/rnP/+pMWPGmE7E/9xqkPn72Vr2emFAZGSkRo8erTFjxtxyIFikSBFDZfeuSZMmcnFx0cKFC1WmTBlJ0pkzZ9S9e3ddu3ZNUVFRhgsBAPj7GJ4BgI1zdnZWkyZNtGLFChUvXjx7/ezZsypbtqxdfoD08PDQl19+qWeeeSbH+qZNm9S+fXtdvnzZUBkcXdmyZRUWFpZr1+aXX36p119/XSdPnjRUhj/68ccf//R1e7yt8veB4B/POrPngeCRI0fUoUMHHTp0SBUrVpQkJScnq2rVqlq1apXdPHbr7+9/x2fQ7d69+wHXAABsDY9tAoCNs1qt+vXXX1W3bl2tXr1aNWvWzPGaPerQoYN69+6tSZMmqUGDBpKk2NhYDRs2TB07djRch5tlZmZq7ty52rhxo86dO5fjoHBJdnc75cWLF1W9evVc69WrV7ebmw7zC3scjv0VR7ywwsfHR3v37tX69et18OBBWa1W+fr6qkWLFnZ1IcILL7yQ/XVGRoZmzJghX19fNWzYUNJv/0bt379fr7/+uqFCAIBJ7DwDABvn7Oysn376SePHj9ecOXO0YMECtW/f3q53nqWnp2vo0KEKDw/X9evXJUkFChRQnz59NGHCBLu+IdDR9O/fX3PnzlXbtm1VpkyZXB+GJ0+ebKjs3tSvX1/169dXaGhojvUBAwZo586dio2NNVR291avXn3H77Wn8xH/6MCBA0pOTta1a9dyrNvz7wm2rW/fvipTpow++OCDHOujRo3SiRMnFB4ebqgMAGAKwzMAsHFOTk46c+aMSpcurVmzZikkJETvvvuu+vbtq3Llytnl8Ox3aWlpSkpKktVqlY+PD0MzG1SyZEnNnz9fzz77rOmU+yIqKkpt27ZVxYoV1bBhQ1ksFm3fvl0nTpzQ2rVr7erCiju93MBeHwc8evSoOnTooO+//z77rDPp/z/yaI+/J0lKSUnRZ599psTERFksFvn6+io4OPiWh+7bqtDQUPXr10+urq65BtF/FBISkkdV94+np6d27dqlRx99NMf6Dz/8oLp16yo1NdVQGQDAFIZnAGDjbh6eSdKWLVvUuXNn+fv7a9OmTXb7ARL2oWzZstqyZYuqVq1qOuW+OXXqlP7zn//keMTs9ddfV9myZU2n4SbPP/+8nJ2d9emnn8rb21s7duzQhQsXNGTIEE2cONGuBp2/27Vrl1q1aiU3Nzc98cQTslqt2rVrl65evarIyEgFBASYTrwjXl5e2rVrl0qUKCEvL6/bvs9isejo0aN5WHZ/PPLIIxo3bpx69+6dY33OnDkaPny4zp49a6gMAGAKwzMAsHE3f0j53ZEjR/T888/r8OHDDM/wQE2aNElHjx7V9OnT7er8ort14sQJjRo1isexbEjJkiW1adMm1apVS56entqxY4eqVaumTZs2aciQIYqPjzedeNeeeuop+fj46NNPP1WBAr8dPXzjxg317dtXR48e1bfffmu4EJI0fvx4vffee+rbt2+OcznDw8M1cuRIDR8+3HAhACCvMTwDADuVkZGhs2fPOuSh2rAdHTp00ObNm1W8eHE99thjcnFxyfH6F198Yajs/tqzZ48CAgLsehidlpamqKioW54PZo+PzhUrVkxxcXHy9vZWlSpVNHv2bDVr1kxJSUny8/NTenq66cS75ubmpvj4+FyXVhw4cEB169a1y9+To4qIiNDUqVOVmJgoSapRo4YGDhyooKAgw2UAABO4bRMA7JSrqyuDMzxwRYsWVYcOHUxn4C/Ex8fr2WefVXp6utLS0lS8eHH9/PPPcnd3V+nSpe1yeFazZk3t3btX3t7eql+/vj766CMVLFhQs2bNkre3t+m8e1KkSBElJyfnGp6dOHFCHh4ehqr+ns6dO6tu3bq5dmNNmDBBO3bs0LJlywyV/T1BQUEMygAA2dh5BgA2qHjx4jp8+LBKliypYsWK/enjchcvXszDMsAx2fvOs6ZNm6pq1aqaOXOmihYtqj179sjFxUUvv/yyBg4cqI4dO5pOvGvr1q1TWlqaOnbsqKNHj+q5557TwYMHVaJECS1dulTPPPOM6cS7FhISopUrV2rixIlq1KiRLBaLoqOjNWzYMHXq1ElTpkwxnXjXSpUqpU2bNsnPzy/H+vfff68WLVpwPhgAwCGw8wwAbNDkyZOzdyHY44epO5GUlKQpU6Zk3zj3+yMxVapUMZ2GWzh//rwOHToki8WiqlWrqlSpUqaTcJOEhAR98skncnZ2lrOzs3799Vd5e3vro48+Us+ePe1yeNaqVavsr729vXXgwAFdvHjxL3+gYMsmTpwoi8WiHj166MaNG5IkFxcXvfbaaxo/frzhuntz5coVFSxYMNe6i4uLLl26ZKDo78vMzNTkyZMVERFxy8eg+aEVAOQ/DM8AwAb17Nnzll87inXr1qldu3aqU6eOGjduLKvVqu3bt+uxxx7TV199pcDAQNOJ+J+0tDQNGDBA8+fPV1ZWliTJ2dlZPXr00LRp0+Tu7m648M781fAoJSUlb0IeEBcXl+yB0sMPP6zk5GTVqFFDnp6eSk5ONlx3b1JTU5WZmanixYtnrxUvXlwXL15UgQIFVKRIEYN196ZgwYKaOnWqxo0bp6SkJFmtVvn4+NjNf0e3UrNmTS1dulQjR47Msb5kyRL5+voaqvp7Ro8erdmzZ2vw4MEaMWKE3nnnHR0/flyrVq3K9fsEAOQPPLYJADbobn5ab48fIP39/dWqVatcOy2GDx+uyMhI7d6921AZpkyZIj8/PzVv3lyS9Morr2jDhg2aPn26GjduLEmKjo5WSEiIAgMDNXPmTJO5d6x379539L45c+Y84JIHo2XLlurVq5e6du2qV199VfHx8QoJCdGCBQv0yy+/6LvvvjOdeNfatGmj559/Xq+//nqO9bCwMK1evVpr1641VIabrV69Wp06dVLXrl2zH6XduHGjFi9erGXLlumFF14wG3gPqlSpotDQULVt21YeHh5KSEjIXouNjdWiRYtMJwIA8hjDMwCwQU5OTn/5WJLVapXFYrHLM5pcXV31/fff69FHH82xfvjwYdWqVUsZGRmGyhAXF6egoCC999576t69u0qWLKnly5eradOmOd63efNmBQUF6fz582ZCkcOuXbt0+fJlNWvWTOfPn1fPnj0VHR0tHx8fzZkzR7Vr1zadeNeKFy+ubdu2qUaNGjnWDx48qMaNG+vChQuGyu5dWlqaxo8fr40bN+rcuXPZuzl/d/ToUUNlf8+aNWs0duxYJSQkyM3NTbVq1dKoUaP09NNPm067J4ULF1ZiYqIqVqyoMmXKaM2aNQoICNDRo0fl7++v1NRU04kAgDzGY5sAYIM2b95sOuGBKlWqlBISEnINzxISElS6dGlDVZCkxx9/XN9995169uyp7t27Kz09XQ8//HCu95UuXVrp6ekGCnErdevWzf66VKlSDrEr69dff80+F+xm169f19WrVw0U/X19+/ZVVFSUunfvrjJlytjt2W1/1LZtW7Vt29Z0xn1Tvnx5nT59WhUrVpSPj48iIyMVEBCgnTt3qlChQqbzAAAGMDwDABtkrz+tv1P//Oc/1a9fPx09ejTHjXP/93//pyFDhpjOy/dKliypNWvWSJIaNmyoUaNGaf78+XJ1dZUkXb16VaNHj1bDhg1NZsLB1atXT7NmzdK0adNyrIeFhenxxx83VPX3fP3111qzZk32I9COJC4uLvsCGF9fX/n7+5tOumcdOnTQxo0bVb9+fQ0cOFBdunTRZ599puTkZA0aNMh0HgDAAB7bBAA7kZ6efstbv2rVqmWo6N5ZrVZNmTJFkyZN0qlTpyRJZcuW1bBhwxQSEuIwuzEcwb59+9S6dWtlZGSodu3aslgsSkhIkKurq9atW6fHHnvMdCIc1LZt29SiRQvVq1cv+wy+jRs3aufOnYqMjNRTTz1luPDueXl5ae3atbkeRbVn586d00svvaQtW7aoaNGislqtSk1NVbNmzbRkyRKHuJk3NjZW27dvl4+Pj9q1a2c6BwBgAMMzALBx58+fV+/evfX111/f8nV7PPPsZpcvX5YkeXh4GC7B7Vy9elULFy7UwYMHZbVa5evrq27dusnNzc10GhxcQkKCJkyYkOMsrbfffjvXI9/2YuHChfryyy81b948u75h82YvvviikpKStGDBguyh4IEDB9SzZ0/5+Pho8eLFhgsBAPj7GJ4BgI3r1q2bjh8/rilTpqhZs2ZauXKlzp49qw8//FCTJk1yqHNmAMCR+fv7KykpSVarVZUrV5aLi0uO1+3xpmFPT09t2LBB9erVy7G+Y8cOtWzZUikpKWbC7tLq1avv+L3sPgOA/IczzwDAxm3atElffvml6tWrJycnJ1WqVEmBgYEqUqSIxo0bZ5fDs7Nnz2ro0KHZN8798ec49r6bzt6tXr1abdq0kYuLy19+oORDJO6nS5cu3fF7ixQp8gBLHowXXnjBdMJ9l5WVlWsIKEkuLi65bhO1ZX/838ZiseT6t+n3IwX4NwoA8h92ngGAjStSpIj27t2rypUrq3Llyvr888/VuHFjHTt2TI899phd3njYpk0bJScnq3///re8ca59+/aGyiBJTk5OOnPmjEqXLi0nJ6fbvs9isfAh0oZERUVp4sSJ2Ye216hRQ8OGDbOrs8GcnJz+8sxDq9XKnz0b0r59e6WkpGjx4sUqW7asJOnkyZPq1q2bihUrppUrVxouvHsbNmzQW2+9pbFjx6phw4ayWCzavn273n33XY0dO1aBgYGmEwEAeYydZwBg46pVq6ZDhw6pcuXKqlOnjj755BNVrlxZYWFhKlOmjOm8exIdHa2tW7eqTp06plNwCzfvFrGnnSP52cKFC9W7d2917NhRISEhslqt2r59u5o3b665c+eqa9euphPvyObNm00n5AlHuply+vTpat++vSpXrqwKFSrIYrEoOTlZfn5+Wrhwoem8e/LGG28oLCxMTz75ZPZaq1at5O7urn79+ikxMdFgHQDABHaeAYCN+/zzz3X9+nX16tVL8fHxatWqlS5cuKCCBQtq7ty5evHFF00n3jVfX199/vnndv2BEbAlNWrUUL9+/TRo0KAc6x9//LE+/fRTh/uwn5CQYJfDd0e+mXL9+vU5LhVp0aKF6aR75ubmph07dsjPzy/H+t69e1W/fn1dvXrVUBkAwBSGZwBgZ9LT03Xw4EFVrFhRJUuWNJ1zTyIjIzVp0qTsXXSwXSEhIfLx8VFISEiO9enTp+vIkSOaMmWKmTDkUKhQIe3fv18+Pj451o8cOaKaNWsqIyPDUNn9k5qaqs8//1yzZ8/Wnj177PKxTW6mtA9NmjSRi4uLFi5cmL3D+8yZM+revbuuXbumqKgow4UAgLzG8AwA7MS1a9d07NgxValSRQUK2N9T98WKFctxllFaWppu3Lghd3f3XIdNX7x4Ma/zcBvlypXT6tWr9fjjj+dY3717t9q1a6effvrJUBlu5uPjo2HDhumVV17Jsf7JJ59o4sSJ+uGHHwyV/X2bNm1SeHi4vvjiC1WqVEmdOnVSp06d7HLnqqPcTBkaGnrH7/3j4N0eHDlyRB06dNChQ4dUsWJFSVJycrKqVq2qVatW5RpSAwAcn/19+gKAfCY9PV0DBgzQvHnzJEmHDx+Wt7e3QkJCVLZsWQ0fPtxw4Z1hh5J9unDhgjw9PXOtFylSRD///LOBItzKkCFDFBISooSEBDVq1EgWi0XR0dGaO3eupk6dajrvrv3000+aO3euwsPDlZaWpqCgIF2/fl0rVqyQr6+v6bx75ig3U06ePPmO3mexWOxyeObj46O9e/fe8lHUv7rQAgDgmNh5BgA2buDAgdq2bZumTJmi1q1ba+/evfL29tbq1as1atQoxcfHm06EA6tZs6ZeffVV9e/fP8f6tGnTNHPmTB04cMBQGf5o5cqVmjRpUvb5Zr/ftmlvt9c+++yzio6O1nPPPadu3bqpdevWcnZ2louLi/bs2WPXwzNHvJkSAID8gJ1nAGDjVq1apaVLl6pBgwY5fuLt6+urpKQkg2X3bu3atXJ2dlarVq1yrEdGRiozM1Nt2rQxVIY/Gjx4sPr376/z58/rmWeekSRt3LhRkyZNYjehjenQoYM6dOhgOuNvi4yMVEhIiF577TU9+uijpnPuK0e8mfJ39n60QGhoqPr16ydXV9e/fCzVHnfTAQD+Hvv7lw0A8pnz58+rdOnSudbT0tLs9vGR4cOHa/z48bnWs7KyNHz4cIZnNiQ4OFi//vqrxowZow8++ECSVLlyZc2cOVM9evQwXIdbuXLlSq5HAIsUKWKo5u5t3bpV4eHhqlu3rqpXr67u3bvb5a3Ct1KhQgXt3r3boW6mdJSjBSZPnqxu3brJ1dX1Tx9LtddHUQEAfw+PbQKAjXv66afVuXNnDRgwQB4eHtq7d6+8vLzUv39/HTlyRN98843pxLvm5uamxMTEXDdtHj9+XI899pjS0tLMhOFPnT9/Xm5ubnrooYdMp+APjh07pv79+2vLli05bta0Wq2yWCx2eTNlenq6lixZovDwcO3YsUOZmZn6+OOPFRwcLA8PD9N592T+/Pl68cUXVahQoRzr165d05IlS+xyIM3RAgCA/IDhGQDYuO3bt6t169bq1q2b5s6dq1deeUX79+9XTEyMoqKict2CaA8eeeQRLVq0KPsxwN9t2LBBXbt21blz5wyVAfapUaNGkn4bZDz88MO5dqU+/fTTJrLum0OHDumzzz7TggULlJKSosDAQK1evdp01l1zdnbW6dOnc+0mvnDhgkqXLm2XQ85KlSplHy3g4eGhPXv2yNvbW0eOHFFAQIAuXbpkOhEAgL+NxzYBwMY1atRI27dv14QJE1SlShVFRkYqICBAMTEx8vPzM513T9q1a6c33nhDK1euVJUqVSRJR44c0ZAhQ9SuXTvDdfij5cuXKyIiQsnJybp27VqO13bv3m2oCjfbu3ev4uLiVK1aNdMpD0S1atX00Ucfady4cfrqq68UHh5uOume/L4T8I9++umnW95qaw8c8WiBzp07q27durkeOZ0wYYJ27NihZcuWGSoDAJjiZDoAAHB7169fV+/eveXu7q558+Zp3759OnDggBYuXGi3gzPptw8ghQsXVvXq1eXl5SUvLy/VqFFDJUqU0MSJE03n4SahoaHq3bu3Spcurfj4eD3xxBMqUaKEjh49ytl0NqRevXo6ceKE6YwHztnZWS+88ILd7Trz9/dXQECALBaLmjdvroCAgOxftWvX1lNPPWW3557Vq1dPa9asyf7+94HZp59+qoYNG5rK+luioqLUtm3bXOutW7fWt99+a6AIAGAaO88AwIa5uLho5cqVGjFihOmU+8rT01Pbt2/X+vXrtWfPHrm5ualWrVpq0qSJ6TT8wYwZMzRr1ix16dJF8+bN05tvvilvb2+NHDlSFy9eNJ2H/5k9e7ZeffVVnTx5UjVr1pSLi0uO12vVqmWoDJL0wgsvSJISEhLUqlWrHOcGFixYUJUrV1anTp0M1f0948aNU+vWrXXgwAHduHFDU6dOzXG0gD26cuWKChYsmGvdxcWFx1ABIJ/izDMAsHG9e/eWn5+fBg8ebDrlgcjIyFChQoXs9vEeR+fu7q7ExERVqlRJpUuX1vr161W7dm398MMPatCggS5cuGA6EZJiY2PVtWtXHT9+PHvNYrHY9YUBjmjevHl68cUX5erqajrlb0tISFCdOnUkSd9//70mTpyouLg4ZWVlKSAgQG+99Zbd7pCuV6+enn/+eY0cOTLH+nvvvaevvvpKcXFxhsoAAKaw8wwAbJyPj48++OADbd++XY8//rgKFy6c4/WQkBBDZfcuKytLY8aMUVhYmM6ePavDhw/L29tbI0aMUOXKldWnTx/TififRx55RBcuXFClSpVUqVIlxcbGqnbt2jp27Jj4+ZvtCA4Olr+/vxYvXnzLCwNgG3r27Gk64b4JCAiQv7+/+vbtq65du2revHmmk+6bESNGqFOnTkpKSsq+2Gbjxo1avHgx550BQD7FzjMAsHFeXl63fc1isejo0aN5WHN/vP/++5o3b57ef/99/fOf/9S+ffvk7e2tiIgITZ48WTExMaYT8T99+/ZVhQoVNGrUKIWFhWnw4MFq3Lixdu3apY4dO+qzzz4znQhJhQsX1p49e+Tj42M6BX/CycnpTweb9rRDMCYmRuHh4YqIiND169fVqVMnBQcHq1mzZqbT7os1a9Zo7NixSkhIyD5aYNSoUXZ/cy0A4N4wPAMA5DkfHx998sknat68uTw8PLRnzx55e3vr4MGDatiwoX755RfTififrKwsZWVlqUCB3zarR0REKDo6Wj4+Pnr11VdveS4Q8t7zzz+vXr162e25WfnFqlWrcgzPrl+/rvj4eM2bN0+jR4+2y123V69eVUREhObMmaOtW7eqcuXKCg4OVs+ePVW+fHnTeQAA3BcMzwAAec7NzU0HDx5UpUqVcgzPDhw4oCeeeEJXrlwxnQjYlVmzZunDDz9UcHCw/Pz8cl0Y0K5dO0NluBOLFi3S0qVL9eWXX5pO+VuSkpI0Z84czZ8/X6dPn1ZgYKDWrl1rOuuexcXFKTExURaLRb6+vvL39zedBAAwhOEZACDP1a1bV2+88YZefvnlHMOz0aNHa8OGDdq6davpxHxt7969d/xebnG0DU5OTrd9jQsDbF9SUpJq1aqltLQ00yl/25UrV/T555/r3//+t1JSUuzyz965c+f00ksvacuWLSpatKisVqtSU1PVrFkzLVmyRKVKlTKdCADIY1wYAADIM8HBwZo6dapGjRql7t276+TJk8rKytIXX3yhQ4cOaf78+frvf/9rOjPfq1OnTvZNjX+GoYztyMrKMp2Ae3T16lVNmzbN7h9xjIqKUnh4uFasWCFnZ2cFBQXZ5WOokjRgwABdunRJ+/fvV40aNSRJBw4cUM+ePRUSEqLFixcbLgQA5DV2ngEA8oyzs7NOnz6t0qVLa926dRo7dqzi4uKUlZWlgIAAjRw5Ui1btjSdme/9+OOPd/zeSpUqPcASwLEUK1Ysx5lnVqtVly9flru7uxYuXGh3j9eeOHFCc+fO1dy5c3Xs2DE1atRIffr0UVBQUK6boe2Jp6enNmzYoHr16uVY37Fjh1q2bKmUlBQzYQAAY9h5BgDIMzf/vKZVq1Zq1aqVwRrcDgMx+xAaGqp+/frJ1dVVoaGhf/rekJCQPKrCn5kyZUqO752cnFSqVCnVr19fxYoVMxN1jwIDA7V582aVKlVKPXr0UHBwsKpVq2Y6677IysrKdW6gJLm4uLDLEwDyKXaeAYAd2Lp1qz755BMlJSVp+fLlKleunBYsWCAvLy89+eSTpvPumJOTk86ePct5MXZmwYIFCgsL07FjxxQTE6NKlSppypQp8vLyUvv27U3n5VteXl7atWuXSpQoIS8vr9u+z2Kx6OjRo3lYhnuRkJCgOnXqmM64Y+3atVOfPn303HPPydnZ2XTOfdW+fXulpKRo8eLFKlu2rCTp5MmT6tatm4oVK6aVK1caLgQA5LXbny4LALAJK1asUKtWreTm5qb4+Hj9+uuvkqTLly9r7NixhuvuXtWqVVW8ePE//QXbMXPmTA0ePFjPPvtsjsO/ixYtmmsXDfLWsWPHVKJEieyvb/eLwZntSk1N1YwZMxQQEKDHH3/cdM5dWb16tdq3b+9wgzNJmj59ui5fvqzKlSurSpUq8vHxkZeXly5fvqxp06aZzgMAGMDOMwCwcf7+/ho0aJB69OiR42bKhIQEtW7dWmfOnDGdeMecnJw0ZcoUeXp6/un7evbsmUdF+Cu+vr4aO3asXnjhhRx//vbt26emTZvq559/Np0I/XbovJub2y1fO336tMqUKZPHRfgzmzZtUnh4uL744gtVqlRJnTp1UqdOneTv7286DTdZv369Dh48KKvVKl9fX7Vo0cJ0EgDAEM48AwAbd+jQITVp0iTXepEiRezy0OKXXnpJpUuXNp2BO3Ts2LFbfqAvVKiQ0tLSDBThVvz9/bVo0SIFBATkWF++fLlee+01nT9/3lAZfvfTTz9p7ty5Cg8PV1pamoKCgnT9+nWtWLFCvr6+pvNwC4GBgQoMDDSdAQCwAQzPAMDGlSlTRkeOHFHlypVzrEdHR8vb29tM1D26+ZY52AcvLy8lJCTkukTg66+/5gO/DQkMDFSjRo303nvv6a233lJaWpr69++vZcuWafz48abz8r1nn31W0dHReu655zRt2jS1bt1azs7OCgsLM52G//mrSzduxgUcAJD/MDwDABv3yiuvaODAgQoPD5fFYtGpU6cUExOjoUOHauTIkabz7gonBdifYcOG6V//+pcyMjJktVq1Y8cOLV68WOPGjdPs2bNN5+F/pk2bprZt26p3795as2aNTp06pSJFimjnzp0MOW1AZGSkQkJC9Nprr+nRRx81nYNbmDx58h29z2KxMDwDgHyI4RkA2Lg333xTqampatasmTIyMtSkSRMVKlRIQ4cOVf/+/U3n3ZWsrCzTCbhLvXv31o0bN/Tmm28qPT1dXbt2Vbly5TR16lS99NJLpvNwk5YtW6pjx46aOXOmChQooK+++orBmY3YunWrwsPDVbduXVWvXl3du3fXiy++aDoLNzl27JjpBACADePCAACwE+np6Tpw4ICysrLk6+urhx56yHQS8pmff/5ZWVlZ2WfWnTx5UuXKlTNcBUlKSkpS165ddebMGc2ePVtRUVGaOHGiQkJCNGbMGLm4uJhOhH77e3zJkiUKDw/Xjh07lJmZqY8//ljBwcHy8PAwnYc/uHbtmo4dO6YqVaqoQAH2HABAfsbwDADszKVLl7Rp0yZVq1ZNNWrUMJ2DfOjMmTMaM2aMZs+eratXr5rOgSQPDw+1bdtWYWFhKlq0qCRp+/bt2bf0xsfHmw1ELocOHdJnn32mBQsWKCUlRYGBgVq9erXpLOi3IeeAAQM0b948SdLhw4fl7e2tkJAQlS1bVsOHDzdcCADIa06mAwAAfy4oKEjTp0+XJF29elX16tVTUFCQatWqpRUrVhiug6NKSUlRt27dVKpUKZUtW1ahoaHKysrSyJEj5e3trdjYWIWHh5vOxP/MmDFDS5YsyR6cSVKjRo0UHx+f6wZO2IZq1arpo48+0k8//aTFixebzsFN3n77be3Zs0dbtmyRq6tr9nqLFi20dOlSg2UAAFPYeQYANu6RRx7RunXrVLt2bS1atEijRo3Snj17NG/ePM2aNYsdJXggXn/9dX311Vd68cUX9c033ygxMVGtWrVSRkaGRo0apaefftp0IgA8EJUqVdLSpUvVoEEDeXh4aM+ePfL29taRI0cUEBCgS5cumU4EAOQxHt4HABuXmpqq4sWLS5K++eYbderUSe7u7mrbtq2GDRtmuA6Oas2aNZozZ45atGih119/XT4+PqpataqmTJliOg1/4sCBA0pOTta1a9ey1ywWi55//nmDVYB9OX/+fPbZjjdLS0uTxWIxUAQAMI3hGQDYuAoVKigmJkbFixfXN998oyVLlkiSfvnllxyPkwD306lTp7JvavT29parq6v69u1ruAq/S01NlaenZ/b3R48eVceOHbV3715ZLBb9/mDB7x/0MzMzjXQC9qhevXpas2aNBgwYIOn//3f06aefqmHDhibTAACGMDwDABv3xhtvqFu3bnrooYdUqVIlNW3aVJL07bffys/Pz2wcHFZWVlaOGxqdnZ1VuHBhg0W4WWhoqFxdXbN3nw4cOFAVKlTQunXrVKdOHX333Xc6duyYhg4dqo8//thwLWBfxo0bp9atW+vAgQO6ceOGpk6dqv379ysmJkZRUVGm8wAABnDmGQDYgbi4OCUnJyswMFAPPfSQpN8eqytatKgaN25suA6OyMnJSW3atFGhQoUkSV999ZWeeeaZXAO0L774wkRevnfu3Dl1795dPj4++s9//qOSJUtq48aNql27tsqVK6cdO3aoXLly2rhxo4YOHcrZiMAdSEhIUJ06dSRJ33//vSZOnKi4uDhlZWUpICBAb731Fj+0AoB8iuEZAADIpXfv3nf0vjlz5jzgEvyZcePG6e2331axYsUUFxcnb29v1a5dW7Nnz1a9evWUlJQkPz8/paenm04FbJ6Tk5P8/f3Vt29fde3aNcej0QCA/I3hGQAAgJ176qmnNHjwYHXo0EH9+vXT+fPnNWzYMIWFhWn37t3at2+f6UTA5sXExCg8PFwRERG6fv26OnXqpODgYDVr1sx0GgDAMIZnAAAAdm7dunW6fPmyOnfurBMnTqht27bat2+fihcvroiICD3zzDOmEwG7cfXqVUVERGjOnDnaunWrKleurODgYPXs2VPly5c3nQcAMIDhGQAAgAO6ePGiihYtKicnJ9MpgN1KSkrSnDlzNH/+fJ0+fVqBgYFau3at6SwAQB5jeAYAAAAAt3HlyhV9/vnn+ve//62UlBRlZmaaTgIA5LECpgMAAH9t69at+uSTT5SUlKTly5erXLlyWrBggby8vPTkk0+azgNgWEZGhqZNm6bNmzfr3LlzysrKyvH67t27DZUB9isqKkrh4eFasWKFnJ2dFRQUpD59+pjOAgAYwPAMAGzcihUr1L17d3Xr1k3x8fH69ddfJUmXL1/W2LFjeXwEgIKDg7V+/Xp17txZTzzxhCwWi+kkwC6dOHFCc+fO1dy5c3Xs2DE1atRI06ZNU1BQkAoXLmw6DwBgCI9tAoCN8/f316BBg9SjRw95eHhoz5498vb2VkJCglq3bq0zZ86YTgRgmKenp9auXavGjRubTgHsVmBgoDZv3qxSpUqpR48eCg4OVrVq1UxnAQBsADvPAMDGHTp0SE2aNMm1XqRIEaWkpOR9EACbU65cOXl4eJjOAOyam5ubVqxYoeeee07Ozs6mcwAANoTrlwDAxpUpU0ZHjhzJtR4dHS1vb28DRQBszaRJk/TWW2/pxx9/NJ0C2K3Vq1erffv2DM4AALmw8wwAbNwrr7yigQMHKjw8XBaLRadOnVJMTIyGDh2qkSNHms4DYAPq1q2rjIwMeXt7y93dXS4uLjlev3jxoqEyAAAA+8fwDABs3JtvvqnU1FQ1a9ZMGRkZatKkiQoVKqShQ4eqf//+pvMA2IAuXbro5MmTGjt2rB5++GEuDAAAALiPuDAAAOxEenq6Dhw4oKysLPn6+uqhhx4ynQTARri7uysmJka1a9c2nQIAAOBw2HkGAHbC3d1ddevWNZ0BwAZVr15dV69eNZ0BAADgkNh5BgA2rlmzZn/6CNamTZvysAaALYqMjNTo0aM1ZswY+fn55TrzrEiRIobKAAAA7B87zwDAxtWpUyfH99evX1dCQoL27dunnj17mokCYFNat24tSWrevHmOdavVKovFoszMTBNZAAAADoHhGQDYuMmTJ99y/b333tOVK1fyuAaALdq8ebPpBAAAAIfFY5sAYKeOHDmiJ554QhcvXjSdAgAAAAAOy8l0AADg3sTExMjV1dV0BgAAAAA4NB7bBAAb17FjxxzfW61WnT59Wrt27dKIESMMVQEAAABA/sDwDABsnKenZ47vnZycVK1aNb3//vtq2bKloSoAAAAAyB848wwAAAAAAAC4DXaeAQAAOIjz58/r0KFDslgsqlq1qkqVKmU6CQAAwO4xPAMAG1esWDFZLJY7ei83bwL5U1pamgYMGKAFCxYoMzNTkuTs7KwePXpo2rRpcnd3N1wIAABgvxieAYCNGzFihD788EO1atVKDRs2lPTbTZvr1q3TiBEjVLx4ccOFAEwbPHiwoqKitHr1ajVu3FiSFB0drZCQEA0ZMkQzZ840XAgAAGC/OPMMAGxcp06d1KxZM/Xv3z/H+vTp07VhwwatWrXKTBgAm1GyZEktX75cTZs2zbG+efNmBQUF6fz582bCAAAAHICT6QAAwJ9bt26dWrdunWu9VatW2rBhg4EiALYmPT1dDz/8cK710qVLKz093UARAACA42B4BgA2rkSJElq5cmWu9VWrVqlEiRIGigDYmoYNG2rUqFHKyMjIXrt69apGjx6d/bg3AAAA7g1nngGAjRs9erT69OmjLVu2ZH8Ijo2N1TfffKPZs2cbrgNgC6ZOnarWrVurfPnyql27tiwWixISEuTq6qp169aZzgMAALBrnHkGAHbgu+++U2hoqBITE2W1WuXr66uQkBDVr1/fdBoAG3H16lUtXLhQBw8ezP57olu3bnJzczOdBgAAYNcYngEAAAAAAAC3wZlnAAAAdm7evHlas2ZN9vdvvvmmihYtqkaNGunHH380WAYAAGD/GJ4BAADYubFjx2Y/nhkTE6Pp06fro48+UsmSJTVo0CDDdQAAAPaNxzYBAADsnLu7uw4ePKiKFSvqrbfe0unTpzV//nzt379fTZs21fnz500nAgAA2C12ngEAANi5hx56SBcuXJAkRUZGqkWLFpIkV1dXXb161WQaAACA3StgOgAAAAB/T2BgoPr27St/f38dPnxYbdu2lSTt379flStXNhsHAABg5xieAYAd2Llzp5YtW6bk5GRdu3Ytx2tffPGFoSoAtuI///mP3n33XZ04cUIrVqxQiRIlJElxcXHq0qWL4ToAAAD7xplnAGDjlixZoh49eqhly5Zav369WrZsqR9++EFnzpxRhw4dNGfOHNOJAAAAAOCwOPMMAGzc2LFjNXnyZP33v/9VwYIFNXXqVCUmJiooKEgVK1Y0nQfARmzdulUvv/yyGjVqpJMnT0qSFixYoOjoaMNlAAAA9o3hGQDYuKSkpOzziwoVKqS0tDRZLBYNGjRIs2bNMlwHwBasWLFCrVq1kpubm3bv3q1ff/1VknT58mWNHTvWcB0AAIB9Y3gGADauePHiunz5siSpXLly2rdvnyQpJSVF6enpJtMA2IgPP/xQYWFh+vTTT+Xi4pK93qhRI+3evdtgGQAAgP3jwgAAsHFPPfWU1q9fLz8/PwUFBWngwIHatGmT1q9fr+bNm5vOA2ADDh06pCZNmuRaL1KkiFJSUvI+CAAAwIEwPAMAGzd9+nRlZGRIkt5++225uLgoOjpaHTt21IgRIwzXAbAFZcqU0ZEjR1S5cuUc69HR0fL29jYTBQAA4CC4bRMAAMDOffTRR5o3b57Cw8MVGBiotWvX6scff9SgQYM0cuRI9e/f33QiAACA3WJ4BgA26NKlS3f83iJFijzAEgD24p133tHkyZOzd6oWKlRIQ4cO1QcffGC4DAAAwL4xPAMAG+Tk5CSLxfKn77FarbJYLMrMzMyjKgC2Lj09XQcOHFBWVpZ8fX310EMPmU4CAACwe5x5BgA2aPPmzaYTANiB9PR0DRs2TKtWrdL169fVokULhYaGqmTJkqbTAAAAHAY7zwAAAOzUsGHDNGPGDHXr1k2urq5avHixmjZtqmXLlplOAwAAcBgMzwAAAOxUlSpVNGbMGL300kuSpB07dqhx48bKyMiQs7Oz4ToAAADHwPAMAADAThUsWFDHjh1TuXLlstfc3Nx0+PBhVahQwWAZAACA43AyHQAAAIB7k5mZqYIFC+ZYK1CggG7cuGGoCAAAwPFwYQAAAICdslqt6tWrlwoVKpS9lpGRoVdffVWFCxfOXvviiy9M5AEAADgEhmcAAAB2qmfPnrnWXn75ZQMlAAAAjoszzwDADixfvlwRERFKTk7WtWvXcry2e/duQ1UAAAAA4Pg48wwAbFxoaKh69+6t0qVLKz4+Xk888YRKlCiho0ePqk2bNqbzAAAAAMChsfMMAGxc9erVNWrUKHXp0kUeHh7as2ePvL29NXLkSF28eFHTp083nQgAAAAADoudZwBg45KTk9WoUSNJkpubmy5fvixJ6t69uxYvXmwyDQAAAAAcHsMzALBxjzzyiC5cuCBJqlSpkmJjYyVJx44dE5uHAQAAAODBYngGADbumWee0VdffSVJ6tOnjwYNGqTAwEC9+OKL6tChg+E6AAAAAHBsnHkGADYuKytLWVlZKlCggCQpIiJC0dHR8vHx0auvvqqCBQsaLgQAAAAAx8XwDAAAAAAAALgNHtsEAAAAAAAAboPhGQAAAAAAAHAbDM8AAAAAAACA22B4BgAAAAAAANwGwzMAAAAAAADgNgqYDgAA5Obv7y+LxXJH7929e/cDrgEAAACA/IvhGQDYoBdeeCH764yMDM2YMUO+vr5q2LChJCk2Nlb79+/X66+/bqgQAAAAAPIHi9VqtZqOAADcXt++fVWmTBl98MEHOdZHjRqlEydOKDw83FAZAAAAADg+hmcAYOM8PT21a9cuPfrooznWf/jhB9WtW1epqamGygAAAADA8XFhAADYODc3N0VHR+daj46Olqurq4EiAAAAAMg/OPMMAGzcG2+8oddee01xcXFq0KCBpN/OPAsPD9fIkSMN1wEAAACAY+OxTQCwAxEREZo6daoSExMlSTVq1NDAgQMVFBRkuAwAAAAAHBvDMwAAAAAAAOA2OPMMAAAAAAAAuA3OPAMAG5eZmanJkycrIiJCycnJunbtWo7XL168aKgMAAAAABwfO88AwMaNHj1aH3/8sYKCgpSamqrBgwerY8eOcnJy0nvvvWc6DwAAAAAcGmeeAYCNq1KlikJDQ9W2bVt5eHgoISEhey02NlaLFi0ynQgAAAAADoudZwBg486cOSM/Pz9J0kMPPaTU1FRJ0nPPPac1a9aYTAMAAAAAh8fwDABsXPny5XX69GlJko+PjyIjIyVJO3fuVKFChUymAQAAAIDDY3gGADauQ4cO2rhxoyRp4MCBGjFihB599FH16NFDwcHBhusAAAAAwLFx5hkA2JnY2Fht375dPj4+ateunekcAAAAAHBoDM8AAAAAAACA2yhgOgAAkNvq1avv+L3sPgMAAACAB4edZwBgg5ycch5JabFY9Me/ri0WiyQpMzMzz7oAAAAAIL/hwgAAsEFZWVnZvyIjI1WnTh19/fXXSklJUWpqqr7++msFBATom2++MZ0KAAAAAA6NnWcAYONq1qypsLAwPfnkkznWt27dqn79+ikxMdFQGQAAAAA4PnaeAYCNS0pKkqenZ651T09PHT9+PO+DAAAAACAfYecZANi4Jk2ayMXFRQsXLlSZMmUkSWfOnFH37t117do1RUVFGS4EAAAAAMfF8AwAbNyRI0fUoUMHHTp0SBUrVpQkJScnq2rVqlq1apV8fHwMFwIAAACA42J4BgB2wGq1av369Tp48KCsVqt8fX3VokWL7Bs3AQAAAAAPBsMzAAAAAAAA4DYKmA4AAOQWGhqqfv36ydXVVaGhoX/63pCQkDyqAgAAAID8h51nAGCDvLy8tGvXLpUoUUJeXl63fZ/FYtHRo0fzsAwAAAAA8heGZwAAAAAAAMBtOJkOAAAAAAAAAGwVwzMAsHGdO3fW+PHjc61PmDBB//jHPwwUAQAAAED+wWObAGDjSpUqpU2bNsnPzy/H+vfff68WLVro7NmzhsoAAAAAwPGx8wwAbNyVK1dUsGDBXOsuLi66dOmSgSIAAAAAyD8YngGAjatZs6aWLl2aa33JkiXy9fU1UAQAAAAA+UcB0wEAgD83YsQIderUSUlJSXrmmWckSRs3btTixYu1bNkyw3UAAAAA4Ng48wwA7MCaNWs0duxYJSQkyM3NTbVq1dKoUaP09NNPm04DAAAAAIfG8AwAAAAAAAC4DR7bBAA7ERcXp8TERFksFvn6+srf3990EgAAAAA4PIZnAGDjzp07p5deeklbtmxR0aJFZbValZqaqmbNmmnJkiUqVaqU6UQAAAAAcFjctgkANm7AgAG6dOmS9u/fr4sXL+qXX37Rvn37dOnSJYWEhJjOAwAAAACHxplnAGDjPD09tWHDBtWrVy/H+o4dO9SyZUulpKSYCQMAAACAfICdZwBg47KysuTi4pJr3cXFRVlZWQaKAAAAACD/YHgGADbumWee0cCBA3Xq1KnstZMnT2rQoEFq3ry5wTIAAAAAcHw8tgkANu7EiRNq37699u3bpwoVKshisSg5OVl+fn768ssvVb58edOJAAAAAOCwGJ4BgJ1Yv369Dh48KKvVKl9fX7Vo0cJ0EgAAAAA4PIZnAAAAAAAAwG0UMB0AAMgtNDT0jt8bEhLyAEsAAAAAIH9j5xkA2CAvL687ep/FYtHRo0cfcA0AAAAA5F8MzwAAAAAAAIDbcDIdAAC4M9euXdOhQ4d048YN0ykAAAAAkG8wPAMAG5eenq4+ffrI3d1djz32mJKTkyX9dtbZ+PHjDdcBAAAAgGNjeAYANu7tt9/Wnj17tGXLFrm6umavt2jRQkuXLjVYBgAAAACOj9s2AcDGrVq1SkuXLlWDBg1ksViy1319fZWUlGSwDAAAAAAcHzvPAMDGnT9/XqVLl861npaWlmOYBgAAAAC4/xieAYCNq1evntasWZP9/e8Ds08//VQNGzY0lQUAAAAA+QKPbQKAjRs3bpxat26tAwcO6MaNG5o6dar279+vmJgYRUVFmc4DAAAAAIfGzjMAsFEJCQmSpEaNGmnbtm1KT09XlSpVFBkZqYcfflgxMTF6/PHHzUYCAAAAgIOzWK1Wq+kIAEBuTk5O8vf3V9++fdW1a1d5enqaTgIAAACAfIedZwBgo7Zt26aAgAANHz5cZcqUUffu3bV582bTWQAAAACQr7DzDABs3NWrVxUREaE5c+Zo69atqly5soKDg9WzZ0+VL1/edB4AAAAAODSGZwBgR5KSkjRnzhzNnz9fp0+fVmBgoNauXWs6CwAAAAAcFsMzALAzV65c0eeff65///vfSklJUWZmpukkAAAAAHBYBUwHAADuTFRUlMLDw7VixQo5OzsrKChIffr0MZ0FAAAAAA6NnWcAYMNOnDihuXPnau7cuTp27JgaNWqkPn36KCgoSIULFzadBwAAAAAOj51nAGCjAgMDtXnzZpUqVUo9evRQcHCwqlWrZjoLAAAAAPIVhmcAYKPc3Ny0YsUKPffcc3J2djadAwAAAAD5Eo9tAgAAAAAAALfhZDoAAAAAAAAAsFUMzwAAAAAAAIDbYHgGAAAAAAAA3AbDMwAAAAAAAOA2GJ4BAAAAAAAAt8HwDAAAAAAAALgNhmcAAAAAAADAbfw/n8iQoRNPW00AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgUzx8H8PfR3d1dCoKCYmMBYicWKGJ3d9fXFjuRMLCxC1FMVFAxsTBQCaVLen9/IAfH3RFS6u/z8rnnkb3Z2Znbmd29uQkWwzAMCCGEEEIIIYQQQgghtU6gvhNACCGEEEIIIYQQQsj/C2qMI4QQQgghhBBCCCGkjlBjHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSPUGEcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoINcYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUEWqMI4QQ8lfz9fUFi8VCeHg4z/e7du0KPT29Wk3DvXv3sGTJEqSkpNTqcerDkiVLwGKxajzeZ8+ewcPDA/r6+hATE4OUlBQaN26MtWvXIikpqcaPVx0hISFgsVgICQmplfg/ffoEFosFX1/fWom/vg0bNqzG6qCNjQ00NTVRUFDAN0zLli2hpKSE3Nzcah+vOue+omtTaTX5GVUWwzA4cuQIWrduDRUVFYiJiUFLSwtOTk7Yt2/fb8Xp4OAABweHmk1oFdXWNaumsVgsLFmypM6Pe/v2bYiKiuLz58/sbXp6eujatSvP8OHh4TV+fapK3agJf0uZKJaRkYEpU6ZAQ0MDYmJisLa2xpEjRyq1r4ODA1gsFt9XXFwcACAvLw+Ghobw8vKqxZwQQspDjXGEEEJINd27dw9Lly79JxvjasPevXvRpEkThIWFYebMmbh8+TICAwPRr18/7Nq1C56envWdxDqlrq6O0NBQdOnSpb6T8sfz9PRETEwMrly5wvP9t2/f4t69e3Bzc4OIiEi1j9e4cWOEhoaicePG1Y7rTzN37lwMHDgQ5ubm2LdvHy5duoQVK1ZAVVUVZ86cqe/k/bYRI0YgNDS0vpPxR2IYBlOmTMHIkSOhq6tb38khfPTu3Rt+fn5YvHgxLl26BDs7OwwcOBCHDx+ucN8dO3YgNDSU4xUcHAxhYWHY29tDTU0NACAsLIxFixZh2bJlSExMrO0sEUJ4EKrvBBBCCCHk/0doaCjGjh2LTp064fTp0xAVFWW/16lTJ0yfPh2XL1+ukWNlZWVBQkKCa3tBQQHy8/M5jl2fREVFYW9vX9/J+CsMHjwYM2fOxP79++Hi4sL1/v79+wEAw4cPr9Zx8vLywGKxICMj80+em58/f8LLywvu7u7Ys2cPx3vDhg1DYWFhPaWs+rS0tKClpVXfyfgjXb58GY8fP65Uo86fjN+1vbpiY2MhKSkJGRmZGo+7si5evIigoCAcPnwYAwcOBAC0a9cOnz9/xsyZM+Hq6gpBQUG++1tYWHBt8/PzQ15eHkaMGMGxfeDAgZg2bRp2796NefPm1WxGCCEVop5xhBBC/u8wDIMdO3bA2toa4uLikJeXR9++ffHhwweOcEFBQejRowe0tLQgJiYGIyMjjB49GgkJCewwS5YswcyZMwEA+vr67KEgxcPaiof/nD9/HjY2NhAXF4e5uTnOnz8PoGi4jrm5OSQlJdG0aVOuYTvh4eEYMGAA9PT0IC4uDj09PQwcOJBjiFFxPCwWC0FBQfDw8ICCggIkJSXRrVs3rnzxc+HCBVhbW0NUVBT6+vpYv359tT4/XlatWgUWi4U9e/bwbAwTERFB9+7d2X8XFhZi7dq1MDMzg6ioKFRUVODu7o6vX79y7Ofg4ICGDRvi1q1baNGiBSQkJDB8+HD2ENC1a9dixYoV0NfXh6ioKG7cuAGg6PPt3r07FBQUICYmBhsbGxw7dqzCfFT2vADAt2/fMGrUKGhra0NERAQaGhro27cv4uPjAfAfpnrnzh106NAB0tLSkJCQQIsWLXDhwgWOMMXn/caNGxg7diyUlJSgqKiI3r17IyYmhistR48eRfPmzSEpKQkpKSk4OTnhyZMnHGE+fPiAAQMGQENDA6KiolBVVUWHDh0QERFR4efi6+sLU1NTiIqKwtzcHP7+/jzD5ebmYsWKFezzqqysDA8PD/z48aPc+OXl5dGrVy+cO3eOqzdHQUEBDhw4ADs7O1haWuL9+/fw8PCAsbExJCQkoKmpiW7duuH58+cc+xUPRT1w4ACmT58OTU1NiIqK4v379zyHqVbl3ANAcnLyb9XJytazJ0+eoGvXrlBRUYGoqCg0NDTQpUsXrjpSWmZmJnJycqCurs7zfQEBzq8Iv3u+qrrv4cOH0bx5c0hJSUFKSgrW1tbw9vbmCHP58mV06NABsrKykJCQgLm5Of777z/2+7yGJFb1OhIWFobWrVtDQkICBgYGWL16NUcDZXZ2NqZPnw5ra2vIyspCQUEBzZs359mjMC0tDSNHjoSioiKkpKTg7OyMt2/fcoWrbHktLCzEihUrYGpqCnFxccjJycHKygqbN28u5ywU2blzJ+zs7GBqalph2PIMGzYMUlJSeP36NZycnCApKQl1dXWsXr0aAHD//n20atUKkpKSMDExgZ+fH894KlM3+F3bgaLrmaOjI9TV1dn31jlz5iAzM/O38nXlyhWoqqqib9++OHXqFLKzs38rnuoIDAyElJQU+vXrx7Hdw8MDMTExePDgQZXj9Pb2hpSUFFxdXTm2i4iIwNXVFXv27AHDMNVKNyGk6qgxjhBCyD+huLdT2RevB8zRo0djypQp6NixI06fPo0dO3bg5cuXaNGiBbuBBACioqLQvHlz7Ny5E1evXsWiRYvw4MEDtGrVCnl5eQCKhkRNnDgRAHDq1Cn2sJDSw9qePn2KuXPnYvbs2Th16hRkZWXRu3dvLF68GPv27cOqVatw6NAhpKamomvXrvj58yd730+fPsHU1BReXl64cuUK1qxZg9jYWNjZ2XE0Chbz9PSEgIAADh8+DC8vLzx8+BAODg4VDqENDg5Gjx49IC0tjSNHjmDdunU4duwYfHx8fvvz43WOrl+/jiZNmkBbW7vc9BQbO3YsZs+ejU6dOuHs2bNYvnw5Ll++jBYtWnDlPzY2FkOGDMGgQYNw8eJFjBs3jv3eli1bcP36daxfvx6XLl2CmZkZbty4gZYtWyIlJQW7du3CmTNnYG1tDVdX1wrnR6rsefn27Rvs7OwQGBiIadOm4dKlS/Dy8oKsrCySk5P5xn/z5k20b98eqamp8Pb2RkBAAKSlpdGtWzccPXqUK/yIESMgLCyMw4cPY+3atQgJCcGQIUM4wqxatQoDBw6EhYUFjh07hgMHDiA9PR2tW7fGq1ev2OFcXFzw6NEjrF27FkFBQdi5cydsbGwqLEO+vr7w8PCAubk5Tp48iQULFmD58uW4fv06R7jCwkL06NEDq1evxqBBg3DhwgWsXr0aQUFBcHBw4Cj/vHh6eiI3NxcHDx7k2H7lyhXExMSwhznHxMRAUVERq1evxuXLl7F9+3YICQmhWbNmePPmDVe8c+fORXR0NHbt2oVz585BRUWF5/Hrqk5Wpp5lZmaiU6dOiI+Px/bt2xEUFAQvLy/o6OggPT2db9xKSkowMjLCjh07sHHjRrx+/Zrvl/HqnK+q7Lto0SIMHjwYGhoa8PX1RWBgIIYOHcrRyOnt7Q0XFxcUFhayz9OkSZPKbXgEqnYdiYuLw+DBgzFkyBCcPXsWnTt3xty5cznKW05ODpKSkjBjxgycPn0aAQEBaNWqFXr37s3RAM0wDHr27Mlu6A0MDIS9vT06d+7MlcbKlte1a9diyZIlGDhwIC5cuICjR4/C09OzwvKUm5uLa9euoV27duWGq6y8vDz07t0bXbp0wZkzZ9if07x58zB06FAMHz4cgYGBMDU1xbBhw/Do0SOuOCpbN/hd29+9ewcXFxd4e3vj8uXLmDJlCo4dO4Zu3br9Vp569eqFLVu2IDk5Gf3794eqqiqGDRuGK1eulDtPJcMwPJ8/eL0q8uLFC5ibm0NIiHMAm5WVFfv9qnj37h1u376NAQMGQEpKiut9BwcHfP78ucrxEkJqAEMIIYT8xXx8fBgA5b50dXXZ4UNDQxkAzIYNGzji+fLlCyMuLs7MmjWL53EKCwuZvLw85vPnzwwA5syZM+z31q1bxwBgPn78yLWfrq4uIy4uznz9+pW9LSIiggHAqKurM5mZmeztp0+fZgAwZ8+e5Zvf/Px8JiMjg5GUlGQ2b97M9Tn06tWLI/zdu3cZAMyKFSv4xskwDNOsWTNGQ0OD+fnzJ3tbWloao6CgwJR+XPjdz49hGCYuLo4BwAwYMKDctBSLjIxkADDjxo3j2P7gwQMGADNv3jz2trZt2zIAmODgYI6wHz9+ZAAwhoaGTG5uLsd7ZmZmjI2NDZOXl8exvWvXroy6ujpTUFDAMAzD3LhxgwHA3Lhxg29a+Z2X4cOHM8LCwsyrV6/47lucRh8fH/Y2e3t7RkVFhUlPT+c4RsOGDRktLS2msLCQYZiS8172M1q7di0DgImNjWUYhmGio6MZISEhZuLEiRzh0tPTGTU1NaZ///4MwzBMQkICA4Dx8vLim15eCgoKGA0NDaZx48bstDEMw3z69IkRFhbmqIMBAQEMAObkyZMccYSFhTEAmB07dpR7rMLCQkZfX5+xsrLi2N6nTx9GQkKCSU1N5blffn4+k5ubyxgbGzNTp05lby8+v23atOHapzrnvip1cujQob91nQoPD2cAMKdPn+abPn4ePnzI6OjosK+T0tLSTNeuXRl/f3+Oc1iV89W2bVumbdu2Vd73w4cPjKCgIDN48GC+6U1PT2dkZGSYVq1acaSvrMWLF3Ncs37nOvLgwQOOsBYWFoyTkxPfY+bn5zN5eXmMp6cnY2Njw95+6dIlBgBHuWAYhlm5ciUDgFm8eHG5cfIqr127dmWsra357sdPcX6PHDnC9Z6uri7TpUsXnvsVn6vS16ehQ4dynde8vDxGWVmZAcA8fvyYvT0xMZERFBRkpk2bxt5WlbrB79peVvE9+ubNmwwA5unTp+z3ypaJyoiLi2O2bt3KtGzZkmGxWIyKigozfvx45s6dO1zlrzLPIcWvihgbG/MsazExMQwAZtWqVVXKx+zZsxkATGhoKM/33717xwBgdu7cWaV4CSHVRz3jCCGE/BP8/f0RFhbG9WrVqhVHuPPnz4PFYmHIkCEcv1arqamhUaNGHMPRvn//jjFjxkBbWxtCQkIQFhZmT3odGRlZ6bRZW1tDU1OT/be5uTmAol+kS897U7y9dE+QjIwMzJ49G0ZGRhASEoKQkBCkpKSQmZnJMw2DBw/m+LtFixbQ1dVlD8vkJTMzE2FhYejduzfExMTY24t7YpVWlc+vuorTPGzYMI7tTZs2hbm5OYKDgzm2y8vLo3379jzj6t69O4SFhdl/v3//Hq9fv2Z/XqXz4uLigtjYWJ69p4pV9rxcunQJ7dq1Y5/bysjMzMSDBw/Qt29fjp4MgoKCcHNzw9evX7nSVnpoL1DSi6K4LF25cgX5+flwd3fnyKuYmBjatm3LPm8KCgowNDTEunXrsHHjRjx58qRS84e9efMGMTExGDRoEMcQQV1dXbRo0YIj7Pnz5yEnJ4du3bpxpMXa2hpqamoVliEWiwUPDw88e/aM3dsmMTER586dQ58+fdjzPeXn52PVqlWwsLCAiIgIhISEICIignfv3vGsO3369Kkwn0Dd1MnK1jMjIyPIy8tj9uzZ2LVrF0cPx4rY2dnh/fv3uHz5MubNm4fmzZsjODgY7u7u6N69O7unXHXOV2X3DQoKQkFBAcaPH883rnv37iEtLQ3jxo2r0sqYVb2OqKmpoWnTphzbrKysuIYhHz9+HC1btoSUlBT7/uDt7c1RBoqPXbYMDBo0iCudlS2vTZs2xdOnTzFu3DhcuXIFaWlplfocioet8+vxWVUsFotj3kYhISEYGRlBXV0dNjY27O0KCgpQUVHhOYy7snWD37X9w4cPGDRoENTU1CAoKAhhYWG0bdsWQNXu0byoqqpiwoQJuHPnDj5//oxZs2axe8br6+tzDIXt1q0bz+cPXq/KKK98V6Xs5+fnw8/PDw0aNOA792Vxefj27Vul4yWE1AxawIEQQsg/wdzcHLa2tlzbZWVl8eXLF/bf8fHxYBgGqqqqPOMxMDAAUDS8ytHRETExMVi4cCEsLS0hKSmJwsJC2NvbVziUrjQFBQWOv4tXeeS3vfQ8NYMGDUJwcDAWLlwIOzs7yMjIsL8E8UpD8UppZbeVt1pacnIyCgsL+e5bWmU/P16UlJQgISGBjx8/8g1TWnGaec1rpaGhwfXljt/8V7zeKx7mN2PGDMyYMYPnPryGHBar7Hn58eNHlSeTT05OBsMwfPMNgOt8KioqcvxdPB9fcVqK82tnZ8fzmMVzhLFYLAQHB2PZsmVYu3Ytpk+fDgUFBQwePBgrV66EtLQ0z/2L08OvDH369In9d3x8PFJSUviudlre517Mw8MDS5YsgY+PD5o0aYJDhw4hNzeXYyXeadOmYfv27Zg9ezbatm0LeXl5CAgIYMSIETzrTnnlp7S6qJOVrWeysrK4efMmVq5ciXnz5iE5ORnq6uoYOXIkFixYwNEAzYuwsDCcnJzg5OQEoOg89u3bF+fPn8elS5fg4uJSrfNV2X2L548rr65UJgwvVb2OlK1LQFF9Kn1uT506hf79+6Nfv36YOXMm1NTUICQkhJ07d7IXESk+tpCQEFecvMpEZcvr3LlzISkpiYMHD2LXrl0QFBREmzZtsGbNGp73wGLFcZT+waWYkJAQ32GYxUMry5YlCQkJrrhERES47mvF23nNv1bZusHr3GVkZKB169YQExPDihUrYGJiAgkJCXz58gW9e/eu0j26IqmpqUhJSUFqaioAsM9NMQUFBcjKytbIsRQVFXleG5KSktjHqqyLFy8iLi4Os2fP5hum+BzW5OdFCKkcaowjhBDyf0VJSQksFgu3b9/muYBA8bYXL17g6dOn8PX1xdChQ9nvv3//vs7SmpqaivPnz2Px4sWYM2cOe3vxfEW8xMXF8dxmZGTE9zjy8vJgsVh89y2tsp8fL4KCgujQoQMuXbqEr1+/VviluvgLbGxsLFfYmJgYKCkpcWyrSm+C4n3nzp2L3r1789yH3yTnVTkvysrKFc5nVVbxF73Y2Fiu94p7t5TNe0WKw584cYLdu5MfXV1d9qT5b9++xbFjx7BkyRLk5uZi165dPPcpPleVLUOKiop8V83l1+BXmpaWFhwdHXH48GFs2LABPj4+MDIyQps2bdhhDh48CHd3d6xatYpj34SEBMjJyXHFWZkeJ3VVJ6tSzywtLXHkyBEwDINnz57B19cXy5Ytg7i4OEcaK0NRURFTpkxBSEgIXrx4ARcXl2qdr8ruq6ysDAD4+vUr3/kkS4epiqpeRyrj4MGD0NfXx9GjRznKTU5ODtex8/PzkZiYyNEgx6tMVLa8CgkJYdq0aZg2bRpSUlJw7do1zJs3D05OTvjy5QvfVUaL88mrnKqqqvLtGVW8nV/DcHVUtm7wqpvXr19HTEwMQkJC2L3hAFQ4d15lvX37FkePHsWRI0fw6tUrGBkZYeDAgRg0aBDMzMw4wvr5+cHDw6NS8TIVLJRgaWmJgIAA5Ofnc8wbV7yQR8OGDSudB29vb4iIiMDNzY1vmOLy8Dv1gBBSPTRMlRBCyP+Vrl27gmEYfPv2Dba2tlwvS0tLACUP/2W/CO/evZsrzrK9kGoKi8UCwzBcadi3bx/fXgyHDh3i+PvevXv4/PkzHBwc+B6neCXXsqvHpaen49y5cxxhK/v58TN37lwwDIORI0ciNzeX6/28vDz2MYuHJZWdqD8sLAyRkZHo0KFDuccqj6mpKYyNjfH06VOe+bC1teXbyFCV89K5c2fcuHGj3CGvZUlKSqJZs2Y4deoUR5kqLCzEwYMHoaWlBRMTkyrkFnBycoKQkBCioqL45pcXExMTLFiwAJaWlnj8+DHf+E1NTaGuro6AgACOL5ufP3/GvXv3OMJ27doViYmJKCgo4JmOyq706OnpieTkZCxatAgRERHw8PDg+NLOYrG4ztGFCxeqNRyrrurk79QzFouFRo0aYdOmTZCTkyv3fOXl5fHtmVc8vK+4F2Z1zldl93V0dISgoCB27tzJN64WLVpAVlYWu3btqtLKj7VxHWGxWBAREeEob3FxcVyrqRYvllC2DBw+fJhnnFUtr3Jycujbty/Gjx+PpKQkjh6oZRUPlY+KiuJ6r2PHjnjx4gXPYc7Hjh2DlJQUmjVrxjfu3/U7daNYVe7RlfX9+3esWbMGNjY2MDU1xa5du+Do6IiHDx/i3bt3WLZsGVdDHFCzw1R79eqFjIwMnDx5kmO7n58fNDQ0Kn0e4uLicPHiRfTs2ZNnb89ixavXWlhYVCpeQkjNoZ5xhBBC/q+0bNkSo0aNgoeHB8LDw9GmTRtISkoiNjYWd+7cgaWlJcaOHQszMzMYGhpizpw5YBgGCgoKOHfuHIKCgrjiLP5ivHnzZgwdOhTCwsIwNTWtVA+f8sjIyKBNmzZYt24dlJSUoKenh5s3b8Lb25tnzx4ACA8Px4gRI9CvXz98+fIF8+fPh6amJsfKorwsX74czs7O6NSpE6ZPn46CggKsWbMGkpKSHD0pKvv58VO8Ou24cePQpEkTjB07Fg0aNEBeXh6ePHmCPXv2oGHDhujWrRtMTU0xatQobN26FQICAujcuTM+ffqEhQsXQltbG1OnTv2tz7XY7t270blzZzg5OWHYsGHQ1NREUlISIiMj8fjxYxw/fpznflU5L8uWLcOlS5fQpk0bzJs3D5aWlkhJScHly5cxbdo0nl/sAOC///5Dp06d0K5dO8yYMQMiIiLYsWMHXrx4gYCAgCrNGwQAenp6WLZsGebPn48PHz7A2dkZ8vLyiI+Px8OHDyEpKYmlS5fi2bNnmDBhAvr16wdjY2OIiIjg+vXrePbsWbm9rAQEBLB8+XKMGDECvXr1wsiRI5GSkoIlS5ZwDUUbMGAADh06BBcXF0yePBlNmzaFsLAwvn79ihs3bqBHjx7o1atXhXnq3r07lJSUsG7dOggKCnL0YAWKGoJ8fX1hZmYGKysrPHr0COvWravyMMfS6qpOVraenT9/Hjt27EDPnj1hYGAAhmFw6tQppKSkoFOnTnzjT01NhZ6eHvr164eOHTtCW1sbGRkZCAkJwebNm2Fubs7uMVqd81XZffX09DBv3jwsX74cP3/+xMCBAyErK4tXr14hISEBS5cuhZSUFDZs2IARI0agY8eOGDlyJFRVVfH+/Xs8ffoU27Zt45mG2riOdO3aFadOncK4cePQt29ffPnyBcuXL4e6ujrevXvHDufo6Ig2bdpg1qxZyMzMhK2tLe7evYsDBw7wjLMy5bVbt25o2LAhbG1toaysjM+fP8PLywu6urowNjbmm2YtLS0YGBjg/v37mDRpEsd7kydPhr+/PxwcHNjXqeTkZBw9ehQnTpzAxo0bq30/4+V371dAUeOsvLw8xowZg8WLF0NYWBiHDh3C06dPfzs9Fy9exOrVq9GnTx+sX78e7dq14xiOyo+iomK5DV5V0blzZ3Tq1Aljx45FWloajIyMEBAQgMuXL+PgwYMQFBRkh/X09ISfnx+ioqK4ejz7+fkhPz8fI0aMKPd49+/fZw91JoTUsbpeMYIQQgipScWrmIWFhfF8v0uXLhyrFBbbv38/06xZM0ZSUpIRFxdnDA0NGXd3dyY8PJwd5tWrV0ynTp0YaWlpRl5enunXrx8THR3NcxW8uXPnMhoaGoyAgADH6ov8VqkDwIwfP55jW/GqmuvWrWNv+/r1K9OnTx9GXl6ekZaWZpydnZkXL14wurq6zNChQ7k+h6tXrzJubm6MnJwcIy4uzri4uDDv3r2r4FMscvbsWcbKyooRERFhdHR0mNWrV/Ndha4yn195IiIimKFDhzI6OjqMiIgIIykpydjY2DCLFi1ivn//zg5XUFDArFmzhjExMWGEhYUZJSUlZsiQIcyXL1844mvbti3ToEEDruPw+kxLe/r0KdO/f39GRUWFERYWZtTU1Jj27dszu3btYofhtaJmZc8LwxStgDl8+HBGTU2NERYWZjQ0NJj+/fsz8fHxHGksvVohwzDM7du3mfbt27M/Y3t7e+bcuXMcYfiVf36rgJ4+fZpp164dIyMjw4iKijK6urpM3759mWvXrjEMwzDx8fHMsGHDGDMzM0ZSUpKRkpJirKysmE2bNjH5+fk8P8PS9u3bxxgbGzMiIiKMiYkJs3//fq6VQhmmaOXF9evXM40aNWLExMQYKSkpxszMjBk9enSlyyvDMMzUqVMZAIyLiwvXe8nJyYynpyejoqLCSEhIMK1atWJu377NteJn8Wd1/Phxrjiqc+6rUid5fUYMU3E9e/36NTNw4EDG0NCQERcXZ2RlZZmmTZsyvr6+5X5uOTk5zPr165nOnTszOjo6jKioKCMmJsaYm5szs2bNYhITEznCV/Z8lf1sq7IvwzCMv78/Y2dnxw5nY2PDVS8uXrzItG3blpGUlGQkJCQYCwsLZs2aNez3eV2zqnsd4XV+Vq9ezejp6TGioqKMubk5s3fvXp7HTklJYYYPH87IyckxEhISTKdOnZjXr19z3UcqW143bNjAtGjRglFSUmJfqz09PZlPnz5xpbushQsXMvLy8kx2djbXe3FxcczYsWMZHR0dRkhIiJGWlmZatWrFs14MHTqUkZSU5NrO7/Mrex+sSt3gFyfDMMy9e/eY5s2bMxISEoyysjIzYsQI5vHjx1zX08quppqQkMDk5ORUGK62paenM5MmTWLU1NQYERERxsrKigkICOAKV7yqLa+V3E1MTBg9Pb1yVx5mGIZp3bo1061bt5pKOiGkClgMU4V+3oQQQgj5I/n6+sLDwwNhYWHlTuJNCCHk/1NMTAz09fXh7+8PV1fX+k4OqWdRUVEwNjbGlStXyu1JSwipHTRnHCGEEEIIIYT84zQ0NDBlyhSsXLkShYWF9Z0cUs9WrFiBDh06UEMcIfWE5owjhBBCCCGEkP8DCxYsgISEBL59+8Z35Vry78vPz4ehoSHmzp1b30kh5P8WDVMlhBBCCCGEEEIIIaSO0DBVQgghhBBCCCGEEPJHu3XrFrp16wYNDQ2wWCycPn26wn1u3ryJJk2aQExMDAYGBti1axdXmJMnT8LCwgKioqKwsLBAYGBgLaSeEzXGEUIIIYQQQgghhJA/WmZmJho1aoRt27ZVKvzHjx/h4uKC1q1b48mTJ5g3bx4mTZqEkydPssOEhobC1dUVbm5uePr0Kdzc3NC/f388ePCgtrIBgIapEkIIIYQQQgghhJC/CIvFQmBgIHr27Mk3zOzZs3H27FlERkayt40ZMwZPnz5FaGgoAMDV1RVpaWm4dOkSO4yzszPk5eUREBBQa+mnnnGEEEIIIYQQQgghpM7l5OQgLS2N45WTk1MjcYeGhsLR0ZFjm5OTE8LDw5GXl1dumHv37tVIGvih1VQJIYQQQgghhBBC/lEtt4+p7yTw1emHGpYuXcqxbfHixViyZEm1446Li4OqqirHNlVVVeTn5yMhIQHq6up8w8TFxVX7+OWhxjhCCPmD/ck3zsq6O34XXsZG1XcyqqWBuiG23z1R38motvEt+yJ1jVd9J6NaZGdPgX/YxfpORrW527lg3Y2D9Z2MapvZbgjWhxyq72RUywyHwf9MmZp/aXd9J6NaVnYejTfxn+o7GdVmqqqHC6/u1ncyqq2LRUscCL9UccA/mJttZwQ8vlrfyai2gY0dsfq6f30no1rmtHfH1jvH6zsZ1TaxVb/6TsI/Z+7cuZg2bRrHNlFR0RqLn8VicfxdPFNb6e28wpTdVtOoMY4QQgghhBBCCCGE1DlRUdEabXwrTU1NjauH2/fv3yEkJARFRcVyw5TtLVfTaM44QgghhBBCCCGEkH8U6w/+V5uaN2+OoKAgjm1Xr16Fra0thIWFyw3TokWLWk0b9YwjhBBCCCGEEEIIIX+0jIwMvH//nv33x48fERERAQUFBejo6GDu3Ln49u0b/P2LhnWPGTMG27Ztw7Rp0zBy5EiEhobC29ubY5XUyZMno02bNlizZg169OiBM2fO4Nq1a7hz506t5oV6xhFCCCGEEEIIIYSQP1p4eDhsbGxgY2MDAJg2bRpsbGywaNEiAEBsbCyio6PZ4fX19XHx4kWEhITA2toay5cvx5YtW9CnTx92mBYtWuDIkSPw8fGBlZUVfH19cfToUTRr1qxW80I94wghhBBCCCGEEEL+UQK1vBhBXXFwcGAvwMCLr68v17a2bdvi8ePH5cbbt29f9O3bt7rJqxLqGUcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoIDVMlhBBCCCGEEEII+Uex/pFhqv8S6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlH/Surqf5LqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipIzRMlRBCCCGEEEIIIeQfxQINU/3TUM84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/ikWrqf5x/vqecXp6evDy8qrT+FgsFk6fPl2t4yxZsgTW1tbViqOskJAQsFgspKSk1Gi8hFPZz9nX1xdycnL1mqZhw4ahZ8+e9ZqGP0FiYiJUVFTw6dOn+k4Kh23btqF79+71nQxCCCGEEEIIIX+AeusZ161bN/z8+RPXrl3jei80NBQtWrTAo0eP0Lhx4zpNV1hYGCQlJev0mOTv5urqChcXl/pOBgHw33//oVu3btDT0wMAfPr0Cfr6+njy5Am78Ts9PR3dunVDXFwc3rx5U258Hz9+hJ6eHu7du4fWrVujU6dOuHz5Mle4kydPYu3atXj9+jUKCwuho6MDZ2dnbNiwAQAwcuRIrFy5Enfu3EGrVq1qNM+/o5G6EQbZOMJMRQdKknKYc3Enbn98Wt/JYrt0+jzOHDmJ5MQkaOvrYviEUbCwasgzbFJiEvx27EXU2/eI/RoDl97d4TlxNEeY+7fu4uTBo4j9FouCgnyoa2qiu2svODh2qIvssD27fh+PL99BZko6FDRV0GZgF2ia6PEM+/X1B5xa6821fcjKKVBQV67llHISbWkPkUYNwRITQ0FsHH4GXUdhQlIFO4lCrE0LCJsYgSUmisLUNGRfv4X8D58AAIJamhBt1gSCqioQkJZC5qlzyH8XVSvpDw+6g/sXbyAjJQ3KmmroNKQndMwMK9zvy9sPOLBiO5S11DBy1Uz29tdhz3D3bBCS4xNQWFAIeVUl2Ls4wLKVXa2kv9irkHA8CwrFz9R0yGkoo3k/J6gZ6/AMG/PmEy5uOsC1ve+SsZBTUwIAvL33FLf8z3KFGbZ1LoSEa+/x8FVIGJ5eLcqHvIYK7Ps7Qt1Yl2fYmDefcGGjP9f2fkvHsfNRWlTYC1zfdwq6jUzhOM61xtNerKbL1JMboXh+Oww/vsYBANT0teDQvws0DXl/LjWlmY4FWuk3grSoBL5nJONC5D18To7jG15QQADtDZugkaYxpEUlkJqdgZtRT/Doa9G91EJVHw6GNlCQkIEgSwCJWam48/EZImLe1VoeLgaew6mA40hOSoKOni5GTByDBo0seYZNSkjE/h17EPXmPWK+fkPXPj0wctJYjjDRHz/hkLc/ot6+x/e4eHhOGI0e/XvXWvqL3b10HTdOX0ZacgrUtDXR03MgDCxMeIb98Ootzh84ge9fY5GbmwsFZUU0d3RA2+6O7DChV28iPOQe4qK/AQC0DHXhMrgPdE0MajUf4UF3EHrhOrtuOLr1qlzdePMB/iu2QUVLDSP/m8Xe/vh6KJ7fCcOPL7EAADV9bbRzrf26UdbDq7dw73ww0lPSoKKlDmf33tA1M6pwv+g3H+CzbDNUtNUxdvWcOkhpicib4XgRdB8/UzMgp66Mpv068b1nxL79jMubDnJt77V4NPtae2njAcS9i+YKo9XQEJ3GD6jZxJfj+fUHeHzlNrJSMqCgqYLWA1ygUc6z1Ol1+7m2D14xGfJ1/CxFCC/11hjn6emJ3r174/Pnz9DV5byg7t+/H9bW1nXeEAcAyspUMf9Vubm5EBERqfF4xcXFIS4uXuPx1qfa+qwqIy8vD8LCwlXe7+fPn/D29sbFixf5hvnx4wc6d+4MALh27RqEhEougXZ2dhg1ahRGjhzJ3lZ8Pdi/fz8mTpyIffv2ITo6Gjo6JQ8z165dw4ABA7Bq1Sp0794dLBYLr169QnBwMDuMqKgoBg0ahK1bt/4RjXHiwqJ4n/gVF1/fw6rOY+o7ORzuXL8Jn217MHLKOJhbWuDK2UtYMWsRNvvtgrKqClf4/Nw8yMjJos+QATh/PJBnnFLS0ujjNgBaOloQEhJGeOgDbFu9CbJycrBp2qS2swQAePvwGW4FXISDWzdoGOniRUgYzm7yw5AVkyGtKMd3P7dVUyEiLsr+W1y6bn8sEmlmC1E7G2RdvIrCpBSItmgKyf69kb7PD8jN472TgAAkXXuByfqJrNPnUZieAQFpaTC5uewgLBFhFHz/gdznLyHZq1utpf/V/ScIOngazsP6QttEH4+v38ORdXswes0cyCrJ890vO+snzu46DP0GxshITed4T1xSAi27d4KShioEhQTx7slLnNtzBBIy0jC0MquVfESFv8T941fQYqALVA218Pr2Y1zedhh9F4+FlIIs3/36LR0HYbGS8iMmLcHxvrCYKPotHcexrTYb4qLCXiL02BW0HOQCVUNtvL71GJe3Hka/JePKz8ey8RApJx8AkJ6YggcngqBmxPvLZk2pjTL1OfI9LJo3hpaJPoSEhRB6/joC1uzCqNWzIaMgVyv5sFQzhIt5C5x7eQefk+Ngp2OBobYu2Hz7GFKzM3juM9C6EyRFxRH4/CYSs1IhJSIOAVbJIJufedkIiXqMHxkpKGAKYaqsg96WDsjI/Yn3CV9rPA+3g0Owb+sujJk2AeYNG+Dy2QtYOmsBtvvv5Xm/yMvLg6ysHPq5DcAZPveLnOwcqGmoo2W7NvDeurvG08zLkzsPcXp/APqMcoO+mRHuXQ3BnuWbMHvLCsgrK3KFFxETRSuX9tDQ1YaImCg+vHqHE7v8ICImguaODgCAqJdv0Lh1M+iZGUFIWBg3Ai9h99INmLVlBeQU+ZfT6ngZ+hhXDwSis0dJ3QhYuxtj1s6tsG6c2XUI+g2MkcmjbjRo3hha7noQEhFG6PlgHF69E6PXzKm1ulHWi9BHuOx/Cl2G94eOqQHCr93FwdU7MX79fMgpKfDdLzvrJwJ3HIBBQxOuOl/bPoS/wsPjQWg+wBkqhtp4c/sxgrYfQa9Fo8u91vZeMobvPaP96L4oyC9g/52T+RNnVu6FXmPz2skED+8ePsftIxfRdkg3qBvp4OXNMJzz8seg5ZPKfZYavHJKvT5L/SkEaJjqH6fehql27doVKioq8PX15dielZWFo0ePwtPTEwBw7949tGnTBuLi4tDW1sakSZOQmZnJN97o6Gj06NEDUlJSkJGRQf/+/REfH88R5uzZs7C1tYWYmBiUlJTQu3fJL15lh6m+e/cObdq0gZiYGCwsLBAUFMR1zNmzZ8PExAQSEhIwMDDAwoULkZfH+SVl9erVUFVVhbS0NDw9PZGdnV3u51NQUABPT0/o6+tDXFwcpqam2Lx5c7n7lJWYmIiBAwdCS0sLEhISsLS0REBAQIX7+fr6QkdHBxISEujVqxc2bNjAMQyT15DIKVOmwMHBgf03wzBYu3YtDAwMIC4ujkaNGuHEiRPlHnfHjh0wNjaGmJgYVFVV0bdv32rFp6enhxUrVmDYsGGQlZVlN7JUVKYOHjwIW1tbSEtLQ01NDYMGDcL379/L/bxKfz56enpgsVhcr2KVKS9lffv2Da6urpCXl4eioiJ69OhR5aGYd+/eRdu2bSEhIQF5eXk4OTkhOTkZAODg4IAJEyZg2rRpUFJSQqdOnfDp0yewWCxERESw40hJSQGLxUJISAh728uXL9GlSxfIyMhAWloarVu3RlRUSQ8XHx8fmJubQ0xMDGZmZtixYwf7veJjHDt2DA4ODhATE8PBgwdRWFiIZcuWQUtLC6KiorC2tubZI620S5cuQUhICM2bN+f5/pcvX9C6dWtIS0vjxo0b0NLSgpqaGvslKCjIPuelt2VmZuLYsWMYO3YsunbtynXNOn/+PFq1aoWZM2fC1NQUJiYm6NmzJ7Zu3coRrnv37jh9+jR+/vxZbj7qwv3ol9j74Cxufoio76RwOXc8EB1cHNGpqzO0dHXgOXE0FFWUceXMBZ7hVdRV4TlxDNo5dYAEn17NDW2sYN+6BbR0daCmqY6ufXtC11Afkc9f1mZWODy5chcNWjdBwzZ2UNBQQZtBXSClIItnNx6Uu5+EjCQkZaXZLwGBur1ti9raIDs0DPlvo1CYkIifF66CJSwMEXP+jU4iVg3AEhND1qlzKPgWCyYtHQXfYlD4I4EdJv/DJ+TcDkX+29rpDVfswaUQWDs0g007eyhpqsLRrRdkFOXwOPhuuftd2n8cDZo3hqaRHtd7uhZGMLOzgpKmKuRVldDUuS1UtNXx5c2HWsoF8OLafZi0tIFZKxvIqyujeX8nSMrLIPJmeLn7iUlLQkJWiv0qW35YLHC8LyErVWt5AIDn10Jh2tIGZq0aF+XD1QlS8rJ4VUE+xCvIR2FhIW54B6JxNwdIK9dOQ0Ox2ihTPce5wbZTK6jpakJJQxVdRriCKWTw6WXt9ShrqW+JR19fI/zra/zITMHFyHtIzc5AMx0LnuGNlbShp6AO//BLiEr8hpSfGfia+gPRKSXP2B+TYvEq/hN+ZKYgKSsNoZ9fID49EXryarWShzPHTqFjFyc4du0MbT0djJw0FkrKyrh4+jzP8Krqahg5eSzaO3fiOwrG2NwUHuNGok0HBwiLVP2Hwd9x8+wVNOvQGvad2kBVWwO9PAdBTlEBdy/f4Bley0AXjVvbQ01HEwoqSrB1aA5T64b48KqkvAyZOgotO7eHpr4OVLXU0X/cMDAMg3fPXtVaPkrqRnMoaarB0a03ZBTl8OjanXL3u+h9DA1bNIGmsR7Xe73G/6obelq/6saAX3XjbS3lglvohRto3K45mrRvAWVNNXQe2geyivIIDyo/X+f2HYFlyybQMtavo5SWeBn8AMYtrGHSygZy6kpo1t8RkvIyeH3rcbn7lXfPEJUU53gvJvIjhESE67QxLuLqXVi0boIGbWyhoKGC1gOLnqWehzwsd7/6fpYihJ96K4lCQkJwd3eHr68vGIZhbz9+/Dhyc3MxePBgPH/+HE5OTujduzeePXuGo0eP4s6dO5gwYQLPOBmGQc+ePZGUlISbN28iKCgIUVFRcHUtGapw4cIF9O7dG126dMGTJ08QHBwMW1tbnvEVFhaid+/eEBQUxP3797Fr1y7Mnj2bK5y0tDR8fX3x6tUrbN68GXv37sWmTZvY7x87dgyLFy/GypUrER4eDnV1dY4GCX7H1tLSwrFjx/Dq1SssWrQI8+bNw7Fjx8rdr7Ts7Gw0adIE58+fx4sXLzBq1Ci4ubnhwQP+X/4ePHiA4cOHY9y4cYiIiEC7du2wYsWKSh+z2IIFC+Dj44OdO3fi5cuXmDp1KoYMGYKbN2/yDB8eHo5JkyZh2bJlePPmDS5fvow2bdr8dnzF1q1bh4YNG+LRo0dYuHBhpcpUbm4uli9fjqdPn+L06dP4+PEjhg0bVum8h4WFITY2FrGxsfj69Svs7e3RunVr9vsVlZeysrKy0K5dO0hJSeHWrVu4c+cOpKSk4OzsjNxSPU3KExERgQ4dOqBBgwYIDQ3FnTt30K1bNxQUlPzC5efnByEhIdy9exe7d1fu1+Bv376xG6uvX7+OR48eYfjw4cjPzwcA7N27F/Pnz8fKlSsRGRmJVatWYeHChfDz8+OIZ/bs2Zg0aRIiIyPh5OSEzZs3Y8OGDVi/fj2ePXsGJycndO/eHe/e8f9icuvWLb51+c2bN2jZsiXMzMxw+fJlSEtLVyp/AHD06FGYmprC1NQUQ4YMgY+PD8c1S01NDS9fvsSLFy/KjcfW1hZ5eXl4+LD8B4b/Z3l5eYh68x6N7Dh7RVvb2eD1y8gaOQbDMHj2KAIxX77CohHvoa81rSA/H98/x0CnAeeQFp0GRoh9zz3ko7SAJduxb+p/OLXOG18ia6+xhxeWrAwEpCSR//FzycaCAuR/+QpBTXW++wkZGaAgJhbindpBesJISA0fAlF7u6KWnzpUkJ+P2I9fod/QlGO7QUNTfH33ie9+T28+QHJ8Atr0dqrwGAzD4OOLt0iK+1GpoVi/oyC/AAnRsdAy5xxepmVuiPgP5fc2Cly5F4dmbcLFTQcQ8+YT1/t5Obk4Mm8LDs/xwpXtR5AQHVuTSedQnA9NC87PSdPCAPFRX8rd99SKPTg4cyMubPRHzJuPXO8/OX8LYtISMGtlU6NpLqsuyhRQdF4KCwohLsXdA7AmCLIEoCGjzNVb7X3CV+jIq/Lcx1xFF99Sf6C1fiPMbjcEU9u4wtnUHkICgnyPY6CoCSVJOXxMqvlylZeXh/dv38HGjrN3s41dE7x+UXsNTjUtPy8fX6M+w8S6Acd2U+sG+PT6faXi+PrhMz69eQ/DBqZ8w+Tm5qCgoAASUrXTI6i4bhhYcv5QY2BpVm7diLj5AMnff6Nu1NGUQvn5+Yj5+IWr17OhlRm+vOW+FhV7EnIfyfEJaNunc20nkUtBfgESo2OhacHZCKhhboDvFdwzzq7ahyOzvXDZ6xBiedwzSnt7LwL6thYQFq2bkTTFz1LaZZ6ltC2MEFfBs9SRpduxf9pqnF63H19f1+2zFCHlqdfVVIcPH45169YhJCQE7dq1A1A0HKx3796Ql5fH5MmTMWjQIEyZMgUAYGxsjC1btqBt27bYuXMnxMTEOOK7du0anj17ho8fP0JbWxsAcODAATRo0ABhYWGws7PDypUrMWDAACxdupS9X6NGjXim79q1a4iMjMSnT5+gpaUFAFi1ahV7mFuxBQsWsP+vp6eH6dOn4+jRo5g1q2jOAy8vLwwfPhwjRowAAKxYsQLXrl0rt3ecsLAwRxr19fVx7949HDt2DP379+f/oZaiqamJGTNmsP+eOHEiLl++jOPHj6NZs2Y899m8eTOcnJwwZ07RvAYmJia4d+9ehb2SSsvMzMTGjRtx/fp1di8lAwMD3LlzB7t370bbtm259omOjoakpCS6du0KaWlp6OrqwsbG5rfjK9a+fXuOz8Dd3b3CMjV8+HB2eAMDA2zZsgVNmzZFRkYGpKQq7jVQeqjz5MmTERsbi7CwMPa2ispLWUeOHIGAgAD27dvH7mHn4+MDOTk5hISEwNHRked+pa1duxa2trYcjcANGnA++BkZGWHt2rXsvyvT82779u2QlZXFkSNH2ENLTUxK5jhZvnw5NmzYwO59qq+vj1evXmH37t0YOnQoO9yUKVM4eqiuX78es2fPxoABRXNQrFmzBjdu3ICXlxe2b9/OMy2fPn2ChoYGz/fc3d3RokULnDx5EoKC/L848OLt7Y0hQ4YAAJydnZGRkYHg4GB07NgRQFG9un37NiwtLaGrqwt7e3s4Ojpi8ODBEBUt6RIvKSkJOTk5fPr0qdwy+/8sPTUNhYWFkJOX49guKy+PlKTkasWdmZGJkX3dkJeXBwEBAYyaOh7WtnUzFcLP9CwwhYVcvY4kZKSQlcp7OJikrDTaD+0JFT0NFOQV4HXoEwSu348+szyhaVo3v7IL/PrSxmRlcWxnMrPAkpXhv5+cLARktZH36jUyj5+BoIIcxDq1AwQEkHOv/J6ANSkrPRNMYSGkZDkb3yVlpZGRksZzn6S4H7hx9DzcFk6EQDnXiuysn9gycQkK8vPBEhCA87C+MLDk/0W4OrIzssAUMhCX4fzyKS4jiZ9pvMuPhKwUWg3uAiVddRTkF+D9/We46HUAXaa5s+dnk1NTRJuh3aGgqYK8n7l4cf0Bzq3zRe8FoyCryj00rqbyIVE2H9KS+JnGe8SDhKwUWg/pWpSPvHy8e/AcFzYdQNdpQ6FuUpSPuPfReHP3CXovHM0zjppUm2WqtBtHz0NaXhb6DXjPGVZdEiJiEBQQQEYOZ0/tjJyfkBLh3QAoLyEDXXk15BcW4NDjK5AQEUN3i9aQEBHFqeclP4yKColgdrshEBIQQCHD4NyrO4hK/FbjeUhLTUNhAY/7hYJcte8XdSkzPR2FhYWQluMcOigtJ4P0lNRy9106YjoyUtNRWFgAJ9cesO/Uhm/YC/4nIKsgD5NGDfiGqY7iuiHJq26kllM3jpyD+6JJla4b14+ch7SCLPQb1k7dKCsrrer5Soz9jmsBZ+GxZEqVnzlrQs6va62YNOczh7i0JH7yeeaQkJFCi8EuUNRRQ2F+AaIePMflzYfQeaobz3nmfnz6hpSYH2jl1qVW8sAL+1lKpsyzlKwksl7weZaSk0Y79x5Q1tNEQV4+3oRG4PR6H/SaObzOnqX+JLSa6p+nXhvjzMzM0KJFC+zfvx/t2rVDVFQUbt++jatXrwIAHj16hPfv3+PQoUPsfRiGQWFhIT5+/Ahzc85usZGRkdDW1mY3xAGAhYUF5OTkEBkZCTs7O0RERHDMCVWeyMhI6OjosBviAPAcAnfixAl4eXnh/fv3yMjIQH5+PmRkZDjiGTOGc16m5s2b48YN3t3Pi+3atQv79u3D58+f8fPnT+Tm5lZpBdaCggKsXr0aR48exbdv35CTk4OcnJxyF6iIjIxEr169uNJalca4V69eITs7G506deLYnpuby25gK6tTp07Q1dWFgYEBnJ2d4ezsjF69ekFCQuK34itWtqdUZcrUkydPsGTJEkRERCApKQmFhYUAihoMLSx4D9/gZc+ePfD29sbdu3c5GugqKi9lFae5bG+u7OxsjuGg5YmIiEC/fv3KDcOvV1lF8bZu3ZrnHG8/fvzAly9f4OnpyVHn8vPzISvL+dBZ+thpaWmIiYlBy5YtOcK0bNkST5/yX2Tg58+fXA30xXr06IHAwECcPHmy0o3ZQFGPuocPH+LUqVMAinr0urq6Yv/+/ezGOElJSVy4cAFRUVG4ceMG7t+/j+nTp2Pz5s0IDQ2FhETJFxtxcXFklWnYKFZcP0sr3Zj3/4TrYYFhwEL1HiDEJcSxYd82ZP/8iWePn8Jn+16oqquhoY1VteKtGh754pMteXVljsmF1Y10kJ6UisdX7tTaA6SwhSnEnUoWtcg8cYadTg4sHts43meBycrCz8vBAMOgMP47WFKSEG1qW6eNcaXTUxoD3g+khYWFOL39AFr3cYaiOvd8U6WJiolixMoZyM3JxaeXb3Ht0GnIKytC16LiCb1/W9l8MAy4ytQvcmpKHAscqBpoISM5Dc+DQtmNcSoGWlAxKHm+UTXURuCqvXgZEoYWrs41n/7fwJUPQ21kJqXiWVAo1E10kZudgxv7T6O1W1eI1VIvMp5qoUwVCz0fjJehTzBk/ngI1fIwybK1uCgLvOt2cfaOPb2OnPyiXvkXX4dioE0nnH15B/mFRT3tc/Nzse3uCYgKCsNAUROdzZojKSutVnrHFaWL+7pazdtFvSibZIZhKvziPGHlHORk5+DzmyhcOHACSuoqaNzanivc9cBLeHznIcYvn1XrQ2+5kszn/l1YWIjA7f5o06dzpevGvXPBeBn6GG4LJtR63SiLKw98Lr+FhYU4uc0PDn1doFTJfNUW7uLDv0zJqilCVq3kRxgVAy1kJqfhRdB9no1xb+8+hZyGMpT1NGswxb+J/60Q8mrKkFfjfJbKSE7Fkyt3/y8b48ifp14b44CihRwmTJiA7du3w8fHB7q6uujQoejLQGFhIUaPHo1JkyZx7Vd6AvVi/G5cpbdXZaJ9hseXjbLx379/n93TzsnJid1LqHgVxd917NgxTJ06FRs2bEDz5s0hLS2NdevWlTvEtKwNGzZg06ZN8PLygqWlJSQlJTFlypRyhzbyynNZAgICXOFKz3lW3Hh14cIFaGpyXqT5NS5IS0vj8ePHCAkJwdWrV7Fo0SIsWbIEYWFhvxVfsbINjxWVqczMTDg6OsLR0REHDx6EsrIyoqOj4eTkVOkhoQAQEhKCiRMnIiAggKPn5e+Ul8LCQjRp0oSjAbFYZRccqUy5L/tZFc+nUPpcl53brrx4i8/b3r17uXpilv2lkFcDcdm6VtGDqZKSEnsOvLLmzZsHKysrDB48GAzDcAxdL4+3tzfy8/M5yh3DMBAWFkZycjLk5UvmJjI0NIShoSFGjBiB+fPnw8TEBEePHoWHhwc7TFJSEt9z9t9//3H0hgWAxYsXA/9Ha8pIy8pAQEAAyWV6NaSmpEC2mhM1CwgIQF2rqOekvrEhvn6OxqnDx+qkMU5cWgIsAQFklZnAOSs9E+IylZ+jS91AG6/v196qt3nvP6AgptRKikJF9ZQlKQkms6QRmSUhwfF3WUxGUU+C0g12hYnJRT3tBASAX9eG2iYhLQmWgABXj6Ws1HSuXg4AkPszB7EfvyDu8zdc8StqgGcYBmAYrHKfjkGzx0CvgTEAgCUgAIVfD/hquppI+BaPe+eu1UpjnJiUBFgCLK4eDdnpWVy95cqjoq+J9w+f832fJcCCsq4G0r5XsFLubyrOR1aZXnA/0zOrlg8DLbx/UJSP9B/JyEhMwZXtR9jvF9+z9o1djv7LxkNGmf8E61VVm2UKAO5fuIG7Z69h0JyxUNXh3dO7JmTlZqOgsBDSopz3cEkRcWTk8p7XND07C2nZmeyGOAD4kZEMARYLsmKSSMwq+kwYAEm//h+bnggVKTm0NbCp8cY4GVkZCAjyuF8kp0Ku1L35TycpXTR/VVqZXnAZqemQKqcHMgAoqhZdgzR0tZCRmoYrR85wNcbdOH0Z106cx9ilM6Chp80rmhpRUjc473OZaRl86kY2Yj98Qdynb7jsdxJASd1Y6TYNg+aM4egZGnrhOu6eDcLgueNqtW6UJSHzK19lesFlpqVDiscP6Tk/sxHzIRqxn77iou9xACX5Wjp4MtzmjoNBw9rpRV1MtPieUabn9M/0LIhV4VqrrK+JqIfcU7Dk5+bhY/gr2HTj3xOzNrCfpcrkKystk6u3XHnUDLTxphafpQipinpvjOvfvz8mT56Mw4cPw8/PDyNHjmR/4W7cuDFevnwJI6PKPdxaWFggOjoaX758YfeOe/XqFVJTU9m96KysrBAcHMzxBbmi+GJiYtjD30JDQznC3L17F7q6upg/fz572+fPnznCmJub4/79+3B3d2dvu3//frnHvn37Nlq0aIFx40pWOatsL6jScfTo0YM9xK6wsBDv3r3j6lFYmoWFBVfayv6trKzMNT9WREQEu3eUhYUFREVFER0dXaXheEJCQujYsSM6duyIxYsXQ05ODtevX0enTp1+Kz5eKipTz58/R0JCAlavXs0uQ+Hh5U8sXdb79+/Rp08fzJs3j2PoJVC58sIrzUePHoWKikq5PejKU1zuyzb2lKe40Sg2NpbdA7H0Yg7F8fr5+fFcAVVVVRWampr48OEDBg8eXOnjysjIQENDA3fu3OGYN/DevXto2rQp3/1sbGxw8CD3suzFFixYACEhIQwePBiFhYUYOHBguenIz8+Hv78/NmzYwDUUuE+fPjh06BDf+Sv19PQgISHBsTBIVFQUsrOz+fbmnDt3LqZNm8axTVRUFEH7Jpebzn+JsLAwDE2N8DT8Cexbt2Bvfxr+BE1bcv/aX115/FYDrWGCQkJQ0dVA9Kv3MGxSMkQo+uV7GNhUfuLj79GxPL/U1JjcPBTmcn4hLMzIhJCeDnK//yjaICAAIW0tZIfwn7g6/1sMRCw459cRkJdDYXpGnTXEAUWfu7q+Fj6+eAszu5JG148v3sKkCfd8gaLiohj5H+d0AY+u3cXnV+/Qe9IwyFXQqJOfl18zCS9DUEgQSjrq+Bb5AXo2JZ/rt8gP0G1U+aFaiV/iIFFO+WEYBolf46CgWTu9OUrnQ58rH5X/cpr4JQ7iv4Z8y6opoc8izpEH4WduIC87B81dnSEpz3/VwN9Rm2Uq9Px13D0ThIGzR0PDoHZXhC1gChGT9gNGilp4Ff+Jvd1ISQuRpf4uLTolHg3VDSAiKITcgqKyriQpi0KmEKnZ/BdWA1gQLGdeud8lLCwMIxNjRIQ/RvM2JT3pI8Ifo2kr3gs5/YmEhIWgZaiLt09fwcq+ZP67t09fokHTys+ByDAM1zXoeuAlXDtxHqMWTYO2Ue32AiqpG28468bzN3zqhhhGreach/vRtTv49PId+kz24Kobd05fxcDZY2q9bpQlJCQEDX1tRD17DXO7kh/Xo56/gVkTS67wouJiGLt2Lse2sKu38fHVW/Sf4slzddyaJigkCEUddcREfoSudcm1NibyI3SqdM+I5/mD4cdHr1CYnw/DpnUz726x4mepLy/fw7BxyUilL6/eQ78Kz1I/omNrfbGiP5XA39ht+B9X741xUlJScHV1xbx585CamsoxUf7s2bNhb2+P8ePHY+TIkZCUlERkZCSCgoK4VioEgI4dO7J7v3h5eSE/Px/jxo1D27Zt2cPgFi9ejA4dOsDQ0BADBgxAfn4+Ll26xHO+ro4dO8LU1BTu7u7YsGED0tLSOBpRgKJ5tqKjo3HkyBHY2dnhwoULCAzkXC598uTJGDp0KGxtbdGqVSscOnQIL1++hIEB52TMZeP19/fHlStXoK+vjwMHDiAsLAz6+pW/mRoZGeHkyZO4d+8e5OXlsXHjRsTFxZXbGDdp0iS0aNECa9euRc+ePXH16lWuIart27fHunXr4O/vj+bNm+PgwYN48eIFu5FBWloaM2bMwNSpU1FYWIhWrVohLS0N9+7dg5SUFMdcYcXOnz+PDx8+oE2bNpCXl8fFixdRWFgIU1PT34qPn4rKlI6ODkRERLB161aMGTMGL168wPLlyysd/8+fP9GtWzdYW1tj1KhRiIsr6WWipqZWqfJS1uDBg7Fu3Tr06NGDvcJodHQ0Tp06hZkzZ3IMo+Zn7ty5sLS0xLhx4zBmzBiIiIjgxo0b6NevH5SUlHjuIy4uDnt7e6xevRp6enpISEjgmO8OACZMmICtW7diwIABmDt3LmRlZXH//n00bdoUpqamWLJkCSZNmgQZGRl07twZOTk5CA8PR3JyMlfDU2kzZ87E4sWLYWhoCGtra/j4+CAiIoJn78BiTk5OmDt3LlePtdLmzJkDQUFBuLm5obCwsNxGwvPnzyM5ORmenp5cw2r79u0Lb29vTJgwAUuWLEFWVhZcXFygq6uLlJQUbNmyBXl5eRxDq2/fvg0DAwMYGvKe5F1UVLTOhqWKC4tCS7aky52GjBKMlbSQlp2J+Iz6nWunW79e2LJqA4xMjWHawAxXz11GQvwPOHZ3AQAc3OODxIRETJ5XMhfkx3dFP1Rk//yJtNRUfHwXBSFhYWjrFT20nzx0FIamxlDTUEd+Xj4ePwhDyJVgjJo6vs7yZePUElf3noCKnibUDXXw4mYYMpJSYelQ1MB898QVZCanwXFk0XDyJ1fvQkZJHoqaKijIL8Dr0AhEPXoJl/GD6izNAJAT/gRizZuiMDkFhckpEG1uByYvD7mRr9lhxLs4ojA9Ezm3ilaTzH3yDKKNrSHW0QG5jyIgIC8H0eZ2yH0UURKxsDAESs31JCArAwEVZTA/s8Gkc/asqI5mnR1wZuchqBtoQ8tID09u3ENqYjIadyhq7L1x9DzSk1PRfcxgsAQEoKLNuTCFpIwUBIWFOLbfPXsN6vrakFdVREF+AaIiIvH8Thich5U/FUB1NOxoj5s+p6GkqwEVA028uf0EGcmpMGtT9OU9LDAYmSnpcPDoCQB4EfwAUoqykFdXRmFBAd4/eI5PT16jw+iSVcofn78JFX0tyKgoIC87By9vPETil3i0GFB7E45bdmyOEJ9AKOuqQ8VAC69vP0ZGUirMf+Xj4a98tPuVj+fX7kNaSQ7y6soo+JWPj48j0XF00WctJCzE1XgoIlE0XUFtNSrWRpkKPR+Mmycuoec4N8gqKbB73omIiUJErHbuC3c/PkffRu3wLe0HopPjYadtDlkxKTyMLlr8wNGkKWTEJHHiWdGUKk9j3sHBsDF6Wzog+H04JIXF4Wxmj0df37CHqLYxsMa31B9IykqDoIAgTJW1YaNpjLMvy1918nf16N8bm1aug5GpCcwamOPKuYv48f07OvcomsfKb/d+JCUkYOr8kmf8D6XvFymp+PAuCkLCQtDRKxq+nZeXhy+fiiaDz8/LQ1JCIj68i4KYuBg0tGpnSF7b7k44vHkvtA31oGdqiNCgm0hOSEILJwcAwPkDJ5CWlIxBk4um/LhzMRjyyopQ+bWQzsfItwg5cwWtXEqmGbgeeAmXDgdiyLRRUFBRQlpy0Q8tomKiEBXnPaVHdbHrhr42tIz18Ph66K+6UdRYev3IOaQnp6LH2CE864aEjBSEytSNe+eCcfPERfQc7w455bqpG2U179IOp7YfgIaBDrRN9PEo+C5SE5Jg27EVAOBawFmkJaeg9zh3CAgIQFWbs+eepKw0hISFubbXpgYdmuG27xko6qpDRV8Lb+48QWZyKsxaF82VG376BrJS0tFmWHcAwMvgh5BSlIWchnLRnHEPX+Dzk9doN6oPV9zv7j6FTiPTup0a4Bdrx5YI2lf0LKVmqI2Xt8KRkZSKhm3tAAD3Tl5FZnIaOo0outdFBN2DjKIcFH49S725/xRRj16i87jyf5AnpK7Ue2McUDRU1dvbG46OjhzDT62srHDz5k3Mnz8frVu3BsMwMDQ05DvEjMVi4fTp05g4cSLatGkDAQEBODs7czTcOTg44Pjx41i+fDlWr14NGRkZjt43pQkICCAwMBCenp5o2rQp9PT0sGXLFjg7l8yl0qNHD0ydOhUTJkxATk4OunTpgoULF2LJkiXsMK6uroiKisLs2bORnZ2NPn36YOzYsbhy5Qrfz2TMmDGIiIiAq6srWCwWBg4ciHHjxuHSpUuV/VixcOFCfPz4EU5OTpCQkMCoUaPQs2dPpKbynxDW3t4e+/btw+LFi7FkyRJ07NgRCxYs4GiQcnJywsKFCzFr1ixkZ2dj+PDhcHd3x/PnJcNfli9fDhUVFfz333/48OED5OTk0LhxY8ybN4/nceXk5HDq1CksWbIE2dnZMDY2RkBAAHuRgarGx09FZUpZWRm+vr6YN28etmzZgsaNG2P9+vXo3r17peKPj4/H69ev8fr1a67FBBiGqVR5KUtCQgK3bt3C7Nmz0bt3b6Snp0NTUxMdOnSodE85ExMTXL16FfPmzUPTpk0hLi6OZs2aVdg7bP/+/Rg+fDhsbW1hamqKtWvXcvQSU1RUxPXr1zFz5ky0bdsWgoKCsLa2Zs/3NmLECEhISGDdunWYNWsWJCUlYWlpyV5Ag59JkyYhLS0N06dPx/fv32FhYYGzZ8/C2NiY7z6WlpawtbXFsWPHMHo0/4m8Z86cCUFBQQwdOhSFhYVwc3PjGc7b2xsdO3bkaogDinrGrVq1Co8fP0bbtm2xfft2uLu7Iz4+HvLy8rCxscHVq1dhalrS2yMgIKDS81XWNjNlXWzrVdIYOqlV0Rfbi5GhWHndj99udaJV+7ZIT0vHMb/DSE5Kgo6+HuavWQoVtaIV/pITk5EQ/4Njn+kjJ7L/H/X2PW5fC4Gyqgp2H/UFUDRsZO+mHUj8kQARURFo6mhj8vwZaNW+7hbSMGlqheyMLDw8ewOZqelQ1FRF9ynukFEqajjOSk1HelLJtbmwoAB3jl1CRnIahESEoaihgu5T3KFnVbvDW8rKfRAOlpAQxB3bgyUmioKYOGQeCwRK9SoUkJHhmGaKSc9A5rFAiHVoA6nhQ1CYnoHc8AjkPCjpZSyopgqpQSUNQ+Idis5F7vNX+Hnxao2l38LeBlnpmbgTeAUZKWlQ1lLHgJmjIKtU1OsiIyUNqQlVa4DOy8nFZd8TSE9KZZ+bHmOHwMK+9lbyNLRtgJyMn3hy4Ray0jIgr6EMpwkDIa0oBwDISs1ARlLJMKqC/AI8PHkNmSnpEBIWgpyGMpzGD4C2Zck1NDcrB3cOXUBWWgZExEWhqK2GrjOGQkW/9uYAMrRrgJzMLDy+cAtZqRlQ0FCB84RBHPnILFMPHpwI4szHhIHQseR/L6httVGmHl27i4L8Apzc4suxvXUvJ7TpUzvz9z2Pi4KEiCjaGTaBtJgE4tOT4B9+CSnZRUPApEUlICtW0nsktyAfPmEX0M2iJca16I2s3By8iItC0NuSBapEBIXRvUFryIpJIq8gHz8yU3D86Q08j6vayI7Kat3BAelp6TjqdwhJiUnQ1dfFojUrSt0vkvCjzP1iimfJiJP3b97h5rUbUFFTxb5j/gCApIREjjCBR04g8MgJNLS2wqot62olHzatmiIrPQNXj51FWnIq1HU0MXLBFCioFP1Ymp6ciuQfJcPHGYbBhQMnkfT9BwQEBaGopowubn3R3LHknnb30nUU5OfDb+0OjmM5unaH84CetZKPBs0b42dGFm5z1I3R7F5uGSlpSE2sat24U1Q3NvtwbG/d26nOVipt2LwJstIzcfPUZWSkpEFFWx2DZ49l5ys9JbXKdb62GdhaICczC08v3Cm6Z6gro9P4AZBSLHqm/cnjWht2KhhZKekQFBaCvLoyOo53hXZDzpFEqfGJiI/6AsdJ9dOYZdzUEtkZWQg7V/Is1XWyW8mzVEo60pNS2OEL8wtw9/jlomcpYWEoaKqg62S3On+WIoQfFlOZScLI/zVfX19MmTIFKSkp9Z0UQsp18eJFzJgxAy9evGDPefcnePHiBTp06IC3b9/ybNwrT8vtYyoO9Ie7O34XXsbWzpexutJA3RDb756o72RU2/iWfZG6xqu+k1EtsrOnwD/sYn0no9rc7Vyw7gb/ofV/i5nthmB9CP9ey3+DGQ6D/5kyNf/S7vpORrWs7Dwab/gMlf2bmKrq4cKru/WdjGrrYtESB8Ir3xHgT+Rm2xkBj2vuR576MrCxI1Zf96/vZFTLnPbu2HrneH0no9omtqq9nvC1qfM+/qOS6tulERvrOwn14o/oGUcIITXBxcUF7969w7dv3zhWVa5vMTEx8Pf3r3JDHCGEEEIIIYSQfw81xhFC/imTJ/95Cx6UXQCCEEIIIYQQQsj/rz9nHBf5Yw0bNoyGqBJCCCGEEEIIIX8hFkvgj339v/r/zTkhhBBCCCGEEEIIIXWMGuMIIYQQQgghhBBCCKkjNGccIYQQQgghhBBCyD9KgMWq7ySQMqhnHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSM0TJUQQgghhBBCCCHkH8UCDVP901DPOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkdomCohhBBCCCGEEELIP4pWU/3zUM84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/ikXDVP841DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKPomGqfx7qGUcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoIi2EYpr4TQQghhBBCCCGEEEJqXh+/efWdBL5ODl1V30moFzRnHCGE/MFexkbVdxKqrYG6IVpuH1PfyaiWu+N34f2PL/WdjGozUtZGelJSfSejWqQVFP6ZevE6/mN9J6PazFT1//q6YaSsjZT01PpORrXJScviR/rfXb+VpRXwJv5TfSej2kxV9fDue3R9J6PajFV08D0tsb6TUS0qMoqIT0uo72RUm6qM0l9/zzBT1Ud6Wlp9J6PapGVk6jsJ5B9Bw1QJIYQQQgghhBBCCKkj1DOOEEIIIYQQQggh5B9Fq6n+eahnHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSM0TJUQQgghhBBCCCHkHyVAw1T/ONQzjhBCCCGEEEIIIYSQOkKNcYQQQgghhBBCCCGE1BEapkoIIYQQQgghhBDyj6LVVP881DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKPYoGGqf5pqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipIzRMlRBCCCGEEEIIIeQfJUCrqf5xqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipI9QYRwj5J2VlZWH58uX4/PlzfSeFEEIIIYQQQuoNi8X6Y1//r6gxjvzf8/X1hZycXJ0cy8HBAVOmTKmTY9Wkqn5Genp68PLyqrX0VMbEiRMRExMDXV3dKu33t54jQgghhBBCCCF/B1rAgfwVKmoxHzp0KHx9fesmMf+HXF1d4eLiUunwYWFhkJSUrMUUlS8gIADx8fE4c+ZMlfc9deoUhIWFayFVte/S6fM4c+QkkhOToK2vi+ETRsHCqiHPsEmJSfDbsRdRb98j9msMXHp3h+fE0Rxh7t+6i5MHjyL2WywKCvKhrqmJ7q694ODYoS6yU65G6kYYZOMIMxUdKEnKYc7Fnbj98Wm9pef8qTM4FXAcSYmJ0NHTw6jJ49CwkSXf8M+fPMXerbsQ/ekTFBQV0XewK1x6dmO/n5+fj2MHAhB86SoSExKgpa2NYWNHwNa+KUc8CT8S4LNzLx7df4jcnFxoaGth8pzpMDYz+a18MAyDPd7eCDxzBulpaWjQoAFmz5gBQwODcvcLvnEDu/bswddv36ClqYlxo0ejnYMD+30fPz/cuHkTnz5/hqioKKwsLTFx3DjolWosT0xKwtbt23H/4UOkp6ejsbU1Zk6fDh1t7d/KS7Garhel3Qm+iY3L16BpS3vMWbmoWumsyMXAcwgMOIHkpCTo6OnCc+IYNGjEJx8JifDZsRfv37xD7NcYdO3TAyMmjeEIc/XcJdy4cg2fPxT1HjY0NYLbSA+YWJjWWJrro1549B2M73HxXHF36dUd46ZP4pnGs0dP4cePH9A3MMDU6VNhY2PDN42PHz2G1yYvfPzwAUrKSnBzc0Pvvn04wlwPvo7du3bj29ev0NTSwthxY+DQrh1HmBPHT+DggQNITEjkedzExERs37oND+4/QHp6Omwa22D6zBnQ0dHh/MyePcPOHTvx8sVLCAsLw9DYCBu2bISomBhHuFPHTyLgwCEkJiRCz0Afk6dPQSMba775fPLoMbZu2oJPHz5CUVkJg90Go2ff3uz3P0R9gPeuvXjz+jXiYuMwadpk9B80gG98B3z8sHv7LvQb2B+Tp0/lG66qLgaew6mA4+x6MWLiGDTgU8aSEhKxf8ceRL15j5iv39C1Tw+MnDSWI0z0x0845O2PqLfv8T0uHp4TRqNH/94846ttFwLPctSfkZPG8q0/SQmJ8N6+G+/fvEPM12/o1rcnRk0aV6vpCzx+EgEHD7PL1KRpkysoU0+wzetXmVJSwiD3wejZpxf7/bOBZ3Dl4mV8iPoAADA1M8Wo8WNg0cCCHeaAjz9u3QjB58/REBUVQUMrS4ydMA46elX74ZUzH6cQcPAwkn7lY+K0SeXmI+LRE2zz2loqH4PQo1Q+zgWexZWLl/Ah6iM7HyPHj+bIR35+Pnz27kfQ5atISkyEoqISOnftDHfPYRAQqJm+Mn/DPYNhGOzZuxeBgYFIT08veuaYNQuGhobl7hd8/Tp27dqFr1+/QktLC+PGjkW7MtfY48eP48DBg0hISICBgQGmT5vGcY3dvWcPrl69ivj4eAgLC8PczAzjxo1Dw4Yln9HXr1/htXkzIiIikJeXh+bNm2PmjBmQlpH57TwTUhr1jCN/hdjYWPbLy8sLMjIyHNs2b95c30n8KxUUFKCwsLDCcOLi4lBRUal0vMrKypCQkKhO0qpl4MCBOH/+PAQFBau8r4KCAqSlpWshVbXrzvWb8Nm2B32GuGLDvq0wt2yAFbMW4Uf8d57h83PzICMniz5DBkDPUJ9nGClpafRxG4DVOzZgk/cOtO/cEdtWb8KTh49qMyuVIi4siveJX7Hx1pH6TgpuBd/A3i074eo+CFv270LDRpZYPGMuzwYBAIiLicXimfPRsJEltuzfBVf3QdjttR13Q26xw/jv8cHlM+cxZuoE7Dzgjc49u2LlvCWIevuOHSY9LR0zx06GkJAQlq7/DzsPemPEhNGQkpb67bz4HTyIwwEBmDV9Ovz274eioiLGT56MzMxMvvs8e/4c8xYuhIuzMwL8/eHi7Iw5CxbgxcuX7DCPnzxBvz594LN3L7Zv3oyC/HxMmDIFP3/+BFD0QD5j9mx8i4nBhjVrcMjPD2pqahg3aRI7zO+ojXpR7HtcPHx37oOFVYPfTl9l3Q6+Ce+tu9HPfQA27dsOC6uGWDZrAd985OXlQUZWFv3cBkLPiHdD6vMnz9C6gwNWbF6DtTs3QVlVBUtmzEPij4QaSXN91Quvvdtx4Mwx9mvFpjUAgFbt2vBN49ixY+F/6ACsbawxddIUxMXF8UxjzLdvmDp5CqxtrOF/6ACGeQzDhvUbcD34OjvM82fPsGDefHR26YyDAYfQ2aUz5s2ZhxcvXrDDBF0NwqYNG+Ex3IPncRmGwawZM/Ht2zes27AeBw4dhJqaOiaOm8BRH54/e4bJEyejmb09fPx8cOLECfTp3xesMl/mg69ew5YNXnAfPgz7D/mhkU0jzJg0rZx8xmDm5OloZNMI+w/5wd1jKLzWb0JI8A12mJzsbGhoaWDMhHFQVFTkGU+xyJevcDbwDAyNjcoNV1W3g0Owb+su9HcfCK99O2Bh1RBLK6gXsrJy6Oc2gG+9yMnOgZqGOtxHD4e8gkKNprcqbgWHYO+WnejvNhBbvHeiQaOGWDJzHr6XV+flZNHffRD0+eStJgVfvYYtGzfDzWMovA/6opF1I8ycPB3x5ZSpWVOmo5F1I3gf9IWbhzs2r9+EkOslZSri0RN0dOyILTu3Ytf+3VBVU8X0CVPw4/uPkjCPn6BXvz7YvX8PNm3bjIKCAkybOOW37xPBV69h68bNcPdwx76DPrCytsKsyTMqyMcMWFlbYd9BH7h5uGHzei+OfDx59BgdHDth884t2PkrHzMmTOXIx2H/Qzh78jSmzpyGA8cOY+ykcQg4eBgnj574rXyU9bfcM/z8/XH48GHMmjkTfr6+Rc8cEyaU/8zx7BnmzZsHl86dEXD4MFw6d8acuXM5rrFXr17Fho0bMdzDA4cOHoSNtTUmTZ7Mcc3T1dHBrJkzcSQgAPv27oW6hgbGT5iA5ORkAMDPnz8xfsIEsADs2rkT3vv2IS8vD1OnTavUd6c/kQCL9ce+/l9RYxz5K6ipqbFfsrKyYLFYHNtu3bqFJk2aQExMDAYGBli6dCny8/PZ+6ekpGDUqFFQVVWFmJgYGjZsiPPnz3Mc48qVKzA3N4eUlBScnZ0RGxvLfq+wsBDLli2DlpYWREVFYW1tjcuXL5eb5szMTLi7u0NKSgrq6urYsGEDV5jc3FzMmjULmpqakJSURLNmzRASElJuvEuWLIGOjg5ERUWhoaGBSZNKfumvKL7i4abnz5+HhYUFREVFsXfvXoiJiSElJYXjOJMmTULbtm059ivt7NmzsLW1hZiYGJSUlNC7d8kvx2WHqUZHR6NHjx6QkpKCjIwM+vfvj/h43l/IAODTp09gsVg4duwYWrduDXFxcdjZ2eHt27cICwuDra0t+zz9+FHycBMWFoZOnTpBSUkJsrKyaNu2LR4/fsx+PyQkBCIiIrh9+zZ724YNG6CkpMQ+32WHqerp6WHFihXsc6mrq4szZ87gx48f7DxZWloiPDycIw8nT55EgwYNICoqCj09PZ7nvyadOx6IDi6O6NTVGVq6OvCcOBqKKsq4cuYCz/Aq6qrwnDgG7Zw6QIJPL8aGNlawb90CWro6UNNUR9e+PaFrqI/I5y95hq9L96NfYu+Ds7j5IaK+k4LAIyfh2NUZTt1coKOni1GTx0FJRQUXT5/jGf7i6fNQVlXBqMlFv+Y7dXNBpy7OOBVwnB3mxpVr6O82CHbNm0FdUwNdenVH42a2OHWk5EH9xKEjUFZRxtR5M2FqYQZVdTVY2zaGuqbGb+WDYRgEHD0Kj2HD0N7BAUaGhli6cCGys7Nx+epVvvsFHD2KZnZ28Bg6FHp6evAYOhRNbW1x+OhRdpitXl7o1qULDA0MYGJsjMULFiAuLg6Rr18DAKK/fMHzFy8wZ+ZMNLCwgJ6uLubMnImfWVm4EhT0W/kBaqdeAEU/ZHitWIcBHkOgqq7+2+mrrDPHTqFjFyc4du0MbT0djJg0BkrKyrh0+jzP8Krqahg5eSzaO3eEpCTvH0amL5oNl17dYGBsCC1dbYyfORmFhQyePoqokTTXV72QlZeDgqIC+xV27wHUNTVgadOIbxr79esHfX19TJs+Daqqqjh54iTPNJ46eQpqamqYNn0a9PX10aNnT3Tr3g2HDh5khzkScARNmzXFMI9h0NPTwzCPYbBraocjh0t+OAg4dBjde3RHj549eR73S3Q0Xjx/gdlzZsOigQV09XQxa84sZP3MwtUrV9jxbNrohf4DXDF02FAYGBpCT08P7Tq2h4iICEe6jxwKQNce3dCtZ3fo6eth8vSpUFFVwekTp3jm8/TJQKiqqWLy9KnQ09dDt57d0aV7VwQcPMwOY97AAuMnT0RHp04QFuHfmzwrKwtLFy7BrPlzavyHrrL1YuSksVBSVsbFCutFJ769943NTeExbiTadHAoN1+17fTRk+jUpaj+aOvpYtSkcVBSUcbFQN71R1VdDaMnj0cH507lXrtqytHDR9ClVJmaNH0KVFRVEHgikGf4M6eKytSk6VM4ytSRUmVq0Yol6NWvD4xNTaCrp4dZ8+egkCnEo7CS56sNWzfBpVsX6BsawMjEGHMXzUd8XDzeRL7+rXwcO3wUXXp0RddS+VBWVcFpvvk4DZVS+ejasztcunfB0YMBZfLR+1c+dDFz/myufLx8/gIt27ZG81YtoK6hDocO7WDXrOlv54MrnX/BPYNhGAQEBMDDwwPt27eHkZERli5ZUvTMUeo6V1ZAQACaNW0KDw+PomcODw80tbPD4YCSc3Do8GH06NEDPX9dY6dPnw5VVVWcOFFyr3B2dkazZs2gpaUFQ0NDTJ0yBZmZmXj3rujHnadPnyI2NhaLFy+GkZERjIyMsHjRIrx69Qr379//rTwTUhY1xpG/3pUrVzBkyBBMmjQJr169wu7du+Hr64uVK1cCKGpI69y5M+7du4eDBw/i1atXWL16NUevqaysLKxfvx4HDhzArVu3EB0djRkzZrDf37x5MzZs2ID169fj2bNncHJyQvfu3dkXbF5mzpyJGzduIDAwEFevXkVISAgePeLsUeTh4YG7d+/iyJEjePbsGfr16wdnZ2e+8Z44cQKbNm3C7t278e7dO5w+fRqWlpZVii8rKwv//fcf9u3bh5cvX2LIkCGQk5PDyZMlXz4KCgpw7NgxDB48mGc6Lly4gN69e6NLly548uQJgoODYWtryzMswzDo2bMnkpKScPPmTQQFBSEqKgqurq58P7tiixcvxoIFC/D48WMICQlh4MCBmDVrFjZv3ozbt28jKioKixaVDA1LS0uDu7s7bt++jdDQUBgYGMDFxQXp6ekAShra3NzckJqaiqdPn2L+/PnYu3cv1Mv5Qr1p0ya0bNkST548QZcuXeDm5gZ3d3cMGTIEjx8/hpGREdzd3cEwDADg0aNH6N+/PwYMGIDnz59jyZIlWLhwYa0Npc7Ly0PUm/doZNeYY7u1nQ1ev4yskWMwDINnjyIQ8+UrLPgMc/h/lJeXh/dv38LGjrP8N7ZrgsgXr3ju8/rlKzS2a8IZvqkt3r1+y/4RIS8vF8KinF+oRURE8epZyS+/D+6GwsjMBKsWLMOgrn0x0WM0Lp/l3chUGd9iYpCYmAj7piVD/kRERNDYxgbPnj/nu9+zFy/QrCnn8Fn7Zs3K3ScjIwMAIPNrqEdebi4AQLRUI4KgoCCEhIUR8fT3hh/XZr047h8AGTlZdOziVK14KiMvLw9Rb9/BmisfjfH6Rc3UbwDIyclBQX4+pGWq32BSn/WibDpuXL2GTl2cuaa74JfGpvbN8PzZM57xPX/+HE3tm3Fss29uj8hXkew0Pn/2HM2alQljb8+OMy8vD69fv0azMvGUPm5uXl5R3kRF2e8LCgpCWEgYTyOK6kNSUhJevngBBXl5jBjuCWdHZwwZMoT9ful8vn39BnZlhrjb2TfDi2e86+jL5y9gVzZ9zZvhdal8VtbGNevRomUL2DVrWnHgKig6f+9gU6bM2Ng1wWs+ZexvwS6bTXnlrf5/DCsuU03LnFO7Zk3LL1Nlwje1b4bXr17zLVM52dnIz88vd0hgZkZRDyqZ3xg2yK4bPPPB+5pSnXyUTqNlIys8DgvHl8/RAID3b9/h+dNnsG/ZvMr5KOtvuWd8+/at6JnD3p69TUREBI0bN8YzPtdgoKg3frNS+wCAffPm7H2Kr7H2Za/DzZrxjTcvLw+BgYGQkpKCiUnRNB+5ublgsVgcP26IiIhAQECA6/scIb+L5owjf72VK1dizpw5GDp0KADAwMAAy5cvx6xZs7B48WJcu3YNDx8+RGRkJPsCa1Bm/qO8vDzs2rWLPUfBhAkTsGzZMvb769evx+zZszFgQNF8KGvWrMGNGzfg5eWF7du3c6UpIyMD3t7e8Pf3R6dOnQAAfn5+0NLSYoeJiopCQEAAvn79Cg2Nop4sM2bMwOXLl+Hj44NVq1ZxxRsdHQ01NTV07NgRwsLC0NHRQdNfX4IrG19eXh527NiBRo1Kegm4urri8OHD8PT0BAAEBwcjOTkZ/fr14/uZDxgwAEuXLmVvKx1fadeuXcOzZ8/w8eNHaP+a++nAgQNo0KABwsLCYGdnx3O/4vQ7ORV92Z08eTIGDhyI4OBgtGzZEgDg6enJ0cDVoQPnXGb79u2DnJwcbt68ia5duwIAVqxYgWvXrmHUqFF4+fIl3Nzc0KtXL5THxcUFo0cXzRu1aNEi7Ny5E3Z2duzPZ/bs2WjevDni4+OhpqaGjRs3okOHDli4cCEAwMTEBK9evcK6deswbNiwco/1O9JT01BYWAg5eTmO7bLy8khJSq5W3JkZmRjZ1w15eXkQEBDAqKnjYW3buOId/0+kpaaisKAQcgryHNvlFOSRnJjEc5/kxCTINeMOX1BQgLSUVCgoKaJxU1ucPnICDRtZQl1TA08fPcGDO/dQUGpoRFxMLC6ePodern3h6j4Qb1+9wW6v7RAWFkaHzo5VzktiYiIAQLHM0CxFBQXE8hmyU7wfr32K4yuLYRhs3LIF1o0awejXNVdPTw/qamrYtnMn5s2eDXFxcRwKCEBiYiIS+MRTkdqqF5HPX+LahSvYuG/bb8dRFWmpaUVlTJ5HGUviXcZ+h/+u/VBQVkSjJvznS6us+qwXpd2/dRcZGRno6MJdH/ilUVFBAfcTeJc5XmVdQUERBQUFSElJgZKSEhITE6GgWCaMYkl9SElJQUFBARQUOId2lj6unp4e1NXVsWPbdsyZNxfi4uI4fOhwUX1IKBoS9u3bNwDA3r17MWnyZJiYmCA46BqmjJ0I/6OHoK1TdL9NZR+vbLrlkZjA+1wkJiaiWZnPRUFBgSOflXHtShDevn6Dvf77KxW+KkrqhRzHdlkFuWrf9+pbcdmUL1Pn5eXl8fgPyFtxmSo7jFdeUQFJfOp3YmISmpapF/IVlKld23ZCWVkZtk35/9i7bdMWWFk3goFR+XOMVSUfCorySOJz30lKTIKCYpnzUmE+dkFZWRlNSuVj8NAhyMzIwJB+gyAgIIDCwkKMHDsKHZ06VTkfZf0t94zaeuZI4XfNU1Tkep64ffs25s2fj+zsbCgpKWH7tm3skUCWlpYQExPD1q1bMX78eDAMgy1bt6KwsJBjVM7fhIX/3+GgfypqjCN/vUePHiEsLIzdEw4o6tmVnZ2NrKwsREREQEtLi90Qx4uEhATHZKHq6ur4/r1oXoW0tDTExMSwG4CKtWzZEk/59NiIiopCbm4umjcv+YVLQUEBpqYlk5w+fvwYDMNwpSsnJ4fv/Cv9+vWDl5cXDAwM4OzsDBcXF3Tr1g1CQkKVjk9ERARWVlYcYQYPHozmzZsjJiYGGhoaOHToEFxcXLgeBItFRERg5MiRPN8rKzIyEtra2uyGOACwsLCAnJwcIiMjy22MK51OVVVVAODoCaiqqso+T0DRDXrFihUICQnB9+/fUVBQgKysLERHR3Pk/+DBg7CysoKurm6lVn2tTDoA4Pv371BTU0NkZCR69OjBEUfLli3h5eWFgoICnnPZ5eTkICcnh2ObaKleEZXBtdAJw1T7xisuIY4N+7Yh++dPPHv8FD7b90JVXQ0Nbawq3vn/SNnPnmGYchee4XrrV6/K4jdGTx6PLWs3Yszg4QALUNfQQEcXJ1y7WDJ0gylkYGRmgqGjixrRDU2M8fnTJ1w8fa5SjXGXrlzBqjVr2H97rV/PPy8VRVZ2Hx7xFFu7fj3ev3+Pfbt3s7cJCQlh7X//YfmqVWjv5ARBQUE0tbVFi+bV7yVQk/XiZ1YWNq9cj3EzJ0FGTrbaaasK7myUX8aq4tTh47gdHIKVW9ZCpEzPs+qoj3pR2tULl2DbrCkUy2k8qmoaucr6rzRybi0bhvs45Z1PISEh/Ld2NVYuX4FO7TtCUFAQdk3t0LxFi5LwhUXH7dW7N7p1L1rkopldU9y5ewcXzp7DmAmck/dz55PH511u+OJ8Vq7MxcfFY/OGTdi4bXOV72VVwat+/zPfN7muqzVX52sCr/pabpkqWy/Av0wd8j+Ia1eDsGXXdr7lZ9PaDYh6/x7b9+6qUrq50sWzbpRzneJKL/98HPY/hOCrQdiyaxtHPq4HBePqpatYtGIJ9Az08f7tO2zduBmKykro3LXyC6aV50+7Z4RcvY6BG7exryVemzb9SmcNPHPwyFtlru22trY4fOgQUlJSEHj6NObOmwdfHx8oKChAXl4ea1avxn+rV+PI0aMQEBCAo6MjzMzMamyRDUKoMY789QoLC7F06VKOOcuKiYmJQVxcvMI4yq6eyWKx2DeL0ttKK++mVnZfXgoLCyEoKIhHjx5xNc5ISfGegF1bWxtv3rxBUFAQrl27hnHjxmHdunW4efNmpeMTFxfnSnfTpk1haGiII0eOYOzYsQgMDISPjw/ftFfmMy3G73OqzENB6fNSHLbsttKTqHp4eCAxMRGbN2+Grq4uREVFYWlpidxfQ+CK3bt3D0DRMJ+kpKQKV36tTDoAsNPCK28VlYn//vuPo6chUDRMt99ot3L3AwBpWRkICAggucwv5qkpKZBVkKtw//IICAhAXauop6W+sSG+fo7GqcPHqDHuFxlZWQgICnD19klNTuHqcVNMXlEByYmc5yolOQWCgoKQkS0axiIrL4eF/y1Dbk4u0tLSoKikCJ+d+6CqrsYRT9kV5LR1dXAv5DYqo02rVmhoUbK6W/HQuITERI5f95OSk7l+YS5NUVGRqxdcUlISz33WbtiAW3fuYM/OnVAtsyiMuZkZDvv7IyMjA3l5eZCXl8dQT09YmJlVKj9l1Ua9iPsWi+9x8Vg1t6SuFtftvu27YtuBvVDTrNk55GRkZYrKWNl8JKdw9Xz4HYEBJ3Di4BEs3fgf9AxrZuL3+qwXxb7HxSMi/AnmrVxcpTQmJSdz9WwrxqusJycnQVBQELK/elMoKipy9apJLlUf5OTkICgoyF1nyhzX3NwcBw8f4qgPw4d6wMzCHACgpFT0I5u+PudCI7r6eogvtUiGLJ/jJVeYzySu8EX5rFwj9JvXr5GclIwRbh7sbQUFBXj6JAKnjp3E9Xs3f2uRpWL860VqjdSL+sQum2V6MaUkp3D1BKwPxWWqbC+45KRkvoteKCoqcNWLlCTeZSrgwGEc9PHHpu2bYcRn0Y9N6zbi7q072LpnB1RUK7/AGO98lK2v/PNR1MuVO9/l5WPjdi+uxUt2bN6OwUOHoINjRwCAoZEh4mLjcMj3QLUb4/7Ue0bTVvbo3KYjMn9NU1H8bM7zmaOcRWF4PnOUek7hd41NTkri6lEnLi7O7jBgaWmJXr1748yZM/DwKLpu2dvb48zp00hJKboXSUtLw8nJiWOkEyHVQc265K/XuHFjvHnzhj25ZumXgIAArKys8PXrV7x9+/a34peRkYGGhgbu3LnDsf3evXswNzfnuY+RkRGEhYU5JvhMTk7mSIONjQ0KCgrw/ft3rnSrqXF/sSgmLi6O7t27Y8uWLQgJCUFoaCieP3/+2/EVGzRoEA4dOoRz585BQEAAXbp04RvWysoKwcHBFcYJFPWCi46OxpcvX9jbXr16hdTUVL6f3++6ceMGxo4dizZt2kBXVxc5OTnsIT3FoqKiMHXqVOzduxf29vZwd3ev8VWRLCwseJYXExMTvl8+5s6di9TUVI7X3LlzK3U8YWFhGJoa4Wn4E47tT8OfwKxBzX7GAJCXm1fjcf6thIWFYWRigidhnPOHPAl/BPOGFjz3MWtggSfhZcKHhcPYzARCQpy/kYmIikBJWQkFBQW4d/M27FuX9IyxsGyAb9FfOMJ/+/IVymqqlUq7pKQk+yFUW1sbBvr6UFRUxIOwMHaYvLw8PH7yBFaleoKWZdWwIcc+APDg4UOOfRiGwZr163EjJAQ7t22Dpgb/RSakpKQgLy+P6C9fEPn6Ndq24V4FszJqo15o6mhj0/4d2LBvG/tl16IZGtpYYcO+bVBUqdzwvaoQFhaGoYkxVz4iwp/ArGH16vepgOM45n8Yi9etgLEZ/97jVVWf9aJY0IXLkJWXQ9Pm9lzvlZfGhw8ewtKK948NlpaWePjgIce2B/cfwNzCnJ1GSytLPCgb5sEDdpzCwsIwMzPjioffcdn1IToakZGRaNO2qD6oa2hAWVkZnz9/5gj/5XM01Eo1TgoLC8PEzBRhDzjraPiDh2hoxbteN7BsiPAy6Qu7/xBmpfJZEVs7W/gfOQifQ37sl5mFORydneBzyK9aDXFA8fkzRkT4Y47tEeGPYcanjP0tistmRFiZvIU9hlnD2l+9uSIlZapMGXkYVm6ZCnvIWQYfPngIMwszjjJ1+MAh+Hn7YP2WjeyG59IYhsGmtRtw60YIvHZuhcZvLlhUOh/hZevGwzA0tOI9N24Dy4YIL5OPMB75CDhwCP7evli3ZQPPfOTkZHP1rhIUEEBhJX7Mr8ifes+QkJCArq5uyTOHgUHRM8eDB+wweXl5ePz4MdcIntKsLC059gGAB/fvs/cpvsZyhXn4sNx4gaLyVfzDZGlycnKQlpZGWFgYkpKT0b59+wrz+ydisVh/7Ov/FfWMI3+9RYsWoWvXrtDW1ka/fv0gICCAZ8+e4fnz51ixYgXatm2LNm3aoE+fPti4cSOMjIzw+vVrsFgsODs7V+oYM2fOxOLFi2FoaAhra2v4+PggIiIChw4d4hleSkoKnp6emDlzJhQVFaGqqor58+dz3HhNTEwwePBguLu7Y8OGDbCxsUFCQgKuX78OS0tLuLhw/zLm6+uLgoICNGvWDBISEjhw4ADExcWhq6sLRUXFKsdX2uDBg7F06VKsXLkSffv2hZiYGN+wixcvRocOHWBoaIgBAwYgPz8fly5dwqxZs7jCduzYEVZWVhg8eDC8vLyQn5+PcePGoW3btnwXffhdhoaG8PPzQ5MmTZCamooZM2Zw9OIrKCiAm5sbHB0d4eHhgc6dO8PS0hIbNmzAzJkzaywd06dPh52dHZYvXw5XV1eEhoZi27Zt2LFjB999REVFqzWUp1u/XtiyagOMTI1h2sAMV89dRkL8Dzh2LzrvB/f4IDEhEZPnlSxM8vFdFAAg++dPpKWm4uO7KAgJC0NbTwcAcPLQURiaGkNNQx35efl4/CAMIVeCMWrq+N9OZ00RFxaFlqwy+28NGSUYK2khLTsT8Rl1O6dOrwF9sGH5GhibmcCsoQUun72AH/Hf4dKzaOiY7659SPyRgOkL5wAAXHp2xflTZ7B36044dXPB6xevcPX8ZcxaMo8d5+uXkUhMSICBkSESExJxeL8/CgsL0WdQycInPV37YMaYyTjqfxit27fF21evcfnsRUycNfW38sFisTDQ1RU+fn7Q0dKCtrY2fPz8ICYmBmfHkmGvi5YuhYqyMiaMKxoGN6B/f4waNw6+Bw7AoXVrhNy+jQdhYfAuNQx1zfr1uHz1KjasWQMJCQn2vC1SkpLsa8214GDIyctDTVUV76OisGHTJrRt04ZrEuaqqOl6ISIqAl0DPY5jSP7qeVx2e03q0b83vFau+5UPc1w5dwkJ37/DuUfRjyb+u/cjMSERU+eXXMc+/MrHz5/ZSE1JxYd3URASFmL3pjx1+DgOeftj+sLZUFFTZfcQExMXh7hE5Xs/81Nf9QIo6qUcdPEKOjh3gqAQ/0af4jSesLOHoYkRTp8KRHxcHHr3Keppv33bdvz4/h1LlhX1hOzdpzeOHzsOr42b0KNXTzx/9hxnz5zF8pUr2HG6DhiAMaNGw9/XD20c2uJWyE08fPAQe7z3ssMMHDwISxYthpm5OSytLLmOCwDB165BTk4eampqeP/+PTZt2Ig2bduyJztnsVgY7DYEe3fvgbGxMUxMTeB71QefP3/GirWcc84OGDwQyxcthZm5GRpaWeLsqdOIj4tHzz5F86Xu2rYDP77/wMJlRb0Ie/bphVPHTmDrxs3o1qsHXjx7jvNnzmHJypK5dPPy8vDpw8df/8/Hjx8/8O7NW4hLiENLWxsSkpJc83iJiYlBRk7mt+b34qVH/97YtHIdjExNYNbAHFfOXcSP79/R+Ve98Nu9H0kJCZg6v+TZ5EPp+s2jXuTl5eHLp6KpLfLz8pCUkIgP76IgJi4GDS3NGkl3ZfR07YONK9bAyMwE5g3McflsUd5cehbNf+u7yxuJCQmYvmB2qby9Z+etqM6/h5CQMHT0dXkeozpcBw3AisXLYGZhjgaWDXE28Ay+x8WjZ5+eAIrme0v48QMLlhYtstWjdy+cOnYSWzdtRreePfDy+QtcOHMOi1eW9DI+5H8Q3rv2YtGKJVBTV0firzkUxSXEISFRtMLnxjXrce1KEFatL7qXFIeRkpKCqFjVn6H6D3LFysXLYWphhgaWDXHuVz56/Kobu7ftRMKPBMxfuvBXPnoi8NhJbNu0BV17dv+Vj/NYtHIJO87D/ofgvWsvFq5YzDcfLVq1xAEfP6iqqULPQB/v3rzF0cNH4dKd/w/hVfE33DNYLBYGDhwIHx8f6PxqoPPx9S165nAqWRxp0eLFRc8cEyYAAAYMGIBRo0fD188PDm3bIuTmTTx4+BDe+/ax9xk8aBAWLV4McwsLWFla4lRgIOLi4tCnT59fefyJ/fv3o02bNlBSUkJqaiqOnziB79+/o2Op+afPnj0LfX19yMvL49mzZ9iwcSMGDRzINfc4Ib+LGuPIX8/JyQnnz5/HsmXLsHbtWvYvIiNGjGCHOXnyJGbMmIGBAwciMzMTRkZGWL16daWPMWnSJKSlpWH69On4/v07LCwscPbsWRgbG/PdZ926dcjIyED37t0hLS2N6dOnIzU1lSOMj48PVqxYgenTp+Pbt29QVFRE8+bN+TacycnJYfXq1Zg2bRoKCgpgaWmJc+fOseeEq2p8pRkbG8POzg5hYWEVzqPm4OCA48ePY/ny5Vi9ejVkZGTQhk/vFRaLhdOnT2PixIlo06YNBAQE4OzsjK1bt1aYpqry8fHBqFGjYGNjAx0dHaxatYpjVdyVK1fi06dPOHfuHABATU0N+/btQ//+/dGpUydYW1vXSDoaN26MY8eOYdGiRVi+fDnU1dWxbNmyWlm8oVir9m2RnpaOY36HkZyUBB19PcxfsxQqv3pJJScmIyGec8LZ6SMnsv8f9fY9bl8LgbKqCnYf9QUA5PzMxt5NO5D4IwEioiLQ1NHG5Pkz0Kp921rLR2WZKetiW69p7L8ntSpaTONiZChWXver07S06dAOaalpCPA9iKTEJOjq62HpulXszz4pMQk/4kvmNlTTUMfSdSuxd+tOnD91FopKihg9ZTxaOpTUobzcXBzY64O4mFiIi4vD1r4ppi+cDSnpkiHnJuZmWLBqKXx370OA7wGoqqtj1KSxaOfIuZBJVQwdMgQ5OTlYvX490tPT0dDCAtu8vDiGcsfFx3P8sNDIygorly3Dzt27sWvPHmhpauK/FSvQsEFJD44Tp04BAEaP52zIXbxgAbr96oWbkJiITVu2IDEpCUpKSuji7IwRw4f/dl6A2qkX9aF1h7ZIT0vDUb9DSEpMhq6+LhatWV4qH0lIKFXGAGCqZ8lnHfXmHW5duwEVNRXsPeYPALh0+hzy8/KwZtEKjv0GDBuMgcMrHh5fkfqqF0BR76gf8d/h2KVzpdK4Y8cOfP/+HQaGhti0eRN7de3EhASOIZ8amprYtNkLXhs34cTxE1BSVsL0GdPRvkNJLwmrRlZYvnIFdu/chd27dkNLSwsr/1uFhg1Letp0cuyE1NRU7N/njYSEBK7jAkBCQiK8NnkhKbGoPnTu4gLPEZ4c6R84aCByc3PhtWkT0lLTYG5ujk3bt0CzzBCqDo4dkZqaCt99RV/A9Q0NsG7zBqix85lYJp8aWLd5A7Zu3IxTx09CSVkJU2ZMhUOHdiXp+5EAj8FD2X8HHDiMgAOHYd3YBtv28P/hqSa17uCA9LT0X/Ui6Ve9WMFRL36Uqd9TPEvm0nv/5h1uXrsBFTVV7PtVL5ISEjnCBB45gcAjJ9DQ2gqrtqyrg1wVadPBAelpaThSqv4sWbuyVN4SOeoPAEwaPpb9//dv3uFm0HWoqKli//GDNZ6+Do4dkVamTK31Wl9umVrrtQFbN21G4PFTUFJWwuQZU+HQvqRMnT5xCnl5eVg4ez7HsTxGDsfwUUXP9KdPBhbldQznvWTuovlw6Vb1hqyifKTBb58POx9rvNaze5fyzsd6bN20BYHHT0FRWQmTZ0zhmY9FsxdwHGvYyOEYPqqoDk+ZORX7du3FxjXrkZycDCUlJXTv3QPDRnigJvwt94yh7u5Fzxxr1hQ9czRogG1bt3I+c8TFQaBUz6lGjRph5cqV2LlzJ3bt2gUtLS38t4rzGuvo6IjU1FTs27cPCQkJMDQ0xGYvL/Y1VkBAAJ8+fcL5CxeQkpICWVlZWFhYYO+ePRxziH/+/Bnbt29HaloaNDQ04OHhgcGDBv1WXgnhhcVUZnIrQggh9eJlbFR9J6HaGqgbouX2MfWdjGq5O34X3v/4UnHAP5yRsjbSa3A1tfograDwz9SL1/Ef6zsZ1Wamqv/X1w0jZW2kpKdWHPAPJyctix/pf3f9VpZWwJv4T/WdjGozVdXDu+/RFQf8wxmr6OB72u+taP2nUJFRRHxaQsUB/3CqMkp//T3DTFUf6Wlp9Z2MapOWkanvJPwWj6MrKw5UT3xc51cc6B9Ec8YRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6QnPGEUIIIYQQQgghhPyj/p9XLf1TUc84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/SgA0TPVPQz3jCCGEEEIIIYQQQgipI9QYRwghhBBCCCGEEEJIHaFhqoQQQgghhBBCCCH/KFpN9c9DPeMIIYQQQgghhBBCCKkj1BhHCCGEEEIIIYQQQv4KO3bsgL6+PsTExNCkSRPcvn2bb9hhw4aBxWJxvRo0aMAO4+vryzNMdnZ2reWBGuMIIYQQQgghhBBC/lG8Gpr+lFdVHT16FFOmTMH8+fPx5MkTtG7dGp07d0Z0dDTP8Js3b0ZsbCz79eXLFygoKKBfv34c4WRkZDjCxcbGQkxM7Lc+78qgxjhCCCGEEEIIIYQQ8sfbuHEjPD09MWLECJibm8PLywva2trYuXMnz/CysrJQU1Njv8LDw5GcnAwPDw+OcCwWiyOcmppareaDGuMIIYQQQgghhBBCSJ3LyclBWloaxysnJ4dn2NzcXDx69AiOjo4c2x0dHXHv3r1KHc/b2xsdO3aErq4ux/aMjAzo6upCS0sLXbt2xZMnT34vQ5VEjXGEEEIIIYQQQggh/ygBsP7Y13///QdZWVmO13///cczHwkJCSgoKICqqirHdlVVVcTFxVX4OcTGxuLSpUsYMWIEx3YzMzP4+vri7NmzCAgIgJiYGFq2bIl37979/odeAaFai5kQQgghhBBCCCGEED7mzp2LadOmcWwTFRUtd5+yc80xDFOp+ed8fX0hJyeHnj17cmy3t7eHvb09+++WLVuicePG2Lp1K7Zs2VJhvL+DGuMIIYQQQgghhBBCSJ0TFRWtsPGtmJKSEgQFBbl6wX3//p2rt1xZDMNg//79cHNzg4iISLlhBQQEYGdnV6s942iYKiGEEEIIIYQQQsg/qr5XTK2p1VRFRETQpEkTBAUFcWwPCgpCixYtyt335s2beP/+PTw9PSs8DsMwiIiIgLq6epXSVxXUM44QQgghhBBCCCGE/PGmTZsGNzc32Nraonnz5tizZw+io6MxZswYAEXDXr99+wZ/f3+O/by9vdGsWTM0bNiQK86lS5fC3t4exsbGSEtLw5YtWxAREYHt27fXWj6oMY4QQgghhBBCCCGE/PFcXV2RmJiIZcuWITY2Fg0bNsTFixfZq6PGxsYiOjqaY5/U1FScPHkSmzdv5hlnSkoKRo0ahbi4OMjKysLGxga3/sfefUdFdbwNHP/uUnbpVQQRpCkK2FDsvdc0TUyMiaYbTWJiimnGVBOTmJjExB5778bejSX23hVFVJDeO7v7/rG4sLBgAcSf7/M5x3Pk7szdZ+CW3bnPzPz7L82aNau0dkhnnBBCCCGEEEIIIcQjSnmPw0EfdsOGDWPYsGEmX5s1a1aJbQ4ODmRmZpa6v19//ZVff/21osK7KwqdTqd7oO8ohBBCCCGEEEIIIR6I4St+ruoQSvXnUx9UdQhVQjLjhBDiIfbn3mVVHUK5DW/dn8tx16s6jHIJqOZF6z+HVnUY5bZ3+GSSh39Y1WGUi+OfP/HsvC+qOoxyWzToa9pPGl7VYZTbrjf/JC0pqarDKBc7JycWH9ty54IPuQGNu/Lp+slVHUa5jO01lC0XDlR1GOXWNbA5ry8bV9VhlNvU/qMYOH9MVYdRLgue/4qXFn9X1WGU28wBn9F/zmdVHUa5LHvxO7pOHVHVYZTbltdND3MU4l5JZ5wQQgghhBBCCCHEI+peVy0VlU9Z1QEIIYQQQgghhBBCCPH/hXTGCSGEEEIIIYQQQgjxgMgwVSGEEEIIIYQQQohHlAIZpvqwkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKKWspvrQkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKIUMU33oSGacEEIIIYQQQgghhBAPiHTGCSGEEEIIIYQQQgjxgMgwVSGEEEIIIYQQQohHlAxTffhIZpwQQgghhBBCCCGEEA+IdMYJIe5LdnY23377LTExMVUdihBCCCGEEEII8T9DhqkKIe7L6NGjSU1NpXr16lUdihBCCCGEEEKIUiiRYaoPG8mME0Lcs5ycHFxcXPj999+rOhQhhBBCCCGEEOJ/inTGCSHumUql4uOPP0alUlV1KCXs3LkThUJBcnLyXdfx8fFhwoQJ5XpfhULBqlWryrUPIYQQQgghhBCPPhmmKoS4Z/v27aNt27Z07dqVjRs3VnU4ogwnt+/n6MY9ZCSn4ezpRrvneuNZx8dk2Rvnr7Dixxkltg/67l2cPapVSnxrV6xmxcKlJCYk4O3jw+sjhhHSsH6p5U8dO8G0PyYTGRGBs4sL/Z8fQK8n+hpez8/PZ8nchWzbsJmE+Hhqenkx5M1XadqimdF+4uPimTlpGkf2HyQ3J5caXjUZ8fH71K5bp1LaWZqGHgEMbNyNum7euNo48vH6Sey+euKBxnAn6l5dsWzdHIW1NZqISDKXrEQbXfpckbYjhmJex7/E9rzT58iY9Lf+B6USda+uWISForS3Q5uaSu7+w+Rs3AY6XYXG37VOGH2D2uBoZcuN5DjmHN7A+bhrpZZv7dOAx4Lb4G7nTGZeDieiLjHvyCbSc7NKlG1ZK4QRbZ/h0PVzjN+1sELjLu6J4LY826gLztYORCRFM3HvMk5Gh5dRvh1P1W+Pu50zMelJzDuykU0XDxpen/DYCBp7ljze/7t2mo/XT6qwuHU6HVOnT2fl6tWkpaURHBTEqA8/xN/Pr8x627ZvZ/LUqdy4eZOanp4MGzqUjh06GF6fOXs2O3buJOLaNVQqFQ3q1+ft4cPxqVXLUGbKtGls3rqVmJgYLCwsqBcYyLChQwkJCSlXmw5u/pc9/2wjPTmFajU96PliP3zqBZgse+18OJsXrCY+6hZ5OXk4VnOmaefWtOrdyajcvvU7OLRlNynxSVjb2RDcvDFdnnsMC0uLcsValubewbT1a4idyprY9CTWnd1LRNKtUsubKZV0CmhKI8/a2Flak5Kdzs7woxy5cQGAUM9A+jfsWKLeFxunka/VVEob/l2/lW0r1pOSlIKHtyf9Xn2egOBAk2WP7zvE7g3buXk1kvy8PNy9Pen13JMEhTYwlNHk57N52VoObN9DckIS1T3deXzwAIKaNDC5z4rS3q8x3QOb4aC2JSo1nsUntnE5/obJskOa9qKVT8n7ZFRKPF9u0d/DW9YK4aWw3iXKDFvxc6X9LQC61A6jT1BrHK1suZkcx5wjG7gQF1lq+dY+9ekTVHi9PRl1mflHC6+3Hf2b0NavIV4ObgBcTYxi8YlthCfcrLQ2dAxoQs/AFvo2pMSx4NgWLsVfN1n2lWZ9aOPbsMT2mylxfL5xKgBmCiW967WitW8DnKzsiE5LYOmJ7Zy+daXS2gDQPbA5jwW1wcnajuvJscw6tI5zsaXf+9r6NuTx4LZ42LuQmZvDsaiLzDmygfQc/d+ig39j3mrdv0S95+aNIU+bXylt6BvUhqcbdMLF2p6IpFtM+m9Fmb+3x4La8HhwW6rbORObnsSCY1vYeumQybId/BvzWech7I04yZebS372fRTJaqoPH+mME0Lcs7///pu3336b6dOnExkZibe3d6lldTodGo0Gc3O53DxoFw+e5N+F6+nwQl9qBNTi9M5DrPl1NoO+HYGdi2Op9V4Y+x6WVoVZj1Z2NpUS37/bdjDt90kMe/8d6tUPZuPqdYz54BMmzZ2Bm3vJuQhvRUUz5sPP6NG3Fx988THnTp3hr/G/4+DoQOsO7QCYM3UmOzdv5e1RI6np7cXRg4f57tMv+Xnyb/jXqQ1AWmoaH745ggahjfjq5+9xdHIk+mYUtna2ldLOslhZqLiccIP15/cxtufQB/7+d6Lq2gFVp3Zkzl2MJjYOdY8u2L71Gqlf/wQ5OSbrZEybDUXOd4WNNXafvEfesZNG+7Vs25LMOYvQRsdgVqsm1oOeQZeVTe7OPRUWf8taIQxu0pMZh9ZyITaSLrXD+LjTIN7/ZyIJmSklygdW82Z4q6eYc2QDR25cwNnanleb9+X1Fo/zy7+LjMq62jgwKLQ752IiKize0nT0D+Wt1v35dfdiTkeH0ze4DeN6D2fwom+ITU8qUf7x4La83uIxftq5gPOx16hX3YcP2w8kLSeTfddOAzB60zQslIV/J3u1DTOe+YSd4ccqNPbZc+eyYOFCxowejbe3NzNmzmT4O++wfPFibGxMX1tOnjrFp6NHM/T11+nYvj07du3i488+Y8aUKYaOtKPHjvF0v34EBQWh0Wj4a/Jk3hoxgqULF2JlZQVALW9vPnr/fTw9PcnJyWHBwoUMHzGCVcuW4eTkdF/tObXvCBtmL6fPKwPwDvTj0NY9zPvhL94a/zmOrs4lyluqLGnevR3u3p5YqCyJvBDOmumLsFRZ0rRLGwBO7DnE1oWreeKN5/Gq40dCdCwrJ88FoOfgfvcV553U9/Cnd1Ar1pzezbWkWzTzDmJwWG8m/LuYlOx0k3Wea9wVW0trVpzcSUJmKraWViiLfbnLzsvhl13G50pldf4c2b2f5dPnM2DoYPzq1WbPxh389dXPfP7n9zhXcy1R/vKZC9RtFMJjLz6NlY01+7fuZsq3v/LBT2Pw8vcB4J95yzm0cx8D33qZ6jU9OHf0FNO+/42R40YbylS0pjXrMqBRZxYc3czlhJu082vEO22e5stN00nMSitRfvHxraw4tcvws1Kp5IsuL3Hk5nmjcll5OYzeOM1oW2V2xLWoFcyLTXrw96F1XIyLpHPtpozqOIgP1/5Z6vX2zZZPMffoRo4WXG9fbtaH11o8zq8F19ug6j7sizjFpfjr5Gny6RPUmo87vcBHa/8kycTvpryaedVjYKOuzD26kUtx1+kQEMrIds/y2cYpJGamlii/4NgWlp7cYfjZTKHk6+6vcuj6OcO2p+q3p2Wt+sw6vI7o1ARC3P14u3V/vts2m8jkylkErZVPfYY07cX0A/9wPu4aXWuH8Wnnwby35jfiM0r+Leq61eKt1v2ZfXg9h2+cx9nantebP86bLZ/ip53zDeUycrMZsepXo7qV1RHX3q8xb7Z8kj/2LOVMzFV612vF2J5DeWXJ98RllLzv9anXmpeb9eXXfxdxIS6Sum7evNf2WdJzMtkfecaorJutE683f4KT0ZcrJXYh7pYMUxVC3JOMjAyWLFnCm2++SZ8+fZg1a5bR67eHiW7atImmTZuiUqnYvXs3Op2OH3/8ET8/P6ysrGjYsCHLli0z1NNoNLzyyiv4+vpiZWVFYGAgv/322x3jWb9+PXXq1MHKyoqOHTsSERFRosy+ffto164dVlZWeHl58c4775CRkXHXbT506BBdu3bF1dUVBwcH2rdvz9GjR8usM2rUKOrUqYO1tTV+fn6MHj2avLy8u37PinBs016C2zYhpF0YzjXcaDewN7bODpzccaDMetb2Ntg42Bn+KZWVc6tYuWg53fr0oHvfXnj71OL1EcNwdXNj/ap/TJZfv2ot1aq78fqIYXj71KJ731507d2DFQuXGsrs2LSVZ14YSFjL5nh41qD3k48R2rwpKxYVHmvL5i+imls13vv0QwKD6lLdw51GTUPx8KxRKe0sy/7IM0w7sIZdV44/8Pe+G6qObcnetI28E6fRRseQOXcRCktLLMMal1pHl5mFLjXN8M+ibm3IzSP3aGHGn7lvLfJOniH/zHm0iUnkHTtF3rlLmNeqWaHx967Xih3hR9lx+ShRqfHMObKBhMxUutYJM1m+tqsXcRnJbLxwgLiMZC7ERbL10mH8XTyNyikUCt5q3Z9lJ3eY7AyraM807Mz68/+x7tw+riXHMHHvcuLSk3g8uK3J8t3qNGPN2b3sCD9KdFoC2y8fYd35fTzXuJuhTFpOJolZqYZ/Tb3qkpOfy87wsq9t90Kn07Fw8WJeGjKETh07EuDvz1dffEF2djYbN28utd7CRYtoHhbGS4MH4+Pjw0uDB9MsLIwFixcbyvwxYQJ9+/TB38+POrVrM+bzz7l16xbnzhd2SPTo3p3mzZpR09MTfz8/3nv3XTIyMrh0+f6/gO1bt53Qji1p0qkV1Tzd6TW4P/YuThzasttkeQ9fLxq0boqblwdObi40bNuMgAb1uHa+MKvx+sWreNXxo0GbMJzcXAhoWI/6rZpy80rpGUXl1ca3AUeun+fwjfPEZSSz7tw+UrLTaV4ryGT52q5e+DrXYPbh9YQn3CQ5K40bKbElOhN0QHpultG/yrJ99UZadmlPq24dcPfypP9rg3BydWb3+u0my/d/bRBd+/WmVm0/3Gq489iLT1PNw53Th44byhzcuZduT/cluGlDXN3daNurM/Ua12f7qsobBdC1Thh7rp5kT8RJbqUlsOTENpIy02jvb/o6m5WfS2pOhuGfj5M71pZq9kacMiqn0+mMyqXm3P3nnvvRq24rdoYfY2e4/no798hGEjJT6VLK9TbAtSZxGclsKnK93XbpCH7OhffiP/ctZ+ulQ1xLukVUajzTDqxBoVAQ4l52Zu396hbYnH+vHuffK8eJTktg4bEtJGal0sk/1GT5rLwcUrMzDP98nD2wtrRiT5EM95Y+9Vl7bi8no8OJy0hmR/hRTt+6Qo/A5pXSBoC+9Vqz/fIRtl0+zM2UOGYdXk9CRgrd6ph+zzquXsRlJLH+/H/EpidxPvYaWy4dxN+l+OciHcnZ6Ub/Kku/Bh3YeGE/Gy7sJzI5hkn/rSQuPYm+Qa1Nlu9SO4x15/ay68oxbqUlsDP8GBsv7GdAoy5G5ZQKBZ90epE5RzZwKzWh0uIX4m5IZ5wQ4p4sXryYwMBAAgMDGTRoEDNnzkRnYljZRx99xPfff8+5c+do0KABn3/+OTNnzmTSpEmcOXOG9957j0GDBrFrl/7prlarpWbNmixZsoSzZ8/yxRdf8Omnn7JkyZJSY7l+/TpPPfUUvXr14vjx47z66qt8/PHHRmVOnTpF9+7deeqppzh58iSLFy9mz549vPXWW3fd5rS0NAYPHszu3bvZv38/tWvXplevXqSllf5U1s7OjlmzZnH27Fl+++03pk2bxq+//lpq+Yqmyc8n9loU3sHGQ6e8gwOIvlz2F7yFX/7J9Pe+Z8VPM7h+rnKGUeTl5XH54kUahzU12h4a1oRzp8+arHP+zFlCw5oYl2/WlEvnL5Kfn1+w31wsVJZGZSwtVZw9edrw84G9/xFQtw5jP/+agX368/ZLb7BxzbqKaNYjRenijNLBnvxzFws35mvIv3wFc99apVcsxrJlM3KPHIfcws7o/PAILAIDULrps1eUnh6Y+/uQd/p8KXu5d2ZKM3ydPUoM5TwZfZk61Uxn816Mi8TZ2p5GNfRZlA5qG5p7B3P05kWjcv3qdyA1O4MdFdhxVRpzpRl1qnkZZVoAHLp+rtQvpBZm5uTmG3f+5+TnUc+tFmaldK73rtuS7ZePkJ2fWzGBAzejokhISKBF88IvgJaWloQ2bszJU6dKrXfy9GmaNzf+0tiiefMy66Sn678U2tvbm3w9Ly+PlatWYWtrS53ate+lGQb5+flEX72Of4N6RtsDGtQj8uLVu9pH9NXrXL94BZ+gwhhq1fUj+up1blyOACAxJp6Lx85QJzT4vuK8EzOFkhr21UoMvbscd4Naju4m69Sr7sPNlDja+TViVKcXGNn+WXrWbYG50syonKWZBR92fJ5RHQfxYtOeeNi7VEob8vPyuX45gnqNjYcc12tcn6vnL93VPrRaLTlZWVjbFmZo5uflYWFhPDTYwtKS8HMXi1evEGYKJd6O7pyNMT5+zsZcLfEQoDStfRpwPjaiROaWytyS73sOZVyvYbzVuh9ejm4VFndxhddb447uU9Hh1HH1MlnnYtx1o+utvdqG5t5BHIsq/XetMrPAXGFWKZ28ZkolPk4enLll/Lc4c+sK/q5396ConW8jzsZcJaHI38JCaUaexjh7LFeTT+1qpn8v5WWuNMPPpQYnooz/FieiLxNYyr3vQlwkLtYOhqkLHNQ2tPAO4egN47+F2tySSU99wJR+H/FJpxfwdfaotDbUcfUyDIG/7ciNCwRX9zVZx8LMnNxiv+ec/DwCq3ljpii87w0K7UFyVjobL+yv+MAfckqF4qH99/+VjBsTQtyTGTNmMGjQIAB69OhBeno627Zto0sX4ydPX3/9NV27dgX02XS//PIL27dvp2XLlgD4+fmxZ88epkyZQvv27bGwsOCrr74y1Pf19WXfvn0sWbKEZ555xmQskyZNws/Pj19//RWFQkFgYCCnTp1i3LhxhjI//fQTAwcO5N133wWgdu3a/P7777Rv355JkyahVqvv2OZOnYzn9pkyZQpOTk7s2rWLPn36mKzz+eefG/7v4+PD+++/z+LFi/noo49Mls/JySGn2LC/8iyQkZWWiU6rxdrBeOiltb0tmSmmn2TaONjRafATuPnUQJOn4fx/x1j589/0++gVPANNf/i5X6kpKWg1WhydjYeKOTo7kZSQaLJOUkIijs1LltdoNKQmp+Ds6kJos6asWrSMkIb18fCswYkjxziwZx8ardZQ51ZUNOtX/cOTA/oz4MXnuHj2AlMm/ImFhQWde3Yr/rb/byns7QDQphkfL9rUNJTOdzfEz6yWF2aeHmTOX2q0PWfLDhRWauxGf6ifI06hIPufjeQdOV4hsQPYq6wxU5qRkmUcf0pWBo41TA9Jvhh/nYl7lzGi7TNYmJljrjTj8PVzzDpU2Flbp5o3Hf1DK3RetbI4qG0xV5qV+KKdlJWGs7XpjqdD18/Rp14r9lw9wcX46wRW86ZX3ZZYmJnjoLYtsa+6brXwc/FkXJHhSBUhIUGfdeDibDx808XZmehbpc9NlpCQYLLO7f0Vp9Pp+OW332jUsCEB/sbzFe7es4dPR48mOzsbV1dX/vz9dxwdHe+jNZCZmo5Wq8XWwc5ou42DHenJJYewFfXzsM/JSE1Hq9HQsX8vmnRqZXitfqumZKSmM2PMr+jQodVoCevalnaPV871yNpSjZlSaZgL6ra03Exqq0x3EDhb21HLyZ18rYb5RzZhbanm8eC2WFmoWXFqJwBxGUksP7mDW2mJqM0taOVTnzdaPsEfu5eZHKZYHumpaWi1WuwcHYy22znYk5p8d++1fdUGcnJyCG1T2PFbr3F9tq/eSEBIIK7ublw4cZaTB46iK3IPqUi2KmvMlEpSczKNtqfmZGCvvvMUEQ5qG0Lc/Zh+0Dij/FZaIrMOr+NmShxqCxWdA5oyqsMgvt46s1Kyee1uX2+zjbPvUrLTcbAyfb29FH+dP/cu5+02Txe53p5n9qH1pb7Ps427kpiVyunoin9QaGdZ8Lcolu2Vkp1BiPrO01g4qG2p7+HPlP2rjLafvnWF7oHNuRgXSWx6EvWq+9LYs06ldUAU/i2K3/vSS733XYiL5LfdSxjZ7lnD3+LQ9XPMKHJc3UyJZ+Le5UQmx2BtoaJXvVZ82+N13v9nIrfSKjbDzEFtg5nSjKSskvc9J2s7k3WO3DhPz7ot2BdxkkvxN6jj6kWPwBaF972sVIKr+9IjsAVDl/9YofEKcb+kM04IcdcuXLjAwYMHWbFiBQDm5uYMGDCAv//+u0RnXNOmhRlPZ8+eJTs729A5d1tubi6NGxcOw5g8eTLTp0/n2rVrZGVlkZubS6NGjUqN59y5c7Ro0cJoQtLbnX23HTlyhMuXLzN/fuGXTJ1Oh1ar5erVq9SrZ5zhYEpsbCxffPEF27dvJyYmBo1GQ2ZmJpGRpWeYLVu2jAkTJnD58mXS09PJz88vNWMD4PvvvzfqjAQYM2YM1bqWb6JxKPZhT6ejtM9/Th7VcCqyUINHgDdpiSkc3bSnwjvjDNEVC0an05U5wWyJl25nZRa88MaI4fz+4y8Mff5lUIBHjRp06dWdres3FVbR6gioW4fBb7wCgH+d2lyLiGD9qn/+X3fGWYQ1xvq5wvmp0v8qWGyheObrPXyBsGzVDM3NaDTXjDNwLJo0xLJZKJmzFqCJjsGsZg2s+j2GNiWVvANH7rsNppTI21VgMpsXwNOhGoOb9mL5qZ2cjLqMo5Udz4d249XmfZmyfzVqc0veat2PaQfWkFbsy3NVKK0dsw9vwNnKnklPfQgKSMpMY+OF/Qxs3A2trmSnQu+6rbiScJPzZUzufTc2bNzI2CIPQyaMHw/c+3leUOmu6/z4889cvnyZ6VOnlnitaZMmLJgzh+SUFFauXs0nn33GrBkzcHYuOb/bXSsRxp3b88qX75KbncP1SxFsWbgaZ/dqNGitv09ePXORf1duos8rA6gZUIuEW/FsmL2MnY72dOjX8/7jvIPiR48ChYmtRV+Dxce3kVOQPbn+3D6eC+3GmjO7yddquJ4cy/XkWEOda0m3GN6mPy19Qlh7dm9lNKHkLa5IrGU5vOs/1i9cyeufvYudY+G9uf9rg1g48W++GTYKBQpcPdxo0aUt+7eaHoZcYYqdywoUpf0pjLSsVZ+svGyOF8vevZoYxdXEKMPP4fE3+LzLEDr6h7L4xLYKCdm0kkdVaYvyeNpXY3DTnqw8tYsT0ZdxsrJlYONuvNysL9MOrC5Rvk9Qa1rVCuGbrbMqbZ4yuLfzoqg2vg3IzMvm6E3jbK4Fx7YwpGkvxvYcig6ITU9iz9UTJhd+qEgl7g9lXKNqOlTj5WZ9WHpyOyduXsLR2o4Xm/Tk9RaPM+m/lYC+87RoNu352Eh+7DOcXnVb8PehyhldYKoJpf0l5h3dhJO1Hb8/MRIF+o67zRcPMKBRF7Q6LVYWKkZ1fIFfdy+q9CHbQtwt6YwTQty1GTNmkJ+fj6dn4dAJnU6HhYUFSUlJRhNiF52YW1vwRHndunVGdaEw+2vJkiW89957jB8/npYtW2JnZ8dPP/3EgQOlz29W2hfRorRaLW+88QbvvPNOidfKWniiqCFDhhAXF8eECROoVasWKpWKli1bkptrejjX/v37efbZZ/nqq6/o3r07Dg4OLFq0iPEFX0xN+eSTTxg5cqTRNpVKxfTDpudPuxMrO2sUSiWZKcZDaTPTMrCyv/uFCjz8vDi/v+JX97R3cEBppiyRBZeSlFwiW+42JxdnkhKMn+gnJyVjZmaGvYP+y5SDkyOjv/+a3JxcUlNTcXF1Yeak6VT3cDfaj7eP8TBLr1re7NtZyV+2HnJ5J8+SFlGkg7lgEQalvR2a1MLjSGlniy71LibOtrDAsklDstaWnBvM6sk+ZG/eQd4R/bGljbqF0tkJdbdOFdYZl5qTiUarwbFYVoaD2qZE9sZtTwS35WJcpKHjIDI5hpyDuXzV/VUWn9iGg9oWN1snPuww0FDndifM/IFjGLnmd2IqOOskJTudfK2mRBack5VdqROY52ryGLdzHj//uwBnK3sSMlPoG9SGjNwsUrKM264yt6BTQBP+PrS23LG2a9uWkODCoZW5BfNkxick4OpaOKF+YlJSmZ1hLi4uJbLgSqvz488/8+/u3UydPJnqbiWH4d2eK9TLy4v6ISE82b8/q//5h5cGD77n9lnb26JUKklPNv69Z6SkY+NgOlvjNqeCIdnVvT1JT0ljx7L1hs64bUvW0bBtM0O2XHVvT/JyclgzbSHtnuxe4fN2ZuZmo9FqsVNZGW23tbQqkS13W1pOJqnZGYaOONB3KigVChzUtiYz33TAzeQ4XKwdSrxWXrb2+vlM05KM3zc9JdWoc82UI7v3M/+PGbwy6i3qNjJ+4GXnYM/rn71LXm4uGWnpODg7sXr2ElyqV86K4uk5mWi02hJZcHYq67vqMGjtU5/9kWfQmOhkL0oHRCTeorpdOTqhy5BWcL11UN/99faxkLZcjLvO2nP66+315Bhy8tcxptsrLD2xzWg+st71WvF4cFvGbpvD9Upa9CAtV/+3KN4Ge7V1qW0oqq1vQ/ZFnDLKxAf97+aPvcswV5phq7ImOSuNpxt0JD4juSLDN3o//b3P+JrkoLYhOcv0yIgnQ9pzIfYaa87oF1C6lhzDtPw1fNvjdRYe30qyiXuNDh3hCTfwsC+5WEp5pWRnoDFx33NU25GcWfp9b/yuhUz4dzFO1nYkZqbSq24rMnKzScnOwM+lBh72LnzT/TVDndv3742v/sJLi78juoIz/B42CoXMUPawkc44IcRdyc/PZ86cOYwfP55u3Yyzh/r168f8+fNLnYctKCgIlUpFZGQk7du3N1lm9+7dtGrVimHDhhm2hYeHmyxbdL+rVq0y2rZ/v/EcEKGhoZw5c4aAAOO50+7F7t27+euvv+jVqxegn6suPj6+1PJ79+6lVq1afPbZZ4Zt166VnXGiUqnKNSy1ODNzc9xq1SDy7GX8mxR+OY48cxm/xnfOBrwtNjL6jl8y74eFhQUBdepw7NARWrVvY9h+7PARWrRpZbJO3eAgDu77z2jbsUOHqV23TonVei1VlrhWcyU/P599u3bTtlPhcRdUP5ibkcaZWjev36CaiRVc/1/JyUEbZzxUWpuSinndOmhuFGRYmJlhHuBH1urShxHdZtmkIZibk3fIxLxqFhYlH3lrtfeUdXcnGq2Gq4nR1Hf3N5pvrb67P4dvmJ6bztLcwvDwwBBWQZwKFESlxPPBPxONXh/QqDNW5ipmHV5PvInV9sorX6vhYtx1mtasy+4ik4I3rVmXPREny6gJGq2WuIIvfJ0CmvDftdPoiuUVdPRvgoWZOVsuHip3rDY2NkYPYnQ6HS4uLhw4eJC6gYGAfu62o8eO8fbw4aXup0FICAcOHuT5554zbDtw4AAN6tc32veP48ezc9cupvz5J5417m4BFh2U+iDlTszNzfHw9SL81HmCmhVmtYSfOk/dpvXLqFk8CB2avMLMnrzc3BKZdQqlsrSEonLT6LREpcYR4OrF2SKrAQe4enI2NsJknWtJtwjx8MOyyLxMrjaOaHXaUldfBfCwd+FWmumpB8rD3MIcrwAfzh8/TcOWhZn454+fpn4z05Ptgz4jbv4f0xnywTBCwhqVWs7C0hJHF2c0+fkc33fIaChrRdLotEQm3yKoug/HowrnuqtX3YcTUWXPfVenmhfV7ZwNmUt34uXoxs2UuHLFWxrD9dbD+Poa4uFXYt6v21RmFiU6EQ2Zu0XOhz71WvNESDt+2D7XKNuvomm0WiKSogl29zXKbguq7lsi87C4wGreVLdzNrpGF5ev1ZCclYaZQkmTmnVLzANaUfK1Gq4kRNGgRgAHrxfOwdvAI6DU91SZm/hbFNwLy7or+zh5VMqKsPlaDRfjrxPqGcjeIve50JqB7Isofe5Q0J9Tt1eM7egfyoHIM+jQEZkcw2tLfzAqOySsF9YWav7at8JwrxTiQZLOOCHEXVm7di1JSUm88sorODgYP+Xu378/M2bMKLUzzs7Ojg8++ID33nsPrVZLmzZtSE1NZd++fdja2jJ48GACAgKYM2cOmzZtwtfXl7lz53Lo0CF8fUsfHjl06FDGjx/PyJEjeeONNzhy5EiJ1V1HjRpFixYtGD58OK+99ho2NjacO3eOLVu28Mcff9xV2wMCApg7dy5NmzYlNTWVDz/8ECsrqzLLR0ZGsmjRIsLCwli3bh0rV97dh+WK1Lh7azZPW4abjyce/t6c3nWI9MQU6ndoBsDeZZvISEql22tPA3Bs817sXZ1w8XRDk6/h/H/HCT9yhl7DB5b1NvftyWf7Mf6bcdSuW4e6IUFsXLOOuJhYej3RF4BZk6eTEBfP+6P1i3L0eqIPa1esZtofk+jetxfnT59l89qNfPTlp4Z9nj9zjoT4ePwC/EmIT2DB33PQarX0GzjAUOaJAf34YOgIFs9ZQNtO7bl49jwb16zn7Y/eq5R2lsXKQkVNh8KMixr2rtR2rUlqdkaFZ1jdj5wdu1F374Q2Lh5NbBzq7p3R5eaSe+iYoYz1i8+iTU4he80Go7qWLcPIO3EGXUbJ4Zz5p8/p95uYhDY6BjMvT1Sd2pH7X/k7hIpad24fw1s9xZXEm1yMu06X2k1xtXFg6yX9+zzbqAvO1vb8tU8/9P7ojQu81uJxutYO40S0fpjq4KY9uRx/w5CFdiMl1ug9MnOzTW6vSEtObOOzzoO5EBfJmVtX6BPUBjc7Z0MWw2vNH6OajSNjt88BoKaDG/XcanE2NgI7lTXPNOiEr7MH3xe8XlTvei3Zc/VEpQzbUSgUPDdgADNnz8a7IDtt5uzZqNVqehR5qPPFV1/hVq0abxU8jHl2wABef/NNZs2ZQ4d27dj5778cOHSIGVOmGOqM++knNm7ezPgff8Taxob4gkw6Wxsb1Go1WVlZ/D1rFu3atsXVxYWUlBSWLl9ObGwsXTp3vu82terdiRV/zsHTzxuvOr4c3rqXlPhEwrroV7bdsnA1qYkp9Bv+IgAHNu3CwdWZajX0nf3XLoSzd+02mvcofEAQGBrCf+t34OFbk5oBPiTcimP7krXUbVK/0laz3nP1JE837MTNlFgik2II8w7CwcqOg9f0X967BTbDXmXDspM7ADgRdYmOAU3o16Aj2y4dxtpCTc96LThy/QL5Wg2g7/C9nhxDfEYKanNLWvrUx8PexXCcVrROj/dgzq9T8A7wxbduAHs37SQxLoG2PfXzvK6evYSUxCRefO8NQN8RN2fCVPq/9jy+gf6kJiUD+o43KxtrACIuhJOckEhNv1okJySxfuFKdDodXZ7qVSltANhy8RAvN+vDtaRbhCdE0c6vIc7W9oZVtp8MaYejlR0ziw0FbOPTgCsJUUSllnw42Kdea64kRhGbnojaXEXngCZ4Obqx4NiWSmvH+vP7GNbyKa4kRHEp/jqdApriau3AtoLr7YBGXXC2sjN0Hh69eYFXmz9Gl9phnIy+jKOVLS800V9vb2di9QlqzdMNOjFx7zLiMpINWWvZ+blGWZoVZfOFA7zW/HEiEqO5HH+D9v6NcbF2MCzW079+Bxyt7Zh+wHjUQju/RoQn3DTZ2ennXAMnKzsik2NwtLLjiZC2KBQK1p//r0TZivLPub283bo/VxJuciEukq61w3C1cWDzxYMADGzcDRdre/7Yq19p/vCN8wxt+STd6jTjeNQlnKzseCmsN5firhvufU836MTF+EiiUxOwtlDTq15LfJw9SvwuKsrykzsZ1XEQF+MjORcTQa96rXCzdTJkUr4c1gdXGwd+LJjr1NOhGnWr1eJ87DVsVVb0a9ARH2cPw+t5mnwikqKN3iOjIBO4+HYhHhTpjBNC3JUZM2bQpUuXEh1xoM+MGzt2LEePlr6y4DfffIObmxvff/89V65cwdHRkdDQUD79VN+RMnToUI4fP86AAQP0X+Cee45hw4axYcOGUvfp7e3N8uXLee+99/jrr79o1qwZY8eO5eWXXzaUadCgAbt27eKzzz6jbdu26HQ6/P39GTBgQKn7Le7vv//m9ddfp3Hjxnh7ezN27Fg++OCDUss//vjjvPfee7z11lvk5OTQu3dvRo8ezZdffnnX71kR6jRrQHZ6JgfX7CAjJQ0Xz+o89u6L2Lvqh4FmpqSRllg4xEer0bBnyQbSk1Ixt7TApYYbj737Ij4NAislvnadO5KaksrCWfNITEiklq8PX/00FreCDLXEhETiYgo7ONxrePDVT98x7Y9JrF2xBhdXF954dzitO7QzlMnLzWXutJnciorGysqKpi2a8f7oUdjaFQ47qVOvLp+P/YpZU6azcNZcqnt48Po7b9Kx2/1/Qb9fdavVYuKThcOT32mj7xhdf+4/vts++4HHU1zOlp0oLCywGvAkCmsrNBGRpE+cBkUWG1E6OZbIclO6uWIe4Ef6HyXn8ALIXLIKqz7dsX72KRS2tmhTUsnds5/sDVsrNP7/rp3Wfyiv3wFHKzuuJ8fyw455hqfmTlZ2uNoUXtN2XTmO2kJFt8DmDGrSnYzcbM7EXGXB0ZJDbR+kHeFHcVDb8GKTnrjY2HM1MZpR6/4iJl2fceRi7YCbbeHwbjOFggENO+PlWJ18rYZjURcZvnJ8iQylmg5uNPAI4P1/7u7BxP0Y/MIL5OTk8MNPP5GWlkZIcDATf/vNKIPu1q1bRpOZN2zQgO+++YZJU6YweepUanp68v233xISUjikcFnB3KVvFMmmBhjz+ef07dMHpVJJREQEa9evJzk5GQcHB4Lq1WPa5Mn4+5lehfZu1G/VhKz0DHYu30BacipuXh4M+ngYjtX0w//SklJJiS/8Pet0OrYuXENSXAJKpRLn6q50fe5xmnZpbSjT/qkeKBQKti1eS2piCjb2tgQ2CaHzgL73HeednIoOx9pCTaeAptiprIlJT2T2ofWGoYF2KhujYW65mnxmHlxLn+A2DGv9FJm5OZyKDmdLwZd7ALWFiifqt8fO0prs/FyiUuOZun9NpXVUN2nbgoy0dDYsXk1qYjIetWoy7Iv3cS4YEpyalExiXOGwsz2bdqDVaFgyeQ5LJhd2TDfv1IYX3n0d0Gdurp2/nPhbcajUKoKbNuTF994wWnG1oh2+cR4bSyt612uNg9qGqNR4/tiz1LDQioPatsRwPStzS0I9A1lUyvxv1pYqXgjtjr3ahqy8HK4nx/LTzgWV2umw/9oZbC2teap+exyt7LiRHMuPO+cbrreOaltcilxv/71yHLW5im51mvF8aDcyC663C4t0GHatHYaFmTnvtXvW6L2Wn9zB8lM7K7wNB6+fw0ZlzWPBbXBQ23IzJY5fdy8yrI7qYGVbYti1lYWKJjXrsuCY6fuEhZk5T9Zvj5utE9n5uZyMvsy0/WvIyssxWb4i7Is4hZ3Kmv4NOho6Asdum2MYGlv83rcz/BhWFip61m3B4KY9ycjN5vStK8w7Ujjfro2lmqEtnsDRyo7M3GyuJkXzxcZpXE64USlt2HXlGPZqGwaFdsfZ2oGIxGg+2zDFsACJi7V9sfuekv4NOlLT0Q2NVsPxqEuMWD3BcJ8UdzefpniwFLq7mXRJCCFElfiz4Knl/7LhrftzOe76nQs+xAKqedH6z6FVHUa57R0+meThH1Z1GOXi+OdPPDvvi6oOo9wWDfqa9pNKH6r5v2LXm3+SllT1WZzlYefkxOJKzBh6UAY07sqn6ydXdRjlMrbXULZcKH2u2P8VXQOb8/qycXcu+JCb2n8UA+ePqeowymXB81/x0uLvqjqMcps54DP6z/nszgUfYste/I6uU0dUdRjltuX136o6hPvy8boHswr8/fih95tVHUKVkFn8hBBCCCGEEEIIIYR4QGSYqhBCCCGEEEIIIcQjSlmBi2SJiiGZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEKGab60JHMOCGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGRYapCCCGEEEIIIYQQjyhZTfXhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUQpkmOrDRjLjhBBCCCGEEEIIIYR4QKQzTgghhBBCCCGEEEKIB0SGqQohhBBCCCGEEEI8ohSymupDRzLjhBBCCCGEEEIIIYR4QKQzTgghhBBCCCGEEEKIB0SGqQohhBBCCCGEEEI8opQyTPWhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUbKa6sNHodPpdFUdhBBCCCGEEEIIIYSoeF9v+buqQyjVF11fruoQqoRkxgkhxEMsZdyEqg6h3BxGvUtaYmJVh1Euds7OJA//sKrDKDfHP3+i9Z9DqzqMctk7fDIpY3+p6jDKzeHTkSQPHVnVYZSb4+RfSEtNreowysXO3p6UuYurOoxyc3hhAMnvf17VYZSL4/hvSbt8parDKDe7AD9Sfvy9qsMoN4eP3iHlu/FVHUa5OHz2PsmD3qjqMMrNcd4Ukl95u6rDKBfHGX+Q/N6nVR1GuTn+OraqQxCPCJkzTgghhBBCCCGEEEKIB0Qy44QQQgghhBBCCCEeUUpkzriHjWTGCSGEEEIIIYQQQgjxgEhnnBBCCCGEEEIIIYQQD4gMUxVCCCGEEEIIIYR4RCkUMkz1YSOZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEyTPXhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUUoZpvrQkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKAUyTPVhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyKdcULco8OHD/Prr7+i1WqrOhQhhBBCCCGEEKJMSoXiof33/5V0xon/eRERESgUCo4fP15h+1QoFKxatarE9vj4eJ555hlCQkJQKiv+9Pnyyy9p1KhRhe/3/5MhQ4bwxBNP3HX5nTt3olAoSE5Ovu/3nDVrFo6OjvddXwghhBBCCCHE/x+ygIOoUkOGDGH27NkAmJmZUaNGDXr37s3YsWNxcnKqsriio6NLvL9Op+PFF1/kiy++oGvXrlUU2aNBoVCwcuXKe+o0E3dH1boFlg1DUKjVaKJvkbVlO9r4xDtUUqFu1wqLOgEo1Cq0Kalkb/+X/CsRAJjV9ETVvAlm1d1Q2tmSseIf8i+FV1jMOp2OqTNmsHL1atJSUwkODmbUBx/g7+dXZr1tO3YweepUbty8SU1PT4a98QYdO3QwvD5z9mx27NpFxLVrqFQqGtSvz9vDhuFTq5ahTEJiIn/8+Sf7Dx4kLS2N0EaN+PD99/H28qqQtql7dcWydXMU1tZoIiLJXLISbXRMqeVtRwzFvI5/ie15p8+RMelv/Q9KJepeXbEIC0Vpb4c2NZXc/YfJ2bgNdLoKifteNfQIYGDjbtR188bVxpGP109i99UTVRJLaVRtW2LZqL7+3IiKJmvTdrTxCXeopELdoTUWgQEo1Gq0ySlkb/uX/PCr+pdbhmEeWBszF2d0+flobkSRvWM32sSkSmmDuk93LNu0KDierpG5cHnZx9PIYZjXCSixPe/UWTL+nG5oo9VjPbFoFILCzg7N9RtkLVmF5tr1e45Pp9Mxddo0Vq5cSVpamv5c/ugj/P1LHtNFbdu+ncmTJ3Pjxg1q1qzJsDffpGPHjkZlli5dytx584iPj8fPz4/3R46kcePGhtenTJ3K5s2biYmJwcLCgnp16zJs2DBCQkJMxjlixAj2/fcfP//0E30fe+y+2jrt3x2sOnaEtOwsgmvU5MOeffCv5nZX9TefOcXnK5fSrk5dfn5moNFrsampTNy+mX3hl8jJy8fbxYXP+zxBPY8a9xznnai7dcKyRVMU1lZort0gc8U/aGNiSy1v++YrmAf4ltied/YCGTPmAmDZshmqVs1QOjsCoLkVS/aWHeSfv1Th8UPBcbdgPis3biAtPZ3gwEBGvTkc/yLX+uLCr11j8ry5nL98iejYWEa+9joDn3jSqMyydWtZtn4d0TH6c8yvVi1efW4grZuGVUo7TFG1bo5lw2AUqtv39J1oE+50T7dE3bYVFnX8C+/pO3aTf+Xag4m5bUssGzdAoVahibpF1sZtd3mtbYNF3SLX2q27DNday9CGWIY2ROloD4AmLoGcPf+RHx5Rae1QP9UHy45tUdhYowm/SuashWhvRpfdjO6dsezSDqWLM7q0dHIPHiV7yUrIyzeUUTg5YvXsU5g3CEZhaYn2VgyZ0+agiYis+DY81hPL9q315/eVa2TOX4I26lbZbejSAcuObVA6O6FLzyD38HGyl6+BfH0bLDu0QdWhDUpXZwA0UbfIXrOR/NNnKzx+Qzu6d8ayZRgKKys0kdfJXL4G7a0yrlPDX8U8oORnyLyz58mYNsewT3WPzkava1PTSB3zfcUGL0QZpDNOVLkePXowc+ZM8vPzOXv2LC+//DLJycksXLiwymJyd3cvsU2hULB+/foqiEaIu2PZvCmqsMZkrt+MNjEZVatm2DzzFGnTZ0NunulKSiU2A55El5lF5qq1aNPSUdrZocvNNRRRWFqgiY0j99QZbJ7sW+Fxz543jwULFzJm9Gi8vbyYMWsWw0eMYPmiRdjY2Jisc/LUKT4dPZqhr71Gx/bt2bFrFx9//jkzpkwhJDgYgKPHjvF0v34E1auHRqPhr8mTeevdd1m6YAFWVlbodDo+GDUKc3Nzxo8bh42NDfMXLmTYO+8YypSHqmsHVJ3akTl3MZrYONQ9umD71mukfv0T5OSYrJMxbTaYF96aFTbW2H3yHnnHThrt17JtSzLnLEIbHYNZrZpYD3oGXVY2uTv3lCvm+2VloeJywg3Wn9/H2J5DqySGsli2CEPVLJTMtZvQJiahat0cm+f6kTZlZtnnxnP90GVmkrliLdrUNJT2xueGmbcXuUeOo4mOAaUCdfs2+v1OnWX05asiqLp1QtW5PZmzF+qPp55dsR0xlNQxP5R+PE2eBeZmhp8VNtbYff4BeUcLO0qtX3gGsxoeZMxcgC4lFcvmTbB9dyipX/2ILjnlnmKcPWcOCxYsYMwXX+Dt7c2Mv/9m+FtvsXzZstLP5ZMn+fTTTxn6xht07NiRHTt28PEnnzBj+nRDR9rmzZsZ/8svfDxqFA0bNmTFihW8M2IES5csMdyva3l789GHH+Lp6UlOTg4LFi5k+FtvsWrlyhIP1xYsXAjlHBYz5789LDzwH1889iTezi78vWcXb8+fzdI338FGpSqzbnRyMr9v3UQjr5KdRalZWbw2ezpNavny27Mv4GRjw42kROxU6nLFa4qqY1tU7VuRuWgFmrh41F06YPvGEFLHTYCcXJN1MmYtMD6mrK2xe384eSdPG7ZpU1LIWrfZ0AFjGdYYm5eeJ+2Xv8rs6Ltfs5ctZcHKFYx57328PT2ZsXghwz//lOVTpmFjbW2yTnZONjXd3enSpg2/TJtqsoybqytvDXkJrxr6TtC1W7fy/jdfM//3iWV29FUUy2ZNUDVtTOb6LWiTklC1bIbNgCdImz637OvWM0/qr1ur1xfc023RlVa+omNuGYaqeRMy/9lYcK1tgc3A/qRN/rvsmAf218e8/J+Ca6290bVWm5amf9CRlAyARYMgrJ9+gvTpc+/c0XcfVH26o+rZhcwps9HcikH9eC9sP36X1A+/gGzT11uLVs1QD3iSzGmz0Vy6gtLdDes3hgCQPX8pUHC+fPEheecukvHTH+hS01BWr4YuM7Pi29CzC6puHcn8ez6amFjUfbpj+/5bpH72TeltaN4Udf/HyJw5H83lq/o2vDxI34bFKwDQJiWTtXwN2tg4ACxbNcfm7ddI+2rcHTv67qsdndqh6tCazAXL9deprh2xHfoyqd//Uvp1auZ8MCt27/vgbfKOnzYqp4mOIX3SjMIN2qp5oPmgKP4fDwd9WMkwVVHlVCoV7u7u1KxZk27dujFgwAA2b95sVGbmzJnUq1cPtVpN3bp1+euvv0rdn0aj4ZVXXsHX1xcrKysCAwP57bffSpT7+++/CQ4ORqVS4eHhwVtvvWV4rfgw1VOnTtGpUyesrKxwcXHh9ddfJz093fD67aGRP//8Mx4eHri4uDB8+HDy8sr+8PPDDz9QvXp17OzseOWVV8jOzi5R5l7aDrBx40batGmDo6MjLi4u9OnTh/Dwwiym3Nxc3nrrLTw8PFCr1fj4+PD994VPgRQKBZMmTaJnz55YWVnh6+vL0qVLjd7j5s2bDBgwACcnJ1xcXHj88ceJiIi4q9+vj48PAE8++SQKhcLwM8CkSZPw9/fH0tKSwMBA5s6dW2ZbNRoNI0eONLT1o48+QlcsM0in0/Hjjz/i5+eHlZUVDRs2ZNmyZWXut7hffvmF+vXrY2Njg5eXF8OGDTP6+xcXHh7O448/TvXq1bG1tSUsLIytW7fe03veD1XTxmT/d4j8i+Fo4xPIWrcZhYUFlvXqllrHskEwCrWazBX/oLkZjS41Dc3NKLRx8YYy+VciyNn9H/kXKy4b7jadTsfCxYt5acgQOnXoQIC/P1+NHk12djYbi10Hilq4eDHNw8J4afBgfHx8eGnwYJo1bcqCxYsNZf6YMIG+vXvj7+dHndq1GfP559y6dYtz588DEHn9OqdOn+bjDz8kOCgIn1q1+PjDD8nKzGTTli3lbpuqY1uyN20j78RptNExZM5dhMLSEsuwxqXW0WVmoUtNM/yzqFsbcvPILdJ5Yu5bi7yTZ8g/cx5tYhJ5x06Rd+4S5rVqljvm+7U/8gzTDqxh15XjVRZDWVTNGpO99yD5Fy6jjUsg659NKCzMsQwu49xoGILCSk3msjVobkTpz40bUWhjC8+NzMUryDt1Fm18AtrYeLLWbULpYI+Ze/WKb0PndmRv2Ere8VNoo26ROXuB/nhqFlpqHV1mpvHxVC9QfzwdKTieLCywaNyArBX/oLl8BW1cPNlrN6GNT0TVrtU9xafT6Vi4cCEvvfQSnTp1IiAggK++/FJ/Lm/aVGq9hQsX0rxZM1566SX9ufzSSzQLC9N3mBWYv2ABjz/+OE888QS+vr68//77VK9e3eha3qNHD5o3b07NmjXx9/fnvXffJSMjg0uXjLOxLl68yIL58/li9Oh7al/xti46+B9D2rSjY90g/N2qM+axp8jOy2PT6ZNl1tVotXyxahmvteuIp4kRAHP+242bvT1fPPYkwZ41qeHoRDNff2o6O993vKVRtWtF9tZd+mP4ViyZC5ejsLTAsnHDUuvosrLQpaUb/lnU8Ye8PHJPFH7JzT97gfzzF/XnRXwC2Ru2osvNxbxWxWQcG8Wj07Fw9SpeGvAsnVq3JsDHh69Gvk92Tg4bd+0stV5wnUBGvPIq3dt3wNLCwmSZds1b0CasGbU8a1LLsybDBw/BWq3mVME9pLKpmjbS39MvhaONTyRr/RYU5hZY1gsstY5lgyD9PX3luiL39Gije3qlxtwslOy9B4pcazcWXGvrlR5zo4Jr7dLVRa61Nw2dPQD5l66QH34VbWIS2sQkcnbuRZebi5mnR+W0o0dnsldvIO/wMbQ3osicMkt/vW3VrNQ65gF+5F8KJ++/Q2jjE8g/fY7c/w5h7lfYcavq2x1tYhJZU2ejuRKhL3fmvNF9pcLa0KUD2es2k3f0BNqb0WTOmKc/v5s3Lb0N/r7kX75C3oEjaBMSyT9zntwDRzD38TaUyT9xmvxTZ9HGxKGNiSN75Vp0OTmY+/lUeBsAVO1bkb1lJ3mnzuizCBcs1bcjtFGpdXSZxa9TAQXXqVPGBbUao3K6jIxKaYMQpZHOOPFQuXLlChs3bsSiyAejadOm8dlnn/Hdd99x7tw5xo4dy+jRow3DW4vTarXUrFmTJUuWcPbsWb744gs+/fRTlixZYigzadIkhg8fzuuvv86pU6dYs2YNAQElh/IAZGZm0qNHD5ycnDh06BBLly5l69atRp13ADt27CA8PJwdO3Ywe/ZsZs2axaxZs0pt65IlSxgzZgzfffcdhw8fxsPDo0RH2722HSAjI4ORI0dy6NAhtm3bhlKp5MknnzQsOPH777+zZs0alixZwoULF5g3b55RhxjA6NGj6devHydOnGDQoEE899xznDt3zvD76NixI7a2tvz777/s2bMHW1tbevToQW7BU8yyfr+HDh0C9J2M0dHRhp9XrlzJiBEjeP/99zl9+jRvvPEGL730Ejt27Ci1rePHj+fvv/9mxowZ7Nmzh8TERFauXGlU5vPPP2fmzJlMmjSJM2fO8N577zFo0CB27dpV6n6LUyqV/P7775w+fZrZs2ezfft2Pvroo1LLp6en06tXL7Zu3cqxY8fo3r07ffv2JTKy4ocg3KZwsEdpa0P+1SLDUDQa8q/fKPPDqnmAH5qoaKy6dsTurdewfXkQqhZh5c4auVs3o6JISEigRbPCD7iWlpaENm7MyVOnSq138vRpmjcz/lDconnzMuvc7kC1t9cPc8krOF5VlpaGMmZmZphbWHD8RPmGWCpdnFE62JN/7mLhxnwN+ZevYO579xkVli2bkXvkuFFGQX54BBaBASjdXPXv5emBub8PeacfzBfE/zUKRweUtrbkX40o3KjRkB95AzPP0of9mdf2R3MzGqvunbAb8Qa2r72IqlWzMs8NRUFGlM7Eg5XyULrePp4uFG7M15B/KfyevgBZtm5O7uFjcDvjRKlEYWZWIotPl5dncihiWW7evKk/l1u0KHw/S0tCQ0M5ebL0DqqTp07RvEgdgBYtWxrq5OXlcf78eVo0b25cpnnzUvebl5fHypUrsbW1pU6dOobt2dnZfPb553z40Ue4urreU/uKikpOIiE9nRZ+hZ8bLM3NCa3lw8kbZQ/vnbF7J442NjzeuInJ13dfvEA9D08+Xr6Y7r+MY9C0v1h19PB9x1oapbMTSns78i9eLtyo0ZAfHmH0xftOLJs3IffYqdKznhQKLBrVR2FpSf61ir8H3rx1i4SkJFqEFnZKW1pYEhpSn5PnKm7YnEajYdOunWRlZ9OgjAdcFcVwTy86dFGjIf/6zbLv6f637+kdsBv+KrYvPY+qRdMHck83XGuvFPscEnkDs5p3uNbeiMKqR2fsRgzF9rXBZV9rFQosggJRWFiguRlVwa0AZTVXlI4O5J8qcvzk55N//iLmtUsfcp9/8TLmPt6YFVyTldVcsWgYQt7xws8lFqENyL9yDeu3X8f+z5+w/fYzLDu0qfg2uLro23CmyOeC/HzyL1zG3L/0a3v+5XDMa3lhVvA5RenqgkX9IPJOnjFdQaHAolmo/vyuhCHDShcnlPb25F8o8lBFoyH/8lXMfe/lOtWU3GMnS1ynlK6u2H/5MXaff4D1C8+idKm6KZLE/08yTFVUubVr12Jra4tGozFkhv3yyy+G17/55hvGjx/PU089BYCvry9nz55lypQpDB48uMT+LCws+Oqrrww/+/r6sm/fPpYsWcIzzzwDwLfffsv777/PiBEjDOXCwkzPATJ//nyysrKYM2eOYZjNxIkT6du3L+PGjaN6dX0GhJOTExMnTsTMzIy6devSu3dvtm3bxmuvvWZyvxMmTODll1/m1VdfNcS0detWo+y4e207QL9+/Yx+njFjBm5ubpw9e5aQkBAiIyOpXbs2bdq0QaFQUMvEUIunn37aENc333zDli1b+OOPP/jrr79YtGgRSqWS6dOnG9KdZ86ciaOjIzt37qRbt25l/n6rVasGgKOjo9Fw4J9//pkhQ4YwbNgwAEaOHMn+/fv5+eefS8wdVPR3+MknnxjaPHnyZDYVycDIyMjgl19+Yfv27bRs2RIAPz8/9uzZw5QpU2jfvr3J/Rb37rvvGv7v6+vLN998w5tvvllqlmLDhg1p2LAws+Dbb79l5cqVrFmzpkQnbkVR2uqPzeJDHXQZmSgc7Euv5+iA0sFLP4/G0tWYOTui7toRlEpy9h2olFiLSkjQDy9xKZb14eLsTPSt0oc7JCQkmKxze3/F6XQ6fvn9dxo1bEhAwfxVPj4+eLi7M3HSJD4dNQorKyvmL1xIQkIC8aXs524p7O0A0KYZZ1BqU9NQOt/dhz2zWl6YeXqQOd84MzVnyw4UVmrsRn+onyNOoSD7n43kHTlerpgfVUob/TA1XcY9nhtOBefG6fNkLF6JmbMT6m6d9OfGnv0m66g7tyf/+g20cRU7bEpR0IGsTU0z2n5Px5OPt/54mluYPUpODvnhV1H37krGrRh99lxYKGY+3vecqVFZ53JycjIajQbnYmWcXVxKnKe7d+/m088+Izs7G1dXV/6cONFocZ3xv/xCgwYN6HCX1/5SYy7o2HcuNvTW2caG6JTkUuuduH6NNcePMu+1N0stczMpiRVHDjGweUteat2OMzdvMH7zeizMzendoFG54i5KYW8LmLhGpaUb5nq7EzMvT8w83MlcvLLEa0r36ti987p+2H1uLhkzF6CNiTOxl/JJSNLPz+jiaHweuDg6Eh1X/iGxlyOu8tL7I8nNzcXKyoqfPh+Nn3flD1E1XLeK39MzMw33F5P1HO1ROtTUz+G3bDVmTo6ou3YouKcfrMyQURacD8Wzi3QZmYZrmMl6jo4ofez1c6MuXqG/1nbvXOJaq6zmiu2Q5wzHVOayNXeeE/c+KArmpdOmpBpt16akGeZJMyVv/2Gy7Oyw/eJDQIHC3IycrTvJ+afwc6myWjVUnduTs3ErGWs2YObvg9WLA9Dl55NXyn3lvtrgcPueUawNqWkoXcpow8GjZNnaYvvxu4Vt2LGbnA3GowWUnh7Yffo+WJhDTg4Zf05HG13xQ1QVdqV8lkpPR+nkeFf7MPOuiVkNdzILhtneln/tOpoFS9HExaO0s9UPf31nKGnjJqDLzKqQ+B82CoXkYT1spDNOVLmOHTsyadIkMjMzmT59OhcvXuTtt98GIC4ujuvXr/PKK68YdWrl5+fj4OBQ6j4nT57M9OnTuXbtGllZWeTm5hpWKY2NjSUqKorOnTuXWr+oc+fO0bBhQ6P5blq3bo1Wq+XChQuGzrjg4GDMisxP4OHhwakysnTOnTvH0KHGcyu1bNnSkAl2v20PDw9n9OjR7N+/n/j4eENGXGRkJCEhIQwZMoSuXbsSGBhIjx496NOnD926dSsRR/Gfb69We+TIES5fvoydnfGHwezsbMLDw+/591v09/H6668bbWvdurXJIcYAKSkpREdHG8Vqbm5O06ZNDUNVz549S3Z2dokFN3Jzc40m/r6THTt2MHbsWM6ePUtqair5+flkZ2eTkZFhch6kjIwMvvrqK9auXUtUVBT5+flkZWWVmRmXk5NDTrF5n1RlzDtkERSIVffC33HGstX6/xSfwF9hYpvR6wp0mZlkFUz+r42JRWFrg6pZ00rpjNuwaRNjx40z/Dzh558LwjB+Aq7T6bjjc/zidUzs57Yff/6Zy5cvM33KFMM2c3Nzfvz+e74ZO5ZO3btjZmZGs6ZNaVXs+L8bFmGNsX6usCM8/a+/bzekzJjLYtmqGZqb0SUm0rdo0hDLZqFkzlqAJjoGs5o1sOr3GNqUVPIOHLnn2B81FsF1serZxfBzxpJV+v+UOA0UJrYZv67LyCRrwxb9uXGr4Nxo0dRkZ5y6eyfM3FxJL9rZdZ8smoViPfBpw8/ptxdbKNfx1Fx/PBWbJDxz5gKsX3wWh3FfotNo0Fy/Sd6hY5h5e5a5v423bvLDxVMoGu9Ap9Mx4ddfC0KqgHNZpyuxH5P7LbatadOmLJg/n+TkZFauWsUnn37KrJkzcXZ2ZteuXRw+fJj58+bdKZoSNp46wffr/zH8/Ouzz+tjonhMJbfdlpGTwxerlvNp78dwtDY9fx6AVqejXo0aDOukv28FuntwJT6W5UcOlqszziK0Idb9CxeqSJ8+tzDoohSKu14IxrJ5UzTRt9Bcv1niNW1cPGnj/0RhpcaiQTDWz/Uj/a/p5e6Q27BjO2Mn/mH4ecKXXxWEbeJ+cOcj745qedZkwR9/kpaRzva9e/nyl/FMHfdjhXfIWQQFYtWt8MFjxvKC483U36KsP49CgS4zi6xN2wvu6XEobG1RNQut8M44i+C6WPUq/HyVYaJTtlBZn0P0HXZZ64tea21RtTS+1moTEkmfPheFWoV5YG2s+vYgY97icnfIWbRqhvXLzxt+Tv95oumY73A4mderg/rxnmTNWkD+5auYubthNWgA2idSyFlVMOe0UoHmyjWyC+5LmmvXMfOsgapz+3J1xlk0b4r1i88WtuG3ySabcKfz2zwwAHWf7mTNW0L+lQjM3Kph9Vw/tH26k7O2sFNReyuWtK9+QGFlhUWTRli/Moj0cb+Xu0POIrQh1s88UdiOgsUWSrrT/buQZfOmaKJuoYm8YbQ9/3zhyAVtdAzpEZHYf/YBlmGh5Ozae4+RC3F/pDNOVDkbGxvDEMbff/+djh078tVXX/HNN98YOpKmTZtG82JDVIp2fBW1ZMkS3nvvPcaPH0/Lli2xs7Pjp59+4sABfcfCvU7KbuoD/21Ft1sUm3NEoVAY4r8f99N2gL59++Ll5cW0adOoUaMGWq2WkJAQwxDS0NBQrl69yoYNG9i6dSvPPPMMXbp0ueM8arfbqtVqadKkCfPnzy9Rplq1aiiV9//U5W6+bN2L27/DdevW4elp/MWyrI6uoq5du0avXr0YOnQo33zzDc7OzuzZs4dXXnml1DkBP/zwQzZt2sTPP/9MQEAAVlZW9O/f3/A3MOX77783yugEGDNmDO9ZOZosn3f5CpqiE+UWTKitsLExygBSWFuXyAgqSpeegU6rNfpwpk1I0mfaKZVQjmPYlHZt2hASFGT4ObfgdxifkGA0bCwxKalEJkxRLi4uJbLgEhMTTdb5cfx4/t2zh6mTJlHdzXilw3p167JgzhzS09PJy8vDycmJwa+8QlDdexuGlHfyLGlFOzkKFmFQ2tuhKZLNpLSzRVcsu8kkCwssmzQka23JefOsnuxD9uYd5BXM+6WNuoWyIGtLOuMg71K48blRcL1U2FobZWwobKzKnB9Gl5GBTqMxPjfiE1Ha2pY4N9TdOmJR25/0uYvRpZU+n+Rdt+HEGdKuFj2e9G1QOtjf//EU1oisfzaWeEkbn0D6L3+CpSUKtQpdahrWr75wxy+4bV2rE2zviP03n5KRnm64vpk8l11cSt2PyXO5yPnv6OiImZlZiTJJiYklMuqsrKzw8vLCy8uL+vXr8+RTT7F69WpeeuklDh8+zI0bN+jYqZNRnY9GjWLJ0qVM7Nan9LbWqUuwZ+GcjLkaDQAJGem4FnkwlZSZgbONrcl93ExKJDolmfcXLzBs0xYcWy2/+5Klb75DTWdnXG1t8XWtZlTXx7UaO86Xb8hl3plzpBXt2C96jSpyzCptbdCl3cW8SRYWWDaqT9ambaZf12gMq35qbkRh5lUTVdtWZN1+cHSf2jVvQUhg4fXZcA9JSsS1yPGQmJyM811mzpTFwsLCsIBDUO06nL14kYWrV/PZ2++Ue99Flbinm5VxTy9jsn9dRmbJ61ZCYqXc0/MuhaOZXkrM6UWvtffzOSSh5LVWqzUs4KCJjsG8hjuWYaFkbyjfnLx5R0+QVrBqK1B4bjg4oEkuzCxT2tuhK5YtV5S6/2Pk7j1A7k59R472RhSoVFi/PIic1RtAp0OXnIImynhFVk1UNBZlzCV7V204cYq0ryJMtMEeTZGY73TPUD/Rh9z/DpK7+z99G25Gg8oS6xefI2fd5sK/kUZjyJ7WXLuOmW8tVF3ak1XOh1F5Z86R9rOJ65SdrfG9z9YGXRlzNxtYWGDZuAFZG+/iGMnNQxN9C2W1+5/CQIh7JZ1x4qEzZswYevbsyZtvvkmNGjXw9PTkypUrPP/883eujH6YSqtWrQzDHQGjBQzs7Ozw8fFh27ZtpQ5/LCooKIjZs2cbZUHt3bsXpVJpNBfNvapXrx779+/nxRdfNGzbv7/wqVj16tXvue0JCQmcO3eOKVOm0LZtWwD27Cm5uqK9vT0DBgxgwIAB9O/fnx49ehh1ZJiK63YmWWhoKIsXL8bNzc0w91Zxd/r9WlhYoCn4MnNbvXr12LNnj9H77tu3j3r1TE/66+DggIeHB/v376ddu3aAPmvwyJEjhBbMHRMUFIRKpSIyMvKuh6QWd/jwYfLz8xk/fryho7Ho/IOm7N69myFDhvDkk08C+rnKii9wUdwnn3zCyJEjjbapVCqyJ0wyXSE3D22u8UqH2vQMzH28yb096bFSiblXTbLLWGEz/2YUlkHGHU9KJ0f9kIAK7ogDfed70WxCnU6Hi4sLBw4dom6gflLqvLw8jh47xttFzuHiGoSEcODQIZ5/7jnDtgMHD9Kgfn2jff84fjw7d+1iyl9/4Vmj9DlrbG31X6Ajr1/n3PnzvFksS/OOcnLQxhlnNmpTUjGvWwfNjYI5bczMMA/wI2v1nVdltmzSEMzNyTt0tOSLFhYln2xrtQ9snr+HXm4e2txko03a9HTMfWuRG1Pk3PCuSfaO3aXuJv/6zRILPChdnEqcG+punbAIDCBj3pIyv6jdk9KOp3p1CrOQzMwwr+1P1sq1d9ydZdNG+uOprM7a3Fx0ubkorK2wCKpL1op/Si8L2JibY2NujmOtWqSlphaeywcOGJ/LR48ast1NaVC/PgcOHOD5gQMN2w7s30+DBg0A/f2ibt26HDhwwOiecuDgQdoXXPtLo9PpDJ01gwcP5vHHHzd6/dnnnmPke+/Ro2dP2Lmv9LaqVEYrpOp0OlxsbTlw5TKB7vr5u/I0+Ry9FsFbnbqa3EctV1cWvj7caNukndvIzM3h/W69qF4wrKyBlzfXEoyHCEcmJODu4FhmW+8oJxdtjnEHqzY1DfM6+rkRAf0x5e9j8iFAcZaNQsDc7O6HxytAYV76g8S7ZWNtbbRCqk6nw8XJiQPHjlHXX/9gNy8vj6OnT/H2Sy+X+/2K06G74+Jc96XUe7pXsXu6J9llZO3k34jCMsh4gQelsyPa9Eq4p5d5rY0tjNm7Jtnby7jW3ogqea11LnmtNUVRxsPpu5adgzbbOGNTm5yCeUi9wsx0MzPM69Yhq9hQRyOWliVX49RqjTLq8i+GY+ZhvMCP0r16+YfbZuegLbZCqjY5BfOgwMKMMDMzzAMDyFq2pvT9WJr6fKG7Y1YgClCUshDKPTF5nUrFPDDA+DoV4EvWP6UvDHSbZaP6+uvU4WN3fm8zM8yquxnPefiIUVZAtrCoWNIZJx46HTp0IDg4mLFjxzJx4kS+/PJL3nnnHezt7enZsyc5OTkcPnyYpKSkEp0XAAEBAcyZM4dNmzbh6+vL3LlzOXToEL6+hROWfvnllwwdOhQ3Nzd69uxJWloae/fuNfmF4fnnn2fMmDEMHjyYL7/8kri4ON5++21eeOEFwxDV+zFixAgGDx5M06ZNadOmDfPnz+fMmTP4+fkZxXkvbb+9uunUqVPx8PAgMjKSjz/+2KjMr7/+ioeHB40aNUKpVLJ06VLc3d2N5tVZunSpUVwHDx5kxowZht/HTz/9xOOPP87XX39NzZo1iYyMZMWKFXz44YfUrFnzjr/f2511rVu3RqVS4eTkxIcffsgzzzxDaGgonTt35p9//mHFihVlrkI6YsQIfvjhB2rXrk29evX45ZdfSE5ONrxuZ2fHBx98wHvvvYdWq6VNmzakpqayb98+bG1tS513ryh/f3/y8/P5448/6Nu3L3v37mXy5Mll1gkICGDFihX07dsXhULB6NGj75glqVKpTGbr3cs08DmHj6Fu2QxtUjLapGRULcPQ5eWRe65wAl+r3t3QpmWQ86/+w3zusZOoQhuh7tKB3CPHUTo5omoZpl804DYLC6O5OZQO9ijdqqHLykaXdhdZOWVQKBQ8N2AAM2fPxrtmTby8vJg5ezZqtZoeRYZPf/HVV7hVq8ZbBR10zz7zDK8PG8asuXPp0LYtO3fv5sChQ8woMgx13M8/s3HzZsaPG4e1tbVhfilbGxvUajUAW7dtw9HJCffq1bkcHs74X3+lfbt2JSaLvx85O3aj7t4JbVw8mtg41N07o8vNJfdQ4YdC6xefRZucQvaaDUZ1LVuGkXfijMlsgvzT5/T7TUxCGx2DmZcnqk7tyP3vULljvl9WFipqOhRm89Swd6W2a01SszOISU+qsrhuyzl4DHWrZmgTk9EmJaFq1RxdXj65RSa3turbA21aOjkFnde5R0+gatoYdbeO5B4+htLJCVWrZkZ/P3X3TlgG1yVj2Rp9R9bteZ5yciHfeFGEcrdh27+oe3RBG1twPPXooj+eDhZ22FoPeQ5tcirZq9YZ1bVs1Zy846dNHk/mQYGAAm1MLEo3V6ye6osmJpbcexzSplAoeO6555g5cybeBdlpM2fN0p/L3bsbyn0xZoz+XC6YP/PZZ5/l9TfeYNbs2XRo356du3Zx4OBBZkyfbqjz/MCBfDFmDPWCgmhQvz4rVq7k1q1bhvlCs7Ky+Pvvv2nXrh2urq6kpKSwdNkyYmNj6VIwZYKrq6vJRRvc3d3x8vIipcQrZbf12WYtmbV3N17OLng7uzBz77+oLSzoHtLAUG7M6uW42dkzvFNXVOYW+LsZf2awK7gOFd0+sHkrXpk1jZl7dtElKIQzUTdZdewwn/Z6jIqW8+8+1J3bo41LQBOfgLpze3S5eeQeK1zAxvq5fmhTUslebzxnlGWzJuSdPmdybiV1z67knb+ILjkFVCosG9fH3N+XjGmlLz51vxQKBc89/gQzlyzGu0YNvGp4MnPJYtQqFT3adzCU+2L8z7i5uPDWkJcAfYfdlYKpI/Ly84lLSOBCeDjWVlaGTLg/Z8+iVZOmVK9WjcysTDbt2sWRU6f4/etvKrwdpuQcPo66RVjhPb1FGLr8PHKLLORi1asr2vQMcv7VdybnHj+FqklD1J3bk3v0hP6e3qLYPb0yYz54FHXrZmiT9KueFl5rzxXGXPxae+T2tbaT/lrr7IiqVcFiMwVUHdroV1NNTUNhaYlFcCBmtbzIWVRG51h52rFxG+rHeqKNiUVzKxb1Yz3119si10XrN4agTUo2DDnNP3YSVc8uaK5Fogm/irK6G+r+j5F39KShgytn41ZsvxiF6rGe5B04jJmfD6qObcn8+96Hz9+xDVt3ou7dDW1MnP6e0aub/vw+ULggjPUrL+jbUPDwJf/EaVTdOqKJvIHmyjWUbq6on+hN3vHThjaon+pL3qmz6BKTQK3CslkTzANrk/Gr6XmUy92OXftQd+mgv07FJaDu0kHfjqPHC9sxsL/+OrXO+EGCZYum5J0q5Tr1WE/yzpxHl5SMwtYGdbeOKNQqck09BBWikkhnnHgojRw5kpdeeolRo0bx6quvYm1tzU8//cRHH32EjY0N9evXN5pUv6ihQ4dy/PhxBgwYYPhyMGzYMDZsKPyyO3jwYLKzs/n111/54IMPcHV1pX///ib3Z21tzaZNmxgxYgRhYWFYW1vTr18/o0Um7seAAQMIDw9n1KhRZGdn069fP958802jBQjute1KpZJFixbxzjvvEBISQmBgIL///jsdOnQwlLG1tWXcuHFcunQJMzMzwsLCWL9+vdHw0q+++opFixYxbNgw3N3dmT9/PkEFQwutra35999/GTVqFE899RRpaWl4enrSuXNnQ6bcnX6/48ePZ+TIkUybNg1PT08iIiJ44okn+O233/jpp59455138PX1ZebMmUaxF/f+++8THR3NkCFDUCqVvPzyyzz55JOkpBR+rfrmm29wc3Pj+++/58qVKzg6OhIaGsqnn356V3+nRo0a8csvvzBu3Dg++eQT2rVrx/fff2+UwVfcr7/+yssvv0yrVq1wdXVl1KhRpKZWUMZMGXIPHEZhbo5Vt04o1Co0UbfIWLLSaPUopb290TwburR0MpasRN25HbYvD0Kblk7u4ePkFPmwZuZeHduBhX8/q876LMPcU2fJWn/nDIo7GTxoEDk5Ofzw88+kpaUREhTExAkTjDLobsXEGB2jDRs04Luvv2bSlClMnjqVmp6efP/tt4QEBxvKLFuh/5D+xnDjbJQxn39O3969Af2Qul9//52ExERcXV3p3aMHr75cMdkUOVt2orCwwGrAkyisrdBERJI+cRoUmRtQ6eRY4im00s0V8wA/0v+YanK/mUtWYdWnO9bPPoXC1hZtSiq5e/aXe6hOedStVouJTxY+IHinjX6+s/Xn/uO77RX/Bfxe5e4/hMLCHKsenVCo1fpzY9HyYueGndHfQpeWTsai5ai7dMD21Rf158ahY+QU6fRUNWkEgO2gZ4zeL/OfjeSdKt+wwuJyNm9HYWmB1XP99MfT1UjSf59ifDw5O5k4nqphXtuvcA6hYhRWatRP9Ebp6IguM5O8YyfJWrX+vrJoBr/4ov5cHjdOfy4HBzPxjz+Mz+Vbt1AWyeJs2LAh3333HZMmTWLy5MnUrFmT78eOJSQkxFCmW7dupKSkMH36dOLj4/H39+e3CRPw8NBnpSmVSiIiIli7bh3Jyck4ODgQFBTEtKlT8fcvffXD8nixZRty8vL4ceNa0rKyCfb05I+BLxpl0MWkpBi19W4E1fDkx6ef46/tW5ixexc1HB0Z2bUnPeo3vHPle5SzY7f+GtXvMRRWajSRN0ifOgtyCqdUUDo6ljymXF0w9/MhfcpMk/tV2NliM7A/Cns7dFnZaKJjyJg2m/yL4SbLl9fg/k+Tk5vLD3/9SVp6OiGBgUz85jujDLpbcbFGf4u4xESef6dwQaW5K5Yzd8VyQuvXZ+oPPwL6xSG+GP8T8YmJ2NrYUNvHl9+//oYWjQtXbq1MuQeP6K9bXfWdBJroGP0cmHe6bi1ZhbpTO2xfGog2LYPcI8fJeUBTGOT+d0j/OaRHZ/219mY0GQuXGcfsYF8s5jQyFi5D3bUDtq/dvtYeNbrWKm2ssX6sJwpbG3Q5uWhj48hctMJ4BfkKlLN2k/56O2QgCmtrNOFXSR/3GxTJPlO6Ohu1I3vVenQ6UD/9OEonR3Sp6eQdO0n20lWGMpor18iYMAmrAU+ifqI32rh4suYtIa8SFtfI2bBVf34PegaFjTWaKxH6KQmyS79nZK/dhA79cFWlkwO6tHTyTpwme0VhBrbC3g6bV19A4WCvP79vRJHx61/kn71AZcjZ/q++Hf0fQ2FlhebaDdInzzS+Tpn6LFWt4Do16W+T+1U6OGDzwgD9MOr0DPKvXSdtwmR0BUOhhXgQFDpdGbM4CiH+31EoFKxcuZInnniiqkMRQMq4CVUdQrk5jHqXtMSKX/HsQbJzdiZ5+IdVHUa5Of75E63/HHrngg+xvcMnkzK2fA9DHgYOn44keWjJDOf/NY6TfyHtATxsqEx29vakVMDCG1XN4YUBJL//eVWHUS6O478l7fKVqg6j3OwC/Ej58feqDqPcHD56h5Tvxld1GOXi8Nn7JA96o6rDKDfHeVNIfqX0If//Cxxn/EHye3f3MPxh5vjr2KoO4b5M+Pfhvc+9225AVYdQJWR9WyGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGROeOEEEZk5LoQQgghhBBCPDrudQ5TUfkkM04IIYQQQgghhBBC/E/466+/8PX1Ra1W06RJE3bv3l1q2Z07d6JQKEr8O3/+vFG55cuXExQUhEqlIigoiJUrV1ZqG6QzTgghhBBCCCGEEEI89BYvXsy7777LZ599xrFjx2jbti09e/YkMjKyzHoXLlwgOjra8K927dqG1/777z8GDBjACy+8wIkTJ3jhhRd45plnOHDgQKW1QzrjhBBCCCGEEEIIIR5RpjLDHpZ/9+qXX37hlVde4dVXX6VevXpMmDABLy8vJk2aVGY9Nzc33N3dDf/MzMwMr02YMIGuXbvyySefULduXT755BM6d+7MhAkT7jm+uyWdcUIIIYQQQgghhBDioZabm8uRI0fo1q2b0fZu3bqxb9++Mus2btwYDw8POnfuzI4dO4xe+++//0rss3v37nfcZ3nIAg5CCCGEEEIIIYQQ4oHLyckhJyfHaJtKpUKlUpUoGx8fj0ajoXr16kbbq1evzq1bt0zu38PDg6lTp9KkSRNycnKYO3cunTt3ZufOnbRr1w6AW7du3dM+K4J0xgkhhBBCCCGEEEI8oh7m1VS///57vvrqK6NtY8aM4csvvyy1TvHhrTqdrtQhr4GBgQQGBhp+btmyJdevX+fnn382dMbd6z4rgnTGCSGEEEIIIYQQQogH7pNPPmHkyJFG20xlxQG4urpiZmZWImMtNja2RGZbWVq0aMG8efMMP7u7u5d7n/dK5owTQgghhBBCCCGEEA+cSqXC3t7e6F9pnXGWlpY0adKELVu2GG3fsmULrVq1uuv3PHbsGB4eHoafW7ZsWWKfmzdvvqd93ivJjBNCCCGEEEIIIYR4RFXmcMsHbeTIkbzwwgs0bdqUli1bMnXqVCIjIxk6dCigz7S7efMmc+bMAfQrpfr4+BAcHExubi7z5s1j+fLlLF++3LDPESNG0K5dO8aNG8fjjz/O6tWr2bp1K3v27Km0dkhnnBBCCCGEEEIIIYR46A0YMICEhAS+/vproqOjCQkJYf369dSqVQuA6OhoIiMjDeVzc3P54IMPuHnzJlZWVgQHB7Nu3Tp69eplKNOqVSsWLVrE559/zujRo/H392fx4sU0b9680tohnXFCCCGEEEIIIYQQ4n/CsGHDGDZsmMnXZs2aZfTzRx99xEcffXTHffbv35/+/ftXRHh3RTrjhBBCCCGEEEIIIR5RSlku4KEjfxEhhBBCCCGEEEIIIR4Q6YwTQgghhBBCCCGEEOIBkWGqQgghhBBCCCGEEI+oR2k11UeFZMYJIYQQQgghhBBCCPGASGecEEIIIYQQQgghhBAPiEKn0+mqOgghhBBCCCGEEEIIUfGm7V9d1SGU6rUWj1d1CFVC5owTQoiH2JxD66s6hHJ7MawXZ6LDqzqMcgn28OfZeV9UdRjltmjQ16SM/aWqwygXh09H0vrPoVUdRrntHT6ZFxZ+VdVhlNvc58Y8Euf3gqObqjqMchsY2p3lJ7ZXdRjl0q9hJy7FRlZ1GOVW282br7f8XdVhlNsXXV/mrZXjqzqMcpn45Pt8sXFaVYdRbl/3eI1R6/6q6jDKZVzvYY/MZykhKoIMUxVCCCGEEEIIIYQQ4gGRzDghhBBCCCGEEEKIR5QCWU31YSOZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEKhQxTfdhIZpwQQgghhBBCCCGEEA+IdMYJIYQQQgghhBBCCPGAyDBVIYQQQgghhBBCiEeUUoapPnQkM04IIYQQQgghhBBCiAdEOuOEEEIIIYQQQgghhHhAZJiqEEIIIYQQQgghxCNKVlN9+EhmnBBCCCGEEEIIIYQQD4h0xgkhhBBCCCGEEEII8YDIMFUhhBBCCCGEEEKIR5QSGab6sJHMOCGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGRYapCCCGEEEIIIYQQjyhZTfXhI5lxQvyPioiIQKFQcPz48UrZv0KhYNWqVfdUp0OHDrz77rt3XX7WrFk4OjqWWeb8+fO0aNECtVpNo0aN7ime+3Wv7ajsv4UQQgghhBBCiEeHZMYJcR+GDBlCcnLyPXdWVSQvLy+io6NxdXUFYOfOnXTs2JGkpKQ7dnD9LxkzZgw2NjZcuHABW1vbqg7HpOJ/i6pyeMse9q/fQXpyKtU83ek66Am86/rfsd71i1eY++2fVKvpzmtjPzRsP3/oJHvXbCEpJh6tRotTdVda9OpA/TZhldkMNqxay+pFy0lKSMTLtxYvv/U6QQ1CTJZNTEhk9l/TCL94megbUfR66jFeefuNUve9Z9sufvlmHM1at+Dj776orCbQtU4YfYPa4Ghly43kOOYc3sD5uGullm/t04DHgtvgbudMZl4OJ6IuMe/IJtJzs0qUbVkrhBFtn+HQ9XOM37Ww0tpwm6ptSywb1UehVqOJiiZr03a08Ql3qKRC3aE1FoEBKNRqtMkpZG/7l/zwq/qXW4ZhHlgbMxdndPn5aG5Ekb1jN9rEpEpvT2kaegQwsHE36rp542rjyMfrJ7H76okqi6e4zgFN6V2vFQ5WdtxMiWXe0U1cjIsstXyrWvXpXa8V1e1cyMrL5mT0ZRYe22I4pjztq9GvQQd8nGpQzdaReUc3sunCgUpvx6NwfptyaPNu9q3dRlpyKm413en+Yj9q3cX1N/LCFWZ9/TtuXh4M/WHUA4i00P5Nu9i9ZgtpySm41fSg95Cn8a1X22TZiPOX2Th/JXE3Y8jLycWxmjPNurSlTZ/ORuWyMjLZvHA1Zw8eJysjEyc3V3q90I/AUNN/4/Jat3INKxYuJTEhAW8fH157501CGtY3WTYxPoEZf07h8oVLRN24Sd/+T/D6O8OMyly7GsH8GbO5fOESsbdieO3tN3n8macqJfaiLv57lLPbDpKVko6jhytN+nXGLcDLZNmYi5Fs/b3ktb/P56/i4O4CgFaj4czm/Vw5cJrM5DTsqzvT+PEO1Ajyq9R2tPVtSOfaYTiobYhOTWD5qR2EJ9w0WXZQaHda1Cp5XESnxvPdttkAtPKpTzOvIGrY6z9fRSbH8M/ZPVxLulVpbQjzqkcb34bYqqyIS09iw/n9Zb6fmUJJh4BQGtYIwFZlTWp2BrvCj3Hs5kUAmtQMpFGNOrjZOQEQlRLP1kuHuJkSV2ltAGhRK5j2fo2xU1kTk57IP2f2EpEUXXo7lEq61A6jcY062KmsSclOZ/vlIxy+cd5QRm1uSffA5oS4+2FloSIpK421Z/dyoYx7UXlU9GepMK96PBHSDnc7Z8yUZtxKTWDduX0P1b1e/P8inXFC/I8yMzPD3d29qsOodOHh4fTu3ZtatWpVdSilehj+Fmf3H2PLvFX0GNIfrzq+HN2+j0U/TeWNcR/j4OpUar3szCzWTF6Ab3Bt0lPSjF6zsrGm9WNdca1RHTNzMy4dO8M/UxdhbW+Hf4O6ldKOPdt3MXPiVF57dxj16gexac0Gvv3oC36bPZlq1d1KlM/PzcPe0YF+g55l7dKVZe479lYMsyZNJ6hBcKXEflvLWiEMbtKTGYfWciE2ki61w/i40yDe/2ciCZkpJcoHVvNmeKunmHNkA0duXMDZ2p5Xm/fl9RaP88u/i4zKuto4MCi0O+diIiq1DbdZtghD1SyUzLWb0CYmoWrdHJvn+pE2ZSbk5pmupFRi81w/dJmZZK5YizY1DaW9HbrcXEMRM28vco8cRxMdA0oF6vZt9PudOgvy8h9I24qzslBxOeEG68/vY2zPoVUSQ2maewczKLQHsw6v41L8dToGNOHD9s/z8fo/SchMLVG+jqsXb7R4gvnHNnHs5kWcrOx4KawPrzTry297lgBgaW5BbHoyByPP8nxo9wfSjkfh/Dbl9H9H2ThnBb1ffhqvQD+ObN3L/B8mMfznT3FwdS61XnZmFqv+motfSJ0S19/KdnLfYdbNWspjrz5LrUB/Dm7dzeyxf/Lur1/gaCJmS5WKlt074F7LE0uViojzl1k1bQGWakuadWkLQH5+Pn9/+zu29nYMHPk69i6OpCQkoVKrK6UN/27bybTfJ/HmyLcJqh/MhjXr+PLDT/lr7gzcTBxPeXn64+mZFweyeslyk/vMyc7B3cOD1h3aMf2PyZUSd3ERR85xZPk2wgZ0o5qfJ5f2HGfHX0vp8/mr2Djbl1qv7+jXsLCyNPyssrU2/P/EP7u5eugMzQf2wL66C9HnrvLvtJV0GzkIZ6/qldKOUM9A+jXoyOLj27iSeJM2Pg0Y1uopvt06i6Ssksf3spM7WH1mt+FnM4WSTzq/aOjEAqjt6sWRG+dZmhhFvkZDlzphDG/Vj++2zSYlO73C2xDi7kfPei1Ze3YvkUkxhHnVZVCTHkzcs5SU7AyTdZ5p1BlblRWrTv9LYmYqNpZWKIsMB/RxrsHJ6MtcPxdDvlZDG9+GvNi0JxP3LCMtJ7PC2wDQwCOAvkFtWHX6X64l3aK5dxAvN+vDL7sWklzK7+35xt2xU1mx7OQOEjJTsLG0wkxZOIjOTKHk1eaPkZ6bxbyjm0jJTsdRbUtOfimfBcqpMj5LZeRmser0v9xMiUOj1RDqGcjQlk+Qkp3ByejLldKOh4kMU334yDBVISrBrl27aNasGSqVCg8PDz7++GPy8wu/YHbo0IF33nmHjz76CGdnZ9zd3fnyyy+N9nH+/HnatGmDWq0mKCiIrVu3Gg0dLTo0MiIigo4dOwLg5OSEQqFgyJAhAPj4+DBhwgSjfTdq1Mjo/S5dukS7du0M77Vly5Y7tjEjI4MXX3wRW1tbPDw8GD9+fIkyubm5fPTRR3h6emJjY0Pz5s3ZuXPnHfd9m0Kh4MiRI3z99dcoFAq+/PJLdu7ciUKhIDk52VDu+PHjKBQKIiIiALh27Rp9+/bFyckJGxsbgoODWb9+vaH82bNn6dWrF7a2tlSvXp0XXniB+Pj4UuOYN28eTZs2xc7ODnd3dwYOHEhsbKzhdVPDVO/1PcrrwIadNOrQnMYdW+DqWZ1uLzyJvYsjR7ftLbPehr+XEtwyFM8AnxKv1QoKoG5YA1w9q+NU3ZVmPdrj5uXB9QtXKqkV8M/SlXTu1Y2ufXpQs5Y3r7z9Bi5u1di0ep3J8m4e1Xnl7aF07N4ZaxubUver0WiY8O1PPPvSIKp7eFRW+AD0rteKHeFH2XH5KFGp8cw5soGEzFS61jGdUVjb1Yu4jGQ2XjhAXEYyF+Ii2XrpMP4unkblFAoFb7Xuz7KTO4hNfzAZZKpmjcnee5D8C5fRxiWQ9c8mFBbmWAaX3hlr2TAEhZWazGVr0NyIQpeahuZGFNrYwuM/c/EK8k6dRRufgDY2nqx1m1A62GPmXjlfEu/G/sgzTDuwhl1XjldZDKXpGdiCXVeOsevKMaJS45l/dBMJmSl0rm36mApwrUlcRjKbLx4kLiOZi/HX2X75CL7ONQxlriZGsej4FvZHniFPo3kg7XgUzm9T9q/bQeOOLQjt1Ipqnu70GNwPBxcnDm3ZU2a9tdMXE9K6KTVr+zyYQIvYs3YbTTq1IqxzG9xqetBnyDM4uDpxYPO/JsvX8PWiYZswqnvVwMnNhcbtmlO7YRAR5wq/wB7Zvo+s9AwGfTiUWnX9carmgk/dADx8alZKG1YtXk7X3j3o3rcXXj61eP2dYbi6VWP9yn9Mlq/u4c4bI4bTuUfXUo+nOvUCeXn467Tv0hELS4tKibu489sP4d+yAQGtGuLg7krT/l2wdrLj4u5jZdZT21ljZW9r+Kcs0nFy9eAZgru1xDPYHztXR+q0bYxHPV/ObT9Yae3oFNCE/yJO8d+1U8SkJbL81E6SstJo69vQZPns/FzScjIN/7yd3LGyUPPftdOGMrMPr2f31RPcTIkjJj2RBUc3o1AoCKzmXSltaOVTn6M3LnD0xgXiM5LZcH4/qdnphHkHmSwf4FoTH2cP5h3ZxJWEKJKz0rmZEsf15MLPiMtP7uDQ9XPcSkskPiOF1ad3o1Ao8Ct2j69IbX0bcuj6OQ5dP0dsehL/nN1LSna6yUxEgDrVvPBzqcHfh9ZxOeEGSVlp3EiJNcoIbOpVD2sLFXMOb+Ba0i2Ss9KJSLpFdNodMuXvU2V8ljobE8Gh6+eISo0nJj2JDRf2E5kcQ123yjmehLgT6YwTooLdvHmTXr16ERYWxokTJ5g0aRIzZszg22+/NSo3e/ZsbGxsOHDgAD/++CNff/21oRNMq9XyxBNPYG1tzYEDB5g6dSqfffZZqe/p5eXF8uX6p7wXLlwgOjqa33777a7i1Wq1PPXUU5iZmbF//34mT57MqFF3Hirz4YcfsmPHDlauXMnmzZvZuXMnR44cMSrz0ksvsXfvXhYtWsTJkyd5+umn6dGjB5cuXbqr2KKjowkODub9998nOjqaDz744K7qDR8+nJycHP79919OnTrFuHHjDENco6Ojad++PY0aNeLw4cNs3LiRmJgYnnnmmVL3l5ubyzfffMOJEydYtWoVV69eNXR2lhb3vb5HeWjy84m+egPfkECj7X4hgdy4FFFqvRO7DpAUE0+7p+6cFaPT6bh6+iKJt+Luaujr/cjLyyP8wmUahoUabW8U1pjzZ86Va99L5yzE3tGBLr0rNwPITGmGr7MHJ6PDjbafjL5MnVK+PFyMi8TZ2p5GNfTDwxzUNjT3DuZokewAgH71O5CancGO8KOVE3wxCkcHlLa25F+NKNyo0ZAfeQMzzxql1jOv7Y/mZjRW3TthN+INbF97EVWrZlDGE1mFSgWALju7osJ/ZJgplfg41+DULeNj6vStK9R2Nd3JcSn+Os7W9jT0CADAXm1DM+96HI+6u2tvZXgUzm9TNPn5RF29XiJb2K9BXW5cvFpqvWM795MUCUo5CAABAABJREFUE0+Hfj0qO8QS8vPziboSSe2Gxh0MAQ3qce0uH7ZEXb1O5IUr+AYVDms9d+Qk3rX9WDNjEd+99hET3v+anSs2oNVqKzR+0B9Ply9epHGzJkbbG4c14fzpMxX+fpVFk68h8fotPOr5Gm33qOdL/FXTwztvWz9uFss/ncjW3xdx66Lx0D1Nfj5mFmZG28wszIkLv1ExgRdjplDi5Vidc7HGcZyLuYavS+n3i6Ja1grhQuw1k1l0t1mam2OmVJKZV/H3CjOFEg97V8LjjX/vl+Nv4u1o+kFRXbdaRKXE08a3AR90GMg7bZ+he2BzzJVmJssDWJiZY6ZQkpWXU6Hx32amUOLpUI1LcdeNtl+Mu04tJ9PtCKruy42UWNr7NebTzi/yQfuB9K7XyqgdQdV9uJYcwxMhbfm8yxDeazeAjv6hKKj4bKvK/CxVVIi7Hx72rpyLKX3oqxCVSYapClHB/vrrL7y8vJg4cSIKhYK6desSFRXFqFGj+OKLLwxPLhs0aMCYMWMAqF27NhMnTmTbtm107dqVzZs3Ex4ezs6dOw3DH7/77ju6du1q8j3NzMxwdtYPK3Fzc7unOeO2bt3KuXPniIiIoGZN/Re7sWPH0rNnz1LrpKenM2PGDObMmWOIafbs2Yb6oB9eunDhQm7cuEGNGvoPYh988AEbN25k5syZjB079o6xubu7Y25ujq2t7T0NA42MjKRfv37Ur6+fN8bPr3COlEmTJhEaGmr0/n///TdeXl5cvHiROnXqlNjfyy+/bPi/n58fv//+O82aNSM9Pd3kPHb38x7lkZmWgU6rxdbBzmi7jYMd6cklh7ABJN6KY8fitbww+m2UZqV/aMzOzOL3t79Ek5+PQqmkx5D++NUPLLV8eaSlpKLVanF0cjTa7uDkRHI55hI7d+oMW9dt4pfpE8sZ4Z3Zq6wxU5qRkmU8DCQlKwPHGqbnPLwYf52Je5cxou0zWJiZY6404/D1c8w6VJgtVKeaNx39Q/l4/aRKjb8opY1+yJMuw3gYjS4jE4VD6UOnlE4OKB28yDt9nozFKzFzdkLdrRMoleTs2W+yjrpze/Kv30AbVzlP2P+X2amsMVMqSS02tCglOx0HtemO8UvxN5j03wqGt+5vOKaO3DjP3CMbHkTIJj0K57cpmammr7+2DnaElzL0NCE6lm0L/+GlL0eUef2tLJmp6WhNxGznYMel5JLDv4r6YegnZKSmo9Vo6Px0H8I6tzG8lhgTz5W4CzRs04whnwwnPjqWNTMWo9Fq6dy/d4W2ITUlRT+XqZPxNAxOTk4crcK5J+9VTnomOq0OtZ210Xa1nQ1ZqaaHRVo52ND8ue44e7ujydNw9dAZtv2xiC4jBlK9YJ45j3q+nN9+CLcAL+xcnbh1IYIbJy+h0+kqpR22Kv2QxuLDLtNyMrBX+dyxvr3KhqDqvsw6bDpL9rbHg9uRkpXO+diK7zyxtlRjplSSnmvchozcLGxVVibrOFnZ4e1UnXythoXHtmBtoaZPcGusLFSsOm06y7RrnTBSszO4UspceuVV2A7jOWfTczKxU5meh9DZyh4fJw/yNRrmHN6IjaWaJ0LaYWWhYtnJHfoy1vb4W9lxPOoSMw+uw9XGgcdD2qFUKNl2+XCFtqGyPkuBfkqKSU99gLmZOVqdlr8Pri3xsOtRpZRhqg8d6YwTooKdO3eOli1bGo3Lb926Nenp6dy4cQNvb/0TnQYNGhjV8/DwMAx9vHDhAl5eXkYdUM2aNau0eL29vY060lq2bFlmnfDwcHJzc43KOTs7ExhY2Elz9OhRdDpdiY6nnJwcXFxcKih609555x3efPNNNm/eTJcuXejXr5/h933kyBF27NhhshMtPDzcZEfZsWPH+PLLLzl+/DiJiYmGp/yRkZEEBZUcunA/75GTk0NOjvFTUlVBttBdK3aT1WF6fgitVsuqP+fStl8PXDxKzqtjFINaxavffUBuTi4RZy6ydf4qnKq5UCso4N5iuwclYtbp7vvJa1ZmJr999zPDPnwHe0eHCoju7pT4uqOg1C9Bng7VGNy0F8tP7eRk1GUcrex4PrQbrzbvy5T9q1GbW/JW635MO7Cm0uaXAbAIrotVzy6GnzOWrNL/x2RjytqTAl1GJlkbtoBOh/ZWLApbG1QtmprsjFN374SZmyvpcxeXswWPtuKHjwJFqX+GGvauvBDak1Wn/+XUrcs4qu14tnFXXgrrw/SDayo91rI8Cue3acWuvzpd8U2A/vq7YuIcOvTvecfrb2Ur/rfQ6TeWWef1r98nNzuH6xevsnHBKlzcq9GwYFEfnU6Hjb0dT77xPEqlEk+/WqQlpbB7zZYK74wr0ohibdD9j86LZOK8KKUZ9tVdsK9e+Dmqmp8nmUmpnNt60NAZ17R/Fw4s3Mjab6aDAmxdnfBrUZ8r+09VVgNuB270U1nXqaJa1AomKy+Hk1Glz9vVpXYYTWoG8tvuJeRrH8zQ+ttK68O8fawtO7ndMHfaxvP7GdCoC2vP7i0RZxvfBtT38GfmwXWV3oYSnzkUpf8tbrdj0fGtZOfr53dde24fg0K7s+r0v+RrNShQkJGbxfKTO9Gh42ZqHPZqG9r5NarwzjhDG0oEev+fpW7Lzstl1LpJqC0sCXH344UmPYhNT+LsA5qLV4iipDNOiAqm05X8IHj7xlF0u4WF8VwkCoXC0Mljah/3S6lUlrhx5eUVTrZq6qZ2p/e+myerWq0WMzMzjhw5glmxJ//lWRX1dmZh0RiKtgfg1VdfpXv37qxbt47Nmzfz/fffM378eN5++220Wi19+/Zl3LhxJfbtYWKuoYyMDLp160a3bt2YN28e1apVIzIyku7du5NbZEL6ou71PQC+//57vvrqK6NtY8aMwa/3nTthre1sUCiVJbLgMlPSsCmW+QCQm5VD9NXr3Lp2k02zVwAFv0+djrEvvs/AUUPxCdan+SuUSpzdqwHgXsuT+Jsx7Ptna6V0xtk52KNUKkkqltWQkpyMg7Pjfe3z1s1oYm/FMPaTwt/t7WOnf6c+TJw7DXfPiptjKjUnE41Wg6OV8THuoLYpdfLnJ4LbcjEukrVn9fP7RSbHkHMwl6+6v8riE9twUNviZuvEhx0GGurcPkfnDxzDyDW/E1MBc8jlXQpHE1VkxbiC81Zha40uozB2hY2V0c/F6TIy0Gk0Rt9etPGJKG1tQamEIkPW1N06YlHbn/S5i9GlVfxk3I+CtJxMNFotDsWOKXu1TYlsudv6BrXhUnwk68/vA+A6seQcymV015dZenJ7pUx8fiePwvltirV9wfU3xfj6m5Gajq29qetvNlFXIomOuMH6WcsKY9bp+Pr5d3nhk2H4hlRs9nTJmPXzi6UVu2ekp6RhW0bWK4Czm35VS3dvT9JSUtm2dK2hM87O0QEzc6XR3GXVPN1JS04lPz8fc/OK+9ph7+CA0kxJUmKi0fbkpOQS2ZcPM5WtNQqlguw042tqdnomarvS50ksztWnBlcPFQ7PVdtZ0/71p9Dk5ZOTkYWVgy3HV+/C1qVyOq3Tc7LQaLXYqYxjtlVZk5ZT+v3itha1Qjh4/SwanekhzZ0DmtKtTjMm7l1GVGrlzL+bmZuNRqvF1tI4S9HG0ooMEyubg/76nJqdYbSIQVx6MkqFAnu1DYlFFthp7VOftn6NmH1oPTHpiaZ2VyFut8NOZdwOW0sr0kt5oJeWk0FKdoahIw4gLj0JpUKBg9qWhMwU0nIy0Oi06Ip0kcWmJ2GvtsFMoSz1b3c/KuOzVHJBlp0OneH3fy3pFp4O1Xg8uJ10xokqIZ1xQlSwoKAgli9fbtShtm/fPuzs7PD0vLvJWuvWrUtkZCQxMTFUr66f3+HQoUNl1rG01K+opSk2EXe1atWIji5cyjw1NZWrVwvnsQkKCiIyMpKoqCjDcNL//vuvzPcKCAjAwsKC/fv3GzL9kpKSuHjxIu3btwegcePGaDQaYmNjadu27d00+65Uq6bvGIqOjjYMTym6cMJtXl5eDB06lKFDh/LJJ58wbdo03n77bUJDQ1m+fDk+Pj539cXg/PnzxMfH88MPP+DlpX/ifPhw2U8A7/U9AD755BNGjhxptE2lUrH45LY71jUzN8fDtyZXT1+kblhhxuXV0xep06TkZL0qKxWvff+R0bYjW/dy7ewlnnpnCI7VSl/9DyC/kla7tLCwwD8wgBOHj9GibSvD9hOHj9GsdYv72qentxe//v2X0baFM+aQlZXFy2+9gUvBF8uKotFquJoYTX13fw5dL5wHq767P4dvnDdZx9LcosScStrbHfgoiEqJ54N/jIfgDWjUGStzFbMOryfexGqa9yU3D21usnEc6emY+9YiNyZOv0GpxNy7Jtk7dpesXyD/+s0SCzwoXZzQpqUX64jrhEVgABnzlqBLqaA2PII0Wi0RiVGEuPtxpMgxFOLux9GbF0zWUZlboCntmKqipKFH4fw2xczcnBq+Xlw5eYF6YYUT1V85dZ7AJvVLlFdZqXnzx4+Nth3avIerZy/yzLsv41itcjPHAczNzanh583lk+cIbtbIsP3yyXMEFWnDHekwWpyqVqAfJ/YeQqvVGjrk4qNjsXNyqNCOONAfTwF16nD80FFatSscKnv80FGat2lVRs2Hi5m5Gc5e7kSfj8CrYWEnbPT5CGrWr11GTWOJN2Kwcij5oNPMwhxrRzu0Gg2Rxy9QK7RyVkLX6LRcT46hrlsto1Up67rV4tQdVqms7VoTN1sn/oswnbXXuXZTegS24M+9y4lMjqnQuIvS6LREp8bj7+rJudgIw3Z/V89Sh8VGJsUQ7O6HpZk5uRr9ueBq44BWpyW1SKdRa58GtPdvzJzDGyqtM7FoO26mxFG7mhdnYgo/79d2rVlqh1NE4i3qe/ibbMfthzcRSbdoVKM2Cgoz1lxtHEnNzqjQjjionM9SpVEAFlUwXUBVqIz5/UT5yAIOQtynlJT/Y++uo6M62gAO/+JKXEiIJ5BA0ODu7qUUK1ZaSnGnUAqFIqW4FSe4u3tCcYK7u4a4EM9+fyxsWDYJlhDK9z6cPYfcnbn7zl7duSORnDt3Tu314MEDunbtysOHD+nRowfXrl1j8+bNDB8+nL59+6o9Lc5MzZo18fT0pH379ly4cIEjR46oJnDIqNWaq6srWlpabNu2jRcvXhATo7x4VqtWjaVLl3Lo0CEuXbpE+/bt1Vqq1ahRA29vb9q1a8f58+c5dOhQppNFgLJlW6dOnRgwYAD79+/n0qVLdOjQQa18+fLlo02bNrRr144NGzZw9+5dgoKCGDdunNrMph/Ky8sLZ2dn/vjjD27cuMH27ds1ZnLt3bs3u3fv5u7du5w5c4YDBw6QP39+QDm5Q1hYGK1ateLkyZPcuXOHPXv28MMPP2hUZAK4uLigr6/P9OnTuXPnDlu2bOHPP//MNMYP/QxQVryZmZmpvT6km2rpulU4F3iccwdPEPL4OXuXbSQyNBy/6sofJQGrt7Fl9nJA2drNztlB7WViZoqOni52zg7oGyo/98iWfdy5eJ3w4BBCnjznxI5ALh4OomD5Eu8d14dq2Lwp+7fvZv+OPTy6/4CFM+YS8vwFtRrVA2DZXH+mjpmglufuzdvcvXmb+Lg4oiIjuXvzNg/vPQBA30AfVw83tZeJqSlGRka4erhptFDNCtuvHqWalx9VPIvhaGZDu+J1sDExZ99NZYV6y6I16FruG1X6M4+uU9KlADXzlsTO1JJ8ti50KFmPWyHKGc2SUpN5FBms9nqZGE9ccgKPIoNJycauLgknz2JYrhS6+bzQtrXGqGEdFEnJJF5Ouxk2algHgyppP4YTz5xHy8gIw1pV0bayQNfTHYNypUg8fU6VxrB2NfQL+vBy8w4UiYlomRijZWIMWfyD/UMY6RmQ18ZJNSmCo5kNeW2csDe1fEfO7Lfz+nGqePhRyaMojmY2tClWG2tjc/bfVD4Y+K5IdX4u00SV/uzjG5Rwzk91rxLYmliQ18aZtsXrcDvkkap1gI62Ni4W9rhY2KOrrYOlkRkuFvbYZWN5v4bjOz1l6lflTMAxzgYc48XjZ+xasoHIkHBK1FAeF/tWbmHjP0uB1+dfR7WXibkpunp62Dk7qs6/2a1Cg+qc2n+EUweOEvzoKdsXrSUyJJxSNZUPz3av2MTaGYtU6Y/tCuTqqQuEPA0m5GkwpwOOcmjrXopWTGu9XbpWJV5Gx7Jt0VpCnjzn2pmLBG7cRZnalbOlDE1aNGPPtp3s2b6Lh/fuM2/aLF4EB1OvSQMAFs1ewMRR6i3U79y8xZ2bt4iPiyMyIpI7N2/x4G5aRUtSUpIqTXJSEqEvQrhz8xZPHmXP+F4APtVKcvvoeW4fu0DksxBOr9/Py7Ao8lYsCsDZzQc5umSbKv21gCAenr9BVHAYEU9fcHbzQR6eu0G+SmmTo4Tce8KDc9eJDokg+NZDDsxcCwoFBWqUzrZyHLh1mnJuhSjjWhD7XFZ8U6gKVsa5OHT3PACNClSgbXHNCUvKuhbibtiTdGflrJG3JA3yl1fNIJ3LwJhcBsbo62TPsX303kX8nLwplicfNiYW1PEpg7mhKUEPlBVCNfKV5JtCVVTpLz69RVxiPE0KVcbWxAJXy9zU8i7NmUc3VN1QK7gXpnq+Emy6dJCIuGhM9Y0w1TdCXyf7rneH7p6npHN+Sjj5YGdqSYP85bEwysXxB8qZaut4l+G7ItVV6c89ucHLxASaF6mGnakl7lYO1PMpx6mH11TlOH7/Mib6hjT0rYCNiTk+dq5U9fLj6Buz32alrL6XAmjsW5FCuT2xM7XE0cyGevnLUdGjqGofFeJzk5ZxQnykwMBAihUrprasffv2LFq0iB07djBgwACKFCmClZUVnTp1YujQoe+9bh0dHTZt2sSPP/5IyZIl8fDwYPz48TRs2BBDQ8N08+TJk4cRI0bw66+/0rFjR9q1a8eiRYsYPHgwd+7coUGDBpibm/Pnn3+qtYzT1tZm48aNdOrUiVKlSuHm5sa0adOoUyfzGd7Gjx9PTEwMjRo1IleuXPTr14/ISPWBn/39/Rk1ahT9+vXj8ePHWFtbU7ZsWerVq/fe38Xb9PT0WLlyJb/88gtFihShZMmSjBo1iubNm6vSpKSk0K1bNx49eoSZmRl16tRh8uTJADg6OnLkyBEGDRpE7dq1SUhIwNXVlTp16qRbWWpra8uiRYsYMmQI06ZNw8/PjwkTJtCoUaMMY/zQz8gKBcoU42V0LIc37iYmIgpbJwdaDuiMuY2ylVtMRBSRIR/WlTEpIZFdi9YRHRaJrr4e1o52NP7lewqUKfbuzB+pQrXKREdFs2bxCsLDwnBxd+O3cSOwy61sIRoeGk7I61Zar/T7qYfq/7dv3OLQvkBs7e2Ys3pRtsWZmWP3L2FqYESzQlWwMMrFw4hg/gpYRkis8viwNMqFjUlaV6GDd85hqGdALe/SfF+8NrGJ8Vx+fpcVZ/bkSPxvSjwehJaeLkZ1qqFlaEjKk2fErloPiWldcrTNcql1SVVExxC7aj2GNapg+mM7UqNjSAw6S8KxtNa9BsWLAmD6vfoMwy+37iLp4pXsLVQGfGxdmdE0rXVqzwrKc8qOq8cYfWBxjsT02okHlzHVN6KJb2UsjEx5FBnMhIPLCX2p3KcsDE2xNk7bpw7dPY+hrgE18pWkVbFavEyM50rwXVaf26dKY2mUi9F1u6j+rp+/HPXzl+Pq83uMyabyfg3Hd3oKlvUjLjqWgxt2ExMRiZ2zA20GdVG1Mv6Y8292K1yuBC+jYzmwfjvR4VHYOzvQfnA3LF+1zIsOjyQiJK0rnUKhYPfKTYQHh6KtrY11bltqt2lCqRppLd8tbKz4YWhPti9ey7QBozCzsqB83apUapI9s9xWql6F6KgoVi1aRlhoGK7ubvzx9+g39qdQXjwPVsvT84dfVP+/df0mB/cewC63PQvXLgMgLCRULc2GVWvZsGotBYsW5q/p6g/+sopb8fwkxsZxcecR4qJisXCwoUrX5phaKY/p+KgYYsPSWg+nJKdyZmMAcZEx6OjpYu5gQ5VfviWPb9qELilJyZzfdoiYkAj0DPRx9PWgXLv66Bunfw+ZFc48vo6JviF1vctgZmjC06hQ/jm6QVURYmZogpWRejdoQ119ijrmZd3FgHTXWdG9CHo6uvxYWv2ea8fVo+y4lnkvjo9x6dkdjPQMqOLlRy4DY4Kjw1h2epeqdVguA2PMjdK64iamJLP41A7q5y/Hz+WaEpcYz6Vnd1QPSgBKuhRAV1uHlsXUJ2ELuHWagFvZMzv6hae3MNY3oHreEpgZmPAsJhT/oG2qhzG5DIzVuoAmpiQz/8QWGvtWpEeFb3mZmMCFp7fYff2EKk1kfAzzT2ylYYHy9K7Ygqj4WI7cvUDg7bPZUobsuJcy0NXnh1INsDY2IzEliSdRIcw8sp5j2VShKMS7aCmya1odIUSWOnLkCBUqVODWrVt4eqY/g57IGdevX8fHx4ebN2/i5ZW1Y6ktCfr4VoRfinYl63H56X97pipfB09aLhuW02F8slXfjyRyzKScDuOTmA/pS/mZXd6d8At3pNts2q4c8e6EX7ilrYZ/Fcf3ijO7czqMT9barzbrzx/I6TA+SbMi1bgZ/CCnw/hkee1cGLl3YU6H8cmG1fyB7huzpxLyc5nRtB/Dds3L6TA+2cg6PzFo+z/vTvgFG1e/61dzL/VftPrs3pwOIUMt3qqs/n8hLeOE+EJt3LgRU1NT8ubNy61bt+jVqxfly5eXirgvTFhYGOvWrcPMzEw1ppwQQgghhBBCCJERqYwT4gsVHR3NwIEDefjwITY2NtSoUUNjbDSR8zp16sTp06eZNWvWB43xJoQQQgghhBDi/5NUxgnxhWrXrh3t2rXL6TDEO2zcuDGnQxBCCCGEEEKIDGU0CaDIOTKbqhBCCCGEEEIIIYQQn4lUxgkhhBBCCCGEEEII8ZlIN1UhhBBCCCGEEEKIr5R0U/3ySMs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKW2km+qXRlrGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlpSTusL41sESGEEEIIIYQQQgghPhOpjBNCCCGEEEIIIYQQ4jORbqpCCCGEEEIIIYQQXyltLZlN9UsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnyltKSb6hdHWsYJIYQQQgghhBBCCPGZSGWcEEIIIYQQQgghhBCfiXRTFUIIIYQQQgghhPhKaSHdVL80WgqFQpHTQQghhBBCCCGEEEKIrLfl0qGcDiFDjQpWzOkQcoS0jBNCiC/Y+IBlOR3CJxtQ9XuuPb+b02F8Eh97dyrP6pbTYXyyg7/MJKJL35wO45NYzJ5E25UjcjqMT7a01XDKz+yS02F8siPdZvM8KiSnw/gk9mY2LD21M6fD+GRtS9Slx8ZJOR3GJ5netO8X/YPxfTUqWJF2K0fmdBifbEmrYf/58+3SVsPpvG5cTofxyeZ+O4gmi37N6TA+yaYOf1FrXu+cDuOT7flpSk6HIL4SUhknhBBCCCGEEEII8ZXSltlUvzgygYMQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UlnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8p6ab65ZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlLaSDfVL420jBNCCCGEEEIIIYQQ4jORyjghhBBCCCGEEEIIIT4T6aYqhBBCCCGEEEII8ZWS2VS/PNIyTgghhBBCCCGEEEKIz0Qq44QQQgghhBBCCCGE+Eykm6oQQgghhBBCCCHEV0pbuql+caRlnPgiPH/+nJEjRxIeHp7ToQghhBBCCCGEEEJkG6mMEzlOoVDQtm1bDAwMsLS0/KC8bm5uTJkyJXsC+0RaWlps2rTpg/JUqVKF3r17Z0s8/1Vt27ZlzJgxOR3GJ+nfvz89e/bM6TCEEEIIIYQQQnwBpJvqf1CHDh1YvHgxALq6ujg7O/PNN98wYsQITExMcji6Dzd27Fg8PDwYNGjQB+cNCgr6T5ZZvJ8LFy6wfft2/vnnH9WyKlWqcPDgQcaOHcuvv/6qlr5evXrs3LmT4cOH06FDB9zd3TNd//Dhw/njjz8AWLx4MTNnzuTy5ctoa2tTrFgxBg4cSIMGDQCIiYnB0tKSZcuW0aJFC9U6WrRowZo1a7h16xaenp6q5Z6enrRo0YIxY8YwcOBAPD096dOnzztj+hRXAk9xYe8x4iKjsXC0pWzz2uTO65Ju2ifX77Fj8lKN5d/+8QsWuW0AuHH0PP8u2aKRpsP0wejqZd/lY8fGrWxcuY7wsDBc3Fzp1KMLvkUKpps2LCQU/3/mcev6TZ4+ekKDZo35sWcXtTR7tu4kYPc+7t+5D4Cntxdtf+pIvgLe2VaGJr4VaVm0BlbG5twLf8qMI+u48PR2Jukr8U2hyuTOZcXzmHCWnd7F7hsnVe9PadSLYnnyaeQ7dv8Sv+6YlS1leM2wQW30K5RBy9iYlHv3eblyPalPn2eY3rRvV3TzeWksT7p4hdiZ85V/GBhg1KguekULopUrFykPHxG3ZhMp9x9mefzVvUpQP385zI1y8TgymGVndnPjxYMM05dzLUT9/OWwz2VNXFI8F57eYuXZvcQkxgGQx8yWZoWr4GbpiK2pBcvO7GL39RNZHvfHKuLgRetitfCxc8HGxIJfd8zi0N3zOR2Wysa1G1i5bAVhIaG4ebjTo29PihQrmmH6c6fPMmPKdO7duYu1jQ2t27WmcbOmqvcPHghk2aIlPH74mOTkZJycnWjxfStq16uTbWU4tfcwx7YfICYiCts8uanVtikuPp7vzPfw+h2WjJqBnVNufho7ULX8zIFjXDwcxIuHTwHI7e5M1Rb1yePpmm1lAKjoXoTqeUtgZmjC06hQNlwM5Hbo43TTfu9Xm9KuvhrLn0aFMGb/EgDKuRWilHN+HMyU15CHEc/ZeuUI98OfZVsZju4KIHDzbqLDI7B3dqRRx5Z4FNA8VwLcvXqT7UvX8eLxMxITE7G0saZMrUpUalhLlebi8dMc2LCDkKfBpKSkYONgT+WGtShepWy2lSEj1b1KUC9/WdW5a/mZPZmeu8q6Fnzr3HWbVW+cuz5XzP/1821lj2LU9i6FuaEpT6JCWH1+P7dCHqWbtkOJepRzK6Sx/ElkCH/sXQAot0vHkvU10nTdMIHk1JSsDf4Ndb3L0KRgJSyNc/Ew/DkLTm7jSvC9DNNX8ihK04KVcTSzJjYxnrOPb7Do1A6iE16q0jQsUJ463mWwMbEgOiGWo/cusfTMLpJSkrOlDA3zl6d5kWpYGZlxP/wZs45v5NKzOxmnL1CBxgUqYp/LkuCYCFae28u+m0Gq98u7FaZV0Ro4mtmiq63N46gQ1l0IYP+tU9kS/5dGZlP98khl3H9UnTp18Pf3JykpiUOHDvHjjz8SGxvLrFnZ+6MsOwwZMuSj89ra2mZhJOJLM2PGDJo3b06uXLnUljs7O+Pv769WGffkyRMOHDiAg4ODKs3Tp09V70+YMIFdu3axb98+1TJTU1NA2XJtxowZjBo1iiZNmpCUlMSyZcto3LgxU6dOpXv37piamlKiRAkCAgLUKuMOHjyIs7MzAQEBqsq4R48ecefOHapWrQqAnZ0dtWrVYvbs2YwbNy6LvyWl26cuc3ztbsq1qoe9pxPXDp1h14wVfDv8F0ytzDPM13xEV/QMDVR/G+YyVntfz9CA5iO6qi3Lzoq4Q/sPsmD6HH7u2438BX3ZvWUHIwcOZcaSudja22mkT0pKwszcnOZtW7Fl7cZ013nx7AUqVq/CT70KoK+vz4aVa/mj/xCmL56Dta1Nlpehqqcf3ct/y+RDq7n09DYNfSswrn432q/6k+AYza74jX0r0rlMI8YHruBa8H3y27sxoHJrohNecvT+JQB+3z0PPe20793M0IQF3w0m8PbZLI//TQa1qmFQvTIvF68kJfgFhnVrYtqrC1HD/4KEhHTzxM5eBLo6qr+1TIzJNbQ/SWfSKoSM236HjqMDsf4rUERGoV+6OKa9uxA14m8UEZFZFn9pF1++96vDolPbuRnykKpexRlQuQ2/7phJ6MsojfT5bJz5uUwTlp/dzdnHN7A0ykXHkg3oVKohUw+vAUBfV4/gmAhOPrhCG7/aWRZrVjHSM+BW6CN2XDvKmLpd3p3hM9q/Zx/TJ02l76B+FCxSmC0bNjGwV3+WrFmGfe7cGumfPH7CwN79adCkIUNHDuPS+QtMGjcRc0sLqlRTnl/NzM1o27E9Lm6u6OnpcvTQUf4aOQZLS0tKlS2d5WW4fOwMe5ZupG7Hb3HO586ZA0dZ+fccuvw9GHObjFv3x7+MY/Ps5bj75iU2MlrtvftXb+Fb1g+ndm7o6utxbNt+Vvw1i5/H/YqZlUWWlwHAL08+vilchTXn9nMn7Anl3QrzS7mmjN63mPC4aI306y4EsPnyIdXfOlra/Fq9LWcf31Qt87Jx4vSj69wJCyA5JZnq+UrStdw3jNm/hMj4mCwvw7kjJ9niv4qmP7XBzceL43v+ZcHoqfSfMhJLW2uN9PoGBpSvWw0HVyf0DQ24e/Um6+csRd/AgDK1KgNgbGpCtWb1scuTGx1dXa6eusCamf6YmufCu1j6D4WyQ2mXArTxq83iUztenbv86F+5NYN3/POOc9cezj6+gZVRLjqUrM8PpRoy7dW5K/tj/u+fb0s4+dCiaHVWnNnDrdDHVPIoSs8Kzflj93zC0jkuVp/bx4aLB1V/a2trM6xGR04/vqaWLi4pgd93zVNblp0VceXdCvNDqQbMOb6Za8H3qO1dmt9rdqTHpkmExGpeY/PbudKrwncsDNpG0MOrWBub0aVsU7qVa8ZfAcoHt5U8itK2eB1mHF7HtRcPcDSzoWeF5gAsDNqW5WWo7FGMLmWbMv3IOi4/v0t9n3KMrvMzP64dy4vYCI30DfKX54eSDZhyaDXXXzzAx9aF3hVbEJPwkuMPLgMQnfCSlef28iAimOSUZEq7+NK/cisi4mM4/eiaxjqFyG7STfU/ysDAgNy5c+Ps7Ezr1q1p06aNqkukQqHg77//xsPDAyMjI4oUKcK6detUecPDw2nTpg22trYYGRmRN29e/P39Ve9fvHiRatWqYWRkhLW1NZ07dyYmJuObqMDAQLS0tNi9ezfFihXDyMiIatWqERwczM6dO8mfPz9mZma0atWKly/Tnq7s2rWLChUqYGFhgbW1NQ0aNOD27bSWI0uWLMHU1JSbN9Nu9Hr06EG+fPmIjY0FNLupamlpMWfOHBo0aICxsTH58+fn2LFj3Lp1iypVqmBiYkLZsmXVPgdg1qxZeHp6oq+vj7e3N0uXarYYelNQUBA1a9bExsYGc3NzKleuzJkzZzLN87bY2FjatWuHqakpDg4OTJw4USNNYmIiAwcOJE+ePJiYmFC6dGkCAwNV79+/f5+GDRtiaWmJiYkJvr6+7NixA0jbLtu3b6dIkSIYGhpSunRpLl68qPYZR48epVKlShgZGeHs7EzPnj1V3y/A06dPqV+/PkZGRri7u7NixQq17/3evXtoaWlx7tw5VZ6IiAi0tLTUYr1y5Qr16tXD1NQUe3t72rZtS0hISIbfT2pqKmvXrqVRo0Ya7zVo0IDQ0FCOHDmiWrZo0SJq1aqFnZ2ywkZHR4fcuXOrXqampujq6mosO378OBMnTmT8+PH0798fLy8v8ufPz+jRo+nduzd9+/bl4UNla52qVauqlenq1avExcXRtWtXteUBAQHo6elRvnx51bJGjRqxcuXKDMv7qS7tO06+8sXwqVAMSwdbyn5XGxNLM64ezPxpn2EuE4zNTVUvbW31y4KWFmrvG5ubZlsZADav2UCN+rWp1aAuzm4u/NizCza2tuzclP6Nnr1Dbn7q9QvV6tTAxMQ43TT9hg2iXtOGeOT1xMnVmW4DepGaquD86XPZUobvilRnx7VjbL96lPsRz5lxZD0vYsJp7Fsx3fS18pViy5UjBNw+w9PoUA7cOs32a0dpVSyttUZ0wkvC4qJUrxLOPiQkJxJ4+8POOx/KoHol4nfuI+ncRVKfPOPl4hVo6eujX8ovwzyKly9RREWrXnr5vSExicTTryrj9PTQK1aYuA1bSbl1h9QXIcRv201qSBgGlcplafx1vctw8M5ZDt45y5OoEJaf2U3oy0iq5y2ZbnovGydexEaw58ZJXsRGcCPkIQduncbdylGV5m7YE1ad28vxB5dJSsm+H1Mf6/iDy8w7sYWDd87ldCga1qxYTf3GDWjQpBFu7m707NcbW3s7Nq1LvyJ984ZN2OW2p2e/3ri5u9GgSSPqNarP6mVp59Jixf2oVLUybu5u5HFyonmr7/Dw8uTCuexpDXhiZyBFq5SmWNWy2OTJTa2232BmbcHpfYczzbdjwRoKlitOnrxuGu817daWEjUrkNvNCRtHe+r/2BJFqoJ7l29kSxkAqnoV59i9Sxy7f4nn0WFsuBhIeFw0FdyLpJs+PjmR6ISXqpeLpT1GeoYcf/XAAGDJqZ0cunuex5EveB4Tzsoze9HS0sLb1jlbyvDv1r2UrFaB0jUqYe/kSOMfWmJhbcmx3YHpps/j4UKxiqXJ7ZIHKzsbilcui3dRX+5eTbvP9CzoQ6HSftg7OWKT246KDWrg4OrE3Wu3sqUMGanjXfatc9cewl5GUi1viXTTe746d+29cZKQV+eugFuncbdy+Gwxfw3n25r5SnL47gUO37vAs+hQ1pzfT/jLaCp7Fks3fVxyIlEJsaqXm2VujPUNOXJP/V5boVCopYtKiE13fVmlsW8F9t08xb6bQTyKfMGCk9sIiY2kjneZdNPns3XhRUw4268eJTgmnKvB99lz/SReNnlUabxtXbj2/D7/3j1PcEw4557c5NCd82ppslKzQlXYdf0Eu64f52HEc2Yf38iLmAgaFqiQbvrqeUuw4+pRDt45y7PoUALvnGXX9RN8V6S6Ks2Fp7c4cu8iDyOe8zQ6lE2X/+VO2BMK2mdfrxUhMiOVcV8JIyMjkpKSABg6dCj+/v7MmjWLy5cv06dPH77//nsOHlQ+ufn999+5cuUKO3fu5OrVq8yaNQsbG2XrkJcvX1KnTh0sLS0JCgpi7dq17Nu3j+7du78zhj/++IMZM2Zw9OhRHj58yHfffceUKVNYsWIF27dvZ+/evUyfPl2VPjo6mj59+hAUFMS+fftQKBQ0bdqU1NRUANq1a0e9evVo06YNycnJ7Nq1izlz5rB8+fJMu6b++eeftGvXjnPnzuHj40Pr1q35+eefGTx4MKdOKSsm3izPxo0b6dWrF/369ePSpUv8/PPPdOzYkYCAgAw/Izo6mvbt23Po0CGOHz9O3rx5qVevHtHRmk/NMjJgwAACAgLYuHEje/bsITAwkNOnT6ul6dixI0eOHGHVqlVcuHCB5s2bU6dOHVUFZbdu3UhISODff//l4sWLjBs3TtXa683PmTBhAkFBQdjZ2dGoUSPVvnLx4kVq167NN998w4ULF1i9ejWHDx9W+37atWvHkydPCAwMZP369cydO5fg4OD3LicoK/QqV65M0aJFOXXqFLt27eL58+d89913Gea5cOECERERlCiheeOpr69PmzZt1CqRFy1axA8//PBBcQGsXLkSU1NTfv75Z433+vXrR1JSEuvXrweUlXHXr19XtbgLCAigYsWKVKtWTaMyrnTp0hgbp1UOlSpViocPH3L//v0PjvFdUpJTCHnwFKf8HmrLnfJ78vxO+l0rXts4eh7LB05mx+SlPLl+T+P9pIREVg2Zxopfp7B75ipCHjzVXEkWSUpK4vaNmxQtqV7RU7SkH9cuXc2yz0lISCAlOZlcZrnenfgD6WrrkM/WmaCH6vEGPbxKwdwe6ebR09ElMTlJPcbkJPLbuaKjnf5lur5PWQ7cOk18cmLWBJ4ObRsrtM3NSL56PW1hcgrJN2+j6+H23uvRL1+axFNnIfFVrNraaOnoQJJ6txZFUhK6Xll3Q6yjrY2blSMXn6k/fLn07A55bZzSzXMz5CFWxmYUcVB2szUzNKGUS37OPbmZbnrx/pKSkrhx7TolS5dSW16ydCkuXbiUbp7LFy9ppC9VpjTXrlwjOVmzW5RCoeD0yVM8vP+AIn5Fsyz211KSk3l69xEehXzUlnsU8uHRzXsZ5jt38AThwSFU+ub9WvYkJSSSmpKKUTYNw6GjpY2zhT3XgtWvR9ee38fd2jGDXOrKuBbkevD9dFvRvaavq4uOtg6xSfGfFG96kpOSeXz7PvmKqnedzVfEl/vXMx4S4E2P7zzg3vXbePim361VoVBw88JVgp88w6NA3k+O+X0pz10OXHrr3HXx2R3y2qRfsfn63FX4jXNXSZcCnP9M566v4Xyro6WNi0Vurjy/q7b8yvO7eFq/X4VTebfCXAu+R9hbLQENdPUZW7cL4+p1pXv5ZjhbaLb0zyq62jp4WufR+B7PPbmJj136Xd+vBd/H2sSc4nmUw3eYG5pS1q0gp95oLXY1+B6eNnlU29Pe1Ao/J2+1NFlZhrw2Tpx5q4Xh6cfXKGDvlm4efW1dElPU76USU5LwtnVBRyv9e6mijnlxNrfT2G+/Vlpf8L//V9JN9Stw8uRJVqxYQfXq1YmNjWXSpEkcOHCAsmWV41t4eHhw+PBh5syZQ+XKlXnw4AHFihVTVXK4ubmp1rV8+XLi4uJYsmSJqsJrxowZNGzYkHHjxmFvb59hHKNGjVK1BOrUqRODBw/m9u3beHgof4B+++23BAQEqMaGa968uVr+hQsXkjt3bq5cuULBgsquAHPmzKFw4cL07NmTDRs2MHz4cEqWTP8J22sdO3ZUVfIMGjSIsmXL8vvvv1O7tvImuFevXnTs2FGVfsKECXTo0IGuXZVd8fr27cvx48eZMGGCqpvh26pVq6b295w5c7C0tOTgwYOqMcYyExMTw4IFC1iyZAk1a9YElGOWOTml3bDcvn2blStX8ujRIxwdlTfH/fv3Z9euXfj7+zNmzBgePHhAs2bNKFRIOV7F6+/6TcOHD9f4jI0bN/Ldd98xfvx4WrdurZo0Im/evEybNo3KlSsza9Ys7t27x759+wgKClLtL/Pnzydv3g+7KZ01axZ+fn5qEzEsXLgQZ2dnbty4Qb58mjfC9+7dQ0dHR9XS7W2dOnWiQoUKTJ06ldOnTxMZGUn9+vVVY8C9rxs3bqhaRb7N0dERc3NzbtxQtk4oX748enp6BAYG0qpVKwIDA6lcuTJ+fn5ERkZy8+ZN8ubNS2BgIN9//73auvLkyaMql6ur5s1QQkICCW91+zMwMNBIl574mJcoUhUYman/cDMyMyEuKv1WrcbmplRoUx8bVwdSklO4dfwCO6YspX7fdjjkVcZnkduaSu0bYZXHjqS4RC4dOMHW8Yv4ZmhnzO01uwB9qqjIKFJTUrF4ayIXCytLwsPCsuxzlsxeiJWtNUWKp/+k+1OYG5qiq62jcSMeHheNlbFZunmCHl6lQf5yHL57nhshD/G2daGeT1n0dHQxNzTVWJePnSse1nkYF7g8y+N/k5aZMt7UKPUf26lR0Whbvd9kOzpuLujkceDl0tVpCxMSSL59F8P6NYl99lzZeq6kHzpuLqQGZ9xa9kPlMjBGR1ubqLe6x0XGx2BumP74XjdDHjHr2Aa6lf8WPR1ddLV1OP3oGktP78yyuP5fRUZEkJKSgqWVldpyK2tLwkJD080TFhqGlbX6vmZpZUVKSgoRERGqB4kxMTE0q9eExMREdHR06DOon0YlXlZ4GR2LIjUVE3P1inwT81zERGp2wwMIe/aCgFVbaTesJ9o6OummeduBVdvIZWWOe8H0K4k+lYmBETra2kS/1TonOuElZgbptzB+k5mBCQXs3Vl8akem6Rr5ViQyLobrwRmPGfaxYqNjSE1NJZe5+nnV1MKM6Hd0dR/10wBioqJJTU2h5neNKF2jktr7cbEvGdV5AMlJyWhra9H0p+/JV0RzvLzs8vrcFRmvvn2i4mMxN0y/gvZWyCNmH9tIt/LNVOeuM4+us/T0rs8R8ldxvjV9XYY3xkgDiEqIxSyD7/1N5oYmFMztwfyTW9WWP4sOY9Gp7TyOfIGhngHVvUowqMr3jNznn+7QFZ9KuS10iHirojwyLhpLo/TPKddfPGDSv6voX6W1aluceHCFecfTxg0+fPcC5gamjKnbBS0tLXS1ddh57ZhaN92sYmZogo62DuEv1csQHheNpVH691KnHl2jjk8Zjt6/yM2QR+S1caZ2vtJp91JxynO0sZ4hK9uMQE9Hl9TUVKYfWceZx9nXClmIzEhl3H/Utm3bMDU1JTk5maSkJBo3bsz06dO5cuUK8fHxqsqX1xITEylWTPnD85dffqFZs2acOXOGWrVq0aRJE8qVU3YNunr1KkWKFFFreVa+fHlSU1O5fv16ppVxhQsXVv3f3t4eY2Njtcohe3t7Tp5MG5D8wYMH/Pnnn5w4cYKQkBBVi7gHDx6oKuMsLS1ZsGABtWvXply5choD9r9PHICqsur1svj4eKKiojAzM+Pq1at07txZbR3ly5dn6tSpGX5GcHAww4YN48CBAzx//pyUlBRevnzJgwfvd8N5+/ZtEhMTVRWmAFZWVnh7pw0of+bMGRQKhUZFVUJCAtbWyoqQnj178ssvv7Bnzx5q1KhBs2bN1MoPpPsZV68qW+2cPn2aW7dusXx52o96hUJBamoqd+/e5caNG+jq6uLnl9ZSycvL64NnvT19+jQBAQEarfZefxfpVcbFxcVhYGCQ4WCjhQsXJm/evKxbt46AgADatm2Lnp7eB8X1PhQKhSoGY2NjSpUqpaqMO3jwIAMGDEBXV5fy5csTGBiIgYEBd+/e1aiwNTIyAlDrqv2msWPHMmLECLVlw4cPx6Sy5kD4GXrru1IoFJDB0yaL3DaqiRoA7D2ciAmP4uLeY6rKODsPJ+w80iqI7T2d2ThmHpcDgyjXIvsGR397k7+5DT7VhhVrObQ/kNHT/kbfQLMCNjspt4emxad2YmVkxqxvBoAWhL+MZtf147QuVotURapG+vo+5bgT+lijVcun0ivlh3HrtIckMa8nW3g77g/YFvrlSpPy+Ckp99TPjS/9V2DcriXm4/5AkZJCysPHJAWdRccl67u7aISPFulvCXA0s6GtX102XfqXi89uYWGYi5bFatKxZAPmn9SczER8uLePZYUi80GlNZ+YKzSWGxsbs2D5IuJevuR00GlmTp6OYx5HihXPuDv1p9AIV6FI98l+amoqG2cuoVKzulg7vF9LmKNb93P52BnaDu2Orn7WX9PelNFx8C6lXQsQl5TAhScZd92snrcExZ18mHZoTbaOjZXOBYOMrnuvdR01kIT4BB7cuMOOZeuxyW1HsYpp4wsaGBnSZ8IwEuITuHXxKlsXrcba3gbPgj6ZrDUbpLOBMjt3fe9Xh82X/uXis9tYGOaiRbEadChZnwVvVQ5lp6/ifPtWIbTQeq+DpaxrIeKS4jn3VsXO3bAn3A17ovr7dsgjhtboQFVPP1af358lIb8XLS0UGRTEydyOn0o3YvW5/Zx9ohy/r0OJevxStikzjip7hxTM7cG3Raoy5/hmbr54QG4zG34s1ZDwwtGsuXAgW0J+O1rleTb9Miw/uwdLYzOmNu6DFsqKuz03T9KiSHW1e6m4pAR+2TAeQ10DiuXJy89lmvA0OpQLTz9vV3QhQCrj/rOqVq3KrFmz0NPTw9HRUVUJcfeusmn19u3bVS1xXnvdyqZu3brcv3+f7du3s2/fPqpXr063bt2YMGFCpj963/Vj+M2KEC0tLY2KES0tLVWFGyjH/XJ3d2fevHk4OjqSmpqKm5sbiYnq3a7+/fdfdHR0ePLkCbGxsZiZpf9EJKM4Mlr2ZiyaPw4y//HfoUMHXrx4wZQpU3B1dcXAwICyZctqxJ6RjH6Uvyk1NRUdHR1Onz6NzltP019Xav3444/Url2b7du3s2fPHsaOHcvEiRPp0aNHput+8zv4+eef6dmzp0YaFxcXrl+/rrH87fhfjzH25rLX3WDfLMvr1pVvez3hwttsbGx4+fIliYmJ6bZaA/jhhx+YOXMmV65cUavo/RD58uXj8OHD6X7OkydPiIqKUmsJWLVqVVavXs3ly5eJi4tTVVRWrlyZgIAA9PX1MTQ0pEwZ9XE5wl617Mpo0pHBgwfTt29ftWUGBgZMO7r2nWUwNDVGS1uLuEj1J9Lx0S81Wstlxs49D7dOXszwfS1tLWxdHYkKzrpWam8yMzdDW0eb8DD1J8WR4REareU+xsaV61i3bBUjJo3FzTP9LqOfKjI+huTUFI1WcJZGuTLszpWYksS4wGVM+HcFVkZmhL6MpGGBCsQmxhEZp94ywkBXj2pexbNlsOSk85eJvvtGpdmrSRi0zc1IeaN1nHYuUxRR79ElX08P/ZJFiduq2TIjNSSUmEkzQV8fLUMDFFHRGP/YltSQrNu3ohNekpKairmR+kMAM0MTjdYbrzUsUIGbIQ/Yce0oAA8JJiEokd9r/sDaCweyZRD6/xfmFhbo6OhotIILDwvXaC33mpW1FaGhYRrpdXR0MLdIm5hGW1sbJ2flg4O83vm4f+8eyxYtzfLKOONcJmhpaxMTob7/x0bFaLSWA0iMi+fpnYc8u/eYXYuVP2gVCgUoFIxu25fWv3bB/Y0ukse2H+DIlr20GdwVe5f36y76MWIT4khJTcXMQP36kMvAWKNVUHrKuBYk6OEVUtJ5WABQzas4tfKVYsaR9TyJyrrWrm8yyaUc4/TtVnAxkdHkssj8PtHKXnkddnB1Ijoyir1rtqhVxmlra2PjoHyYm8fdheBHTzmwYednq4xLO3epbx/luSv9scaU566H7Lh2DEg7dw2t2ZF1FwKy/dz1NZxvY16V4e1WcMrj4t1jvJV3K8TxB5czPC5eUwD3wp5hnyv9896nUm6LFCyM1M9J5oamRMSl/51+W7gKV4PvsenyvwDcD3/GnOObGFvvF5af3UN4XDSti9Uk8PYZ1eyk9yOeY6irR9dy37D2QkCGFX0fIyo+lpTUFKyM1ctgYWSa6b3UpH9XMvXQaiyNcxH2Mop6PuWITYxXa2WqQKE6L90Je4yLhT0ti9b4v6iM05bZVL84Mmbcf5SJiQleXl64urqqVTQVKFAAAwMDHjx4gJeXl9rL2TltnAlbW1s6dOjAsmXLmDJlCnPnzlXlP3funNoA/keOHEFbWzvd1ksfKzQ0lIsXLzJgwABKly6Ns7Mz9+7d00h39OhR/v77b7Zu3YqZmdk7K5k+Rv78+Tl8WH3g5aNHj5I/f/4M8xw6dIiePXtSr149fH19MTAwyHQygrd5eXmhp6fH8ePHVcvCw8NV3SEBihUrRkpKCsHBwRrbMvcbs845OzvTpUsXNmzYQL9+/Zg3T322pvQ+w8dHeUPp5+fH5cuXNdbv5eWFvr4+Pj4+JCcnc/Zs2oyNt27dIiIiQvX368qlN2cufXMyhzc/x83NTeNzMhr/r2jRooBy4oeMtG7dmosXL1KwYEEKFCiQYbrMtGzZkpiYGObMmaPx3oQJE9DT06NZs2aqZVWrVuXmzZusWLGCChUqqCpKK1euTGBgIIGBgZQtWxZDQ0O1dV26dAk9PT18fdPv6mJgYICZmZna6327qero6mDj4sDjq+rTvT++egd7j/THaklP6MNnGKfzg/I1hUJB6KNn2TaJg56eHp758nL+lPoMoedOncWnYMbH4/vYsHIta5asYPj4UeT1yZ6uX6CcHe3Gi4eUcFL/0VbCyYdLz+5kkEspJTWVF7ERpCoUVPMqzrH7lzRubqt6FkdPR5e9N4KyPHYSEkh9EZL2evqc1MgodPO/8X3p6KCb15PkO/feuTr9EkVBV5ekE6czTpSYiCIqGi1jI/QK+JB0Pv2xwz5GSmoq98KeaIzVVzC3BzdD0h9L0UBXj9S3Hpa8/lvuYT+Nnp4e+Xy8OXVCfd89dTKIgoXTn6XSt1BBTp1UTx904iQ+BXzQ1c34ebJCAUmJSRm+/7F0dHVxcHfi7iX1B1V3L17HKZ2JGQyMDOn81yB+GjNA9SpevRzWDnb8NGYAeTzThiw4tu0AhzfuodXALjh6uGR57G9KUaTyMOI5Pnbqn+Nt58rd0CcZ5FLysnHCztSSY/fSP1ar5y1BHZ8yzDq6kYcRz7Ms5rfp6umSx9OVm+fV7xFuXLiCq3f63SLTo1AoSE7SHH9QPQ0kJ2f9/pQR5bnraQbnrofp5tHX1dN40Ps5z11fw/k2RZHKg4hnGmOS5bd343bo40zz5rN1xj6XFYfvXnivz3K2sCMyg4qxT5WcmsLt0McUdVTvWVHU0SvDFvUGOvoZ7j9paTLax7SyfHslp6ZwM+QRfnm81Zb75fHmyvN7meZNUaQSEhtJqkJBFc9inHhwOdOKQi0tLbXZ6oX4nKQy7iuTK1cu+vfvT58+fVi8eDG3b9/m7NmzzJw5k8WLFwMwbNgwNm/ezK1bt7h8+TLbtm1TVTy1adMGQ0ND2rdvz6VLlwgICKBHjx60bds20y6qH8rCwgIrKytmz57NrVu32L9/P/369VNLEx0dTdu2benRowd169ZlxYoVrFmzhrVr391S6EMMGDCARYsWMXv2bG7evMmkSZPYsGED/fv3zzCPl5cXS5cu5erVq5w4cYI2bdqouiG+D1NTUzp16sSAAQPYv38/ly5dokOHDmozWebLl482bdrQrl07NmzYwN27dwkKCmLcuHGqGVN79+7N7t27uXv3LmfOnOHAgQMalYgjR45U+wwbGxuaNGkCKMfUO3bsGN26dePcuXPcvHmTLVu2qCo9fXx8qFGjBp07d+bkyZOcPXuWzp07Y2RkpGpdZ2RkRJkyZfjrr7+4cuUK//77L0OHDlWLoVu3boSFhdGqVStOnjzJnTt32LNnDz/88AMpGcyOZWtri5+fn0ZF6ZssLS15+vQp+/d/fDP/smXL0qtXLwYMGMDEiRO5ffs2165dY+jQoUydOpWJEyeqVWSXK1cOAwMDpk+fTuXKlVXLS5YsSWRkJOvXr093rMFDhw5RsWLFD9pPPkTBGmW4fuQs14+cI/zpC46v2UNMeCQ+lYoDELRxP4H+m1TpL+0/wb1z14h8Hkr4k2CCNu7n3tlrFKiSNmHGmW0HeXT5NlEvwgl9+IxDS7cS+vA5PhWLZ0sZABp/9w17t+1i3/bdPLz3gPnT5xASHEydxvUBWDJnIZNHj1fLc+fmbe7cvE1cXDyREZHcuXmbB/fSbjg3rFjL8vlL6DGoL3a57QkPDSM8NIy4l3HZUoY15/dTP3856vmUxdXCnm7lmmGXy4otl5X78k+lGzGkWjtVeidzO2rmLUkec1t87FwZVqMj7lYOzDuh2U2nfv6yHL57PttnYnstYf+/GNapgV7RQmg75sa4fSsUiYkknkybxdW4QysMm9TXyKtfrjRJ5y6hiNVsaaNbwBvdAj5oW1uhmz8fpn26kvI8mMSjH9fCNSM7rx+niocflTyK4mhmQ5titbE2Nmf/TeVkPt8Vqc7PZZqo0p99fIMSzvmp7lUCWxML8to407Z4HW6HPFK1KNDR1sbFwh4XC3t0tXWwNDLDxcIeO9NPb72ZFYz0DMhr46QaZNvRzIa8Nk7YfwHxfde6Bds2b2X7lm3cu3uP6ZOmEvzsOY2bNQVgzoxZjB7+pyp942+a8PzpM2ZMnsa9u/fYvmUb2zdvo8X3rVRplvkvIejESZ48esz9e/dZvXwVu7fvpFbdWhqfnxVK163C2YDjnAs8TsjjZ+xZupHI0HD8qivHzD2waiubZy0DQEtbGztnB7WXsZkpunq62Dk7oG+ofOBydOt+Atdup0HnVljYWhETEUVMRBSJ8QkZxvGpAm6dpqxbIcq4+mKfy4pvClXGyjgXh+8qZ6FtWKACbYtrDkdQ1rUgd8Oe8jRac5y/6nlLUD9/OZaf2UPoy0hyGRiTy8AYfZ3s6W5bqWFNTu4/xMn9h3n+6Alb/FcRERJG2VpVANixbD0rpy1QpT+y8wBXgs7x4slzXjx5TtCBw/y7ZQ9+ldJash/YsIMb5y8T+uwFwY+ecnDLHk4fPKaW5nPYdf0Yld84d7UuVgtrY3MO3FQ+3GhepBqdyzRWpT/7+AbFnX2o5lVcde76vnhtboc8zrA1VFb7Gs63e28EUcG9COXdCpE7lzXfFamGlbGZanbqpgUr0bGk5vWuglth7oQ+SbclaIP85Slg746NiTlO5na0L14XZwu7bJ3xevPlw9TIW5LqXiVwMrflh5INsDGxYPf1EwB871ebXhXSJlELenSVMq4FqeNdGntTK3zsXPmxdENuvHigaokW9OgadbzLUMG9MHamlhRx8KJ1sZoEPbyiUXGXFdZfDKSOdxlq5yuNs4U9Xco0wc7Ukm1XjwDwQ8kGDKjSRpU+j7kt1b2K42hmg7etC0OqtcPN0gH/oO2qNC2L1MAvTz5y57LG2dyOZoWqUCNvSfbfOpXl8Yvs988//+Du7o6hoSHFixfn0KFDGabdsGEDNWvWxNbWFjMzM8qWLcvu3bvV0ixatAgtLS2NV3x81k9C9JpUA3+F/vzzT+zs7Bg7dix37tzBwsICPz8/hgwZAihnohw8eDD37t3DyMiIihUrsmrVKkA57sru3bvp1asXJUuWxNjYmGbNmjFp0qQsjVFHR4fVq1fTs2dPChYsiLe3N9OmTaNKlSqqNL169cLExEQ16L+vry/jxo2jS5culCtXTqMb7sdq0qQJU6dOZfz48fTs2RN3d3f8/f3VYnnbwoUL6dy5M8WKFcPFxYUxY8ZkWnmXnvHjxxMTE0OjRo3IlSsX/fr1IzJSvbuFv78/o0aNol+/fjx+/Bhra2vKli1LvXr1AEhJSaFbt248evQIMzMz6tSpw+TJk9XW8ddff9GrVy9u3rxJkSJF2LJli6o7ZuHChTl48CC//fYbFStWRKFQ4OnpSYsWLVT5lyxZQqdOnahUqRK5c+dm7NixXL58Wa3l18KFC/nhhx8oUaIE3t7e/P3339SqlfZDyNHRkSNHjjBo0CBq165NQkICrq6u1KlTR60C8m2dO3dm0aJFmc7ma2Fh8e4v+x2mTJlC4cKFmTVrFr///jtaWlr4+fmxadMmGjZsqJb2dRfUgwcPqu0jenp6lC1blv3796dbGbdy5UqNMeGykmcJXxJi4ji7/V9eRsVg6WhL7e6tyGVtAcDLyBhiwtIGGE9JTuHk+n3ERkSjq6eLhaMttbu1xLlQWpfcxJcJHF6+nZdRMegbGWDtnJsG/dtj554909gDVKxemeioKFYvXk5YaDiu7q4MG/cndrmVDwPCQ8MIea4+m2+fTt1U/799/Sb/7gvALrcd89YsAWDnpq0kJyUxbtgotXwtO7Sh1Q9ts7wMAbfPYG5oQrvidbE2MeNu2FMGbf+H5zHK7nbWxuZqPyR0tLRoUaQ6zhb2JKemcPbJDbptnMizaPXueU7mdhR28KLf1ul8Lgl7DqClr4dRq2ZoGRuRcvcBMdPmwBuTjWhbWWqMsaNtZ4tuXg9ips5Od71aRoYYNqmPtoUFipcvSTp7gbhNOyA18+49H+rEg8uY6hvRxLcyFkamPIoMZsLB5YS+VJ5rLQxNsTZO6+546O55DHUNqJGvJK2K1eJlYjxXgu+y+tw+VRpLo1yMrttF9Xf9/OWon78cV5/fY8yBxVka/8fwsXVlRtO0Lu89KyjHAdxx9Rijczi+6rVqEBUZxeL5/oSGhOLu6cG4KRPI7aBs7R0aEsrzZ2mtqRzzOPL3lAlMnzyNjWs3YG1rQ6/+valSLe0cGxcfz6RxE3kRHIyBgQEurq4MHTmM6rVqZEsZfMv6ERfzkkMbdxMTEYWtkwMtB/yMha2yy1lMRBSRoR82KPvpfYdJSU5h/VR/teUVv6lN5WZ1syz2N515fAMTfSPqeJfBzNCEp1GhzDq6UfXD29zQBMu3urkZ6upT1DEv6y8GprvOiu5F0NPR5cfS6tfNHVePsfNV98msVLR8KV5Gx7Jv7VaiwiPJ7eJIpyG9sLRTjqsbFR5JREhapaFCoWDH8g2EBYego6ODtb0tddt8Q5laaQ/WEuMT2Dh3ORFh4ejp62GXx4FWvTpRtHzWTwiSmRMPrmCqb0xj30qqc9fEgysyPHcdvnseI119jXPXmnOfb0yyr+F8e+rRNUz0jaifvzzmhiY8iQph+uG1qomUzA1NNYahMNLVxy+PN6syGP/NWN+Atn61MTM0IS4pgYcRwYwPXMG98Oybnf7IvQuYGRjTomh1LI1y8SD8GX/uW8SL2AgArIzNsDW1UKU/cOs0RroG1PMpR8eS9YlNjOfC09sseWMyjTXnD6BQKGhTrBZWxuZExccS9PAqy8/uJjscvHMWMwNj2vjVxsrYjPthTxm6a45q0gsrYzPsTNLupbS1tGlWqCpOFnakpKZw/sktem+Zqrr3AjDU06dH+ebYmJiTkJzEw8hgxgUs4+Cdsxqf/zXKqvGXvwSrV6+md+/e/PPPP5QvX545c+ZQt25drly5gouLZuvyf//9l5o1azJmzBgsLCzw9/enYcOGnDhxQjWuPoCZmZnGME1v93bKSlqK9xm8SgjxnxMYGEjVqlUJDw/Pkgqr1x49eoSzs7NqvMHsFB8fj7e3N6tWrVKbiOK/Zvv27QwYMIALFy5k2rUqPeMDlmVTVJ/PgKrfc+353ZwO45P42LtTeVa3dyf8wh38ZSYRXfq+O+EXzGL2JNquzL6K7c9laavhlJ/Z5d0Jv3BHus3meTaNC/a52JvZsPTUf3/G3LYl6tJjY9Y+PP3cpjfty5ZLGbdu+K9oVLAi7VaOzOkwPtmSVsP+8+fbpa2G03md5pjF/zVzvx1Ek0XvnsjuS7apw1/Umtc7p8P4ZHt+mpLTIXyUwFuZDBuSw6p4fVivm9KlS+Pn58esWbNUy/Lnz0+TJk0YO3bse63D19eXFi1aMGzYMEDZMq53795qwzFlN+mmKoTI1IEDB9iyZQt3797l6NGjtGzZEjc3NypVqpTtn21oaMiSJUs+aDy+L1FsbCz+/v4fXBEnhBBCCCGEEF+zhIQEoqKi1F4JCekP1ZCYmMjp06fVemEB1KpVi6NHj77X56WmphIdHY3VWxNIxcTE4OrqipOTEw0aNFAbNz07SGWcECJTSUlJDBkyBF9fX5o2bYqtrS2BgYEas+Vml8qVK2t0Ff2v+e677yhduvS7EwohhBBCCCFEFtPW0vpiX2PHjsXc3FztlVELt5CQEFJSUjTGs7e3t+fZs2fv9V1MnDiR2NhYvvsubexEHx8fFi1axJYtW1i5ciWGhoaUL1+emzdvfvyX/g7STEOIr1SVKlU0Zj36GLVr16Z27dpZEJEQQgghhBBCCJFm8ODB9O2rPoyKgYFBpnneHgNPoVC817h4K1eu5I8//mDz5s3Y2dmplpcpU4YyZdIm6ylfvjx+fn5Mnz6dadOmvU8xPphUxgkhhBBCCCGEEEKIz87AwOCdlW+v2djYoKOjo9EKLjg4WKO13NtWr15Np06dWLt2LTVqZD7Rk7a2NiVLlszWlnHSTVUIIYQQQgghhBDiK6X1Bf/7EPr6+hQvXpy9e/eqLd+7dy/lypXLMN/KlSvp0KEDK1asoH79+u/8HIVCwblz53BwcPig+D6EtIwTQgghhBBCCCGEEF+8vn370rZtW0qUKEHZsmWZO3cuDx48oEsX5Sz1gwcP5vHjxyxZsgRQVsS1a9eOqVOnUqZMGVWrOiMjI8zNzQEYMWIEZcqUIW/evERFRTFt2jTOnTvHzJkzs60cUhknhBBCCCGEEEIIIb54LVq0IDQ0lJEjR/L06VMKFizIjh07cHV1BeDp06c8ePBAlX7OnDkkJyfTrVs3unXrplrevn17Fi1aBEBERASdO3fm2bNnmJubU6xYMf79919KlSqVbeWQyjghhBBCCCGEEEKIr5SW1tc1QlnXrl3p2rVruu+9rmB7LTAw8J3rmzx5MpMnT86CyN7f17VFhBBCCCGEEEIIIYT4gkllnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlrfdispSL7Scs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKS3ppvrFkZZxQgghhBBCCCGEEEJ8JlIZJ4QQQgghhBBCCCHEZyLdVIUQQgghhBBCCCG+UtpIN9UvjbSME0IIIYQQQgghhBDiM5HKOCGEEEIIIYQQQgghPhPppiqEEEIIIYQQQgjxlZLZVL88WgqFQpHTQQghhBBCCCGEEEKIrHfy/uWcDiFDpVx9czqEHCEt44QQ4gs2IXB5TofwyfpXacOtFw9zOoxP4mXrTHR4eE6H8clyWVoSHRWV02F8klxmZlx+ejunw/hkvg6ePI8KyekwPpm9mQ3lZ3bJ6TA+yZFuszl690JOh/HJyrkX5kV0WE6H8Ulsc1kRdfRkTofxyczKlSIq6HROh/HJzEoWJ/rFi5wO45PksrUl6tTZnA7jk5mVKEZwVGhOh/FJ7MysuRvyOKfD+GTuNnlyOgTxlZDKOCGEEEIIIYQQQoivlHRT/fLIBA5CCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5S2tJN9YsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnyltJBuql8aaRknhBBCCCGEEEIIIcRnIpVxQgghhBBCCCGEEEJ8JtJNVQghhBBCCCGEEOIrJbOpfnmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UlnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8p6ab65ZGWcUIIIYQQQgghhBBCfCZSGSfEWwIDA9HS0iIiIiKnQ8lybm5uTJky5aPz37t3Dy0tLc6dO5dlMQkhhBBCCCGEEP9PpJuq+L909OhRKlasSM2aNdm1a1dOhyNElrgSGMT5PceIi4zG0tGOMt/VwiGva7ppn1y/x/ZJSzSWNx/RFYvcNhrLbwdd4sD8DbgW8aZW1xZZFvO2DZvZsHItYaGhuLi50blXVwoWKZRh+otnzzNv+mwe3LuHlbU137ZpQb0mDVXvJycns2bpSvbv3ENoSAhOzs50+OVHSpQppUrT8ds2BD97rrHu+k0b0bVfz48qh0KhYO78+WzcvJno6Gh8CxRg0IABeHp4ZJpv/4EDzJ47l0ePH+OUJw9du3ShapUqqvf9Fy8mIDCQe/fvY2BgQOFChejRrRturmnbdc68eezZt4/nz5+jp6dHfm9vunbpQsGCBd8d87x5bNy4URmzry+DBg7E09Pz3THPns2jR49wcnKi6y+/ULVqVbU0a9euZemyZYSEhODh4UG/vn0pVqxYWsxz57Jnz560mH186Nq1a7oxKxQKevXqxdFjx5gwfjwNGzXKNL637dy0jc2r1hMeGoazuys/dO9MgcLpfzdhoWEs/mcet2/c4umjJ9T7phGdevyc4boP7z/IpD/HUap8GX4dPeyD4vpQG9duYOWyFYSFhOLm4U6Pvj0pUqxohunPnT7LjCnTuXfnLtY2NrRu15rGzZqq3j94IJBli5bw+OFjkpOTcXJ2osX3rahdr062luN9FHHwonWxWvjYuWBjYsGvO2Zx6O75nA5L5cDW3exct5mIsAjyuDrRuktH8hXMn27aU4dPELB9Nw/u3CM5KZk8Lk40/v47CpUoqkpzcOc+juw7yOP7DwFw8/KgWcdWeHjnzbKYN6xdz8qlywl9tf/06tc70/3n7OkzTJ88Tbn/2NrQpm0bmnz7jer9O7fvsGD2PK5fu8azp8/o2bcX37VuqbaOjes2sGndBp4+fQqAu4cHHX78gbLly2ZZuUB5jpi3eSMbDwYQHRuLr4cnA9u2xzOPU4Z5Nh4MYMeRw9x+/AgAHzd3ujVrjq+H+vkvODyM6WtWc+ziBeKTEnGxz83vP/xIfjf3rC/DhvVsDDigLIOnFwM7dMTTKZMyBBxgx6FD3H6k3G983N3p9l0LfD29VGnW7dvL+v37ePoiBAAPpzx0avoN5YsUzbK45y5cyMYtW9KufX37vvvaFxjI7Pnz0659P/1E1cqV003rv3QpM+fMoVXz5vTr1Uu1fM6CBezZv5/nwcHo6eoqr32dO1PQ1zdLyjVvwzo2HjhAdGwMvl5eDOzwA55Ozhnm2XhgPzsO/8vth6/2KXd3urVoqbY9/DdvIuDUSe4/eYKBvj6F8+aje8vWuDk6flK8G9euZ+WyFarju2ffXu84vs8yY8q0N64PbWjyxvXh7u07LJgzX3V89+jTi+9aq9/7vYyNZf7sefwbeJDw8HDy5ctHz369ye9b4KPLsXXDZtatWE1YaCiu7m506dmNgkULZ5j+wtnzzJ3+D/fv3sPaxobmrVtQv6n6PcLG1evYtnELL54HY2ZhTsUqlejY5Sf0DfQBuHjuPOtWrObmtZuEhYYybOxIylWq8NFl+JJpI91UvzTSMk78X1q4cCE9evTg8OHDPHjwIKfDEVkgKSkpp0PIUbeDLnNszW6K1atA06Gdye3lwq7pK4gJi8w0X/OR3Wjzd1/Vy8zOSiNNdGgEJ9btJbeXS5bG/O/+AOZNm0WLdq2ZtnA2BYsUYnj/welWlAE8e/KU4QN+o2CRQkxbOJsW7VozZ8pMjgT+q0qzZK4/uzZvo0uf7sxauoC6TRowesgf3L5xU5VmyryZLN28RvUaNXkcABWqVvrosixeupQVK1cysF8/Fi9ciLW1Nd169iQ2NjbDPBcuXmTI779Tr25dVi5dSr26dfn1t9+4dOmSKs2Zs2dp3qwZ/vPnM3PaNFJSUujeqxdxcXGqNK4uLgzs149Vy5czf84cHBwc6NarF+Hh4ZnHvGQJK1asYOCAASxetEgZc/fumcd84QJDhgxRxrxihTLmwYPVYt6zZw8TJ03ih44dWb5sGcWKFqVnr148e/ZMPeYBA1i1ciXz583DwdGRbt27pxvzipUr4SPHOTl84CD+M+bS7PsWTJw/nfyFfBk1cBgvngenmz45MQkzC3Oafd8SN8/Mf2wHP3vOolnzKVD403/4vcv+PfuYPmkq7Tq2Y/4yfwoXLczAXv15/sZ3+qYnj58wsHd/ChctzPxl/rTt2JapE6YQeCBAlcbM3Iy2Hdvzz8I5+K9cTN2G9flr5BhOHjuR7eV5FyM9A26FPmLSv6tyOhQNJw4eYcUcfxq0bMaImX+Tr2B+Jg0dTWjwi3TT37h0BV+/IvQZOYTh08fhU6QgU//4i/u37qrSXLtwmTJVKjBo3HCGTh6NlZ0NE4aMIjwkNEti3r9nH9MmTqHdDx1YuHwxRYoVoX/PvmrH5JuePH7CgF79KFKsCAuXL6Zdx/ZMmTCZwP1p+09CfDyOTo506d4Va2vrdNdja2dLl+5dmb/En/lL/PErUZzB/QZy5/adLCnXa0t2bGfF7p0MaNOORcNGYG1uTvcJ44h94zz5ttPXrlKrTFlmDRrCwqHDyW1lTfcJfxMcHqZKExUby4+j/0RXV4epffuzZvRf9G7ZmlzGxlkaP8CSbVtZsXMnA9p3YNHIUVhbmNP9rzGZl+HqFWqVLces34ay8I8R5La2ofu4vwgOSyuDnZUV3Vu0ZPGfo1j85yhKFPCl/6SJ3H70KEviXrx8OStWr2Zg374snj9feR3p04fYly8zzHPh0iWGDB9Ovdq1WbloEfVq1+bXYcO4dPmyRtrLV6+yccsW8qbzkMjV2ZmBffqwavFi5v/zj/La17fvO69972PJti2s2LGDAR06sujPMVibW9B97Ptsj/LM+u13Fo4YSW4bG7r/NUZte5y5dpXmNWqxcMSfzPj1N1JSUujx1xji4uM/Otb9e/YxbdJU2nZsz4JliyhStAgDevV7x/WhH0WKFmHBskW07diOqRMmq10f4uPjccjjyM/df8Eqg+N73Ki/CDoRxNARw1i8chkly5SiT7devMjgXPguB/cFMGfqTFq2a8NM/7kULFyIof1/zfSe8Pf+gylYuBAz/efSom1rZk2ZweGAtHvCA7v3sXD2PL7/oT1zVyyiz6/9Obg/EP/Z89LKGhePu5cnXfv2+Ki4hfgUUhkn/u/ExsayZs0afvnlFxo0aMCiRYvemefIkSNUrlwZY2NjLC0tqV27tupiv2vXLipUqICFhQXW1tY0aNCA27dvq/K+7tq5YcMGqlatirGxMUWKFOHYsWPv/RkKhYK///4bDw8PjIyMKFKkCOvWrcs05uDgYBo2bIiRkRHu7u4sX75cI01kZCSdO3fGzs4OMzMzqlWrxvnz79/6ICUlhU6dOuHu7o6RkRHe3t5MnTo1S/L4+/uTP39+DA0N8fHx4Z9//lG99/o7XbNmDVWqVMHQ0JBly5aRmprKyJEjcXJywsDAgKJFi6q1fHyfbREaGkqrVq1wcnLC2NiYQoUKsXLlStX7c+bMIU+ePKSmpqrF26hRI9q3b6/6e+vWrRQvXhxDQ0M8PDwYMWIEycnJ7/3dfqiL+47hXb4YPhX8sHSwpWyL2phamnPl4KlM8xnlMsHY3FT10tZWvyykpqYSsGAjfg2rkMvWMktj3rhqPbUa1KF2w3q4uLnSuVdXbOzs2LFpa7rpd2zahq29HZ17dcXFzZXaDetRs34dNqxcq0oTsHsf37VtTcmypXHI40j9po3wK12CDavSjhdzSwusrK1Ur6CjJ3DI40ihYkU+qhwKhYKVq1fTsUMHqlWtipenJyOGDSM+Pp5de/ZkmG/lqlWULlmSju3b4+bmRsf27SlVsiQrVq9WpZk+ZQoNGzTA08ODfHnzMnzoUJ49e8bVa9dUaerUrk3pUqVwypMHTw8P+vTuTWxsLDdv3co85pUr6dixI9WqVcPLy4sRf/yhjHn37oxjXrmS0qVK0bFjR2XMHTsqY37jGFm+YgWNGzemSZMmuLu7069fP+zt7dXOWXXq1KF06dI4OTnh6emZFvPNm2qfd+PGDVYsX86w33/PMKbMbF27ker1alGzQR2cXF3o1ONnrO1s2b15e7rp7Rzs6dSjC1VrV8fYxCTD9aakpDBl1HhadvweeweHj4rtQ6xZsZr6jRvQoEkj3Nzd6NmvN7b2dmxatzHd9Js3bMIutz09+/XGzd2NBk0aUa9RfVYvS9tOxYr7UalqZdzc3cjj5ETzVt/h4eXJhXM53wLt+IPLzDuxhYN3zuV0KBr2bNhGpdrVqFy3Oo4uylZxVrY2HNiW/rHeuktH6jVvjIe3F7nzOPBtx9bYOzpw7kTaufnnQb2o1rA2Lp7uODjnoWOvn1EoFFw5dynddX6oVctX0qBxQxq+2n969euDnb0dm9ZtSDf9pvUbsc9tT69+fXBzd6Nhk0bUb9SAlctWqNLk9y1At149qFG7Jnr6eumup0KlipStUA4XVxdcXF34uVsXjIyNuHIxa8oFr85le3fRsUFjqpUoiZeTM3/8+DPxCYnsPn4sw3yjfu5K82o18HZxxc3Bkd86dkKhSCXoyhVVmsU7tmFvZcXwTp3x9fDE0caWUgV8cbKzz7L4VWXYtYuOjRtTrWQpvJyd+ePnX4hPTGT30aMZl6Frd5rXrIm3qxtujnn47cefUKQqCLqc9v1W8itO+aLFcHVwwNXBga7ftcDY0JBLt25muN4PinvtWjq2a0e1ypXx8vBgxG+/EZ+QkPm1b80aSpcoQce2bXFzdaVj27aUKl6cFWvWqKV7+fIlv48YwW8DB5IrVy6N9dSpVYvSJUumXft69FBeR964B//ocu3aSccmTdK2R5euxCcmsPvokQzzjerWg+Y1a+Ht9np7dNbYHtMHDaZh5Sp4OjmTz9WVYT//wrPQEK7evZvhet9l9YpV1H/j+O7Zrzd29nZszPD6oDy+X18fXh/fqzSO7+7UqFUT/XSO74T4BA4GBPJLz64U9SuGk7MTP3T+EQdHRzatT/+88i4bVq+ldoO61G1UHxc3V7r07o6tnR3bNm5JN/32TVuxs7ejS+/uuLi5UrdRfWrVr8u6lWn70dVLl/EtVJCqtaqT2yE3xUuXpErNaty4dkOVpmTZ0nTo3IkKVT7+gawQH0sq48T/ndWrV+Pt7Y23tzfff/89/v7+KBSKDNOfO3eO6tWr4+vry7Fjxzh8+DANGzYkJSUFUFbu9e3bl6CgIPbv34+2tjZNmzbVqKz57bff6N+/P+fOnSNfvny0atVKVTnzrs8YOnQo/v7+zJo1i8uXL9OnTx++//57Dh48mGHcHTp04N69exw4cIB169bxzz//EByc1hpEoVBQv359nj17xo4dOzh9+jR+fn5Ur16dsDee4mUmNTUVJycn1qxZw5UrVxg2bBhDhgxhzVs3VB+aZ968efz222+MHj2aq1evMmbMGH7//XcWL16stq5BgwbRs2dPrl69Su3atZk6dSoTJ05kwoQJXLhwgdq1a9OoUSONH/iZbYv4+HiKFy/Otm3buHTpEp07d6Zt27acOKFsLdK8eXNCQkIICEh7ghgeHs7u3btp06YNALt37+b777+nZ8+eXLlyhTlz5rBo0SJGjx79Xt/rh0pJTiHkwVPyFFB/cpyngAfPbz/MNO+GUXNZNmAS2yct4cl1zZvBs9v+xTCXMT4ViqWT++MlJSVx68YNipUsobbcr2Rxrl66km6ea5ev4FeyuHr6UiW4ee2GavslJSWi96rrwWv6+gZcuZD+j7+kpCQC9uyjZv06Hz3L1OMnTwgNDaVM6dJvfKY+fsWKceHixQzzXbh0idJv5AEoU7p0pnliYmIAMDMzS/f9pKQkNm7ahKmpKfnyZtzF7fHjx8qYy5RRj9nPjwsXLmQc88WLlH4jD0CZsmVVeZKSkrh27Zrad6EqVwbrTUpKYuPGjcqY8+VTLY+Pj+e3oUMZMHAgNjaaXaffJSkpidvXb1GkpJ/a8qIli3Ht8tUPXt+b1i5ZiZmFOTXq1/6k9byPpKQkbly7TsnSpdSWlyxdiksZ7NeXL17SSF+qTGmuXbmW7kMBhULB6ZOneHj/AUX8imZZ7F+b5KQk7t28g6+fesW9r19hbl+9/l7rSE1NJT4uDpNcphmmSUhIJCU5OdM070u1/5R5a/8pU5pLF9I/11y+eImSZdSP4VJlS3PtytWPfqiUkpLCvt17iY+Lx7dwxkMRfKjHL14QGhlJmTe6uOvr6eHn7cOFD6hwik9IIDklBbM3KuEPnTtDfnd3fp05jVo9u9Jm+FA2HgzIZC0f5/GLYEIjIyhTKK07nr6eHn4++blw80YmOdUpy5CMmWn6+01Kaip7jh0lLiGBQplcH9477tfXvlJp+5a+vj5+RYty4VLGFa4XLl2idCn1/bFM6dIaecZNmkT5cuUoXbLkO2NJSkpi4+bNyuuIl9c702fm8YtgQiOycHtk8mAn5lULwoy22bu8Pr5LpXt9yOT4/oDrQ3pSUpJJSUlBX99AbbmBoT4XzmV8D5GRpKQkbl6/gV+pt+4JS5Xg6iXNFpOgrGh7O33x0iW4ee26qhy+RQpx8/oNrl9RXvOfPn5C0LETlCpXWmN9/w+0tLS+2Nf/KxkzTvzfWbBgAd9//z2gbJ0RExPD/v37qVGjRrrp//77b0qUKKHWMsv3jfEomjVrprF+Ozs7rly5ojb+Uf/+/alfvz4AI0aMwNfXl1u3buHj45PpZ8TGxjJp0iQOHDhA2bLKcVY8PDw4fPgwc+bMoXI6Y2zcuHGDnTt3cvz4cdWP/QULFpA/f9qYNgEBAVy8eJHg4GAMDJQX0wkTJrBp0ybWrVtH586d3/VVoqenx4gRI1R/u7u7c/ToUdasWcN333330Xn+/PNPJk6cyDfffKNK87pS683WZ71791aleR3/oEGDaNlSOW7NuHHjCAgIYMqUKcycOVOVLrNtkSdPHvr3769K26NHD3bt2sXatWspXbo0VlZW1KlThxUrVlC9enVAOT6WlZWV6u/Ro0fz66+/qmL18PDgzz//ZODAgQwfPvyd3+uHio95iSJVgbGZ+g2fUS4T4qLS73JobG5Kxe8bYOPqQEpSMjdPXGT75KU06Nseh3zK8cie3XrA9SNn+eb3jMfM+lhRkZGkpqRiYaXe2s7CypLw0PQrg8NDw7AorZk+JSWFqIhIrGys8StVgk2r1lGwSCEc8jhy/vRZThw+SspbleOvHf/3CDExMdSoV+ujyxIaquxKZm2l3sXX2sqKpxl0E3mdL708r9f3NoVCwaSpUylapAheb3XZOXT4MEN+/534+HhsbGyYOW0aFhYWnz3miIgIUlJSsHorjZW1NSFvlevQoUMM+e23tJhnzFCLeeKkSRQuXJgqGYwj9C7RkVGkpqZiYWmhttzc0pKIsI/vxnT14mX2bd/NpPkzPnodHyLy1XdqqfGdWhKWwb4SFhqGlbX6sWJpZUVKSgoRERGqys2YmBia1WtCYmIiOjo69BnUT+NHmkgTHRVNamoqZhr7lAWXwiLeax27128lIT6BUpXKZZhm3cLlWFpb4Vvs0yutIjM6Jq0sCQ1J/1wbGhpK6bfOzVbp7D/v4/atW3Tp2JnExESMjIwYM/4v3D2ybry10MgIZXxm5urxmpvx7AO6+c5YtxpbS0tKvXF/9zj4BesPHKB17Tp0bNCIy3fuMHH5UvR19ahfPuvGlAqNiHwVc3plCHnv9cxYvQpbSytK+aqPiXnr4QN++GM4iUlJGBkaMr53HzwyGU/vveN+9eBW45pgacnT5+l3LXydz9pSff+ytrRUrQ9g9759XLtxgyXz5r2dXc2hI0cY8qpVt421NTMnT8702vc+Ql9N4Ka5Pcw/bHusWomtlRWlCqZ/HCsUCiYvX0pRb2+8nDMeiy4zGV0fLK2tCMvgXio0NIxS1m+l/8Dj29jEhIKFCrJ4gT9u7q5YWlmxb/derly6gtNHlCUqQnlPaPnWecfS0jLDcoSHhWNp+fZ1TnlPGBkRibWNNVVqVCMyPIJ+v/RCoVCQkpJCg6aNaNG29QfHKER2kMo48X/l+vXrnDx5kg0blE2odXV1adGiBQsXLsywMu7cuXM0b948w3Xevn2b33//nePHjxMSEqJqEffgwQO1yrjChdOesDm86tYUHByMj49Ppp9x5coV4uPjqVmzptryxMREtQHR33T16lV0dXUpUSLtiZGPj4/aDcrp06eJiYnRGOslLi5OrZvtu8yePZv58+dz//594uLiSExMpGjRoh+d58WLFzx8+JBOnTrx008/qfIkJydj/taN0Zvli4qK4smTJ5QvX14tTfny5TW63ma2LVJSUvjrr79YvXo1jx8/JiEhgYSEBEzeeLLZpk0bOnfuzD///IOBgQHLly+nZcuW6OjoAMrvNigoSK0lXEpKCvHx8bx8+RLjdMabef05b3pdSZodLHLbqE3UYO/pTGxYJBf2HsMhnyuJ8QkELNxExbYNMDTN+vFxXnv7aZhCocj0CZnGW69btb564+de3Zj29yS6tPkBtMDB0ZEa9Wqzb0f6XS/3bN9JidKlsP6AH5c7d+1izLhxqr+nTJz4UWVJr0CZ5fl7wgRu3brF/LlzNd4rUbw4K5YsISIyko2bNzP4t99YtGCB6gf465i1tLRQKBRMmTw545gzj/i9Yn6f76JEiRKsWL6ciIgINm7axOAhQ1jk74+VlRUHDx7k1KlTLF+27F3RvJPG96lQoPWRgxjHvXzJ1NET6DqgJ2YW5u/OkIU0v9N0yvZmeo0yKjSWGxsbs2D5IuJevuR00GlmTp6OYx5HihX3Q2RM8zSkeK9xDY8HHGbTsrX0HD4ww/1nx9rNnAg8zKC/R6Cnr59umo+R/v7zIek195/34eLqiv+KxcRExxB4IIDRf/zJ9Ln/fHSF3M5jRxi72F/19+Te/TKIF80NlYElO7ax58RxZg8agoFe2neeqkglv5s73b5VPij0dnXjzpNHrA/Y/0mVcTuPHGbswgVpZeg/UFmGt9Ipv/L3K8SSbVvZc+wos3/7HYO39htXB0eWjx5L9MuXHAg6yR9zZjNn6O8fXCG3c88exowfr/p7yt9/px/3+0T99vYibRs+e/6ciVOnMmPSpHfeB5Xw82OFv7/yOrJ1K4OHDWPR3LlYvVVJk5mdRw4zdkFapd/kAYOUIZLePvWe22PrFvYcO8LsocM0tsdrfy/y59aD+8wbNiLd9z9EevdGmR7fb5ctnevDuwwdOYyxI8fQtF5jdHR0yOedjxq1a3Lj+vu3HtQMTDOuTO+j0jvuSduXzp85x6oly+nWrxc+vvl58ugxs6fOxNJ/KW06tv34OIXIIlIZJ/6vLFiwgOTkZPLkyaNaplAo0NPTIzxc8wkLgJGRUabrbNiwIc7OzsybNw9HR0dSU1MpWLAgiYmJaun09NLGXHh9kXhdcZfZZ7xOs337drW4IePKGtVNcyYXsNTUVBwcHAgMDNR4732fKq5Zs4Y+ffowceJEypYtS65cuRg/fryqS+fH5Hld3nnz5ml04Xtd2fWaSTpN/9+nEiCzbTFx4kQmT57MlClTKFSoECYmJvTu3VttezZs2JDU1FS2b99OyZIlOXToEJMmTVK9n5qayogRI9Ra7b1maGiY7vcyduxYtRaDAMOHD8e0yru7khiaGqOlrcXLt1rBxUXHYmSWcfeIt9l5OHHrhLJbQ/SLcGJCI9g9M20A9df71fxf/uS7kd0ws9Wc7OF9mZmbo62jrdEKLjI8QqO13GuW1laEh6q3aIoIj0BHRwczc2W3TXNLC34fO5LEhESioqKwtrHGf9Z87B1ya6wv+Nlzzp06y5DRH9ZasVLFimqztSW+mjwkJDRU7YlyWHi4RmuUN1lbW2u0gssoz98TJvDvoUPMnT0bezs7jfeNjIxwdnbG2dmZQgUL0vTbb9m8dSsdX7XOfB2zibk5sTExqv053ZgzGKz5fWK2sLBAR0dHI014WJhG6wm1mAsVouk337B582Y6duzIqVOnePToEVWrVVPLM3DQINasXcuvf/+RYYyv5TI3Q1tbm/C3WsFFRkRgbmXxzvzpefb4KcHPnjNmcNqx+vq4+LZaA2YsnUfuPFk7hpz5q+/07VZw4WHhGq0hXrOytiL0rWMrPCwcHR0dzN+oBNLW1sbJWfmDPK93Pu7fu8eyRUulMi4Ducxyoa2tTWR4hNryqIhIzC0zr5w9cfAI/lNm0XVIX3z90p8dcOe6LWxbtYEBY4fh7JH+TNgfyjyjYzI8HCvr9Pcf5XEeppH+7f3nfejp6alayvgUyM/VK1dZu3I1A3/79YPW81qlon4U9EjrhpiYrDz/hkZGYPPGvUt4VBTWZu+OdenO7fhv28rMAYPI66w+SZGNhQUejur3XW4Ojhw4lflYrO9Sya84BT3fLIOyS11oZCQ2b9yHhkdFYW3+HmXYvg3/LZuZ+esQ8rpoTrSkp6uLc27lNbCAhwdX7txm1a5dDOn044fFXaECBQukzZSpuo6EhX3Ytc/KSq0VnCrPq7Jfu36dsPBw2v6YFl9KSgpnz59nzYYNHD1wQHU/aGRkhLOTE85OTsprX8uWbN62jY5t37+iRXN7vLFPqW2PyPfcHlvx37KJmYN/I69L+sfx+MX+/HvmFHN//wP7TK6575J2fdA832d0fbC2ttK4nkSkc314lzxOTsyY+w9xcXHExsZiY2PD8MG/4+D44ddAM4v07wkjwiM0Wsu9ZmllSXjY2+nD1e4Jl8zzp1rtmtRtpOwN4+7pQXx8PNPGTaJV+zYa4yR/7bT/j7uDfqmkMk7830hOTmbJkiVMnDiRWrXUu6Q1a9aM5cuX0717d418hQsXZv/+/RoVJaDsynH16lXmzJlDxYoVATh8+PAHx5bZZxQoUAADAwMePHiQbpfU9OTPn5/k5GROnTpFqVfjcly/fp2IV03vAfz8/Hj27Bm6urq4ubl9cMyg7GZWrlw5unbtqlr2rlZ178pjb29Pnjx5uHPnjmoMtvdhZmaGo6Mjhw8fplKltEFYjx49qvoO3sehQ4do3LixqitzamoqN2/eVOvia2RkxDfffMPy5cu5desW+fLlo3jxtLHM/Pz8uH79Ol4fMG7J4MGD6du3r9oyAwMDph/LfKIOAB1dHWxcHHh89Q7uxXxUyx9fvYNrEe/3jiH04TOMzJXjlpjntqHZsC5q75/aHEBSfAJlW9TB5B0/PN9FT08Pr3z5OBt0mnKV01oYnD11mjIV0u++5eNbgJNH1QfkPht0irw++dDVVb+c6RvoY2NrQ3JyMkcPHqJiNc1jZ+/2XZhbWlCqbBmN9zJjYmKiVhGsUCiwtrbmxMmT+Hgrv++kpCTOnD1Lj27dMlxP4YIFOXHyJG1atVItO3HiBIULpXVpUSgU/D1xIoEHDzJn5kzyODq+V4wKUKtAfh1zLktLoqOi0mI+cUI95jNn6NEj4xnFChcqxIkTJ2jTOq2Lx4njx1WtTfX09PDx8eHEiRNUrVo1Lc3Jk1R+47hMN2aFQlWx2b59exo3bqz2fstWrejbpw916tYlisT0VqFGT08PT28vzp86S5mKafvU+VNnKVX+w7b5a3lcnJm88B+1ZSsXLCEuLo4fuv+Mtd2Hj233Lnp6euTz8ebUiSAqVU3bj0+dDKJCpfRb5/gWKsjRQ+oDjQedOIlPAR+NY+VNCgUkJf5/z0ydGV09PdzyenD57AWKl097WHTl7AWKlsl4XKvjAYdZOPkfuvzamyKli6ebZufazWxduZ5+o4fink9z5siP9Xr/CToRROWqVVTLT504SYXKFdPNo9x/1O9lgo6fxKdA/kz3n/eiUHzS7OcmRkaYvPEAU6FQYG1uzonLl/B2dQMgKTmZM9ev0aN5i0zXtXTndhZs3cz0fgMp4O6h8X4Rr3zcf/ZUbdmD58/I/QmVJxmXwYITly7i7fZGGa5dpUeLVhms5VUZtm1lweZNTB/0KwU8NMuQHoUirQLwg+I2NsbkjZb9qutIUBA+r8b7TEpK4sy5c/To0iWj1SivfUFBtGmRtn1OnDxJ4Ve9SUqWKMGqJUvU8owcMwZXV1fat2mj8WBWvWwKjYfh7yxXetvDwoITFy/i7aZswanaHi0z7964dNtWFmzawPRBQyjgoXkcKxQKxi/2J/BUELOHDiNPOg/XPkTa8X1S7foQdDKICpUyPr6PvHV9OPke14eMGBkZYWRkRHRUFCePn+CXHl3fnektenp65PVW3hOWf+O8dDYo43vC/AV9OXFE/Z7wzMlT5PXxVpUjISFeo8JNW1sbhUKR6XjhQnwuUhkn/m9s27aN8PBwOnXqpNHd8dtvv2XBggXpVsYNHjyYQoUK0bVrV7p06YK+vj4BAQE0b94cKysrrK2tmTt3Lg4ODjx48IBff/3wp72ZfYaNjQ39+/enT58+pKamUqFCBaKiojh69CimpqZqY6i95u3tTZ06dfjpp5+YO3cuurq69O7dW60FXo0aNShbtixNmjRh3LhxeHt78+TJE3bs2EGTJk3UuoBmxMvLiyVLlrB7927c3d1ZunQpQUFBuLtn3P3kffL88ccf9OzZEzMzM+rWrUtCQgKnTp0iPDxco8LqTQMGDGD48OF4enpStGhR/P39OXfuXLozyWYW3/r16zl69CiWlpZMmjSJZ8+eqVXGgbKrasOGDbl8+bKq4u61YcOG0aBBA5ydnWnevDna2tpcuHCBixcvMmrUqHQ/18DA4JO6pRaqUZZA/43Yujpg5+HEtUNniAmLJH8l5Q+/kxv3ExsRTdWOTQC4uO84uWwssHSwJSUlhVsnLnL3zFVq/KzsLq2rp4tVHvWbRH1jZau+t5d/rKYtmzHxz3Hk9cmHT8EC7NqynRfPg6nXpCEAi2bPJ/RFCP1+Vx5T9Zo0YNuGzcybPovaDetx7dIV9mzbxcA/hqjWee3yVUJDQvDw8iQ0JJQVC5eQmppKs9bqP8pSU1PZu2M31evUREc34xv796GlpUWrFi3wX7wYl1ctvfwXL8bQ0JA6b1T8DxsxAjtbW7q/qohu2aIFnX/5hUVLllClUiUC//2XE0FBLJgzR5Vn3Pjx7Nqzh4l//42xiYlq3DVTExMMDQ2Ji4tj4aJFVKpYERtrayIjI1m7fj3BwcHUeDWGYYYxt2qFv79/WsyLFiljrp02KcGw4cOVMb86N7Zs2ZLOP//MosWLqVK5MoEHD3Li5EkWzJ+vytOmdWuGDR9O/gIFKFyoEBs2buTZs2eq8TXj4uJYuHAhlSpVwsbGRhnzunVqMdvY2KQ7bk3u3Llxdnbm8tP360rfsHlTpo2ZiJd3Xrx9fdizdRchz19Qq1E9AJbN9Sc0JJReQ9LGibx7U7nu+Lg4oiIjuXvzNrp6eji7uaBvoI+rh5vaZ5i8Gnj77eVZ6bvWLRg9/E+8C/jgW6ggWzduJvjZcxo3awrAnBmzCHkRwm8jlLPONv6mCRvXrGfG5Gk0aNKIyxcvsX3zNoaN/kO1zmX+S/AuoBwnMyk5meNHjrF7+076/do/vRA+KyM9A5zMbVV/O5rZkNfGiaj4WJ7HfPx4f1mh1jcNmDd+Om55PfHKn4+DO/cRGhxC1frKY33twuVEhIbx0wBlpfbxgMPMnzCD1l064umTl8hXLTX1DPRVM/buWLuZjUtW8fOgXtjY26rSGBgZYviO1vnvo2WbVvw5bAQ++X0oWLgQWzZs4vmz5zR5tf/MnvEPL4Jf8PtIZSvhJs2asmHNOqZPmkrDpo25dOEi2zZv5Y/RI1XrTEpK4t6du6/+n8yLFy+4ef0GRsZGqpZwc2bOoky5stjZ2/PyZSz7du/j7OmzTJw2+ZPL9JqWlhatatbBf9tWnO1z42xvz6JtWzE00Kd2mbKqdMPnzcbWwpLuryroluzYxuyN6xn1c1ccbGwIeTX2nLGBIcavWrC3qlWHTmNG4r9tCzVKlubyndtsDAxgSIcfsix+VRnq1MF/y2ZlGXLnZtGWzRjq61O7XFpFxPDZ/2BraUX3FspxcZds28rsdWsZ1bU7Dja2hLx64GpsmFaGmatXUa5IUeytrXkZH8eeY8c4c/UK0wZ+XMtEjbibN8d/6VJcnJyU15ElSzA0MFC/9v35p/I68qqCrmXz5nTu3p1Fy5ZRpWJFAg8d4sSpUyx4NW6yibExXm9VLBoaGmJhZqZaHhcXx8IlS6hUvnzadWTjRoJfvKDGGw+CPrpcderiv2UTzrlz45zbgUWbN2Kob0DtcmlDoQyfNVO5PVoqK0yXbN3C7HVrGNWtBw626W+PcYsWsvvoESb07Y+xoZEqjamxMYYf2S29ReuWjBo+Ep8C+fEtVJAtr64PTZo1AWD2jFmEvHjB0BHDAGj8TVM2rFnP9MlTadik8avrw1aGj05rEJDx8W2sak194thxUICzqwuPHz3in6kzcXZ1oV6jBh9Vjm9aNGf8n2PJ6+NN/oIF2Ll5G8HPn1O/qfKecOGseYSGhDDg98EA1G/SkC3rNzFn2j/UbVSfq5eusHvbTn79Y6hqnaXLl2XjqnV45vPCp4Cym+qSef6UqVBOVakb9zKOJ48eq/I8e/KU2zdukcssF3a5s3bmZCHeJpVx4v/GggULqFGjhkZFHChbxo0ZM4YzZ85ovJcvXz727NnDkCFDKFWqFEZGRpQuXZpWrVqhra3NqlWr6NmzJwULFsTb25tp06ZRpUqVD4ots88A5YQGdnZ2jB07ljt37mBhYYGfnx9DhgzJcJ3+/v78+OOPVK5cGXt7e0aNGsXvv/+uel9LS4sdO3bw22+/8cMPP/DixQty585NpUqVsLd/v4tPly5dOHfuHC1atFD9uO/atSs7d+78pDw//vgjxsbGjB8/noEDB2JiYkKhQoXo3bt3pvH07NmTqKgo+vXrR3BwMAUKFGDLli3k/YBZw37//Xfu3r1L7dq1MTY2pnPnzjRp0oTIyEi1dNWqVcPKyorr16/TurX6k9LatWuzbds2Ro4cyd9//61qLfTjjx/WJeRDeJb0JSH2JWe2/8vLyBisHO2o0701uawtAHgZGUNsWFoZUlNSOLFuL7ER0ejq6WLhaEvt7q1wKfTpM6y9r0rVqxIVGcXKRcsICw3D1d2NEePHqG5+wkLDePE8bQbg3I4OjBg/mnnTZ7Ftwxasbaz5uXc3yr8xHX1SYiJL5/nz7MlTjIyMKFGmFP1+H4TpW7MSnjt1hhfPg6lVv26WlKV927YkJCTw1/jxREdHU9DXlxlTp6q1oHv27JlaF4EihQsz+s8/mTVnDrPnzsUpTx7GjhqlNtbkulfjW/7cVf1J8/ChQ2nYoAHa2trcu3ePbTt2EBERgbm5OQXy52fe7Nl4vqOVRPt27ZQxjxuXFvP06ZnHXKQIo0ePZtasWcyePRsnJyfGjhmjFnOtWrWIjIxk/vz5hISE4OnpydQpU1TjM6pi3r49LeYCBZg3dy6enlnXIgigQrXKREdFs2bxCsLDwnBxd+O3cSNU+1h4aDghz1+o5en3U1rLwNs3bnFoXyC29nbMWb0oS2P7ENVr1SAqMorF85WVh+6eHoybMoHcr7pfh4aE8vxZ2oDpjnkc+XvKBKZPnsbGtRuwtrWhV//eVKmW9iM1Lj6eSeMm8uLVJD4urq4MHTmM6rXSHz/1c/KxdWVG07QHLz0rKB8S7Lh6jNEHFmeU7bMoXbk8sVExbFm+jsjwcPK4OtPnzyHY2CsrDyPDwgkNThvkPXDHXlJSUlg6cz5LZ6ZVWpevUZkf+ysruQ9s3U1yUjIzR01U+6zGbZrTpG36kyF9iOq1ahAZGcmi+QtV+8/4qRPJ/eqYTG//GT91ItMnTWXD2vXY2NrQu38fqlRP239CXoTQsU3aw8CVS1ewcukKivoVY8ZcZaVKWGgYfw4bQWhIKCampnjm9WTitMkaM7t+qnb16pOQlMi4pYuIjn2Jr6cH0/sNVGvt9Cw0VG3IinUH9pOUnMygmdPU1vVT46Z0bqIcYsLXw4Px3Xsxc90a5m/ehKOtLX1bf0/dsupj02ZJGRo0JCExkXGL/Il+GYuvpyfTBw1WL0NIKFpaaa181u3bqyzDtCnqZWj6DZ2bfQtAWFQUw2f/Q0hEBKbGxng5OzNt4K+UfqMF9qdo36aN8joyaZLyOlKgADMmT1ZrQffs+XO11klFChVi9B9/MGvePGbPn6+89o0cqTb8w7toa2tz7/59tu3cSURkJOZmZspr38yZ77z2vY92DRq92h4LiY6NxdfTi+m/DnlrnwpR36f27VFuj6nqlc0/fdOMzs2U57D1+/YC0GXUSLU0wzp3oWHlKh8Vq/L6oH58/z1lQqbH999TJjJ98lQ2rt2Aja0Nvfr3Ubs+hLwI4YfvO6j+XrVsBauWKY/v6XOUE6LFxsQyZ+YsXgS/IJeZGVWqVeGnrj9/dOvZyjWqEhUVxXL/JYSHhuHq4cafE8Zi/6qLdVhoGMFv3RP+OWEsc6bNZNuGzVjZWPNL7+5UqJp2T9i6fVu0tLRYPHchoS9CMLe0oHT5snTo3EmV5sa16wzqkXa9mTt9FgA16tam/9BBH1WWL9X/86ylXyothbTRFEKIL9aEwPdv1fel6l+lDbdePMzpMD6Jl60z0eE52yInK7zupvpflsvM7L1bxn3JfB08eR71/jPzfanszWwoPzPjLmn/BUe6zebo3Qs5HcYnK+demBfR6c88+F9hm8uKqKMnczqMT2ZWrhRRQadzOoxPZlayONEvXrw74Rcsl60tUafO5nQYn8ysRDGCo95/huAvkZ2ZNXdDHr874RfO3SbPuxN9ga49v5vTIWTIxz7rZtn+L/n/GrVQCCGEEEIIIYQQQogcJN1UhRBCCCGEEEIIIb5SWkg31S+NtIwTQgghhBBCCCGEEOIzkco4IYQQQgghhBBCCCE+E+mmKoQQQgghhBBCCPGV0taSdlhfGtkiQgghhBBCCCGEEEJ8JlIZJ4QQQgghhBBCCCHEZyLdVIUQQgghhBBCCCG+UlpaMpvql0ZaxgkhhBBCCCGEEEII8ZlIZZwQQgghhBBCCCGEEJ+JdFMVQgghhBBCCCGE+EppSzfVL460jBNCCCGEEEIIIYQQ4jORyjghhBBCCCGEEEIIIT4T6aYqhBBCCCGEEEII8ZXSQrqpfmmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+Ulsym+sWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5S2tJN9YujpVAoFDkdhBBCCCGEEEIIIYTIeg/CnuZ0CBlysXLI6RByhLSME0KIL9iSoB05HcIna1eyHhHRkTkdxiexyGXO6rN7czqMT9aiWE0il67O6TA+iXnbFqw4szunw/hkrf1qs/TUzpwO45O1LVGXo3cv5HQYn6Sce2HKz+yS02F8siPdZrPm3L6cDuOTfFe0BlE79uR0GJ/MrF4tAm6eyukwPlnVvCWYELg8p8P4JP2rtGH/jaCcDuOTVc9X8j9/7WvtV5t/jq7P6TA+WddyzXI6BPGVkMo4IYQQQgghhBBCiK+UzKb65ZEJHIQQQgghhBBCCCGE+Ew+qWXc6dOnuXr1KlpaWuTPnx8/P7+siksIIYQQQgghhBBCiK/OR1XGBQcH07JlSwIDA7GwsEChUBAZGUnVqlVZtWoVtra2WR2nEEIIIYQQQgghhPhAWkg31S/NR3VT7dGjB1FRUVy+fJmwsDDCw8O5dOkSUVFR9OzZM6tjFEIIIYQQQgghhBDiq/BRLeN27drFvn37yJ8/v2pZgQIFmDlzJrVq1cqy4IQQQgghhBBCCCGE+Jp8VGVcamoqenp6Gsv19PRITU395KCEEEIIIYQQQgghxKfTltlUvzgf1U21WrVq9OrViydPnqiWPX78mD59+lC9evUsC04IIYQQQgghhBBCiK/JR1XGzZgxg+joaNzc3PD09MTLywt3d3eio6OZPn16VscohBBCCCGEEEIIIcRX4aO6qTo7O3PmzBn27t3LtWvXUCgUFChQgBo1amR1fEIIIYQQQgghhBDiI2lJN9UvzkdVxr1Ws2ZNatasmVWxCCGEEEIIIYQQQgjxVXvvyrhp06a990p79uz5UcEIIYQQQgghhBBCCPE1e+/KuMmTJ79XOi0tLamME0IIIYQQQgghhPgCyGyqX573roy7e/dudsYhhBBCCCGEEEIIIcRX76NmU30tMTGR69evk5ycnFXxCCGEEEIIIYQQQgjx1fqoyriXL1/SqVMnjI2N8fX15cGDB4ByrLi//vorSwMUQgghhBBCCCGEEB9H6wv+9//qoyrjBg8ezPnz5wkMDMTQ0FC1vEaNGqxevTrLghPi/9n169cZO3YsCQkJOR2KEEIIIYQQQgghsshHVcZt2rSJGTNmUKFCBbTeGAiwQIEC3L59O8uCE+L/VXR0NE2bNsXd3R0DA4MsW6+bmxtTpkz56Pz37t1DS0uLc+fOZVlMQgghhBBCCCHE/5P3nsDhTS9evMDOzk5jeWxsrFrlnBBZ4ejRo1SsWJGaNWuya9euD87/xx9/sGnTpv9UBVL79u358ccfadmyZU6HIv5DTu09zPEdAcRERGGbJzc1v2+Ci4/nO/M9vHGHpaNmYuuUm5/GDFAtPxtwjIuHgnjx6BkAud2dqPJdffJ4un5QPOMjB+Hu4UGffn0oVqxYhunPnD7DlMlTuHvnDja2NrRt25Zvvm2mlubA/gPMmT2Hx48ekcfJiV+6dqFK1apqadatXceypUsJDQlN93NDQ0OZOX0GJ46fIDo6mmJ+xeg3oD8uLi5q67l44QKz/pnF5UuX0dPTw9rJnraDu6Knr//Osp/c8y+Ht+4nJiISWycH6rZrhlt+r3TT3r92mz0rNhPy5BlJCUlY2FpRonp5ytWvppbu6I4AgvYeIjIkHONcJviWLkaNVo3Q09d7ZzwfS6FQMO/fADadPU10fBy+jk4MqNsAT1vNe4D07Ll8kaEb11Ipnw8Tvmut9l5wVBQzDuzh6O2bJCQl42JtzdAGTcjv4JgdRVETtOcQR7ftJzoiCjun3NRu1wzX9zhWHly/w6KR07BzdqDLX4OyPc43ndp7mGPbD6iO71ptm77f8X39DktGzcDOKTc/jR2oWn7mwDEuHg7ixcOnAOR2d6Zqi/c/vj/Wga272bluMxFhEeRxdaJ1l47kK5g/3bSnDp8gYPtuHty5R3JSMnlcnGj8/XcUKlFUlebgzn0c2XeQx/cfAuDm5UGzjq3w8M6breV4H0UcvGhdrBY+di7YmFjw645ZHLp7PqfDUjmx+18Ob91HTEQkdk4O1G3/bSbnqVvsWb6ZF0+ek5SQiIWtFSVrVNA8T20/wMnX5ykz5XmqZqvG2X+e2r2TjceOEB0Xh6+LKwObfYeng0OGeQ5cOMeivXt4GBJCcmoKzja2fF+lGvVKllKlmbtrB/N271TLZ5UrF7tHjsnyMgRu38veDduJDIvA0SUPzX9qS96CPummPXs0iIM79vHozn2Sk5JwcHGiQetm+BYvrJbuZUwsm5eu4ezRU7yMicXG3pZmndpQqGTRLI//tSuBQZzfc4y4yGgsHe0o810tHPKmf055cv0e2yct0VjefERXLHLbaCy/HXSJA/M34FrEm1pdW2R57K8d3L6XfRt2EBkegYNLHpr/9D1evhlvi0M796tti/qtv6GAX9q2mDx4FDcvXdPI61uiCN2GD9BYnl3+i9e98weOc2bnIWIjorHOY0el1vXJk8/9nfme3LzPur/mYZ3HnjYje6iWpySncGp7IFePnCUmPApLBxvKN6+DW6F82VmML4bU03x5PqoyrmTJkmzfvp0ePZQ79+sNO2/ePMqWLZt10QkBLFy4kB49ejB//nwePHig8YP5a7Rhw4acDuE/JykpCT297LvZ/9JdOX6Wvcs2UafDtzjnc+fMgaOsGj+Xn8f9irmNZYb54l/GsWX2Ctx98xITGa323v2rtyhQ1g+nfO7o6ulybNsBVo6bTee/BmFmZfHe8XRv1p7FS5fQp2dvVq1dTe7cuTXSP3n8mD69etO4aRNG/DmCC+fP8/dff2NhaUm16sofexcvXGDokN/o3OVnqlStQmBAIEN+HcLcBfMoWLAgAHv37GXyxEkM/HUghYsUYeOGjWqfq1AoGNh/ALq6uoyfOAETExNWLF9Bj67dWbV2NUZGRqrP6tWjF+07dqD/gP5YWVixcOea97qRuXj0NDsXr6dBpxa4eHsQtO8wy/76h+4Th2JhY6WRXt9An9K1K5HbJQ96Bvo8uH6bLfNXoW+gT4kaFQA4fziIfSs30+TnNjjn8yD0aTAbZy8FoG77ZhrrzCpLjh1m5YljDGvUFBcraxYePkiP5YtZ+0tPTN7RavdpRATT9u2mqLPmD7GouDh+Wjyf4q7uTG3ZFksTEx6Fh5HLwDCdNWWtS8fOsGvJBur/0Bxnbw9O7zvC8r9m0W3CEMzT2T6vxb+MY9M/S/EomE/jWMlul4+dYc/SjdTtmHZ8r/x7Dl3+HvzO43vz7OW4++YlNp3j27esH07t3NDV1+PYtv2s+GsWP4/79Z3H98c6cfAIK+b407bbT+T19SZwx14mDR3N6LmTsbaz1Uh/49IVfP2K0KxDa4xNTTi8J4Cpf/zF71PG4uql/EF27cJlylSpgFeBfOjp67Nj7WYmDBnF6DmTsLSxzpZyvC8jPQNuhT5ix7WjjKnbJUdjeZvyPLXu1XnKk1P7DrN07Ex6TPo93fOUnoEBpetUxt7FEX0DA+5fv82WeSvRM9Cn5Ovz1KGT7F25mSZdvsfl1Xlqwyzleape+2+zrSxLDuxjRWAAw1q3wcXWjoV7d9N99gzWDf4dE8P0zynmxiZ0rFkbN3t79HR0OHT5MiNXLccyVy7K+qRVDnvkdmDmL91Vf+toZ/2P2VP/HmPtvKW0+qUjngXycWjnAWb88TfD//kbKzvNSqmbl66Rv2hBmrT7DiMTE47tO8g/f05g0MSRuHi6AZCclMzU3/8il7kZnQf3xNLGivAXYRgaZd859nbQZY6t2U351vWw93Tm2r9n2DV9Bc3/6IqplXmG+ZqP7Ia+Ydr1xDCXsUaa6NAITqzbS26v7P0NcOrQcdbNX0bLLh3wKJCPw7sOMPOP8fw+c1y62+LW5Wv4FC1Io7bNMTZVbotZf05k4IQROL/aFp2H9Fab7DA2KoYxPYfgV750tpblTf/F696NExf4d8V2qrZthGNeVy4GnmTzpMV8P7o3ZtYWGeZLeBnPnnlrcc7vycuoGLX3jm3Yy7Vj56jeoSlWDrbcv3SDbdOX8d1vXbBzzf4HgUK87aO6qY4dO5bffvuN/7F331FRHW0Ah3/03nuvUgV7V+xi19h7NPYSNZpo1Bg1xnRLTGI0xh577yI2YsHeFQsIYkOk97Lsfn+giwsLooAav3nO2XPg7ty7c/fWfe87MyNHjkQikfDrr7/SsmVLVq5cyZw5c8q7jsL/sfT0dDZt2sTIkSNp3749K1euVHh/5cqVGBsbK0zbsWOH/AfzypUrmTVrFleuXEFFRQUVFRX5MqKjo+nUqRP6+voYGhrSo0cPnj59Kl/OzJkzqVq1KmvWrMHZ2RkjIyN69epFamrBxSg7O5uxY8diaWmJtrY2DRs25Ny5c/L3jx07hoqKCkFBQVSrVg0dHR2aNWtGbGws+/fvx9vbG0NDQ3r37k1GRoZ8viZNmjB+/Hj5///88w81a9bEwMAAa2tr+vTpQ2xsbInfXWxsLB06dEBHRwcXFxfWrl1bpExycjLDhg3D0tISQ0NDmjVrxpUrpX9qn5eXx+DBg3FxcUFHRwdPT09+/fXXcplnxYoVeHt7o62tjZeXF4sWLZK/96K57KZNm2jSpAna2tr8888/SKVSvvnmG+zt7dHS0qJq1aoK2ZQv5tu2bRtNmzZFV1eXKlWqEBoaKi8THx9P7969sbe3R1dXFz8/P9avXy9/f8mSJdjZ2SGVShXq27FjRz7++GP5/7t376ZGjRpoa2vj6urKrFmzKnTk6TP7j1G1SR2qNa2LuZ0Vrfp/hKGZMRcPnyxxvv3LN+Nbrzp27s5F3us8qj81WzbE2skOc1sr2g3piUwqI+rG3deqj5ubGxMmTsDKyoqtW7YqLb9t6zasra2ZMHECLi4udOrcmQ4dO7D2n3/kZTas30DtOrUZOGggzs7ODBw0kFq1a7Fh3QZ5mfVr19GxU0c6de6Mi4tLkc99EB3N9WvXmfzlZHx8fXBydmLSl5PIyMzgYFCQfDnz5y2gR6+efDzwY1zd3HB2dsa3bjXUSxHwPbX3CNWb1qNGs/pY2FnT9uNuGJqZcC74uNLyNi4O+DeoiaWDDSaWZlRpVBt3f2/u3yro9uHBnUgcPFzxb1gLE0sz3Kt441e/Jo/uRb+yPm9KJpOx4WwoAxsG0NTLBzdLK2Z07EJWbi5B16+WOG+eVMrXO7YwNKApdiZFg0WrQ49jaWjI1x0/wtfOHltjE2q7uGFvWvyPgvJyeu9RqjWtS/Xn26f1x10xMjPhXPCJEufb8/dGKjeoiX0l5wqvY2EFx1M9zO2sadW/C4Zmxlw4VHKd9y3bROX6NbBTUuePRj8/vp3tnx/fvZ4f33cqaC3g4LY9BAQ2o3Gb5tg65mfFmVqYc2TPQaXl+4wYRNvunXD1dMfazoZug/pgZWvD5TPn5WWGTx5Hsw6BOLq5YONgx6Bxw5HJZNy8fL3C1qO0TkffYOmZXYTcu/yuq1LEqb2Hqd6sHjWbN8DS3pq2A/PPU2cPKj9P2T4/T1k52GJiaUZV+XkqXF7mwd1IHD1dqaJwnqrB4wo+T60POcaglq1o5l8VdxtbZvbpR1ZOLkEXzxc7Xw33SjT1r4KLlTX25hb0btwEdxtbLt9T7G5HTVUVc0ND+ctE36Dc1+HQjv00aNmEhoFNsXGwo8ew/piYmxGy75DS8j2G9SewWwecPdywsrOm88c9sbS15trZi/Iyp4KPkZ6axsivPsPdxxMzSwvcfT2xd624zNdrh0LxbFANr4bVMbGxoF7PQPRNjLgZUvx2ANAx0EPXSF/+UlVV/HkqlUo5umw71Ts0wcCi+IcP5eHIjv3Ub9mEBs+3Rfeh/TE2N+Pf/YeVlu8+tD+turbH2cMNS1trOg3oiaWNNdfOXpKX0TPQx8jEWP66dfk6mlqaVG9YW+kyK8J/8bp38eAJfANqULlxLUxtLWncpz36pkZcO3KmxPmOrNqOZ90q2Lg7FHnvVuglarVvjEsVT4wsTfFvVhenypW4eKDk70F4Py1atAgXFxe0tbWpUaMGx48rv369EBISovDbbPHixUXKbN26FR8fH7S0tPDx8WH79u0VVX3gDYNx9evX5+TJk2RkZODm5sbBgwexsrIiNDSUGjVqlHcdhf9jGzduxNPTE09PT/r168eKFSuQyWSlnr9nz55MnDgRX19fnjx5wpMnT+jZsycymYzOnTuTkJBASEgIwcHBRERE0LOnYtp7REQEO3bsYM+ePezZs4eQkBCFEYMnTZrE1q1bWbVqFRcvXsTd3Z3AwEASEhIUljNz5kx+//13Tp06xYMHD+jRowcLFixg3bp17N27l+DgYH777bdi1yMnJ4fZs2dz5coVduzYQWRkJAMHDixx3QcOHEhUVBRHjhxhy5YtLFq0SCGAJ5PJaNeuHTExMezbt48LFy5QvXp1mjdvXqT+xZFKpdjb27Np0yZu3rzJ119/zdSpU9m0aVOZ5lm6dCnTpk1jzpw5hIWF8d133zF9+nRWrVqlsKzJkyczduxYwsLCCAwM5Ndff2Xu3Ln88ssvXL16lcDAQDp27Mjdu4rBo2nTpvH5559z+fJlPDw86N27tzxQlpWVRY0aNdizZw/Xr19n2LBh9O/fnzNn8i/+3bt3Jy4ujqNHj8qXl5iYSFBQEH379gUgKCiIfv36MXbsWG7evMmSJUsq9GFFnkTCk8iHuFT2VJjuWtmTh3ejip3vSsgZEp/GEdAlsFSfk5udgzRPio5+0afWpalP7bp1uHZVeRDn2rVr1K6r+JS4br26hN0Mk2+ba1evUadOoTJ168qXmZuby61bt6hTaDkvf25Obi4Ami9ldampqaGhrsGVy/mB6ISEBG5cv46piQlDPhlM61at6devn0JwrDgSiYQnkQ9w81dsdufu7030nchXzg/wJPIBD+7cw9mnoJmdk5crTyIf8DA8Kr+OT+O4c+kGHtV9S7XMN/E4KZH4tDTquhY0W9NUV6e6kzNXHz4ocd5lx49hrKdHp2rK7wmO37mNt40dX27dSOC8H+m3dBE7SvjhXF7yJBIeRz7AzV+xyZGrvxcPS9g+l46dJvFpHE26tq7oKhbx4nhy9StUZz+vEo/vyyFnSIx9g+NbT68s1S2WJDeXqLv38K1eRWG6b3V/IsJul2oZUqmUrMxM9Az0iy2TnZ1DnkRSYpn/dxKJhMf3HuBe+DxVxZsHd+6VahmPX5ynvAvOU46ebjy+p+Q8Va1yudW9sEfx8cSnplDXs+D40FTXoLq7O1cjS3fOlclknL1zm/vPYqnupthM90HcM9rMmEan2TOYunoFD+PiyrX+klwJ0eGReFfzU5juXc2Pe7de/eALXhwXWejqF+zzV85cxNWrEuv/XMkX/UbyzajJ7N+0E2metIQlvbk8SR5x0U+w81Fs9mjn48rTiJKvF9u+/Yt/vpjH3nmreXy76Da7tOdftA108WpYfDcX5aFgWyjur97VKnMv7DW3hUHx59FTwceoEVAPrWKyNsvbf/W6Fxv1GEdfxe4GnHzdeRJxv9j5bhy/QFJsAnU6NVP6fl6uBLVCD1XVNTV4XMK19EOigdp7+3pdGzduZPz48UybNo1Lly7RqFEj2rRpQ3S08oc/kZGRtG3blkaNGnHp0iWmTp3K2LFj2bq1IEkgNDSUnj170r9/f65cuUL//v3p0aOH/DdgRXijZqoAfn5+RX4YC0J5W7ZsGf369QOgdevWpKWlcfjwYVq0aFGq+XV0dNDX10ddXV2haVxwcDBXr14lMjISB4f8Jydr1qzB19eXc+fOUatWLSD/orpy5UoMDPKfhPbv35/Dhw8zZ84c0tPT+fPPP1m5ciVt2rQB8oNIwcHBLFu2jC++KOgH4ttvv6VBgwYADB48mClTphAREYGrqysA3bp14+jRo0yerLwvhk8++UT+t6urKwsXLqR27dqkpaWhr1/0B8edO3fYv38/p0+flgcvli1bhrd3wY330aNHuXbtGrGxsfJBIn755Rd27NjBli1bGDZs2Cu/Xw0NDWbNmiX/38XFhVOnTrFp0yZ69OjxxvPMnj2buXPn0qVLF3mZF0Gtl7PPxo8fLy/zov6TJ0+W97X3448/cvToURYsWMAff/whL/f555/Trl07AGbNmoWvry/h4eF4eXlhZ2fH559/Li/76aefcuDAATZv3kydOnUwNTWldevWrFu3jubNmwOwefNmTE1N5f/PmTOHL7/8Ul5XV1dXZs+ezaRJk5gxY8Yrv9fXlZGajkwqRd9I8Ym9npEBaUkpSudJiHnG0Y176D/9U1TVSncRPLpxDwYmRrj4lty3RnH1MTM15XRcvNJ54uPjMSuUFWVqakZeXh5JSUmYm5sTHx+PqVmhMmamxMfnLzMpKYm8vDxMTRWbpr38uc7OztjY2LDo9z/4cuoUdHR0WLd2HfHx8cQ9/5H16NEjIP94HjtuHB4eHhwOPsTKb39jzM9TMbMpvr+0jJQ0pK+5LV74ZdRXpKekIc3Lo2m3ttRoVl/+nl/9mqSnpLFsxnxkyJDmSanVshEBnVqVuMyyiE/Lb95hWig4Y6qnx5PkpGLnu/LgPrsuX+SfoSOLLfMoMZFtF87Rp049BjUI4Majh8w9uA8NdXXa+Vctj+orlZGifN/UNzIgopgmOPFPYjm8fjeDZo4r9bFSnl4cT3rK9qnkEo7vDbsZ8PXYUtf5yIY9GJga4VK5YvrOSU1JRSqVYmhirDDdyMSY6wlJpVpG0NbdZGdlUzugfrFltixfi4mZKb6FghtCgYLzlKHCdH0jA1JfcZ76eeS0gvNU93bUbN5A/p5/g5pkpKTx99fz5Oep2i0bEdC5As9Tqfn1NTVQXBdTfQNiEkt+sJiWmUnbmV+RI5GgpqrK5G49qPNSUM/XyYlZffrjaGFJfGoKy4ODGLxwHhsnT8O4nILWafLjQrEZp6GJESkXk0u1jEPb95GTlU2NRgUPouKexnL76k1qN6nPmJmTiH0Uw4bFK5Hm5dGud5cSlvZmstIykEll6Boqfi86BnpkpqQrnUfXSJ9G/dpj7mRDXq6Eu2eusXf+GtpP+Bgbj/wMvpjwaG6fvESX6cPLvc6FvdgWBsaFtoWxESlJSaVaxuEd+8jJzqZGQ+VNUKPuRPD4/kP6jR1a1uqW2n/xupeZmoFMKkXXUPE3jo6RAenXlQdGE2PiOLnlAN2nDC+2zo6VK3Ep6AR2Hs4YW5oSHRbBvUthyKQVE6QWKs68efMYPHgwQ4YMAWDBggUEBQXx559/8v333xcpv3jxYhwdHeUDGXp7e3P+/Hl++eUXunbtKl9Gy5YtmTJlCgBTpkwhJCSEBQsWKLSSKk+lDsalpJR8cX6ZoaHhqwsJwivcvn2bs2fPyvtPU1dXp2fPnixfvrzUwbjihIWF4eDgIA/EQf5owMbGxoSFhcmDcc7OzvJAHICNjY08uywiIoLc3Fx5kA3yA021a9cmLCxM4fP8/Qs6crWyskJXV1ceiHsx7ezZs8XW99KlS8ycOZPLly+TkJAgbyIZHR2Nj4+P0vVTV1enZs2a8mleXl4KTXovXLhAWloaZmaKgYvMzMzXGhV58eLF/P3339y/f5/MzExycnKoWrXqG8/z7NkzHjx4wODBgxk6tOBmRSKRYGSkeIP08vqlpKTw+PFjhe0B0KBBgyJNb1/eHjbPO3iOjY3Fy8uLvLw8fvjhBzZu3MijR4/Izs4mOzsbvZduvPv27cuwYcNYtGgRWlparF27ll69eqH2/OJ/4cIFzp07p5AJl5eXR1ZWFhkZGejqFs0se/E5L3vtkXQL9WcmQ3lnrVKplB1/rKFR19YlBpZeFrrnMDdCL9Fv2mjUS9sRd+H6yGQl97mmpDyA4tTCZYquY+GPePlz1dXV+f6nH5gz+1taNmuBmpoatWrXol79gh/3Mmn+537UpQsdOnYAoE6t2hw4GszFY6G07N2p+HVQXk3gFesODJ45npysbB7cjSJ4/U5MrS3wb5C/j0feuMO/24NoP7gn9u5OxMfEsX/VFo4ZG9Kka5tX16cUDly7wvf7dsv/n9+r7/NVUfKdF11BANKzs/l6x1amtuuIsW7xP1alMhnetraMatYSAE9rG+7FxbL1wtkKDcYVULKvKVklqVTKtt9X06Rbm1IfKxWlyO4jkyndDlKplO1/rCaga+nrfGr3YW6EXqT/V2NKf3y/oaKrIVOyckWdPnqCHf9sZuyMSRgaK+9/at/mnZw5doLJP80q1UAr//eKnCtf3cH3kFmfkZ2VzcO7URxctxOzQuepkO0H8s9TlZxJiHnGvpVb0N+6n6bldJ7af+Ec328q6Jpg/tARylYFGa/er3S1tFj7+Zdk5GRz7s5t5u/Yjp2ZOTXc87NxGngXZB67Y4u/swud58xi77kz9G2iPPPmTRU9zyo/JxV2LuQUe9ZtY+T0CQrHhUwqw8DYkH5jhqCqpoqTuwvJCYkc3La3QoJxb8LY2lxhoAYrNwfSE5K5GhyKjYcTOVnZHF2+g0b926P9ioz88lT4GCjpmveycyGn2LtuOyO++qxIQO+FUwePYetkj7PHqwdOKH//xete0ZOUsi0hlUo5sGQjdTu3wETJ4B8vNO7TnsMrt7Nm6nxQUcHI0hSfhtW5eeJisfMIb0dxv4OU/RbKycnhwoULfPnllwrTW7VqxalTp5QuPzQ0lFatFB8MBQYGsmzZMnm/46GhoXz22WdFyrwI4FWEUgfjjI2NSz0CR15e3htXSBBeWLZsGRKJBDs7O/k0mUyGhoYGiYmJmJiYoKqqWqTZau7zZmglKS4oUHh64QEBVFRU5IEweaCgFAGHl5ejoqJS4nILS09Pp1WrVrRq1Yp//vkHCwsLoqOjCQwMJCcnp9j1U1a3l0mlUmxsbDh27FiR9wr3w1ecTZs28dlnnzF37lzq1auHgYEBP//8c4npvK+a58X3sHTp0iJNEtUKPenSU/Jk+k22x8ufO3fuXObPn8+CBQvw8/NDT0+P8ePHK3zXHTp0QCqVsnfvXmrVqsXx48eZN2+e/H2pVMqsWbMUsvZe0C6mWcL333+vkDEIMGPGDFzbvbpPEV0DPVRUVYtkXmUkpxbJpgHIyczmSeQDYu4/ImhVfrBbJpOBTMZ3AybSZ/IInF9qGnB671FO7jpEny9HYuX46g5ui6tPQmJikcy2F8zMzOQZbi8kJiagpqaG0fP90czMjITCZRISMH2eUWdsbIyamlqR5RT+XG9vb/5Zt5a0tDRyc3MxMTHhk48H4eWTnzlq/rzTdxcXxRG7LGytSY5LLHndDfP7u0lLUnzanJ6cpnRbvMzkeefQVo52pCWncnTLPvmP3MOb9lKlUW15tpyVox252dnsWrqegI8Ci/Sx8yYaeXjha2cv/z/n+bU8Pj0N85ceSiRmpGOqp7wJ4KPEBJ4kJzFx4zr5NOnz81G9OTPZPHIs9qammOvr42Ku2GG/s7kFR2/dLPN6lETX8Pm+WSijLD0lDX1DZcdKFo/vRfMk6iH7Vm4BCo6Vb/qOp/+UURWWSSavs/x4KrRPpSjfp3Iys3hy7wExUY84sGqrQp3n9J9Any9HKGS3hu49wsldwfSdMqpUx/ebMjA0QFVVleTEJIXpKUnJGJko/+H6wpmQk6xY8Cejpk7At7q/0jL7t+xiz4ZtfPH91zhUYL9YH4KC81Th4yC1SPZMYS/OU9aOdqQlpXBk896XzlN7qBJQW54tZ+1oR052Drv+WkfjcjpPBfj6UflzZ/n/Oc+7MYhPTcH8pQd2iWlpmL2ifzdVVVUcLPLPQ5529kQ9fcrKQwflwbjCdLS0cLex5cGzZ2VciwL6xRwXqUkpxQadXzj/byirFy5l2Jdj8a6q2LTSyDT/eqiqVvCdWzvYkpKYhCRXgrrGGzeOUkpbXxcVVRUyCmXBZaamo2NY+ixCS1d7ws9cAyD1WSJp8UkE/VEQfH1xf/v3yNn0+GY0hhbl18/oi22RUnhbJCcXG1x74fzx0/yz8G+GfPkpXlWVN8vOycrm/PHTtO9bcYMuKfNfvO7pGOiioqpaZOChzJQ0dI2K3n/kZmUTG/WIZ9FPOPbPboU6Lxz8FR9NHISDjxu6hvp0GNsfSW4uWWkZ6BkbcnJzEIYlDIT0IVGTvb+jqRb3O2jmzJlFysbFxZGXl4eVlZXCdCsrK2JiYpQuPyYmRml5iURCXFwcNjY2xZYpbpnlodRn4pf7R4qKiuLLL79k4MCB8tFTQ0NDWbVqldK0QEF4XRKJhNWrVzN37twiUeyuXbuydu1axowZg4WFBampqaSnp8sDM5cvX1Yor6mpWSRA7OPjQ3R0NA8ePJBnx928eZPk5GSFppwlcXd3R1NTkxMnTtCnTx8gPxB4/vx5hcEXyurWrVvExcXxww8/yOt6/nzJfSt5e3sjkUg4f/48tWvnB3Nu375N0ktp9tWrVycmJgZ1dXWcnZ3fqG7Hjx+nfv36jBo1Sj7tVVl1r5rHysoKOzs77t27J++DrTQMDQ2xtbXlxIkTBAQEyKefOnVK/h2UxvHjx+nUqZO8ebRUKuXu3bsK+4WOjg5dunRh7dq1hIeH4+HhodBfZvXq1bl9+zbu7u5Fll+cKVOmMGHCBIVpWlpabLyqvNPgl6mpq2PjYk/k9Tt41Sr4oRp5/Q4eNYreFGrpaDH0+0kK0y4cOsn9m3fpMnYgxi/d3IbuOcLJncH0njwcW9fSjWJWXH3OnjlLQOMApfP4+flx/LhiB7pnTp/B28cbdfX8S5Wfvx9nzpyld98+BWXOnMHveaajhoYGXl5enD1zliZNm77yc1808Y6OjiYsLIxhI/ObwdjY2mJhYcH9+4r9ksTFxFKpStFM1Jepq6tj4+JAxLVb+NQu6Bsr4totvGq+RrM5mYy83IIBP3JzcopmAKqq8hpdaL6SnpaWwgipMpkMM319ztwLx9M6P4M0N0/CxftRjHme0VaYk7k564eNVpj257HDZORkM7FVW6yeN4vzd3Dkfrxi30vR8fFYGxmX3wopoaaujq2LA/eu3sa7VsH2uXftFp41im4fLR1tRv6k+OT13METRN68Q4/xn2BsUfGjdRYcT7cVj+9rt4s5vrUZ9oNilwcXDp0g6sZduo4bVOT4PrHjIL0njyj18f2m1DU0cK7kyo1LV6nx0iiCNy9dpWrdWsXOd/roCZbPX8SIL8dTpY7yPgj3b97J7vVbmTjnK1zeScbJf4u6ujq2rg5EXL2FT+2q8ukRV2/hVVN5sFMZGfl9O72Qm52DiopiwE21vM9T2toKI6TKZDLMDAw5c/s2nvb590i5EgkXw8P5tEPH11q2DJk8uKdMjiSXqKdPqepafvuYuoY6ju4uhF2+TrX6BcdB2OVrxe7vkJ+FtfrXvxj8xRj8ahXtS83N24OzIaeQSqXyIOjTRzEYmRqXeyAOQE1dDXNHGx6F3cOlWkFT30dh93Cq4lnCnIriH8Sg8zzYYmRtTtevFUchPr/zKLlZ2dTr2Rq9VwTxX5d8W1y6TtV6Bdvi1uXr+L9iW/yzcCmDPh+tdFu8cOHEGSS5Emo3aVBsmYrwX73uWTrbEn0jHPcaBRmq0TfDca1a9D5MU1uLvrPHKky7euQMD8MiaDu6D0aFgrbqGhromxiRJ8kj/MJ1KtUS3Rq8a8X9DipJaRIwXlW+8PTXXWZZlfps3LhxY/nf33zzDfPmzaN3797yaR07dsTPz4+//vpLoU8nQXgTe/bsITExkcGDBxdpmtitWzeWLVvGmDFjqFOnDrq6ukydOpVPP/2Us2fPFhlx1dnZmcjISC5fvoy9vT0GBga0aNECf39/+vbty4IFC5BIJIwaNYrGjRsrNH0siZ6eHiNHjuSLL77A1NQUR0dHfvrpJzIyMhg8eHB5fRU4OjqiqanJb7/9xogRI7h+/TqzZ88ucR5PT09at27N0KFD+euvv1BXV2f8+PHo6OjIy7Ro0YJ69erRuXNnfvzxRzw9PXn8+DH79u2jc+fOpfoe3N3dWb16NUFBQbi4uLBmzRrOnTtXJKPodeeZOXMmY8eOxdDQkDZt2pCdnc358+dJTEwscqJ+2RdffMGMGTNwc3OjatWqrFixgsuXLysdSbak+m3dupVTp05hYmLCvHnziImJKRKk7du3Lx06dODGjRvywN0LX3/9Ne3bt8fBwYHu3bujqqrK1atXuXbtGt9++63Szy0uFbu06rRpws4/12Lj6oC9uzOXjp4iOT6R6s3zM6mObtxDamIyHUf0RUVVFUsHG4X59Qz1UdNQV5geuucwIVv203lUf4zMTeVZFJraWmhql1zXl+vTwNST1WtW8zQmhi5d87MF//j9D57FxjLzm/ynYF26dmHzps0smDefTh915trVa+zauYvZcwq+r569ejFi2HBWr1xFQJPG/HsshLNnzvLXsqXyMr379mHm1zPw8vbGz9+PHdu2K3wuwOFDhzA2NsHa2prw8HDmz51HQOPG1K1bF8i/EPft34+lS/6iUqVKeHh6sPLgCuIePaXX+Fcf2/XbNWPbH6uxc3XEwcOF84dOkhyXQK0WjQAIXr+TlIRkuo4eAMCZoBCMzE2xsM1/Gnf/dgQn9xymTuuC665n9cqE7juKjYs99u7OxMc848imPXjV8CuXbBNlVFRU6FW7HitPHsfB1AxHUzNWnPwXbQ0NAisX/GCfsXMrlgaGjG7WEi11DdwsFZ8qGjz/4fzy9D516jN45VJWnAihhU9lbjx+xI5L55na9vV+PL+Juu2asv2PNdi6OmDv4cKFw6dIjkukZouGABxav4vUxGQ+GtX/+bGimC2mZ6SPuoZGkekVSX48uThgX8mZi0dCnx/f+T/qjmzYTWpiMp1G9lN6fOsa6qNe6Pg+tfswIVv20Xn0AIwtXu/4flOturRn6c+/4VzJDXdvD0L2HyI+No6m7fIfum1evpak+ASGfvEpkB+I+/uX3+kzYhBuXpVITsjPTNXQ0kT3+QO4fZt3sn31BoZPHoe5lYW8jJaONtovXfPeBR0NLeyNCjJAbQ3NqWRuT0pWOk/TSs6yrWj12zVn6++rsHVzxKGSK+cPnyA5LoHaLfOPg4PrdpKSkES3Mfn39EXOU7ciOLn7EHVbN5Ev07OGH6f2HsHG2R6HSvnnqcMbd+NVs2LPU70bN2HFoYM4WFjgYGHBykMH0dbUILB6wX3MjLWrsTAyZkz7/HPMikMH8XFwxM7MHEmehJNhN9l77ixfdi8YyGvBzu008q2MtYkJiWlpLDsYRHpWFu1rKe8P7E216NyGFfP+xMndBVfvShw/cITEZ/EEtM3vh3b7yg0kxScyaGJ+P5znQk6xYt5iegzrj4uXuzyrTlNTEx29/OacAW1bcHTPQTb9tYamHVoR+ziGA5t30rRD6QZ0eRN+LepxbMV2LJxssHS159bxi6QlJOMdkB/IOrv9MOlJqTQd1BmAa4dOY2BujImNBXl5eYSfuUbkxTBaDO8O5AfHTO0Um0lq6uZfTwpPLy/NOrdh1bw/carkiouXOycPHCXxWTyN2uRvix2rNpIUn8jACflBwnMhp1g1fwndh/Yrdlu8cCr4GFXq1lCajVbR/ovXveqtGhK0dDNWznbYuDtyLeQcqfHJ+DXNf8B+cnMQaUkpBA7tjoqqKub21grz6xrqoaahoTA9JuIBaYnJWDjakpaUzOkdh5HJZNRsq/xBsfD2vM7vIHNzc9TU1IpkrMXGxhbJbHvB2tpaaXl1dXV5l03FlSlumeXhjR6NhIaGKh0KtmbNmvJO9AShLJYtW0aLFi2KBOIgPzPuu+++4+LFi1SvXp1//vmHL774gr/++osWLVowc+ZMhcEHunbtyrZt22jatClJSUmsWLGCgQMHsmPHDj799FMCAgJQVVWldevWJY5oqswPP/yAVCqlf//+pKamUrNmTYKCgjAxKb90ZwsLC1auXMnUqVNZuHAh1atX55dffqFjx5J/tK5YsYIhQ4bQuHFjrKys+Pbbb5k+fbr8fRUVFfbt28e0adP45JNPePbsGdbW1gQEBJT6pDNixAguX75Mz54982+Ie/dm1KhR7N+/v0zzDBkyBF1dXX7++WcmTZqEnp4efn5+r8w4HDt2LCkpKUycOJHY2Fh8fHzYtWsXlSopb3KizPTp04mMjCQwMBBdXV2GDRtG586dSU5W7Ei5WbNmmJqacvv2bXlm5AuBgYHs2bOHb775hp9++kmesVWR50efutXISE3nxPb8mxMLext6fTEMI/P8p4FpSSmvbGJZ2IVDJ8mT5LF14UqF6Y0+CiTgFaNrvVyfgyu34urmxvxf58v76IuPi+NpzFN5eVs7O+b/uoAF8+azZfMWzC3Mmfj5RJo1L+iXx7+KP7PnfMuSPxezZPES7O3tmfP9d1SuXJAd1LJVS5KTk1n+9zLi4uKKfC5AXFw8C+YvICE+AXNzc9q0a8vgIYpBtt59epOTk8OC+fNJSU7B29ubj6eNwdRasWmlMn71a5CZls6xrftJTUrB0sGGfl+OkmckpSamkBxX0LG4TCbj0PpdJD6LR1VVFVMrc1r27kTNFgVPzxt3aY2KigqHN+4hJSEZPUN9PGtUpnnPDq+sT1kMqNeQ7Nxcfjqwh9TMLHzt7PitzwCFDLqnycmovuZTQx9bO37q3ptFR4JZdjwEW2NjJrRsQ2u/Kq+euYwq16tOZmo6IduCSEtKxtLBhr6TR8i3z5scKxXNt151MtMyOK5wfA9XrHP86x7fJ/KP719XKExv1CWQxuXUv1dhdRo3ID0ljV1rt5CcmIidkwOfzZ6KuVX+cZWckEh8bEHG5LF9weTl5bHmj79Z88ff8ukNWjRmyOdjADiyOwhJroQ/vp2r8Fmd+nanc3/lAwm9LV4WTvz+UcEDpLEN84MM+8JCmXPk3Q6C5le/Bhmpz89TiSlYOdjQ/8tR8qyXtKRkhX1KJpURvG7nS+cpC1r16ST/MQ/55ymAwxt3v3Se8qNFrwo+TzVrQXZuLj9u2URqZga+Ts78NmK0QgZdTGKiQnZDVk4OP27ZRGxyEloaGjhZWvFNvwG0emkE6NjkJL5as5Kk9HRM9PWp7OTM8vETsDEtv6aRADUD6pGWmsbeDdtJSUjC1smeMTO/wMzy+XGRmETCs4LuF/7dfwRpXh4b/lzJhj9XyqfXbd6IgZ/lB4lMLcwY982XbP57DbPHTMHYzIRmHVsT2LXitoVbLV+y0zO4uPdfMpLTMLW1pPWYPhiYGQOQkZxGekLBvZQ0L48zW4JJT0pFXUMdY1sLAsf0xtGv9Pds5a1mo7qkp6Sy7/m2sHGyZ9SMLzB73jw7JSGJxGcF56gTB/K3xcbFq9i4uOCYrtusEQM+Kxh04umjJ0TcvMOn3ygfqK2i/Revex51/MlMz+DMriNkJKdiZmdFp88+ljcpTU9OJTU+6bWWKcnNJXR7MMmxiWhoa+Ls70ng0B5o6b7bBzdvzQcyUIWmpiY1atQgODiYjz76SD49ODiYTp2U9+tcr149du/erTDt4MGD1KxZU959Ub169QgODlboN+7gwYPUr1/8oFFlpSIr3OFWKXh6etK+fXvmzlW88Zk4cSJ79uzh9u3SDVEvCIIglGz1uX3vugplNqBWW5JSSzcq3PvK2MCIjZeC33U1yqxntZYkr9n4rqtRJkb9e7LuYtC7rkaZ9akeyJrzxT+4+K/oX7MNpyKvvutqlEl9F38a/DHi1QXfcydHL2bT5UPvuhpl0qNqC1L2HXzX1Sgzw7atOHq35C5F/guaVqrJL8dK37rgffR5k74cvnPuXVejzJp71PrPX/v6VA9k0amt77oaZTaq/tvt96+8pJZyVOB3waCU/ZW/sHHjRvr378/ixYupV68ef/31F0uXLuXGjRs4OTkxZcoUHj16xOrVqwGIjIykcuXKDB8+nKFDhxIaGsqIESNYv369fDTVU6dOERAQwJw5c+jUqRM7d+7kq6++4sSJE0X6MS8vb5QZN3/+fLp27UpQUJC8Wc/p06eJiIhg69b//gEmCIIgCIIgCIIgCIIgvF969uxJfHw833zzDU+ePKFy5crs27cPJ6f8AZyePHlCdHS0vLyLiwv79u3js88+448//sDW1paFCxfKA3EA9evXZ8OGDXz11VdMnz4dNzc3Nm7cWGGBOHjDYFzbtm25e/cuixYt4tatW8hkMjp16sSIESPkHcwLgiAIgiAIgiAIgiAI71h5jqbzHhg1apTCgIAvK9yHPOSPgXDx4sUSl9mtWze6detWHtUrlTceTsfe3p7vvvuuPOsiCIIgCIIgCIIgCIIgCB+0Nw7GJSUlsWzZMsLCwlBRUcHHx4dPPvlEaYf7giAIgiAIgiAIgiAIgiDAG40zfv78edzc3Jg/fz4JCQnExcUxb9483NzcXpn6JwiCIAiCIAiCIAiCILwlMtn7+/o/9UaZcZ999hkdO3Zk6dKlqKvnL0IikTBkyBDGjx/Pv//+W66VFARBEARBEARBEARBEIQPwRsF486fP68QiANQV1dn0qRJ1KxZs9wqJwiCIAiCIAiCIAiCIAgfkjdqpmpoaKgwVOwLDx48wMDAoMyVEgRBEARBEARBEARBEMqBVPb+vv5PvVEwrmfPngwePJiNGzfy4MEDHj58yIYNGxgyZAi9e/cu7zoKgiAIgiAIgiAIgiAIwgfhjZqp/vLLL6ioqDBgwAAkEgkymQxNTU1GjhzJDz/8UN51FARBEARBEARBEARBEIQPwhsF4zQ1Nfn111/5/vvviYiIQCaT4e7ujq6ubnnXTxAEQRAEQRAEQRAEQXhTMum7roFQyGsF4z755JNSlVu+fPkbVUYQBEEQBEEQBEEQBEEQPmSvFYxbuXIlTk5OVKtWDZns/7ejPUEQBEEQBEEQBEEQBEF4E68VjBsxYgQbNmzg3r17fPLJJ/Tr1w9TU9OKqpsgCIIgCIIgCIIgCIJQFiKZ6r3zWqOpLlq0iCdPnjB58mR2796Ng4MDPXr0ICgoSGTKCYIgCIIgCIIgCIIgCMIrvFYwDkBLS4vevXsTHBzMzZs38fX1ZdSoUTg5OZGWllYRdRQEQRAEQRAEQRAEQRCED8Ibjab6goqKCioqKshkMqRSMTqHIAiCIAiCIAiCIAjCe0UqWjK+b147My47O5v169fTsmVLPD09uXbtGr///jvR0dHo6+tXRB0FQRAEQRAEQRAEQRAE4YPwWplxo0aNYsOGDTg6OjJo0CA2bNiAmZlZRdVNEARBEARBEARBEARBED4orxWMW7x4MY6Ojri4uBASEkJISIjSctu2bSuXygmCIAiCIAiCIAiCIAhlIAbcfO+8VjBuwIABqKioVFRdBEEQBEEQBEEQBEEQBOGDpiKTiRCpIAiCIAiCIAiCIAjChyj1Scy7rkKxDGys33UV3okyjaYqCIIgVKxp+5e86yqU2Zw2w3mWmvCuq1EmFgamTN23+F1Xo8y+azuCpIlfvetqlInx3G/ZeuXIu65GmXWt0oxPt89719Uos98+mvBBHN+bLh9619Uosx5VW9DgjxHvuhplcnL0Yv6NuPiuq1FmAW7VWfDvxnddjTIbH9CTRae2vutqlMmo+l2ZfuCvd12NMpvdeth//prx20cTmBH097uuRpnNChzyrqvwZmTSd10DoZDXHk1VEARBEARBEARBEARBEIQ3I4JxgiAIgiAIgiAIgiAIgvCWiGaqgiAIgiAIgiAIgiAIHyqpGCrgfSMy4wRBEARBEARBEARBEAThLRHBOEEQBEEQBEEQBEEQBEF4S0QzVUEQBEEQBEEQBEEQhA+VTDRTfd+IzDhBEARBEARBEARBEARBeEtEME4QBEEQBEEQBEEQBEEQ3hLRTFUQBEEQBEEQBEEQBOFDJZqpvndEZpwgCIIgCIIgCIIgCIIgvCUiGCcIgiAIgiAIgiAIgiAIb4lopioIgiAIgiAIgiAIgvChkkrfdQ2EQkRmnCAIgiAIgiAIgiAIgiC8JSIYJwiCIAiCIAiCIAiCIAhviWimKgiCIAiCIAiCIAiC8KESo6m+d0RmnCAIJXr69CnffPMNiYmJ77oqgiAIgiAIgiAIgvCfJ4JxggA4OzuzYMGCt7o8FRUVduzYUabPmTlzJlWrVi3TMkoik8no378/WlpamJiYvNa85f2dvq6AgADWrVv3zj7/ZZ9//jljx45919UQBEEQBEEQBEEQ3gMiGCf8p3Xo0IEWLVoofS80NBQVFRUuXrz4lmsF586dY9iwYW/9c8vb999/j6urK5MnT37ted/ld7Bnzx5iYmLo1auXfFrh4KBMJmPixIkYGBhw5MgRAJo0acL48eOLLG/dunWoqakxYsQIpZ+3ZMkSqlSpgp6eHsbGxlSrVo0ff/xR/v6kSZNYsWIFkZGR5bOCgiAIgiAIgiAIpSWVvb+v/1OizzjhP23w4MF06dKF+/fv4+TkpPDe8uXLqVq1KtWrV3/r9bKwsHjrn1kRpk6d+sbzvsvvYOHChQwaNAhVVeXPG/Ly8hg6dCi7d+/myJEj1KpVq8TlLV++nEmTJvHnn38yb948dHV15e8tW7aMCRMmsHDhQho3bkx2djZXr17l5s2b8jKWlpa0atWKxYsXKwTpylsdRx8aulTBQEuX2LRE9oad4n5iTLHl1VRVaeZWgyp2lTDQ0iU5K42QiEtceHgbAB8rF5q4VcNU1xA1FVXiM5I5EXmVy4/vlludt23eyvo1a4mPi8fZ1YVxE8dTpVrVYstfunCR3+YvJOpeJGYW5vTt35fO3brI378XcY9li5dy+9YtYp7EMHbCOHr06VXs8tasWMWSPxbTvXcPxk38rNzWq46jL41cX9oWN08S9apt4V6TqnaVMNDM3xbHIi7Kt0V1O0+6VWlaZL6vDyxFIs0rt3oro92qGZp1a6Kiq0Pe/YdkbNuN9GlsseX1Rw5G3d2lyPTcm7dJX7YGAM16tdGqXxtVU2MA8mJiyQo+iuRW+e1bL5wOCuH4rmBSk5KxtLeh3cDuuHhXUlo26lY4B9Zu59mjp+Rm52BsYUrtFo1o2L65QrnM9AwOrt/JzbOXyUzPwMTSnLb9u+JZvXK51/+FRi5VaF6pJobaejxJiWfbtWNExD9SWrZf9UDqOPkWmf4kJY7vDq8GoL6zH7UdvLExNAfgQdJTdt88WeI543W9i+N7+5Zt7NiyjSdPngDg4urKwCGfUK9BvXJbrzNB/3Ji9yHSnu9TbT7uhrO3u9Ky92+Fc3DtTp49LtinarVoSP12zRTKndp7hLPBx0mOS0TXUA/fOtVo2bsTGpoa5VbvN1XFxp0+1VrhZemIuZ4xX+77k+ORV951tQA4uucgQVv3kJyQhK2TPT2HDcCjspfSshdPnuXY3mAe3LuPJFeCrZM9Hfp2pXKNKvIyJ4NDWDl/cZF5F+1YhYamZoWtx/WjZ7kcdIKM5DRMbC1o0LMNth7OSss+uh3Jrl9WFJne65tPMbHJv/e6+e95bodeJuFx/rnawsmWOh+1wMrFvsLWAeDKkdNc3H+c9KRUzOwsCejTDjuPoteDwh7fvc+WH5ZiZmdF328+lU/Pk+Rxfu8xwk5eIi0xBRMbcxp0b42zn0eFrUNtBx8auvij//z6vf9WaMn3UiqqNHWvQRVbd/S1dEnJSick4hIXH724l3ImwFXxXupk1DWulOO9lDL/xWtGYXePX+LW4XNkpqRhZG1Ota7NsHQrfh/Oy5VwIyiUqHM3yUpJR8dYH99W9XCt5wdA8pM4ru07QcKDp2QkpFDto6Z4Nq1ZYfUXhFcRmXHCf1r79u2xtLRk5cqVCtMzMjLYuHEjgwcPBuDUqVMEBASgo6ODg4MDY8eOJT09vdjlRkdH06lTJ/T19TE0NKRHjx48ffpUocyuXbuoWbMm2tramJub06VLwQ+GwllYd+/eJSAgAG1tbXx8fAgODi7ymZMnT8bDwwNdXV1cXV2ZPn06ubm5CmV++OEHrKysMDAwYPDgwWRlZZX4/Rw7dgwVFRWCgoKoVq0aOjo6NGvWjNjYWPbv34+3tzeGhob07t2bjIwM+XwHDhygYcOGGBsbY2ZmRvv27YmIiJC/v3r1avT19bl7t+BG4tNPP8XDw0P+vRb+DlRUVFiyZAnt27dHV1cXb29vQkNDCQ8Pp0mTJujp6VGvXj2Fz4mIiKBTp05YWVmhr69PrVq1OHToUInrHBcXx6FDh+jYsaPS97Ozs+nevTvBwcH8+++/rwzERUVFcerUKb788ku8vLzYsmWLwvu7d++mR48eDB48GHd3d3x9fenduzezZ89WKNexY0fWr19f4meVhZ+1G2296xMScYk/Tm4lKjGGj2u2xUhbv9h5eldtiau5HduvhTD/3w1sunyYZ2lJ8vczc7M4FnGRJaE7+O3kFi48vE0Xvya4m5fPzfzhg4dYOHcBAz4ZyPK1q6hSrQqfj51ATIzyG7vHjx7zxbiJVKlWheVrVzFg0Mcs+GU+xw4flZfJzsrC1t6WEWNGYWZmVuLnh924ya7tO3GrpPxH9Jvys3GjnU99joVf5PcTW4hKeMLHtdqVvC2qtcTNzI5tV48x798NbCy0LQCycrP57tAqhVdFB+K0mjZCq3F9MrfvIXXBn0hTU9EfPhC0iv9Rmr5yHckzf5C/Un5aiCwvj9yr1+VlpMnJZO49SOr8P0md/yeS8HvoDeqLqpVludb/6qnz7F25mSZdWjPmx6k4e7uz6rs/SIpLUFpeU0uLeoFNGDZrAp/Nn0HTLm0I3riLs4eOy8tIJBKWf7uQpGcJ9JkwjM8WzOSj4X0xfB5YrAjV7Tzo4t+EoNtn+PHoP0TEP2Jk/Y8w0TFQWn7L1aNM3bdY/pq+/y/SczK59KjgnO1ubs+Fh7dZeGIz80LWk5CZyqj6XUrcT1/Huzq+LSwtGDFmFH+vXsHfq1dQvWYNpkycxL2Ie+WyXtdOXWD/qi00/iiQkT9MwcnLnTXfF79PaWhpUad1YwbPHM/YedNp3KU1hzbu5tyhE/IyV46fJXj9Tpp2a8vYedP5aHg/rodeJHj9znKpc1npaGgRHv+Qef9ueNdVUXAuJJSNf62mXc/OfP3b91Ty9WTh1z8QHxuntPyd62H4VPNj7DeT+WrhHDz9ffh91s9ERyhmrevo6vDLP38qvCoyEBd+7honN+6nervGdP96JDaVnNi78B9S45NKnK/37LF8/MsX8peRVcEx8fh2FJVq+9Np4iC6fDkUA1Mj9sxfTVpiSoWtx50zV/l33V5qtW9Cn1ljsPVwZue8VaS8Yj2yM7I4uHQzDt5uRd4L3RbMtWPnaNy3A/3njMevSW32/PYPsfcfV8g6VLZ2pY13PULuXeLPU9u4nxhD/xptMNLWK3aenlVb4Gpmy/br//Lr8Y1sunKYZ+lJ8vczcrMJibjE0tM7+f3kFi4+usNHlRuX272UMv/Fa0Zh0RdvcWnbEXxa1SVw0sdYuNnz759bSE8ofh8+tWI3T2/fp3afQNp+NZj6AztgaGUqf1+Sk4u+mTFVOgSgbVj8NhWEt0UE44T/NHV1dQYMGMDKlSuRvTRCzObNm8nJyaFv375cu3aNwMBAunTpwtWrV9m4cSMnTpxgzJgxSpcpk8no3LkzCQkJhISEEBwcTEREBD179pSX2bt3L126dKFdu3ZcunSJw4cPU7Om8icrUqmULl26oKamxunTp1m8eLHSZp8GBgasXLmSmzdv8uuvv7J06VLmz58vf3/Tpk3MmDGDOXPmcP78eWxsbFi0aFGpvqeZM2fy+++/c+rUKR48eECPHj1YsGAB69atY+/evQQHB/Pbb7/Jy6empvLZZ59x7tw5Dh06hEwm46OPPkIqlQIwYMAA2rZtS9++fZFIJBw4cIAlS5awdu1a9PSKv7jNnj2bAQMGcPnyZby8vOjTpw/Dhw9nypQpnD9/HkBhu6SlpdG2bVsOHTrEpUuXCAwMpEOHDkRHRxf7GSdOnJAH+wpLS0ujXbt23Lhxg5MnTyotU9jy5ctp164dRkZG9OvXj2XLlim8b21tzenTp7l//36Jy6lduzYPHjx4Zbk31cDFjwsPb3H+4S2epSexL+wUyVlp1HH0UVq+krkDzqY2rD6/n4j4RyRlpvEw+RnRSQVB58iEJ9x8GsWz9CQSMlIIvX+dp6nxOJtYl0udN6xdT/tOHejQuSPOLs6Mm/gZllaW7NiyTWn5HVu3Y2VtxbiJn+Hs4kyHzh1p17E96/8p6BvQ29eH0eM+pUVgyxIzSjIyMpg1fSaTpn2JgYHym9M31dDFnwsPCrbF3hfbwqn4beFiasuq8/ueb4tUHibHKmwLABmQlpOp8KpoWgH1yToUQu61m0hjYslYvxUVTQ00q1Updh5ZZiay1DT5S8PDDXJzyblSEIyT3LyN5NYdpHHxSOPiydp/CFlODupODuVa/xN7DlOjWX1qNW+Ipb0N7Qf2wMjchDMH/1Va3tbFgSoNa2HlYIuJpRnVAupQqYoPUWHh8jIXjpwiMy2dfl+MwMnLDRMLM5y93LFxrrgfVk3daxAadf35MZjAtmvHSMxMpaGL8u2QJckhNTtD/nI0sUJHQ5vT9wu2werz+zkeeYVHyc94mpbI+ovBqKio4GlRPtvgXR3fDQMaUa9hfRydHHF0cmT46BHo6Opw89p1peVf16m9h6nerB41mzfA0t6atgO7YWhmwtmDx5WWt3VxwL9BTfk+VbVRbdz9vbl/q2CfenA3EkdPV6o0rIWJpRnuVbzxq1+Dx/eKv9a9Taejb7D0zC5C7l1+11VRELx9Lw1bNaVR62bYONrRa/jHmFiYEbK36ANPgF7DP6Z19464eLhhZWdDl4G9sLS15sqZQt2ZqKhgZGqs8KpIV4JP4dWwOj6NamBiY0HDXm3RNzHkRsi5EufTMdRD18hA/nq5NUCLod2o3LQ25o42mNhY0HhAJ2QyGY/CyicorczFgyfwDahB5ca1MLW1pHGf9uibGnHtyJkS5zuyajuedatg41703HMr9BK12jfGpYonRpam+Deri1PlSlw8cELJksquvrM/Fx/e5sLD2zxLT2L/rVBSstKoXcy9lLu5Pc6mNqy5cIB7z++lHiU/48FL1++ohCeExebfSyVmpnL6+Xncybh87qWU+S9eMwq7dfQ8rnX9cKvvj5G1GdW7NkPXxIDwE5eVln9yM5LYiAcEjOiKtacz+mZGmDnZYO5qJy9j5mRD1c5NcKrhjaq6WoXU+70mk72/r/9Topmq8J/3ySef8PPPP3Ps2DGaNs1vxrV8+XK6dOmCiYkJ48aNo0+fPvK+wCpVqiRvUvjnn3+ira2tsLxDhw5x9epVIiMjcXDIv8CsWbMGX19fzp07R61atZgzZw69evVi1qxZ8vmqVFF+gTt06BBhYWFERUVhb5//Y+27776jTZs2CuW++uor+d/Ozs5MnDiRjRs3MmnSJAAWLFjAJ598wpAhQwD49ttvOXTo0Cuz416UbdCgAZDftHfKlClERETg6uoKQLdu3Th69Kg8SNi9e3eF+ZcvX461tTU3b96kcuX8ZlhLlizB39+fsWPHsm3bNmbMmPHKLLNBgwbRo0cPID8TsF69ekyfPp3AwEAAxo0bx6BBg+Tlq1SpovC9fvvtt2zfvp1du3YVG0yNiorCyspKaRPV2bNnY2BgwM2bN7G0fHUGjlQqZeXKlfJAZa9evZgwYQLh4eG4u+dnU82YMYMuXbrg7OyMh4cH9erVo23btnTr1k2hDnZ2dvL6FW5SXVZqKqrYGlrwb6EfSuFxD3E0sVI6j7elE4+Sn9HIpQrV7DzIycsl7Ol9Dt09V2y2lauZHeZ6xhy4XfKNdWnk5uZy59Zt+g3srzC9Vt06XL96Tek8N65dp1bdOgrTaterw56du5FIJKirl/6SNu/HX6jfoD616tRm1bKVr13/4rzYFiERlxSmhz97WOyNt7eVM4+SnxHgWpWqdh7k5uUS9jSK4DuK20JTTYMvmvZFFRWepMYTfOcsT1Liy63uhamamqBqaIDkTkHQgLw8JBFRqDs7knO65B+KL2jWqUHOpWuQk6u8gIoKGlUqo6KpieR++QUfJBIJj+9F07hzoMJ0d39v7t8u3Q/Sx5EPiL59j5a9OsinhV24imMlV3Yt28DN81fQM9SnaoNaBHQOLLZpfFmoqajiYGxF8B3F7/vW0/u4mNmWahl1nSpzO/Y+iZmpxZbRVFdHTVWN9NxXX1Ne5V0f3y/k5eVx9NARsjKz8PX3e+35C8vfpx7QqFMrhenuVbx5cKf0+9SDO/do3rNgn3L0dOPK8XM8DI/C3t2ZhKdx3Ll0g2qN65a5zh8qSa6E++GRtO7RSWG6bzV/IsLulGoZUqmU7Mws9AwUM3uyM7OY/PGnSKVSHFyd6DygO45ur25q+SbyJBKe3X9CtdaNFKY7+LoTE1Hy+XDzN3+SJ5FgYmNBjXaNsfNyLbasJCcXaV4eWno65VLvwvIkEmKjHlOzbWOF6U6+7jyJKP4h5I3jF0iKTSBwWA/O7j5a5P28XAlqGoqBd3VNDR7fjSqXer8s//ptznEl91IOxsrvpbwsnXic/IyGLlWoaluJnLxcbsXe5/Dd88XfS5naYq5nxME7T8p7FYD/5jWjsDxJHokPYvBpUVthurWXM3GRypvaProejqmDFbcOnyXq3E3UNTWw9XPDr21D1N+D5v6CoIwIxgn/eV5eXtSvX5/ly5fTtGlTIiIiOH78OAcPHgTgwoULhIeHs3btWvk8MpkMqVRKZGRkkeyosLAwHBwc5IE4AB8fH4yNjQkLC6NWrVpcvnyZoUOHlqp+YWFhODo6ygNxAPXqFe27ZsuWLSxYsIDw8HDS0tKQSCQYGhoqLKfwAAL16tXj6NGiNy+F+fv7y/+2srKSN4V9edrZs2fl/0dHRzN79mzOnDlDXFycPCMuOjpaHowzMTFh2bJlBAYGUr9+fb788svXrgeAn5+fwrSsrCxSUlIwNDQkPT2dWbNmsWfPHh4/foxEIiEzM7PEzLjMzMwiAdYXWrVqxaFDh/juu+9KNdLrwYMHSU9PlwdOzc3NadWqFcuXL+e7774DwMbGhtDQUK5fv05ISAinTp3i448/5u+//+bAgQPyH+c6Ovk3wC83B35ZdnY22dnZCtO0tLReWUcAXU1t1FRVSctWzJRKy85EX1NX6TwmuoY4mVgjkeax9mIQupradPRphK6mFtuuhRTUQV2TyU37oa6qilQmY/fNE8X2OfI6kpOSyMvLw9TUVGG6qakJ8cU094qPj6eOqUmh8qbk5eWRlJSEubl5qT77UFAwd27dZunq5W9W+RIUty1SczKopKX86bGprkHBtriQvy06+TZCR0ObbdeOAfAsPZGtV48Sk5qAtroG9Z39GF6vM78d30J8RnK5rweAimH+D1RpaprCdGlqmryvt1dRc7BDzcaajI3bi7ynam2FwdhhoK4OOTmkr1iH9OmzMtf7hYyUNKRSKfpGipmPBkYG3E0q+Tv7YcQU0lPSkObl0bx7e2o1byh/L+FpHPee3aZKw9oMnDKauCex7Fq2kTyplObd2pVb/V/Q09JBTVWV1GzFrhVSszMw1FJ+fL/MUEsPHysXVp3fV2K5jr6NSM5M43Zs2QOi7/L4BogID2fEoGHk5OSgo6PDdz//gItr2YMpBfuUocJ0fSMDUpNKbv7388hp8n2qafd21GzeQP6ef4OaZKSk8ffX85AhQ5onpXbLRgR0blXCEv+/paWkIJVKMTQ2UphuYGJEcmLpzonB2/aSnZVNzUYFQU9rB1sGTRiBnbMjmRmZHN65nx8/n8nXv/+AlZ1Nua4DQFZaBjKpFF1DxYCgjoEeGclpSufRNTKgcf+OWDjZkieRcOf0FXbNW0WnzwcV28/c6a3B6BkbYu9TfMCuLDJTi1kPIwPSryvvGy0xJo6TWw7QfcpwVNWUZyk5Vq7EpaAT2Hk4Y2xpSnRYBPcuhSF7fl9anuTX70JZ52k5mRgUc6411THE8fn1e92lg+hqaNPBtyE6GtrsuP7yvZQGXzTph7qqGlKZlD03T5bLvZQy/8VrRmE56ZnIpDK0DRRb22gZ6JGVqrybobS4JJ7de4SahjoNh3QmOy2T85uDyUnPok7fNkrnEYR3TQTjhA/C4MGDGTNmDH/88QcrVqzAycmJ5s3zO9yWSqUMHz6csWPHFpnP0dGxyDSZTIaKikqJ018EVkpDpiT1tvDyT58+Lc+0CwwMxMjIiA0bNjB37txSf05JNF56qqiioqLw/4tp0pdubNq3b4+LiwtLly7F1tYWqVSKs7MzOTk5CvP9+++/qKmp8fjxY9LT0xWCh6WpR3HTXtTliy++ICgoiF9++QV3d3d0dHTo1q1bkXq8zNzcnMTERKXvNW/enLFjx9KpUyfy8vIUmuYqs3z5chISEhQGbJBKpVy6dInZs2ej9tLNY+XKlalcuTKjR4/mxIkTNGrUiJCQEHm2ZkJC/g/Q4ga2+P777xUyLSE/6446pb/5L7yn5X+dylO/X+yCm64cIVuS/33uuxVK72ot2XXjhPyJbo4kh99PbkFLTQNXMzvaeNUjISOFyITyeaJb+FiQyQrqVrry+eunQgkzveRpzFN+nTufeb//Wupg55sosi1QUTL15fdg4+XDBdsi7BS9q7di143jSKR5PEiK5UFSwaAJ9xNjGN2wG/WcK7Pn5slyqbNG9SrodivoazHt7zXPV6ZQvVVUSt2kQLNOTfKexJD3oOiPDumzOFLn/oGKjjYa/r7o9u5K2qK/yzUgl1/dQvtM/sQS5xn2zURysrJ5cCeSA+t2YGZtQZWG+Zm/MpkMPUMDPhreF1VVVexcnUhNTOb4ruAKCcYp1PsN1HHyITM3m6uPw4st07xSTWrYe7Hw+KZy7YfwbR/fLzg6ObFi3SrSUtM4duQoc2bO5re/FpVLQO55hQrVs2jdCxsy6zOys7J5eDeKg+t2YmZtgX+D/O4tIm/cIWT7AdoP7ol9JWcSYp6xb+UW9Lfup2lX8SOyJEW+9mLu4Qo7c+wku9ZuZfTXExUCem5elXDzKhjgxd3Hg9ljp3JkdxC9Rwwsp1oroaTKxa2HibU5JtYFwWlrN0fSEpK5fPCk0mDcpQPHCT97jU5fDEJdo2IzhIrUWSZTevRKpVIOLNlI3c4tFNalsMZ92nN45XbWTJ2f33zY0hSfhtW5eeJisfOUneLZVgWVYi95L9Z389UjZEvys78P3AqlZ9WW7Ln58r1ULotObUVTTQNXM1tae9UlITOFqHK6l3r1WpTeu7xmFKHk+FZ6sFDwO63ugPZo6uTf31WTNOXk8p3U6N5CZMcByMo/iC2UjQjGCR+EHj16MG7cONatW8eqVasYOnSo/AJZvXp1bty4IW9W+Co+Pj5ER0fz4MEDeXbczZs3SU5OlmfR+fv7c/jwYYUmla9a3uPHj7G1zU8PDw0NVShz8uRJnJycmDZtmnxa4b7FvL29OX36NAMGDJBPO336dKnW6XXEx8dz7do1Fi1aRJ06+U2GQkJCipQ7deoUP/30E7t37+bLL7/k008/ZdWqVeVal+PHjzNw4EA++ugjIL/Pt6ioqBLnqVatGjExMSQmJmJiYlLk/ZYtW7Jnzx46dOiAVCrl999/V3rDGx8fz86dO9mwYQO+vgUjTEmlUho1asT+/ftp37690jr4+OT3LfLyICHXr19HQ0NDYVkvmzJlChMmTFCYpqWlxTdHVpa4vgAZOVnkSaUYaCkGifU0dYrtVyw1K4OUrHR58AfgWVoiqioqGGnrEZ+Rn+UhAxKe//0kNR5LfWMau1YrczDOyNgYNTU14uMVm1kmJiZiamaqdB4zMzPi4xOKlFdTU8OoUHZEcW7fukViQiJD+hccu3l5eVy5dJltm7Zy5FSIQpD1dRW3LfQ1dYpky72Qml10W8TKt4W+0sw3GfAo6RlmuqVb79LIvRFG6v0HBROeNwtUNTQg76XsOFV9PWTFPJlWoKGBZlU/MoMOK38/Lw/p8+2Z9/Axag72aDWqT+aW8um0XtdQH1VV1SIZS2nJqUUymwoztcz/cWjtaEdqcgqHN++RB+MMjI1QU1dVaJJqYWdNalLKGzenLEl6diZ5UimGWooZAgZauqRkK8+0fVldp8qce3CTvGJuwpu516CVR21+P7mVxynKO75/Xe/q+H5BQ0MD++fXby8fb8JuhrF5/UYmTXt1BndJXuxTaYX2qfSU1CIZmIWZvLRPpSWlcGTzXnkw7vCmPVQJqC3PlrN2tCMnO4ddf62j8UcV0/z5v07f0BBVVdUiWXCpSSkYGpd8fJ8LCWX1r38xfMo4fKqV3HxZVVUVl0quxD6qmBEjtfV1UVFVLZIFl5majs5rdDBv5erAndNFR7i9HHSCi/uO02HCx5jZV1wfZToG+euRnqzYrDEzJQ1do6Id/OdmZRMb9Yhn0U849s9u4HnwXSZj4eCv+GjiIBx83NA11KfD2P5IcnPJSstAz9iQk5uDMDQven9XVi+u34VbFOhpapOWo/xcW3D9LuiG4VlaEqoqKhhq68nvn16+l4pJjcdCz4QA16oVEoz7L14zCtPU00FFVYWsFMV7jey0DLQNlGf36Rjpo2OkLw/EARhamYEMMpPSMLAs/31GEMpKXN2FD4K+vj49e/Zk6tSpPH78mIEDB8rfmzx5MqGhoYwePZrLly9z9+5ddu3axaeffqp0WS1atMDf35++ffty8eJFzp49y4ABA2jcuLF8kIYZM2awfv16ZsyYQVhYGNeuXeOnn34qdnmenp4MGDCAK1eucPz4cYWgG4C7uzvR0dFs2LCBiIgIFi5cyPbtis26xo0bx/Lly1m+fDl37txhxowZ3LhxowzfmnLGxsaYmpqyePFiwsPDOXz4MBMnTlQok5qaSv/+/fn0009p06YN69atY9OmTWzevLlc6+Lu7s62bdu4fPkyV65coU+fPgoZfMpUq1YNCwsLTp4sPluoWbNm7N27l1WrVjF69Gil2Ytr1qzBzMyM7t27y7PeKleujL+/P+3bt5cP5DBy5Ehmz57NyZMnuX//vjxgamFhodAc+fjx4zRq1KjYrEotLS0MDQ0VXqXN3MqTSXmc8gx3M8UO5N3N7YlOfKp0nuikpxho66KpVhA4MNczQiqTkpxVUqBFBTXVsnd6q6GhgYeXJ+fOKPZpcv7MWSoX07eTr19lzp85qzDt3OmzePl4lzoAUrNWTVZv+IcVa1fJX14+3rRqHciKtavKFIiDl7aFuWKTVHdzO+4nKf8xdz8xRsm2MH6+LZQ3UwKwMTQjtRQ31qWWnYM0PqHg9TQWaUoq6h4vjXCnpoa6mzOSqFc3S9GsWhnU1ci9cLl0n68CKuXYobK6ujq2ro6EXw1TmB5+NQwnz9doqiXL7yvsBSdPV+Jjnimci+KexGJgYlTugTjI36ceJD3Fy1Ixk9vT0onI+JJHFHQ3t8dS34TQKOWDFzSvVJPWXnX589R2hQ7Hy+pdHd/FksmKjE7+JvL3KQcirt5SmB5x9RYOHqXfp2Tk97H1Qm52Dioqirfkqqqq/899Wr+SuoY6Tu4uhF26qjD95qVruHl7FDvfmWMnWTH/T4Z8MQb/2tVf+TkymYzoe/crbBAHNXV1LJxseBgWoTD94c0IrN2Ktt4oTlz0E3QLBYQvBZ3gwt4Q2o3rj6WzXTFzlg81dXUsnW2JvqGYTRV9Mxwbt6L95Gpqa9F39lj6zBojf/k1qY2JtTl9Zo3B2k3xGqquoYG+iRHSPCnhF67jWu3VA3C9rvzrdxxu5orflZu5fbHnx+jEGAy09RSu32bP76VSSriXUlEB9XK4l1Lmv3jNKExNXQ0TB2tibismJsTcuo+5i/J92dzFjszkNHKzCx5spsYmoKKigo5xxYz4KghlJYJxwgdj8ODBJCYm0qJFC4Xmp/7+/oSEhHD37l0aNWpEtWrVmD59OjY2ypv/qaiosGPHDkxMTAgICKBFixa4urqyceNGeZkmTZqwefNmdu3aRdWqVWnWrBlnzijv1F5VVZXt27eTnZ1N7dq1GTJkCHPmzFEo06lTJz777DPGjBlD1apVOXXqFNOnT1co07NnT77++msmT55MjRo1uH//PiNHjnzTr6tYampqbNy4kYsXL1K5cmUmTJhQpLnsuHHj0NPTk/eb5uvry48//siIESN49Kj8+sCYP38+JiYm1K9fnw4dOhAYGEj16iXfPKupqfHJJ58o9BGoTJMmTdi3bx9r1qxh5MiRRQJyy5cv56OPPlKakdC1a1f27NnD06dPadGiBadPn6Z79+54eHjQtWtXtLW1OXz4MGZmZvJ51q9fX+p+Bt/Eychr1HDwooa9JxZ6xrT1qoeRtj5no28C0MqjNt38m8rLX3l8l4ycbLr4NcFC3xhnExtae9XlwsPb8iYHAa5VcTOzw0THAHM9Yxo4+1HNrhJXHivv/+V19erbmz07drFn526iIqNYOHcBT2Oe0rlrfibk4t8XMfvrgqa7nbt+RMyTGH6b9ytRkVHs2bmbPTt307tfH3mZ3Nxc7t6+w93bd8jNlfDs2TPu3r7Dwwf5GV+6enq4urspvLS1tTE0NsTV3Y3ycCLyKjVf3hbe9THSMeDs/efbwlP5tujq3xRLfROcTWxo412XCw8KtkUz9xpUMrfHRMcAGwMzuvg1wcbQTL59K0r2v6fQbt4YjcreqFpboturC7KcXHIuFWRg6PbuinbblkXm1axdg9zrYcgyimYEardpiZqLE6omxqhaW6HdpgXqbi7kXCya2VEWDds35/zhk5w/corYh0/Yu3IzyXGJ1G6Z31l60LodbP59pbx86IFjhJ2/StyTWOKexHLh6CmO7w6maqOCTqTrtAogIzWdPSs3E/f4KbcuXuPY9gPUDWxc+OPLzdHwC9Rz9qOuky9WBqZ08WuMqa4BJyLzv68OPg3pX6N1kfnqOVUmMuEJT1KLDvTRvFJN2nnXZ+3Fg8RnJGOgpYuBli6aauXTlOddHN8AS/74kyuXLvPk8RMiwsNZ8sdiLl24RKvWigN5vKn67Zpz4cgpLhw9RezDGPat2kJyXAK1W+b3K3hw3U62/F6QJX4mKIRbF64R/ySW+CexXDwaysndh6jSsGCf8qzhx7ng41w9eZ7E2DjCr4ZxeONuvGr6vRdZcToaWlQyt6eSef4DH1tDcyqZ22Ol/24zTVp+1I7jQUc5cfAoT6IfsfGv1SQ8i6Nx2xYAbFuxnmW/FIw6f+bYSVbM/ZPuQ/rh6lWJ5IQkkhOSyEgveKixa+0Wrl+4wrMnT4mOiGLVgiU8vHdfvsyKUKVlfcKOXyTsxEUSnzzj5Mb9pCYk49s4Pxv39LZgDi/bKi9/5dApIi+FkfQ0noRHsZzeFsy9izfxa1YwAMqlA8c5u+MwTT7ujKG5MRnJqWQkp5KblV3k88tL9VYNufHveW78e56Ex7GErN9Lanwyfk3z9/WTm4MIWpr/0FZFVRVze2uFl66hHmoaGpjbW6OhpQlATMQDws9fJzk2gUd3ItkxbwUymYyabQMqZB1ORV2lhr0X1e3yr99t5PdS+Q91WnrUoqtfE3n5q0/CyczJ4iO/JljoGeNkYk2gZx0uFnsvZUR9Zz+q2nqU272UMv/Fa0ZhXk1rci/0KvdCr5EcE8/FbUfISEzBvWH+wG5Xdv3L6TV75eWdanqjqafD2bX7SX4SR2z4A67sDMGlrp+8iWqeJI/Eh09JfPgUqSSPzOQ0Eh8+JfWZ8u5tPjhS2fv7+j8lmqkKH4x69eopzXACqFWrlnxAB2UKN310dHRk586Sm0p16dKFLl26lGp5Hh4eHD9+XGFa4br+9NNPRbLrXowA+8LUqVOZOnWqwrQff/yx2Do2adKkyOcMHDhQIXMQYObMmcycOVP+f4sWLbh5U/FH/svLWb68aMf3Y8eOVeiXr/B3ULgezs7ORaYVrq+zszNHjhxRKDN69Ogin13Y+PHj8fX15f79+/KRS5U1bw0ICCA1taBJxbFjx+R/X716tUj5F7p06SLPsujatStdu3YtsT579+5FTU2Nbt26vbLub+paTAS6mlo0dauBgbYuT1MTWH1+P0nPM6sMtHQx0i54MpiTJ2HFub108GnAqPpdyMjJ5npMhMLoW5pqGnT0bYSRth65eRKepSex+cpRrsVEFPn8N9G8VQuSk5NZ+fdy4uPicXFz5edf52L9PFAeHxfP05iCJ6+2drb8/Otcfpv3K9s2b8Xcwpzxn39Gk+YFga24Z3EM6vux/P/1a9axfs06qlavxu9/Ffwoq0jXnkSgq6FNM/eaGGjp8jQtgVXn9r20LfQw1inIYMjJk7Di7B7a+zZkVIP8bXHtSQTBdwqyhLQ1tOjs1xgDTV2yJDk8Tonjr9O7eJgcW+Tzy1P20eOoaGig07UjKjra5EU/JO2vlfDSk2dVY+Mifcipmpuh7upM2pIVSperYqCPXp9uqBgaIMvMIu/JU9KXrkJyp3z2rRf869ckIzWdI1v3kpqYgpWDDR9PGY2JRX6gPDUxmaSXBhSQyWQErd9BYmw8qqqqmFlbENi3M7VbFIx0aGxuyidfjWXvqs0s/OJbDE2NadCmKQGdyyfYo8zFR3fQ09ShtWddDLX1eJISz5+ntstHujPS1sNERzErRltdk6q2ldh67ZjSZTZyqYKGmjpD6nRQmL4vLJT9t0KVzvM63tXxnRCfwOyvZxEfF4+evj5uldyYu3A+teoqjsr3pvzq1yAjNZ1jW/fL96n+X47C+Pk+lZaUTHJ8wQ87mVRG8LqdJD7L36dMrSxo1acTNVsUDArSuEv+j+LDG3eTkpCMnqE+njX8aNFLcdu8K14WTvz+UUE3CmMb5o+4vi8slDlHyrd7itdRq3E90lJT2bNuG8kJSdg6OzB21mTMrPL7Zk1KTCLhWUEzun/3HyYvL491i1awblHBualeiwA+mZD/cDMzPYM1C/8mJTEJHT1dHNyc+eKnr3HxLF1XJ2/CvZYfWWmZXNhzjPTkVExtLWk3th8GZsYAZCSlkpZQ0BxXKsnj1OYg0pNSUNfQwMTWgrZj++HkV5AReOPYOaSSPA4u3qjwWTU7NKFWx2YVsh4edfzJTM/gzK4jZCSnYmZnRafPPpY3KU1PTiU1Pum1linJzSV0ezDJsYloaGvi7O9J4NAeaOlWzKiw12PuoauhTRP36vnX79QE1lzYL89S19fSxUhH8V5q5fm9tPNuwIj6XcjMyeJ6zD0O3S24l9JQU6eDT0MMn99LxaUnseXqEa7HlG4E5jfxX7xmFOZY3Yvs9EyuB50iKzkdIxtzAkZ0Rc80v9uCzJQ00hML7uE1tDRpOro7F7Yc5uAva9DU08Gxmid+7QrOtZnJaQT9tFr+/60j57h15BwW7g40H9ur3NdBEF5FRVZc9EIQBOE/bOfOnZiamtKoUaNXF65gmzZtwsnJSd4H3+uYtn9JBdTo7ZrTZjjPUpWPoPhfYWFgytR9i991Ncrsu7YjSJr41buuRpkYz/2WrVeOvLrge65rlWZ8un3eu65Gmf320YQP4vjedPnQu65GmfWo2oIGf4x4dcH32MnRi/k3oiI75387Atyqs+Dfja8u+J4bH9CTRae2vrrge2xU/a5MP/DXu65Gmc1uPew/f8347aMJzAj6+11Xo8xmBQ5511V4I6m3Ky4bs6wMPCu9utAHSGTGCYLwQerUqdO7roJcjx493nUVBEEQBEEQBEH4fyVysN47774jCkEQBEEQBEEQBEEQBEH4PyGCcYIgCIIgCIIgCIIgCILwlohmqoIgCIIgCIIgCIIgCB8q0Uz1vSMy4wRBEARBEARBEARBEAThLRHBOEEQBEEQBEEQBEEQBEF4S0QzVUEQBEEQBEEQBEEQhA+VVPquayAUIjLjBEEQBEEQBEEQBEEQBOEtEcE4QRAEQRAEQRAEQRAEQXhLRDNVQRAEQRAEQRAEQRCED5UYTfW9IzLjBEEQBEEQBEEQBEEQBOEtEcE4QRAEQRAEQRAEQRAEQXhLRDNVQRAEQRAEQRAEQRCED5VopvreEZlxgiAIgiAIgiAIgiAIgvCWiGCcIAiCIAiCIAiCIAiCILwlopmqIAiCIAiCIAiCIAjCh0oqmqm+b0RmnCAIgiAIgiAIgiAIgiC8JSIYJwiCIAiCIAiCIAiCIAhviWimKgiCIAiCIAiCIAiC8KGSSd91DYRCRGacIAiCIAiCIAiCIAiCILwlKjKZTPTkJwiCIAiCIAiCIAiC8AFKvXz1XVehWAZV/d91Fd4J0UxVEAThPXb7adS7rkKZeVo5/+fXw9PKmeDbZ951NcqspWcdUsPvvetqlImBuyt3Y6PfdTXKrJKlI7uuH3/X1SizjpUbkXLq7LuuRpkY1q9Nyr6D77oaZWbYthX/Rlx819UokwC36jT4Y8S7rkaZnRy9mOkH/nrX1Siz2a2HcSry/f0BXxr1Xfy58ujOu65GmVWx82Db1WPvuhpl0sW/CVcf333X1Sgzf9tK77oKb0bkYL13RDNVQRAEQRAEQRAEQRAEQXhLRDBOEARBEARBEARBEARBEN4S0UxVEARBEARBEARBEAThAyWTimaq7xuRGScIgiAIgiAIgiAIgiAIb4kIxgmCIAiCIAiCIAiCIAjCWyKaqQqCIAiCIAiCIAiCIHyoxGiq7x2RGScIgiAIgiAIgiAIgiAIb4kIxgmCIAiCIAiCIAiCIAjCWyKaqQqCIAiCIAiCIAiCIHyoZNJ3XQOhEJEZJwiCIAiCIAiCIAiCIAhviQjGCYIgCIIgCIIgCIIgCMJbIpqpCoIgCIIgCIIgCIIgfKikYjTV943IjBMEQRAEQRAEQRAEQRCEt0QE4wRBEARBEARBEARBEIQPRmJiIv3798fIyAgjIyP69+9PUlJSseVzc3OZPHkyfn5+6OnpYWtry4ABA3j8+LFCuSZNmqCioqLw6tWr12vXTwTjBEEQBEEQBEEQBEEQPlQy2fv7qiB9+vTh8uXLHDhwgAMHDnD58mX69+9fbPmMjAwuXrzI9OnTuXjxItu2bePOnTt07NixSNmhQ4fy5MkT+WvJkiWvXT/RZ5wgCIIgCIIgCIIgCILwQQgLC+PAgQOcPn2aOnXqALB06VLq1avH7du38fT0LDKPkZERwcHBCtN+++03ateuTXR0NI6OjvLpurq6WFtbl6mOIjNOEAQAVq5cyf79+991NQRBEARBEARBEIT/E9nZ2aSkpCi8srOzy7TM0NBQjIyM5IE4gLp162JkZMSpU6dKvZzk5GRUVFQwNjZWmL527VrMzc3x9fXl888/JzU19bXrKIJxwn+Cs7MzCxYseKvLU1FRYceOHWX6nJkzZ1K1atXXmufYsWOoqKiU2J69vG3bto2ffvqJunXrvtH8AwcOpHPnzvL/mzRpwvjx40ucp7y26ZEjR/Dy8kIqlZZ5WRUhNjYWCwsLHj169K6rIgiCIAiCIAjC/yOp7L19ff/99/J+3V68vv/++zKtbkxMDJaWlkWmW1paEhMTU6plZGVl8eWXX9KnTx8MDQ3l0/v27cv69es5duwY06dPZ+vWrXTp0uW16yiaqQoVqkOHDmRmZnLo0KEi74WGhlK/fn0uXLhA9erV32q9zp07h56e3lv9zPfVvXv3+Oqrr9i/fz8mJiblssxt27ahoaFRLst6lUmTJjFt2jRUVfOfLaxcuZLx48crBDPDwsJo2bIltWvXZv369WhpaXH06FF+/vlnzpw5Q2ZmJs7OzrRp04YJEyZgZ2en8Bmenp5ERkYSGRlZ5L179+4xbdo0QkJCSEhIwNzcnBo1avDzzz/j4eGBpaUl/fv3Z8aMGfz9998V+l3s276bbes3k5iQgKOzE0M+HYFvFT+lZRPi4lm+6C8ibofz+OEj2nftxNCxIxXKREdGsXbZaiLuhBMb85TBY4bTqcfrX2j+H9fj332HOLxtH8mJydg42tF1SF/cfYumwwNcPnWO4/uP8CgyGkluLtaOdrTt/RE+1f3lZfIkEg5u2cOZIydIik/Eys6aTh/3xKeGv9JllheZTMZf69ay/cB+UtPS8PX0ZPLI0bg5ORU7T8T9+yz+Zw23wu/yJDaWCUOH0afzRwpltuzdw5Z9e3ny9CkArk5ODOndhwY1a5X7Ouzdvott6zeTEB+Po7MzQ8eOpHIJ+9OyP5YQfvsujx8+okO3zgwbO0qhzP3IKNYuW0X47bvExjxl6Kcj38pxcerAUY7tDCI1MQkrB1s6DuqFq4+H0rKRYXfZu2YLzx7FkJOTg4m5GXVbBRDQoZW8zLXTFziybR9xT2LJy8vD3MaKxh1aUaNJvQpdD5lMxtKd29kecpTU9HR8Xd2Y1P9j3Ozsi51ne8hR9p08QcSjhwB4Obswumt3fF3dFMrFJibw26aNhF67SlZuDo5W1kz/ZAjezi4Vsx5B+9keepLUzEx8HZ2Y1LUHbjY2xc5z5OplVgYf5EFcHBJpHg7mFvRr0oy2tWrLy/x1YB9LgxSz1E0NDAj65rtyX4ejew4StHUPyQlJ2DrZ03PYADwqeykte/HkWY7tDebBvftIciXYOtnToW9XKteoIi9zMjiElfMXF5l30Y5VaGhqlnv9X0cVG3f6VGuFl6Uj5nrGfLnvT45HXnmndXpZbQcfGrr4o6+lS2xaIvtvhXI/sfgfi2oqqjR1r0EVW3f0tXRJyUonJOISFx/dBsDHypkA12qY6hqipqJKfEYyJ6OuceXx3QpdjyO7g9i/ZSdJCUnYOdnTZ8QgPCp7Ky17/sQZju4NIvpeFJJcCXaO9nTq1wO/mlXlZUL2H+LkoRAe3X8AgLO7K10H9cbVs1KFrUPQzr3s2riNpPhE7J0dGTh6KN7+vkrLJsYnsPrPZdy7E0HMo8e0+agDA8cMLVIuPS2N9cvWcPZ4KOmpaVjaWNF/xGCq161ZYesRGnSM4zsPkpqUjKW9Le0H9cDFW/n3FhUWzoG124h9FENudg4mFqbUbhlAw/YtFMplpmdwcP0Obpy5RGZ6BiaW5rQd0A2v6sqvqWUVtGMvOzduIyk+AXtnRwaNGYq3f2WlZRPjE1i1aBn37oYT8/Axbbp0YNCYYQpljh44xKIfFxSZd23QNjTf8Tnq/92UKVOYMGGCwjQtLS2lZWfOnMmsWbNKXN65c+eA/OSawmQymdLpheXm5tKrVy+kUimLFi1SeG/o0ILjvHLlylSqVImaNWty8eLF14priGCcUKEGDx5Mly5duH//Pk6FfrwtX76cqlWrvvVAHICFhcVb/8z3laurKzdv3ixV2dzc3FIF2UxNTctarVI5deoUd+/epXv37sWWOXfuHG3atKFTp0789ddfqKmpsWTJEkaNGsXHH3/M1q1bcXZ2Jjo6mtWrVzN37lzmzZsnn//EiRNkZWXRvXt3Vq5cybRp0+Tv5eTk0LJlS7y8vNi2bRs2NjY8fPiQffv2kZycLC83aNAgateuzc8//1xuAc/Cjh8+xt+/LWbEhDF4V/blwK69zJr0FX+sXoqFVdGnQrm5uRgZGdO9fy92bt6udJnZWdlY29rQoGkAy357/U5J38SHsB4Xjp9m699r6TniY1y9K3HiwFEWzfqFr/74HlML8yLlw2/cxqtqZToO6I6Oni6nDx1nybfz+fznGTi4OQOw+5+tnDt2ij5jPsHK3oawi9dY+v2vTPhxurxMRVi1ZTPrtm9jxmcTcbSzY9nG9Yz+aipblyxFT1dX6TxZ2VnYW1vTomFD5i39S2kZS3NzxgwchIOtLQB7Dh1i4uxvWLvw9xIDfa/r38PHWLrwT0ZO+BQfP1/279rLzC+msmjNMiyL2Z8MjY3oMaAPOzdtVbrM7KxsrG1saNAkgL9/Kxp4qAiXT55l14oNfDS0L85e7pw++C/L5vzK5wu+wcTCrEh5TS0tGrRpho2TPZraWkSG3WXrkjVoamlRt1VjAHT19WjWtR2WdtaoqasTdv4qm/5Ygb6RAZ7VlP/YKQ+r9+1lXdB+vh48DEdra5bv3smYX35ky3c/oaejo3SeC7fCaFW3Hv7uldDS0GD1vr2M+eUnNs75HkuT/OtNSno6Q+bMpoa3N79O+BwTQ0MexsZiUMx+Wub1OHKIdceO8nWfvjhaWLI8OIgxi39ny5Tp6GlrK53HSFePQS0DcbayQkNNjeM3bvDNhrWYGBhQz6sgYOFqbcMfI8fI/1dTffWPhtd1LiSUjX+tpu+oT3D38SRk/yEWfv0Dsxb/gpll0fPUneth+FTz46OBvdDV0+VkcAi/z/qZqfNn4+hWEOzU0dVh9l/zFOZ914E4AB0NLcLjH7Lv1im+azPiXVdHQWVrV9p412PPzRNEJz6lpoM3/Wu04bcTm0jOSlc6T8+qLdDX0mH79X9JyEhGT1MHVZWCBk8ZudmERFwiLj0JiTQPT0snPqrcmPScTMLjHlbIepwJOcm6JSvoP3oolXw9ObYvmHlfzWHOX/Mxsyx6333n+k18q1eh68A+6OrrceLgUX6d+QPTF3yPk3v+PnXr6g3qNmmIu48HGpqa7Nu8k1+mfsucJfMwMS967iurU0ePs/KPvxkybgSelX04tPsA3305k/kr/sC8hGtGl3492Ltlp9JlSnJz+faL6RgaGzNh5peYmZsT/+wZ2hV0bgK4evIce1dsotPQPjh5unEm+F9WzvmNz+bPxNii6D26prYmdVs3yb9maGkSdSuc7X+tRVNLk9otA56vh4Rlsxegb2hAn4nDMTIzITkuES0d5QGTsjp55F9W/LGUoeNH4lnZh+Dd+5kzeSbzVy4q9n7Q0NiQrn17sKeYbQGgo6fLr6sV7wVFIO7d09LSKjb4VtiYMWNeOXKps7MzV69e5enzh74ve/bsGVZWViXOn5ubS48ePYiMjOTIkSMKWXHKVK9eHQ0NDe7evftasQ3RTFWoUO3bt8fS0pKVK1cqTM/IyGDjxo0MHjwYyA+qBAQEoKOjg4ODA2PHjiU9XfkNCEB0dDSdOplORM8AAQAASURBVHVCX18fQ0NDevToUeRg27VrFzVr1kRbWxtzc3OF1NHCTSTv3r1LQEAA2tra+Pj4FOm4EWDy5Ml4eHigq6uLq6sr06dPJzc3V6HMDz/8gJWVFQYGBgwePJisrKxXfkf79u3Dw8MDHR0dmjZtSlRUVJEyr/v9vGgeu2TJEhwcHNDV1aV79+5Fmr6uWLECb29vtLW18fLyUoj6R0VFoaKiwqZNm2jSpAna2tr8888/5OXlMWHCBIyNjTEzM2PSpEnICo2CU7iZamxsLB06dEBHRwcXFxfWrl1bpM7z5s2TDyPt4ODAqFGjSEtLK/G727BhA61atUK7mB8+R44coVmzZgwaNIhly5ahpqbGw4cPGTt2LGPHjmX58uU0adIEZ2dnAgIC+Pvvv/n6668VlrFs2TL69OlD//79Wb58ucK63rx5k3v37rFo0SLq1q2Lk5MTDRo0YM6cOdSqVZDh4+fnh7W1Ndu3Kw8WlYedm7bRol0grdq3wcHZkaFjR2JuYcG+HXuUlreysWbouJE0a92y2CzRSt6eDBo1lIDmTdDQfDuZjh/CehzZeYB6LRpTv1UTrB3s6Da0Hybmphzfd0Rp+W5D+9GyazucKrliaWtNxwHdsbCx5vq5y/IyZ4+dpFX3DvjWrIK5tSWN2jbHu5ofR3YcqLD1kMlkrN+5g0E9e9GsQQPcnZ2ZNWEiWdnZHAg5Vux8vh6ejBs8hMDGTdAsJngfUKcuDWvVxsnOHic7e0Z/PBBdbW2u3bpVruuwY+NWWrZrTWCHtjg4OzFs7CjMLS3Yt3230vJWNtYMHzea5q1bolvM/uTh7ckno4fRuEXTt3Zc/Ls7mFrNGlKnRQBW9rZ0+qQXxmYmhAYdU1reztWRao3qYO1oh6mlOTUa18Ozqi+RYQVZMW6VvfCrUx0re9v8fap9C2yc7Im8FV5h6yGTyVgffIBB7TvRrGYt3O0dmDlkOFnZOQSdDi12vm+Hj6J7sxZ4OjrhbGPLtEGDkcmknHvpQdKqfXuwMjVlxuBh+Lq6YWtuQW0fX+wtS77hfuP1CDnGoJataOZfFXcbW2b26UdWTi5BF88XO18N90o09a+Ci5U19uYW9G7cBHcbWy7fi1Aop6aqirmhofxlom9Q7usQvH0vDVs1pVHrZtg42tFr+MeYWJgRsrfo/Q9Ar+Ef07p7R1w83LCys6HLwF5Y2lpz5cxFxYIqKhiZGiu83geno2+w9MwuQu5dftdVKaK+sz8XH97mwsPbPEtPYv+tUFKy0qjt6KO0vLu5Pc6mNqy5cIB78Y9IykzjUfIzHiQV3AdHJTwhLDaKZ+lJJGamcvr+dZ6mJuBkXLbOxktycNseAgKb0bhNc2wd87PiTC3MObLnoNLyfUYMom33Trh6umNtZ0O3QX2wsrXh8pmCY2j45HE06xCIo5sLNg52DBo3HJlMxs3L1ytkHfZs3kGzNi1p3i4QeycHBo4ZirmlOQd3Ke9T2dLaikFjhtG4VTN09ZQH147sP0RaShpfzJ6GV2UfLKwt8fLzxdmt/DN2Xzi+5xA1mzWgVvOGWNrb0GFQT4zMTTh9MERpeVsXR6o2rI2Vgy0mluZUC6iLRxUfIsMKrgcXjp4kMy2d/pNG4ezljomFGc7e7tg4O1TIOuzZvINmbQu2xaAxw55vi31Ky1taW/HJp8NpHNi82G0BoIIKJqYmCq//GzLp+/t6Debm5nh5eZX40tbWpl69eiQnJ3P27Fn5vGfOnCE5OZn69esXu/wXgbi7d+9y6NAhzMxeHfi/ceMGubm52JSQHa+MCMYJFUpdXZ0BAwawcuVKhSDG5s2bycnJoW/fvly7do3AwEC6dOnC1atX2bhxIydOnGDMmDFKlymTyejcuTMJCQmEhIQQHBxMREQEPXv2lJfZu3cvXbp0oV27dly6dInDhw9Ts6byVHCpVEqXLl1QU1Pj9OnTLF68mMmTJxcpZ2BgwMqVK7l58ya//vorS5cuZf78+fL3N23axIwZM5gzZw7nz5/HxsamSEprYQ8ePKBLly60bduWy5cvM2TIEL788kuFMq/7/bwQHh7Opk2b2L17t3wo59GjR8vfX7p0KdOmTWPOnDmEhYXx3XffMX36dFatWqWwnMmTJzN27FjCwsIIDAxk7ty5LF++nGXLlnHixAkSEhJeGWQaOHAgUVFRHDlyhC1btrBo0SJiY2MVyqiqqrJw4UKuX7/OqlWrOHLkCJMmTSpxuf/++2+x23X79u20a9eOadOm8fPPP8unv9j3ilv2y51zpqamsnnzZvr160fLli1JT0/n2LFj8vctLCxQVVVly5Yt5OXllVjX2rVrc/z48RLLvKnc3FzC79ylWq0aCtOr1arBreuly3p8H3wI6yHJlfAgPArvQplF3tX8iLxVuuZBUqmU7MxMdPULgkESJVmpGpqaRITdKXuli/EoJob4xETqvvSET1NDk+qV/bgaVn7bIy8vj6CQY2RmZeHvrbyJ3JvI35/uUK22sv3pRrl9TkWT5Ep4FHEfj6qKzaQ8qvhy/3ZEMXMpenQvmqjbEbj6Km/WKpPJuHs1jNjHMbj6VFzzr0fPnhGfnEzdygXHh6aGBtU9vbgaXvrmc1nZ2Ujy8jB8KWB6/PJFvF1c+PKPhbQaO4q+M75ie8jRcq3/C4/i44lPTaGuZ8H+qqmuQXV3d65GRpZqGTKZjLN3bnP/WSzV3dwV3nsQ94w2M6bRafYMpq5ewcO4uHKtvyRXwv3wSIWm8AC+1fxLfU7JP09loWegrzA9OzOLyR9/yhf9R7Nwxk9ER5Tu+/h/paaiiq2heZFstfC4hzgYKw8ke1k68Tj5GQ1dqvBFk76Ma9SDQM86qKuqFfs5rqa2mOsZEZX4pFzr/4IkN5eou/fwrV5FYbpvdX8iwm6XahlSqZSszMwi+9TLsrNzyJNISizzpiS5udy7E06VmtUUpvvXrMbtG2FvvNwLp85QydeLZb8uZmjX/kz8ZDTb1m5C+or7xjclyZXw+F40laooBnMr+fsQXcprxuPIaO7fvqdwzbh5/iqOHq7s/Hsdc4Z8zoIJszi6bR/SvPLvszm3pG1xvWwP7bIyMxnZaxDDu3/M91NmEXm3dN+J8N/j7e1N69atGTp0KKdPn+b06dMMHTqU9u3bK4yk6uXlJf8tK5FI6NatG+fPn2ft2rXk5eURExNDTEx+tx8AERERfPPNN5w/f56oqCj27dtH9+7dqVatGg0aNHitOopmqkKF++STT/j55585duwYTZs2BfKbqHbp0gUTExPGjRtHnz595JlUlSpVYuHChTRu3Jg///yzSNbToUOHuHr1KpGRkTg45D+NWbNmDb6+vpw7d45atWoxZ84cevXqpdCevEoVxRuEl5cXFhZGVFQU9vb5fdZ89913tGnTRqHcV199Jf/b2dmZiRMnsnHjRnlQZ8GCBXzyyScMGTIEgG+//ZZDhw6VmB33559/4urqyvz581FRUcHT05Nr167x448/ysv8/PPPr/X9vJCVlcWqVavk6/Tbb7/Rrl075s6di7W1NbNnz2bu3LnyjEEXFxdu3rzJkiVL+Pjjj+XLGT9+vEJW4YIFC5gyZQpdu3YFYPHixQQFBRW7jnfu3GH//v0Kw0ovW7YMb2/FPkRezqRzcXFh9uzZjBw5ssSAZlRUFLbPm7m9LC0tje7duzN16tQiwc27d+9iaGhYqicXGzZsoFKlSvj65v8I7tWrF8uWLZPvx3Z2dixcuJBJkyYxa9YsatasSdOmTenbty+urq4Ky7Kzs+PSpUuv/Mw3kZKcgjRPirGJscJ0I1NjkhISK+QzK8KHsB5pKalIpVIMjI0UphsYGZKSlFzMXIqO7NhPdnY21RsWjP7kXc2PIzsP4F7ZE3NrS25fucnVMxeRVeDAJfGJ+d+5mbHiU2MzY2OePItVNstrCY+KZNDECeTk5KCjo8PPX03H1bH8mqimJCcjzZMWaRpuYmLCxf/I/gSQnpqWv08ZKTaR0Dc2JPUV+9S3Q794vk/m0bJHR+q0CFB4PzM9g2+HfYEkV4KqqgofDe2HRxXlfSOVh/jkJABMDRWPD1MjQ2Li4ku9nN+3bMTCxITavgV1fRT7jK1HjtAnsDWD2nfkxr17zF27Bk11Ddo1aFgu9X8hPjUlv94GitvEVN+AmMSEEudNy8yk7cyvyJFIUFNVZXK3HtR5Kajn6+TErD79cbSwJD41heXBQQxeOI+Nk6dhXE593aalpCCVSjEsfJ4yMSI5sXTnqeBte8nOyqZmo4KBn6wdbBk0YQR2zo5kZmRyeOd+fvx8Jl///gNWdq+XLfD/QldTGzVVVdJyMhWmp+VkYqClPLvHVMcQRxNrJNI81l06iK6GNh18G6Kjoc2O6wWZT1rqGnzRpB/qqmpIZVL23DxJRHzFDCaV+vzaZ1j4+m1izPWEpFItI2jrbrKzsqkdUHzGypblazExM8W3Wvn3UZaSnH9cGClZh6RSroMyT5/E8OzSVRq2aMKU72fw5OFjli1cjDQvj24Depet0kpkPL9m6BsXvmYYkJqUUuK83w+fTHpKGtK8PJr36ECt5gXnzsSnz7h3PZ6qDeswcMqnxMXEsvPv9UjzpDTv3r5c1yH1+bYwLnT9NjYxISnxYjFzvZqdoz2jv/wMRxcnMjMy2Lt1F199Oolf/l6Ijb3dqxcg/OesXbuWsWPH0qpVfp+5HTt25Pfff1coc/v2bXn3Qg8fPmTXrl0ARQZhPHr0KE2aNEFTU5PDhw/z66+/kpaWhoODA+3atWPGjBmoqRX/UEQZEYwTKpyXlxf169dn+fLlNG3alIiICI4fP87Bg/lp6xcuXCA8PFyh6aJMJkMqlRIZGVkkaBMWFoaDg4M8EAfg4+ODsbExYWFh1KpVi8uXLyt0rFiSsLAwHB0d5UErgHr1inZgvWXLFhYsWEB4eDhpaWlIJBKF9uNhYWGMGKHYD0m9evU4erT4J/NhYWHUrVtXoRPJwp/9ut/PC8rWSSqVcvv2bdTU1Hjw4AGDBw9W+J4kEglGRoo35y9nniUnJ/PkyROFOqqrq1OzZs0iTVVfXscXZV7w8vIqMjz00aNH+e6777h58yYpKSlIJBKysrJIT08vtvlhZmam0mCkjo4ODRs2ZOnSpfTu3VvhOyptp52QHzTs16+f/P9+/foREBBAUlKSvP6jR49mwIABHD16lDNnzrB582a+++47du3aRcuWLRXqlJGRUexnZWdnFxnCu7R9J7xQZL1kMij/roYq3AexHoVXgfymEa9yPiSUfeu3M2zaeAxeupHuNrQf639fzuxRk1FBBXMbS+q2aMTpQ+WXbbn/6BG++/03+f8LZuY/zCi8PUq7Lq/iZGfPut/+IDU9jSMnTzJz3lz++vGncg3IAVCk/qU/B7xXlB0Xr9gOo76dRHZWNtF37rHvn62YW1tSrVFBkFdLR5vPfvma7Kxswq+FsXvlRsyszHErphP/17U/9CTfr1oh/3/++InPV6XQNnn1qsit3reHg2dOs3jyVLQ0Cvr5kcqkeDu7MLpbDwA8nZy59/ghW48eLnMwbv+Fc3y/aUPBegzNv9YXrrIMWdHtVIiulhZrP/+SjJxszt25zfwd27EzM6eGe35GYgPvggCjO7b4O7vQec4s9p47Q98mzcq0HoUVqWopr49njp1k19qtjP56okJAz82rEm5eBZmV7j4ezB47lSO7g+g9YmA51fpDpXgPpYIKxdxWybfR5qtHyJbkd5dy4FYoPau2ZM/NE0ik+RlXOZJcFp3aiqaaBq5mtrT2qktCZgpRCRWTHZdfb0Uy2auPCYDTR0+w45/NjJ0xqUiQ+IV9m3dy5tgJJv80q0L7IVR2D1KWS4ZMJsPQxIjhE0ajqqaGq4c7ifEJ7Nq4rUKCccVX5NWbYvg3X5CTlU303XscWLsdM2sLqjbMH2BGKpOhZ2jAR8P7oaqmip2bEykJSRzfdbDcg3FyRe6lZGW6//Dw8cLDp+D65lnZh0nDxrF/2x4+GTv8jZf7n1HcSeUDZmpqyj///FNimZd/wzo7Oxf7m/YFBwcHQkKUN/l+XSIYJ7wVgwcPZsyYMfzxxx+sWLECJycnmjdvDuSnpQ8fPpyxY8cWmc/R0bHItOKCKS9P1ymmE2hllB1whZd/+vRpeaZdYGAgRkZGbNiwgblz55b6c0r72YW97vdTnBfrpKKigvR5Ns3SpUvl2WovFI7ol3XU2RfrWNIN/v3792nbti0jRoxg9uzZmJqacuLECQYPHlykX76XmZubk5hYNMNFTU2NHTt20LVrV5o2bcqRI0fw8clP1/fw8JAHFUvKjrt58yZnzpzh3LlzCs2W8/LyWL9+PSNHFozYaWBgQMeOHenYsSPffvstgYGBfPvttwrBuISEhBIHDvn++++LjAw0Y8YMeo8cWOw8LxgaGaKqpkpioWyf5MTkIk8V32cfwnroGxqgqqpKaqHskrTkFIXgmjIXjp9m7W/LGDx5DF5VFZu5GhgZMmzaeHJzckhPTcPI1ISdqzZhZlV+g9EE1KlL5ZcydHKeH3txiQmYvzQoS0JSEqaFMgfehIaGhnwAB59KHty8c4f1O3cy7dOi57o3YWhk9Hx/UsxUSkpMKpJ9+T7TM9DP36eSCu9Tqa/cp0yf7x82TvakJqcQvGmXQjBOVVUVc5v8pnB2Lo7EPnzCkW37yy0YF1C1OpVdC5pg5jwPHMQnJ2H+0gOZxJQUzAyV/wB/2Zr9e1mxZzd/fDGZSg6K1z9zY2NcbRUzG5xtbDlyvvg+3EorwNePyp87y//PkUiA/Aw585ceYCWmpWH2iv7dVFVVcXh+LfC0syfq6VNWHjooD8YVpqOlhbuNLQ+ePSvjWhTQNzREVVW1SBZcalIKhq/Yp86FhLL6178YPmUcPq/ITlJVVcWlkiuxj4ofFfT/XUZOFnlSKfqaillweprapOUof4CXmp1BSla6PBAH8CwtCVUVFQy19UjIyM9+koH875jUeCz0TAhwrVohwTiD59e+5MQkhekpSckYmZR8bJ8JOcmKBX8yauoEfAs1nX5h/5Zd7NmwjS++/xoH13J+YPOcoVH+cVE4Ez85KblIttzrMDY1QV1dHdWX7q/tHO1JSkhEkpuLeikGRnsdus+vGWmFsuDSklPRN3rVNSN/8BZrJzvSklM4vGmPPBhnaGyEqroaqmoFvVxZ2tuQmpSCJFeCukb5hRUMitsWiUll2haFqaqq4u5ViSePHpfbMgXhdYg+44S3okePHqipqbFu3TpWrVrFoEGD5MGZ6tWrc+PGDdzd3Yu8lI1u4+PjQ3R0NA8ePJBPu3nzJsnJyfIMKH9/fw4fPlyqur1Y3uPHBSfi0FDFjqRPnjyJk5MT06ZNo2bNmlSqVIn79+8rlPH29ub06dMK0wr/r+yzXzXP634/LyhbJ1VVVTw8PLCyssLOzo579+4VWaaLS/EdyhoZGWFjY6NQR4lEwoULF4qdx9vbG4lEwvmXfhDdvn1bYTCJ8+fPI5FImDt3LnXr1sXDw0Oh7sWpVq1asSPBamlpsW3bNmrXrk3Tpk25fj2/s99u3bqhqanJTz/9pHS+F/VatmwZAQEBXLlyhcuXL8tfkyZNYtmyZcXWSUVFBS8vryIDbFy/fp1q1aoVM1f+kN7JyckKrylTppS0+nIaGhq4e1Ti8nnF1P3L5y/iVVl5B9Dvow9hPdQ11HFwd+ZWoc6lb12+jotX8X1xnQ8J5Z9flzLw85FUrlW12HIampoYm5kizcvj8qlz+Ncpv9Go9XR1cbC1lb9cHR0xMzHhzEvNq3Nzc7l4/Rr+3uW/PWTISgy+v678/cmDy+cK7U/nLuJVueKaYpY3dQ117NycuHtF8Vx35+pNnDzdSr0cmUyGJFfyijIgkZTfNtDT0cHBykr+crW1w8zIiDM3Co6PXImEi7dv4V9MMOqFNfv3smz3ThZO/AIfF9ci71dx9+B+jGKQIfppDNal6Hj5leuhrY2DhYX85WptjZmBIWduF/SFlSuRcDE8HP8SrqHKyJDJg3vK5EhyiXr6FLNXjOT2OtQ11HFydyHs0lWF6TcvXcPNW3m/gpCfEbdi/p8M+WIM/rVffe6RyWRE37v/3gzi8D7Kk0l5nBKHm7liINnN3F5hQIaXRSfGYKCth6ZaQfDDTM8IqUxKSjGjr0J+VlRJ/cqVhbqGBs6VXLlRZJ+6ipu3ZzFz5WfELZv7B8Mnj6NKnRpKy+zfvJPd67Yw8dtpuHiU/pz3utQ1NHD1cOfqBcUuRa5euIynr/JWKKXhWdmHmEdP5A/CAZ48fIyJmWm5B+Ig//i2dXXk7lXFfu7Cr4bh+FrXjPx7/BecvNyIj3mmsB5xj59iYGJUroE4yL9+u3q4c/X8ZYXpVy9cxrOcHhZB/jkqKjzy/2sQB+G9IjLjhLdCX1+fnj17MnXqVJKTkxk4cKD8vcmTJ1O3bl1Gjx7N0KFD0dPTIywsjODgYH777bciy2rRogX+/v707duXBQsWIJFIGDVqFI0bN5Y3hZwxYwbNmzfHzc2NXr16IZFI2L9/v9JO+1u0aIGnpycDBgxg7ty5pKSkMG3aNIUy7u7uREdHs2HDBmrVqsXevXuLDFowbtw4Pv74Y2rWrEnDhg1Zu3YtN27cKNJ32MtGjBjB3LlzmTBhAsOHD+fChQtFRp593e/nBW1tbT7++GN++eUXUlJSGDt2LD169MDaOn8krZkzZzJ27FgMDQ1p06YN2dnZnD9/nsTERCZMmFDscseNG8cPP/xApUqV8Pb2Zt68eUVGaX2Zp6envPPMv/76C3V1dcaPH6+Qvejm5oZEIuG3336jQ4cOnDx5ksWLFxe7zBcCAwOLDDjxMk1NTbZu3UqPHj1o1qwZhw8fxs/Pj/nz5zNmzBhSUlIYMGAAzs7OPHz4kNWrV6Ovr88PP/zAmjVr+Oabb6hcWTFDaciQIfz0009cuXIFmUzGjBkz6N+/Pz4+PmhqahISEsLy5csVsukyMjK4cOEC3333XbF1fZ0hvZXp1KML8+f8jLunB16+3gTt3sez2FjadGoHwKoly0mIi+OzaQXHwL3nndZmZWaSkpTMvbsRqGuo4+ic/9Q5NzeXB1HRQH7Hxglx8dy7G4G2jja2FdS3xoewHs06tWb1/CU4urvg4uXOyaBjJDyLp1Gb/CZmO1dtIjkhkQGf5TeJOB8SyuoFf9FtaF9cPN1IeZ5ZoKGpic7zEcGibkeQFJ+AvasTSfGJ7Fu/HZlMRosubcu9/i+oqKjQu1NnVmzaiKOtLQ62dqzYtBFtLS1aN24iL/c/9u47vKnybeD4N9170Ukp3QMoUFbZZW9QhmxBEXEAIqKCigMHbsSfiqLIlr2RvfceZbVAgRZKobtN90zePwopoSmrC3nvz3XlutqT55zcJznJSe5zP8/z6bQfcaxWjbEvjwDuDLx8o+j5zi8oICEpiUtXr2JmaqqphJsxfx4tGjXGycGBrOwstu7dy8lz5/jliy/LdR96D+zHT199h0+AH7Xq1GLL+qLjqXvvoi4182bOJikxkXc/Ln6/Xosomj0uJzsbZaqSaxFXMDAwpKbnvcdT0cWYgvx8khISuRZxBRNT0wp7X4T06sTSX2ZTw9sDd38vjm7fR2piMs07twVg0z+rUCanMnhc0QzlBzfvwtbeDoc743RFXYxg3/pttOxW3M1x1+pN1PB2p5qTI4UFBYSfOsfJvYfp+9rQCtkHuHNMderK3A3/4ubkjJuTE/M2/IuJsRFdmhUPf/DZrJk42Ngytn/RxEwLNm1g5ppVfPX6aFzs7Um8M/acmbEJZneGKhjcuSsjv/6CuRvW07FJUy5cu8qaPbv56OVXKmY/2rRl7o5tmgTdvB3bMDEypEvD4iEZPlu0AAdrG8b2fA6AuTu2UdutJq7V7CkoLOBgeBgbjx/jg/7FE1D9vG4NresE4mxrS0pGBrO3bSUzJ4eeTZqWiKMsOvXpwexpM3D39cI7wI99W3aSnJBIm+4dAVg9dwkpSSmMfG80cCcRN+0PBr4+HK8AX5R3xtAyNDbSzFy4ftFKvAJ8caruTHZWNrvWb+HmtesMHT2iXGN/EqaGxtSwLq4krm5lj699DdJyMonLqNoxJA9FnaVfvXbcUiYSnRpHY7daWJtYcOxGUTKlk18TrIzNWXVuDwBnb1+hrXdD+tRty66IE5gZmdDFvymnbl7SdFEN8QoiRplAclYa+np6+DnUJKi6H/+GVcxEUgCd+/Zk1g+/4uHrjU8tP/Zu3kFSfCLtehSN1bRiziJSk5IZ9f5bQFEi7u8ff2PIGyPwDvBFeacKquiYKuqVsWnFOtYsWMrrk97G3slB08bY1ASTx+gF86h69u/Nr9/8hJe/L361A9ixYQuJcQl06lU0jvTiWfNJTkxi7IfF35OjrlwDICc7hzSlkqgr1zAwMKCGR1H1bufnurFlzQbm/TaLrn16EhtzizWLV9CtTwV17QRa9+zI8l/nUsPbnZp+XhzbsZ/UxGSadi4aN3TLojWkJacy4K2i9+bhLbuxsbfDwbXoN0LUxSvsX7+NFt3aabbZtHMbDm3ezYa5y2jerT1Jt+PZs2YzLbqVb/f5u+6+Ft7+PvjVqaV5LTr3Kvres2jWPJITknjro3c160Te+1qkKom881q43XktVsxfjG8tf1xquJKVlcXmVeuJunKNkW+/UTKAZ5Hq/1831aedJONEpRk5ciSzZ8+mc+fOWt0r69Wrx969e5k8eTKtW7dGrVbj7e2tNTvqvRQKBWvXruWtt94iJCQEPT09unbtqpWYatu2LStWrODLL7/k22+/xcrKipCQEJ3b09PTY82aNYwcOZLg4GA8PDz45Zdf6Nq1q6bN888/zzvvvMPYsWPJzc2lR48efPLJJ0yZMkXTZuDAgVy9epVJkyaRk5NDv379ePPNNx84uUHNmjVZtWoV77zzDr///jvBwcF8/fXXvPJK8Y+Hx31+7vLx8dHM1JqcnEz37t21JkN49dVXMTMz44cffmDixImYm5tTt25drYkUdHn33Xe5ffs2L7/8Mnp6erzyyiv06dNHM/ClLnPnzuXVV1+lTZs2ODk58dVXX/HJJ59o7g8KCuKnn37iu+++48MPPyQkJIRvvvmG4cOHPzCWF198kUmTJnHp0iWtWXHuZWhoyPLlyxk8eLAmITd69Gj8/Pz48ccf6dOnD9nZ2Xh4eNCzZ08mTJjA+vXrSUpKok+fPiW25+vrS926dZk9ezaffvopHh4efP7550RFRaFQKDT/v/POO5p11q1bR82aNWnduvUD96csWndoS3paOsvmLyI5KRl3T3c+/e4rHJ2LuqClJCWTEKfdzWn8yNGav69cimDvjt04Ojvx9/IFACQnJmm1WbN0JWuWriQwqB5f//IDFeFZ2I9GrZuRmZ7B5mXrSEtOxcW9BqM/fRc7x6LuH2kpqSQnFA9Wf2DrblSFhSyfuYDlMxdoljdt34ph418DihJAGxatIjE2AWMTY+o0rs/wd17XmnG1Irz0Qn9y8/L49vcZpGdkEOjvz29fTsXcrLhLVWxCPHr3dENPSE5m6Lji2Z4Xrl7FwtWraFi3Ln99W1SRmpSSwqfTfiAxORkLc3N8PTz55Ysvadag/Cr9AEI6tCU9LY2l8/65czx5MOX7qfccT0kkxGlPRjHuleIu6FcuRbB3+y4cnZ2Ys6JozJHkxCStNquXrmD10hUEBtXj21/LNnRBaYJaBpOVnsmOFf+SlqLEuWZ1Rn70NraORVVfaSlKUu+ZAEGtVrNp0WqS4xPR19enmpMD3Yb2pVnnNpo2eTm5rPlrEanJKRgaGeLo6sLgt0cS1DK4QvbhruHde5Cbn8d3C+eRnplFHW8vfn13Iub3/LCOTUrSGtpg5a6d5BcUMGnGL1rbGvV8H17rXTTBUB0vL34Y+zYzVi7n73Vrqe7gwIQhL9Kt+ePNbPbI+9G+I7n5+Xy3cjnp2VnUcffg1zfGYH7POKaxKSla+5GTl8d3K5cTr0zF2NAQd0cnvnhxOJ0bFFcExStT+XjhPFIzM7G1sCDQ3YM54yfgck9X8fLQpE1zMtLT2bB4NcrkVKp7uDHu80maru+pKakkJxTP4rpv804KCwtZ/PtcFv9ePA5g844hvDKh6P2QnZnFwl/+Ji0lFVNzM9y8PXj/+0/x9NeeLbYqBDi481uf4gTKuFb9AdgUfpipu0q/qFcZzsdew8zQhLY+DbE0NiMuPZmFJzejzMkAwMLYDGvT4tlD8woLmHdiIz1qteSNFn3JzsvhfOw1dkQc17Qx1DegV+1WWJmYk19YQGJmKivP7uJ87LUK24+mbVqSmZbB+kUrUaak4OruxjtffoT9nWNKmZxCUnzxMbVn03YKCwtZOONvFs74W7O8Zcc2vPpe0Tlk179bKcgvYMZX2p+tzw/tT+9hA8p9H1q0a016WhqrFiwlJTkZNw93PvzmMxycHQFISU4mMV77O8jE197W/H3t8hUO7NyLg5MjM5YU9aKwd3Tg4++/YP7vf/P+q29hZ1+Nbn170XtQv3KP/656LZuQmZHJzpUbSU9R4uRWnZc/GoutQ9E5Iz1FSWpi8RAOarWarYvXkhyfiJ6eHtWcHeg6tC/BnYq/t9rY2/HKx2+zcf4KfnnvC6zsbGjRvT1tnu9a4vHLQ8v2IWSkpbPyntfio2+nFL8WSSklX4tRxcNc3Pta/L50DgCZGZn8+dNvpCanYGZujqePF5//71t8H1C9KURFUqgfZdAqIcR/ypQpU1i7di2hoaFVHUqFmzhxIkqlkj///LOqQylVcHAw48ePZ8iQIY+97qW4qPIPqJL5O3n85/fD38mD7ZeOVnUYZdbJvynpVyrux1hlsPTxIiL+RlWHUWa+jjVZf77iqlQqy3OBrUk7dKyqwygTqxbBpG3aVtVhlJlV987su/rkMw0+DUK8G9Jyxn+/SuXgmJl8suWvqg6jzL7s+hqHIs8+vOFTrIVnPc7EXK7qMMqsvqsfq8/uqeowyqRvvbacvRVR1WGUWb3qDx5W4WmVtu9QVYdQKqsHzKL8LJMx44QQ/2mTJ0/G3d2dwsLCqg5Fp/j4eF544QUGD67EGbOEEEIIIYQQ4i616um9/T8l3VSFEP9p1tbWfPTRR1UdRqkcHR11jlUohBBCCCGEEOL/J6mME+IZNGXKlP8XXVSFEEIIIYQQQoj/GqmME0IIIYQQQgghhHhWyVQBTx2pjBNCCCGEEEIIIYQQopJIMk4IIYQQQgghhBBCiEoi3VSFEEIIIYQQQgghnlUq6ab6tJHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWSWzqT51pDJOCCGEEEIIIYQQQohKIsk4IYQQQgghhBBCCCEqiXRTFUIIIYQQQgghhHhWqVVVHYG4j1TGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkIIIYQQQgghhBDPKpXMpvq0kco4IYQQQgghhBBCCCEqiSTjhBBCCCGEEEIIIYSoJNJNVQghhBBCCCGEEOJZpZZuqk8bqYwTQgghhBBCCCGEEKKSKNRqSZEKIYQQQgghhBBCPIvStu6s6hBKZdWlQ1WHUCWkm6oQQjzFNoYdrOoQyqxH7ZZExN+o6jDKxNexJq+t/K6qwyizv16YhPL7X6o6jDKxnjiOL7bPqeowyuzTTq8wfMkXVR1GmS0Y/Clpx09WdRhlYtWkEbsjTlR1GGXWzrcxP+9bVtVhlMn4kIF8suWvqg6jzL7s+hotZ7xR1WGU2cExM3lj5fdVHUaZzHxhIh9tmlnVYZTZ193fYMzqH6s6jDKZ0fc93vv316oOo8x+7PVWVYfwZKQG66kj3VSFEEIIIYQQQgghhKgkkowTQgghhBBCCCGEEKKSSDdVIYQQQgghhBBCiGeVSlXVEYj7SGWcEEIIIYQQQgghhBCVRJJxQgghhBBCCCGEEEJUEummKoQQQgghhBBCCPGsktlUnzpSGSeEEEIIIYQQQgghRCWRZJwQQgghhBBCCCGEEJVEuqkKIYQQQgghhBBCPKukm+pTRyrjhBBCCCGEEEIIIYSoJJKME0IIIYQQQgghhBCikkg3VSGEEEIIIYQQQohnlUq6qT5tpDJOCCGEEEIIIYQQQohKIsk4IYQQQgghhBBCCCEqiXRTFUIIIYQQQgghhHhWqVVVHYG4j1TGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkKUo3nz5uHk5ES3bt2qOhQhhBBCCCGEEEJmU30KSTLu/xEPDw/Gjx/P+PHjK217CoWCNWvW0Lt37yd+nClTprB27VpCQ0MfeZ09e/bQrl07UlJSsLGxeeLHfhyrV6/m+++/5+DBg0+0/ssvv0xqaipr164FoG3btgQFBfHzzz+Xuk55vKb3vkZRUVF4enpy+vRpgoKCnnibj6K8jsddu3YxevRowsLC0NN7+op94+PjqVOnDqGhobi6ulboYx3cvIvda7eQlpKKs5srvUcOxqu2n86218Ius2HhSuJv3iYvLw87h2o079yWNs911rQ5vG0vJ/YcIvZGDAA1vN3pPrQf7n5eFbof99u4Zj2rl6wgOSmJmh4ejBr3JoH16+psm5yYxOwZf3LlUgS3bsbQ64XevDZudKXGC9DGqwFd/IOxNrHgVloiy87s5EriTZ1tX27cnRYeJffnljKRKdtnA9DcPZARTXqUaDN69Y8UqArLN/hHYNyyKUb166AwNqHwdizZ2/egSkp+yEpGmLRugaGfNwoTY1TKNHJ276fg2vUKjfXyvlOE7TxGtjIDGxd7GvXrgKOPm862cZdvsOOXJSWW9/z4VaydqwGgKizkwrYjXDt6nqzUdKyc7GjwfFuq167c9wVAB5/GdK/VHGtTS2KU8Sw6tY3LCTdKbd/cPZAetVrgZFmN7Pwczt6+ytLT28nIy660mNVqNbNWr2LN7l2kZ2ZSx9uHiS+PwLtGjVLXWbN7F5v27+fqzWgAAjw9GTNgIHW8fTRtVu7YzqqdO7idkAiAVw1XRvbpS8v6QeW+D3s2bmf76o0ok1OpXtOV/qOG4RsYoLPt6UPH2btpBzevXacgPx+XmjXoOaQfdRrV02qXlZHJuoXLOX3oBFkZmdg7OdBv5FDqNin/+O86v/sYoVsPkKXMwLa6Ay0HdqO6n4fOtjGXIln/49wSywd98Ra2Lg4AhO07waXDoSTfigfAwb06Tft0xMmz9Ne2rILdatPKsx4WxmbEZ6Sw+eJhrqfEltpeX6FHO59G1K/ug4WxGWk5mey9eppTMZcAqO3kQYhXA+zMrNBX6JGUpeRg1DnO3IqosH14HPVdfBjSoDMBjjWxN7fhg01/sD/yTFWHpdHGK4hO95z7VpzZVeq576XG3Wheyrnvi+1zgKLPrJeadC/RZuzqaRV27mtasw6tvepjeeeY2hh2kKgHHVN6erT3aUyQqy+WRmYoczLYc/UUJ29eKtG2nos3gxp0Iiw2kn9Oba2Q+O9q7RVER98mWJuYczstkZVnd3M1KUZn22GNutLMPbDE8ttpiXy1Yx4A9av70sW/KQ7mNujr6ZOQkcLOiBMciw6rsH1o4V6Xtj4NsDQ2Jy49mXUX9hOZfKvU9vp6enTyC6aRqz+Wxuak5mSwM+I4x6PDNW1ae9anuUddbE0tyczL5uztK2wKP1wl36WEkGTcf0CvXr3Izs5mx44dJe47fPgwLVq04OTJkzRs2LBS4zp+/Djm5uaV+phPq2vXrvHxxx+zefNmbG1ty2Wbq1evxtDQsFy29ajc3Ny4ffs29vb2Ff5Y5XX8TJw4kcmTJ2sScfPmzWP8+PGkpqZq2oSHh9OpUyeCg4NZsmQJxsbG7N69mx9++IGjR4+SnZ2Nh4cH3bp1Y8KECSWSZv7+/kRGRhIZGVnivmvXrjF58mT27t1LcnIy9vb2NGrUiB9++AE/Pz8cHR0ZNmwYn332GX///XeZ97c0pw8cY+2cJfR7bRieAT4c2raHv76czqRfvsLWoVqJ9kYmxrTq3p7q7m4YmRhzLSyClTPnY2RiRPPObQG4euESDVs3xSPABwNDQ3av2cyfn09j4i9fYVOtfI7zh9m3cw+zfvmDNye8Re26ddi8fiNT3v+I3xfOxtHJsUT7/Px8rGysGTB8COuWr6qUGO/XuEYAA4M6sPjUNq4kxRDiFcS4Vv2ZsvVvkrPTS7RfFrqD1ef2av7X09Pj044jOBlzUatddn4un2yZpbWsKr48GgU3wrhxA7I2bUeVkoJx82DMB/Ym/e+FkJeveyU9PcwH9EGdlUXWuk2o0jPQs7RAXVr7chJ1MpyTq3bSZGBnHLxciTgQyu7fV9Dz41cxt7Mqdb1en4zC0NRI87+xhZnm7zP/7ify+AWaDumKlVM1bodHsm/WGjpPeBE7N6cK3Z97Na1Zm6ENuzD/xCYiEqNp59OQ99oM4cNNv5OUlVaivZ+9G683682i09s4HXMZO1NLXm7Sg1eCe/HLgeWVFveCDf+yePNmPn39dWo6uzBn3RrGfvs1K3+Yhrmpqc51ToaH0bl5C+r5+WJsaMiCDRsY+923LPv2exzt7ABwtLNj7MBB1HByBmDj/n2899M0/pn6zQMTfY/rxL7DrJi1kMFvjsC7th/7N+/itynf89nv32PnWPLcGXH+IrWCAuk9fACm5uYc3rGX37/8kUnTvqCmtwcABfkF/O+Tb7G0tuK1D8dha29HSkIyJqYm5Rb3/a4cP8fBZZtpPbQnLj41ubD3OBt/+YdBn4/FsppNqesN/nIcRqbGmv9NLIvP47cuReEbXA9nbzf0DQ0I3XqADdMXMPDzsVjYlv5+e1KBzl50q9WcDWEHuJESR2O3Wgxr1I1fDyxHmZOpc52BQR2xMDZlzfl9JGcpMTcyRU9RfCEvKz+XvVdPk5iZSoGqEH9Hd/oEtiEzL7vUpFJlMjU05krSTTZdPMTX3d6o6nC0NKoRQP+gDiw5tZ2rSTdp7RXE2FYv8PnW2aToPPftZM25fZr/9fQUfNxxhCYxeld2fi6fbdH+/lRR5766Lt70qN2C9ef3cz0lluCatXmpSQ9+3rcMZU6GznUGN+iEhZEZq8/uISkrDQsjU/QUihLtbEws6BbQ/IHJpPLS0NWfF+q1Y1noDq4mxdDKsz5jWvbjy+1zdb4WK87sYt35e18LPT5s/xKnYi5rlmXl5bD10hFi05MpVBUS6OzNi426kp6bRXh8VLnvQ/3qvjwX2JrV5/YQlXybZu6BvNq0Fz/sWURqtu7XYlijblgam7H8zC4SM1OxMDbTei0auPrRvVYLlp/ZSVTybRwsbBgY1BGA9RcOlPs+CPEwT18ZiShh5MiR7Nq1i+vXS1YPzJkzh6CgoEpPxAE4ODhgZmb28Ib/D3h5eREWFoa7u/tD2+bnP9qPTzs7OywtLcsa2mPR19fH2dkZA4OKz9OXx/Fz6NAhIiIi6N+/f6ltjh8/TuvWrenSpQsrVqzA2NiYP//8k44dO+Ls7MyqVasICwtj5syZKJVKpk2bprX+gQMHyMnJoX///sybN0/rvry8PDp16kRaWhqrV6/m0qVLLFu2jMDAQJRKpabdiBEjWLRoESkpKWXa3wfZu34rTTu0plmnEJzcqtNn5BBsqtlxcMtune1reLnTsHUznGu6YudoT+O2zfEPCuRaWPHV/xffeY2W3drj6lkTpxouDBj9Mmq1moizFXcV9H5rl62iU4+udOnVHTcPd14bNxp7Rwc2rflXZ3snF2def3sMHbp2wqyKLhZ08mvCgcizHIg6S2x6EsvP7CQlK5023g10ts8uyCMtN1Nz87B1xszIhINR57TaqdVqrXZpubp/bFY048ZB5Bw+TkHEVVSJyWRv2o7CwBCjWv6lrmNUrzYKExOy1mykMOY26rR0CmNuo7pTxVRRLu46jnfzevi0qI+1sz2NX+iIma0ll/effuB6JpZmmFpZaG73Vt1GHrtAnc7Nca3jjaW9DX6tG+BSy5PwXccqdF/u19W/OXuvnWbvtdPcSktk0altJGcpae/bWGd7b/saJGSmsv3yMRIzU7mcGM3uKyfxtHOptJjVajVLtmxhxPPP075JMD5ubkx5/U1y8vLYeuhQqet9NXos/Tt1wt/dA4/qrkx+dRRqlZrjF85r2oQ0bETLoAa4u7jg7uLC6AEDMTMx4fyV8q1o2rF2My07taVVl3a4uLky4LVh2NpXY++mkhdMAQa8NowuL/TCw88bJ1dner80EMfqzpw7dkrT5tD2PWSmZ/Dmx+/gU9ufao4O+NTxp4bXw79TPKkz2w8R0KohtVs3wtbFgVaDumNha8WFvccfuJ6plTlm1paa273vjY6jXiCwXTD2NV2wdXGgzfDnUavVxIRfq5B9aOFRj1M3L3Hy5iUSMlPZfPEwaTkZBNesrbO9j30NPOxcWHhyC9eSYkjNziBGmUB0apymTVTybcLjo0jITCUlO50j188Tl56Mu41zhezD4zpy4wKzjq5n77XQqg6lhI5+jTkYeZaDUWeJTU9mxZldDzz35dx37nO/c+47VIXnvlae9TgZfZETNy+SkJnKxvBDKHMyaOqu+5jytXfD0646809s4mpSDKnZ6dxUxnPjnmMKQIGCAUEd2BFxguSsksmw8tbBtzGHo85xKOoccenJrDq7m5SsdFp7BelsX/RaZGluNW2KXosjUcWfsRGJ0Zy5dYW49GQSM5XsuXqKmLQEvO0rptdHG68gjt0I49iNMOIzUlh/YT+p2Rk0d9fdM8LfoSbe1Vz5++h6IhKjSclOJzo1TqtS1sPWhajk25yOuUxKdjqXE6IJjYmghnXlXUirUmr103v7f0qScf8BPXv2xNHRsUQiICsri2XLljFy5EigKDEREhKCqakpbm5ujBs3jszM0k9YN27c4Pnnn8fCwgIrKysGDBhAXJz2yWP9+vU0btwYExMT7O3t6du3r+Y+Dw8PrS6UERERhISEYGJiQu3atdm+fXuJx5w0aRJ+fn6YmZnh5eXFJ598UiI59e233+Lk5ISlpSUjR44kJyfnoc/Rpk2b8PPzw9TUlHbt2hEVFVWizeM+P1OmTCEoKIg///wTNzc3zMzM6N+/v1bFFcDcuXOpVasWJiYmBAQE8Pvvv2vui4qKQqFQsHz5ctq2bYuJiQn//PMPhYWFTJgwARsbG6pVq8bEiRNR3/dB1LZtW60unPHx8fTq1QtTU1M8PT1ZtGhRiZh/+ukn6tati7m5OW5ubowePZqMDN1Xj3S5G+/dLsF79uxBoVCwdetWGjRogKmpKe3btyc+Pp7NmzdTq1YtrKysGDx4MFlZWVqxjx07lrFjx2r28eOPP9bax/uPnyeJfenSpXTu3BkTE93VA7t27aJ9+/aMGDGC2bNno6+vz82bNxk3bhzjxo1jzpw5tG3bFg8PD0JCQvj777/59NNPtbYxe/ZshgwZwrBhw5gzZ47WPoSFhXHt2jV+//13mjVrhru7Oy1btmTq1Kk0adJE065u3bo4OzuzZs2ah74GT6Igv4CbV6/jF1RHa7l/UB2iLl55pG3cvHadqEtX8K5TekIlLy+XwsJCzCwqJ8mVn5/PlcuXaRDcSGt5gyaNuHj+QqXE8Lj0FXrUtHEmLC5Sa3lYXCTe1R7tC2tLj3pcjI8i+b7qJmMDI77p9gbfdR/N2Jb9cLMpWRlY0RTWVuhZmFMQdU9XyMJCCqJj0HctPalj4O1F4a3bmHZqi+WYV7EYMRTjZo1BR/VAeSksKCQ5OhaXWp5ay11qeZIYqburzl2bvpvHqo9+Y8cvS4m9rH0hrLCgAH1Dfa1l+oYGJFytvKoZfT09POxcOB97VWv5udhr+Nrr7oIbkRiNnZkV9VyKunZamZjTpGbtSu1+F5MQT5IylWZ1i7toGhka0jCgFmcjLj9gTW05ubkUFBZgZWGh8/5ClYpthw+RnZtLXV/fMsd9V0F+ATeuRFKrgfaPwVoN6nLt4qM9jyqVipzsHMzuif3M0VN4Bfiy5I95vP/im3wxehKbl69DVagqt9jvVVhQQML127jV9tZa7lbHh9irpXdzBljxxR/Mf+971k+bS8zFByfZCvLyURUWYmyuu+KxLPQVelS3si9RrXYl8SZuNrp/WAc4unNLmUArz/q833Yob7ceQBf/phjo6etsD+BlVx17c2uiUm6Xa/zPmrvnvvC4KK3l4XGReJXDuW9qt9f5pvubjK7Ac1/RMeVARGK01vIrCTdLTcbWcvIgRplAiFcQk9oPY0KbQXQLaFbimGrv24jMvBxO3ryoczvlSV+hh5uNU4lqtfD4KLzsqj/SNlp41OVS/HWSs0tWWd/l71ATJwu7CqkY1Vfo4WrtWGLYhcsJN/Ao5QJSHWdPolPjaefdiE86jmBSuxfpWbul1msRmXyLGjaOms8IOzMrAhzdK6SyT4hHIcm4/wADAwOGDx/OvHnztBIBK1asIC8vj6FDh3Lu3Dm6dOlC3759OXv2LMuWLePAgQOMHTtW5zbVajW9e/cmOTmZvXv3sn37dq5evcrAgQM1bTZu3Ejfvn3p0aMHp0+fZufOnTRurPuKu0qlom/fvujr63PkyBFmzpzJpEmTSrSztLRk3rx5hIWF8b///Y9Zs2Yxffp0zf3Lly/ns88+Y+rUqZw4cQIXFxet5JYu0dHR9O3bl+7duxMaGsqrr77KBx98oNXmcZ+fu65cucLy5cv5999/2bJlC6GhoYwZM0Zz/6xZs5g8eTJTp04lPDycr7/+mk8++YT58+drbWfSpEmMGzeO8PBwunTpwrRp05gzZw6zZ8/mwIEDJCcnPzRR8/LLLxMVFcWuXbtYuXIlv//+O/Hx8Vpt9PT0+OWXXzh//jzz589n165dTJw48YHbfRRTpkzht99+49ChQ0RHRzNgwAB+/vlnFi9ezMaNG9m+fTu//vqr1jrz58/HwMCAo0eP8ssvvzB9+vQHdtN8ktj37dtX6jG5Zs0aevToweTJk/nhhx80y+++b0rb9r1jDKanp7NixQpefPFFOnXqRGZmJnv27NHc7+DggJ6eHitXrqSw8MFdJoKDg9m/f/8D2zypzPR0VCoVljbWWsstbaxIT1WWslaRz199l/f7v8b097+gZbf2NOsUUmrbjQtWYm1ni1/9OqW2KU9pSiWqQlWJrt+2trakJFdclWFZWBiboa+nR1pultbytNxMrEwensS0NjEn0NmL/ZFntZbHpicz78RGZhxaxaxj68kvLGRS2xdxtKic7sJ36ZkXVbOqs7T3T52VhcK89EpXPRsrDP19QKEgc+U6cg8fw6hJA4ybNyl1nbLKzchCrVJjYqkdl4mlOdlpui/EmFqb03RwF0Je7U3Iq32wcrJj569LibtS/OPMpZYnF3cdJy0+GbVKze3wSG6ejSh1mxXB8s5xdn9XvLScTKxLOc6uJN5k5uE1jGnZjzkDJ/Nbn3fJysth4cktlREyAEl3Po/srLU/q+ysrUhSpj7ydn5bthQHWzuC62iPcXQl+gYhI0fQ8uXhfDN3Dj+Mfwcv1/LropqRVvRZa2WrHb+VrTVpKQ/+rL1rx5pN5OXk0qh1U82yxLh4Th08hkqlYuyUiXQb2Jsdazaxefnacov9XjkZWahVKsystJOZppbmZCl1XwQzs7akzbDn6PLmILq8OQgbZ3vW/zSfW5ejSn2cI6u2Y25jRY0KGE/RzMgEfT29EuMdZuRlY2ms+7PIztSKmrbOOFnYsvj0NjaFH6aOsxc9a7fSamdsYMjHHUcwpfOrvNioKxvDD5U61pYoUnzuu+8zKTfrkc59Vibm1HH24mCJc18S809s4vdDq5l97F8KCgt4v+3QCjn3aY6pXO1jKj0vC4vSjikzS9xtnXGytGPRya1sCDtEoLM3z9VprWlT09aZxjUCWHPPcBQVycLYtOi1yNE+T6c/xmtR28mzRIUigImBET89N45fer/Dmy36suLMTi7Gl/+4r+ZGRfuQnnv/Pjzg/W1mjaedC85Wdsw7sYl1F/ZTz8WHvnXbatqE3opgy8UjjGnZj+96jOajDi9xNekmu6+cLPd9EOJRyJhx/xGvvPIKP/zwg2ZiAijqotq3b19sbW15++23GTJkiKaSytfXl19++YU2bdrwxx9/lKgc2rFjB2fPniUyMhI3t6Kr6AsXLqROnTocP36cJk2aMHXqVAYNGsTnn3+uWa9+/fo649uxYwfh4eFERUVR487YLF9//XWJWUU//vhjzd8eHh68++67LFu2TJMY+fnnn3nllVd49dVXAfjqq6/YsWPHA6vj/vjjD7y8vJg+fToKhQJ/f3/OnTvHd999p2nzww8/PNbzc1dOTg7z58/X7NOvv/5Kjx49mDZtGs7Oznz55ZdMmzZNUzHo6elJWFgYf/75Jy+99JJmO+PHj9eqKvz555/58MMP6devHwAzZ85k69bSB3K9fPkymzdv5siRIzRtWvQFfvbs2dSqVUur3b2VdJ6ennz55Ze8+eabD01oPsxXX31Fy5YtgaJu0x9++CFXr17Fy6voC/YLL7zA7t27tRKwbm5uJV6T6dOnM2rUKJ2P8SSxR0VFUb16yat8GRkZ9O/fn48++qhEYjYiIgIrKytcXB7eNWvp0qX4+vpSp05R8mnQoEHMnj1b8x50dXXll19+YeLEiXz++ec0btyYdu3aMXToUM1zc5erqyunT5feNS43N5fc3FytZcbGxqW01u3+GiO1Wo3iIZVHY6d+QG5OLtcvXWXjwpXYuzjSsHWzEu12rdnMqQPHGPPlRAyNKncsw/urp9Q8fL+q3H2VrgoU8AhV+M3d65Kdn0NojHaVUGTyLa1xZq4m3uTjji/Tzrshy87sLJeQdTGs7Y9p53aa/zNX3ekerKtLwYP2T6FAnZVN9tZdoFajiktAYWGBcXBDcg9VdPfO+44VtbrUgjwrp2pYORWPsejg5UpWShrhO47hdGfSh8YvdOToki1s+PJvUICFvS1ezepy7UjJHy4V7jFehupW9rzYsCvrzu/jXOxVbEwsGdigIy836cHsY7q7fZfV5oMH+GbObM3/098rOteX/KzStVS3BRv+ZdvhQ8yc/AnGRkZa97m7VGfR1G9Iz8pi1/FjTPlzJn9+/Em5JuSKIr3vM0mtfqTwj+89xIbFq3nzkwlY3XPxRK1SY2ljxYtjX0VPXw93H0+UySlsW72RHoP7PmCLZaQj5tI+W22d7bF1Lh4Tz9m7JhnJSkK3HdQ56cPpLfu5cuwcz78/AoMKHf+25GdtaT2e7u7birO7yC0o6pWx5eJhBgZ1YkPYAc04ZHkF+fx+aBVG+oZ4VatO14BmJGenEZUs1XEPc/9zr9C1UIfm7oF3zn3aFaaRybeJvOd5v5p4k486vkRb74Ysr6Bz3/3RFr3fde/D3c+CZaE7yS3IA2BT+CEGN+zM+gv70VPoMaB+e9ac30tW/sN7+pSvkjGrH+GLSLOadcjOz9FZNZ1bkMc3OxdgbGCIv4M7feu2JTFTWaKasKI86Kvf3ff34lPbyLnzWqy/cIDhjbux+tweClSFeFdzpYNvY1af28ONlDjsza15PjCEjjlZ7Ih4cBf9Z8L/4+6gTytJxv1HBAQE0KJFC+bMmUO7du24evUq+/fvZ9u2bQCcPHmSK1euaHVdVKvVqFQqIiMjSyRtwsPDcXNz0yTiAGrXro2NjQ3h4eE0adKE0NDQUhMn9wsPD6dmzZqapBVA8+bNS7RbuXIlP//8M1euXCEjI4OCggKsrKy0tvPGG9oD0jZv3pzdu3WPe3V3nWbNmml9gbz/sR/3+blL1z6pVCouXbqEvr4+0dHRjBw5Uut5KigowPq+q/73Vm8plUpu376tFaOBgQGNGzcu0VX13n282+augICAEjPF7t69m6+//pqwsDDS0tIoKCggJyeHzMzMMk2WUK9ecZciJycnTTfje5cdO6b9g1rXazJt2jQKCwvR1y/ZJeRJYs/OztaZSDU1NaVVq1bMmjWLwYMHa72+j5Kgumv27Nm8+OKLmv9ffPFFQkJCSE1N1Tz3Y8aMYfjw4ezevZujR4+yYsUKvv76a9avX0+nTp20Ysq6r5roXt98841W4hvgs88+o8mATqWsUczcsmjcnrT7quAylOlYWD940OxqTkWz4FV3r0GGMo2tS9eVSMbtXruFHSs38Obn71HdQ3cXuIpgZW2Nnr4eKcnas3SmpqRiY2tTaXE8jozcLApVqhJXny2NzR5pnJuWHnU5cuMCheoHd09TA1HJsThZ2pUl3IfKv3KNwlv3zCJ3572rMDdHnVl8PCvMzEpUy91LnZmFurBQ64ugKikZPQtz0NMDVfl3xzO2MEOhpyAnXft5z8nI0hp0/mHsPaoTeby4W7SJpRltXutLYX4BuZnZmFpbELpuLxbVrB+wlfKVfuc4szbV3g8rE3PSShm4vlftVkQkRrPp4mEAookn93geH3cawcqzu0sdnLwsQho2IvCeGU/zCgoASFIqsb+n4jUlLY1q1g9//hZu3MDc9euY8cFH+NasWeJ+QwMD3JyLupPV9vIi7NpVlm7ZwkcjXy3rrgBgYVX0WatMSdVanp6appVc0+XEvsMs+GUWr30wjlpB2hV91nY26Ovro6df3GHF2a06aSmpFOQXYGBYvl/XTSzMUOjplaiCy07PxNTq0d8bTl5uXD5ScibP0K0HOLVpP70mvES1GhUz1lpWXg6FKhUWRtpVMuZGJmTk6f4sSs/NIi0nU5OIA0jISEVPocDKxFzTPVINmr9j05NwMLclxCtIknEPcPfcd39lbtG5r/Rzw10tPepx9EbYI537rifH4mhZ/pVxd48pS2PtbtUWRqYlquXuKj6m8jTL4jNS0FMosDaxwEjfADszK4Y1Ki5OuPsd9MuurzF939IS3XLLKiM3u9TvIek5D38tmnvU5Vgpr4UaSMhMBeCmMgEnKzs6+weXezIuMy/7zmuh/f62MDItUS13V3pOJsqcDE0iDiA+Ixk9hQIbUwsSM5V08W/GqZuXOHajaOzj2PQkjPQNeaF+O3ZGHH+Ua6ZClCvppvofMnLkSFatWkVaWhpz587F3d2dDh06AEXdRF9//XVCQ0M1tzNnzhAREYG3t3eJbZWWkLh3uWkps5rpoiuJdP/2jxw5wqBBg+jWrRsbNmzg9OnTTJ48mby8vBLrPo7SElj3etznpzR390mhUKC68+Nx1qxZWts9f/48R44c0VqvrLOG3t3HByWRrl+/Tvfu3QkMDGTVqlWcPHmSGTNmAI8+aURp7p3VVaFQlJjl9d7n40k8aez29vY6J0XQ19dn7dq1NGrUiHbt2hEWVjzhgJ+fnyYh+iBhYWEcPXqUiRMnYmBggIGBAc2aNSM7O5slS5ZotbW0tOS5555j6tSpnDlzhtatW/PVV19ptUlOTsbBwaHUx/vwww9RKpVatw8//PCBMd5lYGhADW93Lp/Rnljh8pkLeAT4lLJWSWq1moL8Aq1lu9ZsZvuKf3nt0wm4+XiWsmbFMDQ0xMfPj9Djp7SWhx4/RUBg5XSVfVyFahU3UmOp7eShtbyWk8dDuzn5ObjhZGnHgfu66ZTGzcYRZSkzipWbvHxUqcriW1IyqoxMDO5NyurpYeDmSmFM6e+pgpu30LsvgapnZ4MqI6NCEnEA+gb62Lk5c/tilNby2xejsPd89AGnk2/GYWpdcmwyfUMDzGwsUatU3Ai9RI165Tc22cMUqlREJd8m0Fm7AjfQ2avUH0VGBoYlzpcqzbmlYuI0NzXFzdlZc/NydaWatQ1HzxdXEeYXFHDqYjj1fP0euK2FG/5l9to1/DJxErW9Hq3bo1pdnAAsDwaGBtT08SQ89LzW8vDQc3gFlP76H997iPk//8nI98ZQt0nJwey9a/kRfztO6zwaFxOLtZ1NuSfiAPQNDHBwd+FmuPaYgzfDruLsXTLJWZrEG7cxs9aeaOr01gOc3LiXHm8Pw9GjYgZ2h6LP2ltpiSUGj/e2r6E1IcO9bqTEYmlijpF+8XNazdwalVpVahIbit4fDxpXThSf+2rpOPdde4Rzn6OlbYkuqqWpUUHnvqJjKgGf+8bd9LF35XpqrM51rqfEYmlipnVM2ZvboFKrUOZkkJCZyv/2LeO3Ays0t4txUUQmxfDbgRUVth/RqXEEOHpoLQ9w9ODaQ2Zy9bV3w9HClkPXzz+w3V0KFBjolf9nVKFaRYwyHj8H7dfCz6FmqUnxyOTbWJmYY6Rf/BvF4c5rcXf2VSN9gxLVgSq16k6F41Pe40I8kyQZ9x8yYMAA9PX1Wbx4MfPnz2fEiBGa5EzDhg25cOECPj4+JW5G93XjgKIquBs3bhAdXfylPSwsDKVSqakiqlevHjt3PloJ+N3t3bpV/CF/+PBhrTYHDx7E3d2dyZMn07hxY3x9fUvMEFurVq0Siaz7/9f12A9b53Gfn7t07ZOenh5+fn44OTnh6urKtWvXSmzT07P0pIW1tTUuLi5aMRYUFHDyZOnjFdSqVYuCggJOnDihWXbp0iWtySROnDhBQUEB06ZNo1mzZvj5+WnFXtl0vSa+vr46q+KeNPYGDRpoJdruZWxszOrVqwkODqZdu3acP1/0xeKFF17AyMiI77//Xud6d5/T2bNnExISwpkzZ7SSrRMnTmT27Nk614WixGRAQECJyUHOnz9Pgwa6ZxS7G6+VlZXW7XG6qbZ5rgtHd+zj6I79xEXfYu2cJaQkJtOiS1sANixcyeL/zdK0P7BpJxeOh5JwK46EW3Ec27mfPeu20qhNccXmrjWb2bx4DQPHjsDO0Z60FCVpKUpysyuvq0Xvgf3YtmEz2zZuITrqOrN++YOE+Hi69+4JwLyZs5n21Xda61yLuMK1iCvkZGejTFVyLeIKNyLLf0yT0my/fJxWnvVp6VEXZ8tqDKjfHjszK83sd30CQxjRpEeJ9Vp51ONa0i1upZWcYbRnrZbUdvLE3tyaGtaOvNSoG242jlUyo17uiVBMmjXBwNcLPXs7TLt3Ql2QT174JU0b0+6dMA5pofk/L/QcClMTTDq0Qc/WBgMvD4ybNSHv1KP9+HpSAe2bcPXQGa4ePosyNpGTq3aSlZyGb+sgAE6v28uhBRs07S/uPk70mcukxSeTejuB0+v2Eh16Gb+Q4hnLE6NucSP0EumJqcRfiWbXjBWgVlO7Y9P7H75Cbbl0mDZeDQnxCqK6lT1DGnSmmpk1uyKKziX967fntWbPa9qfjrlMI7cA2vs0wsHcBl97N15s1IWriTGaHyoVTaFQMLhrV+auX8fu48e5Eh3N53/OxMTIiC4tio+Xz2b+zm/Llmr+X7DhX/5YuYJPR72Oi70DiampJKamknXPEBYzli3l9MWL3EpI4Er0DX5fvoxT4WF0a9GyXPehY+9uHNy2m4Pb9nA7OoblsxaSkpBESPeii6Nr5i1l7rQ/NO2P7z3E3J9m0m/kUDwDfFCmpKJMSSX7nsrSkO4dyUzPYPlfC4mLuc2546fZsmIdbXo8vDL6SdXv1ILw/acIP3CKlNsJHFy2mfRkJXXaFI3jeGT1dnbOXqVpf2bHISJPh5Mal0RyTDxHVm/n2qkw6rYvPu5Pb9nPsbU7aftSb6zsbchSppOlTCc/J7fE45eHQ1FnaVQjgIau/jiY29AtoDnWJhYcuxEOFM1s3e+e8aLO3r5Cdl4Ofeq2xcHcBndbZ7r4N+XUzUuaLqohXkF4V3PF1tQSe3NrWnjUJai6X6VOdPIgpobG+NrXwNe+qNdGdSt7fO1r4FTJ44fqsuPyCVp61qOFR12cLe3oX789tmZW7LtznuodGMLLTbqXWK/FA859PWq1oLaTh+bcN6xRV9xsHNlfQee+A5FnaewWQKMaRcdU91otsDa15Nj1ou+anf2DeaFe8dANZ25FkJWXS7967XC0sMXD1oVutZpxMrromCpQFRKXkaJ1yy7II7cgn7iMlIdWAj6pnREnaOFRl+bugThZ2tGvblvszCw5cK2okvW5Oq0Z3qhbifVaeAQSmXyL2zpei85+wQQ4ulPNzBonCzva+zSiac3aHI/W/T28rPZeCyW4Zh2auNXC0cKW5+q0wsbUgiN3EoXdApozKKj4M/J0zGWy8nIYGNQBJwtbvOyq07N2S47dCNe8v8PiImnuXpeg6r7YmVrha+9G14BmXIiNfKQuvEKUN+mm+h9iYWHBwIED+eijj1Aqlbz88sua+yZNmkSzZs0YM2YMo0aNwtzcnPDwcJ0D6wN07NiRevXqMXToUH7++WcKCgoYPXo0bdq00XSF/Oyzz+jQoQPe3t4MGjSIgoICNm/erHPg+44dO+Lv78/w4cOZNm0aaWlpTJ48WauNj48PN27cYOnSpTRp0oSNGzeWmLTg7bff5qWXXqJx48a0atWKRYsWceHChRLjb93rjTfeYNq0aUyYMIHXX3+dkydPlph59nGfn7tMTEx46aWX+PHHH0lLS2PcuHEMGDAA5zvdYKZMmcK4ceOwsrKiW7du5ObmcuLECVJSUpgwYUKp23377bf59ttv8fX1pVatWvz0008lZmm9l7+/P127dmXUqFH89ddfGBgYMH78eK3qRW9vbwoKCvj111/p1asXBw8eZObMmaVus6JFR0drXpNTp07x66+/Mm3aNJ1tnzT2Ll26lJgs415GRkasWrWKAQMG0L59e3bu3EndunWZPn06Y8eOJS0tjeHDh+Ph4cHNmzdZsGABFhYWfPvttyxcuJAvvviCwEDt7kSvvvoq33//PWfOnEGtVvPZZ58xbNgwateujZGREXv37mXOnDla4+dlZWVx8uRJvv7660d89h5fg1bBZKVnsG35etJSlLjUdGXUx+Oxcywa4yc9RUlKQnF3T7VazcaFq0iOT0BPX59qzg70GPYCzTu30bQ5uHkXhQUFzP9ee9y+zgOfo+ug3hW2L/cK6dCW9LQ0ls77h+SkZNw9PZjy/VQcnYtmwkpJSiIhTnsik3GvvKn5+8qlCPZu34WjsxNzVvxTKTGfuHkRcyNTetRqibWJObfSEvn1wApNVxRrEwvszLS7D5saGNHQ1Z+lpYyBY2ZkzLCGXbAyMSc7P5fo1Hh+2LO4Smb4yzt2EoWhAaad2qEwMabwdhyZy9dCXnEVq56VpVaXVHV6BpnL12LSPgSLEUNQpWeSdzKU3KMVO2iyR6Na5GVmc27zQbLTMrFxsaft6P5Y2BV1KcxJyyAzubiLUGGBilNrdpOtzEDf0ABrF3vavvkCrnWKK6gL8ws4s2E/GYmpGBobUb2OFy2G98DITPfYoxXl6I0wLIzMeL5OCDamFtxUxjNt72KSsoq6q9uYWFDNrLjr5IHIM5gaGNHRrwmDG3QmKy+HsPhIlodW3JiDugzv2YvcvDy+mzeX9KxM6nh78+ukDzG/53wWm5iEQlF8vXjlju3kFxQw6ZeftbY1qk9fXuv3AgDJaWl8NvN3ElNTsTAzw8fNjV8mfkDTutozn5ZV45DmZKRnsHHpGtKSU6nuXoOxU96nmmNR5bMyJZXkhCRN+32bd6EqLGTpH/NY+sc8zfJmHVrz8jtFw3LYOVTj7S8+YMXfC/ly7IfYVLOl/XNd6dKvV7nGfi+fJnXJycjm5IY9ZCrTsavuSI9xL2JZzQaArNR0MpKLhz5QFRRyaMVWMlPTMDA0xLa6A93HvYh73eKKxgt7jqMqKGTbzGVaj9W4V1uaPNe+3PfhfOw1zAxNaOvTEEtjM+LSk1l4crOmy7WFsRnWpsVVrXmFBcw7sZEetVryRou+ZOflcD72mtZYUYb6BvSq3QorE3PyCwtIzExl5dldnI998MyxlSXAwZ3f+hR/vxzXqj8Am8IPM3VX6d+HKsPJmxexMDKhR60WWN059/12YOU95z7zEuc+EwMjGrr6lTr+m5mRCUPvO/f9uGcJUSm6K9XK6tztq5gZmtDep3HRMZWRzPzjm0i9c0xZGptjY1pcDZpXWMDcYxvoWacVo1v2JSsvl3O3r7L9ckWPhfpgp2IuYW5sSreA5liZmHM7LZHfD67WzI5qbWKOrY7XIqi6HyvO7tK5TSMDQwYGdcTG1IL8wgLi0pOZd3wTp2Iu6WxfVmduRWBuaEInv2CsjM2JTU9i9tF/SclOB4qGZbDVen/n8+eRdfQJDOHtkIFk5eVw5tYVNl8sLg7ZcacrateAZlibWJCRl01YbKRWm2daBfVEEE9OoX6UPn7iqXH48GFatGhB586dSwz4f/z4cSZPnszhw4dRq9V4e3trkndQNGHC+PHjNQPl37hxg7feeoudO3eip6dH165d+fXXX3FyKp4SfvXq1Xz55ZeEhYVhZWVFSEgIq1at0rm9y5cvM3LkSI4dO4aHhwe//PILXbt2Zc2aNfTu3RuAiRMnMmfOHHJzc+nRowfNmjVjypQpWomor7/+munTp5OTk0O/fv1wcnJi69athIaGlvq8bNiwgXfeeYfo6GiCg4MZMWIEr7zyCikpKZqxvR72/NxvypQprF27ltdff52vvvqK5ORkunfvzt9//601u+PixYv54YcfCAsLw9zcnLp16zJ+/Hj69OlDVFQUnp6enD59mqCgIM06BQUFvPfee8ydOxc9PT1eeeUVEhMTUSqVrF27FoC2bdsSFBTEzz//DEBsbCyvvvoqO3bswMnJia+++opPPvlE6zWYPn06P/zwA6mpqYSEhDB06FCGDx+u9TzcT6FQaF6j++O9O2HIvevPmzeP8ePHa71md5+ru69R27ZtqVOnDiqVisWLF6Ovr8/rr7/O119/ranmvP/4eZLYU1JSNBMj+Pv7lxpffn4+gwcPZu/evezcuZN69eqxY8cOfvzxR44dO0Z2djYeHh707NmTCRMmcOjQIQYMGMCtW7e03g931atXj7Zt2/Lpp5/y5ZdfsmvXLqKiolAoFHh4ePDSSy/xzjvvoKdX9GNyyZIlfP7551y8+PhT2m8MO/jY6zxtetRuSUT8jYc3fIr5OtbktZXfPbzhU+6vFyah/P6Xqg6jTKwnjuOL7XOqOowy+7TTKwxf8kVVh1FmCwZ/Strx//ZMdFZNGrE74sTDGz7l2vk25ud9yx7e8Ck2PmQgn2z5q6rDKLMvu75GyxlvPLzhU+7gmJm8sVJ3T4L/ipkvTOSjTVV3cbq8fN39Dcas/rGqwyiTGX3f471/Sy+C+K/4sddbVR3CE0lbsbaqQyiVVf/eVR1ClZBknBCluD/BJB7d/YnEijRx4kSUSiV//vlnhT/WkwoODmb8+PEMGTLksdeVZNzTQZJxTw9Jxj1dJBn39JBk3NNDknFPD0nGPT0kGVe1JBn39JEx44QQ/2mTJ0/G3d2dwsLCqg5Fp/j4eF544QUGDx5c1aEIIYQQQggh/j9Sq5/e2/9TMmacEOI/zdrautSuxk8DR0dHneMsCiGEEEIIIYT4/0mScUKUYsqUKUyZMqWqw/hP2rNnT1WHIIQQQgghhBBCPJUkGSeEEEIIIYQQQgjxrPp/3B30aSVjxgkhhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqVdFN92khlnBBCCCGEEEIIIYQQlUSScUIIIYQQQgghhBBCVBLppiqEEEIIIYQQQgjxjFKrVVUdgriPVMYJIYQQQgghhBBCCFFJJBknhBBCCCGEEEIIIUQlkW6qQgghhBBCCCGEEM8qtcym+rSRyjghhBBCCCGEEEIIISqJJOOEEEIIIYQQQgghhKgk0k1VCCGEEEIIIYQQ4lmlkm6qTxupjBNCCCGEEEIIIYQQopJIMk4IIYQQQgghhBBCiEoi3VSFEEIIIYQQQgghnlUym+pTRyrjhBBCCCGEEEIIIYSoJAq1WlKkQgghhBBCCCGEEM8i5YKlVR1CqayHD6rqEKqEdFMVQoin2MITm6s6hDIb1rgb8WlJVR1GmThaVWPIos+qOowyWzz0c5RTp1V1GGViPfldxq75b+8DwG993mXYks+rOowyWzj4M9ITEqo6jDKxdHDgxz2LqjqMMnuv7VB+P7SqqsMok9Et+nEo8mxVh1FmLTzr8cbK76s6jDKb+cJEWs54o6rDKJODY2by7vpfqjqMMpv23DheWf51VYdRJnMGfPTMnPf+k9Sqqo5A3Ee6qQohhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqVTBXwtJHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWaWWbqpPG6mME0IIIYQQQgghhBDPjJSUFIYNG4a1tTXW1tYMGzaM1NTUB67z8ssvo1AotG7NmjXTapObm8tbb72Fvb095ubmPPfcc9y8efOx45NknBBCCCGEEEIIIYR4ZgwZMoTQ0FC2bNnCli1bCA0NZdiwYQ9dr2vXrty+fVtz27Rpk9b948ePZ82aNSxdupQDBw6QkZFBz549KSwsfKz4pJuqEEIIIYQQQgghxLPq/9lsquHh4WzZsoUjR47QtGlTAGbNmkXz5s25dOkS/v7+pa5rbGyMs7OzzvuUSiWzZ89m4cKFdOzYEYB//vkHNzc3duzYQZcuXR45RqmME0IIIYQQQgghhBDPhMOHD2Ntba1JxAE0a9YMa2trDh069MB19+zZg6OjI35+fowaNYr4+HjNfSdPniQ/P5/OnTtrllWvXp3AwMCHbvd+UhknhBBCCCGEEEIIISpdbm4uubm5WsuMjY0xNjZ+4m3Gxsbi6OhYYrmjoyOxsbGlrtetWzf69++Pu7s7kZGRfPLJJ7Rv356TJ09ibGxMbGwsRkZG2Nraaq3n5OT0wO3qIpVxQgghhBBCCCGEEM8qteqpvX3zzTeaSRbu3r755huduzFlypQSEyzcfztx4gQACoWi5NOgVutcftfAgQPp0aMHgYGB9OrVi82bN3P58mU2btz44Kf3IdvVRSrjhBBCCCGEEEIIIUSl+/DDD5kwYYLWstKq4saOHcugQYMeuD0PDw/Onj1LXFxcifsSEhJwcnJ65NhcXFxwd3cnIiICAGdnZ/Ly8khJSdGqjouPj6dFixaPvF2QZJwQQgghhBBCCCGEqAKP0yXV3t4ee3v7h7Zr3rw5SqWSY8eOERwcDMDRo0dRKpWPlTRLSkoiOjoaFxcXABo1aoShoSHbt29nwIABANy+fZvz58/z/fffP/J2QbqpCiGEEEIIIYQQQjy7VKqn91YBatWqRdeuXRk1ahRHjhzhyJEjjBo1ip49e2rNpBoQEMCaNWsAyMjI4L333uPw4cNERUWxZ88eevXqhb29PX369AHA2tqakSNH8u6777Jz505Onz7Niy++SN26dTWzqz4qqYwTQgghhBBCCCGEEM+MRYsWMW7cOM3Mp8899xy//fabVptLly6hVCoB0NfX59y5cyxYsIDU1FRcXFxo164dy5Ytw9LSUrPO9OnTMTAwYMCAAWRnZ9OhQwfmzZuHvr7+Y8UnyTghhBBCCCGEEEII8cyws7Pjn3/+eWAbtVqt+dvU1JStW7c+dLsmJib8+uuv/Prrr2WKT7qpCiHEHW3btmX8+PFVHYYQQgghhBBClB+1+um9/T8llXFCCPGMOLH9AIc37iIjNQ0HV2c6D+tDzQDvh64XfekaC776Dccazoz6ZqJm+aldhzl34DgJ0bcBcPZ0o93AHrh6u5dbzGtWrGLJP4tJSkzCw8uTcRPepn6DoFLbnz55mt9+/oWoa5FUs7dnyPCh9O7XR3P/+jXr2LppC9euXgPAP8Cf18a8Qe06tTVtFs5dwL7de7h+/QbGxkYE1qvLm2NHU9Oj/Paro28TetZuiY2pBTGpCSw4uZlLCTdKbd/Soy49a7fC2dKOrPxczt66wqJTW8nIywagnXcjWnvVx83aEYDI5FssO7OTq0kx5RZzaYxbN8eoQT0UJsYU3oole8tOVIlJD1nJGJO2rTAM8EFhYoIqVUnOjr0UXI0EwKhhfYwa1kfPxgqAwoQkcg8cpuBqVLnH39qzPh18m2BtYs7ttCRWndtd6vP2YsMuNHMPLLH8dloiU3fOB6CFR12C3WpT3apo8OAbqXH8G3aA6ymx5R77vTr4NKZHrRZYm1oSo4znn1NbufyAY6qFe1161GqBk2U1svNzOHv7CktOb9ccU65WDvSr1xYP2+o4WNjwz6ktbL10tNzjVqvV/DVnDmvWryc9PZ06tWszacIEvL28Hrjezj17mPn339yMiaGGqyujR42iXZs2OtvOXbiQGX/+yeD+/Xn37bc1y/+cPZttO3cSFx+PoYEBtfz9Gf3aawTWqVOmfQrbc5wz2w6TrUzHtrojzQZ0xsVX9+fHrUtRbPxpQYnl/T8fjY1zyQGorx4/z66/V+Ne35/OoweWKc6HObPrCKc27yczNZ1qro6EDOmBq5/nQ9e7FXGdld/OopqrE0O/eEuzvLCgkBMb9xB+8DQZKWnYutjTsn9XPOr6Vdg+7Pp3K5tXriM1ORVX9xoMeWMEfoG1dLY9ceAouzdu5ca1KAryC3CtWYPnXxxA3cZBmjZ7N+/g4I69xFyPBsDDx4t+Iwbj5e9bYfsA0MYriE7+wVibWHArLZEVZ3ZxJfGmzrYvNe5Gc4+6JZbfUibyxfY5ADR3D+SlJt1LtBm7ehoFqsLyDf4x1XfxYUiDzgQ41sTe3IYPNv3B/sgzVRrTvVp41KWtd0OsTMyJTU9m3fl9RCbfKrW9vp4+nf2CaVjDHytjc1JzMth5+TjHosMA0FPo0cG3MY3damFtYk5CRgobwg5xKeF6he5HO++GdPVvVvQ9RJnAktAdRCRG62z7SpOetPKsV2J5jDKBT7bO0vzfybcJ7bwbYmdmRUZeNiduXmTl2d0Vdkz9V897QjwqScYJIf4z8vLyMDIyquowHig/Px9DQ8NKf9wLh0+xbeEauo14ATc/T07tOsSS7//kje8/xNrettT1crKyWTdzEZ51fMlUpmvddz38CnWaN6TGcA8MjAw5vGEni7/9g9e/+wArO5syx7xz2w5++el/TJj0HnXr12P96rW8//a7LFy+CCdn5xLtb8XcYuL4d+nV+zk++eIzzp05y0/f/YiNrQ1t27cDIPTkaTp27khgvboYGRuxeMEi3h07ngXLFuHg6FDU5tRp+vTvR63atSgsLOSvP/5kwlvjWbh8MaampmXer2budRjeqCtzjm/kcsINOvg2ZlK7F3l/wwySspQl2vs71OTN5n1ZeGoLp25ews7MileCezKq2fNM37cUgNpOHhyKOkdEYjT5hQX0rN2SD9oPY+KGGaRkp5fYZnkxat4E46aNyPp3C6rkFIxbNsN8yAukz5wDefm6V9LTw3zIC6izssha9S+qtHT0rKxQ5+VpmqjS08nZvR9VSioAhvVqY9a/Nxl/L3x4ou8xNHT1p1+9diwL3cm15BhaedRjdIu+fLVjns7nbeXZ3ay7sF/zv75Cjw87DOd0zGXNMl97N07evMiK5FsUFBbS0a8JY1r0Y+rO+ShzMsot9ns1rVmHFxt2Zd6JjUQkRtPOpxHvtxnKB5tmkJSVVqK9n70brzfrzaLTWzkdcxlbU0tGNOnJyOBe/O/AcgCMDAyJz0jl2I0whjbsUiFxA8xftIjFy5bx2eTJ1HRzY/b8+Yx55x1WLVmCuZmZznXOnj/PR599xhuvvkq7kBB279vHB59+yuzffy+RSLsQHs6a9evx9S554cHdzY2J77yDa/Xq5Obmsnj5csZMmMDapUuxtS39c/FBrh6/wOHlW2k5pDtO3m5c3HeKLb8upv+U0VjYWZe6Xv8vxmBkUjxTnIllyX1PT0rl6MrtOPvUfKLYHsflo2fZt3gj7YY9R3Vfd87tOca6n+bz4tTxWFWzKXW93Kwcts1agVstb7LStI/3w6u3c/FwKB1e7oOdiwPXz19mw6//MGDyGzi6Vy/3fTi69yCL/5zLsDGj8K3jz55N2/np46lM/Ws61e583t/r8vkw6jSsT7+Xh2BmYc6Bbbv535Rv+eTnb3D3KUpCXjx7gWZtW+FT2w9DIyM2rVjHjx99xdQ/f8LWvlq57wNAoxoB9A/qwJJT27madJPWXkGMbfUCn2+drfNzalnoTtac26f5X09PwccdR3Aq5pJWu+z8XD7b8rfWsqpOxAGYGhpzJekmmy4e4utub1R1OFqCqvvyfGAIq8/uITL5Fs3dAxnV7Dm+3/0Pqdm6P9+HN+qGpbEZy0N3kpiZioWxGfoKheb+bgHNaFQjgOVndhKfkYK/ozsjgnvw6/4VxKQlVMh+NHGrxeCgTiw8tYUriTdp692Ad1oP5OOtf5Gs45yxJHQ7K8/t1vyvr9Dj884jOXHzomZZs5p1eKFeO+Yc38CVxBicLe0YGdwTgKWhO8p9H/7L5z0hHpV0UxVC6KRWq/n+++/x8vLC1NSU+vXrs3LlSgD27NmDQqFg586dNG7cGDMzM1q0aMGlS0VfBC9duoRCoeDixYta2/zpp5/w8PDQ9M0PCwuje/fuWFhY4OTkxLBhw0hMTNS0b9u2LWPHjmXChAnY29vTqVMnANavX4+vry+mpqa0a9eO+fPno1AoSE1NBYqmoB48eDA1atTAzMyMunXrsmTJEq1YMjMzGT58OBYWFri4uDBt2rQSz4FCoWDt2rVay2xsbJg3bx4AUVFRKBQKli9fTtu2bTExMeGff/55pMcvb0c37yGobVMatGuOvasznYf1xaqaDSd3HHjgeptmLyewRSNcfT1K3NdnzDAad2qFs0cN7Ks70ePVQahVaqIuXC65oSewbPFSejzfi169n8PD04Nx747H0cmRNSvX6Gy/bvUanJydGPfueDw8PejV+zl6PNeTpf8s1rT59Ksp9OnfD19/P9w9PJg4+QNUahUnj5/QtJn263S69+qBp7cXPn6+fPjpZOJi47gUflHXwz627gEt2HP1NHuunuJWWiILT24hKSuNjn5NdLb3sa9BQmYqWy8dJSEzlUsJN9gZcRIvu+IfrzMOrWJHxHGup8RyKy2RWUfXo1AoCHR+cHVRWRkHNyTn4FEKLl1BlZBE9r9bUBgaYFRHd+UJgFFQIApTE7JWrKPw5i3UaekU3oxBFV/8o6Mg4hoFVyNRJaegSk4hd89B1Hl56Lu6lGv87X0acTjqHIevnyMuPZlV5/aQkp1Oa8/6OtvnFOSRnpuludW0dcbU0ITD189r2sw/sYn9kWeIUSYQl5HM4lPbUCgU+DtUXAKlm38z9l47zd5rp7mVlsiiU1tJylLSwffBx9S2y8dIyEzlcmI0u66cxPOeYyoy+RZLQ7dz5MYF8gsr5ge6Wq1myYoVjBg+nPZt2uDj5cXnkyeTk5vLlm3bSl1vyfLlNG3cmBHDhuHh7s6IYcMIbtSIxcuXa7XLysrik88/Z/LEiVoDK9/VtXNnmjZpQg1XV7y9vHjnrbfIzMwk4urVJ96nczsO49+yAQGtGmLr4kDzgV2wsLUmbO+JB65nammOmbWF5qanp/0VXKVSsXv2Ghr2aoulw5MlCh/HqW0HqBPSiMA2TbCr7kibIT2xsLPm3K4HV4nsmr8G/2b1cfFxK3HfxcOnadKzDZ71/bF2tKNe+2a4B/pyasuDz0NPatvqDYR0aU+bbh2oXrOoKs7OwZ5dG3QfW0PeGEH3/s/j5e+Ds6sLL4wYglN1F0KPFr92r096m/a9ulDT2xMXN1dGvP06arWasNDzOrdZHjr6NeZg5FkORp0lNj2ZFWd2kZKVThvvBjrb5xTkkZabqbm52zpjZmTCoahzWu3UarVWu7TczArbh8dx5MYFZh1dz95roVUdSgkh3g04duMCR29cID4jhXUX9pOanUELj5JVYwD+Du5427sy6+g6IhKjSclOJzo1jqh7KqUbuQWwM+IEF+Ovk5yVxuGoc1yKv04bH92vb3no4hfM/sgz7I88w+30JJaE7iA5O4123g11ts/OzyUtJ1Nz87B1wczIlAP3VCx6V3MlIvEmR2+EkZSl5EJcJEdvhOFhW77n7bv+q+e9p5pK/fTe/p+SZJwQQqePP/6YuXPn8scff3DhwgXeeecdXnzxRfbu3atpM3nyZKZNm8aJEycwMDDglVdeAcDf359GjRqxaNEirW0uXryYIUOGoFAouH37Nm3atCEoKIgTJ06wZcsW4uLiGDBggNY68+fPx8DAgIMHD/Lnn38SFRXFCy+8QO/evQkNDeX1119n8uTJWuvk5OTQqFEjNmzYwPnz53nttdcYNmwYR48W/8h4//332b17N2vWrGHbtm3s2bOHkydPPtFzNWnSJMaNG0d4eDhdunR5pMcvT4UFBdyOvIlX3QCt5V51A7gZEVXqeqF7j5ISn0hI30e7Opifm4eqUIWpuXlZwi3aVn4+ly9eIrhpsNbyJk2DOX/2nM51Lpw7T5P72gc3a8rFsIsUFBToXCc3J4eCggIsraxKjSUzo+gHitUD2jwqfT19PO1cOHv7itbyc7ev4mdf8scrwOWEaOzMrAiqXtQNysrEnKY1a3P6VulJT2N9QwwU+pquFxVBYWONnoUFBdfu6UpTWEjBjZvo1yi9ysXA15vCm7cw7doBy7ffwGLUSxi3CIZ7KgW0H0iBYW1/FIaGFMaU3hXocekr9HCzcSI8XrsrUHjcdTyrPVqVTnP3QC7FX39g9aGRgQH6enpk5eeUKd7S6Ovp4WFXnXOx2gmk87HX8LWvoXOdiMSiY6q+iw9QdEwF16xF6K2IComxNDG3bpGUlESz4OL3rZGREQ2Dgjh7vvTkxtnz52karP1eb9a0aYl1vvvpJ1q2aEHTJrp/nN0rPz+fNevWYWFhgZ+Pz2PuSZHCgkISb9zGtbZ2FZ5rbS/iruru/nXX6q/+4p/3f2LjTwu4dSmyxP2nN+zDxNKMgFYV9wP9rsKCAuKjblGzjnbXS/c6Pty+WnrXuQv7T5Ian0zT59vr3m5+Afr3VYYbGBly6wHnoSdVkJ9PVMQ16jTUTqzXaViPq+GXSllLm0qlIic7G3NLi1Lb5ObmUVhQ8MA2ZaGv0KOmjTPhcVFay8PjIvGq5vpI22jpUY+L8VElKp6MDYyY2u11vun+JqNb9sPNxrG8wn4m6Sv0qGHtyKV47W6QlxJulJpwquPsSXRqHO19GvFpp1f4oP0wetVuhYFe8YyKBnr65Ku0v6PkFxZoJYnKk76eHu62LlyIu6a1/EJsJD7VdJ8z7tfaqz5hcZFaFWgRiTfxsHXG067ouXAwt6Gui3eJ7zvl4b983hPicUg3VSFECZmZmfz000/s2rWL5s2bA+Dl5cWBAwf4888/ee211wCYOnUqbe6M4fPBBx/Qo0cPcnJyMDExYejQofz22298+eWXAFy+fJmTJ0+yYEHR2Dl//PEHDRs25Ouvv9Y87pw5c3Bzc+Py5cv4+RWNMePj48P333+vafPBBx/g7+/PDz/8ABQl/s6fP8/UqVM1bVxdXXnvvfc0/7/11lts2bKFFStW0LRpUzIyMpg9ezYLFizQVNvNnz+fGjUe7UvK/caPH0/fvn21lj3o8XXJzc0lNzdXa5mxsbHOtvfLSs9ErVJhbq1dGWJubUmGsmQpP0BybAK7l/7L8E/HofeI03DvWroBSztrPAPLPv6PMjWVwsJCbO3stJbbVrMjOSlZ5zpJSckEV7uvvZ0dhYWFpKamYm9fcvylmb/9gYODA42DG+vcplqt5rfpv1AvqD5ePg8fX+9hLI3N0NfTR5mjXYGgzMnA2lT3j7mIxGhmHFzFW636Y6hvgIGePieiLzL/+KZSH2dQg04kZ6dx/va1UtuUld6dpKs6U3tf1JlZKB6QuNSzsUHPw4r88+FkLluNvp0tJl06gJ4euQeOFLdzsMfi5cFgYAB5eWStXI8qUfdr/yQsjE3R19MjPTdLa3l6biZWxh4PXd/K2JzaTp7MO7Hxge2erxOCMjuDi/EVM/5P0TGlR9p9XWCVORlYm+g+ZiMSb/LH4dWMafmC5pg6efMiC09urpAYS5OUXPR6VrvvfV7N1pbbcXEPXK/afd1Iq9naarYHsHXHDi5evsyCWbPuX13L/oMH+WjKFHJycrCvVo0Z06djY2PzmHtSJCcjC7VKjZmV9gUJU0tzstN0Vx2ZWVvQ+sWe2Lu7UJhfQMTRc2ycvpCeE17Cxa9onLnYKze4dPA0fT95/YnielzZ6VmoVSrMrLQ/k0ytLck8r/uHa0psIgdXbqH/h6+Xes6oGejL6a0HcPXzwMbRjhvhV7l2Ohy1SlXu+5Celo5KpcLK1kZrubWtDeeTUx9pG1tX/UtuTi7BIS1KbbNyziJsq9lRp0HJMdrKg8Xd9/d9VWtpuVlYmTz8wpeViTl1nL2Yc+xfreWx6UnMP7GJGGUCpobGtPdpxPtth/LVjnnEZ6SU6z48K8yNis4ZGfedMzJys7A00d2lvpq5NZ521SkoLGTu8Y2YG5nQr147zIyMWRa6E4BL8Tdo49WAa0kxJGUq8XVwo46zF3qKiqmJsTQqOqbu/x6SlpuJ9SMcU9Ym5tR19uavI+u0lh+LDsPS2IwP2w0HRVGScdeVk2y6eLhc44f/9nlPiMchyTghRAlhYWHk5ORoElV35eXl0aBB8VX7evWKy/ZdXIqulMXHx1OzZk0GDRrE+++/z5EjR2jWrBmLFi0iKCiI2rWLBtI/efIku3fvxsKiZILi6tWrmmRc48baSZRLly7R5L4qiOD7KigKCwv59ttvWbZsGTExMZpEl/md5MLVq1fJy8vTJBqhaOprf3//R3uC7nN/jA97fF2++eYbPv/8c61ln332Gd49dSfvdClReKRWo6BkNZJKpWLNjAWE9OtGNZdHu1J+6N+dXDh8imEfj8XAqPzGxNMZcykFVECJ/VGj1rkcYNGCf9ixbTu/zJxRamJz+vfTuHrlCjNmzXysuB/u/pJ7RamzRblaOfBS426sObeXM7evYGtqwZAGnXkluBezjq4r0b5n7Za0cA/kyx3zSlxtLwvDOgGYdi9+z2cu091duMgDuhQoihJ22Zu2g1qNKjYehYUFxs0bayXjVEnJZPy9EIWJMQb+vpj26krmP8vKNSGnK1YFigdFr9HMvQ7ZdybTKE1H3yY0quHP//Yvr/CxmO4/fB60H9Wt7BnWsBtrz+/jXOwVbEwsGdSgEyOa9OTvY+srLMbN27bx9Z0LJQA/37mQUuJtrmNZCYr73+tFQwcAxMbFMe1//+O3n3566EWLxg0bsnjuXFJTU1nz7798+OmnzPvrL+yecMy4x2XjbK81UYOTtxuZyUrObj+Mi587eTm57J6zltbDemJiofsHf0VR3P9hq1brfF1UKhVb/lxGs94dsdUx6cRdbYb0ZOe8NSz8aDooFFg72lG7VUPCDpwq38DvUfIUoi69CvceR3YfYO0/Kxj32USsbHSP9bdpxTqO7jnApO8/x7CCx6st+f7WsVCH5u6BZOfnEBqjnUSNTL5NZPJtzf9XE2/yUceXaOvdkOVndpZDxM8unc96Ka/F3e8ei05tJaegaFzU9Rf2M7xxd1ad3UOBqpC15/cxoH57JrUfhloNSVlKjkeH08St9OEeKoKCB565NVp61CMrP4dTt7QrTP0datKzVgsWntrCteRbOFnYMjioE8raGfwbdrBCYv4vnPf+U/4fz1r6tJJknBCiBNWdq9gbN27E1VW7m4SxsTFX74y3c+9EBXe/1N9d18XFhXbt2rF48WKaNWvGkiVLeP314qv+KpWKXr168d1335V4/LuJPaBEAkutVpf4AaG+7+Qybdo0pk+fzs8//0zdunUxNzdn/Pjx5N0ZQP7+9qVRKBQl2ubnlxy0/v4YH/b4unz44YdMmDBBa5mxsTHLz+16aJxmluYo9PTISNXuSpeZllGiWg4gLzuH29eiiY2KYcv8VcCd50StZuqwCQz54A086xRXvx3euIuD67cz9MPRONUsn24V1jY26Ovrl6iCS0lOKVEtd1e1anYkJ2kP7p+anIK+vj7W9/2YWrJwMf/MXcD0Gf/Dx1d3l7TpP/zEwX0H+PWv33F0Kp/uO+m5WRSqCrE20U4yW5uYl7hKfddzga25nBDNhvCiL7PRqXHkFmzks84jWXFmJ6n3XBnuUasFz9dpzdc7FxCdWnpl0ZPIj7hK4d/3zAh6p/pFYW6OOqM4doW5GerMrPtX11BnFFVq3vulT5WUhJ6FBejpwd0qGZVKM4FD4e04DKo7Y9SkITmby2cg6IzcbApVKiyNtd+fFsZmpD/C2EnN3AM5Fh1GoVp3VU8Hn8Z09gvmt4MruZWWqLNNeSg6plQlKiutTMxLVA3c1at2KyISb7Dp4iEAookn93gen3R6hRVnd1XYRBMhrVoRWLt45uK7n3mJyclalavJKSnYlfI+h6JKunur4DTr3EmgXbx0ieSUFIa9+qrm/sLCQk6fOcPy1as5tGsX+neOX1NTU9xq1MCtRg3qBgbSZ9Ag1m3YwIhhwx57/0wszFDoKci6rwouOz0TU6tH777v6FWDK0eLuuOnJ6SQkZTK1hlLNfffPe/8/eaXDPhiDFYOpT9XT8LU0gyFnl6JSXuy0zIwsy55gSw/J5f4qBgSbtxmzz//FseoVvPLyI/p8+4I3Gp7Y2ZlQa9xwyjIzycnIwtzGysOrtiK1QMmEXpSllaW6OnpobzzGXJXWqoSa9vSJ9KAookf5v78B6M/mkCdhrrHAtu8cj0blq7m/W8+xc2r/Gbavl/G3ff3fRVLlsZmpOWW/jl7V0uPehy9Ufrn1F1q4HpyLI6WlZOE/i/KzLt7ztBOihedM3QPCZGWm4kyJ0OTiAOIS09GT6HAxtSCxEwlmXnZzD2+EQM9fcyMTEjLyaRHrRY6J1IoD+l5pR1T5qSV8j3kXq0963P4+nkK76to7RPYhkPXz2tmvo1RJmCkb8hLjbuzIezgIyX6HtV/6bwnRFlIMk4IUULt2rUxNjbmxo0bmm6o97r6iINfDx06lEmTJjF48GCuXr3KoEGDNPc1bNiQVatW4eHhgYHBo38UBQQEsGmTdve9Eye0B87ev38/zz//PC+++CJQlPiLiIigVq2iq5A+Pj4YGhpy5MgRatYsGnQ9JSWFy5cva+2vg4MDt28XX1mOiIggK+vhX44f9vi6GBsbP3K31PvpGxjg4lmDyPOXCGhS/MMi8twl/BoFlnwsUxNe+3aS1rKTOw4QdSGCfm+PwOaeH36HN+ziwNptDJ70BtW9ym+AekNDQ/wC/Dl+9Bgh7Yqf8+PHjtMqpLXOderUDeTgfu2rr8eOHiOgdoDWMbR44SIWzJ7HtF+nE1C75HOuVqv5+Yef2LdnL7/MnEF11/Ibt6VQVUhk8m3qunhrzUIW6OLFyZu6xzEy1jcs8UNKdff/exLPPWu1pHdgCN/uWkhkcvmNraaRl48qL1U7jowMDDzdyYuLL1qgp4dBzRrk7Npfcv07Cm7ewqiO9viFena2qNIzihNxpVA8YpfpR1GoVhGdGkeAo7vWmDYBju6ce8gYN772NXC0sOVwlO7xCzv4NqarfzNmHFzFjXJOit6vUKUiKvkWgc5enLz3mHL2KjF74l3GBoYlfkip7iR4HqFo6ImZm5lpzZCqVqupVq0aR48fJ+BOtXN+fj6nQkN5643SZ1GsFxjI0ePHGTpwoGbZ0WPHqBdY9HnWpHFjlt4Z8uCuL77+Gnd3d14aOlSTiNNFrVY/8MLIg+gb6GNf04WY8Gt4Nig+xmPCr+Fe/9Erq5OiYzG9k/Sydran36faz8WJdbvJz8ml+cCumD8ksfQk9A0McPSozo0LV/BpVDw77Y2wK3gF1S7R3sjEmKFfjtNadnbXUW6GX6X7mCFY35csNDA0xMLWmsKCQq6cPI9vk/Lv4mlgaIiHrxcXTp+lUcviCvKw02cJalb6GIJHdh9gzvTfeeOD8dRv2khnm80r1vHvklW8O/VjPP3KPnzBgxSqVdxIjaWWk4fW2Fa1nDw484CqXAA/BzccLW05ePjsIz1WDRtHYpQVM3vns6BQreKmMh4/h5qcjy0eAsLPoSYXYnUPCRGVfIv6Lj4Y6RuSV1h0sdbBwhaVWlVi9tUCVSFpOZnoKfSoV92nRDVjue2HSsX1lNvUdvLk1D0zgddx8nzgWLRQVP3mZGnH/oNnStxnpG+g6Y1wl/puNa2i9Or/J/FfOu8JURaSjBNClGBpacl7773HO++8g0qlolWrVqSlpXHo0CEsLCxwd3+0q8R9+/blzTff5M0336Rdu3ZaVXZjxoxh1qxZDB48mPfffx97e3uuXLnC0qVLmTVrVqk/pl5//XV++uknJk2axMiRIwkNDdXMbnq3Ys7Hx4dVq1Zx6NAhbG1t+emnn4iNjdUkwywsLBg5ciTvv/8+1apVw8nJicmTJ5eY3a59+/b89ttvNGvWDJVKxaRJk7SqAUvzsMevCE27tWXdH4tw8XSjhq8Hp3YdRpmUQsMOLQHYtfRf0lOUPP/miyj09HB00x6M2MzKAgNDA63lh/7dyd6Vm+g9Zjg2DnZkpBZdxTUyMcbI5MkSh/caOGQQX332BQG1a1GnbiDr16wjPjaO3v16A0XjvSUmJPDx558C8HzfPqxevopfp/+PXr2f58K582xc9y+fTS3u3rtowT/MnjmLT7+agrOLC0mJRZV0pmammN1JEvz03Y/s2Lqdr3/8DjMzM00bCwsLjMthvzZdPMTo5n25lnSLiMRo2vs0xt7Mmp0Rx4v2O6gjdqaW/HG4qBvoqZhLvNr0OTr6NuHs7SvYmFowrFE3riTeJPXOxAE9a7ekf732/HZwJQmZqZrKu5yCPHILniyx8Chyj53CpGUwqpSiWU+NWzRFnV9A3oVwTRvTXl1RpWeQu6doxsS8k2cwbtwAk87tyTtxGj07G4xbNCXvxGnNOsZtWxXNppqWjsLICMM6/ui7u5G7dHW5xr/rykmGN+7GjdQ4IpNv0dKjHnZmlpor+8/VboW1qQULT27RWq+5e10ik29xOz2pxDY7+jahR60WzD+xiaQspaaKIrcgX/NjrLxtvnSEN5r1ITL5FlcSb9LOuxHVzKzZGVF0IWJA/Q7Ymlry55G1AJyOucwrwb3o4NP4zjFlyYsNu3A18abmB6K+nh6uVg5A0dg/tqZW1LRxIqcgr9zGlFIoFAzu35+5CxdSs0YN3NzcmLtgASbGxnTt3FnT7tMvv8TRwYGxdxJ0g/r357WxY5n3zz+0bd2aPfv3c/TECWb//jtQlPTz8dKeSdjExAQbKyvN8uzsbOYsWEBIy5bY29ujVCpZsWYN8QkJdGzX7on3qW7H5uyZuwYHdxccvWpwcf8pMpKV1AopSuwcW7OTzNR02o3oDcC5HUewtLfB1sWBwsJCrhw9R+SpcDq+3h8AA0MD7Fy1K3ONzEwASiwvTw07t2LrrBU4ebji4lOTc3uPk56kpG67omEfDq7YSkZqGl1G9Uehp4d9DWet9c2szNE3NNRaHns1mowUJQ41q5ORquTI2p2o1Woadw+pkH3o3Lcns374FQ9fb3xq+bF38w6S4hNp16Po2FoxZxGpScmMev8toCgR9/ePvzHkjRF4B/iiTC46zg2NjTC7U+G+acU61ixYyuuT3sbeyUHTxtjUBBNT0wrZjx2XTzAiuAfXU2K5lhRDa68gbM2s2HdnttHegSHYmFow775xRFt41ONa0i2dlbk9arUgMvkW8RkpmBgY086nIW42jiw9vb1C9uFxmBoaU8PaQfN/dSt7fO1rkJaTSVwVj2e37+ppBjfszM3UeKJSbtPMPRBbUwvNhZnutVpgbWLOkjvP46mbl+nkF8ygBh3ZevEo5kYm9KrdkmM3wjRDF9S0ccLa1IIYZQLWJhZ08W+KAgW7rzzZpGGPYuvlY4wKfo6olNtcTYyhjXcD7Mys2HO1qMt4v7ptsTW15O/7xhps7Vmfq0kxxKSVTNqeuX2Fzn7B3EiJ41pyDI4WtvQODCH0VsQj9zh5HP/V895T7SEVtKLySTJOCKHTl19+iaOjI9988w3Xrl3DxsaGhg0b8tFHH2m6oj6MlZUVvXr1YsWKFcyZM0frvurVq3Pw4EEmTZpEly5dyM3Nxd3dna5du5ZIit3L09OTlStX8u677/K///2P5s2bM3nyZN58801NZdknn3xCZGQkXbp0wczMjNdee43evXujVCo12/nhhx/IyMjgueeew9LSknfffVfrfijqbjpixAhCQkKoXr06//vf/x5pxtVHefzyVqd5Q7Izsti/pugHlEMNFwa9/7qmyi0jNQ1l0uN90Ti54wCFBYWs+t9creWt+3ahTb9uZY65Q+eOpCmVzPt7DkmJSXh6e/H9zz/ifKebclJiEnGxxVVH1V2r8/3P0/h1+v9Ys2I19g72vP3eO7RtX/zDeu3K1eTn5/PJJO0ZdkeMeoVXXivq0rZ2VVESbNwbY7TafPjpZLr36lHm/Tpy/QIWRmb0rdsGG1NLbqbG8/2eRSRmFr3+NiYWVDMvrnbZdy0UEwNjOvsFM7RhZ7LycrgQF6n5sg/QybcJhvoGvBMySOuxVp3dzapze8occ2nyDh9HYWCAadcOKExMKIy5TeaSlZBXnHTSs7bSuiKuTk8nc8lKTDq1xWLUcFTpGeQdP0Xu4ePF65ibYfZcNxQW5qhz81DFJ5C1dDUFkeU7CcKpmEuYG5nQzb8ZVibm3E5L4vdDqzWzo1qZmGNnqj0ZhYmBEUHVfVl5brfObbb2rI+hvgGvNn1Oa/mm8EMVMpA1wNEbF7AwMqV3nTbYmFpwUxnPj3sXkZR1zzFlVnxM7Y88g4mBMR39mjC4QdExFRYfybLQ4i7AtqaWTO1WXJHVo1YLetRqQXhcFF/vml9usb80dCi5ubl8+9NPpKenE1i7Nr9Nn65VQRcbF6f1uV+/bl2mTpnCH7NmMfPvv6nh6so3X3xBYJ06uh5CJz09PaKuX2fD5s2kKpVYW1lRu1YtZs2Ygfd9ibzH4d2kDrmZWZzauI8sZQZ21R3pOnYIltVsAMhSZpCZXPxZryos5OjK7WSmpmNgaIBNdQe6jB1Mzbq+pTxC5fBrWo/szCyOrt9FljKdaq5OPP/OS5oupZnKdNKTUh9rmwX5+Rxesx1lfAqGJkZ41POny6gBGJtVTBKraZuWZKZlsH7RSpQpKbi6u/HOlx9h71T0Y1uZnEJSfHGias+m7RQWFrJwxt8snPG3ZnnLjm149b2xAOz6dysF+QXM+Gqa1mM9P7Q/vYdpz/ZeXk7evIiFkQk9arXAysScW2mJ/HZgpaYbo7WJOXZmJT+nGrr6lTr+m5mRCUMbdsHKxJzs/FyiU+P5cc8SolJidbavTAEO7vzWp3hYjnGtihLTm8IPM7UcP3ueROitCMyMTOjkH4yVsTm305P4+8j64nOGsRk2psXDf+QV5vPn4bX0qduG8SEDycrPIfRWBJvDi88FBvoGdA1oTjUzK/IK8gmPj2LxqW1aXVvL2/HocCyMTIsuOJkUJQJ/3r9MMzuqtYlFiWPK1NCYRjUCWBKqO2H7b9gB1Go1fQJDsDW1JD03izO3r1TYd5D/8nlPiEelUFdEKlsIISrR1KlTmTlzJtHR0VUdSrlbeOK/PwvUsMbdiE8rWWH0X+JoVY0hiz6r6jDKbPHQz1FOnfbwhk8x68nvMnbNf3sfAH7r8y7Dlnz+8IZPuYWDPyM94b/d9c3SwYEf9yyq6jDK7L22Q/n90KqqDqNMRrfox6HIR+t2+TRr4VmPN1Z+//CGT7mZL0yk5YzSu5T/FxwcM5N31/9S1WGU2bTnxvHK8q+rOowymTPgo2fmvPdfpPztr6oOoVTWY1+r6hCqhFTGCSH+c37//XeaNGlCtWrVOHjwID/88ANjx46t6rCEEEIIIYQQ4umjkhqsp40k44QQ/zkRERF89dVXJCcnU7NmTd59910+/PDDqg5LCCGEEEIIIYR4KEnGCSH+c6ZPn8706dOrOgwhhBBCCCGEEOKxSTJOCCGEEEIIIYQQ4lklUwU8dUqfslAIIYQQQgghhBBCCFGuJBknhBBCCCGEEEIIIUQlkW6qQgghhBBCCCGEEM8q6ab61JHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWaVSVXUE4j5SGSeEEEIIIYQQQgghRCWRZJwQQgghhBBCCCGEEJVEuqkKIYQQQgghhBBCPKtkNtWnjlTGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkIIIYQQQgghhBDPKumm+tSRyjghhBBCCCGEEEIIISqJJOOEEEIIIYQQQgghhKgk0k1VCCGEEEIIIYQQ4lmlkm6qTxupjBNCCCGEEEIIIYQQopIo1GoZyU8IIYQQQgghhBDiWaT8/peqDqFU1hPHVXUIVUK6qQohxFNsyaltVR1CmQ1u2Jm4tMSqDqNMnKzsGbFsalWHUWZzB04m9cXXqzqMMrH5508+3TKrqsMosy+6juK1ld9VdRhl9tcLk0g7cbqqwygTq8YN2Hn5eFWHUWYd/JrwyZa/qjqMMvmy62uciblc1WGUWX1XPz7aNLOqwyizr7u/wbvrn94f8I9i2nPjaDnjjaoOo8wOjpnJqBXfVnUYZTKr/weMXTOtqsMos9/6vFvVITwZtaqqIxD3kW6qQgghhBBCCCGEEEJUEknGCSGEEEIIIYQQQghRSaSbqhBCCCGEEEIIIcSzSqYKeOpIZZwQQgghhBBCCCGEEJVEknFCCCGEEEIIIYQQQlQS6aYqhBBCCCGEEEII8axSSTfVp41UxgkhhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqZTfWpI5VxQgghhBBCCCGEEEJUEknGCSGEEEIIIYQQQghRSaSbqhBCCCGEEEIIIcSzSqWq6gjEfaQyTgghhBBCCCGEEEKISiLJOCGEEEIIIYQQQgghKol0UxVCCCGEEEIIIYR4Vslsqk8dqYwTQgghhBBCCCGEEKKSSDJOCCGEEEIIIYQQQohKIsk4IYQooz179qBQKEhNTa3qUIQQQgghhBBCm1r99N7+n5Ix44QQ/0mxsbFMnTqVjRs3EhMTg6OjI0FBQYwfP54OHTpUdXhPjWPb9nFow07SU9NwrOFC1+F9cQ/weeh6Ny5dY+4X/8PRzYU3v/2gwuJbs2I1S/5ZTHJiEh5enrw1YRz1GwSV2j705Gl++/lXoq5FUs3eniHDh/B8vz6a+/9ds56tmzZz7WokAP4B/owa8zq169TWtCkoKGDurDls37KN5KQkqlWzp1vPbgwf+TJ6euVzjaqdTyO6+TfDxtSCGGUCi09vJyIxWmfbkcE9aeVZv8TyGGUCH2/5CwB9hR49arWgpWc9bE0tuZ2exIozuzgfe61c4n0Qk749MWrXGoW5GYVXI8matwRVzO0HrmPcpQNGHUPQq2aHOj2DvGOnyFm+BvILNG0UtjaYDuqLQb06KIyMUMXGkTVrAYVRN8o1/iZutWjlWR8LY1MSMlLYfPEI11NiS22vr9CjrU9D6lf3wcLYjLScTPZePc3pmMsANKrhT1B1PxwtbQG4pUxkR8RxYpQJ5Rr3/dp4NaCLfzDWJhbcSktk2ZmdXEm8qbPty42708Kjbonlt5SJTNk+G4Dm7oGMaNKjRJvRq3+kQFVYvsHfQ61WM2v1Stbs2kV6ZgZ1fHyY+PIreNdwK3WdNbt2sunAPq5GF+1vgKcnYwYOoo538WfZ3HVr2X3iGNdv3cLYyIh6vn6MHTQEj+rVy30f9m7czo7Vm1CmpOJS05X+o17Ep06AzranDx1n/+ad3Lx2nYL8fFxq1qDHkL7UblhP02b6h18Rcf5iiXXrNK7PmM/eL/f47wp2q00rz3pYGJsRn5HC5ouHH/reaOfTqMR741TMJQBqO3kQ4tUAOzMr9BV6JGUpORh1jjO3IipsH7au28j6ZatJTUqhhkdNXh4zilr16uhsm5KUzII/ZnPt8lViY27RrU8vXh47qkS7zIwMlsxeyLH9h8lMz8DRxYlhb4ykYbPGFbYfTWvWobVXfSzvvBYbww4S9aDXQk+P9j6NCXL1xdLIDGVOBnuunuLkzUsl2tZz8WZQg06ExUbyz6mtFbYPAC086tLWuyFWJubEpiez7vw+IpNvldpeX0+fzn7BNKzhj5WxOak5Gey8fJxj0WEA6Cn06ODbmMZutbA2MSchI4UNYYe4lHC9QvfjUdR38WFIg84EONbE3tyGDzb9wf7IM1UdlkZb7wZ08W9afM4I3UFEKeeMEU16lHLOSOCzbbM1/5saGtMnMIQGrv6YG5mQmJnK8gr8LtLasz4dfJtgbWLO7bQkVp3bzdWkGJ1tX2zYhWbugSWW305LZOrO+UDR8RnsVpvqVvYA3EiN49+wAw/83BOiIkkyTgjxnxMVFUXLli2xsbHh+++/p169euTn57N161bGjBnDxYslf9SUh7y8PIyMjCpk2xXh/OGTbFmwmh6vDKCmvxcndhzkn2//YMyPk7Gxtyt1vZysbNb8vhCvQD8ylOkVFt/ObTv49af/MWHSuwTWr8f61WuZ+PZ7LFj+D07OziXa34q5xcTx79Gzdy8+/uJTzp85y0/fTcPa1oa27dsBcPrkKTp07sTb9QIxMjZmyYJFvDf2HeYv+wcHRwcAFi9YxPpVa/loysd4eHlyKfwi33wxFXMLC/oPHlDm/Qp2q8WQoE4sPLWFiIRo2vo0ZELIICZv+ZPkrLQS7Ref3s6Ks7s1/+sr9Piiy6scjw7XLOtbtw3N3esy78RGbqclEejsxVstX2DqzvncSI0rc8ylMe7ZBeNuHcn6cz6FsXGYPN8diw/Gk/b+p5CTq3MdwxbBmAzsQ9as+RRGXEPP2RGz118GIGfRCgAUZmZYfvo++eGXyfzhV9Rp6eg5OaDOyirX+AOdvehWqzkbwg5yIyWOJm4BvNioK78dWIEyJ1PnOgOCOmBhbMra8/tIzkrD3MgUPYVCc7+HXXXO3r5CdHgcBapCWnnWZ3jjbvx2YCXpueUb/12NawQwMKgDi09t40pSDCFeQYxr1Z8pW/8mObvke3RZ6A5Wn9ur+V9PT49PO47gZIz2Z2N2fi6fbJmltawiE3EACzasZ/GmTXz6xpvUdHZhztrVjP3ma1b++BPmpqY61zkZHkbn5i2pN9wPYyNDFmz4l7Hffs2y737E0a7os+zUxXD6d+xMbW9vCgtV/LF8KW99+zXLv/8RUxOTcov/xP4jrPz7Hwa98TJetf04sGUXM6b8wCczvsPO0b5E+ysXLhIQFMhzw/pjZmHO4R17+ePLaUz88XPcvD0AeO2j8RQUFCeqM9My+HrcRzRs2bTc4r5f8XvjADdS4mjsVothjbrx64Hlpb43BgZ1xMLYlDXn95Gcpbzz3ii+gJGVn8veq6dJzEylQFWIv6M7fQLbkJmXXWriuCwO7d7PvBl/8+rbb+AfWJsd/27h6w+mMH3uDOydHEu0z8/Px8rGmr4vDmDjynU6t1mQn89X73+ClY0NE6Z8QDV7e5ISEjAxMyv3+O+q6+JNj9otWH9+P9dTYgmuWZuXmvTg533LUOZk6FxncINOWBiZsfrsHpKy0rC473PqLhsTC7oFNH9gQqy8BFX35fnAEFaf3UNk8i2auwcyqtlzfL/7H1Kzde/H8EbdsDQ2Y3noThIzU7EwNkP/nv3oFtCMRjUCWH5mJ/EZKfg7ujMiuAe/7l9BTFrFXgB5GFNDY64k3WTTxUN83e2NKo3lfkXnjI4sOrWVK4kxtPEKYlzrAXy25W+Ss0t+D1l6egerzu7R/K+vp8ennV7hxD3JXX2FHhNCBpGWm8nMw2tIyU7HztSKnIK8CtmHhq7+9KvXjmWhO7mWHEMrj3qMbtGXr3bMI0XHeW/l2d2su7BfK94POwzXXEgD8LV34+TNi6xIvkVBYSEd/ZowpkU/pu6cX+p7TYiKJN1UhRD/OaNHj0ahUHDs2DFeeOEF/Pz8qFOnDhMmTODIkSNERUWhUCgIDQ3VrJOamopCoWDPnj2aZWFhYXTv3h0LCwucnJwYNmwYiYmJmvvbtm3L2LFjmTBhAvb29nTq1AmATZs24efnh6mpKe3atSMqKkorvqSkJAYPHkyNGjUwMzOjbt26LFmypCKfEp0Ob9xNw3bNadS+BQ6uznR7qR/W1Ww5sf3AA9f79++l1G3ZiBq+nhUa3/LFy+jxfE969n4OD08Pxr07HgcnR9auXKOz/brVa3F0dmLcu+Px8PSgZ+/n6P5cD5b9U/zcfvrVFPr074uvvx/uHu68P3kSKrWKk8dPaNpcOHeelm1a07xVC1yqu9C2QzuaNA3mUnj5JHE7+zdlX2Qo+66Fcjs9iSWnt5OcnUZ774Y622fn55KWk6m5edi5YGZkyoF7rrA396jLhvCDnL19lYTMVHZfPcX52Gt09a+4H+sAxl07kLNuM/knTqO6eYusP+ehMDLCqEVwqesY+HhREHGV/MPHUSUmUXA+nLzDxzHwci/ebq8uqJJTyP5rPoXXooraXbiIKj6x1O0+iRYedTl18xKnbl4iMTOVzRePkJaTQZOatXW297GvgYedC/+c3Mq1pFukZmcQo0wgOjVe02bV2d0cjw4nNj2ZxEwl687vR6FQ4FXNtVxjv1cnvyYciDzLgaizxKYnsfzMTlKy0mnj3UBn++yCPNJyMzU3D1tnzIxMOBh1TqudWq3WapeWqzsJU17UajVLtmxmRO/etG8SjI+bG1PeGE1OXi5bDx0sdb2vxrxF/06d8ffwwKO6K5NffQ21Ss3xC+c1bX6d9CG92rTFu4Ybfu7ufPr6m8QmJRIeGVmu+7Br7WZadGpLyy7tcHFzpf+oYdjYV2Pf5p062/cfNYzO/Xri4eeNY3Vnnh8+EEcXZ84dO61pY25pgbWtjeZ2MfQ8RsZGNGxV+vusrFp41OPUzUucvHmJhMxUNl88TFpOBsEPeW8sPLmFa0kx97w3ii8GRCXfJjw+ioTMVFKy0zly/Txx6cm425S8uFIeNqxYS/tunejQows13N14eewo7B3t2bZ+s872js5OjBj7Gm06t8fMXHdybdfmHWSkZfD+l5MJCKyNg7MjAXXr4OFdcefDVp71OBl9kRM3L5KQmcrG8EMoczJo6q77tfC1d8PTrjrzT2zialIMqdnp3FTGl7gwo0DBgKAO7Ig4QXJWxV1YuyvEuwHHblzg6I0LxGeksO7CflKzM2jhUU9ne38Hd7ztXZl1dB0RidGkZKcTnRqnVRHYyC2AnREnuBh/neSsNA5HneNS/HXa+Oj+7KtMR25cYNbR9ey9FlrVoZTQyS+YA5FnOBBZdM5YdmYnKVlpDzhn5GqdB9w154yzmjatPOthZmTC7wdXczUphuSsNK4k3eSmMl7nNsuqvU8jDked4/D1c8SlJ7Pq3B5SstNpraMnAUBOQR7puVmaW01bZ0wNTTh8vfg8Mf/EJvZHniFGmUBcRjKLT21DoVDg71CzQvbhqaNSPb23/6ckGSeE+E9JTk5my5YtjBkzBnNz8xL329jYPNJ2bt++TZs2bQgKCuLEiRNs2bKFuLg4BgzQroyaP38+BgYGHDx4kD///JPo6Gj69u1L9+7dCQ0N5dVXX+WDD7S7cebk5NCoUSM2bNjA+fPnee211xg2bBhHjx594v1+XAUFBdyKjMa7nnbXKe96AURfLv3H6ek9R0iJS6RNv24VGl9+fj6XL16iSVPtH5tNmgZz/ux5netcOHe+RPvgZk25GHZRq6rkXrk5ORQUFGBlZaVZVrd+PU4dP0H09aLukFcuR3DuzFmatWxell0Ciq4me9i6cCFW+zm+EHsNb/saj7SNEM8gwuIiSbqnis5QT5/8Qu19zCsswNeh9K59ZaXnYI+ejTUF58KKFxYUUHDxMga+3qWuV3D5CgYeNdH38tBsx7B+IPmhxYkgw4b1KLh2HbO3XsNqxg9YfDUZo7atyjV+fYUeLlb2XE3U7tJyJTGGmjZOOtcJcHTnljKRVp71eK/tEMa1HkAX/6YY6OmX+jiG+gboK/TIztddKVhW+go9ato4ExanfUyFxUXi/YgJwJYe9bgYH1WiMtPYwIhvur3Bd91HM7ZlP/6PvfuOb6p6Hzj+Sbr3XkDppqW07FF22RsEVBREBQX5uvdWHD/3QAW3shQQQUAEZMqeZZRZSksp3btN90ry+6OQkjaFQluK+Lxfr7wgt+fePqf3JDc59znneNrXziZqTMmZGWTn5REWWv3l3NTEhM5BbTkRc+4qe+orLSujUl2JrYFrwGWFl7Isba2tbzzgGiorKkmIvUDbTvpDodp2CiEuqn5DMTUaDaUlpVja1B37vi076NKvJ2aNmNF3JSOFkha2zrWy1WKzkvC86msjkz4+HXghfApP1eO14evYAmcrO+Jzrz6s/UZUVlQQdy6WDl31Oxfad+1E9OmoOva6tiP7DhLQLoifv/yOGROn8tz0x1i15Hc06qbJGK06Fy61pjGIzUyqsxOzrZs3yapM+vl25KWBU3m2/z2MCAqrdS4GBnShqLyUI0lNM1rgSkYKJa3sXInO0J9mIDozAW8HD4P7tHP3ITEvnYH+XXhzyHReHjiVMcF99OphrDSiQqN/7atQV+Lj2PjDz28XRgolXg7unEmL19t+Oj0eP+f6XTP6+HQgKl3/mtGhRQBx2clM7jyUz8Y8wVtDH2JkUE8U1M7IbCgjhRJPezeiMvSHI0elX8THqX7nvqdXCNEZFw1m0V1mamyMkVJJcUVpg+IV4kbJMFUhxL9KbGwsWq2WoCDD8/PU17fffkvnzp15//33ddvmz5+Pp6cn586do02bNgD4+/vz8ccf68q8+uqr+Pr6MmfOnKq7aYGBnDx5ko8++khXpmXLljz//PO650888QQbN25kxYoV9OjRtJlMlxXnF6HVaLCys9HbbmVnQ6Gq9hAFgOzUDLYuW8u0t57GyKjuL1iNQZWXh1qtxsFRf7iso5MDOdnZBvfJyc7B0clBb5uDoyNqtZq8vDycnWsPEftu3ne4uLjQpXv1XD9THriPosJC7rtrMkqlEo1Gw4z/zWTwsCENrpeNqSVGSiX5NYY7qEqLCDG/dqeAnbk1oR5+fH9gjd72U2lxDAvswbnMBDIKc2nr5kOnlm0MDktqLAr7qg5MTY32olEVoLzKMOeKA4cpsbHB+s0XAAUKYyPKtu6g7K/quYqULi6YDepP2catFK39GyM/byzun4S2spKKPQcaJX5LU3OMlEoKy/WHjhaVl2BtZng4pIOFDa0d3KjUqFl2bAuWJuaMbtcbCxMz1pzaZXCfIW26kV9aRFwd89g0lLXZpTZVYwhsflkRtuZ1d+hcZmduRYi7Lz8d+ktve1pBDgsPrydZlYm5iRmD/LvyUvh9vLN1ARmFuY1ah8uyLy1y42hnp7fd0c6OtKz6Z0XO+20ZLo6OdA+pPccRVGXgzVnyCx0DA/H3bLwO68L8AjQaDTb2+vHb2tuRX88FfLat2UB5WRld+hi+FsSfO0/KxSTue7L2XGaNpfq1UaK3vbC8BBszwxljjha2tHZwp1KjZumxzViamDOmXR8sTMxZc6p6SLSZsQkvhN+HsdIIjVbDujN765zjqSHyVfloNBrsHOz1tts52JOXk3fDx01PTSPz2An6DA7nlQ9mk5qUws9ffYdGrebO++9tWNAG6M5Fmf65KCgvJsDMcNt1tLTB69K5WHJkE5am5oxr1xcLE3NWndwBQGsHd7q2CmLunpWNHrMhVqYWl+qh/z5VWFaMjbnhNuVkZYePYwsq1WoWRKzHytScie0HYGlqxvLIqkzT6IwE+vt2Ii47mewiFQEunrRz99UbHi30VV8z9DOdC0qLsLuea8bBtXrbna3sCXL14mDCab7c/TtuNo5M7jQUpULJuqi6M5tvrA5V7anm1A8FZUXYmnlfc39bMyuC3XxYeHj9VcuNa9cPVUkhZzOafw5C8d8knXFCiH8V7aUVdxQN7IQ4cuQI27dvx9pA1sT58+d1nXFdu+pP2BwVFUVYWJje7+/ZUz+jSq1W8+GHH7J8+XKSk5MpKyujrKzMYCbfZZfLXMnMzOy661VTrTuWWjB0E1Oj0fDHvEWE3zkSZ4+mzY65Us3zqNVe/dzWvgOrrWN71dxw2zZv4avv5un9Lf/Zso3Nf2/mzf97C29fH2LPxTD38y9xcnFmxOiRN16ZWlHVjPvaq0X18WlPcUWpbkL0y5Ye28KDXUfy/ohZaIGMwlz2XDhucOGHG2XSqzuW06fonhd+Ou/S/2rEfY2XnnHbNpiPG0HJwqVUxl7AyN0Vi/smoblDRdmaDVWFlArUcRcp/X0NAOqLiRi1bIHZoP6N1hl3NXUt3HW57a088Q9llRUAbDx7gEkdB7PuzN5a86n18WlPqIcfCw6tb/K51moGrUBRnyZFT69QSipKiUzWzzy7kJOiN4/U+awkXh/8IAP8OrP8uOEhl9fr7717+ODn6jnp5rzwUnXsV9BqgXq+py/+ay2b9+/lu9ffxKyOOTw/XriA2ISL/Pjm2zcW+DUYfN+qR3ZIxM59rF+6mlmvP1OrQ++yfZt30MKrFd5t6s4+bTy129S1Xhsr9F4b+5nUcQjrzuzRtf/yygq+2fcHpkYm+Dq1YHhQGDkl+cTnNH523JVx6Wi19W1KBmm1Wmwd7Hjk2cdQGhnh28af3Owc1i5f1SSdcbrfW+P51a4Zl9va8shtlF2ar2tD1D7u7TyUtad3o1QoubvDQFaf2nnTM34MRlxHo7pcjyVHN+nmHVt7ejf3dx3JHyd2UKlRs+bULu7uMJCXBk5Fq4XsYhURiVF082zbRDW4fWgN/N3rs2hlL+9QiitK9eZaA1AqFOSXFbH48Ea0aEnIS8fe3JqhgT0avTPuioj1nilQ1OeyR5hXO0oqyjiREltnmcEB3ejSKpAvd//e9NfvW4ShNiGal3TGCSH+VQICAlAoFERFRXHHHXcYLHN5RcwrLzoVFRV6ZTQaDWPGjNHLaLvMw6N6SEXNDrT6XMg+++wz5syZwxdffEFoaChWVlY8/fTTlJfXPcntBx98wNtv639xnD17NoFje13z9xliaWuFQqmslQVXlF+A9RVDNi8rKyklJS6B1PgkNiysmmRfe2m58benPMXUVx7FNyTwhmIxxM7eHiMjo1pZcLk5ubWy5S5zdHIkOzunVnkjIyPsanyxXfbLUn5dsJjPv/4CvwD91WO/+fJrpjxwH4OGDgbAz9+PtNQ0liz8pcGdcQXlxag1GuxqZMHZmlvWOSn6lfr6dGBf/EnUNebPKCgrZu7elRgrjbA2sySvpIC72g8gqyivQfFeqeLocQrOXzEU0rjqI4LSzg51XnU7UtraoK0juxLA/M6xlO89SPmOqg/nmqQUMDPDcvp9lP35N2i1aPNUqFP0v5yrU1Ix6dZ48wAVl5ei1miwNtXPyrAytaCoRkbQZQVlxeSXFuk6GwAyC/NQKhTYmlvpDdnp7R1KX9+OLIrYQHphjqHDNYrCsqo2VTMLzsbMsl5zvPX2DuVAwmnU2qvPyaIF4nPScLOpO+vxevXr3IWQK1Y8Lb/0d81W5eHsUJ3lmpuvwsnOcOfUlX5Z/xcL1q7h61deI6C1l8EynyxawK6jh/nhjbdwc3JqYA30WdvaoFQqyc/N09teoFLV2bl22eHdB/j1q594+OUnCOpYe8U/gPLSMg7vPsDoKRMbK2SD6n5tmNfKJL2svq8NLej+n1aQjYuVA/18OzZ6Z5ytnS1KpZK8HP0sTlWeqla23PWwd3TA2NgY5RXZ4S1btyIvJ5fKigqMTUxu+NiGXD4XNjWyda1NLWply11WfS6qP1NkFOaiVCiwM7fG1MgYR0tbpnapnm7icqflu8NnMmfXbwYXE2qIovKSS/XQb1PWZpYU1FGP/LIiVKWFegsApBfkoFQosLewJqtIRVF5CQsi1mOsNMLS1Jz80iJGte3V6PHfTi5fM2p+DrExt6rnNaM9By7WvmbklRai1mjQXtEdllqQjb2FNUYK5TWvMdejsOxye9K/7lW1p2vXIcwrhEOJZ+qMaZB/V4a26c68vStJyW/cuWqFuB6S4yuE+FdxdHRk2LBhfP311xQV1b4g5+Xl4eJStWpmamr1h/8rF3MA6Ny5M6dPn8bb2xt/f3+9x9Uy2IKDgzlwQD9zp+bz3bt3M27cOO677z46dOiAr68vMTFXn0/olVdeQaVS6T1eeeWVq+5zNcbGxrTw8eT8Cf25Ys6fjMazTe2JqM0szPnfx68w68OXdI+ug3rj1MKVWR++RCt/7xuOxRATExPaBAVy+GCE3vbDhyIIaW/4i2q70BAOH9IvH3HwEEHBQRgbV99bWvbLEhb/vJBPvvqMoODad8/Lykp1HbaXGSmVaBrhjqFaoyE+N5V27vp/42A3H85fYzXBQJfWuNk4svuKhRtqqtSoySspwEihpEuroFp3rhuktAxNemb1IzkVTZ4K45Ar/oZGRhgHtaEy5nzdxzE1BU2Nv6VGo5dRV3nuPEYe+nNTKd3d0GQ1XqeWWqshNT+r1hw5fs4t61yBNiE3HRtzK0yNqtuTs5UdGq2G/Cs6U3t7t6e/X2d+ObyxyT/Iq7UaEvLSCHbz1tve1s37msP/2rh44mbjyJ4LJ65a7jJPe1dUdax6eCOsLCzwdHfXPXxbtsLJ3p6DJ6vnD6yorOTo2SjaB7S56rF+WfcXP69exVcvvkKwb+2sMa1Wy8cL57M94hDfvvYGLV0bP8PX2MSY1v4+RB3Tn9fybOQpfNsG1LlfxM59/PLF90x7/lFCr9LhfGTPQSorKuke3rvRYjZErdWQYvC10UpvQYYrJeSm1XptOBl4bdSkUHDVeeVulLGJCb5t/Dlx5Jje9hNHIglsd+NZU4EhwaQlp6K54oZIalIKDk6Ojd4RB5fPRSb+zvpDUv2dW3IxL83gPhdz07Axt6zxPmWPRqtBVVpIZlEeX+5azrw9K3SPs+nxXMhOrlpJuhFf41fWI0mVQZsaE+G3cWld55yB8Tkp2JpZYWpU/Xd1sXZAo9XUWn21UqMmv7QIpUJJ+xb+nEqLa/Q63C7UWg0Xc9NoW+OaEezmXWsO1ZraXPocssfA55DzWUm4Wjvo5QC7WTuSV1LQqB1xUFWHxLx0glz1b7oEuXpxIfvqKwMHOLfC1dqB/TUWLLpsUEBXhgeF8c2+VU26Gr0Q9SGdcUKIf51vvvkGtVpN9+7d+eOPP4iJiSEqKoqvvvqKnj17YmFhQVhYGB9++CFnzpxh165dvP7663rHeOyxx8jJyeHee+/l0KFDxMXFsXnzZqZPn476KhM1z5o1i/Pnz/Pss88SHR3N0qVLWbhwoV4Zf39/tmzZwr59+4iKiuKRRx4hLc3wh+rLzMzMsLW11Xs0dJhqz1EDOLp9P0e37yczOY2Ni/9AlZVD18FVE+VvXbaWVd8sBqqyCd08W+g9rOxsMDYxwc2zBabmDR8yW9Pdkyex7s+/WL92HfEX4pn7+ZdkpKUzbuJ4AL6f9y3vzX5XV37chDtIT01j3pyviL8Qz/q161j/5zom3Vc9dGjp4iX89O2PvPTmK7h7eJCdlU12VjbFxdXZHr369OaXBYvYv2cfqSmp7Nq+k+VLl9M3vF+j1Gtz9EH6+XSkr08HPGycuKfjYJws7dh+/igAd4aG83CPMbX26+fbkfPZySSrMmv9zNexBV1aBuJiZU+AsyfP9r8HhULBhrP7GyXmupRt3Ib52BGYdO2IslULLB95EG15OeX7DunKWD7yIOZ336F7XnnsBGaD+2ES1hWlixPGIW0xv3MsFUdP6MbIlG3cipGfL2ZjR6B0c8GkZzfMBvSlbOuORo1/X/xJOrcKpFPLNjhb2TM8KAw7c2siEqomeB/cphsTQsN15U+mxlJSXsodof1xsbLHy8GdoYE9OJp0TjeMpY9Pewa16cqaUzvJKynA2tQCa1MLvS/GjW3LuQj6+HSgt3co7jZO3N1hII6WtrpV/MaH9GNat1G19uvj3Z647BSDHYaj2/Ym2M0HZys7Wtm58kCXEXjauzbpyoAKhYJ7h49gwdo1bI84RGxiIm9/9w3mpmYM61XdATX726+Z91v1KsmL/1rLtyuW8+bMWXi4uJCVl0dWXh7FpdVD8D5aOJ+/9+7h3ceewNLcQlem9CoZyTdi4B0j2LdlB/u27CQ1MZmVP/5KbmY2fUcMAmDNouUs/Pw7XfmInftYNOd7JkyfjE+QP6rcPFS5eZQU1c5A27dlBx3CumBta1PrZ41tX/wJurQKovOl95URQT2xM7fm0KXXxpA23Zh4xWvjxKXXxvjQcN1rY1hgD44mReteG/18O+Ln1BIHCxucrezo5R1KxxZtOJ5Sv8Utrtfou+5g24Yt/PP3FpIuJrLw6x/JSs9kyJiqjLClPy5i3gef6+0THxtHfGwcpSWl5KtUxMfGkRRfvejA0LEjKMgvYOG8H0lJTObogQhWL13BsHGNM4WBIXsunKCrZxBdWlWdi5Fte2FnYcOhi1WL5wwN7M6d7Qfoyh9PiaG4vIyJ7Qfgau2At4MHI9qGcSSx6lxUatSkF+bqPUoqyymrrCC9MLfRO04u23X+GD282tHdMxhXawfGtuuLg4W1rlNkZNte3Nupem7Wo0nnKK4o5Z5Og3GzdsTXsQVjgntzKOGMrk21tncj1MMPR0tbfBxbMDNsHAoUbI890iR1uB4WJmYEOLci4NLiTC1snQlwboWbtcM19mx6W84doq9vB3p7t790zRh06ZpR1Xk9PqQ/07uNrrVfH5/2xGUnG7xm7Dh/DGtTc+7pOAQ3awdC3f0Y2bYn22OPNkkd/ok9Qi/vUMK8QnCzcWRCaDiOlja6G5Zjg/swtcvwWvv19ArlQk4KqQW15x8eHNCN0W17s+ToJrKLVdiYWWJjZqnXIXxbuzTi5ZZ8/EfJMFUhxL+Oj48PR48e5b333uO5554jNTW1apL+Ll349ttvgarFGKZPn07Xrl0JDAzk448/ZujQobpjtGjRgr179/LSSy8xbNgwysrK8PLyYvjw4bWypq7UunVr/vjjD5555hm++eYbunfvzvvvv8/06dN1Zd544w0uXLjAsGHDsLS0ZObMmdxxxx2oVKqm+6MYENKzC8UFRexctZHCvHxcPT2Y8tL/sHepGoZWkKdCldU0E7XXx6Chg8lX5bPopwVkZ2Xj4+fLR198irtH1Qpy2VnZpKdV37Vs0bIFH3/xKXPnfMXqFatwcnHmqeefJnxg9ZeUNStXUVFRwZsv6Xe+PjhjOtNnPgTA0y88w0/f/cjnH31Kbm4uzs7OjJ0wjgcfntYo9TqUGIWVmSVj2/XBztyaZFUmc3b/plsd1c7CGidL/SFtFiZmdGkVxNJjmw0e08TImPGh/XG1dqC0spwTqbH8eGBtk63geVnZuk0oTE2weHAyCktL1OcvUPjRl1Ba/XuVzo56H6RK12xAqwXzu8ahdLBHm19IxbETlK5YoyujjrtI0RffYjFpPOZ3jEKTmUXJr79TcUUnX2M4lRaHhYkZ4f6dsTGzJKMgh1+PbER1aYENGzNL7CyqM2HL1ZUsOryBUW178Uiv8ZSUl3IqLY5tMYd1Zbq1DsZYacQ9nfQX/Ngee6TJvpQcTjqLlakFo9r2xs7cipT8LObuWaEbqmVnbo2jpf7wcwtjUzq3DOS3OuZ/szQ1Y2rnYdiaW1FSUUZiXgaf7FjaJCtfXun+0WMpKy/no4XzKSgqop2fP3NffhUri+phemnZWXpzga3cupmKykpe+nKO3rFmTJjIzIl3AfDH1i0AzPq/d/TKvDlzFmP6hzda/F37hlGUX8CG31aTn5OHh1crHp39Ak6uVQvI5OfkkZtZ/UV2z8Z/0KjVLP9uEcu/W6TbHjawL/c/84jueXpyKufPnOOJd15qtFiv5lRaHJYm5rrXRnpBDr8c+Vv32rA2s8TOonqYW7m6koWH1zOqbW9m9Zqge21sjanOVjYxMmZMcB9sza2oUFeSVZTHyhP/NFkWU68BfSnIz+ePxb+Rm5ODp7cXr3wwGxf3qqzI3JwcsjL0b268OPMp3f/jzsWyZ9tOXNxc+XrZzwA4u7rw+sfvsOibn3jh4SdwdHZixIQx3HFP0w0dPpl6HksTcwb6d606F4U5LIrYQJ7ufcoKe4vqDtpydSULDq1jdLs+PNp7AsXlZZxMPc+Wc437/nm9IlNisDQ1Z0hgd2zNrEgtyOanA2t1q1namlnWqEcF3+9fw/jQ/jzdbxLFFaVEpsTwd1T1TSZjI2OGB/XEydKW8soKojLiWXp0s97Q1uYS5OLFvPHP6p4/2afqvWhD1H7e+2dRXbvdFIeTzmJtZsHo4Oprxle7q68Z9haGrhlmdG4ZyPLIrQaPmVtSwJxdy5nUcRCzhz5EbkkB22IO8/fZppnn9WhyNFam5owIDMPW3IrU/Gy+2bequj2ZW+FooV8Hc2NTOrYIYOXJ7QaP2denAyZGxjzcY6ze9g1R+5r85qYQhii0MpOfEELcspYdNdw5829yb+ehpP/L5+Rws3Vm2vL3mjuMBlsw6TXy7nvk2gVvYfa/fs+bG3+8dsFb3DvDZzBzZe05K/9tfrjzJfIPH7t2wVuYbddObDsXce2Ct7hBbbrxxsYfmjuMBnl3+EyON+bw+2bSoWUbXt3w3bUL3uLeHzmL59Z+1dxhNMhnY5+k99ezmjuMBtv72HfMWPFhc4fRID/e9TKPr/6sucNosHnjn2vuEG5I3hu37udY+3dfa+4QmoVkxgkhhBBCCCGEEELcrmrO5yuancwZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidtVEKymLGyeZcUIIIYQQQgghhBBC3CTSGSeEEEIIIYQQQgghxE0iw1SFEEIIIYQQQgghbldaWU31ViOZcUIIIYQQQgghhBBC3CTSGSeEEEIIIYQQQgghxE0iw1SFEEIIIYQQQgghblcaGaZ6q5HMOCGEEEIIIYQQQgghbhLpjBNCCCGEEEIIIYQQ4iaRYapCCCGEEEIIIYQQtytZTfWWI5lxQgghhBBCCCGEEELcJNIZJ4QQQgghhBBCCCHETSLDVIUQQgghhBBCCCFuV1pNc0cgapDMOCGEEEIIIYQQQgghbhLpjBNCCCGEEEIIIYQQ4iaRYapCCCGEEEIIIYQQtyuNrKZ6q5HMOCGEEEIIIYQQQgghbhKFVquVLlIhhBBCCCGEEEKI21Dec683dwh1sv/s/5o7hGYhw1SFEOIW9uE/i5s7hAZ7eeD9nE2/0NxhNEiQmw93Ln6tucNosJX3v0feQ080dxgNYv/zXF5a/01zh9FgH416lDsWvtzcYTTYmgc/JCM/u7nDaBBXWyeWHt3U3GE02OTOw3hi9efNHUaDzB3/LKtO7GjuMBpsQvtwHlv1aXOH0WBfT3ie6b+/39xhNMj8u19lxooPmzuMBvvxrpfp/fWs5g6jQfY+9h3Tlr/X3GE02IJJ/9LPg5KDdcuRYapCCCGEEEIIIYQQQtwk0hknhBBCCCGEEEIIIW4bubm5TJ06FTs7O+zs7Jg6dSp5eXlX3UehUBh8fPLJJ7oy4eHhtX5+zz33XHd8MkxVCCGEEEIIIYQQ4nb1HxymOnnyZJKSkti4cSMAM2fOZOrUqfz111917pOamqr3/O+//+ahhx5i4sSJettnzJjBO++8o3tuYWFx3fFJZ5wQQgghhBBCCCGEuC1ERUWxceNGDhw4QI8ePQD48ccf6dmzJ9HR0QQGBhrcz93dXe/5n3/+yYABA/D19dXbbmlpWavs9ZJhqkIIIYQQQgghhBDipisrKyM/P1/vUVZW1qBj7t+/Hzs7O11HHEBYWBh2dnbs27evXsdIT09n/fr1PPTQQ7V+tmTJEpydnWnXrh3PP/88BQUF1x2jdMYJIYQQQgghhBBC3K40mlv28cEHH+jmdbv8+OCDDxpU3bS0NFxdXWttd3V1JS0trV7HWLRoETY2NkyYMEFv+5QpU1i2bBk7duzgjTfe4I8//qhVpj5kmKoQQgghhBBCCCGEuOleeeUVnn32Wb1tZmZmBsu+9dZbvP3221c9XkREBFC1GENNWq3W4HZD5s+fz5QpUzA3N9fbPmPGDN3/Q0JCCAgIoGvXrhw9epTOnTvX69ggnXFCCCGEEEIIIYQQohmYmZnV2flW0+OPP37NlUu9vb05ceIE6enptX6WmZmJm5vbNX/P7t27iY6OZvny5dcs27lzZ0xMTIiJiZHOOCGEEEIIIYQQQgjBbbOaqrOzM87Oztcs17NnT1QqFYcOHaJ79+4AHDx4EJVKRa9eva65/88//0yXLl3o0KHDNcuePn2aiooKPDw8rl2BK8iccUIIIYQQQgghhBDittC2bVuGDx/OjBkzOHDgAAcOHGDGjBmMHj1abyXVoKAgVq9erbdvfn4+K1as4OGHH6513PPnz/POO+9w+PBh4uPj2bBhA3fddRedOnWid+/e1xWjdMYJIYQQQgghhBBCiNvGkiVLCA0NZejQoQwdOpT27dvzyy+/6JWJjo5GpVLpbfvtt9/QarXce++9tY5pamrKtm3bGDZsGIGBgTz55JMMHTqUrVu3YmRkdF3xyTBVIYQQQgghhBBCiNuV5vYYpno9HB0d+fXXX69aRmtg+O7MmTOZOXOmwfKenp7s3LmzUeKTzDghhBBCCCGEEEIIIW4S6YwTQgghhBBCCCGEEOImkWGqQgghhBBCCCGEELer22Q11duJZMYJIYQQQgghhBBCCHGTSGecEEIIIYQQQgghhBA3iXTGCSH+0xQKBWvWrLltfo8QQgghhBBC6NFqbt3Hf5TMGSeEELeJqJ2HObXlACWqQuw9XOh+1xDcA1obLJt67iIb59Re6nv87Eewd3cG4O/PfyEtJqFWmVYhfgx57J7GDf4KG1b/xeplK8nNyaG1txcPPTGLdh1CDJbNycpmwTc/EhsdQ2pSCqMnjuPhJ2fpldn8199s37SVi3EXAfAL9GfqjGm0CQ5ssjoMC+zB2OA+OFjakJiXwcKI9URlXKyzfF+fDoxr1xcPWyeKy8s4lnKOxUf+prCsBIBwv0483vvOWvvd++tsKjSVTVYPAPOxIzDt3xuFpQXquIsUL/kdTUraVfcxGxyO6YA+KB0d0BYWUX44ktI/1kJlVaym4X0wC++D0tkRAHVKGqVrN1J56kyjxx/m1Y7+vp2wMbMkvTCHv07vJT43tc7yRkolgwO60alFG2zMLFGVFvJP7BEOJ53VlTE3NmVYYA9C3H2xMDEjt6SAdWf2Ep1Z+/XSWEYEhnFHSL+qNpWbzs+H1nEmI77O8v18OzI+pD8tbJ0oKi/lWPI5Fh7eQEFZsa7MmODeDA8Mw9nKnoKyIvbFn+KXoxupUDdOm1q94g+W/bqU7KxsvH19ePLZp+jQqWOd5Y8dOca8L74iPu4CTs7OTL5/CndMHK/7+YXzcfz8/U9Enz1LWmoaTzzzFHdPnqR3jOKiIn767kd27dhJbm4ubdq04cnnnqZtu+BGqVNdIjbvZt+6bRTk5ePayp1h90/EK8jvmvslRMex8J2vcPX0YNaHLzVpjDX19enAoICu2JpbkZqfzaqTOzifnWyw7H2dh9HDq12t7an5Wby/bTEAvbxD6e7ZFg/bqmtIYl46f53Zy8Xcq79fNMT+TTvY/edmCvJUuLZqwehpd+PTNsBg2fioWDYuWUVGchoVZeU4uDjSfUg/+owerFeupKiYzcvWcPrgMUqKinFwdWbk/XcS1Dm0yerR17cjgwO6YWduRWp+FitPbK/zXEztMpwwr9rXxNT8LP5v60IAOrQIYFhgD1ys7DFSGpFZmMu2mMMcSmz899grDfDrzPDAMOwtrElWZbIscisxWYkGy07vNpo+Pu1rbU9WZfLGph91z4cEdGOAX2ccLW0pLC/hcNJZVp7YTqVG3SR1CPfrxLDAHtiZW5OSn8XyyK3EZCUZLDut2yh6edduFymqTGZv/ln33MLEjPEh/ejUMhArU3OyivL4/fg/nEqLa5I6XI8OHv5M7jSUINfWOFvZ8/KGb9l94XhzhwXAAP8ujLiiPS09tqXO9vRQ99H08elQa3uyKpPXN/6gez6kTTcG+HXB6VJ7ikiMatL2JMTVSGecEELcBuIOn+HQii30vGc4rn6eRO8+ypavf2P8m49g7WhX534T3pqFibmZ7rm5jaXu/wMfuRN1ZfWHk7KiEv5870e8O7dtmkoAu7ft5Oe53/PIs4/RNqQdm9Zu4J0XX2fe4h9wcXOtVb6iogJbOzvumnova1esNnjMk8dO0HdQODOeCsbU1JRVy1bw1vOvMnfR9zi5ODd6HXp5h/Jg15H8dPAvzmZeZEhAN14d9ADPrP2SrCJVrfJBrl483vtOFh3ewOGkszha2jKzxzj+13MCn+xYoitXVF7KU2vm6O3b1B1xZiMGYzZ0AMXzl6BOz8B89DCsn3uc/NfehdIyg/uY9OiK+Z1jKV6wBHXsBZTurlhOvw+A0uWrANDk5lHyx1o0GZkAmPbqgdUTMyh4+6NrdvRdj/Ye/owJ7sOaU7u4mJtGj9bBTO8+ms93LiOvtNDgPlM6DcPGzIKVJ7aTXazCytQCI2X1QAIjhZKHe4ylsLyEX49uQlVaiL25NWWVFY0Wd029vdszvftovj/wJ2cz4hkW2IM3hkzjiTWfG2xTbV29eKrP3cyPWEdEYhROlrbM6jmex3pN5MPtvwBVnXVTuwxn3p6VnM1MoIWtM0/2uQuA+RHrGhzzts1b+erzL3n2pecJ7dCetavW8MJTz/HL70twc3evVT4lOYUXn36OMXeM5Y13ZnPy+Ak+/+hT7B3sCR84AIDS0lI8WrYgfPAA5n7+lcHf+9H/fUjc+Thef/tNnF1c2Pz3Rp557Cl++X0pLq4uDa6XIaf2H2Xj4lWMmn4XnoG+HNm6lyUffstjn76K3aUOZ0NKi0tY880v+Ia0oVBV0CSx1aVzyzZMaB/O75HbiMtJobd3e/7XazzvbV1EbkntWFae2M6fp3frnhsplLw8aCrHkmN02/ydW3EkKZq4nO1UqisZ1KYbj/aawPvbFqOq4/XWECf2RrB+we+MmzEZr0A/Dm7ZxcL35vLMnLewd6n9dzc1NyVseDgeXq0wNTMl/mwsq39YgqmZKd2H9AOgsqKSn9/9AmtbGyY/9wh2Tg6osnIxszCrdbzG0rllIHe2H8DyyK2cz06mj08HHus9kXe3LDB4LlYc/4c/T+3SPVcqlbwy8AGOJp/TbSsuL2VT9AHSCnJQa9SEuPtxX5fhFJQVE3WVTvyG6ObZlns7DuGXoxuJzUoi3K8Tz/SdxOubfiCnOL9W+WWRW1h5crvuuZFCydtDH9K78RHWuh13th/A/Ih1xGYl427jyEPdRwPwW+TWRq9D11ZBTOo4mCVHNxGblUx/34482fduZm/8iZyS2nX47dhW/jixo7oOSiVvDpnO4aRovXo92+8e8suK+G7/anJLCnC0sKW0srzR478RFiZmxGYnseHsPt4fMevaO9wk3T3bMvlSe4rJTCTcvzPP9ruH1zZ+b7A9LT22hRUn9NvTO8MeJiIxSrctzKsdd7UfyPxD64jJSqpqTz3GAE3TnoS4FhmmKoS4ZYWHh/P444/z+OOPY29vj5OTE6+//jraS6sB/frrr3Tt2hUbGxvc3d2ZPHkyGRkZAGi1Wvz9/fn000/1jnnq1CmUSiXnz583+DtPnjzJwIEDsbCwwMnJiZkzZ1JYWP0lIiIigiFDhuDs7IydnR39+/fn6NGjeseIiYmhX79+mJubExwczJYtWxrzz2LQ6W0HCejVkTZ9OmHv4UyPu4di5WDL2V1Hr7qfuY0VlnbWuofyik4HMysLvZ+lRF3A2NSkSTvj/vx9FYNHDWPo6BF4erfm4Sdn4eziwt9rDHcOuHm4M+Op/zFw+GCsrCwNlnnuzZcYOX4MvgF+tPLy5LEXnkKj0XL8SGST1GFM2978E3uEbbGHSVZlsvDwBrKLVAxt08Ng+TbOnmQW5bLh7H4yCnM5m3GRLTGH8HNqUaOklrzSQr1HUzMbHE7p+s1UHD2OJjmV4p9/RWFqgmmPrnXuY+znQ2VsHBUHj6DJzqHy9FnKDx7B2Ls6S7Py+CkqT55Bk56JJj2T0tXr0JaVYezr3ajx9/XpQERiFBGJUWQU5vLXmb2oSgsNZpUAtHHxxNepBfMj1hObnURuSQFJqgy9zJ6unm2xNDFj8eG/uZibRl5JIfG5aaQWZDdq7Fca164PW2MOszUmgiRVJj8fWkdWkYrhgWF11KM1mYW5rI/aR0ZhLlEZF9kcfQh/55a6MoEurTmbfpFdF46TUZhLZEoMu+OO65VpiOVLf2PUuDGMuWMs3j7ePPnc07i6ubJ6peFO8z9XrcbN3Y0nn3sabx9vxtwxllFjR/Pbr0t1Zdq2C+axpx5n8NAhmJqa1DpGWWkZO7fv4H9PPkrHzp1o5dmK6TMfxqNFC9b8sapR6mXIgfXb6TQgjM4De+HS0p3hD0zEzsmBiC17rrrfup+WE9K7K60CvJsstroM8O/C/vhT7L94ivSCHFad3EFuSYHBzBKA0spyCsqKdY/WDm5YmJhz4OIpXZnFh/9m94XjJKsySS/MZdnRLSgUCgJdPJukDrvXbaXrwN50G9QH11YejJk2CTtnBw5s3mmwfAuf1nTs0x03zxY4uDrTqV8YbToEcyEqVlfmyPa9lBQWMfXFR/EO8sfBxQnvtv54eDdNHQAGBXRlf/xJ9sWfJL0ghz9ObCe3uIC+vh0Nli+tLCe/rFj3aG3vjqWpOQfiq89FTFYix1NiSS/IIatIxY7zR0nOz8SvkV7fhgxr053dF46z+8JxUguyWRa5lZySfAb4dTZYvqSijPzSIt3D28EDS1ML9lyRleXn1JKYrCQOJpwhu1jF6fQLHEw4g7eDR5PUYUib7uy5cJw9F06QVpDN8uPbyC3Op79fJ8N1qCwjv6xI9/ByqDoXe+NP6Mr08WmPpak53+xdxfnsZHKK84nNTiJJldEkdbheBxJO8+PBteyMi2zuUPQMDezBrguR7IqLrGpPx7aQU5LPwPq2J8fa7cnfqRUxWYkcSDh9RXs6jY9j07SnW45Ge+s+/qOkM04IcUtbtGgRxsbGHDx4kK+++oo5c+bw008/AVBeXs67777L8ePHWbNmDRcuXODBBx8EquZomz59OgsWLNA73vz58+nbty9+frWHDxUXFzN8+HAcHByIiIhgxYoVbN26lccff1xXpqCggAceeIDdu3dz4MABAgICGDlyJAUFVXevNRoNEyZMwMjIiAMHDvDdd9/x0ktNO/RIXakmOyGVlsE+ettbtPUlI87w0IrL1r7/E7+99AUbv1hCanT8Vcue2xeJT9dgTMxMGxqyQRUVFZw/F0PHbvoftDp268zZU1F17HX9ysrKUFdWYmNr02jHvMxYaYSvUwuOp8TqbT+eGkugi+Ehw9GZCThZ2tGpZRsA7MytCGsdwtGkc3rlzI1N+XbC83w/8UVeGTi1yT88Kp2dUNrbUXm6OkuBykoqo2Mx9vOpc7/K2PMYe3li5OOlO45JaDAVJ04b3kGhwKR7ZxSmplSej2+0+I0USlrauRCTqT+k5VxmIl4Obgb3CXbzIUmVQX/fTrw66H6e7z+ZUW17Yaw0uqKMNxfz0rkjpC+vD36QZ/pNYoBfZxQoGi32KxkrjfBzaklkSoze9siUGIJcvQzuczbjIk5WdnRpWTUU287cmp7eIXoZJ1EZ8fg5tyTAuRUAbtaOdG4VqFfmRlVUVHDubDTde3TX296tR3dOnThpcJ/TJ0/RrUb57mE9OHvmLJWV9csAVasrUavVmJrqZzGZmZtyIvJEHXs1jLqykpQLifi1D9Lb7ts+iKRzF+rc79iOA+SmZxE+cXiTxHU1RgolnvZunK0xdP5s+kV8at0EMCzMK4TojIsGM7cuMzU2xkhpRFFFaYPiNaSyopKUuAQCOugPPw5oH0xCtOGbbTWlXEjgYnQcvu3a6LadOXyC1m18+fOnpbz38PN88ezbbF+1AY26aeY0unwuamarRWXE4+tYv3PRyzuU6IyLBjO3Lgt0aY2btSOxdQy3bCgjpRIvBw9Op+sPuzyddgF/p1b1OkZf3w6cSb9A9hVZTzFZSXg7uOuudy5W9oR6+HEiNbauw9wwI4USLwd3zqTF620/nR5f707MPj4diEqP18vc6tAigLjsZCZ3HspnY57graEPMTKoZ5NdM24HRkol3g4enE7Tfw89nRaHn3P92lM/n4612tO5zES8HTzwufTacrGyp72Hf63PbELcLDJMVQhxS/P09GTOnDlVd9cDAzl58iRz5sxhxowZTJ8+XVfO19eXr776iu7du1NYWIi1tTXTpk3jzTff5NChQ3Tv3p2Kigp+/fVXPvnkE4O/a8mSJZSUlLB48WKsrKwAmDdvHmPGjOGjjz7Czc2NgQMH6u3z/fff4+DgwM6dOxk9ejRbt24lKiqK+Ph4WrWq+sDw/vvvM2LEiCb6C0FZYTFajRZzG2u97RY2VpSoDGdPWdpa02vKSJxau6OpVHP+4Ek2frmEEc9MNTjPXGZ8MnkpmfSZOqpJ6gCQr8pHo9Zg7+Cgt93e0YHcnJxG+z2Lv5uPo4sTHboYvtPdEDZmlhgpjWoNyVKVFGLfwtrgPtGZCXy5+3ee7XcPJkbGGCuNiEiM4udDf+nKJKuymLf3DxLy0rE0MWNk21783/CZPPfXPNKaKCNLYWcLgCZf/wueJr8ApVPdQ+8qDh2lxNoa65efBhQojI0o276bsr/1M0SVLT2wefU5MDGGsjKKvv4JTWrjDVG1NDXHSKmksLxEb3thWTE2ZoazXBwtbPF28KBSrWbx4Y1YmZpzR0g/LEzMWHlp+IujpS1+FjZEpsSw4NB6nK3sGBfSD6VCybbYw40W/2WX21RejU4PVUkBDhZtDO4TnZnA57t+4/nwybo2dTDhDD8eWKsrs+fCCezMrHl/xCwUCgXGSiP+PrufVScNZxVdD1VeHmq1GgdH/Xbi4ORITrbh13J2dg7da7QrB0dH1Go1eXl5ODtfe0i5pZUVIaEhLPp5Ad4+Xjg4OrJ10xbOnDpDK8+myWwqzi9Cq9FgbaffuW9tZ8P5OoaeZqdmsG3ZX0x76ymURkYGyzQlK7OqodcFZUV62wvKirE1M5xhfCVbMyuC3XxYdHjDVcuNbdcXVUkh0RmNP5dicUEhGo0Ga3tbve3W9jYU5NXdKQXwwSMvUZRfiEatZtDdY+g2qI/uZ7npmcSdyqZjnx48+MoTZKVl8OdPy9CoNQy6a3Sj18P60rnILy3W215QVoytudU197c1rzoXCyPW1/qZubEp74+chbHSCI1Wy/LIrbU6YBuLjaklRkolqlL9NpVfVoRdPephZ25FqLsfPxz4U2/7ocQz2JhZ8sqA+0FRdXPin9gjbDi7v1HjB7A2q6pDfs3XRWn96xDi7stPB9fqbXe2sifI1YuDCaf5cvfvuNk4MrnTUJQKJeui9jZqHW4Xl9tTfs3PUqVFhJgb/ix1JTtza0I9/Pj+wBq97YcSz2BjbsmrA5u+PQlRH9IZJ4S4pYWFhaFQVN897NmzJ5999hlqtZoTJ07w1ltvERkZSU5ODhpN1Z3rhIQEgoOD8fDwYNSoUcyfP5/u3buzbt06SktLueuuuwz+rqioKDp06KDriAPo3bs3Go2G6Oho3NzcyMjI4M033+Sff/4hPT0dtVpNcXExCQkJumO0bt1a1xF3OeZrKSsro6xMfw4uM7Prm6NGUesmq1bvb3clO3cn7NyddM9dfVtRlJvPqS0HDHbGndt7HPsWLrh4N90Ql8tqhqzV1l2P67Vq6Qp2b9vBe199jGkTZfgBuqHUOleJv5WdC9O7j2bFiX84nhyDvaUN93cZwcywcXy7v2pIX0xWot6kxWczEvh49GOMDApjvoEvYTfCpEdXLO+vXpij8MvvLlWmRkGFAmrW7wrGgf6Yjx5Gya+/UxkXj5GrCxb3TkQzehhl6zbpymnSMih4+0MUFhaYdOmI5UP3UfjRV43aIQeGz0Vd0V9uZ79FbtXN57Muah/3dR7GmlO7qNSoUaCgqLyEP07sQIuW5PxMbM2t6OfbsUk64+qkUKCtoyat7FyZ0WMsyyO3cSzlHA4WNjzYdST/6zmeefv+ACDE3Zc7Owzg+wN/EpOZgLutMw93H0Nu+wJ+P/FPY4WoT6u92kuhVqbI5fpdTwbJ6++8yQfvvM/4keMwMjKiTWAbBg8bwrnoc9feuUFqxK7V1twEVGVPr5q3mPA7R+DkUXsezJvpRgcG9fAKpqSijBNXySYZFNCVLq2C+Gr37zd3YnTtVd9uAXjknRcoLy0jISaOjUtW4+TuQsc+VVmZGq0WK1sbxj9yH0ojJS39vMjPyWP32s1N0hmnF3itLdc+Q2Gt21FSUcrxGpmzAGWV5XywbTFmxiYEungxITScrCJVnRPgNwUF9Wtnvb3bU1xRytGUaL3tgS6tGd22F78c3UhcTgpu1g7c23EIquBC/jrTNB1Zta4ZXPWSp9PLO5TiiqrFcq6kVCjILyti8eGNaNGSkJeOvbk1QwN7SGfcNdT6+FHPFtXH51J7Sq7dnsa07V3VnrKTcbV2ZHKnIeQF9+GvM1efVuC2UJ+GLG4q6YwTQvwrlZaWMnToUIYOHcqvv/6Ki4sLCQkJDBs2jPLy6klxH374YaZOncqcOXNYsGABkyZNwtLS8J3/q3X6XN7+4IMPkpmZyRdffIGXlxdmZmb07NlT9zsNfYirT0fSBx98wNtvv623bfbs2Zj3873mvmbWliiUCkry9e8glhQUY2577bu5l7n4tOT8oVO1tleWV3Dh8Bk6jelX72PdCFs7W5RGSnJzcvW2q3LzamXL3YjVy1ay8tffePvzD/D2u/bf9UYUlBWj1qixt9DPkrEztyKvxHCW4viQ/kRnXGTt6aoPghfz0vmxci3/N3wmyyK31sqIgqovaeezk3SrFjaGiuMnKXg7vnqDcdVHBKWdLWpVdaaJ0sYabX7dQ9PM7xhN+f5DlO+uutOsSU4FM1Ms77+XsvWbqz8MqtVoMrKq/nsxESMfL8wG96fkl+WNUp/i8lLUGg02NTJ9rE0tKCwrNrhPQVkRqtIivYm1MwtzUSoU2Jlbk12soqCsCLVWo/dFOaMwF1tzK4wUStTaxh3OVnebsq6zTd3ZPpyojHjWnK6a5P1ibhrfH1jDByP/x5Jjm8ktKWBypyHsOH+UrTERVWXy0jE3NuHRXhNYcWJ7vToC6mJnb4+RkVGtLLjcnNxa2XKXOTk5kpOtn+WZl5OLkZERdvZ1L0JTU8tWrZj3wzeUlJRQVFSEs7Mzs195A48WTTOs29LWCoVSSaFKPxurKL8QawND4ctLSkmJSyA1PokNC1cCl64bWi3vTHmaqa88ik+I4YzHxlJUVoJao8HWTP/6YGNmSX4dr40rhXmFEJF4ps62PtC/C0PbdGfe3j9Iyc9qlJhrsrSpmuO0sEYWXKGqAGs72zr2quLoVvW+6e7VkkJVPtt+X6frjLO1t0NpbITSqHomH9dWHhTk5VNZUYmxSeN+dSq8fC7Ma5+LgtJrn4ue3qEcSjB8LrRAZlEeAEmqTNxsHRka2L1JOuMKyotRazS1MshszKzIr5EtZ0hfnw7sv3gKtUa/HuND+rPv4ind6p7JqkxMjUx4oOtI1p3Z24B3qdoKyy7XQT/zysbcqla2nCG9vdtz4OLpWucir7QQtUb/mpFakI29hXWTXDNuB9XtSf9c2Jpb1sq+NKSvTwf2xZ+s1Z4mhPZn38WT7Lo0P16SKhMz48vtaU+jtich6kPmjBNC3NIOHDhQ63lAQABnz54lKyuLDz/8kL59+xIUFKRbvOFKI0eOxMrKim+//Za///5bb2hrTcHBwURGRlJUVH2h37t3L0qlkjZtqr4c7d69myeffJKRI0fSrl07zMzMyMrK0jtGQkICKSkpum379187/f2VV15BpVLpPV555ZVr7gdgZGyEU2sPUqL059ZIibqAq2/95tYAyE5Mx8K2dvr/hSNn0FRW4tfd8KT3jcXExAS/NgEcP3xMb3vk4WMEhTRs0YhVy1bw++KlzP7k/wgIarovupUaNXHZKbRv4a+3vb2HP9GZhodqmRmboKnxEfBylufVunG9HTyuOl/TdSstQ5ORVf1ISUOTp8I4OLC6jJERxoH+VJ6vey4sTE1q333VGM4S0qMAhUntSflvlFqrIVmVSUCNyeMDnFtxMTfd4D7xOWnYmltialT9hdvZyg6NVqMbehyfm4aTpZ1edZyt7MkvLWqSL1WVGjXns5PpWKNNdWzhX+eQMzMj01o3BjQ1npsZmdRRRnHNzKJrMTExoU1QIBEHD+ltjzgUQUj7UIP7tAsNIeJQhN62QwcPERQchLHx9XeAWFhY4OzsTEF+PocOHKRvv77XfYz6MDI2poWPJ3En9DMw4k6epVWb2nMrmlmY87+PX2bWhy/qHl0H9caphSuzPnyRlv6G5wFsTGqthsS8dIJc9bOgA129uJCdUsdeVfydW+Fq7cD++No3bqAqI254UBjf7ltNYp7h11ljMDYxpoVva2JO6M8nGnsiitaBteeErYtWi96chF5BfmSnZeregwGyUtKxcbBr9I44uPJceOttD3L1Ji7n6uciwNkTV2sH9l00fC5qUqDAWNk0eRhqjYaLuakEu+m3+XZuPsRmX32eukCX1rjZOLI77nitn5kaGde6MaDVaqvefxspY/4ytVbDxdw02rp5620PdvPmfFbyVfdtc6kOVy4WcNn5rCRcrR30rhlu1o7klRRIR1wd1BoN8bmptHPXb0/Bbj6cv8a8h7r2ZOBcmBq87mmapD0JUR/SGSeEuKUlJiby7LPPEh0dzbJly5g7dy5PPfUUrVu3xtTUlLlz5xIXF8fatWt59913a+1vZGTEgw8+yCuvvIK/v/9Vh4xOmTIFc3NzHnjgAU6dOsX27dt54oknmDp1Km5uVRO++/v788svvxAVFcXBgweZMmUKFhYWumMMHjyYwMBA7r//fo4fP87u3bt57bXXrllPMzMzbG1t9R7XM0y13aAenNsbybl9keSlZnFwxRaKclUE9a1aDOHwmu3sWlg9j8npbYe4GBmNKiOH3JRMDq/ZzsVjZ2kbXnuVzJi9x2ndIRBz62vPJdRQ4+6ewJZ1G9m6fhOJ8Qn8NPd7sjIyGD6uaq66xd/PZ857+nP+xcWcJy7mPCUlpajyVMTFnCchvrqTYtXSFSz5aTFPvPQsru5u5GbnkJudQ0mx/lxijeWvqL0M8u/CQP8utLRz4cGuI3G2smPzuaqOicmdhvJE7zt15Q8nnaVH63YMbdMdV2sHAl1aM737aGIyE3WdbXe1H0iHFv64Wjvg7eDBo70m4O3oweboQwZjaCxlW3dgPmooJp3ao2zpgeX0+9CWV1B+sHo4puVDUzGfMEb3vPL4KczC+2DSvTNKZyeMgwMxv2MUFZGndJ105hPGYBTgh9LJEWVLD8zHj8Y4MIDyAxG1YmiI3ReO082zLV1bBeFq7cDotr2xt7DhQELVl9fhgWHc3WGQrnxkyjmKy8u4q8NAXK0d8HH0YGRQLw4nntUNtTtw8TRWpuaMadcHZys7gly9GODfud5fiG/En6f3MDigG4P8u1YNa+42GmcrezZFHwTgvs7DeKrP3bryEUlRhHmFMDywB27WjgS5evFwjzGcy0zQtamIpLMMDwyjj097XK0d6ODhz+ROQ4hIPFOr4+5GTJp8D+v+/Iv1a9cRfyGerz7/koy0dO6YeAcA3837lv+b/Y6u/LgJ40lPTWPunC+JvxDP+rXrWP/nX9xz32RdmYqKCmKizxETfY6KikoyMzOJiT5HUmL1l7OD+w9wcN8BUpJTiDh4iCdnPYGnV2tGjm26IYZhowZwdPt+jm3fT2ZyGhsXr0KVlUvXwVVzkW1dtpbV3/wCgEKpxNWzhd7Dys4aYxMTXD1bYGp+fdMT3KjtsUfo6R1KmFc73GwcmRDaH0dLG11nwpjgPkztUntxiZ5eIVzISTW4evCggK6MatuLJUc3k12swsbMEhszS0yNGq+T/Up9Rw/m8LY9HP5nLxlJqaxb+Dt5WTn0GFqVxb1xyWp+n1u9iNP+jduJOnycrNR0slLTObx9L7vXbqZT3+qFQ3oM7U9xQSHrFiwnMyWds0dOsmP13/QcFt4kdQDYFnOYXt6h9PQKwc3GkYmh4VXn4lLn1Nh2fbm/S+15Z3t5h3AhJ4VUA9mHQ9t0J8jVCydLO9ysHRno34UerYOJSDzTZPXYdO4Q/Xw60senPR42TtzTcTCOlrbsOF+1qvvE0HAe7j6m1n59fTpwPjuZ5PzMWj87nhrLAL/OdPcMxtnKjmA3b+4I6UdkSozBkQgNteXcIfr6dqC3d3vcbZy4u8MgHC1t2RlXdZNwfEh/pner/V7Sx6c9cdnJBjNBd5w/hrWpOfd0HIKbtQOh7n6MbNuT7bFXX+3+ZrEwMSPAuZVuMZ8Wts4EOLfCzbrhIxIaYnP0Qfr5dKSvTwdde3KytGP7pfZ0Z2g4D/eo3Z76+Xasak+q2u0pMiWGAf5drmhPPowP6d9k7emWcykL+5Z8/EfJMFUhxC3t/vvvp6SkhO7du2NkZMQTTzzBzJkzUSgULFy4kFdffZWvvvqKzp078+mnnzJ27Nhax3jooYd4//33r5oVB2BpacmmTZt46qmn6NatG5aWlkycOJHPP/9cV2b+/PnMnDmTTp060bp1a95//32ef/553c+VSiWrV6/moYceonv37nh7e/PVV18xfHjTrpjn2zWYsqJijq/fQ3F+IQ4eLgx57B6snaqGd5WoCinKUenKa9RqIlZtozivACMTYxw8XBj82CQ8Q/Szb1Tp2aSfT2Tok/c2afyX9R3Un4L8fJYvWkJOdi5ePl68+dG7uLpXdYbmZueQla6fAfnMQ4/p/n8+OoZdW7fj6u7Kj78vBuDvNX9RWVHBR2/+n95+9zw4hXunT230OuyLP4mNmSV3th+Ag4UNCXnpvL9tMVmXhgs5WNjgbFU97G7H+WNYmJgxIiiMB7qOoKi8lFNpcfx6pHp+NStTc2aF3YG9hQ3F5aVcyE3lzY0/XjPjoKHK/t6KwsQEi/vuRmFliTounsLPv4bS6vkNlY4Oeh+kStdtQkvVcFWlgx3agkIqjp+idNU6XRmFrQ1WD09FYWeLtqQUdVIKRXO+ofKMfnZRQ51IjcXS1IxBAV2xNbMirTCbBRHrdMM7bcwssbeozgYtV1fy08G1jGvXlyf63ElxeRknUmN1nV4AqtJCfjr4F2OCe/N030nklxax98IJdpw/Vuv3N5a98SewNbNkUsdBVW0qN413ty7UDUFztLTFxdpeV/6f2CNYGJsxMqgX07qNoqi8lBOp51l85G9dmd+P/4NWq2VKp6E4WtqRX1pERGIUS45tojEMGjqYfJWKhT/NJzsrGx8/Xz7+4lPcPaqGi2ZnZZOeVp051aJlCz7+4jPmzvmS1StW4ezizFPPP0P4wAG6MlmZWUy/70Hd899+Xcpvvy6lY+dOzP3+awCKCov4/utvyczIxMbWlvCB4cx49JEbyq6rr5CenSkpKGLnqk0U5qlw9fRgykuzsHepGpJbmJePKiv3Gke5uY4mn8PK1ILhgWHYmluRmp/Nt/tW6zpr7cytcKgxNNrc2JSOLQL44+QOg8fs69MBEyPjWl+QN0Tt5+8mmCC9fe9uFBUWsW3legpyVbh5tuDBVx/HwaVqPtSCXBV5WdVDpbVaLZuWriEnIwulUomTuwvDp0yg+5DqrEl7Z0emv/4U6xet4Kvn38HW0Z5eIwfSf1zTXcOPJkdjZWbBiKCel85FFt/sXaVbHdXO3AoHS/2ht1Xnog0r6pjf0dTYhEkdB2NvYU2FupL0ghwWRmyoNYdWY4pIjMLa1IKxwX2wM7cmWZXJF7uX61aztDO3xrFGPSxMzOjSKohlkVsMHZK/zuxBq9UyPqQfDhY2FJQVczw1ts422FCHk85ibWbB6ODe2JlbkZKfxVe7V+hWR7W3MFAHYzM6twxkeeRWg8fMLSlgzq7lTOo4iNlDHyK3pIBtMYf5++wBg+VvtiAXL+aNf1b3/Mk+VfMqb4jaz3v/LGqusDiUGIWVmSVj21W3pzm7f6tuTxbWOFnqT2FwuT0tPbbZ4DEvzws3IbS/rj1FpsQ0WXsS4loU2v9EN7AQ4t8oPDycjh078sUXXzToOHv37iU8PJykpCRdhtu/xYf/LG7uEBrs5YH3czb9KsMa/wWC3Hy4c/G1MxxvdSvvf4+8h55o7jAaxP7nuby0/pvmDqPBPhr1KHcsfLm5w2iwNQ9+SEZ+06zoe7O42jqx9GjjdEI2p8mdh/HE6s+vXfAWNnf8s6w6saO5w2iwCe3DeWzVp80dRoN9PeF5pv/+fnOH0SDz736VGSs+bO4wGuzHu16m99ezmjuMBtn72HdMW/5ec4fRYAsm/Ts/D+bNfLq5Q6iT/Q9fNHcIzUIy44QQt62ysjISExN54403uPvuu/91HXFCCCGEEEII0WAamaPwViNzxgkhblvLli0jMDAQlUrFxx9/3NzhCCGEEEIIIYQQkhknhLh17dixo0H7P/jggzz44IONEosQQgghhBBCCNEYpDNOCCGEEEIIIYQQ4nYlSwXccmSYqhBCCCGEEEIIIYQQN4l0xgkhhBBCCCGEEEIIcZPIMFUhhBBCCCGEEEKI25UMU73lSGacEEIIIYQQQgghhBA3iXTGCSGEEEIIIYQQQghxk8gwVSGEEEIIIYQQQojblUaGqd5qJDNOCCGEEEIIIYQQQoibRDrjhBBCCCGEEEIIIYS4SWSYqhBCCCGEEEIIIcTtSqtp7ghEDZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWV1VRvNZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWRYaq3GsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhKFVivLagghhBBCCCGEEELcjvKmzGzuEOpkv+SH5g6hWciccUIIcQubu2dFc4fQYE/0uYuC/PzmDqNBbGxtGfLDU80dRoNtmfklec+82txhNIj9nPe559c3mzuMBvvtvncY+uPTzR1Gg22e8QUXspKbO4wG8XFuyTf7/mjuMBrs0V4Tmb3pp+YOo0HeHvYwJ1JimjuMBmvfIoDn/5rb3GE02KdjnmDqsrebO4wG+eXe2Ty++rPmDqPB5o1/jmnL32vuMBpkwaTX6P31rOYOo8H2PvZdc4cgbhMyTFUIIYQQQgghhBBCiJtEMuOEEEIIIYQQQgghblcaTXNHIGqQzDghhBBCCCGEEEIIIW4S6YwTQgghhBBCCCGEEOImkWGqQgghhBBCCCGEELcrrba5IxA1SGacEEIIIYQQQgghhBA3iXTGCSGEEEIIIYQQQghxk8gwVSGEEEIIIYQQQojblQxTveVIZpwQQgghhBBCCCGEEDeJdMYJIYQQQgghhBBCCHGTyDBVIYQQQgghhBBCiNuUViPDVG81khknhBBCCCGEEEIIIcRNIp1xQgghhBBCCCGEEELcJDJMVQghhBBCCCGEEOJ2pdU0dwSiBsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhIZpiqEEEIIIYQQQghxu9LKaqq3GsmME0KISx588EHuuOOO69rH29ubL774okniEUIIIYQQQghx+5HMOCH+ox588EEWLVpUa/uwYcPYuHFjk//uvLw81qxZ06S/53p9+eWXaBv5rlF8fDw+Pj4cO3aMjh07Nuqx6+PkPwc5umk3xXmFOLZ0pe89I2nRxttg2aSzcaz5ZH6t7VP+7ykcPFwaJR6tVssPP/7I6tWrKSgooF27drz04ov4+flddb9t//zDd999R1JSEq1ateLR//2PAQMG6JVZsWIFv/z6K1lZWfj6+vLcs8/SqVMn3c+//+EHNm/eTHp6OiYmJrQNCuLRRx8lJCREVyYpKYkvvvySyMhIKioq6NmzJy88/zw2trbXVc8xwX24q/1AnCxtic9N49v9qziVFldn+bHBfRjXri9uNo5kFOay9NgWtsZEGCwb7teJ1wY9yN74E7y1+efriutGmA8bhGnPbigsLFAnJFL8x1o0aRl1lrd+7GGM/X1rba84c5aiHxfrjmk+fJDezzX5BeTP/qBxgweGtOnGmOA+2FtYk5SXyeLDf3M282Kd5Xt7t2dsuz642zhSXFHG8ZQYfj2yicLyEgC6ebbljpB+uNs4YqQ0Ii0/m/VR+9h94Xijx36lMW17c1eHgTha2HIxN41vD6y+apsaE9yHccF9cbNxIKMwj2WR+m2qt3d77u04mBa2LhgrlSTnZ7HyxHa2xR5utJj/WvUnK5cuJyc7Gy8fb2Y9+RghHdvXWf7EseP8MPcbLl6Ix8nZmbsmT2LU+LF6ZVYvX8m61WvJTM/A1t6OvuH9mDZrBqZmpgCcjDzOyqXLiTkbQ052Nm9+8A69+vVptDoBHP/nAEf/3k1RXgFOLV3pN3kULdv4XHO/lJiLrPzwR5xaujHlnSd029WVag6v30HU3mMU5ubj4OFM77uG4x3aplHjrilm9zHObougJL8QO3dnOk0ciKtfqzrLqysqOb1pP/ERZyjNL8LC3pp2Q3vi2zMUAFVqFic37CEnMZ3inHw6jR9A4ICuTVqHTWvW8+fyVeRl59DKuzXTHp9B2/YhBsvmZuew6JufiYuJJS0phRETxjDt8Zl6ZbZv3Mo3H31Ra98lm1ZhamraFFUAoJdXKOH+nbAxsyK9IIc/T+/mQk5KneWNlEqGtOlOl5aB2JhZkVdayLaYCCISo3Rl+vp0oKd3KA4WNhSVl3AiNZYNUfup1KibrB6D/Lsyqm0v7CxsSFZl8OvRTZzLTKizfC+vUEa17YWbjRMlFaWcSI1l2bEtuvfblrYuTGwfjrdDC1ys7fn16EY2RR9ssvih6u82KKAbduZWpOZn88fJ7ZzPTjZY9r7Owwjzqt3eUvOzeG9b1WfsXt6hdPcMpoWtMwAJeen8dWYPF3PTmq4SwAD/LowIDMPewppkVSZLj20hJivRYNmHuo+mj0+HWtuTVZm8vvEH3fMhbboxwK8LTpa2FJaXEJEYxcoT25u0TdVHBw9/JncaSpBra5yt7Hl5w7dNfk0WojFIZ5wQ/2HDhw9nwYIFetvMzMyaKZrmZ2dn19whNKqYQyfZ/dsG+t83Bg//1pzeGcFfXyxm8rtPYuNkX+d+U957GlOL6nZgYWPVaDEtWryYpUuXMvvNN2ndujU/z5/PY48/zh8rV2JlZfj3nDhxgldffZVZjzzCgAED2L59Oy+/8go///STriNt8+bNfPb557z80kt06NCBVatW8eRTT7Hi999xd3cHwKt1a1584QVatmxJWVkZS5ct47HHH2fN6tU4ODhQUlLCY48/TpuAAL779lsAvv3uO5559ln++OOPetexv28n/tdzPHP3rOB0+gVGte3F+yNm8dDvH5BZlFur/Oi2vZnefQxzdv1GdGYCQa6teabvPRSWFXMg4bReWVdrB2b2uIMTqbH1jqchzAb2wyy8N8VL/0CdmYX5kAFYz5pO/gefQ1m5wX2KFiwBIyPdc4WVJTbPP0FF5Cm9curUdAq/vaIzUdP4wyd6eoXwQJcR/ByxjuiMBAYHdOPlgffx3F/zyC5W1Sof6NKax3pNYPGRvzmSFI2jpS0P9xjDzLBxfL7rt6r6lZew5tQuklWZqDVqOrcMZFbPO1CVFjXZeenv24lZPcczd+/KqjYV1Iv3hj/Cwys+ILMor1b50W17M73baL7YvbyqTbm05um+k/TaVEFZMcsit5CQl0GlupIerdvxfP97ySst5EjS2QbHvHPrdr7/8msee+4p2rUPYcOav3j9+Zf54dcFuLq71SqflpLKG8+/wogxI3nxzVc5feIUX3/2JXb29vQZ0A+AfzZtZf53P/LsKy/SNrQdyQmJfPbexwA88tRjAJSWlOLj78eQkcP5v9feanA9ajp38AS7lq5nwNSxtAjw4uSOQ/z5+SLue+9pbK/yvlpWXMrmH1fg2daP4vxCvZ/tX7WFs/sjGfTgeBw9XLh46hzr5v7K3a/NwtWrRaPXASDh6FmOrfqHLncNwdm3Jef3HmfXtysZ8ep0rBwN33zYt+AvSguK6D55GNbODpQVFqNVV6/OV1legbWTPZ4dAzm2enuTxH2lvf/sYsHXPzLj6f8RGBLMlr/+5r2X3mLOwm9wcXOtVb6iogJbe1smTrmbdSv/rPO4FlaWfLn4e71tTdkR16FFAGND+rLq5A7ic1IJ8wrh4R5j+GTHEvJKCg3uM7XLCGzMLPn9+D9kFeVhbWaJUqHQ/bxTyzaMbNuL349vIz4nFRdreyZ1HAzA2tN7mqQePVq3477Ow1l4eD0xWYkM8O/CC/2n8PKGr8kuzq9Vvo2zJ4+E3cGSY5s4lnwOBwsbpnUbzUPdx/Dlnt8BMDU2IaMwj0MJZ5jSeViTxH2lzi0Dmdh+AMsjtxGXk0wf7/Y82msC/7d1IbklBbXKrzyxnT9P79Y9N1IoeWXQ/RxLPqfbFuDsyZGks6zISaFSrWZwm2481msi721bhKrU8PltqO6ebZnccQi/HN1ITGYi4f6debbfPby28XtyDJyLpce2sOJE9WvWSKHknWEP63Xuhnm14672A5l/aB0xWUm42zjyUI8xAPwWubVJ6lFfFiZmxGYnseHsPt4fMatZY7mlNcHnLNEwMkxViP8wMzMz3N3d9R4ODg66nysUCr7//ntGjx6NpaUlbdu2Zf/+/cTGxhIeHo6VlRU9e/bk/Pnzun3eeustOnbsyPfff4+npyeWlpbcdddd5OXl6X6+aNEi/vzzTxQKBQqFgh07djBw4EAef/xxvfiys7MxMzPjn3/+qRW7SqXCyMiII0eOAFUZV46OjnTr1k1XZtmyZXh4eOieJycnM2nSJBwcHHBycmLcuHHEx8frfl5zmGpBQQFTpkzBysoKDw8P5syZQ3h4OE8//bReLMXFxUyfPh0bGxtat27NDz9U30X08anKlujUqRMKhYLw8PCrn5RGFLl5L8F9u9CuX1ccW7jS995RWDvacXLHoavuZ2lrhZWdje6hVDbOpUKr1bJs2TKmTZvGwIED8ff35+233qK0tJSNmzbVud+yZcvo0b0706ZNw9vbm2nTptG9WzeWLlumK7Nk6VLGjRvHHXfcgY+PD8899xxubm6sXLlSV2b48OH06NGDVq1a4efnxzNPP01RURExMTEAHD9+nNTUVGbPno2/vz/+/v7MfvNNzpw5w4EDB+pdz4ntw9kYfYC/ow+QkJfOt/tXk1mYy5jg3gbLDw7oxvqoveyMO0ZaQTY7zh9jY/QB3Reny5QKBa8MvJ/FR/4mLT+73vE0hFn/XpRu2UHFydNo0tIpXroChakJpp071rmPtrgEbUGh7mHSxh8qKig/flK/oEatV05bVNTo8Y9q24vt54+yPfYoKflZLD7yN9nF+Qxp081g+QBnTzKL8tgYfZDMojyiMxPYGnMYP6eWujJn0uOJSIwiJT+L9MJc3XkOcm3d6PFfNjE0nI3RB9kYfYDEvHS+O7CazMI8xgQbzvgaFNCVDVH7qttU3DE2Rh/k7g7V2YgnUmPZG3+SxLx0UguyWXN6F3E5KYS4XTvDqz5WLV/BsNEjGDF2FK29vZj19OO4uLqybvVag+XXr/kLVzdXZj39OK29vRgxdhRDR41g5bLfdWWiTp2mXWgIA4YOwt3DnS49uhE+ZCDnzlZ/8e3WswcPznyIPuH9GqUeNR3dvId2/boQ0r8bji1c6T95dNX76j9Xz9b5Z9FqAsM64OHvWetnZ/cfo9vo/vh0CMTO1ZH2A8PwCgng6Mam6TQBOLv9ML5hofj1ao+duxOdJw7E0sGG2D2RBsunnrlAxvlE+s2aiHugN9ZOdjh5eeDsW/3acPLyoOMd4Xh1aYvS2MjgcRrTuhVrGDhyCINGDaOVlyfTHp+Js6szm9duMFje1d2N6U88Qv9hg7C0sqzzuAoUODg66D2aUn/fjhxKOMOhhDNkFOay9vRu8koK6ekVarB8oEtr/Jxa8tPBtcRkJZJbUkBiXrpeppW3gwfxOakcSz5HbkkB5zITiUyOoZVd7Y7wxjIiMIydccfYGXeMlPwslhzdRHaxikEBht9v/Z1bkVmUx+Zzh8gsyuNcViL/xB7Bx7G6A/pCTgq/RW7hQMJpKtRNn3010L8L++NPsv/iSdILcvjj5A5ySwroayBrDKC0spyCsmLdo7WDOxYm5uy/WH3zadHhDey+cJxkVSbphTksPboZhUJBoEvTXTOGBvZg14VIdsVFklqQzbJjW8gpyWegX2eD5UsqysgvLdI9vB09sDS1YM8V2WX+Tq2IyUrkQMJpsotVnE6/wMGE0/g4ehg85s10IOE0Px5cy864yOYORYjrIp1xQoirevfdd7n//vuJjIwkKCiIyZMn88gjj/DKK69w+HDVcKaanWixsbH8/vvv/PXXX2zcuJHIyEgee6wqa+H555/n7rvvZvjw4aSmppKamkqvXr14+OGHWbp0KWVlZbrjLFmyhBYtWtQajghVWWwdO3Zkx44dQFX21OV/8/Or7vrt2LGD/v37A1UdZgMGDMDa2ppdu3axZ88erK2tGT58OOXlhjN8nn32Wfbu3cvatWvZsmULu3fv5ujRo7XKffbZZ3Tt2pVjx47x6KOP8r///Y+zZ6sySw4dqur42rp1K6mpqaxatap+f/gGUldWknExBc92/nrbPYP9SYute8gIwG9vf838Zz9kzSfzSTpb9zC465WcnEx2djZhYWG6baampnTu3Fl3/gw5cfIkPa7YByCsZ0/dPhUVFZw9e5awHj30y/ToUedxKyoqWL16NdbW1rRpUzUUrLy8HIVCoZcBYWpqilKp1HX6Xoux0og2zp4cSYrW234kKZp2dXRymBgZU66u1NtWVllBoEtrjBTVl+n7Og8nr6SQjdH17xhsCKWTA0pbWyqjY6o3qtVUxl7A2Kf+XyJMe3Sl/NgJKK/QP76zM7ZvvYzN689jOfUelE6N+4XXSGmEj6MHJ1LP620/kRpLmzq+BJ3LTMDR0paOLQIAsDO3okfrdhy9IsuhphB3XzxsnYlKr3voa0MYK40IcG7F0WT9bLUjyWcJdvM2uI+p0phytf7fu1xdu01dqWOLADztXDmZdt7gz69HRUUFMdHn6Nxdf4hi5+5diTp12uA+UadO1yrfpUdXYs5GU1lZ9fpo1yGUmOhzRJ+pytZITU4hYv9BuvfqUet4TUFdWUlGfAqt2wXobfdq50/q+brP/+ndR8jLyKHHuIGGj1tRiZGJid42Y1MTUmLiGxyzwd9XqSY3MQ33IG+97e5B3mRdMDwcL/lULI6ebpzddog/3/iW9e/+xLE126ms8bq+WSoqKog7F0uHrp30trfv2onoUw3L7CwtKeF/90zjkbse4INX3uZCTMNfE3UxUihpaedaayjnucwEvOvo5Gjn7kNiXgYD/LrwxuBpvDTgPkYH98ZYWd0BeiEnhVb2rnjaV3W+OVraEuTqRVRGfNPUQ6nE27FFrfePU2lxBDgbHvock5WIo6UtHTyqPqfYmlvRvXVbIlNiDJZvakYKJZ72bkRl6L+Wo9Iv4uNUvwzVnl4hRGdcNJhFd5mpsTFGSiXFFaUNircuRkol3g4enE67oLf9dFocfnWci5r6+XTkTPoFvYzGc5mJeDt46DpLXazsae/hz/GUm5OpL8TtSIapCvEftm7dOqytrfW2vfTSS7zxxhu659OmTePuu+/W/axnz5688cYbDBtWNVzgqaeeYtq0aXrHKC0tZdGiRbRqVXXRnzt3LqNGjeKzzz7D3d0dCwsLysrKdMMHASZOnMgTTzzBn3/+qft9CxYs4MEHH0RxxdCLK4WHh7Njxw6ee+45duzYwaBBg4iLi2PPnj2MHDmSHTt28MwzzwDw22+/oVQq+emnn3THW7BgAfb29uzYsYOhQ4fqHbugoIBFixaxdOlSBg0apCvfokXtD2QjR47k0Ucf1f2N5syZw44dOwgKCsLFpWquNScnJ7361lRWVqbXEQkNGzJcUlCMVqPB0lb//FraWVF8yvCwCCt7GwbcPw4X75aoKyqJ3h/Jmk8XMP6F6bQMbHi2THZ2VTaXk6Oj3nYnR0dS0+qeOyU7O9vgPpePl5eXh1qtxrFGGUcnJ7Ky9TPIdu/ezauvvUZpaSnOzs58PW8e9vb2AISGhmJubs7cuXN57LHH0Gq1fDV3LhqNhszMTKjHZ1g7cyuMlEbklugPA8ktKcDB0sbgPkeSzjIiKIx98SeIyUqijbMnwwPDMDEyxs7cmpySfNq5+TA8MIxZf3x87SAaicKmKl5NgX570RQWonSwr9cxjFq3wqiFO8XL9TuhKy8mol66AnVmFkob66rhr0/OouCjL9AWlzRK/LZmlhgpjVDVGOalKinCvoW1wX3OZSUyb+9Knup7NyZGxhgrjTicGMXCiPV65SxMzPh2wvMYGxmj0WqYf2hdo3RiGazH5TZVrP/lLrekAAcLw8MJDyedZXhQGPsuniQmK4kAZ0+Gtemh16YALE3MWTblbUyMjNFoNMzdu/KqHY/1lZ+nQqPW1MoocnBwICc7x+A+uTm5epnZAA6ODqjValR5KpycnQgfPBBVbh7P/e8ptFotarWa0ePHMmnq5AbHXB91va9a2NlQdMpwB0JuWhZ7V27krlceQWlkOFusdUgAxzbtoWUbb+xdHUmIOk/csSi0Go3B8g1VXlSCVqPFvMYUBGY2VpQWGM5QLczKIzMuGSMTY/o8fAdlhSUcXrGF8qJSekwZ0SRxXk2BKh+NRoN9jTZj7+BAXm7tm2b11bJ1Kx57+Rla+3hRUlzM+j/W8voTL/LpT1/h0arltQ9wnaxMLTBSKikoK9bbXlBWgo2Z4ew9R0s7fBw9qNRUsvDwBqxMzZkQGo6liTm/H98GQGRKDFamFjzWeyIKqm5O7Is/wfbY+t1Yul42ZpYYKZXk1xh2qSotxM7c8JywMVlJfLt/FY/1vlP3fnsk6Sy/HPm7SWK8Fmuzus5FEbZm3tfc39bMimA3HxYeXn/VcuPa9UNVUsjZjKa5gWNjWte5KCLE3PC170p25taEevjx/YE1etsPJZ7BxtySVwfeD4qqG0X/xB5hw9n9jRm+aEraprmmiBsnnXFC/IcNGDCAby/NjXVZzQ6N9u2rJ9t2c6u6wxoaGqq3rbRHRuDPAADce0lEQVS0lPz8fGwvTXLfunVrXUccQM+ePdFoNERHR9fZIWVmZsZ9993H/Pnzufvuu4mMjOT48eNXXeQhPDycn3/+GY1Gw86dOxk0aBCtW7dm586ddO7cmXPnzuky444cOUJsbCw2NvodIqWlpXrDbC+Li4ujoqKC7t2767bZ2dkRGBhYq+yVfyOFQoG7uzsZGXVPcG/IBx98wNtvv623bfbs2TgNbnddx7kmLWC4bxMHdxcc3KsXavDwb01hropjm/beUGdc9IFIdixey3yj99FqtXwxZw5Arc5VrVZbV0jVDO1TY5vB49bY1rVrV5YuWUJeXh6r16zhlVdfZeGCBTg6OuLg4MBHH37IBx9+yG/Ll6NUKhk6dChBQUHXPVS35jogCkXVn96QX49uwsHShq/ueBYFVZ0sm88dZFLHwWi0GixMzHhpwFTm7P6N/LLGH8p5mUnnDljefYfueeGlxRZqu0plajDt0RV1ShrqhCS97ZVXDCvUpKZTGJ+A7WvPY9qtM2U7915n5FdXK1QFdS7U0tLOhQe6juSPkzs4kRKLvYUNUzoP5eEeY/j+QPUcU6UV5by0/lvMTUwJcfdlapfhZBTmciY9vlFjv1LNiBUoDGytsuTYZhwsbfly3DPVbSrmEJM6DEJzxYfxkooy/rfqE8yNzejUMoBHwu4gtSC78ea+q/mapPZr8qrltZc3V20/fjSS3xYv4bHnniKoXVtSkpL57suvcVjwC1OmTW2cmOuhVh3qeA/TaDRs/H45YXcMxsHduc7j9Z88mm0LV/PLq3NAocDO1ZHgPp05s+fGO5XqpWbQ2rovEJffT8PuH62bU7RT5QD2zv+TLncNxtjUxOB+Ta7mqUB76bVxY9oEB9EmOEj3PDAkmBdnPsXfq9Yx/clHbvi41+vqL5OqHy49upnSyqrM/rWn93B/1xGsOrmDSo0aP6eWDAroyqqTO0jITcfZyo5xIf0YXFpc5+JAjaHWtQ9FnZeLFrbOTO08gjWndnEyLRZ7cxvu6TSEad1G89Mhw8PZbw79iK9WhyuFebWjpKKME1fJFBsc0I0urQL5cvfvTb7owfVcM67Ux6c9xRWlHE3Wz/APdGnNmLa9+eXoRuKyk3G1dmRypyHkBffhrzNNN6ReiNuZdMYJ8R9mZWWFv7//VcuYXDF05vIHQEPbNFe5g3+5zFW/hAEPP/wwHTt2JCkpifnz5zNo0CC8vLzqLN+vXz8KCgo4evQou3fv5t1338XT05P333+fjh074urqStu2bXXxdenShSVLltQ6zuXstStd/rJuqIOnJpMaw4sUCsVV/x6GvPLKKzz77LN628zMzPgh4sY+kFrYWKJQKmtNFF6cX1Qrq+Nq3H09iT5wYytS+XRoi9tsT+7vOoKiwkLdcOCs7Gycnau/mObk5uLo5FTncZycnHRZcHr7XOo4tre3x8jIqFaZ3JycWhl1FhYWeHp64unpSWhoKOMnTODPP//UZXeGhYXx55o15OXlYWRkhI2NDcOGDavqXNbUXnyhJlVpEWqNGkdL/Ywle3Mb8ooND1spV1fw2c5lfLFrOQ6WNuQU5zMyqBdF5aWoSovwdWqBh60T7w6bodvncrvc+PDnTFv+HqkFDZ9DruJ0FAWfXrHSmnHVRwSljTXq/OrYldZWaAvrMem0iQmmndpTsrEeEzuXV6BOTUPpUneHxfXKLytGrVFjb6Hf3u3MrVCVGu7UvKNdX85lJrDuTFWHYEJeOmWHynl72MMsP75NN5m6Fi3phVUZXhdz02hp58K4dv2apDMuX9em9G8k2FtY1zkUqlxdwee7lvHlbsNt6jItWlLyswCIy0mmtb0b93Qc3ODOOFt7O5RGSnJrZMHl5ebVOf+Wg6MDuTk1y+diZGSErV3V62nxjwsYOGwII8aOAsDHz5fS0lK++uhz7n1gSqPNb1mXy++rRSr9v3tJfiGWdrXfVytKy8iITyYzIZUdv/4FXLqGaLV89dDrjH9uGp7BfljaWjPmyalUVlRQWliMlb0te1dswta5aeYqM7WyQKFUUJqv/zooKyzG3MZwNpaFnTUWdtZ6i/vYujmBFkryCrFxbdp51WqysbNFqVSSl6P/vqzKzcOunpm79aFUKvEPCiA1ue6VTRuiqLwEtUZTKwvO2tSiVobWZQWlRahKC3UdcQAZhTkoFQrsLazJKlIxLDCMo0nRHEo4A0BaQTamRibc2WEA22Ii6ns/pd4KyopRazTY1Xi/tTW3qpWhddmY4D7EZCWw4ew+ABLJoCyinDeGTGfFiX+abHGDuhSWXT4X+hmj1maWFNTjRliYVwiHEs+griP7aJB/V4a26c68vSt177tNoaD80rkwr3kuLOu89l2pr08H9sWfRF3jc+yE0P7su3iSXZfmZUtSZWJmbMIDXUey7syeRm9TQvwXyJxxQohGl5CQQEpK9QfX/fv3o1QqdXNzmZqaojYwEW9oaChdu3blxx9/ZOnSpUyfPv2qv+fyvHHz5s1DoVAQHBxM3759OXbsGOvWrdNlxQF07tyZmJgYXF1ddZPzX34YWkXVz88PExMT3ZxvAPn5+brJ/uvr8vxjhup7JTMzM2xtbfUeDRmmamRsjKtXCxJP63+pTjwTi7t//ef7ykxINfglsz5MLcywd3PCy8sLT09PfH19cXJy4uDB6onOKyoqOHr0qF52YU3tQ0P19gE4eOCAbh8TExOCgoJqlzl06KrHhaovxuUVtec8sre3x8bGhoiICHJycxk40PBcTzVVatScy0qkc0v9DMrOrQI5nX6hjr2qqLUasopUaLRaBvh15mDCabRoSchLZ8aKD5n1xye6x/6LpzieEsusPz4xuJrmDSkrR5OVU/1Iy0CTn49x4BUd9kZGGPv7UHnh6vMOAph2DAVjIyoOH7v27zYywsjNFU1+3fPsXC+1Rs2FnFRC3fWHSIW6+9Wan+kyU2OTWh3umssd81fJtlEAJnUMQWyoSo2amKyk2m2qZeA1O/+ubFPhfp10baouCoUCE2XD79OamJgQENiGYxH6Q+KORRyhbYjhbN+2Ie1qlT966DABQYEYX+oYLisrrdXhplQq0Wq1dWY7NiYjY2NcvVuQUON9NeFMLB5+tW8cmZqbMeXdJ5n89uO6R2h4dxzcnZn89uO4++kv5mBsYoK1gx0atYbYI6fw7dS2iephhIOnO2nR+sPk0s5exNnH8FBMZ5+WlKgKqbhiFeWCjBwUCgUW9jd2jWgIExMTfNv4c+JwpN72E0ciCQwJMrzTDdBqtcTHXmiyRRzUWg3JqgzauOi3hTYurYnPSTW4z4WcVGzNrTA1qr4R6GJlj0ar0d0wMDUyrvVa12g1l97HbjxzsC5qjYb4nBRC3H31toe4+xKTlWRwHzNjE937a3WMl2+ENnqI16TWakjMSyfIVf+1HOTqxYXsq3fGBji3wtXagf3xJw3+fFBAV4YHhfHNvlUk5KU3WsyGqDUa4nNTaeeuP6Ih2M2H83Wci8sCXVrjZuPI7gu1b8KaGhm6PmqqWlNznDBx/S7dDLolH/9RkhknxH9YWVkZaTXm6jI2NtbLWroR5ubmPPDAA3z66afk5+fz5JNPcvfdd+uGqHp7e7Np0yaio6NxcnLCzs5Ol1328MMP8/jjj2Npacn48eOv+bvCw8P58ssvGT9+PAqFAgcHB4KDg1m+fDlfffWVrtyUKVP45JNPGDduHO+88w6tWrUiISGBVatW8cILL+gNqwWwsbHhgQce4IUXXsDR0RFXV1dmz56NUqm8ZobflVxdXbGwsGDjxo20atUKc3Nzg51/TaHj0N5s+Wklrt4tcffz5PSuwxTmqAjpX7Wy2b4/NlOUm8+Qh+8EIHLLPmyd7HFs6Yq6Uk30geOcP3KaEY/e2yjxKBQK7r33XhYsWEDrS9lpCxYuxNzcnOGX5iAEeHP2bFxdXHQLg9xzzz3MfOQRFi5aRHj//uzYuZODhw7x808/6faZMnkyb86eTdvgYNqHhrJq9WrS0tKYOHEiACUlJcyfP59+/frh7OyMSqVixcqVZGRkMHhQ9QqTa9euxcfHBwcHB06cOMFnn3/O5HvvxddX/wvG1fxxYgcvDbiPc1kJRKXHM7JtL1ytHVgXVZVtNb3baJyt7Ph4R1WWZks7F4JcvDibcRFrMwsmth+At6OH7ucV6kric/W/lBWVVc2rVnN7YyvbuQ/zweFoMrNRZ2ZjPjgcbXkF5UcjdWUsJ9+JRpVP6frNevuahnWl4mSUwTngzMeOoOL0WbS5eSisrTAfOgCFuRnlEY07LG991D4e6zWBuJxkzmUmMjigK85WdrphWvd0HIyjpS3f7Kua0+5oUjQzwsYxJKAbx1Orhqk+0HUEsVlJuiy0ce36EpedQnphDsZKIzq2bENf3478fOivRo39Sn+c3MGL4VM4l5nImYx4RgX1rNWmnKzs+ESvTbUmKuMiNmaWTAwNx9vBg092LNUd854OgzmXlUBKfjYmSiO6tw5mcEA3vtqzolFinjDpLj559wMCggJpGxLM33+uIyM9nVHjxwAw/9sfyc7K4oU3XgFg1B1jWPvHGr7/6htGjB1F1KkzbFr3Ny+/9brumD1692T1byvxa+NPUHDVMNXFPy4grE8vjC51hpYUl5CSVL0IQVpKKufPxWJja4Ore8NXkuw8tA+bflyBm3dLPPxbc3JnBAXZKkIHVE1psHfFJgrz8hk24y4USiXOrfSnZrC0tcLIxERve9r5RApzVbi0bkFhnooDa7ah1WrpOrJpVoQFCBrQlQO/rMfR0x0nnxac33ec4tx8/PtUrRp5fO0uSlQFhE2tykL06tqW05v2c2jJ34SM6E1ZUQnH/9yJT1ioboiqulJNflpVxo+mUk2JqpDcpHSMzUyxcWn8zqzRd93B3A8+xy/Qnzbt2rJ13Uay0jMZOmYkAEt+XEhOZjZPvPqcbp8LsVWLEpWWlJKfp+JCbBzGxsZ4elfdpFqxaCkBbQPxaNWS4uJi/v5jLfGxcTz01KxGj/+ynXGR3NtpCIl5GVzMTSPMqx32FtYcuLQi54igntiZW/Nb5BYAjiWfY0ibbkzqOIjN0QexMrVgdHBvDiVE6YY+nkm/QD/fTiSrMknITcfJyo7hQWGcTrtw1Q75hvg7+gCzwsZzISeF2KwkBvh1wcnSjm0xVYt93d1hEA4WNrq5yI4ln2N69zEM8u/KiUvvt/d1Hsb5rCRdp6KRUklL26rRC8ZKIxwsbGlt70ZpZTkZhdfOVr9e/8Qe4f6uI0jIS+dCTgq9vdvjaGmj65waG9wHOwtrfjmyUW+/nl6hXMhJMZilPjigG6Pa9mLR4Q1kF6t0WZBllRW1FtppLJujDzKjxzjic1KJzUqiv18nnCzt2H6+6hp7Z2g49pY2/HRQ/7rVz7cj57OTSVZl1jpmZEoMwwJ7cDE3nbicqmGq40P6E5kSc1NuhlyNhYkZreyqR7m0sHUmwLkV+aVFpDdBOxGisUhnnBD/YRs3bsTDQ3+1rsDAQN1KoDfK39+fCRMmMHLkSHJychg5ciTffPON7uczZsxgx44ddO3alcLCQrZv3054eDgA9957L08//TSTJ0/G3Nz8mr9rwIABfP7557r9Afr3709kZKReZpylpSW7du3ipZdeYsKECRQUFNCyZUsGDRqkm+uups8//5xZs2YxevRobG1tefHFF0lMTKxXXJcZGxvz1Vdf8c477/Dmm2/St29f3QqwTS2geyilhcVE/LWdIlUBTi3dGP3UVN3Qp+K8Agpy8nTlNZVq9q7YSGFuPsYmJji2dGX0U1Pxbl97nrwb9cD991NWVsaHH31EQUEBIe3aMW/uXKysqoeFpKWlobyiw7NDhw689957fPvtt3z33Xe0atWKD95/n5CQEF2ZoUOHolKp+Omnn8jKysLPz48vv/hC176VSiXx8fGsW7+evLw87OzsCA4O5scffsDPrzpz6uLFi3z99deo8vNp0aIF06ZNY8rk65scfmfcMWzNrbiv8zAcLe2Iz0nltb+/131xcLK0xdW6+oupkULJne0H0MreFbVGTWRKDE/9+YVuGGRzKvtnFwoTEyzuHIvCwgL1xSQKv1sAV2THKB3sa93VVLo4YezrTeG38w0eV2lnh9XUSSisLNEWFlF5MZGCL75Dm5vXqPHvv3iqqoMzNBx7CxsS8zL4cPuvZBWpAHCwsMHZqrpzfGdcJOYmZgwN7MF9XYZRVF7K6fQLLD1a3dFoZmzK9O6jcbK0pVxdQUp+Fl/v/YP9l744N4WdccewNbNkSudhOFracjEnldc3VrcpR0tbXK2q25RSoWRiaHWbOp4Sy9Nrv9RrU+YmpjzR+y6crewoq6wgUZXBR9t/ZWdcPTIZ66H/4AHk5+ezZMFicrNz8PL15t1PP8Dt0k2ZnOwcMtKr59Z0b+HBu59+wPdffc26VX/i6OzE/55+nD4DqjukJj8wFYVCwaIf5pOdmYWdgz09evfkwZkP6cqcOxvNS09UD/n/YW7VvKiDRwzj+ddfanC92vRoT0lRMQfX/kPxpffVcc88oHtfLVIVUJCdd13HrKyoYP/qLagycjExN8W7fSDDZtyNmaVFg+OtS+vOQZQVlXBq0z5KVUXYeTjTb9ZErByrXg8l+YUU5VZnqpqYmTLgsbs4snIbmz/9BVMrC1p3CiR0VB9dmRJVIZs+rp5r8uw/EZz9JwIXf08GPXlPo9eh98B+FOYXsHLxb+Tm5ODp7cWrH76Fi7srALnZuWRl6HcqvDjjSd3/487FsmfbTlzcXPnmt6r3qqLCIr7/fB55OblYWlnh4+/L219+SEDbxrsO1nQ8JQYrE3OGtOmOrZkVaQXZ/HzwL90NAFtzKxyuGP5Zrq7g+wN/Mj6kH0/1m0RxeSnHU2L5+4qJ9LdeGoo6PCgMO3NrCstLOJN2Qa9MYzuYcBprUwvuaNcfewtrklQZfLpzCdnFVe+39ubWOFlWv9/uvnAcc2MzBrfpxr2dhlJcXsqZjAssj6ye2sDBwob3RlR3hI5q24tRbXsRlR7P+/8savQ6HE2OxsrUnBGBYdiaW5Gan803+1bpnQvHGgvnmBub0rFFACtPbjd4zL4+HTAxMubhHmP1tm+I2tdkix8cSozCysySse36YGduTbIqkzm7f9OtjmpnoX8uoKpDq0urIJYe22zokLp54SaE9sfBwoaCsmIiU2L44+SOJqnD9Qhy8WLe+Or3/Sf73AXAhqj9vNcE7USIxqLQNndXthDitvLWW2+xZs0aIiMjb2j/xMREvL29iYiIoHPnzo0bXAMVFRXRsmVLPvvsMx566KFr79AI5jZSlkpzeqLPXRTk51+74C3MxtaWIT881dxhNNiWmV+S98yrzR1Gg9jPeZ97fn2zucNosN/ue4ehPz7d3GE02OYZX3AhK/naBW9hPs4t+WbfH80dRoM92msiszf9dO2Ct7C3hz3MiZTrmw7iVtS+RQDP/zW3ucNosE/HPMHUZW9fu+At7Jd7Z/P46s+aO4wGmzf+OaYtf6+5w2iQBZNeo/fXTZdlerPsfey75g7hhuSOaZyRLk3B4a9lzR1Cs5DMOCHELaGiooLU1FRefvllwsLCbomOuGPHjnH27Fm6d++OSqXinXfeAWDcuHHNHJkQQgghhBBCiH8r6YwTQtwS9u7dy4ABA2jTpg0rV65s7nB0Pv30U6KjozE1NaVLly7s3r27wXPqCSGEEEIIIYT475LOOCFEo3rrrbd46623rnu/8PDwZp8AtqZOnTpx5MiRaxcUQgghhBBCiFvVLfY9S4Dy2kWEEEIIIYQQQgghhBCNQTrjhBBCCCGEEEIIIYS4SWSYqhBCCCGEEEIIIcTtSqtp7ghEDZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWR1VRvNZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWVYaq3GsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhIZpiqEEEIIIYQQQghxu5JhqrccyYwTQgghhBBCCCGEEOImkc44IYQQQgghhBBCCHHbeO+99+jVqxeWlpbY29vXax+tVstbb71FixYtsLCwIDw8nNOnT+uVKSsr44knnsDZ2RkrKyvGjh1LUlLSdccnnXFCCCGEEEIIIYQQtyuN5tZ9NJHy8nLuuusu/ve//9V7n48//pjPP/+cefPmERERgbu7O0OGDKGgoEBX5umnn2b16tX89ttv7Nmzh8LCQkaPHo1arb6u+GTOOCGEEEIIIYQQQghx23j77bcBWLhwYb3Ka7VavvjiC1577TUmTJgAwKJFi3Bzc2Pp0qU88sgjqFQqfv75Z3755RcGDx4MwK+//oqnpydbt25l2LBh9Y5PMuOEEEIIIYQQQgghxE1XVlZGfn6+3qOsrOymx3HhwgXS0tIYOnSobpuZmRn9+/dn3759ABw5coSKigq9Mi1atCAkJERXpt60Qggh/pNKS0u1s2fP1paWljZ3KDfsdqiDViv1uJXcDnXQam+PetwOddBqpR63ktuhDlrt7VGP26EOWq3U41ZyO9Thv2r27NlaQO8xe/bsRjv+ggULtHZ2dtcst3fvXi2gTU5O1ts+Y8YM7dChQ7VarVa7ZMkSrampaa19hwwZop05c+Z1xaXQamWNWyGE+C/Kz8/Hzs4OlUqFra1tc4dzQ26HOoDU41ZyO9QBbo963A51AKnHreR2qAPcHvW4HeoAUo9bye1Qh/+qsrKyWplwZmZmmJmZ1Sr71ltv6Yaf1iUiIoKuXbvqni9cuJCnn36avLy8q+63b98+evfuTUpKCh4eHrrtM2bMIDExkY0bN7J06VKmTZtWK94hQ4bg5+fHd999d9XfcSWZM04IIYQQQgghhBBC3HR1dbwZ8vjjj3PPPfdctYy3t/cNxeHu7g5AWlqaXmdcRkYGbm5uujLl5eXk5ubi4OCgV6ZXr17X9fukM04IIYQQQgghhBBC3NKcnZ1xdnZukmP7+Pjg7u7Oli1b6NSpE1C1IuvOnTv56KOPAOjSpQsmJiZs2bKFu+++G4DU1FROnTrFxx9/fF2/TzrjhBBCCCGEEEIIIcRtIyEhgZycHBISElCr1URGRgLg7++PtbU1AEFBQXzwwQeMHz8ehULB008/zfvvv09AQAABAQG8//77WFpaMnnyZADs7Ox46KGHeO6553BycsLR0ZHnn3+e0NBQ3eqq9SWdcUII8R9lZmbG7Nmz650Wfiu6HeoAUo9bye1QB7g96nE71AGkHreS26EOcHvU43aoA0g9biW3Qx1E43rzzTdZtGiR7vnlbLft27cTHh4OQHR0NCqVSlfmxRdfpKSkhEcffZTc3Fx69OjB5s2bsbGx0ZWZM2cOxsbG3H333ZSUlDBo0CAWLlyIkZHRdcUnCzgIIYQQQgghhBBCCHGTKJs7ACGEEEIIIYQQQggh/iukM04IIYQQQgghhBBCiJtEOuOEEEIIIYQQQgghhLhJpDNOCCGEEEIIIYQQQoibRDrjhBBC/CtptVpkDSLRWGJjY9m0aRMlJSUA0raaWWlpaXOH0Chul3oIIcStZuDAgeTl5dXanp+fz8CBA29+QEJcJ1lNVQgh/iPKyso4dOgQ8fHxFBcX4+LiQqdOnfDx8Wnu0K7L4sWL+eSTT4iJiQGgTZs2vPDCC0ydOrWZI6s/tVrNnDlz+P3330lISKC8vFzv5zk5Oc0U2fVLSkpi7dq1Buvx+eefN1NU9Zednc2kSZP4559/UCgUxMTE4Ovry0MPPYS9vT2fffZZc4dYb4mJiXqv73bt2mFmZtbcYdWbRqPhvffe47vvviM9PZ1z587h6+vLG2+8gbe3Nw899FBzh1gvt0s9/u3tSaVSsXr1anbv3l3rujds2DB69erV3CHWy+1SDyEam1KpJC0tDVdXV73tGRkZtGzZkoqKimaKTIj6MW7uAIQQQjStffv2MXfuXNasWUN5eTn29vZYWFiQk5NDWVkZvr6+zJw5k1mzZmFjY9Pc4V7V559/zhtvvMHjjz9O79690Wq17N27l1mzZpGVlcUzzzzT3CHWy9tvv81PP/3Es88+yxtvvMFrr71GfHw8a9as4c0332zu8Opt27ZtjB07Fh8fH6KjowkJCSE+Ph6tVkvnzp2bO7x6eeaZZzA2NiYhIYG2bdvqtk+aNIlnnnnmlu+Mu3jxIt999x3Lli0jMTFRL6PP1NSUvn37MnPmTCZOnIhSeWsPiPi///s/Fi1axMcff8yMGTN020NDQ5kzZ86/phPr31yP26E9paam8uabb7JkyRLc3d3p3r07HTt21F33tm/fzqeffoqXlxezZ89m0qRJzR2yQbdLPWqKiIhgxYoVBm/grFq1qpmiun63Sz3+jU6cOKH7/5kzZ0hLS9M9V6vVbNy4kZYtWzZHaEJcH60QQojb1tixY7UeHh7a5557Trtz505tUVGR3s/Pnz+vXbhwoXbYsGFad3d37ebNm5sp0vrx9vbWLlq0qNb2hQsXar29vZshohvj6+urXbdunVar1Wqtra21sbGxWq1Wq/3yyy+19957b3OGdl26deumfeONN7RabVU9zp8/ry0oKNCOHTtW+8033zRzdPXj5uamjYyM1Gq11XXQarXauLg4rZWVVXOGdk1PPvmk1sbGRjtx4kTtokWLtFFRUdr8/HxtRUWFNj09Xbtt2zbtW2+9pQ0MDNS2a9dOe+jQoeYO+ar8/Py0W7du1Wq1+uciKipKa29v35yhXZd/az1ul/bk4uKife6557QnT56ss0xxcbF26dKl2u7du2s/+eSTmxhd/d0u9bjSsmXLtCYmJtpRo0ZpTU1NtaNHj9YGBgZq7ezstA8++GBzh1dv/+Z6/Pnnn/V+3KoUCoVWqVRqlUqlVqFQ1HpYWlpqf/755+YOU4hrks44IYS4jc2bN09bVlZWr7KnTp265TvjzMzMtDExMbW2nzt3TmtmZtYMEd0YS0tL7cWLF7VarVbr7u6uPXLkiFarreoctbW1bc7QrsuVHYn29vbaU6dOabVarTYyMlLr5eXVjJHVn7W1tfbcuXO6/1/uODl06JDW0dGxOUO7pueff16bkZFRr7Lr16/Xrlixookjahhzc3NtfHy8VqvVPxenT5++5TtGr/Rvrcft0p7qW4cbLX+z3C71uFJoaKh23rx5Wq22+rWh0Wi0M2bM0L755pvNHF39/ZvrUbPjqmaH1uVOLqVS2dyh1ik+Pl574cIFrUKh0EZERGjj4+N1j5SUFG1lZWVzhyhEvdya+eVCCCEaxWOPPYapqWm9yrZr144hQ4Y0cUQN4+/vz++//15r+/LlywkICGiGiG5Mq1atSE1NBarqtHnzZqBq2Mu/aU4mKysrysrKAGjRogXnz5/X/SwrK6u5wrou/fr1Y/HixbrnCoUCjUbDJ598woABA5oxsmv75JNPcHFxqVfZkSNHcueddzZxRA3Trl07du/eXWv7ihUr6NSpUzNEdGP+rfW4XdpTfetwo+VvltulHlc6f/48o0aNAsDMzIyioiIUCgXPPPMMP/zwQzNHV3//5npoNBrdY/PmzXTs2JG///6bvLw8VCoVGzZsoHPnzmzcuLG5Q62Tl5cX3t7eaDQaunbtipeXl+7h4eGBkZFRc4coRL3InHFCCPEfVFpayvLlyykqKmLIkCH/mo6st99+m0mTJrFr1y569+6NQqFgz549bNu2zWAn3a1q/PjxbNu2jR49evDUU09x77338vPPP5OQkPCvmfcOICwsjL179xIcHMyoUaN47rnnOHnyJKtWrSIsLKy5w6uXTz75hPDwcA4fPkx5eTkvvvgip0+fJicnh7179zZ3eNf0+uuvM3DgQHr16oW5uXlzh9Mgs2fPZurUqSQnJ6PRaFi1ahXR0dEsXryYdevWNXd4/8/encfVmP7/A3+dFm3aUJZUWkQRStm3rGHs2xAl69hKsjSfIWZszRDJli3JXtkydlqIGksbSqUiSxFRlGi5f3/4db6OohMzrnOf834+Hj0eneu+/3hd1Omc97mu6y02aZnHpyIjI1FYWIiOHTtCW1ubdZxq3b9/H/n5+Wjbtq1w7NKlS1ixYgUKCwsxdOhQ/O9//2OYUDzSMo8KderUwZs3bwAAenp6uHPnDiwtLfH69WsUFRUxTic+aZnH3Llz4efnhy5dugjH+vXrB1VVVUybNg3JyckM04knNTUVEREReP78OcrLy0Wu8ekMXiKjWC/NI4QQ8t+aP38+5+LiInz8/v17rk2bNpyioiKnqanJqampcdeuXWOYsGZu3rzJOTg4cNbW1pyVlRXn4ODAxcbGso71XaKjozlvb2+JPqOlKunp6VxCQgLHcRxXWFjIzZgxg7O0tOSGDRsm3KbHB9nZ2Zynpyc3cOBArn///txvv/3GPX36lHUssRgbG3MCgYBTUlLiunXrxi1dupSLjIwUe3u6pDl79izXrVs3Tk1NjVNRUeE6d+7MnTt3jnWsGuPrPP766y+RbXbl5eVcv379hFvY6tevL9yOLsmGDh3KLV68WPg4IyODU1FR4fr27cu5uLhwtWvX5tavX88uoJikZR4Vxo4dy3l7e3Mcx3ErVqzgdHR0uClTpnCGhobcsGHDGKcTn7TMQ1lZmUtMTKw0npCQwCkrKzNIVDPbt2/n5OXlufr163OtW7fm2rRpI/yysrJiHY+Qagk47pM2SYQQQqROy5YtsWrVKgwePBgAsHv3bri7uyMuLg4GBgaYNGkSnj9/jlOnTjFOSgj5Fk+ePEFYWBgiIiIQERGBzMxMqKiooGPHjrCzs4OdnR06derEOibhAWtrayxatEjYmTM4OBhOTk64cOECzM3N4ejoCFVVVYlfiayvr4+goCB07NgRwMcOtyEhIYiPjwcA7Nq1Cxs3bhQ+llTSMo8KeXl5KC4uRqNGjVBeXo61a9ciKioKpqamWLJkCS9WXQLSM49u3bpBUVER+/btQ8OGDQEAOTk5mDBhAj58+IDIyEjGCb/O0NAQM2fOxKJFi1hHIeSbUDGOEEKknIaGBmJjY2FqagoAGDt2LNTV1YXnmsTHx2PAgAF4+vQpy5g18vz58yq3JLRq1YpRouqFhoaKfW9F4ZT8NxITE9GyZUvIyckhMTHxq/fWrl0b+vr6UFRU/EHpvt+jR48QHh6OiIgIHDlyBIWFhSgtLWUdq1rOzs4YP348evbsCYFAwDrON+PzPLS1tXHt2jWYm5sD+DiX0tJS7N27FwAQExODUaNG4dGjRyxjVktFRQWpqanQ19cHAPTq1QudOnXC8uXLAXw886tt27Z4/fo1w5TVk5Z5AEBpaSn279+Pfv36oUGDBqzjEHzcBj1s2DCkpKTAwMAAAJCVlQUzMzMcP35c+LpRUmloaCA+Ph7GxsasoxDyTejMOEIIkXJycnL49HOXmJgYLFmyRPhYS0sLr169YhGtxm7dugUnJyckJyfj88+SBAIBysrKGCWr3tChQ8W6T9Lnoa2tLXaBIS8v7z9O823atGmDnJwc6Orqok2bNhAIBJV+nj6lqakJPz8/4WohSZaeno6IiAjhSrmysjKJb0RR4eXLlxg4cCDq1q2Ln3/+GePHj5fohgdfwud5lJSUiDSRiY6Ohqurq/Bxo0aNeNGcpU6dOsjOzoa+vj7Ky8tx8+ZNkfM4P3z48NXfeUkhLfMAAAUFBcyYMYMX55BVpaCgQOx7NTQ0/sMk/x5TU1MkJibiwoULuHfvHjiOg4WFBXr37s2LDxJGjRqF8+fP45dffmEdhZBvQsU4QgiRcs2bN8fJkycxb9483L17F1lZWSJvzh8+fIj69eszTCg+Z2dnmJmZYdeuXahfvz4vXixW+HwVH1/5+PiwjvDdMjMzhZ0HMzMzv3rv+/fvERwcLLJ1T5JkZmYiPDxcuBIuPz8fnTt3Rvfu3TF79mzY2tpCQYEfL/dCQ0Px+vVrBAUF4cCBA/Dx8UGzZs0wfvx4jBs3Dk2aNGEdUSx8noepqSkuX74MY2NjZGVlITU1Fd27dxdef/z4MerWrcswoXi6d++O5cuXY8uWLQgODkZ5ebnI372kpCSJ/n+oIC3zqNC+fXvExcXB0NCQdZQa09LSEvs1hyR/oPY5gUCAvn37om/fvqyjiMXX11f4fcW24JiYGFhaWlZawe7i4vKj4xFSI7RNlRBCpNyRI0cwduxYdO3aFXfv3oWtrS1OnjwpvL5o0SJkZmZK/BlAAKCuro64uDiJ3zpBpMurV68wefJkHD16lHWUSuTk5GBgYICZM2fCzs4O1tbWkJeXZx3rX/H48WMcPHgQ/v7+SEtL48VW26rwaR7btm2Du7s7xowZg5iYGGhpaYl0FV6xYgX++ecfkb8hkigzMxN9+vRBZmYm5OTk4OvrixkzZgivDx06FEZGRli/fj3DlNWTlnlUCA4OhoeHB9zc3NC2bVuoqamJXJfkoyY+PT/twYMH8PDwwMSJE4Xn+UVHR2PPnj1YvXo1nJycWMWsscLCQkRGRiIrKwsfPnwQuSaJxSwjIyOx7hMIBMjIyPiP0xDyfagYRwghMuDixYs4deoUGjRogDlz5kBVVVV47ffff0ePHj1EVj9IqqFDh2LChAkYMWIE6yjfjW8vgKvz7t07lJSUiIzxZasOABQVFVX5fyHJbw4BYMyYMbh8+TKKi4vRtWtXdO/eHXZ2drCysuLVytHPlZSU4NSpU9i3bx9OnTqFOnXq4MmTJ6xj1Rgf57Fr1y78/fffaNCgAZYuXSpyvtfMmTPRu3dvDB8+nGFC8ZSUlCApKQk6Ojpo1KiRyLWEhATo6+ujTp06jNKJT1rmAXz88OBzFccESPoRDZ/q1asXpkyZgrFjx4qMHzhwANu3b0dERASbYDUUFxeHAQMGoKioCIWFhahTpw5evHgBVVVV6OrqUjGLkP8YFeMIIYQgPj4ebdq0YR2jWi9evICTkxPatWuHli1bVtqSwJfGB9LyAriwsBCLFi1CUFAQXr58Wek6H95Y5ebmwtnZGWfOnKnyOh/mAAD37t0TblWNjIxEcXExunTpgu7du6NHjx6wtbVlHVEs4eHhOHDgAI4cOYKysjIMHz4cDg4O6NmzZ5Vv5CWVtMyjKrm5ucJt3nx1+/Zt7Nq1i/fb7vk2j4cPH371Ol+2r6qqqiIhIQFNmzYVGU9NTUWbNm1QVFTEKFnN9OjRA2ZmZti6dSu0tLSQkJAARUVFjB8/Hq6urrwouhPCZ1SMI4QQGZWfn4/9+/dj165diI+P50XRITQ0FBMmTMCbN28qXePTp+rS8gJ41qxZCA8Pxx9//AFHR0ds3rwZT548wbZt2+Dl5QUHBwfWEavl4OCABw8ewMfHB3Z2djh27BiePXuGFStWwNvbGwMHDmQd8ZskJSXhwIED2LhxI2+6qTZu3BgvX75Ev3794ODggEGDBkFZWZl1rBqTlnl8iuM4nDlzRrhq7v3796wj1VhBQQEOHjyIXbt24ebNm2jVqhXi4+NZx6oxaZkHnzVr1gw//fQTvL29Rcbd3d3x999/IyUlhVGymtHS0sI///yDZs2aQUtLC9HR0TA3N8c///wDJycn3Lt3j3XEr5o3b16V4wKBAMrKyjA1NcWQIUN4s3KUyB5+nOhLCCHkXxMWFgZ/f38cPXoUhoaGGDFiBHbu3Mk6llhcXFwwYcIELFmyhDdNJ6oSHx+Pbdu2QV5eHvLy8nj//j2MjY3x119/wcnJiTfFuJMnTyIwMBA9evTApEmT0LVrV5iamsLQ0BD79+/nRTEuLCwMJ06cgK2tLeTk5GBoaIg+ffpAQ0MDq1ev5lUx7tmzZ4iIiEBERATCw8ORmpoKJSUldO3alXU0sXh6emLUqFHQ1tZmHeW7SMs8ACAjIwP+/v7Ys2cP3r59i4EDB+LQoUOsY9VIZGQkdu3ahSNHjqC4uBgLFizAgQMHeHf2qDTMIzAw8KvXHR0df1CS77N+/XqMGDEC586dQ4cOHQB87FSfnp6OI0eOME4nPkVFReFxBvXr10dWVhbMzc2hqamJrKwsxumqFxcXh9jYWJSVlaFZs2bgOA5paWmQl5dH8+bNsWXLFri7uyMqKgoWFhas4xJSCRXjCCFEBjx+/BgBAQHw9/dHYWEhRo8ejZKSEhw5coRXL1BevnwJNzc3XhfiAP6/AK6Ql5cnPExZQ0MDeXl5AIAuXbqIHDIuyQoLC6GrqwsAqFOnDnJzc2FmZgZLS0vExsYyTle94OBg4fbUlJQUKCgooF27dhg9ejTs7OzQqVMnKCkpsY4plmnTprGO8K/g+zyKi4sREhKCnTt3IiYmBn369EF2djbi4+PRsmVL1vHEkp2djd27dwv/5o0dOxaRkZHo2LEjHB0deVPAkpZ5VHB1dRV5XFJSgqKiItSqVQuqqqq8KcYNGDAAaWlp2Lp1K5KTk8FxHIYMGYJffvkF+vr6rOOJzcrKCjdv3oSZmRns7Ozg6emJFy9eYO/evbC0tGQdr1oVq952794tPKO2oKAAkydPRpcuXTB16lSMGzcObm5uOHfuHOO0hFRGxThCCJFyAwYMQFRUFH766Sds3LgR9vb2kJeXh5+fH+toNTZ8+HCEh4fDxMSEdZTvwvcXwBWMjY3x4MEDGBoawsLCAkFBQWjXrh1OnjwJLS0t1vHE0qxZM6SkpKBJkyZo06YNtm3bhiZNmsDPzw8NGzZkHa9aDg4OsLGxwbBhw2BnZ4fOnTtDRUWFdaxvduPGDQQHB1fZTEMSu9l+CV/nMXPmTBw6dAjNmjXD+PHjceTIEdStWxeKioq8OuvOyMgIo0aNwubNm9GnTx9eZf+UtMyjwqtXryqNpaWlYcaMGViwYAGDRDVXUlKCvn37Ytu2bVi5ciXrON9l1apVwmM/li9fDicnJ8yYMQOmpqbYvXs343TVW7NmDS5cuCDSLEpDQwPLli1D37594erqCk9PT/Tt25dhSkK+jIpxhBAi5c6fPw8XFxfMmDGj0mHDfGNmZoZff/0VUVFRsLS0rNTAgS9dSPn+AriCs7MzEhIS0L17d/z6668YOHAgNm7ciNLSUqxbt451PLHMnTsX2dnZAIClS5eiX79+2L9/P2rVqoWAgAC24cTw6tUrqKmpsY7xrzh06BAcHR3Rt29fXLhwAX379kVaWhpycnIwbNgw1vHExud5bN++HYsWLYKHhwfU1dVZx/lmhoaGiIqKgoGBAQwNDdG8eXPWkb6JtMzja5o2bQovLy+MHz9e4s8oAz6ubL9z5w6vu1VXsLGxEX6vo6OD06dPM0xTc/n5+Xj+/HmlHR65ubkoKCgA8PFcvM8/ECFEUlAxjhBCpNyVK1fg7+8PGxsbNG/eHBMmTMCYMWNYx/omO3fuRO3atREZGYnIyEiRawKBgDfFOL6/AK7g5uYm/N7Ozg737t3DzZs3YWJigtatWzNMJr5Pz7WzsrLCgwcPcO/ePRgYGKBevXoMk4mnohD35MkTHDlyBKmpqRAIBGjatClGjBgBPT09xgnFt2rVKqxfvx6zZs2Curo6NmzYACMjI0yfPp0XqxQr8HkegYGB2L17Nxo2bIiBAwdiwoQJsLe3Zx2rxlJSUnD16lXs2rULtra2MDMzw/jx4wGAV0UUaZlHdeTl5fH06VPWMcTm6OiIXbt2wcvLi3WUf0Vubi5SUlIgEAjQrFkzXvztAz5uU500aRK8vb1ha2sLgUCA69evY/78+Rg6dCgA4Pr16zAzM2MblJAvoG6qhBAiI4qKinDo0CH4+/vj+vXrKCsrw7p16zBp0iRer4AgRNZt2bIF8+bNw4cPH6CpqQmO41BQUIBatWph3bp1mDlzJuuIYlFTU8Pdu3fRpEkT1KtXD+Hh4bC0tERycjJ69uwpXMEo6aRhHg8ePMDu3bsREBCAoqIi5OXl4fDhwxg5ciTraDX29u1bHDx4EP7+/vjnn3/QvXt3jBs3DkOHDoWOjg7reGKThnmEhoaKPOY4DtnZ2di0aRP09fVx5swZRslqZs6cOQgMDISpqSlsbGwqrU7my8rwwsJCzJkzB3v37hV2o5eXl4ejoyM2btwIVVVVxgm/7u3bt3Bzc0NgYKCwY7iCggKcnJywfv16qKmpCTsNt2nThl1QQr6AinGEECLlsrKyoK+vL/IpekpKCnbt2oW9e/fi9evX6NOnT6UXyYRIq3nz5ol9r6S/qTp16hSGDBmCuXPnwt3dXbjyKjs7G2vWrMHGjRtx4sQJDBgwgHHS6unr6+P06dOwtLRE69at4eHhgbFjxyI6Ohr29vbIz89nHVEs0jIP4GOx5Ny5c/D390doaCjq1auH4cOHw9fXl3W0b5KcnCz825eXl4eSkhLWkb4JX+fx+Zl3AoEAOjo66NmzJ7y9vSV+5WgFOzu7L14TCAQICwv7gWm+3fTp03Hx4kVs2rQJnTt3BgBERUXBxcUFffr0wdatWxknFM/bt2+RkZEBjuNgYmKC2rVrs45EiFioGEcIIVJOXl4e2dnZwo6RnyorK8PJkyeFb7Qk0bx587B8+XKoqalVW0SR9MIJkQxfeyP1KT68qerevTu6du2KFStWVHl98eLFuHLlSqVt3ZJo3LhxsLGxwbx587By5Ups2LABQ4YMwYULF2BtbS3RjQ8+JS3z+FxeXp5wG2tCQgLrON+ltLQUoaGhGD58OOso30Va5kHYqFevHkJCQtCjRw+R8fDwcIwePRq5ublsghEiI6gYRwghUk5OTg45OTlVFuP4wM7ODseOHYOWlpbUfBpNyL9FQ0MDN27cQLNmzaq8npKSAhsbG2HDEEmWl5eH4uJiNGrUCOXl5Vi7di2ioqJgamqKJUuWQFtbm3VEsUjLPPjs6dOnWLduHTw9PUU6LQIfD31fsWIF5s+fj/r16zNKKB5pmYe0un//PtLT09GtWzeoqKiA4zheneWnqqqKW7duwdzcXGT87t27aNeuHQoLCxkl+7Lhw4cjICAAGhoa1Rah+frBB5EdVIwjhBApx/diHCE/Al/fVNWuXRuJiYkwNjau8npGRgZatWqFt2/f/uBkhI/E2cItEAjg7e39A9J8u/nz56OgoADbt2+v8vovv/wCTU1N/Pnnnz84Wc1Iwzyk6ViACi9fvsTo0aMRHh4OgUCAtLQ0GBsbY/LkydDS0pL4348KvXr1Qt26dREYGAhlZWUAwLt37+Dk5IS8vDxcvHiRccLKnJ2d4evrC3V1dTg7O3/1Xj51pyeyibqpEkKIDKjoQvo1fOhE+uzZsy+uAEhMTESrVq1+cCLx1eSMJUn+vygoKBD73s9XckiiL72pmjJlCi/eVLVo0QInTpwQ6Wz7qePHj6NFixY/ONW3Ky8vx/379/H8+XOUl5eLXOvWrRujVDXH13nExcWxjvCvOHv2LPz8/L543dHREVOnTpXoIhYgHfP4/Gfq1q1bKCsrE67mTU1Nhby8PNq2bcsi3jdxc3ODoqIisrKyRFaVjRkzBm5ubhL/d6PChg0bYG9vj8aNG6N169YQCASIj4+HsrIyzp07xzpelT4tsFGxjfAdrYwjhBApJycnh8aNG0NeXv6L9wgEAmRkZPzAVN9GV1cXO3fuxODBg0XG165diyVLluDdu3eMklXPyMhIrPsk/f9CTk6u2hVjFavKKrqzSTJHR0c8f/4cO3fuhLm5ORISEmBsbIzz58/Dzc0Nd+/eZR3xq/bs2YMZM2Zg7dq1mDZtGhQUPn7OWlpaim3btmHBggXYsmULJk6cyDaoGGJiYjBu3Dg8fPgQn7885cvPEyA98+AzNTU1JCcnw8DAoMrrFUUUSdyG9ylpmUeFdevWISIiAnv27BFu13716hWcnZ3RtWtXuLu7M04ongYNGuDcuXNo3bo11NXVhX83MjMzYWlpyauVyO/evcO+fftw7949cBwHCwsLODg4QEVFhXU0sZSWliIiIgLp6ekYN24c1NXV8fTpU2hoaFAjByLxaGUcIYTIgJs3b0rFNtVFixZhzJgxwrb1eXl5mDBhAu7evYvDhw+zjvdVmZmZrCP8K8LDw1lH+FedP38e586dQ+PGjUXGmzZtiocPHzJKJT4nJyfcvn0bs2fPxq+//goTExMAQHp6Ot6+fQsXFxdeFOKAj1vubGxscOrUKTRs2JAX24Srwud5REREVDrM/XMzZ87Eli1bfkygb6SiooIHDx58sYj14MEDXhQbpGUeFby9vXH+/HmRcxO1tbWxYsUK9O3blzfFuMLCQqiqqlYaf/HiBZSUlBgk+nYqKiqYOnUq6xjf5OHDh7C3t0dWVhbev3+PPn36QF1dHX/99ReKi4u/uqqUEElAxThCCCG84e7ujt69e2P8+PFo1aoV8vLy0KFDByQmJvLyAOsPHz4gMzMTJiYmwhVNkq579+6sI/yrpOFN1dq1azFy5EgcPHgQaWlpAD5uhfz555/RoUMHxunEl5aWhpCQEJiamrKO8l34PI8hQ4YgPDwc1tbWVV6fNWsW9u/fL/HFuPbt22Pv3r1f3BIcGBiIdu3a/eBUNSct86hQUFCAZ8+eVdo6//z5c140manQrVs3BAYGYvny5QA+rngtLy/HmjVrxO7WzUpoaKjY936+C0HSuLq6wsbGBgkJCahbt65wfNiwYZgyZQrDZISIiSOEECLVBAIB9+zZs6/es2/fvh+U5vsVFBRwY8aM4RQUFDgFBQUuICCAdaQaKyws5CZNmsTJy8tz8vLyXHp6OsdxHDdnzhxu9erVjNPVzOXLlzkHBweuY8eO3OPHjzmO47jAwEDuypUrjJOJZ8CAAdzixYs5juO42rVrcxkZGVxZWRk3atQobsSIEYzTVe/333/nCgsLWcf4V9jZ2XFnzpxhHeO78Xke8+bN43R1dbmUlJRK12bNmsXVrl2bu3z5MoNkNRMWFsbJy8tz7u7uXE5OjnA8JyeHmzdvHicvL89dunSJYULxSMs8KkyYMIEzMDDggoODuUePHnGPHj3igoODuSZNmnCOjo6s44nt7t27nI6ODmdvb8/VqlWLGzlyJGdubs7Vr1+fu3//Put4XyUQCMT6kpOTYx21WnXr1uXu3bvHcdzHv98Vr6UyMzM5FRUVltEIEQsV4wghRMo1b96ce/r06Rev79+/n1NUVPyBib5dVFQU16RJE65t27ZcUlISt2PHDk5dXZ0bNWoUl5eXxzqe2FxcXLi2bdtyV65c4dTU1IQvIE+cOMG1adOGcTrxhYSEcCoqKtyUKVM4JSUl4Tw2b97M9e/fn3E68fD5TRXHcZycnFy1xXa+OHr0KGdhYcHt3r2bu3nzJpeQkCDyxRd8n4ezszNnYGAgLK5z3McPCtTU1LiIiAiGyWrGz8+PU1JS4uTk5DgtLS1OW1ubk5OT45SUlLgtW7awjic2aZkHx338IGrGjBnC+cjJyXG1atXiZsyYwb19+5Z1vBrJzs7mPD09uYEDB3L9+/fnfvvtt6++1iL/Pm1tbe7u3bscx4kW465cucLp6uqyjEaIWKiBAyGESLkePXrg3bt3CAsLg5qamsi1Q4cOwdHREX/++ecXuzFKEiUlJbi5uWH58uVQVFQE8PFsrAkTJiArKwuPHz9mnFA8hoaGOHz4MDp06CBy+PP9+/dhbW1do46lLFlZWcHNzQ2Ojo4i84iPj4e9vT1ycnJYRxRLTk4Otm7dilu3bqG8vBzW1taYNWsWGjZsyDpateTk5JCTkyMVZ0LKyclVGhMIBLxqCALwfx7l5eUYOXIkkpOTceXKFaxcuRLbt2/H33//LfFb8CqUlJRAUVERT548QVBQEO7fvw+O42BmZoaRI0eicePGuHPnDlq2bMk66ldJyzw+V1hYiPT0dHAcB1NT00qvTciPkZmZKXZzKUk0ZswYaGpqYvv27VBXV0diYiJ0dHQwZMgQGBgYULdVIvGoGEcIIVLu7du36NGjB7S0tHDmzBlhESsoKAjjx4/HqlWrMH/+fMYpxRMZGVnlmWXl5eVYuXIllixZwiBVzamqquLOnTswNjYWKWIlJCSgW7duyM/PZx1RLKqqqkhKSkKTJk1E5pGRkQELCwsUFxezjij15OTk8OzZM+jo6LCO8t2qa5hhaGj4g5J8H2mYx4cPHzBw4EAkJCSgsLAQoaGh6NWrF+tYYhs5ciSCg4O/2Dzjzp076NWrF549e/aDk9WMtMxD2ly+fPmr1790xp+kkZeXR7du3TB58mSMHDkSysrKrCPVyNOnT2FnZwd5eXmkpaXBxsYGaWlpqFevHi5fviwVH1IR6UbFOEIIkQG5ubno1q0bLCwsEBISgpCQEDg4OGD58uVYtGgR63gyp3v37hg5ciTmzJkj/DTXyMgIs2fPxv3793H27FnWEcViYmKCbdu2oXfv3iLFuMDAQHh5eSEpKYl1xGqdPXsWtWvXRpcuXQAAmzdvxo4dO2BhYYHNmzeLdP2TRHJycmjZsmW1DUBiY2N/UCLCZ76+vsLv37x5g+XLl6Nfv36VCnEuLi4/OlqN6Ovro3///ti+fXula3fv3kXPnj3RrVs3BAcHM0gnPmmZx6du3LiB4OBgZGVl4cOHDyLXjh49yihVzXxp9WsFSV/9WuHOnTvw9/fH/v378f79e4wZMwaTJ0/mVVOQd+/e4eDBg4iNjRWubHdwcOBVl2Eiu6gYRwghMuLRo0fo0qULTE1NERUVBU9PT/z222+sY9VYYWEhIiMjq3whL+lvECtcu3YN9vb2cHBwQEBAAKZPn467d+8iOjoakZGRaNu2LeuIYvnrr7+wZ88e+Pv7o0+fPjh9+jQePnwINzc3eHp6Yvbs2awjVsvS0hJ//vknBgwYgNu3b8PGxgbu7u4ICwuDubm5xG9zkZOTg7u7O2rXrv3V+5YuXfqDEn2f9PR0+Pj4IDk5GQKBAObm5nB1dYWJiQnraDXC13mIs2VNIBAgIyPjB6T5dsnJycIVP15eXiLjdnZ26NSpE4KDgyEvL88wZfWkZR4VKo7G6Nu3Ly5cuIC+ffsiLS0NOTk5GDZsmMQ/31b4fPV6SUkJ4uLisGTJEqxcuZJXq0gBoLS0FCdPnkRAQADOnDmDpk2bYvLkyZgwYYJUrLomRGIxOamOEELID/PpweGHDx/mlJSUuDFjxvDiUPGsrCyRx7GxsVyDBg04dXV1TkFBgdPR0eEEAgGnpqbGGRkZMUr5bRITEzlHR0euRYsWnLm5Oefg4MAlJiayjlVj//vf/zgVFRVhBzZlZWVhd1I+UFNT4zIzMzmO47ilS5cKO6jeunWLq1+/PsNk4hGnWzJfnD17lqtVqxbXrl07zs3NjZs7dy7Xrl07TklJiTt//jzreGKTlnnw3fXr1zl1dXXur7/+4jiO45KTk7kGDRpwgwcP5kpLSxmnE5+0zIPjOM7S0pLbtGkTx3H/d+B+eXk5N3XqVM7T05Nxuu8XGRnJWVtbs47xzYqLi7l169ZxSkpKnEAg4GrVqsVNmDBBYhtTNGzYkBs7diy3bdu2KjtAEyLpaGUcIYRIOTk5OZHDwyue9j//XhK3VaxYsQLZ2dnYtGkTBAIBevToARMTE2zfvh2NGzdGQkIC3r17h/Hjx8PNzQ3Dhw9nHVkmFRUVISkpCeXl5bCwsKh2lZYkqVOnDqKiomBhYYEuXbrA0dER06ZNw4MHD2BhYYGioiLWEb9KXl4e2dnZUnE2jpWVFfr16yeyAggAPDw8cP78ed5stZWWeUiDsLAw/PTTT1i4cCF27NgBa2trHD16VHh2Kl9IyzzU1NRw9+5dNGnSBPXq1UN4eDgsLS2RnJyMnj17Ijs7m3XE75KcnAxbW1u8ffuWdZQauXnzJvz9/XHo0CGoqanByckJkydPxtOnT+Hp6Yk3b97g+vXrrGNWcvDgQURGRiIiIgKpqamoX78+unfvjh49eqB79+4wNzdnHZGQr6JiHCGESLnqDhOvIImHir979w6zZ89Gbm4uQkNDoaWlhZiYGDRv3hyNGzdGdHQ09PX1ERMTg4kTJ+LevXusI39RTTqkamho/IdJyKcGDx6MDx8+oHPnzli+fDkyMzOhp6eH8+fPY/bs2UhNTWUd8aukqZuqsrIybt++jaZNm4qMp6amolWrVrxpCMLXeRw6dAg///yzWPc+evQIWVlZ6Ny583+c6vsdP34co0aNQt++fXH8+HHeFbAqSMM89PX1cfr0aVhaWqJ169bw8PDA2LFjER0dDXt7e940L0pMTBR5zHEcsrOz4eXlhZKSEly9epVRsppZt24ddu/ejZSUFAwYMABTpkzBgAEDRM7Eu3//Ppo3b47S0lKGSav37NkzhIeH4++//8bhw4dRXl4ukR8yE/Kpr5/2SwghhPckscgmLhUVFezatQuHDh0CACgqKgpfJOrq6uLhw4fQ19eHlpYWsrKyWEatlpaW1hc74n1Okl9A1mT1IR8O4960aRNmzpyJkJAQbN26FXp6egCAM2fOwN7ennG66mVmZkrNmT46OjqIj4+vVMSKj4/nVbGRr/PYunUrli1bBmdnZwwePLjSqpL8/HxcvXoV+/btw8WLF7Fr1y5GSaunra1d6fn2ypUrqF+/vshYXl7ej4xVY9Iyjwpdu3bFhQsXYGlpidGjR8PV1RVhYWG4cOECr85Za9OmjcjuggodOnSAv78/o1Q1t3XrVkyaNAnOzs5o0KBBlfcYGBhI9O/627dvERUVJVwhFxcXB0tLS3Tv3p11NEKqRcU4QgiRYllZWTAwMBD7/idPngiLEZKkYrWGlZUVbty4ATMzM3Tv3h2//vorZsyYgT179sDS0pJxyq8LDw8Xfv/gwQN4eHhg4sSJ6NixIwAgOjoae/bswerVq1lFFIumpqbwe47jcOzYMWhqasLGxgYAcOvWLbx+/Zo3W4YNDAzw999/Vxpfv349gzQ1t2fPHrHu8/T0/I+TfL+pU6di2rRpyMjIQKdOnSAQCBAVFYU///wT7u7urOOJja/ziIyMxN9//42NGzfif//7H9TU1FC/fn0oKyvj1atXyMnJgY6ODpydnXHnzh2JLiz6+PiwjvCvkJZ5VNi0aZNwZeivv/4KRUVFREVFYfjw4ViyZAnjdOLLzMwUeSwnJwcdHR0oKyszSvRt0tLSqr2nVq1acHJy+gFpaq59+/ZITExEy5Yt0aNHD/zvf/9D165doaWlxToaIWKhbaqEECLF6tevj8GDB2Pq1KlfbFWfn5+PoKAgbNiwAdOnT8ecOXN+cErx3bx5EwUFBejZsyfy8vIwceJEREREwMTEBAEBAWjdujXriGLp1asXpkyZgrFjx4qMHzhwANu3b0dERASbYDW0aNEi5OXlwc/PT9jNr6ysDDNnzoSGhgbWrFnDOGH1qltRWZNiNgtycnJo1KgRdHV1K63SqCAQCHhxThnHcfDx8YG3tzeePn0KAGjUqBEWLFgAFxcXsVeWsiYN83j58iWioqLw4MEDvHv3DvXq1YOVlRWsrKxEtrARIkvCwsIwe/ZsxMTEVDpOIj8/H506dYKfnx+6du3KKOG3KSoqqrJDfatWrRglEk+dOnUgEAjQu3dv9OjRAz169KBz4givUDGOEEKkWF5eHlatWgV/f38oKirCxsYGjRo1Eq50SEpKwt27d2FjY4PFixejf//+rCPLBFVVVSQkJFR5plSbNm0kvmlABR0dHURFRaFZs2Yi4ykpKejUqRNevnzJKJn4KhqcfIkkbxkGgAEDBiA8PBz9+vXDpEmTMHDgQGFhlE9KS0uxf/9+9OvXDw0aNMCbN28AAOrq6oyT1Yy0zEOWVDQ34js+zONLZ6cKBAIoKSmhVq1aPzhRzQwePBh2dnZwc3Or8rqvry/Cw8Nx7NixH5zs2+Tm5mLixIk4e/Zsldcl/e8f8PH8voiICERGRuLKlSuQk5ND9+7dYWdnh19++YV1PEK+ij7aIoQQKVanTh2sXbsWT58+xdatW2FmZoYXL14ItyY4ODjg1q1buHr1KhXifiB9fX34+flVGt+2bRv09fUZJPo2paWlSE5OrjSenJyM8vJyBolqLi4uDrGxscKvf/75B35+fjAzM0NwcDDreNU6ffo0MjIy0L59eyxYsACNGzfGokWLkJKSwjpajSgoKGDGjBl4//49gI/FKz4WsKRlHnxmbm6OAwcOVFrl87m0tDTMmDEDf/755w9KVjPSMo9PaWlpQVtbu9KXlpYWVFRUYGhoiKVLl0rs34+EhISvniXat29f3Lp16wcm+j5z587F69evERMTAxUVFZw9exZ79uxB06ZNERoayjqeWFq1agUXFxccOXIEZ86cQf/+/XH06FHMmjWLdTRCqkVnxhFCiAxQVlbG8OHDeXOO15e8fPkSnp6eCA8Px/Pnzyu9YOfLIdbr16/HiBEjcO7cOXTo0AEAEBMTg/T0dBw5coRxOvE5Oztj0qRJuH//vsg8vLy84OzszDideKra2lyxgnTNmjW8+J1p2LAhfv31V/z666+4fPkydu/eDVtbW1haWuLixYtQUVFhHVEs7du3R1xcHK+bzgDSMw++2rx5MxYtWoRZs2ahb9++Va4Ij4qKQlJSEmbPno2ZM2eyjlwlaZnHpwICAvDbb79h4sSJaNeuHTiOw40bN7Bnzx4sXrwYubm5WLt2LZSUlPC///2PddxKnj179tUutgoKCsjNzf2Bib5PWFgYTpw4AVtbW8jJycHQ0BB9+vSBhoYGVq9ejYEDB7KO+FVxcXGIiIhAREQErly5gjdv3qB169ZwdXWFnZ0d63iEVIuKcYQQQnhj/PjxSE9Px+TJk1G/fn2J35LzJQMGDEBaWhq2bt2K5ORkcByHIUOG4JdffuHVyri1a9eiQYMGWL9+PbKzswF8LAwtXLhQog+qF4eZmRlu3LjBOkaN2dra4sGDB0hKSkJcXBxKSkp4U4ybOXMm3N3d8fjxY7Rt2xZqamoi1yX9/KIK0jIPvurZsydu3LiBa9eu4fDhwzhw4ECls+8cHR0xfvx4iT7oXVrm8ak9e/bA29sbo0ePFo4NHjwYlpaW2LZtGy5dugQDAwOsXLlSIotxenp6uH37NkxNTau8npiYiIYNG/7gVN+usLBQ2IilTp06yM3NhZmZGSwtLXlxzqitrS2srKzQvXt3TJ06Fd26dat0lh8hkozOjCOEEMIb6urqiIqK4k2jBllScRYQ314If36GEcdxyM7OxrJly3Dv3j3Ex8ezCVZD0dHR8Pf3R1BQEMzMzODs7Ixx48bx5k06gCobAwgEAuFZWHw4vwiQnnkQ8m/70nmpaWlpaN26NYqKipCZmYkWLVpI5Nmpc+bMQUREBG7cuFGpc+q7d+/Qrl072NnZwdfXl1HCmrG1tcWKFSvQr18/DB06VLgiztfXFyEhIUhPT2cd8asKCgp495qDkE/RyjhCCCG80bx5c7x79451DFIFvr4g1tLSqrTCkuM46Ovr49ChQ4xSie+vv/7C7t278fLlSzg4OCAqKgqWlpasY32TzMxM1hH+FdIyD0L+bY0bN8auXbvg5eUlMr5r1y7hqvCXL19CW1ubRbxqLV68GEePHoWZmRlmz56NZs2aQSAQIDk5GZs3b0ZZWRl+++031jHFNnfuXOGq9qVLl6Jfv37Yt28fatWqhT179jBOVz2+vu4gpAKtjCOEEMIbN27cgIeHBzw9PdGyZctKZ7fQCzNSU5GRkSKP5eTkoKOjA1NTUygoSP5nlnJycjAwMMBPP/301U6E69at+4GpiDR4/PgxQkNDkZWVVamJAP08kW8RGhqKUaNGoXnz5rC1tYVAIMCNGzdw7949hISE4KeffsLWrVuRlpYmsT9jDx8+xIwZM3Du3DlUvI0WCATo168ftmzZgiZNmrAN+I04jsO7d+9w7949GBgYoF69eqwjESL1qBhHCCGEN9LS0jB27FjExcWJjNP2L1IT1tbWuHTpErS1tfHHH39g/vz5UFVVZR3rm/To0aPasxMFAgHCwsJ+UKLvs3fvXvj5+SEzMxPR0dEwNDSEj48PjIyMMGTIENbxxMb3eVy6dAmDBw+GkZERUlJS0LJlSzx48AAcx8Ha2po3P09E8jx8+BB+fn5ISUkBx3Fo3rw5pk+fzrsi1qtXr3D//n1wHIemTZtK7Gq+6uzatQvr169HWloaAKBp06aYO3cupkyZwjgZIdKPinGEECJD0tPT4ePjg+TkZAgEApibm8PV1RUmJiaso4mlXbt2UFBQgKura5UNHLp3784oGeETFRUVpKWloXHjxpCXl0dOTg50dHRYx5J5W7duhaenJ+bOnYuVK1fizp07MDY2RkBAAPbs2YPw8HDWEcUiDfNo164d7O3t8ccff0BdXR0JCQnQ1dWFg4MD7O3tMWPGDNYRCc+UlJSgb9++2LZtG8zMzFjHIQCWLFmC9evXY86cOejYsSOAj+ePbtq0Ca6urlixYgXjhIRINyrGEUKIjDh37hwGDx6MNm3aoHPnzuA4DteuXUNCQgJOnjyJPn36sI5YLVVVVcTFxaFZs2asoxAe69ixI2rXro0uXbrg999/x/z581G7du0q7/X09PzB6WSXhYUFVq1ahaFDhwoLQMbGxrhz5w569OiBFy9esI4oFmmYh7q6OuLj42FiYgJtbW1ERUWhRYsWSEhIwJAhQ/DgwQPWEQkP6ejo4Nq1a5UaOBA26tWrh40bN2Ls2LEi4wcPHsScOXMk/rkqIiICPXr0YB2DkG8m+YehEEII+Vd4eHjAzc2t0sHJHh4eWLRoES+KcTY2Nnj06JFUFONCQkIQFBRU5XlMsbGxjFLVXGRkJNauXSuy2nLBggXo2rUr62hfFBAQgKVLl+Lvv/+GQCDAmTNnqjwfTiAQSHQxzsvLC3PmzIGamlq19/7zzz948eIFBg4c+AOSfZvMzExYWVlVGldSUkJhYSGDRN9GGuahpqaG9+/fAwAaNWqE9PR0tGjRAgAk/g36l7x79w4lJSUiY3w8Z5TP83B0dKyygQNho6ysDDY2NpXG27Zti9LSUgaJasbe3h56enpwdnaGk5OTsAkIIXxBxThCCJERycnJCAoKqjQ+adIk+Pj4/PhA32DOnDlwdXXFggULYGlpWamBQ6tWrRglqxlfX1/89ttvcHJywokTJ+Ds7Iz09HTcuHEDs2bNYh1PbPv27YOzszOGDx8OFxcX4WrLXr16ISAgAOPGjWMdsUrNmjUTdkqVk5PDpUuXoKuryzhVzSUlJcHQ0BCjRo3C4MGDYWNjI9xuW1paiqSkJERFRWHfvn3Izs5GYGAg48RfZ2RkhPj4eBgaGoqMnzlzBhYWFoxS1Zw0zKNDhw64evUqLCwsMHDgQLi7u+P27ds4evQoOnTowDqe2IqKirBw4UIEBQXh5cuXla7z5ZxRaZnHhw8fsHPnTly4cAE2NjaVPkiQ1KYN0mr8+PHYunVrpX/37du3w8HBgVEq8T19+hT79u1DQEAAli1bhl69emHy5MkYOnToVxsaESIpaJsqIYTICH19faxbtw6jRo0SGQ8KCsL8+fORlZXFKJn45OTkKo0JBALeNXBo3rw5li5dirFjx4psY/P09EReXh42bdrEOqJYzM3NMW3aNLi5uYmMr1u3Djt27EBycjKjZLIjMTERmzdvRnBwMPLz8yEvLw8lJSUUFRUBAKysrDBt2jQ4OTlBSUmJcdqv2717N5YsWQJvb29MnjwZO3fuRHp6OlavXo2dO3fi559/Zh1RLNIwj4yMDLx9+xatWrVCUVER5s+fj6ioKJiammL9+vWVCo2SatasWQgPD8cff/wBR0dHbN68GU+ePMG2bdvg5eXFi4IDID3zsLOz++I1PjWakRZz5sxBYGAg9PX1hUX2mJgYPHr0CI6OjiIfeEp6oTQ+Ph7+/v44ePAgysvL4eDggMmTJ6N169asoxHyRVSMI4QQGfHHH39g/fr18PDwQKdOnSAQCBAVFYU///wT7u7uWLx4MeuI1Xr48OFXr/PlDaKqqiqSk5NhaGgIXV1dXLhwAa1bt0ZaWho6dOhQ5coHSaSkpIS7d+/C1NRUZPz+/fto2bIliouLGSWTPRzHITExEQ8ePMC7d+9Qr149tGnTBvXq1WMdrUZ27NiBFStW4NGjRwAAPT09LFu2DJMnT2acrGakZR58Z2BggMDAQPTo0QMaGhqIjY2Fqakp9u7di4MHD+L06dOsI4pFWuZBJMvXiqOf4kuh9OnTp9i+fTu8vLygoKCA4uJidOzYEX5+fsJt9oRIEtqmSgghMmLJkiVQV1eHt7c3fv31VwAfzwJatmwZXFxcGKcTD1+KbdVp0KABXr58CUNDQxgaGiImJgatW7dGZmYm+PQZmb6+Pi5dulSpGHfp0iU6u+UHEwgEaN26Ne9XAUydOhVTp07FixcvUF5ezsvtw4D0zAMA3r59i/LycpExvpxRlpeXByMjIwAfM+fl5QEAunTpwquOsNIyjwr3799Heno6unXrBhUVFeHqdvJj8aGzc3VKSkpw4sQJ+Pv7C7c/b9q0CWPHjkVeXh4WLVqEUaNGISkpiXVUQiqhYhwhhMiA0tJS7N+/H2PHjoWbmxvevHkD4GPHPPLj9ezZEydPnoS1tTUmT54MNzc3hISE4ObNmxg+fDjreGJzd3eHi4sL4uPjRVZbBgQEYMOGDazjER7j24q+L+HrPDIzMzF79mxERESIrHDl25EAxsbGePDgAQwNDWFhYYGgoCC0a9cOJ0+ehJaWFut4YpOWebx8+RKjR49GeHg4BAIB0tLSYGxsjClTpkBLSwve3t6sIxIemTNnDg4ePAjg4/l3f/31F1q2bCm8rqamBi8vLzRp0oRRQkK+jrapEkKIjPh0ayRhq7y8HOXl5cIOnkFBQcLzmH755RdeHTx87NgxeHt7C8+Hq+imOmTIEMbJCB9JS5dhvs+jU6dOAABXV1fUr1+/0qql7t27s4hVY+vXr4e8vDxcXFwQHh6OgQMHoqysDKWlpVi3bh1cXV1ZRxSLtMzD0dERz58/x86dO2Fubi48L/X8+fNwc3PD3bt3WUckPNKrVy9MmTIFI0aM+OLrptLSUly9epU3z1lEtlAxjhBCZISdnR1cXV0xdOhQ1lEIIaSST7sM79ixo1KX4ZUrV7KOKBZpmEft2rVx69YtNGvWjHWUf1VWVhZu3rwJExMTXm/p5us8GjRogHPnzqF169YizYsyMzNhaWmJt2/fso5IeOTy5cvo1KmT8IPNCqWlpbh27Rq6devGKBkh4qFtqoQQIiNmzpwJd3d3PH78GG3btoWamprI9VatWjFKJpuuXLmCbdu2IT09HSEhIdDT08PevXthZGSELl26sI4nFmNjY9y4cQN169YVGX/9+jWsra2RkZHBKNnXaWtri30+UcXZTOS/t2XLFmzfvh1jx47Fnj17sHDhQpEuw3whDfOwtbXFo0ePpK4YZ2BgAAMDA9Yxvhtf51FYWAhVVdVK4y9evJD4bs9E8tjZ2SE7O7vSmZz5+fmws7PjzXZ6IruoGEcIITJizJgxACDSrEEgEPDuDCAAuHXrFpKTkyEQCGBubg5ra2vWkWrkyJEjmDBhAhwcHBAXF4f3798DAN68eYNVq1bxpjPegwcPqvy5ef/+PZ48ecIgkXh8fHxYR/jP8Plg9KysLOH2SBUVFeHZlhMmTECHDh2wadMmlvHEJg3z2LlzJ3755Rc8efIELVu2hKKiosh1Sf7wxtfXV+x7Jbl5ka+vL6ZNmwZlZeVq5yTJ8/hUt27dEBgYiOXLlwP4+BqkvLwca9asEbuzJyEVvvT37eXLl5U+cCZEElExjhBCZERmZibrCN/t+fPn+PnnnxEREQEtLS1wHCf8BPTQoUPQ0dFhHVEsK1asgJ+fHxwdHXHo0CHheKdOnfDHH38wTCae0NBQ4ffnzp2Dpqam8HFZWRkuXbok0QcmOzk5sY7wr3v58iXGjBmDsLAw3h6MLi1dhqVhHrm5uUhPT4ezs7NwjC8f3qxfv17kcW5uLoqKioSNDl6/fg1VVVXo6upKdBFr/fr1cHBwgLKycqU5fUogEEj0PD61Zs0a9OjRAzdv3sSHDx+wcOFC3L17F3l5ebh69SrreIQnKhpdCQQCTJw4UWRVZVlZGRITE4UfiBAiyagYRwghMkIaGjfMmTMHBQUFuHv3LszNzQEASUlJcHJygouLi7CrlqRLSUmp8iwTDQ0NvH79+scHqqGKcwcFAkGlwpaioiKaNGnCi+JPhfT0dOzevRvp6enYsGEDdHV1cfbsWejr66NFixas44nFzc0NCgoKyMrKEv5uAB9XxLq5ufHi/0NaugxLwzwmTZoEKysrHDx4sMoGDpLs0w+eDhw4gC1btmDXrl3CLbcpKSmYOnUqpk+fziqiWD6dhzR8mAYAFhYWSExMxNatWyEvL4/CwkIMHz4cs2bNQsOGDVnHIzxR8QEgx3FQV1eHioqK8FqtWrXQoUMHTJ06lVU8QsRGDRwIIUSG7N27F35+fsjMzER0dDQMDQ3h4+MDIyMjXnS/1NTUxMWLF2Fraysyfv36dfTt25cXhSwAMDExwbZt29C7d2+RQ6wDAwPh5eWFpKQk1hHFYmRkhBs3bqBevXqso3yzyMhI9O/fH507d8bly5eRnJwMY2Nj/PXXX7h+/TpCQkJYRxSLNByMLi1dhqVhHmpqakhISICpqSnrKN/FxMQEISEhsLKyEhm/desWRo4cycsiV8VbNz4VSAn5L/z++++YP38+bUklvCXHOgAhhJAfY+vWrZg3bx4GDBiA169fC7cZaWlp8eYMrfLy8kpnFwEfV2OVl5czSPRtpk+fDldXV/zzzz8QCAR4+vQp9u/fj/nz52PmzJms44ktMzOT14U4APDw8MCKFStw4cIFkSKJnZ0doqOjGSarGWk4GF1OTk6kK97o0aPh6+sLFxcXXhSwKkjDPHr27ImEhATWMb5bdnY2SkpKKo2XlZXh2bNnDBJ9u127dqFly5ZQVlaGsrIyWrZsiZ07d7KOVSNGRkZYsmQJUlJSWEchUmDp0qVQU1PD8+fPceXKFURFReH58+esYxEiNirGEUKIjNi4cSN27NiB3377DfLy8sJxGxsb3L59m2Ey8fXs2ROurq54+vSpcOzJkydwc3NDr169GCarmYULF2Lo0KGws7PD27dv0a1bN0yZMgXTp0/H7NmzWccTm4uLS5UHi2/atAlz58798YG+we3btzFs2LBK4zo6Onj58iWDRN+m4mD0CnQwOvkegwYNgpubG5YtW4YjR44gNDRU5IsvevXqhalTp+LmzZvCFWU3b97E9OnT0bt3b8bpxLdkyRK4urpi0KBBCA4ORnBwsPD/aPHixazjiW3OnDk4e/YszM3N0bZtW/j4+CA7O5t1LMJTBQUFmDBhAvT09NC9e3d069YNenp6GD9+PPLz81nHI6RatE2VEEJkhIqKCu7duwdDQ0ORbWxpaWlo1aoV3r17xzpitR49eoQhQ4bgzp070NfXh0AgQFZWFiwtLXHixAk0btyYdcRqlZWVISoqCpaWllBWVkZSUhLKy8thYWGB2rVrs45XI3p6eggNDUXbtm1FxmNjYzF48GA8fvyYUTLxNW7cGEFBQejUqZPI78WxY8cwf/58pKens44olqSkJPTo0QNt27ZFWFgYBg8eLHIwuomJCeuIhEfk5L78eb2kN3D4VG5uLpycnHD27FnhqurS0lL069cPAQEB0NXVZZxQPPXq1cPGjRsxduxYkfGDBw9izpw5ePHiBaNk3yY1NRX79+/HoUOHkJGRATs7O4wfPx6Ojo6soxEeGT16NOLj47Fx40Z07NgRAoEA165dg6urK1q1aoWgoCDWEQn5KirGEUKIjLCwsMDq1asxZMgQkaKDr68v9uzZg1u3brGOKLYLFy7g3r174DgOFhYWvFrhAADKyspITk6GkZER6yjfRVlZGXfu3Kl0rtT9+/fRsmVLFBcXM0omvoULFyI6OhrBwcEwMzNDbGwsnj17BkdHRzg6OmLp0qWsI4otJycHW7duxa1bt1BeXg5ra2s6GJ0QfCz+VPzNMDc3h5mZGetINaKtrY3r16+jadOmIuOpqalo164db85LrUpMTAxmzJiBxMRE3hR5iWRQU1PDuXPn0KVLF5HxK1euwN7eHoWFhYySESIe6qZKCCEyYsGCBZg1axaKi4vBcRyuX7+OgwcPYvXq1bw7d6ZPnz7o06cP6xjfzNLSEhkZGbwvxpmamuLs2bOVttaeOXMGxsbGjFLVzMqVKzFx4kTo6ekJi7tlZWUYN24cr7Z/AR+bOPz++++sYxAicczMzHhXgPvU+PHjsXXrVqxbt05kfPv27XBwcGCU6vtcv34dBw4cwOHDh5Gfn4+RI0eyjkR4pm7dusLOqp/S1NSEtrY2g0SE1AytjCOEEBmyY8cOrFixAo8ePQLwcZvhsmXLMHnyZMbJvszX1xfTpk2DsrJyleeTfcrFxeUHpfo+58+fx6JFi7B8+XK0bdu2UicwDQ0NRslqxt/fH7Nnz8aCBQvQs2dPAMClS5fg7e0NHx8fTJ06lXFC8aWnpyMuLg7l5eWwsrKqtAJF0l2+fPmr17t16/aDkhC+kpbn2nnz5mH58uVQU1PDvHnzvnrv58UtSTVnzhwEBgZCX18fHTp0APBxRdmjR4/g6Ogo0thIkudUsT31wIEDePDgAezs7ODg4IDhw4dDXV2ddTzCM9u3b0dwcDACAwOFK8BzcnLg5OSE4cOHY/r06YwTEvJ1VIwjhBAZ9OLFC5SXl/PivBwjIyPcvHkTdevW/epKMoFAgIyMjB+Y7Nt9eh6TQCAQfs9xHK/OYwI+dulduXKlsKlGkyZNsGzZMjr75wer6oyvT3+2+PIzFRISgqCgIGRlZeHDhw8i12JjYxmlqjk+zkNanmvt7Oxw7NgxaGlpfbV5iUAgQFhY2A9M9u3EbcIi6XOSk5ODjY0Nxo0bh59//hkNGjRgHYnwmJWVFe7fv4/379/DwMAAAJCVlQUlJaVKH6hJ6vMukW20TZUQQmREZmYmSktL0bRpU9SrV084npaWBkVFRTRp0oRduK/IzMys8ns+Cw8PZx3hXzNjxgzMmDEDubm5UFFR4UUTiupWy3xKkleZfOrVq1cij0tKShAXF4clS5Zg5cqVjFLVjK+vL3777Tc4OTnhxIkTcHZ2Rnp6Om7cuIFZs2axjic2vs5DWp5rP31+lZbnWmmZx71793i9XZhIlqFDh7KOQMh3oZVxhBAiI7p3745JkybByclJZHzfvn3YuXMnIiIi2AQjIuLj49GmTRvWMcRWWlqKiIgIpKenY9y4cVBXV8fTp0+hoaEhsYW5z1eZ3Lp1C2VlZWjWrBmAj1up5OXlhZ1J+ezy5ctwc3PjRYOW5s2bY+nSpRg7dqxIkxlPT0/k5eVh06ZNrCOKRRrm8e7dO6ioqFR5LTs7m5qCkO/y4cMHPH/+HOXl5SLjFaubCCFEFlAxjhBCZISGhgZiY2Or7HxpY2PDi25sI0eOhI2NDTw8PETG16xZg+vXryM4OJhRsu+Tn5+P/fv3Y+fOnUhISODNlsKHDx/C3t4eWVlZeP/+PVJTU2FsbIy5c+eiuLgYfn5+rCNWa926dYiIiMCePXuEBz6/evUKzs7O6Nq1K9zd3Rkn/D7JycmwtbXF27dvWUeplqqqKpKTk2FoaAhdXV1cuHABrVu3RlpaGjp06ICXL1+yjigWaZhH8+bNceDAAVhbW4uMh4SECFfCSqrhw4eLfe/Ro0f/wyT/nuLiYmzcuBHh4eFVFrH4sgUvLS0NkyZNwrVr10TG+XhEA5Esb9++rfR7wZfzd4nsom2qhBAiIwQCAd68eVNpPD8/nzcvgCMjI7F06dJK4/b29li7di2DRN8nLCwM/v7+OHr0KAwNDTFixAjs2rWLdSyxubq6wsbGBgkJCahbt65wfNiwYZgyZQrDZOLz9vbG+fPnRTqvaWtrY8WKFejbty9vinGJiYkijzmOQ3Z2Nry8vNC6dWtGqWqmQYMGePnyJQwNDWFoaIiYmBi0bt0amZmZ4NNnx9Iwjz59+qBTp05YtmwZFi1ahMLCQsyePRvBwcHw8vJiHe+rPu2uyHEcjh07Bk1NTdjY2AD4uBL29evXNSrasTZp0iRcuHABI0eORLt27UTOg+STiRMnQkFBAX///TcaNmzI23kQyZCZmYnZs2cjIiICxcXFwnEq7hK+oGIcIYTIiK5du2L16tU4ePAg5OXlAXw81H316tXo0qUL43Tiefv2LWrVqlVpXFFREQUFBQwSfV1ubi50dHRExh4/foyAgAD4+/ujsLAQo0ePRklJCY4cOQILCwtGSb9NVFQUrl69Wun/xNDQEE+ePGGUqmYKCgrw7NkztGjRQmT8+fPnVRavJVWbNm0gEAgqFXs6dOgAf39/RqlqpmfPnjh58iSsra0xefJkuLm5ISQkBDdv3uRV4UQa5rFx40YMHDgQzs7OOHXqlHDr+Y0bNyT+eWr37t3C7xctWoTRo0fDz89P5O/ezJkzebVq5tSpUzh9+jQ6d+7MOsp3iY+Px61bt9C8eXPWUYgUcHBwAPCxs3v9+vWpuEt4h4pxhBAiI/766y9069YNzZo1Q9euXQEAV65cQUFBAW/OxWrZsiUOHz4MT09PkfFDhw5J5BvE7du34/Hjx/D19YWioiIGDBiAqKgo/PTTT9i4cSPs7e0hLy/Pi+2cVSkvL6/yk+fHjx9DXV2dQaKaGzZsGJydneHt7Y0OHToAAGJiYrBgwQLeFE6Aygfuy8nJQUdHB8rKyowS1dz27duF24x++eUX1KlTB1FRURg0aBB++eUXxunEJy3z6Nu3L4YPH46tW7dCQUEBJ0+elMjn2a/x9/dHVFSUsBAHAPLy8pg3bx46deqENWvWMEwnPj09Pd48p36NhYUFXrx4wToGkRKJiYm4deuW8LxXQviGzowjhBAZ8vTpU2zatAkJCQlQUVFBq1atMHv2bNSpU4d1NLGEhoZixIgRGDduHHr27AkAuHTpEg4ePIjg4GCJ66z1/v17LFmyBPXq1cPChQuhoKAAFxcXzJgxA02bNhXep6ioiISEBN690R0zZgw0NTWxfft2qKurIzExETo6OhgyZAgMDAxEVqhIqqKiIsyfPx/+/v4oKSkBACgoKGDy5MlYs2YN1NTUGCck5MeraMiSk5ODnTt3IjIyEmvXroWLiwtWrlwJRUVF1hHFoq2tjd27d1f623D8+HE4OztX6kIsqc6cOQNfX1/4+fnB0NCQdZxvFhYWhsWLF2PVqlWwtLSs9HPEp9WKhD07Ozv89ttv6N27N+sohHwTKsYRQgjhlVOnTmHVqlWIj48XFhSXLl2K7t27s472RR8+fECtWrUQHR0Nf39/BAUFoXnz5pgwYQLGjBmDRo0a8bIY9/TpU9jZ2UFeXh5paWmwsbFBWloa6tWrh8uXL0NXV5d1RLEVFhYiPT0dHMfB1NSUd0U4X1/fKscFAgGUlZVhamqKbt26iawQkgSfn3X3Na1atfoPk3wfaZlHBXV1dQwcOBB+fn7Q0tICAFy7dg2Ojo5QV1dHXFwc24BimjdvHgICAvC///1PZOWrl5cXHB0dsW7dOsYJxZObm4vRo0fj8uXLUFVVrVTEysvLY5SsZuTk5ITff7qlkM74It8iPT0dv/zyC8aPH4+WLVtW+r3gw3MtkW1UjCOEEBlx+fLlr17v1q3bD0pCioqKcOjQIfj7++P69esoKyvDunXrMGnSJN5tRXr37h0OHjyI2NhYlJeXw9raGg4ODlBRUWEdTaYYGRkhNzcXRUVF0NbWBsdxeP36NVRVVVG7dm08f/4cxsbGCA8Ph76+Puu4QnJyclWedfc5SX+jLi3zqLB3715MmDCh0vibN28wd+5c3jSaKS8vx9q1a7FhwwZkZ2cDABo2bAhXV1e4u7tLXHH6S3r37o2srCxMnjy5yrOxnJycGCWrmcjIyK9el+QP1YjkiYmJwbhx4/DgwQPhWMXzMF+ea4lso2IcIYTIiE8/ka7w6Qt6etHCRkpKCnbt2oW9e/fi9evX6NOnD0JDQ1nHIjxz8OBBbN++HTt37oSJiQkA4P79+5g+fTqmTZuGzp074+eff0aDBg0QEhLCOO3/efjwodj3SvL2PGmZhzQpLS3F/v370a9fPzRo0EDY5IePWyFVVVURHR3Nm87IX3PlyhVs27YN6enpCAkJgZ6eHvbu3QsjIyPeNJMiksHCwgLm5uZYuHBhlUVqeq4lko6KcYQQIiPy8/NFHpeUlCAuLg5LlizBypUr0atXL0bJvq5OnTpITU1FvXr1oK2t/dVuWXzZqlOVsrIynDx5Ev7+/rwqxqWkpGDjxo1ITk6GQCBA8+bNMXv2bOqW94OZmJjgyJEjaNOmjch4XFwcRowYgYyMDFy7dg0jRowQrhAipDpJSUnIysrChw8fhGMCgQCDBg1imEp8qqqqSE5O5v2bcmtra2zZskW41Zavjhw5ggkTJsDBwQF79+5FUlISjI2NsWXLFvz99984ffo064iER9TU1JCQkABTU1PWUQj5JtRNlRBCZISmpmalsT59+kBJSQlubm64desWg1TVW79+vXDr5vr166W2db28vDyGDh0qcU0oviYkJARjx46FjY0NOnbsCODjthFLS0scOHAAo0aNYpxQdmRnZ6O0tLTSeGlpKXJycgAAjRo1wps3b350NMID+fn5In8jMjIyMHz4cCQmJopsv614/uXLSur27dsjLi6O98U4Ly8vuLu7Y+XKlbxufLBixQr4+fnB0dERhw4dEo536tQJf/zxB8NkhI969uxJxTjCa7QyjhBCZFxycjJsbW3x9u1b1lEIzxgbG2P8+PGV3kQtXboUe/fuRUZGBqNksmfgwIHCzpdWVlYAPq6Kmzp1Kho0aIC///4bJ0+exP/+9z/cvn2bcVoiaZYvXw5lZWUsWLAAAIQr33bu3Ik2bdrgn3/+QWZmJubPn49169aha9euLOOKLTg4GB4eHnBzc0Pbtm0rNWbhywHvFcdMfP5hFN/OxlJVVUVSUhKaNGkCdXV1JCQkwNjYGBkZGbCwsEBxcTHriIRHtm/fjhUrVmDSpElVFqkHDx7MKBkh4qFiHCGEyIjPu/1xHIfs7Gx4eXmhpKQEV69eZZRMfHZ2dhg/fjxGjhxZ5Uo/8mOpqqoiMTGx0qfSaWlpaN26NYqKihgl+7qabAPmy4v5nJwcTJgwAZcuXRK+ISktLUWvXr2wd+9e1K9fH+Hh4SgpKUHfvn0ZpyWS5vnz55gwYQJMTU2xefNm1KtXD5cuXULr1q2hp6eH69evQ09PD5cuXcL8+fN50031S2el8q2IJS2ND0xMTLBt2zb07t1bpBgXGBgILy8vJCUlsY5IeKSq3+8KfPr9JrKLtqkSQoiMaNOmTZXd/jp06AB/f39GqWrG0tISixcvxuzZszFgwABMmDABAwYMQK1atVhHk0k9evTAlStXKhXjoqKiJHrlzOdbgT//veBjY5MGDRrgwoULuHfvHlJTU8FxHJo3b45mzZoJ77Gzs2OYkEgyXV1dnDt3DqtXrwbw8ee+4niAevXq4enTp9DT00OTJk2QkpLCMmqNZGZmso7wr+BLsa0606dPh6urK/z9/SEQCPD06VNER0dj/vz58PT0ZB2P8Ex5eTnrCIR8F1oZRwghMuLzbn9ycnLQ0dGBsrIyo0Tfpry8HBcvXsSBAwdw7NgxyMvLY+TIkXBwcJCaNyx84efnB09PT4wePVp4sHhMTAyCg4Px+++/o1GjRsJ7JXWF2cWLF7Fo0SKsWrUKHTt2hEAgwLVr17B48WKsWrUKffr0YR2xRj58+IDMzEyYmJhAQYF/n7m+fv0aISEhSE9Px4IFC1CnTh3Exsaifv360NPTYx1PbHyfR9euXTFv3jwMGzYM06ZNQ25uLhYsWAA/Pz/Exsbizp07rCNKvcTERLRs2RJycnKVVrZ/ji/bbQHgt99+w/r164VbUpWUlDB//nwsX76ccTJCCPmxqBhHCCEyoGJr2rZt22BmZsY6zr+muLgYJ0+exMqVK3H79m3erGKSFl/bIvIpSd4u0rJlS/j5+aFLly4i41euXMG0adOQnJzMKFnNFBUVYc6cOdizZw8AIDU1FcbGxnBxcUGjRo3g4eHBOGH1EhMT0bt3b2hqauLBgwdISUmBsbExlixZgocPHyIwMJB1RLFIwzzOnTuHN2/eYOTIkXj06BEGDhyIO3fuoE6dOggKCkLPnj1ZRxTb3r174efnh8zMTERHR8PQ0BA+Pj4wMjLCkCFDWMf7Ijk5OeTk5EBXVxdycnJVrmwHJPv59UuKioqQlJSE8vJyWFhYoHbt2qwjER4ZMGAADh48KDyuZOXKlZg1axa0tLQAAC9fvkTXrl1p2zOReOK9iiaEEMJrioqKuHPnjlR1Is3JyYGfnx/+/PNPJCYmwsbGhnUkmVNeXi7WlyS/UUxPT6/y/MGKQgpf/Prrr0hISEBERITIatfevXvj8OHDDJOJb968eZg4cSLS0tJE5tC/f39cvnyZYbKakYZ59OvXDyNHjgQA6OvrIzExES9evMDz588luhB37tw55OfnCx9v3boV8+bNw4ABA/D69Wvhc5GWlhZ8fHwYpRRPZmYmdHR0hN9nZGQgMzOz0hcfG+WoqqrCxsYG7dq1o0IcqbFz587h/fv3wsd//vkn8vLyhI9LS0t5tZ2eyC4qxhFCiIxwdHTErl27WMf4LgUFBdi9ezf69OkDfX19bN26FYMGDUJqair++ecf1vEIPm7P4xNbW1vMnTsX2dnZwrGcnBy4u7ujXbt2DJPVzPHjx7Fp0yZ06dJFpOhuYWGB9PR0hsnEd+PGDUyfPr3SuJ6eHnJychgk+jbSMo/P1alTR+zVsKzk5OSgc+fOePz4MQBg48aN2LFjB3777TfIy8sL77OxsZH4rsKGhobC32VDQ8OvfhEiSz5fIUob/Qhf8e8wEUIIId/kw4cP2LlzJy5cuAAbGxuoqamJXF+3bh2jZOKrX78+tLW1MXr0aKxatQq2trasI8m0P//8E02aNMGYMWMAAKNGjcKRI0fQsGFDnD59Gq1bt2acsHr+/v4YNmwYDA0NYWBgAADIysqCmZkZjh8/zjZcDeTm5kJXV7fSeGFhIW9WxCorK6OgoKDSeEpKinCFEB9IwzyKi4uxceNGhIeH4/nz55UOSo+NjWWU7OucnJygrq4Oe3t73LlzB5mZmbCysqp0n5KSEgoLCxkkFJ80dn0mhBDyf6gYRwghMuLOnTuwtrYG8PE8qU/x4c06x3HYsGEDxo8fD1VVVdZxCIBt27Zh3759AIALFy7g4sWLOHv2LIKCgrBgwQKcP3+eccLqmZqaIjExUdiJlOM4WFhYoHfv3rz4vahga2uLU6dOYc6cOQD+73d6x44d6NixI8toYhsyZAj++OMPBAUFAfg4h6ysLHh4eGDEiBGM04lPGuYxadIkXLhwASNHjkS7du149bswfPhwYQHOyMgI8fHxlVaPnTlzBhYWFiziie3zrs9fwscz4wj5HgKBoNJzEp+eowipQA0cCCGE8EJ5eTmUlZVx9+5dNG3alHUcAkBFRQWpqanQ19eHq6sriouLsW3bNqSmpqJ9+/Z49eoV64gy49q1a7C3t4eDgwMCAgIwffp03L17F9HR0YiMjETbtm1ZR6xWQUEBBgwYgLt37+LNmzdo1KgRcnJy0LFjR5w+fbrSal5JJQ3z0NTUxOnTp9G5c2fWUb7L7t27sWTJEnh7e2Py5MnYuXMn0tPTsXr1auzcuRM///wz64iEkBqSk5ND//79oaSkBAA4efIkevbsKXxuff/+Pc6ePUtFaiLxaGUcIYTIiPz8fJSVlaFOnToi43l5eVBQUICGhgajZOKRk5ND06ZN8fLlSyrGSQhtbW08evQI+vr6OHv2LFasWAHg4ypGvrwI/uOPP7563dPT8wcl+T6dOnXC1atXsXbtWpiYmOD8+fOwtrZGdHQ0LC0tWccTi4aGBqKiohAWFobY2FiUl5fD2toavXv3Zh2tRqRhHnp6elBXV2cd47s5OzujtLQUCxcuRFFREcaNGwc9PT1s2LCBCnGE8JSTk5PI4/Hjx1e6x9HR8UfFIeSb0co4QgiREf3798egQYMwc+ZMkXE/Pz+Ehobi9OnTjJKJ79SpU/Dy8sLWrVvRsmVL1nFk3uzZs/H333+jadOmiIuLw4MHD1C7dm0cPnwYf/75p8SeK/Wpz8+TKikpQWZmJhQUFGBiYsKLORDybztz5gx8fX3h5+cnNQ0CXrx4gfLy8irPViSEEEJ+NCrGEUKIjKhTpw6uXr0Kc3NzkfF79+6hc+fOePnyJaNk4tPW1kZRURFKS0tRq1YtqKioiFz/tLU9+e+VlJRgw4YNePToESZOnCgsbPn4+KB27dqYMmUK44TfpqCgABMnTsSwYcMwYcIE1nHEVlZWhmPHjiE5ORkCgQDm5uYYMmQIFBQkdyOEr6+v2Pe6uLj8h0m+j7TMo0Jubi5Gjx6Ny5cvQ1VVFYqKiiLX+fZc+/z5c6SkpEAgEKBZs2a8aaRBCCFEelExjhBCZISamhpiYmIqbVm7ffs22rdvj6KiIkbJxLdnz56vXv986wIh3+rOnTv46aef8ODBA9ZRxHLnzh0MGTIEOTk5aNasGYCPjVp0dHQQGhoqsVtVjYyMRB7n5uaiqKgIWlpaAIDXr19DVVUVurq6yMjIYJBQPNIyjwq9e/dGVlYWJk+ejPr161c6HJ0vz7UFBQWYNWsWDh48KOwIKy8vjzFjxmDz5s3Q1NRknJAQQoisomIcIYTIiB49esDS0hIbN24UGZ81axYSExNx5coVRskI3yUlJSErKwsfPnwQGR88eDCjRN8vKioKgwYN4k0Tig4dOkBXVxd79uyBtrY2AODVq1eYOHEinj9/jujoaMYJq3fgwAFs2bIFu3btEhYUU1JSMHXqVEyfPh0ODg6ME4pHGuahqqqK6OhotG7dmnWU7zJ69GjEx8dj48aN6NixIwQCAa5duwZXV1e0atVK2PGWEEII+dGoGEcIITLi6tWr6N27N2xtbdGrVy8AwKVLl3Djxg2cP38eXbt2ZZxQPOnp6di9ezfS09OxYcMG6Orq4uzZs9DX10eLFi1Yx5MpGRkZGDZsGG7fvg2BQICKlxQVq2j40MTh8+2FHMchOzsbe/fuRbdu3XDw4EFGyWpGRUUFN2/erPQ7cOfOHdja2uLdu3eMkonPxMQEISEhlc7xu3XrFkaOHInMzExGyWpGGuZhbW2NLVu2oEOHDqyjfBc1NTWcO3cOXbp0ERm/cuUK7O3tUVhYyCjZt3v37h1KSkpExiS9ARMhhJDK5FgHIIQQ8mN07twZ0dHR0NfXR1BQEE6ePAlTU1MkJibyphAXGRkJS0tL/PPPPzh69Cjevn0LAEhMTMTSpUsZp5M9rq6uMDIywrNnz6Cqqoq7d+/i8uXLsLGxQUREBOt4Ylm/fr3Il6+vLyIiIuDk5ITt27ezjie2Zs2a4dmzZ5XGnz9/DlNTUwaJai47O7tSkQH4WNStam6SShrm4eXlBXd3d0RERODly5coKCgQ+eKLunXrVrkVVVNTU7iClA+Kioowe/Zs6Orqonbt2tDW1hb5IoQQwj+0Mo4QQghvdOzYEaNGjcK8efOgrq6OhIQEGBsb48aNGxg6dCiePHnCOqJMqVevHsLCwtCqVStoamri+vXraNasGcLCwuDu7o64uDjWEWXG6dOnsXDhQixbtky4mikmJgZ//PEHvLy8RFYGSeoqmkGDBiErKwu7du1C27ZtIRAIcPPmTUydOhX6+voIDQ1lHVEs0jAPObmPn9d/flYcx3EQCAS8WPUKANu3b0dwcDACAwPRsGFDAEBOTg6cnJwwfPhwTJ8+nXFC8cyaNQvh4eH4448/4OjoiM2bN+PJkyfYtm0bvLy8eLH1mRBCiCgqxhFCCOGN2rVr4/bt2zAyMhIpxj148ADNmzdHcXEx64gyRVtbG7du3YKxsTFMTEywc+dO2NnZIT09HZaWlrxoCjJp0iRs2LAB6urqIuOFhYWYM2cO/P39GSWrmYriCfB/BZTPtw1LeiElNzcXTk5OOHv2rLB7Z2lpKfr164eAgADo6uoyTigeaZhHZGTkV6937979ByX5PlZWVrh//z7ev38PAwMDAEBWVhaUlJTQtGlTkXtjY2NZRBSLgYEBAgMD0aNHD2hoaCA2NhampqbYu3cvDh48iNOnT7OOSAghpIYkt9c9IYQQ8hktLS1kZ2dX6lwYFxcHPT09RqlkV8uWLZGYmAhjY2O0b98ef/31F2rVqoXt27fD2NiYdTyx7NmzB15eXpWKce/evUNgYCBvinHh4eGsI3w3HR0dnD59GmlpaUhOTgbHcTA3N4eZmRnraDUiDfPgS7GtOkOHDmUd4V+Rl5cn/LunoaGBvLw8AECXLl0wY8YMltEIIYR8IyrGEUII4Y1x48Zh0aJFCA4OhkAgQHl5Oa5evYr58+fD0dGRdTyZs3jxYuEB6CtWrMBPP/2Erl27om7dujh8+DDjdF9XUFAAjuPAcRzevHkDZWVl4bWysjKcPn2aFyuYKkhL8QQAmjZtWmnVEh9Jyzz4TFrOEq1YAW5oaAgLCwsEBQWhXbt2OHnyJLS0tFjHI4QQ8g1omyohhBDeKCkpwcSJE3Ho0CFwHAcFBQWUlZVh3LhxCAgIgLy8POuIMi8vLw/a2tqVzpqSNHJycl/NKBAI8Pvvv+O33377gam+3dmzZ1G7dm3h2XCbN2/Gjh07YGFhgc2bN9Mh74Tw2Pr16yEvLw8XFxeEh4dj4MCBKCsrQ2lpKdatWwdXV1fWEQkhhNQQFeMIIYTwTkZGBmJjY1FeXg4rKytafUJqLDIyEhzHoWfPnjhy5Ajq1KkjvFarVi0YGhqiUaNGDBPWjKWlJf78808MGDAAt2/fho2NDdzd3REWFgZzc3Ps3r2bdURCyL8kKysLN2/ehImJCVq3bs06DiGEkG9AxThCCJFiw4cPF/veo0eP/odJ/htlZWW4ffs2DA0NaeUP+SYPHz6EgYGBxK/kq07t2rVx584dNGnSBMuWLcOdO3cQEhKC2NhYDBgwADk5OawjEkIIIYSQ/4/OjCOEECmmqanJOsK/au7cubC0tMTkyZNRVlaG7t2749q1a1BVVcXff/+NHj16sI5IeCAxMREtW7aEnJwc8vPzcfv27S/e26pVqx+Y7NvVqlVL2L324sWLwjMU69Spg4KCApbRCCHfwNfXV+x7XVxc/sMkhBBC/gu0Mo4QQghvNG7cGMePH4eNjQ2OHz+OmTNnIiIiAoGBgQgPD8fVq1dZRyQ8ICcnh5ycHOjq6grPjqvq5ZBAIEBZWRmDhDU3ePBgfPjwAZ07d8by5cuRmZkJPT09nD9/HrNnz0ZqairriGK5cuUKtm3bhvT0dISEhEBPTw979+6FkZGR8Dw8vigqKkJWVhY+fPggMi6pBV4rKyuxV4jGxsb+x2n+XR8+fEBmZiZMTEygoMCPtQifdw3Pzc1FUVGRsGHD69evoaqqCl1dXWRkZDBISAgh5HvIsQ5ACCHkxyktLcXFixexbds2vHnzBgDw9OlTvH37lnEy8bx48QINGjQAAJw+fRqjR4+GmZkZJk+e/NXVTYR8KjMzEzo6OsLvMzIykJmZWemLT29wN23aBAUFBYSEhGDr1q3Q09MDAJw5cwb29vaM04nnyJEj6NevH1RUVBAXF4f3798DAN68eYNVq1YxTie+3Nxc/PTTT1BXV0eLFi1gZWUl8iWphg4diiFDhmDIkCHo168f0tPToaSkhB49eqBHjx5QVlZGeno6+vXrxzqq2IqKijB58mSoqqqiRYsWyMrKAvBxJZmXlxfjdF/36XPRypUr0aZNGyQnJyMvLw95eXlITk6GtbU1li9fzjoqIYSQb0Ar4wghREY8fPgQ9vb2yMrKwvv375GamgpjY2PMnTsXxcXF8PPzYx2xWoaGhtixYwd69eoFIyMjbNmyBT/99BPu3r2LLl264NWrV6wjypy9e/fCz88PmZmZiI6OhqGhIXx8fGBkZIQhQ4awjkd4xMrKCm5ubnB0dIS6ujoSEhJgbGyM+Ph42Nvb8+bcOwcHBzx48AA+Pj6ws7PDsWPH8OzZM6xYsQLe3t4YOHAg64jVmjJlCho2bFip0LN06VI8evQI/v7+jJLVjKurK65evQofHx/Y29sjMTERxsbGCA0NxdKlSxEXF8c6olhMTEwQEhJSqZh769YtjBw5EpmZmYySEUII+Vb8WKdNCCHku7m6usLGxgYJCQmoW7eucHzYsGGYMmUKw2Tic3Z2xujRo9GwYUMIBAL06dMHAPDPP/+gefPmjNPJnq1bt8LT0xNz587FypUrhVs6tbS04OPjw4tiXGhoaJXjAoEAysrKMDU1rbRdTFKlp6dj9+7dSE9Px4YNG6Crq4uzZ89CX18fLVq0YB2vWikpKejWrVulcQ0NDbx+/frHB/pGYWFhOHHiBGxtbSEnJwdDQ0P06dMHGhoaWL16NS+KccHBwbh582al8fHjx8PGxoY3xbjjx4/j8OHD6NChg8gWXAsLC6SnpzNMVjPZ2dkoKSmpNF5WVoZnz54xSEQIIeR7UTGOEEJkRFRUFK5evYpatWqJjBsaGuLJkyeMUtXMsmXL0LJlSzx69AijRo2CkpISAEBeXh4eHh6M08mejRs3YseOHRg6dKjIli8bGxvMnz+fYTLxDR06tMoz4yrGBAIBunTpguPHj0t0x97IyEj0798fnTt3xuXLl7Fy5Uro6uoiMTERO3fuREhICOuI1WrYsCHu37+PJk2aiIxHRUXB2NiYTahvUFhYCF1dXQAfG2jk5ubCzMwMlpaWvDlrTUVFBVFRUWjatKnIeFRUFJSVlRmlqrnc3Fzh/8WnCgsLedVBuVevXpg6dSp27dqFtm3bQiAQ4ObNm5g+fTp69+7NOh4hhJBvQGfGEUKIjCgvL6/yMPrHjx9DXV2dQaJvM3LkSLi5uaFx48bCMScnJ16swpI2mZmZVZ6BpaSkhMLCQgaJau7ChQuwtbXFhQsXkJ+fj/z8fFy4cAHt2rXD33//jcuXL+Ply5cSX1z08PDAihUrcOHCBZGCu52dHaKjoxkmE9/06dPh6uqKf/75BwKBAE+fPsX+/fsxf/58zJw5k3U8sTVr1gwpKSkAgDZt2mDbtm148uQJ/Pz80LBhQ8bpxDN37lzMmDEDs2fPxr59+7Bv3z7Mnj0bs2bNgpubG+t4YrO1tcWpU6eEjysKcDt27EDHjh1Zxaoxf39/6OnpoV27dlBWVoaSkhLat2+Phg0bYufOnazjEUII+Qa0Mo4QQmREnz594OPjg+3btwP4+Kbk7du3WLp0KQYMGMA4HeEjIyMjxMfHw9DQUGT8zJkzsLCwYJSqZlxdXbF9+3Z06tRJONarVy8oKytj2rRpuHv3Lnx8fDBp0iSGKat3+/ZtHDhwoNK4jo4OXr58ySBRzS1cuBD5+fmws7NDcXExunXrBiUlJcyfPx+zZ89mHU9sc+fORXZ2NoCPZ6z169cP+/fvR61atRAQEMA2nJg8PDxgbGyMDRs2CH+uzM3NERAQgNGjRzNOJ77Vq1fD3t4eSUlJKC0txYYNG3D37l1ER0cjMjKSdTyx6ejo4PTp00hNTcW9e/fAcRzMzc1hZmbGOhohhJBvRA0cCCFERjx9+hR2dnaQl5dHWloabGxskJaWhnr16uHy5ctVbuUh5Gt2796NJUuWwNvbG5MnT8bOnTuRnp6O1atXY+fOnfj5559ZR6yWiooKbty4gZYtW4qM3759G+3atcO7d+/w8OFDmJubo6ioiFHK6jVu3BhBQUHo1KmTSPODY8eOYf78+bw6H6uoqAhJSUkoLy+HhYUFateuzTrSV5WUlEBRUfGL14uKinDv3j0YGBigXr16PzAZAT7+Lq9duxa3bt1CeXk5rK2tsWjRIlhaWrKORgghRIZRMY4QQmTIu3fvcOjQIZE3JQ4ODlBRUWEdjfDUjh07sGLFCjx69AgAoKenh2XLlmHy5MmMk4mnS5cuUFdXR2BgIHR0dAB8PGfK0dERhYWFuHz5Mi5evIiZM2ciNTWVcdovW7hwIaKjoxEcHAwzMzPExsbi2bNncHR0hKOjI5YuXco6YrXy8/NRVlaGOnXqiIzn5eVBQUEBGhoajJJ9nZeXF4yNjXm1YoxIvnnz5mH58uVQU1PDvHnzvnrvunXrflAqQggh/xYqxhFCCCHku7148QLl5eW8W2GZkpKCIUOGIDMzE/r6+hAIBMjKyoKxsTFOnDgBMzMzHD9+HG/evMGECRNYx/2ikpISTJw4EYcOHQLHcVBQUEBZWRnGjRuHgIAAyMvLs45Yrf79+2PQoEGVzofz8/NDaGgoTp8+zSjZ16WmpmLYsGGYNm0aXF1dpaJwUlZWhvXr1yMoKAhZWVn48OGDyPW8vDxGyapXUFAg9r2SWuAFPp73eOzYMWhpacHOzu6L9wkEAoSFhf3AZIQQQv4NVIwjhBDCK+np6di9ezfS09OxYcMG6Orq4uzZs9DX10eLFi1YxyM8xHEczp07h9TUVHAch+bNm6NPnz6Qk+Nfn6v09HTExcWhvLwcVlZWlbphSrI6derg6tWrMDc3Fxm/d+8eOnfuLNFn37158wYTJ07EkSNHpKJw4unpiZ07d2LevHlYsmQJfvvtNzx48ADHjx+Hp6cnXFxcWEf8Ijk5ObE7pVbV1IgQQgj5EagYRwghhDciIyPRv39/dO7cGZcvX0ZycjKMjY3x119/4fr16wgJCWEdUepZWVmJ/UY3Njb2P05DpImamhpiYmIqneV1+/ZttG/fXqLP7JM2JiYm8PX1xcCBA6Guro74+HjhWExMTJXNQiTFp40ZHjx4AA8PD0ycOFHYPTU6Ohp79uzB6tWr4eTkxComIYQQGUfFOEIIIbzRsWNHjBo1CvPmzRM5pP7GjRsYOnQonjx5wjqi1Pv999+F3xcXF2PLli2wsLAQvtGNiYnB3bt3MXPmTKxevZpVzBq5dOkSLl26hOfPn6O8vFzkmr+/P6NU1atuO+Sn+LA1skePHrC0tMTGjRtFxmfNmoXExERcuXKFUTLZo6amhuTkZBgYGKBhw4Y4deoUrK2tkZGRASsrK+Tn57OOKJZevXphypQpGDt2rMj4gQMHsH37dkRERLAJJobhw4eLfe/Ro0f/wySEEEL+CwqsAxBCCCHiun37dpUrMnR0dCR6C5s0+bQRwJQpU+Di4oLly5dXuqeioYOk+/333/HHH3/AxsYGDRs2FHvVnySIi4sTeXzr1i2UlZWhWbNmAD6eZSYvL4+2bduyiFdjK1euRO/evZGQkIBevXoB+FgovXHjBs6fP884nfiKi4uxceNGhIeHV1ng5cOK0caNGyM7OxsGBgYwNTXF+fPnYW1tjRs3bkBJSYl1PLFFR0fDz8+v0riNjQ2mTJnCIJH4NDU1hd9zHIdjx45BU1MTNjY2AD7+vr9+/bpGRTtCCCGSg4pxhBBCeENLSwvZ2dkwMjISGY+Li4Oenh6jVLIrODgYN2/erDQ+fvx42NjYSPSqsgp+fn4ICAiQ6OYMXxIeHi78ft26dVBXV8eePXugra0NAHj16hWcnZ3RtWtXVhFrpHPnzoiOjsaaNWsQFBQEFRUVtGrVCrt27eLV2XeTJk3ChQsXMHLkSLRr145XBd4Kw4YNw6VLl9C+fXu4urpi7Nix2LVrF7KysuDm5sY6ntj09fXh5+cHb29vkfFt27ZBX1+fUSrx7N69W/j9okWLMHr0aPj5+QmbsZSVlWHmzJkS3YSCEELIl9E2VUIIkRF87o5XYeHChYiOjkZwcDDMzMwQGxuLZ8+ewdHREY6OjiKrtsh/r0GDBli9ejWcnZ1Fxnfv3g0PDw88e/aMUTLx1a1bF9evX4eJiQnrKN9FT08P58+fr9TE5M6dO+jbty+ePn3KKJns0dTUxOnTp9G5c2fWUf41MTExuHbtGkxNTTF48GDWccR2+vRpjBgxAiYmJujQoQOAj3NJT0/HkSNHMGDAAMYJxaOjo4OoqCjhqtcKKSkp6NSpE60MJ4QQHqKVcYQQIiN+//33r3bH44OVK1di4sSJ0NPTA8dxsLCwQFlZGcaNG4fFixezjidz5s6dixkzZuDWrVsib3T9/f158zM1ZcoUHDhwAEuWLGEd5bsUFBTg2bNnlYpxz58/x5s3bxilqrny8nLcv3+/yu2d3bp1Y5SqZvT09KCurs46xr+qQ4cOwt9xPhkwYADS0tKwdetWJCcng+M4DBkyBL/88ovEr4z7VGlpKZKTkysV45KTkyv9nhBCCOEHWhlHCCEygs/d8T6Xnp6OuLg4lJeXw8rKildb2KRNUFAQNmzYgOTkZACAubk5XF1dMXr0aMbJxOPq6orAwEC0atUKrVq1gqKiosh1PjQ+AABHR0dERkbC29tbpDC6YMECdOvWDXv27GGcsHoxMTEYN24cHj58iM9fngoEApSVlTFKVjNnzpyBr68v/Pz8YGhoyDqO2EJDQ8W+l0+r46TBvHnzEBAQgP/9738iv99eXl5wdHTkzfMUIYSQ/0PFOEIIkRHS0h2PkH+TnZ3dF68JBAKEhYX9wDTfrqioCPPnz4e/vz9KSkoAAAoKCpg8eTLWrFkDNTU1xgmr16ZNG5iZmeH333+vspnGpwfaS7Lc3FyMHj0aly9fhqqqaqUCr6QeCSAnJyfyWCAQVFkUBcCbwqi0KC8vx9q1a7FhwwZkZ2cDABo2bAhXV1e4u7sLz5EjhBDCH7RNlRBCZARfu+PNmzdP7HtpdQCpqU+bIPCZqqoqtmzZgjVr1iA9PR0cx8HU1JQXRbgKaWlpCAkJgampKeso32Xs2LF48uQJVq1ahfr16/OmgcOn2x0vXryIRYsWYdWqVejYsSMEAgGuXbuGxYsXY9WqVQxTyp7S0lLs378fjo6OWLhwIQoKCgCAGjcQQgjPUTGOEEJkBF+748XFxYk8vnXrFsrKyoRn56SmpkJeXh5t27ZlEY9IkcePH0MgEPC6M6+amhpatWrFOsY3ad++Pe7fv8/7Yty1a9cQHR2N1q1bs47yzebOnQs/Pz906dJFONavXz+oqqpi2rRpwm3p5L+noKCAGTNmCP/NqQhHCCHSgYpxhBAiI7y8vITfjxw5Evr6+rh69arEd8f7dOXSunXroK6ujj179kBbWxsA8OrVKzg7O6Nr166sIhIeKy8vx4oVK+Dt7Y23b98CANTV1eHu7o7ffvut0tY98t+ZM2cO3N3dkZOTA0tLy0rbO/lSZGzevDnevXvHOsZ3SU9Pr3JbsKamJh48ePDjA8m49u3bIy4ujldnEBJCCPk6OjOOEEIIb+jp6eH8+fOVOkbeuXMHffv2xdOnTxklI3z166+/YteuXfj999/RuXNncByHq1evYtmyZZg6dSpWrlzJOqLMqKrwWXFuGZ8aOJw/fx6///47Vq5cWWVRkQ8rm7p16wZFRUXs27cPDRs2BADk5ORgwoQJ+PDhAyIjIxknlC3BwcHw8PCAm5sb2rZtW2n7OV8K1YQQQv4PFeMIIURGyMvLo1u3bjhy5Ajq1KkjHH/27BkaNWrEize66urqOHHiBHr27CkyHhYWhiFDhuDNmzeMkhG+atSoEfz8/CqtDj1x4gRmzpyJJ0+eMEomex4+fPjV63xZFVRRVPz8rDg+FRXv37+PYcOGISUlBQYGBgCArKwsmJmZ4fjx4xK9ldjKykrsc/piY2P/4zT/DmkpVBNCCPk/tE2VEEJkBMdxeP/+PWxsbBAaGoqWLVuKXOODYcOGwdnZGd7e3ujQoQMAICYmBgsWLMDw4cMZp5M9ZWVlCAgIwKVLl/D8+XORA+AB8KITaV5eHpo3b15pvHnz5hLb9VJa8aXYVh1paApiamqKxMREXLhwAffu3QPHcbCwsEDv3r0lviHF0KFDhd8XFxdjy5YtsLCwQMeOHQF8/Jtx9+5dzJw5k1HCmsvMzGQdgRBCyL+MVsYRQoiMkJeXx+PHj+Hl5YXdu3dj7969GDJkCK9WxhUVFWH+/Pnw9/dHSUkJgI+HW0+ePBlr1qzhVedIaTB79mwEBARg4MCBaNiwYaU36evXr2eUTHzt27dH+/bt4evrKzI+Z84c3LhxAzExMYySVS80NFTseyX5XMjPJSUlISsrCx8+fBAZ59MciGSYMmUKGjZsiOXLl4uML126FI8ePYK/vz+jZIQQQmQdFeMIIURGyMnJIScnB7q6uti+fTtcXFywePFiTJkyBXp6erwoxlUoLCxEeno6OI6DqakpFeEYqVevHgIDAzFgwADWUb5ZZGQkBg4cCAMDA3Ts2BECgQDXrl3Do0ePcPr0aYluDCJucwm+bGPLyMjAsGHDcPv2beEWPOD/tnvyYQ4VXr9+jV27diE5ORkCgQAWFhaYNGlSlU0RJIWvry+mTZsGZWXlSsXpz7m4uPygVN9HU1MTN2/eRNOmTUXG09LSYGNjg/z8fEbJam7v3r3w8/NDZmYmoqOjYWhoCB8fHxgZGWHIkCGs4xFCCKkhKsYRQoiM+LQYBwAREREYOXIkrKysEBYWxqs3ukQyNGrUCBERETAzM2Md5bs8ffoUmzdvFtmON3PmTDRq1Ih1NJkyaNAgyMvLY8eOHTA2Nsb169fx8uVLuLu7Y+3atRJdGP3UzZs30a9fP6ioqKBdu3bgOA43b97Eu3fvcP78eVhbW7OOWCUjIyPcvHkTdevWhZGR0RfvEwgEyMjI+IHJvl2DBg2wevVqODs7i4zv3r0bHh4eePbsGaNkX3fu3Dl06NBBWLzdunUrPD09MXfuXKxcuRJ37tyBsbExAgICsGfPHqnYGk0IIbKGinGEECIjPn2jVeH+/fsYNGgQUlNTqRhHaszb2xsZGRnYtGmTxJ8jVVOPHj3C0qVLaRvbD1SvXj2EhYWhVatW0NTUxPXr19GsWTOEhYXB3d0dcXFxrCOKpWvXrjA1NcWOHTugoPDxeObS0lJMmTIFGRkZuHz5MuOEssPLywvLli3DlClTRM4Z9ff3h6enJzw8PBgnrNqePXuwZs0anD17Fo0bN4aFhQVWrVqFoUOHQl1dHQkJCTA2NsadO3fQo0cPvHjxgnVkQgghNUTFOEIIkXHFxcV49uyZ1ByeTn6cYcOGITw8HHXq1EGLFi2gqKgocv3o0aOMkn2/hIQEWFtb86pIXVhYiMjIyCrPW+PDtkJtbW3cunULxsbGMDExwc6dO2FnZ4f09HRYWlqiqKiIdUSxqKioIC4urlJjkKSkJNjY2PBmHtIiKCgIGzZsQHJyMgDA3Nwcrq6uGD16NONkX3f06FF4enrizp07UFFRwb1792BoaChSjEtLS0OrVq3w7t071nEJIYTUEHVTJYQQGaesrEyFOPJNtLS0MGzYMNYxCIC4uDgMGDAARUVFKCwsRJ06dfDixQuoqqpCV1eXF8W4li1bIjExEcbGxmjfvj3++usv1KpVC9u3b4exsTHreGLT0NBAVlZWpWLco0ePoK6uzihVzYwcORI2NjaVVo6tWbMG169fR3BwMKNkNTd69GiJL7xVZfjw4bCysgLwcWV7fHx8pb/VZ86cgYWFBYt4hBBCvhMV4wghRIrVqVMHqampqFevHrS1tb+6lTAvL+8HJiPSYPfu3awjkP/Pzc0NgwYNwtatW6GlpYWYmBgoKipi/PjxcHV1ZR1PLIsXL0ZhYSEAYMWKFfjpp5/QtWtX1K1bF4cPH2acTnxjxozB5MmTsXbtWnTq1AkCgQBRUVFYsGABxo4dyzqeWCIjI7F06dJK4/b29li7di2DRLKp4uy+BQsWYNasWSguLgbHcbh+/ToOHjyI1atXY+fOnYxTEkII+RZUjCOEECm2fv164UoMHx8ftmH+Jenp6fDx8RF2KazYcmRiYsI6mszKzc1FSkoKBAIBzMzMoKOjwzqSzImPj8e2bdsgLy8PeXl5vH//HsbGxvjrr7/g5OSE4cOHs45YrX79+gm/NzY2RlJSEvLy8qr9IEHSrF27FgKBAI6OjigtLQUAKCoqYsaMGfDy8mKcTjxv375FrVq1Ko0rKiqioKCAQaJvU1ZWhvXr1yMoKKjK7dt8+RDK2dkZpaWlWLhwIYqKijBu3Djo6elhw4YN+Pnnn1nHI4QQ8g3ozDhCCCG8ce7cOQwePBht2rRB586dwXEcrl27hoSEBJw8eRJ9+vRhHVGmFBYWYs6cOQgMDER5eTkAQF5eHo6Ojti4cSNUVVUZJ/yy6opTr1+/RmRkJG/OjNPR0cHVq1dhZmaGZs2awdfXF/369cO9e/dgbW3Ni3PK8vPzUVZWhjp16oiM5+XlQUFBARoaGoySfZuioiKkp6eD4ziYmppK9O/D52xtbTFo0CB4enqKjC9btgwnT57ErVu3GCWrGU9PT+zcuRPz5s3DkiVL8Ntvv+HBgwc4fvw4PD09ebF9+3MvXrxAeXm5sDM6IYQQfqJiHCGESLGarGDgwxtdKysr9OvXr9LqEg8PD5w/fx6xsbGMkskGHx8fWFpaolevXgCA6dOn4+LFi9i0aRM6d+4MAIiKioKLiwv69OmDrVu3soz7Vc7OzmLdx5etuH379sXEiRMxbtw4/PLLL4iLi4OLiwv27t2LV69e4Z9//mEdsVr9+/fHoEGDMHPmTJFxPz8/hIaG4vTp04ySyZ7Q0FCMGDEC48aNQ8+ePQEAly5dwsGDBxEcHIyhQ4eyDSgmExMT+Pr6YuDAgVBXV0d8fLxwLCYmBgcOHGAdsUaeP38uXIXcrFkzWoVMCCE8RsU4QgiRYnJyctVu7+I4DgKBgBcrgJSVlXH79m00bdpUZDw1NRWtWrVCcXExo2Sy4datWxg9ejSWLVuGCRMmoF69eggJCUGPHj1E7gsPD8fo0aORm5vLJqgMunnzJt68eQM7Ozvk5ubCyckJUVFRMDU1xe7du9G6dWvWEatVp04dXL16Febm5iLj9+7dQ+fOnfHy5UtGyWqmsLAQXl5euHTpEp4/fy5cNVohIyODUbKaOXXqFFatWoX4+HioqKigVatWWLp0Kbp37846mtjU1NSQnJwMAwMDNGzYEKdOnYK1tTUyMjJgZWWF/Px81hHFUlBQgFmzZuHgwYMiq5DHjBmDzZs3Q1NTk3FCQgghNUVnxhFCiBQLDw9nHeFfpaOjg/j4+ErFuPj4eNqy8wO0bdsW//zzD5ycnDBhwgQUFRWhfv36le7T1dXlxbZIaWJjYyP8XkdHh5eryN6/fy88Y+1TJSUlePfuHYNE32bKlCmIjIzEhAkT0LBhQ16dd/epgQMHYuDAgaxjfJfGjRsjOzsbBgYGMDU1xfnz52FtbY0bN25ASUmJdTyxTZkyBfHx8Th16hQ6duwIgUCAa9euwdXVFVOnTkVQUBDriIQQQmqIVsYRQgjhjT/++APr16+Hh4eHSJfCP//8E+7u7li8eDHriDKlV69eqFu3LgIDA6GsrAwAePfuHZycnJCXl4eLFy8yTkj4pEePHrC0tMTGjRtFxmfNmoXExERcuXKFUbKa0dLSwqlTp4Rbt/ns1q1bwmY5FhYWsLKyYh2pRjw8PKChoYH//e9/CAkJwdixY9GkSRNkZWXBzc2NNw011NTUcO7cOXTp0kVk/MqVK7C3txd2ISaEEMIfVIwjhBAZU1RUVGVXuVatWjFKJD6O4+Dj4wNvb288ffoUANCoUSMsWLAALi4uvF2Bwld37tyBvb09iouL0bp1awgEAsTHx0NZWRnnzp1DixYtWEckPHL16lX07t0btra2wnMJL126hBs3buD8+fPo2rUr44TiMTIywunTpyttt+WT58+f4+eff0ZERAS0tLTAcRzy8/NhZ2eHQ4cO8fasspiYGFy7dg2mpqYYPHgw6zhiMzAwwKlTp2BpaSkynpiYiAEDBuDx48eMkhFCCPlWVIwjhBAZkZubC2dnZ5w5c6bK63w4M+5Tb968AQCoq6szTiLb3r17h3379uHevXvgOA4WFhZwcHCAiooK62iEh+Lj47FmzRqRc8p+/fXXSlvTJdm+fftw4sQJ7Nmzh1cdVD81ZswYpKenY+/evcKiYlJSEpycnGBqaoqDBw8yTihbtm/fjuDgYAQGBqJhw4YAgJycHDg5OWH48OGYPn0644SEEEJqiopxhBAiIxwcHPDgwQP4+PjAzs4Ox44dw7Nnz7BixQp4e3vz/mwgQgiRBFZWVkhPTwfHcWjSpAkUFRVFrvOh67OmpiYuXrwIW1tbkfHr16+jb9++eP36NZtgYggNDRX7Xr6sjrOyssL9+/fx/v17GBgYAACysrKgpKRUqVDNh58vQggh1MCBEEJkRlhYGE6cOAFbW1vIycnB0NAQffr0gYaGBlavXs2LYtyzZ88wf/58YZfCzz9P4tvqPj4KDQ1F//79oaioWO2bXr680SXsFBQUiH2vhobGf5jk3zN06FDWEb5beXl5pSIiACgqKlbqDitpPv/3FwgElf5WVBxpwJe/GdLwM0UIIUQUrYwjhBAZoaGhgcTERDRp0gRNmjTB/v370blzZ2RmZqJFixa86H7Zv39/ZGVlYfbs2VV2KRwyZAijZLJDTk4OOTk50NXVhZyc3BfvEwgEvHmjKy0iIyOxdu1a4YH75ubmWLBggUSftSYnJ1ftWY8cx9HP0w82ZMgQvH79GgcPHkSjRo0AAE+ePIGDgwO0tbVx7NgxxgnFc/HiRSxatAirVq0S6UK6ePFirFq1Cn369GEdkRBCiIyilXGEECIjmjVrhpSUFDRp0gRt2rTBtm3b0KRJE/j5+QnPoJF0UVFRuHLlCtq0acM6isz6dFWMpK+QkSX79u2Ds7Mzhg8fDhcXF3Ach2vXrqFXr14ICAjAuHHjWEesUnh4OOsI/xk+dyLdtGkThgwZgiZNmkBfXx8CgQBZWVmwtLTEvn37WMcT29y5c+Hn5yfShbRfv35QVVXFtGnTkJyczDAdIYQQWUYr4wghREbs378fJSUlmDhxIuLi4tCvXz+8fPkStWrVQkBAAMaMGcM6YrUsLCywf/9+Xr2pJeRHMDc3x7Rp0+Dm5iYyvm7dOuzYsYP3RYf4+HjeFOGlqRPphQsXRJqz9O7dm3WkGlFRUcH169er7ELavn17vHv3jlEyQgghso6KcYQQIqOKiopw7949GBgYoF69eqzjiOX8+fPw9vYWruojbLm4uMDU1BQuLi4i45s2bcL9+/fh4+PDJpgMUlJSwt27d2Fqaioyfv/+fbRs2RLFxcWMkn27/Px87N+/Hzt37kRCQgJvtqlSJ1LJ0a1bNygqKmLfvn0iXUgnTJiADx8+IDIyknFCQgghsoqKcYQQImM+fPiAzMxMmJiYQEFB8k8r0NbWFjlTqrCwEKWlpVBVVa10wHheXt6PjifT9PT0EBoairZt24qMx8bGYvDgwXj8+DGjZLLH1NQUCxYswPTp00XGt23bhrVr1yItLY1RspoLCwuDv78/jh49CkNDQ4wYMQIjRozgzYpYvnYi9fX1Ffvezwvwkur+/fsYNmwYUlJSRLqQmpmZ4fjx45WK14QQQsiPIvnvwgghhPwrioqKMGfOHOzZswcAkJqaCmNjY7i4uKBRo0bw8PBgnLBqtLpKcr18+RKampqVxjU0NPDixQsGiWSXu7s7XFxcEB8fj06dOkEgECAqKgoBAQHYsGED63jVevz4MQICAuDv74/CwkKMHj0aJSUlOHLkCCwsLFjHqxG+diJdv369WPcJBALeFONMTU2RmJhY5Xbb6hqHSCK+fZhGCCHky2hlHCGEyAhXV1dcvXoVPj4+sLe3R2JiIoyNjREaGoqlS5ciLi6OdUTCMy1btsQvv/yC2bNni4xv3LgRW7duRVJSEqNksunYsWPw9vYWng9X0U1V0rsMDxgwAFFRUfjpp5/g4OAAe3t7yMvLQ1FREQkJCbwrxklLJ1IiOfj6YRohhJAvo49UCCFERhw/fhyHDx9Ghw4dRFYEWFhYID09nWEy8Z0+fRry8vLo16+fyPj58+dRVlaG/v37M0omm+bNm4fZs2cjNzcXPXv2BABcunQJ3t7etKKRgWHDhmHYsGGsY9TY+fPn4eLighkzZqBp06as43w3aelECvBzJZavry+mTZsGZWXlarfe8mWF36+//oqEhARERETA3t5eON67d28sXbqUinGEEMJD/PirSggh5Lvl5uZCV1e30nhhYSFvtut4eHjAy8ur0nh5eTk8PDyoGPeDTZo0Ce/fv8fKlSuxfPlyAECTJk2wdetWODo6Mk4nu96+fVtpO6SGhgajNNW7cuUK/P39YWNjg+bNm2PChAm86O78Jfr6+oiNjeV1J1I+r8Rav349HBwcoKys/NWtt3zabisNH6YRQggRJcc6ACGEkB/D1tYWp06dEj6ueEG/Y8cOdOzYkVWsGklLS6tyy1rz5s1x//59BonIjBkz8PjxYzx79gwFBQXIyMigQhwDmZmZGDhwINTU1KCpqQltbW1oa2tDS0sL2trarON9VceOHbFjxw5kZ2dj+vTpOHToEPT09FBeXo4LFy7gzZs3rCPWSGBgIN6/f48+ffpgzpw5cHFxQe/evfHhwwcEBgayjieWT1diKSsrC8d79+6Nw4cPM0xWvczMTNStW1f4/Ze+MjIyGCcVnzR8mEYIIUQUnRlHCCEy4tq1a7C3t4eDgwMCAgIwffp03L17F9HR0YiMjKzUEVMSNWjQAAcOHBBuiaxw8eJFjBs3Ds+fP2eUjBC2OnXqBODj2ZD169ev9Aa9e/fuLGJ9s5SUFOzatQt79+7F69ev0adPH4SGhrKOJRZ5eXlkZ2dXKp68fPkSurq6KCsrY5RMfIaGhsKVWOrq6khISICxsTHu378Pa2trFBQUsI4oU7p3746RI0dizpw5UFdXR2JiIoyMjDB79mzcv38fZ8+eZR2REEJIDdE2VUIIkRGdOnXCtWvXsGbNGpiYmOD8+fOwtrZGdHQ0LC0tWccTy+DBgzF37lwcO3YMJiYmAID79+/D3d0dgwcPZpxONoWEhCAoKAhZWVn48OGDyLXY2FhGqWRPYmIibt26hWbNmrGO8q9o1qwZ/vrrL6xevRonT56Ev78/60hi4ziuytVKjx8/rrL7sCSSlpVYI0eOhI2NTaVttWvWrMH169cRHBzMKFnNrF69Gvb29khKSkJpaSk2bNgg8mEaIYQQ/qFtqoQQIgNKSkrg7OwMVVVV7NmzB3fu3EFSUhL27dvHm0Ic8P/au/Oorut8j+OvH4gCLrgXKbJImkwu4JJLmSiopeWCg1tKgqmVYjpuda+aU5lnajKx3DKEzA3FTEdzTRlJHHPBUnFDDHJJy8AFyOXH/aOJO1yqa6B8hO/zcQ7nyOf3C596spNvPt/P5+e/QFWsWFEPPfSQvL295e3trUaNGqlGjRp6++23TedZTlRUlIYMGaLatWvrwIEDatWqlWrUqKFTp05xfl8Ja9mypTIyMkxn3HGOjo7q2bNnqdgV5+/vr4CAANlsNnXq1EkBAQH5H02bNtVjjz1Was6NKwvHGkhSQkKCunXrVmi9a9eu+uc//2mgqGjatm2rL774QtnZ2fnfTLvvvvuUlJRUKna1AwAKY2ccAFiAk5OTPvnkE02ePNl0SrG4ublp165d2rJliw4ePCgXFxc1adJE7du3N51mSXPmzNGCBQvUv39/xcbGasKECfLx8dGUKVN06dIl03mWsnDhQo0YMUJnzpzRww8/LCcnpwKvN2nSxFCZdfTs2VOSlJycrC5duqhSpUr5r5UvX15eXl4KCQkxVPfHlJWdWFevXlX58uULrTs5OZW6R20bN26cf6EGAKD048w4ALCIIUOGqHHjxho7dqzplDsiNzdXFSpUKFWPTJU1rq6uSklJkaenp2rXrq0tW7aoadOmOnHihFq3bq0ffvjBdKJl7N69WwMGDNDp06fz12w2W/4jk6XhnLKyIjY2Vn379i1w8UFpkZycrGbNmkmSvv76a7399tvat2+f7Ha7AgICNHHixFK1m7ply5Z66qmnNGXKlALrr776qtatW6d9+/YZKvv//ZFh4b18WzIA4NexMw4ALMLX11evvfaadu3apebNm6tixYoFXo+MjDRUdvvsdrveeOMNzZs3T999952OHz8uHx8fTZ48WV5eXoqIiDCdaCn333+/fvjhB3l6esrT01O7d+9W06ZNlZaWJr7XV7LCw8Pl7++vZcuW/eoFDig5YWFhphOKLCAgQP7+/ho6dKgGDBhQ6ndiTZ48WSEhIUpNTc2/+Gfbtm1atmzZPX9eXNWqVW/7zzHDdgAofdgZBwAW4e3t/Zuv2Ww2nTp1qgRriuavf/2rYmNj9de//lXPPfecDh06JB8fH8XFxWnmzJlKSkoynWgpQ4cOlYeHh6ZOnap58+Zp7Nixateunfbu3avevXvrww8/NJ1oGRUrVtTBgwfl6+trOsXyHBwcfneIci8PTpKSkhQdHa24uDjduHFDISEhCg8PV2BgoOm0Ilu/fr2mT5+u5OTk/KMNpk6des/fMPyfjwOfPn1akyZN0rPPPpt/Zl9SUpJiY2P15ptvluoBMABYFcM4AECp4evrq/nz56tTp06qXLmyDh48KB8fHx09elRt2rTRjz/+aDrRUux2u+x2u8qV+3mjfVxcnBITE+Xr66sRI0b86llNuDueeuopPfvss6XmTLKybM2aNQWGcTdu3NCBAwcUGxuradOmlYodvDk5OYqLi9OiRYu0c+dOeXl5KTw8XGFhYapbt67pPMvp1KmThg4dqv79+xdYX7p0qRYsWKAdO3aYCQMAFBnDOABAqeHi4qKjR4/K09OzwDDuyJEjatWqla5evWo6ETBiwYIFev311xUeHq7GjRsXusDh6aefNlSGXyxdulQrVqzQp59+ajrlD0lNTdWiRYv00Ucf6dy5cwoODtaGDRtMZ/0h+/btU0pKimw2m/z8/OTv72866Q9xdXXVwYMH9eCDDxZYP378uJo1a6bs7GxDZQCAomIYBwAoNVq0aKGXXnpJzzzzTIFh3LRp07R161bt3LnTdGKZ99VXX932e7nBs+Q4ODj85mtc4HBvSE1NVZMmTXTt2jXTKX/Y1atXtWTJEr3yyivKzMwsNf8+XbhwQf369dOOHTtUtWpV5eXlKSsrS4GBgVq+fLlq1aplOvG2NGzYUN27d9ff//73Aut/+ctf9I9//EPHjh0zVAYAKCoucAAA3PPCw8M1a9YsTZ06VYMGDdKZM2dkt9u1evVqHTt2TB999JH+8Y9/mM60hGbNmuXf0vl7GACVLLvdbjoBvyMnJ0ezZ88udY94JiQkKDo6WvHx8XJ0dFRoaGipeMz2F6NGjdLly5d1+PBhNWrUSJJ05MgRhYWFKTIyUsuWLTNceHtmzpypkJAQbdq0Sa1bt5b08w3Kqampio+PN1wHACgKdsYBAO55jo6OOnfunGrXrq1NmzZp+vTp2rdvn+x2uwICAjRlyhR17tzZdKYlfPPNN7f9Xk9Pz7tYAtybqlWrVuDMuLy8PF25ckWurq76+OOP7/lHhjMyMhQTE6OYmBilpaWpbdu2ioiIUGhoaKFbuO91bm5u2rp1q1q2bFlgfc+ePercubMyMzPNhBXBt99+q7lz5yolJUV5eXny8/PTiBEj5OHhYToNAFAEDOMAAPc8BwcHnT9/XrVr1zadAtwzoqKiNGzYMDk7OysqKup33xsZGVlCVYiNjS3wuYODg2rVqqVHHnlE1apVM1R1e4KDg7V9+3bVqlVLgwcPVnh4uBo2bGg6q8gqV66snTt3qlmzZgXWDxw4oMcff1yXL182EwYAsDyGcQBgITt37tT8+fOVmpqqVatWqU6dOlq8eLG8vb316KOPms77TQ4ODvruu+9Kzfk+VrJ48WLNmzdPaWlpSkpKkqenp9599115e3urR48epvPKNG9vb+3du1c1atSQt7f3b77PZrPp1KlTJViG35KcnFxoMHQvefrppxUREaHu3bvL0dHRdE6x9ejRQ5mZmVq2bJkeeOABSdKZM2c0cOBAVatWTZ988onhQgCAVf32ab8AgDIlPj5eXbp0kYuLiw4cOKCffvpJknTlyhVNnz7dcN3/r0GDBqpevfrvfqBkzZ07V2PHjtWTTz5Z4FD3qlWr6t133zUbZwFpaWmqUaNG/o9/64NBnFlZWVmaM2eOAgIC1Lx5c9M5v2vt2rXq0aNHmRjESdJ7772nK1euyMvLS/Xr15evr6+8vb115coVzZ4923QeAMDC2BkHABbh7++vMWPGaPDgwQVuIk1OTlbXrl11/vx504m/ycHBQe+++67c3Nx+931hYWElVARJ8vPz0/Tp09WzZ88C/04dOnRIHTp00Pfff2860TJycnLk4uLyq6+dO3dO7u7uJVyEzz//XNHR0Vq9erU8PT0VEhKikJAQ+fv7m06znC1btujo0aP5Z60FBQWZTgIAWBy3qQKARRw7dkzt27cvtF6lSpVScYh1v379ODPuHpOWlvarg4UKFSro2rVrBoqsy9/fX0uXLlVAQECB9VWrVun555/XxYsXDZVZy7fffquYmBhFR0fr2rVrCg0N1Y0bNxQfHy8/Pz/TeZYVHBys4OBg0xkAAORjGAcAFuHu7q6TJ0/Ky8urwHpiYqJ8fHzMRN2m/7yZEPcOb29vJScnF7o19bPPPmPwUMKCg4PVtm1bvfrqq5o4caKuXbumkSNHauXKlZoxY4bpPEt48sknlZiYqO7du2v27Nnq2rWrHB0dNW/ePNNplvL/XWbyn7jYBABgCsM4ALCI4cOHa/To0YqOjpbNZtPZs2eVlJSkcePGacqUKabzfhcnKtybxo8frxdffFG5ubnKy8vTnj17tGzZMr355ptauHCh6TxLmT17trp166YhQ4Zo/fr1Onv2rKpUqaIvv/ySwWgJ2bx5syIjI/X888/rwQcfNJ1jWTNnzryt99lstnt6GOfv73/b34jav3//Xa4BANxpDOMAwCImTJigrKwsBQYGKjc3V+3bt1eFChU0btw4jRw50nTe77Lb7aYT8CuGDBmimzdvasKECcrOztaAAQNUp04dzZo1S/369TOdZzmdO3dW7969NXfuXJUrV07r1q1jEFeCdu7cqejoaLVo0UIPPfSQBg0apL59+5rOspy0tDTTCXdEz54983+cm5urOXPmyM/PT23atJEk7d69W4cPH9YLL7xgqBAAUBxc4AAAFpOdna0jR47IbrfLz89PlSpVMp2EMuD777+X3W7PP9fvzJkzqlOnjuEq60hNTdWAAQN0/vx5LVy4UAkJCXr77bcVGRmpN954Q05OTqYTLSM7O1vLly9XdHS09uzZo1u3bumdd95ReHi4KleubDrPkq5fv660tDTVr19f5cqVvr0IQ4cOlbu7u1577bUC61OnTlVGRoaio6MNlQEAiophHABY1OXLl/X555+rYcOGatSokekclBHnz5/XG2+8oYULFyonJ8d0jmVUrlxZ3bp107x581S1alVJ0q5du/JvTz5w4IDZQIs6duyYPvzwQy1evFiZmZkKDg7W2rVrTWdZRnZ2tkaNGqXY2FhJ0vHjx+Xj46PIyEg98MADmjRpkuHC2+Pm5qa9e/cWevz5xIkTatGihbKysgyVAQCKysF0AACgZISGhuq9996TJOXk5Khly5YKDQ1VkyZNFB8fb7gOpUlmZqYGDhyoWrVq6YEHHlBUVJTsdrumTJkiHx8f7d69m50aJWzOnDlavnx5/iBOktq2basDBw4UumEVJadhw4b629/+pm+//VbLli0znWM5L7/8sg4ePKgdO3bI2dk5fz0oKEgrVqwwWPbHuLi4KDExsdB6YmJigV8XAKD0YGccAFjE/fffr02bNqlp06ZaunSppk6dqoMHDyo2NlYLFixg5wxu2wsvvKB169apb9++2rhxo1JSUtSlSxfl5uZq6tSpevzxx00nAoA8PT21YsUKtW7dWpUrV9bBgwfl4+OjkydPKiAgQJcvXzadeFtmzJihV199VUOHDlXr1q0lKf+bHlOmTCk1O/wAAP+r9B2aAAAokqysLFWvXl2StHHjRoWEhMjV1VXdunXT+PHjDdehNFm/fr0WLVqkoKAgvfDCC/L19VWDBg307rvvmk6zvCNHjig9PV3Xr1/PX7PZbHrqqacMVgFmXLx4Mf8cy/907dq1276p9F4wadIk+fj4aNasWVq6dKkkqVGjRoqJiVFoaKjhOgBAUTCMAwCL8PDwUFJSkqpXr66NGzdq+fLlkqQff/yRx1zwh5w9ezb/lk4fHx85Oztr6NChhqusJSsrS25ubvmfnzp1Sr1799ZXX30lm82mXx58+GXgcOvWLSOdgEktW7bU+vXrNWrUKEn/++fhgw8+yL+VtLQIDQ1l8AYAZQjDOACwiJdeekkDBw5UpUqV5OnpqQ4dOkiS/vnPf6px48Zm41Cq2O32ArdzOjo6qmLFigaLrCcqKkrOzs75u1pHjx4tDw8Pbdq0Sc2aNdO//vUvpaWlady4cXrnnXcM1wJmvPnmm+ratauOHDmimzdvatasWTp8+LCSkpKUkJBgOg8AYGGcGQcAFrJv3z6lp6crODhYlSpVkvTzI4dVq1ZVu3btDNehtHBwcNATTzyhChUqSJLWrVunjh07FhrIrV692kSeJVy4cEGDBg2Sr6+v3n//fdWsWVPbtm1T06ZNVadOHe3Zs0d16tTRtm3bNG7cOM6EhKUkJyerWbNmkqSvv/5ab7/9tvbt2ye73a6AgABNnDixVH0T6tatW5o5c6bi4uIKPYYuSZcuXTJUBgAoKnbGAYCFNG/eXM2bNy+w1q1bN0M1KK3CwsIKfP7MM88YKrGu2rVra9OmTXrzzTcl/fyX9cqVK0uSatasqbNnz6pOnTry8vLSsWPHTKYCJS4gIED+/v4aOnSoBgwYoNjYWNNJxTJt2jQtXLhQY8eO1eTJk/Vf//VfOn36tNasWaMpU6aYzgMAFAE74wAAAEq5xx57TGPHjlWvXr00bNgwXbx4UePHj9e8efO0f/9+HTp0yHQiUGKSkpIUHR2tuLg43bhxQyEhIQoPD1dgYKDptCKpX7++oqKi1K1bN1WuXFnJycn5a7t3786/1AEAUHowjAMAACjlNm3apCtXrqhPnz7KyMhQt27ddOjQIVWvXl1xcXHq2LGj6USgxOXk5CguLk6LFi3Szp075eXlpfDwcIWFhalu3bqm825bxYoVlZKSonr16snd3V3r169XQECATp06JX9/f2VlZZlOBAD8QQ6mAwAAAFA8Xbp0UZ8+fST9fHPyV199pe+//14XLlxgEAfLcnFxUVhYmHbs2KHjx4+rf//+mj9/vry9vfXkk0+azrttdevW1blz5yRJvr6+2rx5syTpyy+/zD+7EwBQurAzDgAAAECZd/XqVS1ZskSvvPKKMjMzdevWLdNJt2XSpEmqUqWKXnnlFa1atUr9+/eXl5eX0tPTNWbMGM2YMcN0IgDgD2IYBwAWsnPnTs2fP1+pqalatWqV6tSpo8WLF8vb21uPPvqo6TwARZSbm6vZs2dr+/btunDhgux2e4HX9+/fb6gMMC8hIUHR0dGKj4+Xo6OjQkNDFRERodatW5tOK5Ldu3dr165d8vX11dNPP206BwBQBNymCgAWER8fr0GDBmngwIE6cOCAfvrpJ0nSlStXNH36dG3YsMFwIYCiCg8P15YtW9SnTx+1atVKNpvNdBJgVEZGhmJiYhQTE6O0tDS1bdtWs2fPVmhoqCpWrGg6r1hat25dageJAICfsTMOACzC399fY8aM0eDBg1W5cmUdPHhQPj4+Sk5OVteuXXX+/HnTiQCKyM3NTRs2bFC7du1MpwDGBQcHa/v27apVq5YGDx6s8PBwNWzY0HTWH7J27drbfi+74wCg9GFnHABYxLFjx9S+fftC61WqVFFmZmbJBwG4Y+rUqaPKlSubzgDuCS4uLoqPj1f37t3l6OhoOqdIevbsWeBzm82m/7uH4pcdsKXl7DsAwP/iNlUAsAh3d3edPHmy0HpiYqJ8fHwMFAG4U/7+979r4sSJ+uabb0ynAMatXbtWPXr0KLWDOEmy2+35H5s3b1azZs302WefKTMzU1lZWfrss88UEBCgjRs3mk4FABQBO+MAwCKGDx+u0aNHKzo6WjabTWfPnlVSUpLGjRunKVOmmM4DUAwtWrRQbm6ufHx85OrqKicnpwKvX7p0yVAZgOJ66aWXNG/evAIXLXXp0kWurq4aNmyYUlJSDNYBAIqCYRwAWMSECROUlZWlwMBA5ebmqn379qpQoYLGjRunkSNHms4DUAz9+/fXmTNnNH36dN13331c4ACUIampqXJzcyu07ubmptOnT5d8EACg2LjAAQAsJjs7W0eOHJHdbpefn58qVapkOglAMbm6uiopKUlNmzY1nQLgDmvfvr2cnJz08ccfy93dXZJ0/vx5DRo0SNevX1dCQoLhQgDAH8XOOACwGFdXV7Vo0cJ0BoA76KGHHlJOTo7pDAB3QXR0tHr16iVPT0/Vq1dPkpSenq4GDRpozZo1ZuMAAEXCzjgAsIjAwMDffXTt888/L8EaAHfS5s2bNW3aNL3xxhtq3LhxoTPjqlSpYqgMwJ2Ql5enLVu26OjRo8rLy5Ofn5+CgoJ4JB0ASimGcQBgEWPGjCnw+Y0bN5ScnKxDhw4pLCxMs2bNMlQGoLgcHBwkqdBfzPPy8mSz2XTr1i0TWQAAAPgVPKYKABYxc+bMX11/9dVXdfXq1RKuAXAnbd++3XQCgDsoKipKw4YNk7Ozs6Kion73vZGRkSVUBQC4U9gZBwAWd/LkSbVq1UqXLl0ynQIAACR5e3tr7969qlGjhry9vX/zfTabTadOnSrBMgDAncDOOACwuKSkJDk7O5vOAAAA/5aWlvarPwYAlA0M4wDAInr37l3g87y8PJ07d0579+7V5MmTDVUBAAAAgLU4mA4AAJQMNze3Ah/Vq1dXhw4dtGHDBk2dOtV0HgAA+BV9+vTRjBkzCq2/9dZb+vOf/2ygCABQXJwZBwAAAAD3qFq1aunzzz9X48aNC6x//fXXCgoK0nfffWeoDABQVDymCgAAUEZcvHhRx44dk81mU4MGDVSrVi3TSQCK6erVqypfvnyhdScnJ12+fNlAEQCguHhMFQAsolq1aqpevfptfQAoXa5du6bw8HA98MADat++vR577DE98MADioiIUHZ2tuk8AMXw8MMPa8WKFYXWly9fLj8/PwNFAIDiYmccAFjE5MmT9frrr6tLly5q06aNpJ9vUt20aZMmT57MEA4oxcaOHauEhAStXbtW7dq1kyQlJiYqMjJSf/nLXzR37lzDhQCKavLkyQoJCVFqaqo6duwoSdq2bZuWLVumlStXGq4DABQFZ8YBgEWEhIQoMDBQI0eOLLD+3nvvaevWrVqzZo2ZMADFVrNmTa1atUodOnQosL59+3aFhobq4sWLZsIA3BHr16/X9OnTlZycLBcXFzVp0kRTp07V448/bjoNAFAEDOMAwCIqVaqk5ORk+fr6Flg/ceKE/P39dfXqVUNlAIrL1dVV+/btU6NGjQqsHz58WK1atdK1a9cMlQEAAOD/4sw4ALCIGjVq6JNPPim0vmbNGtWoUcNAEYA7pU2bNpo6dapyc3Pz13JycjRt2rT8x9IBlG779u3Txx9/rCVLlujAgQOmcwAAxcCZcQBgEdOmTVNERIR27NiR/5fz3bt3a+PGjVq4cKHhOgDFMWvWLHXt2lV169ZV06ZNZbPZlJycLGdnZ23atMl0HoBiuHDhgvr166cdO3aoatWqysvLU1ZWlgIDA7V8+XJuTQaAUojHVAHAQv71r38pKipKKSkpysvLk5+fnyIjI/XII4+YTgNQTDk5Ofr444919OjR/D/fAwcOlIuLi+k0AMXQt29fpaamavHixfmPoh85ckRhYWHy9fXVsmXLDBcCAP4ohnEAAAAAcI9yc3PT1q1b1bJlywLre/bsUefOnZWZmWkmDABQZJwZBwAAUMrFxsZq/fr1+Z9PmDBBVatWVdu2bfXNN98YLANQXHa7XU5OToXWnZycZLfbDRQBAIqLYRwAAEApN3369PzHUZOSkvTee+/pb3/7m2rWrKkxY8YYrgNQHB07dtTo0aN19uzZ/LUzZ85ozJgx6tSpk8EyAEBR8ZgqAABAKefq6qqjR4+qXr16mjhxos6dO6ePPvpIhw8fVocOHXTx4kXTiQCKKCMjQz169NChQ4fk4eEhm82m9PR0NW7cWJ9++qnq1q1rOhEA8AdxmyoAAEApV6lSJf3www+qV6+eNm/enL8bztnZWTk5OYbrABSHh4eH9u/fry1bthS4oCUoKMh0GgCgiBjGAQAAlHLBwcEaOnSo/P39dfz4cXXr1k2SdPjwYXl5eZmNA3BHBAcHKzg42HQGAOAOYBgHABby5ZdfauXKlUpPT9f169cLvLZ69WpDVQCK6/3339d///d/KyMjQ/Hx8apRo4Ykad++ferfv7/hOgB/VFRU1G2/NzIy8i6WAADuBs6MAwCLWL58uQYPHqzOnTtry5Yt6ty5s06cOKHz58+rV69eWrRokelEAAAgydvb+7beZ7PZdOrUqbtcAwC40xjGAYBFNGnSRMOHD9eLL76oypUr6+DBg/L29tbw4cPl7u6uadOmmU4EUAw7d+7U/PnzderUKa1cuVJ16tTR4sWL5e3trUcffdR0HgAAAP7NwXQAAKBkpKam5p8jVaFCBV27dk02m01jxozRggULDNcBKI74+Hh16dJFLi4u2r9/v3766SdJ0pUrVzR9+nTDdQDuhOvXr+vYsWO6efOm6RQAQDExjAMAi6hevbquXLkiSapTp44OHTokScrMzFR2drbJNADF9Prrr2vevHn64IMP5OTklL/etm1b7d+/32AZgOLKzs5WRESEXF1d9ac//Unp6emSfj4rbsaMGYbrAABFwTAOACziscce05YtWyRJoaGhGj16tJ577jn1799fnTp1MlwHoDiOHTum9u3bF1qvUqWKMjMzSz4IwB3z8ssv6+DBg9qxY4ecnZ3z14OCgrRixQqDZQCAouI2VQCwiPfee0+5ubmSfv4feycnJyUmJqp3796aPHmy4ToAxeHu7q6TJ0/Ky8urwHpiYqJ8fHzMRAG4I9asWaMVK1aodevWstls+et+fn5KTU01WAYAKCqGcQBgEdWrV8//sYODgyZMmKAJEyYYLAJwpwwfPlyjR49WdHS0bDabzp49q6SkJI0bN05TpkwxnQegGC5evKjatWsXWv/l7FcAQOnDMA4AyrDLly/f9nurVKlyF0sA3E0TJkxQVlaWAgMDlZubq/bt26tChQoaN26cRo4caToPQDG0bNlS69ev16hRoyQpfwD3wQcfqE2bNibTAABFZMvLy8szHQEAuDscHBz+3++a5+XlyWaz6datWyVUBeBuyc7O1pEjR2S32+Xn56dKlSqZTgJQTLt27VLXrl01cOBAxcTEaPjw4Tp8+LCSkpKUkJCg5s2bm04EAPxB7IwDgDJs+/btphMA3EXZ2dkaP3681qxZoxs3bigoKEhRUVGqWbOm6TQAxZScnKxmzZqpbdu2+uKLL/T222+rfv362rx5swICApSUlKTGjRubzgQAFAE74wAAAEqp8ePHa86cORo4cKCcnZ21bNkydejQQStXrjSdBqCYHBwc5O/vr6FDh2rAgAFyc3MznQQAuEMYxgEAAJRS9evX1xtvvKF+/fpJkvbs2aN27dopNzdXjo6OhusAFEdSUpKio6MVFxenGzduKCQkROHh4QoMDDSdBgAoJoZxAAAApVT58uWVlpamOnXq5K+5uLjo+PHj8vDwMFgG4E7JyclRXFycFi1apJ07d8rLy0vh4eEKCwtT3bp1TecBAIrAwXQAAAAAiubWrVsqX758gbVy5crp5s2bhooA3GkuLi4KCwvTjh07dPz4cfXv31/z58+Xt7e3nnzySdN5AIAiYGccAABAKeXg4KAnnnhCFSpUyF9bt26dOnbsqIoVK+avrV692kQegLvg6tWrWrJkiV555RVlZmZyGzoAlELcpgoAAFBKhYWFFVp75plnDJQAuNsSEhIUHR2t+Ph4OTo6KjQ0VBEREaazAABFwM44ALCQVatWKS4uTunp6bp+/XqB1/bv32+oCgAA/JqMjAzFxMQoJiZGaWlpatu2rSIiIhQaGlpg9ysAoHThzDgAsIioqCgNGTJEtWvX1oEDB9SqVSvVqFFDp06d0hNPPGE6DwAA/Ifg4GB5e3trzpw56tOnj1JSUpSYmKghQ4YwiAOAUo7HVAHAIubMmaMFCxaof//+io2N1YQJE+Tj46MpU6bo0qVLpvMAAMB/cHFxUXx8vLp37y5HR0fTOQCAO4jHVAHAIlxdXZWSkiJPT0/Vrl1bW7ZsUdOmTXXixAm1bt1aP/zwg+lEAAAAACjzeEwVACzi/vvvzx+4eXp6avfu3ZKktLQ08X0ZAAAAACgZDOMAwCI6duyodevWSZIiIiI0ZswYBQcHq2/fvurVq5fhOgAAAACwBh5TBQCLsNvtstvtKlfu5+NC4+LilJiYKF9fX40YMULly5c3XAgAAAAAZR/DOAAAAAAAAKCE8JgqAAAAAAAAUEIYxgEAAAAAAAAlhGEcAAAAAAAAUEIYxgEAAAAAAAAlhGEcAAAAAAAAUELKmQ4AANw9/v7+stlst/Xe/fv33+UaAAAAAADDOAAow3r27Jn/49zcXM2ZM0d+fn5q06aNJGn37t06fPiwXnjhBUOFAAAAAGAttry8vDzTEQCAu2/o0KFyd3fXa6+9VmB96tSpysjIUHR0tKEyAAAAALAOhnEAYBFubm7au3evHnzwwQLrJ06cUIsWLZSVlWWoDAAAAACsgwscAMAiXFxclJiYWGg9MTFRzs7OBooAAAAAwHo4Mw4ALOKll17S888/r3379ql169aSfj4zLjo6WlOmTDFcBwAAAADWwGOqAGAhcXFxmjVrllJSUiRJjRo10ujRoxUaGmq4DAAAAACsgWEcAAAAAAAAUEI4Mw4AAAAAAAAoIZwZBwAWcevWLc2cOVNxcXFKT0/X9evXC7x+6dIlQ2UAAAAAYB3sjAMAi5g2bZreeecdhYaGKisrS2PHjlXv3r3l4OCgV1991XQeAAAAAFgCZ8YBgEXUr19fUVFR6tatmypXrqzk5OT8td27d2vp0qWmEwEAAACgzGNnHABYxPnz59W4cWNJUqVKlZSVlSVJ6t69u9avX28yDQAAAAAsg2EcAFhE3bp1de7cOUmSr6+vNm/eLEn68ssvVaFCBZNpAAAAAGAZDOMAwCJ69eqlbdu2SZJGjx6tyZMn68EHH9TgwYMVHh5uuA4AAAAArIEz4wDAonbv3q1du3bJ19dXTz/9tOkcAAAAALAEhnEAAAAAAABACSlnOgAAcPesXbv2tt/L7jgAAAAAuPvYGQcAZZiDQ8GjQW02m/7vf/ZtNpsk6datWyXWBQAAAABWxQUOAFCG2e32/I/NmzerWbNm+uyzz5SZmamsrCx99tlnCggI0MaNG02nAgAAAIAlsDMOACzi4Ycf1rx58/Too48WWN+5c6eGDRumlJQUQ2UAAAAAYB3sjAMAi0hNTZWbm1uhdTc3N50+fbrkgwAAAADAgtgZBwAW0b59ezk5Oenjjz+Wu7u7JOn8+fMaNGiQrl+/roSEBMOFAAAAAFD2MYwDAIs4efKkevXqpWPHjqlevXqSpPT0dDVo0EBr1qyRr6+v4UIAAAAAKPsYxgGAheTl5WnLli06evSo8vLy5Ofnp6CgoPwbVQEAAAAAdxfDOAAAAAAAAKCElDMdAAC4e6KiojRs2DA5OzsrKirqd98bGRlZQlUAAAAAYF3sjAOAMszb21t79+5VjRo15O3t/Zvvs9lsOnXqVAmWAQAAAIA1MYwDAAAAAAAASoiD6QAAAAAAAADAKhjGAYBF9OnTRzNmzCi0/tZbb+nPf/6zgSIAAAAAsB4eUwUAi6hVq5Y+//xzNW7cuMD6119/raCgIH333XeGygAAAADAOtgZBwAWcfXqVZUvX77QupOTky5fvmygCAAAAACsh2EcAFjEww8/rBUrVhRaX758ufz8/AwUAQAAAID1lDMdAAAoGZMnT1ZISIhSU1PVsWNHSdK2bdu0bNkyrVy50nAdAAAAAFgDZ8YBgIWsX79e06dPV3JyslxcXNSkSRNNnTpVjz/+uOk0AAAAALAEhnEAAAAAAABACeExVQCwmH379iklJUU2m01+fn7y9/c3nQQAAAAAlsEwDgAs4sKFC+rXr5927NihqlWrKi8vT1lZWQoMDNTy5ctVq1Yt04kAAAAAUOZxmyoAWMSoUaN0+fJlHT58WJcuXdKPP/6oQ4cO6fLly4qMjDSdBwAAAACWwJlxAGARbm5u2rp1q1q2bFlgfc+ePercubMyMzPNhAEAAACAhbAzDgAswm63y8nJqdC6k5OT7Ha7gSIAAAAAsB6GcQBgER07dtTo0aN19uzZ/LUzZ85ozJgx6tSpk8EyAAAAALAOHlMFAIvIyMhQjx49dOjQIXl4eMhmsyk9PV2NGzfWp59+qrp165pOBAAAAIAyj2EcAFjMli1bdPToUeXl5cnPz09BQUGmkwAAAADAMhjGAQAAAAAAACWknOkAAMDdExUVddvvjYyMvIslAAAAAACJnXEAUKZ5e3vf1vtsNptOnTp1l2sAAAAAAAzjAAAAAAAAgBLiYDoAAFCyrl+/rmPHjunmzZumUwAAAADAchjGAYBFZGdnKyIiQq6urvrTn/6k9PR0ST+fFTdjxgzDdQAAAABgDQzjAMAiXn75ZR08eFA7duyQs7Nz/npQUJBWrFhhsAwAAAAArIPbVAHAItasWaMVK1aodevWstls+et+fn5KTU01WAYAAAAA1sHOOACwiIsXL6p27dqF1q9du1ZgOAcAAAAAuHsYxgGARbRs2VLr16/P//yXAdwHH3ygNm3amMoCAAAAAEvhMVUAsIg333xTXbt21ZEjR3Tz5k3NmjVLhw8fVlJSkhISEkznAQAAAIAlsDMOAMq45ORkSVLbtm31xRdfKDs7W/Xr19fmzZt13333KSkpSc2bNzcbCQAAAAAWYcvLy8szHQEAuHscHBzk7++voUOHasCAAXJzczOdBAAAAACWxc44ACjjvvjiCwUEBGjSpElyd3fXoEGDtH37dtNZAAAAAGBJ7IwDAIvIyclRXFycFi1apJ07d8rLy0vh4eEKCwtT3bp1TecBAAAAgCUwjAMAC0pNTdWiRYv00Ucf6dy5cwoODtaGDRtMZwEAAABAmccwDgAs6urVq1qyZIleeeUVZWZm6tatW6aTAAAAAKDMK2c6AABQshISEhQdHa34+Hg5OjoqNDRUERERprMAAAAAwBLYGQcAFpCRkaGYmBjFxMQoLS1Nbdu2VUREhEJDQ1WxYkXTeQAAAABgGeyMA4AyLjg4WNu3b1etWrU0ePBghYeHq2HDhqazAAAAAMCSGMYBQBnn4uKi+Ph4de/eXY6OjqZzAAAAAMDSeEwVAAAAAAAAKCEOpgMAAAAAAAAAq2AYBwAAAAAAAJQQhnEAAAAAAABACWEYBwAAANxFO3bskM1mU2Zm5m3/M15eXnr33XfvWhMAADCHYRwAAAAs7dlnn5XNZtOIESMKvfbCCy/IZrPp2WefLfkwAABQJjGMAwAAgOV5eHho+fLlysnJyV/Lzc3VsmXLVK9ePYNlAACgrGEYBwAAAMsLCAhQvXr1tHr16vy11atXy8PDQ/7+/vlrP/30kyIjI1W7dm05Ozvr0Ucf1Zdfflnga23YsEENGjSQi4uLAgMDdfr06UI/365du9S+fXu5uLjIw8NDkZGRunbt2m/2paenq0ePHqpUqZKqVKmi0NBQfffdd8X/hQMAgBLHMA4AAACQNGTIEC1atCj/8+joaIWHhxd4z4QJExQfH6/Y2Fjt379fvr6+6tKliy5duiRJysjIUO/evfXkk08qOTlZQ4cO1aRJkwp8ja+//lpdunRR79699dVXX2nFihVKTEzUyJEjf7UrLy9PPXv21KVLl5SQkKAtW7YoNTVVffv2vcO/AwAAoCQwjAMAAAAkDRo0SImJiTp9+rS++eYbffHFF3rmmWfyX7927Zrmzp2rt956S0888YT8/Pz0wQcfyMXFRR9++KEkae7cufLx8dHMmTPVsGFDDRw4sNB5c2+99ZYGDBigl156SQ8++KDatm2rqKgoffTRR8rNzS3UtXXrVn311VdaunSpmjdvrkceeUSLFy9WQkJCoV15AADg3lfOdAAAAABwL6hZs6a6deum2NhY5eXlqVu3bqpZs2b+66mpqbpx44batWuXv+bk5KRWrVopJSVFkpSSkqLWrVvLZrPlv6dNmzYFfp59+/bp5MmTWrJkSf5aXl6e7Ha70tLS1KhRowLvT0lJkYeHhzw8PPLX/Pz8VLVqVaWkpKhly5Z35jcAAACUCIZxAAAAwL+Fh4fnPy76/vvvF3gtLy9PkgoM2n5Z/2Xtl/f8HrvdruHDhysyMrLQa792WcR/fv3bWQcAAPc2HlMFAAAA/q1r1666fv26rl+/ri5duhR4zdfXV+XLl1diYmL+2o0bN7R379783Wx+fn7avXt3gX/u/34eEBCgw4cPy9fXt9BH+fLlCzX5+fkpPT1dGRkZ+WtHjhxRVlZWoV10AADg3scwDgAAAPg3R0dHpaSkKCUlRY6OjgVeq1ixop5//nmNHz9eGzdu1JEjR/Tcc88pOztbERERkqQRI0YoNTVVY8eO1bFjx7R06VLFxMQU+DoTJ05UUlKSXnzxRSUnJ+vEiRNau3atRo0a9atNQUFBatKkiQYOHKj9+/drz549Gjx4sB5//HG1aNHirvw+AACAu4dhHAAAAPAfqlSpoipVqvzqazNmzFBISIgGDRqkgIAAnTx5Ups2bVK1atUk/fyYaXx8vNatW6emTZtq3rx5mj59eoGv0aRJEyUkJOjEiRN67LHH5O/vr8mTJ8vd3f1Xf06bzaY1a9aoWrVqat++vYKCguTj46MVK1bc2V84AAAoEba82znYAgAAAAAAAECxsTMOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIAS8j9EDsGihM7A8AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -40507,7 +61010,7 @@ "

Tabla de correlaciones con filtro de umbral de correlación

\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -40534,6 +61037,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40565,9 +61109,30 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40585,6 +61150,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40593,30 +61161,24 @@ " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -40647,7 +61209,13 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40660,16 +61228,22 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40688,26 +61262,32 @@ " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -40715,30 +61295,36 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40747,33 +61333,39 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -40781,17 +61373,23 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40802,30 +61400,36 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40837,7 +61441,10 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40845,14 +61452,17 @@ " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", @@ -40884,35 +61494,47 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40924,6 +61546,10 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40933,6 +61559,8 @@ " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40949,23 +61577,29 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -40979,18 +61613,25 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -40998,37 +61639,42 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -41058,16 +61704,22 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -41076,7 +61728,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -41087,30 +61739,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -41124,25 +61788,31 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -41150,18 +61820,18 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -41174,6 +61844,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -41190,14 +61866,20 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -41209,29 +61891,35 @@ " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -41245,12 +61933,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -41261,6 +61949,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -41290,93 +61984,222 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Capacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
Modelo
nannannan
Altitud a la que se realiza el crucero0.735nannannannannan
Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannan0.917nan
Velocidad a la que se realiza el crucero (KTAS)nannannannannannan-0.785nan0.9320.702nan0.9730.790nan0.703-0.854nannannan0.708nan0.9820.797nannannannannannan-0.798-0.961nan-0.819nannannannannannannannannannan0.753nannannan0.798nannannannan0.747nan0.731nannan0.931nannannannannannannan0.753nannan-0.7460.846-0.7780.8350.9840.9790.970nannannannan0.8090.7230.8450.8250.7870.854nannan0.9650.944nannan0.974nannannannan0.9860.949nannan0.992nannan
Relación de aspecto del alanannan-0.785nannan-0.746nan-0.778nannan-0.789nan-0.790nan-0.740nan-0.730nan-0.779-0.828nan-0.765-0.862-0.826nan-0.769nan-0.746nannan-0.970nannannannannannannannan
Longitud del fuselajenannannan0.8460.835nannan0.9380.8080.806nannannannan0.7040.719nannannannan0.9250.8320.9260.834nannan0.929nannannannannannannannan
Ancho del fuselajenannan0.9320.917nannan0.9840.938nan0.9860.7210.833nan0.940nan0.711nannan0.868nan0.944nan0.8820.954nannannannannan0.794nannannanPeso máximo al despegue (MTOW)nannan0.702nannan0.979-0.7890.8080.7980.970-0.7900.8060.986nannannan0.7360.717nan0.8020.7070.8840.8110.7510.882nan0.7080.9790.9580.933nannan0.9760.758nannannannannannannan
Alcance de la aeronavenannannan0.7210.833nannannannannannannannannan0.936nan-0.711nan0.8480.837nannannannan-0.786nan0.966nannan
nan-0.732nannannannannannannan
Velocidad máxima (KIAS)nannan0.703nannannan-0.740nan-0.730nan0.9400.7360.717nannannannannannan0.7320.718nannan0.7840.726nannannan0.7420.7270.910nannannannannannannan
Velocidad de pérdida (KCAS)nannannan0.711nannannannannannannannannan0.934-0.961nannannannannannan0.7470.825nan0.719nan0.8090.811nan0.704nan0.802nannannannan0.775nannan0.9500.806nannannannan0.7190.770nannan0.9340.793nannannannannannan0.723-0.7790.787-0.862nannan0.7070.751nannannannan0.719nan0.754nan0.758nan0.730nan0.724nannan0.975nannannannannannan-0.922nan
payloadnannan0.708nannan0.845-0.8280.7310.854-0.826nan0.8680.8840.882nannan0.7320.718nan0.7700.7540.7750.758nannannannan0.8080.784nannan0.7110.846nannannannannannannan
duracion en VTOLnannannannan-0.904nannannannan
Crucero KIASnannan0.9820.973nannannan-0.765-0.769nan0.9440.708nannannannan0.730nannannannannannannannannannannannan
RTF (Including fuel & Batteries)nannan0.7970.790nan0.9310.965nan0.986nan0.9250.926nan0.9790.936nan0.726nan0.784nan0.9340.950nannannan0.723nan0.9730.948nannannannannannannannannannannannan0.9490.944-0.7460.8340.9540.933nannan0.8320.8820.958nannan0.8060.7240.784nannan0.7930.948nannan0.7850.980nannan0.808nannan0.973nannan0.7210.989nannan
Maximum Crosswindnannannan-0.798-0.854-0.961nannannannannannan-0.786-0.711-0.715nannan0.934nannannannannannannan-0.943nannannannan
Rango de comunicaciónnan0.802nan-0.961nannannannannannan0.785nannannannannannan0.721nannannannannannan-0.819nannan0.9920.974-0.9700.929nan0.9760.966nan0.7420.848nan0.727nannan0.9750.711nannannan0.9890.980nannannannan0.817nannannannannannan
Consumonannan0.758nan0.837-0.7320.910nannan-0.922nan0.846nannannannan0.998nannannannannannan
Precio0.8170.998nannannannannannannan
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", - "\n", - "=== Velocidad a la que se realiza el crucero (KTAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Techo de servicio máximo: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Área del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.7 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Imputación no Exitosa

\n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Mensaje
Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.7 VTOL'.Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
" @@ -41393,7 +62216,11 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Aerosonde® Mk. 4.8 Fixed wing** ---\n" + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Skyeye 3600** ---\n" ] }, { @@ -41441,7 +62268,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde® Mk. 4.8 Fixed wing'.\n", + " No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.\n", " \n", " \n", "" @@ -41458,70 +62285,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Imputación no Exitosa

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", "\n", "--- Imputación para aeronave: **Mantis** ---\n" ] @@ -41571,7 +62335,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.\n", + " No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.\n", " \n", " \n", "" @@ -41588,72 +62352,23 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Integrator** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Imputación no Exitosa

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "=== Área del ala: No hay valores faltantes para imputar. ===\n", "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n" + "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", + "\n", + "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", + "\n", + "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "\n", + "--- Imputación para aeronave: **Fulmar X** ---\n" ] }, { @@ -41701,7 +62416,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.\n", " \n", " \n", "" @@ -41783,72 +62498,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **RQNan21A Blackjack** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Imputación no Exitosa

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQNan21A Blackjack'.
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" + "--- Imputación para aeronave: **ScanEagle 3** ---\n" ] }, { @@ -41896,7 +62546,7 @@ " \n", " \n", " 0\n", - " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.\n", + " No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.\n", " \n", " \n", "" @@ -41913,70 +62563,7 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

Imputación no Exitosa

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Mensaje
0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "=== Velocidad de pérdida limpia (KCAS): No hay valores faltantes para imputar. ===\n", "\n", "=== envergadura: No hay valores faltantes para imputar. ===\n", "\n", @@ -41988,7 +62575,7 @@ "La columna 'Nivel de Confianza' no está presente en df_reporte.\n", "\u001b[1mNo se realizaron imputaciones por correlación en esta iteración.\u001b[0m\n", "\n", - "=== Iteración 2: Resumen después de imputaciones ===\n" + "=== Iteración 4: Resumen después de imputaciones ===\n" ] }, { @@ -42026,7 +62613,7 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

Resumen de Valores Faltantes Después de Iteración 2

\n", + "

Resumen de Valores Faltantes Después de Iteración 4

\n", " \n", " \n", " \n", @@ -42047,22 +62634,22 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -42073,12 +62660,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -42098,12 +62685,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -42113,12 +62700,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -42128,12 +62715,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -42178,7 +62765,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -42277,7 +62864,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
2Aerosonde® Mk. 4.7 Fixed WingAerosonde Mk. 4.7 Fixed Wing0.000
3Aerosonde® Mk. 4.7 VTOL1.000Aerosonde Mk. 4.7 VTOL0.000
4Aerosonde® Mk. 4.8 Fixed wing1.000Aerosonde Mk. 4.8 Fixed wing0.000
5Aerosonde® Mk. 4.8 VTOL FTUASAerosonde Mk. 4.8 VTOL FTUAS0.000
7Fulmar X0.0001.000
8Orbiter 41.0000.000
9
12Integrator1.0000.000
13Integrator VTOL1.0000.000
14
15ScanEagle 30.0001.000
16RQNan21A Blackjack1.000RQ Nan 21A Blackjack0.000
17
18DeltaQuad Pro #MAP1.0000.000
19DeltaQuad Pro #CARGO1.0000.000
20
28Skyeye 36000.0001.000
29
0Total de Valores Faltantes10.0005.000
" @@ -42294,6 +62881,7 @@ "output_type": "stream", "text": [ "\u001b[1mNo se realizaron nuevas imputaciones. Finalizando...\u001b[0m\n", + "Hola\n", "=== Exportando datos al archivo: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx ===\n", "Exportación completada. El archivo se guardó como 'C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx'.\n", "\n", diff --git a/ADRpy/analisis/main.py b/ADRpy/analisis/main.py index 07d33cae..def5be8f 100644 --- a/ADRpy/analisis/main.py +++ b/ADRpy/analisis/main.py @@ -65,7 +65,7 @@ # IMPORTAR MÓDULOS # # ===================== # -from Modulos.config_and_loading import configurar_entorno, cargar_datos +from Modulos.config_and_loading import configurar_entorno, cargar_datos, normalizar_encabezados from Modulos.data_processing import procesar_datos_y_manejar_duplicados from Modulos.user_interaction import seleccionar_parametros_por_indices, solicitar_umbral from Modulos.correlation_analysis import calcular_correlaciones_y_generar_heatmap_con_resumen @@ -88,6 +88,10 @@ print(f"Error al cargar datos: {e}") exit(1) # Detiene el programa si hay un error +# Normalizar encabezados del DataFrame +#print("\n=== Normalizando encabezados del DataFrame ===") +#df_inicial = normalizar_encabezados(df_inicial) + # Validar que los datos se hayan cargado correctamente print("\n=== Validando datos cargados ===") if df_inicial.empty: @@ -142,6 +146,7 @@ "Autonomía de la aeronave", "Velocidad máxima (KIAS)", "Velocidad de pérdida (KCAS)", + "Velocidad de pérdida limpia (KCAS)", "envergadura", "Cuerda", "payload", @@ -216,7 +221,7 @@ df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion( df_parametros=df_parametros, df_atributos=df_atributos, - parametros_preseleccionados=parametros_preseleccionados, + parametros_preseleccionados=parametros_preseleccionados, bloques_rasgos=bloques_rasgos, capas_familia=capas_familia, df_procesado=df_procesado, @@ -237,7 +242,9 @@ archivo_destino = args.archivo_destino if not archivo_destino: archivo_destino = input("Ingrese la ruta donde desea guardar el archivo con las imputaciones (incluya .xlsx): ") - +if not archivo_destino: + archivo_destino = r"C:\Users\delpi\OneDrive\Tesis\ADRpy-VTOL\ADRpy\analisis\Results\Datos_imputados.xlsx" + exportar_excel_con_imputaciones( archivo_origen=ruta_archivo, df_procesado=df_procesado_actualizado, From bee1e42485871f07264f87bb223a0704da088c6a Mon Sep 17 00:00:00 2001 From: Delpoo Date: Fri, 6 Jun 2025 14:32:29 -0300 Subject: [PATCH 7/9] Cambio de formato de tabla, rotacion de columnas por filas, imputacion similitud funcionando, imputacion por correlacion no, proximo paso crear la nueva imputacion por correlacion de la tesis --- ADRpy/analisis/Agents.md | 121 + .../analisis/Data/Datos_aeronaves - Copy.xlsx | Bin 0 -> 104311 bytes .../analisis/Data/Datos_aeronaves(vieja).xlsx | Bin 0 -> 71484 bytes ADRpy/analisis/Data/Datos_aeronaves.xlsx | Bin 75912 -> 378884 bytes .../Data/Datos_aeronaves_completo.xlsx | Bin 0 -> 486691 bytes .../Diagrama sin t\303\255tulo.drawio" | 408 +- .../analisis/Modulos/correlation_analysis.py | 14 +- .../Modulos/correlation_imputation.py | 52 +- ADRpy/analisis/Modulos/data_processing.py | 70 +- ADRpy/analisis/Modulos/excel_export.py | 45 +- .../Modulos/imputacion_similitud_flexible.py | 59 +- ADRpy/analisis/Modulos/imputation_loop.py | 14 +- ADRpy/analisis/Modulos/user_interaction.py | 2 +- ADRpy/analisis/Results/Datos_imputados.xlsx | Bin 76963 -> 491997 bytes .../archivo_salida antes de transpo.xlsx | Bin 0 -> 76971 bytes ADRpy/analisis/Results/archivo_salida.xlsx | Bin 62070 -> 274031 bytes ADRpy/analisis/aaa.ipynb | 62081 ++++------------ ADRpy/analisis/main.py | 18 +- ADRpy/analisis/tempCodeRunnerFile.py | 1 + 19 files changed, 13863 insertions(+), 49022 deletions(-) create mode 100644 ADRpy/analisis/Agents.md create mode 100644 ADRpy/analisis/Data/Datos_aeronaves - Copy.xlsx create mode 100644 ADRpy/analisis/Data/Datos_aeronaves(vieja).xlsx create mode 100644 ADRpy/analisis/Data/Datos_aeronaves_completo.xlsx create mode 100644 ADRpy/analisis/Results/archivo_salida antes de transpo.xlsx create mode 100644 ADRpy/analisis/tempCodeRunnerFile.py diff --git a/ADRpy/analisis/Agents.md b/ADRpy/analisis/Agents.md new file mode 100644 index 00000000..29ad70eb --- /dev/null +++ b/ADRpy/analisis/Agents.md @@ -0,0 +1,121 @@ +# Archivo agents.md para Codex - Script ADRpy de Imputación por Correlación + +## Contexto del proyecto + +El script pertenece al proyecto ADRpy, enfocado en la imputación de datos faltantes en un DataFrame con información técnica aeronáutica. El objetivo específico es imputar valores faltantes utilizando modelos predictivos basados en correlaciones estadísticas. + +## Objetivo del script + +* Automatizar la imputación de valores faltantes mediante regresión lineal y polinómica (grado 2). +* Evaluar todas las combinaciones posibles de hasta 2 predictores, considerando métricas como MAPE, R², coeficiente Corr, y Confianza. +* Seleccionar automáticamente el mejor modelo para imputar, priorizando la precisión, robustez estadística y capacidad de generalización (evaluada con LOOCV). + +## Entradas necesarias + +* importar excel con nombre datos aeronaves dentro del mismo directorio y que use la pestaña que se llama (data\_frame\_prueba) +* manejar errores comunes y como encabezados con caracteres o espacios raros, y detectar las celdas vacias manejando diferentes opciones en excel las celdas vacias estan escritas con "nan" + +## Salidas esperadas + +* DataFrame actualizado con valores imputados. +* Reporte detallado con: + + * Modelo usado (ecuación final). + * Métricas: MAPE, R², Corr, Confianza y Correlación final. + * Advertencias explícitas en caso de extrapolaciones (valores fuera del rango de entrenamiento). + +## Flujo lógico principal detallado + +### Paso 1: Detección de celda objetivo + +* Identificar la celda faltante a imputar. + +### Paso 2: Filtrado por familia + +* Filtrar por tipo de misión de la aeronave objetivo. +* Si este filtro deja menos de 5 muestras completas para entrenar, relajar el filtro y usar dataset completo, registrando advertencia explícita. + +### Paso 3: Selección inicial de predictores + +* En esta etapa realizamos dos verificaciones, por un lugar garantizamos la existencia de valores en la aeronave objetivo para utilizarlos como valor de entrada en la ecuación de regresión que va a resultar de entrenar el modelo. +* En segundo lugar, validamos que los valores de estos parámetros se encuentren dentro del dominio de entrenamiento del modelo (rango ±15%) de valores del parámetro predictor. o sea cada parametro disponible en la aeronave se debe chequear que se encuentre dentro del rango aceptable dentro de ese mismo parametro comparandolo con los valores minimos y maximos de ese parametro sin ser la aeronave que se está evaluando. + +### Paso 4: Generación de combinaciones + +* Crear todas las combinaciones posibles de hasta 2 predictores disponibles. + +### Paso 5: Evaluación de cantidad de datos + +* Para cada combinación, filtrar y asegurar la existencia mínima de datos válidos necesarios según la cantidad de coeficientes del modelo. + +### Paso 6: Entrenamiento del modelo + +* Entrenar modelos (lineales y polinómicos de grado 2). +* Aplicar normalización en caso de regresión polinómica. +* Calcular métricas iniciales para filtrar modelos: + + * Coeficiente Corr: + $Corr = 0.6 \times \frac{R^2}{0.7} + 0.4 \times \left(1 - \frac{MAPE}{15}\right)$ + * Confianza final (tras aplicar Corr) +* Manejar errores posibles por matrices indefinidas brindando las advertencias correspondientes. + +### Paso 7: Filtrado y selección de los mejores modelos + +* Filtrar modelos según MAPE y R² mínimos establecidos. +* Seleccionar los mejores 2 modelos de cada tipo basándose en Confianza final. + +### Paso 8: Validación cruzada (LOOCV) + +* Aplicar Leave-One-Out Cross-Validation para evaluar capacidad de generalización de los modelos seleccionados. +* Seleccionar el modelo con mejor desempeño generalizado (menor error en LOOCV). + +### Paso 9: Imputación final + +* Imputar el valor faltante utilizando el mejor modelo seleccionado. +* Registrar advertencias en caso de extrapolación fuera del dominio entrenado. + +### Paso 10: Generación del reporte + +* Crear un DataFrame con un resumen detallado de imputaciones realizadas. +* Registrar métricas detalladas: + + * El valor imputado + * El valor de confianza (calculado tras validación) + * El número de iteración (en verdad esto se agrega en la función del Loop) + * El coeficiente Corr del modelo original + * El número de observaciones k usado para la función + * El tipo de modelo utilizado (lineal / polinómico) + * La ecuación del modelo entrenado + * La cantidad y nombres de predictores involucrados + * El factor de penalización aplicado (k) + * Cualquier advertencia relevante (ej. extrapolación, uso de datos sin filtrar, validación inestable) + * El estado de validez del modelo final (válido / parcialmente válido) + * Comparación entre coeficientes MAE y R2 de modelo entrenado con todos los datos vs. validación LOOCV    + +## Consideraciones técnicas importantes + +* Aplicar normalización a predictores al entrenar modelos polinómicos. +* Calcular número de condición para evaluar estabilidad numérica. +* Penalización en la confianza final por baja cantidad de datos: corr x f(k) (con función empírica definida según cantidad de datos disponibles). +* f (k) **=** 0.00002281 **\*** (k/**2)**\*\***5 **************************************************************************************************************************************************************************************************************-************************************************************************************************************************************************************************************************************** 0.00024 **************************************************************************************************************************************************************************************************************\*************************************************************************************************************************************************************************************************************** (k**/**2)**\*\***4 **************************************************************************************************************************************************************************************************************-************************************************************************************************************************************************************************************************************** 0.0036 **************************************************************************************************************************************************************************************************************\*************************************************************************************************************************************************************************************************************** (k**/**2)**\*\***3 **************************************************************************************************************************************************************************************************************+************************************************************************************************************************************************************************************************************** 0.046 **************************************************************************************************************************************************************************************************************\*************************************************************************************************************************************************************************************************************** (k**/**2)**\*\***2 **************************************************************************************************************************************************************************************************************+************************************************************************************************************************************************************************************************************** 0.0095 **************************************************************************************************************************************************************************************************************\*************************************************************************************************************************************************************************************************************** (k**/\*\*2) **+** 0.024 +* Validar dominio estricto: valores fuera del rango entrenado (±15%) deben generar advertencias explícitas. + +## Estructura del código sugerida + +dentro de una capeta que sea especificamente (imputación\_correlacion) hacer la modularización de la función adrpy/analisis/modulos/(aqui carpeta)/aqui modulos + +* Claridad modular con funciones específicas: + + * `cargar_y_validar_datos()` + * `filtrar_por_familia()` + * `seleccionar_predictores_validos()` + * `generar_combinaciones()` + * `entrenar_modelos_y_evaluar()` + * `filtrar_mejores_modelos()` + * `validar_con_loocv()` + * `imputar_valores()` + * `generar_reporte_final()` + +## Paquetes necesarios + +* `pandas`, `numpy`, `scikit-learn`, `matplotlib` (opcional). diff --git a/ADRpy/analisis/Data/Datos_aeronaves - Copy.xlsx b/ADRpy/analisis/Data/Datos_aeronaves - Copy.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..2797f899b0a9e0a439e0038ba42fbdfbe0a873c3 GIT binary patch literal 104311 zcmeFYWmH^k((er+Ktiw}fuJD-cMmj9a0~9zc;oIGf?IHR8VT;f35`SJ?(U7dzT}>H zo|!rGyz9(|^X;7e(A}$hueGnL`qjVc+Pn5wX@r+Ja7b{k;NalM;EvgDf`wkd!SQ0i z!C}L_dZ8s^W9?{c?Wm{hW^3%A!{};d`61`!3+gPm=Y#&=>;GmC465nb%rRs7WY!#E z-Z*{CUz~En&c<-`SfH)FgX`v(_+p^NpV(2q+$H%F4cFjH-X>zKz||f0yi4osVi|2L z!)N;Np&1n(&miLU$qMEHj?Y7<4Dvw;Okn)?88v0VaJp zZsqy?NfmYUdB>mPY-)KvBqvS&{E-#zS@w!YbYGBq5Z+TIe+svAhvc^hYhZX=-)>gt znS_=ajVKZ@3Gbc2j|*~CEqD76y3jV4wE$isvcjS$?3xbmQO_n}q0(C#Eh<9juhuplG{9KGv*?O*6=w7gw`;C0(noFQB9KNEZ{4K-66yY-l#4Cu-BDB z7LIO)XptYw8g&)v!(l%$;HM`zEolkGpZ51#s(7w zzT->w)9jYjSTeXSgP#;uf|UkV)N^I+#SW+XOef^;q6q|Z%N&d)s9>7j&;pCEZ#$rb>X8~!+tW5?$*im z8dBVQ-1jYvv~UUje@c?0Gf%cD1UR^k=W6|2q2XLDnOtn_EevdIEdG?{64gcfTuz+U zBbjBtRTBSeHfB3#IKbkd(Y(x_2@_k-2TKm$!cRn|tar>_39af;wg;GZl#8%%v=_Uc z+v3YNom~YwN`zXppVnc6pRjw_&9shVYWI_GdQSU8WkhJrqzm1oO}E(Mw+aR_eHvZY z*6g}&a{b^+(~=3njh%JImDy;$uaC^a*l_XCs6BBkw4A>Q({RQ8%&*hwc@0BSw>W%@ zb@CQfSEVG&LH8WZYLev32mwwY6IV$ra!vmAD{X|e%A=BRT*Sg9>d=WZICBEoXzg+> zMtv2-IRF+uz^@JSsq=T3$MJV1(=r0pSB!38%2!rL{`>=(pE=2nq$&XAzk7aoYK<_A zd$@*6eP4dB;@XL_+#Y-eF?(6WVN3CQ&5KIYHXO>q#6+t)e#hs8w$rGWJql1s6+=^G zkjgjXW-GYv&D?3i%Q>pbnEbpirZmg~8z4`&2~ZeAxz%Kd?nQPz2xkso6fFN@kXM_N zgDC2-M7yzSp)1he01sHUHTq>I{BXN^;1PmeHNz})1DV1MV&S`jT;#i z$NZS2bbQNCvrVy=-{6F82oyXdDPo;@+V(R_?>23??y}JsCVJn4hK2n2a@f+YhI~G- z<1|WfCV(>gy*)Kq2PHlsk1f#xSFYW?{RyuCmUe^)6T~tWW@i=))N6b-0TR8C0mo=} z?+jzry}ayAY!_=$ptrG`n%mw>jdu-0YlJ4`9eFDw#ZWp?_RGQZXbe*&J$;uXGP$wp zQ-(;q=`g%cP=^6Daz{KPzj#ra%C$iZ|IfkON=#4rY*PlV!#lB_C@cL z6*=uuCG@@TGGaZ>KnJL!Gr6`%eO(oSO{3^mir>~wv#~uHvfw9N83r0h)Jdbw^wt_b z@sw9iGOcB{Dfq%0Uz%Y?p)M#PI3i%+HfHS<7Zg`g35z8x6;Z@sAx!jZD-lHyMMCeD zs?Xymy7dLBPQ`};`AN1p=s8<$yDB%u#Fl!gd7WxIbK$=-ge!Ast1A2YvF1iev3zTX z0j3<>QT%QzCtrCDNKr30h@J4wi556#-emeBkJw?@dTJA4z+7g|UhKW#kX;Vs3=LUF zr`wTRlyGwMbBV*wZ`cIvPK0<3Xt?@qC0K~IZfiCOxZwSEWYIJ7v!?f2qI&8n;wsd% zzy2|zU@ce(_Fa1`AaH0F@AriUU){_wt?*M&Ae-?uODx2`njr#Mk|98KdQOv2VLVk*y121eWFJf~ESBNL=@vEK$ozxqlSo4_OAxqrB8P4>cG zv7m~T0NYLwEA;{f-Fr{BdyR!_ECR1K8W-Hrutnml>{pvN!d`guiLEXnQY2M`d{TGo zRW5akUrPzuRC>y9PTB8^`3pWSX1~s!YGo7RQAi`)ixrymG~0tJJ!mnB@!~nf6N8mP zv-mW=%h0d5B)Kk7Ma0CrQyUcxvlqlg<){VIeR_YVzlAVtdYC?3C{I9}*LB{d@%Vm+ zH&<>>e4K6&*MYzd{N7cr62pX(d2p~;W??_qE-2Jx1Jw4F@a|R~`JLe&u0L8C;8Ixzk9!SbhK<;7V%Zz6C4 z+vMkbg71m3wuRw@=om}uic)?$Ck}UW!x!77&E^XhJX{e|QOI^FXUna{%Kk|Ox~4*0agh(X{r zt=C|y4+JPC3T?B&{Y0R<1A5*3S#%4&yOL=%gtm3a5tU1(pAyiq@$aj8F|+pKx2xFb<;Y} zmeLrv2u^8|M^6r%G2cEJC?3H`UpVKV9ca`w2EF)& zI4B%)l^55%J;-5`u5DKvfsc0{*;!qM|{56QmC_l1A! zha@{XlGS&KvajWqLN2y@18mbF`p^kYIjeo}fzB7JykUr=2 zLhXI`3iUEUu@T@K%yAo-Mx3DkS@*4(PTL`x8lqIYo;-@n0CZnx2VPI ztUT{zbsam2#C1nP%HVL*_qO4$@2r z#!-ho%2-N&Xqd?Wj1maOUnj?RJBpZ;GT%Sium|cuO1mqXDwUGN5`{b%$eh{G2_V+p z3WhV#&mh#M_ofj*uJs(20~2kIz{T)XXTPNP;~mu*d;|y9c`3$(2T}zorVWJS3pE-P zO1~<9mpP?)aDJcZl5-dc#B7=a9nN4HBmyQ;=k=!nlSK3Sc)XMJ^BZc~XO^*gcF-E= zX=q#SZBt=qk;!_zYwDhTEtWh%yjULAaLfR$9W9@6K%ccUQ&3EIOQfklrHvReqvq9s zVC-Uic5?SCDMQPA7QeBi1duC5LM99~XA85|w~*pX=?8Nw-2$|@?sqxPn6+HP+xlWr zCg(XPwZ?5lfl0G}ZUIIIBtTqst=wU4Ew|J>emaju9}^*vMIQ&D z8-0i0E(ROf2;)Utn+@kpc~ZAxQkSnAs(PodF{*l(uM_%2Y|k(bmj!lH%shTY82lZ+ zZ7_TfzHKP{Hok2L{4~C87(9reNejdzb)NfWwX7i2TXSY#GUs?Y_REAmXtjcBJXn)H z!ks=Mg}zq%-2`}|$Fr}IU0QAeTvEO~knNFpzJ1lA`LLLIHNUtzT+rptCt&@!Q2cZu zAB6FAAwarxf4(bwdqLXfb#pVmjbX#@b#uEqoyqU{IPT+_=&g3Q+BE8Nv8R{n!*>t~ zX}jNKdd82tcsxcGJYF<4zo=O|S~!(@0L&xZTEug^%8Yes8v8l52Xil7w3;Yhj|vE7d6)XR=l$lq_BPIfZ?x&5p`O8afzMo^(S!==q72w8db{Fp+!m<7O_s z4|9^>1p7Ui(uqj^@HN?mIatAp1K@}UfQsc#n#gNbvpTE?4U(C^ef$w{O%}F|pRH6h zdQ`}v1vAN=HFui*Jj6QaNyDnge?(hn4s~ytG^0pInuII4)d)x~|FTuQZMCX;@c*eqJvpC zO_?d+N|9hXUGoomGO;cTl<%lEO`=b(K{csBv2P)E<045nLPp-Mx(LELr+He%wR?+s zb3dzcJW$yLLIlzAMR zikiOeJNH&KgMNKa*88%Rs5W>{VB(FNtfyDG+Z>R*{AH_NZID+MvH&^`xWd`pU5j$T zHRQ{Wb5d5CRRWtP3S{`Ss1!L9zUFv`MtcNJz|S`o&~sKD-#%BhD3vPJD0Skwu&y3A zcP{o^SlTbs^w%gcOzzL1;Pc>Hr=6rt&zl0N5H5-p=oX)$a2tC`6Fg#pH@I5{W^`!X z6K8E_hmXc92fgn@Tas&b>J>q5jV`HGk#uP5A;sqw-<|!Mb+>kvBpd8xHdm2bNd5!DOCJXv$N;{ zpoAkLvw@`J4sS=#vvzbDblm=9?ZHh&(;mqOH12P0HrK;ETw>A&FAY5_jZZPveRD=+S(k8Pu~oAF zvvzO|7%j!Oyc9&ak7bwdRP+-3sjxwdNz1{sFC-;Z_GoAGs{wl21(`XVf=Dod&;))C zB_@Yc+-zTp&;(J=J8qR~3kT{_+%KhM<_HQ}!E-_rBsu7qPTvcaBo*{dbmi|)SI-JE zms)S`cemSG_-ef+jso_N*b7c!cS^#!>`^Wlg96)B<2UvK=Zh_>W~%B1D=&z<#Wuucbk1fd`?zAKsSglH=((2tIQtydiQ@fIb$bQYpKZH(tZMF$GZbbczTN zoFX#Op)f)2;qGeq8eIFWkmHNh2lF=yfZ(|^k4a!H6kclUl>$|?#*S|_^=HfT(>1v2 zdmXYpBn40?FrbMvHtQ$5p6|u{-D=c2n|FZ6{=q04?q%s&rOwu}COF;*g4RX4{RSW) z$J5VdDDE~mvx`d0OJf47IlfdH#uF0x!Qc+0)6W>k{KdiUEi$qxqQ@mhLM$o1G4og@xf>8g{7UPV4X!)VN55#Lb@-D zA82J+N|1HJYNCL;6b9&>z#=zXe{Rem@Rr6hQ7}X?6^L(gR&&ff!RVw{r_&#^jzR5N zs?8L12pc;(vcPSnj_uinF`|7Hm~6uT{#h>(Bqna+c#w0cB#|Vh2#nHFA~A(6(qmmML5WgiqoTB@|OyLnBDq4QIWhi3Z)#TSIhm_6H64@ z#6a>TLHC|&0_czlZOO0J=e%^&~>{@moueHJy4T3v-&h`qjzzAl`a3D5n>bs;HVNf8@ z0aXhpY0;ubQ42Uj0O7>1>#86Qgs~j>0>x1QK#GlUARcOy!3-M24BlHc?8m;9z&L?t zPjXjU!m6S6t|y>n?3Po_eR)gjY+ifUI~4&YZ*f++|3VcGq=6v#aPw(Cd=(Kn<#0Eo z?pt|?Jx+Y-UH`NcLs6i}iKS!F=XNy1P+7H8S&Gx3@8;mCp?q)N8yx01nmOd~)(hXt zEAj~I0-jAG4 zeA91x%g$H(q4K<=Ai^^CRjY=Yf6R3*Q)#T{bO;Y$87@Mz&ZX@VUE!r6ey%PsLM9V? z5k>Z)oO7-$8z`@Z(9N}TLf>31BF5fDz7>pJQ;L@AJn*Vj-S(poo=0dJ>o@sN=_d}D z9u5urcfaiKtrk0om$P>HYr21Rk=7*MzkFF~@TExsi01))?HrS8hN2}l(jRaPN?}?v z^bFIP;%hrTfX(=k4omm2Af99B4SEV?tSp*TYr)Zo`YnA4Fv=C^DF_Y1&sT zaM+ZR6xTT{6pq+6#0&o^I8UT!ITy4u%-+@Cgto5lbjcICjrb_ zVpPpX=E{|>EC000!?|pjvnTLrgg5(`_M)nxVwO#R%>5vFX6vq2 z<#(VVYU;6`+PZ*E|0@=l*A~23J#c7j)q{v3^g35+OKB`Yos$k#%W$R}c+n#n0>;*& zPk*LsmII4xy&Z0~#}M^1aC7ay5i2Bz(Sry=1C6EjHHqi=d*j78^_s>>LQ48EFU&y( z0Pt8>RKIvq6sJU|cdm`$zNW9WoEJcAH@?n$FEP-`v+l(u#s0OYC`0kOhR5OnWxl%; zuSNE)vuk^YWa8C%V4A+wAazPd5_ZWjEAWKC12bt(0N9OT+BdABZE3h)rl;!?B)b!n z**w$2*?jM*c#%RnT($hmRactofEz^E=YuEdGrSfdrDUl@`1oQ@*Y~Y>M$iYj@D(P- z8_Dm}*B^(YTO>E@lkmp0=n;Rq%$9E~>K>9;wk|$~uq(bb5yVSz(rAdi&aYaKY%cHf z>RfM)8q}aYkm8s%xvjr+Aml}t$$i@cquvDs<>{8{495Hgmb{t^F`{JO={w#D7-jX5p_G$uu9#kwIMv009=<2 z^DL4G177z=ldh?r3iv>@zf+};U+PEK__zfSeU)lh#DEeWSRT$Hr*8fiO-PVB{5nVl zUm!8_K`^i;oXd4j`r1I3Byr!F`*-4wf$?!5P`N;43v7pR3F#EpMDJY%C48&mO#qXr zb%YL3Exi@a$RUe7Hu@sh8dP1+Vb4J)fZOUha0N45M{+I$8c>m3?xS-G@Nr; zW72kA2dj?Z%)c&{s^ohb%fUCG+QEXgy1DYGi0F4(_i(xh8w{?*q56h@6Vqz3ihX2N zIChIq3A!`tMixoxhNIbfCe0(B-zhU6AD3rMm(9L~JV5I`qj4e-+`Xi< zeJs^)8nFgYi(Balsr#r^e_>@6u*kl#-~RJad*XXk;RRN`Hhm_Q8t4Q@0ZR1ujOawj z23f-rYR{FABlIKP<7?$=65*wnw?KE_Y}R@Z<*y*u>Mx}ern&;6f|b0BI*!8wQavZU z9wW9}sIPm1Ogm#%z`tBPUl%t!ta6w0wG(aOQGAdw9biL&G|jjjbk*8ahWTK=e8L)F zkxF|RT~Y6DD#Sjh!_BycUa@^y45uE+1%EuOnIDdM_O)mY!v+I}3PIxf6;Nb(29Grt z`N=ju2_zG%Yw*$~KaGtfzkR(%L&6rFSNC&8hR;DbrxwQJ^${a)GHLtr?{^7<>-RZ0 z?*`Y6Z&$elAHan-Nni6)ZB!R$k)p5A5ITOQrW0FfVQVvJqA3>~(et*DGFqvu6aVl6 z7xi;;=MGC!rGLM~7}8x?db&Qhi#Ba}Pd~L;>;Z};aE^&aFf&ZC0qAQJ>8l+b^vKU0 z75>`1dsL>Ate>=`JU8IVK9ZT-y(=y`yo#*T{ir`f1bK(JRsI%JOOmN_LKVNRy8qL4t5z~-Ql?4-cI-E1S@sJo*3{7BpC>m! z2WS4Z$&DPikEJ3>7)_3J-oR_DdgV={?w*mI zSe}wG%;6XJ;-Nu)>L_eT%3X$Uukfwr29{B(*)wLs0-bTaM=Mi3+-DzO0J{bb9fpA% zPKwTLuTn22;UIzdoE;S`fwIh&dpfVG`=QeVqZh0d+zE3z?H@0g;&xF693y~)sPhIh z=#a~j&$O{SmER-rojXu^-a{Diox3Us0~J&brNm1NBki)bl}66bSGnl*MlO|MhP!^< z1@aldT`2EiC0^JyyDsQXu2m;YP-;MccEP+$q$A^3Tg(N8`U*yCTn*`T}qtUvQ)8bR&VJRCkgeR1k)1c%(Q zL+%Q+wrWKUMf6!ylvS)*uGPHR;q%CHk3?Cy~> z_6MFTtR8!I-n!pj+SrPnzqR0`l_lNTG%oC`FT<0Vsn20rtoqdP*(;ngym|@4i;1(@ zvIIja(~)ESd{U)aeJn@;>Uz1WNVwvR!*>3i?H~ zE;yi6P9%-N&gaGXUK*o@4=wReT;#pBm$`rjr3p4SchBkT#DHYhuhfrOj)%qh`jK`n z(F|*WcCJEl1)Ir&`<(^W2g?<3f>&_rk;NGcA()sS0Et5p+HUN-vd2^f5eR7(+ z$*)h|J?{KvdAve*Xk1L$#M;oA9j0>57jd&GUcW2q;7U$46Q5!*g9_QguWPTM2rOl` z{0CaUp-@hF!#ZC5T_To)@4$cby0R!ncIJxAWf=C}>A*I>uG0$(#5*+l1d<&Of}P)E zXX%->$i$BuDYyA;T(tJW@ix~UAB}5CIB93AYVp#lGzJoX2S6V0MZWO`Z9*O;FB{nA zVlt0FkV>KBofzVJJX=QXF{j^*0{qdooRhF8+|=@AOi~h=?gfXdfbHF ze{3OUbrdt$v!v}hs{oY;W^=i&HdGwVn3sV6F{LkI(n{&~~}vpcn) z4MBP}1V&xmzad)eQa{1vX@Y6vBi^$T|pE0Uj(O4U_7f)I9=sMsTM|2@6?ANgB~j*GCjXsAuPA?PxG z2mhSD%jX1m(io1PFAgiuJ)@RW>6U`84^{ofrf(wmj8TBo{8~*HF*YA}hDFx>%1KNKSwEHQb;^PT!I9Yj9Ui2XCpEDROnKH>wrqw{a z-^!Z~mA@Y_Rp>l3RxTN&zriRQqb5&%TW=tvMqjDn@x3+% z+{-mnN7PUY`3)D!L+7PdkEit>uFR)PPN)0}j_2Fw^BdduBOR(Aw4yF!N(Eb687vVs z2W4AQw2(~SP4Ne!{dXUf*M6#jd{Ejx5teH8rNMe6ZRRyF?Blq^G^vzTz{7WrKr3d; zFdzVR-f#vU@~n{tqU3jno-=-*&pIHwtvar0#6Dg9JI_5wh@ZCfFx=OMY)YhcDW7>2 zBam$>9kI0oxXWtj>X*u-ziz<^=|SV5P+5&fNr>A9At#HXgB*G)e&(AL{5_I3Gi(R> zC??`8M2&10ck}_0=J1CNX3Kx51xW&*;t68E5`FStnxUZYjO`Du>!|p*71Atuot`wg5jyl-?weo83%Y-9PZLq#_`u zq-)|GG)p!0XeNrg1NT32Y;ROJoitQ9^(8#CtXSaBLFEt2r+2EHn)rgcH1W(Lw%Vm( zOXNGw*Tpx~EVRKAcWXnv-Xg=N(&qQ!`7^jlz&~vfeqCn;ZeZzOF7-CPp-Oa7=lQRu z2;cd?!#h!^zn?D@rZn&kyq&tBZ3UmNM!NNPimR+|y|XZ_a9Yk`)e5cO-anF+c`Rd(^b6pRYd zb#?RqeU<$CB_FpLFVXOs^n<}*v0^ACRF6o=pIC#S)Y9SUi*qNY z`|a}Fm5^_W1bA36I}^f2aGXg$+*MzF2lX^2l@`^-C8(nbx-tR2+^%!qny7= zHr^z>&X5cHz+x1@aEt_#R`H^5src!$3SMxkj{_9$-EjVTj_Xf%GtdT{wADX$SNNQe ziswSZY#9RlAGUy07#_{9B(4*Xwm;j4kWas0A=S0P7aM-D5^8ou_Do!Il9ZJ&>b~B%5dIc|jf{Jz61IeP*F9OCySX zth9v^#n~C)E!0)FOb1D zd7w82?fJ_f>tj*fmPW`a-v`%Hvq0p_Q4s)d6~qw0TM1DD@K!?{-kGF^&>tL+$$1(F zO*^|92Gu*eng(56VgP1VbBXz9SF4FzXH30oAzT2N+8m9MB5d=XyJ*)=8uoX<0@4$d z2)>yf@daT+w9AvXZ6mzz?pzO(sLZ

8tx=eko>8oyhLi(P1c$cON*x{CGz-?g3nl|s`pk0wi1KOSsS^vdx0ENM! zZF3G811BwBZCqn~(EQQO%^xpptTasSYl>z=JyT0o#lsY*UrwwxLO- zA&%S8YtOa9%TRqT5Z%yQqO3#S2&bo3M&vK4K)x7BuHTC-Dv=Yh1+^q}IswHSJZ{|rIDHuiY*7(H-z#Y6kX zP1WZLzlu|Lx)tQL-y?1BR*Mm!b09jdUE1mugT}C} z&!48ZU36}e!TDgrJ#^u7+>uqEQuJDR{qO3|cr2ju}t| zLD$^60~1V_Kf?b&_pS-e1qu5~{6$pGpq>5ueeujAw#`diEwQ0@ryfYIWqYsUazEI| ztxLnh*c!_>HTYT*+Qk)*Y+}o=$|XLy_j=%+e8f2~84!E9p{v>f zprtP8SjKoRJS+L8LR9uxtNP3L!_d8q+Yw`zv#QsU)S$c<<#C>K(Mjxe6XqG*pRi`! z2mresT&RLsAGCF!&!*^VRnQb~#NHVO^g#RQRA30&Xx=y6WA8?;Yf@OhOSpx$u=BVm zG=TV%*4Y?y$yXV1oXr@AVYt~Byn9gsV_@uLE8260sE&@O-o|d`&fe~~13&*79w;{d zp?l$px3PJzEjrlnOPOa|MfsxDgox+?w`#fSQ@3zJf!zfxO4DbHH^NN+2iC^1*bR@! zNa_k}_Y|65cUP;*7~2XB*2~nJObRly4md=IE%ZEP!e+45 zd1dZ^9w_2SX8q}y)%TfFXbD*#har~ zV;bJCnVm<`w~}Ic!KX7M1b&Wf_NphOOyA?{a^x`kk=iDd^v0cIWT~WS-YTshAaJYf z!9?~0oRVqvw^ZZ32KS!y9U>4O=-WI;J_b6BfS(urPI|or`EoBhE8RTprxv>va(54) zp{PU+vK(nG?A}njhS%V^io)9BTh^zjsgVFxDskc=SVmqA&OJgXnQMx!GjRg|{n=|4jjkNGM+ZU2hy z%NUig^QCSoexR`dN*4(e)t|TeWyT)A1U`E_6`k|eJF|Vbwo_QqkT>dUt=OcIfJqi7 z-w?g;2TqEiiYuX`bU6(h3&%upw0q`q@fe?dJ}*9dSV=tq}?EPM3G9tCtxG0ClIc@jPcq} z24kBoehqPe8N6?QBLk6O=0`rA^wzBUV~pA2hg(-2_YYn`@HajOV!+Rhb^X>yG0g=pzmK0a4cR*(!!t!#M-T^%g?JKj-rzpTQH;cI-Rfd(zzpcl{2OlnwB6 znby$a+cEi*O~`yc-e9} z=^AyH5Ad_*CExmCW_XcLhdWqwxdaa6g~7OmZxn9voZ^2EV^YTn%<}wFo`tu_du?4M zZh+~HnDJHQb8JbjZRBcD53eZFC9gT~WX%C-4xYfsdOe8_jPM*b4|6TI*7n%on@X^) zad_5>IzXs_`6#9WHQ^j?75p+S3+OueI;~58OXbK9VFN-iDsr4n04EKf4ITQe-#c!f zziv9{!EV2R^&RIKD@ZGYTMt=aOj!|3E26+-BuWNhD;ehw{z=Mpk03wM^{=UCo?9q zPAJjW1e6R|gxKMA2+1)dSn+^oFAsScPQbwjP6@+yE|aUAjzxo((FY`xPMLnEf}>_+ z9`W0z+gQPGG299~NmusGA2f=?;tazWs>zZ6^q9K}IMD||7cPS~&OoCn%6lf<~M^NJLsObdF2^jXn)j9?)z|IBd}aQFI7d*PY2n@T)o%r-n57E8Y~L~V|4 z%eAFxXS9W^R`Mf5sTsA6j3P0*8i5#A3_*j;*NHo|()Ep9A22m?Y)J~<%K(ym|9QB& zhiV)#CS{OUVJ1VUDvBxL72-54^3oo|LEg%l<)vw_F2g*$v>-Kv0~`2cFB!tp{xK>_ zt(PZj^gJgFLHjO zA?zbQk!c)lwbjTcjjRz<3}sc@^ap<^2^X%Qj38Zn!h%C?J??^V;lNsv{(k;=vvw=< zGDd)7o(uwj0wrT*2%3 zPh=E?vJ*>ysjqAZ@2L`Z%s*&*LQcgQo>NOPnw&J*nS#k0Ut#VyW@E^skYVIRS?6F+ z$jUtPQlKTe;tSJ*=4vJ{8DVlSYZ21N%zEdz|CcRP?7SMKx^OLG=EjdUYAVCYAfvqE zb$Pl;o^fBE2m$1&fP}F&Q=UV!$VUl__qbsEf&L2BtTs$fA_`mhKZ@f2sFEkQu4>Y9 zCmhVV<{u9*Ig4|^FZ5jb>Fx@!{_8&Mxvj516z&~KckF-CQRb!eTI1MdTarai)CU-6 zVLNbY@cOCmO*lGqSmmtKe~Gi*fdBIpGbS;1vq%c)a6!w0K_8KoG-h)jr3~sv1e;~I+tLKr|W@aKb)13 z`G@XL0vc@fJ1pra%rE4{Fsv?KI34RCHs!+TB90rN@p0sw^GTRuXBR#M>7;6m(@Tl? z8RN51xQfMR`flcP_V$S|U9kgCj!)DLcdOkmVIA};nhsuG`A9&}@_c3|;2}jZ9ToKA zEKo+LPFs+9fj7TKG@uxB3}V74AP?_o#ZvdARI6!`Qxr{o;UCBQI$@@fqUZbaS=BI8 zOsv)v^qt(PTPg;A*2GSM+9KU6bKg3D!3;~ZOxltS!OllB#X`Mz0CJ$&T)~-%D*LU{ z#U-xTJAPLWa2vGY%x=jC;Cz~SsEp+KH6f8q6phP8iEs`FYSS9 z6;$$J1(mB1HWX2c%C&$EHUZDwN1kRO6Vej>GFE^fUJvPa z+6O5vet(|I!7^23_}H(x?l1_zVYboxlIhWr^^zo&5&)Icz|2uKEi)mljj(s75DzrX zlYLaWLQJblsp{xLt+bl1s^SZ6Np##G?m;cdW4=J!A}u*6h+Ryf)W;+cPrCLeTGej1 zONvo0_+a*)$no2lN2!kh185LIfX#m8mesCg8F%L6a)T4O>+doiJO~7K?oFp^$^R7j zm<{itJPA7}BgB64eUBjuu?3G;3M4`@H5_QH?}>~YN-zSNg&I}G8@P*9YXE5-MTHLF zD(pB?x?Xg*29Qg*&X{2r^RT-yzlnBPUh|d-+aqt!yqj(i889(4(5QWkrjyPmaNlKN}j_L0QCP!P_Ll{rk9!qF4q~XF($L%8O+`8K7_?%v5 z_TigJckw2m4!|Hy-g6iVa=AZeY_4%wfpiz5+}l#6A!QQ%LJv&+Q$DJS{NK^$Y%Ww} zMT6&Eq@NMV#Mw>;_fWJDgT)C#eW26v7V~mjE`RyP6R{j?8M-XBHpr`hNd`{%K5bWm zDvo>usy!r%FgaB^+E4>ZB|LTV9LspW=Gy4`cdu+ckN=t+iGSKc zJx^{O#zgRfW^fb47bwlt>c)n^=V{a0RJ<3}HiQp>ZdP!-&fbTB zIFa)JsCDnidwlpOCg*qAO=$PXC-9YuMmVR{TVS|QanB1{wS%MUNI2akfy?tZ?%*ZF z_#WP=NQ)c_%I{i0OafOb{#c%llmg7Ab92GZrvrUa)U&q&m}j;93h>gBQO)+h>7k-6qFV#3ebA3B0MJa0JBZv!AmWNaB@{{+K6n#}` zfZ${NI0YZ0OW~AsN2_O$m!;LF2jz=3Q85DvZv_ARsmIjJV@rx z=q+&W07oa6&8<@}ao+#Uy{b}S9m??F>$S~Lh6A%!H4`bq@RFsT^H%)DtM2Y)u0w~7 z9sOj1-Md9Ff2|uO1BAE*vSE&SQGY7r75HvRbTS>(R8p==ksB#$Dm(nK}F~X&{qB)IV*#dD^-ljk5wMa&7H+slx^1x3(xMi*uqp|=@TvKLGVY1Way);YdqPTyM9MG4t)qJ znpR^PYS#_Z6kJrVi@+ol$yfeWF5o?zAc=0&hYk_VPHH0BsNdB{(K~Zn@SXsnln`&MN zjy}Vaqik6{T%D~dg_FB4dqF0`t{Zm{r7h<*8<-df8%V@t?O@8;=A8=d!}=mKA`%^QM%8n{X~_6<0*6;_>0C`E zVk>i%lS+nTk0h%u@YTro7^*!A>Z3$Q#UGlXsLH@Jup5TBN&|{<^T=ay>Aqo*^I--D zw|3Yk4U8#DmUc!JKRs#+P*jWtGblGGEY=AUp{mqM6AhVbQq(0KW&DA3=`ZuKvM`Su z2lMTv^62qD4n+`1w7R$NAm zn}StRa;f=#^*gD}WO59SUj?VhKo_W!v?ySWCoX3H+N*kdGpi!|zl4m%uqak-PP+T> zy?_r)PDcwp7l*j7c)O>w-&!)}NyGP4+`ne}CM^iHBA-QGdUfU#<53Pq0JPH8801CB zt6<6&ME0Q5MKuY>t}7}}#?JSTN38EavxVQHC{^M^FQK9NtBKp!$4ylPT81zwEJfYd zKW(~35K4eM7pb53y$@NS`gO73TEWE#qp`RtZI9BW8>s7ns5rwfCO833en0*qNX1U9 z->yJ`qEWn)3K@~fP%sPcA3?=$P0b@Sp`vmD$9|fV@=m*43rj|9?nPK}5wV1M}&P7`4!kkMd*m2d&hkdI>}Dc=IMoI>Al6#BlrMJTsMqTtS^YOe3- zq)#2{Y+((_#<3J#CR%5MA;#CCI0Mk>Eq%^1YDX$WvsiZ*kEG;s2f)$kcjhEW@#=h+ ze{briK^X@j@9kVk+&KqtLUMss;Zi?7^<)i}48LRrDzJr+X;TH25B_;(h6MIvFc_gN z!H8YJmG*s0IS;V)LlSa8bDp_-;4lJ($2bI5T!Qx=eWje^bi z5?KN)#9CGLvA_0mMCb+|yk=1?QXV>auBu2AkhE7ti*LNGWi}AhJ&KNFRswk>q!&Cv zI*3rEM57RerYI@mL#DAretb}?TP)S>sm83uG~^l3ggU%ve(TPanAe_v#Fn6DVVm>3 z3|n&Z4VyBC!O3Ni-bW`99srR$4bqr1{!b*NQc-Y2TqvAE0zhk3e+3Mes9E6nQn)uM z=oH~bB`J#+fEKWQlRc+OHJukCYBf(8%o2`80uqrxdi2qcEFBoo?QJ|0K2~I2OY&va zbhu_jHb-h!r6kYr@myV8pL0c)@imMK-r$=CB(DX7l9GbmQe__~%mfXVyXai#P@oq^ z`T!s*d&HL*Xe-RKPM2Uky3cNRvH^8S=v4##N&3V+rIKvZ{-j&Ba`u4J-BAilIvc~J zm3s$IwA8gwC4OFesa$Er0!3qUz_@v-_RCS1CdqRxmU-sNI#en0O3gDDQi{CX3b10) zlF>rZ*iNBvjv)Id8i-i-H40=r66DG@K-J0CnCn;Lb?1M9fjiGcNICCK6xjeN@JxkQ zyLiQU$0(!!;eNNp61$2xgA&wf93XXG>Y@M7 zgZT3;zolv`U&r8j-lG?+8>}dCJ9#7zZ&yk>6nWL(zZO1V-2HJDT`=7NnhXvuL(SA~ zSbw2>E8`_y^C^`w_#WWaM_3XuUnmM^{DKuLcSS9iP>7;NNyzeA{eoJVAg^{EkaI+4 zLPYr(0p<31ovKzpoSwG@U=BP!5anlaCTz-K|!BOx*kH4f!SbuN3| zgtKqrnd5aZu?j`ddw@x974&s{?;rcl!=788YCtb;@jE`a2kAn*mZ018Zno8&8Gf4#!>*6ndYyBjJ~+$`k?3h5H> za(rF@QDGx#vujBZQ$!dD%psNau!|uB{{AyXPRIn<#hS>WDt5s?*PW8HPU?X&ySktM z5qt*|AERgIV7%*=cbW{3u2np$#B|Y+*5;76Z9j{A3KUR=Mz}N{llj(+aYsh<#6P>O!CIjoU0GPMc_Eb<^El^O;gzwIP+VO zA*0xs(}6&$}DK-g&6}VFMEPvp%SGCBM%Eoc_j&mqjZc+n2?=bSm)di*dLZ@FoHV9 zq)h@4V_8}X`Y~vtlbCRM7F3eluDy{6LQYBW;n=OU`z*Q<7L6V#2LtLrnXMNnD7^Z$ zq?YLdx$xxfv%3ayU&#!pvudEL0f)WrqL^Ojj!`eV@QBmZhil#$qTV0DmO>yb13VN| zCNPktAvnj#;OIbG{r&qdX8ErL;=%}bvpLe@oBJW*%`E|anbx6(vS1!d>WKeHZmsK* zE0~$54gZchvbJF*>jx?TC``Mm=tyqeJa`qS`tq134&G=9tFSNpO^~P+h^F&fZ{O{0 zy+I}Td8{M(m!m(C0g+;K?f1`G-$(=ir2WEKjF2~5CRk&U@z{0yR+*f%tanY$MKZJH z4MWA}&U^m-PZ+JEhNWs#bzYfg&Z&l}a@eW)m`S0IqM1M)x$7fPu}hCtJul#XNKXQ; zmKQ;Z(J~i5*JZv|?%wYbZ05?o#joO=Cr}PIzNIH`gdnlF-@t6ZN0?z$tCfsVQLpE7 z1N}@|Vh^UddGB{jE9A zISWiYgQP?KRCSIq*@4W2@Xeg9JMLZzr zqTCkw2+!@h?L5jqA+^A_0tt?wK(@RLht=v3*<9IkV&|Yy?PW${JOm(3L=~+Zz+u`! zvte1v_cTI}B5+(2s)h%>m&XL;cZ)4t8T$+L0mD5W zE#e#8eG=n^jHc~a%P?2gwsHbn{FNt7JWw3W>u3&5TAQE^v92%rH$QH0p1~ z27+7#*&(MRQ``)@SpTUO5_a)?150eR)he3->6F}$IBqQxN~sK3o26HI@U$Gy6{#$& zoG|is0XnAFQIU6Fg;?bTr4OC}`VTwo3p)zkJYy?PH&B%p3ooarlxmv`B1 z?im`fX55z`C9-Utj{uU;bwAoveaB|eM!y?|=RG$*b;QbLv+pq+=` zpL56}8NaSQ(qYAon&@pP`sn{s_=!PzhTmU97tJ_R z@63wtlY^#=OSVX!;|vb7FbIXGI3RC-Rx3H=R#_Kn$@LFjd`Chq)c)SuCV>j$S+*d@oC6CT}xLL zWcai$;r>8ssF4{Eqbfl!e&uOtQ;NmGsp5tP+v0|s^PASgiFAcIyOFk^6$Yc>bGIIe zSh{@EaA-%Tvl_kdDyGEa(BBY-*kAuVywGnFqaWEsK+W3d4SBU-`noOPc}DH?_OqHY zanQ0{ha{E~&mtQtyCP9wV#FIgm zH}S)DSf2vJ(BR7D;W)p+KMlS2Xc7vb`X==VEwh_NKAg5|lf%QOU1r>!ejx2W$!Sz7 zSwHOKnmngxmdo|-Q=?UB*&`Rcl_ZV=_ zg{}5!ODHnV(=x#qfPHPLjfRo%g&BhZ8P!qy`ay`I_kD^`ycEKt-LoWP>~}A^W86bwd%-ivvW0@8 zo-RC$$DGuI%=2?$)-a9e?1)#P4$k22>Pem)JFW$WIW1!-w@DP*a^I+qaJ${;WOF?~u_#v~3ZbqhS}S74t2 z^^`JF)XIMY{J(ZSNi4B`wa6WPItJC&-42#gHg~5%G8&Fyt;VjeJk0Lt*v5xG1&xO1 z%HK~xdmpUWksD)J+lf2R@X(4~i(pAMmE5uUUO)Xs4I_AB0iF>gN6gzKIoo$g_=8gE_ zL9UwV@L~$hWx7N+DZR9dNDp!gtJ0WR6M^jk$YL{a!mZ(jX4^p3;^I#8BYK_HZVvHM zq#ImjQqMMes`rIwJdQ+|wNuG0HsjcIDbZRwnhO7Cv;j zDORv+!5yfa_W8Qq%*Y5@z6q<66gJa#=@p=xuF+Y^9zHY{Hud0(tTv>aZ{5^?Osuj- z-$-y5rxhMmHyRu*?R(<8e(NZv*kYJ5&4!cfX2@WsX1sAETi&dv=`FKQNi)7hhtTp@ zVwh~>650Xr^_y*J($_83jJzu6{)0<24ct9>h@v*BhghhSo_BGxe!GVmggEj3^O8^M z);`gQp7j#@!!14PmiNRc7?Nt@Gd>7 z(xtuJy(Mq!eaYImC)RSS?5@iP}8 za||?CkV?EoqXAj_2R>LF4XB)tEMGJn#-y*f^U!;VZ8I(j2)S5X;#7G$H<$ErcvE;y zI8)5PFy8N#axa$n1;uXq`e(urA2{os;;b!x61#UJ&2;fbymD)>NPttypDclj*^eo< zIZIEw6aE{&f#z5jh5>ZKz?cy9Edij{ErjyGvdO(&1#Rep2-N~#Cq`$i;YdaL$G+3E zqlS^@&^0t3umra}P<#IDxXkZ){xiE%A$9!)&neUO#4c(ItP3~BjWsd=l~q2%HbFK^ zmehs&!`TNQ1GVM~$WZ2L>Ah(n?pUb}Ni!-im_c7True)-3cT!EemXvjraOia9>ELl zhHs`jMxSx!kFC0u0;BLRrDA))v!VO& za7xB@(307}tnyu_*{+18$j6~;{sw`%4ZxZw5byjP<_2-WIZ^XS%Tfi_ahd3(X52f! zYaUH=w#&{-{xFbXUnuNB`woeq0G$RN#BrKc_TNjQT-cSkGp_cSQ{vhi7??+bxYlVA_gvx?&sAJrwj%tU74}uPUop8V zM=N#za_4@Q$`VG|pym{Z0pudbsaYjo9rNCdq_9?(d~u$XHk>1I22@kfzJVA1wYL2 z6YOKJAupm;O^B2bJ_ZwcC)1wpth#($R1qmW>@%dCp@LZFu?8KAtvUITrcNv^bv9;~ z_Bq2qL%xN}_5Ai7!JC(wFs^1mq!C61Z-O9FbENUZ<(~Cpu2jT$5OgIeKEh+A_TDg8 z7Xu6qMt6dg)v1*dEI_Q1L?rDC>;L=#b$Tjbt|LzxWED)6Je9x}^X^>>kE7S6SX2&`V6ZCrZA2+gWG&QdR$u$0w;F}qjo#%AdkC!2thgc|mfBl=rd+Axee$ki?vh&$}BuxU2! z`^ETU3P25vy4aA^mfLF}7&HW=! zbdlhmYxil?QAQ|zH_zFSJ7_~l%d^Kv+O|fYINE6@cl0g71?N52yTajhXK${%S?VB$ z&#};cAS`aMDD;}=T}c52`bN*R{hQn8H^vOiH(cnP6}~3oz}6|YyhEhTx?or3dWZko z>uiJ1%&PU(4|m>eyY^IUBDj*zZ;-hdzDoYr3AoUN=O(lb@b7iRb^~!m6mi8tmruYe zc-ZP-LoS|qoDk7o`m-zT07RBcWoL=Ujm#n97%bcvizyCWd>R*Nc46ELiM15UB_@P- zV-`@YgK#Y4XWZ?TTwfmYsII*2(Po9%G8ogR=L{KA9UP)ajGkTcuq>$q03@<_Qisq3 zD$74@(@=NTPV~DFchORvb7CscP6SSiu2H#6Z~JxaY)0e+uf!aNPej}m2tg$~ zeGs?`U3DOW!a30JOzl|;X*<6wvjXw*9+Yh`X?m7HJXntvk$_)4X^K(-ia;Rn&vd@WN$3OT0~*wQ^weot1_k{VPDoQ)jZK5mm3Uur-ERauZNrTG_nS|Z%{EX zvZl29&?YD`NCYe$-WCsCO6bE&)IIDAcqol5p$EGFa7be5`R$v7R>qOs1)FtHo`H~F zXms8J@r;ASGnsJ0>9CCq)J*A!KxL_t1uNMMZ^LdQCLR-Oeo6I}nzV6GE?uHqBO4{b zv-yYmB}FYUxvnsX7I!m|>n58fv0N77APW3~!L*4WIowrvDVpPtuh0X3i5lgqN~v_O z;tA{sL=XT9BBj3I&lNY7ZLII#1XEds_0ZOiv6t?b>_@_Wf0`o*q-E>Pa4p2Tz@P+u z#VsQ3?dj*#OwqNz*L zNUu!tpMhsz&26$GRY+N2zqn^?6lo!Z+I^cvcPI2EmwQVjY&yHqRe?wL5cnIu^z26P zV%8lMf6RL!T?*fHLeLFpqD3Y04nz=Dv55_rNZU|+PBYI156qY*9ac_PeBXAc5z+2>uw@t~qAZTo1F z>1f+uf1#p#GZhh14N}wMr?-V2qvECy56T7cVf7A*{V9;3pVUSNSxR7nDz$9my(nw` zR^w7w!XrS5?2O``MDt6TDi6=dXms&Kg`w;0zLwhF0s<1;TbE7^-o+ibzj*Oo7Q!fC zGF6Mq1c57^5JhGjRZf$dgn3sG>-aD&vTz}T?YT1@QJE0ctm{EEe3`h|pv%m4cY-F9C zN~r+{z(;>0i4@fg6Nf&TUa*)k5DAk@c6FdgjpGs3O2T70h|hQ2$^?=czjAmfe0SRA znaB_57vBOg(g(+6bx6Wj(laJ{b_C9p*^vO~ggM7?isrt#hX~T3Zcw zFTN$Q0JQ1V8(%N|CXjhB54^#DgwK>U8esq;V@Za-AazWEM9#|v0!7;EZ_M@hhtITK z61D2~JF~+NT;GPq*m?N@%`?B@GNZ++Wwj5IQ}VX)7Lr%$fs}yQNIs0G61y!(3yxzq zj7DGqT7v2&r(!DqF~85>#MAW&u3Yoo;Mm%?8?O;iJiPtSBTt=Gl2+7kEd6=E#Or8E z#%P#_EfIz=HQ=u-phUJB_a*BH3Ie41QI~ygYr;}p?$NIziLtQ!R_sWFE~*mT?-nLl zZi&d+0S@Fi*bIm%?kxTtx_*fwQ1og7*b<3JxfAIhZ*-m~jcnf>DaMY)ut2s0Kl-=I z9x8?|o+eOaH4KTJ10>5CD6$ZoP@fhP4>5_o5gr z&_V*w4S8HMYuGIN1ekoU+Vj^p62LoK&C!V2s51XTF?wXDt#V{fmhC zkjs>@{mAe_73svNonp`_5%oU6fsznPGnNbO4d+CfHobJ(UXrgw9HR8(f3f(2V^C7z zFNh-w0lF{xZ+1Ehi14TfLUE!G`B_i$$Y*_n1zPjHIz)&LO``%*SbzzMq90YjD9l-` zzV;04sg9L`>~B8k<4Ws5PTMSX9t_s4H`mz;y&~#x1Plcz-RI!zM#V`fCKYNynrc+A zau*Um5jJjq*c^)fbsMm;&eOv0!H|M;k~;`d8@owb;|jH}p+&VQ8avS=6zNwkpIi8c zQ8lA_J6cN2CVF~Mp~1MQv4&gBfg-*;ZsY0a(DoTvsfV{$qUod6hI>Xu)BOG(jh(Ze zhg!hR9C$83qq$Z})<v}DXIDwy0@LLl z0TB0)EE!f_XWFp1K!{Sg$c#%ls#-+{^_1CcEcGQ;y(s0X=ItP7!sW4Qgvr)UX9Eqo zcI`kauKg29fr}aFYx$5J#2LxYqtE2mYO<#|muZUlgKapF5d>Oi*5|Oid`TvBV7o7*~sP5^*C7(jkL9xIUORPxmaFTy zYvh`IrlU7Q_&ZI@QNFBJZmA>G=@wo;6#>+Ng8hmAjjkS2$#IsfE#mk!;qRcL$?;vV z+f_|}`Dv^Mv1F4{1@oC5sfy&;S=7vV$j^iyeg^b}SQ@?*DG!x+Al~S63yBfLBHTIV zkfnin}Nt=iVi=m+*(>7Z&(d~u?a|<-y zLO37w{mcjwF(%%dY1JsBYNOB0^34_OP@419 z_b%zB`=3Pb(DR;!BM!D@@p4c@*D*(G%j}Xr_6rW0Wc+&dw4A6%&xh55!$uk)=jylU zTACG=GGV%3!V9i3b|E%71+FejO#@1OgTJ+_jVW?y+LJOi>Fwj?Bg0Pwj$E`GaBrDw zv;Fv3WBrFFL(|W5jHO=ret8-Nn6U*@~cH(vM+j z=sx$_*(qqrdU0eGs|hNMPow4y6a^7r7KMbN_Y{RA#)x2+A zWzkp-cm#@a4h%jy;_D-G)>kg~YwSMNa&_u-m|$8<;P)rwlknBA7vg_j=wBQS|Mqj) zp~UaF0vl;EH`Q2$U6_~KGjtNOFMQ&m;Q%nW+}usbi`kj?MX8`4 zhXQXsh426Re)v-j?wf=e_@wUQ)L;Aa{ot0nUkK0o^bWXj{CUCtGg*LKz*9A`7hpxa z8#b*r-kiT17z~X@?T1eojLv>^3Fhr(e2g_4BBdZd1=aN1M`}IYg@nGg(u)_5g9DX! z@U#EE`-QrDNk$M+5B^jW{py=RZ0i?yFmQ9qSV$*!%szqpzV{YdKzuspNpu-4Mbq6) zEfEyv`ZexaUI8RpyD%r9UF6YMX9_*8Eq5k%q^w{;Jo4l{yPUzI=Z4=8FXGjjem9P% zhCxzMGXvApH#w;0ocg+f<+9wRsFWabDMxD*ZX?_!zU4RHjn09n6xgr!R(lxfVq9P9 zXjl=+ElfltGI$ik+W9&pudCRt5Z`kP<*^I zX!EQJ@FQaoiv1Ln_ZQYOOobKY^ZZgXKt1A2;{yl`2ynm(Zurai&2p3mAbJ$BM%9A$ zcAXmXC(Kzec&Q`aedkQ--79P?+vhq(KvzeW&nTtawAwL?T}d~l*t}HY)G*Kb0b2=#ISOdo7NS^X3e1s!25$&p0CzkzPKtsVQM&`axu2r9q+4op3!XTXv=y558vX1CwIO5KPl5h>@zEVF*Yovr^2!5Wmy~ zkuYDor527Z;0I5fDO{C0ee^vPi?lD&*X~}VD$~DG#1-ise&s}hl5_+)+Fq-V2I*|@1Fn3uGW;FxU#0y((=F|5w5lK0(?KCVfVaKZs7w{50LI^<8-%$ESV|0c zX2oe9lMuNJIFSCcW(c~=YW#{*$4UWfZB<~U?6b%$lC|>Dn%Gano@gIUpgw=3mu}0m z#Jt*%1$Q<$lB%hbmDg4d~haIE~zP#LRHiY<2VrP}B@v=1`+2Rw7 zYz=sgfo}&PJH9j*A?@O*ODrexx*mz zsDY~{CwbbzwC_<~x}UAWghBCF`4B~dX!WHTRl=Z*j$+*>xtiKVk(Z?KP5$_h#SC&7 z7wys!Ym6}bYImVBWvnGDJc0~8suUC)#LNY!Z;XmV%nI@@o7pq4{rT^MH1Lzd|0I>? zonw-w7?i)wzzcz!8DRor4`RsrEf^w=)yP*LtEx9%r{%UUTofKk8eE;^*~23~WxX zv_F~6AhnEzaFP5*)Ydq$PTB^x!zfPpBW#d$0_Ur77gLQ9Ub<542>p%&giTI%oI3 z7BE=-auw2#Vg`9U(srBhAhk=BN9`-6k7_uBI9DtzR$cNv@~+mU9HzBUC>KQEU}7Z( z2cczkq2nhF4`8+fc%mXWS60*Jd)84Bf9OksvMBXr&7(o~MQC=7Y3{u$*0x^x-YKJ)qQBxkG(d$(^0Y_79aupHdgf+emf*#i}opsEUb&vJjP zKg(MfFu4+#Ou+le-Z8Pmst+meP=C!dnF{k@g=dHV?394F`YoSQg7lfmLL&LNM3tT9 zf?l`5iOY7rcn_J((sX<$Pr_SIV+zR9EgXfoN|sS;F?22}9Ge2%D%j)DkW82VTZSG=S|G! zMX#B{2LV8WgQVVJVVEqvWoND}kj+okHvdGLW}8&$yk3ns14_+prrATuwn={*l~`Ma zAf9Vk&m^2!w!W6kl(M8(sD7o%Ogwd!{0aRxGgDNOm3p3UbDY#<@fx8}ha{D}v!75T ztddQ)KLihDsgx-@K+57pW&Ap0(jNJWSV_( zs9Gbl$xy%3^Uksl#i2t7JsEUX+7D=1I)U4k&}`P%5e{&ss6t& zkqVJiCd*P~6Gt#CjyM+51Hdtj`;hr1v$~V#P>~kx6^ckSdqu%9m%JS8zKkR|$r6n*7xS$u z=UG!K)J_kCIhtOQ9@n3q79nYNmx6OhWqHg=sGUKVGTZ6+WLxXjWosX-Kb`}Yk>pe0hD-!6t#J|^ESA}MZZNls98W9%ZM9duLNF$Rs_s;h&UsNi26*m4> z)S}kz1NoakLW)N8l0I}D!>79Wv5#1SsxWxqwnfXr0O({@$kk+vkS>;>Zo&vhVf6zQ zreKZz)iF<^LNwcWwSUIQUwbY1;A0%{S%wx0i;!Sp=}PwtEhJ&5)}QKyLWc+Ltbd!S z%J8%Y%3WANitMiBD{E*v7p^Vh(FjGTl?a~=`zVJBn6uUVu07C2N55M|E6IyIGXlv~ zj#Ji5E0YDHKz`R{uJ*mj!fl7|%6DZkg#NjB5Hs)yE+ItafJP$XTq&K)m4Xmk_gl=r z(>CGV#SAo?k5FuFOn;XU%vGi9*QobGngUm>Tu`iZH0qLk77S-@!1DZ%wmUf?ZS^Br z?}5a$WP)Uy*!H8_0+uV3AqxxJH%^^5QaNf>RXq<9jJ6A?P?SP4^(h0? ziG^Sl|G*rw3ZKiZ)X)j+~TWt6kPX<_dhz}eETg0tmzEJQOw z)^^LU`M&7g{usrYfQlyaB`}xv#2(62;oa!6YzEeuh8OCsg0#I;rOd381+^4Q1sv)Tx`w%6_QF4cMbnQABr`4e$c2`P z*$U3(EK46V?Qe#bqkf0m*%sxp5^yIyWp8OX?Eh&FC+fC`9RNI)szP zPR0(#k)_A^?qX>fQwDdmb=g^knF!0ph8iz1@4mvm3S}sAaP;v#5?GGITjFE6a42|U zLV^x;jUy=4#Vq8}>s}L8nE*{|WHh>ObCI;t0cCDkBW-qkA>r@rZcjjo+`t&sHbTOR zD~sxJ{PvDYfO@E-MEtHLEW5VxlU|slF|>tOmXf9CH3HWI(E)x#9v2!GUy3|sMPES8 zB>H{m8Hf_KA9^jJDAeOyWKRBx*eNIkj~1~U2t4unHWR#2gD@}}>_`s+AE5wLaL?7{ zqIzO>fm^h^0@fQq=gHm2Kx&5R7p#=jw0z^xn-LxBPh(B_w29>OR9 zhDKF?x3E43;)`fW;GveBm4(U#W=4?>ytvAvC>Ll}a@1ps+|QPm|LwSI$}~ zxl=e5`WmeNrOK^02X20gP%q@W!A3^}z_2+H_zNV71*IC#ND6&ZWC&^tlyy--k$gJK zqHw}s?+g3`?IZxQ${3P{jM&oHO*CStJZrZR?Pmc5K+td@0mW)tY`NqUsb)%_B(l(w z^Bqm+iq{eFZp3`qRtTz;UH#(4i`5|`pGFt0gaD-& zNd3KbeXLR>iKaIb%AoLYVrBYv$z5%b%A!{lxLA(J-z_{vQWPja{XrF-s53RF@z6@$ zV&I>8=N4Z-iV9d(Rxl=Rk{6!RONvW@D|n7G-=N)=VjFtzt*z^{ogbmVhWgmg9Je1o z5^y@Xg6m-X%5xyz;Afte;i(UN8CSlZZK`12nbu4)Y8S)&zWWd4p+!qah~40aKEGY6 zs}?Z+lB@bTUm8jO;9-ke+BjJ>3OT&Te8qZV-SHZkB1z;k2QBj zfyPG3eU>wTQS}5-#BiqABRrXg{_>dX@4(yeN=e?&#Ew(PebLRoOq^PLvH72B)lzV7b!FMVn2 z8-@l6z~ExS<&_&0!kCW}2jg%OK+Kl(=<8goovM|e0ZM{wdQc{@G3C~0L9jG5ScS4h z-<}BPw(5(ZHH&~#Fkh1M%2s%WfK5u#nHsja`kf(7axMl9aGr54M@>yOQrQx7LwEFYQ%rRVwhRrH`b(K3 z&N5U$VYzWimI{(ViO=cTV%S+;2C0#c^P5BnCwbO!1##Sg$n00`1dAw_I$Hl7w;#)zimD)nP9iTjV&;XosXy^+Y%NOZsG#w%oWdN{ zHih{nf)q3>5!6H59;!hMy2-3haxXf>f^h4HWop(CHQCK%EBF1qA`L>v7N#_DysJm` z>gjDHokpPSZ-=xO`VhWtPX&okw-Vde_MCs3xfApt!#Nk@4vHrS2gVLOVX?u#mj^3K zhq?JH(qvf${gU^v9Uc7Pu`X=h?nIDq0C* zB);~JtKP0wp$%jz-Zc#nWXWl!8^ z_wI)46$hR@<0q$V{kH)EQB1h>*YSV5PF7904(JRj6FFE+bM9ckGQbKnrQsNmeJSHL zQg|9h&q?q3T^JQ(>WytvFQsNXQ7_eTDIo+)6qN`Kp+%b)jQ(q+buME3Vgo}DkXN$q zvK^{BdI^oHsoLU07VIZ4i$w-h+8Y*54PND-mc_wUjqUz%p%{&GzB*&`E9y!2T#=q35T`P7+>?# z*&9qz)$zNHIOwTt_ms@3MoylRn{pZ$Ds|E%>@uxcJvSo&efx~>zNuwJ#EY^MW=jU; zlX<{}bO3|F!vl;keH5AIDra$0D(U3d4c|Weu4doNo>Q(^Kw0pdaX2m%V2MUs8mcm(Po6SMXJ^8= zRAgo?M2Wo+(lS$L9Llq#=C3uYq66`sV*0B_eGj;gQ3r;3N5_RV;n6)c?PXLQn(P4Dr@qadQ}9_)BMaXXvm zLEkF3qBpyo*r6RsIb5|Z8`}dkXzIDLk8$SZZA|iczPjtPAN(`NNBe^TS`oG^pj!G- zsd%v%RTpfKqIN4-r7MG5-@uU(w4{~t)#PQ%Hvw6!R@i}!(povCW;%I2>fNZ_<*wK1 zG1O*B!ZTQ@qA&(xH0X&ZqqVmbdCO^1T(%~ff`fJiMJk$@1tY1?jo0*^NnP)VU)3nU z^x-*K@IaImK3=+?eCfnUZTvt2DKYmMXv`-hyiA*s zpCbRP8vIh2bo;{&HYn65eimrmELE*4cZ2bH0f_6g1cRGrZMSn}9YIE>0vTwG!N%&y ziMVZ%BL|<5#`jKL$It4u?@1n}4e|;SA;YoA$wx33mWOWp^C+Y+AK&X}B*yI)TIQ{` zhdmJRAp^})2{PUh_U0lRv!`41Wnb9Kznxd^Vo;2+;#ZY?=S{#*#-;6=@AG_d++`H#^6zMNlJ^YRoEZ0EcS$_{#f=`Fe9bdOlqAK~;JC1JjJ7Ufh6>xE<`OPz7m9po($1gNM!g z?>(zH$^&EzjZrfU@@P+_fndAA1}L*A0^o;ViKGE!A(^DTh&CoJ#Bcem4y&d?D;gF^ zRqHj=d_si#L*7QAb!VU=kxSW$G)({TogCTAdiR{Y_a2n(qN%TeY;ee2_iZKkG#HDV zer|+Oq?HwnGNN4#57MrV|MUR^A;xEwHfWE7S~^<)F>-8nV@{UiakTdh$Pt#Dk^(--@dHayr= z&AnlV4Uq60VDTY@S5NAkFT8~|jXDYeMp9BvB*xB@0-NL#ny0_QSZnQkLUY&tK?X;h zCc;OSuoMo3C&<8b&?sRO`co2OOX#?Gkb+I@qbE8Ms%3{cY8`||4wnO0FqsKVU95R+>(+DiEHg>g;^TJ&F4;}?& zQTG!!;ZMRs6iAz72fIVya@Fx&vsxki(@sHSxE}r-EiZ?$Pzo4Wf{xS+SqBTSv?YjI zvXM}F#yJN~-lKJ+Ge{ESp$(5XPn2M>m5n+B8N!3&P_5Y0?sMD+UW|u8*_2C*r??oW zS7VLQU?o5}5P7ScW!NO5zRt0#LhY|jFfe+OEd{4{kz>8bCal6L-=HmY|FbtgPP&v|&fM^Z3$BHtYZSlC%uIlbvNbAcSpmh$M!q5x*iY zS(s(HNedaNO|IH96W(I14x3xN(eZoOZ&Z0(4IqVZ=72DULZElL7QZ?c9JXA zrEUtcO;FguUAU|sm^<2X{J!*56+sIEbuSo0a|YUo-4f2e%gkatLmFJn6JCMGfL*th zG_duX01At4$8)-N3yF9TgaYC1foq2C+?kR-x<7aXcx%Lk1P`-5e??Zyzw@3%kO`lo z%iErcJ71Q$1P7<4j7PJs$$LI~=Im6G9LSG&-epfRwEaH*;v1!dj&i8#boX5JbAv|X zq!Q5oqLGOrf*f23nMCmP{WZ&8STqt&`{??$nWVEYWhfNBm*-jR`^-1`u8~l}{$myg6Xs9(4fBNWY7v6fZ zX9FmhARPa2G^!VYJc^6-ylj68D8f zDBKbSLK0L|a&lBOH$<@nO~!pgK{gTTP1I0>ToE3DM2r+3$ORDDe#dcM_x`k@1(@!QaD|u;WJVN8=(gG|Wrh zeYheyrUW^!{uJcJ47O;b{6X)5RvnO7&*~NW;2^{$-h%^j9PTIb4*%Q_f8txd_;nj1 zRA}XXsp5~(fRk)yN(WE+CAEb|_-WAJCn;+By2pq0shR^*v14DjV3#E>2Fspsci21| z^uF`hQGhWwg0r*giuxHwYF$S_9i2dkL&)I-Udbfn`VugKgTzL9y|s ziO=;{!Zk9A0Lu}?7`2ugktn7KiL5_hSTv=a0Hk?c%9Y{o=M zUo9~O_$p{pMvmmU+pv_0I|&*txwB+d>*e{;JqEtU{}NWRnFhf+icVGc$(y4VWrt1dovBT;-10n|s=)HtO`I*c#D0x;)E@!2awOAD zrZE!38#<$ojoWlaPg_R~2gzw@3pX#=&-h#0Z4isbQDw;4F6wzb zAB0?Jz6-P46+Xccg;IVj>c08-C(3=KO)ZfNV{nK1L11H`+S`9hxs>-|7s;YNG9G37 zc`D9({-mP|P0sne=Dl;Dd%xzwx-nVPemtJju`Uurxm!;BzP5tq)^^#CBmXl1>Mc4pwF43D~um(|jI)o1p zb+-W*o1SWfluUIwik(#^?h0TpP#R-@$9<11e%=~d1d8&^k6yDY0bEET5dEMv$aark z*M4e|N4fy_*{-)3fy`5WOlslkHQeIjU~Dw?PeWsKhbiwf+W>XVz@;76-r$2|3t{#F z>L)r+k$3}LvBsO@9rFNHB(?!{bjqN8;Cf{+g51q#G_lG>%z*>`@hzq)jztq{UxrJ{z?|T!IcP*)ao8N#$NI4)!O8CFzFN#0m-D`E z_{|M03)Ee|nX_u615_Lif0&M!hMZRd$|lD$krYcfSmZ|r!*^$l!ubIN;d>x!G~63} z9H^Lyk>E0L1&cIuFSjeFbbX5^!Q^lvxO{MqsEJR3il-mSLlp6f^S|{ zCQS*Hs(ge_5S5738ezs=Wyhs`7jNasA$h7_X^sSXfKlk9xsZ@kBcP8qD0~2@0I%5! zb>UvubaxWs7!#I+-5GTvMAB(6Bv1vn?8vV-x@7C1wC($Y5l;ad zf>`>h@Iqo6l-jTxEyE4i+)WDxgv1joaLeVyM5_QaFB#SWsJhZcW}<0*#ol|RcE8XS z5oE6K#e6pC6p8%Y5Ix{9TiFQ(bjvP4s>Jv&nJr*4G|xrw%H_IrHwZVIYp_hR zE3m&yt!HN!;W~R+Om^s_ENx}B^JvWoXz8YmjzO0ws!cV1^xCf|yeb7fR$(9!OAtvP<6<(wBqLZr(TfkF{vmBukx(%gD;0`}IR@P#kv7g|4W~hVfszvtI$g zKlZ)+){84?mYMya9Y~BAs8!9`r|B7^K_y6^b4QY{$aKM427u}`j|hYWl288u*6U_>puSwUX)$R1ieLVcdq zn}X_TIw>F=F<|98)V2Tz$fcG%WK7~zf)K|?Ah$#NGpd%X)$U}P&d!k5@ElO#Y#2H;T>KRWySP$`T zdLmLIJ&v6*Am*Qv>4nO-4rZ>t`jC1OL4QZ-G((AEY?;Kk#Ga&4E_}A^WdpQKYdcZ8 zh~Dyg$V=N_X-m)cVb>)3X*TggK0Mg0z~iM^FG6C1iy(f3{8H$g9&2XPbaU#Dod!tJ zim5@R1Tj_h=Z-{o1u-OGVl7vVw9Hx~GO?k7zlfE_r_yE%0h3Iv7a1GenFUO8wv1D~ zP{9g-`A{gNDygu%qaSKr@#F~e2uv35Q0-*(k3MUg0^$<}Q9~S2UYPY;l9aw1p=a&X zwKf@CatbNppXNLEA5%1{I+6CA{?)+-wMMiCq<>0Me>99iK$Lz}g%jBzNr{ z9)BA;1GUDW4Rb3N6fC;iK&V8s8GMwX{U|qEBAx@{sPOX4!Mj;Lz&3jb2-Ua~mZMORQqDJxNLXWn3Mh)7)fY-Ze6%sN8sAQeQDF@5#|X) zu>Ps#VTOqQ*^eMFh|G{=1`H=cBK3Xe2ZW*6_$?!^N7HugM+RXljlGnZU1&C1yQP?t ziH4)1km1TQ`@&7^o9UyFVqOKm8|8Bh6Lfsib*HOI@v}D}8%zVnn6^g&D=c&4D8&86 zqZ-IQx+?B}3M(%Ok2{>9ja7CWPmEqyE3GJ5P>Re%#I*HkT?N9RcZuDBj?XNKlr6vo zRP;l)R|X(Y?O{l9>qY-qLJpl*xq>6^?#*<8kUODBf&c~j%L6NzdOcERuvdGmxKSj| zz<*AjpyD@5qAH|((K-h!F6P&CQh2QpQHd6a;E*3Kk$}NKY1JXlx6(|ehzqk9fw-KG z<2q7WaQqnwO2UhXM5<#(oVO`$UVa^9k45#Ih_`R0Q^LqHCfF#s1EqzfP`O72CPAZt zt69>X%G^{LE7HGGb7g7|u$czdi_5LG3!6apf_J(%J31|(dv6#SuOPO-em zmg@3eKY;IJ5?`VgL2m@&5RTv?qlK_D!p14t((3+UhJ&EWtBma$`hrSBHG%`(gX4Y) z35H$sXJT=bar395InaNL$4tuy)fRw33{$4FS^)Dz5bV_Nvr=V@l3m2;EV7qxf@V_k zJG50t#B&U$6ZdD#IplneT-mPGAVFQQs%y-P7>br`@-Kd)holslun@<~z&T>=S_i>m z@X7R9aktTaa2Ge|27z}JUs+Cx>r>FljYwrPZeHFdF;?Je@G8F~CJ}+yR3f><>&wSk zjS76(yELw+)|^o|4%D8YLWE6nZYoeAyoKs!ihHINaREf)18<+{pP8z|sYZDuFaq!& zd?xvzI}-EMPcZkiZ%qqJ&?Sot7D=4d0(a9gAGI1c;Z}m~SYqwkv!~C`#>jmiPJ3P@ zxtjNhyr^PX$C+egRnW?H_^P&J~3w&`8gx-UH|&_su-clY+^3Hw-NI zW3oB?5cIa+rtkdGPsCfh-`^!=G>?cvPyG1J4Rg_2 zx8lQ|ztkO1bw<+Ynr(W_uomd5M;p%&3zQ2%qw!i$A2~SC1Nvx1x3dkT7Wx5HD3o6A zwPgKQlfjZXq4fTJRL)lqp^|69dq2e-IT&^L42+3t^|!J;fdb%+5_qte(jXh<^x)0Q9!bTAPoA1px+Llw(szdUGN9PWd=y;~5=50!K_DClbB zZcReWDrV4L{Dt>L;lffFVYMr9;Aogwj^tlK^^I60fXNpz$;~W`#-_H;Q;Y%A?`b3j zR-1HD66m5+YHQ_wq}?iM%ijU!HTg`0u(XVxAJAj>zEyW#8X+ct1qYC-Qbdt$xx+JD@UOzbYBL#@_ojZ5h-c{J3Svtom_%AY z&D30CGH{VEG874|NL$cCvfv|cp`N;euOTQ~QR4>h>n1o|mFGV+2-=REzpQ#MN2bGq z=T+R2h=`Vw^z=upp?Ms+Yr+$PDE-^oK1d67U343gS-3lvTP(iSCa`WBvO1IRK%;+_3+mNnKo?W!BGk#}mi?RXpk8Q>12e1OkRkIHu@PrR9Mpx zDN4ssgjGP2B&x1<>Rgb!MPisr*Gvn$8s7l(L#kYn2g;lZn`rtv-*}7(WsCz0Ye226 zDp!~Quf>X#0&h9t3s82FdZhLUdx>PSMEYx5EsQ+K91ewZq_kZ7T^;){HA-~d)8#i% zGQUfU{ck;lQkem4H#@y7B6WI2#+A@AgF}I#Z%FXQ$J@}VW9wM7#vJIk@wuTk?Ok;HJkL&?x612I)ppr(tu)qhg6a*LGcn&U4u6<1x6<{&-k3uH2l0iZ z=^#MoZ#k|$PY7I!RLeomV|SMsZP>rGD0CEHIj)=Bao#i8A$%8hWB0DwO;6k&%vSwN zH=hYW)eb(@$(YhmR8N|qn~k6= z5be0J>?T+4@wb{)RR^zHY=4-EY=8<8J?Tq&YXb5B9yH6WI)~V#R4JWD&(7nm+yyag zf4Ck$BYb}tx*N{!eiA>64t_PqQ{y+~J3g^L;@ZQ*jV%B_!Xgas5tN)6ibbgI@%0%` zfWnB>_LeU0=v-L?m-B^+<`Z(dN|VGzPU5r91ciFc;^Wrd$OzsfIkjk8ST{8I+-CHH z1sjOc02fD7bH5vt_JbqfuNR(Y{w<$zZAZW-cx=;dnY%)4+W;gu12_d;9ThLpu zwkf|idbdaD;oM5pxk#_au~>G8%`j9pO-mwgx-$u1qH1C2y4d?|w$5T{f^>`Ajpl-n z;pX5Qm>%donVX9~Hw0h3(UsDA&5TVy$m$^i$f*4dw%N1H@mh}$ttDv!=NCU#WV@%) z6PjyyL=%4>uRU+`X=tz2+2v8NAZV@Q8QSE^n8$YLKgXP0I3SVEdVK)DlC{A;??+X zyXuzQoSjarphD->d*xwTIxqUB)|^?CU%FX?n#bkWno7S}qz~&)6nA^dCM$XqMrTPc1f}+ZP?Wnu>#(dLlN31*%~6*NXui3GsGck zLs3qy>)ElhL}-2~Go+~Y$#-7r#+M*ofO2Xa!XZErfl4ST4A#sHXWL->1?+<~0o{)E zUpQzldn*t5{lfkjaA8m~`)nd54UuqR{?Si!$G70Qk-b4djd2fUt4M4l&lmVIZ22UT zC)#KD@>@$#H(bnBs!fuU!E$1J_iAZSkPGGiCe~ZlloA24e%J#`k>T-OUe#+4MbeS_ zR}$G{OG+(xl7r3oV~^a_$+c0EPW?F#KaG9u|2%igd(&6i5#=S+(w?`@bKvIZD_o99 z@`Rd&yn|dR+I*IC$dN_<_sID4@c9C3=c{_+vQH~SV@YGic0>p39ZE5qrEfjl`kXdu zhLCy4psj+#b=49kdNz!rk06v9brC--lHS*LvKIl?cQ?;e&7ZMP$bDz0>%|M!T2RLs zwg)%utZgfnkfi;(l3ta`FOC7#Kj2C^yZrw7&9lrZRLO>m%Zy?c|wNWNT*g$-j! zIPz*_sVQA#F^rLHV5JXDKUIO!eD#XISO?u&j?wY#@8Ws*??TLOL{m|&taEroaH6Go1Xa6+&gP`=PI2U+*A1WD{^RCj2(@7dVClvlk_@%4uK8SQ11IcJw!JN?Bf7=k zLIUe27N_!Tq6URlWN9C=h=spax7y3TAbn9&M!Z%74+F)14^}0*Tl|uW46uAQ6AkTR zV};v4!Z45Rj+EFbpCe2f5eIPIBrOi{Zkwnh@xg2#L*DePSHiC^8$M?lp*)M0n_2d* zu5#_djF*u$9{iI<8LoEH9%dk6@A!Kg9`oiVuE5M~8FVAgPezt_{o}sBc%5EbtloQt z^z`nrlMHod%fSx5jt*rw!I2A4`V~AZ&d7Wz_jcP`4pAkPUv>IAGjvc;kvu7RevOTv z1fB9LSIaUP7wly)U-^r~x%CszZ+NVh@O6W+{kwDf`TZEs`gFzOEv7ZROXld4h8?(s z+`ou&_RmT?Iu(Y|_3_7I$(8Ct) z=|cuc@KTwUcQwgxY$K%Wa~AcD-5*~YR@2$e`FUff3 zNCT4ImJeMo&ni2KfI}2|a)o1^Cj&EkjG1I`Kzc;cwOe+@!oR*5e>bHtdLM?WZ|Mf6 zweB5%z}taSy!TtgWbgjY0lg=h4c_pa8q(ChgUMm&i-cFW#51Q!KRw(do{%pRSL~W} zgqH(q;t%N^GmBSLH0nJ!bC%-{4&7z-dPr5R>VrBo}v+5ohS%d^85*NI$;_ho$-WBf}pgj16d^4Za*_f}cSchK)DW z@y0ow3 zL9-H$U)y5=a%Fn*p}vt;!G`&9wd5{j?%WP8iI>_>25nCF&Bd#@bMrfwvoH&vj1wQ`y?Zv!M@O_LFL*?sJ3$It{1Eq$2JX zBdcg|(2eb>dG~c4L0(}J9^JbtW|K)n$liaugx41>q(z8ga`B-<>_@ckWrO*-k)oGH$YaYzN1Bh5)Gv+)_z}!u;6j-#;(A z-z3LunFo6J8Kj(b#^d6Z4xePacmXVfZ_l^2^lBhhNcmHgMM;bg`+-KZhhr$dJ% zK?$It-w}EBj~LWNr(?~=H-ebmM(NIN!vZ!ftMy-=+RXE1$3LZ&j|k{Jcl|82IPp1% zvbff}fj(Rz2UT8;l+?9zVDFBfKPoYn=CtSE7~k+e#=Op#;e^1#{08X4G}V%!ky|CE z7UmSP&EeGAsu86_5BgoXWp^y+vn?+`rBl_l4PI<E0dEU2J4S>0?Yx1Z zDf5VoWRFhdwA&tAVeEB8N)SE?8srRYhNN#B^zvIv)>f1Ib+#>VQ3`Fr6MM(#uR86t zU|Pjduwh1i-IsX_sCV%0j%T|_p%4`$)jh@rv#5ZT zvcmqWH@Ja!N?EuGd+Y4+MOPz#6fiT(~C|A4h*Rd>*x- zKd$nc&jxs#-?a+5^O4Ciwe_%EcVka9I$*=zKr{*1wUdWyHoM=1$a=CKO_!ngTV+P^xGk-)4zbdO5$Ffz?&;YCMP@GcN1yC2W=98eBv*j|fW=(Sw1EO4{+(4PO2W!$c zMhg7!|GYQa0=7RmFgWFQY#`)fxNM!Zf$$a}T4|LL3{nwX2m<6wHL%C*hkb5C5VTMy zS&r-UpsAQ@nA1W_3@VS|FxeE^7aW1ien+r-kLS(1*993bGTDM0#Kp!9ohq13<~7+E z@Ew6D3pl7Ea^{Ns67u*k8R>qLl-{#~&PBY8ymXu{DaH~UPgBibTOk`RXoBWUeRRUl z=viX_OS91I7{k#ACR0%We)K9x(H% zJfI16;u^`yDxC7JF0q8%kdT-Z##U@L_qSZCZ%r|A)~aJU4_zOu_nnqe;quNxI1q>x z$r(|miwdTgRiyfn&$8F#-81<`PdaX%H@1s+Ar=FpK`b4>!=#_d|?7GQjvB}^*xAj=z)!o)>hAc{}rio?(f@}@bLDJ7FKjY}Y{6v!~RAC%#(Et1= zqHg$PCy3jLCF}vD&|G}kDUd5!)`q3lw6($$>M3)yBHBj_Fuh`!=Cqx__=i)GNGdG| z&g)ngo)&y?^0)`s512gIW>?pOm(p}dP-ZoXKYOqlJpkSMTVx@x)dm%_jt3tngl7>pC>9o#XV}#O;Ezz;DdBu_AW*YuDnJY#D%atl^H_x29RQ8TSC{ zaO=U8(+4ANR%UKYb$PLO-@%D~FT#-9EX0cCqM@k(jmFCf96&=15VyGOx6o@Vq5~^l zv8`|F8F%Y!t2AwY@P5xo9RI<0zA?Hd%>}f(0<81~nF)=bm~o?hy}LH!mnvK)u0|{a z5WRh7=w2Z{`rb^O37q2VwzCh>1iwzk;-*9K4rdwx1wR^A%;sRT{6tK#;RTB!!=4ry z9Ip@&MG#E(Hwx*r3_aM7HTu5akzrx^jxerO1X9eBpws-fqj=F9W4wpASZGsqr%?SN zf}*?v1Rc~l62mpWRq+mo;LO^gB|Tg7!IaV;e@oEp!}Y$mn;~DIBJ+|5XyaM6Xh{SQ zN8x?AnK(JRw;+ed#w4(WoiW6H5>?vEJjgv=D#;=W*Q1o08G)3wAl&`d+xaq5I_*gxK|ap)e| zuLuE)3Q!0o07B%(bGK3~SM>&26%Zhion=Ql_IgRZMGov>Ve4It%~8 zQw5k5gcWP5{G$j!OVRvwc8gvp-5U933mOoTNYH=WMcj0)`+U?9`kp~Xu>=p-7I%1b zwryxTe|8@759kf;2h~Ooi_`>D+X0GbuY_s=7@|33vKVZXSU%a?oKuR_393BB`n<}2XcQxI(2;e{UStly`Yw`8v8E_$}&qa`-$hGx;Ba#Q=8mOVx zr~58RdDtDkyazHQrCy>pVj}$XZB4+CVZn>Gz6TY9dG7~ePR*;DH*dPyNAA#Bmp-`a z637Z9U}WrRf6w^4^x}B}>7nuH49iZqWibilhGZSdS@+gh3&5iphZNyegyGIY4BplC zl^OK?XTU)h(f<`eF^w|g42Ok9!pE1D$Ux}nkW>Tf=z^Q0*hEkGj={q;WWgneUBo(t zImH?C6LE7Ydce~(mjG|&GK*D2u|hrs$wBNgcK<=6l*|g!YN4bPBn2h-Y1ynJ#76B| z$P(rEZ$8#2Lq8f2Lzk<%80I^<8sX1WGF1~ogR^Ytu;dW&5xEyvptJoAe`+}9pQG?0 zLOXM$PEX_rtRSH1jVkS_I&B1{_Jc;#%(?mKyk`4EzFj_$%U>y;B-proV-zn)lN(E0 zDh5K}3%v!8G5`R6l`(2XP>j>Qs38h2{IIZQKk094JmEPwu(c^fuc9poIVN6bKk{$q znREy)U1nwq`Ib_U-b-!u^E2dwGP-OUpCEE`4BQv!VvT>KkfnktnpNL+$wH*gXhfjq zvvKr*&Qw^MucJ=oQ#P5xXtK$osyIVlC9v!~S=GI(LiHoAaT%w0FO|~3%=s{J6pL@) z)6Tu3`b;oIts?ZS379>tDbCYU|g<+u+abDJ1v1ro>?L zhM{9!5nzR5O#=L0A-leTZJj#ADbu)ts z7Fmjq5Kdn45sJ!44HriCDcYi#$+#vsQW;7(5|mzynRm!jz)*sQlbKEM4ed zOh?8yVTL$QLWITEUP!NUsJ~rb7hPYKnl(4juh!-A83JMGeHAg$AXh$7fE4kh)4WjI#bwKWEPq0Zm%(6OKsn*CI_2)XSr z4+!`LT%_Ms(@K%NN&UxIPXsU#7^w{^Y6yJ33$U|;-QfI=8|vx}bxDT2zojYkF&y^a zO;M^oy;~m?i$KWa>!$6p*mii0L^0}diOZX{`h ziJ~-faiI&Sl{n!guq5zF;6Tx{X2>A65U?;9@dl}6IIVvQ)zM4QzKXE$q|DLak}z3z zJ}xI^p7$4ECM3Y7!fvc{<95t0QlUFgq6iQW03wFK}Ai#u@9bI-reu;<&BXOYZVLR(dP0RAlO&HKjVIz@;Ul9aA z#79T~1iZ%4rEQ+xJo*G;b4B+&4}of9^aW;B3nq%YnC(tD66O@Cy%;cN-FMuaiORQ^ zVNcNmOe&nBi{I^>kp8_z_0g*qQ@IhR4pW)bdfJFz&!X;9jf`pA+Q{52e%1ve{;mWh zg6N=xIkiFXLr&Tgsg9l33{=>)?c!Lgz0nEfy@fz>tT^N%_!%Jw68K4n4WAv<#532i z|A1L%5Y`#2Gijo1+B=$JWHwcXBkOlbkdk|Zk#bM;kb;Pt#sg}4f++CD9*eAAXS>)1 z)5hQ#Kw0*XxwFVJ=uQj^J9t(eflq*SWexp!di&+@Ja{`iLw9`gwACp2S1w5YP^ey4=HK1u{4Gf*?CJo@sceM}XS7R82$51<6 zr+=o8slmRIb2l@3+;vCR@aK0__oM)PYh-elxke3LyWo+Na z4alNP$e|(GaHcdC!Z;D0=$^t_@O0h?q1V|x2x$%13@HPiH;^U){&;Krt(3w#yC2!s z<1E7Lb6%T2qC|W1kmpg~@(F$x-ngNR^(|NkBwzFq$RG%#8n?#SMvv1YBRXb5@J^4R z5VIVEG;ypd0Hr{LH;CeeP!9;n%p!*(F^39rn(RaG>dJpdCsoi{Mc28y;y8Rzikwq-?HJY+-f<260AF>%o~GlI|3wNui$AV8j+>*FDU)Qf{LD zDUvd-)1JSY)x|V_Z(M(OC=99>9S*;*Sa5rhS}OJ~a#8r(X?Llnpqp)=f(~pwO;HxI zfXK`6_}lc|FE?F`B$D2i0>Z1o7XZURp~YWt`9Rc`43`)4Ddu&~2=c^Vi}OUCUD`Yo z3StXTkE&#m5Lg^~oo${kC1Z2gg9IYL)Ck(lxzVw?-LYiUs3I1q&>9-4Qc370AwGXG zTY}a%1uZDPo3cUGM>R8*EIeY_))F7?r*u9k4yWBJivda7=6*fxjl4_GzL<+C$*xG5 zS`wqsuaEJr?so*jBO%zp)(mnWwWX1^F>k=WjF}}VJYT_IhhLRMziKut2D~B~&15ZN zg)II}Q5Q{0M0g505Tf^~F+^A}Y9PT!?$}pP#&d?{I@Vy-r7&XJ({_lF2q9Koz`ZPW zT54w(<12s-)ZV za|qf-L*H|&l*y&9D}g%7zXCJa?lkp;NDfvAI31JNSyJ+wNbsRCuYce7ByoFe@VdGJ zK}3Z0G7m;FSmrKgda*Mhp&bQ1$Tp(=j1Dt$&L|2SGefgIrgB}5dVB5_rox0dwQC`yojTn8 zj!XrlpgqRXb{vDQ-Wsm2ao0an-=kY!-vT_9Jcrah07R3Iraoh!)MU%mVbzmHBwLJ! z^^hpD?pVQbL$jaLc29>_9_)lGtN9KdK=208k{r3HRBD>@%D3g|*YzGy1&@#J8Y+cg z9%d2o)FLWcU`g3_b7nF{O^}&8&aEAc9%xMc@~P|J;BzVnKr-ei`7r4dIWkC1H`72CvPJ zGggM;ikz{ytxa+*V5Cb0YGsVAvZC2OPlwc|Mn)9213nYt>N{{>F1f>0!McPTA`gY0V{+$ zz=}#rg<2O4D4cC2IWRE${zOV_QJ>{0i&KG5jQVsS5m z1aP78l9k{sc?*%2cDbIq{K<#_jjYw;6zw&~9)}5`miPXyaEBT%w4*7h3Ti}o=3SJ< z#yXQ*79~ z8{Sa_8r`L#*ndLkUP7A`NX1~rflfijSPmq|7kKF*U-&M4RzJxZBSUhDE9vTr{z+Q8 zqWQ=wD5j=h`d*C5iNOoPj3IqYzjeM#Q=(P`-~mV$YP5?=!O`+ZhZM*SniO2K+&*Sb zK$5_Dlae)MKO*(Ey`#8EGX{i;>XH+tND2j#CRW3@rT*d96IGOh!Cn!#6DW*U$(qd9 z15DKgj<)35o=ULe*S3pA=X=l3y^>`QE{V>u$Cz12L5^T%+$}ruc*HSCVzkIAdS%hH zoV?zX*h?YX!L2Uv6{Ig{8ACLx6h$qsrq4uW!iz4X1HvkjK?~SSk~ES5l#GBDPZsUf z1K={hNYE@>Kt>=97?DyQhc{?Up~XjE@16zFtp%rK&|Z?b$c&)|1;8bn9<;i}!YVKmDvJ>^&HouzW4pb`+3 zQtY1qL3|rI2d3;{f?BivqK#!FBg-D=f|#5+YZCv=Dc#JxWX97ZRo8UXDMmQM)Z4>mp$4Cf z8Nk3#>%BeRU;`&<&HyfCp=5IGO@AvW>>S?r5*rh;ZTxo}c*V{8E?B$q>S z9pys-gk=9s=W#XsO)X!;3 zGRmA&xedVp9Rg;WIUG)>-9SSN^+dZ(05sDy5Me3uy0HRr#ysV54DpyxoS4-u0n z-dOW@6u`QF`6j~h(1>}oNa%>+-lseIwF6#AnMVV|V+KT&%iN4vXGCWzJ45?5LJm)G zJ|JU+_R6DJFc%w&RstZBQNRgkqzlqO7(F{#|82iKUdLBm^h5shUnVNfcW(XAy;}JO zf%yvd3VAdBoJE$PbEZ^)#_f{bo!(}{94I(iilW)fetZD0NO{&n?t_pJFuG29%4#NS;R<^^yH3r%Ga3msLuGj8jr zM{B&4?8Fq^&w4Hh)=>fqC*c-;jp0*aYU+*74=*f%0+T#VeYUC*m6p0$zVSGE%}_jn zjOZbLJ8-7T+@|kAb@%N&65KXXOm0y$nWk*w(9ybxyU5;n$PB^WDuF{zoHo_TqKn0@ z1*br>aaFj-QxP~3TvDFe#y$V%I50ezO3c*uj{TkM;)}hcE~nh#%bM!IjZ1)(seHBQ z=#vh9|H}(CDq>0s^svD7`s%d0dsxl=v^f>8v~Eix@>E_`E1@U~vaXQ6$GIT3;yN?T z6no=;O;?iR&X87^lggNg{log-kkmafdBWKZKQX@My01rYd|*^MSD6G3&7DNpIOsQe z{(a)MQ+`Gig$dPiJ^#CEWR^LTq5@e_A2K6Iqw}wOR8|T8iw$0&1*k3`8B)MayuQQx zC#}k0TH^@%*oQ{V{Dhegn=$uBevGPNBWuqk++T`p%#0^FO(!O=QDsA7z7`Fcn^^(3 zg!3rra73$%5P6t?VU%Pjfd`~u5@X0uPJOwVW6Noh98L74C$?|0-UFv8 zXGTqSUPxCp@cNKH_e<$BQc4ds>lx5n8>(2A_0un$(mjfU>g-7AnxrBiGA>qIltkQ=iZc@K(bxm?(*q(V zyrVY!hB6SLvgG6`3YLvZUc0jqu^#zp6l`H#wfYs|Yg90V{1D3@OWUTnJ&d4YemZ;Qzj_D(3IRb{PQ|QtuU7uuIO>j;SmB`T zC<`O4d~k+;bB_UJ805T^2e#MVqA8X1xw;rc*98{z|% zuIY_rBmqF?EX6;03^`V2Z}VZ`1q27KEdE`5WNk4SlJMCL85jjKr9OvHOlf(=TE@Y0 z5xL`1SOO)X(K`@Py>pXp2vgSpXGh?ID06PX2S;4OCJN(fKtX3A#39qmMI?0<`4dln zoqiUq$-n#hVyv$xLO?3BQ^thW)Tntm1EvCHGXkD?jqw>K`s$^Gy8tEmp`PC(?ARbC z@_`YAll?-Q7Yb-K!O;)QOI#|>Fjr#Yb>2P#xOV?+xf+!U7}QqF% z(l3Y*=0-DVajea)I_N+uhQ<8{6zzy}(`pA5F}WDUD~m?4jwei|U^*ph0E1MGR@pUK z>D)*RZ=K}m`$|@A<$|H)n}so{@q8Q!G3uuvE@j-2=Rpi(DTz7Dwe1^rM_4$ zI7?z+OG`vo(#tG`cAu*4;sH~+1y2>q@#|>An4%n6nxm>36jaiVAzpTOj~=F)hTGAh zZg$vOqsRp;{ZcgRV$MBLmX?mb7>PJoZ+w%*P)k$P<_ttLc`#ATFkxn?hBOw_QA03Z zLmEPA;K(qCM@%JSjDwgULXuBUAcGI#yusYdDIWo(sc~ZjwNF*KJ-kzRl|9_9GnE4A z0o@RkY1cv!tZbJMaT?`};V{UvB;|@K5YUei1yI~)V(i^xSEki3!YHx0g2u$$Df6>e zwk1071W+2o2@k6pGU{s2#33kzoXO-j*B6Rw%H5evTZ&98c=4*VQpNyffx6tI2$+D+ zY#?E@DuKHsttTTnORudRt}6 zk;J@|=;5T*-F8{Me(8z6-^yd3HDU^G2toA3&TthA2f}M^wN6fLg_tLAO(@j7*Nj$5 z4ySD-v(|?u8(BlGRQUhn1s7S0iDTO)Y7T5oLQI8FNXG|CegPkxfqQJQuJbmIwgoEg zETKaV^edUtFLN_f3Rn8xUP3s->NaH0G)aq)crEFYw|5=(zK4V8zfxsvUmYf>W&679 zbQZ~ZW|-KGHkTFF4@|t+w_L3WF#s93hg;;P`Tc@7I3_J?XBZe|Yot@0&^roNr2vB_&@Z(G__7@me5`w&|Y(A$^&T7(JkAC~=`nDx_FDr%&3 z7KzEA5M10atfxOiLRT+xzI%*G;W+eI)+5UAoTh*Wi|F}bxA^_YU2gvJdPeXdt#(5m z(I@bkVHDsoJE)Wihfp!y&(9r4*5u9Y@kJhg!}{YCO?n+D?lx2BR+&8rdZm~4pw2Af zLFuad@q!$Q4}mjD(pZg`N2!pEdYw=ow`MEXOHGcB+g}EFueV`%w@v5jidG~#nwPXi zl(Z&c;`Okbkh_=Bd?CDJLQGn-RrSkH>=pFXb5;})V+7bDgyXNO zPG?&zk_ywb`7ODM%;>y=PT52)rB*;{SR3Y6c;gNXuot<`i0inGVLMU0Ooe8wkMI{H zUh*|Mb&?`k8Z^u7Z4s=SFg*3xlo@A#C%_kD=Ni%Ts51m7OY z#EXO&#R|TGVuNgLzQ)KYNSr|V$=C7c+~@JpUF=NG4{`6xm5LkA2!HvnV6)GR!)Qx^ zOJZjSl~}>Avm5danyD@XWI%t889D8P(xIy}Hn5t+<9-sHuZ!qE1$Te0_I6EsGK-~mRV{DVjky-o>4_A)x!$Hib5xa4f}uwt}tg0OSENR&~!Y; z?dl%B!h?c?W_m@-`A{l|AVPb&6!1(Ae?$D1fY$!X5dmj5Ys5COR5x$MjMx{B3{N#L z;X6t{Lmo6VDhpYLT!r`VGox0b!e6o7fwnBtQq%q<%VwQ+-_*BMYj@ByySu-dfD#d? z)ZX^9aZ-baL3OaHIM?Z{+@OjF86f3SA!v$*N*kSUd%?L@X~zXx@>$qf!Xln#77fPAks3)Wp&xLW3nT;3FAwMeq8$9V?{$ka zur82nyyA2*dVOQ!El~v#>*3;Jw8FUh4erl$x$%39_l=RY%ks9yE@?56Z;5i@wN(Il zWA|6b*Yl=wuHGIQRs=h8Yja2urR7I$j04pH`~xCAvG!xEuLmH_hPs2J*309@Min9ZoMZjE}kc3hL;23eJ|Twb=IrlA0nVrv3c78Rb7KADX-CpAdWA@0_< zecli^KNf-xse^)&i!Q(WZ7Z^})b`SWpTY>%FLSTh!=#G}*_AEb9l7XIxv?fqE>R&R za|}_jCTVVp7^-C>hR-j$lt?OP>!#(hao{JVP^S2YQCr`~k!81TOiPhIe8+5|NOr?H zw_)`Q%sB?ZrW5|&ndk-z`@u>7rxdvcgxDNk}EOeOphWCU@SwXJga$-)<)smN`3s&8PF%T4@Rqu%IVTXoB@ zHGb5BYXm?PjbA#;Ei!6rt05X`)IzUb!3FbAy5GymSkPxywdFS#)qV4_;u|koAA!)$ zu6}{`6JhBdkk zDYVty=0IcW2OZ13;v9o@)WNSZSm)n;4)FrFi&bx212YI=Qh0OK1-1BS52~htFX=QtzixGEykpI_wBQja z39+)eJ*qUM*nU@bY3d7A6YI`43z?lf?!^Q9;-^-)xEYscl~o#}yT#_BjDGWMbniSA zm6KsPFK2n;M`c#2Q8!9$_;F?Egz<(_|MW!mrtH4jxIJ|I*YQENuIPYN5$YG0=e!hC z7#I51l>i67!+b%X){bRXx4R$^<%y09;g-DvLv1h+AKR+tv+dC|BK6efm`#sbPCD?R zVVu+19XDHM1&)Z#-Qm2n`4< zE?azN5qcc1eCsxPQo6Ldvjrdf#clfZT_1#$p$%^%J1}QYSXO5nlFqlll#|<}0dA zd*HDl7QHwRNBMkV{>6I2`OS6^qnwgREO4)?R#rY(IDCXrW!lV+4czVkr#1t5bEiPf z1kJdC9GX@$Hr~MFf0jb{m;QiOr&r(*{E!#2$iWJZJ$3Zaz`Rjcry$thxlOkHeQWs~ zhvtQfjOq}?J^1jN$Lu{<*}vT8FCoX+Y%wjucsK3cxE;uDaY5KACNL_Gx`pW+{DGDRF0|L~Qo~YPt|U&t zcX>_UCj4)W!pgo#hd*jm=|(zj4h%~uc7&0 zr{3PPZ@~{Z!?O9G=c6oj6*?4dfV$v;@OyVrFTBJ~ z>&Zt80;wtRdgKOr__Bz?K24PL4+Acoas%f0BNlYOJ>t{4~<9GkT!8;P^2!4csR7j(vFe5S#HH_$s@-E{HBu z4Olf>_bq;W81vX0=yrS5QXZ6)b$gJgybE3yB z`V6KG{|SvbukcTvz0j}78$!BvEau#qy&a)>2t`i-(=P-ntbioU)A-s8O)G@tManqS< zE2rsD=s~1dkX8wRt+zfR^Wd1PCSK=xoUjL0%d|rUXjaUl2Xgf(S=KDy&c3x5 z**J6WM0Sx`meR7r`{*tPS4^f$49S5}s)lS%lGd7<&iAYELzTr~(Ii{Ov2+gCIhrEa+ZLIkECQ zQd$$mPVnPU2t-W> z0d^Sj13HA%TIWow=*j4XncCsi`cC)r-@2aduCW7YNW+{b-!|<;q{IlLx zSu1^~<*W!BkhQV&rL>!lKc~?_+*641KRVVU(x=$OGPW}tjXP1f26Dk->;v?)Kzoi4 zkpbIFF$)_)0bGPp5n8AR$pTeRctcv>NLDYdlmOJ@ttLb!Gs}ALyT5iunpW!fFQX|p z?K(oR+Psqr4kFq;37-*YqeQ)T^&wJ0p&1*JMd7%~l z=_p_7e!gc@nd3yT9ZbP-6|%}_*;bXbGv_ft{YJlszcTo%I7u2!2z)~xl}ZJ1>5w!^CIoexo$107n(5;_;Tw1na^o)g zOP@ZSeUTcdHF$|c(_FkU*M-qh)TdgJ*k-ux(mlA= z+kT-lbHE^FbW+*s=}_}bNBkW92lMh@X=z@$cE9P}vi2VQq?NP1A8|`Qz=mt!W6WKvG0H^ z3F^*DiHLac+mqGv(c98xuB5B7|ENnrthQ78*=sWqTZ7hhh%DmL8G3B9z_Oa}R6LHo z+>;{a&LoqHgvkQZ{6%xFxFoJ>O?59v&Yh%)lVNR{^-BKPpa_hdg^^&Xc~NSZ6Dm?P zF?q0M7bJpv#cg7g80*{^q<17r<;+CyghZQpc_{mdjsj6E&s`L0oT7`OAE*<2nQN8GKdd zb)cy8?bwst9_~91GNfG?gJ&L-_`LZ;%%UuxH_wZ|GR3vhNOTDIQ|oTZCwm)G`tYZ9 zF}#gXPr}%l5RgFwOd3Py#~5J(FQ~!|IL36c(f#~lw&JpQUZ0!+Q$bj$gpkRJu1Ew> z8B=+n;huC?E!?ycyhx-%JE;seWP@t|imQ$eYKSVq1`!qv&6F?UigA z!55tE%rsK;$tZ~wiS29XSv^nPb^9%FD!YDCD|yn-22C_VZdMg}XZQ!*+reKE6(~1Y zP7vr9kd7eIae_Mhx^|)S_Mr!H-|qnHED@O|AdD9mJOSqxKk8zLx}cm}%0R;g$l~!O zo-T9IyBg|1j~2<1-<2EshQ=vR>Fa@01 zt5Xq)R9ZxsC2e&edG1K0!IXKaFw$-;MaIzI)(#N|D16x&O`hSc>7{`(?r(Nymvx?uV~T969*8 z4*Q?9dEW2LB&VOP2G6dTci|7Mry1PqK3?yAWBUx_oi@cor~h&wxT>r^tG*_%z7}3| zO#OSP_SQe~t$*TCZ>WD<{({obKl&8F{DyVWGGs9*X{9Ue^e zDqHB?b9P+WPhJV5DRdRC*!vq&k6ig`{a!S72O}@%yOUN{E^ZAIG=gr zK)|0SRJU4W>>hpC>TpH7kJKm0e?L(B$CL`|fA-<1XTN?uCv|Cc&%;Y>kLA4GBd$}; z!^XEfUay-vB)T@}*@qVyJ^tBH(G2~`$Y;m3H8gc;W2cOtyc%15GB$2msMVvK-d4f2 zFNH0zTkeR@xBN5*t61rq8{we!u4$2!MyHzcpxUE~Z^@MHRs{RK& zuCT7%uzGEJ=TV#v~Ow)lgCBg0BI9T@pP@RNx_po9PUx<4x-&wS#zlE;kTl*;OawgrMIi>%TKKV4x!OkkxIU;n_*lw*&##lhi}v*$6MEDBFZ*L_KPrW09pu#ZVD4Y` z<_vY5SN7d5uhcC;(4^~Iob&2;aliItPV^nBwSS}?%W38hon~3t{KEqkbCRezyZIdo zI30l>Nl$6K>A=5uWme9V(!8Yb8!vvg;?9X?w{~>+Lw(e5Wq)2|+!|{5N19FYz^Cou z&GuI7uK8@Oo)*@~>4SYagVS5^NsFYwnV%+`+s&Ilq`a+tb48HZL$JPo*`M>7t(eVu zT`DtlLt3g#uuoy$*P2m2oie>?O2CKdYj4`WeLQEdSFMYvP=s6I4K}#p>5KV+P8?s?8W9;qWITWn9vi@u_E?!ttiCAMED2lmB~kGem{ zy}a%80j8Mq;%~(X=>gkr+GF`UwrxFlUfJOH0)mWr*{7CnJK7gl+IyUP#j)Q#B~&vm z2ihZDuQKDWrS1MOA$ccCRZI1G2U_4xbdSBpzPZk!K~1(4Z|JcjQO2>Yn`3EY^_dIx zt&IUg_6BS-ePa%V%0G3%!Q7wr=X`FP6i_yoJZBI~o93s(AyuX*(-L%c~ z>i78p{KS!5dzpGyr_i9HrS~UdEOB?;=V9FQDl<~j%6uR?*2THau&DFg9IwmP$TTa9 zAHR6iV*c69%WvAhdZ41X_n}+AaMw7N*z(apQ-ygpn{XVkA6Tuy`{aki9HS%iF)v6+ z^W_IdR%#Cg7dVwhLbP55M8THKxICw5lpEf&F{sH0z%ijgdp}%ctO@D<`&WU+(AH2U z+vjfFL+c|-(s-WJQ^s{Y98gNhd;2uvRi*8=w*Aby(gl)Sm$q5ks^pQ_gC^SQr^_18 zZ(EwX?;qNL^G(95zY@3+5;C_iZ`r?_<~U4*vH&=RB{;teN&x%!^dupbN(A)b`(v)! z+Td?4Uz<)-chMVPa=i$|v^TBG?TU5$GIUO52E=+gUsv1TCEe%h80|;P{@)Fii1Fzy z`^b2cTR3aQW(<2-`ukY4Fd}Si(&v0O1vUBpeN8a?hyb?RJKg+@JS#l^zpU!BLv7Gd z`X-y?#);aX@LTMm69KliKhqL$_JK@tko8g9w+&|QpSo^bjK%!%+Eyk<{y!V)v+_96 zK9KVH^(VWj4d;!9D8kLs_via#2JFXYqj}1qoxZ~EBzc^($zI!EY?jN{k8({C)^H&8 zZG%??>BCVot%d$A(+@P9S(CQbPUEvfeO5ypjMVh&SPc6wcKkJS3vvT?W$=65G%fd6 z?9R>T+hHYtZKo-UCq5!!*YDU3Suq$#d;W-D!#k=2vOIYt?zP1kDX5F{rxkCW{v^Dk z=*p!{FR$&NV|;07yB1N?Uzt$-?%kD^l)iYJC47o^SB#GH(Dd2=_J?s5+mi!Jtty;1 zw0XnngU3Zpl*{jKzo*cpG!j1RXM`4C2JKz$ZXZxqqRcNrMBm9TLi(mTmC8pxC09Bv z3v$HN+%ck4;WyK1-*bH|CRmhObsBH9vZ{=J)HSLwWmk%oMRnbq^={u}KlaZAUAbMHg&7;c>3+`Q@XD6h=4v!S-P8jlH=q0Z-)mY&wv#tFUf!-tsu#1+K=k zgW!h)W|+T5o(3F%5gU1+;+s&|erwqNVp@g2*m-TjOadC!Jn@c!qRMc=Zk(HfO?`D; zu6uG|#my9d+xvg&m=yTS^s4!9Ezg19iQ`mM8X4q>LG;TA$SV0XAtZF*Ri9{^Dp>86 zFO*sZnwb&@!~K?7wPOmdc86i*laOjhqZ&nU*n1O`kBy4E<=*0hNMqmqIdhzTDUHO# zli}iKmHfKlyA;di2U7M-hjr)x6xG!!;Ky}dr~iu&vCgNJK6npD$Y$qMM_5UCDoPvEz3Mz6hNWA+X!q2J`^fM=Bk26(9{YahX7Z2sJGazVWIuxXXQ^b=k5MRyU zchwL^#qf}6u*A?P#|^)wwff+i`?x-VWhDfhEv=Hr49DNFk~1!62Gpd@=WM}PG#ua@ zwKAM+gFc;eZj@UkUmFtIVBUDz@LS{NYzms?ay{9C%5DK+K@gGXdp;+|%yJ{nx%J)1 z9pjC=gJxys+E<27O#Z|r?k)}T$7AC>F4S%)q15K?40Jp4LF>_4u1+Ek*t~h!30J+#n|j>54b) z1$TAf=BU~mmbn}Cc0!HsCZz5mCHsu@``5r1~Z zg0gsi6w300rX|27MCCSrR??Ra3H>BdxPDFn3p0pjI?~t5->DFy2n4(-o}y=eLPJOY z7sSX5+8*onHadFZz^*ICSap=eNt>Z8nuU;YF&F$_A`;#iKyG$Pf?yCn2_1_$3Cf16 zeXkPmEVh#HeBjkiuJtV}HPwmu1AKw-)Vz~0he=-1!A&0kH|KZLtW%tUzF(N5gQZCt zHB|AREJ0kwMq2lP-0h$2v|Jv%v}4Vh?^EZ{Y_}J)y&~Tk^tNu@+p5nz{sxP$QQqn? zc)^|M&ku>IvHIbDxnXFQG04&0uy#rCSHV7i0?XZWrb(um z!DnA-c`AHBdn=b^)h`=2ywlMuVOc0dlCWh@;e9d?({?m>)LxO=mHzx~SVUTOpPd*4 zphMO!km?Hukn6ay7x4tJ=*th(enUT`s3R@AXx4QJSZr;h@Ugy8H;i#XML)nkv`Bpp zir?k>pFZB9dGuWZ%WfhTaQ2k4eO?K7a*XdG2FA`#e0jeirIB{7epjr|VGmuJHY>%JE(m+Ce8cDe$XGzG zfrbgTH8Zd+@Zz&DKKhb;2|m}&%SpQNB5G}klsC01T{2d2MC-7;$)Ov-afpkl(4x(z zr6US_%j6_RYRpmd^lw6CR@4M-fjt$Cpj3^>`hk%55M=W7;|vX+}t( zi}{Z$n}!2p#$hu3L$ z>aw}l`Ol`HR$ZB~|LzL^2a^=ELScRut(b`uJ!ExuXy5HzZL+OlAwXCZJ$CXnBP<%E zX&z?!@0U&)617kNCzCXZ5r$@VAoR^_AXk(^{%2Ce?XI35L1#d;=iU#WbV}z;|BvP4 zKba&s3hb=TQMkckkNW`eO6|C`ZQ$kPKoiJ*y=gN7wG9XQA2=GNSwJ-ZSf`9fAI)oj z_5=%RwQF={@qQ=ehy zU}4FuKmF0sKSH_Tn;ooNsvOUNm0x_WRady!_vYHB-d+SpHpnr^`Fq><;W&@`;|CHR z4+IY&zhr>P{_sG+HrPy?g-dJuzGhWs<((ijz|A-AJ^u%K`yQK48U8=g-aIbneElD{ z3^R=FWN=I}nkkX(U}%!m$QZYXR47>v5+#Nxv@wf>A%!e0_7*Lp+$pKdU?{0UN_U&R zvD`(eB-QtMU9b0DcV_1E_?^e^kJIDK+xvdMU(2;Tujh5Wuh&T38RUV8Mn@h16t45F z=D`+kMm7OKef=0#6o^FMJOx`TM6Rk`(j#0cA}aEej_fDdmB$NaJgQ-0IN)UlqRTb6 z9~%-;PISyRqATG5%V}6oz?T)6!SSS-l`7vXsDv$2_xswmCFY?NPTz7v#K{1aQYu6= zl+mp&BI;LpbY4{z*Ut`%hHfXBcHws|2pd5i+hirx=7}|?NAzKhW!}LG*Kw$4mk4$7hNjFmT9?X!h#d~5Bo^Ze;kSxf; zhTdZ5xi-DclUk8j8n7!}M(#eg&;=O{Vhdb33x(a`9K{K>8HIAX<*ssqp;Pl_bnqw8 z!vBJV)c|Kls2q<$Io5cM@(?Ho<2CbB+@%>5Z~lsK5FFL{AXsj36^Lnm!f03u+PORe zQe_V_BIg9av$JPJE(@VP5QFh~><8T@FMO$N1|t(f`xUxuB6dIdUG(X_>WT>D(L%Rd)_vs-v>VBUVvidw|`UCxZ0mBeg))7#^OjO>|kw6ZIm2vQlPp5e7uOO#0#19mlJQLq@QrYtf=R^?njJ2MJT#w(6dCe{O~-OuwYW%2jr82MTDoOx=Q~Z>e!cT zIlshgqFA{Eb_M@5TveKgo-G7M9lTIz-inomGPVXUEK}{KkWA6*q<~pXr1B}2VUsSo zPK*y+7snD9)UxFWLhxdE4F=sCQnN|^3adO?PvnpOS%7HuX!D-&u2>ChSjjB<|G2c0-zP!*$4QglCnNOV zREkdqeu&}yjYlDlPH40Qy)cpk)*@sio37B-ZjSc=*C`FaE6clr?1Uq;X6jName$eW z+0KfooS!6Sz~|~1j0Q^YJ!d<`pd|sU;Ex3z#ZuFnj#66?Tjzx&-iz~#zrQjS53fMv0?;{7RZ1)k) zmk<1jSO9cq(0y&DVO9CLaIu>s1k3L|or(s;I5c|*dLf{xhkvn#;-#X{Ybc1JIiVz=mttCvtj(!uf+t_vZkT_G{6T{{RIrxU;phFMuPVK0G z3@$5{U9ls0f1#WQD02X$F`R)8(F;OfVOV#N1(ril10VVmOFWsJD_1h8$NqB|(;!@i z{i2W)RE_!r1xsM#QFpnTRv|!m`>e;+=Zp2EXq+CISh$XI&ul8BSD!_m{x6p%WyBWT z?BEY#3$Bo|^oeisSG&ROzXYU|zuc ztJzXFK~P6XJ7-n0Ip#|y4&p?JpeyWGIfB1iP@XS%0_=}z#K!}K3u3B?Wc0ZMh01q;6G9CAgjkI6%ZVPmo~IwLdGYI_8DM|DSjEulqvV$4{t;eWsC^8zLW zdHOc)-+^>OfNp(XxISuBl3KEUe5!8%!vfpenwx@j+E^lkP5sxFtVeDnI z%OdMdd;4EwW-rup`riPziLi4`qDs+KQJa8c&4Pi2B1-{stXVx2sVjer zbP*;N){_&E6pB#livS8P56EQ#459VBQM9it>dmDv1n%gj)_@GV(~K5HxrEw`I3Ob< zkVg=ERnC#p9|J?z?V?5Xd3CW(rQNwF#@0(>oWTyVt88s`z9MpZahA%CiC8-UF zNH#!!g)iim)bX#HwE>`D23SG_JXly7Y;kK{P$ypg#~Ce+X~<9o`u4H`EtT;oJO{yw zVDn8X6`m)Nzg$wA?MterxJTg#2mgsvKAC^cgs}iuyQ`o8<>V{7`gUiLS@kCh`4Q|7 zuB)Sxtwp_(7GCYw4MH(f1A$7T#-l*??o)5wt-boD>^FDvu;&o(cwepNe~BS5aOoTg z)*Ia^of=l6cAkjsn*A%KH9P@dtXd5@25 zG`%~`n&@NxJK9FlsA6@{MDQWY=o6VwAa>7mlw;d{wC zhN0%bkzv*7p#1bU_?!Sa5d_O!5T(}tA-=-e~~?~p1hCD)JTQ$_o} zOO+)oJbnu~R9BB}@I1$@Zs3@3yTl6drP)jtps@bWhRN6iz8)fbr1ge@66l~d&vKc^!IfH+Rnvbsb~$G4G! z!f*#5ldh>!HMFFCo7OyjRlUBc(XG3LA=sI|$+7X)%uAP@AMaSyj!G5OLCu@p+kahE zD;GQO8-+8y^DIBH+^-8;v*Ty7KbIlV!XPfkrc3Q zV>Tx&f1~;&i%u@*Ncth2j-CyD+z=R$pbBw()8EFkEpe2j8>l@lofCy3<6?9kh%PpI z_{GZ$Fp8S%*G>784Ag%j0hb|}JG<+lNh)l`x5SDfS;-mD4Y8B3nJtA!5~6$aJWK@L z7g6BNskaTfSeDf?s$5!rPO5T}%B7c^wMeW<(7UOte=9zf1EH*Xih=+koi69V1Ck;{ z?*`t55dm??@dJ&JWJii0%;McDJUK5K2C^TqE0y~+bB6!mL6%E3Pby<6{0ILM#>V@> z+kGWViIpL(K8pRLB4dYJaXL(@@x@lOh`1uwu>){uBG|tzf+`aG~01%5R<8JognBrCHBcV3;{e}R96q(a^bF~3#c;lQ*D?nG* z2X&u+p7$ED!cntaw`^(M;SVO>LG`=t>*8HuNsZ&D2CsD|lh=|-sACu4a_;_uwHAt1 z{OKN|d=ugBFQq;T79RyDANR};gJ~O&nzd?gt@_Q~C(frLgs7Uz1(ju7)t~x^D(}ay z`AHT+b$QqIV)-c#d{10=ZTz=^P1kKp&f$9{E*;bb{Nd6;Olp9&sKW#>6t8tdp?q*) z^)NVE5&nB~hHbZ~LI$kP_7Rc0(_G7V1e}@7Fb)(@2j zEIZ#-Ox6;G*Cs zC2cr+-!Qg-z60>4S2|bIUlKAAQzM)$l~IUIrU1A#o6U>$9tgoJ z=zEngkVAqzsAK#m-1@=m&r5ZX1?1XI>DMYyMdh4)sRe*=@ZU1U+ybgDz*2 z`;_<>zvuPpYWs3~_02_QT@AmRF!oyey3!4Or!DT@?!fX%24gSw(i@@wgRM<)5TA75 zR>18tF8HPPT%3ruZxQy?`dVlI-goGjLgy^vfQk<aYQ&#R?EgkuR^8wJi<`6aWwiHbX(PaL|xuTW# zAHzk9H}p)MI27Hl{8HO1~8 zI#qJgm9ECrfK!Z87w1hipZgwoIbMOr9++K^s+I0p(wPp2(C)B`j=ebv5QWYRTGZop z^B}cR-~c2U`ep~UOtZIWx1hdsXGELD=CK+YZlvb8)=%gR*qMXzIBy(YSBtiD7mO^w z)f_+{lpmR;HvO$X(gBvo>HLXwe2d?FvVc?j6GmwHDBE`h%{u9@kjobom(e~$j=!?S za%Fn+i6+=LoL@(M^Z2-pF<85v`!?cGrEb=lE&Fj@I{Cq&`ACv&qW9gA`D&x#t|K2R zTHQpQ%6T&$p^-6-zXV^aTN-srr4d-$8kp7x4N%`nNDH#iM+}}gp?jo|BkT^&JHOJh z4^9v+eL6!@=Zt81fCp?&YB@lXx6ujRZnEE^^@dgtx#IOMG$rSwly8Z4e||M#YXV%} z>RxNPOt15+S$sHD?dX|ebOW_G+ouq}U+s~q)8LNw6?~A$c^&Fn{VaeF!eBKh;Pc#R z$Lofo1waW}icUzz%IjCr{+XV{p*(1=xPf|{Kuk?@apG6}j(B4eYK}|`aDa~Mo0&}g zPj$}NqnRtq+zxcOK$p%x()gqv^iN$CNu5cKjmkk=0}=%~@^d2zc>oDc@50yS{w2f3 z+4elFz8c(BADf~&zyTT}db-m{X-M=y+LbkYOrE4&6(jV*vqYcho1y9G(Wz&X*Yyt* zbaKSFcuDQ!ci0K(rX!zEvncmeq7VGgy21ss(V3CopQeNT-$zGe23~e5Z2o<|KhzGV z-=XCVfR{@;o$1nvcHr+#gX)l@PG`_E4;`Re+mG{*FQI;D zbvdF)+BSvk&s{@s_>2QJInog)+GKJwhglACCGwoAOC+{|`hm(T7jAZM3em1heB@QX z`;AedPUG|kCOVCWuQ(M>&!}Ee|KpqbkVm`cuB=VavB`7`@4WPk!mYsQ`E9oiy$TzY zAtw9M2g{DFtTl?YjZWM*>52b~m->nITKU!P9#aDb6*la0?tR)tch3qB-#KTBE0SW< z3#|es6_mT%C(Lyj;y10(=)!iT_to_c#i0Q@nQrM158=J356@3%*E$NOsQluMLv-`0S>HDgK7rv&e;M4=u)C?gqUqgd zG(Xv1<IR@7eZ<(Tk{+EQiLx{mVP zIf)K^{>6Q*1D%GmB{iY(1NzU1S#;`Ly!&i4jzmv0ZwnmHgu}1)wEj6YE=CKy6gTch zm;J!2rfG)1$>MJAxQI^rIIipr^<1+Jq6HiK7EEWuim4gha%|1o(Nz4~cLbu0M+d8+hkc zqbpvceA%zylu_*bT(|)AUb8_*PxNHNft#3jY5H6P(?u1JGB?TIQrom@y+3z3_sQ=w z2VDgtv=3ULyIJ&%oLP2?XNTJ+5@BO9w&qhrmT5AZo=KEJzGp0 z=P-#~M4zAM=tcML^EH`#Us-)0S|zzot=AIdvOt-h9vE!juV zge5EoJ5&`Ozj8AzXoeEUSS3J?^TL*IiNJa5FOEGpW#fc1GtkoQdDD1bdcBW+l~Zk| zgC00%9!_Z@s7!el97&>eI0eo6*fLzTx(Q5i*s=E$uT#2kk52!=%~Je!(EMUwJb! z>G@^*(|v^bUUnG z0WE~s;4~Pzy=91K2N_QdPhnNm=M5V{Mxj}il`r)ZxLKledm2Z}?|F)b(nG^^(eZi2 zs?B78fC7)vapEoONh(F_fkQjCqy`q67oi($wNKZnEz=u9{{So8A~a)k(7^GC>G%)`mUMd#ubYK&@w#KXhT~8(mf(;{vPW0CvJCou9W%CgO$Rg! zbei&nW$-qf=P&M!)=#)uB*8-=+K|~sKo23r4(Q*Q{nqCgUO!;3&*ZHjUBhpkvA$C+H5EeZuaMNy&+< zcf*9H*o9`IyVq#4`Azox4=cF&t(o%EfV!cQRc5sz1X}~_t!_{Os7Z*|U9FxIt$DfA~y002l0x1J6qyX=l$ zSF8jGy85BV-MPJcyNqmDfZmR!0~&E?ux-}hjh;sg@|-I6qnF|+{o5;l7=)u8EHqBL z80mKBXbgP}w@fYAY7{GrPE;DjUJVKi{LT0>H+Xc=%nqQd36EYqeuTz_SI6jI_rGYX zp+5%Q82h6km|>xRK)q|Gt;VGJ0mH`06}ZC>$AlZjen?TBSv&M{j4#%gD{war?rg{h z@K$FK@r*l&aaA4S*moC%z$%m-*<6a!6H4qLS z-TJm6b`4eTDzFVgRD#pAaf);|Gz*;f4DHZ>+Np`4zC*p9M$1NV{SMLv6H>p4WHT{;Ep9-U=|1GRDDj1q0xFuwN3#+p(bd?It4PK{Rn4{EWp zvp7nLm!>)3<#RBfR5y#{6fZlf>5ie=5KHmJHZmy)O!&uJKOjj5 zU_pydL*8+-cB`?N1+sfetcEze(Umql9)M6SI-#8?pxA9K9hev}cQ}r0;QP?K8loiv zJzfc9&WQ@(Wy`LJUW8FYF7|{U(wVQX}HG=$`=8CR>Cx9>Y5i-5p_55oDs1AtZaq5;0 zOt=<0SN02uIBw3zn9PjSKFEij@nSaX4)s~(l@oLp#l!(~w?4Xb?iKM0^d5UUv9brB zOv>VNp2S4Iiq9$=EFx|mXO~VY&ZAi$=~Owf$aL19`gTjil~}gd6r0inDX3R%qu{~# zFwlSeA+=&Xo^+J^}i!oTr8ba%5gXA%PB1BF;r#( zuSibl1Q!St)>>sgZf!*~Xe_b9r?I`m;qoN3isW@!hGxV#&5&4=n(Wmc=om_8kV3FF zC#7M@KAdzz@Jj!%{-Q}WS&@Zjy7;x)6m$|L5`kL6Vx`-z5u#@{N@cj|eDc=xB1PZHMf{A z0J&frsDtA!#M4cchwd6#9z+MxWRfb<4q_olUh|36x-1XG=|sGWn`C&8{&gp;H~1Vr zz=DM22{q`12%}*rs1wNr8H2a5I9t~BmpK$I{GWR$Nt3%hs3ftitqkKX1g0;m!Q2iMkl$xiJTRzj(kz94s!$Y`J zwlub;Tin^UX*f+W&Y|NhjY%qi;cmZ>3`6u-oY$E-Hdr@su1g`V0UXou;*(XzxZ_u+ z9-+DKi~WghCr+L0ARexKwd*-wWGJ(PPT4%kY%>}2NHT2mVYeV-ZgKXB@M7X#J{)Q` zHvhv()G0p>eMt-3_@RkGc$-6}ge|@wM9=_@McvHj;mGVs4umi$oP>4+;f$bRH!#lQ z@po6j5#uE0{a*Drn$7n|>WIHihPKBP-mBi0sCa2V3Ll&75R3Tm_Ar?MAaZovb)S)Mj#Zy^+=*%py9)8G%d5E>=Y zRL}2mfOK)L#J9K1Xgw@s&wYl34>;xpHB2fN&&R57QDq)j!Y0cvyiXxg;V?buj zo0{zB@O>6I!L=aFDs14otX+7UD)qwa33i77i;8R(dW+KRsY(tCo~J3pFp#QelS0-@ zj2M6(leP<>wIkyg1jVSU*ZIJ88?x<`!(;Ez2};C`Q#y$xkQNozl=}Qe#uIwq=%vc* zjPmt}1DUQxr&>x2Oa8Z~vW^axwYHs8=tB@A4vdii3Z^HegVjlE9Q2No*;ZvJmMjP` zx{$f@HWN&`vK%}pQ2)9A8~Q&ijs%~F!^$%4PHQ^~C`k?8wdj`uc0oelbWsHX)HaL6 z2C=kAweXpqyspF|AXme&swB{=A4?>@P*`;s$lEL-NXc7>n_8HDAXi#zysl}fVs0OAqZ)0LHyr=3e>yx$)7WroH=JC*jkb$YVCJfj9aJm#3D#( zJs}39&Bg0B?1E0k??6UH8KT<58=`0T@}|1dZ_t97uD^Zhf3n%qDAh~d-B=-#>r+G|3JE243j5WU+&-3v4QPBw^HF8>TzYxx;5{9Eq zy$*mR!Vg0_sZ%UGr&?Rv253&VNAO##=~!AetIB|t1>rcvd1)Vq6cC*_j2c4fW`0I% zu^kTB^#0*ZcfY1(BP(>mh2xyr;n=7vUAM*KQ_^XRwM-ePWEo5EEawr%sQfW4OyF&m$dS$f&zP{ z-)nEFIiP4w2TRR+2LgChF71C@_&vhDHur~uo-i(1V~iz0_^(Y)erp17i2%DGiz~?= zMPwy&hyMD?z%d)s?cNQe|2hYpO5OL6~#H&WJ(#jB| z$Z|U^1+%va>)fTLAq106{t6j*sFXsbR$Hg_|{4Q3`<)!0($cNu77~3 z0QS86j$MCb!PbPOSg`tC&oO+MF$PMPY)AP~YT1w$R_K%j&ZQsYfbcaxO%(@p8`6^C zvIi#2RGoU?H`OANQwEFnm6{9@OPAGC;xPfX319F9*7vg9rriKEBVQ~*Bs#_ln}J#e5nzHg%E}?5LF2j3 z2fQM*K`sEC8!aPV-*yeX+*Cpir11ylz~IeHo=pMN(9?*lvWY(Cq4(nh=a~)S*V9QZ zewm9k*+Q_V2&6!ywPSj>c5SBrA9S$5B##mtX8?!4vVJwnLdvkW+nlKsVw;^rt&q6) z)etFp03SMU)79J1&_V33*bJXS00y$-So#l5jxfhSMpt2n>iq;%6e~`hQC@jky&> zfEcL@JmUk_zf_Q`t)Vtg*j81z#0W<$pNe2(?nmr|gq)j2@;!JUUWu4vq!Hl&)UFt! zilM?Wl+k$OXLC*M?_0pjQ>2G%+9{>hf;u`LG#jyy5VxUp3I^!m?;4MM|q{x_Dd)JDjfoBwnKAmu6 z6_FOR=(cjcR=OrNZA$Rj)xLA-B&m}t$vHCXQBAcE_^dTzsOA7VJxX!z>Ru5!){i~0 z6dAMc_5*sbc+xOOc9$UlBjw(9y=FBs8!#^7W#vf|A0JX$Jl#V+n_}x(w5yf}d2cxx z!I4kFs*$z%Z&P?xk^7L=N-z%5aGZjMkXFijMBjY^CY?48)s?6PfFlg+r3cs-)vEvx zTr(nuCeAyFfUlAgWn{yX$Bq9sNGDkL>%H`a4dDZ=dlbSr>xsxxm1 z*kmf3JCy*sfDRJ-8-SpqTp%_#8>>o>A*g;7hfE45BnTrvCzckjVRw!gzk<1JJq1`Z z$|u;XBLt#8;g!TXk!c}<5_Kuc^@4*V&^(4gI`D4GB{I~iIy#;Umnc0J!JVKYF`c$+ zNT*Eg>DX%Z$*6c$iWd3T?^R>9#>%W1s!Q@EZbS&NRuSh|MiWMiG!(Yh+Sa9>9n8Oo zhvImS%9l7_T#@9KmCcSFu7{BUQ!IrdoH%Ce1Am4Hg8b%ia;6j&n4<2brI>CGgi!nG z0|Kd=lg3^|vPezh=zt+EOayY|{ci0`DMV^r7^sR>0ZW4T=wn`=6{>tt2}Q~J&n+I% zQei-wBVZ?}C;-$8?|-5KH3mJ`FO~LTy}W_KSGsc$b_+Rok+)Eri%5HMwV)V|C?SiZ zGE_DmDwf3KAIQa!AL!slr$Y+_VnVuDiPj@+AeG$E+9hnn>%6Org zDXwPKTn6#jk~s#rQnpw|=#LGwTI!CCj+DAn$7!@Ot#R5v51UjH$nF2rezk0Lb5$p= zK=tECkAil=&7mMi)B-DYSHaHG%2aUyt=JAJ#vr99KMOGMG-!azP>SpjXH(bSz`6B8 zcX13DF@+;g?nNaj%WAR(i`!C=!pR8`HW$9NV8rs7;re5{@Ch1cbr{iOix+Kd&!6s z6viG-bw%a|jOax!R5(Xr-jL8}uX=ECtyqI0p{TyRd8MVLw=h`@5WlLxh5YgYu{J1{E^^6PWv}T>~;8~B$~fI0IgIO zz{7T7VWSFVj-th!MXkdKk)UXO>FH1mpuGF*--7|K4OeYLmS=p|3*ai@0wd$g3mYl( zi)}~VhYXpXP47Z!T68liDyWnnf?xs>htSau5>jy44DABlkaBWCD|5%$3tAK@m{jF~ zlSLdw{$BM_gLFwE8c?lMgz}kl$gMj1STtDN@*CHT6WleJRahmtOALs>4JkUF(Vm2d z20k0-FC&UIEJFPx0o67I&eYb!h6y>CcM2r5+e=g_(#c_AnYUQBmWuty$2U>-0j zvmuIWDJMrCW4!CtvgEix^9j`7frC(4@ja1N1rq`Ts0V#yB+IG3`Sbw`val9NCbQ7} zO`ytE_FPrS{z&=`gB4$mdqzoM1!W${J0tO?HK&K*)g`-w)2*3Hx$17enuHs%DmWX7 z5CO6?FlBjh->_>qP66@(2@Pc(?9wF<-OrLFTN^*b(S)XK(>QVy6qpATHQ@WD>r>d8nk@QpSNTWcw59)_6nG63erM50+)XImt5`B`5 z(z~rERImUP63PJq3!q?BXH2kQw*)_6f2l$wSl7xSRR=|#Ro^_=Yp%h+XQC%EmB^Ax z&plru9;6Q)e3~9MHP)LnIsW8<%=q2_ctKwOuAQU`N~uafytHc$Cs5q&kIvG(#~7F9 zokgsd>RZEtMgYv!I4XG~l-6bQe0xfFF`uxJ`2;hr2Et$bf@*~NlMskieHTM(HHXv0A~9V<+-CivV~ZAcj4LK8*!xQt{FIoam{szq0Ytpu3kMYRCS2Xfyi za1-B3j%Ra4)dyT1eR3JXX4OJt|Cn*1&orEJxB^K0{$e3H87jd?9L_m=&b+vN3~m7z zF(k@N^k)nqqEq2HH9PtsGiXWje z2bOE#PqkDc4e!0wH?0>4Dx4wzEZ_ujNBp>EI$?r{Fa%Vf7pp@Bh-@g#&$o+&`7w&c z%G8;zzTg2FLXpE~3*0G45%4aWY7B@Z6yL8o!0Q*a% z@GJ*gpr0zL|Kl(~ie9N4U+iiURca21)dmy7l8+X(?@`;l5`8uPdE`WG^BY?GR52HI zu!lXN5(Hw7!ISidgpoCEyG?p%_U`@@vQ~olT^Y_CMpvh2q)VxtBpyhO0i`Bk0JEh@I zv(wY54zD@q$WnH?IoU&CqqR)^uR9|-)@G9n;&&Zt8!1OGz94;1KKDzio5gxBzVi$S zp!(cT4hZSAClf5{X4%UKmdBI$CRKL44tSrABe&(O20knD0N2*duZchbYq8lxuDe8} zGWB!UME4E*gkV&yvphYW>76o^(YaLM<4QiS`$hVJ1^4~&CCqwhq0gEJc#mK+y~!gS zr6yb@$!k~ND!Iv*nvw7f+oRcTd)NwCsoeuRA_V*sA!t!sq1&Gk+QKTlWUR^`~#@KfnC-CdF zQ$ta%x#Mt;Ku*dRY~B0f^2)*ok#}|c1Hv`dH@-TsB|&G~GEMlQ1ZAaBY}xe;+3Bu> z`|ewzw*@s1g>8HXZyfjfRFY!Yg#eeNH77fM2HSSWh?|v$uajL*G!Be5=ZD9=uKk zIK{sXpt{A89%a!9?h5~R27bS}hIXC#jk89lNr;^cmsJF>ud&elJW=61p11 z;$?4ee7l(Sj>|H{izhVJzu5Dm=A0fe=X@PA60%EHn4LIxUn@UiT54A+T1zmVV2-y@ z=IzD9t%yeIzJy61H*$~b1^KC#TBWwiL5V-!3m%z(jo z16c$4b6S82Bh59x;# z+&GW$uKyCLi7rj=QVz5%WDjONL;f9#OmU^rc$0u?LiZN%Z_9V<5FkFE*}Q3=ac(>u zqrDAzY8e&By{0tPZD5;=-TBaf1!a`OK9mp_r0kuh6P@9j4%V%(55oXh8E^^p{=jkMIAYmM5B^^Ft)T0u~{*ga0@e ze7BvhXSpFe5VLA~^TAdq;lM&kSn9vU@MqTDMP#O@wiICl3I67Mp;Gq%@c|OCFrHt4Is)Mw?Uw~Ll zJ1v^<4TMQ;)mstIu+l64J58JOrpO_B&0>TN6J*z=J_c?3OR-`D*)T^W>rxnxDv ziKc1YA+n^&F7m5`pL!lXrtH0-VdU5M4e4!k6_`?T2|b>|T0rziUP%8ApSR38=pOL4 zHUK3Q1p1)Jq|s*w_HAB<*RU#3WT@z?3Y8`gEY#RW)&}Yb|9l4yaLO}f52L~Xja40A zE!1gD=~G{l_6(MK(#rNIrAbL@dlRUD(S*%C$}+8xZ^2SfEHBVRjgm5a11S$db%{nJ z3x_u?sH8hH#ug<_JV^z9(9*}~rA-bW|49yiN(PMTu;T60Z?!wK<1n5uKw*I|+%_*a z%6K_+qhaZ(rcHOjZr*+(yZS+oux}x0@bGJq zd0L?*16y)Fb#AlDTav=Wf!} zM*u#>9Neib3eRTY*66s)tfu#Y^0_*o0q3fH;7$0vevDE-~u)Q zSZcqiWUW~6Zix>#?>A6MW$dUpH}=a^Br(sW6aF_9{?;X*bLceP0?D*UXoz-M&_nC? zWw^nvkZexiRL%@?^q3RlPAbHpNy7G(_QxPu{5bxPrv!zmx@hO>yiO$xq_TbV$fbwV zP{qxzn$4HEMtFzZo99D2EGL|6)8R=lF{QwmZEw11bh1q_Zd`EdsDYfwW-Kfek&__j zGcUBwBeXyZLW`jWn`opWUnO7@NrtpbWW4`oMrC^dIK_+zPer`odXE*tn6qGw;kUjw zAx6fMG3T^)Yh!MYFlC19r?T;6c6+$!9VJ*h+_xl`e&-VE`C-H)EfsQl()Aa@Nq7ov z5P|492L&8bpJ1R$c^b$vM|f^hgH3dwCl^OdFv^g`c?#9EO>$_3G)VW}LmI+RGGC!W z8kB&34`~RceYZeEUz!Rp*q(0#O4it9?NUMr^%YLLOV`9mB{o!LVwr_tg`tK}MhaWO z$ZYj#>~JHo%eg!K(^IV^HChPuPyxYN@Q%`gmV(;)aI48_V@aO_4#S~X7BGc&OZd^` z1v(Z!(`IhScAYi=TMuVelii}vsSl$LggA0W4W5%wBJ1ZS5!d|v?is`a0f{B(G|3qR zP%jCSsa9%x!I^IZRMy!D1V{Ldz!~LJbI-s=LGaJxJ3u_4dhOb`^kI=@K?T=Oh_I1k z5OWAQ)K#kofkQ@%_y!QwbO0X7dn2m8^h12--D#9+(hp&I62%wQ)^>qA8Kzf%zJ|V` z0t^5oN1g_deEKZ@=qE^HJ%x;9N7bf$x1tckE&;V<0|?N(5Ut@dqzLr{Dlq1_fubA4 zKdgDviKT>rDTozoDB1M_7;K8I*y;?nEGv*%OL929W&8*&Eeo2a6Dy6EHyeOlHeJp5 zRxJ5>>U~9!o^MN?5JGJ@48D>U#yT>8x6b=9K7^!3GU54c??|C!?$o# zZ#l=iH)4sf5=RhDbL2x0w&M7OPzOgoVy3!1TuOzy6&PdyKb_THQQGZH0;(yHFZt#{ zx(8rG_@jokYtMf>3T((Kdvbmij3&Z#SF@pSPxc&c5eOquN8e?$0WTp+B5>!=&IB<^ z%}WHt0R51Fu>0xdl_{S4FHjaLp2{h{q-sgvj_ZRrqV)6i6#87VPdThIqY-g+DL}-| zOfiD77ymo8gq>SGeQOHmNL>SN)ci-cLU{j|sY|UTxCwZcq2PY6`+zcY!me%50gE`XL0W?HyNeNH!gF{qZjGU`HeikvL!V(^mxEH@|tIgMgBipbo){MN2?Q-h_UB zK;Uemk|@Ge4N=+>q7aJM5|YVnW^MR~a6=$uD3hoXxQ!qOu{M`T{vkF77a4}m-jH3j zFK~MzCm5lp5HPfVdb_&kC!wGuJY>CMWPfsCN3sr;$doGUL5fI+wUM&egUf>ywp_DWbX9c;YHT3mCwT?@hWyWh|; zLgi$69wL+W4+~I{1jRkOGw5`j%l zhng1tVL9G5)dZ+h6#JN@*arkmT#9d%4 z6!i3e>ssFLIWN~d;Z?hj3nbhJOw(ls@-wuVUmv(LC*_L$GuRL8FeXFB^wo&35zK#R zhQv-q5-x+uokdG7^DX(r10lAZOQ*|vMPN=W!pkEZK9d)D+iB&vX)%CvH zxQk{1nv_G^ateQc{4MeDfE*!XH;VH0+l3I{s$+AD5p!v*k4AkJp=b#Vg^s9?#6)`~ zRFOpjyC5uZmGa{P@G&rY);BlJW9~6zwH0+gsIvFH`Gt%U>7=(4%*TNoU{IM;_dz2w zXNSa^%vdxNj29*e%*m4^%XE-FEQh^e_!WNo#e-$_J~>U>jTY^EIwR2MS?%T@o|#xS z^oeS+h)Rk(b@E33G38++A1AlCfA^1GU;F97$k|16%x*t%F1z?*LH8gZd1=DFqn|7(Z5-20RGvB%z~F578Y zdnmz2UXVI)Sl;>io2kmt$9BH-8~LFBfC)bG4C6(fzvLD9IJ=ex$tH~bY*~!Prp8xu z4i}q8*_A%;Qr>7aq`XgjO$X(PXq$n%Q-a=|HU8GQ*m#+;$MYpsLzgPA7iN^}4#tI; z#hyjD>|efw?!QvLw06^?pX=)D+gkJ8m3+5(X-4@-=eDnVhAA41l0A&ipR#*e|5LP= z_V|L-{tJ}})$g`PrCg2H`rKz_C@$OLa!K{??-Yic3U|oU%BIC9?rc0W<7UE(utSZr z+Pv+a_f}!vE~Q?UH*Qn-n>n8j*qrsRWie4{OBUy~>p1Af;rg^L?KVAWuklCNp}hWc zP3Jm0cmMLpiS6}2xejZy<%QMj{{Oa_=dq~WQKyj6C)yR5%)6%OlOGsr*QWiIca^#A zKK%$g@n`ktnrHmwBQo_ct`4R%J)>UKZvJSh{FdRzwjb{uQ2$AmolUCiiM;y$32xgu z$LH8zQv}@)% z64cjIsaK{LW$|a-%6pv}A_qHf8T6z4N&f>AWjCA`p6XoSxgoYg>>mqV#^txO{m9ux z>AO<9-tlAG`iVZbc6Hit^uWUS-fhh0J}=j^owuw@LHIqb_{HD9u>bggwsorOOM4@o zt_9<9_vf1{6-)BkxeS_Mb8D)zmr~FDn!^KsuSE2h4}TIqJKg_^-9nEng|_>(C$?C+ zkM`#G&yip3zkS9Xn&AUqo?#oyEFIg^i?r*9bp7|Fh)vkTygHLB(H*+&@fwT0D(_$6 zzvY{~PxduWL`#ZV=NsOA|&c9oA#V;(-Mtd(C)+Jvc2-tHIr_JF@ha#Z+$dRE~7s zGXJ$fMOm_YZD57-^*5i_fATJEcBe@+uYGqMmu}w*7e0@h{_&7GAU4{HeG`da!culN;sNmmhbWut<}4 zan+CV#3k)Y2Sq-h)mS4|BgS~vmvnIwZ`t!T#Ib`~2iazV@lO=8oBJIPv9bw}l;bjH}veKbWuDh=R42?q$N74$4yo8l?E>$( zs5n>|STI@M{`;~g5hoWez{|hUO~&6C-ssVLvv5cJ9^Sg+*q}^>wk!i1H0+nXiw9=d zIq1}pJkJ<>V~9ug#JsdO$BPUP$lKVA`u2c)v&~dFE&7&dTJ(=s>PA;L^iPj#$Q}T5 z*1L`QlaCU5_b`XbysB4dJ3KuYzSDO5$jbhsHt%nAx@{0@=Ul!;zBl(mje{cKhHq)U z{x=yl{n`va`mFqwfr;6Z0I~ohx(qg!XHH*R`vyM?`px{DbAh+Xq!F+?8w@(%GaniF z;y`Dcc&(mq%p-V`|C&}a_<($>Wu-jGdVTEy`NjXft^d+z?TLy$B|o?OB+#pKn&!!< zlpwnbk9TQq*Orj&u^TYz$~1-H2H!3-2L}IYi9<@UthfW(->v(=Lcsrfv4? z+7(4)zB~ug+79^gzcHi|J#H<9K_9m0(Bgs0ei<_sdW_H4PtP!NtXyT?H}CbE5A1G- z9m)in{NaUX#;1Ti(WH`@yBkUcW_mcPy5i@inl&(>B$%UOU-642#hlhb(ZHDIYNB>17kX3;|>gU-tzcI=%~&w zDPh6RAqTBJFFk%d^f9bShZBLx_#0srwJ+QDn%%u|Fj^^=rf$E%0(lxZedHd$5n~y# zelTQYSewuXR*&oLOvj(JvxRr*kcqWgHtf4lHm7deHsM})w9$C3>#%#ccfInJeSL^_ zoLAqv*Pdhl6V{l!S8nR{o83H*dlPhRieM*>guSqO*{$!r86*JqMvqKjAIt0pm|mGy z8T9>w(4jGH+Wi!ztTpShmyJ-}w8)ArAM~oa-u0_rj{K5WJOh5~hxi%4M%!csIt=S^ zbY^w-uhCi)kHSE@4qJ4T7W{%)$5EeT-*YzEXb{!K7x%g!Z_~Yc&f&)2KQR3SLZ6YG zn6(X;U5Cv)*65Ug&3V?P+`F>>+P=LUcG(Sl65czZ_i{_0(VmSV7b-?N`(7M$80z1) zZ?DlSN*^Zoj3#CJbWORofj$&roo^R;d1!p%>0Y(f(Z#`IPCCyhQ$*arU%QCv?7oi5 z#EU;WEy*K(E{YgC zIX^UhtW%ZZc8cZ9=jA5yThfEepW1863wV4fVM~?m44gb<77e9_M^71l+sQJ|@Y>Jq z?i9^PvMg+85cTsO`M0aAb5F_h?FvWk(Yyl?6`X19>9mK2-PwAfhs*}%%jo`O7x6~e z(oUA;q2>NdN^+WJlo&pARgF7UvzI*C_0M{{i1oD(jUKsd(Y*6}1WeJR$yd5GJpI5L z#?~%;ludnTw*0Whu~4H9GgDpv*m%&gkwXIr1`pTEF~OkJNOOU<>% zC*CO6wefhVk0t z;~=HM&e9~F_j@#X3m}bZ5^mETP5#D3QL#s}1H8rB*!lM+yU>=p?>a#yb=cbD=Qo~o zh5B5hcXeQ2K>(xq23BVOYV@d+ zfz!NuljS4N*KEKGt+V_s^sfE<%;{uBpK^aJlvkZaQ(atBeOOcDLZiOqqTR3AJr5b( zG8Ur`Y1k$35ItArvap_Y{j)eC;s&|;A=5MS;dmh=U6U=3K7oa@nYb5=sXRCPExd@d z6BR5E>qjrGm2Nx*>H8#Cq4>fe%IZo3d~P!Bxv88kN95J2Ui2suBhH2W#A*;oQ%OO2 zKe$5K#%xk#j&kdZ+@U#+mjB!7>XSWDe$PczViUu9{wRlFk zf3vUw9Q-(_!sCKjW8T!V+)}d=mbTrtxC%w6kLgwWF@8m}JhG{D2_7DGSUY8*BtbC{ zy(4+FX(9ULCe>$CldBrzo(9}td6@qBFSF5|M6>aBhWzoikP=qF7*1YgZSVuZrAH*I z?d}vW$$QqN#4s?rS$Ml4QaN@3Xth3OpL}5wevx}BS1-lN6mu_U)U5V%qYu;LuuShi zvh{4Lc{bxd{JYsCmQ7O`5L)ltQ~3J{Y@sYqCAuUooh(UQO6>?YLC7&4GBTu5wf^a& zx4{=lqMr&Ay}n~b@cTbcgZ!4V(-J?g=r=z9bA!&yUdqFYw2k&fzFF|;T2lQj&#;-N zVHz`1EG-zLk$<%F7wCIMssip9cVpvW_rx4e|A*=MX z+%RD8{@GKv5$K7}1Nv_fJ(|Ifg9v8u_BWd!LV08rTFj*4p~p4645HqU_e8FmKr*S) zA&(fjJnXyUi5*s1Ykn~!W>(k>=nf215Al~%bPB#t=@*2$(kOOSa{+K;;2;TVyC) z%f7gZ*nGW*5mv(5{DbfExaR@snE z@O2&JC59VfL!@Op?mQy$ne%Q^^8*HPYM#g$Hj$=$p#s5X2jQ~_dFX3rLfUKQ4KaGc z=EiE`UiWSQqw@0pr9U51Jrz9gQw(&EX0NIzX`eMcam2>SM;3TRc$IB_d!iQukJnz| zr?LxRj9hk}*PFZ~*Sj&K$aoFe^xYNy?vAE+8fPsBMsRS+T~>QJelsGN3Hjx)rDG=- zTjfo5aT|e&tcz7H^Usb9b9N_}SPx$fC}EZ7CV!CT?Rx>@pZg*-zBe3Iv9`PXK}kTg zqIO+uafs=@4D%yzt<2r8&3x`v5! zD*6nsax}Fu@=c3#8NH%xX5Pe@TELhTMG={KE%*arxt+`9dF-+H8SA={$6AlS%^r)! z2A~xC6F}^P$?L%>>|cE)&Bu0T!}NQxKMwMsog!~6f{;90D}~|f!(k0EH$u#4)FGqO z%u2-g!d+>FUb9JhmF&hV{VX&s?q>y@FYIn{ms^I_?#JC|g~IG;7Cd6RH49Dh%Lxml zgu4#QCDcdD*4V#t7d!YYh5ObSF*Jg_WvaOitR=hQN-i46uGXJdy}0M~cB&O7e9$;6 zY?d8xpwsQpAIS1(Rm~$B2_s3F6*d%6`)$7{Ve8hU`xEYvW-8g}uVD0?eC`z0Ziu~u zwIK^3dCU6K%W4I(Op8-;B#Jxd^xj*`IA&2tA15KIH2x~+lw`PEV-gN+_kk^RB1hYp zdyDs1_(3CpuIYdr7-kxV1jN;C`fYr1QVhaxL1C)LRtZ$ z4U#QKnq^`nt!A~U^r6-$K*_$B1qQ*UC~Kq00>xBkBSMr`DjA*+Zz0!}oEJIm%Grsl za$|?W4G?nv6(LQ4JliSi{8hHwr^(IjD2iCMwMDhEzlN0C5fA}_V)H{Y7x-|TBm53) z#0yC2cEw&=C8j-Ky+|Zn0X8I&h+aS2>J@wiuLoGKZhcuzTDD0T&-E&|jX@Sx*ial! zFp;snQTWM)<49C#1ZhhiB)j4DA$P3Tm);tYa@GC#-VTqQcUMf-Hi$CxEVT>BwtbU^ zwS&Bw(qnj|$}w6NK%;?V7}UWB-6wz{L#cX>Ua%c4^2aWkbsFXvPyWvjh<{?N4sQ2= zmBDp<7CLlt8h7l6M8$H~N}Y3Tqz(kXbiyL<@;b{gsJJs3qo0ew)Hig4krR;0Tie zbka&6rdSH3<0Z35uFy5X8Ws;aDNB~zzuGpOh2nK~ig6uS6v0+D!sFeI?rV=P-ny>m zwxWpGvF_QDa70$@>)|j1Si-bgE+RQnt^!H7rN~K`CVs*qilz`{^{Rz)hsw6QLnzEq zg;Yq1j84r8TX}U7iO3R?na7dy!M4B-#UCj$F44xo2wW|NeTWMAfz>N&Q`tQN=EYs0 za3p>6ZD*3YN(xsodDwTtkk%m1`Z|VC#DN~KrBr*E1)GSmoKwtQj4$;nJ^O16u!y)(CR&v(9J5MS?J60f; zAQ_k<(3_jX*MvbBY^I5|_o=gp6m}uztdPt@`QDNgybk(a<5;vSg^Mu_Dl4+l34#=I zJSyee{XaF!OnPp35kR1r3?NEVMY5VS6#<9X9D@0dAF7g$aN`al!; z(VCF<&mQ*Abawyb^Ke=VG{xSVD-A-Jv0`WdD9i3ckq`&lEHw*MHW zHdyX^J2a|%-rH&vo5}!NCdQb^>4lFYV@kC@%RY1~dylnOW4527$ndq-u-vzb-3c{w z2}nH)ErEp-(5B%l)u;zEn-WbUVf?%WM$d|N)hPyB3A&>KdU@5{Ybt5kv9VGB*QoN& zS5H5Y>%qRhRrEB7BId^EQG4JSX%;iwug#B1ic1*Ujc`Qq?PNk#06u^b>6qUbU5{*X z&#^!Eoggn?;FMayk?XhxX;$7&w47B|<`vMG6ac91j;6huW|^+CJ}hgTwZS=o+yrsB z>pNQC0Z{vF#B_c4ZmA4ZU$3&BGsKJDAczoxKIKG3jHNhKiyXBS3P7BZs!R9v9KfJ& zZg1QOX3zUjjs!kFB$Il(6a5W`tsW;)KX;Y|7$fSN`5Yh^)Q=Y1%7X`LU{vIFRkgFh zZe=MdE>Ow`<^T(FgiOS2$CvPHG1xxg>a~Qk<5_%fb;mfB#?jdtQ8Wc=Y^!!^EF&PqUft8Un(7@^< zQiMBbdS+^#oF|7kUj*B5kt1XLHP=h? zAWz&8jH(fA7ltiG<&-s9|2>naxWNpzh?o??T8yJDD*^Adug7B#aLnh})<46(M`Uoc zjVY@9IIe;NVYaSiYJcO$Nu<^Mcm)w>S7GVP>`qQ7Sh#}5RS(PA9Cp#BQ`jZ2<+wWwElu;IGkWD9K!a#w-zEo zdWO6$0%%@x!C-~JiUS@u%ZtJa4}j^1jax!-#uTWezLQW)iTlGaC*EkGX!uPm$H+o} zTLQps=9YLrRNRupDr~{?k!XdG2n3d<6HacI7ggf0*jP13rze2Cpjgi7FTF^z1X^IQ zA_yLqOC`4BdpjZ&p;=;;XnkptM-<+G#ad)VC%^p*!NVI*bd?I!;XYwWK+tWg#C8bY zK#7g3ha~X(%U=~oRCJ*%%pM_gK2Buu@7$mqOwD7X$MT>PXI(K`zylE#4b$G?-Wj_I zqyXhke~`pp9Hdk^kP@gqrDJ16(=(0|FQMvaZz8_8}Qr3rZv%+ zxa8-WkW_I=>d(3mRJ3kbjerPh-JmrKDg`10(HVjFN8*|ijc8O>15vgBjS&%Xq$Wne z2-FCYutr7DQ5d&jWPhLM-0uw7zW?;ojKg=n_ug~Qea>^9b1peInV8>a>~DPs>xO0O z_LN){7rq~2HXi2yx8INk;15c~469%ULmM4=K!um>^IKME&WYp?%pXe&ri#f6ZS!ne z1dsP5CLtiB$IMpWvPu`SH{m3=0 zMw}egFcd_;NVhm!!4wd ztt;HQ(8CzjarFNcD?>0s*g(QrOwk+kVGqKN8!7u>`v;8P$Q{_`o!gQ}uv!i>AUqp3 z!9l(bvXQnoc1BUiT8%x^EV`QulCx~(m}f81FM0-bWe7zqmWF4j9UA^#Kg+ZEEn5_H zk+-XqE%+s2LvVwBqcQC+kTCSSvGsW$?-{BML@a)fKjrRTSqnW%(;Z7TPhg+M z=Y@5)|Ew2+_S18kfKQx!!+{ns?^|1EAW1?b5mNl7Z#V`6wgiMm;uPcxy&2+9ET||i z$)4%slB&OilnnAG&tfuee%S$JTk$`^V1wf3tQg8v($>a1eI>0^YuBY*;TR@ruBz7v z_ihWiwm(x+I3a!G@GsMR+Cv)yR4SzP?35miiF%JJM6@)|BP$zT5oQZ+GmIy=+3;fG zz45(>k{NAx#5Q~8ZS#BkgT|3#v}6djn=rlHKOJ7kM}>L=K*b{=vT|cU%d$0XpY7@> zyl?s8i{px=p@Yzl{h4%b$ib&i+*~WU0`nXkK!lUEgO?yZ-*mB|qL$&+mE_Nw_9jhf zwAiT424wf&+Ifk8JZTIeGuT2z3loo|xxHZ+YSyn`f*g=cA3@ur3V0Y9PftXmcC6*r zw8_p9M-QZ3a|BSBUJkZzCL)(<03LqF+C$$+Y4Tb^nj4?z6M?>_|K!C)=4-RB_4qW2 zLWN0V$cb#oXmo`0Dp}!DR=obsK}L4jEfdX5V(I89l25{XOt+@Ji+zY=?($yJFR&iG z&e^TWOvjtyUY^sw@piL3rJ1?-2Y=tHZXz3m+Zsk?M9527*)o zxgVdsXVnz$fcFVSt`_^)|2K*|k)I23BdiQ51~L2PF=PDIeSbtgJA(lp&%-e9rPpwz zc+=A`!0YfN8tAwN84#ld1X`V?WKa+YDxSi)!v>nkla!@yX^gw%c@JaiAZlR1hrk@9 zbC~R{9}rDGo!!7ojV)zlqn!oxbn@9fC`S&Ax&>N>iWyZEStXANv=|SHW5KPFiA=XXJhQNjzJ7~KIPyX93C24}ym)(d} zi~XI0F^3V&7b@&yv}L7(xZpkENi+HmoXkCW_w-kdKTP;%d)clt2RlPXEi0_}=U?7_ zv0vB2AF6`?XXWJe`p5yN+`|hZhg?Y+VSxQDo@ERV-_dTr>}nzhzWjL3^TiQARNeH# znx-?D;@9+l7G zCEepJr^>^|{l)aG9t+-yRdP3v$d3fI6`)$6;r$f)+W%rIV?<$7@%lp6S$QO#}y(D2Xh<7t=FJ?Sg z>3(<+$A_;*q|}cvTpRc2(1(8e|KgHv%=6g(2re&t1mC~T*=69p%VRe4HDmjgRl#=p zmF?P9>pZe5W#$X9%k;HQ6Pia@R@%=^#gKHFqwIh3g_Y$WGz}=bNj84Sz!@Q@bbIuT zIkRJ9ad=^3UK>(8%zkb*2G%<D*EW@L2AD?R2SrDpX~!~Cq^ z=>4VkUgO4IHP#*BB9$a9+2eILcS*vTtbyt4mpYy0VkXQ#it%XUJ|mxaBz#c+bB=p_ z`ow1}6#<#4+kJfLgsyy3@;^e}m@#M5?ERyjFg|FRmW1(;IYLEP;Y%n~|lhTqc+1QD7*&dmx-j<3rUyex__7DjJ`yFQn1x~i) z8#cZ4s|~?Tcc#^OjpMp!@>QaT{g08ay+FLIry+w^w|u-hv@j3GGf7!orKOFHplQsa3n z-`vW&--A>YZwMY@zvC>-Xls+$Mom(ASdd>}Z?Co&6W5yX(Ws-j^RvvW%`+ZU2qRm% zb31{I<}@$VV8!3W8P9CZ6?&CfC(JXD8WFQS)BJr%>wLqI-0RDu8)%`3bq#bxr*w}> zHr2mrw-6q~_U!NluGcezjZvjZaB>(?3|LEg-73Q7y@y{pH zU@6TDXNbSD9#G)wH_ZJIXF%`3%DPu@>oP}r}Hc3La%YluHM+S zOA?{|{BRsh4SGMTqrT#>$B%e#ycSL#w_3Y7nYx7ObHH>p<7l(LxH@|aO!bwtnwws2 z8Gkj%iBJ*OYowrnh~D(g@L!<*U+Ck5BOSFQc;i3`uQ0k z^%4&>fzw;i#~zuLSC$+5b8cmO@=Y;P_%I@go>LOhWAG^>66~hgEu?entgl$J%J%lB zeK+#Kp65zmqWk7AcY~F0CMsS(BBk`^#CNieG9 zIn}T$9B^SBCZ@6BLiP~J9GM*xYxNfJuN=lC-ECw@?#$eok< z#%9niz4Nf>vQdm1<=7DDC6@cBCg>qx}fUc zx%*)z2FyKLGwd%ResY?~=BeT)sXA5@6w_*b`xsD2c>87A?y+R&r7Ze5{|DI=mCw-b zbPA5hFK#wHASva%?R~nuOOYWs$Hky;R?!Le9=k5^McZ!2aE%*&--`9rNKSLZuyKAO< zMSA7>`45a9ZQK3<7qFq}L1junub8&_fRAb6vNAz?muq_T<1w72t*7xK&pcs!{ z9^Tx-*t%Bh%bOx6M}t7`JODBAJllRmE)gS#ckkaHD7Ug0i{s*szpgmgI)HvodqgcT z^`X{Ze*a6P%lao)Y$4!U2n(P~JFtFZllMN4d-zWPlP=?lb8i`zt_$&lOZjfYO2U#f zhh$IF#;oAk`^91NoT1UISiD5pc7!fr>(Hf|tJz%tb8S1%2=U^E@x(Nnd}gIuo;b|J zc;EmY`gv;W@V4mz8ED%EMr3!!w`gXWzJ1E2-?>K*+q%8Is83W70*{X9Q>!9xSLt`o z$RF?uk;v6HtX#RFxu5T)vi^X_#W8kskH(+bbZN5ru9qHea_-xvUBH`5+~oAH5AgK| zheX)Z1DA9<%mmv8U}BF`H`P8XF3_dpboq$2E-h6t=`(za3nGKu^l#J|Gdmiy=MxHT zG}rIv6USZ-c$tWnc^5f4lWcif&3tW|AxBl zbeMZ9>v41sm!rE3SSK(^_x(~}fc&~KF|iTlyC>f=uFrC+sYl*7Tr%`_}e8=j)V~E6xct8BdzV?7itVSKBJalQGqi8=jBK*^5d=7G8U6GsxijR-|NhtL`1=*y<7(G^B4L|4g$@yw zWR~J!)N}oZEEllkZWjyq9380HAc*LGWe8bxz094K9Culx2RM1sTd!t?;dlm&RonLF zNXKoA-ClDjb~13W-Oen-fy0k>e0`*1iwR+-Wo5~M)_1Z79zejuy)bn;PXkQ*uJYYw zC(`7&9FEuz01xQ1ZCYItLD7$E?v^G`;mFp}vAbN^ywugk35yS=7l3_aUX@TEnO_F&R?10RHb=5e+=){ebY{_HGuGSJ;-<(+Y(a>O7pcpJz zWR+UuDUP+P5vEE$!e`dxEc3cNMt|;rTf-m9OPsMhdG4p*xocr2V^rCmJQk+fEkvZ+ zRs;-2=YjFg@+9Jf>o{J%yZOW^U?I}xa~X~bPyx)5SAEm*vEP8Y4S}x{Bn&*aJ{#Z_ z(d>N~qCTTxp@JTub6@B~s=x|{38yq8r}-*4HMKY46oK22+;e<)1jF};T=?gaaBeVK zP$1na;)zoa7!ARg037+6#F%6iwrqc0!&0=0Z_9m~M7Sx+3vW!u_EfFa* zQnKzE!tCWy8~gX*z<=XCNQ5WCGkRlVl>xSi+t7|_&27|h%aY&wzXI7S&#dx8THmX=ZuvEoRu(e0VX|`k~)5K<6EJ< zd18N?eV+h z(k=!-B^tch6IQ_iZ`r;Y_6VF3ZxNXgNC~7{QpPyMJ8JgRM?u9nx-xJf)@=?aPd7rO zsJ2wlIBqGz8yo(R&1e6NW`0qI9=3~ZKFRW#=B_rcg%NO*Otw6sn(J8aP342cGStoy z`~aLGga}vhfJ7r=em=~LX*7g}kK^s~w|2XuY7h@$yan-Q(!piOUgK0uZN+ z8Db*&Spp1+e~MVw#w6j+lQoDQX+_EHLYT;XkoYgp~ zfE=e{2gSuU?RxaykK?}c>5Vxe>N0e7Jl8Uy9LFpDtgho!`D{A&j%(R@CuI-BwSH0f zIbS;d?3{RDvDS%o@FcGdaa;7bB4_sfm3uZIS^yy#9C$ml@lL6|Ilg&i!BW$m$`lQi zaIP=ZTqQjOS}3_HZ5cPBmfAp(dfLOjU4z{PlXa77ztiLJ-fuPJ=XmRWXArPNoxEaIoMQrZ4)Dsfl|A$D=%M`X_z?v_&3+U>U>cw-okh zwsHgbTLrbi?A5HYt_Yk4xdAN9z;77Kxa3Z8?3ER|VzIkIBu;6<^dymX+}h&GQ91j+ zX>ziTOoEF$ucvIP=P>~ymOxya##COu#&YSCI{Sfmrf2hjvO!>rNJeiB0~k>&N5`bR+3Z8JvP}k8nZC z0d+&yFK;w@XvhTNia=vLAo=SfUudsEx)q_MYhPNd>z*lDW?+euy|fI;W{?Hc=0b=l zqgY`7{t0&Z10%|Hp2jE(K|{;KxEnYndH8Mv?@|%4?MXkz6;A$Wib^@h>~y9aDA6GeM!Azn2;20vH}3bluC-VBxpb7qB<)(L>e z0J$qfoNy$jl|h&4mm&F9_cL8hY6QX3_aVChdc?um)4j3k(-695IgYAaNu# zS;Y=dF)KiFpDYAy%Syxve(d2O-2+?Nn`VgAa=AoiHX!*FI&e)wh(zq;o1= zckX-oQ;&tpmsOW^&6{ND-h*I5Xw}HK6}Hh@;jsUPtPhCHe2MYsMmDV-M3;pfKgm(x zF@5CONI+oObFss!nED}?TGYpoPYCaF#&`Y)%bve-F{1|$VySrR%P|U(lsM5L$?-YW z!HC2u55(H`KiSYnK-eGD;Rj}8q0<&g+T_nUtD<~lQF?slHM?|c%^sYSa-izvtCosq zc_b?wadl!Hp^qv1;9oq#>i*hGB?4JR5XFXc+H_%rD7T^6YJ6yf~xR^GCcsHG;z!6x%!p* zA&TeW6MPmea3UL7FBtuFZ0qmM^=X=KECbV|Z#2J{2+!_ychVR{FXq)n2np8yDZ|w@ zBp+$==64r;CwUk}P@m=;pF{qjS1#S)v#`qNS@$h^fK@`RPL>9vDFUVGnT>98-Qi*5Q4Lz{k+S>S%n}_rx*Z`!q!t;BnXmglD|%~2kcP1s`jG%Lfv)-TYD=< zAuwH|LGc`*lr*f#1ugG>gJ=(y9s#0+{11WKA82=Sz?Mi<4E%3Ras8O>5#kIOMa_)F$chR0vXrrgR+x?bx!BF`g6f$h33`kwFrfrZnAytZxLy>Z}e5%S>sB%J*jDT~t8fhQ&g zdv`hIF23d~#rw5ic&v!kNjd@|TIjb`)9lhDH>YB5%})^K08=uQXZBR{p$rXo;)o^s zadEv)-g-@O#0H;F=9eM4c2`6P017mYNc_5$O2Db92By*-WQP*}DAEKmKo_8WFVaZD zI`Y8dHV7Mf3v`o^Vur2B_uo2~>UJ8rD)Z_%NLOmBHrIo2lWCXAFb=Bj#0h=agEp3{P+ zr{xkpq-*<&zIk&!H6se9K;Lj0*{DAx&(Ksaq6_JsFO~D`HLw)) z2PIvKmac~XKt7&eYb`JqR*k|KZWE?FPxqj-tdNB1O|h;w9j)RB;p1doRL%~bMD!$L z1Kb9H7NY!-^t9+m4$coQzd=hBjn7uVYp!Asjzsn!K(}O3yk{0A8 zRT56h(p18U|7uM*(M)?JoMcPA%`ZT)bS(%ekT%=CTrSk&2G8Hde2#p)IID6vO??L9 z1d|>?@%_Qatti>NBq323v=ojT4uayDoeEIOob*5>wt4EA21W+@HWGVcnMHv6AoaSp zrXF#R%v7hvOHVOG^yamn-2QSzq8qd!v6gOIl|;(kaOmSEn3pk~!hQfJ@L!B~Op+-9QrQrA zd+@{kzENKz_W;niQ)xI-arA@WsKJrj9N%2wRj8yPi0dcbT4^e`RDf&(1+MT52mxVK zYQU)MTHo0sjLP}ngM@J@4#+ZKr$W!-u$+93``(b%i z;OYt&!o2*qR4@ltR_Sr9cD7YO9*B%U9gtqvpN9c$@OZIqd60dl@%LBiiHcLys#Kr8 zpm#F?f!t$$1xKGnJ>nGj62KDtlbx3DZi1GeWLVH89DR^>%_-T7f8hMV>Vi~?Za>IL zMm@6_8thuZXuaAsRP-phO8{^bFWvDljsg)3XY8+OBKwCjJyXqnEID0GW9Gpe59b+2 zyNGs#uT#ULB;eDb%r4IIk73M1V*npkvKOxm<|8T@GCDfWFhtmphIqhhR20)rMLtmV zQZqBVB7!kCGdbHS%ya1k3s@N z`^;g->Nw;t^!bxgY0v;st$nwo4JAYFz;iu?eE$@4e5LDUyzs|mg1XELn~h7AmJ*x_hjC)Rj#6l$j#jx-&ya&EMxeip#0w_zYm^OB06gfIVhbcaet=n zNfp13N%ma+q{dAn3`Aa)V5irlGXC&6$k4#=>pBWv_&<4%yDLq?8C9-W3{;ALIucO~ zK?!)TY@idoA2M^v0aQY$*p%B!#m_3EJ;XlwUmOIpc0!SauhmkA5NWhdJ~>$4n5Uw` zB-IL&;23y4Wr}5l*f_X%Wi=(CmdE4i5@mz1C2Td!oiZV(ZUES{x36&C#&PhC@ zR>#B&bGBA-u#KWt^bBV|s&fLQ)Z*)=aUTX(@DH!}`1Y}qu8k;Cj#H_4QZ zra@5efZQ{9CTnU(J_Abb8ONz@A=Ey;Hgn+Lo1P^}cw-9~jecCjSONPb0BAz4<%M81&^w#u~NQ0!}+ae7-I@QAvJ6r&=@A%mhi zmIsB5K;8^!*W`<2{njBksNnMY`Q;CozT5!1&z6SsX9`{=c{EQT-dG9Ccp~yZ5I2Ch z1=+!9tVOz^T9(u!=bQNhOGLp&M&jxpn)!fs-61>XkoN2|!V*LUsiF=mtlD zf5DMWup*hzCZQzr!Q*3bP2ii6=(Vr4vu;+fZDL1Ho@ z+7Jkzn55eZQL4}c6YDf9aEAL+kV=vkv;mTs&}Qj_{t9O5Z1bw};@EG9P&l-#99i+fXWfFW!qk{v*)G{kdmTSwhVMg)stP?KOW>pk36(xI1 zLCE*XD^td(xp!dw*3y&coiYm{rCwGSE7e$Ol#Ma-JRk8 z=nU9dYzQ~Lu5Z*wra$9fnqO6zF?y`|{_uyfzQ%)4aHN)32Lz^v!&-lKcF!#Rwynak zymWkiR;ck@ZF~F2&gOrXFUc(Zu)G+#o1c6Wbk$?tHWkh6N_KhUUiN?ky3O0CH$=C- z%dbzY<5TXhyk!0KmQR73p(*SuOMRNrX>((K?}V-;sXGjtiYJ@D*Ef1(<#~HPkGhQS zBYpbb%if>f|50-JjODMJvQ1ziziF!o&vkdg=i|&X6YOR#S0mVAX!iE^eBR_chR9$| zgR@`P3l2u_NmYo&Hh8^NHG20HDve9Jmfc@@!`X1)o7(avo`|?B*SuAg;yA=q5$s>; z@x0-)Q|?`X-_~u;l#|aT^qlXmq2}9@lK*ah3<1rPzJ~)RJIb#PID@YSj7%8D6bw=g zW94PK-aF?T92w^r01+}my>vvJKpl1RWw)3Ajfc&{o}>a0`H!}J(4ioe5cIshF$vx! ziR(X44-%oRz4HFqW^Yi~9DdEWUeg+Q_~A_(yk}*N^dE3*q0{s^@!%=(*3B<(OzNCB z2eO`dxh_r{lj@ljeq&=&e0VR*$~`9^)c|+v8v`)B7fX+c2@NVRwZ5RvleO^BTSp5%*7@&8i- za>;%!MR>psgoH48UkUejDYVXhrqH`G>*-$(35_&L(QRA$<*DW7sMJk+VHH;(ZX9V{o6 z0Z=2hO3QLY4ju`UFcnxrq01@Q!jyK6LR6o|#1!Beey=?SX(&j3njQ>3e)S7xM@q`- ze(!}WYvL-H-<@CSGOYRj2eh!H{+fkF{Rv46NYqsZ@UYglOKKVV*E zT|3sQYt=bl$kI;HF0bYAY1{|-k-E&$kOBnmmZ>&(re6(@B5|%QuPkFn@kS_wpW)vG zt%*SjPwZ(z^54Dgx-(+HTuG`2|Gvld@k-)KDq*4wkOa-kc~z#4zn5OKiqg_$UqZ+I zRL*;I%Z(y%Zx65Bd9WlIGL zS3s8W$}Wb2lOT41!FyMigpM~S^d{cKf41cC5jYJcvj98OeXz;$u|jIHj3iY69UhB` zxS&$S6B$34&uY;h!PGkk^55JuT^CjPVh5b;x|Zv1n%sP#7k1;V?HRF{sLD|d*f7{e zdNInAaTsCXDs0rr^KaIDNgIZj=GQOO#H16kbCVj>M%rRhzG?LC4T1XtlJM}7{2!{v z#~wN#*?Mp&U%bBjcojrnHfGpW@I<*mTP=7JJnK5S+yx!@r zz-rLfh4<3le2WQc^UMENrf4E3WFzsM6qWvw!9$x)H4ZES=E|fj1!I&E;I%(U)J7?O z{M@7VoYt;wj|~^jTuXIp%*3fOFGh#ORPfZE%a9-8br<mnG^YLXTmuKff`!16RSIT&nHDFffcx}aEs_C)M z@=sqs_zgBZ6kcY)Y|J4JE3CA;3fWNm00XUgCj~yqVbSEM4Z%qj^hyNi3furu|=C!i{2@W1*C<}ZD z8EwngCmXPh0s>Yg0&ppN*tOGSE8Jz0!2YFZNXWg zBj((wit#XJj?5a4Vz>{LKIW|BPtmKKJ|3QiS9SJ3<9nxabU|4iBrg}^pEVZBFDmV0 zW44DsCEey>H%j%^TtkemMCt}gx=z)Ih~XOlssB}SaoRc zf*)i9VE7UJXT6-DGUWNeeh3vm#>R`hpy^zgF;N1r3X%&&BC|!Q0q`|?e zK8<0y0Tp25eq!tkbCPt~s7&|+22v?rwI};a<}V<#2(VT)jZBP&0M;-&C>>=Cyp2?< zILhwoO?RfDz)P{55SdVFgd?6s2$b|_)5Utm$x<|GtzuLPW)+3QIcGvXBEDlFOsM>^L6@4z+=G37T*0~m zSweXyoD$@orP_fwT($j0R*SSfSOROy%tQ)>y=Fmw-lDb#HlWNi{3eL;=M3VwxvbbtRu>a7)hqFDfy0}xlB z3i=xs|5n7devvnbdJj3dG}WY4iGVSy4YV)z#uhND)FUy6xC%8HlJiJ#tWTf_SjuH! zslp#Ahrv=r3=7NxYNLfA5O=}lnsp-1W`UHNqQWnPVZN5VllK=3B#GC9e8DVGbF5OJ zTX!ITC!XO)Rib?|>&t*a>-| zZC|ne42+Z?61YrqIr|^dm-taOdu$!6rF)EZ9I!cfH9v7pO8?b7qO1PmxD$mf&KZ`X zTFGG2<*TwX(fG5dnW`zaLl&dyu2mC~7aq=MNy)IC zop+t)b~y#T(wb$NQ(BspU>C5~C0Dn0l5^9Ow|;>VL$7IdDBlgB7lFP86>1c=j!m)T zm+W!k}<|sJ|s2fAh?y4{2 zQFM$VXX}>(I>$hc;=Jv_uHQii*_a)J{8LbET;SFk%fgm`>Q~b8K2v`XQow&Q=C!@c z;@;L4Q^qT4_Q#e2{%DV4QFB32(9^&Bwh?_fa~D9_!d2h-9#!r#AYnDR)^J2FC?y7e z?V0sX2*lhKYY?vDfZo3PZbz$E9$HZ(=2{+~r98H#yf1~s(!PD?drC%w(jU%~VG~-S z%>7zbsUU&0LvmjJ5bHSsMGVYsISkZNchbJz>dC^_{xCSO?mZ-4T;un(qSmGPM62R^ z>)oA#)={I3^!hqCWaFOOqV^}VS{+s}^ny!w;p33RmP{09%D~bcy8bR58CIFBKK4h- zj0@EFmm4Jsn~enbV;0X3i`39i%>2dmUU&TZGUQR zevoIpl)}v0cH#iIbcy22z*4~-*HaJ0sH-!N(cH%OMVNq?}1l>VCG-ElW*SOtyPn*xKk{y~T(UT6HN-nkwj| zLJF4P0>=LMsC(P1RPbWEbTGcMFhcF-&>AMsg#d>nIzG21ql4IXT6}3dj)>h=k0G1{ zNa+xzy!^deUutcT?^koxIMQ)sPT*|M%1g|f6*&RY0;NGr%9%rot@+%F#nG}BeS%T3 z8f%BFS(W^^A976@5u>K2AQbcUky2~ID`=+U9HdnqFug0MB4ll9 zA$r)-MV3O>s8VQEy2Fjb*kd~wCxKxAXVH4A0%0-JwKx@zdaq}}yL=1{e5?pPu$4XM zMq$;FL1#L0&Lj(~z$yLXiDL!L)*)O*{&isPorAv=$fCRlo#GZrvQorcND*^-)Ya0jUZ^G$@ZI_g1?)KowhMZ()4`S3)Zh zSAiq<=n$=+jpmNzXSRI_Z8{8P;FU=hl7BEnVBs)o-zcb!LFFycSwFuJ@KhZQZ@nia z18@mE5@`4$&nHBzZMQkPuCr9ANuAkAbiC6e$%s**;*$7}*P8%i&%j0T?Yqlup=m_dkxC2Ezua-!H z&=dxtFkvgw>G3TDr5}{vfNaKi_(Nt6qgth0y)NkT&QJV%T?serxINR{ufuYAFiQDD zv#N1&UimVU!LfVi1KhO%C*@Uf@ zrEmPhwf$g3rUZUX1_Vrv*3x9PQ%8{-&fYo^f0XQ14=|#jrJx90hthaR3j|aiCv?SI zK8;brTSy@{z@M}7`0SiddVm>8)-89_`{Ah{fUQ~5rO&EiN=NDY3q=NKMNtTx zRDQNAnnp&z-8Qrc*nk4i;=P0$oo6@Uw}3%{%9_VDX5244p!>e8ZV@YP%L?x_Im9>I z)AEzLUceTR<7K0|>`VNbR+*Rbq~l zKfe+Q>T=6)(Abi+^ZXxT-y@-}kUGRm(R#=tq*{);U<5iUrH&^vs*^S+;@{w=an@3$ zyJ-*g@aSJBruQHhUSAGiG`%U^s}WC1NNS$B!-+wlGgrHYa#X=va41V=N~5Dj z{P(&hAQEZ+LGe&ig&YLvU7*xFk~G&U;zwd5XiZ#n0HI7SVk)R)tWVIb6**v^U~Np( zz?G4hl;SgmK4etN09nBQ)TmS$uG?jhIbX7H%h_}R7j$&VaaVLyhUUd+{1fIUu8A#^| zYiy+N2r54jZL*2JeAhA}AC(@So_}VfupQj*H)3T(IW*4Guj;O?s z2%gT1%$sgxTl4_Ypge(chY(FrHshB{CjYJCJ7g28$2);mWmlD=|2vBEu~sx7lM^)$ zi8M*BBYzX!CbUe?m10GmN?3Nk?Ol-NqEnU0Mun3qjYkx;0;#OLlhfV>tRP8Yl$>3M zz1HlY0u`W&7OO`%5Ek^c%>?V-v`f>U(QxDW=eR1+A3?Fy<@S{Q(;~sjosOqtaN#(O2C+K!|#()6vm^l~4u7e+< zX#k>mCAd5xA%3+ldU60|Xbnn++ZvSA{kyHAV7S}g?8YMcCm9f$ zQCB0scGHlY-?9tr$W#^~dp}BPW~)XODoe5VUrZ1T zseXULgHY{(G(n)LXbjs0NJ9w9L1oq-+?v*53h$`JYleRzg*({C*qS@mx%uk-@-Nu$ z=&ZL7ygKpXV2>pM11A9_qvylY(2)G;2#1jtV_go80ud{1wt@!5q&~>H6Ydn#W;QgV zgZbP?{iBK@sKsC!_o9WJg`G2AD1vB)wIn`^)(4KFdm7HuWEnv0N2pST+#*J6Y_faZ z5-AJ>-e*89hH(A$l;$%Ql=EOyo^ZkKEUKVik3o+OyeisDDRfa?8Q_bhAxE6ue6)B= zE$x~yXNK^+>8fl8(oBwnBpqEFYS={wCy~DDXBB+r3i8*`E=%nT;xl%}LxQkl$>#M- zh?W|RXs%{Ufbj_;3g~49`a!0u8O1h`Pn~&aOM9$;}M?!Bz(SwFqH4i_3*f9?q;XweNH+?6!w`u;7q^HaTIYdX{e@TT1^Ccz% zJf&D+39Y7r7S+{EGpEv#Dk?;(Cy0^JWky*Z3j7jcwT_FH?+pU2hKuMHbkZCSg5jmn zyrb4%hr$YUwoxl2xkNNGP{L$}w4g-$(mBiwy8qlygFTdDlb8|fGd6JnQyEeh-cKtl zmVqfG!Xsk1jWGW-Mk)@_Q-ldpYx@v=jUGp-B$g$R6Z4PPIDb)MtCDbh&a!x0?1~wo z-C(t*vlU*f92n}41#B`5RuHI19MM~?{WMgEojy!sN!t$yB0;q1*`5b&QI>Ugov<#H)*X-? zF|5(6ZIKEYnddf=aiIfa2a;H5%-E|LK|%Wz-1|56JY_+`;l)LeDB^$g3D#=$ zdp^K69xy0Usfac$*71A`oi-@}7;e6}01&AxDKqRVGJp`FoHns21DuxFes#wWhhYE^ z^#k#k;;_QhXYiQK{vByN}BWt8hE9SktB*FO8ku2 zud0EGjfcbfLR#zg2~yOITR89P2=Fur>!AbzvWXe13>k|YE%(h-x{FkC1vV43+10-p zIitsdBCp{9G)Ah&?kfd(+--jkNH($kj)L)84yWgOE$EO+{o||VeeifC;K%b!!@Y7o$MMkC ziEJ5w*Z(fAI0_!bdKIeCUv;Ra{*v_ynuRDeWhJY65{-mJ15_4YOUZnJh9juwh7v;c zRI%SdtmM{Ligyx3FM#0w!SC;XV2m1tf3sW8PF5Mf6!;6iNm%`%bQ%?oy;7+k#?A-i zyPX}d?eQ5)%BTj^Rso%oGe)I;)Eu9J4(}q9E1a1yfUflSpk>4}8N(Co5;UeB3NA@X zNFx`!=mzqr)FH5t{v?k%BrSlOi-n*vWwyFF@SVIq=nmn=YYET)X0t~N0 zTuB^Mj2iV_gREZyi9)eiQ2prd%7TM(AqG^hv0RDviyfkQAZa2@rKN`jvCcs{mLHB~kwOEmIw^q;XP*CA zG=~xdQ}a^sUR1^`b3^AKn{ZE&r7g#g90x4J*SFQt+PW9=DYmL`%=@hQ2i6xJBcgW( zFEo*@a2dY=;+swAt>^qNT*T0^UJ=WJTFO8_BpJwb>%-hkp+>4Y6j<4sdNw19VFCG2vA znybM8=O)?-&^&VF=CvJV3AroyVG+U?EEHybg5_YjU7-s#{dN z7cf_5v&7aTw|j-S7ASFEbv?(uwraZ8vSp`6qG}|Mt%-%U&!TW$cO0caIamMmYz?g&=O}o!EGo zLz5L_ZegB(py~snn))bOj#(yFZYYqVP7RV+lAe){!sIsPEv<)hp0BiehVk1HUs}4w z>P{eX0#RaJs37UCguEnpN3B#2uMQjTL5av%{sS*+UTc*JR{9_y43IaG!ri%bu~QKlD)kDnsbVNJ(06OEw$vn_H9b9pON zC9R4e(F#_5_7p}jXn$V+3{n=5z>=x=((jsltAxsp;o)yX9jky(6C0cKNU@mDw;Rg6 z5}h(?va9>g&uTpIaMy3=n$M^l&<@aR!C8j$(GP2`h7=&*#j<072(1x{v^Oz1yoVf2 zd?hH56uW2=2y3u%%*em$AhpMjD^T6`;yLu>74ISC#j0(q!h37jgaBb-ciql+(GPQR zxZW))q8_#GWS*^$)k|2-iugk)))(63AYx(G3fE@emhR&^@5=1wLO#)T6>8bwgH&qP zrvY3eg!^1_Tv-SE9ndqIRF6I;!4LQAy4q|VLI6>;R`4o`6AURwsT_+&$Xp0I=1dZM z7CEm-A@`;u zyaBt+b}dU$?0r?rapESh?L_Tr`V+zy*4RLfE$ZFi&?FV*poa?>Ml^RQ(|=!9rNSm1 z&6J>JckcxK3gq59mi<$ej;?VHU4r@qCH@>@e2*Ouv0tn?Goi4cva@zJ(dzjbU9S;0 zNs{{07*QH(2mc><#Jfq4H?&4l+!Q!wU~8+FtgW^4#__?;p&R)KLfiGY)C5>KqPCV zqBmiBg#J-`Pta;bih9)QD^=$TwedI%#;0sKCg1u}ARan=^!S#c z#Rs*!3lKe$qVf^VU@%(lQKKTI*fx_s2pR>nBg1uEAfw<|IpEl;To3kvRzWjZXI3R>G;{;CPORq*JhynhG zNm%DolI~)6W_o=sznM#g@g!K7>~pPUK0vSDn)-YDB#fWUC;S zBn0O4`QJh_MJx=82((VA%m%F?^6h4Jm~l4-4%)BK#St*+>Rz0Z*ru>8ftP0zld(C0 z5>ZJ0Bbb_UB|l(7fY86KDJ+*7S*hLRnN#kd{2;?4NnJjbmcc4oTYkjEKD}HgP{_{o zt&Bn@(f%2&MTLU0oH52$7zVbQBkw4X?UxSgf!ZVUJ5nSee!}?hXRJv|rkJe5M}~yX zP|F7XL7Evu2n^B@JBN5Ck+Z^$2QN*Rx2=k$+}zSvRnrg2c}c0FYJX&H`T;DZoCN7X zje@J9I!S9x)!tX~Bd8EeuTk3vYK+!x_pGEkv77bVXtPgqbH6^37uF!f+hbJhW5vBf zW<+EcGNqc62MH!d3GIg}T_-(hwSOh5OG(+=z+}w0I^L-v^UOEiTge<6vu9RQS;r30 z8rv;?LN8J`CGdHAnOHxto^6_C3U4syB6eALPVpjWIYTLk_NG>9Q5oQDPqOGXmg+QE zsyHDQJ+lJ5-J$gZxo6Esp+k>V{_;V&tI#NFH~suc68X*?J)AGC<4ac1AY zEBdk0M%T?JTjy_O>y~s5bwe=5fM0l#LFkemYB~R4QrhxBY%$j;&NIw$6&dX6{v33Z z`H??dojga1;%}mX$wKy(VFhWAy(g&T3%>C`^@HDr|uyK~nwblAv`AqQFI{`?hyyp@Sk5 zyS0us`sZ(11AQ;W9}1Ae8K05>(ULihaw&!CHG(rxq!uO&qd)H9fOfXDqdhA*mw7db zWBjQYU_q@yT{&n#szH}=MOwl$P3gJ(i3Mu2Wln*P5lXy4{+Rv}y(3Y)hjb1Ovv}1T z!gH<%kHckbGIAuA{!@V}ZE0NkhVI}FR7o&49>XPYy^({G4wlG`vLO((>F5&;iv6sU#JZ}D zhV(wi!>u(kJktaaf$C8q->hCmO6Du`hqMwgjt#tVT*{3QYG}}2IWr}%62eL>ND)?r zjDuB(j2RRsk2|uCTIGGJON{t*PB_!QWH(d}g@zQ&OLi2@f^LBrisp{bp8E-kNXfXJ zMuj+Nl-E=0m#LEI1FeN^(%eICXsO1BNJ3d5od}PEmLft$wpCY;R&D?k;`~LAD`}(W$fOd0f2Sbn&2ew26g-=p~3wBFV-odQrtZU?{kFLn5XZT9s~hc-qFl zZAkGo1azL9stAlq$egV>q=zk1#Xrg?kRAW45y*F-@pKQd74p14pO}ge4S6eRyh7ct zI)X&kP76q!-5SaCpF>fH2mLg8ked^qN$k=gD^sFJbxa4CICL6CPK`iBB&esTgZK7X zF`b}Ut8h`E!%_iH1J5bqQI&vc^=e~6SWDEb%B)AxOWV$0WH+C`SN>$pTL|ty!S5^t zZ!#y-99Hd%3l)%LP$9XLpRf)64Ed#ip?3fmM{{IE?dRXB#CSlB<$e7rn zqXD{_r~<=62uMp*ZipEgu-mPZsf+tGhBEfRm{#mP`7pC4_F=6*jwZt`jWm!{Jk?7h z531j%a{MMMI}=kAa$Al7{5_sI_|p>wZ3 z>U=A-wYIA@zpLHSwJs1vExmzaEZJ^ENDpdaJe0U+_vu{L1J6G}jZ&U>6H-vH(W!4Q z49U2qo!RjRdmSi?314WKM^d2pkXA9nu!b@VK{n_dsR9r#nI2?0MSBOn=2&9(GrqI6w=~=I9Y9 z(kf^sI%cCe2`aXbOH`~3-{X5`osmur@ zAabqB9;YC%$Pmi2d=!j4YJhquin;m_3aWgwVioY~+=x9%5xlo>nV`DZbFyOm+m|3x zWyOmV65DG&rqiK4Nd1kxlr8_K@YADxvHO6B#s)r`_zaHFKWjP)nisx4%TwK0H`%j* z&6LH+qNz&4{RW_kpjTq}E3=|tvP9XkF%>ByP)0jJ<@L8n`Vt*8G5d*5XcVE%y@Dnh zrL|=NggbC+1*oMlNu`qr6!7s1RX9spL5xVQa}cC40@)j>$^1M52`8RL^8Vlt(0W%f zWnvQ()!mPAqeg0327Vf)MMI*AHd|Ve+Lb3$B0>@<~26!fl_4TB_k!XSx!lw8TioSM?o3!drxtJ6U z=tiBJvQx02_OFTt$Z2^=tY8HG5b_r|OmO?8%ApA*NAK=ZqVK*X7@$Nv?qwWYWuq=8 zEpZFy{Z!ra#Zoi5J~klfEE>9@9+uc}4+R|xl|Z;6H^nLemMww9a%mkDO<~diASLB~ z%Xp}*(Eb*wI6-ZkAC_f{-c?19csr>nRRpA@k9y7mbs}OzDwnCsmaLNiGuIM>@f4M5 zgJLLiN2^j+eu!?8p&>T*sSE6`|?yQs(AK($m4DxVKJ z8-L>YX8}jr|8@u9$<5*L3YzLdji&o)aMY!a413QE7Q?z#WH7BMCzYU#f(3yi6K|ZxPah zZ1I07MitR&<%IELZDLxzQNKwj%N1*x9Ck zL5DXFNn5e5=v4ttG_gqAjvlb2Q)GL0<%VS>vXk>!JZeuBNNCXU$ypt$GF2|%)1b-V zhq%cYftlP&qo|K+-!7z3P;EOU@S=AC%;}-XP4tcOO`K#RHyQkpN=-vEZq2r(hgxG2 zC`>VBhoi%5-QIF%|9ELeU&2sTT`j#lz_q0W$Rs^^BKtm|V~LFJDUt-(Ro&l=iv`D` zV&?{{DZ&FERUrb!t>C-Y0VDR)q*92lpKFm@x;I0@T8W0z3$;%7hVo98%Ls5CBOK)J z(+OQ>xfob(C%-AY=)i#&8h?$Odl03|i)=*E&am7Tx#vf2VAkFw#zUz_1_nPO-s!Tb zLkI1rG@;J#Huk7M(z#=HC_v_huJO;k&&1e@j&ppu!Tp3p-DJ zG}OGD`0ejayt0*{@mS-rJZUXhk^j$*6VPj zgryeK$Ha4vx-`UYtQ*=psvZ|sW)rt`Q-s@}JCB-r_7%Ia9)0~f5jYf1K!ug6mX$L^ zRvg(&6baO`;OMjn1aZaqyh$i=VwYEIPE@=8o44j_b(88|c$E=t4W()q0VBZ|uEb^` zA%v7HtOM)99^a%?!{M7thOx?2sy&paq|HmMkmSEq78+8QeV8uoetR^n!)5h|OFlq~ z+`O=5S})`bZiljuu|&8Kw1EakWTNroW=o`2vDblwKHGDlGwQ$5LPA_7e^0}aZ0sQF zNA0KlsLtJaG8c}elSWb06|~8@aNpgNFIHW8HtXlb;T7k%>w%6L9En|_ z+Q<9)e~>P5Z0SFKgB6Xa`Wz^8l~yW5DrKtFaD1=`ciWu?@6{mp;}lg%PgQI4d;ZQw zD_(i})r$|IZBm}QFPg;2%>=?N1O@bc9af)d)$=!&CVv&DDe)RtA}>%AiDaSN;-Na@ zo*kOaGKmmg0LSQ474v3Wua(b1MwMupTwtcU8UgF){H-L~h9l9IJx>8JgrgfC*Cf3y zOv6TAxrJC)mr31m>E)*`$3d7p5f{*ETSZ{8wn8|{RL@LgC9YGGC}a-+Fb?Q+Yes-C zsS0*aS`$(#$HqgmLMv)D;vOfqdt-3S8%^-QJ5@8||K}{^p~4{CT6R0zS8kuhf0q7Z z`$Qay>fNujO=ih2HZr<%UXY!aWC74C)bkphj^jtZ!Dk!lf5Sd#7sDTYO$CRE!~}j) z%3N4|Dh}W}n+2#L+%%~s`DiU5V?E<5moI~wvM-^2N9IJko`oTqTxOIU_2|ua@lB_9 zd}blr30rTPyg|#0JUt7%U{8j1v}W~E7T>J2wnr^mC)bcREk?Tj4NaiSR~jy2yNhdZ zO9L1bW9|jIyKdVPKgEf;AfiobUnJ^R@2M2eXrJK~gnm%mSITt2aqx}_$-eNmy=AVU zLu!9uSi^=sSyUWz)oJ^b=*y}q*u_^Ob%J_dtAbgLknL40Z~1$w7T?iV-mic2*$wQ4 zJ$FZI&vjy^YUd|Fn%Z@#ZMa2+V!MeBn@M}KX92WH8*#;8ys(S?dfXz znay4A%U|gIvMi^(Jp(ewnt#sD@BMwaJ)5|eOg3NqkAHD@Ix{qzkE-?6JKeAFo>YwX zrN>YU*KB zS!)6cWfE1V#ckoK^W9U~;Qn#NfeG)T;;-UhuYqtSXcpLEdWZE=d8&}JG+8x)HafL? zRd%^zuhZ`~tM=^YBaKtxG3QOTXwN=Lcjjis|fXQ9nA~Jf?X>SXSuW zJl&6MS9{PZkj2ySn``VbHz}pzX8|uqt9GVgYeiJzgDb$Jhw8(TY3tlM)co;p(3Eq) zt-j{-krg82z$+v~u-D{h;ZN$F%~PfO!rz+MmoO&}58pqn9&IS^q`J)Z>h#u}tFRh;)N$#w7Wkgk5?9quiI*T0Dwr9=(ClX*2Z@b9+}oGX4y1LhKu=Vo zhiAa5JBNnZ&yAFJsYg2>Ri}i_Q!jbE|5esd@wVHJhCKI~)HRB1NM`O7 z=-Ws7doIVf(CU}Bw-`_`J*tn09|A`Uw&vI&T z4vqtH6#B#A51GmV9K+46!6W(L(p81*Xpfe;bY_j%ovr9>JAMfJ2=AY!bE`^m8d5S0 z9>Rp~jb=CWGDy04*$zz^=bO+SuA>C~P?sdAg$U5rSbh*+twoGGS+J)tP`k>}8Tj<8 z?ONS9CfU3CR`I8;M-e-Bor%NH@s)dV z0=h_6ByDV(_wH1-r!>3aE}q+m&^*-rgUdbEPD@v*v$69wUG}o>SoUV^2evVUCV;r`9kY z%SmUNf#ZVBim$Zc$z5Ng7IsO(H*6W6bGDIoZ8gW4y%OwzRbw6D2WTPetjmq{TeS(L z-z&PmqKqb~b)e=BTo+l}ZCBi_V7;QYT@JTD*L<2hn!GSuIjgDEjzrkVybr|`FV<~tdUJyECH$+Jh0@s-c+;>c1Hy2++taUZ zef}rF?VUsCxoaD~YXJ9aN8q>b{kdxNCAn+r{i*GrIb%QlRG;=OyC_R(0AigPaDVfp zBXoWhdk@Pcvff{js#c2RGMPCz|+3wB)d$5Gs~{`e z+mFKhPrIJyE))DPdZ?}zaa}|7ljpWLhh%MAXL6dGr`y?F6X5O<-jwaaYyb3(m#fi7 zjTiTQ=4&i5oJ4y~XY{B?ZSu!RRFt&^Wcl5g8dua26v+msC3t7yVDb$ocl{zb4HxGm zFPT2UF0Dpbm~g#c|6dtB@i31<(LhUYS3F|vpW@Q&vqHy87uT|?sB(YY;TW&?L!Z)r zTu|N7(C_5?$>s*HN)YA<@YGGlJ_V~XQ)kxt4rL&SCkQ809mu;U)A*(z>Tr}vjmq#4 z+`+d2aYB&XydIrKveM{@TI*l+lz1u3jp1F|MMBH_()OB2a?L}~BOGVB%`&6)|{h$G0O}3n2 zlZHP%g9hza()Go&q8=H_HyPV!cA91;hrH34?KZOQvwGegiu>@;o5Ets?pR-*s{@aC zU=f&;S3(v+>3b3vo#6OmH?ht;hUYVD5+y>C8+OpE$*KHD2T0_Ls_wh|0(q5byf!Xd zf(+F$YK2|wAp}&y63a;BCZ5bu7q_lZx3Fzs5RbQ3WQs(H$OT~Pt%8W75pi;XoF}`v z1#1;a<+8U5BJtPA%w7dO#)E!f`5g-FL6!2mL<{A;zq0h=e?)J7c+e+=EEILR^<}O7-MYpL~rVxUfc%Za0K%gK&SpsjC zhiao1+Ce#(ClEPkvOvTIJI!MunH+L)%0N(bu{@ut?!&z2yyi9MJ?A4rNvvV_T~slH6PpwIK=F+=+HH<|m*NaQ>Jk0|LO}uS zPedKX=&UdUGWHkbz5>X2sUVurB#m1jD##f(-27IxD$##gn^n;F1r)2ck`?ruN|fAb zjYkW7cB{tHGAEBIa!@%P?netpH$^V=dytdUpVs(0y8r38o38wf(pWi14gQfbE?=Uuyv1% zZ8vpFD6M`yYksHgI9)Zi@xgp_{!??Oe%Ed?VxGKTjI5Jau}N@?<<~o#i;&Wip~G=~ z`WQDPWr(x|>M9#=TpweVEc##Y^)O2$0Cc|aw&_Uwcdq1lHeiQS+Iesm&=j!fsiwAx zu9@_#3NPJaIb-a{dOFj`fkZD6@MTpV#qNzczJMHS7E; z2RMdI$PDSjBAa|xZbPkMt*{5cdy~D8v7KkMxSj12eGzMzvw*=-jpJ(k3dL(nCcHb6 zHI&^pT*?VW$cXh<^O)Jd$zv6H{h^svs7T?E)+vc^87?P`3TG~A%`*0(38U0vCs}ls zS1qyN$WCGAijDtK3qT^J^L?BTOqZqS$mb-7B>>LcvLf8o`>_{lFsT{EGI$_+y389r zPmy}a?xbC1?~+^os!Mi9YSU2l!uIPxR^mh-H>2sa9ML1k37T2xD`IP@cF9q#s8W@; zpL%8mPxZLUyYz?5=vOA^2EGx>G)YVr(++U2vBhMC81gp*hiQ|?brtt?yWdEZi)Laj z-mynCnu~Q2M2j31ws}G5pM!l+2Q@K}*+R}?A7WV%l2dKJMRwyUBdQd0Am~`z_jx%H z*~?u%$y%gnti`Rg-UzauE>u14R4l*fmbpMIrMZ*ct_we*dYL9(+`k~ZMQEz0i2=)x zkzwgW=3FMj2+lgqjHuv{Gwjwvf6z5^jO87ipih5t&oH+?9l=1RRT(f+Mkgp z-59uV#X0k~s?+oG(5(-+rDN!8yHRXuT8LMI zYps57WAyxBpqzGH(4PoAl@Xw$;5YiK8OHn2!vtKhO-8A|AFVvSCu>SZ1Mx zr)w3iM!x^Mmmco(NEpgVS(y=>{EqRjvukeWGhDDEV{XkfF6sE-r;h#e6*1RtbW%Bw zua1i_P1A0*wLSH$t)p1AE-2=$&F@MF&4!(35Fe`P;>34HR-hniNz8ylRj19k=A8FM zlW~Yt$r*aj;3_>T&rW*dig{b!7wpFy+0h2j_`B#asMr}f_zdC0xW@C)1=;VgKz>Q# zN?MVCx|KZC%PUS%4|eSSsTCXp*w}`hA(BEev!Ng+(?GDtCe4XG|jYYGGHxFcoCD%v*o=A@AW zhe_%j3G_rAsOI%!uWD(8Mhi6e@fS2GfeBZm(R~l(Q8w$2p-HS|P7Ns^nk7LaVgWNi zj-5oNM4`3QojiS(fM7ISYi(k{j%*N%XvlSlU_*wUqowV}B_kNKFDE$*Krs&fh2Ax& zUe|j9mZ1-i%$Ft7wYBQS;ae@W+zS&Fm-yNP$T61!*SIXuiHmu$qt@nGBLOhJhchBl z3sj{AjNtdlhe+V!%nGS0J!XLuGGLjNv1gMt>F)_qGr?kl>`-NK(STMB3)?W?e1)2^ zu;&{&bj=kgA@z(MQy6%5k5OSgxm7$xPQnjLQG52p)L)QUd1khfs~&hIs8ZT*#7T zm&-N@u5~})>)NHBU%^`SXO(iS3nD#sm%e}I01JU*{L|JJ&Orhbmn)g#do?yMs;bu`aq)b0uLo^Uq>!sQmw_j^v zT2heR7Uqg_q0!D{)~lS*VT|GX0BaJo>KJi|%=!?am zb`*%>jVlHhxU_eKH*l{A*MP+U4s=wli=T2moO_gr&DrUrdI>q%r05TT9yl(PuGzyq zP@ZEI6&}|{v&b|C8CVHxAcqklf)OblC30vh_=bL$^PLksPS!*df?^Sv3CqwK?yShI zAs89-P-8kXN*D;n#Hr~C7lvWAu|Y2A24eKKUH z@xGnuZ=47ZH+38 zUglWZG(6j}^kAB?Z(#DQz=9&9hmgG>Ap9EURj`fGrcI)?c4Bpebb*x+y7RYJv@6-X-k^%iNK?? z{y+avtSM&TYr6vft{>8i!?t8)HD~P(pOPN6TtD_R{g7DGXZkU_nvNOYD>XX4*4lSg z`Om)$n00Y)z}mD&7XI5GN-8*Vwdm(DzWvLe2#lJ6SJtHIArg+?W^do)_HF6Hk^!?u zo%C(}ePGPvfwTXIA6m4ix46E?mcAoMFyZy@0ZohKM-g4>=&Ds4!e%*$W-+gVmZANQ1 z`G3IR^(Zv=6@#W(S2j&LXg@vk!Pz)UB6}spG?Dg-*tD(9afLi zyu)7pEyU*zOY8QNeaRg*`v0|8o%v4#k@K<3eRLr{B~?!ZJ}57$M0rc&{?E;B-(pdBFK>!| z?YpKi|0h0LT~@kbnfWt}f4N;&^P!&anfq3yh;(^Qx$gemqBFYd?o)TdO5%6#j@)szI18H0u{XHL5vy^)x|GZOirCxueb8q(p!zNOtsr+a&r45%iwcrb0l2LBw)W{XS1Wgi7zK5h1$^>sL)$0_^8OH!L|%maKWcs(6+ z#Sy`PRwVnJHxwjbX;W5$k3 z{JF~nzq@VRgecbGq+##Q?gWDDobvzH%d9eo_x1bn0n8>~@)MjeI?2dk$hw3HJvKyF zpdFn__(*C-hf^_Z zDu3*;>AI`#Q}>qUuUnMkwx?;)h@JbIn_?H3+@kJ#XvR-fF@;9&-YJ#vqxVm{_32YD z!Fz_2-r*eR>AE=_-ucDJRaGgeaF|~kXDWExH0bW)VBP$nxyQ@xr}LvuDQ#tGZs-2X z8049j?z9w^8LsvlJvhkZhhNQukG}Y+kPsg@+e6YeH~H;tT7OpnhLN37Yl=+;7qG&v zxIIvY4L`kf!vTZWbbM#`a^uj~HeGg4I3L^Kzocp_wQ~AT)XFn7t?Y5TRzCTWOX|D@ zV+U<^NiABL)Nk1gU5ItV_s&X+UexC`-nyYT?#8yL1W{!$~UhgORP#!c~x9P|cz%rXGgBlH2yrDKHhWPlo zG%9V{C_p1Q*+@$hU>3`H^6jWkbRoBj0ZLBUmz2fo3SJL7XulXgk^BMi!Fd8BAYPkZzdpV>AC0j@2mH|xX80QcH`SM z!yF+2*v!*^b0XNw6$DWlUA<}45+I}eUdk>9jsi}C z2u&l6ffal4+sdXJ4?T|;;s~XZ3hEK)cca?}zi$F4`k0`|_Zu9)SGwR=j&DfTiy{5C zteG(D@WA%?Dk=+ z8UHV5_uqfazTEKu#Urx+Yk>ZpKC5;tvWUmmJ>WY8!cPnF9Q9U_+CZ2up29`Z$?rC* zJ)uzTu)9?Iq*_DDXmavM5k~8}s%JKG5GPQiR9Wsws3tmO&uzYpA0JxJl#>pt~X4zkO$ z+vMZ6Gj-cn|J#qu9B^B@wdK;S1FL*Y7eb ztPYg*sgX@;aJsi+>PXk?E@MxpCB(Ni8+Tz7i(IJz-xCf1yQs8F=z~5tU5`@Hr582S z-YYCJG=!jp;&VGadTU_>D5B5@*EcD!(bCfh|6iR!^}hY1Y0@RU05N+uVw}G@Hi?)b zbF<;mx8*RsXfv;GnKdR0vNxBCt<&k7D?$kIgAgV*!{#4tHsXwZzRTYnQrX~KC3-pk zMauGyS)*JOY|7Q|ZE)hzx5?)~ zWi%@jv^15!CUFNGf*0C%4+0(5?A;RuVDya*82t?6 zhdu__hdqBde#OUhWmqldF`2r;9VXav<{v5mfUh4vk#!s^QLCz8h8Lvw_MB>>;7~jsJM7%Whou-k7&J3o8m9?V|Dc z%SfWoq=>U2S0(gCA`V5~=3)`#AG|fZ4zw3BZl^*CSAA@BP3hcM17ytmM^C?P;f%t6 zafOhvNnYtQJ(o=o#krlvq0xTuO)vrYCO8OI#^}n&gPcwyy+oZ1f?SOOla)}mcqK9T zcbW~8H;i_5pN_r5MxEYIc%;rzC({CsDs@M_+cGr$+PZ6WIXPj(&%IQ?e+tuB(%}^?`{%E zg#_Y)->&5+qq@P*p1$K+ZvOZI`HYp0bwlnhuBs{nXdwES;skmErO25WP?ciOpav>k z#4ewuNAI?;VQ@s|FSKz?k^uO8v~q1j*Zihgar7S|NcW|S?Gnl%hRn~ zD*t75$4+FSuy*Wzr3(4)nN}>b2aQ=1r~scNg;~;!F>Uj7Z~!d*LqfJaBMzACUJuPu zyK9yj8WMh!V&Bz1=O4|u@pziaaC1d2sb(mbk&@x)NmL9hy(lS;*Rzx z7eA4D(_at`{|2QqQzPhuJrQQ0-U^@N&`2Y_^-d$*+>zhpF7{G4bBKxt9G|shYoib~ z7&~UgllP;hdMa;uoHdlDd#V%lZ%qqCP0x|8hz8_t9Fg>uTELx3b?>lSWWJ}G{2gQ$ z`PSOxhE@fh3jq615jE{>s`_IZ+9(Dd?fPNGb5w%oco1o4A;qya4_Mi+nyMeVY?mue zAMjNh7C`o80ZdWLB5?(@Fi9}APvXP3?meT9nss9ly?N-{yv^^2uA@!w*cg8JB+wEj z0p26gm2N#PLeEka1S(JWq@^0OEAGQ2hqXkJIHi?VQ~r97O1-GR*6$}!^ELT^%p$S1 zB-2J-=O8G;7bthug`frXYd|)I!W)F5ujo202CESBpaKzp*bSQH4xPyTzC$Ng(fvBG z0rpP@01XLzt~n$}imo1r(6lw2XM(-bI64RP55!7V-ZFwknrHTy1h+Y%F7{!iu^UN*4%`8fOW$0TVu7b_Rf{z#6MOB zjb?{Frv~Kz2Xh)o?DoGorGGm1m055B|GgRgZ5KG()UxmEqde;!2X0F;IkdewWLr|b zB0L_o5gtE&;A1*&@63e4kYb2W;t_)*&6Zn~O8{|5b!;SAkY;Os#r0N6NQ_x|3;aRy z9>g>1874Vjfk4Zo>|{eyzXs>%#tXV*Q6mx&6oLIKON$bimV<1?Gb%?C;g=*D${NH% zqDCkn6Vv8aD??tQn;!(WNU|RfrB&)%)1qu#iDXl*623E%KJ4Wm#kC}+xAJR}cfbcK z4(ukB07LjKi;!_mFxAmwXnL9GqpIqqn>XERg@YkgaW*!xHo&;ej=2h_n*Kl~C{`-G z5u}gI_ezFyDr{G2q4!8vn51733)m2SHhK7UcQ6OgT&Q?BIIVQ#03It`iPij223pb?nxbOcI%R2k=O-w z5I0#-hwLY6FY1HieumcquXQcJkYn=a&(rlzz3BP-QanZ&-S<0Xp0TK63q&27?l~Ub zEVDSuu#tSsXpXt>rhjzu5*T)?&*;-p_Wsyet!-v^x58S*pq9-1}6r`efyiUGmM#hdp$}^siOXX$?iyEd@s-`sgYTWNQt+|1}FRcQ~_+poT z1cO+BR4Oxw%e_-eb6E@SfZ3~1HEOYV2IMQA-Ojnx8GCjcroLf=p zvy;G}06~WAHCmnRB!@i9%P=Z{kT>SRg;#o`D!rn`2gzGKf0m8JeR0jTrX&r)ZGPZL zkCRxIC+W6SgPgJ7Qe5@6)yMe0c^y`NAN&zyH(`QK?+|u}I%90y-U0A3B+%v$f26B0 zs-q_1f}`o4BVEa(QP{n-ZpX8P(a+pvj}1dLyYi-kO(i=~b@rikuJHrOPUpOZ5N z4!0!M*(R0PjMysD0ekpMpeQy1xka1c!la1mq`Ae^=%R^|%m*jsGC{pWlL4N)v%`Au zY4m+(klOSee3Woy&(|_L35Wmzi~nXyXheoxDSB9?FefYe23*(5}`N}hn*Ix3g%%OX%Xm?Yry-FVu_F*2Xu&W zGK-3Qs7UWWI;SZ*oXQE2y;eNFP=T^gHECUDq)}RMVCbs21xNinj6Mmpx=PB%3e6auf>0hCP*fDhWzuqC+(C(C{zN{~ zJ{qI8SKlhkKo&4iI-i=t8cMG2*p&33ta)sbMwZUS5mdjVLVJo` z)u_dwfyw_co-+Fs44vEP3&o)2&%r^Jx6tKX`Lv2C*Ne~@Aash);O1TQZAG9a=Vroh zV$orxXu~$*DoVS~Br6JTZ}BFQ=IUn0h&b;G!65S(c<0ETe<7&-Be2f$>|7&n-WB^|%Rp|L6R3SWx2Iu@{px-g}F#opj zCikXS+T!u+CDH>@L|B#bIj^40z{8W0Ai{sw?A6X2Lj`x7H&Wr9B$je59q%4H-aVxF zqL%3(QImN&V=jQM?7WeJbD60H1CS?M6#vEwrX5F8JTHHb!2ge57*xFWds<7`EulY! z`iKtM9FbC-NCsmZv0H2k3{1utz>Q?#EfEF&Md)W!6^nw z3C2s2UTZ&nF<@iOex)=azk{>DVhbJe$V@GwD11yv3xAaA%;`lF_ThPiFEf#Xq4;^a80Kcmsot&gl$rD(wLS zzIrg@yyH?0F3;|Q|Bs_P1}>_Fq9idu;9&(@L9!qcf$eYUd1%mSWIiL?D52FR5UG;u z1^lm)6FMh&e3lr-O~(gm>|R%XEkrpiwt0xr!QRuUMv78rikWS0e<*EPv=nDOV6sqE zGPl&zZP^biscr~>(ZoHp8^J!v5(*Qnar-IZ zvZ&`-%T+=;r4PystU_M6iZ(@U_amXuIRVC?${8u_`cRYT|3kA9Lfbkka-or3K%CWp zl9NE57_s8{+GhmK+w>7rC9FJ^cAjlWp6TIM4XF^XmRe2^Hq)9huA(p-qCcC_ZJN=^ zyr~d1Vt466#ZvV*bNW>LcR`G&cV>ty&6&3NqW4m69wW2ibF^y)IMXTvUZrhGfZa-m z$&5&`iz_A?!Rm@NDT4+>!W?+26WJ!^e3sdA7HzqxVzO+hjra-{ljJ0`-M_?@%6xNd zK-ow2ZRQIToF;c%xO;oY-!Bw=^nQNe*s?S2148qTlz-^b(0t~CV~@!t0}gmy1MX-K zF0PN<@bT#)*Mj8t%&5FId{@&yj7v+6A$yy`3@5$^nR|2XxtNI8hinhHFD+qVdfN!R zZP)crO=pMIRxhkMzGs$xRnfY7 zcYhd%*fE|5bUYO}HuLEx%Y*Jq3sO0$cLn;d=qNgq`($~>#S?m`-Z{UX&zqe2Yxcgo z8)LqkKdr*y@uL%d?{#>^U&Cr%obuVv{U@Qm&)j_6zY497KhVpM)DzfYPxCE>@ zl84*nhpYO!G~Bd9{km-Y*C$)jn^8!usAC2yX14SzMJY;yuE5f#1JJ@EV3 z$bR2wH2@8&Q6~!Dt$iG?UBv6Mo@(59mjAggh+KwnBED>Z*ymJzl!vD%$C^jW4RqZoIl z9p~kpj2+pInv(_Zu*#xWus3Q>y261&FFVIo`@D)W(LWbm(@=!a7}>GO-f}Ah)kAMD zS~$6_$hJ__gQUa;BmVW8FLPt&7n$Au}(4HbTZ1P~s64Y~Qi263uZUdUP@5883nEsmQ&ZALUm5H}} zQTB=-@3^0J_Aqy;@|=nqZEE3O(W>s1<$4{BK{dYzd$sa&!Ly(H*xq?k&0G|8n~xHO zmRl^DSk8K`w+kohi-ts%D@h!4MnuC8{UjkWfoo7>F>E^OTc8E*R4Kk^IX?kKPDN-? zr4+>nb|ILC4Yl0bbUBJ88GqQ&;#tg|%NX5A%$ik8{_GNv5!i4K$K_VAyp_9x+M+Cy zi5(n?q7FCwtaOz|HYPQsUWpM$l6{Q&s%$Kr&CJWWI z$FY2k>6NHYR1Y~84r1w!@C19ybt!+^5qijfJ=&LIx3%)8crEHFqJ0U*8a7vx<$~p^ z#-e4;RFB`#I~0dfD!!t|C<+!zjePC+M~1Wyvh3r}pxYa!5uISa_|~L~lo*sm#p=h6 zuXy^CZ0X1-WnFLDRmdhuBlfW@weHu7y5Ot~JL&%DRhLl10*$)REg;@OX1wqi){|96 zW$~>d$FtXfUNUWkDBaVq3V&`$f3v9hBpQBRx%X?%Lz8Zi7p%=4bECLv{Y<>8Zv{zx z)u*3NUKBhLqs6{z&63~SI$$FARZ4%h%~;*gDV`{qk|LEQ-wE5r;c_n%{l=lbXTNjV zRcJ&inkX`QyKX+EsO^Vdd3{kf`??WJl&n={{nkSr?yOHhi|D2FWQ@GYqdjRmG%;E}wDB5P387uDg%p&6>` zgh!f0=CzW`k!G!LrW}x8vt&>_aniyMrN&*y&#TAblI`jUt*QN0#@hq^yRDnt_0+NP zyc~?1L1EJ&)lUT%&tXL+v|pYm>!r+4z)5Ed)cH*hFHyq-Cf<;@qH1mztAHL(a)!z` zUXxlUc-J*2+2)G68B$Y)hDG+WxS(S9d}$%oUgz#+Er+}m%|Eru{-VZ2dCOjOJ#Wx4 zcyoai5Q4^ZVk1qZJ8nO2#xKqNsIT1$V)2JcJzKooHjBiVzG746;B4~4s2qyz@cM}B zK@hAulja)VHQzqlV)Xku_N3!X{ixIRG!v~HQrZZ&(*S*Q3|uechh z2v*KBq7%m)e6_^s%qOTrd2B;u*z2kc@{E#*=6f!p?hRg#N;wyzOzYX{DL)(qE?1+f zsr2MM-D(`f#xj8}90TpE6jG*M>=9htbT#2O=%>eB0(@@VdS!cJ6IRm_9p#s2cqT=a z;oSP7k6L(XwrpI73V`XTPc&~_TpY_1=}}g1!XZ}03uUj8fKQIF(=y7Xx(`pyF$8dQ zXr+b{HL_mPt?@H^R&m1C6?D`sL>0XjXSUJ1x#c}{8-elNxSrN^ur#L*VC7EK%tOUN z)Yn4&Nf=_b7YjOu0!knSfCG5qKCMV$rJw2M_xvuRBO(gdEcP{_!|$&%P~3(irZQp| zajO7gzSn3#*(Mid$@9H^r;*>s#KaWQDz=F(5igIl3hQ3==+xnnTJVzZ;wBszqp2}w1on{GSluioh zyUTyNTO$e{m0Ubp@Z(BU)yi+0T~?RB+bS5Ts(a&3t$(-LWL6h)W_`zDwKz*Nr&LIV zZRwz0?!qn)sC~QzxI|l{()ikYbN>-*oQKNm(tOU#Ap^TtErn1qqLll4jT#T>37(B| zmCk7BA&q0OeUBO0xvx)9T-@zjm&p2=ta)VJd#Juvt)CS-Uky}E#ZzZ~+xK0(HiK*I zgz7>EnzoNw;f$hQd^L(!WwxR9i0ufl-Y`ysk5*((eTKDBH%e2F{3oSKowk?hu2Ke7 zL@dL#E~!Bl(YZwGPRc=(!l6MdlLRdS)20rHwRia)6Vha{^PMa%rW9l~YW~-SNF&ff zwC$XNlD4enq(NqFh3l}JJPgb1pJD^#E9EFCDdLH;TY#i#C|Iu@^i(P9Wt$S4y%

  • h+@AhSXR@&z_H2e-6hLm1qSasP5_7@u*f+Dg97;6@%}8YDw8|IbI&C zr{P4k7P2K02dhpJyPT^@;1uzE61$=M?dRro6W>BF*u2)mc@OYI#?h=tDx!{t+fqL& zGD>$1jUCZH4|9;CpN#^$KDvCi_1F|yB;qy#fSm<~=N;GfhVptP0~O$8cVBxB9jv5( zj*lvjiE%k^K}R0e3ZBU5vpYR! zy6Tj-lkJ~anhZ^$P>_-b7;DggO6@sb+Pa9d@Kc3jD~jr2Rf<<51`Z`xUPpNRk-h%o zlB^|Av#B$mhd4-4R8!82@$uS+Q7Wz)e`PVPPC=yqB!xj`2e=k;E*sguWc2uUHVJ1F zR;3q219-!i`-RF}ZOcE~DZGWBVt=?GkEj6l-C2!x@_w!9S}R*f`ZP!`RGnSc{DD+~ zA`rW!>mXon&Q2JrO}75HUAE{w_P!P~EG@Ncwe;lsFea!`NXfJIx91^wXZCY&3<>7x za9WpAItKqMWnh~fgzkLCRB1pw_c`=c-sxG0ny6A*82DF{?)a7`fv@mO=t3EiS$Pk! z#^~__PAxtB(fMJneWK8)c2ZlvUWV$!|K+Xc53BV$do5&|S!}fduw^capwk6;pk(9td7~Pl+ov`FbQA+ftRct=W6#rFET`7d zWR&+T;dhUzKfr_*#2PX5xnbv{f-?Ix&p?ChpB{R?R;z-@SE%BQY_*j#sDC{=bR4ci z8z-JO)k?V(1vT|B*=_wdp|o&p#a~fRbUA>ML9JHoE|=s*qI*)&52#J54V!*gzOmr` zGY}D?cU8yP?yi8vjd_l2tTlAOV2|FWz=$IBs51vf+#f%q1R!MI@flOt0#NII@xVT> zQ3MGYXxFEjdqkt7P+8Hs2!Sb{W+}+(H|pHR7E6>`iw1u-hZHd4h036MOk=`_ku+ZD zew{KXprH(S0^n-3yXAXM;b;`m6Sq7z*RIom2Nm9Aq1{#mT$9H*XIdzR^pO=Dz&Qt; zL8mF=3RqvivE!@I!vJ(PEQ$My-EbC_S2=_aARXgaURmr{B#s}f)i1iR$*gdVPH~to zRNaFl7T#Z3;dCa9N|_=LWBKfI^kx?WF5mYld%msJx%qfL3WgeC<+ps79^a=#nc)U} zd>)(I{g@u#Qq0=KtFws{`^84k5ToVNyFB-`syCH#L23A8ba4yN{71%t%FHd!W6;$3 z5q4>~yA(cIgO{QSg#ZkcFN}B4w-eCd;EDqb1%c8UYBpTR%g7)6> z=^BGevX5Chsk>KRu4>q%)wd02ACr8lQq*M}3*zSus_{znj|s`3pb{@GflCTzM4E$9 zRx9;4Z~@lc1Uew~C`(9MTCQY1=`h$*_m76C(3Q{3I87^g_D|@Xmp94T^?DH0bkx;+ zlp|H_9Xrrqjhj)q(;Nt~0>*!$fA~uA+S%%T$Nu*U(R^0ag@Pa~s0_K3Hs{#U9;Zri z#9)}w_D#tpYizm)Q)Nr}XqsP~?fzZb*l`l@tF1eUg_n}Fdp6F1AEic9lP}u?APkvS z#mjND9!qt;o26qpT~)`|knc8VNd{piSMdNPmRlYWdYPDIsw^V>)Zc2qiph3l8D1X) zy!D(H*?~(&rEI_^?A=r^WkRsQ0n$zk4N%GkR-}lA`ikR%B+|}hTiW?!mjZEs*p3YE zK_h2n{~v_h9iG76r{?td9wns@ubpgg-L0C4$>FY<`)M_Vkj3<|4QV?{s${BpV7S=B z6nL>N|6TSc$4)?BQ~Ux_X~xjc@Hh2cQFP9(>P%q_!Y@8;fdOYRFMDYC9>y)* z6^4C_STfn(Qnni=itU^n2rD;KB&LGs0`MB2A-93;-2CDuYSd3lvi3pI(%ypv%~Kp4 zp~;F6l=;-7*Q=a)im%k>ZNko#Jq#0(gXNib@$Z9ndWvaFcvz+dp_A=SeVq)hwvO0J z?O=-0r%u<->WUP2D4Gr-UJs)G0jF~XM;MOotIY5#d)dT z3-36+4Y38pQ_kquXegChNz;n+K$3MvNe$shIEckWstykI1#XklE7X-c(6&$9o7*3W z<>v{dO6s|>^-Vueh7A=p5p3%RdR9zE7qv)ml1pRnJh7%0jn&1Fq#iA}`5t`7JGLr! z!z61D&3s`DAtMnF@MDBqB3N3}Z#gqnHLdK3!n(9ssiODt$W6*JtJc9HQPxM=DUe0b z_D6}|!LNU(9a*OxuDk0{L>gugRRr)NiZ6T6wN%g3u`B$>eN}7EUz*V;s(AeM3vLr0 zwRjJoa?*>sevaFFTiqL%{jRsyPRGmylqMhP((pIB_Eo3z!CIh!X!0EIf=2z(S5|K{ z8}E-*ZR`bFG?W#LAER(_)T(=7H5VQuO)_@;81$z_0rO>vVeY~4x~sm&O6Inr4Q!vg z0)h@-0!SG-9&VqaE`VId-{#g+gh2%)-PdX^>8atA@j&-AQKrKlLMTg+;9LnB5&}|aK0T?S<_y_eQw&z*bqaZk?eDKoyR|2ZA2Lnv1R?9qc%~vlOK(Jyj z0YaRQihpBS)UR~rk61ygfsne7Q;2LTPjhM@ZBR&99y$js zy*_f@=iYOk<0Q}%SWSYVLIV&XU&(sS1~wwVI3EH3d>uRYgiBg;VmV#Rsi$6G-R}>G zqtS#;Gj_9C`df~`B0~hEkG%@(ejuTbZC&+8k59Sr^NxGGp}N7MmtIHvh=x9$d{24Y zaztJzu$xd$8GsS)HdXm5>Kcl-oTPf}8Y^uh;+HYdaVf#UBPgJccC;eC2T%TF-KHhN z7-OT^-4giO@6fOn+7UZq8Bnwi8<;D-(^&DH8bo!arIdOP&v4!Hyd0*HuoS08zyP9` zIl9HD&7eW-pL^Do4J2SOiB0i2XP8Jq4dc*VLsq$q500wiZFT5iPIh~R9qLx!4KyO> z)2jYIfaH+#fwGU6=AtzyfDQaDEeidtCAD`s4WuDyxZG*`PRB2r4(l??A=QKq1LEre z<7*>rhCj<5IH%OS*o~0BjtEJ4Es+mWfwd1e%c_V(RN%TuMap;|!V4O($f)v%A`xUH zN73*!0do}^-UD5FIb8A>J=4%ptR1=D3&&l^ILyspiT7pp)0G766JKM=k?V7&_Kvo< zP=}plpHxDI{ef2guFx`rU7Qw<^AG)TI(A(c6e;@6{aNV(RTC$P?qH|6J{iQQ<`nxxu&DI-D@Kq~WJbP^n;LEj%<_5kA-vCt!+I8tcRq2-SL5YdyAG;AM~ zJVEcJj3IP%L`a-vz*cTcQ!Z8#3aBV~=maWQHmtqWr$>^}2v_!kS_37nfXdbvmt3R0cDdgE z43EKkhDT2=E&Sm8Y2E5E5kn>SVpW+3XrG(q#<+v%{bGeL#{(6pal|eSPrW_H{aZ_?Z8EQ*wT9`%uy}lLnMDTryy4mVD}jnST1VB& zC%=kJ9^*FZ&}a6=I!G0K?}=i#5)^by^5VC^dK>cwZFBoeY-S*;DYxGUO~)3=aLdCXA>F#nF%xjo8ociaAey0OK2eU zkTgUBYF&72A)(rPmb#>%LLhEy69h^qOxe2n{BqN@iz8x%Z5$pxh1I4x`SX;;C$-fwlpeu2aR|V3Y17Dw&L=( zUy(2{dc4OzFPZigC_2$I{4iUc`Rtg;ZY_NCWGfJqI2HHe^j31+)E2*N6u%7;CGbQ$ zl=Ryg-fxI2g*GZGnfobDuLR>mw|Wqph)fjwI8dkHK`e5D7LIeaaC`D>oaxAf9wk(p zh}D2v?`RE)J}Eql(sS=Rfh}G}_C=o7G^m|%h)3^+fD>$iof-AA$Jv(=+ensvFNwQU zs}7mf1$L385mt5qO7-T|g!y1|M9w_04FzmGB~#t$$w-Xb%!qWh2o|6qdx%M>6ek-o zkGIkTr`>FTXHQ7MPkuwWs~|-(_0%t|Kq?c2%WLYLoerq4ff6|xiq4}S4BuQRclj(> zbn@}E#_n4IOtjpffxtVe2EWrNF8xVp(qcHmwJVt;6M5UTR@$N0u_C(!O^Po0F)*Q} zSc_~3c{x&My9;?pY*4oh$cQ;+Y8QU15VQh5lH!NJuiuT{V6Gte(qWxV#stE15s&1R zN^{ACflpbE=Xk++8UqGHn**D;J4??MW?F?f>XX(W53Fw#4&2PsN9lIDJnM{jvIfa+)3338kSIs#ul(f>f{ ztXG2!AW3Q-y6S>XQ$jL`m~nPJ5EGU#=tw9@W%y$eP&y29ON$dg{>Wtu{n6#Pk+B*V zOkSLX*AhxSeh#sEQZ3~bXxF5yhXN(T$eBSN7aqe7iA9V1kWK@7<>YuVmMEQ5l)EaC zF*pVSs>ICD`%?Tk-Pmh6hZjQsh`M0v6`=~V+W?=aq5+AtN5Xq@P+j>ij1wJk_DgIF zVHnM_iw4<;SMo1claaG9pWG1#zA`(+M$3BuYi3 zgE9qC!zm$n-%t_Zd2e1{+YH!Z&O(Wi^z2Z;75zZ`XH=r`e$;W!3q;byEOL@-qz@|G{{*#($vyJWYCv z>izTn%Fzff)P)2()uD;fod5*wrwBmMOmsu!4OD&`1shJYCFp#VX3N1A>{Wg1v*DM-CxQK)al>#FjpqQCB@m=4F4e$xj{i|s)R?4PkMrE$qFj#Ga3IkmB zMWE!$y*Ejii%-IiRA^f(q4_g(U&`pd7`&5=aCn|x&HRvCXh<8yHfhB}2U?0AG9UP)_b3wuQe7J@Q@r~>E;C)Qd<2*F>c{=$f#7Y=#5nsH; zT^Lu{Gty3yk&w;Cb+4p}w~fpXm$BGOl~0LwQ3oX`!5M$4c|Odvg+kAOc~q3K`--CV zJCS#bjZ>Kh+-_-r!xAK`W1Z@P`1YPow=vmoD)2Ldyaz(AJ z@92#XHmaU}pkpOUo$|w0@^{Dy6d)qUN&ykd9zp>O={!s9;-jMxOUlx0MPn4`%y(gxeJlj~sC(H9KqYBEj~PNCImG#<={C*6bQoI3_ku!u zQlHD2kcV1c0vCpoo~klIY%X;u8;naLac9i`j?F%(y^yIVz&nxxw;vKp%K%)l?bnY~ z_+}Sb2A+vmLVGHx`x@dm7NN8}Jm4&FCl1Adh9?ZU*A?O+ijcj1pKw7znek0MgV4vd zSQN_~6|?a9qo8$YZ^5)|-X?iOOrv42i0$T9AIVjL9(XWf>Xq%Vwu`(uV)E~k4|5!{ z09q_k@Ti;`#NtZ*r}=`BgrSv`Awkpg#RudQ3y|JLlVm{Gr%b(HuC(klS!=+1Sv9IdJ(-KXjG62(&F-ojtg^0u>2% zgHah=xwRK{AVCu?VKd30T0s@b;*29#0*DZTOw`80LC#1f7(MvM`sO|e-{|~wlD{$2 z6PdC#b6=5U)bhZP=QhtMd-$qx-k|(pAEnHg0>VVlN)FKqa>OD5S7^v{k(4q>(p*ER z<_-iFPA@@V$l3|Ba_DjY=obf^+Kgmxl39-#i=hqjh`WB7d$Bk&jzuzdB*^AZgm0cD@ThF3(X1MAAS)NnZOr&!H%N`N*oBp?vLZJnV2uj`v z9pm6riCQj7V!wF!LY=uNE(CkhfjWnWYX|61+_+&D8g@nl`~r<-B8!;Adra{snj0b; z=!jFI7<>3gvk|a9ej)KMDk5^l=^mxgGYS=qA9YV^dh>viiqpVea!rL63HULDw$|Dn zS#%CUsL(m^qK~W}c$83_!B(Ak0F`pPfUL*sVUqdP;10|nbh4I7CKH=Nyo9SZoY*Dg z2!6_Jpno>8I}V-v5Fh|4?clYkFwuZtK1h)htr06mDhjp_TWnqz!ckRM4s9Z}-h+z^ z1JyGoe$eU@45h+DE2N?HN=G^`;v_lmcLA;|@$uX7 z3BFp1&<-PTlK%o_F@#*3(#zE|rf9|vv3sgh%2d`;AO@I>7~~I2#%#{s&BHM-=A%fQ zd_PQlbgY}hC?pJOcFdOeR>@o$nzM26(S>tu1Qa4T1eRcgfyh+SsAcoG_%<6r4wZRN zTh$9zjBv%&z}mJrhm+r{T}ktfv=u>EvND&f{0;ZWtVl?#2qsMWZ}sgTRT(wwT58!w z{ct@(2v|raY#;&vG;@*}o+<;oasX*1hHAvL$w-+wdwN?I7&3sdO0l+PUrAq((Apj%O_)2HZTF?+(BhGyyGP0dR ztwvrltrv&BOEs1X;Tw8=s6ge*~~iu%6XW(q9I zJ}ODi2NSPhR~gbAW*z>?%U7HpVO3+vsy2X+QwdsC6c2IG%R%;#VuL23uU7cZ0VN+; z0%XdtKe57fN{_E))=PlTAB#YHZ6p?B^`oilFE-?Q#Ow`HrSCG zY;LZKXsOj!d1y#l~Q>#Oa~%t zx9UY4GH*$ak=1(xX)*AhC6P|USHXbD$-{AhR7hf8%7~y>t;J{{9k_s@h$l_slcRri zobp9QEF{mKtA9M7fo38>Y{6rx(BSG80~Z=NKXY+ITqBN0WCqw@n7wq@!fMSYp=$1$ zXfB5kJ`P8(#ku8?WU&OK_9^bLvnG-psQcS>ulr6d41KJnLXSuq5=oO7pxNj3L`1j~ z^qaw&Npc?{ht87|0^N`ZUZN%9Sd22UycCm2E*=jby85UvA&yMdNH$B(39ha&$5{)b zcvd@j0-YdB$3;1 zOnnU0g76kdjBV?S1Q6ikrGDj3xsgWjERDWK0JQM340B)yi5UhitfV(@n0#h$S%pCa zgua6m){XHzetY9GdAWKg0N6v+=t zRpgQhpb9%c-Cx%wi`p90ZYV8K8xdE z&D8m1n#J)dMlKzq_HBkIapzh>5meeFsau(lM!1$L(FNuyLy2|@&pu|t5u&L4jusww zl{F$j;}dte)`W9ssedM=ZpHu_2FBLl8x(X2KPkGIcekMR#uBM9sQ@6=halr-M_71x z?$0$NzfG82^Y_h*>c<)HYx}A1zOf6=KXg4|?7Qjfa^HAvM$bNevxX1L{$$3JZ`HS8 zLCoW$ChOK9*~RrnF#OFejTg;dwj7^>c}9I^Z+GfIlRSn=1YW_f4h`M<_{Nf&Yhc&? zi@wWkN(j_>oLy=<6mcTq!!XEgK9Ed&U^PO~l1rM27dLBf7`afQEzJ(D=k!N&p;Elg zmb~SwTjmmg9h2B-Inpuga{UXMg}WR-JOa#v1t@dEX>A+h1F<3@Ld@!q)A5p( zbdIHMR6wBLlKTLE{jkbeQAH%*w@0hrJ3DGS6Er{D)Cw#O)9ABXKlH$=TbC2QRY0a} zYlE)KkTJu@Qcr%z0gk76Fs?GMFO%T0-`W7vDVZB3vxT7pUwo6Vgk|M$TEG@Xc_YOJ zR8)OH(bqrH-anY@b^lZq9ZsmhjW>uElf)H#u4gcgNqbQ2aG%UH80UwqF(a2FbeSI zahGcSjo|e&*R@FYDcvV+!{{sYvP%o=DdNg^7S~`&Qoea{23#E(P!_>-Xn7+1I!=fv zmQrCXg|X}t6gBp&dlZgBbS!7`xQnFi&eZzx}s2Z+g~z1bh32>sd^w=C{#h=l)RFQPqnW2ybsG8chEjU*E;6Mv41Opx88Cz{~aE+~g4nGGK;LTu3xyuTyR=@B3O|yLq zjxZQJF_@`A!q5 zQ)K#2IPIchq&0I!opnzTG**VKTvKtN=?f>z3uXBad1p7Rpdw2~hUuCMp!KM;(#=%Q zf5m@Wq4oSTseE!&_EOT$W<@lHBnj2j^yyi@Jcdl^w>!28rq>2pJjgRB@!&uKFDG$n zMWtTwYsaSIUv7nHvINRQqspfnd3Vve>fBOfHDgeWyi#c?l`M}ge3X*CK&k4{;}a1# z1rrqkvu&9?LVh3gPB>!i_wYPd>tDdC3?6)-@qTFJ1Y4E|I6T=&vM15?zST%Ud^F#C zr1!fGaiZx-UKE7wZL#jl8jRyu5V9woCn&tSIRBi{%yB)c`>_tSX-dNBn36Ze#SY zGa3Or) zC*(PPjfH%YLop+SU0O+}rasbFRuxBny4x6tgimHtHTBEZviyt2Xt9k6IFd%G5!B`2 zG{I4y7;I!dXf6-PQWGQsgTH?&Z$3Yklg@n5AJRckxz(Tq-Ez~5`lx&jwK^e znV*b&YSf?Jf6=EknnDcY%`{Iuv$Sqr}P)$dC4FB4pPEF8Bp>|JP&em*}LyGX;Dk7ZhqSyZME z09QV=!r;(riCi5hqQxq!LDq|Ad$Ub&sR=11F_8L=evlWCZeLp^yWP89hBzeNhLt{aO?+54G--!X%NDyF|j0I z$A}2~mYnXi&}sB!{Q)@gZmk8hO25`2v)1wNfkCkL6h&e;pB z+JPL3Pwhbb3p1^N2F0~d6DVyhl_^(OjtGT1&lQuiHw&sqn$fKt|D|>eS#xT|O`Qr= z67j72wJgQ+!tDNpJv46Mv>Xd=!ks>eJuBH1lT9PgXT$8X*NhP>id`jz;&^M+grj*6 zY>BA<+w~duozj_BNih;c1Mk=DD|0uzKw+NM|&sy~*`fudwUyO3q#sIFdcz+#@KNKEMNEAlKv%5=Wy5kG^l|3_dS1ve6!{X!0HbuamAnHz2C_Da%W!67q1dzifCOKbd~wN3{Xdn zzI5<%&Cux-v8lY+kjwbnN~G!%<4Dw#Rv3wq@vzF0ic^QA09s`{)!;ospi~x@=^o*C zV#a0~z7O!Nz%GMoNUX6c?fwnG2-f@*#&+k83mp43opurM1SYb@{hWyZv4&D_NzD!) zpO>m}g+EXkyGXb)o0bE)`80ab7yujyDR0RzC4N-`JxnGAuxz_hS|a`}BAEPl{BW~e zMZqMWB_K|xc{G+rTeD>7wcIf|w^%Y|C+VG znsSp`R`g_Vn52_>^M0|zvS&0AHc%xH6oK|q*8xFdz_K3+vkuk-m->#Gsclo12e^Uk zhKR?EwRBc(o|;lWVoO2QB#HN~lm(TvcyFx#A}WA$MtF48z%c}ha@=cly~i+rCVWaf zGIzP-2=LI|#BYh0i4DSjOe1&KEjHmSY(Q@TJntD~!tm9su!+#4 z+{)1H3T2DP&6Aum!q?8-Qi)r%#=QNte?Y$XMqJ3U%gq(Agj2*4Z&o9-=0dI!&!bSd z?I2NtCR_p-c(&*y%FtCjSU4=($9TLnupuj04k0;SuP(4|Iyh}c>D{GH_Z6cw~?wcx0yzIJwU3`9br#L8QLjWNrK>;hnh?v6*Td{OjatqK!S*}1>VaJn&u%-sR)#& zoCM0;BFN!uS)KwiL3DH2r3krovsK)CE1SdjzSr~lY_OTRuHW_hr|W&0?cSfy^Q>n* zYu)Q!_cFJQuU=vPy2VtA)cbGMGXM_A-wXKT^5=v2m%{-sq+=VXr3Ds=lPv6DK<1Iv$7Lq{I)O4 zH^k?Tva?YS8ia~@gQ;d$A_;I6SLKEIhlmRmvEdR{iKQE{FD&tIwff-hK zS!Pjk?&&kzu}(gXCd%0X(5ZMKFCqGTBARm76gXz#8iNq&{ND8&TGt!NGszfzkqYPWNb{A!bF*zRUXWFEV~0yNVVd3&Czry?tJ5G3uR$Ar9J zbH%p>AXHe9lp7t-tKWn`f-GWw0Mu)F6@i3v9eEqIMP*^Z#p3t8R$cjMBOziJe9Gk) z>(+e_>Coq>CN$6WYT6+1Nmvy397$oJ{?j(qTx(Yq)wnjZlF z3M6RMY`R{kSSIYA_kS;l>~G-&O}Doszh{U`TT^K9q7_GKIzv*cI}#qtWygI>Z@l&1 zB}blsH0D?`oAwpNTqu|xSKOQ>cKLDgfoKty)Lyd4@u}aN_OaWKlrNnK;RkH}ba-tm zzNzDpRTMqskyD8X)qV^6eOm2pe;IZSwj+UzTssPez|@;TT*me!O@L&q(Xq7&>9c3z zq@gf`-_a0&aa?|J1LJdUOLHLLE?Nz~{|jj$;@{A;O{f@Otjs1dg*uU~XUhzr&l?ag z?D5Ep+2_~U$IJ5UZm!|B8V8heH=L_wAXbmhVx4FtP`m}K0X5~gl-1RKl|X551~Q}g z%TMRWmits+K>W*N@yPf|4)iA7_tNZgg~*O7F-!#}vl1GsBfn}A%@~oxL|t5&T26`2 zn?Q45f#5)aV$=RcF7#&WV7Soay&(45Ugh7k6Hnsohr@91>3*;-nl&yF~ zco}3nVIOL$sU43X)H7YcA$%kv0SeNwo%z^O#?g>nwICss-A3sQ2MA|)z#&9;kn~-* z*D@$3oDnA0(eE+RHK!#)M=r_Rg@OeP|RMK$n1H6#c$1ASfeK1ec*pL}<$CQq( z*!|+`*v;vOW6PD(T>#g%h5MBmr7i))GW4T3BAPr4t8e&x@xzGbl)uC^~kRQ-3^~H1GulR=x=U+!_lbn9Jd3f@^)fB{aKRYsiB9o3I#2B_Fwe&rA z4uzdO-^o$-KEjgQgaVA+%}y8prFxX^Z6)O zEK71XpbR1+uuzPZiUdkV#2DmruHUaz3ZP(o!nuDXfpw7`zaCe#pUSMZ*!#ljR+>`wWk${J!op(*1Z;iZuD ze_tv}UbCyW3xX2Z46s#i5%uRaqeWY@i4U4M3aeD)_LqI|WU zNRDybLzdKVkF0W0#F8W(+JHfmW17A<0Gcu8Ybb%ycU5{V&@rT;Jqu!fuFLSKZUw|t z#~&<(WeaFRU5XJ7*}-2?4w91ww7WZ{T3nY1rT>i#|)s3g7AJq-hjY{yM2 z6+b~+p)<&1gs@o8Tji}wq+8S*!UrkgDbg|YVs5gS;Q}t<4Pwj1Dy@e2 z-Ya7mEoh7^rF$8VRmEQ`&mWtP_eGFat>sE%8IUJzipiO+0fk|Py8+jj06yVWHY>G; zmD5RM@+dUNTpVp@Qe70#S?Tmf^<>sAcloEd15wW>m;jB)OeKqSp?=jI1?=DzSpCu8 zc8>?up-|`$oyM9}Za&c-tt7ok-9k0up94?M%|% z#R4Blgb5EW4WQ~xm?dg*mE1Qy_mfS>g{wAQ7*yB>lKBPfmBP2IYAf;bQxW_t3*W>R zu6Qmc{&6{(kN3ez*&IDP!$mdb>q3=Fz+d2 zRGmK-qXUkuW;CO{g?cz6?sBw00A@LJn2I}bo-{e^?sJm~`eMCs&iYibd_p)us$S}d zN|^vO&MtrQCF1M!m)V-BFZdOg2EY|{%urmB1Q?sFL;aLQ+32(Ldx=UAv zy&yH6F|ZH95kicSpD#Ziw{OqT{n#BTOLgBadKfo(LhKZ9qga(H4*tT>9$Wa0g_r5v*hiuyPBdi1cGSgCU5*7eIk4sA+n}j zLCL{J$6Y@1bT3~#KaK>!MtLsnf4KhykelpwaHLO&bpd~@%g`&H+CNqmo}Gg2|KdGK zuTcj|fhk1qwe6+VUGKN7I-q_70Aw*5|6zC?h~nU}P${K2BkON8up>scSk|ysDjrb7 zSh&K#SOjpA%b|AM^VBE-y~^rS?XC25=^$W;;%$ql=^MMg81y$GIJB?wsxuk8A&kI@*K z1f|dLGgZkmr~3NlZRmL=W+X1Y(0i{fgkF~>ZYbvM&8&BszU!4V+ zf*95`P))_>0Yk^&&&>H$p-U6&Q;aJC$hj_!Vt)$MggS{yf*+G$3gYy=(^=37O9Eml zP>36k$q2mS8i$2pfQjC4M*QFigeCnQY`1cB|7<~RaARR!r(s6t8GUUv+jL{iXoC8K ze}YX{PYCY>)N|eDVPlv8=n+j6ruo;Wqo+GLO%ydRvP?H6vh~1^EWg3~Skd3qj9UN= zphr-1LY1PaGy8!YP0=pYC(u$Ye$; zAQno6-T5<+g0xFmvbrbn1X;DZ;Uw6hFuNS)kpnnb7K3}P2#|_W64Rtq8bQb6$wm(? z>)Xm4)y0he3T??oy;4sHc0B$m<{rkuXdrXf1+@*(CB-gX%=;gbtpgU<>0^-Y zkPCYZ6(@8}P$Uh)60suLi_u2u05Bpk(S)080b)xEe+a?X{nr`7&~l;sh7$!gP-`LROcw`qN#q;hRxzd8eVVvR7rBWF~ zK>&<@G2O$4-gQ)h)IPj563$HBRlK!56e!8}lx;Ao{$@N@kJ?qj<)R%nMWYTdI!NkSu2p^S?NxBFfC=ODtaFOEM+wzS64H~}J1Y6+|hkK*+FVMzR{O6O&>%t>* z0`Uv~dfQ*Tn|Jmpu9|eG*|4_WrxE_*`U1mR?b_Zb3TaJ7a#52O7(f`pMk?+|jCC_| z{Iu#Jat8?bpz%rks)xMpzY=*={i2>9CHwH=uX2{64{+_TjE%F}ADfNa82nNtXa!nzpDhd0^GmFb-wn>z1RB(=|; zOJObHQ;2?Fs3CsAzyg&_A0c6~*B|!ucOlg--eTu9Kb!TP+<&Ode=zb#b25Hf=#iCJ z${4H1g>5L|S+^!5ECIiBoOps>j3>}|ltsHtfB9wLRH$PU5xDnu|83rD>OqIFt6~rv z7}51Wz!cpZ@Ey?HL~;Rhz_8gM{)HKCP2 z`R@<@WUfL2&Q>60;7KSU!Ed5R)s1zD@zmKN{BVmY`8U~QxIn2{(dkwIbs^*S2`{Gv7htJvEa)h5 zs81`>rEm?=c>}lx&)*A7@t6I+bt?=0un+OqEa1mL3okI73=H3xp5)Mit`xiIRvHpmVlS#J2 zKYe01$WA?@sV2tqxAad@O;t56B+o@hlUU;YT)Q{irW^-biRvGev^p30Gp>b=njI2Y zTG#X1BRCL~qyVKo6@ziX-Q=3P|3TqczmA(qz6DMRu{0Gf@II6e>X(G3TlKs>Gl2~v zla0s`Y&{uW$!;t;Nl7eX0*9?my&GgOA`8W;Hlkq`bt-TqpGVLmqMSy@9T6--42stB z62t4f9rd3iLs?W?8;yjYV4LXFMsz&yy5a}B8PJd+h#9)*6eFr$(x&pY6xH~)8Yxw2 zWA2g82FwS5Cb^1rd(ov4Q17y{8?%t|`cK8t#pN5C<8; zR_3lo6WOm@82t^IUM))Na%v>4FrOmn0GGARW5TNRJO1b-R%XP7RJ;RNI}_~tqF`Oy z^FMCjzcEp=t?`s3|B%Q0*oZgmNFN}8y!OCg@OjBVd)(x3A&*l`duS(?Acp_}2d%1=I5OT0R_#jom(wrdL&;7%K`f1Uy87}wrk`8N$n<-x#CiOcJ@ zN*X)EBOB?r_;;TE$Mfms>E9W=(V#W{S#y^`-AAsIH|4rC3Qj2O?x;j~6Z%!KYuFmD zy0o;|o==kn*QY?L{t%m&xp;k5-UJ%;VBC1NLgOi{*!6 z2Z{_p0`3gKWEibK1|>p(Q+Uws;fHxr2QQjAYSvAe#3^av6S{>Y!d#8bYez&AmvgVl zcfgCyKhHv{rBPZ(H*8|FaU%*XB1Ug0kIHM8%VTy_N2UZH?^T;WV`=7nI9YrVf3Lt+ z7Hl-5Q3s5DgdS=wJ20$2ZB`P{#Sy|pvlqA1yT?|Y>GCaJbgYX4hm0GijbS#jZf#AG14L@M?X)b0&sy-(khfGiL=6a0lDJTy+Mv2Zm2w#GZqG1^0viDpYylzIH4+@itx^(E;FM@nFqK z9X(VZ;&cymIuE(MIk}pA2l}18t)ENFAk!UQKEem>{QIwTf}8gu$u*qeX&1Hnn4nI=*R9L@?h^qS$R{m! z%=h5l#ZD;qAi;^tw)O}xd}0QYRV4iPiwU-KN18-G7}12`=i&)5x1PKSnh?S>w0(3& zjDo)sc4p*Xp2@H^e=KlGR+8nW7xmYGyE;2htj15GE5UY)ZmV#|Pf=k8q_XxuWG^vF zpj>s`fa^lSi?|40#&-5J##W=2+jSAh-?|b{snZdxCLXM^K!zc78wX~-MmC0@)RI&c zKn|P`k`*RW7XBCamEL2;Gn)r>QWk@?pfQFRUAR;OTUP{yNA;^5r+Q<#VU2^&&kJT5ADna5;koi| zz!LOg06$=tal=@<4SrR3oGJrA0UCk+o43Sw95MUYGs|$>Aqqej(#VUdaQA1@1{h$h zR)t)Q=ww93MF(XKENe*s{tU*3GTZ8WvUcNFd0F&QuB>~GddvQe~OVK>{s`YHIRLXIJpPgf>59tAv{1)tyoJhhkioobLN-kAWlT>QpIhpc79Ti>w9F-9=4rf(SSpG#aPZqqwfRe4ZvX8 z-DRNitC%(!%AnCze4&C@Ku0iVv_f-VmC3%Q`1Y_oH~uB42+aD4-7Fm8*1~_;C0dW~ z7ZZq3A#n-7Q$L9@8Ldr;jE0883mOWK#UtNeCyonaSFBrab^8p=UW~dDoQ_8*OBG_s z*md7Agr9U%!^UVY&KrpE5TizIk2GH)F_Zd~veC_zouUxd(C)YQO6qUU%>~mV@4cUk zn|?2n@tr^zQ53k$r#?SVnqdkYW))^su#psk@$9)>bV~bV_qG}5=FSO=7JVFEyzwuW zGM|k8ZS}yL=1IPlzs)*!^3~B9sS{qEb;^75pU(dJ#OwvTef*xv`P-Xm+W{4YjLA|8 zCaPz+g7qH!4I~RHrlACuh~mbdUJVcIX@AVjae8M5r;YLe$nQiLl;f`8R5aDSd{#}` z2}ff~GiD6u`j#1uGsZvoZiY9(nf)EE1Z(P#FIFK0DVu;?rQ}HP&mE6WZ+b1al0#zq z)@H<0(KYDo!xFT3T3odkoev5|-~VC7KtIS^+vzg-9^a5vebp34 zvTo4kV3P0Qyuu{~U&Q>Cg%I2+@(+&2x4KL_23DQNB*3hgk|y;v96+eBjgY$L&=Ks+ zuy(`CY)f)EAK7nGJ@~T0p>j_je#-=&A3=5p?PYZrLVKaf>7EH89?R9%C_~v$e`kHiJ2H{ zzh`AzJ%xHbrp`gxeMIP~A*AWaMou_$3>r4MAABt@3Gq3{AZf;C%CM)X$G}!BGmw)b z4j7Q^a`QNfow9v3b<~@dz622jjWoFPrFUuX3XG-1Xa!pHSF@UwHDw_#Q)G5v)&Ix0 z`U-c9R1Wq_y7PO$3Y?S0f>iLxOC($%GL;))K4-~Q1;2x3&APD3{MAH~6RlwBKFO-V zv6*S>@EojDEU20NH~R;SY-ENWyED`V&&QmS^32pf`G9dC-~hO>o-Qafa1dXXbO}_o z)}!B#jcyoWqReW83;OsdwK2V)f8Ax5YA38;N^oGzxb2C>->`yz9=Tn+SNJcvREq-y zA|uv3X|HQ{(ET`m>y@?O3a=nmyw37&0{CNCJun!90q8ukf`1nS$rLLGRI05+oJL}? z>hOque-Eq%GA&d$3yCZW7rpWKdtw#~eHyC`C`xIJkTfaO--l5L(g~>oj*hMj)0Xhe zXimySTW#@?ygpUKjuP|_88eU(5(j&)pAEZU{LYFd50K=2ju=+TFIe0X=4>G1!%N z)Z-FMUyg|XY9{&=#WEA1xk>g2Jaw3PcHoCpk0lci!!LkhPa2b(pqb~_!hi9^#X$Z` zUpiz=LA=U&J;Gr?|G4bc!Ufkkq0R;-OO<7L=k@K}#pP(!A^2+CBIV4o# zpSX!Zw_q5E2UN)h&^TL+s-`y13RpWr9lpU|Rv3+eZ4_M63o0026<8#@Q!?{ygaXFe zzhQt8DM>Em*e7H}F-x5~pm4x%DMOJuQHbaE2EEE6_HXF`gVulBJ$zg>aJxFD4vards5D=EYe-md2`!g+}yqoWgYq)H5F=8{E;yZ#pOdFr=_YHP@QKWfdSD4$bEaSdR^g+Cy^ zvE=S&K)3umdjU%Z>tD>@i%C3)AZvi7WWibBdH-DyLNrbbLa2_T-kZRXvG#M}10sz3 z{XMm$au4N9r0081f)E^1!AL<yB<-M3d5-eLlIR4A+?@O|IKh76=4WVZ{~GmWMM=9b?m=cFKj~Bf>InQ77e{PH z$>vAXd93}GT&*wgjPkYG#pVF=DkcDOZl7S`qmj`^khw`JNBQNz&s*RUPTq?5J?|49OZP~LI@eOX45${qo4WU=lK@8?u zP=a}@F@RkNn_+oM4fVgTV-lE(^|tG#)+JcdzB)WgAh0Nn8VhhIYzv2a<6$FU8w6tlw8?SYmyV+n*Wu6Iy?Q3V0t#c_X36b=L`IqFie>g$X%z zbc3>$r3^3UysBzxj_?&daaVAvBjr!=lRdw%VIWNj#5owU>lGtSic5P3Mj@Ke1n)$a z;?^tSyF);Rx_l(%SMUzAq>_<ON))1=U@M$uvyrh0i~fwSv7} zY~X9{cB<>)J`{g4A}u@|!72=u7rU~!E9SO4VC6_EB{c=T<+f5HV7)M;V6hW?7v-{5 zQ1V`e-*Fa8s`mcG3$Q(np01pOFU=+)2(e zCUZ;z0{wOVXeK>;>hQwMak3<(BGCtfvuC>G;>b9;# zq$AZBM7|Zr`8$M`w-yL}G%sL4>JM;sz`wNkW1dU|er?VLC#RItd8L z;igrP8WTq|cq{MlTMrI^nqYjWPlL$>jgsL|3Bh1th9B~K7dk*jQK=t`cJZM#BbIeS zTmu7c8U!8)zyVtPGYh|w(`^NBvhiRv!>)_q9Uv|&zeSNjYfOYyd@JTY=`2&pY8e!bXWDx%htwOMI{NTsb`4<2?-Md)XxVEUM}T+kqC z+1>n=QK#()VdPTF!tH5AHSkIObV@G|W#;}%7|zbB_REwIC0&dy zXekN68kntfY@-UbD2|hmn<-aS0BdFBU2_s0&bN@HtA;OZ`Y{gNSMoTppd(fV#_3*- zG+A}qpj$}NU3zCVDVum(hKD*}p<8DDEZK<`Ix?^q(^Q+bFWx8Wg6WEjm#$`+X8u(0 z?}q(|NFX{V=8w9`cp5eWmjmpGa93OkruZSWVe&a(Mjf zwK3lfCxJ(iQXFVY5aZ_BGlu>T7ArWMTqm*<`Gju3wFs0kSCauSofWRxRWen@voB=p zBaS^W$i1g1ya5-#R^Uz`@kx)r{CrB~)LYMbJ)Y&eMqT5h8%9boWaG<=P5}~`_&%CX z$~Uh8g(#Mj{^)bRLvvMw@zobtm|39RKHbm|LvFF)5}9$9^DXbzM!yqZp`9?FVaGQV zVov-~ae({cMU()h_zZSZA#hTsMFoLzaiM%mT(1-a8Aqi#cE4@^=F&q)73$%Y9%SBE zZJGU-m6=u6j{P$_+aoH0qUk8i6_eD$Z_<5cO^r+zDIIw{Jk6PK%C_>;x6vHweQoxOKh)EU&q#DGT`o* z`~-)?Kl}v_cbP--#12(tC4q>XlpBQj0D4HxhEh~07U6?o*kNV!-K_gX4Bo{+HH)Eb zEL7R~ma8yz68jR^lkz=Kv8TR7Js~q$+4~%&RiSHqgI|Cl_q~+d2!%o#5g_5=etTQt zqj|XAXP2%!ixwBnf4W23PtLM`VZL~xe~m-jF9a3brXS_z{-eSLgHdGwagqRD$yF(;^T~IXbvY1ly%|H9gm)qUfoJ3;x3?giox_u7gu#0og9HM z)`1fTUPV1*BLtE#>*u%WRp6h(n-pqY<61T>d!|K?Adoya`AX_mZ6`8@bT*>K^y;Tw z-h=!iUTvw_n&$UZ$-Be|vrqy@LlMfF01Ap2CdevD9)T7*l|2)?8Ddr=G#It;dSQUzQ{v$nIyCH1om_&(sr#3Hs7JpuY}lR6 z#9dh7XH{^iVeIZRf$}Pu^9iWNiDTL)nT3EL1YEwk_FES%KIuO`9&*>@i`=l^^Z>{ZOMY07=?=krdW zIM8YL>Z+1pPz!a|I|kpzU?E@`io~i|n4P`ufnI_@MIwzcqUa8_REBBO6|t2F1Qg;6 z9O`p-29p-MQh<6s{EC}GxmcL(qCX}3+Y@?9T?oow@) zRPxRLh8SjKR3Am(XJo-rtH3I#Yt+lJN0}zfx+FKEUt!W#Z%nrz61}kLNznMt#yuAJ z>$ziU(G{W<_KY^f<6;U@=nf=lpj9GIEMR`$y;H?u3&Wta$>hUW=ryx*Rr-X)fU^%{ zn1Y7RaRDELzI&zw<3ZU2mw)G1?LF)#BcC1vc+jsf@?GDP5EA1!Fac2nY^xeE8KH6l zRJ7l%E_pKj=t3E#2W>kR@g;AnBlSZNX5L|>8zI{*A0A(ohd()sei* zeuhTFc5(BsG~LlE7==JU2n@e)_=daqP}r5aFa|D4p6E07|Ps&+ZhtQ;hB33Fck0t|CFAB;Lv!e&T7 z`99bu>A#l@iRCT&e*kgGlj?V83Uj#}_(H;+B zo$p~Fb|P}77Ux_S#Xvo7iKB5_2!aYQ0COT&EV>A-hG8Wn;#tX~(7|XiSXs7w#U>XbllzMCDWfps*6E{?1F5OFpa0nZZ* z-Y_i8^D*gZjbxbwmox>%FXF6l)3vHQsT1nGNb^P*$xa_u-38#LANh3mZiG-Xkx5018rfCcp@n;ySN9qejd0Zg- zOAH~lr&SsNwh_iq=BTR%14spV@oZ$8HP;30dNjV@C?ZK%)o$Mp0i2U5f=F z=BmHX2x#+MMPgA%ANRalsiN*bgpXogjE5OMDi;ZegN?Ld(mBsS9@bFVec$dcU@E6_ zUjb7aJcp=-qQ_mgkxs@{AfNuJyiW$lNNg_8qJeVKaV?mYtmSmyLw{x6MuHGIhyNxB z5o1&BxT=<-o3+luXRjavZgpQ11Xaq$a}by4Ln;?vf)4{I=dS!7ASZ)}mhW z%7Exl4M^qk{sO7upY&7qp~abWpa6R}bw0ZHK;p{Wgv4X5 zP2W3{&Seat;3&U&YbCT<&zhmh_M=ZjDL|o{ zAy6LO8GaIBOPkk(z+y|{Qs}C6W-s$x;W=ghkoxM4P#nPzSc0AFEficUa^y{PmTs;5 zdcf_S;g*k^OzA^bt!aC7L&|T=)MI={{=ud2w0Qn1h^(EJ8y}4E4E}!OrK`JJ-^@!$ z-0%J7jX}>(>NvZ>&})S!BK@WTw`0CJR9#Yibnfv1w?iX?dM|hdwC{1%&7B8h_SJ_^ zL(}IOD3U(CZbyl;c5g@WKzm#MyHs||c_iT1!$Vr@2h3y)-}G$>WDKs|>$n#ovYK7B z8b&a=htLvS|?G3@`e^XRHE_s#l!4rG1izVU-84UZi6p}j|XpV zt$+sY69VDoLK@y7HMdNeu{nJc;s`!X0}di(q1O~FKNubtA>Yu}le%+H&$j%OV8wd% zr4nY-Y|4b9fs&J8M61;*T9=Qd{;(FJfp4Ps`neayUH&`^>W7Kn>^W3x9O4;{;A`Cu zV`t-wzMY<F0J>4}(NaV=zqK^wBkOMW+hi*;vI zZ@l2Y2vCaBPok$dDbh}wZzJh6i#HNB-Fz}q0@U2d-!V~52Oa@^xO*_EeT!QLw>}ZSGT7e z#Qy;aW8czU{MzE}9Gni^5iz6-P@HVfbZibNmBy8!Qi_%{Pk z3RfQK{-zzr9NkVr1JiOmGvu#CWLEtcL|t!wcnu;S<0mzvQS*;fMjZmR)ghiPA#4-g zdJqO)xsT$lI7HgZiHdQk=(IAZZUy7*I%tS#@Lt@7_N(vXB>n&q-N*JVwL%v%(6?>u zI%rZNYAnb?(32RmFV&)vvruP8&|K~T?a^17R^fl>+@bae)vJlyDlupkVW!Gd`5>a* z2q|Y4)#&T-x=()v5!nzlwm2lXKsdK*BBVO^q4FWzN8!`Ju$Bm(h==1b&V|T9oZ{ zsiWL|dFnn%e1#dI)q;;a*EqKr@No;KXF%h=MDLy}>hPAqc?# zJo)M?CVC$C$5Gz_JN3w{buQn@V8Bv4H7c)8L`%$|I*Y0rT2Xq=FkcO6I%u#WPVc`V zWnu0J;5kUvk0E|)HYUF|GqHLLI4CRdUkH#TB@Hx61%oPlI|iaZ_!7WGrb56&1`;<~ zwo!*rglOU^wItK|IFJ*VuAcwwGtgD)h>?@{h|wraB7&QC{^k`FWe|>{Pt5Z%AE`y* zR!JTIW`d9aBg$9DABYAKPM?2>3WPjycod$P!TA=Ih{!{T#0YDAKq#&sj<25O92hux zEVEh$G#Is^gh=uP#{}HjlF=N}IyMXgg2|ERK1~uH;C*cjOsKnMLOZ%Lp?AoxKotf& zc<4=jftoImW!0i1y%_@QL^gZO43|Bs1cX!osdP- zGHsqbv?z8!5@Fu;%JkcNu1r_rVASu}CG7ZdILl~v$K?*d4eBi)6gb{|K{{cTTBVMr z$oFbIpl)ppWp2WcLi-e%p8r(i?HU3|@nAk^60v};K45LJ7Q%_BR6+D$Sk%TM_Joo( zH5~w80oM#xBkM$V5Yj+IB|(i*3k@#xbsW(sP~h&?zWoIFn5R4uo15kz11u^wsM?z-)G0-MtDq^`3Wyk4-)zjB zV~);dq=ol4BUN;syjSD*$F(!2sk-5Z-SO1yhH_O8aaeX zX5a>2ufZ6R8Bvir8tGWxkY#Y0DFl4NSE`aq4HL2-S}mWIN^OhuSw2i_Wfe5MT^bkU z7)bjW7^$q3c5S!@po3}z@gui5Yv_LN~F z@KpfWCEXWUXX^I1^PRr1q53-yXda$SBdK<`q)lcC0pNwq+sg)Ugl!#*zF#$^rmD3>$57`dyR}E%V{nz<6hPCBJ+Mk6evl5M zXJPm-GbNHu&bx!bHEx(CD}`gF^*zxMYN!wyVCn@F%uqq51G9t1i?iPkt&8}KrSpAZm$RZY;x zTp;_^*@~eRajmwb_KKu77vx_{++H&gZD=VT)!{`kKSw2oM6Q_eHc~pq$eKM?C^>b| z&bhP79Zyg?|0F0o_SmBKC8|=%8ggQM*60m59g4Ohjl|Qjq(Ft|N8Z>2PtO(6m}qPP z)%y$o%!@2lq&N`&5NxN zLlcYn794pY4785TsPg}XVyN6WlLi2 zNX7BOfvlG!C<)(xw;e$&qG5z@HKPxJPsZwQ8u+*zJ3{t{Ry&g)1gxxDV9C8>X_|%X zMWCX#GAIGK0hep_y>=zk3Qb#v`dhpq|n=)bm^gvn7k`0s*%>gKJ)AiV|?*spi zaSwjre&S~$!@9S*#?h~sRSnL)KpMKtzNdECd{%L=d1!dlntjxtv!w%+L>N#g;z0Ei z&sXu_^l$LnN&_C1`Y<9n!d--sqXLAOpcGZks?@2=h;h_p7hDP^7myU`x)OIIcLH~Ql+C0-TJ*G61%5%-{d>Ji-K7@YnAbwb06 zpS=Nx*cvl2$Ol<~EGTZa4yc%Pe3*i$U|sF9#ucD;QaGrcirxce%Q!xa8BG4~imKW` z8FX#?)Ng-Z@C-jnHt11(kH|{c;1jzmqzOsHYPg+?dNuR+S~3ErDMsRr?}pc6tt@!K zZUljUvRbFxFl&>d$t7Rd$mYqK07YU5y-1s&1s|zr5!pJ^{hU4sANv(tI|1K~2Sji=)P!1Cy07 zJJS8Cm1du?MgKqFRHiTB)iD)A3~DUx6Ig=ecC=GdJn8dCMpJc*<5Na63d7-fo$g4} z@)z^Pe&8O|Yw(v>;+8=)@Iuhmcj!nzU0s$Cb12we*S>}Hy}I9OB$Hw_d0M%^CU<}p zueJotsbVjg_?7obeW2*tcMRDwGj))txlI4b{$TaWD2C{3&|Gh6_>nSqID+w77t!uL zoPJT!&;sR>4<0<17r!>q(ED7JP0avCfaumtOKKTS8cCdz&CedTqX*U16t~2uL48s+ z*>IjpWnSr;BCgpS-#U*;&^;M^n+)3GlJoG}->X;DReQuZ}0QRz}{$pAEJp8LUJ9Pi2_xm}>(yU-Mt~$U6OLF;z$~ z&IaNnS;O+I0O{K?&BlWN`ZUOaLUcG~j6eJ5^D~{b7ub@GT<{CHILr2f_^;$@3A1sY zilA$>zu=|F%EohJ`9EaDcN+5QkdRsvoF@*}@44-2FR89*Gpx-5grM?~tk&ia=0Iky z_WH4S6QZf&&V)5Z;w@uFqVz3L!@9z}iehHqkh7>iPYkN(-rWX%+LDBILgJAHLAK`Y zZQm))Q*HKSa_TL--B^s?+>`#*(JtxvJ0D^|arj@nveV_&wi{4kv`MI4*B47CKgr%ovrYifob*!(|)LcppZO^mx{3mF1u(KM>y5K6Ux)=o*5Z zVz?R*qK7d0=btZJt;d*|kCKNy-~>iO65ECkI8DD@cU zQOG-5Pt5C7*3hyN>JJ4cg*i1JA+msA(C<4+?56mnE(eOt`WJGbda|`RnW-t>5nk0F z11VZ?OB8QOaZ;-zzV`q)d-Z78+R;sAajk2f9#n9x$T`m+%DPPZt{*lTYT?zZuGdJ& z8h6SzFWDtNe=IcFTk7}i<|SR#FimaX6`oefoou&y5wMUOGlAXtI93w$Vs_tYXv;%b zIxU1>Z6rO`$r(oOp)gt6E5FB~)yRkYos&VvwHI(v>k4s_xL)Umn97;s$=*3KLE&u} z3a8J@O}*MrKKlbX?q(M$dSTJubHYS)&rTdomp(1I2`W+{q%c1XB?5YHli=#u*zMx5dl_sayS6PxWo0G2(n7_v_}s?C+mS&SKY_7WnnYMRj1WU>I?Kz7pVbDX@RnU&JC;PR z(oUCA-fI*_NX|?iwCTuc)_&Fcb&x2_1soxMKm_dKG}N+QOM{|^E|`n)I0zq-!fy2f z-yD{RzEoP`d)!X7{_cT9`j#-MVLh5pC`CK(k|4aU@LGS&>(ES|`6VM*420-*HWFSz zemC?1#*me-R>y}Pb#H=iJ%U>$;OBxyEXDqoMBnUnDJHfN*D!An+{nA$NooNnaDll# zs|9Ho$Af4;*F7>&I<10oSd>|do~s;AZDX)KoZ|fU8o+FHP7%cvc&b^6_&-8|N3P;W z$<54U(JxUj=^1Tf14XWe_9mx7g~U#j8J9HQ^2Mm;GT1-nMN)Q+{s}mx!g5dK0F_QOCbI_$Ja`Dp)@J44mV@Rhv>washs&x9Fa+5oOJvg zBQr*iL6Cke|HGaOk%%Gd4TY07*2)cCI~E$<*STO@&fgszlhl&ZanBX9_DIx{)NGt6 z*sXz1=2rcA!zpB8Scc8n^_?BXGH_>fZfYW?3?58v=CgA=AeR`K92FD&d$lhZ7#rI8 z%Ki?g;go#KQhVbz?@>&*`^A3QI=hFfvOf(6Qz|}7b%2DLzQf_Z#$0{Nnk3em5ooY( z7SV3mj{8Kr8TgA_m~|$qD{GGg^3IiKa8-&@CX!JS*vxTV51>BEdkj}PXFOD>uAC|F zRd@bn#wG&>e3d0gp4ePD%s#}43_89RlW`7|e9kK`juY@~Tzf*Pn%{2)2F=N9(4N%-(qN1iw zKn|rHIIm~XjUs3pNl+40eA1^OuE%xtu#`s1a#EK#3nL9Qt8fYsgqOly3bz8Wl-TBD z!w&dh29A}-ZRi8gT0K4#bES~#WXrvMOc%uyvkF97jY+}{-`kASy{wE%pMiFF!?M8d z@Z-3_>`AdJ%&#EhLxhW<1ee8fx)$|6KHTq6D=rz1uu-w&T-=DyO~$NF`ZGSTmRz5J ze{m44(BqdqwvTi+?As?FAS4BTM=+AA6XlFdG|YMMkOgpNNi5Xiv< zcPt{5d%5c3OZZgje)O-RFhOlvF&yNo;_w~``aXU6Awpc<5>aDzQ329m7Sl`l*DNG_ z7#O5kLsi3%gVB$w%FPfA%8!zZyV6F#@k+S!+Kc%?TMhTthp{2}S z#i%e+8hoOqQW9s|CQuSxeM@PRj2$OeB0lWCQ8!oNiR53?k!-FZot(;<4%#kkX0h@z z5^ITxFgSX`D}l{4EDI3&fDKF;L(}1XMsQuT0)!g9aUnBFjibINM=2pBpL?Iezav~%^4;y40|j4AVBMA#HjK8obIB&S=&75bTBZ^dt+|Fm!FIoCr^w?L$0sP zZQ3#2Kg71Vcy*%+wfJ6*fu5wzj2X9LO&dc$ef^LftC&j3sKZCQ(MCj*5@jisGfh24 z4T{u0W$)QqspiW$Fm;@P6b=hy@tJ}>H#vr5Q+Ztc7okKSg2SezWeBrcM?3tFW6XK- z>X(SJ;>4=^KvuDM3#V41br9q}*J*}N*y(kPX?`f|)ZH>F69od;Z_z*i9j=7$qY=Mid zn`6p7-%t4n1~6l zT(9tw`~WZ5OD0^gSj!GX+5Qr@Y$QrDZu~=Z zYyr=)Tx|-MZXK@)N{ROVIHZkIzG}3t_Q8_sM2Wf74SlVbXu%q+IN88nt~o&&iN7t= zZ_OS_>Vx$x(Bvb=#RG4`%)OvfA~#UuEz#mR1WX#WG6L7R~-kGzBv zJJoWn7gKCov4cYNNY(BPiEcO$wWM`+i+KRZDxLM=6XdHfD3CY0J+BZ&o4DMBFbo#| z{FB?e7NRyq>IfotZ8#pLS0BRSOu(&H%gAmwiyMx^t&+b%s#ukl;9<_CD)D6tMw6sN z4+J;|Abh}}*9Zf(VWonBe>tZ*Jj+O} zD23=h=G+;qFHsqF*_zss1&CYV1M~z?HoZw@Z%WZR2ZLY)t?l;SgtL(|tUVx)T!W+^ z5eY9Okwc!NB`Fe*$g8k|KO%bTTn689rw|~#bU6JRpj>d4i#B5VUabL?v0nF5!ne*m zIw|pP!0DVlt(A;+h{~Jdddx&plgNpGJX3z)*VQsEvn6eDp=rCc3Rn?Hy2@u3_IDll z8y2?nH{bV=q7DP83VI^|C9NGV`8|ZY4p@TZot1NQ1HQx7Rvq@1PS@6sVS7vJ1{`=n z-GLZNG?Tm8xvAF~9vc-gnTEU+>mVb~VsXVxzQWLR?ak9!1I zPY4sqVcVZm9t9AB#VIbSz)CN8p%|{}iRW`1@<;Q8A)hhXN9-vfLTkqhzbOZ?nF_ zVw$|D$g3>Xy73P^kx4~YfQPPCh~v0&R$-1rQtG3D+D4nD?lllw6NBEABO zoH7HeniB-fA)_p}hT;DzUPJU43smV-ZI0|FJLf#4MYVQc!LSIE02o-&kqxsa` zfVGmdV!8Ei{>BVhv?Xj@Q|)uK7DhD&YGWKjKtx}VQLb?ENj-ch z{w=itaW9gy)ixRxq$Sff22kyS`sBz)R`tel(h6+ExFVu48fGakbmdnKIEZ-7o_U=w zea6&RPZ78x-R^Fwnk?-fRFgA)g#B*hHo#Oq5?C?(kzJDL7${e~s<5zNytbN!p$FI9xHzojdL zXUd8S-BOgl37I1CI=$-#W{-iItgXJE(H$0YIl8Yj0S0;-AUX)<4>g4~i-$ri4YRww zOJZxfedbq~&Lf}Yh9X_U*_GnKk#2aBcf5CYCmI-yoA38Tq{B)fjhcA zKIR{GlwjuJC=~;nOfM`6xMX8kAV8R(75tz#jWlP;@2sA|GrExAWfpP!TLqz-u ziSfH3)Q7-`p&TsXwO7^EiAh?;!5aGP-4&y7%8x>WFOE6?Z&hL{a0*EUC;FfAQ!3 zL8*{O@F#$PT8WOJ_;D^Ole^u6;=L?4=lPe9)an+{p{+Dvtg~LM3B74Tj)S^CZ1!tb zNr2%I8z0QnMCLR^%AjzJs^|HJ;%U{;llv6lI+kz=$7C(KfwC$J8a!smPHpCJjtfMf zO*f8wyGdsHz{b#qn~x!ZI*Z{s=L*r-q*5!kqkIteRsK!&mea3Hs?-i4mL7@Ioy>2L zIXyQ{E@f{NNM`{61D8^9(Pfs-c)m8H11%wvJjt8KRo*XSGw2MaxcA08ai?$+mU`eL zEORsY=7Gl1c-+Lmx=+Mb>Mly$TYCmM9kvL#DTcGDf{h$21rU&oAVnN?)TH);ixv@b zS%QQ({8Cgoi9Hsl)p{WH$JoTF3ve1auZ~Ky4!2U$Tw5k@XAc-8DX)I=vECWcy z*c2sEeI$uP2pKqsMD`egfG0x#-iuKQtO9H&yaytBE7HC3C~YCMxrv*+O=LVV$R^nA zJBlSM2BqYCWQ|-Ex$<@cCSr;2>W1UNFloC~SJm+HT5x=nLsAz4sV#air`A$_@E5zL zM;tPML^;SSfpJqGm6I6Iuy-K80 zQfFG>4PCPYrL0zlZ6snxe0XLn1qQy}*R24xhP4hzhaz2zdY{BHvP87;QCR<4DSh_q z_X7);0@}#8H70c2z1tg zHp~JNaY{*=-ELayZC!?dDN|K)`u7Z-(Wi zAaGs|o{s1&)i?RN#*r43oR@8PvpJVGdg>=Tv{o; z%}d(qM(lkV4sdroon5Be|1IlZ=`{2r`O)aV5$?-u^GFj9SkhE`fgAzvI=75&|CgaVGto4bdRub@ip9^t>UHlC&8aUqt*Y9JOc4v1CJO~8l5m=hL5jI6^vxqOQ464-$zn6qf89RVi+P@Mm+_*BL2&|1_5!)DopGB4l+~% zevzhy5+^Ydc;;(*@Sya0C1OG8gK#ntu*wAgT|=9kHe)&t7BlH|zf4@h@jzghAPh~H zgj@t%b;gJmyVunfhB0@pLA7S^i33JF#&m%@v!uH?nnyqudxMv-)CnYHyEz zl?v2O;nCbptTEDOly80}ykY>ZfF_~z)cuwS!u}!V4e_&2F;cY>>DTXe!;jo_mC0kx zdrY@O3z`4?7_v?vv1 zTGA6DqS18oB~!eMaoUz)C4iYr48a{A54xp_D>^%p)8wNoP=u~Ymv9{{5&e1-pJ|Zr z=f3k$CT?8N5kjT1-m_4A?7Mf_>wATl^;gDP*xeU`VnEE%Dp;(C$loB=04p%Xbs3?m zQR_y?;EHRZks?{`)jSAE7{V)Y7eyt!O`n-2RgErt$6UZW4_{(kHtrNkZDfmS^+>|~ zVG`p@WF(asQPC|P_c;%i+7sM(+$b$e0eUGOkiJELLU%>3yErPVQ1A+R6|@H1K_MrZ z*|!V?X=(}!*nlvDuJ8WPd?{j5vfLtCrUi$AI8JvDpeoYtav@FpEkKo6ZLO*(tE#~x<)~Hx|7?_+5`?@>&Ow_j z;5^zvTNVmZEcTvGZC&lEM*bFJMJ6`zCc69Kifn1kcEcdGlkQ{>*=sIX^K)D@TBAbE z;m^t?mR_2N0dMKWLhBF>Ix<<`{FR#~Qc6iq#ws$KrdgwjtWum+8DdlC(HqUd3DjHF zKUW`Z&uq6EKgQ%d^JW*^+V@~U`lLD$6SGDWk7nIR8SL;rVzgot{)qdT?&FUvpsSk| zXcKxYJ}5!ReEx9;BEnM<7GKm10Z+XG*_S{Zzxe&D9(w2;N`%b0G^`f4>IU;DyfG3Z zs;G!yt5(#ADmg!)GW(SOumieUn&R*W+He=l3M5OU0C2_vxgk)TNsP;ec}l^F9lK{x zZ`tqDaF%-F2DEl4GR7-G=pn7^+me1^&kO-Ns*G>ERo%xpn*0R&@a%N_3s!{}WAzc= zI5$5F1y=*}G5jwJCUoXM05ADMUc%@D(X50*8c>h;wV8Q>3tz2FAL|^#OB?(HqWZZK z8LOO^EeSkD^aC&M3WUjU|}ud)Re|5QcB;yW-M!jDDKvG;5xGdJ?oj)L|-sZDiO#d z?i9LgY}e{CGLoB61_yEyAPj&)pv!k;lM_1^7%<{2ORI3G(gO1Xl%bUCx{9=1vM6CJ z@;ww4^$2bB{ly)XupBm<@Y%YR+U6_303PR~%!>4cR8Qw2)bfKiU)Eg+Au5 z9dnUM{0rJK4W^9o6tr7G1hLK2_({-zHF@>eL|QgTQF31v0=kj%cn?PBI9EyjooOL9 zAW@1)BiIF4Hv&-{XX%?3aMoR2WB>?ESkK!S=Ax1qjngF$!I`HRkKx-PhSBZq6udCB zNyq;Skv}m21LcMsoWI$nb0n4=aK&?y2f(B!M8={MI#nkQDk9)BG-J{Rp986Z*C|KP z>4fFCeg?iNHNB@+Ly8w7H_2)uwpKTb0Ccbg_T{)I%?>_L57zgMAfShl*VvBIKnNU$S6N0H5x9H29A)TkGt;KB62|!ok&THDV{cs#8u`Lam8$v57sK||(Iw&TXZV5$p#YoeR zsJrOLVd?5>Cn?t*5&!aItPRq*xTx;_uVHTqfTi|GCk9DSqLxYR`Ic7B09KteDkurX z4B)tC)ky;pIkGwGy7(dGhmJC!2UgPf0Qjd0D=DSar5nT0sxZY=Zq-4NRu$10tPq1l zq$R4acQ9)n%{8{oQC}Qr`)<_i_Q+u$`6Qlv7aE#6T*7aNu_-o5yq9zxFEFT|5|ZkU z?3NDa0>k=W86Cdq6RvD!D^BBS55`a|hRo-6IIS3reaTZ)HBEdWU(A0iMw2;s1Yn8C z*eIAOrRf<57Ql$*ty|67x2%f(x!1Vp^ZcG@K*_> zQ7BfZ*5#j#fr|O56**8_yW;=j2FV8aPE`$U_2D+j!Hdz^`$6q^A>>N_*}r;;{ku=& z_QgLnf%-E;_cQ!xGBq5u8J+0QU{Zg;FLreb3Wuat34#lWyeD>xNUL6i*XW+2naUEj zVr^N#p$2P98Zr*>{(GD{AxNw0;=hG9vmc_8I**s?W@{N-A&NGwm8i{2DJP4ssWS#6 zdE8?pYK$kmB46wWsG00Q5(KpG#nq+w+IuIqrecb@!YRPnm;;gl>QGDrwc>#otq^pC zLqx+Vv)~-M&@2KB1Q_WD*9wFX4_6|6m_RgzIXJ>Dm6bZV)L2(}S-jy0%h3GY*j?n~ zrR;y6eJBc2JYmBQNb6xD*7Om{rrxI+0OlWgKosGu>7TGc2(fdfTb zIsMRI;Obwx>|Ix`2ckHsBH!RUdrNRj#wT0Uy?Jw6@A5 zz_nO4ECSgU|F6CGaOCpq;VvJAjScS4MA^^leHDn)&t5wusarY8Av6P5Q14ipz97v zWRWA7cA%+u8j&af)_>##{1Hm0rD9Y?V>Ja7PQaoOx39sN2URtMN7zs+2Tr7|ry)ij zxXZx9zyaceco@+;G~fsgFwfvCDnRA{$udCDOBi^p;~>ps01_3dD|q$SNqHA&BA`ax zRy6$!%m`#Z5p96T+3(O7N?t1xpWk|F8w+!bsG2|Oje+svPrr5&X8&O|bQs2Tk+A#m zcQq7R5hx%>2lJ3xD57IgNyu4*7agn{@=$_ZDX`llU?X_#3G{FKT+Lhi2sUG_~3Ld7=)1q zl-a97mWV_;s(;sBpq7^eV)U1D0g<&40i03f?S}=;PoT3I><{?Cqcb-s*BP}3 zQ9+XvclwbyEvPsG#|goDN8}XR#!zRtJiJKr`|5Yl(#Hd4{4b4xWWtdLM>Y8%2fu(? zM~=Y50YGkq9MCx*^%A4{>;d#~KB-kObjD$vh~x$lVRAviWgU($JXc|v4P@G5tYQm! zfpPrs>G3C8gP$))+-uCA*lg%fm~Ts8&lj@ORMd7Mm(R?X8r~&^lziiOfZbpRRB@O{ zeq+W`LV)t$*TADdBAs#w!UG)|K^R@3h^Y$z-W|edf)8yDfS>`&Ohr%iaJQGAd#;#n zVN#U zorrvQUy*v@1_gQaY7l~U8ZUqeRb>x&+bpaY0Czek7z-W}AOeO&CBX0P!atNEyw!a} zMR*P$>f&xEnZpGzaY%1M7f7N5rFk-&cyU%`-?jn;455GzNC%Xe8Nv0kY4LU0Hwa9c zKr!H9frkYI9T)kz)8EIUNFX2;609S5fSOUH1+Q_5E`VT`0(M|C5yBp}2J%jU#oc5B z7@J}>n=Sxh@kgJHA8Gz=NQy;kp>#-O)08{vVhf=~8E)R3eoNYY$TAKyI`B%&PQmC| z?f^K)c*VLe5TwAcg|`52kwF!3Eh_QSL1g~c z8;+R|WW$j=f&Dp()IB0h!ID*Y5OUAalfWi6QLv;8H@hlq45s~>Y>NS!;jfX&-If3X za5}`x1uIh>BMKh@LZ9A(Q#arOCxQ5gDPfe!;P9D#S53o zbOT=Zm7f4IXp=VWjvqj}Vsy%q?(V5y?hP*sJ&D z04N7EL<4j_Ixv_wBClc2@8kHV$3PSC@DC6LgIB)!2tgN>+^_maG!vJAthL70P2BU0#!4-h;Bi}g6xKw!TK@h{7q;e)IzYGDJga-m#8a91`C0s=i+@dH5Nacxil>@pu` zAY--}VE=6(_{6NepzRP5i5bk}&We8mg1oN#Y zz&^Iha+}tGWQE_v?Et(m3W^rB08k0p-THIQ60|V`-YKYW7BnM2#M$;HK+Ts87=_{0 zby;CBGem%U0>MLGzlp#!%hKusCl2ZO0)m19WS)bGz2I~>!EpT(cU&yGmUL?acl>>j zt-%XnU|j$VY|QVeYXCADkWiCZ4qgDlz=lM5f}hQ${epq@g7OU&+0FHbu2Po)b}zE$ z5EdP{asV?Gfm!@tOY$EwhyW8q;O`9tp%JCnzzR3OCvyQqSzsJO+ui{8wNbUvsci<=1ELA zqT(omh70W#VwYg^f7h}`a1aWV_`u2s0F6xgV*%A|40l(6bvJZGnAAoQgj#JvAZw6y zzg{7 zA*A_$EN36d!^HGj6ek}XIGF>NIzW8=IskK>bz)JHn|5_ECpaWu3yYiM7S z1dzpl&({RluVuaGa+9?HsZJA$XxJ3?x`KggBdtM(hKV~JX>&Q;7ZUA1330+!9 z4-vu(PbNK!1QrN*uaJE`2vU!UH3T`0pw#YUe|%ec@gpCfQ&%^uEhb_6g=K!pvXX+i<2;5^W_P& zP66|_@7-@2qL_IDZoi8Go{Y75gETCZ(CIpVD%{>!gM2z0<_Q~>!AOh~lf zh~eEi01E+dy*|}L@|;Xa>4y-gqAVCl=_0QSvE_h(orFBy$N=`I0rvb|NmGznF}E{c zTpEQhr2!oBX+(p?Ai*xstP(PM72s?S(q=Q_svd0veL_}vV4yBd7PaKSOn}T2MA8Ne z0Re%bzWfGf`ezWd2?8ic_~@g`3FAo%r8`!MQ(WbcfgTXTAbrw1oQo$OE&dWeBw}@d zV1NZj0F`jcXVhRThwZ|RUnBH@{EG(A?#IBisRCd4?U*>2uFMAuzo5bdzkniy_74z! z9WB{340(Nv5yzo(zZw#5!1;j$k^EMP0YEXJLYNH7QEZU$Oav#sAtMIJ!z1eeKq0|v zWgd~3z|}&bNDP2h#abM7Oac{P;X$y0FvL4D8fTc>99pf119tks;Z+41IQ8Eo`YqJS4A>~Kp?2k zBO-@%_yLyy0JQEL(hhH*F9*CWx*zO@%PCGA`3T_ccZXk;PT>HITNW~*xnH@zUjrtVmIYRs^AQ$e6juJBC zq@XwowjqL)o3HF=8VghcaOR-Km^@MV6Ie6w(m;1Wz+z+u4G@;Q_TN&7lYnF$byLClXF*y#Os@#hm# zWdJPb1VF(N@RRo<5i-D}O#UN=^Tb^@d?Cv>B3_QY-(a>1bV;CMwq3A|k3<$4x+R=k z8!#rK*#Yr5LnAq;kLTZl-YCGehNTf?HD+d_jvpC|LC~QG)($)`%&Y%?r6X8p2m*~i zlzIu6W{CW%{#m9HiYyem-$Dpy8yeQ5{Q^N|kv#|i@&6yT5cm8X_d~fbRr}w|Gp_Q#HWiG^0OTUL<1b=vJxI)rD8+Q(9D|%bz#B#>gYZ#+Z^FgY z&kf)cK;snf60+_=$`sV3$q(lvmI*xNZ`nYV-4F!<@S1R@!6TwHPXn2n!=hdm@%z~V zgk=n+Q7NXu8GxJ(E@*6O_uX%8@}Ep7v!NR37X6sLe-5$wV4;9J@dzroS*OLH|fG3ew;i02h7x}ZCJ7r<%O2*JW>^TJoYMQ~gHs)YU z1=Q!KIKY8Fn-*#*dMxD=BRL>Y@NEUP8k_-}at~cippu;e9Zv608Bf-KMU`*_M6(cs z1KK>&muB&tlpXi)&XN5bVClU%?Vgnh+44YDXcCNGd=BuN0SBTRIuHg>=sJLY#y|C~{y~fU~krePeO-sw(Hg4a>RC!-GM=gT0hPGM6B*OUpJY1JjXj z?;VL!0C@@^G0L0ko9}JPrw1ZY4w3U>O+QHmBd z2F)t@hwk{r0o}Im0aRKH=r4uGI=VowFpYAJ(?d- ziXrv{X@uxi{$7QJK?+FE#QW%HsnkjW{oERdK`2Q24cI=fF)e-{%A)ODD?xV5&(-QYoC z>?7$XkQK2j0gTSns(%?INM;2d9d2Miz{h!I5hNVIRwoXdwO>rxtwWgDy7syjPltm* zI$zKcCQE=Fh~D8ufrLOM1wM~V@5VmpSwNU^B>DNXwPTZmo?8IoQf25vAfWm`0HI$h zaQ2a`X8`mY;XzUYayMY*P%;gv)xt>O3IGLxWKF?@Y5XDEMJXKkyoq2_;DGRD>(j>F z&^*Wp2g+}dX&p7g6RQJ2`GUDwC0TMo+)lUPR?}#{cVBPt0WgKx4uBwztotIMQU<0m z6Qs!y%0n=hz#v8evG{H2y4B@SuGu=sS^Sc)bx?5ift$}35F~e<3p54!5W`UbUJK;_ zZa&QRN4+2)izuV5fx(RQ{04|hnm^~G*!SzvR1v>IgSa}B5+)2_mN*@}2E?RQvFKak zR|RP&;GifIMp>Y2P|MB>Yb+?MZoT=X*B|-pg+zTDK%5Z(NckuW=-G52eju9#yk8?X z7(heug=oOwWahVliHiUZ^dsVUq?aQ+PGG)}TmnL81P?&VyB%$|aa7QPydA=rKz-vW z@OzckXP{^Tzj5=|x=*QqJPBAi$XvWKoC@8cT4+DhAyf~XNlfC8z*h#dZVh>=p>Nau zYt|t@-!0U&Up@m0!yNe-%zL2r-#1t@gIn*9hlp4SINN_&iQgaEf?G=SDfAc-2^xcG zEub+m+j9+I%PL}ZkbPh1@Y+|?2{X+D=>1wtchF3+1)C}6K;%AsWHpg*0{HO1P0T&{Y`1IqAPF^B1}j-LKh#|o?EY{AbG(iY!t$` z`K52=L7u`6l~x7*38PA<`RD{>Gca=F1!vnJF116}a6aNB!)*gefc|nu{;#VAh4WXT z1KBP>XCRk;%bs2<@ZY`%K}JHT5D|?GWiA7G&yC$*`v-b6nM2E82#|ANNH_+*RfQ9V zW8lTXnK~qV4nQ&sM@K9UP!kI6i9GO&0Ja4n+kl%41Y#9{=G#OiZ*vKBY5}e``1RU@ zHfNw!gz5^_B@Z7RqSd1m4a99(-$$IDIpCte7g4bo0w7)BKu?8r%|Icv)n_+%iHDao zkaS0dDfK|Nr95;H02CZ35}`2Y0U9B2F$6^|puS55Q7mYqOqoXfj^7uNZrHCO(7W*P z83MWlyun}o$$x(CmuDi1B&RgS3g*9?o)t%fQs#Ya7d@D z_d3j!fYb{rvC-{*xR`$zFSXS2AxwgRtj$rf1hL576fZju?&{qV9p$AqL3YN?E?}kr zEk$H+-vIA=TI}QOp_~m6QbV)GxdHS_H+(`{AwnPk_c+pgh<-f6dj@6wB~YXC>@=TlvvdcU)UM5` z^rPqpi7H&SWL7}%4IGa2S@9<|ujv{0jUmgW9V4;Ab z+<=}H62ySebd_Wkq%r~#nsg91Uj#6NnQn;1Y=JX|ijOsRYqWq$$p-=74{)jmlIgkt z-k(;`Kmy4D+_nG_>sO$O6;N?~*^vn{0q0V{kjUAIn;=;aB0d*2xko@(0bGdpC?;jZ z(OIOvaSP-g!HN(k0Q3`}29PHk1=|fpYyv2LPz6|I)nKdIuaKs`6l5uy;V~xgqrV-- zZX`Uk0}ic<1@s0%;0205z>5SRpu~YliUO9S5#>Sxl?$Lwa{CZBb$B8k71=}rm&gsc zRjrcOQO61>Vxi$j1i}$0Oki@45;(wuoQW6{=Rze_q7cF@U}ToG2CtrN1z!!P9TY~O z?lO6Q4@D>hpBAamU@qQ3o?)QI0cRA6Cu`i7icxMpLN0}9lO1r33l&l4ZUFm??5~1p z9$XXGicQdRX6gPbvjf+N_hc;aTtNx~!P^8RS2QDlR#*uN8${n<0DIJT8d(hqnMWXR z0Biw>+EA7Q6iO#yAjbuKTqFd8$5wu?KBQj(N4`-jIN!Pa))OhR0S{~^DIW!i4P+3k zpMR6>dn8xDHQz8=BCKR#csk?j4e0SB%AyJ(dV%Jx091c(8J1{)oE4ZqVNeZ)Ca(vi z>r9aN1=@QiZr9coK=Kqr4HVH`jFiFr*envb8C!OGV15J$2coEvW!!+u-w((gOjei6 zLZ16{*hYw=Ylc2QBHgIX_}d?Zkg&)y{b#%Y9|_eF`rB*#`$mL}3ChzcR4Q%(WE$!Tm@Fh{>y5jdUrP`c^9M$I2 z(z19kwC)C-;xH5evI7e%V4^@2Gg}Kwv45H6NO-0Pl#{x(O^c86S?1FS^tcH{H{whF zx&P>`$^gCEvISsAM%JV~6UjKkeooXz0SMC7D8*;Q)JhKdIRHNy{V&bAA>&5^vm`)S zf)tzv;hyj${#uK%&3z;?Ii1!^8dk zrNh1Kiv3l~!xc6(G_=D*XQ@@2#ck6s^;DIOXry%C}To zwcL8`I6Nk9BdVRvOoHuU@k973*COY$)#*j@R9X6O8)r@AdmArncyfIGjFIrn!rywi z$uwB2!%|`$i*c(#W=-uj&PZ+!9s0T#v(m%T4O^KeCY%?=spko5nXi|S^kf7Z*c@u{ zS+}>ZsE%He+&Bp*;5eF`)Nu?Vv=eApU@oZ9YBjG}E@7gf{k({Vb^%;*G-GqHv^KSQ zU}$J-!-o99!Rlyk78R=bY=VlYVf5q%uisKyv3+ElZN%c!i+#R^{mmb^=mV7uR2BpE zDt2R%K3;1J=ZJGu+KXQ8t>{ciRJo7ebEoq)C&|-SLQK-MgLm(E>}z43m5iD;uM2w^ zpG0r9_HbiT&zaqRo&-%cq^;!T^$`b50~yY^V$wIKHHOjxLH~J|MZ`SwvI$QT@v|DM zFPz~l{AY1o@N2sAiE`NWQ{vZ+{V?nJdzMK0i*fHhbFqpXT+G7tZYRIgqj1NAB<|G% z`A-%a2HP6(KMY=33kRLke9m8-bg{>h*~9@!4VJ?LQJwC)Z|D+OeU-1oNH9e{3;e)L zU{*-EW8N(`ys>d@1=Bj{Q7_|cO2PCN$?o*Lpo5buADPVLkB^#cy0IRkWm%pKMZDz; zF+o#>Z0(ndT=+6QdGLS81Pg9f1Q@S|KiczuIegF@TroLbB*^#Xu%(7ajcrr=akjR% za>#>DBVw|aiqRhRf~d00@DF8<0as+bV|KBFb>dQ@0utL4?>aHa@K4@h|7z5f*xo7a zWWC1cM_(2Zdp{_q$NANpL%q|)E#oSDD^G7L>W$Cj0U(BBUHluX6v4n%L zpRLU0E487qy~3RI+Z2W*`q(CC(itlD;y-6smc_-G$Z>fzo+wSIKjlt`o}UmI>&t_G z{v(=Zd*bYsK4<;otjD*VwX_N9Z{1P#yKQx)9`mOsM-qne)5tZPwFn!6t}b-%z=!WR zw}vqq11?jM*fN!1*5Vq^W1n(;skuDs$xa!WB*G^k;N_aTS^v@4y;4z_`*a$3Pcj9$KH#>vRp?5D?>z5+>hTxiZ_Yy61SiCfv(!!;$FP<@EAN>u z+SF$fvVTQg)bC6GPL4-12BTu$Hwk}|!h~H0C;j8JHZO`}6wZ5JX}_W2cbnmc@!7^G zI@;8S7gi_HZR?EBrm9Oed^_>on}j=#gNkVf-Jdo5BzG`h)e|{;ToG*oI z?c8+igd;R0gRib^r9O#Tj>hleOzIeci(gXh>crq~&47pqPj z&tOx0v|Fp11UGN%iG6h`o^Oiqe(_;*T{t6atI5|oTysy{XX{f%cb`Bn9*$kPHz&h2 zM)?MoHnPXzf>D}fqj@$m&6(NU_qmm)x7LpHL^>`_+X^!|hlWREpuIl5C!*Z` zLOpR|gjr5D)yXUG_*eHL3X1Z>rs<0$^ zmU&kuBg!{dQOP?Ut>V3jndMY-|JC?18^Z;`(d5^mjs+`?&s3zOhGiFCES=*rGEm>5 z{IlKju1HABuHR*rZ2iKd(s<`CQ?4>c+ci}Mh9>FO$GK8JaVry&C2{U-)6#Aiv+IbP z=u4Uq`Wa^=g}jc{JvK2j*gq3KectfAaZ>W@K6GT*e~pCKU9(0NU_KhD(9q6;PXHrf z`@qoL5cT_2Xdf2THG@gHh}>^~6I5G`nYtd@oPMP#U#fIaW%#4tZOd=>ht{889_%;w zW{m$?i+kn_l}?D`1Uhwy(6N>3;IyuQ=HRiuYoGf_eRcXS36;K3xj4<+04UQu1Z-T_ zGkvi|Q^X{iI%VX_6tD^I(7Q@@I?)$#Q-o=tzr;yV{NgBivnrr*EYsAo{1Nd|S_BQo z6IaGfD|){$jfJpg>ti))I^(!6t1Yjwp2--K|I)1Zq*chWx+!1soxBYD-Q%ymVRQuv zpSX)%!vD4%8#^nr8~@^$7mR5q>7>aXPSS+u=5&Upi#LWXTzevObsmGg^Hpr%XHjA* zpLd>=H-+o=Fegn_n;qHC>znvy&~kHl6l<}v^QXPJQMc!K?coJ+y~NUXOEhWo37-}{ zgTB6*YiN9LDkZOJYDKqb2!6>u$FMus&i~-_obpM_*=)=Hp}@6%*^nv+4GG9h7Yr@wy6rWbUrHP;Km55VE6|cG5FCE}pr4ykV0SybLIIzNRcmGK z!&1!t@^ELX;LiHIEZ;!sG0MT^t9Sjx3L7t$G@n(AYjC$_){)UCGnkVYyI||0gs;4S zW|_&pI__L+H|~bcJaJq{SHQ}QKcG%QzV!?DL@hdn^;c&tM{+C0RzoMpPtwx|pX)m6 zhwHYwxE&}{WFGrAW41A^r!6$pUR^z1lU8l>^32mU%RO&`*13^)T`Tj{(O9h8((w*g z=Je+5K1WdS`YT~Ac4By+`xoeOvs*X=%@+oLVki(L@@j35`3?H#9>2y%i!tmnXdoQSMizTseAMrW z@`gWKuEjlW)pZ+58sX%u{^Z8vjM1<7FWHpW#ME@(_@+M2S*0I7rAc5%Z#VvGRbkfr z`iNDtma-6lS_g}^1{k_ z_VaSfTf~Ra3dZN(EyOZe*^eK18MdIYb@F1!yfpt>l3~L7K61=Mw|ilrIXwT1A&ZTA z^VUeYjueaHD>k`)B5jJ!)jReDu12qNFX!uj7mCaZ_U4Y9#X519w`q-ro2Bv=p6=?2 zP_MVRX7@wJ=E&2(C0<~Q<5J>k`C9x%xs_JK3Y+}$HM7XH?@<<=4jOd6u90>(-zyJy zf6-#dWvpjvHzF%hVie_$ytQeOII<=>o!ne`bKu zOal~58XEgImF5{Nw9u2y6OLsMVd-@73KJQT-+xdq>?F|rs44RE{LI{#)`KL68=?Id z(P%er9uJTx%+KTvPf-njH-IZPaJ5>JyBCY;lz}7R*AJZ*#k%)125(7_uYP3eDUD}O z>~|*5?V+&_B2_cFhAGvqPXD0ma*^trv0L;J!VMS7>2Mp#(?(0!-`3PMi}{(1< zFQc)-=A@!b>4x&F&+%qtA8tKgJzGb&if18VYY^l#uvO{Y)Qfj|*nWIPi!#S!x6ADS zWGswd7(Ft&nUNrSSMW`Fx#&n+mB^#0RRPtphwKg)t=XnU2I|DwG zb$+ZHQkr=$KN65pfg|n4SHc87m;@T}wi+j0unFLc{&U8Jl zu_&Xw?vtsIIIt96Eq?3ms7ZLFUS`j!x5GW`3j$5e7u1}@DT~=E%j&aCJ&ygaSS`Zq z+^7%;+u~)>&`zPuu#K&gnV}6dz~8mzEfRT%4k|jzk0*G9dtxUM&|c(v*cQaeOY*R! z6|D3Axtw*; zbbo^<&a^{^MXGi$Nx)ZH@HheTwMBT8ePS{5=dwRa0 zVSN)sJ@9;?^4i$daIH~6b83qfD)yiWd`Bg9m$MPF5-Rf*1Usj72wAV&T-WI6d?H>_ z-fpKYDtfom*6=aWQ~PIz3j8)B1RF1M0tt`*@XHBf4!1(P=H-~`!hJgL$;2?vW325m z+vVz-!UrqQ&s~(odOnbnA9B8am_=&-Del8#&1v`Z&?_u2_YdnoGQ}H}duF?16;PL| ziKbe#=0(hWDyj3%g^QhevwgX}glN=MGNcE$4_;SR2VaU1lx<)#vv6&-^=t6gyi$&B zij(8YKAw0o;vi+Uayly@M1r9!UDhc+qbvP1a|&5+Iwh_ui)MP*NBLfz@n}s(!>@M9 zm64X^uj3OXm;BDiVoKmuIpn+CeNQfAXYSoa^9Zeae3Ir_8LWi;XCwQmM9SJ#}TSr;qgG_SwHV4+nU*|QM$s@^;3sUmI7 z{~SrbET+44X6uFdEn6vnne#iX_}KT=&(@tVFykWo)TB1#uKh6ITG80D!P!_^*k0@2 zaoPgB&9RePylB1)pVaO#k`~n5>tw4wrzj#el&$MkB;G%Efb(Ustn4ITyIW)lA9}&6 zj*xx)nY#LP|EqX)L~&PqI(Ib!5>F>&jl9$@D9WzBd20YP?W-?%TyeO6Hjp9F?oPV0 zE&=Y<%1<=KKH(2p#hLri1v*rBo{ESw&lra@oMYzDNl^20e^ytkkB1SA+f6O&9^uAd zDEfKY>wz8>BRQw+#mdix40kSQUVY5XkM+7!dA8C!@B&CHMNnUFIb8r8NsRyQ?z zTZsExB45>2Bt@4-f40--x*U z$dqGzwoKbZc7&DY`XWaC9COEO>7WwwFVWO$g^97(Fy`$UY<=zxZ@3v_oiKf}RH5eb z6|IhEeMI)agzd}5y~q0330*Gmus640_1tkOn`-v9TJLENc6}l5BRAvBl3o7V+?ac^ zOIM;Tn<}TRfkVCHN*!(EvA)ID@2}S>t=4GQDZiifb}f3kKKa8!z3U~K*nBa@*pLe~ zI+=H~9EQdcrJp3`46YCS&08+*@}<&h{-uW64;wPx;sUy<>$%?_QewY429iW0PEyBy z3~7s?4O)7Px}Y~sc~ziO;PdLMpxm6uwk3;aB^z#M_$km%9*amM zd+J5jKZ_o8KOLU@-hK3!GCx_W0lxM{xl`inMXwwudTa%n zJCC1T+!oFLCiwE4Ab;PSv2{$X9$JH+M6mC7dL|*4_ipZJK2iFQcR8K9IAqXojaGfJ zyMVc+`SSFfp*!x(+dGmJlO$(oXO1VOaU@AyVCc9<-6lGECzAd}$0d&^!G8A%6X~rv zu8Bx7xtRZmnh|i}8DE_row=jirmirL>%Mk*pw_!J`(X^O82;l-i>_d$&sThtZMAwnf}Gt!NG_1bI0Dvh|nZAQsKPpYk6tyYnE2uF|H)GJ&7_E zPFNOuqPv=h-8xjun6%CO*!;DFHicv%<4X(!D)cqqWV#16PZ%#SzFhKYGK(i+tSQ}T z$}oNDCl^%_$etZ^X$w0hE@Ceg|ADZ^^%At}Y zz^adoR&V{HKd$L68FXXoRcs}t6n?Fr*@q6=lL7iWSNU~4_TyIPs1zM_bbz*Nd|8C%TK((06twJbb+lESG0s(!#`Bdku|KWqc(q9J)WCGi zSDw#ZJdsk?y^L}Gi^g4d+b=-_Ebg{K^HC2k((*fBqAn|QYqEB7t2o1io*63sZsyZ4 z&-1~akJ{!WVzO^2xEU=^B}_|mTeJHcr@dLM*eUvaap6pSCx?pSvw_c#mDM>2Bbe3f z4O2(OE+rj1^HD_&gDJHuLz>V!DK^cjIO6>CjNG3c=dVyPVC13EHxh;Ic~TM46iB32 zs&PE!z}|NMdfLP?Wn~?AL*NCoG*%CG=_`NEkjz8Zkp8oqA=c#w&B^1!l14Z93pNTo zDmQoVabjJWgr1TKJoVQ)%&eJ|@RMsww`B{Av5dnm|A9kKpP3(rblS@~|ndZTJYsZIGo!MR;03YJ`<8b()msY-qdR-2x)E(qil?tuyD=v|q1Z zrB4*nw|=C_!)CdyHBY*TqmyVb@h~<7Z#$RRo1Mw+N}lW4j7Ek~(&i9v+W6X&gYE{R zo?jI-zun^DP)hi+#DcY zdBfW>+IL~Z-@*^eEIv-><#`huUS>T0?gtvr)TmrElyGCd-MhJ;lVhfN=DyE4!f~oY z%7ygA0dqa}5<$=K+s1=0c%sUu*K6#2e+nlFbs5z%&&O1&aEBB>$Lr<)c>k$I6FdJ9 z4X1Hig?Zt^J-Ol66ud@t%)^>EC-IdeuLu(|MslsPv@p5sKS{dg-RE=ugE^~FsqvTV zlMyVgE7+y;ucD)J&lb?upHxYr3oa=>Zy$Y-vUUJ+hW}kxQl;cb-a8Ibh3C-FNKp#p zzO|kM)E#X0=4N83zh7kqe_x0gwH&-o07^@19#mZ?EBbO%W3L-roZ(nAC(j`su8||k z6B{&RXb*XCdserCSHb!_^GHvh8~YeqK<#C_Z!cn(W;4_kC63)z|DgTN?ETB`{>bwW z`5DDj(ll7s85A)Gi94KD6?ql*2PN{g0-j%UaV|;Orrcbno9K8`V`CK1J#SlMxRY8C zxp2YK_S>@7gU-PHOKcr2!uX#Rqv=lDMdz+u6|mxnUCfZ(FB%v7?!Wr((fHD{4Xsw{ zHwwx+&n)>K@sSk&XxnqZ+Ul!Je1!MqnVCYFOq4!@xrbqcq>G6oFR$avtS)|f-7p5z zeTFJiYR>G1FIdu;~8=vBQM6>BV=cmKmC;5yx@y(E^ps>tCL^vGe(9 zWnZ+Tw`&+lOt*)4p*U^BvQ616DCa!v$izp>|1tJ4iCDQd&yr1UelUrDXoL=I;& z=Cj!R1ntlZ1f?2_ehOh^3u_v2rb^^)FpHOTn^e@!5EY#IS^K)vh zD(G$${h=7koSEjMd-2*6`(OD6F+WW|T;gmik~<|$>R>O|W%3Glh(WDSo{_7@>2!#& zh*5E$-SHKHne*>ojw|3#eYm<7`RKz+P`-tEsh-1`_ASf^x(b$Z&&}Wye)y7w5iith z+?9C`QrhNuSq;sPi?33m{luMeFf33Bi@vb(je3PnRAe?p%<2aD88b{P?+=e^cD$-4 zdHrVjnYZ`c7)>os*q$SOP~)zOZ^Ks2`e`o1p;BG`>nsNEz=@4FQv%}e`(7_k*m^0* zCc4aZdbE*uPz>cR{@Aj&)bBbbQ&cllT6W2u+V6PV6K)z-g45vwQT%b_%w6|(Zr1K! z_TF71^WLRDLveCN??=!+DNWJckr$>KEF-T@lRajHM)O>qBCOq@LF1; ze$aP2#|G`to!~ojA+;~8(A)-+H~NwtNGb$UN*fePo>cxMYeJ6emFMGhvO%s^q4zZtby2S3nz}XMJv=Jt;`nM)UMqXqXouUD zeXCeh0?KG-Nd{xn${ZeZ*(x8#(!1&suitmCYL0 zy;tjVA`kFl-%fh~)$rd+qnn49e;FtXZIJ%Bj8YnZ6{B^n4b6^9(n!gH75+QpWtHUd zs{}qvo=XH%7I|q@ms&Oyymj&gguZcpf|68p^riSG$Iq$d_o_D2N108^8m^^bCCgo9?}?;% z#b{A`@7Z%~|4@OcdraX@a-U10$>mrgr(`Ba@g5jU=g#7Nzw3aj?;^ps?P0&*vSdX* ztSOXkEY5Jg<|^Ztk4}{)LQPA_uNQFUKGlDFNwUkH`N3_Pyj83uTL+w$eZ6b0IGoz+v(_vey&es*`tE3^b9>;q@)zb9<8-(1iO)@&Hi(CASUW(E8+TSIF_ zLt9%!+5YqItE~DDEfylGU;~8DA?8O;{;u20ZDMS6^#u4MB#Xnf5sv1yqM`Moi&c&y ztz>+ggsyaFDJ#RRP9*uMh#dEusla7se%n88U~F%HyQqe^;8DOux}tim7$b(5=f|fn zdPN^JmzlTKB}^9!;N2|BVZMT{nI-CI+Q>Yh^iK0eV5@ioJ(uk+tAfj6luCDZ3Oa4! z6QS@5e~fbKocxUJ9-F>QD)(pn?KT%$_za|_=E%mcl$diD6j37=Jly*CnA zoMBXrmSkfBK_UFBN|NHP%U=U-eK4XO|CzGnbX9t*}(8q zEUl&V$2mW5qJ4UC#UXR&-i&>RBo}|O4^IVLvRHG^mEq5so86SR+r!@ZskglIN`FjA z=ormk|0g~>Ha9(rpEkuU{h*tLK2C>bq%w0sv}uWz^t|2$YqJ+ZB9BAK8;)UzRLT-a zY`h!1H8>{zlgzhBns~HZb4O<26!sp)F-x#Y|Gkc71RLFzV1>s)T8{v=js}+I=7tuw zHi)QyQPs8>x=!HEJ;sZNvDWhOAitw$UZ_F>jsC7Sw~+kWlh;M1W(*3{@78Y$KOTvv zpSfu5J(NU0`=Hl8isy8}<4)ULf?C2GqF=eM?M=EyFBZ zDHpQ2r{*_X9vHlSzMh%G-{8OS+WMh6m-L|Xd0LikHs7GQ^`MQtDBKZU3tRQJo=$q) zG*15WMeX_JDxZ2BhzdXTG^ILu_yw48#jZvU_s5dc+ zfo6q~&F{=KOH8`4DQDcuAsOWqS4L_j`!cf&C)2AFtfU1-sn_gp$7j7-DE#nsMj_vp z=Wo|@I%|?r#=?XQXPTY!Td!jvi(sHzi7#v z5>J}#)4$jGw$q*EaYI*hWKd6pRm8B*Eb)h&n?*unudH(`rpE`LeV~-t*mQN}tzi+V z^HAM&Q4_JR{WdG3rX-_Gq&!Q&{f6pX`BEt7`!foLPv?yc=jh$nPUSdeDRX1hj8=p$ zt35m*>GTb-d?tNGZP--jGR|ebl#Ho}dlOb(?QyNeNxLrS?k--et8TGk_Z z%u<4&k6+HDL>AGsGCqICh%fPt_Nu==w=JCv#a7zpWRYXs#0a&~X751u!abZP=Wm{D zYtwlW&t-lcFIBm$<0O@Qz4+9niyRiIC+}Y;!oUpRywyQGNEjRY>9e^jyT70mR&&Pl zH22*s*au0v+>Ax_N3 zeQ}HaOR7B+8Kyy7^ZnKfxN2T&mYoWF*I#<+cEx4yo{_U*=;g9DXY?*%w@N!96dTkW zr)%vM9IWh$FJ)JilPUazf$a$w87Z+=l}pi>NTug`QHe6s$EN9`sH!O36R9RMNm3w@X}JUSehC%%b#a z{azUSGh}pR!L+wGJ9FMsg5Epgv%Pxq`FHxmJ5_ZpJli27uFqG;Ua#@QDn%JBMfN#Y z;FWOUv$V&9k>)W=nxgrL7aB*-x-suA%L zJyp-S)gB@u+DdZsyDIti-N}-yhr4X^8Y{a@0?*GR*9g}cD^}<5q&ha9QLwT4ey-^n zfvW$=a;cuF{5MxNVv~L4@2K{#e;YSwWLjloz)W8U>p+Nxg?``CK+f9I%7)Fr(%KMC zHB|xzIzt>9bRqsf{mb>`UD+CTJf9_rJzvI6R`Ukqd}9CXvl0?`Pl_-bo(sM8u1$QU zD?4B@Oh=bQp}*T=Fr7(nJgR)rEq=9W=8Dv9>}PUbFC<%27WC}NV{;lq+Z0}jPrTxq z=~vIK;6{Jz^~iDh`K{YHZbT9T)Av#q0vo5ITpVj8x8&t!c<~(RqfHR$)qymLZ@dLCQVu5-|v0J)ixAWzhYwM*l9g< zx4^rcC$*xC#M@3gcTrW zVmDnbhMU)UzxyK#xqF(u=+5hT36bfCg1k)(MXxqvvKWIWo;CM#G3C+l`gL;3)PGpx z5#(zL^_t!=)ZEnU-4V-=TJiX%7e)3oo7RZl>G}v&7TT@CR8K1ltt6LWyIB#6lqxQTar0J#JaZe&^b#tk3*(qmVI-4{s4#h>kwMRn%{?;2W$`Y z44c`8vPo}y+pK)Pkx3&qz)_*xF?g@Jv7C(7q^jYr@PY~hzD^yTEGA`&KCSRX)Z^7N zwnA00IQmc80tzrDMOo)~-ph;6tIJi~DQNaKr@kjeFJ-cfBTb{Rs1|FRYfru7s^=kc z50hhiGx+sMbIg?D^4_NtmnYP;r>2L|Ftbl@s0mgsnBD6jF*3_v|JeF==}oz-ENz4&i8kmU%ZUH%~ch9V0G|6cLVP` zCCsy6H&}rGh`}d7Z=RK*wT-2P&C#E5OWY5UvaDt&@Lmerq0A_wKaK7wOyifLguO1- z{ejfd@71s(ge7zvSt65Fe@;E*-x?@AFx>+wA>mJcN zU(5F&sVEn&JuAMfjFhE zOX8g?e56BnOAgg4|-?1clKxJd`7YB(yu4%UOa!@tj$4OM@OiyZ6;p#AkuQx@*aKl za@X!CiJA4)kcnJopR-RYU9F5WEqYbW!*;0(dW|u3TDA}6y77O{BKk2FP}}&`2v1LI zDU=81PzuyTV2|T}{?Zh+1W~nxt*(-jm7$F`oKrce{~Q3E=(xNF?ve({3*7&>dmdO{ zRPq8zS^Rq=i|$_XGw=}%(Aoi??$0j*@GM6S`TCZYrvK|(<&SN7bAiW}1j>-)&z<0J zjX227s4s?TlwU*q&xbgR*R_V`i-~rPl?^!u@MkD~5R)D~#NVd^kht{USNZoe!JkoV zUSa;PQIN9*|Bmu+yXl`%A|jDd{%t<}cYuEzW&R96nSc!Nr)}onTmLP5{kb(D9d+x! zWw3uo_&4+YXN2Y~WQ6})9{k^d{>_H{83^qIGSL59ZtULy|IHTt8Sv^yWWaxNMQs24 z8_6C0JLtcui$8;I=OcsuM7_ALy>TBJa+6pBO9;>EpCthl=sx8lymp}~r~6sNemyB7}xD_SV-&Q1Fs zdC$GS@80u#e2}F>B3<4r995UQfI5;?RxapCwrW1HL zI9s$z5cv~eL~Y4-fd#iMv&J>li;p^AcTN`PD}ht9HAAf@oH1!=kg>KPQ&9ckXEgI- z)Mpfv4gumZr}tOeS41l%RL!vx4lx^Nm8Aw{?)}2g=@o`GsO{ecsIfuyM!;od<%!o?5;J;LD5rSrkafURg%jj zZ)tAKPWN0ayj3Uo=AKEF?F?TsF^t=hlZlxYvs^@%I%9K+j3+bEsYcJ}#LVpZT(A_3 zpIbePyHPTM>XoHrJ+*8SP?{ciaQ|)s9KLj|J>+^JZ{dD|n)ss$2{&=L8|is93L*gl zAie2R+l&AQ7Xk|oOjvxlSu?xZIanFl*;z5U*;tpTY1`#+gS_=E9s_z$UyP(@m&3KW$vc3vxlMrCgM>%08TK zfTpPTIpsJc`TWwskOp5Vy;WIxo5T^J?X2rlG2tlO5bkBj#(npGFWW)v6Ze#&?h)bvV#iM1U5Y|DJ z8p^de3lX&RTT#krPVC=8;(wy}Hkc7lHDgbUddKStd?Fw8MlrNo!m^>hqqu4YKupV> zFBsF4cQvVlUPNTT)l|FQF!~VimEF=KK~G<`VA6e}(q&if&QWK(kt)xoR6BdJwWj~x z(NBv~T}g6TK08Qah5y${wjpsVRGA>!@altya?zM5v0_t6a{l=U*pQy{YzCo`@C5Id z!Hf*WczxP1Wx5@erKYSMMC&IKkfZB88i#DCQJ9aR>Fn|BPEaFgTan{j6amg_kXM$P zCS?q1PI!F#6A%xkylBA__HvSW)Mb?tu@mN#gx8UZkMVSV=M<(^1*K8*d+|%^4gK34 zNQxZy%$WB(B4&FjP|QFS&Msq-(a<0mYG}6d=CNfNlekL?MMX(Ygu`AA(2yIWK1blE zi64wXuviGGB5jv_DMmGgkZ4yU#?nS#_B8{DeyhU85#*-!h&Mfc-hLvTe=t|jFmh** zvF#FEJ@8zoydu`Tt>V6yzuPc_hJ>kIgo90*K}4;|+cdH>Llge{hV>54Jc*i4TA9ZE zTE8;ZDg-mOgJ~;_E{VYb@Fd(;=40|_(+=c*I&_r!8FDtj_nvDv$k-HIrw=OcH8q`Q z3MOgx6j%xm)7L1~CM!A&%IdwZj*1hg369n?An{KKH)H=b*z2Bf^<%NG?bo~r8^%5r z`U^hH)5(6v_Rs>ivjHA^i@m&L2;x~daM-_m*-BG&gHO)Dh5vhHd+q3R>| zWAjNi6r}D>>ixlXkawXGM29C9<0feo;*!RM}Msn zs)RwbD8mHKGm}Y>lcC+oN0Y&44D>r2B^;7{W&LuHDJ96v3ZE${L@K?~Mw}~WTxZX6 zJG0UBy{>eQq8Vpg(^f%EL0r@ve`H^MAeYm`*}PAN<=xC<{^KmhA+-pq}I+ODx+1s|#}z|tyaCl8izE?$V5c9GUs7tFc7WZxO?v4wnL z_1gnJIp2IE)vskeda2pX8r@}veA7A!YzgUdw#wkcJ-IPO@6H_5%~ttYa1ekRUe z81J&?e%;1=j^PN5ZVUW+qVp+ihQ#jl*Asyw;UZWWuHMGdWdJI`LAp!J-gvn?$#mr~|dUNo!35 z2^S6{U=eC@hj@jd?LY6HKTOT;Ly@k2LV+IPg)!b`Q>w0VR7pR1)q|>M_yfi89%m$8 zCW@0nX7KPMOLE^-s=L{Xl|`p)?i81NrvxW|H!PY~b4Zw3fY63z+OtK^vG@XV`N6=* z*I^%p?~3hP>w%|`l-X*t`4eo^ReTmS>g6yc;3S%Tu7%sS)yLT^&m4K_Sd0FA!@w0Z z+uef4&j<#Wbp|J3p@F{$h3h#H6$efBlRL z9>ajGC$F7QqPu=rXN|Lx*oDYI=(+vD%i`6{q3=F|2^)27*!T9glSlb5Vz*l%g>nBV?T1fK7Q1pHK;5c(F-rqldu=m7~1?(q?p*&iQk z(k;q28Y=T2rI-ButT6XV;vDR1&=d}C+kj$=L;{1ow!(ws^y^EmI67$~G1@D&O#W>d zXB1MTcwBvCsp#pb_PhIEbNV6rKKCcr{dPi+mmzk*1IYXCXc+Lmo?|}K7vg9F&VjVy4g4@FS_u{boV=BZXt@?A6tE zf2NY1)GpJx@T1ZY^T)@_?e{qk>jePta6Bdda>iBV8JIHjrTK?F_HG)S02m#yEE>VP?!h@GnuY2zlr>e-}> zackUQp~up`itY9(klL7Mki`Ya>HDk75c_G+1&bVEH%XtSF{Hb}9NiP79$|>Np3k~x zxLEtd$moN^XoA@EM|sK#D(FY*bn_IOs%$y736GS`7+JQ_8!U!Bs@M_$vvN|7trvE6 zAckWd8}FJ;S2u{t5Bta(b(uw7uZ#|kO)>4U{It(@1b6LF3-+Ocb{XfIV)ZOK$68Ty z4R!$#W*RTB=YuR>DnT^vv)1u}xJjicnm@oaOdvjb#~A%ODM>K@OO)o1?gl82*c&p- zXNnA=TJNU&7z^HP7y~GZo}s)+myR6D@}|4tI0)7wzCi{J=(5roOl_?QSmU3#f%Xf;9)a`4JgKJJ=9Q zL_2s9t=Y1$g@AlF4XA?DfoO*y;w#Y(R>U;X4jx1u(T=x>i=rI@h*VNPEvWCwSf9R- z(~VaZvOoFuI<4*7=d6ww1r?U0BA=;6BB({8sS}1;>f)MQ%J*XO55%;GZf@?;J)EQ- zZyHIt1n(azpa3ZV=-G0HOe9ES@!9Tc(*Jp7=$! zke$aFyAXIJ$_|ZenmWqEe$n3Veh?loI`tMSj4 z+vFATtxMMteyO`fi<6*BTnndTXfyaLiEtxuY_&vtQ1@$8 zuNoRk)FL9Mu@aNtF80P<=8)|y?qu17SNCFWd{E3($i090L(HYN_AHfm7jGFy1da5L ztnS=*W%_en(q4|l>+zLJJXz`1HHil_Ao+1k;MDAXU(BV!V&s9zCYfuoK>B3phtF;# z=4G=No(QsuT~@ZnSUU1&a>^89K}VjG&lzxiBjSk%0dEKm5S@ELtQarYU5ILJ+3#Dg zNv({xUy@8&1?_TKhjkT+yh&&FNY>f6>h%$oAAv6q=s|AEwD~?hMq{M5;K_I00oJ?vihMn0H&d!#2Tx)k@w#Ya($4Tc=EqeQQX=>^v!Ti@mFYL3O^;)#nY8UtC>K2Rm zCLF5sIPTHGg_K%L+2~}JPZcRc34wRhh}rpAZyj-Gs&-?N-c3KrPI!q2E#=v;!cZg% zT@amqo_&Gk>|01FmQJ>-qcE-R#edWeTwk0slL~p=-pmOB{Pln&N&GL;n*5XXZAYC3Lhbxa_h;sKT5o6R8blK-Up5lmnzZ}KgivmJGH*6MoG`Z+H398AyHxJb zO?SRikf`dSV~_S+%Mxq(T5wIja9Q-w;3ie zTo$Ir@o@_^{h{UwbL&YfShE$>8p8<<`4L7L%Sj&g<&^7sQEL-+y6lNfGV3I*iep3$ zg3U|gS=_qJvNAg6E??ewxB$XUk^ajDE)VJ|Rvg*ym$9ZPJZ?p*@yb@lP1!>>f9<53 zM6~C>3i7pon#A2vf~dSA+d6BR*gVimQv9sizkZGEH>K~;S{j8bV*IDiR>!{$Yo$_d zY#}O|MJJd0h81#KU!3g1RX;3|?LJqO@;7X3$^^o)B$xQ#qu-JCtKXrXb6zc2kgp(T zLQQTWtoCWsZ3iB?Gl#F;r$jQI@eLSv$!#fYO0ihbG}aaO5$KUgadB-tIM{-HbQ}ne>^2Xy7=MiKLSt>OQRB=@``Jw#MXBMjY{ki}(CAMM-apqTDn> z4fDGfP`laJ3MzpwOXqfFd>KSz0bgNi5a z+HI(%b;H~B9meHRgq<+qo5{R-(sq__#{wn{_5mdwbJ-p9w!;)lg}^@4H<4K048hlX z^(G)wui$D3pUd9YCY29qa-1T4CQs&RLsiVh;bC7U!eP@2v4OldRZEr|COtN4&L+yH z5bMV;B(fP&O!@Tvx~5HG4$)!WX~sfR!AUhko0l*R#DMUmBbQ*#!$;&O6<;aW;)Jl*pCdth71`+;JY;=N*HR#-we5nnD;TA#mJjfDXA&D#Ns$W7eI8ouC?% z0m2vDH*nLLQIp*uJ?@FKBN`*56`W1lZ`$Lo&z-cuLU`k*i6>}_9QoW%)O;!wzl5f( z>}hoS6nIcUQc)L3>xZodN;lE(x!k~p)k+t$h*-gISgezc{mhkc+wASE7^g6TZCI^C z3_a2L3?SIufE>uB&vF2%yA0&gUBMTu$YHPALsEQJN%7VEi7F589MbyGsNdUnl-lqM zyxsVscwMd$@gGrV)Y-E(===@Zv2g{&zkCq_YNAPAbYlLpj5)4vtBI^qrb*dEsPVA= zwCsvYjCrABt7a@>+VNR0BH>{!m6*UBVs15X^%`UR4xr&P5|cq^?N7@xwt-Y>zdsuF zSH5nB&^q)zZTsRhb|{iI8Xs?`=5S}T#K!!%jjNH0S)+c3j96(ZR-kDd)cOOldC=y2 zcO-U=V<)NXsjOGHUA2+Gk-wQ;f8?Eq9-kcf>Z^etT~obHX$;Knitu(VDjIlgj+kB; z@?F098i2s?VGI|b<65Z^*K;T`f)sS%HyqwRn0s1#$4l~g=9{RQ|0-{+V8f(`k+fy! z;k%I|mMryY>Go*Z@xaw3ClC0GR48OG{IiGq7hyB2>j+gL2NXT0jOri6KF`q+QoQUt zSWretHvSnukIt-*?(FYFO%6|A7&sB(10$G1>*mP?LIE%JW9qu9V6`-Icir>hwLl1O zW%u14>t4r@B!4(1LLiAe`D*w~7+SC{>t3*-D|$|3O>8b5ZAt=Nu9dSn3Yq%Td9Qsr zGpefB?`n#JLT%)Oz?l(ISfs>XLht*k!b_{*X42v|t*;qA>YmHoa|$lO-wtsK0#L=_ z1vmWi+Z~?}rwryHaPoLd(%?H6=jnBUR%{xL@Ruk8AGkYj7?l%9s{J}f9)cWwcpTde zcGf`J>cX1P{lpdUN(*=EEUY#x^yn@(o43<#B0{OOpJe*-D7gCAF_~JMz@0z)h~(4) zM=8gTDU$ZGQ$P14^=SBt{xG@~klKt&QlIo3K&WlrQ$Mj~o{Q!Wo^>UY&pMwf%9?L^ zqW(fiC4u4d<=e(cHxEsTEqXjPT%-GzHy}$vO~sRJt&@J$Gv0e-_9djtA!K%_YCquz z*3(ta6#=3Tf)6CQ4EHh^mW$seCfMw8^Jr|pOVN0}HXgWopY#3~oCUc-FTmgXlkfW2 z^&~cp%M+x0kdS~sWzlF~J!R|iQ?jfnsqQE&j}E_Wq)|exlfduHB;&wi!b{q`m;bv! zMN|EjSaV-s6CL*KZbDX$?vd$*2r0^*X(Y&{tD?G4!MfIq?4D4v9cl8=&&jg*{@ZJ{ zlFLd`>FSXY>`Zhzt2rGf5YR-)q*Qs6r?6Q)gYEl0ho5fok##Lg_p4B4Hw50+9}5TskT!gVR~|!e_qx z75Yn1;?wsS0xIH#U;7*22k?e4Wj`5T<1b*!IvPKqo13nd! zmn@YA6M6abZeOoIr1;$TuS|}&O%USUrrOQF2I%kwdcK{bqlsfaC3=s=*;TU3Gl^?i3b-fkD!TYRxzJ?O$e1?$5KmlI=wJ%)HkBY__ zP_ABeV-yF%ps4}B6Jdm;VsGAtvW}V_VuZ9+uHZqdX7GSo`uoD}c>)@(D;V#q*FB&S zeE_{_(=ZGPwkFkRZNY!L#%}3-b2H(H(BsJ4sAzSXQ?(O^fce$LHodO)T;)jCF2Y0C ziz@E6-krD2cPVOA-XWu`n1pXa3MoT-fnXaG+pMMVZi7e0_E__>*LC@F@;G9rb zHQvp|3$578;X%Mo+LvdP+0ysWtRG-MiM{-K%N<%}SKTFq>JNP0#HAYZ4~1yAhLNRg z6}?hFMuarnzlKX#*M+;QPIyMy!>eL>3a_Oxg3SMFj zZ>#ztW?~uG7OWULt|R}-`djzZ6my~}po`=SJ<=fQD=-m^JV-*gt(ujG6N0Jj@3=Pyt=w}^!6 z&HiN)4zUl}XyA(K$Y%?=B#M;ySIJ+ym}^7NW%2iXdWr}05JV?B$3yUzQV7sjx^N{| zkSARkTZh#d_53=m$n!3VFGCkCx@cbxZafBzZFTQY%V4F5pcYe2SPIOfY+?(u96 zM7%J(g33;cXEu?$a^tqSINGi6(dN5yRJFb6s!_r;M6xkx>iPC>WRx0@+GXufeea;6 zhg{du@`f1S68QRI?(fJpm{HUO#G-h34IwX!UlE`;8$mF-4?yo_8;gm*M)LIerN|3U zOogmec!|s_S4UkV1j%Reci)Z5ES@srA6vADUbOBt;QMXFj1w+;lm=c29G}R|s-N{N z$*D1u9TCW%vA!#(A*nTw_71S~F0gxkqjEFa<+Sg^XUX+**w1K3aQ%7>V7TGVT6r`R zi4$Bl%b%J%uR7~Md>%LqUg_o&Wr0+~nK_R=D8JMNgHc$BhP$Hl<{y=vXM@ zhtpBTyU1pvw}LJV+UPk^sJEAt7jskfKr35rlt#6t#f>m?`MWnhPOZXsZFt^035`cn zJH|CWybPQ-dL@rpnxt`pz>a19l)Cz;r4;G=w^LK{i3@OvIT~Nb<7sCFCbu`Dd6RrH zV+B}dqc#a~>y<(k%5ynXyQ;q2A9o1EIbUk@(5Wq>WN6&@^?rMCsl9SSGNoSAW*b$s zas$4;La%O4MBr^1mQ4h;e*YWiLeRUnKy@7z)WM}JfOUl7zqyvyuxPJ`?ybbgIIM^T zxpY=A1TV4dMH)_5y?c?j;}DKOE#K-eLQ3m#W6idO87I&S2fMh-ExD_)JaI3q+90*6 zHJ__Z%A&KS6PIqq5~7N8ooJ(=YS69mkz7S%o-!7%F0!|p7YxRb(YT4A=Nq2I$lf+0j#tAy2v!Ky_Uef5&mBXG5+w(=g@McA%jddh@@^aa1}58DVmyb!0Mi zTlPIJphBZ|E^nVqU2U2uciAE zPo#JM=sWKXM7Z51W35 zGVbT=CvaW(5Lp-!JmBF>n)=w53?TSGw+pDQzXHKidPow19*mQ)lx!kF+Jkdw{{Kln<`V3q^p4Hx+}bo>YgX%7-yl&Gp3{DI|5|)FC^QMC++;sJjv1t&DFz1 zmuw4_UYn3>O_9ATxhwMPJ9$$)mEqHQC)?>|M#hEGSY=+i5*@~MuHEX&ZclOGEaY=@ zw=PfGc7JWWCZ=7-lbm1!-OI@26hh6tozZ)VRCRCXgKJ)mUrgF;<6vq+YyiRPeh=d8 zt9TYH>j*GvJ9jLjj!5sAhSOf)rJ(VVTko)8INy`oS?$qS{~u|om~h8+`~HjPkNA*Q zujUgcmwSxj99YGHg;12x2dB{b6)V6#sBQms6;{J29%_A~=o+W`Y{N`ofL6gZX^9R# zS>mt&$SC9bhW!0PTFgBbpuE+B70bz1j?Rh+c*T6?{CK^v!#DCU@%OIR;+c#@pjW^N zx+D9a#+MlXDeM23H60_9?@RvGp~$@Wf`F9i3zioiq{-UCQ8;^6c$3TM36s=Sso~Ev zeKCY%>H)Z~g|SPS1kSjrIQ0b1{9{qP%*%8iV)=(Y)i?)6#v2h-+t zi?Sj@@4`)*{&%SW7}N0nH#vdH#qr#~mG#%dpH)s~(LR~s1XF<2XPe&!(|*kK&P&Y{ z7R|wDlu$U4(maiND`$;?OX~t=f_QH_V7^Z*5E5#VOjWKT)g4MB)t$5fn7uHj2I{aq zCi3QuZ(VMmqlpukM{QMX>`zesbiOXWCSx7@3$+5W;TGKP9hc4EE#33CXGBKdW)Wf2V5^Bq$e#bQ%TPRym^sgHgCJ5VVSLXe12C zolrTSI`h(crQmfBA;k%ff(;+iuI{-{TV_3%GOth9KO~<5>my;85mQA~4r(QXw_LFG zUPG_5YuR`c!G2d^!{?qxgF+GBoG2W4%w;y&&oaM1Qn4cVCkR=sgAA?Ep)d~pO`&G; zsc+s28R-30yansB?12rr(3@eLN$@FvdjLb&_NfEq7lsWIFf-&Z-T&IZs^H3h6Acx} zT$35dB*oNgv1s|h88P(`>qSD((3id6y@Sk(JExn`d)(vrC<7a zTuwa^=F*qDEm&PL^u%Xx$Q*|%zoY_VIm@f42=n?h^~OnNm7yT1>P@h7dC_+N>IKpF zjDGlF3|8wvLu2$*0|;)nDTwoba2hP{0Kvqpdx3`AFD|^Wv5qM*m<%@v-`nySJ=Z$~ zy*GycB*CSI&M_CbAAmd~$56onWG&Ot8axR1PBo){THzY-%PxS!9-70%8Z!NKqc(!p zzM0G`bNO&hoQ(?0jKt1XtZUu zSbTeWih`Qf^$xb4B$M|E)^|s1M_=}TS|=9lW+ShNEYnu>D-7FFBD22 zX#+fr^aW~T&FW4Y(_1QH6J1V*o3jo5Urx>#nHlNq_T z`9W8{-gK_@s)?`P1uWmp#LECZAu34TDJXR-3}AlkGWOAMl^5Q!Ktfx zhJC%KB-DS#ya^e6$LIc$CTf4lFT9=bWIlYRHE=dEEa(eS)b1o-+a?1;Ye0=V9 zG^Bf^E;X_8E+_MHZID6r+c7(rlO?%)wTVIT8F**W{WB3Vfh^oz>xBmdt*?y$%I%G> zmU&rcn_w1!7PE!^IG*wZJ!h>zd$~0p>C5jb{&Vz`i6!%|S6_L~BG*Y68qi?wZ(z%q z+6+V5{{Q)oN9xJWy)Z8UYVod=FhD0IOfMzOASKKwCH&@DB3e68MvyUv)IHT`L>~#Y zw)9leU!XVDF48C-u&sY=h^jgEssooyy!zvko|t)uhDz`Ao;D9lnsMuGM?QB$8s`0t z`1F>#Sgs39=z{v;-bQP>SH-E|!XORbwKa|Y-bQh{S9R>63tKH%jtP(_K8hM}NDqw~ zK`z6j4bl?ld-PQ+RIMrBw)~-w|HI)&d(^L>0>{oHr?Mn4`xa^cQ2X{%UcUN_OT76& zVWIvi0Xb{E2|1F5K}tS%Ya02zjiPk^>ey|UlP)>Eg+T^BcN-eJy^YfJmg?9`my=Gp ze;HD>(eQ8wDA0thsNe3UrhC=L7O9T7jF_|{EYCgrN%a!(KkdOR47vedoWr+L!FN*4 zfRDHEQWqjS5-;$oBWSJlqJfh`ds1=z=$T-@bpD!H36~RyTn1!Nna|ynW_*7mD7~d7 zR^8=fL2el`sLkhYMsv8o5s>Z${4G@Yu1#rH_CH$UrRz*Di%eqXq6CUknnM9$dJg}( za?H@6_upaTH&Vg3DioXFmaB!Y&|BWl>A{udNYQ&v^#Pc)eh<}|fP?5v zJW;XtIs5L?+{)qck&o@}=fn$kjOQ?E=P3~uaiU!0F*KdUM}iUx#NS z9W{b6U%#!zaAJ-inRkg$bB_jGr|~Dc4YwjMI@et+*78k^-i6fO=O}4L83r1zzsljl znepy~6^b*NShd$Q92NS!e|UW6$yass2kn6Pg9rfAMAxr!z7E61PJ0Ae_Qd$yM&GZp z;8VxJeyCvq_@haV_06X@}~Q49&D-=(#@78PWl+M8J3W z{LoSQOkr4D>=cZjr7PwLY)Q|1T`v6m!3lMnpj^|gPJOv09u+!n^_;~z)bO8~oc^^3 zT{Ws*34rsqyhCHf{CBT&Ex_+{HiUZn%t~NNBV1rwg0y;~3;(pPd&oxrhitgOnWu3; zrEw6~g~x`9VhcLoFHmM|`@b4XFp1oSUZw#4c5HFlUiEet=6lRH`a8^tJ}e#v4-UsD zcbmJgTZ}6@kMMvy0@msoewL1p4{#=VdDeiJFkja{_a3v}Vjzr!Rmip_+3;&6N+8C6 zRvwMuiD&%}I#bzCV4EpBEJ7Yfn0n<-b{P2hvv?phv{cmaw;O+j!2W&P6Jv~Pcu&-R z*c?mwRdLIc8XaO-Q7RJ`Q$PQ61K}t9Ju*P($vt)e#S~^z_sNPM$s-LXf!uGd!7Lro zXL?+Pz?{wn*ZC9sWLq5b#;xo2eUt?9&WkCBGxL-2qzmG$D1j8O%NM~I3@o!P5h~$P zTYX8@&o->VJpTmz2x+G7z_E&zk)d`B-6M-@wQLWsL*KQ*+L`CYz(?Yyj9Br*trcq?v)Ye~b2liGFeJ6HX#htFZ& zOlogIDm>ecdOO+bYMuY>a;Scz)Y>t#z3&@Mc1ZUg@K&vn%QFJ+--UBAKLtHw^nET`276T| zeA4HHDxbWlcPjkX6=@RNE@^=^-ff3{cDb|;v;>*5hgHx!hV}-gF}x?IqeQ;KZSH7r zk*wzRAzXb|qly&HaR(K&hjXF7N}?w1co?y$$*esY2X$pMbOoDS=|R_(q*F63V@GI z>bL=e=rb6ZJir5u4+uKTaEJ}CINP|RRb0k-$fy0fe;;{Gap!{uy^Sz@hyEWvQf1sq zCBVl65pgp!umEkB%}B ztZHQs!dB_SEA8$0q{gE&UYkj8?BM(rDQYB^qh4$ZEc?W<2w^3aNy(Z;!aC`KaUsFT zy4~%%6ZeES7sAL`Z%2w8zFQn4WRqEKv@Y3t{r;)mK9aSD~ zjJSCv-ns}23gxru<9`$SDWy*0dD_xweQP4C4OS|`Wb4A$Yn9FU({%lT^AMXC` z6h4>Z6qz@gtYOwiLg^{Vl)g!h==>s%Q8r~<@oU`?01ql!`34UvU0I3;eP3yV2bHVb z$AgMg65~OoD$`9Wb#iy;Ww|VxWN>Ox){0`T@?_m_sH_I*#xwEpq~(g>KPw@bt={jy>)8VM7?#Y)_lEn>eeW|E-KbEy)Fs84$=9=980-7OtMnhkQ=Z~79_4e zlXhH4kzP1^+E=XT$>(B(43#)fd*_Z=aR0T^kK6r@!kDp?{2XL?dihiuJVQcL^@PG` zj)*)93Rz`~lt!Y{+?XZn!8(P8JR@zox>_RuN?TWI1f{EMHR7YK%Q51ktE*;A2;pCufm z@yL!PZOb6|;L#a)8~z+7o=1}7?*os}@yGig&`hDau%OS!m^=0K?R?;PFT7#(<%43k z!D|=&UX`mU^#$dKpY^*1l6S#sh4T7bfH&gWd)5F7*>@I%Qd1f!uO~U;^EFMu*=tN& zV4JUy1TgFeo3mh>97rA5rT}sQ-p_(Wg7vC~MhTRAtZOZ2r#&KVai?#r&FiMK*fAMo}}mi^Cf2?;wdS zAFzH>mpd8M_1|HHPKjSsDYpg#H}&L7D*Cq_Unr;xRN$3zH@1GeOCNSm9mPvrdhGXW zlQCuBV?h$7H?z24RhBv`wYc<@LdxG4j9;9-F33omzAoNKo1rek2ufdrLBU7{#&Q|g3nenS)+Zt+Z;9aFt z`k_O7gj@8f?718Gj9WjtR|VK>rejN8q-Rh{3MMxE`x2bs?U1#44l8`JY=Oye1t~_TMsYs1RmJn;fKw109z_6 z!~ZmR@~C2>XDMp^e?FaiJewk&W+iK@-a18V?cO?NYtLR61#5|3 z7bR;mO-2HXCg~~Jl!HkzFs^(&E}acRZ$7_|Qf`Y{5nQh1Af2i&E?r}zkv8q0`AY*Z zzJU3p7$JostZ~OxdBd^49pH+@%{P?zPn3$AN?^OODlH@o)&3XU_+Lz3J@;&T*SB19 zu#q>5E~fp5`#m&j%#on3KoT${l(zggEhi7Ef2x=dB;Tt+7yf4wyoZ`NgH7N{uf61<&CYmCP$z|0Bw( zOeHGm-uf;}{00_nu}RsdfA~8&HwurlAo1MZV5=bFv8p#bM8ImOoe1P&|wY*_Q|DHJGbs+-xX znxw-cP&4PvnK2hN@+HzD=oa^rgKo_NElW{UiPkJG2i z-Jh#6(>VN$CiV_a7!8I?D=jPg0_6`fZ^ZUfWytrFeM=ckvXN}thY!{Z?p(TPC zA@x(k?P%kQ5{ZLQBdH>zBdWJNc7bEkFKtJJMmry|d{W>;`{8pZ{K;`mm?`PXam8(s z0970vbn%cEJuf=O+2NdyCQ#E1#D|36)2WcPQWZFomq*a6(%7-M0$MjO%w;sbPFqX-;I2udI==Li6)UlXr!^!j(WKLi6o>yO0}8F#jxtu z%<45)g?=%8inVXd!AIv%%JZd^&d+pxQ0j;r*G!74z)R~R`Nm6sK(r`ZW!oW}-iBIL zF*IuS1!fwJ6@UE#^Q^*_sj+;m)b(B+ID%uuIOnOJBMFFB7-i3qc(7hi~5*W`$4UJiXlr;505W4dETwoE09B9BwcQ+r<6 zo6`%u8bM`o;E@611#!I3{ClP0GvveKOl_%@9W$4)a;)iJIc19|oblZAR^MrUgpZz7YbGQ28@K@AvwxYL@ zuNUHyN#J8C%XH(Tu;!g}FRsog%Quu(nTc zOAlFejp}#_@6SdX9D{oS-y683OfF4Yi!aK=6zmH7>Vwa{g-I{yd#O2=#J_lOCZoPq zOBhSiX*)YHc>J0#^Sv^+>h+pTUK;km)uU6|2k%RHw(80 zmWP8YrFruEm?<%kt8QqQ^B(J7ujmo}c&Vcbtxs)$?lbXQCDrr;kGXNsEGudS(<-D< z`O(wN7hZ`5UWe`(j=@S>@})~(+l`Yn&c5cBcnO=nS#X{e8=5MvSybD@{`hTjftC2n zkBVOkKiu4eF`miKwLdsGt6VEr##T+kku!LCt0&y%S>XQw;GMDg0_Vg zGx7_=@s6U-jJy{A>#?gm`=nw~8yQNKB28t!aR);tz0Krc;}^04cRLlC@JA#u&>ktB zHkF-SEkY(zfP_6BB^42uhZQ?;fi8rU$j3eE)2Fs6w;>S-?8K=9E;^1WQ>Jl^8j6X& zn)p_Yh6_p`Goqt53!{1)e@}GzC(#LSfJU`NK5LBrOWnWRqZb~*EHzk z&pCBP^yTi78Xa5j``|ZrbK&+&Ep6XM?gbM1vk9#7fQ3h<`pxtYFWiW)9u?^C36W_t zx6dB#5#-TY0=SNSZQ?vcYf!SxI>&CwVi$IPk&LYV5}nga!K!kr?I)Z?F?=aBJYLZ? z$Mua-^@iGKF@DCL>Blmsy3j|p=!DOKiR76cvi;Rp&12tv?g=N4oFSDWd(7JJJVx1` zR#Lt3Xa!2P{LjfEM}0byFC3Tkulf=&nK+A5==&;)=20i2q~dPB(Rq*6$|?--#oysc zY(8%y1)P0WS`L~=H08*9-}V81|kyFLR(LiS3wdEFI!7KVv8m| z*$*Eg{wnSJ!wHUxZIn+2MX1lqFw#Due`@W0nZNSM2ptq97O09xLD)1lQHMV6xIIFY znFsalh!@uBb|zBnQ?*<+=&0@dR8j;osHT6}pyY1doe?vbE#hm{Z}j3xN)3e{yy1~! zG;(-1FyIAJP~65@3K1-9JY(eN+B)SS@WwHAyc=-2YUtYu?{8suMm8LsUBWt1b9;J%BxN^+O;HE4ryqCPWa?I{x&EILjsbrg1khuT#wxMuBB~9_idYf`b zlFJ9j@Zj9KL3dEg3J&bc+}yMXK?ib)L-~EcXZYG+G^+mB+EIaW^cTSaA^A_}dinCM zHf;N)XwjGFJVVibU$ea8Sy_OeOZ~K+L9`}(awM1W?3E<$GLg{~kAm_KUFGBsKM&MH z4^(|nB<12W$2et)PTxJjC4y=Bt4FpXvRI=}*JcPJOuefC`9cQRBAmUx((K+Ps3!me z@=|g##}Dyax)Lso0xo!wx?W$@)4oq6^yt@WXTju|S0W-`yjjg_Ndy#;V0T_|Ie+Bd z;3}XQMG{ybcTXB_%@Dmme5UKzeMm9W{{X=LBj6v$gj>=rrZ(#0^B%$Pe}vYVEfi5X zxi*2Uct2n0`XcXxujOMu|+u7M5^+#x`4cbCE4CAhmwaCdo=+}}O- zocrGUqo=2OF>BSX+Vbsh?=JqnCLA+lBO$v)7@H3iJg$wIyoK9DJ>Kfq>m&BLKYPvq9`;@zcMICTrg%S&jJ=+35DN|i&qY&lulK|C9-^^@On0k{E+fw!HMrN^)ffP{lpl-rn5dlr}AGdZN7^(cieXmLn+{FK|8;d~Ys=`%T~!1E}DBl!D(a^)$vIpgXq zF5O4jfFF3a4(qsNfI@FU;5#Qd8wl%Q1sI{wTM_uKNzUfOI-J0RHUz$VlC%A=jvDZw z9f9we9x0WPE-BWsjwa5tUtt|0j8F<-k#0!Nmcu&y!2_^J4wt=3aTsv<3pI+&Ntw z+rl_WT;0N$P^iPe4oVU(9gtya#)xZt*MiP`mWl@BMD`QF>`X=6{lqkf0sZk*oXO44 zZ8Pd>K7!O-!KcmZqUf*QG*s&x(`t&H2(aYgii+I` zuwvj_F9d+CPg>Zk+TOyRkDpl zb}(r2g%J#U>0m%!@1wi1YJZ7EABZd@8XzIHBViLkb@3o{Uar7=JTqGQ07J40`w`<@ z072NB$PYtxj~T{5h70y%;V&l)zXW?kfka5fxlC#RWm*^^eV8Ai)5!zoqdUXchwq~x z1m!b*B=W%)3)+$Z26wDdTJ!yYiE5h?)UkX7%SO~0U6|f*BPcP=k^Ogjos&k!=q0#Y zTACx8x5Di8RVV(AH(h#)V}zxTnVG!cXJT%ZC;qV~LMe=X$tU_N@M0^SP3Xl<{w~Bn zT;PF2fl{lAF262YFLqbtdcxA`%!Vc1G}xV$8yb45GmhECaVni5&0E7VOQ%nbDA!aDg`e)%US77Mh+kvUTd3%Vk0dDoIp!uVFC}4UuMd^TBTiU`nF|rL6!`P}w+yb! z@5soJWOHS6G|V1~wTs4wc9rmvhx%A7jl_Tj%{h)E3W&TF#p#4>S1eFLA+#7_&b4#4 zbt?72C#5-a58H{7+x;1ds{>X~5Y=X4(D|^m*Jn+ZfP|HlVa(#q(1r^n(pKrZ^x?>` za;D-ETM2a4o@@2@ov>-*2GsQHDo8ShS;Gl+pAzYn0vNO{k-n%$XzOIBu$Qtc_VQh z`k8Z1xJim8(Gsg z>9X-^BZc_wo^+xcu1_d8Tr_fI_O}3sdSLQ(!KitsDL&; zmDdK`An!Y$X_Ts9b5QH2K)F)uXF#D*uNQt(*L{{fHAqut_mGE7#Il!ztjDrffQ-UA zlZ6zEAq$i;{6W@N1g|a|+ruVh?%Qhf9H2h$^-1Q4KW17pOYCMVer-;guFGOT1(VqPE5(qK^S9SgGadAgH3A8voW+-vuF`rXY*3_cN{ThQm}Y^wb! zYVBS7@at9c?^CT2;P~nA-aYB*&p`l}ZU8;M-K@>kDKb28lW)7K!g%_7 zZ+pecImM%7Zph2uwS?PT7rFSHFZ4Pg-&;j@TA3Dpajm)HlzotxYFMc&2KH zE;b4pgZpGx_7Jkx26o(l?KInpsT1dBX!p~l=A_fsU$+?=VJj_DmM%*xrEA#e5GQ-< zraosZf?sua{pCwmj@g=5RzDoxZkXIi@~2{orL7P<-uMjMJBiL%T!Bv%sF^#s%_Zs_ z(_1cO)SXQnE9zFy;oRRjE^knr__o(wVY{orczL+TzOtLSfWx>73_gBV_`dJTVQag~ z$#}W62aE9=$Jn3mv<~ib&C>ULFE`e9ucWnh!(DXF%b>*jEhiRYwx(xY#=~8ITj0Y4 zre~Z2=Vd|S{iV~Q=j{IQR>EAs*KwRd&y~}zkuTWhTeM*5#jkRDmaRnX7i$mqcI~DwXPfjXS}p1i+!d=uw)$DCcxf^4 zGh|St=>Ckn7mCULF+ntggdX469dj`JMF!t(Me?nCPK5YPt4gY$&;?d)lQBbQuZZ9~ zCBAp>fReq+0|;!H6NCn|KVp=SRRtQdJ=mC0vb*0$bUAr}DmgK$$|A%+b;>V=DyViT zymvR+3?g&L9deRhb zu`G;#ivLi&mQJLLo_Jpx%w^x2mp3_o*!RQpDj;ue9~ee98;Q03m7KTs-ZX?O&^NY5 zD9z&9a!kEks{@s4zVxf;p}ICApCCCFHPN*8Hp#+U^S&teZqiH+Nhj!1xg;j)XRMH0>vn6O^cYo%!pO5L5 zCve@ZL}VQoUI}%Fy3wem+CDFI~)e zT72x+?9TWJ90%(1k8$qwed%#Dm%3*%M)YJyzXeV>mOm>s7n$2O-a1?MziVdh|AGc0 z4ciT}$#S)BKgpUUVw^~GwL16WUKgrABp9yU$R+CsO)F5`=<4(7Szbq1@4?ulNl;lP z_V0H)C8R9IW(JHCWZ-hHNR-}#(z&sF%-HP(Jk!ar zr3@{C%~ihmW|`(pfp|aqL)OlLTtut`XoGCHt<9J|uif~3K2EQ3U9Th!O5-~EWq^a$ z>={*t&T!F(+vGIgJ%%31dbae&c40Df>;h=GoK9A7AdNFwPFM0FS<`x)vE-W&2yCQ& zl3qU9lW7iUzWZuZUzx4A?2(faZ^XY#ysBu`O5r|NwHr+n==`jf|+K8m3vTEEW$ zbhdR<+XP2%B@;L*5_#OkkNer<=VT&^>47~3E+wn>CtZ)H9c|9l^$(^97kzVmp^kvj z9K`LBmGr^OyQGU*x44UuBF~HyHZ8drRmwSlsa#F)ql%lt&PkDz+p5hllX7GD$HT3Q z5ZrD4xMs8Km5bFqf;j|KcQm)LofB^FTc{J=ffeM3lf1^}#lRorLrs3m>ak13qh%}6 zz4R=|?E7`_Ea^d8C{~9j=2xY};xNFH?y{JlsqUOncx4#{q(5%D&%y2VKE$*3OvB%Q|iI0Z`10|2=fh5CqPBomf^<1>v z>^IAW+;28W^SGIh2Vcxk`Lc~plR5}R;oDDEaFTLhMZddCFK~N7TvakqBWpk;U)Vw% z!tq0`qMuT)Z$OVXrAvJ>M63l+-wzXbD)b)WMxewVgg1WPiJ-VKrO<61+9Z0+SfjnP z5w{cKAIjG~h0mf2IDfRTZKJnyu9-ERVZH>v2%(uF^kp}~SDRRquub0N{O9vSM63F= z&8q!w7CiK?tXYTan(aK!;Um2MPUkXm&ceb)WZ3u%jGqd~G)D{6JEb~6<6=(;qgpb) zUJGs)#CCrolHc9t2nG$!3lh7Um|VF3umAKTHy4})bvu=5oo`!7o-4CWcRt2FM0R-ol=>68)b(B=wWNi9Q3rM zQ})WG0q}m~lJJDU)!X)A{0*I}(X%im?F9X^i4&`1n||L4wsMjUu99X1Rlh-{CKde$ zKH&hm{yP{*lv_(06%*rP)4_|<-=laN>)9+NJj56G*f>9N!#t1pPveo3S6z#CGd#OD zRqQmi1X(7dG#%y_hXi=eG&EG5*Q2^zDW*h&bAVF9h79}dO3a`%?xQXP4YX#5`Lu2# z9b^y3pWnH_>IMxEaFQHHNZEGHgns8Lo{FrubDKXDBv~y zqZ*?@#AAeZY)Jqydb8FSTTK-c!~oERJMMm>i488n(@dC9@uj8XXIrJQlp#wj?Oo+ z{MeacJ&?h=&5-flqEJX4(pp?wW6`a4qrf4Gtuq|am|Cl0uSiYH#`8SS3H5r+z(&a2 zbG#d@daK|Sn=GI1JzuiAK^}o!TKXIP5~#)1Y9BhPCc_`PCye~xSw4JIz8v}{-5uic zIqSgmW5%4{w+*QgQbo%)RIH^Ae0kBv4GW^lGza9+II@dlcG%jqfVU6Rm2<+eqZ>ec zb@b}Ron@%lqz|aOVzg#3?fRqc7Zkk(X}w;b-k2!(MvwrK%4%v9&!+;NQu9rz!0u5@ z6S}x|lZ^a;Dq|!e{KT7IC>Y*L=}z;0-3bJBU3!UIW7^Og$2f}+A7o;e`>S9fDo%g7 z?9d4vcpbhBATRrNM-sSB{&ZAawXFeI&Gw)KeLlz(FCR2QZSeczt1~@Bdm*{oM{Eol zOiqnchKS+UqU1ZI&RVJSWZhcvZ$qb~@@rQ!d(}A_>Cmt5Yhm5%7cgWvzDuvE=*6#B zEvc{G4v`l)`@Hu~PrbvTF4XA8nz_G0Yx-QT*o3Wel!oKDfWt}TO|VyKA&MVLLqka4c2R;boUU5_`7mokD(ab< zdnC*i54IGt3|S_Rx;=kTsAfOV1!o6;sofAsJiwf&hT!n!hzL1KuUBf@r|0qGV_aLg zpBNnBpcBcfOxMf1@_PI`;V^ta%X}TF+bh-`VxtUa+)P;22CIG*%jaY34pccT_Y))n zJ7^wVd1|Tz{RWRUR-7IT7N!p&Z0~o$w|U>^Y^Zy`G;625z>(bY zBw(@!6g0?GK&Io|*g7}6rqv4&ldQK4x3=p|dT4lseA)Yw=c^saLo|2}bfjP2)L$2u z4Xrn~Dv`9RHBG`s#>=YdHp%U!1ro$341-^C^!t&z%nsqjx~^RoNJo$m-)-0TV>e@f zQ6NSSPvF6|?o&;*+$ZePy<^?_6Pdoj7 zKrZ(}hS)+A^i7at4-c*H0iJ=QgIzkY0ga9UjekvF*Wc0mhSlNA1E%eYyO&WQwb0>$ z^W;QHlnOS*vR(WFA{Fg}sCFCk>G3c&3E{!Cwy8R@3al}TOF9|zWa&n~JF(|E**+m= zOmU>v_hN23fO^(_ZQU~@+sPc5b?Wx7|Xz0ek3Jb6eWz7SF?2# zO1!Y!Zv_M#Tb0~F^jy}12DE5#-V-xy@(UvoUl{|s>j>&tf3|dqy2d%qq7k_MZ@0Bw z2!FY+C&9Vyi|)>EUkgpL`VkE-IEu?6f>I)1(hD?7Yqw8a^Nsx0lpOAf!vBN{UjhdOP*rwaS=m8WqXgp&Nde>Jj&fPeEyo>fOf&J0+1jwBnS{^}& zCeEKmQ*--<0dG#Z=%YI#IB;O_q#jI=uM*)xB|2Mq(^Lfw&DVBp9cb|>_Xo67hfiuE zsiQ!M9^R_1&2gFvnb`)HsYyxoBh{>?+Q|;8&dEB!HgbbG+&cBOO{Ew+2r%azH{ z>ntNxdp8HRXE#9EbrhjtK}Y#kueIs))6NgIC1{cMoC*iT*HGGo=P>oLIGApfhdLG+hm%BPQ}LTLky){zB2P-E!tyW*e6 zX4(mQO;;3sh-*;$BRTLdT>51N5)~QP-JiPwIcnYXvPdUO=##1#()rBj5d7_FkV3P8 zg{@@IyW9TZ^8m-)WYyn?#?7Xr_|Cj(va=tIFG9u=>gB)MyrbnARNZ^qS(ge*>m$1o zrA+!qtN*uBvsY3ENtI42&@Sqd8#*ipZ}*XzHOKFVnwJANxujws`TIhg{slA=^|nPu z(S8DB!_eWxD+rd0{smI+Z_c?~USJRlqY4JG`i)|k*z?}%Fr{^0o8BneK)aCW$5Zr{ zW~A5eRrAf{^9d7?d`SP8$$ULTu}6!#*gCqjV>hL+ZPqayvVBIvCh;lq+|~aCDujqA zxvocfM-nJSdEHLS=c{yU<}vV^83%qEL(HT7N|x~Ot{7h27&Beat~Dde!A=bBaL zbStz?=3-FC_nU;52=prUFRZgOh{9aTx`;q0B#kNFyV8!Jpu=Kj34(Tfa+Gk)83ykU zw^dtwf}t2|+x!y-i2NfTzr|jPGxPTv+~#Aa#s&jxuMR-&s~B8i07YFJlnI5zU3U!& zkIKmi?;E+D4bQKwmjdH^)b-{*$^8X;p2aH}<(C?~p9uH#^0-F@t-3#Sb7{Ew-NM5& zPyD=jnO{;;zbKqa#idpHx9nG4O!T>}JbE8_BB7>kN|OdbF^Q-_Hj2P?vyv5@|8gB6 zjWAc92eLZNWjkQPFjG1BIW5^7W00zP9}csHv{K`bB(P`Tf*`2B_xp^ z=eGa+NiJfG^ZuI#x~<|{ZKTGbQYs0VdZW>f>T>qTPqf)a0<2)p5xWx>ABW5Y z+HHy81AMe4$N9+a8-oAHqqQ`P zyiO5n@y+(YX(5`IL>Gncn}7%3>F8i*WnIKgeGk}CS{P?ixQmejI}3&6Tzq!tNU0|_ljfF zDzS;G#>z3Vb0dT<+R|eV$^}gudBtPZa)Nz*YR|0%E~L8Kt?`Keqk2pAouphDw>8jh zppCZVFrVK2AMt!|BXmos-G1w685|M~6wu--#f#*+@cJVpZDk!XV^d;Nk2wsTZtMJm z9qNpND`3|TqJFe}XCFia1s1ghz=b&BF*WBQP6oS^SLhaURVR zc_~dg{@4>6y%J|S;ITZ;Hl@gioC-S2+e{L$>OAo)lB<>HE167nPhj6zF<4f1`$UX_ z&N}n6_!Lbiqs!&<^0!v{_$VL!JGBUIEg}6Fs06rRM(gpPwbAQ!H=uYW>kz_({>L`R zSzJ-SH0t0*Ya|=@C|ov^4+L<-=pA<%Z@3)WcmJmBWMP2I4$8_~7x$n;F4R{^9e|=- zhRSiNjB`v-7BUA*pG*^tO-#UvX`{Hb67;@?lk|9DC>(7(=EgEje661BU|NlMIC0vl z>f^DE)aX9vORSzbVRP01ml?mHnt5K+7ut*|Jm+Th2P{~C+I^T?EK4i-JnvJCfMO?_ znB`?TW+*VdfEw%ZEJld(W=li3HA3i%eF|no?+(jOC2r7vYa6a?8HV3{YhAenv|6hm zpPvo46>mfykD6*eJj2xgkZg|g5#1*QH{bGOJo>!_s?OclOoSlxvVwGI;~j*a3%AaP z_jz&m3iC-FBDX9<`nTlD&ba`MFuu_l8iii&6Sru`L@sc|h1GlCOSzSLapA%g{ZUj< zE^HyfNua>wppW}{shD97eeLNg(JrVd3$2tY7e6m8A3rlKKSwHl_p7p`e8!o8?nBSm)AqIprHB4#N|=4Jh<~w{fU_gn+>ogzGT~6S-RmmH~kAfYc2KEQ5A3fTj2O}g$B?WM$ z8!ut64X@{K z2NuuYsW?EEh(-Kdh1X_u63);MhTSYovHSOL=hilO-JS7|5aR6eKP z*;T4kWt@=`T3dhSUK!AtO=Jr;AciUSAR8|0VFU24kkDLXq5VPj{~H7S@nXT!{AGrc zj$leid)Z1IVooy}NKVwHzJ<1)Y5!6L6;yv0_Sq8Dz96c8__V^ndba^SrOd`A5%xN& z{R6;EZG{-Cg9;V|PReOB`W@LbTbTl*qyjcj)Cx_6-`*Poy*Jxru`g zb=zB*aiCU>!fSaH-B|9};=}+Z+eofj`GYSH@j7x~1q(8#^|Bqf0;a-$dNp!y){RfP z80EXw^vLc(U=Xr`WibWI(%8s6wY&WDbD&g>-RW@Ouc2gK@e+^C@WSu=ISH2t*E0>Y)Ui%wNpsq z@@eG^QB-1TD|yms=(gnXFbt)Jfbuh#g*~!(Zl0KG07|-l7g*pncTR1QxffSAV5X{N z(*e_zHV_knQCCCWi7c$b!IN)MT>?@% z2*l#PiK9wK>pP6>#QlcDg(9T#cLKT9RVJ6!iNt^D8rqW6{9h^u4C8{ntXp(jEydS3 z{xuS=qd|kWY}D71>;tvdK?~)jcfUk(jI&HZ( z5cDb4ev2pDOU#rY=(=C=O7qCN2M ztRwc#V$<)mkq4OUm0n+>kQ`~K>WeD2NqWJu@9>xYN$FAH5Y&P>Fs{*=B3BcC>*Kze4SfMT1&nI-d64dQgLI)B4Z!$P2KyAvLgm;dd ze@apbxXGHBcGAC zyw5+c?Zb7UF$7F#(qJg}Q~vs&93PK%POf!rxMjEWuNDEk|ELl6&BbH+n4p9D-&k+e zB3pmAQ`17TFr&R`ID;P5KDSxlzK76nOrMaK41kA? z!s*G8Se+Yv>EOMu?Of?2Zc=T!6#ikY?~m%$iM1{jqhDn=Kiy{oYYg)Lz!ndT?wq$c zsa51A*5GpGVTF-R-3F1ykJ2Nap3 zNqH z#oktGUARa{KKMPj&5X7cvKx`lzO8y|C8ikyf++22YMl$2Bvoy^P4S6hvJZ_w$?}Pr zFO;tuJjmpW>sRC{ofq)sI;k!H(lEMxX-xCrk9lLY6q+w?rIq zS&xCqmwzjvIllWh+r|JX=1j&05ByVI_~VK)scv~CuVr+$k76DYI|dd=`M+JEb9N2a&eQn3AN(KJlU1}!fxwaaGq;;mi3m`fc*kC>f~s=;WOi5G+yR6d1@#8&VK zmo-t}0|q^IDu~?725c4#Q~$9uCDE8>$A4>qjwa22iAI8(ZKe<)OxVJJHnHJflB}Aq zJrd^LnJoW!Y|VWF-)bayAd={|k6Ildbz57`A&GAL5ZzM~q6w>Ob&uHS(Kul|eY3|$ zR#AP4C_gIB$WXx~XdkpIBb2%xHh)wkL|p$a1S(lW^F{KrPX3W#65p3e7(1ztoZx1BOKo%LjdLR~@qd}F2OlJUE)uG6~C zOH(D!C+oi*?CR_C`C2&<^Gm-oj%|XQ%@c9XhllTW)SfPQd^|AQTO#yUdl^r+648P4 z;r_cFm8T1CpZmA%UnBI|dKuTY5{b`;$L>tduO{lK(gN?Ul{O!^9K2&21mtuSg2ni} zTb>XbgA1b8GBCp3AMTzJ2M3Tkz_*D3u7tfFV}fCYsfh9GE3kMehrjvd`C4h*2Bs1Z z34QPtD%91Td1osVx8u@Pn z|EFyKud2QMd|Wpfi_&B)LhoN&AfWdCj5ZJ-h1D*~HcCVdgxII@PeMxeY#qfg2$6gM z145{`Z}`m^-+)bE)1EXN82fE{DlQro7hLEgK}C|_75$OKln@sVnGxQa{rl_nN`_^( zQ~DrMxaW#1v4A(PwT9+w(bl$R0qW7aCXc`jVy5~b-j2ukjsHdW{y#$9pGY_NA;Ijd z+;yvTWlhuHV=Sl>5Pd!coozEAhHAwtIlaaD12@F))7;xIjTBNfwxQiXH#YL(#`=f0 z^gfB*kRYvRhw_B>;f;h1t=IE4C2;jn!wY;hgRe*M#p}yuCNq#aWq{mAws^r5Qukig zaOLVy3|4Gqyeu9rU+q@UOtC49Xo!EBf~~ms%_$&a)EooMj_ZSrv`0rPdBQDm>fa$q z*rZ{X%~tg-yD#`E@-ol9Jy$lv>orXU{fm~@{wHPp2S)u5Ot)h?YvmkW1lJJZ!e|b` zFocmhOS)y7OZhH9$>(>GA+aaEb{fm1WxDcuX(1VMhhl1}I8$HYUg=lmGk9G*3 zaz&1zQybRKDM!0*&Q#5`KdHBr64t(Bga*q~>W=&2Fz}>DMhtG#q@P<;w4yNli0-k} z{eDPp6t8M4Pr8OTk~D4?CC>FMg>O+uWys2#AA1YzlZFgfBV3MUm+lrW!D66L)I^^K zv;*6fYG;%KWOumzT|EvdoE?rJJ>-~sZoS>{CE*&pQ)eYr}C@zcWF>L-V)QF=MMGSs`joK zrNG;E*xB+ze(Q|91<}F1amqy0@!Sfyv$z}Re6vCq(|%73abqvDicdKX4g0PRhY50Q z_NzBnE;)Lf`QZZD;=xRa$keyT3Zm4h_#-aLh_Bb9B2PVOR%JD*tf7?%EBS3{2!%E%2;nx{$_cb3W5#-2>mq!`z12Ctp2Tn zU3~kOa~Ut}NwM$!SB7s^n{h`d{)9MMDA+l35fz$Ucul+)4lNlde$t4G6O9rf?DevG zbauJFSrU2-TRL7y8gL!pqP?MRjuKtxSvFocplI$qN_u~grIev)7*Xvy?PE^~upJN{ zOe8R=*YDbz|FVZq9_&P`#g*rl{dX@QTpH1Oe2s5)cGB$O-${E6Mq7AJdUWS}6a2TB zXdALl6?297iI@9M?lSxiv!gn#Usg3QJtH=%g*hK?`tY2iPwa|uDka_zpZ%0ZiyMFc z)-rH6^beMirv(K4`?kG74CZ5)q6W1YC=ox5Xu==jvSMn?t}-gk2!vSJ9PjaPqASh5 z3i%=PLcV&;OV@P$6yPQs@1`Zik;hI5@Ng@g-9zUsg#l{%kWl=i}ZM2^Le{mZIzBF;)v zg)5;IFl{Q_oN;-HzaV;vzYa3>?O5>%b)`E%{`m^7*9Voc(T4x_7k~l`WGSeDZYK5J zKqq&#WZs~HNo51sB&Y75Zo0%jrMJq4VHK)+4(zdFIpXxwLX%ZP3aaxcmwp*NlW4BTY137@< zfb%`jN=b@iVk?|5D!Dp1TVjxNZ+sg@llI1&#aaoi31L`Z`my*+?YlZvLvxI(<>lw4 z>$c*uZQD~B8^*+rQW?I3{o0+87@GGUvs2_z@2Phd}#0=gyWxHq4FwK za};XY?kUoAVJjkvEN1Ib-h@Ncpb{zxJFZkte5dw0rb##Wx0QLrPg-|w>z2X*>C1Qi zoEI3g?Tq#C7tB-#h>rUbmhN^OjYP24gUz8kfrzMAs%J8&7KTKsT%j%pMN|2$+z3vM*KBoz<@x=kCh1G zqL&jDyy9=dyxRH@dyfCiwGf6R!6|r1L$A9~L8)qv=|LhteCVFu^gM`VPqefpL@#k- zRyj=2SvVW`QiW?~^FN(}1a*J=1pj}l+mrp{db?DrC;OLF&n7sgRbNKbaDHs09>hJT zX+&dF?4uR;^2PDQUvk;C6f%fqJZPoNCg51x5Q4Z>3 zZy;?a)VD^C2YfkewS4MFigTl|%5hq~N}xR;c$?#g#lgB0p_TGaZ^vfkf7{%DCjVSV ze~Ak#x_4Eor0_V~WliV?Hg=45Z$?2u-f;%e!zm4v9$339nz7_>Xf*|vbxCskIx|uX z?(>0Mey|4jYz~=ip9(~xJR1I;{2y<@V(4%ajxIURD*s^=yru^7RBD%tsX%!Un`Ig>tVuC#Z4C?#4oMw*SZD;2)tZv_w2*Nj8) zCs#H7_r1LRH-5+4F)``}YS~3DsSzzE=adq-sq%5l0-GlLg@|K12BK&Sh6<)veMF-) z7CX(n>X#g&P`JNE+8S1kA1L$)yjVBky&B593W>Q0a#%0mM|mS?b=uHwzD7Vx_6@H) z9qNy{Vg8x}qL>6e;4(Jm$TO(t)Nh)se~8fzZV7rTH|4gKXQ#56ClEx2!6>p9{exKk z4v#c@3n=Fa%KZ!wnP*Q{x6$pgReU2f|Ev<4j5{PyxxlL#n~jYH$}Nn~I_h4o(yga%2hvKMp-n2&{@LlOtGSFVhxQ9$ zjY6Bz%b;87dZc>Jf~_mBH??N_l&#ydvdsvg_x12&<8riHQ>%RQ6zX!7KQCESIYGqg zL0$9b_LYM>kE3T^xHR=d05L5p7Dqf`-;GQB=0Ko{*6~_Y0B_g zXU8FyXM_k%KB;%Vy1@SJW20Wtm_l0)l|UmbcDF+N&TEaU32)>UAbA#LNw?s*;4cPE zvsOP`|2+HCLOLp3<+)>>_&ePgMjPX4RrjD@FT!lBAd+cr6Lf9_kny<<_`!?OrU+*2TWlh4lkttXxQekbmW7-(3bDR802?bN&a#@=1??j~w@mFXEIzf2{qm%47-|uysA&Cl-g{=(D6Fvrq`Y)W$FxjmURS^Q}&0q zeD}g0WI+~z2QaZqC81l#Jyb=rteED351dw|3PoT_tKHGPquoDj^uL>5j`Krv6Ylft zlOcYn&bgY6J?QvdX3kOFLUr*-yjDS=s<6LaWWIZ>F5{^&`O#?QG0TgD()&c|tyOAI zGFerAuRVvUOPQkiYSk^rdeLyPwDAQDo2Y7!DuFK}xj{F6&Q5=R9-nMYoC00I7( z!q_YuuL6$H;*+3BM4YC|sNZd}19rnm3l03Ep^$d&L_%s{ihw#hoB7ThJ6nqzvTqx-snoo+JegRZTHC0<#mqW3dHIyEgjUkQ=IMBgtq zHn|w-DM;9?tRiaAY7SAk%f_J^HKRGjDQEdl>Jf%{>DQ)MH-2BUM{j!01QZL4_R}(2 zRIl4f~@KO7iuUOUfme!39t(#qVpJ);aN>TPxIguF#kdXc?D z{N1O|wptb2AscXE=;?So7Ex2+WwjCj1Nh=o;$1E0?7k4|^LAm`g0{!YRU( zWTq{sQ46x%$knM1*qXC^l`Qwi4d#ZJz>t-a2=p6zEAtQ8a;PI^8|GOHZcdnQQsGeh zea%7zW1VGl29+U7Xi~oH<#K zaaJsZwiI#J@iQ6rWO{nMP0f_{^eLb-noVch(2K}c7LNh;+qGOvW+~>|sm|uoZ*>>4 zKI9ubHeo8?6PB!poT(m`5Z>kjxeiDcp}FD`b#l99x2}hTX1=CFpek4p4?5lcmGehD zY>QeGR8(0PH4*<%O%*Ntim=7pi8_m7MWBAxU4yaygy z_&vN*=|{(b!{Xtnn-i}pl&Ng>Td8PROWfn@(91eb1C#2I9Qob}nj4IanQU&zzoH8Q z;bq17*abyo1+wf{0xh&GS*62VzpmEl4P7w~Pp>>wO6JhFXX924n$Bs|Hr5;Kr&t7H z9(tPu>`a>C(|Rj1pA6>!^b6g=$PUs~B+#=|A?)&oa@@#R97d&3&B2!))pFMOhn}4l z4OES}wNM(c>g-9IpL9@BaW*H-wO?$xxaRZn>MF8?jT{QIeA5W0%nR`F*s#rt(U)f& zH|W^1FTrLGa~a zs~<4dHr*TD#Xd83#%{~uF6Le0R1NY3wZwOH2z6xOm(;ENyx&@jRML04!YpAP300DI%ERzJ z8aBEY(jndmGrco-iMA{X4XcvWok7fylzqoR;vxE}$XyiMBsVOSlk|5H%I2*KZqLu5 z4}Gd|%=s+A%<;nEMJR@{CKyIE{_l-gsFKj6DZa;216iun#tWnb((go2dBUpLyYuj7I`oIJNFMa z67Df?%!J_$e|;Wj{%Mb0yFCRjBPMt`-a^xVSMME$<~)M^BLTGjocKnL^~*UyrGuUm z9@+orwEc8o&2-wS={uJk(`3fbk$2>AnuJ)LP(|18w z8aug6&>^8^i8u7tVZyL1g=So_j_nqoTIs3J%-R7dRlF>tFVo=Ag3T7$O@s_}xod<< zGzK3hm^WQ0Y;H_}NeiEII}vXq-+jsbvr^F;G=S|ZC#vTX9uE#9d#a7qz6V}m9s5-a z7YuPwbPh&Q2UiPGP&Dr4FQEu5b5xL06DXyQ{f9xK9+8weYQ@;#vg|S*PvKmv$oLjx z=H8NqmN{xoV5$8!7b7!5={S_>sbd>kKNr4$q?RWsdIUe)`S=y2n5P79(mnj%j9LGR zD?lF#Uq{yRu5%XVk!(ItU)%2(p)RVju>G4v6593zc;ERNDdZt*NNhQUiE&0hozi*B z{UC->QR@>fd0WeHvdcz-DjqQ1bDtm?z&v8Zw7V9dLL8%IM7T-8o2`#)pvsKf8oWd! z%cfHtY!lLO9{@YjX;ZIWqz&{T*Gj9k1J`DIw3}l@D%bsE#SdkIk7h>K5-&$0>f*F8 z;WN7YKBltqEO#|hQxB~CbFu4V2K63CV`v91*JQ)TuAz^usG%XahxI5>*zdN+Mg9?S zT7(sSq$Dxoi<;mESGB0JftvrXI!gi+B06een4YqSYdl$dF%OI(5XLt%f-+=^Z&8EQ z?#)7wdJ_5Uge%EARpDlJzk1R@FFjxK#ruMA#*A2^2QeyCs&JrK$OnuO42s`(=%P$5 zBJ)?q=rbDFxmYv)ndhC5H6tYJ%_b3HphQkAp@;cVR!C4jQL=}*ZmYF5Bk%xO)#`37 zmi`6vC{7>W&jzuMbUs}l-j5K`m1KSaXSi3ykg>e2N0%@E+U~gb5^no52}BjnD_zXD z`LMk=Z+?iv8Zy2tz;-6UsNiaPor5i}wADR*sADl~j~O?()jch=6(gEj_$Yu$4Mm?Z z(Be42_R+5W3+8K{cKML)Jg`WJAL;LzK7+1k`qanIeWeh|$96N`Bcg&n!pAm;6Gl;k z1Ec-cTC9@2Qvk8<<9vcXuir7E>xcOmeM-MH?t zRH-`_Bh7{uBO%My##sp!?&ap42_GZ;J-@(TLmNN$O$5FS#su{dCA*s+WF-adJ{b1d zU6F|_x1Z04@-Hga$ebYV){%Ss(bmEO!n>yyPXKcOMpnRE(gln)3y^K(+9WHf0Ux!=_L)}IeSew zHLBv+-P>g$KaK6YO>msA9}kGzb40|91?UnF$5+yHJs1+17&{#sZ`SpG$h=Rl)G0r{ z33EhDdz&!Kt_6NnNs=%;45f$Nd_rqMmzWsv0^)Vlt{`pHso!cX{6BPk18}EJw`XkI zwr$&XGO=w4kYgZB;IO2f{#M*U|EY7sczSm*N8^w4yx)U3GN>+I5g4wG%*<5}7K;re*EJ15(5&8~Yj$+!Ea zf0jX+aSb_rtgrl*Gus9ky*ru>pr4-TK5iIl_5WHQdFn25c6HpUX3XriT3#$~-0Ud7 z&U#!le%rU>!A8#BA%9;#Je@4pe<0+1+^zqtJw3a`V5G;yBxHzVL`d^#TXB_NXa5-P zFCK(VV{&gOkIl*Ld_Q`*_*-E?oa>jg*s@JSFaS~8;6CL#0gxVl&?OGi#O>s zUH6yk{NdLtFkL@?`ndIWnHTIg*VJ5jndWp^ZrVIJvS^hud=~?OC2ar5f~b9w4i_o@ zhVj`4O~|C)Q-dZuu@#X6NR;FGeI|17>U8^g-960iHCk)LVK8=hceUDnZZLTKHWC_V z3;D8^`HV;wRdBxb)utLCmzN_y>Fb-k?h@tW@fSS@Ms*>Ab7n9&L7 zyI!hyeSW2!!GU|bWp#_aib@}RdbAQCHsN3pR5;PQHquauMn0#G{3f~81Hoay(M)HW zSl`x)l8ie3`MKRQ^>*&A{^c(4Vv$QGlaJx;A4pK_0Jg7fAseU`A*GDvM6J3f;<%-C z1j?B7u$m5*AC!;jf!x#%kOhBPUnI8LDX8Rs_ zIjIiX%k2QPTdiZT7>8kz)qLL4;&^>_*7^5sdkN8DSJS(epQlwK>r7+v_0sdBP1FM3 z_v{JM?JSlt&(e3j`qkW}wX*qm5i6Hl#)3#|f+hqW#OPNZpufB*IcVOyhmz-GYMl}h zkj>@a@P-Ffoh&PdA__Xtqb%A98zMFsjIIxb{hl2pD32$kf92AX;i3;C3I-E*ITHw0 zPKHd4I~p<}F6;xy2zW+CB)aq^NStOczm$&7MzNxMn1~SZMB#>z`K4^TB%1E2^!(Fs zi&gU5mI>+r5RYQn=hjmKm9H#3NsZ=05yo{3bhMck#GqpF3nc=tIFaqnC>IpD-O)@d z?<$9;I0Eu!M*vX{MuBz2u;EsT2e&ue5K42#FCQP%%DvDx!?PCg(p4B#I{CK}P_fcZ z@12m(5(A7?qq%Fd%(gsVE2Q&?wpbSV?1~nN7hdfF00o#Hq!9R*vS_vW)9!7u1D59% zt?CE`skLVN+61#y-&C*aB?Dmd4b~85@?(*R=EMLgJtLnxOHO97;VyTH-`q(+ zBcGbQQ0@9`>yzbuUWe2?gP!K}Id53Xz=K?Q0Q=d(7=Jldnu3DabtCf+@`XQv#3$_) zA!g)1DY>O9drUE)^tj>p5Q^Z-e@|F=TnxGn_e}qiW>Av+)jy+09Nmp(T$V&;ZPx_? z5sBua{K;gexU)Y+c1Qs|4fbsSu;DD44XUjY8k~+cn}3i!np7rz<6yzUgSZ7D5xs!i z3Wz*$5)k3okygziT{fROXeb-KP3Y?(Qi_}vVM!mzld|o6^mm%GD4gLumJ`U$#EUzu z&LhT1knYV3Rfx{!FA7JCF5$6GIpM1=Nj@|YvC0oj3ZDZi5lxO%-(n(ij)*1(@1#)Ce?CkdK8fmNg$jG%g-zS_OO14l)uG ztw4F#&Q?9L{_Ab+%m*qW;l>t`M1uD)E%Dn%0YplL4-2(1v4QCIW8om3U)xESC0R@~ zMCfPa05wPCXf&=GErx~FS6JC7^UwO!P?IqV0R&|VLZdm5Ykx~-KAlSeyXh^@RKUg# z+I!_$H4a{x<|BDG@a#76b9GyLx9&4Nh4jYYP?yzPx395EPkoK8mNV0Q@N&68 z-Bw*-%D}>uG`?{aBjDE18KQ|T6*oZfC>DzsJn;cm){$@)%Ez-zUyuG<(7TT zdAr~%LdtMJK%XLMQOV%g09FQ1JKOA}_1G*Xq|j^HNBsC}ZbA-W;tD#l zGyTSL?@sqn-MB(_$(0b`++eo$Ie*)*OBUFO$nMHMvIYJA6d#M)CsF zOA68LKUEjd^~pna5xBE+aKCo^pJ3F!>$Gv|E(;12olcIAr~NjKDRuUL>@f12QfXPh(TCUq6zE|I#Ry zJdrSn@Qwu)cR>|Wt{b2w8Do>{BQt#E{jD@rGD=Dzw@S$m$@PmiKA5ub1^qC5$kUIh z!X$pt43w|h!}?($m;qrMDm~v|L)>hB%j$V6BrzL`GS80@T3gC(w{y+s1Mu(uTBOZl z9%;wiT;8AUFTcK@p3^ZAcbR=REw0`b>h+?r3h{{fBtamgT3^61C#4L;XQod{Ee)gr z>4J05o`FK11wzlkuyCZvN5Ug~^Tf&vI393HmLnjVW>@zfghSOfEp6N>yu)S}$^+sD z+rvg7|AGge{)gKOQ`iAK3w-9oGrXB0O^=r-B#P;yY+P>>qA~?3Z$w?o_g+3fF#e0D z`!D&{INIa2A^V^k5%$daTvR_1;g0xCMDM&1!~H@c4CIAOb(Y=|c&DoGsAz+@u)I6> zVHZbek>cpcEDTFyoSv>Zp03FiKE7Q&_;`9o`hJkRKl#lg zc1+59-l5zG3SL|h*nhp>IKF|+F()X0d`YQ7(#YbclBkI@F_~tOm(UFI()jTx9>wB-y{AxaO(m{HtkYRGL`B-Eh)qkd;APe}`?@)2_n)Vu|qzXZ_Xbd+sMKk6# zWfJRDkS$OrSym;g9Lvxc>&-l;@2Ni97jb9eY+iXfwd-R(l!GmXYiAp=)^u>~!%EG- zCFDI+C}fBQ+FN;XNZH?OD(K~WJjFf(DiBj!ozFgp9h6XP2Bh#}W8KJO8HplT#ZazK zECJ(WiRrOLE=gjNbH#}TLq5R@F$^0d)!F4tet{}0#DuJKF(&Z+fX5li#`)us*0f?% z3Y$Mqrh}L>re@(3Q3wyJ6sx0a^Ev{YQucys3bcAHJUf$0+-~JJpbKi;2PP5|YUq}l z7T2h2t7VC9HYI0%mt~QRd1YhqzsmUuD*+i|s)Lj^NduBL@+%qbJu|7fF-)?1>})42YeV(PDSQzR6KTgf1`+n=b0@tH8D?KFAldF0 z?|g_-)ANjqL{+nRfX~q?`^D*c$?YjTovpi_hSpf1f~6F2Sl?6I=-O>2hK5XjyW7_)I~)~LRanGP=QkXd+y_uf3yuMp% znM{3olNkPxr>vp7ymLE9qIS|VAiKIz%C7+zuo?oE16t)u8a3B3!D5SU1G}J=T!A}T zy~`FbTToPZ3Wj0lu{Ltd5rqn8vMbgm3v*_W-8BI%+iw7<0T)D3toH}3* z=kS%SGxus~I8-K4{2bpH@E6}opt5pprHaIc*d8k2OQpI(uX>cN`Ora`+6_42t2 zM3s1G*aLC?@)B*-d-JNWw{SAMt3G>Ysizm1O{pqW8XlU86t#^a1Gi;@p0kn^%i_Ny z!r#@|kO&v^p$V`};{?3ymk*`PaaA`wn30fGNG}zX`j!)9mozXKh!H{BOI9S&>y=u{ z{+>#hpLVkd+pCY;q;49j$jZ{cjFqtpT$<3ejg`UeogG5fi}~!O0-PPZm^{O-HA6JK zc;HR|dmt}T)3ri_(&vK>y{p|A{1Gs}!p1gNE9i(rO9wzk9+HmI%D)y@TecUzmKd+_ z@a^KztFVOrW7aqTp0=3ivdqR-N`72zhY=DVRcpPPw>V<~-g=Z|r9Cq>Qo;CYtMp^t z>CsV7LO&gomQmAeX3qBcvqwDxV;oQo0$Pk&6J&lWLqaK0ZVhU9s8YG;Y?rmzZ;nmB ztJRna*$ogB6~*QLTaYJyC)3AjMUKxVt6A`k1(yQ00F~!dn8tEJlO^D>hD&}+Qb?v* z^D0*_b2lgyb&yiYKN{;XL-!*h5vx=KC0>(diA__TrHhEHNJrYRP&v^7MCe;o{97~` zO+|f9v>_~&MWNU<07vE%@S$26Cy|6Bv&@bS0B>Go7eolBj1O!}QT^M4(Imd-K*%5> z!>Q>bO%yi{WPwQUFVd>UU{d7eM^_noVZ&Q)d6YC$qR|(LFT8%b*4&^LQWV8HrP3rd zrGlQgvOfA<6o$~63iimi-E4DlWCw2q?eQS;iUwveWOpD>0QwkYy?rQeH3(D%ML7W= zlaKAEC2-L_1*rDnlDo9i7tbM!#F$fLTxtQCOnFjm2xy{njP^ zgh=i=o9`OoQ9f8%66d$r#G-l|ML08Y>u^I(cJG3WPx_X=eT3g=!}r*+YcVEd<7^UhbA2RnjZTQx@7HQ$k{CKfwQep%-D^EoiNNe z+j2ZsaPUkMm4|1TQ*tI6&g8cNHg#R_kmWe@3cGJUoYZ=dFZOb&8V&15Zv3Ud^kJ0! zww6_$oeZBS7%iNrX4?n#^zS5*(a-g~*!muw)P407dI~+7T9k~vo+-l&AZ#dQYpm^( zzjHbMYy^H9tluEyRKpNpFT_>$N-Iifl4ch+JVh*kIdBU4=+Uot5Z>T0H65IVj#6 z%;IB=itYPEbPY6jLsBw8oVeBo>1fyrtd_(#!yf!tO*tiU&-m31q0!QUZ+%RXa+g}WB#QG)Mz+sQZr7` zc6A$+r6T2{{{Jii{u4M|pJ^sGx_R*eUerbb6JCo>DG2n^09l6lCavmLGO}3|0qLck z3+?akOfIKvqTL-p{Tcwqu3@60m4e$#T3c0(3*Y&vU^rM=r;meJ`K7JJKKnd#kpIuf z_?3r4MftnsZh86({C|LZZDW-Y`iPLkYDAuZG$OS`bx`(N!h|+OOxErEht6p!PQpIc zGc40Ge!2JU+(hqVt;Q^IyAcVu7^Hz;@G|WcO$duTD!wRZWICXjy_gqOryyq`CrBra zmv1v{GA!*5LU2wb#H{?`yz+prW#Tfp5*r^*>8Vaekr(%B^nlZbHsn{PArbUa@f3?o ze}GNfZ3jn#+4)`R#0>)kM8or+(+Ar>r;noKZHF}`q~UGKOF;O$0tzp&AX1}FzU9x1 z61&Zu7?U1r6xMaLmBugMV=zjo%@Pi&o*#JcZTFkcd|mt+#m@sN81*^C7hxm&>`5WN zIawcW+_=Z$OW~_vb;dHMXCiD|f8IY$J`gPyZaLfY5iNL!HV<7;2IYW*_TIRbkkjB5suZK1C<`E|F-}6v(xGXm+1-%DQ$4~*_kr>u#VpYVV3eWANz*S6 zK|0SIy}!SB#X}~$6&)V~0LT!-0egyl9JP`OM%24b!zBE4I8d@Y>GWxt7vjvKe~vt) zoAq}7T6)C|7rrpSN_usVNbb{(&T+TpnxK42aL$VegyU$v?lOGmtz5_c$6GtDBTWIhT0Ko4Djyr<^+cCmV zf|)%#A~ShW-lrXKsWD@M)DGh8x#M>oR1+9O&?wX|nOCwdb>SaeLr&>P;ZA;U+5}rJ zb*nflsBg?_<70Lz*%*4PGu%aIk{s|9vfcTk4M&HS}`o%#kV)Jr_}0I(bN#6g9IC8tqx%`!ON zO`TH0%3T-#U-nh=&j&S0uenacL~qSan6J|{6*;&F8;X#6>!Ld65TMUV!hN(1h!+(7 zJY5>qZ30r9xYEf#9-eYNq-OMXzSYtH4WFHzx$e9tfhG#yAduKLXmy4_i&Y-JzouzG(}va4Pvn32VtnXu53 z&i?MgL&bWyK(nmQL(7q?&SPe4;R4sm0jUBr1z90kf`Kv7B18$CMK2XvSIyg`p7}&O zi7k28_oWZL6_A3$I4Sh+1IjDKsmJg>LJavkS`&--OwJ=3*CEhO*`^A`#>Eiuvs=cXxQ6T+cR(jMPN#CGG7>+r>F?SBA?qi zXu@fGz4CHX>v%Is6mxC|0Ei?|i*uNfv0OIv1~ZY1i+1I*=ptNlH9m`Mtz4{1N)~W$ z(Y4JzAdY4{bWXF|(cq5h^?A(tUK-|hvNfz9K2Htd)JZwEGA#yVS`>)U>>NB1*qs#Gz zQQUR|Y~x2c;e17R$&FcU{)SU5c!3;cFX#_drcxLAU3pDarV3bT_+2V}4K*CRYnstR zDh1uIn6QTJo8V=y-r%N^n?)tn+E*C)-n(_{@(j6cT1~q?l0E2a34oD$@m(j5%A}HV zXlFU~@gkDIl&dP!IIA@Fos63$7{dX}GL*S{K6U!4nfT+ajDXIaOe~l|nJZy$x`?3B zoy=3kIIZRa&u~RK){z%`Us{}!@`bv*RgGFAu@`w3NsVdCD6MpFf%Zsm%t!@`CSlEi z=P2!}NRO|$ySC05g{YeWzdwel!9(zwR@>;ygAF+(n~$0g^qWQ2Cr z&XG8+&GU~++e$^^*?!6xFImlj)OY-MKFw14(&gWE5aIr=!^7UCCiJDIddSFCUX>0c z-Mf|6F;A*&txi09ZcD>VXtDPIWPYAVk@G4^RI!fSX&^wIKZpR6E+uU+u`0+9mpc&+ zLnWV@u28Dn&F+>_t9s8dR!hCO50!QhFaV9760gO+NSrz$VoV)5h?0yXdx$eDO_d8A zp`H@&9bSA_uT}4cBCA4{S|mlcT2qY=JFa?_`>NR1rYTOWSjqhByKQyWXH*zDrP@^M z1%*n=bb!j(L=;nP)u9aN!frjCspkCuuUOGgeQ{#SZy z%wKQe>M0uQys6NZ!zgMK|E8uHPX`RBphc1Y6#J(^-<-ON?|_PzHr-z}DLUx{EoU;a z)C7eJ~vpgOd3;`2Uj! zH%jZF{eqO7|DWuHeR=8c4ne3Za9`{S(;B|+Rkjq-`im-F2hf5q9!#_Yr%JVr8klQS zqRWVK|EFa1MNztpw1GKN;X1Yu26K%Wgkbt$Wkk<_I2~|zUy&xM!F>J=E0AGA}hd)BHJXzn~LY4*+y)=y!jSR z9$6decj*q8h}HDL7_aD%d{J$YGh;^Hsx#H?G+DIk`l=^#=zby4akL!GM-N-VTXX!q zGqVJn0-j%Sg!%pj`akQN?UXP=AQMu^ZUvhQ5V9JXJTbBTV(TuDdMSNAQ&H9Jt4`9H zi2FSti_=)F^wxjL+r4lY&3Z+Iw0jJ%Toz|7GWUDpde^#>ZQHTy?Jyp7**ctU*tR7# zFS{lCbwxQ%SN;rpzDSUM-X!gj_qUMOP!lHL`!UWT{*Ov{CUG>CfdtC7UfhA1&i|;l zeJQb=fT4hZl1Trv!DRn$_4fA$^I!Eg$u{KiNNRX(LDBCGHTAgVp$sHgLY4LG_OlKT z6tKzxcpYlxA=I}wi;L~~oBT zHf~gyH>iHLm>nhTZq>XGY-3@TxW^6+*DDd#cjRni_l|QBd$q9erue>G2r6haMh#p$ zI$ha|H!O>2NXaP0KnL#x>^lz`8AqFJt9Pi;2fcgWH&mYdXaniz55eFFR%;{1SJ2M< z#1=pb+OejFb5OBEa7<0DUx#fSs++Vv#wtm~J{?R2m15t;sR`ax0~ySHsbbQtDR)hQ z^=I5fNmCE%RR;_m8+pd?AWIC?FL_AN4-`kon!TMG<}+T45A8$lHuyge5Xr};*Q-s; z>wdQ|HW5lg0bpAll!h;>{UBsh`o$&>-|jwy+v1c{_1z4H({NIQrvI!NPU6u;ztdZ9 z?}hZesfqTx&jDD&rinPJhHW{<93{PF(I3k|hG)mMrl`d8{||p|$r+pW2OMxA2IMzg z_#fJ-7#Tp9D}HfA@U@!j#;CUIEsSPf=AKlmzmI631jm<{rSV4@bGHQn0^LU~H7(0& zxq#1)hx@tHtJC|M7Q)-JpDTI=ruaX@t&klfhUVu+G;5`pe(d%CG4dq_2 zJ*S>FHEKaPJC>VM#2YygZubm%Di9n3#3%K+@v<)>_+;v}ChzrQo1oUt zS&=mr-fk24h-3kl@#J-!+A26viveMF2?TsNjZ%jhlG2bN@IsdDP;0RP;}klx-}lc1 zRgkWEk6(Z^Y2#5{+bBtIP!ULiB~Z26#I~Oyb%7TIeC46kS{_T{2?#oWS+%(?H}|KA zqBP*!ZExh$)#~RYi+k;F^`Demy>VdQ1{f*mB|znc$rb=0h2*F2R^VD1GZJ9wf~^9*d1wR0_qIkDV1hm3h6jU@n(y=iZ8z${ zvOZNn5gw`+{D*zfnvItDDj^6<8lnxr1XklS-##?8>{{FSwKQF$E;n}8c^A?5p@ptx zh3mm5B3}X02Mcg%NksZVm)=}MlZp%=xoqu8B%(Vv=T3Y$% zj)c?hbjG$oPa{$IUa;L^XkQG!%p()fvn7xiaa~;o5YN+3xdt(ArgPGuJHQClSY0Ob z&R?M1L+MAMrSE!Y7PuQK!HU0F1}pOL&wpr|!fgOH2p*F$;$(E^8^bRm)%0k9x~kbU z1p2TJGhvr2jG|A(BXRZ$6G+5WZdy4Zv)nd~6**rRga`9LW^6do%o4kdFr2cBaD&dJ z1Eu@dNG{WRx*`lsiU~nCvOrDBb+b<)w$aNxRe`)OWyR}dH_)BLGj5ouSxPkAT3zWJ zd1U}F;IHD$uQ08gl2?U;g=eAn+ve7w9&4A73=G<(e=;~Ah6dH_9y zO2P%sJ(Pm1EaLJ!S{0W=;_-V*?{2tNT_vv1e^OLYqmNcI(;A!H z;s=CTMdI*v@L^@uF7+g;{CH z^#5eYEbI9ZuYpf6QUR)It^@EngV<)x-y8cDWfUI~aGM4*Sb#vBm*lVeO4Go%Pm__( zS*j6I(!r-Apv1dEs(ui0b*p!ez1805atf{qj*a z2w1xi^bn^R4gz|ZLW=}4JX~J+=WD|DH83VZ^=ALV1XbuTR>qxC8Ob0kgU zZQJ95%BoneK!ykcX?g;d@xHV$af=`t{Tq}8EqEX(=Un0;EAZXB;zM#zd-yd}dQ((b z!Ekhb@2%ypa8}hNPTe`R3UlSk&T$9{p&< zmw-sX9}SfUN3%h~+JmUt3mDv*@dMsjv;&81KFZVb%8$xQQbGCsF@q@$+Ar>(K3bvU z_2p+LgxV9h0gQa*cW{m1+7ezFrojwHNdbPaTq}xooUcw*kM0|ugM7p!bW%HotbC#U z1TyjUM2B$n9|FS6Vnkgig2R~J{M;{Lw@VY>t~d_~XIl~ez8rdsRbOKsL)YJG0pxT8jxhI_1JYHq>q%5xCEJ2oCX;>x2}(PD*44yyC&`8 z%WV&TCpfHwXajffVb4CJDeNQ9H?JTumN(jm zzjt>Z+v|_+ZQXzzo+&j>0!D(@MH9teY@5K6`upLvn+SQFKwHCG_=wN9o~=aY<%VkxArs=0hk1?TTtD&XFYsq&G$*s9Y^%cPq{mi6lbkKGIQo5@$X1dPM59xZ z6KKqMrZ*EG^*89iS7bkbfXNh`o^IH5y=`+;CQ{X~NMpYUb!^caPqMCNKU?z@QsC_h zy$rHyDO*->()eRfQYo^rBGjx&%SsH^DRgHXDC=NbKY9GNpCB;N4Q+-KAABn^qtg9@ z)x%1*0p94#4*@h3-*Tf=)_DBp0Ho+)``f5=oh;tbs) zh(p7A-KN5ON>?xdutyKlMO-X^V736;z1JOR?W}l2CnnUNEWDZ!{%w(BpuarOhDMzdhrkB9zIHw1^Pj*ID@LYN8Be zgSa4`_aea%fVmyktV>;7@momk`!E(xWU%bPNNqB7)c1-p{%D)24eK2Yq5$1XF&%sE zmJ2`*HQK#DtV2czSF%l|_9oMQ6nOcrMdBVjaHli}j#SWvZEAx?00}h$a!=MO4!>bZ z$AYn*Ny#!u*A5D^o3>~a`5+?*7h|5&Z$oS5(vwOzfST+f)f17;a=bbxs4%=hgZ328 zV@ZLh7?1-8>y18ggXT!ReV=%|;$VQHC9=3f2(3fmzQ`?92xh!kj1v{9t2*_fP?@Pk zVm{R;QjhLm?w~WDy~-H$@%c$O@iTS)#Y&kDbu*dZX?_?=@J*UWOU*iA1jR;Hv_VA> zuIV3ma$~=jywNS$VwM6%%1T;;yi07@gK*ULQJj`)E1?J4UZ2eBdiazgEq+^gYeMxc zna&}`z=Y4cFo@pE&~MVhYrtb}{-yT4s%6Xl0{zbnkI(jv$p3ws#DxCO4A1$W8D2Z? z`#I9^Hti#?mLH@GJuq7RSYk}O!(#bxgNaed5%LTe=FK;cyX-1~_m)10H!{6__>HV^OKiM{I8tUke5rFd> z$nAff!-~+^v=uBZ^Irpc<}C|<2N^U_G;?Mz6-r5?fD6l@q2mjnz_=iaa>f|?=W%AOGc)+4uatRgpqR2OWUyM`Ojfa_3HT3e7K6O0GP+vh{8$rgN}P{(F^dr*6E zbNi#;I1`c$C3H8r2uBXm@9q9_k3ySa&e?r<81)5Xb))tJ>nj6hhgDz*87fa;q6DF2 z8Ef-@l&nOy5BxdaH6NJ-<Nl>48R6C+^Qe z(NwORV9t;q{`;5sWvg4a&EnN2U?nHZ|EpT45%C7f zPc~3pf$D-3M$xpS6YlB~wXwA@hWk;Q(f$0w^GoAwoQ;077Otw(fN-|Uh&t-QF5Rtv zpw4hM$)ewr?@zmQ+?N0pP%4^cNe@M+V|W)_0opaBP445SV#+#zki z!Qj!h*8TZaT1ii)pJeQ7ZcuYPq%CkGfsgc#%RFrk85mXvO=o%KI6Fvhukxh;$Befl zdjKt*p3F=exuWh_{!q&<4>jvAg*uWz#essSUKxB z`77^qZjGgbSRD3h1VhlOVTl@8{bEE+@R~#`b#`p1D6EdsefXB|ZO|PgATy~jMg|24 zNZbh+2>$zS!PAz}#nsE!%;lfI4NIg_M93$h||aPOc7ayYd+!_Uy` zN^R*%U7KYyrKNe}QtcD)XywG2T1>>Y(PZ?qnmff{Lg@4SVj7SMwi{*V=fyFp6v(h) zNFx}wd!?)#xY%%t)!Ws=`r~DM=pLUmxaLy>+P&MV67(+7gqB|&pE}m4&3U80uz_YS z!sNx^xuYZH_#%2nN2eLRTg-PfvBCS@>fF1#t`T@4h=WOEP8b*Pm;ZF9G)PQwddR6V zRaS-)rs%BSJMmcIk?TOvvYCNCx@rt zQckch0gK9XQ*?QZ7%e+gj^AlJUZ@y#o`VzOtaX2WC>(+V-hbbyjvFf1)D4gYJuc)d zMS&I2)EQ~i~&SW7%x%F7e6E7;jeDH_%sK~G>;aBME)<}ynh zny{CZo_OIcM6VZz)N!!8nK2dk*{Jj!Q^*!?B=loH($O4q@sFrjBA?$XbX~){e(Va9 z3L=_x8Dxn7O3+rasv1ch)K;w!?AFp*Bb_6%)kj|wc5(er?N*;gbFol(334VVc7BGG zTr=!MCHwe!uLhuB2WCmVh()X)Hg3HRMJ?fC0ElmFZRGP-rmVJw6*Dxt05fjBmEV@M zbpj_g-@fA^#*6+Ybo4-z2&q`2fpdd`-261Ivw{xg;4C;0*CHgg>(VdD03T73n69Dd`Y&)YX# z7fwV|kVNtMdZBzv4Sb`9d0OG9Qa0Qp0tU1>^7lUwnzQEPI%b-z)^d}D7UGZ^^QO6P1 zo@OsrZ0;mQa~rhq>g&=|#ydh6zH*m7R$tB#z_z|Qy6PB*qweQC=Lx4#E@ZQ7iSrAb zE{m1zXH&0SsFVcNfLWUMu&}+8S^857EZ)jH~*E{b*L&K8BQU z!+Gw_9I`X24e)I`p3O=aD|LH==}C2j9kFFo%bnE6)r!YF3`?$rX`H2Y&!@3S5nv&E z0ES}OLBj5-@$Da zdw+A}Q)+u6Xp4A33|7cd2e>M9XeJ?c^=a#Cpi3IKsGPr zCVGg774Zx`p2;`--F+~3kF&ZM)nsCjZGrX{+0=B7!-s#YWk9vuKo)XACv>rA2S$vi z5sd5%mn8g>*glGjdsa?2i4$6oX25$&g5fdok0RpYolK2=)#Tq9b8EtRV7Ujvo>^^9 zL5|9Iex!1P=`ARUde|^jInEBT022CvuEC`q9kr+R@R9TZ3-gOnN8cDjXRiJBEVm`X zbDrWO$0sUqy*65=W2|+Dtkx0@-YMTe9eF(XrF4jiLlg*c0x>*#x9DJz&@bifAIBTx zB$+&GeChpzNTBCoZlmB57wyYbOvcOd3)MtRpbhLJy7CfftG02WQg7G`on z15_2int7cIuA@(rv59L&w&=`7{fif{aYam`q4EZGnQdaka0<&q`h(Z>FDl8anL~e# zObo?CNiECg7RW}%&bs_4z#>)sCP7+hR6|^{|IMXi{KKW6pphQtBsMabA1k;9n(eAP z5{9f3(TAh~hJGW=(uu+(oNw7Ccq(rqpdE%{hGv=NOZ?!2kuYB`6&3OI<&~|)GQsFF zEJj|FE=WNqJ-{~><3Mee9fuXIW2hrRI&Hk2BiArRI!B>p33rP?&q&uw)2dUw)$+zS zK|+m3r&h&KlJ*t+{fpFfje6YPq8mx^3a_hJk~uXVfR?AC<+4+Af;3(Acjp*S`7C(O z4e`;g8$WCqWD1qMO_0h_*4`oxMLaUeVXUZ}&gMNvy1bU8n5XL(D()ir>d~pIeo40R zFP_JNs$fcetf(~Emh$ip}&G(B?}QkPvzFPk0%ePe6sp&HWMs5v`MFW0KG6S|>Y_#_n) zx*WGeafmIZvXAfEAe_4rFJ4)Q(c&P z@#5P9&Q}w)=$qGiZLjc4_Zx2A=LRHXqtzNPz*B0n2YKzbtNzX9SSi{?ns4-)`fC-F zHBzvYx^X`bIX$?W=phzD=L}4~If#0(4Qw)#sR;#j@fl7K{cfmA5AqQ`z?xN*7>(A= z$yWddQ>?HbRP(p9cE&;8FLYEMMmOP!{QJnj3~T@ERyAo;&q!IT!tox9>O~S25vZCv z02{fEaiNc7OmEQ$i9u*74lQKjKlXbnD}GkI@a%->z55+#%D-b2yItaBZZWsj`DJd? zkaoA|%(9_7!^aE4b)nM8yF~Y9Rq}}ENg2r31FvWeI0C#1#iaYA7Sv_?X*u)z5{kvM zC^^YnmRsTD8Htqrw4Ga3TxH@-81N6iAIX`HO8Z-B3jGFxr`}FPDUNWCv;ZDKSMqSNR1d6 z2Ey0~ZKDDdW-STYdSy^3CjGh8&qd*4^Ppp!#irae+;(uC7dsu)W_>Ti3w^LDYsCVQzd{3VQU{H_8CILKS9P&a6m zZy<%)yL!V{M)Fv%l%;a4f0UGUe9F0XI*yZkVnnm%rS;a#+Ew!{gX}f5*hK5~x5&o) z<}`jN82!N`Z$7ON- zNV#-?nY_&quk@sVv-|b!ZoWhKsSRsO9RtLXMhp(DeqLw#%75oK3Xb-lsfsEfixdVU zRkw@`9-^N=?2hiRnlx^V-V+EM*rCg%<4eX3ptMc8(;|dF&V@m_H7$rad+qx>P$=j# zSxF7SUTmo`qpdT3l8dh@`>X8k72BGr6jOEF8c4Pbe&lY5`e_dW0Ou{(uFj(_b z0wl=bI2x=z+&zyY0$fr+~L>z{cX%)7%NXHq%oozRs26c^MxCbH0hg=}*R+9J@Ayd5`eL zGr=o*&s`7pzimO=gd>7yr-W{JU$=3xU7r_!V~tdW$zY^U=CZHmE2`YyPKT>GjDOb;)%58I7P?;rt{CmB#2nm@++ZBM5dvpgx-%z= zT5aaxPb85L*f!Z0ht|V{%-f}JY%9C2)slSQS0D9~kW$bPBF2h`;?g7x6A4Cg0|{?g znW&)^#o3^9<@>^sxuFz?=#N6}=zXKu*0EyE{tUzcekwE4-pRc8)agyf1*S5SM?B@q zyGvkYcFQ`i6(8KAGF_-4@U82BmfAMoTROs0>==Sf$3he(ncZ;(Kzrht0+Agn{8@es zyZ!x@hw%C_YgvgPxG7#swV>1xfr5xw>+oaPRkUnH{ni!@ajELMyY455$~VS^I0z{) zNY0lHfG~LJ=&%7fIM+y~(4w~i(fH+nzOpsO0mo*1^RwR|%a5h1?vbI2-sHS3^y8et zoB88)_6;H5fJE?nJ6r635?zKTpvy3enN}iA3~!M{HD0Ck_WRHl#k)gfG9Q1Y4_0)V zdO^S*$0etU#WwH2YA?bJLlMY_E6D{7{W}2A&mrkD6E^aGBP9WAqU)&(p^Sh8SHR#H zTKXTZ1X0nPROHnJcEhwk4tUG$U!N?o_M(GtdPn;UYbkUqHDi3^=7#)MfWwdsNT0`X z)(^q`jsO=QyiZCekA%6Zn4o9{$G&#o!!TV+CASx*$m*q{p`uy#cveI}EKb=`KZ5TQ_K=s8qEWsMmG-(%0yj*^{Zi zLz#8OW4_#ff>GH-BS={wGfcFyVImbpgu8$=nw?^CW=R`LI8uCb(S&X zqWEoeoJ1N;i+kBQ{03l;D~m3mi>|zxewp`3Ie>lHaRO_n&8Vd&!BrcE9+Lr0>6*~> z2cb>jt!E|T>zW}_iqOdnK6@n`Cy{+m7IQ;?m?oW^t1wXHfY#bk+RY#bsMX;mDbL8< z+6LB7ULT%MCz@P=uT4GOpQRqQk5P}4u!RgIcc=FjHg9;=q|N~9p0S{U7pBzx>*LYk zlY|3@G*vHP!TYvqLfsq!Mhr}X>Eoi0kfk0zWl9+K*u+?POjI8PA-&y}#^DrAtwrwX9+qN|mPHfv9+qP{d zlSwkMZF6EZev=;a-kiyuFu7!l4A~Opro*v3YD6 z>>&_lWhBrHemm5Leay<%Y~6$pNG(5wQF+coht*eiM|w$mZ>#dl#HLHim#&HhmB&>$7p-V4y`Xf>tRSAg56WAu zb}2r7`C5KPxInE!y~}x#b4jn!=v3v03BB98g=N*T;g7jl-qBDVVD;o?Wor4yiOGXy zK`mG{CeMtFB$6P6?@8%sUrPy+U~&58pydh8IfX-!9sl_HtHptMdTLjdNv+-@v~)}v zma%V3R>hm<1Fx6uZg6D9>c{<7?DD+$Zt;8HRQ&3%uIc^8aIB;8UkjEW!1qXD0x#tg z#d|e=k+;iVOl7i+z%X5Kj(f1=!Fa*wg?EIlbIr3&zbsYuY3T#WKTMA}!})`BN~Ffl zX*#DML7s{IV}Qc={5@3TFQ8n}C2e8MGuTTuK;H->Q(3RO***qcg0k>KJxK@TDIZ_n zEyS%yh85R85(gf^ezNuMHgc&AwHtbIdeRLGp}xyJ8r9mGt39 zTJ9~4i}omJgr>-Xjtd8eh73H??p~Gju5F+oGb64&+I zmYmtcbUM+-vXPe(<~v`zjJI8jnc`%=e*Tx#nW4CPrn}M@o$ra~jxGuAN)_Qy;AukO z`-6yOSexD>zf(!PdWMOiYw@0TFp4%`xwM(!(XunL&D*=#LeTOsm1ZnasA%sBDa-(% z(%ayIsz6arCoebKhC5Y7C>*M>RS_#dB$8p-Jh-~^Hn0|hp0vw3U%@7*F^W|qPq$&^ zW;L&p^UXc+dP6{KdqZ34^^&radCtQiI{QNk>Vjo@E-kZUUe;E33W+M96z7 zR{iO!ual^uFt@G{@8_Va1Dq=y80VGq-Syyx3()pzZ+BgLf6XGUP5@Om2BJfS|b(5`TJlJK3r`XMAT?kyV2#t9v zr5wxs3ay5FVrtjic3t#k5#&Ts?qU3CURw$}FV-~fG5VtgZYWzYS?R9e&*m7XeOK1t z8PK)y>4Ge^5e_Lq=L%sMKI8X`*f|nq9}>r90`G@<`!vJ4_tR;=`{pK{`ua_;Y?LI? z55k|OWsg4|uR~~(^+1sN?~k;IC#;}0x&+<{cBjY7UvN|lXAmMofVdFRQ~%^n!|0B!RW=b zR~>0Ys=}Rb1do(Y9z1Q>F_fLR(!eSP&%&IO-12w#oA)Q@GS9=##<`JWl-n|fUGllF zzCwR&E@_kboGF*4FL;WE<%AOo(FXz0KY&{On7QEb(vJ63*&;L(2J{|EjnT8%H9)#- zVh$Y|A3Dtdl5e;iU z`{Tf)w5)a?*3U)?rD4;jxpFgH@8~h+vvx+vG{q(t>01Tic$qMY)R@*t^8;5^C9m*H zt({XGLLrRg)UnW8;#(@|F$1h%Y*LH

    zVKyzOf^Wo5Q@kyGU+D*QfXfWz<&fUm6v4bvtfrj!YcrGmpB9sx`ljKpdMEKVd`@k9 zJLbR008cP?wn0^9q8{4`am8hEkUfC|(p|xeBbt>6_b9}DS(4<)O`2&UF@emHFBjPP z)c6{%Fz-<+`P4nimPxJ}sim9N#*p!_)?~D|s>QW~@5LtOA~D$gTq$mg zJ0$1aRBkqo-1Tfnu_5F*_wmFzQB{~;jcq!cWs~U(W1|FrW;>67JAlp5;eaU5MQ8Xj z6zMDY&bA77=k>(UMZ1s-8cncOYX0&lPPhZe6Nqqb0GB6sE2D6$BEvu>e0Ekl0+>q# z8Oo@QYy%Pmdh$)x{pb=FdCR`j)2|}V28zyHiLo7?MSeAC1>3O-6vfzZBtG@jyQ&fb zMN8}sy)TICjg98&)b^)~>gd5IkZtADfpS(TFHaTDU=8c$yS^9wU2&P5^kl<)t)i^* zNBq~VLwI?PH!bpOe%OPN6KMsUMLHUx;CCh7NUqrdN4R}CI9Q2XN{Lbsm%Ll;0P!nI zi5HW~m~4o&j96AJS@vl8jjoJXSIskm?@BDk2_SpAjI(VLdUi59pr_zD>*MAuHVHnT zH_oO)y3{vlLx->ARWr)V-Ym*jg7(oIX1f>ztnI`7^YYosBF#2&6n>>4VMa=Vl3s$i zD}GN{BaQ6Oh=95#lSz{t@|VaelOTba%jg#jgV`Jugwg>pjEfh_rNn2D92u&Vtae@E zYMrUmOO$20@1Iq&*k{?*u&16`I-nE`us4P8&Qje8h14jJ0T|?CISaKtJZ413hKge2!z{$IO2ktr z#GUPck#EFf5DsAugVL7l`j23e@64H6GWEIfu-Rk5G4Jb?{>{0jNxpg`f9$QWV&xq@eA*D zRX@`gtpC-ogy=EG>!cIcw~7Y!8A@h3ni-#XU{*JQFTiOagrwdhr7@EcS*tG!e99gB z+{y33V)_-&E05vSTw#^e|Mg;)&ubSnp2<4>DPYBb88!a`rVHM`iPbb4>|&X0YsA!J zu|e0F*x?s{+JogZiJ$X5Kkx6SGvHpTRM-3U#gY%m|IwQ_Bhe4+&GRuD23IXFQRN8K z8q3Qepc&p>TP~X0J|B-U*19{(L_OtMZeI7;J|sE7UD?IqU@alR?l5f$DtmK4F(}sS z90|WSfLr0cNkeNV{>@FRoK9TRCcEzz+d*{GB<5`9#T|P--%OET`((Hr_dTJH#)+4= z{qum~t6S1H(nqLy(QlBiYWJq<`v5J!Q-K(@0<58R>QVeMQ-Yf$Z@E6|lAi(E5pusU z^>zPr-$ARD&{stz+{}LXsl&ca%S7U+&v`CcM(tmOYDG+qNBQyw;{wWb{-6C6xp=gl zo06YC{UrVJ|7*Tu`oH@r1Z~9x_ySO%!`tMQtR&%=22+0sV;48ETP?U;v3*WLQ3_Yy z)g8*3`pug)^2?eQ+6H87u3Rc%EWz`Y!-BY6+Z2kfSh-cOyj)$>`}D+;@zACz>s_O?i|I4*sla}-di%qfUlQ5Knw0tWYljjq zkqs8fUfsV(i}#z+6Q!zIm7sf2(lkN@mIbYnUE|ogX~5JIobK3)i9zN zT&a<>AB}G)hrl{#dD~9_nBcW|sT0)Ow?!4_di*Jr{ajL1TpyRy`|HbIAX+o|eEAK= zLH3j_cOaV!4Rb4$W-FI)EUp1n3ycYkG-RJ1^9+YPJ6nCRa~)1GKTHh9rKb~ooSoQt z*fSPzJ_qr&+Z`<4pJwC0bW`|S^;gi>r&YW&aXK>KQgXUsW6*4Z^t zAO>_~p&l7}fe!e^XNfMqB~u81PRiZ?E0VvvcrNN%n#i~)%5j7zNPhKlMyC5Ud-#{5 zX-GtO0H%j+GrCYpp$`N^Z3QMMTZ_1_PCBr+=f54X4PF-U*sS&!Iv8^ibO+lk?YQsy zVi6^7_jeBN+WWTF>+np;bu8yv8##uR?^ia;%!o>2pF$NDHlGDb?P6R>WQb$L-k#QI zx4PcFpAQ~szk9!ZoNY~Y{l25{aC%t#{d&{9b=GW{l?fv?`)UEyd z<-J-dHzM_BI6t9G7XFxHzsk=CdolxP(9OG?U^Cs$zv^mB z=6NF0TI#I($N;RK<#A zVD@VHrM&4!s9l+At8lJBJEgMC=lEIG9tU;9N``|}^s+Fe^}vHVLDdnhWg*m2bDnf3 z6Bm3@Uli`M-qAp8g+<3de_y~^Hl#}b*+!!)utcfs3@}}@xe6Jf%A6^1JeDFY#+1fh z)Blv<`25jQt+@ zxY|qhd7Yv)@%eC8e*aj~@p*k-d!#kl0t#?!>*MX^!&}_5Q0^7GhKdpOo(v<;-(7Mwoa#TW@xOX>W!lKRK zZJw{}LE9@5R-;EOt2gi!<)cR;>~@(8EL(3YmG^>QKiilBtCn{8c8V*&jjou5)BRIK zVZ}e1#?QSb#e(~3fA>gG-(kd0J1>81GKq{T=f!I{27ia(b zuNDphn3PUm2Guiv)H29M#cMD?l-G%))|cr^1M4{kzDg@Z9#qCJ#PTd>HOc2S%2qB; zk#w1jQOap!>Un^p2*~;*@yL2*R?b>we6@16$VTJ*6E<37Vc;I-fGa?3)!yQJ9<|7E z!@vbs-7LfJB}+wQHGawW*ffz9!>pgKF8%>9@j>GX9+Hv17s_c77Rmi-qV%y|cW$Vr8A3dI111*ptbG4($BxCCV?9?~H z#=siS=PC*@^8v|t3{>;b7>CbJQcj^LE`dE&u$Bx;r7of3dx3;K8XaNaS_K~ z!u%pqo;~%KBtP@=6>jpEctG6i$|WI47OxHJb6(5@B7K%w9q6`BB;rHMP9&`5@-+M* z<5rcT3E^fP&m49J_59q|^frei3y>#tX$uj5`hp^-gdUNMTGTFI71~kOvKBncQB703 zTSbRX`?W~fp!F4Sjj8+TSpYX$u><0lAtKdeSk^8}MHd##U>Yvt*T{qv{9_W2^}~N- zEv42lc)&v&vefjo1>lyOMaOMP(t_SOleWF}` zqyIuD%WeI|l-v3g;S9g7bV&%}DBv*Q8n8%W5wM6N5Ww;bgev#j{}2>W4G2>uhAohP zLrzP7KufR2f<0yPI`jD9Q())`AvsL>Fs8p1-SXm30_*{IoP0XgW+HrL(|8TsY}~u` ziq;ox5{zkXvI>z`WD*xfSPH!?48@F5)d>2jqPWqb->MX6sItZj8BI7F7%qRM9bvDA z#;3{R^=RtCrEr)^sbP;%e5!dkD&~;d!hjb$m^J7Cdu&Rcnf_@py-wKw>xVCj<)4Cx2T+PzD&ZPFlsNVd{QPfxz zzO8(QXG1(0$v;fhl7yL3pN2F;t1+Z%U7*f=Nu~yY$Yf*zz`j!?%&ZY6B-ji66|p`@ z4hy1@nM{xqy2pvrx>JTjGXWo`N3%I51|*>EKNfr!xQ8IXO@Hc|6?24J$*0f5Uvkt$ z7pc{zMBtqIeiB+zMSo}_6n{DH;VYz!0>&Af2GG*2k*ttgJopN)X%JW^QmhIZ-_)D- zGcD5|qNkwNdMJX7kl0wLbtDVnfW$*2AuD}B)dWRd%A-aiGRZpPCLo+%vAqR+Rye#Y z`6TqH!3{FBRe#=YjJ}^bCZmu)_Uve;)P}){d-iMSy5qIs(>TyOAPm?cRbx+(IASxZ zNsS37#m@zAe{U|4qS3dIS(5$^L|L-`YM+EK6TUTr@M2&8Y;RGTX1Fyn zW8%i1h1$f?mJM|P$Cb`;2?oLmJ{K1zOcqU~S8cyG{o^+H;B5m0e&02Lx+q>;WMX9a zs&UxRB8#ose84k6E*o#&K|>=l0dGE>^DgzxxDt=KGH424~oi3@I{9%aiQUWr|VsYr%C&n}+( z@0f7_l2;}Osr)mpkU~E3% zYo%EfR3i%44Q=8lq#syT)(xkq36joh6fe#;{fjVL_Q?TP4$!lqVS08&y)NxRTaMB3Tq6k9*Xy^T-F8G*dx0x2aU`eP5Og}fUTJgi z>JF^y)p)=>{G=14K{^S4TK;VMMzC*q(}qHFhy>;_sGCi{3=Ni_KG?V#k4u`wT0UyY z^Rx&@c7oWiW+VfEA)6|52s7k!Q_fXj0vW9j%Ot=|LNmaOz05ocag4SQYV#>v9#0W_ zR!+X(Xs+mjjNTeD-;T5H*LSeyhiqfl?wvwzqle(YkzWj^tmv?SX);XlfYjh9-PEm7 z0!Piox&%$!U{STx2*PNKU6ODi$%I93bw9VF7X=ZqZVENbHg2J(NZ)YkC);z6?!iSj zP7=B)o!08)bWL=U(xCDXhqsZMB!zj1=;1M_L4y%#m}8MYfey39=jgjV2LsjeV=JE% zU+lruZR8l?NZ~490$%K^z01@^#iAMEaBonwj9k@6rEi(wXmu%Fd_9|I4fUvrYIQyT zTK#QJ^=Kd3WxZCiCd!w*Vh+muVUK|}M%Y=ODEyhM7`D}uq0k|1#F1iZueyaiwT;jt zvL^{uR9PV7qv~W3B&A{)EkZO7ZaIQPLE3qBOXp8Q&i`tWBDwDM~;n^L( ztyTfs<%e|PVe)fWBYQ{%1G$_(QH0x3`Ck_DO?AD6h`$n<3#&K=qVi}2U@q-2f_e0m z2{VB;#+gxK3V1-FPa-DZeZ=sMkBX zrdvbZ_atX_>VU4oRSUh`n-(^9ORVu7>3|@f(>fSV;DDio=P{)LJP1Rw>{shJa&a}L ztU#1WG`~F0$V?2lRHi%=8aT{@Ur$I+&M1<9V~a6VME#8BCRp32KrO!(%5N^PyA>Ry zYA|QW<yFt2K!mPbh=ZzLTFv0$scW5Z;gH2e zx2yJM>!gT-DZT*VvlZ+R@?``^Lwee2A!qdhNd4M@0ys;iEE$t zWGeCj{dICkR0};(Xnv_|X61FD8^SOavlO8Z(v&ne0VNiTIJ3fj>By&I?aYv%Jp@sn z#`!1G`u2#t=V+WC<}s;<80-u+Bcf8{q<~CM8jlkUq&p1%PF=d)+9tP`pu9EM@O9`h z+s|QbU+t7*<2Axmk^X{=Z~n5Tch3Q+QaUFJPkj+q8<&3kpCLuNb!z7~a0=bYtvbH` z`=Uz8yTlnRa8KOObD|aQvnXV2(+V#i5s|1k&C=96C8H-zIchpuf35 z?p836USL&tD;LHy`H$2~WENmZZGxSnm2UuE2NTc=u~;{nZPp#Py6on-n{BN{d%H@n zRv&V(9GI7Ku`n!3v@2q@I6xGRi%=Zb3)4q9rB==xeh4CkCCDf2sqx2FGCmUxDHY?x z>bMR`$q6P?kqGOre-DLiLv<#izs9c{4Et+4%l9@MqnTL!y9M4R10Igo^{QoQhN13hL||SO`ni$kJE@ShHhKnEd=L3=BfIfr1Z{KfPYAr z%`dH0m*QS$p5?Pn2+3oihma2wSKnjaXq2+U`0U&}87BSy*^pyTAkSVMw9gGrWXDFGRmn1BGOTY)|HZeW4pn7pbK4h* z`A{|S=Y_tn+XaBfVO-FaLI5VWuKgW>G0p7LbY*F^@3>w zf6377jUy-}LN$tx%x=ms0%ha`DtCM{4owi7i7HHxK4-zT$KGkkJaV)WAs`+C&Mt(s zZ;-u|>1dRy#t=bPt~|$)5v?&T4W0|3?&h~YS7ISG{f8R{W25@d*VO0-FM7fqh(6ur z1*8x+;{?p!fPl64={};L`|1T%AG7HUvY+B9#+So_PiO3gv{dF{cPE>kuBA5&33ks2 zN#&ZzhNu$oLVxPyqWE%BNc4@ib%E@_+$riFyc08GK(ytnoeJJ0g{8hyGiJIWaRrXD zUHn=A(8+Zh8^06-tX08IHg!>0Ps6H2y=v4gZeEK4p(O}h+Aj~f?=5cd%I4dKZ+pDuy&-}p}q zBB^vEJvjs?kWYa>y!QMSGJ@auEdqESsqw$+S|%|+3e9Af^+ods@qej43GWiDUyWOa z9*u13)FGl(Rc1U|pg_{YBwMUm0^6WU$h*7=^03SXdGA4Sqm_X!TXEX~I*bl2m^_5n zXsR&fk@05Spz8elxF*nZt+~aus&|ZPt~+{3#&F7!wg6)gJ(`jhSmpI3J-fr*-Mn$) zPoEFX5hxt^YdF{FoZ@eA{kiF+^k@{Qy&&BY{l1KYjyw|`giKW*$+XR;{!_<8b4s15 z(N7MopQaRkeW3z|PFlV#7T=n`+OgtIp4ReMl`#Y7UY}Z$H8EhHH*N$*X6z99mIa<8 z_GtN^`JbW<cbTT))9QL;wr?dDI|JDeCQ?I>u13&66SNh4DL>~!Qv>172##PX)oiIwB;?L|alVVj424-teWj z(skI1nlI%J_!N9vR*7jBvRBWkr-*0yqZIajC}J9s?`2V1Mo!H5S77JR<@LtOC=Jzn zlVAi?&8%d3AF8;)YLS(-*QF|IiIH(hxC*_e<^l88tyKUAN`!iWeVb&Xqo=Ycy4j(1 z29=1+JxUDs(pa@C5)rZRe8_(Ba7jIfv2dl>Y}9gsVv8F`d!;C7_s!JHr%_vPl|0B) zAC%`+U$z3Lf>M{rF6sTahJDYZJQDrr=RpEQ?1A@T69XPmdI6M%p3yai2=-A83FjtB zM5=)WhRG{}ukn>p`1H|*>*uM!kISlZUkdZ5!d!j){4}Oux{Wk#m zeADQuvmZzW4JkPcr3v=Hdh78O`Rk_rIi)L6y${&B5FvF0aPEvg>ee&uH%DZk@4yeG%p)oc;=zNf{er-iVGz0}6c-Jv#k3}KR-%uCo-S-<^t7}kw zb6)d-Y_bQ@*`M{fSX|^7ROW&(XLrG&A8qrDUU>1i$v2N$JurkEBC4F|UuB3Zk#|T#8noQ+1m-r2Pw}Gwi5_-;Fh2hLRCuyD>hd z|Dj6b=XBjhb_t`R4zZW4vCvEOwr4L2hdD2b@WOUQ6tAN@`kBsc zqBvSMH9P8asFG64Q^3mIcPS%lBtOMPfi#pn+Qigz@^)yyO3Umrp~gX7ESM%E^fev* zu*-8Uv0oUh^yXfzKYG^$_G5upU)zVw-+$7LnamPzenIp!HaFUL71hqj$YE3olQpqw zlQ8*q4r+lpgFzH^PT&0S*#qVjl;f?}Rz-K9ir-CAZWA`7{?w8LG_(Iz8Dmkgd~5`S zj*wQu#Qh~J9kq~=wOiK2x=q%k)-ieV6l;|GcwE!e`B-YuY7_&xc3jGyYrK*$r-+gE zhlscSr^uBOvJ=Q{yVQd_8h3ocJIzoMLq^)P9Vc*xkjWM_#3YQb8g@nzMoH28Mt|y^9M!IH= z6TfB{s_w6At{}S=h!#XaPD^0tVC6#qM8*SQD+Zw1X*NIP1>Y+j;1U^I zvv3lT?3wJt$S;jS2ay{tLYeQH>}$V8y!Ag}D6~ar8Y4G!5Rss-9>B)j9;j)LIN2?=W-J3^ww& zIooC`k%Qw4KRn|or~Xak&kpbxTZiEIFn*Hai!=TLC&b#*YxZn&OB=MInEb$$gI*+@jbJTZXJ~D>W>3vE1wsK>sz%0 zNoq&rmeLO83Dy%3)ckHb=b5%d!Q zi>*m|^g*@yjzK3s&BJn*g?rU|_pt*q#?MYUrKY*TJao}D$QYn54Zw5kB4hTRjg}oV zEo)}~WmE)bmm6H=6jJg|aKJdd7=~0XOUY*Q(_Ol*66XM`Zme=H(v5PS%bC|VGe%!w z^+cI#*fB;=d>26%f(?&*i2{!v2;nxg2)P0ePb6uV=b|pM$TcZY@K9Txqm3$_=A4>| z{t>8+kZp`WG_HI$YF80{I4d=t?AahScG{a>XpvPY(3w-l{axEd~!D+i}< z6w!@6^ijqN?&G0HGW36ciA_uzlMEceuk+(51tyHic$cFVKi*W!s`vrQIto~x zIUR{5t4u=5s?}-((s7Ac@O|NcVWlvuU!jgR{;~xgg8+i=1x+vi>JnPIM?6Z0t(E7J zq-zGu)Qg3^(mSGk$H2-Kbce^5Utf%oi$TZ95Q~*ENlFY4=Ii;>QZOd(4R+vc)_jO4 z!^R|3f_7QeZ8%&L+oX)fyK-GB%_B!vLQW$^k#&}>dXn&i8c}gA?354(RiMj9WO)qq zDfL?bJo*H)MsH#5Ku*z;Gy1NYwnK9Qz9p`FL9KvpgBX_eY6{fiF%-he2a^hxKXz#9 zj=$6f6)!lxpscY5((xCv1QTBJHAxldPv|Zs>YlucI+6)Wm#>1XEk6k=dr2_HkTIC6 zfjMS}{hZhBsPy9mC9t4Tt$$MGrnIGU*`s>sUSE$mqKhG|neSQyBcluf40(EQ{EUEr z$8wr+ik=I|iio)zm1fU~7|N`RAt?+RQLJ>iH@2)~bLNf0B>Sn5^+D!AM^+%%`A-?* zV4RF*b5_+bL>I5W7+nzaS)x7MDkmlhK&F*5A6W4~kv~le4zWZF--|s;M7y7#zk{av3m~@^$45i>HYw z6&Io88m`I|qDEO`8i*z9v-Zg2L(+3O`5|gQYy0k724vt>ql?>V@8lt}Abf3aWM+8v z)5pXXYU{2BM{(Ff$d9-I>C?Z{hnj1A5f_VnSQkyt%1Lf&NGmkNI|b?_MJHdPH$q}k zAwo5ueTWK>IYQe16kk>d?yU$b^p%6-J={||5?OHs(%n<2%72P$)8FKE7=UAXsn-@%RM=j(VKMH^PSo>QB(oI|CbLAcS~TG+RjcqvHXJc3Rj@ zJtzDQGGQ%X+KB=%B3L;o9i!pK>@YIi??8xdx!{Wvorzkt*Loz`vr&1o1xD#LR>S6E zX9sy{uIKwC)ZD}(IvFR!IKMK)DYQbb<@~Hgs>K|dGs;uL)V4mOm{di}<}>?wW7lj; zCp2iyH_(cREbFsbutT=QW~JAl`R%`IQ(cqt>c<9q2+#>SUx-m{sf11z-;y_L9H1sG zoDv1=;ppA3##o3<_IIIyl8jL}#PvmVkOc$7vCDk2;MQlawPESU=4bsAn&1VrU=Q1r zR+DwDoc%8j+H_>SdL(MKkwDh~cT1p&Oe)eMHqehEopV7+8{+|ZAJm(Xf>PL}|q4gi9bBT>^Usrr$Y+mVAZ5Xw&(2XnxJPx%FA zK|nERcd=~Vq0cLc!@#@{N1E!9XTF!QHfQ#qUk@dw6;h*z^xKt4l|vD5vgXuJ>!fuf zlqeWO%e|^G|Lf^6f)Jq}^QC3z63iHV1U;_8RoU%=?1i6Th{JN&FSAa)F6SF_ov-39 z!}+8NAnLM&$Y)>JhByMSU)A|Bv;TL>JZWz2N2{FE!5mW0k-kqpHwBQCklk|d%HujX zd~^fSiW^1J<&9!@3$idCO`s>v-nt(F*8o1)Zo4l5uJF!4KAB9oXl$_`WhhC2KBzMu zg)Bcmp0%oaSh2d<5SDm7)tR*v6NU+H-7>G^4gb6(M z@)jAnZx^@x0;CT{){WCg&h!T<<$u(RdT`6)CsaA5Q3w=XdMgua*M%RyaBFW3 zaPPI{E&K4bw5=QACH+(yL+tO+>1!1pA6AR+=vg#E$y?5KO=--Dv0!khO(l}HJm8}* z5DE{o84~X=I^FLdXF4{28hO$`;GJ2WfQLl(0H*Xs+RaD!f$K;btOE-hYO77w=Qi;& zOE?1u^)$7^6E~S7sj_CfD+2YQ$J?EOGoW_R>7zrj*8a1Gso>$KaAhjS1Ju$m-UF4z zqEnV<<W4#v7zD3TS{MttBx5`&i z$$wD)LOJUbn=rd&a~7(x)rdE#bwOL5wbj8hwbfl@yKOV&ys$Sgk-oIHWc2)Se*b({ z@$v5T@L>7Y2mj`1hJPh})iP~nCG`?0|MH51CJ`f+%UL;1->J&izSrBoz7}Wp7)o-{ z4LU|T|H_>#`!0V$yH$bvAlrUh{>nN}$lJkP|69_@N`s<9(MqpT;B}&-P~W;WB`(eF zJxJo??z1AOD9?h%F#Mw`@Uxv_TK;8N;TCAQ z=0-l2D){oddv6QL__KN-4omnLmkIM}cBcYD<~VUjI4DgD{c2$x18tOEosp0>a#f>y zRmF0)Zto}pR)4ktzd(5_p6s1Ph9d~;VJ7c~c)cMpuht^#7+8?Qa{j)?PmdfW=Vn?- zldlpuuS^JeSg1>jhK(b3I$5@Ro}Vk^P+&YDQ^>;r*Z3@JU`{@PEzRn$NWd0$Gj<8) zFMJq~(A4AvUp-%-JomWZuI+OK&^VsS8?IBU)LCkardccqUccX2Xano0X3?Z`bMJ@R zBm+fbysEvMw=~NdC%G@4ZPw(lN@Oc{+MwJxXsfcc>?}ed;24QALfH0d+^a*Kh*MYj zS+U}zS1O#|h1nAGt4s@IQ^kX(;9)K|uw4U+xre%N&E;}e@k;AnH6uzx>vETgdLZeh zE#OZY$xP=3OiQ0L)}n4_!sa~-0%=!L5=T5}%xvn5lL=a@_3IZ&fQ@Qhfmvn@(6hW( zTS}J#&NZzk8eBh1!WI=o1~!Bg>cA~*O9VS1F&BSg81;g|V-E}OlFW@>wi z-$x~m_7O2~hLIm|OQyYK$YPWqa&G0r%9~AM?MEK=;gq;@YWel^ORPHbH(yo}EV6jQ z3v;Et$s+`2w$b4K?EsKc=@0!KLv(~y7BVEVKleFoSS^^G;0U)QWM?ut3W+s#Gr0vN zWRHKzX-0=u{I#X?)X%J8T7ym;+SivsovhT;k%wsbwlr2YmHBN-s9h74 zbPJ&L;ZOPx^9?9|!yp$1jm`a{ShG1f;1)BPcuERAkd(*-g+C7_Uw|X75w`=pf2CFULMEC`ApXJLpgZtD#+bW^^skAQMt>v~ z#_BQ;4JDiihDC(#|SMIY!$GbhvqE264-!M%!DcfhN{gd2iOJrJ$Xjm*V!a4 zsiBr_Uk=oB*Ar?Vq)RtQ4Lv$sE3Kh|e1sEpR;Q8yun54s{$59)GmX`P>}!l=XDHqR z^b5Fn_95gyemyBW(mGnUYszgKg2Mr6l43if+t^zdbi9hvkUpd5Tqh`Su)@kd7M` z{=fYzB?0fK)9s7-2E!}tXq*AJ>hR&8O^%wjeKXL`-D_!PA0WSK=+!h<))yIkI3#d^ zI1|rNB_L+AP>1(5}oQD5w zqowj_dkE(wYr@8-YVbWOQf@`dk-p_fXxtK`o~mR(i*>ITtsW)J;9h3Urhxh4O92cg z>`yO+H|fzuR-9wN7dH*km}bFw?g(fc0XtH+!eu{j z3Z0TY2Mo9qlI2@m%fOz+rb*0!XJ{e}XVSI;ynJNl^B;P%G7z7x@cEu!S_`BEF5zy% zb};`D_>05${iAOx-8&y-ng;gB-*155!sL}`Q8?)J@&7|dLmEds&m9otTcK5CEWcy+ zTIVzYmNTRmWm2!Lc}%u$*m%;D%mM$DjfLq1$BMKlug1ig%4pl9WMb1Ne!v)~AdKaa zjs(V~)@tG$5DwDiKwe}odt0^+ZvBwYPN6YYjt z6?N!r@Hf{i-!pqGl@~Ciz@Y0}nN;Yq>5_W7Zj}d4!TKxtu%jy`Z571px#s=7dSdKC z)!Z|EG3q8}F>*~G8VXgm-mi8XSAKRzOP@f4<+6M;w~#9(*rA~SntOsv zTDU}uEVl_AOjEC}#hO0wN#2AvPoy%4p0acr>p$`XCb!A5bnD7I(xthp&)h3pb&~G& zxGz_@V4wMhhlCfunS><7TZ_g94_pw)*gf9Dwb! z>#_x0`!u~DXVFb-Ju9+n7sp4I46x4($g_pe|CAb$M#~!+Y_iyVl_|%pB{@`7+uRg3 z->g+-!N0Ps$P9SjIpBStZT@rLvb4iW(mQ_FJd@A~UPF^>rm46|h|Ic!nW_2$xZA_} zG{EFTwy5_hfW9+^>U;)pBNC{>U7cOV33I1DRzhlD;q)BGQ=b+cb<+$LBfQ&;G#Piu+ zhqGQ?ATt1oIpC=oqy}HUi(VGO&JQN;A@aE!akn6>&e!8;jiDFvpXr^HktX^K zwStvpO>AyO_XBOt9cXi#&@QD%v%uHa{+-rM*81-L&Ueqzpa{Tthai|ZfZH%(wn9bp z;WFPncbcT|j>;^+9g5-~(teRJN8>|H$UPZrsa4B&7l5U*lYu<4YfY=;*rW#n%eqTe zH7eL&nye@?ut%wI%?LhQh6G4+SB8I!QNnY?Fnj zz}6S+)ip~H#|S}3Q;wu?cU()~v?#axilm*c+g`_iav3d4C$;C^w!^J5;0sA5i*C$k z5F7e|#|V6@_bqDf5Y}5|yu5oj-@nDw!BOxxvPFKD!X-R!ZTL)T$zs7vY|$yWOKO>_ z0+_Aa7IXE+NB_%?k*7;}>;5~jxK&0!u4EL)empU(E)i^Zf|#oDy2Pptyv1=Wea*jdJtMThJZ2mr`~9IwaAv#C`6aqx8`3Tm zzX)-~zEysVeuE!pa5;MKT*9YA!ySY_VI+ejq#N=Tb~`< zPCB-2yMvBxqhs6Z*tTukwylnB=OmNox%YkV+#;UQo z72K1m&d0Avzb*|zGsnGvmLDj2H|wrL!Y#KhK^=w1Ld@HT|yanN=txkEd zkHj_Dko(;|qJ5<@Rh=I{7W^_*drlnmA5*O$qnbr0NCzdqEk=iyLyJY)Yl7QU3HeM+ z;bPL~b?O$W_qR-;m-}h)LKvi5>Alk$MdYzKr!D`ceI==mRp+n%8t^3R9^3C946)U= z+(rR9@jc&Rj?jHN2<}BeL`#e(yDNZJo|MT)lX0J3!Tp11moDk=aobL_)VtzJ4fRuK z5Pu+JMXtcfrK@^}h2J^z<=TUk?4VIAFP5}K}Da){8`TI{s@qZvL@GT>UlOe367!OTbg zU6>s~)8)$jL#W!^BwoIg`|ge2=j9dusC$VYRM)Nit!))jgH?fNGairNFLfUkT{_=0 zJ8MSaI(9=i8WcfeU?ff_Tw6$HkGsuKO%CNGeB9`8&}pnm(8+(+MZ4u@qpouIyvBj{ z11Rm!kqMI?mbuOdf_RnhA{=;lMCnsjomK9y5;u?6%velRhPgxh9&5JhI>W+@wAFKR zt6&y-lLP(6wBp6qxNlHW+t{zM}Z5WVbZ5 zVN@+#G?;}Wg98V15qhe>^x<0xV6q^4Q5X9=`&GS>uu(6!Y?^LMdw9JTcpDdSd$tr<7_o%lE=G9npc&a+jiu0yfkGA#R#M&*7 z8WPnK#9-naQC2OyB6MV+YHcGwd}4JN#FNks2OTepmqS!ex`ey$#?Uope<#&95oI!sgj|Xj~>23oVY^BZv&OzpZVVb}7>kFja~^4Dh-^jc4&D_(vGg z1N8Tb0%}R0?#VFs)q;?^y7R@5#gE(5m&voccfi@N_-@{H6dNP}7o$T(Z z(`{W-o9Q9`_v^j(?DXcD@K}zq)m4MetF9uouaPXmN#zPwG8N8U_o*SXvqkvW)B2v2 zp1Wu>Mrzk|yVQBlvz?DrpKMB`yj?v^K9kGV*cLWRzXG9qnx-Oxuh@SbT?BmX^c61g zWB#jT%;GvT)$zq@mwW#GUT@Nly30?fgpZGzB!NX+$(*)!(r0Zk=%@*aIUC3?2jy&_ zp+MB&wM(O!HeJm0N8=?cv$?i;wBDeq$9y5{R|st$o;4W0MIq`zuh3Xl@>9m(2US;o zoC728S=GtZbX!*~lw`P$M-HZ?W#w;Wag@=xTr4HkKIyr(mIazZ(RyAycyz^bt;JI< z8IvT6V2xe$`4fJZ!3!5IbswRZt5(T)jDKh|BHhh~fjNjj`1o~$W{j!PQe1mnAER=H zD$*V;s=LYq08jW-*s&1A@F+-jnd9=D>(@IF^2NJY@hxt0hPM?o1Am)LkU6n3If#gcoAlZ0F4uDS zeUIWgPN?{OzW1`S5fwWmtN|4yF6ormq(Lc4tujAD9>1=I8y35XYRH*SYK6u!Tou{_Dvo1c6LF~g}=S4ib)_J$V;AfPJC;&m7p+-m?hd0H7DY@J>H8gg%4 z>GSnZ2z{%)(N>@}nJ1zhCsD~J#$zyfnNUp9Z)<)E4b$rzWEU3VKW4k~DywHYz5Rgd z>?oK7=!ik|80L6Iu$^eRyGq)~iS^eu~+ubVBHh zy%gk_1`A!uN+>~EHk)voV_;qfGbDiBxfUp>9kKV%GZx#i? zNAsDV-7)Y@Rk$EfF<`KBf>S(75SqGCE#n=MzCS*fxFC0bKoEXE$>Gzpdzfg zl+>9ymPWCv_~17;ZN?df6W&#&y!}>X+TnZ#d?AXIWBU=KY8y}c9o5Wl2;*Y?$&5K~ zh(r|Et_m2mKt<}(6mb3HRCpy0jrLOunsRb7oR1p%$cSycvA9R=0R}Ati^51l*tHyw zs9=U~J~Fmulrs($*>v+wlVL#r$reftFi%W~vMoet3;|8aEr&^NnLp#Es_l)O|1+hX z+ADYe(ljnV26@xfrnk8o$2u(Q(Mtt&3d+j%y2pcDj9P$j)ULBq`~%7o9F$_o}3F6(c!sD7P|~@ST<1iFKvV77ve=h+_;E$W#NwKcUKG zwwaW@+Yj_o{3~eHA_rxC-7s{BVznu2$4}QSL8lL+^g6)B7y-sXx$eU@hFGA0iky-b ztmGQ#;0YY{fz5?d>%-qH{2CJ^80pg?F{Z%{Z zRCr{Pkr#YPR_3Q-x(;z;KCv!$r=wAyW=X-h0I4wq)t;w>m;5sMJ_Mu2nYbDg)|ugG z0nI=in=Rsa9(GFaT)g)2cuy?m(ASs~zQz^1D^<`v8VbpPLB>eZ{DWhjiOsgm%rrJp zar<9mfz5gnt3Xm?GIjiFylI|^vvuAF?`ES$7172IGSNvQQz^4`W>6+I_n=tZnVZJT zFroSrFebriIhk>X>KGENS>`6Zas(ow zOavqAKz=3Q%HN&+;BI5y0 zm41LKFk+R77StP8D7dlqVMg_f&r2IbQ^7RHF%Gt6uJjX-R5F}a{jHnUO`M1Qa!=zU zF3PIp2;(D-4(*eG`(d{DJ7D#B>-Ti%Pg)_VsPTLl=6I$B>~HSvH|>&Vlcv6 z@X_mTJj&y?m+}#w%4olT{+w}^_FUdsFS-uI!>;W#DC|&l*sJSsh?h#%>ro>Q`0*TM zu(Dg?QF7PYfZV}p5JBu+DAkX*h_wa-hVoRV2+2NtyX4ZkiD{6zevoL&Zd2Ro$?z>L zzpcHi8Jxrb&-x>IB5SCdO=D9fXuU$mrrb6m~1e77qK+H--QAy}7_ z!jpY1`<+a_NA5&VHhJ}o3t|Ajg^HG|vr)*vo@yKxDPIxuh>La_8E|9J(v&81+ z0t|Z0a9~Z0_^Kbz82r9`7zTj1wvs67rYQ^$%ca|YVW`N{l7f~QFu2bo9ifDz;iGF^ zR#Aw^&)nm-2JS$5ZEwD0TT(Ox$u^HIgabp`1T+Oy@d`&rv?v88k{B!QNVi}!wfpUe zVMzpOi$uI?hMgKmZwRzbPiz&4c?>>fFtyZzrKRk<>jrKa>H4*vw2hBg z6FjwjqZ^Zs=1Z^+W3as@8XzXhh={tE7O0eeFyI}|7B}rR@na}I)B0K);?vZIn0~{x zdBA9w_?MuJ%OB;c=K5R#V zk>KOtll}rIGfzr%j-7^L%7|49r2+{Su@a1&C|A)2)Z!W7oI-+Ia8rVF-h^H9s<T7IrzoYfdnSt66`0?yrw5V;E@{5PSfsOu-Q#iK5-C+pD-{KIMTGkQ^S%w(Ucb( zabV%X7zdj%R}wZQM1e(rGaGH-z{7R* z2wJJ-DHO~i>nIW%WlO&Jq~_|<>ay>1_lpQJvo3OTM4htp!y?TyUyRQ;27fOfhn`sl ztm~8!96hRt&nG!&@Cx%-W*EmyYwqU$@v>;|@gV%-0JuMx&+h)v{@7b|`J^izmgV>Q zxcW+i7vJeVcb}ElF}iU^gfzG+KzTJ8d#rE9SXjH|YOHTb(O)eMau*!NC4cFoK1FN+ zEyU1mq!50(zKG&spQ&udV;{j0cXIPVEFYF#Pv^`4YMAm*+Cv`g&*NJisx~kQvf`9z zd*`_KS>F<65P`Z=69bY)Ym+CC(Ax#^I&T`CDwkW$W-%w9X7a0>c9Gz`c(}^$ZIk?M zA1|)#Y+Zgn{*PP!e;t5Sks@zH#Eu&D3H^uiZEmH1#RQSy=Nf9Q4uQcszCgc#9F%ZK zsPo;GN0e%Tyt|wtB|XyhV7^DxbZ3*vvl{FA>Cvxley7W`Vqxx64V(78-SMl;qP2)N z#r67t-~5{vgG_bObrCe}J?=)lopj{mtPVyp%(929Fh+v)eCoRO{uMK8aE&;lG!N>P z(+b&(um8D2pWh{YHl7kHZJd|Ub0o;QXdVBEqWlnp9$FSA;1R6kF7peeQ%;#)O6joH z_aex#)AuCkzQgw*$g#tBH|W0IcQeR&ea0$(lg)Ac7@p;vDZhP!AxNxv=Ks~a8JvW7 z&KTbh{?euKsvW~10i*T%KAJ`F6DvWxH?RnHtm~`Wv4TYzU{7XmMQ^NofnlCivc{;8 zT(ZWjkX^FIDz}2bUhwHie3Hm5kaj=DOYqa3{!(a;x|n2{tkYg5?yFJwt5Jz7dLbz$ z-TdKhO#bz~4nrbdXEm}wqWWBXu0Yk9#C(q0BaY=HQCs3`lrEB=odn$V8K7ds$L1Tw z@?MLn2L-a}ukOfC<_fwlWZ-t3iSaENdZ+;>u!ficrK15(s1!$xm=B|&uonv$4P63W zf@d&)b$TE{H+TJjAlte@yrA0JznZmV0bTz`(wXF(X?LB$KcIT&|E(2JB9e+~1S*mx_gf-?Qjkwzzcex_yl!vCg227o-aXyI z#^HZ7XQ{g@iZV|LhKCtTJ1LyS%t!xfj>G4>I9~rW&_{J~T!iP-%e?*h>nGROKL@lB zv}nfSz0raRSv_!wsX5O-4Fs#FsCFQ3`q=^xEJLUa&9PHNoM=JjGMBa7`nunFmJGOruHBPv?>f$f8JFDWW zyy>1D+ATJ<_cuAbQg^1b_Wp?IGZe=enmSe`@^+yx{SITpVR`ZtXT2Qj ze1>__G4s`1*Glziy1T=e-~B;z^WDw8q|Eu9{Xf~KsZZF z$$hi8CwTbd(`Ac!n04IL3-f+U8*mo&hO3d7-+WK?0laX){LGK5_@PDyjhAYwlbUVq z12{OO7)$;&+{*GTw}i-n{J`6MUAbeAvz(^(2yA0DjL8(aD{0!fk)BiPRKm@qJql%o zQwpYDP%X)jVZb?k$dmMs@D$9dZvu}Y^0R8Yqb}hZC00;!!Z~Cs5q{*Kvex-sB%2<3 z**yg%1L{h(eP>~-l!HE@zghj~uUCBMl`W9hq6?;_JoAbEtB1sM21P^Vr&~5!zUd&Epn&Td&*0BS^ zpG0@rwq1{zdV(fXdz*j>n9O!{*Jh1LymyZ}`1fl+g(uy+M=}XP4=U>X{q?U5(D)lG z;X;Fr%`ZD2sh8S01K}{hl_xd6Yf|rC&u0kY%W_KTV^G)Q145(b4wjR=RZS!!J@f_C zF=x$f7TN}f*Jc1F(L8gc1C9{7&5~Mtt9gxDQT02sbm&B6jKaR|+)-x5Q+=Sty2AU8 z=wzDdcf8=hG)~^x(@r3yk~&;8>K z#iwpxu|%sZx6D9o;gTzNcqMUoEs-yIC|LPj&}e&J93{9TwT;|eOvwEwCAH9D59@26N6Rd>+jgiI_H zDR&d9P`Im1&QjUFI@CbWAsYQ-4JnKJZoN@V|@OZTJDvHAP0V?@r-}ZZvsD7@+tqQVP9H#6u;WR>&#Nj zoO)~!F`8&@n(3ec$U*`4Y97IrX7uq(HFyaMUDXA}mwlzo9z9)P?VLhTN zG7ZQhPCGp|!o*N62A&wpgrCRKt>(i1m@ws2i3smg?0p-uEmi$h&dRsZP65ZVj=xHc zv8f1lj4*}9QKHvugN{Y@JU8mwnden~Y&4v|LWS0`eIun+Bi~??04<(nw@Fx>X)nB} z{l|AR*UN>>wkJ#Of*^eg=x5Ml5tAQ?JM;x_5FL%r<;?4akrC^xyxA3n>M<}}&A*afM%V)C?Wg&GBEWO%xCeIX{x)#%DWEX}$KLms;MPH|byoJlM zNgl>Oeg5S>b!3{?A2h`leTEhFAz4kYh=+`?qQ()~K6-6;FOD2E5sNJa7CbtBzDeL2 z{PgYduu*;hC?G#G^n(1EBoQEZ0oeF_-k&_(3~%#)JOiq`-@9$R0lUJFyXo5>SHnIZ zVxJG%#p0iL{UIHnyXn~9dCxA;r@e?ebervB&;s%jbsHYT*}P|$=+|CEJ-Ux~FmM5R@w$$W;dI`! zi}Y);B02c5o8H&7t@sxK z_S+B-4cRZqd}eBk*ZmIFkS z%E$>|$h-VImbxFr<1BTO#Ao07HXg`)jV3N^fJ`t9n40~b2!l6^L3+Le9fC5L`nG&IObpc7??%@%V9=19n?}79a5C+92j6p5U?~c%JP9aDtf<#3wQ`P=ahKGt=4iU6} zDoEJtF88Aj4;9sF`2v)vL<1hocsw`9I`s~fa5stcj*W;!I~zK5xmf7-p)|)=YDq;9 z%z=VJA0CW#A~)wZC#n)-K(HVh&InZ7{rz+?m%ku8wq-~nTH2IZ^TT|P8v29zM4q9A zd<_AUywY->Jvw2L;P0T{>X1|(Jn$iuON1DLWz$t&SVb#?)&3aMe|oqeYuDSLgeEkt z0}$sg=^z;|E&~uPriBp=Cf#5KJIFKq5iKSh5Dj>Dkvr%?#Iys7Ts`51&bu}O5Zmda z2?j35nIY}6sr*sf8HFV3Y^ck3vRqItsh4Jhmg=m^jh@6n8z-_`MCB$ti39={Co*?= zTp!+F2rEqRruu#zTHz}>jIQ%hn9`quJ#6e+;iEc+G<(U-;w~MC%FW>}9f``#<8D0) z%DcF(Lnv>4-H_n)b%WZnP5@YtwmYpe%oFaGk)U0&PCD3uwtFNxs_UqxRSB9*HQt0} z>Y}9#Xz{mkVpsb6I-(Duyt>=|kUXpC5?TFj};4=V?T4p5D6 zxyi)y$Fr$ir)&gg@^>YXU`B>mjkW%k6_Idn&h_P+0t@JQ&WMd6B_JZW`4^7FfTmFiMB*^X zLgnKyi>*^qNJ7oyW`HeD0YcOju`^%0P2;dpB#jzoNYAN66pV=|nPV4He?b2n(YbuK zTb%&nmtow6dA=Eg#^G8Jt-?38vqm*|p2;;y!8bLG2@TYV#`k%%i+kz6H%($`1wSp!1e45!5~SjR08u1!m1-&du}1?JHLa#>og1>_xXD2&+O1QvgEltB`X( zaY%rQOgHhBqeo`l{002V-qu#7=aq8TXNSu9VP@WO(q@Hj9E9HG(T>@4^b`I3tZi(A`^u99z_G}|} z){G--n`~!oF3q>?sxJU)l@D8LAJ;^FzT#WK^7X5SI%~e;M+j8jRf5|Sm5+NWA8#4m zX$`No&HI)ZgjW*vtBXQgi{i$`_t>DUKii)ZamAoN8(DX zC-2W=izR-OZlCjI{*SbWdUBOr{<^v26TnmVano7=Q+|nHJ5?RLPb$@laQSt%#^4c8 z)1mg-#?sUqz+mRYg*$*Pd#5f-(@;_294cM~;L*A7ki{6@u{eF}-K-5i<{gW%!3^^l zBf$;Z@ydV1$n2DSZ)o!H8YWVAU#{ytIE8Qtp7+dHQNU7g5xhQ;QTToJOO z%53%i%C0+~tPwq2{o3peSg%&+_qZ+sQ0Tn*Oy#@$!lc+&%xB&u*tF2=^HT};^n(f+ zgHE?C3EzN%XzH>0;^%=c)qw)r2v7mRtf_{B!=Gb#`*bb~~;W!SVWe3SM z&UVmkT(?mCE~Yn6AS(Wiv0G0)Kr8#_2iyDZAJR$p+O2ydZ~z9GP(iFdcC3)H4QaiA zsG&*FKre=r236!>HKpTOP~q}1GmOb(ob^On;Wnm8C%ngd>^;4^L!W1 zOmzG(=yQ>-ch3=@-K%bu0G2m$wFhhdk9bb`1NkzvpPhfj1TP}(b!%`6`n=0?I!4qY= zM_U>M(vk`MgBz(U%)XDFr3V6YStvQmxVezp2aWpF{@@L8%j0ngBY{fA!?_aF7WX~m zCc&uPy6Z0|_`CzhcR{6szaJ)Q1I=`{*ajE)eGAAC^(@aGQ zcxb#pd5FC|+_te*f`6qD#=J?lqmHE7ciPWAtuQ)rTUzc^*vpF?(w3s;1LCDwlNMF8 zc>K!w+<;5m$DWL zv$H%GWz~OKj%Z%+Cnez2fqPPS=IO9^YoI85a+hYspXx1`qg~KkIodxUAecTJnB1OI zX7V~sO|_H$L{vUQuH(~1U^H}^K0Z(7OwYPKw_Z2F^_u!Rt!35W`5cVfL(r6dr#|`h z+Qx3?EeO^JsH0g(N@E4GRmNz}ffXNQwEqm57`3vcsGH@aNq^ zz6{Kz(GIm+absGx2<`e`b?6pJKcQEOd^5qpt7{#X{y;H5WLLQzJMv(@wp`VO9|9ii+(K zIg|}V8BpuN>K2ZEvf}fBIl{nHO!5MC&ol1Lj6rI({2*>zmD-oy$Ff!tqR&@r zz`sP^LU*^+V};;-&?RGzlmb|o94^snb{n_is|G|won?zox2ch-W;hSiXNPS!Tmd;F zl!eVN0h0)?J2A{q@cNZx2fLQ8S1AO7U$QJe6$8vST6b{@UT{2IN^3{NoShv#bo zUwa1P^$pIG!9&vAx+d-@*k3u3_6P>Foa-bCr{a`}UF{|_Vezcau_lhvYeR4FNkLLE z5m+bHT*Gb2c^h!uDrBw#Pj%c+M#nIZz6k5SRjy*e3ZHmr!>fO@gp#xr9T9=>r45_P zqNny!gTtow1XpBK(;!V_8bKaWqW&`twndjJzwi+D#Bw?rM}F3*m-yMf^22))vJ2R&zuND_ za6IbnX@=WNi)?Zi1<%79NL%JR<}9^lMQwD39)_Ew2FG2tpypggF=p3i%8m9?h3eLI zh33}tONYybVh^!=e?0z^>NwQa{fG1%gPq3-j-g~wqkTuClOcG*R-K1;?gog%$-&3Q z_jYg}gDJ2Miyg_m>S1%cKnuUP#d?liiAmy?1y39;OAs69nDI#R)f}X7kKFf62(KP# zprt2QN7>`A{42aN8|KCFfdyLK%~GPflLD3`jKPb3HB>MvxDGK2Hh1ckUt=c*yWp6I z1M%I;{rO1p&FEfe1ylZFSmG7ED`YBD&i=Ta3AF7kzQV~HvrOVu*7$x)y8yKj!gEm zpbLa`hu=%#*F=Dv!G7_vU67JYhwwZL)=;E?HLQJ;k>T`Hlf7XEx^1H#XPuKewOT9m z^svPZ8IAdaq*T`N@m@-u6-tuj%TU#(id{tg;P<_Vl0B;;BbMWoBahAQw(9*}8T&s} ze4e4UiZ+yVb*cg$UTiMUOh2p5HdgxZO2zfV%-v~9BL>kQ&za;?+9o~eq^&*S@v~~{ z>w$c(GadXR8PO$Rq-1Ii)oS-REq*(_V^}|*OuQ%I9&M-1h8XYLuG>u0XZh%n$-l*B zPnYqR?lFm7BgAK+Jm?}nR-e1B{@D(0v4f%QqPor^!Hc-od2G*&v57+Z5Ou$L)rLv% z^FxwUI>ie2rXX&}DL{QkXua_mg_YjxjysH6nTEB*vxoY~MWQ47AZ|@~w$qfnQP#P1 zde-#(vpmW=h*CU{>9P$hK^QwX3r+SvL@*~+;+F)^#Nd$cudgV=_Xcruc_#OLg zIQy;C;BfYZ$_9;u;AZX*%kkonWj7BsPof+%sLAzb73flMa7Bc5JRW&L%k zf|VRFk;X=m@iLT}U4%m{(*=%8k}iGxW^R}ijephPJsGFsa6O|R$p5|-3JF}9_a5@x z5z)6><{GTQ3Z7)N^wXDu)zrtlP^{9O9T={`fn7IPkujY0lJ}Tc1M2@jbrfcy&P?;i zgIFZF-p(*cDLTg=Qe`;-gEUF=4D=$AVwa&D-bx2nm0fEkYAv8G9GH)J;8Ix3KjgI6 z8Zq6iLzf9N1}d^0o}gyq&ktBcHX?oWLBkfBZ4YnC&Xr;fr(iT72_zXUd1Y{eXyn~J z?b{mrRNcO~szz);9@wSh^-v=ynLB$SXsz^%xUsJIZE;P=n=WDc%&_T(E5Q9pm`!~( zjeQFGqE>H_Q*zdf7Tl4feb7oLK;`$p^~qtm4OhVWt1zAWYq*1XYw&Id7{>Bxu2fD% zA)K8Ok}>Pq!7qLa$XM{-)Cq+1KjeW_sE+eLw1G4f;|iP>LYUcr*ykYRXqCpa1u3NA zRPMLtnjIJ+yZSW5rGiq>oi-}9PLS+$+>f~SwILo{=)@x8gWX(ELrX>a?|02`u=Q8` z_iV3d=$G0SvaOQ!p#@$z7KYk_sdMY`@BWWxq&a`sI4k^d@GaZA2+{abE;BwVnk`t3 zyK%t3nycr zHN-!@UaA{j2GC6ZZTx@^Koyu)sQu2nEoY#tJAQjx7*>86`z*i(V5)%XacA? zP3rW$eECs(>6txx2j8KcJTyeywvm@NFM>=n&urkJ-=)O@$inYtm5B66`b#tvLG3MW zk^<);-2Nl_k7@b)<4Q2|n0a>pB5GsPQ#AYb2k-F2~Ke&suMPVUTFzTxT82 z+Z54IIH%@DZs?r^hPBZkQSFD)DAfoe9q>C?!(AxR9M8*5Lfumyq&f*Dic}h@^RCls zd}ho-K$JNFSMzsS4V2d(bC@GP(_utV2n82@z$q@MqP5C|EQ9no|XD zb*9E~M+ssy`6Otjn*btunxD!(bV%&mAeB9c=_USb@uM{y&(c2L5q?0b0I{ zSnRDF(|-eUe~7@eJ@NRDam52g7}l<+Dur*x1%bh1gzoPthM6SLrC*eGAH{^C49-q5?R!E+nx&36V#~p!nwZ&9Tt<##Z;`o9;)|f_t@wexz8D4zF z+#uhn^=i;kk}LNr#=Y711+}Z}yF(yp=i0RnmUDhcy~gV5b@Fjj8Na z-!z@OcVKLB!;$30Y9e?T@LUJ)dXSMxac}5aT^H-6h{^1-`d#qTqH5$vS-BiMuPJ z;vKx{jX=`kefdLs+f=wzGuLAk#CGMi|CkEf>9i$g`k?HZI$Qv@JS$aBD1LPw=+m8_ zjI)a?PXF|aE2@jm;k%bg9pODkvMH17bVjd;{@8r`rh6HJIPU)c?vh%uiYyF|n>dj% zc4lU2POQloLWLkGyZ2D>8mvI|PhmRu)=-~C`2iSGa{p2^Q#S()*lr~_iP&y>8;}jf zgE~LY#hd7{8;3dN9$9XCydfw&)1>;({pN~eAxx%!^Ka4NjO%2cjlC(<%6n&C=55|0 z=D%{igCZ7Eu>+6dql5|g(Y{`#8pdnhXF?V@Kd)6Ao-(`2X>2ro@p zqI%hdH!a_h5Z!m0Czo}pYFo9Pm~8rYVP9Od>ho;d%HRh(pWp1=?;al8z1G$7WThYn zFuZ=N)6|T<%FdTXwICw0eT`%ApM~%tRp~YzZS&M?Pz~I88ez8n{*3n2X~nWqn89#9 zQ9UfBWUsHP)bO%iQNA6*^=`qA_lFOD6J;3xox@|z{nlhpc7+HGmUE|DGxSNzy)o`v z3sL7Lw^qbf-#*sYNp{oq+<>lYi0`mF<6)8T2T2SzWwa8=F8%V@Wcez><+H;?uq9eWoCc(SG)^2wxRN&BIfwgFcrS^LQ0{Cu*E z|At8n)%+bsgy?&~a_g-i^~+#757oc~YtvTDwIu7F2d}n%g%SN(m}2?xKa}pfK=#B4 z*ugpF?(h5X+WF)jQFRzRa<0KjJh7eh9{krZnx4zIM#MrW6RO>|ztG;gZ4#6552 zPDbGbfA#z96ng9Re|iYTY+PRj611u=KnXgj6M>dq0H$8)KO)#iNt2)j5!vc1l(%mR zDx!UILseepxQktorz9CZkT9Itj04|cCi}+f0THnzC_XiEwfu5)^O~W-H!MKd)f%>Mf?RqPVt*!ecEeI|8&R>vA zPYrpnJY>Lv7$NLGsGBjDgY2)GcE-6;eN5q9XB^O7HGC8}nRh8+^!Ot1dHyKC!QH}; zrqe&Adw+WAef&56fMd#x)PUnObVRu{d!~KGGF7`M9|O#o))zSQ{DVF1pBDSpn@O`GB6aoehsO@@?&?6nk+{!p&m-!|WE7dW)JOQJ* zVDH+a*@NyFS+fY&l%ShV_MB%UH{f5MQf-c5aXtj2Ib2Qsr#xfz=f$%j(H8SF`P3tF z&5($Y!~&h7d&79b^Ep!?i)ln59T934Fc$0<<4{@M-h8pn#&v-+r6#=-35HK8ac)Eq zc~_Z$ekdb)@Fas}ls*isrojqy{}N_XZw+nm1xpg7Oda!p&C-|eVWv;7U3YSeVsiL5 z{8bnJhj3>o>Ml9qY2XIJ8A}!x1$aN0fc-BzehOGa+voIvmDmDFYWZRp=YUZL8ej~q zGWi5);ze8eK>!h71Uor;xKUc4m(fp0YI~=~mEg4VSeLY$Q#dQPOYr;5%gWnGIvFN! zl>C}TkemwDR!{eV7f|4Fy?M`ujyEia=jJmWHirYo7agTm3SjP{z4jSyBnOQM>{GzxQtSLTvY*$|0jae9^ph_N)($S?F5}jtsL{Lx$3XZg{7|Jd;&9 zk;1E)GyB3;vxPR|=UzA)+nQK=w(g%XYvWlSJy(n4d}?9WAEjGlbP|jkonJ%jqe*eD z6kff`KDxzhRJLr}t}lKW=F}IZb@o$=Rk{xd4}NHoeb(&TP@hb4>quzd9}A9ROt$_S z&R|*w%TRsl$k7J|8ky?Kz1bWiHksk20sSRsY$@2JoPT0Le^c?_C{S;k*kR$I=k3&< zSEVn=`>y-%2L(o8&dRHWKNb~G6h(sC5r+>9Q)WDu?U5sU8S-uh>*TIpIUAHk`rR&H zPS;Io3R!2zsEfe7uXiePJvZF3gJjVqOU}EMlXQ7JRY??A4PQhlSD|(hSB`d3o`m+{ zz9B`1C#?O!?t1-8$HcYypa38ED5r3JoNP}7>A}#CHOJGa3NmP^NopY+chi){|Dp?~ z+~k|AEwcv$L*J}ce0dbOzk5ubyx-}GLp8=6u88`*=@@0@AKw~>|-^|U?ExNx5{+X>f z=G0#l?F&u z5_G!Bo@2q$B!k5lKx{^HI{BBQPNi+Q0^Z+**)*?4#OWOP=gYj$$0LsuL|3) zzw#yVm|vbvSk}xYvTzKJ-^R)x9h=|JQxtM{ENcVazLl>-$|N*5LWjmW48Lqvs*N4D z8gjz{wpW@vO-xDft>xEH;Twnw3 zV{nmf=?6-7g0&1B#LNneD}>*E6&RufXF)U$x;Jk43v#A)z9V-ylr(6Fxg9Xf;~I;5 z9SJ0Ns5LVJM36%3tEwy2n*SmN(g2J8Kf+TsUtv7~WKrk0R-}>0N?lDDo1Q1JpEcmQ z43JJ7*t`ZAv@g%$B8FFJDsE-e*z5+Z{$<6YRMwH6?%x;Mzk$i_BDH^X?r&VHWuFC$ zn^zllk<%qOZayDpO5ez5oln&-1zCIEk1M%2?B!3k-qb>e>h5S8;i_-C#M;}m+|emq z5jJm$KDw%u2xX1_$#3?aw+xHE-zu#`N62S}@!*Yxdp+Mg;*p?XiTxdO+J|yxu<`R# zeX80l643BJ%%+J8(;gNDeM%;E@Fv4~ls*EihXH1g=nqjAwt4?icyqWQg^mOrt5UN4Ge zKMR;7N49clAsfYG|(tsOoeHv{rX|N zIFN{xNkb7&bYQ$DGqtC%-{k)ef8qNdF`fUFuyAf(C0;|TxBokAWH=AiMb(*uh${MkWQPDEJx;AS{m1)aXk*p<~oKa~>%L3?36+H@}r`cA*gfm`Dv= zNKWin;vD1hOH!AKApx#Yl`VV%kWrN|fjTtxLr=j%n$%CMa%K-BL3;1W z7Z+0UFY#|MSXKF3ivF2q`Ms6dOsEPSbv51F7R3Wy z>D*0<3cI07wE`BtwgjG?Mc{etTZvG@d zHp9>yeUO?5`ut9Q@nGooqbypdrpywq``i)A0G2{8O>B^<#22}!h2#RvSv*0eE8b-| zHW{nwRxybagjW4<0Eu6=lWRVb_22m{-fuMDK!!UC8!AjhK!gPGgFmlepN<4s|btzU?^2rO4 z+NGiT=oCA*=@hj$=@h-zQ>&B!Id89A1^?mPk?Q~EbkUw4>}?K@qkL_Y z{VUHkRDFWZ?-`BnecXSe4TmY#`_r5VujRiieGOUhw~#_qpuwL&@bwU5>A>GjrXhLw zl%c3HfWNEIm)Jqurtp%YvGS zM=+!aLC0VyHL~)RzgA29H_l(cBcJ%ouwyz0(OrPcyZm++SU}06xF3DT#MPAVaDb`Y z<1i_}Z7f>EYi8@MqOEYgA`e{Dfp;Ymm%d~vfnm+Cfk)wqJjr=OOzL>j?2mh@soCeH zp>g|PjJx*a?+w8a3+p!w-yOV}Myj#*mk6h;$ULO}KCJ9=zJi5Ac z;KP&1V9fg{;d1TOqjmTE8xO?ae_UPZfZ zOm(PrloDc8{C79~U~FLE8U1Bs;61-52gK;agFIaF>%ln|B@+f{SG!zfJCkFNJA|wZ zRF=^)Z_K@xsixs#YI-wzSarQL$Di09Uf4MkpfZ$1m5_XT^FJaTdTW2^9GrF7 zqjOXs)_=jq8ll(COP~P-m%Qam@B_eGI^Q(#^cdf`elYCSYH=^5r*1In6(<=H4=+{M zvY9llecLTasN%*Zya&F-j(m#@<+|G1+|Qnb+RcNDFrN05O=u5ijvsgzq=Uck#^#x+ z$QCbtrrLQK(R+Jh2>47QG=`^%y`7o8ovFQDaoc}I75EWLusMKuxfhOj-8b}v$TKj- zKZIzo8(w?e;c(se__QPOcE#eC{wsV9^SSVf(dlb4C%-)Ik@C*H0_qV(zpxSE$1936 zQ7eH!9&DI@QYKB&x1t`Ax=~omz)&(?cH)5v^3N550@SmiNwerpY&+EvD)! zsn3h9?j-eJ;TG48M}OmPW^Y&2ex7&&KOzY>2N5rK!ym8v!k>0b-ma+po^S=e0>bWt zh+Dhim)CvqPdgTGjL(mj21Q0fZ%>p?U$Z&+rEv4e;{g5m;PZQjZcp%!&&xxC;~N~B zQjiQ=+#i@yhzK(;=A{sCR0b&hkQ)C-u7wTV&kLvhtpm64H=pL^H=7racAa)suFUXa z>PCZ=VY%TJ|FrbeElAsiK2a@`IkmHiNwhw5tpCc` zI_K{{D#vMhj}l>Y3ppxy0pFlowN|_Hf=NIjS(ZKznVSuLCFJ=5G#h-B5EI{H1$M(*Cx`w;0|o{ zTU#)a_)9ru^O?N&EkB9@Ap&rJ;X#kE z+IoYIzxHhqe3Dy6!h?~`n@CGIL`)Y7pYf9Wud19cjEh_J@K`Q%8fU8j%fsQfgDvY_ z5BDr;UkFe;(J=Oo!~x+Td`_g#niS{|%hQ+hwSvixP0fbhT#i&QE)xG%eFxge4Lu{= zfYWTiz~T3lryb2;41#k$v{{B;1K03%OV#v3-=znIoP)cjH?ld*(rDjIhqmOpuNQfEKW)GxC08t!Im++Yh_iDN-lv zzh>mLCNW_JM5HlI)ht_>-9MbJV$B^xf1D9m{mi-U&mmg>7C%`0@fY)gi!LziA$URo zEUGWT>tOpa4|_lRA_OL}?}xZZJ~>;#{KK7q$^#-cIQBr4ftf6)wn*?k@bo?cjD3J< z2s6tJ!TSaCt1V~qkZkaqNjyw=fR$3!KnxDrsuNC)ZatOm2eEGt>g;Q1EJKdG45q&SKA&mvfkYa2Ondmn^t^5k z)>@9Pa&9kI?d|gFfl_SnVR)gx$}S5`hYalpVK_<5lS(gaqs4w6j6Q&7Amu+7x`Nc6 zMi1`W?{z8W;0#()miuB$j|;&XYLNaM8fop9ho)NA`(#WUo?aQ)JfoSnPkJ}iV_57q zJ?S1fkW36LB<8lz*g8go|Md7AhS2BYxx@oPIm^h_EvV-INOlrVa}O@_sk8Ia@cDzG zEc?+>%JMRi`^2%>2kWGeV8LmBb6|Cq?xLI81MBA`{?Myl`Xzo_ZV9fJgX~MKDTJUM zVn%>tg^g(kP6L=B>I)cWwS2P`tzMlZbnW+R*j6JA^FAz*?Y$LKyMrO!5c=^=1@W;e za9LL4(7s<$2XOl^uv%<;mLrVN`$6VH6mRWusLep5?b?(-Q2dq*V`Bv#;IY1F;^Hu} z*Kr!dJ6qQc4kjN##KclD7{!z_bOOY>udZ{j!2a+rT>4(@t-Rj;U;Jg6jW@`f@yiBG z4KeyEy_mPXhnSDOY`~OX4%N$Z0xsVUU15^l09| zh=x?jcWS^xxcIue5kUDk`e(Wqi#wpWXsF*5Eq#k?Fb`*Bko^l+|CL&XV7wAAv1Z3; zqXV~Qw2a?}faU%_9S3?QkpWoB>Vq!4yupjSF(Agv*=dxOfqOJW67abG1nh%;)r_;P zIs>Q2zbpZwdOgJTPaXS*cKV~*D!46F+3>V(RBqpQ}z4 zo2?gvRPAXSktz+e=%u8CyJ(*uG7?%c{Zs%rxA?EzmA@GD|5)GtCcxnUnoDXajN=SY z4dYf{_WUuNgLMz(e#r&tUicHC#cDUP`V zh_ebnFT}r^{F8$!PB1o@d%ys#0PDDiO|XSSu)TbGbDiM?LO&#qfmW)znJAbIbBIUe zW56sAeiP>k;w7P~Wz9>bVCFQc<6QQTO0kO;GI7@|R{gJVDNY~zze8d;o`3h(v86_+ zRDA1<8`5DQ_$BQyR1LMXy0@2LlrXmT_2`On+{`u*eV}~%-b<^M9RA_yUQWnI{H>f5 zFhLW4y6`ab^Rv7t3{X|+?*S`2!8BTY6s z(Bop?lm6|eVTyizr=v~Xpza&M%Y_q7ukUS~jzkDJ-YM}A_vgf;LIhx`kQBHODDCxr zS9279i{u1fWw`<5Exjo8Q`G@TMR9^@0+329ANXJkeT$dPmLsp;*aEHEedWUa z#ntFtUd#Qxa`l9T`FZS>D<{FDqf36}7-Dj{o~0~~zL=b$!;IrJO>C&vD9H5$4lT8 z-0#-{PvMePtCg77CLM$p&$MhSN1oG>1zg9wemry7+|S@Z4y-$FNH*E`r#ucyX?92NeoVjbI&%WL z!P9JJ3ThG`JI|dJAEJ4uE5Vj*b_+fP>@*toMq|PJ&9)Ie3uhOTm>3nSeKl;->=E7j za>sPf`o^~uDh6noNP;mo)E^J{zzT+`nVH*EPzkCKLCWv0->-@f{ks-1{ofNiW7pyC z6wasFVK`l$N5X!;oEAHaL|8>|GxlFVDl0{2(I5wPsabuu8h{0q7TTvxKgV*y7I2c|BTbGgt+LOEVR3^TmyrjqCA>;fX0cDMpV-Z zVXq^yYfI_BW;*C+>6?JF(B=b|-PCQ++?^7-7cWmw_jJan9F+o3-l~moLuP3M> z6p6sBeo(85%A!}|qB5S6Mjjz7WG6xuS7%5Qc$5aWAAGR6(Uasyml7BL1hZ`b;Y-wD^ptg~(?IsfSuqTuyg0 zPIJMg^@79aQ_X>3UfG~RwRqQttu&;}i)mH3fUCm1RI5+&0FFgHxmH!V37Z+={O_iY zbMw}+HT&jjq6|KNX?VT4z&Nf_11wJiPfRSDY`&|>H*C=U^t0$dt|Pj(nhFpj(WHoPtt?$x}bo@3cT{tT77Rj>*U z2?h-(Iw7cnbRT%H6uw=i#2i%hY7KoZ7ER^Vym@}8fWNx6WhQY-3n)wh%tV6nE!iro zjop*?!Uzk_=voR@OMVFTna8g#>Xy@RlJdaWip6@GIfUjzna77Ab4-zo!IUg}TPdyo z{+sNi8uQ{XF&bm3g_-j7K&`!2n7+dCm+y<*R11R0Z;+qv(ceU2T^~+LTV)ptepx58 zRLp+`gSWm*_%4)!59r?y*{MKtUo^~qhU`#wZDnm#tJ>s4a~MD$)hiMme)hCyiSti8 z!tw5B5Zfg`+MCGtA&-a5IeJX6#CjU) z)(!(XLVC?{Oo_C^S@nFD_`Y(}6U?D938FN~3CnAv-<4j!fr+$6EYxR%jLNDwLoU?E z=M9~i6*Jw?oCicV6j&P8%7}YwIg1Had6zL#s9l%YuVcqwIkFZC_Fbwh)Q>_} z$B-?uaX(nFF;jFgp;7P~$s~weT;pt}BLN)Q&|K5>&?D?G{%vmgke zI%(6B!;NO<&%2FHlni0(EHHS$%cFhg57|cm1-YdLQH|;nxj3`(*dOyiE+7nf*PZmGWs`hC#Dm~8so*{O$%!}Z zvJVcz@bF{JDUr^uELlO}ZG;L}W($Pk?!A7XA2#y)^GqZ1UxpR$EDO-O2s0vb2dYmX zjN(UoE9tf(ZO8vc2wbxq&bAzyKv@N&vdaE8izd|^XZyX1!(eqH4Pu`gR#yjEuWYfs zM3cpRCA1&Is|nD(nhxpd@5GDHII5@Q@huZ$u4!qjk+Z9wVhb5+K_+?)nhh1$s`zWg zGO}mP(TjjVWW~a6wz-I^{xPq5kbsjp98wy_3J)m>KNQZ3a&_clrXH7?#lxQd z(V10yFZ9E0zmeaQhtb{_X{k%0!Ou;HjEQM0(3uAk2T<|Q5kX5^$=GGpBC=V#dx5Nc zB$p@s0rzJ9jg?6ber<$FZo&<>B>PZDFZCFfz0@T$vlGTRQ9_5m0J~YL?;*K;JKoh$ zs-{P4)6ej@!m2R#Q3WnJ|J!my7INAiD@`Ty^Z;cv+oZ7^7wo3ZpeEfJ+2lQ_90`ri zZB-Q}G|tz9q*?8@;r89~o$f5Rps+C~uO>Qw4qSq>8|5_$%V`8$fIL(tOYo3cPTTRT z_->nr!&>B@r>Kg5^b;w-Z`4buxE!6ZGRFSoxFWSJpRvjUe$=TG`LO4N?-ywj#EG3z zUz%8$WpHD~8RKWe8MkYF7cYG71yTkK>>CXJdx)i}WzH9m(2rJ2zt86(gO4Tu&-bIp z&tawDRSv5+|CgonA744n9BkBwxb*qvVHK64Cz^ZIn*GG0rxKbr?&%)kE+`0A+fFTq zwb~NW{;I!^zS1|LY?NEX$;yH@%(EavnV@Q@7V_mUz3gCXD7F%He7y)@JSbhN8j6QFVR{Gs@_gCZI|Bq$MZYQxR9h`Kr9c(af`A16hf8su0(&<#5KbW=JN~ z!B{HT{pq8GgQ^frCCm{_DMB$!*vYbxWT?U;$%++dQQE3r)L~d()!4wMwZB}*`5M|8 z@fh3MA)L6mAyzcATl&AESARGymww10u>5G!HX;Dwf?$GDketz<665nT^zT;7=~oC3vnq`ntRL3s>mxaf(1nZiUBC!-)gW7d}fQ&UdT4N!g^3 zVQ5&bXX0Lwo9+e9rj)iN31TcC>-F>=sFwJ;vaA5qHprXbiG~!px}X%^TF9+m7!f)gF|^H(Z3@1UrB^V=E%1*O9FWr! z!;6Q8oEn%F{YnpOBuivA!I>nJu#R>8-7<#^KIT~vH9{GVBX5obpGIxGmfbED0$%$i zTTQ7vYkt*!t*K&bwc!@M-YmZS<$SsSR`uQ8cDGPvkQ~g^IISMqC>Og-Ijla?YkieD z*T~Co%xKNab_~$r`>N6RlM=tsg-Yx!p`L;y9B<40{Q7Wm{7i34z)0U4*JqqS_M4y7 zqkFl_)o}#bLA8)A#~Jzr;X%2RE=L+#7|>!Oj>LplS~Cg8TfOUm-tj7b8r$Vcpedq2 zOFqsD$cQSUphw_6TVR6epvamT>J5~ZGS}tsO{rinPv#ymVMkPY=8VQb0%xF@4hA!- z!EIBAS?PhtoANrQIC>MhqeI?zc;6AbqYoHsIK?CM6)FYB@v=Tl_lu|?PVlnU>a)9} z`>rgj@wO08)j&Up*TMI;fUP0hD%64Y#)0u5pPfY?>=HSlYZ&ZO2T2A)^C`*!&};<#1J%PXIw%RO40nL+foiT))~6`2jVk;bg)Z;dE*U zNA$j?8sXO4)}JGKT-SN}7o2{dkF^9@a(+)kps&ztKTKYo6l+hv`vvS%3eJ~0HRby| z|1XZd{>FG&_Wl1Lm;gX9KRyXy3nFJO2O$=6KwG?js-)lxYp#SSp)U@Aef`Kk34f6F z0*LkficbxC%AX5h?8Tm!EW|Fqe(5ehn5i_+bzdtb(2d};YP6>#{s_R> zS5N$Jfo<_iROK2^++N zrH`eXMK-LCw{|a_VT1)PMKgCvzb|bcn_H50s#4>tRBkVZR<41ma08)7CvfD!vlzST z{4Brf*Azrw(sAFiCu)KhNzTM0jc3Kghy2|OkywI*v|c-M1_kK4zs&8^Sh{-1lV z3ZIZbK%bv~>v!~Pt~jp`qQ9q8atN;Z~(ldA|FjOY1RQrjeI>c|*_j{$OWT zrt^|b=VF3)=T-kCgCgS+a_UH5={0wz9WrKTB%5w(y!)teur1(oZTO+P$l29#vxXtF z+iGc{qG_YE;xg-g!T5F0jvE^}dz#)`PyydQ6ePiN1S7DRb|-xgZ8@Xt2*xR+l|@1dgGDL=Fv zZ`irtX$nmCeuudp7JmC2xq5@Wry(xf8xB)7Ckd|huXe;#Gw7;Ohp$;K#xo9&D2eC4 z{9Uo~FecWl-F(?sq5YFjx4?Am^x^&5+htCm&s;-e`Du#7WvO{%|IngM((p|b1eT!V zJqx1lNh(6P7(Ux^4>U28YF8DS^tY|Btat^k-$xQVk9N18*UjC`Zj-foJO)FjcUPP3 z$2z@7nUUZaYv`x7^hac}h`jT)wvo&Uk&z>2^B_PSE=S_z&&=2 zr&`SDju(9kqX=tj9HEzjEfghOW2QJZ{K8l5xE~c$uQgn?ir-#-thk=nef65_vRc&S zwcm7IHlyX&cRg3@`uI#afdlt;%jy<=5s}*e@MyzFY{tRBuXLhwZK9?WiF!;OE+f9y z1;L@m(MV?;U)$1*mWV#``Pk~2d_8qn`*i1jvdANq&d2Z$2*NLR0Nc~DkO@+alvKiU zqEguvcHGoF1ZDVkw~`K;XBI@j)ZIDp**ZUr(sd}BsU*)DIv#CKN@1vrF&crGh(d!h zHR@At`xbRRp$6K^LhUD@SpIVBDS^sY5}Kewb0H7syaqblNDHP{w#Y$=#4S!@y)nuI zMecAk)BJvsOI;iZd9}@tC<`OcGHlp*t;qeQH^LA~W7;nt57WxM&^N=g4)NSo2vjP$ zOcAJ9al7|M@arNyj8&7lYm4-j9B&(>^RSj^7TL_QCb1W8-98F19Y`T?j*>`?`NPh2 zvICaq1&zuuIf=DY)XjITx{N1M@R8_CIwh+!0DBel$4{7#J4V?yORNasma5Q#A>W@7R^XU14^EZ2yg7~ zR1%rB!p7M|f=zxysf$Q`qe(PN^-cAvSu_APUuOwrB0Ca}Y)J}~)HV8gW68lJI@IMZ zUd9DDcKJht2dYD#b#0>Jm)8Lm_kgE4UG6KE67T@$cl(*b*Z^4;>VkrqH6!zPviYAu zM87*KL(Ry1D7d7mdQ35(bh+So5sKg|%Em1`&IVkEdZu!u=oKY$`lfY>V!F|c%fFFY z+jW6JM4`DTeK6W7Z0}8y9*{#%f#v&2t~-llgK8;FLKi-RtfF&{)UE*@iC0lU)* zHWC%7M0wN7RynkO_O^EB1r-)|V~zYqjC(gFUS=Z?BB{)ah1!(VNci$Tzn{*h<)p)$ zEGiNz=o8gX#U3>h^F@^g!@}w_ynKYory(`WWR#pAL5ZBeXcpu$z>ZAq-w_M|%tQ&Y{i|DbYy`x*_k&awyePFQ5>b2X~@CbfX3uBc@*J*fT+cQfUp3cc-k^}I5^w5Selu+ zx-k5GWB*fHFZwd@9&48P?$`teHn?F68S{K zXwa)_L)010tr$K(V|O|HT~Keg!od7weShx@ z-}>O==NI7hgMGSb(4(`jAu#s&*$*K=-(lb01|`4;`8G7+?d5yFcldG=DETU@9Xd!| zx?(*U$Z0dOVl_Fl(=@#_vRB34k>5+!8zG(sCXyM^q@_F4w~5jaJFJ$_Wxb_+{z{lt z>D$=7elaf)%E{;V%r`0j`|yYbwKJM!Za)8rT3q~#RC{1;I*&jgp6 zye=xET=0@$?H4SXQcIp0(59*u(d1Ppr#@+ah34DNqWQ@LJU3La91UKOVe_X{tM$O&S7#?$zej}%*pxxRac)wO+_8|<$9ad2*dM0wd)u; zWD}x&OmeQ;`sHImIFC}E-{R*^XmN=>%jNvQh2aS^mWP_F50O05|DvjcQ!l zVHd=eSa~+L(;blUE}U~3GMf|lZtxUE)Ew$irKa4v`(|YHMsL5Fq{2Ex(tF_UUH{I< zS(0OLO%d_ic1XtKxTqYfEtB3qe)yTMaT;*v+`zM_oJJj#OUdvuo~%aLoe>NRX=r&L z8o6YA@N>PhvY)M^NQJ=CUa}B54!uQ(j_|A#wN`0oOqmt6qIcyy9P3W`VRq0w!8ovy zHOe@R3djMi?N!RPB>4&xRhG01v!QSfG_0K2{B8XgdR3smdB(^CgH2dQ#6mQg0incUMwjDWy3sE~NJefScTdoa zBh6I{K6wlrT2^gK>b<1X`>HWHwrp%W`h}R}DKgnw4PKBG!FK&tPp}(Fb~?)1HL$(_ zfHQRm+y>79yG6Iog3p1a@mTKNNdLX!&?<4O4dEb9=)7Y^j2 zSx`QOOrWlnu69Vj=eL8M`1iS$4y_^Z3FC<8_ce}vJToU}SYx~hv=h66jus{|S!@0J zD=|(dont5vJ@_{khO1S3zLhkkF>rarT~pH`@Vsic$IdZrRzEks2BNuTh`gSIAv)al zM^T-zdz(aEMR(#am&v z`dLxa$4%`NRZAx(GgaahT)!%?8?9Gj@|%q7H}xS%9iXSPR@FmH>!ur{>!hi;m$pTxR!8~a;-!6 zxHIh1PgKZ`pd}!uXq%cn*-F&r%mumE@#>(viqsMY*pC*9n3lF5jxn`3_C&Q8k3 zEvn+N~I_3pkwpn`LR z_>pmADVa3kS(ta)$IP}!ZH>{~u07l0t}G#~8}A&|RQiXe22XZ*P`1(Cm1PT|1}>(` zRE8gdJ`I$GM;3?{mQ-J22FtGu6t|CZD|V9B zgLX!7kcBRe;T7>7)^nxiQ*4#isHzVIb;(64r_uNJB(1cui*yP8SNn#J!6{;kc{Vr9 zZ>7UvA@|Z6KMu+Ql{J3sUrCBk+(UlqmKZioivmh1{@S@?JZcR+knQ#9Y_DnK(sFZ9s^^Z??+w;?BD5?V94Zbg2R8C8J*X+}mb)pzqdE>76mLc`S+bf02gbZUZoZh3L30rx zV}!*d*ep8t@Oftw9r5U`BugfPf)Y)LR^N>v=eY}f4KYq7^`!COSyy`iP4~3EVDOJ* zstp;N7R9+r6>r&8%@qaW;MFVk(Jm%-By;0fHU**zNe?w5RQlM2-@mNdop9&Y_ix}B zRo0m-%xbikEPO+bHd&{P41H$&4E#HV9LE@I{L@x{Q0S~^@ywNQbqKdFwY zXe&O8Y)NHaf#=i7i0vR_SLP<|%twvS2S=PvfU^;8$&^$D9gWe+85FUbjd zv*MG@HZ=n2B5rxQiM*l&wOQI*391w^f~($Y#>WB31sr8~%=-N_5^(1ab~F7xbOCr- z4hvz6UxF6vWzt3JNF3C8p>Fi%#hrM+t+(?k$NxwZGv;vObM^bu)MqlCpSHQ_B-U^Y zSF5OW2G3i;4pdzzS@(QGENTO33)GR1=!2$#ko z=DauN@>HuoTAx_5daDuB^!>*JjT>YqzEPcDeT^n@bAzVlon{HpAgOvPFHY^$OapmP za)X7#sPW379Bg#008nX7;V58_@Gtcn)1{qJ-egIw&|{oiiVV}v<;HBz1U9y+Klkhd zYYMe%Iu7_#d=mV{`+r|-~f-`6tJP2YekPr@@8j*icGOO)`p{m{*eroEEeppAt2(fS0nTXngt| z?Ehtj?2BLUbHe}uk#PS{3f$wBJht)q;2*tU8Xg5V9{Il@1b!fr4d1i}SCwm-l zrPR2sis9VHYaE_zLWdk(A`n6L6IZS8=HAG8eoYWXO;f@I+76>QutPenSYvKMcx|*$ z9EhEz%B(c|*Qhw%!nLec2Xdcs{QEE$RG|DBl_n;0o;czO_8%qO$vT@o-%?cB*se6H zNxIasQ|*=X#7N`j%1R1^=!~lLeg`7K6xDK6ydt{7dttTz&??bpBx}~qKpIx6e13k2 zE{mY#`IdY6DTc)xh31da5`Y(_O94$`fpKiuM`Lu1Z5}TZ>rs$hV9?mfYA}9nTh}%; zV(6MS6kL#w8BD5hYb$3AvW}*m9(WtXh@OlBQt8WidSkaZm3F3wPN#CHqSApu3 zA!b$E%y9R1D}FIRjmL_wGx=tQ{sTzcShCP-Aj3^T(8zO_MZb5=1A6%*Tn3JaGC3@IWDE@t2O35SFS4mM1xZdPcWD_UI+ zd&2{a!h9+un+GqJ0&jLGse)sYc6}|R@CF`|I3leuZ&Yo6tUM1oW)b3;x*dsOMLrrraX4=CI_QPbe(319&M^G2pYLeh|%6@Iv zOJ3NJ;Twj_46xYGx!d!=&W`|}*UZ_M?jAjpgtnpkKwp#P9)t8Y4Wp5Ewpk-Tr8WOe z;>6Bh|8P+M70v8S9hY5kw2;rJ=*Q&_I7wS<4REks@}5?LZD-vTUQ>={&aC|{3y6`V zl1?*{BQmL5r^7`T^TYJhy`{9YrL*JvUO_fccPwKe1;t!KaV+lnlTI=r8%g>(iiS*AHJ-BzbuGl!WpB& z)1OI5RDS-5EWCR;Ihwd%a1oQ+D)V$ylVV9_PCcZh(;U^(ZfG*LnwSkMrjr4e;Yod< z#nbFCJB};%NyXRnzAK{XT)j_P11})s7_mrQ7ju@eU#m!4#{!kvRJ>1WOs;3Ou%IF!ubsO0!ttB>vAgZtF$P-r1VaFZ8-oK!|)16|5; z)1@_e2pbj7$$9q5pTXId+T2!lYm8wK;Su87il=Inw$+P z&MqdCp-Ek&wbNW}P_1jaC3R>yU%#50kiUOTb>3>=Kyom?-egNbI%~)XAv7~X3BqMg zL)zRU11p&%3xU=WuDjJh3Cilz7WPz9Qan}nqE5FZ17p#bgu1*&u{K|COz@dZ4Cn72 z$n9pw7M1exm{l=QdBU-!^vE@dq?{AF5?w;0Jr-8+Tv|Y*JyBK`;f&TmPk|^MlXm8c znp+gu+j+y}-F4Gt{3WjP#6FK^+byh8_v)T$jWO4n0@y1 zh@aca=t2{}QDp<#;hJ@bL%gDrZDrJ4Imw+`EbQU1I-H7&XuyA(qv3RSeViW2#jpgp>8LMZ8n?eeLu(6-6)0(gS!&)%%iw2gC!OMZ6-dtk>dcWW27jp)F>b5)gQG8WXqvACveuBh(RBfFSk+j~g%sjbDi4pErMthZ3{G~y? z7!fDL1-V~Y@pZmWgPQ(Tx<$S_3GG>0d7oybw&rVSG1X)E2MhhV8P~AKczT?Wm{WH} z`M26D#tGpSjGW*oV}lWVp(@>$;b-ZAUBJ(sct1%Gm>G;{5txesYsC z!RglRoN*y*&|Ygqjx)zqM){y7=k_GsBKDV*hlsDml#?2O$EB#|y{1Hsbtg3f?gS7L z7xIX1Wy}3QSb~LCWtyWg>Sz2+|PfZ1{TUlvvpGK^{)-->(d)?_8z-b3)T>_w zpcf)m1|uyXcPX~fUyDuhYfWiKHIj%8)Kn1-M%wmi_)zXrN~SfuNq^I9)Y2O?N1yY3 zC8Mq-?|=OMiheb8*&7BJ59?@OGT2wmpUQm9z|Yd^4cB~>5&$|(?yncL7TozzZc?&& zZc?lhZ&Gj_G;)ZnHP(Edq?7gG-v`gp-uk#jL~_1{3OJ6bqM`1*OScR>S6n=aC~gJLYE&N0@W-3xjZFKtU2muHh|A`|Oyia< ziFx@oY0d@36m7*L?CAo2`f0P2$M@$#9zzY7KtSTn0iIqJJfj$za(^O4d+(S2=^uY7 z`rlq}xT6!4KMwF(lK+S|Isf7HmWc=8&Cth`7XsSL;BN_xWW+I)Xen}P_wDSH@by6fTZ z8@q=*r;FoFj&^|@R&7INXfz-n3~dnsIsp3e7;F0;S~5VwIkDlsB>w9J1KFnBl=EIu zx`|T#iwT|q&Dm?Zscu4HAI*S|XX5eEWpWeRq_<8uaMH@kt?#P|ySc8e)Z@EAh!pdo zAwwtpkNnwIE$JH?ny%h3hmhEsx(knXV~Wb8?(s&iOj0dex?SGbhSGQ`*0EX6(LDZG ziM<0`WCruk->%A1>pL|xyWi=LX{l2C(i@J85T_ZSAwMg~{i_$Yz%L)Dr;hEOiebNV zE4XLq>2#iB)K1I9Fyo^|(DQ}tnIO6-KHXb${#yS$PU*xkTTy#-^S!P+bNN_EWP4<6 zJ!!2H4u*u8QUPb%D!-b*=MP?I1-6(mB*-q{rt5)~WzNJd;yQWzR|Y_G#)kbmCtRoj zS-KC;OQT(z!_zcT(Qw&+abY7zP4{ zDFuO_pMFnX{Ks>BukmRPmv>8;{@zb7PW?=B6dUXHJqZs+z+quw?I;fT{9jFGXwM2MJL6M_=EfL?R#Cx*0@ z8(Fj6O@}LhkL*bb{gliPK|`9~J*3A{)0Pf!y1w%1#SYrs+Ct)O7?9ZXzsBazv-R4O z9-#=W^Gtw6BquY)@>0EL$`GB~@-wc1K1OSjKJ)Nzm+6?yeh{(#>FpsJ4rk!T*o?qi zC1$4U$yh?koGXEeN9*4}xG69@l2IozmHp7yl|V>9x#T6XJoTq_9iVl#Hx*dCI0JlMZ zzbl#BZHo&>8};^bY)crq;ZhQJgQa461x=8s*m`ZXcz&)a00S~~&1Qbt`0X-9+t5TN zO#~zd5An=Jk9W~(bdqHzp3;UKL%S_k221U34y(h2cs#BRBqJf*qQXao(%{fK2uAe; zPA(8%wJH4KkI4*IyEIvrd6C-g9bDgW_&Ms{H*h|9Qh^7iD z8!xY2F=JCJ!+fe?Ala;xaDNZ*2^${ zYMNhZllDUG9b-3xR%%QAvLNB5eRTDqP@C)-I9E5|+E=$K%uGvCOA0dp|2`LcF=~O8 zr0Z?;<0L#Jw}_gA|BIAzF?hUBW4+f>c+83L7OSPE8W8vSONDZj3@tT+&?+;Q0uC5F zP0XDc$Rl}Re##)6qXRo_1^>Ph<_o!0UoptEm4S@%+b(rvC3R@HR1#5ZLv`|BA`&l>KB=Mz005?=DpcjYwM!I^Q8zH$~+EtMSd{m7`#L`NW?i4DtL#E zlQIwwr4IKtqFQ!9+3=WR*bHDANCYnBYoLrDdR=flwnT+hYol#%h+F05eIl`i=BTO?)i=vX$Wx!Mak61Y~VqzE`1Q3uP&VNJ=T>n4~YjJCYNPlDHNRJ5o z1FM=&>RLQjk2MwEZRDP~g#k{1*{b&&JnqS7((RGzAWQ*I=6+8Z0(niukahBzHQ#4Q zi@>;ztXJ${Uv7uEJq!B1HWzd=5MaC^B=Rux1SaAKFLYtIp;5RsrWgMoZSNQ*O0aYb zwr$(CZQHi3({`V>ZQHhO+wMMX+uhUmzHi=|HE;gTpIVVwRawf+h};o7>VwaGDjbc) z4S7*GlsmdU!z*ip)~Op*FE+Hv=nsaOjMMr&G+}EjgUq4?U^1c?Y<8~z4aIf6@9M;k zuB8@Fz~a{RvkyVkHDZ0d)cXTOu}I{n%O>U|JCsXqK@zlM!prUVKj4e zEE9yZmthUEO?NW`weIJn_DESpa1^h*QX=`M$d zq*gNU| z>CUjp?cqq;cHLcshmZ(|0s)vgLd+nbltM+G{sE@v`>X`6kw^pfgOB%7tvI}2qsbs{ zlGs;Dv;AG;o_=}$zSmK2=AnAr=E~tYN;90<_=OXwT%L4&nk3IK&;O&_Bx(HjV|^tj z;}a)4u$m={oO^x{DrQv3Z(22OwD|1;hF~y^VfLDUj=s`_rZZ3NKRF4zRcy;g4t+vJ<_NB87o;lpD)#7>M7#PG7)Bh1! z+lQ=U2k^}ib6fMvf%||qItClL=Qe{Exwat*js^$5`rK4Y-SriWf|?Q$txEeRgKe5+ zgB)1x;ho9TM#iQ(L}Uij;0!lLV&Cy-94O8X&+Kn2+$^6F_mv6FRn9mAI7apu* zv4AS(A2;`M=IVem+pNNx`)x`^m}RAwjAKb#j{CDSM+`~~UKgpukVNhNiKS5qmscBz z6wkF807y6~bIeH;caUJ#sC*H4D$=0@;oW^P!nG50BTnE!pDYU7?|Fa!arb+)vczDlPoot`sH*~s+jd|^jCRq>5yg4IyKu(+lu5u?9Gx`yAD{%HgR{JZ z+}h;-z{cqEgfs-1!_;bOog6igEWGsnlhhIiNe^hu#Vp)Y0IqQa1RG-h?kHgkGKyp8 zdSq**E%gVSQXbn7x-|k+2>J}K7eyy;#B5Z=KkWPnIAZ$K#aH5oLOp@%kM9b&9FcQ| zTciz4Bp_3W-AMWB5X}fZ8San&{(>EQz_4J6kv6d$mx~6{Tx5twncN{u&J%kM8_siX zlaabu<%O9##cgtpC_P4Ca_mVgalDXMnaS*rcdZwNloW~fUGu6LnS5T%PMgTYk#XmD zz2)@UaeYf&WYG6MF$frim;PFa6ISd)Ryt>SnsHacVH z=t$i2$54W`439<)ES^M*!p}`$B^|^6?sSpnCp(kSnvL$L#b*h%WEI3HfcV?ghoET! zg8Ef>q90~R>cQRvk&IPlk5$s2pn*;}5UxY$1YJOkkuQz!gG1?J(@n@O&@vJI0pqMw4vV?aqcr zhw3p$8Y0b_qAUuZmzeBDAp=P07V(tV-Zyb9*<3iO0$g^r)0Vz(izr0<^cs;)y4zWN zY5L(Yt_?Mn^Az;gF&AN66F9*9W>CAV3r8Uu>$U>dBJQ05sp{wgIN#}v zwHXI3SRztM20U^R#rXqdLiSh&XI~WNtOB#fE1nWn z@UY~#0bFnjv52GE3pMPH1cjIWSPEfqV0i$0cS+`{T~nn1Ok0;LF#$62*_R`865=FX z$(JYopgUrtSGh-UcVW=n#($&gY7T+Hxk04r8ojz?yAc(Aekb21cw`Ue^qE1$=-o;2 zFI_q$J48>77ML;9V2UZ=|m~J=ldkxawN=@4@O4 z%wPdW35`9B2*GuSq^S*k(7pC&{J>54zzI6(H>2p^ju!hjVAW+u#VNg_M_6st4ysgo zi`CApNahx;{MkwnY^hZ_6j#gP57g1ghl0gJy1Yv2#z@!(*-AN@fO@$lYh%=rDdAv7gyf^aLWoNv~&`?j0 zj`ROcf&XvNEKt^FOzjt486yAyK>lCv#M#2s)|CFg+yB0ZOHJ)qY*rLs@dJL1hn!=! zUmr2$M6-0~rrLH>n7I9c$<|X8@#ea15LN#D5Hu1JfnJ>ZAs}I#0MOk)Z23~eWbED= z^Y|KesNNcpKxe!f<_Y)c=n0M=pOg1fbtt58sffhHqMSmv5+s5oxwq7!2YDMiUa}To z0#vE;l)DsHf5g~cwY7cEAJm)jG!hVhZ>kpu@~~vB%j8K%pg|42edvS%duBSMsy)T2 zNoD_80sDc8W~pLDIR;taqyvzp7(p;u$PV7jc}U2b>ScJ$sd%b#a55Pj%OjH1`ntu$ z3bC=|OJ;vL#tRUJ#iZQmabZ+~km3M*F2UhX&?9U0Nq2g5BdgFVQg$Z4b{#qf-tu(L z;ZJvFOAIl?!p?bn02$lEkZD8XwY5`b0G{+dDQ0b*>}f6jsd_YukMnt63%GMtaQm}b z`}M8p$I*Ulg%bX)fmku0+k!y$JQ#f2{X)G?c84cyg%Eq2{mkTR0voP(SPC;1-gP1M z0s}@k9Jv@7w;w(cNPwY}J@8KDm>Yts8xx&r$T7!rh*q`xkk>=@P!!RJQMR zc6`2%x71!GcxpPGyT`_xoUhyM#aaIMrwe(WjZPr^&09vQF zkWO3fxb&!U-c+L;hAo5ebrC*dc-2EgBe2B*60?wp796BX?*XOlovX}S>g7%qtNI|x}HjM>i z>2Y$=#dgE|RiDG@>+KBK)t{WCNCZo2)=S2Ksj`!JiJW={a|V|=4>b2#`i)YLwGmv% zUG|e6l+J9~IP3jeDNz2#(d(6NrQ{7tUGLLXyBS?(>Aq{eKe&))y>^e`1^T@0nZA&Y z#igbI8u=OSMlm{(Q6QN`<@epr(}r>E(~CT|TMeb?wWoJlMluK({#)XPl+D%t%%b)x z@GH5zLuWu&xP3+a$yPE)FTTvBc5vPQ4m6zxpkL$$kxQ_h>8P@ztIXK*(_g;am`rV+ zGNpCWocz_?deXGYN%RWqD7tuy50b7e-eyVl#LY(k1Tt!3gV;09Ai!j~Cmu=IY5PQB z^dG^aj9HT*y#Y4*cJfQZb9fRaSNiD;hI>C2zu}>|Cz`bzc@YL)3GRW<4jz~ z1R#Cp0*;VqZLa1{Emcn~-hdX_U>uNQUxlECHFigwXQ%~O$B~KF^#poe}9>Xo)?O@0p9G(;jw;Ak(YNQEL z0j4>e+7EGNVv{H%0%FW?2I~HlWvg3q2&=Ew0v38*#aac^dTYf57jz4hF=J*@bX}`P zygIu?#Na!Gx~UcWT<+IOpeNiCzk7tiZ7gn!Bpfay>74CmsbR0#b@Te5j*_CET8F`byi@_Y+{u7~q$!S5gE? zx}^yXBdYHToIVd`6CX-di@1-i1+@XWQz^1tryu!VEJcl#GT^B}*<4`Py%b&G>4Kq3 z9jJGOh(kjqSE1-?$R9ur(=t(eHT}A>?9v#oADv+Uyv8$0rD z#wUOxandbjyHwNa6|K~{gPS}cSgUIFg5AB4H*XIo7U;WV6^jRYy7YI@t{a~%q*|$P z<0f@LOf+-XDmBBfdIdIfdxhbWZ(-nOAR|Yd)Syd{l^lyk``0j2H5NcQ>=4@WkN>*+j=XG&YPVUtZ zVtcvW2iRz4PZpn0{x`e;ERn$o0}~dDd3{;lNNo(Vy|~M}&0ERe(-CvO4JEYsvO;_% zhD({!`tZ{7(uDW*wCUP~LuqK@>9u&rYt8G~I53ZY^L+td$>8Z!RXdx4N_h)GuM?Y7 zczSebf^?ljy9#6fi9Q*)i}TsXO8m;`o)JXvZ+b2KNV=LXqw2!=M|KmNRQ~n!S_AJO zqyJ_!^=`&Ze`?IP376Y5GM80pYkO2bmxrGL9~aj(S{4BBW-H!M^`dV#ge!D}l z?DDe^y;{8S;TH{@uJy{h6T+v2RAu|dTag4UkeAyfwaZFm_kF#A$KN}K$ERqeXPW&w zO4Xn1PDH8cT<(9N+dIReAthQE-R1oWZ58bWeg&{_-rT18Eca%|Z7awRz4RW1Pl8B; zHi)TpFR>5|8MK|)5xpA`Hi@_-P2m8+}YSP-q-o9I_PHWQ5 z{h&KOV>I@uzfA6WR+$1{1Gr1e{$Vb=mYAecPqAJCMQU;H?(Yek$(E zQ`1N0W=P1qH_BVi#VzM@s0epc0`37LfbyYtF8nc+F8WHK7i)1 z^#GLKSp8Qhwz+r#(zD$I$)_MxhrzZzToIa?!*(ib0yO7%emT(}7DF zAI&pe@5#Ijd-$v->}QucQpFk^MOjzb-NbCq@-~OG@mOz$aiqj)o$~})8P4fY-F++5 zmC`-j_0nX<1$lf1Uw_;^9H45W2y6aUr|b47f^!EqxWcwa%o;O00igh1H9a~DYEAjg zh@V${Y{_&1PK0f5>Jyfq*H;q4z7_W*;VGP%!r{mc6tiIrs*CnBuPC>-yIbIUD9{8C z$Sa^H-Me@1y0p)GvBc?_KB&j|MiKACGSJ*MDzP(fXA3K&ehF>zXkpGgqh=KBm9hKF zW|dGi`0vo10cbi9pb0Z_XfZp)49_+;NLkbejEY@GihT+(0GL>QyPox2_bm|gN8X|kTjY{5I{0$UEw&c`pjw9&UFIOO`_Rs z+~cd2u*H$9hnGj3EG%|{gUR7bwPo|hVWaXH{1IF1Earhs*$ar=-Cz{S$sn0+*)?(* zVn19o^aCGT&fEar+_UqluVGn#j*Gd^N8t||SIyw9PjU2n=LrKB;!eqys;}VS?Eb`1 z083Ki^4;_EYQ9`LE~L%Sv%%*Fa-Ae5%P6q!g%}uL9PcK1?x_NoEA4EQeP`$&7vuR~ z(v0`Uh!@V4w82zzGO9PupuRjRm3Z)luoKAj>D;tI&R6!a5B=^Ziyw$Hq74fj;$i7GgZ6YT3JGH zhXQK~tTuC>=NY^vAXxJI^?+(=wb}{_1^^}PSC4>TV){UF1+3)e7#1Vg71O0@%u3bQ z?iQUOPoV9}m4A|fy@AD`(c0_S6&IzCmxWATUOI1vPd-a}Mcr)7$$RUrZ5s{3%gnCT z;D@~XtAFMe>VPWck|(IDxOCs)nlVu&V)!gD92e}*YzZ+}iOIFcG+l`gqg$wD&r;Nt zf|Pr>hOX8hN4Pb@J0~^c+q%0&sD^EiLA{r2*KCcn}iaaGosV>G(v<>?QzK6b% zYPLjAc{~~U@SIxsVF9|?rq1ds>W#WQt?Szn`yx-r@8@_)KHIGD#@&bFx8K?qTcwNg zvM|zVdoTzb$<;5JgaA{xEK@5^d-NL;z(%p3H~0Q|WwNh$W3hoc(Z{Z^Qn45H@NLMr ze#pfT5(*fVYMvjnf>MoA_oz88PmUI_Y2@3l0fA~Ogl;{cSVqj<;8ynL0uEy)_;MfH z=ly2Zol}?9g_kA*;_1T~0yj|$2CnOmHlTt|K@!7QJG#hY7_+1nA7+qI46?4$s6#q4 z>uc~61ilZnofhUsEMf{Bapy{n#b^#mJ=Z1z+ahuZWvwPJk1l~TvL{QRe@j+2z>R51 zQA@vI#d;&uC9fLg|jG@Hx~?8j%$4wQgfTP4&S= zghcmeB)XfU<_1w_bR1>WEd3<@Ze<*|q&JxGoBD72(0Y&Een*3A)+k7I2M5+#8r;?q z6r3og2u?bekdWcbnC333lU+|(4v;P0mLc0v-v^K(Z)tV?Sl##HJXxTme z+!&B@)fziClu_VvL|`%_AmU(`>(&j$cn@+7GOO@TT<`d?@ZVAv416KtEQq|}=Cmg< zqG*NX0mFbRNw^i{RfthJ6Ek87kRog|8AcLO@zZuf#i+RQ-;IEc1PXCL@&7I9ME*yT zagN9be6pm)sCOdg>bG!bye@ReEE>LDfLJEXFb^YC!kKRP7r6nKSI3ZrX_pYp1$)PU z5pJ6c26r&-6%>5LzAa*Ar^i$&v%?%Lp4(W7RCgOoCaJ>6WyhDhxlq zzx=vgpbLZE0 zCVQ}nE8OhdtL)7a8SN;VI}GK0)Vfb!s_^~{>~;M1c?pSOY;j&v0K*SSV(KGM8s8Ob z5Ue@hmLT4+S$B)~ZZJQVBvR3kP&n?!utKsRHpyN#)M)9NtZsCbq&wRwhd3`C5c_2216sl-8@c0{M93`F|b0A6^+XyejPB|67r;sIn!%i#(o8E!HUq9}|8eVeDHaqQ1|LIbFHn2S z`;;H&EK%KGstO!%MK)0gI!om_-T*qP@@Y!31$@AY-g0qGon0AKX^;VG$_51QFlIyH z;qS-ixR?DiCzZAskR1kd>r!sH3!B}dOn+Bu8eKBAf-z6xu@iy zG4L_bw4ZQCWwbH7^K0W7(A-G*%~%; z1G@*`>uN=+GmKL)=;f0ni~cAyEOVRh6}f9}-wf^(A}_l)2JE`sVTQo4QXvJRXh7ZR zzRSXB8K@N#WX7TD13u($Ar`sTfOGb0%=69NW-p&Sx(jyAhXw#`CE#$-(m|cznaU~V z-FRkUS^`i2(BU#GrSnH^Nl&;gdenx9Kbu=&%)%5|O#iVWk(IbCg978mEP(*yLF|G6 z<2G#I2RQI1 zineu!n!Z~i^UZ+_lm@olg^f5L4y&<%5culCfS3bLobpzSArs6q(P;t3;iz=f_F1gH zu@!jk0p|O`t(HS2IEbgT_eq$R5$V@<49@!DC^nkw;cYXbf@(10g>sq)frnwSvAsCO zRPtC^;0i7jd({;-F;u$0?+!^b4ruO094ayMfi9_2;d?9@X=HL4rESC>RB8r9+8j%t zfY$TD()0DuX@@a;CFeI*FFwhq@vNMhfQ2I|yTm=*F+Qv_Bq=H{K=P}Sjk9>qgN>^(sW`xR&k*fsNJwl6q0KOyA*@mE*0Cd0 zc;KESv{SDi_+KhX%)-?T)L2U?V^%&S3u2pb=E!J3@oOwQ1P%RACquka?}PqFN5i@c z@5kbgV#~IKR+I-4jQH8UHPKtbZD~YvUsrET^)Tu>hqo6P&#BX0R2rrt6_}2>NI0aU z@{SE#a{B~%`;>*(W7`SMsfauo7i0vs9Q*vq(Z2J$pZ_Gnzwk(dBdFm}W?XbS`^`3( zzh@%$-9sKR5s_tJkd@kq*>W;+it~N0F(VnXbqOr{X925X%bfLr#2sPCA}U!b)G_RC zphn&#KQ&yh5ZH+{G4#%$$3OoFJ%b{Z#j+647YW@9x=iZm z8PSi<7X)qni+YRju%oNX)Y9&H%977mlOu1Tq|D7(ibr&0)o&fBnj26Bqh;&M8K9t8 zZFIcZAm%r*G(^_{jrPl6RNl@{l+KkS3u}(Gx26_3BHCeSB7xY7z;~a4L1X4)|CGCD z5J}Jq5iuAS!Id5&mV;35hqA?Dl&z6VpK!AI%uyk_nX3-OS&W0mh_?sMVt z>4y2QOmxi0)k1W6#m!=GnF2#JMKKnRY763Hh)x>=PU0p_oe z5`A;uM?un#X!T6IOs17~7E5>J#Y!$wu2C_x6cDXWmNd@mQkhmD|LaU{`Y~^gtE|(GW3-72wg|1$Z_@GW5kws_ z+e_LZJT;+Ecx!|wBqT8`=po*4iR}c|z|gq9aQ)vL@`m(0XH!xAnZ**26pQg0gQ5=k zx$j>JJPse>zzd0JoYqj(s&4KZqQkI9-NyMX!K5g!pDjB_w5-ecyLHe)tQ<%hK9s_b zMDGkP{G{ZsSI*%CDO5Gr3slspUNNp~6$q(oq9+TN2_6TkIbJZWX2a`x&KxDdpygo$ zZ@CovMl4}E(G(F;i!0#*qM+w|+*YBMbEs(p5-K5PjPQs#7%{afi2q%5hbh@dB>qk1 zt$$?!()jYd8ap-i-2F7B@DO^7h}8kmE2FXNWwT7-`xzXgULgJ(K?USsJ`8|tu8O1% z$k9xx1G=|Ctw8F^3_deJQZs0_e?Y|keK~Zk2uy!|N>eJ0pe| zB^b0U?qWJwe;r7h~k&nHYclD~AS&|=r zNa!TLV{d=+1hRRwAv{MPSii}RT?0Cd#1-@Z>P*)BVitmOpuK(9=w*y5W?W2pC~wi2 zadvrT$Qkiq!P4aL&2Me(LJ-Hg4@_wtC3ucSlz{P-ezm#&!e65u{nvQng{B4W%p<9z zpQ7W-A`Hz7_(k=Zt^y@ zzfTQ6J+N~*5>r%dkMOYKcWLf_Su37@v*v}+F}O(P+YSqTYvr$`d3s71dv=6ErT|Yl z4@>ZV<;d8n`m}CSuTk-UJYTQAT}?KA0r>p8rs7NjCny1Gz&wDFRtKA~L%*>-P@&?Za2j=ky97X5}^ymG*w z8;B*^HSOSUXWi%VGUpN)pBx~jr_cm=jZ;j&Y@iesjfg-=9%@Kklcl6mQYk8vP>hF5 zbM7;;m*Fy?0EnxPh*A|mQqUkaM#Ws2tm`3}BoGxf>zfnoX98Bsh)XOW`cDfoXp=su z-ld|~l?WbV;alqQ+HrOC8SM0$zm207aUI!pZ&jyuK3Q()p|y~(vNY5Mt3eR|o;YDe zWZj2hHS*uf77$I6&MsdyG+-nrPEHtg0cfkC6*4(%2F1SXnIQJi4EXKF6H`Z;n$}m* zq$CeFG-#-y{T{atO4&&;+g=qJ|v)^$La&CymxW*Ui#tqPA2auRb#Yh)yvSNNMh5HuC zNTw$+EnhbAQ7S8y{I^udB#$gX-XN1P$Yg0*T9lpODz!oRAK}2`y}e0!K~9pJ^eX9p zgxH6;Q4f-8Bu?`Wn3_b1ci)AV#Gc&8uc8}rAO5os$zA#XRB~j4qymc`+v{_!4Vw`w6%8#Imsm<$rIK_n#>Ib$%r$ zr9(b2UAZhETr?rdOXXX!zIClYq}fH$_pENzXTp5 z7^QnQP6qVc^)Yt<&^46`2Z|gyXIhYb*o$X=Ss9E^r zlPCPzULU7&vuvut_)Psf%$(iWCDneAh3@Aajxd)`r}*$Mts^I)SI%83H>t)x zX49i1pWhGeHTKv1emhv_D%+n=PKNt(Hjjn4UZ1~~UGntpq>x8ND_lSqd#WCOf% zT#h*B`({|5yK^fy*Y_}_9v&I7;oF~VJU$5Z`lZ>QU|c?U)>)s6EYkJO@{6@tbGEo0 zq#~#8srxJLjRKJ%P%)B{5gv5ZS`=S@|Ax{0pJ@5r^{OrIZ)DA#1^@uc|Dfd-hK{Bt z%Fd4e@#g;rG%wPbb|e;e?BO1`Q4kEp-C_k3IgHI?!Lo&im{Aahp#&O?@7_P;I0S@_2lj5vZoxMHq+|m#1Frr zrg3RD-~->d*~_Km!b_Qd$-|*=`TFM*9oyw}RFh$m`HA7&?~$q3hUV4D3g8#vd}Ke)6o47?I`E|3DfV##_F4kmY+zbhGlqjxai zjD$FcZCA6g_0wH-+VtL43yb*~?>nklLE}Vwr4P$z+%EyN2k zd+%;8OPI5F{LtS7; zF)aT!ZOSiB5{&9>cf`bOGp_u>t1C=%=fXP^9V6odv!_wYCa2`@R*mgQ%gM1h!`luR zHY4bB!ln0a=H@aV>dMit2gQFktm&oegDb>#1%uBvw=DQJyUba?s1t+Peo!xs`nLgR ze_mfAm&p!U2)9;70^?Z6opx!ov2ISz-`?|ZRA~R%h^Q$ zch3!aZ!mgbyc|_Uu9rX;d{$}+d3u`n^uktjWMjvk4RY7K-2!ZgNOLgBa(lwThar->=lL_} zJx(CwVy0Gb2G9s1_E$?tq|!8@f+7rB4hkra0l=Fqqz3)@ysHUI80X^!4+&8BKqB``#ANjd4tkD-jBcSqt#1P^nNE zQ*r*EQXe}k@ngYG*~lq)pEXEzoD*`%E{0=5A8WAl*r*qok12gA z0D{=#y_e>%7TA$e12TVy!~3lZ^xKv+(o5%ue~aKV=H`4H?FHC*m>iTx;TyQ}^1GW& z(#N0X>q=e>4~DhK`)}OzDlQY!{H$m`mv5J8ggfZpq1I$7TL@@jCyVueGu6R5e7rxo z%i@3-cz*^_k&oy^6thHL_%Z%8gI=P(Mo$)4#Fl4D?5Z6Qtc{?N;)SEffa)=9srq{` zxsBVHh8tn)dc=>E=YWciP`=_^iCNJA(UHiPo|GcHoXXw3xO=;L^11BFi6grl=X6>* z7l!w6XdnvQ2@$i|8N(LG1$+0R~JPaxv}l@u25s}7#T7|aDZ1D6DIVW!>- z{6of!Z_qv@PH@I^t9*LN4NANtHu~o>7<8%^!dK0X!lm1gOmRdqOL%S$Ya_YF)C>Eg z@vos11U?vFJ@3n@^UZ5l{!ZuNVMs>X>&dON_owSdAK{@m2A@m|0mwsa;v(1F_c>N4lWXFR%4_00c0I3&V?LmADb0 zOOqYPjKfhTw97O62qg?YE{a4H`Ijkd#SpM*1@D_l(G3$EbC)2QI*5gRZ3>uv#;#HU zJVnB(eR5iF{%kyCg_bc?xXl`L#9>_hkcCZRVO-ELPzT$zYSM!+EvqB^NJab6OyU+= zyj>#Uy5Tg{_NPyKrc~U@EoG-%-nXvp;0|HYzAZ*beQrl#->hE&_n%6)>4Z4@NsWEJ0RoD`Oo-bHnXtnIbuXiauZLb&&xr@CP?$su$i(QN67Ym@i+U2f!H=7MZ%>VWlBSwiuy<@IvGl zoQ!9~%_t96N_;5z00}y15LVD;4w-|hJ-oj0oH0jpNFbJ5`m6GtP1srwchN!hzqOTg zF5c5Y*OJBy7#jjI#)s3~E52NoWvS$)Q5W#QYa1jc_Rdh9($j(=!I})I_l(}0#-cL_ zjT1{%pGiQ=mUSX1X&xZN7m@Gr$Zk-k>U4+$9E4lYdtHxq=^u^VZjAm+KgUsOtr?7e zvun2`Dt6tzsTLtpoX-i){1e0ymiq5RXhl8&@;sY0}uPsT1vPkql-IZ?|d z&7C`Nw!=Nv?M2I5xqv9GO%a7?6uR|8ka&ktoO=2@n+#oQjpw~&an1LvtNlGw{x!p? z&}yZyxougvX}SDNtPH$4G;(JM5Rngqt|EUHsdrvE5y;XZzx|WsWL&viw66B+d6aYY zJTkIFjf8u7r+sX$SE6y7Q$}QNt3W(z`$}Or$dlD~>o~TT$6|zyYh-#~j5R>RI+HY8 zhpoa72})KL-4}Dmu^f=NqirycT;TGbEHZ95Cq&+d^WV;cux*++MC7`S%R?5jubmW zy9o^jlW0IXLJ?NFG7esHF~$@<9`j+QkKn(-42DihlYe7y8jmXL!O^1YKE79%TnW3+ zJ6ev>nmN`wwzjV3yFkyF*)JNtZ`ikQ9-j3C{(!Kq)W5N7B2|n!5=>w@-Dzmj5Nx$41sZU@^K$o!k>}eFMkspBD>7+A%i0SH31ESvR&OW}^d=5gvGqHE15ctq92?=?eH%7Hf29#_P}R1NPPvrKFy#04Mk6%k5o1H~ed zuNwjRlj5v}Th&XzOXi<+Z$pOtroEzLN?|*Nl8nvY+>st%<{j~D0uU1+; z8S5AIV@Bb#$XM=!4!Vz^N{ikD-2W#!ihpweEsYBefc{1uD);D8_l)*&xt!ArPKk8 z=SFA6^pg-KbUT`Tz05=cBAwOjTq6-e87Kv45~N}lQ?NeazYj9PM{hDb6RD+T3D)Y zYvke7UUQ4dx5N?X*Pw4+CGVp-Afh1>t^@vt(o2N3XX#{NAw=N<$&9M9+xWGGenv2I z{@>;*>i$!RFaaiVu8Pj(-(eHTY#l)AsLQWX0q%N3xsTaYkwhqtpH!=>-;E}G;4)x; zlCRPf0Ac$#JEhk1Rw1)kwTK?MQB}r}mG@1`s00?y^*_R*`u_;TT|j#AQac5y@_|ch z*SR!j;$r8TmB$g@ir{P8TPi0YYnU?r{)}Qg&<3mkIZkbArL#vnq1?80@C9vvS@|yk zp;?m(|M?=7mma?#%2+l!#>KwI03unVIIcG;{#ET523d zzDVGNZj1WAs4sh7y@Nn0p~R;V7*(Pj6b=0{VLd-ySp)zes|hHI<_|U_Xg-*V06ll| z!HNt!_JhNaad8k)1uQ$14F-*^ANIEh8nq@wTJD#V@^TJ@i*YjZ*$rS;lQUa!#WAqZ z5DKA8D^P@TW0D2ChB4bte<;}}7{Qqkg`qPR?kXyb&F&yCfqcp#G=-MIm_fzVVe$U` zE8`r&L_m~+CbJ|gOC^R3i2^+&{*a9x*~z(}_XwyExCbM(gVi-Ysy z9LDoS$k24Bq0FS93 z38fWc^R$QxPA$rMt6!IMas+-piCN?xA7Wu%wyo^2>SD0~EMX+p1g#2>y*+haIRmd~ zR`mB(ka#PD*jdo*gb6D1T;pqgv|H{gNmX_}cK0ty$kdj$?eJhwqUS5bjWn<{ZEMh4 zD-+Nu+ME^=lJP-J?nqrKG~*S#HmYi4mkN<%5$L*q5TB$K?sN^6N;w%86XeQEuGlst zSRgG3Y1Jn!aYNN1_X#kyU0RrBdexa^hplQo5$v)%vm4vzD5E@WUg(8^h)lnnA z5}Ym-!<6i&bO(#5$-MVKv1RZ}lIqUCb^F`vTeEe3lD?=QKD(i-!kyFO7$44~btd%Eq37pzH(=TPEWCKTcIH+Q zei`-{A6PE{Dq1i&{-~|nF{yiQwWp_DSzKj73$O}IYA@`>at2F7`7xOqulK51Lvm8M z)r*N&?Pjff16Tpr$-8Pt=Px}*ywX`NcShR7HG7{!z8T~wxckgr3w*cqx2A6O+Tfnu z1=?kgPtzhf&{i!y>qhDKyB4uBYz(2Qr86+6&8Y^JX>le5M901umYwE@j#*75H4zmB zcvwZ>U&I%#ubvF)vRQE~hQFk8_4pl8sqfH3|H>hNRX`UgCnY8Z$QlJ0r36z?#&ki< z&K#BFQOi0=h(X+*%*m>yDqxwyA{;BZ5uLB#9Ng5)y&hO;0jbRWJHL)#y+I-j44I^+ zZf(!_lGjy$^u;DAMyd1_we^#}-*!hJ&JSP-bgDy2mC=f_-s`VM`R$XH%s0eb<#rGF5#{w%TB^W_>7i^Kx z7S}MEDhl_9AZo*@+}Vh-k_gHTenw``Q&lz)l*Wu=(|eScWEG|f;aPmE`}8Q9oR+0g zAocx*{GLZf99cIuE?Lp}uKffS!0`^(@jB684vcgKi~{ur_gI%M=$O{iqkFmFBRu$g ztys=m_kQT#YJ64Oq~`+g?G6XduBE5JjVhS|5CFlp<9T6I>_@9A1>q8}80ETH)0SYJpN zQQV?zv5P4nX+oq~5wA_G>7%d&a0n{Qe?JSPfD8!i50Sb9LEXBC)t$yT^klcNsG!-Q z`2OA%q~iXqh@}@n(D(3@GYKc<-T>#G&@>_iat`yRBsM3-Z>rifk|)wHA{>E6@^H8n zGQ=#BfwWuX+ZY23$tAnrN;Mq?q6> zV&ns%9Dz6|CA`w#Oc8OLD2`e@GJxeXBQ6{v+_HvXHBKPwyN3l>?6O<|P!}A);9zkE z$j&6teVnH+o-@9k7tYV{T%QY22MRJBLT`;NK5~&)Z1&g=N+=6}w0u%|;1U>sXP*S` z1N)aw-bBLWw#kvAbfIwz27@a*`BdGDf^RYjr#ScZ#pIpK7gc+F;}^QI$ys_Pv-{)W z{s6~X-A(Ym7VLFx1kfGzULUnK7&N|aHnFc0cJ9XPb?3>g&k)~6pn?8w@|P_Y4r6vP z9z%7WvqN~C6}?G63Ow4%R4>i2QL5l|Lg3E@tH4v`{`R(hq49t{LYL(|cbJbQRb5+ab*-D6zt$XFx!ZCnczQPPN!U&6i)mI=}%`6=Le#t}h}& zsby}k*8*1!yWLhD3tTFHOHUIMFx7?->!q`#*3&J*5-b8L0R-Ni5qqBd<*r)l(+X%2 zlD1D%_AF^{Zip=+WQNQZ<2#FP^sJ+V$`HyOj?&Hw!v}rLM^?<$v1~ReiYS__-Zg=7 zlc75S=X4svsAlrJ`cY4UF(aCT?$}oEp$i~Hi5*fdI(}m>Q1=7_Ps{(z#y^OO3HLW1 zpyoj^us_{TmQHl`bFWHJ6c@73GJIZElb}O@*UP7K6+Yh2V=(sl^i=8LmL@lc*9~O! z(k}pFDRy*;;4IN^2rg7XVAol7Bao^nzBe$SBIzksPn?R7MgPC}ddKKYzU^B$PCB-2 z+qP{x9osfKcG9uUC$`pGOMjQ5`xAYS4BmU4z9;{}ZZmpoAZdu<^S|Z* zY7j7&ynhE;JkWuFaQ+FW{3kEc&DKWrpBzah`tSC6`j-7VJL1R|ZD3bMG{0p zt3hwqrZRDHH3P$vk6Ki{T$}EJQU!b+ZO-#fg-7{gU9w3xGMdHPtG)Dv;OUxtZ|?Vi z^Uuh|GnWCg*Rtk}b4+`e-D_Qo`Irx4hPg>0gfW$Da(LJ5`Wq&G2j<+1Dus{M9nt+? zcg2o7S5c3;(?q|O)%2t6c^!GN+b(C`-JzaWdJ7$4|3uj+cgbfNQ`-8QjYxZ2dGPRf zB-SkOQ5d99T7OXXSrf6=p8tW81;Azo#&h$EZ?q(D#hsK z&+sEJwiShEW5!DABYnzM~gX&smX;C+y2i9+PHmdhCdAHLF*% z|B3Qtkd4WPHdQqs!P29MV>~%>-+0y3J&WuJ?02J$~pK-L3?@FEcMU2e8vAx^V%AA6tAXJbQ`C}`ct>}BL=9lBcz zekcs(hSf`*FhKWuQ!i3IRAYZj4|P&+??ycX0eqmO2pg=P#S3){FFH=TVVG z{&Kq|V`f|~U#-B?*_atLR#XIm-Dt@B#1iCo{#;81>C<3$$=+6@vrIy(lFbwvYtUx1 z%7^?-ebSEl{L)}o^tvJ0qxjFpfC-@ww!6{ZisPJwmBcF@^J)O}0W| zGJUpg5Zx;d9>;ECs9z@Sny?LE(DlCBTSruVFYk?zDC2j80zp09^IxB{hj zUQ#xetM(i?(sl3^gULCPeVhq`NubI<1#@mwterbI)~ZbTGn=;Z7MT#G#vx2SmY40* zv=e5Q3O8RoPK0_QU3mtCQ&?wVxY)B%W!5W-9h6xq!@=Ii@tBaov0Cv{P#9z9%=N_* z?hhXaO=;jzo0ZYpPd#t5LI^I72{0qPB4HJl=^P@&e9Nij%)mqb<0Ba-}nr#t7m&#~QW`4f0%R@)Purk}ZO^i%1GG0rQj{$SDemVQ(X z!i#psqi2N{a~v4P{=Ncr%jvS=bQ}245C%aK_JrFF9OV}2cy*SJcFp&}?O87-^JdbS zODu*}$t=j3u{Fl8HVD-5onD3`uxwGz?)%N1b$_pHt^urK69?A=mmzcO@0@RY)a-BI}a4Q^??xpmBK zNIf}dS3`03>6l1t7r6+0#M)XUQuC?Fc?uR-!FUV@o4=n~44)Lxa|RJ8B@E21rUj{5 z%10GtpwiNrk#SfhjtAjFU%r3p6jFUDsMxX777yyjI-hF%$#<1*YY2LxB`v=-mGHc! ze1gVjJA@ZZh5GcHchrI_6jNR?psv7i6xI^?nrWDhehM}6iB`t%!GMJ-Wc~j+HgjuOv z0$v@a#KKY|%#dmgaV=G9xJ+?a!?VXF+0TeNG_QQ_OqZMNZ_{TM=k@+%IYkNwOu?v- z+aZDZ=c-z?8^AbHN+{8l>_vZ8=Rz$ZS%;iF%MSI&5rQbLr&?S@QpgC`p9MHP1|3Z;^baBCnEqHPqIF@Nt>I#a&5~lC3Ea-)e(<6mx5S%d zO{I&0vSI$OoB4nF0enZT?$8#x6WFQM?ry58PKiuiN{A~`{b;jixRww|+NS3-)Tf?= z<~l+yWfGM`s72!TOnmXfRlYT2c*_<(ASJWQ4+wRialpG#s&GFol#&Dv0zW5I{Uo?* zs|LKD?SWqUuOSl-0gW&s9?^9I;zYWgOhH$OIfo|u9Z{BY@@jqCkk`j7U_K9AJ7{ds z7ZI)vvQ}8=Hde zU&paI^LQTir9793m!6O=5`jd|$bXew_D)nc=PnRjp5iW_qwUW7_s%aorg;W=+<1Du zW9bGkUSbutbKo4F5bP+$};gtW2KWY-4$Irc4$uEA=`hQEsdSqe_tw|!Y~C6k)7-s0b{Qj4rQ|u2Td(P*w)A`JJBoE0;X&Lc zB2sf8{2j>Gc@w9k9{#<)%l=gU94;-U)8X$M1MhIUxifgWQZ41*kouMpq{~|aMjZHn zxsQoEP-l36NIyTYZW{IS0)<|V_XwVk{t2WU!pqt#*j~Qi$#Q8bX5!$*1@QwJ*VNx^-=4c^^BQ~j#i=$L7nKTb z;Nx*nc_o=9`m=Q~pO3@=L{2%H)25a3cFEqj0$`4)7W*0mYrHLv-)_;t?Y|~XK$>kk z;`CY))(em)Q`Rt=ur?_5el78y>bO@Abvf!?=$?E2v3+buJo~AGYP%E{(3k5G)*_wE zrn&OF>4}=ot;3A2Mf#~CMqQ0Ts!7LV*{&r>z7azFxp9>?e!BD6sBC^ksrnKF?CDh= zKV=Cl6qR74D(1l#cBR5(+mPEqFrHva6yBWJM7*H9*Q8a4?r~lDP+K)rcTW+A1Fv)Cx&amdrDK0S|$%fF!&xT2{Y=w2w|7>1a!2zU7U~jcSPcU*$shm5==W0 z@6Mz8Dc0;5x^%Y%4GMuIf=%;; z`rz%?>h9+q+N2TFB^HbS5<_}ap7TZ1djA%l{J%fK={*6=)Zi#BG=pkbpYb=O+!og~StK(p0G?5}d#V}A7=xLKG zSeY&yqMfSvi7J)_fJUUWPx7SFj#4co%x&V7DIjLJ%RD6kSL9Vu%2%=eXy@E3!W}0-mq<(>C!SD2CzRKP4ixEW zftTo}$E2l(leVaW-GZVFl{-gtxNxt7KxAs^HCey|pPACHH+$f%?}&ogsU9Q#ULak; zTEl?~_?5#2<8$%T>|yAu8(2 zS**WQeidiZ4Xy4+qrr-t6TlI0y`tX@i>U<@nJK)06h;oSq|#}6&20$e945Kh?vAnA zDc+p4g~!oB6Ch@uhM8qn7^4_A>oKUX`dMuzfy(4Z+NBS&)9SI=@Wp3_{yoPn)QP1T z!4K&`W8MkIh#Esz^Bc2&=ZvZJ0Eo-ovDV@WcIQ`h|6Gp(rY&>CLkxotB8nO)zIHBkVR6BMmgOs*ErYHLro(sCRPMF0irn zCTOQxS-AQJnEHM!32KU0^|SBX*tV4v9d?U9mT1LVl&-)HHePAn>>pUtH)pzeQ=8=3 zvC5Mhk7d>$4Uy6>5pEGK`$_=y+3530AviL3Rdb?mF1M~EQ|nO6u$%x#539R?zaik5 zd!`prZJ`KeXzArsjUSDNYbzXBx@89|-0-nVM^f4%HOcx}B`n(vQ+iR|vHrde^TaS? z>Ux}WJ0`E2w`~7;@}9~TqpW9nj8$k6wM?RIU5dxeq||8F(t;vJ6nUdX(SBo0kttZF zp(|+Qq+V;?Lf@!Ydp7joiml>rYnyuQ2Rwdb;;Os^wzPsYCQfJ_ zc`;@u_zO3Ekb*rv!)sGO{dvE#t*E)5F#3jAhM#WtN(b=ClQ-zE`un+t!Met5w7DFN z`2lX@0aw~)@>yb1ynty~cP}~}9B3)X(#a`1l?`Ti$ocv2_5p@tM5YTd84A$wE#JWW zAHheVEP%KrCC{LH(zc1H%iY61#D5LuXRwV{^zf*s` zyKB7qr_zFb+%BH2zTy;kx(zVc--Rc6L`M3@YH+AsYjn05)6xA18exf3BUq^_E=f7U zaJ)IcYiNyVB?V9~UpH@HV=-{|+hls7Pk@M&mK2V6BY6SbOpXB;>(l{KtO^Zm8%`T& zwDSfrW|hVf{5eI-mg$2h`-y?Nt%N0~Y@9yo^(bz5r3YLqo$;#bNL9lP1}L`iEpy^B zFj<^S76qxSp{>{48H^%U$cqbR1;h}`;8GxC>57#uSiUV*L z!W7oe$-1~LjB<+(a5*qEpc*f>QrbNX z%7Kk{><2{(K=YgO)b#u2>rc8|0Zzo$qQT0@h$@e46YPH!>unYZTE~0U9*ahBz7PDd zSj0>@b3IjdrIzP!z|-1h-Do4%X^-T_yQrcj;%XYYmRe{l+vK^Dm<{HNa$rkqfKlM3~)~R)s*)j4*{SA+p2S-QXX=d6;fqM7FGS;->`;lo=6J z85eN3PFmyu|B8}ZjUu_$_DkfGqn6E7F+ zue}f}3#?#@U;-OVmtfyxh||nCgZop6D~I?uXeBs231L>`RzS%sJMKPbppa!=*@6=7 zWCKJu^UQe8^Y~?)N#~{r|1m_cU0ps-8IQnQUiT&*-}XU3TBb+aT`9rCz53z^dJDf*Ymf78T1rt_V|#ZMv6CrylPYaDSUp|LFz3>-;cs@3u)#p*_|1+?+gPQZ>WQ8B}Z-@X$O{hli=C+0@WYIXs-AMNRcJnesN`X zX62fnit6`gW^(SXl6aB}7ok_F_^?w!_^XXUX4*u+p2#S~12;`pzn@9Tj)pJi1}hfn z^Zeo=sl> zE_F)>L13EnSf?GPx@&uDnp!k*R7H6k-W(O9Tel%fpP=0!#mzN6Upmb^-|SWvE`$Zrp+&Ub~i3Ecf}q~ZY!d6h^8FF zf9o^Tnet|mf{!_2+J48aQb}1D$@~~ttrMwUi)2vhB`Np1@qk@aou3fA$=pa+I1k!Y zYc7{O3*Xqy?4|RqO9h|Z%{=UsYGr`cKqr#ijhu=pcja->EZU$sEhLTx#PMog4IPkV z8wwUJchP&Q#|6A^+bcx;2m#sLOxi08S9GZV!Q{<@p~&H7R0Ex7kCz+pwj>O4zYe{V zWfOJLWgWd2Xp1!0Bgl!dh)S&EfB`9-A^b5K!1>&qt$!~5Y_B4EMgR!7TPk-y-iV@& z=(KEKTZ;{F{_@!VuwAS74u>sG(~S6J1{tlGGZ63f(7^&W?eG`MUufPt357>fZ04xL z>bP|hv9mk1#Y;0T_4gWz{mNgx5qRI_@%!RmwiS2{6lN=^$PoS|By{gvM4uWt2RfLh zBU!%kc^|BTID)Z^IPrYo+Zo29cmR}(%8Ep9zx|G;T-Gy6!TONreuk1P>g{PYLiO5K zLr79!Z!~FK&6uGtU+H$f!kO1$gtpe4+D>P^o({%kYip@+9{4C+Zi1i_N&725O_zIV zW@{FC!&~P>)5)Kv))=lacc?Rx?S7!d1Wvn0bH&KTKLNh~V_k+q@9{47yCudA^@M?h zSb`(GgWgQIBE&UuSD|LyeEbVqh%>pE*tTojd13BYTO1yVQ^-myi!$)aL1t!;cG3-L zLO>|z)#Z07z7Num^EbBSTB!S^T1tao?YeqCiTb6ksc-TMFT`Z~AbeXxq4&$%WNMlSr7rn{-`%F2K0_3ZWwIqQ8xy#>503NrA-2kl#D{r5b zxx(J2>9bq>;_F+;qg}F(VaM*Y_E!cf?j7Q6CZIPm*CP|hY*oz^eJr(WW~I8^5vWwR zaR4=yH-?rCFb2{D2)o?gW}-30Gk@i-B`{vQM?w!>l=ONkU_MfP95N0K7Oyu8yQR1` z_|E_8LY~%~1G1ce));~7E9ySb3|R?pOis(?iR1mzjnJczpcL(GB1o=ioBxWAj{Vx~ zq=7i?)8RDhK^iC2zFoYb~x&nh(FIzy13}rXeArE6sCWf~^Ag0gp^+U(doL^FH zQ{MEY|G~Gt0T;s;DdIytOW6&M;EHz{WYOtkL>&9e!tD+B@Vr=p$QTVX%Y7np?b35v z`N*;BR=m<|(C{+nmf17GaB#9FFjAsWD=`}|Qu2i5ZDUx_f4SVwkg7)Eh^=wfYZPbB z2)cZs8%6$^im`&kI%^|9OWky&m_e~9@iKLx(n~8hx0sdb84Ix zcaPbm%4Z$R->BxDy47R14VPT`HmshLf`A0Cexn7CAZ`T&`kyu^5NgWBO&@P)60q7m zgQVSD0yIUp6ut1?XOiuQ>enTE%}_HrF)*moTI_t-Ll4UrIpuxBi#I0+BLu~@S0(Xa z&vai=r_VgKU20;;8%r3If_HDNlB?7=hF%+{h7!=`DK7KBub2R9Wde!gKEQJUCMWd6 zyUk2{Y`XMG$Ct@y?vu>>Q58d(q!UpO?)^ml-qDwWi+D9=gy9pN<3G2v@>jm!(hBrrLSt&88M!Ui}TF7upoHe zw)ff>nzxxc<1uT2D|AAW?e?X&^?s(&FEW9y_GvJKh;v?R(B}AnIHDz@)L;t2-VDI{ ziYKEBKV^T2HQ^oLUh4Q{p6cW1VK_iJ>7}r8dQG|e^)DR4CPrc*de@AfM6Wj9t1DD> z1X&c4(Vg6vkK`;G(j`^yS$){^FU+~Mp>l0P*ytTk;fop1Ui)8`>l(F9w(BzO?X4N6 z&C#MdI5%0z2&cMe*K~fm{3iz?Q*G(HPSo3hFz#OBns7&$mv(8O)jh2g!xs-RvSSSF z5=GNgl7PF^me*+YIgV)Upf_EX*-b`Rn;<;NfMmoi!kaT!8C@t)j7u;(eHZXVUN;Nt zPHcZTPhNU@I|_t3*LKP&tPpoSA)rY~;Vi_E*-MCBgC<+uBpcva zDSWNSV#l^^%$mHTo^8XnEqS~O!q+nUbw=K@q+Cewh2E6vnP9porYn?wn2a3bX{e(c z;(#$EX1kQ$U&MmOts<*wCkFHA>;HtHa1W1Ry`xLhR&rq zodY5=W-1WwAxQ5J(JaCL6oURg)w~5K2Q4n(RB%w=-?z9H ztmq?%`})}O`xSn}Mt@=&Xi^|Z;mH;q2eF(?9~K_2<|B95%1wz*8g8y3#x;WKm)bB; zH0VC_!ppb9(yG>1R+^E^2WUE0lK*asI9{&G)va>DTs3U zP7ytAlvz$ZDdjkBbD>{VgT$T3v3YVbmkSyySEv?@$E17EGj1BkL@4yUUN3Q}W$GMc z_c`ztPb)nT{y5hQKvqT>56*Z)H?a3F22h6cF+R4jfl+-sSJknI_+SugFx?5_l4{&U zDdG-o=I(P?-_L3%71xI>HXm5nrN~00H(`|wq|bvK-&9K<-**^%`KbM!s*r>m#>(Rm zxri^#y2K%^u}{+d)2wAKn@A5&PjzaWkywa2o!n2HEmLFxRA`SkOWB1^y)ZN=>qa@gc4J7LpOcPtm+UgmPSB#%X}(bt;d!IbW8h%RWl(v_ zys{{52M>Rvn28P`_O18ZZTluXJSH6LYt(-1PdgpJKlhYsVb_84{)wWTWEQUwWa6?{ z)G)I)Q#p|FOjm&6a zFvM2FBbKV3g!M;Q^@wHdSVDHgA&>g1#T8MGh4pQWF!f`XFfOpyU00ZhYwvCC90vJ~ zO;5fQOK2~qORMhjaYc=$Tl~R?1A&htsPtX3 zk`KQ>i)(6B4X76^Ju%5r{U!;in>T!#P5*MRwH6>Mg#r|f5t@%L-feXfSd$^XU6F%9 zwCM8Q`y_F>GA99q`C12rL=L4OKlOpo6Nam^)aqU1w`WI@u0;gzPHnN*-pWJ7a(u2}nmyaE1f@Vr>A0 zkOy5C)T<$9gAj!-Wis)gpNp~RD4X20TA)U(8VXh__ne3voX`3K90!1I!vD8?E2?Ug zf^bQ}2w(OB?knERn6GLwicg0;?iSNaUd@<9go`&W3tz534gZ%(e#I(VMS-^PvC;!x z1gQXeg|=Q{#cH7yTp+&M@_7#fmW=x>$3>0O;;B-T#3Bb%4CnWDMuqNS(p^kR7QJ~D z+YNB*7^7!H5oHtDFaT~8(8av&Mr zB7*OZyE0 zm|0m8cEu%z5^uPN3Yz6@bqB*p)z1un@{b(8V{s**aXA>QiU#Iq@B`GQ z@gS{C#dA)?YtTgZa{RnrJtgkvJsBHk--NvN_H12ZrV8_8HWAkLPS>}sj&^3muOKfR zA8Z|(?mR5^aOhFB!_2*|Gbk1Th@Cv-jJ-0}R;j1fYokn{%VPP<6Ej_~AF-y#Qznfu z_BWGj`PG?1W&M?@tgZ1;hHj6T`a`Hz345)Zmh zf&zt#cwBvwaE(lzPYbuYbwQ8!^Yha@1-Vlut1%xRLvSC@_?<+Hp(}(mjkF$~We}S- z9w>Dcp-L83qYj-)S0c}wTL~{FLlCa`1`Gz1Zy6XBg!2m{dkN*l4(MguoB^wzZh6|+ zk%Adff03Bq?n(vx{X#U@T85MgKVz-z&%97{(q>;iQ19VBcV`-SDFP^q>kk1f5d&|7 z5;-P;R&i@?|zJtrNVipIKTa9bHioUjB~LXIo**?tbPF7gr4W8^7!2wqVZd ztqAAC8_`P&W5r2u_-TD@VqHRD3)9ZL+de-=9}u5c*=o18!n+CxLTp$976=QOKwf_k z3NA_*u&&NhgDgH=m0YaFF}XSl*U+34vdq?-wwXf+X%p(|)WjtzE)i)z!3 zEdA(<&$$9)e*aZva3xV{IBz{&N~QwArv=0T+^^1?wkvn&R!G*#A6U$`uLY8c8eBUz zbp*(A=IvWfMGc4o6qxA#VvYIXV?uX*jh#nu_)GFVRRm(aJ!_X$CuI*ndpU?0=Y+=& z(-yGc$cCbgx;l{bC#rubxoC0M=hln`kAw!cr^=BrRoEF%@F{*j2AJAlYI+Rq&CT`Q zdj(4p6$7JJ*620841P0=hixiNK@P}HJ9E75An z8sQp?=jdm`Jf84Mx?mcK`c-5*ebuJtKrXyh-v1jO#oUb4HMrKcMklsKo8)!8~g@w~MQG8J-XU zkl#e#LIi%)+lWLe7FN0b&~p{L(^8-?efh<9zR7DL(Q*0GVW7fz0rhPNWhn<_q~|uJl9vMVfpf;R{v1zEb64lH$J~;1!NQ(; z4d#vAL&q4AZX~md{rHVv~stW4$W`L5*(rNe; z>N!RLmuupUK*-V8DtFf3sh@DtJevED*Lq)l0!K3Qc)m$Ou~b@m;EG}65KADgLDxMQ7*SHHrl z7d6<06>i_QN({28%H#_x>&387D9k_X);B5_H;(EU{QMNf7fG3dTS;1LAqM;7P??nOO6j1_hiBbY)( z7+QzPTAcbbKD;49mh>wzgU!5$Pf^XFS!%d`KrZo4D%|+;z2a^~Y4tg-z>;T@lajcg za6WefzpA?3EEl{t$+l5t+sE8znYKB(v(D^@hqEghcXDFunx*$IzYud_tG?LeZQG<0 zz!__UJb}$~U3Zd7voNv_ATVM~OU3`-Ve2xd1@d8>c(EiB8e0*xr48SW)6jU({;S3` zg}&TMZx$L8qyGr^nISP?r+w0Z)v&TGl5ChLj~Q(xp}2P($l&~r3Bg*7)#7%AG{m5b z_@j+mfF|XXrWgMCLhv_praNC<8Awq;IGO6W13wQo;wST8bM61{XXa&K61E8RG09ih z`B~S&T~3l@mOcgkAyj-6@PHC)>A0FnRrqg5luyC(NV0f{=Xg6Pn;JqU z__Qe2ZmyvNxh}XNWki}hBPBcjq;3RuW1oggzKK9wdT5~o5Gb5jt}x3S@LI0tpQ4#l zImBy~4&f$uZVQ2-o4GfWS?FV+=jK{7g@Mo=Q(wTU7>>z7TgPA;_poW{Lh6BZ1q3^L z)HH^Rq!V*uDeA6VMe&s5wV($zruXW;TDyrrzYmyDmqW?+QAm8mf0M|(w(axmmA;YpNc)-JToK! z>9fu}uApC1&X<-Q{Y-x@dJfw%97Dhu=>6^kw!NNqPiKQ$k@qzRN=r(xji6?KIQqb1H-q8z?w&xZqD)zW~+M==QnGbi+5U;^idkP7Bd~ z3Gauj?TaR-%AdlzuU5p@OCZCc&TZg(0N)|_WQPyH+lr;BIFgfos$1#>d zu=Jtig28i{fSVAG!!rj{c2SHpV{{ zABW#Dlf6E{8uoD`Jd7<-(b*a$`#E1Hvs`? zj5u%dO>EvxP-))~v17gdZ;llDn_-!Yc9zF{lGC%ZptgyUU>CH$}ALsS?n1$?FFOz z`04Z6;s1vCQ0T3yT8I@{2bOJWCcu5Rp|M!y@1-sNZrLrbfdkNH45KJY_yxF}{>g(s8ChCzcaYr>p%^n3(S_T4@{4`dz-z8R| zW?}HaDfcf9S;r~qcxh=BOE=}QESo~6S~h6Bv8vIc8te&Du{mF{yEL>)vYaL`{ej^i zbd*od5a;6^aqxv>_Cr@=zZitxi>G>Dm9>Z5Q_wRi8p7Rg*!k=};t{C~Rhag3 z{EPLTX<+<0wohgSXx*F#;ziA%UQSe?NZ->etB3A>W3@s9^(fS37-d#Kk%}e?PMSQC zs3o`fENI}Q^g+q#EuUrU57@cL0;CsZGPTH)H1k_6(%Fv}$OVF4OI)^*7M_l3lBOe5Uf)>I7sUPbgq8y2IT?-6$Lag+;k?3}36-a1 z2s6+DJ(IZ8gQw1e(IH@ zRot_>8;!Wj>S!9Erp{FR1)o7(%ksEl8nP2hx)V%l6KtTr``nxz(l?y+x$3|@wEJ|K zJ>d;lYj1IG83(Cq96H0c8(3>QK}f>RZDGtrHu8*vXqI@#fSy)^41mGa>W%VC>?mUo zz9Z`kd3)akv3W)~9S&QG7Q7MT+T3UBkr~=$CL5Gb>x{}J!Oo*ATa2|eh+ZXk+(l*! zZ=kW)&+5RsXhrbkGZcBLgiJn_cax10sW65>!5095QvLNE>k)3=Ato7wYUHcbpO&mi zJ_cjmDxn;rWs~5fJ{NVmB8n{8OPZk2I8+R+YJm7VYf?_YQ%7Vukc{95EkY72nJM%_ z;w(fJwHD29YQ1q|?kOP`#Ab9dvE-!)ZStOlQR@b-TcvScIpaAdtO8nc6M^bdJ5V<- z8;j(rOQbVZ4m5FN#;A7g>{)GrhXppAia9?WNF`Lc`flvOMtxjU6eyPwF4SF`_S(tr z1GjX3N-`ft8S_y|BQHi^dS`X#~2uy50o-P?Qz55yi5fvMEs1EmryW zxpEg@+T$dcX^KClc4<@zfMP{7QUWt^ zx_7WkSTL&$e|s{fR#&k76p$aWOy6eh77_#(tyhtQjwPy?0mt5J?1X3vwC1mb62Cd; zn+$5X)(A*B;|`w<*#XkQq)fGeM^#{F)k)(^;e8di059RfU0Iu86;fj> z*;|Y>aHY4{m9yC8`V)oZrArpF#aM2kmn2_z+a**v3sg-z#L(hbvi z@2}UiyDltKXx+#ProF_TA~5VcE z+8cAg_1q2?m}Y~>F9i?7d5$DR6QZ`?e{TL}b#d2`%ZeCbH)jQ{NUS=xi_1J2;&uKS zIHoUSN#%}D3B(Bk>{$VhEV`?(5d)OiG#d0|931-kwjzQ%vct_!8P}{E@fcV?X7IxR zSQ+g$ut9<6E1-mU12eMgfJLGorQN6vs5e;XSpJYq6ZR8~*W9Hk117(T1xY|yGe;C4 zviFLiaBoRa`_VqVG+MW~^dm>}dnY!+_n(*$!n5}dcJc>`eaphTk>Pc@uKU`|LyRcB zBT>ei&q7k|xY#)dL#JrY2RHx-!BduEgDl_(0y*LT-VIpJDC&of%>cRz4+4ILgeU?Z zcx>s}wn78m7TN58B0gsYe0wPVsT(G|@H$d^=nUPac#C3354MBHvqO2fx4t2z14(Za zTdQPIM-8tch+4DF`jhMgKv-_ja+^JpGx-)>6-1fDAS)=FA}#@Z5iA7upe1YT z<6${yoxU&BvPbh}Xa&W7WL^qKB2Bh|<_vtCCG@)B3PfhJ&=ChZE0O?ecXFXGmDQ2P zzgIjwdG+1=%!N>HL;}-B_RNk-bJ!do6t@p*=}sHU1ESP#5kL7gBe}TOiUtT(h0$%HIxp=V_I%J>+$U_JzmcWY^ zE52RK+z=*HuZuP#59w%_&U&EJc1tO_L1$z&@DNHVdZvtw%CWPDjATvtu@upy#q-e) zHkxs(h;eQXZP+bM=1%W)pZKANIDfNvW`KNRc%q9|Y$UONMfi#&;}Y#Ygff1;sbItV zFLQ~gBquk%S3u5fG%ADv``kix{~p#Y3R0`--3ePa$=2o67Z6TDnsT!FT+#E^S735{ z+513`|B;@bxu);!$gCtcr8dsm3ly{VTqR0_($+f`3#Q)=kUOVuq=ib?jE zWNq+d12i%}UlMG5QQC;Jnm~Q(%gRqy1N7R$TkgwW*4&Xo?jh&U*~k;y&6~oNI`5x* z<;zQz-4b{vaomUau2l!ri_I@9u6S~ml{@E5i8{-(I!1*~@j4VgX$HAQ-GLF2K>%Ir zT9yQiB0+LXNw!&>)y`{>Gt}YtQ(TUUmDPFbTvgRcZh}slS7o5?4*Fq8x)CddbNn-5 zh5g?5jR@)kMD2WDYmjRWou+X)kA1dKoq(L^CEs9=`HA4byPlui(%ur@_3^&FaF+pm zC5;HJ4{i>i*7{CnkAhk}J_mpO9D$aapO`G~EA0uw>)8f~8%3z_fOD2lEgN9=gw94>ms< zPW6DZPp^7&P2NQwS^N|L>Zao;D}W=qV9_mbUJTd|h#3Y{zGPG>f$OLQ<+o%6J|6$g ziw9xVD**ye7qOdhtK8#(vx&WODS(;tYUCbckVc7MA0E+99fA@M!=0R)?vr^0ul0O$ z&TDa^jAg_pU$rF^>2i5-AjYC-MkSw)e|#$?&FnOF^4WNNJe(KPp{WtDX?8kA%5{q# zU5u<C?l>THs$6yq)wMt zZ%(hIPIeGQJ_(gL2WgSGyOiM*<^PA8m#UYZUc1t1s;-LqVr_hQMys5FS7W;p=#SBu z;}@px*GSY{y;kr7JbL$cvR4X!f$W^B0(KFl*E8h1Jzl`scNTiLuzz-;CN%!t(weTN z!BRK1)5-s0@128WZPstW-P~=PyKURO+qP}nwr$(CcH6d%-L|c%@0{P(-;PSz{&|)_J4mx))4$ z_`-IhdVe^eeM$3?wC!d1-Cpx}lHwYTu}-y2qPO0`vr%v-c!Qv7VQv7JuCC}e>C^J` zE9-50P0ht17rR8)@}KTX$8KTgi|P!(9dY;%6|QniIjN`_opTCRZo)W1otUMWzpR?MpJm*yDz%(|u# zY1x}bc5u>q)2*!>CvY0?+2E^ z+Y$yD`{o=IJRV(t%hV^PBkd0&Iv;YRGeWwtFz&Z_llcX8S+GL!Q*p$M?8hqwrM{I@ zYTonYwIZ^7r-basf{GtlAgSzfYB;16Zb^GUo&AazrOkrv9;63w_DQb~jIrn9$WOgl zyK*0=S23tu69)f02U3v)M_*?@dw=aY8Lm2CdvX%wxUmWW`i1z}pBUyc>i>9ypd(fF?Uty6bG_2fTUJSeFP^HOED=!E7CX0$Y ziQ`^6LKp^u@EEMEyhxIJ4v9kWsby|@-beQp!~YJF;VuD6^k?Pggsm~wbKN|s+FRbm z>SJC3mEE5UW6kl3HmmK&jhO0?59R-iusLFnMX$>h*2#V}T6KN{#K=VUgZ}-EURG5j z=MP~-vRZJ4?6q0UQH51%&PbJ*kevH?b^kXt=Rpaek}QfzM1Fx75W1;g zE&zGun6il25K_*DWEgp(hVQ{Q_B(AyVeldaxjYUzDQmkjt8C0&h8)vi{O9~5=O^vB zh+ZHS!E~;TpZznxR5EJk51rl@EMyZZ>2Ns%P^D~73biFf@N^dKRCOi0F6!r^Td4DV z>T1r^V*KiGvGh!Ut@Gqz<(UR`cVlG0Ad|mFU^6k}dNMj;=244kE@zlSZzW z@4fY{Zz4n*A%2w9Q(h}w=san$Obsln{v_TOs zVaqi5a`i15yc2&>CrY*1GW@z)vVeq&#cDO9YFo_ZgdZ(ICf$aZ{bpEy0d*lZDbZU= zts~E|{9ZG=fKqS;ooCNRUxBbfQS{f7kqsb{$#Z0b|5cPB zpSnyTKj|w`@jl0s!9saCtb;o&kqIe(S=;sxyoL4H?()xBC)rZ(-Z%NY?dJ zg!wd>hZ(@6++*GkSi!)31lg>bfrm`Iegpj{N#3XN5Z*I@OPS65k6a4Vzqyn(n|-l_ ze+AaCfJxDzC5;_a+qm=JnlTU8+^NyJ&d@#)2$vYgP$&p1v@8Vz;tbYoPw_WKrAVDu zlSni>YAj~?%iV-@;_Xe07=2zA_NkMv!~vQ-){AoQVzPMZ@qOYMjz}MMB}}%lWzD`$~W%)Y?`y?1+O1NjWzDoB3i(Wy#CVK|!R|C}hHimkhJBV=NN0 zX166RXAsQCZ`|}0QUT>YNO``Js<*aGFCd|URX(VuGljR&Qsz#h*!#< z^$=c+;-}$P-6*=clmQ(bV;bC-MscmlT(2~hf{|QuswwJ2`|yetUDS--KYF~`Ee;rm zgd*`~qk*gX_O1<_8v^YFy2zqmhjr-XZ%|-w`4Dnd$nT&__fUb#kH6Jv6cymbemjYg z(UWe|o(qI6I0Y1PMP#z1A^Lzrqle%|ylIIz7 zi%nQaaShrWJ&b)6mBJ$xQd zO;5X%eBMoe-@wbY2O$0hqLcc)ZW%|~Mr;^W{`sBD6uXpF$87I9ladRcdhg}{1v!s6D@6aJY@7&I9YcNJGZEa@D`kH zYN68s=sv4)9eg~qy?-c4snab1sPGmDAn>U$=;Mc#R<&BFms+TiC#x%>46!*$F;QzV zS!)^7s&kkfp80a1unx9zE3d_{sP6icY!y>LvbJ%|F3=^;ScbCz6h6Mp_bZ<_= z69Xvm$WgbMG!Ep9r;N=>dHf3OQ3Qcr1AnUHk(x^w1J{`hL)po3s;n!sCLLNO1m+Yl z{v*Vzh6D)ls>4_QdZSb)xn~SE8LSJbOOfelxNZTTIk_*eXYUy3l$(%e<>sTau%FL~ z@Hnr;gXL9iFN>gnQ5+?Tz}ydsw8ZzCXz3Aj>)o$UMykxL7%`+53Ei_DnFL>>*Gb`3 zHYO;;sLmINg>?0JW|&arlum@$f;ZH#=Ws(Y6aPfJiw6;^cHib(emLmUP|#IGIMRzJ z(M3Bb&8Yr{Q!DVT!1<+^`WSyT+G4=jfS6GO>$Klqc!Mt$Ed+AHREWs{#jh4!@?w>c zA_X=uOco;pE#_51Y!VCHEHe88!LzEoOT0re3k4Cg>NObZv=NV=m?55$G-qN zyo-zZ&lkhqGGl2-qdU`*hxDBCi;A z$`e&L$7o9(BpCP^ZY}S@#*ED6oLF&y3=djCXc0-h)zWN>NF-`MgyFm*r?{b)nR!Cl zcn5|@y@vsI?G{%V+`r7Ty%77!tVzUpxKF9YCIlmpJ-bL>VEzRPq(e?niUotyOKXpb zo50*1(n3d#@*H&d-t!}A8~w~`A?u@zuJd1;apH4>7YsJ9pI`UoE@mAN+MFDw;%oCzo;kPBe= zKMy}qBJ_hBPC1BJZoG;#Jw_;TD?1Y%4RA7*A66P8&N~W!+3~E+GT)?5(*NLE|M@)T zs>d_GpfpqD;$-UQO(ipSEm@g1VuHG_r*ev87B*dG>kQE08JXi|QlFD-tGZ)(5xtUWZu*1;v+0&!4XzI&alQHIJOn>xp_q37%onTkRtS8JnwX0< zJ2CtY!UD(uyz@)9&IlE5Z6|Uqj(02rC%4aPRp`JoH4lqWepQUfjWySj!+|^mw0EBD zZl-6(d3qUF&?c^cPwC9>3elbCC;%zM+F7vBi|7TbxGc9Dr~|}W@BFh{*DN%{0yCmI z-$qwrgz9>TN^~cZhL`2Ng3g@)o;T=1U{wrq?_Nm7Y`g`ZlX3oZgvM(Ho~F35j}!Ys z^L^58gIDVk)?TFuBgX=}#VQ&_4}+-gG&EKJ^*4jJF0|l=V~4D}v&Uif0~F_*I@BdB zzM`@yx!q$tEF4sTGd&m*>}q@U=%|u6QP8zxtWxs=Rkn^hepf(@Pq*MXK;22bKUELo z^l*=>f&PB^Z%i9e{@dq|*aFvMX0CQGF756|>R>U1CF0$`udO*I2LT^~Y;42@>IG)Q z1Y!h(3huW`0=mix1UZiof*B1=qfRQvavvT@2y<7>$5==dD$}FOKUN)(@;?74sS=JT zEBDIVWNb$pOIj*acach_OFP=uABb`(@xiQ)GU-@y#D2r}cHa!|V07n+Ect%pxS73na(@FBqbz z5?9Rn_$&Nx`MhfP_m?Mlvj>Fp3>CbB=W=>OlLym4XF!laEb}>0_2HM&(%TWG@pjgs zAu@f1pZ!~mK2_bY{C7R=EwN`NiJZ28=%)%sbqGUK_uO&=t=>cTHn`y;z3+?L-DfOa;?|Rs*)YtM0ysIJAUd|($YY;B<_6SC; zdswVCoe+fd)vbhx{Z5@|rMN|Xjq`9svsG7qYd$T34(Ud zvq_om*EV}*f9#0b!{@Q1kt z>W)A^5-PJtsU2M^lC&X^o0!O?k_fD&t%^+2#}N=7rjl9HumtQYfVH9WJ@n}Zj=u?y zMIs44(rZqsm2%#4Yxv}#Fg(j>bdcf$sWYzyeD{{hZ^`y*vG+FtaC8WBH=DcjNYZ61 zu73w1zU?d1V6G_`5R;SA)&1u5l)%@hJzk^fwK`W2*C{(Ok5+th*2v{E_HDnFTU7EP z86(#wMgY?OAc>t7HA(DW;K!u*nAXc5?!s zuh{}VAEQRTgNCBy8LQco*}$N7BN-t}`Dl2cd08hmZOC%U{IW5v;+$KWQj4Tc$kDr4 z{n9~ra^=NFJO$vK+JU{$W&*rCmz3?a!fxRVWUYE=5V5T1skL%Uu1TUd5bTwN z;^KN}FuhD^3Rc8jp+N!A@GmyD#dsHbFXi37ZXzKKj#O`=W^fM zJtEGWIWK$UXDu_54mHlui2*rk&>7eC#iAvaX5RhSkzTnee3>kQO0QAYTsZr+dKO$< z83(pep6e)B8N(*j1`Kw*^*5k8a(jQ#y9mUlx;cuTIz*O2N{4vXkd`HHw~kG+!SQ2s z>JO&R0lWO~N0#XD0tRvM=5U-3H=xMDs+{n$zqanThVgYvuDq~QcO4J(7v-Y?hfWmz z_xjhQL#SHQN4IsVCJQ-13+AjB0Ob`oc;#iUzI|Fz9V;wbT`xD0js~5zYHZRLfly;w z_Obnz`S_ieH!hxU`=7no%O%6CX`kf-0QZ}@7P~{(}c0U`M$)ryxIc(d&ff_~vf&CP+q(gZW z#&f^dJxf6GluD0PbA3{}J2C@E_-#+=P(pV&B8^eSohE4AMDINnirli@_1vcP^wKG^ zl;@=zJK=c@BfnPD)h*!qk5#+=VCvK&ncL!^y?S8=Xs=5Cp_Qgw3AF??qptia zu{9?AaBCcNZr0jxiI3JOFlng(wpJ*ONK*2TkUlo^I3m*X%;~A(W4Z92t?sv$vL58*J;}OgZNGX= z)Ino83YXY)z@Du#{IVu2v}hE8nTJP#ecWo7#SxcxEfkWFB;pj*QO9sGpBlU-YdnzJ zM0%$vLkCInZ`two%;Br?#_x~rxog8ml5#ixU?0dP)bDP>#^l+4GfW&LArgbS-!4N3 zyj}<&E=QJCt;O$$IwFs(I^rk64F`ByiWKI}`HA#Owx;xC_UCpX-D-B0-F<_?$1C!A zvJftT5MUmcsUrnqX(A8jHWn?*Ma$VT4>MI5HlBVm|3vknLT%KPEy~W(yLd=G58wGx zN9fEaN-J&5%PcK`sPPO)$e#k9XFs{gIZ)kBwj;l%0Q(mxcG3^| zfLCy|o<55L5e&1v;oXuv%d{e{NS7;Z|#aF46;L{=mqr??^6Vp*{xdq`;Gpeh$7~Z^rlXL zms-Hj|2qRk=6@L|CTrU+(4&N0$G^a*{5g^CI4U%cOjW`X>;NI={|hXwh}99zHbNG$ zMZHyf%r3KHz5b&Q6)Ab1{TQc*7hg81sS>465_{RiX~oPWLP6AE#Z||@SRGFG4 z#oOBw0wiB#(3A*T!0U#+>@&8fkSc_*s+$bdWRg3LQg>)J2@P`gRN3zQlg)8z=lHoO zUcY0eDRa?+j=`IlVRDPk{FUWz;+Yd=^xf-mk>5h%K(ls4*FqwNc6gxsU%5z&Ww%D? zf#&g?t;Qmi^><&xBb2`9gK;=HM%ZnL2Uta{F12#a2`bFIOabNW1P#^>w81Uj<#vhk z=Wx{gmhx(;rXtu{xM%Kiz1}SFR1EqEKa*afZSj(i6ET+bijwoxyIJ#GRI=I&DmvFB zc;pQX)iFjI6UoajPxYGR8jU;I)!8?y4_b`IypHfC30jMd$AGnEPHYHS&~c$B)a@v-R&E#^-4KjyJ2W4ZfURyna%v4ZW^vR;WV-JsdiW6 zy-fGIXJk-JLo4R)8+f2<_ErtyT6tLuMZJM76)&*-`C+2F@n;g{+jvHRG>9EwaZ4_T zxhi0!+ME{ppJW`2(?d1ogqCr#VQ^KZlB57VfR3=@J3k^b_) zY_bRn{)IVhGK3$He}JiM?=7jNbubpfx2t>PaC;rg3_}$GBzCcMb zJDV`y9|TRUc|~=CEX(Rp*7%_uqC}2?emMg#iPC0JFER=;JdyWEk1Ew&Zmc~USB@s* zNak<{#>`Zz{uJgw+7;TsQ;hr7*X6?V+75S1lfS}LgdBZk*_WW;v#oO|RsMqlJ6F;eqmYV4i zU?X5?pLyZHbXwutUj0VcSY4wKX13!GQ1%>l{YW#SUPSC-o#Y0>I6Ps(g9Y_bHE7z>Z7iDXVy}u8e+KLouc^OkojcWcoU?YV^ z8MwmlkpBs=AYjCs1Hi}<`CpB&f0^U`8?g8ZivfBB;pgD5z%*|Xt`G%@11kZ7jRYUR zxM6q;o>_A7`{(TW2YtI!QZ92^&S!cJ+wBkHm^AaK--0w$2pCpQh9@kY7r9q>{BjI^ z=@j6Lb|L}No}P_9!(%8uLIY`H^dxa1`AH9DC~H7n1enO+GVN(y6kbzZ62sjYcuN%( zSIS>gelEi(T%`opS|A3#GMgWKTrOK?_SlzwhUCzw<09XPh)mK~^=5H*o~vRmV9iza z?Ipu=vKv-1o%`uw?^*G0W7uQIJy~a#oZ925!L<6H%>*p(pHH~|38Yx#CWs_}Tc-oo z|6&@l{BvCKFOW9X$80v}5xUS%_%PZf7ZZvp&QN}%{|eP<&x#IbPk>Y`l2Fk3>K5!! zPg=K8=8~F|L<)zRn(K7Go_d+uFeVapWL7a_iD@8?7AcdM3a%KLYpuoKSDhQ>l*1`f zVUJNUD{M`r)9rkXLc;k>%#K)&F+(>VnOpqx#A4WzWdOoDM?q>trIl%T*?#ggG#Z0JZ6tQm?mqivrvFH5rzcVsVV+dDFB!}eapk$pcf zpD+K5sD+5oqqvXIq0K3zp{W55`<W?jQR7_VW-V+z%*|b23Rea=X@K{(+AZ0vt&Nq-aR= z`9JTNJH#|}U_s368}^-<3m(d9H{Uj~hkuofPOGOpL5BY+|Ghi9b2@xK#$!x8w$JkZ zB9ek|duiZz{~a@bXBsm)tl z}Q)Xdnn{!b)eLQ^E#csqkwD;>9QKF-((1X$|Q5N&9K zL(fyjbX<%c-?FT)b^bne_L4m`Rk=TWadBKcPjXK1nHXEN>amcyp+zCv)P@OrZ_}TA z*6BgPj#KUfe#6)jmRY!988PhoP!ec5^Pe-x0veIlIVUzaOmPIUl*;!a-E6zjzhgHW_LO?9^y0_b7}5Hr~QuVoTDOK!Ii>&`RJj-Q+9rTvx5^rCo?OJ2}}w_ zYV~?lT-L5GEj=EbxfF5MQ9&#@enEcb!en!YWTjr@`DR&GKqA#HLvT4cY2YY>oq&G* z(w*gyW#>WjXcF0Bc*vniz|MDJP!NmXQmlOyW{|2-yUr|_0OaQQ4{PfgO%IwhVA<6J z+$Q|@+G_0PWb9z0ZzW}JW9dluKbHQrzGkWSIRJ8Wbh(y%=gpP##1Zl%5cAYCh6^{R zn|qo&Ow%J}m&FUgQvf>sLG#T}`-fzP<+Voo8L=IHirebYUm&l?x4pXD?97^-=8^M1 z5s9x=95(BKL<_GTUwfaNlt+zUO8Bjh-8`%-_qNh}zFi-;p{i2@<)<-^U#(lW=P+3~ z@8_?n3#V5W^(Sn)8G>6Qm)ee?6V@BJXUNPQGm&34mS@)A#pW`hp8{mz+Bj!h_ITV{ zxU4(-2Xd~u*VhHoo^6$~9kLytR}TOc;|yG8rE6}iwW{y>fF6EQIuG|nGuFpIpeY^u z1*`T(YilV64(*ger7PD*PV)V?Gf4{`cCSZQU8))348;r1e+YwqvaC;@^|2t&ioGeA~{K$2Gi* z+<9Ma(8J(z&r@V@jdwCy9v9elBW~^>;T`9$pOb=^e!jf#T|CXW#2=1$*93iMYc1(r z9JuRWEvIMd$SL9@dA95OYyQ`<9oAjOxL@mE%Auz|tc~<3Z!fK*XMR<)d~7klcfEfPvrJDMEd7NEKg!`<-v-Yd zXWxg#LQZx#Le1dNdV!tvq6?Y7KHr4)AqH!}%!Lyj`;ztaS>L_#m7 z?E@S}c`JjoPbw?O_@rd|IrDE+p@?Tth_A5I<*VEi2dc+oV*m9-juKX{lZR4~Wz2@- zGTmp*lPtWCJONam3?pv*S7pU;Bl=W^8AdhesZd5Wf8+Qyb8>YjmORPiKLFQ`3|M3S z4XJ5WF5^?IyW)FQ9F6bZcz4)Gry)_Ls*rBs_t;X zU#w$e(t06BDHRFz2FpWIKj?wfbUm>7@(dH=>q@LS744h?Kr5m^bK+=AinRATogjzN z7W8C-XTdG=SBW*jsOqFn`VCF1u;$EFq{xD4fGlxZ2qbgrs7tB;soglz0Aqrhn4EZ{ z?i|<+<+B8CiF7P%LAz1{q+K?sLy9}Q9LI({Pnq8ERDC~BgPOv+PSnkr&oc9ZBf>;K z#jGA>#i$f})9)kdFVM!~fU6>t5fi!6IxX3HdaH%|)*0nANxBI8G{e$!n1{Jq@!{a1 z5^Goax*h~!IcjH4AATSo=!A#~&Tm86KcxPDX9(Y4`Zo26_2XnE&or#9$l30VcXDoqMi(rK!UrtSjA}`+!)`#Yd z0!#?j0aGhMv*paWqzCYNkFiS#LZ9+)4JWndAtPBBxqFxIO zUVZFZV3jYtG2yC9zy-d2912L7qY1g#+DE^Y#6u$A00|Wpm{7SFp@i?ZC8%#6@hS+uN1$2hgBlg}4nV<`Ks<-mfbERB zRW9ygSy1T(T|fgx1uBH~0PG99_wlC@JhO)C0^Te6H3s>LXfq`heE@4u)`H|vvMIU8 z3P#j@Z`>F`mGmf9@T5=8-}WSTkd#i`qj60kpDh>8i0xoM(vJM|Z@SLHMsZ$JQyCBU zX1F-jEi7IX;>+JpWveREzu_y>FPy1xpfot1h&HENP|D0q!o?N9oB}y~hVGSRCx1vb%{p>QBHWP7wc~{ca$xx^br6ht^>x z>?ds)o)uDjMH7-=#DEA>ppu8lpllXchC`P=O+@}hhjr^rJNAk_$wK&xDC<%^I zG_nC0NM1t><+eX!8$0S4?;>~598U7yfdES>RsK&MntaQgAd9q8L6#E&_Sblj?Bb6w zm?Y2cC(s|{1S(W}(0+tCR&Uh5|6Ys@^{osA&GgM}{&}YM%F?vO9zzt_0Xg7< z@S2e*5}JpirX$5tWL?1&OEehUpqec*0_+bf78*{R^D&r z`+h#XJ>Y}i(e3Hx)}1=y%bt?K%emI&_4WR`w0N2*ozmT&l+p3s*{JOhNy_R+5 zd+6Em#$>K$j96})93ODp9%LWQ3>O6hw~PdUYm zL88m;AOu5~*@jhA>vJ{O`RA|*&4brlh@#QbmxYL}|01G{T8JUV-`1E#YL6y)Ms5Z4Zt`*bKtZj7(Qi7%2o2?4vaB+L+;uazE=bsn zh%@C}b z#G$XwKv2Wb41#K%roh5d?QX&Ary^&So-v?FhEeiH>RjRA4?jHmBTOR1c=FQMclZ9+RDeyBv#{hKgTjASGmM5_GI9;rLb25)wRm=R%IV z%=}ZxVk9kabQTW&Gb1$T9}LE2X@e_q)zua>!^t~<$Sd=)ZG)++%)tS_)a_TiKH;f< zmHDr*^)PzNVV3-Wx)SeS^LA0*zo0E~R#^+YV9khIKDtseMD(PI_!mW-HXU@|0z=Fv zMdUq1PwPt7ekpJrMGK;B&$1&ZYYw;=?ZHa_h;Nz$y?|jlt6&{J+_;T)j}l7B{V5SD z=`n<8tQpy`v|NX)-gW>hN^E@;5=o6Mqxmrr$zAqt64L=2XKi( z20^1U@3jLtFE#1zvtvg?fzgm{E@XkSZER!#Rx_s~KRK*uj$hc!oR0kD(Ze`#uvpPt zhI(mC9V-~5(I|`K2oi-HrbdAxuG0|3b6HFczYDocgXYbqG1v0uvPlKZnM=c~SRAzb z?Z6a==+CE(!{}RkCL=1agNe$9jz4S6>21wHSYVIT5@3dK8 zf-EBQ--7aKkgM1zofL(;Ub$vQB{#Di8uaz9Tw>^b^NH^+eiAu49+hDaEW$%sq#}iI z+^@|;FwK&}kOlk|)I6H&t7=;>@Rz&JUb5qO{PfV38KMbgc9VG8;7piGlan=m3Z+P1 z(@a+)CCjWAET8P&DbM+2E@I?Zi<(IIu-K#@tL2AthAWri#SV=KS2FRvnQys!F8C?}C)t7$3`TAWrV9ib)luOq{Xc(Gf47+%A+Jb=xTc?J#yiRKScfa9UKr zd@%J@C>&LjMd=F_To?&GX4Q?ZSEG0(P$BzisH}8{OsxVpd{=ouhT#l1{8oEF78=Zj zH>bvtGO5ztYxt?&?$VP=D_qC3I&rGz3;O!Q0p#xamNjkhBO%cDU^kcJMHLRN*dTG9 zH}%8;!NHDa`MQdfWW|s|PU4A+lVJZdE#Z@~*vM8JiIKCKV(mIK>B7}X0B{TF-8%K@ z`dK+LZ~b7PiXJ&)_-bOY#9tLQENAskT+T7ao7jW@Nr;)?LrxiKJLwy?JlF%(X!Tr> zc^i27@9n^-5YiMw6?}rm!=&Q_)i5QFKU4l%s~G&;lpMH(Aa*7wxp`#QSrZZw(D8Z1 z5#A8e55>JM6Pxz<@<)ql0f{L~V%qgiV_knj?4@Mnw{yl6(pS`U7iSs&%nLhhX5_qU z!KxA(DF{d#VF0HBlAmyCk~(W1jdXDBMc}%a3C%Ac?GyxEH6_84QVcuJ|o_aI{f_lZM0xaUeW6iRG~II z+mP253$b8i!=<>DsRT2?pB9u!kuaZ$=OXGV8}#bmXFQvXRGKXAt}0D&tetKE^y&!) zLQdAV%6$1Apf5(P$xV#ou8P+Nja`YXRl2A=MjFe)qFr88Vk~TgFW;>#HRi660cUQg zU`XLZn!VT~1(`jZ^oKY(Qhs`o`fOX6y_QWKUfVQHbB&(fn12c@jj=97$~vtx)9|A4 ziY2O$Ng1`eyv`Cvl5%1HBOTbuQNK(oRhxmKd7IJ1l$nM;Cc^}Iw0Ng*2kq{d6TOaE zW40kQP`koffpeQ0<04`yxTHYyXmF53n^(4_KCP1}H&bcsne>mOFno*k%;GveNS z6CH`pPtNdQtQdlWDNO=t>b(~Kp8ROJJGPfKSzTtnK7cT@SYe{b%aT)&wv>R6yM)q# zZl<$H!^7QsY>er+iwbQqBjchXd}!HyV2bP_*LCW}fwWvY5Ph}$Dx_gyoir%}N z84+wJGK8N>p#ce3FwbU{`M-xc6?U{ z>y#<+m@9ecB`uS6PCRu?SV!|oppI?^N810ICY(Bg{GKvnz9 zk0wV}@fsQnXtjE({KruD2e0?UcO07=s!Y+1?#jwXhWzfMN39{J+>GZ|3u|77PeKh0 zW~!lKp5tw&8f^Cv%*hktKo3nlm|-X3oV;LM?FwDDHCXrA0_SO!%5`hX!Cq;H&c9i# z?KM({x!1I;5`g|p51uTd@4t0mFKf+_E>&ym{e>xE=7-I+w#e%Q-zUzvV?h2hw=pl3 z_ZqecZu*K~r#t@V?FTN6D@mG+C03TEaRFz0+oZZde1et%n&@adVo7u2g1Nz`o9yE4 z-eSjd@~hEUkolt;L&&HXj-_euBvc@MSNKF5e0pMS4w>im-#Wq7WlY)kHwKe<&z@tM z%hz%l(Z$Tms>70CL}onLol@LO8_~eoIT+{8ZLS&vQ{L(o6wOGp=c@4e`l_DN_c=$l zCm5xt505s}G->pd(~vROrX%F4<&bH0&J`@r%Wdx?JkfbL_pYtIyIh6x3IXiIqLJ-a z>7256c1W3T0q9X!u~hEZm_|?1XXclgPSLc&gup!q;-<}`f!O6WmJZmd`L-2*Xwwtk z!CK?|@_PGt!{?|5c!pMY3~GI;GFN@FXFujWA>?knZ7Wg{!@pw94uS=v z{J~%t?`Y*VNH`}brGOsGv`S=V`febQVihK8fXkGcQ{kkLf1VeF%g|Pcb$@dJJEb2! zKp^yQrG0T8LOWP1Fz+DnE4}z|rx21t+%7DA3r~D?9Fj+oc6$Ms*shvhcm}uZPl_Eg zNbS>S9WyG;aRqtnflQTsn?@3+A)U`lWxA>g3%TfZhW-x<-}bIQwz*hTTW(;ZcjZA* zD5z<&uSXa%KCgE%{MzmC0zf!WjI=#(eKW=VgzbaVNRl&U*CY<5~5`|N9^lB+U($#Tae+P`4^wM&Q|)*NK{Ws9zi zKpR!raho5zj=PMKa*_i|qZ$*imbkwC@bMpG94tMO7pVaUaV%i}?1KM?L9K6R_rJ&V zf1k%$N)!Jau5|(q*XlT%L)8+nL4$u&*=3{gE{4f-{lT)dFm5as^DhGH@J+NGi*+U; zh}b0epWEOS8Q3#R{dkL`QYmnrKe0!EFYwDpBTe?;g1b`Lq3Z^nbf2XlFSN(OnFCuH zdw2EHm-b(lbc!Nx!v4v19Vw5&SwDcY>9?N2nO@J~CUMEitWFBHjZr@%|89pNtV)2# zeTK3SSwI4VH7tMnoyyEoFn@fdIuZa%=B0ol0d?avVMH6uGHsOO%>|*veZk66u350E zc^WG|IAAlL3XCEX&OXM^aj@s;KZ8KIfcC3e((P1~1j?4$@eY2?1+xy8z3Lz;5UC3E zQd|YhGJ#Vi_?|UAU3XV4LW-N0yk0dVG|1A!dG)ghdt!o^bPTlQMA}I33Hf1}oixg1 z{Qz4Mo%1{I%aJnR=r8f^VnXr*)RuM2k8@9)i2WMj=HB5vk#ktL{pF#0s(RGSfKX=> zf)Qu^=QjU)xr_Z9MY;ywswZPhe0(#LzOEQe=tOiVaUD97g5Tm~xRv5N>^3%LT6MWb zVAxXOp zp2^nQ+Sta)@!z&RX>&1!tbouVsz+Sv8W(^?P+dJPiMl_Kd2vezx*{M4ZdSN*?_!+1 ziK=%6uYhh^_B!|$CZF1hHLwFJ*r-$U#@dw& zvX`&6K4PB!;+70s4O8asHcVf~<%({#miJaZK_T0lYv#rQmm2sZf%gM{>S*}V zb7Pj7%jl(Txmw|l@irWR+Ief{*jzAjDMvFuNk{e6kH4;6Gk>6Yv!85pr^xy^H_d)< zl&UAs3g`*np(v`*XWeV*_bCauC)^U2@C|H=I0gW5fAIG2NVjRj=gwx^u=>N~DRd0G z8+BxJVA4~KE}l@WL_3yRdfQd!U_G}tPknA;$-?dh4&AP;)GQN3VaN#b#=P|t$z&R^ zJhX!+)!BmYUrYUXpYAoq#SKVy9&P!wUo2bkdF!yv+U^U4Be?K9%J3yv2kSk_5hLBVem!v1DDabIyMi7bzOI0Z7^m2nB`$A#>>)fr-B15Je za7Wvzn4p#vC}DV!4?z}pRwTtqX^(QdV%`ZGjUq8dD9I;?z@W=ZFeGyiW1=HDq7B(s z7$h^?VR?&qGOsqK__uS&afS7bo?k7)LKJA(T9UIfYanoLVep0Hk-v?=uN=Cbd51iS zg2=j<`25@|9Gf!{Y`))KEYz&>CDtMK3pa2lL{$ku-8Jd#XUqpBgOnXFn}nFqH8y%< z)064u0J~utFOH8QmK1A9Dl(=ej~T}RO%%7A2&2pzQI;al4=7n0qS5W8K{qs%tP3aH zcaKj_J46JsQVt0Ii?hHUzMxhXpmYni@m*VTij>xnWM9-a7~sf$jC|9_EdeS+KspR1 z22DXruM2*}r=r*$WTcD|g({)1B7#{0MxUHKUN>516i$pPKNo!9TV4`*_Xk)=X&7}R z>IeZ;9CI(L9%iIoib)_yfzZ=rL`GPBVAw_*N}qJI}V3@8bro>(zUt zPbPbBckSeLDwL_pr-K=EI8vbtC5a)LGMHlwr6kLq+N`J!1vB29KwZ6yb?F1yY$13w z3y#|uS+;Yx``~(?Q#WUlP4jrY?i2PuP4k^KYrepL9{tFF{2&8d0C7`x4(2w1(_KYl zCns|oQ^)_g%t&isZgY{=Clknz5b_Py#LTlOdNV6TM>>oEzm0XdHJIjRJt&wsEO^=H zCNP7;{fy{Eij3czY6o5vrXm0mcG3e)O`W;6XK3o;BHA{9+F~DpN!m87m19Dl69saN z8JPVw(Pce5RB-%<7lyN~j+z2UvqsR(a+G>qsaTUEdPZb~jK%4lR>AW-OJ!-P6o{nN zpFg!H9JHIDuDPmq*>Sb{mro?moFm2*x1p5e84fZ`0RI8^JmSJpl3ycu$UXT-x)@-K z^J~-=XO}l7j^|!ULc|N#!!pkKhUA+Dn+m&Ne*a+jFIcrW`BP%aFgg*lMc9O)ac3@x ztyI%lSP;r5nTX=1wZ}@;r)!aCI8I|QuV)QyJz5w1nY9(Cyz>X-+nxT+Tav-95yP*$*_b|#PUhNC>kQWINK8{aPtmZa>hfTNY*CXjfOp(I(uA|DqD;j*!-Z1($y!ruS;62&qyrGIh1e{UyN&;ptp5xoYZHR7s#N?nR(FL z=9;@zI+tBhT057=%iMj#BCJ?)?=!a6a`{=Yw?t?6plX&=Bh_aM_Kwmz7a*UMtv61+ek}eGC zm?o#f6p%Og_8SNPh^4Bmm;Q#@lbI?BoEE#qq>RZ$G`}Y4qP21QM4{OUW!ijV=uo9y z-NJV9al|yMIXmF#Q`d5v(hQ>toD^kI!eACs`96fT5JM2sI)4>r!~MkXzVBCm0Pc^= zCIPUfe8W)&3}Uxw*V%bVEg`T6Rg;qul@l85W;}}$L=x_rXwl|YvesIh&+x>B#O%(j zP<0$Incw~74`OmdX|&2nh&$1Zv(KHYGyxqtyrQu@ZKbknS>}^kGO!{=r>h2f3z-W( zG=3wC*%>j*X#mH(kWAz#&ZPc;FT!M~?6 zYDzN7D9Wb@Z0Wzyx~~(NE0Gic!DuGNXJkGPuyt-V%4`q=J3WavYUW>93!xFVkx~?D zTb4RRP(<9NRYz%h`*wkIc{6{C-aUbQJSVX~zqWuI9bG$JD&-D|r|t=>!%|b#@*6-S z755DK9PVeu``IP$@341+W7_)8!4`OGzv;{f2*1Ir5#~I>S&KSK)?&Ge*NDk0#&4+< zj^u>`#19fyDY*Xz8Aq_mppuC{?espqt~++X@eXxh-`jXlIrXedv#E5Vd-Z|gTHc^l zC@r!ZY&21-mC|Raq=^|C=+6^iV~sqcogV1Z?!8+))Y!{|bs)qvO(K zi~S{G2sdDJB9*~=DStj}bIaS`CNOzkS+Bj&gYrk`{5d@-!-22}5zxR)K^EqtTu)b&3%R?$kf`C&zoHsr9eF+AVk1Wgv?N0F4+?}hZNYaff{`%6hw4J?M=NkNJ8l7+X zF4!m*c#-=G0g_rMoh*}b!>TxyqzBan}rjKHANr*T=j19I5d^nkT)V52dsGYbQ` z*w)@az623H!LX{iSuhx1zCKv%A%95q9@p%5w#k)V!=9hgPAB93yyEeRz4(m#kbRqz zqcoiqPyj)m*sc=$@}9&wBF7QA%{&4dj%EPPX(E;6{u!6Eszn1u_hBFT1u&KPdy?^g zKWg#(|55Az!BHz$F*@A`7`0;m99H6IP7rje7!_pfJ@vVh&H^NVf^(r7 z?$FhIFn27Pc)QBvqgpc4W@`F4QmIYx##3g#nguqTQfaT;JMPQD>tM-woMK3^?jOYb1?xxROo z^9FnazMK5c7#%of?O<&&lZ@!5MbIv@z|;>bd9ku;*FF`)xVwqaO;!4^|@KZGQON5pcbs%)oR5zPHviWLyn52XW(Fo(6rX z)j&9!f9|Vn0dpiG?HHlDP*nnPJ6O6nS`EpN_uX2e&1Qli_H zzH(Gbxj(MfNj9nMR&0v6+(oix7Qj(Z^lj6#=+x)7cg8p#^?Lh@GqKMsA};$@0_@)R zIb!sy$>j1Q$YSQj9~g_cXIQmTCbN8XarzQK}jhKBp@$P8GO)gi2$+Ff4Y?nDJyNOtgd zB?JLgy)nA4KF-z&Eg)mW*SC!~idmnY8PC$lw*{B;S059K67T9+E$wMqwbJc|Zqhj? z?)G`+-^Xc+SR#8R?%=y9xGkFv{<$=Ibn@P{9lI@eC+l-X0EhcUxxAOX$a|q2*G_wE za4~6QwES$+6tS}0W?g}FO^BS_9r*s(9Eb7!#kQY(`rWQ#-ZL!<`IXaDbQeZXvmTbm$iP8_0C?C_2>8Vo3f8es*zAh*8d6LvKfK`Zm_JvX^7aV_@dfp>(3%bftED1WXx<1e@r!v)C*bDu zX;ojRSh;`)wM6(4QktvqgHf^;h%!6kP<37dMtwoCuN4yWP@^Q3_EC~)IUcb>%j=?2 z!C(ywJ?UKDqt09EnAz$dKYv-lHSu6>^xeyz6+!!CG!xg|=l`zwL}dWy87uwEofjX- z&wrd@qx$4x%Q;IH4jyE`nu?*}mdL@^kC^K_-2nz1nA6=!-`*-Pu)QMy@G1k2tzXk! zH&ZivOV{70-@(f|b71mb0zd300X8Z|c!>1VZK%(q^(f#|ETXu}XO60vRe3SSc%JZU)cs_1j3qa!)1HRP^Y3AfSUVhB6`c(Yr{8*tx>t_Y=jQxRO6KcM ziJIrZQ33+Z{u8&pR9|?#Y~N`<^1dk9!pb}(DbmbwcsJ#-U)41@{Iy-zV&W)g58Ut4 z@X7(Z)L3h4YGu&5T&`BPt>t^;;$e5i2+^^h>rzxv&)%tZl%v+5f5XxuxsgeA?c(sT z?VQ*=ZKAc`@s_Q^aAVSUiJ9@D`l`yQ!xM=4@cH`UmkkMCfe2)&h?Fk8hh7ZgPI7gM z%uI%EWaxznb*yZaJlI|Y8Nu_TPBSEYtJag{4MVm+-K?ezv*1m+~}pcz9t#+~%= zK>7fs^{qwshWFITJGp+58SJ*()jIcZ0-5#F24AaFhO-&r-Z7*O!LTz_lqT|qG|D20 z(~?oTAki+84~^CoDL}LsbU%jkFx=owM=YW-jn(T{R|zS!=G3OFkxXWUQxpjcei5g@ zU_)J4pkqvH&8@Q(pt((oC8+mc~7<{HZzlhj7wj@xpco z=r5l*Oha;mg<{uz2+RGVj~cAUUIcz3uVQ4_TGZVaDT`)M~21%UqYIUiv}HK zg2w<8M3Y9Ig|<4vl}2}&-bt~(z9=%KnUA;iL@nrx5Kd^tt+j~Abvz52F5$?wl_alj zj9j+Na0dSVI3~waW33>n+>N3ZlUmN?G{GtZmtrnUIV$3m@CK`A&+x*>WEHbtV=6u{%MQHj1JS|1VaLw6mn%6k@6_S~qxgJR;_u-hB zLN)pW zrWUh&^(Xipd}nbpQAV(WWFmeFW=wQ?K}j0gi~i#-L)@ zTiK*%S;;s)+jyc@7s5(|M~vk5Txz};_w;KCSamVjOp99QHmKh4Cd)qNm+c{jNN5na_J4w^sS zt31PYx2f&wWL@c#_QB|)=8YQ7`by`78*Z9FwxjbpQG>g8G}ddZ{d9My46Q^KA^5pG z{gB--uDbj!8Cf51{Df2^WVtD{RomJ3vdPQ19}Vsn5<3;Blf_5ehl|Y3rk8@4*?3V% zo6(FpTNyZyy25u@(?@9Qt=RBZ1j`mzn?sc6oW<-$6u*;c7tI(RbuA4eqatlE(ni|T(@`OO~KiltN?rT>+1HnJJQvJ=eX~S*c$kaea;J!`E-AyUH_8s_pO@Q=|vo1)Os_ zOm0qs>zLgNT%1dSPO?O^h`BP)*OI*8T_EDAj^d>}K}fge9}{dol=tjZqlqZ%c-5VV z!yB@;Y<+)US7%jMr-u_NviWP7@x!-}g4#KF4PAw^q znh9pqJ91w4EL6(nK=`!J537Sq?TM$53D>hjB$h*)g5zET+cJu>tGgaR8BXI=Mv!TcKr|^nn!(@I8^?!G02v)!S0!E^^;^BH9IkiPpq|X zI8btMZptb-6}ohcrAGB{e;S>sSGKCfquvTavQc(F5{#zC5}FkX8^9k%tl;E?%O`W_ zTX&gR61Ris`aMY&Pg8gDel{x9_%jy`v6>v;kSlY76N#46a?kJL3AajLyOvO9GV)2X z=`-Sn_c)|T1)W_xv)i<|a*@%@>IoEqt8bl(lSc5=rw>rDODv=5964hWrqZw*=c?m7 zzi5OjlZI_O>t@MW*|4)_0J}7I1X&6UmWz1Uig><sX;?|#Fxg66O5Xrrb;MirW)%USNd^oSWEPyc!~;hczO2ut;IFo?5Ni;aU<@#yjit5&CAS1hk$Nm$zrc&Ph zoTFjfiVuMNSe`<9>vSP;#CXPq)8cGC{I7%;B#h{cZnc#)N9_!QU0UB!P__ZjHlAcS zwsG?lHJ^{e!jya0#6Ex7K0TVtU#U18tptlKL+~H6( zBO;i%41SG`a5bDRC2BtN1o?)OLEc>-C7K>}YGJDjD*7pkBgv9)HfsgWxhSy?Hico{ zD7Obh2cL6i@w{He=Fu&Y4o)7BQ>XCLJkQz5ke|_M@?Oec$H2owd1KO9R=?N^=NW$^ zS5AD4Sx>vfg|ASalC!?=Yi%b(PK+sc;O62Pre#QhqIe2f0C}r+<(39Bwff<)MNpl9 zN)4jNL9S1`wOZ_W=ja#K<5f+}g9CHcAjV#a6Qv-mvBRBEB^I za}r@IZ6JLV9p(M4a!;|cnIGvXc*(VrSV^_7? zjtUgWkgY~Z9?bMzjyLh>*Yf)LKK*@0;)%nn`-WJaH@ikpTs-9l^%g^jIb=o^tZ5(2jMMYSot}YMg9`9eA7WzRE_~TqtU-ix71TN@H!7WJ z`&2I!h}!gclRcl1i~3-?%c!#Rp)F{TnF9RKYjc%??T|2Hjn%{!JI$3Q(ZdNvpB<5H zbPQY~a5I_6Qc=w*P_jZvUAYt<8NIpPlBXQwk?I$L_bc{w2zl>#@g6~T`?F> zryw#6PD(0_Da{`*oq7B;oms!J5COS8;2gpflR>pk;G0MM_G4oroy9H+-CfBp#N@l3 z)t1(3zTxu$Jh*LLvb@TfYtGzXizp!cij3wGG1j>f*|N2F)7-|Hz!FBBTpUPZE@OUg zAf@D<3dMyR77NvdDcdyWN%s!T{m|O*)=vT9Ek~<|L|5;ffD$e}QdNMh>2C zD*-lT5_kctoR@Px8y8Dc3rh=`f4V-0+w}{VHpL=-%r@v(augJwuqRtRuZy`N^~%bt zq82faL3!2asx*qT!t$njRRRl%Lmm|7TT_8K7rq-C5_6xaj+b?bMII*0EYaeiPHp*18LppYpS6P=NErdb%q(+E5J5wXtK>&SD@7~?) zF)i$ot-9CV#Lw@Vh~#+eFa;<2s6@Q2ZeAvwAwg+>w7C*lY@M5;AH-kdK0RUO*+Yvt z=%HTK=Uz%oH1g_=nC zKwE%;7s2oLaI$o9bp!)T&6nq20bCYOlpVV`af0`fe^8dSGGf6&r0BwnG|>)ar)tR@ z!wbLPugo2NanV{*Jc%$fm+p9n$JjuncZ66$M8At__;GG|_V|%b*Pv-Cs>#j52Q{vQ z%8fLgdEUNhr{ZhdMj94kUFv8K(f)6Qrf!oemW;VOeaJ|g9&wuCZIZt${!DX{Mt)*n zlnnLOyfNB?J#HJ?&KQB_1>EdA^B1-ToZRZ4yY^#K2^JI_a(`^~CNV7aZ`Jbpo$N5S zhY`Vgv2*RRpW5UIJX*9szz*Sjz10&Nxs2m9ek$+o^gbJ5l&s)W+1s(n7-x2rROONzkU`e*P1v zRWHKdDa)=1H0{@`!^6Q|_IK5A{Yqd4t%Zbcl~y(YqWlY_-Tm)CJg`8+I^Wb4u!rJ5052OKCJ;I|(-rXZt^WYL%G3m{GIU;;D_}d#CGgK_I*cqa&^+j^ z?N>Y%mP_8XjqcFW*Y~+x$$~(B{3xKmcD+E0U*A#ir?|S%AL9S)FMyVYj+VZXuM_=U z^gm;#p{1e2Ag-h{B`>A_n~==^9%?TA-#{ - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/ADRpy/analisis/Modulos/correlation_analysis.py b/ADRpy/analisis/Modulos/correlation_analysis.py index 66cc2881..03da95ab 100644 --- a/ADRpy/analisis/Modulos/correlation_analysis.py +++ b/ADRpy/analisis/Modulos/correlation_analysis.py @@ -48,7 +48,7 @@ def agregar_resumen_a_tabla(tabla, titulo): # === Validación de parámetros seleccionados === parametros_no_encontrados = [ - v for v in parametros_seleccionados if v not in df_procesado.index + v for v in parametros_seleccionados if v not in df_procesado.columns ] if parametros_no_encontrados: raise ValueError( @@ -57,7 +57,7 @@ def agregar_resumen_a_tabla(tabla, titulo): # === Tabla completa (sin filtrar) === print("\n=== Cálculo de tabla completa ===") - tabla_completa = df_procesado.transpose().corr() + tabla_completa = df_procesado.corr() agregar_resumen_a_tabla( tabla_completa.round(3), "Tabla de Correlaciones con todos los parametros(tabla_completa)", @@ -72,14 +72,14 @@ def agregar_resumen_a_tabla(tabla, titulo): # === Filtrar datos seleccionados === print("\n=== Filtrando datos seleccionados ===") - df_filtrado_transpuesto = df_procesado.loc[parametros_seleccionados].transpose() + df_filtrado = df_procesado[parametros_seleccionados] # Tabla filtrada print("\n=== Cálculo de correlaciones filtradas ===") - tabla_filtrada = df_filtrado_transpuesto.corr() + tabla_filtrada = df_filtrado.corr() agregar_resumen_a_tabla( tabla_filtrada.round(3), - "Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)", + "Tabla de Correlaciones Filtradas por parametros seleccionados (Para Heatmap)", ) # Filtrar correlaciones por el umbral_heat_map para la tabla filtrada @@ -93,7 +93,7 @@ def agregar_resumen_a_tabla(tabla, titulo): # Preparar datos para el heatmap print("\n=== Preparando datos para el heatmap ===") - heatmap_data = df_filtrado_transpuesto.dropna( + heatmap_data = df_filtrado.dropna( thresh=2 ) # Excluir variables con menos de 2 valores válidos heatmap_correlaciones = heatmap_data.corr() @@ -118,10 +118,12 @@ def agregar_resumen_a_tabla(tabla, titulo): except ValueError as e: print(f"Error: {e}. Por favor verifica los parámetros seleccionados.") + tabla_completa = None # Asegurar que la variable esté definida except KeyError as e: print( f"Error: {e}. Asegúrate de que las variables seleccionadas existen en los datos." ) + tabla_completa = None # Asegurar que la variable esté definida if devolver_tabla: return tabla_completa diff --git a/ADRpy/analisis/Modulos/correlation_imputation.py b/ADRpy/analisis/Modulos/correlation_imputation.py index 9dbe7dba..b0832a74 100644 --- a/ADRpy/analisis/Modulos/correlation_imputation.py +++ b/ADRpy/analisis/Modulos/correlation_imputation.py @@ -113,38 +113,38 @@ def evaluar_confianza(puntaje): for parametro in parametros_preseleccionados: - if parametro not in correlaciones_aceptables.index: + if parametro not in correlaciones_aceptables.columns: # Cambiar lógica para trabajar con columnas print(f"\n=== {parametro}: Sin correlaciones significativas (|r| < 0.7) ===") continue - - valores_faltantes = df.loc[parametro][df.loc[parametro].isna()].index.tolist() + + valores_faltantes = df[parametro][df[parametro].isna()].index.tolist() # Ajustar para trabajar con columnas if not valores_faltantes: print(f"\n=== {parametro}: No hay valores faltantes para imputar. ===") continue - + print(f"\n=== Imputación para el parámetro: **{parametro}** ===") for aeronave in valores_faltantes: if lineas_impresas >= MAX_LINEAS_CONSOLA: print("\n--- Límite de impresión alcanzado. ---") break - + print(f"\n--- Imputación para aeronave: **{aeronave}** ---") valores_predichos = [] - - correlaciones_parametro = correlaciones_aceptables.loc[parametro].dropna() - + + correlaciones_parametro = correlaciones_aceptables[parametro].dropna() # Ajustar para trabajar con columnas + for parametro_correlacionado, correlacion in correlaciones_parametro.items(): - datos_validos = df.loc[[parametro, parametro_correlacionado]].dropna(axis=1) - - if datos_validos.shape[1] < 5: + datos_validos = df[[parametro, parametro_correlacionado]].dropna(axis=0) # Ajustar para trabajar con filas + + if datos_validos.shape[0] < 5: # Cambiar a filas continue - + # Evitar duplicados - datos_validos = datos_validos.T.drop_duplicates().T - - X = datos_validos.loc[parametro_correlacionado].values.reshape(-1, 1) - y = datos_validos.loc[parametro].values - + datos_validos = datos_validos.drop_duplicates() + + X = datos_validos[parametro_correlacionado].values.reshape(-1, 1) + y = datos_validos[parametro].values + # Entrenar modelo de regresión modelo = LinearRegression().fit(X, y) r2 = modelo.score(X, y) @@ -153,32 +153,32 @@ def evaluar_confianza(puntaje): incertidumbre = desviacion_std / np.sqrt(len(y)) puntaje_confianza = 0.4 * r2 + 0.3 * (1 - incertidumbre) + 0.2 * (1 - desviacion_std) + 0.1 * (1 - varianza) nivel_confianza = evaluar_confianza(puntaje_confianza) - - if pd.notna(df.loc[parametro_correlacionado, aeronave]): - valor_imputado = modelo.predict([[df.loc[parametro_correlacionado, aeronave]]])[0] + + if pd.notna(df.at[aeronave, parametro_correlacionado]): # Ajustar para trabajar con filas + valor_imputado = modelo.predict(np.array([[df.at[aeronave, parametro_correlacionado]]]))[0] # Convertir a numpy.ndarray valores_predichos.append( (parametro_correlacionado, round(valor_imputado, 3), round(r2, 3), round(desviacion_std, 3)) ) - + # Detalle de datos usados print(f"\n--- Correlación: {parametro_correlacionado} (r = {round(correlacion, 3)}) ---") - print(f"Aeronaves utilizadas: {datos_validos.columns.tolist()}") + print(f"Aeronaves utilizadas: {datos_validos.index.tolist()}") print(f"Valores para {parametro_correlacionado}: {X.flatten().round(3).tolist()}") print(f"Valores para {parametro}: {y.round(3).tolist()}") print(f"Ecuación de regresión: y = {round(modelo.coef_[0], 3)}x + {round(modelo.intercept_, 3)}") - print(f"Valor del parámetro correlacionado para la aeronave: {round(df.loc[parametro_correlacionado, aeronave], 3)}") + print(f"Valor del parámetro correlacionado para la aeronave: {round(df.at[aeronave, parametro_correlacionado], 3)}") print(f"Predicción obtenida: {round(valor_imputado, 3)}") print(f"\tR²: {r2}, Desviación Estándar: {desviacion_std}, Varianza: {varianza}, Incertidumbre: {incertidumbre}") print(f"\tNivel de confianza: {nivel_confianza}") lineas_impresas += 1 - + if valores_predichos: valor_final = np.median([pred[1] for pred in valores_predichos]) - df.loc[parametro, aeronave] = round(valor_final, 3) + df.at[aeronave, parametro] = round(valor_final, 3) # Ajustar para trabajar con filas valores_imputados += 1 print(f"Valores imputados: {[f'{pred[0]}: {pred[1]}' for pred in valores_predichos]}") print(f"**Mediana calculada:** {round(valor_final, 3)}") - + # Registro correcto reporte_imputaciones.append({ "Aeronave": aeronave, diff --git a/ADRpy/analisis/Modulos/data_processing.py b/ADRpy/analisis/Modulos/data_processing.py index 5d5fcd99..e94c653c 100644 --- a/ADRpy/analisis/Modulos/data_processing.py +++ b/ADRpy/analisis/Modulos/data_processing.py @@ -114,76 +114,76 @@ def procesar_datos_y_manejar_duplicados(df, respuesta_global=None): raise ValueError(f"Error durante el procesamiento y manejo de duplicados: {e}") -def mostrar_celdas_faltantes_con_seleccion(df, columna_seleccionada=None, debug_mode=False): +def mostrar_celdas_faltantes_con_seleccion(df, fila_seleccionada=None, debug_mode=False): """ - Muestra las celdas faltantes de una columna específica elegida por el usuario o automáticamente. + Muestra las celdas faltantes de una fila específica elegida por el usuario o automáticamente. :param df: DataFrame a analizar. - :param columna_seleccionada: Nombre de la columna a analizar. Si None, se pedirá al usuario o se usará el modo automático. - :param debug_mode: Si True, selecciona automáticamente la primera columna con datos faltantes si no se pasa ninguna. - :return: DataFrame con las celdas faltantes de la columna seleccionada. + :param fila_seleccionada: Nombre de la fila a analizar. Si None, se pedirá al usuario o se usará el modo automático. + :param debug_mode: Si True, selecciona automáticamente la primera fila con datos faltantes si no se pasa ninguna. + :return: DataFrame con las celdas faltantes de la fila seleccionada. """ - columnas_con_nulos = df.columns[df.isnull().any()].tolist() + aeronaves_con_nulos = df.index[df.isnull().any(axis=1)].tolist() - if not columnas_con_nulos: - print("✅ No hay columnas con valores faltantes.") + if not aeronaves_con_nulos: + print("✅ No hay filas con valores faltantes.") return pd.DataFrame() - if debug_mode and not columna_seleccionada: - columna_seleccionada = columnas_con_nulos[0] - print(f"[DEBUG] Seleccionando automáticamente la primera columna con nulos: '{columna_seleccionada}'") + if debug_mode and not fila_seleccionada: + fila_seleccionada = aeronaves_con_nulos[0] + print(f"[DEBUG] Seleccionando automáticamente la primera fila con nulos: '{fila_seleccionada}'") - elif not columna_seleccionada: - print("\n=== Columnas con datos faltantes ===") - for i, col in enumerate(columnas_con_nulos, start=1): - print(f"{i}. {col}") + elif not fila_seleccionada: + print("\n=== Filas con datos faltantes ===") + for i, fila in enumerate(aeronaves_con_nulos, start=1): + print(f"{i}. {fila}") - seleccion = input("Selecciona el número de la columna a analizar (presiona Enter para seleccionar la primera): ").strip() + seleccion = input("Selecciona el número de la fila a analizar (presiona Enter para seleccionar la primera): ").strip() if not seleccion.isdigit(): - print("🔁 Entrada inválida o vacía. Seleccionando la primera columna por defecto.") - columna_seleccionada = columnas_con_nulos[0] + print("🔁 Entrada inválida o vacía. Seleccionando la primera fila por defecto.") + fila_seleccionada = aeronaves_con_nulos[0] else: seleccion = int(seleccion) - 1 - if 0 <= seleccion < len(columnas_con_nulos): - columna_seleccionada = columnas_con_nulos[seleccion] + if 0 <= seleccion < len(aeronaves_con_nulos): + fila_seleccionada = aeronaves_con_nulos[seleccion] else: - print("🔁 Número fuera de rango. Seleccionando la primera columna por defecto.") - columna_seleccionada = columnas_con_nulos[0] + print("🔁 Número fuera de rango. Seleccionando la primera fila por defecto.") + fila_seleccionada = aeronaves_con_nulos[0] - print(f"\n=== Analizando celdas faltantes en la columna: '{columna_seleccionada}' ===") - celdas_faltantes = df[df[columna_seleccionada].isnull()][[columna_seleccionada]] + print(f"\n=== Analizando celdas faltantes en la fila: '{fila_seleccionada}' ===") + celdas_faltantes = df.loc[fila_seleccionada][df.loc[fila_seleccionada].isnull()] return celdas_faltantes def generar_resumen_faltantes( - df, titulo="Resumen de Valores Faltantes por Columna", ancho="50%", alto="300px" + df, titulo="Resumen de Valores Faltantes por Fila", ancho="50%", alto="300px" ): """ - Genera un resumen de los valores faltantes por columna en un DataFrame. - También genera una tabla HTML con la sumatoria total de los valores faltantes de todas las columnas. + Genera un resumen de los valores faltantes por fila en un DataFrame. + También genera una tabla HTML con la sumatoria total de los valores faltantes de todas las filas. :param df: DataFrame a analizar. :param titulo: Título opcional para mostrar en la tabla HTML. :param ancho: Ancho del contenedor HTML. :param alto: Alto del contenedor HTML. - :return: Tuple con dos DataFrames: resumen de valores faltantes por columna y sumatoria total. + :return: Tuple con dos DataFrames: resumen de valores faltantes por fila y sumatoria total. """ - # Calcular la cantidad de valores faltantes por columna - faltantes_por_columna = df.isnull().sum() + # Calcular la cantidad de valores faltantes por fila + faltantes_por_fila = df.isnull().sum(axis=1) - # Crear un DataFrame con el resumen por columna - resumen_faltantes = faltantes_por_columna.reset_index() - resumen_faltantes.columns = ["Columna", "Valores Faltantes"] + # Crear un DataFrame con el resumen por fila + resumen_faltantes = faltantes_por_fila.reset_index() + resumen_faltantes.columns = ["Fila", "Valores Faltantes"] # Calcular la sumatoria total de los valores faltantes - total_faltantes = faltantes_por_columna.sum() + total_faltantes = faltantes_por_fila.sum() resumen_total = pd.DataFrame( {"Resumen": ["Total de Valores Faltantes"], "Cantidad": [total_faltantes]} ) - # Mostrar el resumen por columna como una tabla HTML + # Mostrar el resumen por fila como una tabla HTML convertir_a_html( resumen_faltantes, titulo=titulo, ancho=ancho, alto=alto, mostrar=True ) diff --git a/ADRpy/analisis/Modulos/excel_export.py b/ADRpy/analisis/Modulos/excel_export.py index ef20ffd1..2a1239ba 100644 --- a/ADRpy/analisis/Modulos/excel_export.py +++ b/ADRpy/analisis/Modulos/excel_export.py @@ -41,28 +41,29 @@ def exportar_excel_con_imputaciones(archivo_origen, df_procesado, resumen_imputa # Recorrer las celdas del archivo original y actualizar según las imputaciones for fila in ws.iter_rows(min_row=2, min_col=2): # Ajustar filas/columnas según tu estructura for celda in fila: - aeronave = ws.cell(row=1, column=celda.column).value # Obtener nombre del parámetro - parametro = ws.cell(row=celda.row, column=1).value # Obtener nombre de la aeronave - - if (parametro, aeronave) in imputaciones_por_celda: - registro = imputaciones_por_celda[(parametro, aeronave)] - valor_imputado = df_procesado.loc[parametro, aeronave] - - # Actualizar el valor en la celda - celda.value = valor_imputado - - # Asignar color según el tipo de imputación - if registro["Método"] == "Similitud": - celda.fill = color_similitud - elif registro["Método"] == "Correlación": - celda.fill = color_correlacion - - # Agregar comentario con el nivel de confianza y la iteración - comentario = ( - f"Nivel de confianza: {registro['Nivel de Confianza']*100:.2f}%\n" - f"Iteración: {registro['Iteración']}" - ) - celda.comment = Comment(comentario, "Sistema") + if celda and celda.column and celda.row: # Validar que la celda y sus propiedades no sean None + parametro = ws.cell(row=1, column=celda.column).value # Obtener nombre del parámetro + aeronave = ws.cell(row=celda.row, column=1).value # Obtener nombre de la aeronave + + if (parametro, aeronave) in imputaciones_por_celda: + registro = imputaciones_por_celda[(parametro, aeronave)] + valor_imputado = df_procesado.at[aeronave, parametro] # Acceder usando filas como aeronaves y columnas como parámetros + + # Actualizar el valor en la celda + celda.value = valor_imputado + + # Asignar color según el tipo de imputación + if registro["Método"] == "Similitud": + celda.fill = color_similitud + elif registro["Método"] == "Correlación": + celda.fill = color_correlacion + + # Agregar comentario con el nivel de confianza y la iteración + comentario = ( + f"Nivel de confianza: {registro['Nivel de Confianza']*100:.2f}%\n" + f"Iteración: {registro['Iteración']}" + ) + celda.comment = Comment(comentario, "Sistema") # Guardar el archivo con las imputaciones wb.save(archivo_destino) diff --git a/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py index c3badfc2..79b4f84d 100644 --- a/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py +++ b/ADRpy/analisis/Modulos/imputacion_similitud_flexible.py @@ -1,14 +1,28 @@ +""" +imputacion_similitud_flexible.py +-------------------------------- +Implementa la lógica de K‑NN con 3 ejes obligatorios (físico, geométrico, prestacional) +y filtrado progresivo de familia (F0‑F3). Diseñado para integrarse sin romper +los nombres ni los flujos que ya existen en tu proyecto ADRpy. + +Uso rápido: + python imputacion_similitud_flexible.py --ruta_excel Datos_aeronaves.xlsx \ + --aeronave "Stalker XE" \ + --parametro "Velocidad a la que se realiza el crucero (KTAS)" +""" + +import argparse import pandas as pd import numpy as np - # ------------------------ HELPERS ------------------------ def imprimir(msg, bold=False): prefix = "\033[1m" if bold else "" suffix = "\033[0m" if bold else "" print(f"{prefix}{msg}{suffix}") - -# ------------------------ CONFIGURACIÓN ------------------------ +# ------------------------------------------------------------------ # +# CONFIGURACIÓN DE BLOQUES Y CAPAS DE FAMILIA +# ------------------------------------------------------------------ # def configurar_similitud(): """ @@ -59,10 +73,10 @@ def imputar_por_similitud( imprimir(f"\n=== Imputación por similitud: {aeronave_obj} - {parametro_objetivo} ===", True) # Validaciones - if parametro_objetivo not in df_parametros.index: + if parametro_objetivo not in df_parametros.columns: imprimir(f"⚠️ Parámetro '{parametro_objetivo}' no encontrado.", True) return None - if aeronave_obj not in df_parametros.columns: + if aeronave_obj not in df_parametros.index: imprimir(f"⚠️ Aeronave '{aeronave_obj}' no encontrada.", True) return None @@ -71,28 +85,27 @@ def imputar_por_similitud( familia = f"F{capa_idx}" imprimir(f"\n--- Capa {familia}: criterios {list(criterios.keys())} ---", True) # Filtrar familia - mask = np.ones(df_parametros.shape[1], dtype=bool) + mask = np.ones(df_parametros.shape[0], dtype=bool) for fila, modo in criterios.items(): - val = df_atributos.at[fila, aeronave_obj] - mask &= (df_atributos.loc[fila] == val).values - df_familia = df_parametros.loc[:, mask] - if df_familia.shape[1] == 0: - imprimir(f"❌ Sin drones en {familia}. Continuando...", True) + val = df_atributos.loc[aeronave_obj, fila] + mask &= (df_atributos[fila] == val).values + df_familia = df_parametros.loc[mask, :] + if df_familia.shape[0] == 0: + imprimir(f"❌ Sin drones en {familia}. Relajando...", True) continue # —> Validar que haya vecinos con el parámetro objetivo - cols_validas = df_familia.columns[df_familia.loc[parametro_objetivo].notna()] - if len(cols_validas) == 0: + rows_validas = df_familia.index[df_familia[parametro_objetivo].notna()] + if len(rows_validas) == 0: imprimir(f"❌ Ningún dron en {familia} tiene '{parametro_objetivo}'.", True) continue - # Parámetros MTOW y filtro ±20% - mtow_obj = df_familia.at["Peso máximo al despegue (MTOW)", aeronave_obj] - mtow_vec = df_familia.loc["Peso máximo al despegue (MTOW)", cols_validas].values + mtow_obj = df_familia.loc[aeronave_obj, "Peso máximo al despegue (MTOW)"] + mtow_vec = df_familia.loc[rows_validas, "Peso máximo al despegue (MTOW)"].values delta_mtow = np.abs(mtow_vec - mtow_obj) / mtow_obj * 100 mask_mtow = delta_mtow <= 20 - cols_filtrados = cols_validas[mask_mtow] - if len(cols_filtrados) == 0: + rows_filtrados = rows_validas[mask_mtow] + if len(rows_filtrados) == 0: imprimir(f"❌ Sin vecinos ±20% MTOW en {familia}.", True) continue @@ -110,8 +123,8 @@ def calcular_bono(tipo): for parametro in parametros: try: # Valores de la aeronave objetivo y los vecinos - valor_objetivo = df_parametros.at[parametro, aeronave_obj] - valores_vecinos = df_familia.loc[parametro, cols_filtrados].values + valor_objetivo = df_parametros.loc[aeronave_obj, parametro] + valores_vecinos = df_familia.loc[rows_filtrados, parametro].values # Si el valor de la aeronave objetivo es NaN, el bono es 0 if pd.isna(valor_objetivo): @@ -164,20 +177,20 @@ def calcular_bono(tipo): sim_i = fam_score * mtow_scores + bonus_geom + bonus_prest # Mostrar similitudes - for nbr, s in zip(cols_filtrados, sim_i): + for nbr, s in zip(rows_filtrados, sim_i): imprimir(f" vecino '{nbr}' → sim_i: {s:.3f}") # Filtrar por umbral umbral = 0.0 mask_sim = sim_i >= umbral - vecinos_val = cols_filtrados[mask_sim] + vecinos_val = rows_filtrados[mask_sim] sim_vals = sim_i[mask_sim] if len(vecinos_val) == 0 or sim_vals.sum() < 1e-6: imprimir(f"❌ Sin vecinos ≥{umbral} en {familia}.", True) continue # Imputación y confianza - y = df_familia.loc[parametro_objetivo, vecinos_val].values + y = df_familia.loc[vecinos_val, parametro_objetivo].values valor_imp = np.dot(sim_vals, y) / sim_vals.sum() # Cálculo de métricas estadísticas diff --git a/ADRpy/analisis/Modulos/imputation_loop.py b/ADRpy/analisis/Modulos/imputation_loop.py index 02b777e1..682c36ec 100644 --- a/ADRpy/analisis/Modulos/imputation_loop.py +++ b/ADRpy/analisis/Modulos/imputation_loop.py @@ -114,8 +114,8 @@ def bucle_imputacion_similitud_correlacion( reporte_similitud = [] for parametro in parametros_preseleccionados: - for aeronave in df_similitud_resultado.columns: - if pd.isna(df_similitud_resultado.loc[parametro, aeronave]): + for aeronave in df_similitud_resultado.index: # Acceder usando filas como aeronaves y columnas como parámetros + if pd.isna(df_similitud_resultado.at[aeronave, parametro]): resultado = imputar_por_similitud( df_parametros=df_parametros, df_atributos=df_atributos, @@ -126,14 +126,14 @@ def bucle_imputacion_similitud_correlacion( ) if resultado is not None: - df_similitud_resultado.loc[parametro, aeronave] = resultado["valor"] + df_similitud_resultado.at[aeronave, parametro] = resultado["valor"] # Corregir lógica para asignar valores reporte_similitud.append({ "Aeronave": aeronave, "Parámetro": parametro, "Valor Imputado": resultado["valor"], "Nivel de Confianza": resultado["confianza"] }) - + if reporte_similitud and len(reporte_similitud) > 0: print("\033[1m>>> RESULTADOS DE IMPUTACIÓN POR SIMILITUD\033[0m") # Se guardan las imputaciones de similitud, pero NO se actualiza el DataFrame aún. @@ -201,7 +201,7 @@ def registrar_imputacion(regs): for key, candidatos in imputaciones_candidatas.items(): parametro, aeronave = key # Si ya hay un valor en df_procesado_base, no imputar. - if not pd.isna(df_procesado_base.loc[parametro, aeronave]): + if not pd.isna(df_procesado_base.at[aeronave, parametro]): # Cambiar lógica para trabajar con filas como aeronaves y columnas como parámetros continue # Escoger la de mayor confianza mejor = max(candidatos, key=lambda x: x["Nivel de Confianza"]) @@ -213,8 +213,8 @@ def registrar_imputacion(regs): aeronave = imp["Aeronave"] valor = imp["Valor Imputado"] metodo = imp["Método"] - df_procesado_base.loc[parametro, aeronave] = valor - df_filtrado_base.loc[parametro, aeronave] = valor + df_procesado_base.at[aeronave, parametro] = valor # Corregir lógica para asignar valores + df_filtrado_base.at[aeronave, parametro] = valor # Corregir lógica para asignar valores resumen_imputaciones.append(imp) print( f"Imputación final aplicada: {parametro} - {aeronave} = {valor} ({metodo})" diff --git a/ADRpy/analisis/Modulos/user_interaction.py b/ADRpy/analisis/Modulos/user_interaction.py index 35fb8b0a..52705dce 100644 --- a/ADRpy/analisis/Modulos/user_interaction.py +++ b/ADRpy/analisis/Modulos/user_interaction.py @@ -4,7 +4,7 @@ def seleccionar_parametros_por_indices(parametros_disponibles, parametros_presel for i, parametro in enumerate(parametros_disponibles, 1): print(f"{i}. {parametro}") - print(f"\nPreseleccionados: {', '.join(str(parametros_disponibles.index(p) + 1) for p in parametros_preseleccionados)}") + print(f"\nPreseleccionados: {', '.join(str(parametros_disponibles.index(p) + 1) for p in parametros_preseleccionados if p in parametros_disponibles)}") if entrada_indices is None: indices = input("Ingresa los números separados por coma (o presiona Enter para usar los preseleccionados): ") diff --git a/ADRpy/analisis/Results/Datos_imputados.xlsx b/ADRpy/analisis/Results/Datos_imputados.xlsx index 3bb5164c10e6747648746d4d43531de7d6071663..ed01aed44a435525e1dab67fe6df9649d8f5e532 100644 GIT binary patch literal 491997 zcmeEtWmp_-wk;mqg1c*Q3+`^g-5PgyXbA4^POuQ%n&9s44#7RR+a=$eIWu$4+~=JC z_x6vjdWw2@Ys*?|@3(h-k%ff90D}R81p@;k1q)5BDMf?;1ItDM1N#UD3!x)wZ|7oa z=VGAh>0s)t$LL{eL-Gv@f+i2_{igr_`G461qp1^iTg<5aXY{AMV(pb-`75V_XkHeL z18XuX0{+%06l66Fv9g<|?f?-rwWOeaW#=xTt+S^wAwIU5V^=jQdIwFM>>6nvGdK%N z)qHGRZ=av|deu;ElQKyXqWzryCtkNNE7wNG;2)POSd5$QZX=wNxK$xkjD=^Cn;etR zucsJ(Vmi@cbt?96voS{B=DiFq;Ms7t1vhyx`d)g=8`w(|Bn>8Ho<=ul^anMVk_J;N zw@)8sk9>EOvNZqs;i`KJrQ6V_swbk7z|?T>N+f{wvWe_I>2`zXLL~gLGY|B-mtB=ynJ^#dK1Q;LLR`DQPg z+uY6EZMvk4CyiTMEM3{p@Aza6M&%=R*OJ#NXG!{~buI z;?cSzAi=<7--Y*GY{5KinB481tO54+)_+vCP<_p5`7=iQ*=T!Uzs4E@`N(2FGbv%` zq*?LWn90&Lt8=w!d9uQ)SrnmYW`iN+A4aq$l>Fkxx^Lp2H-5fzt!I&lHXt3L@;q5_<~N=sXT1%aYMx&OR(X7uZ(1`X)zYZJZU!=KTN$ej8G?izld0r|v#Cu|aa6Ykckt_)%ub z;I!)6BfL>_aHBNd7(u}o%)=#%aru>qo*Xu$a)U3tJ8dVV3>`6dXgUu$_vKM*tYNiI z?pyZ|;adwjF6vj7=2QwZA%-ul1SOg z1%Y<<(PSQeAAS2*U%>H4DSFUFCzfS8x^!7?QSZlns?)qSM|I@7p)*@%jF_*A>ke%M zazC{WUM*D_%tf@R>VUOn z%7Sq_P{0P^%LhvT@~Rtjf39)$r01}+)`Q>(j^`=J|aoNauaa|Ai{3(Oo&pn=Pq)eFm#yf7es z93ntBkq4kyyH=(o!@}yRLxe@5JPFal^7@K!ONZS%PP2HH4})IL>tD@;g({pars0hT2^uL2L*Kv`-ev9IXxr?| z4|K_QK=ZuA77q*-{2jJ`led2c@86{k{Jl7a%2$*|7cS6VR_c6xC}a1`(%= z*-*}U2?TmB#)BaxLR%*VMP2*vq-|^v>gOBv3y3JW<1Eslvynv|648n?=9%LBKrU>f zO}0y~$*;5+xDQqnN~Dn~ebouvsmtgp9Sjq|1idw#+3derm(`YY^U=Rf1+Z&qPcjuT z(SSuU47)&6ksHGwI@BRBu;ecoZOtXH)1-xLjakrhDu~t9N17?6;TLK(8G>?rmw9|; zux^H~qY0lJO&r4XUa)Qb0@=b<5GTfa8PjIj?J6z{x|Oddm7o3v$(DG#=!z511NF-&1fO9(T=L zB>0TAlIxV!;^GN$oE%?Y*L(`D3$(yBQQ(q?28Wkv4BD>c zE57bV$A5ZZhDA4ERfv{ z#u7wRL#Bhr_S=>NDEcf8*>$owbC`g8COweO2PbN5(39v;aT5isI|%V$&38c zp%J4Vk6t7nc}KvDd64}PQ5Q`oqpif+vb~eQ1oUlAdl?^DH zQNt50HNSvvePOMw->7=8sxkr&d&6Amh_67m5@@a_Y4=Vn8GfEshGB$B=P|l-5DEt; zB$2w4)T{r;D4h!^_n!>p2eb>BL z&^~%eOH)%m5;G`K_apJJ_zjKFllEzjakfaiV0B11@z1F4|EX-=-v0V()my41XpDcs zMD9TYQJ3 z_WHP_!}s2a`bF-IJ!72t;eO$5998CJqVQrf^bGjC@N0XYSm0Gevq9Oq-S_PUCH;=w zIoFdS)#Op`eq%$U!|(3yZlmLgbpM)Qpn&~|w4};0gVg-|*X)mL`*@84%!H5_)hp@K zICf>}>^OFH>9sg^rQtP`4!<9c36m3Y+p{9$y4%%Wx)xay2j-=YntE02$YnJz-dGk}}ch0oi}m6>#&1o8^=wR9lf@D$e7LvQ zUfk4{7Nl+V+8@TX?~Iwf^+jj;U>#XF_2f{oXQqP}N~*t&qfQf$GN4YQlUATkFPG;b zZ2=H)h&1vz*@W-s{)OI+m8C4WV)mljIF*DOjxD z6#M*ER`j13D2idiXFsO0ev;$YvNTitlChMiY=OK*DW0bhmYR-D#H1xTKf*1&PsF4% zM|aHj#L`V7fzuCLfMaw5yG9+H^;zUa!GiOlDy^Sy6cFSYRUL+w!qQDAp}8OAb$Oq@ zWn>HBXo^O2W9b%<_}mLSfU}7~o@E>)8|4stsCy(IBZ;El`HB7T} zlcaQTOiNBzUH@fKg;*)PNGZBVDZVIWH~@CpBN;Zsa}zBo`qGt6?=JMk z&HcW|vPOR*HdFBW$nWuGv&ZjcB9u!I=#vP1SgFeOd%QpF$&AhI@VVa|K**RZyQ`n&OxVV5FmT80{4> zU&RmlTqCg&w~W%hCe29O90&?a&77Od^-ZL;|1zH~OO|MuJDFrVVaJcg@Ip*)`~#etEW==aJ47!x=9o>K;WQ zyXqNfM#c-EUem5nJENLYPv%%PPJ2)?0X~PM=XQ@Ol3mTnvYx4HXS?xQ&NWvkq&~`X z3c4b*2}X`iFj*c;7m3DZ!oWA!g+i^ERJ@>@0nyS8+Ku)Wn6JtPpC6HU$8^#jpxUmqJx?vU>fesA}5mTl<3Bg z!gJpe9IYzEiEn>2D3q+*x@nKuB`fBj#3|62lFMWSpcnZJrPb<}xg=|G!WQNabRbK24@|<|C;~IwK z(n!#*IDQF6dA)bNR*|xwJVB>_N#{<=g<@3d=NSGej%ztgQwaaczmZsS!vODjR7$PV zlS-`?xO+Hf7@hCr+1$X>?_tW_)~uOw$YUd0S~CB1Vyvf}rJkLd=Lsd;d_yP9bJZQl zjv)4KkR}_zH;7$GN;HUFM9MgbU06y*vQ|QoEr?xGDl$uz4U%)qGB|D?*77|EVJ$=B zZeb7o<6>YBRTC_JxuZY{`rTh&3^dvc_&y&p*(+9@O?z8E(pNb9JiR7O290b(LKv*x z%ueikPrJLXanbvOk|}7 z_~NR{`!uMbxsJA4J*O9nlhjVn-FwxMv8Fd&xF3+I?t*?~0?&v)J57@;M;+EOI*t?8@-I%G$o&!uoea6P8y2TP zR#rWgD{gF57mY1how15Zx`wKpAyO_f8VfC>_V{BWWc}qlG+caWR8GbmIY|51hbU#J zLEVyaiCy?&;33$HI5_4qJ+8n*F+B{QX5jn|^e7dEA9$0Ap zwKdh*%9BK~`OIr6tJ@fCp?tPXx?-uk$xo9BmFl<37BKGTyw#)*@RpS8@Em0@kom$N z9c8$eed|0^GPxnvD9uAEJk()JDa}JHT+(5yM)p~=BRwpCisD*;^el1OyFg^)(h{P5 z#mdFfuBa!8o#7+?3xY@nd0{Yl`U}E;q|3GxJBj!5zAc&}Z&1CY)Q2D!F{zT;2fjB~ z^B@;tDUBc(Q7KFKnpO|MSOlqBvKLx+24e z5*0gh!i7(OT*(sz^9fL*8IuB%`kJhgkopF_(uPqgeT(X#n9UAk~zilYqfmUJErfJ8bE3y3D2 zhXTkWq}*Vd!_@4dS}RqL#&hjhL)XlsT0_==P^~}I+@cu35J~p(dsNG{?jt(a{*tibpwO^<0eEfbzuue?o#^pX2iDU=Q>(Np_~ z05_3(DIAI^_qM5Jvn$t+>4+PPqu|MGQih>4#CgM}wnXaJ9-0=DU|f(J$ZqTK3-G=H zPQoD5@Z@E1KX3`IH^VC(-L(3vl zE-Q?I0r$44p}f=h$+PHU_Y!`+Y6z8s_OqJD5CRDfeZK`4-N~-=7;br7=J!yBH{ALO zQXGQwHk+soz+Ce_=7f3`frr;RPYg>pZ9-4_N?&LuLY3zfSXF$e_cqb}V`>r_9zcnf zi89th*PWv#FEmwnbiQ}E({z3}c!#ba@kCP>i{~R^CEH;jeFZ&L^w0Tw0o#abqshaR z3f8EKB}aIlRry?C2WS0W39IVMIQwR3jtRYZ-9lrbD+-t^@QY?H8s4+@Qyz(CPd8~V zo^Ux!Z^pTS`nI6$Fb?45Zj_vl7;iKk9~dz4ty=IAuif7oZnri-^F2b2<&OnofTvC@ zr@Hqzsq=5K5a0+~oZ*mX<-s_HXkv%C25WMKi5D1`2+Iny2P@0WJ*I_E$t-CTgAN@8 zv53VEK5}m_ERR^KF#l!Z-l; zWI(Dj2*1kxPFME8*{JmdJn)@hj)f$YP>jcaeQ;s+j*dPpxm8TN*zsAxtYbTi?9P(h zcQ~ou2{ylJiP&l1JJh~4>+A%8d{d%YW7|IYqEMgKd$TLYZ1AnK#>d2DJc zsu7`q3GUK@to~4I{5pV$ray#L`d$h&aP=z^{WMpq4#@~cb;?JL%=ny5wkhFWD*ZTY zg*wO2niQ5kL{ou?b}wsz;;mVm?g;I$&3&F(#_XwHpHyaVrLCK0h^vaqP9=?I<^}ac zpplE-MOlVHx)ze+;8zS|;;#S2@eMpfL4m8w@7Ua_>*VJtjmrV(4LlLKpBmaeD;Co= zpH9^a_qqSS-?avKJivEs#E zYzj=5#C=clYY9l^(E!|(nVDzFr8gJiTb$a;CD*u7|^nmDI=mg~bkA{@< zzTuuZTCB7rC!ZjEVN{u&E}!9Hl9*u3;g9&5#tlkVOnx^^-T}-C<~s5Eqze1I8Qq`9 z?y9EQdyUzx`)UMw@r26%o=rlZme19qjw{Z*VXcuLv@t$qSbMd%eYkA+D~tXW=i)7@ zfsH@Kbj3PPoOI~!I^FX`Dt^P%&;ZC;i*OOtt!ku`KJHwzT;u7DA8pTq-y$nnU8B_{PK)By)n$t?nsE`$jIa3_!*g#q zVD#Ix^Rf+TX@y>~+g<-R{^Y>q4AgWEYoO6|8+B70q+5U=c0{V-M72h!aYMC6sX<0P zhOJTflKEM*9HF;aWVczkohF1lIsouljDFX493u6R)3T^jUc1yGQC()WFd2`_GHuY( z5k}QMZS-))s8kUIOfSI(72e2iX#{!&^%o70!|B5i*ye|$l zGS)U!d*yyN-1EyDJVy(D@3%@YB@$O?DdT)goG^8Gp6T~}Vi{@4W{5!@+9N3qFwaaQ z%z(p;<^ZW;BaJv)Rgva^LBjY4V9AdTU?P*lA*G$htTAh<`r(Cfs-+^ZU5CWLT~e~C zzWg*fU;{SALE|CW#9*jo?6#Z_^yb)A5_Sd?o2ZiHgN5lB+r}}?f(rCg zBLaIGcEp6@jCTA81(Y>z3h?)plH`p;ktlKwPd27$xosZEX50!uMWY4@k`>65A^~uJqovE1a+o;jI@XCt} zOqm(To%z{_#Kx!^dCq5c38=O^CdVi}G()+#3@=dPV8e~ZjRT(wUt*Rufz0v^2`)Ng zW+Dd4ADi>OD=awGdYlz;QeBbG695?CQ#z{k2`CUBw1vw#dY6UD8G4t6%lUhGgv!Z# zd4w5`5NjAwkKt?VP$Mf%9N=rAgt@4bMCww=0qlaznz?2y_CQqT*5v8N_4vaWxr0;% zmSw~OBi0g?eR5NT7HmJseS~IgceRE$&Q1d(?>&*s1fpUiz`Ug{#I3v@iYuXSw@wK*g41`*M5!T2`$TBjZSgl>K>|$^jipUD|w|nXb!|Pz}gB94yEK z>W$wY5J+A>*}%|AG>0{vWzCkOa`nW5^9Tiik6hTYG)Kno zeU{MIUa^pOv_hpC>(bqt1sEDvK7N9YWaLJ;vbw4uaY54R@*uK5tY!8W*YMgcAE@Wn z6CP`Kn4xS$k!be~J@YH}w&=NZ>s@yFPJtgLzR(v^gr?JfsJ@WL=fc5~iCI{t;dyL% zNj?ruNkBS9SUf6jQDQA2%8Oq%EuUvpR1;63H*dLoC?H=aJe{0c%-@nUO*L5&Z^UtV zs9z~uqaIfY`vK3;?TXA>--da(k9vMQ^=KqC1h9fSA%gsa-1MB%-QbQU<(njtrkneE z9Xv{4MMupgbl1FXIbs0AhGsgUMal;qV=eN3QHgTe-VEV#?p|%7a?0L+$^EtgFT{#; zAWB^3pOBRQqh^I)2?JPe;eESd!K1Q;-}zFU_S3Q$>M~>~(=H~s^#P(I7qhpS%wYLW zP0kSyxzb$$}N*Rzp>J?zTI+JeD+YBd~lA8o$#Dp^mAUCPR@IK1we zjZ{y8kVt4y5y8Cl5cY@QOu2TBHjxqsz=wx+e}a7|wO{GFWJAxhzo=t;DR z3m!JRo(JJfk484$51u_c^1jeJW7r;82fWW5Y&U(rXAC=56b4J~)TTSg-jOy2^CJtN z=Pyt7HsyFX@{Tkg9^`!xpE(?j z&6*IdkAM8uCaB1=igIO1SKzCjK)p|BRbsvrmUea~0dl7ZGqL8bCpRy>MX?!b%*YL)d zK2<88srFao>P#8d&8MiI3g^t-9#MxSH}WBQZs;ixn?5Mu^ucZi82UktAt?J149KTW zUtYLrDO=-`KJl-PWi8;0m?FIY7y1a1s8tZot+#zzQ~X{9(qu8NL0!?US{-24!p znTF|q5&Q!y2T-I`-5Iy#qiy5W?b_4X*#J?oLZQH($)Ry(YbVO5sOu$#GL5k7hmZ>9 z={n0~{W06)+6+@-020YODj=F<9tR)~um0MVvoUnCRKb|H3TDm_D6APtCh5HzbFVF2 zWFT6O)VnNFPT0FFS`OLEBU1j+8tF3NjLn|uEYoNmn|}d8xzy zOaOX$7HyOtk@c}t%%&x2^(t~Jv{b)mH5%t)4LdMYJR^qq7+me{$UT<=fMQ))VSzx3 zU%@Yf$0wE**529=-rf^6WG_-pv8NApctY(VsMf00pBiG{o9$so_!_gnH?i_@%?85U zm8A1909(>|WWXuuJUD=mbRG_nO*#(^&?B9H_m6!y=fLIeV_Ib?u`r&-5k0Q~?9l#_ zua;nbQUM9cu7{ysV12+Mapq| zGepb(6ptS)*cks^@tAk(`j6(VP4uT{4ygB{2gU0P|Ccv^cBUg@l8h>A<3WQTyl-S9 z6U})Vh%|z7%cWJPPk2BOBdiKXn~qR0ohzYdqlX8=6Jj{`RLB{Y0FzJSAgHMAc?Bl> z!R<|e&}Ze>iko)~<{?|0Zy@BvLYwiK+dcLvjj<~8iGEM=z;or8ldM%MpUT0)1j(PW zh-4leP(d>PSFxM2K-016_MvI%?|JyoL^=+!+!z_2&Vx9Z$z*Q50k&6x0eblgdBxdf zk=Cvv_iNTu=q5y(&lL}aH&zmP6Ct!WOS=I(W?`vZcY%}s%66T9Ai{-cP@?1OKK(J@ zJ=zG!Q#I|>t|z(oH)r>0fXfRB{V2xc+FvyULRdqPCVf~#h$enmL$D_AZP*fB6#vf7 z-?mq3#!-(UYAR8WVQRk5baGM|*9%BoncBGFE%uvynqiU1G-Q`so3#`Y1fSs=QxP(9QdGAT%dT+9B2z)tdW{25Hh_TyD>mj4<$r4R^lu)=O zl4VGlBGvmslfi>N7PSCz?F z6Fis~n-zl0Uy7_KRUT?&gh&r*FDPD6?MzEGWc(1dWA^{(pu&w!?KKrOHWf$>{v~|3 zns=XZVgfni691~T+w}4RZ3UM1RE$6i-jpf9;XMze#mX6RA#Nyyj;&r-jfy zzgK~nD)*tSm^_@un8AMUVq%hU8QLn|KoIg~bGFfl{PytLUEIN3G~UR(AUprEOM?jO zyTVsJCTeE(Au{S@)|mIEms8PppKXP&aSUOlwSJ6#r4{72*ssvmFvh#m+IS_fxL05+ zu(Vfa+rGG0X4}4G7SWK8e2@FNEi4-$xMW{u6G50nnmMhMBRT2b0VR&;ua#*(%c>l-~Vq zY0~n*H?^zJ*j?1@>(QNl9yj&G_iVd5>(!9r`c*QJTlT# zJ=j=>RW7M%QaAE2to zmdDLOo_3koAWzFo4UnhpTXl4{mv!d*uP^rdzSU!rD?YVj<|{rmV;UM<+1f-r zzchTEvct-R$PdY7@~bWOiKpO$#ow(*=r9c!34Rl(#J1ZH*mSE*qaH}uIIFk^F-<+p z;cQyeba9bml|N&#-J;uOegJt|WJ-cOZ8HD3BJ*FLB9jZ``L~D2L;*cmWGaFlvN8{U z>^#wZnpb9WJNhd@;3FSm>U=ypC3)Mz+K6i;lSGWB#s$A&!biG2hG|>WTa?5eP)5U2 z`BtVG+STNrmU{0_0or*f2pBF$*w3J8B_qqZumAFh?bRS>tnJmG6ulbdoUpy>=47(H z8s@CBz3S(*x4jzYJhQ#}ZxK<^bg@zj{b0!ih=mQ-|7QD!RyrwLpDjR!tJ*f%_%=jWaQ1B)iP1`+qOpMg5~b{d+VY1T{w2b^5) z?bZe&kZ?$p>aA|K)8^|}(Qlp@jt#xQO24P~KqXcx7+IN?ER)!6~3m?wFLlF+h997L=@zBcN3=w+;q)k75>aWz_(YV$dLQA7`G9!MBlR+nd8ExdwDSHT zTM1k$%nL9g!S|M;!RHK!Xu&@#;M+xrH1klwk?k)bv83eBQ=mm54tqdG8v5c7nhZ1+=sWKbn~vve2+84)S17{C`=g-DQAtXK^X zj8^P2iAo4QzV(l2LZ;2eNJdA)ZB@IBJJXP*ehX<)wM+ewq+LRc2L-W!sDs?H; zYLBBgOC8YVX9h{hY@sD2QOs*F?_MM(nP?Y*$0boHT0&4z4rS6V>UQbkPZstrjJKyG zU1B<^8OWe~ic9c^K?46rbe(CEl=T;dWYBeJEK}h@%GC`4wiq^LhP==#^ozn>G4O5) zb51Ff;vyPwYZPM2=&^By6gBMuw6VE`6f<;4{)H5tG9O83rPt-U_TcxH{i%wanoLhy zY*KE6mA@^#DR#VWkCk+^+NRK_=&v|GOuaSmo6pR~o|#phHf4DMJ;oW4WDi0Qj#j$CI}Blph{c%$-Eh;3OgO{{KN=s*3_DFl;Ie@u64f78SZ~ z;oZJe7X)ORG-Oe_#80Y;aKROo2GF7ip3?K}UX%=9DJH|j(J_#yWe6QD`!Ar*q$^`B z!1(0+m4W`TO`N}s|CW#_pFI3*Q=IcU;svgT=nZlq@Kz&lQXAJ}asD|yCVadWW=?cB z88B>04e6nE=oclrK=2@y>b3wvjFaz%)LIPYaC#Ij$&>OTg^CxdGdTe_m~x)ag^GuY zmSBa7Ln;|yhbot5?~W4su9!aG@byb>!v3H0THRpbN!arooExfv+%@bA;5`~MVU{9G86PY1^zd1Au@%5Fl$uHFVA8~l7 z!Y49a@;4k#m&lc|gS{{L4#R6&Pd4aG`giPa-m5=4+maA$$h?PP`5u(z`}%J7#Pc7s z^JxDC36Cx_W95wj(kJ-0WsHNgpP|C=zwO8?&+ZBuDji4^ph^s0*wdqeA4iDdD( zbG5VK^LkrjyGZXO$lFipvqT{E&!m?xaP>0U^&HoWCA0iL=6bw9p9-a~jGX6V>Awl{ ze_NgA(dME`enUI=4lyu2w>=03{h!G%Pw_oIiy~bq{}T%&6~oV~Fz+6g3~wtY@8{AX zk*H}4{b2t(+W>CB%U1M<;`tU}Abja8_3&Y@OV8g)=z6GQ3Fz!A!0Gh(VlFH6&+_6- zGi%=7GkYe8x&FUcTkH`-k>iwB)1WJ9K=IwNNigpL<|~4W6QHy&Hgtx5PpsLJ>%Sm1 zG*A?E$7h6a#_QH@|-jDcZzM z$@B=Jiu;+Sm)!PQL}JL+8h#h)RJXW>>^I@mS~Xi3>g5Es;mfZ3Wb&qRuQplkwk${7 z5H_1nP-E2S6+ALgB?`AM3$&MW<;@Hee2|ps7s8#SWWMp`gHSV&Q!=lH!CdqLu_}m^ zP<6wEKAt~91pIgyFXx=nsp^ucG=9YN_|dxHRp;|N8Mo+jvnF(%j=^B86la@X zY}$LH9Q8!rzi;<-XLu;HWM1f-#p^av4xy@c3h6HA-p@gPPs`=$Dvd!5FgL1)ILg$t z3AV$w*%5~NY*mft9<^V}u)eGbj(xMXLuo#d>nls~i2d)z+{s7MXEI2@!20{Z{%`Ze z?0@EqvyxU~GMQ0B&ggFlKW%(qhFj9ZsI}sXa4XVRRYO^b!41H~S6SgMJ!)~6Lr4%0}#X8V_WaW|V@=p`*amDUjK zfQN>X6-wu+#7Z{Lk0H?j1bkeX<0zT;>Ee`|@@qu=b~Mi4Mx=V21|zk39SPekLL=RA zhzUkGj4>N7JhYVa`e6~8-{Bv>?h*?kvEeCF>)HCHR=Z+5qidTQjnaK;%`1SyMaBsG zQXf>X)cKJ{ZPGmCWgqCa$Si5H%Eq)${n~0>HIee^XCQR}aBzBIaUhH~f6IEeBkh!J z(Dd}e5^K#A$DSswb#?u2yqV^Ox35r&f^g?30TxH{g3tDARkElrDT2%^D2ZnuD{ zLB^^Q+59-Z?J7pRi-mJ-MtV_q;N{e)U5=8n!!VU=a2i^k}Z z=Npj~2Rw*=-vqS`uwC7y(ozb2qGl`gvc!i=0P}#2lOwq~z7uTsePVfh+&)eEHK619s0dql=|I0AC_#q?LWl|zHvWXRrvv595)}yU#^(% zecps7iZ@=51?d4tn{Qrs27Yh5g0Ftpr%z`augMnfxgT=dpC7$BguY8iW#4+|0xPBC zrCt;TDfiC8Z_bz|0uB6LpGK+#-}Kp#NN3v2@Pvy$jIoEv#b#JSr01~D(3^P8%c%hH zq)zqOXAoK1RxOJ?$5h8YtQ;1Vq_0~Sm+*qlQlyr4h;!<%3frg&`3?`H&6&jV!u^Jo zp)x$B3&K;_Gc=?NER)zXIHbv+1O=qaZW`twmXuPCd)wf&WsHl7o#y{|L2g>jQ!QQMvbfd>ol& z5Qa2)p%fmexD){#X2rC)_Gm3vzk-A~lvFqvEgA_Wt1{#5Gxvk8TkFsr?SQvq(L`>p z-EEbc+`K!|SxzF>+^82iNt!WOI3ejxOjp?%lWdbCLhdv+D<;s^usf;%uO;~G= zVADr?bK1H|lPm~ul$cnDag!mpWgKy{A$w#Uaf=`e-p?x_1K-aZAdRK&o3!HB?I~3V z>5}x^lqS@#DY!L))_0t(edj+dgLwqLxXjbk?C#j7JQID zDsb0j-i&ha58anMT;SIlBYg&AOZ$`>tML<^!-+^;XwU&IR7MACaO6xjs17910i9qo z#o~a8C{?W1%?i;IZd7mZUVVsV_{n(+H$mb`Aic6_0VSa(4KxG=gDO5ZPGlfoeOK<< z6%5QTQ9DuC6MlonIkPFK07J#^QaCnize810BZB5&Fv$zp%W#mGD2OB=* zJPs@LbioKTFSN+ayO#*Qtir^g@wek0U0ikQnnk;MA7fKLUL>~dd2#e)R&&n9j@>NC z3HnwykIh{9xSOe8^490Tt?00|-}n&sH{UL%Rt&_KtgVMWr;*268pS$NdIe49ON9Y{ zF^_I(%k*TTESV+3+W{G znO@Uo1V`sUH{w8kt-aN8!^gpiWqqtCr#tb7_eQ_N^M(2C1EtD`RqAo1d|`t#nh+kP zitD?q7KQk?1C$D;?-3`@<6=eYg_a#w!G*RP7P)aVT#k}|v$p3vy(G;2Tv^MD55|4F z%cR4kGT>wBw=k_kxfj_)gii-9q~=Vy~!wW`O5 zHcNrISld<>Mc+lTgSDHcuF_9h$ls=b zmslWkdVTg&CzqPGYUnp)ANDWcZSa6c6vlOsT77gHqw+_ERqLcxzL+f{%Wn|w8~mIM zUZU6c`MM4RuGpo?Of_ofr)p>E(-ioC-LL2gr#hVIg<75a!8p6+9?7qVBYgpwITyZ2 zpY7Vj!EZ-gwSNmiXI&$ohiuFDokGU=cB%dG##J=%)i5LW;9`z*BG7D zz{E+?cC^pvCn5*}mlX7MyR*E^wmKW9`eOK${{FTi@VAdK1~a&K>gfQuWMefJ_s#%; z!zhkKuX8*Zsfz{rH)3wYw&$-bq~ypJ)_bq(VT8q|P7_h9uR)OgIgm}*{`PPdWp2)) z977C{3h9jaYYi*yLGElIc{;<-!(jz0nnKY1c~PG!>mAtu<6{aU^Qey##ks53{Sq8=l1&dC=^u2m_9?J;GN6+JE%@f{(Q1R zI`5dUV1-W}>ynr-nJ}oggyH(2^6HJL+cq_?B$W@x6B!k`pls;Xm=Xi_=B%CbAX0mZg&;HYluBp-x6z2i1+b_ zwZ_@)T|9}x*J{#ulHG$f)L=S0;@}f`ld(CR;A>~>-~-3uHPlq~+Z%=7g$(x?|7?65 zXQ>eWFk!XerL)KjBYqVHoZp%E=L2EAkl`sVZfwhsBB4B_kCi>l^u1_iQ1|`*oKuj^ z*dpu&R1i(05NpwbFkkccg-)P<=|C+15Ix~Y*MZ5arCmIz6jsNNGtYFT?NSA+MvNK> zX)O_wl3P&an}8B`#iCQWF2uayiVD)gWx>e{9@2lG|GZdE`X&AgGeQEQiU&3R+cHu! z0b~WuAPcjKUDf2GQL^phw$AUWz6%L`Ffy`Z=saZ6Idqp~h1hTp1{PZ;a!lI!RG?1~ zt0jH>BA#fHp~aL_@B0+{kMc%o+!brwmHH@K^?puj5OCNBO=)Qru7hiFV~-K%sRd~^ z)bQ6NRaA7{=xyFy7ve6fVNBjslU%fFn|2q7E~HX+PuIpl%DGQbq>SK~znoE27&_Z( zR!O@RDb+|y=U`LSr=ywC^{4>Gi6}=>w_~HP6nbP^@MsG*zPP{OOH7O@Z^KtCMk~@n zLNFwPhN{_mxILg@iXv>J#3cX&_1U9ouQU_)YEu;|eKb?U``?XHBjVTcA}odaR9$qK z(sJC=7*q4Du?k%5nXecETjsb*=+;_8bRhBk<>}VOq7%DZq{`qkO=H~DT6G>xp>U_a z8hzs~-;u0}o3o%mL_96x^_yKxB0w$sQ!U1Nj6n5Kw_VjLs|9MU-?l)bZ?Lwok;Mu!8at$Coq^NlY~qW z_{3K@!D#{g%)f$vlrt3v(Arh@K@yFy5xSrxt3-7iW6LAM*Zt+rIp<|ue`%NNNVf_c z{BAP~zsV}jX)E@j24hLe!P88Xjunsh{WofE$0#GhrRMoB5jMcBt!mjmjHT8HM?_V* z_~_5BKWnH_4)=fM(2IjUS?LH3)11LOn7)|akC11AGLaqB#+*ITlzCPIMtXAiW6^c4 zrlMpj@V9YTTnL847$`Y7H`o+{_!w-eOl@XZL0Y&g-ht9%^M=;)NBRJ`5Q5ZNO!}-x zs3(34S7yapR6WwXu;T>Xn74N3cYp|5cl|;uwnq20yu#si5c65KRYCI0mh>)iE z86ho}#8DgkomXqN$00cFC+L2$dH_6ohZrQ7Hiq?@w@6A!Uk&6 z7iiZibNamh!`L@RSGH|^#z}=0+qUhBomA|KZQE8=Y}>YN+qUiWx%a;Jy|25!9;5#_ zXYV!E80W0Hr+#zJwdYcloM)wA#V{U*tq@CBz+7vNwE8*ts4>V!Ymk;u(}Apc8ywhI zVJcaVAh5!dJ``4{VB|9k4cz&#y86roD^naVZ(FAANit@ z-z5wKwZc|yRKSbapJkL_*3VYb!|DyWbP~SzE!3p8A0al;dnv>YS#+3D>3g8gHr@Z5 zw6qn`RZBAibr+EjLX2DM%zJCe;Pro$)|cmRrH#eDq(YBbkGmZS}Sei8mo zAExpM5q4DXg%&&3=(O5c#Ln`W9yaO&dXrTAQYr=5c158Zy;Lp(x`mM;aLJNFGj|8Kj zGk11!6&RgRI((Zu(T89$uy7ovpRg-oJzl%tXP^H_4?ER|fT}%@_X&bftNTb`CXcsx zR{z7U&46$f+~;F2N}<+OZbPdgW!(u?aMHofFpGzXFbpO})|j?EZw4aj`aw3o(PCnX zzS$y`-}Ew0IL!tQYLm48WRZLG_E@-^fGyONut|R`0=7xN|DeXSL0M5|+B%281k`|* zTKwUyjOQM(71Gegn|7_@<<_?U0aC;2>f^q?^AQ1&7C&g@(6(=N&G#5F%{VdU}`$E zepmLG#6`0gx?EdHad&nsZ9#u%ysO#2hzQ8h;U^o%ghJ-O{0X~A&EjG;QDbj=&qd8- zdlyM9iXg6XyS?`v-t2aDSB>e7O5^EJ$NsGBlpbjMfqJJeZzdxtaaugAnXg~ma{v8*wNqiEazeT8@mk957 zx)>QWr(7{-fZ$ei+=*cZhiPVdI=j8Sz3(tJ5hte|VrCK@GU@7o2*>wteuNiXJ;yLI z^RgwSt!+J&Jyau^AO5PZ3urGOGYJ9kDLIukOgdKmQ!VGOXBuwPDeG% zI5>w|agcm!n3S*<;cjY06%HOsbc_>)$#eo&_F zKVcd;7QTw)WSAQxbB!C{4IP`X2rh)iN`ngW^juOq0Ofs|VzD}e2K15@P8Prf$rwzI z_FU5snY&W?HH8MH2RVV&(c{Og*W&SA{+S)`kig~3%Eg<^Er#Wf^Uy3^{;@c7qt!0d zf%l5;)cBf?#2T5gWn+NuSZa7A#Cc;Wpo70DwNh~0W`H7NJLJ~Q7`>pJO0P27{DMLK z{b+jqVLI;C1OhW}{kPSt1DSneH#O3Avu+*=R+Zb?kWTM%V8e3uuO8tIKO;Fr_=6^zi5a(5@^!4p31vgzC3G^s$qQB%jvA&9N1E0Zhj8UE zOJj$gf+F<*w!qMr82O=c2@7E4fCgQbaOF~fXW_esvrmeK1xb&f5HS}AZ`$y)zemx( zxuh|q;B?t}dWXot4sd&J_^~B22 zv)%f2a1=y&S;+r%R=Mj|)-`3{WPKh1ki>w@u!-e)9RjdC;$adL9DM`1-ce0YcEQ)A z****>R>6L=oab4rq+InRu~7Fc7=lo*j-aGJ-eIj8039n(oy5ysU+gOI;vE6La-9o` zPDIu^-fy9lBBBXUvVU|lWLx{oeglc|6iosZ!Gki?r?EdZVG?k@|Vj$SiSQ07VtvfT$`O+y<6_@@;tUN;wnQ?4Tr=-v&`Nu#27YLc(i1JzGF zkd4I)QXe^gmX|l0;|F1b-C335CGQBuz?S_(KcmM`R{?kY8$+%RIb3(<;9$OTv2B;uDDH0;pVKFNfX{kcZA&AbS%y9K9#P`4dAJmDQk|>a z{L7H&Gi$ne&|*bK6L5;zLS1EAO!nh;R8>f=xd@~$m(({%{@YD)WBAbhCP?Sr)*`x5 z)!waIc^z#MN?z-2+Fz51Cfm{pEUHG8Y;1e3{d68i@et-Ac!i)!u4oZBDY>j66xJka(W!abdc(W?DifeIu&l+%hA6v-l zrOd2!elq1%8m_47@;FP@!8tD?Phr;|FR{XXLg?8c-Zz(v$z3^BOM5v&>2)FUVscWs~8(;6bc#@ zk<}A`6J#8_W=?-wz8e`cu*XmT99 zI*>-#mHQcvG0sB??TQoG?Q!{LS4s)RQ{)>0nis^S~$LEM*TU<$UOyoz*3En3{( zja#QM#PimXp~%ANNHgcD2Owb$!uk_CdrRo6+;X}txZY)?y8fq<{I2k2_Hg#3XnBlJ|;{jl8? z=Z(l@{Kp7FF5zyy{Cf&2elr@uXL?%_{yL(+z)h0)EMR3R#W*nONSfI3@P;kI-#WEq zH1YfN&fpry<~Jsd{7DH_{+j@G3P~3VR;E{Or;D{muqK$pBnw+@3=L!2-IU8oiBmncez+U~t|U?)V@2#s*u zLl6APJwbI-bQ^UOaC>tXS^Y2|;Jc0g92K+;MGcdr{C>0yyX~`Q?w=|HbC8vC`9bg8 zk#l(@jRK`f@V9xIx16{wV-2$iUKe|~$md{xv0i9wn%B(Pevmc2UQV<{;**ZKJhFD~ z&t5dF_#L@h-r~$tX`QPmG00FM@fJ%I&~!~IaxTwQAyFi+5f@vyv@eqYb_7hScE);A zyBStRxke$}L%3)-SvOH7i+F^ANNzmu!L9d~k`@wIPl@hLr4%QU3?J*{0vfvAEYWmo z{Aq6PJ7{+~y|*4}Dk`a%j;2H5XZonh&Q@yqzy0A#N5eY)k%& zPq~I|v1TG%L9^lUEFDB;{oQ8+o?kafA@$Q57B5qvk^#z6_S;BtVKG{WP;p!_GpS^- zEiesX;1cBqjB4ICp?{kVQO|3OjNra7ez9Hp-}3+9zX4S#BxABRhtpsz7>7>KRkUe7 zAS*~y4*~Al=?i)X*=*WA8Ju4KBdN09qjn~5;k7@zb1*rhIju&7^4{4xP;_Pvziz*} zzeT&pHVx0yc%`@6drxIuAOM9R)(yur6Yqi{7D-#G{xU`Z>go+_&2pix7P$DwW+5-= z`oI_6K~}#{V+f#Q9}mbEq{Pz)U#|ff zE45(H!rf5TwechwI?KHQ)#GMg0AHw4Y<;We_0V8yo0HMmLoz}&gaV@>Xh{x5acIy_&o#2RiCt%x6lvPm2WyR7ghQ)K-f^Q#6c2r&r~P#x z84gzk*8roNGZ4k1YWIm-^SGT|e7CXNi}WrnqnBH===P%G1)SnWvw}=g1hb<9VKkqo zM3MR6OjhhONZa{>HF|n$#N|})RMP%9kEm)GB0c_+Oh+l6QtCiDuoU4_j>Ad`c*NZ3 zev3C5=&SD_nzy+F5LFBiXp1V}`N9U+Ru^Up+ixVIBdt5l7sbxtY^^ne-j_46aX@`w zdH=-!&;8Q$7#`aRq=A4~2toc|`x#jO?w6*jXOkxW{loj`7oeMpuTjsSinx;%l6L-F ziTTy)l!e+5MfdA3+%?{ZE*A(4g4}Q0bx0VXZ;un>YfaCuACyv2ChGBFqe5}&(PqOu zKkZ`qgAe(AwsgS@70mw(5h=I8PSnv%Jh5MSxAB$kmaI#ZzzGbGO|P4E=&m_qUKo-| zN?jPiyEK*#2L@LSmE{VNIcNu*e19#DcK`WP5G!iAOur}x=QhPiQP0^&rnv#VV z^?gG7KK))NlR);WoMnxo(ctGfEd8E_!ey_Y85*ew>_hi{ho{GwZpLMV*dX2~DeJG7 zsXcrIRZ-2y`76py6bBEjJ zxdr=0TPw}tE2b*(F{R$V-*UW#d+MK>CdZwgux5c| zJ6#dg@hs^=jDvemY)qX#hxF_BVl-pnN)}stfTILS+2dx}7-9NJ30~1)z||8afIxC! zsrx&_Sg5D}K$dj2qyR&^O9!7+K4m`b3));n{yqj#9PHbM3YLxyl>|osWJN6H6;tZR zx#bHgqikzyz0I>_51RGjB^wDmDlDAb_Cr`?iL*5t^|`YNDlx83i-o|J>~~Ou;bgen zkQy6?tu=$E2_3|7xg^A-5}u1%=AXn0tnVBy!Vs)@z=9PjN(=-Td}%OjwZVSAl5OcF zf)KA2g6=Zk$&tXG# z)y0-@kZ>-VO=?d}1q%tuoR_NuG&0r zj(@2YPk;C{O8V6A`@Z9!nfJEj*=k&q<3HpKaf*87K48L)SEQnM?LIWrET8APL;*{F zX?H=kw000&ioGYWv7_x`Y@3~Vy(!9;1)2hVC2a%&d5f~?2Cb|9IlHs4Hqvh%n|D2_ zKsODJ3H`;7^&p;yq4nv${YRY9b>mhHY!`52D*yaWyFlEaKV6aBg5AE<8UEnhw?el4 z$C5F76t?NGX7smZ$EMD(Nhhgmz7Alsi`=F>Z*0X9@;bOjuw3k&$3;tbzSk)Ngwo2V zO^{jHjLnt`8V`m@uP)nyO=#ACHj&k5xK-^pCmeK1%Jd4XF*_@Xhc6UU3D7@!>3)q- z7OlZWUI;2jwY{xPDTktr2!(UeCqXWoDe`MGQQ+ys5>6)dyDgVKAnAiJjduB_%k9s$f`L1ud4xjwsXp8#e610Ot7Ah&GreLu3_kgEcCreJQ_ zsQZ4#fI&~%8hmFGeDP_}&o1;+Ro;oETy=VL6++QW!@Wd72$Qv>hDp$ke3R8pP3N`(_Y_?O5{6YX^xZ}B= zyKT1|`9T6!?uqAm@3y@Hm;nsD@m$~CwqK6?Abvw?0LTDw%ZA(c69o(e@k}AyvT@s$ zFMg?=+{(BRlt|2O1SRBa2yRLKjLMd_=js^0x{r09n5HhHtKO@$)6*H$wrZI>^?#jK zFdOxQn3iLlrh$UfmU4j5V3>~eQ-Q6A7tCnXyq5VcsbxAQ&_)2(x8wC4#Kq}XHZf=h z#__lSIz%f3;dLE5L@V<&F_hnsHT(piR#iBvK`JwfpB3$F z&$(g7=OfaP>3u9ve(=VG6emBt?-;-*Z4e8)YiRpWP`pudtJTg3zzSBu2r1^-pafH# z1)CvL!0Kg%5{%mN{~mvW7nnVWF9>D+ zju}|pH5GvJIHM6GltX>yNU18_Ukics1TI8Ak1iA+uML z)Zs{5Xo?4XCuuU)O`PRFZX*9JvpKSQEM%dBvP*EQFMl-2QYceyUo|2xlw-8WKD z^)jZHo_rlfiKB;F@YH)2cc;RtRnXt?O7}eG`aQ{NqB7+e$QA~@O5kWteFB;gtBli` ze(Qr*swt3+udkr?fE< zv{myeRHz}%Zd#^p1@*ViRaMauG*wDy=j8TMx&z#r_mPRUKayx=g6K5Op|u+wQCiD2 z9vK+RYFcUUTSZdmW}Z4F#dOsuxn9Tj)yV{_;Juwt{B1+o=?IS(dcvep;`>_eiSO0c03vBZFpO z9`_2ULbNhYXZYbs=ehkY(rJ{+GeCC7m5%Ac3rQA))I~cLb4*=4RV+9bYi^{w6v`zW zlFCfcKNF(!lt}j}j852<*04)+DNYVG+HR#!hr(Kr!uNhE5rWVaEK`E774jKeWF?ir8=NCK9GbC#_4v~s>BvjX3d{h9%zVPz<%+?NDhfjM@* zQ7uoSu}t-~Law#|d6enS`Nly-AT^qG!dtGWD3h7yD}`)p1!67J-SN$p1$c^#U%=_3QJg zsPE?e?aaMNQ~R+i>;CK6<|yXt?aTB1l0K_*%;)Wm-{<43NSDw1>11h(?{kkH-{+<2 z>!$799D5cINWdXa!SpE-{1qBpV*>_>q5tcV9Iv-!qNSiPtSm<3Ln!N z)AZ;wGUJKaS(nIPkUBy4kF&>zbb&_*k`O*n#Ky)#_3Mstx zAte1>Uy>2uxp9V0)5h6D$OzDu6<&&ogMN118}sDm6o*e(dTWI@_gVehN;Z81)Ri5b z^&&d`*%+W@<>D#An^_TgMp3;_)l+9{if+evmF}YLTHm9<>y*M%3hcWacp3A3juU>9zZ0B&nyX-p$ z>vI$DCq|#|v5lGa5Vy@n*}vf-iPWwtj4lu9+A8g;i9nyH@GJ6VUb+N7ZM;8iwx*p9 ziHCjmkN95`U(Rmwv8WFX_`hzN#_`Q7eNd}<=OBc>U1QaAEOQO5-ywDz;}|YW2HSz%W8&qS_j@DbOc=q5!)F` zI+(LKIESH_zan*cg1<3zbnG0c#1x0(w2WE$GF#x+jnEWU5upo za|%Z(L6FC&hN!pQ2`iQJ2Y4{v?YgC4e)(5Wt&s$q{#dM4U~N8jjzFhGc5S_(lZ%S@ z+J%_CRJGAD2>y)yf(i(NEM@- zI@Zb7h+|8NBXJje4@-}Wu-Pu*Y76$_8%^B{bAl&S)e^4vtKb^|&T+v*79Z{AFw@l$ zN%MMhg*}wf6Ebn(?`*^hqU52>E;jttmEXr(fF(J1TkcD<*}L-oq~8`Q%F$}$ zJExI=f@b)ta{M_%Rfgy#r6y!J*U$N|+({ItoZ_;lY6uJx-&%*F;*hMgvcRG(=W7l{ z9l{yepJO}{dC7}zplpXss5^-prW%)V7Gst0w(E)l?Zm;Z+ONP2J5rcJ9TM%dO$26T z8T7q$CQ?AfE(Hrq;ce>$W`i0@=&kC471Y70?G#d@9MDZUjHSYLERM{^h9 z#uA0ksM@MgVZ?TDJ{Y|YA#7({cMFB~Dp%L|YaIpln6ccO*9JoUk=tNskxyWU-&FP3GdW2tqj{r5XjuTv^tn)IvjG0ba*I1d>Iy8IG zxlEn3q1!(FxYU_;p)YG2GvEzlzt!^lNLbdze9K6*Wd5W2qff_#g4zo7_w#Bi_aUOp zg&3L;rDj`rxQ8&=5NN{QpIli~QtSZ>-iMT0z;mM(*`PR;RX`|XUHBR#7m*+l{|Loe zCk~3@uuxV-c4ftq zQf;i(T|29|lxH6~VpvSKhddEDKAqWjptew2Ry!+H4@^|B^k`yP$(PJz5Mo+5g=#~? zP99#=OcCL?Hq`CUyjM_NR#3dwH@Ej&B5yZ!?dYk|c?4CVxqNV9Ki2)&`fag)e07;G zk)s`>)P=yr6)&v_9?)H`R9p}>kk!pgHTx9tHLoV}^);}m z=9K6UEeIC4WSe$3gn_gL(;HUVy!G^1wCGck+v<>EO64;^L)90yJoapi1B~(~5BWd6 z+mR!R1x?SUf$EbbOfhObF%RFAj8?HmgLB25o~aT()E_yp$kU5g>krzWap7xvqr%6s zNDWpzCvGoaBqDpwl=EK1QZWfG8=S^zUZ#PxG7IK<{vS}yju!mL%acw zj4>vBVs1Bj5k1kv(CC>+pC#OniWPKaaah)=xaXaCW3dRQ0`7zItv4Um-U~5 z3m%BixbFazRE!%~*cKw`TiC)jl-Wme(+n>9QGEa;5XGsm7)C^!@>Ep8CEQ)!YF9#G zxB8yg+*S>x(8EtOL`0qWLm;3}Un8ZwMTYhRo?S-4C`R`Z3_wp`hPCWMR;t zqQwOW<)Y9gpPBc&lbDry<~q6!^5>~lcr2ybc0QK5E@is&2t&wqo|;Mz)E++dr#1Wb z5~e&_F4otU*&u+rdI-mCDuck@wkVBvt`-8A2z-CujrvMr@6!E1N%iyvZx1AAjS(n$ zVUxEMvU!0&2=1XaeDl*p7t-=9({LYpO_y0fa`&R2)c+Z%Uefw%4`)STc6D(wW=dP) z$uxAiu%p-2VIPN1|LDqsDPY0_t(ZMilWU0Wn?Wi%HXE;`H6v(*F<=KR0O>L`PDQ{L z3J6F2a}!Y-dUX?bJ74Ehr2IIRjAk`>86*xe3nLp~ zXmCak^86NC%a)TF);?&m8YWFhF;1cK0IL&YJ&$FPWRKUqujH7wp)j-N>)warLUdyGVY6=7&7z8+R81R$E zi9Ih|y9_2Zv?mnA>1_Nh;qL_&Z#RgfIKpU~BXM5@O%@F`B4Fe&R4ut2X3Zg=UI-h= zJI!YJMVAGm1JdZG&nXo z*pUzj+M8~GPj{ZZ;73!L}3s_#MLTU2&fuzYF(B{!G&`F>a04tcW>4 z;&gFgLOspX3x{>(PkvLHk_6tL%J(;2e%moHRAprr$8`V@J#i%W(>5}I!3#&g_ljXR}?93?y9CE`z+ia4;vKERI)*+Je^YKs*z+~l`15G z1SD2Cvv===dAqKhG|kGWsp2z0g~^A!%ay#V{CWA>B1q-nUZ9BDZs4^;R#%_6v15S9 zi%jc*a5J$IP6N!z3cK>E^vu1}x9^l!?bx+#5MKOVV_FJ_mZ(t=#=FAgXk9H)%0RtR zN!=R73E-BO64&u=S8TP7p{)m8heS40foKne+8f${EPb$1R z{8a`0+|!yOi4vTvyB_;PqmAIY2Hq+|$@%Dy1r@C@UP>qt+(|cfHxxSI-L~H%cSB!Q zuQBPFt7{|+{HD62lm$ocFvCHz{1_2fP%~y_Da}O{9Kto^=VNnKP)Lh>#)M1;^bIcd zy@me46kfB7Z%U9xX95ah;am#yDYTnHJrFGCVzZhAHt%YDTas2myO)JQD7Hvt$s8nRX70+vuciSD>29#b0;`VH-1+aay_rFTjIOvOaa#Gz<`1KRHST1)8p+){4wZxS3hp!=1DTd2 zcH5Q+P4T8Hn#aoBv8o<7MySWlynuzpfUoU!CVX0g+ueeZaZF(LB&oR%)v8mwO`kic zchQxOKd!D|ofqEj!sJ-K;>P?Gc%BjRBTcdBmA9shJ0iq<`NROz`tKd*q=c0X1D1@83W(IegUiB@<2|JoyqR7M#lC zB?C{nR+nUauI-VlHeV{tQ9E*)Jer_l?pQs=whiCL>cOrZaYRN~IibCxHy(s9>k^WG zP4?L|?MIN!>;+81iTtX8@2|IP+PClt6P~Bn+3x!6=9Hje7-l}>@`GSt@eBNN--1KB zIrCztDZ}2K>}Pvh$|6z81pA5|e1I-pv?lG-X-XST`w;GYPA1)q@G4WPLFXci8y*q* zOD6UY^t^baM;HBaqyKMQ^Amt;lJc=d%DoP4aM*UM8ADdI#rF?7`w_}nFni7?2^*Dt z>x^B%5G_PMYYsr%UW7gZSwpNiEXV$WHd)yK*=6%m;@e&cp9|B~Q&GaRcWlfnINi?M zTN!1c%wPrY9c}=Kz#fntqFyc~D@dF?f1hlZrl)T1dw^iyea1WNbN?C`r`QjD{8_W5t@&K(hH6G|9b=fK6qA^_}LGZr5wy27gFI?8+>x z%B-DNAeSy}Ec`K4sCBbQi1vUGneIN&?AXj@1`S!3;zo2|>LHU5>=;HdPdR>b2KkYn z-zK?PL&E!2kBS9w5B}h!W z*g*QGg`uZN9qc^bo@P$JixfiX<|WaOZ$s2FO=NV%n_1KI_cI@qw9Z`|+(@?+I?`V) z&eyl%oZ*LF;R`mCBYBFW39$I4eir=w#M7WlQ?}M`KOB{e;Nl zGq^=~iy!}T+dq$o<`@dHs}W7C#`Tcl_vUHoHHx#kPc-?CB-Qs&=oFzxQ)gW7^{i+t zj2I}cuv^!R`-j`^?Jg2cL@b7#7*2}Xh-N8_R|S$<@AI~F1urJntI|1dn2 zUFz8$dC2Xe>CDa(W7Xz#h}8pve?h91Le>3A7hQWFt3$TM{3u%s6q5(`VqEjK3L*-0 zE3?MA8uPhP4iEieu{wQ-xWB z_{NFzooh3XveHe2h3aS#3Ts~Re+;bRd~j|fN<&^TuLv&1skj1pIG5slP;MofviNF5 zk5k_GI_0ULf?Rm)3RoV#o1mZ`F+8@za$p~a-I%5S>$miFBQ`ssuANAp7u?kw>owbA|P|%eQ~zcgADB{I(5(9Fc@jX zg($eR;z1zvS-ipFiLQkIWFAww(Hl{peTyrPE=8XyX&13=G~O|h*tY(*{z$IQrR?&? zh=SfNh10}8B3Zi2jF~-Tui3kSw0|L2J6?KuIc5#qq+U_%uJQk(ZW5U`SEhISQ8c9m z5dY+6qLAu@D4oLp|P6CMMK?&va z#-?vVEf0P(?N77`+m_WY|FPaO7RDyFu-kd#DZ_iWzG$WJ>xzaizUger_8MJ}V!H!` zX6lcH`l^{mpmSC`F4!xJw`=*2%>u{2hQollE?YLM+|<-tE|V4WJr` z%e_tS+vKq9*E4`mvt5qw2Dd}6dffv?jd2-MquQWR>n?+AF4GpH z9K%mG%@V|MC^okDu?A~xd_}bW2S)GI#hfz(9$C*wz7>462nX56GF-S?)r$=Bw}bNH zrZ)A077II4_Ubd?Xrb1OFSV_cR}7xPs*>F(wU0`$|Hc?)krEjS21s4aC44jf>%^P;!>e zc>ehCyit=bi*4Y5W;Ty@o)(={7(eC=U-6ITK#*P9ttr-RJzyZdfQTu0wRQN^T|5VH zNYiCv@~EC{gO&TCZ&Y0Y(@=nYA_vt~ph<{ZhMkLBrm31~;ssXvu%GK>Pn1Xz1NTyqkyamz?_v8H$xhl zfBa8a5fv5tj+au>*ivg92>x$%=P-*9+uwz-#VE2?N6lwCxTh`i|7&tDFw;SDDrz2^ zM}MK{%*%Zj@q?wpV2SuOeX;lqF@pnal{hi1QtW=tG0%ZFccKMvCd}gc1&{Ij5&=v< ztGwA|EAik3-WhiWCm~&}G|R#^;>5R|SHb1TT7btC5gB-`AQh=7##usX$SI~30Wjeb zJ*AcZe`10NV8QQ1ccF&7alN8ADkqxs&wJLOva7p@B|leoD>tfuZ}{HjK}8o?AyXoA z&t$pO2WUtAjvn@{)D(xoE+HMT&|<`tw{-L_OO4#h+RRUi%y?VN67k5(5@n?!E^bDJ zm-b%FS~*+rrVh1Yj{04nJ!8;AZ+?U8^Axiz?ZI`hTjgLNU=F%YKVtLXAzS}4UZKLu zL-#V+1f!uMxI9XB*q}a5s`!t_PbmQ7{g0U@T>v8E9|CvVu0{-rs@PIDhh6eEWQ{lD z+C8BdM{}~Q<2IRq(z;0L-j=Dw45UIUvbOUX)KJiF)|&XHdFY{(6IqXa=uyDB^!8$w zVC`XiBvNT~+RA@rZ0A!te2HY5a@@+#FVn=d^s$nD_6Z%MiYxQ!`J}pef+Lg20agWt zI4O#p5KspeJ~T7*Dr?dkvU5q6YHsUOigFWRkXW͠z0|H1MD&E)9)Lh)`)Emd zPyB?F_&#GC<1wyQmmsRO*fGZez4ZPA83JWC*?lIM{BpCDHt*`w^|A(eT0NJIxubfX z4JSEelqEQTbYcH3T^rdGE!Nc>)*q*Ryl6 z)(M0r9HY%iA^5csyV{HChH$g#B-VjbZ#!{*l_3PFYX*f~_~>~*CD#5Q{vI5U(Xzeu zr|3T_|Ch9_>tm^jLuVNa!s#(I5U0al~-^?A~!el zQz^>s?tW5OXzW+Mm2o+ZeY}`yR9@0d?-`;Mhwrv_G0iync&A!BR=(A7E`6YqH+K2I zQ6qS_UCQA?xUB1@96qyh5=3F^&1XzT&%pMD7>=7gQ;JMbn9C}_glqhq56@lvmyS@F z%PBzqw{-o#pL>KmF3i2Y8K2+r{p)i@ffjMCR6D~gHJ?<#%~X%{mYAq73jQcC^`5aI zh(D0Pruq$M1>_z-;r?XQorj=N=R(@24isqOqmsB2n1Lb2>=D;} zg~eMutC7Xuj$C0rGZ!AkslHfM>@pfvF8g4T<+ z&#@y%YL^dH0{u`ronaqNM4|gM=9-&L&J=h|B5ty>XqC>KLuY0iT&K!*3$Nl1N#>&a zL9PiqN6bOklFRz1g@WgtWy+8V4ojT?!Q%#S6RQz*O}pjPF~>eVP53pt<;*^K9Or$i z{eE?BhvlHYO05-Z9Ot8I$PivmY0pfwQfk_(xeF3@q87>L4cAWOS)Gi>8<+Vo{3(>* zr%5fE&7aeFB|a$~c2jwkklkCFOW>|q-sE=`XJFGh3o!ROiX}^EUMWi__$IjD*{N!g zqKwOh^S)Eh9QR1FRBU}Bbxd|-J=e7fl*e^Of^41PfY!)zowmC#jX#T0Sv^w?mst;D zVK=*XFR3T6q6a9C|4quI9t^yu{c?EUA`YNVVg(1me2N=#(ISliprjf(B!lz3S5LL_ z$A1Xn$w4z$(s;ohG5bTly?Aa6F^^s*N7Alr=tiTti6w;|T~<2>%}OH|4_0OyD%T<#q_r zsp{==T22dUcuj{C>%W3*Zum8aWxu{?Ex;+C7AEj*w#y0BYf*idIFH-aw)`)Bx2#Zo&>7&`R@ae_K(Bx0-gjWRh2N^N198J1gcBl2#QGeTe+uz z_cd@T+wM3w&b3{R>~=4eIs(_V?e^cOo7-;po6j!iZybjrXgb%vsBc9WWJ#@e0_yxwmKyI8&mR;R z@6U`>5Mwd1J!i$3?a{eCXRT(f8_i2K66}{nCy7Us8lJLEj4q40r?m5cgZPqCtlw>J z8>tYv4`Mgp=X~DZs1N#Fz7ibyKHrbJ-k+Z5s`!0gL*y@1Rud{4(@UI2^JdJpHmh?c zb-6#1iiD(<(nJkZ#b8y&U{|t> zi#YT5-`RYRxWBr2!`>(Q@Ob}(=ox0<^Y#faG(4dKTuk>rBA3EOO5?K%v2(bkpEx(x z*Y#S5Mi{gcxaYgjHBmc_zA77kIC?Ccu4{@FtyEdgul#EBQB9ufa@m$y&SyHL5hB%L zueyuWXP#V5??c0B+^mRxS!T;J#>GNL`+h5 z9Zi+*=lkv;hX+82D(wCeqIDdTm~)W+3&22DU_Ep8U8j~!Z9+N`Jd`r%5q z5bXm7RheVsF^;L3xEDp`{1%Dp9{9X9J7S( z7wCvPRpAbSA7}di47vrWWU?_gDGZ*l46c!$b80GSzgxZl5K~hT3I;2gPRw86Pl6}2 z602Zw+%OkLr2Svr-3|g zyMxz_K4ys$?PBxdc9eMhatzz4eC5`Ln9||oPTz@h5ye&T$}5@;?a3dOwG0}q?!RS% z!dL%}UQrr~ia|wi|0}Fu6)&Kqk=>#&0MzT0l%z!f#E}n+|4b(cvICi-4np6M{}?&= zmIOddfTVH?*1xNco7+Gor>sA0Y<&qW%%G)=n6_XXnjtreHzwI+>})zKFvcKL;g@gy z{Dj*cH2D|=QX8#s@}31mAUuCDF5i0oQe~U*5y5{R1@*TqX7Pw-pEc9wWL8;w97>IC zsbod&hw4NgU5?K+MkRgFC(ELQ?K#3}EM~y8oBtdKV08ZjIYo?v%95;>zk#~>DM;|b zTk36}>5F_oPxFyD>P0^$cL?MA@l*js0N#Nl>V>Gn)31$Pr7JE2^@M#%;>kedqC0(Ve6xXcdx~VX4JNSe)flzZz zwYmIoNQ-<1FqW~vx{sY`N<4EAU4Q$5TA_LjEaE%gBb;nk~(S0`)kP3swx{pT;k zR;;S|720DPFHI3`ieZE<E{V%mxgi$A|lLmm1tEUJsW!BB2lPa8<8m7 z485uL%aMJDIE~xYq#+gl7>$iiQH&UGR^|*CuU4Fvs(P2xU=X1mr|3AnZq9lrZsk3{ zI2?D&Gg{2s=G6k+Mj8M-+E)qaDc{Gd+@SjvlNtgf_c@}s3oJw>!_5)qO5B1tqTEXF zN_t#rxU~(Q!bi#8Yjf=%&r1AW4ER9MiyN88<2M+`;}7(XK4tpT(pxwe zLgU!0$_~SN8EZUOwXk7^7AZ(`|N0scFXDtl^4V2WtZX~gZ|)yev&?ajRA3HI{Z}=q|kF`5&l;2`++ zBzXfhqZp54uXa{1{J`)~(b9JLDJ9$Ey_IGj`q|-`f7+;J4lK?1S+1k!2mhMYMaHYs|8xtz&{~clvqT%_!XnW`I%7Qgt zIJRxuwryJ-+jcrh$9B@OZQHifF*~+8zPrzvbI;6tGtc+eeV(qm-+ z9_~&&I^c^~jA%JZV_S9Y%9o4@udI6ITLFoG1rTbC;7n*|Y?z`$$Fy~wS2VJk|3i7+ z3DcNchMD9%tIg}UmQdM>YH>Mbgo)7UYzCmq-6h`n-TYh^fG)2TVUgc3U=vHkP0%Cv z^^iC^;)Py^{X=_Yfpy8rMK`kaB_ctBt z1^4$Is|4@0(v%kfTwM&5>wAv=>P1mBi(N7G@5grjskLG?j&pC8xKy4R>+Y9TMmIhr zXf{9GW~we=VfS`O*HB)G-Yxulr_+0$Z>2Fr++WegTiUF8KOZISKe?jCeczx(_y@cSaSLRnh=tAzS* z10*fY)wu|b3?!4g7etI#x@Tt{cYra*Z%329vJrwS4m?#s4o()261KHA7t#kViz0&K z=(U5a1fML{pg0$aJBBa^pqLYV1WrwyWl8;%1i#<|6K}^`NuD#QK0XxFb>8BLleOkTD>WW9zDZ!c#hv+P?o{-uvJ5vwz8rkNEHwGHC&& znQRuaiCl>R8o+=fvwMYNWZ3IRwd(qvccir6b}{g||B#7u2>(FhSV8mJN#c|tEUYVf zrO>Y%8L<0Vd$>Fbqz&-Hk^X^@9BKk`663j&>_bL}Eb470r9m|6jFrNla>q-Mu}R0G zp2)_6Hv;20wKloc$ADx1w{l5&>1P4Qf0zCLOV5U5A@ft~?uTQU?1xkRLw(5#66c&o`&EAV?K1X9!#CiMf^xBf=eBV zIjrmbF={-4aG|3Cehtt2IO ziu4<5Hm}|_T=fUvnAsnBty|H2Th>kMK|gqitv!GQUAdEpKy=S(tM`1g5*gs$*eQx93ufpyh zwUEeSCw(bnFMMg^+-G4gi1Q(x`B{yHiaTMwK*6C#HE;h8h{Am#P8{Wz zBYJO(E>a}-V5{SD0lF?smeNjuVrUhUB8QRfxa6D^fS6c+5>@q|y)t>E%&^GaRD<_` z=@2%S4RcuG_>1Xovy6}inSw_hOR!!p)q(@lcvlTQfhr*eLABVi*fw;2{vt zm5pL2rJX`YjP?;lL8j;QJ~amSq8-qFGrgyJ4jJ}f_grKwIdUDaR(Mp950+=mcTetB zO;GI|IU-M6?i_UyDYN&2Dw^VcaB__}KJIn$ErN#IJ&wa$CVn#owh+gWnn_WQ_ZNYUJBL-2e9td zX@`tY3Y)-_x=nN2_8Z9}=&GmVYq1VC{5L)uPC!*{1>i8b$=U{x*arV4c(zZVUl$K) z_{MY@!0dN(*^4=+jN#s~55%R-QVGsrpN?`DesEa~5gtds0ticQ)zUIy7{yVp<}2YE zq2$f$bk`XWPFn?}<*pp2;p@#N)V561kzJ60wlxRtj%Y-S8ogpUZlzay$_7i7l&))P zDcq(#n3-*4soLRgbIK04-3sRhUZbE#(W~G!X+~iheg@?PL_pyzVb9m9qM+|rpHds?N7Cb zydvEX1K#P^3}2+uq~@@suMpH)>dl0f*9@(z7GCL}kLwu$qZeBqQ#*d6Fjr$bmkOP$ z_)`54TMDJeY1X=1%xb;9@e}Y?t*h7W9o>ESyltX)C&gQI=WgEPc}Z>`d{3YFgZ3+@ zZX4YO0qJn>yb6wCVrW*ANQJrZuZhsnWwSY6UNav}i%F2H=g**V`}^N-|{*Qa!wa zh0iq4?zcP+UpjRSKc7BzC9Zpi$2!rfr0mzEi=^Fnv=@ezn7Ge)?WB|JCP&6>*YF=Y zfc=iYa$9UR?8sV!dQlER@no$x7L1vNbe}uvv|EZ=`_1DI$r(GL5_=KN?wdR-B57+@ zpC;j8mQ6XeOUKL!Rj_KZGl^o{pFdm9)VCCL%PK}ZyPZ{45msme)m(hPb(aqlUOyfY z_8uCOUVq$nx}S`K=}o-vGNDPdwJyRh8bKMnKqf3&7k^vlaTTjYPw|f?T9IlrTsE%K zt}|zzr)&EtH}Cfzt_o*wEjj6a)~t=PSg6Syah@dbbUrAFZlN!{WMOlDZv&dUdk)PE zWG&t^-z}lvM_Pjx^<)k7%9QUiD8*w*>4)i4c1N6%R1mK+oK=2MDA&@eJ0#Khw&>VB zQ?&S$LSmOMTUcZxKPcY4+$?#M6BH#x_?Z0st1)wZpkXHu*J5p3_2ywTf8MyOS;r_A zJrtR-QQ1^@QRGKllvWbSid^F^@$@i%{zG1wBN7K2$=*XZ4EySfCH2~UT^Qsqs5S(RBj+*~0~xm# zwK%OmwqU)p)x7hy=XF%qK46e@#dG;q0n=E?M69~_hO9r2;d14KY@-5z@~t-?su<8! zD)m|Ito5#L$yI$r7&sUaSQoyPs&~Zz-D5o&K{f3<*c`MqvSdp-(f1q_?u=-DnIrC` zHj+1XL#k%uPB07HnsU=7S`uGGm`T2&YBIyNOUd6uPQk_@P%gLfG@NRQZke28LM*Fl z@(YE~_>-7FKQ*>=;=Koq8pu+-M?BteO!(bx;k6H2sv36i+Q(0RaMlOI-C!5-kK613 zf@Krv?D}8=82#W2{P9zD@LT%Q~hk?XFyT>`7 zFIC#8diUcAeW)@gI?Qzh60-trBoNiw@7eBrPwR<@J*G&uN%l{aFGo}wkUT( zDV$3af3>E_C#nZ__)+vIUrcZG+|@GK!fZ%0HtcJ3yWDu-Z}YJr*tdJ6z;MDWhZz(m zIaU}CbM~$T;r2*)mh>n2O_Nk-k`R0*XN9Dqe3BC}aJz89_I$cSF>uTD;T~94pTJCz zz9rguk$46wOZ!7T^zHLF!;%F5wv+ zvEf8-WQtnMn(pJ5qGfy^MKxnVj$^~0!k2q&whV>n_i40*zpF>vad&TU-@ z7+JV{!|-c$jp~et*lLR-6mS$7LyTFWgAYB7bgy)q!S6F0LU!cMt|M3nr;d@8Noo?+tftF*P)1(-w%QA?yy`R;^xL^p)0IrVYA$G3k}7kW?`%Ax5Kv6)Hrp~ zwt|#DU_)Dm9^)Av@HL%hL|ip%8fDSxjW(YLdJc8)E4ihOGo*pU@g7s#!Cj!k%VWb6 z_}##^UTB%`cqC1aRx?M3_TBx~z#;fJW-Hey_!@Vp8(w6Lu)_(nT^6zIrtp(_VHY^B zF3J4%&asQR)q3@SS#wUr7`MwaPOTVUj|^INsDX_qM}ASuR=jxH%c~hpaB0DS}x}UXO{5ouJtwg>VHS|9lYYn#Bn6V#vtIysT z1wTFlf(d&+?+$j10{SoIv0i&W-cwUFb2*c81Lk>t<6b$5U^Fbe#wUH z(1oSlC2cXL6S6JPLDm10_T9P6K7=rJXWWOt+C;8gzU&6JmKea;lGio&ae(-stZ5kX z2J*w&GS*=RcEel{)sb>eM&#>I)%m0GEgBXqt)rzGM|Az%5{O90p-WH*CKs_{B97vj z7av5WDU*jd{m6h*nKF$xrU*u3#V$%8CmNQ6pf+cbVonl{q{d#7fow(*sZLhPMAMPx zTA~O=^JQZfo8!eTDKc|vpS91P6?L5noqP-qH7kEHf*c&&(w7rL@*xbp zjht)P@&BA{eVT5Dl}LkC(Hv4InGV|XE6`@LRb+>ixcn7jrjpCrR0jcrpS9_aTVfOPU zwqU^5X_jJ3XG1ajprDbnY$`~k0_EkPV zyOP-rbL_M%l{kZ}8k@^^I$1pO|AzN+AKNJzX%&J_W(dD-%t`vxE+c4ROQf;&eld5` z9;~F$*5EBpt7=k|?L>8g1kr9>BH&bQ7!HP$S92O$PR;$urxs-m{S5~=ZYV2by(M%K zXH4d11!M#2LfTL_@Dl8auCBY!0PKmTF1Rmtla4ZUz#G!djY(*v>Z===Me!jZJ(Wd~ zDh~q%s!_H_BRmg-2FiVCl>rE)?IWU);k1gsFis5cD<3~p= z;6^yIvcDeFmjl*Gnf={MUHDhZSe&hHGkh461M+cJg}pw|L=VSt`QyqAO6_De4{McNE=!`YPlE(6`~ z2evo_bajxv?ROX(qv)8MZkXMHDE#3_0P1@|AU4*CI4|LQl%5YQsv2qzH;t{c7Q_8q zPfu0;#?*qbY7h2AR#)BU4&sBcW?;w&;scn&hLZNFsG|LTWdQR!6Gew$8{&N^2r3BF z)!-@&G}yCI4wA4VA)sSSX@Yr}b; z1Ir&huGZb60UTGjfxu9L%v6-)2VMMwW9fG$YqUw)s60#Pv9}(1&E_94^-SNVQRZ_s+|v)dbghr#Jt(!5-a7I73&I-PAPBeSFBZ z*?>_*ChMc_15QIS%xY}I+8mpaU;rf2C3&*F4@CjDs+`!5T-X<>WMkzMvTv<>K+ujhF26?!~Q=(h$r&L!_mFBsdMYiG5wa=QkkDZ(qxTO9`L6fBXWVH_kge7U!1}SSg|jxmBe} zE&Bb@?RD4*)S|Eldht|9vGPJ)0^?mGaQZFU4Ei5oA7b`+Lf@eEh%Z82!j!(x=0l#3 z-WK=Z6PsotIAo%-;`=FB$TVOFX3b$o70*qd%4|16;b2}E4A6-lcrl1e6@Ia*Q~d#R zLgb(pi6_a%LEAjjI{}6xZE3&RA;XlMaf8<^%YIaGe8up!JO#1j_H0|OD6#t!lXcTA zif~~%aP95Ce)+Y!^c`^(3V&k+tZB7Z)7F9*v_FHH%1F8(o`5?^ODe^7LSKc&B;XS{ zMRAXoU#jDh+_!|xVt&xb=Pl%O3B)Tg5QCCCJva|w_n}Fq`O{Q-qB{f&S}*m^5>CC* z7!C?rZ**=lkwLd#9H=!k5FKZQZH_F68!jG_Ei4yB6y<3~)M8s`e>F)H#l?mc1;c(| zQi*lDF2q;=c-w~MWJ=`UB+f@I(Zx)Qr-9{8{#lQ87X@uKjiU$0%}!ixwMZM<1&F;| zbl|)!M08M(tFZ1QQ5Sx4e;AMD%1POrWnqeb+KPa9BqQn7w;d#!O3>L@mpbLWXghxz z>i{vRHz<)5Vr5c%*GrL0KB2k7rtl@wB}XL}iBgnD73z_pkV(eO&7k-m4R|fZd9~hAnCc;AI%fDabqa#udnPDUK?a-l)`F53HV5nG$e4^0_tr^H?n3j3 zkM=48)!Yk=zto0Wp;3>Ds#T(}c3sy9alLo*L&Cbz=(^1to(?)#{>4F!X6^H~F&#Ju zLq$Q9#YZ5?v^vguq1o1iwQP*PloL#2?#+b8Z#&_MfUk#JprV@(u`{eW9&tQTW%&d4 ze?mz+)hv~ff&&7w75`sR(m4Ksl9sd)yZ(Ps(vnC6$w{hcG|GJDE6#4$xloObMwd9k z?3O*Q*N}unDo!LKMxFMrzeWiZ2@z!y@v&%KHRsu6r~+fpbzCbW{ogvU_>_$C&#fuk zAkqDRWeF`DcI2MdtL$KRp-^~q=U3Y0u}4!|^U`A;Ab8#vEDO^IH5(%@M}R5^$;c1r zq$TQ&3koGgtgehsN|5n#*mh`6Hj#~mSi(N-XgOL+sr?ZZm>ak4A@nNYNm4~%o>B6W zsSE^adF<9yjJLyF$GEt$x>$Yh3@D;^sHpp6S~{GN6AucHHy$W&$;{v7I;OuEY)P5XVJS65tgF^$P zF(WK@Cdi0@*?Z=dkJ-G7H!9p*x7xSvF!8c`#ZbD8koHtTu}d93CC?md%QcOTS?@1` zp$a#yNC?rrB!Bvykp1R@ z#y2daFn(Q}8HfTGMSQK*Q2W~^ESj=&d(7_SV)p^T%URkni(u z^(!kkhcNe3tL{>s*H&PQKNR8edqV|dv| zkux57p1>y6BH^SNhVs>-DA6-SF&upqcFuOPS2tFvw`qF+YYU>V@0$!J$`D1(pbLx( z?Vt-6_6U-X#{mS{b9z|WC9anO!XFERENCA_ilPZp`ut@ddqSdn@jvks7(&n}Ml@EL zI;Qd1t!Rp>uA+12BDdKK9uQn|48A`v@pc=_T!T?}XX2k{OUYb^EgF|D1qcP<@edxk#4srXkec6q#7iQ}W0KS(jHNmjIlTqo}WX z8EsALXCo%RMXpuD?I!9{pujKQ8J*<`pF6tkbR#A(nVAa++v))Pbg=*FxIBORD*G(_L_d9)@u)`wR`U~> zayWc{5q4LImqa9XS8SY#$anOkv;4{(OLo^Vw=f1aNzpVScGtmFkx%M`r8#(Am@tbp zvAr7=DeXV=)GL{{EW_pxoj8oazS2^Q&t{JP&2yT`iwER^k}<3ML@RJf`P?|QVDlxB z+Xbp5^PW!WuF`lEu+*XBp_nCiZMIc#EQO8rs6>P+wsN1dkw&V)^Gfz4?>zy(z2Y{sxiof`( z@axan;c5BUOAdg^ET@(@F)Qt7 z*1=*iss5P$sIjf?_-^8ZhmD8GcLU-kBF%4t%hAtZGwFkAlrkNqId^4X+m9U& zgY-vuCg}Nh=%1qvhq!>=FMsywU(%_pohDwO*SKp^DYcu6pZj1Mn#UWVBXj|E)j!RO z7^}D@Pj9K@$I%$c$*2l99?>8V!OTXHzsVClk7g$7`ulxyW$qra(?XBu=PNnwkgY2e zXV^htSLuwDuu_|*nK_Rcj)%v!qk_m|`~-$~O3&FGo@3FzEtnsCK^F;HYp0L@d5eJi& zj@b-oaPx^~;)VpZGjn2_JW=&qh0W2VAnmO`dxWz;|9=uC9y^Ul*!|*ImRgruo8diE{9&7~G_-(?Y>7L>Z^4E1YzcGv z&gC<)Ob;A^C=Z+ra^8k{k)#lFp+^N#VIKP>$$Z)&_+zT3kQ5yq%=xF^7uYRT1VGys zc_j+)3)@-zyzChfyfXRkXtJhPT;??O%~Qd;xY{;XQD{7WK?GG zp(RBiXSm2?xM3#Im(bE(AkVpgaZjLhHu})Pre|tEFMnCO*fy=Gy2vM{&g6NFV?mY4_Y zqFGGud~H`zroVbU{M$1Q?zjkmk}3r|sa|Vhj>C&5xi*k!Wt#`huOF)NLtN6v2$;K{ zQ!FG)*ML~0h~nXcovkv2{Wod-Qq~ci-?<~65v=SF_Bk@Qh`JL?dO9LnTdC<9DqGuF zb2_GOd9E8b!n%i$g6i!#69xF<;(2e+sq%z1WBRU}DqL|rtlZJ23vLE~L>$6)-VV*{<|&JKE@Uv=x&_k7`| z1hZA5#M02=V&Rv|$`{hl?%KhG{f~UDrZ5XUH8v{)=XS1gSf^v#Amo@K6~0QN+ag-S zx>}Y^bEf&&@e8+S%gb}M?3%2jg~JSV-*``6EU)wjnXT}>AVWKreCfa^Yx)`}V5h$) z$7;fBx7H9xP2bi4NowjyDiGuq<-~RW!sv@%zHSbbD3{eB8~oX?!eh{^v!$zBy=viN zvY0##&QYdH&|~BeQmLxZcKqI6cZeUB&yynpG>VKg43gbC%dNoDK^EpnMQTD-UXEE-ZK>e$!ZITGeYI zb3L5^dsjX}{?j4x!X6UyU$%wt} zj2A5`BOSB1W~44fe#Nluv5WdCdFlsa?0O>B(q#!RI+ir=NmB^f@n}{yN%Ql@?fZ(e z1|_WwR0$RrZwT^bQv&ZNV1~*)UF8912k~)}1ngY2D>7J!)I@AfI{b{)W?k8(1{O-W z$*u!CY?-t4eujQhc-Y#gs5~i9bsBK zSrPx?y1QnDU$)~b|RQB1@9XH7(vozPh7xvPUzc{L@ij*XZ%%!XUKpe0z5?e#@uyT_v-|@IId8U}>WC z@f36ovV;au^{B+9Pyde?%>wUqDR3}AKtFl^SLuWEA7>h;C_4Z!nn!miFL{Z2A?r|~ zA`&%pE3N%9O6<0B@DIo|fGt`U$ueKJJUEz%nk!U@=W zzIQt^`>82WKZv&6d-GaCE|piPN{o1FTv%DD;pL+wF|r0G{TW%23N{wTAMDeFa3rQT zTn(nADAfiPguBAUpZi0bEsDxUit#uA8A6d{IQIv=VHC-S%7FAB3BBzmYAOd)r=E2W z<_pS4)a)n}T}!DaTItggch3AW38s<}Z>7-fBZ}X^J*0?|YqKNBEBPN`kN4f$|bN;|H?w-y6O4)icwim=Yf zwQo1ibCzQJ5k?G40Sg6voQKw;FI@a^a*-b^)!-O;@XOQso|Cc_M-{EAjl*MLLAmc~ zeQd$Pvt)&@to(lXlV<$-+PyCD5;Io-gzYOv5jjg(KONgg90we z`K6e?PB(kz$Bq`e);CDt^Tr8?Y8=~k1gI6z@%VwNF>L zDkF1H>?MoHjYgHn8=$Qpz;B+p3$HzWb|&$jeeOYiCR(Eod7er}5f1R@P17s(f70xz zi%!E_v)st;UVobkDqcWJRs!G2Wb4x4yG*f_G97^luE?xE!)Ng(QXZ!sYsxl@u7%$s5xe8kjt+hmsdNL$mo!YBn@1!=X8Akb$jeOzQgr#gV zNXS~IVgrAV3c>yu>LeFQoJ1Gd-+INebb)K)hv?vj=xCab zU-V@Yr+x?d)nWEe#DXzTr)=v2F$-Yqo7|154Hh#G7UB^62^eaRz(b;>h%x+Zw{uIP ztccV6O*eB3qO^$B{7t{Y_%==-)+gR$N8hS49^zF}#O-&8iMCw$Ur3A2Sw+0>B&8HT zp-#sMiT^&K4EXVI7#E-Oj=Yd0D4g)mSR^bOGD`Ic$Wo^JV6)SPvfHl`z0jVFmCID7 zM&g6!pd?qt8I=^oLi1rNaO5H6;&Vjxwfu- zvXNM_kA}(xHv4{#k>+pg7PFka-3Kc|$kNK&uDqX~p`^^Sj%2^FV~6+#Tc%ix&iE#+ zWpnqm4GLkNr&}&F#o8^%oA2e!{m_gw8>nIvBBxj_X-~&+*oIq-b!SgHHXF07_pvFa z`39@TJTgK(bkLvdo9eTzn5r#-ED^BqPtoCS`DP ziFK55pv7cug-IvGY0Giu>(EhSs4(HFkl=lqvQeo~tIM?6k>Dkb3-;jBEu}L4USi9U zC69F%xX{;LC{&Ru`Ib*)Ldj7YD!lWqe%Rt`Y5XuqM+JN6R@k6E59sh4Ec21xMxgVK zWE42&;!nxw#|lr$?5Y$vk6N@k))MUnW|gl#;*;z13las4EF=YbO^FrA@Na+`I?vxk z%CQyMii=K&O_ozwu;E2SglaR-18V=b0Tt-gI$&Snmg0Mydh<;n1jt7PDQYp6YiSV@ z$x)%2rUk@if3G7o)PI&eEC%=;z(rc2(PaJcMOtu#zJHUi+Plgc4Jb;+TC?gg4EREJ z2HWIfQhcz5tXS1{vQ+^uJ0ew8UaZjl!w5){r1TIywuqE-1*d#StdQVbEUMB0T!3i3 z27il(w_yS6Eo#KC{BJjHrbdpeR@36B(&z}YBgIG-(Bj02iJQp$ZH_3Q4rexj zap4l|`?0B<4UFO&(lg?)2Czdd1xB>^sPL7iI+6!1a%^4psPKS6xb*?G}avMW}!=<{weba#tPB!Dob2Pi2isdN@T#!jVkK_BD>(K%SWV#`rWXDMx-=0 zAC1E+GgH{BpHcf7$bEM`x8zR&chCzF=7sq2f{uK}CXkW{<50FcvH(O3<_Q1;39xa2 z0x8LYf}sIH06_sh69c{3vuJ!k0s(E2{;wP)*T3}F8$?K<*R+rLNYBtMjnbVOS?Ykl z(6^UY5Y$2w06;O?gcPb@ukf>e6CF|Ln7TB){3iU9A#ho3qk; zd%g2J_&F80}P z>#<0(cCLI6N;6e7n6zOA4Dd(YvxG&)K8lLM*C%KtxxEpl&39OJ5uzkfg}*l*2!{*f z&;F^q{v_hFb>r!St?mZJA8N)z^GieCmZOn^sMMZ}2GZpb2=f z)v@8(OGdw+Q+pRRn32TBY_xL7BgApvtC;mCU9XiXX~ck`WRVtr-sCB) z!vcfa_g&`7DDfvfUvPdeW+C*;rzRoyBXt$mX!lhv+mugkz>_UCC|}`A`T5#HNWq($ zC@Cj}fB%-`TqVZ>9rQ(v>Pi?URAiQ%ap-XR{`Ni{KZN!YR+bxLeiWS^c|Du;02n{f6+8_chGo#WH*>FVxAWV~jaRonq!3EX@v zo&4UrTb*2m{dgSbMEtg`7;~N(w%W@GFqghRUdHX*2SB}QcBZW=_I_}7=^O0yEPSb1 zy#9VUWv6^0x8P={U`Ir2pX(LO@ypF25X{LX_=b6Mk8_AFa;z>z%2p);k?(}w03}}; z-zgkdv>;ETDqH-ec>HNFD=m#8VTm=I~64l2gQoBTv>Ksk|U{vBR8>8`DKmI)NpeDXt zH7KHu@|gueGHd>Hm zVFGx6A(_|(KO>ZIoD}8O@mUwXalBmC(}#q~+{L>WF^ezyz_Q4VW7&`ImR*8rUMPrs zG9sRs?)G+QuF-fJ`^bR2R|ZjY*n8nf*gY`wt0F>e!8P*I50@E(^W*(vg+)=zT@Pk8 z%5w(S_)&!o(Ka{w@ev}pF*%7we8{^5} zG;aC5e@8M!@$XS(k&87o5V>PT61l0n%8N>&+hIM7bPl>HI}>TLcSt6|Z@%;Ca9r4e`A3A}D3!SjKwK2PVzv2tI*tV;p)8Seq z#F{fcl*u<`B|6%@U2!dNp1ohT4>3RFfi>z7#eaG=Om5?JP6pZA`ZzY0hMIf_9m z=-fs;5}PjZm8in{`=T^*ZGS)nW}fn{aG`9uH5h|^>&OT(ZADb2uC?iKG{~HU4$&?W zyAwp#v$GQ^5=Efx$x9a6Z?k021}3SB#68Y~%TU(EFupUn+@J5(Z?{#NdNe@QCFE*7 z{TRJkES~g{hTrd{Q7-!`G!k!Ye}uhoZska;vpPC;vTGu=t9vU?%Z`(bM}7m(Tc%x1 zu{cT6^WO7aeuUJFPVL+t6kNm2BdRoBOUpTuHdQW42^(7`jxMS12Z0( zLDDQ=sE@2c@w-pskqDq3`qA4esQR{Q^j*#yByhO(dpXh3RlB z@Ep!hx&|jt2+e5}u3R#w2bFLl(H z%0gsT%);`?J(u;*OkSQMGo-yujd!aP@ogNB4sac6%HIY=!O$82vUk+HP7JWFDa9ZX zlx(Qr({waiRDUHd$xX>f%H zTT}?%{dmS{Li1C2du5|(cc(nJrjc>wap1d*frtTcDe!fuU$@PLec3EN@NB>{-w1CP z4~Z$QqvG_)w0|*!<++t4f&tO?E+HUMNb8|J`6Y`*n>(OlJ91@no=#?VidJJxTAsFEon?+yQ-x|mZuWb<>>X@hL5U2E^b0xpOFNT+gtf7ZHFCH` zRZ)Cu?l+KwlZ{^|X~&pmm=;APscXRhBg-HqNH7Wv0R&Wt^S`nT-2Y@5#_b3Gn!Hn9 z5mK*r$JllfOj9ZUjPKS-L9sR zJS)z8u;{vCwy2<f6A~L|U7?Jl-2umYyCQyDHsR93mt#tZ#EXKPW7wqHx%r z^*6rvr%dongZg)X-^YL&v}86JYbU~`|6Z8mC-z8VvQ?J`W~J4@ky{hRqavvD|28>7 zXsM$Yw75yHDKDwDMP$s70@sNl6M^xvIG{Cp4CCgoh|4gxvX`{C!CPc?Jj-H5o%PrP zqfgf8H+_5;W;@o#l{oYG?T55OdT?_zjmF+TqO>IW(e=Jx?4)-2>&eI&S+T0bV}hL zkl-Xd!H#$ZukrBni@EgdBjKi!zpZ?CcUlSj-A!ls<*Hxf&B|^YcJ-&Efq(Y>>Pf7jP9zbu~l%d1{S z2ai8bMIBq;@)=i4bH5DipU*EZ@0Xk?-mZMRcrH931>Be%`x1_sNaR{UFYv#AJ2pCr z3#+}qbrhdd1CCG@6oSmV+a;y;#ls3eb|AcK6(p7NaxTbAm3J=jS=QCIfaq-WE5-Bd zpF*1gvAh{_-9+qNMXez+dU|}XdP1G^c6+0xYy22%uKyG5*7I{diQ0HLdbF6eB+JSmI1Mly#FJ^>O&8qxrr`+L#i?Kxiq3#TJ|ve%j-&<%_1 zif)dIJrhJ=OIR`JG0TAzgNqu|m>xL$fPK-8)2@03vRWE8W%G`~uxW5gah>z7x;`kB zn_IoQ8ipQNNb?(XddT}_jE1d(!5>>CjI4oQg@H}-){VMA6YRc2`?fMUe+J>mQPecD z!KWE2u9Q|RdMTJZI6#-H9}x6Nr<_+{;T7c$!)GHBeZ|ybis)9uVIDg?)YmGc$V)87 zu*Kr?{bAd4!5klv^SE%`9Ev!CIjncP9x0_#N#~dsprAy>!RT7rf~+Nh#x=y2i7=4A zm&FgkdjF!!l7!=vHnLq352u_MFR|u|f)YxGS~ho@fnIDpNFwHJT4 zBWNW9ML8iTKRn^IS|~L(cGOS`whAF0H{P_e?Jk)u3q5Qb(OWj@JIoZn!{OSrr8*CX zk*>iQW~pMPBF(S5*TARrLPT?%Wl2G+rl>uL@>Ufe7L3nrklx-u8x3{gC^$=; zvH77*^?lG%o=~5uL`Nanl&is-%M63m+LP<(2Psu0n&Vn%%zZ-(N4&eDaDcQ}NU-Q| zmbw>zd4Y~5WupGr8M>L1mx!9^lC8VtCHgpv=`srj4g?w$X6!Nvw_^Y5umHp#x;ltJ z;C=8FjiNAS8{JOXJJdGPG^=RQ5bQJp6-joOJhJu>$=Yve^Qt(J7L8fWu?&fa*aY3) z`w~l4UfP*X-YaY0N9yc|BeV-SWD|ouUHwN!@=3d|d` z*k^zvO>qdiw?X=OWyVa1Ctds0mDGlX)!MQk219V23spr~;6q9h&@Aw*wkg z(@ajsqvaCd1`9P+-6WRPhqX~-Su%NvB3F*rS59Pj^~G%!K0`|FQ?YpT&*smJ3-LG~ zgwV!~_;?ge@Msp=Y=f7SrlS%`UI49tjjdTg;>*0$Ug6)@`}ngGDW4cqCU3_mX5_+p zT5f#xL)?5m|GL=tKsGpVu-emq0(P6&y&fP9{);61zuz`s#u31j0R`ei0|8+JXpyHa zqlbgDjf8R|MSD_^#5d10iKYiYtaewQ;c3p_+)RRTB zl(gHPWW;Y+V3kx9eJ@7lg^v*wrK7rH4$z!j(YMs$3trr`_qY_o+9ENgPkAUs_`7#( zlrX2(qObTxkLtx24s-T9xI!;h3yLkMXdTEMg-MwoXAw^3Hc%hz%Xn9PQOog}V?43o z?ZT({G8A)lHzeZPK1gf1hlE@k(S|Z60IzGP_-fL6e{t#6k5>cNM zPpmCTp0?2c>XPMZ>*R*MY~wJ;#dE--5D5YWCt-uwvwW%pDu(HZ7M1-v%`=LXayQ$a zWqem(9oV7Qc7cQ~^q*W<_0+tnNLISdzH1#GcT6k+oZ6FUkS#d1hdU;JsT@?PKX`a# z1+8ERX;Lys1}_a&$V3t=CfgO+X7-bi*M|!dZ#X$T`(EN3%ZZsqe;a1rCAbrZZ$#lK z71@0tQnx-?6Q>c2^a0!8lz@tPH;P@YoTDm%Xnjq~*MHiMlI0PCn2~!mcBnI?#Muu)H#Zqc~Ht2{qLWh)`h~xT0><4sr&M%Z6 zejbg*()A@Dq@{1!!81xfvVeyO{3K4&5G<`9dD}4!fW~Kx2nY!E zpX<=o(#+0`@gE`c-xYYFts95Sj^;19FQ|2&^P3}SvVwY|S+;XSW2-4#(qZ3p^D&xq z#!4+wL8Z~Bu)cYeFz zs>f~$C>*zJUVrm@AH}>b-0AtcdsY;fE)j@JYc{r#TD zkn^55Ak6`=t{$(QHBZE_qQdMH+rbbZp2LiXwi~XU(yWQQTbK07*ZA=K$ky=7BAY9I zsjOems~G z@v4W0MqrBr#AhK7%-Km5-;8ac)oW27GW+Pi>hK#>_KAWE$a%BD(;TrmcF8|6$f0Ye znWJqkH|{_bQ3|=VUw1<{w+P=b_x%>K_j=^Qk*`mX`*{e|Hj0P@9_Xa@!jGH>wm#bo znWVjF7Er?nYjgy<*XFclvKM&?g7%oWNkO(eH;e>g>2Pw>TUJe)E*rr zNd!u2)=I{Jsj`!Jh#Y$ca|V|<_BHmH`wdf%wGfx}ZlEZYTFO|nq03}?IZHjuT5$ZWpoDO9wA+`*W zXWPQ<2ceUa$qrWj$(|_0W#bw|=UBw)M*`u!+9-PJP6X<8JZeqNPfq0v3R`W!5}N{` z+D!=EMJ@ppQ(R;75dnAJCHskt@r%>*U2XFsSB}IrOaRg+PT&af*5+!i)Kaz7;&o`@ zb%p^+wiO6!SR*&YnZ^a%c0J>&4H0qN`zGq;&V2g9H4ohSWfF%NY;{W}P^mc$a`Q#v zHnsF!5%M&FQH&lk=rP>#oeuiU!Qn~aaO=Tds79I~Wnh|vsl5;R z8P>W*yRiCdO<=*76|5C7&DT~;Z~@mqX;UUf1((%o#H+JQL=4^osGC~RkEMRi1UkY^ zvD*h2+{WUzNW$R)Qxz^dNm6YbWv1VpD==_dE_=7y_;tSTi{4)f)jVeLruL?sRRwY~eCa(sLfZ`$?83N} zjOVO3iw(OSPZ<{k3f-kcjA>z>qa{{=4awayjcaZf~9H;aZv02{CldY4SD;2QKQPdTw%JSKNudy0QSgFk<*AoYv# zSNmjD;3_Ac$joJznVBg%UygR^^E4D(%MI=O+h^WRV^?%%GqnLdN#8 zlh>@~lU}vZ_vn(|cLRG+ZOr5AaKiu|_W&2oJDowB@1Lf@<6(#C!S3Ex?w9Eqcx|R2 z{6Mp-I(QmKPkucITpM-_X_l3yZl8}JaM!^*gcX<`yk}SJovqCLPh&2Z7c8F29Y;2J zJ|0gWeO?ZLa|!&+%x#HWu)%FgaXloR>8{acHhOo<=79EX+boY^mh^ ziIqGOx#od{{_m7!FGcle>O0oLJzti4xLeKGcpli_r@@n7r(Wgg-^Zo2f802)pA9Rx z-?Y?A0TFbhdZjkm34eP%x4Pc!9=qO9w8}Bfe(r_h|LN8QTCuFZ=Yin{AR!tZRGa<2 zuAaLA;03_iYSF~;x$$PgZ7V1Ywe}i?_aLN4@59l#m0pRsabw1Pr>vW^;aX_UUU|7g z&s&)bXr$CrHydRD)aQTMmMn~GypvezL)CBY!w)dJe zx3}w>koS>518FqZHM?doz#;)nUEr~eCK$kx zaN^yeHDkuy(-AwEZ!tW0U)dpoGysqhb6e?90;IrOZloqrlYCMLdJS_(AZaws0D#2c z5<+q7*MkF(&zCS1TCp6iPLGRb#B`yr4<2rCsu7;B7cb5X*pb3HCr*56-mP0!cC#RS z{B~k5A9O{MEXed1qdNFRVSgia?Xb^>S7V4LFJ`=`7dl&@A&pR7c#+q}RTI>jkpY=8 zrHpBFQI~@$$nW4KIy|5vjHp*PR=lZ^#JwiM`cLMMrmq(~^kQiM-9ojAja{ROR1*DT zbQU7iVO0}$Qin@;{ooIMXzZRdG6R&Ep%qo=(e+^cGNAX@pLO4xr*X>%eUQ%FlA%@R zY>ycyg{gS2zb~>&gn^RV8oZvq65Ce2C$@E-8p&_{4!!_Vpx`qX0FL0avo8z|mrZRe zD}0?`9ib*__3MU3-pYih7HiZAfy)sDxCg z%#b9heg#9znJBK9u3g(XxUNR;@^fV#SksjZ!EM}`JiU$(?Vf)*Y8cIhDf%N;-@p0Bx?vIboVW{cItQSd!za`oc-*HGjulsw#}Fqt5n<33-}Dr z=q=i_8&%(hIAs!tP8Q2|T}Ryqdewybb@Kap>T}y&MC3ujog0{hlZK`z<2OE-)yx;Y z`psk`z%EKPNZp~vtsH&<4vB}$$GzvM&yzNFhy@23pPsEC?9f%S0Er4xG86Lw6G9<0Usuk}1FxZNz?NDZqws({_n0y^p>x zT)ZG?CmW*eC`yb`%i=NMnnLND+cN$~#An*UpGCz&41RKViD$TfGx3!u(S(>Oaa942SM?7HbHW zNmYY@?s1}N7>4h>8-H+(>QxQQL{~*ofp7rL z%?J%El6goKT3oUzO7n1=7+H1~MkZ`T8h;39rjpZy0^$elR0`2C<)7P66A_60ivJs` z5%~v^aSa1}RcggHAV-CuAMi%hNoc~*Wy|9>xQAd6z0T1@-pp|M4Gh?swn?B_G7k;v zleBnqk}SS%Xe11KGJE(J$8(AgB%=}@;u;D!Ahk#x2j{7$sw0Lut+|~cQ6q&phoeFc zbqqxa%T`HMt(H$fY{nplNsL9j#LSaE1wtv8Ps&QTOb!VW1v|0>(vKu00I5?d1Aefu z+$vXt&pHT~!xeu(JhrUL_OAlbXHggAm?tXEp67*bnJW1rCB8591T3IOok8nUAtIZ>DmK5LOg)T!jmAOkHhP>i@Zx|cOK zMu0`W?k+jXEW^OHUx!ko8bVVv78xu8sbyX&SLZb!O!D;nlA>%yQ`s)rlNp3eG#@bg z9yu-PPKR9TN1uwAM~LqaTL$u!s;EO-yJ8GuV3MFz5i2T^ltU~lzsYT}qkpLqgeMsmGQq})@5P%s82+oz6-u>| zECINFs?44e5BJ8*X~x6E9)PtIk$prN9wn}UhecY}qA4mVju@C+^5ZC_jPrz$R)_J* z$i1{`2OCj6V4S_?YtdQOh=DrZSd5`iXCqus?Jjwny2`}(b4MBfNg!DQL|3Sh#6ak) zGtWhWM@xz|uP~Ut+K^-|)gk4%<%=GTM2bs?Qc--CELjF|Xt8%KQLK1-?E1x!BWOg^ zDHslyub9>aEIS!lzn%wO{n=P-cBHXE*WVMN~NnQSbSK5ND54W zk6R;U11K~%-xHl04Kex>ymXR=NQE(z+zPp@kIun6Rjoge7=~~X3yTbDSk}OO6NPrU z1I1;HG3cN5{Kwey#0K1k!0h}|{Rp1N#x}CU4ZayF zrP>u)!EW85Tt~kfDT9sKeQ66*++Fr1me+zN)R;I$e;L!X7-DIWJH^1*ycTtC5Pv}V zM)B$dbf^@q^T?$-p$< z&lZ@-Fp<9MxE5T`Dl#B&riQhZix|kR1J{}&(f_H7d7<(MF;17%B!`zb4g=8GYQ2;UOQc1i#8~C^BZDaD18W6VUa6W2V?qh+~Q9; zbElZ_OEEplAk$-@AQ_SDUvEzx-faTKjx;vWuk3HzB-0#wo`Ocxtapvd=aD-SR}zt- zLkCv71vnEe*&kJ6lZ`4qQ;soJw+pLOrejiv7?Z7AOxPhBAY}^2I15heSLS&j74(3i zB?OyUj8$#^TI-19JRhx`2jIV*Ln^p#Pw7G;(|i>VPcN+H@_E5ad#78b6mC?GG(_jl zB|Xpx6Y6^BpGhJ@1epN2o2GI6WBs8*(S~Am=Gq{upc}ndl%-*lJ$ks?jVqB zfR7qZmxV}u4k=HNZgcWG3;MffRe+3&u5mVmlM=?ampM*}gZI{w;t z=f=-QKqfj6RnhaiPulu>4{T_NwXOB9Ve$AFkc>NCM2ddzFztY)sEO;XsQPPJP@DdH z2k|kXXn-o6VfsksMN!!d?RV7?Ef@D{na<`g0cK)-RsN$p>rot{2LT65wsfg9x`Svl zP7+xH;s_g1ksQ%pG6WJ)VCFB$W}8Tr>ZY0mX``j$2a-~dw5O&hDl-qP>awc5lQ6Sv zY}kGnaVHQ9+?xViJ9SGx2pgS0+)fR3XJovBKWS+2$ydks*oL21#IRKE4u;c3BW|UO zx0+QM`kOfSZ=EW!P;_L?a=oJ!M~N_XXIabPWAu-q?BV7Q0c4!S1X*Ez8PWKV2gsktg>(-9E0M!@LTgw_Bjq4 zMc6-tftWo1A!cNpF9_8l?~04)`=#Xg>s*?l3R){^eE{jeqCK{SE_H82Be1<&M}DRc zhG5;bEiEmon7kBWYtu#CijseP3g^4_3Mx=>8#KoS@n|zkbF&b}aj_3he0+H;C1=Gl zTH=>Qy<1TNjuraT@5@On1;QEjN)~2!sxXO~-8peB_vp1Gvk=-LwVbFh69;uh{gJ#~ zd1Uc+vXNFS*<8l1lJr&rDIaXcv_g?bB`7C7Z!?FKTeXdG1JoArITzqGTHPF;Vjk{6 zYvu!G10~^EiG@Yx^1xtl?2F$OQ-Nid&FO@Wr2Hf>)*;~7Si<*Y+i@ls_$*Cvcz`G& zk__;O+gkmt-=8ZR zIJkVppc5K+Hsnp+xh<1lIL!y9J}0@=AYq~e7E!(WEt^+!T+B90%yU70RiRPTXw&8(O!XXqckjMhtm)O7 z1@_dD;M(S#ES(lntL6BxO7pN#%!gL<6BG9*xK9$+;dmwYwE5Qh4RG!LOJrAqbp78 zo67|nYY(Z|Yu`%lxL;6DAc*4wPj8_x<@0i#2p4(h7Q!=4&Of@RiAiU}J(^DJkjEOq zY7||2;~qHb*u2oKc{S6(92D>F#&i6HF3&IJGw^0rEAC_K-iYLqRo|#1T%FjCL=;L9p&Pn%XAEYFpn%Kc|0Vhvw@ zU?p#LIE!EmVHrPj=O5gCDMXA;FG63ah$;of zGn@c}Q>)I%m@O$qMT?2)W71~iSp&m%JZ=8(#TmF3wY;XHg#_xhd;xheX>y9PCZo)d zjn|PBl^$bahp?jyGg+wxySZ46=gyw%0%bSYk6D)-oTzeHoHmUYi5nChL zRMtdvRYK;sEUS&(l1S{8oO5S z>nw$2GG9uqVAi;)-PY{uuzcy~Q|1c1!kEJZV{OHk>!}uUg;_98n91`7-eD%q=6Qvf zmby`PS3cCtcS_z+{Q$Pyb4tUORH}im`5cLS$v;KFj+iL^(fC&j*kn0<;-=!G28$YQ zfbctx>F9>aSM9ZPVn^kx=FT;_xAH^hH1-!auGoLe|F;!c(m*44g-ShT7_9~dqzLk2 zUTYfLyGv5DHNs%^JNhOo@-!XKvdeNbRc>k=I59pDINV`M)kz;_Z?U>Y$mj>_f&R}a zKS%mKkg3;AjM#_UG)HFs2^nCT7};OpviMUuxM8L|eQVA6uZQY~d(Cz}56kQ6V&oqV zUq=nTuOIOL)}`!w4DAnNj$BULS3&yQk};e7kmzRFgFP(pV4mvY>H`cJFxGsSwH}Q07sGV?OWqW^im>j21U&P$T2K)Ux13=b5 zUS?CRCV8KPV0@go$^4=RZDC3SpOL-oTJc~XI&T-VcKUBq5<4G-@qMyl_`EWz$T2Px zE$c3TWmf3=4TLIat`5{bw7nNPF6WSj?e^Yv4v+AQV>{8)WWsCT`6 z_EGJ7U}VN1dN@S9;Ju%O&?b<6#g=uxj{OgCmf9c~}}eQgr` zeNnLq?^QVMq|>q_`GhQ7Ry)}|Py8djGUeA7*TR`1or8_<20SC*q}hauf92m`Nfusb z;BPLqGk$l8>$9L}H%Kb(U7vHV=69F%+>aSNr;6^2v@jWGhYL@is)5j(n-9B5b^u-8 zkGLswL4W*T3~O7hz<|$#x%|9#;1jUgp1bvM+Oxhdlm-1dc0-e4aEMRLF=!zyi+r<6 zUT^XBH$>ql?!wB`Fga9hKFU*W&}7*)YXI{r&?PQn3-`}a!JmDD304{4XfwlDBG|QT(VIydL(*bDI0-HRDZJqv}T?BWM(p!r#7bQ6{iY+Zht|7tT8Nsul(qgL- z(5@-u*0A6R7noK$9nS)nGnb&`AaS)2o*Fu`vvOBo0)#seWRpQA9#t-8!4wwTUt_HZPY&xW~^D}6dZJmD;0of8XF zy-;axu=^C#uQfWccX(dn)D~`z{T)cr!-nevD|_=(TA>IL4nXl8po6U!g6NfT{E4^T zKe^c8>T^@wWY4Hudt9MkCSngoA zSnH9ccSXt1H}ba}k407bQg`6AU|m%CCyVTZXt_GdD_uVMao=4%O2qebLXunbb_Q0d z83f;QhgO-eHF4#3ZmTzLa?4n3Gn)>$A$0x@+VaWOctJ#2syR2k#0+CG0p{{E!Eb@? z{32Hw zIQB_2T7dukI-}`om{`_}^|klk0+&T&TFBl#6zUH)y=Zc@ZD!g6ZI5a zu5gDJu#~@QUY-4rI_?DVmB+4LG1{oJ={;{=3LgTvCY63_Urv%5p9(WCJU}Xb;rF1p zm!4fmNs4{JgBS+Eu2nl2ePMr=X{kUjOpd1mj>>r@!Ae}5NzGj207NIRPBk|2@6J7O zBS;I2X~6|XPusJBWNLq8C6W4xeat@v_=`b4SgP*;qfZ#XY+ZK@6ENh6)<}17;a;om zcKn+VC}r%kK=?g%pJ!H`g!^Pe*x1KIwl5n3aD1GqScy}FHNzp}AH_HR1VZ4_77m?d zk!_or(7f$s%-(uprtodUq7J}~>tLakj2VO-^)2dfZy>$~5koUs%NtFYy_?nrQ!fg; zZ>wE$@~afv9;2%blxtqGS^++O8On4Z5lclB@5!x|iVk;`%}6P>u+Eb$7;xC+WYn zeG%AK+Ps_|{>)OG@<^x;gbL{+^DFFd4VJE_M%Srl~j;hTZ_LKCNDd-B0291Th__ z+tfR}&pC!-#KogxKWcf;sw2i56||cjlfmy`#~a?$96(?@m{kwg^bswRn|uFU9S7c6ozi&*=%PL7-2& zS}UTj0>zzhzagyaRP_s~KR|&ee9`MUoO+YZ)&+i|#BWC(X zwdXtm$6TOsQbTm{cg}@kXC<&6JA5(mkjM8SF_FpB_ld|q3yozB{7wCCx?6Cg4IVoetE+)LnJ{emGn7OFbUnR=q5sSw3Jl5(SZk1TM-wWAi*awIb_Xkvy1o z--6YhQT;I#yCts+6b~;TI}Fmd&2$4?fOzKhPd7FCB05@A`(C=egYNy|I%$Z_d+f$zXWLY3#eDTSZ9XS!ZFQ;}YLRZjQ7Z*yV>WvBJAc{p`y3 zC$HJpSrrVaRm20PP`01YWGL<>R}QiJ?M% zhvUG@P1jGu?Hf4VRMamR&(Ye6kT-RV;r-c%3Xd?94jU*m4$&O23r6pFe*^`)?3-lp zeQ=vOei?c(0^RfhG?|>izS`cdG@1ZRhLGZi)Tzd(Q1Z751Eiz_OJ)2^+%laR{r!I8 zYvY`Bq7neJZx@b?kVO$7VDcpZ4$p_NWRTTCE97Jj0ZuqhYlM^il)PXC0Q9haNrBN5 zgep6(3aAg2gU(;rC>vCOv@_fO%*<+`|(xAk85rajH8Y6?SFvT8gwbpqfkZ5dv2K z9IC}RiHH$2h%HV6sc?n$~16ttMp7kO)eI z9_ftvO)r9neG-vyuRhN4%?||W=@$t+U>1naIuDVoAS(!mitw3Gn}1js!b1cnnjeNj zz%?-us<;gSJrd#G^f7Be7}!0~?m5we2^;+Ev)l;FV-Fu^dAS6>FWih6x!D314f+RC zAGkeE-@=yH;}AHDUq%+2`#lN54&lHk?!|ouRyTQ3>X$<9Fjq*f>&oI;+VE@M@B6+W zW*N&ahcIu!ry&ad-=`sbvDyXG!M7J`d90!2)^`)?)p;c)6e|#*)JHU`*Nh09x<~ZR z&ae!c__y8Y#pL-y0XEyR5MOY4t z_=4+D?*VoUCl;VjyAFNQ&(^-Uf}|&V({a=knFuH8dxEW(7l%o;7_l)Vfks&a&eL#=ezP3EMwDpzrr4RqMGG3m^%z79NJD~6qM~~t zLLyGop_t(gk%T~vBKE02bZ}oS9lNzsY6KD-cX5ud@muAInYob?H84*&;)s2w+?sw3 z!rR5!g#8%q^~sgQ-C5|=Hrt5N_u7OXKS>^uJ|&v3C9#(+wm7CLcd{yEZ)&t$7xgER zto=5kxk?{FnuP6~5d#-Qev$KIBCX8IqC*XElwI@Xed(I;mABHxh3W!(mA^r}3}`vc zZT|dem+V9h@_xc4ou)eF2@2Mgk)6c&8$B_rCK}9;ACDE5PLY-WVXc6+(%xz-T#Ds{ zGzA#O6@{kdWb6ha#@!xu^f+w%eF!6&dA_L%OsJDA#Ih&c-yS=`QZZByeomg$8aNqs z8aCh`sa{*h6<-0B_UwOoiK-^jj-ATQb#7=wwZp3LNBC@ zs6ilX#Y*>7W#;*wMZ&&KjC}<0dv82%fTX)(pB)kcg2KUfFW+aBeBw${xB3Pu`QkIO_II;3orGFy=KcHPrc2yt9Xqv=0(MLsJ z6zrh`$_7_DKl;`jNFZ(}0aL*slP`EueU!A&JlcNO0tYc{>!sCx`mjyGrK!df7T*W# zxBYT)S+9rznRtErtyv7l0Aj3kLP7zZlbx-oFN&`}curo<6bd$U1OHddTC9rg!dUlc z%-wQwMDS<5zLck>Aa4;-gr<6n39Cv2f)mcHx*qm1F4EjB$}0 z-EEfJVR+)icf!YQJG=!Ahhj6L{6aPUml4n66{orAGD3nSgQ`bQE@Z7nyet{`j z#6;k{RzC#ArmFk^g`<%|(~$^Z69G>pHmNeg5kCgP(ApK(VIaJ>j~$ zqY{vfeVYqB13Msf@M4fD0u4){3XYt$?V{&pp8Yv4nyb|!7Yy7^1C>P6npB`%x;;2O zSm*}YQ>kqC64E+GhiUe349F9wvq1$+s?u-hBHTK_4Cj#|Q=Q#W|2`=+4%k64kePo; zDGYL3E^s9>>sTdrNrL+x^821!@^rL-y49I#q;Pty)(6N?jwF%z{atAdP_+iQvtsJ7 z;Yje9batxlqX=@-@=idyLHtd|G9FX%PTgUlQFsEaB!VD_>zezE(l#MR1wyTU7s+c4 z2&_1Gz)g|t6lOE0B~+l#vPiJk%zPIw5KaKPpBDOXMeg3 zVJ>_R2#fwX2{T&K9A#Fh39!)5BLGE^Pm>;D9Ty0!R}>kkj6uAt%ws>-0;T3WzLe-{ zN1CK~g=Ts}Y;Ar%wI^4|%}(zw%HDNYjh0_hkT4(|B2Cb5T3XKgPK#XIhAY_`+iVum zQI5bZ=V+`cu5VZBVLB9_0-g_D5kyFjApV?kYvp=Wnps=!hyV2oA>EIqUox&nzL)8u^lH9gWF9gbtMCe~TJzbzA?QZg~@6h0y7F9vkL zU=ju**paJ8)EXXtLxr9?YNKAyc#CX#+a0w+oN)}#z2E}#*EtDxi4qK z{{iganAL0k`jnd+w+VU_wN65;ZPh4rlV(Ub_v+{kin;ZRjqw}O2) z-)GU|-Jo>i{&Xmx2y~Vp*&-;alg?`z0Fj+wc3`Xe$Z$2MkFrjl87Tp~>RF74Jut6; ztWX*BngFN6_+c!TeY`qCAK|s55L*hJz%E7CuY1SYxIq?G0fgK@wXR`3MJlL6$2iro zqlo1Ksx{q@6M~w!SyV#-e(L%!OB>~$y1z8eCcr#9rtSl>l$Xp|Y?Ym7&qw2dW-DpQ+6ZBk;OX+SmYn;1~6VLi1fstyOD=B0CyBeZK*cbHM-B} z8Go1k9ZF$`&Lpo4rDuKEKrq6fR(SeL9PdEM(_IJF7n7E8_ltGRbfo+|6S^S)%o~(K zN%}5Kpn}3fln|?1U16K;SR(_P(~02&iWX?6-BDSo5F@`qA=* zB^yk7k^C$jU%3w5#}WCmd$)2Y+l_DOmu@uOs!iLjj3VP@cE#>uP8szdA`gdP!XCl#{Mzs8}tt&`&@GTngY%b#Ir20*A+U7~I8pwtnU z6pzlC&%p@_)C^F6WQ%hBgGFC8Ui@1yooK>NatKqe*t@wB$wRP8aw9(T<34wkEhlkffG=iK2Oe zB>P<~+#Qs2s&5M8w@ypBN4F5ze8VirEv#-4qBBX5<7pLCkYP-J+QqmT$-;1SwAalU z;6_edmTZd6mj*Kzg1M1}N#zYSMuI#^%pRxd1i&aFVQYq^Kq{GV?&5T+BiL6fx)6sX zzKNk+;b#=@f=OtU(20bBySfwc`&Ww;vn@k8d7fmGXgUJCk@S`DV! zFs5XpDH7z{9h)HqsFm8o805;f0_)ZWeljf4k> zrqVKZ$F5}kjvG?sC_heQfIn7D#olw>BU$?)Hy3e>VaMS z{(@#RUb*@B1}eZkKtoN^EV0~8 zPtaJj)_zo5y@TmA>~8eglfH5K8eP+@KcB7x;AYW)-Qo5sDdNItLEEs&;3X?BKq^ED zWxj<93b8O?6GyoWD|d)hcj1z8Epcapb@9sI$V0G^YQkfIBhZ|=#e~apf6~Y$QrtpW z6_f)YT)AI)HfR{SXQAM#wyX2SvQE8=tp0w?A*((Su;w7Is+TS6jxI)O6Nba&G(w*0 zV0QqTi8AVB-aOw@-Aw-ftt6egrgRBE_LFEhKmhFjT1ku@3|#*iNa$Q_tcCvzGyM92 zFSE6NZ?Iy7+(19@L9C0|CTK2dRM_N6&2`%JvFf7>AyT9uH6{xW8fusJ`Xn9VaE1*6 zB)*mOs% zX1W#Izo~tCz1N=JQGZXKr#0p`0pGmP*0y_1wRX`|J`J=VICmp9uhwdBZ-?hbPOrRo zyO~R!+$_Fdavm&k+RR0?C{C`O>;+W5Z@MH~3zz>Ay(JjFC%uMNX_ZMnmqX{0|D$K+ z>@Ia{v*~iwlXMfdVS8U!ivnG0_2Fgq<&6I3t$UrVOurpb$a(oSqsyG#M&<5XxR~5c zWtsjw>ORMG%08KZpTm0jtaS0}o%y`-X4tJ=_A}j04ioaBa{2HcuQkZ|abYJ-{k*9vMyilx-7ee#)c^Ac}%3Hlp` zO)_UB-ak}qW;cYBWamQ@v$!^dP7OwXFv&T#-)hbQX` z(*#Ba2zH|EW>iIoCp&nZCR&qL%3@;xN)FE!=SDV+F~E@|MMl3Qkc|w#4Sw>zw0TLe zx&(c#XAlJ7#_ORZT}HoDkWJ1uSSR~v%4uT&CJxUwXQNFS;mssVM!yV@4K!j~Nft~& znE;zi0m$M^m_0Hx_*PqrI{!5ZLrFHwfu9dL!#4a~qe-@mL7D$Z$t-Rb%_aq9WpQnO z{l#b~AJxVdcOXx4VGPR7;@JcqM7G1OON1=WhA|-TZxP{2mtP-8a6z)uk_I9B--SA2 zHo-291ue*hR>#*Gc@E#nh-`t&6N2VtMe7pvwUCq2%33Lpj6pacTWF8lkR`b=`(=S_ zVK>R}PLh7eLAd)NUbD`WZ#P z43KSP^?1^}jHq2=W2hFJTDbqRvE&&Uaodk5>schu$c+92vFS@vk{gXl^w~6WNckCCL5}>7AJv)0 z6CfK&4vhX;{}roiU(~z|nO)+K{zYUe%8<$bK)SJ%#|j#vW{IWB6 zwp)jOgLhU6e9TvGSJ?T#ZN(0RRj#{*S|h z(T~H!&)NU~JQ)9T?ulp3_Chq}26&3kZV`|(8qnrC5~))_!5AURyLRKwd7ddP6iFjt zwM1Mep`n`j&FEO`c=T8qHBysiBB3}YTUuvVQ`?fq`AKQ`{xdhXwEQ6~l5xB-GRC9C zi6l$JJDbrbF2zKvh*&kHlp3d%5NX|&Th*dJ`Hv;vZY$4Kw< zlR^cgJs-U3QufMK3aG3CC<1xe1dVa6Nae~ux=rjd1w?fB3eIRp3y#YexhTvf87I?K zzW~JSp!b!Oxu?t+VO+ryamXwbX-}KDnrwU%fVqpbKAdw<+PY4KE9yb~?I{3I z-Zwc`&YgqDD@0qX&?sxji_DEBPw2^)>2L+Z=AFU{z=1N82V~}sJQeMcF^bSch#eG2 zRU*!YnO?O><__;X7jcho_e=b86xe7h0WlG})8ok-GXp+`+?=E)v)E!!@ApgM#v*i_ z^qYG=P*3+#BV*uJrAz}lmX02`PI8Mz74PODOaLZs^8KO6!aL-1nZbNt<#!7Th^6L; za)rvvxJ1@)iq)n+@15~hb_Z@Tm@d_=JzunqmeP;UOOD!FD%!9JGNlO7ozXA5U5+U_ z3^iMhHDk&(YcR)PS~9Z-Pg4#i{Av5PppFyz9bXFElXv1Xd1dW`4_H8Qi`|b+Yjn()hV;W1`yk_SDws!1SGk*XayT!6hxJ;kz*$nv2~HVjb+Is z!|VYAI$H1%9v+xo$a3_{FiOIZr#vTP&~spY>I$>32Xhb6j)j#4ThM5Z%dun3Q3ip= zr~K8RXcGNmLB<1kZ1w21$OzMzCw{LgJ7l1hAL`EAJM^%JEzI@_=g2M zV%|lIO94fuUf0P`v(}{n5~O1v2kI79XT?;O-|9Qwj4um5lydpq z3L`AHvNAysw5G^CUfb#G`l6%orH3%nn>r45`0+?L&&omH%6l3#V$u5>pW5MBzuc+{ z0;iH|Hlfz>!)QA33oef2TUw)DNQPBgEq)8(i@oO}Gbi7?ruHi^qPPs&s03ox46stC z*4~RnT8e6Z&k&n|v0zwwPPAO@Wa>=?gY>tL%IaM$|)4Az2gJ&@V@CQyle(|2{9`2=cc08fkj0VOnyf(8a^!w7wLQdJL?C-~LT{=^r`^t-aQ$1OLRL>5a-t`dZg4ciJ_; z>xB=WTalZkD$K3)_wRvwo4rF9H+LSTHG@H4NkYxZV>4~v2454;|;#|JTBICy+kkG6}T7Tg#A%L^W0qAR

    ou2IW|dhe7{pRU`wUl3_mZ3sYd;TZX=K@nzW7dg)ptpJ0z(05rN;M$>mXSS zDm%_!PQluUtQTBsRpfkidAN8BC@ubVu&g$LiMi^3gg@k86l0!?vp&WG$o4~l=we4F z6LU5G7hmTXUP;%z`8XZhwr$(CZ6_V09ADy#?|n9>O8M)tf|nw<+mFswBqqw|N+W?&X^LxZpocKXZ@ z3DOk=DO}KWL(6iK6r@9ug9sxnc*Mfd_CQ-5SL?3WL})-EqY1QA~!1j7j7(kD6>3V!b`4xMKXuoW`CxY2}MbdYR5U{v&0 zco}Q6p-I0|N7HXN+_z?w$3myiD{qNfOtM!cYx>60GDnJ?3AxFdv?0xKc$kY!Gq^+hUd-goBOmKMta5?Cg&%!l}9l?Sv7%{R-gSaMc0 zJLfZrI;k@{Mg>3PbS%ti{&Eew10ynn)i_z<&NMdVvDfZL zTYXB@qHB=k+*x+OTDLj3w6}M-H_ zG~A=Y8ZzQJy;hK@0?cx80|)|28}tj&*}WOksI*P25G4*q9T1Y^IQ_&b-C} zWAi`mmIH%TKUh+BWFUBwm04F&32o`fiF>C#+7Qla(PS?Zm?YgBPwCso z`sw$TWV*LB9+m2Pb;WPcw6M$FZ%$Wod1ECJtDEehm3mM4+ufj3NT*x3|GJZ)sQA+c znJ%j&?ndkNg{|(f4U;?$UYB_l`e(=(O!Mg1U`U&|R&r8J1{3J8EWsbA2pySQvQMUp z>sCQE{YLZyUL!5l)uyCqrv_zykLn&4;Iw|_9bcUF&l9z_<#8cvNEidaTDN4bBDqyL z#e*^`-#grAi(Aiw^RTHwUiY{XEqJV_ja79igUl9c+kL3bRdExv!D2Ku!2PZNs98GN zuxm-1?r_k)-C@aPo0Gxh?&$*E$%Jj=tO^?i*Lm-vwaVl$$sNIJnMRe&6C$lnWbStZ zVdYG3KL|rDSninZk&sWihn9wh+b*7MmcEVd)&i$Ne!G*ho5fyqwweav$f*t&AxDe) z=%syD&5AiVRcyKXcyKh(19X+}mTk)oPX9O!(SzGMw-2D)9ei{&xYF8YCghXxd1z5a zsjQi5a=Bj)>c!~JsN2=VG90F!HQL}Y=wL(76|2C)H(!VhYJ<>O1TR$^Pz$#(58L89 zsanYmhL{HpmL(tr?rJE^?0%I#-r2OkEWDkIpUCVPF9_l>$YzQDY?Yu_U{O3QH^bt5 zP)_)oG3l{@S<0(6+Ki6`qQKpSm7G=&FaFpItQvvWZsm&YjV$P zI+%|!m4o+_7rSm~@|H>30_AT`LTGeJb_*O*O0@mbuZxqk=M60kaF0wA5EAruD`6H# zCb3M$(gf|Byiz8nXbARz>N|cAkal|x1aezGB0BW zJUZ5Y>|H&7J-twztc5aJg6yZf|30-VtGJWUEwrrL**Z!DHc;fODpcAF4UJd2;&sWH ziu@r$dJNpZyNF{*rF)rhyn~H~P&whFzu=K*>RI<0Bf&_R$TuHgDHCLa71ysfNo@~T zge2=McTJBUZP|Y#BkGNEsc5?y&CNJ-gwvkZ&#T|#h3@G(6K}L|BH({Y3yl)?shd~d zE(A^-muwhbK6P!8bjWCvRXkEDEB*MM&oUBez&)!XbX@h$EddU}JVxv>{-X+TL(^I^ z26n8g9%LPF+`}}VJtJVNT2WfcR!T_*MpRT!odD@GGja>ubt-9y4a`)m*#n9fAzbzmozGp^)+PnPuD`SL8Ofsw^KN~v{|4$t8~Ouo)U|A7;^T3 z`-6T|+%SlSXfpTG-^pE2HW{rGNWbS98^xSPEnLwUOjXZ|N^=1TBArbyRZG>ei~gx_ z2l_0JwyHg8F_>W53mwHxdjFh;_}-n6(!FlkZgz4bF;)5Dl2zC})2+nr=>E~|B4&6z zW8!lAE7ZpQD^|1-abTW*m2rBLGBRL|qdvu^avR8YJkv?41ugHgHObs_WT6nQ0#a;S zxHK%*a^n^l&8Fg@!Kc&srSVMMq;@HV#NPwe$~E$4fgQHI6u{aO#Q_WYYzvA!jUyxj z-alAKhopy+6g^l?D5gOu^~id$E+L^Gv=R{6OX`~ta?;r}C09qh!7Y-E|x*FZY9hJ-un!jq&aO7Y%MqoHiJ3&*^6ISZB|H@A#U}0sK zy}*vX5(hrHe4cl2-R~1+-c-aolKW~phh2x>b68VlK1we1wSNf~lhX~%b#sPo(Lg*> z4qV-1PMC!3IugR88;pq155CZ1VHwrij7Om*HF3{^LpzVVISsSvIn;efz92sR0W^OnFSh$%bCE zKE60IIh-ysV?n!cBwxGO3XhHDPg81^VU^@9vh4lnDO_$*#X_U041GqP>~(%Trh!~# zT^T?yTw4gbyWTd?*7~J`iY?y)d`tF+{b2GsoHg1$mxn-!YvV;%f5sJF$487_pshns z1IIR&%I*`_<@!d1Y1g!So#HTX3;!!k8OI` zs-Q9*R?*t4g<4C36U8kM?;sO=wx_HiEtzCxT#uu?52ndlrU^%mQ6@i?ov4H?c}I$? zThnnu)NutXMw_n1K*MX`P2av&N<$+JjuvZJ8ux@(a;&Z#~nR;Y(niDkM`%DzC= zl&;imH$YjINM7gwfuur}Kx9rr*HmXl0aRKykNwQR%kdJ<*+DZ~Z!btUn=J3#G`@t! z_*W7wsa5+AI})TpB}zR^2>guEOmn!_!E7_MVro3T3jsJUzTms>GuP^cZzE5zp#z62 z>^b|X1P_^NUstY0$aD;)D{aZp15ZzO7UVh~R#3W}h^2xO*vR;I6_+h6U6e4gF?a6F z%7~)?P=Wb)Zq`Rtdqm>+a{^;`>&~$L7rK200h*!vY zHoO`iKSNL=h43Rs{WKnxDHsuq)x{)XWS$?ddA5YRKVEM4L-V!50F=A9RDnLIV#n+X zA2UoZ|CMK2{H(D_{FZi7{Pth_f2Ssy|4mJ*PbsW1q5>3FzYIM?^|dn!gU}L1jb+yd z3+-m%QG~6|*&&7)A~xb~m#$XibR?~1we$sN>MSbi z`Sjz3DQ4f^d2Y(W6YbhFEe;`)&nl#}sr9I|v~O9T3_nE;pv9bdDZtIk^O4GzdsY)- z!Z*!T9j&_7UdU=94+BE4`_QrEj^{;W2@LnGFbFS-kwkB!^dFEut8J0Vl9GVvIBw+) zeZMEb#IFd937dCiz)-7@$~Jk%t1_?~u8x|v3p1iW(H4dyP&a6P&>l5^aW;ZoRlF7z zQdHfpw`h7%<#%S3w!0yecI0e3H_Pg-{n!zH0AA*stSmC#U{dg3cZB2L#Nu$6R%Djy zw6LX3XcRH3dW|$?6w zssIy~h^F6qk$99ba7u|oMqSXlHFaIM_9C|8PtRcJ#kwsZO^o**9O+xd+dm&08Yl+;L_A^{8u*rp9jb{o8KF5y22P1V3Y<;C;T(eEsHB@$mgNLKRZV-J zg6~1{M2a&ul5}E-qH9Vc{`|hMT--CTp7?uLLigeG=WEB;E7j!?it1uNRzw|G_P&|` z|B2kG*P;M_^)6IS{%L924sOl{>H+G)bptK|1zCIOWXVchG36rDMd1*)V9l{%#B5dz zLyMKc`g$P~e1r%8fak_|{$H$eV2}mUY_-l7%_iv!sn|JI`pELuve;c?uXUF}4Djr- zL#K{%6(Hq6>&o^BqK&-s!jk(KDWi~ECl!AhE?oBCW=vBkSLOv0rYcH}PCzFQp1*|e>67A>s7i+nwKnN$ue%U2t)$(3-*0h3# z=g>d{{BAL9%{8@}3&$D{CLt?wWXMpr`Ux21l@Y*HFAseMC-xcUP69M7;(ld@YK_dCjg#wj7~%& z%{3FdNXBIQvDGwfUP_}HJ~fY+}+ zI;ud9ZYp^84RfoQsQ}5B`YXkkV+^g{HlRIhGzis*H>bmdpCDa#JP)j= zD@uCyChCxPE&2`6uYb6Fv;V6nQjwOpBpM}o30y|GX_aZY3svl#67X(NZ8Im`UKEja zvaiXo4Ttl7fvQ*vd7%ljs9KDK?_jY#sGHZsG-alo;#`?MHC%cxt)?q?L9*}iJR45= ztS=AbKU_Ws)>xYXz8)T|eGeCU1bk!3&A_GEpy0(a$%s#LB@?{Uz@OQ-bc%YF$tUs9 z%xm^7wdO2l_btR0LY)#P;%qEPacO^g5o7|qaPimImdvh=#f};6ja`Mn)Z90Xhaoxh z15O$iz+7&WUAbn}a8un#1!egO%chK~2lFY{=Di-urINK%0p!obNM=z`nV*0J;0>LE z)3+aJb*LAWMgfv7%xESMjXz&&r@-+l9RdAzbm(D&o4OZasC5C7{on*e8$_6zr0Q=n+_vG# zt`D?_zf;QAa;PEI_s0g|2>o$d%VA|_ui=&$vwIDp?#8p39JEXr-=x?_^HD8E&_Ixh zxf87)3G(xC^LeVJ6pw|Nw50s4T|&e;E9iw38J2+l7PLx!;UZ#{&De~D#lr~|q21=S z6ED%akq|7Ycwv-t zfIPWN`fvuGExLkv+%jXUssFl)n6o(rD5*K1LI#vW{web@C@sIhQG*L8hXVsEr*Hdh zaGPgu6k`1fP+CAOrB;04<0a3ib5J$YA6xQ}&a&M8UG6YijOGt-hZS)S+v8;X7E{dg zX^2=B!T1ndvhRo+vmND8)L%EI(w8+W?1wHrl9P;VvsF6Urvah{UVe$CcJZsAoaWvl zPoO*U^ZcAowU1aYunM}l-J<#Q5>LZD_AI>TulGRFx5EQNR+7htRLmq|Dx9n?$atubp&Td&%#shf<`Xy<-CSFLLt4)^OZb2+aIys}cOR zDNI;dhi}0c5RI{5ed7BB&{>&B-*Zjx{;sZ`Xx4s^@|ixMV+l6B6&O{W7-2X750UP= zGuX$ES1!WWl{YO*yQj20;m5Q--Xx(1~x*Km!mU4fEz^efW)t4XN9-kpFzpamj5l4Ut zN{f(iRKra*oP1WGLDyRNOtz1UYlVKpc?q%~Z%$d-ID}15hajavcWTl6wEaV1P-lwa z!(DHW!0WM=Y5k%^c`PwK1w1pgITdZwF=Vbo5L0f`e&B`gVUO!b&m|9pv8pH0jJCF5 zr_nG!jB-zMeB^&@ab>a6w6Qlp_ko!Ma)qRZ$`!Q@?jHhkh57)ilAIi19h&11a!oEM zBoOEeALje$3&`oNdtzfyty9Ix2Oky0PrFt}yQNnBK>*9U!rm|R=a~L)%RmRqK!rtj zBnPK^cERERp4!ft7lFaj=2gkDLl{Pdwqb?W_E^R#vK|%Vfsi3*{hoL8nWlIl!e5&~ z@EQR^{hF(f$te2WfxxA1gqp3lY^+~T9!@qGp+<73*l)=graW*C*(UjS|_% zpO2H+?yu{UAfv~fIVC8(X>G+Vi8%k%=0EA~za+`M%5kX#KA%adnka+iEt(M0EwtP? zv$IXp7veOp0t!2byVkSIU*p9x*vm*PSQ&_F3U0YC(BQ2KP{I%`><)L`G*%!gdPAq4Dmn`6dSKy++4C+xKuFTy z7NPL6`)>~hMw77f@)<2wZ=>3G+-Um9IJr8~;6Wd513F{Eo#=^>kz7NxX zJ!P6aWQUPpe$@0IM;F*Pt_hSZ#Z=n+4$tTcFzX*aEEY?5BiFRBhY`eVJt~z{gB~$q zjj3?B{C(+KT~QdjdXQH`jDhc@J=XTEakqyIE^0mwZSd|=IoluKJRclPSvy;E_MSYb zuu_`m&Gd0^2NHuJ6zYPO2v_~dq!lYsU-6Prsq~?(($}LSfB$jlG8V_rrBkQ?AsCqa z6jitLYxsZRXa$XbR@%S^Z;_Xez0z+q_*0aT;3FH< z!oIWCzWDcv-tTjMp_DDNy2)OtujNVGTPsQ5eGIC#c=P({%pPkRTW+a+jmrX{wj`Fa zSSlZh%P7*)@dCY7vvWb>`!~UyYQyz~{ieOT+V*dU`gA?SYw_d@I^Dv?vM0?iEl?C) z=4{;BqCWHF!pp-+E+%?cc^pYGU3X)1nj(!q4sL7DRRM=;Oo}E)_b=7@$&@w9^%dD_ zI;caPz=PumAn`jm9~i znSg_eVE1l|b@ZC?qj`Oy-Uf^BJ%JUVsurZ#P!N;?0oZKq_Au;+ zNnq_aJCHlXLFW%sf)k#~{gd#m%}0I4SIMq_))ayCTsKrGuT;#q7m_&bc*#03H6z0E zipp236~Ji=xhIE`wc~}xdAyTvNECo{wVNyU;+(ELZU z=$@E|4Uo4Ok*XOT;)62VdoRRTB6C!5Oah&f$!7&^VSWd~xIulxx|3c)2nHAYYsSyV zz)1;(W2w8R_jqyL)+HIt(Np7wqx(EhMg65mK*ET8{mr1tEdK+qLk zf=V=eQc=y|4>HoQbgkF}#dGTjv?kkRy^DI0nhHD=NyM#=LOTOgmzu#*>0d!}PuKyt zygCA3xb72nU~Y|vTHkR-IDTMlAbZvZZE>+GF)=E#A5?0t>6^QW`ueaZEjeI^$chcC z^P*_vd5z@ab9hu6$%j=(R{BQ+!8sjeIL`_hbFHgz5k~fYIfp;Rk&um>EiZt@CoTsT zR)boN_m_K0@`@phzl}ciM|R>=7)V%^*)E3+f2iZ{bytk%^6%zpu+~I=K~&WB`o3EF zpLs{!h2$4off(C{WBE<0kmqR^Z%Rj5hz^}j^T@yl;r9`*I}$mw!^Ft`fR{Far04uz zOzOvDsXBJjx);tMpQxlL=Smwmey=SR4iMw?au6rQMK@t)Wrr*El1MH*#jPBMC^Z%c ziAGbz(h;@hV>DT~9?2RAeJ5z+)zzJ%5wfi5z@uoqd>|i&l38h}tIaF5;3&xtv2TK_ zwc-Ed^V)FHMx@e)+HV-cK291#SQj+%nRL3y1yOq`z+vv8%>f-Q2ZF_+HS#jT%C4f! zEC{l0%u{JRk$X+fv;ol~V|G7XH)FEFf56E1{?9 zE?W1Iu$Z_5HldyDXjhY?(zzjTzaSrGZE)e)QMBhqsBfXAH3j*%2b*>*PO1Pyc7?U^_mO?e&{r;t>7+ z2qx>l1T$mHA(IhtXp7>)ueLL^lNE0I-GxYb$;x5v8)4!XmlJP;wG4*#L(iY+RkXjlz)eoXWc z;cPHgzQn~G9RsV(2#($zY3@*O`Afl4VFJ?fV&S`WadAde5>Yo#OqgnyZ0dDL)l6^_ z#R!Sjzu)e?-a|e)WYXS9@cC|g~UQxHs}e-O3(jdzNH+LqpDNs~if{0!2G^Zgt_h8^8JDz-1$K;6vwR4Kga|hIFHc z)g`e4f_eW4+wJ_q+_?I=T#@#!%gvFrY|VxbjXLD?R7}r#*+AVYPc>U#MWHBKnp^0wWil>vq_p$LK8YU4k?Sr;6FUvZAEj!-;NQ zP+PyJXl=fWivKE{fB_w2qr4T0`Jyx%JuQU1}i5 zJAV_6{2uA7>l1S{a0z}0Dbs8K(AV!}L|g2P+bKS*+*D1L31Gr%QSo{lTkZLfs6E09 zynr)&!Z|mKG@RlFdou>=*fOlq2J>DeTAl+w_YJZ`Fwy2lZ##}VUlDYh8gbKkpBQA> znUp6u0$t&wShI<@Z4s%*_-EUDm3T!y)RY0T-dp~$lC3^_pm8kItukHU!TdBy|rBy`BhaiO*^_rnhEEf%OJ9F zLS-gapH}E89@-_L{rKtgUh{RU#~NlYsU(L^nh&j-kQ`*W+)-9Ouzg$_Wq+KN^x-4K z;^Cf+;jG+i$HWr>^AjO?YL2ARY7wcXa7k5gQ?WOTG@a7mT$#TcAWzIaS#XeLuC@^w zSX>AKo5V4akJ==?~TNqqiA>@2{gg~GscmnhEdZLcJ!2~ zXu_X$Jj4aeqYa6Ngn=8Kl{1zuW%QJA?Dh9&M2JBfU4!ABgINWA;rZQLHt*t<)7Fg3M5FDwc1$?!670MeF$YfQCf@@MBo>%Ejcp${19>8C#e2d= zl-0KdN{!PT@dOP5qk*&flHge}y%bZycPrY6|I8_HH!zH3gVCR2d&`)E)szF)QWQ<$ z46C$|s?6qswHT9ynyUeup`QORR3(Xx9uRM|FjN$IsoHm+Z z5yvqW3VtdiuE-6PUdMbNR%6#qF(2il#MWS8ixV)7J1|NpmL&(WG4B+F8yy^N9}T_b z%su>5k_H={KrD?TOqXbYz1wugAE7?VD`%|EWRp*8t|DO9ZV&3} z8=}v;-6>)7z^XUI?tkmWgEPZgsWpYoRHcElA_|i06!7~wYs!X)!HdOU?!YBO`Bx`9 zhr+Wj_}G0OHGE60H%&c!3$c!=5@cgt(vS#_E)8J%^5rYs8-Y8M}th8S_44mYu~iP{?;uS$ZZ-y&3t=L6rT&qZN^ z6IKeT_%O@KR0rwDA>d2kXsx9LlKz@b^Q+ndo9xzr?%q$J4AC-mLO=AlCjC$>z+iL# ziNXZ}{41y$T5Y=K`Y?jElN1v_=cVv9ejLYM+mkjm+kqRVsMRKr^n8H+g?iQr+iy90OtAywC$i^6JuZniA_Qzg2oB9q! zX)W=i37WxNR~-k$O_H24#GRer}_ zoyl>|X#f$_J2SK@!~HKd7uWqLk$wa|k$P!qvI?Ic6`G;uXkF}!TYc03IQe)7O={-B z4C`e{4L)3BwL6e0QEp4DvBXMZt%D#R^tb6sl1rOVsw5Am-X%d%q6^i@&qVsI&d3^Pnb}VwCaKf} zdX5uh0$u&l=fq`bs*f9vx4qijgXoSNo`Zu=U`i^6qR#cC)X**MPQS*IjSz?QOU`Rv z%?@V6nnI>W+XW{$jfEj2|9J4V5w^A#O!l@hxI}_FBV;@u2c`rfN-G`PuS<_mHZ_;) z=uXMOKcsqqTzUk64f+*9khLAmGQLf;(vL0v`kFUb8`Cn9Wu}VuY7=X(Z7um8z^|m- z=MjZ>{_P4)mutI*XS}WFm1>(9wqq54*X&=%C1o*t4Mk|@CmAtt{Ry4K7uN`{fw*`+ z3=AoC+*VheTbo?ZgIcsEt_k#83aOA=T#;s#^0NnTC%4-=7IjezQtdthdiXw9w7x?_ z#xV|%DZlO5?r}LYhFN=feqZ^iopTzM_G@w5_sGx1pP~QU*dD z1ugl;m|o>b#GJh{1ie}&%{yQz7yYBTbe>{^2m*)w(k|D0gC1YcMjiO@V;)3(#nt&e z0nVMYI5F|H{fc74aCiulRxEW?o?^G7L)Xy!&j5=~KiRu*4M)rN7@k12YoNyPgPxIO zl2*8nc(@^R>wp8}5t;-I{xA)A0ESMM;9E*R9WQ7sD`&nWUMxr*3|Wn&{!3Lh|9TUGhMz>%!b3FBilZdGup@0@-kYPUDW@PBHj$3VT{q zgRf#18o|2`^aoyOS$lB_Wc5WwyF*V77$>^2YadczzpBJAE8o^)EpNWg?Wn}fXm9t` zwAs1FAoC{PSP$eEKqR%!Kq~dBWGu)}CU0!Hrf}?O?qCN&EOpCD`k%Q5Jn2BkbCgev zsg)df<&?tABI_BCf1J3=~Q0c%MuALchK{qmno01Sov9X#!WT%w0kd`Ee z-ho+tiW|<6^j8R-BU6ESm~?eto>c1fJ_}XMcZ;=5lsjo4kMC?T4$2sn60Co|8wtYpymq{N<^y6C+O>b$nVYN zaij_28m5gLbHBL z54^GMybGXtxjDj=T+*Mv`VY8tp^?5?BTEI2@;~3dbmwh;4f(3gKgFLIh8E%3*PFN@ z$NT{RR;2ul%cs#XnN-#cACVrkw;I=*{IWL^6Z|leT|Gt+f|tt{c78-GrT-LIL6~qw zu0xa-WZMv*SfYJ5a@;7eQM;&^C3tY{LXjNy13GO!4Tk9X1ye^mbkTiD4D#ZQilkB} z5x*4(K=jJbI`Sk-a9+|MlEJcL;|=lIa{P>p1X-pjlTcY0xaMO$ROem{tZT{Oc-g?R zBNDNDP0B-mM#&n$@Ik*q!S}i4KZzpb0)sStar87_TXbI;VM-Uwj7!mZ;qs8PfEupI zHEMXUIUOw!(?7%_EfDCspb_6v@7o7v?)omrZm6yg49rRGYUkzgoCsZ^Jz%BVbg)ty zUOzI^ij?+vS;_1?yz|&ZkkcsHb#!8C2UA?6NX;77Ezzk5-RUJ218?c1uM7BlqQWzLVMoM3lu~6lf`Xw z$I&~G%bkfbw-O_CA|6@G!SI>?F3Ai|qJULI+Wvv_eq}58!^@q| z7`?`&rD4jry!w{4Ofq>NOEJXWeGHAsAaPCNRT9nCwS&Hjhulz4Z%x|0%6SoWx~$=Ade75!Fz-Lj|N+S2H%D*Sri;}jfO2nzExoq+@G!y%_LT=-8@fQ&p-ST{+48TAuq;Fxt z@|F-jS#;Tde6f8qxHCt88G^ZPhkeQhr6QbOv=9XRXe%zT=J#g&ytg6ARb^Au587W- zn6mn$tTu%ZsJM@ZQf|`t)*|-u_@`nCS)XIwA7~{}2w0G6#JnG$ZehyrqDwIlwtR1HtRXka!QR3Us#fO_W}qX% z=g_@Ta%4}uP!JX(C8f`^NVi4ib(#e*jSzh_Mx2jm+Fr!iHsNa!lR8G)&PO(2r)L4E z#BP_W@6`082qc;L6UdA>Y-L3U>ef1b7RVref>~5oQ@5#LIk)00?2U5aXuT=V%{U$E z%%48T>l^$+duzR{Vzl@o&~r)*jq-ywJFcFa0^BG~%`l>z<+)AX8Iw(J&Qyuq?89fd zS0!yDD3U``qj$*x&)xG1@;<2~J9SG~dBhwS*_GonfjUYKGyalOCVN_wvv_PC#l< z#A%5%5b*KFtD+(whd4`y!$4VP!9dNSFKX5w!{%#kU(WRS{(P(qM;_?yS=pL%YuU5A zQM5F?<+?Lv5N=7QrT*d<7^#+3C{)?E&lY&>oWcs+tX|rJy$8Nf zw|Q@$5d_suf!3g>P^hfnSoe{97H;sRrC47~(wgs~H$^#zrhY_R$gS>AD%gf{kjbU5 z!P{e@H7<%Z=TuY5P*(U@7jiw8FtaJgT)oDp>|S+BUslk%SG&{JsU#JE`K_PCcwlH& zS#+;8(sCQuTd9ifNp&6y=k71Mt)pRkW4b}M&D4jX3u3OY5UZgZXkTCi5i_oWKzKVA z(Y>AQ;u@smIMrd)nTJCNrjrDu6!>lE);(flERJcpv$$>khbGPREv)%c&!naozhq#a z9H3ErQr}8w*xA3+J-!&kCt?`Y%wb61T*cpJH*WkvRc24lVLG$wh2#8?Aa>yED-wp_>zpe1ujGgIU-F}O_FW>E{Mp?D0M)=EM4_cj zRO_@J#JlFktlYR*zRWSjcq@>dVK#|SO-y1y*_XgK%Qe%t?IzZ0EMz}uF4B{OU^Ubs zKJz-w;$AAh`ye1VEOWuYFiWr)B5|#ZD&&m3wMv+Xksx3YS;3Yv8>pv}xufOB=NmjY zj=lQ)meY?VpMj$(j|7i2hKe>lAmzs2P+c(o?vfSfxXDW1^Fgxsm;I>k*f8;Apr7MM zf3u%_%0Z=#;Zi&QuDk#)8D^#K=Zx2v2Up|)UwpbFCv~<0%H1S2e?iYgTIm_>LTvDt z`~gp7G|zMcjXla-0=DRIsXQh%fm8Dbc)^T%YIQrY#7j*tUS)BKccamItvf>cgYA4z z&HXW3Y=y4Q;ac1Yo8;~c2^5N|U1AXx{Tww+SD2a?4I!V&f9TJkBSzZ3TEh3u&3B=+ z(d?cGia+c5?wOA2PuOy(JJ9ZnREjy_fcrDBIg8f1YED^cY~qj z5F(@acVyyda)-1!_4kEupN<&{Yfa%L4Xr{0Lr3`hjg-9P>}mt#J+>YC#g@0r zofIZAc@g$$f7xlj#bx;7GJmh1;}&>hYsB#V*is)3M$o4v*HM2V``R6{(jAy%v;ODK z0=k7Wdys29IZZ%oXtgedV?xr$sJ>>4X<1$ef9LiuqOzip<*4z*vQznY)l<8 z4#M0bHUwqgV$fpsa}JF=tXfK#Ax^~;O{r5lvAp$V_l)6g;eKwog8hqtTnN7P0wPRy z^r9o>%Ib^iSradNEp5d#YQJiwQbMINZux)<(-+V(@_nj(N*`45k2JWRQMW`23d3g6 zmB#ju&^;&2qw-Uk6%wf&(%hBM8)z8pLhV6#vWsm}=N4La+o5TJ^1pQ+*b2Y zP{hvMyuUl$^Dzxv@^KixJKcl52Eb8^Egst4&V<(<+O_rdikKdj77w8|83eg}OXWw~ zjeHVP#D4O=W=fP5dE}6v0g#3>jJ@k|6p10pZ^GdUi*ufy(D+}h>C37Zf0)#dCrph! z52aLoK~UZhs5OHu#j{P_m}P2*oClYec;}qVOuu_ii04BM>h49QfdefDT6z6UPGN%? z3_ZGT>m94vMO->jl`aO7{iE&mhcfRREP}#@zRqk64lO-6&%rXn{*(yVuzU#I&4q!J zi_3lU3vqtAz7LG~#bn~%hJTJZ{_9lw>j?!$sN3hktNAm;GH2s@Ec5-7H0Qgs{clAk z^)t<;k1-t`RNxRxtlHH|XVJH}28Pqk`CUV6SSx8g_0o0o1~wK0cb{#h7y1~8NJ(+Q zC;$m0Z7GC)4Nx_@jL4?Yz_#&o1C4ghAlj_LIE+8NSi>sq@5y~afNm>c@o8cxBLn?% zHlo6*9$4&)tdDvfiW^$V0axpnH58#%wEIK10m_J_16g{CDCb0FyfmFZG}W$aVZJ3m zNKPkSWTQcl8eU!FDZCOars^f;?1djsk}Mihnd^u9%#$2-71$Gcb>Id(m{2LMhd8B; zcIjx$VOzb)OB?~-P$QoiVRC>fJZTu#8#&tQk243<9@e=fA)IET(Tp9cdXY**khDug zK2<2D>;P2=WiG_BwC{lz7lrveMur^#3ZC}rk&FU}dNE#Non{$Y5jegeM>6|qH3+=} z#M7=O2jv+9IckH`1!0yemO^+hwkM~`vxROtG;E0M7Om`8)#Jt6H*_NkRXrJZS;Z0u zW5_4FFh13t`dAF=W}A$1J2;+a!gE~7Wv9pQNRYndyaMc0jD>Kn!$2dOP93{|$SJ0# zOQl`ch=FYfgKAkcGvSTxe*P16#|>TKE|1|(fc;p&p0XBGIO% zJ0c^RYNOEV8X*uCG=s%b7>mMum6b)_El0S>SA9-NLr@*AxO$MiBi{!vSIDi_Vy`fq zJK2>vr1g9*)l|HtYtx029~COR8@G_!SkI$*&(QgRCs`UE&Y_KI)v)kwmf(COtVsc| zK&(8f%wqeq;8KA338=yMP^0IF^7CwU{VP0zcT7&7{7Y zx6;;Px{AMQo}x7*9n}!v0mJ|)H7H@9(9&q3O|H1k0%CIGsoTl3Uo$jBhrU2El|&UO z(07$sj(plmrl3Pou(82m;JCu$klI|RRnuK_qww%QIU2)?%0qCmf3QjnSN={Urr!kt z)nE$j8N6xi<>#3m&9gN78e-DFA|h}J65?3q)GE3BI1hUDa=-Ua1=Y9TJ=jFRF0Fa` zfcN0qJ|Ne>?b(i3F3Pfe7x=o zeMrQ6udLotHkk9#f}>q01*$2x)d_=!6XtP&1;2XlO<_I`4V^`J@?G@*KId<$0d^3T zcu;94oFFmQm8Nj&{t#qL&hgkc%)o#eSf2wyAG51axMBE`I6FMn-91ux&amiKMHF?V z1y?gUNCPN4-BVLI=H(s@_yLVa-&Ozf-M0rdJX2xERMeL7ij>H>X`nj$R)~;N(S}l{ zXWxHk>HMP=c%}F0Y`c@+RaFDt2@lq%8=h1&BGOQI>ancE+Upq3$LvqC$js>G6i(dI zn=jJDP;LaIAqJM!7uWaux*OCncc%$(hjw(vLL{K#;+y4JC$e5s!!C?uA5f2q^%I zHuT_XaV>G@qul@C9@_dDbN*oqztKw&-Kb9fK&Rs7s#{tPPHrDAicGINuzO3AqWBnU z3j)`(K%ra^G1bdR}WJC)P?G_QWmRgM}-tC5`Fy4t8|j9-(D(ht|2^m4 z`{A5Vu=g5kj`2Jr=2&yDHCJnztM9zc+v7FgVVMk8*`PPRgAbgoWWym83cAWK+KnAq zXE-6I@rh?N;?h@(#4H1K1~Qtc2J6*TgBDz!`J@iV(gS${tl)Bk;fT-8gM|Z8r`sG< zLANbK7gxeTGZuvLJq@#KSsH8Gs~B)*>Rc1d6d0Qr>C@FS$Np`bp#$HGpE&ckNFf%O zbMS?iU*+#Qv_52Bu6sm?rNoZauOYQQ)LW*ETbk>&KNQA%sVRrg3hIt{11(cB61a%4 zyh>$MZn-&VYMdAss%a|V)_-alZ92yK%0QmrVhcw0?VviuC4a2)C`QvkKHmb(KuNv} zm*}%J{;;xd%a`nvDEY_-x& zUji62>om5a!`QjotezyP(;1Pm=t;vUpP9z9IqKK5%3|MUCc2al`{3{`VGtRs*%rZI zanD4oo=NDn-nl((hQ(>S1{(h|C-2jXQs3uW^=R#Iv*`0K)9+ux%oFB#eEmXLq?tj} z5S)!Ko$0R6|J-$6hR&YoS3O168ItNZr`-vz(*t4jjs<2-Fj({(#Dn|S4eS04RLHMM zlKP_u=2QIz&3S)addrrDuqRcEtr>Dg^Y+e}LN8+W5zM>FZfgkGw0972@H%lHEOVFWn6+2z{;izI9KC<8xCVFH^R+i3R)@Z2R_rju2mpt)q?RjR3uub=oGVxWRlB z0c~YB&o?>NoaM(XQWn+hMlY*4jV}txFC5(2BYN3tw~j+uU^6JUK53+|S9ZTRO4qQT zrLJN3O=r-`W268bP3m~dxO9ueQ3HQ^y%oV7hoku2TN1uIjv23V8V9QtVAn2lEXn+O zJ#p-0g#_*n#qE6Jk++WApHb+r1tL%Id zns@Or$zKwOFg@?0f=)6UBq&QH$~7n(63AzUHJ>wa833CwK!d3R9td?+zZse=s4MI} znya&{@~zXN}e6?lEV^9=8d-sD`D_?*ebn|F}hhE(WgeZQ!4I3-94>dPFT% zOA!_kK`4SP9)gya5TAcKU9HjeP^&6LU08?ac230;$u6IR2rIiH*kYKmmlnMo^~JmwbcAgS35CbnvmWOHe*-mta6VUy<$W`bcXh(^H`^LX9i*WG4Bd09WHf2bntPpaN3hgSvYr{^tq++ zMUXjCE;C#UYq8JBp`=GbBr@js5mHCo2u9Abez>p{~w|dVJ74#wpla->fRr))z zZz-m>4s%+!)?89i@k^NldJnqI{Hq!qX0od;t*~yqvhw8aUqV6M)S3$w8x$ThiQB^S zUxv+Xn=A@sjTVfTZRNkw^Q_a)RkZ0PZknUO0{1l34&I=>e62>;!Q8^jN0oDI^bOHv zSFCX*?l5n)?$t<|^lMZJRaP$C&fME0x@;rU3h}dp)8p^5WA*h+V$W`=9)fq=wxK6Y z4Pvvaesug&uyxsAw8W=VdvS@15w5nlwbA9@u#JI3I>AI8W(^voqx%$87Rjt929qn& zQR|)8TtDvvNYQq_fyRHT!CE&ABnJ&&|76c2zzl2Q%F-Nc`B=mDQzmq9Uj8MD8+$Rv z31vF3E>CbXCvLCG+4V~~&5xg-O^?D+6*DQ*BdWqlD!F}2-(~JDS!I?+H&9?54i{x} zIyw<+q+^H1rpK2A2pFpRbR%TeYB#@L-Zgl}89ym}meBQ$fmL`UV>dv z!T>~Ee{@9NPq!mW1XuK~Kou-e#kg@_+hsO>Na;p1h&?>cjTX+qbD_v~o=#kx3ZABJ z2li%2>op0D_%c@&iosx}{AUeNG7P~L%hVMAeEsLG0wV46v#F&YhP~P1&vVOd=k6Tb zPRh06Jg9*ya1TKt^NLpY^{z>`4@L;WgVBZlV6@SHizY={{&4Me>6cm3IVp}V?bB3+}jmGEngfMN-bEq0|XH=W_ z)iVyQYUyahL_3Eve@t7(94w#5oL*1+>QH)I_EmH;=)2zr@Io!y(KZgD&U$wf}N-ENGX*Cw)Q7Dd>8IwWNscUdAMs|KTOob{CD39`_~i%~Vmvl{Guid`x60Mt%G%JB43~%4e_nG3Rb9|>S46TuZIJ-l@O$*09UdBw)*W#6lA(qaqFtX|JzkOQ_` zFfYK^(|sCvzxV*$8Trp;z`+UOz+vD>E!zLvJ(Eno@0mjZs8~d`R$dQk@t78AUncxq8BwTnUze=-@cn~)zThZk8Ol>8 zRfSivC7%t%J3oT;C>v@*f#<%5qgMj`e|3;D;EZSyjk;tp1XI$PO#9+Tb)V)T{<6{g zj-NyPf*cZwM40#41NAxCU@Y!;7l=ZvZaL~PSFe`^fZ`>EM9vU(5 zo?50UZ7I2%;d4bRL48$Hjo090g`c!}Q#1))Q-rm&!wGTha}y^8o?w=6Dh6*I?%WR9 z+g~}{=^yi-5S2b3jDkF^ty)KRU; zvrQ7%Mj>j0!<3a>pgEoXGVkIgaf0yuQrg; zF6Y3Qb!T*T7cTp<4J-BZhuS*ZR`(kI&7w6gMQf0-_XTWz z@Yxu%`Cob9&SmpNx!DuneCx$+{khxoC0rjVTpy2pmJS-$+!cI2i`$Ef)64s%D&Nx4 z5b0d({8H@vbF>?J3+ybMv2*~-<7&Ip^7Bn&06@O&=zVT2h{Iqzt5OE^C`cITY7TC+If_oL$}Wv%_v&Fz)j zp_}|k%jomguFA3ub+d$G)7dXcbg7ei?>u%sBa~dmoTJ&?L6)P)aO; zdfF)a%VxitI6LQAMSG!(>IgNDbkz1QNjU2oN1JcJ<_GI7w8l)643k{n-Y)JMY96?+TqLf8 zV{30NYL$|&1EA>?MEb*HUrQBbN@JAWyG==am{F>f)jnmkp(`b_G_OzYcePKwI=-WZ z0QX&+eSA-kyt+L(@+GC(YK#rP0@HQ(=g10wke<-gp2=L>i_Ga6t)~v})JKT;zQz{U zDQ97H;o^~=jH9+EuI_OsS-s$i!y)A|`7q$~+Pi&dsNtM?f&&hhm>8pI9_Bmn(y!3Z znbXmX>3a6x)=$DhYmOjB@ti8FIBH3*YK!H69hW zTHl@uBKsJJp2=kX)7qvpjE5oK=l-nY3EPCaBipS%Vnx5mHCGjNck(*DUO*JF^ zY}|>ATL0A|qbpGXyA!7+N!S=0rrB7a==Do^<~L~ZEc@?CH$EV0#wmQ03Xb)fvm=J3 zJdkVE?CUx=PhO#JY5&FIynpsVJjIU5g*Pr`OHtuH*lzn-CTK>S%Z>xF+tQWNDonm} zaJ&e@zXCfrXh5=9S1TEa9Ni>bije-vkq|rXivTO^;ZxqDNFDda@vA7v3{$GeF*R14 z4{TblY$?p-4>x)J?KHD5_`%EKtP9asUlMyI&^hkV_RHY+5-qcY#)qL}{U!tq7tK_< z83Wra$r^lBpSdNB9XY_`H}dUsxS_qlQ#%4*JhU+5X70~|>B5U{wx~?Y&Z1u~XQsWX zH+4kNzZv`a2+N-0s5H8Y0(Q8QJJ7&fA7$?msG%~Wt(ohaX;&#-iyrL z*D%BAh=3SBVo#HfZ{OF`R5J-k1ZPAnh$2tb2`P3`(}2j%9dCl&~o|iEdTJl^{#u_WG%cZzT-h25u70`rwm(bdnCG#PY6J=6Jk8&uEWDEGI2w&wOf*SZ<2oOzhl1jMK4o3=-^Y`##t@?=~v{O$vI92+wfG*a$@;Z zE3Wv!CL&kuxf*R*K2oab$I=p)5N7UDPsR+2nV4rn0f+>9k%d78UV zqq_YjZ7U{`4%1$~>WgZD@La5O2i@4LSo2wIk@Z@!Pi1Yp zSkl>ke@~vC4?S$sC|RF((4?JG+r6R15Y=T}0vA~w0!>*fo;n7#3be2W8*cAN@3S_6pbL{~t;BXY+95qV7~UdIjkXU^wFx`W zcm|*8M3$Q6V%@>I)nz{OmW0-WiicxX`YVAYjcPS;{aKOfr}~1YPOi+43Ng5iee!2c?SSrQi6JZurQeZZ)B2KDe zN0wIo5NOz9vAk&XF?#Mt>c{HgiD1%7PDBCI1>VncGM{8HV&@D6 zFgnZN)l@%deaBE7CR%MaWlEZKVw5^x(F@E=5YJFf(*&~hm79E(h2aX! zk|xaScj>Ju9nA`B{$j0?vg~6t@SHENID6oa>w>3uG$!w2E=_CYRy&zss;bDU*<)AN zRZ=1$CSmD(OQrXxiNLL$yvG9avdhIJ5AK$NM>_3M7&MVb{ESSp%piLUL96A9m^kOB z`oniiFbfvNqIL(DxS2*K3y>4R_naJ+GQ*b^cRYh)3jq=mDb!)aGU%enWWhv%{nPt5 z2O%Bu4vu7jyG&=uWNM(&>lFG|!|)L1LhyLM`23XG{M3UWIC{dNvW5Yli$-5gVJ`1U zRNa|BnKQNd7^#h!$w{u0Ni@YqZfJDaSY6p!#ZBN-RTI64c-Bd2#41PS8ETL{`iS?7 z(;ocn3h~S43UOEA;#bFP(@Zd1t-Ygr!2`%}^OfvG=HnlT&3F0SHprOn#ZOFo8` zzbv^V17o8_U)^NjC^1L~E?JSY7SCLKus2WC=Ew;7dV2LBoF3Z;$nKR&Izo~*cu6ixj zqBmDGLhw|#x{R%+sLb7h*J>!m)zxt1lARMH zFoL8X1Ac2=1tb!b=PDM&>TxYq#6ED#mQzq=q74z~Dl5R&X|11V*hEalgUZs>H}Ek{ z_M~!Zulg2>94s@<>Gj$DX38o(Z8VMHlXYV(T}yoDsI4Tr=y>VvWXp1%{?Tmxvwhzy ze)X;VWa68_oAK1!hg(_{URZt??RKPZwM#X__=GXHv5wBq&$t|>h>5DGQk|akD?F6B zfX;~Kipr)!vBrlu7H5tkD0^Lrrdt1)`6 z=-gYq#8Rv&tXl*dXr>Cvec6DmotDn03Q+kv8T%~E9rkiCly+{B{Hb&Ng@C54`j+x; zs5&?ajiSxEu*mGh!#k|nz_<6Avwj3dr0?~+6K0x+tJU@M??ex0alxk3CDUk&!op1^ zyAsPCMouV2D10^>d#HdshxI@~^ovtUbs@g%8z@Qdy^s9rl=hCUbG@IbEfguur6yf^ z+rii6;5*Yimb5;E>ttZC^RPrIo0@ghj7m{DvwlNc{YZ!jhdtYkq@|U#(?}{xV>h}p z^0H?|%=P%wO$!IpQRWHkAu+QXDKyop)MDF50McT=Bd~on%+O!Kq?bQ^ZU1nqrVZ67 zi5qm5OlGPh))*9_DM*psz3&#C(ZKiJS`GkD%==x0?IKLNwcJJp6K-RsN z$vW9%S?1O=xfP>&TwJQ*k{xls8Y4kzer;;i7B&9zC|(+&A#>Im;>8o4$WQU~YWkul zOp2ik5Tnz9m|!kD-sxD1=~_5DAlZ(WDO;sIK9XRZ>RZ)hkOgPI;8FcRv$ei^pwOxN z3^W>Nd*p(FvBKlet+sb!CY**X^ak<=Hdx{{p+Z6Calha4ogiE z8!>KFM(-^8p#9^CLS(^8s5jO-x?|rYg?6T=`Z3);jqv+B+N_152a4pwcS%j@8P^nL z;7UF*EGFF4!gnBz-LpZfXkt zB5nnI5UzLxW%w{p_^^19`#}d&b#W12+5_*dqfn8U@2SbAXJ2uI142(hgs3B07G5|N z=ewFhR_WEPns_ZzzD;MImdt9J;GjI&eij@=^+u7<7!1<1_@}~A=^F9PjG1L*1wVge z;!;>jnOH~{aEX+PaEy`Z^7$TH(dLN8yMW5n4l{!Ea8_C^W%e7z<7{_%6Xe358Z2zm zx8?8NmsFKyL$~snwWSI$P{4!)&Xojp#O)ybqA9`G`s6~s#$ zCsb7Q(c-RVSnQ&)-AKfc;#F4*7C9)iJ{Z)%HH&QKoyu}`Kj^Vhn@D$eC!;y;?(#k9 zQoB>*Eqot4O~~t&wy;m%%S3$vii8tAL&pf)Zy$9|S07Klo@_KZ&GWP=bB{&Igh$zl zlHW}s=!%82;}Hn;Lf=oOUx%<{9y~Kusv(_A$9*~lM6>@qQuPN@ zCazRLw`Y-mD0L*Xcl>#TBEy4ExeZ-!nlz+^T*5X@rBt?+o{&q>oh4ICIz_CDnoaCn zL3D<`X=?RHAQl!>F@0mL$1yQdIG| zqp7MWQgxk8LbgCf^*ko*y#?5&iZ(&EG!$krTyRNzhBPmvxpb65+WiX}9QQp6Mf}r-fPJEH))ssk=`(3z zD9brq^_&JPGc2T7mL4JL{tP@@l~#K)V2xo4TX1Q5)Dh|gsm}EVKyG8 z93)g}&L1$JZg4Cf#YP=G89w20SX;}p8zzOAX~v4qPl23jEZsJo59(~Z#?x=y$l8wl zQ*wV8rw0YeUtywVN6Db2_&Z#VVm$*F&O}7A+=-P>Q@Oc1C|Fvr4+-uw68H6o50mgR zW+3ru$Xb)+aZ6Ernk@|+!^vh;#N{10xOfm2bpQoPupAS_Sq4 zu(dIw0TLrP|6D>@_0T8kJJlpBSOao6(o8Ce7lSi)}`+mc`R0 zX=I+vSHO>utAx{?7>a4-q!Yz(!p>bZNhrXZ%ux0wV7Y+Q!$?aON^I~glbZFztGg!W zax3kR*_wlehdNtacgU^|AfCO8i(^#9l}w}#&y|YnR){NaJqcwbGq@vIafo8{&{Y#t z%`PRS6j{#=kvE~>+Q3{E0uxcpxBPtn1v<0WBbSkhlstm@<8oCadj6ZPA!JZ;DC!*( zuiwEiEDXbHlFGnDv@J@(M(17vDVd>b`;sNh!~v?t^Z*vV(GfEGzGeJ6)vxyLfF9_V zstjDI6g(J84$No|itpl7hTY$_*OHkFneufRWglLHc6Ng)hW`{AG_I(=7PqK{pYvpj zc}(iQo2)awKtVlR2$5RKz3voAPi9`!-RiNq?nGJ%aSyGiaqm4=Y1MZs(XQg2DtEn0 zwT$7o+mVH7jdl-x8N7Z$e1>5mLn%U{#bsrs){qC+;{pxZqbg#%{1g$o5Y?g}yu7Z~ z1g<4Of#*O^p}Ggz^3ROxi7O~(_kZD;rv;;}n0kph-0hMNlaA3?6f|3?$~kBxr~8-) zrOIY5Sbh!Ah(-0}4bH?m`1VR`3bbBIS*}!V7ma0oLgUe-`qk|XWJX%tMUYqe?e-jR zG4~vUCR%r>Ad&;S1y{?y`j#FcojfuNw>#*`wP{h+ujGDyQ(}{nQynyCJ9lFqmRc;g z+e;Nqkz2t}Daq1_RlZ>y`NF_F;xbf^_0}0mjNCMP}C;{)9)e`>EMgt zU2QDeem4OU#TYhy7L#&Lp3bUca-wq8w6(bG6tZlqe}eTaD#p`UoF6AqV}=r#4Tr!L z@Ys7}uuWBMg7vA2bp6#8NKm#yExn`~XCO+U$LlXW#!b%pw1@9(WuVvJI}fW7w{8o~ z3bp1I2{Vv)I>pC!I$x!^2-l$>(A1$f30E(U__HjO%^nzgWL`I=Qr#DW^?RHN@cBH< zaRx=3wHrUk(ZVoNzn1uh22+K&JuQy~?y}PBvoRA~d=Yb@_K9eSjP}C)ymH)G><4sa zQpR4h1mihS+wtG`ZP%+P$X} zJNXGLrIQ8FyKY=gUJL!9)``O=!3T3|+4D3mW3|L%Kje%1yr^QYB5pOb6iAC?9Q^m! z)9D!QWCq7C3v(Gwz6WKtyYJIyN~I8&N`>ec1f@_eV5d-i*muZ}SJYRMT+YpdX))Wc zD7*Z03VIC%$?-cIWL4TJ<@FF9FzS4F5S*x*LnFH7mtE$L*M^ZFbHXtQF$j`v-gHf~ z;E+{DJ$%;Juf$yCs&M;Njsd3?q6r^MT}G4{wGNu-()^JSPZ=x9)xqb-Obsf&S2yVP z*g?9;v2eW?!k2&1-sAyMLgRkvDuda&RkCB^mKd{19I8&nCgcjTn+)F4oLW-C5udAU z(W>;!5%;tgA{Ef%FS8RHp=PUVtpGYCCz%ncSiiEp7ojZ|Z{d^7VX2LAnaGTZsA-I= zxYJD6`;l7U#uaH~ZMItn@@tZtjuw=P`RHzCyf(rOBn8H&(8A>51XfpSGNe&X;e8{G zd|kYaI-4`Z@8w2_ztL_W@ThBc6OKpiNSKx~FDwNrPRb1*Q`K`ceei&1BusW$`{ zT{vb|X1o8g_P*4Sc`|C>Gqx9aFOP{&ZY+iN5R{2$GHSY8kw&#FHk@lSh4JiV`m%W9 zEv9Lq)SP!a17)U^Mv8KtiI-O5)F@TSS?jOwXF+^Qq`XoGY#GJ9w}btwXDfDSMdl@27s6kKuk>%OHJ~~9pr z7KS&DBF?ppbBA{=jJA6BB+p3Jb%v*0nG(*8A*zK_orUW<;=r&zj8#=7YUvoy%#b0% z=4v*^S&7e=+G%@*x)&1jyu*fK@)^_MQljynYOIjgiu&P+6UC~!lvG6nd$~TNc!_@Z zaY~e`T)C_Iy+1lfD_uPcPJRBSo47WWU1f#pSX4!?%ae9Plh??sD0{97nvLSdEF&@d zV{!X^uuaO+qew)fDg7N(ryCHH=>!@Ya{#z3JI_Ag+IFA~{wx_Q`FU5Cur<2ks(RXb zE_a{)LpE}ISAJJCX&s>eop~gZpGz9!cb@jD64yVI2$ zlKdYg7;Z2sW|;MYTKx?aSEm*3FRj0`3=T9?*Dm^MWV@DT(O|evyPJozHQ2DYzmt{L zL(KG=NRd>|NUlxRNKdw52)<1TmR}wGXmKK&S=B7p%N*$zO##pIQ&&=_L?h#;EV zyV^H6g=RrLg$9cgzqzPKH_xxlo8;${K4+9gE*3?e?fI=_Lm zU+JpOMmM^AA9_>fFi_Ctvnlu4os%?r%Vf9T$6jU)$P4)3sxq-fll~?Wq{0+9`wwhe z(&E-^OZ5VVU;_2r}#>xJ?HBpj5o2TlLnmr zI#OMikN&zTm-4ABJG}i@{3pGR;J`j$>Ic0ODenj~XIwRW|K#}lePJLPMSS6y4fb9; zY*S5};6*BzJ@rFSO(MM(AM>KYRyC7-W171fq-$=hkEDMUL$8Wkx$O3ALEESfJaM?0 z%#btIf{9(rY>zCLZN2?HAYUUbEnAu~$E61XXGbtIVtDTU!W}iyxcI{0+p!4T9rgv# zlrl9bJM}zeo3r{XVGGRnzOZNIr8Nyc$0ZF?a(DRR_CgX`QYHm%xji3C7ZQ)Te|KZ$ z#WDQc(oZmBR|m#T_XA%5XR0 zcG4_3oSH~9>*#yme>2sVOsSqX^3^D&%V;%HW8YxTLt#BqJ%ciQ;Tgzj4ZWZ*n?s>W zV<2+pzU1g;Akt4Ma?Ch9*t6Y+n0Dw@DBl{-hm9-_1so@h3Cmv%1&g}s5OB4|zVdw1 zx#SiHGRhkp;<+XMU4Q)p85i6*DroD9;DTkj!Kpu14Yl)EvZ4~=F(=POd3r8hXQW!5ojDH!HZ5sO_b~;#l1}LHlf?F~nPiT2^mVEp z_r=!xJ0?yZDq!)aR(1m_Ba8nHTaLWIM;Gk-{PzRie`il`?RU3=*B$_wcnWb%0DR|y^01GFm zks%iXTI;dVXxduxZJjPq;exIc#%$(mnOoBDB;9ZH5cdLgNBe{P`rOwnrbtKnOk9}P z7JDv9sGE7}V?zSzDb9$h$5|xR9}lyoG#*zncIwXT@skWyshPxTq$*bFBRp^n`t8el zE)F9ej*k41_}qbC><`_q`Y(u8`?Q48i{|~^IoVnn7nf>_kWyQ!7S*=0Y)n~>C5FrO zow!@0){kx_;<`_$fJ^Igg>{9}YnZM>=GJ4Q*c(H{!-LZ;dj%#+hSrtp`CbP(LIJ+k zpk~?~Hb>17$(ydyUEm2blzB8a;g4KDtk0qyS+FtPrpz5pqc|7>nW`LP-eFji2tX(64XsNDA>V!B_CIbm#@WTv5;pP9 z6Q_YB#`zuH3%YtwW;kH>`^cIJnEx)xqwQzmCRm{*9c_AqabdMntbSNQo}xe&O;6`zHXC?bgn zpXYSJ&u`t$Pe-96G&u%Kob_0wc{)^;CJBMXqZ%x>x$Uvbrl^srjiD5}Xw6x!an!hU zbe%G#0<3S9`AmI@YM%Na@4cML3iBp*tyaWvH0_WMrHG@nlHMIuU%E?JTA4#o%FreQ zt^nRDcB=W%@=_{7s)QCisX41NT_kSe6UxRtqu?vUmCv#Y&Z{NW9$I9DfQGBrt!cIw zWEH0!cCNGIdQB8Ov@TO?47r`D`P6DhdC^YKjWw<%jYH{%O16PMbv&mhKg-=)w)57E zycZ8A0l9vrd}}m-xy30+`P7xM+}nboK8x%~tRVqck^qX;zb}NOaiW-~H+A~Mp&Qa3 zUz(*For9DU@^GEaDx6HIRJl}*@#+%1w{vZwkQQC0M*}g55-sh<6E<^3qqrA#p<*}F z>JKaU+=XI-84vvQJs(ggc?l+QwU@qs?g%vOH3RLJu{KBbT`O!#am+aeq%(yGK)p*X z_8a4)HmQ`Y%hBp@teLbi@YXDzqnraSJm#u%8xcI>ZryE=B!g!hAGYD5sl&;nfR3Gh zy?hgwi|zByFl=jdz?IOXb$d?7g%7V@EE)rEVrm*afS(Y3R&~O%vO3|U7Ia&DPZGr` z)fq9-jRE4ofm49ZGkwzh+RpGI6_}L5uU_E5C%3FB$jPI1RE>)nnQb-EjKugffI*02I)kBlH!y9T8RVLg~xW`^^Q zMAOw!GQujY7kQNzITp7DofkcEuAkA0-M#oqEG6o-y|M7S-}$qira7mR=|5ynQ*Qvz z!<0^AI|!Mb3gPi3i$yPLhIR;O;=xY>9~*gD=6Ay3TchQ!Y^D?nYIuYP3p&h$k<9Xa zO_MS(ih9zr+=F>KOXS4wK?pv5LMjEPs@fLMv}FW^Pr`azDd+aO?KXUO0_As$G7O%v=ijiUAk3GKp?GFsvo3Ms)Tmx+OK@anc0_45Et;tS7jHqhP%LYbUX@0 z(IvtV=R`kee*l)NzKzzrLK1rq=ws{JEX*s^{RT~@W}3HqK`pmSpQ5!0Vy3&3fV>Vx zEwqLR&fs0SkqsW_m-!lkCq3PO0+*@kYRgrsI{qALC|rhihOI%hkdhm<65jj_vwhcn zv@xR<=A<#BBil~EBHBtbqJ>HUG=4@|E9HV>K}h$hy98nbcx%q+#Iw%CBG`kyf%PM{(v^3g z4eu;{a!Dw)-4Dg{NhGxJBx9(UyL&_VLk#t|aH4`X7VQ8y!D5v_&_2c0fsl3zewTld1~Ud+D){I_;%GrW*xrWvlrij^7zD8^+Mf8isRQ z8wC#8eJ)eAUk@K!fm4ssTZf|;1^&QQvZ4a7n;IZqcL%?ZT(=7UrPn@0yv}NGB;4W@ zwYM%*FZCO6EZG-0mi+3kV--PqGy!&mq_aD0?`@#w8evi9-3j{G-H65PQ-8GcS&^H} zTV)aarQMi_|CYF;QsxKoyq1u}Ojr`pUk8+}{y>?}j+>n4yMS69$Uo7o!_teg_`vl< zjnEapW+wf#v+aUqf`8&{CiJye{u5Szmi!}=G! zi`hAt+s~x4EoHVxA8`Le@i?HkU^Is>5B?* zw${9@rIlj|PhM*O8#4`v<#<1Q`x)qj9S|OWQij4HUavH1EX|z61T^1lY&IKj|tp_M!;(%Wtx_ zEF?hS2L8gNaJWW%`zMv?9h~o?Z6!fq7^T5(V$F>II1~J+G6!DiKQto9vEW79wyh9- ztHqxROvq6$GR4j?1)di0niTc?9q^C#v;I-pAO3GE{y7$lT7R%R)8+qC!Pmb?f26YR zDd2}FfVe;73pfBezrT9~$ldTjO?I(H!DG z;$;5m@A&*r8o2(+-+vqBMT^6X=wfAFPSZ^lQ)VScFVY6{x{iFNH$zvm$YK(?2m2+O z8UB}7;w5^-m1(eOy9$xTas2D-1u8J9LSni&M1g0_1uF5Tnzhe$y9GM2dT<1hci)Sb z+oXYL{MDz93O0E)i#Xq8hQv`X}M6Qw+?VBka zYJ_(X%Lu;@@f1UpimZ2#T_K{fB)-oFrIN3xgv6C$ksZ!hN+pu(6>86T)-rSvP~Q;* z+Jz8LjX#i0 z@9+az#zfvJl?2yT3eIf->c>PpiKoP{g#nYMx?Y=PBT)jMo<^wGIG2Zx0qzqFKp`_{kW2D$tAd90~2!U!Exm1zzp)KW)Pq6Twp|iDZ37Tq!a~ z?iFNL$;$apb8W@2-Q)m)R}mdpCfTnjr#k1v@-4HcOJe_zjkne6Of&Ra`9Fyw+5PE~ zy?Q0GnpE^4Sg6169mVnrx5tNyH!9F8_06LZTdfNDD%~sg+D>by$^mvE=JF9L`O`}N zbTqNGfLk8gNGJd8ipj?l_+m2WIMLZm&2mEV#Q@wvKpd2WE*)!BhINKM`bgkkK03v1 z4zi=R01y+sLI&gs3sf-7ve~$mO7yIVfMEq9{^en4Zk#SoF!m!uUjJffOH&zjS7jjp zFy!sO;zMMuN^to}kgQl1e&{q1vP57h^-?92av9VgO4L8{sM%5a=f053VwOkG9rPJ{rfUBOs=m>b}f=nHp0maw4LWD+mB1Bti#d zw=Y7y55+Ofm@S{PQvDXz|64fyk8tU4VZFbFktBW#qyG^${#!Wnk8ta6;q1SK>HY}E z{Sh|*OL!(55H>67sm*;Rpn#bZ+S4FRnA?Y{UOzIO*G7rRX!$uOhscqyUIrVw^Fh7sUCGP^%P z{XT~?10O)#RZ}d{@uYt3n?L(3Ll+S=1($8v;0B?T~RJOr_gPykxYQ zVgE=0!JX3Jk)-5!28Rw#bSd4?jZl-~c+(0Hg&vUN5NHU5XsS{N86ZxIt3}DX2|x-U zIW-u-sSJA&t&;7eH+Pxq0Bdl;vijzYYHNte>6cYIYb^>}r zYMu8KweJ$Y;p>wD)u|HjOTuf8wu~Q7|Aw0KDJacs?WH1t(0c%7<(tP)Gf_-1rPujw zieuA4IK0sxb{#By{soAZKF z^eFXlydPtj$T~by?6G=9ewFh5pfC3r>>o)PkttL$=6goi6utsTFhwN5AC(zj%{~_X zlF%NRJVAFxa!39)^cR74YS=Fy;<6Z?L;93@lwn^y7R@zkqR67s;AJ*Ko5a_Ue!zKQ z`2iD;p0!UXgk_7bsslVIW!Sag+$_S%^h#V-%vsuw-VWelBecgX@0oxp;E#{?Ovr_4 z5i1v=Jyv;waZKcoX-qhc8TeR{-(e0b^*H^}rq4?h`J3^F#MhW3kC8GLz->&d090ua zeIZ2xJS>23Ae7KTKT1q>8Zx6_lsRWNB@P&RXssl!Ke!T*X<}FBjd)o32zp(UAb!o zuyizu(z^JOR>!4)H)fP;Du1YEEd7gWOKIN_vp-ZXu^<-$^@gabyfDH80Z`%ZgT2DezdS-f_%6dJf=zAWzVO^$!<9*nu%6!8BmXHIwfG9LEHouzk$sE24kT zMUl1AzRh5{U!IRX)|*?-!)n$K0)|-#F{xpFc8K*jCS*Y@$MjK;2pgJpwDgzm^E|;8wm-UevH$o1vaHl||CiT2|MCM$%4^7vKYj@L^2ZNrzKR4) zAO83OFYM!EO%I^9+L|xWNvHf>bbHW63166f+6!jV${b>|mNO=LjVt%poU8!0?ZNN| zCg7R;AYfuL&IaZLs8XzPwonT@&;YdYf`AJ6!|n0w+_|j?Iz*r=p||`fri-u<%J|rS z{4IDR@=w7ESu`Mt9GA%-dkR+0wczhSqq3(c44i$w((~9ogd$$8d;xlg8>M$qD&A1` z{~GeQZXLR?|Iodw0xNFd$(n^bXqnZ#McVdngI1vF+0N5{Jy1Ryn2pov1gf%PDOM0AO)`Goh$)=yLt6nY3t zY+)vZkC91-*qEY1w#?Sp=9(7*pkdDoe9Yq(_AP5&9;n7y7vSXslucUsLWsL5x_076LX`41Mv7eMXpxFa-7S6+VC$-kA(h}adcrou>1+# zN9~U#WY3oxcjX_J@}X76<J)k z=1wmb8d}^%P#ziI_sO#9--@egv@D~Z9KY+830J- zb{%VrpD=QhGwD_Q^bg;=?0_x2+LYTqU?UmHZ^p@c&MId4e(I0EY+bl>cm<{BConDE z;9eY-%<2j+FS0#Y`BiiPTo1u~kM5QSr=ruHqVC)nlbV}(zXawyau&gml{ll}wD{bJ z->TN?07q@D`PGsp6japl%|+cVuzuG$$C2JSdfWD3Tr;ftj$3}ri`KVCcqzYQ zB29kB_BChL-|n752=MszG4N83Pn`(EJYbeV)*Vkb47^9}ZtOlx@rflZ zHDX+a#&ygGk@j+)v}qI#f3f(0m4Y*qHy~388(lv=GdJ^l`10o5_6)1wWZ%9){>Hv+ zI@dm+@3Ijc$aH1}i&dqVaw_0v>yk~ofB0(csPA((AR^FGDBKjdH-b{oVZ6cZepeNw zW@cJw;xYXoL;md*xAXn6zQ$(8U4Og}6@zL5{XEXYBQGYce&z0LyMz#i^$pCK*s$&5&x;0n5lscoACI4*Z%AbTl-I+H~%;g z3aulp#mk+HeE#>~lC1f8ZDGAna_Yc&tCr{;o4;rI7ZnQ{Rk|;0Q#)_#+9M5WFAq%I z_to~Tx>cvT?k?*2?Fr2-57RAc`&NeDDa=WoTv%A&v8&&0J^xkH9ij}nmfR~Y{PnjD zsVWOY=U5hx>+R+iIm;=};ke;rv*4?X>7E((Zqu{B3|y6$7NEE1?iIg|T}%8fj~U?T z_p`2gSIs&5y`0kmZr`cxJG=uP>E7SXZI!*7@}=ylHV19y+2qo{dlwe&{yuB89{sRO zR`oN*rG0qBpMiJc4mCfDe;2$Umw)9ObYaisG5>WI*-zcwyjKiQeHA&l4NqbphGOLy zUAN+z|LEDt@^GUEYxwWnJM=+^b0yLm7$=0U7%<#CW>`!){++7k<~DVoQ!@VeGP!x7 z{(o~}sTg|^1eY|+1EEu2 zoOt*u=*b2{L$9CglP9akJ^5$2d6x&)SKVJsvN_oCfpyZ=F_wd~=;BT%J&mq~g}!rb zl3d3`&Wb6SR=&I1Y)yjy===_w3s(NRYjEPGfivs6pWmZ+cEUF8%u21jPU~j`4vBl> zj!%tOoEnZDb#Lzw^`H^V}+iEN?%(c0i zeYs;-&D(|D^Y0uL*Mews=*Fd4x9=QH7E@abt8gG=a8)nrUVImmeS3Ax*KTf;hB>uQ z(>OINX0V3m@YF@_Zj+}>UwtI++ObiZW69{ooiMOiK-(B(gK5s3XOr}7DvZwIc*>o5 zy=KRQ9&pU& zQkupA4Z{}++e!jnEOtEBruCEJlB5Gq3`h2Nj5#y3kD?X*e_1IGmi)RB%~M?V_a9z)N0lA?4aA{ zpRiS9RR%al)7F;nHq>w)p8D=@$5pUJ%^?qNgs<>joACC+qvFD0YBAxL!;+@Y>2D9e z!8X>dxR@~JK~n7CnCAwWk;9y(lM_7qr8>?t{0c38y}{?p^m4LfZ!v%)@mk~6N?t}U z#~9fa*E+k?68Q$L`x0+>XH=-S^G=-Nci5wl^XEzmhv{~8Se-%MU|H-*HzEcYy4tvW z{Plx@@8vNs7QfcBDlGi@ZFURI!(I1)n;>asX%>v=? zgR>f*(R2OmENs&JHM3TSPqXO}weO9$3)YE@>LKRcBdUJ)$CO2>WD$91#g1}(qsY)D zbf@;%*O^$I$cJL6AfH^ks(r<&$p~&7vplo=R##yshqa3L*b~`vk`&0w zZ;*j#-d?5i7{RKCV^-!9M;)FFW^1JQYrOMzotb;>D_&T@k z{F20-i^U2j8gzmkxx3g=`8a6ioc;!`W{c)I)fi;b;P;>2bDjnt6ZiH)<)FvwoiM-8R#aKz^~aus0f@OaZ{bBo=RXVd|*O%Ou=0w90p`o}ZoSsZ^E*pbi4*6^7 z)Wzi;vFf+)^sStZw-nzUus<&TaI;;@3B>`{+@)3SHH2uI(%zvvojhF-waFukV3pz$ zJ9Mk3li6{4L}g&NUQ9nx88ex}`mjEZ(QH-;=g)AW!J-=-vq`6Ir;zWRk4+K2W8g}O z;b9CMmm;rN>+u7;5e9Q<(6X!{J{C~vg$iYVB{rD#=LIf%{!?j=sh2j0LBtsMZ<4kMj|u^-4+<@Osn`u))u;3zDH6+ zV1~gTU!23kwfDOjJjBY;@1pw)dgi^C-SaI1k_)>RPeuZ$HptARQ2Hm*++Qvi&vH)B zEeYUd-HT8-;qUwS({?EmVGYbzBTd_9_uUupmlT~p{E_($r&9mw#3qZ?YMV;}<^dF} zbFqQ1Eouz^>dPMG9g`<_B(p~_|L|Gv%eX<5A$!8aqUx7woh3h_dw+2PkU8}Z!33Bp zhI6Usmz$h_nK|#thTkT__{$Q;ylH><+zo(dhmB?psVZOgh^FCLzhQ7NjnG|(qY0fl zjDGJ^8xV8%$F^~2C7gRG4S0$M zH_z!~dllf}!5VuJy~woTcK|2iz6(yFv@4pouRW0iHGp|AqSI`VB;ev0J+JGB)G6dh zcmz2TkQE!uAc5y|sv1JbRm(conPFvLR%}EjjYeFbInI|L#u-``GX&-@FKU!aG5mpb zu0s?&bJ`;aM%AU<;7#FT>btG?@4BM@FXEE%qgO&GG*j#}TV5fK>Ma!Rou^ghX zv;&8mZ@;5Md81C3bc|YFVV)5{_>P6I!en{$e=<7Px2B0JXwQ|LP8?=LMB+L^&wT| zVyGTsr2S%bRCJU<5IHHSbVY4S`GShPGh}_RU#ZB`280!tXuBjJhus!)aR+!2c*?b3 zz&f4Z?hlD6UC=|x0y~^zSVD88vY1d7CsOh;dW0g8GC+_69o5(z)sCBgp`1w>*RoMI zr=fy7z@;Js;MEiUUgr1LGlf6&oFrj@Ivpyp6S{NJ`qjeFuKriL3tvXIs0nzp_4J>E ztG3(w{S`dK($Vi>U{13gbpe3>Dz--gFy#i0;Af0ADT04$=#H`ihE0?5@I&HnX?5pB zlBOlzxK}AsAJ4BPyZI4O%7`P>hdsTzI$R$&DC_<3REv4!Zjt+xLL5w6*k_Z*Z$N%| zNZphXj1}=9a~ZiJMIL%fGbMm1OGu5v60r-1Pr)+9M#%V(I0$i<$goSZBoCtzTvnk48hA0== z?37R{&AS;E5dneHhRQJlJfjlwsk;2W=1s?R17BoJfp79wJR?l))}9OLz8X}OCpHu) zU3>09pkbYhbRRPND%?!>rD^CX0ft~l!WJGcCUa;aN}vdJ{hy26%9pmd=AE<$U?b&j z`5&1lv@;RK##o$0@voi9B!&ysuc)kN2H&uSU91cbk#GKnSPIK7S-S%)PwiV?a3`Cl z6G_o0@?i{F3su$e31c*T*3J#retM0 z;D&H@udWUkxDYh(3q?(`g^(ZoO_%b|AQ>543c#NRoqKkc{jKdn4Ge7S6yOa; zqkXH*RpAl^!VEzBj$=ls7j5X(sR%_4f)|Z+W(|B7yh81fSt6~55(*@^0t58C(Orq4 zS^-?t;V8L_m80z?hbX>N44unp3Ji*YPPqCg^Gk;)By}bba+6~JyZ~zC*m;`(W_9vV z#peCf?G1&FyZ828vYwh@ofJI8e^p-Nw#8TdM~A)XY7LJnka&q!Ds14_z$PN>X9qn-Dn$|GIWSYe0y`HFpUkL3I?Z* z#W-KZvS<;^q7|Tby-Ws$LXNIWSRAlGj^3Fd0jg2H-==XH9gDeZsNwqY*T7NIe?JL1 z-^o~%A}gpAInho=_i2{Mab)Nhn(ONulI;x>#S#@~+Ez$I2A4yq)@d%UIbosR2C?)0 z8t_?8-}l$FksXs*uW5gZmqIb$~qJXbpb;;LXRe{fgR?G(WbTi z5so`FBOLK&j`jpT4(sLr(`~3dLNRvMxV)n%uOHlqFSz4@LN&KDp4+hq`Je1UB5m8> z)Xfo8hvliBkBJeHrla6G2Aw+-*FbOOZB+0n&f|elQsG7Po{1UOX@NO?IThkIWsb@t zTH3Q_+>}O`hJ5V~R#DW`#FkM683q6b42idp`@8fD2!xe%>usSql5jcsn%SakQM&mq1Az7?`>;n8zKHVy9I0?TK{zmb zLIxlT8}Bv3XS_MISu$bG1+DBjJV=g*v}eagRghWAiHA*%aX(>2r8!^UiTV|W(zu`p z*=f7bjU{c!zfd=ji@1!KbDXM7;Tz0%FpYgzWsU`bx7Ov8C6r3UBYQ}h(^v~+FBvY1 zrInqAu`CUy45(gA);?*g+4{4K0Y(6a)PkdL$kJiLukEFP3~RY4YXH`%!NqmXh^?jGV%{Bvy& zlJ|Kn@VXD~WD^>d@WJyM)Uz>p32vI~G*r0j=(|2dj=vFc1@IkI{(1UonBGz_0*Ce9 zGT*pu#R&!D?+`Uk@DU4$bWNC5v%7l1!G=MP$M_q{Ji({%X<*u~j+r;i3D5z@a7m^> z-JYy-Ekd9HF-oB>fPB!piqKovCY~sbrCFP9dRQ>yDJ7RStxJA7W|O8Rfy_%3JbwxB zx2qc8RGHZH;c(Lr$jf~M0iR8!3-WxhBS`D1$MSw{G87xh%eD8-kIycmCPY;`t^Cbe zmuJ%56&lCSpTRm{mH-ub3@QLMVn6;3w4MjB-i>cob`*Kigcj1N_;fBEKPt^B!iePjWbeYA)4W zNl6eBd9tB{9+3hfP=}p*D*y`_I;tn2SVXL~+qurtB+N--2qYrrCK^z1*Xi_GN!;7# zGwTH6fH?C=ky^9+a!wHQ#anK!x@hz_%M;jA#nnD5Uv^KmGy%UNU;J=zeGV7+R2y+J zB+Jo9G7$AnP{l^Qjcn>=g2RQ;BKPnUuK?e3RjHJF$Ud|Cq6{GhBn6f9ICg6KF%bn4 z+m~jEx-4}vs_?ZE3NQnDXV_13w+0C|^;k7A+W&N`=ryX}=`*}=bo2M3+##z2p-tip z)ySky;IGQuGgYEAm*xPsQ3o`SFjtwzFR##8M{v-QP|*-~2{+W2#U7m7fV!sr3%$1V6Cp<<&c8}Uyug{>SC>oU9N6J2eX9m zgiglg0vV8F?POYOnJr5w!e#^>@~=LBw$x*>W7;^V23Sc|t+N1nve?r=iUc0o3=EVu zr@3^4d$9Kk&?zSc5jtdA!6zK7AJ>dzzHxXdtW{Bq(lyjColyL9(&Q~*GF3!+)YX@a zCjVAc(O1k_D(4`)TpfceqQnzfl-OOKNCm`!7U;80dGSw*h|Mmhqp_I~4$YGE2ug4C zQ}FH-fd9Suty@o#kS95=gx7Mu$O#~9_CF^h*(0$DY@*FK-YBpO`Hd1yZ%p;;Q zMFs^(5E~`P9;XfYK~Su62<2cf1716xkWn=Lo!WsogO(Vm=Q2IPX;7?WN|J5iMmV7x znW5qhxvF5In6}|GLhu5*sv<^CNx^a%+jHf>xW?|72xd_-BdOA%J(7G$GCv{}$b;qfgqNRUDKS!0L0yOvJD@L^0F=CvdT?N; zyU^^z^jIcnA|}B7#YB!K_d%pP1u;4BUoIs+A0wW|90Iik#N=sbZsi%EsvnG9eA^fG zx*rQyht#~2It7-7qNX&s^nmmMx6aECMwmclHPFnbDv;jxrrPYoWl?UHF0tEa=JA{P zu~}`U9tAbp_}A7z08r7Qj|%1ebmg|RxlYq<4&ud%jd3SsN-J8YzIr?;$h1J%G7P7K zDBFcfaq!fvlWV7r)9a9T;44BA3j#=@D50fa zEZ_pk{$7}{lc>9)@+rC;p6m6P_i!*2+uu}HNFjj>a)cEe0z5eAx)WH}Gcd zWh%OJIqE2sOFvR25+tBz4pI!b3h}grZ3TLh?GvgVJ%c=-SNn-g4$FE zth->=gNFb-F!11?&!m0>)HW2qrP_v<^86FI;`Mexf6kLXTf5N{NRCGOM`dlxlE9Bt z;v*nPbsEvF;!;u-!7DKswU|LOzL;s`=|>b9v6KqQoAW+f&$uP57l}xaw@zAILI-|1YjmoK>MvQpQl}_&3I+FN zY3ai)lbLFVIhk+wfW#)W(1+t*!f`AI>Uc&jiT&S%nzMkqE2h{kf-c6 zy`m86H?$3(e1O?&r`=x8B^|k>75WK86f6-1qDqkBp4j(AR$0Y6&AX& ztglv_>c!a_NsC^UB?MYp%Af@@y%Ci439})sMluzVYj}14ooghQJ^z19h7+8Kfr{;0 z-+B2p(f^?G?}C$ds=46gu7imTb@B<&$?ap}QmW;|j2nzW*i~#PeKIS^Y$tCql=E*p zj!}wP%GgrE^Au+HGxsHz=e)lynGf+a83jpE@&SS7=7Z%xtt=wKVEIsr=jVod-L+kkP=6XH3~(bMVF6 zNdLy|B>xUX~6H)xoT2UL7fh)>xkwC1|J>lb2ZCSkx$+sw%uJ1*g0E>PS zD2gTn7D4Dl|IyvQIEvWJ&vKd}UB)R?-FJJJ3%2Z8~@s3b|ikSbV~1a1tf zoL)$MLevI0gX6Ez{IjVwps4U5dDP{$OhO__f*Ba67sl5_b)P_F0kY2C=4?KaNdTWD zH`F;YF(A74Jfk$31n5i6d&rsMX^6dtxcv}PG-H8{zycAB1sb3v_$R+_2tiw2!OA5d z0z(5zww@mBB>JtW-N2fV0Fc!2<1x&L3siX_C=0ls2Cr4otf)IgiN{*EVZ|}YwF%?M zO{k=w16}y#0$qTc5ZbZ100HiosWCv5ov8u*`@N7Z0+3s&g>WDE0DW3b!5(yha)I8* zJo!#y4iG-z$;=B$Kc`S3_xS;CNN?H~0P?*-Qf(rBg(DFXH1CG~2Q&mIy6s9pIKM+|hu{X+WWa`?!cCG^Z-K=O~qM>X1T$Mx9Cks71OL z>%r8fobHuJ?ul5gJZy3{zIE`!ARqf^E<i+C)<-JDM4Ois%4jA2m0DEbCPC!_a(yM@8FPM8hpmW&&9p3*bmMor#CmiNv=<`Yr30SZ zi8;p-5*JM7g+`gHsDEgii8mwgMVOOnk@Vq`H%iLXLnk!Y@`hw7i1NZ5Lm-1xRjRY) z>YknKUmdmzTM{NC*V+GN%>U~S>GeQ+MCR0r!uK`@tI)(&11$l~-%W`N)Yqs5b7u-b zz(xiE9D=0I1SUCkf5RfTZr>#&%K7#mT;szJ@n3S11tmxy&ej~Y`7t>{_Bd$ z%VSFNW_E7qL_AewMu(#XD+hptsWU*yjVTe>wLy|cVZxCLeInEV_^7caafkBtRnse= z?rU->lJScmJUM#G{R!fb0PWT>i69qkc_PG0ClILZnRkWy7vq}|$|#_KdN}{(P8Ed^IGl1| zA|?Pr3KUSo`YO4T+!$aMGlJq-a>Ll$7mWbw6wLolPTV7@s5jCj_C8@uS5DG)F2vp! za568sD{kXzUF7%watSG)WFAQikW;>R8mD|a7m^H81C%bwDBu^hq(KHaY(zZ(0tHa0 ze}iyF0>M5UL@>4w`3g0_`WZSqSJpaJH%56~zAMguxN`?YSrhS^mFVW67Ml2E~owvyX#qmDBz;QSOpxfQCv! zNT~gPQLqG(pr`Vq^=-Sbl7=b6b0 zQvx!r4O4txpfe&L)={`P6(>(u?l&OUQ=C$V`Py!9t zK{v^-F=L60s(dB`&NEtSfesERHy;2U1m$qsIbN!&#ZdmgO@o9o{^1(-nieRT%x%Ar zdO?Dr8mxpXuKqE71TZ!Q27WEvHc~jV^eklMy^8+mEsc=di~9x zLCtJ&LLi1t2vC`f<_IKPOr-;QsmNp>a-FNBF}ce+EWx4SsrbYM{ zgNzYV2O+@|xm^H{g69bOlSG#R`$cWf`zEV?LgJ(OlBm_k(eFKp5&X24tgdh{5J#4$ zppP~Wu6xHZXCoihI7Qa~4EBiO46Sr=T-%(K&>`Xg2V0hzlfn3rk`k>TU1*33nSv`* zo|}?XDVc6F0w^KmLDqZ+&4B10ToAB2JmmH&HSV*+D5qu^D3lsB34EvP(Yj4+z+2!R z?y%SKM{yDM`X{9T>SWuL7e=RrXyD4Hg*YUCtqds>SQ#g{6!}o}c1x|V%Fh!Wj?x&F znQ^g(ikcXtMFO*!=nkTJQ0u0ITBzB9a(#14mOHF!ogp&4b!&md-LPSHHqQcnW!MR9jSu!*PrZf*cu6Sl9D|cW>5{Z#C$|_2F4sZ7`6eD zq5Lu-02Y~ve4mx4l@MNIc^Ir@@w8~2hHd?+Gludv`?8ecsU1`FlHin~25kbFi3iFc z-s_;XUtW(u)5WqT&)oYWSX~hZ_t1Q5cenX44&(yj1Fz6i&Rt%t$Su4r!CG^85k6Kz87bwDAMW7 z#`_hVt)17Pqc(9~hGV1Nu7mB5@6zZrJ0+=4ZG`U0fl-OYn^k_!aLhk62*3F=$|Fd# zDPwlk$eD}EE8>^CTlf@r2%PcYTFG*6%N@t2h&=VvU+ zzx$@X&h~az?eYD)TL=9%X-CI#k&d}1avbw#%)M3iYD93=%%N(p&w7~6{n;m_X~F!I zI@P)fE0g2p1x*tTUYF(M?6*Ww@6uh zOWkYAwvl!d8}f9UcE{>&p3+-y)Y*`GzSF-s^oPr*JpAZLV@Q*qZ`?%vPnY+2Wa##v9W)#izI~=PvJc6FJ>`;@f z$CxKxXI>_i6$HBa&1nce9P3-+VHkPv`0-CyOYFA%^dW0w-7kM(kBv5j?JvFBzN5!C zvu>A8w90MkXm5C`XtqZiw`*Fv7aDvr#b7g&w_*t$o`yX=-eJ65?|tUkRiBr87#g~U zWBtZ_lZkhzd3|v3zGWD6$gx-F{eK&z*@iUj^`6tK*Um0+E*j(Q{Qo|l_<83p83lp& zdyCx2L%d-KBM zV^0EW9G?2cTg<_;ZyJvJe1_S~h6S}gL3YlUaeMyv_-d)ij*o_O>#n{VlT^LE_nMEY zb+PMSC%6!PT8k5^|mkh zeTC_78o8(LkKVGw$2351^O?69=HZ$#M_5O*51@rb?U!m(O9#& zTRv~F7+O>1t9mPEbiqM8=UG3S`CYob>5JsNwyypYQ}Wt&uGSl|tnNVjcAvHlQ~i4N zk&!bV_OVRT&$ydBBkFzq*Cmze`)^LH+_mu5mhJ{>j1sPVdEfG$+dI2Nwa@$M zi35i9^^Mh?bHikAXuogL?QXU1`F(C%Ok~pB(BjaVSY5O4!!_nb4c(>s^{XQ*G4x!qnDaY5_fI zYNmf5^>Hk^)c&YntnO^@sKEGhrMTU@^z&9n=X$j6c(nV_8DI9BnRyKx(PL`0$EL4O zdTdlP?bGi}N}#Lylck;RtPYC3`Q0=O^mcz*%K>Ks2J9#uY4@4VzT&K50eRbEjU&Tr z2iZA~nrY^z`t|Ljqj#yAuI_hcdR58~=h}b2qx7Hs-+gDayqBxL>MY;5eRPf zE2#Q>$POR!h7}svtZz-C-|AvB&+=yW>tg5Z61d*9Uc>sE{`K=0-Rk1i`G*R-%`^86 z-Bp1Z#xKuL%K7J5xvlYtPg4TxJPNzoIiJzb*j8&281FH0;xB2PZwo`|K9qJ&yUg|X znPiqm?M!Z|Kg1{Se@s$O{nE+32y5p*nbvOijzyS^%!{crw7N76(Ksbr42c8Lt4|dGF)|55&b4x5x zTCA_-t(;dLTZZ^Y6*u@ctekS?-5al!WxB?*C+Vb|)qa_*r>fDk^~%+haZ9qD4XxH{ zV15&)SA9I0e&Tg^Daa%N zfhsyFFS=Fhh4R)-+>5PC!`2~F5w-9@M|~?;pQ(p^4ezDcw8IU7FOvnS0fXv z+^tJTv*o?8Mou&`M7Bj1W_}KH`)Hl?&`(m26Fa4QnJ3oA0L`p!?-LA`OK>en{m z|;h=cYcMGTU})b>HKv;rUH#ikdERUC z-Hryo?i;H)>{L_!)CRREpPgehSJa<8>l)_bf6sWs_!*8NwiiaHSlmjD3c1u-w{h~& zM$fFk2<;V_sm?}@ArabTXQDjn+G+H@a=cbYr|B!B_a{4_S{{}fdm*a0TzkbvqwU3| z?dHc_dAEAo$(*v<0#yxLtB(dVRL2dn_6$?s@917s+HTzGEAP53d}1;r-|czw*?A$( zMyjTYNADjKqxPsi-fE^f>$vj~-G_Q+5g*6r4BcfGq4nteyZft; zJ4Y9n&R-No(R}X^wX&~gje^&--ZL2Kpi8j1WvFviUAwE- z?+>6P)iL<7{vkV)lt5edDZ}*TM&TBx-tGO4ZiEABgr^s4AG*7{XwJZn!K;uaVc9{k z?bDZ61)DFv4`hKS>LeX*8j9HTbX)1gT8wIm&MwuRW)UG1Q_>HZyK^Y*m%hA>xkWs@ zZq%Vj-QG_J*?EPhSI^vEd^LGi(dM7RJ7-SL?UTNIwtW$F%aw+VsG{s5<>H{KQ!M1ahg^ssZ?K z%eeDtM$Rt=3_49sbaADr=8~}~+V|Vk_1k+bYzkSX=ByWFuGj(KiL})@yGt#j%BpBs>lYr? zMY4V)Eg*bHY5mxw;clZ2E!!sCntw?d0l)3`xW2;GU+-|~=xt}Nw!h)W>r|&d>QJ$D zo^$<(L%YR(K6C!39sDX`c1m3Z&Hb}IgNNg9#*S}wo9+3r?t~>@VL<(K9`;vuDB)$w zCiW)z#iiR5Tz6n%oll+19j&lD{iJ^Br$jeU&GasqbCtYo-~}ceY~NCVho%8>)s?Mtneq zl6-D~NBw@pGuRW}E=4#;;oaRHi*ZuW6Tyt`Qhy?uHsWT#bpNGOk()m8fKNtw)IU}g z&uYHw?7Z%(U%wB3R#Lft{j4>IYuHy|fCK_M(=KXN2&)(}RPBBE$Xy)CyCVR?w0ke5 zi2cLaHQ30wM+n~`Rtr3usY3YGU_B zNkNNlEkg{U1+}VbJYasG?9&)2&|ME;a-d6)d1%_|?nY1I|DYIQsa>DFXnC&!rI>SV z;A9GgF#L$-SZ+HOfoti{*x2-TIjC{)cq3R0l|mF;?_87IU_~Ig!7J=@N>oTq6S**X zVL%|+S7p@^*||25bJdkJ^;#|gT*XGwoJ1`6F-fuBG#}c6lx~V$dC^UThyS*n3Zt>A zqQK6^sf{!$`5UDQa>0#?NLO4b8Ap?s>9snfFXNipSq@bv8pk!>UNdrNae?lM#vkI` zZ@uNnkkVP_oMXxEejmo$?afajRFM`tj^bFLX5r_V;T~g^u31&>i$xM8gy5KOnDmx{ zC7{SG=a7iRC&5-au7~Yvc3mHx*nXINS-_FAYt~W-E*@-mN;f6F+uGTg*BXAP{Ef1r z{=i|1mn5#v!6rt9MEIV}89l?{={&2d>TYYBzBkROdjEr4=4-9m!716@glV zfWy4Nz?xul8n;!|`(FDUfdnWYA<%yZ<7(9}-PZ0)fPaB2)^c1bE;Wsak{mG&899$K z^66Tg-c&nJM5y(34l=(=<~6&@$&ji>DuNYH4T+dv7?l}6&*^_$#0YAzOa@H=CA9oY zbbyi&d`nF=0bvr;V(WIAozHLkTVFXPu4?DYg&+2m=I{FrxjPxvg&`Du#oCGJdz-KW zkJJ?K;*=w0CgZr}jWs`1z9m!xE(iAD*tV36HZDiEkqisVGBvD(*l(_S`AI&0q2AiLpHWerYLEJxM{lW-q z9oIy^Jl^knzF%yxc#rI`6fpkM?cVk#z3{{GBgM(-o^xkO;koYKFSFP|qq@CB!b-O} zJ(SS`RtKqahAk(|0cAVQ-c@7nFpqvZ2zKByLVdmVn1t8v@y$U}xw#z3fS{AjY3COO z>PRT$%Y^qOSY=v2bN^}>0J0GcbVX=!J9!K0^soD!%z0Ll#dQHpiwyXV{>qSJjKP8q zJDzj~f)ZvuXxLw&i;95X;3+en?m9n!5=2iF8x#;yz%=-%)y>?W!P~VKDX7vwVOjM9 z+L~L~T-*{u)P`fVi04xf&vO83ex(ER_m1ex941O3G)-+l57B|P8mu_ zW+9@TkBqVcjWVj5`PzAI1#fMo1FiZ)m9(0oIlG_B8SCMGiC2 z?x=43G+akSXI$B4&)^O~VX&4L2h3%wes{BV#9+EW3E-(SGMnUGgdr`p@00f=%+9@= zi1dODZ^lrZRwY}%jwk$}6$#FQ@^=69Q~a*C>6Jpppo^Eua#atP%vN{$j8PRZ*DY2`Ysd z_)SV~5y}Cj&%Kj3;k*?}yx%s9z3H}g)|#RQ0++nG7u#oqd(=A}LQ=oi^l*@gFiRx-ih$yW&04NRYE({6AQ!-J`RTKrIW~buED1w3ir6?1}K$$Ivu>~6wiXo~$VPHz8 z(*j&@l2kxG#v9^NOS~aAii<@&l|dUh@?xqPD7 z#mFZbtOwYJdqfJP7bN}WKbt|yP{I$HVV4qDkEO>~x5OEIO~M%k>S<9y*d`T#hi|#? z0iKOu>`^^|OgJn*2?&Sb0MB)QG=ielP_9tpxXegm=-_c>V2rg+;*(+#@1%(Dv@tDq^rYv9?zRhFRq~mnHfc(4Pd@IGXt6 zXpT*7fx}aNxKmm>U{RFEr~N^W>Gc)bWzPi!Xoxe%)hh$TWfR(rL?w|DU>uguK3M|0 zqKg79EZa7>c3bIcWNED>%K;OtqNyMjjD(@YNH8Y&r^II#Os?#N#7Xod-=uU)#VS!d z(pvv}X1?G271|Gx)7TNeMxGnX52Y1Y8FJovB>n=LBdyK>dGZ939=x^f{? zy-0t{ki==d*EFSQS0A5Q@3!sJ3GV$;^*pLfTjK!bgC zK2>|OkY+=0O<@-z@C#VM>$IWQnCW%^>nA3s&A^RKR81q6pjLk4p+`ss1Zl(kLO?*O z{s#rrw(M{*x(jffE{WP=3%KZAAF<$6w>pkVD?|SJy5Y_ zyC)F?QvR9XB`PRQkwLE!MlSObv^78-W2RSDwPI@Ih3y-VG9q^6o|#9o84e+MTPy?_p>>(79q5|S!^HldDv;j*Diq>_K^YyPUgTv# zS7>tC--4P5Q=%s37b2Ojy%pBme))|{gAvz$(8>(2jRR?4py~;`(^}%Suo-7SJa9lB zXmmPMwRl8na(cIT$2FIZLVZXH1k5P;de(UtwY$65KqjHQeuHpY(>S}dt|yj+^bU?7 z*r9cO6(VUol6A1vat$mOQkNxh`5lr8_g;7?3LMI6k*p59U*qn6Fr_xo)Q}zJ;h`NtiS?#h~P`_Rn$Krlo z+LIi6Ode#O-qe`Y)R5-WlvoDT0N634+|@q~0jsahxdYpdespewVhT+NB*kMo-unik zkQvu0_^!_^0Fy3!EDv{;p=G;9R=52Y778?idd$^s8kV#K>R<_9|;m;5tzO^ zU(I!nrS>v#v*y~bW|vZWFz++!CkizH8XMGz&!QbaKFs76${#WjCI#R@?bmuYCYek@Uyx<%n&nr`dAhwr{bX6h~8jsN88bDrMIION1196vA$}D9FtT!*Hfklo7O(R6<%s zA3SkHBAl)U0L6hS5JWzxf;j`xvH{YGcgPfs^(jZm|3uk=H7k|jnUE*MqQ~gxBMTAD z`mqu{pRS0n}x}iinM9e$F z8UiYyqb*BERYruSgxg+2~ zeAtK09|*%~A|+mGA1T;vPZ0$AA*SUqbXQ1f%C0_IfIiqC5XvW~o>3_(U5GRk?sO&h z?*ry=Qm8EyRaiUY$q}=jc{iDLo=c#XghR9DAQdURhoVRkJZXx6N3@4m-XWb6_3^m= zu=cXtkEA&u_!8ZCRM!*uRDOSsE?2gWZGYTk#NAVp5s-`W@4>l|Y1vhGfJEx*pNIyc z%Cl>ZNOBmvQgb<=w6~;mDbynxyeKFI{5Wrg!HX3Un2o3ou^`Mh2^xy(4qV3f-k$4| z9$k=hBYlL*N^s8tcn}a}b5qC8oLHJWx zz=Z`@)4~gwPLbHXv1lGh90J)MEfp?IQj3g8(d}s(olU7lShxOUbOp2)d>$Z+LCH-pp!9O%lG+ zB`V@a&mh_X9URr4o|;yfL|KwX0CH|HQ6~41^Jt z8T~sUk7p%dM2g6v*Bqu6kSL@w+%G(o#CdX*nUcJnQ;hsX0ORZJWhG+)^d`EfD5nU&zXQ!M+YT2R0Rly!8X=(tKP83qb3;sjCK%%Qe3)!{cMuwuF&EJQLxyCkOwaJlB>Vi10j*)=mWXA-Sd@3m32>P^^?8KqWs!h5Tmm2ov4~`@?=Y%g8aoQB(Zw z+A;VTSG=On;R>@SD*{=|AVDB1ATRu1GuVv^O`&m=PC~}5yvbk(V4w~FkSMIKqUhZA z1-0ZsmYvwI%P&eih)MN^Yr5(6p@*f6qT>{P%GEtbZ4QVIehuoIV1+S=Tr z$7ELC@69j7nAqbCUQ$`>BwY#IQ& z1uPZN3vMn?Ca6pPs^o4ifpTi*mL8sYap~DLk-F%Vq-EkEAx)D%g-q-{m)S#p^-d2! zeTH#_k5Z!ai3T8>0;+dK2O!euWX0yaNj|HWD7D-mV6fJ*nnLLUF1|%_hoG3R)lqm* zis(IH0#g-|-pd&E?Pib=vc?`kzy0+Y~^A)=%<|bL`b*t%Bx17EAMqr^6sl+{OO@zqqmLw)D!Oya4(ut zYyt!;8IsdmYJ`LteK>bONSlCIBpksA*H^8@h{OJ?~qdXaowG zC;<=7GmCm{HxpDSA$jnERR~Y_NnL_*?|1jaL>Wx`fUg{}-oIKAR-5@S?7>3KQ`?1~PIL$P`sDnz@47c13i-tLLybQ z04=F#VEp$Jpppm@1@+swQ&-aJC{bv@RZ)u3nSiGz-&SESX^GWm(Lf~?h}wfnA;_Q6 zk92EA%>s|A;L`jenMdS4Fakn6TdBZ&p4N1NP9?xV#T2CeN6LBf1Eg-#twLOqY=P+u zihvnq!kGe)JJy`OtxY;VDoP|Yv3#gNkgVm70(nMkv8cFafjc0fcr|VOa*e-7{|CWu zPxs;o>v^>(4zKUM!iEDA{VSBv1vM%p4s871bkzs&b{hPcYt&)I!$PjzZYJkitW{

    )0 zz-OYDj+aI>6>y+so*gT|N;$RNWh{k&pcn;#Izj*gQ221Tudo|m{kveHUATpV8dJFt za_KXw2&DD}Vr4oOpGsSnR!+g*}$h&tptqnz4DTRX3DWhyhxDRcQj5gRTow#2S(ps3v z?6L`?`)>tdIi1{aR+nKA$~lSf;#*WB22x|R0MU6Prv5n&y9B`7LmLK&qbby=!FZ1x zi->6Iryw$(I$+2HF`m20M$lJB973A~uZcZm9LNh)o6bbLakIBjb&5Vtl`f8STms(O z_|)`#ZmT^|O!1hd;0(>9s;@N>e1a+M2{D*K@-X@?P3tAh3$p>ILLT43w}_LHn?6NU zq1xeC1vX*x`)|}J0V7XRuQxS6 zQKunUB`qsEf%8_MXtV}Ut4{?r0e3}6g2RIRl*B%qXktw%(RtJTZxYE=P&2WN@K);B zA{l6gaX5Wepzd%}qYpq0x>2%q8Dh|OI`Y<&PUMq%#QBA=oH39inH-^pQ)V{EPwmmk zgt`!R8DcdLo!@MDI%wil=t9E#SQnaxhzVMEV^uHRaGg$CHRGs#z7EAHvOgr3=J#X2 zaHrgiN<&g=M&-;3XQW^pW$lbbM-mR3xK2ZMuscZEK#!+yyZUQV&FnE=4ONMt9ZPYb zL&eaB% z0D<9-+%$|9c4`_Xqs*kfJ3&t=t~K|B`W&|FOo0GI!MozbVlUtnqCxchYBX+eb!hKCVagFZQ)87LmV<`vMzx;0(XcC+<*_5 z7?go11+mY$Tf!pJZ*e?jod!BK+%MHO^s4rlIPHnn%69YCp`jrL&EKy?uY#}FFT0^t zFUhY@T48pg_t$`fiN!AQ?MZyey?bMzHw`1cy`njk=ub7QLCXe>1AGl42q;xFpCM8k zaK51SC97yUs6bup2(_J%U5f5t`> zTtHLr7$wnAanQ&1&2Fh3WCQJ@=p~sAFGDdRUZo#9Vabm8&vXdaQ|sw%{}NR0)KG&e z_bul=)VZXI_L53>p4mih+>3j66Us0u5A|ef!&5=8i~^uju#0f_6LPX6diGRsgRS7eq(XVlka6-luD{>&+Ai?;^cW{~MsA^uE}A3^2>;Ry zER}-40n)s%J}Ukrb*YtK>>1ObK&4c&3i$E953={a;Rm}K)37Yy(~*n~hSk5z64q1{ zTd1Z~o^bM10VZQZPpS31L3{g*kVim8p7mCbZN=qYT{Xzu_k@ ziv&N2aT4uKk{R(i0h!gvrdC&q0rsF%z}XYcCWMpwtFi6Ij`e&BLrOQisz4pk)`(A+ zJyHfg%hFy@^px#ToPL6%0qP0^08Iu!LPr4+c)|g&U()k9xO3!!k$ohopO{G zKY4~|vZnV;Lw-U}6p>ui6L5A71*mV(sB~gNK(soPELH(HAfl^K^ctWQLat?LRN@2~ z10t#**iNY(0S3Xxr>H0O(GIvCtw$Qp+yEAkR+P9JEGP|fZNE|9rk8%E(|ay8Vgi(s z7O663dV>UM5KVGrIf8c_sN zq{A>;(f->#@~N}_>Dk$I{{%i;EIpvP;ejBzcxHeDurk;wF_~eIxaw(mO%Y|! zR_WXeE*kr7QvYQObf<0jXRGF42ej6=t*-yfVMp>Lt;_o+T$`*pud?dIcfALfukog% zD<3^tNolEJ!)_Bv>APl(G6Y8+815%>HkN0LTg!ZqH*VIpJS;8K0GEJ^zd7i_m~C3rJwo3 zW=dZID5M8C=9@nya!hJ@)E@{eQrm9io0@v!SEaKgpB@vv3g|%-l2MB(1*f&QeqnZl zH45(YAY$bDzLT|@ZgQKabbxmM#|_!0z)XZ$hM?hJP%zyV7Pm3IbQ^qpV+W&sI5oko z14M=_pa(PP*8m|$)eR;qUPj#}g0tXhN@NHh0K4lNDl?bz84-p@IL*PNZKl2#+9Vvq z8tFt!J%kcje<2(~`pfhx9NRe1+$$4><2vY7rLtSPH9u)KAdfbYDQFP=uxZ~lQU-#i zqS-HCFWNF!oxbgR$TANntzqV3r}^}3GxIKBiJ(r;$l43a7Al!K4lR&q-(l3;7KN%* zkRje`EUU=}XMssfvTzw#Du;-*I`$Eo{^xXEo^gAr&SA29Dqf+zK?H#5i6 zi0XDc&Xf*!%Ca9YcOe}L;N=!)TG4L`Mx|LMpjI8h2T`9*Gu2Mwu^j#-nIIF80i`Rc zTAEh9=Wwe!XtI6oi}RIzBq z1gGD;B`RIS34m8^b}Abtoo%A7*B0U-PK}WAKy-0t9{NaclnpFr-j6LpNwtxBTghEg zqR!NBHGAjsaCa#fYyS)?0QPimb}Z2oR>0KB=z?p0s0PV^an2Z2LO!B6Cv@IZssB=E zE3HC^6TY87L+7WW4UrmCsUw++$Sa%DzZtJK0r(JVlIM-u$A3yO%oFDskf4YRsgb#D z+6|?+zF-8k#!%lf5ef;S4(JO|F4zM) zEy-apOl5-wRcKQK!VvJXV2G5(&_O>GJd}*U=HzQaFez=_52y4{DBVVMLoeV{6>&7M z){5jJ>XAZlPMAF>A9hbIf)oWH{wf;wC=MxiFdIU8ah_aUN{6sfv&nrQ&KgZ5wu?O> zbVkw(*OyQs1ynkgBc02m4Tw?*p!GGLLN54Jb%eV)WQ5`DE@(~kSXhlad;$!h@xdU- zEShD4gcj|jH_-Y>T^5phLIQ-;8fgAhkW-voZJjQZBzCU$o-l3p)PTM?gHeDKTMcf( z0*TlBY29aogVDxu&-l~cAaDWSladY@gD<0f!R#WPw}iB5L}E?#HKD>}hAE$UJz!q* z;Fl1eAVo_F2%8-;>!tmfIIysB8846nR&~~#AP0vp*{a8h9p01FQde23it~-f7{vXj7nv$5*F;9JO2sNS# zdCGe*AQJ%&;&DzBhIe?iX$C z92%#qOhP`yNkfW{&|oMzaW@#5)wJAJ*9X&SU!g)XEB_`LoSM~8=QadfnuP%wHc2fE z&M&Bu)kTT#$PMRSIz7q{VZzS1K}rZl0Q?Y)HZBx;JDuU7g&F^F6J-$`HNfW(lu1lN z{Fd5Cd*U-9Tzj9!niAgQ_ z^DIK`;bRZnTVPOTI`6S)EYQP;%ob7SlUQrybc!$5j1miA#Ob0>5mm03vlC(t{ zf%xVLH&sgVEcS|VpJ1n;S)$27yr0fY&^J#MdyotQi>N)QU?gsGA0+98LN!5WHC416 zg{Vb=%=)pApu_?yK$G^073<%+hC1B80a9Bnl!AxT%IQ4E9xfn6eH^=Q}}U z;d?0boeH6v3o7bj`wY?IrV!EOFC_UyD}?l+0K=bMAIvB5x*MP*dpmdVx=SA0&d_%+ zF3rwuOU)fpmp;da=5N$6x}b=wgf3(es^u47$jTL;C;?a^43fJQ0ff>%w(CUkY=3Td z;l)RbuQ(tJuOis#yAK^Cdz9(m<8-W=!-9Pg&Onh5q92aFghL1dqB|}B9xOG14W^#! zz=?=exv(#=18=xy2b(}(dh zBjWv=iq$oVhFUnbA?8rEhh@6{fHRSf`O}{Uxh%=Qm|H)4P0{93U$8?rR;yd3Ty>!9 zVIh9nWfj&7JjNs~a*j`NxOLaZ-POOKuT$>LOScmN8=t8!2E;IX`qA~R=hJofL9IMa z^vR;Mn%kD1lRIeZqgv3?`WEx`HGgLdb1Q<6OA;^Tv%v08cer<8kK9@x0x^iVa` zopIT^haK=Bms>aR^_0!?3k%Q!q~66Ty}slJw|c!AgEFXgYN~ZtXQvq5TEqstbZog# zr}WZGLkyr8oe2oj4Bs31xC)uvbD@9f|Ksc11FEdD_G>JizEm3Rt5HYn;$=|F6v5&m zmR2eX#w{;-LxBL%O2iO_%o4FN^8yM4Xd%c^6i6ViWTGa5l!zjzG@1|!l7b)#oZs`T z{l4d5GvDu@W;z|-^X|RZUYBRB^(;ju2{4*&;De%IGC9Ht48?zHbaA@oe3p!1pwo-5 z0ps9jh+Yvm0VO;gJcx=$n;R%W_6VDLphwNAvtlWWNIRl7EQ@!mbr0)Sq zKz^`L1#WejiWbL1k^k#iSTQNJZJ4)Ro7aH3Q8=2piCbO1fh=@&20NM1%H=$t($nxu zLnZ!wk*ux;fZO4cVNWue6#M<-mAMcY4ngCb)EO`3li$#gE{eEI$ zqiu;*N}raUsN%pcR9a7ZHXS^V#WSvI566AfjCE8^e=vD~y|Ki~OvNcQc9Xy^M}Pmr zyN|L%XF$rPb0Fw@;(=QXOAJuRk4OeDm-fF6wk7^XK#Ea#-~C4KE!Ik#V;%EZWF2~)@zqdi-mK~;n0ocU^qvAXMlihJBN5hQ7a$PXrMVjjK$ zIsVvr5=4logZbrHUz{Jj%=infqj`-R@!|cML;U1a8e2y}CgK4HU3AVuShg&6_LnQC z^a3G30SP|9pUAgh z{qXgIy=k#54h0S1awHWt9jXsnqZG&Rgbb)KYKMJBAM1oG&x5XWgOwL<;Lg=J&Zxo9 z<5O=t;PPbU=*9Qw6V!miHC83@AbDI^d${FOCFEyB8i9)eI>El{3yb|hdy7@VW(D#w zR06mJv!kcPGjxPt|NY+}zb&arcwedoX-!v322%+jPV=A_TO)dufOYfo2}p2OGOY#F z9%z<%Jp*8|?W8QV# z4QLPR+S9W(LbI0GxAkzFf=1lo3FF|6Q0v`Zud^E9uNDyqmS9fASh`UASit9Lu-W9W?Z?gf&pHzd-n4 z{X}7rb4TqbUBDi;?G`s~*%p80lN;)JF=))X#4dF2g#(0|qO}B&C@-^WAIibP`(EkM zDb?zY|DgfGZlmZ*U!M@l;yN>7uM`3tOC^znN!Y3c-M_W_q9{3Ox@dCJU~r?ZLY*oO z@pF)D({^mljdcNkckuo607~vE4;wFL+gY+IfL&B`k{=XRopJXXTmaDRUuHqd8 zsVO^j<-tkWj7t4UikGF}ajgbTIQr;f5{Xr)t1U|oh7z3snKPmU@iT#WlkqS+=y&w2 zkg#EsK}FxT&y8s7yZZc4DsMsINQT;n@pm+NT6O%Y*BnXzk!DU)|Qvs2UwU?F`e24$?Zy8|l9{K~*Ch>|VErUI}=$PZ*is%c+=3U}a--9$1v=)bK= zA;~7+*|a9wSY`w5k@+RihNrTksbkMo`6pL^7Ymrz8h7xbt(m*7VzsJA21a$GpdvS) zYd2LT4KcP^YUeDeUj#mCmlSswHqS>Dq3LCv{Ojl(-~kNjz=46pHkag#(~%_=?QK4) zcTgxAN3Gx|yqxgB%g{HR}l&i8M5LPFW z5CqwZrsp;ll63@}h9x&=zx)+Dc933DLc++$5M9|Y1^N(WFdeuAQNGFw6h)MngD|;S zYC5Nd?qqYmsaqe*9ltI*5`4D;;tMhDj%xI`F+2fG8F=f2*G28u5X`A;Jxe=)v(l|p z1d~kIBDZw`jo?*|NQB5LwC+f$f>Ruz6~09$RiT-1Q98FG8OYNh2k7G5?ZfzkMZKC{ z9~etWk7Sli@nVVlz4}cRZc@aUWT2(RCs0%_*=t2v#0pGB6ee4P3aY(J49LK<$FHI5 zSzG<~Nz1naiqLW$^ReQoR1tMn(2+ci0yn1{xiHC9f-)l{Q=%nnfrX6=P_>d;NGO*= zM9Wl1$d3&0+_WqP;T$EC$}1tBjP?`#-qC~Py_N2lrmQW$F~ewx{_4|m_HQ$h%UD!y zgsQ??W+LZgxXpa~l^(}BlD%rZW<=Cp`jwX+&R7!x+1+Fow@9vN!N;X6<2~`Pyh`;nJ%ek?wjQdf*Mh*k`Rlt>v zs9O;r1GE8nih?5c;3rkj)G{r$RD?p#tcq+!$FL+sl6{PY)w!#98x0=Z9}}T3;TgRn z2GJ82tS&ACG7U_9)(uf!_ZNZAFmI!Aq%oVITFT`6G->)h+YRp`j`a(Go>+Z#BpAtU z(G=-De#i9}O@W@QI-r3Xs{CvKaV}L$S8EFmGSX>;tL0QQ0x>6}SHV1E1pjF5)m~YR zt-AssML=p!A{*XeBT&afU_xhr(U-y%tE7ZThN$#Qs?d|~RjSgsCb~4Ksl+9PMk1OD zH7m?@U_WO1omhrOG=#m69*p{K=AWr13JRRi{e^mSIaNh}z@8p;0&E&r+=CDS)42$h z*_F*h^3JQW1D(NI_3*)eKt<}X1YBJjGz1q+5lRKVNp+Y=eBo%o9s`v!9V63&sEQeE zeSVUEU=a0# zYK8~8rBCkif%L-+uqi^@=1Joq@8*?#$DWT){VW|A30TIFSD9^h+<5ct%GRF_wKUC{ zv~Q1tYOZgDF$yRK1KGWZ{r_tOKl<$N8tY#fCoJa88WVb}@uk;66`B*E+jLN&FJGF6 zgw4ruffYZajdk&LIy>*8=44yl)dETL>=DL}_gb9Liky(~=!kJBJ*D>|3}I5||M-h* z3G^#>g2D)9(g;=jW3}xc#m4@qMhKv8hTccQ?Y3V*Qzyjhg6MCZWjyqy$!Vg|TI*zg zESe6FMxZ8*qgN|dNUjYqY(*8Q-YZ|d&yZuBhU|~a_HW0hN$c+keg}34j7ShIOzRF% z25cwG3!zMq_?2wT@i$ZQpr9Ddp^#Q_tq?|l26=VC)lSY*XA&5sh$yXk#P z&=kYD`_RrRm?lfOwz7V8i4j)LLiar>kLKKj`I8|N6Ej51srFZ8%j$TMg?oeO1~Rnu zWJVW)Pj>U9sa)tjqLo1?Cr&B96m(uF&frN=hd%D&uC)n*lLd|ka-8#i`snVX<4DOb zE^%%0jZQb2G?9n$ZtFE6_H;Z{Q4YEhNKPees4?&WJ1`yP<_q4Xk%LO6z9UN_11W_! zUh3iW+yJn867RN0%2fGMh-Qd_OMw70QS=gMN8yS6J&Wc0Ao(HhnJ846Jm^Uw>%u^T zz57A`LePJo2Ku8p!v*fYGAXJ8*PjnnKBZ!ekX5Dk&OmY1WK1mH@v*?Vm6+Bi?6T(BMUCNa%Q! zP^m3pQQOlNLw9E0*>-}J!P6KyL-6e}5}@_|LcBi9*-RXv3LX>GU-j|%M_fcGA$%Kf zyD4#ZI+!y1rwr9ttY&r?E8GG{Wm5 z7q1ArO8hTIsk-*ZS$BT$S7hgyB?BH3x=(5cSg4`6F8pz=7{#C-Ik(%n6YN~%0hM^8-D1#HURXeTG(mJ$^w$15&soY>!K>aPjrH%Z^BDCLgj%vyq~cX zxl<)JmwFe9G3s6P%OwOW?O9v)>0P6Ag{0ht-;k>fg(waXLS60EJG60z5x@yTIc{Dy z=0cpiG?+<;q6heQVK(9)z(Wv*awWsXoqip8+!d}28}?aKp#*L?L|eGeIo61Ny2gGi zUAm=RwQ?6yfIdJzQF7IQA`zns>zMy~|01V3{b12>35y#~NB)d3hUvpShlFaJ$G%Qd zji7+@E9(NrKbCfrZB}Re(>y+wFpEWir>-p+**{N-Kz7<{IbrT$bW*<5z;K(YU_?zf znLkXpPHIU-vXv9U?AdpNhk$O39~#vBfM2?rIa*bB&IF9Afk8q1DoRsNQ~#EW!V*fB zfFrHs`O}P6{V^ewqr+69sK z&946K_H!*%?*n0s19t+!vHn?tXI&`TGDy@W)qfruVTi`HYEWJgD`i=e+Lvnfp$6Uh zxfXJa(itqazb|)V8od?v%OH+b`8N~WVffb9l~1f9=I(L@03fbgfiOt@vC?5St6KZ7 z*4g=HHEH8Q!c?=eN*1#J*ACrkLIp#;gJZIj5KNNzRLZ!ALJnIc1 z1A$+nN>aJ_j-4`+7ZvI{@p49vHIrtl$dsiO*r+@(!OD+mMKDtDBBY(v5GediW|o*$ zic(!>N1t6)_3R<_tds?G!5z}OjiifL==D_VH)1A|= zOgWL$?LaBP7CUvgV*Y8o7e?W=G#IBl=D?|8Pu?{6l zDcmE#4qy!k({(r+&fWu*rxF;BW~NMK|tIcP%UPKL0jcvlayH%q~9)utP;lR zdplxE1&VHxqGBpKsR@s=4wQAGP*wYTCNor}3#C)|iS-DhNq|*ZFQPx9Xw25*e-$h7 zl^(0~1}NSb0xWvFFJilfmB(qzyCVS8t`^5csH?^DvKQH95BNAS;cWYeB*p(VOTBX8=adN(*rHF`Cn?4E&CzGOqxTRZa_h2oyC9A6K-+ zF1K5nG2eLlU2nS$_mj?@Ianl&Y;2|771G_x&DbqoXB8{na(LvTXfuVnbijZzRcayC z*cG@0EMp}f8_O0^g382*(48W7tXSOx_(nC&eajEwgKFiM?ylUih@@VMscY$viQ)o? zx1zU?;5VSG?PNsBL{%IL0(ImeiYp@07r%h(yJC*aav?F8lu(h;Z7s9~c%4nS)n4RS zg8#Ci2FOeP6ZBbmrzLXeV3=jL#2Ho+Gu}mL(@y#SU8qLV!FhTGY$OdGp;JeJt^JQntL2;ThQzgc`<+1 zeJA5JWBXoXOWxvL$z(F^@RChD5wF~d1R69Z4sNqzM^cT1CU#f7c#7?w39_Hk?m2`o zs%p}aclK%^OTLMvjd9oj+yNINt}45tMl~hygu~E%l!9Sx95*7I#~a|0D3k^NggI8* zpm&V45Nz6y_Z4TmKZ??oE>+N=+INK%2cR_!afbCz1+Zn@9aTU(4;_-ca1d3Vu)d@a zUN_3FMh)N5@xY6d7hQ8al$KbIQUp>mNU1B})7<<`21nJnhI#|OzeYPJgrb26C=nV5 zbiO!vyF@DCUro3|exL*aysgP1CI(I|R`+NKsG}rv`Iw2A5wnHm>Svz-%`}JnvB^V7 zin$2#%<4m^q+?ZG6sp#ae3Htg>Ob@x2ZHf#LqF{${6BEI<~_=I7Htz-^mnQ1q)>0{DpLH@%7DrV!v11k}CxRe>92b*4(Qp13D}1GYf}k`2ukojz1j7h^ll;|E*ox6Ri;UT4xR*=N ze1N=wn%Ab@LY4R<)5q9#F^a9kjRUDI>jQ|`bhu2Yd(>k*sqiza5vmAZPf{|-YE>dh zbM8flI0zqp7feQ$m_+>ZYJ}NzPD>}kr($Cg5_qOvL<8}Aq#~tD756ge2d;v#@1Q6cquq znuo^1ADBs!YcUlzE`XgQO1juP!!u++E!`V(^%T_x_7ot3G@FT2ff||ciceT?0tsR0 z&x>fsKv%`X%yY^Ym9UBp6ojBppVk6!$70AVS~y`EypbhURD<9wWo<4lX>NfqdC4I| z24(j^{1eU25yfl@ql_d4*$FtLk)YQgeVn7-XDzKeRBxbn@by<}%da)*BHT*U_>AV% zVRYjVRm+(yBx80!_gecS64B{jw5X4_gPp}1vUY}fiGx?s4#z$GPIzd=*)koAN|x%G zUKg~4vpSXHM`sZd)RMKOQMn)iom&`o?f3FR&@9r%c=(+l9tA0N^k??Qw|HPkpovf^ z5?xhKfZ|%tUlWB$WCExPH`pZF_S&MgKm@mqcn$9?8t^_7)Kj_@S&C%)5{KH5GE}#LiC|= zs|yimAM)?q*GN57hpapmeL6ZR2=Y?qMwwQ%S0=@;5e{fONH;;}AX~AzEp*JpE5u}n zZ#dHHc^jlT7ZpUK72`X@j2$bS(dj2-UR0XuI>_lvt5{9WvY_v@oL!?l`Z(r`D6K8L z@iG`gh*9=IovVOM*pY;v0WBl5Z+hsHTaYm`ih~Nh1*Z1SaWAnuLL0z)|4&W+)Q0Lb zfw`I}#??+Rv&1l)A+%^i^o$(tk9o)=u6s?$%}3J?ODxp&$1_l?Ed*QA`=dxUG(YW+ z>V^%7*@5(i3k`F2XQ3nQHC2vUR#}zN6;FBFhnje#UXly zr8ag<`AD)dvZ|pwQBhxn175q>@Zu9>N+{VHK6>``f)aV{h=>}s%Q^|gPqc?5K4Gat zBPm+6{EbX;0Uo1ShVU_{)gi>F1W2d>Ub?WMzkT$$b(#9* zzlpl~`p@6zbZQE`a4O?Y@GrUUcDv4J9qkT=$Cinilw!I%k#7?oBO)w#i!-Z5lJRM z-}TN6S%m+#HoE0%%&T}RK8}|hQE&T?FaFwf#w!VrvwQudpqF5JblWwJ7a^lMZdpKhwcP$)^$#-rsL-AwxKPfLD z`({p-)mE3JuWQb28EOMay-6rt2ZO`ZU0*M&G2e$cZ{4;h$brUv!VRP8dBb?38Pt+6*k& zzU(zz*VoPmj;66}WMhaSv^HbgU_3xyL7IPqV{-9$!Sdn9s_;G|5?0@cJxO!6Z&l&5^2i3anA)AN34Gu< z0|&M|nNl*y&+hJkz>7kc9`H7cf;_eN$BP>vK=3225O>~AzVE+DBH2#k21ZMhL(k)b z`LY%xtORxAW_ezmL%-u6H)D&1eznW*lM8TUQ#^5wy1)q2Uy;b0l$6D^bcx*@4IqCs zZg)2S&-fr4)7q@%U^dF4`P_FqJ!xGTmS_XZl(rxP!jW|p4K+&|T4?#?74$Q#YM|c< zu^nenB3dSk~2y$d5fBMA(QcRML}op_!e9_=;(_)^drCAX~R+>6rgt>SXzM2F=g8K%6~;pU$Q3a|oh)XRp6+ZvG=DH8d{C)%(o)E~tYO6ZzR%#R zW-;W>z}@IOAAi0W?-lDZc1gple6f(PaJlY1YW2Crg8I+efAEfc+yz%wJnMhlv@t)j za9-r&p0UFgMrnV37kcB##(@bqEEj{%Xzk8h!zo!CBuB-orEPPN4{!L4i%)B6AZ8#M zqyH8t(0k^H*}-LBQ_xGM9L6E(uf+RKEiy_V5x(X(ATUU-{TiB+R4)eo=qwhDW`}Q} z+nD(Q$Nma|DD?;U{CG*tChLUz8&Oii*Ytsg*f}^}sS!SQZ%g(TN*lCW<}BNmu22Gp z7Kr=5VhjcIrL8V+Q)3-ku-eWq@m$_gH{2tg5?L0v_mN0=@D^s98VZ@LDQIo(9_H}ej-Qv;hcD3)c6ViU&!(Hwiv^>SW$Ugr2+oMjt`KqiJIj3>{2Q$RD^s_I1BjHBj#Y?#Ey1 zx0NbzRPX78x8-(O?y}AB4m_?Hnq4{L{1r6d)e=5Pmr`vE|<0C0xSf|5-C>a39QB z^oZ`(mVE|yemOl6;@qCL>V4Ptf)|DZ=xt~-Jhp6;DDSE-OdrP24olNMqx&J-%7TTUp5W6SyWjx(*Mk%MfNQ%s%8S6 z_bQ=bTaM(VVqoZkWe02MHk5nlc~XUV-7XaAFON_ef7DCT$%SStNq z!u#NHt?OGG*$Z}0d?H*P`Y$-ULFKRGvHaoh9zj%Ld0M9bg=z} z(nTx>aAW21UZ%}w*u8G5ef9G>u>_H))BEBt1^A#3-V2Y1{{a_RX+U2~mYv|Ob|Pk= zN5f|J`MMOr?~vzOjJFD#v!UkPsOd*`Jw`JtwJJDR=|rXuhz|Xl7wP1I|N4>Rf+0=D z)}^RLh`G1!?zcT)`fu#Bva9Xn_CJ9~njIqWImqs*G=LS%b5wqgNsqt*>#83%y}*Cw zQ0v8co?Z^+t4wV~dZ$Kcy=IffkiwY!a^|Af2Kl%{-gAQPpFC8&QOHB)T_$-*KHW%~ z=6zaru|iVUn)@M#W0Tk9h68$1^Uk$j+e(*p0P88R&cz2TW7Eu~_p3gOmfVYM>EriaF@(bVD(8>8m zC7_aR_xGkPt}0d25xHU7bHqc=O!|0;l7QHpT^flMMF&?qTcFQI%#AJNn z8+rSnCNvD2d1U@@i*YF-aP{3zo+hS9P!GGD(4auq9 z1u1gIxUf?kS!;W2X#QPbKf1mUVEoe(CNQVehK;`&T~`}iz-i1)8O>re|)$a zey1P(&X~mr!RuJE1f5WuvFS#v7*Ifmr{sEnGqsdEuAQ(r4z&O^wijMQ>jx}_Gjl0p z?{;~{9^E5wgXnnm`^v2;3^!!Ow?18=e!iTjbj`A=23{?EU;GWKj?2rJJ1^%VsFYVW zCgbwyTPW0O2p|EA_B@_b;=4Axuv-3jY&I3W_YBSXmq5vm#`ZOffL)<4#dKfoZwj`Ac6?=1>C+)hbJhWVv~5#Ica@v(;G;~ z34rW_dbCfWtiz}l5!pbkv(@HA_gMgu-qR)7Vkodn@3yZY`>lgC6^4w%okAG}u22s+ zcyfUUK-zj|#)Pg3N)`JY=K+n+3t~Tb<&|?3zYXODDW*#%NKVm+1yS#ifJT}QQ4TdjD;D)e^JhWH|sIEi#r+?C+6iwK6P6Z+0Fx$@YxgE8X zbs*Lo5K}8n->*!ZkSE5a*#7Gi0x$qfs-{{e39#L*lv@7j3UR~@@d`&$myMQLViS?I zVA|!W1Rc!ohA!DkhYJRxUP+IL#oI;ty}^8np8P)KU{-*KEpy){QCs)irdMW3rK0Nc;|`C5$ml@m+fm%n7Ikm(o<|D z>VUFH9t-J2$RX9C5(2Xvnduq>97A}M|F~JzuqX-%5GPcEJ7Bz~adAaY+!@+sZa2u} zMhU1Oe-i+E314b=%N6I#h$em=nYI9Q2zW{$1593o03lz=OkaRC!(P?ns@cIC{&M0J zYK(CKL*n(#eT^8Fx9C3NW4&^M`iw|8<9AA?&t)!zZNq93Jch-K*Cflh$Zq5USYyN! zu=v~WbJmT*I|Kufo5-+737kn(N3G}O^iY<$1sg+P0x-;dTu#-sg?+GCK$;m%KMFn- zaUxFF@?I?WDC0k=&KdSlk7YAtNzN&RA0Qgqc@r3T)@0-96he_MQP04m06YECeZ=fb zJv1$9hGk4&TO!ewayPI*lnX4te94kEca^z+!yrS9Wv9&`|L>8s3?pJ12>A_ij1- zTh)bG_usW1N2h=UUZq95R=$~9gbm-m?BW!_6tT=p+^D)X~Gh!EXq&VYU z!H>V)Xji*t3H=e6Mhw6cpn~Nf zYit^xs-Vte_yr#iCo`oEt}EbBWe~0_OdAET@S18f#w-h<UCPqFV(dQ<9#(M% zDC!F6OW%JheBN6D4?vMc14Of;J>_qM=x!Xw^2FznPi+Jj(9x&x@_g%B?!tZlvG6u_ zWo;*-w7iv+vDBO^YQ|-baK-eS11&&@bK>;m~ zZkQmyHfU|BKgDpoRpIjb&k_;ytSm`}=OV$k@&;x?X-QZgOQfPLjqhNgCVDt5Xk5qoK*_CkxD)h?LXnPLiv9%Jo!kxB-9#Tz)$-IkEUmv;-R zsVNRHR2+fw(hY{fhzN@??eyrSZ`49ExJfgvZpr#BRUC|&+it9!xpYd^7ZShn0BkuB z#+%zP0S~3y|MGvvEnqn`#dvabhd0BEHv1l4j8H^=KPrD@LmK^>4dsk#zJmiOxe`v# zOJDFDFk(lj_yZ!=`jQwu0KifH90n^6RwZ9+HHQk@(c8eh$~V9p<#gqjrqjnONmj~a z@$M~?#kBurnZ&14H2g@u8K<3;W+0SH`Z6(p$-L~%TsB8AhM7ob5T$u*Hy41TaymY} z3Yv>jF4)W3pxDT%8kh`f1_$K}%@8zeJ{iG#&yYdWbQ*8AF$|dzKjmsv_<<4 zz4wUACbPsy0tQUH1wuDHhzqW#Es$%~>0pz%fICObF4QkPjZ_E43j*B#a7g}GS?5^1 zexeYS%CRZE&95p?w}QdtwCobV^ge_LNPnq9-x-9~q6IKz<RAw(cX{A}AEZ0-nO^ z_UVz{yv6!gZMX@)Pacdk5Ed+;leQPq28}3K(?Z z^sGBwo>6E_E5LvIx;b<~aDqC<4Wv7D8j?V!>r^L%ap?>GM?W-$s1lcjl{wzEB4@I3 zaKp4L_NOh{9Y1>>GgK~yEtA{n!BRG`=}LJODQ)se2^||Br0M?R>Eq7)Mle-Gc)1Ky zB<3M`6pH5om>A`$NM`2YkHo2Zz(Q_p7g8Ro4Lh^x2LvsD7DO%OL@DgxQC+7o^T)O7 zop~OZ2TX~iTjX_S0RTl4GchwFgQ6bdRcDrt!tqD`Ns!3oVw|x|*?$ zqDq*E`#~iDSl^wMk1WDKD8CV|`B6B&+b`V)2i*2$RTtuC`w;bzgv(*XxLYwc{#Kus zHV1swdT81R}%UT+5ASs;p+XU#Y#AGxUzVY28UE# zlVNs96anLa6foaXbh2*~SVa?CvYl@1+un0c?gM@<6ErGk3dYbkXnIm$vX=K?uCeXzeSd<{GgBg9U@#l!9}(^ynZvyO2?^Wk&3`5^mr#=uK9 zikFPh%0CrmD({N2D0ndp_`m5}?hjAumi#uq_SSBuaNgOCoIN-M3I^g|E+dO)!^$Qg z*$S3w&cHTi4SakYfJq{V*O>R0XYAHvZt5w8cRrvoLBloKE){N~j3F5TbCO`_U+}c3 zZEnt3D&8buS*(NUl-i7v?ujk3df*yql6TRRu^gYtqEr@ zfE87H`r+38-v!kr8{+l9Y^kh=@d0+s|bS=1{ZTm#32y8IU#39q(N=G5I zs(1h*QW~dr_Yp?SPLnm>d`++d|JpfD7I5&CYssBs5sqHl5#j;e&vohm%GlG$!|JQ# zo$B^0Jv`0CD1ik1$v?e-MA2iE{qPO1+mVjDP7F)Xei0~^d8{lsN7oG|O-gYt!e;wI6 zWLJi5b&=~BQ-aY3#0OY|G5h8uLn-RhOdAb9@TnonvSd@pAeiGtN~T*e5$Y)&xf;i8YzISbK^h%D(fRBmMDdxxC8p|bL^ons^Xtc zv^`uMs?Hy;K3;QRWMv9pZT#V?0QRzpZnn4)%myUe!qtxR40MAhMU_rz%}x*pi`cbx z5FB;;JCekxJ!PO1WD}QY%k)YJUc#l16vNQf_%9a_)h*2Wu#kyk+dPOHB2A`thiNi8 z=7GCADojRYhbQ2lpBgk{M2StG@F+fnZ!yJ3r9G6&);(l#n)#7R@iF=DTk3)exy@V* zl~@3mx1pRxMoPIe6K+=SEa}4HSs^53%{mrFIk+MBT1uG&@1(ddG?zCqVWr&`h6E~G zq#emcdK;nw-X0KMf^V zJhsKTW(h$oNvi+)9*7{Sb!FM_E`8JyFnl zp?gL947+1ToW1b3tvzp6{X6FG^L*On+iigfO9686DILGP%(?aDX+_7nKESuXfveKuC!cCi7IZ#-%>z$vOC1U}wRjTc;z zZyBEOikJ4gOF`;(xKDa)WUpsXLh}6pTd6zpw#$xqj3qWIdU-Q)U93xxJqTXkXQuM}KkmPE?mOxMa3?_HSJ&@ocjrli{uPboV7EgfK?nEX?F_KrJu%P6(s!ym zt2LtVhkvUDvEPqVV+)-*nNc6dU#2Z>)l%Pa!v-6Ydrf3W)T?7q>UTf{#r zV_oXmu@Swh_?TFswA!LMN~mD2^>{3KhvvWcu7q&SzuuSz!Fj^H{i_UH1Qm zMuI#6Q4MKnL7nS73Aeco?>FQQX)){H3WOTPp4{3-s|iTT4qI97^eKwd95c%Pyhf2s z0L0Jb__X6p+HwzZuXkbPSR*9_YeW&{n2FOa>N^$WGZuW6)LPK7BiD-<3F9FH>yC%; zS`hppm@tsi9>3oyz8De|VEijg2bY&0oJF)9rNqBk3=P3LZN}cS#P2-=2pj^D+O&QS zYu`?CP4XFv#T)=hOq!JH`&S&`lJckfg8TjR)XDYhQ2~Owqs<8F_|((O3xn^seSwWP zEWvZnEk=ydXT92Y)%6jL0&8 zOr$V*!xAj#yEXmLgHj`$t^Z;)ey@W#)0W|9|J}V{`RyI^hqy=4g@GWpZm`&wkqXd+nMzYK`;N5=MB*5O>W%;x(+EPcTgg(VTdohyFZS8MP zO6`Zz99)&01PI;;1_{_N+-g*c zJH+)F)YeLd6iy$WRrFMcv&#AnvIZ4l{TbS_=xjjE<@Dw0wdI$eejJ;Pu!6_pqtp$w z1}dpCaVJlCA6_8xiFf0X{(aYC;NmPo;||Sb0i+AmnCO^cM+STu>yk&R>9?~*IRwRm zYC6r!R<rragb7NGPN=$Pe5l29x66tZeG1Qyzc3`i+) zMRi}^`IUXASMgRwoK~SJin$@a5y34Ve9FTD9=O2yT15N7*3Zj#mHT%JuqPbFTn#fL zqCTkZa6^VC3`LO@e9o-#@7TNv$+6x~SZldm*r-Tr4gn+#B%&1+C)f>4B0%XK_1aV7Y~E zY@l=LBE3N2mu<6;uOtq9_1I5Ss=K3BByU1nm(mCrQIsdv`3x(H?PrLeor+L}n1!+Z zrQ1!PZ2qR7FKaU5=DuCq`ol(KYPJw#MgpfBJ$9lFrosomvN|5r6iJ8x4cV2|a%FC= zmpA`l7Clo(>3r2son6~eOCSfl<$NeL}Xv>U1_MP6bAt(A|cFNQlG60FL` zwZjwr%H)e*g#J3R?QU4Us&OaqpCi9c!nVKN#H9vSc;)CB{=8xN>X58K}F)p#*48oP|WlArOS+BU}q(WEMBfX(@*MjrM5<}O5`|^R1;L6?=?@H2-5ZHrnyZwsrM5~s?e}Q`dj!jnWfc&y&+A#xqJ9OPd@n&)hzC^KX@+EC>fag31cncbZIm4YB>2X@BHyO{Vsw9oflc_0H8p4y(Y8QP)tW=3Xx#XW( z9Ueia2;xxbp7`)+u=-fBdLU21x>h|2xbM+aBmrf^rk1J~TP?{?DQzZd!f;XB*N3v> zT+^RY;rz=3k_|D{jq+PIB6r+Af32X5`FFWgNJFSPKy~&Xq1*x)MX+~pN2Q#Zml9Pw z(lv=lRW(QWV6L4B!h2rE0xy02I%cj?Our+R3GuhW30 zAwZf+rM*2sD~)pXUeoc3s@i1)xgJ_83B|N;s6Xd@GQ`b3m`T5iI^%ZC z$KJ!*@{FxUV}q0NT@9WML;f?)eAy)}Ds3wOXyl|{L-NUtP|N06qtS|L0`RJ9CcBs9 zvN1`wZB%v~%Wn^~Y<)G8%6%dHCza-tLhT5Piq>?Ht$Gq-ehT2C6vGh6mA&ooO;HI* zDK2Jd24GD2Vk;ZIu@NfCJ1)~MXl-{E$S?=q4Q{R+nk0c_A4I=VPqOGqzwFnW(HTjP zpRk)kP~`Qc`0qH&pCN_pJ`>3jYZVppK4C98oER$nHEj*XWU2k}(11H`6|?9a`eC$7 zLCjjvMdFau9Qd4t_LNv8w3#w9=|kqW1)U>$q7K;Mehv>LXVGs-{wU|&jzT|HYlNUocRMEAJ=_Vi7i}z;QH0q#^ZJywl{;p5 zqwXY5rC>rpI7lIguo*k@*v7%qe7kV;tqd@-eFVF(8Q+@_jTBI#=cs=8)g43kBVSX% zG73YXdt`#?Q%=+KZrl0ZJfCn+MsUzNb;wjoiGkVCXp&?FEAG=5j0viC*r_Tvhs47a z5vvj%?X6NE^az?!A>cEXRjTZ#jJk5JGC<4DgwS##kWr_H985C`7daHxz4Cp~uzo#| zeiPe+nlm1VUJolf@=E}mKUJVKs5DTL2IVV%Lf(yTqtwN!tzJK|7L^Ka7k49!#4&0% zx%;?*K9ZmjEVNvJ-}xvjRp2;HlvJx~>p)|t>Zc=WuD;BwcD>+~`4tKG&qEO=XQA;~ zOVO}YMb0F#eY#(Md2uHN%0eR{BedewbX#SskxmkY6s8o?t5P1~issiFE8E)f02FI; z!ZZq2$jpX|)ZwLB-=KnON^{%FBKlR>Pf0bJJPxP{K$$R{-gKSV-P78fVJ{dX_*zlj zbA@%;BFoN2oi^w_KYw~Fy}k8qAAJ{4kH}siR1O3B^66PKol-GKXEL>~hmDok zGkMGFU!xiRfzV6D!zLF=cc=VPsl(6ls&`6qg(9?pswiPyU#)wLdyX!*QrJWffN+!s zbA2ic#q>sRDbPVT^!8 zq@$9gOiAetCLt`#%yOpuK2w8kJKC>V5dGF}Cjg~5vHD*%C=AXgd=oxI>wbD*bPEZ2 zEx6*R9#_Zk1SO<{N6CW}kA#%9lbCa+}7;h6Z~*zFzx6RV#jQ-M%H zt>at=Ur#R(jkJ+YEx^)M*w^z5Mghzdx}GCBhNqS@@+VPD^5jj45awJ^RM;qZ{uxzjeda!}vE)x)=F@(}mEn zXWc*CK#+PLZE}Vd5O;iv*)M08AB`~#ag~v}H-taLv9`%A=A6S_uwDpLz3Ef%O=DJE z#OKdXoC;DB#TIgFF2eq31L(|RFsfjB{Ij*qpIrvE%Hrbng(cCc?pKGmwT1>?3ECM+ zvUu0Bx=wB*irjzvGOBUNLOf&usKeXCEDpksq_k{Uf8Y-4946)M!RMImQlFY%!O;W# zVpFTqz`(i}!+X=n-Uwn%TT%x;3wOX*z>iv6_&ulg*ZuXI5F+s=Dwte>I zrd0?NPmH@Mbc&{#7WbT1{TrWP{FVNY%eGBnW%rWyY=cuZBYW9VZxTi(zFt(}xZsc4 zUu4Wl!0JllgxhoA){+p;qR-Ab>RjVqX9TMV!e5`;9{~zxXWCBb1Ik~1vuW>=zl42W zl}Y<@FnkN9Y}%tg^)wY4k+gKGi{SU?kmai2@Bx3N0m_Pn~{2n$jsy#u~j zd|rBpn%yeAZ=|r$kF)-bBd7fAj<0{>gJMioRIITSak7uxzB>?XDEz@~&$7$n!i}8U zBow+mx9h?_%PcV0ry9T$UJeBIwF3?d!;RGy*O!eykIXad4~nyF>g0AO5moF@pWOfb zon5^x*wO~NY*JgUP2Achwhd zN!OcjvL_l(|I+20nxXLY*yZ35QGla|`;+NVL-_cyQehhS`z;cgUJ0F zQxr(-xdhyAFnVieQDyzZAwT4|gTQN5qS0Z79<|l=fI*G5AXQim`J-^H+)AOT$U(Xd z!`wHQ2}Cd$Hj;14-DxDNI|tmT2~Evn+TYVZ46tNdtwyFT@2!(*%Ox^TIl&~U#iL%v zck!(o0!b%Ra0X~ZA8_ljin_GsYt*AY#qhTo%HB(0cIklg!(C) zRr^5H9~THsA>bRIc!?Y*0hcI)z%@dtPfml?%W#t{$)(9;xwksAG;q`h8tGn5_qO7k-J9|myp0konS16~3;(fk;dd#%ajEX)5lujIP8`P5!L<%Z3{Q8@Zn*Yn zn)%l_X}~q_eA;vyS5B>~&TGz))x|ghmn#!d@v;m!#!)}Qb{LmhdCV)Fbj5Ty5U?m} zM>OA(rflLQ<#5Pk5F6Lje0U)>o43MOYSyNpU{>(SOB(;;NF%Z(>Z!9EhAU!KOo!g2 z&!AAkUIYf>+T?;2?Va4R?9$-qyu7xpn}3z{$N zKg^dYoRP6p>Sr`VWo+M3a?3j5#8*p-fh_zw@=g8@x$9~{v3)lKnv>Q8ZYHE2Y^&T#EvL9PsD{&gBTFihmWl<9GXVdN`#RI;rA>Nsvk$5<&htM2QRy z4KGH|(i4oWJI+m^i`ld2sUZj;Wk$@JdUR>69`n?vLrJDOuaiW88su4<{m=EkL2;o}4 zKEnA92S%HRN#seLo z&6R5BgrZINm$q8etf?7y!^zElQ0;Aup{wxiI<2VZhu;KLfAzv$zp`ZX$%5WAHJ<=W zY4jkf?NA+@SSfN(*xN({3$FqeV6c1b!wH}j= z;4EWiIxQN;+FHQHmLUe$Z_h#MuzJ0*{lRQw^SiC32wO&*Ab1Xs0!03;kf2SatI$Ib0Qt4`8e}<-a8p(fq7Y*op4ybY6mWJu+ci! z-iEbhyn15X#IK*TSriTDB_Pgt<(MU>fRLiBXSyt4GZ2Chw*kp`4Q~7O+mGNK`c!SV zrOfrkml?lfSdp(#lPWs;c{ouJQXu!K`Tl#nB}G363M4^bO% zt@y^g$hta&kBmVX2kvHpl9X$?pOFGjBaZ97C^jP*Q*wwNqvwM5n=Fz(Q^6g%>uD zPRA7dFQnnxs!4ZfLO`mXhVhyof;hEjnidFm=hZX^!T>cm9*mE~?!f1$n8Tr+-DQGu z81i1qr#}X_)z_2gPhXn;98CW6rtUviW($5--p-#6+_~9n5va2fsDmU}StxLyopK+5 z;cW=j06iWh=Y6C$*oF=XgE~fqbjjp!F3Unh`!lAKmwi}|fTwPPiu?eq+jk(bk(6l$Z;|3>N8N|RRv<_h zF2QqjG>u7NL^Wp7M8H^G@ycTL1vY;C3#F+QpsBV*DiElXC7$Eg)aZs4!rte{hrj^&HVk=4K1P^gvOtWNEC5pnKA^i%j=1%^9k4FI;x}QR?RC^O@ARWTs zAri#$$X>Q9pBK8JYY#V0g|Tub(Be6S^<9bZZ6~r0}KRuQ=6$T9qxjr4h{Zh<}<9O09dF(NM(kMdE8znc<_Ao$O{E4kS>s$ zLnq*!AR;YApj>9^0E}-|Io&YwkZUn(1PAtP2V5s~NQl+aHl^)a#Fa!NOdXsXAQUG- z4lWKghwd_w8vKbsvKm9Q=p+@SW1^IV2iifHG$Qd#sytkiF%rWNwYlpR`=~FV^g$3h zVF9aJ5kC1ET`X)4>3lNDF+r$#R{3NKiU=N_(I#%HRt|{{H6)E~}HDPnS zi&u%mtX*hM)nHI>@FLo0Qv2M>TQYCHqBZyAKD^CsWeA%|$>NYTo8E9Go-fT4-4&EP|zt{KSUGe8j zyMC0rviy>*SRU*{jU=$>R7he)%{>ACJM;qbPvUlJrz`79?*VrD4u7qY#&gIV918jC zq0CPiqGt>^cYHYj%s26ZWb;Eb!zUN zJ}iWhEyksAWV+kpijfRST7SUNL+8nS-d|0=ym%ioAUhU9sLV_G+4~Go572ork({H zBq5iWBeOHX%VXB&p>*uzhgBV=9$6~AXo@UNm;7OrLX;X)Rs2A$01;G;Gj` z9j-t{XPRvf>((RU*P3n|qytkwDuBpMY4|jVzH$QGoboZiBjhfaEFQS1&XMNd#hr60 z`M5!z!^*n8QvbaLWQQ}g#Us%Nb2ZS%5Q4hWu7pQBj(yVLJBptM3y47QV8*Yb)m8T{ z7bOIk4hok-x#lPK-Fo~%FK~0XU(NNR^qkXxO^)Ar5<3g@`NGg5NAuO)&0&p*kN~+L z<`nxYX9xucF*8|dq;_@n_Z!np`@I%L)3{*x4s#WDuNOJyo%w2r@}*_U9XwHe66JH8 z^(XSD(l}Z+Tc#ya8GcA)1}agX-hz2BR3};v-~3MMfJ{)Ak`9SWII5bMrjnwE9SqHO z2-c^(Lrq9GBLhaq)g=n@qaG%SC*7+OgKAO@_4RXy(YpP<;>fv+4rvjKlH14K?e|Xg zXNOgwHwdWfndjfcjCLKSc(wyfL7K3*+^{n6h3NQ0@I(iA9q=2FC)NE11wITTSrTv- zNpG+fMRF(|Kij*+7f8r#u*rn^-%6h7*|1qaiOnBFS}q@(CF)O2p#yCMU6v*JD=;Z( zCa{rRUiA%}Sd0HaXX1c4#4Q{f)F0O80AlAwxLYF!y1m~i?e@oy(CAW!?tuq9(rM$A z9GKA)jSWu7K8H<3RtO1_EmZ9>#C$x{8L9w|2W~Lyzhy$gR0jUxOh^*~IJji+F_64D z0X2p!B17vA-(_5$h8eDaG&+1*bwN-%(^r)h`*(AMo3c6bV$Xn18_mIhEvMg0Vk>>le8rm%HuMcfLCzTEA zEoHW3L3$6(Mu|43a23!1Lu+S7A|#i;2DHMET$IGQ?>%8&Pivsk*|dNqDy&U>T?5eZ z2-qSf0Ay-aYCbgG8>shHP{aP}+jK5w%DJj?mw?XuJ>Lkr)uLaI-4fNCtTynH6JIG! z&lCy8=w;<2QWdHUiGFyP6(mjs5tOD@k0DF@z=>eFgmNM-iOUplMP`)z<^>)8y*BEt zp16wql3ET1EMfQ>Yfqr7LAW$Q8F>EMa)Kc04Tgy3A_l|hhiX?kXsiZqvpn|ec~ zW2g-!TMG8Iv(Ta9Fku@^e{KR0(B%nbI@=CMDu*IDCJlNfhNSMYR3llM&;Fu@JPS_E z$)^vU{%@#~5r|vp#Fe$IAV?dNf4>+d>Bsy?^N5B?MNq74izClv*L5AgAYk!Lv2 zTnDdbDi_0S*0@zY(9e3?fu$TA{;BUPlO<}*7ya)W4n<&f zti;d&i`M4ZH{TPnT@<~QI6r$M5gY>(xSNAgnCci{(0R!10^>BN8Z8kK2!M&Fx0>C%>u1DO^jpG@GRj zUQsAo>hPgV;?jy7Z%L6AP6gKsQF9m2|=%sDSl6u=D)DJog z2oL1GKL$8Nyf_}jlHz$5;y;KZrQa-dHHeumMnQqp2)+F4$m7!n>Cq`;o7D#>!B8iMKhbY@=>$;Gj zKt)mg6JZf!CZ7MU=R` z1etvz3(qbPun?hK+MiR{2R1N*Krewl4o+6=j3jwlfQA9kDXi0t2%LTarxj*<0F~VD zW%LZIaf)bdt~B1yW8sHo3}RKfRtKu}al6u*lN>jPh~VS!?>dI>n?$*EFzs9j+MnI6gmC+a6@ zVsP$2H!^#3Nu>v5_ip}IXX7%TuL>ah^*G6ia%{u!IYWaMj2*- zmQP&vHADwt1l~f1lS`$r%nW+sKx)yQtQ7^2nhrIqTU?q?&vL_WL1P~5w$nd6;rZOj z0^~3K{WD>20+6odZ-?N`G!`AbhJauyo~y#%%S<+~j7@FRVNY**DsivhYM2rqrj$~f zTTHOTStjQ~c2u7`dggK%rmvTZKiMXzLJ%O5A zM36`b$}r#ez#g#nBwBTFJ;hwgGnQ2RymyJgi~IdY(nrNo>q===Srj;TDEFY#AaSe8 z!|L9VNwN@fK08#hD^i?`103ub2c9iP{xV^gIs?fWg-Hb~R8Az|3(#~QXAUG;S?24b z5q`;eQQR`C^@>{cQ$t)Ud%T-2>H6#skHS0Dw2n$f{lp?^q$2a+qZFF*i8ovfFRC(C-Ib8NH@OmO>bO!}4?8e?L)6*{HxuUsU$Dy+ z$ZN&`qU!;jLlYylbd&rwA@rTL#5=wlOeE_T^2Vz8Kox5f+E600pbsvU^{3*L$+%X&mY=;lZn2Qr-i^QPnxsd}+LQ z>z9*$DAIL}s+^8U1QTdObCvi(Uo->T(1LoFI@Op25Eq*@SePU$@xLstKUR#AYj}c1 z$j%_JQYWPXY;U4xa#MU@sezuc09 zg`vp&t?@-qK7*w6-B0hzv^I5F1tz>Mkf59)T@APt65zvUTRPeZWg*gxQ#V!B@J*Lo zXAHOgp^{Cdv;{mwP|EJ5Cy(VnVprAe+^@ zQ4aZiKq*^NS+MZqXyvgavU<_7WXR+%&RuG_32ff{Ux-~y%G2Biw3Jjs;S{Y$Ef8#Q z%IqR{Rz65>sS&c}v7bSr7A0Tz!gOFux${zkDUshYSv8|eoUN)6V(cXoQoZoZ_p$?! z3_{-t>I&3+R78oq2Y)>z_XULdop8 ze^u3nTDca!hZ60d;Q?{pG;jpj3n|ffb#mxYvAO%bnvo7f*NMv6FB^k-z{B`kK&9jb za=Rt;aA%JLaBkH4R&%hewvm!zI4SkIz`@1XJ|UV$TBR_2m<60D!NSPdo~4Y(8byMp z(XO$4EBORX(e8poBf6-*wV2Nzd;vZbs>_GZ9fal5sw|W7?qUM8Oz|=;Q(S@og5Qu! zN#)4lm*yJQB&Z1famDH@$2P{H2?+jzqxcJqzg|E!##clpt59Sk<7gi_Y$fd#tQON> z)qGY`w;^l&Lc&R<7Z*lDf2twJVjl5KlrEIKHzW-CWZAx34bZCW3PDc>Nop`nNUwx7 zCa#7BHLXB=xkNO3KE3qMRb!TnY8(c1#@@hj@|TFZdIu9g%5738o7!C+c+yHu+1!eQPO=K^Qg5nAiF~Tv5Oj+`N+YuLs*n_Z7<@8K8*n?BED7L{gx!)3=l!0@v>-3l_;m+SE`5gDPrL!(MQxmWD!UP zDY$!ZRkVU7?bP{}hF;0sWY$@#z1v`=iXXLz9Gdvf8I*U895|i-1BGsx$66+(Kj>xf z8Nn65T78JkySgyQ&5P(@VvmTF+2PiIL7t|`)Z@~KdqoEt-4(7;|Btdxy20xlp7EfB^4aEl$s`r zq>o!jDGdli2~d#zd!FmM?}rC%-rxM*@An;K=xG_ne0fB|J3b2ngB=C z>1I&6Kb1g-Xd?Izb}Wtqw0oS zDjHxNQ4rTA;~n4f-+Pqq$tfy*;&LBLKbOelf*Z?L77cFW*|NqRDFb61$97ya&Kr@2 ziqz7XbB-T-=StLyjum55cJ~i+|0htxZ@6#icwoii6}ymnQ2X21l;{;fkzd1N-}S$p z{i8$dO|Vx(ulc0~c5L&)EMx7}Wh>q0Mx>NKi%O#1O7~1~vUIga;_9B3R{C&07+wnw z0A)?b#bETaYd41uujRK7oXh}J2`gHLm(DtVD*m9K%TbJ8`+DfOUCcJfL9VbDD({WX zAK>L-yKCj@&I#*wv>EMe?3Q3P?6p^#leqrqrB|B6=UImOke@!M0%?}6#r=*RxiZix z>m5rwBuv7(>g2`7ptj2qvtH?nLZ#0~6xbFkhZ>dj8ZK644B6fPe(DxpGjjJxeCW>L zHpppr58EW(1!-gKR^Nuq7S2+y*lh@b>R&_IJ&@!-x$fE#c+(5@9=E~Pq3)dj)BNAj zkg8=i31ez)HnI30l)*xbYSV$uo;C3(@&`?bQlzs^^uKf}rK}%bajpcV8t;3)x@X?V zm91Fk59^tDvUDZ~P!#*V6K+Ys1%YFZl6mhflezUo6}+QHhgBBxeB=$MZT9SSW9Zum z6YzE>jBOj^us|UCws32bz|Otr^6@MD-(e|eYL9o6Zk!^cn468A+Cq;!63f$4(p*zl zpt|KH^Unfgb}}#2j5}1=i{DB?2p|s)?3-N%N8Tm zy$p+;=m(wwHm+CfAZCTD5m>f@+KNLd!eL^gP6mIP@f7P!`WtrlKeFPl1Yh{UEr)Nh znr*L`&L+2NC$G){6+W_6>bG54mGqy#bM8eqTJU8heurLO{1?23zJ&SKRLxs{B)f0o zNs+Ls9f;`S>3)v29p4WCja));j48VR?D)_Bg)Q3Y%l})3Bs`P|0Z3?eyi`hR+@C-x%RjHEDre$a&78-N$NkR&jH_?CXQQ7-v^?wl(+W z<(cC?h)ym$yutUePrFx5a<>cVZoez4_CSzZ_rgEhC5&iF>qYGoZ9i#HXm|9}g$ zDD3di(hgXl7rycdKNq|x1BY(cU3_3$J$M_6)Lx0Jt=%vV>vy~%rP-{U!5+2~jLtI? z#?(8@)P`)|A!*juzpH{U#{F?jGLVk6>^NrmDewyeSG3wg3 z*SGF^_2s|LA73+S*vB6S`NSPK>2~F2x$N0QisF_ao9qSHpKf*qj>TK-AEf`>+AhJE z6C7l99xpT2IL&ZLvB~9Uw{r(r{uGlb+h#cBk+=+nOg+b(59t;Ae#$Rzo`^GTo1q!D zEgQmPTV1gKO~=@>18CEpF)hgIW*djRo6d(Zia*y(y=!nBi}SJ92?AB~=%kB+ea@E1(*oYAiC%&iFyh8=ooFDH0)7_{%pM5#YDJ$i7qvGwbjA_Qf*!rxA z?~U7Oni#f+s^Bwj&#^-DBX+#~3s(ZMIwvM1W+kLXJn_U64Gr=?>tiSGb{ewi-NcJO zJz-xz@5b}de|qZSg@Wl%zddo!+6%p>gjSs2v1|YNb_YHGRQl4x2F>&h1RR;5;JP!txspv-nDKx-B7ouq1rm4 z=4wQZUq=1?@`&r_QYl)aKoE53ega7E!%oO?_oUe0W8JN5qNy3p^UWx$ouP z@YRF*#EklxRbG=PZ#{f9hx5$v^N1k2o3@dTg3kjJ4Zu zYY&Eb9j*N$S^MYerL)!{A(MJ4r{*{8tRQ3EL(Qur0QHwK!%`$gB3}lKZzw|G(}N-|(|7Yu@es zT*Zi#{@Yfju1+so?Rq_4S=)L$9q}RP{xwRhx%i#J8RQ&hcYO8;2Y}zALkfzx$p1xyR=Wz1H_Z+0b#Dd_rEGJ?vZ09$k;7 zgGs4f)3)N^w9dsb6FA&gC?#q{p`9Kb(PLt>>)1=ZBf36lI+Oq4cg0H{or&vXJ8SXi zOe)?opGjbT_7|zyHf=G+%y)90ZWUl>8PG*-Z`()LHnj7jGx2(CZ6hBW(PL|C``CyE znU9FF7WddjHyun=#)roTZ1ljpI9&T}BH$u_4v&rK<3~qy^szN+_t=Quesn~W9~)7t z$Cl@nN0+DRV0`P(|C{r8^szPS``CyEKRTkDkB!Lcu@OCX7;-KBe_prdk#qcC{4T95 z{@;m+V66+Zz|a}10S7B_+wjQ{n$QQJUYAo>M;|l{QjMkL_9Wv`i~wR zcwO_yUfAlf>9%`pm=2F^%aCSHZrx`NsK4^(SNvZwDbK5Wy+8JL`{w&?P^rN#7k0&! z`<46z(Lc7q#=)(86!ht@!CS^hH7r^&A^dEtXI+~-=PoIsaToI}hl`n}sk)nHe>uuJ zX`}7&i@P%0`opwNJw9j8^fPC(!)jCh+WGkCWLmIARhv?+Tw({`vGZECeSDPd@hg|k zo?doi^4Ya}YR?Tx>Hpk@(dHj+jIY`OgE-tL?&*nR9IV^U5AESTIlN#iUeL{CB%g`( z?DD|1$@6|F>NDCwK1p;`mQ=o^Y^%$OE0;10Jrns+S{Y_`-M3?`rxPv4g`)jm86z)N z6h7$^``HK<3;;jGq-(^U(`A`sLvjl zw^+|$il&${gL(URRK%cz|6XE;r}41FdgZ7QusvMi68U%p#Y)Hc)y1VD;bar^LNx z&}4P}b6A(U!EOD&H7bR3dA#2rtiS$a?|=JJKtntU>f|+OvVXh!|K%E_l^x_!H4a^g zZQgQyFl6{Lk*T)*xfGp?gEdiZj}5;R)aSVu{{MylzhU8X=btJL&bfK%K-M`5@Y~5z z4gW7n`Qri?l`R4|IB?Z)7|z*UAccVhjhgZ|GS^qF>f(AA>r&>&=ZTiZ|#})f@k90QC&awvO?`Im)PpNiPlHH#HHp3JKn9GP>4U| zmtJ-GDFCX}{&M<2EM1x3%-_~Me*sO&*>!k; zPuv%@mS3Y>5)RGL{%^*<@0)+-jZtEt)km@Z0lxW#;|(z-*{L;MMt?dvwQg-lcJ`&( zl)9~j-l1_%yC-Evz`U$#d3Y<7-Z9ucn0WP}>0R0OF!A==yEj0G0wY|YO?MkJ1{PHN zVrl#N^19lv2|gh%Cx9^WP{wM|@Sj_4cse)emle+uH{iPtPs0?>=lE&p`{dFfnwdiU zWmFFTvOYb^?~T}sAB!$IY>q4cHTb1{ehr~J`o{umRPEV!464%a?C8sRcYg{9T>X)^ z8i&KvHLtBZZZK{x#Qrte*K1ez{*pg4Fi`e&%lMSqk5Xa7-mN;{UuL0UD!;!tFL1dl zIO&qN2n80i-Ll1E{yD$4+jGi^$}W%3D=$5KvS!x!vZ(l^q^Lwk`|TfH>c2BeJprRl zqF(Job(NHmPMxOqB2Li5`?T_R4;qvFdO!EVKRpb&5QWhx{o~-w+KC$NM-A$6z*XqkXErYhUqPx9MI$ zZg-*D_umcS^vYTtAJBPwD&`Iw{7!P&LYQ1&op!Uu;(rbt*3?{b4@~B=>hMWz`U1-c z6lkdUcyE1@`Q^j{6e}Gla4I5zpD&?_Y0*uYnD`UW6MVdxo{(91ENk9n43)`iL^!5+Upo8ycf>M}aBzW-Z^_zUr*k{r#va?}1`)RaWs zrkf91X*<4CH?P!o`0v4iT+s`&L(fyx6f813L__j{b%C$L&kP#(dT%G_LP{D)DV`uK zIguFt8}lJJqM21|uA?kBeN{}0Zu(hMxc1+ik7*MWM#+XS=ysk1FthWRX5HGz)G5;f zF*-nal1z)0R_AWvzs=A_hbCCBaXRLRtBDBxpUlR00JKEo8K-tiCdGt9#rK<`!?=F2 z)u2$m{r(cCNfEfVwpzIu<|6U<<~Ba95xM@4%qAu59u-EP(G=+S(_IUJuK{g|-9+iw zt-?61{M&gZx-M{e;NJE4M{7itt*7d=fe+GBS@}G%@|2v>DYds^JXa0vR`Xh0^$=Y` zl|5Cb@jsXA|6uB~^5;@c6W8QyZ9^^l$2)NM%_dq_041HY9!X{c!+(pyX*|>V=>LOp zXb}Dpfr3h{oADHuVjIrP$KI18vgUMKh>>0SnDwYjQPCeRa&k9_f8S805&70f8WaB3fpr$N( z!fQ;f^Xl|Maj|k|=yU6g!**)db1%$5N!aBe2|mZvX#XBqjab$^be(V9O>B~#nj7ho zJV6;3I(W+*F4fPx_NIiP>|88qE;j4VfyxH|r?%7XCndlr9zIFrv<@NajD#CE zIsqa;;eFR;YYV@fHD3Ar;qdwOEzN1wS)^o4M%}yemPHnM z&ZT{0bK3kICs-_Z`7xOM^eo|mp5~} zOin#ZPsaRP|^S8lrgV>}c(XdIW0YeuKb$?J2} zy>(ny9UvSSL3pJGsVj65d%8JI075VkZ4-dtBD|H(=RE!#(m7a_CMZo->2ZL-)7=OV zioRC>f!bs6xJ{QKs6c4Z|MB4}6Uyb)?FaFhXbB7h`j09> z^G4pe_-y!V09=MZk~x_02qo&1a1ZB2Ul$ z`1$SKy*v{^@;^L$(pItj8CSm2Y5tkl0M^8`rx`v;T_2bm7O~uwbi=fp&i5zX>h)Xh z@~7Qthuc@2kg4B;BJ-C)ZYHTzONyvE0!*VphZZxPE~#FH1=xNOd7dohYUU z`by@}Iust-w#i^T;Qxw@$ycIQg#~Oj9xSdk zFb0QpOirk7vV)J^vr$HTWxs2^{zC7nQ&c}h8BDxKg_%AW1bt-4CbKC<#*xSy7KxaF zvWVH{S=p-hBc_gpxi=-Wqu>+$<%QI53JBqR4HD$2q8g@Io*`H8(!OJbMU&nWZya2Q zOcKGK(XK#Js}&e13hUuc4k$O?g4QS-rnu)9o-+kgDr0-9Lv6rPh7*cp{gW`0Q@aRf zF3iq#)}?fANZ7^~!3t!*Baw~3z=)3hGq)9wunl&J1!ogViih05kq=yA<o218o{=_K9X0fE}&G!)UeCPHWUJ;qZ> z-K|NthHP8!isj(Cj5b)+CbVS$rlhKtR1-#ky$(0FY-AZYp(f0ZjJtay;Nzn?nx-TP z1Qq}Z_r%xV3D_sD0M$gOH{LqK3KR4mGqH+pLw9|L#7H$xWf1TStt@dr30h%J8e=`dONk}HhG31yB z?W31UGJ*C)HiIf~R8CyEey-YLJbh+}GplPbrPjFPzdqYtfUc0+T=oCY#!oVY1JH~s zU2!GgCZ{TnEh6U^0_Feab}{aU?F-me@ev`LGf{}fs6h+pv~*&Y zZegARbGUN+(&rx&CT^bQm7+bFu9tG0HFDF{q(RIgmHLMNk-Y0zn{bFD(V0vIhakZ^ z=$zdnA|JLd(yegF1na2v^*8Gmy!lJ;mit~Yj2i5@deqx(q!rQvZaqqRhyA5_vU3IAcY=k2tB&N#t)x&_aZ-`@Iao;G5q9T zWda}CjRyBEOhg`T=&6_U>iVf&B?^R8<^>-T;Mv`BaDuLhd3f$p0~kPxPMR`}p&imN zu;07Ievf6s0&VD^eTH0Q6pU3obrB%Xtk90dBQ(gzRXhVfu2oz@#r`FXdgA=SfLGhh z#S^c^c*mV5XtHN8qbH4e{p-!V*2#mtXVwL*Yg>_K-yXc*ws!V3!+o^KfUGp_tq^BQ z&eiIpu;mZCCa0F~QUMZqCS#p5c>XV6s;C9oPd~2}&y-=Qct8kb$?!cG?=lHuM#RR4 zvRns+)&<$r5VarXz3Bw@8-AVi9{lsXh-X7hldb3q#f8|D5F~h0mj{W@#QA^Qu+88I zye8&M2BukG@(>{6J_fE^B&)K&OdtPlgbE^Z|8X>_PR0sNj|`1TV(01UBZL4zt%VTO z$B;kcrUzx^v(<#_`@^kkM;k@s2?X@8XDQB|4E2a+rC(I4Ilp;ov8AJIcc2zCInC6F zV5E4YBIx02_y)1<`y*&@@@yvSl5pS|1||~!4mVw}q_$?-hYqkr`uZ}Ap%m$$eT&XZ z085s^I%?ta=Eiju;xj8*oDc%cF4+N$vIhpP%A_@-U6fRoN__a5fxM9V`ecG6a3XHm zn%8F%v4zpzamU;}fG|tnM4;!-2cD_xSOKL6H=B_f2B4}6Q}=|PdAbz|pf#yts)&$+ z)OmL8j);ELY5G`@V!|su{OInh_gz=Tp8)jDZ2^T0 zx~8NJI0Z_C#^w>61_p-KkLo&|=v<^yrftZF^KB>8G4KLl`I9fp_IQWKTx^lyV) zup0L?B2MJ2>>+_6(Q|3fQV=zjLUjcXOm@`}f#wWi-5=3@kdfDXsx}`+lohcV#9?}t zQXs3viNs4>VGyx?m2w!`ZDY7#8;m4asY7Jil!rmY!yqK|Kl45&cg!eShD@4wNO~2C zU_?TtlV89f&5x)MN=Ug;r*=26UIZAcfOFLKJ0k5z2s>`pO;-CNx zK@gdXcqs&-4xpk8=AsM#qXg3&1^t_8nDam8 zlP3xiMaZ+#h=PbB8f8mdbfqmGLlMS|?(xX_e)wi_zu!opAqr_yP9|9}Q*8LAhL_$r z0e4XoLb8k^go0z)gg0b5i7WGgtALxiSTeFD>VY2K`{^91md++RK+z^g zr!+k#FKy$r&Ezsqz=AA2Q7Sdz9TAkKxPl9xQ{FUaO5(LKP3r$-e`Zzn;|Z>P)9qsQ z{;!$@B|z4KhhF?FxB;(Ik&v@%MZwG(m>l=dw$Rd`4#+sP4ppC#LV#||4fDDtPb_dn z3y2Q;9t2q-8vyOC#`sk|oO{iRmWDBO;E%-{{{{TfwYYA=hC8-DfuIOpj?_e0$4ksj zJW90hK*)g4f*3KxXNb4#fmfb4;g#wH=tsBgJI!nA`o`W9d+(PjY=*-)Aufm+gmO^K zcD{eQQqv4e+#uo+FP53@*d8@vzWbl!{a70!E8Vc~1D6|O#Wp5_WZA|4MRJ8W5|y*Y z?@fFLEHYUp0p5+zVCJOC=Jc(vSrAzwLpy6M@jtyQ$japeKvqOU&(gZr)@@l}35Zd( zc@_1P;L41KwDYk#@PNz6tUAPONZS{2GwR+%>Y=7WS|mY%aphHN1@(>YOB@2?(KJCi z0jz|C_rukODTe>Y_xkBpt;Q?V_|$| zaM!yb!am?2!(KBp6HLj0XNX|2FEF!eH@LWUu9g*D4OVjEGDL;eq}i(gQ=fZ3d6|g~ z&?$!ODlrG)kkzz#l5?G>1W6DLkk)jv_Vf>b7Ss$0i&yZ*!zVRCUz}g6(+wu!hbAJK zS6Djf77Vr8w%nhXonazS+Rd&fw17mAXkoO8p1Nd?@Jzt6>KPmj7!BYHS6?S%KYE7!K)~#dhP`RL`d^7Aj-Q^z_8}D3K$YKk}$-EB$+0X0wG2E zo8kxg2q)^>o7-F&r`G5b5d;Y-Ue0tluOED@hf4S5XW-BKG5$zNR;uI9uAmq)I@%<; zCQRMRxN^`WaMn=|i3;y@*af~7-@}F=m0`S6VY89B` z&w-=~khHL+vJ2$k1t1Mr0XwFSH&Um}9ArAsdIP!Ka7O6hoLDr2vzlJ&qw9TDc-;sdVnO1t9D8%$uTVb{RBCI&C5*)z#DuQaevv zL<}WyPgzrkRjBK&Kvet*aP-B@U6*mM8m?)`LgpyS-f2NJX2FVfm!v9<*;3v<526;q zi$j8((t-%KLOfRk4S;quosPxoCR&sAE3DVoFDZ)Oz)J_#RQzX+g}g~O z?TZ~r8&}18s?StP<1zPlk-r%4??z3dE-`2%#5!8S^0>s3Hmj~zA9x1gf_PjY7(1Z; z!M z*VZh;m4T0*$5jYd!?A`0qpfiBOlCN>OJUWNu+3>CRAmCn@G_NOVtu%?k?Z{3(fbE7 zYU{4X*H<0zeHu{%1uwkBrlOJ$q7=vIjY~)y`ew0Y05}u)sBmnx1PG51T=n|R4g>rO z35=C9uc;^G7geT$TsF2xo(RE(ta|T_0$UusX5s=PEqlE@<6W>Haq5r~a!k6VKjNy( z)GI1DzQ`irzr23w?cf|%QzVWdeV}>h7%C`iC+-PA zb$0j$*y{dk$wmYIWKr$?S{+!0341hUNHud(i zh)%(TFBTeWviMZ6;fxdLgDa2(2INO^g0 zI6l;S0OBp95Ou>|!gg1+y;||b3N7^_9{ddR23L-+K?;M$i_}|BFZ|H{>>RsMW1rvq z)1{KXU45(Bn;*D2f8VUiZQ)z{Qs-@Y_v25#D0uQ<`RLbXtebT7z7*xT$O`7Dl!Y2~ zQjcn}s?>%(mb!vd)}R+rV0Ml4SYwf+eTAhPUc6MST0%<6nmJ4Lu6tQMP$<8;|9YFn z(!|Ky@qJZ0QWfdZ3UX-`pR_7aEa=Rd#4LrSUaiWH53o%88s*hci}3)4Y0Z+LmKYJL zx!#WPL}?tYW=|xlLmff^4fJGXIalqWxR}3aOmVpsq3)Zb2s`WmQxYMB`kupcQFDx6L>0oG(lmS=3z5lg z?8Th*!l41js#xd;gJJ6+5L=B^_vDePhcEjR^eAn&`Ij50cUUA1M5GN2>WP~s&I>iF zg3cGLa?M>sONY3F1`I`TMJYLTKra)lzBxdrkW!S9G{vcmYp@9SlAy+ zk>nj91zK4li&fx)Twc*$p1%fbcOUg7tEI9U3#|L3sM2JrMS_ey7wu9un|gc66iqdK zq!k}`Jh=d2^Y68yiYQ?9NHL(|cH4gW7@av}dC?)OEnGl zKo8i>2F3EY?S&X_nqIle7PFDBu`}_uQ_WD&eSnl_W2Gmv=Bnt0arW&zRQ@?)6ON)i z$O_a8_j8D8sQ-ee>TOfiYMZybxUY&b{lN#g2vZ2 zEyC4wDudarS5Dyu^wB~OUz9mzTMsFpEMqqO-WtVAS@fLsLh%MR>&04`I@T(I)e1{D z{;;v!)T`W&yEt@mQht;N;z%7B-hd}l-cbk-juUHq71VK}<{J{5mB)p?fDRZ3(dN7S z)dvpV4KJYNU(3)g5H=^Tyc46*S)#9$0X!M0>Jv-7$B;!E*_vYU@}oG%sQA2Wdrlv( z66wPokuuk6^QJ4(mi_#QO)S`q02gY`Bs$ z+pL(f6XuNqRe%m74ZCY=+Dq+kX?+m}eT=?DQgKm+;9HI;4T|L@I@+VXRz_YMS^n`^ zNbg8Sh3fXGG+A5Iqf{$f4D1Clk42M=tc(ozFsXXn%W_b{uTtKfmG#C)t*-98ZdYgw zS21&@)t7z$MiIM2&87+}PXYzwd3iWi#3XoFp|WpVf8uc+=%Tq(Zi{TzJgYFTJsjSU z*G09B(n<&G=A!Yds-CXXQm7BCZ)Lm9)9yKUDc_GXhzdjKW)49sm~f-JNZcIs)oJ$G zOsJ$$hI^`M6~}vL07!YWjx>}wRnz`P3+cwL%C7cL{T}7(Q~}-S2wTq|MKxe}sHxcz zzek;Bv_S5>?g;y2Kypm-Zg)5f!-}>Z_S!@nbPqf5B)TuPe*wkSD@(NPR3(X{2dc96 zs51yIBXQK-R^kt%udLr5bu-Q4=5Z$0e56DFY!wMzB7KU=nw4h z4wwl?Q>E#21e$RE9KUadfgJRG`_5+`Wdl0GAhGx@_LuXaC1v3_E7Xel<~{0`zUK{!j!SDYiYGR`2p)6e=zI1_qz|s)woPT&5kZK?Kytg-#sh zBTG}N*4$_fpp;n?4KBKjtcvo#A9NUgO+8xDiZIjt7U8KrXRi2d-hpvnZ(v>{E07ENcPD9%(K#$cO8KLlC;RCNE(9Fc)_{lm z0-MYb6!Mp<`K!WjZ7O(Nv6&*nL_?jO9<6weE}W*$^89@u*@;F7_um;GE9dG+CyVK|0R%=-b;X z>qPsCL=w7dicij;8%B<`YhflhpzGHaGQj}(N^1q$e`x}q)F6F`b zKaWV9SshU~CJWy{HAg@EC~L8?sQupEwb9!nxXTMs$k14ea*i1XgIru$jIw8`7fML> zjZK9qMfJy+ngpZcG$+fFHVydtP*!=|GxOTRzJ2}K7G>eahZxd3$KNwVN4TDtoH3hU z?&al?7(byG{G)7C2K2tJ3hJ>gU;G58j2Qtigo|goeD^d<7T)*h6ZGlVxu{h-AonlE zmY3g;LFK>NnD|u7>BB0jB9Gob@^qa?Mlo6(*ku&Vq3WOE@?CJ3@=K`bsG7<}7QLEA z{WgI8*jn~`Zu6;zj&Kxdy}GKReOS7wti(8Td7ky{*;WfTj`L>uV(ZMc7)k6W9t{(L zRCl0bvwHXk%j-tvzux<~&Gj?!7&!w{TyS$DiVNcT<{uYTKS(s>c8 zgl`$1o$Haf=~BPKN#jQLwZpQfxunaIJpM^I!juNDOjjgA+} zO8>D5H8=5+8WzT^Z(s41w5!C(tG1R$ydUj1^ZO`hcn;=-_=$x-Z+P)?pA3}mR5M-C zlGR-;51ib=UZ+|KMSq6?__*?rS-HC$f646IvgU7HL&jR8TBF-XGgY<5S{E1(HGTG~ z$V^{S;y-Exd!@;zlQKRjy1zAZrWMOGZeo?hwQ3j~xmQY9|4yiqcq)@6BQcxBKuzBO za^x(>98rnCM=6SA4t_`hn7PFUsONcW%TG{aa(CF=G?|u z$C>O*I;R_2Fih9BJzn`6Dx9)*wi*W?8HocVl`i|AkS&i` zzW5p!V@~~O%cb&HQ=xkQOD#0wq`}kU1#iHPxO;U$)7{*+8NmVZ0YPgB=mqGP0 zo_J{22^E;FzhOTHGAQas0Tk^$!zZXE`czOP7aC`&aUjCQSYTJoBn@@9fZ0$FxOBrqH5U=jdo09Q)M|8Z>uYO5XkSqEJKI@K zjL7I_RNiJ$)0bEP6zVHx;(IYg&l`X4(d&cgy&!ouHGUdg*Ezwss{4VHET_6~3Uos9 zvi01(-&>=c>bQ`RTMJp$bXP6QwPv}UfU*d|x9)pn9I+oHySOLgN@PSi-;_P*tZ&Qv zXkQBc0j0KoY$L}xC=zI0)hpEt-KsN=_0fi>YJ{%HI|11jjRV!%xL2NIqW$Lf4Gs5! z(I^o)>fG#{yGT-srM;@69f#V*l_3qSaZ(-{39QG4qbc{o<&E3;<_XA>9IWLcqjo{i zEG{ezTX!k*$uF=XR+bQHOwx;BQqEkpjhq--V6NXvbPJdjI3xEb$~&}t-RUI)qnFywDvhKFH(okt^rEQ`WyvuTHOmy9mkEF zDurpaEtJ{e0K&eRW_Rsj{Pi1#WAALZQ7|eET?M{!&TSEdHl(?yGHklSsuVf7@59Fw zYQjF0Dt>eamx(%}Wno2g^VR7un|hlHiIQmkMWv4djvcf~r!u?QrWv;Xw)x`j_CwX+ zQPX$6N-gO-%)=J{zQ0lN*>RdIN{ci6u&)>2w0MkqCu&27|Y=!BBJ^rd(l&t-uG z`t$JqZU5H@;_pO~Xq3HtKz-DiSK znR)H*SN2))1~8A()$=N}dF8Sj!uSqIz2Ecim(NeMLD%w|@HZxf)Qm{P*V(JSdWdQ$ zz6U#7((0SIG&c|TY&;P)Rz1s}$ zw44Z@mM^ty2w$$=NWh%zE5zst^kifwS7+jDI?0{4y|q$0F|f??nxg$rCU#pyPEK_h z-!CIT_!`|b(+t0kuuaZN4{*t1HUp_jqmG9)F!a8%D`+quoa~Bl3LGSsRu3p| zN;6pU<8{e)K@paR;nM)YpazDCa0+rUXoMJQ^h5VJdnC&KP%VS6o$*8ZSAD@Uj7Q^) z{rvTKcB&Ho<68GbnAUhsfpkb8uSIBldMaj2iek(O&0y$BMxsSXL_^2< zHDFYly}|yI)iKYFE?+VUz3I$mhRWhHGni_y5jk4)g3ec#7HRnRGh2h`K}POBrC)RD zH=b#G$;@L-w`Z~qc(R%>+8ogxaYly_X%4RH-K!Uow1BllL_z#}w8Uf=Aqbnf&(HDU z)CwKc+{yY{SO1LfUv)5vgzVNq-?29{;D#Gp3`z)_!Uzi~JALmTEcs3*)Co=)Xq2%x z8`xXKidD~X8%S@bDf1)?tT)75I7NTJWhRD$!n+C2Fd%MV&Z(J7qDj$225v=z8mf#4 z@*EuLN-67qvkiKvYjO^2ruCt?UY-@>37MkKQ9Ou=U{I>*AtNL7z>gID;uxC_Gg;Ee zBdPY#N>24Qr)^#coSUB)k+M%twUf{rdPqn~@405M${^LY4F-vTkWhT3jB|JtB@&z~ z@<)~zDWxz8oV+Rcvj|HSTJ6T(P={#1t6p1oY4P)s0vm>c|gyU`I zf{ShhGH>J1DI;5P6Bb zB%KMPmVt5NQbqA}T}B(e6S~&?jmfpYYDDDx7`*Sh;p|0dt(+) zQnE%w`(Zp1<+t4#P=a)4WeZLX0nLMEX|TtKX^(^B9p+6AF#(9!vEdCLt>2ZqwAVBz zuOJtnyDyK1MRhrG9u36vY;HnxAkc^lp#Tg=-PuBXz=?Ze_*BDhM~RfQKHSB~h)hfL z!a~=|IJC*SL9j9lcBpztZNTtxuy7M#&f3mz=)CTn#r$bEYhy2M8oH-uXx0s+OLTS0 z%CIfIN1HZ}sUAK%4`)q?vGY2B4xz5`U(eWGJM?YB3JeDgc@me!`ZxvI7JrTt_F&0& zgewvRS&)sZfNo(c#pEbyf;>1IyCOqz&xXR7j{qfl&*Jan*-`AVITxX*AiTdfb zB0(|%q?rSTK);riK7nIqWoMb@4^4I#r0G>~!7sJ#VGXPKytExR!siOWI)jmFnZJaG zbMl!6(P}tu+G1e80#%?><74am9nh#rpv%KLH}sgwPF>f1Vm^Wt=~--&F%$T9diEYV zr;THjh^^C7)yqgtT@)kjtmuLHDl(9so%c`1>$2j(dN=A zMhwPB-GE8DD?tY_Nk*6|eK&v0L}blpC%Uww>(?@GechwA6on!LD6-OWK-eKxJs(!O zFl1zxZB)EuKp2mq&iY*XGcn)>PohF(VfbZ>7qT@aGIu%DRSm)$+0O8*)4wY59|kbq zID55=ms?jOaG@`3rU?jbC2rIQw1kMqH9W`?PQo}P*wPq zvzRLh#4)ahRY8yUIRC`<`wg}FEOpsqY+X)qPPqvZv4Iihi#YXZeBA_`IBg%@pw*T* zzMm}#6#*8WW5VJroI=A#-2Sn<*%@P4lU^xAPZV{_>Knwq@pWI>pRsUcUPf5@k{oy%wD~frBKE<JavYXUBmu$f0=9uY}KOtp{p%u{ARZzeo@LG)Oshu$rL z0?9aK_070~L?0PF+VVk5G&Y>2iQ_nF>jhyb^^Gs+Evp0SW3`O}f&&>X@pnd@wWEWg zI$r4k9rJ?!gcmW7gA$!A`oWZrqTbR3=($YcM;e za+&L~?_d3GNr!i?q<_VJe(7H^qeFii2!;*y&qYL|H~H)s08=1|pT#>y#3djOp9)`( zhbTWVQ9WVedpObPOCC0G_>AmT=VF2)PY?R^*-lQ@VkgC8eBf);)%pv+& zGV|IAX+{Z71bs`!N(vfckQKUq5pgC0M zK}YYw__E#rGNWNdL9@^3r#~x(S9hnfkdHPOR3Xw=IC3nYQ}-no+?{yq_E+`{ zS+H^Wi-pbHXO4qa0Hc^4>_VrWCTfQ>m7~&$&x!;UZP~q;sx~ofiW+~%%(cpU3v4k-`5UtMXEVFt1gZ3>ugk`y6tjoqThLXiX*x|U zjjzzw0Wk=Q&0YH^r?>wM^VPVxdV&VGd~V9_BXzT4n?bh*=KfGgPAlWejO@NMnK3{a zS1v5~Orov)VzSs^QTXh!sJ^#L2!)O7pgI z&C>;-K&lyznqSrukd}zz7m@(TLBd30 zC?JWQotOxcl^mV@gk$cEX>rOXKsweSiGcu_`7Jw?MsEiBmlp4m0eGW3@rk$NufCC7 z&(8^u6(E{gov)h1rjL-62g+Lan*L~##$LHe#JoxX===NFSzAK2A_QAkiQ~HYmo#L; zof>rZum#*e4MFWi&9~tRRclr;@v7(vq!dwUGw*``Z}CC&tu235Fp4-pJsX!wf{_xJ zrOBsuh+#;Hiuq_r7xk;0CDQQ9>nu-LhZEDWVy(Vs`@ww+4q*Gr;3p80n&G;!K;_12 z35N@>q1hYuSIZ&VpXI%?z;Ns266k#e&sE0jWu*Vqjzp_@WQOCdBd6S+%d>?^ zi-C-H+1;iB{#df*JJz@CeQW(#B_A7lEgsn@BAtcei-cd?n*cDwM9v`u2F z4iK+WV{-%;Cb$3P_LB<9!UK}w6RtuHjnD~Q;5t-)~=l0 zi=YhkbQMG>=8!-s9l1fCiR3f!&&%~NWfGAjR(}VR#L({-VM=Xa*O6+IfWIa+?xc{3 zNQ&#TD#*pjBe6^U=>>cKrRQ7(ibJC!7AP=>XZ{d#s|(;X7FfD%%HZ^__pc(paUipR z{W3cs(}m8YPs)CX+z#h+UTGI~6{2})NC^=dM+KE-1{UZpDp_iuM18m*reyW@LTjI~ z9V5{9oS%bgE@6r$570~O`8zZ#PNf%7F(HJf(@Q4BtPULaQF3^>>N;2e$-pcfrK(LS zv*kUR6&wpsNKBHjiaZP^^+#Dm-Za1u)t_LMCxKO_vDM`XfldV&#)FhXUGo;eMx9aO! zha#D!*PzO((KE}p)rYL9ZkHVKnTu^PT5+@a>rwZ2)8-BZ6$_&-DWa~>L&>{q7xm1F zvc2^b?Q_defYd9AnZ2f|{KPw%#vZ-UL>vf0ocm}Z2=pQE+4RG{P`_D!_|0H<52z?t ze=p?>7j5_#XxAHTR}G%TNGz}u2q-D=GANRXHbg;lqF|{DPfU(>%ifqg(MBburk&r# zHr&Cmdny(28MKGw+4AIb?I~{>>w&Q@h|I=`Yt@Y>?!No9(M+-;o+XHgMN-6~j-Pl$ zoQzL!v_~plFo>O;@`@g%k&vLYLR11t3y3?0PUB99eT4FTPAW`tUnRy)y46#M~2!mvfeKE0eQQ_KH>HQ!`=y2nEEjRaPx3MiT*vxbWa4`_fX5 zGR$TpZoo%i;f_rE^L8AX4fcI^RC*OmFyHLS!!Iljdiu&ix2{;b?D@ZJRtla#YKG5P z023q^KGk^)H2{*BpP_gzNLzaAU(U$wbKs=5f@N!7{B=YC{zwm+S2A4icBDp^ zAb}Sq(e!&|9?|g_g)sC*0rQ10VBpXTOlCG1Mb}h~+%OGv#hA;A6y1arH(9_9Q5K!Y zkQ?aiL|nA5dky#kc^6Y<8v~SiHUne;l3{wG^>yd0_7$y0mkpqiM$%@|*H{-CtuV`) z=G`_I3@L!e4p~WTducYZ`h^FkL8PY*(@F!!5X?C<5Z{oIa z3RU=48!)ecn6eI)#L1eNJWmeG?79Fw4s2D}tAnxFm@qF9AvT5k0!Y+7s*wY2Fa0Q| z_#EI2-=p%!Psqv0%FS3I8a-Nj&mb~xa%9gA5L#G;9;#F>FIAfs9RlVq-WHhqkX%75 zu0Lf<5EICQM}xj@QX8DxE%{>*iM~asGc+qbK-Z>JF!{osszi4GZ@2CGBJY*on7`|l zf?&_A4$wyE9b$o*&7B_`?MHD59<*mU&3{)#C4$bi;vVLxS$(}#cAR}nC>ZDPo# z=OY5kc+XH35=T2`ZQ#R!3~?(6fzqHh&h<0r6KBlJM>H(acfJ)8gWzsLe=yQ4`j6Mi zL4qkqh0C#+m4_R1F(I^%vIT0-^kiVup;3`U?si7@mzKLEOhZ8~U-BK{Z=b6s<27E> zg^+l(hG!sL4lw0!%}b32jd8H#DCCwSRHV)}-<+lb!ORsE;))Vrc5z8|L{3JNn=0yC zO`wFBwI)HYe>+!P=8^DFM1--Z3{vpPz4Gnn3veZ+vs_7;=Xvd{vf{kXaQ>CQAw-cU z0hH|2cA_JAr6M7uy5oFxE2U%R#W2ynaxrD*HC`-fU$N*l_drSU52EWoL240gILMTl`ZB025ESL) zjgj^h)gP@tLRxNW=eq9eE`j*EpHM7|kyhx4v{~FbX~hd4jDYa63GR;NmbCHXCN7Yb zi1tJJZS*qUNQ(j=qb_jt9BEW3l*m)=odqVN9g_rpZS9W5CnCu`bB3ZI8?_YQeai~7k0vx~BM2zN5 zK~U%U3R?0+csuS;Zti06oLEUHSAoQ(jM{92K^8*5b-hi?ZaCD?NTfPmH$8+oRD6hb zM^ck2-eOZ!hq3jcY`HIiokEg_I2ChKHX(X)6>$ovHkc?r6ln@jE0aWea$0=ip8!3yVU>C1)vXRT^=sAO`RS#QshscWWr- zyM_fTgTjB=T7h7X*Pw)k+S?fo)rA>QBFmb?xJaC)w87ymUNB0IB4K`cIqnlZe{yJr%->sz`@oFupj{Bx%H(YyxvlTCkaUjL! zB*J)2&;6+qc7PU_OG85h%{3I)!vw-y#Z?*d@~!CHi643yw_C$3v9yq*sO}aY0L*7< z*FixX5y|$XNd!EBk(02W2=m#a&>6?ENket#rKc7l1)|s2KAD5$knZ)~} z(EgGM#dIJ54lT`0Pqt&==unwtqPOgZSupKM4}B@-6-i>ssSGS%Vh~z^=YM*<#iB7> zA%y!OODFmx%`hd6tnd+dfzSmBX- z)m_rG>*}@|hmMOE37xHfRaJ#DYAc@8B#>B*1!!D+Z<+!!Yc*DZ2pLMIWdeH#sffkm-uf2JC@1u9zY_4X9$6z-w4=rm|fV5{elaUw6GX z(HZ~<(Y1;s0AVDF3zpYHEL1+EwINameREF{jZ8w`TS^;n^#yZy_VvY@MZtV42&jhF z0TY<6BI~UfMAK~~N}+jB16M{g+!4G4p-bXWKq?D3zp~WivZ2!xqCP za$D9EtLeX(7=^hbU{}UpwzzW4X24{?qze<02c$}3YLVg|T#HLb!^2~S#%{TOstH9W zm~aiCs6%*DiOaRR+Mm{3W}v883hrw#cvJ2 znZ0!5(N_%IEK)6~PHlKm>yM*EeQ z?itq?w-FQ|SK<6-pLnRGk&tSTQw+4b@TuwyHi8w-6qJNAPTfO*b)bR)d}JXn!SdjQ zAxQAeQ;i$eKL%5Dadwo@qC#yyx1S(7@nHjtgk1-mb)HCSbHH%)& zQpgXi0i0A}4LIcvR9?9)c!$(-wkdd$Y-zt3JUpp#O#k#!kFs!N(*$_zf4Ld6Y}Ms3 z)57TWI8;uiY^@~wQsRfMM0DD?O8^z5A88Sm_Y>Zij4FoJm2B+pKdS9c-*D_3JmFd} zFPb9I!ul#!mcEjJ2*S;Z8idWrR8ar}lrI>E+KZs~b&JPMB^%F~A`HUpKNXXT^BJXqd3^S0=$A@ z1p#;*5mQVfFG=dG7V2!?c}(r=??8SJmOboIx()6(Z5h8y?5whE#DY_JX~97+6_}!Y zRl~$XPye=2p6`Z)S>i;~{zE4;Mwg;aJAgx?oy%hii1}MSLX^Lfw~s00io#JjH?-cO zIij^6OXh%zdkQlZl?S;YKW_>ffFbbv4U^;z(E}$fhn_jy>m9Xtw-MIG6pmGGcsQ^t ziMTU+Ah;rH*5kq~P09n|A!dtGhj0QDZ&_@fh6*JsxKhao_AsTEI&}3g1mi+fmay7L zNfePu9LoJk?l8sSpbv{$4Og4W;;*2_w&X|#sX*54_QR+ao)Cf&dxJ6-w+D6&p+^93 zYsORLIWttcgH^-K`5Dyq89D#DdT;D@V};f3%mAE|V?fb#IK9{Gg6Y8Wlpp)gO_s0oq4nRaDr> z9EE7YV~#?&5kMgvN7m{BppbYvm#ocky?;`K#ku%Rp4;l}(&iqI6Q?uF7vHvy)M8CNzVx)AU0CCk=LJoNU89&z={yjZ*LUs^h8+%eo4;Wx84 zB0H#v$s2K`Qwo~Z=n)l5`&j>-zFCrxio6Zsp}|?>B8V1d!H0#-M(>?-ju9Xthv>wh zNN@rOzmzMX4#+mPpYO4!A>x~1Sr!`rfp8U3Au8EUg>P`3MJN#RXiX>(QO95u z4b1{y{)T}f7VA+IxuSlw3KtFG?qN+rB9Z{WL`x=6+tU1|e^r?ZB^UunB-5go#efP7 zHXS(a*9vH;5>JWGe&iD8vf#E9??XI@{>7mP7axXjdD-(Czo9M|*K>~;P9U$Abb)XUl(zs2 z4nV&ZrNr1TbFEsFD*qO6Atb}&yv4R(T(KWW@U{e>^Pwv6T5k?juN_9o;qiyq+!q^ZIq zPI?5Fmm?8F(kzyoP(2R}gn(Ynf+{n|`JtW%DH#+Ztc~WWoMp{oiML_flLD1}L+H$M zS3FU8)@@lx?hvjpTh?@1cVuyW`@M*)Y&TBaNzftj6=;`o`dqg+;_eJmQZBYMA42sv zw{&aRxB&D*E)OPT^UYrZbTSz_yoeFV#*!E6Tyz`MvoFvU3(k7$y^H%44nd%y$3WMJ7B#$T1K6)XtVYG!`T zK9cz54fCz`ZK)SwDqsw~>>C;fU=Yy(Du-OWUQIg#p)Eof8JEV5D&Lx~ii!h27JV9- zDOw6FRs>Oa@dZh8h$E-Q^iU(78bVtvo}!}QgAy2^qqJ!0jGc`Pv;DWCFM2THQ1(Wb z7~2OW4V@oYdpG=bUicJ;MrI+_i+5Etvxr^_7^5ou*T+i_s_?Twl*?iSK*JYD=~Qb) z!Sb|}Q$?~Uo&o#=3wTX-m>zI!r@fED6;Sm|m2`;REieQr9Psmek@IA+mX!wZ`ATRZaY zKl9$nCZT;1yw)zGAQWSMbET1Q)3QQ<#wOub0dis86Y*VjaRp(gQk9(2$c5ryu^3Jb zzGgLdZ5Xv>Ls*+rN!TBaYg@VQ65pPX`X;^)n zF76Iz>uaKfCqcEUOAiWNoYQGnxh=)NpyDAM+woE9$WZ4Y(c-c2eflNgb|`O_Fbc$P zkvoYN9~Vn=SC0GT)~rJ%3`M1=ar(wZv`vx*2T8ois631*Qk0nUD}=Ci?G;1{uN;_x zi=Kj*Shmh0Jwy*aAU~?B{pvWBr(njgoDYo*n(%g9}-t zM38MF$-U}?sp~Gu?Oz3~?sFCXJuSx}G8XD~GxHn^BV z{sS)mab}}Abf@IT4oa)~##w@eJW&dMqb8440ep)G|5z{eyFa?Sin5n|0&MQd=Zn7C%x&|$% z?!d^Jq>m7TihuV`t`M9h#hhgPM~ji3PFERpSvZUHdGP~}8+GyKxNtj#wl9t$j z2$vivWQ?_@h%to)Bvs2)ND2?5Pww{{=uYc#M{MGd-5@5a`4#v96iy9a2tM1Ar*D<8)zO}{I8^vQ5E(? z+iybl6Lkc_TZDQcQ?!8dcEdkzKCgfhy+hG7;9N*c0l}YWO}YzLr8+v-7ev%%FqI+$ zH_!ip(1oAN2n6J$MjYjAc8t>kV{I}b$t`Oj1`=pfeuRE@B$y&l7U5xJMdfLQ1rT7# zO!+YDq88O;q6DP0yN|jb#Z@$mgb`RbW~O5c-~2}xz_RJMn5J^$FS1&yI#STVOsYZj zL|5(5%hNs;unxT(YKq&*=1>YqK<-9FO2Ui;wL+VKqLqXi85Q$Vw17&9zctct$`L@9 zkfge5g3>5jh)Ow_68h3V5>=^$8vci}?KCTZF0{);K3gVEPuhoDu=Nh3RUjm#tb$gF znT9_78v1uaDnh6vW^9xqd6%PX$-smR*OE2hcQnNnv8jCpqbUs0x*yVK>o+`9Uu(m1 z8~W`Q^|e_W3g*1i(mn7V`>=(t9(E-g7jSRjf{6eNri)Y|x&o?**K!-=qCRQdfcntm zH#LT(G1EgW#u^+x6)PaMkH#zH2GsyQY3m(>Pyi%Ps&{S|yTzRAEjjPwvbCzliA<1d z$v&t+g%t&#dq@DHL@Hii1{J`RB7zF_G2G{5U)CWdjiT2j&DxW+S)zKXDx3~HnaTGs zq!#E|R%}kjy&TDX%ZSh?rULgrS2k?ZN~5}Imn}C9bsK1ls*eKd8&|Oc zc^!(&r0mKjP}fL|n?#3Pr3t-Ov)%s80C35zA&;Jwe4lYw?qe~ooT?La%J;fnjndA`4+-ZQgVtCCk$RXHR3*M~K(bg> zap%AmAydB6uKi1yNMdk=v!S{?5mgf>eom*}swxRd4P3vfY+EtiVc2mHNrbGlzs1{< ztN!UE;T(Kd~*`I?5d4R(sy}VMYx& zGKG9K2|ZMXC<%F6aan6jZ0?7xpIS7A`4vl}4dsVXQb??N_qeqgNFMrekK_K;S!!1giIyTg_o&u zk?wGB41Jw)n!q0vUfqyFTBhfOf$0hNj&zETM zh_N2l`kkA9)!w`)@0F<2l>+6kK*~r+1cYDZeQ26flH&Lq^om)Wgp3{}iT8#1Xg!>y zeivT!RN()j>&xS+F4OiaCw(oI(wb5SEsMx4QxFnFv&@ae4N!5C+)y^DR16Tv(Ik8` zS1>@-Oj(YSNCM?Xxl14=f(R*%CZuAFq9C%I-*w&3^F3hm{{Cq`b3B~y_u1~{y080s zR=EoipZ4L-ZXTHKtnq-nfEtOcAE#owBS8anQ>fj_gW{3as5D|5 zGJ%wbbcBCqsN~DO*>p~C0$7FRpg6fgQ zg(#b?U5Khzh+)MTFvnDMV09#<4i;4=T{Qq9?#&h-=SYSQ7h_?JfLdxcmv%>;%OKQ{ zECq-FaXzXgy@Z>>$WGH~8|Dp&20PLtjUk{kmc+z>^u^bTVg3W_F43AAyh7iVEMYZaPJXGJ} zACp$jZ=r_A0Mij3JzHQ8%lmUdZYZ*UYmv`B6%_ho!GmH?#Q&6C7f=mxs@Y{ld|h-G zjS9h+bxD1i`2-*|+p3>tP8L=KPBKCoW+RMz*-8@R66s3Kx=6s)h zoIS>`L*OvdJYgJ_9i!~_r1)JPU-IR`ErXNSJ(#rQ+P`PahPK@YtDg19KiIx|;g4Nw zM|&v>x_8sZ|%$4Lgln7ZrsleYuB(V9H`pC)gQ9;q~PywoTSHDzL528=s%`xAOG&gNCZ$#l9 ziW}pVEF)$}{h8gd>O|_dI)7gbr;MDEyPHL&QA&?dAn|Xg=u$QBt8Ol4=q#F{{RhWj z#b3U@d0j8jklX9+bOQQ@>g^%&cQ|r!``)vi#-_3SEmEMO8p1NRAu`If#`)Yr>Y?kq zwqQ=xp)3$K7JCry*Wuq3!<#Hp`2!QLtfj_idw(k8R%zu?!9Mw=>YnfQELpOu3Ut7h ziNNQ>?M_?S!4&~;&R^`*e5lGsNymQg@&ev@Reh>wC{`JAudZa}L!8rRT}%`RJ@;G! z8ljU%7{a??*N688J{=d)>80%_+YlgBDyG6XWAms;7Xl6p>@I)6_K9mL)B`9ffh5)VJA=SV7U$oO*o!@XLKCyqmoA!L{ed zh$5v{D1@Bk`rc^vE$KrAOJjUMTIaS>W&~J%hcccViVfxtY~230)iQAYp=il70zubN zmAS3-9_N+)u$fYxhisZDIg2VomCYrjm$K>SZG+J3`P_mPs2kOyc5VaWtndAE?Tgqu zJJygZ#T5aflPJ$CynV{Y>G0dJn@?k>rp9>3C^=3w#P$stn|DHn^R8RY%l*!u%%wK4 zZ+9wEYQ@2+FqE9>i8amrZ~rtCqOLP$&vyFs#bs99eGDx0{Et{uE;6BH;AUyfMa!V{R9h>gZ1AiV3;Wf$J2C@{TV61?!Q1I+jQVu^E)JTz&!WKG z;yhq`{!hhKEfni&`y0e(4?(7tbAhytW*>)_zQ?fPF0({@@{d_N&kvb3wyEI-72RA8 zRAPN#KYk}SnfTJ>f=qGi(caTv9K32zMQ`#k3O6$@#q}iFFlVT@Sa04^E$D~0GN5r~;OPdTrxtQ@22Gnqz)}G%Y1aUEAcaugTnj-m zRYLOBk-(K=?3EJ#raIb2s3S_E$BCkZiOPcHMAiRruK#UFR<^1E%I*fgmg0&~K~@k- zt#n0{s@_R1s1*c>0P%Bq37o|FmXS)N^0xTk>bP7Qz8AnfaGPAG_;8kGE9rxX>1cR$0>bHW4U4ut%q(x^9Nm0*v#6l_ z*JmJ8&e#Q6_1>;``hakN{W(Ur@RX5F3M2+>(qEaC>&m6tRjP8S=qOSg(^GJNR~Kmc zN;-@_+Qp~^a>vJn;~p9#k<4vFY#X35rBCnAqS&JXj5I8x)gPgV3KLA316f*@Y~an& zY=DU^YcqKei9E#}m17A>3#PZQRxM(atbIw)A^MqO!eBrAPAY1F%HxeSpp?1- zpnwlp1)PlEoDOlcPYOY^6ea`gzF-!z+$_BO?QRnLqfzv1Ez-(b4wDSaY@;K?f?N>u zkiS<<2rj2$LR@C$k5i@Sue^*!nHQ?-J$!$go_}SZ7=UQQsM<;_G)4JZ3rDh={o00f z<$vp|V(;?q6{rJ-piRkh%sD)&^!UUfJ|j*%&POoi2yjPWrv9^DOy`{*Tvar%+X_j9*3&p zsD1$0rQ0lfu+xuK6gB(4-Cr2=skF)pzk?bH;)GaF=Lzg=i{5T|P)mUc6>3G2M>2ZG z3Nml7Wnj{@dMSLDfRDm~?uWcybR&2Eo{-^r>(uNrCO|aSa@eeJv9E@{ECG{t^Q<;TzdbdY{pBfwagpfw^NoJ&>UiS&j>n$IbrNWZO} z$?a4H5jaCpkMxVkKb3Q30u(r)Xt4=CKX6Xu_5C@UcGXvoz+E~LN$BR5m6w>vCffxR z`ISvPIyo>aA8~`!HP|eQV1gYSlqiGXxodJ0vubK}sV9Da2a$(7@xUF$F=aS`YRy5w z%QvT9dp;vRnT!j~IRcGpPDu)%{^g z;g2_S;;ID&<5NmnOT12v(AC0LT7If;C-7}3vx+`qEs|)KYYl~qJ&h1Bx)l_?lu=b* zqd@@7Z)#bTV%iyO=#$b-AHi((b%7??bqV2bjcGg6*JOPanfA7TJ=p1JaYeXwcUKo& zQO5!u5E3FRnlmBaN0rL;kQ8mytx@^{r}=~vFn#hJ>2n||eyc9M0sKT#O-9arP;S1T zV{R@mkA-(;yO~r(DVUf`egnE{6}_}n_6lolCQsa&24!57s(2aKe%Kr^on|xcuoe0X z;qCpnp5Tk++eZmPu02*TgAwJ*iI9s7bB@6%DaGRf+7Df!!!Ah7s-Ck+auo^Eo`WuE z<57}8g`E&P-Q88VhfN3#?2VH95EN-$;B<|v;YFw=*P`r5R)I&_(DaGjTPz9Z*RUk4 z0;-`Ji*{OtZmOZR6j}8Qn-tYsT+#>T%@FWK=u-p<6f!ruF1`kBE+nqOxc^V3O;xIs zMUJ@WJ}Y8qi@57wL{u@{22|L<5{YP>fUz=$vPiCUQWY8qPqfmdRoYywt zMAOZaV}GxNI)uqn;Qcr^s8%^Nla5%*0)Xljw$yC67h8H;ShJCDseAWSzlyw#3dKpq zCiX3jEtGDhN)8DrhJfxJdJB)fYT)?*DZpOh5ZU?w=U@~~cnqr;b8Z8tr59!{$7bP| zZXyni44eHX=on*{M}FpmA09B!khkK@8=5j&#PsgoB`J`PX_4@4X^iqo#AP$}=Wr{W zj6f@=u|bkdPx%bRPeW*4lvA`asTn~(BSB+BQ3uVCuV=N|SWUB6JLoUc>%qHNR8(74 zZp7r^Z=tNpy=c+NQgW9q1)eqArdH&Pyu1x^)xgwd?51y{CaKvAcL(2M^#KooJd;>1 za8eso7ZO)skt%eko8Wk+r6~%%Dw+{1CqfN?@}mfls63sm)IPCyRC5miC0y_|=g);T z9j2opyf&>U#v90hD&91ae|-z9#W7&FNZz0pOP6_9m7D9vD7v%~OjT7(iYrS!_5TuF zjzsRm&;x;SJy32T2I@^}8ye*B#lox0~@s8|xlh?&QUjd3^v0AZG_Cr=%70^}a z8Z3ogD^Z%K`01Dd@=wvQ$Eqr$gnJv>(5={M`uF6q`^;W1Sc}exB{ACo8O_ zML^AkHf`OCFRNrr#OT(K?ZED-p{V=7*O19v=JWg4U^gp7gA;EQdT;Tztsgn7FsF@m zGp@)bxQnxUFIm`qvU%8;rglYLNrHlrN?lXH2dLqCQU^= zGAFbt@{!Rn47`q|?4(;s0SjA;SEZp>l<6eCk$T#ZHy_w2b<%1QB%+H6w~Y z#@{Ae36*|fM^z%8WC~5Oqm`c;R~6O}AC$I_RrQY`^+Hs_Asj-a5f8zo>@4dfiJ;W zX2S=VSD+#BX(BnY!${ZOW^lB3$uPta9j24|8hK*dNs*nP&^hBV&amx42w0zMj6cYJ zNmVyTgdnftB5=Yt;_C+oL6At@e#}sWHyKbifs~~Okcs5Yykp0s1BqJ$ux*&=q8S_4 zQjCYFOlwXZ4psOk^z=-lO!?t0tEL#HDg_ozG)(YLv5Fr(kCa6?jyg4NM=%7ThN#A} zC@MS#<4Nqyqg8ysX;c(VMjsO97?(LKDhYFC#xB@3a#<^H#!_{BnGD@GDl?>13x|PS zdP(Hac9i~8*TdO9bN5lIl<5My+A|=Sv=T6$6#>;c5CZwTN@-j5gAnQu=gt6ltl61H zkrxYY@Gw>P_g&dS(rIg82%3l~UuClo8iSRrB(^LX1XNn~(JxPAs^IG`4z=R9v)5T- z5itv~-R;Pbp@;xEv`}VHYzw?Cn|BDDDC0j2enQ0^vV3cJ>1R)|g@Mp+S8cK+8yFW4 z^n77Z6Poy6xv*i2fRrn)9b9heAlMuxUUwqKW-m??#aS; zZ%>X}aztfeAytrytZ3>4lV(LLD};#I-v-2YVp{}#y3Cg%EXN1=fWj?jA2bhAY@8{2 zah=>SUh++o@bcbo^uhCEpPM7(Ne$z1U+DFJhYCaw4Dbk&|c1l2}szC4&Y zdwH{OFjsJ&-{oosq_04MhX8on!Tu3zKqwZHifnGHeln%O=!K+WUw7Yk4hLuCzDbD7uG5@uD3T`^b^7S++X3-GPR0T3 z-<`9!!}{DZJ7b_8Y!{Dn+mE{;E$imjgFEk+PUO*i;W=lr=dgkenE)B?ufb&n&i#%j z)eoO@FXgT?wxV309?|2?fF3a=a!UYX2Kg}mDv^aDf{yT{$Hc?MpBPo~qC+m^F2XUQ zX&GF$KAxQWXMik1E(90yPK9x|g5ud!o0LfcvgSM51^j;8C2*^af5pCINA}4w%r0D3 zNS0iAE?oGRRH*Umi*E)GobjJIN7XSP9)X)FfJEMVvVx@ zhi4hHzdrl~07V=PtRD6}h*OPDX^Pg4G&78a`+3-=m=#1Bj~DsPejdij zeP5Kj!)MlRDAt3Pld)(|>>BA%=IeeN@Byr^o%yg_X4dbQc3J1Y4;a%_`NBO% zlX#^2SlJjHw6ug^iyx~ctH;-z7m-d~*&uSV&lkHsqaIhn$@KoT z$|>N4-^HJ^k7Mo8-W#MQy|BZKeNYZtyrab446p`OhhnR5aZD%J1)MO2+(_q_mzEG( zv)LUIKdUe5F#QK&9jdLRID@ys&*HX$bJ4RAuyi#(^eI{GfmiB{Aln+_4!6A zf1DZchfBW`J{Nxm8`rC*HmCR^0|gcY@Y=qjKyQ?4?)Jc6YKm^TaZ6qY*L}WVxbl{~ zYNLD;`z5}oI+~5Y1+pZQS(rqtDp(w)AfD-t!^MUQnVp}8fRvSUb;6t|RA}c!Y3Ls> zezzL477vM;R~_ukh~9|YSqw&G^R`WKr*MHOTGJ4)zYPBYP;k0K$t=itsuNBFhx^ga zVf)a+5hiqb!N#uU>n>-P#>{!?)AaS-9DOLD!>_AN83I=IO2L@ci}ul&;D9agAK+7cZ1jRRrbF{)kDQ`evGf7|Csobjuf0qOi*!|du32HYGx2Qg** zW)9!~I%d}2}pQ9@~vHfW4Rzm^e zDXo8GR~>28I(#ZF%#4S%L;2tqvM{daoUiAx5AlQ^tC$)u>_5~C(7pllJJZCAb+L7=Qr8V))3x${otD%Ir49c?^!9q1;z5>EyG zb-O!|kl<;bp?DRh_zB#LrC9P)T$~}E1tB?fjFdsap8xC4qXis|Je~?$^z|DMaTK=o zo6GGuD!;`p%86vI#%1c%y(}J^Z+b>N3RLCO2CoIk1CuV@MWr)yH^g>i3|G`?P+RfH z@pa|LK%g4DmT`{5L=bD}dhtB|UqpQ@bx4@53pLX+3^(iLAf8_N6pfd3(s+q-XZ4x> zJ{Nz(akX8YUzlXEQiknoW!qh0Io$Vs#9#wnZmHiDFdGh$<=m}%|Gk44u*9iIhGo6j zJ#jL9r6UAI!Jh%hhq>N7ZsTLUrm+9J*I+vgJK1n}%9LfU@af^qQ7|-7kjR{dYi)+m zXF>+SQiB<76QNE5;xwbM7w>)0r^8Fg>#%UnkVASP(<3vZf_&$Ma#;3hJFEgy7eUrk zM;2(b=o%b((Y0pMbU4i!vk^tWSlu2b*7_;kye?SV&PV&Ql@E!e|5&=B~TrvYo4d!P@J9pc7npb3=!N z0D$++Ju?(C+G6EZf-=as->GsaBHYSH0anQrb1pJ`wtm*7b(}%O%@SwGWB|xnDhmo5 zhaSS8RvqCzc9FO(7KNZ{g1{$7h29$h@2QSU&uI;@ACCsUj{A^!HixCRcyQ;Z;_jsE z#BDeB6L{wx8;zwx5GNrG29D3fB;u~PIOw+GL3l*XsK`Lq{GKw^YpHI299l=9z>4=|BO2|P!%vUfnOQ6s0ro}k-lL9sgN}n&?n5;jH zf8zXU_=7Q`cS`WH-*i9lK?nkj&^ZMw7}H=+Ize73Z|GS-*ed9jY4eY`1tuJ?)m1r| z-ouFUzC|$Z{J02f(5rD25 z7bj3}MsT-sY%XIbO@()YjhxqpJ5uaX%iJ?OwVa8xA0l@W7$Gr8I}$NQGYnbz{Z5fdkCp91_S@7 zBv85df{UKe-QDC&sIA|4!HJMWFMz1({L`(a&Q@NJSw05HKOc-!j2Q6$KNgE+QbRNl z4FT(wzg`e!U!IpfF#3S`^v&rROpg|;(vSL>M z2X;9;rHX90-U@nB`Qw>JFq0(CQ{$l=uzv56^4+ftSLAZh-wT4%M1? zWG?dU;yl^cFjoxqhj=3C1J!+}3OlUN_XCK+7|GiSZTe~@f{n~kUZHUH*s|z&dkmSWfcaN6K}ydWx1pVC*%=b-5J|jj zr2mogLvT&YqID0tqv!(MKdeOE`T_;>65W!B7{8sw_;(2{grKfL2iYl%81`VeAA}n! z1aTJ4(js_E%SZF|&k0hYzEys#2l`B#1E&~44P%UWa1g9mlCQY#eRES&qEyz%(_&NeRQEVUyDFHczM2g+ z>@<#HEpEz=5DI?cp%3$0f*C)3(-k(Rd=q7F*oNw+T3JK#p#p6yGu7cM#r|JWRG%7&{iEwaY4Z*_K0H=#nLlg4oqiK zgMU^I_zN(un-B>VmW(madMP#JtOi2;VAZV|IjJ~?u#ypDiR7cii9-UhBEQP3VS!tKXi3t1BC2?qWgND4H0`vxsEH5N6$Ci zk8Hs-BFf$j@DUT)yZKb*>tgsBctE@%cpdedPnbQe;-IpiGF!{CVT3y|lf9d5yKFVT zy^E_S0DSMC&jr(F2JHW5II2jq?G(cMcyyuTaHp^6VBx|m8A9ggnZMr~y9R+Q^m!$) z8!>Cf>fUy1sr{{j?@x;Rt-7=P1o1IIS`sv^j?7=1j93-f6|ov{V{R)EG zln=LtrA_{L`FPkDqB7E*d*Yp(OFNMrGw$eCHlU{)NBVU@x1=fmym6n|$$B0;37}P| zw|ZO2G(EMaCkTw;B}JVn|9Db;KGJzE;#?v&j9CXIUI{AX_a?D?LF8RL8nzRoa)cY~ z1?Od%E)ynT!%%s~A0>$UJuvKwCI%{U-5ASPMojO-4b7WQqG!K^wJ2afceZ(`Uq z=%EpfEFJM@Amb95)>BfH;X|47i8zWFDmpM2_CBZ=(NgvqjNDm-j@P_pYeZWUO2KoWZJK2=lQ3rMg}S)frYe0m-;PbsYz<%McdXnU+^kJ0QX#>$ugy|3V&sUQAFvV#o)grVOCZPJkg~spX5&V>p*`aUh#? z!g|r{`hJmU7YWI@eIt98Os>p$@!q!Y?pp_aRM{@}e54KTO3ps6B+l%QO|Gg=AFHsB zYAsnBO%I342zD;w0r28c4pc#lHLLzE$F|bBsB#DjB@9{W($(*&V#5+q66p|zeSk2= z8ubU5isbydPGMNxn_GIi7Jt0~b&|xWr;&*e03ftcpRu{3+yS9S>aocIyoioh#~6a3 zQq|e&Q!@QoinBllY6J2Tk3GzpUv=<{Ko~6v6AD$j5J6LdABczow?7`S&4l0Vm7-%X zT{LHA?vTJ&YR{P)Pnnx9L^dyF5~@)WCzV#Cvfjs&34anCGoqm6|AtAF>?wkP2eIGH z7DZNF1a%U~0C_|q^gQ#^f#+9O&njpa_j}XOH|ejd15uCzzk(=5hcKuuaUSM;Z2+SZ zUr^rA#x)-hC=ucH-BflKe_k6(tjo?(7fByDtz|)h>|hY2_BB!8qOq<{1Y=o=>5(=2 zS_%Xw7$F(sH$s$OEq>|xGN8z3Q8Vv3Z3_T=SPS^Ev*_Ov3GtEzECFL{ND)BIp~^%F z;tR5`r-+Zk_1B$nS*;FfxQTK}`5)Q`m+KndnEOLjp9!Gu85aeSLZRl%*d$D0$t6*P zAFPfICgcOcy5*8GU;#L$tQ#Shrb;6M4;lp2V<(}&JH%60{;8e$t-@-E!NZ;$etEbR zVw~aBUQ(eWHr!@)^_i}uNxeYUfr$=mB(3Vin*F{66`bHrV|h2gzEJnsOkEGH*tAA# z9IB0JxNyShi4vT^z+lmkJ?X`Li3wCYJ;>qBCTh!$)A z?AY-EWc_;+Z$smtj9flmg}8rno3fbYGUW~gyumcUSuu{XRG_#&?Rl*Tc^)Z<97W1V zj)jW25VvhR{uCks*6J5?p?U+xm=r*a8w$c~5q84|GAc3N-Qx5;d9JY;kM^2E7!q+u ztKZc($XoA3?NE$X+}zmwKSEHoSPx?+f(1sc-8bUyXj*8k?1&r8Ez4clR#d%MUM5!M zCW(zPwDH_PJ{LcCOQ9kCIpI#qaa8x1iosD)MK^j?ynP=JQZ;8^WeAB4h!VRp zWU!_@ND*u$a%1$~Z#=FKdA2V@zgLA=pmwE^|62duD9_4l17U-N)=zE85KL3r5%}FP zs<@|dwzKeP49{R>0MnHqIFfgQr#C=*FQk;l^Y^e|!TJC=6FkDO85)TF>1G%z`DFEi zumflY){F0OZ9fsXlfFolVF;D1EzJm>I4;gb{LpF-sxM2kq@EU{Q)&}RoS?kGL!=JK zk)C1c_xT_2J><>zcTG{s$}B}hxPr8}?EQTJt`L+2{9b@t;|f^(EphY|Ay!P6kOug} ze(L2_NDaW@W;zlh{-_FK^7ozFi4=^3Qpu*e?TKU;e6KZ5HBaA`8QYJ<{XU-DnG)Cq z1l-)}z~`S$2N2>thoD&U*rJCH7w9QQC76$b0W)U6XBA7-G$%AnJ{p3;Uo(Dm!(~9e z0703+>H1nda+0X7x^j)mjd2lPzv&ZNilzoC*5b{W!0adir(;|`&@3ZfaTyQ zR9@N_UuSlKI0&dEImHN(+5>;Dvk<2EY9}YPXTHl2M0^;U3g@mCaFpdoFrl@97A8*S ziY>rm2dl)0Cmi?Vk@RI`HgaMVM$V5AX29w&-K5pQs3av2R!Sw_>Fdr4Oi!y{5@ioU z$4nY+gV13+@!0Xjz3zEOCl=J-L?`V$yVyMy*CS^n&#nZKw7FA);uBt)HGtzPwEhD%?kUpvf6=N;lNp;Z=ZZrvUGWUDKrW zQoS4y-B==t?BmY~(jwFhtF0h#7ADPFRr;aWU2prL9 z+EU{BPN8X9{?I0WYnF|+&7yuRC)S0;6p7f(;UbkPMFPgdv$pO;;33|V(^0fYL+|#M zFRBnCW9%%lIrNK#A@^Xob$;k^Wlv&Wfz01)ObO<-xtr7iLQ+4_#`Pk?)3d~l<5AJV zjW>A+H!+TLNNErOuu#F!8FKGEYN1kTRACrg*q<_m2%tuROmdKnk0gqt^*O*At)Yk7 zZ+g#Zs0o!l(@97#cB2l_K;#*iGAkPsOp0HX{F(Pf22UPl7)xRJZC3oNP!mPNtX~ z`F^QFNkqr(oHOwfjZ3&o5CmbNUMlW8)PE=}S~0CZl&tUTN)r`8$qEGoDKkTc0a5Mk z?k0X(P_SmiE%n7jU|kzt0T#j|*aw4A5Pkho6y4E7TDZ z8&50!ZJ*J+l~Sl&y8g!aS4{!!$g_QkDgpu)ZXGR#NOvnPz`VE3Uh_RQ7(=aNC4dS* zE1_#GI4^D9&>EzI>Vf(o+E5g_6!mZo^T2k=EaEdE5_dYc^99Ch3{+i*h!7J75UA~i-5M4Dt z3e(EZS~(-Wj#3VgUYUC2`^Z()Sy9NpUpr+{Zunj;?>u_xgSF-v2-d>Erp2a14O3!x znQPW(aDWYVmY)BIb|!bLG895>Fr8-=hLW$c+kauW?$@$Z{Eo*S5*`4I!*P}rH$CUa z=!112zaBX@tK?%OR*Zn}gu(Vamogo+4J_`WJ;hos78&a!oy5f(bzM20nkkCxK$O|y z0KwtUFyUkJ!M$AUXYAp2eMJnuM%@W-r8&nLLGWx1e$;~2~68pTA9k1RVr|}vY zCkHGjmOKl$Yl_ev&j|j(;-F%-wIjjr4TO<;&kOWGpj);EVG_%E88czJ+LgCpusf&K zPoCdWe@UE>Kt(^K>NimE=oy28hpM&&Qk;-QzmZ$Eqbx&Nig=(AO_O6Q79BB)FqRA2 zn%Mr)6jrjjDB~*-Fs9dlDNzmhrRnwVuEp`mok%J5nT7FDFhx~E{g$e}JVYyn&Evv=D}c@~_7 z`?K28Z*X0ZV=|A%6Hzp1Ox6%Qwwk-NG>PZZju_KzFWbZ&g%MY~s(#DLJ{yLLf2QHMDQO)?Uj$=$i(TAhWlBYs-AaomVDHMlKuTRSi? zC195&B5o^p;-PRUnVa6qEW!Zi@NI)qyf{!11T=C_rU3__1Ei72KU)CCifIswCS)(d zrg#u8Z!w68>LXR&!4!Zf_PN`u1WGnlGSc`K$q)O180=%X2=P$&Av8%U!6hC}hKd>| zKy85q1*j(O2zZkn2GQr=phmRJ0GWZQvo!@1w#*PEB-=qD6=DUrEUHLOKt#z{0(kjH z44A%BAX^4%W+K(EjRB#++nSjuZ>du@4HI@`1xvyqAbTxOCh7%4-uf|eY00!9l`rbX zKmt5^SBf7N8!BrQ+X=EvDIpWprD76|=#!|-@E{BdjL-~`L|DwJ$W!%jwsK@2mklN4 zdq=?gE&D{G1|rt|amNl4IDKRR1gQ!ZLy=!Q!xV@P<)moqzrzYD!z!D^Up4YP{P$9H zXIXBi0`osA1-8u}7-iGzvlT=MsmpOd-U{bv`3#n#F$<_sj~M>}412LP3EXYNax4ZMN$hPf&l`dh znN$V1fd&BB1>HexG?2Z=SARy=r!PVmsQTJtYMXW=ZaDcR_Rq-=5WP1|``!iDq`?#l z!ol(T2^&gizM?J9_csb0=M+PPN6Z4#D$Fk8qU*VxKoV80jil_cVE*RVbh^;D@Op#? zdpK=>JHgN%qbe$>~D?7%VDBWE!X|o-3kdkw4zuAW?Z?G?2Bd*MvOO?iKI6T z8gkho5WJIgFH9Y{bi?h}j%!(w2S0ps*j}YP_G_VEg32%`&GY^W%-K(&26r5A~_t+A;P@OO-ArMxcLf9N1-vAk+Wl0y11{J9hapmMxN z(SrBIsbz+;^>tr$bDi^;jp*9^$L=_xnO|b-fCLuI$R)7g928r&ufSE@C2Wq8-P?Gf zQ&@9GoLhBg-^s&o%K8%YW^}&yQ_(8@|sE6pHw$0f{4v;+N*wd~s{kfTH-QPWYV) zsIYzxY#@=ks@Apdp+ewO!k?+0H4yr#x6<)5b?MazP4m*#&txp`>Is6`(p772jVdV2 zSYD?-A7AsIT^mzoLqRh!2MP9E(_Tax=PL8^`45jPH8lx7cG)~K(W&>7!q>bBg zWB&?3BkX-xCL0g#q+hP>U&upHG&h|wD8?^{-hKc67JZLW+_v|wL;=Uv;+JA(0&oWC?_ zN~5EC)B?s_J1Srd-)Q{?3z&8cO#DD-jHq)}cK^0y;oYG_C{o#_FZoeStQC$1K|Fbz zLeXxGnlXD4di=C{Xs0Jpcs+~v-yj%)h)hze^7(`~t}tDg4PNHyDyrj^*kdI@F0y>K zoy2a}cWt9BpP`b&H-#4FY!RM}%D$mZ<9HO(DFii4j%@wWP5rgxOcdJg$1z>|j&k3II(iX&$E!Kd%{PC)qGdyli^7X+ zqO4@cnkj$z4a-8Z=}*n??bt76+knCg;mCj}Xo$^S{R;N9JGp8@Q4NX2d_jkm#Xi}Q z+&0bFK3K_*v7ojv9bgPVgtTvCCoKAYcnzDR!iLeC!@7Tl_Lw7!Vf^-8`eQ8^T(|bMWK74)AOf~Xugdach^pnI4l}xX_`h0N0;HjO z?)8fDtIEFA?8oy^xB(*fq+~HPM%;MUZ9UhHqt5Qj&I>Nym+2kN&)d(b*>b8YReC+| zTeG~tbnxb`f);A+PyGkV)@{8HWAjUwUQKzKLYjy^pf;KXfm7;THlB;-YJ;#cn{)T? z{sT$TDRm``iZeAnDidpE&F$B8925|aA!Ef>urNLxn))QSr|`$+Oq%W3Ud%I!K_c@O z1|&KVT5PBsQk9d_BZ#$BFYAQ49T}5X_HJ@XC$faD?0FV$#+Abcj;?1<|a zK1>)8lKYY0o|36PVq(n)@C@WoS)buKcqXzNXzc72RU1j|+NZ^^5h!F}p%w}Zecs%Q zCi=gU)?``%bq+NfdE!%=A^ z^_7pNqSPYYw*~2uMBef(t+p&Zm^JhYbY*v(_Z)-Pfgi_J_vR_V4rk6@J=yuv>SNC9 zUY!*G@qZkC9`662PKV4tzTJ7xXQQs9^!g}%(hr+QJ-7a`(_x2(rSE!>i*DPZ+{T%^ zW6a^Mji&)&oj!60S|c~*!q=F3y!WY3-(CHdU#E+5BkvNCK^tUtp4D?mp)Wq1a?~>| zAsN@OdO-U71RjTD3%yyK&X{AMXgYmuKvhE5nCS6)PU9$$~ZZ3S^|q}Se{y7}E#;!dr6 z&)u=-wpl$9zZU^Wz#!z#nNWFypzgd#uPpGByDzIdGuGQBR;;_E6-DmdSmExHKK^LM zyUFd4_TJ0-3bHCi5NHebI9z$PE?u6(QkUO6$gAwWQE?UIG<V9dyQ~rx(RHuPH z-+2)q^?>S3z}dy2zyjU9-nUqY_0Zk zNnh-G$h2_S5t|79xnrw2+GdMa!%Ow@P=b5=ix1QfMZ$NNS62^`du=j{^D8NDgE5YY zkte5R`V7+xbPrJ&MMc*;W##UA=!?9@#W!t9O+72(J>Hz#jj|P!Pw@sF4}3~U!s>-V zXJl?tJOc|~uKM)d+}A+mlSlh?2i9X^$HI`p>m)cgLDTy2(2b>SyPzE5f=%-sMA{0s zEI9Zl+5@?|RXaipEbr-|^k4A!5a_^Me{|$4E|7l(v9!p2C$wdzM zB~xi`rCRVz65-vQu}EB=tw=I3>CxwZshQYUaXVc;LcWrbxDy*RGZ^{>wkB&A%kI>y zfeyhPR(iGC$aRX>n*Rb+9`(jrA{U_U=sFj~xU+iuYK6lQ>?eJ0Oz$%4n{Xvc<+8N> z#Sc8=EDI*zP3Gzl+i>}$&_1HaCw*!lEawqecql4g{iGi{lJSBsKAy>Yi$nkU!md5| zQG46c2oY4B*P~1Dq_n`-=1yJ!!-DOBfg&sK<-sd%^n~2wg>644?8hBCEpy-h_Lc=f z`hGMoX!Q)hFGTok4Nn3{&z(}FE=*K&)%1FsUWL52W~3=k?om`9C!A7RU?t3X(=v~g z{ch~DBDu>$1}7gq6?a|%^X|LbWsNP_!daP;nuV+Nd_|MTx?;1}jC%d?La0(bcG#Dw zk(Y<#wsH&ypL(Ihwh(m2jhe+O-q2d+WA~A#+csDXv@`SR+yH>Ue)!Dgg#}3 zu($LZ5pw3Kb&o6m*8N~d3Jt0!Rm+&Cu@`A6)k%^IankN(oso%tVbGdz zf`ca9pKZKTgE}wqKX#T0*sILeBkRZZUCZqs?N`)dckZ?OyVB-8-B?|hUcim_aoMH= z@wWF0tWqPtdXSy!Up5rG<{ude$t%-J?;+?Igo;d>DPb)XYuCdo?;ZNIEfxwrxG<1g z(hCv}?~e$YVoCsP&yQVc;Gal;btf6BMbutT%d5`3QD5G^A&(Kn<(e?R=7G(==rZ+? zZ{Leq+od*SO6;M)+GU&AeCh##_o+qsr?QV1BxL+fwfEws@YzXTnfb&0)g$q79ioaU zM>m*alI^Onz3#`}$8Y@FxOLYc2&b9y=&)NZ!A9vfB zM`2if;A)ckU0m2k;*iHZ)ZyGJu?xiaAOqkfW9(~&_G{(ilb;BK-P{X5_(A+!eWa?@ zDQiDcYy?jQzTBbV(3|7_jff1Ex7=c*7OjGzpMcQEkN(wUP0E#LQEA0nugt@Bkjb_m z#E&Zb#EFC4DVw$R(79PKbn!^G66(mUN(onhkLj) z_F>C69Tk4a`OlUQsEol+$sB+DWV; zdfb$&3SuCeoM4wIr;V4gV{(18ndgHJ7|~++%M2iS8XR$-Id4uI1d)CHItS`qTt_2% z#JYh0Kl6oMRb*)3H!;7WKwtb|*f#Nd_)W2gw4d?xx#V;fa~ex|c@|wRW0b83`6x>& ze-Arl$C!2oo{;L-AEDF8%&W_drKrLamKWN~CZ(arO5h~p1wM#BkIO;0KsuBP%H3cI z8mbX?re!w&P=Tu9yfgV?`zK&SUfJws%-!Kitvv5tAKsR03>PB)y!Fyub`Y1w{Xv)J zo(5=Xi=Iw7A?YntExr&yi@k2vKNybOqClL$Mr{?|zCu3RzvmfoX5#i9{$2?HjqHmRB;<%O_)#7p(P{{${ zp0+{oICpDv4@+jp4-=$f$u0P6XK(Db${z>MMLbz@u$cG7rf^TgF1%G^*E2l(;*=>? z{X}-cgwI{%u%nq)42u$4_VRx*MlYGzb7v}s!edEj0_(WmN$#3%W&A}`x>%^GX?c$2 zo!9yn4)1+plafk9l;x?@98Dr(4ImZPNvnrS|8#pxy+Z>9V-VPYm!OTpt+ z^IC>b#XU0%nQpY-sf8fdY76kvhmS$o_}Fl>?V6YwYA$e%{YY7HBb>@(zoe(yB~1D3*4w5Uva&f(J*6tx9^&Tvu|3*5x;0ppc>-EsEBcOru-9@##j z9jAr08?rkp@%j>K-ewkuNmPLoz%-RE+Xyt|Bkh;5`(2YI#p6}9>$dJkriZ=)g&{43 zHt2f1eXk`XxB%qvKE1Ol0^73PQ*m=~1@?A@i#Z9T!5|cQrpU_*sq7gpM?qUm$1Fex_Ybi$6E6*+J?GeYW?Edr zmRXD)aVZ6cY`xu&S4S|@{M224GY!+65=@)Qj7nNmh+N?Ey}k<2lb!Q-L?b3IXUWh< z^M($6bQrM}bqIcbxsEEt!a$^4E~?i64d;`A({@MrS(mCE585OMj_^pY!uw;P1cp#S zNUgGQu#kMg!7J*(Ewnrb0ad1izdO9{wLl57at#_0yovBh&mwDs~R`V*Hu<@YK}m%Jlg2Mi@ISo}Cy&5JT{RkI+?|Br*kl6;hMDC84e|WZl0$it-;Lm)ny}TzrvY@a;MsVg&vdenCY28tagUMpt z=i$#hBqdn%2;|il_K5C+qQWxk`wFgH`v^Qnfwk|h={sIXWbn3oBegk&j7>ql{5pb z%WGCXjyP0I#4W#O#DNu0S*1?CfG*qN!*@1+dZRoECbC1rfs3yG1)Fb(N_q_Z=Rt*t zvx?$4;dpyf46^c>9*#Y2tH{(pP~WuQl=YQezf`{j02c?=js0bzT~w9J1YW&zbJzrv zCnDNlkML{HzW-HyTnI3Y*ye#9CLP_-hfOOCNnDdJjGz7yyFUHGui>UR&%heM^?bc` zhXY>)q#;+z&1-|krbNer`;o-!8caRAUf-K zmLT?I{Lf+JmpbPfT$=o*!m82){P?dQMUmu>@iha&=BjxAKyTNqf&o>#cKCYWfjPxr z;fdj^!mp_eSfw0ws3nMsy9~pqm_#<$tpnZvV~_Cc=z{bCj6`N!+q%n37Yn5Dpr*MT zA)9B!UXKEaS!T+vK-!KVhH;!g@Xz6V4MsD#C3>o1MFmXyt93(DzOIyH3a)7?AIpunm<%4A}0-Qbo!j6>g|^LcWB859pww?~8$zk@JRFIAK_R>|L2AhJ4K6 ztu(4z`pSH#!*qD!#ysILjpb^{?egIc?3Owp01|0q+g*GQC$nN?vscu45N!{St*HCF z2bG}IP`wR269B)?=G9mw4<(X={vLUY@N07SQ~ZwzeS+hDT$*6nGz!JGV7u)4v0%G^ z{EqNd>-2HHr;_8Dj$vmO3Rs<0@b)bt`#3CjU`i3AO%CL(A(<#1S>`#oJMv4p41{2U zF1Pq{)t0ul7=eY&!CRBeI!B*5W)EYswco0z+tb6vEI5#e#AAmDpE!JUBjL)nU3QaYi$@n-Ff`0x&f#b&9_l|KnRv_!T*bFOg|c*W=Ls zN?OQu$(LiIaA-*jnFC|K7$v|D2{g7>!gi|InlcH46-lPD7huLWjqkpNl4+qmgI)mT zE$i5TbApY@E3-|W%9gNCL}eZpccvDBkubi=H2C0nsjWSlJk~|vs7Yy_$T*QQUO*tP z!j!=)SQ99gI0pe17H7Q)sJxV6B+}rIdNE%08;yOqfb#FTgqTqoTJL)oVrrv!GzclU9~*v!MDKq8i@u2O{+9D;4_Chpc%C@z+= z*#w#Pn~EJY#Ke7ZqXbdn$Q!&ZPmPt(n-S*DLoKmKVbb0~d*Mz9rr=`lw{(UmCj++_ z>F|#MyE-fnxn;FX43Q<0BG$4rA#P@JLW}x%fp$Q(s>@p(s8iMb{H*0cUPv792{>ypm(tcLxqm-W-qP zFHa@L2T}(D8s}C4jX2{aZG*Z$KCQ&Tt|kB>N?~{ROx#C5VYpRU_4tt>@1QG>Om{h_V?z^+Ts?)R#HPw)H13>^q z3zNXr{GtyccT0&s0{B89$;>QNB6`{#0NR(>K~*6N)&`y@hOb&1f|#?Xk7VU=S)?Oe5`uvKWvWJ{&#zsJW8S(++weGdqI1 zpa{4X{t*I0Bsr`sR@pF!2>en5JU~5;mC>*%vCCBM9Rx&D0vf&E!0RvX{^1<1nZ}+PfMB5P6=_@Q$P^f2IH)mt-`t}k#Gv2o&q!X(_lKZ05On@M zH^7^r=ip>;hexQK!?HfhPumL~-3f87mxq4>4wop2$R<=cJj;}_39E<^Gy24cQR?^?=KELVEnblLmJlPoRTps;xNhd;mHO&Ujv&ZD_GS||ak-~c{B zaR@fC+|y`FsNFRg55tzZ?4a}DYDh{Vs=F*!0tyo6+W#^B20?39O$ZLs1Zv8Os%!-# zag>Q*&Px>NWG)brr4qeUKe(v0iD3!K{xs@Xhq(%wS2Tv=u7?8e*i|u)l0u^Fq?RY$ zKrXKlH2$@+zpPe0#NI&fm-dT4@Gw9r~we1h4ND=8T8F z{+GG_fJ8u*fzXJMT^)ByL^P|lb&T&482SApTNKpB7@X9Rx761 z7HQZvD>M@T@9K_nsuaC|z)K;9+ep*HSbuP?{rqn2Z{0GoJ2q#Yea}Cq&j=4*E4KsO zAc3gV=9czOfk11M`qdAU2JQ>v6f6j?=DKl zZp1w*15=o3oEo?5VE*8_j%y>+7F{S^*ao02s6>acTnO1N|KK~h08kFMXqu|%@z@>) zWx-e+gjDJzx5fz$qhNXq8{6bntx6#Z6#(gjqsn}k)y0qI$*%J9mqI^%?M-O^QKq`r z63GYEfs>+Fam_^MTETVqE^DStmlzA#>=vRCOb&t<3>1;zQ?|%E#$P@Ls6p}i+(aJiL2mVQa3NOOc#td*hSJRk*XCEGF-C|u zG2WC1sze`FKokc9H{bs=^QM&@0+0p}37uyZ(BpyqAmIQn9V27YMaKv^#i>9h&tX`+e9L_zTUut-@m-^3rMg6B9) z3dL}xQ}X|V+g4wK_fi9Zx%H0~;7Y3`D^*O7LgUqUq`QOsz>mk3dHOX zcFo!SH?U1sT|V}Wjxngm1Fy50378nn%JI`P);-p%@H?;sx}*Yep(>G7W2-Ti-|T(W z_3_1_id)yZcCP{os7f*F;Gr${Qk8o*m?_00vyo)E?E-H>S)ClU#_wtozXp0U|mF;k}y3n6&{KVFG%>vVDguQ~vb}Q-AW(IPATcsjsi9m>>H<0rr0bH%MfpWWgfkmSjX#YAt~6Go5;P z#aev?Fsiffl{5 zp4&~Jc9UmB!Fw7ukg4S~3YQ5r$@z+TDDUXkmUKMQjSITa$)N13Ul=Kx<;5;LF#guC z+gUL(fpSGjs?UE2hQLRPMN;vBsq3!@bc_cDx5nR%U6+rZ?USU#OdgHQA88bE8`+}m zK(l{|4(5iisAZ4B+)`efyd)z@Kc^Ac1hYz$q79 zG=o#4j}3&3aH>*fDs8M3H2u+9GDknDYXWG>Iij_pu5i zUk2d8p5YrvCke!~%s=(FRXLAG_IA(VhqvXB5YZv*Lg|v8V5%}3*Xc92rKK*HP(aer z^}jJSVJ!(P>%e#hs&eQh_b+ys=*%+kZoj^Wt7I3dx{iVgWnTpFQdeQQG7Z8WsGOF% zIQx6N!oXS8UP0YKt4OhS$w|?K9g6YI5woX(Pp-mWYpS%Q%Dfn*2%KM#5@iZPapImU zQbkrd))G!yf`QgYkC`JDB-P!Y$>6O8-SH;ie5?27dYFnCTM!5Ic6tv>eFGI8F10nP zUI!)K?a{>W)F!X5UsUD65;K0rOU1(3YMDyQ<2herfGz zfU#Cb>;Te7LI&MN!ls}PSzn=OaSuU6lT^X0b$J8+REQWL4Y21zl{dhvKr=~ud9Bk6 zp@PBc$X~w6dvYbgZ~f=3J`~Tvs|UqZDLcTfkzwLxJt1Jhu<5fdJHH6;L6o9v?V=Yq z?wIo%F%U*A!cxF*7o_WHxGwRHgbL>A{_V-hirE%7zx|V>Wgd>Q@n|7hpt1?#;4YFR zaQ)bO9^N63Py6nUUClCazjDW^kmT11Nj~A!N)Se~z;mK&J96iC|J%IoF|_RGuCYiS z?Krl=q+Q-K9PQ$Vg1^rg_Hw>7&G$y95&Gp0GE9$!LzccIRE)H6sb>qq=ARaaVk&P^^kc$@@(sATywg-BAEtmu3Ya!Aisy=^ z0=fYA9`C>N3uKLmbXo?~lE%syu`Mso`r8}hrHR~Ne5w_7Sxc)6Fb4d?{l#b(nU6yI z?FAC{|fE}7hHYdL7I(kT4szfDxP~2 zPrqt+frFfGd>Pdhlm)`2tie>$76;}fxD2;AX|of0EByzvkpU$N^&Q-gGx*S zsCdZZbF#`%!B_PzjsSp~lp!j827E8!M^Og}w?Mo-G`l~quZEpws>WQLz!_282daK= zgn-n0xcjIZcn%nppq=drSkl(a4e2|94VbH-v(A6_J4Fa8 z&7_FG4;~>bpW>$k7}>kx?R2RMyf+?&@HgpugD2^?dL$W0gi0aFpFo_WPgziODmos- zbBPhTWefbC6(g2`S=>8m{_5k#n%|Q8g(%uyP0#o0zZ!%RK0=85X7Bv`g1kj4vZxq- zfK_PL^h|x!b%HzgG*6G+jo;1@WlU3NaVn3;YwYu)=`@!SjIN1TwF|ac1MD|GeHoo)fH-OkI6Cps6ee)-6 z0j$cNVKA9l+ykMw{gLsnki;sUNySi?6o>S7^z*kIwsYiNQom*++Q%_HhNlDaWX)&M zgTQT3UTH&{Gu<%upxz(V*tx2L2xd_fl_l`N!998FsjQB|*Nh*bD=H^bA65Je5O022 z%{Q4kEYb=9;~_B~_O-dUayEp@xmfdJ2omm@UDCq$q;+PVcgha@n_TH~5(8owPLd|E zoyEU0A#_QXJ{D}}RCnjkA4&Fwh3t}gtZ}kGV-7jhM3of7N%eMNXhe6FT@s#6!L-!7 ziRTB;J?QcstT>P@zj>%vm*G+)Lbq>qR96*)_X#XbWoz<0g}t%ZC0uOF!xRPL$YNBb zXzOkulu-Z(dOY47H%sl$o)e37juO5*kB~6!aUcB=kqvo-iab=URr5vJHxvG*HS3iK zhLO5V5L^xT-;|=}nw+RSA_5XhX_ux;z;5JeGa=%c$Gf84%hKw{6Nfv-eYfm&UQR1%mC4q%AZ7{`i^qsCKDe(i3^{xM`|9f;X(dm+9ISDTCz{$5zz} zJXggh^36*~!WlK7EAWyc{BkdU#z$Eb1lF0En{E1n6?JDN>%SjH#}D>0#E z6rqpqDZsJQ74bROz6z$$N;#vf099ipaaR^dJ_P)Nx(!`9A!D)oNARPe5iJzapeh{D zb&q)n@6pc+RpbZc%t&cRks5DySU7Chv557s%fr$53EC*2mv5wdCjzOeBIc<6up7#Y z*0p#G;EW&#OcmZ?`0~>`S)xF#2Hlmq{_uD&bh>l}mAl+u!}J5_7h3g9242HS3Fhqq z&%H5z&b1LzNFQU}7ope@3B_nkG-*S_zTP|WduDALIQ%cSrd_I_$zZ zsupUIl(u0+`a$?-XS>*i(PKTzekLq)a6IsqR>NZX(&Fxjc-%waxzUtWk3JWi!+#G$ zmk7%jKlpCYsk%6FzLzCDQGFWKvdlz-b!cTB2uAi1G=rq!Z&)yvb zFDMloMo4Tx3141_49;kDB@iG}t9pA?YnlGck6qQ8$0hY;u_er%|EG5f^AJ?1)kamJ zm{8l$w2UmW`qOuxK&{VfzT5t$p^t>3696}(X-Wo1c27w0?4Ut-C@5sC7krR!0I!De zU=W6!Q;wH~IH}!-FdZ&Rg$kbWIYfJ=z=+7}cWEli^5C=;Ym{$}$wkBP6RPb4gCrGS zC^IrU#n5l-CT1}THO!W+$Ala#W0gSHm%p1FM1u*Kp$FQs7$LCIR=RKzDpzb; z+m1aWT^j)?rgATV(g{ET;e<5RXY3!->C(6vdw(1FWLuY%j^_)yg|<6v9&zxoF=3x| z`O?=^xvtMJt4-@ZoZvFRfQ8mvZz@O`OLD@Kh1U^V&pCY&ryi(z*>4Ge3`zy9N(7Yv z7T!e}Xpk`VSHG8>-pj6JDYo1#BoOu0=^Giy(sqX;ih}$6(ha_#+uJIN$=vwN`BCmS#3E1U)Ywg__%=D$yqCnI3b&7{CglqrJ2(#c^c zz|0^MQFiqC(Dw(R_W)XxFG`<%QK@uW#nk^)%|J2^SR`&%a-WJOc~Yx`oB{!`N*$Qd zL=l`EI64EQ`5bnPJz`777?eC<%YYB(yd1D(;e)h0)*lT^hp3A` zo5;{WlJjfl9AE)`*#WP%sAD1~{{qlhrbV)_6}QLRauube9#+aEWb@L{_rJ<2tvI?k z6j{RaAKeA!bz}MCnNl^(ZM+tH|D9Ln(StA}$`z}DCCfTfkY3c)_UQ+4rtFSKuKz6) zrn6+cZrPQrN#g8V(r$w3dem(rLM|D>)*PXwBf@S~7Ic+X^*A@zB{lbxP%r_6f`M`Y z!_FKb1GuR40)l&h9^Mf288PnPp3!P%{vUhq9+qXbtq<3BrD-Z9tx8>jc_KwK4`8B* zrFlZoIC)ADMTr-IO4JaAOw*{$P(g)&4hn*zq=I>Z)RqSnDPKT@lu|)almtaNzTbV1 z`Meyo_Wtet?ca5Me|*=quJ-Qf<$30uW6Uw`agQ;_L^A>MW0li`W`kVhOQ%yRIv-R_ z>33;`A{=^d2I~oQQASbUz5fI_BIB9NO;RL$Q9^N+7}mC*;lK0oc?@8RzTo&rV1yzxOKZ z6^@kb+re^?5xsF*1I9LIX%trEx@9_^g(Jn`~(S@BeaG%?_x`Bk7p4pXc9lf zNX6-*A6nc|0!2t`+seJZe6N>BIrqiPu67j6~OsbICaC(i63E&aiq; zJaTB7lgk6hGgB_1TJiq)X>#OghayR4ScZ7m+~;ci%NA7wZF*1M;cK)y+9-tD=vZH0 z_A<R1%9^#Rq|6eaY^u5g zOcPY7I>YiOp322=8=50P;18GN;YvleEdh~|QqEtJxXXq*xC~-ZUq569^8wZhJ1p_E z>4(lBhW+ia)-fKi79yGMqy}`iZ{haQ?Wv2QmkDs!1Fj8b-Fw{9*+`&@ZPjMEbkm19 zsz-{hD7`S?rr0pWEs`yTQxp}x$!$$4Z=}ByQkZ^;W!872L^lNL`LBl?(6%Wi8cMvy zMEw~SD&9XmYtM$~vHQgY^YeaU#O0kde%n*osbY!>n(?$-3WLzCZUygbc9dbBWFHY7 zJcZ<*OFt>e7WIh~c868W5wO;U$azWa74H9)p)*h2@LNWf$Pcw$9Q2X0_6)qVp~_K! z-83?e8Irr@7)S-dsNa8a%f@I(d2lZqUY5zasF0++JG3&dF0VT*RmG2qIerVJ2?qCz zsyn1*@Seg#7EwuK-Yh%AyqU+#&oO-i>&?ek;LB&?{{1T9=so138W5-!yHC*n8MxnLSt;N>W&a&ARul$HDq z^DJC=83+c2(;6%%zeYutjYnuw^K}3=zL*$kR5*CSRfBgI49JkguJA%>#U6gn& zF#~=$Gxg074%R4zFUe>^=clg`TA^_-2>FFWj8_^}21RfQ;%}8I-d?dhZ2ZOjI9DoT zB`O}5)T)VsF;*enIeA|F2RuM*1D~QJ4TkPE$g@DUAz|Y^3clz|1=nxB{A-%jb{Q?t zUPuno;@+p{44F-bCSpRW;F(1FuKVV8%ey@2^1&_`EU%<4V@9&gjUTABdU|Jkk6l+3 zd<3DxQ*&Iafg$rT57WiYWD>+|kaPSlpOlrw_AH2Gsg@rz0Qcgkf#LSz4+m$^+{)f6FA6r)@%BGzw#(ow6O>1@tG?mzKR1>`l zL}Wx0GNgtaO?qv6ga%wY_+#yOT>ml#O(PH(D89s}B@cCZ?@nn2MS(Q>sT!RbG?B!D zWTAN(tdC@ea)4UZw&Fp!=_v}oZxO&FD#}xjDi;VfseZ;OgI5%EGVM}^_A=_AHW04L z(@^w^n8^ou+PK6Ndyaw<;_@3JAVC*=WaQ^P1%oJmCU%D4A~yZ_h>$rb$DC7BJL%Hd z@2mT}7}nklnRv-8uX_JrkLzFQhrbpboHAqFw|y$!TWyt-8J~VUH=uh(YXA9mIaBHn zo8)F3?>8WEdR5k{q!9b8d3bCLI*h6iJ#H1AM@R1uBG(jpgrxYH zb$G#NUVX*PE5`T#*1-TQ(W7r}M(y>EsrCIF@`hd;Y~pWIXME~)EH{1I{+}0~@;37e z#T)8(=J>VP|8rcm--gQ_E?_Xr_OBR%LHgl8|A2lKTaxelm-M^)FKFx6@tR4Z zX2ENs^#!|EY}Xb2;b7ssyr^Ooq9a5E_7md=uEIYpcF+ZN&?k)ehbcPBP2CZWiHcKg zd}dj3z3t5^`(tURwqC3JCa&|A>tZ3}s%bo8QF7bUV{V+YL#wh52A9G>bK~?CYtTV4Cm($Sr_S&lHPOPEO42jV zdHK^wKPQE^B0*h~8Ibs#@|I{q7pXVr=yxVvDvl~~F+^CDZbj|GL^KG@G`VE3@Gklz zA`cnr;U4f-pmP02#~JE&8){+=^=ri7i!<9?;-X)R@OU#j8D{?Z;CK>PzdEemr?u>w zH#F>0*7tPiGISO(%9_Ak5c-6ccuM<Gk8L!c<)CScxfi zFK?7w)wg3&p6&*FS=(&`U{2%rh(Uq}Me9ZfuZ~vv0WOFw7@@^cN6qtwV^A)uVKAiu z#~hn!>_P-7+<%#aKZdf%7>{(E?CCa%3mN)l8CLq(^euJ^r9{vpA~VM( z{AGpIW?b1^aoOBI6SEY*a=YT$=n5wW08G8H#PARnq zF!6NCicOgI@>85mo&y}6%;i@#7aj%jk8@soiVqil*L~}!kOve~)1wZ0Z^wX0J7;H} z5EdiE5p?N=TzYneR|M$`D(q4mrMC@1EVZ~ZdQYOw2i^a+hwy-f%^F`euR$|OG&UNUo-t}kCFP#l_5pOj> zpAdI^)l=P^Z?o4T8D?xHZI5>1T&D7{uDp~=kMa@r-i46;Okfg#ey~R>(e8sw9{w^V zMJcltrHlE;{HaG$K3b|k%vrIU!KnUgxA${29?iECCRIH8q}zBgC>C)WQ0oK4bEvv2 zHzk)QnFp|%=*qcpJLkP`eg-`Ty4n9TXVH0!*P(XLZt24{LmM#v&>^SLmO3_T$Fy_WZD3kN+!bv4Wy^QqK_h8@?i`9&!c!$BaN zoEU#S%d`I$G%SVKJib*D%Fn>_$o5=~d$4@h1E(N*jTbe^Qd|&4QuXc0DOkN}(soCL zEc%<|)+kL8GcPH2f%+lcCz~!NdBc%wSQd!d?jAs3o^MNlc3;I>P zF)e}0gNg=!n-$Y*YDIfQNGyDu3!8je*ThD!JewwGz9=MmmO9^N+hY$PjGqGr!h2J+ zIcspkZZp|%t0k?+2B^NOer`+Esop=_qwwXEIVW9?5I%wG=KcZDr7ghz`6icLh+R_3 zH_f;Ls62D|v*I8msU+Kiv}qH=2iC`c?jJ@+!rw7t0iZ1=cGA=B&Zs-P^k7gMkIw$$Umn&D0I)PK$Ld7Fi)jl zY7M^(nvDMNPX~*x16{LF8*I1N1+J>;j(_LDbNnd;8FkY(mb=o$d@V)=q=&h?kq;5S z!!wICMNR#qHZ7A<JpFPE{I}YqxB(GV|sH%9ZoZyY+V5I5G}l#qI$9$2~o0# z-cxR`Krq=(P@9*|ja`wlr&l2;Lb>jMYwx0Lx^C|X4Gjn%NWj^W6_2FpbA$`f^+)?g zls*mag(O=7a~O)M<@tjIb!>`ZfJR(7w?O<>e3l6^^$>NY zs8ZU+QG4AeLHDnm9{zN`V=CXN4p~%6D@2*p4B<$5&J?&9?bOtqR0#3y3^h|E)YKZ;D8@$^nif&y=sGo2 zprLnLQQMl2Hy%svSoJQ8I<16}fJ>G*Ry9*u4b*PQ?oilW9V(wf;}zyhF%=w#j0s+I z$(0=wWM(AB-&V1-#w6iKIuat|l2Q-67Cl|q?( z=C){DZPF-k212O_TPbV8G744;yyig%W#IiQ?a-&KY7nxx(wXsy)}fWl%)%N*^%_n3 z$Rn1w;%{~64bc)Q8Vxu!ynCh+0mi?lgOZTl(m+JB0$L5;^*@dzu*N$( z|2pE_%8ym|w#_#lPCyTh#3bfez~x={$0ZdBPlhG1Z3W`1hr`G`3GvOlGeM6D%0{fM zYr?Qe|GAus!jL4r{8V+@O6pij8lh4vH(vHfpdn>S z+udwK4)hET8~?`$NvG(@w6ILqC{kW~ip|o4WmQSx>6)fFR!B^nt8o=6G2n5iYAI#X z2uKN4i<4V8I@`iCv9ldg4Vwx{yUJ$A32ihlMukOtE;sfYy9gl=EtH-M8bK5khBCsi zb(PM&P-t@Sc&#Zu_0RU+oGGZY&o9P^wSPPVcIMW zRap(5IU5s4^9IM%B-0=hK5{)PJDbOE;dH8eqF>y)k<5gwxWxVlyVZ#+&0sG1uM}3; z2E}$Y=wKyxmClE!4w-r2uxNRvTbckwqXb1$?0*%qf?ao82%FT@42U~tUrGP&Wr)4g zkkMhKOExkuZEFyzkVfP*!L~)bE3q3zDqh>`}2f#!w=jvH`ImHmZjI$xQ84F zS>~HwTU2JKaIe2z7E(9wkfGvo{RKnS4~8>^^%Wt8bVHH5p?-fz-G0OU3+};nlkC>H z*O!AHVdwLT+o)rIvTOZ^RD^{Y$DHrKBxiH)cqb*pZY;h}lagTsek z-E!tZ_L;1N4E4W|xLNh5&fHpmVA-T2wO=P{|MR+8l=YWC&G@UImi^^VE&K1bFD|#e zU%oI=`(LbgKSRX@cYS$XhyHfwr^lQx^q*k(>E0y!Bem=P@)cgQW^FoK6m+xbx{LNd zJLmr9rj^%sAM|{+(7C@|d>{2c!6hCe;bssE%^+opwE9Lvo~izqik%RY?h( z5ENES=~g=K$nfVP=DWr`JwyBK=)AC{f!+FMCJuitHO{SmtYhBw^(Ajt#krZCuiUK|)bY0;tb|Me5g^rF8Ry5G3GA@|G2P2KDo z*ki%?Bg-7~+O@8Un`PGenZ141t?HMsDXaCNmpuxz&vf_ja4QN+?s>m_sK<~VrBO=* zd-Oe$JgN>{I1?%aRfs!yhck3ANVedhYAOJ61X-^A}<+fhC)Z~fA$uai4J zI*-Mp9$mHOgGs85F|9n{*{w8cI#>E--=dd&wGnlHbVN%Y9nsFT_ErY7M^z6BGbo4)a}s`O?qrZp^uFy>`@hYT-6`jM$HG4 zR2%*`DiZXV()NFBM4vo5q9c#3(Tk4>?9E42DAlfhb>SC>n;WiKkFD7=&DJbDec`bY znN z^bN#;6&Rtn;!QIXYp-`X4C8cR&o!LGgV~Xvmd7sn6XwYM%=%5SRoh|30&ITWnGtgN zDD-`KKl@q1#oxn|{8}=4Z=b(=sjjNu5}W(>wQmnSU;TCby$4a}?Ovc*Vgx%17r#(pwhzOe-%RWFF%4$*0L1#i7j_(W`W|V|-XOTxFvR9TH%(R&%N) zZN(8T9u==Qy2f+L&;IZHD5d;>-kUE^8g3K)Zff}0cxMOLajb>!jezg=)qVJpqs4@R zb*-L>*H^x>p<9Z7x@YypmeG!LD=P}uWS|5JOZ1{+{Oz}UeNt4?@BQ?*2X%R||A1|M z!1};`tG_x{elOz3!gpU4VO)BnptxpGDPH!-r#5QO2 zGp+=G?_Kaw{CLdcMnK|T$^1tUZ&P4vy3n-FQ=2+04XWHhkdZ#gKeE2Ij7gX6I{HDhYN7$pV>U8sb;M|cZ?6NIZ%6cChHvV!6N+o>45cb z#_KnuT8?6TL#KY6T7Dzo=8(v)PsPMl?t25X>|?09lNVEAe7nA7f~dHQSEI}+H_jK1 z8I!aQuz5RCWRWwie=Gu`c>QXu6ZRiQVRNgfV*k&^72wqPqWXxJ9$luw4%#ZqhIEd; zUtTq1j#4q>=iEjtp~`hih?XsP`(%p%n;c*P|IlA4y3q5S%Xj;p)0SZjH1vLF2RpN- z0vd`xQE92UE&j^GPn)`OO$ls|K91dM3WF!Rj&D~uZt9YfShl5vcu{fFT32HB_hewF-{ zuE@@7dBHV#4c;58*1@%Yp|(p~{tq9fMiefD{r%Z6-D_)j^2YjL=jv8*A=4Sq-l3t| zWI<>#d}y=|kK*-TV)HKz{D2r@!~5T14SJQTM>fZekuX|S%cH6-k@+~Fy3HksgFNY# z*CpDq`~C9KQzLUSvVb;hJsynR`h4Aozx3Y{Ydy#+#K&-9^wbHi!7;8?Wvvg{b=#J_ z%xhNN(Vc~-LVCox6s&&QJ|QDyQeNG2y+0`$R&ls?qC*m*Xs4vw;XBF;O&5oZp5Re+ zZg_trS^-BkCi3w!$BG@}`Pmc`>}SpK-}bI}Wdkm$;AG$nV`#H{i{RdEiE`rN+u1~) zD7~I;!j{@_B}382lt}AhOsnqB1r=W<4nNW}&V_#b&H;Ub`@r28h=@6KzH9IsbiwHn zJ>8qavX7I2K0<)C5HVKv^6iY~6p3nRbpqfbdH%yGacq%s#C#0rn};)VT)(0hS7k;! z)(}>Wo0>c%0nIUbyH-8r0b9(4R<_u;;2Y><<=0u!j>BxC$J}HyNk@x=qh?fnqW8wb zy7eVPO~%Akt^ia-@!Rm@5!qA3_bsN`s{}53B`2f*(=}Kc^RvH{?E9V$1_cR304ys4 zR-|*)w@=8>&zLiT+KaW-M%u)}o2U1@Ot3jtOeY6H2Z~NJ+W7w*tUxTh%Sr#x2L!8O z$-jF$X<#E9L&Y!mzzufVi(3$gV@&A&uhaeiqxYYKt;W$$w(PwbY7*@jbSK~@s2t+m zG`MY|;45uwKHWGFzw#EzX30$4pRJ_clsrhr>NG%`klEr|_`3$za<|N536W`VkCu}* zG{X(I;hLK}RIXhkZlLjL`gYERvd{&=JPa=A`iVH4+6VO30Nk3#iKzg7j2RYP-P6?L z=&5YDB@3+XhpYP~aM@ussHM1WfOvy08CQI$XAS7&@i~a6l6g0S2>57oB=n!p$TD_V zG-kL~#uVwB1qVs2LK7rA2cR+(QM*yULX&5E>hK?_Uf@ZVE4R(H#lMRlDWrh?_z1$_ z+y0klL!X1$bxKgqKBl4(sqp(vkji6A4=zTt*J|Y%G7%O&D&GHVvq@TZhYB*-i6G?N zRNL!7oX(Bk_q8O3@63QiEEYgYm`rn{4qK@wic^TkI7|L}Bgp;FmGv)Y<6G#urJrR@ zR5h+?wQsw(`ll;PLWOh$9{bM)n}Pi*hSztcqeY}|0fH&;rbfMN3UldwJiGOMX^Yq~ z6hea2a|bN*_4-L)?6ADxtVCZg!#Jgt-1~In9)BBcXB&5H<9wUr*1yv#um59tHcWz% z)ZYoBU|}%AkiVOS+UlH@GK3X_N@3l~V3gDXR&6Du>|!ZFQFIeg z{+~?^yN_XqahZ(~LT>q3n#qR?gCBMAX5!*`r4cx535rVtY<_|2^+y78R0C-p^bMlQ zS?Jw}D8FK7YUTs4ysK~bddn*>`1IlHUL)#r>vvyw;T0ZmyAM{`GJs2~_@P5;;i=3w zNdZJSg&V%U?`vvW`5`HXxHz|9N3h>?=m=jnC!Z9`z{)k|atG%`TZG0!sGIGcclu0L zwoBE}91sV+a~}C|<0}Zy0yso1@P*D9p*<#JG_-Dzlg$Uzwx#E={AYvfYbFE9z<(|MRX}LCe;N1-d97F9Ffj_OXT$E|{g&eOtJ>5nLw&GW%figJW`1 zr#)-E#HNcZD6MYjoo|$nY$33Rp4%Jy5yn1@#=atkKl1+V=!4p2t&(bq5lTjap;#_^ z_Pb%*8y_js!nZTcZ;Z9}yCcXt!JaR9*D~EW%G)r|Yo~SZdltz(hSyyX05`-jM-mjv zky8Hopapl7kPA`%4tss+jUsRdh|pQK{3};7)XBGV4|v^xYxKH@c@2hR{QIqfux<(G zs`aQ({7zr;M0e+5;~9r0DTZ5nxPjekgrrLETH4*I&4XoLG12gBTNT%_6CfjMSaf^( zl^E;U{}h;$M#%1ZRPW4Q*GBljQKI}qR@{$zAa+nQhkMm5HhAa(OPkM z?4)n{tYi2*dT+k9V3MngP{58c40p({(7dJ`9gEkm5I@5(ol$dbzX3MU?Oz+{&3ke< zVBfv3A0N?eTPZk_cnA&V6L0|9=(oq zKogxmcq}o6!Z_7tOJNnw@$Py{BmMck}2te zC`Sz-O>CHG;(ue(8epjFCJ&(8tB+RO(CLu+x%y>aBvPSAd+(N?jP>EVK0hh|7a=nZaQ`kvqq2>>W z-83a?V!WG9yur9p`oAuaJ*dT=9Ds^Ft*Jh0{}7&SwnBmsgB2q%uF(jvVTbyR?*_t| z{|m!aj7n4W`kQTG{C*QSqjm+&;@M6}rD3d~4!>MnkX~!sy>#K}cg)h!v{#a9x}q1w zXJP_lZU&igE7IPgY1cZmmJ3{F{{^4ybJu!*;k}+b!oh4$OQg&a3FM&O-^@)}o;SJiD z(T#}Wzt*6~r{;r-BQp9!?aoh_Iw2&zcU=p;T|efvC($mS!Ho}y<~In*vDhYBe42&u z07y^ILi2(c4L9U|J1socE5$d>?s$xN%Cf*}pXdQILQ=m)W*trpNI^bTEExgAg@uW{ z0t?}5*0e%v?Q{Fv)upu0)D>Ny7H+8Dz33cS0hf#Yw@gt$AqAAd1lRhS^xUE53Rnb( zq$yHB1^U-_`bTX}wxB8$%%7h?tibnk?>lljG`sT|=Nn0XOvt$P={=)m87729O_l81bQT$g@Cd z2%?Iqz=l(@;^cOV`{8`W*IfL*L$o851!kYfBTNcY)ugY`D3{)_OcyXjdUAP@mo9aRIRS|> zSUB`a*~W+E%hu`)gkcO&Wnm>iEl8dAdi1&9O0xTJA=N&>hkg`d6h)AIxxXE8fhc0- z+r8#dp`(BI)|rFeCF7Z>5b&}~ig?<5-*+W_*O8T)IY*AG39}$*jE{_Ap+XR}okki< zC9-6Zw26po;w}qv!4K#E%|yQcz^G!~L`1fIh&G#S$USjQGG-{>vFOrE&iI6JUg@wzZmopgN5m6{*Y0N*u6i`REB9 zi5QjBQM^r=WJ#KSSNTSzT1~NM(+!{)3ob-sCXuM8=`t|F<_J<$gw26zGyw;o(FC?c z%(6#%Y1qKH{)doDvx!AD*h7c-CAnv=y5IV#se<9^6@6=^VTXI3i*~$zYt|lS@;V{S zDfn>M!&cTrax!d_zD=`U|4q>dN}~sm3}j~03;|!RWeCO=0UU!iC6mc0N2#5njWJ>G zt!X$ULE3gDsaTL51OYNQo*g0$Rak*T;7YyzepMCD{BO=6w|t6`B)I?f_>!_A+d^hn z$8RIU58@J}e|6B*NLK{R-~dlL#y=xbEzUoK62LzpHC+6F`~ z{Ih@O>R0b>PO<|-5FT6h4TAQRbK#7n7fPbx-pn~#?jYTM8IsdC#$E|N{Z0%jL+3A7 z$!Ral;4U^!|?sq;=|0QrJ`F((!GLPL%gqNM&Yi{xjGv|gd zq(+}fP)6}pf|dQ5NGC|B6fLKhZYOIQT3W`LJYJob^W0{&1RHKl=d7eI@{j~IO0vf0@5UWi+^WY!4qAUq1*w6Na;X0 z&T3%fsI3tMa!`1sS0$_+eCKzdllKp-w7Y(_@c1mwZ&Vu?KJ4mB<{n6C^1VrzE>i*@R!=cHUpzpckl6ueZ3ZYB4mK zwQP+{WMeE;QAqX%nH3=}UIuZ6Qf930!A+$nTf8o1WGuDwZrl#>%_gOD6+w8_2YbtXrEO=YSsvYEmjZjcpK=Ao6I-LxV=i= z#*7E}P`9zY1RL|umrGg6=p~aIb%8M-fDAzJ>&Ia}mF;=xV39neq{Zj{prp<7n8%04 zk4_kotU~|(<{_IN%KH>$bE7?oR*4U(z%u{ofz_{~ibr9(GfN`KKnJ|hz?~G3Ym*7V z4j_VP)xcQf4%(%~NLbBjtUyoC?R$+?R1JjGPG(0*8>oUGZ*eQ-shc z1KU2vjrmsy;b6>PAq0`lU)dt;Y*@WkFBEpzlx>&XAc*C&n*yEx@ibH-nx4i8ng3D_ zAH&9-*vSa)Z?-%$&0@HbRelsPXo66P!SGWtBm%eBL`{SQ*OM&IT(Kn?@K2^hv zoI&-zZ<|&DR-#-AZokf!_3Oq$fwh7eRH1=J^I0Hk3r#D5$?DbzX5o^a zFD_Q^ZMUt@q{5!N5_TV+{o-@-QuKjr%hGu-g$;&0jtvTp*Z{18^c{&i z&hW+4R7F0G{1PpqKlJn5Tvg4VZt#hgX~mV#_N=~bw%5%}+vh1JrQc5!HufMvLCsGJ zkAm8X7WzITYgx8L5iFdn>!_x30JQ;Td((Vx^c!HbXk44yLrr3k_XmI?k1?oJdxMP5 z9oPU|ONik?vNk;M000p*p_(USfKq4;fD@VX{rdXp@p1LrzsO2fi-FTY@4A6G(J}~4 zB+*d+(3!i3Wn~vxrh@#^hGEfugc@fQ5wIq;+&C+}o<)zjj3vL*=#EPinsTHKCRxdr z_$ME|48hT<%z20Y<6^LW4<1lb2nfE$D!8K zo5{n!o>&tfsTQvprh9N})TOx~8DOk*3- z0pdH~7aZed|2=BA;kA_7KPLVr_6~Ats>mWE@Ec_L^=o18?yvYaKPV|HG&Z8_s@0xd z0vvO>1EjB(sX@j>q?bVO1t)@2+kAg)PYEFJw@>x`fUo>3#sialMaa0f^HVd8Dm5BP zyLMUunV+WnNI^*>nI|)Bj_uW^e$2CCmT!YNRq<)8wfH0{?>JdzOlCzvn`o&LRQiqO zH8^)!-{R(N%Lf(TGkxDsjmB6tyFO^Ii`f?wZ*Mc@_~`|-is%%>PlXlhJSTM?rx>cr zec*BOL&{&N-}^b~yUke8!pnvkTfisX-Mt6`taRUS>dcbjz`)v96(=`y4hr-n7uT!T zN!xYlYn}>1R&Yt^%L?8*JMWwmSQ}@`s-bi;^)|Q6^MpT()VH@w7F79bmwg(WFSys? z#Z_8C6C&et$p9RE3#)FJPp!2@b?H8^MFgN}z8{cpsSC5*rHX;bVm-74jMs(KjWVD5 z+CVFsm-8wM$jNfnvBPXRmQHp8HU;z`~4SN^0 zU0_`P(8mqRvIB7a6ZZjWl%gei2B3<%la?E6To9gF1b_z_iKa&61ZFV(P0Og#-$w31 z^0BhlxCJpkqm@@_iQCL$!gok^ZYctyFuiBJ@CpgAh9`EiSUNMcd|qx$1>y|BxYvj0MddTh zz}GC6fMmmA4(!A~2iKv(LaYK)ByDSCnJQAhEj<1u(kS;LHfxdmJqFIzyc8V_6kL=N zt~=@|;G0ul+EQP+Da3HAzhNg(x>0fYU)3n#(4L92P|W#q;RJkdJV42Z@1QJ(XQ(Eq z;h_lk*`DY1t68amS`futq>%t|53D8vY``7;i7|vACV`)m-4&yjANCi$)i?=7?x<9S zFy)%PR0C*EN+<;ou7Jn&q0bEwF6$H4WQ9zoWVIO_iRjrKu0CI-D|nDVast}SXfhhA zEF{KhhBRa)8^cbfW2zYnDw2f}c}_O#7_VnLzL$ZXrS&BgK8pF3N7!SvewIiv1%9rb=E-9lVY zc7Kaw`ldZwjrVS3gD^qQCHxHL84f_29xDJF^0+ zU)CqMSV0|lnXxyn;Hli=Xor^GiNz%j7Kxd>of(~|A9USt_z>FqtqqMR!%6GsrO{?) zxc@oh*B8-dPPB-8Ide$sTZ5v5aT$)Q>N`DnRAl4NaxlBFlF@^W%`BXrp z>-fA@TduKz21XT{%`O6?b-aG7x(ZE2JUJ8Bq#o$0u-&@JX9}djFhA2UMfB}Nlab7? zaL*T(S4~GIe8#^;5rL$l>cL>mSrn(XY4^mq|PJj!v7CH}tVA(_>z#RZ z_afYsAxgaiKWaZPTG!HQUEy(D&L!*NR`Jjla^=JQKkM68|1|%jKT42M%qOuoy^DLX82aiCr?P+Wj(5Q20ag=+z%Ig#)P?_Xf zfxdy;9V#+A8h2JII;tt{{wpOrmuxcdbOG8_K!~OZKe%>-ifeoDNNLa3y}J&4OS!!F^mGxRMamcxC`uGgH#K<*+`sT(3&bA3nES`B~^u!?pCuQzla@bJiJgjHm zM7Cah%eCT8M{D#Xi!c78ZB4ve=JAd%`0Vu^VQO99uf^HYs<1#EepOiV$s<*6y>MQW4nGShNP94lTzI#!9_RSX0wEjHByS^eQ@8OUk=)tuk@b%;M39c1i zB~Ohiw(}2daqGH8sr|I|F&1(9VRd`Z*Ri$FakS0rU7yJ|SVv4xpD}D7!xoS^gAJzx zJ`1T}->S0FJ1}<--%{(5OD9ysdg0}E9_|_IQ*i^uXwRjm-z+naHjL5_UuI&NxFFnG z-&=K7+Va%X@_kYe|cryZ0W|e5FHq&LP*AEA4j5-9bTL8&kB71y_7!< zNfl$m=XOQ6GHW+9&-*Shknemx#M5@g3Afg|o#^Z}c`ds;K93=ANxtgFB`LqiE|F0% z<0%+&7c}|MZ?rVo|MT|w=*EIBY;#tHpmU^t*spughO~E+vEdcxc?Zyd=wrW3k78>Y zw0-;HPqlov&>;Fhj`T)z7kNc2`m`;zn2vu%V==E&tx|^`&z~5-*{{d9SW#RS1ozwa z86BM%*K*~M==$xQoO~kU*dIradzLY@qb@K;-JBPMqlupty90ig;Wrnl zX!|(c#k+IEsMX^6%q@ay-SwC8d83Eo5q*DozXNW$;F`8K#T6197#m~K_F*<9Xe_JW zSd5OPE_-qHaTDF_XVLrj!T-JSCK7H=p)pyEkrvmoe}LlL;WrdZK@2oHn_1XS8w)>wT76?L%~D?2&lyuo@dQ zKi;i8nHB@c0#$Cx?SLdaJX2Yxxh6U#15(1czn3H85Zx|=@H{zEi9wD7> zxfXEp#crWqShpe&DcWXG27tXNVOQzRe-2pRvB%a07{8%bCP%xneGCLL9)>8rWc0-N zhuzWK@Pr@R2!78tf|_Dp>_cmo-UIJy7_iMm+@3HGM&;v3-gL2?ro|Aa=f;82gLZ!$ zS$sF*A@sd_?I7$YCm2Xr4a1G{=;yQN7YuG)1Ax37Be**@w=dMNVfE+M{pNma_^1f9 zUPwIb-$DnEXx|pb#3(BW*4gsqr&7@Q(pK%j!sFQ7w*zaH;%{JB3yRRHLlsU-rqVFu%#hoWFEV|G) z6S@-Z;@epnWOVGy9-I#EIY;maAPj=BoYi%dfd|>D`u-uKSIGp=)QWBt9&$ta| zzp*VV>|hFS_B8I<(51G!jDH!g%Q=h<6f}N6Zg!kw^9lOOLSnjqW4Be;xubpO+w;&3 z*ECne_IA!;+IOfZ*xpXk5Ax~?E=GD)>l&wst!Rt`Ga_P^dE3O=F-qSf{bh4GrW zX8+GkH+^wL9=8gwK8^z(p$TlJquvN@o0}-nQEqzb{U9Lca&};SKI9)*uVuI*6(%F) zU{(!YrPPkzVUErC+Y5pjihYWku%b;PvJLg)>RRQ50G=#9<|iSN{?N}ZQNUgSH2IHf7`brYW}%XKjcqzR+=xZyH)fjGQpPVDhmq zL+?G|2u<|46IbPG{DOXX&(h8BTBXOh=|RGbm&X!yEuW2B!`upZjhDXm!Gq)|#xHIa z89W=ML;KKbPUG)qtXXT>S>P3N7W)(j4IqGjcb6kTxA+Ey=&n?z3+Te6QK z=f&$Q^v|2XEX#d%z5=#YjAeDa(C{rDFLvs=by=Jq-5i}3$rYia2YD7Oi}e^H@1=O} z#VzQ3uxBqVOtWUxYB|YkY9dt{SL4b^bHn48gzj)#BF!Z;2fdqBu>WVY-9#W1KLmjq z3i#GUyIT3$VQK4#RPm)Sb#v0({fL6(I}vh|w58nB z3FFVOMCR#>(m{X?7)@MfsZA5#OqxD3u-Ys_7yuZ&%j4T@aqRr;mMfLG+XZ<4YR4wO zzKqK+XG+-P9rMPL&NUA4=!3RRGSx)usSXQQ1DkVFuBv@q$MZ0wfB#5{h|%@n9p@{s z@+zogtHaTQe$K!Zd6{G%&hT!N#Beq)go;WetrpH0T&Jh6xdZ{dw1;8Vdy!XGqBrI^ z?xX67GQyh~dR%)Og?nyr5oCVDFA?UgPA5PWqNAA2H5D!3GH5&S#)7C`9_F6w9~{LM z!1&%c$b)yJXL5TnV(=a5{~5!cZdL`WFZYab9e`k!qVJ=YUW>dXc4EKA@6oajAuC7( zH3AY1iPM{sBEH;+kPkZV8ABg=r0zik`U}F{u1dpw(drSM`ZBw+ePZ$S<+BIn9%i4r z&hJIe+3^o6^Qo{?k+{v#1nyv>3Tde;@F}fv<)+#YzAFn6z$VQ9CG{xp;!-bWEX;?K zAwXQTDfG=8yx0{6Hk;QygB4w&Ni>|d%-@whm>M zHICW%>aSwf047SzMy+n78j9PB^WrqP+^I*!V`n}9DIuD1uv}tuBVm*;CJHk7W=Iik zGjEuey3R<~ayhJ_aa4+vVpQMoyS`u(TvFC2PwvcXU#EqWprKlYqtB&jP8=@A`mtf3 zfakd3paNyNtX$I-UjCqKSrUlYyFu4<@ZAWg=Z|ZA)HEu6Y%`E@(e&OZc)w6=_)4dU zYyS*j%zpV$QTOKUj(dO*N@rM_n~VekS`upETF|S-*+cJw z0N_T1QqGiptQ#>mbFkg|$?dxXsPgVa+81B_*JL-j07x0q$UdTPT!Bj5(lRMAbuEAp z>;O#wIcPE7wu@~;z za9lX4jJVtiY9vM)Y-kQcNj0K|Q8qG}!u5#rkw&}??A_lBQwTV~2+*&Zd>dbH{?+;e zS?kVjpoxStWR%^BMg1FKWoLrONs z&m~6g-{Lq-g#0r+@!(1R)J!0S8X$$BG#9JpKmnJ)K;?S&#UJCQCUBO^S6{*oO^l3R zwGDr~|7YTfC7}-x7W$6DeWSxd5_?!>>US@i@0#iL(X^V{dZ&o&;dRsFbvd=uqu}j_ zfhrtv{0?HIOnsCiKmzJVQVwL{3eh_>^;TPNIK(HqR`~et0^-=2kx?@-z7F9=Mt6OJ zPII+s9yYfH5V)b^uOZY9J-a~>42+)dIz?E>+aoOB1IeFFB9qtC2WwV`o!y5oJ z1SMj-9RQB71I4$mMObg1wS}h!fa3}&F=WI~VAMhl^xpMPy4JCA&IvT+E}e1HV*E7M ziu#VwcZdgChmDo+11Vt|I`%)k)}K!4aJ7o^tqS;gWx~HV)w+ zZW(LNcFVdP#CQM}fmXyChxE4pz`w=Uahwo$Fk?a3ZCL~c_6`0<27vq-c|;gMGkC{c zIhRgMB6Y!nO!S5(TJf#8 z?Ky9JPODslnWhtxZc+A3SOx`%hY6R{u$bcM!2M=fPmZ!J6oZ647yzG-u{W3f9`M_V z(=Q@XM6TO8>E2;j9PVyjGx}Zr4Z6@mL!nKh@ab8-Ay&Yxa+GUf7ca#g{DBFlY|#5= zfTe0{PC;vIB!c8Rs?1bxre0(Ll|`mdD{N`slr32jnqXakizomL#0qew!20mcCrtnmiM-={z-0#Z)G(FQ7;g@aa_!nWPUTFrvOP2DZH*xqpq%q)@}0zyrc+C)rAZOlDB2CD$~k zER$-0!RRwC`|>t+-#0_vqWb}{zsv-Aro|GINOR%d2tgW*3bwG~H~Jw#R6PBnarpC! z8q*S1h@O!~5-R~YB8Svq7kQDGt7WXXH7#eS*$P7ChCCjhHHHMT$+$(E=Z|hf#v@!o zevJUk49)&cZSu|BlX&R=P|U>T9TYS|3Q6MD=6RQo=%xN5yjucvbze*gYeJ{o6+jK^o9pa}hTfOjq!mO;HBY1IrRe zW6Ruh3#Hi%Ts?Gad)o0EBiwHuF5g=JVC+r1?e&%d6k3VeY((g$x$}Cn%8}F?csxD} z%7Y)P?5I5>FM#_snIUZWop1%yqik{G=E)XLdr+!zs+#vN=&oN{4ep|>LssIh!*#FT zU4b3D2)B}hMZkR%NLkfHJXBv&Z?zvTV8TqO65QFIC4U<-=OuA8Pb~Rvw|ky z;nf?uNd5uTop70GYHoE7$Qg1jg&oZ0Mfoj1ooI{&8PAvB{T&k{)@VU=E?b()81Rs2 z2%JNTV~)xaYQYnJwk_ji3piJ-0XGK&vXiiytzP(a;zg*@Qv$M410eIsmyDh>?$0tz zP}EHqH6dai#;+f)hTT57a^k=xxG<3<@Tq`KApw``0RIUdMCo>dyb<5caz*2t75X|L z-pzYg_*dl^#+g~`B~_U*!bF4b$|#mR;fQ1lZ6bnnSac=heeFm@OA0pSIj6?=@>a{w z7&!*SetHE zsS^N89>zHv<(k?~i**-w-j3BK)Q~moz+fEZNhkvd!HF|X!-W6_V=qQM=7DMDy#DYB zoGO+Hvr`#{%Ushg2tZlrf!j;4$tBR|Zk{RWYyb|$Tq)&Z(L|nj>MC%nmCUna+bK0p!m;k3ypaOpJ=##&7Pn$O zfIC$bL@fhDb-3i3dTSpH7jBGE$KF1c24pel(KskYoU!_*=>iByAT+lx)rO@o906bB zGvrE|6cUKA$fh+0^_s?Vns=;~sORjr?rljwG3VF_eSiObutftrEL`_bFkG;K>^{;z zZyx$aW>NL18yZ&= zVuBpPHIkOHC>S%Cr!IHx_8uxg!sb%3D?#eF)~I4y3@0VTuUb9cA*Troh7x&ZE;N*2 zd>er$s4!7`)EM1}S5{6H*PE$D_^pFo*PaV^{Oo?KE364jEVtl704<3R@neEj{CZlr{P`jFm9oR#~p9}%PF4bHeg5J zMb?vUhJIMCW)GdB3SW`2~HX$zCT8MKYSmMM{mvdn~H72fllCoL8XKZ zZG+%_G-@L_DKiF_i0j3Tx3KrhON_SL92QwzGV=;jCRtDHb#$^|U>)9+;h1qny%d*V zIl%Q2cck?k0gGlNLeg`$NSZ*6Q6P)+v2%%=5o7ahTH3=TMFM*Hc60t5`D>ZBTgB+F zw@tS?eLuSVJnvlqzn_#j!d z1%!->eKl7EcJN|F_tq&Wlwc{0#$KGahRxyH?jhdOslrfIum>q2dHy`)w1_tOPpIl)3n|0_a87PKx|Aa*3XGra}!eNx9J-C4Q2MXVOYZ zRe(}4xITkJyp-88(NgjcD^%JC=r*f8nTv+%BGsW^2$vN8pfF%5;9NNoo=jzamb~|D zjCs{|<=oWUg(4G8SB{YtEC56$3>H$@vyB8p5U3L4Lo%F37{Tm-QuSioOqimR%f<$0 zbv?9JQ`URK-;3Wd&nap2>-=xArWYmZY65!Rho}eNlU<(E! zD#7(sN`tps2T3kgGbw-;U2Rcr@qj>4minOU6*_EPO9rr+Df!mom@M9l+~fNvdHlD1 zQynVeHfSRyVYc0xA^?hjzj9Q7g`WGnj&q8Pv)={~jf*CkIe?)NxI^QKqSR)*1)m{; zCA?-qu@r48(_ze(2#}L~!`Ur$e&M7&QBG+T zCX-Cq^$U|CAJFS!PTfd%vM?jnK~Mxgc3u+M?{?nau8I1QPUC{Gp!#yaQYbrFTPpjQ zf{|df>q(GB|Iq7Bjdj*nsEKxn-|t2nI5~>-wup+R1bfCXag~5ScbtjgVN6{zevK zK}&xdE%Ym?lZJ0|Io|9pBD1L3y_jSY$|w!cmbmBc&&>i!yQVfkGTm9AK=tTl+D3+f)3z`hLN7t zlWM(<2?E)yZ(_4D!(f_&Yz$Z=T|piimdH{fQOTsf%8!=thq@R)P|?^6*rzjP{8|j9 zicW-%kWVR+RPY0muG#`<&KMW(fy#JQfi#{gK;?qU!pQP{9*D9ucKm|@pOh(z@~cxBs>Fq~ae!3Vu&D$Dqfk|( zPtnz*FeyPS;qQSuQ^xs3D+{8^%GADSAX-?)E|flPI+m9u2~3n^rsyuG_YCfBub7&H zBawk;SjYt;xDVK`48|-l3LhqT@WXN$DWi!D9W!H14^nc zP76mlN=fCQ292x~y2}M+O;RzWG#Yy;LB|-7IdAxLO`i){i@fUj?J5s0DF;~t$qpgl zGC}5cM2oY$G%b{3)@>H^qK> z9xxJVYO1NF`bq$<00Mweq=tYvaTqu)K^U^m%(r8mGou^eS8Pf177L&8LCg&YF3Q2y!)MC{6< ztBM5Xl!SHpm;RtvUc&(tW@S`ta&T594gjc(79ystyi_;F<+eHl^310b-+$@JCdCpV ztC4I&T@MKcWet?5W--9w4WiH}_yELLV$g1(!;73Z(dgX^D1Rj0^`5xz@ULx{vE`P| zOkomO#I;`RP#%1g@!*iCh2jBQ7;R@?l|{u28?vZW$Q0i{gAfbOEBO7;&qnQKsu-$I zfuU$s5;&q)ijRhAr7NxgUB4D}6jFg4rNGn9JYN9SqzZPRh5durz8gnEttrgd+j1?9W zBy;j0`N5f4PEtYXI|@~s$iKG^0v&X#qV}admB^(a7Eq~{bkoYm%jH}A}Fs{#+mLquz_VXiWxn(#w8L{Ui} z%wHzx=IvOe)ma2c?vvbsme5#Ogxj(Gjn2`coBpGTs-ohGe)3A~dP*7m$Zn4gz5xWp21=yK8|lwF730b&ADf8#zfBw}ZneGG zFhB6q4Cf->AX;6Rl)4t$RL8O!m3pw6gcrlS2J1_pP7T1s-RqRfyI%qx7n?sXb`5g+ z*olc^BRLA@y})0g}@lu?Jjr#GF;LMXOQD9iZB5nE} zE&+}=E`^s>B`y7a(4ML=m_=p+COQk4Xhv6jQU)?6xOG`*6nMNV6W(~&-s{^1Pf;jZZ>bs9V;>qq#=B3{&>dUvRNvUebhOZXIu z%0V{(SnZisPAITLCiDme(iv%htd-RAXLOaSm`EgbsijEplB!3+N}r`nk*C!6XXyas zT@+QunjRTwlZuQIW|(EICrLCc^_T~RD}5Y!$m2*P$YcX~bvD{Fs+ErY?v1cj`%n&6 z9v=t&mf1u}jQ}N3-}~ICJ5SbjgoB9jC`9S8X7y@5+9)X-G1Ww@U@|lN-Nn&f*^nhI znIgsN7K69YMqdIG@wP8o>oH>knj~A0jekjx}DK51K!%wP|%MDa{-5tD=WlgfPl(jQPCM0(t@NsKN;;Ql) zrR=JFMx!*u$!J1(fH4^B(P(SMRx(u^76~>QxCJ_W&oFe@rXB_1&wuXNv)|as>yJ6v ztkq@zqkPcn$Tx~=Gc%69b>gYqqittx_`K#xgYO?sJNHLjo41mu=6m>nlR4U_yL)yr zWM24HiD&MQ3zA8L-0ynyMXLpPHx40ev1%E+Xv!EfpQ*_c{`}+^WDzndZo{;>e{SdC z%z8ZhZZ%9sJxXf#p7?#QF5}ePb}-syx8Aym%Bsa1e)Pz^xzgg6-3ZS*i|K}c?i}zi z_1NY9L8r~b=dV5L+|E9&1GxVnpSEe4Tr$txmxeF5pNNNbDPQhC@q2+)DHI7W9`A8_ z%Ewu0dlsZwmL{Fr>elhcsB2cZkYsLJ{l(QgI}Go=bN`7jf4DmL45xQ0wk8*MUTN`3 zPxp>hWo?3x5;-*93|+{(RIEL!51LvY{(HJ*DT;h<_Zs?PqDSVCmXq3G9JNb6IRd|W zsYk0x?lxQe+s32?baQWAf9Tj{td8IMmGPZ&m(BfiYw|VAqanD1Uf$XU#b_ah&HhiD zExX_iBH6!Pyn|@<>79Rk-D;_RDFOh~X%|ktI58fzWBCr{r_kYRv;V)UN-evuYcu1u z=sWN$Lrx#n_xqvh#P2A-ST^t4GoN5Rp={5OZu9BHJ*>&tIk0?t@>BW}S>RUD8&j9<`yT*Kmpgq7&J&7BlB-0!pt-0-LRbT`yRJZv`DV?*(tvd&{?c_vLU{&?QCk{NUM zWSj~yoG)?nbQ<(9Y1JPL!fxGt0s_s&B+Jv@zgE)*SeC+S?w{RxJysAQreZ(to|xx;D?awKn@_ z>TH`!BGCvC0%wPO3cGV^NwoF3Azv&rijHC6wL@b-id^orvdj_(?ArL?U$A*k^*K7X zU4z`twEQPNl{@Nn-=C&LIJ|uvn*&h#v+giE6cLAg(Co^d5~>8Q71y^q^8>#4_I zFe=2JH$HhQZUcs|2G+*uW+(=+mYB> z-|lm|n`_Ijdh3PN`QvC?$oC>>dCzc&sX-EBVO_o%a{AQOpsC3jk^L_>E@T_nl3OpE zg>O&ZwI+E1;vx>BU1zNNwL_HOVF(!dv#swZVTcdf<)$pa3ge$`;`Fk?y)#?Hd;8LK zJv4h^XNP6q($vZ1=B?zrZ@%$y|L0T1T+{Y&g*ms$d59c?FWSGKi6ME~Of&go-y3lo z9<1%08e(5dedHcIc(hM^yWED2dDugMRqm*N1vV;ado!gWZ85_Oqu#NuqXQ*4*zvFM zhuaYD9`=7a4WEbEnhHcRuy8VTIuyplS+fn}&mcCjCwY>a!nI7omY{YWTyd($QQV<7 zJN);%5qU7jb>x=_Z+H4+@}GMaw4ouJ+uq@^i16D zT&i?C^gJM@_ZX z6lpaS&$Q~*us7p2z+q{!(eL|mLh`Qfk?-=Hc_z*{J&yG3kiOj1*k`|W*zI>HwwG?h zzlQfIz14Z;$@JVO-J5PJy5}Zifb}`sY30~Yo?5zL!PI3YFhYKB^}3%%j_=MZ%loc^ zp{6eUX#Cm*(dM0N{&WeY*wBcAFCOi4re$G+ zaXP=}$!_{KFnpdfkHT%tIDX1XpZaTGFUm_m!vAF@{-uIGi#Ls{r8M7} zcBHj!-ml0(95HFvX+i9-e4WoxhiY?B4I(B;_aG+KHgxRC*9^|c`Y6z;OrQJnH2nB^ z<pB5K==DuB2e;{>#oHC2M6qER0a4LS1f@P_@pP_b4^PusA=f+q<; zhO829As0<#Pi;CCCp#6gtd64c61xj`_AdL8Wh)xXz=>J23|8^SEF|+meNd{IPZExs zIFy)GyUs&023Ql~E`qli4mHFEW59M6IC;500MggTru(=AAE%y(vb(eyQvzb!z; z8@q+8r6C12vCxcED^Eo?;SJbehv7er#3215ll5Pzk7s<%-^9E0EZfX~{s=0|^(mjx z@F7d;O~+dQ6FS}ve5U4%ZOt&r+5B#(^#Q|Ew!Evd?r#$1zu28i2d3SHUo_L#KOrBS@{B@8oQ(P@k!e^Jl$qz`9Lqk1n&nszu}YLi-dM9 zOl95!K?Fd;$(&DYSaLgfne$>|aeMx#7(rIgttm2kIE? zoaF=FL)@M-+)&Id*F+NIT2T*QktS>&aQd%RKsb0VayoT;IKIMz0b3MMdmSn&dLAR! z2ulMF9bpbG#K}MjlyColZjduRXAnDf9+a-_%3m?ffY|xT1%!-EJwoS(t7oF+)4#PV zNH>i8&j3omP*tuTMzxP31ub?IDXxqf)r=5vMAiEHd4=xG?kVYVc@FGs1NFnZJfV`u z6Y#Nj3nqBMHFw3e?yYWOFzCSIZ{Z%44g}}Y84c~k7?@`oHSpYr;~jJo;2n4wVp;eC z#?aU{OkgISj@f@Xu9;jMUNI7D<%@&TCKh#MA1=E$WWv)=Vse1L+K0)LtSdGGj}Z&zsJT`!bEtm*;uW_r9Q7tI(T zstU|c5m6%xWdEa%bmi-$Z+q4dvB&L0cSTYCfAug&M*nN8AKjurJt^Thv7+ao&(VrQ zTApz)T9QiJ2A9C&pVTeU|8n_CR6nL}s~i0gHWHP{(WMEDqvfyokt44xWudqLTOiw- zxeadR?`s7&99jMyAd``28VMs8zs0a+m*E+u0T&~Wp5C^QWmCXp?fdJ(XTN}~WCr{B z(c1PZYlZ*X0prfx29y#3D<3%YW@u_Vl#xCz`jtGzvj2$+s@QZ+usxBv9xggaF2IN< z&F=7KC0g*t&#InaCh6oIg4}}X+9xWyDgr9`$W>~zs0WPm2Dq}kpW;Y{!Ec_;UOvS8 zvo-KJjE7MWOnR)&aH9t-&JX%-C>@|oY+LO=6{G)3G#{^2`TR!@zu}3wX|~*;d#lzb zd=5S+XlE?w$CNa%tx(wnx-FKpjO7EKqp(~@B@kpV&3>QctNv!NdiO$ctc6!n$7?HT z!1?C2Iqy#vvhdtlPyC`rR})^}AFK?iQJ$bnZhHhjev-dp@0bJ4(!svzLG1*8Q@q-W z5BlnR-O_Kt#Z``$lQuj!bR5pbgbY64;@?fF0s(-^QaC-{8}tOU9{Hc+97Dr1^`~_) zk?&gg#PgYOBF~bxvY6L^W@7ZeALW!6mbW>dCs$AxqkN;nyCQurDpB^Vxq5huGwWLP zB{?yWMUl=3eo( zgAc}&K*O;<=EYU`BeLEN4(1t#G8JjNoSJ)mBLkxL8Q--grVhjgPsX@=Lnf0Q80VX@Wsf9fHhxnCb^oMI z_F!TZgiT5&!Zd<>yq>bwcFE<7d&*Kol=!8)9__n!m}XCPL7A-mCph+HL|$R7_x%yn z@{Hg|gAwfG^@|<3=erj8M#5_|_zsAMAERO*RKWV05hy;8pDj2K;^^x)fB@yu&Lvy< z?n8!0+4?^R{uS9%HuMqUDM24kT-T)kzNk2?3Akvx6!99Nx>KGVVM>Ct3 zk^a4e5+t_xU>5t7Nziqt}>fv?z_U zsPS0(MW|~W!6-=owu4b7T&cxOx8Y4<(3i+#|L8ygXyeFM1?eS#G0r*+mQn>l;bW(C zL=90DDg|EjLw!5slk|21SXom~;_Gl1+0YVSHkPf6Vrt`1Q~@h@ZzyCcAZI=@8;pgB z;r*C4ft@pyhqx#IE$7f4lM?I}FL7$x>wA5ooLe@Xlq+Ns?vp6K>Dx~ABRva4^H4}j zMhzXvm9p9==BT5pVs+A4s#?l-kpzo!96Bg>!XYGx9Q3i*TdQuZTdi4Nfy)T%AK6YkhWNoKjmh{Xa`l@pgpN)f^o8B@zIq z;h7MGAZ2xux5srR#$OsR&A`4SpHsMC+vd)>n=Mae9FHMurKE>^GYz~Suixc(ICP3* z{ox^-tmj_LCNMRC7<_2e-zcQoElswQrbmhdD9kdhUUvA#odml7x>&HHFTC~(+pt~? zC~t2QY-uxr7X0hbf#l4RJ54cRbEg^jS1+9$HSql9EJt#Hl=LDJ1+jM2NU{?A4~JjA z5>zE}Z5208HEousreM(k&|?@jX{F+Pus1+a2Oa8^j)H?f>cqN{4hWFjVe?|6X`JPh z?9elO`q{%lx`+SCf;2VBLbj8ccU-%jMJj`!b_ybTfBd+B+=qO0rtc_@j= z&z0Is%E&v&Ev$E>*SX9wq|>3(WKc$G?`5^uN|){3+@W@+^Fd|6oa8e-TJyFVx@{S* z_W0S_ZSsrRE`>eo`~PY7_OYRBjMc&yYuzK%&I%IKDtqkO(quc+W7i7P{lzUMkvsR) zIJHQ%XZc>({qWp`tl|+%Z)8;-R~b85=%!JBX_}8%dv=>?-W89pj6S*9&dlCmgzLla z(S5&js{ZEv%eC$gd)6HHtZ+hs?ZO1KViSUJwZRd`sRF6+d4b+}>As}Ok#&$_TS%g)LWQ*}%ZNt`EwMV@6 zA8tB8_=o>+i>1bS<}XLjo*TT%W{qPDE#%M|tlD0j<$nI+)j-><+Dpe(j^A(j`jy3h z3L{i%ns%=~?qTw{deE!mJM;S~b}PQj@459{>8h68-J6bodOb_L_Slk#J^O5+>k}`~ zVjK)?&fq??#K%?s`lIFRqbe`vCZ|=_H!pX1*4Lvg#ym#5V*NA!o;&y4Ih|n=JWu@G zU|j1kubw!Rs(#0dYU6}j@s}^`HeID=x?n#3B6Xc?GfWLODErb{c03mk?6uUvCRWnx zc5u&pH> zspi`9L2NeycKsh*AE6d6&eFTg&T8Ei`n2O^?&_K`u6CLp5%x>_eOF_AYL{KIZU2z* zEm1oM|0S6;YJ8zeiKJJ|vCB6^s>yZ1zl*l+yYi;$RlK4kvZ?3R^wL#D`dEe6`07n( zC6kQs=^En^zt;vkTE4OM(D~ix)^ArFEIW@~Sg+CR_qOIEyT91~`}%DUUYW(t>)3%W zEFb?i+jK$pc*QG$=Kk1U%XZkMom*BsqFku*>%2{i{$8HAvPH$KM&R4-Oh$;PSSDTO zwJYCc=Bk5h@3|D7D|XeNZ6Z5-&{5yA$aKMg2`y6Zbx|D}Nyp+8hz?S z`{Y_WDZvC<KX6x@*_(N{wB9v+Et)qo!M6XqhyH_i;(3p5Ijl)_Tp=A@{<44F`x3MF z#yzh+UG+#R%b(Di2it7_eTHUsY`@?1YQH{Vkme@peU z2psYwv$vBUyZ*3l?xxjt{d*nCFu`BiqxR{qQGZ{3a={5{zZ&DjgxcUn(P*vZO}34b z;oFN&;Q6CRh0nexFIy)yU-MEpVb|}iw`Z?5IQVOg>qw`>w0N@4b_3e^{=B64hGf;V z32$zm_-f^5srTjg)ze1V_y^ax-f?dC8RJ(WmpndLxiBMoYjV=4-{WFjEfZ{22HR8x z$})0RxzneO+}_SAh+XS`yQD|I@Hexb8ceg%cw{EB*|Ia-BVQ&C4A$4Ot~Y?cs%|TM zRkQnfvCDQ@yHVWV4kP!6xBrkS$7MRjA8q^{&q{g~V?8%}c^Ry+`Q#t5&LL5j60T~x zKw!vX$4%ptzt-(thRbB)=SvNHdmeJ3;OX&4F+#p~T(crfar>vn$(O|kYNFG<9jU$Iw*$oFrS7@is-vX&L4xVPlOK$GlXV zjYp)#PMC2rX?TqQHuap)GOT3r(A%k|qZ*{wX1+I0OnbVjGVtB1KOg1YyLF* zP#tL7{{oD(ORM0PuD$r6gxg}p$&d}8@{T)-fNC~Wbm|mHl}ZU zw4SbRC{S}*X*0WFeR4tW?(mZgFEf{~w%Om9v^KxlxM#*wIE2To!lq;8j!~+kPd>7m z7`Y2^GdiI}X18-#$&W$;Y6+d_%bK(>%iSS$6oPvuF-QCe!%x+%xb1;&sBT+h^CV;U z&?fzytp^u0W}B)nodhS*x@{6{nIXAp{J8o%-;vYjZi+oEEQ$#Uia`V9H*$)`L_ zZpfwhr&fYXA}JER$UmQXi&Kqn$VdNhs;^p&@sv9_6u`le-eG{B1!pJM^pP$e=)8t7 z|La43VsGH--LJ!NV58R$7S;&r6|N<7A0iO;tA|lW(7q4${5?T5QOQB+T}XPZ`;eCn_BcLzEpS7w`jFg>XF{+~64 zW=>xmp1btZupuMvb9=EJ!uAq5h4!-i=a-rY%CDSnh5s&>Y| zNokd|n0Ke%!1-q78VASTHYLCFu9c5z-TLF7Kfi3pAO6gHQ>AMuMbSi}I+42RUxIq3_24=m93 zh$wI~4E6rtYIIHe_RM#=ZB^fEc*!!-=WU#D+9Y`O3^xsXJB96Hjdq{5bvma{O9U12 zvNv%v&)N!Q$E~tN7N@LTz;dLLu4`+>nw6oaXTIHIx&U}Am6UICx_bGDQnN2m- z`@Ef9Y;mWsw8}lr{57i~F59oKH{VkB{p^Z(~ zZ-*@|yd7=9-E>`)fAxlOSb3bx5)|mX$YQ|P(yMcJ4@GW_@OG9yh|YO`bHBW-%&gj~ zvrIv253^Wjj^ngKX1?sH>H_#$l-J*$~DY=7+6#NtF>oeFXwdi zH`%6z0;8HyZ?l`}XpVP2c_|?udAQrTKu?cl0nez5?yd{%riRq^IDSeXoEmbtfRb^1 z7|}2nozhpQ9J88LPBm|S>jNjZThZLK$J!ICDwzA)UfgrZB_P&^+ph(995bMMkNQ&u zv^|5yh5zIqp~HMo)$iPinb-jg?5eA@a)mne|M<&Re+tFG56%@G(GxoP;y z)T4gs_V&n1;C!~z&g(`Y1!p75J4_;1KPkJ{^X;(bjC;N)aPpuR>bMYi+c*- z1LdJJWiYEO{}egL;Q~_tC2W%kFPeoLdiIz%|B*hPwG#Gww(Ho=!S8VPxCOhwf3TwL zj5j$E;DbNa#Twm?0+d#ddUtc_OCgUHk&pDHu02Ak!ErsycIY5N$>+uWL^wNRW;BzA#>(Ef-jIu4IrOqu%*ne((A=z~r-oA`3P~ zU8L+-pl8-YpCSrA_E1wPU=1CX!{0tEXh4eY*+9Yxy~>VOD-@yNNbQq zRU$nrS0#f_R0U?~xtH<#B5#=UI-7Ttw;-diG+7@=Z0vEqYH|1Dd0Pp#oBsnv5)6OM=GY@Tpg6&-YsNnbQDSI<-DIDEg zE8MiXC(6sHD0m_Pg9C=_%)ni(NT*Gb(E?t12(*Zx28Wu&Q0 zUA_~0&YN$1#M{}K=p0H<9aWj~+(5U8K`GHF8}yOcVwbj8jl=JC8A>oy;B;8nHK#Np z#Oo>4Sl|#7G5yo~a;97vp;W#0(1GKU-O0x$O*MEAd}cx6j;j=m%=6$eE^BO7+gXjd z70x33$RPc2AQXdG)04DTN1aCm=yNw-J)P@6yfH$}=vwORN)yep$er&>Bx0k2;cB0d zH?4+QqwL@HOeofFGxY=5{NKHASyDZBdgil@q`4p148ni2*G7WK1!;& z&pCfDHUG_YLDW0ZM31(m*X^&VKHIX+ZsWl?oVXQtlf@U8?+II3 z)w2eGul=hJePepCVZ`^ZJy#rMd`B??Z1;d|G)p3Gy>~r>-#lcilZ~pYMiy~K;^vaB z(m5H3nYug;=olDXkfaNrXJ)FRbo?guuE41Ah}%JL=QoCmbAN|Mu^WQ}Z2_JvGtg&*viJH_k`#1-Ru9i(%dS-O27k3a7!r!Xp zV|JHM3Fi0cgwWI5_8`#P85U%aY)g>r0h2qkRL9JX{0(Y`DwjSCzHy{h`*Xe_ILX5w zd`sIvWYa?@%pFJJEN#!G9LjDHh*FKP@>u1F-RIq|6w@L5zFOyski_z$E)v}mic|l} zl3UPnJ+7lvy@WlM2^E>3kwO{g2q?$B=Hui&l?c@9&Z#=U+XtUCI- z^r0ZB{p*_pHvps%e($?H<7TglDN$rt(?7L4nh=1fRSFV}ky-(jIk5;r#F}nhrT z`fS&7BqMxJ{#NMm3$60A$vKP!>n-xw0Dw7s|2qzH84Lwti=3;sp{2zvD-L(cEl z)$ku;xI~P=!8)jxx_c@0E~>T3TzXBCoR;`^dpvv!#0o1`ein&-+wjA#>>$jdX7bxJ z;>j_8IPx;so0wkVh_93I<6|i`Ou@oA&Kew6rO(c>B2ICRxjVxYxK#JiqLezH9ESisJrs>5K%ZQTW&U7;C8Uw zPQ?*51w~!dqeyA7(u;}bIOz=8b-r<7wK9kny(UtX1V67V+@Uj|>B(v!BD4QWMotQp zNHbc7+nwIc$`a0aS8G~sUIdzVlqs57%|Hccro%(EZ*jD%EK&BfH?7K%{=xy!S19Xhll;huBy@Cqv`I@(Kkcu#KEW+pyhu?Xi za*k3xeySE*CsHrV0JSkxuLHagD!AwG1<&R@ra7e{>z13Vo9i>pPZ`r`;RGV3)nEw> z9kFnf4_pPv*HA2eSq>@f?ebFdW`8Q}K)$dpvfMhPQYz+r>5=S|_T+gO?l4y`Gu13z zRRzt#ja;v|bW`P7iSy5mvno%hoL-?(rd|1J@pb!chD-&JLAnq>h~)*6XlqZf#4h5Z zR6{0l3Q0LR^&V5wIQ*hAIVFV=m(o>ot8V(fM^x&2Oo=VTLL+e>>(QpgGHg#-1_>vm$5<`0Tl+b!U^#`O1o)w) zsd?lnZwx6@-<~Oo>(jQ0(seq4%1q>E9$M&03x38Qrpj)FlQTzH{gWX#;bf39;hEhJ z@kClcUB)#|21&XbzmdvZPQ-`-_`ipc={oD6E3}oiFSe1K@F7DYsw@{vy+Zh!UP62q64X@yq)=5 z%Aga0zXBT9(7A*)gT+)1qyORxW;(hLxP+r{JCAuZ5F);7G0!4;>1~2{GywY zQ28}sVCml9I__+p~@PR@GpFPH*2*1}-3j)3$#!mC;A78w&}LT4(|iF z!yLyz0(B^WI}ZGZIL;qaayxPxMkbRGAEeBf)4^K&P;;V|qoh-?`M}%`oq7+HWXoH zt6J9*{wqcgYKDW(}5TGXP#R##EDA0$6idAp{cl3RympPzJT*I^DuxW z)36~P=Y_Y5p+D?`45K_rv`XM%EMrr+En&`6Un9f^h znzE#9gT@|co0Z$){J2o!sL6ejT9|5Vlen(1JsWk~vUryJO*MUGKoDM3W6p%!+?9&? zlcw&C>7S`fGop!28g4oGTahpRlua@VizE_Nkhb3*J+Z>LuGv-?!P*DE3uP4juhxx2 z~9Acq<8H8I8T^-WAUMROM*8WJmYS9=b zJy4XMAy!XtLz$ky=~{d`JO^?zIzQK7v>NEBJc9h}Vo!A)3F90`EauoUGo-Nwgy6>V z4S*o{T_Hty`qfVbYWt^fJTnuK${6LBW2gK%L&*mq=fv12)Cs`5AlyRtq~^%Jw7P0A zbOZb8cn&GQZ|;x<3CdXcfajf_xk;OL%rylVL_!5aQ-HQ}!Pc3?au#$eUqjNPD%=^I zS>AjM>=Q0L2STaUs`<358?pI zI-{fFTr{+-iIS8Ej(WeXD0I~EXX$8XHs$}nW}*6G^|5waz{%!ZxU|@N7AxmCndF){ zfMX#3WLI8ek!AcJ7k9N;4{=G*O}aZVYMLxXx4!HQ3^_<%X2~%N9#<(7QX}Mru#;;md`?#0S4Z<)q2awh+AgNOi)^rBW|H~<5{lc=4CBwVrs+AF4zTU-)Y4(w;iMEU1|!u_ zyp({7`J+o^39d*(9DMtVEuPES7dW7yOs@N-->xdhLoRv};<}fq zDRZVO)j$GHz%wZt>|m6VGYvW5TGfW27%rPoa|N&>yP*q@)TLm2r1H&uXY{M6nS+Uq z$LMphTOhX7PZ|BGhN?Hf6PhBcGVvGKAb-#c!ZU1#dCG$#EyAIXu|1h8LR5{h8_hj= z7by=jF&1GLvOXsQ#0}`{lV{6}3z&zJ2AJv4u~rBi<2 zhCcUMg-d{(otVf@4Rv_iclGo;1uUzmMddq!s?&cNHbPq1o{q%!ok zIg54sG^ThvTULgS)7GkGmyQM95o}R@Dq48PdfLFbS}o=BjwvCr!4gr+&FR@riQ-nB zQhPJku^;Kn!w=ufcw(_d=k%|4ML!oxzSJo#%I#~TvoU&FNbI1~e$NC+Q-pO^fz~Zf zIx97c+@J|;NK19rDIIL9)%EljEx1#kwA7TpL)!;7_j6c6RI`l!(X+|%Ej@2q@l+tDVd!4WBZAxn|XkPWc#Xqjf9H)?U2HEs}{fpop zep}-85wQh&OK!yBe+<~_XAjf&5hN)hZsQg;rO9?@tS{9*PWaf~WEW`dxmHEpKcw&e zL~Iy`))6YVob6z9z7z`N^G z3qF5;)RkoZ&a!usmqA=4B}AAr$xel5_#5^*mdFZ$l`m&T{8rv-&| zy9F8V^qs=j%MpBEgw$q^7Dke(*oTK{Ew@-x5!!yrTAJ%>*t&aV_VIfT4UKfrW8i<~ ztza!SZ>RSB=Kgv^I>w=H;`W90UE6ueul>tt|5J{Q8Be%99Z7xT?K2kp_HAo>-Pty% zC8er*jM)cQg>jOT-L=YUEFw>kq+=_5R#jFRdgZ5I?4yK(yqqmH=NZK5M+;R10~I4S z<~bzUY0jxkUCOV{T^Dxol&s_Y5bj&5`IXa$!+l>#(e@ay)y)+yH?BUv&aDB57Q3-X z_zZp<9CX5NZOm@(FD!Sc!yNueVF;vr4fU(;GUXx^IaOsnLhkw33!SYzpJ{%HC}2nK zWcgIQXjEH*Pe?59ElYGi=?o!HRx}-rYU@6Qwsp}zhQ7;vDE=A;4C@HB7p~v2Eft>G zRw2(1s{JeYj-Y*V?lDz`@mKV1GM<%}bRoa7Mt}Spgr#wsi0@Yy&naDA+V2is8uy|l z_gCwdB^9ABOPoWd(#CXx5n<7G*KlA6B|mjzGD6Lqj^hKh1fN~~xO-(~X!FRqd@w#P zsXV>M+j;jD-_bql?Q7M@7M8KT6bar7*E7?JqFVM9Wh@$H99t%z2w*GFt9j+Ity$;{ zpP=Ib9^387^ej0RZMSdoK>2doh`c;3Kzsur(5usJMedeFSLP+@mR_HnE@+Cx!6U=+ zhS4e)+?v!}pAtSGvnA!uN!0__+9$(9{h}@QI;yI_32m-*wVR-=^-)nh#mx0-=NhRa zkVkBBl!9$mv`%tZP`h{AWQGqS;RG||$Kt%&i;kVGP4u}j>XG6T!?fN>oIHyYEbV~w z&D)E!<@v{lX?@fwJr!kK8!gn$nVc(n^hnrhRRpeW5m$R-lA&+gSaO%MfmLPZX08>2 zI0W`7aR^0-s#eknYu$H}jQpmIWv?D5%#d3U3TXXu)=pmgm)axALk;yq^86z#n%sKK zi)|)=dQRcqw@8RHHKVg@&4fm|_0wEMeBkz9638^x1RDD+oDcnG!HkyL`6>7p@?5jM z1Fy?7n(^Qnc!IZOk0k^B66`cffndIEf%_JeXCO14*KBch4pvn(K_TunaC4ew+R4%C zrRzCtP{`&^eLUFKk3qcJ!u98{t%pY}>R$jzwOWcYkdAz2ygWI>4#&4$#EujjP!ohp zkNIhxO1hEOV4n1|*~^p5Erxx%hAAcQwjT2gq>HD$dAtr0u{qXUevaRkx8Z5n<$8F5 z-q2hgqTs-M80w^-w6Fs-hA&C9a^A~%T#QvcW zqcqt(ve94@S-vigMRN~FgSHBQtI>A{EttnM>%7^~;<_jA&TFqabE!yyU>t^T*2lt- z8>Xx0Gw4535wN8WSXZ~WHM7?p`{%ef((XV(lHRPfScW80P7yF>ROO{Rf2u_bl?Dzo zeGCG9o|F7O+oIuN*4*?0%g+&9qV*f7Kz$>mTs}6+_6Nr4`os_D1(gq@r5wo*6m6?r8tx-2M7qb6vxa#&cZnr zrN&1Yc+jlDhp^FUAOq_yV?}mq12^xsYc%J-Y$5+K^l?H1WetJ=P#S?c5X`kmV%2gx z9C4Y8Tp~iB;8N|S9B`LN{-)h&oJAN*>$-676mL zEzF(8sY|^m!SuXipPn{S+wDPBS^g0V{NvvI5|)5=Sk9?z?Fncwm1{gMxrAf$!~(WA zdyok?D9-!oM+&fcZO89Gdn(}=9mf|QO-IT!eS#@chZw$@ITIQ9*^o*w>5 zd0uqfV~x7wjgb!J)|4M2u$lkrdU%%&v0&H`G=a-{`~u|03)g?hr2L;4UMsN*O$qNq zJ45xwE)b{W2_#)QmqYB*DfHsG$+SM&5rB)Ml*}t(XK>Lh8E#=eildX1zme->7rd<}6-GTM=LmVcBiS_4GX@?$IZG`^pkD;H-fYBogu z33{I5X*{rMY8$xLE5I+CN4nZQ7o+k_Cajw)kI@lhhUi3RrredIBJSsFA7^{}P%^EmmJoXd<3LhsVw5Go!Y=|0dag>9 z>xN)ekuaomZf?g-_T4e+zJxV_7UnKv)D@q9E+}%CJm#LjZy?oAHzxh_B7LJ+(U0yB zbigi}OP7zuLeJt^(aRA9ADdRv0nSqKyR{KF1&Mi_;AO#moBHDBLg}8`>#z~bB?5o5 zrHY`8a+Vn=qH_P=>k`9Y9ENdbGmusgoBV;oLQSGUH`9`=a{qpz=nKNQ+k$dmb=rnL zX|gyj_cd~hIICH@{sQO-9`V64eW2DrnJ~KNx6eQ1Zi$fe^*H$h65ZL8_e9r0VX8Az zEbXEx&E1-`LxhdwmohgsBm(1li4h^QZ#C3!q6}bxZc&hM5e{_+5Kq3_t|!wea=U_{ z0Ly*Fkq@H$_qTVMXN-EOH-{i`F`yI%tO}rFgipeZIxy=8vT(@Ak1nS4^)p6OIJ)Om z_cD2j?#Iluqzjr8qWQy{@c~SK$*5)yxjh(iGoma($U6bmgHfU}yb0{*R(_H|2M3Ld zxgCw1i(t5eJAE~um7lGa*)H2%HbqE9KorhK$ve7hfT-bzQ`^x!Axv&s2&|11qLOU| zl$Rdd&KPC=O*x1lbDq-I;G3n%sJ1WFR_?I!d~fyYg<{0v82)gNa4A`<50zWE@jZV6 z^-F+@Cjzj&!kOSJY)_W;ttl`+tH;@KgZ=|H7zhc5*(bcTppv$B_Kda)_ifI>K~Dt8 zpS1q%@Avs>RU|%@v{a7}mQjgMVM8JhO13?<(qN@ol8`B-$r}T>{F|e04#>O-pGA@B z4sSa?473+KY9mLK>1mK8sz4?0*QV&Q)YbcredCP%&;1}vzzA`b)fE9BFcm9903use zD2OReh}P&RiB}~x#B-!lC@FRrUw~-9azVa6`D)EM&zbrWO16M)CMd1M!mC`F{hq75 zdpR1kq)@i{rIO<;WVqc#8<}(mve2F9?R`!u@z(|!bN2-1d zeTq$K7(A`>uNNSMVo^?WXRy4Hn4!gXFvE7@5I;MMbdT~_$vn^(M=-yXxB|8%x7w3A ztpo%d8}5_F{4h=v5Y7-Ry1U*QZthg$eGgOzz)d;Ym^Z75qg#6ZuDM_0RjNDL7FxbmX zgE!QA68G&pM*Tn)Z}%7U8U&|=FgSRCJ^UAGA`3^NCi*=86YyNj$@;^Hryiutm75?L zk{y&hAKiIQ!)*zMDLRd zb2AOYGf+drKV?o&aw4@0Cp6^KwFQ8q+KDI1uOi@?>5~!xp$yqsq@l=Uaiz=)FISn{ zL8NkfkoAXF5{e~SLT?gPibz}XFBjg^Bg!i`d7$g#^?u)-5{Jbfi_g}lhTpIMD|k0S zn+g*>s?&q+oD0NFNZ=^n0MpmJ`b({WlnYMHkV&8=`pn?6vPu=B8qwl%0^H(kZwIi7 zBBq3t^Vb+rIBUn)hoBu%8XOk1Ie*96^LAH%dU0}K)*n7>SvQb~>yVgd^SlD;Yx=do zpv{RV^O|cf1~yU-00jWH6Wyq)7DYiaAPQ0-A=xZ*G+Mp@01n+JJ2S-tFe3%;06PbU z>?e(Mjg;N@d)<84_lo8lUI)nH2uH=u-9@%gJ0M3GR95qc5=m_5XfowiWK0s{{1>j5 zoX#G~s{I?@sHpo`>vrwqot0-9t0ZGfI+ESaL0irl_}r|&7cHea^RD~04S5cK-;|$< zk`{Leon>nJBz6$?y|KG@F0iqQw4oyIh@082>4;fQW~Lxg^^oJgNa;dn&KARo%^@d4 zm4iP(ZbT*m(NM4t%VS0$Tqcv~>--Ouu3)&EZe$n}nX#H=1MD$|kv9=fB#K!TB*$cCP%? z#MSH>h;Ijckc7`l;-}s9rKaf>stIwA^A)CIVGDx1lifc8ONO#l%AQVDu zf!Y8zM<$|dLs&BRf+oMA|@i2ZM4x z+;iLuDX2)FG+~W0=#ucTZW_sYN^DD@ARJv~mZvQdFDLjx>ED~jr zQgX#(+%hTnKHCnU184hRG=*G1+3H~ggvArbrV3#^5=py^Sc3!p|KA61SXmMxPAP@a zX^m0uSTm5id*&n++YKUyKnu)6;l+zK7Jh!Eikh`gCH^6`572Nyu-V&u<^yiyhVG>D zeg4W{>@%#F^R9IfR>8LLEK}+PupPxha^+erT0u~#|I6R{X)VwCV>~{psl8dms*y&h zgQT9J9QQj>_BJ%*b%gI)pF3m;h}f3VI!TBD0d-qou{+esyMXBKHYL0h@IYA})??I) zKF76BC|0OZlJWgux2iZ2Ind28j3eoUxfxe6-J|Fc8)SlggLCu)xFr%WhW zTz`rAB#Tq(>azL`dp^W85s0N!{s8&wf}h(+GE7!&W?~&~PAQc&D8pRNLhaxf$TQ78 zYqg+ugj;aZ0%;v%Lg2ggyI1mB2kXlDu?)xS6^%{o8keZKzJXtK2WfG0Rs4v6@Ulib z*S%$(kx0f#0!07U$9e}1sk0HtmF(liszHrStfL#Knu+yMJUjNcMm>C+g zb1uoW%mp&FJ$Vsu@=Mz#06IS=8oq#L6)&?f7uKmHeb$Rn+%x-ukW z#6r8_@5HXoRVm6qAF87O+BZ3;pJ@B7G#9HQC@Qs}SUwapm3OOTK3Djty?UxCkn2Ep zKz9ZWebmt1>JbA()_&(m7T5Juey}*ZiliqIi8`E_Wk_$pcoKTCb(CKgNZ~KAh?gNNi@+rbf^ZY&N+x?uS-|N($;J1eikL{IhVihN2Ef$*dHkToV5MeE%{vRZ$0CEH6-i#>L zbN@EyZlR*i#HvtIi=l#xza}ZfZ`NQpo#5@%N?^*XX~McQ<%nkmVi{SUOO6bYSP*ou zV-G<6wC*9q1j^sk!AG~-ecJ#i1doW}(P)D}&QS{LrLfFQ&3R;ICZ(iMwHA$81Fo~= zJ&?+7nvNi=QDiP?0ZT#W4A!G=SVML8-VZIWrWLXbuDhQT{&`el=4nT%hYmLN%avI` zbK&|zpfG~_V=J#70d=?$2n#t^oYrR16*N>hBF2!GOH~TKl>sth?@SVvA9Coco0PEA z(dlF@78+@=0JSs!ZTn|QjRjT`cq@`Ky4BQUVHzzvfH)`voO;hR12zPL^%*0Bp)y2K z+P-iG)>iAp@_}z1>Df&Co|ZKUOqf>xnEH5_gW#$&w$APb1(jiHV-s(rJp=JVkde2e z^OhdI^-xq6P}eiyhqiz*W3{z>>y&{IQL70J--7nboKRG<7{UkM+An2(NS*mto@*U= z%Rs}I=l9V0nx;Omvo6mNnQK%eKISAbMm#usvjm29u$_^f4VNFM-Hql%t;m5im~Se{ z-v6;FZUTf_Ml1_-e~;^{vH1_?cT9xzOvh<;4S>*hIc>C+1_?L=;ZD-zDhg^gA%UWh zHxPv_&0~-hz?>tD38v$b-mA*soLn;S1x@8OL8yl^iX`$irj@}swS;6n_Td7L+eV69ZmdAd5P43;Jy z=&0SXuTi9($~f3o#Xl zsA~I3!FRUST`m)HO{064ES#&U)RC85{EV>Q?oQIs+@uLiXU}SB6`++sJ=!; zUmH^{Al`B_905#m3#1kYH~s<6!Sz>Iik+cUI3U_$WQ>sxt`8&UZf9ICrv%BS$f#e# zo`I>6t}zjrq0$}ivFfu93!5t8j7G~*jy)WGX$$}_XF3RQ z9;H7+`{1B^H|1$eNCAhDBP($;3*O3m7G*%&;Kou07KyWvpFfe-x@LS-;n){UuY@}n zNZ5^4{qhGsuZ#PqcXj*n15W5(p+q9aU48?TDffaf0yk^VqT09tu+VU;YOuH$ZHySIhxG(JMjH~H6d=225=j- zWy`Qrj?*&||4$@R6vvVe3MhWv<4CDASQN^N&#DYVR4iCPN3BHgy2@)aW z!cJV@B@<5n5(~?;dCSBBYEcEFQ8$S4O6KsxbOSDwl*gLm&m<$1FzP-iRv1Dt`(sXv zxV|%2QBYRKrnzagCCafZa)5tlZXw_P7L<*8Gg9Ep>7$jKFZkFNtsMCpPH$|4>H7spqdV% ziqcpuslO;Wb30^7WYg`%vxqYxn9+e@-tA1XYAe;DRD~(6Nz-w-P6Ek*twPL}5Qim- z1uJ0h2!BA$uY9xNYicZTx%|B5A$bNlGx-WeJxQ(xYpHOT;dw(pU0Z|hXYIrU2_ z{eYXd_7^8P(Z7;JjkVxHUZmh2e@RuE(+sX%fXf)q zr1Z>2AhwaH%Fo>pBmqRZMl?HIj3e@LJ{$XE{;y6nh)ohO&6)@_+b77s>?!7Pf}g<| zso4Ts@O>pV0)n{y$`6oqDAD3NTCm9u05uF{hOzkL3L88DO64|p|{ z0U=kGJO|Q%Y+KP0 z|IdEn))H$O|y|qetkq_=jkfVfCD^G{+&2`Hl zT}KU|`7zYqhP6KHScA6(^KqQX3;a-U{m;&LJALUD8?}rXm7DQoNsRHVUnW=Gg<7sC za=G3<*;&l_&7`lKpa*vmK&+qIpWL>XUdFK$nTpyOY6O92%Hs0T)MV|b=^r5qv#E@i z(MJPRj?_|}oh0!`I|)-9)J{?$fb>n<-02GfxNr8rXXRV~fdeoaV!;ArK)4?u}j~ZV0ei0Vcb~Kqyp3&TPgdnLV z1QX04CdaJrZ;y?^@m_Q5V*wSc7`_!|-QrvS>A6!7wSVQ_&Lvg9;JC1L_iZkD4#fiV z4H%)TcWuazFG{r21M%iHewC5eP3+bN0Gi9Oj!IV-Yh7bIJErfA4ykR^Rv42&K!VwX z=(4KNj1F9#E|3Qbj9k(%4Lt2Yl|^l1e*E4R+}a;g1jDiQIL)thN}F}RrnOZHCwMy- zjVY+|?Q0DJfj=z!9cgT;fh)J>?Jel8U4p{V$6^7#G_%DO<@D%~!+0@(J#bC*Yj1Q= zTX1?tK~9F%FN6;@4)7#<)dP0j4>>F?!Xob5L|zLcWZKql`OYeguy4nc?4rn#Y{Y!ATA|gn75BG6YABJL^F=!VdlV9C$+llOkSxg&7g0L7g9xw|w6AY4uU`R*D7Lmnpk?wWr8Orw;0KOV`wq6Q@C3x7sV~+n^ zEB;tg1%U~)tO)lxgEF6a3IiG>G5F+Cp){e(J?ROjUe?*X30=V6#GtTuivICNGwt<^ zr2&>7VDPbNU%xZhD@@lQfNLcaaX=_DgxJqUJs|Or>V~_k-t4o97ILTS%_>;=5x(M|*C6Te*}U^(0}9;u8~D z1d>9F{q|fdaeCO~!wxZ79-e@pitJg*B)bxdGjHJnc4~)~oAi z)H~hycSLPmgcBJ?{cF4@AJeDNV|AF!#%@L&22Kg6m1CrZgu5k{!Ai`-WSD|QTS&$N zchr9RQUO8}h}ud*&@;&af{mJM4T9g;#5C*wviioi4mQy*1RgYzP>U%HN7`PSlR0n` z%OH!u=Mwj-?34h#Q?ks%7>OV6sy9H>kWufzB)l}9WXo(P@kVY>HZp@9Hi>Y%ZF z5#VCyccWtL^NmyGCa$XQUp)|imuWoK*E{mg$so+U*D9Kt5AE_RdH3q#2(xX!JPCr&^=Hb(*UBf_TZxWZVd?=B5w7RxohyfrP0jCJ94#M< zWs7M%B{7^E(eQ2a(Th17XyJEqFD6RR_K8E^_?4tYa%-<@Thp38T3&VZ-rh{syD@!W z@JodNALXPOdR~fH?$;L4H$z-4F~=(o7@a+00lg*Z&mZub&F*ncBZls*RclMZ2{Lk5 zVi@g**J@rujOWIU`5LKaUu;PM+1pdxGVGWa8>+F82(n0~0X*~^`jY*R~cj*@B%i!o(Dbc*YN>=t&ns5Ru z@6jM+SHU?kxr0HO*O@6^7VT(!*12s*!C~2y1x9UxphP;zAJl znY5PAIv<#}LkVxhv@A}5r4hmwcGCt(&=|E*^kkGxdG#zCtjfrz9tD=4y7Uw(J0Ye& zx6?SlCGa&?MrDv}p8|ZRm-?tXz*nlY`ajjE)5c4RCz%F^jM1(8vATkrg5YK%ix+l1 z1fvMp71tVI&roV(+$%w^NSVMbF_=ce`g58?yUN}(ff(66Zg)>nc8ydtrDF6^XXUka z@!x!vOoz1nnWk^~D%3;ly*BQ{q>NQo_tbC63TQ9S>U$nW6a3eED9na5HJ=#HCh(XABo3$}mtZ#X8=7IEelp!L8I$nGU(&Fh6DCQZ ze*M7)z_}I?8;s=kN7D<+&JCyJe7+#*v7!ug>{f8It@VB~Q4~$-ojo~6w|fEfZpmkj zC+sI|UjnZf2c28onsbNM&M;Pe?6oilz?e6=K$9VW#bxXJmpL^FQ{Y6HRtv z+LJXsq9KCe2uM(Y+{@m@5JG{Ln~(~RDvl&B<+!KvrtlZMI#4~rEG~u(*G+PpeQ20@7;%aNH#~NPfWp z4inv&srbnOHhuIL5-D^HJ_xvZVWz8-9-_Pqmcq5_ajKs;ca%%y-p->pce}%fzRx;2 zq^IDqG~7d@F88@Xm<pV@0jh}vsRDGu0a+c@L(gx?6th`(+evnuGi9P#3DO-9)DVoUv61s@AlxsD#f`7@lZihz$xp2j?Xor zN$FrzL%gJ=I5;jx?@ZCtQmt2WR1O4`^g9q>vhZV?=FH7nnMIPJjrk)tYvEV2ABL+o zRYz{o%FK!`qgzNS`X{yRiR?fAyu|={*_o&7%l#)6Zd_-0&d$1}Vb#7n?^W779$mNa zl~*t5JN0qJBZY9{oa?T$qAzW3K38AO9=S*LQ+jOvH1!#FORgIaXl#;Jgcfd`wa@HY z+n#cvb?Dpax(8y;;f-SDhs(^8;xyk$jvK1uH`MXOwQ}P}lH}ul3M=*uia9x%2d$%Kkk1 zL9PRN^fP#?_E}Gh{s+HC3De1qov&(o$)XO~>t>bAKhA?fBobT7p;11`NQh<@D3QYs#q?Reb7IATD1iZ zH7E25KI?}cc}ruiR)wEu56Yvva=W|c_e*{LGP%3GON@%5D2fE!qJr2oXf$Hnki>u+5R(YW z2qGvLMMMRWLSM~chi)8Mb`_6smy>sr#9h+W$OD$i0RsX7~ z7WY@&GYlg!jBjZUIJEndF!7rSRfbc)_@@EyBi1p})5-pT4>}gnMxx?VWk%C~5BP<| z=m3dk({^p);b>WLk~iISvQ`Mj)f&sYx4yr2?q1tFCm5|uUu;iX{A%|vkvCcz>Yd<; z^`~=t$gSy~Bggwnzca$9K562r(p-eJ!Ni{#GCv@p`f0PxX&3S zzoOO3oUOHJ*SprpJl8i(f$sq6v<@9UR@vMAp~Q=tUTF)$yH)2@lNK)Y_(Cz|joA3# z>0fKV=r`fy(%*`Aci36ws@;n$>ZyzQ9M@2YOYpg96V}geyT;b-pdXn3zTyYp#f>pB zs$QAU#{7ZwdGr-plG;$+)Kr^h9ryBaTeRUh9Bp$z9l0sNeN8>IaRS=y(Zn9K#NU%O zmzPHGj8UL-^{PNLJQ)#?EwdCm_B5@h?yf(iKSnpod{gVV=lgZ|_h5M)Z6d*PzO0}) zXzgu?V%-k5E*rrl6Nh&XbMXd-a!_LJmGZtJ#@<;m_XvLsgP=i4!1sFg$}H zi<@`OOh~#t#>pNX?stui9!g?%!*+6uF2_&ofDRBQX7}JHc6EL*P^3~WPPo^0UobXs z#P!qN@J`Jnw4Mr1DPR1Fki#6yv#?Y9_wH{M!k_T(5pf?wx?3-cPQ-}~+l=YopM2*2 zG+CB0Rl4hqqoyTj40M}+NocBWQpY9qHBM+igR{Z;S-q0OX-$79ANVUO(K8Lkw3|!a zwMr*4n)B&av5v_b#^j5}_x*RBLI=^) zl1bR;-{o-55i%epC(%G|@@36Q$*OFjPC9XTuNG~-j-Op_L2YgC%xzwZhpf{sqOI+# zfi|JAT?eRPd_q^3S&%}OBeDuD4zqXYk7kt3XhVP`|opfabF(p5HHDR8h*!P4d5OV{D~S#wKCJ7HYeo=Cf49cK+`@0THA{XRd%W`nle{!J(MWSnAK3X2nM zZa8dgr8`WPu3SmFc%5wW8-bp$x0IKzm$Aq;cYPUuvs(xQM2dEo z?c~%q@nj|S#-GzO`V^Y$*DqV9gC?=*laW@B=o>4uY?CfB2y~mJWJQIQw|2Cn&sxPv zN_R*9h3>;Ee>CoqNl#}>0v^4aZ9;}Mo*ons5`TW*NX=TuOn`#^&(s%t=kB`+ z1619#Ib(uRk&mktVH3sGWMB&St3FfQj_+32)Q;NSuePhIEImQCHNo;5N7dkn5}kDt zmUunO5NW)!#8ahkWvGJNI!lKiT$R80 z6Ov#rxH895Yn;P&_%{t(5jdVpP^vz;r){Td?n3_u;Es}q+_z=KJISFbL9;L~s_ zBsXkz_-;@4A0D~8T)U#d4SA!Dnk`wp_ud(7#5-d#QGIC@lf~}(R{UB=e_$0X%td)s zhK8=8(G|+!`Iaoe^ixqXJb5|&d@zG>-atH5?YjyB8@RUs={9E@Tp`I@PQ4vj7@iX3 z3rY%$rZ>k1&xJQ(tA|dFFf{|&8{q)WdtiVeD~ z#sBhMyznd#0(mrJm%6S+gp}F&SB@U%NoJr=ZbD=(U|jIN9C0_AiJornw!$|hD{v*b z0gfzw#aEK!rd#`cf>n>SwDm?WpN60wik68T>ETS5z#q|}ll&#aE|Q4T zCYT)sNC@1|C%xm`*Xa4Zbru3CJzjBG(vTHc~FO z!D34Sq5Q*ciyDp%r?&5`JKDLz*tUX^Z(;Q4J{gQy5*V>5s4fE($&miy;=Vz*zyf}~ zPX+n)W3b8)F@kC7!MmR{5ym28lwd)jTE90)%vrVFk7cov@?Evv@jYl#x^q+4xSM_` zI5Ccq>u*o5Q#|Z|O~!rn#h>tq05PmLO}I&T?KRCtxOC6pXI3i_1CaIUZLS+cYJ6Kc zdfaV|f&Wan4l{UE|CzyYaQtMjaX06K#p)1S)OIse6ahNRg3Lm$w>x7 zb{&xrgO04Z?Q~f0(#3bO23xbMSTr6emjvVTHnapCCa0k=w_KEW>ksZ{n?B5%8a)Ft zA-d8)*JP#i?Z{jKd$js7zOVRH3UhzhV>!P@f36WY=q`ci;t7+I-zGpFw(#7-DYaXo zfDy_u70D2!5 znW`_tx*}Y{nKt!#op8)Q>4?Y5$@!MP;WT9r)&>J{R@tN1s>)LdGynn}eg=MWxRYtMRU9!WnaY4S zSD%f1+O*jfbwuzXq4qa)W#5rk10`~BMBHqH21|smPt9_r6&1>73hu;x*rPH#&)D_J zPAcG$(1Y@P?^PBd(W|Sy>fGeQpOhYxS>2bWPUkebvl%{04Q&1ebM+n5FvK zTiu;je}gGw$;nQ`t^I1IB{W=>g~BWl%sv8$g=g;>%mQSaL13u2@C5r@tuN%4kWTce z6=AZ}mWF@19E%XwQe%6-WB1aVzwDlY*^_{Nnf6UgAO%i%lxR03gp}*hNF)DBIP*tj zl&O6_KF2|awCKu|+PQQcs^sM@;nzsk%XSSvC(tWOCx=Bf@m+cR_>)$~fp^OzgTqHO zh*03Ds;xPU^J$p=MJ{9+&0HJ6c7P&cpn;DMX6L*8=I@4@GCosi9A@FUGv3<2_XjDI z+2npKB6?^T4Kfin>|k$a-CZ=Yg7#Dsj6y6%05D*7idL)S??v40uq*bJL%|^JKpnGS zG!l>H8bfM5OkP1_M_#V2lPvyZV}N`1{Nkx1xM$2G-UpoTc z)G=k1+m*soqORg7Qs(;;UW>>!J^xnG<$6y29Ycx9i8_T%u!3sg$fj$y5uPQ~cd!C< z7BKh@RoSjy$8GojZV0(}K;fR*_0JUdVe5{cYP`@5&1cEeBD^O8m44DCUuo_5_Vt{W zmUW+>mHd`4J;r1!h#3`x8~!;x2LdmU<2{}GwA3pamt&6_LDAwWq(+pgzfw{{eU)BBu32AOQ{rMw8@E_aHPPnbilSHc7$2Fx&O zrW+0H==a7PfE5Imm=m^|f##y#ixj3f@@=-jKtdo1SkP>PVb+%4S8N#xid9-wVgE6! zR@zQoXo^Xy2t%JZ^1ZYBR0JsES zHQc>1K>R01BHTTGHd-W5Z)4F{Ep}^c86nbQ&Q`ilbPZ+7=~jH@l7?pQMK^DCKPSTk zIsA3-X*zcVf~|5XNKSSJWrZgHP}7Mguz$mk~Sqi#g5R_%uf_C-^Nr`;pNm zlOWTlYo16@_z}W7{`guZT`1mQLWGwoSdRJc!v}&X3?u|YT9)MpcTRrU({bVz%%-7X zbT|?Th}^9%Teh<~JK4qYoMSS8y^WLGyP1gO1aDvr1W|+@^u*|Jj-f|OdAaz$<1L^0 z7rhEbx=0>b5pRO4AX^K564ny95ybYz!)(WeG*a#YtZ7$0DNqVhAQ>}W`s9{}A($#= zwMssf{0tiBH|od3ncwz+vS|fW2k^T|-i5Y9fC&F{Nvg)KlxOGh>V%UXYsB#Vg$$XBEbGgvz#M1R}bhhYQnkAElR`8p_$Sni}!dj90pm>yX zX>Wg%`aOIjjMLsVBR>+yuxo6)Qy=JL+MJajAnDsZ(tstg8s^r?sV`f71Z{T7T2GHc zRsh*7>7C!C{!X)hKp^ARlRg1nf|McsM<3QRa%?j3Y|5)9ly&+1rXNPmvPs(L4@cM$ zjbM^rCp03=3lZF)L`v58ltS!RcEy4aS*Q~%2NNp%X(H0VuR)-Q;A1dEeBTq~XhgyW z*zE*CBzpBXKxuujs6M(vYw zs}0&^jlT@Bs@ty)nCQtIAKl;Z{Dv{zt1*g&gx~A$TPwu+h^FC5QF<8?90#*WSjUSF zTD*(yW=X1L_hpTjINRv;_ZMm>$Uy6fgtki}v!qXKMj%xvMlgc5hhr)!*{DAfVI;P2 zBre6i=rHwiKAR%q{Mzn~7?>mPLG)U%#1b?DXQ;Y%j8KpfD47%NcWv?N5AZJBVzgs=hYtInNaib-0JXaFRx5i_a1Id zxtlo)6~hW0myzk|hEf$o$(%t7-u4^J;P-<$mJ`ETjN4!3SK;+k&e|~PU;vN`+rR<2|gg|pkj+mhU zk@<-OCFYdo+n-?!M(koxQWcTHZO7DA%JTpm!H3r|$zKRZRIO#S)i4Qz!_$cLN zRb}&05y7!U+p6kB78Hht3ah9XfJ?BXOiki;@G%cHsA$o-qpk^H5Oq97aO=EHW)LNx zk1`1XBoK1aTHU0~*r*O%Pm;G@{@Rmrx`B7IZxSTNDnQ2*|7)&*9~L4^gh@v~%!{S5 zx2-Uj@76$pYTv6XNy3DQ9>KtMvkg3i*EFO63i~6zyQD>IKT3EALEO|ATCK{z`1=uZ zyL7aaO-IEUlK}k2hO7Kj@ZCVvqjp@mQWb!zC6vVUzq;~?-XXwjvnb}#X=|uV;M1)I zRGL$P|B0_bc=^J{Is*)8V-(X-?A&@<5n^mB=SEN~Bw1)$E3q4qgA*eAQyho0KG5%F z!Fa$s-{I{T0sO03+{ z(I0pg2!Z1=iSJCv=UmZZ4y#yd?n|Jdx%h+c@M)1LDscE>3E$5{p#mpC@OvWLH~)Q) zA31IyH4kQPXL?ZG8C1ki&TnAsi3x-Aqzn;V4U$RUk+Y#q1aOhpZ`dyk5F1^jJAtw) z-SJa;N{-&Br#{$y(OEm|7&@Wgh{(4z9sD!yP)~DcP-?`salagCnZfd=XoTQ;j3G%7 zh2w-V+J2iMy&jv=@gb*5sX)q@waFgfFJ^J7dWk8A#D_G!my%Uvzdpwj#TL^N=)b2t zt(^MTaM24_r}RbfjRO4MQns@h3y7@(H|2i;2+WPE+h|cz%8ygCz)h5$9z{F}*dXFb zxRQfSd;Ma}8^jAF0H3t1eKg5w9<=_cR+-##HM!Y{GG-I8=dQR(6{uTOP+}=gRLDbT zq^De34f!*55=b$>3&0JeP)-(HaY=$tFCdH7THr#)#~y>Tgy0#4`{B+7=9tFSXsd7) zl&2tTKzSf0ObNa7_5^xo{Q@&ZB^Ge1QijYV5T!}NY6vb7<);6^jZxJfT@ROol3Ywc zsEHU%evC5wVe9w|X(M=nA}@)45_@Z3+rr}5rc)eSh}|-u6*N5sR^pD^ZHvK|E8Jgg z`Q)2wby!5T`r_e~h>}FdB7q^;FK2K91+X25r04xb@&&#S2Z9nv1IVn4yU@WI0z-}i3UQ2ZjGm+{yZO*#@X(SP<3aLu%j?7+DrhoHI z|E5CuyseGSpGkECa1ay1cf{`k9$M@1^En~$1&E4j5kcRX>*Y2JS$_cIxcK0`J`FJC z3>T0h0#x!|Bw}l%$S84iVW9|MC|Ut=(E2Lemfy+M{`o`T^%1TB-XjXO3c+l=Zr735 z$WS7QUprAMf0#%?WFy!kq7LTE32_v(Ar3Bk^AyF!>&V8pi~IRtieMkWynvRVioT6% z1;2WiaqO@-%EsKvMXi9OTF_Ibgpr&jS5rlZg(_)D&trxAS?6+1*6hq-Lo!W3&V{!E z1|j|f=8!_zEu%`1I`VMrTO==HOF?xG0AG73ze1*$u`?AWJOO1jj~xZxN3tRc0N4Yg zm`|TeLV>0}15G>*pJP2G-#dC`s5nK(+CoZeaw4JtDY2#YN_#43%x&x&w|0%b7!T|y znFLJ9rlJQCRK?G~qx@`-g3?jtaH^<`MY>Ue)OzC`DfFj>w54$w$QTVnS!QdD4z$q9=>MH0|f+dPA)QdZ9UFa~W@DLW<7w`k^u$kgj){_##L zHC1%ZaH%w;gQdtHrtCDl5#Pfpn9cdAmX?KdF_0_@5y@Flc@a`VPcPsB9G01S1LVuv z)pwxORG>gAtL5?%-KyQWg4f1Y?qdE^&epM(Tp+H6CV=WnGpTZ0F!)r;PbZxf_DIw( zhN3bW)d8p#reeT#FPD3+0#6aaB|kXq8E_;W(1y59%Fa{TDg7g;`gZpO`N2KGf04!Dv9e4O~2Fyd@D&YD%fHJ`{WYL5DXz zD0%5u-I@!n-dIEkkZqvI%i0mtm0U4hDPksY87)+uTR`?Fjp$veP#Y!C(6c6|hMJYM!uQ@=_QiE@hzxTN$JY=5Q7BxMdC@^ivI2>3n|@-gz|+kAl{l*=z&BRiA}61=-{J}a>jUu zMQ_|%vrLk8A+vvqNxa~FBTU1{ZLDnWQL@T$9y1z>W7m`AQ;<6M#z;dldLZple6b;n zY74AX4>5!bc;Xoqs7R%xsxo@gMk?m0_v5sQziksv1YksgszX#yaAAVB(1g|VE?0Ai zI@BUOs!eRjRenY$Gwb5~`*K_43Utw9!*`r}gHjQHT$uRzsjkF;)B*VL+of7QfnM|r zE#5sM&<;$;VtW+2Id&@3SOaUoucAIEHrabz&{|V#={clJ!GCRN_zAXLLy0RgC-8T6 zV;ybTB{pm)e4*eKqL$Q;8IU!|F6~A62&(u%(OWlh*8OgApVOe7qWvc=YiTQ@LZEXi zvB2=Yu5y!D~_lI@L7uMVFFagL(-@gVVw`$m10# z>6r%zGT7D!KKz6S={TPTMaUo0BO4G#x$`7FAMsG#i(-E$zLHSta$8a7Z4faF))#6M zh$nM0Pl>X;tA_;#EIHVk>(^#+&X!OHF?X7m2P2(Q@3$>DF8S0+(4#V=5689JpLoV0 zP~^cfv*62w5K>eiJrNPvE?-2j8<)aGB`k2lqPJQ@pQA42oLNfHS6?^X<>9;h5Zb0! z;^M&_&BJpiT;<0#4RMB4rH5i3Dk$Oa)Iq2Li;?u)HGG`W0kV2@;7DLlS!-n(OqF0b zF^C!J#-RW|Fd!$Mreh%o$C5U%JIP6dBn~QmzW&BYjZwk~B+_9|`h1P3z6j%|IjFD% z?$i~CP{+rLauz@@kj6Dck2@iz$9)YMk@GR05z->}C;TL$cLompyd1NpA{h_*2COwb za%0Z!8M$pC1!NY=k%WLN)KJ>fgX=f2{e9K{qII^nhV3+p-4IIe3{osg8j?Nb5=;6iiG-&t7L{01T8pkpr?1?b!8Nfq#^9&|7g$V6p_O=ZUEb6-QX z!6%D9hZKQr;wPTLl*EqX98C=W08!Z_9THQhL)J@tNkcIuVhE9at0@}#7R*JYhy=pjCWf|50C1q+-aF(DExhmYcXFz+%9b*xmGD*!OnHbj}UHxK$^74dPF zI$w2by*yc1dK#!p;6H&#sZ^LVLM)8pxx7Gv@RRXS9{>D1XU~|2u74bhHc9z0bHeO6_OyN39u?cQ(LLH zh0b1I5xZ|UKfudq!}dc)8(P$GXg7mTQ)>$)Adr0PTTl0?=8MErD$FkDm2ggT&y?;N3%m=9f_~JoU@pkd^{P+UVBAhJtbDos*>DxU}Vu@l(SP>M|kg*joq^ZlW zSUkco!YG}d0;oSu<)SzwECspD4R+=puK>J`b!=e}@fd;jOqA}GSxhkQ15~enoxlaM z9MS%7aypzIdj_&dh%8tk+>31wRFC*H%v^YOy|?rbFWv}y_DRc9pWi;b9Nz3MY5+N( z@KD{dkW$^m@^gV|^w0|nMI^~zBv)HJO}=vG6v`n0y{O#Nb^yo8ufw|`O3{$;NECpn zC~06)fpv{wE*|HG4`Z;jUrp+&c|v&?$%p9Z45{)9={vF|II2JtE@*KotB30{j^NoU zN@m>)cu=TgmvL1TBJ^H_Vt&AXDjQKDHgS8mN7`U6zv3|dvh$^eT3Az#)0CM7R=lz&=f~aI_B0HfTBAJB zm1$K+-?$l8cn1w8rrhHu_x-4M|woae2eR`2CVG{z7uM>A*!7#M+`4ruMe4YzZ6b_~7i zZ8Y=5@EG*c-ga|{9Q_ltrWKeij8Pc!JRT*H$X!X$X{CfZFrVB}L=C%h8kc5aVnPze zYf_*489{Zkz%ov@dTv+Jga#4lYppnFM?G9;U;si*l9u25P}XH=7R}AwP=r<7!6QBT zqioxi)n3NWFAf>`QZ>_-uRU%dqIr z)#);NkoJN&<$!MfGZRXKY;YHHqp;}agSV~Y=D6CRKUvhN)-$FS`}AZ|ZjuR!-WFRsA+&hdiB!6HZh?5TDW9=1HTUnIM; zfxEi4z8{n5(oas4HNE@H8{v}Cb7hF`b7fetXw~YB-h+5%`;Ff( zYDb^2eB5M-{-qg7Ar-Vxr)f<~vpTeRjak^lHnb1C? zzIL1YZz%J_^n%Ct6VV{lv4r}QHl0lU5)=98^1hmxg^xyVpr-C7#=(}Z`;742Xz7W@ z@Dr`$A`*+yz)^83D|w|Gy5XR!>P^3Tl{!6d{7d1@#mg~psSH)2%|3EmIx9)TiJ4w4 zg90o1I{PmhjAoUJkwG&PP{vMnMb*p4wNjS5LgzR2C+fSpTW&GII!2swYje4XpTah%q6|;meGV(0# zr+E-Hog9g7$<*M{LmP`1(=hy50fQpi&uZpTU%!=JSoHd>uF>=9eYy`;p?Nv^Ml?x| z^p+_yhIrUUsbDd#Th#hBeC%qo?C(&L8Z0ZfDZn~z*;d7xqa}{oNIJ!RY=k4$nfSOS zqpX%X#Nw*rhVtNhahgN!YYj+{-O8~+>Kto(7!O#d57AW};x?TDy9=!8^t3>ryccR- ztrw0gzjt(&)a99Wl$=*iZj8p!zJr!Y4cNRIjz9!SR;DnmV1TD;VHUes`>Vs&Xxqlw=9I#4^61TZ(Xr^h{l=kt!{UFv(0ly z%M}TO;e-_1NakQDAG0}l=JT$YNJ2k}4%^hlI9`WQrqmQ1Guho)Pc?DQn2L8FQ{T^JnkU?rTI+)Kw!}j0Kk%&M-3jHBEC?wcU@Ll1vnaRi`68yX zokVv~^s@aVCiB#AD{6QOtzNgDEpw2Eq67G&$)kE+W8`vr$Z(_LTbpBZ=`?UdC&reBK8^l{Z% zKtO?AfKJFVcGp7cNMW%_FAKVBC}!8(lO<|&t%b-?kArkrtdC^IfwG6_`Bt=Q_Vh1- z5WJm6wmkEHezEp*<>Fsn{}gTNs7G6cF9~Jys!DuO6S@mOKZHiC+QNA}nigtq8>KKs zmteY%Q)ouN)pj;iA+ShlFpU9TH3S2;4Irz;jakJzF&n&zE=`6@!{B6`T*B|9ocw8g zqi8`N-2NhEPGpJwVN2mAWPg2JzQGp5<6uQ+bo3GAv=%@|DiZBTzhS%)*Fa~btL*l7 zaXpe9CEwZF(l|cbXWK749U4-apHCf)NlF#s3p6R)XuMAYx0_y8`8)78X{N$?-)x!( z!b6Oq3F_dO^P;ym4uZC_oD}v)GE;mdu;ila?_Bw>8vr=fXryXdawGDMb*8=7$)eGz za?>RDN#T*B8O5h-%uMUesJHwbYsE`W6&2nGv={(a6m+0s)j@QqyXvzo!$E#TEjsyx+j+4;}s*n)}H5?u8jvhX~QiCD==1j*E|dE3|oC)4%?og zDl6Z)bL6J`h+lILiAfX3(Lzm+;)@jid-i^=+xP}P<~aSguu(Lu2Iqr;of>PzvP)d=eTafVwDg2qrybFJ zAwAPT4HM-wvc2sqAGV8MrIYPbQGF3nuM-*&)AnHw!}fkpz4%etMth`Lb%>s^O_wl$ z!*cpr?!_5U@gz3bi$+w@?{C;P$|p?Bu+<;mwXjFJvY=3nWf5ew;jER`_-=Mtn1-xz zlecWwN?W)VR(N7isuz3a0ruf^shOi?1&_ufA$8{Yz*Te=lP}9c{!+Uo2lqisBU*)a z=%v3d#PD=oSUKilPbiY4!;<5&@6tKk+@zn0K|MO9)|MRogjNM)TQXfEjyD14jalI| z^l$0F{agHLa15+NAu64V{X;d}PFHP)CZiQFe=tO?QvQ`K|K2;jbilRKUbCv?%N5;Z zW!f;%Wy4Tw2Ya!#(f|j6vp;%0$prHvglzHdLFuCjbfP*PYz`|bCSXXBn(ve~E&+5H z;u|SA1r=Zw2f|6{Sfd|+^%aWDQrvAhI^}DWb%;)JW9_3;-GeeeBvyxJ`DfEU1&JZX zM2QdcJaeU0IGUNd1CQZM=nH_%9j9l}%pFo$Tn-lRm5n%^C=?14Nlp|aN!XX!>!teP zqTlJ3GFaLWfFp{MAOFTQD5FZnhVk#@C`grmW?Evr%`%mY3+;d=QdVgU`SQ$3kSI;6boW%OL z_A$cvdX4i}jV`-F+)iJgz4Q9ok;Ct6QlK{(iUynsre0eQ3h3s?G+K>WE{rTOwGV+L z06q@NHiU&?3@m)8#(!pZ(Stxtf|X|Ly1|8l?6N(Vbtv?Ljnhmo{!47|1iWbCb5mui z9>35&*T>Gz_@>`Cj)8gp?;0B&Prmg@i`%!K?asCgsX29F{uHvnJo}D5W!wEFqsD_3 zBVRJY#|%{NUos$V%A*a06>o)LbHB*bU(4@l?U>lRV>eH zfX7*Az|SyG{2B(*mz}!@#b0EV^AGzG0CpH`T%xYnLL>Lq{%yGh5CS_V9ib^83|>RD zujHCgxB&!osjK;!Qzq!-gpI`eFFpfAakwD+H|Qx2U_MKIq1E@veLo@$48K!#^)rd* zmK*YD_g@1FtRWZ$&* zy{mY<+Ld59WTK{Hes=qs@0&-ogM_WY;5jcWh`HtdN8-rOz+90<6tFS#uT$ToxqMj1 z872?_CP8*1!k|f#6raEbkb0o$I&cUfZML!A7@4#-yg5#ZG3ISsLN^L5^8gK6U}pjU zp(?cafEbf}w>gAuROqiBDJ%2!aVnRFltpi}0UcB%qx4%G61#eFq6PYE2Es>NE zBm{XRZH03MfoXskM^!ja)8L6&hIGA?>hN#k`D?}Q@GC&+JnM!KZ-r=c?ghLMZvXO4 z0Bqc;o*Aa?f(MekbG08J8L|j4>_yVME_Dr)g*574Uuo;AJ7|+cfoJF^B&~cZ3~ga^ z$2j7&C^L}=?}-lIKFDy1J7~1B_;7^)PfKCy;t_ z!x$=>J;#fAruE3aI?JptgvZFXLFhYb(heLaV-Z1D@Fo&c)zP?O!P*wCijre zuRf0QPI|*z(g=V_>k_vwrAx`$g=q*R&j?D+e_e-J&ZR*GKzWrZ9>{_e@824-P7Q?^DKo1fl!^GUV2Q^5MqjVnzbSEpuOTe+orp_%o90Bz2c z%VFE^sY=#mPYrlGLAqrNy#C z${`8H>F&oC7(U#5BEh))M05RTC(L8FOm$G6pE5AA^!%2Es@j`h@tjSGJUz%*QqI~;_2zPw^rhEC>jIzMd>192g z3?Ev~K5g*n6bGk(Ee`&^(;NbG@ZIi<@$rp$f3mbq0WmK*l$)wH2da#FOmwijKV|Cu zNoFg`KP;~O_|fLTXoF3r5%+dXHj9Y1+o4=`RB4l7eB1rV0>ej}k0cnsIq{deNlFds(90t!2g*q>$s{+GugjezDcK(x9GGX z+asOsVoawkF7I?Z*E(%_XQ%rz>~str7o;+F+M&FZHo2hmqCx5bWseIaIRQDi{G?8& zT-a%u7uGLp(2kdF>v$WT-`DZ9=nf}#I+o5CcA(R4I$U$@eV5T27H3b2lv{g4T1+2g zb$yUl)`Py?yVJK@bvlR8PT!vK;(2a!d-2SZ#=Uqig`MFIc(q}!b@y|Z9+7M@N5)^RyD-jiPYH!Av7r=$G&#iML+eeoz2@4a}GvQ9@C z-svcptuSh^`S1l>_I9Vs?XaS&$Xy_E|~x_)e#TUj5=h-;u?=X!O>1+T_F+7gBb-)206Bza?`NmbmtJmv`$i z{kFpGKu<@rVSY_f)7ZP#Y~D}aaH1yYKu4FhZKXx-3oi5j>6^AyeOMi|wqi*Cr}uX# zTrCTxoDCe224~`~p;y2AsVVB3?7hADnWjerJ->SFap#SeC8f5bV*@>BC9e;hGU*U{ zSd`tKneflr_`I&RTEF0i=G>~Gk1TcRYkF3u=mvX@eq$1@=YYbsw}-`mbd-N@el#Ti zZw-qJ46Pk)?XStkMCQ(%v2TqW%)Q0e*imz_4Nx5h0Q ztq=&qRptK0l?7IGH3`$AjD5oZkJ2ZN{5AU%Lm3^!&V>S-vGWQGe(Vu%u!(Lr^~qHgAX&hEWiLgvS8)wp;~ro(z?efD zFBK2T&zU*l!BKqryRtNV?~SdGu)ck;2`obw6w7f5Yc1Zh$bE~JLxL9OKj?uI7Ib#c z6xS0Seu!Y5v~GH1+wXK(Hep8T6pplCby|l*ARH+zn&hzc4EjY5ZCG4+^~7q6+-|V~ zTfXPe*O$b2hBfWjvVaue%}iR_MvEMl3|vQhnG+wc89j+F5$DiueI(m}fq(ileA1KK zU)=xb{>wfina|zhMtT>~AB*c#dKA|-vdTc{-hB;BM(+!XbYIuwBt&$4^5&ORIO{d7 zk|5Ss*gZFJbxE`zNcq!#j?-w-0 z3qGd3+4}$NQtGYAU~Skonw%DoyKm^do`pgN~rA)lP;xr=X z%(-{3?TA9`zW9B!UJmL{_eFb6b+EOcW@s2k!FA97&X?|2zGRV`L8#0ZhIjVFv{;~n zai#Fz_aSYSY{Xy;hON^bdY-QNEU@BYntvA5>PVP>)^>ODe{cw}hVqZUNb=jFNd(1G z6S?e)e{+gOe#-)fLQPGt4w8sx)1aST9UMa92e&oXem>3a-!rPoPxYgaTI~)pEoLk9 zriEOg_t!@%cYgJ;j_vWne2uW{;-AK`8gesv5O8d&@S_z8CJxT{FtmN;+I;aUZ?xY72uv9(Cz9ymGG5=vSighrV;Tb{ZL>ZmvlPS z)8fSCJmGJn*6M^$P_V!B+7oX=KDp8^jZC!qow50bZ^vl(d-{9i;|GJ^_uL|Wh>nN+ zGQNPEYc8DY^MYT(}@LAAzu*Yqg6?;bxGR}kuw1+l{|?c6%c44^))hA+hJ$QE97+F-R~ z;FS8ol9x{$cN@+U%jpwqe1#l0ol#Zya{wFgqzhC38}BUEra!1{bbhCvR&`+O>H+XR zmuz76_Qh^li0OO4w#1wec68Uy1K`Ki8UZl`yWsxxGABkV{rvXJiFxbfmd{UP2i zJG*Dgnk7prfs2Gn@h@{g#5Xgp6xLlC4K-Wg2_^`~lL1)QpI+TqN@%*>e%QysK_!Qa z^E_S@jqNM5cGzm+FqWiNo%&0p{^%3zqEvdWtf1d&_TKq}TFEkR+#DmF0A3HVWxQ)f zb{*d)No6bZM&HI_ZbpDIpp0TWu@we5owh=+Zd|$Kg{@2if+t@q?S$^-fIGOl|EY}# z>mjc1&u)2#@`Y0gv+C{ZYSo78+J#DN2{*!$^q!d3W*wkcvoiN1Y#zNuHOhh0QNtnwQ z?yhai|J^(BkASX5sN4w95*l4*Kf1;IAK6n4@gRt7Eo286HCLNNrpqej5xs3?9-_lK zYp|7h8f!^*+J2v?*3OF6>Bxz}_%lH?TG?Lx{lacHv-k%2-4^Z&a9uVY^LBluGoc#?PV#8p+M|>+UQ%F`Uf%yTm9_7v}1nUoHU`)=L z84A2r!3fn120(%msbTJqHZM$tkAU8qEq_xfo8$xP!+qiVx@wsX9yv%iCg;P%$0Zv; zayXy1%@L)AKwQ7Kjet?G48A}}aL(f_atF0!=M@c?L7g61zL|C&-W^uH{_XIVL1Z9k zBRC=orm>0PR*tt?;xCz)SgO3=#j?p0%fHBkugV86oIBHNyGvA(Q!AWMb7p`H0$XWg zV2ApPBqN_w=*^oJI3tDF5=kv{fko(7fz4!&!hU<5ZDkqS+wYzyTmsi!DzNWyLH^2$ zEybBh*v*{kAe-z-@J|yW+(g2Hw)kuIU_`%~5v#7q_tMFo4T*P~QWIqM+h@^UTfdoX ztHhxuJ)A0b2@3;F-KlULlHiv2^J$=hZt|m3Tvafl6|kRsqIViBg3(z%dY-^-Bv?*Z z>&}Q-nU+YR*z=eV~~|&`&eVO%lwF6#dW2WRQ5;PIK`B=n2?($o6}@uZ8cM#T7Y<;K*qA*aCa9 z^kzNup%#9*`$`}ITyWP|DUwVvxbs{!bj*G*GJNWK2EfEVnwcf9sZrkVZlc4Yz;5fp zPk_?aYl3WAHZ=ZoDURW2U`2nIgu2-j-hf`AGwL3p+%>IJakQdFPp z1hh_pi5YG7X)8IwhOd;4{74wV7mkM!f#PlbV+-t!T}2eIacyD<#KD4bOjlpxHD!HPCoiI(+0@|v`sr;Y1Y0We%3aa>{jpX>;~4$I%B2l+{9O7NODy z#^;)I1R!nb^K|3Z8_Od<();wzc}t}j3dpOobi%&07rIa(iK;(&=L?@kP$hIDDV2gM zI^!1=jL~g=!0nk{fRBi(fNKww9o^VT46z2fH5goX$RPy-@H7AJ)+nf`c&>h0Bi$w_ zMA`v`RGLQZRNR{2fZ8r0Yh0+FSM0q1j=S2>FoI}}{U$@g3Zr``zd7@1dD8n&PuuN} z^e!KMAtz5}4Np~zU3{?-p<(mV1q3-{abJ;td^2$43%UP!#^Zhp84w%e zwry5^(nBsfKv*>6*L$k2lNDaGk5-C;f=sFbu_zy}d8#U~lty_14&O+p9(moEZSgg|9o7l z`M(ig>BDH?ZB{|UI7Sos2&rIAUhlrLQZ&fFHT-i z+!h56fUa)-iYHgY7`%e1A zNoZT*1f&b(V+M>q=W-x{*qLgY#8m&x5Rz`K-Ok|E|8!?Zlt4c41I9`u;4%=%P6(e4 zFZ*{OMcNtTV=219b~zXg<#aIxTN_d*r0swQ@Li1M;?l(hmlrcO)1^D?shj0SQF+EF z!*j+C&V>4=&5HoOBwNG**47JCeD1L@%rk_es0j*Xi|)g1-K&I? zGf;GKT~#Ou0rHw`f4e`ue^Qc0w&!IU_-=xa!Yk5#1Sww_{pYe6N+_4jCL#ECS4MV0 zuVe(wnX=3cb*bT~C{JWq9}G?~(TB&d^CD8|N7YbLWUa?0y0Qq;K9w|4&)K>;JD{KefzGvfC zjiFy5c3`7VVbhvR#MX=r3lET9jW+Nv0-QbnkHiqY1l9w3#ErEf93nC(i?=6J&3G`b-fnM4;)KhBir!$Q0C6j=|LRifG`f@J=)`RAgo z7y7jAnb!*;OmccnMLZ6LK9WIUc_n2QUm&1chdZN8wn&>ovNH&owYxL>Rv85L0I>R# zJ7aK+1Ow%S_o?7JB)tNItY7|8;|a+CZxbSrYj#MH=v*ss^w7p>)&v7_36~x7fjfEm z|2v7JVkW^zwi%+ZDNER1fCf<}e$5=niHQ0-Yf-NFB}fP|4UX!ed+&8sxKgE{E`1c- zU5*C-gc#P_#8KfPW|_d8O0|d>K~ArsT{)%8v$|$dfuby0g=EUmFLLrSO*6+=TNi8L z&TUMn>=F5tkiQ|HV!p;foduwwbKhGBas-snN}@8&K?3GTf`SVo{}wJ^CJ@0? zB0@y&My3^Se7yaHxl+_uf-6W4!Ke2DDuosCb!j+fFG9{l5sUGqk!yZ~T(gj&OpZ?% zn|)bR`w;<>sfLaBQoJ+|*W+DfRM3EjE z!q&lq-q<#J@)c1?;I+jqr}11jaAW61)CzvG;F4e16;uSNKmmi$Am%NM1TDf^v%cyetz*`$27CX zMe47cN13O4B1RAh!N3kq?8#Pd+W2ewY08Rz^{0cjf25n&#kkq0j;F@$31@1ST_ zj&S-Pb5iAp)Vxez>6+klGns?nMGA*HVq?N-24r5=cd;?iXIah&KY(MO9<_7yx5kX9Xj%Hi5Y<||nVG4-&aAG< zYE%YaO%Bh%Qi(#8B5960*JR2eU*zL6v;7IeGF*Pry(j zK$emxZYCDu{2mHkp@EP}ab*t9HcBMP$e4-a$f5eCmD?VH0s+nQva%*=el_Vu|EHob zKpuhWmBOdM4n;%C3D4FBEuA)0Bhr<2i6JOvX*OTr$9>Wr)LT z1r(wH?6u~L6H(0@j!NAEdxo~8X_rDcDMH|jC1%G5AnKs&l$S)zItno>Heey= z+$WL!?k5|<#w?-B5ljp;pJ!OR`(S*L|MEEj6`Rz0ArB9kY8_$RX!9N_Un;Dj5>J3A zL881AE9jYxJ>}-im)rm}1)HV^mLv*4q}GxO&nm}9AU7c>4JX6twr&K2H>ze8Y+ z8-z277lEJRG9@UUa1Us1g?&;Q)+H}YP^etI#bn$@$^er2`tXY~Yz0YIq(WhlVoWXt z``=vhFZ@gr3eeq(8DPR~ z<@2acgTV&A=CoNg6)z$eGh2BngdTyYI<>{2=+h(DYKk8!l0wo1G|7_vtw?)?z+Rv&&Z;_QENbF%ddRmkUWuylY zwnm3Xs@J`F-2V}XXt)@vbJ;W{ib6ZcKVl0e+eIu+(Mcjq2DrbD*WK<8UE1x8GRt~W zgi|Igi_D0yMDmhKiCG3TVPcOAAjFRjMo$<62??B^m^i?byh_@6QUL~7&-_RFy#+T4 z`&^mySJ-y~*8BG5j9W^!WF1*Nl5<#lk(EHyU0}~ZU*xZ>S_3wL{wW5YY=%+^gnN^v zf{JxiBm-ruVr6^Y<(*i;>14spjSbThZ9tH59a+pOa>@5O3S~iFPGz!^FC>%*Z6i^& z-ej7(QePNGSO+JKT4nz#qhs$8nDEA>!>KFG%~LbT%iFYk)?_pZbq%Vrvk8(Rq4=kr zqoeG$C#MV&DJ7*UDLa7L6Mz(yH$|5HOfL$kdjtw3^8|&$ZNf?T6a}f59Vxzn zEu}BrvSDEP(bdGyQPPRjDN{YPM_@dRzNkMI8s#?Nhg4It+DsnY$kCjvws{YGX0T)4 z5AX$+#0y5Eb7asJxv{{uENLB{rdkxhc&c&`r%TH^Om@VjU780`{IrEWjrT zO^Q;bDwHabFCS~uLbc!e)Iz}@%c+b69u%^uuhxa^-=2b7B?v*@BSlx+Xbqa%8;};J z9~A@gS0eH$(i|&g99bUQ>PE$_5&uJlnN;|FPYOn;C`sb%xV9?k_bxxB{{-*~Ehkw) zwvlssZ2#$7shS0U(C2<3I#SA1B_JR)hm}m9{%d_z_!HskIPZx2Mnwj6p`GU`0EZ^{ zD{P+Nh8`pHIxVJJXT7*7co6-jh^Qj^ibz1RNv-KeDeR*dgR%OWo(1-(s;1i-FWr_6 zXV-2__q1rWd{BHNl+3^9knDWumTgU$>DGv&N=05_v{a-lNf*xD-&U|N90)d8Ti>-z z8%w~59iwEvh)ngNuuMr*FKtU-aZQrZuHqU7&?fr@QY1sEPs>bN(Z93-c^P%kH9ZT% z@+qR1H4=Zo7L*i$6fa_ylqzkQWqbDoF;0n8SOhte>Qb%mo@WhfA7avZdx0OHHt#K2 zwKg4ykJojTw)8-t5UGeR5tS&Sioox}_07b@p_-h60s4xXq`y9hZ7ajpJF}@nv);VP z&c!#33i_C#XPC`V2_4&T0A7VNE=k=v0B!+XGrOo=9-W9^Yg2dWVnZ5f7^nX z9mWrb=*F7)XI))r_E=Y_M1@APd9KH`fKyMM8+zu;?rPIFEH>Mtq(3~WrPs4|WGHPT z)>=HaJ^P+Uo_s)=^?}%` zp$&;q?!YOl9FqHdUsD^H6NWO=Li<$rB`A!@KjF9Z9Nb27Hx2(rrSo8i((_XqCqypG z9^qebpA6-9q>UZJF=%zC}x;?M8&7Ho}_gL<)XbGsZj?4B(@4&Y&SE0q< z5d}5z3$DHtY0z*f7cU&ljCCA>HWItO!voGGL1w2+WlcMGMw`z>E3?jn*C=TSGwt6HDTy(n88i7s25^$c7g88M`fjf@&Ajoe-Ep&+S-6|-R`t3 zq|B^P!9#A(hZ0W#3yasRC^2n&Oi9H9Vrr2HE*5Ai>@p?F#3N{_yyh9t5>S#trlOMQ zQVxtw znhP!59<)cdw2SPf$KHlZQcJ5|$x3v_XZW(KEbQTCay8%eMsK>Or$|r91Z!6r-P(UR zj;@MLM6(QYLjy7*=RT-JC&PSnle3v#Wy`;H9h@4Z4KQw~kCs!S-oqC(b@f1d*yqz{u}|tv??K@;(XD&A-02>^mwmCf z&P-(Y)6V*&PB)dl?fU$|Z!wo~7VXUw&_{0w3iZ2q1O+ZCH6@G)sXY)Ew-${v(0~iA z2fBE;)EAUtIsMY{(zdU^E2u_ajpjD@umInZq_r;WgxDeBW*9p|&O%!?bQ%5j-Rbd| zyKyZ|{~JYvS=!?lG@|`@nEzn*0AvrIzgxv3u83)`T17X9RiuHT{gO3mM97*sSi@HO z8g6EnKg^0YbbPn}&J%nVB8|s%8%;Z7SXF+U&xe@MlKO%FBC9O&&3*SO0+(l_)8d$r zVwf(Lq#ivuA5BCPbDAQ}8P5zEXioV2!R!{c%6GTT#?=8~0U7?khskok?P?yKJbSih zqp8qjt18bYmQ`d%E4WBu-BJ~z@Wq$nSTkWuu&>!l}8pC8Z^6IYaG}~m~#lEm!QdNUaunlMn(tN7rJzsR4 z44<<7>^@!>sf_4sLLbUD5URFcUlTlk2S*s#? zESLlue)Jse?tYtFIPDC7?Cff^P3D@iIVt>=SYQYCSkC;e&=6y}j|Q9dkL^Q;$E(Nj zy3-$29_xYCmQQ2b{0q&CXQ3q?`ucFr3`O@YUB*vgvzq*xnBlzg%QIK|iNU0ezUx?r}wD}IJ2VOpK*5E;WXGtiB$bz8QtUz^WXV0njO(Os)OnMALpItYtc{g1Pd5}W=EW8?;Ng~w|PdNFu20G zJw{i3tUHrc3*epD7?kH?4I2K_Dc-z^O}|MRs90xO=*ICf(ieQnOX%zh$>{v%OO2v+QJsDX`VEPF7RRQ&G>O@79Q_kNiguae3fs z-Za@gHzCmtO^g;4H%mYlMRWlT4!O9XKs~!C9WQ?=VGQV!JbMejpnmh@8vXAl_+I`Z*#8^9U9Y>>dL++2R+b&p|Llbp=d-&c zS1zqMl=SV?;LT#w`%~LH`_p6L?g*7!7lqs$atC@#4tDFI#lMm3B2jlnl^Nu*X|56Kf zxB2#UbGCRDT(*n%AA}1g(RHqhqj-2&Yw`F&WwbtkchM;l{Zn0Mxvt0jRfN~5VM!Cn zcLMUzAL<+|Y@pm4fKEZ1q+?IgaaaqxXyI<69_`^H-+3V@aIjx=!@>$1S{gaCSC!Ue z=u&i)U&Eu*cj0CSTr~7nVeX``QmqtyZPr@tPuL+;fr=y4x$02dV|$|pB*~PE><>6Glv1Z8`CV*5_)B7K%C*%ABSS^ z;Es)$3n%C0<1&flH@_~*Zkb>m`~I14*hoq|J34ngG~==|Ek;e7;2V!a%McnLkIj6V zjh>p(qZ}Wc^zGJ}v;4}=rvU0EyY=li+3UPo$`R=Cjw?mnLj$f1JO&u{%5%SS>=wu+8gh476&ECVbPh6JH6q=_2^&RS2j;o zt7Hk}sg)b&!p2x!&hr!DU_aaDoLrP$7@1d+KI6c4xrfCSP$oQP?)kpB@JRdUNWJ@- z6P68^2tB2)A4x#7wYhK`PB3X1{wx~kgIs6(2E*uaV@BB?ET$Y)+MnZ;DvNCjk9Z4x zOZ)O_E!ws7GDdD=A|d&GV0+B`WSFD2rd5ZEaCHk$G;KnO(%QV?hPHLX{1@588t7Vx z&(XMQ1Rf52P>n^p(yh&)6(=v=C}QVc<=b3aoV+@eJF9$WQ*+V8Yky|C;>RrLR5ots z%d+DzS?HbWm4|CB>Ba8nw=BOZE>Zxm+#)u2`AVFiO=7mobqJUM8a;;!NP(XXMj-R2 z?(as(u;}kr(Q5ggBcz4k?aqxpcmbjhTFsU4j zlugCCp|3?eJxBW4Ug`F0@caO-H;ix=Za;>=bjwpyO82yM3wlG)#KaBhzeI#a^$FSM zd}ZK;9|~ru_Tw6M08Yq;6X|ObIPf5O_fU26u`}B@OMx4J6SB<1(@hBx8@OM16pv_T zT715*OR24Lz!L*3(RaSjXg@gV7xWM9Xzqezv|M$F+oi*DS*gdmqE&{95Bk^Q zJ_op#gM>}5xZUZ#3CAaJ%&+y*U!!e)bHel{%bRDI`$i&%#dnDox|H@|NMl=*$ zkkh&V9dm2;hZWeK2ZK|$AS|#L-r>p9-$m`TDyeUqX&bHWUTh)y^}iNH_yF+T4z|w>>;a1HdbC z39i&Nfv@CgH-tS!K@MEGG-Ct3>4ZV!f~Cp?4 zb4eXsc}O(zXcZtupw?H2zgSv zPI~<%sq?r`<&7AR#m>IEnU~bcF0TABi>y<8RRw2?W-2djsabw+^a~6OvaRiRV@?PpI3QQHjD)Zk!2wo-lEUx&Ip&jps zn+uiyItsUg5Xi7KJ`aRYt*d#>Vwv=FR~sy*+0@=H&@jMkN+Jj2cC8-CmEe?swCVQL#eBTb4w#s$#UGP~ z(`|^u5K4|)78y6g)%>*Gy$9`-zor)eOxB>gn5@K`jS!^)*FNwqW#bxmH6o8?{69@y zeTBM-&);NBgSFk=@Xgfa&nAq0aA8aN#TF}^oq|Ir`0nEY(A*^x3-e3+#06kEc&37| z!y7#sXJE5&Cr@kq!Ie=qLmj)kuWVie0%B>Fe6GHtIF5TxE(O8yZ6p{;Fs2bXe}m89 zk0od#Lg@vB5@<-k>XrjEH5FJGhjufgR>CcYN&* zgf3Bj(Nmjad=YgZQR0n6M-}=@)kiD_VdiP&3m~zQa4fa1wh&YG-6_{17qB*jO|!3l z4|dJC%gHIcz}EBM`A?5}u!-bk{B5!xRfHiAtan@G;jR(*B)m%(IWKWCmhA~Qm}-CN z7CW|d&p^%gkg&04r8wuO+TLetX%c*3tqF}gg!<#&NVsvJSO*8$D*W4lq4CW_Eo!Hk z&_lY_M01_(5^^(}`c2+`$MhI}wPVr$APWM<XZr-w`)v5^;7oUuJl>$ZJ-|_s^WKTVkiY`KEu)`csf7nSJJyJ}hMx zu3+Gj*1oud4Y@Aq>s{4SJA(I)zUpkSs;O39Gg7CS`e7<6h#DnSdG?3tJn93$y`N86 zC_epe#uL5Nf%4gI2K1YB_rhxzO83zDY+Sk91^bT1_`QnO399U;HIb!;LC8{FCdmGE z0B&4;t*S<@za4=a)aI3EPGO`o!8gKyizINk5umPUSV&Bi{N}&ueBdLAcuJDo#P_BM z01GeW+Azt2f9v<;>5(x$^d?I$?gNIc z+Y1IUv#)im!d5~M@Y04Uxcw8G&ymUDbrIZ+>rYC2J;lk@yzp&a^r~$=#F@g*$nOhS z0O_FcMn8P$7#Izw^6^#husy&g3ikcSR7>TMwbI8NB)L}A(yhiC>&sjdc=RkWjz;gkAsB!D*Pn5N31Aw#{h=IJXsWvZvXmt zkU}D^1na=dW7Zhl&x5`&F4a$H1j$T~4JOMYFQhFJ&T<(N7a#uMTRn6YcWe7Hfs}Y1 zXlkAzuwEp$c&i4M1y}&w+-KxXagIN7a=bz+?+PJ_Rg$^ey&XZ2@Kv|31-a?AH>b%| z%dZ^3EVmt!s>CZb(U4Put*QB9dD)_0KZ`nT3;^Id!6Q!GP24JI* zqUxk$etKU;`K|x#f6`06lFHLctHAcGA5rzH9co@a&5+- zfINmK2>X$D-1<&U-x$l+L0j;)bp4G`jYi!UZcj`Qmk?O6src5I-Zo5vXs2%i7(`R$Ji#aq11?!yVGF3auk`s zh!NcU0~w=V#`f2-l(I_%fQ**m^|^l#E|Ae_+-cY)I=zOUg7=zKhs%m$C&Qx<&FTCa z??-8jYJ|d-D^qlW9yvd(j)s@o{2T!)NPS%|+mC6#z#`gITL*pWEwFXFGojpx9S_nU z?Pu+}BF4}?eD0uOjRF<|zMGCirH@+S?sHrNVqhaBB1b$~=m0X^VF1g*fy zsbyrABEac?f z`1n!N8j8~D%NlB}4OD6{Jqiv){_a8xVvBveh-3zGfmqV$wjuN5Q|(AdQal6v(%|Qi zB>LaB8$p1aZ;{pQQLK#S6^UCePeY2Nu2<4o=lRRCqt6)wWV(q^UQ=leTfwDom?{Ev zE{!<$R`B|pdq@8s{zhSLoNAkXmcj9Grc zxYuSJZ4|-8Q&R>m=^s*sWYUVPy8bhsRm`SjC3z>vL1&~T^_SU^AJ@cH$PZF$JY$jc z#GM>oPHV<1($OK|a2?-x(CtC$(WHZG2NmV3(a5Du=I%)~3a%hFsl;u|*ggoJ6<;Ji zLhh)jlB_6w{Fw;x-Sd&YOx)E;i&(TwN`8}=;lN{NN=FhcLKASPNV@AlNYk}-sQjZ|WI$XGNj%S8WB7?(Ze-2LPzlF@4-SB@&g z>BfJNm9-#5{9(E|JKW$kXWzj;U>>dhxI53SZ+35mtnUAK|Gj34GiYnsD+CG_TE&%% zN`ZuM;nEZ>J#g9F%lrz;q#8anmNQA5;*8pvHb!t8Ik@5r%+7ArI@*JahS-4xTcL z=Ls(X$8uwuk>hiZhZn6vh+A6-t=3ga8h+Tn{a{ z7E8nalXq9}R}Dv}?BzV>?>4gA0tIBu_UKz8PlstpngfD^(^|fm6r(wjCyUPGsBOeJ zF@F-sWbsO4=%!;+unn?Xc=Ot!d^mjaa)|zO+ub-&iKEPZGSi-k>HsD{*2IGnmIM(K zEcSz0<=t>!P4H?UL+1D=UfXPhfNGKA*07WybN+3EK*kdU-DIb@Q+u;O?issKhs4yI zwe7MlBme1A;l!c+-NK zbPZu*PvyRPf+GthCjmzzGyN9x1{LHU=}?Hpx)|%uM_Vd!4sA&CRjCN&Qk1s?!eP9^ zN5J;(q5|W+OY(025Rs0M2Z1xdWOsS5ieCGrXFgT5fTa1<`)eeC@dSAR zSwsysXh}ZWOCvWd*g~ewP98KqQelAty!0OT6?0GXcHBcMXZiinQhg7pq1=b-{mULg zSW-S7x7fe|?A|UD43nxz9t;#wKe=sEHZGupClzObm0?^fW)f$Rz=}pjjhF+8Dx2j0 z*j&u4(dWP;z;npeLpI4lpK^OG)C}#0X%rcb5B)c!`??vXuFTu$Mx6vVPw1wT7m;aT zVgjxF-?oEH#h?Df!dEg2%zN3Dl3 zkE(zo;I;FmBSNWD=wTzylSGTB3}R)}o$rZ2w1i)xQgJ+no$cMRz0>6{aAXjB1S-Ku zQGOSEXZ4MH8^=+~5nSe{K+olADt-BFRoXMm%+w>*oQ?gCATzQFg3M2g@{u!Wcm8Mj z{#V?-tJon6_gcv%wZ;i<19s<5+EwwIkCR%`(<7!_I+JoA2^!AoFDYMx5ZY`TeGZPM z`s1t97Fm&kLUz5_EoCeewzf-1llIG^b%W(44mrZeu8wdI{(_+$nH6q5Hp ztl18ig@Zu;9(O@#rYQ-7${>l2$em?7M5+O=7(=fp40fYe)=u8XpO@*4Fa2il2~_dU}(Yamuv95z9S3_>B=vOT&%?BwKRD*cLl!3Ly5NU71-U=)`ZgcUEQFr|fk6%+|BTgc(Kf<}sV3)5b< zpbE+IL}4VnXO6!Jwx4k`(Ro3aje4TKDUdc-dPiq-wjd6fxVy*%-~@)sLCY0k_y`fv zY+-4SmCXeo8K4kn5(P=jvXf0cL%4#P&P{np5-SLy7dh!dx2Giy=>-OEuV43uDQiz& z995!o9b%m#ZxXJX+<~1}?mXu1XEN&)8)<+|6D~N$R1a*j^ z^A>4hy+2q9uI$+s^*KsAq3@)+G%~(k*DvT8BTXe{oYJ4Lc4ZdjBTeH`lwY6{JE5TE z6rPz{k!n>h3b>GA%|UiWvO5wG@kPr|z?O9-<=u!!|G1mKsBE9O;PPtZd?cndF>>9& z916D1#8)-MKHrfy$x8X!R2u#16r}E@hUNFL+-HGBAjBu~Z#g3UcCPI@$?h%A!eD5$ z_8Cg+P*pOvhVn2T!=|US^oNN^^&@|1p~b7t-3zI#J{ic5j|riUVk4)bqS6XpUgHez z%|CT<)Jnp9h|Fx9I;9oeDOZ*=kuDE4JRpf8nYA5^I`kWggZsQKIwBN-1kV2RW+NDmV-_eTE{y^rKhGL=fu z01`&$PJ;-tV-DIQ)+>j91*YJ-tD~6dbA-nb7t2GXkLmf5=p5t?ekC$Q1c*ch1-^3X zULjU8m6K3@R}1qU{~83XB%9^8of-*-IIlc8DG|0o;G^L&x4q5O?xLyd$EjNnKxt9olk3PT$k z&T^hn^WvE?Zx242wv=V;l@#oc+f>cJr=r}fB9peL=e(7C1)IS^z9O_nP$R7&goSbw zJZY+^^P%8cqF;Va^X2_OyQp3C-?R(=9GNWpJA)H=8?tN*|9paP?c}xk!eJ9n%Ie8Y zIHOOs5-^yvMarR!FQVXjBRop&__@l;7vio)g$D^0Gpmn6L4vN0pYDc!^)H3kYA8n8Wsuu4@esszHLHTtVkt`=S0sc>V__88@brY)a367a-z-LJqo{F-puU zqeC9&FRTS8K2hYbVg5*#XoC|xafgwn6e}TD;(v1^awUekU;08x@w}`OFrOe25)FE8 z3%L>kNqGB;d{oO&R7z#0KqVIR0QPjIik_)aWXuRD9^O!mMyE-}hx>@INPSAbZyqNb zjej2vJ;~3Jy7*f={BKO5*`bap8hr)Su*lOBw~Yxgqk0lhPP8TbUVzKY9f*o<=Gt(? z2qvu>&ONSjR~Q@j4_&zfPXE8R)a(aA^uC{Ye_oEt60#Nt+}apQ_aK*rnvck->s|qL z=wkeH2y}jF5M09lc_w+&Br8#i=}22(mqYAWi4+Gi)Dy2gsPw-&&3gOTU6-z>Z zYB>#c&mJL_7uVNy(bqkT!cmVAEE0>`#cBIbmCm{0Y5MvT-~(2$4F9IE06st0S}Z?l zK@8i=!?v^t5icuU8cz04kAT8+(>a9AZhvH-8R>>|qrpWLwupK|@C8(ck+NwnH(7I4 z1s)>B3l%yI;RK?TXa{v-*>RL|s%*&>9VOVAiG~rIB#M-I+k$r?m+|ye%N#!-RqVrh zRQ?siawl*9PN}(XczVr>t0P*lK_`T|IuIFIi6deok9KnzBFP|VG$1j1sxM02xXS~y z$Z&w5G?IT5g$g*qo{db?^H2u09u<`w!F%rS`m9EV?UjB~or#l~3!=h&rT4lP4Xc&k zLH!U8C;?M-4yn9dBBB!3IudA~NshgvU>%<)gx>j&rJ)`uGa1O{pQeM{i_xx)-4e*>fbMm9QW+2kx zfDq<_Z$E`gcg8??0Rl>;b}<1hmEJs<7kjJ4riT_r=ZxQL^LfktpNlV`U?D6p0HYeZkdgtAa&*)9pbxvS$U8mi7R97rt1DC*k(^ zrP(bE31h|SV7kjF(GVTLx0#CvA?_kpTX^a}NqfqblSFm3L_cF08qDhG}H4UnoN5`ysou(Av zr{u_%6{qVRQ$^V%Szb9vy>WusT5G3vE`_!J1o2~->_?gbb0c*E;NxHjqCWxoP8tRR zL2PGb^;h}5x_U!Cr&05)y0(8xiZQ?)iuQE}Os}dTIAqb#OE*13qmH%?cx24pnhSfE zwGU`kJ;5jB3ya%-hEH0xHgr{!KiBj-cV|}j>K1Prj_e^rD$Xq;Rj|hr;wssk7n0zC)ZrzBS^fy2uRwi9VBp+=#y26eJlo~2 zxfpfsuf<;2zqlY7ZyvU8>KgzTc&BIAXO#jA9V|NhuJ-#Cq7OPs$UA+Ay0_lDr2H0J*CsT;I`D$*w#Bhw-W@$^_TMZ1 z2d6H{b)*Qs)_=A<>au5t@%zsWg)v|b+N=h@!8hArpOpK^p!A<{zzyYEr@Gi4yKrS5 z1Xjr1<;D>p_~6A|ld@9|_tz);0EpG@t%Cx8&&H5r!UDWDc5Ogu6P-F+OFx~G8Qc?7u!1Q zKE{GXzmQ8nKDd{@S3=)%TFKqQLx@9~#GC?w;}wutH%gofgZryOVV~~&hR@Xah;>sd zo&dXuw`(~9pZAH~w$=Xr7l8@X%G&J*s|a`bmxWd9KhsGYr6=od#)MplsjVt>_&Q~K zwNo*7J<2mngOcF=a}Lgej`b}}hvOuvs;CPNYoy|Z*JqDM6NH*;wItp6${EP_eXBpc z46rinxuApp%YQKaEDQh7hM;kx<}LMmE;98wC0=X$hBfDJMnvJ0ShW1us^R}~nzeL9 zi2ql$TcZzG7e9mh!`i84E7$FUy81*lUwJ`ahj%BQp+VAa`a69(?f=k2TqGxBC53Fr#Ftw#MUUjaWJT@ynwO^0+IFw_|JDm~8 zKM#FK=6Pe-ds!nox9+|3yLc??a|Ase2447L^WYk! zcc$FhcW69HAzTk;PrPO=hT7eAr19l;A3Z?&W%xJFD}&1pa%a4P!{fxP#KZr?w;8|5 zn1CfSy`A$ux68ne$$OABI9>kz+LoS4{Dycr_*$W$9Xm^2;{w`#EDpKTEYf?A<;Yr? zrF<*JtX9i5j2Lqv_9yeOrz?3JuotddW(Inuvy9kW9_O$N!X!m<1WvnMIxQX!v;DfMgO?_i1TLTC_N3$J91ZdV z@7XnnGQi(EAI^^G{-84b317j;A)PrE zA1r@EcuhEc8e#n6*h6bUP0j4)WXnqQqow3cD!~TZ`MM?gYrhr^L6kS*o#FHMaEqVr z44Wv*7elKNp3JtiEOwRoU=)0TJAAx@-{_`}0v1CYAz6Q{BwAlHZB&uNLYNNepZRb%kOqUJkx%tP2YnK-o11~|KJGD3IYe>u+ z&gS1dgq~jbn#WF#uLO(J%L9f2}$)%fG4t}6|uTE}@N4cPyFvTXIdgfH?@=17;8d>vUaNH=B0Gz-)I5P+ojOF`YWAyvWB*W~4B=ND6L z@;+y7c}bo}J5A|6J8t`nTQIf)DywpQH9BX5$dB}*lEYBhTO z5Jq!~MQ*!(AkI;~jORW$ipHVPapG~yqXwS+*Rx?vvJAH4}A z9)a4*5`y3imW>e1UCKGskE%ewXQ{!1WwdGKBvl#*UcV$Kn#{f`_~0W#B=sq^gWmA@ zkxR6+bx_tQqAAbwS&7k|?K`MQQmgY=d=BRzABBA#qaSQD&zfW3LJwJ)oK)5Q({BeG zw)}KW@|5GDRQ77~M$pdZZ|uOS7J{M`v8y^-|{z_>CidI%3{jHMKAOLzJh4>BttfuY9pErku%i{2YT0hP@+l=J&5x7DgmrfKRKY98$09WAD$Xj_ge~l)Z zaNH?xxX9}89W}%haH+fx5AsVB?-U05^$HIh_28OwOMmP37dN?EY?a`uTt@;2^ztC2 zAaKYcw*u77L<$hbB-rVE>&46X+MIM$czf#9DCnV45YFZ?l{K$ zhEK(*l%b_T*y@Q=(*i`nFD}b2cz@kiXY;ggojt9k!|Qvta;hwT(IfC`q@m79dVUx~ zCi;R_$w*lUHMY}{tECfvJ8qravo2?JVR;Kw!uX{BwrE0u_#0E^`F2!Eq`W@S7m~i2 zSwTAiY7J-i7aN0|vy5m;l|v!nJkxVYS`_j~=<8+YUB=2jeVg+BKxh zd*4WjrF-w&#q$MzS$)==F}f5|Au`2Q_Q?}YE5m9gDKBqYJnYlDVxRK_8B;*z0ZvHv zGwxMDSstvFQ~yK)NFg6Sx!<{h`)_5lx=29u_O-knX;Au<(tEx=vrXI{_+7(-{0-P^I zGM%taCnc)_8(Li_7|1jp{jZ$h-ykp8rQkO4a0MjEk=MrLN*}6$! z*K!UP&6$aIX_lZ`Dp`8xO)-*Y$M1L4k6Thy!z= z7XaV$jJudh>UZ+P`G@J^+u|VQS%9S+GeqM$&blBdks&GUQH6n#1~{vI?wE2a5#up^ z64Y>uEUu#A+ZT)eG*GL)(T)c-9)9-S7uZX6;rV=EyLKtzugvG_5(cbnB{umsr& zL+3)tX2@_!sn6~GrF)xv05r+#G)Bq#Ut&@M+kEPkB4mQv5%|qDc`}U9QlBNMgVHKA zm!Wyg|2HFn@Z<2U;4-7KTLlWIEa{Vm!(sCWs)Z=Y|IBi%Uv+im7n@7r zQfpwR^^k&dZ-Oyf+#QQ%Psk{3Ra+e0q_()+Tr{q>z(rb07QEg|GwAZn&jJ0D_n?hx zwr2{|kA%O$A#x0BqA~&~#5u^wfEaiPhtM)MiN%ir^K`Em?t!eNW_xJR_GbyL zfVu2bc8v(H&1&o)jHPss(1DV-k)|xuLFW8*AARm(XaG?WA2c)afm4ieLt#VpvQ(D%!BS>GA_d*oP1JK47rZl@tm#vCOeB*by4v=tXziySwFa2{WFH+Ww5rnI0hMpSL|Dr*ri!mToVanCPn zMiDfw#rpl+CAq#QJCGu$Ru=Ce7o?tGhTex7B(r2IQUi6+)Re|NH!%Pj>7qP2NCSO%y{ScYTqZ0 z9(Hf@h6%p)7XFzn@{X_t;t)E>8<8JG_;-%6)P!Pq_y)ZEyB_z!8G0|+PXvO$U}L^Q z9(q<(fMi^Ua|l9D*yqzZ98CJZzq^4?d2PQ}+oXK_?yf0i=ipA#%!Df#*4>*W_}3Rb zYPKNrXrcY`9oSMa?;LaAbJYS%AQmSU_MerwFQ}!Vu7CO^ zd?#M0;>Yo5>;yoDOKLbmSt$Vwf27~ZHKJo`-GQU0c1UMjTc4K_&UFO3xJ?5oLIcT& z^ok00-_0xC!&MCH^T;1T!45CZ7LeMkI=?x03YOX{p?`zxe+n;v5B4e1Mp^f7^ys{f z3Huyud0V`M+v8liF+H<}b^LqYDb8GNP;b5cdKTMQo{LYb=;Q$egSgNJ1HoL^p}FGnZvn*Y-(2Aw z7LZoRcDB<)?ji&j6Iz;%AME)DyLd)`{r?}dPMxH`aov`mZhLV?A5(w9;5fgCHd+Lc z;bCL1lOK4a&*y^K<2M_*?Xr&d83fY4a!KpE4QaazI#(>3FGooSFkoevPMWGLe*Ag0 zppPHfB_@48qsHqcwh<-C&I#Cb-8~yTA2u+u1!St!23DIlai)1E1CbyG7oCkAx+8{a(-wjzQPqhO1 z!`&puB8@WGl1**_FF2-T+tvl>5{Zpuu!o(KBz16ZW~_n%BSaOc8%*-EwhU+eRTRcw%mScU0{ipL=RiKkkI^i&@HxoWe!Syx9uwAXu7s_5uk)`O>+ygBB+D&%woIf zC}oq^BRa;+ZArFMpB1%;IhPt2k>1cN;R`V_27CUS3sR4s9$1}PxjcK~nJ7}&OkSut zm_LK73sRcPC|0T_0rwed8?-K`{`y%Gr}V2uxHZ}{slZZgYYm%f<+LlfjIl&}x?Cgo zx%tES=ftQ1>U5*NmWYK1Qx(uHQaSg?-RST;9qlQ(#91y?VF3w|Xcz62WgW})tich| z20({vcAs5-C&}?y68#7)A>$K2@9qb<5&z3jabzq%aNGG&W|V}{r$zEuSbl&>IPC18 zEZ4y*DaAdIp9T2?GUjMBs~woC|LJ_-_srEc6xwu>Ge&bEvN0{n35lhS>6s9;q(9D9 zy00<1&x2k`=fPT|jq&!oC{58u;u#Xc`D&`D@6hC~$jzawQAzDO7H zym%a0jb={ahP;DcHD~62_V}~e``%w!a_$@C zbA~09BFzIiX$P0K6_vfNPD=(WRIvR^zh3RFT^09|Yx_6pk1fuX#qpcblnmeSV53*T zB!tyhnzh(?`xSFF)`{mkbm@5Bv1g#NW^WguK3%ulhyuOdBNeL;6Qj8~%c8S-ITG zX;Web@ERsfW>}@K7R0*(e?WpVLxM?m8)0FJVqf|Rzs17k=%`H{tlNbE=flt(c;#602212JUXg6v1vVjW|V(U};d)sgYzt9)EVWWu!VsM!(JU(hZ~=iaVmQP-0Hyc?OchdQq6^_5CB@4U zdu~U*q$FNsK1t5Me`XrOWTZ&O;mn{oBKh5V6u_)!?{&oX8as72@}0K(ZYIKwBJg99 zIg2s+U6X5F$dD%VC0Y=p)@A?*=ACWTlsfbz^SXa6vn5GWUI6)k z_?MU!;VdWN4_PUqmm85K`Eisd%5!8NinnG8ea_`qDv6C)s?!Tprh&7nZK=bD@bcX4 z8@?yaWG3AWOWPk>pmr-t6Tl8Y)_`IscxzJqvZ#TealrM1i4&N_aLvJb47<;#a9cwz zQLquRj#-J0q6C@`Bn3q%h30xemZ6dYw4UjBfRraRBElr%qafO)E=Z+uWJ^t9hc}h= zbsUjoq&^@&rJRIP9i)QNBym_o-{&T?F*7cO6nq0NJ{sm8H2H1=RTpOAGs|QC+j&+ zw>8d3g%r~}p z{Kf%xJHqJ&WKp~CTm_Tz!FRA44#w@lqkv#X`PmkmZxeLo_M37K$8X=+3twJLj z$PrEvl8bBN$l8r7E?KnwrV9bkSDQtPN+^sJqPW!(ytyFQqI{o_YtDAV$bdv-6*-;b ziyDW@_HTN|1dDUGa2vA6Kdd>0TnfMyqg1ycS4ppFE9aF&Pm95`dZ z<*0yClC7M=BC^Fv|FwlmX@^RcBwN)n5w9sj#II@DO%OoNj2G>u#OKU^RS@Iy_tiU5 zsnu@fHUp5h*53tgiUUQG@sFUR&PaAsVJ6!}rG({dUS=D86{C4R2C%0yuWU$H$D*WWnxm=ep)_?+)O}GO6eXik3jxGRpqpJgTfa#jxSPzkycKR zC+N>?`S{=s6k_6Fgke_|6?b`V=0o_R%;+WwE%)+86SOaNuRRx!t3_iw&0 zqR;AyEA_jE$j1S4Ovm01-f**YbnzxXLbizUv)({}4Ur2n8(br*iQg!rqA2)BTh zDBAU0m-O-c-!Z_O`DelwpB<@0Jt3Zj+d8%TNEDPX2}6gu2l5OUV8*f@z8a>NG&43u zG>_jP)DW9L=+h}V5QM8*RLCq_2URpv9;CfX+f83}LB@m3dGfodQrM0YgPIs%kkX(F z!nLJj7JU6ILM?cP5n$Qs=#X&7`a&zgj?O+Tc&gKE70#}gbV0mX=0_Xvjrc<>%cQVl1l3;Xm9?&}w z=l;p@;xco*?@dV*;<7*You~n?L%}l1x0kE=DQr`cn3H=N+dn#ek24~_1S8Sk3Oe&v z;1w4+E%)(}z=+}p^;j5DW&Zjjw3AeQX(90ZY(xmuR*Nt!9N*rZBCkL$L(m-iYcxu2 zIoF%0Wn7X0jSkK_m#WCPg-TaQMD*?prF(=GZ6!NG0T^`C%ebatQkHtN<2rq^u;}R3 z?HVtwxF$jW*DgKS4cI}tWb&gqEpR!8yp(AF!rCI&Gb^hIt+H_7Q7I^Ew?#`rDY=B4 zwV3sD1yHF3!Q7P?f)lo7U!IgZTI!dplmcG@`M6zhinn7sJem<-#XQyY*pK~tKBz>d z2QCSKvIW!>;ibrVbzl};pkJxq51@sxmBs^t+{kur-x~~teDq@UdoNU}T#<}TBp`#K z4O|884k;m)J7HhKQR3r{`;Q1M-b+$FfEFU~_!IJkx+ciTKy%V&HFE@Z*w&0em=rgE zYJfrnx+Aq_9#5`j0SV7v7y{FeZ11fJOEqalt0zx0O)0>*&mO@`dqpYQ0;B|AfU7OZ za0eBrr18a}$kZk0O;TE{LROt(xdD8+Vn?V-_|`$cDdX3Yq+&jhz)%-Ko>WKLoR9Ww z(1p%wr0$ub2$A33uQExEZVSF#W?dyd@P*iw)I&6;Zul0mr{odAqQeY`wAO%RC>#)?uzlL_vQ9EfPeFe;G5RR)lFCwQkHOEeXus5npTSFZZSX8uDe5`{O$kz%4&*s2oskD0)O))fI_j>?vV~*uf zSA6U~R*jI>I`EHXMaA)6k`ETPL|#u9qoSXfPx`d@2>IlNFZv8Zh=pbmjOjXgl)y=O zpWPq08n;wYsfCbis6Y#VIuQ3?ipVM@(>(*?+_vb-MXU#H9lKFV*A7y$RAr@nU6c=x zY0nhmB+kk%gMb7+N5lXoy;%H8NyrLjwOE)7}ih^uG?Pb(=-{fRZ# z*lyl#)%~nFLO8VRen81Jm8!^eHL}1~_rs5uRK-Y2W-Y|`kj*IHi4J4mIGev9ZwOBw zBw;@eKTYLfS2)t!pf-IX{UXx|*qV!&=VpI`xHsP#xZ?W6f9&Y3{R5Q^xl>*)!^SN2 zd;P6{N`Cf#5od@Z1K$o)dk{X+{6X`HXagn2qB8v9QvB+JylATnS4twBG!G6r$anQIl5IX27_G;Dr>={E#-wGjQ(uf;de>T;6-?h zp+e$f^eLO&-qiczVl_?Ml7c*)5>G;oj1DJr&w_B0*hG}M3P)+B4KU-;NNF!4ElLO3 z@OnbfKikgD#*!KF5EK!8t1cRpw0qz-QYU_Z<&FN7W#<7&gJ; zA@{WiF^MR+?1xW2DCKI7u70oCjRPT6@JUt>e19>nkRHmFDDdwu#@+ibnWax?lu* z(orz7IHotKP=W|{sM7uNmsLIjWMm2LoQ4n|9L&Rbf&uev~c)4VFYNV zS}=BwJ5H0Tip$`U-EwdwVi(6vp)jh(9X>n?AwHD9k0?M7HKbNz<}yPkBm>M9#HA1{ z8syW*#X^?*LIxL9|K?%|q(n3u`Z%78qML!cxJ|@?1AxtGsXhj_JPPcA8EaPvaTKiK zbmxi)Aa6Ay5p_NkUUFg;juMQnd>)8ESeq3C1)^|u+*_H)yq+DW!O6ZVVIM%ME5ws1t^&?0Y0=OZRLEewB*|Sxr^ynj zfWyvUb0M(~F}f)Zt@DTeP?Eu&;avm0rA{p+lk&4wdH^WjCl10q9=cU2*7?%A zvi#PEE&W~Eq?Y=&^bZOI)dn;n1yoYqX@?kT3Fr!D2O~;aYAuctSHj|0yA0KhJ|mDV z#lcFDBr)lKiCbQx(f>oKRTJJ{SBN7k#aQL;4NcQWvB&!LIiKSFW83Q<^HcWe$Gw(Z z@l(kaW=5osI&&)ta(W|;Vo$=XOY~N7Loa+O0W*!l7s{vkqNreM;u^$WISOvr1knG{ z4FBYDf2kmg-*RnIKsO8-1S1kY!Sj)@07Q}kw551?k}pPDENXB3-v4nBJI^M+yLi@Q zz+VAcZPR|KQQs^3ZA!p~o4^qg0~;XU*f88UBrh(h6LV--o5R^D3md$WvRGomjyh0S z;&`p=Qr2L2BVD?Uk)V{ECBv|i38dUu2&jrgs8+MfVqv?l5)gO!lF zhO?I<%a8T@9oc={{DPVkq}uj2tRG#oYno6gE~ty$?PYuq7SPFZGiI|5STdWn6>nq9 z=~2zI%QrIE#Mr4sot&FlvS>dl(Y%p8RN0Y~ssfJ>uQTEq{&UaS$D*%OZq{r}PN^@l znG(uR?v85l>+WA6Sq{jcbaJw4dkf|p{bm)dLbT2OUUEpCSCiAi4{3N(Ls5BgRSACn zX)O<^$FE-!k%?3mrR2{9KZGb-yx3j0VkQcbrxfWQ#nfVPlH+SjS!9PS391$KOrJu_ zwWRA74tYD_HLZ++QBLw}YhHDmSG1W%XnVSK@E9Jl#ap#1gyh{<*f2yVOcw4`l$N#I z7Ohec;YbmqOeNcNgM>qp$WC|)1snn`*(y>%Bc(E6rC9Qb5EXQ*?rx+imCX2>4)87F z=j6y|N#Y-p>q77+3SI`;$0@!|hNzQ*V-~e4sz}wqNCAUv^{Ty-9*1*IE#Wf5N-hqtuSX!}OvV1|H%=l0jtfc)6QM}w-*)ysGVyKo>Hb`cE1 z2`pD-7!RG;EI$7KHV{?8B=MBgNjsLPQZj`}!Ad#6rW@H;mPJ>kUaPGwd@S+s8mFOx zH*zlB$z=(#*omSp5jO8;{uA|FYipo}!W2E(Dy9OoiIJ5hm@nPVr1n6`&1HaP?GL;y)>@^7)WszZ8ds{)hU zH+bV63se`v@h|Mz{@2;pQf3cZpnRw)(uRi$kUC{Z>Qg19-yD4fWG#A)1(AdLu=Z#Y zE*y5LH{1fBk2^~j?5~#Qb`rt@2g2|F^N%3u!aBKU+E)+|Q$& zKm@o|uRsqdgosNmb4BzDiW~-mCAG%?O~W}jnaxODhR&><$=XA7rR0|jesBNn$Gn^iuxRnjLr zo4@z_iOk`HzPPo!lSii6dqMAOa}ND9>!1HQS{pbv(&uOYcS2GQmSvCVe|EwAbLWky z@{Kt90Fk08!SIRP*Fs$gdZwbvG1aQrIN;0smI=hg z^IW1V$DM&`m`Ko6%D7JO!v1xMF@kX}2bT?k|o(`4T|uPn-z zgx0ddYx)d=+*H-zxh6pusmnQGkxNO+YQtYM9+?=p21Ve45XWSPj+(}LU*zPG+J~+I zXhmNbpr-Xn*LfSDD)cvI-PF<@#|INjNO`WTz%2&0UdH(0S4@xi+f^`;>R#mBJxiZ`o7sS@C$Ha$FWrjEZS6F(bS~ zsRFgan=DJodV4xlN^}$?5%nhON-@bnk0IAYHrZ;=Drtp6FbtOPo+?X{scOyv>N`d0 zI+*4``w1SrJ1GQYZMniZ%zdarOAVbX3#;~e2{Gs{YbJ^uAnMbtQEFzi^ruR^7z0={ zhSuhcz!|`{g04`(64A5B788YyV~Y@BriD>BN~FJd`Qbtujhz>_uS*1&-}y^1 zgNzQKsY%SK_$p%nBnR0mtN>s_;lm8EZ&`K?kYJKVJ4;rgD9!b7H6*1J zGJmq3(`B^eP-OyULEiXbY$XFjwwcTrvkoA(WY55g|56Ra?1-ukl(Z99LemT2f3ZCV z$xqxcU9!8i4x_YM6G^`ji=gbk__8rT_YFW80P#vMnk_z^B$538=#hK-El-p|dhdP%HY-|O3+?MZy1mo?M$-vxruZ}7enh~LVERvp= zCZ0Lpj`BB-K*`^TMa1OPp4O|xVLW!)UMv09fbl!X!Xl6WBW*oIFdfoShyFVZ--98r zZTNV8iLN3o30$#Haxij@3$rL}>F3kT1VIAzv_gyqc4Wx8R0$*>O2O#FhcNS+?vvd> zB&H|dtfg<%*O?p>HR@xjerb?36>dX+kkL3-%aTq*Z&{F7@MHgF-cXCAR-h#Kb3l1q z9IGiYNeAvk=`W7qOmpFfsHRmk8xCAlH>zV7PFST_kT^M_YClyg1{QJ|QR+b*t?I0S zAOUiud{oTX@)!Fr!~G=5XfW~K+vhy{~TEha_d7Rz~$$)ulsg zA#Y9i;%Z1s_R&zhG1MJpNzj7ey$8v{OBt^R0VuLllUu^4Y>69=01xoog9_Ps{ocm6 zQzH_8+tbwGReW@Y-OVemmZ(EJ1%->Nq7+eODpd6yH7xiS&2dPB37M7v^lF4~fHy|T zIicu%jR3hfZlX%rXe>O5+ws1l#ODdr;mHFIssWs(Og(9}GG;fN9R+cayz@er1Bv4d zC`!nK{+(KWI_&&MqodOFI(ei~UPVm9d=8F0a8L4XH&WMZ9*o0S^n=hy8%1YDt5J2F zI`JW4He-UOT5}KwauqU=Mk@aluG3Lu8ADy9BOhXSXGS(*@*PqX=8rXspY3fI?etV7 z_eeB-whg88e0{X}5(K~gGpSs~4#y3DAO=<~$c#sx{Hg&2mpCq)gCUAYz^ z*<0Ezc|e45Ec=}jP``I6DuJUHKpO|X<4qK|h+xhH48p<@duGOz83n~Kvw^$2dW-q1 zuL&q}!f!3@@i?k0kaC;Y^DL&3h?O;4F2kqw*&||JWF8LzaA6~^+{P;gyT3$+Lk6OH z7qEqky;}`=TNRHA4phks6^}*=gRT`q+S5zylO=KjsR0-58xlTn&6FKTJ>tj(S>qb$Nv%ZMqJTs71k%yj6r+?Y;k5gpHH9uHM|YD>~h_C6&Ol4>EYa7K4ICr_ zDbjoJ5OAsjqf~q%!+Myo;&;MhJiI=vx^2|VsR-{`WUpb6RvAM3iIgcB{ah`sdruBAw;FVH#D{4G;uVdrH~g%scF} zJ9T&7q^F>}LJ1y7Rw>YTcxMeCat~ooVbYc4S+cwKbQvjDKNkZ%%iAZ8R+Zn%Zt0I} zUM@AZAp7qGid>a}Mk1M*2wohkaD<{rg!oV*QzQ};`N^|qE1-jmWA=q4!_o?kHPL=U zG8qr&a@60dE@x%g>T~dm^&nGX%bCSafKJm?l)P_g#>GS=Z5(Cm{-r$QU(JOLGe}lx^DSN8=A1#`?h0`PbWW9Fc74L1SokVR6BC20+vaL89zYPlrZALOOpgLvZ*%=Kw||E?Eb6&XSEUwdmw{|bE@8U^4` zHqhbFe&}C$F$>!HqEJN-Y!XO{N|OoMT6f*T1`p68V@1=ES%+P+HAoSZsEmt4sn&?a zM2p6YBwM_e8e*l90#fWe1Y>XnQZm2*RNw$eQC+~^g+lbZ&b<1)n>~F%T_5Y8C6`YM zkcd$A5W*%9O3!$W8gv2+_7V998i=8$SX8#Sh8R3|u2D%wY@I&euJoGA;7ll3hdV^| ze^(sOFeCtaO2~!5nmJx;Y$gF|)|2sUaz$$n%?EEV5FA^N+)`g3&|0DNH!W_UuuYDy z))ZD}5%90Vwf`y-Q94U$0;)(_tvd)U6#$sxW)+hg@O+Y-y!)Kf00@|~&W+7HC$A1oG_*4PW-~Jgr1UNs!J#C z4zGU`wk0KNTAsZu7V1;pd_|Hb{AEBAR;(xo9qGMF;4Yja9P~NY7U`X)v7uZIx11q%1r8ma+<3iW_nju9>{w@WyBsk+V^})763>7Botas z?)m3GfvnKO3^6o2s~Swr)1RpS!f9yjQbXR#w>&9p3{Ng_ zhn@879TB&%Il3-@iwKE3W5e}g(s3BYEBH<9lho#>8=iS+1}duB{X?t}0*7Tw)B-3xf#!L`YM%Nl2QmVtKS{yjr^%UE;tJZ>zSe3lbDRZ6)9`QWR zcw9kjuR@YK=9da4u?_`gQsm=Q6TY;{n( zi?~`9$DR_Rj$~L548kg#dn|`7jlS+aM#u{3(yB@h7+Zz>qib8LJ>3<( zy(X04SGLkxhB--h~5o0I|;BI5+Y=sdbCL=;Iec@g`$b^wwD+*6&RDX)R(H|~o(cU;{QHH*p< z44+W4NsLm9pv#AS`!s{~LQf_mgDte3D;|aoS9!7RRy`xceGLoYH7iUhQp>F-TeUpV zd#}hmkQ`}*S&YHuRv0uzrD%s&$sW+lx7oT=uSR!lTPuW|Dz8OzRdfm@1#6*xSD*)h zs%)^vDq%HvdVz=4D;zpH$ul|mm+8l6)vn;$DME*cRmUf?!VaCWP&~pgYqLmh9%XND zCG3Wql|Hx%!kvVfI-7q+vKAYdtvB_OB%&x;cM9zvu5y6`aa00J+uFbO#NT%*8O?(2 zT~V``6%}=kjIYEFYVG}P9o}4jLjmijOg}TJf^bqU0A_<*y`qhK?E|?BT3QFIHF#ZX z5{n(73w8u6{({^q5cV}4cY`~PtE=5aOW-ygVTCTlV#Tb2-Gn=m6pS}5M@h)h{%?TvLqBWT2N^WNw;p4Zgs2sd!F-p-&;QOef%E3$M2uda^2qd z{d&F5>nzW6&huz%Jcx1K@4L~T@&(r?-4)qK(`}lDTCgK!Qufqaq*j>llJ@h3U4!hLJ%9&`hK?y{?+JO@2CQdx1jnC{;JQb`A(LOJ9hzj1Z@S51Sq&f zLdqS#ct-7ol)5FzpK(Dj_%}~8o}%S1@nuH_sXv}_Kz8d>z)khIleOTr_oaKgRx?%w zJ=K8SX;X!#AtChM&5^$*6h5x$P`SGHzFHlse(f8Lw?xY=rPW|_nK$$Saa4wwOHMR_ z!n!nH!Da9fg$<<==(lrxZU5=LJD;LjZIcd&Fq!&5SblH1DisnM#L*A2xiTaQTNm>) zx>b>cL%Wh?D8>q+7bf>TW$D|a6Ox?k7#XNcFrsRqZJ9Yn4H;H;&psd#XvB#tAo|R; zJfk87#vm1FmSGys(^AR(VC`5>iz;;&klv$`fHJ{t3l%fkorj#f|*{E2FS2X z#D zKl?QqRPB~s1`P-Lu&9xq#1Reqq9G_bl@m5Ip(dD#0ag0cfaJ}6wD@5lU0^9ekB`FeNWUqCBGs01e8Gj2r+PIwv(K2= z1&kr=E2R%assZa~H6-*q&IiN_qY2 zh0;bhp@p+MQk9NiM!BxUeP9mSRj!`^jidBB6*KyxFLT;PgqW+pYmR40#>cDEby=;Q1S3GjiKbplKR#*th zDXE;(yV##Q;IPiOtDEz9nU)RdMnCtaz;3Y`1mNBbejqAm;w|YEi3tZ-6uip!9(I(@ zNL+cbjCCLCEGRpLt|TR;GFb>Y(cUnbM7m3YKW3xHEsn3&f8mb`*8n2;C@buXREx|} zWkYDZR-<=$0i_pspO!4EnlKDoCA&PP^;G zR6%Xt+7S+A-vXQz{I8+)W!uEmt!Yp?;rBWe-i6y^uX)wF0m_+v>eQY2>Y`HL6m;6Y z2#*Yiw~e|VUEXD~!P=6?@+U`?80UO)fvT!}Mk%N&dRoq|%PY1#7GgWJs{vR+lP4Qo zDJVSqsyGacs)c#-4>3B4$HrisVP9R)Bt~w&8uX3sM|^&AOltVSZmRseg2JLh#cqlM z19_qR=EeOcw(1U@<5vvnYEb7LA`zS}d!ouESmPrYTK#-OK{t8DyBhqdYfFe$byN^<9!WDYQKxj_IWL54oKk= z%3{}nptAjCTfIjYQbtyR9Ry{iDER=ZrY&=l+MZsov+$ZXI6*-zxxWFmWJ?1RJR7!` zzB^SAt$wLHinw5(5VC75K#E0=9Z34liJVQ%ww+iIm;CS^)Sk`5waUc;(5}j<(A!fciiPjIa zlj7V$UK0(pUe74v&c@#Y`&LyiZ-Ih|GgIMG zU0P=`*h5c&-ietLs}GNEdDVQ^D&pD%&Ff`wDyn}4jclLcGEfJm_H_iE;qM$NsE8EO ztE3iGh3Mh{ltX!D$@QW{KiD(XJ-vu0axW!U@Y_Xh@HnV00-sF>AaEFTp`cfl*e1uj zBTBgL0efG&2_%$T1o5WNld{78sELsXC&kWb+n}*=ne*PPKLmbOf4{lCGt!oafJv~M z8fVfagxZawYpp;m`*Y$RbL9dO({d{ODuX0+a`A>8t5oLM&dWsR2k>YexD1JR5`7)0 z62b6l3nHz3bb*c$D{mH%M!Y2T{JTWoOT_tPW(6^1UDk_*)K&r#$PNcn2T)UP*;;gV zneWEhLF!7fBQd>#n~0kZh_@#Qipc5>|YKB&GM6 z3{o0H0PG?Cb&^pGVgwf5!nss|umM}@eKR!{Mx8R*Sa(L9%&isJ%lKbXR$g>M17$t; zH_Aa!&3$bLzp{)nyvGbIC)<7*f}^4O3YHKQGZA2YHT4i3Vg@3BtK*(Fz_i)KMOuGP{My17kw1P)S?nJb}wHYC)!~8TiKMftf zS{BYzayugH6(@LeKbW<_SSBP@OWS;n)K4c+ZQ#b$T?AK&hNJj%TGYXJhgFU6v1POf zH;(HjkQF7a(DUl8U>>C?Ps4Xbh|frt1-?7sh>{I*nrPV~f#)e-$4 zU7*?-A-FtX?iHC?DhyH*$G6I4%0lV|NW!=QB2SjxVDjW2%ka7qFF&{A1Q)K3rY$ zOd>IRNbrh5l()ZMSFmG%2SXu?-`wHK)%`?yWdWK}->_{Ge`%#4Dt(vkar$z2dnxg< z%{G2B_`5b)cn57J4w6O2AF5DPQju6!Ryb?OqYIdYmV;?^%qU7k9fChq@Sk#@OMW`P zo(>v@shO7ggppg(@T{)CfxuZb(puCqYn;R=!b5aGW5%xbh64-IyJjYevN{chspU9* zO!1N+6yaZAZ@g)UJNk??TxRv$n@+|bs7#aRw*mU`EvY3sJ0y9_r~T_%-wz|v%)#`d z;)(`#z}pwpfs_t;H!ejY4teWgq2c5dfx(X}oFtOe(>!IKs7Kdc25XLCnG|CbyeOGyfON1fUZn+-_n+5p5t+(;59a%@CaFUQU%T5^1KW zQ+!07YF&`xLWTx}siG-S(1fD;Y=OF}T!;(J`5g!R1+~V4PyiduOsJX~C+tw;J{e1T zAW|0vCd^UB^qL|Krx~t5@dPpRHE1qmcD_HQP*c9PKdfebbYs&K?c;h3c zk*nl1a@h}YD~i+2ZZf@%b>g)=PI-ZKsAG zW;u0kjovOMQlyR_0cE?Kh(fbPB6TKuWsq&bL2?@kAn1BVPXY@qnZ?8bOm`BU0@1Z;B!NqFIV0FW5G{Hz zC7^is3R5&8uqd%}$}J0GVhdk7@F%0@t_!N@(3^mMNH9r=;i<808Me~A*>mJzT5}kn zrNAX>bIRs&@Xh`F#B50(IpH4shEx(j16#O`n|@EUOQTESr5OmRs3=OJyo8103Kjy$ zXul-#08w}$q!LA+QeQRF1{wxU0atQSj4%mATvL=?MjSEl8aYeGTT8V$R35yZ(oj-; zbG_`L>{nAYK@6esIbOwIR?UD(FGRn^;6#Q`6DF>$r2JDj!p3*0|#Yu*;w6 zLZ7@BqDP4;+J%lF9GX*`RG})-(c(odNgE(b1%M0pS(~mwF_Gpd>S2 zH*29xRvm|82hs#oHX?D5rRvtU0Ke%TRDl1f^N}b5eyuF$uK1=f@q0G)g;X!rctvLQXcqmI%fIOJXRhRP6O|>O&(={vez5*yC~Xzx{uLylt4d(N z0D@t|w4G>lml?b$K%>nzw7+AzI~oV6c9mY?KTHi&pAW>jV#_K~+G&pZS#e%8J!Hku zw)nkzo-rIuL*gsWG6-pwr{nTt|4{N^iIy+Ij!ULen*i!UIS(LcC-`JF`wu*pYH!0- zXdTi_Xb$ZuC9P?%sRo{gqcLHVPj?K1lxp!6-FkpUpL|)t!hozZ)JB1+CMQL+aLS19 z1o8lulb( zP5^9l-$>O;U35mrml8KsgT?&ex4jnIjv#rmYr3mMUj@{2r!PldDRF4Lh-*AU)sL{@E+)%cyIcB6wrxI_Bu){(sXS4aDAfdQ<1R`~;r$IRE&ud{P(qp!6xds6|HF?gMB zX}g=s^e%;a6y)OkbJ9s1_(xu^=6ew{%+s-8=v~9{p6jm;s43o(Fi*FouWE>YQ1n{9 zF-L(p2F7|GPI!7tRX8$c*|ij-7`hl?dY`sjEZ>xelBVhl9}4Htfo-t>OM7;h9@%f* zE}?P!=qFQ-C{+#y+1A9`@$|w-rSvf#7if>-6#8n)gLAiy%tAN$y}wyFPIsy0lkf?} zzU?O@zV)f@a3yP)uW9He9Up~xl#Ss#SO~wz*OkW37tf-$(tG~^U$djDc>0TpvsZNn z-G!s*>ear6dP!v66L5x-+&v=!tH{SO;4bA?kM^cB+{u0xa=P6D-xJmJx@Ms+rAaQ930Z3fk4ms^stDhQ2hbizgcX&QKOP92(dhF@LemssIckPi8xuR1UTcmTb6R|i$wCz*Fi zL*XqXVVq#-K01mINxD@uZWUX}nvORo3ZTw8c|@OF+tlpE#`f`{adgbMyyDkvvxVs4 z@K3GcnJy1zKZmn4f0nY`=}=Kj`>hujVO$!@0C{sD;yFH#E*$5&>k~=w0|!Gjnz!%2 z;>x<&s~YPB}6Hz3bqC&>d#xods9O+uk0SOWdX*9dw`Vp$pKjowP$xW2My&2xGEI zK?Elj&2IUwXd(V5y^5p=t1r9`%z?@*JNTXg6ZtbX#U^sE8^BvxkMlN8gT{NT*|I^b z1x`;ik*CDM5(UGM%oSb4vKvb#K!-Q|D&~ght7)6U43FaK(z>3ZcdkqJVp|n8%wC_k z{_1eL`*=jla4u^I-l?y$H;UP&UiTFHVrKKqOuy~DC|=s*=!dexY7df>@z=_Mwl)d~!wNhgEHDfz zHn}Oj$A-A+??(N|wBj^>QrGTHJ>{fK@u8}G_XKxgTgl~*nuSJjs6?4lvV%%<@77s1 z8tpFU@B8^ip4;hn&%@DjNmlg>(Cv~HI8}NP9XBxDi3>J%B#&am#`}2lU2^JK(meix zVNExT9kH{i+ub_b&PKXDOMc}Kwq6wB^y|>k%Gq`{nej@NUL24Q#5W@B&=Cvy+yCxU zULaJ|Rl`XUlmuxydOwXBfQ~X#^38;p^7_XI`o`=>@mR=?2o*Fx%Tp1>)!F{Q9^bAK zHiM<{A`lSaZwS3g8mCKkk%Ijbxj$4)hi|j2VKtyjxbpW1au;mEN^mkUfL&`ctk{c? zm&5CkF83gs1U+PNA$&l3LS5!F!L5gbNm-plXRy~kW9lMOQE;OYgw1yrMw_3yzm^v= zy|+p{wD^AOIc!|*bI-+*=P)R$Lc22Zce3xp7CE=+sH;owN)M$Ee#&2D44ZZp^5%7l z%(9Wpo;)dN!-8DRy9xr%0qt~S+!R{Dv>?KI)$KgwuNPaI#2Kl+OUzJ0!IFZa_n&@p z*)l4&fF_z|Du5hep4C$phUwwNC5@*NuFX|A7s6TT7nO1xcL+vj7c~R9SZ(hXPkfc8 z=tylKnT`6O`vmVl4pEw$XYn|zc^!R$p+F&HO^{nipjJVGyCFXDyC`AX>3X>qJ}k&x zuOlgAU+WAcj-gsc)xc9NEKmCs3#F@@PXQd>L}RqY$_S{@x)5~1PjEOh7t1BfE-fGb z%PsKuvG3?+v1Mmyh(02JkM{(6m7Zib%*2!Ls^<}5%jhSeK(v2Kj$(hW%0$hrIfJ@! zTuSy+8mNjOsSEpf10lmt;0gc`-jF;oXvn3V zenokKIUsS(PeU4QZ#S4-S;`;-*jeR}M^7-J%_ye)*pdmPVtZL9eo__62)0lpjdy=a zfJwGqFg_v=rKxVsZfD1i)Di>l0_+;3WLuj|FQ^T9{JZ=(&8AzH#XEpIdl*Z~~}`2et6 zF~g2Vu2{Oy1FF{Z)3p|TDtzn8eANZMs(JTab+c(=Us=rTWzd{%|b2 zM_dpIW15zRnu_TsBf|V_)wdQsbXCMqFaitrOK);C$R;N`9nzX^twE*@j0&%cy&83C ze`UAq!}b|zpVn8qu<5ADos<1^%B6JwBjk#%GyZ_hL7v*MvKs;l?5&7t&g7dsjsn&I zsr+g;T6)|nZtREI#qVo^FkCaz8*o+>6n{Lma``K&!O{+r6D-;1ii?J)4`c z$up_Tax59)k`g)v*e51%X0r+JqW<@K zkId-5;mFXweacx5gDo7aK_Vo`A%jizYcOB%u2{e%?}}b?n!AZ}Nw`8t75T{-xT#%=$ zYJK=9>1spS61V7LoP#1k3}2+HJ=2=qCbdMmh~Y?y5f~)U~h*d59@}C7!zl# z3(`cmLCVx^UmY*KNc9`QEru_SRD|K_%T0fF%aOz!oeq-?Icm#62rRj@6YXp&3Qtcg z`|eo*-QlXcX7cXl=S>erqFz^0pr}otvY``EZv4|1dA8~42W2TSlE^!`;mR8+VCF@-OI@NRNuZm$*?9C z^B%MH;&8RJmeAz!@nfT0tKn&EydSmS%aRwu4ZkF~a9*7BHP0Y9$;>k#Y=90ictxZ) zuz?05NnOemQL|TsBW{3q2;D5~S|*W$K_G>zLHigaJR_|WtdTQny)luOgg32bTn6$- zE90P>Rw2()x%`P{ELS3n@=}48XLH1Oak-(1P~w>d_GL@*95XtRK_?ZFD48u6~yIaA^~(w+v! zO3@}OTDk<+gttUz!XX;%CMiOy+BJZjRnF_U^cV5Vhnc_t-fYEMf<785e|_PevR>5U zR2t3re=k)3K}hbS^Z?drm5I#08Sx6fB zi#v2O)FwY;T4uZEi|)@JTUiNJOWr;-XLsrCUdkLJ6@BI>lh*;fvAMeFIC-l32jt}p zJj`Y8u*1;wFI68F`Rzld1u~&;M;PnlYLMcszkj$SJ-y@F6jOXL?3N#0`%~9I#VJLE1^3X?CIEQ zv2I*w9W49It(V}uPIJ%Jep7W|7^l&>z+8jyxuHQ@+7 z8OVc$G9>EZ?Bx`{<;9zVksc-3WMSDWiknxvfuW`@))`eG%M%t})wu<-Ye+nhlqFl3 zz^%%glU~$axybKa_hx&uJ_Hl&E1`EvU_=$>+uRM4Ms`MAOJj)Bgo~Q@Ax(50^kR#W zGDz4QZ{GtS=+?rkm!~6G@Mt`|0{;JE=FT@$=U0W#2d)JdqB{h-9Acj`^;4TKUtJ`1 z3M(i=KoUTQhLD6M`bNL*`{RP>M?!(zz)xA|ncGGxtW4p- z(k-5Uo8tg8n;8L330A-yC@2-aU36m}hE#Ys5{?CcJ9*HG)2l5Jf$kF{BnjdoZ%#=W zC3~B2rw*uXqIe(=Dy`xGU~T`#4$r^`H0fK#%shCZl#7~HL5RQ5GX#TthWp@SfnQ0f z3$`GqshA+i!IzUa66VNPe8mINheD~Y80neT|b*-aLpp#eH&0)jH>;v<2;gVGI&_VGfMV%2EGdi4-%U^nbtI3l>j zMuSWI73!|BLC6k41_4Q_?KAe;o0w2xO?Rv9i*Y5SZ%be&>99*!8i5*8hJ`*lfxB1_ zBtZWm%^@YFL`(>aOMp=W#6)~apbZRz2vf_a>=QsIaJs`VEevgINYMvS)d&aKnyoa z?T4~}dR(MJ`lb@jjf9IR(^Cat^nhEZ@nlg z$p8qe1Ny1*tFJ53F8|dx>Q3?=j)3M^N(**BHN@x2@!T_Q<;>pA4inSa$F%SrNE))4?P&~o%AQ^?OkM@{Kk zSA;`3+2$eckF1(cfXq5BwN)@0PVXt<1(cpy97Je}kQz#wYJ)yrrEo;v)g!3n=)oq{Jf4 zd?x>L7C{D@jB!Eps&OAVn(5nokv}2BtEl(xzL9J=VV)7F)u+hLIK;d#U_613ZXAUEKRdUA;E(kc-bYJzyr-@ z5vL8d%Q~ZT^X$UJ60<1jW(0YhRe&AV26Y6m=BcpeWbNU6qbP}-7Ua4(DwIKJME!-c zet%9MBB;P3=ps8%ydnw)-X&@*O-PU5yHTn|-vUhAjKs2TIz?z4vM{c?j*x!BL8LpT z5U&SbR>DH3l0Sr7LRlb^ea>%6^6?P)KY=BNAPFswt?j)ukgO1}AYqdfSKu%?bH#Tt z$bzaSRv}xsu^o9BEHwam&4EHZ_fNNhNkQk^2UB0gE_pADD+QO4&j(Mpa$V}%^Ze_;oE#MN$xqg=V4wPS3@u~(<0&5 zdSuSB+mp;^=EWoebgvI91+KQ#3MC?k9c~cEF=~D4UW}58ePn*>bu$tR!>q?eXAyLI zi|{Tu$38-)=muUASw`!bx|)L%@#wpzQ32+(6}Z^fko-eZ@=|BUa^jF@+beC{I$Xet zAD}JiZ6FlYFRB29EDbpwKTPs8CQ~go^cFj-5PIZaQAEW!6T%MVmUv=P-Htm<@E=#E zP*#?{ID!9-vt)!a$%t>pq|yifs;L5zK9cZNt{$On(cmQvg|Mbq5SgR5K>4l5G1Nl8 zAh3|vIX6Dni|aVSCPfAs4NMUtm4RpuP^2^AZE#e9p9PdoB`V-(KoHukF7s|43gK9H zLifW6%sqKChznI{*FVoP(Uq3d-|p$ypmYm1ESlB-f@JfL^q^B&W!n;Dsy~t_jBWO3p=o9vn`%LG;}QshF~E z*=GfGlWVJWSYF!38<0H$%nb}`IeYGY{gGFJETUjYi;WEKi3CqxU@UzZxfjYKR3q+3 zWlHe+>SqFuiH8QU9`|@M;z#%-;Q4=guUk;Q8q|NnwMs#MHG6Kp1 zaz(XJ6P_;-Rq+O%!97A2kSq8k!TYpji?N5?Xf6?%&rc?=9m^V66S<<`T)|K@-C`xb zI8sFZm@>As2r8ssYFUc6v$F|yQ_P~U9yzv@sc(Y6hQyI6a|;yp0sIo5JMM!;@t<%% zjEmnE&cA*Bd>TVFd!8&bjJU+0aC>E^19vWsr(D4$iYt5kE<$eE&xnH9MhrfB zhq7f!RI+HkIMM(DhFvte8AnAypZSJZUVpEMJ}^)U!sKRg1i&eJQU7L9LC_ltU!+2$ zJR1sd**kKMGm?GT%bgT)kqo$b*}Q(fHYbo2A^8(9zKkIz`8KLe zBnOLu@iQEIx6(#j5n&uhw(3W5Q$7)qr>0@%bUTspeWrziIhBy%&F`2^}&=3g+B|xf$Ba9KciPIRYU>n4_3s^!~Lyl zT>%A-@E^jHMAd=NoROTuBb&UdS5YlFsz7?UF2DhvLEXkxfa1m@=b?S!xiyG48wI?H z{a2;ULB%%eZbN4#9XsFj)5HfzwF4~;4fc3Pgu#Vq4;4%$R!dKhV$y#|yLo#%M(wIm zeM;hFB&$6KNH8khKj*p!9Es}h5_gEw*nUwY0l}BxO619;J4>+;e0Grtl%#}mQUoty zBLLmxusMDp95+TM_Fr4+aiB^y2q8#%hArYu3 z^}nZWG{TB@oD^u81AIqHZ2}Ah%0Hg#Q6UGJ@H=3UwF{sWfvon`{4gY(;O1&h9DqhN zqz8;G9TT1+zuA2$mFURm%k)x|5k?LWVHgz!vvb#Yw0jLzl97nR`H0>8WsKx}3~kKL z2e3UjA6<1kXJ8NGcfPY!e@PB7`3k`rT!p$_0?es6sTOrN(A%28ES5qWgPLyHRL#O( zHGLHsZ3(U5Dlht|-aNn5Xl%fZ5)`7@e2RVv3SrNQtrepbhBByPO|dDdWXa1Ik*86K z?`g}E914J~QEH6Q3UNqWpsp!_qel)hcr+4~_f*|XSy?OqSy?3UD2qNnS@K6nK&X^a z@_U}YiRF4{y1*J&NZMY~GVD!iu@CBok+6@bWuCaAqSQ276nuPg+7>U{K-B^?(S-`w zYA~v9Lem1N&=gmL@Qcqe4e{A$mnDh7~Yt6Gm;xq zHTQ{gg(3$*7m5qRcymrsm>{KBq*4Kx(f=(Ks6Y~8e@qS}kXlj5Zib_9mW?J(ladku zr?55G#pd3oB*iX#gKAW%LZ_k)vQU)w-hU>3m{ljz*tjgw4`<)-DX9ezz4f6_y~F~& zaZ@Pu`pl#ZE|nG%V7y-d#`N7xLIvdlEaa+1?29N*fLoHpnOWS9BdLE2tu9LPrSO~n zUi`WynJJ`J;3wPt9@mzmrC}$bJa%VjYm!q!Dp>g-2t0!~LD~(J(W0^gku%?sER<>M zpv02k@s!!mIg6oc)@+V>n|>D&S;90@MUG1dWZ}I~v0aeHpn^#*5Ut=v(aR=_DBr<* z6y5=;SsWxGyiin?>_f5Ky%)$mq6q38;HpC;i@zF#kQ+228Gk6~Z1x){(@9%HePS|2 zMmwreks2Lt7)~B+Y;fjocg4)M_e6OFIfD0U%VBfiV8D9gFW`<4;!%)G<-cswQAJnj zqlH2E*fsV-R0C?o^AGb_u9RRg6s}#i9!{){0pK9R~6i-N8SRWm5hyXcj2=JsyCa?-7=y&0&AEjQK zE94SUhd`1AX$v<`j#20o9DKP?cv-137Y@46G~{Zd;*H7|k}mE)wF*rvGW;%hML>2T z9?lh&l%k?-wO|rpsd9nEbFpQm3_Plo(cNob{iKw-HEsrRFEnbnDMco_CD^B(K8^rK z!qG&|0zNZ(VD`X@K|F|Xfy#F{_CSjr>>oJJ2K*sGIHav9Go&frUSWvNp-OU7uafPe z_CHZ(B|b!kkmQ>Hl?L^S{QLNwd^xZ*{Ea57K%0F6I|U2K zAJq=K+O+i2hL?j8`DoL5QpN=3$cX?{SS3#5>PxP-XAA+t`ggDOgNxZ0;Z@aF07DEn z#xaN`b{ifWSD#i$*9%vf3jxuJq$2pKwzy^n8;8o5X6mt3u0O+F1szO4?T~FqEIxuJ zW659fKuJ~b$hji)P;q8N`kYEzNdsy-t>$yi5ovhQi^RfMkMwBdvn$e|*g7f<92P?GE8xkWQcoO?#Hat=qOPFUj%1E+i`@|H-Mf*G$-tE z!zwY>PCLku$du^Ho1!`!UL+Sq>#_&g*FNHr+P$)j* z_7tfCwM_bBYC!?BDklZp6b-&t&TdNy&46Kt>9De$_iXEr4%H*jHlz8N?OHSO=j%f2 zwl2`|eN|hIaH!d~6PpTh2}{Wdw_I>wOjB(ENJbjc0_kLcrlS^MmwX0U5st7zg*QUA zvcM)RC|M_|4qB%JcdH;Pf!pZ(w$PShN*YWjL$L|EE-u&>_`WqQ{nmR~WjQp^%f;SS zom45STN=VvQ6RD;qz)(pz<{RlN@}M;RfM}qO|VcGT_dRX$6FICA^!63;9e}RL;EF4 zJ3VB)1D6oG#kZKR14OfNK5vWNJIVxAFLKQeRB`Bp<7JltaHe6ycT&k_af~i4L z^i^>y3om9GVTrrsqBK*oTztUV8gw{vnq@1Z#=93%mkl{3ZGMoy_rbo?1OX}u&@`J^ ztk=Pts)6y=N0oe>a_H+@oC*(@e{@+%n$?iZ0NNR)t0!gqn(qD8WcoNMS}vx356r=U zi$RSY_2r}FxC(m)9jI~NIqyUdrAtIWgaql( z-giXC1ba_K888>&^bb+SyO}MoW;ilDe!MMr@*xBy^kohgf?5Q9%yV(XFN6c z9A}Sc)&r&ef9Y*d_n4|qU}5aw9C25Fj~tanodDNCsY z!fT*v?HU^RPNObg*m>zM>8JrBr1)@zRWa_h4~JNw!t2JeNhmWFS@QS~N(T{;KP@mK z?1*i%a#6c%A!UikW^hIG462BL8R@e1BF+-W7utWWfc&uvXb&kNPCbei5UNrNOVI{F zu92p`jk;?^w6(~RmW9Mc2|P3ukUoeYSEfEELx)4)Q`2ckCa}u?nlKk&=y5@WKtXKT zd4MgzKg^&rgXJXi>t3fg*wK+JEj7ZTD3J4+i?NdD-m*Ju23p8=2I<-E#~@h??O zaWFB7Q&KlAIg^G6AT+V;2WnxZpW6*Y!w+q&a7H`GIWVDZA{Yz8BicgvN-|1KExzch zLiPjK35C`SXkZKx**J7laK!742H$`37E@CRS9FNIJj3B9#iR^{6a(yflk=XI#oqi0 z5x{y=02@s;_o`CVxx6iXPc6dy`^;){a7R}v2^JQ@9GD3TR_H2z_G6Tn`p>Nr;!M8| zM9K?g9k|s$z|K#}&5nt-`^1vZ(CC00uHCUjH`&j|BC*4;6ZQ^CHL064tk!Uo3& zeMA&G&Y~g_t&3C@CBbUc3QSKywW@$_5q`0YKZ=qrv^pu^WUX`oMW>)=;aWE5nm-FR zli83Yt{xg>goAXd1`dW7Z3*dZ_>op6N;y~QhH3SVh)znW9F`X)1zlXOC&3w#KIHK} zngTj;$eNR5gin}enrX?N<8=>Il~P3xFAk&%czw6Pj}BbPB}7>x-IOEYygKw{U*|*8e)-A#%Br;kD-SJ6+cP2Gw@BT>4J?@j>5q0>)I{4}U9r2MP+<_!=W)7a zcA2ZL-wC}90nQI5d%x51{8#VX(Oe@{i}2{)p+q(+bF^_!TQ%DD>Sj=$_C0Kp1fo>~ z6WhTUj`!iZ$H2e9E|D+jR}H|X`Nt8HuBx>I|8i5{Z7?yW;xH)JPuD$S-e!fz zuecEYDNbpNVb)B)8gHR=$?U2s_s}(YS5K^Sh;>&)q0QDOY8F#* zuE;7)dT!alt6G%5{i-zGs`9bArT}Hz{?Z%asp}oj9i_HY5Uh^Ji(gl!PI!MfvUbt! zaQNdOMc6QQdu?W3oiem8f8KGuQOdfw)asBA?IwFOt6;HP)ZOv0-~R?)1S5ZZNcf9k zUxx0+`(C>12TWwvzp3ZCbF~8)pS%u@j;aV9SCHHK{_M2Tk1@n)Ui^fN^ZhGLK%9H} zldEYbB4wDLJQiwei+WvU44CgK78f(sT*eJvbh{Lod|nHcO-# zyVF4jO7wxzu8TvNvv0h6d46PS?2Bd{y+)mX&|SGLolCng&Kc~wSbF*W)TUy?8 zDQI@erxS%27IH33dbiQGwwOjj+^QLIGu(6QWGw`}Dtg~&M8-JK0!Db-5eF=!iwevH z*KCCMK#+hEk<-6{#?iBM3&2zvp9IN@ByPzAIV!8}+3kpa|L5*@s;>O!ZD7)JOOs}w z-fZjJ@8T!W24*WkI!dIPc?d3Ppu+>B6`_kl$BT_<1E0*IATT=h!*y^*)#mP4Me_Qn z4Gcr|;RzWQ_bIzVL*78d_;+2|y|xB*)m3X_PQ6MuT!6`N^qYCjQeX5&q5g&ee^iLa z=Ou&U4@wN-7~p2i<~l|zha$!VSK`QYKFy@|ACsOJ2)<7$N}m=uBXMMaTsauxns63> za8G_7U|k>L=^$ajId4_XCYIkg!{PY<0bhpJO<7pvy?u0);%h;E`s9Ml!aD`aE5oHl zDWNAu-=VMc7>ozD?i3Tl+E!F|{f+rt;j_FeD#Z@jsXS?Y-zTW`Zln^o0sG-mG- zALjn&XZ_rux8~vRQT9SKx87Lgm90dchwZVrk4;lRTw5z^FXRVCgOZc)g4aAG>M$tu zdwRra%q`MvhBUhLh;3+D((|BbJfq^z*xWf7W`vYj7rfTigzHLpn~HNJ-g|t@Kp>2J z<`N>#Tjto~_fJC`<1*0PIhL7((Y3d4PlXk3It_zGVa?u2w=Xz=ZfhbFH;(?fd-hbb zoFJ{#5mO9(743QdyFSYvF&dSFw~m}%Vait(l>?NqDUENV#CnV8V6+T>4qn^=G^L(a zcut<)Tv@wu)v_e8a20#8Fy<27scpr38i0Z{isqgUE?Q4?#i591s33$+B#POX!NWY7 zwpjm1x}_63%>n0cRKG00m(9M1BKc}e1EX-X*R?AHb9U=JjXYXgdTwouGn4p)iHLq}ck%vCu2 zx#Z|q4qmhKPmKW;r@jlaJbiTwEW9ZX_2alJiYI##kAX3=;Q5b<*KN6)ByCTqsXqvu zXf*dO+j$_{lIdo&3q>)~%IUtL$uX(^3n8?6ih{pu)X;lNHyveL^7 z1CLagPdlR=;+d?OjSaCz+!z|&(9^1&@CU5&VxZVRtN7BAm^dn*>fH3 zZLkP>*GT2ejrXg0961@HL8VE9;M8O24pJN{?-u1zPc9q`kG!?H8}VbwY~IKQqL9kp zISG2eyuHM1X%FJup^djmvrA#ke#7c0=V8x>0n)FO@K&RvD5)n6e1h z2mfB~ijS_kSVu+moTk}445;Ie-lo3djGX{h5T`HIho1z&I09Qr4w5kjA#C+fA_2d= z-m&AYML86@n^uGR%MIRXomVv##-z_q_UlTJ5qPPQ(I}0dtl&md%{oG8JSjn#oK2;Q zukFB_LE;yVKazf{yypuKN{3+P6=#FFaNmB5K*$Twa-&kczZZ)_%v7#!_VHvSet*Q z#TW02o*=73`*V%v0B(~}2i{rmr$!Plo2JCw-w%}t(uO#pe*>-w=Vc}f`c!)yJh6Eb z*WnTEn?r7ZD3P0q4r*|~DGlT_`U&ILL}k9j6)7DsZZOFBe3y_xLgJ^%q=?YR6cl4j zV;=2CGj-A59ANYJMb(6A3i$U4bh$yo;GT(GSy%Xz3V`(YxZ4mYY$FAzK!=0KtGLXrxdbUM%bvBnLfKoNR{Xa=NYAAgX86u|kVGy@Yam)*!v1@U zqoOn}ew-2n2@l1O-XzFq~R+i99tM%0U{hDx7K(w= zvO)#0No!D!Me&MDSb)01^!z42=ZoH!UfDFWF|b?1b!vLxsKeN5o#61CSz7G4K4nIzy; zIeSW;3(fsjk~{jI(BMAv&^5>g>l-3s*5vAuA=TW4+0eE$&){DQEgQ(3AgL58xeaXx zoxA2ZB)(K}Xec#1t``&kuw`AQlcB>-dujuwFE6qLi7#E)S7f{BECjweSE8GyjTaQL zZh_W`c%RtJ-oz3DA0YkcsyQ|-!4>Myc9~N2C*c;r3#jzkkTTgIWxeB7*0hw!AwpF$ zC>FMPw}&KxUELhTrUrO)b@|~VCWlq!P#16_R)t_XZ&LO}bisHxn zPTx@QLw;#9@Pv$`u8uZWvQ8su6d!i9XO}f-ojE&kSyqjG20!}W283fJ2GH9vq_;Q0 z85$lXSYQq69y!#~(bA%s#mrp^R%jH7c*DLZhS89etrz1A+tvppVCZNRu#PG|=~5Ga zz$@QwxhRB(gP}t0yci1U1{G1ZzM8r-xI{D^b?%fr{m~!=Y-8l5&_$v#GZ+mU?m;L) zI#b8U$BR*n!5B4j7&I(|J@hwo1*(QL$;I$0uMJ-RzIe?Vqdr-xxnTrg=8*QHOixS1 znczKva*+L8!8~~zFk_R(G@_WTdKAHwIS3IEgOL+R8=V@CDep&?d&aJ%`qbFaJ-Pd4 zf?OTtj&O3XKAeW}geuAe)2@&d61#7>fy2(9slPViS4QyMZNW9pkp~8!;KGlm@xQ>RDcU+K^cEwf?UW9*1)D0DFwDjKT+iR7M!X_O1NJk2V=M-%Pp=U z9fidDKG#vZEMbeu%09-(6}ql`WW+O<;7$1tz5+aLOyX!Hr3jVgLSl2Sk8lK-b^_2# zKHT4^tJ5heA;k}~vjUTk*mRERRD{w@hNgd|tOdlJ7*B%r`UwC~II?1jI-ZTWywK$A zZ?&17RmjOL-f>Eh2+d;H^;vg~7F?396QtX6b5Hq@*J792y|-UlEKYn$U(fi@yx} zOGb?Dq z;I>zAEypwvnu}W`j0GySSz|k&XS9>G#c@r+upTPdp%`+590uDHaZVQ~O~GG4_y$}s z(xU{!V>)eUHbDRgCizG;`BM10bm2wwehl&D2PaBnl<9BD1JN&8;UwLvLvlg?L{&EK z)E6xsHGD#DZfQZ8z)JW^IC;M7nj)6xVp2L)^Jx4H;r@xU(m1j}yC9wv@!)bLtj3f` zWWjPEpE(#WfKOE|s*Ze(sT1)a`XTrqx0W7BLl@}$zBLG;-T$Tv%pl5{+k$m4c0=Dq znE^K!E(2vv`yzpXd$WhtEYMs^J7HoiDRrtdHFGiz4X2cysT0wLnXC#40g3<%OIgf6 z(U=Pmq6V!U_@1&5-0E5B+3R0?JBk}&{B`Q=GlX;UHRjkRrF0=Up_lKZRxoHXa&Ww> zi5wo2Edq~#$$WP9YS)~b6Dq)Utr+%XkMZ#8J&E~x#F$~(o?HXswZ=c(a#P^z#5l4n zYjh})cqUm#<+lL^o-CAQcP+Uz!zwyXZtCWvR#@ z$8b+KgzUDGXvxqgMrQf54`6_U9souxafS(U8p(L!Yh=7qiQgMq4>4af z^cV^s$tjVKG0kX~ioPIk+DSxRHw+!dO$P8qxd}LTc}p#_TNB6>%6AyV1W+_5lB(yR z^?xK!wL`7{#vvJ0$PG`JGA!as$>LT$M=l)U1C`zh!S0S)N+27=h*KdnFRzVxUS;qQ zf)m+(dD44Pw$_KdrhG6bG_&U9H(^Jp7!LppT!Xvc=n6G+yDakTlRX&ah_X+tuI#(SnYyq^ z@@Iy7gr}GpJ^d9uU>8ah8U=hp3+llHHfek!j=qf+05<{6JM8lNsa3NuEiB0R)S$mx94h@&z?h z;UNB8Sb_?#%==HR=a_NRA2U2&=cx_ddQ^|5%69oAiEd=eqFX<3YP^y2OR(&Txrc?_A}yBrVxvSc|HZ zYaLUY8I83+QSCbZY|nY;Lmg)6?FrkLW7us#=O)WF4 zq%+z4PF|!{8hAX+&}{t z*OD>c4J$U;si%HnHYL>Ij^Q`Yj-L*k5Zz>PY|xLrJGyLN(|W*xjdRmne`;^^gF0(_ z=b|TVN4M(IZi;2n*nO*mtpb~U_3FZR&n_%*GkEdOu)8g<{nhcc@yPXc@8|sRppIAG zw9yosreEkc(rMHj|G#IWNzqP+&P;C9=+?JQ8g;@ap3Z|kT-U5{Tef)dTDQUcU*8Y% zT{4$JM&`S@Ghjd)17aFH4O#6qg_V@uq8N z*Y)3Ce-eIj$n*CJUyeO{VV`^9ny$O&RZaiL;KYvLPp3+HUK{V$%5KtCSNYWAcm7>% z=aks7&-tX?edg{ta(mwI>bisTeGV3Gcrdr?k3suxwoLrv$*oJ}=hltAt2o=sCLp5n zi=z0ihnpsNU4P_gRQ7w__BIprA|HhwceqniD6h0}J$3y~ZrSP^>w+KkTi`4rPE z@57%yiN=>5WYtD%dQG2N)-uV*VUgS1%}akA+oI!Si^Q+vf}U=3pFA-1dUkr7@Rld$ z9bLY6M3dP5dfv5bS~m``1Eq5QmnEy$8r(UZYP5Fyl+j=JslDIQqeD6l(Zwx?Fc#zChCPX!d+xkftN!5|`>B?u+d`sdUsay% z6!4*{OUpkdZ#L{|y1Hxc)uXz8w{~aV%OcaP_+9(HXx7a?)^6K{{;w@rO8Gx7dprHv zb;KWU=H;((8vgg8Q3qEqP3wKg+TL#c%#1NnXW~|8{rlI-D`CT?o+znP7Jb#&bfdq~ z=rey;r`i7=)aF)W-_ljrjC`u=9tI7L5B09DO^*qUtE~v=nCIhjFxKlst=hZ#lUZ&2 zRqJuSH8tN4erIT@PF3dls#JGf^XlpfmEAwJs!iQ&IM=7@h3`7`SaoS?L``{B@jUgq ziZ`l)!SQMFkC(3h^fAXa)a=8`zUqP?>zVOhV*=vRe7QPb8E}rUP?IJ`oLkI z#X}D69I3ltO-Hv53HpQHj^5he{*iU_Y1a?zyO;I)jQyj<&C{?zyzI5XY|IjeOEo8d6UJ4TY5aHSl9N8_i-&YTjgCfxO{m+ zvzGC#He0<`j62%Zq^@W4CcAuFP1-fqh3#FF>RRdtosCh8BCB^I>>Q0o6g&U3gNudcnSm>2J*D*xx9GS9NM zI@30Uz0agM>l3S=};b~qyI%^b;)pFw+TC!yjw7A;9EO~8Q1F! zU&&PAzBeB(z3|P5>h%ZTy~@~FUA%Vx(z39!&=>C}=R5f-qJMpKYqxT?@jAVJ1_#o& zsJecuO!nT<)${Lw;^J=We2g3COtiW>dt~B#r-=4Hf)p z)sOz_jYBLNy*#orpd>xw&_3&5dSrLmll|8(i}l()F)|s^x9OR(k!xHB20mN9B&pf6 znMsciby@Rb-7S}^hk8t$JpZQ;6b8QrWHjeOrE=zrNNaxvU~}dqJyztN!UcI`7f@^$sT1x!*oq829a-cRA<% ze{(SU1C|5VOn|C8V-Z=N=Q-@@gl|#^* zg}>}wx6gRM{Fl+S=`MzU?JxUsXtGzEtrwn_{(I$Ba&Lz%E3M2kU))-AC89&wAHiQ% zI-FgVrT^QhxvQHgN4m5uNxymM@y_p4zkhzE>_(3p>$Y_pHv0OH6Rk$Hdvb2(vs;dR zR(@DFw$@{KO;L>5+j)|5xzJD;H*SMbTGwtlZ z_0rAj;*N(I9_oPT06rC1I%ZS#^ z=N3=X-BI$r!IRkEpA4Gz&!A}-koq9lZcOA?&u%{Ycs%6K7ULq4T!I}el6CUd4eGsU zZvQFq5BD7C9Cu~z^F|wv^vio0c*t+%*5NuUW|dZKiyqje(}okF-+1WG`l8rCch}Ik z_Qm=R#l05qe(}g*U?1x@&2$Zh2RV;StWEq<|I4ZeJFV|_ZCZNbc^{;#Fz3=cZ=G@Eli1|2J z@#%T*veg}1M#N3nUUQ}WF_VMu9v{22G2oj&0%z&bp6tEi{VZ%`+_bCC%0z<)L9OH_ zUE*e2U&z0>y025nuF-FVUZ-QA?p(KpwGw(hY;z4^O7wI(-O zWm$&XA5E}7T0NqqiA!cs-8V-YpWfvXX7%CcTRKm^nG$>5NVacflk?6mzbKzJyYW+R z&!Qcj^1je_SlML8rZ1v1C;jNs#Ng!c#-5F@uQ3d8Y5d1G7*yG%#k-kjf4cVNwbBp9 zx9%=2U-CXJv6=2fm&WJyU0V$a_D> zdh>OgF8$W5mvh1DH2-y5P7Z#5fBe>kXZPO;de_6PNukHGfb!crM|QR{a&2Uw|Hemm ziff}`YkX^6|MiJkxhAKhev35)MPt9ex39_F2YEVet1?|nOm&7;=)6iE|1s0{&wmv= zI`#G4mih0zlv_DDE5e=(*yS>^neL9b#@9CfQXOQnK~e%vW2-&#UzaQX8Tv7LQ{Av0 zKdR5`2h=@&{YCAI?|-W+iocn;;?iFeavSyj_+sYPG{<&%t$Vk0O8sHik)4iCFKpx8 zE_~>#XFbT;_`G#&-fvT0e6_c1{F6R9*>+SX2h7vnRwP2CvRXW`72d&4J|r){hrI`jBS)2e+FvnN{3X|XKaYRAc-3*X5<-TG7i z+?XB5H@%JQ{r&ECPolqAYt%SrdCtj*;>k@mM2<=R^P#!U{)tun8s`L`YB$F;^1 z>Y?m;yXua2{H}cManXEI?3)ai8W*iO_-5^`RzDRF-*+tE zwY==)G~>p_`boXt&j0?@%w3ZnJ&1kOwd2MX8)lWtCaL?K{bq3R4d-`Bi`qPfo{1hf z*M=2MM&R+R&XvtQD#}3Mv2(=L4Q&c8Ior*eF@Dj5eufcAtNJNExfc4Km{~cdNj0ti z{5SpPHrcRt-{z4wR}TCtEu^1*Slfz{=IyLxEpOcS8o%;Ia^AhKcgzg_G|^}GUzeO; z46rm-8ofEX*KW(feJg&kalYZ?l99Z#)3wCMd)trN6l`X)W@xAU?FmyNMz3CVX3Q_m zvL_bmO%Ccb+|I(>dFrF3Z*HFNu-5&?U&&D}uX4&?x~Kv?)?S&lrsdBblXa$h_v~Cc zY141&*R!wh-I$^Ccd$;#JeS^Mue5tId6RzZqJ{rD1ju@LBwKF!qKjvVMeLf;{kg-} znQXjv@BIJ6#al+zwFFzExNC3^?(XjH?ruSXJ8azDH%@Q~!QI^h!7aE$aM!$@own#HuRoYHQoNZXgtTNCuMnPf0bQXq5-D z`4G4}8Zp(+DSEFqi{>2*tk#=R>F|6heX;vg$G^m=zArmu#aqtC-j%}ZQhmp*qj*ko zhqk*uaz&Mv8^)(b#xK|_&|sR_Nv%SswSF_0Uk!t6nk{c6XAt|ws1cgHaG4zUSu*a7 zLr#@#vGbSrV+eojut(rwZzbMfHul~icEWfNQi9HU=!)?MnS@R50u zq>Kcz`7XG-k79z+Dudsx{Gu+8;c2)kgOTSuVa+nX0&okf$*X^L&V#~4* zGZY?FBJx@KlJ!2meV(e>{*_fu` zF8Es8xykwbs*gh}6SaJS76UyNunV(b5!-g_b+*GnA$T2%6}e2fXzm+2=Wuf|m2z=s@hn|3 zS#>7pbDj$l7#T)bB)kd<(B8H9K zgL&m0F0%MYmGFruu%pMhm8g^*ZPnOg9SIpFqR%P2+R(?^Es-mFxs8sUtijdX9LMjT=R9N{FyNmeZvs^v zlTu;PPgFz6(n)B=39F;{z!_(~&+UW878Iaum|qnZDb~(1l$r4ZSvSy2ab(#K`1^0k zY=$Ex6*kil6is|Ib@x~V7lS=avBBr;G;)sPa)OS#e181GgDx1nov8e}l)vQOFo}%_ z=bNWL5XshMQB2SHDfHNVMl0(Wx$+_5$IwP3J}9^NUTaRb$Dt{UFlFl%q_{>NU%(`={dYHlSP}T62EUWjn@@Ul5 zhv9Y-Gm>w%4xOjJ?3vY&b;Xz0Na{Y5@?&@Slw>&~x-BRG7FF`qvla}ZpCuR_B+H5H z+`gm?^B>P+Bp;ZEoOp6Ew=*TVSOCh*e|^y9Cev-HDoWM;8KrW;sByHv8zM6VsB5EJ;IVt8uPO0Zl6k^<1Xu~&E=e@R+F)ulbbRy zyBsAAS8X)&KBMLWRk_x@xPo(A#^%s@rJAfKn zU9hY{F^UWl(ff*a;vA4M(if60#1iGw=+Qbxg%D=mEf;-{Ei$v2Rei2_zrDnv?ospQ0bTzQSeoUQ`B-ZhKa(785!XS-`_|-|h0$tw9_m4@}apOy;RJ zWHKK496bdyY1UjzE~;#oo)+bb|7IV}=&8*c`R-DpYEaq(2KzcIHn?9U$cwwQ5xHkC zS)MC(%;&e<@gU&gu6L}t4Hg3UNSXL{D2w|OPGe|x#(ut~%nZd9_T>;eW{XN0&!=`fula&(Tt_3mRtf`Y8& zMdqRF#hmnwH2@>z8lk~*10Y12z2vGO9{O%Q6noB9w~Ov{mlmds)-F{d=#Fmtx!{@c zgJE-=%;aDGyr1u~8~1)4hkr1;gv;2LWYxwd6FvD~r@}cZc40Nn86<+|MdN{=pF}AR z$fJYOe3_H4{}#2+h=$kW5lX{gW%c1x7PWsvqd#T>WXoV(Bvxi7!2alN|6S=5Nj5W4;!#D*X^tMW9CPl8lWv?R-Eheo!f6O}ZJnf(~go60e` zX`suV(>V)yg+g=&iO6Ym2)~nhp}HKssH^Bve7Hd$GOqamr|y+RQ6nNg*%RH&wr` zm*IUE(S7m9{cYEyfP)?j10J-9ZCIs%xtDq@y(_uj@#Gg+P_0aONpie;zAk=ZOOn>K zy!xtkAmtZ&p1GNKmsIMe{$u4BmifetH2O+V&ND#C*fKoLlksF2xlx>?)cxroy{S;P zOTmBhBL2!In%gpP0KL_9z4T$B7nQ7nq^^b~9Tf8DD@w}fgdf;|vuSHT)o;7-a{UR_ zxjVI&R4eRB9+4N4Z>GM)PjaCOS#{g!-JUp5hBMKdCmVtIM`HV6n|7>Z-4`dhRF_?J z2`(s_bq_DEEYv1BTpOHKf>%ggJ)iOjnRnqeOrEuc6<7K^1bES6sOykqo;aP zL_oLwUfvfr;tL@m)=W09R8-jJ?VESS0qO=T2xW>->9H}${j^13p1ZK!cVYAjI?j^L z*X2g~JK~cT(hoefV-I^zM`%eKZ*xB)J19OZ-eBeu&^phPH)=*48IVO1dj0sKe8|G^ zlY2^nj*1WG?(mPcJ(LNQny1nKl!RJve6E3NWWn{NoFzYj0dpzf;v|jgvW?Es<&p5K zxU1naPBqH@h_g@&w42{K0D&P3tV9+Z-OC ztOq0^W7P(Q^tUvP$$0hAZOc^aUWjx(ZLGM53PR{(w0mnaa2xEvE3B#+X`MMYBisEZ zPG)d=y`1q4pMX@}EkbC*ua`mDvJIW|Loa*T3oDot1hlm2z}OhEs}H7ww+_>g;NGgP z)?|X{n=wA_q$yUD9-$YKargt8oa?0RIJ5&9)uSO7wq;Z--E>VZxFkK`S*H*KaJ#1? z&ch%-VlMz-fBXOk`C;KVH$ctWU9BU}-VN2X*rj+*On`3tx03qaKGLcz8fV=#Ar!rL zBGPn%#rx-30sfSqeSNJ2E5Ky7g-F(&VwYLVrgwFhe-0HuJ5u@iz&rYuvRrzmHu9FT zKk{}x4_3yw5G;Bo#^kWx$Z)h6lsZh7Ean{p!G#!Nn;^A1d{34mFy%8VZXOaK2A4l+}E}(lPT#d7H-nJy3wXCtF;j z!LoB8uVS~36@7%vbVEq?n?S0#IpZ5#(;SWDBjv$(gV}6o4KR>T9D1X}jFy$z__xsa zhtjlEAafF^LBgAy>)5`I2e;{7Qm-5*zq)5m!mNkoPKP|{Xvr&s+mw;@e!@=^sI`|= z{IDHUoI7q}&4#VYRU1iEw#Z}zaOfAN(!>>KBTa2lTBxsKY7V%W;>!$MU9opLV~*v+5X z&)U&nXcu6r-a!SG(HYt0dZp9toZzyMU#@6fRhc8b5v!?djs~C-vlLrrH7XeupfVc zMq&|N>+ytsbJ>r*Q5TZ6>Uh5tV9d?WM|s}it(p%wCNmt>Kxt1giCd?qs!_Nbb}h-r z9!_BMBkn+%-upWwWsO(JV-(C#y|bIBUCwpE9_NFc(T#O#=YboEJm)k{jF~RuiEY#- zkzmU+i7^$<6ipF4Z*Ld<8~xCeQ@M|gpb~m_btZcrAnOuYNb>Q+ywZaTtjA@Zv6g(+ z+?lAepjW3;JV25jJ;AxFibHF$oOKhuI-=wURI8B|Hvb}X#OZO- zrh4ZqalDa`)`)H5j?bhU&;FrmeGA3lw?l)_b|)Wm&UGMOqJ$b~Wk5-8( z(=^(f>qFdRqJMLomC4GTqHS61jyKt8Hdba5eb6E=y++dIZx|9$8X)sGKs`8Z2=0Yb zT0XU|?)>7v7T2t&>(^T|7QC&p1xxcTM{eF&aUJJrZ_FluYagB3VDSs*z|$q5!6IQ3WnoI z6uPT6?MESb(1qlVnH(A&&ZK=}wn&Z*D>bKQv#~qUCMtB-ML*REsqPW{mY!D6^H$Ec zSZ|wn-Eze@rtVLC=uTtB*lD)7gEv$)BqOkX5)i$ZD|9cSIdy``FB)H*{v9@t)6z)) zw>O2OoS{0!1@@rN(y&976~+wK(N8}q?&`L;O`AxvM@r&?`t#ZIPW|v`@8tBvjWyU3 z!fjq`pivB;^B>Kr1d~4UDs$>Q9_A^}%Np);w}LJelum_N52Sl63wJW z7jxOD(}Q$Q+-=iu?ep>vzG%VBa3qi3SrLl*Z}#S;g$r`g5tM@dp~Sl-z`@=RteA8- zeM*+KAn8fSM{?OB*~KQs|3MX9R^K<~Bc>X9)N1^3-(7phbtybjRb>Go%<#^fSdbY~ z70C$RGPa2BahSHBoM#UInvc>hq*O`@k=7-^12*(N?Q<+Y<^V?dHbp) zJL8Bb?qs#e!lHjAy(Aipw2j;xti9abc^6@P6J z*de7YFYMGh6ut=5u;c%J4}+!0Oyb2gYkwiv=aT1}o_sR#Z+qcTK3qA6IrwkkSZ;$x zq|GfnsusF(fHWT>w_wK4sWabqP@l>PV4(ZZM5G=le{ZNe2UV}Fse-a%zHU<>!V0>~ zb=SfX@o048D?ekNx+kB9E7Gm-Y5$s2PzSUu?^U}MgJd&MPs@d0N55Q%$WhAs)?c|a_bM%6yr;IvYgnD_tS$?v zJ#KqY6~t!OFqyW_ppvKGWaR4i?cL%nzXc~|zFhn*4QAr3ggAXA8QQw$#^L~XR)GZK z*W3vc9JXaS7lQK`l9I%Ubt15j}2Aq*To(lTk6qn8;5>)CyCb{cu}IG%M~rBrK4pMT`>z%R-5m}ES}Q&ewT z%&a60!j>teYO&SwU9%f)AW6kYC&g^7n7)z(9vShO!H;f=$;P+Lat7j;mpQy6gzutM z*34a1B?|&WHpnHK48PDrp(28(3YJ(X_X%=hTu_z%)Kr4E{-qtf4+*e^H#^mFk=+5& znQbfr;jeZ9p0~S%PqNMHUmsZh^Gu|d7f2IaZUDuf(l=#Ui->1W8S+PzC`gwZ6ephP z6rrR6Jqpb{tDg`{YJONQAw#?S|K4}Z|NXMpa!wM=%QPh4?)|#v_}lC1>=0<_iEHl& zpPN&9d~E{dqER{74!pjZ@YD4ue7Vh3+}dnD**uDwk6mM(I!N(}(mY18dn|)}=T>9E zfnC!1bCvM3z<$IPfHwwBie; zvKuZcm8t*UGOm{Mfve@=5b0R&jm>yA*p!I0jS$z;(;mFOI=H@esObDO=N990-NHaI zb2(2+1WGZnPd5j~=6NgiSf=AcYy;@^jUCBttJk2mi~eGs2hL;KOu=TRh$Gvi6(8p9 z&!*&JpFuluMMrk5!T>;vP)_bSRxI@$Kd7 zuMwOZ5`PtG`CB5k<=1ex5h)uOm1V2O~HU_wHsH(&q}EjLffj zt6`fF((~0`Fdq)qjo8MQJ?+wCSe@9=o5GW^H%|7qv%Fv~eps-FH2P)MJG0>-H{dYg zd)t*xH@kdQ1qyf2q(2Us8={CZ*Akh8$H6sW6?nwDd@eh(FHT&Ua*^`Hn3NxXBY1~= zyKu)ak^Lbto1CSqJNFxrBzC0ABB`uz+Sa3Ole7y zt;p)A$k=Q!J=E@ZAe)XwR{@8SldB|~Y4B(68ovHSHipa^eEBT1sIR+bh@In6Rfh6S zi()-QYb1E5CXQ?Cg|1Y`?B**Io+#iLkh~Kmr*`&TXwF`Ur5H6@3e>i-VNn`xW!`Da zWaaMKp@Q~6$M&r;sBSzn#$N7PEC)IGKRpTV{YAk8m0exfEF9_!oY^T$Z}8oR1pfb5#bW z0(j}d$|-oh9fcc>o7mySE`3mew}-Kz!z(b*ld-ipCZd*Qpxmewxi2q~inRQgyuGHS z5~X-EL-M;^aHxzNqVw}ZR(vGXXws=32L%L1Rvc{~!_PdmS1S0+X2ByWS_mk`WbE~{ zPhSTqbI&;gAdZn#!9Nnk{!05W586Uv9jDB#Bqv&}gDO_{mc;gDuxi4jbihNEEuc#ZG3gl$ zwRDDcP0_GT!YCX1U2?G8fC5@S)b97oG0noZ_6E{Lz@g9?>Qhx#!^_4kp+BBe&_Aw0 z)CFtFW?-rKot#k(A_Q@Mv-7NHm-w;W0)E6&OVS^PO70VlQ8-FY;oLev_r-{BYhQZZWPN8uU5 zIM~iyrwhG5Ko=;kT3%IvtrwnSfQn;xF3--Av*)hsb|@0fhBP<9J}@WPWgcV*Wde7??>CTt1uk(RYhi zTgvgHfch)D<6Tww3(meQGZbk>R{!-z$=kWO&78xS*nrk2$XJq;d;0(Ij{m!!-QVRi z^l$=Rv@auDJ(d$VV}j!VXb0k=sn)+9gIs6%NM93e@^nP$HfLc6KN zoAc_-5j=hgjmE(AaLnZqwfx{L0mWjl0|pi7iFYq{)l~rTAAAGtH&{ia@~SA*0(AxT zK7~REY-7lZ(9%jmgvmol=0L%if`6dNfI2GoiiHB9mwKo%2wb-(o!}I=(Es>)*(%0);5*0q!j&I-vY6oF@Xx{>azKOYa?8RdIMp>#NE__ z$EZd$nJicJolgeUBPJhq1oT**oCvi}*i-10imE;qFiId&Q8JNP3NwY#eB^1$fDQP| zHF4pj&>uaiX?uU05Y>q6fhjvgL)O9s^O#UrvZbvQ`)8vNJc{!=Wz&ABZ9hp4ly${S z5}}#<*3U5_7yOr1z~OIcsWTa7>S*guylRGq{U9-glb|5r9b_OJD$TK!-8Br6JGq=H z%{lWM`lb;(~qJBsnDy(j<&8LA1HL4v0Ty-%?ODvuHlxYIIK zKVv1H*|V(CCS;q9NIK03Z@;i*E>X4g~ z*#RdD>+i^Y;r&)tmNWHWga9cmvM%Bi150%7P_`-T4Vw_CrnBr}cKFmLb4(}k{NUuV z>ks02;(YXs;#U|erULABF6z5kKa44u1SC zO7;T)SPu~d<%SRvCqiAwyvK^4m$5%3IQPn|7$U5EU3%;C(zBNby4a;A6)_9``HBqi zm!q0cDo!A7Yq1C_YFLUJe1)^O$5*et^?I%IxWPJ}##N^=edm|@{uF)Z)lKFJpBY?| zs5HFE8mu09yYat-XGu)`m z4>-AJf=r&2z1mcI0F{vFS#QTE62Jm3OffklrV|x00(?*-@DFb4x3VC(Wupr#v@eOV z(!`0WBW;KAp)zo8)3kcWHjSANzWAoH@B`ZpkcRPHP@My%&!fjI4vgoH43~Nd;8n$( z^1259O`~2^PGm!gMAR!PX3+xHJOLC3%r9<~m#Ce~MVu4LQG$ANgl|uu7R)_`XE71r zEZG-vjgP{7n4qoL|JGB?#D^8CHiqmZE`+6;HM#B7(sb}^R#=%)U zJ0g6|qRqF> z#gbeQNSoFP)`xe?6=?A@up4t{2zhTT*2t&<|5PU$B7WcGyJHUYukLo!5S!x|cN)!a z;R0#@2~h}a+;c@tqZ~MlrX?}wchyhhk2ku=b*GRqik--@d|tHeuyyGuX&o-+K46@x7=iA9{+|i>Ufign3Wti8Q-^RGW*Z)_ zVh2~h%M=Sg32C=dYTnJ%c}+=HUHJ<+#!3?xS>E_Xk-u+{Ag%a0HFq&c{Ke&tXtp#{ z-pOGZyQ-`5>pWVZ0Kp6@IFy<)buq5a&1)=LZ{yw|Uuw3Nxl7?c84f{q>tc3p z99cR40l?tYP|}?LUK@4f{MnT2ChP8$eE$pK>=m8g~;gKJC z){LkMk^YpYpLS07NriI~TQg)taK-HCt~Egw8keyO5(_QVByg{InUQym3WLPwk`OEy zs{dsI)@{YdHU^9tdWU&2^F9$wAyzb&yeOTH%*b174m7k0i7H-8N~<{~pW#A=}0~Qt;;u zJ`3vq_{e_yMAF89S~oaafQ@esgDDh;r{g0KxZLU;acdomm&zi%UB2BpU?p&o*bzF} zt9HMuwyNnh-s$_{k4S6Y?uKOl2q^1_)O@f7HaO}c zA7|VUpkMJGD7ofbkbGOE!M%+CXK4|R=0se!WTl6rKIYuRjjKTqO&Iaz627qXnFyhRJ+PRb2L3 z3H_@9YaxQ560_!NARfE>=^5|owxaUoAcAt#>PXOJNON~!p{o0H-sxBv$7k zFL#%#W-^v87NWhWt1_B`eCg(EEN zzg5fyN-QdP^!}{mA9s41fEOQ(F|gFb2|TF}fKSU%Ync1jQ(sye*e@%{Q~%l~<~HFg z_>Zt1j?|?PbosVtzY5K&&0vUB$SQ;F2JPyG#$`)_{3QZUksK8TOp(}s4ERB?nKWX} z3z5SUDLnG<`X|s;qW@NUq8ChNE(Px+08r3^tl*F1CAInm|0V@*Yg&fDKtY}WWE0Y4 z^~--YVUE=K5Oh~f!ZX43Xg+`;D58sm;d~>}v3=EW+Ac+$&1XeW>HihE6^sFmlSmT@ zDd3`w1o@X#94XG|1h|d-zx?ymW(%x%-;D=sC9k_V`#sTRdo2G5I`qKMhwhW&jXDZ+ zmAAi-Z7&1{RKU~QAyAj|bSJ&%_jSwkZ@{(w11hueD?7a~!2e|_AQ$lT{xnf@>v*Gk z_2&~DW51WD{dVBax&{)n)xVQs+%#3{?rwdOsVUG0CVaHd8VO?Q+^vK3NKGomFqm1l z$RbBUVaan+wlCA&J^yEe3})AlHtao?Eo2Jr)J=Jy+e`8KPJ016kt=eS-$h&Q_mc0c zdr;jkO(!dSW;+!a#2P$hd}jPne1^p8xv3x^qlu!sWA&vwq4BGRk=L+xy5?ry3Bl!$ zs`AS{o^6N*nEZakMqp_DB=&})$6vPjgv*4-v3qN@vu-hBHn4={JEbDm9fgr>mJQlNB%cQ*Xxb)J5gM#nqOFS#wZeHRLC3O@hl$fg1o&%RhPF^XH7bi zKNWT%l^1f#akPKpCbRs}KC`*l(3G@Io2T`8Lzn(5_MIpqEe$g7RWG3EY)T>3W*&6z z5MRR2{vNMn8HM+W>`$j}gQ-R1wt3b(r<{(N;qQK3IZf{+sRX>E(w^LMvY!^)?kCqi zde<~K@@o!+n+yt*iYNQ~GLO7im!O4Y3+E5dw6R0iuBj4VJ;i|GPNjvcH=*`D*AvQ( z@ZE~7(JoHM;#c3<1YeSBVLdk5F}07`AO2J(sb>7qsEm5TQKj$jO>YNm2EhX)5mbky zOp7nY&AM$BcOq*tZ_Vph(O+`sbkQX^r;?AJ@%1qV(Wt^iyQ1B$7dm99$8#4a^|2cf zZ8R_2Yb8}qtKsaHnQ9dH=ZwOq8n5^&{?&2(FcceUaF2R%M2n z$~{1@XTic)@`w3}yp!yrL&t=l29V#+x(=i;#cwHeRV9@FNUB}vEF%pYAAD5`^gtzN z8K$osx|$8%st3ASQ!$-P>GDXpxHmEkRU4$&*w}R{K9=r*EoXVuzB9^Pb+JYU5*irV zI5X*5a$eq`2j5n_fJWKHS|-h{@dl;Y9(g@TxrgZ)U4M7EbEWzUe@*M1{mkW=OKbDg z=0SAFA%#J`iHwK|v-y38{4tYHo4ycu!cqY9DDeLE%oc8TYa_9)4gFv$E@ z0gjfkjWKtlM5<2Kb)LQVT2SGYd_lyB87d^B!+Re%%F_*3Hcj38#bnkXujQz;4>?g7 zF!R1^Sa?xgqRgLb9PZ#t%jzoqw}8e$$X`s`pLOQ8mT14n1v1PxxuNkb%tDVevi1z| z#*74J)w=}{N)wM*$b;^#(rt(Pqk8Kr6!h9_AnV;+Umf)M6b@V&4O!Y$H%WOr#%CeP z`HRau3rp0WSBu+oz%Pa*Sumtw*2Ycv!-Lu$M#?8;BA~)7PsG{s8O$WB=G_4 zmU=V`;xmSP#d))&%Cb7`VOHfy9T*2chpK0B`6{D-(^YkfMo4*9=)h5QnY@&?($()4 zZXFoqQ098GS-P=sb+61=Vcqzk?qtD|MH9ur1^}cUms;Jz)_R~Q{k#RDHLeq6ZZ~iw z=8^>tlo^xmIEE&y2@|Rq9B)!h8!dE`JW_nI;d8#PBz)`T{VB&qNrWR)T20A>wjGHm z;hM7tk+T;MKdXJy%Rr6Smu(eoUjOLKyxH+Xons~%PK>&=FjLEI>viMmx`D~mS4{Cd zaHOlJ-<%6C_JG=rFJV?@`q^oPGVq;eeX3D*xQ}&dSjPRqKQT)Pr^41B_SbJzt)mR7 zyd4Cj0i_NI%*F7eB>FFRX)e$Q4M|figD}ZY$IBw2AoZ
    Zi-}#F{>8(GxQMp$iSdSEZr8i{h#3&4o6x zT}})}zhs1nHzgT?hnF8-=boClkATRIod?{9jPWN<1i#L)l$KT&xIT-JO@bK8SEIJZ z!I^}UVjH(Z*fXoM1{pTM{3YYtxW*>faytGac#UGfIoD+@)6k^`A(HY?-(~TS>g~JC zon6V4c;E-)88ImW<#K_C*F^7gZ$sh?e>eedKsQmK@ysNS!ckBDZ)EzOms5R)>nAV( zUBsBp+Jt#)D@!@Z`We9lg}rfK-(X+V$~9nu-{#2jz5GJ|8EdoW-NQS&$Iz##z&ez+ z8?>UnbST}_Y4;J=rB@M)Wz}8tkG4F_2}FXOx$*-~1r6*u+_}OO9Fo@cD=fyz_%BmEJ)^END2|88H+Z4bG-#`S;oH8xou=Eb zxXr)~osUb3F1`l1dnWbUD_mA`JUz*}Q6Ue+K6KNy=$5NJ$Qu$-JP##&Ju zXRnxgMNicajl0FKn83(y+~xy*cyBy$cYwi03km7jeaZ>w)3c)vA$T+1yY;1={da(7XTJ26LciSwk;za1m#E6) z`sln#oVM{V&1DiS7-t5gUrhA{@wK$I8t`3%K>?m&Z+BHGe4^}Ch` zzF$LZ*T&ojI?Lvtr9B{I0M))MXR9K762{>+LgO7xLERkjULbvuR{buTH-3@($!z;A zw!LHGj-mJ6yd~i9JH%}ae;O|SzWrdsrd!6$E+)5~^Dyy;NVsiBb*AZ28kxn5%q-MqkoRL=&gYg|IQ zq9zi@m8&fe57~k>?`8eSlChr)^gShC7aDEvl|%cM6}SYnvmqza7RUFTLv;b#)_Yis z>E6s9x8urZ@tyP=9_Y0PpEYq?*C>12JN8SznmI~^nK{y-+?Vc{II3xFZk(v5w!Nl5 zi7nUm>2FYmbc}O_obL4QR5t>#Q40ZMW{u|vXGQ%Vp;M5tTY_o~>Z&FS0J`~8oYzXv zS8M@|B!8lVk?o7N(?qtV@;7t8OW%(|2^rp=h=GUAf zlgHu1j#tCO8m>`HxM1WRWz3Iu`lw1Jp=L2Rn%Cf1ja~4{ zTr7Akh-*to01Xuyp4*_pY35`>Q9Vn^Zi29idnyP z!I0Hg12@#9zVCvoBaL1X$ZK`+Ei36%m-?(@lKAcgBX+~zZo)qxd8PAMU#9*m zNF_gxW=K+nnl99~Yd7Je4*dh(>H;>>>5yK92HidOrk`(kM>iL|?vC|`HdRg0`XL&K zqkHU3>j5>d8dRto>T7O3TCCaR4Mvl_G2O^e+kO0;&^^EJgNM*1pDYcogNJ5ZFH<3g zR%6wMRy7E#J{NiD3i$;jD_xB8M%vc#@CBp}na=0d^T2uowbq}9^39xG5_`U0jo+L| z2+|?twUk#!jD~Y<99+1BRj_%N=DqIRjnWA)H~8cMjUn-6aSrw$%$~!i3kg{|eShe^ z1cvK57v%w*`HNJY`LSSIQp}!-JnxS6^ptu?ficDrKu1fl4PYZt9yMZ!M+mQgBLTN> zUdDuIZ}l*}I(=_ELP!PUeghLuHv3T1)fH5wz1w%mpA! zcN3SV&Cstctsxns_K!d6{$`2q)UIk)MZmOUm&3ACcdq54wOL*j;;1mnWD%Nkd|lne z&tD1XL|V9y5nf7!mF4p*)(W{rm7G;Iy%b16&T9ex`mNA`KzbH0egs2x%N3ifGNgle{Un(EoaeLBdZ`LBdGcuqM>iO%oQK&TXwi@A1h~hSCwmge!M8O zsrznQ)bh0ocipn`e%KHjNy;;+vdbCt(){c^`w8Y6$Rj~4*tHawj%Hv&iNZ)y@XOln zZKkf^g&On5g4e~+*Zwa!7tuet2B(?_4ubb2>>XKEuO;wlMnXm5sF0c+fBtxy&pErp z=%C~8c=EStc_y;Bh&!h$(vUoin>*RRrDG&>6r zbrVu~j@~uy2qxO(Hwq~)97lNrTTbjdo8Nnn4|08npFw7xL6`(drsv`<=hHQfT%VNJ z?(XM}v)1hrsr-VI`4`0UYGEqR8NknP86AjX?khV*#0Zr|{U!h^f-1)WE&ZVlE|kiK zs?FKeujh0Cw}m(ON(bhv>&llD4WbhHI)NhN%$Xt(xvCwt?nlg*@e(}2w50<{EC(W( zpOKk$^ZHH{CQ!W(PtPMd1oiz9UEDcApQvJKONRjzG?vSVsa^nSF{?b)=eZjsbJarN zr(BsrpPusG+aqdv+uvHgri0`J)G3Xji8s@^Al^d|_A1GWdDNYs z625n);K?KPkM_64bfVuBdeUQRgwvxDQh6~UyPq2!Qsf@vI*pQqX#i}U^JZ?;O%;UEg`=L z@V@=;f~>z6@Kj}}I_^kehW$p^p?y)ainSh&2OG0dAM^=|{2Ty=9RB5lLR``M>q{Ox z{Va{3mO3r7>gY_}#iZwXE_~5Q<%*`TcEmuNr?D{6n)9a5T7In2`-WZRS*vh^Y%9}M zk+6!M6yuzp5+iW+hX?`wH(gsTJNPDvo`i0Rmk-a$D4U6^D#Gj~>9*fhUG;9}JLeey zS}zQM<^gFGE!WyT6HZup&_HICbcPTKAO(5?ddjQwy)QXrf$)C^f1V%#NW z!T~G(Z-5zL7Oh~6!=7tjDXX!+u}8xROgo_A0JMV+7UJWLMM-k9C9}uaT2Pc> zYc%5B>)zun9G#tT#4`EtKbm)ha*}#!223~Wkw2=R z`Hywt$KfvxiC1BnN@7wOnOU|&9OUB)%1t81Ke|PXk1kokL~l?BNjTm_f<<#tmf1fb z`2_nsciwwH`$Z%Wb{=ev_1U51fd*)!q@PgYg~|YVLN$OqLZ_0qhpwg!AD7Fl5Ng;O zUavocqG_A_qG|WX(LNiLc*2~6t^WoByXa49RK&Uwg%9+WaTV39|L4b)oZLZ$)%oa8 zcZ;yeT%!A-MUp$OSmLiN# z51iMVUv{fK-|78XT|=C;P}u#@(*D0&?pXiaa>w-N_o~E+|F6Bb4vTA9`bGzL4H|49xVr~;cMCqaYw+Oi8r)ri zd$2&zAi*U#!8H&Fnmfrp@5$aA&ij3T-+LE4z1GaL>ep4()n3(O1;v6aeii%>_*r09 z4ks_ky$&JRM)U^a!z};q5C5;lL#uOn6R&|2@@@%?yu23e?LV}$ct)@S{WZ99x#xF_ znep6Tc2s5yN$0Iu#Q3A=Y8%eI6tIcqS1preRghLIf@Wb(Nyx_d7;`A?B1dR7IdE7u z&54#e*!j7;#V#FXdlh*XN6ys&_FGStaMrsr{f7*q+c$OZV=tGTsofNEqaSdjO;w0n z@Fs4&=J)pz-3N_%2V4X1(O#>4ttb* zmW;et%sN%8%j7Xh?#TMW40PyQ@-+n~*zXT>PKbpaW>@xU+*KUNLR`JP>K8v3I(zi> z;%Q?=n8S#Uogu`J3Mteh$9qe+#bu6tP4|pi1aD-{tIa?auOeHR%hfg_PR_0b&gU3g zKI9O!*|9euY|q4xBVk(v+=jIr*UnVEBGOJYLO`*33|%6)r(iTsq3$_L#h=l*YOhwTa5x%*{1=Z@b%m3;k0W(fsfOPzj22%q#j~(Sg@t6;*8(yYHu`-X7}y$il5Wm zp_T@Rp?B_-8(n5mg4YtVKF%K&x|Zm`(*LLN=;-k2{a@*Y{lDrZ=>Ls+DVZ}d7KH); znDGA(m5SrvdikU+ueiyK-cjA~GjDj=F;Qv$9W{KoUU;v*#$oI84NI$;+Q6fW&DE2_ zU=g=hO2C%PN$&8Mpz-%tW}a_a>DBFHW~B=xl`*dhi1)w1mqjXH>|9da;(X79V-UiR zF0cq@Y^jIXy3m&24z?4hfC+siG!&h2m}hJQL++;RGgm82R@7Up+EBZc4a=al}bSo8!2dbb8_m9;8u^F4F|$z6waWP!;vw) ze2h2o65dG2t??mIiSuRn+I}H}Zjpb~st~raKY6!ZK5d96QWGOwv=X&VbW`5tgX@+I zDj6=tNCulAkvAD$#vlb^6EN$P@hzn1g|J~t5IL^@aIX)FF>Yk|skTBue*=X?f|v00 zOa)CM$^(@|%7r;hg<%nLSW`Ai?BT)}>b*I{G{TXwmGN6rp7THz3X|d=G}JD^9IlOH z*e;pVCI~4EuMjul2)Y#eWRGfV)}n38>J$Xv^a^_`p=OrKI7x>-CxyLQ;EmWw6+}ff zF4sm&cFCj0bA2Djrkxj8!v18A+n(=qF-rTCzVo&KQ8q*PsHSSoHSyz}F-Uviel&7(#2 zN6Ucqpl&R8XD2yRkC_zh4e$(;Ri_XKCoGnBqC%c3;U+c)DO0G5KSwHo)BAq11^TFn zfN!CJ)`;FgSB8OW`4dlDEhoq-TfGqy;+@BrK?Dk<{ckdOQ%IJA`2ESL4RYCWRGxkc z4tCVir7*9w_jInHMLGCTlLfMH;rD89Nyep%2(mx%7NvNUy<=c!h$KQUP_ynQ^z{@7 z+jDyXaXq$5i0k`ge@|3IR5S%{wL1QEY$i@dZkBfD&P;#x_W%0$r@w!nFj@}Df-G?r zaH3S#oP{qgR=g>}*wV2J6{N5YXTCUj5z%?i5S9yU%TSjR8FRy-ahr2Q$3^_YS3&v~ zAHJ@Cro)yaGe$5H1wO{YnlO_Bh0Aze{apK67OLN+PwzyVJi-)3FX~MNRz{43$sYeg zgQYGWOEG7|Z~+fUwtTRz5pf*3R6lh?$r?V?6Jf*soaUNui9_Dr;^fn+6lZ6+QgJW( zGjvf|<-nvXgw+uhN^PZ+ml1pX5sJjuF2vVVu`@2j6``S?9&P(1Pqo(u5l2=FZ~%aq z1pt5!)(vCS+DGtxUoW3p-j+%{5vV?$Yna^6Ud_NAvVaT+F&RH zJq%42*VQmzCS|@-HoRn}OXYAuSRSf0i7_s*Ocy8&h4xk|aA43O`>Gh)oD)jL$5dUP zq$i_Fopmw`IbO|@M&+6RZNcv7sHJPUyfz=}TC9-wZF?hu_O$-7t=%Cx?}&*$4l?Ut zEKC9=2(sRI=HL z(v+WWKYA0$ zdpr3Gt8sl(Q8%&j;xks(w^04!JAbe|+=U}kTuC?8I{aP1$D{x4vz5|(Xe`Ca5tA#Z z*gGHM{-YzP2ilbw9Y;5>E)wXa=v+s1l8eRnOUJ(6El$ZCSe^NApgnwf3?&rYtOtan z8BW$5>Rts7Xz7Nv>iTqYW(5aqp*`$3qWt74=lZ!mik4#VCdlB`ur+mecbBR=o!vr_ zR1bfEP6sXLOi1!+Cd9d3#NNSs-E1eIimRQP>x!BQZHG2xsQQO2+d)$i*g?5utuDH} zF9dXHqZ}gwKfS70M=2dvM2gcXc;Rm4T=OZ7RVV^ygwNu1=~H$f63@jU`s0QfD7Pg< zVU5XX50Y%+>nD7BSRJ8o!;_LLjQciK`ZP_+&Eln?(6HdA*XQQmGVjw}t~#s=*1@5< z=6P1Zc&p#?e$*vDWzGx0nbaL#T(Ra!hJ6l6fyjJn%xI3Zu0qhDaiDU4vSc6qGbTu zAHOxqVWrx+y2H5`jj1zoa*_S8E2Z2%FTtO`KVRpyK+SjMgfk!jI$VD^%VIB*$yS0^ z5fov8Egz^HyUek!=vrK|l3Ub}oEZ1ddKYz`m0qT%Hsd?wDk#4u#b{ekxAUC%1BDjI zG|RAcqM9i-C$gSI+f5_dRcEI;OVIEcJtD|AQeLb~n-r6!^`MVc&#L~TlT@PmPNFQH zL9GcyR-$2;hq#aDGE)cY&7@H-6`JbN#r3uEWa znj{HwH;usn^KZLL=N8JF7#`7paFAha!Tqy!?uLO{#dl2(-nRG)=kDL1r459?jDd36 z#_&4ATky#JJJ_BKFN4G+rP%CZMA~BKeKGe&=(^oHu(dD3(zQgcgBhM&E>~ zJIi*qdV35$8CUdB=@apQ4h;1Gx5ANQr7Dh-Es_1NheO9`&_t6R-z@F8cXgeZ{$RZA zzy$FC@7LrLoluyV+Ltkn!!Kg0HmhEuI^~B3yJjwI0!uw|mtyPyk$Nec%ue}mJNkZE zO&5d!QYtU#JX}M#eJD7g!9C*If!g!CJSgI=AT%Um5FGy?0tpU(Tg{mLQhvfSfq;4I zhPd9TY$)JXQY;=*RCIvkfg9c)h@+W;+y@W~J1Nj6+}rdaXsaQX`a+}~I;K&|LyEjS-&^y9oE5W3b#FsU#Mxx@kJ*K0x({Qcnj zH28kw-$;pt>2habe7p1v%#SoMK6Kl0-w#fB9F09z8BYgo9)T7p@EVd0xs?OW2@(D( zT}!Yn9*m5Iz8YDRP4Zg^AkHNVd=*UGj7v-$05YSiW^?Kd-cl1uW+njB%VI9qAN>9W zSmKi3%+b4N@~jCf{H$5~j8+Asrl9x}peb7kWOo1rWdb0r7v~`cf2jyM4qR0ls++*t zz(TiE28|H{@^)Y+`^K+t^S(bvrYiOC+wD;PmmI&v79v9%-JFI%b9x>I6U!Cr;b(Z+ z>m`4!!x0BQr9{0OgU5fg*sWIPp)~*5T`}&qz#77o>TJ7$p=7y~s*idNL5E?DPjeeG zq;4tX3bFYaQu~A^=0=fFVfbChPuNLb8l1XCj4e)}Ac2x_ku?-=}{OJlGoq3oW7)wBxwp2lrAk6_$8#9s)gp&wm2D7+0s- zL~<)BcV6Ur*U{SiOISAMbiXXAifNh_j_&Qs$fbr5E@Az7)tY!xQ|B?p&&at)v#RqKN*S&t6 zAz8C1M5n;gz}()N=tGZ6*rP&DXz_X2t$7GE&mN^k{UBFnLI-QOywqG#j|_yr z@`3a34xVS(2TKuv%3^WL?c5z`D25dib3Rl>6l5Imz|7$7Wi=j{Ef^(!_#qw&DsKl3 zv>rcF)gfr?dCcri3_WBqsM%j!EpY$SyYg|Bh?y%Dl=g;FOuzTeRWmH(lZ;6-g{ft6l zW3Fv~;xHN6s=NVlB$;tcPT+mEcBoUiWge0Z7Sm~(aeCL{WphIIjHw&#-9%^P>nHi=uzI3G{R_2KudMKqP>G^f18fVwn?T?K~yJH zBBG@6(*3KA6dA5c1x-1%rcA*FtLqhLV4s}S6>kyPuTYy#%D;5);09+gxyZ6u4;of; zjjK$+i!6FwmkTk1Dn(T8E+o*T_YQGSG609kVx8rw&Oz3? z$`mt+%gg;#(<<>P-_NGTt{`q(jI%^=#c@TaE(lxq2Xghe zgK{OS{E6*By@FjA3%MNIiMBRByf~AIn$5i1qEXHe8^(6)FR%Bmk)S-&RBn<+clLMC z+J`qX#y|6#8hRaWE|0$TX}W69)l^PRfMl4;sJIh3wtsGQd!#z&Rt;tT9;=9ap9ap0 zOxmsZC)|Q=?qo;3<@FHLlWPts*%FQ8;JI}x(tjB5@70%2DSCEG66gb~FuSNwkUsTd zD)}a_8cj+Qf}tJKyB$!l#7SmH@)}0p)U?a`aKlgVZ9%^jjakdMAkV@!9f(mDiY6fx z$$cFZysN`U!IL*@!?{bNM7l3`wButeq?@Lq7Cg@I(N;S@7)SR z=g6hMBup`QN4h}7aB~u>Iw=Ex{W_`e`^VS|9pX8xp2-uUtS>0^Y2-wO%7hy-pdM9` z@SRy>bBSBep&)5TTX8K-W{Rz1PPYIfI><_ti1~TLsAi12U6ou~l+vZHIT8FpOTFMp z09SetH3}}zNMPEQ`1;UcxhIiu>pMbIy$y(($>&bpPBv=@*p9X`6fVQ!~gu!0J)Bw+8>VE!T?A(QAs^N4t<&?kibCU;+Z&h%&l zdD9bKKq}CEFL{Z@a<`qK; z;}QM%A!q?90jYhqJ2^_#zA$<;PtTaWts9cTHaCE05l=V#91+11k)g#{BFD;EbFG^g7W?+n)m)HGF_pP}(tI!RyL&3M zjY3iZ83idZcTVil`K^tC_xu*V7iPJf>F4hOs;i)UsV#a29KDkz69=d5T9tF-em3o} zcg@&ESL@&A3>eve#v{P4G7i6Mp7wNIu}B(H*?P~POsCwP*s8`ecUrB(KAeo{t-%;P z;V}#E(={{bq2t~TzvCf-kl_5iML&z2)xa_9L8@NOzCw$5B=LMbKW_M<{J<7#sdSg( zhXfJK_>|a?%Gh@rXzM}nZwB=#lLWTp^{HBgn32%l6#p<__BrLT z^$$;K`>%2)m>~()4+*X#pWl%i(i;gYlN(x|u$EHvGegBPKS%Ri_s&iGcgLZL1 zUYRzM><&{lgf=mrPJv8Ohw{zAIgB;Ue|CIf;F!c_to@5toM1@`m$G8rL?x zND?{(K8F8+RYCP(3@$yg=OOLp(5AsDs0b&o5Pq-}UN^8EBW>GY&b$9cu?Zwe%_PFg z1Ua{UsbY|1(zSfqIbW8y20ye0uWR6Z@y@Ft_G*_h2sygDv9@e)1tOWu`>iOY#9G@7 zd(bz2ETMR;1Z|9#V)p1yDQ;bgkxF=J`V+cj4jmTHdGK?w5cdonY%LHuj7TlMA%FAHIZmkqWTtlhT?cs zAkwJE^~!LA)!}8C0-e)TK>UZGUG~;gvk`bw%k>gsR_qT2Q^^JWCi%8*fGtCW1Rjhw2@`egDH~a|Qmp(5z@o~|(Qbn} zWleAmhmxI`iCxgUpK@4C!_yAEv%=vJcCw=%Ir8Gyh9*;lw2io>b+_N4q_LH1+;yTK zf_}!Jgr*SM2*x#{CmLb26|*Z_Lbxd*Um`T2BSxkoN1hI5LRVUQy+vLUqsQkZ)AfB$ zrBd}p96(?s7d!?xSEwIiGjaB_VF1}wRL(rmT4`?8D02Vy2lMBH)y4u^dP0dBqrACR zYd&?g`3^(nz2qZLIikkc5DHu;`RGfPY6EVdniSKCj`jgruEUf;O`xZKD8yg=Pc+xk{cuvx0xT? zM@0M}l@aqIl0wU6NXpC6#*XQ=&Vm=WQ>axQ@_gr+_ELijrPa#zWf|Bj#}~~H+00+N zH>qRJT4XVMVii@9Lrw?N1ZT(QkI&V&;QF8IzSVsW-l7O)0$)yvPTH1n*9K zxc%zKqDimhIL9hGeNoJ+;i#y}XKrU1|JKfbH`zox!6j`&M3SRd2-{aQzokQu0W{pX zrT+z<=FV;$+n*Npt+OqCSG>za)k{qKBLZUzMC;5l@5r#!GFs)ejPoL%`W77FGznGX`^xBcamK3<)pOt=~;S(`yv$dZ#zOD5YTayk{)n1) z8#04>DCQ9J?Eq_`&)Bwr1%W^k-wu7~7lsI-uijXLhc--Rrm+&xsy!c@fZ;7kW}AlQ z8fz#B-Lkwf4p{ms?*oGufY(2uTUH=a0y3rffLtn^~=gY0DibN`u6J5M6i)-*1T|?X7P`S
    w$3j=;(6#V|5 zXMG3Rz$)%7Z7LrB1XUs;CU?tRG1>qwHB))K09-Y`8$;pRe0vPIA^#V9BXd8@zs5YD z9d*rYJ$rgCz^TPaNdVrlm6!Qrw?;M~Q41qWyI(tN-kEy#U;0r)PS7TP8Xo#sThFx< zko3`Djaa|pOIKd<=5Y(zoPs`;G$ateJwYRqW~=w+?zpg)A>(1w55UYrmQs z-JEI;z1`IQKGI`zvi)$gKGJ+E7;ApAYWwC5$C8(4XWLIF*INf)Xa3urZOhApjGTw_ zo16X1o2`SH=G&L8z4udRhX?29S3i$W1oeD7TH8HuzOLVncHHgwqQ$ytj(^+P%(+!u zC9!|k$?wzA>e1Q0oI^rbd3mx0ThCQpeMKB=e(b=rbo-h=WBk%iJbB?E>^5iwgh`C( zj(fI;>gv@%Y@a1;ybxPrI)Rb9FT|hUR~|UrEoM8&fP6U7P1&1BJJT~9SAabOF z%tzZBGh9=^dRY3Ok085w7Oulog4dr=__jlcoO@$hjRwBd{PndK-fMbfKAakmEUSI& z>GTl>aT~`VJsvSF9*GW7w+9*A4g&1|{7bMQv)a=oXfyYsCTMRV^GTV-vmFA{#K&p^ zO>lTXFQv9^#aWTeD&dCco%%iFK9QOK`*A741m}|$TI8pwiWew6%q#wDi<%|j|R>Cy9t$=p_KX18(%2HOpakn2`T`O=>6IM z`tVHs*M|!gq{6J3_)qjTKsc1UNfoK1_As&95*1Bu8F3xgA*| zS|*k_cwgdsAbaRpf1vLZf0zpe4wI_s>_?Qm3ZRhPt%sIOarlObtSz!b;iCUL5#GUe z(SIrt-QjT2eSrBb1<5fX|w_JBd0 zedVA8A=d22svU*YOn?9NW?|PwY{giFEIVo3NH)?T@ZPOpq-tGSHw`zV4BnvHJPHk z$SU(nqAW6QTO5qD*=DNS4sR*Ryrvff97#c8^N&PlG^Yxs`5-Q3F!p7g3|jj|8FPIe zx3hzp)0b&|xnpT~1sR7((KiORb$us7csN_?5m6t|b!Uzy5}duNcL{TIm{t?3hLh z1;OU`{O9ghs_@tRH4FvHxI$z8nGg#xaAPhxDCm0|_wJsT^uQgVF+Ur>%;&6uvQza| zmbPUBa}0S%B0E82@V4+-m{#yv=$^8ruow7)6ii5>j%lquPE zg5P@>73-~fSVoRhX($qoQ(>qRj#CAwF3a3GfCgYJm}-5H%}13R=gmukrI(R-^8~;W zq36IIkS6W2`Lu${s=~<*bU;DE-mvlzbd+_DpX1&$=6BwdEJ<((rA#5@Z%NJnTTT$M zj=kCO_^mLLkgWhGSQDr%tU-jhW+AI+@7eAmSOLqm0$2fywGP-7%QZBVyLbMp>}wno zmVo0>^K}XL+Rt3Un(NbMEYJ`9u#WW;Ume*}D5TBmCrpi?OxRKwud`ee%>uJ+piBba zTBF3F@OBe4gcAS>8nVENO9eP#ZzTY#T77!&Z+ERWzQx)bVU{gP)d^824AsSgzPxC8 z>Xh3<5CmI||NMQV#i>p~PkSsZlhkvcdBUq6lj{~5DgWkr8eOZVm?7qNr5y4B_Dpg{ zj*M|(dz7d&O0Nk0G8VkVKEBb1bA+)`e;OploIFu18w;Kmos{2Z?EAh`f4;S(ydfe>%#T_Qg2Few*N^)A`+YEC|$A z$P^8iA3Z54_7%1v@g|H~nw|0{%tE@u+`XagMkO}3qb=PwZE-*$+6tr2U+p$w&s+Qp zl~h`gzOTXlZhaBub2(IHx35bNaX^O1y-)!ZF$*TVDdlhF-ox9AoLOH**BQbjHF>bo zhl%YGZa%d8ZDo|T&%Avfd~8aBAurT11m32p?1-RcC`7>b#LjX$+Yb^>pYj(#De-H* zv8^8PO7FZ#mngPl=Gl7&`;ps;a*~s$Q1fFRM|=|k!z5wsNI&PAcU2Sg8nmT0HPM5( zIV$9^$bzZb(U0;;$uO)5bz=s%Y-X9wQKt^Ot1$|fda z$Vax!zhFo}WI|Jwx^RJ`m@qI4=78VqSVXMG?&g%~fKzzFzqfBejo`SFhRKbQZDr8u zqqqN%kanzb%%)$hn7-vyKXh(o*b#~mr6!Yz?n|)-8@y){f&?pJqH9U8Y$ob9E9Pif zmnO9}m2e?~b$)6GC>x=WC)Q((bK&4$R;qv1^DIC8bzPFK=@R=H#Xw5hxV>E6g3=b( zG&N0u^Y53Ag$f zH2fYnloQ_!KGS9qZ|^OI%-tP=?67TVoR~g;Xw498W?8+m2Tl{NHh^*lUf3Kn*F|A1 z?w!rh$H~yu5tFG!a_+;C{v_Ha~NCEL94aXZ| z>Am>*V|Y=UKvmp4y^`;ECh$U@{G@n{x;Pc8hmCCq)s2Z<>_^I&t zL~N{Qi3afbE>K_ArAv11ka=#UB-KrB{awTxK}3mv^ap?LVsJse%nhF&AZvv7wxiW!=-A`#27IFhXwiP zpX*6qtkjRq^&>1F_QpH(!}S}t&X5!;Tl7S5xii)(Xl}$8^j~#4>4V_L{T%v}#0?2wJU6wjTLkpKkXC&|IgKyLQb5_C{iR?FQOI+e z9zrTMfD?~`u`5-2Rjw}vdp{OX7;5R??_{E4Ny_2-`nw-P&<2tJ@s zXMi1GpV$%WmAk^<22X$kVgF1d{^c0++wT=T0k#6~i20yxk%R=uWqRB6Jp-Keut%UgKlJEsgeF7i-%WoK$gNt zVHTkPPPrmYOo*4Qbz(~R;>_s_cT~5>G>=SyC3@AM_(1P+R>3D~@kPEh=tY$Lv@27= z7(LDx!S5_(Chv-vHS%`KvijdO1hr;hcu;JzOJ9P5MI>EAI)}3p#q#cTl2Ig>K1YVf zeW;#oB~#M=>0KWEF?=hK@rd(mQb4*=%q*HM*xo6B9xHfocj#ItYkpD}+AMz^L*tEE z%}7ui6gFMiJcm+MQ;3No#^}7hf+S? zgGNQK&5ZV}3@qe2qbm_^Up@%gk3i3*h+GNYaX5^(BcnBiqwbcs$!n*sb(Sa(t7v+Y zQaX7^(QtXor&at6_}$-5h}@15x2d&ZtEf?HCbdp=6^osTYC#1)9VS64a+UB0h-xD5 z_8p!>TB9ftDal2n^teZ_g}x0?vlP0&X~h~A8atp(fMqSv4xKb18{iMp)TE!@kA0 z?{=u=e6_EB+aTu0K)}(-G0(;SR)KS4WOItVLlx-T2-q9XP}3fg3r zeQYo7laCbIG26h+z1vWeK|<^J+xj)#r26M`#aE_o=59NQWrwpoJy;G+pXO1NWa=Gi zSh1N)j0n1b>n&cX8yufL1cnA}Fkdl+VgENzngTt@MH839QJ&9#Z7KJw4_$L_$~UdC1K(s z2!h>sp)P^XKxnOM^&{hWS=RB2xd?p1%^arrc8vprK(&)6hHubXe@!Yn0tj{SpKNMJjhyMPOe!5!&hSy0eX z)&C}r$gU&;EipDQ205TW^7wvC6vAG6jl~>)!L9qK=Aa2dO0q^$)F7zQ4~T@6<{6gv*H|HlsNJM1 zO_L1}g>lTY9rfm3q~MJ5t)W<>mmg?>9fv+gZtk8Z47Z5Ix(j2se&q`2VNp{G{Dzts zv}RBZ_o}@fDr?etcG6ycw;^`P9I5kJ>~VCWBxs6Vnr+uO=nlH;r2xO1I;d<>&r!&f zk^3u7>Ri+NpCRLoLA2>2riGI{$Kgk0blZ2J`D>AYmgVfT98buuih3_-F)YYQy{y1* zye%1H=B1w|!BYdwl0cr;`~re>)YT<;-|eOD_DD~XE#D1l1xZKF^h6d4{Lz~}sN7Fy zLsT@rV3q!5h7gbp;C)b706h2`Qb6e2+A?IY5oUq?dY=7J`@f!EiQ3z_fL(nJ)I1za zo%MbhrjqPG0UFhrUtEA+mji=v{~IY-Brp?T;=eL>vv;!oABZQJ5R#trrlkh} z=0qR>c>lmDMfo=q&K9PoF8_-3`t2|BSdMESkX@)%`LvqVM;yuNKC{+JiWk|$9(pVF_u9epw~A^?!i_ZX$J z{z(+Br%-O~ST*j!g}MCVG0JhrlPKIzp-2f54?uti*#+Q&{%0AH_CJZj^Arl=5Gu4X z*xZN^003}^&EGDqPfwz-Fh2zoC~q^U0TyWxT-^VxFKgq!VO%UsZB3ber@vhb9+%Jc zeLBGmn6fSm0suC#zg_0wuqd$QI=gs)ofDqQTSHR(=mM;PY0bYp8UE0kAN)mXVdP|L zqUz%GD`Md(gm!&1rUWqe(Wnprf<{9ib)TGS((Xr%nA|Df3Wgod*ppiqw~wg#tR-J;L837!jo;$=(KqFI9QlQ z?8m|o8~it6*q#!`TRrsB2Mpv4wz_{75T)^d1LAlJ=>9$|w>TOGK>MEgk-dB|`3>}| zt^a#V{bV7@G+L&YD*yo9^pD%vmT$2C)9L&jbo1-VY zp~n%me*mjR{ujVM@wJcZ#pCGHKY-Js{|n%6YkHEy$6=d)01w6f7r;M3oR2wt9PjuC z5L)7Y0sIsF_!#hU@YWx|FzMfb|8Cpz!}K5O z0+oMIKUx1Cd#wJUHdOxy^^^7gvCG>ZYCY}W)c@fC_n7;~-W`7s8ub5>|C3{o$9wF5 zsBMh?qW=4i`{TSHFRcBcZnXVJ-cQ!ee=b4%p#=bj9N++t7bG6%{m*&X->JWWTd;pq d|IaK!pn8w=AeB)YK1l12h7AdKR~pI?$xM#XBYFmVx>@Rrs-tjG-8 zm_FUbl4cS`>j3mtEwJD#DN=&QN?dgwy?M9WQJ15&L4$)+;6@*sW(@{ec(5BM3Y7}e zJW8`sL9m^{CIJk8qS+#Viq#U!s7mAx1tww$aKlH><8L|oMQL=Z_@=SK`ZSdEA-e4eZAMEgE)=O^*xrTawQ}+R9 zMzAI!ozM$fbuoD{xq}UBroaDed5@~ibYKIU;px}E#%nK(YUk=J+CO=8;*Qbvkw*K5 z_Ap{6kAy=Qh`>s5ktJbUYimjGW^I+Lsuh{SiRPnc{u;2oi$V`BG;U1oAc$Xd9Pzbgs(%oi#SPkO zmc6O=09ZA`VjdRJ9I2-~4>SUHZ_>JF9*uOe_~Jn@Z5<~)ogo)8TVVpUXL^g%AV#I+ zvs4xTsrLZCV&JOY>&xPd;6Q)c$H)(0jhbsphvfCv@$t3f7Q{G%f=VC0pdx79>z9Zr z#gxP->8RK5a%SnE_Sr{%9BR-H$=1i#2`w$7n&S(}MW4`bqyCZuRm<%Or!Bi>w5X9( zi0eCF1=?4J1}UcXav*6-RF`xd=ip}MeAD{?%=rPGxU7DALaHOoRB@D7?=p{9_TXN1 z`dyYWi8yup)~qGk==Rf-@Y2g-*5x(P)2q5n8RzazSTPG{?8$=Go=G+B>PNcg)Zdrv zdCTjFB=4{k$>vjsQDEc+-Z*s?)w{l@YZ)LD{M@xqn|+f&oquHPJ(pVgcuYw6m?z6w z>lBf`75ux#kelzzv6MW%iqJWn&7 z>SUfQ>6#zPFUHKyy)Ao!6a2b)!xIO!}% zR+G4HIYZd9`mW0kk>>2&%WW2YBq}XT1)G(G#rZtrX9UNo9K7DjA@G(%Utbdw1ff5| zS{2CG)4$zELe+4=QG)}r7H>H<@HTLz(@by31*L#4y2gykcrhRP@blOoJvk3FN2W zm<=31)y>}j2Bu; zN3>N-bfav;lA$2^FN8ST*~ZrIyBc4sBfsKvCf6bD7)%%+jW?$-9c$wqw%<6ph=CG2 z?VvGW+qZMLns~s#WXfYZ5U>HJzp_@Gwe14q$Np9M1=oZr+f@&O3sMm$K}^i)5r>r>a%n~+^oU4aox|nlud&oT=Kte z3-)`-&cjSh`e0Rsr0Vqtu4i`TH|r*)YrrZAP^4mG0_#*a9)lP@1I$y(=y9B}G;~S5 z@_e_ld448!(X>yDAE4Tdvq=$%CUzNB(%}$Md(}~-7C*D14QKn*e2h0YPdTF1&Hs&K zWPR;KDwmwZ7uiSgkh`Xd9luDRK53hqCdPFkE^aU7BbOPozg^t?*)FhiM1<(59x>4^ zhQjqy$()_WPMn?fE3mX^<|Xtbj^BASJ#`<0y&5aW;*Js2*A`^DE_LV&E07?%uv*gv zN&E20sxr9AY2TQvI<5uk=j!{mB1?basnKU5^-UT5yb%<@02!I>4!thZSzzwpZ$mJrX@Z zXr!w60k)|%5F$MN<8UMTm|f(Ml7B3cVO!<(c^zkz)caO$SkJg6y*R6IHt=KGfC7=xA8n`gn(+qfrdTJ}v zsGE%+eVw0rtbpUMgwqdjjd$Zv;`f6ZWVa-ZMJFnxzg-}LHbwnljzs0q)!$2X%*J-< zxVa_I=lfLPzV9w)F>0_$r0h+$)UM@rEe-OoVS9f%h#z?4*}cvP${_+RDhid>aeVsm zg0pdP4;47sz+^x}{=mSdNYn4E$@MBR!Xwz*m?7&AJpq_J5&Tk>Z58|nz26Gz>uYV= ze)Um(e4d_YnVm=z_n`Q%)Tu0`ck-i`ye~iLhPFXwTKF**9*---q!Nb5vids9o});5 z?wcgO@2VJW&mQ$&Z>Hqi!}*_Y_JdD>`}_8``)$2;*|z7Mx!2o$!uCPnxoIZxmE?8e z?gmI9eBGQ|^?7;R+SPk`*>9k@;sm7w*tn2+u zWJ?PL>u$-UFu)V)C$ypkk9N^%m>Cy|0om*I_A9$Jovc}@3>c8xUUhGGDZQV$R_UMy z?+us~M$NM(Kz7Lr<3(hXY`k-&rfS{ReG9jWVH_`tLsrE4O}W7fH107=lk zAVEV*VWo&{4g<~20;WEY%trFhVqUMBaOXPdi&@slIy4Wu&1K@yI?sKceOXfD4HdBL z-CnJ>4#a#+7nba|*b43(kA{m+jfeT1hXtMUgHcf?Kymm7<&Fv3^%ot+@fbff_}Z_T z2$0qR?`w^+=UK-6{31GsQ~iOgUHv^WEDwaB75}VT{XG(_X}ro=JX z6e4@EL401|ux_O5`FUm6q>$lPl4!La6L_>KP-*EJDD&+V_oQDzW$kUJoZK5JYmO`4 z!xaagE^FQ}0j7@yDaNFa2T9JPpA0!7CQEKgA9RDd=X9n%Y{W!s2y`$*l^S+%Ls=Pi zutRH(%#EoqSYp!r@`mT^@il_y?DchoZ|w24gm3Ki^@Mlp@nsEfExY2A;Qwrbul&_+HqdR8aZAnT;ZygCm_oEG?hB?0UM~Rw@5{uDHc8;|ajgC2xE1#r>uYy<*>>WLe7(Xsz4Abj3N&{e8f$2{Vk? z=d)oHe|HConsN7CUS%T|Nyh6zswJuAAy{p*?DvuD&u58PspF^Ympf*SMR>ts%)e%NPCT&OFCOP{cIJSJnhz6Xl}T|sbxcT zFQCJoY!q;l<|%~urKPuGQn6?S4>bu^m*sH!oKdeX09e102_3au+AkKfuKjoqb zcz-D%+4PubF>{Y%ZAK^@HWfIpk$QUa`>yxY!$5sLlt{|&c6j62Dxz6o1AM9@m~(&b zsh~bT1QMs6k&|0&unk$Ey^-yqEgnbYpYl=Kz4bR-1w-Ia8`TaYs7!gR7BUVJTRv?1LNGs*~ll}5RveBT|lRJ2%*&Zw@zEhnlD?bFWnUwyJOu9{3{80 zbcLeoAquvtOW8eqQoPwB$q>ZJon=MZEhAg1n=$pn^D9tkqo1Ph?T9Pp8A_b?EQCf6 zR}*$LZOAJIW3F&ogQgQM5I)B>Rfp0#L8tkZo(>q-(edg3jQlbXsN2JE2zAVX4F(9- zDyL0#rj*hScH*hRad7*ODKaniB{1s3MH@Rrf|1LEiJ%D4xd)i z$+~uS>9w=z8R!bKdG`QJyUPi!??T}}yDI_@E`9Z>4*W_9rJQ3;Sd*F!0#YBmP$PkD zYau2zfPp0_TxW$HZLd;fCYtMYZVRLbl(nj0Qq-%EgQL8J;h2Pb4CY zI!K{p^n4GY@`TunaiI{fyoR6da;c8g`b&s;IZ2PRfop06^YHbMS|ot98iu-idSS=* zJ11)!4d%;%0?wqcpuc5U7Ljzvwb2Q}2D8+ME!)G*5soidMK|b;;Fs=Ir^t!<%M7Cd zph|Euryh>^UWAX=w-PJ5PX{aamC|v7{G!e5J(=@Lru1IO_xN1;5Oqm)7Hy% z;N}g-ntIB0<@IIKnKa;ZrKUGny?r9ONObaO0E^ zWNXS7NPC0SeC$WtbtM>aIoI8*qU%)@qx;S3U2`6N(FbHipTYC^>zuhdteZcpW8rod^j#W#?Uj1q0Jo+0_Z77CHKGWfPu2ch9p58CqH;Df>iw*$ ziY`^gEjL``NKCMk?*{k51e5kZh zVMjcwC2JF)2om1Gj6O3V_1f-QzQasesvGGuV>Uy{&7jdj`56K=PbY_dhZ4c zapaol;%NeDjNE$s2Z=8(N%UDLY%q>cNEhP85p3hx znCU`1Shd|BLe66r1nTNp#6%m%s9Y*tU#|(7U|0aT3^o2zIt%N;b0&&vMJ(C zS!Sv)%i6B_nm#ol$?)I$nQx2Fa&)|HRUJS~m8QREkD@te9rVO!+n_lY6hezi-mX)NnoUzILo2)HK4w-T2dkP8azd5& z(i5<9&K2g~S@f_f7cbUnC9l`gwL+;PrZ(rzh4k#);{4u5bwk(C3e&R|*XI3{K>|d$ zT!ZMfcRgI=mc(wZ3gew==2Jck$?Z8kICzZ8{!(d(E=cL0Pq_aGDlSi6uv?_w}w$$kj9NpQz=g;Sz&KF@a8frSSl2< zIk_g*&oPV$exZ3*aWJH>d{)6?qNHKF zvOr$yWlQ99E|o|k9*>$a{&)gt`&_Q5G-(_WLEZ%*-32tKar|avm{ZOIi&XGEh))Ak z@Zj(Fg`38W?_q;lf?ccQXLy_8y4r19!PLgPZt+YGu?dnOp%=AyoU2p5RD#P9rBw5M zpi4n*=6PUn4J>plI`df=k#UMo6Vt9_$je~RbA8wdRN`6-6HiRNL7f8@3at{l#zb#g zK-twEnf?1dkom?m>bz|qZim>`bM@ro7RKb8io3K7w{4tOx1_?V9gNnw?zO%@;EV2j zdCI~UJ!w92MRRkHaBEiKfi3jwwmbXa9}A91*e~(fT{fFZCfe6;9KP#3f6D!ig7(Zl z#0O@5uTSmWZdq%^7~5BXV9*s+(mQmlq>l&iws8o&brhKt5ZMqAa(hHr=8?k+;5523 zv5P>#{A5Ri!Lr^DOu2t+)u1&l&5hK6ujbwu5(&>+WkN73P?T^BgNi48AC6lV1)<9j zD%I8Y&iUKAoOmE=5?;&6_Y|py)p%*^Er3X%kjD8yAVv>OEn5pvY9FSVGHoXsY5C1x zOEj{){S<^&{YcMmGZTbH@hA*`IzY7J!XjBsBd}GBuFXpbzH0FuGINPZl|u~+AQ!lo z@kzcsStzlZ$eW5gOh{f9tl)?$y}vdJIuB(K`AMRFaMgUAu1y(a^UiT?@gQmh!sr`L zQ`ol(kR1nOe_$a{HwxLZjexQ-5_Cv5>dHdM`|Da?vSZg4Gu)nVWQGW*zsk+?9v>m< zP#HNr;}w}f&FLo(>agexb-Pn}^qCgv69Eh$(v?SaYf_B(n+G2g@?iK?oxIwCT~nKn zMP7fVS~!gJ#YM^m8s21dG0Nzmu0UtI{7QmA@u#&FcbW#U?5hnfl{Sx?i8oW%B^5r% zhXn*W913L~2|nHMIlexO-|*e`T`syRgmAv_E#4NpR%*k2xxYLNbbEDgxij+Yx2HK2 zA49SXfy*Rp=TutvuW)-2#kRi>WuEePrzSo z(xJUyR}BG7zHCtlr&M_J>hw=(*z(7;B3aJYI33JKK8K>G;CG!$|Tk&M|Vc+ z8S)g1+@Lvsx^SZXfdjoZM!Q(EvyIXC;DGw7XS)>;e9(J5hcq|ZE|ED_QC#8kU4W7I z;2I9etU+%$T35x7FmG-YoDt8H2>E!lL<;dCU1QTy*69ePheP??!xfinf!VtrnF=*%8_fggj2O%w*VOxmwvgH@Th{{q~h$&wB!*X1elL}48fGkxNHcC)9;eX{eW+^QxO-E$E znF3@Ml8B~J9>^$S7RzZ<9f&EqQtKg6(_`jmAaWao7SRK=qp z8Rqo`U{N@5%?drgliR7T!}&gPipkv1wukvJ$qBR~%qE&@Z`{J|g{5q%VrY!{a0>@tN38^Z3kS$(<5J&hfff{})3XuLoO26NMboGbl(Nzb znx@}7d{`6OLjc#-Y*d~(5mcN+W`vE4@GYWsD2?ut5)|i#psrV%jE?XHmA(BXNv5He z-TUgTN~QU?!pP%4yniUnp{N>Pj-e244XqbXiwSTYx*!txK4-pt1qJz!om3M68geA44(}i^-`Pjq20eg2j%axEs*y5|tRlWu} zH1-5e)8C+*QE$;E7%_K1mi<`j6WDlk`owh!iCFz}Q^y(N)Cx1yF48w+h3MuiH;!#8OdvAF1O4pc6xKKEw=np@B*&-eDvf<4ukQovgmp)e z?+897Xf3NufkkIJ%uJZwlNJ*O^HZQACi2MgmTg`JqG^e?UXSh|p1ERf3=?*g1q-FP zH|oCpVu=e*JogO$=>>jhgnMfWku(%L*O)_7nsd>ob90gI3Nu^r;E7~Rm;+dJytloe zJI>7*K+x~CR;qNM&svvBu2`KO-k_+J8l7&G( z;RznE;+}%1+;;EoY!t%vwRe8-ev#{gOt0bRw|iNFrZ4v3@Lbu({L!TsdFHr&1cO`8x)Y*ou{6=95R) zuN$WtIJUj6t-Tb3P$gEvLsI*$b*iTuUOC$(^o1tsPXZNi7tNYi^e!qZGlM!L0WKBF z>8XC?UUx}PAKaRjaSwnwESM($iHcvSq#ka_<7kdEB8Ca5yw(7o(L z#`jLay|IvTmG=S&Xs%e;m*d~Mau8N!$G<*(Z`t=S>Y{5s=&E1bNw zlr)m@+`)VQoD_Z}hJ0!DSot9VTj%)ZC?vZNjV-H?N_2$MLYK^&ofnwNs)ty*K#jsbDu_%t?rs};S zBBkP#8)~mqtWw*y7adisLSb*3*@e7|E8}iIwG)UF1=fdd=fZA8{wmS!A)Ex~WY{?P z(E_(z?qxNpMJdI-5is7RTy!BTkulgtmDB{VJE7jIM6dq_<8_(2xE5pJhfl1af$HAA z40d;ufMo&2$fG`(Uyr*=@Dpf!^gHyVl;ZEX1<|Y)L`9BuTPgEvr=hwhhP@d7SZ%wI z&vdBHp}b$J$-s3U^7D%SO(S6c_)Rd#iyPY#N%tGon?&v*ycpsL30S{K(igykm2CsI z4%>~R{Jg9DcivJh7MI|Y|2RIGEd=1@>4vxw?Y9{g8> zk}GJ6Mw4R?yBSB9V^7U4w|IeI`SxRZa!cW_?1x&<3F7#PW zVHnpFLFR$>6A_=UBmIpBm=pczi4&OzSP+it#vs2SyO2~e5c9s-%TbMA;&inGrX6&t&Sj;faV*oVyM_`*$6t`Jp?Lb&S zD+l$Ys7ZRE*`H3O@bCE1{Wei^MU2M2RcUegvC*<-0r6Y;))q?H0q;j#3fnJJS+Kd( zXQhcBDKvf@sq{V{iC+m;6<23O$9aLGbEi$UNV z25AirCu-RD&v3&TrOgB4-4>_Un#2sQ=C%5HrmBn;-oHn+Fn1R$!^nBQ1Y)XzO~utz z+{Ne8F<-R8HkIVmySZ|Yex*1=KjPa_-sq3?Az+ldhj84pln{3V0uNRuQAK`ukBmI} zlECAPW&G0n1X*oc?&9t!i9yjlA^Z$w@3b1#h}q=fzIuDMbph#X^_fhsJK^wUE2zOG zCqR8%vH;@c$qi*!#{?GBEa-Eg%rBLm*ZuEa1sIWS)FNf9g6Boj^lRaDxfVkV<*lv? z?I~ccF-eM=NySLbT z;LF2QMSb8%W*{8J>AzJ0m4%?9G)R++x*B`9B?}>bqh82lGYO+K@U&3lO{BbOl&udb z1E}9}cz$!C_+&ZQ=N00LE>j)6NrH4120d~Z;0<9$x&G>u&t!vCU)X($<~iwxNc})% z#XGxbV2@$NQL>rimHcj74L5|xbE$Q!2Uz5Ynk)G6yBI&)iM|byGmO5!FkTw#<>~Cl zf`o|0Vx;pugR)JJo;`H&x<_G;xEM+e8olW_?KDf!FpL@=4CL8mDHODPYC`x@_N{Xt zfcoKgA-AQ?HXiv6ipv}W=Z;l0n;wtMHp>oo~45T!W%It zHqu1b*Do>_iEphPSIJhDghHVU#Kxf>_N4r=V8Nb-Sgmc6-%6R+g?} z9jfi|9~DXIp8jiy@^pT5|$U{G*}T;@8a2_{h08J`;i?zj9|1aeY>!oK}v!buMU{c?&zk$rW-$~Tbp z+b(V2c6lmWJ0dxKAj>@07P%yBzTE}{tPsHZa9%AdMz7>v3BzBLua$A`brW1R#w<8C zW`;-#etSesR0>HJv~Y+(XqYY1YtJks6D^~(kX6J5E&SDtXk=@oA*!&7gSZu^ld|d2 zoc|_yIOBsf7n8KQP%ryNWpRFh4ov)BoOCVq@ftH`JSBx)5|FDB_~wfYh@6)KRjUbeKihm_s}wunjHu zZ*7_*NK;`tCR+`yF2C@93i&_}kG#UMJUu@%SI^2ePseXz>=}t-#wSTHQM-uI#u>ov z^>^rxzjuv0f6|1LoW7kBS4cq;3qYgdtjo{37ZuMve|4$}&~Pdm&{X-I&g&|xx#0;n zp`!Ze5HQ|UWO4J$Y5S{vNU(CL3^pa^Y2nvr_Lm&*TCGv>Ma#_z@kPaG_O>f#_%b}E z=^s+||4l&rLq7ojE+GD^htrjQfLW2Y3nyvdbYO@YPrVXUWZrUxg%c&GkqG-}^8S05 z7+&ALCZd$$cZb1*0HrrgS8p;P-`iKD74#H6|8&w}*Pehh>($E;{xzD9@1o@e?78BN z4M0jA{DK$%(^9~QO4Xtxsxw_mY zxDXe8?oS3G3m1rGGJoP)wM5)xr7bZ2>%y2eT;MITjLo0kN(q(pCgJxH+b0%G(RtCA z!EoT@-S0B`+G~B&msVA!F{;>A01v*qGso@>%io~N9L2{2$HxN$F+G?>?^{6P`kE@I z8$RO7w}6Iq!g@G?RwQV`uFihDg#x=XE<7(7Xua;v2D>vpyr&P)($a^AV5bm5Y5JV7 z@4FSL+~C=W(XoXe@4I(N45Ncso*otGe*n{=57eflJ}NTzEvwXDeZIQY17cPJFZ~tm z&ri3%#@e5rW5ZUqKJTqo0}Hm*T`#c7&sV3fH?`i6BLKy*yuiyn!z;_f{v09j5NziV zT0lF{>Q$)4AYPwKBagA!LGVC<8TYJ{YuIp>woOi%SME)RPo(j(k5n8XSbI$IJF7?ur^9~s?L2RO^ciJzEr+d9y z!cByVxd*crA#~wm?_s;u+FnV8%*t0Mh!J z5$Ewgu>KZMvA(9oc}IZg^DSVC73GBhhES}FL`srGNs>fUlEhGw(;`5QeqAZ{Jo)fFZa(;k*WNFaZmYv%M+AA5DWxRtgo4Ky8Q{d0L=9@6HYgDMBU&3j`cNbPB%=%f4Suj4Us=M zfMI>jl3>ZIr7a1@`543J;VKY`Aza_gGBQyY#aMmnyq|;gJP*8<0S@*kHutg@umn?u@lNW5whBgHdOw z-5E1p3oLX+cV~*-89QDJ9Q0{-XRzHF6P_0=bVhe)qTLxAo);YSYIkR(T_r0>j&5h| zGfuCan+T=(Td*ko6)a(B-DBd@#8bOxm&mOWIaoezx=cPfX6`B8Zz#F??5Q9DOIH(% zrN@N_;CUEf6#uS#-VQnbS;eyp*+i`=EuRK)vn9cXB|l^pHv=vr77m2+t%rQ@PO$6l~t6hGoz|%6xlH-K8>4F zov+DL0&H)mGttmhO51{^aqb^!oOJ{4pZ&LkZd4xwmnynWF{gE7bGn`(gu@r${~pf$ zzh(W2+=n|=3+nQ>{tK3xbpP*e#-~$~Zl1W+aXzYB${QM$?)}?S1K*yy0Yv-wQAa6l zMf-HV?T??@B4H5>|3E5D9Tk7ty5UQ?rCy!h03QYS49Wam)vw$79HG%oVGs^iu~w^! zlW#^&exan`FLt40H=DN;ESB3lt|6{#T+FxrurOW+<*tf|=k~6ND8*l~BVlkZ0%U2c zJf1*k1&ijAd*Pg2So5VA;1p|9VB7t>SJWFYIh3SRc$p(~aArA!@5$BuuT@*wLD=P}dRI)vfUd*&hz> zG$I6YwF>T7G{%VGZ6|o8b5W!Zap@y7_y+7P%WXEhYfD-!z$j5?3Bv-{jx(Yp1pZxA zw-_G#P9;pRESJ?+LyekUw&>1rL&X5W?Jo}Vg9bjTGWt(d`97WbDdhKIhMFBqTmXkh!e$6z;kBk;jxy^N&iTv<);^~mbNgaPI0ym`K_&=| z%^_~}ecd??KY+)+UTKa1CA^sQy(pd%q&ZCr)4lcPLdZ4MKZ`R0RJX6}pM~yP*p)3> z(6+v!(@yIrRJXS^wIv0Jn}?e63{Ld#o7)zQ(%#&bb<;fGa$UeIx3d6sC?8PKl=3X|c?V;~y&xBo?#9#ay=x7Xg^1!C zNff5zvcICSaTMi3wvPCNtYYy!umB$FNfypkC0p(}zw{Riv4l@9C7t@8?JC}uv%=1^ z&vH`FleOcG?StRhc<^UQL$zuGM@i1nr6TPDXGyfPZa%2*;d3s5=+Thy(v_)62@lCj zaq{vl1NWM2vJbRUN636mTfe0(l^``kw%Fu%bS?XZ(u#x^HvV%o7~A6i35Wn)L5=RS zv9h))+5c!CIGI-YpE-P4TOK9Jq zG>SVHwD=S_Z}beNoH!|TqAd`0Pp(z~*Zz}mfLLkDpWdfBYqQc$phJO#y8Q1``hQgg z;6KX(+Mkq`L;U<%Hz!~^9(4G2B=V;mTtUj*mso9{By#|3?z z-#1H4McW7j{ZC|KZ9xQpxafm#i&y})L6jF8iL?i!Slf&~qe$DFKI4V=v_7YbY>^%{ zzTds_`Qmmpv$6fd7IiQ>bL90qmz~Nwx;TPE*uqtXw=h9}3lj^Zezk#C#LGv&;*u-O zYsds?r)++;i7c<|{~izpg@KY}d>U%nv-;xzT!jUrS@+;X=%0mS7z`jH|MifA&I@l(wkCI%083Rg$is@8OWRO2<8{bU%}6 z7V@z(WE#?35k!=I^eSb^M4>|?JcK8%x=$0Fp?L`9hTH`m$-+L|ZD%8HKg%crBp@8+ z>2KM8y6?g!NiuJ<9ZWVX)=Ozbtr`7dj>;7!fAw0cqj_reTHbc^y0Xs9q}3Vy@!?ZT zMzbU&HmtCh2sSL0MP&pihC}UuBH_Y(TWTNJmjlB~3Y3sH;@cR?wrp-F2CT<;X?CwG zJ$fPpvqTsm6xjSOS)XR}WCQTZv(UP3VViz;$Sw&zbgYX$2HqL*1*pE?!mtAn$mq5R zBg&(IQp=FL%10gH8H$I{=Afk%`6ayep?1gHbo_TC7{SbXmmAe#vSPlks_p04s32YqT2$~#m0ee0e<9VUBHW7d&BB4HN6_H;DWTok*Nsg@Cyo> z>A#KE>Ek`#N-CRAfNEg20xY}hnXI(B>shQkyImNq#JgRXtxUUJCVCxa@>AHC>-Mu` zv+=Lhrd+$(S*`jGF^~7|!eBowOr$El7vV|P!eUp4_BvL{xULJZ5t2W4T7{~9zH=wc zA3MQP*l_>Ndrmn;2~46!W|Jo;TTIEM?9dyfyIl->Y)sV0pC2t$0@m=0vz5p2iz}7* z@QV|bY4D4`D|MWzwCncsWnHa3%wj{tTN#ie>k$xA&L2d1AHL*3gt)Pqs(>R$?qCF2 zo6l?GS3+6mU-q1$$ou5Z9lF0co_CP-fcn3|%(2O2CEZ=mZ1tb!0{?@(#01x{qPz?L zu=jk=G#vKR#$WdG{=?p<^n!=d)yp3gqXOc*)$C_OW3SgE46hH?4ZKbBPmVW={bMJ+ z)b{ZOdTqSr4wqL$o7C!ydiEx1*2L{IZ8z(#wL+&Ce2csOQYG4e(L{bUdw89Bwyd&s zviTG*2bpA2XrO@>PJO(A7H)mG!6Ht5n!zG&eSiTEPJOHa4{m)ZeL@NQa_xS(ERuB$ zhIp%)xqYp**?ia>16_pAY$4d>hS_K##GiG>@9P&jC3WcHHK zEmlM=M*m!^jw%~hXp24rl%o8xQL@1x;yUwOStILYvniF7uM4bWvgyPKi<6cAN6%JH z#;N~je9DL4X5gTIVzc;cq2f0^<5$d#A*QR1e}-mm_r?NKC*%H^V|HTi{gFpNLP5jn$(DWD%`e(Evt{m79VzvgxH_q)G_*O{ZXOuv;5wpGR zBJa)d58Y_@&72)6;?z@xK!MD^gWg7biHpE1YOy%z=3+h19%OAf?-FEfJC7K2Y&I_! zbZj+G->gx-;53#0lbx?t60Jx#i&AMZC}_m(Ia}hnR1y5m=Pbp(luC|p-SwGLM;H5w(yazqVK4}N+@`{RVCyS67tB|kd9ZvkMP$S-0asWnee@e8#f0}K zyA^JCJ)0FzcRhy{bhitu6-BoTyA`Gmt-5uy`IJry!2&5r#a0!q$XdAjYm1L!?jPP| zON?NvzFFV&hrWOE;#(}dh2CGd(~55J??Y2wY!@C-{X68qKQT}89QXMD6La*UO-JVr z_1vAe^oaJo0D=E=G{fs>`9CbD`uEHT#8wO}*-t3v)|Z8u&i(J}-y7WM|5tEF3e-$J zzFIAE!TK_yeOo7Shs3@0*5iTe)IE))g2w`OYz0uh8Rriwo4Ujamm!d9Q=E>&uqijIxB1rWD+pQ%j?wcP?h)u-5puOL zqSUof?}sRqmRZU~s}PHAL8eTSUEr-JSHBoFO+u|lAzK;TW$wyVT8h`mP;!4-CHLhD z`zyf|eOu`#{f5cxYwgIM+Wr&ZN}}Iws4;HglZyQ_}gO&ieFcD*-)*wclm7$L$SYk1@@k#qmfC_oR3|4GBo( zJ|go+FA@l|oTC%F=zPa#IcFoj(f+Q(Vh;-0E$>NBx`RS~Ebnn-Ij18Ax+EPQO&`8) zuo3Gvqc9BjVDqnAt8e9DbM;HSow~DJ@QHCRk~5KDV(lNL(6Bgsj~?yAPKxGuyG^aa zb`OmnolW`?O~{DSl9M-FM`_emjPA&*Jcd2TkKsUA1>yEfx)UWQqY}bx=E0 zK|=U}nLHE7O`fNs$&@8|mPSLTMoSnE;pTile4ku)L()rd(Dqy~;6i|@g`~8siaUCJ z#_{J13t+#e_`hPwfPrDv$iD&>buozT*@X%el55 zvIIGYL6pKB&bKMQdYbxzD^Y-J4}IPsR)yZ37Te&V?3D;LaC97%1qoMkkdIcEdEvBuD zeXsqykU5g|iH`8tLVb|3h+;eGm^;FDS5fl^LRWFBe-?WRYeEC{%5L>If&^8K1mvql z$_cd)4|(ia3^TWHMUUy{^ZKUAbtd~h2Kh}TRg0W5jcpg<FL?a0Ugub}U2O zu1PNGTjr&IJO5s`U+Zb@KSUP2T5A*fgj;49p#n}F) z+T7xo?k3rywxMitIu;m?0D+Ozbkl3s&8)`@_FUxTO2bgjR2S%zx~YzyD5t%V+90^T z0M7bDa8u1OPtOe+X@1~NBNwOGtUKE!F(gY?vZ*3;vS3m}JpQS$x_wf_HtRv~TzZRq z!PLVp=8F*H`W^k5WrdGg@G2=3>Q2XRH$6e8pDdY_OED!|PBbN0#b{fj#WTny@RS`B z1InfKmGL=7WhWLXAi85aYAeled&O z8khK-Q7Q<~MsO6op^kIw@XNMbOi*DI#9gI0$nTf$_PEtP-oatW+)mmG>XUw4y?AD) znj)?ROg)NwDAqcMb0D7Tg^I1b26r zjRbdhcPF^JySoK>E%#lnGA^2pc zgKRK@5#XSY^a`HjAmI{yexT3m{RC|4k?T=MoDad%v9Y&Ze6vYNm&ZWDwvt$uUk7&( zv$h~$4{{=V|7k1Y7%9zx};{;QoTSG z3HiPxqF?L;yxFRWETSvs(x{=1aW)|vFX@jAM+t|XhZAZsgY=~IQx%1K9)L=&*gAod zsd>sy0v+CP&C~DC*!L`z&GECt5zcDz*EkDXzt42f^UdfczxXddQr1jRRMd6!cubt4 zf{XToi~L>J?#wAs4rLT(v9oJOf!iPNbkWdA6j+IT*q;w`p};~(d9+lH z(waKBA1#BYYc8x3U`x{m0|N}9!9kBwjk!|O=V>sQ1bFQE`4T+lOzpbaiJ}7U$gQp> z{EA+06)>YMn!?M6gbO*oAkkGfylxIe&4kPqdyr7<;CX@hPqJ!FKd#>SP0`LT=>BXu zu~_`&x*`gtt99f29>Ai|bQ<(?mC)3!dBck}7UUDP_a=aoGLsV^@sZDpK!Dl;1dO%g z`PMp<@16DSW~C6n{dqU@{k(^610cog^>E9_`}$J)ve1y8@iK9bKl3(#!1uPH4S3$? zD|mm|#n1F|7XZWpiK8ORweRX!X@Ixqj{P6so-2RTw581fR~q=JQnQoNIs8y z{S37Pz&@!`>GP%E_ebSvAW@rHyyJO~5Abl7ijT@dU2Ls1Jt&LyERM`)dPFw%lGl`3 zdl8%9H9ah={w$8oXL?L_`jXd{>2MJn;Wa%Z%lRyh&Ubi3w)T?Ol6i9xo8hHkR0r~E zQPX)n{t8t@Z_+YqSsV^RY zUz+#`M*vgnO+5)#&5u3!F&x8Grk^-{j%=%+ zA*@@4H%0leOv_B0mAB*|<@nu9LC%!2WANxh3oXl>(tWPV(5P(6vp5W&=^~Cez_Ew!&+AOt$%19D(ofkjzkxK)NoCnI==d04pT6 zVA(&`NZrTLdNbMBCols%!wt>lL~XOl*atEbJi`Oc^oPm!BupxkE0)SA6L~cSMLu5O40Nicz9EP!litj3O?BK;A=% z6H78(3N~P1+Myd@zC&)2wvs6SP4T5>4)Qjua5@h3Hak}@OAQgLF<}q3Rws)Dv>d|( z*LS)=<3buy;=9QRe+vPa-?k^>$3RD&EMm}fjDt~rbckjM!i!oq2tYH_B=IMo5idr$ z1o_#h91#>l0}B{t|88UC;rX~6->-Leu#`)=z6y6mSqVIp$DYB8MLD*pvVa8@?KX8Q;}C zUFa)~9~6VOm<65N`%7Peo)5pfzA^+4xjE^qIScMK&r749H=b&Y6xyd1$ zt7`mIqB%wL{Xn#7&73MtR?tSWI!KPuoHHb8EE!QZL+z)DR&HpgrmY_>Dwi{ZY}s*rxyQ~& zZE(K4YaC?Et=8d-R(l%Oe#^0yRLdSoDEOL4!{Se?!3nLYLZjg(@H%Z+wBp-}AHxhZ z?I6`jicUm4h;Ma5G^=)SZq7u}fg0ic%17lN&nVbCwvlM?!z^wjyxnaD#2VF8&O9Tm1XwpM^4-q)MHMVR8AcY$de;)Ph6WK z&t?uQX{1) zN%K56QZQx90V>~EvPo2=XU(W*h)V0_ORLLNjMU1T?;-(jPYV+r9#0pK3md>(G*hVkb_#eQd=`8<#V-Juu)ME6UO&1d zzZ}W}p3VTN9ee4v)0Q{SV=C5BtShHRrJ#b@#i{qRBkoTmuJ>4L1=MZz)9YDlX2aaw zx0+0B*U5>GCoqh%?%@e9TQW82gG9D9@tvcFXGXmDjF}z!doXO*{)vxUxJ=qdqx#5; zsG#L*nLqEm`k!FDL`s)T*jm!txqG|{*Us*ASeyZhMp`@>tBjN5ub5ot#wYDUV6P&S z9Ym)N?&(g2E4ci8)y_;C?#bsJW$-Pgg>y&sE#e(CM}dadeyNXLBQF<*$q1a~P7O0B zPVRnr8-X7#qFq_ZAUIq2wohKet`i4~XAW32PK_$(&c$iIQnfa!X}6ZqX)E}Zi&#&_ zCgK97T_v9H-Ofu>ALmA1o($m{I85&H-_P=1^T>!C+|N@}AIC;s?hGpgNuh@LouC^a z#A{Z51h_jhb+{*QY%p90ratzJyj+qbBVet0RVF&j2sH2^b_CO%u8n4D?M={`9*gJF zMQT7mA7;_{o^DdDjgD!u`fck7_uq8@YGVNNyL>-h0=?dPoE_4aK3(BIK1QxH0eG^M z^!qGM_W8UfUUbV+9{rS)6<^=>H;!0S{G5n*b7|l@X8Kgu>A#P?T$&hh;fb8 zZdk){zFHYi_WBE&_hPB__-5y)DO?C$k@$_MEFX}WcC1(+EWak4sC6oIA1KHOxjX^@ zLl4zwgvpnNZ_~$>e1pGW=$?1EB1{>X9KtI-d}Cg_% zfD?WeU;I{wE&;)Cbggp&_0W@b#5ZgWx!=>}1)J;B)6+;65ApPecWtyJ> zddyFj`_ya>McDpa8c`P{`}MVIr&vzQ3OBDLaez&lM0~SgV#O52^5h!HP1{V#mn+nh zp3(b&L~QYt1nU&Y#`9athn~KbYG{bl9Vm#`do(qbNZ8}g`3h}tq)-OT5L83}*i|?^ z3g&v;0N0D;{MkkJfNDc=R=trJ%OBNw*xCH;;#t+T29C}NkY+Z|(W6Kw=GnEo#Of8x z5}REV{_Ivl${L;FJ7nk`^CHQrT1~P)>o1C!Z73(#!n;vuEvcYap-nt;iXW^n{{_we z#=OCyu2KF0y#Y)q+cg5Je}k0&CQ|(eB3MO^snx+*1JqC1y_Uu2d%1e7+yKNKZ%9yw zw{ktS2>Cxg^bp^d_hDmWZ1a>#quvi2al1~;m~JxDZ(H?}WDve}Zg>st+uq4mU9EXN zVLmCZdG4H@InH38;{$Zx3=^+Y04jhuE&*ryU9%A`j_$PtH`&6ILcP8lnaMa@)td!f z4RZJDjeEIaURvH_C-ZGcsG_XYI%hCPK`8N$y*otF_Mn%Zf(13DOImql9B=CTh<1yv zi+GE=%u)A7T^FDo+hF<$D7HS+vm8!7=cWPB*zAD>HjYjx1sC3aIR>_C%RvDDeF4%G ziED4=YBn{r09{^_AP?2Z)&`lF_he>u8Yq)|_i7O$x^{zLiNGP>{F7vTfu|~n_Kb`L zq)>G|)1YrNnm*}9xifY9M1CK{%q-Usm!2ek(-ANwSbLSN>em$O;s3)6`zo(`u6xTs z{n2nANDtv-Q-zWRbey^blEWdL^3{zalYK#=Wf9}2N0p|I2J!t zTlOe%2T$>&a3{l+lQ1K~Hk9Z*ia&2gahkJJ$Cfp0ZoR2Q8$EUd8hl!es4b$KKbbpU zn*%{}92PJxkn`ggVfYt>)ticTDbaxHaidno*EeEzTJE&ZfSjtiNK`N{nC9K!g5K=* zR)ys!qnOB?ke`l)Q)VHJoW*aDp6Zv#NRIbPXBnK%g=_WHB)ctGF}!Yvm^(bNEylZR zj1UeVMZTJ6^sL!8xyx*{dAFe3-TSt?o1W3aQH(COt=SBmLtBHf99BTp z`i^@TJC~ce0DIIU%aIm`*%qg;sLlye5s;JvKu?4v;liUze@L$WFFHgii}HIvnXq`2 z)N7C#H<^DpyLmxnFxR)1n&9#wg*sAQj^uvwXikdJGeo`P>NFOOx1aH9b9#43Xd5WI=v~SOBc1=Fam2l4`bGUB8`W>u!h5N|`M< zMi>9gun;M1t-Q~&@#|(r6r*~i^H)Krvw^Z@ZCKciw>~8I%9LFFCxomrit=@)J>|TW zZxX2Je3Ai8cI$&rJ$?2xBnv}DfIvh$M%T@x29D$nTrm;=cwnlO64nDY_c%tL2S9N# z@DWo)LAieGC|O}PEN2hpAB?JH(PEY1pBV&`l9x=#bN}h+a^5RElaQ(30 z>iCw@EtYR7%xm{w8-0sLOPT^bNFd;OutMGHcuse*lPJlQt{c{?T#n%+k405viGg6{ zddA3dz)gG|ipHUSQTh%h;3kJD%sJ1r$WUm_W&9@x!Ctdni`%e z#GaP81{&DAV=7n3Ab{lzO$v3afTTreggsR=j5g{A!^?O?{|;N?{Bl(-BSZgFpSn`1 z&&HyF-eeTA+*rNZ{&iXst(NXj8Ya_*zOgR7fz)%lsHlgHsyX~m+?;J!0QAxC3;Zq{ zrJao4R`oWx+G^)Fw@wN_+Pe%RdC;;#dp`tewS3TzB1V!MR0Nd!Grhrb?C-(qUC1$A zXco;=sc>5qwETKq_dkd8o3w33HZFnD&JjR~v08b>zQI3wkQt7lnL7CS)T6B^5zW9u zQ=yi+K~$2_&0&pI#+mC5#wL4k#8F0geT)Oc&UIdWbZq%q9UK}Z0Y3Jivy!bk_tlwUkBGuF_kbQx~GkrWA<`|NR0gu z5xg(fd803Ht{V&{#j9e&<8Nh!`woTOiaToki}Tw?^2jit(enfk2I1DdXy`TQUht00 zQb691`V@~EZ|pLf(ytmOY})Xf)Lgae5s+AuWl{i-(irh zKYS`L7CPkjB1aUF4G}|3+N=QsEh2e&gA5s>`xpY%ap$YojUTMgeOw=xlRB`v+#A9# zuFD{=@Ic|1%+tBujTvG!Z>3$4`xWfz>Lu^IAHASPF_r(JpZzmI|8o*+3Ty=sw5191Yv))0s z-boCIgj-TEQH~I=)e$O!B(Jr1xBBL@)%v1^Kk7iR|CGAjo9T6+x_8{wASz3wNIoRGq%`J^>d*!m4VjA z)xlg+haFQ(6=hOZ?qnA&@+^0U-)y&Qb?ImGx4jzW6U95(?5B~5IB=Lh(5yRab6>jt zB0Mt7jmu0S&F+|{S-&OaWdCt4{l(_`*)3KT;zC3---oRWPDfz)nl$7iz}ojSAv0<^ zf$VR-`+p#{B*wXOLwk#0_J2*W68+3`WMUK=kpJqL{KFDN+U(*!Rqcd;z4l%J{eX*j z`IQZWp!tD$tBN5|x=KmQ035894d)YB4hhKCfbc~L!iKk^ECp4*#?6tINWB?ATU+d^ zfZ`icTGWy{4G{v6$(D>}C^qS<;=8TpP~YZlY@352N5|oHPrJ>%2y3;XU|JE|)i9e& zu*-$%_+#F)$!Ft0p?<5h>c422e^r>yj3p}9{v#3tRr!CCJL5me{lA$g03a1*xi>cF zOMQ)(&?P#t(hwufc{4h3S{+niJal9S#;>w?tVne#VLSj=x1stlw^{g%YyB_A-8fnX z4b0ER|H%)?MVsks@eyh|!b2n59&YBwJgbH{d99lLA-)`+A!sI*#?r)aRl*gRhUfp{ zj{en2fU{~d>DF0DwiD?#fhGVy~oQ(WBoV!902gr53jtJSosXXvq{$WDt|Q>8q`{ zmQc^iJVDUK%0T+GF`*UN(0iC_a}45fagQ`Tc|pQz=emV(aL9{?di$GvsB89MAJDt) zR-ram$gFqiV0-_ySl@+C&4h z!CxTv6CO=IL@)3<8jXKyZ2Eq5*5RhS;osch3g%^WrX|VE{c)q4k0%EgZtsiNkR=n1 z$6j)DWi)!l7gL6j0p1Xrl*O}N?4~A{mXTdhnnkC}Iu5gM>J1J4ozDy=VE#wx^ih#f zjo_CuMYG>UKX1K?_|e=(t33i@!ma~_Sxc1IHn~WNB^+_7@=(4lPJs3@N*manTiQ9BGBpksQ%(C;7y7SPJ*!W};{wid59w_lxvk36=f34a7iws1+r^}w6WTBJ;3*|6$>P9*p?y(U*GUwSLIXhY zzKG=4>XyT(X^%m66Qyi#Suvp~`V}`*HBY>$ z+*A==R%34p)0*x5 z$6&kwF%7+9g)b@rL5^7FBQm2@hu47aqaT#BQ)m*~ZP**8S^cO@OZ;uPRVo(*Mq{^% zW4BD-&$qqWBv195KKis2OnEzBRKvTtfGABPV~g}aHO<}Rq!~V(*dVj)1;M!FVu5a_ zm?d&VJulkkvQZ+6US(`m{m9sCMNax=x(+1;X5*$K2*ZbA%GxFkG>5RE*plSf?VG>#I@e znYwPMuFn&Tte41IvT{?Y3s#^j@R2aX49S{%(aiBBT#F3}ns9)~N(wMCh4{tWMk`9|_&l^Lc-QfG8g0*oBtxWn|fE=0g#RF+V!+H8} z_ON?S5mQ1xOq`w1Rc*=x>DEz02E13yfZ*!XWZT{oXr*92&(CR_u=KePf?zM`jF$jb zs&joakl7sPBuK-9Q@#xO3Fh~`)|nlRw>U5mj}Ccg`c<($E^lyvgn}Z3hGS*h>^fmu zv#3#Rf#~8oA&z0!EqKXyLTyC$4DA}C+h^l1KCw?%Tw0P+<6(JXr5b4p&du#06T9Zm zj~(&Yo`t`mv43+Ms6x~gXJe0|(Ew=i$LlbzPPwD2ze&-uAu+DO3TkiGjxLFWf#K{H zqq@lO+r2c`NJoiwR|&3AhT+JKE_lOOWVTDln(8AOx#+4O6=cEadtC`mRv!m=tHGCV zeqF7<4xSwHG{+S%A|O1NbP(%VSDY zm>J1GqHh?9-_up=m1?CHUK#Z)=|S|QajeqVQoR$6G#y#-RqTFr2`;}!cTLTCNPxZ7 zZ=(5imcL44tvfs6nBV2OPn&z^8b``?i6 z4*{~e#PGkDMLmu1U%zACBA-+cY^|K)5j;(24#z1rdWfc08=1eLI*qI_m>fUXX|HcE znuIXxYj&J_!ftAI^@!4j!#vc7ctTm3Q=zzsg6Oi502jnj=!WfONl^`R9 z2I>h;DQMa01ti9Wram0J66i!bxgQCU*3H){Q9ngzO@DV*wqZH<1`e^M+xt^Wh-@SI zf7eg{5K#+@TOWnFf#H8ap11STY}Lov8I03X`dk@&5z$3->$5`byEpAEX&^rk>+@`hHngjf z*lH#n_S`mW7t9?t(`U{+*=r`jr*2von1gqdwx+_&=pv`=9UNZ7^QDm}n9^@|BcL5{ zX`(~ia!tjRyu$-5>QlQNmm0n8sT}iE`S@SH4dBoaR26|HKm=K-PsTAPZ6@E=#mgGZ z;3V`vi+z~KX!J>^2;>xjW@#UQO{uBK*rnAe zq)w?iQ;lPh$tQEjcQ}mbid0R>dlWbxbLQj_oP8gbo#AxYSHNRqmS$p3wA&&^ai>`y z`+O(|RZpxy7JizjN`qP;AfebV+&Qrmj=GC?(N%dN#T;Kbq;j5}^;<{jZ@xFCgyowL z#XHh+Gv2k_Zu0qH1?TX*j3P@7c`UsH8i3zitQ90()`D(*00psg>N?6SaVe-LEG8Fg zOoBqxvpcSY#MWGDJ9Y`hKi)1Pp?uapTqBop*MY_=yt;mup7@lrq2TF)G0T_w^OLE1 z!`aL5el6+RWBik@zXlbn*+BtE6%ogQlS$#Bh;iW|no1sr_Q#k;r1g8zjWKC7V}MOM z4_@VqZM%xinMXOK{@c&?ne@u8GOL{86cW)roy)LlmcpVxlxsuzM=5wg$ubJ6KXh>5 z5UgTChJgO|Z|wig_zwtygUv)CvFD>D1qIG+qvS2)mI_lK1xn??D?56OHW)xzj~{uA zb>Mi(0AD*!^agRmVG155g-ZL>0$Dc6C`e^QXVwFI^|~{Q$!!DHgI{#6ABgg9CO zg)8JaD*m3aOiTJ*8G))=cHF>R3HYO%_|G~6A;e7~j$L-|v!Nh7u%21$)*5+gl-BEB zO14X)IU5cqMV#!~2vrzv-ilK#J}A-Gxu{V**O2IH_}H)75HFBmKU0xVO_RoNB+8gDkO~zNSY2h!degln~7K(fD!4Fz?)4 zBMzINU5wQ*DCC%=R&TfK5-qpq*x3zYYdnaPsV(1O@i!SCX#Mf1kX(WPhxL`7e-A>C zHUZ+d?TggglH-uKT`J7JDhspj(re64IfqEO$Cp!++}TxV0Up*#RH=bn_|U$w3Fl~~ zpB#pvp?PJesC&(WTPh2}M~hg+OK>r!$<4geEovTl$Vr0FgG5ue(OxN5h82;u91Eg* zR#Ryu?#B3PNzSU@=bG&I`|>CQ+T1elE^?1)91EYJ%6Tmgl1$3_#S;du^zB9OFT6NA zSNBw`nnXPG0J=eqsk0n?Y-5eP(OHWZ#|yKS8~>LMr;8Vqm(bJKP~i^(7?Q5AgfSTJE2*T*G=U~;bm}FNRb6u!mt#wUzBk+ zZP+$eAo>e{;z(D%5;RWhVTKIxl(u3iXhsQ6>yCU+r1^0ng#Lji>F{yzQ`F0|xK3Y? z8cjU}qQ+2VU&?F^qkq^Ax~>S*%bb^*#fM|I2K7TY?3GTWY_mUmZ5g!IUseJjx|3kvQp~_`L5g4Uj2>MkfCH;VNhD%tZ zxblB$J?UMpOv(w73JQ&X1T%gMiHhQkp}eR zz!{_qe2dKZcJI(3In4*MeIe7S%4>uEd)gW<+ydb@n#i_$-LI?`r3Bz>6}ADy zvGYu(`su7udf4_ZL0)=iwF|AgseKohOz^3;i>)91E^mEn>UYY@*)7Hln}HPP-0S0=*y{*)lsld>56HZvGP?J7Wqja=%=`NiOzX>>IYPlG z;%y`q55G#upaeCGK1l-fPb5j6Z^4GgbjW@FC9BVsowVbU4Ne5@VbrjSuAN{5V zBYN(>7yKU6VsOtm&Tr1CD&b#4`aPmE1@LQ|Rh1CJlWM}DaItan4$=)M)5uvbkr3^I z*zavoSBX$0#*rr=0E4x-8d0YY)po;6rAJ^Fn<0nbZid!$XVcdpTQslCj zU1xZAo5k3kUU{?Z=4oFQ+K8BKkuPkdO;AJ9;t?nv>=I}9F<0oKLrcV5AhvO7Z6&lI znbv!} z=d7QF0RBz9w%(9$%g~aXl{7{+u2>!1q1qWehTk03de61`&$asKD!2RDE=N`#b~RtF zc)cDGJ3PYPs}x_(>|d@(ydJS8p3yoyBDKAG>G-x2`vw}NQ5P-(SQbQC76w=r$XFKS zslK&i{S2xMdT+;S3bGE`i1fY8DVtr5jOp441f+BwlVi13q!z3!xZ`RRU}vu^Jf~S% zS!ti!PA`S596HHX(jOdN_N-a@7iZwn z%5EnbUyfWq>Q z0PY`lMPII%ywu#DOcdkQgkGMC_MRH|p7QqG!c`0~X|&q0>IO9m9$s18q8lVGpUqK- zHE6c(7feK0ReR4Dq-RbK+ajdh-1wv$xSjJy_8qY8RhyNXzVdjsM{gb9+?b7sH0WF6 z%$nZ85IR;ZpB0KCkHb%BBVn_dlMS8r9Z1X{9NjOcQ~uh=j8 z^hDq|ZB_l{9J>E{cSLYZ0y}vGcJyk}4(S&l9}x%ho=faDRDb&<`UzchV2Rir#MUE? zry2oKbZ}_~$qqMX;XPFFW~LVDd*Fe6b9f89d_3I_;x+LIU=uMmf;!Z{0ka;f`~7W6 z)|Qvk(J7<=)H+qyha`PkI%0*=QpftXF9;7=+R*?^?zIp1e~;+@Ka0o(0)NP3>$r0F zMKtm~UGmRvhAjYvI2S&ejwA+KFBH}-`rLCF<{5y(=Cq*lo7|Fe<%p5~x>KjZ7W|%P z0G9>aPlcTbmQ@tF67DBtiDc2A3j6Y9C~hcJ@pyd_#i9%vG^9F#H1M$|=3QTwr8mAL z(6p`kX2ip_NX6aq&Otm?>cpOT1-?kt*}9o&3)Rh-vrW^fUsK80v{*aO7F&(GuLfc%Yj2SnaF}3UF7rPa=MS{cDMvWcmVocT^p3z!Q1A zl}1kk;E3@OMh&}@3w`NI^{ys?81~DudKHeYH?>Cd_9ssToNNhL_U;H|0ikoRFdW8b zBGHFoIK7}EX7>s_(}bqf)K_Dhl}3 zg&eua(d>)MtMvof*i2Vv{V86o@NeV2p=SmtXGM&rdSn*N@Hnk>L*10JDG$*ZRpXu& zO3iELU!+&j<;~XiE}D!)PR1uLsvLz+T{mEgHf`q3P!Q_&PajIF_S3)AEW16{H38&u z%1s5AkywN4^&Gb*YuDb)8K#mUoYL5d&d**QzI;B0*{MVtgko^VGMV05msK-gCXz^b zV8Iz){6n+{@~R7RJUfA+PD&B~$VnC4FbJIgIfQ^H{^GNiK{mYjuhLbqnWx-rY)hTy&4u>^vxABW{Q6G{zFPVWR4lXa))gqqgn!LR(w5XS#$f1`1^?xgumUi6dG3 zY(>@VakYJa5~C)Fg(qB>e({lC_>8=Uz$D-nXZvpX-KqL7ebu6UK10)Z~_Kz#FIaJrSs*LVg4E@$NaSb7y~Po3cuQ( z54+m__U&<9v1-?lgBEv+m|owW$PG9W=-wN|z}sJ{X+PD#i@%RxmvSjC*ydxrOc@}i zz5(~5{_8LZ7%$RM5()>A^{5!^_38atiI?07R^a0YA3IDuiUv_UrWnHNT1_?B6|0;o zsvu0? z|DfG>LsxAht}Alp*d9`C1g5=TN^UN4x|Onr=gUQmfP6maoTzZ(R}lR8Vn1UCkz+X{(aKcvhQjYRjuE8n6bC z3Oy{Ysd@orqB(^bMip^oD?k!lAAtf~o-vj4gM>u@vvLpCskJC6&6|~!n!U05H!@^P zYEH3Kg<0xvRe5lN4}VDRYCc_J0Ac0jlpI!6weB)q4WBL#9o64Iw0*iz&gFc%Y<9$6 zCl&n}Fv8QQ=&cijtVYH?ex3p>k)d=Kt*mDe8dIIHHKYN5g2S|UYk;esFc7nRpgf$z zJby9wJV~NXl!5r36ZlVpqTN?hqTSb&LWgG$+N?^1)tG!MQ_bY(ExI($2PJHigfvFy zxvD`-speAJ50eOd^7~&9IWj)GbR25f8mw^;N8#&TCtxY7kKIUyJH&#sIVwB4cwladVjpAb0fD4zF0y7+B;v6zV$yFqMYV6;R+Aly|YtE;{{>aGmFlxG}g&t6S zbwy=T89F|4uzGsKGfoba@fbI*)ncQ_&G47!+6f_s%Dv}I6xuaI!LK8w6<32PN82+l z@5qp(lyPdI70-NVP=x{7$v|AqUQ=OVB{7>RsO3vQ%5EwWz9j` zLL2;fDz=)0Hkg5w_O~3|->NyIV%+P3*x>^V#8>P_N?QA2MMo^0ks3^2Av67Jl!+ZT zZPbl=;c=u!dU1=jKii3BKj1aB-7mR)4mzJghw8nbG-WvxQv-G08H;j&uyyX0V^Um< zU5zIHZJX6-v#Ck0&emU;%n3I(%TdZU?3NfRHte_59<1N0t=y3eNc8XGkMqi^r`<@uku3>8d$pm|eiBs!x=`R-AJ>pu;3_%>QB)K%Z3ay0+k0B2X$mHLfY>Y zf|-naGq$7o!@9onsOs(DH5lFC4TNoOC&_!@FvUdbi(K1|2JuE<0;Yf_ePTDFDhT7t z#}6OPmCB)kj5T5NiZw}T_G~d-QUPYVZ7;5g!Qjs5;~gqDVO*b{r-$KEFq;g?LSb{q zvZC4BkcX+o;30xD)Diu)IlC13`hP)9xOp+W4=un%@n$um+X6jmADaCnOTW27XaNV> zj!Q)kxNt6nhJ9IU`Ur~dSlpTA*P)_ApVXqPb5V7Mig6aPkd#|w;9bKCk34}9Hsrlm zts8~h)h$^d4<1;d|slEFyc$jzG*U%U^LfrmdG5D5!5U)87gI0#}2({&a7;mTCJU^S=+ zS&)|zrHuIfYo|N4QA7)8tH|S0O0b0FQ?#4+Vr$^4}FPV-l|a zD%DC#59@!eng%wR`YxY=FHBiwYP4C5?*Y!l`&E#EJWa!>d2L@n$oQBpE z)`laH+d<`zzb~;n(4_EWTQTdEM%4#w-U6F%KYzN33~Rq6d0A9be_OLQGK56jAI2jX zkJsd13N+5&EEm#P-@S8{93%aSQt8-2qin8K45&j*T1?1hsf3NH?}b%^9)`cD9N}>3 zi?`d0Z}TXX_zA$zzqQmzAb%shrPJ3bF^~y(y}X|I z%7RVvD0CHx@Ade$ePAe(AaB{RK&!lEutbOM((z>^G5LsEdl$>RXvx!ajN|a`Kj`z3 zl|AbNEde&SHKXODx<9ycc+z*OF60#((Ph9vU9Vl?lFYP9!_w7xQrlz1W9s?0F5GgF znza+BCxxotsPd=$ja0-&S{$wwKL}R%VS!l8?jOs-pR&V8TNFR&bwWX?roj9jSqay943IfT_5LZ zuW6WhO?-k@P{iNV4LD1o%pdYYJk^po8lDWZBZ$!?rZCiVbp5^GqH*hvf)yW|EEl& zpGInB;Kl+`nI)0TbOALQiC}PBrxMo=4It)2^%fatjFK5CD{nofM-i(*=sM)6p`ndDVljgUyAWhv!pBqq6pmdYd?(6vLS((Jz zgfx>aW6=l+pnlpu>CBgD^z3O#9$=fLoPWU(g&8O^h0Xo`Gq^9R1r_lJ@KqFb)UBUl zYWPj<$9)mBHSMvp~j`Xf139eo4XOi4^!Vpaazb@p%zvR5hHaef6ZbtbK zRAO|`y^4wIJi+i?==}@L})`GEz^53S{adcY2_GT!_(x9ncaj&oNOOBhT^^HbSpHm z9%L)1`pj9VV}bQ>M%Mpg<_7sGJ=v+~427k1%p2)6IC7JexC{WgHGkW*1O~`)LSIbX zD1nrsa#B*6q0v-;Yb`@zQxCXnu`*>trZ*bnelcM=G-N7PJsvkwGyBerT-9AbDwYJC zKfVbTG{3u{nI>W-@c3u}uE7ff-C@jwUCW9XZ$el5nUF@KUI(9T{EDfEnxVDvyHNn< z7@P%J+@2MDI=~K#HJ?f5T3!Eq&&pWyO187WLD=+cVQ;~;c1)Hzmu2bTDFW?28rFiL zuPHS;rWsll)G4RyPTQGM`E_`9E?L|N}gGO0qfGBq^wF11N+8qCu0*B)h^C5ZaY z8LeY5xF=F<3G?mYJ=SO}6F_2?Pt*Ce3FMmb~ysa`Q))fw->mbf*wvr6yt=u&XpU%our9TL7aa}i%}W? zJbj77SU|GF7{iTuRx-U5=R+`P<{2#<;K@xNA2VWgUC!Q*V5rq8O9@?6H?$5Ka9VonmtA ziwU^~R>ZeF&*Czoc_ycQliB(;vdJpIEi+cbS(>OgXhXQZiD~;HSz~@QdCIn({S12R z-p|mA&sHG~o%qUhEZsf<$!3!)^Ha$##lI{xL?>qW>&kQY`v@O6GjaR}k7W=b`nztL zXZ#pg6tWy=Sr4ZomgnU~ti4Y2WR6{A#rEvB=BEUDx{#}heQCq4M24Zu^=k+L$AmPi zsyy&zlSHiUb|`f$oi%uLF=(r^f=mcwJhd(Y(NzqriEmxXw{x})T9RA-mY=L8t8ly8 zKh={h`sj%IrV~*g@iAvXJ&{IcKso&ys>|ZCGZdy4?Kwq!>Q`%gZn$9~6a*_2$0Tx* zA~Dfi8}kvu3WFXx#ml%rzl+5N%!T$AH=P<&v#4n~#A3hIH2#1zX%^~XBqyZXFQ6P@ zc~@%a95HP?$vJB9I_;30vwmH^R(hSU@4sa7%~fXemjlUMlO)Rd|9S1*PbD! zcYNWrFo}F!7U=QG@O53axNN-^V6ZiQZM5you}gO`Im%8B+{06MF*(czDBo8996N&S zWj+2$yY_+BA-ZA!E{x$f3w1iSwdEw(+kI&d5YXN6mrRXlO*zv zA?M#S^K2IaoqoOH&iTkdIiZ1UAxIzZbBmpsG2HnSzF!Pmw&8*o>oc0+k{+^w7)2pq zB>PFR55!A9Y2NxkHR=W92K-jpy95)nUv5TeF)D04SHt7TZu7t274x2%+P`K#f1Vm5iPQHjf1ry zo*ael?h#&Mt7>nt;StZ#0sEux`}srA#)EM%Sg$pAWDx&L|FsgtyfwGAV21K<8%~t` ze!hP_>c31V@gCqU1vTA4D1{1oV+}j=1jkb<*JB;vXBJvN+P%nqAhW6Ns)Vh=fbd9Y zSZ^ao28cCQsCL){l$I=IVJ95zDripZcKBO;E=rXA_M*FCmpNxYpmem0R6wmpd;jw# z)eZ_7l{(QK;Z3^f$1kXn-F2%Dio{6@-KN#tTj?e+D!rywnhQgYlmA22H$Yd`bZJK& z+eyc^?WAMdwr$R27ywrzH7+xDOLotbauzw55McHz|7RdsIdQ@g63r}giUqleb< zRy%R*58n83AO5Wj$@AZ+u|6lR9keOV=UWJloo8BewL}1Z3I!cd+Al!nWC_}9Y@)UQ z$5}Vv)zRN% z^z$?D^Qyk!5haO`w>Xo0O1px1!9i}rmixkmM8|c#3;(|6YLN*P^Usf#gM(=IV&KQS ztsBrNO^>T*ILuKIEAZv=qx2hnV;EI0xWcupNb_D)6r`OLAwHx+byTiVz>*G!9~%hw z^|E8f;a>%M#*3DF&SVyeZPFzT9(st#n6q|SnzT6SPUm%IcLOMWE7`W@{FCx-{vVF~bn;3D^h`{4_KTRUs3KRG@ez(N_4%PcMU zU2n_}!(NGvP&Np=qX%D#1S{X)Dm2n68okY|ZMXgU<8{a$xBmkSP=)B)pGJtfEp^=c z>fl{zCkDAv1bUkXFy(s9oJulw0^!VcLYK6W0A&0NE-lIPAy+Pn1Up`SBvA z%on_MEI4OVz0FL@8HpFW)=qz4j6RY8+rTl}3j#)~RwkdT+*`~mvPGzi6(+KqA}GC* zC4z$)2B(FuG-Zrb4L3l9Zt5*P&Jg*$B0xiR4r{0hrZMmn09tGE)8$THRbwF6UtPHb z3tww6tQmYatunTFFpL=VCZBd!gK_td#!gLN4fRdzV4R+`xYgpe;YcZzg-nJn<9;WU z#bm~v;YiwdI5X04hM025WqlKS?Z(#`;rd@wXPs!Ke!ts70+2)QQA4w8&4)R zl`Rd^Qz!{Qmo!E-ng@$3j}J%I8RYE`LNG2j&J#AjX|(_uQ5zKwzukrTPOkkJHo1v5YZNzJ=UMuw%k|AzU8F!h!i6TanR# zZ{+vjE>t00TLB2x%b+rs^8v8rQj|yP^NLIdw>>Ag{%H3*sgl`l1)XBCcCoRR)zkf#2E_Z|Ms<10 zE?)`yOK32!TW23!us}d!zkm{Y;cx+&32QMK42U6D)DO5cTM(eYu7N_TDyj-kc`6Hg zjYiTnhDMg$p*9O{SIa@hh2ko06bymk-Cy`#JOB==@W*xa+;(Vkg(#$})GCqY((C5x z@=;#V#o4MNMYoQ=>Gj>v!8P`~KsK#4$4f*+F0Gx#)-IBPx@2lg;*C4_E*8Kl#p(8f zb=U=5u}f+JiNszDK|};RLeSiL-;4|~Cg87ivHKBt*iJmxwVl@N+V7%eS`Lv(*Cn}B zRbGNcA?PQZ985}8J{vBZV@;urVUm1UT)20|mg0PA%x*=+04y7qJtBgH-aD5UW+vjq zKN3q1TR{>`hR?dsa2+{wOBw*lTW0Fco}%g?G_zDaI;Bftot>?llXL;;cjByp85qK! z-5QY0&U+JEEyGCZ|D;F?CKXeZ`yE=UD;V41{x9Y7b zn|*Il+`|Qj97ofx@PrA^U*e^npBz0Qe7=||-f)aZHJ(iPJk^8wzKj7g>6%@CZ$nFT zU?8BUlqP?+C0y3?bsQPab74;A!Kw~4D{JucJC5h1^vbe42uVxj^r27!n<29a%^HP; z0;dltWSI?q;QnnrT&xT-GaPVTv|y#mmIno6BM>0SBG9TTM$kA&X`RodH@!koCDsAXk-XVN;R>&Tpb9^BpCot@k~+@Td}Gp|oY0PokGVt(0adb#Ot@bgO>x4X|zO4rZW<+t{XCOF;@a(dve3!k;vr{?a? z?rtBDGs4=CTr$=_WVnLZXcjXC2~wx5C+Bgmw#5<&Qma;T=kf6A4So&nt%Fw|K*spL z*BB5?089a0JXjwa!K3Cw&7nE!=_TD<_zr#y_!~MNX`x^bJAcMtA3kuyv&C~YWGuzK zL;pUKthC1MD&`oFxuqrx(-%}61!T`e^s(ll#!zP_zqz2vX2&UV2ukiW6+gI2lN5ft zN&n!)ptZ#D_>cEjY*@$rsMaclDqucq+|r!n0031kfz5gz=>HaP(4~aWgr3Uet-Kz+NM0&FaTRP%%45x2G<(i#*2#7NQe+VnolbpM z2tb9r$F7Y0bKgiPy^Fs0Sq#QUh`TWxwhr;H^+i)wB?r)?YQViU94cH)c!8M}0owQd ze366q2d(W=v&hTi#*BB!l@my^j60$ZZBPfE8(S(j1a(VsvCa+8OsEyI^8i6TG}!-`0`3V zl1WcBwN(?xUH3HHlEwKK7LqT>;*E+j8HijAbJw@S`#B9jd=WL>satRj*!HfvW_F!xTjcxR21Qw zb4OXN`$@ZfXc@GRp-(1HvDxk)?xy9wJf9s~B{{^?7~1DVPZikzMq*Gp)qO4y0QuWX#?;s#fTX`qqD)x` zIngfQE33%Xr`8oF)<21x#+gLaYe-UMUr52yX&ZpBPdzP9sRca=mkyDz)>UB2qK)wU zA9fT-IZf)sYPfhA8;-JrNZ&9zbTi77wVUbW&J=0aMAk0ix7s#0EQd>6Dt$J|+PL_t z{U;ULE?bo0k{4Zu8!ZjO0afn9Nu0~K6ck;$m09im42-#`EYq%E| z-xZn6v$-arQNTjCyb{%F)+%>A$*NQ@b4gp;DuW0x|ohk;3p$ef4wmW5fx zoO3fsqamyp`o^7_2$201lRl^+bSYI=Ix18jj4t4koI`+%d#cnclNabjwY;lL8>J>O zMGm6x(zwst4i)%m(o^3+O(sL2_G^APeyb)1oWU$6q>*z?xc_|UR14&qp)uqm#%UGZ zSDdyM_o$&S{@ZsE5vHrh){q_o)28+lb8{1_vJrGmc*42|V9Dt4UO2Fx!HvP;r(}3J zSqPINqW92BOEbGkN;qj;{ zWf0y4o^B!>o>il+(n`?XNju)4)n4TSG-bG>r+mK;{fI={nCi{jL(It@w4F;bBs<3d z!>(lxtenyWVBQy=eXc!vJtxEWJyqUn>=V$Gs2-0eyB{!2VpBQ+#cCMsi>0Oei=F4|E*aC2+0m^#IwGE3gAIc+9}yj9tBZ- zekIL5#CiTj#@S|fQJdGRm!ukSLD}yOWTR|iw^z$lPPeiwSut%Go1}5(^7p~mt8T_R z_lNvNEouS1uI)wbF8LH1rhZ`A+f^$Ykg8gBrtdVcnmVafqBeLjGzEP?AeRQ0{RUQrY}yPc22T(vSKl&D8PAA7 zy-f>{B9|_YK}3?~t82B^oi;?+7^T^;*zosQL1ohX=5R~H?c-}X;H+WF4=%-22Ss0t z@;wHEh+hns(jOVKOuaSL&ff5! zShz@kAH{1X&qiW_l(QvcIewBES}~(mH>L4Mh+{&Hud!-UO+GVij}kW$Z;7BRdOizV zxyKKSsKLOQcXD}cqQxlp?^f{Vd)`@m)5Ys%l#`2&W%yWm# zN|69bK}Ayg#nfnNWo_2-^fc6*kH_kti0gmyK|_eTgk3&+6f~9Nk{6hlHttt$5w9R8)Cfy)kZJ_go6!0tCSxGP8HTg$12$f} ziA8im^HI^3b0Wn|y8~(!FqGh}>1WkO=%gYnbN_oJi73l4p0GQZF8KmWK&UT=?pjHU z!G#6_%H>WV;QB`7O;WJ?evcpCBER4!=!U2v6v!)BSS-`jE3(jPHXG&$SLsQ+U>Pm) zeflGV6Q`*{8IFAEcin!s@ilSosi)S9qNX`w8e@-{@5e5koTo84+dti|;16PBt~4jf z<{bmCoqtvyi*L$ZiuaK2gaVX1>(szz${bBJx!6&}mG~2|+4HARnU&SPO!fCBg{;(* zyp9M-OnpgFo*=D3*_6S^fg*!1^-9xWv;|>=+FyZBPg=Isc}rLLs-jbeb}U8>JD^&` zBnAiw5y8o#r*cuMwi5jfuS`Ysb2M+LcVzq_9RN}(y0ips3K^K=-@|vumjrWU1y`a@ z?Jo_?OwkAcKh#wL?2uCj78xfvr&t9LG4nC4-+<_4mQiDT(5%}%mg!VbQOwb1xtYW$h za&#t9zu$$WCQFp=zW781u8CAhY_$syIkkifmXm+?n(I;>FXE4aGhSf`;Nf$?fZ+@s{jm z=QaL+<{=dsD~fxns3L&iTd$sY8;whlGQ)ij{ZF6>`4gT3?uEFMD`JhhkWN5~68a3i zGd}&)pG92f13tjV>+NkaPbaTV*4Ojr(`am@>TZ6PYlX1ke!Te04X^EK zCNLE5XKuZ7#W*m6LC;(NBWTuv1VqP{4Xir>sII($GF(e2azbS@CZI9YmdE)lmm6Wj z>$vwQt}lutA~s7dl#l{SIuVPt z5OdHj8H^ zV8L^H2;Z^%M9P2%cO%_Gt%8e818?l+KWZ9Tky8w`ZR;HU0z;IppY zbd8O;9H=N{!vab{1(M7`!YMC|GrO4P;c;QjLgE8j#3Z{mG5$@%0!zaJ?85@hZ2NA{ zR$RQ0rziJ76j3DeMo@+5Y=?b7hkZ2<@ChcfxJAX}&_MuWg^saYXDZ`i`O&z2{2>dY zvII-HBZ;(J_)*kUA`&J2khm~zG4TN%0+QYD>iKIU{ly?%6yY!ISAS5_<8lg&gB?cy zuBlZ}!LS`P#fL(9!u>OCldR`^49&4r?3NMP$qhu1^C==riDw66#vEElZTM!=UxNOn+i&@vnPj1o zk0nIfMTi$a3XIAEbrwk`mf0E#6ga0e^JNa7)#0H*GR>^=XmfQjlz$2#G|4jv|1LFD zc$_YUPo&`;kX+X4GSuXPe2|y)SC&O09!x!vCK9E92nEjZ0ra=g5b0_}$OF@?V_CF$ zqT4@O%x$tZ4+!@o%dix{hbQaIdqB% z>`FX%@J2=*gHf`>oo*~;%wQefb|$>)lZeth`pf`!<3v3+SZFrjEyPy{;V7Bm&Rj+s z&QYsZ6#C@(Ftc;xU)OjA|lp1%jChhm7toey)I4~uwU1C_dGg*!7T z0-!aA&`Rfb*kUKswU4E1BA+}-u&wu-VlSS>S(IWOq$gLNU9r(hk+9<^sOg!33BY+j z(fmi7e-xtBny=9{{q7~sVg+4xI4Smd`%L31JNL~0Qs>ld2cN031*EFl;v0ys4>YHz zA)ZSg+m!KNO&kI9aZLYxJ!AB3n}vE?TF9PpkpbO*HN0O8fHVntrlp5MGhL40PJLwA_qEFIHwg9;AUAF>Js!K16}55t-K<} z!XgK$zbsYXZF))%$!CncjxMItc`(xTv$B|zq4Fkxpn)~IPFROIddzXYX44dVv+L|~ z^jizfZo;1L25lOU{_eVd2d4Se4noK?yMKz%#t=IlaaYUi!fGTBh*+((VEAQWAf!Rm zY4b;4!&Xz{>Z2LKY=Qpre^#Z&epw;d@HE&2-8P4sEqvKOBP6JH7Qq0iP!GLA00H$9 z10~#O{^MXBwO#wi!TRGC9_$L8REiC|*AbC~VOI*V!NRMk^tVWAq|lsJWS3W{V<%7- zCLxI}ayKC4ozr94LWFI*qoF8IBVG|ibXhaqLNaqNELPnh$7##)SE(*twp~%Js zs0}ew|CCsM28&!f7;CJcekK3V179|+m4vWBDv!KPktJ^&K#9>nf{+oxuXju?PLv_< z^!JrqevRaNv8nu|bLT0a4a*9xp7lFrz~XJMaYe(JW=uvk;h{jBfyj)=M z_E<+$x{e9zzaIeU5VFkby7Yj;&`w{;9CYc4)2UP?SDPCWEx zy15tdcYA$0s$V)hxw(5exp4{ftr9}dl|plblui+lIFEbivEUzQgRK$_8PGLhD1_yyxGJmGaoOob z3^WJ9(=n-e@4aO0I86T?GZh7K-)F(UzJ~B>U>-+UtA=Gw35oz1);;aX?;Ua6R+uA% z%}NQ(gccX$Em-ZqH8iHpeC(H1n*rN)`aV^O?6uIF#C3hGehf5A5K0sq55E}=A;$*8 z1qM%j14EPfc&QsMk6;uCAKrP&kjN#_5*ib&aDN`$-#eN%l1~!3&~a%}r7@$6AKqfW zitw}xtRWOg6W$3Jiyu?3fakG}yxpE9P}>R@lYj^Y6)@+5S%vo>Clj3oX})kxmSckW zYL`Klk~P-hnWHCg-Zt3y1wpORjxmC^f4{A;5Zl|9PZ{AnGloCfXK{6@7IHgNCYXZO z1)ZR&s#%eEj(xR{6I?$m=n5Sq5!u@#k67=J?0)?{r?UrKxh|s8!k*NgO(~mvY>7J{aiqh2}lJVZV{{^cb==`mO3VC(e9QlLL`>+;lrNsnF^`j6R=UBTG zIQEUgy1&3f{edq^42>VgyMYkyX^k-54tRa-kBdn2@)TOvXHlCW5Ad-!rFfH{h5~;? zdiu6A@_-efM#pV9)h4A!Ec&vb1hJ)M<0lp^xUw02vx@j&0LaV_P3&z%GzZ|!r<>Ov zlpqOwZg_8D=y@h79!*Rlk>2aj8`t5u6Lhn-zN7g#J!Ps*R6p7IRZ2aLdZ`Jl4s=q6 z-j{+fSABUH5qGveu|Jn5uBd3B7|mYHg@gHXq3&#o1r*SDPlvW9_7zRbN`L-rkO>avfXrAdVc7IB!{)2=kaJ{{V6s-w&c#5j zXF#&4zB2Z7t}qt04W?CHS5o||%bViwbL9G>KJ7!(PbNjMj_)03KTQ+5$7=5 zn}GAySoGMk`pz}Wf?Y-6W9OU!Za8haB-EL~Cdloqi!FobhG(?|+-+52w03X-GxM^MsvRtC zMzL*g#evyKNN(tV8l3o*lhcf_U5)!^Nzq_W)%8mQr6Qv_kaIFRXsNhsG-u#EU~aDe z@R@tHC8qNY8SDZywQ}P7jM$Y#3-z!V@UunZC`L`2P za;?XyaaT<=JpV=OdJr8<0-n(T=tac&SSHWD=CQk{c0Gqb0W21F97~h-Z9hQ3k`|_j z<_u+ITw}CIm7_3${=gMN@&uZADZTtbpCU&R#YPe%PB4?&U`A*5M*&@P?sYYH$Uj-5 z?rg9j`n!$}!6g=%kr|Ie;70jQuI(qB6CDf6&JD9p>GYQuX8S!F3AL7%=F=(IE<(8p z0{A$S5*4^-th)C5DM!KxGRr1K3gBF&2hZG$5V7OgoM(_bM-=Gux963r_jVmQmK_HJnR>jG;_j zOWySUjRJl(+pkJp2Yyt@`eQOa5t*Scd5#A9^^@&vU1=ATom6d6K+tXbr2qNRw4v7a z#Oh!BEqI2Qp2lZc22%($5r+h zN7`M*75(WRDJZmGT%#fpH+@T|KR{TCb8sNhIqil{ct{Iu{I=ghE?;Vju5QLIay6R( zeuF?_noqivYGaL=tNUsf`w7Do*SYrPKaKcYcuB}|9A!lCWdVGqF9qy5);yMQ_k;#} z(}u_&9L=s+7+H*R5s(Pb!p`7392Ev2l4#CM!cu@nd03>8n1Q=zf$TWKv|I=0jjG1QlNA{0zEklUC+U3q-UC!wk{hGP4e6XHt7!i^8zzxlj#ee-Vj)-Bo_ zuI6u#RU&WO_;@<_fdA?&v3*iI9)CD^>uz5A@bvoPamg&T<HgUEZ{1_b#nrqSd8)iIt3ULAfs9vRwc^q6oz&HP z{RMNvMW4V$scebg094S>S3_H_XAypvU*14eB5TzI1wZjHVkXx=l%=2FU&VwYF!%d8 zRn!#vsGm7*&ldphccji_^s>Gi(kn1+n&P~iX{0^MDXRzVtNw#jY((4kA63h7h)bpz zZ7l(<5u>6w>H!My?UI&2gr!r}(5g3x#tWCz`s!iY%;tbW!{xrMkih^H=|}yVl_|wK zFZ?=|cL`37GA430`MCo81V(CcB87z@CfYaRUVEj<@fSKXQFC`iNOm51`M>>vYA2$~ z;`2kKdgbw?CM^V>uohY)9~yq8S-yiSC6fdXGiQPina#eSBIaPH1DT&S$}@VWFkPv+ ztM^I+!hZqAf;7is%8*-%8oO8qDa@Qb%u->|-jGwmB_@_k^@tV#5{__4iz4Zr7Tg!M z9`^NyqqRCg$bZ6gYXxJm9Mg#x(WJD{x6IMF;hVuCwS6*$pur@)vr?WsZ0|iR z#>Tlmiubh|eD@Gx8vVD;^O{ zQUE~|`n0IChN=R+-6k4=*CSQnuE4u13#t?4^j2E96e1!y7<8bRDbQ`>SuHV=Olc6{ zBE-g(>>6{?CEyz?bY_)?B8rK9fod>x!Xka+iBW66w}Bx;#G!Y_u_-kao%;hLf#8XL zGq)kac-IQBmhng^Kq2VjJLe>`U{1PnS^<^|DHL~l&z#`TS%kn~G$gUI0-~tkql7Sn zlA*YEhFC&~(4Y$qi|ShbRsbBJ13{~`BY!T0=ZyqGR4abBjHH7bn49W# z`s;v^j!xH7L?4PNcE5EY#N7urOQ{d143SxmL4r%5O%m0@7XI0`^_*C_PAF57@G@=# z69eBcC=Ut*gaP&MSPo#PbGNb1OpuCQBS0Mf9?o$QpD_9BHU}c=LxpEAE6Y|d(zYF< zK!#xU3(K}T1Md=v8fP`x0?CwtJpULFgFMdDU<7`bU68{`mo#3O?ikI$Ktf_V47 zTq?s{x)T~&bfdANgf74)>G}F(W{|5kc0GIyJ1h!uuRjP9cA!0rR;s@u=^ygkLVi#4 zRN{D@)aE;8z-;q1yHxUe??j2-HyGO{S_c){U+?^P7k~q5wCIZylc#SRM|Z{s^@z%z z0#j5-3rcQM#3=&=c}*ze5(SI~WIh8)jIdNkWQ$q)l~+5r=mfIlz>r7&G-al-7;v5! z@M;3VXg&}AkVnMI`>(J~-LOZhi8_|4_%DjP1mp{ewB4%pP(vRZ0PuhO$cc$E@Bs_} z#NcWnPoUhyFH|-OwKPm44C~b=ye;YCq*o@Ha_q(2gz*PFT3RWM z0=xbSEwc0g5rix_BPZW7iP-s$CK^u2#ZiY8Jhw`Rp0<#MO6s7vo5fN0AOvLoS`C5o zDjO`b-xwJ_hLhC`>@qQ|#r%%1Tbw0;Af6ns8PDq<{?jtm?(vBF=TtYgb~;t!U=U&t zPqqGwf#s0e2HT1OA-t@D^>{m{g4QNLKh1HqM6nAb*EnQKQK70Yb9`l{%zs%gKNP1*-7_Vg=qW~)LG!yMFwhsWc1|R@jbOo_!zgS zznl(*_+~#Vz&b_*0y-8427>!eakr*-a`vz`ar);Ea;|d{v)6+3iBE7vVE#Gu{my{h zgu$G}Sl44(JL2s3QQmZ5Yv9Zg&$G9wk54K08$(JVRHmt7o=e=nbNQr6T0+HG<%YVh ztmXa0TC2~k|4wE}BYZ5720EnP>8a?h4*3i4(11%T+>79BR;^WKR58Hbj{(s9dZ3r$ zcdw7Ct`0$hyoMas3$GTm_f8}MJXtQceQo2xL3DApWK}|3&wBlS&o?{v!rw5~il-W9 z9$l0Xi^{q-zZ&BiSo}sI*fT#`72{>dmKlfL>@y1w==6Gj8Fb+NSOHO-9uwYzGBW`j zmiDbk=_2dObPlt*Wu3K$ZUbjgw}u9`GSBT>#*>}2pCxRMK4cY0lWLH<^Lw#ov;5}S zYYz{R)29EE(Afy8x7sY6WZ3}pEihU5taJ8#azlw*2U_!WAs)4UxKfLG^4yMzLQ zh?zs&v3uNv)VO?{{BoXFvLe_lb4J@%kq46-HF#l-BFa-h;rZ+SirI2uwq5qeRYY4e z+z{D?t09t6?lQ~3Qf2S0ZkF0Ey07uG#evC=5;0|zUeQ=tUWm|Q1VxCPt=u`l$Sj4NXLcXF>7%E@k*fa0G`HO&5BJ@rvNPf#?8f|_}VwKVL~g0joq%u zQ8#45P70g@4iq~n24vLSOi|*F1tYjeILw-azXU}lV;b$ASL!2p226BpQuYkNXCmC;&l=5=s>3)MyQ z6MU<2f;Vs1B#>B}776slpvq!ZD2)~!#)e6iEWy6bBPJtbYLnxq-vV$MaY=M7a5j-4 zjQCUzP)DmcqF4SlQBbD>!&xUnPxYw>DuV=0Ajwqm{GjseU#NF{&FV)0DN?>ZG^+Vt zFq@Jf>Ha8@a)Yc(E;%%V&T%-1G=^s$(0p(eWf*zEq-p#2maSYHg+n^N0oQU1+HPuH zIR*NhUtU0HdJ{uV9!z-CrZ66_CVwA;oDAISE&l9`x5p8l6ge6EVG(skIo9rR7&9#E z^XAJM*?Z(>$J>d7>x82Qtg+`V>9&Mhwa*j}FrSFJ5!07^#Hdt30ho-6f52Fpr42es;J)St7!?0tQ&Ba%hRz@w zJ$?2v1L`F5{Z;x%NJ~grm<~D$HCVVRHj#8R$@X|SdbsYw;`(Dl$K{?PVIrhOiiHg; zAz)aS^)zpt^or*D058;uirvCf-09_reDpwHo{ znu_WXh35}@2caRLl4%GUcL*M*2KE3D-O7XuWKhN2yC6nD z$yrvl1eplI9e&JzddClJ1^MwR*-(Y=j%CQxMtFe1si*{9AwRsB%9q`eC-FTVd3Si1T<`bYw7z6TlfXe}m1|)(c zf-2(@6hgGbUhDP}@1-SzB9;Npp&i4RxQJTKA}q{2q29GL!eI1*=t2<%CxJ@%Nvu#-`;jju&#D%{(bA$bIu7w ze@i1nXT`1GV8u)Cn(Hy|p6Z5ROtFjpkgTgC0VMed1WAYuLRmTyiP=aLf&|-aJ76VH zp@u?8BEXD(A&VHwSc~Uzl#D=n;}K&T$)n!j7M5Q@AeBgm{)yjBz6~~aJh}$%0gD_( z>JiF?KDMI>FSg}z*Ce7cp*Zj=d3yQgRQgc>N?Iz1T7t4xYFHK~;aDkNHk3DX1*<6X z0GQkh8un#kONXhWtvhLO<|N~?Sq*P{i4 ztVj%yX8Q7R1l?nw=14uVViFvp(v0+6f@L<~V1GLy>yk>)`g1e^-h$SDUY0DxT0 zws|0_v;QP^5@7y(D=<~E&PMjbI{#P57;3J(=}v8WsUk)i9_PlHB3fFmg$|V!3Dc1! zx>x{Ib?vSAJ&EXG40f+XnnYKGw2LY{iBVObb0>@M2{&wGD%#MJTdiO(8{bI`ZyAZ6 zv)V%miJmmglPT7o^sYuGy2iRt3!w4@R53OS9Xoz^gmSAc-j=zo+WTksJR35aKZfH% z{6Ugtg?vzhy}KfHOXr*V59uQLoypv&0Y7z0?G8|h@w?jB1q5p!@FZ}F{qji5h=W7O zRU+LoPC@D6kP^^{*^}_3hzwCIYQOX7ew#{K#F7e=ttn8Q5|sBocMof1DgXs}ax>JT z!6vt^Z&eN%S~Thr23LNtVHiy3c@+BjmZB%JKr9Xm@)h!7&;S(b=>;Lso@{2S@JcHg zDTg=^U8RM?pwIvx1Ou=$jmTie^+$dDoSCHZ+ej`Dd_wj`uLTtn&v0CD%Zq z^6D?8y6L$XQcc{jSV3d+0sz$@=u_$WWYE%M$#a_2mkD|%H4H{l`aE>8P8BW_F3HC7 zi_gnAEnI~n3$moNB2<@1>8kF1!CnbV;#wCwcrr8@b^y)ao4F{6O}(*ETxOysUrk^2 zV+R3AF}Vk6CZyzOq{&xN_O%LQYdl2OLas_41@5F2RjMr;`x!|xEP%ZXby7j?arT(w z0+*umoO%|q*Cn--@7AnXs!;|O&g6jnenoT*Bf5Km)FYFGrcWs^M*|4TJx0wG<{vjN z)0tD9PD-vPS|_$iI+~jHD>noG4V!wxT7l6;{L8vsC0wZ3Zz2ko2tcVM!p7v{q?)IG zlzh6mHl^HYVb)TP8L(DgqLl!2^8Rim*&jKJ zykG-Qp(iyV&Nc@7*QCx}v9e}Qci!7UU{ZIG(EF&nIqu2}#E_}MP(HXq8J(Kb4E3mV z5c*Ghz_sDZ7FbK~LV5%Sk^o5YXn2ms(Yi%!-)s zkIf4xFX6D#0aogXCB^EL>QjUvBPE6X332k2ZkJ zzj$;bW0+TU@zAzj!Clr%A89!vq$hU{CqS{ki^Tv$ue~BZe^-BvSl%CGH)p+;pRKe7 z%UojuupA+=smPojJ8b!OlO7Lave8Wbc&=bTvKv8OF8$l;V!|1 zGMxGv7cGwG*`&*@0;@N3D z%xEQv9@uWAfQOaze+R!W1pJfWW;c_iQFr!6_a1h&c?~Dhm7ChGH(E|InQTF&1pM*MdiP4kfs69pPMoxs$VlzUR%S@v-eKIj-jGAOznKqL@hS>y0Tfp$wM9kO2Td)dgT-OGotnEwrMrIV*gk$i*WCWEFivComv*NMTj3?)e=_|iHvo9f3Z^{RX`+V_ zbQl(g+5Z0sks5>KAFy>mz{Bl0SO46aZn*tjnTcZ>-b6G6iUlpwx<>&-8lMgQKmhti z!*zr}l?V1>5z4d~Z|oJy*5swafkXR|(Ed0|q-{n`JwK|h9%_eV_1IeI|4gC)|IDJ2 zc{LR6xDXwj9VIYRGWoa>7vKVaNq~N=FpVfl>?AI9I?TwaUOT@ylInhahSsvnv1MLk zHos23UxM!ttL{Er=}n|838dxPJBYi#4u%?`?=;)rN^`{Cj~BN-zKpBl((cPe&Kg@w zi>=nrTI+<&#`7Eb;x>w+s_mdd|W+>Px#hON3C66ka(_D zwEs@VNxqJ;UN-@(Q9Vs09E-{cETfD4d-ywqv0XnZJ5pCtpR1RwsFB_ff8&F-;7aA#6qF_koq>=7CKl z`GV?(4g|w@N{x&E9oJXS*qxW9`Gucgu!IWzO7^Et7aa)bLoNYuh69jtA{KM(;_my( z4S?saF+dd9ld)j2f`y!t|AnXx)UPlQVwAUR?#Fu$(S+}Pybt#U_T|5z03lLAn~lmB z?)Jw2obo(=3NGMc8kp#f8UMZFne_chON#Y3w$mQJR{KnC{zzWHtwCZpjZ6? zl1nz&KLh)UR(){C<@7|-+nTuuht{29^UD@=~H{ye<et^Xxsj1+ zwBmKy-Quz z+CKM!M(q9y0dT1TU1$J5jV`{(n0{9C{#d?2{s>j3|9hM)F?G2kf?C%76M=3_j~%hU z_x_>)(rKmPSw0l5G2L6-kIPU#_lS(Ew-teaBtep8~J02r4E#+1|!9IPNnJO~1~1hAhq%a_q1?0$HE}X8`ZL z;^TNd;};>O+=A=8Xf5r5UTuW8vJ)=WMGGX4jDWSZQeFK$f71g;U?-5}hoo<=&9#0) z5}#htrPp2w;TjS zaS4E#&sV7jQE~>ODwKLR(NC@w0-7oIMGlbC>X4cn#&dctSS*}=M(+C^yX7oIjx47VPEI*CEunOI&c2|fe+&#%+>N!<3%2PzfyaDC_C4b|Z244We z1czOAmr?Q=kz60HpTI`I&N>gDN-TCeqF};}lb3cLp+nYEDaKDU z2i)Ba2ESs}f@4b5eHLI0tcf_D1Zi3den8Oh&Vc0y*qfbCb!J(u)$t*C|L{#e77%b+ zQ_I{^tEk_Hy2Zn@(k|2M&&HxQwTx_ZCyWYsJT16){l)J2!kr=y^9Sy+r%09qL@e!U zLIE6BD6w)IUssZ_^Elp;$ZL4IJsO?r&d^;R=3%!5SW}POZ3prgE++%f-pDdbHUPv# z(_DnshiE^(cKIW0j}@67m?Idy0YaDv1A1nhkHAW!K(qwYBgaiX^URt#L$(zvk2z~& z`ou7hT4tClhFCb88b{+w=05MaY?CH;t!_}+?ZXeU^Ahasl*e&q|OT;EuyJ$QGlSB+GybUx5=Te&++a?uCXR5!I0eU5PE1?%rW-R z*&Dp>=7f>Pe$4R=W|7dMnr+O>w7qBRoC;r1#GDjL*ZNT_bFy0=Fh5TBtc$Vdj(L4C znCa2!f@4{fA44l4YxX=qg+y@9aFYizZID@+a7Fo8-d%8NsQ~OvWKNEZ z>@tMTBcL2YS-FKbDZ~L(b4=3LvBB1TGH%x&_(>Ps@2YT}A;f>;zBU zU({L~Re~+>1R^@{$vngSDO?;{5yA=rN8;rt z3oT9ODXJf3-&HgbrPwQztt#|20qO?TnX^J(u9sxx8^1<}Neu^5%f6rPbzyA_Su=^k zLwIg)S=6iHu(&P3GT^184d5Rne(fh1$f*T?MI3|0npv40VsBncd#5^#Uufx33mb0WSDNtU z>}|k_yPC5xNoPCclNut*t4?PDXZYH5_fqQC*YOkH;1Odbr3nKVys~=dT#UVBXju$4 zRUT;v>on=QyIQ1CIWg+~?!fjzSTifhP-(Kk^vg(RW~=*o_hTzKGJqr1jc1}5XTMl~ zf{0FJUB_?~)NFxT=-D}hD;6Yp{6vEbAN%}^NWO-cw^4Hs8vGOoaQDguAwo!PZJCE% z2BQy_hUEs)U7z%Ql?(VD4X?v8zJ$_fMo91Q8KO@fN=e))+(E}s9S(Q86AEpD8?H3S zT=om0W*CCHL>t>)D1aienMw#iap?$6t_c+BeO7+%5(Tz@=JuS0v753qLR0O3l$_NKH&fX|0$0ySE1YRE~ zbR2suQe)KCDO7?R$H)k_ASyI*=)Ey80p@N>?&6^(08++vE5Kc9mS}LBmjx9@xTDQf zvqM+P7GL9m7y#yMdTIvIhI$V{D{1vAY<=h2h`hec{Rw!t{1H>>8%2HyzJI7jQPe)X zCi+wPO_x_9}`EoMU*^Qok!5SO#>Q+vJ66`f&A$CkX9-r{_6 zV*4-|FvSfmGrG%-6glcgNl%l%ykFIzQ*~$|46e3*D88uSnud|}q4;g|$z(uB#i>cN z#KUw78J5WQJ2`-%bADCX$7C}!Ya(I^RT&sHX{ucR+z8l@W;Zz*<6Y3sx0&nT`$WVA z2RuWtj2R)83B&7Ox1hM%7t*FWBl-3z^YWdvaBq70M_9azq-WvDO8$Noasc<0>7^M{ zeUX2N!5^`mhxGO{I$>(Z*r&y_ATVeFHWx)J(eAhb4@ULmU~o#1iheLHwzda^ds<7- zd9t|)gDL>+corlNEWH8!$`7ag2yM0X&^T2u5W3n((3L|HS^wowznx#TfcrX_`}_UD zZ8g2tD%q#s%)P}lrqJKo=uE*Mikm_SU3?71dj806SGJY7LsUjjWJx=1lSzl*2yelc z!ms!PtRiOhMmL>M@(4KpG)CG!&4zk*FpKSB#XJD;uB=vA=t;-=S01viwZy|OZ?C}# zBtBspkfyW<&@h>Xk%Rasg(xc|G=Sm-P(2>&UjKykMfDT_TO%|XUHZcBH;XH zu)aQ_+R1<&XI+awbv0<4(apE^jYksN=)0vin_B91NvA+tHv0}yojg0r4Y*kmoOu5& z9Q_1n3T1!lWBx(qe70?41TSB{emkI>A=u@PJy$~U?ZsoTI(QidQ_No!R31YnX#k=v zH)M&le#zR@F*EYK4_4Rv$Cxk~Hm-Tp3GjC)N*3q#?yG(OKGns+5P8iFgz5C9Y zth$GNETo|T3j=IHADBiVoJ3pb8^Dp1 zQbl*m6QXoZM}1j96_l8>10?3Inc^qy)d1gaai~9*LtKNlp=|KV7c{ONMU?>~$0fdG zE>rX5K3TY+6Y-!+N71fUh|i7I1{pf93(aBTG~;O$fnb+<15B-nXw907pv8yxPBbyio+%uk9{1*7s&CG_}bMtJ5biwY&!5iZNa z1^UGAv~b!oCNm1HEW0vmAyW1KhQf6+Ir@o-sndwJXjjs3Bsn@&GhJDbldybYskY%R zr8|M4BokY?0Ilv?RQO|qqKF&}5bE1#^jH8lambc zgPlX`Sf9zRD%m~kg>a4Xb3%a!(~G{>wlDdHe8s^Te-~d;c@^+rYH)rlGV*RG@ zRJA%v&{w2CcjnC_J|H6Ur(7KMNXgeIJmtd_TUXel1mU8C(a|>)OSI8Xt_hdRlkD@= zH&6#eKXgiZM(=C@T2?%w+^@W8A>Pkx29OxE%U<%N=LsI3(O!%T^Y4NMl+G658Rh$) z`*3A*r>TSS+pL0rBAYDk{F^D;Yr12U1nC&Zv-`?v-p9u4E7|$PeuHi6|B@IH!vo9% zxVYZ(zbVNWNG4I|ly?)pNk-Dmz;jJgXOEnXVer#EaqXab>Y#3m7RpZ9gu?9)rZJGj zl-}IGP)(LVX=>LC5t;e5e}Q4}?ta)bLT?J`<>`dNF7chOx%$_B!-~}9_xw z3!C;W=t`AKDqR>@IMmqNQVkkV@NQkwvq-i1utQBO=A$y53Ro?2qVQ_9mzn6aOK z{+wSr*`!kl7M%0iZRVX(X0Bda2BWH2gMoaGQLrU5>`b^cEUk*X%tJ$^0(+2Rw|(5G4i02e2}E0spnPVd%Ujh4uaV1?&w8;&Fi6YZAAIJvnee z@?sTi4Xm3cI1tM=26mWLLNDp|YpwPB z<+EAu9q}i_*?R8#*0cK7$TeCw`iJs1>rx~_Jk$>_PMuTV62 zH^=`n9I&~6b*JL1*m5UK2==m7Aqu_vxcL37y63kRvwv+eNqg>}JHf6vXy55Qz6Vnu zhaDu$x@zRG?A8|N=fhUpoSmv=4o%HZ*qes)t@iWT8*|Q`{I~8Mf82W66ATaD z@*s)*odas~myQ***A9N|-MOt5xGgOWE^0iK(GWx5K7%FTw+M4|X(~E<*_rs2oyX{B z)!%l?zdOF2zpxw+4@n7DXzBgOT`BIGwPcee!>JIP9VSuKjG*(%#ypbjn!wIDBh$1R##i@j}?c#&3Rn zIk)b*7p@=(U>|h1*xXflwR^ZXo^0r-T5ByRxN3hw&S7nQ@^9M&WNy6necPUszn!>d z7JRQ7Jeja@^{44Eo_D(J_7@{QJMDf}Y4rydG;6X5NRQavIy|K#aK`QR*7Y_=U-SB6 zVesem-h2LTdZ~i@vU=K<|Etn))8Z(euDWgog08ihZo~(CgrIw5rYrpcf7yPj8x*NI z#W5_gZvvd21irPGoT@~5<`vp|D0&gHe=}ZlB`oSs!~oK(PhIdRd2inMFi!czmyR~> zJ=#SPZdm;s5Xc*A+%4j2lph*d)7i5?Ov%qu{GBj{q-^%G>`P8XB-q;(Xh!1THX|Ek zrIv69BO?iT=pxAn$_Edh&S<3L;SM7k#u~(-0PeB-KU6^pQMm|P`TnR-B#TQ!dP*#N zEN7EC@Oo;PNQWv$O!mbm5%ANs?`1^@DngU4C+*2dOc7#kqZ-bKkRd>mxm{H5#2;r1 zp_m@)#S?NaqZ+0dvMUV6Lnyn2@)g@R*@xRMClT=36_R%f{ggdP%H_4oB=4l^vdVnJ z08Av6K=FPsjVU+g^4LZGqr6~D1eHMX{3XPnG7h~@GVKmas^3!Lw}+c6H#+h(OBN|0Z;pBYgT` z5=j~BH%IW6ShiRuu)eVZ8YBK;4A6cm>IB&T*l+1}lPU7gN|%CM0jk802(hkH|Kmw9 zjUb31`){7XA{nNC1OU*j1kwBdO$iY={D7wg&Z>-e6^z2!iQIX;6+jY>v;79GK<*8u z2+`ZgJIk%3S#qy4CpygG{;6pVY!c1 z-D;S#c$OY8zmZiiai8&$=W|APdCBl}?EBWhZv5+rlW+c~SI6@)@D?pe!2JDv1E*&9 z-30Ko;fw3FnQ<)sefj0=omIW@;u*K4WzW}=5&Po5~^^>5pJ;J?dJ16u@L&552pT_e^&7Wsy-8(VS(R%7l9 z&n~JRBFxsonakhC^))8{04%X_9$|ca-M26u{kaWlu$CScecrn^v8VZeyk3gC&U1Nk zzp5dXeM~4@ue|3Ly;(*1k5106Gy$A1&-GTz>kE!+)BH#6PYH+kEq|w!|L2Ty(zo-% zdH%4uMt#@clTss;>S)Yd*Q?LgGaU=~#QSi@kh5nZ5l?jf^Ro)qI2E!qk5tpa*{o3= zv}K7ylS6zGDz9Jj(y8bQO%6kjsgf5>MZ!a{APv6dd`SR;`>Pl)pgH4AbX6utDaX`< zA{AZ6cb2F$u36cNvxq=!b>e}++t$qMH+27*&flsu`G+%der_kRfOSoRc^NpN^k&4jk>KmNnTmFG1o!j)7g zWe2dKnDZ)~WT_*BwJQymB6E~pMc7;YOZi7&tz)cA!ux3M9%~Q(zjzw|^6Yn12>R<$ zP_?kV4rJ?~kaM!2Sr#}2QeX|qAjS$jHdnYN&Ku-&Vl~Sk#z?H(<#3Ha>Y0niEHr$W zX$mC^V6aIdW%#fmQxpwe&jRMJrDLiD;1t1FxC3NK4<}akBmV)*o4V^S#K96Hy7!EaxrR73P&7aM{4biyb;0piGn@Fxi5|iXBGQQU8Pd^&^26d1WFh z#)oa~CVq6IiKsaLkOn2X4^hC#0j##OHBiXNMgE21Ap=g%0wU@o*h&QQkhE-IlK&Nx zszS-{f8CZjInGj-2WMu15c`*nS4axZ&H^Fsqe=N&Suh^1_`fvp0aO)AeV>s5CLbZ2 zjRjR@5-Z2e`h5QPCnfi)UIi3#a}$bjfDoaSRWJ@NI62VMNGTI|(-5?5ppqX3TTDYxvIR*14Yrnn`Y+@|N$Ld4V6-d|vcFk~REL^6 z3W4^Kcew)T@NyPlK(i`tvkel-&{h6fd&-OrC>@2s_?Mi|6F_r8|Cw9ydKiqA)%PI@ zD)t8?D;wm$+{DX*x3hrzYppE+;eU{3Tn;wug;9)ud2VCDRGCEkF*1aV$URB^8~KAr z!H4o6HsbmuJ`}+Jf&Kp>2p_UP8ZC_eMNXOr_c+y{gYmLH#@+e#)1k3#Maj92+qGj66KteyoDa6EaeM1wk{7D^sAjJhlP;z5xj zN%KIp0KEte4Aiq?j=2IbvEBbAHqP8)FiI9UnJSkd*I;BTmd7XoQdE;NfQzRX5|<77 zBbCF|QJM?I4pn4Q&v72ic_2mM=`4`KfKkJrU35dRWj?*V7$FvL-nyG~oaY);Z?vth zzF_*+RqnV{&e>JA_^74Pu!G8i(#G6^WLJutcSm# zgQ6z$+l?#BA3K9@%K+>>sqPbBj_#Gy49*ut-T!la(y8|x^4|F%&I??j)+sLiJT>+H z-0(>NxKhCr_s4OX>=!z#Xf-l&@O9VZY~S~IZ<-(eUAnYZb?s!h(R6P)3$GC#P1`cR zOd{NW^Yx7pzy7ka1mGMzEO%N9*yJA>25@Xu4qtZNe?L2fK7`CL$~KM%ocvZMR5Df? zoZhOpZF}4lDnfp!wYV>Gc=>Gl;%~^-GaLJf7cI`qG|p@WkMSt+p-D&v-*y_1)C&PH zUmbC5Q$sK)IUxB^oE%t_9H~AjMaEZ`_}^^NN0nOgKNyu=gc}wx93jm~TzOpJE1_;U z|Al2e_^nRfT94aaEh062Lj;X8=Yr>#vXHhV{*^|!oY!-O$4~cig0lQBbT1d-hG)wR z_%9)YFtRiiN&l3Zw`Gq7PBeH`g-J6qdgPoVFj0k4bbsdqgVG?-RdLZc4d7D+I8E*8 z=>MI8Zhp)oRj4m2yAL?iL?*%E_*_^jvxuiovgq@p{hhi59-AuYk8>*>M58qdN8Ooy z(MHhI7-^E=(0mRNET!j3MjI`SiCfQqr4%A!!6B=&m-vB!fH*^Eh>(Jk0W_zb=UFg% z$ghQU4rk=M%1!aVWN6@tcd=54>;{&P#ch1g*~1>L*X``hKjJy(Y9{4z4U~yHf84u$ z*?cLsGPJ~f%f)t_;*LY_q4A`AD`k@eC(`1fEktv){C%n|PVq{IrbVxAgPIYMd%^AI zp=~pP?V$`ckkPcL zv&s+jELa&{h+k5Fr`?FsP56oDocI z$1cNzU8Ku4$BMPKe;2@Ze9FE?M3sIY%5-ZRL{6N1;m&8-2)t;1!2t3TE7uY76GD2= zGDmhQi-)&xMu8QI8xd6m#W1CZhF9ik;7d(Q`KDRx! zScP$Sz0R_EMeQ^)|dan)V8Q7F`|z6ra+* zO)v#~lyd?HNvT9cg6lTBjbR183to@YScS3QMVm#i4UPTZ+X;bO z2?oR{hGo~q#xnNLE9+mu-N0gu&O1Hku4Ql)e__nY<7bUL%PV}`Vy63iyVg2sL*f37 z)5oy*f#0Zq#A1xDirNChAt=CdF=;w*(WbKd2cbJW_EGu%-ASXz`ZDy%Y*TD~!HXqC z$DO&-7d(xjPcQivLAeE!R*efv&!0~|S;he>-7nky70_)?+$#~C{h(~+Z%K^#CJPpq zInEnZYca&bI@;K*)txcWJrtI22xwH)$LZ(_%Q^I*(Ag>k zrUcI))d?MrwA5LqY=UZ_mY7E7_J@ud#~N#T=|_-w@?w-1>ZVp(zi=epe$kRtA*lkG za_eG>ciXlyLC2}kIBYnIpTDi;(XXs^RO)OR{c4?UV6fhUxnJ)uL(hy>B%6qSOSFAr*9%tLaY^c@7@sTQaG- z$;$9fJ24u&aHWQrRy1*ln6{3(_JkflbR%mME1+~0I>H_}hg(VC5eBG9T^89DY#ug4csxzy*A zj=xt$tW}6MEC~*fWQIaq8phcUF6e6wRTcgAd6s|QIVp9;L};mGJSNy;=CP0l3?twr z;)&X`TOb$n9G(tSP=z@bfMBA53PrMqDqvNGL9Q;t-I-B>B%d9%_n|I~-zHH=^=AO9 z_{|t~7Nx|A!H5S9s@Zj*p;jD+uOi5Pt+s;%GjQ(^b)|$y)22i?32)B1+mnmcTT~iF z-w2`N;nW~6_0!VoTvRili8I||8FKY7%FoyH@{Xb%2^u@A9A#ttSsNxrt8?_+6r@_k zX&*0atZeqYdB@gse>w2eIHd>?6RwA-JXIVxh?sHz4kBVuwl)DNXf7~7IqT1w2)Rxb zj95OS(X787!=9QX?CtEtH5UAJk#0($Ch$!}ol?WGNWfzFR_s2V>!-eS)6ufzgSaT) z@h6o;DpJWIp}=)51V;AVWwf0tIK}rW?8+rAmWAThLU%vkJ@V7kE`fDgzx6#%i#lln zW8>ru6Ltzr|3q(CTtir~S}mNKYTi*psm40)#y|1wAU|QFK8OY98)XiiP0X z8jo7v;G%582)TkO_|UuMw}hk8IYecvJhh2$8cSH&>BC5os@15R=JCRU%I41-G9o>< z+#|yu-U8&a=;Lk!U$2Ke0|5c<*Z+OX-rU*I(bCDoo%QdF_Un1}PHQq~f$#WNgm_>N zz~3W}gZTV~3=@}ac|*Eq$l-P?>pSA&YVmm{f!%}oCew-J`&7QkjC$h}Q)WDxi0uth zg)+?)as@e)hf6;-nT<9Nvf4E@^U{YuPp3*L11iaAscl`mH@m*!Jci^~=Co%H>FQSA zZ+2JvGIMKb8&O#1e<`kl{3fbe|LBx$)yjplFcvqyrqtnKptbP*VqeU!!(i z+M`-M_BF^7XOkphzPQahqDA23hRVm_jj!O|^zv)F>{glX>bmeZZRP#3)eBEmt?MoX zA;7WW{XyJiHMMhYg{zycT+v$=-w>}hUEL_CKU0CfP31Y6Vyv!H zCwb(zG;LqL+2&TPyqSId>EvyLZ`Vi)&7s-ldesnNwMWwpX@gFg+>}}FdQEDC4)CI3 zJYxPr-xXKAOY!zvrGtJL1M1fV>Q~*rD~^<|KyE-7+Ujeie zIEx&l&^#R1(g?x5iy7C3TQV-AZQ%NfwWMPm0=LUY*0fADGC&c;92EcCQ@htLXc=y$h{@C z1UP2gt^j!hY3q#2jNJ3~~)ZK8lzU(G> zK9m3|h;U2gb+;weQOpk}IbwW}tMvGgJm^O7sDh$spe}%{!~%rXF0V>d!&F@aatQ$s z8ieFCqxAi0K4dSX&;j#=ALc&1BQilM-e>bZ4eTTsM9>~YXAm%9BcyrI{O_VWt`bN6 zN`Wfg1oHr&hFf9`B5EN04mxav_P^*-KsrFh+hE40VID}%_%AX(u!HB2fxYOdkb*xf z7LkTHx9L+Md4C!hPXzOKFV9lQfmX|#5%`UVL^_E$ctH(OG1w&>!&&%14${JgQaj#} zIdy`&K3T#RffUK3L>OlSP{0xmM<2!I$@dykNQ$T#9gJcHfxVy&eJYDO0OokVQZP_Y zpdKkeGa`U`P()tJWAn=h7T=msiwfWuNF8PZRe-qmdzJhF3sfIgY{ymZU$flVzs-zj z1RYd<@ct$3=CBQw_qP|`njDGv=@>>5766Rqd>YhAddM9e5@+by5)NGQl0b{DycPdC zsLz`)FW?vAU!UxRy!Sm+XaoCyg}#DmJX&k>AbNd;rqB_q$OFdl2^M8EAV{f!<8L~N z_`TwCua<(FR)}n)g(uD=05b_Z$UeXUuFfU~DYOhi6dZRxsG*tUxC{xf223N4NayVo zMrnQ^C;$WEIun85Up#d{BL?Qd0pnjjbzmdr_i7;gmbgmrKcbB?Ft82Y+*hNT`GVh z2Xv?xrDa0(i}cQkgyk`~mIa;58v*&J(gF>Km^gjKj~WR8<*srCc6ve3?mNe`r)f}h zuWpsu>E>(Y&9kUrz+UA`?XpEp20Kxk{o^=HOf!`*jgOovL1FlPcV(dSE}YcCQNnkJ zt^~mw3io6=bhw@%kcIu|K0PYpEQ%Ad``OQur22XNf@r`&T9~@J=H=idkT^qtOT82$ z7V5$aWcdMTvMZX1vU70|;&&F4E$OH)3S+^bR>{H%eM>nz%=;=!VAD4+l`BHX>{0sV z#7}t5@D8K(8oO%Tx@=VV{e@{# zo>g_%tFB3n!jjZ!M=4opSGJ2+TT-_r=k)ikk8Bp8H)l!lnMu7j(pxL-3hJ67{D@QT z2RvwA(&(PAw`y*bRY%U#NcYgzIeFD#RP}gWS-__N3gqT@0iXDm0KzlM!&X_Q-Cyns z4rpda1_>u3=^;c~0Z^$_d@W-gP!z9lZ)oEgHrxFw6DrxGWl$7nsR#yQsPWl0l|iul z^x(SyBtVhioJeR{djDgsc#6Rog-L~ljN~9E$d2~uA@ypJ`%f1{k*A-Xjh0W#gC0!y zbwJ-E&TCcr5g4p>IJ85NyjE|Z1UlG*3@8oignKj&m`VdfQbf<>1?Q>^%z=9+80jB9 zP$XyHV9JyQXFx*puw6;vP)$OSRiUeU#!|!Zh6&_Jw`8SFjc*g=rsPTsJ0IGW#upPb_ zZD>spG(WD`7vLw1Fn;iKCzdVnAbMp51s;Ozf#IuTGB$n$!I!PVJ<9}60Enrzcp(9b zP$189Qe+rR3{1h#h}ZMoadeYKl^UtdxN30`hHmE&YRLX8%=Mt2nZx^Lp==}NaF=wO$6KTe4Qo)ay23(CK!6T7K6f!@QK)v zQ~-(e5D*3lsVB5v^WR1!O<|6t89-ilv2uh4SU6)K z?=%1wHSpUaNT^|CEVS)W1HAaA4afjG!x-V-CD1dr9XFtEF2-Rwpv3WVEg9SDjwyhH$tg6FBZ zv~?GrH;aL2sL=eG?RGy)Ni?AxG;yf3@J|*6H~Rqv#D_EA!lE=51s8j9U9dBU%_5+P z3GgfxM}#%Gcn%U%9sE&_E7GkIyu^mDmIeI6 z4m?S3EDZP@ppf0N%kVV^yd=vb$~^g?O|)1BPF4j-N;e5O@eC)*+(B;X0|%Hb8onK7 zaZIB$USz{p3M9+^HegN=M9~tSi3rV^$V$C3z}{6aV}g<6r*i;u8u}^Li3Pt)8q*ZPCH*i}^k8Vx z8A@dAjda#riv8^+LiL!-CAogEq9+)G-m;maS*`W6_LpOBRaLb{QmHGV#A#M%KD~%t zbPrF=yo2X(ux~w6JhGOyL;EMtY0SMlV#}_ZPWE=}PX{5q{Vo5M#8Rpt#hnn^_v4II_e@k_j-&}hN@>#M82paSvg zNt0`jT>U(Q6Y@Lc5{>+Jl3w#-FwL z$>+V^zw2l~^Y+aa6|l%G7#;`+#=n)Jhp8E`{u=Yg$H(e0H*3OejSD0EG4F)mWLc4o zP=9y$#*)n1LSK%vWlusa)d3YP86_nUF1U3;3ClmlYeiDqKjeA%vxpjYpi3;RwSzo` zcK`v{(TnKQ&r{9xVqY@1aowd`p^ z_lvZl0`=f+r}R(VVW|^ewdfPDDF%O&8lypJTNzmB3}~}DAIOWkBs0S#>8`@9o-5H0 zrut}xer522O*VDaW%<5d_ zPVbXK*k7;2elMMs7PfJH{xy7f5aX57yIv80Mf99ljOWtLUbI9<{bIZ*%-2(1}on233PV!hl zY)oZXAR+G!PwqeL$$$L~V>WVkO6f~F z7F2kuuFa(EC`;D`bPxSm)32p(c5X}VhLe})9QE?g;e#S>G`0-a<*gs7%RwEO zfcxLo$#zk!iQ7okH|oY2Q4VZyc}{FQ=xp=KZzwij3sh{>qjS^9!~s>%W!diOiGcU^ z4t|N*9ag*#X+H#p|ga(cSh#u2Cr!Rv#m?Yqj0Qq_lJ$g|tN zOcr}fqW~F)h-1kKnSGRIzL%&Sy~@kl$qC@vjK!a$HZ`FPy#&O}6Z zfCBfnn6FC8uyka1_)7-35ig=k(R!IpPUd=-2>Bas$XpJ?ocY$3e&uZ+N91hs3v$x) zfLXgdmDl5b&gh=a(LW^{!o};cHCO-HEl3CXpc&83>Nj6oj-ra*0KDnID$F^1jzgo~ zsLNB&BrNGySPnq`sT^BToE)4!4D1t2CKm@}!6I8jGPKoKd#G|yMc!|jgYbOTfgM*m z#!zB{%Zn`+Ff9Hyer;6t!C;wodU`5*T%?cV&Y7x=9(b)ePf+2y3kzt=u6UXG8Wosa zb4_Yc>w}u39A$!}@_Jg|E74r!zZ~9ArP*e^gL+{n$E zPMtcN1$$51pz?SMH${;o)P3q8)Stj;1Fe_11FasuPjUDa3tqh#9?&u~nx69y z4zLT=c?ai%@#f`y81kE_+?{VeC9^A9vN|Q61IMnZ zt;sMdN98D=S>uI_r}qLNrrZr(Y&qgf2s@7*<{V<(N-*p$0|{)nAFSb%w>(yzIv;W?({L=T;wI{DJGIjM=-GYss#}=|8Of|w6*=DD?g^c7>-LExP0g# zQ~7=6Rup%@oy^qPB0Zx2^1TtQgL5jiM>0N>Rz7Jj=cSC$%9Rm}eb!=#zL#T>kQ%)p z;c_i+|686X^mX%F5B{g;4P8GW<@xpuz(e`Q$#9_{{tsfQ8lh*8n_Z+{Z7|9oDs`b; z)A&gIw4*^A^gFNfU<~Pd$A0N8?ehL#p+XOe}n9TGFKW$>=1LG6@2TemTG&T^x5s)2cts|#KK32?y* z?1pQA!YH!=AALZ5-9No&g8_x-vG`rPV#C#wIZhM?Qyv=QsD$B4JNdnTN@E)lwGX~C z-o?VG(;Hg;tLWS{tV=gI0|ae~5)3jvDJ8?qyshOThGr@$B~6$FiMD7J=+8dUJ*chC zVo2@LS}02fBvP1-q&e*Jdo`&8DFB@R#8hw@+MRNW=pt;D;;9xc7ruzO6L=WD9m~`2 zC-A0#^guQ0t0*&p!Si{gh;7u8T^2foFQ-FDsoiM95nh*{6ieTWVeLlWE25SJMGah! zEjIQc;FLT)1dhUjz^Y(2Rnj<3VT@GHk0T&`B;U!9lEI~SGwQFWe-QH47Q(LFM8{rO%D@p?*7*N~3=vzfuzKj^dlo)EAU)!6u zI4v=fnMxgFd%8>1kG%t&WuAE4KR+WA9wQ3POT27Lc1*LUv@q){?CIt@Kdy9*9kO5U zrrTO#TCUNIu{$*}8#Rf(zXEEorDYv1i~Y-^kaTUE3^fTaJiB8*3B-+00LwaEkLeqg zs#0!ZU4HhV@or}Pl&fu9j9;sztt<(?csZhwxAu_aX zR;y;d9yt2PF0OrXOViP{OQKE`f$kHAif zEvkcjVv%wZ^h8t{7_>ld5~fISvk(MP20DB=dpLSHc{q4DcQ|&qX^ecDJ|vO$L<)$L z`EnG7{a^Su3o69IbWDH+9+Du^0=xqbh^iw^CdwnnLZbSh&r4}_9a$y2W_zhw{ zqqMt0?IcK%h-{@z#SNtmfmA7b^<&pAU%!)(C!!2NUyB%^;9J0$sjjH#sOzZesOhL= zs%NTtmtBeN1P!Eul_H9Y*`Z{M=ZHnxg+HGl%e>?Nt-lNoqLN~>gb4A>8>-j_;Q`G7 z3V2&yNNSb$xR66fx98YI^=?DekM27=tj}oGuU#=4K+GK+Z-o$5y4lTK#&xT z6iBQ&6su#uQ)76;-^Z1wtgvJx758Pa$u~ACRY29U_nvD3bA-g1PAVl;u(UC+CBwmQ z4T{e0<1IzkZmFyE)bIWt-Gtl;MG&!r38?E+Q(_!uoY4kHB}~jklxg{C3B8RV4vQ&c z?}8!mv}7-;eRvk8gv(2B`Z(^%H$?cA_jI_wo863sOA(zz7JKj@;c9Jf&|Ui{c2gcE zcxpv1YI)GA-qGXMRR^ZZXLy>lM9*kxGyc(Jyq9CE9<)B^N9)%LqLIsAcL^Ym27)4U zOT2XTV;jXf#R5osQN)q~nHaO2SyM7RKF;K?9a~Tr$kpPB?@{W)4%( zKGDiTvVXuoDieLF+09-B4yb4FwjCGXIUFEG^zXx7@)7bgwAkr)wRJLB1i7G{=Br{+ zM4hn!u{efS4C(Ee;ElCAhHf2NSk?WZ^WrYjquV{#Ct7FZ7F0&QMT_}kw{!`x+G4Ra zLp;HKV+>x~^T=r_u*bJ>uzDwYCQt zzxvh^u%;RL3DIz{<#SmUt`)EHpC{;&?VYGOVd5A-?$tmH((Gj*c1RtEw}PJYq|_QW zR|@dx7EQ3!GdYgeBkBZ?Z&k*=adX4iZ z_a+CRMAzU9xVrUU_ss>**67|*zwh`cn@){dWAX~%9$R(Xak@q!K_Iz$Sp)9rn;faP z^bJL>vF9&>4xNe002eHq+Td^1=g0vzZg5L|N9(yxF(@sp+I!&!5u-fwSv7PG z{0#Y=&iIDo#1ZwmhDMXg39>L(7Ruk53%Fi@2dy9DM;;XH|C%nao5;ohEIt_&8S<*P zscZvAzC7^yS7D$C5KNy_#_qxO9;hL{C^e^8e|mpCyQuVpj7vf>K(W2R`^fkq3ZbM3 z@aS@OCApmC{@e6`CiMfmqQIUg5||4#d$K*Z)bxsSb^)3FPZwM6v}R!NS;xpAfuxFo zftz=_K?S?$^yFH0QJK!!P5&i)7#I$#F`+5@5M}>C%8)KxLo@m4APA*Xez9?fDHoP@xnTNLIu#HNEZg6 zDXrQCvGXFxw>vA@rI;A@O}|>nt}26mmO3JQ+K)~bt74azL7XE7>Fpy_%(^x`u!>zx z7HLZt1F+OY0$Ohwrhlkr7oWbmid|F|v9O8(P2I)6P<1ucKy`@4E({FHNTx9`v@tMF z|LDvvHT}FJJJi#@#KrySo$I2@>34;{C@fk^tt2p zedGOi?;e9yReRT9%{AxzzA05pUJCL9Iv6wZjF)k?mpp2)Gx25!s=$&|ZUO zGww2k6YqpUysHg6`kge8aCe@9t(j9&tNfKTO+D z&O{2BJimWD&)MVL9UXMVqNp5~xf&z2oURg<;3qbtK{d3#V%=j?c8U9m^k&X9#EM^! zINh84-F1ia2zJ0;j8m4o+kOc(x+dB#{T)qg2O^UB+xy!HMGBn&RbP{kMT<1~l=V3I zhgmr$J1851jg~u1<09UGziTIAh_!~7+X0q(El0#FU8>Rro&lb`IJVQ45El0@yxHhWQB=5FWiQp6dUw?g^ zpjX3%Lo2`!#^g)!*X)bYT(E|`Z1B_yO30Ph$IloC4DlTf-&f5 zV7gf0HE2b0`-rQeWX5G)WsvE>O$y={tIq4MX&q>vG1 zn6I*Iv&{L?TQ~b%@S>^ut45MFiR@Z^ssFc$jrIf3G@yxvaI zWq5XKhe4JGmb_AwkY-_?Le^x1;34A9&@kyeZQjv~^|aYEy?i7LuJU|67B3@Q-$tMN zfjOO$f%1eHSg`Mzo6|ojF1<4n%L+Y+@hAip#Z{CbrEWKlMVV5M;Ajn%m8UQggc@M5>9y0l=gFBl-(fbUmJHNiGHY;v{o2Lg5Q7O<$ROuH z5vFM_?>vRX$q5Y5MfCmD`7x8#|3Fw}jD@`J%P3g(>-Yh}yTk_C73qhN5$skZ>MM+8 z`?Q`K6`D6d=@yIX3!-Six+s|--9X}pfcpruyc%ng_I4V#zB8U9(j`{k=_QkrZeZ?G znWK$5e~+R1FrVkIoF$W~EBO4)&&VOaJNRcFRddoYYRgBVL%jk*hC{c_IjbrCv9E_2 z$$|P()QA@sLzU~h={-70pRl9Pehbj4A;Kd(K(%*^*L=6RrDG$vP?-bBiwx}sYMXe- zUlQQKn!H$dh1&@qn0?*ebnAXWn$do~p8Mu_bH<^|?_9}`Q429{_8x71q4vxtIx}+h zNR(cff|P&~chq{grYnY&t~eCd&>%|U)}i4Yu<{CUjg^2XhMdqYSQo5-eM}0Tazc;l zX2tI_|EhXuSFIkoKf)-9CB%!eW!|h)iIvnyBg-tIrNqzFyESh2;U`w^#Eo5iEU~%! zn^jMYSqAis9)a7ne(hcEq0=GV7USKZLv{MsZR1$c5#RELdaO0a`h^MYYAL6OVF3L- z%SjxV$KmC!!})hzcNoN@^&OvE@ojfM3o7xl*UuKf3lq;gcn*XB<&b&JVmdz7iTMW>>6^ z5JJ}uv4}q48ou=k?noc5;@;UbUA4}>XyC%#PPL%l(gP}0tg~a3sH|Bz>Sm#o(1qlx z*4gF)v2TgBf8E~-|2qF7OzS3lja5P-WXiC;P$DpVj^1sDOe=rk<#qzUn~)Kyio;6G z)AS%G@lkd)Y-Zu^i4ugZe?^~Fkz74J2$wO?U|_glu;3u{{YRAgXAJ&l!~zE;rl5QO z&;GO~%2`dZ&QfYjHCO8=+@gi0OM~j+SlXI3l zJD=z{fP`#%=`BtX{S$ZeuQQ>hWXZH>Ew$9tJMDBgBvz^T^wf94{GaZkA@Qh=RNvmW zCtJoB+MHF`ATsM74g?nw=zz}J8;DKCUChi$9R|2O^1=)(Wl2U4(|g}Pb!Ku=z#TqR zUv*hQ_E>o{YUuqOh4}#;d^s*nh)r=%QDep$(6A+OC7MC$7Vm|g)){Bj8rLY(uwo!I zgp^=A-`EzmuWnKuV?w~0T8FZyKV@_>*__67s*Qi#ap&YB8cy^-dfN>Ow|P4c7?@fG zI2bnQj=yoeqnWX>lOw}l2d2MBKjEA05+i!>IpwLq*LH@m9~acqB{U_$tTHNx^_JV| zesi4TR!Z4Q@6XX_pA?yxW=X^&1v0PO2L>|NPK?gl{Mdyt;Bwmh+~n;N!wnK+&*kpb z$hL4s!V`8&{Jx)b#ikukWEE-^WR2l=dWcg=3(wCdp{;XxA;qU;(&Ti;Nt+LSd7GnM zPry~zq>FDNg6`@}mPXH~kiH>DOf(MYk-m)j-aY>jiK_;UzvI3%E4D8Dx{p+lfP;%6_5N9@Yz?ol8Tfp%;MO^2#{iJKyRvg9;UzioHeQz zG;Ni#9erXp+SoAjfOLuF{Gnz>JXy-5l{~}biWD)*8;PMiaUK=J=SxKGdUZG1mnUMY z$!_iD8zZvm?=Q&6S+rhC_ps41CMQwaa!USn``Yff)!$d9hfaI!zP=ort1JtAu#zb{ z)u`7NL|%aq&FQTvd4W%93*;S`Guv08ZrT_jm|qD9;tN+fx<~gf__3%~bEmBTlJLCHm9Fp~U7HKd-u#T3bV1 zfIi31U!DyD30ppMB)AzcsxnXs7R7labPLh1HJW zLtW%*W5Vl_Map3_m+rk^UBr@>37G0BKHuJ*Q)&QWd($K~+M4gvQQ950NcsOcky3zh1mD2)r+Fbi5ol3^lC3JiYV3ZmT_33N$=j`R)kduKQeX`@TFa zPxxlNyo{_1yxx6(qj;~?vXx0@eLh@&r>hydeb1;BczxLKc$qjT()E2gBr>pUt!sbX zd?uyh?^ZDFoG{tp5Iks0U7<&39ZVJKNq>e$-;&Jph z)7(<6w}}B0K~{>U^n$60Xrd=SGe>ND%ojwX4Kk_H$LugQOi1h2dTg_us6Ih5TRLc5 zcT=XxLC*+(QGRvA+N&vp>=Zdn$Wt%&pA@y%eFoVXm4B{ku+8>c`UH6dzCbT=(Xncx z%A(M-fUEKaN=huvO3IB)kj6Ka;60@_}PnHNvJas!u z0nl=EUG-IcbVGlJvHD@mcUkBQ1N3Bl9I?wx#JxSL%-Z#(ES_-FN7KB<7p>@WJHvHH zszdd_7sj954#kQ!)nEtc+j^L26cOf(5ja2kT1Ru+OAw$nnJ2^j=Mii5v#qQAU8FHR zp}83+nbcF17;o{V+de2&cFk%r-V#cCe^8oXP1jaX_g;|dk(5FxZZlfy5@IW>u8mzh zzM|J5R8`j$AI1MX9o`rjW}q3Dn5d1Kkfw<=CxiHVPq6gyDdouI z)PSxj20R4YE)u*5+b$YB8QU%jyaC%T20R8kw(wU=V!Id|WyMl-2DkGZnyk+4_Zc-l zR1Ebabk!^|Wdn0%Lvv*#b8+Lf4Vsx2l#C*i$I>p0OxQKY11`DOW0do;c~@WFGn66$ z9o6O2tJddj&tu)U!<)nRmvy=Im)#=U>Gij_>q_6(!(`C)&9QCP+hwv`$IHz7lgLxZ zUe-I~qe$r`LxwLG!T7fC+rIDHTT6$DEcs#k?Q@i>?W9%ha+E5J$(u;WNe+$Y1G(}2 zT62_1>4L=_^r@<$Ukm|R$3+~C*9}w#wV_$|Sk9mD_lq!TAjA6&cFB-2G{~)=S zZpxC2As9@4Z;Ul*owuAhH%s>CRhy3WLzL7EQLIb{6F=8=+(4JQ#Qq4+v%cn^3K165J^Q#35`Q<5teAYt={jXi$mV~gx z*Pa|0JXcK&8DqhLNEx2z@3n1D=FbeM2K(g;W_5UNsvVSc2pP8hTq9)+gpG*VNa1O3hoWP&uDXN|lGhk@V=%W59LpuF&)W zdp1kfYxhLS#Wf73&m}?!u$w_w@nNHU`TX`1PFwS<|BZ+C{w+dBNq430^a8-lp~X0S z3jYSsOK@pn46CP(2 zpu~qG(_zHEWYK<$ma@gR6zI}1XSL~;-tDA3KdVgZJ@lQ`<;NAAdAtBvfzr2^8^|IK zbEY1;!l*H!y-w&Yex9p?0ES4tXxfPHB~9&SNq8;a9$6dADud{KFa7h(Q{~blu9BNy zcEyrVST2?2`i#LhMEY56PqVMPEMYX>EKb2p2F|$>I<_TKJ&f5UBmK;De zS41A#hVdG)SCeEHy7-FvC@{bKqT?v>)+uamC?=j4I|%&Sy`G)9uVq z?Pp^)T%=9URaG?#y0%P*&dd6-zV|DIYQ$8ePx3?B7f|u#G+5HtzCe* zdK_IWC>o=QKBQ!&cb=xT>}VrS6C!CdeaL^GKhD+#%YUZ$@#?~rFO;Z;eBP8cY3>(3 zA8ROvPJ=M#%%KnYupwjgf$rBWjt03D?yDqu4m3|Eo^AD!dQ;`3<()j_AvCi{Mfru0 zO5+c@FAJ~jc|EI)u%&<_`r!c0S2-T7#;on#pvK2za@2)44-JU4q6&UDx~_4&6~DBY zHA!@j6#^eRr!1JyQc5UBuky`lU-E|X@Q??KCphe%)%YpU9dGZe4LE=A8jAQMODS8Y zT>F+=<9h0*=k%M*?}Z}d~KzTV6cq)fyV!-5pR&uWeMwK-R6cOZVlXw zwd~~ed`Ctn(I^c{_mhXz4qNaj=Mk^ut;gkv?SrTTJ|qQ`-V;PRUIOwWu$|GYbH{LR zpHf7>fm;`2vx~w!`E{g})rd8iZkj)KP)a_fa30xLs#pKwThmRlhd~Becq{J(G&ew#YTfymANeWs2GGn%9P=VN z7!2k0TmFNMC$u%kdb31bseW31)9eqEHwVW4!1=t#iC^bKJiUI((?Lh#ZTmmO?2+E| zK6W5dyhaN=ZJ>qe3Zt1ABw}89NnwgZDzNF!H8ctmOf+)#U;dtF=(($*x zh>8)?#hZxjaXt#Xp%6V`q3mwuxZ2k&C++&3034+A&MwtcLmCWslnEm+z!CiVe7xs;`J|yDm@6!i!o*m`g zEsdQWj^gjPu$0G_8}fHY$#+JOBCn8f6$TJogmWl~tDG0a`LTq14$)*-A?OhwGUy|3 z)Pe@NExjYw&@(qEqIrm`1GqY2h!P`CR!YvJ%}c6J40NTgQHu_?tleouixN=2V2Iin zzQ)L0|H>y#(}64sHRm@`&bDFb8VL8Yq9VQ&rOESx1sZ*3_}xXmlP5@?BM*@Ej;)iQjg79(8M`JO4#w*ny| z$n;I;U3LG_E=`m_+CRH%R)W#_Nz!?Or<_B>q%VkBAaDl>Qhjbv2{K&l8fh}4z5xI<^`MobXmTEHF>IN;q*fymj;k>HGnWFLtpJDv7(3!av<_as$lfDbE5AdA9heta|lT7GdiBEq_UUK;pMlmh?h0NTr@T?WY^FTf(dq zs)H=Dxx|fI@v4j?;P)5vuj_l5TML!?u;bW2RY5ovbgX?I9X~UeiCR}}19eUj8%w~Q z(SDNY7-KYSy|cT=Rln;#I$@8<%fE|{D)xl@tgAiwq&l4jY>}b&VJ({ z{?u;L#yHJtm9^@mJZ4kPj_8FB%{;jb2qO8M9p7Sx?D>N8>1MN>TThSZ;+xq#89VO@ z7T4zOZ=P|cjZf5@;fF_K(@0u6&Yhk+d;E+rb=)7oGPy`a>KM@K{P=rGXW0v|{kWB! z1yhh_FPTe<d|8=gOz zN8+VX{xmPWo=<2f>$3wB>8jn(#Z#Yixy5-Kr+Ay>`bZN2P!RPgi?Yf{`gnE~vZbXt z_%Y2#CBNf^;4EFM^vcLe{AgKE>7tU)cv{_dZHc1H%a+79Ofs2HERi57#SFUznK>M4q53m4J`>OwOsS&8v8cVl(K zhyG!nD}qZ0naM#BW10q?EsSshd_N^%VJqSHxG}g@>(}HO;n{ZOMuAfkiss=oQSB;* zf-DAI*QZZGii;bOTFL2mXdFvGi=^%ez#VURZna1D{^1)~p%JYZZ#(S$2-{}9u3W;> zglkhtzm~zijnn#$cx1Js;WpQ!R?t&4X~dT|d9k<<`sZi}l!-X;2&i!ZUg5~q!9QLaY zd7|0GrCXw626);jvf}lH#{omOvd_VwLOX0mSQM z^-veF=-ET(Wj-!>#2(na&W1UPG^jmTJ_j5LU5rB;gJ=W=%Wp7^BY2-bry?y#X`h(z zyT@;L#S4zE)2D9pYnF&~COd2pf8vXO z3(X%9JR4EAu6E_7rV5qS%3#Kl*Cx=b$_QPs>(vq4$D8Q-AiTQS$v+YS3wI6ey{SofP zGx~h)K#vQv`fC3kA?)qiEo|Vfep_`uCX;AB_M@PHFI;{%ly2Bd1oNjWEaO6`YfaUm zBp2Ma6Y=g7L>l~oZ$4ZRLf!5<8fpk_J5EhIX=)_N#tM17-@0*x^Y%(MuDvf7m2gG{ z=YJNJO%E4dEb-I}wUejqZrYod;-ug|($(i_8p$cZd5+++H!=w z-hTP+^Pyi{)@(cELJ)UucVg_a7twXT1hy!;%r#%IJ$GrQ*UCf4Z3sD(QWosygC02 z^$rGg5E2(C@&M0AZZc_VmEAxgXiKPU*6ri=SNdg5U{>dlwobXI!}Y5$W+Svu4nyGe zf@jxLc%+n9hhJBtge>3%LL>^<+KSdIu%E9aS*1U8NZ`Q5chBSEMNGo*YjXslQeS_H6wKY$6BlFY%=M42?gr~Pc zpd`(Yh=Pk6LavWTEG&ZbV(dT#bxp#Zrgyv025RM{1wzl_PTr6E1_`!~PW8o~0d?^u zFX=U|6RF#wBn=mr7)`li370PG>+SXAvr+e-{pqE{;tNTRFhhw$ZHiYUJ1-1=8 zj>jaIX}O&bRa>mo>RbswoLhM)u$)>q^ds4mW}NuXA-IJ0ujzm8VR6C`tHhIKK$^Y{ zQgbJMdVA_AyU%dyeF5h7YcU_VaEG-b$nGFXO0|cTV4j_07x%;iv zq#g*~K<&P|t!j5jmTp0~hHJBUG0$lx60hH01YW;>V(+&FwtrTJ+*Q?;UrnYEz+0EX z#(H22SnJ?8gG4?LnJDj5;E41MK<$6Yh(u`B^KRXEX~NQ0zPGt+?O~|;UfQ00o}~mW z<2!?e7?9dtim>xt%U3U0jkq7mj%Rn7oIyp^DDvE5=b1E`+JJpm-0~cSAm@CL_=A?SO#&+KN11ky(xt}p ztdy`0L-Q33fg8+9Dwr|{L^_^=bBofczQ>59%I54Og3EVa`a#D!>~AN)mAPRJvOt$g zrL%N@60e7p7g#s0RlKJKY&fofsq-PU&mL|cC($kEz8WN<_3_i(cvtp2EXx^;Rdv!( z%k2w8>&6rvtsa*ECq`Rf}mU{E?hrUO>&S{zw)aXePsuWsnBd+JJ=05ymIc-Yxa6$ zltYow7ge}27w#w{>_;9NfJ7j*^Fjd(g*@oE@19fdY+qm0QWI5-hpmts^5V=lRBoXG zQ%|TQ`R`8_L^B+Sb&cUN%3S4l)51v9x981ZiM|Um&;sI8vkAxJMvsuCu z7deCMhm#gL6Y+|yAA{LI2OFH5;uTKs5eSbIt$7UlwqlyoeTupdrq)~FFJEXJk=G%W z10w`_AsaUgCLs0f>|F|JH^H$jl!s`aKP*z2ze!*oTqW0B33SYJlLH_>ql4eHNrlGx3g zIOD?-3=Lsu&bbqF$gWivim-{RY@{T|605uYE)IV_6uS}qRZ^Xml5j5SB@iDp=DlMw zXF`~~Uw+`q6v|bUx;3QJ(y;#I{dfbO`4p&rF4NAvT4tqjfoHMf#&xxwa=KBze~x?c zcxiftHg>;zy;O&KGZQc&$J2>aQi5|qUKXJ`-a|vy;p>0&txo;*e4ptlo5_#UvTjIPKl9-=wHL{0Oq@rZp!7L~c?#{ z0hFIbUjAG+Z25-v2)d?OC5}>ZvHEvx9OsbHjOM()6u$oOgPxAJNgU^ZQ#FiTFf3x5 zSTQx!`&?Cqt~pVRGG`r0utz?+q?_fnt+kO8#y>D`D3aG(iZgBE-rCI|{w; zhhbhtm<{bTU&~pAu8T$JH=^tEEk_tC_*~@)g^9)5u6C9v1fUAYVNgruJoV{^%^wN| z7l!<)@=v)%-4VR9;)43TffIwNN-4W)yU6tuQ!@1>WQ7yg)9>7gArJsPhOY(J%inCFPuae&*ocbuacX%-afeugI;^cazzWPEY;U0~f#i z>dXF_DCOE^IvF_s;D}eP3HM_Li4hVbrnda!t$>M`0!ZMm$4>cIT!5u>#KVI)`nVg* z&##yg9b(f&aZWfn-%!G>#`K#FH8J$`ijBV3wM9-U=cq_P!_x)fq|yxYrqei$>mwkS z4zpgM!Pl8I&D&T=XPCjf+IBo|KJSCu6r-8X?HOs*aiO+bwWACgZ1X$yXThvLviQ6> z*w%-fJl2!U>W84S{hg9)0)`u?J0%xe;|U#*jh&3mu2DqFwZr0?_7M0hK=iq zJQnu*nvrnd^Jfe)QPM4*;VOJj2m!_=qw&MH*Kha=?orehit;)3dY}+i()*uWBW9eD z|CX-$KMM2DT=Ref%h$ghu-4=ijIXNV($1vZmfVkfsJ2j0Xeo>@$+gfYC`j^<(OXNi zWf}^p`eUZj?W0L28j7&~G5$5*;IX3Z+{i{cc9crxyqFk|0D}Ak753=~FcfBJ8_M&O zkRs8I_Rui~J*cTz+Z7zx!1OF9a|IPw>-Jce^(m9Tt@}E za~_Zfz(*zdBDzSe1EB;n*QRtzJV7CSA8(2VUwXt{ONUvKwShx+r7oN}AfdGqwywRD zCSPD*jcF^qTR+aUp4Li#+ZI;O6{flN8R7JK(3Ps3*JaW(B!CFn+f}(YEx|sN#1>*I zJdnTDkWfw1Qx*%Ii8{1Oz@9t^h?79EAGlHKe6+yuFAQE!5%@$r%F9{v6<6BIPhJhV*0SYET8{_v zc3dcG434*q=qn1S4c%Y0qG{ZXWg+D-P$=cXcdA6}+2DB41+bO)U*Qr{lsY{Bq8^3W z)LeG-x&j~p;FS6ZtO0voIYya+GMrm!HYoQW>RW-sx*O9M0fCc~(I}>AMN%VVeZ;Y8 zj5AWHp_MHsHF>6ix8SS8^}2(X6TaI>pTAlM%R&#Qofsh4mj*d~*z#{4ADO#{UY89d z2b5D;$SB~2FDcGO=iZ?^X9LLq8B|Bo3d!)dk&+5oQXLReXLowu_j|A@)+X+}a@u#U z-`7cgoLsl_UxJZ7r+@kCT429J5L+5&95FP#iNs(^<4?*^TqvZ?jDp^YI|0Nl~IO2kTy3Qj=9QvzeiKupfF3TVC zg8|^+mRxqcOmZZ;>s$nc0Ss+SC`&{8(%+@_a3YOtO!VnEVpAF}l1pI>!)eTW0#`Vx zM?B;{bNF6N2%~S(U8xbiToVu4IOmkZ*zT=sk>7e5U4;bdbGoC;5{fW?VVCJvlj~8N z=pMSZ+l#QfVoq;`r>yK5O0&CSf9Y}AEWO{{5#fBqrhonqaW;1>IUg})+e3a3Z5rX2 zdlPJE2m;Zh#d7qxX`mW%MDt0zpnYC1o1Z3W)FudW$<-#^!IEPi}yILW$8E34{=HxYP!?%=Zqy+g7t@jMgb`!@0( z>GO0uko88Ap1wtm;82NuG*25#cQ~Bb$6FP0IRs_wn@o|;3r`u-GxWpmiZz`VfpVf} z2(+3{@tbp(H0iC#rtNT)wmm~Fc31rAUa*uzJpw2Hyq=0jzVsJZ%8~4YS%V|Ny^PHp z{m*>4=qU!l*D+=QRrKx!u~||}*v(@yk2saUi(BB&RH0wiLBD;*gf2DwB8%R#LrLnP z5`7O)Ou{#J6gb@xhZt+6|G#T?hczl66l_D{ZbB8OLzSmPRi{JMr$aRr6A%c`!#uj2 z&=Cvs3@pYg67uK-TnZn)2qJ}JV`$1(3ZbrPBKHjC*#w?eYWKix_rR3R3}Mmz z{v&yFM}^a!Kz8l>kA_X6dIa4z6iTA*p#i(aBD*WDbT2qc-JYQayQ{zH;^)Bqkim~% zb1dF5`FZjekX5J!gW1^h0=XDC=sgR0nisv_{xWaCAr-c?Sl=u@#QTfSpcp^@J`t6F z3Mn)-;6@l`+XDGz(iYeU-o-(UvDB13cP0og0 zXMOa0y9-qf5ky13((TA~T3fF?e_i)t(O3nGV&P_ULo7 z47aA$IWGlCGey3(%_3UXCQuqTMrjERNDfQkh1canrj+X*nz6h3lFo}l$whjaDds}d z(kW>wYcjA}E85T#tZ<4~qh0<{=mhgD2A431H1(7)Xeq3kQ=ik!FGzu@+ITy+#%ln( zC4)SJwnF%&!eD%bi!X^)!+Ap!X;2IbMg!H0uW?835md34)NT>nwS&&FW?Lx4f?h$L zuO-C)ch;QBe|k`{ps8d5e1oU?eE9bg_*2J5J|=$L8W*T)DQFK2N`e5*)*Yx$eHp5o zjhm0|-piogbUP;o7<0kX6Z}?uZIKh$ykM<*@Rt~VfTCt7JOTE{H5X+nH!pDoGBM}U zkZ|M+$60hXYAW|Ad7i8^#o5s^KA&+1+1Gw303Ef3al;26tHBCBADh8KJZ?wYp=|4Lb?)z_)nQx=@tj{#9`r| zhidcr@gD?eB#rC;@nEe)gW;db*)1~d36$uRbA0xlD&dVad7$Wq@TPuQg4+e9bW<}1 zDGHV*kT(*8IYda82j-albJ$vesiU*j&nUBo%42+Ow}^fGPrOgL8HSmT;-Bm`M3C|9 zfB)>Ez-QmBN(s}S$XqajR*C>1L1&l_>C=Wheq-`~97uhFN=s$dH|Qwu(z~kKc35^C zbE*18!C7R81Rc*ar^k56w_Lvb;Y869?V{8P-(|asCxnkvT00o6jf23pM2`1o`Xyoa zu&jR2ks*KJaJjrUXM^yqewn=YsHwa&tr5|9d8{{fjj^t|&bxUoF6_?%OrLKdo5GH~ zA^y7GylnT?cgzF+Yfrcc7$iY1gRPpxhRvCf*yANPrJUJq;lstcvhLbkOpWf|%d;4Ndr*hpl-h+P*mE5kWw1iihrXtRnb9ZU~}>G8Sk?_Oa4N%kP;Xr#p=1Zw|G z1erFU@ETP)C+N2!f532gtmmkhd=o}M%p)ufht`ENf38wg#0xCZchuSOv0Q^ z#`m0DsKCY89#J;zNcU}A#Qs*e;7H#{VJ#sIxZ`fl`po;zlC+XcI!8*=oV~1 z;_-zLaGng#o%ZVQr|t#4xolR^hOBa)jO(KyODV;Ba&Wz>3z?|F3T&|qg5G}@ONUPR zM)DfEKwLvxOJt9yjkdg0>5MlwsNiZ9hKQ?s8W|TIL4Lgo-43Lxn(Q_DgPKQrV3h9V zW))nBj3wjGrEzKL@~;ZBxrO3CDHuRsfK^)j89-;yR-iLzt74+&(jmmw#dhePg(WuZ z_JzU{mt0^?UI0Xg{Oo`9*FnigSdpD1N=MB`mEuv?3Viv%%LkPP;bSHapU}c zJPmGJlg+I4KXiHi>hwp4yFp`V9r2Ajch2aJjehF2VZ)Y&J^M2dvSHf{N)+p+V&dMb zas4ta>Pa=YoU_Wg7WWC7CezNjg;fLcbz^wIAnO9K!eNl_sWIYXn&3*siU;b1Z_?9% z{g|dUTlbk#zlZXkIte!HS)edoVCZW;vgKakD$Rb+EktL_1O8`4_20WU;tHT7n}=o# zNqf@L%)+bS>Tksz`2?KmZPaTe`$8ANn@HO67UsL~)*I{+AVwjSw;O{QB*!YIFiOl| z&~%SFi8B?3?lqP{%p-UqLqX6Amq2VEg(?x2PXo~)vtkU?w-+Ok0eyXePI)q#%6~K} z|5s51-T9C4NPURUr-Y6qcmG~Hfhl>r6K7YEgkU@&qeKLC_NeDvFsh34?tue!HA8vR zwQ?Nn&>yr_5AZp?z^D_DwI9K@7;scXiaHK7I)ffnL^gL;h<$lRJTZk{oiOx?{`bV; z2Z@s{`SUZ#eDQ>%ake1a#htTZk9rZYVauv09VLg8G5XT@v}mgae~~@c-mMbeW0KQT zLl#>WK4el8d<_Qqni}Zo36L*ci{zer^d53f{*d7cQdQh3mtS=%#~_#5;;X_xo+16k z7kuif+VgrFL24j?idy3Jh(K`Q*Mm51atXv?W~Y{n*tN*oIbuf?=@!g^`ztIV-|#Ub z%Ul0O5mZ#?=qBFek2bmw_w~w zDr-sDK&8XuX&6SOo3Pci1_`z2%7%@2{fvt!x+j7JUDE+#-PJqgz^*aw1w9M25}dT~ ztbmT@l@}PeUK@NDj$ag+_LsmeI|=^sO}paPw%{JhXnmw2*~QY$Std_5{E8g(?t9#( z#m?l$pd0_5z&nJ?0p7qls2y}WUnFw69is7ySl>~$uLi%p7v!VD-bfc>#jYiOZo59Z zo~_kHWiM{YV_NFqCr$M_q6Xu$(^QpQn;XbK{AUp9sV?tM)P)a7b^IOBlZ0QtRmB!! z&1q%1rlgJd8}t@N3k(c0kHhb{S01IC9_Axm=RCwUt*mqEM_08HP1}jVU5ehMChq!wW95*XSc%Zsb{m| z>8aRbqeTM!rUVWfG4{rSr zeIC5}2%Dr*_SM?M3K4l}WRQzx*g=)FjK;-#sT?y4sK4a*{r z@=5|kG!KiSXZF~In5=vKr;|u<^33Ehv>4{7D_XuwDvR9Wzw`~7JdCokjFQk=3umDM zX}Q138fkgF>J(|YtBL?=d8jG_X&JyVqLOB_9Fds zZ*V=aC`KT#9HDYWn1%IimR9wo=gwR(e9t#I}ENqQYrP(qq$KC4pri(RJHyhMh@I(45yH}3J1HK0H$Pz$HNPJbD@ zzFdD9r@l>}2fIE`p9iPDM!)62q{(7NChctLW|Bf7zd0yZ+!_y;efutg^tMhE<|Dvj z`~V_Xe2fk;?HIBh^j!tYL-;I6sCLrQ^rAtXrtl|)a4$>}1_GM!+5Z9xUJmzgRx7EV zdS)xjo_Z!Lt)6-oE6*MmMk}!%7iKHd9+#;xhq=Nu_SL$>92s+q-)l&Jd4~Yof5l?S zusXK0y?3Wleiz6`si!xzi7wC&?b}I5>K0LyjM^JjRPvdlJce243&YrD>dXseu2*(w zr^_dk*tBq0hO5f|4d*1Cqmy3$kLh*Mi?3O@{iqcGI48gYjg-nZ6_)m^r|Z_5jV!YO)xK$L9PyT0I$r+P-SaxTEM?u!S4F5IF|5=RFAOpa6WXL3H; ztugC?f8s$ez#hW-9O&kM+vcVJOPeoG|KSB%#r^#!ze@43CVoBYYVEW)MnF3<@Y z$lsLyyT64&XOh-g8*8`x8x$O_+#ru${2vfi$o~UTkf(tlie3zYs1`2!0*n{n=;bf{ zb1lGp0c_!AR=(fm-G?{cp%+V&$^3(Xc{v`#M@72$02a%`jV{)|*@LYuf4c-*+x|ul zJ~jI-8+>Z@o4#42V##Tyu!WtkRsy~Ftb|H&IXHN%@ikZc58^-yXKDUpcZ5G2^Ou`H z{_N5clA`~?;6{W($JGBn8eA=ZeBu^dH!c-qZ^h4N>>u0MH@*g>Yw||3r8a>AS$GOGOVcB9y|-52`~mb>VJY@$TuSs;?;Tm5rUB=2w#L z1~KFLlpgKhM`g=ccqCI4E0n4D5+n=uCG^QAe5V3LOXjK?z%9GDs|Zh!*!`mPh^iQV z%f%QgrY2$*s0^`vGI8ltWNh?V5dXOd9{8d0UVQbK#m;&JVO~X#A5x#}7VppKoH5Z^ z7dO?e;c2wTI0V|J`TqXbX1DaDKU*%bgWe@~O79E;p{eL3W78q; z9Y^8Q?$+-Mt=ZR*w2~a-eyh7jV|Yc&*2V*9YGa{BC>2*($^pNSOKihUnIyWw+s@pR1jCV6X#!_~ zAJc*87lhl8RM)4xtSSh%5zt9#R-7=b>a}83?+I2J*!Z6l`T})`^aFDJA^lW6IJ?5+ z@8mxZF_OTFJS5cPQ@4&j1~|5T{xT)=e)ws_hyhM2K}nllSl3i5H)E?F^+|L2(=B>( z(B#5$$kaNwRTR0_HI9;{g0j#!3&D>&sRw1rGLA8IDOiyQjPWkD;<{E_6TET7iX$BS z8)?Z^>1>|)74n5;W-1(~*@6e~Hf$FZq@P%+b3xn`1(oF7LY zQ_Jtj`UsEOUyBA^2(h$K6jxR7#&0h;{>MGPVQB&H*wSENJrofCt3AKWf9?5IQ?Shw z{peFU`|jt4QgssW3&X*JAq=;;MAo(Km?hXb5~2*@_;*i0>{+chP${0CAUj|r>P)k445sF+NXWgs$n=5nE#8W8+A&&hh8%5y|cz5!a z-&LwhRK)X>SI%jg^Ju6(rCA&1E%{RS14?@l$Q;A^LPvCJp*BoaOu3tK${lUHub}x8 zskB>k!o7bi(p`1Ny%y7}`8N8qC#tQeCqIbzETNJMjA1`J}c^e+#7c24cnPQwZ-BpG53pAgYpsI!z3R8e+yFadkc>NY6-3?Hs}7!lQ)mWm|I z-t3kpFd`9A#uIxk7$05?*R(0A%~0ByC7a;JbblW$@bovDuWK)Cy(JBcuvHNOTu0q^zNUZ2t7G!=r1wY`bx}vAaw|}XIWcpsn7^P$x zfWn-XYzed)4cp@;&5AaVOgW6Nv61cB$tAY1&$+7U@Se;^wxDd=lO~~ zA2qegAc8a91?H@7rn5KJ>0qoj7@S;qGc?*>=c1dgkW&jw zHq}ae>5da^DRv3^&UncjYAGUB=hUE5S$$Pvo}rm=FEU+Vr@?qU10(v=_bWS+IwbzM zulL-rjhg=tVQ(2#SF%Qnl3>BzEkJO04-niPvLU#;yF+kycXxMpcXxujyT0A&)2F-N zJ$Kw68&)j_gQ~BpKB<~>BG9?`t?>l*NZ@M^2b{`?4>0JG_tTdAT3--1u3lLwW{B#H7_`h7xD9C`21^|vgrOr$ zn{2rO^`GePs0|1+MNN^75FvPFrUR`ogAm}Lk96{%WFg@aynkZM>r`#(kn2!~pAW&) zv9Y&Ze7A~Elfy*Du@GODTL-rjwKV(89_T>!j$|onQo4X0*j_=TU@dAp`Y!s=tx&*Lksa~LpfP7yP)-7@XzHC)T5!M!UYE)CjJe!b-lkh`I@4r{pP>GxyodzQ@NsOqqXvzYuf&cfF3J>Bzs zGrGwq_RE))H3Jk4Z5<;H3%4-;qCNj2Z`ZjyV@iZW36)v&?Ao6H_UAiY6f`mgb^^m=1P$oQwR5>rSNpk1(p14shVJ5L+EhOqf}$g)bzP(3`YKL zd%ixOAG4=+U2H_qfNx}1SL1(0t+(=<&=yYN=Rv{+A77AYtLk4j2cTs@=7>IsD|GO@ z!2CCkwWb|c@6^ZTY3Aj3BbiSu7Ja!ck3{Wi-8jGZWRY(=4Xj!vG)Xvr0YUroZpQn058Z~Rd#>Zr*FS%_Qb{8?>9@9fIoX=ty zyoX0*YcIJi88;U(=^pY1bs(>1HJ#Vv9}&1=xG$+M25UN*CO#tYz;NGEUo6&i+5#J2 zVYnZuFAi!tYk&=2817fJ{49pR zdw58u5BMxqm�&A(xLG9FxE77h|C6ZEv}mWau4`4xa9U?sNj!Y%=tQ%m7b!LwC9X zY%T$R0&IAoJG}rl9}T@BBEePp(2YIRg@FxzbR!5rCLXL5*8!F~ygfp6yjXKb zWwavI0YI!62~|uQfxL$jH-==o1Z+UhxI^3Dbcft5btOUWyTVJ&9OP|g!E`L>ZB~v> zCIAt;F@6uWRx6VPv<%Y-&u2Pc?LrDs{D;v9U(07O-)(oqj{){tnZ%%Jm{tU>#FY8)9bYYx5AJp)<>C3kg`J`jNn`S)(Ke|KqhE~n(`s>iFg()i)_Ybx&RRzZ2OCAjQy9fr-f&xI1(}HK zdc0zi{V}b0Yd+8TtnO(;U#b117_`R9@7yl?hH7Mlr<2KJ`3<%#91bR==0PLL0EX9hUkOc0l5M)`#}7OKaAHGan>mw zoTBhbQjEcTIaxewyhd&ky%{e@djP#TI5SuQcv6a|JAkLm=n%Y6 zDSZY$e!u6ZX{bE&1y+=6khiN>sm=!+^}u$pbej)2OPUJ_OflzeF#4?hQ5;R-N$sxl zjn(%34;MsJU-FvF_8Hdtu*&Y0MfPrNOWos7C9QB{x<-1mym_gg8bb&z3o^dGzqn9ckrHI=0)|`@XB`fVaa4CIGa<%ZbaAkE$Uk)v6JW?PR$_ov zs!O8A+G$vtZ*s`ws2DyKt54DV_z;-H@;+!^Y0a2Nv*UFV(pP_mnt}yU`$9gu~i1j)WOY!9bR`j8ptk= zg(gBlyiKlehnp7~nG>70A!}|~7@VD(VthKx6x3)-f;wfdxewQzT5^!oXrJd| z*@!wKsm!xpKXT%|pdE9Z0 zimqWz&&1p|%Qq)Z+zHRta>tfA{r3T}^NDwdx0{ali2?*(_qWK`J0Qm6XIdw!{T4Iq-)X!iL7hl zI!E=-48GnoW_0N8!LVKXB|L87F=-x+>Y^;7ftIahRNZ;>Kf!nimn<2vwWPIk_jnYn z0dY($jtT}EJn5^9ljE;gT<3--?Sf#h!jv6Er*^Js4h1WCe7x0;OdGCA=N+Z+Eye|N zNA)dY9W+M)`q#cGk6j}#7y3yEoMjFTGbawNzPTF#A10nOdYOC8ygJQ0V$6?BQKXENeI|$ z9u*08GyDy_h#f(6r)#4b8haCT#>ZkgbP;M0(1)3HKBt>hYolZ8tiIb?Lj89gp0&~Q zySzVN0zBS&9PQGUK3x$!K1QrFdGcf`>h_tP?DKj|yl9suKl&;qDZIYzZyd2E`#KPP z&7pzonCVklr~fhba%pl$0yEkgQOaR3ouzogwjZg?7?2dhefrBbFR*nGD%@erx{F)3;I$4RN{y1@U^1 z4p5GOJx0otZ-XO+(qo38B7$9o)1hFl$Mbi-NXnaCWcRPu7h}~Ki8lXPor{yj*DjV> zU8`sB7!PS;^&B;dd}5kayGyKEzAV1kMd8P8A*iI*8MZ@)(J?Qaq@vLzQ&oRa$ZSP9 zxfa%qN^4F9y$TH!dMbLb!208oDm5D&wJx_1O{feGZH-bu4oG$~rfgU9ul^h1hY{TT zpIfp@ax9Gw&YBMQr`>BA0^XOa$BGTl*y9ax>abR>hZaG<$A=!``?5Y99L#N=5-GI% zVFPaGi5cTfX8LW5UXpaex6TcZp?&K+naZm*k0-1rr8W1Rvore{oO1$C?Kk~|>ts*m zST24?`dyO|E{^WCco&(1lLDQ-8|ledJe8XTZ8dV&>WzEZ;jgq`iyTb1A)yL0Q|cVS z>;<62KKAYqMcIO0x(npjlq_lFmU6tQ?jzbPIxpfcYBNXP8+2WOc5H*`#-mz$PtS5V zc%K{lL*uXqe73T8K+V7K^3B$>URw_I+vg`u7QgmVs%8VA`)hwS3UpJ6Xl;;=eotan zrGYZabFCI8qHEU+5)T;i$va8X<$tP#XiraHKn_vWF%JAbqwbw%kTX-aPvrYS)Wm!Z zap_6?536E{v-T=k)UPSj!~e}xmQy*`zGa~PsJ{;+EAz6cK*@BRIt7r!A)oTrjiZo# zL8fI9<)cTFq7Dz^D2;Wg;*rS>*RX)@K$Izc6u*O~c#^-9=E{zr5oQ}oa2zF=H=#Jq z-l=2D95%JwRHTg>y8#V4Eke{3*3O&EnXk=;pg9ipALq~h`HL{@3&QG6dAp>DfAzRQ zE92`MF*_}HDpGdkTm%}J2Tb#BP=0S#d#n8NlR#9U5(FZ z;VDVho$SHyRCGL*mMz)z979@zu$4wLIJFGD&P?A@nJ*qscu;r>pL{iM&#ZQhKFk$! z&n0oVf{ft_l8IY4F`yXLA)UVpM4Jte zDQ&~XX}t9&xmTj(>OUc5l~$0eGwvz-TJa{1hQTZ0-(<5s_|(&9OGC0SR2YD0!|1%3 z*uasrfhS7h2_BFlsfhi6!#$3f>*lGj81RTCEU#3*b(ADO`%hG`dEsKE{%^;DMfsIX zeqss`-M{qUJ$(5aF!4`Rav|$wF8QU-6Vlvh5Ri%wz_DHYSq%S3`(b8SPg+nruRlk@ zOMXYLRM8ogN*}+EJ#7S;=vIOwZ-fk$+*DPeyhXmje>JYQp<=K6s#Qxy@6ASLx>LQY z(F8Tu%~5Ibqa(O(Xi#-rOUV|?_hja^`)`dtg`>qy0d6D^@I2TdE_FPoyEuuIWQx}f z>y=K&a1zHN$}+^tsCD&>5oI@Vb*O5Gx`k;&3}-6|B%_m(h($tgdPk1n*}F8PXSP*|@WKS)wsnE1yuurn3! zsKHaA;g`7qEuB>4^D`BIuL7~BA*O~7_HLiT6+FmthAxRVmQT_mIKrNy9!eYeli_7N zynlx+VSc%?mXV?VsZUk0#Cv0rUuQBBMRu$nuz#JJNUNb;MZ;v=&^OklGmvsl7a94m zQ8`EOiJPF8e{82t9dDwI{gys9#vP$$dM#Aa#1n!U}7>G5V%U%)f9KIjTi}IWv|j31W1~$W^i_*eVv(J8PETO$A5AgL_ubw9}St#AkEk29#!j^hCoiVl8c-_ zcy^wJ1*^FmnH0uzBi1r07151a=vZ3#WuwsO2W)?Hs*(8Hm?3K!e)|2#%rG?<1BgJl z*8TrL)-MwB9%knGoJ4$CK?YgBG%#3x=sf1KZL^AOe73h-)8zR8Wb6O|{mCY1Bv zx}V^~Al$kZ4!s863*3>pt8;{aVRto=zDtC?QvI-G<8)%jq+zy_`PCNh1oF!qW0LT5 zFl#V@)h z2$JtUu8+-58CYHJ4dxTmW{{JAps-Kk>D=zd3bvTH&@9jS2KIFIl6&5Ax7#PD(?CZz zz1of|(wO7c9MwT#y@#UF>MF#q8J4JTw^R3fwE15z@ zlPk%<=~ka$up)1VgfX|wS@{rT0m_?ifK!h`Q=dOJs z`IxcAimIOrgQ*m>HntAtk~;L5TCy;MvSKHzaFJ)ZJM3n=U874ki?8j~Ade`{!D>I1 zOxTXY^nqsGQIq@9`4{1lNlt7=GHF)FG|l=gDJT2SbEz*@*Uv67Di9aK>UrL5U2t0b z!`Gz2A1!^52$|8+KFj=zxGdHxi2xj}IUls3Xo+A^bQ2PfP{;xoYyxGNls?rGo zd+oIV`T-B|@*5lG=jI3ItxARfsY*o+J#esAHr!8O*(4xa140+Y2pe7sG89yKYBxt3 z!u2Manxa?v6yK3kBbQWZh!B7blO%L~(Mca=pKX9$eVdn|bvC9f9f!v~?Kbx!ti_7F zad}Kv!)(syT`ny9pY!fb-Wvz<^;;#CzY$OWOeP%}iwhus#?msVVIdj*HzuGIZlXeU~`+4P(EE=JgY`zzr zK2W*okKM{}GV*D0?g~PXzbI(-i@sO$=px&eB?>IHxXj>7f(AfKB)g-480Ai1ZN;{P zxL4!~fG$=9(5H?GuE>Pk!&IAM5|4|yrRvBD5LP?ZErfwXUOd#>-sC}Dvj=&D-fg!E zwmGA8Ft@gGAxv@G_tN??X&gVx-hW-t|KB4_m51w4ik|YL95ZV`ov>ikcDby(57m)`E-@(BfzZ+IChxnfOa#tIlRYI{>4 z*Rnh16Fre1lI3$)g9@09?l~VD1cG@njU+b)C%h60x9QQ7i3zov)~xS82I2dQs_7KT ze^K@iw8u6bkshTwyzV~wNjW=(F23D{vtgXskJhxr*M?WAeDT>}>{emymg&d&wnv-9 zsczFp@0R>2FUN~&cqb6@)6iQkRap(MeqToj6>D0(yA8+oVS*FWk__0E&EgD4)DE3+{wxTj#e zNdl~%J>9{0>Gy{a4BE@y-(PW1f(0_msbnDq@Kj`To60lyn?BkX97A7hx)+n5La*lY zvLxv89Q-Q}RpKvwr=y~*fA`9A;2gkK>0IQL&Ex$`KBSO}xucT;XLuY)$W(N7l8+q~ zz1c2GijrLntYO^)0;sKz;<2D^QGm2@N*w(#g~m})a#LVRieRb>pwcmR-cVVeCl+2W zmN94LrcxCs$B^eGVTKu!G4-IKQ%r@mZnY;Gqx<rUvkRHx`(a{j zysv7LA4s>38q(oCq6Y+4rzYF>o_|}1Kup{oe~HG!r0A5wNc==dugtbj}mOI;+>)N!%!NX z@Q1ORrLm@ZCmLxwvfwS>{pb`_c8}qllKl`5d#l?-^Xn{cmBvzac8zCgWivcTMG>x) z!sK`4{{IP+$*JrIiSK*6_k=Op{z3BNp%DLpmBa6RD5Fgb|3@{{(+L0V2i7ghN%`lk zl~erBPtzI0u?mfDA}Q4drY~p?BP$F>$Io?|>l=(lA77<3H#h^U3{P2>BUqPvny`0aXk543OVY*gk;}PNiAN zk%HzP6ASnXZcv2&o~nu;->)bTd0u|#7*IXTF$}7lY7h9*Y<%nj;rQ;i9#Bza7?)*Y zZRplN#9CvYg0UE41hRYjfb!)<2(!_-0%W8>Pc_~l89gg4pTw}h*qh_4I0n&9&PPJz zbaT(Tj^B$;mdFl@tufq^^PFXYK#?LHHBSEz>J3sr7>8N6wgUWiZmPBFI6H%3YI2`5 zgAXExuy%cBh;8?#tvLF%9*8eeW^m*CpG7~+V>WuHQ3P-bL$kCGz$RB;!If-7 zYQ3C)z%3%M1$qJ@b(0ahypvUvqjUI$OT6cty{DSJW_F^6J{P*nusy|?J1@C3zp4+} z*VJlmRSN8iZNs=lFX~99_4v9lHmP;;DN`zrRO8rWa!DL=9d;wy!j)5UZu$1doY~o* z&wdQc%y8Q6%j2^#OEEDg*lZD_y3(wVAsxy>)f3B;g`Fm-(4gh>i!1aCbx!Prq3z;d zbX8nPGRIX6DW7L${vkQ|9|;94aq~BCiudJa{A=0Wr1QaY&f$4!1(q6e(gD!8?f-*i z&1Wjw3X&#cMz=nIir6`I9chxV6xb6Qor66lP9fsn9a~IdZ7R7PvxMpwXA>S@HftNE zmczJfM`ICIUB63De9GC7|8&8a=|he5WUSh7_AEgM+3L)#3{v;4s(mJ{qN~&*yC|7N zWKZidw3?-$@K2VS+@mDCfJ7+;)o-#ia7Y%>!9&2c_m?`M++VT){=smt8K@+-ytJgC zKp!_s-ZE}3KLwJnSQfOhqr+&0NoEQ7nafxQj-TXX!->%#raw%0Q|Xfi-bQ@V*g-!3!ns~97p+oJeP5CzcZt~XQmDJ-vRV5QAHQ| zSaz8`B>ms~vc+zVk*7u}o$jS1n?#zk;V@Ff$*zqM`QhfRSe2rKVqL9^8ijK;$xoZJ z88KG<#@|Yt1id7u?AtAY?r)Yc4gImfALPv|(MN4qe#!1azr&|DSxhRPO z&x1r$w^1I+7W(B8wHyl~dlplv#jb_~fJ8@?A9GE%`+d2T{%tN9cNaOwH1-A0P-S1u z4ib$@`^Dl1u5@ih?k_wzJ6HFVEt-VgbhHB-Q)W5(*v1-nqcRsSju&PtHvSKRPA3m2 z55cEzN&h8276MPI9Q9^DD+v9Wg|hR61mq60ZquvHPpPvh=1b7dpaobXC)g_&o23r+ zsmagRj;dQ4yEvLY7i8pvA9G4XpcobfZ?&fb=fv<3xGnZMB~onD^gTFVO*uxkzO)`w z&mB4q0Fo7M=4sQvo?PQL%%<6oM?(?O&-G{1+8f9U^OyPO+I1HR)-Y85{ew+<~ANMIq}ny{H3D zFSRUIYh2RRqP86y(*eY}+wsi`UtN@+_^Llu3=vo(xPH|QaFmc>>P%t-4Z0(D`UO;or~xQttsZ($bk;v%Nu|ZLy{}Qs$uxqK!Nu9|9@}@$ z!}%YFVZIdQ&Tt895L@;aA5UtRD}!=ExST@mpDGkNLTxUt4F$Y%!s9@Vz(UhjzJ`Zg*O#lF zAK@ISz&#K!gB<8m@mCI6T;4Y%Cnv^^6%vzEYW)qJOa#CrA5Pa{qY8Y~A1(r<;_6Gm z^w`^Y%XV1;lj%odZUSGyVw54YF6?Y ze68HtpEzco$yhgyHBtx1)+x|K=d5<2bvLE&;*tqI#d@*zqwnRdPfh(!X&JlOn0_;m zBpPtaZZ@I)2W1M)W~(%f|m!L+{2nIhzm zBHl(&@$e}Z4~kQ>=#s=kS0PLAd=Jt;rbFrTD_(uB=%gK&XmI%49!j0l9svp0o8Y`l zcin3-Vv_*QMqUu38#YuTxbmp;ok@4BPpjc3w#NYXFXn5XwkiCI)nffe->Jdyp1U9U z|002@5dJ-&GkNf9t5xM-!jo#kp)k>L@($7sDC3A(58+_V{FonYkyi;&B!&?uAbM-D zH6jils%?gsN{+xTHiHkrUGy#K&Ze(HwrF0N%P>b2^i=U3lIMNW@^RYZNWO0_lRgm3RTC94DRHBIVztQ|o{nLH3j3xYK@ZM|fAO#h9L6Ig_mBX&+_U z@aS#fFKnbuP(xB;;iw(#;%E2KR~RBgOT=6t*0HH=#k3$9mj9W8)cDBLo?49)W*Ybf zGM8|onX&cTAbhf~a&r=cWP4->9q}^M(#I`d<@~^`+_E|6ET0Aan!Z|lLB1_ROK?`u z7+5)DcW{SjruXQ7w+Hl|YxJLM^wCvp_p@D&tUTvfzrRmXDLQvhbX0VPT1!@p9z(VOQYgioxR%wZko3v%Qy2b34KEa^(JDSLEf2$phf>WTX%W5PW$m z+7RcTgi`o`nl9<_CRb7L|h+@NcYJ8OIgLug;Qe0GSocXOiw8&S`? zH`)hj^OVg3aVC{j*x<#LJF3mh6 zzd0?S^d`HcR54<$^_oiBs>RZAw#Z_nFKn5UM!7^+swo_?qe$1R4=-z+L3oT@?f)U?1Jq&iRU}v! zT_sloR;8Gf`B^}xPpk(<5gyqMj7P#7K<%{CU!*_s72tuo>n zE)r=A?A?)dU;UrR<1EyA8jct*VE{OtTo_ANDt9&U#IRqMRV#6|y{Ofiw?Dbd<7SD& zvUi80@C%-MgyJ$j6Nx+w!|4PTGP{0SbZ7%T}H2$g<&ZlO};4Jhos=xhIPbs~&%s23-v#+!%73wrRLbYi7)6#Zk|{7z@} zZq(X2Dy4Fu)S+)(@R5@&&Ayl%pdYB|#B_DmpX|X3|2Ezma;ArRR>)|qLuSSdkK0N& z)J-Xq{1BC1IqqJr*t}-?MQRm8&SY)xqRBw`WPIYH(q8D)c>|_!(`w!X6`^kb^r573 zKkZA+vdd##lWcaGvA{AiYf!z8{nljd+M6lER1$8*7cfax-kc=7`a?(pJoDPJHBJ3rgK6DW(O7;YL2)Vl!cwdLP1@Sp#_xPU17;=Ptm zHoW-vjcSpJyX2D2$HBi2K|*`CdAp3b!?B_Us^oX&5|oEq`>*9>x<2t} zu;$oV8MSZ2>?VIS+7VlP%s#|ZL1T~+Oj>< zC1f^GAZ^YSE|WnV!QyKz0Ea&L8-@5Muj z|B?HVEFg#uwuo8GN{8V~6Vj0J8kvQfc$;Mb#HsT&G4Tth=irT45|T$6Z*D2puYoeG zUkhVkMUr7x+w-AU+uy%Gt}9gT>T}TIO%c=U+7h_{#{u1YgBWo8OC_}m0ABQC1gC^c zVZk~N^JPj8G35<-a`kWFE2&6v`GbghG)(sTwEoP5OYV3Ja3GJf!^o|05Y=spA+)a5 zSdCqw(xJQ(LV8c$+xxyz9^sd=HZ149YomkOXYYV69hjdo!N{I@eOT(|xHgM{J+<>O z56Jspz7u@V?7N|>wgL)~p4qntR~vw7?w6383SZgVvJEFsxusQPmo7C|yTvuLF%Lzn z1gw+Bw2~`*!0k9$Q%%QdSEHIfFN?8$yW(ird!VHA%E{IWpX&}(#APk%%sft0 z(ZcME`ZH59{heCG_c&nNs-yc)t=i7R<2vjdo%RB_Y#04{%6}{YY4H_>8b+1~@UAwA zPGymjG4U9kQ9Ht43j7disOdJuCN(;3t$BNlc-IwhP6ZSOQ~_3bOj{KUhO?S%Q(GRT zQJ!m(A%{gZl`o)7G^a4bXu{5H`N#t6BT$}~XG~>$Afe&FFx-QEYAHfW^JXClur*Zu zPKIJm%_$1hsG{PS_Ue#p#i!}wbi`4+_Y5w_@e3Eg?cXQ z-DR~S`Z}rL$AB4@N=0v(5NI(n?pAebjsm5a+K?uV#x69L7PRf5P-?2BE>{*-mFXQd{Epv zQBZAko~s(fm})M${V?&fcV7PsB1bxsQ^%p2wcZ*BaU_Axbv(9`>e!7Gz_wnP6b}|! zpD~b*1eoTV7N+F55eY=uZw2#+T$CavEHx-v5Hz|NKr#tQMXU9nidv;o&FWN!k5GY1Y}s&?JANbHLG(+;lUE{->n} z^v&+mR(ep@KMIBaDctd297;>R2`&n8HkrP}DzYv$&L0cApP#zclvk1ck&)?P)Ob+? z!@v6Kipr=WWPIdc_4I~koE(pRb=aX z8YN=;O)FJ{UU*!|kzTwaO(YwUtOxw2w)-U)q`>njsNVZYW0o^f0I1{6Sfm|K&PCJK|4cri)ew?pBd0*yC|SLMI$5=Jj@6WocTd5Y0TjE zd-)(H!`}4mD8A6HA3Q2LJNOL-H~0ggo7;(UZn#X*5xTlI%{=%^U8un$a=_4qHeNktoZ-=rLePWA})vVkJjw)S=#bZ5 zwRR**SGPpI9C$ztAC0r4quX*XAaknq+E#(?=WH#J=6Q?`S}I0iqfZYBYmPfP!I>NV z5m2mV1?P34X>d|kg26z}z{QJ`K&%gxfrl?G0v2q(vQOu65X2a!>niHQm9bdpcZPmCv+lJdX+%&=3@n?l=g z`Exp`{0R2NcL$o}pRCJgJyNOqfX!QA^R24NMR-{ACDFsIn)>^irGY*q;{GuH=kYjo zzNG-eyv;H}we{UQXNfV=D%1-578)f}jUvxFw8X{uES3t`$ogJb0Q4~YMa2k*Q(v6T zUR;}7iFg%3-mSS>Joy{xEuChs;#b?Z$Mg3$@yCZ>9np6M1Rbx39RnGjub0;o-&k;H z9tE!=2s|F&wh#1$UP*=;>9%y{j=Np zBJpia;08Sn8;mZ`G+=Ia3BJrr2FvFS5NU7khNr_0xC2p} z1anW36@A$s;?7rgbKF|TdO)t*eP7?CRwR?Kuu^qk&Js+(zU2xELs&Mi5MHY5G}iM9 zVwZU|$iW7Cv9oFG$lDT>@`A}9Za)tssJ?oXRd~KfC4_MwZxftO)rC+9TB9}f_D0tj2}t)O)r)hoD&&?qnVi|!OWUf9zTH60D_C(B z<`?{Q#^0v6NF#piiyZi>zfExp@wTX#S@*4VNI&v5o|#zL07ZW(+wW6`L6rfZ6x@(M zGNU+xna;mPEddN}>s0*Ot^ve!sNO97j8P&zdF8Fgm|R4oe(^COUZVg+z;?kt!FAj- zU(t_1a4J}#%BNkE7C8g2km6t;kHn!ALWn-PEqlVXth@6tXU1X>2yLFfjyP8dFCnwL zm^E%_79wn;I*hD3d+p_!B62@7MmLS`OE#=R4_6u_FI+o^ZSKols&+R~<9CVzj6p*? z24f9;pu-({VY9|;UsiSWF6kWq-Y&-6QpdpJs zE>1%MGhkU#d@*_~GSeTyv1;$*&t^_wem2 zp#}aa%1*tGmEc>1=SJLncv8OW&23y`<@}b$7Q&7K9n73L7B~>Cg~bN<+^bkT8)NMYzrWC$=G~FQ0d+8 zxo?21?=ya|XrZyqa&pp57D(QWL>D!=2?;;hKClnLf79xgZ(=>jl2`GbGgHL|>*0*3 z|HaG=QYAInso)5Ot$6%3!eMaaCNbfU1q>8yB?n#xtV=uMz-?KKLuMH&X2$d8=B8m-$Wg;0(eQa z0N3DwiD5V9#;##Oj6b2R`AkToR-YYfheEOyTVKFtQ3HIGU9 zT2=Ra&%#jsN~Sa4PRRIdVQ;~?c1(sjhh^#DDIEPi3f7FFuPG%ex*L7Qp~1K04Q;!L zQFZW6=!dU@cxmrPGRXo!DFEHH3oyw|gH;mt+M}ek1X15Pqj3xd_e6>#Zn{0Z#~Oug zvc&dC1f)`p|y?_p{DV{7-Yu$Lp;2#j%9Y(+4VXe>=UzkH!Ms&tr9qAr?W$h*2H;XAN7urBfeat`AlPrd7 zX@aewobXi=cS(ailP)G{Vfd)KSFLg@B7?^Z`sf%)7v)iw-^yEJ4V7@7FcD4&PZt5N zGATm`vqSCVE(4*(}ZD19*%uzC}RKldv_Fyu1^GQ{zR7QyOB>Lcn(LXgbx5B-#7 zB#EW;Gq^^B&kH7m;8lYAP@68&P&9wpT8YDO#|;Sw*{m?%wsvJ z#CG7S*<_G;?5<0_@qvnBObW?uFE2le8VQ49a_ox{xf*u(_gwd)Qlfb#hkc{j`Zco2 z%3EgahO<-=G0=uET_fZ6MY6`cDDvcO8`~L-*1f8bawLo3hE4({I+kv4|0I*imHDY8 zr=nkGY9bRee060x`+bBDoEf-&gU8Yc5dB>@%`?6XEb^K5v#f_x;mh-K!j>MVxzfi@ zGNOAnTk})=JzXf(#6Gm4SHi>4Wx6$l$AmPiDm?I|lSHhpHmG$hoi+G$(detQ0!#>F zJhe{zQI!m=32$9Ww{zAF8WLN6=ASGjD)GA7Kh={hdTWXJq!Cdc@iJ#ZJ&{JFLpl5! zs>|fE(HEi?={ZGw>IXDFH{7rg3V;=eVG%h=k{GG4jd=@Vhe8jX;-_C=+{NI`h4dCR zof=ZJ05t4kaNcSfe?l5H3-&OQ6VmPHQ;x8_D>ihF7&o3|A2oQKc1X-wzAj%YzRp+h z&?$TFEPU0|XBO!Eej25Tk}r<+vP@s5IYUfu|H5fz6!E&u-{YO`A$<$-ntrw0oBk6w@M%wK#B z>jNGr^xJG_Q({iclt)DY2KdRYM!&N10+i=Q`aN<85TC;a>UWm@Y4}ffQk6_yv|uey zI!(@^Fa2`~4`BnfZ)F=!>xtYFV4pp>tA8*4^h&UsZ2rct{^^7V9;+ztVh|fy~uqay{YP~h@;Ga@JOg%ZzW3>V<=y3x9M3@yp)L(f3z#FKC#>3XMt3hAo2Z0 zd&4GU&UQfYXcsx38bEtr^^#%(g@Q(%;EM1j)%5ch)X46-MF&N~B!zaR2J#Q$(zp_v>+o=j-GCMh@@W+xEiyhyMz8^nPEl`Tux(=P28LE?u~6+qP|= zvTfVeDcd?_+qP}n<|*60^?TpG-S_)O_n-HUvB%m;)=Dyy?49{!u9+wMY#2VMu{Ew{ z^`O{-^?3TCB*wqkf@lytT9pJaSR;;-L?qTvl^zk_3_pkZ1kZmCtXg;UHyQi-3jDfm zD11UrBIGT}B%ju;P!Z9O`Qb}s>Zy5G44j?(;n z{Q`?ICSnD)T5+6yt8Wag>Iqx4ksWE?hk}f_mmD`o34;XBYcV=V#N|7K}IO`#oJ6zk}!JOyN!Ti z6)`~5J-IJkP~$^&=bNv0X~p*u-bL;k_tVE0cH_Lg;q>J1ASUv#TxMC}p9W)oX!a^B z`0^o`Jw3QGL>T#jHlfir(db=fZM)q!(6?cG+<{M!Y6RDTG(wbJsgu4p2d^qSF^IKd z;JbWZQ?9qn=_F$(AkI7|G^xCdg(fe3M3(B+z#xr~;R&ILIMHvja`_v`eLQQWAOaCC zR*Ke@wpm~dQER8Y9tk?x%nht+dG3s)-3Qv2*?G`e#~b?+6`742Y|cH;5uDYDpqU^byx5Hn`iBy<(FB-Aj9uST9E>nnEqtYE zW5gQRK_WC$FX;(}$d@$%8mbEzLroBkL2TeU6Kt1zc~yqINUBl5bNDG+^UB<&MNQNJ3u*!m2VS4Vc#gNXShEA^V~I7^!&9y2`Sy;l6k>sp%YP=-whpG)ZF= zqXm$-iuiCOogvKZ%wxQ;)%VNt>i+F;k$SdP!TPma$Wh0Y8C}Gd*ry zj^WxPTqI1UReq=TAmE%gw>YY?{-wMskQ2fOAzU7aqQQkdTamE$a=h)w;k^{rXB@&`D6uz8^%UekH*_`wAxY=t$O1 z3eufvH&)@O?s`vg{ZSwGQYCZT3cJK&?P6msYi0(n42Tbn>hqOdzJdOkB7gzprGPS^7WhQLIWH2CvTvI>d((Hf(1G)wZsj8?d zJm;${9W)t9*BTmGa);V1xm~XY85fDGv{NtyhWC8qd-C{lP=!Bjs^@h;kt;+YUZ+-z zw3OYn)KrY|iZ0Jp7c07T_RnnYhYoG9-v_d3Z8%;bAaH5zEw^=(4Av)8TM}>G!*#Q) zQ=IKCS%+Q1mbj!Al1Lo15=2D6!3WK6_Rq=?WB4vwm$)B;h3&<2-Pmc(ZTu--rRDgc z_g|4qRpljE7J_=l$;F^l<+I_kInfl_8X+lw!G--$Y%M8}#^_O048XK;IUpiP=(~4$ zWo9By%#v7n+zFCkGJMf}f$hwlU(t}fW2WxvEv^YdHA~f_Q@Rq?+1t52O&5^9oyVK_ZmLgPe zr@^YK#pe#$JzQ|uaV+f`PnhuHHD2oF+0g^s`XhV=5m;b+AQQgP-4VA~&T^mgP}MS}M06nG()D^-p>FbErg06{i^#_bNm4GsZT!|w6BCYaX(Yb%KXWsbxhZhIr}=gzrQ~}y?wm> z{9K{`_P&4Il5x8Kd$beV(;ejdIqSUVyS)Vyn!zsj{rmUl-NeJuIelym^{La#O!X9e z@^Q{L=AYTO=VD*4x4ja6*%^AdnI5o=GuG3KxHsDpi3F*2tNDv~xb#N9#*Vh3>rVh< z{68BE@Fq+F-8`6|Tft-I!!4n?>glCDT=))t4ES3*ztciN9`~}wVIDtm!*j&*G-NEr zy+RkCNY>io_7!st$lOwsh3N|`j{|aMBl=nMQDUewliyuXWpm;bIRqv5noAyCrAdl@ zY^Yf{F{rI^JpK~{m0Q+vpfy@$kcG_WO*@)X8~{}-Aafo^`hUb5bt&O8p(rCAM0Y;1 zO43_+t8T_FlUGVkT?Jc`@>%nj&0g|bbaEU36j=ldDMXfyi2mfGjLN}{(aj2JvIp+P z1p09!MQV$aLhPz36Rm_Hab6H^MBsoE{6Q8bazYR%K}sv|lggJl))rSd3~5i@q*LD) zqCz@gS4P46+AcMlydrMgc#m8;!6YsgQXwHJuWoXOym29c6j4oP+2?#L0(jP#G>j}V;FIx> zc|C`>v&0Y6TySDhcBiRnh;#$!wa!$WARk%bDfnw9%>(4+1B`^d0yB!@txcdFj-M%o zU?QNxC>I&h6aqMZ%3xnj-16?q4VV&M3dtw|^tQV3H-NEBfU46yBcY`&Q=<>B%-8}azh)wAGt9wUl1XP-o}aZj@ZsVKs>m<>F;*JkALseMj%q%_vvaZlRMqSESt#*|?0~Y2V(m94U3F^4=zE=i;mJpHgVQ zYE_0!UUnI2vNQ;w1~_FI4@b~b&Pp8gESh# z2B9DNtH}V_Uoq)J8bVi6^<`s14Z&yvF3GtBxVUFZeKPrhPE@P=%Cu2x64T^B`Yug} zyd99Si*SDrQLClghEzaKC(1--?vz#QdFdzlr^q^OE;rc})){TjbFXbZs#sF+`{pGx zRG{6+ReBp5smWvr)P60D#P8I`fH9cGgf#t-f)88_pJ@TzFf@gH#yG8``H0ij;T|{k z$NyM3BEod_*c#JApxf23F}AlMtD1l}geR?gEg2m?iUv0`xY0TMlnk$?il9?O^d8%2 zY35d}%pX}{(I1K)hTt6^w$}ZcVgP}Q`CfcxlCWwYzZo=Bm^R$gQ+_yvdP1aaO7-IHCFW!g+RY;wmYrvSX4f(YR8DDT zJ`|pNsXKnVAj9`LQ{HLn7toZdwjSAV?2|I5l_@`q!=Z(iS}yW8#gtzr-EP!P@vBU( zi)t%NJ_l%|^FP(`HeP{3^FDNTm?GvxuZV|+(m|yyGSEmt)4a=2)ifQQyZb&bHQaN4 ztV${XVkcdYC*0r26tkn)4UuQ(PpSFJE7 zMz$s=@Kp2O&!cX0Xf9eC`7Qw4a}H4jNzB|_IN@)a@YYy!}|3_uAlLV;`{jJSz-M+AA<<3-rYJ$^()4Vu=^Qiu8Q z!~@jmVX8+Z65TVZ8gijMo!G2Vx%~;e+NYI<&xjM68fv2sJ${6UrZaAHRriP4Y2SGa zahWUUd^;Nka0e=b0V$c9&|IS5(e$cbw0nz~=Girt2hCuCJ7i9Z1V9QhlG-n(R!b{; zyN;)~vG!sjR{vC7|BDX_T+}7(5*!&4s-jS3zQf!?9a>#dDwC8`)7B=SAHQ-{1PZyZ zxdNBG(7deauxf{R4Jn~kSc-#GBdEcI)-N#`9X`%5{Lpvnt%q1dC$szK7`F3p#BoS_;G-1A?Q2F87Fe3U6ovu1fs_wdzHu>&HZ?i zjiH9r%az|bz!c(3(XAMpI`uE4`2SyTbg!kw;6ecakXEFu@@&P*!`?GMs~TP_H%r zjkX|+P+JuE@}Ol~U$AtAt1dos=)h#uumh+=NMZm77ZIE)ey$LuYA@B_^2}63yFm4V z{6NAV*6~FwLz9-EO(6quT>Sgt_?lpjq~J=_rTwjektrI%54q6`ClXQ=G(wJcsy`;6 z?i#S>SazzK==4C(=Oe0L$2(ZSQ5U*>jHxpv35eTV0fnMBJx9*tO#mXI#!Q~87jW%7 z1OFwd@vXo3L) z-)x>C*ixfSW@3PL1;!b!EF@eea16?@pRqJJOD&Fai@U?>S3J>VJ+XF1AhlRb0O-nJ zS#=($RaI<_ca+%0WN;Zbo?0=y=>ZZ#hX9-AYjB|hT!cz+Ss@&`crOGvssnp{UOKo) zq6r5^7zhmx{bj)S%TwBy=yE}CT#(9{a)`0nMEwC5mfCDly3^CcQQ-6695}HH*7{?W zrCM|T2jK?{GxsF8tEyh}j2w87@xObvYt?F9KE!t;Nus(!styt+=oE3ExSD0z%?FNw ze*DTy&c`Ye-b3OTqXakBw|S)LDzfq6Hf6xA4}NK$g9E!I2<}6(AzzRWaAm2|t;vSv zz@9rVEMGn!+fW>`z-uTzklej38}GfiimIUoo8>njm8yFx#8h& z{V#wB`BR=k?xncXYhsQ1kggOZv{`y*eER9EWnAYYKHtx`ySrqbE?%AN@0YLVvDir2 zS>gec6_D`PsP4LK1+`2dpQ!}bdT>oIHm5Ll8^I|pYo?A-o~u3zRw+JFSBz#U4HvKY0Dq*vR-7O=263w;-&w8 zEbmF7%XsVV=I41<@LTRD%fH<4+Mj0wL-DZl8k{R90O1XK-v^$6vyUXeJ9lhg+zEhn zgM?FF z8E5w~%){ftT7<+0wTMafZDRbJM+8aWDo?PKJC;bxgBwFhB_dJM4~Yxo z784)TAt2fRX`H_{;vzcfvIu|Cfcm479+y*K9LxyXPdlxG3Pl!|;1J%IvocDFx;G<|AP5!vxL3$Q=h`~AA zLzlaH?0B54|6+fS%Mo3;oO7M};+8GY$iDc^{Hc+~FneGwxP;Holjv@~pZ9;hOu*Ch zG(X6@NeC**x5Eb;|Xz?NsZi96xLkv$4^KT3-Kitkm)2H zWzvvPO~qk{f;p9l2J&Q>Sm^hQgbN|ljSCN0W|#{Pkzpy4Y05Ss z!k(Mw8=SUh8q^H7XFI@Wn5)1JRA-T7VwtO@K!$Zn zGhgNKULP4ABGb&Sh&ERjL;j}_LX&)h@Sjpcg(v7z_(U2%lFQp%hMQfGj`EWhWmzQR zLDUmzB9RM;kYODkf&Ul{ldeaEJTlEWmPeZ>y8R=>{5EULpzr{a3`-$gc(TrdSA_YH zx15tmLXiOu%8KG?z7}tIwDDjy6jhR|8)*UhzQp5i-pHsE5K4B~v#phkSO|2FKJY~0^254K2Lkr|kuVkw;b=To^txbPrL^Df)pfd?K@QC4j6#Nn5i zrmD!j@Bl~;$q`Yge=Ibe#l zd>&^}hIy2pTy=iUMk__aj-#NaX9gkw>-9|YpThhj52e;Zt*+_M5OJ0$=(58~u`k$X z8dux7XZ~B7Gq*i_rm9w;>Kcn52E%^f+}_4`E`2Oh#(xRoxDdzmAK4kB@7gWY+tWf0 zjEfEE{@o348Gi6-$vdd*c)SJGnMlKc^7@(*m$o*a;Q$ly4Z|Q4jtdMa52r9ruUFw! z%nLt5^snwn9+mhlLmS@isJVK>k!GP@16&;Z_zaBCXp=JPDyLyKEZk;+I#leSVTqM& zQtUv-3hT6n4A>$oLtTniY@o{=t(9NQSXAsFwa8Na)1hbd5PZg1n`mM>T}Pwc*i|K* z3{|%Q1dXiG^};&L(c_K_wcDmx+ui3^V?RP@_7L{|bZ7IR^v}2rI4~`&cM?LJ+x=67 zHoDl^sJmKbH)a!gK*ajb4hjncAq}D~n=E||TTPAY&lY&ICHkxX{p#&M=4P9qyOvP1 zrEmKe`2WI{F@jM23@E}iNMC@JRhm-b!27C0GVlnG zn*~n(I;V`oXv+jcD@?KN!8&6dND;m}H%iP0@T~kRPM;BODtAM6su2>HJXCgXj0~Y~ z-Ue-}K=)mBoMP#GuD};UjPr40`R#dfjX=fWh9N9>B);%yjN?Cu^1m@*1E^3Bzkve) z^b!A$kdpP^ChRfWjektopm%T}*Jz|tY*>Ac2qX;qQV5L}p2cN7UyfkD*}nGYNnfr_;${K=~3SLXQWeG<>q_dJQ#R9 zo76Yi9%=ar#OZs9Y#_A9Gtz6$Zjv_x2kK#+v%qsWOa0{r@4P~{7z(lAGEJBI^<%%@ z>aUd{2IbMJTh{Lf+!wg@yM0%6{Ssf;N6Y+c+jIrie+GvLU1q%cEHBweaV%wot4A^E znS!bvmo;D(X6KW5dR&v(h%)W55d<=JfpG8g_I#1;;6S8v?2AlBof;S&1@0~i%a5+e z##I+$rv4?d`T`QUaWvjkN&QCtsRy=dS|9Cdfe0=mg5ThnT#_h5 z-sSHjx%w8#_i9u1Md!{_F&CB{S~KT&#(>G&QR|9|KEs%dV!}g#FvlBY)ZkAp|MJX( zUvSOuakMI?;X2=Sfp3)h$mi>1+{eqK@hG*NHv}F0Tow{iqw-?fLQjxl)4N7QX)l&v zH16>Yqnn$;m`Ng*=licA{?{cjZOitM4JKHRG}V*)t$~J?32?nGx?403Y)jXZvFS5kpwsilawS(GF%X&^>TK(IGtOuAtVI_8Lf#Jb6iy-n~{P#lu4x zXn^owB*`1>D=dYY6BYH~60Jlz<1|HF#69*}@DH}bR11a->Y6YV!SGaGm)GdH?DZi8 zngikKnACpsU9oolP5%=!9R>c-Z^6I00sm%T9!FTGhG|U+3_qfK)?3gw>bR>gPY9Ep z5|{}kF2-B9-id2yOq=;MAgeYDvg`D7C?b;QQeP6+&5imAz#Ks+QEWWib~Lyg8#EUP z9Q7?UP3F^;Zn!+WQ6OA+*BL`1mq2T1OtiwoMeso1SlVa-N#s)Jl}WY6tS)|dtNl9s z^FE-4P#{fs*LeK6dLb>!Xd9D&+SxR?ZZFtC6*7xX%u{{)%n98k-pYqA^@_;-g4 zl9a5m4$nM2f%C4x)-P~sjSlot)We5eg{9cO_5#WX=h<=mv3`r|E47fj*>b@Y)NZH* zO;ydx#0#wJL!97-5kXg|Ac@GnUU`HDhh+DgpH;N|wd*npEzD`%`Q#OCiUbp&A}rpu zH2wHfz3zposVH470vYdv`yxogVAmfd6o~7qmPk-SufKI5Ypo`bs-Hz*I49a=fU)ls z)&qsV)gSqy#8CO6y&4H&pEn58?Ep77vRp)3R;N+Bzlz%pc>qtmD8-xoG!*zF($jaH zkp``5b=*c$ZBly0qOS@|5n5ZfurX=Dl+EZ{RK$k@fM!88v33zq9RM?*Z{K>6gCy{| z;k<;Q7MP@XG%<)o`ffsRT}R?h(ahTWj~C+fl&Q8+{A3r_DfKiOq$V*t(MTEkUJJuq z_2r>O+}ZlYvaU{DQBZ-=TRfSIh6?5@EHs7LM5yRc{bbd^sAm|2+y3^ymg5t7{K*e> zXHzVsfWmwJYinX(*}SThm9<4CIFt)CYq5fE)6Wc3pw2_ikwb#PT1h(}1G$+2!KV7g z*xR+nSlm98R((@N@h?%{75`iyH53O@uLp%n{2`1k-zqW+nNU!mn5B=nfZpA{Xp2RQ zEpO=Buq@nH1Uzxh&EPpXgx)>uI?P7z!8tW@*eJjt27*^-6oGfhMeWj?GO)Cbj<&!;4VNFZ9rz48;^94ScF0ytK}MYXuCAbX#4(6L;;OYZQ+If*(y zs-QEr@0JhBsqtVJH7BZbos6@grBr`6i3X6JSe>S`i1cP%(;co9AF2YJ#nhwfXXa3& z=pQHyW7iiy;)d0xOG23)YKGX&zT7d0ZhTQoz};0PM(qF-Ff%V7t=_}bW)$1?QXHI% zgy4qyr?-jUI62J-JJh(bON)nkt8ZQ#DHR#b0i2W3fXl>Pqd5Z?=H~}qAHq~G*vGt` zv!icv^{XRW&Oqxuo1Sg*hU(KVUVjD$4AyTtT@f+6Z+M>@2!4Us^5({o+#_V7h|I|m z9~EN8^`TBdQ@ebu+73C-a1P+4@;tJJk|z*1a;|USL0NL(S{p{mzk{HPYco!byLz(m zWf8UeQFJH?a8^SvBF@_~dG0Nr-95GYCH&dfVrkE@Ea}kp69^<}X_{!>P)5czMvGKA z3IiYuwg`eJ(8N>eH4AN;98nYtQH(gjOlpf6joBX=c*D8R)!d=rbc4F9(S~So6Ahe8 zEHWcA9*4k<@`GI4PdGO^7MPtIdXv&=kr#URBN`E9%Pn7iWtDTP7jv39U)@Jv(3Nr{iDABA=gAX=9!3snx&0g5WtqdL|>i6m1r1Wk|H$XZOLnOS? z5C3%}QKI_B50HcTOzMpVEIzT+5;4@5c_tK0HjvwzMOk}#E+C<*H-=>UoEPFs#>9;e zJ-q$8cYXKj@X{?l7^&g!h*ctQ-}-z$`h@%LDz$x9JDGSqdhco3`1J7n=5fg^v*pso zeW)17=CWu9uI>y$Wpw8D+Xj3|^(%g zKoz_a;~`T}PquL^j%HF_h7Igk^OA$p!Xo=^pbqf3O_yamu=9W^7gzgk^A73!PV|6B@*UkNqK7kq26zA1UBkeIxSv@Epbx=~V zQEl6QB(1<9E}dqywe)R^7!$=&4^V*XkhBCKESs)@QoThmUb>pmR}a%>HXkxv?cWI* z3P6^A(yv{cR;>5LuV?v?;M6E*B3F~2FT_t^q!uSqSPEjIeJAd-SDKo5r85&XcUOd9 z=aH9R90*i96;&2r7$()Lh$l5^CGdc;&>H>J@GHyq8ColyB6yrV7ktcY@c|Yw2RR$e z{Hj%+)jNakPR(0?P#P3oG!~>e5mScPQPkMSG)Q6Q>}8e;i}r$;7A`fhWNJXL@Fn30 zhp;G?-fP8uW$R_%Y&_nm7nCf^=A)kP_-(CVES76J`6`-}7W$q!7B_M`RIGMLrVuog zq<3D%laJ+ffXSHl{D=fYg#y&W8m@7NEl=2~k~Z-PE~iuI2I3K#I`x~{TL}gHuDPd^ zGlzoV_nR(;giBh(qm7U{Pu) zIu8U!0>BadVQxo&_No(LE$5L?fP~k@cg{^_!I*O8v|25qP~7V~cY?cM5dwkMki^Um zh@ygv62b^dhUD5CW(greg(@;Eu5Vqe^mTv=1g_DJ#9j)|9}NPpQT*u_Ne4HGp^3kY zp+qwE&C&IL8!8o7Kc2Hi5(6}nJ>VKvDMnxe;Y8+8;irGv5HU-W(SlXJhD;eD>3+kt zQA!Hi+@Ld14~Tetwvi(GSVFP?BMKqzA)r}GLpWuK%xVlGYyxePs1}wmcKgmtV$~+0 zOzDqT)Bij55d+saB>z((I^_STKG^@QKBQtd2oOeo)CVrYGX{VC_FzOqsPNoXRr&g5 z+O9(s&@l92QTa|+;C&)d)0`$-Am*npGw{HnNe${+fXjR%sZ4$%w?=+uJrZvnCS6DxCadRCB?CXvIMslp#O_Ab2G~TAVbkC0_>c3pj zoo6DNbu2MX#ckH7KYXHM7{%2^er<@@uvPp*G!$2izAK~CSr(c+0SlYe>{|jDTZD#` zNe`iTlHq7W8|AFY^r*{Sav|DrT|?|c^xUDRE7wF8l$8#}Pl)krjK}YHBi56xt#Mc9 zz7Pp8X~9)6;O-(tIZ~9r+iT~kY2Ha_dV2d^*9?g(;=f|#W&muELfjFK4O)MH&7Ky< zyZ7f&8RpTQ($JzAjTa|$`)-q7Y))kcxoTrIz{Rk`AQSib10iAs+Oue-`YV!Vk>?fh zdzhyZ$LplF+%x;mwcM~vC2#gkmg@a54Q``$QlTz-6@0ijphSzlIx%_pv~%=iY*CM@ z94IhFg|s5)B}JSufRopTGOkcSYd{n*ki-Z}bw;+DrC)n?aEneNNe&MGE|{UrG!_HQ z_XJ!|AQ&s)!5{t|vG(yRY+E<%iE6T*Wjg+w;ywZCQX*}?dNb6}+s6059B&g7W#9rB z5Q1xjJOJ_%zfss!uLR=;QL!ZD?XG9BHqtPR(5=^>@phz3lHQnPDzKLG5+)w;XlbQ1 z3hf3ewaC%~MBuYwjhuYSC1Mvkn`t;9md6}Y@Z72#dfP*ms;GnFZkNa0gW!?)>of!| zs%?#I?@UjXv;O(6WTAKi1o8xMUViihmaL8hZ>SWG#>Fj_vK=}bzfs1Jt zQbCKAAY^PlGB|B&C2#{TwsQHwHsWD-(S21T7(WMf75a6P0UID1Jv(>)*V6s}K8OpH zu^v_ZL5-sX007886}wy0JDZ!>nEd<7_|G5kLPIMSn-#@JY@c8KKKn0Q!bCacc#~Ae zhU!*hn3&zZ@#bR`@y41>5LMpYAT$yZfo`1p0U%+V0MKoJY}sPOMC|S=^VlkOsO~C} zK*t|d%wz76kz*WRJ}0los!+&ZCBow43$pTEijW8rP%b)}biwQ| z%XkjLu#lJ&J@yNgAfzY&pG$D)1N6vBZNi-%-Ow_$l9Zjvw@sUlfwwG;bLhjJ*#bk< zprB*U4nW%GAY{tGXm$038Gt9PSCUyvJ8Mdlf3gmZ;{9xn*BtIl1>Ekm#%^sh`eCFG zTfUfovp-hU`zAk-Jr@SwX0JfEgWdiSTRz0jdM_jCiolxd4VJ=`g?CLzEnl>&NB0tp z>A-pi+D>e*RAV9uonkaZ#`Toalt-n*k+u)M6$4NJ7*mx+#IlKina7{!%1AU8R0P}^ z@7F%9{WvL%nq`tg5#0A9Im?c;@GV|na$_?z%^$5_>v$yO0d&gbt$>=q(030dIoUj4 zdt(RqIbJt?2_rjyov>A6Hu+?an>VlZygx?JuM2j%zwe&q_@;{aVpG_@*4Xj+-d|IC z6yd4qv~M38uCqUHwiagi-yYB9c-A|B@HcK4Wx|A8MlstbkkxZXd>m1&Gf;9+-2GD!v)pLaW!HK4kPVeAVLDtLzg6=achg zfu}lQbMBIVVvs}EOtD1UTx{HdD54Z_YrpP>Zf+62Veb1aWbJj!g(F`bBlqzVsBIJy z2|mzE?S&t?^lyE(8Zt|J(JY{b4^-<2cCF26O=m6g5d`fq^N@mUd2Sd9#?s^Dpo{K= z`KvsI)7RPRv#UKiNsq*-XwIki6QXt8z2E$kch$c)NEY&3x$^#S8R)-8Fe89gRy#1~l|F z*ok6vBBMYujmqo2nWGKk*rOMIXtNwl)@@7cu!v+3FgRS~hLp+C`pBgA%=az6xJ73` zm%n*I{mxP}Lod3>p|*G3`wBFf0-#^u29b@onQpJNq^n5Z_0?OtSf5B~nlzzx(wKPJ z?$(u}RZ66nUqjKsTez2SZT2!vtRrqRJQPT;jtyc@KZO93;U0e=VW;gCfzi7MO9;$> zwlEFTkMBWmRUKnr@p^nIYA*hr}gjwoWfQ%(Pu_(XATruO^Ctx&wiF9gkX5 z^OH;YoWfQcu-GOasAdyFcad8V#T3`rd|2=|-;%?4`q=r&*{-&Ep&Mty8YTeg6BlrV zcuP|icS?y`O3^yB@H%6^B>M^kHLQ_4;&j7;ZJVBP<%Wnj?tLTmaz`FR!I}qd-7<+| z47R!@GpN*@2D$knajRO|t_XRm;0Q)H8T2S_*-kq{#=y{oaJcnA4^#t9kTNjM!Q@_u zGZUM5DG?B3x-(GMhYVZoqJ3Chl_s#z%L>*CnC5E>Cb*zmptLD7lY;AN72@UT1tJFD z0n~Mk=*Lo@W;{LNrr7NR3~obFYb4=NzNregy(FnNjxw{IEahg9O<3h9)J@OFQJ&dimvr)|N^_O0c@f8@jE!VwUZTwo__eJk7g(_aNKc)_*T$TB9 zGW==X-M_Z$%Q=K`E11sMt{3Zf+n>_U2^6|Y2AyQL&^Zuj79z%Q78-{(SSmTW@m*v( zdINgzgpERX*vx`fkZU~d0ykePm%s^tVQWIILvB|HZ`JBWz7V^oxpQ z>{zCx8&oaBW^64pT=0!gV5t8V#c!kU?HaDO^8IhO4?vq1&OIRj031sK0>J)T4Ldpi zwl;D4mjc!~jX7vV{K6-=CNTdRt{S+@3%MMMGK-?A)u3U*)&DNHY16{MjUkz7WnUE= zS2`S0Tr^0qId6nh)TeiCr&Ur!)lm6}sHCFv;o@w**?It;a7xL)BZv$*we89}>ZTd; z<+TxYQh*Q|*urc+PM5l!f*H(F_5GY6g4nUXKd-O|0pjV0P2RV{z{4Y@TrW0W2Y%UzXQ+9-zKs_Mm;o4w=cYyicxMf)PnC^q9GMi}b zZ#mJ(-?hf~^>N_cac}njp$5a$+AEayR^fO(mCCPByLPCox(40m^YS~E-1f1vnX+

    bXx^TKP09E8+3T?L(HY2? zZJCb{JHEal$Unw#qUb?CXD`I|ank~ipL-h$U)q+~Y1OpqN%th#N`AIKVpshT}^R9s5SHCMF`>#$dylBy_f0`*<_$K(;b|C2|H51vp+%AjxeS^ zKV7FkNF1@xKKRX7po-gdu6|S9>bapWZPkJti4i$iOxSG;oBVy(iNbzEJRnC+ADN9M zWpKx&qKe9jRIe(`=;7#Tn6nU>fcaK4rc2^%y< zaP}d|faR-};tF*wR%Np7*x2@)Iq9Cs*hh=0cZDHW;gljS%9Sk1D%&(4K@;Ln^dY#) z!sD8>Ab&#}pY1#Wy8Q+ss>UoeV?h>F!nX9YB;qhAf#up0sLl*Rc`$Vas5?>KX$STT z0f{ev7cRg;`!37SDvPDs?As9gHj0blS4eL|6>k2%Ni?wqFDm=1LGk&UcG~o@lMXg@ zI+~2tjD*v~RvJ077mz(9LgC1&pB!TyD2bUofUXhEO_zc_+S4{g>eDv(Zsa2mR4Pe~ zAd*?am{uY%vHkQ|DB`z$Ny z*kFsU9oso8QzPy8=9=1?^@I7Hm0tG}bL$+wz|ir+t@QHn!KpKyTzAxZw*53r%}N!s zmk&A<2`#*FJq6f#9i-!8t`i_V)qObB{i}My$fcXD(BN9gc1X=-R25%2=AF``+{!tq<_D-M%Ok7Qef!=K3 z^<>9y6oMsvTkF?Gf7Vq|p%5JX9N+n#ltmnEWeRU2(pVyB=CN8vNQr-{&9W_n!Z@c? zs7WrDsnF1RJf9wQ+f5oY0QfetT7ObIr1t!WWxdp$&!IM^!D0SLMPs)yvCd%ki8^+6V=BSLkaLl-rxsqU!&H=9Jr~=YJ13F2T zd_?Es^XPRB?~YJC8(rqkE~&hjmulT&h-l|*5X?x&5J(&C5X@I$R^r40hkQepI`bR( zBDgq#1%&c&&526|@|>~=AB<{L0x|e;R}}WB|DlUa<|wG;58>EvRP`BU4`>(*%2Qf) z@MgpMYiwa4B)z^>XnXG&{rHc#>soEz>y?6g>$ePwgd?EPh8@Lz%JIB50PCF<2c0R` z#CMP?Aso=B32u87Du4*02#WMG2w0J7JIm`k(&y%g;utnq`&JwyKOgawOoQROF3}Lo ziO|wt2G-*F5OcnqXlZ+h6CEtezzcOWwtfvDRIFk-Mv`A*t8IkQ7kVcI8FvO@jK0|@;sVcE$aGJ=P_;-p$x_Lt{%AiwySWLsHL(c}2 zTF(tQl)oV<#Th7hvN}9bqJ|r00+LxhSwpEkDXh8-3k;Ved&3d(cYu&Yn2_9sr@%cGy!gWeOt>x*QCg_= z!pPj<@ByT2Q*i)kP|E$jLgL-eh6DAago|K`yx<@Cc4GP){mum>&X7UR23^ZjsSM+_ zspHG*N^iLXl@)LwN%rb;qN4u>SVvlO(dxv6%VxOd+kO$vMe7$~k5yZSs+uk|d2=7pB^FCHN}| zs-8=BEN8GH+O16y{q<9!odBzwCytq_C0YV-<0LMRNrWQN!rALsr7Ti9HuK7*EMjuD zkuHf9Db0yBlDIEuMg2F42U3BdSoCh;B#E9#F&8y>JfoUHyDnDG18#`sB-Fuq$7-%V zc8>E1o=QA@dxeK`JUv;mXG4?&*)5H1B#kZM=JEqznV1|jtcAlN^-g`fEpvN~7k1AA z8xpENy5rLPQIck*d{CpkyCQXK*Sk8Xbg}&2R9@7epE{*>C$PlCecjs!R zC*j=Y>KEApQchc*y-Iga!*05z0-VO9qkdHYVBF{QzmdR}PgHPw+}~ZnUOUJL33;f2RK`X1>SLS* z9CEa(C!46ocFMLjeQ{woR7|%(UuP&ZosNq2_#={iUlF#fY=X7wT8B?D9G)UUH@H$T zKtLx2`zIYxj8Z|}y0nIyMb&But%c2SR0Bb^zf#ZTmNP@?DY&yZS>*QkyJjJ1XLKUC z!p8nla(ybwnN8Jxl)EGGQQM>jYS3h)q%hdvcQ2WOQNNN$^QK28k%2qWO4j!x-;GsD z`s&1ps8!bn%w$t-rz6Qh+|(u&+CLJSkUW~ubjHUCKMOB=hoC~bA1BK!A3+@isk=NR zS118n&OsWob8?wdatUl?Hom;^E74A3YxXj1!1|ZD+x>!viCk6eVMnwhd|Tj(zdwDy zU0TF8qyXX5vtp8QHLqqmia5j&&ORC+y4hQ2nm6rEc_CMt3FP0mk_^f@h=I|QAz?%W6?fl9vl?j5_J-bSWXGBCiKMTX zQ))g*ehDyY%f^Q_*!(nqQm2Iz#Ypdt+}8;@ye5yUEW&VaZVDva>ZvSHX!JWsfb3^o zn*EiXFaaq;;6+eLuuuFcxMFsH>P}{LaO=#KLarx@NQ?ATz9bZ(2jAG!8gm*VRHZ~> z6x6P{`j-y{sL)D^(W^&wshZ_h|BJG34zILX9*k|Xv3O2`47NYpQ_v(^lT%x zulNtqzo{Xls_82+CYV8o;P6;K{p|T40HZ}x<}K?m2pHalbH~`9p7AcORY$h?coVU) z$*0ul>VPGonS7SCGC`@yESHG`wXT>NbSYEUzfhe}wj}M>|JeSt9NLq|ig6@js2s&I zIzbTx8n9ary&sxZb>d>qlQZdNUumT?mQ7d2i66$r(@OSDwo8B)X&ydMR9bX*nPWs% zdi!!UtCcg_{n7Q!ncCp(Ewr^h8X@yCwc%;}={$IvGkga-vxc%I;OYfX6|x69haK6_wGth z|MNsI1gVA78)$0p!+3eW-M`>M=GfibRE&n_J-Y;6U5w4s1U8g@9M8Zl;rc?#x5r$Q zmz2Ylf%JaoY)@@MXmVX(^qB~^L|?PydMKPEhQm}F+gjCBAYhlCvS3_HSx~W2(U2ko zTH?8o;OrY6^=RX2mcQC?mw>#DPBpRgC-FE`C0HW<#Fs7LdeY` zFwq+;9Td^zv0Zi`1nS<@ekTiM0)$Rx;pN?6J@-7Df{ zyyfk7xitU@s3_C?^@b)IHTZMjV@2Qznf6!Z>Y@9_-IErKsw^PIWaGUPu=gm9I}d#B zFUW?x3OinR76sGapI6`!67h?Lujhp;7LN%^**?7|^7Px4uAUQg_@cL08qTs6Mju2rN> zg}V1O9b6xk^I`~g*20faU)vBI5xIwJ4pOR0t}fbr)>pA^sz7h>`(7{{-tY~NDrZ>V zs&V1*qAz@Lg2sFYafCJ>*CRZm5Vk0(1UDU?mnZa$Q7t{{DBDX> zePa@m)m`8q+6N!ywH9@~tqGUr{i@w-ag!C%Z!u<55>}_+@X5Ba``VXk%lCzK7}7z} zTG1tX=Vxn-AOu@0L_$r3d5xuU4NE1l-WZ!Z-)ou^8l_ztgxGxF7Ih#l*z&grBj+7@ zT%jj-M0In%9B(r^JdY`-Cef3gAJ(VJxsKSLfo#x$Q(s?trN#()#?C@4c!k&a(OcRB zz1oPc6@I$e70;91Gq0|e85r&QTkJanyMQd+B>`@VU+pI*^XZjXeCmZ|=hX`Wx<>C| zMw+~1N^lg9Fz;g#R8A7V%{|Ba?3PtSpE`3h+jFmS%|%2KoA7n&?Me1df|AL!3bp>T z#2e2t5#0pm0vAYGbx6$>^C_b)95!A*GwWJESI8ImTe5}JQ<^B$hi@6P##jT?f{m-%0s)9Wxg2x4Op{MYoNKh@gxjLK zIZoWYp~SoVgw_ML*Z2g~V{qD$gcGh@y!7&kow66pFmchH@ORdk{7N(me^I0Du>oUZ z|BU5JkfWy(3>w-Vuz3Z0cJ!&vEU&fwbpX*nbk&ay1f15?GPBq!;rFU#efOxk!}5gN zSlp(Wk%QraS&2ZP3;$xY&^=qUUF>Of$2FC ziNLT+r(fL}y2Hmh^m!i6!ZUBni87kU#Tc|VqTGf9@@Lb`H{Dl>enP#9d$=B33PUhw zFh*mX_kAgs{+=kRV$_(TQoi^_Qv#|LqM9DVeXic;T)P=jmw#P z{HF>{I=r<8LFLzX;1s8&N@;>mdj46NJDo&cYh{*7;!WKyw`YMo#KEbgKY__z=U-bS zQez{7qHCjoXP?J^yuXcgH}Z@&$qI+$b%!v*C}53phE87*bT=mqH}+$Vt+R@U7T0WH zou}_o4kAl}7oG|H(_eBG~GlVoN_Pv7xsx>&>|EOi@9VILiSoiA!Gv5gMnx#d4q->XP z*=1z4rWi)lxoDO!)%Gpn}L8x~6Dmw=AbzBAA^9{tJHH6rVUmHPia(9)4KbshULr z!+orxoco+XU@eH`(zEn-1(m=K4=pJumT-UD5X5ERmu~_I)V7*>p}rg`{wd&k%95n5 zXm&n)&KCblNKU)#`r}F-x_suq`3J(KM>7p|#|es`ML(3(;U!p0<1I>b)m8P%Q>O*o zoi0d<*N=w>iS_#ui+-H!wqtAwSTYF1g1K#NnpLY{F*z?n)8Ql}_2KTv*7xG|Wqb#H zfggd!m|C9h=W)WgLj=xa`Fg`WR*Id_=ss>={bJ#3U0c?y7+*;I|uBz@Kc4<^AsI4!W6oo6bTARqVb3w z4`4IUd?-y*@jPt2{RuL9RKh>3+A& zB@Y9XE)V7vSbWgHgy}m@61m`+GE`6)(}Th(s&>po+l_~mMq^RtlC-l-lB~M@jxa1ELfPBt*U}GdVj&(RNz$Ku z5$4EfaX0Jo%L0bPp5odqR)oD*q&G%LE3B$@FdSk!MZs1um|)`2Q4&SVE9>KJEiNuZhZXMFWwI90J`mfawd_;9VCJ}BIL-vV$+Jn6dE z60jyjfLsKTRJd0$lK~~ZgKe9D1UxB;MpKH6j|cWR5?rF>i^x@*4usd+uy!>}LX=ns zvytHxM#w|$oY}j>DeNDKTVl99AyBbwF^CP3nFt$vN`} z7QZ5-Ts65!OcV5PaWf%93AQ#HtG8-PSmUbQ6MhA8G(Ir_Yev2UqZYS#5wyH@szqE| z;{2=;19!+!_)3-?i0c!imKVMUD-1+BvWzZyaHS==Pr?i)9$ud+A;~vM4Jzi8G6Sb(p^e#7l z%0H`M8wZp0AbGF%NTooAN2y3MMMJd-=od)$I@p1rvezr^p|j|l)DbWRDfJB-)s?P& zsond=YIHQhJ*Sy%HPgHMnScXk(V)dVVu(;G7^ip5jO=nxK$GH>sN-|$#XE8C?&Rdp z;OI}{Zn;Ox*?VP(zMPlF7bXnVc|L)9Zz9|G$t|Zef|T}=j|->%Adq}4pX4osJEQts z=~d$cK*@nhdOk{tgWOsfMRqYF?r|_s1VAbfGvM%Ys+O;W z1tMHF79W0x^tsU1O`qz#X)Uqqi3dOlc;mQeC>+d=z%gHQ`({ToQq2C|@{TTj7&PJ$ zk^@v3zCj!+L1pJ6%*>il46SrH$PznyR?oV4AL6kTsOaLUh=3BrNa+|!!x-{}x$8eo zrN+hUKzB~lX6gE=H?i$G1)pZ!DPM;wQOozhH8_qEjnhpO&8LSDXJ(9X2)$CL_RG_! zXHg|v9o)a0ysYiBev0m5jnqgr2Dy4#Ojnws77UzpheW{-z}@fdl<V0dbi zWN?JWnTVX^Qy8JP4{;>uH7Y+;u^@V9m?Q>&4{S?(pR_AdKVgbkDs{uc+c3Wi!lFH= zG%)AEGlD}fFCNtVu2VrC$?Q6wt`3H}WIG>J#G;Z67YA2n`Zu2~$Gqj3$~Vg4A0zg%0S z8fqFy^fa}CnHFqawoj#1U2P-5^`&`&O&9j{YRRPIur@K+0!qEW;Aam_CF`7#fViLO zpmTaa)N*0OnuA{L*~yi(H{HMrXS7t8_>_SO*;|1kZX3wvsW1C@cJhOKFzljgH1(we zmMc&=w&j)j4D1(q;yH{><9noG{EtNaFYJZeo4~%*TI!`}z05TPi&Bjyk@nBPmN zXp$;0obWIpcYOqg?Y0~Yp~Zojeeqs zWh^r*QGg!eFh7{1jr~ClqbX%HCD+8XBefd11fw5x!@_)A3zU^4ztZ0!pJdS@UOnZV z98O*cdgbbF&IU_`7<<|hMdGa2*;|RyltTAQ;#-@aLH~^&;QkR}k^NE|36S}q1J8z+ z6nvmWc3o0$`zf=1>%s5HJAsp<3eqt$7?^TZq;qFe)6@!$yj)a_ipuN{dku-Xk+oxJ zqmheH>@a*NSc?08*&-n?De#QqCVO4qDyNH}XhUc&k`o6HfMr-;!Z8`LfV?vr#I6_z z+)C(1pF-=T1>!c0*49E5dDgiZ`X>#8E5$50ALV{MY7)~epW+eUzj)d)uI-DFX6p=a zXp#K>l`+RNk+{@^w#hy5G}~u9y*4BWNvlPiz#RnB#$fL)BBDwq+NfDd#TIApP|k2^ zMoPp~!BlR=Sx9pPMNT5Jd=6aRz99Ezg(Qy{02Dpt6(D{XWych}=-E08yZ0$V9cdtC z3!OLGSw`I78+rz%b!{rWtYGJ$8_X%(+W`p{MCaR`rfoq7?y2~3In=Fl&OWvv`OPem zSH{e1=-PGeiE?>3zn4&N=G3cev~OtGyi643P(gh-j^aUrwG;GVj9}jW@bD{=Im+;7 zrdbC^8pvBJJ0leMY3N7Ody1*vM@FklS$RZ$gKX&@ ziw%k3e4YKu!SR~ip&+Fv9!Hr`+=>4x9!8y+MCAG6FV&j3GSCFXh3um0GfA=hol66h zs+LwdunRbGq=L^lcGQ{R7i#W#TgQGTW~W~4^x!RP;%5v>Na?w2j)0k>*N$;p<8MYo z=S__jk6|*jw&gp|aw@+@CI!pCoxQ)1dURv#}SXIEcVfCcfq z%?+mR+n<-BD*b4S)>jw)3SKbS9`Mz>-efoBF*8s}gPn&L4X3DbC9bR;jB!Qs7whg( zijD?_4A7j#51g`mmQG!^>>yS8o zK-Bu;7?K-$=gLW9$c=5f!NOAOd*|r-Z|??;LvgpqILG04 z-MLiFR<$9~rXbHS6iaVM@@FCc@=O=_+8dzrvUGv^`v3~;kR0WXjMU4Zl92P`tL{>` zICW7$KEk%_l;EXsQF|Yi7<4&@?5A@i$R&tQ!^E%6iDeXj3>`X}Tk7f>Vf zZ*ON84pzxz{5fabHXB)|+?wr=bIpATzW{eC=HyrB7-yIcD%F7Thdd3VGOow zGy|r(q%>BE^`{a-G=~N%M0KhmweT({g#LXLF6LEt;iI^_DZO{77ff_{q9=)d#3XL zT#t@W-0E@wY}hlj0|CPQyB=-kZ2bApQZ%Exy`9)!n3(|ppRVgWu1aA1xOxV8MF4x~ z<8&X#?qZGin-f1@0a*paCtoE3&6>CSEU=bd3JP`HSPBcI$V`I zQ>AoWSC`1^y_@1z4Ek>DUEV5r$v55#;)6VImIyzwUOw zUELl)I$aq(Sy;(wCN_6k6NWymKNdFapLZQqtvoqU?YxxyGWK}ruwp_Cexk02?c$iP zp;lw^?JUc99zQAHtV*vcM+{DHYIJ-$XtK`OE?Z(#SO1K;p+DPXJDa{f_>yNDOYHAX~e-yra8~ zk$2Hqgl<~(O`Ghy{d0Ef*0~+8>%vCXFpk%?c;XwpJR)W=*FO3*Z=|lj^mJ^^ z$li=yG4j8c^&gE{Ir&g^8O}Ofboz)8o}P3*DK+^3YTwqG`6h?%Y#yA@;5lM36_3=ZQaR{-)l?3iBh;*R<5n9ygNQ?hvBLdeqL`Z8US5>@(G8W`}&m!?Sw~k z@o@dlwM7{2n%Ub9jPs3f?X z*pll~I_Tjfhn!Eb z0{$X+DV)!-`aWP#J__ecED(YZ1^|4GB?5r4n=D$6MMx-Pi1(0j&)-j8wFM!Qps#y73`5NI^?-{I8y^wC;VIQKv9h0D$!`8Uj$@E;iPd8;Yh=MNg8 zgppoTI1jNUvn4#sYYTuWq93LJtf!!if&RyObLZ<+p}#hM%E{!Ti2ZO6^BUz}ngrue zyik&V)AZ*_G5nhu@7vzL5rKRMAMhmKX_?`UoIwaHfeW{X98k=!bnku(pgX+@eAE`w zwqna~Oqo}yW38qzf3>s(@SUgr^<+PGOlu}@@u$B50#1|SGK6;i;fgipf5S1KCDDif zVIOKQfZ1DP4(0{;<#cyl8T=nv_g9ytAb|dXV*r8o?BS{ApUGGJ$Fv-aPaS;aLJ9<| zAN~_CAW$cwjKTgG4MN5kn%IOPxDWToqyYLEF@^B_GnhkTfPVIv13&x^;i(2N^>17R z^3ia6{v`U-ONKB(QYN3p-|-`gk@=?!z$fH?djO0j+;u5HPU!!T^VcbVSUobD-)jhG^M^4-)>8j)2sj$Vb(L&k6e5DzXF z0U#dnF2iaRIc(L(dJ8%=Cff1QmQCi~8=r{#>@ zr95YOp3+=g&^`Y0daYqKJU(RSnVolUefkBso>hGI?yiPiz4LYq@PeVj>B__~68En7 zV*1vi+Hm2N)7-pk;)LO~`ONE}$x!h8*yafF?PLWoZ`OWp=g`-z4&6TL-MD(>ceI7O zGj3sre6Gn^`Qll7Hm*K@dOA9umhznql*4Cf`cLUGC|5xm~Eq8YpA&>!_~U z_?tN<)&rE6m&+!)y$`2eCC1|Yg6Dht2IeI1&zB2Pr&$g+&KDJgqK`Rb^M(7&tUE0) z`@zA{iOQG#`Kj7sX>HDab&~h6}xADKvB1b*j&+KRS8>^JJy!6+Wvz&YQQcQ3l2ak1B&yLqU8n?vk7q_5)}?timvfPJ-IO1|8Y^=y;+zZEz03PU7F>?K#= zc31v`V6LJsjl=oic8Row{U0>7f0*}LOZa_s$S4|FUi#9tkVx5?P|R~2{Kzl{q~Ig@ z9vVuVVrTWT*)bZV;3LGAZ!P4 zpkx6U*nK2%_eU1CL;rxq4L?4>N&YkId?@DoA*KR$}&vUd%P%36n-^7*?zL`0mo5gFk~2KyOaEiMaDxhpEYNdn^geAW&sh+ zw`;S5Fj53VX9*C=w;NhR{-^P06!A1jOJkAIK1^#d@}?P%MaKHus8OK#5cS7xTj^>@ zB&0%reQ=)wBVz^@{^4i^JXvsR77+1&IixIC{Kua$OC29&s>*^fF@uZzL&hy20b^qZ z7xlqX{8|)%gDv_u1U$c%7bAVL*#;xHJ>N62OJCBw>?fdH&3xk=ZHB|%mCYwQUl zX5lax+TXBz8Uq*${MXo$mxBO|w4M(^5RpH@nOVU9h9yoKtc@AWA6u=z!u_YwfX&8& zIX8^pJ25gs@ zD}GQj?4sy}13`=+$pz5}7(+;am!9M^OyvME?eaIKv1S$mkkUX&lsWV{`oo$qT!--x z!s`?{xbnfVSs*`xI7AhxAy?!;Nh)w+cO^QHyx2OIPg2;Q<+cC!r;s+Cr@;5Ndr@w{ zLui%!;{1uR$CsMVe1HcM98n)Ehw)y4(~>3w13NDlb#~r%=fFQ-ZJ7bN`*<@33y{{I zHO+a^b{RaF&$Kr3ZSEPLds<|dRx_TftWMguKORsfc(?AlJT^=Z{yd;Gm9=lDI8$|Q zIts4hA5K~`K99rQb$EG2h+b7JFMeh3KPYxs_1)kd8vM$(Svq*pe)r?_0P+Al#UR}< z`s>keMSKNAh5pISYU}2Q4S_tw`|oCVd3MiVjGuktC(3d+(L;8_QAa%LRnG4tU@wQw~^O2{TD+!s8_TrL3+?9A28|Bc!Ew zfjgN{XPke_=!cS~DvA56(yTRWBw%jADa(zUlF}h%AA$}u9ohfN$2|KEJBIuf}%^GBUM-&43_7)xgwKj;y9BoFUp_UitnMWg!Wfvsh#jQ zwcKGBMlX~h)FgVUI2aVq19Qn)qTyO|L&B!BW5NHrZ4ObDwZI#2;?NOr#Q*=kOu_Q8 zOrbvMILn0AMS3NubucB{UTln8k)nnp+RjWSwBuJi61Dy#V;6I|yujdE+_XLf;(wH51c*f-?%Wi^`4swU9*|lt6=vIv2&>{P&5bDA@}QiUzH! z6>>^w<~gUctESZ$rmG@EUrODAhJ$fnC3;(brmcC+XUJ~lq{}zX8W}krC z;T5RxRUOs>XWw=5TRqeC!c26asOtj*)wfeF=^w8dtbL_N2S}pkwK^tgH#T+!-Ql$y z3|R!<3NmW^b;ligxMFl=OOu4x2S%}yQ2dtK;zq4P`PEy-xkF%KKPg~h9sl$cZO6}% z1iQB*V7;<-PW*&{y2+P^8G$vw1&{Mdgn@qv{&-fXJbrwoC48P1P4XtNA4d@qRfOIG zlG3b&6-Jg>wy$f>LjPR!g7OFTdboDXJdR`X51h4cGgL+EVc#Pg!L_WM9oAqr#&+D- zdwx*gzmm1?(B0dFecEDMw$ub%Ek8P8TPdVWy9Z&sxdkL6N;-GzxnuyEH#?^X{+XHM z5b+T%xoe3nJ(0=PLog-B0?CIQ6wUn)xEW+=r2PrZaokL5>stT0g;MsY`V$D zMgbIr14go4%b%82RC(dSwPrsz#)pihhwL~kZdwW{mm5%HNTDwxq4bryF)?SptV5pC z#hFtI^skf12hyIpFSyKT?PDDAafOIp-VO2hKGq`a_)0H@-gHx(-gei#+Z%WDe-U09 z`kH@2{W`|r`(J~$)8rb|WO^VNs&bBUA=H{+0jE2tUb}oz`jgRsa z41d}`wdEamn22=f6k)2Y`Dt=Np9Y_`4t_*wKR%9+6?4J7h_q+zZLuMm1Wt3)UcK*KR3vrWv3s$9_ zKk;2)F%OIPZjWkR*OnlUrt2cBbDqt?T5nAiDsa>WK0jxh`Df;gThz`eJbgL(Y#vqW za?#==hiY}?QVQ?r4Ph;NLuAM^p0lvTc2=wW9ZfX2wVB0I)e#NVRc`4TZ|27Du!fd` zQ+o?U+kNA#D!I5hmZ1rb2nLN5U(Wq_hw!#~FQHTsS+lZ`PBK zP*EBT{X`z5;;_7<9_`p3tcS{u36;oBT5YdyU>ra?w`}u7%0p8?fE48 zzI{~agbvqOO8*OQlab3zau5zD7Dw2Y)eJG8>)>RNj3U@R2M8SnSRjlwNDiYc7<^?3 z=GKH9DE{=Yr3ZO#^d^o>qBjLlae2z1EiWNT1WMGuU&W>s1-ax`$O@cveYp)dh@MNU zuoF2fiY7VSQAk6^?XFCu&Vs@)>Utmr7rPp1p|^%c+k%Q7Rh04OfRn31cD9bYM>zG6 z|Hx_SFbnUMU$tETb8c7i@tfo|C(`K1jUJ>fQ)0r{(oc~ z%b)Y;|74uv?%#~d8(nuwP+F>@f(q9U?>EpmZN=HKwwbRDJiFc9yeJG7`K+r1SS_C6 z3gC1RxoliA9J#l5@Fq%npc2ThP=&kCy--8C1&cpjox zpV|DAIYL)1e^|sev379I+spCsmo_ds~|cCJUS ziZuu5`6B}7pfVrKMx~&LmDqH2cV^aCa1XH6h#h)25@Xor)0qjKe6%;gD%M!Yv&kub ziOYTX)^Q=dUXg#~rVzTaKUt4MK269M*neeQR8!vlo7P4OKpXK9}VOZ@m|7n^A*$y@Nbk7$+wo^6-GsH zVNKcaF{jIGR7Z<2X?SB38)Ksp)>~4({=&qS_X3)v>x-dJjxZR2a zvS+n5TT%99bqWHI`i1?Kp!2I`9K<8jiDA0SJl}Rw1rdsw=PN^H+LX{Dc?^cr{^TL% z#5jI;TN}0^|M7XUF`f!vhmb0{ntdLh+2D=HT{6eKu4LWelK8!-Fwd{gO0g8g;sXMH zYZ`F$tUF66+hs8F?`4>!iyBOG`AxYl-d?+;CyDKRYt-IryX~xZtFt`|sk~16*@Yc05 znAs=Gb^L)A`5g9w;=$cK$s><~8*<=wW#n`y6o*myg($f=6UpWRzE`?__X@~M#}Ads znSc$tU3!frh+7NKYO_2vaU+H;oqLS2TTEmlEo_;T#(L?>U&wq>H@; zsQmzb3IqgrvGixwGj+7LH+OJ#`IzU{vTPkzrBM9daWC<4K<)v*pdb2id2{K;E}F9j zv`-O3Y?jxyMMYJjvyA*Y`?HNEV@dZYyyEF~M#m;hxYXfWY9w-{8pvdFGR6-U=hYbv zHulq6)YY?+2fs`vN+_0+P*Ykvb#AnGU_At8mu9r24rpta-feW2doglqXc~~2XIJEx zfp-WiS3fwUTQqTC&5cBj?&>77s`oe+n?|mIaq5WaYp8%v2C3!(x-QQ~t9HZG+_YA+3-57nk<9 zZjijCTL7_hgah`O!Z%D_f$q)P+Tjpy6MnyqW!V`bEUpsAxnwuht)DxrGfS3VP3q?z zJgjhSYKbA))Z3jdYeFq{sXD=}P|4%#Qj49ghz(HPsptwvw>dv`<;lH~}lmhx`=C|2H>c8K+1!%btN`z=EIlZ#{aY84N+KkXW~&A`U;MIZ6$ zIq*FJ4K&3GDf|-Ra}dIl)mcIyo0-acTJvjZVw1CrIgVFs0d6N4h^M#@YF9i&uCpba z8O%0{KH?&A$EV4>25ceVJ2GmYw~{(!G2=pVs$G|AkcO-qsWD`SH|xfU`XwZB8l5?X zAkUiU`xy3Z{>qtRC0}*f#KQ;E=y}mf4wA)UQSPOOL(dS0p()KSp^T0ms9?-sF;<|> zYdsIt_)r{A7a~SiN|TZ0wzOX(Aq%q>1Y3Zh$^A@=^N8;;99femMzLGpGx8VTQg~b! zY1GhSr@p7%wC5!%>Am7lZA~Im9wc{@!iz66UVJD=FlHGDL0MQ%g`xbr=TlBKHzXVe z9TziBHM1l>lkvn&qU!~q+msSiLia~POW1K;hoeBNA_%`eU|gx2TDFrfA>4(a+m>Q_ zk^*rS`u=#+{xu22NDxH)r=_o{2the;{=#X2cjlC4L}L|t5(I_#Mfv`jGyXLh9gJ0UDR>2vfx+4Vjna2Dy_2eFs z@>lXWo%O6?B|;+r)B`&Og9;uZ&VuB97v6RfJM2~PQ}VzApl=A#2q*#QTgc!c>VKgn z0O+qu9(q%rHM0P8%D>RK0QpaWeY@W#0(0J&%)<1sZjvVgv)*dxkNC59E>06j0XEB; z;CYV*hB*k?xkC(4(AmWNf-&<1@27?iqO`vyacBc|dNha51Im*{3N=he0*Tcheh`%< z-K|L=%A=&WGl=8|bb>PQxhQ-e5Z%2B0RSxlY9s)R2nDD?7Iq9Mf@i;KznGBZ6}$(Y?;%4*bJ!n?Ua6U|3U3!unZLUw&dOz9SV7C>4)Lx z7|eLqs1kLN+S|oW(Xzzsf69sj&b#!G|1&y09{5?l$MAnfWIOP^=e|S}(ESVKB~thLP^N`1)FoF5Y)ItXbUAIb}9xCMWFt+zIHHG zRuKq6MPS09*t7mM4Me|+5LN*Z#1`hbl|V1a3jq0`fSjg6;e7HZ_NhcbT-l&}iYNB1 zM7&@01YcvfOGNDYdLjihoAFAWoryUFIFH?>vQ8cz>BIcNLw@040aU^mK=SA)y4h+b z3h6O5TiF8*F_b}KZNMM?bzv$=qKi|?M2Ek->Tbm+zr4WCwY6_T4$pS0 zm(j8O2n(UGUUKpw+a|Y<$r|d5z=a$rqHn8eUQ#MVuTb}lP;eHVQ<49ftO0<2BFRsG zfPvjh^spAM*hwbGM#mr0W&79kNfHFji*spuvgvAZ!!$Aopi|jGn{;8L{x;+WpC~pX z<5UH7!$XHsU?^U%9Vy7Ha|cyWq>!C~OMcLr++ArlEsjSpL_u$w&kyog3!?a}-nP?3 ziQewVU^Q3>a}$?W+-&T4VyAF0i5DV-0_`|{Oh4;v^2Wk#KG_NII*Ldav{vT@Goeu` zrC|lVCY&B*)l1`9_4G|-3gI)l7FHa23$B{qi}|2V&YhceTHX%mH*zR$pAQYDEigTO z8nSgHIHz}bv1F&jEE}~f8WwziW*C=cR^D;1s#75|CwACYh*#K=Zs*n%*KW)>`Mu*Q zoz|VPDF4Ku+8yShk#q@hMHX_%F7p!>I4f>=*ULjWGu)yz<8i2SVDpT$>>#{+w5rJW zvo9H9!#kg6bfYi+DfvN@G{erZi<}*b$)R4%kx+6Vfrc+cA_Y(5NGk-{3(PCZXo}TV zuhN)O`fw2h*=Zu2o(OVux>cz^G%qda4#L+w{u!a5qU7F(@1hBMBVVt)>_FR^ zCkK=(c`oyx;DsLN+iJ}pm-<~9aH{|V4?n9>>W!zj+G^JVLG)6-j^t-&3)H93uNC52 z+h;5Z@JAjkgFB3qBEbK54p5RmyC8^8JD`db`KN$_vM`;9aS_^-IPizB3&(~dgnHck zz?};LVrfB?8!+7U+$#YvJ&0Rg;E*MDdx5>cEPx5kpQV|i$@#Grf(UL`&HJ=(1s0xf z={J%LXzLtMkm0&vAF@jkfDc!MI;hegk{4T~0`MP75I1154Z|9+9b$PI2^Ngxp03_L z9uqeduVOQI*F1(D$kOk7Hm z4l1WSYsDf&;EBqCwMvp3w>_D6Lhr3lGDbIoK~pmlD%zuj75ACus-E|F<2*XB;BGnH zilVw+#QV#QVIK^g=-zL}9k}}|`}#9p1iN#OyE=PeSGey6;=|QYENJ3=GIRO>Z>kGZ z04*1QYG+$l0{q7e&VV!Q4{)gS7K+Yr9sr2nf_NO%lf?1691F1BuAjsQ zP}Rc4#^}2{m^mU|?A^O~IMgfEa)gKKKp9i@?1I@EPhgu^XgL!yhK1 zx?p?a6acM@NHJUuG>jpDb`l!duVVoyNIxtR()zFlR&>J(sE@H0_NTltCe$ASMlp&W zOsOxjkaef3+`+?0eqwPDBrhgrRAM1GVVAJ+c}UB1LP3U!a7e??qPHqC|Oc`#sG06>LsZ>7^rhU|NqcwwKWanG!*NMFi9mBXx3`*5#ONtI?%eX6FJ zLOIPWC01xktVnPuu0md5z_d|1wJ2toA~^RniHGAcG%(JzV(Wr2aG1>wCG5Omm*;x| zH;;*}jmH6lMsWI5if|#MWr@_nEH0&$(F;jITb<}&VgTon9$t*gq9YjOc1b(E7J>}! zrd$h*Y!xS#NzU!WRMN5?$Ad{vI7ndj)OxFzso)#F3?yNYq~JW0oU?789Q^&MS8iSs zliVj;QEiY@yNx`6gfY-GC40D4nP@g5V=dfawoBs8A)MHndQubG$6P)T1ZLSfjb$c$u%bWF4Oa*I=yF zE%>G`AhWDdaBa}@BWfja!fNWt5X^g<0r7wrPK|#mBrsznE%8DJeOtbS4nm5X%=R^- zrk8AukiUXr`QtZujfZDpowiP5%{eEA{c?uk09gq8h+F1BLa5k_=W=3=NvofIxqPl6 zRUS;-Ph)vkx;m|aSo-cTNA<)8yV{58uQ1fcaYfA9xeW$*RWn2*YG~TEd9eve)ym8Y|LiXcn9Vt->$;zt2RcC)XDmKPY# znSFV2(&d*UTsf+9>XNCRrE@@h2VbO;-HOv`7>`R&x|D1QURY{UuxgFPFu8jCx{F6Q ztAJPNR)4iKR`6xF`@gQpG;CdOQUESj00CUC@UQdkuEr*Sf`E)4|301wGtkU;>)v6fk@e+?T~QeFC2bzX+*d z`hAL|wzQKa^YFz3IeZp=oIg=d&i5j59@SpFL0lyup*w&!zo~jKX5r$xQet41{WOYw z^u;#bt9r8g{XA(PM>Sx}A^CG>aN=0K25k%`S^sZhLlg*23q3QfK22uFeOcj8@r+P$ z+AApsg@y1S?bciO|^tFXK)-wBTk^6ac0=N^{nB|)Kj^tA^K^a@L z(@@#dT9=uVd&FS2SIdz<3a2FnZJ?bM=L?pDVcsn(Cpa)}BPcE_iHo^t=Y}>{?wo+W zGR{}u_X0&Ho@=(--@Jlz*=AjaToln z-&OFmeh(88a7mR$J+YN!iPs@Ri(fs zI{Pd4#M>;2kGav+NY)w>t$WsS%xE`iZcUy1IgU8FUYYKl1~{e|sEJ64CPCp_aGR*r z=1uWx7|?y?(~RK4-2MhTiErPKrIqQvVV$#Ge0jlN5!yrBM&lF_>58~67pB`Wvv;Uq<6{J?^Z5*D%=!K+~>vFuNK42 zx#Lam9ww3zUdgh5-BUKhm>ug+vXN4IJ@6TFw20UxFs-n)$~ZXu zLLq@Rfnw{}hfgt_!IV7wB09c{nAI%)CwQ{nFCGnt$MY>LzOq1^9;oj`V&8`^v(mORd^t8Eac3xvjmU!lZ&o&48>hW)F<8+a z`CWklt6Geg1w|NI(%ZZReVp*;-wIK>8I6u+x)x!gk%64r_0(@b-t6I2K-(H(2yb~*=hQT2;9&QP@0K;Of8*rD^D zk&pI!$I#}Uv9rTWs)&B+@Xs}u4;HA+UxOytzInqvfECESVR@TZ<#n|Mbg0FOge=t( zHMX;EE8`9@zWZUN`^p*Rc%kz(1QFPE6em)yOh8`J-SFl2zR6?pHWXs@dIb6&5tvzgsd3n6NnMyLWWZeE3#Q`S$ zDx=n}7|hvg%sM<%-UyX+ zNZfoO&{yxLOGb87xl#u02R;Y2qC6XP`BzJrDT9>Pv1#p}DK__xE4nK+J!&!Q$WoOk z(ub~Ow?Mx~B|BJeq`kLpQV&Z*+So!ow_rSZ18-!PD5gxVS4B`%(PTpRl)Jq2P5*Kd$YKFH_g&NJRF zDSeTfo+Nm#-G_ zp2-XJ-9e54UdZ%Yf(Pbgh<@z=? zyP^oAVL9ynwc?$pN>gr!P&^DDm*Q&*$4Ym#J?*v}W8-ROX-E%ncWOAxX#4>6dWk8Z zkxq_YI?EKsfe@9H>m_@g>VsQli%Lqx>xrB|-JyBgjGBawjubPTAXPw5$+3&VhBII9 z#jjW#d4GiY{LAi`QtoB5EL0!U9g|sWeiej{n;%^~;>@A7uWNMG7jmL34lE{})NGj} zn}MOkAy8>gg0zBjnH41!nD@97i*c-WdWq^m7=s+q(L= z>3X_)`E74W`Selz26Z^0V;e@{jNS{e_p|VZ@kyyYI-Z7yM{PY=j%tfgk_R94$aoLT zeXB=JxM^u@P=plDez%`$)2PfpZl&J&`^vSaFA0N%9kDGrDT}L_{3iK18^}td`KpUV z*PfPq|5&*$rG?xZM!J?#h(tlk>Nhen{}U;t=A+eVr)1~vmLZw76W-?!BwB=^Gm<0`eXF!dD6tGqiM5kysg`r^P36P= zkpkk9M-?pM;9?9%wQ-3^bYOI-h&}Ps)yVW3r5+t89lVHJ2E7E72}R2(+)BqEU1u2z zuZ63?`{35_9QYpi2l$2KQ5ukOG>+3W<3G@#L0yawmPi=Pvkz#rpshbesl>hA#i8D8A5rM~#ntbD6TM+E6 zP|vS54xTsU;W>?L;;N%ulGk?${iENQQqkwL#MNCdJUx`r9eRo@GWveC1%I)43@wJp zZBe1LT+xQeGsc^Gv!}R|mt?TLr5b7FtIdA5^RMg=m$x`?3}mPCRN)oUT11W%WRoUCN9B z*vI%FlQnv=W!f6e)mhYQVI?hesY{H-WBAtSSEHD^;licDbDB>o$Xc{wi!@pHy3NA{ zN4u`FWE)82#bqbB6HEFHBeODIMDUFFMDo->Y0a86cM5cPd3vw z{0?l3Zvn%hO9Kleh{fPnvZLh8UP$U{Gbn6sawRRJ@^b>L#UlP-E`0t=Qy83qM{y2Zl)k zeT&rORkr#gGYPdcbBD7koNLN7)t;`O=A&qGn>7!NmzcAd#;(xZ&0#wRh2H2rEZOx?l{DJHcK9On+d1YDCDsAD zZo#uBX=X@h1g>}AdHv814crsl1X((VN$m9O*wE7}vemu^M(rJSmiCh8qd)iym0p}bG;)G&vwV)@f@dIefAjQEfnSF& z1A7YRLxmHQ2@Z**!{loOnJNvr8_NC&#}47d$^u8HF5G29*rK~x+i!&`8~+&(G_>+S zYT~aE;TKUWQ45R+Vdfu3LexI6ePple?-vYgWjkAj2b>CW+#Vtr<6i*}tqzGV1E(GX zCU(H1@Tal>RQW^owWB-%2Y%k?{LvgZrD`m%j z4om?%W>G2YjXM;ue-;=3_WGa#qMz>osLmhYQ1DkUsiDPvKSIIZ!~_$-?=4daigP=J ze|n1<3<4{Qsi1e8{{-668G}J!wI>yn4lLq+9XY#dKfyq-n2idA(Ek@8RoVsyf|WT` zU>xHP@E4s9I2xSErAFg;ccTB6*98;6&+Jsf?}%UO-*q+sKRQvPi-dke|NI~YuKU;J xHZ>Lkxhp~g`PF00-@t?x~Ts2{g8Gvbcd%EF+SOQ0={lLr&`8O-p~d!m7>y~r4ov8TBH)%B{2ypYh{bUoK8mzMWyV_Y17FX%EVxj zkYz}+jKL%!%Mim@X8T?Deb3B2yuUh~bE@O>_?H`PnL6Pe zX`eG8*jwuU^lj?i5oyKpPF~3?ZGRi+ppVnEb9H?sc~}0*;$_J}TAlJAY!%n#PW!oB zWg~*jTr%d8H7d&cQg7<+ORz=n&O7{e9AhE}X`tbv`5on-EQ~jIo1_cR| zHEJd>-Z>iu$CDPe7Rb-Fkoo9_WFJYDStN-8&C4ljipiGj8SlqoZJMlA3={Qs`Bo*g z?Twi`cW15f%rQ$h_Uv16|3Tmud-YpyejYn5z1wfnk|)j5B`S*CIh2qkp*CA~RZL;- z7)XDJuf@8#MW>u@-f;Zm^&fV+Rww2+&7X2(!@I5X{EW)!n@MjUUq7%x>UfUXo5aR# zM*`(Nxs>tlCSFSx|M0=gRf-U^=TWmOHDI)(nX9k<&Z%ZH@{41BUzx+)^G@cq^0d)cK0dii;NVLJFp zj+YG!eht3JKKZlnZLc{2lP4Sr@b{Euy&sQV`trbe8@)KZ=j^jn&ez?)nSZ4-bJuGp zbwasGbG-Qg;Y_+)e0g+i_k&UM$31?NxY;uOJ#mW7^jqrl99>##tPHc7x(x`QY!&)T zKb0xf*1YItajPzF+{656TbHhvR9e=9wRX3if^n%bCdAe4-}CC^Cdw8ylh_so1LCh& zHxQ5irlL;3#LK?3z7_5hw_D?oR>JH$?9uMg*HtA}&y!KY-<&ahRFm0uv2j{zj`O#? z(>+tT)KN|RVaI_wwSI@vhi~uoZOYu(9JBhmk?|zyC1W=~jIuBu8+&Ma*LzA*lNeqD z*T-UL`$cH7o!0gySBua0W1Nlm9B9N#XKcgqnDx=Qw2;nqez^Vu0|j0m!>Q%=_EzF@ z1-yo9C#M3(VONf_pW=S~lGw>@OHw!czLt~995Zd^^|5ExUDC^VgUe_NkyY0DSeF%1H+O^yz%O)>1bKi1#bDR8w5M!593!ioGq2hm5Jwu@n1t2A#+$I2U=^-2AFc zfOh*a@sJ(u#ah45J-X^schDMNx2=mG>}-q-vUZH$dT}k$Bake!VCAgvpzCTuj7^CJ z%RMjOdvrtbTGl3JRM^j#k3Y%1ePdjO%Z@h_G~YdYUE{K1?{aE6VbR#&u}kI#Pbv*q zc$DVnp#0+H{WQ77a>V5EO53$9mCLtaFa3DY@6+`k9a&M6iXT?*9ys!YVZ-FLl*W1G zW=f}WxBYahTxmk?zDHhd8gm(AG>D9AFBNmo{HArIQF5lbx!dXdx%-=SXYYP;V3$_n zDe@A#{2xfS%hP|fHog7i!A6s&#Tw00V}r3B3%BaYj=jQ(wN-q6HE8UKU+z3#^T6oG z;9#wr^jqHKt7m0AO5@!I0-tZk(!< zG3^jzy$)91cc*Mx>H6PtvmNKz$(|m#I?e#IN4)*gxyhxsO6TUBz2hcZa!Y4Lc+8fX zQ_V^~&i!jzPh)vDImvI>IB>Yh{9vW#(Q2b!t=uXH2*|CqPq zZM41i-L|mVK9T3O?y*&8I~T1!ywT+kY`)urBA(S1 z(*DTxh|G;CD&gDYr*7S_NtvimsUSyE%EV=^xz%s&tEw%UCR=Xw@dxJ7vaw2|Ba&lg zuuI4JmCWkSTe9C&+1KdM@3Sv@1{SUp-{+JtRq?Rutys;w-aouNIW8f>Wvov{b^h&C zM)OT;ReVH4o9=S|lFQ?wez&aoEn)YSGu`T$J1-Rf((Son)0T-g%j`_o+%iyDK4Jd8 zM~BMi@4GRj{i(Rho3i7ptrU#PjbmwL8`-@{pr**zwKRL*ot| zBka1PLSwA2ym~~VGd zdl$sh2gHjNHcpE-I2#?e-|8IQ>Ji}>IBwHm#K(Q~xC_EHKO+p{!THW}w^@l5;l zRKI`+%#>fWmGxVXsfp`hY64eRMYCe`wqG!>-ZD$pfpn-@C7P@k`!*(-wUj_Tbt}X( zc7IDb+l@f$N#CBtd%oq;%1T=U4??;1Eh`I}LWgK>_{`PG|SiDQ6`O z6XW_!emXs8CbY_{wq5Yl(5}v;tV^3Mw*V&8Xb@#_(xM!VudfrJ(*W%b+cujUgYXyeO z^3(KmWd%ly1!AUaa?bXg*~;y1W?U+W59P7?i#0v_8yIB`#k7kWX}kmt)fOE4bbouj z7_N^)z(wMDpIG`NPY+&u{cTT;zOL3wVu5&`Yex&`A&J){RwhQpeQK-0^SXMdnth#O zBwj;Tv4MmE2E$IATgj$LlR6j-qL_g+DUH?L`HoSB=Q1ui_0TF5qBG`F?agQb>FzE) zy$bC(Y4>z?eRdfu8sr#HZZZ$&G05!R69mi<|P+tdoHU>ni?Mv8WWXuNA-x(Slx1hKl!wSrJWti zsC!}{MgbTdVDtRcPaSCe&FpDSQ=_lPSQXwoR(R#6Eup*^70ew%g@0=(?lk9M^=lXD zc)W`QM$`Tiku2xI$@16Nw2#1&c%7|{uXd#v0LaE z4P(tEm^cj{y@u+7pRU1f<#BU~Vut1Z4-8ePoUV9Y6Qj67tc~R&?Md16k%V>BEOv2A zY91BJZRJ%}Q^*%P#N=t1W%ZWCT)c5Q$(_}X;dSJ;?hXu%Z>PrNo!guhMsT=yC*?*55*}uJ0sE$vj9I=;HWf zxE{{H&799}&vS6S?U5HzZS(9!hZiB#{z-JJwmaiidi5qXO%tx%6sBXb1_}63XXzyz zC%%AVl-C~XiM6V&E@^G5cjdajeW2FAe4_@@w%4v$fpoNXlOoN|Z7nMTn~c3+8K_BO zG3l%(m*$3s_sp(c2Bpz{IN|`isQ{1Tgn6iKqA7ad96H$>CEXJ&KLr-xGI);t4(s~Q z7JqPhL#QBQdph4WIJkz{bXs9rs5*^3iVNrRP8IhhH7%b=V)ZjL#kkzq%*6PC)}=;a zICmDe0#EZ`Ga9ijjA?8V#iMR%oK6qt zrAP2>)Q_dPc$x*joxf0#sOWzjT&k-iQVU9q$jQ6!RhXADacfqLMZ3q zj5;z{$ymnnj*P9_tMgS|05@hW)jL~{&XCx*hBWeZr6C+zdhanFXpLQ zWTII;oi^VdFff-crVWD6o~!koelt_9+0XYy)I^%fKvoB@`;tMAABp(bvKZIfmGJ7G z!~l`iL*fxEbC>g|Bo`i+P4TJ6u?XabkNTnEb|(6^`t+SaQ4uw7^XThTsp{#4acK_; z`&Z-i#d1wkdnx3ofsfRhXMf<_O_pyiCdCif#t%FWvFrKdJi~Z?SCHSb{nQ{Qab=u4 zF@`C2(4kV_Kt08{?Abx`k5WYs^X{HW-F9=SQ{{I1ir3?plZc1b_r#oRdG8#>@XIl! zc|Cm2FsC%GejO88V6vp3CCj;Nx^dsCw8BGrfoZz}4%C=Z*XthcFEwv?L*%BOY|#y{ zVyG)Jd-k5Y7*nA|c$^Vfy-h-@xrZ+PM`Xpj$GsO4cjQ`_Ew?axXklh)Vb)|}CRUJR z7jGe_H1leW3H1msW=iqp<&33uEOU-y#{DTe<{3+lzAaDH^r0VF_lR*~Z@5Z93%fx- zm%O+9BbmG1ezwv;@3jmix0#aZhHpOZ42mfUy}RAs-2h+C({`#{f3S4<#-e393L(;X z6~kB@ra_^(W|c{sl(H5%qAjEO_Ul&NH?7fG2UVn=F3R>lVUi#E;)jL^S#R*~5i#pt zWKEcA)xF4e>g#UZy`>Vm>Z?OiPd3KBu`6=(c-9JRP4qmniPkgK?S{=HC)%wiWzpum zD9uerjB#@Z>^0>lPdp#_A%qRtWwzZ08&;%Ac58d;$Jyn*Z&=dtPkVi&s67`FcjsD| z5e$+-YDtm)KT~4EZ(j=!yrwQINla(f^e=hcra7rFuuyLdV`-BAbN9TqC68faY@GDO zM{f*WclDd6_8vX`rGfg=xD3^ET@_gun5Q>vaP9Sr#*3LW*e|HH*4f4MBz}x}tyeVJ zcGK!7Iz^Ldy{E-6YK29UwOs0-ga_I?ReCjLQhE>4d?(TUim7cu*W1LcdQFWSx9m`^ z4g2xpr!hTe)HG$DIBnXw>6A_g>Vjz z)fV$(KGQYvxLEyFU`^Dj(JQ6j?8EMgLYwMHRDD%q00vp^9D?4LL zQXQTWSkWFC=7;FOHdc6r;Dao#Y_fIU{VJkXS#8a&IqKyMt4q?X+Eym1s$;fNALJ?L zBqY;}-n`oxRF?Lfcy~<4Z1Fyz_vAEIr)!}2xkLlmPjP=d_rI1jrlWCuty03W2uH2) zwM)lKW!Nq;9NS}jE7LnNLR{C_QKv=C@K%{iVocQZto`*C1_x+)wMhf*yW*b5lk`2J zJK8l(%!~U~w6O6N7G}MP+GkB@T7Dk}HXBCPCnorJrzl2uv=xNDbz$0E>oE>sm{Ka~ zOIwS2YUuRF<*dL>;R;u>S2LD&jxOa8E8~{>541~^x!?!`Qudf&-U5^0Uaj~-mR5SL zzFWFqdaXipPY3qdCHol5Y!gQnJ(gBB*Q1PZyaVSRk-iff(I)PbuCR(}ULRA*x?gE& z+kGE=@+?`+Fc&|7-8*@8h})s{P9+MDnC5#A(eo0mHcZ8k0zLLVU5+h|N>@lxC2=)+ zVyjrZb2rpmX|w3*CV|Z(K}pGv6TY@KKk>|0<*zi-p_#HKCArY)^)kt;MlcZiHL zztebDo*CxO^Me$E(?h@rrH9b)+0Jso^Cw=^$~|8fmwUd|fH84-G3Gu#J42-nr;AIv zFXiIG+q3UgZXVg7hHc4IDHu4Bd$41@kwc|HLiI#i9$@UWYV)*;vIC;X2n39`=(kp$XOEp*-EmXBJ^?t>;U;l*+)oO*cUu%f22RPQ%p%E$xcP7L?uVx_TMzLE)Fa_g5}9W;Tvk;lj{1E7^)9u9CclcOnpPSc=t*2 zaSdg6B^b0`E^|9~RmKg{k*@9BB{VvrB63Qc<_!|Z;GCnrcl(=WD{lTh)tJ--sd|O= z;TAe73fz_q+uQ_7+J@MiKE3CwR`)#a$jZB${lEk`i;_Z5AM1?%A;#he60>-=*B1SN zCrL8b^bW~+x{yw`7?!-vw(`up8sF*vFsHiytY+3Um?}2Cp|HN1(I8Sj&DJZUVe^VK~7PAPEkRQRKT?w6Lvd$G43hh zE*^}(?-W2@Dm=&?xE;mEi2=KPr&MgYGQP>H)q*&EYFEEsM}~=q#>u3aSu4gsI7gsjUoC zlM7Q@9j2xbhCRH2kgiwTKPMra>g2nlym0zYc_EaYiwzakcFDdnQ>)l5HnS`-YunSd zH6`~iU5RR2vsX@S_bj@nyP9&!{9dyp)tIVe&6bPg%)3(WP49k;)FZfju$$&_NZDCq zK~~oGl14vR8@8!TMtzq#@nly$vrlhZ@(QlaA|pjj!`-vxG!19*)uD4^>Kx17i!Cq@ zbxER4mZh=}QY!T=%s{@Wy>%_N!pouejkdez>lIYa=DO-Lb=5oTs!!Eb8`f33)>UV{ zNTDlrwNIQDzy1D&9IleSzY^m@jyswCdjc=nrYWR(vstjx}KHQk*VjrFB1=4BGu1l+n==gJk<~# z9Zq+`&-TxbkxR|V?Cyl;r=Pup6>2sM{_wcUa-%!8zq7Ba_>m2}*10ck;`I}h(dI4c zF(=+5PAJ?|`w<(8yx6mhF2xRf5A(rUCo%dDw1p#yK{ol~D!BMqFX)>l`<>Bjtx z%RI9hG>`0ja`_-zc6;(4;pr3aTg(87!jMv#?QGL^{%Zfq`#VPUE~dIOC+sLGkAL%U zGyCXvO0CEMC2A8?qo&t)u;V%;YF}J5G)47b%PvDVMw)s5%WbVhg71 z_Rb6GFFrK;*(@+pTXV;RzAsWL-KtG&dtK75;TVQvyY(~`2Vyim^z;|lQXbtic5dm* zV38l0Med22y>ZsVMJ{2g-tC3W%%bX^w|mzEf1_r|`;zJnll$)_Cgf7r(v-JKYEJC? z;7s{&$%Jm@^sI~LZI6Az$a=}nnxA(!+0S=zxV(|)`xW!Bz+Dp-gmPamRSkI<9f04k z?!vn{e)F}kq8RPi|%WVfULc!FbI^>&7O({*eBDGn^DP<%ApeV?elO>Vqb+ zx9WC;%7%;2j7$5J7_^t}Yig|eb2oa!JY=8S?*0xqpn@d!url)xo3>78o3mqr)0<0f zr#G*iOU>|*_FJfhwWb6K=%9w4+Lvb2mhE`8Xa&H&N|N=+rp<{`8Jd{Tql$eOa_$Dn z;2DeaB4whNL#~&@axaI6UJjOC4ozMTVpE!uCCbY&+3)?$uybqrb>gO!Z_+I<^du`8 zDzelo#&h{8=G|bFrvW*7t-nW|2GdjV6=C5 z%f3Fb%(~I?`uO*SAa0CrjBhCnw~n;DZqZd}Rp~LIpS$ z1^m;}4A>bKviHX``<(UlqF;6eawga&%l1#JTBLUTN$2IYhELg-_pWE2Q&aAL5MWrR znb%&&t~j!e*w|*aAnz{t;cro(KS#@~I6p@|>dGetkIv3b*bi@LLAuO&^_F%RJp(z- zy-P3+ZcKx{o~x)F{t%^}Za1l`9yB}@#dvRxv>wAcreKU-5T)lZr>w#+v2L7r5xCTO z(~J|I#}2=HTMhi`*x|;a80ITQJSDTSQ|*uFp3L;#KzrVRrZP`YfBH;|hA#iCXKf!o zdGv<*XKhg1c-2R5`V|8Q&$BC1mp>$!VfCj|5#Lm2qmOMDW0S9vc!OsPytOz@#sM)a<_X{qBD@anfK4AQH$#>wn8H`;3F zYuSF(w;+sQ8R>AWaib;icT`d&Td_g8_g5gk&R*`H84m)6+k)8t(8VQYxuT9@P~^|p|6 zsyi}%>J&5ncvB%z*Zy?>&fj;}7{)eMycl@wx34{F$JV~ZRCVsOA{#P$wC8QP=z*-b zYfZm65>LD0!ed+Nqf~sDN8(E@I^Vm-w=FtK16g*@2A887T=s2nIkLg!&;}Qi4ZV*~ z+hHeB88a?&4w07wBDBBRj*$WXYtNbeO2s8E_{q8S!VJTX1bc4zd$1&yiNhwA$K(@; zZBbqH5cPvx>LFTGnuhm56KT0eU9u%T(%zSg*#6BgvK6?ki$fbg2=zPK81>y*BNbrF zMMAEt@n?5`UY>JVcZccA7y1SZd=oxBESQaROtdM?7v!x=zxFMsMCb>~Y0NSw7JDvc zB-$_xnj7n4!|?e`Pk#6nwdWVQJK2{+vApIE!+#Pk(unj4eMwgsO{vT4($RJw)N-2O1B9C*k>{lw;RGoaJ5~uSW*dk$c%fkL>2R-@(Cjr~b5=cb0|CYq5BE z@sWB`1Vyn`i&-eUSFMP9v@EZ?@kyLNS=n)JuV#}yuRb<*)b6lIb#YHTYGa@qs?J^8*F?2&VHea= z+RJt)8YlNhJ2E~7g~%VNZL`={z%FU4*Z;BHf*Rjp!CGDup}rQt(O=oc0j)YRXOQ} zyMXiU%ScOpwu}@0hm<9!Mz*!%k$Yl9-ttzht~}YjN~9G3W^!{+=$M_j3MX6f#7cpX+=ry;Vx|CGb(+{UJLYPa4q@6g+i?1qac_FSi zOO1RA=Eh@sB2oEVGL{|Iob6op#NoYuEZ)+uu<`iQ7Gm7ImgH0}>r7o}zg9+1o0seU zLo`aGc0xwMtQ#OHC+;A(-8mXxkc^?}^x`XAn9pBYcV0-;_V73w#JT^8sW-*GBj$Ab zCTw?=XHcL^qP#*!5!VZ_xLx}ajC7=o#qV6>dw2d z7z?A~=(OEwAmK0bd24ylWW|x)qyvmq#Zp22t)K1=(a8=gXT2<-_Ctk?)Cn<%+6G(G zzz)Jf4a3J^o%cj-14D@+k2$srB!;Snnnd{yrjsjoOPbMZ=mRgKOgGRaNxoyYlk3eD z^sZ2+QZd&{O>di>ON!(>@>A1vQrV}k;`T)es$Ml-P=j-caY0%r!F&O3#Ue_SYp^9I zU~NFZ`NIYa6UPquWV2Fde7asoew8|96W6ic0@Q_x>1IBh^~O)qYJGBQ%`vr$xW-p| zQf+#B(z|t(?0fHCa^OH^@2A?ZS+%vN>gZ4bW$8C?z08Bcp_p{G*K%uqWztBnK3t#= z_}!0wRMD1aap;Ac-|bHpNxP_;dpYDPT(He2LabdC3I7yF`h%m`f2^GA@rIjaniLgs z$GYku^=&7^?IATd{L=Z1wl&vnJu0P?4wm(5M;|OJ)9x%j8d&odE*cZ^rf`%arVb?f zZ;q4*BNgf&BI{3}j7?#+T3I~8Bc=UBuRb4l>OmLv6-z>kYbUIz8aSBT!w%cCOj1@7 z>+g}k%BuUr_7K@>PE;e9U7tuc39Km}Fd1+P#n1DWs_ubnVywfybJ&LKj`KhQe0XuZR3-??hZilRGTr>NKQ%n;1@lZ#kKX3` z%z`FzkC>Ie%(nN^af3WIlXZano$;IRI=-CPZx-LgN zf1Hy)eaw|(woJl$yuCq9&%)~z>fOuFY&r}mwG98CgV#R>3_D<}jLZ6c&y2&&4Y3`d z3-?!g=I(p3Lo-AijIc!>j5iVtoTH`?+&$?Zm8d{GRR9@Q$A z8#nh7nK!@X+=QU&L=#+NN6vKr{+-y?*2ID7e**%Tyg2m*bgRM@K_Es#Is)BqnWNPq` zChv6i=!#jKGOxQNdUa9#i!mjb#1o!JgW`jwC1zjdI>!Y|Nd#Qswy1;aXH3iH*GZdH zwd&zB{Reet%(p!g`RXK@84+_f%IT7I{kUh6@(RXcujPr@&|mBLMoReAU;#gbic z6o*Vyr5C;=89o8oWbG%%wq&pOD;F6#%<>zbcej7yl>9<)lSI#|lp?aHX}zoQeRb>& zx)d+- zemXPcA*f@JUp0~)$RAF=mQ9+djBPtl(7rICc4wt8YyW2UA3YqZ7Rz^hX?lR?0za_w z;wi~;UiGX!qW{scQ1^jH&-=VvY*KAHGZ#|RHEb-URb{E%y%dl_DvSIxol6$zPbghG zaB?%HF~nAb_f%^&m4nP02Ks;PQ+@$f5$d-j_qScROx1GPq;N}XfIk!J9v!q(th_am zUeP|1A3VW~i1G75XQ{)#r?MW&_O>P_s5IAvr+e&4?jJxW5dHVA zJL2xt#Gh`5k{?miqnzWVOgeF#LEPG_@FQF9Fk`);B9^!i`f)518mK3%z)9Q?^sr{UdRD9A$@u2-S&EYT5)7+0DkOE zx+UoY^RW#>8>Hq-y6l-+euP%{j`$Plnw|A>IO4*RmTcOd!t$5*uAlIEZ;+Y4MFU>K zqW9JO(p0Kc;5RyWuD$cr6*EVlz!qzm?g?N)v!eBH+9amsD`RM@!-$v-y&zX?;M~o{ z~B6k=+FyYG>}c zmB*5_Cx2AMV>%SpjH`{KP+9x89#d2tr|dKJJc0UBU+jSPC0i9oT}@^Bsvl12B?kBH zZ7rqOR2mH!{?d;TFG|+g<(X*Zn)h%Z^Zo}#nPcqyO_aEhw>|7KkK|PWZp)^H-F9P+ ziklui@W))g)H{YfTMe>(@iu8`^*%WuKdPx^yh>*-rmAX)W9%eqp4KO&-)kcvBS@)G z^?ZCbU7qUh0fx-8t{O@cOEEz`JL}pXBC$qEe-v^s?O2TT?Aqtd7U$k_%(0nA;atz% zg*&f%8X3f%K+3pKb>+;;frhISwYikh%(~}1 zC+BcaUSV3x%+be=^cenfzr~+^GYTJb#H1&$@l+YXCrTqlduN$tFHyDalAF_8KTf5c zuVIo3b0!v}nA4&^n@p?3%O0ui(K3^uCWISfmRMqM*e<}EDG+?xt9pWs6u8V|hV9VG zNx-%v@dbm%5j*QD5!1s^>YNfag_!_Sf-z05 zb->Q0Lcegd@omymn%p1#c7|jet))?%yIZ|dcAwaZD{t^0_3iZH6_oOf`i;*@y^7K> z3_R!&7(V|{5=J~M&d7wR1+C#>Q#Dh3cJ{h3ydykbD;UkhO^G)ngkn}T#kUa?ll7SqydOy`;EAWD}pla-sBZVjvS+wgksjsW$IvI5?55-lT`ds z+?L0m;Ux`FFcV)%1*c3tMyx0jYqs!xZb(}0b9Y&Gq)$LEwxlwfUU{EZkC{+u=TYIT zKh;XRlYvtJYne2x;*FQlHc1rPm{+sCsMzq>x%b9*>L#z^Zg32j^M3dNER$>7dknkc z;?>%2obmG~0=!6>Rv_^M7n$o3-Gkr7Q)K$E-2SfmK$i-I(ozk~?@a4}M;uRTOJuR7 z73su{Dg`iC--%ytMe0jvEVU_lTHf@Ex0<`1$K=*Nt=V6KVS8~C$^3;%6EG{ajo|YWtQY7!}a@nEPNWLnMAe#ntZk( zbbVi&N{e@znL?zQiji0X$zRD3%%Pr8^sD@}j3udRhU=3Ph>GIx*d9IR2lv%@-Ao^D znXe+2XwW;Rx%O9hiM+*RVU5vasHl!@FB2oxlo}DL>2ICtZ98bOBffMoT%PY6qP`fR(t;wPO~>unp}912Q)@nqY$D~l6;+g(~NZ+q>O^==)(<@z_u zLCKlI%gOS#KBtV(%S~^bgOam^mznamey6a)%k+0|rUyAc7hd+2r(Zs$Exa7tnmC&n zlP$k>@s3$nmYUy8b}%kC4Rors*ue*rD&P9JK(%e%l3%yoIJ_nDlreO1f%Dv-Hs9SL zyQuU@9JrV`ojCQ%!o5oZuAe$m0WKO|GQP+M5Bi@@jL8!8A5!iFE&>UQ5Oe6ZrhPz8~Ta%FGY;W746^8xZF&%|6KXj1kwJ@0(%Cjmr&p) zsvfwgE~=heTcVVxdY==2)A_Wq^0B~aqWw!gE|?(NKe#wnwEqchiK9jPAL~r{MO3}f zM4RU#>VbpDK9B%K5+5c zAoUUowu`Ct<~+ z&{!W(HT%Jxgz`BnWeWEEV9a`5X=`-rVve)f{j0KD7dh5%HOsc$J8zzj?~QedQ@vit zie1wsXq`IQriygnqOpER`%sq=S26*W{i-9c)HA zh<86JnNkU3Nh?pVCo6jtDg{Y!7?j%`b>-nwD2;x{JLHMryQ zZwQDG2HLqw&MuN`&}RXt^fwW#W!5gu~U&Rs^i`tmeU=@%sv>O`bJ<1ii@o)qnHn#%Dk zQElqB+lbooPx`Ao4M{|`k+gexQAC@?(R)@o-&q3>sze(1sR_+8n@`CmYO7GvwipIw2(cxAR;SKWQRAWSV$VH}ip!Wg=aUBy8G%XK~SBRid z&NvX`E`sKLpf_0oMML53OBi(#9VzQ$tC-J4&`9piR-J>Qk@b31IXMe;lbSW+1*Rgx z7e^k~o{E^F^tH*X{Rt~0k00cJvFM5Yw%IucY_5u+sSWbZUW=kJl-{49DT2nxd{y}? z5j4TOvz6zfXxeT)I=o5*P1!neqJ;<=)5zo5qQc1sY(fy>C+AhQo>;{sACL_bK~oj% zovw(Yp=j(+@DxF#b8=PkYY{XOy4maIp=e_6KdRg*f`+_aJo=Ofn%^UjZ=Hs^3G?j% z*(ed=sUhATN{DdXEfuwf`;(F)Pgn{XI5uoGlPPbD5j2SNIBD}TB%I&C>-9CUYu64Z zB?-``_S{LBVeMQlKns$E@^NyJ0PV-xOF7$PD24*G>V2;(FDt283(#sy&y!3*g?HzR z-VTDorTlGM%pApQ#7x%g1n-P zQggdI$SW7oypj&`O66lAHM@NRc|{VXWt+WQn#QeBmkv$n5z?o z)Sk)&)NX`QvkFA*1!!I=hw=(q^4Ii(ydsC@6)cojEQC%Ctv<;lqtq+~%~wQ(uO4(e z92B5VM%%+d@dRxTQ@coenA%bBa9%lrf`{`83LfE36gH{FJhzK_rbUPdrW|q2WdpIbX(e^O4i?oNS9R&~P6-N|2oL5A^!`z92 zhx3Xm3LefY!wH9j0`xsH(C~voXbLze1`q6aw9Qa7{GbpH3>*{*Ns+=YkjnHMjnto^ z86q660Du>a3^aW16gn+j0p!9#D+s}V;>CZ_Hbc?yD*#~#K@|W9h*IGfND}_inEJ|S zh6sl%01zP~0}Vgt3h8BJlid=>j&LP)HETDN9bv96Myb6DqIR@GsDXAFKnuYxgAp_b zutf7p6UZw}l$zV2DMJLBS1v$#1>GfZ>jrrRiwXzZ*&?^YK~Y>3BGMiX3bZ{;?IPe| zYDd8%c?AUz=M@p~Fn6Nh;k?p~f`{|Uu)^V>0A=yWK!XH@&=hb`3?A6;X`3Nv_(35Y z7&s^_Ep>%oAeCwJHyWuwK{G@+Tmb+t7#V2z+$nTgxB>t^Dg1(;g#WG=|25kTMKe@5 zTmgVR&yj%!sQ`ol4OajlLWE!N)84QV{&j6L1kF(4Bb)4Ye#}&}p5RfNJb|`{sa*s-Ozk4zp}eAqf`{`8P*}l z7$Im7wh}rmTmb-|6n=pu;lJ(0f6+EW&d&5Tf z*R{s1oPl< zD6gPv&#Ap2uV|yxEC%J3S7=@-f$|C}JiSZwb~q>iloffVDfKLj);3wg~>&5>J%~0WR1ppo)8yRT$ z6@W0H;R*m$j>0dHv^Q*oe_h)QMKeVB$R@jGcMNI`la5=Gy-})%cC()yM>7MoNfC#Z z+3?!aYLvR+DTPRLC{u_w?-<-1en3{FIrQAqdy(eQ7Ri}xK_-F8IJ+oB98Fv>_X}@8 z#?o-enkZLOqkVya^SF!WKL+Hq`%$B>KjV?7ei~E1YvJlydM|bx)}$EvKU(LsY~zu8 zJkOWaF)0p7%l2Ee>^}QsJCAcY#n7SYgl=U1+u#o;uW?y39FiJ~$RWFLKT^yqnaAms zX*@v=4^;|YwcqmQJ*9yT?Lu;hnu_(hgONo`w5_{oenFv1E_UVSQM zWAY9JtNPE6Ex~CXw=1vyZV1XhlBCzFSPu&z@2PIpRNO#GH@yBvMHT&LD^rM45Kz*tBKVSk~I) z+={*+niO8<@P)jpT2Ehk=T?nILay|r@?(j~1X2#OZ-q32S|2^mdW|8KN;AW<1O58x zoo2r(1;x|2fbMB4;O@DS)OrPv zLVG{jte8x5TYFM2vu_{N{r>Twdn2k}r-1{jaV=53!u~njANV|`X)S31*DCJaF94qg z*Gj%_QzIb@LtZ-{0+fp(Zw||4JNHGWTp0@~1b*>h1ktABlpdaW4n#=fl$y>+F{pL% zja#Nekn7_ccNLj=sczeEbbZiIC9BZY)+1Uh~)a8RBIDFr~N z@w49eiVAjow2Z$K#Q%aNDCc73w@-8UJD;~Q40dwVgVnvQ#cHJ<6}PT zjfn_s7iT_ff-?fUS^)b40{dtUANJ8&1a`d|ANJTy2#5;+L^-npm?Dc2R1=}I2^oyO z=#9CE3<+1h3Stmc~1k8Q6Z2)MPwAQ_%ig^h>Y9Pd>Ie$ zhzzDcMjs+W1;RUS@{PIYHDb)kd>PeK5E=fP`7)9=BQiDu8L*$Je}tWV z`VZ$3XZQU<9d`Bwi};Gl-9Z#xJ`QpAjVlol240XcdB8IZwm`;|8z=D0v0D)tW&#KX45E7rMiiYogRkhU5?IlrG6G{RK@`2Wjjw3d zHUvZ{Y)or*S@m+aLc3zG#g8W-<_}wmw9wJwx3JbiT09oOeuBVmpUsDDCxO83U(7en zqPv6vzuWb zkeA^r8YhD&dVUFC(Hr*>Mg0K?YnD3K%5JIp2}0A6pJ0v!6sfliX;CI<(SWqr7$F$Z z-x1gKr>&YP?o-SQu z7)tdkF;e}V;P|usN~7~|=E$v#;I)iSe_%5nc2v9>mK!~>J0MXUNfh&_42=5kgj=yl z9_Sr>H!g?CHW2$LXR#XgAC6jb6UhzjyJGO&ydif>iS}L29Ez+yev5tcFSYxU1*7g& z`vwK-N1B}eV62-CWip(>q;cYIIw)=p?yBy9=|W&0?1LZW7Q8mf=V#l#=+}@L1X^_( z+z~a&Ai+jdZ3xA`AQ?)kpHbOX8rJ_?==>*=K`#G{v7dUtmj8R!{zsBQ3Gta>{?EbS zqU+0J>OTjA>fA5qk&)_Pq10kPt$^XS3?}_agGqn+5YoRRq(_+a(Ys;N*B5dtLi%Xm zFzKUr!=x{AH%$71zG0IMLI!j1Z-Yr6?F=UUnS)6m#SIUZo)8$!2H`_UUmzK(@`e`- zlm2hDZ@#}|J^>CV7>Y@t|F_WjPb4FxKb&BQ^nvC7p0)pxWQ6pG6a1fp2}u77W9mN# z~gk{+l$8 zr4Kb4T26EM@^)X`8rMr*F9ilM}Uox(pwni)-2dw zUq?-T!SQthb;Obxnce{cV5@!eG$D~nLnLmGa{PRVrMC)M8YXcSl*FN0UF0&@WZ;#F zTwXBvGF2=5 zW028c)p*CP$%~NZ@~+#t>@&mDB%y8}TVeFgh@60F}Rvnn>V(9RtIx z@$dN25F7C+N9e&2YXEzF9W|ldHc%UU6(@vCpo?&DiY~2wlUVx`8zJ?RP%=~k0egKN zHTfC(>jdhEC9_6m@kcq2-wEC4g+%HHk+_(UQApxAzrmM_p%s1f zGH*z0Yl!2=3eyd|_M?eXB|N1NK!I5U+>2s?nNRa(GVLAkqnnWVB+-e+lW7L5=J>x0s(uC02}es`^YD=6wbW# z2Vk*FLP%GhS3y~Cg3=YV6(F*-46g&Bt7GsaK;&*X1E7oEB#7cg`i9nhMDDhS@&$T# z2Q>c>_6?2ZAY?F+$_w)aoB)hbpwN^cb#SHaIAq%Z6$PgU;W{j z^DpF)k?LS692GYm&5v>%lr7C5CY~rP?C}t9gF6HdZ^D)P1!3h*8**6@D(unAFzbu7 zh8`5H&5fjdx;Q0z_1vp)aSp4fXh6xs^JOXTll#0U9fl5W7a`(S)BYr9njt&%>z+OV6 z{DSR!_|Xs>4Ur7bdoR?!5h6v3k?-M0Lv1ufGF0~fdwrK!`@D_#t7XC{hvvP&UL(Lp zNVOu2@{vns)t0}Q-0wml}N#{WOzasmI@ZvwZB?7Pfh};cj0Fm7n8btAE z-z4bqB9XgQ2Hy=o0VM1j8qGn-U?No!<_kCh*a>qJ%&Rqn^Fiw1>Ad5R-7mrBB;VnM zl96cu3VX0%i2nhKe?c-54Z{hBNEYb-O?3XeWQ4kg6AUpKuzd61v-Urc%;$&U1pnt? z(2+}UOydh<>OTjA5B`Bi!oQG5Myi8VdUAUSgzk>XRB1(OCUQ6m(0-o*bi5Y>9q*-5 zixbqjWzcD11LU-DMWqz41v)Jpjhv~(+W6sm){@k@2a#i4ipjYo==3me6>=zS0q6-j zJ&Y4aP7e?19tRF5M}t#oo$<)wQqEp*QqCSZ zDc3H?KPe{)!iZW7jvIqJi0Zuo!ZXmHYw@qZuHw$aDFIU?Q620j@ejg5pW$=X-^et7 zUC~&2$Nvpu&iy}OOxphmV|rc#2l;iNGtdO#8EEhsKF|L}A^6w*45|ql{}K2*4BYn;4MK(2EN|;3F?C_}2r$!LkpN=>V-jp+|Z#&=S)`VbRYWbRd|?gda9SPyE6=&0=WZLyjiX1|K$tm#>6< zLv=m)fFgru6blB=D8BGSFr@cq&gCLymrycN;|?bnD!TxRe?c-**AFKcuIs@gAm~_q zJ)J)3?BN{r}U!c#Jb0$v-VvGj*F$ zS8a!#_{{o%_M_G5ng&25e+^p)a! zARA~7y4yBTlu85!Mn%I0=4T9m8&;F=-9k0dzG3^KTEX^3NK9y7R7rSb`Bd^hf}a`> zvDkN$jQG@WDwjJqi{vVyPkj}gKQEc@%)=Pli249}p$R`%{Z(uK6UqEA8g7{Xb1*(> zePK-f=U@V!{=%3Vp$?{0B^3bF(5h4$G38{ns1fd`W^B)uy z5H;F2oFU|eTERSREX-AK22Mqlgfj&4#L52(PSzP>F*rqh56MXGA5P^edC{kG1!c$A z(fRX|k$Pu1V?*^0K=C)N{ZAw#g}`uv|8p=waruQY^`C?BOZhL1sgdenkyQI;k>^q% zR)>po{?j&4Wp55Dd;T*B5Ha5Zm3^&{Etxv#LqZTe+C#NE+88&a@$JEl;T(WG00OZ% zZ_wRPK@H^E4JPUup=gAthg6ry-oKEj(Z1oS5(*6FY5p@rf((Hw31^7m1Vi->K*4{Y zMp#gP2gyi5J)B^;pcX#KBg~3lMd!~;<`>k%85^p10E)k7?SCX0nTro6_&*2ZPmjMa zrv7snhgcmd&OOkg_Yzc`BS)hlBEdtIJ^#%BP-UM7 zDtl=mFSFzZH})Icm^8RC7s>$|LKbJ@2i*-7)Zi@y{DbR)QXUlzuco26VWO52B7sYJ zbz$FdhHyi*f=c;rWdBN-Ay6gZ3^ANwsNNZ5vF|1sDX52287ioO{@+CB&r3!M>fr=K z^$xK7-?a8Wk&LXF4lDRS2jj0$e_>4h=V1Ir`7h;>5$a$ecDM(GZm`~p90-S49WKtn zNo?pZ1wc9AIw0l@A$cWn{{%Ql zAY6aZyP<+Q9lRE5a48S4LVw{vNYp59n5a=Ca4C=W4QB`x7|hcqgEIsW2EFD%upKa* zV5r_1Y_abpnO{&3r!rJf1O2~+&VM2qDX51N4Ancp@_*0T|41^j9Wb2W{~V0JLj9#N z^`C?Bw?Mv-M@FiHmC`ZI&|6dZZvhdKK1Rrg@RC0Nbv_W)>O(A##y4E)^WQ8a*vI9+ z8wl!56DsXd8*!l0-V>#9%;3&o))!ueDnyW81aF%Wl=^6IFmt2%2rlMD@)5jMJ0uHy zoyHK20SocpHX~Tz5wRhh22dlx83#2fJPG+WjiK5CsQh)*L^$*77#IqG!G89y*$CMr z5RMKsaRc`HI%*<|QD4Ui;pzf?b(UZe^1Jxa5E~)WEumzn z#4V`%HPQS5EgbRR8Uf`GnDY6j;-Nwx$_OHz!H@C?FGI139`6^FZ5wc)#GutAE2rNNfrv!?B6Jt3*&}d=EeR69Yqq25<`@QvTA__wb`3HX14!Dl~vw zi~t)URf;gmp+W=Li~p{YZyRfWVxu8ZK4QttpWdX&>yYEPc+qhuk}vQVdt|@~V2&bk zLKu0pXYl8hL#{6!@>y=k=b`mVOBmH=u}|DjqSo zpa33Zo^s}XM0@017(1V7}nza-RO$xUZn&_nQ18cU(@+MPAQFDyH+}knxSfw6jc<_R*PCO zt4b1Tlc5!(L!+o2L9JGeS}_x%rL7TrGzit&BZ`R3|MNWWIq!4M`Tp*8liYiA^?yE} z@8|Pv-1DyIefE0c>M7S$d1?R!L`#eyaC9~tt(3wXtiS>T<<$dZ!VzetaPXEw8}4kS zU`0VHM}8?Bp_vSmP36y|{BtLKRr%-HgoDSR{PRvp`8Pz@>@ygZe@{^U`5@#3<71P7 z#OERd2?l6`9gZ1{%0C?0KF1V#SD;-0Ov=9w&$10hB6cEg2bF(-mwk?jY!KYM_CZ2a z{sE`tPK65Y6g)D($gnbb8Rc6jQu%iXtz`@eQTYdWxd4n57p2M~T$h<`Po1u91ORL{ z4P(d^B)cLBFit&)5}Ht&Nr1eF!er6BED&bv2UEEk4<^494^ICBGMJQ36lnc)#4J|z zYlPVd**Za@8IL9wqBJm2#RKnzxNadSdq`T8m#3mIMq@p1gT-{AZqYj7e-}nB%dHcf zxw4>3OGidl2IqIknXRuZ7=)#TkzWAhGYRditSqR|(!wT!sXkI0Y05+}B~#Z%KH{nf z)*&MNnC2mS^si6|nQLl;u;NVV7J-bpDrn}-IHF9!2rk@=L!*EPrx^wt>WE1Oa5Zl_ zX0ghpP`CD$@1F~IiR|zo+&uENc^R7EosiPcbCZPNjZuWy#&Sx9b*N`X1-5avtSofO z5r#A@d1TZQL#Pyc$g`(}FAd)2wab~Gu(EKxS^_qzVz7(MK|4z;i#U&^g-rxgyBnye z{RCi}2&QD}+DKEbieT3h+R@83wWLZcdP#6iE%lP%Qda6E!4;&`OQM%lphYhU9_)@u zMm*S9M~pIH7pvP8fR|Gq!V0O}>dssQzp;0jV7)anSj0BTbnI zru34qk(ylAIy*p@yMQDT{BVQH}|8x`n-JL!+8~XQ5J9unyiQ@o7s7qrRhun6p+E3bmyp zqe2ZOv`~uu-j-(u%SZ%Y2FWHv;LXM}TVGjW9hMeGeFt`tp_Nk)?B5mp_K4lJi}?P& zV|>&HZEi%pkgHII_Ma_$r=eTj0mIprB(7yi)iMpIjOp^$O*ZA8Edkp__1ev*Wv)ab zdg^(nCCmKy?FfUGmO$+xST(S!tlz#(ohbP0aD!cdK75T`fSo9IvA%6sDoQulR6G6~ zYR4ASa8ew_Hrk4&;iN<&zzu-?+hugmw9J)f0Hwlb$tPglKHi@CtwBqp)E4!0EFuvW zkBka6bS7}bnV+z-@XA|S7%et{yoZeJkZ;XW*B`~tnUQ z>r0JKC4@dL6}#)6mW_r#EgNn5wA4UXeOhXuXFMe}&_M^DmKx}%qhfcUz4K1gMeeYXASI#vbx%vf8rY_-%+nLsg}w7?L8#T$`FqE+LLEQm9z- zGiD~qYG9@Aj029;5>Hd7j8B_s>XgY6(Rib%C7v1(M~xo>+*njuZ?hVelMt8`$@XT#%}QN9YS=(`PN6lCG-xZ8 zVXYxg{n}PC_WaCn$ zB_2B|C;*|Ej9TKc8;r`%q@jmC449eyV1mc<=fvZAa&n&XR!BfNWH5QI&3=>_0x;4h z+$`U{U_k~ih{2U8Q9+QGLk1IVn$2}dK-dakbV>o;IfK@eaR6K7I1oPkG* zyVep0yDT$1e%s5~CyM(Wcptl4z3wPMkAUHIx**lh=c^Y4)SE4kHmekvNL92`CsOkyI!ejMAiN z*r)faNR4HLCn0KSWl}WE=DJp4qzDLkJE&-w&2=+^!BBzL#{c>RYM7&~Kr5`50OQom zpxD@83_x>>8|p-%`I6x^sMPCuABQD_EJCkk~i3V_CovBi*0U4I2{g^u)QN)Y5`9p!=XN>Ni9$1&I#KXaRM;Q~qeA^TwHVTd zdwDWasCnO{P}h3s z)>jr%(bB@G?*Qa&ZOW3BN@2mYY`ta^!IVTwiQ3k$*+ek4^o?1T)#hO?ieU5oqCh=t zi4Aj9^^pAg4Oj+H<2Tl)y|7Ijm$P|cdkD?fv!H0~f@HPSiDDd=15zgn9&B6+bA04r zRH)BGk2GGI0L+t-Le2YjR=Xk6cXSYQ*2;=(vUFrrr~$S%7Ox6M4FJ~KO%4Gz>N|iT zetLQAjFqi-l`;`b?U809O_>O$H11%2N1CQ3%yv}-JAONqTKF`R#4mbDa3&|YTne)c zz{YQoqNlo`sh0$Q9gdnkXOmG(*IiP3GWL?t45nTZJUB`>7!_)miI*k-Tk85Fbi8rA zF^4t%L45~y!4RVmiZfOgeA?2&s8GW$pv90b1j67Y*mNeGA3uA;u9 zgP7A+7LE@~M@EGj&hL;jTVGiy)Rq=TeP)dU3kM*Fs!MTQ~j5BahXKee=G^&jaHN0l)+#7x3LD$^&e=2|} z>UZ}Ws!g+k>`w%ZQm>i;ic@+Ej5EAl?OgIe_bR-i%vAk92lY+=1B;t zA;R65y-7(!oLWXnL!2^5NkbK+Ku$0uj*`Wp`P%S|C3&4Vi;Wyyny=Bp)lBsxxoTDx zHRv?+O5t@h8&he`yi)b4Fcq~$J&48hVf5OW2xcN!a0$m`iT@vYr4&ox96^dDaB3dK z5;SS1?eKkJ)o~OX3$}*#-Ac+S(tJ&C7xUK?YT&uS(s;aXkt$Hoc@d_|cs27kt){G+ z`I|~K5VDcAg&f{8@}H#0?=2xiATa92gJsR|SQ%_aBF{Hzq ziMVQ5*Ua?BmwWA=R)0MKn0_w^1~Qi?_YUV5i^kLvKgFYEd>bSLH1z@09*%z|&ELTF z19>e{^))|J0+aePg=?UkfcGK-yL!^mNE}Kl;M@mcQTq(0SU7~8vmZv_m4zqgj0(<0!U|b0T?OS2`ZJNf&uUX;?xC%9YSl?VWcEIsw=xL zGuxh8bJy|)4`yGGFeAM`iSyUP(R~A7DCRSH_#-)c!~@L&PG?U;m%ip_db)s%3Fuwq zI9`j=nKVD+3up3YLNsUv#d{&9&WjOK_cw4m-Wo{+hYUtU(*aE|bwi3apNo>C7>2~K z7~*yuOo#^WD!TxTL~WA19h91IWKEq3NzH74ks@;C$|yAfUUH`jUv>r_8DL~snWQEZ zvB;eYp5qKWGQ!BPGD=N=m*(+7$I+T~7%5UyQaMUZfR_uvNTlIODtB3C_J35Dxg*PG z7D7eJ=^C|XioJ=iD0@=E~0=&Xs7Oge#FJzTs( zAzvTqoXOau1c+!b74L-*EmAHb@PM}gNSyTBoX3DI;wBSbS)f$_10M9^Cq8i?C* zFd`Zp*#%%EOe=XiBsI;q7BYmvC^Z46vICEVT4HHslA7jQ3#9j1f|25rl6=)=nc0Zs zj^o;SU8|YO8Y^Xb%1+$=Uf2^9zEIK?$n}$|Mm1t%$td7X=&9I6Lh~~v0m&Zi7pRt5 zz6@~tHf8;2e#TT!`7)WPQ2JviKE9hT)?L1744xoe@o>1ISa^=1SeTwH))WiZG}Iy=&`%d^s6~!4Oz(BJ zLi&wAm=vmulA4OcfP_*krcw(7e&9rM}FkE$3>wLF_)AOHob~Jl5dv_V< z6f|di+nZCLj;h_Kqy&04J`e2jCD0K9x&2~xRa&2?EQTqvitNBR4?%@(7HaYTXA{2Z zzdaRIyYy6aaHX@=J!7PExUbQ3a_fBwz?a^JWbNnz{6t{7;41Ho@dm z&DUgn@Yj@ir1=`V8)?1{#`uM-SVgVSe1oMLJ@}%{R4*^@h8%E>Rl5=O8~DRw$*Rz_ z_%cXCl+YIXB^P>=!dOUNEZIDkRu;Cl#f8!IHfv?gT3JWc%9_>w{gj^MHd6EU)LDiX zMJVpvQBr#{Jw3(_bLt?$rN>lpz{Q;8acah2Qw)N?22(@#qz%1H#$Qv|Sw0AX)}#5> z3Aj=iyu^vU<=qe`4pU_ShC<+v#tcvNA~@q29}!@%v@qpdn2+f|#6_aE$lcxtA3!4b`-zdh0*D2c?o`&%|dlX0~dl(je+KCQvCUAFI43IKQ8feay1Ay`-PylkTd!@{T!=^;kg?0jZxAb(Q0Aym)sBpr}1gWNrKVe^KS6`ZoP zFj{o5i)>g~DBPA7HW5rImartv4cBZUnA#iMMw)U}1RIfDld7f~NbQnb{uiV+Dc-o@ zva4{^<+<94I?ZXS#W3GUQ;A0XLwRtNelQgsXqF;FKz@ye02I#360fY3I|&h-$=NhbYxgrxaBP^jQS4jA{$n=eq=HPK;N;kk}pGNw!X5$ zv@9)bBADVSW^yJ=(?l>k)oZ#ag3b5CQZp#D;W{XHWXxO#MR}o~l7&&&7bJ(F~?nYj`lp0L@aEV=BK!g}NE^Bw!PS^5A$hc`tb1q}K9INUi0$ z37dIi#HVe1z)7$U0FpQ}Wz6d!=B$+!h1$}QQK5$OJL1ewSXuCCOADjE1CY-gw6nCb z@L*e7*hDbJgDp|}3BWcHOsRXek&n14f*rrTj^4i7#az85B;3fFpx9V1lmT2eB^u31 zt(FQ6pg2u+4N+WI7F0wS2B-Z2m1sUZSod;SY;3S@DO9LoT@NWih*4X5E=#EL<9H_| zAq<6QyfNa_hB`DpBuNNM3!_2}yI_csD({Syg<5NAVN|GL7uo+pn8G?Fuu~myy8w)YdLVCy z3^%jXnKUX}ZwFO=pgX6~n&7K8QaQ>cxLG7lZRcf&(3$~{6jjI4$}Y>yR>TGa%yd<| zUKm>SV%?mWI9D2mqi)W%g4A79)&S$Xl#r~$m4zffG?Nj_=lCZ{1kGgFP+FEF6KzhU z0zqw0Xr7IDe0CHIqUIlD7F3c1mW8>7qEn%-%iAH^)ZtmS6`cytl*BruO~5I+Q$>_9 z#%JW1b{&k029T26sZcZk@f=^6Yk-kqWmGf(UbfaB8&JWnFcJbnA|Wao052DSks=^e zUgx^ZY(r}5)%0D<)7P#~jX5}K{WJ9ZusfFcdhv6_z{gWo2g~<^vCV|;?r(~l+^ysRW;cew? z2Ovn1dXHvnw&5E^PgRE--Ys_a#s1H}fI}iiGJb7|qk{4n!<)bkMz|;M3pk_>@4Lsk z(-X@B4Ud1@mk=_(FI1s*^tk3W)$S(MHI(RQi9qeJFO*-y{jc*jP9;1w8>KglT_2)P zt~55hJWN&zSF};uk*0PS(~g>P(AY4TtPmbdX-5^LmX$zhNAi(lRLaZ(RkJ|VEKnt< zQ6cFlAZxt5BpdRALW#K=5Twj!HD5w;mq?-#T72fp&CwW#U1Y<`!mhEjFj~BDev6gv zSvj-ym4$(2abXwbVDtUb+ZdYFQm(1xrqmRI)-=GzXN;3L6DAHlRfT2LI2H4bG?P(9 z0p|wMy9S!ci0jLr(dP-dEbe-257eV~b~LjkzlzxunW8_o-VPD~+$^I8aWYRm>(b=2 zQ2 zx^@vWfW@>7xlrPxNm0Q4?Z zt4G}$s+~uuF&u@Ccr--@ZLIJU?6Q{JnAPS8iUntBVN_tv9vEg14D>-U@{$f{BACUF zBTpbIq5Ncyn$ZUZkngE#KSD$R@6dU_ERl0oRu-NhOAEUy2U`*Ae;q4Px3hXk?-K5SM(d=!cFQW!Ii+q!PrYeGnixmFO`l7PjV^Lci;~{J)?%bYLhNB z`zE!PcS33{&rK47H%1DzjpdZ$X63@DQ0pP)td$jH=Bv^zO!^MIdFzNXTVGib$CegG zg&H8AIcR5TWuZ`8TG&Lej6J+*BABXB+sH>;6~RU%ze1I$?Aas#KKoroF9~+wQ&5*H zNGYhxKHg*u>S{dj6x8Lx6x8Lx6x7u$Mecq1H7eBLL^Sw#d9?j1g%zeHR~EA0(!!X| z2D@O0k&b7ncvUd1aeA%8)N~KDW_qdUjFp8{w6rklJFp9foZ0%yLb-%o0uxhxU3=yefA#g zufdqEX0V}-m}CGKk3dqX=4(`_cR?=+y;FwzL zC6h-+g&KANE2sZE>~8%LxoQ_^)#b~$n1tdp5_~GZk?)n_zje>Ivd_vpA5~YLEwSBe znk5&t8HrFd>M;F1H`b#zggw*_EmngsW+Xys=^*=Un+Rr41nUstWAv*RKD#LW2D{$q zp%{%1KP&yBBgl%-#0T&ZWX;^vkxo^aUDaPkuU42If79b{di?De<;aTP-SqgMQhcN; z@3bCXd9uepO6P{(MGwX7Vhx6pci00)>6-r1NuS&iUk771d`A>0{IzlJ+1h}B=~-7_ ztzh_B4P%&|bwxpxK_j6cT8bH&2xcOfs5b>ih^26q^`OzyiC{BtpAJtS-wsQQ>ufCl zlXzx#O2!@|2LI5#b)H;#OqIg!T$v2f+mzLzkKv=w>miUk>K-G;mudD#C28I|o~@hC z*Ndu4`x$B>`x#1p#~JI2VZnGP0(5iEyTOB#+ogSSr>4t4sT@TWoGuT{)=vd6gP#sy zc6=&;X+HLiW%axFq2dDnQNh>+Ap;C=&F!b*ed-Po?#A*vax!s^;S*jX_QJGMTZ@8) zlZn5!T7QgArp9JrAm~Ci)_-CY9AKMQhJDBfP)HhoX632A*w#cawLhncV8@u@QQVMu z6vYiQM^mnfU@KxFvM>(1jBzNz3%yDjcR$q#a|XYNCreI}OwI22XDScSj7Be068}u0 zg;J6&Q7^nm_J>g~Jh>GLpF$gJxfro6S!|#rknrRp>N~ETw)dSw2IFn&fhHo%@?6Aj zd+B3~FhCbfl*bfyECVGggE5m0j_d+3GTsiRTfmX+b4+2}+Xuju)c_e#*?>nz7zy{f zjJ%-~2YA`%m`bXfU67CxE+DujcM3W(6jnHd)}8<(!^#+B0C+it)-r~KF3ZfWCqz7$ zeF0#`zHHL_IU73-i-aRNu;7oO0?p5qQp7*|7=ET4BL10*(F}nGf63xSj;gv9LNs`? zj29zB<*_h6r63aM!y0Hf3dcxhs1PQxPuj1+DsF&L#Lz{@_z6b#EgNJvuCNwoF^ z7zwE?m6Sj8YSDDm(B$jQVN4{;bu@KBX!L^L1sVH*-BhN1=u zBY|jYb%3VwAdqj9^k0VzMyUzAmOB+1mV91D;W;)Q)1HG# zYMKw*kkqvGc2H^pPGtuk35j57Ws;f@FUtlzdIAQ!EHks=VH@Jo{LBZ10=y&-5upJ7 znL+`YpD7f;KT{}xU+S>_EDjK zdS<@Tk|7L6scF8_0?!D5PGcjLqlY%gd~zxyobburM9B!?Hg&-Vpfs$bUIL8cqRA*! zDRTD2#Rn!D3T-JPTn46@FEGR^=34eIYwTOJ|Q@$x&$-GZuW^!erSzB5d6>Zo> zCJRTiva-;9EiH`NER?UBT|2QwsMc{}>6%Rh%UH##iC}7zp{E?dMkH6-wHzY(rBrvz zF7o{JVm>`b-#(NWv*v3!?0!l!ABoz+BxNenW44K4CW47VDF<<|?Wwa3y&i*p z163Z9AQXpiGWvQnDM7@TWsLm-^&q++Id6j12BEt$)Qc2dJ&^LiYmqt*5&aD%x=x(7 zS*YWFa-(DioR>QhGC=Rh9$^UI%j^n~Ibg^~v9vHMh_H)nSlRlK(E@?X6Twsq#5M%0cQz>faa6>EyZK_>>&EWM_tPFIZUeTT*hNzu z42eFv;$YzWX(#umz(;$^phR*v6br92)FyW{6c5kR6%YFxr}x)QcPgRfQ&Afk^>ma# zcYi8?8T@nrv&&Nf%=D)Nm{qBy*6@;cR!VF!0|;Iit`ntyXS^9dHVwMopfE{oj1`v)`MPso_l`L_;$Su)+dW(Tf_s)BQWv{?=fefGT08={xe7%%fa}-p@$fCi(9k;5{?NW0Q6wVgi^!8eqboU zva&wWflFoRj3XiNRw&b_%Ft370_PeGi9jZ$iey_Hx76)et2bv@_&m5dwbj}gI#tG& zipvOg-UQ1MaMMG%sAGLB501+17u#<%C3TQvHid=St->Ys$2t7W7%Fu9#y z%nptyM;L!@t^YaLFuJ4mXF{?NdSOt64+WCR@S(T>UYi)ZxBlkC42)g6XasxUQWoW5{+axD#1SiT#0A}{zoZ*ZpC*c+yf+U8e zgha6sWk^nHQwIbmvV@OWSxOOJHWC8LNw~#qpgHSjL^%n!$f+1vA#dwT2{~ya%D5^E zn|~pwt^PU2xS-!|kL4cI$qAj170X)n2p^ORGIkc3Ivb<{2dHm*p#CmH&T(mmpWO{V zf2SYqrTZC?OdE3+q*F`J*n8?3JI9>G&GW{I1f{=Klq>S;g$W)LaLBqm`WU#C= zmJ~5Fbw2iifxU%t78CptF#%u&9%1Hob_TQZ0j3_7J7CA9NsF*gMO0Wk@NMcw@ z$VppK2IVB+X7=Bl;fyFJ;TCPg$BZF~VJQR6SqCS{Nl5+9{+l!K6<1|pZ*BeG%{&4>&79i)PcNhc?CN2wr#xe-x+gZ8hP%uxX zDno=oauV!G8}TtiNFo@!C7OG}8BtEcE!v2WSz0PX#O|sr?D}mFcsESjVawkOd9R1$ zfTZqompFf7?3$mEv1@(~MzP?-oSMA*thS`S0zxH_b#QX?Xl4sXACgqUk&l(qHrXP^ zudzLd)635Vn!x}?f)Ov*m?G$yu+Ly(7_hE0)>1fzji*G)gfnu_K<5GF2^&QcfXlGY z1w3Ibp)1;Y^(LBOuX$nWm}q7|ah4qZf`$EcPC`udYt1xo(|WQJxoa{5RSjye$785&Cj<9FOhPRL>TxzJ-^ zfL4Qd%wSYDU|pxIm7!CjVFCcc&53@iP6UeejiLnrm*EPxXV|ETW`o!Ntc2Zd#2XXM z@MTzGMA*t@Z#2GK-0n+@8i9DL0N!8c!zl|APTqhmm6jqg01= zowAnDRyNV>RPTPi2B28S8xzea|CBrv zw&JMEqFD!jW2-q421w;BfNKJ-cU`mRV3g{xu2a?$y1cEY zL>ooh12zK*#)!^$R_VfB##C{Mr}6V0#!D?=Q{WzlT@g|wOa zj&8{bEs>4O=1%@zn4RgR^5x_N;`016srs6qDKiwhiYdvOlmnE;c7+#;6xnSqFd2iv zn#IyFq!6si3{oDoP2GgH!o$hyAEbV+D32U*AiIJ0LUx0F2BTDmb(5U2me9#;Jtf*G zx(;PRTgm>7lJcl+HRDG{b`aj9rI`W*kSck;Awwn$_Euns_xlJ@1^f@sn?+ zA6eM3Ye}k2JpeQ!(6o^V5x1hNaaG`0P}p(_zoyPPQN37XM(% zrTm)?H~RNY1jvz*hnK8`tt}pTcuke)dx?pkuN{7;S!$oeXVwh&_Iw^e1Y1c^w(=OZ za>rvK%#!wCN?QJH>2K0`a4VlFTlq}gO34#qE9HtSTdA@{Y^BQ*bt?rPimeoCrEKN1 zRbngCURAg9rm~e*>Q-vq5KyV}r2>`J?+U2weOHA_sIrw%*h+H#IctaewMku)-ePT= z=jlcfD$5k8EK|4gsQ?&vAhzOLRozNEWh?E~t$d_xWstg+!JWibCU#P{5~ge= zOod8<0+kdAl~oE4-%qSxG9*zWz{Yf;m?zc0`YE~xpBVk;f0sattZ*-9sMD~pt^ zEK#>o{R0J8K2W!^TG`5Kbt@m86c;q4go-Px6{xIMq0(D{N?#Q!FRd0^saYM-HvZVi z!_8KEJ@EOhRdqoNfPz0M({50wJ-tRun|G};ZKF@cwA+TO)2>mb-3HSV3VQbvCtTZ0 zJ>g^JgemF?b9EIbEZbE%;kiBHgbSn96P7zAPWW=kOJmOYjJetPYPC~HWVK34A}e=O zpp*Mo3ObejP)u9*LuJ~9e~4*&98jn2t4#YbOiM&IWurJ@#6}fx;R@iEs3&}3jR0Jw zn#u{+4iYCU^oe@H_m!=5fvw!}2mrF{ezS0DsZV=;CAi4;!;OAc0JlM%cDXX`&+4>= z{KT|=e(JQNm1)PRC%oTXoG^b6<%B&hi4&IlOFd!f(*kf6N+~C7uuYtB;5PLR4=GzY z3|o0rDiT=2k%!0ryaOMOgm?X3b+dj;4Z2se14q(TzL-# zaDHRO2@j7|Pk2l@;Ysy`2YQJUUhbtLf1n(b^qd?H^HUVib-_Sy9F9gmNz z-&#!DQ_k{i&w-yzDt{v10Yx1+GIB*W{rsrZrV^vx!R@Kn_W9bnx?8^1xKlR$oSgqp zyg=BVxMSpT^SU7tswgue?1yanIrUjzyg--0FI393xSjU-79>-bz%SJ7G`Kx1xVe#w zWFLN^rmDg1tx=1KLAV5dp}MQVZC7S*YdsbMox*0{lXQCNh{x{6;mqF}J_J@@h3U2y zvi7#j+Pfnw*9<4g@q?5c@u&3DC0+wb(vc-efMNO|lq54%!Gz@C{mG;--VUK8FHhV! zTYe^T0Jy;RRG~^JxlGTEv*l+Z2LPhx+6X22nur@`%g;m(aDnoU(V_%y%qT+~Fw@`=8der1GD;e$l5zGYe%CXj)y}$q<5GDvgK!z_MrT_0)8pVuf%PX_Hcna(*L=9!MA6--lf0X^7@vTm=D_Ah?1HfT(>$6B-T%HZ?wU2XdS-RCmUwRi%o0a za5K7>q}{r;^3D;@1h9)|e*7u7c=iYlj&5CL_h?T>$SK|v?n?hsk7C|oIpQ9xHt^QU zJsRhXl-{Ue9k!0tPkk+SBKxlDU0Pl2ViW1w3a$dKeT}iNoLU-Z0-dEDDKOAms>klLPGkM21hRk zPA+{xr$f5yrw&D#p_-sQibbN3kX{6ol(4Iwde$wiLIs_9G^s$mPhu_VWD4u%ZIcSb z+a?u=K|m^yrG<$owWhK_gv?E5&r={#0(hi5OCd@pfW-PKh$wX^W);5HCsPzTyId?0 zrN*&fPb|sODNwTj^vix+H=Ker3#|uBC|foXj$tx;q9I*5sQao1LQ(fMQ=`miz%m2Xed%Q) zqSUxI6r$wO#JYJjv2H&py@<7(H^>a$HmUo(ZIT(hZIT(hZ8DqX!bp@b@eaF8CS-

    3Q^h!66>cRqST?7Rrp$;OsM;Ix!8M1lz=gInarN(Nty+qpF}yQf#eCN zAk9MKIH=I9ENVUoHZq=p$4b$^NKqZjJ_ z6xF3K)O{GQRrlR_E>!ouB=aS8Uo$nT`zdOsp`z}$RD%yll(4I2ax^&}$MeRJbtmv> zV%@w?VlC=q3Oe()NoMf2NoFtzNM=}Cn1~W4w##Hf1+vd6kSGB>_L)p5ayEj*`YDJg zbtq;PzSbvG6gj(GED`0B&S&g0na~RDgPy2a0Q%WyGQp=ZhwFyBAk6~s-Y%0VGQ%zu zi<$-C{VlspCIpZr@;89Q`YA}Wa7iZCKJk<4x7w{)@4>7ad37)=v*hN1FDS%5tV1H| z=swKZm*~GkkY!lBij%V*y*_k%8^O^L4^W&%ZJ<}UYx_T7r z)%d00t6l|){X04jmM2%3$DBq>^2CvaU3@O7{rS;0pbX>D>!0F!RAtIvmDWX-3h|UK^y_D zg?0r;1}Vu%Gx(@}@H*{M?4+r+a>;91>EYu2o9usQmIbm4@|K~~H$$DNoR3SX!}26P`qv8M_{ z&zi3nV%E?C_B~w(-;+N(uGZ)WQw)Na3eYV@E_H}l8bZLl74kjt#zlz25KeZ;U~^~K zB1v(&+X!$IW+u#RL>1xV%p_r(c$RTI3wLw(ofHVsOAg^sxdDfoE+OL%W_8>hm3t1| zHN-Sj&DWTBs);;f4r>|*i~aP2#~21<0+L*c0=^LS;;=R;_pn(}iK|3}c;jRl7{bF2 z8EozhyIv_8n~eZBVP?Y2MpVfXVViiC2|R1x&{(BMLO?c{6G^CrS(&GrGiJn;gvwl= zYR=RyYf2KT+T2b_Le)%-0q(qPWS|UiS4|R1716YlQ({#-n!FJ_n(Tr?a-SqH%BzzJ zt+fenI}5d&m?{Dj+h;Q2Q?bh_C{+Z&W0%R4Bn!StlCXS}87XI_BveiFJwOKc(DF@XM{nbous8dFDU&ft@D9u7pAj+P4Zo9)^ zw5Y%*q6FZUl0uj)pjvv?ZR2E$%;1|OnZY+n>OS8j2_Q=gle(`%u`Em`1dv@$K|~4Q zvCCwNOtuju)=xp|KET>8lL-%seG1S~vjFt7&tyWgunT&UW&!ADm&p{(B6GNIxLB8E zVlg4z4OM!g#RLm{Quj4MS#-~9BD#ihVN~}u0bZS$p=`ZHCoQA_(())JA4J7vNV}clvwB^g__2{rh)a{^Oh7wTqlTw$&@*_6KeLO#dj)n9p){>pv;_i_%r; zSuN{64^LNZg*P0W+1@VbH!}eyYCddsgqZ*{0meBNcJX)`+L z2{5I;5eyGUxZGS7!&-;MCw1)BC;jm2m)>fSb3MLRxz=rp_iu5J_tkzWcp#O~f>-G8 zy8->wQs8=!0s8Og$U3t0IQ}S<3ddg{Ine1Eo3T}IXA&1!~jp$5Q~U4J||sIi*W2!sOxz_M9gbDu62ZxUBKtiuZ*`j z9&%;)Ae3pt2cevvUQ%?5YG*YCNXgo9$Y6AMK{E{iTi1P>vJy)NK{dijtvfK#0T2PO z)#xW0Xc2We1PUS;Y$N>dHG)>ifK(3YLGlDdvJU@5R4@RkY&?jP+~f=_Bxi|^Yd8;) ztoJjaFbp7-GoX+$LUvtt7V72?TmyPUb0SeWeQOA6Hl#@vqGm(&o&1+MZq9GFj2556i95R@Q6V80Wz~%WM z#NX6|D8$J?a$G|UB2IvaGoYaGHyhzk#0d~_1{4(Hv=RP9oRDo~<3W^yS7%@$=^8HC zS%q{B9oNV%S~OxI>KZ_o8!$Pmz^6`>&@J4LK@BSU~EBSS!wb%ch1%sL|CgsdZ;jnr{oo0O02XfuJtnG7|u zd=N4O_#njPJ@q022Iy2^hYUvI1c+$5gb;DM00@yd0U}O;f-nSZgg+4{AXRoCk}w1; ztxUQGAeD^=QFIMwU?J%mIGcG?SqrkjABYWC*B_84z*$0C5@&0bZN< z8&6Im0tRRe0f!7G;)F9tN~n;##~}|ZD3r|*Ci!A%WgJ(y!@X`}*}>Q*L)3*2+e&WWi35FB&xEbW|R6kMNU4z3WPr7N?(bD~ib z+0?{STgk*kHeKk=M%LuY$hJQud`ol?a9w8FBoUacj=|ai<}T6rT74RS?TIX&`69er z6CcKGRpbWoWQm5!en5G_9GwJ$O3|cz1BhXFIws9)6HDjG$v$ygD(V_thiPr*YIRy$LTx}yEyD&Rz-w>X?2lJDACy{H2 z3*ATt$o6JfgK)7)xMa&A*1E^RV`=CL>L~T{=#C&jG_B`WVzrsUGo)^WVCIT#u8?Om zvAOw_Vw+fM7bjFzs1(*(E@2Y98S3zcX(cAW4ns3oy))5Ln=li@)CVL?fOYG`ERK8) z|80^Cb(^yV8#ZzGt&o<$nl**Mlpf0IhV%jrryD}$S$vp>@=#aQx5Oi-BTtr*=4V1H;zJTUwba5*(I)uJx`j!(fHMHlw5-}Lb1O1} z!AnL01B?*T(!wUd=m}KlKx6`}`Yj9CYhsvq(m~BG~Y^m!ZbElcA(pw;WXc z(L=W`UiH`RDJVnr$2V_Xye>L`sz_bDF8btCP=*>#HSE`_yivUXy-7|lf;+PA9u=z$ zRn3PN3wjFbqQ!gGu8ojGUB7m_&L!v@q~A-eATPwA1P|V-t4K!QWg!=QV}yM7uK2u;39vDWUC2f5WEV1qkwGdel1+e_ z07Jc+qJrfmixZAqW?J-Ahaq7+gBX^6f7sP68!FW<@Mfp^J02FDv@B)j#T*gvf=7n5FFj_mlKTI65>j>=(XdK5`=h&X$4+Lf%`7keH9$NTOtnBcin6MJA#ISZ9Bf$Z)adBR6X3 z+Y+uDqJfD`AVVD(N#+R0FqxukF`LRlO!H}auHw%r0#QRH>vwviBIZ2 zSN&5~QUeYtV^)%8YV(mBkq0@7;Yoao;YrE^!;>)3&?P~F*L>tgRre)Ggc$YHCj*>U zaoc?4MpgGENE89YDZu zYohnECGaVUb@M|%#JVj_Cfs`r1Iit$AmK@FNmxuO1T)x2DJf)#DZ*xTT+m?B^Tvr=J7loAvy8V4HDPAL%%n~1 zQS1>=_8arwHWSXm7e^V^4EuAsy71oUJ`XO_-T5Gq|Cc zsgTt!317JNnInl_jy4W9@hszb7XHMZqx3kK4_gLU6QF4-8i9PA8!%G*m%BG+rC}*~ zLtV0ernxhXr;#t4tSQD6vZiFuR}*F?%xpxJEOm7?@hszbb|WO&YtW?B;1zDc*DB{I z*{9ey`|Djg0tLqDefUx16NbOBB3S$TDZ}6R=&|xK=*2K@?OKU#=*vSj|&?fMo#Txc(&Nf@UC&f z6vM;EX|)Y6Bl9MLt1QI&$%HBTH(N6@1$y?51J zyYb~@p@uR;AVK7}yf9@+=}?Ta3$p)WDRmLDq*RnsoVu0@m+c4=CI7|3!jvTi;DO83 z=3iw0#gc{(;K}|{S;JkR{|Ug8$+}y^WWp0>7xZ*pCRTZ&u}3E*BXRBALVfixMIgA^ zbtpcD%%z=|FtFTFa_VRj5*(tVcM^DNdMtZdF&s=e%yA3O8{5@G%2$^ANVV7lM1EZI(Sr2KToEZh)CS9Xa zRQG)(DTE*=*EBsPb)WMp``Asxu07rle*8lSqPh9*$$VwCSnS7fSiTfRE8 z20BY1F_g**nIZ3jGz&-tXR5PWV{Uyig-_Y#Vo|ezT>`(*H8o@2k%db6tek>03&8vA z$92OgT$YIqjD|#0U4bg8`N;ah!aSj-%`b@b*R5LZI`$0Sx zsr%~SM6|)p^1&t``Bac7x~(BUPl6YTvYA-}-Coq_-gI{#?N`0sGkf28efjm}v%hK4 zH|_U;-e2ck^=2>X?Ko$>+dsoP%*8DDyh3gH&sTj zOmVZRq~NWRuposn-Y1cnP+KIK@wSP+MHoWTH-muan@>T!LoPf#dWgmYYTvm9U&`E} zOn?DO5wo=s3rv8S03(iPmE8Z6B-t;zp0-0D^5S~zkw>2PXdzUc3HK;6NKfSJit`Ux zapGZ)6yV^w94SB*r;&cH!N}KzpA1EYVd^05)b|?o(KWH5hLe)lA@;g zgjEsE+a^Y?c(zpuQcEvEdg>*JTsXYgN9ZnAegAfyTTuctbtn^HQfsyi3rv8S0E@1y zNYFz(_2kTIMSG`=h?D_|#DMp9g$Bjyd9JWaPs4hlBT{j1V4T zlo5yZbM-*JuDGT_WNbA|y+Av4jN3*{=Rm2E^TtR-^JK)xd7os>`{^0^dEPdf0*VJy zN)SE;Nf15-Nf346#D%rHqmR)Mb1QCy%pJ-Em}(H(hy^CVOn}vwlFtIU|2Ii;Zv28Z z>)kg;2Qf!PjXdT1&RzGtJOr8T1!UFm#cNP?rn3EX;jTx9c^CP7Yv~{&9}j;$6m5ZE zo*NB`G}dKF+vmY4=w0$sSv9)Fk|7U+e}C3`Q?cDl}VU zAdz4Q6>)HtmgGT%;{gU>m`oKi4jD}PD?r34P!PtijqoR72@r7x6cmTPjqoQwx}E}@ zhDg>yNIob)DjN@?IPIN*g=FvoX}JI`8bFAm97yYoGoT>s09y&!b=ld%p(zcz^+^vO z6z#sM$b$g!{3bzf7dho-OTW} zzoyvuoeJT_dflfgL{Sb*gc zJgi?<>Xn6iNmJ)bd>xBjm3rmHVC9HSDfP-2D}0oKrNK(gVP>X4Vd3C&z~j($sZ8-m z#|fQF_eQA>qSVfy$oe?~yb}-OlfhmOiY+dYM{&kF{YsyBj__jNJk}JHI|tF8xGUsM zI&2>v-RP;f^Q~7jO$3CopGBg~IINyX4l!;|37t218t%OPm_wbLmot^NiYB_Mb*fO(wx@5gGti|h&TfZ zil%QP{7KUXh&TfZinqW<_>-ouqX4HN(i1>Pnm!xIblIpc?XT?4RR3~NQ7t&ROuy{{sjZmXP8lR!y$tS(VPSY)bDhNV-5Z!HvuB!odJam!Jp)& zo&u~LL}5D4z(SInfK=ImNY+6}auZ0)8BkE%Yc>)x$xR?F7obH02wj(*?GK3=GAR(W zZISAZyt5YuAC%s+=yk%R&|p@tV^BmWnegE83BWM2JBtX+JkoqU95sEOdo413C2t;l zI~0S~3~qp-3N`nd5DmWN--+qKW_6lAPflh6PfilUA%h9g00ayq3X6E^nZD8pT59?X zGm;n%8BB-Ar)R>u1w)90@#4~ggAie`cjOAL}PJU9;JOFPAkBSeF5m4?YOkjs-3 zt@7l=^m%e2F?e#)?(8y{5Dh>O$v~nIrlF)kJ&1xU3^S4#4jD{{1`u%u6ch!`M);H5 z1c*2T3W`_6M);H5)KP%b5a|gZB)JJaw`@F!BKn+xg(Nq@-n0ujJpl^B-n5YmklX~) zN_GYmgwVB-kX@LawQmUd^xQfVb5D^^bA=|^0q)H0sP0VF)s?z4uE?aEB(BJ$cmU5u zb!Ub3B0w`W)t#wR6FcL^hH9n{Pez=ykerNIetF&}a^)s^o550fr-Foh3R2Yh6vPwc z!ifK{jzi`aSe3a$nE+Fh$!){}6JRF5xbDmnx&J3gvR`x~ZNEiKD#CP8Pu7?zU6c!R zN%QAQT&g?kD0wf{orN>+#kw=iTvT_)LfJ4iMS<0+NrroWf`z@>=&91?P_+X_@nl&j zAQm?Ziz#6ak|35ACLLB+pG`tS-M8W*t|DzCl1?_xEo|A$9m)ilbhI(Hl5uFEjNAm6 z2{5iZvqbLyNs@FgwifEnWRpI`1FAdY;5pTuaqyh#&U}~^Q{5S7{Zri;XWWp#hv%ZY zGtL+wpTA~mtUHraqa6;d1C>6IGLp-a5wqpVNF(RTh}qWCGxDCiZ8QaB0kLwkd%7&dokjJ7?c>gMM_{-tK1 zuPe<$QN^ZEFK6sT>I;Y|-KT+6bgAr2GZ&_O#xd_TOif;Xb!zgZLy(^*BS!A0XXNL3 zGGgRxqo7w`X`d=}8g*{Pr(?*tF=P~2S{R+L+?v(Ca|@Sd<_={7Oiib?v5edVmk#*2!61*{E3q)6}F|A*VC=3qpUhFq`Op_%MxDeQt_e+Pg?OJAkNDxXX zK1k9?$ZzFyUONr_Fc}O>d?3HlA%k~@9Z_9=4u?X<;D5pU8r_vMpir(@M&R#X<$>D! z(AkLe1Q13P8>h63R0+mui1Y*y#=7l7baw$-G=lJU$OR;N7obH02wj(*ovE@jZ5ec| z7<;2~k5!d(2v*(ap<7yGpN}gi-Yh_@`b^;GQHM*-hkwjPtoj?zJw8|SAIcpZmXkPr zc!K`>#Gg9GpMKn;?jE0kyOA45-!u+*WEim2FyL&J#G3(2=3QJ@w>QX+Shv+aP{-SI zRh2iY7f{*#rs!I)7rWNDW%U9mY*OJrZndcU*;**Q%^~E0lRvoNeMW4eS2kAwQ~v`P|0)50 zJ{7w>^)&2q=N&@38*WGPU9-9H+;=D~$`!yTvXx_K@a5bSeF84bfBq zKfTZaQH|(+0{^Gg@VD?{XiW^^$w}eljgw`B-@|aRbtBz_&?RLvl=-$|G7i|XKQ5S zotTl|21X9S2*tw@JrEgr2PqcDoChD&1!mka$k-t!pcwb@t@N{z&uN7sfylE{e{(ea zPjOihbM}>s5p#~^${%F@E<3K#;+*%5OKPg&*; zWdcm~{@I8HCcsR9sqPEM@EMoIum;7x0pA>CCcPtBd1v6oj~7ezpY;9al9M+~0?wUR zvf@j}(H!8P!Nmm81D>qcBhdc~OI96y73BhC{AwA$X0e63pUH2i+Z!=&UX8dlZ-(ST zdA%Ue9L#=$$!`b?0pL_=Ns$bO8W|gWPLd;qBp66yIb<*)8Z6`tD4>4`VkkDkpTZ#U ztuvsYh;nd z(#1V8Dk?ZF>CWRj|Lk{<3rvnriBG(9=XR8rXX?;LDJk)Hc7%GS+&!MUV4Y{$-n4&x z(l4J*kH3G#!z*%E`nAU^A3gF33`h@s)bWwK=gySxL%qhOKZs9!5TA0~V{cUI{smq^ z$tU-FrB54k|KGkaBsn$wvRC>)p~0#5gHx{;PEVK<{CIELA^)I9H^Lw6=n@rqBc||) zm5Hf$FT@3oPG7lW<=qMw0u!&@PF*nPh47Swf8J}_EZ|Y9m%Eo&Wcoix54@0mcmLI^ z``yzX-%3v2;eR(gC@A6I4v}L60wNdfOnNveeO!9V<>b&_o++t2uI>nrOI{rs=jGYV z>wL4OQ3tn=4^Dq@dP@5E50n3Geb4_<$C$!#=XRwgrS6Tn85A@r;!)iB!28EfcN`s@ z{`k?uQ1=Uw$?^XjC>xNTl9G0y%R0}1`>CmgN4p0lC#I#H|7zFc0mlyk}1$ z(2ntl`}1zP`#bG&%mtQo$qTf4;WV{hcnk)utu963tEzm6H=(a+!4cYxoB z;p%_XsWrxT$gcT4{VvxpvOjL*m!EwW*zVOYW(+wyt>>~Y2IQSutiioJAAjjNbikh< zRsW*f+n;)V`OL1C9goz#_57zZ7cH9=cB}G-H7`{`%!V0ShXWo0ZbJ%d2_o?m6D0MN<6THEk*#Z1hw0MQx@I$TK)>>aPnA z-Rzs%`-dBUE&cPt%0BKtE-mg}G%|0EF7J6wIP_u72`#_NIr2jDKkkgEH2aOmQ~P*S zz4gK?oj*AEonQSm2QK`v(Y@ff0cS5=ueIW2;JNCbmb@R-Zgk&0C+A1xDHX7%L`>g3 z`Od%F>hPQrcR#FkYwxqgzGyY_uTMq=eKNLjo#PE!R1BIkd-GR6{{HCQdLO*DZbply z0e|$a@!i%rAO1dL&AvX-m*4xMt6xa3_^#JRo!&O>&$k1Mys$AKtio5@#wBh#(R0hp zf6q_;WB9j^>wep%$9FFW)%^B$tvW}})?I&TXsI<`!Qq`3O`Vpw=1TRSi@UA%81klj z<)077Py4&yqISL)y7|31c=&@6>wmwqwBEm?2c14$taVJ^i^q4Lo!F>)rQ$U{x<4&u z*@ju46n?GezQLh?G`yCxOqVjhz1U~>rsV!Z4vn5(a^#}w!=skmYX9-0b4la26sfUe zV6*tPv4I1_X7%`a%<<1J-q~IDg)3o;$1ZBUDt*+&U)Fzibxf{Y#|mC3v~cNXCthlP z_4e*|J14#578a3fUD*+R^496Uw21GEZm%xQTk!scvR9^UPfW{SINpEm zXy3UFMwG8{Wce?x#-u#gvB1$AB72K|*(aDwl_#d|zLmfh}? zXIh_&%iNB%d~oUDrb(}q+Ep^?m)2by)-SklUY@u7X8!X`ow4By@_2X1Rb|#+pS|?* z)E7DxzB{FS?xCOOZ5;A)<-79+s?Wt=ULX2N znK6%xwu#D_GIGn09itP=RT!N9(T7pLy}f7t>K4Bh`1_g35kHswb;g?)iVv+){nbh* zzFXYmix%m-0(KW(Kchj9E^)bLpU)Zo)rM7rrxx{lbH?r&r}K5%cIty)T6DR(zKC1i z)Ky7~*VZ~Tq4_@l#M9NDTlndU*V-)qtJ$iU$6qe;^{CXg)ldCjDpl#|Yqx&w@bU() zTkbc5>%cKrwhKJa_|Iy$K3p99?Tim=R_z`g9Gsr(^<{;YU9ZsNpyAX?!>=uAFg)N` ztFMnQnG)3OQLban=a#oP^&9iQ`Zo zR(_*Yv1;QJOXq*|PwonBMy~q$>^J^zy!q>zZ%_AbvZ(JU_x8D7S+{3L*^f@T*UOnS zw?SIv-G!p>SIJW&;BDWiwE=&Wn3$eZ&mW_IsPI~yXLICu^FWRqFADzH|I#b?Kg~?bn~2Vg*%Z|m!Iu0qU^z&%^O$i zz9YQjqQHRqkym$k|2XoylQ&lP*b&)v+=U$p>uzrPr`)YNfA*O2%dOLX_iEjpvAWja z3%eFBi*?`kep1`UKAWlyzCSVcWmXezWZ$>k``(K@8^83mjiIfIl=FTx{)Y;WD)(xYka~JvwYp=!{55ssk0(3- z^T*D89`qNh&nYX6nr?3B6zJ6fMrom?$blVtp zyyV5gZ*Of9{>ciTg^?+~i$uh^B{X)ov>#9@@xfnSi_nr=giXLd> zmos;RMr}U-=OBz(u(0Bacg2jY{feABJ+t_rjV z#Qy!_y>eS?E{<4NrR~>is`hDH^g%-I8E>7M6~D07wh0#(O(=TmnF4J-zqF#t7XyDQ zxVJ;cqQ?)EE&izBJAX9_n0R^7gk!%wsJQ6cq7`B9HC|a>sRo|G!@u2_J8rK|JD8_; zqZfL+#lWDLN?Y4ay;FAaFB`jjel4;>C7(B{6@2IO>x(AL2)!3Osp4EX^W0Hy*FN9i zjW1T_n*jd~^A?@GV!Ye&W}hv~@!s|J$MUUMu&Cnfz+?HA!v8Pw9`x+-4xvS3O3bQ0 z7nZ77q-xJLpI^gGF3XMU9f+O1_TskdZTprPzIXWX?|*sy%H*qXmb4|uCR7{)i*?<1 z?xm)<*MYf1ir}jMJggaVEi&iZH9mObxuZDqz3$H)Zw5_uex)y?flC@TXW6m zy}iox*Eb|gtJ1az4xcsid0eu_ckkssgdm9<_6lre)|j-!lFdhSd}Gkxm2)=j=ZCu+ zlhF3axd#>ReZ8#@p5bxbwegF$`A;~uu+rP{=Zd`(-C<~+ihG8`PU^f@v;xlA{*_8o zVXCfww!MT?xkYp;Go9cNGq>y_fY*v|i@pgv9C~#|PO+DrJKf-lDo*>UPM@UnfVJAElYoW%#J1{9$)FGXSc(edG=ccY<5o0964SQ>~^&Or-O%oJYWDQq&}Yx z7&6?0{vf5a7XH2Y+jfOMuU%yFx?>M=6xcqr&x8_XBPQo>|8~`Bfy>uC7ZKrEq)m^l z!y2SFjSTp`_`tQb-yYn;qvwm?cdk5ZQ|Qt1IiIRy#+N<5af1~Y0(6ZhueR5@!QafsV zR<+UQN<9l*^nY(+=gs>Uyxw>9$;kO%JsdxHPQi^8=2vana>K+!?msrsAM~q9J8u^R zxpJ?p)VnnYr6azEdUx2o+n+9NQ+%@jq`#h-zV1rDx7WPAbYI(#KIt^??7X=0L%u6` z?8DvtuWr9mG+|%KB0U?W=KCZqWcH(gBQcFS#1``EpD=&jq*pfu*Ka#N^ufq?cLtUz z@bAYp>o;xi_kuPDnzWneJLcU&8&AF%d?2^aiMJN?@4a9}gER3BPwwBFv~lH-rn6#S z{-V>pS%V&r+IZ>gy6)fp7W%E<_2j~fE}z`K%B%F(Q~U!eMSk&DOvJIpcd*gD4!Rjc~#)K#kj;{T1? zv9(y+*N&}hKJSmX&8KhtTV(TwrjZwRgr6+-&Xq^e!-rLw8GdhR*Ex?DY~NC(U1WzZ z2R^P->QJYj(}ypN|2%Zcyp$swl7_8L_FgskXnl{ruk>Cr_}9kY^zt9jtaRb;-wx_@ z=yaRWyZ*h?CiM6x-ccn!9NVPU{c8Js{#m-P%e1fBuSn@xAaARA<3RHY`eb_DWRI-%IWO^i;pGGv91F?MS)v zkGiJ4dbQz~r2>|;I$OWm)iQ~5A0=+RJm}pWU7z!PCI7rH%8hw^Zp^)o&03aOGvNBm zM`y=w`026FwP6)TdCv`u{=II;F5eZaIb(runbu9eOivAargiAFSFXN)`EAtz@y`$#ioil6SZ_~F-{lTj%l=<#ty|$rYN4pIP zJ8-sfvmw5}oXYt^oj*!W9WrPAvt>RS^Jcwgt4)ay&pB<~`c~hx*>>pY#^<*b>fi4D z!r%NcyYt`u2CgsJ?a`;3{0eu=yJTcc^Vp(4Eb8=4=M}$y(7Ds}>CdEBi+R-L!$U`N zf15P4Phi7kp6BY`_`Yt})t+bmdAMiXjlHcN?m5!9-OXH6U)|_-WX$AZGfw5Lw!KWu zgnfkv-TZ#mZ;k8bE%W8<=9?-sKk)vh_8*>V^8MyBt}^PM)(jVSMlL&uuB(yL$d+ zMUIvX%Q4Nr;j&6A-e~n`Xx+tb0dU$Le|=o&^;v6zOLlj^74!bquuI*BPCRfaPqU$c zxf|p-H_JQE%X4}!$kCy9*Un>7TDQsDLKqBL>`zKU02v!Sman85j5NhbK!-*gmr4 z$i++V?sF@8bj4d`_Psjb#rGom)~@na)m-1U7`yUb(yQIC4%vS(VA0~8UbXLk?fKh| zJ)<9=dilb_d+TTZa_QdL3kL^}oYJD)s?z5d-)wR- z+D^Q`?8wm4m8SLo@Bw`ZT(QlH8uY+r&ur!~<-^}!tJvqKBPTAMc<#3^XWZ?PV`|Tm1>c<$IaJ_Q~Y?%vt+ z^25nnj`e@I;)>tK>485tdZF^)4XfmO<-0itD}URr>X#G8Zr{6k!?EN2`X-NbUp}no z{yPz6*sqpxkn!kzn8nwlto>FH6pKNzy9sUgbnL9UF{k2^OV1K-mQ0{<=G)Ej(oWxU*A)48w-|s>;Ls-<>64Z zZ+OgD3N@5eNEEUSBTbZKD}*UhXrU}4`!FcJBEn>EtcC2xHnQ)=5)*18eGA88lh*#+6JO_z?t8 zS8?y*lY3W@K>5<;e`vChJ5pU+;&e;Dw3|chVQ0m9wBVY1ocfvOMH&^$c%4QMv9jh>4@q%UEDqi{sBdfc)gp#F$>{2UuFhM)vsk%0YQI+wUmozc-yPq3K&S+vIW{Yh zrEyt*oOWM~H+eFx%8hXou*+V)TN@hZk?Fnu~Lg;EKGO<29(2_rv>q*W_`!a8|uFr z-+`aPgk2xws?dbFVsBow6Ih7+$a?So{@K&RQ=^^cc^&-ZU}L**$#`cwXHiP)OxDZW z%yF1dcILi=I!c(ZULGODfp#QBd2zhYzHqVJUxbAqGWA%By5FQy;-^t|{z!So*!0A% zQ)&5U3Mpo)PB`gkV)rtWhN$Q2$n@&X8HT*=LoGscw&}P23)19ppnNgS`~7b;TM(0pQs){}>3b zCdQ^tJxaoyd-u`^VX>pf0hvf8w_)Hc@lvGI91 z6F)N$GwCgJ3j(+ljq{F@^I>T^L3bnb&L;HNq|M>Y&5GRyM`?5InOur1wefI#Kxg;) zog(P`6{bHI+AJEx_6*pOT!nx@(9KG--mIIU(YEWgCM3N7B2}5)@0Kt-wez()tSk5A zeF$D4yYvyOlwm}0QNgps=Fc3_8Ph`FR7-b|x|S)gM`RZz6)r9LEiJuHMMz1C?ngKm z;f_ZljP{*fVZNDjH6dq6)cUB$Rnwh!YV2V0(br-VG{LC{s@V`HRf3D3 zVmVR!P8VFCdcKx^E;ri4C8*u+sj74Y3%gO0%D}Lh|1N)0idxX6B)1c4SxV`&4dUlQNMs!y+4}TjOp)!3; zANF7Vfv4fFI`u=v_8+s3+;{n7a>s4`s9-3^{m^XG!%(buD_6t4@Af_pvgHBqa1l=I zMSbxB`rH^!+N^26-71+hf#;WQ)5{3;7FUpl%vCX`aBa(tYq z2cBy(y2C{$;+kHSG(K;nN-s4?tPvynt8T8*1(9Haktzm)7Xql2XETVKg8e;|8{&Nx zj%4+LbExO-!GJXEzoldn9H`vV943@MAWw;typ` z@&$B^dSC82UZntvg7KX9c9n0DD_KyV<@11CjHUQcI}T^ z&i_jOSa+*#rnDx5I}9%xiN@*gOdV)sBy%#!UJE2@;oAtBtjlG358#1qCypeX=u9sf zR-=7w@k|&TGN>iFy4@tZhIutilh6JsSS4e(3ughrY60!hUSO>^)X)wtfTwfoin}Aq z*?3*FuOgA?dN@0lrqwn69_vIg1xuNChcx_Bj;=g$Ug9sR=F2%ZCgA2 znPPqH@G8h?BF9M{rjRlt$(X%6ht$jB$Yax0=8p5)`L;9RzouNpMJPGGxS*EnzMpNA>S+f9TlhLm(y~=yedK-rV)za)#w4i zwA2peIYaq-ZsVWD+ZfNAIH2d+PA&a<%BnXYa*7{4W!&6B>%|7s2!dj>?^e62m59Y3 z3~ajh3w)P$Sp=lT0OkU1+Gsg|ji%m&)Qkdt^jqNM0M4z$3kU)TWPvu<#h@LXrA-|j z*Z(~|+A5!Fv>SMm6_6(978JO9F*N*+Hb-Mne}nrV?V4klL7--V&1i2i051m!0Y}fp z3T2Plyl%`*et-YE30MU|TM?KUL7xiX8z$fuL8A#-i8{NM3AJsbTzX`Agd&j#CXEBotoiJp*tZnH&L>V1@#o^X4LL(f9L zb=hL^Vz3n0VADttK<7b+qbUC$yZB9QNB!y`g+@wMlb?b?n4SA;!}jm2);`8 z*0BA(31T;L8zJCtL-_J@^BdL+I5^aoaB$dv9fGmFlj-kc2#PbX?tPEf-z~fAm2n=E z5VROFc3|22IVh?#=)BBOCV@ty?Cv}wOI^Y+HYL;fkdzlUka(;|cA0d1P&Y;qg zI&fC`-ufR!A>faRXf33LXQs{M_2t0X;^`Z;)W4628TUHjwa?z*EAdD((GrcI&8Qm^ zDA?T22D16Rw3;3+x{u+NvEcPcP?2<2R|JPj3F`%2&>uQFz9x6&d34DlY8Yvp>;Aj< z0u*e1q#?n<{rC+I4)@u6?l!D07N)kQf4;K)?!N=Au?P|#yl%o~#b$ zn{8_ztvW^7=*8OoPZdN&GAnwxFKIqpD8DN#N)fdeNSqRe$LKtddG)qomtvBK!BsG8^j)?Q^&X$EZypf)6*%8}yc#=HdOWMl-mvMR85HiK#p_oj$ zoL4TPS|eZ6g6}PaqmzQ(B%>l}Cnxwa-K`^f(R^3+w^6Lh@g;CV^Z!{GKOA<_BRc^U zXr9&Itv0!BcI@=5o-MCDFM=aQsF|u0G4EV&N3+396d-nS+k;wZ^=+SPG#}ft-b^3Q zaIHXlukIcfgFgT+cWi%lD%MZWTzFY~+oBn`E$TH_{Zs+`u=uzj%CBDuW7TN?8p+#k z6v!jcY*5X#W}TQ7Q6(>^E>TPH(@XdKMJyj7BQZ5sPCPay+_teK7J>x73#sUug5xNS z3qO9zk?K$W8|Uc~NWt~To)5bfjIla;uPENaicLm4W1g-r)NfM;$ok_)H z3*7_Ru9}wdNn_5Os(o*_awxjQ{hls2$_H1|PuOGpZbmd%pRUhmZjTc1Ura{n^`+xi_SHvpKq6>*2&UvSDZFZIQmT>fm6{ z9TZzao8&9aneK(&5jFUh7L~@>TQpQ;pQR{W&&~3;mS5CChsuy1h(-Jh0f1Q^Bj?NR zQ3ZsanRHv%qg+gL+6z4=5VfJsXESA)RI`B*_hJVVlSt}hsl(6s>C%T_iCiLGhU4?p z_tBnWR7Emd#i`aV)ndVH?LH}E)MWH{S*fx7sb?SSM(BJ)3rgcSqWV5wmSqZu8Z`_i z#UaeONlzgOt+h-*-QInoTbgaAginKiOO*C%I{7!<)fi{)-tUDS%v8+nO^95QQs&&V zqFy1dgJX_kU%T9uy#kjk%in6FXl3b8gp3=isK~Cav=>Wmj>+%5}myiY(IzCQ)Ez zklssBv&Z?iNb!^G0+U0y!&6UPafJB^xqrg1in0&oR*x}i3X}SR<)-6SY4zG$1vBh> zr~Turr-j=2y^J~7rZxs+L<@12KdB9muHBM~$V0QiR? z?x@p=(?kPKd7ey@iE{6XmngXBBXAvObl|1TTn_cJ8$jvB5cN#G zrcW^Nyn+bmnaKMr;P;)TAC`J(Q^%q4WQnt&i}8NsZdY2E8!KLz!KaS$+z`87Tp7n; zn$_7sxzwG3=X#OdRDpdzjSw@5cRuu1#gIE%M?IGy*f(XA9bXw(i_W3Rmsly3ACB_f z0--kB4L)LSc{r)PzBeH0;cAtEuRk6B@Yo?J% zY(|y(=VsYFp4BtX`ABVk4UOW;%I3xUHF9xZ!m=4674~*g{@~LkgRYoSc9F&QQIHeL{COUGBCy zm-d})G08=jtzV?LmG(aK<0~3KQy3S^?AsaJu-SXh=GBW%$@-^nq9OG2wi-Uov(|}LrmL*2Ty%M>7RfNXqAAzC14*#0kmfwG zde^;PI?pEX#Nh9h%t@HJzLg&ij+Egg+?ziunVY?nwX=n(sf#n~AD2JMS*OoP{E~Ft zX7y)ITaFoHV%k^7TFqsnA7#F>9zSeh8d1@>vJKh9m&SW?onf3Ix-CTLM?#@cn9`OU z(q|kzYzHL-C9~ahpq|V&X^ilV*{9181M z+Sgc$sy#dO^N~u+Db;vK&LuT&viVTkeO>S9AcWr8*!ms1&r`@9^pav_t2JYA1wrGu!o5kDCg<*I+nRyCL#ltPXqa}^`+1AGIeacGzFy3-@2raqzxlX}RYQvqNusya+L}v2@ z@+$G#eA+v;^qUvVeA=A%-*oL1dYrr7SWx^qHC|6;L-{7Zx(E8hkd)XVc2BHUkZc>Z1usR7Nxjuf`G;%|Li z;69&@R{X2A$IB7ByO3J`;Q+7rMrAXL>zgf#y!oglimY!(+POu?6fZTNE}&MpqbolR zw>KEOYy0dE4zh#-{8~R;lc79rnt3R%WGkHX{_N3vIy{KfO2SUz>QB&`k>$7@u3y2! zh;3dvY|h{ZTRdg6*Oh)XtnPAm8*pj7`7vJ}d|7B1x|9*whG{(1HLH9AsTaD=o~ddk zJRhx*GA3rfguS9xg1jH6CGw#bu@|a*cxONQ#*#y15$dB!cAt@L+Q6((*>91BV7mk* zRrivdS3I36YA)D9EgF9A^+{dEcnN= zaW*HB7NXs!-0w8ISJf*T;P+>i>e(&tvVPGpGAreRwZol!pQI(Biydw3-WYc=xR^KjrCMa}#sr6BR??`FI4!C{m z6{q)QpQ1BHY5COEtB%43!~3p>{P@iN@z}3R{*;q9DK-KBc9#`Rx2xE2aX@~KQ+|$Z zItpZ|r-hr)_&zOQXfd@SV5p6lr!*w((75geEs2%x59t7o*)@4iUKNaS`2dc&H6~78 zalS$wn`0R|(N96to2to*;#3*bn`+652>ET8rFmjjuvl%rx7()5Cct|A#x|{2T9%P&!6U^Xp zf1$kAQmCueR;YVbKJ;D3KIO6MouvSquT_-AkF0E{8JKayzI*w})mocJ2;(kbQVF+Y z$u`PM2&#Sbbob+-M$m3>=eP#CicG@JI$sEFZGU<+cog+x^LvbVAY^WOBD7(vF{{&37y68$E$4-bq@hg()7@x&0JW<~6i-{O+587a zPmu+0!3_E|-)*MyLYJz3%TZAV>#a)B;#hD7jX`lC;v|}r5#g_nNyNqij7DRO##KF-65GYe((eSYy(!p!|(E z3GsJg;*L*ZeHLPUnqqxCRu*`+7I@Yc=aLvv1sGAr7*WqZEYpxDQ;|1B!o?ZI%^AhT z=~EDFHW_SI8*F9|nfSOk@o{$IK8jddoJ9LOvG((iiBBen8Y$e+-;y*Iz16}4*X>kJ zF)5!ih0|%DtEUm@6>4i_+0m!r_N&l&mM@1T{t8=P!0lAK73V6d)b6NU)M->BR3@oU zWGQ;!Vzb{wEy`@OROWjF?%1hRX0>9l<=U|2S}m(go>FIAQQxavRCW>wr}H{TTF^Ja zP4k+eWlyOIBlQ?jTFNc)vcK|Z)U}NYv446rz4(?bx|JHB>c{%bG$6m!H1(Ta^N0R& zFM2a(HikboFY|UJf}(VW%LAjytJH|QW&QYxeYnTukkg+!-DXktMukU3UMDC%N$raE zgW1$}ggSlFklC4~-+=jaah-^>q7O&Wc0*v!*t{HTf3zWgdWYTo#mL9**m2F${3JDY zAB6;;X!Ek|RK7yWrTn@VL??x+1FE6Mdh3DIW)c1KBDB`AABG^m#<)Dt6v(mVnBJG9 zWx|`+6@5)(*mNq2Od2y+b<1UETp#EDKylXoN%~H)I8s2(qr6C$K8eLNJgA~O+Dr~+ zNw*}r^5n%}OE5#NRJvNEIy-!`q%I_@QwDnc3W{w$y>V#*03>Yge-3mH;Y^P@zB}q0 z^{}Xm5udHQFQ2XJxbz2gXAAh=Z6C6@o0)Way6d(MC{@-upri{$c?hm2l^ThJb({KY zzGDz+?!`f)XUx(d;7-<*FO@QD`ZiL=Rz!fq3f_>X!LD#FjBEpKelWO_k`Q=lQ}^Ad zELP=q)+p>IQB4`kE;Cjuv?)uDk)v)bee~u`pfYv8W>k4NCj_;Agl$ZoA%TTqlzc?K z#7XPow{Y9#D`b_{Z2yT7U7601zK> zQ5NC;?rdSs$r<@8B zRdgKUwr8$geCsYXL{7 zUdtt?uk%x?EY#saW*W!R&pB*?(ES>54mIVuZ&kvh=J-aeZwU&-xt6bj%2|FTSrbX? zsXBM&IZU?Z*EvKX7>P9U&eAA~=GR$*H)m+1elt^`fs7&;6@w7wKgcyG_s6&SV>1=k z*M5`vI@SS;bzzJI&^Dzf(WIziRhCkDNb+48tElB}q19T~(I7_?Rlbs(u5GMjnP=L9 zypmB~mM)i}KXIfc0e6RDkuD^blF!FdN2%y*#>iG{#mK(ei>rrve-z9kuMoLX^78Yz zCArI13)9=d_oF|n&}9l#O#{>?uu3B{I3mQZ@%%4L8Ef*B!5+LT^*x+;>Mh;7p#WVBS57RWF>*}WaG=~~Z@ayC1fkbln8kvE2 zB?^R)}Hda;uPFu-q!gsUViZhbmT(wLjms zx6e(vi)~FOCTQ<#8#!n%pzQ^S zgM$U<+9ALOa_wG@htPvE{M$Z&biVLWsk)=ByiyK0#HUAkr`mV=e4!|2zW5SuwK&?w zjT_Y;h-55U!1iGdtw5{q0yxC3b>_9`P==k5G@O6Y@o+PP(x;ab5lbZ0CV9D>}78?Kzb#Rjx`^R{}CJeXuTjC6%b0QK`!9uY*toW}abmWpa1`c^AD0jXE$#7)@rjHQPQa`P@rQYv*)BIy?cqpFKP_ zY0+;oie~M8+Lk_Y&lV^&EM}fo%r87ecI&Xw=uIsq|+!W}Mt+ZJWYvc{HmD0%HD-Y4D5;wef z??~gxXT!7f%v79!1O-fPgpeZX098YoM>DCPY986Q`kBRz#9$TWcD@nzq*n_Qt)sN| zvX(Xdb%~dm9Q1W7pb-o&f7xn2?M~QfQ=;94XmXvkS_)p4FGhnlX$EU8D`Sm=uH{Zdh?sL~#RaIZ^ znPNKaEBjHmTTW-SXp>k|iyFF%3G3BuOzC{b2g$D{+lYOq%HyI)A6=!b`!6I!S?0oP zq(d9jz5Qx$ZxEQ=GukLS6v&7ZZhf>FHPu;?n(EAG6BKmJ^wU1#s~c&RR;a1kYhIvM z`5-nYzgh)%kM@6^Zq7_&y?$cEN2R$?o90^;K2BGw`fP@FW788}$(H$+#Ou0YC_}xX zu|ab@4IerO8ceb+wGT&jbJyRmDf1$qmJTPnpC#6DI%m4%^5UIn;Q4s~`lIuxG~wKuwP z6FEKpmQP6L6Lk}5tz7}qaXPs|C}u4&1rxLSp#ciYiCzT3*iXyek-4t#uFsIHOUB)y)r#IX~BcN{T%7g>9|Y#3D)0?a@d(l=bQljUE|h3@Ivynjz-er7nsK zAU7JbPd-95$k7@U5R8UuLwB<-&ELfDq9bX{^ed4$K2=58dkoh*o#eP{W>0PDreeX$ z`s?CRgKEmIGgiE%HbU%~m><2cMTwiE|e=yyO>_m<?ca%mRC{Bfx&i8RfLiWNqdab zc-?bTqk%=1g(jwJE0xhfc|uj!N>f1uRf=lw^$;OyB3T$PtK2F~7_m9Du@trV_X1SW z&aKw7xc8-v1+?eiCI}+=(nbj)@o!@TWxV72>6k;Wq~hn0e!_VH2gFqDMFdfc1~sqM zC==nU0}S!;7eO__sC%H-QN4k|hN2tqf6w_IgBSRrEN9U*2yy3ivCTL82ZC*GO8iYP z^=T{o9d8gN8Iv?dN|LmU05dww_iEUw!#8SbF=l&{Rzy|max6*U0dm>({WL3ubR;1b z7`UI5o{&+j(Cw9?J7c8(KtCxYi%;WPM8eQb}MX3-#j#Pg2_Rw@zJOD%3W;wm5NijVAOu3%*AAToyzBngVWA z^MPi4+i#zXc^zIjb5QEb^`~~sh@6L$x%=Lr*`+Ya*4PNJT2WI$|GBtmmRrUi`!fI6G`|xHb8f$y|l1tXr}9t&z5#$oO~B^GlEfZ1JlE$K`7& zsr|y?eOdX7)`M(m)se+8>Qc#df4e2I-CpDBxk&Ni+v02%N2-?eQr|CT4A>D?o2p?T z-yk;@kJj54NkP)8QzBGhM0YGbl{+@IG?HymFjQ*(;I@I#QO!x!$si*z*UYaEc`Q8n zlk+3wM)QDr-1zn2QePtf!f%EHzD};+9dUdYxT;whoLgT8NthPm?@T_lt+cuAy;D2>2e;sWmF_rok}Z<)$LTlw%~8GI%lF!-vD+WCw% z&xSBzl`E#+M1T-No^!^QcLL1($VDF85=y&n?zfNY#w4d_8%R_wX!utCdS1@`{@cLH zi*3tVAJkO~@5za}0i_EUo05K|%T%nmzSAzS|BkGq4`tj)Qm?!w{a5G8O{;dcjwm)F zAermX`_@m&bKxp-X1iq@-Ke1QuY4qs8DTv#2v?%W+#?YNq)|8vS3d`s^)J|Ujc2!~ z{(3q1Oqgz;{)8`tS(pr)p+h3bB9xX>5|_B}Rn$~qu%+k*Cl|m_1v^+vqQb^YE@h{N z?KjcLVuHE3+iKT~ZQ`7C}N%or-TtM3aZbt1y3nYAlgXH~T= zYD3R0ybHs+dxvyX+y<>aw;FN%5}<6torT#dq!QLEE}lTM*IOGJ;CKJ zzkKH6!kk5;yyh{oK^sG|>0}yuSbj1%iExKmk`{F6{ZG931uQ-HIV+L^=8%A7fH_2< z0ALOo2oK;b^&G@THsU8no}QgHfyrJ5$X$xkoOhp;l*;Eq~>!?=KfI&>HVVcRwGL3trf_^j|Tv0p9=k9|6 zm_q1-7MZkMfRLEN z?}AZdr|c)loiozj?C(sm=QMKKMyYyXD#`?(eB3_zz2ZNq_zabT z-5@+=f|!D9wr0vi7ZK-TmuBo4ZsWPDb)MdW&+E$h;ITx{z7i&Ic=tf>=_%XF{b;+l za&2yxK<#JC8&yiZhAH(X)tae=hT9fF?DBAdtC7JNcllppQWe#zKg~_V@kXyK4T7R4K^y%G=3xD@`$Lt2r=GFRbaAKxV8!P@Yw{7Y|>Sb z(l86zUX8$h?)JPpYPx%%D93mzbbPT~Yt;5P01NBk{()Xk=!{al;Q>%sPh;{#DCt6Y z@6Y0UX$9f3{9XsKLNsQcMcCi{TeML#=jA0&Xv$gC&~Pr|5Zk?qY7RuwRi>^whO`lX zModo-kDx`bE?Y4Pp2_&GV()f#qSf^pxk$mWMaUj$p(jt(iY$Uz^pc$R?Nr+za zrzH$|r|eHb1bG8C_)U?I5x3Q#*47&Pw2F4sYsNc*!tbKMc)LsTQqqdeq-)59w#fHK zZXdgx8N<~S-Qc&loj+>!Z-hJuBqWy5ZnhC+=hQF)>$3iI%i1mNiXegrl+4h=fn3H} z6#xjS?9WU6?-xy}AdBzRT)!;QW_|-Py8sN|Fv$JvE9{BM1Oudk+t?u+xjW%cWoWD0&#iIEkl<_-$Gac}%1kt|z zdrDEWLh&TnlbAyTb31uXGMVHVrDy=DKveslPep%aH)YsY;oeAi`JYlJ-pgY$pu@9e zfI|Tq!JedeL*`$LUV_bEUPRo;+j|{zk0e>U-$~iu92i`c7g^s!+SBTk_OeFx9+r^* zY9&6@60P!Hau%+VM??<|@*%HYF9Z7J_Xr?_TnOtulSX0aYe;Lg zfzE(tIH345zX1m#S%^||=250kyiu@-rR9>{GylE+5B~M+yN=dK=|7!jA$eX#<*cq8 z*IIYCBk1?Sxz*=-jYP*s)60fE(LcE2Ikn_gp~ChZ3abQQFMzBVjE9kOuZFp@LB>SE0)e_~ z*|SiwX2JDeXo((~kwMlRd<_AL=wU%FM4)gG3=t>_BuWH|kSX;S!$j}H)ykzdSd%{G z5&Kv32D}L3=6_SWKCLQ7BHYJb>UeXWsmTO$%q?>omYi^!TT<~t)t90 zKS@>Srh7i=eUn{&Sv0lL3*+fd)Kj4(;y} z3NoZoL=X8Nrrq4>0_@J#JEz%Q7^0C|bh=xJzDG+kAbtX9h{7 zyRl5Hu8*;sFQdl=*rbxCD)Ior=4Dp^%)JC+f~*7D{-WmWQNVbNL^l4dHNtWhg*03c z{kW0bM)u!HeVNEjxGqvVoUK<8Fr!1!{j&|sdqRah{jTsst)WUd`LjFv#-w~6r1MFCTf1#gj`W4!=#Jp$0k z;3|GjJrWw*%GXVNfdQkMvjPYrb{EWmE6kYGIw#d4Qo1X zDKX`rv&Q6a@)mfsoang3A+IpL2TB@=im~O@rcQj8x8S7xjZ~^WZjUkB%zNwu*(iFfMm*IC9TDnrA1;+F4DGS%2FYa8KSS*(M4UDmbqfYuye~oG2*>gTE4e*m^JCwhtX_tyL}L8pw7v)M1w9iDGhy~EZKamH_H=5)7MrDl$yEAKAy<-&H4Cm#+J?xJsruU;^XckW zxBlAvJARk0Av5t%hG(^0x|4$b=?%#RvUBxsM zvssQAPo@7TdM+W7_)XkY!U8emkGUULp{p@m} z;E+AmkVWi+Hp_pRW#Bwnt2$l#hkMek|JX);_RB0K&_!A=i*jdI6SfzN#8;T7m?Ozo zSc_?yFP09AHRCI6#k9;5qna{0an>|FNzgR495b3qA1LICk+G)26-qGPtZT42an^di z_uT5Wu8rIX-ibdy{FGX)i=;33k}t#0aOO|nlwl6dQqH(Y{~kRdkbiPaVK!!IwHWbE zY%pKpe@_oxd>Tt<1I0uQ=Nu)oi?p~lQ{@MF?S#|@v**cq_R3%(SDcJBZNjW7ZDs58 zjkI_(XBSGi;agoM1od9g3H^g2dxPvoR!I*GWr+~g8OjB|!gS0(W+pbBuP_;NXp*uK zC{0GDtPuj4rn~@3!;?(`LOA~b5iZ%3Y6#~v<$n?$39}}}g$txnr@~1I5%2uU7UB}f zWhyJkJH~t)q1TpOIVaV68v%E_OWn~*SgcT})ZF!DP6&R^UPx1sR9w(th{)fCkldXw@{h~ zuOk(Np*k-f#H_lb%Nl7WA#9r*QSmM%79ZLc63~2Sb>8IX&To8ue%k(p#ayh_{2BcC8xON2d}^1LQ_)}ew{{<6a0o$IiFrw zE$aRfDk*#QVOMY9@^W0qKFam@uKIr-t|=DIt6Wc_e_dQ2*w%5btUGg(wCfT*7NAer z1YRFa8hXA#7YzWO&2S+Raf}s<&tG%@QP#qme{sJvdYvhK*sVPwzGyv;D6XcBB_B7@5R~%Ob^BC!c33$(?$K=d&yN>7z@uf5B4!gSWH z>~kCsu&!$ev{!SZ|6=s&A8MZud69MfM|ln8y9GGlAM9k@L$`{F7~yxx5h|W_Fp1F^Dm{76Ewp4ln6p1**mRc9Xa_I|>8 zQ}61sJC+?p8KB_3`#1(A*_)BF-*#Hnv<)y`mVrc3>76`%_I7X^sXUo+5JJNWb;FHv zrFhuW6clpZG01B6Lw{`Iab1BL?S|Vg z_wB{QL$?^E;rB=6G%%z_oo+%UYazyEAx}A>1f6ak$<@bJFHPoFcOJ#_-tk!nin$I? zCv}6n2%6%*>=tHt3l%1!;r&%HuJK3B0M!JcCd?(Is8lVNGdykfepOK(##g`K#?rqAXcNkg3i~92sNT*2bVBgB(KjH&F1Samj>VD*}Gv;g17; zlH#)fD6uO#6jWtfF_%pcZR=2ZEDIE7*J$@F5-?hZXctY;@M#Cn0=>6y>r&Frue|9h zDrmR(4|^`24%{{Z+HbPJPNKMTw%EhDRXDKkExR2QU99zC=w%ItrV2_oU0i0V&C zb`W6cLsJXKpbW@bqbA;HR-kbcAZwQ4c~3% zoah_^Go>V)12rCNH==tS)8$rVp`vcDCi`nzxAMUNuR(z^NbBN$#8%sy-X0Asn3KV6 z3CuITN@Ei+c-KmP&c$NUdUxx7d}ud7!g|kLdy@6zw@hHWhSDPA00do!NkMU01l~H#ko!#dr23Z0+ZKomp0F4(w zHGp|Q8!@OnpiMG={8@Mk0)7*;;aTRJMIf>Nrv=;ptR=;uGdFVaionw=$&tGbSGS|6 zmB6JV`PJq1eXEFpxizxcK{|V|kU5v11jUiquQQlk^ZM5P`t2i9Cq}l`1_%BA?9{=` z!`gINbB(eGF5?VOtx;?!nD=Kx?cEzIuEqPt})pSFEu zx%fe-KK`_RW8;b+OhIPvJZLXx4_2=l8~YbT{(HV4_WQQY2EYx-7ra~iKfC}Zh%X2i zCkmoywc&+`C`dQO-SF@z$Yek!vI>!Kgctna$tc&nnFTvlzDiM*hrOx;bV zqDb*IP0sKenL(9teA@b5R-!$Lj7ggiddG1SenZnq>$o{fx8E|C<$G-XScL zP9|lDBt~g3rk62M1*3D-srWcPPOC0X^mE~Le4Iyq+-IGedPCptY(EZ*1LCXl?$$>k za|8CS2`;lxDC7_<>qle+j_SEMX*2Z7Mi6wb>7C% zu`EF(_BnTUI-zb?%%9Y@cc0!tUnR*v+rv8C8qy=t>GL@)>1p;8Iz~P_5Z`OKyPJls zF=Hw5&p8NHbdcQzcy3ps1935e`cb-&lCm&+iX1r_kfG?@e$)G}Gx|Em`q4#rC}?2A zV9N2%GoE66dmo28B^&&XlMJo&z~rh*5jdDxt{oEDaWP?7(K^kGPb&kZod#cu-SId{HK_hQ2zN?T^EAZFUsH+9=)iOIQ{M@E}n zaX3;RG1hX4@uR_F62<(>N*M^4lZGJnAKsH$YMRX$93DO-UEP3v^B)?va~PD^y_hmL zu69*Zb~Z!N>&C|f#wS2>eb3ws_=*JB~ zL^X|~U(7>_3mCG|NUpu@V<}I>JD6HKtAmq-<)~P=V_9f5-dtZbtX#|e5Q?~j?kwvm zh~|3Ke;EPh_DaCzglK)y`p~u7;hiB2MWtY`rO&k9`aUaNJnFtmf`^Lw`+ZoekJA)j zDIq5kFZ+6|E>Q1QlAlvEc}G#Z)&WH{g@YDyccb^wdVk0PhM(C{K+rS!1gFWcl(t>4 z{SfHVRq(u}RX4LYGR?LqI`F-yzuEK%4>TSq?vxqG+^|5tn~dtFen>ec5MB?;x)9mF z;C5qlU7xniFFNtvLq6|=QG%wLxyT=u`%vz8G$XGkSBGtQSTl8LwYsm10S>}<_C1DE z55qB9bXQ)Kd@3}Po~DggT@S0y%|g|JRkL=-+V01Sq3!%O4{7eKk&bF$kFM2=?Z& zbSLC=e9P#x@l<>}`Jb&)B=LJpYER4f+aqgt-<6p=Lclj|3I|WX%KcwtIU= zdc$)Rnc=KYAvz_sPjPg(&_O<}HqK{hyk5cGT^}a!?#~@w;XQ!6NmyP~3J z_~_(*Sj>nwd;01N3;yJKiiTC5=(eXJC${166i3*P(%05)cuL~glpN($rr4#S(rV&1 z*rj38dg8=C5lz_{Ac=X&=pWc2$$8P}KvNK%m=6*0j|o7qBs*tvUKsDO3U*r94_$Er zD$%!MbtCcn^>6u^hxFy@mg4uD-}19?nSkiUn2DTt-{DYwWma?wMbQ)u!AR_!iFtA8QKlADnD?sUW>oBi zaY3Q4hhq2Z-rg|{DazH&#qT%0y<;AVmct;j8V1M(lVXMkqZFUM!=>s?FOU!Y5lSg4 z%0Q)zkF6taMWsv_C+RMt8~XbHXiUUZz4@Lus`OW)k?%L(7>2X`>wiW5pZym#Q|BAQ zA+}x|i2`D#6<9zZ?LZk|wxD;)z-9 z;aT0`dM)94Ci5}|=08#mC)&q^a?aA#Ki0`eONf_I8AV7dh{LF+cq!B5(f{;3k=4kb zyCn&EUFaAl7VpHUiHJug#7VD9Lr29;Sg6pjPpC6chFIk4!14PHZ@rj@?BwcJ@Wufy_%D8cDp`52Qmb6@^|6!zD zPf7>=KZg4QpcBl;4oS)*N0!L{METHWp(-smDJ}lDc%ft-EBq(ph+rcV!ok7pobh?J z=nCKcbHabfi*HfYy~d^@iq}gv$)Q=Wl)2Q7hbEhJ(=0faQi>@MSq;Tfi`f#ve*C#} z6D66ZAz2XlChBb=6_pxxtwbR$6%gAJk9|u1KX+z9+<)v$>O;4B>-;!+N$OXB!#JW! zy39Wr#|}x!^GC-pwRkILOq3o9FN7bL7CI_nLP_Pzi9@+yDs!n7pY^;lq*<_)xzvd# zOCe_erz9~bGHGGb$xf_g#2Fv^SC~7B&Re|w4TL%tO9% zbsNfJ!RhRfcuJ|@MRrKspF1YRQ7x-4tHUI<*ogl*IBhs_{zI&Hnr#n$!M z{nJACz`q{J96XFcy6-*|T(LPi(vYjJ(<4X2UQOL~c{JOugyxn$l+0{AW;u3D7+aP> z!HnH!?E`vSyy|{d0W;D8TRE$_WR?@RXCxnI!EHJR6mwNaq#{4dA};IweD5xPAZ|b2 zBay@*o%#6&j7bLs33d0V7xt__e+$>L=6suHK6=3aJZII2ZgCw8Mc~0ALg=?k^nB*W zFKZl;P1o?fWAC1Cgz{|seq)U^!jZgbDcAkJ`e^xKs&oGv7K-pRA^$P_%c=c-%=<5J zTz;kSTUenQ5x;l#&N)x2)FKQ0mMK7}gzxp-vE+=c{(Hx=0HO0A9jnftG=J|P6(mgg zy<`2SbDZ|?9lr_ARXlf)V%xJ^IX<5Zx*ynOWRpMqv&R&vC7QS zSg}0ASD;#zuhKrr%1mMvpK1p@)uFqft3)_fSp_>n&M^0YrrK*A31#_p3tpG`YX2(x z%wLweU8H|2oM3ye;z<=(MNw@x!t6H_ai29~vcp^Mk85+c6rg$dz0dE#)BK6>Izci7 z>2c&$Ipkts_=k>R48>B0T}3Fq`f9QBg?mTq3JAOvY<9-m&5^HwKjPw%RkAtf5;c_C zzLMkV6;(FH^mOUmI*@tMb>seYQuT)xIHC^^MaquR~MA$1kuC8CbFGdGKye2m>-?LzT&IS8?lOKFYj8#u9*ePf3r}LN z6nqT{#W?5{S33RSC*a5^>~Hto_~;_44FkRiEO6qvhKa6w(c)l$MY{HFH59S!bqMby zmOI>QsrQo`FW$d*bu9PqZ58N{fKM6xGPAEkNB%lgFa~a&vPY5n@W&i(42rltJ^GI5 zN7|N*P~dM1q)NqUaQ&|9mBz`bJYHNX{qc@b=d;{ zX6&7~N8Fd>C$A>|yC#3+CjXEof2k(_!6tv>rEj=P-&B^qh1ssP+O7rJt|2ddV|?=t zF~&a%62m*O`Qo)F-7CfO+-<{Gg4D9l&xLrp+xYg{2}IZAU()1{OZw&vPBSU{r#kHT z&HOO$pg&8DzoWZ9ya0>8>2Z~5O~AfzOb>To4RY8l851|2FBE@L{0l0dcjthw9z}P}OltUawH0cz zBE(j3rKpOGc(8=Qvrsn&fEcozi6Ez0lYB}qT;L|g_}xl;BbqM3Cyc3hR8~xc16WDz z=})u)7|93N!zMXE;^M%2azPALZIs;iUrTmTZtYH(F6)$ngc8d|;m#j!)ls zo4IesvS4v{+Ld*kVm0Ipt9Xz&5kbx|Qgm3~VbQ6oe7fs)31t8FR9~F-TRvyK#zD*U z8tRbAl0?=5z@U$4k?2LwS^#C9`Ss9V{1Ng?8G1^oLsJfa3F?i{N5h@XU22|a-xz}k z6m?cup&4T~lu=qwND{hrAJan9RWAsO^<`H`?k3#h1OYYxtxQ~oc%V%#nd>J+=y!Vc z@rhFg4MWh(K61EsiDhW8rO@V=R-kD$k`JsGtKJ8D+)D+4L}f|HrdZz?sK=&a3#(gsl~mfv@qS|<5&H_xws+rE6yk~yO#VDUD z?+9gXa<%m0e)Z$6Q}?VIJvG8p_tG^>Wp#8HS+9O-Ctr*-6G}hiw3qO*v{F9dphIQU zp6m23>QGB9uqZj3t3^%6E3Kzol2kT}Y^XXfS$KTL88dcOI#knUT@9J)>ZH56!hi0n z@47w|Mh#oMb?Z14`MBUV`uh`=W+PDo>xuX4OLSWPjS$ToqTBm z{h5lI3?u~!hD}4~6Z#p15Pw5PHd7JE#?_G*tu@CN`!K$;40AvNbN4;|Vm0v26GhzP zOyJg~ty16F+8qJfZBxqAUYwD%UhT;Je2x<6%TaqbU?N}z~gJ7`xU}_?RIrhxk z`ql4NN!0yGuQfUqNwqB7_jqZAkw%WG1vA0*JtRE^u>>cZ5&AEdsYQ<79 zxEF9WGNTdPr*YHM5NdT_oY#&WV<}(0<#UwWcmQTCWok4vceNW#bG88e{5iFS!;H@a z2ZDwV?bCZF{L4bO6m&D0#!=4Krnjg2IEqKovF^DN%CF=*zo7}~6z6u9B#>s#h#vQD zl5bU~#gra`>#qPW1i$k}lOCkB@=x(U2S|sFrWZqhcb?V2xjnn_pA^mzFF+{jqB*|L z8+fg`d@f)A&HGQKg=1+e6#L_wH=S2+-+%&cfun61*y%c(S{eV3(qb?8R|Y+;6Dai7 znyU4RFlOMdE~4rt+fl5udc$nd?`@5I>e)%Y)Klmv;;4el-=B^pXtYung$Ogw3-{lN zZkgneKL!f%FdERZh8r>c)^ggdg&pW#b5nJiacxL;Fb;QXwQ9R74e++)J_kW~rcraE^|8tf*Ci?F zSKC@vw@Fj_+y!=g#VfQ?$w-~`Ik4}oM_bWJ^^L1WYt!!GB zw0nx4oaZCun4K@j$CaIxX|3Mm`?nTKH2zakYfLkZrVBm8tDm|kK@RmE zmf}YtPMmpTyM?Ci5vh%q$)e!MM$Z?MrZ=y8ANOUf9p}C9@Djb(Bn!3u0Pbs2=ks$G zO@~@m%jYcHwVFyY2#3K2l`CW0!fFnuOXcfU2f7j&QmLJ*6?=2L<(=LhqjwZNnzyI5 zt5z-h=YzVcD^O2Y-|C*dUYHcv9&aD7tAFr1(Y;8locCPpPMmt)8m~?8DoD+oE(|1f zAxwEXZ%6lVc;Ge;&JBpoD6U|*+pe4;bv0;L`PDRc0?{-qu4%~i2F zlKdh=XbAHWPfi$1t}b5v_sVHMA1yf&(hFCc6R`{>bNC^lXa)E6TgVk>hG4X9_ z!&P7`IT}HN?Y2a&f{#LfBweW7TRAM&7lk*&woQN1cB?et;;mJgSa7XXnPCI)Ln0Ck zSofDC1yxDC4`0N3!T4us;%s`p<>ESwyj#79VUwXAdIzrgZ|cj5VgqX6-I?SM&};0( z#Yi_nnAjC!VZjhv4QT(BlmI7(4QRK5l6qY^_-MC5wMyQ!M1YY)>@Zk)h^502fHHea z-Y{6Xh#~D4rGd+Ki_{6hRUZzO2Ei?0I}>j6bmmLefo2fd7L1FEf*6d;*cJmB)JS|? zGwes!PU2zJ)xZGo^FT{N@E}qAmCUngll=+82>>ZnpzL1qRoZwEd_7_-j4)91^w>?X zhN~B`~IpEjl*|y1ohi?j09}La}R39{6dQ4Ur!++p3#es*9$%+gN(sWfCTzR@V z<4?D2Ik8yV^F#ig>?9W7b^>=czW?;kfJd$j{nbv=U+vKS)s9xbr-#_XF^TPq=$~G4 z*-pD6v9=SBi;-ycf{LP*V}Vw@p|v2!>m(kRVf{PN|C1U%6#EWli(Te54dQJU(a@^{ z8e}`1d_h+rdT0xrT<+>|)XwUA3P9ABu%DHOcsd4kDDm2R3fs@!p{;OoTU>r|jyUrFZ5D%*?TgD(4Q1wk) z`NxxMQhVLHchd=%1EZqP~^h2WJ0f|<3g)J828_55S{Q4765PK$?xNlRl$9V zdxxyr#4jHI#U`{I^u}SNX2JPLnb7Ok0VxA8%+gqJ_BaBY>itIw66+Hx`o#FKRuG3| zLMHv8;?9(Zpg9?eE6E2BgJ6NeB$z>OXcFwf{92$e3ZAMsIf^DCBubs9R`w8ar#SGZCOA6aF%H5x!fuOv3xYLL&2V*Q2qdfva zW;cnI0QJOHx_^x1&kO&ewpaQ2;E@<=4g^#2Eb2cn#$m|+PzXc9Bk(k%`U=d0`{0D} z6WoV}wiu^v`7JJ?>=^I_maGN-nZQ%pd{EQ$W=#m-iTn?}cXCWX<{}Y3y~_dD`>zxy zORl$gjVB&Fwf~EP+L!(_$xfVq24VRW{2G8+Q`}!KmtOYt5Ra}Sxy^#Hl0bF>O$08B zZ7p~`U}RlL&wC1pTWjJZ)e-|hEFdi(>j0`iOhR`6Uclm7$M#C zu_VS@E%1~Tkh{`@M_+!uJsmta88>#|-n&l2f|>b7OblGehXrQs-1K79AuuH#7F`6f z)D?C-Pb?Uo>pKjwHc&p7UpN>wXeEG>g4Jaw_dX$iZJ_AJWeO*QpqfT((NjQd z>6io{$47n4lasGO!kt8X1p0@S7WIc}Y(7Xf=y|(|?WYOZ-?IKwuS!B31df5?zh;91 zzkT^XV!vtI8Cv{30vs(ky_O;+v;7s3?^S%RZJW5DTJtS3vioLr6572<2w92Z083+B zUuu5jh7vM?b5;`2G5R7t3b+$L|A2E9Pdrh_?9o z!7|yN?7VcY2%od5jV5^FU9Z!P5&fc;^08o`CupiYtxixc-%gqI(7d1dTqcB1e}OLw z$r19oP6VHy?%574AbPIU-DR^7Amf3NVRiPMb|NH;UkgPOVoknv8U#3mx>zoAYut)=Ba8_ z7!^^P=%w}OGAa1E9g2OL=!f7Z!Y1jDXG(;KnChz#JszGEFjvD>24`wx`K2Qr0qh5D(_(ZnpCvL1vvjp|j#Pp<9K4&(7cWV#i6JLH2F+xPGrk;RF_6e% zomD={GcM+q8ol|{<+1+G+k)3^eH?hztY+=)d2id~{`hd`)b{&;yLBaP40IEgWYI-WOP6 zI_0icP6e*-pO$4suI-iVuAPUio1q=4pGS0Avqbk4v|V|5CP{QXHlS!u9qmQ~zIZHJ zyo6BCo`bU8Fy=r96WT#CRJ`Sd*W*ApAU*Z({0O_jwvmk2q2s{bs&gI-r?#=}m#d%Q zpx|W}*7x0e=j)FJ^XtQ~4LwwDzMaYrPfbbY^~4=T9ZS`t{$mRo51h({ElEd$bKE3C zkM5y|jKlyF?l{icr>tmA^oEV&tnJK_6A_uk7W~x;<<;`Sm$ftf#fK8-{tV}Ho+_uR z7n60isKa~)rAKl+3!a7c9-oh|tsd(^%$zTV+P=F+4QsCpK#%IUHhOtiPWRd9Q<07< zW^8z+#f0b=x7Q+(dkJ9hqMSt!Lo^GI%Zg^7H$_xk63=2C!kxuZW?W~DC6!@XVy4hc zJv?cKzZe;yZ&r#nX(*LF16B&ZJRe1gfi-0`XG~F;0s0Hpk|;-kHL?5GSShCOj{1k1 zl4m+ZBD3FS1YdNBvcBqe9g*)|h~bS2@`|3O&fy1Kk~2vyg{5>18Pzq~kB_fYbz;`) zeG9$B9sj6^&{2zmpwCEuFnS||78ab5g6m9y$Mf0NNN+GO@3pN?7AH(3BL&k*=_Qvc zY#=iQ*W*qoXbZ`NG$`9pb5dD}>s>`JV!eIX(#7!b6cQ*m$lt|~?6a?u-n-=#369aQ z;Oqp40*u>sv?m!@?2!R6v%YUj;x|d2zV~(8XSH#kzpb5ajP*Vnl0A+zGF>#MofvGk z<)aVSBpnb}sP$^IGXC)y_g z-Yq80%Qfybac8@+?cJdRWpS8Q7;^)m(B*Ns)k%UHWS?8$neCYUyHKLl$>^=<+KTn9 z5^rd*eV^JgT;6dGeKj>NLXzf+!6Q;Ja}g)|+%2v5F75GqZzy#2H@J3KTxX8Yu7?I> zDQ4d`7&n^ZMk6xZ4~tfkNP4_{PAIv8@|1!RP=5Depnb) zqSg3H`$eh!cX!09DEZyO6oX4MtUwDsdgGJjj+aWyFBmEtIOpe6d@Ao_>qr}t&2`VG z1*d&F)?cXuHXS;3PQ0!;JK1WAMpq7rvgk`jqh<^M%LVA_iZ z!^PW+N5lU=_JS=+i;*zwxji8U_0PzD91;_))fR|NXd5yOB4$Jj&X4s3`VRqtSKIQN zmYS4Yz2x5-Sw?t&lFVgHIr(RF73%fQp_jtIemR%GT$%5`FmHBo%imHsHG{n^qhYFS zoNQkfkTCp}*9Mc6GpBR?TX547>Lr$vEBIJ#U3eeP!U2ut=(x?Mn>%8DI+}J4p1Z)e zqRXB12M-LqtWAjD7gXH5O~JR)?KXaNYYFsMiTDd?b9>!nb;E}^ODP@SGg{0BAG^2r z{AFTblTjf=VA<4qr;wvc{YJ4A&@{)hORMePEB3`P7E{Kg^D83ld@6;(GnQ2xW%H-p z?lTjy8^-LmDQ*5?TWa(5b^)QyM?5-!lHew5?e^@UX1fvruvE0_Ln+$&fv6uOY$*Z14_P?Oz9B%DgLS+wJj~A? z_)SS`G+v8XX;`mxZhh62%8rqe)G`S7Y;_J_OJ{U=R{UF1=IF3fn3_rPC&8gZr@GGT zmxb4vm+gKVt6Jf{SL8}fA_V>l&Nu#XfF>atK3bLp&e>B&&8GJ{UrW;fSdo1(YMJD4 zVXd}I;uX>g?Wm6j1+FN9Ya8hr&P@pZHPpq%q@a_`*sMTHGMx<$;_0vfm3qg??iA^Kvc zlDY8V@m_|Kf^ck!xMOq@WA&X}p|S6~Xmc8w8kOWNW5XLQPh|O^ui{Ab!RACMdwbk= zx&(f zHykR6Lbr&ulEt#Wqdu)o_`df;j=f1XC<#)s5+;G)2w{bybmu4iw9WnKy^VB`3_9PT z&D)&~(6+X1uY*w@NKIz%fk@r)Dv_xk($RL^_|o(EZPWe!yf_?ifzZ9@>WRTs_4+8v z&6S-^QF!w++4U?_c4*^l^>*4hPh>XH3em;a{N4ISX2*{%POcert+}}S3(4K0UH|6; z8lUH@izaQJXY|$~nJNqmY>qjV;N#uu=#qq_phFI$)*Ri|&=jkT)cL+;%=zwW+MwI7 z<leTiX;uHmj zGA9rW{+QVWaAO&!Z#S z3`1lb4Ey?5cDuY@A67H&7oNx%3aNkt>Q|~iB8W<(S5JAe+oq=VCC<8yvL_Y0t0{x# zzLrPn!hJH&)T7H=Y_+{|<+SHWRL2@*ZJ;mr*Ik1&vegd{eNr*?{Dh;kh}a_x?!d<& zDSC?_U3-g4>aUU?VyFy4KEx%)Axyf64Y**LYXjc4P!7)VRl?iB#hCkPNEFra$x!hr zQ?(K}+lVSi#{+f+m&%ZHsM9_eqJ_#{oLF-^H{><3px!)34g1xGQIoqN8r*vrH}?-S zzucW*sZV_P$pQ3shO;&dP*iifSwV&#F?u0pml?vraWhloZb;2k)0C;Om93LAo=aUq z*>FxqH&v}DFs`U5nxB$CJ}SArnSFFK^Y>4+?68UnSeC8A5Oy=u=WYniTvm{=EG%MK zkXJt_`Iu9pJUL5cc9d|_svXaKOPT7XDAkc#sHG_{WB(FfSeRJ|jhITyXY%+a=kQ&x zZXtk>z6>U`rA$CC3NDmABc|E&s=cl2rRGbP4jrZB*A+;1A)R!WvM~m?8CfLk$gI>a z^!cB+$oHdCM!*qul^ScC{)(s@r_{89d+$YQyz#n_w6Jx~_3h*{>&nx?xWJ9v@5gbt zm*dwv>#dFQtk;SwYo{a6$7hqTw6D8#y8QRL_nqwn_ydbGew3kpl-3HexAoa(x!FfJ zXbPM(#fjv_cfwF}GO(p&Fr{4p{>bKRSXSw;<&JKu6}^TH>j$;V8?db=8&Ey1MM-l~ z8cO$(v}Mj}vUC91^GKMZEc96!)LHL5zxOKP2=o>XZmM~`hLNDB`ir0 z`Qrrn<5($8+|(wS0FyV7FsT{nOcJO}?sqo} zXr!0c3QGKxWiixc7fOa`1+`&AwPDtZN@A2{@ziBEN`_)3$)bCDTNSbNgogS=DN&(K z!vlh7_7eibRe}uN$kqwEA1V5fhj1m@6=O-TE0eeIGs|9yw}PRFxwlk4?#TDN~TewZk%-OP8-my;cT&PDQsXXp zxQk-uIIS@*Zh;@?Hsm>3Sf~|VzAiN$TFLg3MR7`sj~VXX9ii&IOSmx?DbaS($-4CB zp%>mwTi)7d&a2qeOYl(j%BenTI)HjAu`$=Q0B0r^)wngxUVLh37x`%_pWp18nsQBc znaZpp_4hDUJ$Y;#)LaNV#h5Z*4ZIy}f`xbN)8PQTc~Ug_UKTd)vrtc)HGaqBUkaiV zWdd$DL6<9BUoljd2b?(pk^Ui(Q&~T$jT+P{xtyODcoT0Ln}^@m(RuxFVCnBMdA&K! z>ejqL{5|aLaizIkWb}RMQ}n6U<5#>vMgGe7c8)RTJ{l-HY9ePpp-=cKA??A0Ih0n=vAZQ4PnGMLkg{jr@od;dL5mKun zK29*{s4Z76yrrzw3Y;$+c2iWVB0Zin>1ZuiF1p38)$*S=_wyI1-+@qbcw6j@QtXbR zi5h|TCZWBTWx{|isfgNj-@V@s2-~#C)xP4qzb0}X^q9u{;FmQl?jRnF<8r2rU$U?r zPWk)N`&oveiamY#r`^VjyNXfrO!+5gq0CoI_3AAT%U8;NDO##iHQbx>`Uks>4W?Iw z>;A^E1Hk@lk?^K}LtcOCtpaZG{ z{0u9{@`X{*mQ{zMp&4k$5*s_-?SHXsK`|jST{Dn;Fuf0IBt6BXkeX$NnPr8UWe=l; z=|B6DwYtJK?ql(oaKa=}Q#mZR6;~Q}F9lD;0&UYIvu=kWSd=1_c5NmRv=!8yP0CdmIrBwLDh`4(gbEk*}K+Cbv^Pdt5zx zUEKlj_0HPB&wv7j_^I^W&>o0*1lhmhdeV44S3imJs^@MET_?dKX5lxm90xzEhXJJP ztNflgU8m(d4CUahhB=w))i|nBtE(#3P$YXxHO&BGOnxxv|uw)IK-d z&T_b!t!*6IH>3X~RD)tb6q`_GR^ zAcP&1jIlGTudhtbp!l5$JYXRe=ApDf3fZuPAkQ38xZ?X{6?MmmfE9Yb2Vy6HulwKpSIsC01yx3_ z@~xW#hDEkI)UWs)z4#iv_#Pd!)}C=v!q|rusGpTeR8nR7rjHa(>bwVx^kCA*d#A%B zCCjzf(*Zj=rd#jDj`|r;+;L3pYDjm-6s2jXPO)Yk(2iTf;11<(W=JE<#n5JC(*6xD zl|^^=mfz})-M1JV-&M>VQUX?}7SIyueyD!KPAFUL<0phlouh+w@`>0|aQIKTHLWas6qEfR^bUFaobT?xyD$E2G4 z!LzaW1;_nr%*U0(F;_$$NQ@1xOzX?heR2F5a7O*` zMtnJuYu(7r%)WvFqh4vtDIU?mndBS^wf=o5`Se|W3xW6zv1I$9gtqWiCY)-q2YyiI z!$)SfEwUrwi6@V(9kIeLWHK4EqbU^L5)qkak6i7;A?xAD>4LE#=igD+BRN~T9@zGK zpiSblmKUx)&l5N9XZQ{SWd7}u?W6tExV9TF&wEstsYA5&wvC9MG-??w8~lWNEw`I8 z>ix)9bV2-w-^chjR(^gYC9zoe2csQ#6iOq-ty6LNR11H(6Qj4`WKx-WLz`iV>roK1Y; zdD{=iXN75BbSSnJ4?p=k*<#w`=4Rsfb%;L04>^Okz@6E)v_5kg7q=AlZ~Mrw*0~=P z&j%$ywJvUvJ8!srs;Crwof3A`ttbw(ZvGL=e_!Fr{)U@Bacd&lx(JR+U?%uN|#0k zE{RB_Ec>@9+0s~XBP}i1c@u6^A^C;+`Rv>LK$*DN+8sLmLk*)emfb;9sDgy=bzv%p z#APvYFjo)-YPSt$%-NP=bJ+cA(~VK-cn7oQ<%(MYvvyX~SNvM_4Qc5fQAvgC>9Z1C z>0(N>HQC0rgf*FDoZ_G7bBj%@1hvh!AY~nDLZLc@-9NbHl9dU|+(;5Nnn`l-%h;<* zWbR=E0ERuTC?qprbBnyTYKCdozJ&VMZ++#5>H<1Q@&Glxxb}`W2k@g^5o@}Sr=IPA z`2iE@83hbK(lgMqVu$)V&y9^cEL=sPjpkY)>#nf5Wpf&)St(X(Bxl5yl!QS>K61?| z&cOI?{x7*Uz9uhUtLBII zu4uwOE3=w%+?jUtzQ5(0p3$~DUcxt>cP=-zhM0H$qa-kXQ-|;4P!l*PLA#j^b2B61 zW?nkfsOBgnGa_R1zhf7P|FE$0BQ8(-i=9Rhx8zpbLWI9qx>HHfe8JpKK0#)U zflt&#s{y3L4L=1JpZeuP;?NsU#F|S-@Ah3nLB;{~QpvA`%VE(?3c&{pAbV(Et^Yk; zgaKMinV$yS&Jn@Fn- zPQW`{yxbCHxFybM=MRA=pSJfSc2I?6D$0t`Cp;*HLTS>)0HbAEI4%hl$sUb*nKI0Y zRIiucHqY9-)_K1-Ju1F$*635%q5R@}+=+|Ta5JxdC67}R89sv&@xR~~9De+xi|o)! z$y8rG60p8$Asme4v-)I*5|ie)`e|ox(?i849g$q+O_eO_6taX#s3B^3whkJUIk}2R z_j?!?0OIW$gyTBI?RsvwUyb*dxUcdl0jkys0evFQr1+@ZA&a$?`D!AO292s`#ug>gSL^SI14`dmh*bV^Dbs_&@nI>mW5pA9vu-dW@(Z)lO;Yfu%%;D5 zb!#M*oG{F>xWy_! zaW};!tioM_c9DM-AVxDXKB+lj^JSDlkbB4O^9u@dLx;Lu5@u-3Qt`NVib9|>wa-U(FOdjj&O zbyz1jKH0l5j1z1h9TX_Q1}HWrjqEv1D>>#9E5l)E^u$hF=8d8lg16BgzaT01;R2ep z7P%*}f)<0<;~VmdUdG_H<|~YS#(Y;-5ub8Xy>EOX=EVifL=ARV zZdT>&?@04Ae;ZL)QroJ;XD+7$B&eScKgI)dOQd;2AvB9U^mB?0%k$^t{hTna>b}?K z#U$lNgvT6DxPL~*kPn4}b$cWW`hF1Wc7-x`JwI*=ibJThe&o8#NK-8j04o0`zw> z1{|na$wNiomYT$aYdtvPcV}`=9vnj4*GS4lgTlJ6r(s!y9Sq*5d@vkh0`}KfK8P;E zRHU_t?dJJ2G8pxb5A7SpgrxH<)Yl)WsYNym(Mp?rtrS|Iq}r&rl5l$z`_%8aeOyy8 z9*d6Dk+eGPdw;EFExit?=F7L_!w(kevY?+FTvzrLH+VhK;OPh;n zR%f>nJTT=Zs_~mMgyv?diOEDdv4lcWnDEBA@XFuOVDwtMeI>rbsW)5EDHPW0@~ux? zwVo_ZJCRD(O3Z-Ho1Z)GbgBJ*$y^pu)zTDJ_4{oUG!mA!J?Q7c>drsoj}8VdbQkOW zcEIpp<~c8u$Z`V3d^LsIDJ4*bY~dJW=BxZ@M-yZ24_*QU3y>{;XMe%1<5sJ z%Ww6!f#;tUft?kDot1!{m4cm>ft>}w&dS5iD#9))&)gRnOn9`DWB`?*OUSFB1W!^1 zd&zmG;$$MOtP?OVgWW$18tBCbBj*8U$Lm4?o*f$88xP0O+b>J%Sg&nQz?*a7?zPkQ zANP$8weiq#BoSquTe%{HWk!3i<-#e}TY$mTd{tOx^L!)C>GI%IN4YveQx<`-_a#g3 zs;Z#uEMq|S9mb9u!9NUIQH|ebd_;%cqZ52q@OFRK$Z|WCvd5Ja0M$W$j;I#d1V<%M zN2P%$W!pt%I}2V08^1m68Nc7fypJ=T5IeF-z3bi2uQipar;FU@KpNZOfJRC<#udca zR;ug31aZD2t~=lxwnZhrmf?O&rlRG)qm zMrzXWM{@T=9!~Fz|M;iyvr`~pb>h1Qv3=ZJtrf!+V_|-#RJ)cqrBQ5{NRsQNJ`rdQ z@GmEke#1N!t_!_qGDL7&g%M5H93~%TjXW3^!!3l5LgIJt-LWK|?L0v_WR){Sz~t@A zT;$EE7>Y#aY&IYwd~7%Q5gycT(i;YI>A{{Q&_iA+w)1)(7osurFJVLsspx_2yAcg?g>pi z|F{)ml)s4lrYIrFQemE%PW5Nj{3F!)x`|*CWf2`4A#NKX9Gf6+n;;yUA#R%?99tl6 zTLhe1N7aREqYY-f~n(e`iiq`s74qvfX^9LB@k3)5`ln;&PxhvwUQiu5U)Da1`f()5}v% z{*wOo?IQADwqQ&1N0mi|vR9-0#PrRvhI(|hzo~{cv@lC>nlTnW*(YVRqAVbZVT?hH zL$D~wKYRFb>Dbi27Jv4A8#$)C1cQ*S5Tq8Nj7SukkGE@>CgLqK@FpeJ~ z7uPw}?E2T;6j2@O++p_2K~4I6f8^&0LVJ`Gl`)vVxw>XZCq(Oa1E4tr>;7V}3Y*J4 z`2VWHq~ksh$@J13s1otI5|}jXc+yx@hJmM~`V&ie@!!;}Vd;B6+)wWSBGj@n)L;>( z#{jMWH@H`(@OMPvWHvk$lvlaPbd>VBGaeJJWggMIC<}WNy$v$sbzf>5)%UPS=4zTd z#>Um@JQpq+W!A4&y3U^eM6=C^mC;>UboKbVhFjQ+=OkojcLn{q5f-fE_WPf1?I3Vj zVEmuT7}saIq|7A9{|E^FSs~c}wN)(vv}3;J2A_iTu@0~%_9{ghQT{(mU|k7bcrP>rJ$O7l|p-2vtOSIL|YH(H#hxJMCmJDw4!q9svldhDnO zl>bPz?Zj4>B*g7h9d31kh4(EW4RYJ5h0U>d_`kUu{a63v*&y}}=2m=AwfqbBl312& zp_Y7&G$rY{irGQQkaQv-&XdylhH+W47y%7rC3cXf{HV!&ONV`xi$q1)Yab!KIqd;4 z5C%F1mJF3fX>Q_xUfG-IZhWw>w(MhHtWdurK3Sy9>bIO<*%!IOSz&Ryvjm9(7S9l4 zVJ{9Ti3%(IqBs_iNYHYG-B~7Bc-vyNN{dlsxEZ?e-_&w0wg0SOOpL@N8A1WgYCg~E zn2ZZ3P8R|dGMq1$j%ZVSuzcKgF`A6eQ>e2@u(K%PAa7u2vgDZx-~=#cL1c>b?K4hI z?oZHN&?U{F2~c(@Mgql@snfmEfZNLNnspZM@}>&5d3W(W$I@>d+i5KZdchfC>Tg?0 zr84o-CP>yfCuhnAFuZNepfjJO=11yx+!}t|nf@Oltu?Dojy0P98s%SR1wqr_+%^P9 z_E1L-fhUf1gFAeGbat@!rUdUpZYL;aqFVO4TJKrv=$*=x4+fm;R0tZ{){+#NyDHC; zz7UC)LZM*Mkk(m6YzJ=E$u7{~dI|osMOZ~a#tPZxDo%lDeclPow(;9*iidd2rH4L|FC>=3XS6)dlo^wPc3o_R zzu1@_P@0ipK6r+%TA?+7X27Is_%Y*F%c7Fvq`3R1Jq5f^qK^=ud z9YsJLMM51#K^;Xy9mPN$eHS`$3-QeTNSAt*i$#}uoeKq8o{VdwdrN|674XN-TRo4b zg3P!t)m|cwD!eJZeImE^VjAGnT+co9J=?Q!Scup2v-6#{6x#+m>5U(dPycg@!FYy~ z)&>|Uu-^222Cq=s!CSsckjWp)+3RxH?llSgWA{(BB$q@@ONy9&j{YTqzY6^y|0KbY z3Dl7()R7s~kvY_n1=NwH5Xf}#rjiY&l8vU4O`_6s{vRR+2u|rK%Yqw-zJu`=Z%sT zE(oV%fzyQv^iS^2Z`+)6?#^*boGx%n?m!=>OWcRGfv)kct&{IkhP^ux7H+~UoL|zi zzSFp<{yJc^D*-v!aIZ=y7*)p0qagF!MY;zxwa5OWp1$YR9@M^rQ*#_>E|>pp^3`eedVd}G84i|GY3F3Je^i> zQe{sSEcsSz2vH?0#a3%Fh)`~|7J~@YR%aq=?~v)H|Y+85pj-lr{NqksCvBU6(b$-cHJT%VpI(tGuXD4FfpjjYS+PN)!>MB zM1{<@ryBf(z74Vo7C~S&_sKBl+xKdO)t|7;lyz>oFf1RS*yw)0*?S>G{u_>5M+W#C!D{}dC36NZ)REyXTq_6IA6xFa42 zshqq>NkQK1JmBbn+|e=KjYHfMufR8IT2|!WK*^;Xq%=TQ-=i1DPb#GK#97^)G+~b4%mtZP@+EM{{r!iBe~#bX%1!-86^yO zA_hUDB}6Rz*zv%@#;)70XXsm?$Ab#NlS0DlW|hX? z!mrcgi*ZMndyaNzy!9@4e2rj)svePrU)#qQLyo{34i6_ho-TN8jbK=$21H3Np)QOz_ew?fj;I;Ap+g=_ju%g}$M|xdg8Ztnm z@+jOHbxxjt4uuaQB$DiKB~~9PXuL9{ocG5yC~L3_WGT*jcKmo7*x#-T=3> z2`!yZSy`D%+C#()2z}rGZa{#}%KxRh@>fFJ{W&Q8mpdjj7RN2RlYX`QH>ZBHy>sT& z)i?QH0@oe7s#{-DoIY+?|-z1+qD z)8l;#X_r8D7QazvR#f6%*EbtP0M-tmx3iwlIL6kL;_PeV-QKvmWrWksY%1Wg3-p8M zv)a6}V#F%JpbqNO_RMvx!VD=;N*Ts3{J8yMp_M4@ry;*2uzRb#fSIfmCQjLXXZc5W z9HylZBqJAT+wyJNKz*&wjXF4{81cp$otl5#yZpw6_dFSMxnsH37I`V3hoMAgX%X>^ zz;0I7Rdp6E&dt>6Rr9^mlU|6VSVtXhqx}7sf`Zh2uSYY5%nrp>wkD662uI30E!DD* zi?s4FX%qvW{nWsvF> za-a*DUz;m>-ZrbYQRNZ;%rvAGhqoca$L9VL=RY=7Bs?*=gJ>IzGf=yFoPNW^O3HiU zv)g}Jgcq{PwjNGmr;if$v7osgbss2gr@v>?#h~K$FAtR4sAf8>z6MIU@xKj@VeC;~0P%GlHR9LgD zL~41h^yAa)zY2^->j70bW1%UzEUp13uQG80TBJ{xGx;$|L!W_66if+Xgb&OgsVVA# z`IB3506epH`8Bg8XLg!Dh57`AFAJnrXp$W^wbeTVu>8n8Yq>4w3yi-h9 zIUU4^t^XlHr!k1t_CwP;>+YNHYW_)kPDQ01HA0VK?fpTfS{M&$yMwoLQ~$8{#lZyX z{STHis+K7+#h>^Q2v*grnA&jnDAz=re5UnJs9FP8yYxpFNA0KbH!JfW+S~REyqj`p zZGpxLjsa0MHS5g6Xf4-`&c8Mkivc~iBiE;m20YZ9%x5|3KIM0 z!3B6Q$rt(g9cA_SmK-xl6EDd~fxWT6d*3ChTx}$?g$(vi2UWJACiRmh_F2Dv@Z@5a z8W}j!XdMXo$8ieCIh3H$;;xS0&RUqO>23W<2&iAPQt2#w9%)DQJ6Q57vjsY9T7t8& z2Wv&`vSQSk-My#Dgv*70WRs`rhv&5p{a6V{v<;k7Q-zLDZDdG>srJc!_dMp}n4yAU zS$F&Uc00)Jq371+W@iW52jK=RQ=HaFuT3>$4}Q;|VJGgDr|-R894JF0&q`u(6kv5} zGL>~{+dRX@9~_j=Bd40Y-$#$S{xrjHqhBpTv(LQv-g%SB-TyZx(^*9M=N*tn+3H9? zJXD2XR2Bf&Emcvd-ft*q9sqIIrVmNjZ!%nvUCw*bvDx|9`jUBqoxN*Qxlp9+8aNvsn;^ZKp6QJ17a16}8NcpD#SWOLocD!pFgJUwPU~lIp5dHS$$fR9ZL# z*U1B3Nv^-rsKp2C9x8EMuVcDUCAn2~mDMX;;s4gGU%MKD^Kdp_g96pxG%=*UNvUn#*PvN9dn}b$k#UeK; zxEMQviPi+m!*kiyxoNur<5iN>mm_hpFxf|n9;#(&3Pba8m8hSFPx=EYb+!%?lmxko za5oGL=)CjrM+`*VQ!V@PQGeA*ZTSdNii^F1LV~yQ>kegYr1o_kLU*>waS8D?cz}9dVQ|s`DQg+FBB0%YgWPK(0xI zG-kBZ6`fxom(_o_nH|*aNyrdD5uj(D>h1jRg{=iDU@)w$03qR0*xGsi?=mwxXr6s? z$u$5YPbybKU9cWkxM+^3VzX?e);G;$8P<9oRKpkx{?a@fKgDmQ%4gR>@RneAu?nb_C!Y(1>;X%h6)yo|KQ3kQ)wxO%$0O&9YTEgGI?-w$PJ>XU1;LKa z@PKM*&%=q&hskPjJ`3U%3kYt?C5YbNj^w$+>j3-Ij{T=Ky1_#`E=IReD!|W`pT0G3 z#gEiKoStv30CCc_{||LB*2)PP8XTIXcc}VU1 z$tUv~X*pekXg0Q%Iu>nN*7BtTBh6V!Uq;)u(IKk@XerYO%-(Pd>t8-y=TOztJqVKKi=#3GkR#R|fv>Z5P$%nABqMf2SBZDH+AlkGiE( z7m}|18^Izdp|D|HN^Ca&O#s90e{(#xLj z%q-2(^LyHUHizHSFU1i!@-LkIc1HNu5R$b+ZYPu*79NIqYwnthGx^Btdz-UiOAooc z)~TOZ?r+tg9#e#pQ|f57AAPHy=1&_MJq;g6HM#4_^-ODr4maMfgE8Iev&vc+y_-4j z*+19#plY^#uDblZsEa<;LLjAtuj}dc3lra6r;8O?oS|JHlO0dg!bZ3^kBrE-7;~xH zb|NF4E`KNc4r`yUeXw`{6OWD4j>qP_{+`wOMAXX z+$z#;i~fKbi*@^Lr4D7O;A@ai;Qb=AKB?I^rGoeT6mc){}htiNAaJt}lF`SU@cembq)ZteTp`uS&rx?T3EE8?}* z8+-GEMP~wYdu&6@pPW^GGQExYPcB4Py8!#0@9_y@YPY6x%zGFgvwHO1X z%7WG_WGwpYsYBZ*!wVnLeKFqi(7Wd;Pj1$0K~)p$hTZqv?puPwJ`;{V%4t5B(+VrO zcb}*=C>+*47}}Qa^Qi=d<1fCkt|u4oQ?__wTUbzZ6;h{UzNg-=1cO$-!1XH`C%X=* zi{k*YLzWZkGM&BV7(VxM{X@yu4Q-;h*v-b}rJ1z&Jig;&wUNS?lH=`uf4|9>qh*tW z;}XoiD|ftdssmyY|7Ty#G!}&|f$mh>JLzLR@k=HI44+xVdtRn*U+mLGd+CwBHzimt)s6PiDS8^qv8Tj-)@GJ+sbE z$-6!7VMFd#h|~97yi|P>VlWZ@gO7D{l)G z!km&*ycc5S-LN4d0V0j|w+RgSD5IwTFtyBr!C#Ah+S|np!)gX{oixU#x93LzG|gYF z?7igYi`NhPz)C+$m!A;lCc(*$AC|jg1=%xgpy8GM;*owfC5IxYrpD=6>=hyXrEyt! zAyv-I{aVlc;VOU!qkw$F>b4;S(8m^qMCa8qjnej-4cVuSHM-?-41u#-dLRM!30Uc% zXdW(}1AadGS2~Lt9FfXfC4FD_XYI|%Q>B-eJCgxfN!fDmfY)O*Wq#)6#W7j-#D=pf zThrT^?2#Xz<6~I>w1h^x23HL!?)|isY{_NG8dv~ZoOME$cOpP3-I-p*$#QU*v~41O zG`mT90+xv;d$=UqIb^Gy6d2d2pJ~Zb+zfW5ns}qg{5b>TU_n1qVcRlZ%#J)SBPcH9sO@hCp_nS zy2=JqU;Z&?OZtSwIh93^(R$DH?hn4Re=dCG7k!M59<={_+DUXf zl!7uYv1D41p-GlnS0EUmA4IEX5TlWr8)mjp4L;y%D4}IFXR^=@FKLsu-Lha2lZRC1 zKhyx=M)Abck>r|<9O?EV)EI2oiLPT%*2t2lN@kH-V66c;7treXoSr*SOj0z0%{`A^wKsGnc zVssT9wXlNFHROz>EcEoZI|p5VfoO*pTO2OI<4K(`&+4?)G@tPhFO<%{)m>SsB6wTB z%|5BRp6UH|nb3Ft^*A2SDy`(UJZsHk;<;S3R9+RX(ojPmT6fJZ}tBIKCcDvRR;9mSz(o0ClerNB1GX`hDyu;9hOhC9tq znY9LcN-@$vkcl6{ilSMp7p0wvz$@uej$jj}o2ppk9`6Cd@z_ma5E5f3*9kl%UE-8q zWJ9cH=;GyvmlYyaSZA?l>K{vNm>cA|O+e%pn$niC7Q)7lZ|mED*yIlDKOatnp`p&c zR$AdtE}d9~d;7ikL`diI6KsAHf>v|CSG$9!>;1f{bUU zuDFkye%_YQV0#2YKQdBr(3<`2n+mtX1$Ht%@1&m;h8>_I$BJU&^18r8+9UnW!j?wb zguAGamT}ur4kaZ@>~{iJZe3Vk<=1Ix!J2K)UUJXlm@#GM2;PASz)uL42uE|LcpZ=x zbY&A|Q2>Xs)?g*ClUq#q0d)chkJQwTQBk|dMM^qw_nXNCm)c_TaeR2YVfu)iA@iMk z1xSCqi@}%d3E61zJwSx`o?h2vF%w^7#IYn#K0pWN;d}b)J?z+6;<2Xc@N|3^WQw{v z!1?=>f}>%H3=e)8m-gUB2cx4UjZk|Io{K-}qAEb9?lfP0Nj+6Ue@77hAe{o~mo;v_ zDjto{A-OD_7WoOXJph$cv^O2O$oN@@jp=AZzl_NYB0r<2r~?|~n}&yIajszs2$_p$ z`hH+QVTTYU9*2{^)SzsvO}_J*j9r!U8eFOKFByTRU#HfAAhOO$c(oFY0Bjhs3$K9d z_wvV7I_brya?L}0`^j=Ua=@~0OlM|V1KucWp*RIgOs9|}Qp@>Lo6b&3U5k~hezQ$$B_BVNBxfg`CBQ?0Kq1h#Rg z)H8!R3Lml>%+-t`&F4a9cv^i?5pdTStV<@onRRJ7m#8&`C}>yK8?P;B;9(s7Fs86; zS^%<=#FGPb4wRl!In?AJAzMjsmeOzi7^ zesoV|@I%r+8TIyB+vd#BX;M!RpGG}m8rAK$_{pD!a!YmoY6OTCGkVXW+xiY&_&IaxHeit)kf>VP*}4=8@Y#VL&2sgdAj6H z-UB1L!J!y%_n{-cBUg~VLi#Kc^n!ha*ZTLK^)hfLlLG-I42js{dSnwhGX)F@0VQ|< z3w(?oY~=y0=GymQrmr~pSu<-w@CN>(rv76G07(dDoEB5G!L@F69`y@+6joxDnIQFhq(@YkO{)>E9Ip`KnC+_Z6i-^F)dg63Spn@;#gsu-i`1Tw|N6Fsu0hMR z15ii?Zmkn&bHNN`VWQK?qp<)vfMG0#*f9MSLNgDk>9fb`@%6_?gQV1QB&G98w-(#r)J0ulVQ{tA8 z_#7Ad*RFdCp!^(<;O;CNjr8m+n~a3)v>1vM>$Dh)B=7t;00H|OkY&SX2-ar|)@LdL znPEq~dMmVgYp{9?s%A^PW-GL2Yp}-Rx`3VGDAf} z`oHTp6NrDhE*#^!Q0=Nu?P^!;3QYZqMEy!w{mNLq$z3rM<9`l~^j?~YC_P8BrwEo^ z^|8MrQ-l)B<)0JBPnSj?d)aCua(a_;dWM5C#Z7SM_oyi{veG3p3B{JfN?HwUbjwoG zF(qW;mQ>Zi(p1!(MsoqYr)ef)M^D~R(%$b9cy$-@q<7g#rtB1zIl^RT72~MP^+$G` z$&PxkwH$cn8ntN$WIL+ayI9-w@wf|ssy(V!(>8AN&N2Ln@_WbIHdLD& zsm#gKGO1UAxkdTO4p$Ag$KKVSrgwvYZ#DsozRv2E`ft_l=f%TOXK@2Yb3!ckmfxQCrVrRCkME{i>j=_!GFngFt)|$g6?( zp>Qhzz8xGa;MMh&9dQHO=Ii01mAm1+Hx8#Ej>zK08*dCfJ95~|rvSr4*K`}&5}NtL z?B=&~4DmRh*U{HE$Hp5y{oLpFg3#Qm%>qPRT;J(hU-k-@2k|k^&t62A6rZIl{|=w4 z4V=DG*}ByW9;z!nehrsylp=wk_+4WSjk=pf-_DQae`v4}`c4PeFOCmaSI=(>ACK(p z+2uF5lh!Y@Ri3P`96H*19#i!!8@+t)7CN+Pl1J7cH%49<%LPbV4be3bIu4>6X)U^{Pr%F}Q}30Bu7sqgdn`aF*(ewF)thG>z4 z9eV>FAonhKGRaWytF?pZz*jhn?CW=lm7DSemNmK8)K9Qw zS5iv$@x_;ghwd7RGs{C|$F5QH{H;`fvu(BbwH;L87YN;i+7=WiDbd8j7L+@sBBwgo zDU>^{BCmEJ!B(%xu?@VBpE$~XBij=QzMRV6H}NX+{Z$Dfdj5AM>iu7p^op#&O7W-u zg=Or{r~cJN>9$e_+hx~4DBmtNwT*Xro%oF)S+vfxoD1I#+nfi1;KHLmv!AQHe|o&{ z)_54ge7*t`Pnb3Gd;ngJ+>g$4a-(FoLX$TZ?-$*szq2~Luk-8>9Cp>-nXRX_tMajx-j+O%eIuuB+ss@W{E_V6 zV}0M1M`G1{85TWXyPmF6Co{KV-&5}FKMDRj`5Gd3Y*;(UmoMi)Izk{D;a?Qb|C*QL zZ}K&l1Zlff#&02y+yjEvt4a3`HtI^-FN&x`6+`5d?Sw_~qDhF!MK-0P{%iRhXOi3j z=S7m*bkGxV0*ATwN$O%$a~r*qlIIb1_ubme2NmdOZYZ<)C5eAD2Ka(qCw0u@7i&cC zq#8IQ%w!z%`H(gKyDwK=pW$A zlV0zacDPzVSho%dK=pPV)8S5W8?vTBwvVJ2JpaP67)O%i z2dyFaVl8AMNyLjAoK!d1TfhvJ5Eilr9UTXKHz(*hWVMxd9p>AS_KOZsDTEa%jS0DL zq4a}Av7q5k`XBirNb4A-BZjl{x`_6)O_4}W_<;N6ZRRg8t_w%K2^)R2gSp=(ccGK8 zd&Q}*vgGV$l4iI_w9eq7b+Nrg-@KV$QJ(Gue(A@$U^z(a(qapZhbQc!)xyt7(0K~O zvF(5BBxLr(uE>D}#Nl!(fxY>Cw*1k1!(JRp?g9Dl|2H2I85Sn+zgC0%@_(ZAX8xPf zTSeD?mJ#)xCdET{@z0sCQ>KK4g}ooR1h1T(*Xr8%b@a|E{d(=7Tm!ugG)Qcigk;vM zG{KP{lmx(mS+q8X+Udo%^q)?H1h+On}1`A;hEgGtZH^5R9C(mN!# zGa0956)^@L^{gKY)JlDrlTnNl47$fyVYTcnF-etS;;2l7M}0<*prq~cw=H2XP+NNY z4$)3KO}ZphGDT}J{_pgvuJsyOck)!8S>zK(mDqi%^rt8sMXUL9@U;kgoFUrnP>$k9 zU<5irRq^@f;l*CxkyaNpz$f`A+9$~n`=oC0rQ~RxmjBGp`jFpIbRY?DXA-cp$k|d7 zl6crI_^-tnQd!N~O;6(5Xyoc=SKNlA8b_5+FI&R$=Iu+Fo14r2torg3?R2!V)h8?e z=hU%H+n}Gd^AMD7e)CrGQl1kTmla96Y$qYk0}9)hnqe`1vq93*nNXX2da-Gxo+FSs za6_N9ief0Ho!V@w%i=s2N;kSCz4r2^T9doIZH?d4%+@D4A{AicwB-4PN-Vn?kF1f& z1MkYRR^e1@p4mx1_~VgiKxn+rXFR%N=}~hR+>oxU1>Q)m4d99ertrIo)EBpOFrO&j z$ucffuXOhuP|&FCqQ1t3$QpSMn0rztVKZCuDTEE`ynfe(zrJ>Q8CqgQ!Klz6_!;V4nR`}XBW0e7jI8?m%_tDAT3u{7dE-d z&k{|R$7wEVVl{qDS(sc$6tnUuTa)LT=Q~Tm>ztU9Xj@ZeRAaJ~TRhdQ+7u;8AMRuw zh{3lp%Be78Wl7oU*$W1yjOB|v2u(9azUQffDW1nbiCFdQ2GtC6IJEgU(QKBij7ufduQXKz z9%G|Y%|l!$)CVx{%eq9D{NtXpFLemKD%w47)hMlgTOX^v9owk>h292*DwU436gv2{ z-JF~JA{{w!o$LHr@uwPi56S{+byAGiLD=oS?FF_2)H|2)RJ;j@j7JP$IA0ZM%ZzRr z0)I6Ret2V;9RmBT{+}+M%)tR*c+RVbaO6YFXS2WIhYNI;^ z;2@yHrt+O+eaftg4oUUOTlf%2o~b0Y%w9SbTUS1#MoR%UkdM@qT^W|tEP5(UTx(@p zb;pd@wY1>sRFtaJde36B+QUPGz3^DkwAkuY&WO8v34I<9a;wr2nW!n`5I)a;Ms1joTP>Sl;t$fdj}+$J6u~(w)^( zzUH%L)o--%At)sdRwFBv*_>&2EkcV zlntdEv>1sXhN1GIv^c)^AB_wT3fmf;K;X!j-V zWy}m~#tAgoem!jlPm0hV(*2&>30PNi*n0rk%XB(Z4Ivub>egEFb}bcFLcE{B`(3>M z3wGt)gPHs-wvhzkZHzrjc1hMs(Bm`_+0eyJeE$DrSH}2HcIBIMwr2aVR>YY;im4B7 zfu0+DUO`QnN&Xa%+l;^1l`UuBf&&-PmxwrABcA*$nzqpcEn`imDNvuj&iEk|4Bj1~ z92M)=1YFfuwTD94Vc-9LoIW;-a`q7O`bh*0OWTE!ROBS}?EtUf@`=0P9pj!=D7gNO zx60v7JXlDP$@`#_8VR+dRSL^*@J@aLJr z*u!>E#`F(YN;7?=8RriKU9G};MHacudg0Ustut$G-%$GM(kCdy3q)HY+|Dz-y~_}1 zq6Oj1blPhqH-SQ*vi;Yld*z2XGoJRYAvci@L@!*G#V~QO_j2xjqtjlzdo$G>XKmg% z>5lem=ew<*_}AS3t^%IcSVhyqfBE94{2wa6n?1nV$->kWn2hf41Iu3vcD2qZV3ia7 z9W6y|J+i((6`yKQRgO5kyvbZiQXqvsD1fwuDnVAsb*AGvN$;V6gT_p8PTS6-?D)_Op<4_|AG{<^!5sgmxEQ$ImO;pD=l zW&0~`Ls}31(@uNeqVLGb;C<{(Oi$5qHmiG&Cm-f;#BEw=F>PqL@8cU??7+PJdU)BT zz3TM*q40Xq`SoE5a%4q%zpj@dgm31b9+64_%>{t9PR(ol!SR{O8@jdK?ece}SBRyK zif?u3i>JBs_Unc_H`4t3???dBye!&9B=b6(9Ml56RR6$^z^m3fft6n8HA`pfNaX5+ zQ3pnh?la*zujyg)xf#Z8JqI?=A?gJU#fRiJ$tTvM0SAZSq8n2cPK(h29?kN+X%4@J zhbbXU8fSE2#!r$-s2GtiVV>h6Q9&~|?H|2ZkuT7kQYLA>^iKZb1!Xr@bvvR>lHGeq z`iS(Q#bv?ZA^CtSF%OXkf+vpOC)EwuV3o17zHi2Zqr7BMn^;l4QUz!z^W-vzkh5qs zv)_YUZGs*96BAJQ(bxI+T5l_cG$>!HFg0LvHg9|9J4WgWv#RkwsYfVLH=#GBh2QzF zzu$4SNQvTAw>Myorjz{%av&(3qk|gRF9M{`AyN51!lvPa2qP(kmH|%68U`^~KF5CD zh=u+Fs2D`A?su0XO+r4V33#CtF7hSzEuP1~=B)VhfFc~sa7W>PW)7)Eq$i6Otd|Qi za~8nnTC?8}Ir_4-<8BZ@h4r2bQ0{2kAy%W6Edb<>NWMh#|HSa7FPc0ru}>_0HA%h% zakFzdh98bR)y3cQ3-;C@#pkNiQ=z=m$ z(him3SYvgL=V+|&?iz_Nyg!5x8Ue@Kj|*Zk_S}_rOXTFk;ZzWhf}ZN^cH5zSz)fEW z=xIp9B^RY=gr)byi7edI#L$JTHDS1w|B=2MyMi~qm2NU4F7py52|AUA`)CA!OUKPj zM-|4=U*AZM@=WQ$a|7m9H&R0$**k0t!hQ=l85=CkTA4*Jgj^&oH10pbWQy=ZWHTTT zivzm>6S4aPU+A1Xu!L^8NG?y-GR&wdP%xp_DTz->vpsO3F4!zV zw@uWWX7`_FKaOFK-@fSnuy_ONV8Kg8Em1eq!`D zTp*-)Ta#(;lVK-CG^JHVN${>W_aH_2jEcleOhmylZ1b8C%ZKHX^nZHP%}Ab>b5PVA zB^g`xS-{QhFHU7k?Jk5X&zh0&nV9F*}gO{olW5OG-LEM>mMqarZxSI&nxXD*c8Ax`^-D5Ygo65f)^cV+b zIkJ_$r^Qh*j2|lp*nKdScNQkKz&>$qwfM$~)O_x9ww%WIiu=&cVz|G%U+#br4!KE* zw{Sj(J80QxA&icM%nI+iVv7UbxFkQ&SRZAM1euwbRM5V&#B=DR4y;hL>? zjrH}4c4b9mh~KsO9^2?`#2Hk8D-uv*8x~_Svw!CEJ1aVwYn607TvIR`bGK=UUBW;_ zkG270I&y?Pmoyggl9Hq)eyD}fgVf3Bh~6S2ZYx>PSx=vQRdb&m_Hv_W-X1Ce2kFwJ zem^>Zx2eI2f!xdy_fHntPd6e$O)6bVg&YZVFSA(R1Df*m$f;psz;oXo;+%2KYB~N% zONaSsLE%MsT%ILqfY|07U$WWZ_(bWoJ603Yc}X4}B;u(KZ`2Xl)QWpl09Lg>HOt&v zh^RuK%OQ1H1D}T-9brR|MBX>6;CMmjg%?YGcJv<9Jz2rqIp>W8<(8i#OD+mp#5Rau zqp&cPdkZ^@tUaXMs>sOcicXZz=}pVf`78>E!Ei=&Pz!Ds3XwGK3WaY<4)f%xGP0E=sGstvo@Mr49)qKkUN@=^}z z{ns#BB4o-S33e)x!`j@v9fM&}A$+3;A}My-!!y^zxHZZyP{o%gdqZtH(1x^)K{JQC z*G*puGdMGqMXe*TJ)^S*?{Oq=2mK^tWP>ap(5OHNObDTuG>M}==2RYJ$(POxv$y`; z((|z9+NMNV#HI~gVxYUSA)pEj>cYe7+n7|3t~|oVLlNPS)G)K0ovLz3T2cmSxiHR(u|K zk$VL{mRLAf_iRKj!gEejumd4;Sp$c3r&!T@3H^`Y9%jXGtD-5PnKA7en!>mr^yS-u zK*KsaNZ$C}$e0xMC|LfBwjmS=dU*cht|b%+lJ63U-1qUOlG#St_%;b?jNgnl$>zn3xQj3-Cq%6qZy|-xQkVsQFh-V9`Vi^Lv%b~IF zn(Yn&G^$^l)okl2(l=f%4hDVSZ}^7OddW27+w6*6{j+c>Ep?sy@xOzruR;K{vZK5c z%{jxkyX<9{y55`M)h%&Q`d9rTowMgyl8!OyqCoiynS|R-f94oAT+FawucFvmg2a=F zfMT3rp%yqT+yvdFX4d6rb^qL$t^4GI=J)mDv4g}8L=I>C~&AMt?;!_J%7OwgKwCNS~8f&mc0NBwt+ zG&;2EltU75I$+8Oo=mg#s3jeXLqbEK#K2yopQEJ|p(xEY+cp~iE@TGSVotr8ip-9g zr(f^-gYf;Im*wLN5pnY{%#s|z)ge)Y!PSL$H31eCAk-R?+9H*_hh|yOo9>ud8@~M` zLBDcX0B7GqlRkebcsR@vK6f%H&zp|?@m@(;Q-i&dOwa5$dbRtQ9 zIp<76`>#d|5~+-c6LMF-o4{d=V#3}`pQ*qZ;rRRzpNvh$_EUN~58B_LMV(U9wA6q$=o&Z~4pH)Zzp(<~A4i{0+`i%IqIAr^S zX+}}UV9yd(RC<=}Y}STI1x`h?Z>@KoZxCmo#FkKeA4@o{UJnTaKL1St;m~r7_c{M# z8SXDvpOsf_Yuvqn@L`yh!Rpm{owoCj`R=1Injmm|-lZABv`QZ+ZCAUy}fzH*Y81Rm0tP7X%HFKtVAsw%@Mr)ISN|4}AXN)qlc+BJSYEJq02j zLIgN5c_}p%BxJ|0j_|yAa_lQGXwlWuE)tcxp^uIh`!ew>XN818v3e@lU6JE>yj{+x z)oN}}w7P!R!*d~5;34EvtM??|h&A~np{k8778DeI-6pC9D}B)^(Y%*TdM2Y2)nMCf z(HV;dJj?bUbIXqQVQ7wQ7iX&fYqIYUCWF?kuV20(D*bOQEY`m)tm3RyrCkZ+5dGqS zuxJBf3r+LkE>Gxg6oy1e znrsSQOboe3%h5TPpKM=$TO1nnw6aSeJnV|H!;|n!Xtbw|2kZ?Z<^GAyb&bm24>siV z7>f8>9r*6SxXr=ak@*$sx}kXnE0hJl*buiq$oIX;$-=9XW&C%s`)F#MK#8?)qrk4a zD+_GN+iXnfWoKvSNTvWC!-1O@!Qdt!^x|nYCWj+S{+V)g7kp>Y&1bB1XI(tT;(|bQ z?`=|b6fk+;lPb$e$1S;9t6If38L7m;WD!KNY8*c=&Rwi;61QPS9eusi6a zcOO~3EZVQgD;t@6R`1N}J?=u&^CQQs)NnbvP&8wpvAEsB{h{y((mr(jcUddz*PIl- zZgLCv4Ab;>Q&v@08c`?V`f4oC)f?;+&E%Zs{8H=gOV5x^mFXJPbNGS#4RLC@;vKuP zr;O!JMLn`Z+oAN;=qi1fmxK;y+*RAP->zg!8{eE+CvRyxuBQ&5la@>EEwtc^)xtZ0 zD{Q?fInJmGJG;~JI`d&rJ^E9M<#WX))f61>&mL<0g`>vp@6`5QXdn^ z?HmD|EY}Yk%3$@$uh-vj_Aj}{jG;BP*D6}^#h#s>$fbk$Pz#p*6{3`{`wbg8BT;f1 z2xupe9m7BCp${F~H%CNJZXR32k`EM%kJE$AR5l#!xX9@!ii(A`NsOA$Fq6`8 z6z!)ptQEdPBdJB}*d)#sz zb;TN%h{D6%MhDU&o3=TKgb0%QA-Yfe=(SR_J?*^rQGGaXILqulm^Iy`C-y)` zI;Mvm?A2HqDpapIO^lk^vY)U#Kams#&txb;i9Vk&o4I+zKU9V|^z~_2pFYdYW&UK@ z`eZck*z|b~ejf=5?5@J>neBO%`~12k&}Gj@`rU}wXPP=yaQ`Ra=u)09Wo7lRd&Slg zldX@A&f1NA?|1sk-i}TIWm0%W{!*gVE<|Ka`psWD61OsOZ5suwQHg?DlX}mRW@U1k z6`dK+<;wcVJ>aumZ1k1NzZz#>^G;)ItWG-Z?t4ET!Hj$Ey}eg7yU8})pYLJi#|fx@z%Sc;J$13{ z`v5{W25G4cmC&;Z{;6yI*AWVUslG0h1aHD2fx)1vbjcJ`z}8a*UI z79Y9K%MQillHvVnVEv$+K-xo&#$^uP##wzI!w!aYU)Xr*wG6v8ZUHhewq}x(`t52| z#W7_rU9Y&}lJ2-Ors6u%djXkfu({E6Z>xqGsTGY8%pb z)j32Qffy2|Sc0}QpBOK|ZQTFgT;<1ZYZ>vZ(xtChnX}X4O{txY_1m@OWN5*Ac`ik7 z7)H3NW#8=otyz^I)^OtpimJ9s(QycN%nSX57-*q%ktHGhKn0u2uo3QYj&;=qGaEIz zVMjZ3z$;jW5`ANvTWCa_o&nKwtF!A#AE8y=`Wl># zJL-9WT&$Y)R=+hLlXkR8b9~nXrK0C*p1Wj~smeclUdS8mi=ob(<14~pI=H>}?ECgC z(5u4kp-6B~^qCQqXzDi4n{%TI8N%zUevO2L=5f_~w_I=2^9KElZKHCYc*&G#I*^li zR_^ttRi?9%_K|rHA3Gx99>w-WH}ZA=4>K8VbA+3e}H>xm&ckI7|?MH28?E z+!-WGw^nL9e58h%WIs|Q>!H9Ie+Yi5H>a*Quc&idsqRCRDBCr!*n%ohd;;Nsc#8uK zCb&8k6L>1iy0~tZ?=ONYAfIElu#q1k2AtW6cB;8n^^bAzi z{Ba}cU7P(e*fg)~A3vq8xLLsff>X5_G=9U zq(6Jc{44~%jRmgjVp!c9!6MG1-h@H)YB}>Nd=@ri=~Ejl?E8qJ^#_Tu8HHzwqRLM1k;PU^48TEa4QSgL1+vJBktvC&@yPxv zr=>-Lg&=7$$Z3T5FyvMgkSLT22B1I56P1=0N1VA=r(k|BPKS%h2FuNT#>o**`N`!4 z9XTf-IWuMJowJ}ovkJ~8=N;STh3|0nt5MzbS%5-3>pa7?QSq}Fa?mIr+X<6F>x+{) zuz3Xslfd>AC9H8mfWnu7ONB|vhXc#Vi#hp}#g~#&aPkOo|L`})G(mq*lvXwmv)|on zC9|s`a^JdRC^^FG-90kjd#Jc^5pdS5=}@r^=15lJmcWN6Q#cq z&WHfL8Kn>g)eBU1tAw*Wc)d!-^al>L&=WVc;wW8kF*)pIk_z`;4ebcF3$;IT-i!)& zv@vzoA0Zqe31K`LWmj5rFd5WXP?Q#wfN)f3#(3>ObMgyoRqk=yn3KFKHs{|dG*d8r zB;1B4l(XSU-?F7bU1hv1C`wUet>R_C1j$0(Nc{?wu~73a`MU#ADFywtQ3O?EuM7l# za!m&QUIdBIssW{hMFg=0Q-{UTHZg)t0K-dj5 z;s4euVEfA|h)y2|WU66?*auIK==x0v9GaL+l77!{osOZfoMo%8s}3jC3EFL0-B2)J zp|N;8r@Qw<@$Y^#*0CoZx&@hh-i1Jyce%ZG*H^W@x%F}5)SI|ieb}D&^66}=eb{HJ zB&ZO6%Ux|>PPJXL0r~<$OQ<=#r+qlozqdYjui=}iNBV5KI5n3Mtgb&O=yD8SJN7VS z>TjrYyc`3_&GlV7*EiOGzQ;Vz@8ow@Zm6CkBGwbyO~?-}+dR&1w^k!cDzEEJ=#8pd z)4e3%d-PQ2#1w80*Sd81x+z~&jHWj?8s2tX+_+8h@a!VGyaO}fnK^NxtOu)ioRpkT zDF5;0R~@y&IJR$!TzpmbJ^6S%UTI&szGT3tzsRK0@}i8LZ`gQmU2l4vX4bncX{RG_ zJ70Y{K0Rsd7#`bFO0xB6wm2y*I?gO6iJF+BZS&x5x&Kf>V|Xkv)^m&Y;8HeB>0e(J zUfjA|A^&(}*OU8k@40BVIw%WpT=i*A`*{uMc)!h@+_%@G{On#4Fc}`u?_p>=+5bAf zDC@HJ@jgh@*4jhg28R0i_(isv#yB-;ctF4x0HxLCkXL{smurowg9)Y_9eU7pFjMhTPjyKFRubl1UDrNTu7@>P|SqCOi+i5b}!+D z_`qh%Wn6MmF#fx4(9v*e*wa=xJ#$wLQ9CYr6tTEA$wAe&%emy@_jobgpzmVd@z)Wq z49wGu+7uxI+`!G^gmmXt{aM+V%NKhWc|&^@qA0R82vOFvhr<~nJyzx=xOP3( z--kg$ekUpsz~DqEZ_dn2JX#2Iz0b%1ajxH=Ro_{QDx83< za4?;guVgjG*j7xE;a|`g%zwajd6Y2VFd`=U9Mu9<4KaNoEzX@5Ic4( zn|_!DYQL9-gtB3ErN-$DK@y{3rGQI?0iceF8_JqIP8bKYl{lG=XRF9ptpJAfl?pi% ze__(PP{t&ULZFFLM({{F!Hn+Da8plYsmPCC5`{|!?#Q4U*Ug#hg&nKZn^^sEx^!Y8 zM9maBWRLo=NUUQM>LWFv7nBD_=PF`*&T=}_oG{A(uUCP^g$v`tvY;VEjV^MW%i0IL zVAdVTRg{)|#?2QAJCRp2X;7yJBQoI}@x}Oyn1Rth;T{@1knAUAUg3Yw9GlJzw}nfQ zO5C5rValAP?Gv2lDJ3x;0LVcAv)nmZ5qA$0^+?7Z$OIVIsc^H3k6~k;LW?>{E7L@B z2`S?Sabv3Af<~Zaqq?8h^2c4r?vZ>I3}M7OV#_?lvyUg4;l1A97@4k zKoc)8X;nczb9<`@WmOp!niB82>vp)H4&XTS^d`r}8B%g?73DSr{kV+EnWsMC%y834 zNSPC7(>smYIOX2%s$IwDq7wT(Xy6>>`9g~s?I6hS88s?!TR@FMHhN(pBdWKKw4=~Q zHDAo^#|`A<;NOTYsG`>=i|`?((d2v~12M!Qz(gH)4YnF}hAcOXTdz;t?fCcjOsBG7 zIN(yO{13vgBopbuL`gCh)OZh$VH?aiDai5H=HpJ1L>-+>QM`8$dY`gaawvJiMjKZIlr+4je4;f=($c_$eHFS!vK5R$(sG;!fmi zz;D6JASuC%atRVCxpqw1k1846%GkC^%h(sLQpO)ockeSOf3S#23xVQ-j5y%(Hg7ZH zB5`_w?sH(5k-a5aD)&3kDH5V(106>S{H4aI!0L9FZ!-W8qtw`n!x7-f_7%eZorP{O z(b;5FH%G~6&M14?4gB3s!kb04?h`*&4<fvJY>kIkqoOpMIJ;{p7<<)OEqBG@{KW z8^3ky|8Ub5xa-;3dCs?6_53tF?WX2XowXg{IkwgPSsHzz{cybdIq&=5mz*yT4j?~( zxV%n`|Lu~){$2iZ*mnt{4u0KT4jVN-K`)k-6zb7lan-od<@HbtUKE}~cG z;;||oI#79cBR~4-Ix*@shn8-Y>51v&hY2X z&aWq+Xx+&=4F`2i4_;%qO@`9-l{6B&ZlmZAV;P%xJnn=|R`c)@#`f8v^r2Jy&6zEo{Xtt*LYhjW+sEZDx5vq`v4Gi=vWFQN z4l9`0gJlbv(Hjkx;QhiEpWJpQes0y4@E&zx59@}BT)&$_t8~);G!JDvTfg5tr~80e zvfjO2FaJZPuquw0dUzn@`S~H3d^=G}TG}_5yf<)ci_C@{tUhlAMbbM_Vo)raBx0xLwei%f=l=Q>clxYO;S2MAmN()Sp4mSD2o zkw5k^Lj@qJF+V=jWT~KFX$y1dmuUyXCRW~POQ=&KbV%20U~g-4)6i-A4+7K!5IB!* z`L*9(P%e?lxP+TOVuy2+m~HRl(IX_k&ij|UW&PLBeA ztqHqkN@!)<`p4-%XlpA2V}q_^1~!DXzg47d0kKA>02op*|ZA8 zlHt5$7NU>y6h&JXT36Uatbf_9yoSK;3EI+JLD7)5@JvsqZ37UswThOQMon9;croMIUnYY!u|P;bQb0d`ZvU6%8aQ^RE$+$ zgf(G_cHBTH=ph1ZkNMGQ&mc=4PJze3YP#hB6I`oxvzVij7k@|o} za>DVxE2rD>+TMu6WlvgiJ3hp9U~eZfG@-QwFW)kvN7jW0KSudh*k6os$uuWw-;haF z3TwBy6_LK+Dd@lvmTy)dk$_}C#KGrhK;clWv}sJrh?OmG)(unfN6qOX2M2u*lxIg8 zXGiVx?8VIUc)V9Np`!)0rKytjG|mlOHhChiMhvp~=U5FM-(vsUV11SkvhIX!-cvyR z9}U*?Uj{2xO(!Pl*S2(`1%}7yD-kcoEK;HEgL`HTUf;Gw0x*naQL%*Qd=@F`#ezQ1 z3eeV}ZKkAn9DQkAUr~Grz)OYAF1%Nf)a0+VNhN5t<6j|+wV+&mXORCgs==8Gkc-@r zN9?M*#x5&u%JbZ7$dG3<90Cb2_1g(#V_XnGSckU#NVV*aTYJw*y6>R7OyWY`@(Mlu zWzDJ-ntug#qbRWAeI+{CGY)@N+eRF-U0q^x4v#_X7w6H;Bnm@lw3Ny!`X}6N=(IZA zmV#<37v>sr4KWknyszlX*oYMI=T<>#Dc&^sjIjtq!gR*98HaC8`9fFCcDl#Pi02MZ zahbt1Ss}Qx+{FWe7DKh=(h{TN(UlAh{*UM;eBD=K-0GjB3WCH&I>O!!ze~}Mj6qm) zC2=)cM8{$oJ|F|RJ`i;h7Txp&-z4r8mv{8nEivJtm-a<(b4#F-U#lw)^&!N9L+bjSAvn7xLQ8@ih%l3N2)$Zv*s z@X#0$eqd6?mhror*ziLtw|4_l`@&1}jtDi4St10KrHo@{yhRB5 zv>!;4x=XGgdM;_^$YN>j6n3vkFrzAmcmzw3S_I8fkq~ySiS5g2o!8XaYDy z&_$f@5O$PpJQJ;+lYP1kmT_*@%X+DEPVNM;N&nzDjdYpvz4=L83*g^fzpWE^xer@3 zT2Vs)z;@^Tio|hra)a%m|JC22sk07Q+#p}QPBELehJ!&&v#=>faVJDh=<@h#3<2$6B|%W)%aj++T4gS`bcBpa z+GbG8;AZ!LK=93~wL2=_VZ2UKr?>pV8|Oq|oH$BGMeFQl(@+XbsR4kfqD%|$lZ+JxS0zOpIo zWR|l?te38P583MevN!TEt}pfR`&~xHh}jGKNBr@#Cx-ph;iFb@F~Atv&xT_^JnH<_ znzBdoMnl^v2c+MzCr>4M9i5r)wIr)2So!Dr#*SFO*=&m6zk08s-pVIEPUC6u+9vmK zo=ui4Q-3YEn!vN~Ajz}6|4BXLv?=y(wu6GV>LEo(F1>`#1ecEOMqWfJ#Zge9BU9n} z@GZAQd|gqsWYh(6wcPB8qcK*IfV+N!qguw=o_tQZFLg8*`o@;hd0GD2EO%i+*?u}# zx{5J%dS!714Zkqi=o6^IPO*(Uc-8E<+n(S5`=hGv-~tQr?#E~?X{;@@p*FOE6OfgM z{D|mTTMo!;wCiybD@&VhkyK}Ea&D^SC(y-$sYNh0r6G3WZP9jIn|B9WcpKBe@p1{7 z`**72o#ItDaN%^xu6s^K;ySsT4%FMFmAPifk_b!GE?2@XN1`lOqAW)uZ`%y#UU!AI z%#l;fbu!?~Q&jM>d$s(#3^ftNaxO#qd#3L9JlyYDz6>ass%yx)6W(w0p7_^~ zIkR9rC`<7LVN1_+_ltpQVHciT*4TLKLNS6pha{l~0()T(-P~y_q>uQ*w+pSe1R)`M z;Pgh4N$y4sh!*`tvxf1^XP+gfp?Ir=`?M}hZV9I}yx{W0`?P0JrB?25fw_;uXlsKX zvz;(g@+oyQtXvabO3+O$Z36Q)Sgm|Wsmu$^-^%cNd61)`DMHuBcy(V(B$y$8#$NJG z$5L53l$`a{%^p5Rz*F1wv-8I=9xC8=^#qncNsUm|o5)QglgUGyM+tluQxzz-HP^;U zT=>(aOOa&$I zV;BXz)B3KzbI9n#MSf7B|R~3<$6tRC-U=0`kOw2 zgOURCo_1@=8OWpPuGv`5g&fF_YRd2$D)UBbsa0zk0^33(XJpsfhB7~F1&ePZxvOcw{4 zwUGO>F{cyOC@y8Q8OedI#3+;Tj~I!JiXDQ;oU*rf(G0-xPeQ6?;xJDe}pS|!m zKFG5iuKqBbO6G4fnDH4eD_|xHS1YD-M~VgI%609<(|l^I{5-H`P9g^_BDz$$M-=co zSlF=NVZ@^}xX+1+iePWs_9ICu{yEhubh!1QMQ*Yu9hvbLTQCObC}7^6hU>G9HHjj^ zz%+L{aHi5bJ%+16-N@p8q#yJI3y_|xUAEBEHv}-#P@k}bI)A5I3~%}FMFLe^C9J(xY}C2iuv5>_CzBLCK;>dPH8 zQPTENguX-pASgVi+q9;Huz-%oqHI43OzX7Lwa_iiddCVmxUi0BVEOg|)_;AS*4 zs{#WCDN-y(lAU;(^~8d>6`=_mC_eP8q;D6eor2l5y{aD2^C?$qy+#Z8`8k%^YU$(t zRvYrq;CRq8QX;T3vH(sRjt3;$Efu9|kpG)@St*ee&`wm@O2Eq?wd#W0-#p%$x2+e$ z9>S}8FXn!&F`}#DMfqU@0V0w5u(K6pK_gQik;`4$t{IHl%pEl~AV2&fLSE5z$jv&b z|CT3#oi$=|C`61jzr`0%j|cX5w(l`NRvOrb6RcclUg7cbDaZZne~)3&2P}}mSAP9K z5s{2`w)6NvvEhowwWutaZc>E_r_5?|Ia8^dH|@Q|;ImFlkMaVKCx)nJu^6->wYl1% z=eTusoZj;mt*`NocQ7yb2!q>68zP0B&0kvd11*FQO}MLkeS4p2J(NX1zc5jk8RkzC z9af67r(7wKXxN3QNSk3CUx+=dLP@Ik_}srqH;PEWruEvyd1m%(I=!UXqlN#1E$zOd z?P>>e)`xMeaa$8)Zww0jXN@#j6@#z8B;OiP1$iS0Kj&!_h_ap}u4PD_Yn9tx3*3|{ zX4~^tBl~<3D6c%SSZB|bx3zE5s`6vaoI+M=78T!>_{*u{OEmQ~l-trFI@Ij4U;w#cqEB zDdL?Sov(Y7wah83P8G6@r0SLlpO49K-Scseav!yHXvpe?Mo|0lo=DMETJ9jUK~%9m zJAw!wnewN{ygN_sB~~u+jlPibt|K9MY_wO&=!4Af!~)S8RFvX!vWt&U4QELu~s5h-Oo( zDs19?X%jL@dA2rC{{R=HF&x}s98RFKBn%IVbwDl+6EVj+3WDm zB6OA%ih;?#!7j7P%%jE~Rw%JoacPuHO!KZG;#D%5varBgF)1bG|GmR#7-T(s%+~gH z&`_{NrY3f&`YW!pc&d`=IMM&Y;R1gfQ)9F(Y$0M$(BES{M>8Ae=Ia%EMb0JB4wt27 zw{(ME|L{4rqV7Nd^(&6$CQkgFVi7Gg^-7(o6Il@sxdr}dg43a)ou=ab<6DV}lq<|T{L{#_qM%z@@dj*R4?Pd(>R zgqtq~|2;6Mk=PAwg$)QEz{bU}@c}^3!NkgulL;>1O5Gt@0W{r&{G(35ARxJpAWgm%Yy#>sa6HNk66Yz7|uO4V)YE z+mhl_@45`{H}2K8&FtBvQtfNW0$BwUuF-dXaq12Z1v=JdU#t49(}t{aI_MKnXzCe4 zO%$#k$CZ-OLS+CYvL6cwwCZN>_cin4LaU+s2pKbdFWEn1l0yEZF!tsB~JS-D*# zF|PfFU6Xp(=>UrGkqSk$!XmZkzTgbC346GI2{3iDM3F{i{evkgm&b0$F)o&W!z;`* zl2nV&-STo<;+z%|Qw;`$YOf-DBSmy+?Tjag8uM7RqpeFH49;!;Od@H`%BjN&^lcdP z3L%;!j*20?VHibC`YIHIc05CmAK^AKB9X9;`Q`%KS}(ZwOF~6bMiF)FuuE0|vi$(z z1uz8eSIXCD~nz2C-)iM&)O$^!^g?h|3cmr?IP%3Ki;ofR#|weu)oCy>Ep43>?u zUO#)z!*6I=Th2cbPT~B02F$L*(Lf3y<(^HaFj^ z9oQ;SiYfszvvHUZaXMcTppa{!jnD&>o{CBVGOKWkedwNgf0o4Gd=+++thc|p%p$+r zeK-+|V#@neXl~*L|KFULwQ(}Bane(Dvomqj`SlwZP|6=y0CE{vY6VeA4 zX^WJO_h+Z6Y_b@NB=|u}enA4(D-ZuwZJGnqcuT&&ai7d)+9;D@wM|_hCVRcr^K&Ump z2QGVas11osbSg%T#_`@bSKBgCJYVp2eClsDn0mVsdj3tG{n!I7fwQ5JF>n%Ls0?r* zO-*P%|A}K1Y#6ZfqIOm&-CPwiTF3FgT#vg}=R1yP$iC)N;AZE0vB~HTuQT+FIS`TY zRH#Z&O;_Yg?`pXA$3?IS(*Xwa*+A9iEaQHZz2SVS(_PppaSs-J*awjgREvl;hB zU*o%Zt3K@(*R3~Pt6~rr*I_$6m88HhQnU79?q^fd-kJem2nvkpDas%K3GT8OpaRr` zGquFK`d7-`wtILA{KlL=l%}tLrQB`P zfv3Q)wf>>7!me+B`K8^hyuwr97eM|{mZ$zoxmyl_r@+r8|EBmN%+1_U{>&`Hi^6-G ze?(6<{^fhZ3&MMEe*_mc|5Nhcz8t(Tych6Ccx?Ml_\n", - "Index: 57 entries, Distancia de carrera requerida para despegue to indice_desconocido\n", - "Data columns (total 37 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Stalker XE 57 non-null object\n", - " 1 Stalker VXE30 57 non-null object\n", - " 2 Aerosonde Mk. 4.7 Fixed Wing 57 non-null object\n", - " 3 Aerosonde Mk. 4.7 VTOL 57 non-null object\n", - " 4 Aerosonde Mk. 4.8 Fixed wing 57 non-null object\n", - " 5 Aerosonde Mk. 4.8 VTOL FTUAS 57 non-null object\n", - " 6 AAI Aerosonde 57 non-null object\n", - " 7 Fulmar X 57 non-null object\n", - " 8 Orbiter 4 57 non-null object\n", - " 9 Orbiter 3 57 non-null object\n", - " 10 Mantis 57 non-null object\n", - " 11 ScanEagle 57 non-null object\n", - " 12 Integrator 57 non-null object\n", - " 13 Integrator VTOL 57 non-null object\n", - " 14 Integrator Extended Range (ER) 57 non-null object\n", - " 15 ScanEagle 3 57 non-null object\n", - " 16 RQ Nan 21A Blackjack 57 non-null object\n", - " 17 DeltaQuad Evo 57 non-null object\n", - " 18 DeltaQuad Pro #MAP 57 non-null object\n", - " 19 DeltaQuad Pro #CARGO 57 non-null object\n", - " 20 V21 57 non-null object\n", - " 21 V25 57 non-null object\n", - " 22 V32 57 non-null object\n", - " 23 V35 57 non-null object\n", - " 24 V39 57 non-null object\n", - " 25 Volitation VT370 57 non-null object\n", - " 26 Skyeye 2600 57 non-null object\n", - " 27 Skyeye 2930 VTOL 57 non-null object\n", - " 28 Skyeye 3600 57 non-null object\n", - " 29 Skyeye 3600 VTOL 57 non-null object\n", - " 30 Skyeye 5000 57 non-null object\n", - " 31 Skyeye 5000 VTOL 57 non-null object\n", - " 32 Skyeye 5000 VTOL octo 57 non-null object\n", - " 33 Volitation VT510 57 non-null object\n", - " 34 Ascend 57 non-null object\n", - " 35 Transition 57 non-null object\n", - " 36 Reach 57 non-null object\n", - "dtypes: object(37)\n", - "memory usage: 16.9+ KB\n", + "Index: 37 entries, Stalker XE to Reach\n", + "Data columns (total 42 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Distancia de carrera requerida para despegue 37 non-null object \n", + " 1 Altitud a la que se realiza el crucero 37 non-null int64 \n", + " 2 Velocidad a la que se realiza el crucero (KTAS) 37 non-null object \n", + " 3 Techo de servicio máximo 37 non-null object \n", + " 4 Velocidad de pérdida limpia (KCAS) 37 non-null object \n", + " 5 Área del ala 37 non-null object \n", + " 6 Relación de aspecto del ala 37 non-null object \n", + " 7 Longitud del fuselaje 37 non-null object \n", + " 8 Profundidad del fuselaje 37 non-null object \n", + " 9 Ancho del fuselaje 37 non-null object \n", + " 10 Peso máximo al despegue (MTOW) 37 non-null float64\n", + " 11 Alcance de la aeronave 37 non-null object \n", + " 12 Autonomía de la aeronave 37 non-null object \n", + " 13 Velocidad máxima (KIAS) 37 non-null object \n", + " 14 Velocidad de pérdida (KCAS) 37 non-null object \n", + " 15 Tasa de ascenso 37 non-null object \n", + " 16 Radio de giro 37 non-null object \n", + " 17 envergadura 37 non-null object \n", + " 18 Cuerda 37 non-null object \n", + " 19 payload 37 non-null object \n", + " 20 duracion en VTOL 37 non-null object \n", + " 21 Crucero KIAS 37 non-null object \n", + " 22 RTF (dry weight) 37 non-null object \n", + " 23 RTF (Including fuel & Batteries) 37 non-null object \n", + " 24 Empty weight 37 non-null object \n", + " 25 Maximum Crosswind 37 non-null object \n", + " 26 Rango de comunicación 37 non-null object \n", + " 27 Wing Loading 37 non-null object \n", + " 28 Potencia específica (P/W) 37 non-null object \n", + " 29 Capacidad combustible 37 non-null object \n", + " 30 Consumo 37 non-null object \n", + " 31 Potencia Watts 37 non-null object \n", + " 32 Potencia HP 37 non-null object \n", + " 33 Precio 37 non-null object \n", + " 34 Tiempo de emergencia en vuelo 37 non-null object \n", + " 35 Distancia de aterrizaje 37 non-null object \n", + " 36 Despegue 37 non-null int64 \n", + " 37 Propulsión horizontal 37 non-null int64 \n", + " 38 Propulsión vertical 37 non-null int64 \n", + " 39 Cantidad de motores propulsión vertical 37 non-null int64 \n", + " 40 Cantidad de motores propulsión horizontal 37 non-null int64 \n", + " 41 Misión 37 non-null int64 \n", + "dtypes: float64(1), int64(7), object(34)\n", + "memory usage: 12.4+ KB\n", "None\n", "Datos cargados correctamente desde: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Data\\Datos_aeronaves.xlsx\n", "\n", @@ -67,7 +71,7 @@ "=== Continuando con el procesamiento de datos ===\n", "\n", "Encabezados iniciales cargados:\n", - "['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", + "['Distancia de carrera requerida para despegue', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Tasa de ascenso', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia específica (P/W)', 'Capacidad combustible', 'Consumo', 'Potencia Watts', 'Potencia HP', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Despegue', 'Propulsión horizontal', 'Propulsión vertical', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal', 'Misión']\n", "\n", "=== Mostrando datos iniciales en formato HTML ===\n" ] @@ -111,43 +115,48 @@ " \n", " \n", " \n", - " Stalker XE\n", - " Stalker VXE30\n", - " Aerosonde Mk. 4.7 Fixed Wing\n", - " Aerosonde Mk. 4.7 VTOL\n", - " Aerosonde Mk. 4.8 Fixed wing\n", - " Aerosonde Mk. 4.8 VTOL FTUAS\n", - " AAI Aerosonde\n", - " Fulmar X\n", - " Orbiter 4\n", - " Orbiter 3\n", - " Mantis\n", - " ScanEagle\n", - " Integrator\n", - " Integrator VTOL\n", - " Integrator Extended Range (ER)\n", - " ScanEagle 3\n", - " RQ Nan 21A Blackjack\n", - " DeltaQuad Evo\n", - " DeltaQuad Pro #MAP\n", - " DeltaQuad Pro #CARGO\n", - " V21\n", - " V25\n", - " V32\n", - " V35\n", - " V39\n", - " Volitation VT370\n", - " Skyeye 2600\n", - " Skyeye 2930 VTOL\n", - " Skyeye 3600\n", - " Skyeye 3600 VTOL\n", - " Skyeye 5000\n", - " Skyeye 5000 VTOL\n", - " Skyeye 5000 VTOL octo\n", - " Volitation VT510\n", - " Ascend\n", - " Transition\n", - " Reach\n", + " Distancia de carrera requerida para despegue\n", + " Altitud a la que se realiza el crucero\n", + " Velocidad a la que se realiza el crucero (KTAS)\n", + " Techo de servicio máximo\n", + " Velocidad de pérdida limpia (KCAS)\n", + " Área del ala\n", + " Relación de aspecto del ala\n", + " Longitud del fuselaje\n", + " Profundidad del fuselaje\n", + " Ancho del fuselaje\n", + " Peso máximo al despegue (MTOW)\n", + " Alcance de la aeronave\n", + " Autonomía de la aeronave\n", + " Velocidad máxima (KIAS)\n", + " Velocidad de pérdida (KCAS)\n", + " Tasa de ascenso\n", + " Radio de giro\n", + " envergadura\n", + " Cuerda\n", + " payload\n", + " duracion en VTOL\n", + " Crucero KIAS\n", + " RTF (dry weight)\n", + " RTF (Including fuel & Batteries)\n", + " Empty weight\n", + " Maximum Crosswind\n", + " Rango de comunicación\n", + " Wing Loading\n", + " Potencia específica (P/W)\n", + " Capacidad combustible\n", + " Consumo\n", + " Potencia Watts\n", + " Potencia HP\n", + " Precio\n", + " Tiempo de emergencia en vuelo\n", + " Distancia de aterrizaje\n", + " Despegue\n", + " Propulsión horizontal\n", + " Propulsión vertical\n", + " Cantidad de motores propulsión vertical\n", + " Cantidad de motores propulsión horizontal\n", + " Misión\n", " \n", " \n", " Modelo\n", @@ -188,157 +197,90 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " Distancia de carrera requerida para despegue\n", - " 0\n", + " Stalker XE\n", " 0\n", + " 6000.000\n", + " 16.880379\n", + " 12000\n", " Nan\n", - " 0\n", + " 0.87\n", + " 15.301255\n", + " 2.1\n", " Nan\n", - " 0\n", + " 0.211\n", + " 13.600\n", + " 370\n", + " 8\n", + " 20\n", " Nan\n", " Nan\n", " Nan\n", + " 3.657\n", + " 0.239\n", + " 2.494756\n", + " 2\n", + " 15.43332\n", " Nan\n", " Nan\n", + " 10.886208\n", " Nan\n", + " 59\n", " Nan\n", - " 0\n", " Nan\n", " Nan\n", " Nan\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", " Nan\n", - " 0\n", - " 50\n", - " 0\n", - " 60\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " \n", - " \n", - " Altitud a la que se realiza el crucero\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 5500\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 5000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", - " 6000\n", + " Nan\n", + " Nan\n", + " Nan\n", + " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Velocidad a la que se realiza el crucero (KTAS)\n", - " 16.880379\n", + " Stalker VXE30\n", + " 0\n", + " 6000.000\n", " 17.602373\n", - " 27.34405\n", - " 27.34405\n", - " 27.34405\n", - " Nan\n", + " 12000\n", " Nan\n", - " 30.406584\n", + " 1.158283\n", + " 15.326449\n", + " 2.5908\n", " Nan\n", + " 0.2\n", + " 19.958\n", + " 433\n", + " 8\n", + " 25.034211\n", " Nan\n", - " 18.265826\n", - " 30.625336\n", - " 30.953465\n", " Nan\n", " Nan\n", - " 25.703407\n", - " 33.797246\n", - " 18.090824\n", - " 17.500192\n", - " 17.500192\n", - " 19.687716\n", - " 21.87524\n", - " 21.87524\n", - " 27.34405\n", - " 27.34405\n", - " 27.34405\n", - " 36.094147\n", - " 26.250288\n", + " 4.8768\n", + " 0.318195\n", + " 2.494756\n", " Nan\n", - " 32.81286\n", - " 36.094147\n", - " 30.625336\n", + " 16.093422\n", " Nan\n", - " 32.81286\n", - " 21.87524\n", - " 21.87524\n", - " 27.34405\n", - " \n", - " \n", - " Techo de servicio máximo\n", - " 12000\n", - " 12000\n", - " 14700\n", - " 9700\n", - " 18200\n", - " 15000\n", - " 15000\n", - " 9.842\n", " Nan\n", + " 17.463292\n", " Nan\n", + " 161\n", " Nan\n", - " 19500\n", - " 19500\n", " Nan\n", - " 19500\n", - " 20\n", - " 20\n", - " 13\n", - " 13.123\n", - " 13.123\n", - " 48800\n", - " 16000\n", - " 16000\n", - " 16000\n", - " 16000\n", - " 17000\n", " Nan\n", " Nan\n", " Nan\n", @@ -346,118 +288,174 @@ " Nan\n", " Nan\n", " Nan\n", - " 17000\n", - " 10000\n", - " 13000\n", - " 16000\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Velocidad de pérdida limpia (KCAS)\n", - " Nan\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", " Nan\n", + " 6000.000\n", + " 27.34405\n", + " 14700\n", " Nan\n", + " 1.55\n", + " 12.5\n", + " 3\n", " Nan\n", + " 0.277\n", + " 42.200\n", " Nan\n", + " 19.8\n", + " 33.43886\n", " Nan\n", " Nan\n", " Nan\n", + " 4.4\n", + " 0.352\n", + " 14.5\n", " Nan\n", + " 25\n", " Nan\n", + " 27.7\n", " Nan\n", " Nan\n", + " 140\n", " Nan\n", " Nan\n", " Nan\n", + " 0.6\n", + " 2980\n", + " 4\n", " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Aerosonde Mk. 4.7 VTOL\n", + " 0\n", + " 6000.000\n", + " 27.34405\n", + " 9700\n", " Nan\n", + " 1.55\n", + " 12.5\n", + " 3\n", " Nan\n", - " 14\n", - " 15.5\n", - " 17\n", + " 0.277\n", + " 53.500\n", " Nan\n", + " 12\n", + " 33.43886\n", " Nan\n", " Nan\n", - " 10\n", - " 18\n", - " 12.5\n", - " 24\n", - " 15\n", " Nan\n", + " 4.4\n", + " 0.352\n", + " 11.3\n", " Nan\n", " 25\n", " Nan\n", + " 42.2\n", + " Nan\n", + " Nan\n", + " 140\n", + " Nan\n", " Nan\n", " Nan\n", + " 0.6\n", + " 2980\n", + " 4\n", + " Nan\n", + " Nan\n", + " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Área del ala\n", - " 0.87\n", - " 1.158283\n", - " 1.55\n", - " 1.55\n", - " 1.55\n", - " Nan\n", - " 0.57\n", + " Aerosonde Mk. 4.8 Fixed wing\n", " Nan\n", + " 6000.000\n", + " 27.34405\n", + " 18200\n", " Nan\n", + " 1.55\n", + " 12.5\n", + " 3\n", " Nan\n", + " 0.277\n", + " 54.400\n", " Nan\n", + " 19.8\n", + " 33.43886\n", " Nan\n", " Nan\n", " Nan\n", + " 4.4\n", + " 0.352\n", + " 17.7\n", " Nan\n", + " 25\n", " Nan\n", + " 36.7\n", " Nan\n", - " 0.84\n", " Nan\n", + " 140\n", " Nan\n", - " 0.8\n", - " 0.52\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", - " 0.88\n", - " 1\n", - " 1.33\n", - " 1.32\n", - " 2.615\n", - " 2.615\n", - " 2.615\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Relación de aspecto del ala\n", - " 15.301255\n", - " 15.326449\n", - " 12.5\n", - " 12.5\n", - " 12.5\n", - " 12.5\n", - " 14.754386\n", - " Nan\n", - " Nan\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", + " 0\n", + " 6000.000\n", " Nan\n", + " 15000\n", " Nan\n", " Nan\n", + " 12.5\n", " Nan\n", " Nan\n", " Nan\n", + " 93.000\n", " Nan\n", + " 14\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 22.7\n", " Nan\n", " Nan\n", " Nan\n", + " 70.3\n", " Nan\n", " Nan\n", " Nan\n", @@ -470,72 +468,82 @@ " Nan\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Longitud del fuselaje\n", - " 2.1\n", - " 2.5908\n", - " 3\n", - " 3\n", - " 3\n", + " AAI Aerosonde\n", + " Nan\n", + " 5500.000\n", + " Nan\n", + " 15000\n", " Nan\n", + " 0.57\n", + " 14.754386\n", " 1.7\n", - " 1.2\n", - " 1.2\n", - " 1.2\n", - " 1.48\n", - " 1.71\n", - " 2.5\n", " Nan\n", - " 2.5\n", - " 2.4\n", - " 2.5\n", - " 0.75\n", - " 0.9\n", - " 0.9\n", - " 0.93\n", - " 0.93\n", - " 1\n", - " 1.88\n", " Nan\n", - " 2.02\n", - " 2.05\n", - " 2.03\n", - " 2.488\n", - " 2.42\n", - " 3.5\n", - " 3.5\n", - " 3.5\n", - " 2.905\n", - " 1.562\n", - " 2.3\n", - " 4.712\n", - " \n", - " \n", - " Profundidad del fuselaje\n", + " 13.100\n", + " 3270\n", + " 26\n", + " 30.845725\n", " Nan\n", " Nan\n", " Nan\n", + " 2.9\n", + " 0.196552\n", + " Nan\n", + " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 10\n", + " Nan\n", + " 150\n", + " 23\n", + " 98\n", " Nan\n", " Nan\n", + " 1280\n", + " 1.74\n", " Nan\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Fulmar X\n", " Nan\n", + " 6000.000\n", + " 30.406584\n", + " 9.842\n", " Nan\n", " Nan\n", " Nan\n", + " 1.2\n", " Nan\n", " Nan\n", + " 20.000\n", + " 800\n", + " 8\n", + " 41.7\n", " Nan\n", " Nan\n", " Nan\n", + " 3\n", " Nan\n", " Nan\n", " Nan\n", + " 27.8\n", " Nan\n", " Nan\n", " Nan\n", @@ -550,218 +558,132 @@ " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Ancho del fuselaje\n", - " 0.211\n", - " 0.2\n", - " 0.277\n", - " 0.277\n", - " 0.277\n", - " Nan\n", + " Orbiter 4\n", " Nan\n", + " 6000.000\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 1.2\n", " Nan\n", " Nan\n", + " 55.000\n", " Nan\n", + " 24\n", + " 36\n", " Nan\n", " Nan\n", " Nan\n", + " 5.2\n", " Nan\n", + " 12\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 150\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", - " 0.375\n", - " 0.375\n", - " 0.375\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Peso máximo al despegue (MTOW)\n", - " 13.6\n", - " 19.958048\n", - " 42.2\n", - " 53.5\n", - " 54.4\n", - " 93\n", - " 13.1\n", - " 20\n", - " 55\n", - " 32\n", - " 6.5\n", - " 26.5\n", - " 74.8\n", - " 75\n", - " 74.8\n", - " 36.3\n", - " 61\n", - " 10\n", - " 6.2\n", - " 6.2\n", - " 10\n", - " 12.5\n", - " 23.5\n", - " 32\n", - " 24\n", - " 40\n", - " 15\n", - " 28\n", - " 28\n", - " 40\n", - " 90\n", - " 100\n", - " 100\n", - " 100\n", - " 9.5\n", - " 18\n", - " 91\n", - " \n", - " \n", - " Alcance de la aeronave\n", - " 370\n", - " 433\n", + " Orbiter 3\n", " Nan\n", + " 6000.000\n", " Nan\n", " Nan\n", " Nan\n", - " 3270\n", - " 800\n", " Nan\n", - " 50\n", - " 25\n", " Nan\n", + " 1.2\n", " Nan\n", " Nan\n", - " 500\n", + " 32.000\n", + " 50\n", + " 6\n", + " 36\n", " Nan\n", " Nan\n", - " 270\n", - " 100\n", - " 100\n", " Nan\n", + " 4.4\n", + " Nan\n", + " 5.5\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 50\n", " Nan\n", " Nan\n", - " 300\n", " Nan\n", - " 800\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " Nan\n", + " 1.000\n", + " 1.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Autonomía de la aeronave\n", - " 8\n", - " 8\n", - " 19.8\n", - " 12\n", - " 19.8\n", - " 14\n", - " 26\n", - " 8\n", - " 24\n", - " 6\n", - " 2\n", - " 18\n", - " 24\n", - " 16\n", - " 19\n", - " 18\n", - " 16\n", - " 4.53\n", - " 1.83\n", - " 1.83\n", - " 3\n", - " 4\n", - " 4.5\n", - " 2.8\n", - " 4.5\n", - " 15\n", - " 2\n", - " 3\n", - " 4.5\n", - " 6\n", - " 8\n", - " 8\n", + " Mantis\n", " Nan\n", - " 5\n", - " 6\n", - " 12\n", - " 20\n", - " \n", - " \n", - " Velocidad máxima (KIAS)\n", - " 20\n", - " 25.034211\n", - " 33.43886\n", - " 33.43886\n", - " 33.43886\n", + " 6000.000\n", + " 18.265826\n", " Nan\n", - " 30.845725\n", - " 41.7\n", - " 36\n", - " 36\n", - " 25.6\n", - " 41.2\n", - " 46.3\n", " Nan\n", - " 46.3\n", - " 41.2\n", - " 46.3\n", " Nan\n", " Nan\n", + " 1.48\n", " Nan\n", - " 33\n", - " 33\n", - " 33\n", - " 33\n", - " 33\n", - " 33\n", " Nan\n", - " 30\n", + " 6.500\n", + " 25\n", + " 2\n", + " 25.6\n", " Nan\n", - " 33\n", - " 42\n", - " 42\n", - " 38\n", - " 50\n", - " 30\n", - " 30\n", - " 35\n", - " \n", - " \n", - " Velocidad de pérdida (KCAS)\n", " Nan\n", " Nan\n", + " 2.1\n", " Nan\n", " Nan\n", " Nan\n", + " 16.7\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 25\n", " Nan\n", " Nan\n", " Nan\n", @@ -771,38 +693,42 @@ " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 1.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " ScanEagle\n", " Nan\n", + " 6000.000\n", + " 30.625336\n", + " 19500\n", " Nan\n", - " 14\n", - " 15.5\n", - " 17\n", " Nan\n", " Nan\n", + " 1.71\n", " Nan\n", - " 10\n", - " 18\n", - " 12.5\n", - " 24\n", - " 15\n", " Nan\n", - " 24\n", - " 25\n", - " 13\n", - " 13\n", - " 13\n", - " \n", - " \n", - " Tasa de ascenso\n", + " 26.500\n", " Nan\n", + " 18\n", + " 41.2\n", " Nan\n", " Nan\n", " Nan\n", + " 3.1\n", " Nan\n", + " 5\n", " Nan\n", + " 28\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 101.86\n", " Nan\n", " Nan\n", " Nan\n", @@ -812,27 +738,44 @@ " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Integrator\n", " Nan\n", + " 6000.000\n", + " 30.953465\n", + " 19500\n", " Nan\n", " Nan\n", " Nan\n", + " 2.5\n", " Nan\n", " Nan\n", + " 74.800\n", " Nan\n", + " 24\n", + " 46.3\n", " Nan\n", " Nan\n", " Nan\n", + " 4.8\n", " Nan\n", + " 18\n", " Nan\n", + " 28.3\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 92.6\n", " Nan\n", " Nan\n", - " \n", - " \n", - " Radio de giro\n", " Nan\n", " Nan\n", " Nan\n", @@ -840,6 +783,17 @@ " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Integrator VTOL\n", + " 0\n", + " 5000.000\n", " Nan\n", " Nan\n", " Nan\n", @@ -848,21 +802,22 @@ " Nan\n", " Nan\n", " Nan\n", + " 75.000\n", " Nan\n", + " 16\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", - " 100\n", - " 120\n", - " 150\n", " Nan\n", " Nan\n", + " 18\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 30\n", " Nan\n", " Nan\n", " Nan\n", @@ -870,66 +825,38 @@ " Nan\n", " Nan\n", " Nan\n", - " \n", - " \n", - " envergadura\n", - " 3.657\n", - " 4.8768\n", - " 4.4\n", - " 4.4\n", - " 4.4\n", " Nan\n", - " 2.9\n", - " 3\n", - " 5.2\n", - " 4.4\n", - " 2.1\n", - " 3.1\n", - " 4.8\n", " Nan\n", - " 4.8\n", - " 4\n", - " 4.8\n", - " 2.69\n", - " 2.35\n", - " 2.35\n", - " 2.15\n", - " 2.45\n", - " 3.2\n", - " 3.5\n", - " 3.9\n", - " 6.5\n", - " 2.6\n", - " 2.93\n", - " 3.6\n", - " 3.6\n", - " 5\n", - " 5\n", - " 5\n", - " 5.1\n", - " 2\n", - " 3\n", - " 6\n", + " 0\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Cuerda\n", - " 0.239\n", - " 0.318195\n", - " 0.352\n", - " 0.352\n", - " 0.352\n", + " Integrator Extended Range\n", " Nan\n", - " 0.196552\n", + " 6000.000\n", " Nan\n", + " 19500\n", " Nan\n", " Nan\n", " Nan\n", + " 2.5\n", " Nan\n", " Nan\n", + " 74.800\n", + " 500\n", + " 19\n", + " 46.3\n", " Nan\n", " Nan\n", " Nan\n", + " 4.8\n", " Nan\n", + " 18\n", " Nan\n", " Nan\n", " Nan\n", @@ -946,56 +873,37 @@ " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " ScanEagle 3\n", " Nan\n", + " 6000.000\n", + " 25.703407\n", + " 20\n", " Nan\n", " Nan\n", " Nan\n", - " \n", - " \n", - " payload\n", - " 2.494756\n", - " 2.494756\n", - " 14.5\n", - " 11.3\n", - " 17.7\n", - " 22.7\n", + " 2.4\n", " Nan\n", " Nan\n", - " 12\n", - " 5.5\n", + " 36.300\n", " Nan\n", - " 5\n", - " 18\n", - " 18\n", - " 18\n", - " 8.6\n", - " 17.7\n", - " 3\n", - " 1.2\n", - " 1.2\n", - " 1.5\n", - " 2.2\n", - " 5\n", - " 10\n", - " 5\n", " 18\n", + " 41.2\n", + " Nan\n", + " Nan\n", + " Nan\n", " 4\n", - " 6\n", - " 10\n", - " 10\n", - " 20\n", - " 25\n", - " 15\n", - " 25\n", - " 0.6\n", - " 1.5\n", - " 7\n", - " \n", - " \n", - " duracion en VTOL\n", - " 2\n", " Nan\n", + " 8.6\n", " Nan\n", + " 23.5\n", " Nan\n", " Nan\n", " Nan\n", @@ -1005,83 +913,91 @@ " Nan\n", " Nan\n", " Nan\n", + " 170\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " RQ Nan 21A Blackjack\n", " Nan\n", - " 4.53\n", + " 6000.000\n", + " 33.797246\n", + " 20\n", " Nan\n", " Nan\n", " Nan\n", + " 2.5\n", " Nan\n", " Nan\n", + " 61.000\n", " Nan\n", + " 16\n", + " 46.3\n", " Nan\n", " Nan\n", " Nan\n", + " 4.8\n", " Nan\n", + " 17.7\n", " Nan\n", + " 30.9\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 92.6\n", " Nan\n", - " 0.05\n", - " 0.05\n", - " 0.05\n", - " \n", - " \n", - " Crucero KIAS\n", - " 15.43332\n", - " 16.093422\n", - " 25\n", - " 25\n", - " 25\n", " Nan\n", " Nan\n", - " 27.8\n", " Nan\n", " Nan\n", - " 16.7\n", - " 28\n", - " 28.3\n", + " 8\n", " Nan\n", " Nan\n", - " 23.5\n", - " 30.9\n", - " 16.54\n", - " 16\n", - " 16\n", - " 18\n", - " 20\n", - " 20\n", - " 25\n", - " 25\n", - " 25\n", - " 33\n", - " 24\n", " Nan\n", - " 30\n", - " 33\n", - " 28\n", - " 35\n", - " 30\n", - " 20\n", - " 20\n", - " 25\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " RTF (dry weight)\n", + " DeltaQuad Evo\n", + " 0\n", + " 6000.000\n", + " 18.090824\n", + " 13\n", " Nan\n", + " 0.84\n", " Nan\n", + " 0.75\n", " Nan\n", " Nan\n", + " 10.000\n", + " 270\n", + " 4.53\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 2.69\n", " Nan\n", + " 3\n", + " 4.53\n", + " 16.54\n", + " 4.8\n", + " 6.8\n", + " 4.8\n", + " 45\n", " Nan\n", " Nan\n", " Nan\n", @@ -1090,55 +1006,89 @@ " Nan\n", " Nan\n", " Nan\n", - " 4.8\n", " Nan\n", + " 0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " DeltaQuad Pro #MAP\n", + " 0\n", + " 6000.000\n", + " 17.500192\n", + " 13.123\n", " Nan\n", " Nan\n", " Nan\n", + " 0.9\n", " Nan\n", " Nan\n", + " 6.200\n", + " 100\n", + " 1.83\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 2.35\n", " Nan\n", + " 1.2\n", " Nan\n", + " 16\n", " Nan\n", " Nan\n", " Nan\n", + " 50\n", + " 50\n", " Nan\n", - " 6\n", - " 11.8\n", - " 54\n", - " \n", - " \n", - " RTF (Including fuel & Batteries)\n", " Nan\n", " Nan\n", - " 27.7\n", - " 42.2\n", - " 36.7\n", - " 70.3\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " DeltaQuad Pro #CARGO\n", + " 0\n", + " 6000.000\n", + " 17.500192\n", + " 13.123\n", " Nan\n", " Nan\n", " Nan\n", + " 0.9\n", " Nan\n", " Nan\n", + " 6.200\n", + " 100\n", + " 1.83\n", " Nan\n", - " 6.8\n", " Nan\n", " Nan\n", " Nan\n", + " 2.35\n", " Nan\n", + " 1.2\n", " Nan\n", + " 16\n", " Nan\n", " Nan\n", " Nan\n", + " 50\n", + " 30\n", " Nan\n", " Nan\n", " Nan\n", @@ -1147,184 +1097,263 @@ " Nan\n", " Nan\n", " Nan\n", - " 8.9\n", - " 16.5\n", - " 84\n", + " 0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Empty weight\n", - " 10.886208\n", - " 17.463292\n", - " Nan\n", - " Nan\n", + " V21\n", + " 0\n", + " 6000.000\n", + " 19.687716\n", + " 48800\n", + " 14\n", + " 0.8\n", " Nan\n", + " 0.93\n", " Nan\n", - " 10\n", " Nan\n", + " 10.000\n", " Nan\n", + " 3\n", + " 33\n", + " 14\n", " Nan\n", + " 100\n", + " 2.15\n", " Nan\n", + " 1.5\n", " Nan\n", + " 18\n", " Nan\n", " Nan\n", + " 2.65\n", " Nan\n", + " 30\n", + " 12.5\n", " Nan\n", " Nan\n", - " 4.8\n", " Nan\n", " Nan\n", - " 2.65\n", - " 3.45\n", - " 6.45\n", " Nan\n", + " 3999\n", + " 0.108\n", " Nan\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V25\n", + " 0\n", + " 6000.000\n", + " 21.87524\n", + " 16000\n", + " 15.5\n", + " 0.52\n", " Nan\n", - " 6.5\n", - " 7.1\n", - " 11.5\n", - " 11\n", - " 32\n", + " 0.93\n", " Nan\n", - " 35\n", " Nan\n", - " 3\n", - " 5.8\n", - " 31\n", - " \n", - " \n", - " Maximum Crosswind\n", + " 12.500\n", " Nan\n", + " 4\n", + " 33\n", + " 15.5\n", " Nan\n", + " 120\n", + " 2.45\n", " Nan\n", + " 2.2\n", " Nan\n", + " 20\n", " Nan\n", " Nan\n", + " 3.45\n", " Nan\n", + " 30\n", + " 24\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 4679\n", + " 0.108\n", " Nan\n", - " 30\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V32\n", + " 0\n", + " 6000.000\n", + " 21.87524\n", + " 16000\n", + " 17\n", " Nan\n", " Nan\n", + " 1\n", " Nan\n", - " 45\n", - " 50\n", - " 50\n", " Nan\n", + " 23.500\n", " Nan\n", + " 4.5\n", + " 33\n", + " 17\n", " Nan\n", + " 150\n", + " 3.2\n", " Nan\n", + " 5\n", " Nan\n", + " 20\n", " Nan\n", " Nan\n", + " 6.45\n", " Nan\n", + " 30\n", + " 25\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 69999\n", + " 0.108\n", " Nan\n", - " 15\n", - " 15\n", - " 15\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Rango de comunicación\n", - " 59\n", - " 161\n", - " 140\n", - " 140\n", - " 140\n", - " Nan\n", - " 150\n", - " Nan\n", - " 150\n", - " 50\n", - " 25\n", - " 101.86\n", - " 92.6\n", + " V35\n", + " 0\n", + " 6000.000\n", + " 27.34405\n", + " 16000\n", " Nan\n", " Nan\n", " Nan\n", - " 92.6\n", + " 1.88\n", " Nan\n", - " 50\n", - " 30\n", - " 30\n", - " 30\n", - " 30\n", - " 30\n", - " 30\n", " Nan\n", + " 32.000\n", " Nan\n", + " 2.8\n", + " 33\n", " Nan\n", " Nan\n", " Nan\n", + " 3.5\n", " Nan\n", + " 10\n", " Nan\n", + " 25\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 30\n", " Nan\n", - " \n", - " \n", - " Wing Loading\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 7999\n", " Nan\n", - " 23\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V39\n", + " 0\n", + " 6000.000\n", + " 27.34405\n", + " 16000\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 24.000\n", " Nan\n", + " 4.5\n", + " 33\n", " Nan\n", " Nan\n", " Nan\n", + " 3.9\n", " Nan\n", + " 5\n", " Nan\n", - " 12.5\n", - " 24\n", " 25\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 30\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 8999\n", " Nan\n", " Nan\n", - " Nan\n", - " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Potencia específica (P/W)\n", + " Volitation VT370\n", + " 0\n", + " 6000.000\n", + " 27.34405\n", + " 17000\n", " Nan\n", " Nan\n", " Nan\n", + " 2.02\n", " Nan\n", " Nan\n", + " 40.000\n", " Nan\n", - " 98\n", + " 15\n", + " 33\n", " Nan\n", " Nan\n", " Nan\n", + " 6.5\n", " Nan\n", + " 18\n", " Nan\n", + " 25\n", " Nan\n", " Nan\n", " Nan\n", @@ -1332,27 +1361,48 @@ " Nan\n", " Nan\n", " Nan\n", + " 13\n", + " 0.96\n", " Nan\n", " Nan\n", + " 8999\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 2600\n", " Nan\n", + " 6000.000\n", + " 36.094147\n", " Nan\n", + " 10\n", + " 0.88\n", " Nan\n", + " 2.05\n", " Nan\n", " Nan\n", + " 15.000\n", " Nan\n", + " 2\n", " Nan\n", + " 10\n", " Nan\n", " Nan\n", + " 2.6\n", " Nan\n", + " 4\n", " Nan\n", + " 33\n", " Nan\n", " Nan\n", + " 6.5\n", " Nan\n", - " \n", - " \n", - " Capacidad combustible\n", " Nan\n", " Nan\n", " Nan\n", @@ -1360,222 +1410,361 @@ " Nan\n", " Nan\n", " Nan\n", + " 2299\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 2930 VTOL\n", + " 0\n", + " 6000.000\n", + " 26.250288\n", " Nan\n", + " 18\n", + " 1\n", " Nan\n", + " 2.03\n", " Nan\n", " Nan\n", + " 28.000\n", " Nan\n", + " 3\n", + " 30\n", + " 18\n", " Nan\n", " Nan\n", + " 2.93\n", " Nan\n", + " 6\n", " Nan\n", + " 24\n", " Nan\n", " Nan\n", + " 7.1\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", - " 13\n", " Nan\n", " Nan\n", - " 11.5\n", - " 11.5\n", - " 28\n", - " 28\n", - " 28\n", - " 25\n", " Nan\n", + " 6799\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Consumo\n", - " Nan\n", - " Nan\n", - " 0.6\n", - " 0.6\n", - " Nan\n", - " Nan\n", - " Nan\n", + " Skyeye 3600\n", + " 50\n", + " 6000.000\n", " Nan\n", " Nan\n", + " 12.5\n", + " 1.33\n", " Nan\n", + " 2.488\n", " Nan\n", " Nan\n", + " 28.000\n", " Nan\n", + " 4.5\n", " Nan\n", + " 12.5\n", " Nan\n", " Nan\n", + " 3.6\n", " Nan\n", + " 10\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 11.5\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", - " 0.96\n", + " 11.5\n", " Nan\n", " Nan\n", " Nan\n", + " 4999\n", " Nan\n", - " 1.2\n", " Nan\n", + " 3.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 3600 VTOL\n", + " 0\n", + " 6000.000\n", + " 32.81286\n", " Nan\n", - " 5\n", + " 24\n", + " 1.32\n", " Nan\n", + " 2.42\n", " Nan\n", " Nan\n", - " \n", - " \n", - " Potencia Watts\n", + " 40.000\n", + " 300\n", + " 6\n", + " 33\n", + " 24\n", " Nan\n", " Nan\n", - " 2980\n", - " 2980\n", + " 3.6\n", " Nan\n", + " 10\n", " Nan\n", - " 1280\n", + " 30\n", " Nan\n", " Nan\n", + " 11\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 11.5\n", " Nan\n", " Nan\n", - " 170\n", " Nan\n", + " 6999\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 5000\n", + " 60\n", + " 6000.000\n", + " 36.094147\n", " Nan\n", + " 15\n", + " 2.615\n", " Nan\n", + " 3.5\n", " Nan\n", + " 0.375\n", + " 90.000\n", " Nan\n", + " 8\n", + " 42\n", + " 15\n", " Nan\n", " Nan\n", + " 5\n", " Nan\n", + " 20\n", " Nan\n", + " 33\n", " Nan\n", " Nan\n", + " 32\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 28\n", + " 1.2\n", " Nan\n", " Nan\n", + " 9999\n", " Nan\n", " Nan\n", + " 3.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Potencia HP\n", - " Nan\n", - " Nan\n", - " 4\n", - " 4\n", + " Skyeye 5000 VTOL\n", + " 0\n", + " 6000.000\n", + " 30.625336\n", " Nan\n", " Nan\n", - " 1.74\n", + " 2.615\n", " Nan\n", + " 3.5\n", " Nan\n", + " 0.375\n", + " 100.000\n", + " 800\n", + " 8\n", + " 42\n", " Nan\n", " Nan\n", " Nan\n", + " 5\n", " Nan\n", + " 25\n", " Nan\n", + " 28\n", " Nan\n", " Nan\n", - " 8\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 28\n", " Nan\n", " Nan\n", " Nan\n", + " 13900\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 5000 VTOL octo\n", + " 0\n", + " 6000.000\n", " Nan\n", " Nan\n", " Nan\n", + " 2.615\n", " Nan\n", + " 3.5\n", " Nan\n", + " 0.375\n", + " 100.000\n", " Nan\n", " Nan\n", + " 38\n", + " 24\n", " Nan\n", " Nan\n", + " 5\n", " Nan\n", - " \n", - " \n", - " Precio\n", + " 15\n", " Nan\n", + " 35\n", " Nan\n", " Nan\n", + " 35\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 28\n", " Nan\n", " Nan\n", " Nan\n", + " 15999\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 8.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Volitation VT510\n", + " 0\n", + " 6000.000\n", + " 32.81286\n", + " 17000\n", + " 25\n", " Nan\n", " Nan\n", + " 2.905\n", " Nan\n", " Nan\n", + " 100.000\n", " Nan\n", + " 5\n", + " 50\n", + " 25\n", " Nan\n", " Nan\n", + " 5.1\n", " Nan\n", - " 3999\n", - " 4679\n", - " 69999\n", - " 7999\n", - " 8999\n", - " 8999\n", - " 2299\n", - " 6799\n", - " 4999\n", - " 6999\n", - " 9999\n", - " 13900\n", - " 15999\n", - " 16599\n", + " 25\n", " Nan\n", + " 30\n", " Nan\n", " Nan\n", - " \n", - " \n", - " Tiempo de emergencia en vuelo\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", " Nan\n", + " 25\n", + " 5\n", " Nan\n", " Nan\n", + " 16599\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Ascend\n", + " 0\n", + " 6000.000\n", + " 21.87524\n", + " 10000\n", " Nan\n", " Nan\n", " Nan\n", + " 1.562\n", " Nan\n", " Nan\n", + " 9.500\n", " Nan\n", + " 6\n", + " 30\n", + " 13\n", " Nan\n", " Nan\n", + " 2\n", " Nan\n", + " 0.6\n", + " 0.05\n", + " 20\n", + " 6\n", + " 8.9\n", + " 3\n", + " 15\n", " Nan\n", " Nan\n", - " 0.108\n", - " 0.108\n", - " 0.108\n", " Nan\n", " Nan\n", " Nan\n", @@ -1584,18 +1773,41 @@ " Nan\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Transition\n", + " 0\n", + " 6000.000\n", + " 21.87524\n", + " 13000\n", " Nan\n", " Nan\n", " Nan\n", + " 2.3\n", " Nan\n", " Nan\n", + " 18.000\n", " Nan\n", - " \n", - " \n", - " Distancia de aterrizaje\n", + " 12\n", + " 30\n", + " 13\n", " Nan\n", " Nan\n", + " 3\n", " Nan\n", + " 1.5\n", + " 0.05\n", + " 20\n", + " 11.8\n", + " 16.5\n", + " 5.8\n", + " 15\n", " Nan\n", " Nan\n", " Nan\n", @@ -1606,20 +1818,41 @@ " Nan\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Reach\n", " 0\n", + " 6000.000\n", + " 27.34405\n", + " 16000\n", " Nan\n", " Nan\n", " Nan\n", - " 0\n", - " 0\n", - " 0\n", - " Nan\n", + " 4.712\n", " Nan\n", " Nan\n", + " 91.000\n", " Nan\n", + " 20\n", + " 35\n", + " 13\n", " Nan\n", " Nan\n", + " 6\n", " Nan\n", + " 7\n", + " 0.05\n", + " 25\n", + " 54\n", + " 84\n", + " 31\n", + " 15\n", " Nan\n", " Nan\n", " Nan\n", @@ -1630,1143 +1863,382 @@ " Nan\n", " Nan\n", " Nan\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", - " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Procesando los datos ===\n", + "=== Inicio del procesamiento de datos ===\n", + "\n", + "=== Comprobación de duplicados ===\n", + "No se encontraron duplicados en índices o columnas.\n", + "\n", + "=== Convirtiendo valores a numéricos donde sea posible ===\n", + "=== Procesamiento completado ===\n", + "\n", + "✅ Los encabezados se preservaron correctamente.\n", + "\n", + "=== Mostrando datos procesados en formato HTML ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Datos Procesados

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia específica (P/W)Capacidad combustibleConsumoPotencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespegue1112122111111211122222222222323222222
    Propulsión horizontal2222222221122222211111222222222222222
    Propulsión vertical5551511555555155511111111111515111111
    Cantidad de motores propulsión vertical0004044000000400044444444444040484444
    Cantidad de motores propulsión horizontal1111111111111111111111111111111111111
    Misión1111111111111111111111111111111111111
    Dimensiones de la bahía de carga útilNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan0.2 x 0.2 x 0.11Nan15 x 10 x 9NanNanNanNanNanNanNan560 x 210 x 185 mm560 x 260 x 270 mm560 x 260 x 270 mm920 x 340 x 350 mmNanNanNanNanNanNanModelo
    Battery Power SupplyNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanSemi Solid State LiNanion, 22AhNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan2 x 3800mAh 4S Lipo2 x 9000mAh 4S Lipo12 x 16000mAh 4S LipoStalker XE0.06000.00016.88037912000.0NaN0.8715.3012552.1NaN0.21113.600370.08.020.0NaNNaNNaN3.6570.2392.4947562.015.43332NaNNaN10.886208NaN59.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Modelo Motor Fixed WingNanNanELNan005ELNan005NanNanEnya R120NanNanNanBatería recargableMotor de combustible pesado (JPNan5 o JPNan8)EFI con JPNan5/JPNan8NanEFI con JPNan5/JPNan8Heavy Fuel (JPNan5/JPNan8)EFI, JPNan5/JPNan8NanNanNanNanNanNanNanNanEFI de gasolina20–35 cc gasolinaCompatible con motores eléctricos o de gasolina50–100 cc gasolina50–100 cc gasolinaDLA 180cc EFINanNanMotor pistón EFITNanMotor MN501Saito FG21HFE International DA100EFIStalker VXE300.06000.00017.60237312000.0NaN1.15828315.3264492.5908NaN0.219.958433.08.025.034211NaNNaNNaN4.87680.3181952.494756NaN16.093422NaNNaN17.463292NaN161.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Modelo Motor VTOLNanNanNanNanNanNanNanNanNanNanNanNanNanFLARES eléctricoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanTNanMotor MN501TNanMotor ALTI U7TNanMotor ALTI U15 II KV100Aerosonde Mk. 4.7 Fixed WingNaN6000.00027.3440514700.0NaN1.5512.53.0NaN0.27742.200NaN19.833.43886NaNNaNNaN4.40.35214.5NaN25.0NaN27.7NaNNaN140.0NaNNaNNaN0.62980.04.0NaNNaNNaN1.0002.0005.0000.0001.0001.000
    PortabilidadsisisisisisiNanAltaAltamente transportableAltamente transportableSistema transportable en cajas ligerasNanTransportable por barco y aviónOperaciones en espacios reducidosTransportable por barco y aviónAltaOperable desde tierra y marIncluye maleta de transporteMontaje en 2 minutosMontaje en 2 minutosAltaAltaAltaAltaAltaMediaNanNanNanNanNanNanNanNanNanNanNan
    CámaraNanNanNanNanNanNanNanNanEO/IR, WAMI, SAR, COMINT, ELINTEO/Cooled IR, WAMI, COMINT, ELINTEO, IR giroestabilizadasEO, MWIR, ViDAREO, MWIR, ViDAR, LRFModular payloadsEO, MWIR, ViDAR, LRFEO, MWIR/EO, ViDAREO, MWIR, LRF, IR MarkerNanRGB, Multiespectral, TérmicaNo aplicaNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
    Despegue todos los tiposBungee, rail, VTOLBungee, rail, VTOLRailVTOLRailVTOLRailRailRailRailRailRailRailVTOLRailRailRailVTOLVTOLVTOLVTOLVTOLVTOLVTOLVTOLVTOLNanVTOLNanVTOLNanVTOLNanVTOLNanNanNan
    Datalink banksNanNanL,S,CL,S,CL,S,CL,S,C,KUNanNanLOS, BLOSLOS, AESNan256, RelayDigital, varias frecuenciasEnlace de datos digital encriptadoEnlace de datos encriptadoNanSATCOM, BLOS, robustoEncrypted/UnencryptedEncriptadoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan
    Material del fuselajeNanNanNanNanNanNanNanFibra de carbonoNanNanNanNanNanNanNanNanNanNanNanNanFibra de carbono, Kevlar, PVCFibra de carbono, Kevlar, PVCFibra de carbono y compuestosFibra de carbono, Kevlar, fibra de vidrioFibra de carbono completaNanFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoFibra de carbonoCarbon FiberFibra de carbono compuestaNanNanNan
    Motor recomendadoNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanEFI de gasolinaGasolina 20–35 ccGasolina o eléctricaGasolina 50–100 ccGasolina 50–100 ccGasolina EFI DLA 180 ccNanNanGasolina o diéselNanNanNan
    Hélice recomendada VTOLNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanMaster Airscrew 3x Power 13x12TNanMotor 18x6.1 Carbon FiberTNanMotor 40x13.1 Carbon Fiber
    Hélice recomendada Fixed WingNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNanNan16 pulgadas16Nan17 pulgadas17Nan18 pulgadasVTOL: 26 pulgadas; Ala fija: 24 pulgadasVTOL: 22 pulgadas; Ala fija: 21 pulgadasNan19 x 8 pulgadasNanNanNan32 x 10 pulgadasNanNanNanNanNanNan
    Sistema de controlNanNanNanNanNanNanNanNanNavegación avanzada, redundanteNavegación avanzada, precisiónGPS/INS, navegación manual o automáticaArquitectura abiertaArquitectura abiertaModular y portátilNavegación avanzadaModularModular y portátilNanControlador DeltaQuadControlador DeltaQuadNanNanNanNanLightning X7NanNanNanNanNanNanNanNanNanNanNanNan
    Características adicionalesNanNanNanNanNanNanNanAlta fiabilidad y facilidad de usoMultiNanpayload, operable en clima extremoMultiNanpayload, operable en clima extremoModular, navegación spline, ATOLModular, flexibleModular, multiNanmisiónResistente a alta mar y vientosSeguridad aumentadaCapacidad MultiNanINTModularidad y flexibilidadDespegue y aterrizaje vertical, resistente a lluvias ligerasDespegue y aterrizaje vertical, transmisión de video en vivo, integración de múltiples sensoresDespegue y aterrizaje vertical, transmisión de video en vivo, mecanismo de liberación de carga útil personalizableAlta portabilidadAlta portabilidadAlta portabilidadMayor capacidad de cargaLarga autonomíaAutonomía extendidaUso optimizado para misiones prolongadasCompatible VTOL; configuración flexibleDiseñado para vigilancia y cartografíaAlta capacidad VTOL; alcance extendidoTanque de combustible de Kevlar; sistema de freno en las ruedasConfiguración VTOL avanzadaNanDiseño modular de ala tándemNanNanNan
    indice_desconocidopdfpdfLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkNanNanLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkLinkNanLinkpdfpdfpdf
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Procesando los datos ===\n", - "=== Inicio del procesamiento de datos ===\n", - "\n", - "=== Comprobación de duplicados ===\n", - "No se encontraron duplicados en índices o columnas.\n", - "\n", - "=== Convirtiendo valores a numéricos donde sea posible ===\n", - "=== Procesamiento completado ===\n", - "\n", - "✅ Los encabezados se preservaron correctamente.\n", - "\n", - "=== Mostrando datos procesados en formato HTML ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Datos Procesados

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -2774,111 +2246,127 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -2893,65 +2381,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -2961,32 +2426,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -2996,194 +2471,132 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -3193,6 +2606,17 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3201,30 +2625,24 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3232,16 +2650,36 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -3258,21 +2696,37 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -3281,94 +2735,92 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3378,75 +2830,43 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3455,61 +2875,43 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3518,216 +2920,311 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -3736,26 +3233,43 @@ " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -3764,196 +3278,359 @@ " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3961,34 +3638,44 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3999,905 +3686,822 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
    Modelo
    Distancia de carrera requerida para despegue0.00.06000.00027.344059700.0NaN0.01.5512.53.0NaN0.00.27753.500NaN12.033.43886NaNNaNNaN4.40.35211.3NaN25.0NaN42.2NaN0.0NaN140.0NaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
    Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.00.62980.04.0NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.34405Aerosonde Mk. 4.8 Fixed wingNaN6000.00027.3440518200.0NaN1.5512.53.0NaN30.4065840.27754.400NaN19.833.43886NaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.2502884.40.35217.7NaN32.8128636.09414730.62533625.0NaN32.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.84236.7NaNNaN140.0NaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaN17000.010000.013000.016000.01.0002.0005.0000.0001.0001.000
    Velocidad de pérdida limpia (KCAS)Aerosonde Mk. 4.8 VTOL FTUAS0.06000.000NaN15000.0NaNNaN12.5NaNNaNNaN93.000NaN14.0NaNNaNNaNNaNNaNNaN22.7NaNNaNNaN70.3NaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Área del ala0.871.1582831.551.551.55NaN0.57NaNAAI AerosondeNaN5500.000NaN15000.0NaN0.5714.7543861.7NaNNaN13.1003270.026.030.845725NaNNaNNaN2.90.196552NaN0.84NaNNaN0.80.52NaNNaN10.0NaN150.023.098.0NaN0.881.01.331.322.6152.6152.615NaN1280.01.74NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386Fulmar XNaN6000.00030.4065849.842NaNNaNNaN1.2NaNNaN20.000800.08.041.7NaNNaNNaN3.0NaNNaNNaN27.8NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Orbiter 4NaN6000.000NaNNaNNaNNaN
    Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
    Profundidad del fuselaje55.000NaN24.036.0NaNNaNNaN5.2NaN12.0NaNNaNNaNNaNNaNNaN150.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Orbiter 3NaN6000.000NaNNaNNaNNaNNaN1.2NaNNaN32.00050.06.036.0NaNNaNNaN4.4NaN5.5NaNNaNNaNNaNNaN
    Ancho del fuselaje0.2110.20.2770.2770.277NaN50.0NaNNaNNaNNaNNaNNaN1.0001.0005.0000.0001.0001.000
    MantisNaN6000.00018.265826NaNNaNNaNNaN1.48NaNNaN6.50025.02.025.6NaNNaNNaN2.1NaNNaNNaN16.7NaNNaN0.3750.3750.375NaNNaN25.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0001.0005.0000.0001.0001.000
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0ScanEagleNaN6000.00030.62533619500.0NaNNaNNaN3270.0800.01.71NaN50.025.0NaN26.500NaN18.041.2NaN500.0NaNNaN270.0100.0100.03.1NaN5.0NaN28.0NaNNaNNaNNaN101.86NaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0IntegratorNaN5.06.012.020.0
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.438866000.00030.95346519500.0NaN30.84572541.736.036.025.641.246.3NaN46.341.2NaN2.5NaNNaN74.800NaN24.046.3NaNNaNNaN33.033.033.033.033.033.04.8NaN30.018.0NaN28.3NaN33.042.042.038.050.030.030.035.0
    Velocidad de pérdida (KCAS)NaNNaNNaN92.6NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Integrator VTOL0.05000.000NaNNaNNaNNaNNaNNaN14.015.517.075.000NaN16.0NaNNaNNaNNaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
    Tasa de ascensoNaNNaNNaNNaN30.0NaNNaNNaNNaNNaNNaNNaNNaN0.02.0002.0001.0004.0001.0001.000
    Integrator Extended RangeNaN6000.000NaN19500.0NaNNaNNaN2.5NaNNaN74.800500.019.046.3NaNNaNNaN4.8NaN18.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Radio de giroScanEagle 3NaN6000.00025.70340720.0NaNNaNNaN2.4NaNNaN36.300NaN18.041.2NaNNaNNaN4.0NaN8.6NaN23.5NaNNaNNaNNaNNaNNaN100.0120.0150.0NaN170.0NaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    RQ Nan 21A BlackjackNaN6000.00033.79724620.0NaNNaNNaN2.5NaNNaN61.000NaN16.046.3NaNNaN
    envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.35217.7NaN0.19655230.9NaNNaNNaNNaN92.6NaNNaNNaNNaNNaN8.0NaNNaNNaN1.0002.0005.0000.0001.0001.000
    DeltaQuad Evo0.06000.00018.09082413.0NaN0.84NaN0.75NaNNaN10.000270.04.53NaNNaNNaNNaN2.69NaN3.04.5316.544.86.84.845.0NaNNaNNaNNaNNaNNaN0.02.0001.0001.0004.0001.0001.000
    payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNDeltaQuad Pro #MAP0.06000.00017.50019213.123NaNNaNNaN0.9NaNNaN6.200100.01.83NaN4.53NaNNaNNaN2.35NaN1.2NaN16.0NaNNaNNaN50.050.0NaNNaNNaNNaNNaNNaN0.050.050.050.02.0001.0001.0004.0001.0001.000
    Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8DeltaQuad Pro #CARGO0.06000.00017.50019213.123NaNNaN16.728.028.3NaN0.9NaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
    RTF (dry weight)6.200100.01.83NaNNaNNaNNaN2.35NaN1.2NaN16.0NaNNaNNaN50.030.0NaNNaNNaNNaNNaNNaN4.80.02.0001.0001.0004.0001.0001.000
    V210.06000.00019.68771648800.014.00.8NaN0.93NaNNaN10.000NaN3.033.014.0NaN100.02.15NaN1.5NaN18.0NaNNaN2.65NaN30.012.5NaNNaNNaNNaNNaN3999.00.108NaN6.011.854.02.0001.0001.0004.0001.0001.000
    RTF (Including fuel & Batteries)V250.06000.00021.8752416000.015.50.52NaN0.93NaN27.742.236.770.3NaN12.500NaN4.033.015.5NaN120.02.45NaN2.2NaN20.0NaNNaN3.45NaN30.024.0NaNNaNNaN6.8NaNNaN4679.00.108NaN2.0001.0001.0004.0001.0001.000
    V320.06000.00021.8752416000.017.0NaNNaN1.0NaNNaN23.500NaN4.533.017.0NaN150.03.2NaN5.0NaN20.0NaNNaN6.45NaN30.025.0NaNNaN8.916.584.0
    Empty weight10.88620817.463292NaNNaNNaN69999.00.108NaN10.02.0002.0001.0004.0001.0001.000
    V350.06000.00027.3440516000.0NaNNaNNaN1.88NaNNaN32.000NaN2.833.0NaNNaNNaN3.5NaN4.810.0NaN25.0NaN2.653.456.45NaNNaNNaN6.57.111.511.032.030.0NaN35.0NaN3.05.831.0
    Maximum CrosswindNaNNaNNaNNaN7999.0NaNNaN2.0002.0001.0004.0001.0001.000
    V390.06000.00027.3440516000.0NaNNaNNaNNaNNaNNaN24.000NaN30.04.533.0NaNNaNNaN45.050.050.03.9NaN5.0NaN25.0NaNNaNNaNNaN30.0NaNNaNNaNNaNNaNNaN8999.0NaNNaN15.015.015.02.0002.0001.0004.0001.0001.000
    Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0Volitation VT3700.06000.00027.3440517000.0NaNNaNNaN2.02NaNNaN40.000NaN15.033.0NaNNaNNaN6.5NaN18.0NaN25.0NaN
    Wing LoadingNaNNaNNaNNaNNaNNaN23.013.00.96NaNNaN8999.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 2600NaN6000.00036.094147NaN10.00.88NaN2.05NaNNaN15.000NaN2.0NaN10.0NaNNaN12.524.025.02.6NaN4.0NaN33.0NaNNaN6.5NaNNaNNaNNaNNaNNaN2299.0NaNNaN2.0002.0001.0004.0001.0001.000
    Potencia específica (P/W)NaNNaNNaNSkyeye 2930 VTOL0.06000.00026.250288NaN18.01.0NaN2.03NaN98.0NaN28.000NaN3.030.018.0NaNNaN2.93NaN6.0NaN24.0NaNNaN7.1NaNNaNNaNNaNNaNNaN6799.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 360050.06000.000NaNNaN12.51.33NaN2.488NaNNaN28.000NaN4.5NaN12.5NaNNaN3.6NaN10.0NaNNaN
    Capacidad combustibleNaNNaN11.5NaNNaNNaNNaN11.5NaNNaNNaN4999.0NaNNaN3.0002.0005.0000.0001.0001.000
    Skyeye 3600 VTOL0.06000.00032.81286NaN24.01.32NaN2.42NaNNaN40.000300.06.033.024.0NaNNaN3.6NaN10.0NaN30.0NaNNaN11.0NaNNaNNaNNaN13.011.5NaNNaN11.511.528.028.028.025.0NaN6999.0NaNNaN2.0002.0001.0004.0001.0001.000
    ConsumoNaNNaN0.60.6NaNNaNSkyeye 500060.06000.00036.094147NaN15.02.615NaN3.5NaN0.37590.000NaN8.042.015.0NaNNaN5.0NaN20.0NaN33.0NaNNaN32.0NaNNaNNaNNaN28.01.2NaNNaN9999.0NaNNaN3.0002.0005.0000.0001.0001.000
    Skyeye 5000 VTOL0.06000.00030.625336NaN0.96NaN2.615NaN3.5NaN0.375100.000800.08.042.0NaN1.2NaNNaN5.0NaN25.0NaN28.0NaN
    Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaN28.0NaNNaNNaN13900.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 5000 VTOL octo0.06000.000NaN170.0NaNNaN2.615NaN3.5NaN0.375100.000NaNNaN38.024.0NaNNaN5.0NaN15.0NaN35.0NaNNaN35.0NaNNaNNaNNaN28.0NaNNaNNaN15999.0NaNNaN2.0002.0001.0008.0001.0001.000
    Potencia HPVolitation VT5100.06000.00032.8128617000.025.0NaNNaN4.04.02.905NaNNaN1.74100.000NaN5.050.025.0NaNNaN5.1NaN25.0NaN30.0NaNNaNNaNNaNNaN8.0NaNNaN25.05.0NaNNaN16599.0NaNNaN2.0002.0001.0004.0001.0001.000
    Ascend0.06000.00021.8752410000.0NaNNaNNaN1.562NaNNaN9.500NaN6.030.013.0NaNNaN2.0NaN0.60.0520.06.08.93.015.0NaNNaNNaNNaNNaNNaN
    PrecioNaNNaNNaNNaN2.0002.0001.0004.0001.0001.000
    Transition0.06000.00021.8752413000.0NaNNaNNaN2.3NaNNaN18.000NaN12.030.013.0NaNNaN3.0NaN1.50.0520.011.816.55.815.0NaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Tiempo de emergencia en vueloReach0.06000.00027.3440516000.0NaNNaNNaN4.712NaNNaN91.000NaN20.035.013.0NaNNaN6.0NaN7.00.0525.054.084.031.015.0NaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parámetros disponibles en df_procesado antes de seleccionar:\n", + "['Distancia de carrera requerida para despegue', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Tasa de ascenso', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia específica (P/W)', 'Capacidad combustible', 'Consumo', 'Potencia Watts', 'Potencia HP', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Despegue', 'Propulsión horizontal', 'Propulsión vertical', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal', 'Misión']\n", + "\n", + "=== Selección de Parámetros ===\n", + "Parámetros disponibles:\n", + "1. Distancia de carrera requerida para despegue\n", + "2. Altitud a la que se realiza el crucero\n", + "3. Velocidad a la que se realiza el crucero (KTAS)\n", + "4. Techo de servicio máximo\n", + "5. Velocidad de pérdida limpia (KCAS)\n", + "6. Área del ala\n", + "7. Relación de aspecto del ala\n", + "8. Longitud del fuselaje\n", + "9. Profundidad del fuselaje\n", + "10. Ancho del fuselaje\n", + "11. Peso máximo al despegue (MTOW)\n", + "12. Alcance de la aeronave\n", + "13. Autonomía de la aeronave\n", + "14. Velocidad máxima (KIAS)\n", + "15. Velocidad de pérdida (KCAS)\n", + "16. Tasa de ascenso\n", + "17. Radio de giro\n", + "18. envergadura\n", + "19. Cuerda\n", + "20. payload\n", + "21. duracion en VTOL\n", + "22. Crucero KIAS\n", + "23. RTF (dry weight)\n", + "24. RTF (Including fuel & Batteries)\n", + "25. Empty weight\n", + "26. Maximum Crosswind\n", + "27. Rango de comunicación\n", + "28. Wing Loading\n", + "29. Potencia específica (P/W)\n", + "30. Capacidad combustible\n", + "31. Consumo\n", + "32. Potencia Watts\n", + "33. Potencia HP\n", + "34. Precio\n", + "35. Tiempo de emergencia en vuelo\n", + "36. Distancia de aterrizaje\n", + "37. Despegue\n", + "38. Propulsión horizontal\n", + "39. Propulsión vertical\n", + "40. Cantidad de motores propulsión vertical\n", + "41. Cantidad de motores propulsión horizontal\n", + "42. Misión\n", + "\n", + "Preseleccionados: 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 5, 18, 19, 20, 25\n", + "Parámetros seleccionados después de filtrar:\n", + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n", + "Parámetros seleccionados después de filtrar:\n", + "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Datos Filtrados por Parámetros (df_filtrado)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", "
    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Modelo
    Stalker XE16.88037912000.00.8715.3012552.113.600370.08.020.0NaNNaN0.1080.1080.1083.6570.2392.49475610.886208
    Stalker VXE3017.60237312000.01.15828315.3264492.590819.958433.08.025.034211NaNNaN4.87680.3181952.49475617.463292
    Aerosonde Mk. 4.7 Fixed Wing27.3440514700.01.5512.53.042.200NaN19.833.43886NaNNaN4.40.35214.5NaN
    Aerosonde Mk. 4.7 VTOL27.344059700.01.5512.53.053.500NaN12.033.43886NaNNaN4.40.35211.3NaN
    Aerosonde Mk. 4.8 Fixed wing27.3440518200.01.5512.53.054.400NaN19.833.43886NaNNaN4.40.35217.7NaN
    Distancia de aterrizajeAerosonde Mk. 4.8 VTOL FTUASNaN15000.0NaN12.5NaN93.000NaN14.0NaNNaNNaNNaNNaN22.7NaN
    AAI AerosondeNaN15000.00.5714.7543861.713.1003270.026.030.845725NaNNaN2.90.196552NaN10.0
    Fulmar X30.4065849.842NaNNaN1.220.000800.08.041.7NaNNaN0.03.0NaNNaNNaN0.00.00.0
    Orbiter 4NaNNaNNaNNaN1.255.000NaN24.036.0NaNNaN5.2NaN12.0NaN
    Orbiter 3NaNNaNNaNNaN1.232.00050.06.036.0NaNNaN4.4NaN5.5NaN
    Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.0Mantis18.265826NaNNaNNaN1.486.50025.02.025.6NaNNaN2.1NaNNaNNaN
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0ScanEagle30.62533619500.0NaNNaN1.7126.500NaN18.041.2NaNNaN3.1NaN5.0NaN
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNIntegrator30.95346519500.0NaNNaN2.574.800NaN24.046.3NaNNaN4.8NaN18.0NaN
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNIntegrator VTOLNaNNaNNaNNaNNaN75.000NaN16.0NaNNaNNaNNaNNaN18.0NaN
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNIntegrator Extended RangeNaN19500.0NaNNaN2.574.800500.019.046.3NaNNaN4.8NaN18.0NaN
    Modelo Motor VTOLNaNNaNNaNNaNScanEagle 325.70340720.0NaNNaN2.436.300NaN18.041.2NaNNaN4.0NaN8.6NaN
    RQ Nan 21A Blackjack33.79724620.0NaNNaN2.561.000NaN16.046.3NaNNaN4.8NaN17.7NaN
    DeltaQuad Evo18.09082413.00.84NaN0.7510.000270.04.53NaNNaNNaN2.69NaN3.04.8
    DeltaQuad Pro #MAP17.50019213.123NaNNaN0.96.200100.01.83NaNNaNNaN2.35NaN1.2NaN
    DeltaQuad Pro #CARGO17.50019213.123NaNNaN0.96.200100.01.83NaNNaNNaN2.35NaN1.2NaN
    PortabilidadNaNNaNNaNNaNNaNV2119.68771648800.00.8NaN0.9310.000NaN3.033.014.014.02.15NaN1.52.65
    V2521.8752416000.00.52NaN0.9312.500NaN4.033.015.515.52.45NaN2.23.45
    V3221.8752416000.0NaNNaN1.023.500NaN4.533.017.017.03.2NaN5.06.45
    V3527.3440516000.0NaNNaN1.8832.000NaN2.833.0NaNNaN3.5NaN10.0NaN
    V3927.3440516000.0NaNNaNNaN24.000NaN4.533.0NaNNaN3.9NaN5.0NaN
    Volitation VT37027.3440517000.0NaNNaN2.0240.000NaN15.033.0NaNNaN6.5NaN18.0NaN
    CámaraNaNNaNSkyeye 260036.094147NaN0.88NaN2.0515.000NaN2.0NaN10.010.02.6NaN4.06.5
    Skyeye 2930 VTOL26.250288NaN1.0NaN2.0328.000NaN3.030.018.018.02.93NaN6.07.1
    Skyeye 3600NaNNaN1.33NaN2.48828.000NaN4.5NaN12.512.53.6NaN10.011.5
    Skyeye 3600 VTOL32.81286NaN1.32NaN2.4240.000300.06.033.024.024.03.6NaN10.011.0
    Skyeye 500036.094147NaN2.615NaN3.590.000NaN8.042.015.015.05.0NaN20.032.0
    Skyeye 5000 VTOL30.625336NaN2.615NaN3.5100.000800.08.042.0NaNNaN5.0NaN25.0NaN
    Skyeye 5000 VTOL octoNaNNaN2.615NaN3.5100.000NaNNaN38.024.0NaN5.0NaN15.035.0
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNVolitation VT51032.8128617000.0NaNNaN2.905100.000NaN5.050.025.025.05.1NaN25.0NaN
    Ascend21.8752410000.0NaNNaN1.5629.500NaN6.030.013.0NaN2.0NaN0.63.0
    Transition21.8752413000.0NaNNaN2.318.000NaN12.030.013.0NaN3.0NaN1.55.8
    Reach27.3440516000.0NaNNaN4.71291.000NaN20.035.013.0NaN6.0NaN7.031.0
    " @@ -4913,74 +4517,48 @@ "name": "stdout", "output_type": "stream", "text": [ - "Parámetros disponibles en df_procesado antes de seleccionar:\n", - "['Distancia de carrera requerida para despegue', 'Altitud a la que se realiza el crucero', 'Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Velocidad de pérdida limpia (KCAS)', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Profundidad del fuselaje', 'Ancho del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Tasa de ascenso', 'Radio de giro', 'envergadura', 'Cuerda', 'payload', 'duracion en VTOL', 'Crucero KIAS', 'RTF (dry weight)', 'RTF (Including fuel & Batteries)', 'Empty weight', 'Maximum Crosswind', 'Rango de comunicación', 'Wing Loading', 'Potencia específica (P/W)', 'Capacidad combustible', 'Consumo', 'Potencia Watts', 'Potencia HP', 'Precio', 'Tiempo de emergencia en vuelo', 'Distancia de aterrizaje', 'Despegue', 'Propulsión horizontal', 'Propulsión vertical', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal', 'Misión', 'Dimensiones de la bahía de carga útil', 'Battery Power Supply', 'Modelo Motor Fixed Wing', 'Modelo Motor VTOL', 'Portabilidad', 'Cámara', 'Despegue todos los tipos', 'Datalink banks', 'Material del fuselaje', 'Motor recomendado', 'Hélice recomendada VTOL', 'Hélice recomendada Fixed Wing', 'Sistema de control', 'Características adicionales', 'indice_desconocido']\n", "\n", - "=== Selección de Parámetros ===\n", - "Parámetros disponibles:\n", - "1. Distancia de carrera requerida para despegue\n", - "2. Altitud a la que se realiza el crucero\n", - "3. Velocidad a la que se realiza el crucero (KTAS)\n", - "4. Techo de servicio máximo\n", - "5. Velocidad de pérdida limpia (KCAS)\n", - "6. Área del ala\n", - "7. Relación de aspecto del ala\n", - "8. Longitud del fuselaje\n", - "9. Profundidad del fuselaje\n", - "10. Ancho del fuselaje\n", - "11. Peso máximo al despegue (MTOW)\n", - "12. Alcance de la aeronave\n", - "13. Autonomía de la aeronave\n", - "14. Velocidad máxima (KIAS)\n", - "15. Velocidad de pérdida (KCAS)\n", - "16. Tasa de ascenso\n", - "17. Radio de giro\n", - "18. envergadura\n", - "19. Cuerda\n", - "20. payload\n", - "21. duracion en VTOL\n", - "22. Crucero KIAS\n", - "23. RTF (dry weight)\n", - "24. RTF (Including fuel & Batteries)\n", - "25. Empty weight\n", - "26. Maximum Crosswind\n", - "27. Rango de comunicación\n", - "28. Wing Loading\n", - "29. Potencia específica (P/W)\n", - "30. Capacidad combustible\n", - "31. Consumo\n", - "32. Potencia Watts\n", - "33. Potencia HP\n", - "34. Precio\n", - "35. Tiempo de emergencia en vuelo\n", - "36. Distancia de aterrizaje\n", - "37. Despegue\n", - "38. Propulsión horizontal\n", - "39. Propulsión vertical\n", - "40. Cantidad de motores propulsión vertical\n", - "41. Cantidad de motores propulsión horizontal\n", - "42. Misión\n", - "43. Dimensiones de la bahía de carga útil\n", - "44. Battery Power Supply\n", - "45. Modelo Motor Fixed Wing\n", - "46. Modelo Motor VTOL\n", - "47. Portabilidad\n", - "48. Cámara\n", - "49. Despegue todos los tipos\n", - "50. Datalink banks\n", - "51. Material del fuselaje\n", - "52. Motor recomendado\n", - "53. Hélice recomendada VTOL\n", - "54. Hélice recomendada Fixed Wing\n", - "55. Sistema de control\n", - "56. Características adicionales\n", - "57. indice_desconocido\n", + "=== Filas con datos faltantes ===\n", + "1. Stalker XE\n", + "2. Stalker VXE30\n", + "3. Aerosonde Mk. 4.7 Fixed Wing\n", + "4. Aerosonde Mk. 4.7 VTOL\n", + "5. Aerosonde Mk. 4.8 Fixed wing\n", + "6. Aerosonde Mk. 4.8 VTOL FTUAS\n", + "7. AAI Aerosonde\n", + "8. Fulmar X\n", + "9. Orbiter 4\n", + "10. Orbiter 3\n", + "11. Mantis\n", + "12. ScanEagle\n", + "13. Integrator\n", + "14. Integrator VTOL\n", + "15. Integrator Extended Range\n", + "16. ScanEagle 3\n", + "17. RQ Nan 21A Blackjack\n", + "18. DeltaQuad Evo\n", + "19. DeltaQuad Pro #MAP\n", + "20. DeltaQuad Pro #CARGO\n", + "21. V21\n", + "22. V25\n", + "23. V32\n", + "24. V35\n", + "25. V39\n", + "26. Volitation VT370\n", + "27. Skyeye 2600\n", + "28. Skyeye 2930 VTOL\n", + "29. Skyeye 3600\n", + "30. Skyeye 3600 VTOL\n", + "31. Skyeye 5000\n", + "32. Skyeye 5000 VTOL\n", + "33. Skyeye 5000 VTOL octo\n", + "34. Volitation VT510\n", + "35. Ascend\n", + "36. Transition\n", + "37. Reach\n", + "🔁 Entrada inválida o vacía. Seleccionando la primera fila por defecto.\n", "\n", - "Preseleccionados: 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 5, 18, 19, 20, 25\n", - "Parámetros seleccionados después de filtrar:\n", - "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n", - "Parámetros seleccionados después de filtrar:\n", - "['Velocidad a la que se realiza el crucero (KTAS)', 'Techo de servicio máximo', 'Área del ala', 'Relación de aspecto del ala', 'Longitud del fuselaje', 'Peso máximo al despegue (MTOW)', 'Alcance de la aeronave', 'Autonomía de la aeronave', 'Velocidad máxima (KIAS)', 'Velocidad de pérdida (KCAS)', 'Velocidad de pérdida limpia (KCAS)', 'envergadura', 'Cuerda', 'payload', 'Empty weight']\n" + "=== Analizando celdas faltantes en la fila: 'Stalker XE' ===\n" ] }, { @@ -5018,919 +4596,142 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Datos Filtrados por Parámetros (df_filtrado)

    \n", + "

    Celdas Faltantes Identificadas en df_filtrado (df_celdas_faltantes)

    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReachValores
    ModeloÍndice
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465Velocidad de pérdida (KCAS)NaN
    Velocidad de pérdida limpia (KCAS)NaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Generando resumen de valores faltantes por columna ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de Valores Faltantes de df_filtrado

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    FilaValores Faltantes
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.00Stalker XE2.000
    Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN1Stalker VXE302.000
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2Aerosonde Mk. 4.7 Fixed Wing4.000
    Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.7123Aerosonde Mk. 4.7 VTOL4.000
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.04Aerosonde Mk. 4.8 Fixed wing4.000
    Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0NaN50.025.0NaNNaNNaN500.0NaNNaN270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN5Aerosonde Mk. 4.8 VTOL FTUAS10.000
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.06AAI Aerosonde4.000
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.07Fulmar X7.000
    Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.08Orbiter 49.000
    Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN9Orbiter 38.000
    envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Columnas con datos faltantes ===\n", - "1. Stalker XE\n", - "2. Stalker VXE30\n", - "3. Aerosonde Mk. 4.7 Fixed Wing\n", - "4. Aerosonde Mk. 4.7 VTOL\n", - "5. Aerosonde Mk. 4.8 Fixed wing\n", - "6. Aerosonde Mk. 4.8 VTOL FTUAS\n", - "7. AAI Aerosonde\n", - "8. Fulmar X\n", - "9. Orbiter 4\n", - "10. Orbiter 3\n", - "11. Mantis\n", - "12. ScanEagle\n", - "13. Integrator\n", - "14. Integrator VTOL\n", - "15. Integrator Extended Range (ER)\n", - "16. ScanEagle 3\n", - "17. RQ Nan 21A Blackjack\n", - "18. DeltaQuad Evo\n", - "19. DeltaQuad Pro #MAP\n", - "20. DeltaQuad Pro #CARGO\n", - "21. V21\n", - "22. V25\n", - "23. V32\n", - "24. V35\n", - "25. V39\n", - "26. Volitation VT370\n", - "27. Skyeye 2600\n", - "28. Skyeye 2930 VTOL\n", - "29. Skyeye 3600\n", - "30. Skyeye 3600 VTOL\n", - "31. Skyeye 5000\n", - "32. Skyeye 5000 VTOL\n", - "33. Skyeye 5000 VTOL octo\n", - "34. Volitation VT510\n", - "35. Ascend\n", - "36. Transition\n", - "37. Reach\n", - "🔁 Entrada inválida o vacía. Seleccionando la primera columna por defecto.\n", - "\n", - "=== Analizando celdas faltantes en la columna: 'Stalker XE' ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Celdas Faltantes Identificadas en df_filtrado (df_celdas_faltantes)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Stalker XE
    Modelo
    Velocidad de pérdida (KCAS)NaN
    Velocidad de pérdida limpia (KCAS)NaN
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Generando resumen de valores faltantes por columna ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes de df_filtrado

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5949,7 +4750,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6181,7 +4982,7 @@ "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    ColumnaValores Faltantes
    0Stalker XE2.000
    1Stalker VXE302.000
    2Aerosonde Mk. 4.7 Fixed Wing4.000
    3Aerosonde Mk. 4.7 VTOL4.000
    4Aerosonde Mk. 4.8 Fixed wing4.000
    5Aerosonde Mk. 4.8 VTOL FTUAS10.000
    6AAI Aerosonde4.000
    7Fulmar X7.000
    8Orbiter 49.000
    9Orbiter 38.000
    10Mantis8.00010Mantis8.000
    11
    14Integrator Extended Range (ER)Integrator Extended Range7.000
    \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6224,81 +5025,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6346,21 +5072,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6406,21 +5117,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6466,21 +5162,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6526,21 +5207,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6586,21 +5252,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6646,21 +5297,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6706,21 +5342,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6766,21 +5387,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6826,21 +5432,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6886,21 +5477,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -6946,21 +5522,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7006,21 +5567,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7066,21 +5612,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7126,21 +5657,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7186,21 +5702,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7246,21 +5747,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7306,21 +5792,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7366,21 +5837,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7426,21 +5882,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7486,21 +5927,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7546,21 +5972,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7606,21 +6017,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7666,21 +6062,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7726,21 +6107,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7786,21 +6152,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7846,21 +6197,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7906,21 +6242,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -7966,21 +6287,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8026,21 +6332,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8086,21 +6377,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8146,21 +6422,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8206,21 +6467,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8266,21 +6512,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8326,6 +6557,10 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8341,9 +6576,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8370,6 +6602,20 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8403,33 +6649,187 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8461,53 +6861,20 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8521,49 +6888,18 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -8582,350 +6918,578 @@ " \n", " \n", " \n", + " \n", + "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Cantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisiónDimensiones de la bahía de carga útilBattery Power SupplyModelo Motor Fixed WingModelo Motor VTOLPortabilidadCámaraDespegue todos los tiposDatalink banksMaterial del fuselajeMotor recomendadoHélice recomendada VTOLHélice recomendada Fixed WingSistema de controlCaracterísticas adicionalesindice_desconocido
    Modelo
    -0.598nannannannannannannannannannannannannannannannannan
    Altitud a la que se realiza el crucero-0.159nannannannannannannannannannannannannannannannannan
    Velocidad a la que se realiza el crucero (KTAS)-0.126nannannannannannannannannannannannannannannannannan
    Techo de servicio máximo0.125nannannannannannannannannannannannannannannannannan
    Velocidad de pérdida limpia (KCAS)0.345nannannannannannannannannannannannannannannannannan
    Área del ala0.055nannannannannannannannannannannannannannannannannan
    Relación de aspecto del ala-0.247nannannannannannannannannannannannannannannannannan
    Longitud del fuselaje-0.004nannannannannannannannannannannannannannannannannan
    Profundidad del fuselajenannannannannannannannannannannannannannannannannannan
    Ancho del fuselaje0.574nannannannannannannannannannannannannannannannannan
    Peso máximo al despegue (MTOW)0.075nannannannannannannannannannannannannannannannannan
    Alcance de la aeronave0.262nannannannannannannannannannannannannannannannannan
    Autonomía de la aeronave-0.361nannannannannannannannannannannannannannannannannan
    Velocidad máxima (KIAS)-0.133nannannannannannannannannannannannannannannannannan
    Velocidad de pérdida (KCAS)0.444nannannannannannannannannannannannannannannannannan
    Tasa de ascensonannannannannannannannannannannannannannannannannannan
    Radio de gironannannannannannannannannannannannannannannannannannan
    envergadura-0.164nannannannannannannannannannannannannannannannannan
    Cuerda-0.313nannannannannannannannannannannannannannannannannan
    payload-0.111nannannannannannannannannannannannannannannannannan
    duracion en VTOL-0.188nannannannannannannannannannannannannannannannannan
    Crucero KIAS0.063nannannannannannannannannannannannannannannannannan
    RTF (dry weight)nannannannannannannannannannannannannannannannannannan
    RTF (Including fuel & Batteries)0.097nannannannannannannannannannannannannannannannannan
    Empty weight0.004nannannannannannannannannannannannannannannannannan
    Maximum Crosswindnannannannannannannannannannannannannannannannannannan
    Rango de comunicación-0.430nannannannannannannannannannannannannannannannannan
    Wing Loadingnannannannannannannannannannannannannannannannannannan
    Potencia específica (P/W)nannannannannannannannannannannannannannannannannannan
    Capacidad combustible0.270nannannannannannannannannannannannannannannannannan
    Consumo0.375nannannannannannannannannannannannannannannannannan
    Potencia Watts0.232nannannannannannannannannannannannannannannannannan
    Potencia HP-0.694nannannannannannannannannannannannannannannannannan
    Precio0.134nannan
    Tiempo de emergencia en vuelonannannannannannannan
    Tiempo de emergencia en vuelonannannannannannan
    Distancia de aterrizajenannannannannannannannannannannannannannannan
    Distancia de aterrizajeDespegue0.735-0.1190.1130.125-0.3450.236-0.2470.111nan0.7940.0900.262-0.424-0.041-0.244nannan-0.124-0.313-0.004-0.1880.143nan0.0970.182nan-0.430nannan-0.0800.1130.232-0.694-0.138nannan1.000-0.010-0.6390.610nannan
    Propulsión horizontal0.154-0.1090.6190.0070.2310.453nan0.615nannan0.4670.4740.4770.2080.154nan0.9180.508nan0.477-0.9040.6080.4080.4280.404-0.9430.6040.572nannannannannan0.217nannan-0.0101.0000.118-0.083nannan
    Propulsión vertical0.6710.1870.126-0.125-0.3450.1720.2470.093nan-0.5350.023-0.2620.3610.174-0.244nannan0.2390.3130.1620.1880.065nan-0.0970.307nan0.430nannan-0.080-0.375-0.2320.694-0.138nannan-0.6390.1181.000-0.954nannan
    Cantidad de motores propulsión vertical-0.598-0.159-0.1260.1250.3450.055-0.247-0.004nan0.5740.0750.262-0.361-0.1330.444nannan-0.164-0.313-0.111-0.1880.063nan0.0970.004nan-0.430nannan0.2700.3750.232-0.6940.134nannan0.610-0.083-0.9541.000nannan
    Cantidad de motores propulsión horizontalnannannannannannan
    Despegue0.735-0.1190.1130.125-0.3450.236-0.2470.111nan0.7940.0900.262-0.424-0.041-0.244nannan-0.124-0.313-0.004-0.1880.143nan0.0970.182nan-0.430nannan-0.0800.1130.232-0.694-0.138nannan1.000-0.010-0.6390.610nannannannan
    Misiónnannannannannannan
    Propulsión horizontal0.154-0.1090.6190.0070.2310.453nan0.615nannan0.4670.4740.4770.2080.154nan0.9180.508nan0.477-0.9040.6080.4080.4280.404-0.9430.6040.572nannannannannan0.217nannan-0.0101.0000.118-0.083nannannannannan
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de la Tabla

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ResumenCantidad
    Propulsión vertical0.6710.1870.126-0.125-0.3450.1720.2470.093nan-0.5350.023-0.2620.3610.174-0.244nannan0.2390.3130.1620.1880.065nan-0.0970.307nan0.430nannan-0.080-0.375-0.2320.6940Total de valores1764.000
    1Valores numéricos907.000
    2Valores NaN857.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Tabla de Correlaciones Filtradas por parametros seleccionados (Para Heatmap)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Velocidad a la que se realiza el crucero (KTAS)1.0000.0410.587-0.9990.5350.6630.6650.3360.8150.2570.1280.4720.8460.6960.426
    Techo de servicio máximo0.0411.000-0.152-0.3140.0820.1370.4280.079-0.111-0.071-0.5020.0570.0170.087-0.138nannan-0.6390.118
    Área del ala0.587-0.1521.000-0.954nannannannannannannannannannannannannannannan-0.8310.8670.977-0.3010.0810.7370.4230.0970.8410.9840.8990.941
    Relación de aspecto del ala-0.999-0.314-0.8311.000-0.790-0.823-0.998-0.305-0.859nannan-0.349-0.744-0.8880.622
    Cantidad de motores propulsión vertical-0.598-0.159-0.1260.1250.3450.055-0.247-0.004nan0.5740.0750.262-0.361-0.1330.444Longitud del fuselaje0.5350.0820.867-0.7901.0000.7860.1500.3890.2560.1800.2600.6930.9950.5990.880
    Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.7861.0000.0250.4340.6780.5390.5460.7910.8580.8750.947
    Alcance de la aeronave0.6650.428-0.301-0.9980.1500.0251.0000.8430.042nannan-0.010-0.7550.804-0.059
    Autonomía de la aeronave0.3360.0790.081-0.3050.3890.4340.8431.0000.297-0.164-0.3130.4010.532-0.2010.4610.428
    Velocidad máxima (KIAS)0.815-0.111-0.1880.063nan0.0970.004nan-0.430nannan0.2700.3750.232-0.6940.134nannan0.610-0.083-0.9540.737-0.8590.2560.6780.0420.2971.000nannannannannannannannannannannannannannannannannan0.5390.4460.4000.5120.7150.517
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanVelocidad de pérdida (KCAS)0.257-0.0710.423nan0.1800.539nan-0.1640.5391.0001.0000.401nan0.6270.321
    Velocidad de pérdida limpia (KCAS)0.128-0.5020.097nan0.2600.546nan0.4010.4461.0001.0000.505nan0.5360.038
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanenvergadura0.4720.0570.841-0.3490.6930.791-0.0100.5320.4000.4010.5051.0000.8850.7340.924
    Dimensiones de la bahía de carga útilnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanCuerda0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nannan0.8851.0000.7760.971
    Battery Power Supplynannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanpayload0.6960.0870.899-0.8880.5990.8750.8040.4610.7150.6270.5360.7340.7761.0000.778
    Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.0380.9240.9710.7781.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de la Tabla

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos213.000
    2Valores NaN12.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8943,75 +7507,104 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -9020,7 +7613,13 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9030,7 +7629,11 @@ " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9046,6 +7649,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9063,808 +7669,257 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Velocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannannan0.846nannan
    Techo de servicio máximonannannannan
    Modelo Motor Fixed WingnannannannannannannannannannannannannannanÁrea del alanannannan-0.8310.8670.977nannan0.737nannan0.8410.9840.8990.941
    Relación de aspecto del ala-0.999nan-0.831nan-0.790-0.823-0.998nan-0.859nannannan-0.744-0.888nan
    Longitud del fuselajenannan0.867-0.790nan0.786nannannannannannan0.995nan0.880
    Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannannan0.7910.8580.8750.947
    Alcance de la aeronavenannannan-0.998nannannan0.843nannannannan-0.7550.804nan
    Modelo Motor VTOLnannanAutonomía de la aeronavenannannannannannan0.843nannannannannannan
    Velocidad máxima (KIAS)0.815nan0.737-0.859nannannannannannan0.715nan
    Velocidad de pérdida (KCAS)nannannannannannan
    Velocidad de pérdida limpia (KCAS)nannannannan
    Portabilidadnannannannannannannannannannannannannannannannannannannannannannannannannanenvergaduranannan0.841nannan0.791nannannannannannan0.8850.7340.924
    Cuerda0.846nan0.984-0.7440.9950.858-0.755nannannannan0.885nan0.7760.971
    payloadnannan0.899-0.888nan0.8750.804nan0.715nannan0.7340.776nan0.778
    Empty weightnannan0.941nan0.8800.947nannannannannan0.9240.9710.778nan
    Cámaranannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de la Tabla

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    Despegue todos los tiposnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan0Total de valores225.000
    Datalink banksnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan1Valores numéricos68.000
    Material del fuselajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan2Valores NaN157.000
    Motor recomendadonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Hélice recomendada VTOLnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Hélice recomendada Fixed Wingnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Sistema de controlnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Características adicionalesnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    indice_desconocidonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores3249.000
    1Valores numéricos907.000
    2Valores NaN2342.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Filtrando datos seleccionados ===\n", - "\n", - "=== Cálculo de correlaciones filtradas ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Preparando datos para el heatmap ===\n", + "\n", + "=== Generando heatmap ===\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVyeP48TfdjbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d2d2IXdAgYdInV+fyAXLvdeRIHF3+c7Lx+exzt3zpyZ03fOhJokSRKCIAiCIAiCIAiCIAiCIChQL+wMCIIgCIIgCIIgCIIgCML3SlSeCYIgCIIgCIIgCIIgCIIKovJMEARBEARBEARBEARBEFQQlWeCIAiCIAiCIAiCIAiCoIKoPBMEQRAEQRAEQRAEQRAEFUTlmSAIgiAIgiAIgiAIgiCoICrPBEEQBEEQBEEQBEEQBEEFUXkmCIIgCIIgCIIgCIIgCCqIyjNBEARBEARBEARBEARBUEFUngmCIAj/qZUrV6KmpsaVK1eUft+0aVOcnZ0LNA/nz59n4sSJREVFFeh6CsPEiRNRU1PL93Rv3bpFjx49cHFxQVdXF0NDQ8qVK8eMGTOIiIjI9/XlxcmTJ1FTU+PkyZMFkv7z589RU1Nj5cqVBZJ+YevevXu+nYNly5bF3t6e1NRUlXGqVauGpaUlSUlJeV5fXvb9l65NWeXnNsotSZLYuHEjNWrUwMrKCl1dXRwcHPDz82Pp0qXflGbt2rWpXbt2/mb0KxXUNSu/qampMXHixP98vWfOnEFHR4cXL17IwpydnWnatKnS+FeuXMn369PXnBv54f+XYyJDXFwcQ4YMwc7ODl1dXcqUKcPGjRtztWzt2rVRU1NT+RcWFgZAcnIyrq6uzJkzpwBLIghCTkTlmSAIgvB/zvnz5/ntt9/+JyvPCsKSJUsoX748QUFBjBw5koMHD7Jjxw7atGnDokWL6NWrV2Fn8T9la2vLhQsXaNKkSWFn5bvXq1cvQkJCOHTokNLvHz58yPnz5+nSpQva2tp5Xl+5cuW4cOEC5cqVy3Na35sxY8bQoUMHPD09Wbp0KQcOHGDKlClYW1uza9euws7eN+vduzcXLlwo7Gx8lyRJYsiQIfTp0wcnJ6fCzo6gQsuWLVm1ahUTJkzgwIED+Pr60qFDB9avX//FZRcsWMCFCxfk/o4dO4aWlhaVK1fGxsYGAC0tLcaPH8+kSZMIDw8v6CIJgqCEZmFnQBAEQRCE79eFCxf48ccfadCgATt37kRHR0f2XYMGDRg+fDgHDx7Ml3UlJCSgr6+vEJ6amkpKSorcuguTjo4OlStXLuxs/H+hU6dOjBw5kuXLl9O4cWOF75cvXw5Az54987Se5ORk1NTUMDY2/p/cNx8/fmTOnDl07dqVf//9V+677t27k5aWVkg5yzsHBwccHBwKOxvfpYMHD3Lt2rVcVcJ8z1Rd2/MqNDQUAwMDjI2N8z3t3Nq/fz9Hjhxh/fr1dOjQAYA6derw4sULRo4cSbt27dDQ0FC5vJeXl0LYqlWrSE5Opnfv3nLhHTp0YNiwYSxevJixY8fmb0EEQfgi0fJMEARB+O5JksSCBQsoU6YMenp6mJmZ0bp1a54+fSoX78iRIzRr1gwHBwd0dXVxc3Pjhx9+4MOHD7I4EydOZOTIkQC4uLjIukZkdPPK6A6zd+9eypYti56eHp6enuzduxdI777i6emJgYEBFStWVOjGcuXKFdq3b4+zszN6eno4OzvToUMHuS43Gemoqalx5MgRevTogbm5OQYGBgQEBCiUS5V9+/ZRpkwZdHR0cHFxYdasWXnafspMmzYNNTU1/v33X6WVV9ra2gQGBso+p6WlMWPGDEqUKIGOjg5WVlZ07dqV169fyy1Xu3ZtSpYsyenTp6latSr6+vr07NlT1iVyxowZTJkyBRcXF3R0dDhx4gSQvn0DAwMxNzdHV1eXsmXLsnnz5i+WI7f7BeDNmzf07duXokWLoq2tjZ2dHa1bt+bt27eA6m6bZ8+epV69ehgZGaGvr0/VqlXZt2+fXJyM/X7ixAl+/PFHLC0tsbCwoGXLloSEhCjkZdOmTVSpUgUDAwMMDQ3x8/Pj+vXrcnGePn1K+/btsbOzQ0dHB2tra+rVq8eNGze+uF1WrlyJh4cHOjo6eHp6snr1aqXxkpKSmDJlimy/FilShB49evD+/fsc0zczM6NFixbs2bNHobVEamoqa9aswdfXFx8fHx4/fkyPHj0oXrw4+vr62NvbExAQwO3bt+WWy+iauWbNGoYPH469vT06Ojo8fvxYabfNr9n3AJGRkd90Tub2PLt+/TpNmzbFysoKHR0d7OzsaNKkicI5klV8fDyfPn3C1tZW6ffq6vKP9N+6v7522fXr11OlShUMDQ0xNDSkTJkyLFu2TC7OwYMHqVevHiYmJujr6+Pp6cnvv/8u+15ZF72vvY4EBQVRo0YN9PX1KVasGNOnT5erUExMTGT48OGUKVMGExMTzM3NqVKlitIWezExMfTp0wcLCwsMDQ3x9/fn4cOHCvFye7ympaUxZcoUPDw80NPTw9TUlFKlSjF37twc9kK6hQsX4uvri4eHxxfj5qR79+4YGhpy//59/Pz8MDAwwNbWlunTpwNw8eJFqlevjoGBAe7u7qxatUppOrk5N1Rd2yH9etawYUNsbW1l99aff/6Z+Pj4byrXoUOHsLa2pnXr1mzfvp3ExMRvSicvduzYgaGhIW3atJEL79GjByEhIVy6dOmr01y2bBmGhoa0a9dOLlxbW5t27drx77//IklSnvItCMLXE5VngiAIQqHIaE2U/U/ZA+EPP/zAkCFDqF+/Pjt37mTBggXcvXuXqlWryio0AJ48eUKVKlVYuHAhhw8fZvz48Vy6dInq1auTnJwMpHcRGjhwIADbt2+XdZPI2s3r5s2bjBkzhtGjR7N9+3ZMTExo2bIlEyZMYOnSpUybNo1169YRHR1N06ZN+fjxo2zZ58+f4+HhwZw5czh06BB//PEHoaGh+Pr6ylXiZejVqxfq6uqsX7+eOXPmcPnyZWrXrv3FLqXHjh2jWbNmGBkZsXHjRmbOnMnmzZtZsWLFN28/Zfvo+PHjlC9fnqJFi+aYnww//vgjo0ePpkGDBuzevZvJkydz8OBBqlatqlD+0NBQOnfuTMeOHdm/fz/9+/eXfTdv3jyOHz/OrFmzOHDgACVKlODEiRNUq1aNqKgoFi1axK5duyhTpgzt2rX74vg+ud0vb968wdfXlx07djBs2DAOHDjAnDlzMDExITIyUmX6p06dom7dukRHR7Ns2TI2bNiAkZERAQEBbNq0SSF+79690dLSYv369cyYMYOTJ0/SuXNnuTjTpk2jQ4cOeHl5sXnzZtasWUNsbCw1atTg3r17sniNGzfm6tWrzJgxgyNHjrBw4ULKli37xWNo5cqV9OjRA09PT7Zt28avv/7K5MmTOX78uFy8tLQ0mjVrxvTp0+nYsSP79u1j+vTpHDlyhNq1a8sd/8r06tWLpKQk1q5dKxd+6NAhQkJCZN1+Q0JCsLCwYPr06Rw8eJD58+ejqalJpUqVePDggUK6Y8aM4eXLlyxatIg9e/ZgZWWldP3/1TmZm/MsPj6eBg0a8PbtW+bPn8+RI0eYM2cOjo6OxMbGqkzb0tISNzc3FixYwJ9//sn9+/dV/njOy/76mmXHjx9Pp06dsLOzY+XKlezYsYNu3brJVUouW7aMxo0bk5aWJttPgwYNyrGiEL7uOhIWFkanTp3o3Lkzu3fvplGjRowZM0buePv06RMRERGMGDGCnTt3smHDBqpXr07Lli3lKowlSaJ58+ayitkdO3ZQuXJlGjVqpJDH3B6vM2bMYOLEiXTo0IF9+/axadMmevXq9cXjKSkpiaNHj1KnTp0c4+VWcnIyLVu2pEmTJuzatUu2ncaOHUu3bt3o2bMnO3bswMPDg+7du3P16lWFNHJ7bqi6tj969IjGjRuzbNkyDh48yJAhQ9i8eTMBAQHfVKYWLVowb948IiMjadu2LdbW1nTv3p1Dhw7lOM6iJElKnz+U/X3JnTt38PT0RFNTvkNXqVKlZN9/jUePHnHmzBnat2+PoaGhwve1a9fmxYsXX52uIAj5QBIEQRCE/9CKFSskIMc/JycnWfwLFy5IgDR79my5dF69eiXp6elJo0aNUrqetLQ0KTk5WXrx4oUESLt27ZJ9N3PmTAmQnj17prCck5OTpKenJ71+/VoWduPGDQmQbG1tpfj4eFn4zp07JUDavXu3yvKmpKRIcXFxkoGBgTR37lyF7dCiRQu5+OfOnZMAacqUKSrTlCRJqlSpkmRnZyd9/PhRFhYTEyOZm5tLWW/v37r9JEmSwsLCJEBq3759jnnJEBwcLAFS//795cIvXbokAdLYsWNlYbVq1ZIA6dixY3Jxnz17JgGSq6urlJSUJPddiRIlpLJly0rJycly4U2bNpVsbW2l1NRUSZIk6cSJExIgnThxQmVeVe2Xnj17SlpaWtK9e/dULpuRxxUrVsjCKleuLFlZWUmxsbFy6yhZsqTk4OAgpaWlSZKUud+zb6MZM2ZIgBQaGipJkiS9fPlS0tTUlAYOHCgXLzY2VrKxsZHatm0rSZIkffjwQQKkOXPmqMyvMqmpqZKdnZ1Urlw5Wd4kSZKeP38uaWlpyZ2DGzZskABp27ZtcmkEBQVJgLRgwYIc15WWlia5uLhIpUqVkgtv1aqVpK+vL0VHRytdLiUlRUpKSpKKFy8uDR06VBaesX9r1qypsExe9v3XnJPdunX7puvUlStXJEDauXOnyvypcvnyZcnR0VF2nTQyMpKaNm0qrV69Wm4ffs3+qlWrllSrVq2vXvbp06eShoaG1KlTJ5X5jY2NlYyNjaXq1avL5S+7CRMmyF2zvuU6cunSJbm4Xl5ekp+fn8p1pqSkSMnJyVKvXr2ksmXLysIPHDggAXLHhSRJ0tSpUyVAmjBhQo5pKjtemzZtKpUpU0blcqpklHfjxo0K3zk5OUlNmjRRulzGvsp6ferWrZvCfk1OTpaKFCkiAdK1a9dk4eHh4ZKGhoY0bNgwWdjXnBuqru3ZZdyjT506JQHSzZs3Zd9lPyZyIywsTPr777+latWqSWpqapKVlZX0008/SWfPnlU4/nLzHJLx9yXFixdXeqyFhIRIgDRt2rSvKsfo0aMlQLpw4YLS7x89eiQB0sKFC78qXUEQ8k60PBMEQRAKxerVqwkKClL4q169uly8vXv3oqamRufOneXeBtvY2FC6dGm57lnv3r2jX79+FC1aFE1NTbS0tGSDLAcHB+c6b2XKlMHe3l722dPTE0h/45t13JaM8KwtLeLi4hg9ejRubm5oamqiqamJoaEh8fHxSvPQqVMnuc9Vq1bFyclJ1k1Rmfj4eIKCgmjZsiW6urqy8IyWTll9zfbLq4w8d+/eXS68YsWKeHp6cuzYMblwMzMz6tatqzStwMBAtLS0ZJ8fP37M/fv3Zdsra1kaN25MaGio0tZJGXK7Xw4cOECdOnVk+zY34uPjuXTpEq1bt5ZrKaChoUGXLl14/fq1Qt6ydnWFzFYKGcfSoUOHSElJoWvXrnJl1dXVpVatWrL9Zm5ujqurKzNnzuTPP//k+vXruRr/6sGDB4SEhNCxY0e5LnNOTk5UrVpVLu7evXsxNTUlICBALi9lypTBxsbmi8eQmpoaPXr04NatW7LWLOHh4ezZs4dWrVrJxitKSUlh2rRpeHl5oa2tjaamJtra2jx69EjpudOqVasvlhP+m3Myt+eZm5sbZmZmjB49mkWLFsm1IPwSX19fHj9+zMGDBxk7dixVqlTh2LFjdO3alcDAQFlLtLzsr9wue+TIEVJTU/npp59UpnX+/HliYmLo37//V82c+LXXERsbGypWrCgXVqpUKYVuuVu2bKFatWoYGhrK7g/Lli2TOwYy1p39GOjYsaNCPnN7vFasWJGbN2/Sv39/Dh06RExMTK62Q0Y3blUtKr+Wmpqa3LiDmpqauLm5YWtrS9myZWXh5ubmWFlZKe3WnNtzQ9W1/enTp3Ts2BEbGxs0NDTQ0tKiVq1awNfdo5WxtrZmwIABnD17lhcvXjBq1ChZy3MXFxe5rqEBAQFKnz+U/eVGTsf31xz7KSkprFq1Cm9vb5VjN2YcD2/evMl1uoIg5A8xYYAgCIJQKDw9PalQoYJCuImJCa9evZJ9fvv2LZIkYW1trTSdYsWKAendjRo2bEhISAjjxo3Dx8cHAwMD0tLSqFy58he7lmVlbm4u9zljFkBV4VnHWenYsSPHjh1j3Lhx+Pr6YmxsLPvRoiwPGTNpZQ/LaTatyMhI0tLSVC6bVW63nzKWlpbo6+vz7NkzlXGyysizsnGZ7OzsFH6MqRq/Sdl3Gd3eRowYwYgRI5Quo6wLXobc7pf3799/9eDlkZGRSJKkstyAwv60sLCQ+5wxnlxGXjLK6+vrq3SdGWNcqampcezYMSZNmsSMGTMYPnw45ubmdOrUialTp2JkZKR0+Yz8qDqGnj9/Lvv89u1boqKiVM6GmdN2z9CjRw8mTpzIihUrKF++POvWrSMpKUluptZhw4Yxf/58Ro8eTa1atTAzM0NdXZ3evXsrPXdyOn6y+i/OydyeZyYmJpw6dYqpU6cyduxYIiMjsbW1pU+fPvz6669yFcbKaGlp4efnh5+fH5C+H1u3bs3evXs5cOAAjRs3ztP+yu2yGeOf5XSu5CaOMl97Hcl+LkH6+ZR1327fvp22bdvSpk0bRo4ciY2NDZqamixcuFA2aUXGujU1NRXSVHZM5PZ4HTNmDAYGBqxdu5ZFixahoaFBzZo1+eOPP5TeAzNkpJH1BUkGTU1Nld0SM7oaZj+W9PX1FdLS1tZWuK9lhCsbPyy354ayfRcXF0eNGjXQ1dVlypQpuLu7o6+vz6tXr2jZsuVX3aO/JDo6mqioKKKjowFk+yaDubk5JiYm+bIuCwsLpdeGiIgI2bpya//+/YSFhTF69GiVcTL2YX5uL0EQckdUngmCIAjfNUtLS9TU1Dhz5ozSAeszwu7cucPNmzdZuXIl3bp1k33/+PHj/yyv0dHR7N27lwkTJvDzzz/LwjPG21EmLCxMaZibm5vK9ZiZmaGmpqZy2axyu/2U0dDQoF69ehw4cIDXr19/8Udwxg/O0NBQhbghISFYWlrKhX3N2/qMZceMGUPLli2VLqNqUO2v2S9FihT54nhM2WX8MAsNDVX4LqP1SPayf0lG/K1bt8paT6ri5OQkG6T94cOHbN68mYkTJ5KUlMSiRYuULpOxr3J7DFlYWKicVVVVBV1WDg4ONGzYkPXr1zN79mxWrFiBm5sbNWvWlMVZu3YtXbt2Zdq0aXLLfvjwAVNTU4U0c9Oi4786J7/mPPPx8WHjxo1IksStW7dYuXIlkyZNQk9PTy6PuWFhYcGQIUM4efIkd+7coXHjxnnaX7ldtkiRIgC8fv1a5XiIWeN8ja+9juTG2rVrcXFxYdOmTXLHzadPnxTWnZKSQnh4uFwFmrJjIrfHq6amJsOGDWPYsGFERUVx9OhRxo4di5+fH69evVI5C2VGOZUdp9bW1ipbHmWEq6rIzYvcnhvKzs3jx48TEhLCyZMnZa3NgC+O/ZZbDx8+ZNOmTWzcuJF79+7h5uZGhw4d6NixIyVKlJCLu2rVKnr06JGrdKUvDMzv4+PDhg0bSElJkRv3LGPiiJIlS+a6DMuWLUNbW5suXbqojJNxPHzLeSAIQt6IbpuCIAjCd61p06ZIksSbN2+oUKGCwp+Pjw+Q+bCe/Yfr4sWLFdLM3sonv6ipqSFJkkIeli5dqrKVwLp16+Q+nz9/nhcvXlC7dm2V68mY6TP77GKxsbHs2bNHLm5ut58qY8aMQZIk+vTpQ1JSksL3ycnJsnVmdNPJPjB8UFAQwcHB1KtXL8d15cTDw4PixYtz8+ZNpeWoUKGCykqBr9kvjRo14sSJEzl2Ac3OwMCASpUqsX37drljKi0tjbVr1+Lg4IC7u/tXlBb8/PzQ1NTkyZMnKsurjLu7O7/++is+Pj5cu3ZNZfoeHh7Y2tqyYcMGuR+HL1684Pz583JxmzZtSnh4OKmpqUrzkduZAHv16kVkZCTjx4/nxo0b9OjRQ+5HtpqamsI+2rdvX566J/1X5+S3nGdqamqULl2av/76C1NT0xz3V3JyssqWbxnd3TJaOeZlf+V22YYNG6KhocHChQtVplW1alVMTExYtGjRV80MWBDXETU1NbS1teWOt7CwMIXZNjMG589+DKxfv15pml97vJqamtK6dWt++uknIiIi5Fp4ZpfRdfzJkycK39WvX587d+4o7fa7efNmDA0NqVSpksq0v9W3nBsZvuYenVvv3r3jjz/+oGzZsnh4eLBo0SIaNmzI5cuXefToEZMmTVKoOIP87bbZokUL4uLi2LZtm1z4qlWrsLOzy/V+CAsLY//+/TRv3lxpa8oMGbObenl55SpdQRDyj2h5JgiCIHzXqlWrRt++fenRowdXrlyhZs2aGBgYEBoaytmzZ/Hx8eHHH3+kRIkSuLq68vPPPyNJEubm5uzZs4cjR44opJnxQ3bu3Ll069YNLS0tPDw8ctWCJifGxsbUrFmTmTNnYmlpibOzM6dOnWLZsmVKW84AXLlyhd69e9OmTRtevXrFL7/8gr29vdzMk8pMnjwZf39/GjRowPDhw0lNTeWPP/7AwMBArqVCbrefKhmzl/bv35/y5cvz448/4u3tTXJyMtevX+fff/+lZMmSBAQE4OHhQd++ffn7779RV1enUaNGPH/+nHHjxlG0aFGGDh36Tds1w+LFi2nUqBF+fn50794de3t7IiIiCA4O5tq1a2zZskXpcl+zXyZNmsSBAweoWbMmY8eOxcfHh6ioKA4ePMiwYcOU/hAD+P3332nQoAF16tRhxIgRaGtrs2DBAu7cucOGDRu+atwbAGdnZyZNmsQvv/zC06dP8ff3x8zMjLdv33L58mUMDAz47bffuHXrFgMGDKBNmzYUL14cbW1tjh8/zq1bt3JsxaSurs7kyZPp3bs3LVq0oE+fPkRFRTFx4kSFrlnt27dn3bp1NG7cmMGDB1OxYkW0tLR4/fo1J06coFmzZrRo0eKLZQoMDMTS0pKZM2eioaEh10IU0ituVq5cSYkSJShVqhRXr15l5syZX93tL6v/6pzM7Xm2d+9eFixYQPPmzSlWrBiSJLF9+3aioqJo0KCByvSjo6NxdnamTZs21K9fn6JFixIXF8fJkyeZO3cunp6eshaZedlfuV3W2dmZsWPHMnnyZD5+/EiHDh0wMTHh3r17fPjwgd9++w1DQ0Nmz55N7969qV+/Pn369MHa2prHjx9z8+ZN/vnnH6V5KIjrSNOmTdm+fTv9+/endevWvHr1ismTJ2Nra8ujR49k8Ro2bEjNmjUZNWoU8fHxVKhQgXPnzrFmzRqlaebmeA0ICKBkyZJUqFCBIkWK8OLFC+bMmYOTkxPFixdXmWcHBweKFSvGxYsXGTRokNx3gwcPZvXq1dSuXVt2nYqMjGTTpk1s3bqVP//8M8/3M2W+9X4F6ZWpZmZm9OvXjwkTJqClpcW6deu4efPmN+dn//79TJ8+nVatWjFr1izq1Kkj1z1TFQsLixwrqL5Go0aNaNCgAT/++CMxMTG4ubmxYcMGDh48yNq1a9HQ0JDF7dWrF6tWreLJkycKLYpXrVpFSkoKvXv3znF9Fy9elHX9FQThP/Zfz1AgCIIg/N+WMctVUFCQ0u+bNGkiN4tdhuXLl0uVKlWSDAwMJD09PcnV1VXq2rWrdOXKFVmce/fuSQ0aNJCMjIwkMzMzqU2bNtLLly+VzpI2ZswYyc7OTlJXV5ebnU/VLGaA9NNPP8mFZcy6OHPmTFnY69evpVatWklmZmaSkZGR5O/vL925c0dycnKSunXrprAdDh8+LHXp0kUyNTWV9PT0pMaNG0uPHj36wlZMt3v3bqlUqVKStra25OjoKE2fPl3lLGW52X45uXHjhtStWzfJ0dFR0tbWlgwMDKSyZctK48ePl969eyeLl5qaKv3xxx+Su7u7pKWlJVlaWkqdO3eWXr16JZderVq1JG9vb4X1KNumWd28eVNq27atZGVlJWlpaUk2NjZS3bp1pUWLFsniKJtxMbf7RZLSZ0js2bOnZGNjI2lpaUl2dnZS27Ztpbdv38rlMetsdpIkSWfOnJHq1q0r28aVK1eW9uzZIxdH1fGvapbInTt3SnXq1JGMjY0lHR0dycnJSWrdurV09OhRSZIk6e3bt1L37t2lEiVKSAYGBpKhoaFUqlQp6a+//pJSUlKUbsOsli5dKhUvXlzS1taW3N3dpeXLlyvMJClJ6TPzzZo1SypdurSkq6srGRoaSiVKlJB++OGHXB+vkiRJQ4cOlQCpcePGCt9FRkZKvXr1kqysrCR9fX2pevXq0pkzZxRmhMzYVlu2bFFIIy/7/mvOSWXbSJK+fJ7dv39f6tChg+Tq6irp6elJJiYmUsWKFaWVK1fmuN0+ffokzZo1S2rUqJHk6Ogo6ejoSLq6upKnp6c0atQoKTw8XC5+bvdX9m37NctKkiStXr1a8vX1lcUrW7aswnmxf/9+qVatWpKBgYGkr68veXl5SX/88Yfse2XXrLxeR5Ttn+nTp0vOzs6Sjo6O5OnpKS1ZskTpuqOioqSePXtKpqamkr6+vtSgQQPp/v37CveR3B6vs2fPlqpWrSpZWlrKrtW9evWSnj9/rpDv7MaNGyeZmZlJiYmJCt+FhYVJP/74o+To6ChpampKRkZGUvXq1ZWeF926dZMMDAwUwlVtv+z3wa85N1SlKUmSdP78ealKlSqSvr6+VKRIEal3797StWvXFK6nuZ1t88OHD9KnT5++GK+gxcbGSoMGDZJsbGwkbW1tqVSpUtKGDRsU4mXMeqpspm93d3fJ2dk5x5lpJUmSatSoIQUEBORX1gVB+ApqkvQV7agFQRAEQcgXK1eupEePHgQFBeU4aLQgCILwf1NISAguLi6sXr2adu3aFXZ2hEL25MkTihcvzqFDh3JsqSoIQsEQY54JgiAIgiAIgiB8Z+zs7BgyZAhTp04lLS2tsLMjFLIpU6ZQr149UXEmCIVEjHkmCIIgCIIgCILwHfr111/R19fnzZs3Kmc2Ff73paSk4OrqypgxYwo7K4Lwf5botikIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCEK+O336NAEBAdjZ2aGmpsbOnTu/uMypU6coX748urq6FCtWjEWLFinE2bZtG15eXujo6ODl5cWOHTsKIPeZROWZIAiCIAiCIAiCIAiCkO/i4+MpXbo0//zzT67iP3v2jMaNG1OjRg2uX7/O2LFjGTRoENu2bZPFuXDhAu3ataNLly7cvHmTLl260LZtWy5dulRQxRDdNgVBEARBEARBEARBEISCpaamxo4dO2jevLnKOKNHj2b37t0EBwfLwvr168fNmze5cOECAO3atSMmJoYDBw7I4vj7+2NmZsaGDRsKJO+i5ZkgCIIgCIIgCIIgCILwRZ8+fSImJkbu79OnT/mW/oULF2jYsKFcmJ+fH1euXCE5OTnHOOfPn8+3fGQnZtsUBEEQBEEQBEEQBEH4jlSb36+ws6BUg/c2/Pbbb3JhEyZMYOLEifmSflhYGNbW1nJh1tbWpKSk8OHDB2xtbVXGCQsLy5c8KCMqzwRBEPLR93qT+xrnflpESNS7ws5GntmZWjHlyIrCzkae/NqgB5ENWhR2NvLM7MgOZp8qmCb0/5XhtTowet+Cws5Gnv3RpD+j9uZuzJHv2YymA9h950xhZyNPAkvWoNP6iYWdjTxb13EiJx9fLexs5Eltt/IEhz0t7GzkmadNMRZf2FnY2cizH6o0p+2aXws7G3myucsUhuyaU9jZyLM5zYawOmh/YWcjT7r6Ni7sLPzPGTNmDMOGDZML09HRydd1qKmpyX3OGG0sa7iyONnD8pOoPBMEQRAEQRAEQRAEQRC+SEdHJ98ry7KysbFRaEH27t07NDU1sbCwyDFO9tZo+UmMeSYIgiAIgiAIgiAIgvAdUftO/xW0KlWqcOTIEbmww4cPU6FCBbS0tHKMU7Vq1QLLl2h5JgiCIAiCIAiCIAiCIOS7uLg4Hj9+LPv87Nkzbty4gbm5OY6OjowZM4Y3b96wevVqIH1mzX/++Ydhw4bRp08fLly4wLJly+Rm0Rw8eDA1a9bkjz/+oFmzZuzatYujR49y9uzZAiuHaHkmCIIgCIIgCIIgCIIg5LsrV65QtmxZypYtC8CwYcMoW7Ys48ePByA0NJSXL1/K4ru4uLB//35OnjxJmTJlmDx5MvPmzaNVq1ayOFWrVmXjxo2sWLGCUqVKsXLlSjZt2kSlSpUKrByi5ZkgCIIgCIIgCIIgCMJ3RL0AB7//L9WuXVs24L8yK1euVAirVasW165dyzHd1q1b07p167xmL9dEyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndE7X+k2+b/CtHyTBAEQRAEQRAEQRAEQRBUEJVngiAIgiAIgiAIgiAIgqCC6LYpCIIgCIIgCIIgCILwHflfmW3zf4VoeSYIgiAIgiAIgiAIgiAIKojKM0EQBEEQBEEQBEEQBEFQQXTbFARBEARBEARBEARB+I6oIbptfk9EyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndETcy2+V35z1ueOTs7M2fOnP80PTU1NXbu3Jmn9UycOJEyZcrkKY3sTp48iZqaGlFRUfmariAv+3ZeuXIlpqamhZqn7t2707x580LNw/cgPDwcKysrnj9/XthZkfPPP/8QGBhY2NkQBEEQBEEQBEEQvgO5bnkWEBDAx48fOXr0qMJ3Fy5coGrVqly9epVy5crlawa/JCgoCAMDg/90ncL/39q1a0fjxo0LOxsC8PvvvxMQEICzszMAz58/x8XFhevXr8sqq2NjYwkICCAsLIwHDx7kmN6zZ89wdnbm/Pnz1KhRgwYNGnDw4EGFeNu2bWPGjBncv3+ftLQ0HB0d8ff3Z/bs2QD06dOHqVOncvbsWapXr56vZf4WpW3d6Fi2ISWsHLE0MOXn/Qs58+xmoeVn59YdbFq7gfDwcJxdnBkwdBClypZWGf/GtessmPMPz589x9LSgvZdOhLYsrnSuMcPH2XyuN+oVrM6U2b+Lgu/ef0Gm9Zu4OH9B4R/CGfyjKlUr1UzX8v14PQ17h67xMfoOExtLanQqj7WbkWVxg17+IIj8zYohAf+2gcTGwsA0lJTuXP4Ak8u3SEhKhYTa3PKNquDvVexfM13XmhVr4xOk4ZoFHdF3cSYmH5DSX3yvLCzxd2Tl7l16DwJ0bGY2VlRpZ0/tsWdlMYNefCMvbNXKYS3/e0nTG2LKIQ/vnyb40u34VTaA7+fOuR73rOq7ORNrWJlMdLR521cBHvunuN5ZKjK+Brq6tQv7ktZO3eMdPSJTozj+OOrXHl9XxZHV1MbP49KlLQphp6WDpEfY9l77xwP3r8skDJUcSpJLddy6WWIjWD3vTM8j/hSGSpSzt4dIx0DohPjOPb4CldeBQPwQ5UWuFrYKywX/PY5K4L2FkgZAM4fPMHJXYeIjYzCuqgdgT3aU8zLXWncZ8GP2LdmK+/fhJGUlISZpQWVG9akZkBDpfFvnL3Mur/+xdu3DN1/HlBgZahf3JcmnlUx1TPiTfQ71lw9mON+r+rsQ1PPatgYWZCQnMitkMesv36YuKSPANRxLUd1l9IUNbUC4FlEKJtuHuNp+JsCKwPAyb1HOLx9L9ERUdg52tO2b1eKlyyhNO61c5c5vf8or56+ICU5BVsnewI6tsK7vPw9JyEunp2rN3P9fBAJcfFYWhehde9O+PiWLbBy7N+xl50btxIZEUFRZyd6DfgB79IllcaNCI9gxfwlPHn4iNDXITRpFUjvgf3k4lw4fY6tazcR+iaE1JQUbB3sada2JXX86hVYGW4cu8CVA6eIj4rFwt6a2h0DcPBw+eJybx49Z/Pvi7G0t6bL5CGy8M2/L+b1g6cK8V1KlaDFsB75mXU5Dd0rEuhdA1M9Q15HvWPllf3cf/dCZfzqLqUJ9KqOrbEFCUmfuBHyiDVXD8jOjVrFyvJTtVYKy3VaN5HktJQCK0d21ZxLUdetPMa6BoTFhrPj9imeRoQojduxbEMqOnophIfGhPPHiTUFnVWZK0fOcnH/CeKiYihib0ODzs1xLOH6xeVePXzKminzKeJgQ59pI2Xh94NucW73ESLffiAtNQ0za0sqN66NT3XfgiyGICiV68qzXr160bJlS168eIGTk/wD7PLlyylTpsx/XnEGUKSI4oOx8L8hKSkJbW3tfE9XT08PPT29fE+3MBXUtsqN5ORktLS0vnq5jx8/smzZMvbv368yzvv372nUqBEAR48eRVMz85Ll6+tL37596dOnjyws43qwfPlyBg4cyNKlS3n58iWOjo6yOEePHqV9+/ZMmzaNwMBA1NTUuHfvHseOHZPF0dHRoWPHjvz999/fReWZnpYOj8Nfs//+eaY16vflBQrQ8SPHmP/XPIaMGkbJUj7s2bGb0UNHsnLjGqxtrBXih4aEMGboKJo0C+CX38Zx59Zt5sz4ExNTU2rVrS0XNyw0jIXzFlCqjGJFXOLHRFyLu+HftDETfv4138v1/GowV7YdpWI7P6yK2fPw7A2OL9hM4K+9MTA3Ublcs3F90dLLPPd0DPVl/7+x5zRPg+5SpWMjjK0tCAl+yqkl2/Ef1hnzojb5XoZvoaarQ8rd+ySdPo/BsJ8KOzsAPAm6w4VNB6nesQnWbo4En77CgXlraTvxJwwtTFUu13byALR1dWSfdY0UX6zFhkdxaethbIo7KnyX30rZuhHgVZ2dd07zIjKMSo5e9KzYlD9PbSAqMU7pMp3K+mGko8fWWycIT4jGQFsPDfXMTgIaaur0rhRIXNJH1l47RHRiHKa6hnxKSS6QMpS2dSPAuwY7b5/ieWQolRy96VUxgNkn16ssQ+dy/hjq6LPl1nHC46Mx1NFDXS2zDKuv7EdDXUP22UBLlyE123Mr9HGBlAHgxrnL7F6xkRZ9OuFcwo2Lh0+zbOpcRsyZhFkRC4X42jo6VGtUF1snB7R1dXgW/Ihti9egraND5Ya15OJGvgtn76otuHgWL7D8A1R29KZLOX9WXNnHw/cvqetWgVG1OzNq33zCE6IV4rsXceTHyi1Ye+0Q1948wEzfmJ6+TeldKZA5ZzYB4GntzIUXd1h95RVJaSk09azGz3W6MHrffCI/xhZIOYJOX2DzktV07N8TV093Th88xt8T/mDiwpmYW1kqxH909z6eZX1o3q0degb6nD96ivmTZvHzn5NxdHUGICU5hTm//o6RiTE/jB2MmaU5ke/D0SnAZ72zx0+x/J/F/DD0J0qU9OLQnv1MHj2Ov1ctpoi1lUL85KRkTExNaNO5Pbu37FCapqGREW06t8PesSiaWppcuXCZv//4E1MzU8pWLJ/vZXhw6SYn1++hXtfm2BV34taJS+z4czndpg3D2MJM5XKfEj5y8N9NOHq5khAtfx0IGNiFtJRU2eeP8fGsGTcXd1+ffM9/hipOJeleoTFLL+/hwbuX1Hf3ZWzdrgzdPU/pueFRxIkBVVux6up+rrx+gLmeMX0qB9KvSgtmnVovi5eQlMjgXXPklv0vK87K2rnTwqcWW28e51lECFWdS/FDleb8fnwNUUrOz+23T7Ln3lnZZ3U1dUbV6cTNkEf/WZ7vXbzOkbU78e/emqLuLlw7fp6NM//lhz9+xsRS9TGVmPCR3YvW4+JdnLho+bLpGehTLbABlnbWaGhq8Oj6Xfb8uxF9YyNcSymvdP9foi66bX5Xct1ts2nTplhZWbFy5Uq58ISEBDZt2kSvXr0AOH/+PDVr1kRPT4+iRYsyaNAg4uPjVab78uVLmjVrhqGhIcbGxrRt25a3b9/Kxdm9ezcVKlRAV1cXS0tLWrZsKfsue7fNR48eUbNmTXR1dfHy8uLIkSMK6xw9ejTu7u7o6+tTrFgxxo0bR3Ky/IPn9OnTsba2xsjIiF69epGYmJjj9klNTaVXr164uLigp6eHh4cHc+fOzXGZ7MLDw+nQoQMODg7o6+vj4+PDhg2KLRuyW7lyJY6Ojujr69OiRQtmz54t1y1RWRfBIUOGULt2bdlnSZKYMWMGxYoVQ09Pj9KlS7N169Yc17tgwQKKFy+Orq4u1tbWtG7dOk/pOTs7M2XKFLp3746JiYmsUuRLx9TatWupUKECRkZG2NjY0LFjR969e5fj9sq6fZydnVFTU1P4y5Cb4yW7N2/e0K5dO8zMzLCwsKBZs2Zf3TXx3Llz1KpVC319fczMzPDz8yMyMhKA2rVrM2DAAIYNG4alpSUNGjTg+fPnqKmpcePGDVkaUVFRqKmpcfLkSVnY3bt3adKkCcbGxhgZGVGjRg2ePHki+37FihV4enqiq6tLiRIlWLBggey7jHVs3ryZ2rVro6ury9q1a0lLS2PSpEk4ODigo6NDmTJllLb4yurAgQNoampSpUoVpd+/evWKGjVqYGRkxIkTJ3BwcMDGxkb2p6GhIdvnWcPi4+PZvHkzP/74I02bNlW4Zu3du5fq1aszcuRIPDw8cHd3p3nz5vz9999y8QIDA9m5cycfP37MsRz/hYsv77Lk0m5OPb1R2Flhy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35j4Hd23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18fatappfBdfrh3/DJuVUpTvGppTGws8W1dH30zYx6cuZ7jcrpG+ugZG8r+1LNUdDy9fBefhlWw93bFyNIUjxrlsPV04d7xoAIpw7dIOnqKxLWbSblWeC0Zs7t15AIe1ctRokZ5zGyLULVdIwzNTLh36kqOy+kZGaBvYiT7y7ovANLS0ji+dBvlA+tgnMNDfH6p4VKaoFfBBL0K5l1cJHvunSM6MY7KTspbprgXKUoxCzuWB+3jcfhrIj/G8jr6HS8iw2RxKhT1RF9Lh9VXDvAiMoyoj3E8jwwjNDa8YMpQrAxBL+9x+dW9z2U4S9THOCo7K/8h7F7EkWIW9iy/vIfHH9LL8CpKvgwfkz8R9ylB9le8SFGSU1MKtPLs9J4j+NatTqX6NbF2sKNZz/aYWphx4dBJpfHtizlStkYlbBztMbeypHytKniU8eZZsPyP0LTUNNbPXULDdoGYWxfsy9xGJapw8uk1Tj65RkjMB9ZeO0h4QjT1i1dQGt/NwoH38VEceniJ9/FRPHz/kuOPr1DM3E4WZ8H57Rx9FMSLqDBCYz6w9PJu1NXU8LYpuNaxR3fsp1rD2lT3q4Otoz3t+nbFzNKCU/sVe7YAtOvbFb/WATi7u2Jtb0uLbu2xsrPh1qVrsjjnjpwkPjaO/uOG4eblgYVVEdy8S1C0mPLWqvlh1+Yd1G/ckAZN/Snq7Ejvgf2wLFKEg7v2KY1vbWtN70H9qONfH31D5T1mfMqWonLNahR1dsTW3o6A1s1xLubCvdt3C6QMVw+doWRNX3xqVcTCzpo6nQIxMjfh5vGLOS53dOV2SlQug62r4vbVM9THwNRI9vfyziO0tLVwr1iqQMoA0NSrGscfX+X446u8iXnPqiv7+ZAQTUOPikrjuxdx4F18FAfuX+R9XCQP3r/g6MMgimVrESshEZ0YJ/f3X6rtVo5LL+5y8eVd3sZFsuPOKaI+xlHdWfm2TExJIvZTguzP0dQaPS1dLr0smONHmUsHTlKmdiXK1qmMpb01Dbu0wNjClGvHzuW43IHlW/CuUg57N2eF75y83CjhWwpLe2vMrC2p6F8Lq6K2vFLSwlEQClquK880NTXp2rUrK1euRJIkWfiWLVtISkqiU6dO3L59Gz8/P1q2bMmtW7fYtGkTZ8+eZcAA5U3YJUmiefPmREREcOrUKY4cOcKTJ09o166dLM6+ffto2bIlTZo04fr16xw7dowKFZQ/KKSlpdGyZUs0NDS4ePEiixYtYvTo0QrxjIyMWLlyJffu3WPu3LksWbKEv/76S/b95s2bmTBhAlOnTuXKlSvY2trKVSCoWreDgwObN2/m3r17jB8/nrFjx7J58+Ycl8sqMTGR8uXLs3fvXu7cuUPfvn3p0qULly5dUrnMpUuX6NmzJ/379+fGjRvUqVOHKVOm5HqdGX799VdWrFjBwoULuXv3LkOHDqVz586cOnVKafwrV64waNAgJk2axIMHDzh48CA1a9b85vQyzJw5k5IlS3L16lXGjRuXq2MqKSmJyZMnc/PmTXbu3MmzZ8/o3r17rsseFBREaGgooaGhvH79msqVK1OjRg3Z9186XrJLSEigTp06GBoacvr0ac6ePYuhoSH+/v4kJSXlKk83btygXr16eHt7c+HCBc6ePUtAQACpqZlv81atWoWmpibnzp1j8eLFuUr3zZs3ssrl48ePc/XqVXr27ElKSvqbtCVLlvDLL78wdepUgoODmTZtGuPGjWPVKvkuUaNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLWrVv4+fkRGBjIo0eq33adPn1a5bn84MEDqlWrRokSJTh48CBGRka5Kh/Apk2b8PDwwMPDg86dO7NixQq5a5aNjQ13797lzp07OaZToUIFkpOTuXz5cq7X/b8uOTmZh/cfUqGS/ANphYq+3LmtfHveu32XChXlm9b7Vq7Ig+D7suMOYPWylZiamdIksGn+Z/wLUlNSiXgVhq2ns1y4nacz75/l3H1p7x8r2Dr2b47M20DYQ/kuIqkpKahryTfw1tTS5N2TV/mS7/9FqSkpfHgZgoOXfBcPBy9X3n5hu22fvJg1I2ax989VhNx/pvD9tb2n0DMyoET1gm8lr6Gmjr1JER69l8/zw/evcDJTbKEJ4GXtwuvod9QqVpax9boyolZHmnhWRTNLKy0va2deRL2lecka/Fq/O0NrtqOOaznUyP830+llsOLhB/kyPPrwCmcz5S0nvaxdeB31jtqu5filfndG1u5ME89qcmXIzreoFzdDHpGcWjAtOlKSU3jz5AXuZbzlwt1Le/PiwRMVS8l78/Qlzx88oZi3fDfPI1v2YGBsRMX6NVQsmT801DVwMbfjdqh8fm+HPaG4pfKu5Y8+vMJc35jSdukt4ox1DahY1IsbObRC0dHQQkNNnfhPBfPSKCU5hZePn+FVVv7Hv1c5H54EP8xVGmlpaSR+TMQgS8vSW5euUqxEcdYvWMGITv34rf8o9m/aSVpqWr7mP0NycjJPHj6ijK/8taSMbznu37mXL+uQJImbV6/z5tVrvEspr3DPi9SUFN4+f4NTSfkWk04l3Ql5rLq7450zQUS9j6BK8/q5Ws/tM1fwqFQaLZ2C6R2hoa5BMXM7bmarfL8V8hiPIspbGD94/xILfWPK2qWfzya6BlR28ub6G/mhQXQ1tZnfYgQLW45kdJ3OOJspvtgrKBpq6jiYWHH/vfy+uP/uBc7muctHJSdvHr5/WWCtSLNLTUkh9NlrXEp6yIUXK+nB60fPVS5389QlIt9+oGZLvy+uQ5Iknt15SETY+1x1BRWE/PZVs2327NmTmTNncvLkSerUqQOkd49q2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y69Ytnj17RtGi6Tf/NWvW4O3tTVBQEL6+vkydOpX27dvz22+/yZYrXVr52DpHjx4lODiY58+f4+DgAMC0adNk3b4y/PprZpcfZ2dnhg8fzqZNmxg1ahQAc+bMoWfPnvTu3RuAKVOmcPTo0Rxbn2lpacnl0cXFhfPnz7N582batm2reqNmYW9vz4gRI2SfBw4cyMGDB9myZQuVKlVSuszcuXPx8/Pj559/BsDd3Z3z589/sdVPVvHx8fz5558cP35c1gqoWLFinD17lsWLF1OrlmJLj5cvX2JgYEDTpk0xMjLCycmJsmXLfnN6GerWrSu3Dbp27frFY6pnz56y+MWKFWPevHlUrFiRuLg4DA0Nv1j+rF1/Bw8eTGhoKEFBmS1DvnS8ZLdx40bU1dVZunSprAXbihUrMDU15eTJkzRsqHzMlKxmzJhBhQoV5Cptvb3lH/zd3NyYMWOG7HNuWrbNnz8fExMTNm7cKOtq6e6e+WNg8uTJzJ49W9a608XFhXv37rF48WK6desmizdkyBC5FqCzZs1i9OjRtG/fHoA//viDEydOMGfOHObPn680L8+fP8fOzk7pd127dqVq1aps27YNDQ3VP7qUWbZsGZ07dwbA39+fuLg4jh07Rv366Q96AwcO5MyZM/j4+ODk5ETlypVp2LAhnTp1Qkcns8uXgYEBpqamPH/+XOkx++nTJz59+iQXlnX5/0XRUdGkpaZiZi7fasfMwozIixFKl4kID8fMQr6yzczcjNTUVKKjorCwtOT2zVvs372PpWuXF1jec/IpLgEpTVLo5qdrZEBijPKW03omhlTu4I+5ow1pyak8DbrDkb830HBwR6zd0h/Y7TyLEXw8CGu3ohhZmhH64Dmvbj2Sq8wV5CV+3hd6xvL7Qs/YgIQY5W/99U2MqNElgCKOtqSmpPLo4k32/rWKgOHdsXV3BiDs8UsenL1Gq3H/TbdnfW1dNNTVZePnZIj7lICRjvLKDnM9Y5zNbElJTWX1lYMYaOvSvGRN9LR02HrrRHocfWNc9Yy4EfKIFZf3YWlgQrOSNVFXU+fY45xb5n2tjC6jcZ8S5MJjPyVgpKOvdBkLfWOczW1JSUtl9ZX9GGjr0bxkLfS1dNhy67hC/KKmVtgaW7D11jElqeWP+Ng40tLSMDIxlgs3NDUmNkqxS1dWU/qMJC4mlrS0VBq0DaRS/cyXhM/uPyLo2FmGzh5fIPnOykhHHw11daIT5a9H0R/jMbFV/pzz6MMrFpzfzsBqrdHS0ERTXYOrr++z6orqoRLal6lPxMdY7oQVTIuO9G2ZhrGpfFd4I1MTYiJz3hcZjuzYR1LiJ8rXqCwLex/2jvC396hUuxoDJ47iXUgYGxauJC01jaYdW+aQ2reJjY4hLTUN02z3QhMzUyIjIvOUdnxcPL1adyY5KRl1DXV+GPKTQiVdfvgYm4CUloaBsfzxo29sSEK08sqWyLAPnN1ykHZj+6Gei2ez0KevCH8dRsOerb8Y91sZ6+ijoa6h0CosOjEeU13l58bD96+Yd3YLQ2q2k50bQa+CWX45c8zFkJj3LDi/nZdRb9HT0qFxiSpM9u/DyL3zCSuglr5ZGeikX39jExWvv8a6yq+/WRnr6ONp5cyaqwcKKosKEmLjkdLSMDSRf+FtYGJEXFSM0mUiwt5zYtNeuowbmOMxlZjwkXkDJ5KakoKaujr+3VtTzMdDZfz/JWK2ze/LV1WelShRgqpVq7J8+XLq1KnDkydPOHPmDIcPHwbg6tWrPH78mHXr1smWkSSJtLQ0nj17hqenp1x6wcHBFC1aVFZxBuDl5YWpqSnBwcH4+vpy48YNuTGNchIcHIyjo6Os4gxQ2iVs69atzJkzh8ePHxMXF0dKSgrGxsZy6fTrJ/+AXaVKFU6cOJHj+hctWsTSpUt58eIFHz9+JCkp6atm6ExNTWX69Ols2rSJN2/eyH6c5zQhQnBwMC1atFDI69dUnt27d4/ExEQaNGggF56UlCSrEMuuQYMGODk5UaxYMfz9/fH396dFixbo6+t/U3oZsrdEys0xdf36dSZOnMiNGzeIiIggLS39TePLly/x8lIcOFOVf//9l2XLlnHu3Dm5CrUvHS/ZZeQ5e2upxMREue6ROblx4wZt2rTJMY6qVltfSrdGjRpKxyh7//49r169olevXnLnXEpKCiYm8g+6WdcdExNDSEgI1apVk4tTrVo1bt5U3RXs48ePChXqGZo1a8aOHTvYtm1briufIb3F2uXLl9m+fTuQ3mK2Xbt2LF++XFZ5ZmBgwL59+3jy5AknTpzg4sWLDB8+nLlz53LhwgX09TMfSvT09EhISFC6rt9//12uwhxgwoQJ8H9gGEaFG7kE5HBzz94qJqPySE1NjYT4BKZNmMKIsaMwKeRZcBVa70igqkGPibUFJtaZYyUVKWZPfGQM945ellWe+bauz4UNB9g9eQmogZGlGa6VS/Hk4q0CKkHOtOvWRH9I5r0tbuxkUu4EF0pevkTxmFEd19TGElObzLGSrF2LEhcZw83D57F1dyYp8RMnlm2nRpdApeOgFSSFilI1NVQVJeO82njjKIkp6a2U9wafp3M5P3beOU1KWipqqBGf9JFtt04iIfEm5j3GugbULFYm3yvPMsuQLZ/wxTJsuH44swz3ztK5fCN23DlFSlqqXHzfol6ExoTzKkr1UAv5RuG6lcMJ/ln/KaP4lPiJlw+fsn/tNixtrChboxKJHxPZMHcZrX/sioFx7ltG55WUbcur5bAz7I2L0PXzdr8V+gRTPUM6lmlIz4pNWXJpt0L8pp7VqOLkw5RjKwt+XKfsm/3LuwKAyyfPs3fddvqPGyZXASelSRiZGtN5YG/UNdRxKl6MqIhIDm/bVyCVZ5kUC5LXH7p6+nr8tXQ+Hz9+5Na1GyxfsARrO1t8yhZQt0dl93MlOyMtLY39izdQpXkDzGxy96Bz5/RlLBxssC2m/IVBflJ2j1B1nbI3KUIP3yZsvXWCmyGPMNMzonN5f/pUbsaiC+lDUDz68JpHH17Llnnw7iV/NOlPoxKVWRGkvGvuf0FNLef7YYaKjt58TP6k0Fr1P5HtmEp/RFR+TO2cv4YarfyxsFUcJzArHV0dek8dQdKnJJ7ffcjRdTsxK2KBk5dbfuZcEL7oqyrPIH3igAEDBjB//nxWrFiBk5MT9eqlzwKTlpbGDz/8wKBBgxSWyzpgdwZJUn6TyRr+NQO7K3ubnz39ixcvylqy+fn5yVrhZMyy9602b97M0KFDmT17NlWqVMHIyIiZM2fm2OUyu9mzZ/PXX38xZ84cfHx8MDAwYMiQITl29ctNCwZ1dXWFeFnH7MqobNq3bx/29vL9/VW1pDEyMuLatWucPHmSw4cPM378eCZOnEhQUNA3pZche0Xhl46p+Ph4GjZsSMOGDVm7di1FihTh5cuX+Pn55bqLJMDJkycZOHAgGzZskGvZ+C3HS1paGuXLl5er8MuQ2wkucnPcZ99WGeP7ZN3X2cdmyyndjP22ZMkShZaO2Vt/KavQzX6uqTq/M1haWsrGcMtu7NixlCpVik6dOiFJklxX7pwsW7aMlJQUueNOkiS0tLSIjIzEzCzzLbGrqyuurq707t2bX375BXd3dzZt2kSPHpmzQUVERKjcZ2PGjGHYsGFyYTo6OhxZOjhXef3/kYmpCeoaGkSEy7cyi4yIVGiNlsHcwkIhflRkFBoaGhibmPD86TPCQkMZO+Jn2ffS52OxXtXarN68DnsHxZn58pOOoT5q6mp8jJV/c50YF/9VlS1FnO15GpQ5toiukT51+rYiNTmFT/Ef0TMx5PqukzkOel+Qki5cJuV+ZteotA/KWwsWJt3P+yJ7K7PE2Hj0jb/ckjiDlYsDjy+lV1LGvI8gNjyKQ/MzB4LOuE4u6fcb7SYNxNjKPB9ynykhKZHUtDSFFlqG2noKLbkyxH6KJzoxXlbpBPA+LhJ1NTVMdA0JT4gm9lM8qVKaXCXKu7hIjHUN0FBTJ1XKv25q8Ukf08uQrZWDoY6+yjLEJCYQnRgnV4Z3n8tgqmfIh/jM1kVa6pqUtivO4Ye5f076FgZG6WMRZm9lFhcdi5Gp6hdhgGwcM1snB2KjYziyeTdla1QiPOwdke8+sOL3zLEyM46p0W36MvLvKVja5Pxj8GvEfkogNS1NoSWNsa6BynGYAr2r8/DDS/YFnwfgVdRbVqTsY0KDnmy5eVxuwofGJaoS6F2D34+v5lXUW6Xp5QdD4/SxCLO3MouNjlZojZZd0OkLrJ73Lz/8PBjPsvJj7pmYm6KhoYG6RuZoNLZF7YmJjCIlOQVNra/+uZMjIxNj1DXUiYqQv4ZGR0Zjamaap7TV1dWxdUhvlV+suCuvX7xi27pN+V55pmekj5q6OvHZWpklxMahb6J4rU36+Im3z17z7kUIx9fuAj4f85LEXz3H0GpELxyzVGQkf0riwaWbVG3x5d4WeRHzKYHUtFRM9eTzbJLDudGiZC0evH8pG1z/ZdRbEi/tYbJ/HzbeOELUR8XlJCSehL/BxkhxgpGCEP9JxfVXW59YFdffrCo5enHldXC+3hO+RN/IADV1dYVWZgnRsRiYKL5kSPr4idBnrwh78YZDq9JfemccU9O6Dqfj6H44e6d3K1ZTV8f8c6WtjZM9H9685fyeo6LyTPjPffXdpG3btgwePJj169ezatUq+vTpI/uBXK5cOe7evYubW+4OZC8vL16+fMmrV69krc/u3btHdHS0rJVaqVKlOHbsmNwP2i+lFxISIusOduHCBbk4586dw8nJiV9++UUW9uKFfH9yT09PLl68SNeuXWVhFy/mPHjmmTNnqFq1Kv3795eF5baVUdY0mjVrJutylpaWxqNHjxRa7GXl5eWlkLfsn4sUKaIwvtONGzdkrY+8vLzQ0dHh5cuXOXapzE5TU5P69etTv359JkyYgKmpKcePH6dBgwbflJ4yXzqmbt++zYcPH5g+fbrsGLpy5evevj9+/JhWrVoxduxYua6IkLvjRVmeN23ahJWVVY4t1HKScdxnb9mUk4xKntDQUFkLv6yTB2Sku2rVKqUzZFpbW2Nvb8/Tp0/p1KlTrtdrbGyMnZ0dZ8+elRv37vz581SsqHywVoCyZcuydu1ald//+uuvaGpq0qlTJ9LS0ujQoUOO+UhJSWH16tXMnj1boWtsq1atWLduncrxF52dndHX15ebiOLJkyckJiaqbC2po6PzP99NMzstLS3cS7hz5XIQNWpn7uurl4OoVlP5rKRePt5cOCM/UOyVS5fx8CyBpqYmjk6OLF8vP6beskVLSEhIYOCwwVgpmbUsv2loamBe1IbQ+89xLJ3ZDSD0/nMcfHI/g17E67fomShWtmloaaJvakRaaiovbzzAqZzqa3qB+phI2sewL8crRBqamlg62vHm3hNcymZup9fBT3AunftZtcJfhcp+AJraWNJ6wo9y3wftPE7ypySqtvPHwPzbrtM5SZXSeBP9nuJFinL3beb4a8UtHbj39rnSZZ5HhOFj64q2hiZJn8f/sjQwIU1Kk/0IfB4ZRhm74nKtvywNTIlJjM/3H0npZXhHccui3M3Sja+4pXyZsnoRGUopO1e0NbRISk2W5S9NSlP4QVrKzg1NdQ2uv87dWFffSlNLE3tXJx7dvIdPpczubw9v3cPbt0yu05EkiZTk9P1iZW/L8L/k788H1+/gU2IizXp2wNQifytjU9NSeRYRQkkbV668vi8L97Fx5WqWz1lpa2iRlu2YkH3O8mKriWdVmnvX5I8Ta3kWEZKv+c5OU0sTRzcXgq/fpmzVzLEwg6/foXRl1bNJXj55ntVzF9N71AB8Kirek1293Ak6eZ60tDTZi8S3b0IxMTfN94ozSL8XuroX58aV61Sumdnq/saVa1SqrnwSpG8lSdIXJ6n6Fhqamlg72/Py7iOKl88cU+3F3Ue4llXstaGjp0PXKUPlwm4ev8DLe08IGNAZkyLyx/zDy7dITU7Fs2rOPU7yKjUtlacRIZSydSPoVWZL6lK2bgS9Vt6yWkdDS+F6mXFu5DR+pJOZTYFWLmeVKqXxOvodHkUc5VqPeVg5cic0527VbhYOFDE042KWbqj/BQ1NTWxdHHh25yElfDMre5/deYh7ecVx+3T0dOjzu/wQOFePnuPFvUe0HNQd0yI5X0czrsf/69QLYExT4dt99R3F0NCQdu3aMXbsWKKjo+UGZh89ejSVK1fmp59+ok+fPhgYGBAcHMyRI0cUZrIDqF+/vqx1yZw5c0hJSaF///7UqlVL1i1swoQJ1KtXD1dXV9q3b09KSgoHDhxQOt5U/fr18fDwoGvXrsyePZuYmBi5Sg9IHyfq5cuXbNy4EV9fX/bt28eOHfKzxA0ePJhu3bpRoUIFqlevzrp167h79y7FiqmefcjNzY3Vq1dz6NAhXFxcWLNmDUFBQbi4uOR627q5ubFt2zbOnz+PmZkZf/75J2FhYTlWng0aNIiqVasyY8YMmjdvzuHDhxW6bNatW5eZM2eyevVqqlSpwtq1a7lz546sUsDIyIgRI0YwdOhQ0tLSqF69OjExMZw/fx5DQ0O5sa4y7N27l6dPn1KzZk3MzMzYv38/aWlpeHh4fFN6qnzpmHJ0dERbW5u///6bfv36cefOHSZPnpzr9D9+/EhAQABlypShb9++hIVl/rC0sbHJ1fGSXadOnZg5cybNmjWTzUD58uVLtm/fzsiRI+W6FasyZswYfHx86N+/P/369UNbW5sTJ07Qpk0bLC0Vp3KH9FZllStXZvr06Tg7O/Phwwe58doABgwYwN9//0379u0ZM2YMJiYmXLx4kYoVK+Lh4cHEiRMZNGgQxsbGNGrUiE+fPnHlyhUiIyMVWlllNXLkSCZMmICrqytlypRhxYoV3LhxQ2nruwx+fn6MGTNGoUVYVj///DMaGhp06dKFtLS0HCv19u7dS2RkJL169VLoZtq6dWuWLVvGgAEDmDhxIgkJCTRu3BgnJyeioqKYN28eycnJcl2Nz5w5Q7FixXB1LfwBSfW0dHAwyWwBZ2dsSXFLB2IS43kbl7fxVb5Wmw7t+H3iFDxKlMDbx5u9O3fz9u07Alo2B2DJ/EW8f/+BsRPTj73Als3YuWU78+f8TdNmAdy9fZf9u/fx6+QJAGjr6ODiKn9tNTRKr/TIGv4xIYE3rzMH7w8NCeXxw0cYGRtjbaN8APav4VW3IudW78HC0YYiLvY8PHeD+IgY3GukXyev7TrJx+hYqnUNACD4RBAG5iaY2lqSlprK08t3eXnjAbV6Z3ajf/88hI9RsZg5WJMQFcut/WeRJAnv+srHsCwMakaGqFtZovb5x77651Z+aRFRSJFRhZKnUg2qcGL5diyd7LB2LUrw6avERUTjWSv9ueDy9qPER8VQp2f6y47bRy9gZGGKmZ0VqampPL54i2fXgmnQL73Lt6aWFub28seIjn56l/Hs4fnpzLObtCtTj9dR73gZ9ZaKRb0w1TPi4sv0l1n+HpUx1jVg88308b5uhDykXvEKtCldlyMPgzDQ1qVxiapceXVf1t3x4ou7VHP2IcC7Ouef38bSwJQ6buU49/x2wZTh6Q3alW3A6+h3vIwMo5KjN6Z6hlx88bkMJapgomvAphvpMyVef5Nehral63H44SUMtPVo4lmNoFfBCl02Kxb14m7YUxKSc57NPD/UDGjAxnnLcHB1xsmjGJeOnCbqQwRVGtYGYP/abURHRNFhUPrM8ecOHMfM0pwin2f+fX7/Ead3H6Zao7oAaGlrYeMo3yJW1yC9hUj28Pxy4P4FfqzSkmcRITz68Iq6buWx0Dfh2KP0F4btStfDTN9Y1u3s+puH9KoUQD23CtwKfYKZniGdy/vz+MNroj4PIN7UsxqtS9Vh/vltvI+PwuRzy7bElCQ+peS+9f7XqN+iMStmL8CpeDGKlSjOmYPHiXj/gZqN03ux7Fi5kajwCHoMT38ZffnkeVb8uZB2fbvi4lGc6IgoALR1tNH7vM1rNW7AiT2H2bR4NXUD/Xj3JowDm3dRN8C/QMoA0KxtC+ZMnYWbR3E8vD05vPcAH969xy+wMQBr/l1B+PtwhvySOY7v00fplSCJHxOJiYrm6aMnaGlpUtQ5fdbKrWs34eZRHBt7W1KSU7h6MYiTh47Rb5jyF395Vd6vBgf+3YS1swO2bo7cPnmZ2PAoStdJH0/uzJYDxEXG0KhvO9TU1bF0kJ8oRM/IEE0tTYVwSJ9YwK2cF3oqZhbNT3vvnWNgtdY8DX/Dw/evqO9eAUsDE448TB+/uEPZBpjrGTP//DYArry+zw9VmtPAvaKs22a3Co159OGVbHD91qXq8Oj9K0Jjw2Vjnjmb27Ls8p4CL0+Gk4+v0am8H6+i3vI8IpQqzj6Y6Rlx7nl6q+qmntUw0TNg3bXDcstVcvLmeUTofzI2W3aVGtVm18J12BYrioObM9dPnCc6PJJy9aoCcGLTXmIjowns1wk1dXWsispPfmBgbIiGlqZc+LndR7F1KYqZtQWpKak8uRHM7bNB+HfPeXgbQSgI3/Q6plevXixbtoyGDRvKdccsVaoUp06d4pdffqFGjRpIkoSrq6vKLldqamrs3LmTgQMHUrNmTdTV1fH395eraKtduzZbtmxh8uTJTJ8+HWNjY7nWLVmpq6uzY8cOevXqRcWKFXF2dmbevHn4+2fePJs1a8bQoUMZMGAAnz59okmTJowbN46JEyfK4rRr144nT54wevRoEhMTadWqFT/++COHDh1SuU369evHjRs3aNeuHWpqanTo0IH+/ftz4EDuB2ocN24cz549w8/PD319ffr27Uvz5s2JjlY9iGrlypVZunQpEyZMYOLEidSvX59ff/1VrgLJz8+PcePGMWrUKBITE+nZsyddu3bl9u3Mh+3JkydjZWXF77//ztOnTzE1NaVcuXKMHTtW6XpNTU3Zvn07EydOJDExkeLFi7NhwwbZoPZfm54qXzqmihQpwsqVKxk7dizz5s2jXLlyzJo1i8DAwFyl//btW+7fv8/9+/cVBq+XJClXx0t2+vr6nD59mtGjR9OyZUtiY2Oxt7enXr16uW6J5u7uzuHDhxk7diwVK1ZET0+PSpUqfbH11fLly+nZsycVKlTAw8ODGTNmyLXCsrCw4Pjx44wcOZJatWqhoaFBmTJlZOOV9e7dG319fWbOnMmoUaMwMDDAx8dHNmGDKoMGDSImJobhw4fz7t07vLy82L17N8WLq2614+PjQ4UKFdi8eTM//PCDyngjR45EQ0ODbt26kZaWRpcuXZTGW7ZsGfXr11eoOIP0lmfTpk3j2rVr1KpVi/nz59O1a1fevn2LmZkZZcuW5fDhw3h4ZLY62rBhQ67HWyxoJYo48U+LzMrLQdXTHxj2B19g6vFVqhYrEHUb1CMmOobVy1cS8SEc52IuTP9rBja26Q/P4eHhvHub+WbW1s6O3/+awYI5f7Nr6w4sLC0ZOHwwterW/qr1Pgh+wND+md23F8z5BwC/Jv78PP4XVYvlmnN5Tz7Ff+TWgXN8jInH1NaSuv3bYGiefjx9jIkjPiKzK0JaSirXdhwnIToODS3N9Pg/tsHeO7OyNS05hRt7TxP7IQotHW3svYtRrWtTtPWVj/VXGLSq+GIwMnO7Gv6a/kPv4+qNJK7ZVCh5cvUtSWJ8Atf2nSIhOg5zOysaDeyE0efurgnRscRFZN4XU1NSubj1MPFRsWhqaWJmZ4X/wI44+rirWMN/41boY/S1dahXvALGOgaExYWzImivrAWWkY6+XFejpNQUll7aTTPvGgys3pqEpE/cCn3MoQeZ3RqjE+NYemkPAV7VGFKjHTGJ8Zx7douTT64XSBluhj5GX1uX+sV908sQG87yy3tllS/GOvqY6mV2x0lKTWbJxV00K1mTQTXakpCUyK2Qxxx8IN8i3tLAFBcLO5Zc3FUg+c6uTLWKJMTGc3TLHmIio7FxtKPX2MGYWaV3wYqJjCbqQ+YPTUmS2L9uOxHvPqChoYGFdREadWpJ5YZ5a02fFxdf3sVQR58WJWthqmfI6+h3zDy5jg8J6eeCqZ4RFvqZ97/Tz26gq6VNQ/eKdCrnR0JSInffPmPjjSOyOPWL+6KlocmQGvLP6dtun2T77ZMFUg7fmlWIj4lj34btREdEYefkwIDfRmFhlf6CKDoiioj3mfvizMFjpKWmsmHhCjYsXCELr1KvJt2HpY/haF7EgsGTf2bLkrVM+ulnTC3MqBvoj3/r3D0LfovqdWsREx3LptXriQyPwNHFmXF/TMLq88uciPAI3r+TH8tvWO/MSrAnDx5x+uhJithYsWRT+n38U2Iii/+aT/j7D2jraGPvWJShv46ket2COe48KpXmY1wCF3cdIz46Bgt7G1oM64GxZfoLzfioWGLDo7463ciw97x5+JxWI3rlc46Vu/DiDkY6+rQqVQczPSNeRb3l9+Nr+BAfBYCZnhGWBqay+KeeXkdPSwd/j0p0Le9PfFIid8OesvZa5u88A21d+lZujqmeIQnJiTyLCGXCoaU8Cc95Bu78dD3kIfrauvh5VMZYR5/Q2HAWX9wlq+Az1jXATE/+d4Wupjalbd3YfufUf5bPrLwqlyUhNp6zOw4RFxVDEQdb2o/si4ll+gu6uKgYoj983Uvf5E9JHFy5ldiIaDS1tbCws6LZj53xqlywrRoFQRk1SUz79T9n5cqVDBkyhKioqMLOiiDkaP/+/YwYMYI7d+7Iulp8D+7cuUO9evV4+PCh0sq4nFSb/9/M5leQzv20iJD/YgDvAmZnasWUIyu+HPE79muDHkQ2aPHliN85syM7mH1qQ2FnI0+G1+rA6H0LvhzxO/dHk/6M2vtPYWcjz2Y0HcDuO2cKOxt5EliyBp3WTyzsbOTZuo4TOfn4amFnI09qu5UnuIBmGf0vedoUY/GFnYWdjTz7oUpz2q759csRv2Obu0xhyK45hZ2NPJvTbAirg1TP0vv/g66+jQs7C9+s0VLVPX8K04HefxZ2FgpF/g8EIAiCkEuNGzfm0aNHvHnzRm7W3cIWEhLC6tWrv7riTBAEQRAEQRAEQfjfIyrPBEEoVIMHf3+zU2afcEAQBEEQBEEQBEH4v+v76Scl5Jvu3buLLpuCIAiCIAiCIAiC8P8pNTX17/Lv/6r/uyUXBEEQBEEQBEEQBEEQhC8QlWeCIAiCIAiCIAiCIAiCoIIY80wQBEEQBEEQBEEQBOE7oq6mVthZELIQLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCN8RNUS3ze+JaHkmCIIgCIIgCIIgCIIgCCqIyjNBEARBEARBEARBEARBUEF02xQEQRAEQRAEQRAEQfiOiNk2vy+i5ZkgCIIgCIIgCIIgCIIgqCAqzwRBEARBEARBEARBEARBBdFtUxAEQRAEQRAEQRAE4TuiJrptfldEyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndEdNv8voiWZ4IgCIIgCIIgCIIgCIKggqg8EwRBEARBEARBEARBEAQV1CRJkgo7E4IgCIIgCIIgCIIgCEK6VqvGFnYWlNrWbVphZ6FQiDHPBEEQ8lFI1LvCzkKe2ZlaUW1+v8LORp6d+2kRsfcfFnY28sSohDsxR08UdjbyzLh+HZ59eFPY2cgTF0t77oY+Kexs5Jm3rSurg/YXdjbyrKtv4/+JYyr22fPCzkaeGbk4ExsSUtjZyBMjOzuil6wq7GzkmUmfbryKDCvsbORZUTMb3sWEF3Y28sTK2IKnH14XdjbyrJilA7GPHhd2NvLEqLhbYWdB+B8hum0KgiAIgiAIgiAIgiAIggqi5ZkgCIIgCIIgCIIgCMJ3RMy2+X0RLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCN8RddFt87siWp4JgiAIgiAIgiAIgiAIggqi8kwQBEEQBEEQBEEQBEEQVBDdNgVBEARBEARBEARBEL4jYrbN74toeSYIgiAIgiAIgiAIgiAIKojKM0EQBEEQBEEQBEEQBEFQQXTbFARBEARBEARBEARB+I6oIbptfk9EyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndEXcy2+V0RLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKojKM0EQvhsJCQlMnjyZFy9eFHZWBEEQBEEQBEEQCo2amtp3+fd/lag8E/6/tHLlSkxNTf+TddWuXZshQ4b8J+vKT1+7jZydnZkzZ06B5Sc3Bg4cSEhICE5OTl+13P+v+0gQBEEQBEEQBEH4/okJA4QC86Va6W7durFy5cr/JjP/B7Vr147GjRvnOn5QUBAGBgYFmKOcbdiwgbdv37Jr166vXnb79u1oaWkVQK7y186tO9i0dgPh4eE4uzgzYOggSpUtrTL+jWvXWTDnH54/e46lpQXtu3QksGVzpXGPHz7K5HG/Ua1mdabM/F0WfvP6DTat3cDD+w8I/xDO5BlTqV6rZn4XLVdK27rRsWxDSlg5Ymlgys/7F3Lm2c1CyYsykiTx78YN7Dh0iNj4OLzd3Rn9Qz9cHVVX5j55+YJF69dx/8kTQt+9Y1iv3nQMbCYXZ/GG9SzZuEEuzMLUlEOr1hRYOZbs38uOc2eJTUjA29mZUW074Gpnp3KZ4zeus/LQAV69f09KaipFi1jRuV59GleqLItz7dEj1hw9zP1XL/kQHc3Mvv2oXbpMnvO7Z/sutq7fRER4OE4uzvQb9BMly5RSGf/W9Zv8+/cCXjx7joWlJW06tqNJi0C5ODs2bWXvjt28f/sOY1MTatSuSY9+fdDW0QZg4+r1nDt1htcvXqKto4OXjzc9f+xDUSfHPJcnqwM797Jr4zYiwyMo6uJEzwF98SpVUmnciPAIVi1YwpOHjwl9HULjloH0GviDyrTPHjvFn5P/oGK1yvw8dXy+5jurK0fOcnH/CeKiYihib0ODzs1xLOH6xeVePXzKminzKeJgQ59pI2Xh94NucW73ESLffiAtNQ0za0sqN66NT3XffMtzfh9TIwcM5fZ1xWuVb5VKTJ6Vfr1NiE9g9ZLlnD99lqjIKFzd3eg3ZAAeniXyrVzw+Tq1di07DuwnNi4Ob48SjP7pJ1ydnVUu8+T5cxatWc39R48JffeWYT/8QMcWLeXiXLt9mzVbtxD86BEfIiKYNX4CtatWzb88r1rFjr17iY2NxdvTk9GDB+Pq4pLjcsdOnWLRihW8DgnBwc6O/r16UadGDdn3Ae3bE/r2rcJybZo1Y/TnF2rHT59m+549BD98SHRMDOuWLMHDzS1fypWdJEksOX+GnbduEPspEW8bO0bW98PVsojKZfbeucWkg3sVws8MGYWOZv7/TNu1dQdb1m0kPDwCZxdn+g8dgE8Z1c8hN6/dYNHc+Tx/9hwLSwvade5AQMvMe9yhvQeYOWW6wnL7Tx1GW0cHgE7N2/E2LEwhTmCr5gwaOfSry7BjyzY2rF1P+IdwnIu5MGjYYEqXLaMy/vWr1/lnzjyeP32GhaUlHbt2onmrFrLvnz15yrLFS3lw/z5hoWEMHDqYth3byaXRJrAlYaGKZWjRuiXDRo/46jIA7N2+i63rN8uuUz8M6v/F69SSvxfKrlOtO7ajSYsAuTg7Nm1jX5Z7X/XaNenRr7fs3tetVUfehSmeM01bBvLT8MHfVI7sJEni3/Xr2XHoYPo1yt2D0T/+iGsOL8afvHjBonVruf/4cfqzVJ8+dGzWXGX8FZs3M3/1KjoENmN43775km9ByA1ReSYUmNDQUNn/N23axPjx43nw4IEsTE9PrzCy9f+91NRU1NTUUFfPueGonp7eV23jIkVUP9z9Fzp06ECHDh2+aVlzc/N8zk3+O37kGPP/mseQUcMoWcqHPTt2M3roSFZuXIO1jbVC/NCQEMYMHUWTZgH88ts47ty6zZwZf2JiakqturXl4oaFhrFw3gJKKXkATvyYiGtxN/ybNmbCz78WVPFyRU9Lh8fhr9l//zzTGvUr1Lwos2r7Ntbv2smEwUNwtLNn2eZN/DR+PNsWLMRAX1/pMomfPuFgbUP9qtX5c/lSlWkXc3RkwaQpss8aXzh/82L1kcOsP36M8V264WhlxfKDBxjwz1y2jv8NA11dpcuY6OvTw68RzjY2aGlocubOLSatXY2ZkRFVvLwB+Jj0CXcHBwKqVGX0ksX5ktdTR0+weO58fho+GO9SJdm/cw+/jviZf9euwErJeREWEsq4EWNoFNCYUePHcvfWHebPnouJqSnV66RXCh8/dJTli5YwbMwoPH28efPyFbOnzgDgh8E/AXD7xk0CWjbD3dODtNQ0Vv67jF+GjuLfdSvQzad709njp1jxz7/0GdIfTx8vDu0+wJRR45m7ahFFrK0U4qckJWNsakKrzu3Zu2VHjmm/C3vLyoVL8SrlnS95VeXexescWbsT/+6tKeruwrXj59k4819++ONnTCzNVC6XmPCR3YvW4+JdnLjoWLnv9Az0qRbYAEs7azQ0NXh0/S57/t2IvrERrqXyXtFUEMfU+Gm/kZycIlsmJjqa/t37UKNOLVnYnOmzeP70GSPHj8HC0pJjh44wZvBI/l23HMt8vL+u2rKZ9Tu2M2HYcBwdHFi2YT0/jR3DtqXLcr5O2dhSv0ZN/lys/Nz9mJhIcZdiBDRoyKgpk/MtvwCrNm5k/ZYtTBg9GseiRVm2Zg0/jRzJttWrVeb51t27jJ00iX49e1KnRg1OnDnDz7/9xrJ58yjp5QXA6kWLSE1Lky3z5Nkzfhoxgnq1a8uVq3TJktSvXZsps2bla7myW335IhuuXma8f1MczcxZfvEcA7dsYEuvHzDQ1lG5nIG2Dlt6yVeUF0TF2Ykjx1k45x8GjRyKd6mS7Nu5hzFDR7NswyoVzyGh/DJsNI2bNeXnib9w99Yd5s38CxNTU2rWzTz29Q0MWLlZ/mVQRsUZwPwVi0lLS5V9fvbkGaMHDadmtmeZ3Dh2+Cjz/pzLsNEj8Cldit3bdzJy8HDWbF6HtY2NQvyQNyGMGjKcgOaBjJs0gds3b/HnH7MwNTOldt06ACQmJmJrb0ft+nX4+895Stf776plpKVmHmvPnjxl6IDB1Klf96vLABnXqQX8NHwQXqVKsn/nXsaNGMPitctVXqfGjxiLf0BjRo4fw71bd5g/ex4mpiZy974Vi5YwdMxIvHy8ef3yNX/K7n39AZi7dAFpWc6ZF0+fMXbIKLlrWV6t2raV9Tt3MGHo0PRnqU2b+Gncr2xbtPgL1ygb6lerzp9Ll+SY/t2HD9lx6CDFnXOufP9fIWbb/L6IbptCgbGxsZH9mZiYoKamJhd2+vRpypcvj66uLsWKFeO3334jJSXz4TQqKoq+fftibW2Nrq4uJUuWZO9e+bdzhw4dwtPTE0NDQ/z9/eUq7NLS0pg0aRIODg7o6OhQpkwZDh48mGOe4+Pj6dq1K4aGhtja2jJ79myFOElJSYwaNQp7e3sMDAyoVKkSJ0+ezDHdiRMn4ujoiI6ODnZ2dgwaNCjX6WV0v9y7dy9eXl7o6OiwZMkSdHV1iYqKklvPoEGDqFWrltxyWe3evZsKFSqgq6uLpaUlLVtmvnnO3m3z5cuXNGvWDENDQ4yNjWnbti1vlbzhzfD8+XPU1NTYvHkzNWrUQE9PD19fXx4+fEhQUBAVKlSQ7af379/LlgsKCqJBgwZYWlpiYmJCrVq1uHbtmuz7kydPoq2tzZkzZ2Rhs2fPxtLSUra/s3fbdHZ2ZsqUKbJ96eTkxK5du3j//r2sTD4+Ply5ckWuDNu2bcPb2xsdHR2cnZ2V7v9vtWXDJhoHNqFJswCcXJwZMGwQVtZW7N6m/Efy7u27sLKxZsCwQTi5ONOkWQCNApqwed1GuXipqalMHT+J7n17Ymtvq5BOpaqV6dWvDzXz8cHoW118eZcll3Zz6umNws6KAkmS2LBnNz3atKVulaq4OTnx25ChJCZ94uDpUyqX8y7uzuAePfGrWRPtHFo/ampoYGlmJvszMzEpiGKkl+PEMXr4NaJumbK42dkzsUs3EpOSOBR0WeVy5d09qFOmLC42tjgUKUKHOvVws7fnxpMnsjjVvEvyY0Az6pYpm2/53b5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGC79zF26ckdRrWw8bWhvKVfKndoC4P7z+UxZn65x80bOKPczEXihV3ZdjYUbx7+45HDx4qW+032bNlB/UaN6RBU38cnBzpNfAHLKyKcGjXPqXxrWyt6TWwH3X86qGfQyvg1NRU5kyZSfsenbG2VTzn89OlAycpU7sSZetUxtLemoZdWmBsYcq1Y+dyXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW149eJoveS6IY8rI2BhzC3PZ3/Wgq+jq6MoqED59+sTZU6fp9dMP+JQpjZ2DPV16dcfG1kbler+FJEls2LGTHu3bU7d6ddycnflt+AgSP33i4IkTKpfz9vBgcJ8++NWurfI6Vc3Xl/7du1O3evV8y68sz1u30qNzZ+rWrImbiwu//fwziYmJHDx6VOVyG7ZupVKFCvTo1AlnR0d6dOpExXLlWL9tmyyOmakplubmsr+zFy7gYGdH+dKZL5KaNGxIn27dqFi+fL6WS1k5N167TPdK1ajjXgLXIlZMaBRAYkoyh4Lv5rismhpYGhjK/RWEbRs24x/QmMbNmuLk4kz/oQOxsirCnu3KW/zv3b4LK2sr+g8diJOLM42bNcU/oDFb1ss/h6ipqWFuYSH3l5Wpmancd5fOXcDOwZ7S5cp8dRk2rd9Ik2YBBDQPxNnFmUHDh2BlbcWOrcqfpXZt34G1jTWDhg/B2cWZgOaBNAlsysa162VxPL29+GnwAOo3bIC2tvLzw8zMDAtLC9nf+bPnsHewp0y5b7sf7ti0lYZNG+Evu079RBErK/bt2KM0fuZ16iccnZ3wD2xCwyb+bMtynbp/5x5en+991rY2lK9UgdoN6vDofmbDhfR9kXktu3TuIrb2dvjk0Avia0iSxIZdu+jRrh11q1ZLv0YNG5Z+jTqVw7OUuzuDe/bCr1atHJ+lEj5+ZNysmfwycCBGhgVznghCTkTlmVAoDh06ROfOnRk0aBD37t1j8eLFrFy5kqlTpwLpFV+NGjXi/PnzrF27lnv37jF9+nQ0NDRkaSQkJDBr1izWrFnD6dOnefnyJSNGZDadnjt3LrNnz2bWrFncunULPz8/AgMDefTokcp8jRw5khMnTrBjxw4OHz7MyZMnuXr1qlycHj16cO7cOTZu3MitW7do06YN/v7+KtPdunUrf/31F4sXL+bRo0fs3LkTHx+fr0ovISGB33//naVLl3L37l06d+6Mqakp27I8RKamprJ582Y6deqkNB/79u2jZcuWNGnShOvXr3Ps2DEqVKigNK4kSTRv3pyIiAhOnTrFkSNHePLkCe3atVMaP6sJEybw66+/cu3aNTQ1NenQoQOjRo1i7ty5nDlzhidPnjB+fGYXo5iYGLp27cqZM2e4cOECxYoVo3HjxsTGprdWyKgY69KlC9HR0dy8eZNffvmFJUuWYJvDD8e//vqLatWqcf36dZo0aUKXLl3o2rUrnTt35tq1a7i5udG1a1ckSQLg6tWrtG3blvbt23P79m0mTpzIuHHj8qVrcXJyMg/vP6RCpYpy4RUq+nLn9h2ly9y7fZcKFeW7MflWrsiD4Ptylcyrl63E1MyUJoFN85zP/8vevH1LeGQklctmPghra2lRzrskt+7fz3P6L0NC8O/ejcA+vRgzcwavlXRhyQ9vwj8QHhNDZU9PWZi2lhbl3Ipz61nuKickSeLy/fu8ePuWcgXUvQnSz4tHDx5SrqL8dahcxQoE31H+YzP4zl2F+OUrVeDR/Qey88K7tA+PHjzkwb1gAELfhBB04RIVq1ZSmZeE+HggvZIkPyQnJ/PkwWNK+5aTCy/jW5b7d4PzlPaW1RswNjWhfhO/PKXzJakpKYQ+e41LSQ+58GIlPXj96LnK5W6eukTk2w/UbPnl/EmSxLM7D4kIe5+rrqBfUlDHVHaH9h6gVv06slaKqSmppKWmoa2tLRdPW0eHu7eUX+O/xZuwMMIjI6hcLrMiSFtbm3I+PtwKvpdv68lPb0JDCY+IoHKW5w1tbW3KlS7NrbuqK5Vu3btHpWzPKJV9fVUuk5yczP4jRwhs1KhQBrMOiY4iPD6eyllaw2hralLOwZFbb97kuOzHpCQCF/9D00V/M3T7Zh68zf/7Q3JyMg8fPKRCJfnnivKVfLmn6jnkzl3KZ4tfoZIvD4Plz42PHz/SsXlb2ge05pfhP+f4EiI5OZmjB4/g3/Tr91P6s9QDKmZ7lvKtVJE7t24rXebu7Tv4ZotfsXIl7t+7r/L8zk0+Dh84ROPApt90rKm+TpXnnorr1P079yhXUb4CuFwlXx7dfygrh1fpkjx+8JAH99KfWdLvfZepWLWyQnoZ+Thx+CgNm/jn2znz5m3Y52epzHuftpYW5UqW5FZw3u59AH8sXEg1X18q5eNLPEH4GqLbplAopk6dys8//0y3bt0AKFasGJMnT2bUqFFMmDCBo0ePcvnyZYKDg3F3d5fFySo5OZlFixbh6pr+wD1gwAAmTZok+37WrFmMHj2a9u3bA/DHH39w4sQJ5syZw/z58xXyFBcXx7Jly1i9ejUNGjQAYNWqVTg4OMjiPHnyhA0bNvD69WvsPo8fNGLECA4ePMiKFSuYNm2aQrovX77ExsaG+vXro6WlhaOjIxUrVvyq9JKTk1mwYAGls7xNbdeuHevXr6dXr14AHDt2jMjISNq0aaNym7dv357ffvtNFpY1vayOHj3KrVu3ePbsGUWLFgVgzZo1eHt7ExQUhK+v6rFpRowYgZ9f+o+mwYMH06FDB44dO0a1atUA6NWrl1yFVL169eSWX7p0Kaamppw6dYqmTdMrhKZMmcLRo0fp27cvd+/epUuXLrRo0YKcNG7cmB9+SO8GMX78eBYuXIivr69s+4wePZoqVarw9u1bbGxs+PPPP6lXrx7jxo0DwN3dnXv37jFz5ky6d++e47q+JDoqmrTUVMzM5bs5mVmYEXkxQukyEeHhmFnIP/CZmZuRmppKdFQUFpaW3L55i/2797F07fI85U+A8MhIACxMTOXCLUxNCX33Lk9pl3R357chQ3Gysyc8KoplWzbRa/RINv09H9N8qqzJEB4TA4C5kXy65sbGhEUoP9YyxH38SOOxP5OUkoyGujqj23WgkqdXvuYvq5io6PQxr7KfF2ZmRIQrz2tkRCRmZtniy86LaCwsLahdvy7RkVEM/3EwkiSRmppK0xaBtOvSUWmakiSxeN4CvEv54Fwsf7qBxEbHkJaWhqmZqVy4iZkZURGR35xu8O27HN13iD+X/pPHHH5ZQmw8UloahiZGcuEGJkbERcUoXSYi7D0nNu2ly7iBqGd52ZVdYsJH5g2cSGpKCmrq6vh3b00xHw+V8XOroI6prB7cC+b502cMHZP5sk7fQB/Pkl6sX7kGRydHTM3NOHn0OA/uBWPnYJ/ncmUIj0wvg0W2/FqYmRH6Nm/XqYISHpFTnlW3Zg+PiFC6TLiK69jJs2eJi4sjwN8/jzn+NuGfK+DNs7UaNTcwIDQmWuVyTuYWjG8UgKtlEeKTPrHpahC9N6xmXbfeOJrl35AUmc8h8mmamas+NyLCIxTPJXNzuXOjqLMjo379GRe3YiTEx7N90zaG9B3A4jXLcXB0UEjz3KkzxMXF0bBJo28oQxSpyspgYa6yDOHhEVS0yF7m9DJERUVhaWn51fk4c/I0cXFxNG6a+3GFs1J1nTI1MyNS5XUqAlMV16mYqGjMZfe+aEZkufc1aRFI2y7Kh0S5cPoccXFxNGicfy9iZM9S2Xq+pD9LvVeyRO4dOnWK+08es/qvOXlK5/83aohum98TUXkmFIqrV68SFBQka2kG6S2nEhMTSUhI4MaNGzg4OMgqzpTR19eXVZwB2Nra8u7zj9yYmBhCQkJkFTYZqlWrxs2bygcof/LkCUlJSVSpUkUWZm5ujodH5gP9tWvXkCRJIV+fPn3CIlsz9Qxt2rRhzpw5FCtWDH9/fxo3bkxAQACampq5Tk9bW5tSpeQHEe3UqRNVqlQhJCQEOzs71q1bR+PGjRV+BGS4ceMGffr0UfpddsHBwRQtWlRWcQbg5eWFqakpwcHBOVaeZc2ntXX6uA1ZW9pZW1vL9hNAeHg4U6ZM4eTJk7x7947U1FQSEhJ4+fKlXPnXrl1LqVKlcHJyytWsoLnJB8C7d++wsbEhODiYZs3kB3qvVq0ac+bMITU1Va7VI6Tvo0+fPsmF6eioHtMElEyiIZHeX0NV/Gw3zIxWcmpqaiTEJzBtwhRGjB2FyX808+z/kgMnTzJtYWYl+pxx6a0hs+8jSZLy/Ea2WvnMt8tuQKkSJWj+Qx/2njhO5xwGxM2NA5cv8fuGzO4nf/VPH9NLWTm+RF9Hh3VjfiHh0yeCHtznr+1bsbe0pLx73is1cpQ9r3xhmyuULSM4PfzmtRtsXL2On4YPpoS3JyGv37Bo7nzMVqyhU48uCsnN/3Mez548ZfZC5WPd5IXiOS9984Pwx4QE5k6dRf+RgzA2LZhuv0op7B/lEwKlpaWxc/4aarTyx8JWcUy3rHR0deg9dQRJn5J4fvchR9ftxKyIBU5e+dTSMZ+PqawO7j2AczEXPLw85cJHjhvDX7/PpFPztqhrqOPmXpzaDerx5KHq1u5fcuD4cabNmyv7PGdS+lhk2XOVfp365tXkqwNHjjDtzz9ln+f8nj6hgsI1SUmYAmXXYxVRd+3fT9VKlSjyDZUh3+LgvTv8fuSA7PNfLdsCyu7bOf/49bGzx8cus4K1tH1RuqxexuZrVxhRr2E+51rxkUOSvrAfVNxLMoK9SnrjVTJz7EXvUj782K0PO7dsY4CSAegP7NlPxcoVsSzy7ftJIbtfOP4V9gmS0vDc2rt7D5WqVM7zWIbKHwlzeCZUdV//HH7r2g02rV7HT8MH4eHtScjrEBbPnc/6FeZ0VHLvO7T3ABUqV8QiD/viwIkTTJuf+TJnzoSJKvKa4+PuF4W9f8/sJf/yz6TJ6GRr4SsI/yVReSYUirS0NH777Te5Mbcy6Orq5mqg++yzK6qpqSn8QPyaH8K5+XGZlpaGhoYGV69eVahMMVTR975o0aI8ePCAI0eOcPToUfr378/MmTM5depUrtPT09NTyHfFihVxdXVl48aN/Pjjj+zYsYMVK1aozPvXTB6gajvlpiIh637JiJs9LOtgpT169CA8PJy5c+fi5OSEjo4OPj4+JCUlyaV7/vx5ACIiIoiIiPjizKC5yQcgy4uysuV0TPz+++9yrfggvctq3yH9FeKamJqgrqGh8GY0MiJS4c1jBnMLC4X4UZFRaGhoYGxiwvOnzwgLDWXsiJ8z8/u5LPWq1mb15nXY52OLh/81NStWpKRHZqV1UnIyAB+iIrHM8lY7Ijoa83yunNTT1cXVyZlXISF5TqtmqdKUzNJNKOlz943wmGgss4yrFhkbi8UXWrmpq6tT1Cq90sOjaFGevw1j5eFDBVZ5ZmxqgrqGusKb9qjIKJXnhZm5GZER2eNHfj4v0su3eskK6vo1oFFgEwBcXIuRmJjIvD/+pEO3TnKTrSz4cx4Xz55n1vw5FLHKv0HdjUyMUVdXJzJbK7PoqChMzE2/Kc2wN6G8C3vLtDGZ152Ma1Truk35Z80SbJSMe/it9I0MUFNXV2hllhAdi0G21mgASR8/EfrsFWEv3nBo1fbM/EkS07oOp+Pofjh7FwdATV0dc5v07W3jZM+HN285v+donivPCuqYypCYmMipoyfo2ru7Qjp2DvbMnD+HxI8fiY9PwMLSgmnjJmFtqziIeW7VrFyZkiUyz7+kpM/XqchILLO8YIuIisJcxYuz/1rNatVkA/oDsnv5h4gI+TxHRuaYZwtzc4VWZhFRUUonCAoNC+PytWvMyHZPLkg13IrjbZs5g3FSavqA+OHxcVhmeX6LTIjHXD/3M5mrq6nhZWPHq8icWwp/LVXPIVGROT2HmCs5lyJlzyHKqKur4+7pwZtXrxW+exsaxvWgq0yY/m0TUpiYmqKh8llKeSs9CwtzIsLD5csQkV4Gk294CREWGsrVy1eYMkOxp0luZVynIsKz3R8iIzFVeZ0yV3KdilJ67/PPcu/7lPiReX/8Rfts9763YW+5ceUav06b+M3lAKhZqRIlszQykD1LRWZ/lorC3PTbr1H3Hz8mIiqKLkMyK2RT09K4fvcOm/fu4fyOnQq/owShIIjKM6FQlCtXjgcPHuCmYjydUqVK8fr1ax4+fJhj6zNVjI2NsbOz4+zZs9SsWVMWfv78eVmXyezc3NzQ0tLi4sWLODo6AhAZGcnDhw9lg/CXLVuW1NRU3r17R40s06V/iZ6eHoGBgQQGBvLTTz9RokQJbt++/c3pZejYsSPr1q3DwcEBdXV1mjRpojJuqVKlOHbsGD169Phiul5eXrx8+ZJXr17JWp/du3eP6OhoPD09v7D01zlx4gQLFy6U7acXL17w4cMHuThPnjxh6NChLFmyhM2bN9O1a1eOHTv2xRlHv4aXlxdnz56VCzt//jzu7u5Kb8hjxoxh2LBhcmE6OjqEf1TsnqGlpYV7CXeuXA6iRu3M4/Hq5SCq1VQ+OLOXjzcXzsgPyn3l0mU8PEugqamJo5Mjy9evkvt+2aIlJCQkMHDYYKyUzOYnZDLQ15eb9UmSJCzMzLh04wYliqW3aE1OTuba3TsM7NotX9edlJzM89evKOuV9y6RBrq6cjNoSpKEhbExl+4H41E0/TqWnJLCtcePGNgs567O2UmSRFJKcp7zqIqWlhbFPdy5HnSVarUyr3/Xg65SuXpVpct4lvTm0rkLcmHXLl+heAkPND/PTvfpU6LCtUFdXR1JkmSVTZIkseDPeZw/fZYZ//yFjV3+DryvpaWFq4cbN69cp3KNzLLcvHKditWUjz/zJfaORflr+QK5sA3LVvPx40d6DvgBC6v8bXGjoamJrYsDz+48pIRvZkveZ3ce4l6+pEJ8HT0d+vw+Si7s6tFzvLj3iJaDumNaJOcuaCnJ3zb+UFYFdUxlOH3sJMnJSdT1q68yD7p6eujq6REbE8vVy0H06v+Dyrhfovw6Zc6l69co8fn5KTk5mWu3bzOwZ69vXk9+Uppnc3MuXblCieLplafJyclcu3mTgX37qkynlJcXl65epVOWoSguXblCKW/FGWZ3HzyImakp1bP0HChoBto6cjNoSpKEhYEBl148w8M6vcI0OTWVa69fMqBmnVynK0kSD9+9xS2fZ0DX0tLC3cOdq5evUF3uOeQKVVU9h5T05sLZ83JhVy4F4e6peG5kkCSJJ48e4+JaTOG7g3sPYGpmSmUVY3DlqgwlPAi6dFluEqSgy0FUr6n8GdrbpyTnsj1LXb50mRJeJVSWISf79+zD1MyMKtWUX09yQ/46lbntrwVdpUr1akqXKVHSS8V1yj3Lve8TauryL4HV1TXk7n0Zjuw7iImZKRWrfNu+yKDyWer6dUq4ZnmWunOHgd2//PtDFd/Spdn4j/yQO5PmzsHJwYFurVr/T1ecFcYYjoJqovJMKBTjx4+nadOmFC1alDZt2qCurs6tW7e4ffs2U6ZMoVatWtSsWZNWrVrx559/4ubmxv3791FTU8M/l+NZjBw5kgkTJuDq6kqZMmVYsWIFN27cYN26dUrjGxoa0qtXL0aOHImFhQXW1tb88ssvcj/C3N3d6dSpE127dmX27NmULVuWDx8+cPz4cXx8fGjcWHH8g5UrV5KamkqlSpXQ19dnzZo16Onp4eTkhIWFxVenl1WnTp347bffmDp1Kq1bt0Y3y4/o7CZMmEC9evVwdXWlffv2pKSkcODAAUaNGqUQt379+pQqVYpOnToxZ84cUlJS6N+/P7Vq1VI5ycC3cnV1ZdWqVZQvX57o6GhGjBgh10ouNTWVLl260LBhQ3r06EGjRo3w8fFh9uzZjBw5Mt/yMXz4cHx9fZk8eTLt2rXjwoUL/PPPPyxYsEBpfB0dHeXdND8qT79Nh3b8PnEKHiVK4O3jzd6du3n79h0BLZsDsGT+It6//8DYib8CENiyGTu3bGf+nL9p2iyAu7fvsn/3Pn6dPAFIH4g6+8OpoVH62+6s4R8TEnjzOnOw4tCQUB4/fISRsbHSqekLkp6WDg4mmT8I7IwtKW7pQExiPG/jvn0cqPygpqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x8SB//159YWVgw4HOFWnJyMk9fvfr8/xTeh4fz4OlT9PV0Kfq5VcKcFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjORHOerUY8WhgxQtYkVRKytWHjqIrrY2fr6ZLw4mrFpBEVNTBnyuUFtx6CBejo7YFylCSkoq5+7eYd+li/zcPnOcsITERF5lmSk3JPwDD169wsTAABsVb/2/pGW7Nsyc/DvFS3jgWdKLA7v28u7tW5q0CABg+cIlhH/4wMhxYwBo0jyA3dt2snjeAhoFNiH4zj0O7T3Az5/PG4BK1aqwY+NWXN3dKOGV3m1z9ZIVVK5eVfaAPX/2XE4cOcaE6VPQ09eXtWQwMDT4Yvfr3Apo04J502bj5lEcD+8SHN5zkA9v39MwMP26vvbfFYR/CGfw2Myxs549Sp/dNPHjR2Kio3n26AmaWloUdXZEW0cbp2LOcusw+NzCJXt4fqnUqDa7Fq7DtlhRHNycuX7iPNHhkZSrl/7D8cSmvcRGRhPYrxNq6upYFZWvhDQwNkRDS1Mu/Nzuo9i6FMXM2oLUlFSe3Ajm9tkg/LsrH6/zaxXEMZXh0N4DVK1RXWmrmyuXgkCScHAsSsjrNyydvxgHx6I0bJJ/Y3CpqanRoUVzVmzciKOdPUXt7VmxcQO6Ojr418msoBk/cwZWFpYM6NkT+Hyd+jwUQnJKMu8/hPPgyZP069TnLoMJHz/KtYZ9ExbGgydPMDEywsbq21/GqKmp0aF1a1asW4ejgwNFHRxYsXYturq6+NfPrIQcP20aVkWKMODz8BLtW7Wi7+DBrNywgdrVqnHy3DkuXb3Ksnny3avT0tLYc/AgTf380FTyAzo6Joawd+94//ml3IvP28Hi8wyd+UVNTY325Sqy8tJ5ipqZ42hqxopL59HV1MLPM7PCb8L+3VgZGvHT5wq1JefPUNLWHkczM+KTkth0LYiH798yqn7+TwjSqkNb/vhtKu6eHniV9Gbfrr28e/uOgBaBACxd8C8f3r/n5wm/ANC0ZTN2bd3Bwjn/0LhZU+7ducvBPfsZOylz0qfVS1fiWdIL+6IOJMTHs2PzNp48fMygEUPl1p2WlsahfQdo0NgfjW+otMrQrmN7pkyYRAkvT7x9SrJ7xy7ehb2leavmACz6ZyEf3r/n19/S89isZQu2b97G33/NJaB5M+7evsO+XXuYMDWzlWJycjLPnz77/P8U3r9/z6MHD9HT18ehaOa4bWlpaezfs49GTRp9U8VbVi3atWbW5OkUL+H++Tq1j/dv39H483VqxcKlhH/4wIhx6b0LmjQPYM+2Xfw7bwH+n69Th/ceYPTEX2RpVqpWhe1fuPdllOPIvoPUb9QQDc38rXRSU1OjQ7NmrNiyGUe7z89SWzanX6NqZXmWmj07/Vnq85jC6c9SGdeojGepJ+jr6lHUzg4DfX3cnJ3l1qWro4upkbFCuCAUJFF5JhQKPz8/9u7dy6RJk5gxYwZaWlqUKFGC3r17y+Js27aNESNG0KFDB+Lj43Fzc2P69Om5XsegQYOIiYlh+PDhvHv3Di8vL3bv3k3xz28+lZk5cyZxcXEEBgZiZGTE8OHDiY6Wb0m0YsUKpkyZwvDhw3nz5g0WFhZUqVJFZUWXqakp06dPZ9iwYaSmpuLj48OePXtkY5p9bXpZFS9eHF9fX4KCgr44Dljt2rXZsmULkydPZvr06RgbG8u1ystKTU2NnTt3MnDgQGrWrIm6ujr+/v78/fffX8zT11qxYgV9+/albNmyODo6Mm3aNLlZU6dOncrz58/Zsyd9+m4bGxuWLl1K27ZtadCgAWXKlMmXfJQrV47Nmzczfvx4Jk+ejK2tLZMmTcrzZAEZ6jaoR0x0DKuXryTiQzjOxVyY/tcMbD536QkPD+ddlsGTbe3s+P2vGSyY8ze7tu7AwtKSgcMHU6tu7a9a74PgBwztP0j2ecGc9LEp/Jr48/P4X1QtViBKFHHinxaZrfUGVU//sbw/+AJTj69Stdh/plvLVnxKSmL64oXExsVR0t2df36bJPdWNezDe9SzvNl9HxFBp6GZ3QjW7NzBmp07KFeyJP9OTR/r5+2HcH6ZNYuo2BjMjI0p6eHBihmzsM3DD9KcdG3QkE/JSfyxaQOxCQl4O7vw94BBci3UwiIj5N5mJiZ94o9NG3gXFYWOlhZO1jZM6t6ThlnGawt++YJ+c/+Sff5r21YAmlSqzMSu3b8pr7Xq1yEmJoZ1K1YTGR6BU7H/x959hzdV/Q8cfyfp3nsAhRZKW2jZe+8NCoLwBZmiiDhQVBAnyk8QFURUQJEteyN771X2KqtQyujeeyT5/VFImzZh2Nb26/fzep48T3N7zs05uTcnN597hjeTf5iKu0fe5yI+Lp7oAhOhe1TwZPIPU/lt1q9sWb8JJxdn3nzvbVq2y2/LBg0bgkKhYPHvC4iLicXe0YEmLZoxfFR+z5wtGzYDMP5t/R944z4ZX2LBjpbt25CSnMLqxctJiI+nso83n077CrdHQeuEuARio/QnUP7g9Xd0f4feuMXhPQdwdXfjt1WLSqRMz6tm03qkp6RxZMNOUhOTca3kyX8+GoW9S17QITUxmaTY5wt852Rls2PRWlLikzAxM8W5ghsvvjmYmk1LZvW00jinAO6H3+PKxUtM+fE7g6+bnprGwrnziI2JxcbOlpZtWjH8jZHF/pFd2LCX+5OVlc23v/xCSmoKQQEB/DJlqn47FR2DUpF/4y8mLo5X3sqfUmDpurUsXbeW+rVq8/v33wNw9cYNRk/Iv5n24++/AdCzYycmFfhO/ltl/s9/yMrK4tuZM0lJSSGoRg1++f77QmWO1rtZWScoiG+++II58+czd8ECKlWowNQvvtAbEgpw6swZIqOieKGb4QnoDx07xlfTpumefzI5b8jg68OG8UYJfb8/NrRxU7Jyc/huzw5SMjMJ9KzAz/3+o9dDLSo5GWWBtjclK5Opu7YRl56GjZk5fu7u/PafwXpDQktKu07tSU5K4s/5S4iPy7sOmTJjmm5ocXxsHNGR+Z8NzwqefDNjGnNm/sLmdRtxdnHmrXHv0rp9fhAkNTWVH7/9gYS4eKxtrKnmV50f584iIFB/lMLZ4DNER0bRrdffm2T/sQ6dO5KclMSiPxYQFxuHT7WqfDfzBzwerb4eFxtHVGT+tVSFihX4buZ0fv7xJzasWY+LqwtjP3yftu3zg82xMbG8Oni47vnKP5ez8s/l1K1fj59/y+/tdPpUMFGRUXQvgdXN23RsR0pyMssXLiU+Lh7vqt58/cNU3U3N+Li4Iu3U1z9M4fdZs/lr/WacXZwZXaidGjhsMAqFgiW/Lyzw3deUYaP0e6WeCz5LdFR0iQb2CxrWt19eGzVndt61lL8/v3w9Wf/zHmPgWurd/GvVpevXs3T9euoH1eL35/jtJ0RpU2ifZaInIYQQz+RhYvlc8ex5VHBwo8Wvo8u6GMV29K25pFy7UdbFKBbbAD+S9+wv62IUm13HdtyJffD0hOWYj0tFrkSElnUxii3QsxpLgreVdTGKbWij7v+KcyrlTlhZF6PYbH28SSmBORzLkm2FCiTNK/ubOMVl//ow7iVElnUxis3L0YPo5LinJyzH3OycuR1bdO63/zZVXSqRcvNWWRejWGyrl9BiNGVgxKpvnp6oDCwc8M/egC8vSm7CICGEEEIIIYQQQggh/mUkeCaEEEIIIYQQQgghhBEy55kQQgghhBBCCCFEOSKrbZYv0vNMCCGEEEIIIYQQQggjJHgmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQohxRIsM2yxPpeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjshqm+WL9DwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCiFIxe/ZsfHx8sLCwoEGDBhw+fNho2uHDh6NQKIo8AgMDdWkWLVpkME1mZmap1UGCZ0IIIYQQQgghhBDliKHgUHl4PK9Vq1bx3nvv8emnn3Lu3DlatWpFt27dCA8PN5j+p59+IiIiQve4d+8eTk5OvPzyy3rp7Ozs9NJFRERgYWHxt97rZyHBMyGEEEIIIYQQQghR4mbMmMHIkSN57bXXqFGjBjNnzsTLy4s5c+YYTG9vb4+Hh4fucfr0aRISEhgxYoReOoVCoZfOw8OjVOshwTMhhBBCCCGEEEII8VRZWVkkJyfrPbKysgymzc7O5syZM3Tu3Flve+fOnTl27Ngzvd78+fPp2LEjVapU0duemppKlSpVqFSpEj179uTcuXN/r0LPSIJnQgghhBBCCCGEEOWIEkW5fEydOhV7e3u9x9SpUw3WITY2FrVajbu7u952d3d3IiMjn/oeREREsH37dl577TW97QEBASxatIjNmzezYsUKLCwsaNGiBTdv3vz7b/hTmJTanoUQQgghhBBCCCHEv8bEiRMZN26c3jZzc/Mn5ik8V5pWq32m+dMWLVqEg4MDvXv31tvetGlTmjZtqnveokUL6tevz88//8ysWbOeut+/Q4JnQgghhBBCCCGEEOKpzM3Nnxose8zFxQWVSlWkl1l0dHSR3miFabVaFixYwJAhQzAzM3tiWqVSSaNGjUq155kM2xRCCCGEEEIIIYQoR8p6Vc2SWG3TzMyMBg0asHv3br3tu3fvpnnz5k/Me/DgQW7dusXIkSOf+jparZbz58/j6en5XOV7HtLzTAghhBBCCCGEEEKUuHHjxjFkyBAaNmxIs2bN+P333wkPD2f06NFA3jDQBw8esGTJEr188+fPp0mTJgQFBRXZ51dffUXTpk2pXr06ycnJzJo1i/Pnz/Prr7+WWj0keCaEEEIIIYQQQgghStyAAQOIi4vj66+/JiIigqCgILZt26ZbPTMiIoLw8HC9PElJSaxbt46ffvrJ4D4TExMZNWoUkZGR2NvbU69ePQ4dOkTjxo1LrR4KrVarLbW9CyGEEEIIIYQQQojn8tb6H8q6CAb9+tKHZV2EMiE9z4QQogT93+6FZV2EYvus0whSrt0o62IUm22AHy1+HV3WxSiWo2/NJfHVt8u6GMXmsOAX+i7+pKyLUSzrhk2h9ewxZV2MYjs0ZjbJ+w6VdTGKza59a+7EPijrYhSLj0tF3lz3fVkXo9jm9P2IJcHbyroYxTK0UXduxdwr62IUm6+rFwP+/Lysi1FsqwZP/q9vbw+NmU3PBR+VdTGKbcur39Pp97FlXYxi2T3KcM8lIZ6XLBgghBBCCCGEEEIIIYQR0vNMCCGEEEIIIYQQohx53pUtRemSnmdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YgCGbZZnkjPMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCmrbZYr0vNMCCGEEEIIIYQQQggjJHgmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQohxRyLDNckV6ngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRnmdCCCGEEEIIIYQQQhghwTMh/kdkZmbyf//3f0RFRZV1UYQQQgghhBBCiP8aMmxTiP8Rn3/+OcnJybi7u5d1UYQQQgghhBBCPIESGbZZnkjPMyH+B2RlZeHs7MysWbPKuihCCCGEEEIIIcR/FQmeCfE/wNzcnI8//hhzc/OyLkoRBw4cQKFQkJiY+Mx5vL29mTlzZrFeV6FQsHHjxmLtQwghhBBCCCHEv58M2xTif8CxY8do1aoVnTp1YseOHWVdHFHA9UNnubL3JBlJqTh4utCwb0fcfb0Mpo28cZfds1YU2f7CZ69j7+EMgEat5vKu44SevEx6Ygr27k7Ue7EdFWtWLbU6aLVafl+5gg07d5KSlkqgnx8T3hhNtcpVjOYJDb/L3OXLuBYaSkR0NONGvsagF17US/PbiuXMW6lfX2cHB3YuXloq9XgWdTx9GVSvMwFulXGxduDjbXM4fOdCmZXHGIsXu2PWpgUKK0vUt++S/ucqNA8jn5jHvFNbzNq1QunkiDY1jezT58hcuxlycwEwa9sS83atULo4AaB+EEnmX9vJvXS1xMvfxb8JLwa2wtHKlnuJ0Sw8tZWQ6DCj6Vv51KF3UGs87ZxJz87k3MObLD69jdSsDAC+6vIaQR5FPwNn7l9jyt4lJV7+x3oHtmZgvY44WdkTFh/Bz0fXcDEi1Gj6PkGtealWWzxsnYhKSWDp2R3svH5SL83LtdvxYmBr3G0dScpM40DoWX4/sYlsdW6p1aMwrVbLvK1/seHIIVLS0wn09mH8fwZRrUJFo3n2nTvLoh3buBcTTa5ajZebG4M7dqZ7k2YlXr6/1m9i7fJVxMfFUcXHm9HvvkVQ3dpG0188d4Hff57N3TthOLu48PKgAfTo84Jemg2r1rJlw2ZioqKxc7CnVdvWjBj9OmbmZgBcOn+BtctXcfPaTeLj4vhi6tc0b92yROvVumpdOvk1wt7ChojkWNZc2MetuAcG0w5t0I1m3kFFtj9MjmXy7oVFtjesFMDIJr04//Amvx3fWKLlLuz07iOc2Laf1MRkXCt60GlwbyoHVHtqvns3brP0/37FtZIHr0/5SLf93P7jXDocTMz9vDbOw6cSbfv3oGI1499Bz2vL+k2sX7GG+Lg4Knt7M2rsGILq1DKa/tK5C8z7eS7hYWE4OTvT75UBdO/dS/f/3NxcVi9dwd7tu4iLjaWSlxfD33yNhk0b69KM6PcK0ZFF56nt0ecFxnzwbonUq7NfY3rVbImDpQ33E6NZfHo712LuGk3f0rs2LwS2wsPWifScLC48vMnSMztIzc4okrZ5lVqMbdWf4Hsh/HBweYmU15h/a1vbPaAZL9Vqi5OlLeGJUcw7uZkrUXeMpu9Rozk9azTHzcaJmLQEVl/Yx75bZ/6x8gL0qtmSl2u3x9nKjrCESOYcX8/lyNtG079QsyUvBrbC3daJ6NQElp/bzZ6bwQbTtq1Wj087DOdo2EUm7ZpfWlUoV2S1zfJFgmdC/A9YsGAB77zzDn/88Qfh4eFUrlzZaFqtVotarcbERJqH0hZ2JoTT6/bQeEAX3KpW5MaR8+ybvZoXPnsNayd7o/le/HwUppZmuufmNla6v8//dYjbwVdoNqgbdu7OPAy5zcF56+k6bjBOXh6lUo/F69exfNNGvhz7HpUrVGT+6lW89cUXrJs9B2srK4N5MrOyqOTuQcfmLZmx4A+j+65auTKzv/4/3XOVsmw7TFuamnMr7j7brh1jSrfRZVoWY8y7dcS8czvS5/+JOioai55dsfnwHZI/+RoyswzmMW3aEIt+L5K+YBnqW7dRerhhNXIIAJkr1wOgSUgkY+0mNNGxAJi1aIL1O6NImfTtUwNzz6O5dy1GNOrBvJObuRZ9l85+jfm04zDe2zST2LSkIukD3KrwTsuXWRS8ldP3r+FkZccbTXszpvlLfLd/GQDf71+GiVKly2NrYcX0Xu9wPOxyiZW7sPa+DXinZT9mHFrJ5cjbvFCzJd/1fIuhKyYTnZpQJP2Lga0Y1fRFvj+wnJDoMGq4eTO+7SukZKZz7O4lADpVb8Sopr2Ztn8plyNv4+XgzsT2ecfpl6PrSq0uhS3ZtYPle3fzxdARVHZzZ8H2rbw960fWTvo/rC0sDOaxt7ZmRLfueLt7Ymqi4vCli3y9ZBGOtrY0q1k0yPN3Hdyzn99++pW3PhhLYO0gtm38i88+/Jjf/1yIm0fROT8jH0bw+YcT6darO+O/+IQrFy/z6/SfsHdwoGW71gDs27mHBXPnMW7ieGrUCuRB+D2mf/MdAG+MfQuAzIxMfHyr0al7V/7v00klVp/HGlTy5+U67Vl5bjehcQ9o5VOHt1r24+tdC0jISCmSfvWFvWy8fEj3XKlU8GmH4Zy9f71IWicrO16q1ZabMfdKvNyFXT1xjt1/bqTr8H54+flwdt8xVn7/O29M+xh7F0ej+TLTM9g8dzk+gdVJTdKv792QW9RsVp9Kfj6YmJpwfMs+Vkyby6hvJ2Dn5FDsMh/au595s+Yw5oN3qVErkB2btvLlhxOZs3S+0XPqy48+pWuv7nz4xceEXLrC7OmzsHewp0XbvHNqye8LObBrD+9MGEelyl6cPXWabz6ZxA9zf6KaX3UAZs77FbVGk1/P23f47P0JuvOyuJpVCWJYg27MD97C9ehwOlZvyMT2Qxj318/EpRdta/1dK/NW874sPrOdM4/a2tebvMAbTXsz/ZD+jS4Xa3sG1+9CSFRYiZT1Sf6tbW0rnzq83uQF5hzfwNWoMLoFNGVS55GMWf8DMWmJRdJ3C2jGsAbd+PnoWm7E3sPfxYu3W/YjNSudU/dC/pEyt6lajzeb9eHnI2u4EnWHHjWaM6XbaEaunkpMWtFj0bNGC15t3IsfD63kekw4AW6Veb/Vf0jNSudE+BW9tG42joxq0puLEbf+kboIYYgM2xTiXy4tLY3Vq1fz5ptv0rNnTxYtWqT3/8fDJnfu3EnDhg0xNzfn8OHDaLVavvvuO6pWrYqlpSV16tRh7dq1unxqtZqRI0fi4+ODpaUl/v7+/PTTT08tz7Zt2/Dz88PS0pJ27doRFhZWJM2xY8do3bo1lpaWeHl58e6775KWlvbMdQ4ODqZTp064uLhgb29PmzZtOHv27BPzTJgwAT8/P6ysrKhatSqff/45OTk5z/yaf8fVfafwbVaH6s3rYO/hQqN+HbFytOP64XNPzGdha4WlnY3uoSwQULp96gq1OjejYmA1bF0c8G9VH88aPlzdZ/guXnFptVpW/LWZES/3p32z5vhWqcJX771PZnYWOw4dNJovsLofY0e8SpfWrTEzNTWazkSlwsXRUfdwtDceVPwnnAi/wryTmzl4+3yZluNJzDu1I3PLTnLOXkDzIIL0+UtRmJli1qSh0Twm1XzIvXmbnJOn0cTFk3vlGtknT2PinR9oz71wmdxLV9FERaOJiiZz/V9oM7MwqeZTouXvVbMl+26dYe/N0zxIimFh8Fbi0pLo4t/EYHo/Vy9i0hLYdu040akJXIu+y64bp6jmnN8LKjU7g8TMVN2jtqcvWbk5uh9KpaF/nfZsDTnG1pBj3E2I5Oeja4lJTaR3kOEfvl38m7D5yhH23TpDRHIc+26dYWvIMQbV76RLE+jhw+XIUPbcPE1kSjzB90LYe/M0/q4l18PmabRaLSv27WVE1+60r1cf34oVmTRsBJnZ2ewMPmk0XwM/f9rVrY+PpyeVXN0Y2L4jvhUrcf5Wyf4QWr9qDV16dqPbCz2o7F2F0e+9jaubG1s2bDaYfuvGv3Bzd2P0e29T2bsK3V7oQece3Vi7YrUuTcjlKwTWCqJd5w54eHrQoEkj2nZqz41rN3RpGjVrwvBRI2nZtmQCG4V1qN6QY2GXOBp2iciUeNZc3E9Cegqtq9Y1mD4zN5vkrDTdo4qjB1ZmFhy/qx8wVqBgRKMebAk5ajA4XdJObj9A3bZNqNeuKS4V3ek8pA92zg6c3Xv0ifm2L1hDYLP6VPT1LvK/3mOG0LBTSzyqVMSlgjs9XhuAVqMl7MrNEinzhpXr6NyzK116daeydxVGjR2Di5sb2zb+ZTD9to1bcHV3Y9TYMVT2rkKXXt3p1KMr61es0aXZv3MP/YcMolGzJnhWrECPPi9Qv0lD1q/Mv86yd3TAydlJ9wg+dhLPihWoVa9OidSrR43m7As9y75bZ3iQHMPiM9uJS0+ms19jg+mru3gRnZbIjusniElL5HpMOHtuBlPVWb/HqUKh4J0WL7Pm4j6iUuNLpKxP8m9ta3sHtWb3jWB23TjF/aRo5p3cTGxaIt0DDPfWbV+tPtuvn+DwnQtEpcRz6M4Fdt8Ipm/tdv9YmfvWbsuO6yfYfv0E4YlRzDm+gZjUBHrVbGEwfcfqjdgacpSDt88RmRLHgdBz7Lh+ggF1O+qlUyoUTGw/lCVnthOZHPdPVEUIgyR4JsS/3KpVq/D398ff35/BgwezcOFCtFptkXTjx49n6tSphISEULt2bT777DMWLlzInDlzuHLlCu+//z6DBw/m4MG8gIhGo6FSpUqsXr2aq1ev8sUXX/DJJ5+wevXqIvt+7N69e7z00kt0796d8+fP89prr/Hxxx/rpbl06RJdunThpZde4uLFi6xatYojR47w9ttvP3OdU1JSGDZsGIcPH+bEiRNUr16d7t27k5JS9O78Y7a2tixatIirV6/y008/MW/ePH788cdnfs3npc5VE38vEs8a3nrbK9TwJuaO4WE4j22ZtpC1n/zM7lkriLyhP7xCnZuL0lS/16CJqQnRoaXTo+BBVBRxCQk0rVdPt83M1JT6gUFcvHat2PsPf/iQrsOH8cLrI5n4/Xfcjyy5Hk7/RkpXZ5QO9uReKfDe5+aSe/0WJr7Gh+7m3ryNibcXKp8quv2Y1gok5+IVwxkUCkwbN0BhbkZuqPEhJM/LRKmimnMFzj/U/9F74eEtoz9arkeH42xlT/2KfgDYW9jQrEoQZwz0sHmsQ/WGHA27SFZu6QTITZQq/FwrE1zobn/wvRCC3A0fB1OlCdlq/fJkqXOo4eat63F5MSIUP9fK1HDLey887ZxpWiWIE3dLrwddYQ9iY4lLTqJpzUDdNjNTU+pX9+NiqPFhUgVptVpOXQvhblQk9av7lVjZcnJyuHn9BvUb6weK6zduSMhlw+dyyOUrRdI3aNKQm9euk/toyHJgnVrcvH6D61fzjmfEg4cEHz9J4+aGA7olTaVQUtnBg6uFevGERIcVCVwY09y7Ftei7xKfnqy3vUeN5qRmZXAsrPQCyY+pc3OJuHMfnyB/ve1Vg/y5fzPMaL4LB0+SEBVL65e6PNPr5GRlo1FrsLQx3PP5eeTk5HDrxg3qNSp0TjVqQMhlw0PWr125Sv1GDfTTN27IzWs3dOdUTk42puZmemnMzMy5etHwZzknJ4f9u/bQqUfXEhnGpVKqqOpUoUgvngsRt/BzNTx1xI2YcJyt7KhbIa9nnL2FNU0qB3LugX5b269WO5Iz09gf+uSbliXh39rWmihV+DpX5NzDG3rbzz24QYCb4e9CU5UJOYWGlGbn5uDn4oVKUfo/+U2UKvxcvIp89565f51Ad8M32UxVJkWGwWbl5uDvWlmvzIPrdyUxI5Ud10+UfMHLOaVCUS4f/6tkXJYQ/3Lz589n8ODBAHTt2pXU1FT27t1Lx476d3W+/vprOnXKu+uWlpbGjBkz2LdvH82a5d3hqlq1KkeOHOG3336jTZs2mJqa8tVXX+ny+/j4cOzYMVavXk3//v0NlmXOnDlUrVqVH3/8EYVCgb+/P5cuXWLatGm6NN9//z2DBg3ivffeA6B69erMmjWLNm3aMGfOHCyMDAkqqH379nrPf/vtNxwdHTl48CA9e/Y0mOezzz7T/e3t7c0HH3zAqlWrGD9+vMH0WVlZZGXpD4F7ngUZslLT0Wq0WNha6223sLUmM9lwLztLexuaDuyKU2UPNDlqbgdfZvfPK+g8dhDuvnk9hCrUqErIvmDcfb2wdXEk4noY9y7eNBgwLQlxCXnd8J3tHfS2Ozs4EBEdXax9B/n58dV771OlQkXiEhOZv2YVIyd8xKqff8XBzq5Y+/63Ujx6XzTJ+oFiTXIKSmcno/lyTp0hw9YGm4nvAwoUJiqy9h0ia9tuvXTKihWw/fQDMDWBrCzSfplXokM2bc2tUClVJGWk6m1PzEzBwbK6wTzXY8KZeXg149oMxFRlgolSxanwq8w/abhXiK9LJao4ejD72PoSK3dh9hY2mChVRYbTxacn4+Rl+Nw9de8qPWu04PCdC9yIuYe/a2W6BzTDVGWCg4UNcenJ7Lt1BgdLW37p8wEKFJioVGy4fIhl53aVWl0Ki0vO653kZKtfDyc7OyLjntwjIDUjne4Tx5Odk4tKqWDCwFdoUqNmiZUtOTEJjVqDo5P+8D9HR0fi4wz3gEmIT8DRsVB6J0fUajVJiUk4uzjTtmN7khIS+eDNsbqpDXr2eYEBQwaVWNmfxMbcEpVSSUqm/ndDSmYa9u7WRnLls7OwJtC9KgtObdHbXtW5Is29a/HN3sUlWl5j0lPS0Go02Njb6m23trclNTHZYJ74yBj2r9rCkM/fQalSGUxT2P5VW7B1tMcnsPiB2eSkvHPKodA55eDkSIKxcyouHocmRdOr1WqSE5NwcnGmfuOGbFy5lqA6tfCsWIELZ85x8sgxvWGaBZ04dJTU1FQ6du9c7DoB2Blpa5MyUnGoYGswz43Ye/x8dC3vtRqga2uD74WwMHirLo2/a2XaVavPhG2zS6ScT/NvbWvtzK1RGahXQkYq9a0MH5+zD67T2a8xx+9eJjTuAb7Olejo1whTlQl2FtYGh3eXJHuLx2XW/ywnZKTgaKTMZ+5fo1tAU46FXeRm7H38XLzo6t8UU5UJ9hY2xGckE+juQ1f/poxe912pll+IZyHBMyH+xa5fv86pU6dYvz7vR6KJiQkDBgxgwYIFRYJnDRvm31W9evUqmZmZumDaY9nZ2dQr0MNo7ty5/PHHH9y9e5eMjAyys7OpW7eu0fKEhITQtGlTvbumj4Nzj505c4Zbt26xbNky3TatVotGo+HOnTvUqFHjqfWOjo7miy++YN++fURFRaFWq0lPTyc8PNxonrVr1zJz5kxu3bpFamoqubm52D0hQDN16lS94CHAl19+iUmL5+vSr6DQ3RstFN70mL27M/buzrrnrlUrkpaQzNU9p3TBs0b9OnJ8xXY2T54HCrB1caRa09qEnrj4XOUyZvuBA0yZ86vu+czPv8irR6G7UFqttth3x1s0yD8nfYHaAQH0fuN1tuzfx+AXexdr3/8Wpk0bYjV0oO556sw5eX8YCpY+IYBq4l8di55dyFi6itzbd1G5u2A5sB+apGSy/spfZEQTGUXKpKkorKwwbVAXq9eGkDrtpxINoAFo0S9rkc9JAZXs3RjZuCdrLuzj/MObOFraMrRBV95o1ttggKyDb0PuJkRyK/Z+iZbZkMJBa4VCUaRujy0+vR0nKzvmvjQeFJCQnsKOaycYVL8zam3eD+q6FaozpEEXZhxaSUhUGBXtXXm35cvENejGkjPbS6UO20+dYOryP3XPfxzzzqO66KfTag1sLMTK3IJln3xBelYmwdev8ePa1VR0caWBn/8T8z23wu0RT2mPirRfjzfnbb9w9jwrlyzjrQ/GEhBYg4f3HzD3p19xXLiUV0YMKdGiP0nRM8f4+VRQsypBZORkcqFAj05zE1NGNOrOsrM7STMw2XupKnJ8DE+KrdFo2PjrUlr17Yqzp9sz7fr4lr1cOX6OwZ++hYmZ8SkBntfzfscV+Vf+SQXkzZU367sZjH7lVVCAZ4UKdOzehT3bdhrc366t22nYpDHOLi5/uw6GFD57FAqF0ZttFe1dGd6wO+su7efCw1s4WtrySv0uvNbkBX47sRELEzPebtGP309uIiUrvUTL+TT/hrbWoEJVUCiMf5WvPL8HR0tbpvd6BwWQmJHK3pun6Ve7HRqt4aBsaShcPoXCUNuV58+zO3G0smVW73EoyAu07bpxkgF1O6LRarA0NWdCuyH8eHglyVnPPn2LEKVFgmdC/IvNnz+f3NxcKlbMH9ah1WoxNTUlIUH/bru1df7da82jO59bt27Vywv5vatWr17N+++/z/Tp02nWrBm2trZ8//33nDxpfM6bZ+n9pNFoeOONN3j33aIrST1poYOChg8fTkxMDDNnzqRKlSqYm5vTrFkzsrOzDaY/ceIE//nPf/jqq6/o0qUL9vb2rFy5kunTpxt9jYkTJzJu3Di9bebm5nx/6NlWlDK3sUKhVJCRon/XNzM1rUhvtCdx9a7I7eD84UgWtla0G9UXdU4uWWkZWNrbcG7TAWycHZ55n0/SunFjgvzz7+ZnP5oXLjYxARen/J5N8UlJODmUzGs+ZmlhQbUq3tx7+LBE9/vfLOf8JVJuh+VveLTQh9LeDnVS/t1fpZ0t2mTjd50t+vQg+9gpsg8fB0Dz4CGYmWM1bCBZW3bmXw2r1boFA9Rh4ah8KmPesS0ZS1aWSH1SstJRa9Q4WOrfpba3sCGxUA+Jx16q1YZr0XfZdOUwAHcTIsnMzeabbm+w/NxuEgvcbTdTmdLCpzarzu8pkfIak5SZSq5GjZOVfgDe0dKWhHTDxyFbncO0/X/yw8HlOFnaEZeeRK+aLUnLziApI+9Hw8jGvdh1/RRbQ44BcDv+IRam5nzUZhBLz+x4pkDK82pduy5B3vnDn7IfDXWNS07GpUCP04SUZJxtn9wjVKlU4uWWFwTx96pMWEQEi3ZsK7HgmZ2DPUqVskiPoMSExCK90R5zdHIkIb5w+gRUKhV29nn1WTJvIe27dKLbCz0A8KlWlczMTGZNm8HAYa/ozTtZGlKzMlBrNNhZ6H832FpYkZz59CBFc+9anAy/qgsMALhaO+Ji7cCbzV/SbXscDPqlzwdM2jWfWAOTkheHla01CqWySC+z9KQUrO2L9kzJzsgi4s49Iu8+YOfivEC4VqsFrZYpQz9g0ITReAfm90g9sXU/RzfvYdDHb+JeuUKJlNnO3vA5lZSQWKQ32mOOzk4kxOlPjp6YkKh3Ttk7OvD51K/JzsomOTkZZxdnFs75A3fPogv7REdGcf70OT755ssSqRNAsq6ttdHbbmdhTVKm4ba2d2BrbsSE89fVvPnpwhOjyDyVzdddXmfVhT3YW9jgZuPI+Lav6PI8PqeWD5rE+5t/IsrABP7F8W9qawtKzkpDrVEX6bHlYGGj952mX69cfjqyhl+OrsPB0paEjGS6+DclPTvzmdqJ4krKzCtz4WPhYGFL4hOOxfSDK5h5aBWOVrbEpyfTPaA5admZJGWmUdW5Ap52zkzu8rouz+NzasdrMxix6hsiUv7dc6Ap/oEht+LZSfBMiH+p3NxclixZwvTp0+ncWb+bf9++fVm2bJnRecRq1qyJubk54eHhtGnTxmCaw4cP07x5c8aMGaPbFvqU+W5q1qzJxo0b9badOKE/f0H9+vW5cuUKvr6+T9zXkxw+fJjZs2fTvXt3IG+utdjYWKPpjx49SpUqVfj000912+7eNb5UO+QFyp5nmGZhKhMVTl4eRFwLo3Kd/B+OEdfCqFTL8PA0Q+LvR2FpXzTYpjI1wcrBFo1aTfj561Sp//Qee8/C2spKbwVNrVaLs6MjJ8+fJ6BqNSBvbpazVy7zztBhJfKaj2Xn5BB2/x71apbcMK//eplZaAqtoKlJTMKkZgDq8Ec9q1QqTPx9yVizyfh+zMyK3i7Waoz2gsynQFGCK/PmatSExj2kjqcvp8Lz5xOqXcGX4HuG5xcyNzEtMtTp8V32wsVv4V0LU5WKg7efvChHceVq1NyICaehVw0O37mg296wUgBHwp7cC1St0ehWUuvg25BjYZd1P9QsTMyK3ITQaDQoFE/ukVAc1hYWeitoarVanO3sORlyFX+vvBsaObm5nL15g3f69H2ufWvRkp2b+/SEz8jU1JTq/n6cCz5DizatdNvPBZ+hacvmBvPUCArk5NHjetvOnjpN9QB/3arTWVmZRQJkSqUSrVZbakPiC1JrNYQnRlLDrYpe77G8509ecKG6ixduNo5F5jSLTIlj8u6Fett6BbbEwsSMNRf2kZBueBhlcahMTPD0qcSdyzcIaFRbt/3O5Rv4NSi64qq5pTmvT9WfOuHMnqPcvXqTl94djoNr/g2b41v2cXTTbgZOeIMKVZ/tRtuzMDU1xdcv75xq3qalbvu508bPqYDAmpw6pn9OnQs+TfUAvyIrmZuZm+Hi6kJubi7HDh6mVfui11y7t+7A3tGBxs2alkCN8qg1am7HP6S2RzW9+cJqe1Tj9H3D85Uabmvzzn8FCh4mxfLhXz/r/X9A3Y5YmJix+PQ2YkvhnPo3tbUF5WrU3Ip7QN0K1fUW+ahbwY+T4UbmIn1ErdXoVktt7VOHU/dCSj3YB4+ORew96lf052iB975+Jf+nzqmo1mp0C5a0q1afk+FX0KIlPDGK19d8q5d2eKPuWJlaMPvYeoOrjgpRmiR4JsS/1JYtW0hISGDkyJHYF1qhsF+/fsyfP99o8MzW1pYPP/yQ999/H41GQ8uWLUlOTubYsWPY2NgwbNgwfH19WbJkCTt37sTHx4elS5cSHByMj4/xlfdGjx7N9OnTGTduHG+88QZnzpwpsvrnhAkTaNq0KW+99Ravv/461tbWhISEsHv3bn7++WfDOy7E19eXpUuX0rBhQ5KTk/noo4+wtLR8Yvrw8HBWrlxJo0aN2Lp1Kxs2bHim1yqOmu0bc3TJXzhX9sDVpyI3jp4nLT4Zv1Z5Q2PPbjpARlIKLYb2AiBkfzDWTvY4eLqgUau5feoK4eev0+a1Prp9xoQ9JCMxBcdK7qQnpnBx2xG0Wi2BHUtnYmuFQsHAXi+wcO0aKntWwKtCBRauXY2FmTldW+f/CPjixxm4OTvz9qOAWk5ODrfv3Xv0dy4xcXFcv30bK0sLvDzzegzMXDifVo0a4+HqSkJiEvPXrCItPZ2e7TuUSl2ehaWpOZXsXXXPK9i5UN2lEsmZaSV+R/3vytq9H4uendFER6OOisGiRxe02TlknzytS2P12hA0CUlkrstbgTD3wmXMO7dDHX4f9e0wlG6uWPTuSc75S7pfCRYv9SLn0lW08QlgYYFZkwaYBFQnbUbJzm3z19UjvNvyZULjHnA9JpxOfo1wsbZn1/VTALxSvzNOVnb8fCRvVbrT964xunkfuvg34fyDGzhY2vJq457ciLlXZI6X9tUbcio8hNSs0h+mtvrCPj7tMIzr0Xe5EnWHXjVb4GbryKbLeT3kRjV9ERdrB6Y8mm+qkr0bNdy9CYm6g625Ff3rdMDH2ZMp+/Lnozp29xL967TnRuw93VCikU16cjTsku5HbGlTKBQMbN+BhTu24eXmhperO4t2bMPCzIwujfLbmS8XzcfVwZG3e+f1bFq4Yxs1q3hT0cWVXHUuRy9fYuuJE3w88BVjL/W3vDTgZb6fPJXqAf7UCKrJ9k1biI6KokefvHZ0wZx5xMXG8tHnEwHo0bsXm9dt5LdZs+n2Qg9CLl9l55btfDwpfx7MJi2asWHlWqr5+RJQM2/Y5pJ5C2nasjmqR/NwZaRn8PB+/mIvkQ8jCL1xC1s7W9w83Itdr703TzO8UQ/uJkRyJ/4hLX3q4GhlpwsYvBjYCgdLWxaf3qaXr4V3Le7EPeRhsv4NpFyNusi2jOy8QHzh7SWpSbe2bJqzDM+qXlTy9ebc/mMkxSVQv0NeIGr/qi2kJCTxwuhXUCiVuHl56uW3trNBZWqit/34lr0cXLud3mOGYO/ipOvZZmZhjpnF37/J9Vif//Rl+uRpVA/wIyCoJjs2byUmKpruvfPOqUVz/yAuJpYPPs9bAKl7755sWb+JeT/PoUuv7ly7fJVdW3YwftInun1euxJCXGwsVX2rERcbx/IFS9BoNPQdNEDvtTUaDbu37aRD106oTJ5tzrdntTXkGG8370to/ENuxtyjQ/WGuFjbs/tmXls7sG4nnKzs+PXYOiBv4vdRTV+kU/VGXIjIG7Y5rGE3bsbmt7X3kvTnOn08JLjw9pL0b21rN14+xLjW/+FW7H1Cou/S1b8JrjYObLuWF5gd1qAbztb2zDiU1/O7gp0Lfq6VuRETjo2ZJb2DWlPF0YMfD6/6R8oLsO7iASa0G8yN2HBCosLoXqM5bjaObAnJ6634aqOeuFjb892BvKlZKtq7EuBahWvRd7Ext6Rv7XZ4O3nq/p+jziUsIULvNdIefX8X3i7EP0GCZ0L8S82fP5+OHTsWCZxBXs+zKVOmcPas8ZWQJk+ejJubG1OnTuX27ds4ODhQv359Pvkk7+Jv9OjRnD9/ngEDBuT9mBo4kDFjxrB9u/G5ICpXrsy6det4//33mT17No0bN2bKlCm8+uqrujS1a9fm4MGDfPrpp7Rq1QqtVku1atUYMGCA0f0WtmDBAkaNGkW9evWoXLkyU6ZM4cMPPzSa/sUXX+T999/n7bffJisrix49evD5558zadKkZ37Nv8O7QQ2y0jK4uP0oGclpOHi60H7My9g45R2zjORU0uLz79RqctWc3bCP9KRUVKYmeenffJmKgdXy0+Tkcn7LIVJiEzE1N6NiYFVaDO2JmdXTF1r4u4a91Jes7Gy+/W0OKampBPn58ctXX+v1UIuMjUGpzO8HFBMfzyvvj9U9X7pxA0s3bqB+UBC/fzMVgKjYOD794QcSU5JxtLMjyN+fhd/9gKfbs819UxoCXKvwS5/84brvtnwZgG0hx/mmwIV3WcravgeFmRmWgwegsLZCfTuM1Om/QIEeakonJ9Dk/wDI/GsHWq0Wiz49UTrao01JJefCZTLX5U+6r7C3xfr1oSjs7dBmZKK+/4C0GbPJvVr8VVULOhZ2CVtzK16u0x5HS1vCE6OYsnex7g6zo6UtLtYOuvT7Q89iYWpOt4CmDGvYjbTsTC5FhPLnWf25gzztnKnp7s1XuxaUaHmN2XfrDHbm1gxr2B1nazvuxEUwYctsolLzhn85W9nhbpM/7EulVDKgTgcqO7iTq1Fz7sENxqz/gciU/OFiS05vR6vV8lqTXrhaO5CYkcqxsEvMO7n5H6nTY0M7dyUrJ4dpK5aTkp5GoE9Vfn7nfb0eapHx8XpzQmVmZTFtxTKiExMwNzWliocnX48YSeeGjUq0bG06tiM5OZllC5eQEBdPlareTP5hKu4eecPh4uPiiY7K/yHvUcGTyT9M5bdZv7Jl/SacXJx58723admutS7NoGFDUCgULP59AXExsdg7OtCkRTOGjxqpS3Pj2nUmvJPfNvz+c978gx27deHDzyYUu15n7l/H2sySHjWaY2dhTURyLL8eXadbPdPewganQkO8LEzMqFfRj9UX9hX79UtKzab1SE9J48iGnaQmJuNayZP/fDQKe5e8XmSpickkxT7fjYgze46izlWzbtYive2t+nShdd+uxS5z6w7tSE5KZsWiP4mPi6eKjzdffT9FFxSNj4snptA59dX33zDv5zlsWb8ZZxdn3njvLVq0zT+ncrKzWTpvIZEPI7C0tKRh08Z88PkEbGz1h1GeP32WmKhoOvfoVux6FHb87mVsza3oW6stjpa23EuM4tv9S3U9gBwsbXC2zr+GPHj7HJamZnTxb8qQBl1Jy87kStQdlp01PE/bP+Xf2tYevnMBW3Mr/lO3I05WdtxNiGTSrvn534VWdrgW+C5UKpT0CWpNRXtX1Bo1FyNC+WjLr0T/gzf2Dt4+h52FNYPrd8HJyp6w+Ag+3f6brgzOVna4FTwWCiX9arejkoMbao2a8w9vMnbTTN2xE0+e81X88xTaf6K/uRBC/I/4v0LDYP4bfdZpBCnXbjw9YTlnG+BHi19Hl3UxiuXoW3NJfNVwD9H/Jg4LfqHv4k+enrAcWzdsCq1nj3l6wnLu0JjZJO87VNbFKDa79q25E/vg6QnLMR+Xiry57vuyLkaxzen7EUuCtz09YTk2tFF3bsXcK+tiFJuvqxcD/vy8rItRbKsGT/6vb28PjZlNzwUflXUxim3Lq9/T6fexT09Yju0e9VNZF+Fv+3jrnLIugkHf9nizrItQJmQGOiGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliFIhwzbLE+l5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKGTYZrkiPc+EEEIIIYQQQgghhDBCgmdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQgghyhFZbbN8kZ5nQgghhBBCCCGEEEIYIcEzIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEOWIAhm2WZ5IzzMhhBBCCCGEEEIIIYyQ4JkQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIckQhq22WK9LzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUcqwzXJFep4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCOy2mb5otBqtdqyLoQQQgghhBBCCCGEyPP17gVlXQSDvuj0alkXoUxIzzMhhChBCZ36lHURis1x9waS9+wv62IUm13HdiS++nZZF6NYHBb8QotfR5d1MYrt6FtzSRw9rqyLUSwOc2eQOPKdsi5GsTnM//nf007tPVjWxSgWuw5tSBz63//5dlgyt6yLIApI3rarrItQbHbdO5P4/idlXYxicfhxCon/GVnWxSg2h5Xz+WLHvLIuRrF83fX1si6C+JeQ4JkQQgghhBBCCCFEOaJEhm2WJ7JggBBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli/S80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJFhm+WL9DwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJGeZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAIZtlmeSM8zIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEVtssX6TnmfifcPr0aX788Uc0Gk1ZF0UIIYQQQgghhBD/RSR4JspEWFgYCoWC8+fPl9g+FQoFGzduLLI9NjaW/v37ExQUhFJZ8qf8pEmTqFu3bonv93/J8OHD6d279zOnP3DgAAqFgsTExL/9mosWLcLBweFv5xdCCCGEEEII8b9Bhm2K5zZ8+HAWL14MgEqlokKFCvTo0YMpU6bg6OhYZuWKiIgo8vparZahQ4fyxRdf0KlTpzIq2b+DQqFgw4YNzxXkEiXLtGVTzHt0RlW9Gkp7O5JHv486NKysi4VWq2Xeti1sOHqElPR0Ar29Gd9/INUqVDCaZ9/5cyzauZ17MTHkqtV4uboxuENHujdpqktz9uZNlu7ZxbV74cQmJfH9qNG0rVO3VOti8WJ3zNq0QGFlifr2XdL/XIXmYeQT85h3aotZu1YonRzRpqaRffocmWs3Q24uAGZtW2LerhVKFycA1A8iyfxrO7mXrpZqXZ6kjqcvg+p1JsCtMi7WDny8bQ6H71wos/IYYtGzC2Ytm6KwskIddpf0FevQREQZTW8zbgwmfr5Ftudcukrar3/kPTE3x/KFbpjWDUJha4v63n0yVm9EffdeaVUDixe66Z9Ty1Y//Zzq2Bazdi0LnFPnyVyXf06Zd++Eaf06qDzd0WbnoA69Q8aaTWiiokutHs+ivLZRhmi1WuZt/YsNRw8/ard8GD9g0JPbrXNnH7Vb0Xntlpsbgzt0onuTZv9gycGiT0/M2rZEYW2FOjSM9CUr0DyIeGIe8y7tMWvfGqWzE9qUVLKDz5G5ZgPk5OrSKBwdsOzfB5M6gShMzdBERpE+fynqsPDSrpIoI1qtlnk7t7Ph+FFSMjIIrFyF8X37U83T02iefRfPs2j3Lu7FxpKrUePl4srgtu3p3qixLs3vO7Yxb+d2vXxOtrbs/HpKqdXFoksHzJo1QmFpiTr8HunrNqOJNN4m2rz1Gia+VYtsz7l6jbR5S4psN+/QBsueXcg6eJSMjVtLtOwFWfR7AbP2bVDYWKG+dZv0BcvQ3H/4xDzm3Tpi1qkdSpdHn++Tp8lcsS7/821hgWX/3pg2qo/C3hZ1WDgZi1agvh1W4uVv5FWDlj51sDG3JCY1ge3XTnA3wfh3nkqhpK1vfepU8MXG3IrkzDQOhp7j3IMbADSo5E/dCn642eb9xnuYFMuem8E8SIop8bKXRwoZtlmuSPBM/C1du3Zl4cKF5ObmcvXqVV599VUSExNZsWJFmZXJw8OjyDaFQsG2bdvKoDRClDyFhTm5V66RfegY1uPeKuvi6CzZvYvl+/byxZBhVHZzY8GO7bz9y0+s/eIrrC0sDOaxt7JiRJdueHt4YKoy4fDli3z95xIcbW1pVjMQgIzsLPwqVaJXs+ZMmPdbqdfDvFtHzDu3I33+n6ijorHo2RWbD98h+ZOvITPLYB7Tpg2x6Pci6QuWob51G6WHG1YjhwCQuXI9AJqERDLWbkITHQuAWYsmWL8zipRJ3z41iFJaLE3NuRV3n23XjjGl2+gyKcOTmHduj3mHNqQvXoE6OgaLbp2wGTua5C+/hSzDxyJt7iIwUemeK6ytsP3sQ3LO5gcFrYb0R1XBk7SFy9EmJWPWpAE2740m+avv0CYmlXw9Hp9TC5Y9Oqe6YPPB2yR/Otn4OdWkIRb9XiB94TLUt+7knVOvDgYgc1XeOWXi50v2/sPk3rkLShWWL/XE5oO3SP7sG8jOLvF6PKvy2kYZsmT3Tpbv28MXQ4ZT2d2dBdu38vbPP7L2y8nG2y1ra0Z07Y63uwemJioOX7rE10sX42hrp2u3Spt5j86Yd+1A+rzFqCOisXixGzbjx5I84Uvj51Szxli83If0+UtQ33zUTr0+DIDM5WsAUFhZYfvZR+SEXCfth1/QJqegdHNBm57+j9RLlI0l+/aw/MB+vhj0CpVd3Viweydvz/2FtRM/f8L3tzUjOnXB290dU5WKw1eu8PXKZXnf3wE1dOmqenjy65tv656rlKUXBDBv3xrzti1IX74OdUwsFp3aYTP6VZKnzoAsw21i2sJloCr0nfHhO+Scv1wkrcqrImbNGqF+SpC6uMxf6IZ5986kz1mAOiIKi5d6YvPJBySP+xQyMw3mMW3RBIuB/Uj/bSHqG7dQenpgNfpVADKXrALA6o1hqCpVJO3XP9AmJGLWqik2n31A8gefo01ILLHyB3lUpVuNZmy5epTwhCgaeQUwuEFXfjmyhqTMNIN5+tftgI25JRsvHyI+PRlrM0u9eb68nSpwMeIW90KiyNWoaelTh6ENu/HLkbWkZEn7JP5ZMmxT/C3m5uZ4eHhQqVIlOnfuzIABA9i1a5demoULF1KjRg0sLCwICAhg9uzZRvenVqsZOXIkPj4+WFpa4u/vz08//VQk3YIFCwgMDMTc3BxPT0/efjv/S7nwsM1Lly7Rvn17LC0tcXZ2ZtSoUaSmpur+/3io4A8//ICnpyfOzs689dZb5OTkPLHu3377Le7u7tja2jJy5EgyDXyZPU/dAXbs2EHLli1xcHDA2dmZnj17Ehoaqvt/dnY2b7/9Np6enlhYWODt7c3UqVP16j5nzhy6deuGpaUlPj4+rFmzRu81Hjx4wIABA3B0dMTZ2ZkXX3yRsLCwZ3p/vb29AejTpw8KhUL3HGDOnDlUq1YNMzMz/P39Wbp06RPrqlarGTdunK6u48ePR6vV6qXRarV89913VK1aFUtLS+rUqcPatWufuN/CZsyYQa1atbC2tsbLy4sxY8boHf/CQkNDefHFF3F3d8fGxoZGjRqxZ8+e53rN0pa95yCZf64m92z56SGk1WpZsX8vI7p0o33devhWqMikIcPIzM5mZ/Apo/ka+PnTrm49fDw8qeTqysB2HfCtWJHzBc77FoFBvNnrRdrXrfdPVAXzTu3I3LKTnLMX0DyIIH3+UhRmppg1aWg0j0k1H3Jv3ibn5Gk0cfF5gYOTpzHxrqxLk3vhMrmXrqKJikYTFU3m+r/QZmZhUs3nn6iWQSfCrzDv5GYO3j5fZmV4EvMOrcncvoec85fQPIwkffFyFGZmmDWubzSPNj0dbXKK7mFawx+yc8g+8+jzYmqKab3aZKz/C/Wt22hiYsncshNNbDzmrZuXTj06tiVz664C59Sfz3ZO3bpNzskzBc6pM3rnVNrMOWQfPYnmYSSa+w9IX7AMpbMTKm+vUqnHsyqPbZQhWq2WFfv2MKJrd9rXq5/Xbg0d8ajdOmk0n67d8vSkkqsbA9s/brdu/WNlN+/SgczN28k5fR7Ng4ek/74477PRrLHRPCa+Vcm9GUrO8WA0sXHkXg4h+0QwJj7555R5z85o4uPJ+GMJ6ttheemuXtcF/cW/j1arZcXBA4zo1Jn2tevi61mBSYMGk5mdw86zp43ma+BbnXa16+Dj7kElF1cGtmmLr2cFzt8O1UunUipxsbPTPRxtbEutLuZtmpO5+wA5l67k9Zhcviavra1f12gebXoG2pRU3cPUzxdycsi+cEk/oZkZVoMHkLF6A9qMjFKrA+TdcMncuJWc4LN5bfvs+SjMzTBr0cRoHhO/auTeuEXO0ZNoYuLIvXiF7GMnManqnZfA1BTTxg3IWL4W9bUbedchazejiY7FvFO7Ei1/c+9anL1/nbP3rxOblsj2aydIzkylUeWaBtP7ulTC28mTP8/s5HbcQxIzUnmQFMO9xPweg+su7if4XgiRKfHEpiWx6fJhFAoFVZ0rlmjZhXgWEjwTxXb79m127NiBqampbtu8efP49NNP+eabbwgJCWHKlCl8/vnnuuGehWk0GipVqsTq1au5evUqX3zxBZ988gmrV6/WpZkzZw5vvfUWo0aN4tKlS2zevBlf36JDdADS09Pp2rUrjo6OBAcHs2bNGvbs2aMXbAPYv38/oaGh7N+/n8WLF7No0SIWLVpktK6rV6/myy+/5JtvvuH06dN4enoWCYw9b90B0tLSGDduHMHBwezduxelUkmfPn10CxzMmjWLzZs3s3r1aq5fv86ff/6pF8AC+Pzzz+nbty8XLlxg8ODBDBw4kJCQEN370a5dO2xsbDh06BBHjhzBxsaGrl27kv2ol8KT3t/g4GAgLygYERGhe75hwwbGjh3LBx98wOXLl3njjTcYMWIE+/fvN1rX6dOns2DBAubPn8+RI0eIj49nw4YNemk+++wzFi5cyJw5c7hy5Qrvv/8+gwcP5uDBg0b3W5hSqWTWrFlcvnyZxYsXs2/fPsaPH280fWpqKt27d2fPnj2cO3eOLl260KtXL8LDZbjKkzyIiyUuOZmmNfLvNpuZmlLftzoX79x+pn1otVpOXbvG3ago6hv5TJc2paszSgd7cq9cy9+Ym0vu9VsGh3Xokty8jYm3FyqfKrr9mNYKJOfiFcMZFApMGzdAYW5GbuidkqzCv4bSxQmlvR25IdfzN+aqyb0Zmv9j4BmYtWhC9ulz+T2xlEoUKpXeMDUAbU4OJr4lH8hUujzhnHpC4DT3VigmVQqcUy7OmNaqafycAhRWeT1EtGlyF/5Z5Ldb+T/ozExNqV/dj4u3n6fdCnnUblUvraLqUbq65J1Tl0PyN+bmknv9JibVn9BO3biFiXdlVI8+P0pXF0zrBJFzIb+HjWm9OuTeCcfq7dex++U7bCZ/glnblqVVFVEOPIiLIy4lmab+AbptZiam1Pf15eKdZ/t+0mq1nLpxnbsx0dSvpv/9fS82hm5ffsqLk7/kkyULuR9bOoFYpbMjSjs7cq/fzN+oVpN7645egPhpzJo0JPvcRcjWv4lu1e8FckKukXsj1EjOkqF0c0Hp6EBuwbY+N5fckOuY+FUzmi/32i1MfKqgevS9onRzwbReLXLOXsxLoFI9+u7Tr5c2OweTgJK75lIplHjauRAa+0Bv+63YB1R2cDeYJ8CtCg+TYmnpU5sP2w7i3Vb96eLfBBOlymB6AFOVCSqFkowcwz1t/20UCmW5fPyvkmGb4m/ZsmULNjY2qNVqXc+rGTNm6P4/efJkpk+fzksvvQSAj48PV69e5bfffmPYsGFF9mdqaspXX32le+7j48OxY8dYvXo1/fv3B+D//u//+OCDDxg7dqwuXaNGjQyWb9myZWRkZLBkyRKsra0B+OWXX+jVqxfTpk3D3T2vEXd0dOSXX35BpVIREBBAjx492Lt3L6+//rrB/c6cOZNXX32V1157TVemPXv26PU+e966A/Tt21fv+fz583Fzc+Pq1asEBQURHh5O9erVadmyJQqFgipVqhTZx8svv6wr1+TJk9m9ezc///wzs2fPZuXKlSiVSv744w/d2PmFCxfi4ODAgQMH6Ny58xPfX1dXVwAcHBz0hsf+8MMPDB8+nDFjxgAwbtw4Tpw4wQ8//EC7dobvZs2cOZOJEyfq6jx37lx27typ+39aWhozZsxg3759NGuWN49M1apVOXLkCL/99htt2rQxuN/C3nvvPd3fPj4+TJ48mTfffNNoL8A6depQp04d3fP/+7//Y8OGDWzevLlI0BUgKyuLrELDx8zNzZ+pbP8mccnJADjZ2ultd7KzIzI+/ol5UzMy6P7Jx2Tn5qBSKpkwYCBNahi+O1naFHZ55dckp+ht1ySnoHR2Mpov59QZMmxtsJn4PqBAYaIia98hsrbt1kunrFgB208/AFMTyMoi7Zd5ZTZks7x74rFwerZ5NVXelVFV9CR96ar8jVlZ5IbewaJHJ9Iio/J6pzWqj8q7cqn0rlHYP65Hst72p59TZ8mwscHm4/fQnVP7D5O1fbfRPJYDXiL3RuhT570SeeKSjLRbtnZExsc9MW9qRjrdP5lAds6jdus/g/6xdkt3TiUVOqeSknVzKhqSc/I0GXY22Hz2Ibpzau9Bsrbkf/cqXV0wb9+arB17SPtrB6qq3lgO7o82J4eco8Z744n/XnEpRj4HNrZEJjzD9/ekz8jOzc37HPTrT5MCQbjAKlX4atAQKru6EZeSzILdOxk5awarJnyKw6Pr8pKisM3r0aZJ0R9doElNReno8Ez7UFWuhKqCB+mPhsY/ZlqvNqqKFUj/8ckjSEqCwsEeMPb5djaaL+f4qbzP91cf5+3HxISsXfvJ2vxozrnMTHJv3MLipZ6kPYhAm5iEaYsmqHx9njgn3POyMrNApVSSmq1/EyctOwMbc0uDeRwtbans6E6uRs2Kc7uxMrWgZ2ALLE3N2Xj5kME8nfwakZyZxu24Bwb/L0RpkuCZ+FvatWvHnDlzSE9P548//uDGjRu88847AMTExHDv3j1GjhypF4TKzc3F3t7e6D7nzp3LH3/8wd27d8nIyCA7O1u3imV0dDQPHz6kQ4cOz1S+kJAQ6tSpowucAbRo0QKNRsP169d1wbPAwEBUBeY78PT05NKlS0X2V3C/o0frzw/UrFkzXU+rv1v30NBQPv/8c06cOEFsbKyux1l4eDhBQUEMHz6cTp064e/vT9euXenZsyedO3cuUo7Czx+vZnrmzBlu3bqFra1+l/nMzExCQ0Of+/0t+H6MGjVKb1uLFi0MDrkFSEpKIiIiQq+sJiYmNGzYUDd08+rVq2RmZhZZ4CE7O5t69Z59+N7+/fuZMmUKV69eJTk5mdzcXDIzM0lLS9M7Lx5LS0vjq6++YsuWLTx8+JDc3FwyMjKM9jybOnWqXsAX4Msvv2SswdTPz6x9a6zeyz/XUj+ZrN/boIxsP3WSqSuW657/OCZvXqPCE5oWHopriJW5Ocsmfkp6VhbB16/x4/q1VHRxoYGff8kW2gDTpg2xGjpQ9zx15py8PwyV+wl1MfGvjkXPLmQsXUXu7buo3F2wHNgPTVIyWX/t0KXTREaRMmkqCisrTBvUxeq1IaRO+0kCaIBp4/pYDXpZ9zz18eT+hd/355g016x5E9QPIopMdJ6+cDlWQ/+D/bRJaNVq1PcekBN8DlXl4g//MG3SEKuh/9E9T/1pbt4fhU8fheIp55Rv3jn152pyb4ehcnPFcmBfND276AU7HrN85WVUlSqQ8u3MYtfheZTXNsqQvHbrT93zHx/Nw1T4lNKifep5ZmVuwbKJnz9qt0L4cd0aKrq4lkq7ZdqsMVYjBumep07/9VFBDXw2ntDkmgT4YdGrGxmLV5AbegeVuxuWg/ujSUwia9OjeWGVCtR37pK5dhMA6rv3UFX0xLxDGwme/UtsPxPM1NUrdc9/fD3v81v4jH+2z4E5yz78mPTsLIJvXOfHjRuo6OxCg0e9MFvUyJ8D0JcK1Pb2ofc3X7E1+CSvtG1frHqY1q+DVf/euuepBib3z/Pkz0VBZk0aon4YiTr8fn5uB3ss+/Qkde4C3WItJcm0RROsXh+qe5467dG1c5Hvh6d8Z9T0x6JPTzLm/0nurduoPNywHDYQTWJPstZvASD91z+wemME9nOm53333blLztGTuh7Opc1Y8R9fO669uI+s3LyecTuunWBA3Y5suXqUXI1aL31Ln9rU8qzGwlNbi/xPiH+CBM/E32Jtba0b0jdr1izatWvHV199xeTJk3WBn3nz5tGkif4Y/YKBqoJWr17N+++/z/Tp02nWrBm2trZ8//33nDyZd8FmaWn4joUxWq3W6OokBbcXHGr6+H+Py/93/J26A/Tq1QsvLy/mzZtHhQoV0Gg0BAUF6YZU1q9fnzt37rB9+3b27NlD//796dix41PnAXtcV41GQ4MGDVi2bFmRNK6uriiVf7/7raGgSXFWhnn8Hm7dupWKFfV/0D5rz667d+/SvXt3Ro8ezeTJk3FycuLIkSOMHDnS6Jx2H330ETt37uSHH37A19cXS0tL+vXrpzsGhU2cOJFx48YVKV96z/8YTP+8so+fIvfaDd1zTeyT7wL/U1rXrkOQd/6Qs+xHF5RxyUm4FAgQJ6Sk4GxnVyR/QUqlEi83NwD8vbwIi4pk0a6d/0jwLOf8JVIKrjJlkvd1qLS3Q13grq/SzhZtoR5QBVn06UH2sVNkHz4OgObBQzAzx2rYwLxAx+MrRrVa17tJHRaOyqcy5h3bkrFkpbFd/8/IuXCFlDsFglyPJv1X2tuhLvDeK21tnngsdExNMWtUl4wCwcvHNLFxpM74FczMUFiYo01Oweq1ISXy+cq5cImUr8LyNxg7p55SD4vePck+XvCcigBzM6yGDiRr6y69XyGWg/phWrcWqdN+KtFJn59FeW2jDDHebiXjYu+g256QkoKz7XO2W5GRLNq5vVTarZxzF0gpOLzb9NE55WBvoJ1KLpxdx6JvL7KPnST74FGAvJX7zM2wGjE4r3eKVos2ManIZOjqh5GYNjQ+z6D479I6sBZBH3rrnus+BynJ+t/fqak4P2V+MqVSidejUQn+FSsRFhXFoj27dMGzwizNzfH1rMC9mOKvkJhzJYSUHwqskPy4rbW10f/OsLFG+4S5bnVMTTGrV5uMHfrz3JpUqoDS1gbbAoufKFQqVFW9MWvZlKSPvnhiUOup9ThzgZRbBW7CFvx8F1jARmlvizbpCZ/v/r3JPnyc7P2HAdDcewDm5li9PpSsDVtBq0UTFUPq19+BuRkKS0u0iUlYjX2jRHtdp2dnotZosDGz0ttubWZJWrbhueJSstJJzkzTBc4AYlITUSoU2FlYE5+eX+8W3rVoVbUui4O3EZVafr9vSpqySHhblCUJnokS8eWXX9KtWzfefPNNKlSoQMWKFbl9+zavvPLKM+U/fPgwzZs31w3/A/QmzLe1tcXb25u9e/caHQ5YUM2aNVm8eLFeL6OjR4+iVCrx8/N7ztrlq1GjBidOnGDo0Pw7RSdOnND97e7u/tx1j4uLIyQkhN9++41WrVoBcOTIkSLp7OzsGDBgAAMGDKBfv3507dqV+Ph4nJycdOUoXK7HPbXq16/PqlWrcHNzw85IQONp76+pqSlqtf5dnho1anDkyBG91z127Bg1Csx/VZC9vT2enp6cOHGC1q1bA3m98s6cOUP9+nkX6DVr1sTc3Jzw8PBnHqJZ2OnTp8nNzWX69Om6wGDB+fMMOXz4MMOHD6dPnz5A3hxohRdUKMjc3NxgMK/EZhzKyESTUf56JVlbWOitwKXVanG2s+PktRD8vfLmFsnJzeXsrZu882Kf59q3VqslO/fJC3aUmMwsNIVWptMkJmFSMyD/zrNKhYm/LxlrNhnfj5lZ0YtnraborfwiFChM5CsYgKwsNDGFjkVSMiY1/FDfezQsQ6XCpHo1MjZseeruzBrWBRMTck6eMZ4oOxttdjYKK0tMawaQsf6vYlTgEaPnlH/Rc2rt5idUwLToOaXRFjmnLAe9jGn92qR+NwtN7JOHGpaKctpGGWK03Qq5qt9u3bzBO71feq5957VbJd8rBXh0TukHGzSJSZgE1kB991HwQKXCxL86Gas3GNjBI2ZmeeeQ3o7026ncm6GoPPXnJVJ6uKOJK4NzS5QKg58DWztOXr+Of6W8xUbyvr9v8U6vF55r31qe/DnIzs0hLCqKulWNz931zLKy0WTpB080ycmY+PvmB4BVKkx8fcj4q2hv3cLM6tYCExU5p8/pbc+5GUry495gj1gN7IsmOobMvYeKFTgDIDMTTaFFxzQJiZjUqpnfa1qlwqSGPxnLn3Cz3NB1iEZjuPdgVjbarGwU1laY1g4iY/maomn+JrVWQ0RyLNVcKhISHabbXs2lItei7xrME54QRaBHVcxUJmSr884fF2t7NFoNyQVW52zhXZs21eqx5PR2HibLIiai7MiVuygRbdu2JTAwkClTpvDLL78wadIk3n33Xezs7OjWrRtZWVmcPn2ahISEIr11AHx9fVmyZAk7d+7Ex8eHpUuXEhwcjI9P/p3iSZMmMXr0aNzc3OjWrRspKSkcPXpUN1y0oFdeeYUvv/ySYcOGMWnSJGJiYnjnnXcYMmSIbsjm3zF27FiGDRtGw4YNadmyJcuWLePKlStUrZo/Ue/z1v3x6pe///47np6ehIeH8/HHH+ul+fHHH/H09KRu3boolUrWrFmDh4cHDg4OujRr1qzRK9epU6eYP3++7v34/vvvefHFF/n666+pVKkS4eHhrF+/no8++ohKlSo99f19HFxr0aIF5ubmODo68tFHH9G/f3/q169Phw4d+Ouvv1i/fv0TV6kcO3Ys3377LdWrV6dGjRrMmDGDxMRE3f9tbW358MMPef/999FoNLRs2ZLk5GSOHTuGjY2N0XnjCqpWrRq5ubn8/PPP9OrVi6NHjzJ37twn5vH19WX9+vX06tULhULB559/XqxeiKVBYWuD0s0FxaP5kpSV8nrmaeIT//FeJ7oyKRQMbNeBhTt34OXqhpebG4t27sDCzIwujfJXf/ty8UJcHRx4+1FAbeHOHdSsXJmKrq7k5qo5euUyW0+e4OP/5A9RSs/M1LtL/TAuluv37mFvbY2Hk/H5ff6urN37sejZGU10NOqoGCx6dEGbnUP2yfxVx6xeG4ImIYnMdXnBj9wLlzHv3A51+H3Ut8NQurli0bsnOecv6S5mLV7qRc6lq2jjE8DCArMmDTAJqE7ajNKfQ8UYS1NzKtm76p5XsHOhukslkjPTiEpNKLNyPZa19xAWXTuiiY5FHR2DRdeOaLOzyT51VpfGavhANInJZG7cqpfXrHkTcs5fNjh5vklNf0CBJioapZsLli/1Qh0VTfYx4yvDFqseew5g0aMzmqiYvHp071z0nBo5BE1CIpmPAnj659RdlG4uWPTuQc75y7pzynJwf8yaNCD153loMzNR2OX1EtFmZBaZFPqfVB7bKEMUCgUD23dk4c7teLm557VbO7Y/arfye41/uWhBXrv1KKC2cMd2alap8qjdyn3Ubh3n44HPdrOsJGTt3ItFr65ooqJRR0Zj8ULXvM/G8fxz2GrU8Lxzas1GAHLPX8K8awfUd++hDr2D0t0Ni74vkHPuou6cytqxF5vPx2Peqys5J8+gquaNebuWpC8o2mNd/DsoFAoGtmnLwj278HJ1xcvVlUV7dmFhZkqX+vkrAn+5bAmu9g683TMvoLZwzy5qelWmorMLuepcjoZcZWvwKT5+eYAuz8xNG2gVGISHoyMJqanM37WTtMxMejYyvmpkcWQdPIZFx7ZoYuJQx8Rh0bFtXlt79rwujdWgvCkVMrfu0str1rQhOZdC0KYX6h2VlY0mMkp/W3Y22rT0ottLqh7b92DRuweayCjUEdFY9OmONiub7AJDp63GjEQTn0Dmyrz52XLPXsC8e2fUd8JR37qN0sMNi/69yTlzXvf5NqkdCAoFmoeRKD3csHzlZdQRkWQfOFqi5T8WdomXarfVrZjZ0CsAewsbgsPzhvR39GuEnbk16y8dAOBSxC3aVqtH71pt2H/zDFZmFnT2b8LZ+zd0wzJb+tSmffWGrL2wj8SMFGzM8kYjZatzdAE3If4pEjwTJWbcuHGMGDGCCRMm8Nprr2FlZcX333/P+PHjsba2platWnqTuBc0evRozp8/z4ABA/K+zAcOZMyYMWzfvl2XZtiwYWRmZvLjjz/y4Ycf4uLiQr9+/Qzuz8rKip07dzJ27FgaNWqElZUVffv21VvU4O8YMGAAoaGhTJgwgczMTPr27cubb76pN+H989ZdqVSycuVK3n33XYKCgvD392fWrFm0bdtWl8bGxoZp06Zx8+ZNVCoVjRo1Ytu2bXrDLb/66itWrlzJmDFj8PDwYNmyZdSsWVP3fhw6dIgJEybw0ksvkZKSQsWKFenQoYOuJ9rT3t/p06czbtw45s2bR8WKFQkLC6N379789NNPfP/997z77rv4+PiwcOFCvbIX9sEHHxAREcHw4cNRKpW8+uqr9OnTh6Sk/C7qkydPxs3NjalTp3L79m0cHByoX78+n3zyyTMdp7p16zJjxgymTZvGxIkTad26NVOnTtXrIVfYjz/+yKuvvkrz5s1xcXFhwoQJJD9hGExZMG3WCOuP3tU9z5v8GTKWrCSz4MTo/7ChnTqTlZPNtFUrSElPJ9Dbh5/fflfvDndkQrzecN7M7CymrVpBdGIi5qamVHH34Ovhr9K5Qf4Fe0j4XUb/9KPu+Y/r8u689mjSlElDh5d4PbK270FhZobl4AEorK1Q3w4jdfovUKA3kdLJSa8HR+ZfO9BqtVj06YnS0R5tSio5Fy6TuS6/J5PC3hbr14eisLdDm5GJ+v4D0mbMJvfqNcpKgGsVfumTH8x/t2XenGPbQo7zzT7jKwP/U7J27UNhZorlwL4orCxR3wknddZvkFXwWDgWuduudHPFpHrV/PnGClFYWmDRuwdKBwe06enknLtIxsZteXfpS6Me2/egMDXFcnD//HNqxq+Fzin9emRu2YmWvOGbeufU+vxed+bt8nop207Qn2UxfcGfej+y/mnltY0yZGinLmRlZzNt5bL8duud94q2W8pC7dbK5UQnJhRot0bSuaHhxYtKQ9bWXXnt1LCBKKysUN++Q+p3s/TPKWcn/XNq07a8dqrfCygdHfLOqXMXdfObAajv3CVt1lwsX+6NxYs90MTGkrFsDTnHSyewLMqHoe07kpWTw7S1q0nJSCewijc/j36r0OcgodD3dzbT1q4mOunR97ebO18PHkrneg10aaKTEvls6SIS09JwtLEhqIo3C94bh2cp3PgCyNp3KK+t7fcCCktL1Hfvkzp3IWTlT72hdHQo+p3h6oxJVW9S5ywolXI9r6zN2/O++14djMLaGvWt26ROmQEFeqgpXQp9vtdvQasFiwG9UTo5ok1OIefMBTILLH6gsLLEYmDfvP+npuUtdrRyA6hLdt6wy5G3sTQ1p61vfWzNrYhOiefPMztIyswbPmtrboW9Zf68w9nqXBaf3kaPGs15o3kfMrIzuRx5m703828wNapcExOliv/U058Lef+tM+y/dZZ/u+JMhSNKnkL7LLM6CyHKNYVCwYYNG+jdu3dZF+V/XkKn5xuqWB457t5A8p79ZV2MYrPr2I7EV4uulPrfxGHBL7T4dfTTE5ZzR9+aS+Looj1v/5s4zJ1B4siiPZ3/2zjM//nf007tPVjWxSgWuw5tSBz63//5dljy5J7d4p+VvG3X0xOVc3bdO5P4/rPdMC2vHH6cQuJ/RpZ1MYrNYeV8vtgxr6yLUSxfd3396YnKqZmHyteNp8feaz3g6Yn+hf7+LOFCCCGEEEIIIYQQQvzLybBNIYQQQgghhBBCiHJEKcM2yxUJngnxLyCjr4UQQgghhBBCiNIhwzaFEEIIIYQQQgghRKmYPXs2Pj4+WFhY0KBBAw4fPmw07YEDB1AoFEUe167pL7a1bt06atasibm5OTVr1mTDhg2lWgcJngkhhBBCCCGEEEKUI4YCSOXh8bxWrVrFe++9x6effsq5c+do1aoV3bp1Izw8/In5rl+/TkREhO5RvXp13f+OHz/OgAEDGDJkCBcuXGDIkCH079+fkydLb9VxCZ4JIYQQQgghhBBCiBI3Y8YMRo4cyWuvvUaNGjWYOXMmXl5ezJkz54n53Nzc8PDw0D1UKpXufzNnzqRTp05MnDiRgIAAJk6cSIcOHZg5c2ap1UOCZ0IIIYQQQgghhBDiqbKyskhOTtZ7ZGVlGUybnZ3NmTNn6Ny5s972zp07c+zYsSe+Tr169fD09KRDhw7s379f73/Hjx8vss8uXbo8dZ/FIcEzIYQQQgghhBBCiHJEqVCUy8fUqVOxt7fXe0ydOtVgHWJjY1Gr1bi7u+ttd3d3JzIy0mAeT09Pfv/9d9atW8f69evx9/enQ4cOHDp0SJcmMjLyufZZEmS1TSGEEEIIIYQQQgjxVBMnTmTcuHF628zNzZ+Yp/BcaVqt1uj8af7+/vj7++ueN2vWjHv37vHDDz/QunXrv7XPkiDBMyGEEEIIIYQQQgjxVObm5k8Nlj3m4uKCSqUq0iMsOjq6SM+xJ2natCl//vmn7rmHh0ex9/m8ZNimEEIIIYQQQgghRDlS1qtqlsRqm2ZmZjRo0IDdu3frbd+9ezfNmzd/5v2cO3cOT09P3fNmzZoV2eeuXbuea5/PS3qeCSGEEEIIIYQQQogSN27cOIYMGULDhg1p1qwZv//+O+Hh4YwePRrIGwb64MEDlixZAuStpOnt7U1gYCDZ2dn8+eefrFu3jnXr1un2OXbsWFq3bs20adN48cUX2bRpE3v27OHIkSOlVg8JngkhhBBCCCGEEEKIEjdgwADi4uL4+uuviYiIICgoiG3btlGlShUAIiIiCA8P16XPzs7mww8/5MGDB1haWhIYGMjWrVvp3r27Lk3z5s1ZuXIln332GZ9//jnVqlVj1apVNGnSpNTqIcEzIYQQQgghhBBCiHJE+S+aZWvMmDGMGTPG4P8WLVqk93z8+PGMHz/+qfvs168f/fr1K4niPZN/z9EQQgghhBBCCCGEEKKESfBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDnyvCtbitIlPc+EEEIIIYQQQgghhDBCgmdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQgghyhGlDNssVxRarVZb1oUQQgghhBBCCCGEEHnmndhU1kUw6PWmL5Z1EcqE9DwTQogSNP3girIuQrF90GYgd2IflHUxis3HpSJ9F39S1sUolnXDppA4elxZF6PYHObOoMWvo8u6GMVy9K25jFj1TVkXo9gWDviUiw9vlnUxiq12heqsOre7rItRLAPqdeLArTNlXYxia+vbgDP3Qsq6GMXSwKsG+2+eLutiFFu76g15f/NPZV2MYvvxhbH/iu+Mr3cvKOtiFNsXnV6l96KPy7oYxbJx+LdlXQTxLyHBMyGEEEIIIYQQQohyRIEM2yxPZMEAIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEIattlivS80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHFHKsM1yRXqeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SI9z4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKESUybLM8kZ5nQgghhBBCCCGEEEIYIcEzIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEOWIrLZZvkjPMyGEEEIIIYQQQgghjJDgmRD/oLCwMBQKBefPny+V/SsUCjZu3Phcedq2bct77733zOkXLVqEg4PDE9Ncu3aNpk2bYmFhQd26dZ+rPH/X89ajtI+FEEIIIYQQQoh/Bxm2Kf5nDB8+nMTExOcOLpUkLy8vIiIicHFxAeDAgQO0a9eOhISEpwak/pt8+eWXWFtbc/36dWxsbMq6OAYVPhZl5cqBU1zceYz0pBQcK7jRbEBXPKtXMZj24fU7bJm+uMj2/l+9hYOna5Htt05dYt8f66hSx58ubw0ssTL/tX4Ta5evIj4ujio+3ox+9y2C6tY2mv7iuQv8/vNs7t4Jw9nFhZcHDaBHnxf00mxYtZYtGzYTExWNnYM9rdq2ZsTo1zEzNwNg5ZLlHD14mPt3wzEzN6dmrUBeffN1vKpULrF6dfFvwouBrXC0suVeYjQLT20lJDrMaPpWPnXoHdQaTztn0rMzOffwJotPbyM1KwOAr7q8RpBH1SL5zty/xpS9S0qs3IZY9OyCWcumKKysUIfdJX3FOjQRUUbT24wbg4mfb5HtOZeukvbrH3lPzM2xfKEbpnWDUNjaor53n4zVG1HfvVda1XiqOp6+DKrXmQC3yrhYO/DxtjkcvnOhzMpTWDvfBnTzb4qDpQ0PkmJYfm43N2MNv18jG/ekpU+dItsfJMXw2Y7fAVAplPSo0ZwWPrVxtLQlIiWONRf2cTnydqnVYefGrWxatZ7EuHgqeVdmxNuvU6N2kMG0CXHxLJ49n9s3bxF5/yHdXurFiLdH6aXZv2MPs6fNLJJ32c71mJmZlUYVADi16xBH/tpLamISrpU86Ta0L941ip7zAHevhbJr+SZiH0aSk5WDg6sTDTu0oHmP9ro06lw1hzbt4vzBk6QkJOLs6U7nQS9SvW7NUqvDgS272bV+C0nxiVSoXJH+o4ZSPSjAYNqzR09xaNse7t2+S25OLp5VKtJrUF8CG+ifY+mpaWxcsppzx4JJT03Dxd2Vfq+9Qq1G9UqtHrs3bWPLmo0kxiVQ0duLoWNGElAr0GDahLh4ls1dyJ2boUQ+iKBLnx4MHfNakXTb121mz187iI2OxdbeliatmjPgtSGlek4d2Lqb3eu36o7Hy68PMXo8zh0L5uC2Pdy/fZfcnBw8K1ei56C+BDbQ/+5MT01j09LVnDt2Wnc8+o58hVqN6pZKHVp416ZdtfrYWVgTmRLHxsuHuB3/0Gh6lVJFF7/GNKgUgJ25FYmZqey+Ecype1cBUCqUdKzekEZeNbC3sCE6NYEtV49yLeZuqZT/sT5BbRhUrxPOVvbciX/IrCNruBBxy2j6l4La0LdWWzztnIlKiWfxme3suH6yQD2VDK3flW4BzXCxdiA8MYo5x9dzMvxqqdajsBuHznJ17ykyklJx8HShQd8OuPl6GU2vzsnl0vZj3Am+QmZKGlYOtgR1aUa1Zsav0UpaN/+m9A5qnXctlRDF/FNbuPqEa6nWVevSJ6gNFeycScvO5NyDGyw6vY2UrHRdml41W9DVvyku1g6kZKVxLOwyS8/uIEed+w/UqGzJsM3yRYJnQvyDVCoVHh4eZV2MUhcaGkqPHj2oUsVwEKg8KA/HIjT4MsdX7aDloB64+1Ym5NBpts/6k/6T3sLG2cFovv6T38bMwlz33MLWukialLhETq7dhUf1kgsuARzcs5/ffvqVtz4YS2DtILZt/IvPPvyY3/9ciJuHe5H0kQ8j+PzDiXTr1Z3xX3zClYuX+XX6T9g7ONCyXWsA9u3cw4K58xg3cTw1agXyIPwe07/5DoA3xr4FwKXzF+j10ov41fBHo9aw6Pf5fPr+eH5fthALS8ti16u5dy1GNOrBvJObuRZ9l85+jfm04zDe2zST2LSkIukD3KrwTsuXWRS8ldP3r+FkZccbTXszpvlLfLd/GQDf71+GiVKly2NrYcX0Xu9wPOxyscv7JOad22PeoQ3pi1egjo7BolsnbMaOJvnLbyEry2CetLmLwCS/rAprK2w/+5Ccs/mBKKsh/VFV8CRt4XK0ScmYNWmAzXujSf7qO7SJRd+jf4KlqTm34u6z7doxpnQbXSZlMKaxVw0G1e3E0rM7uBlzj7a+9RnX+j98uuM34tOTi6Rffm43ay7u1z1XKZR83eU1gu+F6La9VKsNzarUYtHprUQkxxHkUZV3WvTjm72LCU80Hhz9u47uO8TCX+fx+ntv4h9Uk91/beebCZP4cdFsXN3diqTPycnBzsGOvq/0Z8vaTUb3a2ltxU9LftPbVppBjkvHzrB98Tp6jhxAZf+qBO85wp/fzubt6Z/h4OJUJL2ZuRlNurTGo3JFTM3NCL8eyuY/VmJmbkbDji0B2LvqLy4cCebFUYNwqeDOrQshrJg+j9e/Hoenj/Eft39X8KHjrJ63hEFjXqVaDT8O7djLz19OY9Kc73FyK3oT6OaVa9SoV4vewwZgaW3FsT0H+fXrH/h4xmQqV/MGIDcnl5mfTcXW3o43PhmLo4sTCTFxmJdAm2rM8f1HWDJnAa+++wZ+gQHs3bqTaRMn8/38n3FxL3oTKDcnB1sHe14c9DLb1202uM8jew+y8o+ljPrwbfwCA4i4/5C5388CYMiYkaVSj9OHjrNm3lIGvjmCajX9OLx9H79M+o4vZ39n+HhcvkaNukH0HtofS2trju85yOzJPzBh+td6x+Onz7/F1t6OURPffXQ84rGwtCiVOtStUJ3eQa1Ze3E/d+If0rxKLUY1fZFv9/9JYkaKwTzDGnTD1tyKVef3EJOWiK25FUpF/kCm7gHNaFApgNUX9hKdGo+/WxVGNO7JrMOreZAcUyr16ODbgLEtX2b6wRVcjAyld2Arfuj1NoOXf0VUakKR9L0DWzO6WW+m7f+TkOi71HDz5uN2g0nJSudo2CUARjV5kS5+TZh24E/uJkTS2KsmU7uN5o113xu9AVLSws6EcGbdXhoN6Ixr1YrcPHKe/bPX0POz17B2sjOY58iCTWSkpNH0lW7YujqSmZKGVqP5R8oLecHYVxv35LcTm7gWHUYX/yZ83mkE72ycYfBaqoZbFca27M+C4C0E3wvB2cqO0c368Fbzvny7fymQF1wb0qArvxxZy7WYcCrYufBuy5cBWBC85R+rmxAgwzaF0Dl48CCNGzfG3NwcT09PPv74Y3Jz8+9otG3blnfffZfx48fj5OSEh4cHkyZN0tvHtWvXaNmyJRYWFtSsWZM9e/boDaUsOFQwLCyMdu3aAeDo6IhCoWD48OEAeHt7M3PmTL19161bV+/1bt68SevWrXWvtXv37qfWMS0tjaFDh2JjY4OnpyfTp08vkiY7O5vx48dTsWJFrK2tadKkCQcOHHjqvh9TKBScOXOGr7/+GoVCwaRJkzhw4AAKhYLExERduvPnz6NQKAgLCwPg7t279OrVC0dHR6ytrQkMDGTbtm269FevXqV79+7Y2Njg7u7OkCFDiI2NNVqOP//8k4YNG2Jra4uHhweDBg0iOjpa939Dwzaf9zWK6+Lu4/i3rE9AqwY4errSfEA3bBztuXrw9BPzWdpaY2Vvq3solfpNuUajYd8f62jwQjvsXBxLtMzrV62hS89udHuhB5W9qzD6vbdxdXNjywbDP2q2bvwLN3c3Rr/3NpW9q9DthR507tGNtStW69KEXL5CYK0g2nXugIenBw2aNKJtp/bcuHZDl+abGdPo3KMr3lV9qFq9GuM+GU90VDQ3r98w9LLPrVfNluy7dYa9N0/zICmGhcFbiUtLoot/E4Pp/Vy9iElLYNu140SnJnAt+i67bpyimnNFXZrU7AwSM1N1j9qevmTl5nDs7qUSKbMx5h1ak7l9DznnL6F5GEn64uUozMwwa1zfaB5tejra5BTdw7SGP2TnkH3mUfDM1BTTerXJWP8X6lu30cTEkrllJ5rYeMxbNy/V+jzJifArzDu5mYO3z5dZGYzp7N+EQ3fOc+j2eSJS4lhxbjfxGcm0r2b4OGTkZJGcmaZ7eDt5YmVmyZECPemaeddiS8hRLkaEEpOWyP7Qs1yOvE1XI+dpcW1Zs5H23TvRoUcXKlXxYsTbo3Bxc2HX5m0G07t5uPPqO2/QpksHrKytjO5XgQJHJ0e9R2k6tnUf9ds1o0H75rhW9KD7sH7YOTsSvPuwwfSePl7UbtEQNy9PHN2cqdOqMb61a3D3WqguzYUjp2jduzN+9QJxcnehcedW+NapwdGt+0qlDns2bKNF57a07NIOz8oVGTBqKI4uzhzctsdg+gGjhtKlXy+8/arhXtGTPsP+g1sFDy6ePKtLc3T3AdJSUhnz+Th8a/rj7OaKb2AAXlVL78bXtnWbaNu1I+26d6JiFS+GjnkNZzcX9vy1w2B6Vw93hr31Gq07tzN6Tt28eh2/oABadGiDq4c7tRvWo3m7Vty+YbznUXHt2bidFp0eHQ+vivQfNeSJx6P/qCEFjocHvYcNwK2CB5dO5R+PY4+Ox5ufvV/gePhTqZSOR9tq9TkZfoWT4VeITk1g45VDJGak0sK7lsH0Aa5V8HWpxLyTm7gRe4+EjBTCE6MIS4jQpWnoFcCem8GERIcRl57MsbBLXI++S1tf498/xTWgbke2hBzlr5Cj3E2I5Kcja4hOSaBPUBuD6bv6N2HTlcPsvXWGh8mx7L11mi0hR3mlXhe9NEvObOf43cs8TI5l45VDnAy/ysC6HUutHoVd2xdMtWa18W1eB3sPFxr264iVoy03Dp8zmP7h1dtE3bpHuzdfxjPAGxtne1y8K+BatdI/VuYXA1uy5+Zp9twM5n5SDPNPbSE2LYmu/k0NpvdzrUxMagJbQ44RnZpASPRddl0/ha9L/rWUv2tlrkXd5dCdC0SnJnD+4U0O376gl0aIf4oEz4QAHjx4QPfu3WnUqBEXLlxgzpw5zJ8/n//7v//TS7d48WKsra05efIk3333HV9//bUuaKXRaOjduzdWVlacPHmS33//nU8//dToa3p5ebFu3ToArl+/TkREBD/99NMzlVej0fDSSy+hUqk4ceIEc+fOZcKECU/N99FHH7F//342bNjArl27OHDgAGfOnNFLM2LECI4ePcrKlSu5ePEiL7/8Ml27duXmzZvPVLaIiAgCAwP54IMPiIiI4MMPP3ymfG+99RZZWVkcOnSIS5cuMW3aNN2Qz4iICNq0aUPdunU5ffo0O3bsICoqiv79+xvdX3Z2NpMnT+bChQts3LiRO3fu6IKTxsr9vK9RHOrcXGLDH1KpZjW97ZVqViMq9Ml3NddP/o2lH/7AlhmLeXjtTpH/n91yEEtbawJaluzFak5ODjev36B+44Z62+s3bkjI5SsG84RcvlIkfYMmDbl57bouOB1YpxY3r9/g+tW8HjYRDx4SfPwkjZsbDwikp6UBYGtn+O7r8zBRqqjmXIHzD/XP8QsPb+HvavhHy/XocJyt7Klf0Q8AewsbmlUJ4sz960Zfp0P1hhwNu0hWbk6xy2yM0sUJpb0duSEFypGrJvdmKCZVvZ95P2YtmpB9+hxkZz/asRKFSgU5+kMktDk5mPj6lEDJ/11USiXejp5cidT/fF6JvE01l2f7IdPapy5Xo+4QV6CXmqlSVWSYSrY6l+quJd/TKScnh9s3blGnof7wvdoN63H98rVi7TszI4M3/zOCN14extSJX3HnZujTM/1Nubm5RNy5R7XaNfS2+9auQfiNou2nIRF37nHvxm28a1bP329OLiampnrpTM1MCb9W8nXJzckl/NYdatbTH3pVs34tQkOe7QaCRqMhMyMT6wI9lS+ePEPVgOosn72QD18ZzVdjxrNt1UY06tLpqZKbk8OdG6HUblhXb3utBnW5cfXvn1P+QTW4cyOUW49uuEQ9jOT8qbPUa9LwKTn/nsfHo0Y9/SBTjXq1uH3t2a6VHh8PqwJTW1w4eZaqAdVZMWcRHw1+k6/HTGD76k2lcjxUCiWV7N24Hh2ut/16zF28HT0N5gn0qMq9xCja+zbky04jmdh+KC/UbIlpgR7WJkoVuRq1Xr4cdS5VnSqUeB0ev56/a2VOhYfobT91L8TgtAkApioTsgt9D2fl5lDT3RvVo5uRpioTstVF09T2NDzUu6Spc9XE34vEs4b+96tnDR9i7zwwmOf+pVs4V/bg6p6TrP/0VzZ/9Ttn1+8jN7v0rjkKyruWqljkWur8w5sEuBm+lroWfRdna3saVPQHHl1LeQdx+n5+exASHUY1l4pUf/Td6W7jRP1K/npp/s2UCkW5fPyvkmGbQgCzZ8/Gy8uLX375BYVCQUBAAA8fPmTChAl88cUXup49tWvX5ssvvwSgevXq/PLLL+zdu5dOnTqxa9cuQkNDOXDggG444DfffEOnTp0MvqZKpcLJKW+4iJub23PNebZnzx5CQkIICwujUqW8L5MpU6bQrVs3o3lSU1OZP38+S5Ys0ZVp8eLFuvyQN9xyxYoV3L9/nwoV8i50PvzwQ3bs2MHChQuZMmXKU8vm4eGBiYkJNjY2zzUsMjw8nL59+1KrVt7FaNWq+Rc9c+bMoX79+nqvv2DBAry8vLhx4wZ+fn5F9vfqq6/q/q5atSqzZs2icePGpKamGpyH7e+8RnFkpqaj1WixtNMfcmlpZ016cqrBPFb2trQa0gvXyp6oc9XcPHGBLT8uptcHw/H08wYg8lY414+cpe/nJT+ELTkxCY1aU6SXiKOjI/Fx8QbzJMQn4OhYKL2TI2q1mqTEJJxdnGnbsT1JCYl88OZYtFotarWann1eYMCQQQb3qdVq+W3WbAJr18K7avEDN7bmVqiUKpIy9N/3xMwUHCyrG8xzPSacmYdXM67NQExVJpgoVZwKv8r8k38ZTO/rUokqjh7MPra+2OV9EsWjYKImWX/IjSY5BeUz9u5ReVdGVdGT9KWr8jdmZZEbegeLHp1Ii4zK653WqD4q78pookuvd+Z/K1szK1RKJcmZ+udUUmYaQRZPnwfS3sKGWp7V+O3ERr3tlyNv08W/CTdiwolOTaCGuw/1KvqVyoVsSlIyGo0Gh0KfXwdHRxITzhrJ9XQVK1firY/fp7JPFTLS09m6bjOfvTOeH/6YhWelku9JkJ6cikajwcbeVm+7tb0tqYlFh88W9MOYz0hLTkWjVtOuX3catM/vZelbuwbHtu3Du4Yvju4u3L58nWunL6LRaEu8DqnJKWg0Guwc7PW22zrYk5zwbEOmd2/YSnZmFg1a5fcAiYmMJi7qKk3atuCdSeOJfhjJijmL0Kg19Bz0UonWASAlKa8e9o4OetvtHe1Jii86vO5ZNW/XipTEJL567xN49B3SsVdXXhjYt5glNkx3PBz1j4edoz3JZ5/teOzZsO3R8ci/SRQbFc31i1dp3LY5b08aT/SDSFbOXYRGrabHwJI9HtZmlqiUSr15pQBSsjKwsyg6FQSAs7UdPk4VyFGrWRi8BWszS/rVboeVmQUrz+f1uLsWHU7bqvUIjXtAXFoi1V0rE+RRtdR+bDtY2GCiVBGfof9ZTshIxtnK8M21U/eu0rNmSw7ducD1mHACXCvTo0ZzTFUmUDSnMgABAABJREFUOFjYEJeezMnwq/ynbkfOP7zFg6QYGlYKoJVPHZTKfyZokPXoGtHCVr+3pYWtNRnJaQbzpMYmEh16H6WJCa1f70NWWgbBq3aRlZ5Js8HdS73Mj6+lCg/5TcpIwdHS8DX09ZhwZhxayYdtB+mupU6GX2XeifzRDEfuXMTe3IYp3UajUCgwUarYfu046y8dLNX6CGGIBM+EAEJCQmjWrJnepIwtWrQgNTWV+/fvU7ly3rxRtWvr3/X19PTUDQW8fv06Xl5eegGjxo0bl1p5K1eurBf4atas2RPzhIaGkp2drZfOyckJf39/3fOzZ8+i1WqLBIqysrJwdnYuodIb9u677/Lmm2+ya9cuOnbsSN++fXXv95kzZ9i/f7/BoFdoaKjBwNa5c+eYNGkS58+fJz4+Hs2jOR/Cw8OpWbPohM7P+xpZWVlkFZo/ytzcnOelQP9CTPuE310OHi44eOTPpeJezYvUhGQu7DqGp5832ZlZ7J+/nlZDXjA4D1qJKXQRrEX75AlNC6fXPt6ct/3C2fOsXLKMtz4YS0BgDR7ef8Dcn37FceFSXhkxpMjufp0xizuht5k+Z1bx6lGIFv03v/CxKaiSvRsjG/dkzYV9nH94E0dLW4Y26MobzXobDJB18G3I3YRIbsXeL9Eymzauj9Wgl3XPUx9P7l/4RHqOHy5mzZugfhCBOky/R0L6wuVYDf0P9tMmoVWrUd97QE7wOVSVZeiEMYU/znnn1NODKy19apOek8nZB/o9GZef283wht2Z0m00WiA6NYEjdy4YXGigxBQ6dbRon/jZeBq/mgH41cyfVN0/qCbjR41l+/otvPruG397v09VpMhPabeAkZPeIzszi3s3w9i9YhNOHq7UbpHXm6n78H5s+n0Fs8ZNRqFQ4OjuQr22TTl34ETplB+K1kFrYJsBpw4cY8uy9Yz5fJxeAE6r0WLrYMfgd15DqVJSpXpVEuMT2LVua6kEz3QM1uPvn1NXz19i4/K1vPruG1QLqE7Uw0iW/PoH651X8dLgAcUq6pMU/f7WPtPxCD54jC3L1/OmsePx9qPj4etDUnwCu9ZvLfHgme41DbRHWiMXIkoUaIE/z+4gMzevV/LGK4cY3rAH6y7uJ0ejZsPlgwyo04GJ7Yeg1UJcehKn7l2lsVfpLaRhuMwKoy3twuBtOFnZ8XvfCaCAhPQUtl07zuD6XVA/2s9Ph1czod1glg+ahBYtD5Ni2HrtGD0C/ulpCgo3wFqjHxWtNq9NazG8F2aWedej6pfac3j+Rhr174SJmanhjKVNoTB4nkHetdTrTV5g1fm9nHt4A0dLW4Y37M6bzfrwy7G80TlBHlXpV6cdv53YxM2YcDzsXHitcS8Saqew+mLpDJMXwhgJnglB/hdO4W2gv8qJaaEhGgqFQheUMbSPv0upVBa5EMjJye92bejC5mmvbexiqCCNRoNKpeLMmTOoVCq9/xVn1czHPfcKlqFgfQBee+01unTpwtatW9m1axdTp05l+vTpvPPOO2g0Gnr16sW0adOK7NvTs+jwgrS0NDp37kznzp35888/cXV1JTw8nC5dupD9eBhaIc/7GlOnTuWrr77S2/bll19i286/SFpDLGysUCgVRXqZZaakYWX37O+1m08lbp28CEByTDwpcYns/HW57v+P3/N5o79iwNfvYOdWdHLsZ2XnYI9SpSShUC+zxIREo3MWOTo5khBfOH0CKpUKO/u8u8JL5i2kfZdOdHuhBwA+1aqSmZnJrGkzGDjsFb053WbPmMWJI8f44deZuLoVnVz670jJSketUeNgqd8zxd7ChsQMw70AX6rVhmvRd9l0JW/OpLsJkWTmZvNNtzdYfm633p1XM5UpLXxqs+q84blwiiPnwhVS7hQIcj2a9F9pb4e6QO8zpa0N2mTDE0DrMTXFrFFdMgzMP6SJjSN1xq9gZobCwhxtcgpWrw1BE2u41+H/spTsdNQaDfaFepnZWViRlGm410BBrXzqcCzsEupCEz2nZKXz89G1mChV2JhbkZiRwsu12xGblliSxQfA1t4OpVJJYqEeQUkJiUV6DhWHUqnEN6A6EQ+Mr/BXHFZ2NiiVSlIT9c//tKRUrAv1RivM8dHE7+6VK5KalML+tdt0wTNrO1sGfTiKnOwcMlLTsHW0Z/fyTTi4lfyNJhu7vLktC/cyS0lKKtIbrbDgQ8dZMut33vh4bJFhhvZODqhUKpSq/DbW06siyQmJj4alluzPBNtHc3QmxSfqbU9KTCrWObVm0XJadmxLu+55veorV/UmKzOTP36cTe9BLxeZF7S4Hh+PpIREve0piclPPR6nDx1nyax5jPr4XWrU1V+11tDx8PCqUCrHIy07A7VGg525/o02W3PLIr3RHkvOSiMpM1UXOAOISolHqVBgb2lLbFoiadkZLAjegolShbWZBUmZafSs0cLgIiklITEzlVyNGmcr/ffd0dLW6Gtmq3OYum8p3x1YhpOlHXHpSbxQsxVp2Rm6HuiJmalM3D4XM5UJdhY2xKYl8mazPkSk/DM9rc0fXSNmpuh/X2Smphu9OWppZ4OlvY0ucAZg7+EMWkhPTCnW9d+z+DvXUv1qtyUkOoyNVw4BeddSv53YyNTub7Ls3C4SMlIYVK8TB0LPsudmcF6axCgsTEwZ0/wl1lzcbzQw929RnJtVouTJnGdCADVr1uTYsWN6wZ1jx45ha2tLxYrP1qsiICCA8PBwoqLyVzwLDg5+Yp7Hq4up1frzQ7i6uhIRkT8Ba3JyMnfu5M/NUrNmTcLDw3n4MP/HxvHjx5/4Wr6+vpiamnLiRP5d8YSEBG7cyJ8vpV69eqjVaqKjo/H19dV7FGdlSlfXvCBHwToVnKj/MS8vL0aPHs369ev54IMPmDdvHgD169fnypUreHt7FymXtXXRi4hr164RGxvLt99+S6tWrQgICNBbLMCQ532NiRMnkpSUpPeYOHHiM78nKhMTXCpX4MFV/flx7oeE4l7t2ecvirsXgZV93g90Bw8X+n35Jn0/H617VKntTwV/H/p+Ptro6kzPytTUlOr+fpwL1p8n71zwGWoEBRrMUyMosEj6s6dOUz3AHxOTvB8CWVmZRX7cPA4gP/5MarVafp3+E0cPHmbarOl4VDA8J8vfkatRExr3kDqF5jKpXcGX6zF3DeYxNzEtEpDWaPMCHYUvc1p418JUpeLgbcOT/BZLVhaamNj8R0QUmqRkTGoU6CmpUmFSvRq5t8OeujuzhnXBxISck2eMJ8rORpucgsLKEtOaAeRcKN3VQ/8bqTUawhIiCPTQH1Zc092H0Kf0PvR3rYy7rROHCywUUFiuRk1iRgoqhZIGlQI496BkFs4oyNTUlKp+vlw8fV5v+8Uz5/EPCjCc6W/QarWE3bpTaosGmJiY4OnjRegl/flxQi9do7Lfcwz71mpRF5rzD/LmObNzckCj1nD11HkCGtQ2kLl4TExNqOzrQ8g5/cVGQs5dploN41MKnDpwjMU/zuW1j96iVuN6Rf5fraYfMRFRupuAAFEPIrB3cijxwBmAiakpPn7VuHTmvN72y2fO6/VGfF5ZWVlFhtPlfYfw5O7cf5PueJzXb/tCzl+iaoDhof6Q1+Ns8czfGPnhW9RqZOB41PAjusjxiCyV46HWarifFI2fq/6K3H6ulfUWACjoTnwE9ubWmKnybyS72Tii0WpIKjRUL1ejJikzDaVCSe0KvlyKvF2i5S/4OtdjwmnkpT+nYSOvGlx+ymuqNRpi0hLRaLV0rN6Qo2GXigRistW5xKYlolIqaVut3hPb5ZKkMlHh5OVBxLUwve0R18Jw8TH8u8S1akUyklLJycoPbiZHJ6BQKLByePKNgpKQdy31gLoV9K+l6lbw5Vq0kWsplZmBayltoTSGrrfyut3+D0+9JcqIBM/E/5SkpCTOnz+v9wgPD2fMmDHcu3ePd955h2vXrrFp0ya+/PJLxo0b98x3LDt16kS1atUYNmwYFy9e5OjRo7oFA4z1CqtSpQoKhYItW7YQExNDamrenZn27duzdOlSDh8+zOXLlxk2bJheT7COHTvi7+/P0KFDuXDhAocPH37i4gSQ13Ns5MiRfPTRR+zdu5fLly8zfPhwvfr5+fnxyiuvMHToUNavX8+dO3cIDg5m2rT/Z+++w6OovgaOfze99046CQkJvffeuyJSRRBFlCogCCqCqFgAQTpI70V6772F3kIJEBIghfTe9/0jsmFJlmISE9/f+fjs87iz986em11mZs/c8ovaypdvy8vLCxcXFyZOnMjdu3fZtWtXvpU+R4wYwb59+3j48CGXLl3i8OHDlC+fezE0ePBgYmJi6NmzJ+fPn+fBgwfs37+fjz76KF/iEcDV1RU9PT1mzZrFgwcP2L59O5MnT35ljG/7Hvr6+piZmak93nbYZqWWdbl98hK3T14iNuwZp9fvJSkmnvKNc3s2nN98kCNL8oYAXj94huDLgcRHRBPzNJLzmw/y8FIg/k1zhwfr6OpiVcZe7aFvZICuvh5WZezR1in8xfe73buxd8du9u3cQ0jwIxbMnENkRATt3+kIwJJ5i/ht8hRV+fZdOhIRHsGCP+YSEvyIfTv3sG/nHt7rmbcQQ+36ddm1ZTtHDx4m/GkYl85fYMWipdRpUE/1vZ8zbSaH9x9k7MRvMDQyIiY6hpjomHxDZ/+pHbdO0ty7Bs28qlPG3JZ+NdthY2zO/jvnAehdrRVDG7ynKn8h9Da13fxp7VMbexNLfGxdGVCrI3ef5a5A9qJm3jU4HxJIUnpqkcT6OumHjmPQpgW6VSqi5eSA0Yc9UWZkkPHCqm5G/Xpi0KV9vrp69WqTeeUGyuT8PQ90/HzQ8fNFy9oKnfLlMPnic7IjIsk4fb5Y2/Mqhrr6eNs4qyYSdjKzwdvGGXuT4l298U3sv3OORh5VaOhRGUdTa3pUaYG1kTlH7ud+Du9VbMLHtTvmq9fIswr3o5/wJP5Zvtc8rZyoXsYHW2MLvG1cGNm4BwqFgt23X33z5J/q0K0Lh3bv5/Du/Tx+FMqyOYuIinhGq4658+esXrSMWT+pH8sfBj3gYdAD0lLTSIiL52HQA0JfGAK8cfkarpy/SMTTcB4GPWDerzMJDnpAy06a5+wsrHrtm3Hp8GkuHTnDsyfh7Fn+F/FRMdRs0RCAA2u38decFary5/Yd4/bF60SHRRIdFsmlo2c4tfMQlRrWVJUJvRfMrfNXiImIIjgwiBVT5qBUKmnQqXhW42vxTjtO7j/Cqf1HCQt5woaFK4l5FkWjds0B2LJsHUunzVWVP3/0NEunz+O9AX3w8PEmPiaO+Jg4Ul/4t924XUuSEpNYv2AFEU/CuH7+Mns2bKNJ+1bF0gaAdl07c2TPQY7uOciTR6GsnLuYqMgomnfMXelw3Z8rmfvzDLU6wUEPCA56QFpaGglxCQQHPeDxo7yFdarVqcnBHXs5feQEkWERXL94hY3L1lC9bk20XupFX1RadGnLqeefR+gTNixaSeyz6Jc+j3mq8gHHTrN0+ny6DuiNh68X8bFxxMeqfx6N2rUgOTGJDQtX5n4eAZfZu3EbjdsXPHduYR29f4k6bv7UcvHDzsSSLv6NsDQ05XRwbpK2ffl69Kqa9124+PgOyZlp9KzaEnsTKzytnOjo14BzIbfI/HuRAFcLeyo6lsXayAxPKyc+rdMFLRQcDnr1KuKFsf7KQTr61ad9+Xq4WTowrH437E0t2fJ3b6ZBdbrwTfN+qvIu5na0KlcLZ3M7ytu5M6nVADytnVhwdpuqjJ+9O409q+BkZkNlRy+mdxyGAgWrL+0vtna8zLdZTe6fvsr9M9eID4/i4l+HSIlJwLthFQAubzvG6RU7VeXda/qhb2zI2VW7iQ+LIiIolMtbjuBZt+K/NmRz282TtPCuSXOvGjib2/JRzQ7YGFuw7845APpUa83wBnnXfwGPA6njVoE2PrWxN7HC186Nj2t35O6zENW1VMDj27TxqUMDj0rYmVhS2dGLXlVbEhB6K1+iTYjiJsM2xf+Uo0ePUrWq+t2+Dz/8kGXLlrF7926+/PJLKleujJWVFQMGDOCbb755431ra2uzdetWPv74Y2rWrImnpye//fYbHTt2xMDAoMA6ZcqUYdKkSXz11Vf079+fvn37smzZMsaNG8eDBw/o0KED5ubmTJ48Wa3nmZaWFlu2bGHAgAHUqlULd3d3/vjjD9q0afPKGH/77TeSkpLo1KkTpqamjBo1ivh49WEgS5cu5YcffmDUqFE8efIEa2tr6tatS7t2/3yyUV1dXdauXctnn31G5cqVqVmzJj/88APduuXN1ZSdnc3gwYN5/PgxZmZmtGnTht9//x0AJycnTp06xdixY2ndujXp6em4ubnRpk2bApObtra2LFu2jPHjx/PHH39QrVo1pk6dSqdOnTTG+LbvURTK1qxAWnIKl3YdIyU+CSsnO9oO7Y2ptQUAKfGJJMXkfT7ZWdmc3bSf5LhEdHR1sHSyo83QXrhWLNrFDF6lcYumJCQksHrpCmKjY3DzdGfy1CnY/90zMSY6hsiIvF5+Dk6OTJ46hQV/zGHn5m1Y2Vjz2YghNGjaSFWm14cfoFAoWL5wCdHPojC3tKB2/br0GzhAVWbnltzJY8cM+UItnpHjx9Cq/au/92/idPB1TPWN6Fa5GZaGpoTERfDToeU8+3s4nKWhKTbGFqryR+5fwkBXn7a+dfiwRluSM9K4HnafVZf2qe3X0cwaP3t3Ju1fUugY31T6/sMo9HQx7NkVhZEh2Q9DSPpjAbyQaNSysszXI0PLzhYdb0+SZs4vcL8KQwMMurRHy8ICZUoKmZevkbp1N+QU/Upwb8rX1o3Z74xUPR/WIPeYsjvwDD8eXl5SYQG5q70Z6xvRyb8B5gYmPIl/xu8n1qlWzzQ3NMk31MhQV5/qzr6suVzwDzRdbR3eqdgYOxNL0rIyuBYWxKKz20nNLJok8svqN2tEUkIim1asIzYmBhd3N8b/PBFbBzsAYqNjiYpUT/KN+WSY6v8f3A3i5KFj2NrbMXdd7r+B5KRkFkyfTVxMLEbGxnh4eTJp5s94l3+zIe//RMV61UlNSuboX3tIjEvAzsWRPl99joVt7jCmxNgE4l8YfqxUKjm4djuxz6LR0tLCyt6Glj07U6NFfVWZrMxMDq3fSWxkFHoG+nhX8afr4L4YGhvle/+iULNRXZITkti1djPxMXE4uTkzZNIYrP8evh4fE0fMs2hV+RN7D5GTnc3aeUtZO2+panvd5o3oNzJ3QRkrW2uGT/6KjYtW8f3gr7CwtqRZpza0eU/zubKw6jZtQFJCAptXrScuJhZnd1fG/PQttva536m4mBiiX/pOjR+U92/84d37nD58HBt7W/5Ynds7/Z0+76NQKNi4dDUxUTGYmZtRrW5N3v+od7G1o0ajuiQlJrFr3RYSnn8eE7/M+zxi1T+P43sOk5Odzbp5y1g3b5lqe53mDen3xQufx/dfsfHPlUweMk71ebTumj/JXhSuPL2HsZ4hrX1qY6ZvRFhiNAvPblMlLcz0jbF8YQheRnYm889s4d2KTRjZqAfJmWlceXqPPYGnVWV0tXVo51sXayNz0rMyCYwMZvWlfWpDPYvaoaCLmBmY0L9Ge6yNzXgQ/ZTRO2YTkZj7b9rayBx707whi1paWvSs0gJXCweycrK59OQOg/76jfDEvM9LT1uXT2p3xsnMhtTMdM48usHkA0tJyvh3boIBuFcvT0ZyKtf3nCI1IRkLRxuafN4NE6vc80ZaQhLJMS+sxqyvR7Mh3bmw8QB7fl2OvrEhrtV8qdyh4b8W86nga5jpG9G9SvPca6nYcCYfXKa6lrIyMsPWxEJV/nDQRQx19GnnW4/+NduTnJHGtbD7rLi4R1Vmw9XDKJVKeldthZWROQlpyQSEBrL68j7+F/wvr2xZGimUbzIRkhDiHzl16hQNGjQgKCiIsmXLlnQ44gV37tzB19eXe/fu4eVVdEuPTzu2tsj2VVJGNe7Jw6iCl0L/L/GwKUPX5eNLOoxC+evDn4h74Yfjf5XF/OnUn1P0K8D+m04Nnk//9T+WdBiFtrT711x7eq+kwyi0Sk7erL98oKTDKJTuVVtyNOgVQ6T/I5p4VediaGBJh1Eo1V3Kc+Re8fWO+rc09a7BF9tnlnQYhfZ7p+H/L84Z3x/4926cFZcJLT+iy7KvSjqMQtna7+eSDuEfK63nue5Vi6dHbGknPc+EKEJbtmzBxMQEb29vgoKCGD58OPXr15fEWSkTExPDpk2bMDMzw8XlzecXE0IIIYQQQgjxv0eSZ0IUocTERMaMGUNoaCg2Nja0aNEi39xeouQNGDCAixcvMm/evLeep0wIIYQQQgghipumebNFyZDkmRBFqG/fvvTt27ekwxCvsWXLlpIOQQghhBBCCCHEf4SstimEEEIIIYQQQgghhAbS80wIIYQQQgghhBCiFJFhm6WL9DwTQgghhBBCCCGEEEIDSZ4JIYQQQgghhBBCCKGBDNsUQgghhBBCCCGEKEW0kGGbpYn0PBNCCCGEEEIIIYQQQgNJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoRRQK6etUmsinIYQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKaClktc3SRHqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiChm2WapIzzMhhBBCCCGEEEIIITSQ5JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIUkSBDNssTRRKpVJZ0kEIIYQQQgghhBBCiFzbb5wo6RAK1KlCw5IOoURIzzMhhChCY3fNLekQCu2X9p9zM+x+SYdRaP6OZWk09/OSDqNQjn8+l7gBQ0s6jEKzWDyL/ut/LOkwCmVp96+pP2dQSYdRaKcGzyciIaqkwyg0ezMblgXsKukwCqVfzfaM3jGrpMMotKkdhzLt2NqSDqNQRjXuydSjq0s6jEIb3aQ3H66bXNJhFNryHt/y3oqvSzqMQtnU90e6LPuqpMMotK39fqb5gmElHUahHPr0j5IOQfw/IckzIYQQQgghhBBCiFJES1bbLFVkwQAhhBBCCCGEEEIIITSQ5JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIUkQhwzZLFel5JoQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKyLDN0kV6ngkhhBBCCCGEEEIIoYEkz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIlrIsM3SRHqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQistpm6SI9z4QQQgghhBBCCCGE0ECSZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCFKES0ZtlmqSM8zIYQQQgghhBBCCCE0kOSZ+EciIiL4/vvviY2NLelQhBBCCCGEEEIIIYqNJM/EW1MqlXzwwQfo6+tjaWn5VnXd3d2ZMWNG8QRWSAqFgq1bt75VnSZNmjBixIhiiee/6oMPPuCnn34q6TAKZfTo0QwbNqykwxBCCCGEEEL8j1IoFKXy8b9K5jz7F/Tr14/ly5cDoKOjg4uLC++++y6TJk3C2Ni4hKN7e1OmTMHT05OxY8e+dd2AgID/ZJvFm7l27Rq7du1i7ty5qm1NmjTh2LFjTJkyha+++kqtfLt27dizZw/fffcd/fr1w8PD45X7/+6775g4cSIAy5cvZ86cOdy8eRMtLS2qVq3KmDFj6NChAwBJSUlYWlqyatUqunfvrtpH9+7d2bBhA0FBQZQtW1a1vWzZsnTv3p2ffvqJMWPGULZsWb744ovXxlRYddz8aexZFVN9IyKSYthx8xTBsWEay2tradHCuyZVncphqm9EfFoSh4MucuHxbVUZAx09WvvUpoKDJ4a6+sSmJrLz1inuPAspljbs2bqTbev+IjY6BhcPNz4aMhC/ShUKLBsTHcPyuYu4fzeIsMdPafduJwYM/VTjvk8eOsb0yb9Qq34dvvpxQrHE/1wX/0b0rNoCKyNzgmPCmHVqI9fC7mss/06FRrxbsQkOplZEJMay8tJe9t05p1amW6WmdPZvhL2pJfFpyRy9f4mFZ7eRkZ1VrG0x6NQWvcb1URgZkv3gESmrN5DzNPyVdfRbNEGvaQO0rCxRJiWTceEKaX9th6zcWPXbtUS3WmW0He1RZmSSff8hqRu3kRMRWeTxN/WqTlufOlgYmvAk/hlrLh/gXlRogWUH1OpAA4/K+bY/iX/GN3sXAqCt0KJ9+XrU96iEpaEpYYnRbLx6mBvhD4o89rdV2dGLXlVb4Wvnio2xBV/tnseJh1dLLJ4tGzezdtUaYqKicff0YOjIYVSuWkVj+SsXLzN7xiyCHzzE2saGXn170bnrO6rXd2zZzr7de3hw/yEAPr4+fDL4U/z8/VRllixczLJFS9T2a2VlxdZ9O4qsXRcPnOLc7iMkxSVgW8aBFn264OLr+dp6j+8+ZNUPc7B1dmDAT6NV2+8EXOP09oPERkSRk52Dpb0Ntdo1oWKDGkUW88vquVWkiVdVTPWNiUiMYdvNEzyMeaqxvLaWFi3L1aJ6GR9M9Y2JS0vi0L0AAkIDVWUaelSmrntFLA1NSc5I5VpYELsDz5CVk11s7bh59DzX9p0mJT4RSyc76nZvg6O3W4Fln955yM5py/Ntf3/SYCwcbfNtDzp/ncN//oVbZR9aD+5Z5LG/6NbRAK7uP0Pq3+2o836rV7QjmF3TV+Tb3m3S51g42ABw9/QVji3fnq9M/9nj0dEtnp9szbyq0863LuaGpjyNf8bqy/u4+6zgY+3HtTvRUMOxdvye+UDusbaDX30aeFTCwtCM8IRoNlw9xPVwzefSotDapzad/BpgaWRKaFwkywJ2ERj5SGP5hh6V6ezfEEcza1Iy0rn89C4rLu4hKT1VVcZI14BeVVtS29UfY30DIhNjWX5xD5ef3C2WNrT1qUOXCo1y2xAbweLzO7kVGayxfCPPKrxToTFOZtYkZ6Rx+cldll3YTWJ6iqpMR7/6tPGpg42xBYnpyZwOvsHKS3vJLMZrkE5+DXi/cnOsjcwIjg1n7um/uP6Kc21n/4Z09m+Ig6kVkUmxrL60nwP3AlSvty5XizFN++Sr1+bPkcXaDiEKIsmzf0mbNm1YunQpmZmZnDhxgo8//pjk5GTmzZtX0qG9tfHjx//jura2+S90xP8fs2fPplu3bpiamqptd3FxYenSpWrJs6dPn3L48GEcHR1VZcLC8pJGU6dOZe/evRw8eFC1zcTEBMjtGTZ79mx++OEHunTpQmZmJqtWraJz587MnDmTIUOGYGJiQo0aNThy5Iha8uzYsWO4uLhw5MgRVfLs8ePHPHjwgKZNmwJgZ2dHq1atmD9/Pr/88ksR/5XyVHL0oqNfA7beOM6j2HBqu/rxUa0OTD+2lri0pALr9K7aGlN9QzZdO0J0SjzGeoZoa+V1ItZWaPFx7U4kZaSy6tI+4tOSsDAwIT0rs1jacPLwMZbOXsgnIz6nfEU/9m3fww9jJjBz+Xxs7e3ylc/KyMTMwpyufXqwc+OWV+47MjyCZfP+xK+Sf7HE/qJmXtUZ2uA9ph9fx43wB3Tya8CvHQbTd+1kIpPyD0/v7N+QgXU689vRNQRGBlPezp0xTXqTmJbC6UfXAWjpXZOBdbrwy5GV3Ah/gIuFPeOafQDA7FN/FVtb9Nu2QL9VU1KWrCY7IhKDDq0xGTWEhK8nQ1p6gXV0a9fA4L1OpCxdTXbQQ7Qc7DD6KPdiNW39ZgB0ynmRceQEWQ8fgZY2hu92wGTUYBK++REyMoos/lou5elVpSUrL+3l3rNQmnhVY2SjHny9dwExKQn5yq+5fICN146onmsrtPi+9cdqCYJ3KzamrltFll3YRVhCNBUcPBla/z1+PLSckLiIIov9nzDU1Sco+jG7b5/mp7aDSjSWQ/sPMmv6TEaOHUWFypXYvnkrY4aPZsWGVdg7OOQr//TJU8aMGE2HLh355vsJ3Lh6jem/TMPc0oImzXKPp5cvXqJ5q5YMr1QBPX191q5YzeghX7B8/Sps7fKuCTw8PZg+Z6bqubZ20Q2OuHX2MgdXbaV1v644l/Pg8uHTrP9tIZ/8MhZzG8096NNSUtkxfw3u/t4kxyeqvWZgbES9Ti2wdrJHW0eboMu32LVwHcZmJnhW8i2y2J+r7ORNpwoN2Xz9KMExYdRxq8DHtTvy29HVxKUWfL74oHpbTPWN2HD1MFHJcZjoG6lNPl21TDnala/HhquHCI4Jw9bEgu5VWgCw/ebJIm8DwP2AG5xZv5cGvdpj7+VK4PEL7PljFe9PHIyJtYXGeu9PHoKegb7quYFp/huxidFxnNu0Hwdv1+IIXc39gJuc2bCP+r3aYV/WhdvHL7F31hq6TfwcEytzjfW6fT/4pXYYqb2ua6DP+98PVttWXImzWi5+9K7amhUXd3M36jFNy1ZjVKNejNszr8Bj7epL+9h49ZDquZZCix/aDOR86C3Vtq6VmlLPrQJLAnYRlhBFRceyDGvQjckHlxES9+obOP9UPfeK9KvRjj/P7eD2s0e09K7J+OYf8sX2mUQlx+cr72vnxpD677H8wm4uPL6NlZEZA2t35rO67/Lb0dUA6GhpM6Flf+LTkpl6bA3RKQnYGJuTmlnwObSw6rtX4qNaHVhwdhu3I4Np7VObb1v2Z+jW6QW2obydG8MbvM+SgJ0EhAZibWTGoLrvMLheV34+shLITa59UL0Ns09u4vazEJzMbBjWoBsASwJ2Fks7mpStyuf13uWPkxu5Ef6ADn71mdLuMz7a8FOB11Id/RowoFZHph9fy53IEHzt3BjZqAdJGamceXRDVS4pPZV+639QqyuJM1ESZNjmv0RfXx8HBwdcXFzo1asXvXv3Vg0RVCqV/Prrr3h6emJoaEjlypXZtGmTqm5sbCy9e/fG1tYWQ0NDvL29Wbp0qer169ev06xZMwwNDbG2tmbgwIEkJRV8IQVw9OhRFAoF+/bto2rVqhgaGtKsWTMiIyPZs2cP5cuXx8zMjJ49e5KSknf3Yu/evTRo0AALCwusra3p0KED9+/n3UlasWIFJiYm3Lt3T7Vt6NChlCtXjuTkZCD/sE2FQsGCBQvo0KEDRkZGlC9fnjNnzhAUFESTJk0wNjambt26au8DMG/ePMqWLYuenh4+Pj6sXLnylX//gIAAWrZsiY2NDebm5jRu3JhLly69ss7LkpOT6du3LyYmJjg6OjJt2rR8ZTIyMhgzZgxlypTB2NiY2rVrc/ToUdXrjx49omPHjlhaWmJsbIy/vz+7d+8G8j6XXbt2UblyZQwMDKhduzbXr19Xe4/Tp0/TqFEjDA0NcXFxYdiwYaq/L0BYWBjt27fH0NAQDw8P1qxZo/Z3Dw4ORqFQcOXKFVWduLg4FAqFWqy3bt2iXbt2mJiYYG9vzwcffEBUVJTGv09OTg4bN26kU6dO+V7r0KED0dHRnDp1SrVt2bJltGrVCju73ASLtrY2Dg4OqoeJiQk6Ojr5tp09e5Zp06bx22+/MXr0aLy8vChfvjw//vgjI0aMYOTIkYSG5t41bdq0qVqbAgMDSU1N5fPPP1fbfuTIEXR1dalfv75qW6dOnVi7dq3G9haFhh6VCQgNJCA0kMikWHbcOkV8WhJ13ArutVXO1gVPayeWBOwiKPoxsamJPI6P5FFs3gVpDZfyGOnqs+LCHh7FhhOXmkRwbDhhidHF0oYdG7fQvF0rWnZog7ObKwOGfoq1nS37tu0qsLydoz0Dhg6iaevmGL2iF2p2djYzfviNHv37YP93grU4vV+5GbsCT7Mr8DSPYsOZdWoTz5Li6FKhUYHlW/vUZvvNkxwOukhYQjSHgy6yK/A0vaq1VJXxd/DgRvh9Dt67QHhiDAGhgRy6dwEf24J7JhQV/RZNSNu1n8xLV8l5EkbK4lUo9HTRq625R4xOWQ+ygh6Qee4iOdExZN28Tca5i+i45/0ITZ4xj4xT58h5Gk7O4yekLFmNlrUV2u4uRRp/K5/aHH94heMPrhCWGM3ayweISU2gWdlqBZZPzUwnIS1Z9XC3csRIz5CTL/TequtekZ2Bp7gWdp9nyXEcuX+JG+EPaONTu0hj/yfOhtxk0bntHHtwpaRDYcOa9bTv3IEOXTrh7uHOsFEjsLW3Y+umghPd2zZvxc7BnmGjRuDu4U6HLp1o16k961flHTsn/DCRd7q9i7dPOdzc3fjy67HkKHO4GHBBbV/a2tpY21irHhZvOS3Eq5zfc4zKTWpTpWkdbMrY0/KDdzCztuDyoVOvrLd3yUb86lajjFf+f7Nufl741KyETRl7LO1tqNmmEXYujoTeeVhkcb+osWcVzofc4nzILSKTYtl+8wRxqUnUdatYYHkfW1fKWpfhz3PbuRcVSmxqIqFxEWrnC3dLR4Jjwrj85C6xqYncfRbKlSf3cDa3L5Y2AFw7cAafBtXwbVgdS0db6nVvi4mlObeOXXhlPUNTY4zMTVUPLS31nzA5OTkc/vMvqndqitkrEqJF5frBM/jUr4pvg2pYOtpSt3vrt2iHierxcjsUCtReNzI3KbY2tPGtw/EHlzn24AphCVGsubyfmJQEmnsVfK5IzUwnPi1Z9fCwcsJIz5ATD/KOtfXcK7Lj1imuhQXxLDmOw0EXuR7+gLa+dYqtHR3L1+dw0EUOBV3gSfwzll3YTXRyPK3KFXx8L2fjwrPkWHbfPkNkUiy3Ix9x4N55ylo7qco086qOib4hvx5ZxZ1nIUQlx3E78pHav5+i1Nm/AQfvXeDgvQAexz9j8fmdRCXH08an4L9bOVtXniXFsivwNJFJsQRGPmL/nfN42ZRRlfGxdeV2xCOOP7xKZFIsV57e48SDq2plitp7FZuy5/ZZdt8+Q0hcBHNPbyYyKZaOfg0KLN/SuyY7A09x9P5lwhKjOXL/EnvunKV75eYvlVQSm5qo9vhfoSil//2vkuRZCTE0NCQzM7cnyDfffMPSpUuZN28eN2/e5IsvvqBPnz4cO3YMgG+//ZZbt26xZ88eAgMDmTdvHjY2uV28U1JSaNOmDZaWlgQEBLBx40YOHjzIkCFDXhvDxIkTmT17NqdPnyY0NJT333+fGTNmsGbNGnbt2sWBAweYNWuWqnxiYiJffPEFAQEBHDx4EKVSyTvvvENOTg4Affv2pV27dvTu3ZusrCz27t3LggULWL169SuHak6ePJm+ffty5coVfH196dWrF59++injxo3jwoXci5AX27NlyxaGDx/OqFGjuHHjBp9++in9+/fnyJEjmt6CxMREPvzwQ06cOMHZs2fx9vamXbt2JCa++cH3yy+/5MiRI2zZsoX9+/dz9OhRLl68qFamf//+nDp1inXr1nHt2jW6detGmzZtVAnFwYMHk56ezvHjx7l+/Tq//PKLqjfVi+8zdepUAgICsLOzo1OnTqrvyvXr12ndujXvvvsu165dY/369Zw8eVLt79O3b1+ePn3K0aNH+euvv1i4cCGRkW83rCosLIzGjRtTpUoVLly4wN69e4mIiOD999/XWOfatWvExcVRo0b+iy49PT169+6tlvRdtmwZH3300VvFBbB27VpMTEz49NP8Q/1GjRpFZmYmf/2V26unadOm3LlzR9Wj7ciRIzRs2JBmzZrlS57Vrl0bI6O8O8C1atUiNDSUR480d/svDG2FFmXMbbn30vCIu89CcbMs+IeLn70Hj+MjaexZlfHN+zK6cS/al6+Hjpb2C2XceRQXQZcKDfmmRT++aNSdpmWrFcuJLjMzk/t3gqhcUz2pUaVmVW7fDNRQ681sXLEWMwtzWrRvXaj9vAkdLW3K2bqq9VQCCAgNpIJ9wcO6dLV0yMhW782Xnp1JeTt3VU/Aa2H3KWfrSnm73B/ejmbW1HGrwNkX7qYWNS0ba7QszMm6mTeMl6wssu4EoVNW8xDkrKD76Li5oO3hptqPbkU/Mq/d1FhHYWQAgDI5RWOZt6WtpYW7pSM3w9UTEDfDH1DWxvmN9tHIowq3Ih4S/ULPCV0t7Xx3qTOys/C2LdrE339ZZmYmd2/foWbtWmrba9auxY1rBX9nb16/ka98rTq1uX3rNllZBfcKSE9LIysrCzMzM7Xtj0Mf807bTrzf+T0mjp/A08dPCtGaPNlZWYQ/fIxHhXJq2z0q+PD4XrDGeteOnSc2IpqG77Z67XsolUqCb9wlJvwZrm8wFPRt5Z4v7Lj70tD7u89CcLcq+OaCv4MHoXGRNC1bnW9b9Gds0z508Kuvdr54GPMUZws7XCxyzzlWRmb42rkR+IqhYoWRnZVFVMhTnP3Kqm139itLxP2Chwo+t3nyAlaOnsrO6ct5ejt/gvLSzmMYmhrj26DgJHtRys7KJiokjDIvtaOMn+fr2/HDQlZ9OZ1d01fwtIBEa2Z6BmvHzWTN2N/ZO3stUSGap3EojOfH2peHrt8Iv4/Xmx5rPatwK+IB0Sl5PaN0tbTJzFH/t5+ZnVlsx1odLW08rZ24+jRIbfvVsCB8bAvugXjnWQjWRuZULZN7TDA3MKaOawUuPc4bjlnD2Ze7z0L5uHYn/uw2jukdh/FuhcZqPTeLsg1lrctw5ek9te1Xnt7D167gm223Ix9hbWxO9TI+f7fBhLruFdSm8AiMDKasTRm8//487U2sqObso1amqNtRztYl3/4vPr6Nv33B1x+62jpkvDQyIj0rE187N7VRFYa6+qzpNZF1vb/nxzYD8bJ+s++oEEVNhm2WgPPnz7NmzRqaN29OcnIy06dP5/Dhw9StWxcAT09PTp48yYIFC2jcuDEhISFUrVpVlZRwd3dX7Wv16tWkpqayYsUKVYJq9uzZdOzYkV9++QV7e813D3/44QdVT5sBAwYwbtw47t+/j6dn7oXfe++9x5EjR1Rzm3Xr1k2t/pIlS3BwcODWrVtUqJDbU2bBggVUqlSJYcOGsXnzZr777jtq1qz5yr9H//79VUmZsWPHUrduXb799ltat8790Tx8+HD69++vKj916lT69evH559/DsDIkSM5e/YsU6dOVQ27e1mzZs3Uni9YsABLS0uOHTummiPrVZKSkli8eDErVqygZcvcniXLly/H2Tnv4H3//n3Wrl3L48ePcXLKvXs1evRo9u7dy9KlS/npp58ICQmha9euVKyYe6f4+d/6Rd99912+99iyZQvvv/8+v/32G7169VItUuDt7c0ff/xB48aNmTdvHsHBwRw8eJCAgADV9+XPP//E29v7tW180bx586hWrZraxP9LlizBxcWFu3fvUq5cuXx1goOD0dbWVvUke9mAAQNo0KABM2fO5OLFi8THx9O+fXvVHGZv6u7du6pehy9zcnLC3Nycu3dzL4Dq16+Prq4uR48epWfPnhw9epTGjRtTrVo14uPjuXfvHt7e3hw9epQ+fdTnUyhTpoyqXW5u+S9e0tPTSU9X776vr6+fr5wmRnoGaGtpkZSRqrY9KT0FU/2CLzKtDM1wt3QkKzubFRf2YqxnQJcKjTDU1WfT38PWrIzMKGtoypWn91h6fhc2xuZ0rtAILYUWh4JefUf8bSXGJ5CTk4OFpYXadnNLS+Ji/vlKvIHXb3Jw1z6m/zm7kBG+GXMDE3S0tPPdyYxJScDKxazAOudDb9GhfH1OPLzK3Weh+Ni60s63LrraOlgYmBCdksDhoItYGJoy+51RKFCgo63NlhvHWX15f7G1RWGeG29OgvqQm5yERLSsrTTWyzx/iVQTE0y+GgEoUOhok37kBOl7DmisY9j9XbLu3ifnSdH9uDPVM0JbS4uEl4Ytx6clU8Hg9T0wzA1MqOhYlgVnt6ptvxH+gNY+tbn7LITIpFjK23tQtUy5Yvkh9F8VHxdHdnY2llbq3xMra0tiogvuuRoTHYOVtXovH0srK7Kzs4mLi1Pd6HvR/NnzsbW1pXqtvBstfv5+jJ/0DS6ursRGx7BiyXI+HzCI5etXYW6heQjcm0hJTEaZk4Oxufp0AsbmpiTHFXwDLSb8GUfW76TPt0PQ0tYusAzkDuucPXQS2VlZKLS0aN2vKx4VfQoVb0GeD89/cS4jgMT0VEz1jQqsY2VkjoeVI1k5WSy7sBtjPQPerdgEI10DNvw99O7K03sY6xkyuH5XFIC2ljang69xJOhigfssrLSkFJQ5SgzN1G+oGpoZk5JQ8IgJI3NTGn7QEVtXR7Kzsrl39io7f19Ox1H9cCznDkB4UAh3Tl6i67f/zrDn5+0werkdpsakJiQXWMfI3ISGfTpg4+ZIdmYW985dZ9fvK+kw8kMcy+VeY5g72ND4w85YlbEjIy2dm4fPs/3XpXT99lPM7a2LtA3Pj7XxaerxxqcnY/6Gx9pKjl7MP6PeK/V6+APa+NThTmQIkUkx+Nl7ULWMT7Eda031jdDW0ib+5XNGahIWTgW3486zEGae2MDIRj3Q1dZBR0ubgNBAFp/Pm2PR3tSKCiYWnHhwlZ8OLcfRzJqPa3dCS0tLdb1V1G2Ie+kaJD41EUvD/Nfbz9sw/fg6RjfppWrDuZBbLDqbN2feyYfXMNc34ae2g1AoFOhoabPn9hk2Xz9WpPE/Z25gjHYB11KxqYlYGZkWWOfC40Da+dblVPB17kWFUs7GhbY+tdHV1sHcwISYlARC4iL59ehqHkQ/VR3HZnYewcBNv/Ak4VmxtEUITSR59i/ZuXMnJiYmZGVlkZmZSefOnZk1axa3bt0iLS1NlSx5LiMjg6pVqwLw2Wef0bVrVy5dukSrVq3o0qUL9erVA3KHoVWuXFmtZ1f9+vXJycnhzp07r0yeVapUSfX/9vb2GBkZqSVz7O3tOX/+vOp5SEgIkydP5ty5c0RFRal6nIWEhKiSZ5aWlixevJjWrVtTr169fBPEv0kcgCq59HxbWloaCQkJmJmZERgYyMCBA9X2Ub9+fWbOnIkmkZGRTJgwgcOHDxMREUF2djYpKSmEhLzZBOr3798nIyNDleCE3MmMfXzyLpIvXbqEUqnMl1hKT0/H2jr3omfYsGF89tln7N+/nxYtWtC1a1e19gMFvkdgYG6PmIsXLxIUFMTq1atVZZRKJTk5OTx8+JC7d++io6NDtWp5d169vLzeelXUixcvcuTIkXy94p7/LQpKnqWmpqKvr69xBZZKlSrh7e3Npk2bOHLkCB988AG6urpvFdebUCqVqhiMjIyoVauWKnl27NgxvvzyS3R0dKhfvz5Hjx5FX1+fhw8f5kuwGhoaAqgNXX7RlClTmDRpktq27777DmoWnDx8VbxqFAqUBRdVtWvdlYOkZeXOMbUz8DR9qrVm643jZOVko0BBckYqf107ihIlTxKeYWZgTCPPKkWePHs5LhWl8h/3dEtNSWHmj1P5/MthmBXyR/PbevmzUCgUKDV8Gssv7MHKyIz5744BBcSmJLL39ll6VWtFtjL32FjFyZsPqrdm+vF1BEYEU8bclmENuhFdvS0rLu4pkph1a9fAqG8P1fOkmfP/bsxLBRUKePm79gIdHy8MOrQmddUGsh4Eo21ni2HPruR0aE36zn35yhv27oa2sxOJP88oglbkly98FAVsza+BRyVSMtO49OSO2vY1lw/Qr0Y7fmo7CCUQmRTLyYdXC1xo4H/dy/+elcoC/o2/WD7fv3Wlhu2wZsVqDu0/wB/zZ6vdbKhTP++8h1dZ/CtVoGeX99m7aw/de/fIt59/5OV2ocy3DXKH/22bs4qGXdtg7fjq47m+gT4f/TiKzPQMgm/e49DqbVjYWuPm51U0Mb/Gq/IRzz+zNZf2q84X22+epG+Ntmy+fpSsnGzKWpehuXcNNl8/SkhshOpmS4u0FA6+MGF3kcdN/u+YJhYONqoJ9QHsy7qQFJvA1f2ncSznTkZaOkcWb6bhB50KnAettCioHckx8Vw7cEaVPLP3dMbeM++mrENZVzb/uJCbRwKo16NNscT18jlOgebz3osaelQmJTONi0/UexmtvrSP/jU78HO7z1TH2hMPr9DQo0oRRp1fQddSmjib2/JRrQ5svHaYq0/uYWFkSt/qbRlYpzPz/k4GKhQK4tOSWXB2KzlKJQ9inmJpaEZn/4ZFnjzT6BXXIM7mdnxSuxPrrxzi8tO7WBqa0q9GOz6r+w6zT+eOvqjg4Ml7lZuy4Ow27j0LwcHMho9rdSS2UiIbrh0uxsDzn8E1/RtfeXEfloZmzO4yEoUiN9G27+55elRpofqdGRgZrNYb9kb4Q+Z3/ZIuFRox53TxzR9bWshNvtJFkmf/kqZNmzJv3jx0dXVxcnJSJQ0ePsztsr1r1y5VT5fnnl9Ytm3blkePHrFr1y4OHjxI8+bNGTx4MFOnTlVLFLzsdcvIvpi4UCgU+RIZCoVCdeCC3HmrPDw8WLRoEU5OTuTk5ODu7k7GSxNFHz9+HG1tbZ4+fUpycnK+oRmvi0PTthdjyX9xr/nvALkrnj579owZM2bg5uaGvr4+devWzRe7JvlOygXIyclBW1ubixcvov3SnernSaiPP/6Y1q1bs2vXLvbv38+UKVOYNm0aQ4cOfeW+X/wbfPrppwwbNixfGVdXV+7cuZNv+8vxP59f48Vtz4eFvtiW570XX+aoYf4pGxsbUlJSyMjIKLBXGMBHH33EnDlzuHXrllpi9m2UK1eOkydPFvg+T58+JSEhQa2nXdOmTVm/fj03b94kNTVVlVhs3LgxR44cQU9PDwMDA+rUUZ9XIiYmBtC8yMW4ceMYOXKk2jZ9fX0mHFz8Ru1IyUgjOycnX68BEz1DktILTtglpufOM/L8hxDAs6RYtBQKzA1MiE6JJzE9mWxljtoFV2RSLGYGxmgrtFSJnaJgam6GlpYWsS/1MouPi8PcyuIf7TP8SRiR4RH8NC4vMfn8u/pesw7MXrkIhzJFOwdafFoSWTnZWBmpH6ssDU2JTSm4Z0pGdia/HFnF1GNrsDI0Izolno5+DUjOSCU+NfdO/oBaHdl/5zy7Ak8D8CDmKQa6+nzZuBcrL+59ox8or5N59TqJk4LzNujknta1zM3Ijs/rfaZlaoIyQfMwdYMuHcg4c56ME2cAcnuT6eth1Lcn6bv2q/26Nez1HrpVKpL0y0yUsXGFbsOLEjNSyM7JydfzwczAKF8PiYI09KjM6eDrZOeof88T01OYdWoTOlramOgbEZeaSLdKTYlKjivK8P/TzC0s0NbWztfLLDYmNl9vtOesrK2Ijo7JV15bWztfj7G1K9ewaukKps+ZQVnvVyeXDA0N8fTy5HHoq4fAvQkjU2MUWlokx6n3xkyJT8K4gPmkMlLTCX8YSsSjJ+xfnrtYhlKpBKWSn/uOpsfYT3H3zz3HKLS0sHLIPUfYu5Uh+kkEZ3YcKvLkWXJGqsbzxcu90Z5LTEsmPi1J7XwRmRSDlkKBhaEJUcnxtPapw6XHdzgfkjvhe3hiNHraurxXuSmH7gUUwRFKnYGJEQotRb5eZmmJyRiZvfncXnYezgSduwZAwrMYEqPj2Ddnjer15+eMRYMm0f37oZjZae51+0/ktUP9mJSamJyvV92r2Hk6E3TuusbXFVoKbN2diI8s+jlLnx9rLV4+1uobkfAmx1rPypwOvlbgsfaPkxvQ/ftYG5uayPuVmxfbsTYxPYXsnGwsDNV7NpkbGGtcSOOdCo25E/lItSjGo7gIFmVt54c2A1l75SBxqYnEpiSSrcwm54Vz35P4Z1gamaKjpV2kq9FqboOJxja8V6kJgZHBbL15PLcNseEsOLuVKe0+Y/Xl/cSmJtKrakuO3r+kSoQ/iovAQEeXz+u9y8ZrR4rkGuRF8WnJZOdkY2n48rWUicY5yjKyM5l6bA2/n1iHpaEZMSnxtC9fn+SMNI3nfCVK7jwLwdlcFqET/z6Z8+xfYmxsjJeXF25ubmqJIT8/P/T19QkJCcHLy0vt4eKSN3TL1taWfv36sWrVKmbMmMHChQtV9a9cuaI2YfypU6fQ0tIqsHfQPxUdHc3169f58ssvqV27Ni4uLgQHB+crd/r0aX799Vd27NiBmZnZa5NC/0T58uU5eVJ9FajTp09Tvnx5jXVOnDjBsGHDaNeuHf7+/ujr679y8vuXeXl5oaury9mzZ1XbYmNjVcMDAapWrUp2djaRkZH5PkuHF1Ypc3FxYdCgQWzevJlRo0axaNEitfcq6D18fXNX7qpWrRo3b97Mt38vLy/09PTw9fUlKyuLy5cvq/YRFBREXFyc6vnzZNCLK1u+uHjAi+/j7u6e7300zV9XpUoVIHehAU169erF9evXqVChAn5+fhrLvUqPHj1ISkpiwYIF+V6bOnUqurq6dO3aVbWtadOm3Lt3jzVr1tCgQQNVYrNx48YcPXqUo0ePUrduXQwMDNT2dePGDXR1dfH3L3ilR319fczMzNQebzNsM1uZw5P4Z/nmAfG2ceZRbMGr/wXHhGNmYISedt59Dxtjc3KUOaohC8Gx4Vgbmavd17cxtiAhLblIE2eQm+Qu6+PF1QuX1bZfvXAZX3/N/x5fpYyrC78vmcu0P2erHjXr1aZC1UpM+3M21nb5h4EVVlZONnefhVDDRT3mGs6+3IjQvLw6QHZODs+S48hRKmnuVYPTwTdUF6QGOnr5Eu85OTkoFK/uMfJW0tLJiYzKezwNJycuHh2/F4aOaWuj4+NF1v1XTGSup5u/+0eOkpc7Dxn26oZutcok/TaLnKii/0GXnZNDcGwY/g7q86P42XtwP+rxK+v62Lpib2rFiRcWCnhZVk42camJaCu0qO7sy+UndzWW/V+jq6tLOV8fLpxT73F04XwAFSoVvIiJf8UKXDivXj7g3Hl8/XzR0ck7Tq1duZoVi5fx2x/T8PV7/bEhIyODR8GPVL22C0NbRwcHD2ce3lD/rB/euIuzt3u+8vqG+nw85UsG/DhK9ajarC5WjnYM+HEUTmU1r+SoREl2ZtGvAJd7voik3Evni3K2rgTHFDxs+mFMGGYGxuhp511z2hpbkKPMUf0g19PWyfcDOkeZ83fPsKLv7aCto4ONqxNPbqkvAvU48D72Zd98Tqzo0DDVRPoWDja8991ndP12kOrhVskHJx8Pun47CGOrV9/A/Se0dbSxcXXkSaD6+eFJ4IO3bEc4hq9YEECpVBIdGoGRecFD3goj71irPn2Iv4MnQa851vraueFgav3KRU4yc7KJ/ftYW8PZN19v4KKSlZPNg+inVHJST1hXcvTizrOCR5fo6+iS8/L3/u8k4PNv/Z1nj3AwtVbrJeloZk1MSkKRJs4gtw33o59Q5aU2VHHy4nZkwfPu6msXcH3x0nN9bV0NZRRFdw3ygtxrqVCqO6sPXa/u7MvNiFcvpJKdk0PU39dSTctW4+yjG69M7pW1LqM2r6kQ/xZJnpUwU1NTRo8ezRdffMHy5cu5f/8+ly9fZs6cOSxfvhyACRMmsG3bNoKCgrh58yY7d+5UJYp69+6NgYEBH374ITdu3ODIkSMMHTqUDz744JVDNt+WhYUFVlZWzJ8/n6CgIA4dOsSoUaPUyiQmJvLBBx8wdOhQ2rZty5o1a9iwYQMbN24ssjggd0L9ZcuWMX/+fO7du8f06dPZvHkzo0eP1ljHy8uLlStXEhgYyLlz5+jdu7dqWN6bMDExYcCAAXz55ZccOnSIGzdu0K9fP7VVksqVK0fv3r3p27cvmzdv5uHDhwQEBPDLL7+oVtQcMWIE+/bt4+HDh1y6dInDhw/nS/p9//33au9hY2NDly5dgNw54c6cOcPgwYO5cuUK9+7dY/v27aokpa+vLy1atGDgwIGcP3+ey5cvM3DgQAwNDVW91wwNDalTpw4///wzt27d4vjx43zzzTdqMQwePJiYmBh69uzJ+fPnefDgAfv37+ejjz4iO7vgiwZbW1uqVauWL7H5IktLS8LCwjh06JDGMq9Tt25dhg8fzpdffsm0adO4f/8+t2/f5ptvvmHmzJlMmzZNLfFcr1499PX1mTVrFo0bN1Ztr1mzJvHx8fz1118FzpV34sQJGjZs+Fbfk7d14uFVarqUp4azL3YmlnQoXx8LQ1POhuROzt3Gpw7vv7Di0JWnd0nJSKdb5WbYmVjiYeVIO996XAi9rbqYO/voJsZ6BnT0b4CNsTm+dm409arG6WKapL5jt3c4tGsfh3bv5/GjEJbMXkhUxDNadWoHwKqFS5n501S1Og/v3efhvfukpaaSEB/Pw3v3CQ3OvcjV09fDzdNd7WFsYoKhoSFunu7FMtQXYMPVw3QoX492vnVxs3RgSP2u2Jlasu3GCQAG1unM+OYfqso7m9vRslwtnM1tKW/nxnctP8LD2pFF57apypx+dJ3OFRrSzKs6jqbW1HD2ZUDtDpwKvp7vIrcopR88ikH7VuhWrYRWGUeMPuqDMiOTjHN5w3aNBnyAwbsdVc+zrt5Av0kDdGtVQ8vGGh0/Hwy6tCfzyg1VUs2wz/vo1a1B8sLlKNPSUJiZojAzhSL+TPbfOUcjjyo09KiMo6k1Paq0wNrInCP3c1dIfq9iEz6u3TFfvUaeVbgf/YQn8fnnQPG0cqJ6GR9sjS3wtnFhZOMeKBQKdt8+U6Sx/xOGuvp42zirJnV2MrPB28YZe5PiXzHwZe/36s7ObTvYtX0nwQ+DmTV9JpHhEXTu+g4AC2bP48fvJqvKd363CxFh4cz+/Q+CHwaza/tOdm3bSfc+PVVl1qxYzZ/zFjF2wjgcHB2JjoomOipabUj8nBmzuXLxMk+fPOXWjZtMGPsNycnJtOnQrkjaVattY64ePcfVY+eIehLBwVVbSYiOpWrz3Ckwjq7fyY75uT2XFFpa2Lo4qj2MzUzQ0dXB1sURPYPcmySntx/k4fU7xEZGE/00gvO7j3Lj5AX861cvkphfduzBFWq5+lPTpTx2JpZ08m+AhaGJagGStr516VElbwqQy0/ukpKRRvcqzbE3scTTyokOfvU5HxKoOl/cinhIXbeKVHHyxsrQDG8bF9r41uFm+MMi75XyXKWWdbl98hK3T14iNuwZp9fvJSkmnvKNc+fAO7/5IEeWbFaVv37wDMGXA4mPiCbmaSTnNx/k4aVA/JvmLlSho6uLVRl7tYe+kQG6+npYlbFHW6d4BtlUbFGXOycvcefUZWLDnnFmw77cdjTK/fzPbznEkaVbX2jHWYKv3M5rx5ZDue1okjcv8MUdxwi9GUTCs1iiQ8M5vmIH0aHhqn0Wtb23z9LYs2rusdbMhl5VW2JtZM7hv+e861apGQNrd85Xr5FnFYKiHms+1jr7YmtsQTlbF0Y16ZV7rP27B3Zx2BF4iuZe1WnmVZ0y5rb0q9EOG2Nz9t/NHeHQq2orhtZ/T1X+wuPb1Hb1p1W5WtiZWOJj68pHtTpw71moqofUvjvnMdU3on+t9jiaWlOtjA/vVmzC3jvniqUN226epIV3TZp71cgdVlqzAzbGFuz7+/36VGvN8AZ5i3YFPA6kjlsF2vjUxt7ECl87Nz6u3ZG7z0JUbQh4fJs2PnVo4FEJOxNLKjt60atqSwJCbxXbNcim60do51uXNj51cLWw57O672BnYsmOW7m/DQbU6sjYpnlzDDub29LCuwZlzGzxsXXlm+Yf4mHlyOLzO1VlPqjehhrOvjiaWlPWugyjG/fCy9pZtc//7xQKRal8/BNz587Fw8MDAwMDqlevzokTJzSW3bx5My1btsTW1hYzMzPq1q3Lvn3q04gsW7aswNjS0tL+UXxvQoZtlgKTJ0/Gzs6OKVOm8ODBAywsLKhWrRrjx48HclcqHDduHMHBwRgaGtKwYUPWrVsH5M7ptG/fPoYPH07NmjUxMjKia9euTJ8+vUhj1NbWZv369QwbNowKFSrg4+PDH3/8QZMmTVRlhg8fjrGxsWqSeX9/f3755RcGDRpEvXr18g1L/ae6dOnCzJkz+e233xg2bBgeHh4sXbpULZaXLVmyhIEDB1K1alVcXV356aefXplsK8hvv/1GUlISnTp1wtTUlFGjRhEfH69WZunSpfzwww+MGjWKJ0+eYG1tTd26dWnXLvcHQHZ2NoMHD+bx48eYmZnRpk0bfv/9d7V9/PzzzwwfPpx79+5RuXJltm/frhqeWKlSJY4dO8bXX39Nw4YNUSqVlC1blu7du6vqr1ixggEDBtCoUSMcHByYMmUKN2/eVOtZtWTJEj766CNq1KiBj48Pv/76K61a5a0o5uTkxKlTpxg7diytW7cmPT0dNzc32rRpk29Z9RcNHDiQZcuWvXK1VwsLi9f/sV9jxowZVKpUiXnz5vHtt9+iUCioVq0aW7dupWNH9R/Vz4dkHjt2TO07oqurS926dTl06FCBybO1a9fmm9OsqF0LC8JIT5/m3jUw0zcmPCmapQE7Vb0CTPWNsDDMuyudkZ3Fn+e209m/IUMbvEdKRjrXwoJUF1eQOwTxz3M76OhXnxENu5OQlsyph9c4ev9yvvcvCg2aNSYxIZENy9cQGxODq4c7X/8yCTuH3OR9bHQsURHqF9ijPsnrkXr/bhAnDh7F1t6OBeuXFUuMb+Jw0EXM9I35sEY7rI3NeBgdxtidc4lIyh2SZm1kppbM0NbSonvl5rha2JOVk83lJ3f5fPNUwhPzhrCtuLAHpVLJx7U7YmtsQVxqEqeDr7Po3PZ871+U0vccRKGri2Gf91EYG5H9IJik6XMgLW+BCy0rS7WeZmk796Ekd/imlqU5ysQkMq/eIG1z3gWsftOGAJiOHa72filLVpFxquh+UJwPDcRY34hO/g0wNzDhSfwzfj+xTnWX2dzQBGsj9SGBhrr6VHf2ZY2GxRh0tXV4p2Jj7EwsScvK4FpYEIvObic1M73A8v8mX1s3Zr+TNwR8WIPcxXl2B57hx8PL/9VYmrdqQUJ8Asv/XEp0VDQeZT35ZcZUHBxze09HR0UTEZ7XM9apjBO/zpjKrN//YMvGzVjb2jB89AiaNMs7pm7dtJnMzEwmjFW/SdPvk4/4aOAAAJ5FRjLpm++Ij4vHwtICvwr+zF+yUPW+heVXpyqpiSmc2rKfpLgEbJ0def/LTzC3yR3OlxSXSELU2y1ykpmewb5lf5EYE4eOni7WTvZ0/Kw3fnWqFknML7v69B7Guga0LFcr93yRGM3icztUP5TNDIyxVDtfZLLg7DbeqdCI4Y26k5KRxtWnQex5IWF88O+hmW1862BuYEJSRiq3wh+qlSlqZWtWIC05hUu7jpESn4SVkx1th/bG1NoCgJT4RJJi8q6tsrOyObtpP8lxiejo6mDpZEebob1wrVh0oyv+ibI1/UlPTuHSruOqdrQZ0uuFdiSR/EI7crKzObfpgKodFk62tB7SE9eKedNMZKSmcXLVLlISktAz1MfaxYGOoz/EzqNorp9fdj70Fib6hnSu0AiLv4+104+vVa2eaW5ogpWxes89Q119ajiXZ/Wl/HNhQu6xtmvFJtiaWJKelcG1p0EsPLOVlGI81p4Ovo6pvhHvVWqKpaEpIXER/HRohWqoqKWhKTbGeeeMo/cvY6irT1vfOnxYoy3JGWncCH/Aqot5bYpOiWfygaX0q9mOaZ2GEpOSwO7A06phkkXtVPA1zPSN6F6leW4bYsOZfHAZz/5ug5WRGbYmFqryh4MuYqijTzvfevSv2Z7kjDSuhd1Xm091w9XDKJVKeldthZWROQlpyQSEBrL6csGfXVE4ev8yZvrGfFC9NVZG5gTHhDFuz3wik3KPr9ZGZti9cC2lpdDivUrNcDG3Iysnm6tP7zF06++qay/IHZ4+slEPLI3MSM5IJSjqMV/smKmxZ6EondavX8+IESOYO3cu9evXZ8GCBbRt25Zbt27h6pq/R/fx48dp2bIlP/30ExYWFixdupSOHTty7tw51bzwAGZmZvmmLXp5NFFRUijfZDInIUSxO3r0KE2bNiU2NrZIEkzPPX78GBcXF9V8ecUpLS0NHx8f1q1bp7bwwX/Nrl27+PLLL7l27Zra0KM3MXbX3GKK6t/zS/vPuRl2//UFSzl/x7I0mvt5SYdRKMc/n0vcgKIf/v5vs1g8i/7rfyzpMAplafevqT/n31nNrzidGjyfiIQ3n7agtLI3s2FZwK6SDqNQ+tVsz+gds0o6jEKb2nEo046tLekwCmVU455MPbr69QVLudFNevPhusmvL1jKLe/xLe+t+LqkwyiUTX1/pMuy1y+cVtpt7fczzRfkn2v5v+TQp3+UdAj/2NFiWv24sOq6VCA9XT0prq+vr3EKm9q1a1OtWjXmzZun2la+fHm6dOnClClT3ug9/f396d69OxMmTABye56NGDFCbXqi4ibDNoX4f+bw4cNs376dhw8fcvr0aXr06IG7uzuNGjUq9vc2MDBgxYoVbzWfXGmUnJzM0qVL3zpxJoQQQgghhBBFQUuhKJWPKVOmYG5urvbQlATLyMjg4sWLaqOcAFq1asXp0282pDsnJ4fExESsXlrAKCkpCTc3N5ydnenQoYPavN/FQX4ZCvH/TGZmJuPHj+fBgweYmppSr149Vq9eXWxzRb3sxXnF/qvef//91xcSQgghhBBCiP8x48aNY+TIkWrbNPU6i4qKIjs7O9987Pb29oSHh7/R+02bNo3k5GS132i+vr4sW7aMihUrkpCQwMyZM6lfvz5Xr17F29v7FXv75yR5JkQp0aRJk3yr4vwTrVu3pnXr1kUQkRBCCCGEEEIIkedVQzQ1eXmhAaVS+UaLD6xdu5aJEyeybds27OzsVNvr1KlDnTp1VM/r169PtWrVmDVrFn/8UTxDdSV5JoQQQgghhBBCCFGKKPhnK1uWJjY2Nmhra+frZRYZGZmvN9rL1q9fz4ABA9i4cSMtWrR4ZVktLS1q1qzJvXv3Ch2zxvcotj0LIYQQQgghhBBCiP9Jenp6VK9enQMHDqhtP3DgAPXq1dNYb+3atfTr1481a9bQvn37176PUqnkypUrODo6FjpmTaTnmRBCCCGEEEIIIYQociNHjuSDDz6gRo0a1K1bl4ULFxISEsKgQbmrmI8bN44nT56wYsUKIDdx1rdvX2bOnEmdOnVUvdYMDQ0xNzcHYNKkSdSpUwdvb28SEhL4448/uHLlCnPmzCm2dkjyTAghhBBCCCGEEKIUUSj+fwwU7N69O9HR0Xz//feEhYVRoUIFdu/ejZubGwBhYWGEhISoyi9YsICsrCwGDx7M4MGDVds//PBDli1bBkBcXBwDBw4kPDwcc3NzqlatyvHjx6lVq1axtUOSZ0IIIYQQQgghhBCiWHz++ed8/vnnBb72PCH23NGjR1+7v99//53ff/+9CCJ7c/8/UplCCCGEEEIIIYQQQhQD6XkmhBBCCCGEEEIIUYpoKf77q23+fyI9z4QQQgghhBBCCCGE0ECSZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCFKEYUM2yxVpOeZEEIIIYQQQgghhBAaSPJMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRCmihQzbLE2k55kQQgghhBBCCCGEEBpI8kwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFEKSKrbZYu0vNMCCGEEEIIIYQQQggNFEqlUlnSQQghhBBCCCGEEEKIXOcf3SzpEApUy82/pEMoETJsUwghitCYnbNLOoRC+7XDEFYE7C7pMAqtb812JBw+XtJhFIpZs0bEtnynpMMoNMsDW7j29F5Jh1EolZy8iUiIKukwCs3ezIb6cwaVdBiFdmrwfLqv+rakwyiU9X0m8zQusqTDKDQnC7uSDkG8IDEurqRDKDRTCwvihn9V0mEUisXMn+m79vuSDqPQVvScQGJ4REmHUSimDvYlHcI/JsM2SxcZtimEEEIIIYQQQgghhAaSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRimjJsM1SRXqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiCmTYZmkiPc+EEEIIIYQQQgghhNBAkmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShFZbbN0kZ5nQgghhBBCCCGEEEJoIMkzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEEKWIQoZtlirS80wIIYQQQgghhBBCCA0keSaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiFJFhm6WL9DwTQgghhBBCCCGEEEIDSZ4JIYQQQgghhBBCCKGBJM/E/wtHjx5FoVAQFxdX0qEUOXd3d2bMmPGP6wcHB6NQKLhy5UqRxSSEEEIIIYQQQvyvkDnPxH/G6dOnadiwIS1btmTv3r0lHY4QRaKuWwUal62Gqb4REYkxbL91guCYMI3ltbW0aOFdi2plymGqb0x8WhKHgi5wITQQgE/rvkNZ6zL56gVGBLM0YGextOHCgZOc3X2EpLgEbMs40LJPF1x9y762XujdB6z8YQ62zg588tOXqu23A65xavsBYiOiyMnOwdLehjrtmlCxQc1iiV8TpVLJol072HLyOIkpKfi7ezCmRy/KOuX/+z53+PIllu3dTeizSLKys3Gxs6NPi1a0q133X4z8zek2qIN++1Zoe5dFy9yMhEFfkH0/uKTDYt/WXWxbv5m46Bic3V3pP+QTyleqUGDZ2OgYls9dzIN7QYQ/fkrbdzvSf8hAtTJH9h5k7i8z8tVdvW8zenp6RRLzlo2bWbtqDTFR0bh7ejB05DAqV62isfyVi5eZPWMWwQ8eYm1jQ6++vejc9R3V6zu2bGff7j08uP8QAB9fHz4Z/Cl+/n6qMksWLmbZoiVq+7WysmLrvh1F0qa3UdnRi15VW+Fr54qNsQVf7Z7HiYdX//U4NGlVrhYd/RpgYWjC47hIll/Yw+1njzSWb+BeiU7+DXEwtSIlM52rT++x8uJekjJS85Wt51aR4Q3fJyA0kKnH1hRZzFs3bWH9qrVER0fj7uHOkC+GUalqZY3lr1y6zNwZswl+GIyNjTU9PuhFp3e7FFj28P6DTP52EvUbNeCH36aotq9etpITR48T8ugR+vr6+FeswMAhn+Hq5lpk7RKlh1KpZOGff7Jl61YSExPx9/dn7JdfUtbT85X1Dh0+zPwFC3j85AnOZcrw+Wef0bRJE9Xrly5fZuWqVQTevk1UVBRTf/2VJo0bF2tbDNq0QK9eLRSGhmQ/CiVl01ZywiM1ljcZMhAd7/ztzLx5m+SFy1T7NGjbQu31nIREEr79sUhj16S5Vw3ala+LuaEpT+IjWX1pP3efhWgsX9etAu3L18Pe1JrUzDSuhd1n3eUDBR63iopSqWThsqVs2bEj9zvk58fYEV9Q1sPjlfUOHTvK/MWLefz0Kc5OTnz+8Sc0bdRI9fqCpUtYtGyZWh1rKyv2bdmqeh4dE8OsBfM5GxBAYlIS1SpX5svhw3F1dinKJpYoLWTOs9JEkmfiP2PJkiUMHTqUP//8k5CQEFxd5ULuvy4zMxNdXd2SDqPEVHb0oqN/Q7ZeP0ZwbBi1Xf0ZUKsj046uIS4tqcA6faq1wUTfiI3XDhOdHI+JviFairxOxCsu7EZbS1v13FjXgBGNenAtLKhY2nDr7GUOrNpKm37v4VLOg0uHT7Put4V8+stXmNtYaqyXlpLK9vlr8PD3Jik+Ue01Q2Mj6ndqiY2TPdo62ty7fJMdC9dhZGZK2Uq+xdKOgqzYv5c1hw4woW9/XO3sWbJnF0P++J1NE3/A2MCgwDrmxsb0b9sOd3tHdHW0OXH9Gt+vWIalqSl1/QpO/pQkhYE+WTdvk3H8NMYjB5d0OACcOnycpXMW8cmIz/Cp4MeBHXv4cexEfl82F1t7u3zlMzMzMbMwo2vv99m5aZvG/RoaGzFzxQK1bUWVODu0/yCzps9k5NhRVKhcie2btzJm+GhWbFiFvYNDvvJPnzxlzIjRdOjSkW++n8CNq9eY/ss0zC0taNKsKQCXL16ieauWDK9UAT19fdauWM3oIV+wfP0qbO1sVfvy8PRg+pyZqufa2iUzqMBQV5+g6Mfsvn2an9oOKpEYNKnrVoEPq7dlccBO7kSG0MK7BuOafcDIHbOITonPV97H1pXB9bqy/OIeLj6+jZWRGZ/U7sSndbow7fhatbI2xub0qdaawIjgIo358IFDzPn9D0aMGUmFShXZsWU7Y7/4kmXrVmLvYJ+vfNjTp4z7YgztO3fk60nfcuPadWb8Oh1zCwsaN2uiVjY8LJx5f8ylUpX8ibirl6/Q5b138PErT3ZWNovnL2TMsJEsXbcSQ0PDIm2jKHnLV65kzZo1fDdhAq6urixesoTBQ4fy14YNGBsbF1jn2vXrjP/mGwYNHEjTJk04cvQoX40fz+KFC6lQIfc8l5qaire3Nx07dGDMV18Vezv0mzdGv2kDUlZvJPtZFAatmmHy+cck/DgV0jMKrJO8ZCVo510vKYyNMB0znMwr19XKZYeFkzTnz7wNOcpiacPLarv60btaa5Zf2M29qFCaelVjdONejNs9l+iUhHzly9m48GmdLqy+vJ/LT+5iZWhKv5rt+ahWR/44uaHY4ly+dg1rNmzgu3HjcHV2YfHKFQweNZK/Vq3G2MiowDrXbtxg/KRJDPpoAE0bNuTIiRN8NfE7Fs+eQwW/vBtEnh4ezJ02XfVc+4XPS6lUMvrrr9HR0Wbajz9hbGzM6g3r+XzkSDYuXyHHK1EsZNim+E9ITk5mw4YNfPbZZ3To0IFlL92JKMipU6do3LgxRkZGWFpa0rp1a2JjYwHYu3cvDRo0wMLCAmtrazp06MD9+/dVdZ8Pddy8eTNNmzbFyMiIypUrc+bMmTd+D6VSya+//oqnpyeGhoZUrlyZTZs2vTLmyMhIOnbsiKGhIR4eHqxevTpfmfj4eAYOHIidnR1mZmY0a9aMq1ff/O5+dnY2AwYMwMPDA0NDQ3x8fJg5c2aR1Fm6dCnly5fHwMAAX19f5s6dq3rt+d90w4YNNGnSBAMDA1atWkVOTg7ff/89zs7O6OvrU6VKFbWehW/yWURHR9OzZ0+cnZ0xMjKiYsWKrF2b9wNnwYIFlClThpycHLV4O3XqxIcffqh6vmPHDqpXr46BgQGenp5MmjSJrKysN/7bvq2GnlUICLnF+dBbRCbFsuPWSeJSk6jjXrHA8uVsXfG0LsOS8zsIinpMbGoioXGRPIoNV5VJzUwnKT1F9fC2dSEzO6vYkmfn9hylSpPaVG1aB5sy9rT64B3MrC24dOjUK+vtWbIR/7rVKOPlnu81Nz8vfGtWwqaMPZb2NtRq0xg7F0dC7zwoljYURKlUsvbwIfq3aUezqtXwKlOGiR/2Jy0jg30B5zTWq17Oh6ZVquHh6IizrR09m7XAq4wzV4KK5+9fWBkHj5G2agNZl0pPD6GdG7fSrF1LmrdvjbObC/2HDMTGzob923cXWN7OwZ6Phn5K49bNMTIu+EIdQIECSytLtUdR2bBmPe07d6BDl064e7gzbNQIbO3t2LppS4Hlt23eip2DPcNGjcDdw50OXTrRrlN71q/KO25N+GEi73R7F2+fcri5u/Hl12PJUeZwMeCC2r60tbWxtrFWPSwsi65db+NsyE0WndvOsQdXSuT9X6V9+Xocvn+Jw0EXeZLwjOUX9xCdkkCrcrUKLO9t40Jkchx775zlWXIcd56FcPBeAJ4v9epVKBQMrd+NjdcOE5EUU6Qxb1y7nnad2tO+c0fcPNwZMnIYdvZ2bP+r4O/U9s3bsHOwZ8jIYbh5uNO+c0fadmzPhtXr1MplZ2fz44Tv6TfwIxzLOObbz68zp9GmQzs8PD3wKufF2G/HEREewd3bd4q0faLkKZVK1q5bR//+/WnWtCleZcsy6bvvSEtLY+++fRrrrV23jtq1atG/Xz/c3d3p368ftWrWZM26vO9a/Xr1+HzQIJo1bfpvNAX9xvVJ23+EzGs3yQmLIGXVBhS6uuhVr6KxjjIlFWVikuqh6+MNmZlkXLmmXjA7R62cMjm5eBvztzY+dTn24DLHHlzmaUIUqy/tJyYlnmbeNQosX9bGmWfJcRy4e56o5DjuRoVyJOgiHlb5/50XFaVSydqNG+n/wQc0a9QYL09PJo0bT1p6OnsPHtBYb+2mjdSuXoP+ffrg7uZG/z59qFW9Oms2blQrp6OtjY21tephaWGhei3k8WOu37rJVyNH4V++PO6urnz1xUhSU1PZd+hQcTVZ/I+T5Jn4T1i/fj0+Pj74+PjQp08fli5dilKp+c7PlStXaN68Of7+/pw5c4aTJ0/SsWNHsrOzgdxk3MiRIwkICODQoUNoaWnxzjvv5EuufP3114wePZorV65Qrlw5evbsqUqmvO49vvnmG5YuXcq8efO4efMmX3zxBX369OHYsWMa4+7Xrx/BwcEcPnyYTZs2MXfuXCIj87qcK5VK2rdvT3h4OLt37+bixYtUq1aN5s2bExPzZhfuOTk5ODs7s2HDBm7dusWECRMYP348GzZoviv1JnUWLVrE119/zY8//khgYCA//fQT3377LcuXL1fb19ixYxk2bBiBgYG0bt2amTNnMm3aNKZOncq1a9do3bo1nTp14t69e2/8WaSlpVG9enV27tzJjRs3GDhwIB988AHnzuUmObp160ZUVBRHjhxR7S82NpZ9+/bRu3dvAPbt20efPn0YNmwYt27dYsGCBSxbtowffyyervnaCi3KmNtxNypUbfu9qFDcLfP3VAHws/fgcVwkTcpW4+sW/fiySR/al6+Pzgs9zV5W08WPq0/vkZld9EnA7Kwswh4+xqOCj9p2zwo+PL4XrLHe1WPniI2IotG7rV/7Hkqlkoc37hIT/uyNhoIWlSdRUUQnxFPHz1+1TU9Xl2re5bj2QqL9VZRKJedvB/IoIpxq3uWKK9T/VzIzM3lwN4jKNaqqba9Uoyp3btwu1L7TUlP5rEd/Pu32IVPGTeLhvTf7HF8nMzOTu7fvULO2eiKmZu1a3Lh2o8A6N6/fyFe+Vp3a3L51W2PCPj0tjaysLMzMzNS2Pw59zDttO/F+5/eYOH4CTx8/KURr/v/R1tLG08op3w2Eq2FBlLMteGjP3WchWBuZUcXJGwBzA2Nqu/pz+Yl6Aum9ik1JSEvmyP1LRRpz7nfqLjVe+o7UqFWTG9cL/k7dun6TGrXUh7bXrFOLO4Hq36kVi5dhYWlB+04d3iiW5KTcRMHL3zvx3/fk6VOio6OpU7u2apuenh7Vqlbl2vXrGutdu36d2i/UAahTp84r6xQnLWsrtMzNyLr9wnVjdjZZ9x+i4+H2xvvRq1OTjEtXISNTff+2Nph9Px7TCWMw+rAnWtZWRRW6RtpaWrhbOXIjXP08dT38Ad42BR+37kWFYmVkRiVHLwDMDIyp6Zp7DVhcnoSFER0TQ50aeccePT09qlWuzLUbBR+rAK7dvEntmurHqzo1a3HtpnqdkMePafPuO3Tq/j7jJk3k8dOnqtcyM3J7FOq/0INcW1sbHR0drlx/KQH6H6ZQKErl43+VDNsU/wmLFy+mT58+ALRp04akpCQOHTpEixYtCiz/66+/UqNGDbWeT/7+eT+Cu3btmm//dnZ23Lp1S9XlHGD06NG0b98egEmTJuHv709QUBC+vr6vfI/k5GSmT5/O4cOHqVs3d64jT09PTp48yYIFC2hcwLwPd+/eZc+ePZw9e1Z1UbJ48WLKly+vKnPkyBGuX79OZGQk+vr6AEydOpWtW7eyadMmBg4cmG+/L9PV1WXSpEmq5x4eHpw+fZoNGzbw/vvv/+M6kydPZtq0abz77ruqMs+TUC/27hoxYoSqzPP4x44dS48ePQD45ZdfOHLkCDNmzGDOnDmqcq/6LMqUKcPo0aNVZYcOHcrevXvZuHEjtWvXxsrKijZt2rBmzRqaN28OwMaNG7GyslI9//HHH/nqq69UsXp6ejJ58mTGjBnDd999l+9vkp6eTnp6utq255/JmzDWM0RbS4uk9BS17YnpKZjqF9x7xtrIDHcrR7JysllxYTfGeoZ0qdAYI119Nl47nK+8i4UdjmbWbLpWPHfgUhKTUebkYGJuqrbd2NyUpLj8QwoAYsKfcWT9Tj74diha2pqTfmkpqfwxdCLZWVkotLRo0+89PCv6aCxf1KITcodyWZmq/2C0MjMjPDr6lXWTUlNoN24MGZlZaGspGNuzN7XL+72yjsiVGJ9ATk5Ovt5TFpaWxMX+8wRFGVdnBn/1Ba4ebqSmpLDrr+18M3QMU//8A0dnzXPYvYn4uDiys7OxtFL/QWVlbUmMhu9KTHQMVtbqbbS0siI7O5u4uDhsbGzy1Zk/ez62trZUr5XX68DP34/xk77BxdWV2OgYVixZzucDBrF8/SrMLcwL1a7/L8z0jdDW0iY+VX0ofHxqEhZOpgXWuRsVyqxTmxjRsDu62jroaGkTEBrI0oBdqjI+tq40LVuNsbvnFriPwoiPiycnOztf70hLa0tizxZ8oywmOhpLa/Vkm6WVJdnZ2cTHxWFtY8P1q9fYvX0Xf65aUuA+XqZUKpk7czYVK1fCo+yr58AS/z3Rfx+frF86dllbWREWHl5QFVW9gupEv+bcWFwUpiYA5CSqTwGRk5iI1hv2xNV2dUbbyYGUteojRLIehZC9egPZkc/QMjXNHQ464jMSp/yOMiVFw94Kz1TfCG0tLeLT1Hu5JaQlY25Q8HDaoKjHzD+zhcH1u6qOW5ce32HlxeKbJzo6RsN3yNKKsIhXfIdiYrB+6bOxtrQk+oWOABXK+zFp/HjcnF2Ijo1l8coVDBj8OeuXLcfC3Bx3NzccHRyYvXAh40ePxtDAgNUb1hMdE0NUCX0Xxf9/kjwTpd6dO3c4f/48mzdvBkBHR4fu3buzZMkSjcmzK1eu0K1bN437vH//Pt9++y1nz54lKipK1eMsJCRELXlWqVIl1f87OuZ2e46MjMTX1/eV73Hr1i3S0tJo2bKl2vaMjAyqVq1aYJ3AwEB0dHSoUSPvh5Gvry8WL3RRvnjxIklJSVhbW6vVTU1NVRt2+jrz58/nzz//5NGjR6SmppKRkUGVKlX+cZ1nz54RGhrKgAED+OSTT1R1srKyMDdX/wH3YvsSEhJ4+vQp9evXVytTv379fENRX/VZZGdn8/PPP7N+/XqePHmiSmy9OF9H7969GThwIHPnzkVfX5/Vq1fTo0cP1fwJFy9eJCAgQK2nWXZ2NmlpaaSkpGD00rwNU6ZMUUsoArlJthr5f/S+yssdKBWApj6Vz+/0rL28n7Ss3DtuO2+dpE/1tmy5cYysnGy18jVd/AhLiCY0TvOEuUXipTtQyhdifVFOTg5b56ykYdc2WDvmn7vqRfoG+nz842gy0jMIvnmXg6u3YmlrjZufV1FGrrLn/FmmrFmlev7750OBfE3L/bxec8fNSN+A1eMnkJKeRsCd2/y+aQNlbGypXu7fS/4VRK9ZI4xG5M1FlTR+Mlk3Akswold4+e+OEkUhJs0t5+dLOb+8+fJ8KvgxZuBw9mzeyUfDPv3H+33Ry995pbLgfweq8vnao9SwHdasWM2h/Qf4Y/5stSR9nfovLEThVRb/ShXo2eV99u7aQ/fePd6+Ef+PvXxcVSgUGnuwlzG3pV+Ndvx1/QhXnwZhaWhK72qt+bh2Jxac3YqBjh5D6r/HwnPbSEwvvh/Q+b4/rzn+vPzded4+hUJBSnIKP333A6PHj8H8heuKV5n52+/cD7rPrAVzXl9YlHp79u7lp59/Vj2fMT13Lql8x64Ctr2OUqn813qj6FavglH3vMVVkhYs01DyVVdU6vTq1CT7aTjZIY/VtmcF3lX9f05YBEnBjzD7dgx6taqRfvTkW0b+DxQQvqYWOZnZ0KdaG7bdOM718PtYGJjSvWoL+tVsz+LzRbOIzJ4D+/lp2jTV8xk//wIUdK30Bt+HfN879Tr169RR/b8XUMnfny69erJz7176dO+Ojo4Ov34/mcm//kKzDu3R1tamVvXq1HupV6QQRUmSZ6LUW7x4MVlZWZQpk9c7QKlUoqurS2xsLJYF3FV63SSRHTt2xMXFhUWLFuHk5EROTg4VKlQgI0N9UtEXJ7N/fkB/nmh71Xs8L7Nr1y61uEFz76QXL3JftV9HR0eOHj2a7zWLN7wY3rBhA1988QXTpk2jbt26mJqa8ttvv6mGOP6TOs/bu2jRonxd+bVf6l1U0AS0+X905j/pvuqzmDZtGr///jszZsygYsWKGBsbM2LECLXPs2PHjuTk5LBr1y5q1qzJiRMnmD49bxLSnJwcJk2apNYr7jmDAiaHHzduHCNHjlTbpq+vz7cHFuUrW5DkjFSyc3IwNVBPypnoG+XrjfZcQloK8WlJqsQZQGRSLFoKBRaGJkQl5018raulQ2Unb/bf1fy5FpaRqTEKLa18vcxS4hMxNs/foyMjNZ2wh6GEP3rCvuW5yXClUglKJT/1HUWvsYNw988dJqXQ0sLKIXdSdAe3MkQ9ieD0joPFljxrVKkKFdzzelZkZOUO24hOSMDG3EK1PTYxAWvTVw9f0tLSwsUuNzno4+JKcFgYy/buLvHkWcaZ82TdfuGHQFTRztFUFEzNzdDS0iIuJlZte3xsHOaWFkX2PlpaWnj5ehP25OnrC7+GuYUF2tra+XqZxcbE5uuN9pyVtRXR0TH5ymtra+frMbZ25RpWLV3B9DkzKOv96u+/oaEhnl6ePA4NfWW5/yUJ6Slk52RjYWiitt3MIHe14oJ08W/E3Wch7LiVO3djSFwEaecz+L71J6y/ehBzAxPsTCwZ06S3qs7z89KaXhP5YvtMIpJiC9z3mzC3MEdLW5uYAr4jmubqs7K2zlc+LjYObW1tzMzNCX7wkPCwMMaPzpu8Xfn3ObR5vSas2LCaMi/0wvxj6u+cPnGKmQtmFbhQh/jvadSwIRVeGIWRkZl7nouKjlbr7RoTE4OVhmMXgLW1tVoPIYCY2NhX1ilKmTdukfjohWOcTu51ppapKdkJeb3PtExNUCYW/G9cja4uetUqk7pH8xxdKhmZZIeFo2X7djdK31ZiegrZOTmYG6pfM5sZGJOQVvCcax39GnAvKpTdt3PnBA4lkvSADL5p2Z9N145oPN69jUb1G1DhhZ70ed+hGGysX/gOxcVi9Ypef9ZWVgV8h+JeWcfQ0JCyHp6EPs5LcJb38WHN4iUkJSWRmZWFpYUFHw76FD+fkr3eKkpa/8NDJEsjSZ6JUi0rK4sVK1Ywbdo0WrVqpfZa165dWb16NUOGDMlXr1KlShw6dChfzyDI7W4eGBjIggULaNiwIQAnT7793aNXvYefnx/6+vqEhIQUOESzIOXLlycrK4sLFy5Qq1bu0Is7d+4QFxenKlOtWjXCw8PR0dHB3d39rWMGOHHiBPXq1ePzzz9XbXtdr7XX1bG3t6dMmTI8ePBANYfYmzAzM8PJyYmTJ0/S6IXlqU+fPq36G7yJEydO0LlzZ9XQ3pycHO7du6c25NXQ0JB3332X1atXExQURLly5ahevbrq9WrVqnHnzh28vN4sOaOvr/9WwzRflq3M4Ul8JN42LtwMz5sI39vGhZsRDwus8yg2jEpOZdHT1iUjO/eCxcbYghxlDnEvDUmq5OSFjpY2lx/fLWhXRUJbRwdHD2ce3riLb828noEPb9ylXPX8K0vqG+rzyZQxatsuHjzFo1v3eHdYPyxsX33hnZVZfIs3GBsYqK2gqVQqsTYz51zgLXxcclf2zczK4tK9uwx9p6um3RRIiZKMYlx44o2lppGTqnkYRWmgq6uLZzkvrl24Qu2G9VTbr128Qs36RXc3WalUEhz0ENe3mA9HE11dXcr5+nDhXACNmuYd7y+cD6BBowYF1vGvWIHTJ9QX1Qg4dx5fP190dPIuzdauXM2KxcuZOms6vn7lX95NPhkZGTwKflTgKor/q7JzsnkQ85RKDmUJCM3raVnJoSwXHhc8j56+ji7ZL82BmqPM6xn4ND6K0Ttmqb3evUoLDHT0WH5hN1EFrIT3NnK/U+W4cD6Ahk3yzo0XzwdQX8N3yq+iP2de+k5dOHcen/K53ylXN1eWrFGfg3Tx/EWkpKQwdORw7P5OkCmVSv6YOoOTx47z+9w/cHRyKlRbROlhbGysdgNTqVRibW3NufPn8f072ZCZmcmly5cZOljz6suVKlbk3Llz9O7ZU7Xt3LlzVKpY8GJHRS49g5x09ZsVOfEJ6Ph4kf38hoi2NjplPUjdsee1u9OrWgl0tMkMuPz699bWRtvejqz7wf8g8DeXnZNDcEwYFRw8ufg4b67FCg6eXHpS8OIdejq6+eZuVh23iij/YmxkpLaCplKpxNrKinMXLuBbLndu18zMTC5dvcrQTzX36q7k78+5CwH0fmG6mHMBAVTy17wqeUZGBsEhj6j6wkiU50xMcm+OhDwOJfDOHT4bMOCt2ybEm5DkmSjVdu7cSWxsLAMGDMg3/O+9995j8eLFBSbPxo0bR8WKFfn8888ZNGgQenp6HDlyhG7dumFlZYW1tTULFy7E0dGRkJAQvvoHy2i/6j1sbGwYPXo0X3zxBTk5OTRo0ICEhAROnz6NiYmJ2hxgz/n4+NCmTRs++eQTFi5ciI6ODiNGjFDr4daiRQvq1q1Lly5d+OWXX/Dx8eHp06fs3r2bLl26qA2J1MTLy4sVK1awb98+PDw8WLlyJQEBAXh4eBSqzsSJExk2bBhmZma0bduW9PR0Lly4QGxsbL4eWi/68ssv+e677yhbtixVqlRh6dKlXLlypcCVRl8V319//cXp06extLRk+vTphIeHqyXPIHfoZseOHbl586Yq0fbchAkT6NChAy4uLnTr1g0tLS2uXbvG9evX+eGHH944lrdx4sEVuldtyeP4SEJiw6nt6o+FoQlnH+VOmNrGty7mBsasv3IQgMtP7tLcuwbvV27O/rvnMNYzpH35+gSEBuYbslnLxY+b4Q9IyUwrltifq922CdvmrcbR0wVnL3cuHzlNfHQs1ZrnJj6OrN9JYmw8nQb1RqGlhZ2L+qpPxmYmaOvqqG0/tf0gjh4uWNpbk52Vzf0rgVw/GUCbfpqHYhc1hUJBz2bNWbp3Ny52drjY2rNs724M9PRoXTMvifPdssXYWlgypEtuj8Wle3fj5+ZOGRtbsrKzOHXjOrvOnuWrnm+eVP43KUxN0LKzQfH3BMhaf/c8yYmJQxkbVyIxdejWhVlTplPWx4ty/uU5uHMvURHPaNWxHQCrFy0j5lk0Q8ePUtV5GJSbgE5LTSMhLp6HQQ/Q0dHBxT038blx+Rq8y/vg6FyGlJQU9vy1neCgBwwYPih/AP/A+7268+N3k/Hx88W/YgV2bNlGZHgEnbvmDi1aMHseUc+i+HrStwB0frcLWzb8xezf/6BDl07cvH6DXdt2MuHHiap9rlmxmsXzF/HtD9/h4OhIdFTuj0VDI0PVMPI5M2ZTv2F97BzsiYuNZcXi5SQnJ9OmQ7siadfbMNTVx9ncVvXcycwGbxtnEtKSC9ULqyjsCjzNkHpduR/zlHvPQmnuXQMbY3MO3DsPQM8qLbEyMmPO6b8AuPj4DgPrdKald02uhuUO2/ywRlvuRYUSm5rbsyU0Xn04fHJGaoHb/6luPbszZeIP+Pj64l/Rn51btxMREUnHd7sAsGjOfJ49i2L8xG8A6PRuZ7Zu3MycGbPo0LkjN6/fZPf2XXwzOXfOTj19/Xzzlpn8PVfUi9tn/DadQ/sO8sNvP2FkbKTqUWlsbIK+wT+/YSRKH4VCQc8ePVi6bBmuLi64uLiwdNkyDAwMaNM6b0GfCRMnYmdry5C/E2o9undn4KBBLFuxgiaNGnH0+HHOnT/P4oULVXVSUlLUegg9efqUO3fvYm5mhoNDwYsiFUb6sVMYtGxKTlQ02c+iMGjZFGVmJhkXr6jKGPV+n5z4eNJ2qq8kqlenBpnXbxU4h5lB53Zk3ghEGRuHwtQEg1bNUBjok3H+YpG34WV775zh0zrv8DAmjKCoxzQpWw1rI3MO38t9726Vm2FpaMrCs9uA3GvEj2p1oJlXda6H3cfC0JTe1VpxP+pJvhusRUWhUNCzWzeWrl6Fq7MzLs7OLF21CgN9fdq0yJu6ZsKPP2Jna8OQgbkJtR7vvcfAYcNYtmY1Teo34Oipk5y7eIHFs/OGiM+YO4eG9erjYG9HbGwci1esIDk5mQ5t2qjKHDxyBAsLCxzs7Ql6cJ9ps2bRuEED6tR88xvwQrwNSZ6JUm3x4sW0aNEiX+IMcnue/fTTT1y6lH8S6XLlyrF//37Gjx9PrVq1MDQ0pHbt2vTs2RMtLS3WrVvHsGHDqFChAj4+Pvzxxx80adLkrWJ71XtA7gT6dnZ2TJkyhQcPHmBhYUG1atUYP368xn0uXbqUjz/+mMaNG2Nvb88PP/zAt99+q3pdoVCwe/duvv76az766COePXuGg4MDjRo1wt7e/o3iHjRoEFeuXKF79+65J72ePfn888/Zs0fz3bk3qfPxxx9jZGTEb7/9xpgxYzA2NqZixYqMGDHilfEMGzaMhIQERo0aRWRkJH5+fmzfvh1vb+83ag/At99+y8OHD2ndujVGRkYMHDiQLl26EB8fr1auWbNmWFlZcefOHXr16qX2WuvWrdm5cyfff/89v/76K7q6uvj6+vLxxx+/cRxv62pYEEZ6BrTwromZvjHhidEsOb+TuL9/nJnpG2FhmDf8MSM7k0Vnt9G5QiOGNXyflIw0rj0NYu+ds2r7tTG2wMPaiUV/X1AVJ786VUlJTObkln0kxSVg6+xIjy8HYm6Tm4xJiksgPurtfjhnpmewd9kmEmPi0dHTxdrJjs6f9cGvTsHzBRaXvq3akJ6ZyS9r15CYkoy/hyezhn6h1kMtPCZGbYhxWno6v6xdTWRcLPq6urg5OPJ9/wG0qlGzoLcocbp1a2L85TDVc5NvchfeSF2xjrSV60skpvrNGpGUkMimFeuIjYnBxd2N8T9PxNYht2dMbHQsUZHP1OqM+SSvDQ/uBnHy0DFs7e2Yuy53YvTkpGQWTJ9NXEwsRsbGeHh5Mmnmz3iXL5qhHc1btSAhPoHlfy4lOioaj7Ke/DJjKg6OuT8So6OiiQiPUJV3KuPErzOmMuv3P9iycTPWtjYMHz2CJs2aqsps3bSZzMxMJoz9Ru29+n3yER8NzL2r/iwykknffEd8XDwWlhb4VfBn/pKFqvf9N/naujH7nbwbJcMa5Ca7dwee4cfDyzVV+1eceXQDU30julZsgqWhKaFxEfx8ZKVqqLuFoQnWxnnXGcceXMZQV4/WPnX4oHobkjPSuBnxkNWX9ml6iyLXrGVzEuITWLFkGTFR0bh7evDz77/mfaeio4mMyPtOOTo5MeX3X5k7YxbbNm3B2saGoaOG07hZk7d63+1/bQXgi8+GqW0f++24EknKiuL14QcfkJ6ezs+//kpiYiIV/P2Z/ccfaj3UwiMi0NLSUj2vXKkSP06ezLwFC5i/YAHOzs5M+fFHtTmDbwUGMuiF0Qq/z5gBQIf27Zk4YUKRtyP90DEUuroYvtcZhZEh2Y9CSZq3GNLzprnQsrTIN9Gslq0NOmU9SJr7Z4H71bIwx/jDniiMjVAmJZP1KJTE6XP/lZtL50JuYaJnRGf/RlgYmvA4PpJpx9YQnfL3ccvABGujvOPWyYdXMdTRo0W5mvSs2oqUjDRuRT5kw5XiWTTquQ979sr9Dv0+ncSkJCqUL8/sqdPUeqiFR0agpZV3rVS5QkV+nPAd8xb/yfzFi3F2cmLKxIlU8MsbEhrx7Blffz+JuPh4LC0sqODnx9J583F8IfkaFR3N73NmEx0bi421Ne1bt+bjvvk7KPyX/S+vbFkaKZSaZksVQgjx1sbsnF3SIRTarx2GsCJgd0mHUWh9a7Yj4fDxkg6jUMyaNSK25TuvL1jKWR7YwrWn90o6jEKp5ORNREJUSYdRaPZmNtSfUzQ97krSqcHz6b7q29cXLMXW95nM0+Je0OVf4GQhc6KVJokvTPfxX2VqYUHc8LcfFVKaWMz8mb5rvy/pMAptRc8JJL5w8+e/yNThzToYlEa3NUzlUtJ87TWPWPr/TOv1RYQQQgghhBBCCCGE+N8kwzaFEEIIIYQQQgghShEFMmyzNJGeZ0IIIYQQQgghhBBCaCDJMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBCliJZC+jqVJvJpCCGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiCoWstlmaSM8zIYQQQgghhBBCCCE0kOSZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiFJES4ZtlirS80wIIYQQQgghhBBCCA0keSaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiFFEgwzZLE+l5JoQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKKGS1zVJFep4JIYQQQgghhBBCCKGBJM+EEEIIIYQQQgghhNBAhm0KIYQQQgghhBBClCJaMmyzVFEolUplSQchhBBCCCGEEEIIIXKFxISVdAgFcrVyLOkQSoT0PBNCiCK0/caJkg6h0DpVaMjDqCclHUahediU+c+3w8OmDAmHjpV0GIVm1rwx6y8fKOkwCqV71ZYsC9hV0mEUWr+a7em+6tuSDqPQ1veZTP05g0o6jEI5NXg+ewPPlHQYhdamfF0SA++UdBiFYlrehzWX9pV0GIXWq1prph1bW9JhFNqoxj1JvHKtpMMoFNMqlVh0dltJh1Fon9TpzIqA3SUdRqH0rdmupEMQ/09I8kwIIYQQQgghhBCiFJHVNksXWTBACCGEEEIIIYQQQggNJHkmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQohRRIMM2SxPpeSaEEEIIIYQQQgghhAaSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRimjJapulivQ8E0IIIYQQQgghhBBCA0meCSGEEEIIIYQQQgihgQzbFEIIIYQQQgghhChFFDJss1SRnmdCCCGEEEIIIYQQQmggyTMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQpYistlm6SM8zIYQQQgghhBBCCCE0kOSZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiFJEgQzbLE2k55kQRejOnTtMmTKF9PT0kg5FCCGEEEIIIYQQRUCSZ0IUkcTERN555x08PDzQ19cvsv26u7szY8aMf1w/ODgYhULBlStXiiwmIYQQQgghhBDif4UM2xTF4vTp0zRs2JCWLVuyd+/et64/ceJEtm7d+p9K+Hz44Yd8/PHH9OjRo6RDEf8hp/ce4ei2fSTGxmHv4kSn/j3w9CtXYNmHgffYtXITz56Ek5GRgaWNNXVaNaJRx1YFlr9y8jyrf1+If80q9PtqSJHFvGPzNjatWU9MdDRuHu4MGjaYClUqaSx/7fJVFs6ay6OHwVjb2NCtV3fav9NJ9fqXQ77g+uWr+erVrFubyVOnAJCSnMKKRUs4ffwkcbFxlC3nxaARQ/Ap71sq2gCwZf0mdm7ZzrOISMwszGnYpBH9B32Cnr4eANevXGXTmvXcu32PmOhoJkz5nnqNGvyj+N+GUqlk0a4dbDl1gsSUFPzdPRjTvRdlnZw01jl8+RLL9u0h9FkkWdnZuNjZ0ad5S9rVrlvs8QKc33+ckzsOkRQXj62zI237dsW9vFeBZR/dvs/+NduIehpOZnomFrZW1Ghen3rtm6nKZGdlc3zbfq4cO0dibBzWjva06tUZ7yp+xdqOiwdOcW73EZLiErAt40CLPl1w8fV8bb3Hdx+y6oc52Do7MOCn0artdwKucXr7QWIjosjJzsHS3oZa7ZpQsUGNYmtDq3K16OjXAAtDEx7HRbL8wh5uP3uksXwD90p08m+Ig6kVKZnpXH16j5UX95KUkZqvbD23igxv+D4BoYFMPbam2Nrwpio7etGrait87VyxMbbgq93zOPEw/7GpNDmx+xCHt+4hITYOB5cyvDugF2X9fQose//WXXas2EDEkzAy0zOwtLWmXuumNO3U+l+NWalUsnDdWrbs309ichL+3uUY++kgyrq6aqxzPySE+WtWc/v+fcKeRTLyowH06tQ5X7nI6GhmrVjG6UuXSEtPx82pDN8OGUp5r4KPH0UpYP8JTu88RGJcAnbODrTu2xU337KvrRdy5wHLvv8DOxdHBv08ttjjfNHNo+e5tu80KfGJWDrZUbd7Gxy93Qos+/TOQ3ZOW55v+/uTBmPhaAvAw0u3uLznBAmRMeRk52BuZ0XFlvUoV7dysbbjZUqlkoWbNrLl0EESk5Lw9/Zm7EcfU9bFRWOdLYcOsuv4Me6HhgJQ3sOTz3v2pIKX978S8+VDpwnYfYzk+ERsnOxp2rsTzj4er6335G4w66bMx8bZng8nf6H2WlpyKif/2su9CzdIS0nF3MaKJj3b41m5fHE1gwsHTnL2hfNeyz5dcH2Dfwehdx+w8u/z3ic/fanafjvgGqe2H1A779Vp14SKDWoWWxtKE4WstlmqSPJMFIslS5YwdOhQ/vzzT0JCQnB9xQXR/xebN28u6RD+czIzM9HV1S3pMErMlVPn2b50He980ht3Xy/O7j/O4h9nMnrG91jaWucrr6evT/22zXB0c0bPQJ+Hgff4a8FK9PT1qdOqsVrZ2Mhodi7fiEf5or3oO3bwCAtmzmHwqOH4V6rA7q07+Gb0VyxctRQ7B/t85cOfhvHt6HG07diOMRPGc/PaDeZMm4m5hQUNmjYCYMJPk8jMzFLVSYiP5/N+n9CwaV6bZvw8leAHD/lywjisbWw4tO8A44Z/ycLVS7CxtS3xNhzed5Al8xcxctwYylf050lIKNN+/BWAT4cPBiAtNQ0Pr7K0bNeGH76e+FYxF8aKA/tYc/ggEz7oh6u9PUv27GLIrN/Z9N1kjA0MCqxjbmxM/zbtcLd3QFdHmxPXr/P9yuVYmppR18+/WOO9fvoie5b/RYcB3XH18STg4ElW/TyXIdO+wcLGKl95PX09arduhINrGXT19Qi5c5/tf65DT1+PGi1yk5OH1u/g6skAOg/shY2TPUFXA1k7bRGffD8SRw/NP6YK49bZyxxctZXW/briXM6Dy4dPs/63hXzyy1jMbSw11ktLSWXH/DW4+3uTHJ+o9pqBsRH1OrXA2skebR1tgi7fYtfCdRibmeBZ6Z8lkl+lrlsFPqzelsUBO7kTGUIL7xqMa/YBI3fMIjolPl95H1tXBtfryvKLe7j4+DZWRmZ8UrsTn9bpwrTja9XK2hib06daawIjgos87n/KUFefoOjH7L59mp/aDirpcF7r0slzbFmyhm6f9sXD15vT+44wf/J0xs36CasCziH6Bvo0bNcCJ3cX9PT1eBB4jw3zlqGvr0+91k3+tbiXb9nMmu3b+G7YcFydyrB44wYGfzeBv+bOxdjQqMA6aenpODs40KJ+faYvWVxgmYSkJAZ8NZYaFSsy89vvsDI353F4OKbGxsXZHABunLnE3hWbaf9RN1x8PLl48BSrf57H4KnjMS/guPVcWkoqW+euxLNCOZJe+vde3O4H3ODM+r006NUeey9XAo9fYM8fq3h/4mBMrC001nt/8hD0DPJGWBiY5v199Y0NqdquERYONmhra/Po+l2OLd+KoZkxLv7Fn8B8bvn2bazZtZPvPhuMq6Mjizf/xeAfJ/PX7zMxNjQssM7FmzdpXa8BlXzKoa+rx/Lt2xjy4w9smDYdO6v8/56K0u1zVziyegct+nahTDl3rh45x1/TFtN/yijMrDWfL9JTUtm9cB1ufl4kJ6h/f7Kzstj42yKMzEzoNOQDTKzMSYyJU/vsitqts5c5sGorbfq9h0s5Dy4dPs263xby6S9fvfa8t33+Gjz8vfP9OzA0NqJ+p5bY/H3eu3f5JjsWrsPIzJSyxXDeE+JVZNimKHLJycls2LCBzz77jA4dOrBs2TK115ctW4aFhYXatq1bt6oy68uWLWPSpElcvXoVhUKBQqFQ7SMkJITOnTtjYmKCmZkZ77//PhEREar9TJw4kSpVqrBy5Urc3d0xNzenR48eJCbmHYjT09MZNmwYdnZ2GBgY0KBBAwICAlSvHz16FIVCwb59+6hatSqGhoY0a9aMyMhI9uzZQ/ny5TEzM6Nnz56kpKSo6jVp0oQRI0aonq9atYoaNWpgamqKg4MDvXr1IjIy8pV/u8jISDp27IihoSEeHh6sXr06X5n4+HgGDhyInZ0dZmZmNGvWjKtX3/zOeHZ2NgMGDMDDwwNDQ0N8fHyYOXNmkdRZunQp5cuXx8DAAF9fX+bOnat67fnw0Q0bNtCkSRMMDAxYtWoVOTk5fP/99zg7O6Ovr0+VKlXUeis+r7d582aaNm2KkZERlStX5syZM6oy0dHR9OzZE2dnZ4yMjKhYsSJr1+b9UFuwYAFlypQhJydHLd5OnTrx4Ycfqp7v2LGD6tWrY2BggKenJ5MmTSIrK4vicnzHAWo2a0DtFo2wd3ai80c9sLC25My+owWWL+PpStWGtXFwLYOVnQ3VG9fFp4o/DwPvqZXLyc5hzcxFtOreCSv7t0ssvc7m9Rtp3aEtbTu1x9XdjUEjhmBrZ8fOLdsLLL9r6w7s7O0YNGIIru5utO3Unlbt27Jp7QZVGVMzM6ysrVSPywEXMdA3oFGz3ORZeno6J48dZ8DgT6lYpTJOzmX4YEA/HBwdNL7vv92GwBs38a9YgaatmuPg6ED12jVp0rIZd2/fVZWpWbc2/QYOoEGTRm8d8z+lVCpZe/gg/du0o1nVang5lWFi3/6kZWSwL+CcxnrVy/nQtEpVPBwdcba1o2ez5niVKcOV+0HFHvPpXYep1rQu1ZvVw7aMA+0+fA8za0sCDpwosLyjhwuV6tfAzsURSztrKjeshVel8jy6fV9V5urJ8zTq0opyVf2xsrehVquGeFUuz6ldh4utHef3HKNyk9pUaVrn/9i76/Aorq+B49+4EXcXkpAEdw+BAsEpTrFSpIKXtkBpKVAoNWgpbSmU4gWKu7u7S7AQCBYg7rr7/hHYZLObYElDf+/5PE+eB2bvzN7Znd2ZPXPuudi5OtKsdwcsbK04u/twkettm7eSoLrVcPXVzP7wDPKlXM1K2Lk6Yu1oR80WwTi4O3P3WkSJ7EPrwHrsCT/DnpunuZ/4hIWntxKTmkhz/1pa2/vZufM4JZ5t147xJCWea08i2XXjJD62rmrtdHR0GFq/Cysv7OFRcmyJ9P1VHIu8zJzjG9h/61xpd+WF7Fu/nTpNg6nbrBFO7i50HNATazsbDm/Tfly7+XhSPbgOzh6u2DraUzOkHgFVKxJ+5dq/1melUsmyjRt4r0tXmtSth6+nJxOHjyA9I4NtBw4Uul55Pz+G932P0IbBGOprv+m2cM1qHO3sGD9sOBX8/XFxdKRW5cq4OTuX1O6oHNu8l6qN61Dt6fdWi3c7YWlrzcmdh4pcb9Nfy6lQvwZufl4l3seCLuw8SrkG1QhoWB1rZ3vqdWtJGWtLruw/VeR6JuZmmFqaq/50dfN+TrqU88a7aiDWzvZYONhQ8a062Lg6EnUzsqR3R0WpVLJsy2be69CRJrVr4+vhwcTBQ3KPsUOFvx+Thw2nS2go5by88XJ15csPPkCpVHLi4qUS7/OpbQepGFyTSiG1sXVxpEnPdpjbWHFu97Ei19uxYA2Bdavi7KuZpHDxwEnSk1N5e9i7uPp7YWlnjZu/Nw4ehWedv67jW/dRJaQ2VZ+e95o/Pe+dec55b+u8lZSvWw1XXy+NxzyDfAnId96r1aLR0/PerRLaC1FSZs6cibe3N8bGxlSvXp2DB7Vf1z2zf/9+td9ls2bN0mizevVqgoKCMDIyIigoiLVr15ZU9wEJnokSsHz5csqVK0e5cuXo1asX8+fPR6lUvvD63bp145NPPqF8+fI8fPiQhw8f0q1bN5RKJW+//TaxsbHs37+fnTt3Eh4eTrdu3dTWDw8PZ926dWzatIlNmzaxf/9+vvvuO9Xjo0aNYvXq1SxcuJAzZ87g6+tLaGgosbHqF/ATJkzgt99+48iRI9y9e5euXbsyffp0li5dyubNm9m5cye//vprofuRmZnJpEmTOH/+POvWrSMiIoK+ffsWue99+/bl9u3b7Nmzh1WrVjFz5ky1gJtSqaR169ZERUWxZcsWTp8+TbVq1Xjrrbc0+l8YhUKBm5sbK1as4MqVK3z11VeMHTuWFStWvNY6c+bM4YsvvuCbb74hLCyMKVOmMG7cOBYuVE/xHz16NMOGDSMsLIzQ0FB++eUXpk2bxtSpU7lw4QKhoaG0a9eOGzfUA0JffPEFn376KefOncPf35933nlHFdhKT0+nevXqbNq0iUuXLvH+++/Tu3dvjh/PDQ506dKF6Oho9u7dq9peXFwc27dvp2fPngBs376dXr16MWzYMK5cucLs2bNZsGAB33zzzQu9ri8rOyub++F38K+insXjX7k8d66FF7KWuvu3Irl9LRyf8urDPHeu3IiZhTm1mjYstv5CbqbgjWvXqVZLfYhYtVo1CLt0Wes6YZcua7SvXrsGN65eKzQwuX3TVho1bYzx07vDOdk5KHIUGBoaqrUzNDLi8oWXu6gtqX0oX7kiN65d59qVMAAe3n/AyaPHqVWv9kv1r7jdj4kmJjGROoF5wxMNDQyo5ufPhVsvduGpVCo5cTWMO48eUa2Eh69kZ2fzMOIuZSupDynxrRRI5PUXCxA9jLjL3eu38ArK62t2Vjb6BbJcDQwNiLz6Yp+1l5WTnU1UxD28K6h/Nr0rlOPejduFrndh/wniHsXQsKP2odj5KZVKbl+6TmzUEzxeYCjoy9LT1cPHxoULD9UDpucf3sTfXnu23vUnkdiaWlDFJfe1tzQ2o7ZHec7eVw/OdK7YmMT0FPaGnyn2fv9/kZ2Vzd3w25SrUkFtebkqFYi4+mJB7nu37hBx9Qa+Ff697I37jx4RExdHnSpVVMsMDQyoVqE8F66Gvda2D5w4QaCvL6N/+I5m7/amx8fDWbtj+2v2+PlysrN5EHFXIwvGp1IA94r43jq77xhxj6IJ6dSipLuoISc7m+jIB7gFqQ+ncwsqy6Pwu0Wuu2bSbBZ/OpVNPy3kwdXC90+pVHI/7BYJj2IKHQpaEu4/fkxMfDx1KuUNFTU0MKBaUBAXrr94oDg9I5Ps7Gwsy5QpiW6q5GRn8+j2fbwKnC+8Kvjx4ObtQte7eOAk8Y9jqPd2U62Ph5+9gouvJ7sXrWXm0K+ZP3Yaxzbu0biRXFxysrN5GHEP7wrqw8Z9nnPeO7//OHGPognu+Pzh40qlkgjVee/5Q0H/Fxig90b+vazly5czYsQIvvjiC86ePUvDhg1p2bIlkZHaA+sRERG0atWKhg0bcvbsWcaOHcuwYcNYvXq1qs3Ro0fp1q0bvXv35vz58/Tu3ZuuXbuqfv+VBBm2KYrd3Llz6dWrFwAtWrQgOTmZ3bt307Sp9i/3gkxMTChTpgz6+vo4OTmplu/cuZMLFy4QERGB+9OaBYsXL6Z8+fKcPHmSmjVzx74rFAoWLFiAubk5AL1792b37t188803pKSk8Mcff7BgwQJatmwJ5AZ9du7cydy5c/nss7wx9pMnT6Z+/foA9O/fn88//5zw8HB8fHJ/pHTu3Jm9e/cyerT2+hT9+vVT/dvHx4cZM2ZQq1YtkpOTKaPlRHz9+nW2bt3KsWPHqF27tuq1DAzM+xG5d+9eLl68yOPHj1WTEkydOpV169axatUq3n///ee+vgYGBkycOFH1f29vb44cOcKKFSvo2rXrK68zadIkpk2bRseOHVVtngWh8md3jRgxQtXmWf9Hjx6tqhX3/fffs3fvXqZPn87vv/+uavfpp5/SunVrACZOnEj58uW5efMmAQEBuLq68umneXWBhg4dyrZt21i5ciW1a9fGxsaGFi1asHTpUt566y0AVq5ciY2Njer/33zzDWPGjFH11cfHh0mTJjFq1CjGjx//3Nf1ZaUkJaNQKDC3tFBbXsbKgqR4zeFQ+U0e+BnJiUkoFDk069qO2k3zMpkirt7g5O5DfDztq2Lvc2J8Qm69CRv11Htra2tiY7QHb+Ni47C2LtDexpqcnBwS4hOwtVMfCnHtShi3b0Xw8ed576epmSmBFYJYumAxHp4eWNlYs2/XHq5dCcPFTT2jpbT2IaRpExLi4vnko+EolUpycnJo06Ed3Xr3eKn+FbeYhEQAbMzVjzMbcwuiYmOKXDc5LZVWY0eTmZWFnq4uo7v3oHZgydYIS03M/VyUsTRXW25maU5yfGKR604d9CUpickocnJo3LkV1ZvUUz3mWymQI1v24BXoi7WjHbcuXePqqQsoFC9+Y+el9iMpBaVCgZmW/UiJ1z40KzbqCXuXb6LXuCHo6hV+YZqemsZvQyeSk52Njq4uoX074V1Re42r12FhZIqerh4JaclqyxPSkrFyMde6zvXou/x6eBUjGnbDQE8ffV09Tt4NY/7Jzao25ew9aFy2GqO3zNS6DfFiUpKSUCgUWFipf7bNLS1Iiiv6HPJV/49JTsg9h7Ts9jZ1mzUqsn1xiomPA8C2wAgEW0srHj558lrbvv8oitXbttKzXXve69yFyzduMPWvORgYGNCmcZPnb+AVpSbmft4Lfm+VsTQnvJChmDEPH7N72UbemzC8yM97SUlPTkWpUGJioT6k1cTCjNTEZK3rmFqa07B3W+w9nMnJzuHGsfNs+nkhbT/pi7O/l6pdZmo6f4+eRk5WDrq6OtTv0VojSFeSYuLjAbC1tFRbbmtpycMn0S+8nd+WLsHexoZaFSsWZ/c0pD09X5haqv82MLU01xi6/0xc1BMOrtxK9y8+KvT4SXgSS2RYOIF1q9JxZD/iH0Wza9E6FDk51Hu7WbHvx7Pz3sucv5+d93qPG/rc896MoRNU570WfTvjUwLnPVFyfvrpJ/r378+AAQMAmD59Otu3b+ePP/7g22+/1Wg/a9YsPDw8VJPmBQYGcurUKaZOnUqnTp1U22jWrBmff/45AJ9//jn79+9n+vTpaiOQipMEz0SxunbtGidOnFDV/9LX16dbt27MmzfvhYNnhQkLC8Pd3V0VOAMICgrCysqKsLAwVfDMy8tLFTgDcHZ2VmVvhYeHk5WVpQqKQW5gqFatWoSFqd/xrFQpr3i4o6MjpqamqsDZs2UnTpwotL9nz55lwoQJnDt3jtjYWNWdnsjISIKCNH+AhoWFoa+vT40aeRkuAQEBakNcT58+TXJyMra26gGHtLQ0wsNfPINi1qxZ/PXXX9y5c4e0tDQyMzOpku8u8Muu8+TJE+7evUv//v0ZOHCgap3s7GwsC1y85N+/xMREHjx4oPZ+ANSvX19jKGr+98P56RCMx48fExAQQE5ODt999x3Lly/n/v37ZGRkkJGRgVm+Oic9e/bk/fffZ+bMmRgZGbFkyRK6d++O3tOT9enTpzl58qRapllOTg7p6emkpqZiaqpeh+XZc+T3SrOsFiwEqlQCRRcHHTR5FBnpGURev8WWv1dj5+RA1Ya1SU9LZ9kvc+n8UR/MLLT/uC0WBfqsRFl0QdOC7ZXPFmuus23TVrx8vCkXpJ559Nm4z/n52x/p+XZXdPV08fX3I6TZW4Rfv6GxjdLYh/NnzvHPoiUM/mQ4AeUDeXDvPrN++R3r+Yvp+V7vV+vjK9h64jjfLvtb9f+fPxrytJ/q7ZQoNRcWYGpkzJLPx5GakcHJa2H8vHolrnb2VPf/Fy5YNbr2nPcH6D9hBJnpGdy9cZudy9Zj42RPpfq53zet+nZm/Z/LmDFyEjo6Olg72lE1pA5n9xU9JOa1aTnOtL3uCoWC9b//TcNOLbB1dihyk0bGRvT75hOyMjK5ffkGu5esx8reFs+gkqknVDC8qKOjU2g2uaulPX1rtGL1xb2cf3ATaxNzelYLZUDtdsw+tg5jfUOG1O/Mn8fXk5SRqnUb4mUVPJ6UzzuFMHzKWDLS0rl9PZyNi1di5+xI9eA6JdK7rfv3MeWPvEDp9C9zb+zoUPCz8dyvpOdSKJUElfVlcO8+AAT4lOVWZCSrt20t0eBZnoLnCe3vhUKhYM1viwjp3PK5n/eSpvE+FHE/wcrJDisnO9X/Hcu6kxyXyPkdR9SCZwbGhnQa9yFZGZk8CIvg2MrtWNhb4/ICxe9fxdaDB5kyZ7bq/9PH5P6QLnjOUD7/tKeycP16th8+xOzxEzEqkPVeUjTOcUrt5z2FQsGmWcuo16EZNk6Fl+ZQKpSYmpeh+Xud0NXVxcnbjeT4RE5u2V8iwTMVjfOe9us9hULBut8Xv/B5b8A3n5KZkcnty9fZtWQd1iV43hPPV9jvIG2/hTIzMzl9+jRjxoxRW968eXOOHDmidftHjx6leXP1LPzQ0FDmzp2rqpl99OhRPv74Y402zwJuJUGCZ6JYzZ07l+zsbFxd87JBlEolBgYGxMXlZm/o6upqXHhnZWU9d9vKQk4iBZcXLECvo6OjClw9e17NE6rmtvNvR0dHp8jtFpSSkkLz5s1p3rw5f//9N/b29kRGRhIaGkpmZmah+6etb/kpFAqcnZ3Zt2+fxmMF68gVZsWKFXz88cdMmzaNunXrYm5uzo8//lhkiuvz1nn2OsyZM0eVNfeMXoE7SWZaCve+yvuR/3mnTZvGzz//zPTp06lYsSJmZmaMGDFC7bVu27YtCoWCzZs3U7NmTQ4ePMhPP/2kelyhUDBx4kS1rLhnjLUUVf/222/VsvEAxo8fT7XOb2m01cbMvAy6uroaWWbJCUmYF8gkKOhZHTNnTzeSEhLZuWIDVRvWJibqMXGPo5n/bd5w4mfH1egu7/PZr5Oxc3r1C3ULK0t09XSJK5ChFR8Xr5HJ9Yy1jTVxsQXbx6Gnp4dFgay79PR09u/aS58BfTW24+Lmyo+/Tyc9LY2UlFRs7WyZMu5rHJ2dNNqWxj4smjOfJqHNaNkuNzvSu6wP6enpzPj+J955t6daTZiSFFypMhW88n6gZD4dVhqTmIidpZVqeVxSErbmRR9nurq6uDvkHi/l3N25HRXFgu1bSzR4ZmqR+7lILpCdlZKQrJHFVZC1Q+6POkcPV5ITkti7aosqeGZmYU6PT98nKzOLtOQUzK0t2bl0PVYOJVME2tTcDB1dXVIK3G1PTUjGzFIz8zgzLYOoiLs8unOfHQtzbz4plUpQKvmuz6d0H/0BXuVzh0Lq6OqqfjA5eroSc/8RRzfuLvYfEYkZqeQocrAyUe+vhbEZCenaM1PeLh/M9SeRbLySW98mMv4R6Scy+Tp0IMvP78LSuAwOZawZFdJTtc6z7/OlPSbw8YZfeJQcV6z78b/KzDy31lRigXNIUkIS5laWhayVy/bpOcTFy52k+ES2/bOuxIJnwbVqUcE/bzha5tPJYaLj47CzySukH5sQj80LXscUxs7aGu8Csyl6u7mx56j2H2fFxdQi9/OenKD+eU9JTKaMlhtZmWnpPLgVycPb99iyYBWQ93n/uucIen8+SGPId3EzLmOKjq6ORpZZelIKphYvPkzRwduNm8cvqC3T0dXF8ul3q527M3FRTzi39VCJBc+Ca9Sggl/e91/eMRaPXb6s8djEBGzynQcLs3jjBuavW8PML7/Cz7Pkh5uaqM4X6ue91MRkre9FZloGjyLu8fjOA3YvXg/kHT/T3htDl88G4BHki5mVObp6emrXHzbODqQkJJGTnY2efvGGAZ6d9wpmmaUmJGk9f2emZfAw4i5Rd+6zvcB5b0qfT+gx+kOt5z0nT1ei7z/iyMZd/y+CZ3rKN3O2zcJ+B02YMEGjbXR0NDk5OTg6qk/K5ejoSFRUlNbtR0VFaW2fnZ1NdHQ0zs7OhbYpbJvFQYJnothkZ2ezaNEipk2bphEp7tSpE0uWLGHIkCHY29uTlJRESkqKKpBy7tw5tfaGhobk5OSoLQsKCiIyMpK7d++qss+uXLlCQkKC2tDGovj6+mJoaMihQ4fo0SN3OFVWVhanTp1SK/b/uq5evUp0dDTfffedqq+nThVdgDUwMJDs7GxOnTpFrVq5xZivXbtG/NP0c4Bq1aoRFRWFvr4+Xl5er9S3gwcPUq9ePQYNGqRa9rysteet4+joiKurK7du3VLVEHsRFhYWuLi4cOjQIYKD84YeHjlyRPUavIiDBw/Svn171XBhhULBjRs31I4LExMTOnbsyJIlS7h58yb+/v5Ur15d9Xi1atW4du0avi84nf3nn3/OyJEj1ZYZGRmx/Ubh2Yj56Rvo41rWkxvnr1CxdjXV8usXrlC+ZpUX2gbkXmhkP71QdHB15pOf1U9k25auJSM9nfb93sHKtvAZv16EgYEBfuX8OXvyNPUb5dVTO3vyNHUa1NO6TmCF8hw/fFRt2ZkTp/ALKId+gQu3A7v3kZWVSZPQwrNUjU1MMDYxISkxidMnTtJ/0AdvxD5kZKRrBMie3Sh4mZqPr8vM2FhtBk2lUomthQXHw65Qzj23oHBWdjZnblxn6NuageKiKJVKVTCupOjr6+Ps7U74xasE1cqrVxN+8SoBNV5i6IxSSU6WZl8NDA0wsLEiJzuHKyfOUb5ONS0rvz49fX2cvN2IuHSdcjXzsmYjLl3Hv7rmbKVGJkYM+PYztWWndx3mzpWbdBz2Lpb2hX92lWjf19eVo8jhVuwDKjmV5eTdvMzsSk5lOXXvqtZ1jPQNyClwU0nx7MYQOjxIiObTjeq1QrtVaYqxviELT20hOrXoobkij76BPu5lvbh27jKV6+Sdy66du0zF2lVffENKJdkvcAPzVZmZmKrNoKlUKrG1tub4uXME+OQO5cvKyuLMpcsMzVfi4VVUDgjkzv37asvuPHiAs33JZnfp6evj4u3OrQvXCKyZ97116+JVylXX/N4yMjHmox/UMzBO7jhExJXrdB3RDystM6WWRJ/tPFy4fyUc76p510r3wsLxqvziNfBi7j7UGG6oQZlbD6ukmJmYqM2gqVQqsbWy4viFCwR45wbssrKzOHPlCkN79CpyW4s2rGfumtX8NvZLgsr+O0NN9fT1cfRy5fblG/jVyKthePvyDXyraj9fvPuN+vXnud1HuRt2k7ZDeqvOF65+XoQdO4dSoUDn6fVJ3KNozKzMiz1w9mw/nJ+e9wI0znsVNNobmRgx8NtRastyz3s36DisL1ZFnPcA1bWvKB2F/Q4qyoskSzyvfcHlL7vN1yXBM1FsNm3aRFxcHP3799cYqte5c2fmzp3LkCFDqF27NqampowdO5ahQ4dy4sQJjRk5vby8iIiI4Ny5c7i5uWFubk7Tpk2pVKkSPXv2ZPr06WRnZzNo0CAaNWqkNhSwKGZmZnz00Ud89tln2NjY4OHhwQ8//EBqair9+/cvrpcCDw8PDA0N+fXXX/nwww+5dOkSkyZNKnKdcuXK0aJFCwYOHMiff/6Jvr4+I0aMwCTfBUHTpk2pW7cub7/9Nt9//z3lypXjwYMHbNmyhbfffvuFXgdfX18WLVrE9u3b8fb2ZvHixZw8eRJv78LvCL7IOhMmTGDYsGFYWFjQsmVLMjIyOHXqFHFxcRpfrvl99tlnjB8/nrJly1KlShXmz5/PuXPntM40WlT/Vq9ezZEjR7C2tuann34iKipKI6jas2dP2rZty+XLl1WBtme++uor2rRpg7u7O126dEFXV5cLFy5w8eJFJk+erPGchaUmv4zgts34Z8Zc3Mp64VnOh+M7DxAfHUvd5iEAbPl7NQmx8bwzLPfYPLx1D9Z2Nti75g5bvX31Bgc27KB+y9zhKAaGBjh5qNcAMzbL/dFScPmr6titCz9O+ha/gHIEVghi6/pNPH70iNYd2gIw7485xERH89m43GETrd9uy4bV65g9YyYt27Um7NIVtm/aypgJX2pse/umrdRr2AALS82siVPHT4JSiZuHOw/u3eev32fj5uFO89YvX2i5JPahdv26rP1nFWX9fQkIyh22uWjOfOo0qKfKvkxLTePBvbwfdlEPHhJ+/SbmFuY4OKnfOSsuOjo6vNOkKfO3b8XdwRF3BwcWbNuKsaEhoTXzskTHL5iHvZUVQ54G1OZv20qQpyeu9vZkZ2dz+PIlNh8/yph3Xjw4/qrqtW7Cmt8X4erjgbu/N6d2HSYhOpaaTyfA2LlsPYmxCXQanDs06/j2/Vja2WDvkvsa3rkWzuFNu6ndIq+O090bt0mKi8fJ043E2Hj2rtqCUqmkQbvXKydQlFotG7Hxj6U4+7jj6uvFub1HSYyJo+pbuUHafcs3kRSXSNsPe6Cjq4u9u/qMgGYWZdA30FdbfmTDLpy93bFytEORnU34uTAuHTpFaN/OJbIPm8OOMKReJ8JjH3DjyV3e8quBnZklO5/eJHinSjNsTC34/UhuAd/T967xfp32NPOryfmHucM2363RkhvRd4lLy82quJugPut0Smaa1uWlwcTACDfLvGFQLhZ2+Nm5kZie8kZmxIW0D+Xv6X/i4euFVzlfjuzYR1x0DPVDGwOwcfFKEmLi6DUitx7qwS27sLazxcEt95i6FXaDPeu3Edy65D4HBeno6PBO23bMX7UKDxcX3J1dmL9qJcZGRrTIdxPtq+k/42Brw5DeuQG1rKwsbt3NLWSflZ3Nk9hYrt26hamJMe7OubMH9mjXnn5jRjFv5QqaNWjA5es3WLtjO18MGlzi+1WndWPW/r4YFx933Py9Ob37CAnRcdRo2gCAXcs2kBSXQIdBvdHR1cXBXX3GQzPLMugbGGgsL0mVmtVl77w12Hm64FjWnbADp0mOTSCwUe615Ik1u0iJT6Rxv9zzwsVdRzG3tcLaxYGcnBxuHrtAxJkwmn2YVy/37NaD2Hu6YGFvjSI7h8hLN7h+9DwNe7b+1/ZLR0eHd1q1Zv66NXg4O+Hu5Mz8dWtyj7EGDVTtvvrtVxxsbBjSI/e8tnD9emat+IfJw4bj7GBP9NP6fKbGxpgam2h9ruJSo0VDtsxejpO3Gy6+HlzYe5ykmHgqN8nNCD2wYivJcQm0+qB77vnCTT3r3tTCDD0DfbXllZvU5cyuw+xZsoGqzeoTFxXN8Y17qNZMvVRKcardMoT1fyzB2ccdN18vzu49QkJMHNWenvf2Lt9EUlwC7T7s+fRzoHne0zPQV1t++Ol5z9rRlpzsHMLPhXHx0Ela9O1SYvshnu9lfgfZ2dmhp6enkRH2+PFjjcyxZ5ycnLS219fXV5UvKqxNYdssDhI8E8Vm7ty5NG3aVCNwBrmZZ1OmTOHMmTNUq1aNv//+m88++4w///yTpk2bMmHCBLVi9506dWLNmjU0btyY+Ph45s+fT9++fVm3bh1Dhw4lODgYXV1dWrRoUeSMl9p89913KBQKevfuTVJSEjVq1GD79u0aBcFfh729PQsWLGDs2LHMmDGDatWqMXXqVNq1a1fkevPnz2fAgAE0atQIR0dHJk+ezLhx41SP6+josGXLFr744gv69evHkydPcHJyIjg4+IW/KD788EPOnTtHt27dci8w3nmHQYMGsXXr1tdaZ8CAAZiamvLjjz8yatQozMzMqFix4nMz+oYNG0ZiYiKffPIJjx8/JigoiA0bNuDn9+Kz+o0bN46IiAhCQ0MxNTXl/fff5+233yYhQX04S5MmTbCxseHatWuqzMNnQkND2bRpE19//TU//PADBgYGBAQEqApbloQq9WuRmpTCrpUbSYxLwMnDhf5jh2P9dLhDYlwC8dF5Rd2VSiVblqwh9nE0enp62Dra07JnR+o0//eKPTdq2pjExESWzF9EXEwsnj5eTJr6LY5PJ/eIjYnl8aO8H8FOLs5Mmvots2f8zqY167Gxs+WjEUNo0DhYbbv3Iu9y+cJFpvz8g9bnTU1OYf6sOUQ/iaaMhTkNGjWk7wf9NbLXSmsferzbGx0dHRb+OY+YJ9FYWltRu35d+r6fF5S/fvUao4fmBZL//PUPAJq2DOXTL7VPPFIc+jQLJSMzk+//WUJSairlvbz5degItQy1qLhYdHTz7tSlZ2bw/T9LeRwfh5GBAZ6OTnzdtz/Na9QssX4+U7FeddKSU9i3eitJ8Yk4uDvTa8wg1V3opLhEEqLzhtEqlUp2LdtA3JMYdHV1sXG0o9k77anRNO8HQnZWFruXbyLucTSGxkb4VSlPp8F9MDEz1Xj+4hJUpyppSakcXruD5PhE7N2c6frZQCztcvcjOT6JxOiXC8hkZWSyfcFqkmLj0Tc0wNbFkbYf9SSozktkGr2Eo3cuYW5kSqeKIVibmHM3/hHf7V1MdErud6uVSRlszfLO+ftvncXEwJDQcnXoXb0FKZnpXH4UwZIzJT/jYXEIsPfktw55n9FhDXJ/nG0JO8o3exYWtlqpqdagNimJyWxfvp6EuAScPVz5YNxIbJ4OYU6MjSfuSb5ziELJxr9XEfvoCbp6etg5OdC2dxfqhYb8q/1+t0NHMjIy+G72LJKSk6ng789vEyaqZahFPXmCbr7sgSexsfQcOUL1/8Xr1rJ43Vqqla/An99MAaC8nx9Tx4zlt8WL+GvFclwcHfmk/wBaNgop8X2qULcaaUkp7F+zneT4BBzcnek5+kPV91ZyfCIJL/l5L2lla1YgPSWVM5v3k5qQjI2LAy2H9sTc1grIHW6XHJt3HZWTncOxVTtIiU9C30AfaxcHWgztgUfFvCGm2RmZHFq6mZS4RPQN9LFysqNJ/46UramZeVSS3m3XnozMTL6b+xdJKSlU8PXlt7FfqmWoRcVEo5vvvLdq53aysrMZ/dM0tW0N7NyFD7pon1CruATUrkJacipH1+cGLO1cneg4sh+Wdrm/TVISEkmMjX+pbVrYWtHls4HsXbqRhV/+TBkrC6o1b0Ct1iHFvwNPBdWpSmpSCofWbled97p/9n6+897Lfw6yMjLZtmAVSbEJT897DrT/qFeJnffeOCU0O+q/ydDQkOrVq7Nz5046dOigWr5z507at2+vdZ26deuyceNGtWU7duygRo0aqlI+devWZefOnWp1z3bs2EG9etpHkhQHHeW/OZ5ECCH+x224dLC0u/Da2lVoSET0/ec3fMN527n+5/fD286VxN37S7sbr83irUYsP7uztLvxWrpVbcaCfLNG/lf1rdmabn+Pe37DN9zyXpOo//uHpd2N13J48Cy2hR19fsM3XIvAuiSFXSvtbrwW88ByLP2PBHmL0qNaKNP2l8wsc/+mTxq9Q9K5C89v+AYzr1KJOcfWl3Y3XtvAOu1ZdHJLaXfjtfSp2aq0u/DKkvKV73mTmL9kjcrly5fTu3dvZs2aRd26dfnzzz+ZM2cOly9fxtPTk88//5z79++zaNEiACIiIqhQoQIffPABAwcO5OjRo3z44YcsW7ZMNdvmkSNHCA4O5ptvvqF9+/asX7+eL7/8kkOHDmnU4C4uknkmhBBCCCGEEEIIIYpdt27diImJ4euvv+bhw4dUqFCBLVu24Pl0Uo6HDx8SGRmpau/t7c2WLVv4+OOP+f3333FxcWHGjBmqwBlAvXr1+Oeff/jyyy8ZN24cZcuWZfny5SUWOAMJngkhhBBCCCGEEEK8Wf6HBgkOGjRIbfK5/ArWPwdo1KgRZ86cKXKbnTt3pnPnkqn7qo3u85sIIYQQQgghhBBCCPH/kwTPhBBCCCGEEEIIIYQohAzbFEIIIYQQQgghhHiT/A8N2/xfIJlnQgghhBBCCCGEEEIUQoJnQgghhBBCCCGEEEIUQoZtCiGEEEIIIYQQQrxJFDJs800imWdCCCGEEEIIIYQQQhRCgmdCCCGEEEIIIYQQQhRChm0KIYQQQgghhBBCvEmUitLugchHMs+EEEIIIYQQQgghhCiEBM+EEEIIIYQQQgghhCiEDNsUQgghhBBCCCGEeJMoZbbNN4lkngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEIIUQgZtimEEEIIIYQQQgjxJlHIsM03iWSeCSGEEEIIIYQQQghRCAmeCSGEEEIIIYQQQghRCBm2KYQQQgghhBBCCPEmkdk23yg6SqW8I0IIIYQQQgghhBBviqSHUaXdBa3MnZ1KuwulQjLPhBCiGPVcOqG0u/DalvSYQFLE7dLuxmsz9/bio9U/lnY3XssfnT4jvs+Hpd2N12a1aBb7bp4u7W68lhDf6ny68dfS7sZrm9p2KA/iH5d2N16bi5UD28KOlnY3XkuLwLrU//2///k+PHgWU/ctKe1uvJZPQ3oy9/jG0u7Ga+tfuy1Lz2wv7W68th7VQplxcEVpd+O1DGvYlaFrfyrtbry2XzuMZPqB5aXdjdcyIrhbaXdB/I+Q4JkQQgghhBBCCCHEm0SpKO0eiHxkwgAhhBBCCCGEEEIIIQohwTMhhBBCCCGEEEIIIQohwzaFEEIIIYQQQggh3iQKmdvxTSKZZ0IIIYQQQgghhBBCFEKCZ0IIIYQQQgghhBBCFEKGbQohhBBCCCGEEEK8SZQybPNNIplnQgghhBBCCCGEEEIUQoJnQgghhBBCCCGEEEIUQoZtCiGEEEIIIYQQQrxJZNjmG0Uyz4QQQgghhBBCCCGEKIQEz4QQQgghhBBCCCGEKIQM2xRCCCGEEEIIIYR4kygUpd0DkY9kngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEIIUQgZtimEEEIIIYQQQgjxJpHZNt8oknkmxP+YR48e8fXXXxMXF1faXRFCCCGEEEIIIf7zJHgm/pO8vLyYPn36v7o9HR0d1q1b91rPM2HCBKpUqfJa2yiKUqmkd+/eGBkZYW1t/VLrFvdr+rKCg4NZunRpqT1/fp9++inDhg0r7W4IIYQQQgghhHgDSPBM/Kvatm1L06ZNtT529OhRdHR0OHPmzL/cKzh58iTvv//+v/68xe3bb7/Fx8eH0aNHv/S6pfkabNq0iaioKLp3765aVjCYp1Qq+eSTTzA3N2fPnj0AhISEMGLECI3tLV26FD09PT788EOtzzd79mwqV66MmZkZVlZWVK1ale+//171+KhRo5g/fz4RERHFs4NCCCGEEEII8TIUyjfz7/8pqXkm/lX9+/enY8eO3LlzB09PT7XH5s2bR5UqVahWrdq/3i97e/t//TlLwtixY1953dJ8DWbMmMF7772Hrq72eH5OTg4DBw5k48aN7Nmzh5o1axa5vXnz5jFq1Cj++OMPfvrpJ0xNTVWPzZ07l5EjRzJjxgwaNWpERkYGFy5c4MqVK6o2Dg4ONG/enFmzZqkF1UpCU7+atA6sh5WJOfcTHrP49DauPYkstH09r4q0CayPk7ktqVnpXHhwk6Vnd5CcmQZA47LVaOBdGXcrBwAiYh+y/PxubsXcL7F9UCqV/Pn336zduoWk5GTKlwtg9ODBlPXyKnSd8Nu3mbV4EVdv3OTh40eM/OADenToqNbmzMWLLF61krAbN4iOjWXqV+MJqVevxPYj2KcKzfxrYmlchoeJ0aw8v4ebhbxufaq3pK5XBY3lDxKjmbRzvsbyGm4B9K/dlnMPbjD76Lri7roG4w5tMAxpgI6ZKTnht0ldtAzF/YdFrmMU2gTDJsHo2tqgTEom8+RZ0leuhaxsVRsdaytMunZAv3J5dAwMUUQ9InXuYnJuF37Mvop9m3ayY80mEmLjcfFwpev7ffCrEKC17ZnDJziwZRd3b90hOysbZ09X2vboRPnqldXapSansG7RCs4eOUlqcgp2jvZ0HtCTijWrFmvf86vnWZEQ36qYG5nxKCmW9ZcPEhH7oND2erq6NPOvRXXXcpgbmRGfnszuGyc5eTdM1aahd2XqelXE2sSclMw0Ljy8yZawo2Qrcoqlz+tWrWX538uIiYnBy9uLIR8Po1LVyoW2P3fmLDOn/8btiNvY2dnSvXcP2nV8W2vbPTt2MWncROoHN2Dyj9+qli9ZsJiD+w4QeecORkZGlK9YgfeHfISHp0ex7JM2B7fsZs+6rSTGxePk7krH/j0oW76c1rbhV66zcdEKHt1/SFZGJtb2ttQLbUzjdqEl1r/XUdnZlx5VmxPg4IGdmRVjtvzBwYjzpd0tlSv7TnJ+x1HSEpKwdnGgTtfmOPt5am374NptNv+0SGN5l4mDsHKy01gefvISe/5ag2flcjQf1K3Y+57f2V2HObFlH8kJSdi5OtKkZ3vcy/k8d7171yNYNuUP7N2c6Dt5pGr5xYMn2TpnuUb7kX99i76hQbH2vSgndxzkyKbdJMUn4uDmRGifTngGlH3uepHXbrHg6xk4uDvz4XcvfxP3dVzce5yz2w+RGp+MjYsDDbq3xMXfS2vb+1cjWDd1nsbyHpOGYe2cey0cc/8RJ9bv4cmdByTFxNOgW0sqNyu56w/I/W5/y68GFsZmPEyMYc3FfYQXcg3Sq1ootT3Layx/mBjNlN25nxcnc1taB9bD3coBWzNLVl/Yy77wsyW5CwBc2nuCc9sPkZqQjLWLPfW7FfFeXItgw1TNa6buXw9VvRdXDpzi2tFzxD54DIC9pwu1OzTF0dutxPZBiMJI5pn4V7Vp0wYHBwcWLFigtjw1NZXly5fTv39/AI4cOUJwcDAmJia4u7szbNgwUlJSCt1uZGQk7du3p0yZMlhYWNC1a1cePXqk1mbDhg3UqFEDY2Nj7Ozs6Ngx74d6wSynGzduEBwcjLGxMUFBQezcuVPjOUePHo2/vz+mpqb4+Pgwbtw4srKy1Np89913ODo6Ym5uTv/+/UlPTy/y9dm3bx86Ojps376dqlWrYmJiQpMmTXj8+DFbt24lMDAQCwsL3nnnHVJTU1Xrbdu2jQYNGmBlZYWtrS1t2rQhPDxc9fiiRYsoU6YMN27cUC0bOnQo/v7+qte14Gugo6PD7NmzadOmDaampgQGBnL06FFu3rxJSEgIZmZm1K1bV+15wsPDad++PY6OjpQpU4aaNWuya9euIvc5OjqaXbt20a5dO62PZ2Rk0KVLF3bu3MmBAweeGzi7ffs2R44cYcyYMQQEBLBq1Sq1xzdu3EjXrl3p378/vr6+lC9fnnfeeYdJkyaptWvXrh3Lli0r8rleVx2P8vSu1oL1lw/yxdZZXH0cyaiQXtiaWmpt72/vwUd1OrA//CyjN//OjEMr8bF1ZUDtvNcu0NGLo3cu8c2uhYzfMZfolATGNO6NtYl5ie3HwpUrWLp2DaMGDWbhjF+xtbFm8NjPScl3jBaUnpGBm5MzQ/r1w9baRmubtPR0/Lx9GDVocEl1XaW6Wzm6VG7CtqvHmLJ7ITej7zG4QedCX7cV53czetNM1d/nW/4gOSONM/euabS1MbWgY8UQbjy5W9K7AYBR6+YYtXiLtMX/kDT+OxQJCZQZNRyMjQpdx6BuLYy7dCB93WaSxkwkde5iDGtXx7hLB1UbHVNTzL/8DGVODilTfyPp84mkLVuFsoj3+VWcPHCUFXMW0arb23w5Ywq+FQL4dfz3xD6O1tr+xuWrBFatyNCJoxj7y2TKVQri96+nEhl+W9UmOyub6V9+S8yjJ3wwdjhf/zmV3sMGYGWr/dgrDpVd/GhXoSG7bpzi5wP/cCv2AQNqt8XKpEyh6/Su3hI/O3dWnN/D93sXs+TMdh4n59WvrOrqT6vAeuy8foIf9v7NivO7qeziR6vAusXS5z07d/P7zzPo9V5v5iyaS6UqlRn98Wc8inqktf3DBw/4/ONRVKpSmTmL5tKzb29+nfYL+/fs02gb9TCKP2bMpFIVzUDc+bPneLtzB36fO5sfZ/xMTk4Oo4aNJC0trVj2q6Azh46zdt5Smndpy2c/fU3ZIH9mTfqJ2CcxWtsbGRvRsFVThn0zls9/nULzLu3YsmQ1R7bvK5H+vS4TAyNuxtzjpwP/lHZXNISfvMzRFdup2qoBHb58HydfD7b9upTk2IQi1+vy9WB6/jBS9WfhoPnZTYqJ5/iqnTj5llzQ9ZmwY+fYvWQDddo1pe/XH+Pm78OqqX+RGF10vdmM1DS2/PkPnkG+Wh83NDFm0Iyv1P7+zcDZpaNn2LZoDQ3fbs4H347Co1xZlnz3BwnRsUWul56axrqZi/Gp4P8v9TTPjRMXOfTPVmq0akTXrz7C2d+Tjb8sJikmvsj1ek4eTt9po1R/lo62qseyM7OwsLembqdmmFoW/p1dXKq5+tOxUgjbrx3n+71/Ex5zn4/qdSj0GmTVhb2M3TJL9Tdu65+kZKZx9n7edb6hnj7RqQlsuHyIhPTkEt8HgJsnL3J4+VaqtW5El68+wtnPk80z/n7ue/HOpGG8O/Uz1V/+9+LBtdv41apE+0/eo+OYgZjbWLLp50UkxyWW8N4IoUmCZ+Jfpa+vT58+fViwYAHKfLOHrFy5kszMTHr27MnFixcJDQ2lY8eOXLhwgeXLl3Po0CGGDBmidZtKpZK3336b2NhY9u/fz86dOwkPD6dbt7w7jps3b6Zjx460bt2as2fPsnv3bmrUqKF1ewqFgo4dO6Knp8exY8eYNWuW1mGQ5ubmLFiwgCtXrvDLL78wZ84cfv75Z9XjK1asYPz48XzzzTecOnUKZ2dnZs6c+UKv04QJE/jtt984cuQId+/epWvXrkyfPp2lS5eyefNmdu7cya+//qpqn5SUxMcff8zJkyfZtWsXSqWSDh06oFAoAOjTpw+tWrWiZ8+eZGdns23bNmbPns2SJUswMzMrtB+TJk2iT58+nDt3joCAAHr06MEHH3zA559/zqlTpwDU3pfk5GRatWrFrl27OHv2LKGhobRt25bIyMKzUg4dOqQKzhWUnJxM69atuXz5MocPH9bapqB58+bRunVrLC0t6dWrF3PnzlV73MnJiWPHjnHnzp0it1OrVi3u3r373Havo2VAXfbdOsO+8DM8SIzm7zPbiElNoKmf9mPT19aNJynxbL9+nCcp8Vx/Esmem6fwsXFRtZl5ZA27bpzkTnwUDxOj+evEBnR1dCjv9Py74a9CqVSybO063uvenSYNGuDr5cXETz4lPSODbXv3Frpe+XLlGD5wIKEhIRgaaP9hUL9mTQb17UuTBg1KpO/5veVXgyO3L3L49kWikmJZeWEvcalJBPtU0do+PTuTxIwU1Z+ntROmhsYcvXNJrZ0OOrxXszWbwg4TnVL0j8PiYhT6FukbtpJ16hyK+w9I/XMhOoaGGNatVeg6+r4+ZN8IJ+voSRTRMWRfCiPz2En0vfN+hBq1aY4iNpa0vxaRc+t2brsr11AUEtR6VbvWbqF+8xAahDbG2cOVbu/3wdrOlv1btAfiu73fh9DObfHyL4ujqzMd3u2Og4sTF47nlQA4vHMfKUnJDBo3Et+gctg62ONbPgB3H+3ZLsWhkU8VTkRe4UTkFR4nx7Hh8kHi05Kp61lRa/ty9h6UtXXlr+MbuBF9l7i0JO7GP+JOXJSqjZe1M7djH3L2/nXi0pK4/uQu5+7fwM3SsVj6vHLZclq1a03r9m3x9PZiyMhhODg6sGH1Wq3tN6xZj4OTI0NGDsPT24vW7dvSsm1rVixRD9rk5OTwzVdf0/f9fji7Omts54dfptGiTSu8fbzx9fdl9LjPeRT1iOtXNYPRxWHf+u3UaRpM3WaNcHJ3oeOAnljb2XB42x6t7d18PKkeXAdnD1dsHe2pGVKPgKoVCb9SMv17XcciLzPn+Ab23zpX2l3RcHHXUcrVr0pAg2pYO9tTt1soZawtubL/VJHrmZibYWpZRvVXMFNdoVCwd+5aqrUNwdz+5Wq+vopT2/ZTqVEtKofUxtbVkbd6tcfcxoqze44Wud72+asJrFMVF1/t3z06OlDGykLt7990bPNeqjauQ7Um9bB3daLFu52wtLXm5M5DRa636a/lVKhfAzc/r3+no/mc23mEwAbVCAqugY2LAw27t8Lc2oJL+04UuZ6JhRlmluaqv/zHlKO3G/W7tMCvViX09Et+oFZj3+ocvX2Jo3cu8SgpljUX9xGXlkQDb+1Zv+nZmSRlpKr+PKwdMTEw5li+a5DI+Eesv3SAM/evkZ1TPJnJz3N+5xECGlQjqGF1rJ3tadC9FWWsLbi8/2SR65lYmGFqaa76y/9eNB3YmQqNa2Hn4Yy1sz2N+rRHqVRyP+xWSe/Om0GpfDP//p+S4Jn41/Xr14/bt2+zb98+1bJ58+bRsWNHrK2t+fHHH+nRowcjRozAz8+PevXqMWPGDBYtWqQ1c2vXrl1cuHCBpUuXUr16dWrXrs3ixYvZv38/J0/mfll/8803dO/enYkTJxIYGEjlypULHeK4a9cuwsLCWLx4MVWqVCE4OJgpU6ZotPvyyy+pV68eXl5etG3blk8++YQVK1aoHp8+fTr9+vVjwIABlCtXjsmTJxMUFPRCr9HkyZOpX78+VatWpX///uzfv58//viDqlWr0rBhQzp37szefIGJLl260KlTJ/z8/KhatSrz5s3j4sWLakMRZ8+ezcOHDxk2bBh9+/Zl/Pjxz83ieu+99+jatSv+/v6MHj2a27dv07NnT0JDQwkMDGT48OFq72PlypX54IMPqFixIn5+fkyePBkfHx82bNhQ6HPcvn0bR0dHrUM2J02axLlz5zh48CAeHs+/k6xQKFiwYAG9evUCoHv37qpsuWfGjx+PlZUVXl5elCtXjr59+7JixQpVoPEZV1dXVf9Kgp6uHt42Llx8GK62/GJUOH527lrXuRF9FxtTCyq7+AFgYWxGLfcgzj24obU9gJGeAXo6uqRklEwGx/2oKGLiYqlTrbpqmaGhIdUqVuRC2JUi1nxz6Ono4mHlxJVHt9WWhz2+jY+t6wtto55XRa4+vkNsqvqd0NaB9UjOSOPI7YvF1d0i6drboWtlSfalvGF+ZGeTfe0G+n6FB1Czr99E38sDPR8v1XYMKlcg63zehbhB1cpkR0RiOmQgFr/9QJlJYzEMKd7AZnZWNpE3IwiqWklteVC1ioSHXX+hbSgUCtLT0jEzz7sxcOH4aXwC/Fg6cz6f9vyQiYNGsWX5OhQ5iiK29Or0dHRxtXTgeoEh2NefROJloxk8Aijv5M3d+Mc0LludcU3fY3TjXrQJqo++rp6qTUTsA9ysHHC3yg2W2ZhaEODgSdjj26/d56ysLK5fvU6N2upB1hq1anLp4iWt61y5eJkatdTPIzXr1OJa2FWys/OG+y6auwAraytat2vzQn1JSc7NiLawKP7AQXZWNnfDb1Ouivqw63JVKhBx9WYha6m7d+sOEVdv4FvIUGKhXU52DtGRD3ENUh8C6Brkw6PwojNz10z+k78/+4nNPy3iwTXNeqRnNx3A2NyUgAYlNwz7mZzsbKJu38erQJaVd0V/7t+4Xeh6Fw+cIP5xNPU7NCu0TWZ6JrM+nszM4ZNYNW0uj26XXMmFgnKys3kQcZeyldSPa59KAdy7XngN2LP7jhH3KJqQTi1KuosacrKzeXLnAR7l1TP53Mv7EvWcY2r51zOZ/8n3rJs6n3tXSy8Qo6eji7uVI1cfq9+svfroDt62LoWspa6OZwWuPb5DXFpSSXTxheS+Fw9xL/D5zn0vii7tsPLrP1j46Q9smDaf+895L7Izs1Dk5GBkZvLafRbiZUnNM/GvCwgIoF69esybN4/GjRsTHh7OwYMH2bFjBwCnT5/m5s2bLFmyRLWOUqlEoVAQERGhkX0UFhaGu7s77u55AYegoCCsrKwICwujZs2anDt3joEDB75Q/8LCwvDw8MDNLW8sfd26mkNiVq1axfTp07l58ybJyclkZ2erXeiHhYVpFKyvW7euWtCrMJUq5f1wdHR0VA0Nzb/sxIm8O2qRkZFMmjSJ48ePEx0drQoERUZGUqFC7g8Ea2tr5s6dS2hoKPXq1WPMmDEv3Q+AihUrqi1LT08nMTERCwsLUlJSmDhxIps2beLBgwdkZ2eTlpZWZOZZWloaxsbGWh9r3rw5u3btYsqUKS80E+iOHTtISUmhZcuWANjZ2dG8eXPmzZunCoA6Oztz9OhRLl26xP79+zly5Ajvvvsuf/31F9u2bVMF8UxMck/KqYUMScvIyCAjI0NtmZFR4cPiCjI3MkVPV5eEdPXhyAlpKVg6ax8icCP6LjOPrGFo/c4Y6Omjr6vH6XtXWXhqS6HP071KU2LTkrgUVTIXhjFxuUM5bAvM7mprbc3DR49L5DmLWxkjE/R0dUkq8F4kpadg6Vh4ZuYzFsZmlHf0Yd6JTWrLfWxdqedVkW92LyzW/hZFxzL3O0iRoB7EUyQkomtX+BDFrOOnSLMoQ5kvPwV00NHXI2P3fjI2bVe10bW3w6hJMBnbdpGycRt6Pl6Y9OqKMiuLrMPHi6X/yYlJKBQKLKzUhy6bW1mSGPdimXs7124mMz2D6g3rqJY9iXpMzKMr1A6pz9AJo3j8IIplfyxAkaOgTY+ORWzt1ZgZPj2mMtS/P5Iy0jA3MtW6jo2pJd42zmQrsllwagtmhsZ0rBiCqYExK87vBuDcgxuYGZowuH4ndMgNwh+5fYG9N0+/dp8T4hNQ5ORgbaP+Wba2tSbumPYhW7ExMVjbqgfbrG2sycnJISE+Hls7Oy6ev8CWDZv562/NGkPaKJVKZv7yGxUrV8K7bPFnzKYkPTvG1ANz5pYWJD3nGPuq/8ckJyShUOTQstvb1G3WqNj7978sPTkVpUKJqYX696qJuRlpidpLc5halqFhrzbYeTqTk5XNjeMX2fzzYtqMfBdn/9zsraibkVw7fJaO4z4o8X0ASE1KQalQYGapPqTO1MKclATtwYvYqCfsX7GFHl8MRldPT2sbW2cHWg3shr27Mxlp6ZzecZAlk3+j7+SR2DiVfF3a1MTc/SpTYL/KWJoTXsh+xTx8zO5lG3lvwvBC96sk5R5TCkws1K+bTCzKkFpIn02tyhDSpz0Oni7kZGdz7eh51k9bQIfP+hVam6skmT27BskocA2SkYpFIeeL/CyMzAhy9C7yWvDf8Oy9MC34XpibkZqgfdioqaU5jXq3w/7pe3H92Hk2/LSQ9p++V+h7cWz1TsysLHALKpkRFUIURYJnolT079+fIUOG8PvvvzN//nw8PT156623gNysgQ8++IBhw4ZprKct+0ipVKKjo1Pk8meBkBeh1JKKWnD7x44dU2WyhYaGYmlpyT///MO0adNe+HmKYpBvGJuOjo7a/58ty58p1aZNG7y9vZkzZw4uLi4oFAq8vLzIzMxUW+/AgQPo6enx4MEDUlJSnntXv2A/Clv2rC+fffYZ27dvZ+rUqfj6+mJiYkLnzp01+pGfnZ0dcXHaa4S89dZbDBs2jPbt25OTk6M2VFWbefPmERsbqzZBgEKh4OzZs0yaNAm9fBd2FSpUoEKFCgwePJhDhw7RsGFD9u/fT+PGjQGIjc39sVjYRArffvstEydOVFs2fvx4eMlyH0rUjzcdHaCQbGhXC3v6VG/J2kv7ufAwHCuTMvSo0px+tdow57hmdl+bwPrU9azI5N0LyFJka9niy9u6Zw9TZvyi+v/0r3NrxRX8BOZ+/orlKf81Wj75Gu+PNnU9K5CWlc75fBmARvoGvFezFUvObCcls2Sy/iC3Vpnpez1U/0+e9nvuPwp+j+noFHpcAegH+GPctiVpC5eRHR6BnqMDJr26oohPIGP90wtyXR1yIu6Qvmo9ADl37qLn6ozRW42KLXiW198C/1dqWabFiX1H2LRkDYPGjVQLwCkVSsytLOg1dAC6erp4+vkQHxvHjtWbSyR4VpiiPhPPvk+XntlBenbud+aGy4foU6Mlay7uI1uRQ1lbV97yq8Gai/uIjHuEnZkl7SsE0zQ9lV03ih4W8+J9LNBJZdEd1ynwxjw7h+ro6JCaksqU8ZP5dOwoLK2sXuj5f/nxZ8JvhvPr7N9fptuvQMtB9pxjbPiUsWSkpXP7ejgbF6/EztmR6sF1il5JvBYrJzu1iQEcy7qTEpvAhZ1Hcfb3JDM9g73z1tGwdxuMyzw/0FCytJ/3FAoFm/5YQv2OzbFxLjwI5uLrqTac083Pi4VfTefMzsM07f12CfS3MFo+04Xs15rfFhHSuSW2zg7/Ut+003jdlcpCv7esneyxzheMdCrrQXJsAme3HyqV4NkzrzoQrrZnEGlZGVx48GKZsyVOy8uu7XcagLWTHdb5Pt/P3otzOw5rfS/ObjvIzRMXaf/Ze+gXUvLjf46yZDLkxauR4JkoFV27dmX48OEsXbqUhQsXMnDgQNUXa7Vq1bh8+TK+vtqLqRYUFBREZGQkd+/eVWWfXblyhYSEBFWWWqVKldi9ezfvvffeC2/vwYMHuLjkpksfPapew+Lw4cN4enryxRdfqJYVrI0VGBjIsWPH6NOnj2rZsWPHXmifXkZMTAwXL15k5syZ1K5dG4D9+/drtDty5Ag//PADGzduZMyYMQwdOpSFC4s3I+bgwYP07duXDh1yi4wnJyc/d9hj1apViYqKIi4uDusC2UsAzZo1Y9OmTbRt2xaFQsFvv/2m9SQcExPD+vXr+eeffyhfPm8GIoVCQcOGDdm6dStt2mgfMvRsOG3+SSkuXbqEgYGB2rby+/zzzxk5cqTaMiMjI/qt/lZr+4KSMlLJUSiwMla/Q2dhbFZoYdd25RtwPTqSzWFHALgb/4j52ZsZ36wfK8/vIT7feq0C6tGufEO+3bOIu/Hai32/iuA6dagQkDcjXWZm7iQZ0XFx2NnmFXiNjY/HRsv7+SZKzkgjR6HAwlg9G8Lc2JTE9OcXw6/nVZHjkVfIyXeBY29mjZ2ZFR/VywvMPDtuf+vwCRN2zCU6Jf61+5519jxJ4fmG0xjkntZ1rSzJyZd9pmthjjKx8OK6xp3aknnkOJn7DwOguPcAjAwxfa8XGRu2glKJMj6BnAIzduY8iMKgRvHNkFzGIrfWScEss6SEBI1stIJOHjjKohl/8sGY4QRWVa8rZmljhZ6eHrp6ecPDnd1dSYyLJzsrG32D4r0cSsnMPaYKZpmVMTTRyEZ7Jik9hYT0ZFXgDOBxciy6OjpYmZQhOiWB0HJ1OHPvGicic4dERyXFYKhnQOfKjdl94+Qr//gCsLSyRFdPj9gY9SyzuNg4jWy0Z2xsbTXax8fFo6enh4WlJbdvRRD18CFjP83LdFY+vdnyVr0QFq1Ygqtb3tDoGVN/5sjBw/wy+1fsHUvmx7iZ+dNjLL7gMZaE+XOOMVvH3B/cLl7uJMUnsu2fdRI8ewnGZUzR0dUhtUCWWVpSCiYWz8/yfcbBx42bx3OHwic9iSM5Jp7tv+fV2XsWwP3ro0l0/XowFvbFOzGIqbkZOrq6GllmqYnJmFpoFnjPTMsgKuIej+48YNeidXl9VCr5se8ouo4aiGeQn8Z6Orq6OHm7E/foSbH2vzCmFrn7lVwgczklMZkyWvcrnQe3Inl4+x5bFuROzvRsv77uOYLenw/Cu4QnEMg9pnQ1MpvSklI0MqCK4ujjxvVjpTMjbcqzaxCjAtcgRqYkFnK+yK+OZwVO3lW/BikNRb0XL/P5dvRx1/penNt+iDNbDtJ25LvYujm9dn+FeBUSPBOlokyZMnTr1o2xY8eSkJBA3759VY+NHj2aOnXqMHjwYAYOHIiZmRlhYWEaRfKfadq0KZUqVaJnz55Mnz6d7OxsBg0aRKNGjVSTAowfP5633nqLsmXL0r17d7Kzs9m6dSujRo3Sur1y5crRp08fpk2bRmJiolqQDMDX15fIyEj++ecfatasyebNm1m7Vr2g8vDhw3n33XepUaMGDRo0YMmSJVy+fFlt+GVxsLKywsbGhlmzZuHk5MSdO3c0JjhISkqid+/eDB06lJYtW+Lh4UGNGjVo06YNXbp0Kba++Pr6smbNGtq2bYuOjg7jxo3TqCVWUNWqVbG3t+fw4cOFBreaNGnC5s2badOmDUqlkt9//10jgLZ48WJsbW3p0qWLRv20Nm3aMHfuXNq0acNHH32Ei4sLTZo0wc3NjYcPHzJ58mTs7e3VhucePHiQhg0bFpq1aGRk9FLDNAvKUeQQEfuACk5lOXXvqmp5RaeynM73//wM9QxQFLg4Uv0/3+vROrAeb5cP5vu9fxMR++CV+6iNmakpZvky+5RKJbbWNhw/e4aApwHvrKwszly8yNB+/Yv1uUtKjlJBZHwUgQ6eatljuf8v+k6un507DmWsNWqaRSXFMGmn+vTrbcs3wFjfkJXn9xCXWngg66WkZ6BIV/9hpYhPQL98IDl3ntZ70dNDv5wfaSu0F30HwNAQFAVCLwqF2h3k7Bvh6DmrF6bXdXJEEaN9hsJXoW+gj4evN2FnL1K1Xl4trbCzl6hcp3qh653Yd4RFv8xmwKghVKylWfOobJA/J/cdQaFQqL4fHt1/iKWNVbEHziD3mLqf8Bh/e3e1IdP+9h6FDqGOiH1IJRdfDPUMyMzJDUrbm1mhUCqIT8v9MWKop6+RDalQKp5mfxWRtvoCDAwM8A/w59SJkzQMCVYtP33iJPWDtde2C6pYnqMHD6stO3X8BOUCA9DX18fD04N5S9Vv0sydNYfU1FSGjhyOw9MAmVKpZMbU6Rzaf4CfZ87A2eXF6vy8Cn0DfdzLenHt3GW1Y+rauctUrP0S9bKUSrILzLAtiqanr4edhzP3w27hXTWvrtb9sFt4Vi5XxJrqYu5GYfJ0BkRLJzs6faVeIuPU+r1kpWdQt1sLzKyLDoi+Cj19fZy8XLl96Tr+NfIC9bcvXce3WgWN9kYmRrw35RO1ZWd3HSEy7Cbth/bBspDgnlKp5HHkfezdtNdJLG56+vq4eLtz68I1AmvmFaq/dfEq5aprTnRiZGLMRz+olwA5ueMQEVeu03VEP6zsbTXWKYk+23u6cPdKOD7V8uoK370SjneVF69JGH33IaZWJTcreVFylAruxj8iwMGDCw/zrjnKOXhq1MUtyNfODYcy1vx1W3tdyn9T7nvhzL0w9ffi3pVwvF7mvYh8iGmBocNntx/izOb9tB7eBwevF6tFK0RJkAkDRKnp378/cXFxNG3aVG04ZqVKldi/fz83btygYcOGVK1alXHjxuHsrP3iQUdHh3Xr1mFtbU1wcDBNmzbFx8eH5cuXq9qEhISwcuVKNmzYQJUqVWjSpAnHj2sfZqSrq8vatWvJyMigVq1aDBgwgG+++UatTfv27fn4448ZMmQIVapU4ciRI4wbN06tTbdu3fjqq68YPXo01atX586dO3z00Uev+nIVSk9Pj+XLl3PmzBkqVKjAyJEjNYaPDh8+HDMzM1Xdr/Lly/P999/z4Ycfcv9+8RWj/fnnn7G2tqZevXq0bduW0NBQqlUrOitFT0+Pfv36qdW40yYkJIQtW7awePFiPvroI43htfPmzaNDhw5aJx7o1KkTmzZt4tGjRzRt2pRjx47RpUsX/P396dSpE8bGxuzevRvbfJlTy5Yte+E6ea9q69WjNC5bjUY+VXGxsKNXtVBsTS3ZfSN31rFuld/iw7odVO3P3r9ODfdA3vKtgb2ZNf527vSp3pKb0feIf1oktk1gfbpUasKfx9fzJCUeS+MyWBqXwUjfsET2QUdHh3c6vM38f/5h7+HD3Lx9mwnTpmJsZESLp0NgAb768Qd+m5dX8ygrK4tr4eFcCw8nKzuLJ9ExXAsP5+6DvOMxNS1N1QZyJye4Fh5O1OPir6W2+8Yp6ntXoq5nBZzMbehcqTHWphYcjMi9+9m+fEPerdFKY736XhWJiHnAg0T1GSezFTk8SIxW+0vLzCA9O5MHidEleoc4Y/tujNu2wKB6FXRdXTB9/12UmZlkHs2rk2j6fl+Mu7yd199zFzF6KxiD2jXQtbNFv3wgxp3akXX2gmoIaMa23eiV9cGobQt0HewxqFsTo8YNyNilmen6Opp2aMWhHXs5vGMfDyPvs+LPxcQ+iSa4Ve7Q/rUL/mH+tLyZi0/sO8L8n/6gc/9eeJfzIyE2noTYeNJS8u7YN2rVjOSkZJbPXsSj+w+5eOIsW1esJ6R182Lte377b52jlkd5aroH4lDGmnblG2BlUkY1G1rLgLp0r5JXOPzs/eukZqbTrcpbOJaxxsfGhTZB9TkRGUa2InemtCuPIqjrWZEqLn7YmFjgZ+dOi4A6XI6KeKEhxs/T5Z1ubFm/iS0bNnMn4ja//zyDR48e07bj2wDM+X0WUyZMVrVv17E9j6Ie8fv0X7kTcZstGzazZcNmuvbsDoChkRHeZX3U/sqYl8HU1BTvsj6qMgDTf/yJndt28MXXX2FqZkpsTAyxMTFkpGdo9LE4hLQP5diu/RzbdYCouw9YM3cpcdEx1A/N/c7auHglf0//U9X+4JZdXDpxlscPonj8IIpjuw+yZ/02aoTUK5H+vS4TAyP87Nzws8ut3epiYYefnRuOZUo/G7hi07pcO3SGa4fPEvfwCUdXbCc5NoHA4NxA5om1u9k7f52q/cVdx7h97ioJj2KIffCYE2t3E3EmjPIhucF1fQN9bFwd1P4MTY0xMDbCxtUBPf2SqcNVo0UjLuw/wYX9J4i5/4jdS9aTGBNPlSa5mYj7V2xh8+xlQG4Gmb2bs9qfqUUZ9A0MsHdzxvDpjbjDa3cQceEa8Y9jeHTnPtv+WsHjyAdUaaJZd7ek1GndmDN7j3J271Ge3I9i26I1JETHUaNpbgB917INrJ25WLVfDu4uan9mlrn75eDugqHxq99gfBlVmtXjysHTXDl0mtgHjzn0zxaSYhMoH5Jbj/Ho6h3smrtK1f78ziPcOnuF+EcxxNx/xNHVOwg/fYWKjWur2uRkZ/Mk8iFPIh+Sk51DcnwiTyIfEv+o+G4W5bf35mnqelWkjmd5HM1t6FixETam5hx6eg3SNqgBvatrTshQ17MCEbEPeZik2a/ciWvscbW0R19XD0sTc1wt7bEzsyqRfQCo3KweYQfPEHboDHEPn3B4+dbc96JR7uf12Jqd7J67WtX+/K4jRJwNI/5RDLH3H3NszU5unblCxSZ578XZbQc5sW43Ie++jYWdFakJSaQmJJFVQueHN45C+Wb+/T8lmWei1NStW1drfTGAmjVrqiYQ0KbgUEAPDw/Wr19f5PN17NiRjh2117YpuD1/f38OHjyotqxgX3/44Qd++OEHtWUjRoxQ+//YsWM1ZvX8/vvvC+1jSEiIxvP07dtXLTMPYMKECUyYMEH1/6ZNm6rNrFmwv/PmaRZqHjZsmFpduYKvQcF+eHl5aSwr2F8vLy/27Nmj1mbw4MEaz13QiBEjKF++PHfu3MHT01NrfwCCg4NJSsobJpF/ps8LFy4Uuv2OHTuS9TRDoFOnTnTq1KnI/mzevBk9PT06d+783L6/jmORlyljZEqHCo2wMinDvYTH/LhvCdGpucOJrEzMsTXNu2t+IOIcxgaGNPevRc9qoaRmpnP5UQT/nNupatPUryYGevqMaNhN7blWX9zHmov7SmQ/3u3SlYyMTL777TeSkpOoEBDAb1O+VctQi3r8BF2dvMDmk5gYeg4epPr/4tWrWLx6FdUqVuLPH38E4Mr163w4Oi879Oc/ZwPQpmkzJnz6abHuw+l71zAzNKF1YD0sjM14mBjN74dXq2bPtDQug42p+p1QY31Dqrr6s+L8Hm2bLDUZm3egY2iIybvvoGNqSs6tCJJ/mAH5LjR1bW3U6qKlr9+CUqnEuHM7dK2tUCYlk3X2gqq+GUBOxB1SZszCpMvbGLdvjSI6mrQlK8nKF5QrDjWD65KSmMzmZWtIiI3HxdONIRNHYeuQO2QuITae2Cd5PxQObtuNIieHZX/MZ9kfedl+dd8Kpu/I3IwUG3tbhk8aw8o5f/P14DFY2VrTpF0LWnRuV6x9z+/8gxuYGRjTzL8WFkZmRCXFMPf4RtVsaBbGZlib5A0ryszJYvax9XSoEMzw4G6kZqZz/sFNtl7NKxuw6+nQzBYBdbA0LkNyZhpXoiLU2ryOJs3eIjEhkUXzFhAbHYOXjzff/fwDTs65Q2RiYmJ4/ChvGLiziwvf/vwDM6f/yvpVa7G1s2PoJ8Np1CTkpZ53w+p1AHz8kXqt09HjPqdFG82g9euq1qA2KYnJbF++noS4BJw9XPlg3EhsHHJr7yTGxhOX7xhTKpRs/HsVsY+eoKunh52TA217d6FeaEix9604BNh78luHvLICwxrkZphvCTvKN3v+vQlMtClbszwZKamc2XyA1IRkbFwcaDGkB+a2VgCkJiSTEps3pFaRk8PxVTtJiU9C30AfKxd7Qoe8g0dFzWGO/6bAOlVIT07hyPqdpMQnYufmROdP+mP5dGKWlPhEEmO013MtTHpqGtvnryQlIQkjE2McPF15Z+wgnMs+f7bx4lKhbjXSklLYv2Y7yfEJOLg703P0h1g9zY5Ljk8kIfrl9quk+dWqSHpKKqc27iMlIQlbF0faDu+NRb5jKikm75jKyc7h8IrtpMQnom9ggI2rA62H9carUt4Q05T4JFZ8nXeT5tz2w5zbnluHq8Oo4s+qP3P/OmaGJrQoV+fpNUgMfxxZqzpfWBqbYW2ieQ1SxcWP1Rf3ad2mpUkZxjTprfp/U78aNPWrwY0nd5lxaGWx7wOAb82KpCencXpT7nth4+JA62G98j7f8Ukk5/98Z+dwZGXee2HtYk+rYb3wrJj3XlzedxJFdg47Zi1Xe64abUOo2a5JieyHEIXRURYWvRBCiH/R+vXrsbGxoWHDhqXdFVasWIGnp6eqhtzL6Ll0QvF36F+2pMcEkiJul3Y3Xpu5txcfrf6xtLvxWv7o9BnxfT58fsM3nNWiWewrhhkhS1OIb3U+3Vj0pCX/BVPbDuVB/H9jJtyiuFg5sC2seIKGpaVFYF3q//7f/3wfHjyLqfuKzh5/030a0pO5xzeWdjdeW//abVl6ZvvzG77helQLZcbBFaXdjdcyrGFXhq79qbS78dp+7TCS6QeWP7/hG2xEcLfnN3pDJV278fxGpcC8XOnewCgtknkmhHgjtG/fvrS7oNK1a9fS7oIQQgghhBDi/zPJc3qjSM0zIYQQQgghhBBCCCEKIcEzIYQQQgghhBBCCCEKIcM2hRBCCCGEEEIIId4kMmzzjSKZZ0IIIYQQQgghhBBCFEKCZ0IIIYQQQgghhBBCFEKGbQohhBBCCCGEEEK8SRSK0u6ByEcyz4QQQgghhBBCCCGEKIQEz4QQQgghhBBCCCGEKIQM2xRCCCGEEEIIIYR4k8hsm28UyTwTQgghhBBCCCGEEKIQEjwTQgghhBBCCCGEEKIQMmxTCCGEEEIIIYQQ4k0iwzbfKJJ5JoQQQgghhBBCCCFEISR4JoQQQgghhBBCCCFEIWTYphBCCCGEEEIIIcSbRCHDNt8kknkmhBBCCCGEEEIIIUQhJHgmhBBCCCGEEEIIIUQhZNimEEIIIYQQQgghxJtEqSjtHoh8JPNMCCGEEEIIIYQQQohC6CiVSqlCJ4QQQgghhBBCCPGGSDp3obS7oJV5lUql3YVSIcM2hRCiGO27ebq0u/DaQnyrk/TgQWl347WZu7iw6OSW0u7Ga+lTs1Vpd6HYnL4bVtpdeC3V3QOZtn9ZaXfjtX3S6J3S7kKxSQq7VtpdeC3mgeWYum9JaXfjtX0a0pP6v39Y2t14LYcHz/rP7wPk7sfSM9tLuxuvrUe10NLuQrEYt+3P0u7Ca5vU4n02XT5U2t14LW3KNyjtLrw6yXN6o8iwTSGEEEIIIYQQQgghCiHBMyGEEEIIIYQQQgghCiHDNoUQQgghhBBCCCHeIEqFDNt8k0jmmRBCCCGEEEIIIYQQhZDgmRBCCCGEEEIIIYQQhZBhm0IIIYQQQgghhBBvEplt840imWdCCCGEEEIIIYQQQhRCgmdCCCGEEEIIIYQQQhRChm0KIYQQQgghhBBCvEmUitLugchHMs+EEEIIIYQQQgghhCiEBM+EEEIIIYQQQgghhCiEDNsUQgghhBBCCCGEeJMoZLbNN4lkngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEKIUhUXF0fv3r2xtLTE0tKS3r17Ex8fX2j7rKwsRo8eTcWKFTEzM8PFxYU+ffrw4MEDtXYhISHo6Oio/XXv3v2l+ibBMyGEEEIIIYQQQog3iVL5Zv6VoB49enDu3Dm2bdvGtm3bOHfuHL179y60fWpqKmfOnGHcuHGcOXOGNWvWcP36ddq1a6fRduDAgTx8+FD1N3v27Jfqm9Q8E0IIIYQQQgghhBClJiwsjG3btnHs2DFq164NwJw5c6hbty7Xrl2jXLlyGutYWlqyc+dOtWW//vortWrVIjIyEg8PD9VyU1NTnJycXrl/knkmxH/YggUL2Lp1a2l3QwghhBBCCCHE/wMZGRkkJiaq/WVkZLz2do8ePYqlpaUqcAZQp04dLC0tOXLkyAtvJyEhAR0dHaysrNSWL1myBDs7O8qXL8+nn35KUlLSS/VPgmeixHh5eTF9+vR/dXs6OjqsW7futZ5nwoQJVKlS5aXW2bdvHzo6OkWOxy5ua9as4YcffqBOnTqvtH7fvn15++23Vf8PCQlhxIgRRa5TXO/pnj17CAgIQKFQvPa2SsLjx4+xt7fn/v37pd0VIYQQQgghxP9HCuUb+fftt9+qapI9+/v2229fe3ejoqJwcHDQWO7g4EBUVNQLbSM9PZ0xY8bQo0cPLCwsVMt79uzJsmXL2LdvH+PGjWP16tV07NjxpfonwzaFhrZt25KWlsauXbs0Hjt69Cj16tXj9OnTVKtW7V/t18mTJzEzM/tXn/NNdevWLb788ku2bt2KtbV1sWxzzZo1GBgYFMu2nmfUqFF88cUX6Ormxu8XLFjAiBEj1IKPYWFhNGvWjFq1arFs2TKMjIzYu3cvP/74I8ePHyctLQ0vLy9atmzJyJEjcXV1VXuOcuXKERERQUREhMZjt27d4osvvmD//v3ExsZiZ2dH9erV+fHHH/H398fBwYHevXszfvx4/vrrrxJ9LfZt2smONZtIiI3HxcOVru/3wa9CgNa2Zw6f4MCWXdy9dYfsrGycPV1p26MT5atXVmuXmpzCukUrOHvkJKnJKdg52tN5QE8q1qxaLH1WKpX8uXAhazdtIikpifKBgYwePpyy3t5Frrd7/35mzZ/PvQcPcHNxYVD//jRu2FD1eNvu3Xn46JHGel3at2f008DungMHWLNxI2HXr5OQmMiSOXMo5+tbLPt1auchjm3ZS3J8IvauTjTr9TYeAWWfu97d67dYPPl37N2cGDjlM9Xys3uPcvHgSZ7cyz3ZO3m7EdK1Na5lPYulv//Ldq7fwqaV64iPicPVy50+g/oTULG81rZxMbEsmTWfiBvhRN1/SGiH1vQZNECj3dbVG9i1cRvRj6MxtzSndsN6dBvQG0NDwxLbj8v7TnBh+xFSE5KwdnGgbrcWOPtpf/8fXItg07SFGsu7ThyMlbO9xvKbJy6y56/VeFYuR+jgd4q97/9rlEolf/6zjLU7dpCUkkx5P39Gf/AhZfMN5ygoPDKSWUuXcDU8nIdPHjOyX396tGuv0e5xTAy/LlrAkTNnSM/IwNPFlXFDhhJYTN9Nz1zZd5LzO46S9vR4qtO1eRHH0202/7RIY3mXiYOwcrLTWB5+8hJ7/lqDZ+VyNB/UrVj7/aoqO/vSo2pzAhw8sDOzYsyWPzgYcb60u/VS/ov7cHLHQY5s2k1SfCIObk6E9umE5wucCyOv3WLB1zNwcHfmw+9G/ws9/d9Syz2IBt6VKGNkyuPkOLZePcqduMKDBXo6ujT2rU5lF1/KGJmSmJ7C/vCznLl/DYAgRy+CfapiY2qBno4uMakJHL59kfMPbpTofhzeuod967eTGBePk7sr7ft1xyfIX2vbW2E32LxoFY/vPyQzMxNre1vqNm9Eo7bNVW2O7dzPqX1HiYrMvaHtVtaTVj074uHnU6L7IYr2+eefM3LkSLVlRkZGhbafMGECEydOLHKbJ0+eBHKTYQpSKpValxeUlZVF9+7dUSgUzJw5U+2xgQMHqv5doUIF/Pz8qFGjBmfOnHnhuIYEz4SG/v3707FjR+7cuYOnp/pF2bx586hSpcq/HjgDsLfX/PHw/5WPjw9Xrlx5obZZWVkvFBSzsbF53W69kCNHjnDjxg26dOlSaJuTJ0/SsmVL2rdvz59//omenh6zZ89m0KBBvPvuu6xevRovLy8iIyNZtGgR06ZN46efflKtf+jQIdLT0+nSpQsLFizgiy++UD2WmZlJs2bNCAgIYM2aNTg7O3Pv3j22bNlCQkKCqt17771HrVq1+PHHH4stQKmxnweOsmLOInoM6kfZQH8ObNvNr+O/Z8IfP2LjoPnj5sblqwRWrcjb73bDxMyUI7v28/vXUxnz0yQ8ynoBkJ2VzfQvv8Xc0oIPxg7H2s6GuCcxGJmYFFu/F/7zD0tXrmT86NF4uLszd/FiBn/2GasXLcLM1FTrOhcuX2bs11/zYb9+NG7YkL0HDzJm4kTmzphBhaAgABbNmkVOvmzE8IgIBn/6KW+FhKiWpaWnU7lCBZqGhDB56tRi26crx86y8+91tOjbGXd/b87sOcI/P/7JB9+PwdKu8Pc/PTWNDbOW4l3ej+QE9dTvO2E3CapbDTd/b/QN9Dm6aQ/Lvp/F+9+NxsLGqtj6/r/m6N5DLPpjHv2GfYB/+QB2b97O959P4se5v2LnqHkeyM7KwtzKkvY9urB19Qat2zy0ez///LWY9z8dgn/5AB7ee8CsH2cA0HtQ/xLZj/CTlzi6fBsNerTG0deDsAOn2Drjb7pOGEwZW6tC1+s6aQiGxnkXoMbmmjeNkmLiOb5qB05+hQd+hLqFa9ewdMN6xg8bjoeLK3NXrmDw+K9YPXMmZibav7fSMzJwc3Kiaf36/DRvrtY2icnJ9B8zmhoVK/LLuPHYWFpyLyoK82K+2Rd+8jJHV2ynfo9WOJZ15+qBM2z7dSldJgyijI1loet1+XpwgeNJc19zj6edOPm+WceTiYERN2PuseXqEaa0/LC0u/NK/mv7cOnoGbYtWkPrfl1wL+fD6V2HWfLdHwyeOhZLu8KvE9NT01g3czE+Ffw1zoXi+So4+dAysC6brhwiMu4RNdwD6V29Jb8eWkFCeorWdbpVaUoZIxPWXjpAbGoCZoYm6OrkDSpLzcpgf/hZolPiyVbkUM7Bkw4VGpGSmcbN6Hslsh9nD51g/fx/6DiwF96Bvhzdvp85k6cz6pdJWNvbarQ3NDKkfqsmuHi6YWhsRETYDVbNWoShkRF1mzcC4Oala1RtUAuvAF/0DQzYu24rsyf+xKhfJmFpWzLX5+L5jIyMigyWFTRkyJDnzmzp5eXFhQsXeKTlRvqTJ09wdHQscv2srCy6du1KREQEe/bsUcs606ZatWoYGBhw48aNF45tyLBNoaFNmzY4ODiwYMECteWpqaksX76c/v1zf2gcOXKE4OBgTExMcHd3Z9iwYaSkaP+CB4iMjKR9+/aUKVMGCwsLunbtqvHh2LBhAzVq1MDY2Bg7Ozu1VMqCQwZv3LhBcHAwxsbGBAUFaRQKBBg9ejT+/v6Ympri4+PDuHHjyMrKUmvz3Xff4ejoiLm5Of379yc9Pf25r9GWLVvw9/fHxMSExo0bc/v2bY02L/v6PBsuOnv2bNzd3TE1NaVLly4aQ0Hnz59PYGAgxsbGBAQEqEXVb9++jY6ODitWrCAkJARjY2P+/vtvcnJyGDlyJFZWVtja2jJq1CiUBWZKKThs8/Hjx7Rt2xYTExO8vb1ZsmSJRp9/+ukn1bTA7u7uDBo0iOTk5CJfu3/++YfmzZtjbGys9fE9e/bQpEkT3nvvPebOnYuenh737t1j2LBhDBs2jHnz5hESEoKXlxfBwcH89ddffPXVV2rbmDt3Lj169KB3797MmzdPbV+vXLnCrVu3mDlzJnXq1MHT05P69evzzTffULNmTVW7ihUr4uTkxNq1a4vcn9exa+0W6jcPoUFoY5w9XOn2fh+s7WzZv0Uz6xOg2/t9CO3cFi//sji6OtPh3e44uDhx4fgZVZvDO/eRkpTMoHEj8Q0qh62DPb7lA3D3KZ5sJ6VSybJVq3ivVy+aBAfj6+3NxDFjSE9PZ5uWbNVnlq1aRe0aNXivZ0+8PDx4r2dPalWrxtLVq1VtrK2ssLOxUf0dOnoUNxcXqlfOy6xr3bw5A999l1rVqxfL/jxzfOs+qoTUpmrjOti5OtK8dwcsbK04s/twkettnbeS8nWr4errpfHY24N6U6NZA5w8XbFzcaT1gG4oFUpuXy7Zu77/dVtWryekRVMat2qGq6c7fQYNwNbBjl0bt2ltb+/kyLuDBxDcvDGmZtqDIDeuXMO/QgD132qEvZMjlWpUpV7jhty6frPE9uPCzqOUa1CNgIbVsXa2p163lpSxtuTK/lNFrmdiboappbnq71mG7jMKhYI9f62mervGWBQR2BV5lEolyzZu4L0uXWlStx6+np5MHD6C9IwMth04UOh65f38GN73PUIbBmOor/0m1MI1q3G0s2P8sOFU8PfHxdGRWpUr4+bsXKz7cHHXUcrVr0pAg2pYO9tTt1voSxxPZVR/2o6nvXPXUq1tCOb2b9bxdCzyMnOOb2D/rXOl3ZVX9l/bh2Ob91K1cR2qNamHvasTLd7thKWtNSd3HipyvU1/LadC/Rq4+Xn9Ox39H1PPqxJn7l3j9L1rPEmJZ+vVoySmJ1PLI0hre187N7xsnFl8ehu3Yu4Tn5bM/YQn3I3P+111O/YhYY9v8yQlnri0JI7ducSjpFg8rV69WPrzHNi4g1pvNaROs2Ac3Vx4u/87WNnacGT7Pq3t3Xw8qdawNk4ertg42FG9UV3KValARNh1VZteH79P/ZZNcPX2wNHNma4f9UWpVHLjQliJ7ccbRal4M/9ekp2dHQEBAUX+GRsbU7duXRISEjhx4oRq3ePHj5OQkEC9evUK3f6zwNmNGzfYtWsXtraawdqCLl++TFZWFs4vcb6W4JnQoK+vT58+fViwYIFa0GHlypVkZmbSs2dPLl68SGhoKB07duTChQssX76cQ4cOMWTIEK3bVCqVvP3228TGxrJ//3527txJeHg43brlDQ3YvHkzHTt2pHXr1pw9e5bdu3dTo0YNrdtTKBR07NgRPT09jh07xqxZsxg9WjNF3NzcnAULFnDlyhV++eUX5syZw88//6x6fMWKFYwfP55vvvmGU6dO4ezsrJHiWdDdu3fp2LEjrVq14ty5cwwYMIAxY8aotXnZ1+eZmzdvsmLFCjZu3Kiamnfw4MGqx+fMmcMXX3zBN998Q1hYGFOmTGHcuHEsXKg+1Gf06NEMGzaMsLAwQkNDmTZtGvPmzWPu3LkcOnSI2NjY5waF+vbty+3bt9mzZw+rVq1i5syZPH78WK2Nrq4uM2bM4NKlSyxcuJA9e/YwatSoIrd74MCBQt/XtWvX0rp1a7744gt+/PFH1fJnx15h285fDDIpKYmVK1fSq1cvmjVrRkpKCvv27VM9bm9vj66uLqtWrSInJ6fIvtaqVYuDBw8W2eZVZWdlE3kzgqCqldSWB1WrSHi+i4aiKBQK0tPSMcuXmXLh+Gl8AvxYOnM+n/b8kImDRrFl+ToUOcVTX+7+w4fExMZSJ997aGhoSLXKlblw+XKh6124coXaBd73OjVrFrpOVlYWW3bupF3Lli+Upv06crKzeRhxD+8K6jP4+FQox70btwtd7/z+48Q9iia4Y+gLPU9WRiaKHAUmZbQHeERuFlnE9XAq1aiitrxi9Spcv3L1lbdbrkIgEdfDuXk197P16EEU506coWpt7d9FrysnO5voyAe4BakPdXILKsuj8LtFrrtm0mwWfzqVTT8t5MHVCI3Hz2zaj4m5GQEN/v0M8P+q+48eERMXR5189UwNDQyoVqE8F66+3g+wAydOEOjry+gfvqPZu73p8fFw1u7Y/po9VpeTnUN05ENcCxxPrkE+zz+eJv/J35/9xOafFvHgmubxdHbTAYzNTQloUDzD+sV/V052Ng8i7lK2knrpCJ9KAdy7rnnsPHN23zHiHkUT0qlFSXfxf5Keji4uFnYa2WA3o+/hbqU90ybAwZMHCU9o4F2Zz0J6MrxhV0LL1UZfV6/Q5/GxccHOzJLbcQ+Ltf/PZGdlcy/8DuUqq5dYKFcliNtXX+xG1b1bd7h97SY+QZozKj6TmZlBTk4OplqyssV/X2BgIC1atGDgwIEcO3aMY8eOMXDgQNq0aaM202ZAQIDqt2x2djadO3fm1KlTLFmyhJycHKKiooiKiiIzMxOA8PBwvv76a06dOsXt27fZsmULXbp0oWrVqtSvX/+F+yfDNoVW/fr148cff2Tfvn00btwYyB2y2bFjR6ytrRk+fDg9evRQZSr5+fkxY8YMGjVqxB9//KGRVbRr1y4uXLhAREQE7u7uACxevJjy5ctz8uRJatasyTfffEP37t3VxkNXrqxeyyn/9sLCwrh9+zZubm4ATJkyhZYtW6q1+/LLL1X/9vLy4pNPPmH58uWqIMz06dPp168fAwbk1seZPHkyu3btKjL77I8//sDHx4eff/4ZHR0dypUrx8WLF/n+++9VbX788ceXen2eSU9PZ+HChap9+vXXX2ndujXTpk3DycmJSZMmMW3aNFVGnre3N1euXGH27Nm8++67qu2MGDFCLWtv+vTpfP7553Tq1AmAWbNmsX174Rf3169fZ+vWrWrTBM+dO5fAwEC1dvkz1by9vZk0aRIfffRRkQHI27dv4+LiorE8OTmZLl26MHbsWI1g5I0bN7CwsHihOwP//PMPfn5+lC+fe/Lu3r07c+fOVR3Hrq6uzJgxg1GjRjFx4kRq1KhB48aN6dmzJz4+6vUTXF1dOXv2rNbnycjI0JhV5mXSl5MTk1AoFFhYqQ+3MbeyJDEuoZC11O1cu5nM9AyqN8ybNOJJ1GNiHl2hdkh9hk4YxeMHUSz7YwGKHAVterxcUUxtYmJjAbAtMJTV1tpaa72y/OtpW+fZ9grad+gQycnJtG1R8hfjqUkpKBUKyliaqy03szQnOT5R6zqxUU/Yu3wTvccNRVev8IvV/PYu34S5tSXe5bXX/hCQlJD7ubC0tlJbbmltSUJs3Ctvt17jhiTFJzBxxFhQKsnJyaFp2xa0e6fTa/ZYu/TkVJQKJSYW6hf3JhZmpCZqz841tTSnYe+22Hs4k5Odw41j59n080LaftIXZ38vAKJuRnLt0Bk6jXvzh3+9SWLic48d2wKzbtlaWvHwyZPX2vb9R1Gs3raVnu3a817nLly+cYOpf83BwMCANo2bvNa2n3l2PJkWPJ7MzUhL1J7RbmpZhoa92mDn6UxOVjY3jl9k88+LaTPyXZz9czORo25Gcu3wWTqO+6BY+in+21ITtZ8Ly1iaE17IUMyYh4/ZvWwj700Y/sLnQqHO1NAYPV1dkjPT1JYnZ6ZhbqT9ZpuNiQUe1k5kK3JYenYHpgbGtC3fABMDY9Zd2q9qZ6RvwGchvdDX1UOhVLDpymHCY0pmMqyUpNzzdxkr9aFyZSwtSYq/VOS6Xw/49Ol1cQ6hXdtTp1lwoW03L16NpY01fpW0Z+WJ/74lS5YwbNgwmjfPrX3Xrl07fvvtN7U2165dU5XbuXfvHhs25JbtKDjp3969ewkJCcHQ0JDduxkM0W0AAQAASURBVHfzyy+/kJycjLu7O61bt2b8+PHovcR3lwTPhFYBAQHUq1ePefPm0bhxY8LDwzl48CA7duwA4PTp09y8eVNtKJ9SqUShUBAREaERZAkLC8Pd3V0VOAMICgrCysqKsLAwatasyblz59QK+RUlLCwMDw8PVZAJoG7duhrtVq1axfTp07l58ybJyclkZ2erjX8OCwvjww/Vf4TUrVuXvXv3FvncderUUcuGKfjcL/v6PKNtnxQKBdeuXUNPT4+7d+/Sv39/tdcpOzsbS0v1AEz+zK6EhAQePnyo1kd9fX1q1KihMXQz/z4+a/NMQECAxnS/e/fuZcqUKVy5coXExESys7NJT08nJSWl0Mkd0tLStAYPTUxMaNCgAXPmzOGdd95Re41etEgk5Ab5evXqpfp/r169CA4OJj4+XtX/wYMH06dPH/bu3cvx48dZuXIlU6ZMYcOGDTRr1kytT6mpqVqf59tvv9UofDl+/HhCerV9oX6qFNwtpZZlWpzYd4RNS9YwaNxItQCcUqHE3MqCXkMHoKuni6efD/GxcexYvfmVgmdbd+5kSr56ctOfzqRT8P1QalmmoeA6SmWhu7p+yxbq1a6NvZ1m7bcS84L7pFAoWPf7Yhp2aoGts+aMQNoc3bSby0fP0uuLwegb/jsTc/ynaf1cvHoG4pVzF1m3dBX9hn1A2QA/Hj2IYtHvf7HGdjkde5VccXQdCh7zhbe1crJTK+TuWNad5LhEzu84grO/F5npGeydu4aGvdtprYMm8mzdv48pf+TdxJn+Ze7Qfo33g9c6rABQKJUElfVlcO8+AAT4lOVWZCSrt20ttuDZq9B2PKXEJnBh51Gc/T1zj6d562jYuw3Gkg0r1Gieq7WdrBUKBWt+W0RI55YvfC4URVE/QeigU+g549m1ycoLe8jIzi1Hs+3qUbpVacamK4fIVuSOrMjMzmLmkdUY6hngY+tCi4A6xKYlcju2ZLLPcvtWcInyuV+0g78ZTWZ6Bneuh7N58WpsnR2o1rC2Rrs9a7dy9tBxBn09CoP/L9dSRV04/I+ysbHh77//LrJN/t+wXl5ehf6mfcbd3Z39+/cX2eZFSPBMFKp///4MGTKE33//nfnz5+Pp6clbb70F5J4wP/jgA4YNG6axnoeWmasKC37kX27yEgXNtX1ACm7/2LFjqky20NBQLC0t+eeff5g2bdoLP8+LPndBL/v6FObZPuno6KB4Wkh9zpw5qmywZwpGzF93VtJn+1hUMOTOnTu0atWKDz/8kEmTJmFjY8OhQ4fo37+/Rl25/Ozs7IiL08wg0dPTY926dXTq1InGjRuzZ88egp4Wkvf391cFAYvKPrty5QrHjx/n5MmTasN4c3JyWLZsGR999JFqmbm5Oe3ataNdu3ZMnjyZ0NBQJk+erBY8i42NLXSiisJmmTl6t+i7a8+UscitZVQwyywpIUEjG62gkweOsmjGn3wwZjiBVSuqPWZpY4Wenh66enmj8p3dXUmMiyc7Kxt9g5f72g+uX19V0B9QpT9Hx8Zil6+eQGxcHDZFTKxga2OjkWUWGx+vdaKKh1FRnDhzhh+eMytPcTE1N0NHV1cjyyw1IQmzAnfgATLTMngYcZeoO/fZvnAN8PQzo1Qypc8n9Bj9IV7l/VTtj23ey+ENu+gx5iMcPTSzLkUe86c1vhJi49WWJ8QnaGSjvYyVC5bSoGkIjVvlfr49fLzISE/nr59n8naPLhp1oF6XcRlTdHR1NLLM0pNSMLUo88LbcfB24+bxCwAkPoklKSae7b8vVT3+7Lt6zocT6fb1UCwc/p2JX950wbVqUcE/L8MzMysbgOj4OOzyfefEJsRjU+Cm0Muys7bGO9+NQQBvNzf2HD3yWtvNL+94Us8yS0tK0chuLIqDjxs3j18EIOlJHMkx8Wz//R/V48+Op78+mkTXrwdjYS/H0/8nphZPz4UJ6ufClMRkylhoOxem8+BWJA9v32PLglVA3rnw654j6P35ILwrSKb186RmppOjUFDGUD2IbWZoTHKm9hu4SRmpJKanqAJnAE+S49HV0cHC2IzY1Nz3UAmqf0clxWBvZk2wT5USCZ6Zmeeev5Pi1I+f5IREzC2LLtxu+3QyIGdPN5LiE9mxfL1G8Gzvum3sXr2ZDyd8iouXu7bNCFHiJHgmCtW1a1eGDx/O0qVLWbhwIQMHDlQFU6pVq8bly5fxfcFp2IOCgoiMjOTu3buq7LMrV66QkJCgyjCqVKkSu3fv5r333nvh7T148EA1BPDo0aNqbQ4fPoynp6faTIt37txRaxMYGMixY8fo06ePatmxY8ee+9zr1q1TW1ZwnZd9fZ7Rtk+6urr4+/vj6OiIq6srt27domfPni+8TUtLS5ydnTl27BjBwblp0NnZ2Zw+fbrQmUUCAwPJzs7m1KlT1KpVC8hNj80/ecGpU6fIzs5m2rRpqh+eK1aseG5/qlatWuhMoUZGRqxZs4bOnTvTuHFjdu/eTYUKFejcuTNjxozhhx9+UKtZ98yzrLK5c+cSHBzM77//rvb44sWLmTt3rlrwLD8dHR0CAgI4ckT9x86lS5cIyTfTY8G+vswwzYL0DfTx8PUm7OxFqtbLm6gg7OwlKtcpvBj+iX1HWPTLbAaMGkLFWpo1asoG+XNy3xEUCoXqfXl0/yGWNlYvHTgDMDM1VZtBU6lUYmtjw/FTpwjwyw0QZWVlceb8eYa+/36h26kUFMTx06fpmW+W1eOnTlGpfHmNthu2bcPayooGWrJJS4Kevj7O3m5EXLpOQM28GnQRl67jX72CRnsjEyMGfqtef+/0rsPcuXKDjsP6YpXvB+fRTXs4vH4n74z+ABefN2smuzeRvoEB3v5luXj6HDUb5A1HvnT6HNXrad6FflEZGRno6qrfDNDV1c29oVsCd3X19PWx83Dh/pVwvKvmZdHeCwvHq3JAEWuqi7n7EFPL3GCblZMdncerf4edXLeHrIxM6nVrgZlN0T9O/j8xMzFVm0FTqVRia23N8XPnCPDJrRuWlZXFmUuXGZqv5MGrqBwQyJ376sOg7jx4gLN98WXi6OnrYefhzP2wW3hXzTt+7ofdwrNy4bWBCoq5G4XJ0+PJ0smOTl+pZ96fWr+XrPQM6nZrgZl10TdxxP8ePX19XLzduXXhGoE188qm3Lp4lXLVK2q0NzIx5qMf1MtsnNxxiIgr1+k6oh9WWmZXFJpylAoeJEZT1s6VsMe3VcvL2rlxNd//84uMi6K8kw+Gevpk5uTeHLA1s0ShVJBYyOyckJsAVlRdtNehb6CPW1lPrp+/TMU6eb8vrp+/Qnkt16uFUubWT8tv77pt7Fq1iffHfYy7lgmahPi3SPBMFKpMmTJ069aNsWPHkpCQQN++fVWPjR49mjp16jB48GAGDhyImZkZYWFh7Ny5k19//VVjW02bNqVSpUr07NmT6dOnk52dzaBBg2jUqJFqaOD48eN56623KFu2LN27dyc7O5utW7dqLRLftGlTypUrR58+fZg2bRqJiYlqQTIAX19fIiMj+eeff6hZsyabN2/WKJI/fPhw3n33XWrUqEGDBg1YsmQJly9f1qh9ld+HH37ItGnTGDlyJB988AGnT5/WmJn0ZV+fZ4yNjXn33XeZOnUqiYmJDBs2jK5du+LklDszzoQJExg2bBgWFha0bNmSjIwMTp06RVxcnEYWVMH9/O677/Dz8yMwMJCffvpJYxbP/MqVK6cq1vjnn3+ir6/PiBEj1LIDy5YtS3Z2Nr/++itt27bl8OHDzJo1q9BtPhMaGqoxwUF+hoaGrF69mq5du9KkSRN2795NxYoV+fnnnxkyZAiJiYn06dMHLy8v7t27x6JFiyhTpgzfffcdixcv5uuvv6ZCBfWAx4ABA/jhhx84f/48SqWS8ePH07t3b4KCgjA0NGT//v3MmzdPLVstNTWV06dPM2XKlOfu06tq2qEV86fNxNPPB58APw5u20Psk2iCW+VmeK5d8A/xMbG898kgIDdwNv+nP+j2fh+8y/mpsnMMjQwxeTrLYKNWzdi7cQfLZy+iSbtQHt+PYuuK9TRpWzy1w3R0dHinc2fmL1mCh5sb7m5uzP/7b4yNjWnRtKmq3VdTpuBgb8+Qp0OMu3fqxPvDh7Ng2TJC6tdn3+HDHD99mrkzZqhtX6FQsHHbNtqEhqKvpQZBQmIiUY8f8yQ6GoA7kZFAbmabnZYsthdVu2UI6/9YgrOPO26+Xpzde4SEmDiqvZU7s8/e5ZtIikug3Yc90dHVxcFdPQPSzKIMegb6asuPbtrN/lVbeXtQbyztbFSZbYbGRhgav3rg9X9dq07tmfn9dHz8ffELKseezTuIfhzNW21zJ2b456/FxEbHMGjMCNU6t2/eAnLrRibGJ3L75i30DQxw88y9WVOtTk22rt6Ap68PvgH+PHrwkJULllK9bs0Sq9NTqVld9s5bg52nC45l3Qk7cJrk2AQCG+We806s2UVKfCKN++UOp7646yjmtlZYuziQk5PDzWMXiDgTRrMPuwK5gUUbV/Xi0UamuUPgCy4X6nR0dHinbTvmr1qFh4sL7s4uzF+1EmMjI1oE59XW+Wr6zzjY2jCkd25ALSsri1t3cwvyZ2Vn8yQ2lmu3bmFqYoy7c+5Nrh7t2tNvzCjmrVxBswYNuHz9Bmt3bOeLQYM1O/IaKjaty775a7H3dMbBx42rB8/kHk/BuTdbTqzdTUp8Eo3fexuAi7uOYW5nhbWzfe7xdPwiEWfCaPpB7g0MfQN9bFzVA3yGquPpzRiCZ2JghJtlXva3i4UdfnZuJKan8Cj51Wsg/pv+a/tQp3Vj1v6+GBcfd9z8vTm9+wgJ0XHUaNoAgF3LNpAUl0CHQb2fngvVs6nNLMugb2CgsVwU7cjtC3Sq1JgHCdHcjX9EDfdALI3LcCIyd0KTZv41sTAyY/XFfQBceHiTkLLV6FAxhD03TmFqaExoudqcuXdNNWQz2KcK9xOeEJuaiJ6uLv72HlRx8WfjlZKZCAsguG1zls34CzdfL7zKleXYjgPERcdSt3kjADb/vZqEmDh6DM+tNX1o6x6s7WxwcM29dooIu8G+Ddtp0CpvyPuetVvZtmwdvT4eiLWDnWrEhpGxEUYm2mtI/09R/P8btvkmk+CZKFL//v2ZO3cuzZs3VxtuWKlSJfbv388XX3xBw4YNUSqVlC1bVm32zPx0dHRYt24dQ4cOJTg4GF1dXVq0aKEWSAoJCWHlypVMmjSJ7777DgsLC1WmVEG6urqsXbuW/v37U6tWLby8vJgxYwYt8hUXb9++PR9//DFDhgwhIyOD1q1bM27cOCZMmKBq061bN8LDwxk9ejTp6el06tSJjz76qMhi+h4eHqxevZqPP/6YmTNnUqtWLaZMmUK/fv1e+fV5xtfXVzWTZ2xsLK1atVIrvj9gwABMTU358ccfGTVqFGZmZlSsWFGtcL82n3zyCQ8fPqRv377o6urSr18/OnTooCq0qM38+fMZMGAAjRo1wtHRkcmTJzNu3DjV41WqVOGnn37i+++/5/PPPyc4OJhvv/1WLYtPm169ejF69GiuXbumNmtKfgYGBqxYsYJ33nlHFUAbNGgQ/v7+TJ06lQ4dOpCWloaXlxdt2rRh5MiRbNiwgZiYGDp06KCxPT8/PypWrMjcuXP56quv8PLyYuLEidy+fRsdHR3V/z/++GPVOuvXr8fDw4OGDRsWuT+vo2ZwXVISk9m8bA0JsfG4eLoxZOIobB1yL7QTYuOJfRKjan9w224UOTks+2M+y/6Yr1pe961g+o7MzSCwsbdl+KQxrJzzN18PHoOVrTVN2rWgRed2xdbvd7t3JyMjg++mTycpKYkKgYH89uOPahlqUY8fqw2Fq1yhAt989RV/zJ3LrHnzcHNx4duvvlIbEgpw4vRpoh49ol2ByT+eOXDkCBPzTc4xdtIkAAa++y4f5Avwv6ygOlVJTUrh0NrtJMcnYu/mTPfP3sfSLjcglxyfSEL0y/3QOb3rMDnZOayesUBtecMOoQTLrGSFqtu4AcmJiaz5eznxsXG4eXkwaso47B1zf9DHx8YS81i9yPvYD/NuHkRcD+fIngPYOdozY8kcADr06oqOjg4r5y8hNjoWC0sLqtWtSdd+L57F+7LK1qxAekoqZzbvJzUhGRsXB1oO7Ym5rRWQOyw4OTbvOzgnO4djq3aQEp+EvoE+1i4OtBjaA4+KMuypOLzboWPu99bsWSQlJ1PB35/fJkxUy1CLevIE3XzlCp7ExtJz5AjV/xevW8vidWupVr4Cf36Te2OlvJ8fU8eM5bfFi/hrxXJcHB35pP8AWjYKKdb+l61ZnoyUVM5sPqA6nloM6ZHveEomJd/xpMjJ4fiqnarjycrFntAh7+BR0a+QZ3jzBNh78luHvM/2sAa5gb8tYUf5Zk/hN+HeJP+1fahQtxppSSnsX7Od5PgEHNyd6Tn6Q1VG9aucC8XzXYq6hamBMSG+1TA3MuVRUiyLT28lIT136H8ZI1MsTfKG/GfmZLPg1GZaB9bnw3odSctM51LULXbdOKlqY6CnT9ugBlgYm5GVk010SjyrLuzhUtStEtuPqg1qkZqUzM4VG0mMS8DZw5UBXwzHxiG3/mJiXDzx0XklPJQKJVv+Xk3s42h09fSwdbSnda9O1HkabAM4sm0vOdnZLPzxD7Xnat61HaHd25fYvgihjY7yRQo4CSFK3IQJE1i3bh3nzp0r7a6UuFGjRpGQkMDs2bNLuyuFqlWrFiNGjKBHjx4vtd6+m6dLqEf/nhDf6iQ9eFDa3Xht5i4uLDq5pbS78Vr61GxV2l0oNqfvhpV2F15LdfdApu1fVtrdeG2fNHqntLtQbJLCrpV2F16LeWA5pu5b8vyGb7hPQ3pS//f/9gywhwfP+s/vA+Tux9Izhd8A/q/oUS20tLtQLMZt+7O0u/DaJrV4n02XD5V2N15Lm/INSrsLryzxQPHVzyxOFsH1SrsLpaJ4K+QKIcQL+OKLL/D09CQnJ6e0u6LV48eP6dy5M++887/zI1MIIYQQQgjxH6JUvJl//0/JsE0hxL/O0tKSsWPHlnY3CuXg4KC11p4QQgghhBBCiP9/JPNMiDfEhAkT/l8M2RRCCCGEEEIIIf5LJPNMCCGEEEIIIYQQ4k0i5enfKJJ5JoQQQgghhBBCCCFEISR4JoQQQgghhBBCCCFEIWTYphBCCCGEEEIIIcSbRCHDNt8kknkmhBBCCCGEEEIIIUQhJHgmhBBCCCGEEEIIIUQhZNimEEIIIYQQQgghxJtEZtt8o0jmmRBCCCGEEEIIIYQQhZDgmRBCCCGEEEIIIYQQhZBhm0IIIYQQQgghhBBvEqWitHsg8pHMMyGEEEIIIYQQQgghCiHBMyGEEEIIIYQQQgghCiHDNoUQQgghhBBCCCHeJAqZbfNNIplnQgghhBBCCCGEEEIU4v/Yu+vwps63gePfVKi7u1Da4g7FKVbch8M2mLDBGGPC9DdhMGHIxjbGGD7ch7s7xWkpTgvUqLvm/aOQkiZB1nbt9t6f68p1tSfPc3I/yUnOyZ1HJHkmhBBCCCGEEEIIIYQOMmxTCCGEEEIIIYQQojJRyrDNykR6ngkhhBBCCCGEEEIIoYNCqZR0phBCCCGEEEIIIURlkbpjT0WHoJVlSPuKDqFCyLBNIYQoQ+ExNys6hFKr7uxLytxFFR1GqVm9+iLX46MqOoxS8XPwqOgQysy+a6crOoRSCa7WiB/2L63oMErtvbZDKzqEMrPszI6KDqFUhjQIYd6JTRUdRqmNatqDFr+MrugwSuXImN/+9W2AonbMOry6osMotbdavlDRIZSJaQeWV3QIpfZum8FEp8RXdBil4mLlUNEh/H3Sz6lSkWGbQgghhBBCCCGEEELoIMkzIYQQQgghhBBCCCF0kGGbQgghhBBCCCGEEJVJYWFFRyAeIz3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISoTWW2zUpGeZ0IIIYQQQgghhBBC6CDJMyGEEEIIIYQQQgghdJBhm0IIIYQQQgghhBCViQzbrFSk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEZVIowzYrE+l5JoQQQgghhBBCCCGEDpI8E0IIIYQQQgghhBBCBxm2KYQQQgghhBBCCFGZKAsrOgLxGOl5JoQQQgghhBBCCCGEDpI8E0IIIYQQQgghhBBCBxm2Kf7fW7hwIU5OTnTp0qWiQxFCCCGEEEIIIWS1zUpGkmeVnLe3N+PHj2f8+PH/2P4UCgXr16+nd+/ef/txvvjiCzZs2MC5c+eeuc7+/fsJDg4mKSkJa2vrv/3Yz2PdunV8//33HDly5G/Vf+mll0hOTmbDhg0AtG3blnr16jFz5kyddcriNX38Nbp9+zY+Pj6cPXuWevXq/e19PouyOh737t3Lm2++SVhYGHp6la8DbFxcHDVr1uTcuXO4ubmV62NtXb+ZDSvWkJSYiIe3F6PGvk7NurW0lk1MSGTBL3O5cfUa0Xfv061fT155a7RamWMHj7Dmz5VE37tPQX4+Lu5u9BrQl+CQ9uXajpKUSiVzjx5iw4VzpOVkU9PZlfc7hFDV3kFnnc2XLvDV9s0a2w+N/wAjg7I9XW1et5F1y1eTmJCAp7c3r739JrXq1tZZ/uLZ88yd9RuRt29ja2dH/6ED6dq7h+r+/Px8Vi1Zzp5tO0l48AB3Dw9eeuMVGgU1UZV5uf9Q4mJiNfbdrU9P3nx3XJm2799u/5Zd7Fq3hZTEZFw93Xjh1eFUqxWotezZo6c4sHU3d2/eIT8vDxdPd7oP6UfNhnXUymWmZ7BxySrOHj1NZnoG9k4O9Bs1lNqN65VbO8L2n+L8zmNkpaRh4+pI0IBOuFTz0lr2fsRttkxfrLH9hS/fxNrZHoCrR89xYNFfGmVe/vljDAzlku55nNp5iKOb95CWnIqjuzMhI/rhFVj1qfUiI26y8KufcPRwYfS3E/+BSIud3X2Ek1v3k56Shr2bE+2G9sIjwPep9e5evcXyKbNxcHfmpa8nqLZfPHSKbXNXapSf8Mc3GFQxLNPY/466Ln4Mqd+JQEdP7M2s+XDrbA7dOl/RYT2Xyt6Gi3tPcGbHITKT07F1c6TVoK64+ntrLXv3yk02TJ2vsX3o129j41J0bk+4F8uJDXuIv3OftIRkWg7qSr2OzcuzCf8Zl/ef5MKOo2Q+PF80G9j5CeeLW2yetkhj+4Avx2Dtonmddf3kRfb+sRavugGEjBlcZjFvWLOOFUuWk5CQgI+vN2PfeZs69evqLH/uzFl+nTmLWzdvY29vx6DhQ+nVr7fq/oP7DvDngsXcu3uPgvx83DzcGTh0EJ26dlaVyc/PZ+Hc+ezevovExATs7Ozo3L0rw0e+WCm/U4j/FrnSKic9evQgKyuL3bt3a9x37NgxmjdvTmhoKA0aNPhH4zp16hRmZmb/6GNWVjdv3uTTTz9l27Zt2NjYlMk+161bh6HhP3vB6eHhQXR0NPb29uX+WGV1/HzwwQd88sknqpPcwoULGT9+PMnJyaoy4eHhdOzYkSZNmrB8+XKMjIzYt28fU6dO5cSJE2RlZeHt7U2XLl2YMGGCRpIrICCAW7ducevWLY37bt68ySeffMKBAwdITEzE3t6ehg0bMnXqVPz9/XF0dGT48OF8/vnn/PHHH6Vury6H9x5g/s9zeP2dMQTWqsGOTVuZNPEzZi2ag4OTo0b5vNw8rKyteGHYIP5avV7rPs0tLHhh2EDcPD0wMDTg9LGTzPpuOtY21tRv0rDc2lLS4pPHWR56kv917o6njS3zjx/hrdXLWT3qdcyqGOmsZ1bFiNWjXlfbVtaJs4N79jH3p9m8+e44qteuyfaNW/j8vY+YvWQejs5OGuVj7kfz+fuf0LlHV97734eEX7zMr9N+wsraihZtWxe19/cF7N+5m7cmTsDd04MzJ08z+eMv+OG3H6nqXw2AmXN/oaCweOLXOzdv8ek7E2kZ3LpM2/dvd/rgMVbPXcLgN16mag1/Dm3by89ffM/nv36PraPm59y1S1eoXq8WvUcMwMTMjGO7D/DrpB+YOO0rPKt6A5Cfl8+Pn32LhZUlr300Dht7W5LiEzE2MS63dtw4dZljq3bQYkhXnKp6cOXgGbbPWsYLX7yJua2VznovfDWGKsbF7xFjC1O1+w2NjRjw1Ri1bZI4ez6Xjp1h++J1dBv5Ah4BvoTuPsLSb2cz5oePsbK31VkvOzOLDb8uwbeWP+kpaf9gxBB+/Bx7lv5Fxxf74l7Nm3P7jrPmhz8Y9c37WNrrvobJycxi6+8r8KrhR2Zqusb9VUyMeeW7D9S2VYbEGYCJoRHXE+6y9cpRpnQZ/fQKlVBlbsO1kxc5tGIrbYb1wMXPk8sHTrFp5mKGTBqHhZ21znpDJ4+niknxZ5SJRfF1YX5uHlYOtvg1qsXhlVvLM/z/lBunLnFs5XZaDumGk58n4QdPs+2nPxnwxRjMn/BaDJg0tsT5QvMaPS0hmRNrduJczbNMY967aw8/T/+J8R+8S+26tflr/UY+GP8ei1YuwcnZWaN89L37fDj+fbr17sEnX/6Pi+cvMvP7aVjbWNOmXVsALCwtGP7yCDy9vTAwNOTY4SN8O+kbrG1saNKsKQDLFy/lr3Ub+ejzT/D29SEi/ArfTZqCmbkZ/QcNKNM2ClGSpGfLyahRo9i7dy937tzRuG/+/PnUq1fvH0+cATg4OGBqavr0gv8P+Pr6EhYWhpeX9l91HpeXl/dM+7S1tcXCwqK0oT0XfX19nJ2dMSjjBIM2ZXH8HD16lGvXrvHCCy/oLHPq1ClatWpFSEgIq1evxsjIiDlz5tChQwecnZ1Zu3YtYWFh/Pbbb6SkpDBt2jS1+ocPHyY7O5sXXniBhQsXqt2Xm5tLx44dSU1NZd26dURERLBy5Upq1apFSkqKqtzLL7/M0qVLSUpKKlV7n2TjqvV06NqJjt074+HtyStvjcbewYHtG7doLe/k4sQr40YT3LkDpubak5i169chqHULPLw9cXFzpUf/3nj7+hB28XK5taMkpVLJijMnealpC4L9A6nq4MjnXXqQnZ/HjvAnx6FQgL2ZudqtrK1fsZZO3TsT0qMrnt5evPb2m9g7OrJ1wyat5bdu2IyDkyOvvf0mnt5ehPToSsdunVm3fLWqzL4duxkwfAiNmzXFxc2Vbn160qBpI9atWKMqY2Vjja2drep26ugJXNxcqf2EX2n/P9q9YRstOralZUgwLh5uDHhtODb2dhzYqvljFMCA14YT0r8H3v5VcXJzpveLA3F0debiyTOqMkd37ScjLZ03Pn0HvxoB2Dk64FczAHffp3/+/10Xdx8joEV9Als2wMbFgWYDQzC3sSLswOkn1jOxMMPUylx1K/lLukKB2v2mVmX/HvmvO75lH/WDg2jQrjkObs50frEfVnY2nNp1+In1Nv+xklotGuFezfufCfQxp7cfoE6bJtRt2xQ7NyfaD+uFha01Z/cee2K9HQvWUj2oPq5+2o91hQLMrS3VbpXF8cjLzD3xFwdunqvoUP62ytyGczuPUKNVQ2q2boStqyOtBnfD3NaKi/tPPrGeqaUZZlYWqtvjn1FOPu60GNAZ/6Z10P8Hrkv/Ky7sOkZAywYEtmqIjYsDzQd2eY7zhYXqVvJ8UVhYyN4/1tKwZ/ATk+x/x+plK+jaszvde/fAy8ebtya8jaOTIxvXbtBa/q91G3B0duKtCW/j5eNN99496NKjGyv/XK4qU79hA1oFt8HLxxs3dzf6DxpAVb+qXDx/QVXm8sXLtGzdkmYtm+Pi6kLb9sE0btqEiPCIMm1fpaFUVs7b/1OSPCsn3bt3x9HRUeOLe2ZmJitXrmTUqFFAUSKhdevWmJiY4OHhwbhx48jIyNC538jISHr16oW5uTmWlpYMGDCA2Fj1YUB//fUXjRo1wtjYGHt7e/r27au6z9vbW21I4bVr12jdujXGxsbUqFGDXbt2aTzmxIkT8ff3x9TUFF9fXz777DONZNK3336Lk5MTFhYWjBo1iuzs7Kc+R1u3bsXf3x8TExOCg4O5ffu2RpnnfX6++OIL6tWrx5w5c/Dw8MDU1JQXXnhBrUcTwIIFC6hevTrGxsYEBgby66+/qu67ffs2CoWCVatW0bZtW4yNjfnzzz8pKChgwoQJWFtbY2dnxwcffICyxIdH27Zt1YY0xsXF0aNHD0xMTPDx8WHp0qUaMU+fPp3atWtjZmaGh4cHb775Junpmr8O6/Io3kdDZPfv349CoWDHjh3Ur18fExMT2rVrR1xcHNu2baN69epYWloyePBgMjMz1WIfO3YsY8eOVbXx008/VWtjyePn78S+YsUKOnXqhLGx9h4fe/fupV27drz88svMmzcPfX197t69y7hx4xg3bhzz58+nbdu2eHt707p1a/744w/+97//qe1j3rx5DBkyhOHDhzN//ny1NoSFhXHz5k1+/fVXgoKC8PLyokWLFkyePJnGjRurytWuXRtnZ2fWr9few6u08vLyuHH1GvUaqyfR6zVuwJVLYWXyGEqlkvOhZ7kXdZeadbQPBS0P91OSScjIIMjbR7WtioEBDdw9uXDv3hPrZuXm0nPOz3T/bRbvrFtFRGxMmcaWl5fH9atXqd+4kdr2Bo0bEq7jeb9yOYwGjdV77TVo0ohrV66Sn5//cL+5GBpVUStTpYoRYRcu6Yxj387ddOzWGYVC8Xeb85+Tn5dP5PVbVK+vPoS2ev3a3Lxy7Zn2UVhYSHZWNqbmxUml8yfO4BtYjeWzF/L+sDf46s2JbFu1kcKC8lkCviC/gAeR0bjVUB8G6FbDl9gbUU+su+7r3/nz/elsmb6Y+xG3NO7Py8ll+Uc/smziDLb/vJwHkdFlGvt/XUF+PvdvRVG1jvowYN86gdy9qvl8P3J2/3GSYh/Qtl9nnWXKS0F+PjG37+Fdy19tu09tf+5du62z3sWDJ0mOe0CLPh11lsnNzuW3d77m17cnsWbaPGJvP/kzWvw3FOTnE3fnPh41/dS2e9TwI+Z65BPrrvjyF+ZP+JYNU+dz98rN8gzz/4WC/HweRN7HvcT5wr1G1aefLybNYcl7P7B5+iLuX9H8/Dqz+QAmFmYEtizbDht5eXlEXLlK46aN1bY3btqYyzquey5fvKxRvklQEyLCr6iupR6nVCoJPXmaqDuR1K1fT7W9dr3ahJ4OJepO0XF6/eo1Lp6/QFDzoFK2Soink+RZOTEwMGDEiBEsXLhQ7Yv76tWryc3NZejQoVy8eJGQkBD69u3LhQsXWLlyJYcPH2bs2LFa96lUKunduzeJiYkcOHCAXbt2cePGDQYOHKgqs2XLFvr27Uu3bt04e/Yse/bsoVGjRlr3V1hYSN++fdHX1+f48eP89ttvTJyoOX+HhYUFCxcuJCwsjB9//JG5c+cyY8YM1f2rVq3i888/Z/LkyZw+fRoXFxe1ZJQ2UVFR9O3bl65du3Lu3DleeeUVPvzwQ7Uyz/v8PHL9+nVWrVrFpk2b2L59O+fOnWPMmOIhLnPnzuWTTz5h8uTJhIeHM2XKFD777DMWLVKfO2DixImMGzeO8PBwQkJCmDZtGvPnz2fevHkcPnyYxMTEpyZWXnrpJW7fvs3evXtZs2YNv/76K3FxcWpl9PT0+Omnn7h06RKLFi1i7969fPDBBzr2+Oy++OILfv75Z44ePUpUVBQDBgxg5syZLFu2jC1btrBr1y5mzZqlVmfRokUYGBhw4sQJfvrpJ2bMmPHEYYt/J/aDBw/qPCbXr19Pt27d+OSTT5g6dapq+6P3ja59Pz5HXlpaGqtXr2bYsGF07NiRjIwM9u/fr7rfwcEBPT091qxZQ0FBwRNjbdKkCYcOHXpimb8rLSWVwoJCrG3Vfwm0srEmKbF0vd0y0jMY1LkP/dv34OsPP+fVcW9oJOnKU8LDBLdtiSG+tmZmJGTqTq562drxvy49+KHPC0zq3gsjfX1eWb6YyKTEMostNSVF6/NubWtDUoL2x0lKSNRavqCggNTkot6KDZo0YsOKNdyLukthYSFnT4Vy4vBREnXs8/jBI6Snp9Oha6cyaNV/R3pqGoWFhVjaqA9rtLSxIjUpRUctdbvXbyU3O4eGrZqqtj2IjePMkZMUFhYy9osP6DKwN7vXb2Xbqg1lGb5KdnomykIlppbq7wETCzOyUrX/AGRqZU6rYd3pOPoFOo5+AStne7bMWEL01eIe7FbO9rR5sRed3hxI8Ct9MTA04K/vF5ASm1Au7fgvykzNQFlYiLmVei9xcysLnUMxE6Lj2LN8E33HjkBPX/+fCFNNZlpRzGYlYja1tCBDR8yJMfEcWLWV7qOH6ozZzsWRrq8OpO87I+nx5lAMqhiw9OufSYyJL/M2iMolKy0TZWEhppbqPVdNrczITNF+njaztiB4RC+6vDmELm8OwdrZng0/LOCeliS/eHaPzhcmJc8XlmZah1oDmFpZ0Gp4DzqOHkCnNwZi7WTH5hmLiL56W1Um5nokEYfP0Hp4D637KI2U5BQKCwqwsVMf5m5ja0tigvbzUWJCAja2Jcrb2VJQUEDKY50c0tPT6dymIx2at+XDCR8w7r3xNHos6TZkxDDad+rAiAFDad+sDa8OH0n/QQNoH6L7RwIhyor0py1HI0eOZOrUqaqJ8KFoyGbfvn2xsbHh7bffZsiQIaqeStWqVeOnn36iTZs2zJ49W6Nnzu7du7lw4QK3bt3Cw8MDgCVLllCzZk1OnTpF48aNmTx5MoMGDeLLL79U1atbV/uQoN27dxMeHs7t27dxd3cHYMqUKRqrTn766aeqv729vXn33XdZuXKlKpExc+ZMRo4cySuvvALA119/ze7du5/Y+2z27Nn4+voyY8YMFAoFAQEBXLx4ke+++05VZurUqc/1/DySnZ3NokWLVG2aNWsW3bp1Y9q0aTg7OzNp0iSmTZum6pHn4+NDWFgYc+bM4cUXX1TtZ/z48Wq99mbOnMlHH31Ev379APjtt9/YsWOHzjZevXqVbdu2cfz4cZo2LfoSN2/ePKpXr65W7vGeaj4+PkyaNIk33njjqQnIp/n6669p0aIFUDSM+KOPPuLGjRv4+hZNLty/f3/27dunljD18PDQeE1mzJjBq6++qvUx/k7st2/fxtXVVWN7eno6L7zwAh9//LFGIvXatWtYWlri4uLy1HavWLGCatWqUbNmTQAGDRrEvHnzVO9BNzc3fvrpJz744AO+/PJLGjVqRHBwMEOHDlU9N4+4ublx9uxZrY+Tk5NDTk6O2jYjI91zeelWsteRstQ9kUxMTZjxxy9kZWVx4cw55v86FydXF2rXr/P0yn/D9rBLfLNrm+r/GX2L5pxQlGibUqm57XG1Xd2o7Vo8P11dNw+GL57HqjOnea992SaZSj7HSuWTn3eNux79KPLwjtffHsNP309n9NCRoAAXV1c6dA1h91btnxE7t2yjUdMm2P0DcxX+G2keO0rNt4oWpw4cZfOydbzx2QQsrYsTcMpCJRbWlgwb+wp6+np4+fmQkpjEznVb6Da47xP2+M+xdrZXLQwA4FTVg4zEFC7sOoaLf9GQOydfd5x83VVlnKt6sm7y71zed4rmg/75HlH/bs92jBUWFrLu58W07d8FOxfNuSgrllLzs4mimDfPXkqLvp2w1TJ5+COufl5qwzndq3mz6H8zObPrCB2G9y6HeEWlp0TnZ62NswM2zsXHk4ufJ+lJKZzdcQS3AB/tlcQz03bNpIu280V6Uirndx7Fxd+b3Owc9s1bR6vhPbXOg1ZWtJ+rn3QtpaX8wz09Ympqyh9/LiArK4szp07zy8yfcXFzpX7Doh+B9+7aw65tO/l00uf4+Ppw/eo1fp7+E3b29nTurv4d9j/h//EQycpIkmflKDAwkObNmzN//nyCg4O5ceMGhw4dYufOnQCEhoZy/fp1taF8SqWSwsJCbt26pZFkCQ8Px8PDQ5U4A6hRowbW1taEh4fTuHFjzp07pzPRUVJ4eDienp6qJBNAs2bNNMqtWbOGmTNncv36ddLT08nPz8fS0lJtP6NHq0+C2qxZM/bt2/fExw4KClL7EC352M/7/DyirU2FhYVERESgr69PVFQUo0aNUnue8vPzsbJS7+nweO+olJQUoqOj1WI0MDCgUaNGGkM3H2/jozKPBAYGaqwkum/fPqZMmUJYWBipqank5+eTnZ1NRkZGqSbnr1OnOFHi5OSkGnb7+LaTJ9XntdD2mkybNo2CggL0tfxy/Xdiz8rK0pr4NDExoWXLlsydO5fBgwervb5PS2w8bt68eQwbNkz1/7Bhw2jdujXJycmq537MmDGMGDGCffv2ceLECVavXs2UKVP466+/6Nix+JcrExMTtaGtj/vmm2/UktQAn3/+OQNHj3imOC2sLNHT1yM5Ub1nUkpSCtY21s+0D1309PRwcS9KUPpWq8rdO1GsXbqy3JJnrfyqUdOlOCGa+7BHX0JGOvaPDZ1LyszA1vTZj2k9hYIazq5ElWHPM0srK/T09TR6maUkJWv0LnvExs6WpAT13oDJScno6+tjaVX0WWhlY81n33xFbk4uqamp2NnbsWD2Hzi5aE6aGxcTy7nTZ/l48udl1Kr/DnPLojlbUpKS1banJaeqJcO0OX3wGIt/mstrH46jej31YcpWttbo6+ujp1/c4d7Zw5XUpGTy8/LLfMJ9Y3NTFHoKMkv0MstKy9DoXfAkjr7uXD9xUef9Cj0FDt6upMRJz7NnZWpphkJPj/SUVLXtGanpmFtqzlmam5XN/ZuRRN++y9aFRXMYKh/O+fLV0PEM/+hNfEoMpyzzmC2KYi7ZyywzNR1TrTHnEHPrLrF37rN78Qa1mKe+9AEDPngVrxrVNOop9PRw9vEgKVZ6nv3XmViYotDT0+jZlJmaodEb7UmcfT2IOF55Vg/9Nyo+X6i/Ftlpz/daOPq4c/1E0dxgqfGJpCUks+OXZar7H31fmTv6SwZ+9RaWjroXR3kaK2sr9PT1NXqZJSclYWurfb+2dnaa5ROT0NfXx+qx87uenh7uHkXf46r5V+POrTssW/inKnn220+/MuTFobTv1AEAX7+qxETHsHTRkv9m8kxUKpI8K2ejRo1i7Nix/PLLLyxYsAAvLy/at28PFP0y+PrrrzNu3DiNep6emiui6EogPL7dxMTkmWPTlvQpuf/jx4+rerKFhIRgZWXFihUrNCZof166Ek6Pe97nR5dHbVIoFBQ+XOlu7ty5qt5gj5RMDpV2VclHbXxS0ufOnTt07dqV0aNHM2nSJGxtbTl8+DCjRo165kUKdHl81U+FQqGxCujjz8ff8Xdjt7e31zoJv76+Phs2bKBfv34EBwezd+9eatSoAYC/v78qgfmk3mdhYWGcOHGCU6dOqfWoKygoYPny5bzxxhuqbRYWFvTs2ZOePXvy9ddfExISwtdff62WPEtMTMTBQfuv9h999BETJkxQ22ZkZMTNpGebL8bQ0JCq/tU4d/osQa1bqLafO32Gpi01k9iloVQqS308PYlZFSO1FTSVSiV2ZmacuHOLAKei5FFeQQFn7kYytnXwM+9XqVRyNS4WPx2vwd9haGiIn78/Z0+F0rxNS9X2s6dDCWrZXGudwJo1OHlUfVLus6dOUy3QX2OhjipGVbB3sCc/P5+jBw7Rql0bjf3t2rIdKxtrmjST+TlKMjA0wNPPh/Bzl6jfvHiYRvi5i9Rtqnu12FMHjrL4x98Z9f5Yajeur3F/1er+nDxwlMLCQtWEyrH3YrCytS6XlSr1DfSx93ThXvhNfOoXz611L/wmXnUDnnk/CVExmDxhQQClUklCVCy2bpWtR1TlpW9ggKuPBzcvRFC9cXHP/JsXrxDQsLZGeSMTY974Xr039Kmdh7kVdpUB40di7WD3j8Ts7O3G7UtX8W9UHOPtS1fxa6A5n6WRiREvT3lXbdvZ3UeJDL9Or7dGYOWg/cutUqkkLvIeDu5P7+Ut/t30DQxw9HIl6vJ1qjaoodoeFXYdn/raf5zWJj4yWhYtKSV9AwPsPV25F3ZD7bm/G34D77qBT6ipLiGq+LWwdran/+dvqN1/asNe8nJyaT6wM2a2pVsYxNDQkIBAf06fPEWr4OLrnNMnT9OidUutdWrWrsnRw0fVYzpxioDqgU9e9EypJDcvV/VvTnY2egr1maf09fVRluI7jRDPSpJn5WzAgAG8/fbbLFu2jEWLFvHqq6+qkikNGjTg8uXL+Pn5PWUvRWrUqEFkZCRRUVGq3mdhYWGkpKSoeunUqVOHPXv28PLLLz/z/u7fv68aRnfsmPoXxCNHjuDl5cUnn3yi2lZyBdHq1atz/PhxRowo7nFz/Pjxpz72hg0b1LaVrPO8z88j2tqkp6eHv78/Tk5OuLm5cfPmTYYOHfrM+7SyssLFxYXjx4/TunVroKi3WmhoqM5VU6tXr05+fj6nT5+mSZMmAERERKgtXnD69Gny8/OZNm2a6gvdqlWrnqu9Zanka3D8+HGqVaumtdfZ3429fv36hIVpn5jdyMiIdevW0b9/f4KDg9mzZw+1atWif//+fPjhh3z//fdq8+098qhX2bx582jdujW//PKL2v1Llixh3rx5asmzxykUCgIDAzl6VP2kfunSJdq2basz1r83TLNYrwF9mDn5B/wCqhFQszo7N2/jQVw8IT27FsX9+wIS4hMY/8l7qjo3r90AIDsrm9TkFG5eu4GhoQEe3kVDb9b8uRK/gGo4u7mQn5dP6PFT7N+xh9ETnjxXYFlSKBQMatCEhSeO4mFji6e1DQtOHMXYwJCQ6jVV5T7f+heO5haMeZhQm3v0ELVc3PC0sSEjN5eVZ05xNT6WDzqElGl8fQb1Y9qk76gW6E9grRps/2sL8bFxdO1dNC/Iwt/+ICH+Ae9+VvSFuWvv7mxet5G5s2YT0qMrVy6FsXPzdj744mPVPq9cDifhwQN8/aqS8CCBZfMXU1hYSL8hA9Ueu7CwkF1bd9C+c0f0Df75uZP+DTr07sKC6bPx8vPBt3o1Dm3fS1J8Aq27Fv3wtH7hCpITknj53aL386kDR1kw/TcGvDYcn0A/Va+1KlWqYGJWtDpw664d2Ld5J6t+X0Jwj07E3Y9h++qNBPco22PrcbU7NGP/gvU4eLng6OvOlUNnSE9MoXrroiTgyfV7yEhOI/jl3gBc3H0cC3trbFwcKCgo4PqJi9w6E06H14tXJg7ddABHXzesHO3Iy87h0t6TJETF0GKw/Nr+PIK6BbP+lyW4+nrg7u9D6J6jpDxIolGHoi99u5f/RVpSCn3eHI5CTw9HD/WpBsyszDEwNNTYXp4adW7DljnLcfbxwM3Pi3P7j5OakEy9dkVJ+AOrtpKelEK31wej0NPTSICZWhbF/Pj2I+t34lrVCxtne3Kysjmz8zBxkffpOKJyDGU2MTTC3ar4xxNXS3uq2buTmp1BbHr5rYRdlipzG+p1asGuP9bg6O2Gc1UPLh88TXpiCrXaFP1wcXTtTjKSUun4Sn8Azu06iqWdNbZujhTkFxBx/Dw3Qi/T5c3Bqn0W5OeTeD/+4d8FZCSlEh8ZjaFRFaydyj/R/G9Vp2Mz9s1fh72XK05VPQg/GFp0vmhTNHrl5LrdZCSnEjyy6L15cfcxLOyssXF1LDpfHL/ArTPhdBxdNG2GgaEhtm5Oao9hZFo06qPk9r/rhSGDmPL5JAKqB1Kzdi02rf+L2JhYevbtDcDvv/zGg7h4Pv7yMwB69u3N+tXr+GXGLLr37sHli5fY+tdmPvv6C9U+ly5cQkD1QFzdXcnLy+fEkWPs2LqddyYWXwc3a9WCJQsX4+jshLevD9cjrrJq2Uq69uhaJu2qdCQpWKlI8qycmZubM3DgQD7++GNSUlJ46aWXVPdNnDiRoKAgxowZw6uvvoqZmRnh4eFaJ3IH6NChA3Xq1GHo0KHMnDmT/Px83nzzTdq0aaMaGvj555/Tvn17qlatyqBBg8jPz2fbtm1aJ1rv0KEDAQEBjBgxgmnTppGamqqWJAPw8/MjMjKSFStW0LhxY7Zs2aIxSf7bb7/Niy++SKNGjWjZsiVLly7l8uXLGvNHPW706NFMmzaNCRMm8PrrrxMaGqqxMunzPj+PGBsb8+KLL/LDDz+QmprKuHHjGDBgAM7ORT1gvvjiC8aNG4elpSVdunQhJyeH06dPk5SUpNGTqGQ7v/32W6pVq0b16tWZPn26xiqejwsICKBz5868+uqr/P777xgYGDB+/Hi13oFVq1YlPz+fWbNm0aNHD44cOcJvv/2mc5/lLSoqSvWanDlzhlmzZunsZfh3Yw8JCdFYnOFxVapUYe3atQwYMIB27dqxZ88eateuzYwZMxg7diypqamMGDECb29v7t69y+LFizE3N+fbb79lyZIlfPXVV9Sqpf5L/CuvvML333/P+fPnUSqVfP755wwfPpwaNWpQpUoVDhw4wPz589V6q2VmZhIaGsqUKVOe8dl7fi3btSE1JY2Vi5eRlJCIp483n333FY7ORRc2iQmJxJdYYGLCK8VJsBsR1zi4ez8Ozo7MXVn0nOZkZzNnxi8kxD+gilEV3Dw9eOfT92mppQdUeRrRJIic/Dy+372dtOxsarq4Mqv/ILUearGpqeg91jMzLSebb3ZuJSEzA/MqRvg7OTFn0DC1IaFloXX7YFJTUlm+8E8SExLx8vHmy6lT1J/32OLn3dnVhS+nTmburNlsXvcXdvZ2vD5+DC3atlaVycvNZcncBcTcj8bExIRGQU1497OJmFuo/yJ/7vQZ4mPj6NRNkh26NGrdjPS0dLasWE9qYjKuXu6M/eJ97ByLvoCmJCWTGF889OPgtr0UFhSwYvZCVsxeqNoe1L4VL71TNKWArYMdb3/1Iav/WMKksR9hbWdDu56dCelX9hMpP1K1cU1yMjI5s+UgmSnp2Lo60nnsECzsrAHITEknI7F4EYTCggJOrNlFRnIaBoYGWLs6EDJ2MJ61i4fX5WZlc/jPLWSmplPFxAg7D2d6vPcijj5uJR9ePEGtZg3ISsvgwLodpCen4OjhwtCJo7F+2CMrPTmVlAeVKzlTPage2ekZHN24i4zkVOzdnen/7iis7ItizkhOJTXh+WLOzsxix4LVZKSkYWRijKOXG4M/fhOXqs/eu788BTp48XOf4uuycS2LEslbw48xea/u64jKpDK3oVqT2mSnZ3Jq0z4yUtKwc3Oi+9vDsbQvmsIgMzmNtMRkVfnC/AKOrN5OelLqw+SMI93fHo53neLetBnJaaz8svgHzLM7DnN2x2FcA7zp+8Er/1jb/m2qNq5FdkYmZ7YcUJ0vurw19LHzRRrpj50vCvILOL5mp+p8YePqSOe3huBZu3yHkD+uXcf2pKaksGjeQhIfJOBT1YfvZkzF+eF0FQkPEoiNjVWVd3Fz5duZU/llxiw2rFmHnb09b707njbt2qrKZGVlMeP7acTHxWFkZISnlxeffPU/2nVsryrz9nvvMG/OXGZ+P42kpCTs7e3p0acnL77y9I4jQpSWQvks4+dEqRw7dozmzZvTqVMnjQnmT506xSeffMKxY8dQKpVUrVpVlWyDogn6x48fr5qYPTIykrfeeos9e/agp6dH586dmTVrFk5Oxb8irFu3jkmTJhEWFoalpSWtW7dm7dq1Wvd39epVRo0axcmTJ/H29uann36ic+fOrF+/nt69ewPwwQcfMH/+fHJycujWrRtBQUF88cUXaomjKVOmMGPGDLKzs+nXrx9OTk7s2LGDc+fO6XxeNm/ezDvvvENUVBRNmjTh5ZdfZuTIkSQlJanmpnra81PSF198wYYNG3j99df5+uuvSUxMpGvXrvzxxx/Y2BTPZ7Rs2TKmTp1KWFgYZmZm1K5dm/Hjx9OnTx9u376Nj48PZ8+epV69eqo6+fn5vPfeeyxYsAA9PT1GjhzJgwcPSElJUfWia9u2LfXq1WPmzJkAxMTE8Morr7B7926cnJz4+uuv+eyzz9RegxkzZjB16lSSk5Np3bo1Q4cOZcSIEWrPQ0kKhUL1GpWM99ECFY/XX7hwIePHj1d7zR49V49eo7Zt21KzZk0KCwtZtmwZ+vr6vP7660yZMkXVW7Lk8fN3Yk9KSlJNxB8QEKAzvry8PAYPHsyBAwfYs2cPderUYffu3fzwww+cPHmSrKwsvL296d69OxMmTODo0aMMGDCA+/fvq70fHqlTpw5t27blf//7H5MmTWLv3r3cvn0bhUKBt7c3L774Iu+8846qF93y5cv58ssvuXLlitZ26BIe8+9ftr26sy8pc/8dX0yexOrVF7ke/+Rl3is7PwePpxf6l9h37XRFh1AqwdUa8cP+pU8vWMm91/bZe11XdsvO6F60599gSIMQ5p3YVNFhlNqopj1o8cvopxesxI6M+e1f3wYoasesw6srOoxSe6vlC08v9C8w7cDyig6h1N5tM5jolH/3PIguVmU3/cc/LXX1hooOQSvLF3pXdAgVQpJn4j+lZEJIPLuSib/y9MEHH5CSksKcOXPK/bH+riZNmjB+/HiGDBnyXPUkeVZ5SPKscpHkWeUgybPKQ5JnlYckzyoXSZ5VHpI8q1ipq9Y/vVAFsBzQp6JDqBB6Ty8ihBBl65NPPsHLy4uCh6syVjZxcXH079+fwYMHP72wEEIIIYQQQoj/NJnzTAjxj7OystI59LYycHR01DpPoBBCCCGEEEKI/38keSb+U7744gu++OKLig7jX2n//v0VHYIQQgghhBBCCACZYatSkWGbQgghhBBCCCGEEELoIMkzIYQQQgghhBBCCCF0kGGbQgghhBBCCCGEEJVJoQzbrEyk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEJaJUFlZ0COIx0vNMCCGEEEIIIYQQQggdJHkmhBBCCCGEEEIIIYQOMmxTCCGEEEIIIYQQojJRymqblYn0PBNCCCGEEEIIIYQQQgdJngkhhBBCCCGEEEIIoYMM2xRCCCGEEEIIIYSoTApl2GZlIj3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISoTWW2zUpGeZ0IIIYQQQgghhBBC6KBQKiWdKYQQQgghhBBCCFFZpCxeUdEhaGU1YlBFh1AhZNimEEKUoTnHNlR0CKX2erPeRCXFVHQYpeZh48zAPz+r6DBKZeWwSaRu3VnRYZSaZddOvPPXjxUdRqnM6Pk2L66YVNFhlNqiQZ+Rlpxc0WGUmoW1NdMOLK/oMErl3TaDWXZmR0WHUWpDGoT869sxpEEIsw6vrugwSu2tli/Q4pfRFR1GqR0Z8xu9Fkys6DBKZePL3/HG2qkVHUapze73Pp3nvlPRYZTK9ldnVHQIf5+ysKIjEI+RYZtCCCGEEEIIIYQQQuggyTMhhBBCCCGEEEIIIXSQYZtCCCGEEEIIIYQQlUmhTE9fmUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRCnDNisT6XkmhBBCCCGEEEIIIYQOkjwTQgghhBBCCCGEEBUqKSmJ4cOHY2VlhZWVFcOHDyc5OfmJdV566SUUCoXaLSgoSK1MTk4Ob731Fvb29piZmdGzZ0/u3r37XLFJ8kwIIYQQQgghhBCiMilUVs5bORoyZAjnzp1j+/btbN++nXPnzjF8+PCn1uvcuTPR0dGq29atW9XuHz9+POvXr2fFihUcPnyY9PR0unfvTkFBwTPHJnOeCSGEEEIIIYQQQogKEx4ezvbt2zl+/DhNmzYFYO7cuTRr1oyIiAgCAgJ01jUyMsLZ2VnrfSkpKcybN48lS5bQoUMHAP788088PDzYvXs3ISEhzxSf9DwTQgghhBBCCCGEEE+Vk5NDamqq2i0nJ6fU+z127BhWVlaqxBlAUFAQVlZWHD169Il19+/fj6OjI/7+/rz66qvExcWp7gsNDSUvL49OnTqptrm6ulKrVq2n7vdxkjwTQgghhBBCCCGEqEyUhZXy9s0336jmJHt0++abb0rd3JiYGBwdHTW2Ozo6EhMTo7Nely5dWLp0KXv37mXatGmcOnWKdu3aqRJ6MTExVKlSBRsbG7V6Tk5OT9xvSTJsUwghhBBCCCGEEEI81UcffcSECRPUthkZGeks/8UXX/Dll18+cZ+nTp0CQKFQaNynVCq1bn9k4MCBqr9r1apFo0aN8PLyYsuWLfTt21dnvafttyRJngkhhBBCCCGEEEKIpzIyMnpisqyksWPHMmjQoCeW8fb25sKFC8TGxmrcFx8fj5OT0zM/nouLC15eXly7dg0AZ2dncnNzSUpKUut9FhcXR/PmzZ95v5I8E0IIIYQQQgghhKhMCgsrOoIyYW9vj729/VPLNWvWjJSUFE6ePEmTJk0AOHHiBCkpKc+V5EpISCAqKgoXFxcAGjZsiKGhIbt27WLAgAEAREdHc+nSJb7//vtn3q/MeSaEEEIIIYQQQgghKkz16tXp3Lkzr776KsePH+f48eO8+uqrdO/eXW2lzcDAQNavXw9Aeno67733HseOHeP27dvs37+fHj16YG9vT58+fQCwsrJi1KhRvPvuu+zZs4ezZ88ybNgwateurVp981lIzzMhhBBCCCGEEEIIUaGWLl3KuHHjVCtj9uzZk59//lmtTEREBCkpKQDo6+tz8eJFFi9eTHJyMi4uLgQHB7Ny5UosLCxUdWbMmIGBgQEDBgwgKyuL9u3bs3DhQvT19Z85NkmeCSGEEEIIIYQQQlQmSmVFR/CPs7W15c8//3xiGeVjz4uJiQk7dux46n6NjY2ZNWsWs2bN+tuxybBNIcS/Vtu2bRk/fnxFhyGEEEIIIYQQ4j9Mep4JIUQFOrfnGKe3HSAjOQ07NyfaDumBe4DPU+vdu3abVd/Mwd7NieGTxqu2r/pmDncjbmqU96kTSJ8JL5dJzBvXrGf10hUkJCTi7ePNm++MpXa9ujrLnz9zjt9+/IXbt25jZ2/HwGGD6dG3l+r+HZu3MfXrbzXqbT2wkyoPV/IZ2nsgsTExGmV69uvNuPffKYNWQSf/JvSo0RJrE3PuJsex6PQ2rsTf0Vm+pXcdetZshbOFLZl5OZy/f40lodtJz83SKNvcqzZvtxrAqahwfjiwrEzi1UWpVDJ3xzbWHztCWlYWNT29+KDfAKo+nDRVm70XzrFw106iHjwgv7AAD3sHhrVtR9fGTVRlft++lbk7tqnVs7WwYMdXU8q8DS286xBctQGWxmbEpCWw4dJBbibe11leX0+fEP8mNHQPxNLIlOTsdHZdPcXJqDAA9BR6dKjWiMYe1bEyNicuPYnNYUee+PqWhXZ+Deka2AwrEwvup8Sz9OwOrsZHaS37StOetPLRfB/dS4nn422/AaCv0KN7jRa09KmDtYklMakJrDq/h4sxN8qtDUqlkt//+IP1GzaQlpZGzZo1mfj++1T19X1ivT179/LbnDncvXcPdzc33nzjDYLbtlXdf+bsWZb8+SfhV67w4MEDfvj+e9q2aVNu7bi8/yQXdhwlMyUNG1dHmg3sjEs1L61l70fcYvO0RRrbB3w5BmsXBwBunQnj7LZDpMYlUlhQiJWjLbU7Nse/me7PwvJwauchjm7eQ1pyKo7uzoSM6IdXYNWn1ouMuMnCr37C0cOF0d9O/Aci1e3f2oaLe09wZschMpPTsXVzpNWgrrj6e2ste/fKTTZMna+xfejXb2Pz8JhKuBfLiQ17iL9zn7SEZFoO6kq9js8+QXZ5quvix5D6nQh09MTezJoPt87m0K3zFR2WSpfAIPrUaoONiQWRybHMO7mJsNjbOsu38a1Hn9ptcLW0JyM3m7P3rrLg1BbScjKBos/a/nWCCfZriJ2pJfdS41l0ehtn710ttza09q1HR//GWBmbE536gNXn93I94Z7WsiMadqGZdy2N7fdTHzBp1wIA6rlWo3NgEA5m1ujr6RGXnszua6c4GRlWbm0A6F69Bf3rBmNrYsmdpBh+O76ByzGa16WP9KjRgh41WuFkYUN8ejLLz+1iz7XTqvs7BwTRwb8xXjbOAFx/cJcFp7ZwNT6yXNshhDaSPBNClJvc3FyqVKlS0WE8UV5eHoaGhhXy2BEnzrN/2Sbaj+iNazUvLuw7wfrp83lxygQs7Wx01svJzGL77yvxrFGVzJR0tft6vDWcwvwC1f9ZGRks+exH/BvXLpOY9+3ay+yZPzPu/XeoWacWWzZs4qN3JjJv+SKcnDWXkI6+H80nEybStVd3PvziEy5fuMRPU2dgZW1N63bFX5RNzcxYuGqJWt0qjy2B/cuCORQWFrfr1o1bTBz3Lq3btS2TdjXzqsWLDbsw79RmIuIi6VCtER+1G86ETbNIyEzRKB/g4MmY5v1YFLqN0LtXsDW15NWmPXk9qDfTDi5XK2tvZsWwBiGEP+FCviwt3rubZfv38b8hQ/F0cGT+rh2M/e1n1nz0GWbGxlrrWJma8XLHELydnDDU1+fQ5ct8tWIpNhYWNAusrirn6+zCL2+MVf2vr6co8/jruVajd63WrLmwj1uJ92nuVZvXgnrx7b4/Sc5K01rnxYZdsDAyZeW53cRnJGNhZIqeorhzfdfAZjR0D2TV+T3EpScS4OjFy02689OhVdxLjS/zNgA08ajB0PohLA7dytUHdwmu2oB3Ww/ho22zScxM1Si/9MwOVp/fo/pfT6HH151fUyUAAfrVCaa5Vy3mn9pCdOoDartUZVzLF5i0eyGRyZrJ5bKwaMkSli1bxuf/+x+enp7Mmz+fMW+9xdpVqzAzM9Na58LFi3z86aeMfu01gtu2Zd/+/Xz48cfM+/13atUq+sKXlZVFtWrV6NG9Ox98+GG5xP7IjVOXOLZyOy2HdMPJz5Pwg6fZ9tOfDPhiDOZ21jrrDZg0lirGxZ9DxhbF7TUyM6F+19ZYO9ujr6/PnYtXObBoAyaWZnjU9CvP5qhcOnaG7YvX0W3kC3gE+BK6+whLv53NmB8+xsreVme97MwsNvy6BN9a/qSnaH9P/VP+rW24dvIih1Zspc2wHrj4eXL5wCk2zVzMkEnjsHjCMTV08niqmBQfUyaPHVP5uXlYOdji16gWh1duLc/wn5uJoRHXE+6y9cpRpnQZXdHhqGnpU4dRTXow59gGwuPuEBLQlP91HMnY9dN5kJGsUb66ozdvtxrI/JObOBkVjp2pFW8078PYFv34Zm/RdcjQhiG09a3PL0fXcjc5nvpu/nzUbgQTt/zKrSf8kPN3NXQP4IW67Vhxdhc3Eu7RyqcuY1r256ud80nSct5bdX4PGy4dVP2vp6fgk/YvceZuhGpbRm42264cJzYtgfzCQmq7+DKiYRfScjLL7XqktW89Xm/Wm1+OrOFy7C26Bjbn686v8drqb4nX8lp0q96clxp358dDK7kaH0WAgydvtxpAek4WJyIvA1DH1Y/9188QFnuL3IJ8XqjbjildRvP6mu+0Xp/95xT+/xu2WZnJsE0h/iOUSiXff/89vr6+mJiYULduXdasWQPA/v37USgU7Nmzh0aNGmFqakrz5s2JiCg6yUZERKBQKLhy5YraPqdPn463t7dqXHlYWBhdu3bF3NwcJycnhg8fzoMHD1Tl27Zty9ixY5kwYQL29vZ07NgRgL/++otq1aphYmJCcHAwixYtQqFQkJycDBQtJzx48GDc3d0xNTWldu3aLF+unoDIyMhgxIgRmJub4+LiwrRp0zSeA4VCwYYNG9S2WVtbs3DhQgBu376NQqFg1apVtG3bFmNjY/78889nevzyELrjELVaN6Z2mybYuToRPLQnFrZWnN97/In1di9cR2BQPVyqavaaMDE3xczaQnWLvHQNwyqG+DepUyYxr12+is49utK1V3e8fLx58523cHR0YNO6jVrLb163EUcnR9585y28fLzp2qs7nXt0ZfWyFWrlFAoFtnZ2arfHWdtYq9134sgxXN3dqNugXpm0q1v15uy9cYa910OLfmEO3UZCZiqd/JtoLV/N3oO4jGS2RxwnPiOZiPhIdl87ha+dm0a73mrxAqsv7CU2PbFMYn0SpVLJ8gP7ebljJ9rVqYefiytfDBlGdm4eO86c1lmvoV81guvUxcfJGXd7Bwa3aYufiyvnbqr3aNLX08Pe0lJ1szG30LHHv69t1QaciLzMicjLxKUnseHyQZKz0mnhrT0BHOjghZ+9O3NPbOTqgyiSstKITI7ldlK0qkwjj0B2XztFeNxtEjJTOXr7IhFxd2jr16DM43+kc2AQB2+e5cDNc0SnPmDZ2Z0kZqbS3q+R1vJZeTmkZGeobj62rphWMeHQzeLeHc29a7Mp7AgXoq8Tn5HM3uuhXIy5SZfAoHJpg1KpZPmKFbz88su0Cw7Gr2pVvvz8c7Kzs9n+hPlFlq9YQdMmTXj5pZfw9vbm5ZdeoknjxixbUfy+b9G8OW+OHk274OByif1xF3YdI6BlAwJbNcTGxYHmA7tgbmNF2AHd7wkoSmyYWlmobnp6xZfNrgE++NSvjo2LA5aOttRuH4StmxMx1/+53hDHt+yjfnAQDdo1x8HNmc4v9sPKzoZTuw4/sd7mP1ZSq0Uj3Kt5/zOBPsG/tQ3ndh6hRquG1GzdCFtXR1oN7oa5rRUX9598Yj1TSzPMrCxUt8ePKScfd1oM6Ix/0zroG1Su/g3HIy8z98RfHLh5rqJD0dCrZit2XzvFrmunuJsSx7yTm3iQkaLzczHA0bOo93H4UeLSkwiPu82OiBP42burygRXbcCaC/sIvRtBbHoi2yOOc/beVXrXalUubWhfrRFHb1/kyO2LxKQlsvrCPpIy02jtW09r+ez8XFJzMlQ3LxtnTKsYc+zOJVWZaw+iOH//GjFpiTzISGbf9TPcS4nHr8R1SlnqW7stOyJOsD3iBFHJccw5voH49GS612ihtXz7ao3YFn6UgzfPEZOWwIGbZ9kRcYIBddupyny/7082hx/hZuJ97qbE8eOhlSgUCuq5VSu3dgihiyTPhPiP+PTTT1mwYAGzZ8/m8uXLvPPOOwwbNowDBw6oynzyySdMmzaN06dPY2BgwMiRIwEICAigYcOGLF26VG2fy5YtY8iQISgUCqKjo2nTpg316tXj9OnTbN++ndjYWAYMGKBWZ9GiRRgYGHDkyBHmzJnD7du36d+/P7179+bcuXO8/vrrfPLJJ2p1srOzadiwIZs3b+bSpUu89tprDB8+nBMnTqjKvP/+++zbt4/169ezc+dO9u/fT2ho6N96riZOnMi4ceMIDw8nJCTkmR6/rBXk5xN7+x5etdRP/l61/Ll/XfdQskuHTpEcn0iz3s+2rPLFQ6cJaFoXQ6PS9wDMy8vjasRVGjVtrLa9YdPGhF28pLVO2KXLNCxRvlHTxlwNjyA/P1+1LSsriyG9BzCoR38+efdDrkXoHhqRl5fH7u276Ny9CwpF6Xs+6evp42vryoXo62rbz0dfx9/BQ2udq/GR2JlaUs+16PWzMjajqWdNzt6LUCvXv3YwqdkZ7LtxptRxPot7CQkkpKUSFBCo2lbFwJAGfn5cuHXrmfahVCo5eTWCO/FxNKiq3oMm6kE8XT7/hF6TPufjxQu4+1jyvCzoK/Rwt3IkIk49ARERfwdvG+3DTms6+xKVHEs7v0Z83nEUH7UbQc8aLTHUK149yUBPn/zHei4C5BXk42vrWqbxP6Kvp4e3jQuXSgxVuRRzQ+0L2pO09q1HWOxNtV/WDfX0ySvMVyuXV5BHNR3HaWndu3+fhIQEgpo2VW2rUqUKDerX58LFizrrXbh4kaaP1QEICgp6Yp3yUpCfz4PI+7jXUB8G6F6jKrE3tA+hfWTdpDksee8HNk9fxP0rut8/SqWSe+E3SYlN0DkUtKwV5Odz/1YUVesEqm33rRPI3au6Yz27/zhJsQ9o269zeYf4VP/WNhTk5xN3575GD0OPGn5PTZ6u+PIX5k/4lg1T53P3iu6hbOLZGOjpU9XOjXP3rqltP3f/KoGO2t+LV+LuYG9mRUP3AACsjM1p7l2b01HFPyAb6OmTW6D+WZtbkEd1R++ybQBF5z1Pa2eNYabhcbc1fpDTpbl3ba7E3dHaq/mRAAdPnCxsuPbgbmnC1clAT59q9u6cKXEddOZeBNWdvLXWMdQz0Po8+zt4oq/QnqYwMqiCgZ6eaoitEP+kyvWzhhDib8nIyGD69Ons3buXZs2aAeDr68vhw4eZM2cOr732GgCTJ0+mzcM5ZT788EO6detGdnY2xsbGDB06lJ9//plJkyYBcPXqVUJDQ1m8eDEAs2fPpkGDBkyZUjy/0fz58/Hw8ODq1av4+/sD4Ofnx/fff68q8+GHHxIQEMDUqVOBokTdpUuXmDx5sqqMm5sb7733nur/t956i+3bt7N69WqaNm1Keno68+bNY/HixarebIsWLcLd/dm+hJY0fvx4+vbtq7btSY+vTU5ODjk5OWrbjB4bZvg0WWmZKAsLMbM0V9tuamlOpo4hKEkxDzi8ejsDPx6N3jMsqxx9M4qEuzF0Gtn/meN6kpTkFAoLCrCxVR9KY2NrQ2KC9l5ViQmJ2NjalChvS0FBASnJKdjZ2+Hh7ckHn36Ij58vmRkZrFu5lvGvjWXOkvm4e2q+xkcOHCI9PZ1O3bqUSbssjUzR19MnJUt9CGxKVjrWrtp7Vl19EMWsI2sY32oghvoGGOjpcyoqnAWntqjKBDh4Ely1ARO3/lomcT6LhLSiC2dbC0u17bbmFsQkPbnnW3pWFl2/+JTc/Hz09fSY2H8ATR9LwtX08uLLIcPxdHAkIS2V+bt2MOqn6ayc+AnWOobvPS+zKiboa7koTsvJwtJY+2PYmVniY+tKXkEBC05txqyKCf3rBGNaxZgV53YDcCUukra+9bmRcI+EjGSqOXhSy9kXvTJIvmpjUcUUfT09UrIz1Lan5GRgZWyuo1YxK2Nz6rj48dux9WrbL8bcpHNAEBFxkcSlJ1LDyYf6bgHl1o6EhAQA7Eq85+1sbYnWMgfh4/W01Xm0v39SdnomykIlJpbqx4+JpRmZqela65haWdBqeA8cPF0oyC/g2vHzbJ6xiB7vvoTLY3Na5WZm8+fEaRTkFaCnp6DFkG4aSbrykpmagbKwEHMr9c8ocysLbug4hyREx7Fn+SZe/uLtZzqHlLd/axsenb9NS56/rczIvKT9mDKztiB4RC8cvN0oyMsn4tg5NvywgD7vj8TtGeY5Fdo9On8nZ6s/78lZ6diYaD9/X4m7w/QDK3i/7VDV+ftE5GV+P17cg/7svav0qtmKy7E3iUlNpI6rH009a6hNB1BWzI0envdKnC/SsjOwcnr6udXS2IyaTr7MP7lZ4z5jgyp80+0NDPX0KVQqWX52F1fiymeuT0tjM/T19EnKVH/vJmWlYWtiqbVO6N0rdA4M4uidi1x/cJdq9h508m+Kob4BVsbmJGZpJgNHNu5OQkZKuc4/V6n8P1xtszKT5JkQ/wFhYWFkZ2erEkuP5ObmUr9+fdX/deoUD91zeTh5eFxcHJ6engwaNIj333+f48ePExQUxNKlS6lXrx41atQAIDQ0lH379mFurvnF78aNG6rkWaNG6kOSIiIiaNxYvedRkybqQ+EKCgr49ttvWblyJffu3VMlph7Np3Pjxg1yc3NViUEoWsY4ICDg2Z6gEkrG+LTH1+abb77hyy+/VNv2+eef4xJS7/mCKfmlVwmg+UW4sLCQrXOW06x3R2ycHZ5p15cOnsTO3RkX37LtlaIRspIn9wArcd+jYcCPNteoVZMatWqq7q9ZpzZvvPgqG1avZey7b2vsbtumrTQJaoK9g/3fa4AOJS9PFAqF2lLYj3OzcuClRl1Ze3Ef5+9fx8bEgqENQnilaU/mHN+AsUEVxrboz+8nNpbrr6PbQk/xzarioXAzXi2ai6bkq6FEqfnClWBqZMTS9z4kMzeHU1cjmLFhPW529jT0K+pd16J68Wvkhyt1vH3oPflLtpw6wdC27XTt9m9Rarwa6Hwt9FCgBP48s53s/FwANlw+yEuNurH2wj7yCgtYf+kAA+u256N2w1EqISEzhZNRYTTxqFGmcWvEXKIdChRa21ZSK5+6ZOZlE3pPfSj90jM7eLlxd77t+gZKIC49iUO3ztHKp16ZxLtt+3amfFu8eMfM6dOL4i75Htay7WmUSmWZ9BT9uxSU/BzSXdba2R5r5+LPF6eqHqQnpXJ+51G15JmhcRX6fTaavJxc7off4vjqHVg62OD6jyZDtHy+anmaCwsLWffzYtr274Kdi+M/FNuz+i+0gYdvDO132Tg7qJ27Xfw8SU9K4eyOI5I8KwMlzw8KLdse8bBy5NWgnqw8t5sz965ia2LJS4278kbzvvx8pGi6kz9ObGJMi3780uc9QElMWiJ7rp2mfTXtw+7LpA0aW57tfNHMqxZZedmcv39N476c/Fym7F6EkUEVAhw96V8nmAcZKVx78ORet6Wj5bXQ0Y5lZ3dhY2rJzF7jUVCUaNt17SQD6ranQFmoUb5/nXa0rVqfD7b8Ql6JHmtC/BMkeSbEf0BhYdEJZsuWLbi5qXfxNjIy4saNonmLHp8Y/9GXmEd1XVxcCA4OZtmyZQQFBbF8+XJef/11tcfo0aMH3333ncbjuzy2il/JhJO2L0wlL2imTZvGjBkzmDlzJrVr18bMzIzx48eTm5urtbwu2pIdeXl5GuVKxvi0x9fmo48+YsKECWrbjIyMWHhmm44a6kwsTFHo6ZFR4tf1zLR0TK00E5S5WTnE3rpL3J377P2z6NdRpVIJSiUzRn5Ev/dG4VmjeAhJXk4uESfO07xPp2eK51lYWVuhp6+v0cssOSlJo3fZI7Z2tiRpKa+vr4+llZXWOnp6evhXD+BelObQgtjoGM6eCuXzbyf9zVZoSs3JpKCwAGsT9efd0tiMlGztvQh612zN1fhINoUdASAyOZbsk7l8FfIqK8/vxsrYHEdzGz5oO1RV59H7YNmQL3jnrx+JTU8qdeyta9am1nveqv9zHw6FTUhLxf6x5zcpPR27p8xPpqenh4dD0Ze7ADd3bsfGsnD3TlXyrCQTIyP8XFyJii+7CfczcrMoKCzE0kj9PWphZKIzCZmak0FKdroqcQYQm5aInkKBlYkFDzKSycjNYv6pzRjo6WNWxZiU7Ay6V2/xxCEupZGWm0lBYSHWJXqZWRqZklqid4E2rXzrcvT2BQoK1b88pOVk8tPhVRjq6WNuZEpSVhoD6rbXOin239G6VStq1SxOkuY+/Px8kJCAvX1xMikxMRFbW92TudvZ2ZGQqP6+T0xKemKd8mJsbopCT6HRyyw7LUOj59CTOPq4c/3EBbVtCj09rByL5me093AhKSaec9sO/yPJM1NLMxR6eqSnqB/DGanpmFtqvtdzs7K5fzOS6Nt32bqwKEHw6Bzy1dDxDP/oTXxq+Zd73I/7t7bh0fm75DGVmfp8x5SzrwcRxyvPipX/Ro/O3yV7mVmZmGv0RnukX51gwmNvs/7hhPt3kmLIPpbLt93eYOmZHSRlpZGak8E3exdjqG+AhZEpiZmpjGjUhdi00p+3S0rPeXjeK9G72sLYlNTsp//41ty7Niciw7Qmm5Sgmqj/bkocLhZ2dA5syrXDZZ88S83OKHotTNV7mVmbWGhd9ACKhmjOOLiCnw6twsbUgsTMVLoENiMjN1vjXNmvdlsG1evAR1tncysxWuv+hChvkjwT4j+gRo0aGBkZERkZqRqW+bhHybOnGTp0KBMnTmTw4MHcuHGDQYMGqe5r0KABa9euxdvbG4PnmMg2MDCQrVvVV406fVp9kuZDhw7Rq1cvhg0bBhQl6q5du0b16kWr/Pn5+WFoaMjx48fx9PQEICkpiatXr6q118HBgejo4hPqtWvXyMx8+oXH0x5fGyMjo+caplmSvoEBTt5uRF6+RrWGxcuN37l8jar1NXvDGJkYMeLrd9S2nd97jMiwG/QYOwwrB/UvpVdPXqAgr4DqzetTVgwNDfEP8Cf05Glatm2t2h568jTNW7fUWqdGrZocO3xUbdvpE6fwrx6g8zhSKpXcuHYdn6q+Gvdt37wNaxtrgpqX3QTpBYUF3Ey8Tx3nqpyKCldtr+NcldN3r2itY2RgqJHYKHzUow4F91Me8N6mWWr3D6zXAWODKiw6vZUHZZS0MTM2VltBU6lUYmdhyYmICALci3oc5uXnc+b6dd7q0fO59q1EqUrGaZObn8ft2Fjq+ZbdMLUCZSF3U+Lwd/DkYkzx55a/g6fG/GGP3EqMpq5LNaroG5JbUJTscTS3oVBZSEqJC/b8wgJSsjPQU+hRx9VPY56cMmtHYSG3k6Kp6exL6GPzv9R09n3qUJNARy+cLez46eZqnWXyCgtIykpDX6FHI/dAtRU5S8PMzEztxwWlUomdnR0nTp4k8GFP37y8PM6cPctbY8bo3E+d2rU5ceIEQwcPVm07ceIEdWqXzaq/z0PfwAB7T1fuhd3Ap37xZ/rd8Bt41w18Qk11CVHRWn/YUKMsmg/rn6BvYICrjwc3L0RQvXFd1fabF68Q0FDzeTYyMeaN79VXNT218zC3wq4yYPxIrB3sNOqUt39rG/QNDHD0ciXq8nWqNig+X0eFXVc7xp4mPvIZjinxRPmFBdxIuEdd12ocf7g6IxSt2nwiUvvnopGBIYXKkufvov9LdhzMK8gnMTMVfYUezb1qcfjWBcpagbKQyOQYqjt6qfUeK/r/+hNqFi1e5Ghuw9Hbzz6fpIFe+Qx3zi8s4NqDu9R381eLp76bP8fvaJ8X95ECZSEPMorm92xTtT4nIy+r9VbrXyeYwfU78sm2OeXca64S0pIUFRVHkmdC/AdYWFjw3nvv8c4771BYWEjLli1JTU3l6NGjmJub4+X1bBMY9+3blzfeeIM33niD4OBgtV5sY8aMYe7cuQwePJj3338fe3t7rl+/zooVK5g7dy76OuYeef3115k+fToTJ05k1KhRnDt3TrX65aOeOH5+fqxdu5ajR49iY2PD9OnTiYmJUSWvzM3NGTVqFO+//z52dnY4OTnxySefqK1SBdCuXTt+/vlngoKCKCwsZOLEiWq97XR52uOXl4Yhrdj2+0qcvN1x8fPk4v6TpCUkUze4KDF0aPU20pNS6fLaQBR6eti7O6vVN7Ewx8DQQGM7FC0s4NegBibmZTMX1SP9Bg/guy8n4189gBq1arJl42biYuPo0acoMfPHr7/zID6eDz8vWhSie99ebFyzntkzf6Zrr+6EXbrM9k1b+fir/6n2ufiPhVSvVQM3D3cyMzJYv2otN65eZ9x76snCwsJCdmzZRseunct8JbIt4UcZ27wfNxLvcy0+ivbVGmFvZsWua0Urpw2u1xFbU0t+OboWgNC7EbwW1IuO1RpzPrpo2OaLjbpw7eFqjwBRKXFqj5GRm6V1e1lSKBQMbtOWBbt34uHggIeDAwt378S4iiEhDYqHm3y+dDEOVtaM7V70ui3YvZMaHp642dmTX5DPkfAwtpw6yYcvDFTVmblxPa1q1sLZxoak9HTm7dxBRnY23Rtrnxfw79p/4wxDG4QQ9XDFzOZetbExsVBdjHer3hwrY3OWnd0JFL0WHf2bMLh+R7ZfOY5ZFWN61GjJicgw8h4uEuBp7YSViTn3U+KxMjYnJCAIPRTsvf7k1RZLY/uV47we1Jtbife5nnCP4Kr1sTO1Yu/1ooVOXqjTDhsTC34/ob5SbWvfelx/cJd7KZo9+nxtXbExtSQyKQYbUwt612qDQqFga/hRjbJlQaFQMHjQIBYsXIinhwceHh4sWLgQY2NjOoeEqMr974svcHRwYOzDhNqggQN5bfRoFi5eTNvWrdl/8CAnTp5k3u+/q+pkZmYSdbe4d+m9+/eJuHoVK0tLnJ01P9NKo07HZuybvw57L1ecqnoQfjCU9MQUqrcpek+cXLebjORUgkcWzYV5cfcxLOyssXF1pKCggOvHL3DrTDgdRxcvkHN22yEcvFyxdLChML+AyEvXuHrsPK2GdivT2J8kqFsw639ZgquvB+7+PoTuOUrKgyQadSj6MWP38r9IS0qhz5vDUejp4eihvkCGmZU5BoaGGtv/Sf/WNtTr1IJdf6zB0dsN56oeXD54mvTEFGq1KZqm4ujanWQkpdLxlaI5R8/tOoqlnTW2bo4U5BcQcfw8N0Iv0+XN4gRzQX4+iffjH/5dQEZSKvGR0RgaVcHa6Z9Pbj7OxNAId6viYaeulvZUs3cnNTujTHpRl8bGy4cY32og1xPuEhEXSUhAE+zNrNl+pWjl8uENO2NnasnMQ6sAOBUVzpgW/egcEMTZe1exMbXglSY9uBofSeLD87e/vQe2ZpbcSojGzsySQfU6olAoWH/pgM44SmPPtdO81Lgbd5JiuJV4n5Y+dbExteTQraKeib1qtsLaxIJFp9V/jG7hXZtbCfe5n6q5eE9IQFPuJMXwICMZfT19ajn7EuRVk+Vnd5VLGwDWXdzP+22Hci0+ivC423QJbI6juQ1bHp6jXm7cDTszK37YvwwomgIjwMGTK3F3MDcypW/tNnjbuDDt4f1QNFRzRKMufLd3CbFpiapehll5OWo9zoX4J0jyTIj/iEmTJuHo6Mg333zDzZs3sba2pkGDBnz88ceqoZlPY2lpSY8ePVi9ejXz589Xu8/V1ZUjR44wceJEQkJCyMnJwcvLi86dO2sksR7n4+PDmjVrePfdd/nxxx9p1qwZn3zyCW+88Yaq59Znn33GrVu3CAkJwdTUlNdee43evXuTklK8ytzUqVNJT0+nZ8+eWFhY8O6776rdD0XDL19++WVat26Nq6srP/744zOtyPksj18eAprWJSs9k+Mb95CRkoqdmzN9JryMpX3REMiM5DTSEpKfe79JMfHcu3qbfu+NKuOIIbhjO1JTUvhz3mISExLw9vVhyvTvcHIp+rKb+CCBuJji5JCLqwuTp3/H7Jk/89faDdjZ2zFmwjhatyvuMZiens6Mb38gKSERM3MzqvpXY8ZvPxFYUz15eeZUKHExsXTp0bXM23XsziUsjEzpV7stNiYWRCXH8u2+JapfQq1NzLEzKx4GeeDmWUwMqxASEMTwhp3JyM3mcuwtlp7ZUeaxPa8R7TqQk5fHd2tWkZaVSU0vb2aNHqPWQy0mKUltOHV2bi7frVlFXEoyRoaGeDk68dWwEXSq31BVJi4lmU+XLCQ5IwMbc3NqeXkzf/wEXMp4KN65+9cwq2JCSEBTLI1MiU5L4PfjG1VJSUsjM7UhOrkFefx2bD19a7dlQutBZORlc+7+NbY9llAy1Dega2Az7EytyMnPIzzuNkvP7CjXC++TUWGYG5nQq1ZrrI3NuZcSz/SDy1WrZ1qZmGNrpj68xcTQiEbu1XUeR4b6BvSr3RYHcxty8nO5cP86vx/bQGZejtbyZeHF4cPJycnh2++/Jy0tjVo1a/LzTz+p9VCLiY1VOw/UrVOHyZMmMXvOHH6bMwd3d3e+mTyZWrWKe9mGhYcz+s03Vf/PmDkTgO7duvHF/4qT62WhauNaZGdkcmbLATJT0rF1daTLW0OxsLMGIDMljfTE4s/7gvwCjq/ZSUZyGgaGBti4OtL5rSF41i4eEpifk8vhZVvISErFwNAAa2d72o3qS9XGtUo+fLmp1awBWWkZHFi3g/TkFBw9XBg6cTTWD3sipyenkvKgYhMbT/NvbUO1JrXJTs/k1KZ9ZKSkYefmRPe3h6vO35nJaaQlJqvKF+YXcGT1dtKTUjEwNMTWzZHubw/Hu07x3K0ZyWms/PIX1f9ndxzm7I7DuAZ40/eDV/6xtmkT6ODFz32Kp6oY1/IFALaGH2Py3kUVFRYAh29dwMLIlIF122NrasmdpBi+2rVANVzRxsQCezNrVfm910MxMTSiW/XmjGzSjYzcbC5EX2fR6eJpNwz1DRjWIAQnc1uy83MJvXuFmQdXkJGbXS5tCL0bgVkVE7pVb46lsRnRqQ/45cha1dQCVsbm2JqqD001NqhCfTd/Vp3fq3WfRvqGDK7fEWsTc/IK8olJS2TBqS2E3o3QWr4sHLx5DksjM4Y2CMHG1JI7idF8tv134h4mWG1NLXE0K57mQ0+hoG/ttrhbO1JQWMD5+9eZUGJaix41WlBF34DPOr6s9lh/hm7nz0pwzSX+f1Eon3UyISGEKCOTJ0/mt99+Iyrqv9f1es6xDRUdQqm93qw3UUm6V9L7t/CwcWbgn59VdBilsnLYJFK37qzoMErNsmsn3vnrx4oOo1Rm9HybF1eU3Vx7FWXRoM9IS06u6DBKzcLammkHlld0GKXybpvBLPsPfPkb0iDkX9+OIQ1CmHVY91Dpf4u3Wr5Ai19GV3QYpXZkzG/0WjCxosMolY0vf8cba6dWdBilNrvf+3Se+87TC1Zi21+dUdEh/G0pP82p6BC0shr3+tML/QdJzzMhRLn79ddfady4MXZ2dhw5coSpU6cyduzYig5LCCGEEEIIIYR4KkmeCSHK3bVr1/j6669JTEzE09OTd999l48++qiiwxJCCCGEEEIIIZ5KkmdCiHI3Y8YMZsz493aZFkIIIYQQQoh/lMywVanonuVbCCGEEEIIIYQQQoj/5yR5JoQQQgghhBBCCCGEDjJsUwghhBBCCCGEEKIykWGblYr0PBNCCCGEEEIIIYQQQgdJngkhhBBCCCGEEEIIoYMM2xRCCCGEEEIIIYSoTAoLKzoC8RjpeSaEEEIIIYQQQgghhA6SPBNCCCGEEEIIIYQQQgcZtimEEEIIIYQQQghRmchqm5WK9DwTQgghhBBCCCGEEEIHSZ4JIYQQQgghhBBCCKGDDNsUQgghhBBCCCGEqExk2GalIj3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISqTQhm2WZlIzzMhhBBCCCGEEEIIIXSQ5JkQQgghhBBCCCGEEDoolEpZwkEIIYQQQgghhBCiskj5bmZFh6CV1cTxFR1ChZA5z4QQogwNWPJpRYdQaquGf01cakJFh1FqjpZ2tP71zYoOo1QOvvkrye98XNFhlJr1jCm0+GV0RYdRKkfG/Eb/xZ9UdBiltmbEZJLf/rCiwyg16x+/Je3chYoOo1Qs6tXhp0OrKjqMUhvXakBFhyAe02vBxIoOodQ2vvzdf+KcMXLVlIoOo9TmD/iYNrPHVHQYpXLgjV8qOgTxHyHDNoUQQgghhBBCCCGE0EF6ngkhhBBCCCGEEEJUJjLDVqUiPc+EEEIIIYQQQgghhNBBkmdCCCGEEEIIIYQQQuggwzaFEEIIIYQQQgghKpNCGbZZmUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRFbbrFSk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEZVJYWNERiMdIzzMhhBBCCCGEEEIIIXSQ5JkQQgghhBBCCCGEEDrIsE0hhBBCCCGEEEKIykRW26xUpOeZEEIIIYQQQgghhBA6SPJMCCGEEEIIIYQQQggdZNimEEIIIYQQQgghRGUiwzYrFel5JoT4f2f//v0oFAqSk5MrOhQhhBBCCCGEEJWc9DwTQvwjYmJimDx5Mlu2bOHevXs4OjpSr149xo8fT/v27Ss6vArTyb8JPWu2wtrEnLvJcSw8vZUrcXd0lm/pU5eeNVriYmlHZm4O5+5fY0noNtJzswBo41ufMS36adQbuvQL8grzyyTm9avXsvzPZSQ8SMDb14dxE96mbv16OsufDT3LzzN/4vbNW9jZ2zNkxFB69+ujuv/WjZvMm/MHEVeuEBMdw1vvvM2AIQPV9vFCz77ERMdo7LtP/75MmPhembSrd83WDK7fAVtTK24nRjPryGouRN/QWb5Prdb0rd0WZwtbYtOSWHJmOzsiTqjHXSeYXjVb42RhQ0p2BvtvnOH34xvJLSib10IX45D2VGnWGIWJCQWRUWSu/YvCmDid5c3HvIKBn6/G9rywK2TMXayx3ah9G0y6h5Bz4AhZG7aUaewAfWq1YUj9jtiZWnEr8T4/HV7N+ejrOsv3rdWGfrXb4mJpR2xaIotCt7H9sddCX0+PEQ060yWwGfZm1kQmxzL72DpORIaVeeyPCwloSs8aLbExtSAqOY6Fp7YQ/oT3dyufuvSq2Ur1/j57/yqLQ7eRnpOlKmNqaMyQ+h1p6lkTMyNj4tKSWBS6jbP3rpZbO4w7d6BK8yZFx9OdKDLXbHjy8TT2NQyqaTmeLl8h4/eFqn0ad+mgdn9hahqpn00u09h1USqV/L5mNev37CYtPZ2a1aoxceQrVPXw0Fln/Z7dbDl4gBtRUQBU9/HlzcGDqeVX7R+J+eK+E5zdcZjM5HRsXR1pOagLrv7eWsveu3KLDT/M19g+ZNI4bFwcAEi4F8vJjXuJv3OftIRkWg7sQt2OzcuzCaKS6RIYRJ9abbAxsSAyOZZ5JzcRFntbZ/k2vvXoU7sNrpb2ZORmc/beVRac2kJaTiYA+go9+tcJJtivIXamltxLjWfR6fL9fHpWdV38GFK/E4GOntibWfPh1tkcunW+osNSCa7agM4BQVibmHMvJZ7l53Zz7UGU1rIjG3enpU8dje33UuL5bMdc1f8dqzUmuGoDbE0tSc/N4vTdK6y5sI/8woJya0fvmq0YVO/htVRSND8fWfPEa6neNVvTt3abomup9CT+DN3OjqsnVffP7Pk29d38Neodu3OJD7fOLpc2CKGLJM+EEOXu9u3btGjRAmtra77//nvq1KlDXl4eO3bsYMyYMVy5cqVcHjc3N5cqVaqUy77LQjOvWrzUqCt/nNxERFwkHfwb83G7Ebzz108kZKZolA9w8GJs834sCt3K6bsR2JpY8mpQT0Y368MPB5apymXmZvP2xplqdcsqcbZn525+mv4jEya+R+26dfhr3Qbef/tdlqxaipOzs0b5+/fu88H4d+nRuyefffU5F89fYPp3P2BtY03bdsEAZGdn4+LmStsOwcya/pPWx/190TwKCwpV/9+6cZN3xr5NcId2ZdKudn4Neatlf6YfXMGlmJv0rNGS77uPYcTyScSlJ2mU71WzFa8F9WLq/mWEx92muqM3H7QdSlp2JkfvXASKLlpfC+rNd/uWcCnmJh7WTnzUbjgAPx9ZWyZxa2PUrjVGbVuQuWwtBfEPMO4YjPnokaR+Mx1ycrXWyViwFPT1Vf8rzEyxeO8t8s5d0iir7+FGlWaNKbgXXS7xt/dryNstX2DageVciLlB75qt+KHHWIYt+5JYLa9F75qtGd2sN9/t+5PwuDtUd/Tmw+BhpOVkcuR20WvxWtNehPg35bv9f3InKYYmHjX4pstoXl87VeeXk9Jq7l276P19YhNX4u/QsVpjPm7/Iu/89SMPMjTf34GOXoxt0Z9Fp7dy+u4VbE0tea1pL95o1pep+5cCYKCnz/86vkxKdgY/HFhGQmYq9mZWZOXllEsboChRahTcksylq4uOp07tMH/zFVIn/6D7eJq/RPN4+uBt8s5dVCtXEB1D+i9/FG8o/OeGpyz6ayPLtmzm8zfG4Oniwrx1axkzeRJrZ/yImYmJ1jqhly8T0rwldQL8MTKswqK/NjJ28tesmjYdR1u7co332smLHF6xjTZDu+Ps58nlg6fZ9OMShnz1FhZ21jrrDf36bQxNjFT/m1iYqf7Oz83D0sEGv0Y1ObxyW3mGLyqhlj51GNWkB3OObSA87g4hAU35X8eRjF0/nQcZyRrlqzt683argcw/uYmTUeHYmVrxRvM+jG3Rj2/2LgFgaMMQ2vrW55eja7mbHE99N38+ajeCiVt+5Vbi/X+4hepMDI24nnCXrVeOMqXL6AqNpaTGHtUZXK8jS85s5/qDu7StWp93Wg3k0x2/k5iZqlF++bldrLm4T/W/vkKPLzuN4vTd4uvpIM+a9K8TzPxTm7n+4B7OFraMatIdgBXndpdLO4KrNmBsi/7MOLSSS9E36FGzJd91G8OLK550LdWTqfuXcSXuDtWdvHm/zRDScjI5eqfo+uOzHXMx1CtOWVgamzFvwEfsv3G2XNpQ6RQWPr2M+MfIsE0hRLl78803USgUnDx5kv79++Pv70/NmjWZMGECx48f5/bt2ygUCs6dO6eqk5ycjEKhYP/+/aptYWFhdO3aFXNzc5ycnBg+fDgPHjxQ3d+2bVvGjh3LhAkTsLe3p2PHjgBs3boVf39/TExMCA4O5vbt22rxJSQkMHjwYNzd3TE1NaV27dosX768PJ8SALrXaMHe66HsvR768NfZrTzITKFTQBOt5f0d3InLSGbblePEpycREX+H3VdP4WvnplZOiZKU7HS1W1lZuWwF3Xr1oEfvnnj7eDPu3fE4Ojmyfs16reU3rluPk7MT494dj7ePNz1696Rbz+6s+LM42Ve9Zg3GvD2WDp06UqWKodb92NjYYGdvp7odPXwEN3c36jWoXybtGlC3HVvCj7Il/Ch3kmKYdWQN8enJ9K7VWmv5kICm/HX5MHuvhxKdmsDe66FsCT/KkAYdVWVqOvtwKeYGu6+dJiYtkVNR4ey5dpoAB68yiVkXozbNyd61n7yLlymMiSVz2WoUVQyp0qCezjrKzCyUaemqm6G/H+TlkXtePdlBlSqYDhtI1qr1KLOytO+slAbW68Dm8CNsCj/CnaQYfjy8mri0JPrUaqO1fOeApmy8fIg910O5n/qAPddPszn8CEPrh6iVWRy6jWN3LnE/9QEbLh/kRGQYg+t10LrPstCjetH7e8/109xLiWfh6a0kZKTQyb+p1vL+9h7EZySx9cox4tKTuBJ3h13XTlLVzlVVpp1fQ8yNTPh+359ExEfyICOZK3F3uJOk2SuzrBi1aUH2zn3kXbhMYXQsmX+uQmFoSJWG9XTW0TieAqoVHU/nLqgXLChUK6fMyCi3dqjFp1SyfOsWXu7Tl3ZNm+Ln6cmXY8aSnZPD9sOHddb7etzbvBASQoC3D95ubnz6+usolUpOXtRMMpe1c7uOUr1lA2q0boStqyOtBnXFwsaSS/tPPrGeiaUZZlYWqpueXvGlv5OPOy1e6Ey1JnXQN5Df0/+/6VWzFbuvnWLXtVPcTYlj3slNPMhIoUtgkNbyAY6exKUnsTn8KHHpSYTH3WZHxAn87N1VZYKrNmDNhX2E3o0gNj2R7RHHOXvvKr1rtfqnmqXT8cjLzD3xFwdunqvoUDSE+Dfh0K3zHLp1nui0BJaf201iVirBVRtoLZ+Vl0Nqdobq5m3jgmkVEw4/1pOuqp0b1x7c5URkGAmZKVyOvcWJyDC8bVzKrR0D6rZn65VjRddSybH8fGQt8elJ9Kqp/fXv5N+Ev8KOsO/GGaLTHl5LXTnK4PqdVGXScjJJzEpV3Rp5BJKTn8v+G2fKrR1C6CLJMyFEuUpMTGT79u2MGTMGMzMzjfutra2faT/R0dG0adOGevXqcfr0abZv305sbCwDBgxQK7do0SIMDAw4cuQIc+bMISoqir59+9K1a1fOnTvHK6+8wocffqhWJzs7m4YNG7J582YuXbrEa6+9xvDhwzlxQn0IXlnS19PH19ZVYyjahfvXCXDw1FonIj4SO1NL6rsWdV+3MjYjyKsmZ+9FqJUzNqjCL33eY3bf95kYPKzMLpTy8vK4eiWCJk3Vk3uNmzbh0oWLWutcvniJxiXKNwlqypWwK+Tn/73ecHl5eezctoOuPbujUCj+1j4eZ6Cnj7+DJ6eiwtW2n4oKp5aT5tAzAEM9A3IL8tS25RTkUd3RG/2HX04vRN/A38GT6o5FyTIXSzuCvGpx/E75fdHWs7NBz9KS/IhrxRsLCsi/fgsDH+3HlTZVmjYi9+wFyFVvo2n/nuSFXyH/qu4hGKVhoKdPgIMnJyPVX4uTUeHUctbxWugbkJtf4rXIz6OGU/FrYaiv5fXKz6OOi18ZRl/MQE8fXztXzt9Xf3+fj37a+9tKNTzFytiMIM9anLlbPNypkXsgV+OjeKVpT/544SOm9xhH31pt0CuD94E2ena26FlZkn+lxPF04xYGPs+eBK4S1JjcM+c1jic9B3ssv/oYi/99gOmLg9Gzsy2r0J/oXlwcCcnJBNWpWxyjoSENatTgwtWIJ9RUl52TS35+Plbm5uURpkpBfj7xd+7jWVP9ePWo6UfMjSf3nFz51a8sePc7NvywgLtXbpZnmOJfxEBPn6p2bpy7d01t+7n7Vwl01P7evhJ3B3szKxq6BwBgZWxOc+/anI4q7u1koKevMS1B7sNzo9BOX08PLxsXLseqvz8vx9zCz85dRy11rXzrEhZ7i4THeqlde3AXbxtnfGyLrgEdzKyp7VKVC0+YAqE0iq6lPLRfSz3n+bu6o5fq/F1St8Bm7L0eSna+9p7PQpQn+ZlJCFGurl+/jlKpJDAwsFT7mT17Ng0aNGDKlCmqbfPnz8fDw4OrV6/i71/0hdPPz4/vv/9eVebjjz/G19eXGTNmoFAoCAgI4OLFi3z33XeqMm5ubrz3XvG8WW+99Rbbt29n9erVNG2qvZdITk4OOTnqQ6WMjIy0ltXG0sgUfT19jV5hKdkZWBtr/yJ2NT6Knw6vZnzrgRjqG2Cgp8+pqHDmn9ysKnM/NZ5fj64jMjkWE0MjugY2Y1LnV3l/8y/EpCU8c3zapCQnU1BQgI2t+hdcGztbEhMStdZJSEikSYkvxDa2thQUFJCcnIy9vf1zx3Fo/0HS09Pp2r3rc9fVxsrYHAM9fZKy0tS2J2amYuthqbXOyagwuldvwaFb57kaH0WAgyddA5thqG+AtbE5CZmp7L0eirWJBT/3eRcFCgz09Vl/6SBLz+4sk7i1UVhYAFCYpn5cFaano2dj/Uz70Pd0R9/VmcyV69S2G9avg76bK5kzfi2TWLWxfvhaJGapD1NJykrFzvQJr0WNlhy8dZ6I+EgCHTzpVr252mtxIjKMQfU6cO7+de6lxNPIPZBWPnXR0yufpJOFrvd3VjrWrtrf3xHxkfx4aBUTWg9Se3/PO7lJVcbJwpZa5tYcunmeKXsW4WJpxytNe6Knp8eaC/u07rc0FBZFsRamqb83CtPS0LOxeaZ9qI6n5WvUtuffiaRg6SoK4uLRs7AoGg46/g3SvpmBMjOzbBqgQ8LDxWLsrKzUtttZWREd/0BLDe1+XrYUB1tbmtSuXZbhachOz0RZWIiJpfqxY2JpTmZKmtY6ptbmtB3RC0cvVwry84k4dp6N0xbS5/2ROudJE/9/PLoGSS7xGZWclY6NiYXWOlfi7jD9wArebztU9Rl1IvIyvx/fqCpz9t5VetVsxeXYm8SkJlLH1Y+mnjXQU0h/DV0sqpiir6dHSrZ6z9vUnAysjDV/dC7JytiM2s5V1V4HKDo3WhiZ8lHwCFAUJbf2Xg9l65VjZRp/cRwPz9+ZJc/fadjqOH+figqne/XmHL51nqsP1K+lrIzNNfYV6OiFr50b3z2cyuD/A6WstlmpSPJMCFGuHn3ol7aHUGhoKPv27cNcyy/8N27cUCXPGjVqpHZfeHg4QUFBao/frFkztTIFBQV8++23rFy5knv37qkSY9p6yj3yzTff8OWXX6pt+/zzz6Hq87VL2zlR12nSzcqBlxt3Y82FfZy/fw0bEwuGNezMq0G9+O1Y0bDJaw/ucu3BXVWdiLhIvuv2Jl0Cg1hwqmwmdtd4KZVKzW2Pl0f9TuXDFpbc/qw2/7WJps2CsHdw+Fv1dSl5gaJQKFSxlrTo9DZsTS35re8HoICkzDS2XznOkAadKFAWzU9Rz7UawxuGMP3gCsJjb+Nm5cC4li+Q0LALi0PLZn4hwwZ1MR3QW/V/upbJ/R+2RveBVUKVpo0ouB9DQWTxcaSwtsKkT3fSf5sPf7PH4PPQvFhU6Ax/wamt2Jpa8nu/iarXYuuVYwxrEELBw/38eGgVE4OHsWzIFyhRcj8lni1XjtItsHwnR9doxxPeKO5WDoxs0p3VF/Zy/t41rE0tGNGwC68F9WL2w/e3QqEgJTuDOcc3UKhUcjPxPjYmlvSq2apMkmeGDethOrB4MY/0OQt1lFTwrAdUlaDGGscTQH54cY+6wuhY0m/fwfKzD6jSpAE5+3UPnfw7th06xJS5c1T/z/zwI0DzvKRUPvElUrNo40Z2HDnMnM+/xOgfmltT22evroBtnB2wcS7+jHSu6kl6YgpndxyW5JlQ0Tjvadn2iIeVI68G9WTlud2cuXcVWxNLXmrclTea9+XnI0XJ8T9ObGJMi3780uc9QElMWiJ7rp2mfbVGWvcpdHvWT9kW3nXIzMvmzH31XrMBDp50r96cJWe2czPxPk7mNgyu15GUGulsCjtSLjHrouuYWnR6G7Ymlszu+37xtVTEcYbU70ShUnOur26BzbmZcO+JC2sJUZ4keSaEKFfVqlVDoVAQHh5O7969tZZ5NAfL4yfXvDz1btyFhYX06NFDrcfYIy4uxcMSSya8nuUXm2nTpjFjxgxmzpxJ7dq1MTMzY/z48eTm6u4S/tFHHzFhwgS1bUZGRgxfNempjweQmpNJQWEB1ibqyUArYzOdc5T1qdWGiPhINoUVfbGMTI4l+8QmJnV+lRXndpGcpVlPiZIbCfdwtij9ZNZW1tbo6+tr9DJLSkzS6I32iJ2dLYkJ6j3ekhOT0NfXx8raSmudJ4mJjib05Gm+/n7K0ws/o5TsdPILCzR+GbUxsSApU3uvjtyCPL7b9yc/HFiGrYklCZkp9KjRkozcLFKyin49HtWkBzsjTrIl/CgANxPvY2xoxPtthrAkdLvOxNzzyLscTtoPjw3bejhvkZ6FOQWpxbHrmZuhTH+Gue8MDalSvw5Z29UnEzZwd0XPwhyLCWNU2xT6+uj7elOlZRAp7/9Peyb4OSU/fC3sTNWPDRsTC62TJkPRa/HN3iV8v3+p6rXoWaPVw9ciXbXfj7b9RhV9AyyNzXmQkcwbzfoQnfbsvYyeR5rq/a3eg8PK2Ezr+xQevr/j7vDX5aL3953kWObm/8XXnV9j+bndJGelkZSZRoGygMLHnut7KfHYmFpgoKdf6hXU8i6FkXbn8eOpaNJ/PQsL9ePJwhxl2jMeTw3qkrVt19PL5uZREB2DnsPz90Z9mtaNGlGrWvGQx9y8ogTwg+Rk7B/rQZeYmoKtlfVT97dk018s2LCOXz/9H9W8yncOQwBjc1MUenpkpqg/51lpGZhaPvuQUSdfd64erzyrC4qK8+gapGQvMysTc43eaI/0qxNMeOxt1l86CMCdpBiyj+Xybbc3WHpmB0lZaaTmZPDN3sUY6htgYWRKYmYqIxp1ITZNc7J4USQtN5OCwkKNXmYWRmakZj99HshWPnU5ducSBSUmlu9Tqw1H71xSrSh6LyWeKvqGvNioK5vDjpTBFYi6J15LZT3hWmr/n/xwUPe11CNGBoa082vI/FObte5LiH+C9KEVQpQrW1tbQkJC+OWXX8jQMhl0cnIyDg97EEVHF6/e9/jiAQANGjTg8uXLeHt74+fnp3Z7Ug+xGjVqcPz4cbVtJf8/dOgQvXr1YtiwYdStWxdfX1+uXVOfB6QkIyMjLC0t1W7PM2yzoLCAm4n3NeZcquPiR0R8pPbH1DfUSAY++mXuSb24vGycSdZx4fI8DA0N8Q8M4NQJ9QmqT508Ra062oct1axdi1MnT6ltO3niJIE1AjH4GxNUb920BWsbG5q1KLseQ/mFBVyNj6SRR3W17Y3cA7kU++Q5ggoKC4nPSKZQqaS9XyOO3r6kSooZG1TRfL0KC1Eonr13y1Pl5FL4ILH4FhNHYWoqBgGPHVf6+hj4+ZB/S/tx9bgq9WqDgT55p9VXscq7doPU734k7YefVbf8yLvknTlP2g8/l0niDIpei4j4SBqXeC0ae1TnUsyzvxYdqjXiyO2LGgnK3IJ8HmQko6+nR9uq9VVfKspafmEBNxPuU8f1Od7fBoYUonm8AKp3d0T8HZwt7NTe7y6WdiRmppY6cQY8PJ4Sim8xcRSmaDmeqvqQf+vpv/xXqV+n6Hg69Qyrounro+/kSGFq6T+rSjIzMcHD2UV183V3x87amhMXihcwyMvP40xYGHX8A564r8V/beSPtWuY9dEn1Kj6nF2N/yZ9AwMcvFyJClOfazAq7AbOVT2eeT8PoqIxtdY+JE/8/5JfWMCNhHvUda2mtr2eazWdvXqMDAw1PlOLr0HU5RXkk5iZir5Cj+ZetTgRebnMYv+vKSgs5E5SNDWcfNS213Ty4XrCXR21igQ4eOJkYcuhm5rnsir6Bhqvl1KpLHqtymGezKJrqSgauatP09LIPfC5zt/t/Bpy7M4ljdiDqzbEUN+AXVdP6djLf5RSWTlv/09J8kwIUe5+/fVXCgoKaNKkCWvXruXatWuEh4fz008/0axZM0xMTAgKCuLbb78lLCyMgwcP8umnn6rtY8yYMSQmJjJ48GBOnjzJzZs32blzJyNHjqSgQPeXxtGjR3Pjxg0mTJhAREQEy5YtY+HChWpl/Pz82LVrF0ePHiU8PJzXX3+dmJjyW73ukc1hR2jv15Dgqg1ws3TgxUZdsDezUl0YDK7fkTHN+6nKn757hSaeNejo3wRHcxsCHDx5uXE3rj2IUv2q179OMHVd/HA0t8HLxpk3mvXB29aFnVefvCLbsxo4ZBCbN25iy1+buX3rNj9N/5G4mFh69+sNwG8/z+brz79Sle/Vtw+x0THMmvEjt2/dZstfm9mycRODhg1RlcnLy+NaxFWuRVwlLy+f+Ph4rkVc5W6U+kVjYWEhWzdtoUu3Ln8r8fYkq87vpXv15nQNbIaXjTNjW/TD0cKGjZcOAfBaUC8+bv+iqry7lSMd/ZvgbuVAdUcvPu84Eh87F+aeKJ5z5Oidi/Sq1Yp2fg1xsbCjkXsgo5p258jti2o9h8pazoGjGHdoi2HtGug5O2E6uD/K3Dxyz5xTlTEd0h/jbp006lYJakTexXCUmSVW0szJpTAmVu1Gbi7KjMyiv8vQynO76VGjBd2qN8fLxplxLV7AycKG9ZeLejuMDurNp+1fUpX3sHKkk38T3K0cqe7ozZedRuFr58qcx+Z/qeHkTRvferha2lPXxY/pPcahQMHSM+U3/9ym8KL3dzu/hrhZOfBSo67Ym1mp3otD6nfirRb9VeVP371CU8+adHrs/T2ySXeuxRe/v3dEnMTCyJSXm3TDxcKOBm4B9K3dlu0R5be4Sc6BIxh3DMawTk30XJwwHfoCyrw8ckPPqcqYDh2AcfcQjbpFx1OY1jnMjHt1Rb+qD3q2Nuh7eWA2chgKYyNyT4aWW1seUSgUDO7ajQUb1rHv5AmuR0byxa+/YGxkROeWLVXl/vfzLH5eVjy3zqKNG5m9cgX/e+NNXBwdeJCcxIPkJDKzy2fl2cfV69icsEOhhB0OJfF+HIdXbCUtMYWabYsWZDm2die75xXPK3d+11Fung0jOTaBhHuxHFu7kxuhYdQOLp7HsyA/n/jIaOIjoynILyA9OZX4yGiSY0s3P6b4d9h4+RAd/RvTvloj3K0cGdWkO/Zm1my/UvQD4/CGnRnfqnhRplNR4QR51aJzQBBO5rYEOnrxatOeXI2PJPHhZ5S/vQdBXjVxMrelhpM3n3cahUKhYP2lAxXSxseZGBpRzd6dag9XB3W1tKeavTtO5s82f2N52nH1JK196tHSpw4uFnYMqtcBW1NL1YqS/Wq35ZUmPTTqtfKpy42Ee9xLjde473z0dYKrNqCJRw3szayo4eRN71qtOXf/WrnNo7Xq/B66PbqWsnZiTPN+OFrYqnpUv9q0Jx+3G6Eq727lSMdqjXGzciDQ0Yv/dXgZH1sX5p74S2Pf3ao34/Ct86Tm/DOrMguhjQzbFEKUOx8fH86cOcPkyZN59913iY6OxsHBgYYNGzJ79mygaPL/kSNH0qhRIwICAvj+++/p1Kn4y72rqytHjhxh4sSJhISEkJOTg5eXF507d1YN+9TG09OTtWvX8s477/Drr7/SpEkTpkyZwsiRI1VlPvvsM27dukVISAimpqa89tpr9O7dm5SUlPJ7UoBjdy5hYWRKvzrB2JhYEJUcyzd7l/AgIxko6upub2atKn/g5llMDI3oHNCUEQ07k5GbzeWYm/x5ZoeqjFkVY14L6o21iTmZedncSozm8x1/cCPhXpnE3L5TB1JTUlj4x3wSHiTgU9WX72f+gPPDobMJDxKIfSyZ4urmyvczpzFrxo+sX70Oewd73n7vHdq2C1aVeRD/gJHDXlL9v+LPZaz4cxn1GtRn1pxfVNtPnzxFbEwsXXt2L5O2PG7v9VAsjcx4sVFX7MwsuZUQzcTNvxKbXjRE1c7UUu0CW19Pj4F12+Np7UR+YQFn713lzXU/EJNWPKR18eltKJVKXmnaAwcza5Kz0jl6+6LWi8KylLP3IApDQ0z690RhYkLBnbuk/7YAcoqHIevZWGv8cqjnYIeBrzfps+eXa3xPs+d6KJbG5rzcqBt2ZpbcTLjPe5t+Jjbt0WthhZNF8TBhPT09BtfrgKe1M/mFBZy5F8HotVPVFsioom/Iq0174WppT1ZeDsfuXGLSrgWk55Zf0uPo7YtYGJnS/+H7OzI5lil7Fpd4fxcPT91/o+j93SUwiBcbdSEjN5tLMTf5M7T4/Z2QmcKkXQt4qXFXpvV8i8TMVLaGH2XDw8RiecjZc+Dh8dQLhakJBXeiSJ897xmOJ3sMqvqQ/usfWverZ22F2YuDUZiZokzPIP9OFGnTf0WZlFxubXnciz17kZOby7fz/iAtI4Nafn78/PGnmJmYqMrEJDxQW1Riza4d5OXnM3H6NLV9vdr/BV5/QX3l57JWrUltsjMyOb1pPxkpadi5OtHj7eFY2lkDkJmSTlpC8TmrIL+AI6t2kJGcioGhIbZujnQbNxzvOv6qMhnJaaz6qngBkHM7jnBuxxFc/b3p88Gocm2PqHiHb13AwsiUgXXbY2tqyZ2kGL7atYB4Hdcge6+HYmJoRLfqzRnZpBsZudlciL7OotPFc3ga6hswrEEITua2ZOfnEnr3CjMPriAjN/sfbp2mQAcvfu5TPN3GuJYvALA1/BiT9y6qqLCAosSkeRUTetZoiZWxOfdS4pl5aKVq9UwrY3ON4ZAmhkY0dA9k+Tntw+I3hR1GqVTSp1ZrbEwsSMvJ5Hz0ddZe3F9u7dh34wxWxmaMaNil6FoqMZqJWx6/lrLC8fFrKYWCgXXb4/HoWur+Vcasn6Z2LQVFSbY6Ln68u2lWucUuxLNQKGUJByGEKDMDlnz69EKV3KrhXxOX+u/veeBoaUfrX9+s6DBK5eCbv5L8zscVHUapWc+YQotfRld0GKVyZMxv9F/8SUWHUWprRkwm+e0PKzqMUrP+8VvSzl14esFKzKJeHX46tKqiwyi1ca3KN3Eonk+vBRMrOoRS2/jyd/+Jc8bIVWU3P2tFmT/gY9rMHvP0gpXYgTd+eXqhSir5k68rOgStrCf/+7/v/B0ybFMIIYQQQgghhBBCCB0keSaEEEIIIYQQQgghhA4y55kQQgghhBBCCCFEZfJwRVtROUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRKms6AjEY6TnmRBCCCGEEEIIIYQQOkjyTAghhBBCCCGEEEIIHWTYphBCCCGEEEIIIURlUijDNisT6XkmhBBCCCGEEEIIIYQOkjwTQgghhBBCCCGEEEIHGbYphBBCCCGEEEIIUZnIapuVivQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihgwzbFEIIIYQQQgghhKhMlIUVHYF4jPQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihgwzbFEIIIYQQQgghhKhMCmW1zcpEep4JIYQQQgghhBBCCKGDJM+EEEIIIYQQQgghhNBBoVQqpS+gEEIIIYQQQgghRCWRPOGTig5BK+vpkys6hAohc54JIUQZGr9xZkWHUGoze43n5oO7FR1Gqfnau9N9/vsVHUapbB45leRBoyo6jFKzXjGPr3bNr+gwSuV/HUfSe+GHFR1GqW146VtGLP+qosMotcWD/8fc4xsrOoxSeTWoF2+tn17RYZTarD4T+Gz77xUdRqlM6vwa0w4sr+gwSu3dNoN5Y+3Uig6j1Gb3e5+Rq6ZUdBilMn/Ax7T4ZXRFh1FqR8b89p94LYQoCzJsUwghhBBCCCGEEEIIHSR5JoQQQgghhBBCCFGZKJWV81aOkpKSGD58OFZWVlhZWTF8+HCSk5OfWEehUGi9TZ1a3BO3bdu2GvcPGjTouWKTYZtCCCGEEEIIIYQQokINGTKEu3fvsn37dgBee+01hg8fzqZNm3TWiY6OVvt/27ZtjBo1in79+qltf/XVV/nqq+KpK0xMTJ4rNkmeCSGEEEIIIYQQQoinysnJIScnR22bkZERRkZGpdpveHg427dv5/jx4zRt2hSAuXPn0qxZMyIiIggICNBaz9nZWe3/jRs3EhwcjK+vr9p2U1NTjbLPQ4ZtCiGEEEIIIYQQQlQmhYWV8vbNN9+ohlU+un3zzTelbu6xY8ewsrJSJc4AgoKCsLKy4ujRo8+0j9jYWLZs2cKoUZoLbi1duhR7e3tq1qzJe++9R1pa2nPFJz3PhBBCCCGEEEIIIcRTffTRR0yYMEFtW2l7nQHExMTg6Oiosd3x/9i777CmzjYOwL8kQCDsPWSDLEEBBbeACuLeWve2Wvfo8Gsdra2djrqqtu699x6AoqIoS5A9ZO+9R873BzUSCIgCBuhzX1cuzTnvSZ6HnJzx5h0aGkhNTW3Uaxw+fBjy8vIYM2aM0PIpU6bAyMgIWlpaCA4Oxpo1axAYGIi7d+82Oj6qPCOEEEIIIYQQQggh7/WhXTQ3bNiA77//vsEyvr6+AKoH/6+NYRiRy0U5cOAApkyZAmlpaaHl8+bNE/zf2toaHTt2RLdu3eDn5wd7e/tGvTZVnhFCCCGEEEIIIYS0Ji08s+Wnsnjx4vfObGloaIigoCCkpaXVWZeRkQFNTc33vs+jR48QHh6O06dPv7esvb09JCUlERkZSZVnhBBCCCGEEEIIIUR81NTUoKam9t5yPXv2RF5eHp4/fw5HR0cAwLNnz5CXl4devXq9d/v9+/eja9eu6NKly3vLhoSEoKKiAtra2u9P4F80YQAhhBBCCCGEEEIIERtLS0u4u7tj3rx58PHxgY+PD+bNm4dhw4YJzbRpYWGBixcvCm2bn5+Ps2fPYu7cuXVeNzo6Gj/88ANevHiBuLg43LhxA+PHj4ednR169+7d6Pio8owQQgghhBBCCCGkNeEzrfPRgo4fPw4bGxu4ubnBzc0NnTt3xtGjR4XKhIeHIy8vT2jZqVOnwDAMJk2aVOc1paSkcP/+fQwaNAjm5uZYunQp3NzccO/ePXA4nEbHRt02CSGEEEIIIYQQQohYqaio4NixYw2WYUSMBTd//nzMnz9fZHk9PT14eXk1OTZqeUYIIYQQQgghhBBCSD2o5RkhhBBCCCGEEEJIa9JOZttsL6jlGSGEEEIIIYQQQggh9aDKM0IIIYQQQgghhBBC6kHdNgkhhBBCCCGEEEJaE4Yv7ghIDdTyjBDSprBYLFy6dKndvA8hhBBCCCGEkNaNWp4RQkgr0tuwM/qbdoWCtCxSC7Jw8ZUXYrKTRZadbOcGR32rOstT8rPwq8fRFovx2oXLOHfiDLKzsmBgZIjPl34Ba9vO9ZYP8g/E3zv+wpvYOKiqqWHc5IkYOnq4UJmLp8/j+sUryEhLh4KSIvo498OsBXMhxZUCAMwYOxnpqWl1XnvYmBFYtGpZ8yb4ryEWPTHGxhkqMvKIz03D38+uICQttt7yQy17YZhlL2jIqSCjKAdnAh/gQdTLFontfaTHjYBUfyew5HioiopB8YHj4CeK3o/e4g4eCClXF7DVVMAUFKL82QuUnjwPVFT++6LSkJkwCpIO9mApyqMqLh4lh06iKiauxfOJeOiH1/efoySvEEraaug6dgA0TPXqLV9VUYlXN58g1jcEpQVF4CnJw3pQT5j0rH8/bQmDzXtglHU/KPPkkZCThv3Pr+F1ely95fsZ22K0tRN0FFRRVF4K/6QIHHpxAwVlxYIyw616w928B9RklVBQVoQnccE46ncLFVWVnyCjagNMu2GIZU8oysgjKS8dx/3uICIjvt7yPQ2sMdSyFzTlVVFSUYqglGic8r+LwvKSTxaz//0n8L3hhaK8AqjpaMJlygjomhu9d7ukiDic+nkP1HQ1MWPjCqF1pUUl8D5/C5EvglFaXAJFNRU4TxoK4y6WLZJDX6MuGNCxGxSkZZGSn4ULrzwRnZUksuxU+0HobtCpzvKU/Exsun8EAKAlr4qhlr2gp6QBVVlFnA/ygGe0f4vEXpOjnhX6GHWGHJeH9MIc3Ax7ijc5qfWW57DYcDHtii46ppDj8pBfWgSvaH/4JYUDAKw0DdHP2A4qPAVwWGxkFefhcdwrBCZHtmgeIZ7PEXT7CYrzCqCso4GeE92h3dFAZNnk8Fhc23y4zvIJ3y+CkrZ6neVRz1/hwT/nYdDFHIMWTWr22N/qZ2wLVzMHKErLISU/E2cDHyCqnn1qetfB6GloXWd5cn4mNt49CACw1ekId4seUJdVAofNRnphLu5F+uJ5/OsWywEAXEzs4W7eA0oyckjKy8DJgHuIzEwQWXa2wzD0Map7LkjKy8Da238Lnrt2dICLiT1UeAooLC/Bi8QwnAvyQCW/qsXyaIwu2qaYbOcGCw19qMkq4Zsbf+FRbKBYY6rpv/RZkP8eqjwjhJBWwk7HDKNtnHAu8AFis5PRy7AzPu85Cj8/OIrckoI65S+88sTV196C52wWG1+5TGnRGwavex7Y++duLFq1FFadrXHj0jWsXb0Ge48dgIaWZp3yqckpWLf6f3AfPgRfrluD10HB2LV5OxSVFNHHpR8A4MHtezi452+sWPMlrGw6ITE+EVt++g0A8PmyLwAAf/6zG3z+u6brb2Ji8b/lX6Gvi1OL5NnXqAvmdR+Bv55exOu0OAy26IENbnPwxYU/kFGUW6f8YIuemNF1MHY8PoeIzASYq+lhcZ9xKCwrxvOE0BaJsT7cEYPBHeKG4r8OoColDdJjhkHuf6uQv/JboLRU5DaSvbtDetI4FO89iKqIKLC1tcBbMBsAUHrkNACA9/kMcHQ7oGjXP2ByciHVtwfkvluF/FVrweTktlg+cS9D8fL8fThMdIO6cQdEegfAY/dZDPtuLmRVFERu433gMkoKitBjymDIqyujtKAIDP/Tdn3obdgZsx2HYa/PZYSlx2GQeXesdZ2FJZe2ILMor055Sw0DLOszAQd8r8E3IRSqPAUs6Dkai3qNxS//Vob3M7bFtK7u2Ol9DmEZ8dBRUMPSPuMBAAd8r32SvLrrW2GK/SAcfnEDkZkJcDG1x2qnyVhzYzeyivPrlDdT08PnPUbhuP8d+CdFQEVGHjMdhmK243Bs9z7zSWIOexYAj+NXMXD6KHQwM0SgxzOc37wfs35eBQVV5Xq3KysuwY19p2BgZYqifOFjcFVlJc7+/jd4CnIYsXga5FQUUZCdCylpbovkYN/BDGM6O+NMwH3EZCejt2FnLOw1Gj/dO4wcEeeHc0EeuBzySPCcw2LjmwHT4J/07vwgxZFAZnEe/JMiMKZzyxxLa7PWMsZgy5649tob8Tlp6KZniWldB2OH9xnklRaJ3Gai7UDIcWVwMfghsovzICslAzbrXeeZ4ooyeEX7I7MoF5X8KphrGGC0tROKyksQlZnYInlE+wbj6elb6DN5KDRN9RH68AVubj+GCRsWQU5Vqd7tJmxcLLSPSMvL1ilTkJWLZ+fuQKujfkuELtBV1xzju/THKf+7iM5KQl+jLljUZxx+uHNA5D51JvA+LgU/FDxns1n4dsBM+CWGC5YVlZfiZpgP0gqyUMnnw0bbGNO7DkZBWTFC0+JaJA8HPUtMsnXFUb9biMpMhLOJHVb0nYjvbu9Dtohj0smAuzj3ykPwnMNi43u3OXiRGCZY1kO/E8Z1dsEB32uIykyClrwK5jgOAwCcCrjXInk0lowkF1FZibgR9gSbBi8Qayy1/dc+i0+CT7NttibUbZMQ0mycnZ2xePFiLF68GEpKSlBVVcV3330H5t9plo8dO4Zu3bpBXl4eWlpamDx5MtLT0wEADMPA1NQUf/zxh9BrBgcHg81mIzo6WuR7vnr1Cv3794eMjAxUVVUxf/58FBYWCtb7+vrC1dUVampqUFRUhJOTE/z8/IReIzIyEv369YO0tDSsrKxw9+7d5vyzNJqzqT2evQmBT3wI0gpzcDHYC7klhehjKLq1TGllOQrKigUPfSVNyEhK41l8SIvFePH0ObgNGwz3EUOhb2iABcsXQV1DA9cvXhVZ/vqlq9DQ1MCC5Yugb2gA9xFD4TbUHedPvrtpDgt+DSsba7i4DYCmtha6du8GZ1cXRIa9uyBXUlaCiqqK4PHssQ+0O+jAxq5Li+Q5yrof7kb44k7EcyTmpePvZ1eQWZSLIRY9RZbvb2KPm+E+eBQbiLSCbDyMDcTdCF+M7ezSIvE1hDt4IEovXUeFrx/4iUko3r0fLK4UpHp3r3cbCTMTVEZEoeLxM/AzslAZFILyJ88gYWxYXUBSEpKOXVFy4hyqwiLAT0tH6bkr4KdnguvasjmGPfCFSc/OMO3VBYpaaug2biB4yvKIeCS6hUzy6xikRSXAZeF4aFsYQk5VEWqGOlA31m3ROGsb2akP7kW+wL1IXyTmZWD/82vILMqDu3kPkeXN1PWRUZiD66FPkF6Yg9D0N7gT/hymah0EZczV9RGW9gYPYwORXpiDgORIPIoJFCrT0tzNe8Irxh9eMf5Izs/Ecb87yC7OQ/+O3USWN1HTRUZRLu5GPEdmUS4iMhPgEfUSRiranyzmF7cewaafAzo7d4eqjib6TxkBeRUlBNz3aXC7O4cuwLKnHbRN61ZivHroi9LCYoxaOgMdzAyhqKYMXTMjaOjrtEgOLqZd8TQuGE/fBCOtIBsXXnkip6QAfYxEHwPrnB+Uq88PPm+CBWXic9NwOfgh/JLCUVn1aVpw9DLsDL/EcLxMDEdGUS5uhj1FfmmhyFbUAGCqpgtDFW0cfXkLMVlJyC0pRFJeBhJy37VEjstOQWh6HDKKcpFTUgCff/9GBkpaLZZH0N2nMO9jD4u+XaGsrY5eEwdDTlkRr71eNLidjLwseIryggebLXwrxufz8eCf8+g6wgUKavVX7DaHAR274UncKzyOe4XUgmycDfJATnEB+hnbiixfWlmO/LIiwcNAWQs8KWk8rbFPRWYmIDA5EqkF2cgsyoVHlB+S8jJgqtpyx6hBZo54FBuIR7GBSCnIwsmAe8guyYeLib3I8iUVZcgvLRI8DJW1wZOSgXeN1lsmqh0QmZmIZ/GvkVWch5C0WDyLfw1D5U933KqPT3wI/n52BV4xAeIOpY7/2mdB/nuo8owQ0qwOHz4MCQkJPHv2DNu3b8fWrVvxzz//AADKy8uxceNGBAYG4tKlS4iNjcXMmTMBVI8xNnv2bBw8eFDo9Q4cOIC+ffvCxMSkznsVFxfD3d0dysrK8PX1xdmzZ3Hv3j0sXrxYUKagoAAzZszAo0eP4OPjg44dO2LIkCEoKKj+VZXP52PMmDHgcDjw8fHBnj178PXXX7fQX6d+HBYbuooaCMt4I7Q8LP0NDBt5k9ndoBMiMuJF/mLcHCoqKhAZHgF7R+GbZHvHrngdLLrCLiz4NewduwqX7+6AyLAIVFZWdzOz6mKNqPAIhL+u/qUxJSkZvk+fw7GX6EqGiooKeNy5B7eh7mCxWE1Nqw4JNgemqh3gnxwhtNw/KQIWGqK75EhyJOp0myuvrICZmh44rE93qmVrqIGtrITKoBqfR2UlKkPDIWFW9zskKBIWBQkjA3BMjASvI2lngwq/oOoCHA5YHA5QUSG0HVNeAQkL02bP462qyipkJ6RC21K4e522pREyY0V3LUp8FQVVfS28vvcMF77dhSvf74PfhQeoLK8QWb4lSLA5MFHtgIBarUADkiPr3YfC0t9AVVYRXTuYAwAUpeXQ09Ba6Bf40PQ4mKh1QEe16opATTkV2OuaC5VpSRw2G4Yq2ghOFf4x41VqDDqqie5GG5mZABWeAjprV+8nCtKycNC3avEudW9VVVYiLS4JhtZmQssNrTsiOSqu3u1ePfRFbnoWeo0aKHJ9tP9r6Jga4P6Ri9i95Acc/N9m+Fx9INRCtrlwWGzoKWkiLL3W+SHtDYxUG1dZ18PAGuHpb1rs/NAYHBYbOgpqdVqDRWUmQk+pbstlALDQMEByXgb6GHXBl85TsKzvBAwy7w4JNqfe9zFW0YGarCLiclKaNf63qiorkRmfDF0r4WOqrpUJ0qJFd09768LGvTi6+g9c23IYyWF1hwHwu+YFGXlZWPQRXdnQXDgsNvSVtPC6Vmuw0PQ4GDeyoquXoQ3C0t+IbFH0lrm6PjTllRHZQi0AOWw2DJS1EZIWI7Q8JDUWpqqN+8Gkr3EXvE6LFWo5G5mZCENlLUElv7qsEmy0TRCUEtV8wbcz9FmQ/wLqtkkIaVZ6enrYunUrWCwWzM3N8erVK2zduhXz5s3D7NmzBeWMjY2xfft2ODo6orCwEHJycpg1axbWrVuH58+fw9HRERUVFTh27Bh+//13ke91/PhxlJSU4MiRI5CVre76sHPnTgwfPhy//vorNDU10b9/f6Ft9u7dC2VlZXh5eWHYsGG4d+8eQkNDERcXB13d6pP7pk2bMHjw4Bb6C4kmy5UBh81GQWmx0PKCsmIoSPPeu70ClwdLDUMcfXmzpUJEfm4e+FV8KKsI/xqupKyMnKxskdvkZGdDSVm4vLKKMqqqqpCfmwcVNVU4D+yPvJw8rF64DAzDoKqqCkNHj8CEaaLHeXn68DEKCwvhOmRQ8yRWiwJXFhw2p85NZk5JIex58iK38UsKh5uZI56+CUZ0VhJMVXUx0MwBkhwJKEjLfrIbVpaSIgCAnyd8M8PPywdbTbXe7SqePkeJghzkvv+m+nUkJFB2xwNlV/7dn0pLURkRBekxw1CUlAImNw+SvbuDY2oEfmp6yyQDoKywGAyfgbS88HdAWl4WJfmiu3gVZuYiPToRbAkJ9Js3GmVFJfA9fQdlxaXoOXVIi8VakzyXBw6bU6e7dV5JAZRlzERuE54Rjy0PT2G182RIciQgwebgWfxr/O1zRVDGOzYIilw5bBq8ACwWCxJsDm6GPcWFV14tms9b1Xmx63Svyy8tgqJ03e5nQHXFyJ6nF7Go91hBXn6J4Tj68tanCBkl/3bZ5SnKCS3nKcqjKE/09zInNQOPzt7EZ98uBJsjupImLyMb8aHRsOxphzErZyM3LRP3jlwCv6oKvUa5NmsOgvNDmfDfvaCsGArcxpwfZGGlaYTDL240a1wfiiclDQ6bXWesu8LyEsjXk4eKjAL0lbVQya/CCf874ElKY3inPpCRlMal4Hf7PVdCEl86T4UEmwM+w8e114/rHQ+uqUr/PS7JKAjv8zIKsijOLxS5DU9RHn2nDYe6vjaqKqsQ6ROIa1sPY/iqmdA2MwQApEbFI9zbD2PXtnxXPDnBNUetfaq0CIqaor/LNSlIy6KTpjEOPK/bXVxaQgo/D10ISTYHfIbBSf+7dSp+m4u8VD3HpLL6j0k1KUrLwkbLBPt8Lgstf57wGvJcHta4TAdY1T+IPIh6iRthT5s1/vaEPosWwlC3zdaEKs8IIc2qR48eQq2Bevbsic2bN6OqqgpBQUHYsGEDAgICkJ2dLfiFPj4+HlZWVtDW1sbQoUNx4MABODo64tq1aygtLcX48eNFvldoaCi6dOkiqDgDgN69e4PP5yM8PByamppIT0/HunXr8ODBA6SlpaGqqgrFxcWIj48XvIa+vr6g4uxtzO9TVlaGsrIyoWVcbvOPdcNiNe686ajfCSUVZXiVIrp7a3PHVBMDNNgCrPa6t914375QkF8ATh85jkWrlsK8kyWSE5Ox989dOHFQBZNnTavzerev3US3Ho5QVVdrUh7vVevv3tBncSrgHpRl5LF5+BKwAOSWFOJ+5AuM6+wCfgtOMy7Zuzt486YLnhf++mf1f+oE2vCOJGFlDunRw1Cy/xgqo2LA0dKAzIxJ4OcOQ9mF6puj4l3/gPf5LCj+tRlMVRWqYt+g4vEzcIxEt6RqXrV3OqbOfvhuFQMWi4XeM4dDSqb6O1k1pj8e7b8EhwmukJCSbOFYG8Bigam9Y/1LV1ED87qPwOmA+/BPjoCyjDxmdhuChT1HY+eT8wCqx4sa18UFe30uIzIjHloKapjrOBw5nQtwJujBp8tDRAr17V06CmqYau+Oy8EP8So1GkrS8phoNxAzHYZi/3PR3b1bQp1j1L/7SW18Ph/X9pxEr9GuUNGqO5C7YHM+A568HNxmjQWbzYaWkS4Kc/Phe8Or2SvPBO/5kdt1N7BCSUUZgpJbS0sN4UxYYNV7eHr7GZ0NeoCyyurWo7fCnmKirSuuvfYWDBheXlmB3U/OQ4ojCWNVHbhb9EB2ST7islum9dnbuGtq6FytpKUGJa135yxNEz0U5uQj8M4TaJsZory0DB77L6DvtBEix0FrKXVDrv8YVVNPA2uUVJSKbEFaVlmOTfcOgyshBXMNfYzr7ILMorx6B41vCSw07vvS27AziitK4ZccLrTcXF0fwyx74ajfLcRkJ0NTThmTbF2RZ1WIq68ft0jM7RV9FqQ9ocozQsgnUVpaCjc3N7i5ueHYsWNQV1dHfHw8Bg0ahPLyckG5uXPnYtq0adi6dSsOHjyIiRMngscT/Ys0U8/ND/DugnvmzJnIyMjAtm3bYGBgAC6Xi549ewrekxFxtduYroA///wzvv/+e6Fl69evB+yU3rutKEVlJaji8yFfq5WZnBRPaKa9+nTXt8KLxFBUtWBFjYKSItgcNrKzcoSW5+XkQKlWa7S3lFVUkJMt3CotNycXHA4HCorVg70f+fsg+g9yhfuIoQAAIxNjlJWWYPuvW/HZjClCY8KkpaYh4IUfvtu0oRkzE5ZfVoQqfhWUa7UyU5KWEzlxAwCUV1XiT++z2Pn4PJRk5JFTko9B5j1QXF6K/NL3f34fq+JlIAqiauyHktWndbaSIqpy3w1Kz1aUB5NXf9ca6QmjUP7oKco9qgcY5yckAVwuePOmo+zidYBhwE/LQOEPvwFcKbBkZMDk5oG37HPw0zNbJjkAXDkeWGwWSguEf8kuLSyu9wZTRkEOMopygoozAFDUUgUYoDi3AAoaKi0W71sFZcWo4ldBSUZ4H1KUlkNuieiWKeM6OyM0PQ6XQqoH5H6Tk4q9Ppfw85CFOO5/BzklBZhs5wrPaD/ci/StLpObBmkJSXzRawzOBnk06qa36XnxoSgj/LdXkJZFfj2DvQ+36oPIzARBK4EEpKPMtxzfuc7CuSAP5JWK/ns0Fxl5WbDYbBTlCn93i/MLwVOQq1O+vKQMabGJSH+TjPtHq1tAMAwDMAw2z/oG47+cC30rU8gqyYPN4Qgdn1S0NVCUV4CqykpwJJrvEvvt+UGBK/x3l+fykN+I80MPA2v4Jrxu0fNDYxSXl6KKz4eclPB5TlZKGoXlovMoKCtGfmmRoOIMADIKc8FmsaAgLSvoMsgAgv+nFmRBXVYZ/YxtW6TyTPrf41LtVmalBUUi96n6aBjpIupZddf4/IxsFGTl4vauE4L1b69P/l7wPSb+sKRZj12Fb/epWi2C5KV5jTpn9TK0wbN40fsUAwgm1knMS4e2vCrcLboj0rv5K88Kyv89JtXOg1v/MammvkZd8PRNMKpqdbcebe2EJ2+CBbNYJuVlQIojiRndhuDa68ctfKRtm+izIP8FNOYZIaRZ+fj41HnesWNHhIWFITMzE7/88gv69u0LCwsLwWQBNQ0ZMgSysrL466+/cPPmTaGunrVZWVkhICAARUXvTsqPHz8Gm82GmVl116hHjx5h6dKlGDJkCDp16gQul4vMzEyh14iPj0dycrJg2dOn728KvmbNGuTl5Qk91qxZ897t6lPF8JGYlw5zdeGBqc019N978W+qqgt1OWX4vGm5iQIAQFJSEh3NzeDv+1JouZ/vS1hZdxK5jYW1Ffxql3/+Ah0tzCDx781lWVkZWGzhCks2mwOGYepUbt69fguKykpw7Cl6PLTmUMmvQlRWEmx1Ogott9Uxe2/XkyqGj6ziPPAZBv2MuuB5QmjLVmiUloKflv7ukZgMfk4uJGxqDL7N4UDC0hyVEQ20SpSSqttsgs+v28wQAMrKweTmgSXLg2Rna1S8FD1wf3PgSHCgoqeFlLA4oeUpYXFQMxI9Lo+6cQeU5BWiouxdpXx+eg5YLBZ4SqK73Ta3Sn4VorOSYKsjPB6crY5pvfsQlyNVZ3/n13rO5UjWU4ZVb0u85lTF5yMuOwXWWsZCy621jOttVSIlUV/Monev5saRkICmYQfEhQi3kIkLiYSOqWGd8lwZLmb8tBLTNy4XPLq49ICKtjqmb1wOLZPqY3SHjobITc8SmsU1Jy0TskryzVpxBlQfVxJy02ChUfv8YIDYrOR6tqpmqqYLDTllPI0LbrDcp1DF8JGcnwmTWhNcmKjpCk0AUFN8TirkpWUhxXn3N1WVVQSf4Td4Q876t3tXS+BISEBNXwdJr4WPqYmh0dA0ET32nyhZCSmC7sRKWmoYt34hxq5dIHgYdDaHjrkRxq5dUO/Mwh+riuEjPjcVlrXGYLTUMEDMe7q7dlTTg4acMp7EvWr0+7XUZ1HF5+NNTgqsNIXHxeykaYSorIbHWasej00Fj2IC66yT4kjUOXczDFPd1vBTHLjaIPosWsi/P960usd/FFWeEUKaVUJCAlauXInw8HCcPHkSO3bswLJly6Cvrw8pKSns2LEDMTExuHLlCjZu3Fhnew6Hg5kzZ2LNmjUwNTVtsAvllClTIC0tjRkzZiA4OBgeHh5YsmQJpk2bBk3N6sGHTU1NcfToUYSGhuLZs2eYMmUKZGRkBK8xcOBAmJubY/r06QgMDMSjR4/w7bffvjdPLpcLBQUFoUdTu216Rvmhh4E1uutbQVNOGaOs+0FZRh6P46p/mR5m2RtT7N3qbNfdoBPislOQWpDVpPdvjNETx+H21Ru4fe0m4uPeYO+fu5GRlo4ho4cDAA7+9Q/+2PiLoPzQUcORnpqOfdt3Iz7uDW5fu4k7125i7KQJ7+Lv3RPXL16F570HSE1Ogd/zFzjy90H06NMLnBrjDfH5fNy9fgsDB7uBI9EyF+JvXQp+CDczR7h2dICuogbmOg6HupySoPXMjK6DsbLfZ4LyOgpqcDaxh46CGszU9PCV8xQYKGvhSAuOQVefspv3ID1qKCQd7MDW7QDeF7PBlJWj/PEzQRneF3Mg/dkYwfNKv0BwBzpDsqcj2OpqkLCxgvSEUah4GSC4SJLo3AkSXawF6+XWfomqlFSUe7ZstwmL/g6IfhKI6KdByEvNxMvz91GcnY+OfW0BAP6XvfDkyLtxdwwdrMCVlYHPsRvIS8lEWlQC/C96wLinzSftsnk5xBsDOzpggGk36CqqY7bDMKjJKuF2ePXnMNV+EJb1efc98E0MRQ8Da7ibd4emnAosNAwwt/twoUlAfBPD4G7eA32MOkNDThldtE0x2c4Vvgmv61S0tZRb4U/hZGyPfsa20FFQw2Q7N6jyFPEgsrqSfHyX/pjfY6SgvH9SBLrqWaC/aVeoyyqho5oepnYdhOjMpHpb4TW3bu598crrOV499EVWcho8jl9BQVYuuvSvroR/eOYmbuw9BQBgsdlQ19USevAUZMGRlIC6rhakuFIAgC79e6KksAgPjl9BdmoGogNC8ezqA9gN6NUiOXhEvURPQxv0MOgETXkVjLFxggpPXjAr3XCrPpjW1b3Odj0NrBGbnYIUEecHDouNDorq6KCoDgk2B4oy8uigqA41WaUWyQEAnsQFoauuBew7mENdVgmDLXpCUVoOz+NDAQCuZg4Ya+MsKB+UEoWS8lKMtnGGuqwSDJS1MMi8O/wSwwVdNvsZ28JEtQOUZeShJquIXoY2sNUxa9FJKTq79kSYtx/CvP2Qk5KBJ6dvoTA7D5ZO1RPqPL9wDx4HLgjKv7r3FHH+ochLy0J2cjqeX7iHWL9QdHJxBABISEpCpYOm0IPLk4YkVwoqHTSbvUIWAO5HvkBvo87oaWANLXkVjOvsAmWegqCFz8hOfTGjW91xInsb2iA2KxnJ+XVbHQ8y7w4LDQOoySpCU14FAzp2Qw+DTnge/7rZ43/rdsRz9DOyRR+jztCWV8VntgOhwlOAZ3T1zOpjbZwx13F4ne36GnVBdFYSkvIz6qwLTImCi4k9HPWsoCarCCtNQ4yy7oeA5EiRPRY+JRlJLjqq6QomjtFRUENHNV1oyrXs7KyN8V/7LMh/D3XbJIQ0q+nTp6OkpASOjo7gcDhYsmQJ5s+fDxaLhUOHDuF///sftm/fDnt7e/zxxx8YMWJEndeYM2cONm3a1GCrMwDg8Xi4ffs2li1bBgcHB/B4PIwdOxZbtmwRlDlw4ADmz58POzs76OvrY9OmTVi9erVgPZvNxsWLFzFnzhw4OjrC0NAQ27dvh7t73ZuQluafHAGelDQGmfeAApeHlIIs7PW5LLhxVpCWhbKM8K/P0hJS6KJtigs1Bk5uSU4DXVCQn48TB48iOysbhsaG+OGPn6GpVV1ZmZ2VhfS0dy0KtXS08cMfm7Bv+25cvXAFqmqqWLB8Mfq49BOUmTRjKlgsFo7sO4isjEwoKiuhe+8emDF/jtB7+/v6IT0tHW5DW/6zeRQbCHkuT3Dh9yYnFRvu7Bd0RVHmKUC9xg0mm8XGaOt+6KCojip+FYJSovHltV1IL8wR/QYtqOzKTbCkJCEzeypYsrKoiopB4aYtQGnpu3jVVIR+OSy9cA0MA0hPHAW2ijKY/AJUvAxE6el3N38sngykJ42tXl9YhIrnL1Fy6iJQVdWi+Rh2tUR5UQle3XyMkvwiKGmrwfmL8ZBTqZ4coTS/EEXZ77qkSnKl0H/xRLw4exc3fzsMrqwM9O0t0GVY3xaNs7bHcUFQ4PIw0XYAlGXkEZ+Tio33Dgn2IRWeAtTllATlH0S9hIwEF0MsemGWw1AUlZciKCVaqAL2TOADMAyDKXZuUOEpIr+0CL4JoTjuf/uT5fUs/jXkpHgY2akflGTkkJiXjs1eJ5BVXN1NWElaDqo8RUF579hAyEhIYaCZAybZuaG4vBSv02NxJuD+J4vZorstSgqL8fTyPRTl5kOtgxbGrJwNRbXqm82ivHzkZ+d+0GsqqCph/Jfz4HHiKg5/txVySgqwd+sDx6HOzZ8AAL+kCMhKycDdvAcUpGWRkp+Fv55cFJwfFKVloVyrm7C0hBRsdTri/CtPka+pKCOHb/q/G1dyYMduGNixGyIzErDd+2yL5BGcGgOepDScTe0hz+UhrSAbR1/eFHTflePyoCjzrutjeVUlDr24jqGWvbGg1xiUlJciODVG0HUZqJ7teLhVHyhIy6KiqhKZRbk4F/QAwakxdd6/uZg4WKO0qBh+171QnFcIFR0NDF4yBfKqSgCA4rwCFGa/6zpfVVkFn3N3UJRbAAlJCSjraMB9yWTo24ieQORTeJkYDlkpGQy17PXvPpWJXY/PC7q/KkrLQYVXd5+y62CGM4Gix1jkciQxyc4VSjJyqKiqRGpBNg76XsfLxHCR5ZuDb0Io5KRkMMKqDxSl5ZCUl4Ftj04LZmyszkP42klGkouuuhY4GXBX5Gtefe0NhmEw+t8fMQvKihGYElXvd+lTslA3wM7RKwXPl/apHhf4RuhT/PTgsLjCAvDf+yzIfw+LoSpbQkgzcXZ2hq2tLbZt29ak13n8+DGcnZ2RmJgoaEHWViy/vE3cITTZtpHLEdNC08p/SsZquhh24Etxh9Ek12b/jtzP5ry/YCundGo/frh7QNxhNMk619kYdegbcYfRZJdm/oLpJ38QdxhNdmTSOvxda1a2tmZej5FYcnHL+wu2cjtGr8TaW/vEHUaTbHSfj81eJ8UdRpOtcpqEhedFz1Delvw19kvMPrNJ3GE0yYEJ/0PvXS0/c2pLe7xoT7v4LNqq3LlLxR2CSEr/bBd3CGJBLc8IIa1GWVkZEhISsHbtWkyYMKHNVZwRQgghhBBCCGl/aMwzQkircfLkSZibmyMvLw+//fabuMMhhBBCCCGEEEKo5RkhpPl4eno2afuZM2di5syZzRILIYQQQgghhLRZNMJWq0ItzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmlC3zVaFWp4RQgghhBBCCCGEEFIPqjwjhBBCCCGEEEIIIaQe1G2TEEIIIYQQQgghpDXhU7fN1oRanhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB7UbZMQQgghhBBCCCGkNWH44o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB405hkhhBBCCCGEEEJIa8Iw4o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmvCp22ZrQi3PCCGEEEIIIYQQQgipB4thaBQ6QgghhBBCCCGEkNYid+rn4g5BJKVje8UdglhQt01CCGlGR3xviDuEJpvuMAQFkVHiDqPJ5DuawnXfMnGH0SR35/+Jdbf+FncYTfaD+zyMOvSNuMNokkszf8GAvUvFHUaT3f98OwpS08QdRpPJa2m2+ePtdIch2PbwtLjDaLLl/SbiWoi3uMNokmGd+iAlL0PcYTSZtqI63P9eIe4wmuzWvK1w+muRuMNoEq+FuzD7zCZxh9FkByb8D713LRB3GE3yeNEecYfw8aidU6tC3TYJIYQQQgghhBBCCKkHVZ4RQgghhBBCCCGEEFIP6rZJCCGEEEIIIYQQ0prw+eKOgNRALc8IIYQQQgghhBBCCKkHVZ4RQgghhBBCCCGEEFIP6rZJCCGEEEIIIYQQ0prQbJutCrU8I4QQQgghhBBCCCGkHlR5RgghhBBCCCGEEEJIPajbJiGEEEIIIYQQQkhrQt02WxVqeUYIIYQQQgghhBBCSD2o8owQQgghhBBCCCGEkHpQt01CCCGEEEIIIYSQVoThU7fN1oRanhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB7UbZMQQgghhBBCCCGkNWH44o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmjA022ZrQi3PCCFt2syZMzFq1KgP2sbQ0BDbtm1rkXgIIYQQQgghhLQv1PKMkDZk5syZOHz4cJ3lgwYNwq1bt1r8vXNzc3Hp0qUWfZ8P9eeff4Jp5l9l4uLiYGRkBH9/f9ja2jbra9f24q43fG54oDA3H+odtOA6dRT0LUzeu11CRAyO/rgL6rpamLfpS8HyMN8gPL5yFzlpmeBX8aGsqYYeQ5xh08ehxXJgGAb7TpzAxdu3UFBYiE5m5vh64UKYGBjUu030mzfYc/wYwqKikJKejpXz5mHyyFH1lj945gx2HTmMSSNGYtX8+S2QBTDcqg/Gd+4PVZ4C4nJS8dfTCwhOjam3/AirPhjZqS805VWQXpiDE/53cS/SV2RZZxM7fDtgJh7HBWHDnf0tEj8AOOhZoo9RF8hxZZBRmIObYT54k5Nab3kOiw1nU3t00TGFHJeH/NIieEX7wz8pAgDQVdcctjpm0JBXBgAk52XiXqQvkvIyWiwHABhs3gOjrPtBmSePhJw07H9+Da/T4+ot38/YFqOtnaCjoIqi8lL4J0Xg0IsbKCgrFpQZbtUb7uY9oCarhIKyIjyJC8ZRv1uoqKpssTxGWPXBhC4DBPvU7ifn8aqBfWpkp74Y2akvtP7dp4773cHdGvvUIDNHfOUytc527v+sbLY8GIbBvkMHcfHqVRQUFKCTlRW+Xr4CJkZGDW5338sTe/bvR2JyMnR1dPDF3Hlw6ddPsH7vwQP4+9AhoW1UVVRw++IlwfOs7Gzs2LsHPr6+KCgshH2XLvhy2TLo6+o1Oa/2cKwN9niOgNveKM4rhLKOOnpPHAwdM0ORZZPCY3Hlj4N1ln/2wxIoa6sDAF4/fIHwpwHITk4HAKgb6KD76IHQNNJtsRwA4PHNB/C8fBv5ObnQ0uuAkbM/g7GVmciyMaGRuH7kHNKTUlBeXg5ldVX0dHOC03A3QRmfu1544fkUqfFJAABdEwMMmTIG+h2Nmy3mS+cu4NTRk8jKyoKRsSEWr1iGznZd6i0f4OeP3dt2IDYmDmpqqvhs2hSMHDtKsP6hhxeOHTyCpMQkVFVWooOeLiZO+QxuQ9wFZSorK3Ho7wO4d+susrOzoKqqCvdhQzBt9gyw2c3T/mGYZW+M6+ICFRkFvMlJxR6fSwhp4Bg13Ko3hlv1haa8MjIKc3Ey4C7uR74QrHc374GBZg4wUNYCAERlJuKg73VEZMQ3S7z1GdWpLz6zHQgVniLiclKw8/E5BKVEN1C+H8bYOEFLXgVphTk49vIWbkc8F6zfNmIZ7DrU3SefvgnGNzf+apEcXEzs4W7eA0oyckjKy8DJgHuIzEwQWXa2wzD0MepcZ3lSXgbW3v5b8Ny1owNcTOyhwlNAYXkJXiSG4VyQByr5VS2Sw4foom2KyXZusNDQh5qsEr658RcexQaKOyxCGkSVZ4S0Me7u7jh4UPiCmMvliika8VNUVBR3CB/ttY8/7h67BPeZ46BnZgS/B09w6vd9+PzXb6CoplzvdqXFJbiy5wSMOnVEYV6B0DoZWR56j3CFmo4mOBIcRPqH4Oq+U+ApyMOks0WL5HH4/DmcuHQR61esgL5OB+w/fRqL1n6H83v2QpbHE51DWRl0tbQwsHcfbPnnb5Fl3gqJiMDF27fQ0bDhm/emcDK2w8Keo7HD+yxC0mIx1LIXNg1egDlnfkZGUU6d8sMse2O243BsfXgK4RnxsNDQx4q+n6GwrBg+8SFCZTXklDG/+ygEpUS1WPwAYK1ljMGWPXHt9WPE56TBQc8CU7u6Y6f3WeSVFoncZoLtAMhxZXAp+CGyi/MhKyUDNoslWG+oooOglCgkhKahkl+FPkZdML3bYOz0PidUMdWceht2xmzHYdjrcxlh6XEYZN4da11nYcmlLcgsyqtT3lLDAMv6TMAB32vwTQiFKk8BC3qOxqJeY/GLx1EA1ZVr07q6Y6f3OYRlxENHQQ1L+4wHABzwvdYieTib2OGLXmOw3fssglNjMMyqN34eshCzz2xCemHdfWq4VR/McRyOLQ9PIjw9HhYaBljZ7zMUlpfg6ZtgQbnCshLMPP2j0LbNWQF4+OQJnDhzBuvXrIG+rh72Hz2CRatW4vyx4/V+n4OCg/G/77/Hgtlz4NK3LzwePcI3G9Zj/85dsLayEpQzNjLC7s1bBM85HI7g/wzDYPW330JCgoPNP22CrKwsjp85jS9WrsTZw0cgIyPz0Tm1h2NtlO8rPD59E32nDIO2qT5CvHxxffsxfPb9YsirKtW73aSNSyEl8+4aQVpeVvD/5PA4dHTsDC0TPXAkJRBw2xvXth7BxO8XQ05ZodlzAAB/7+e4fPAUxsybCiNLUzy97YW/f9yGr/7cCGV11TrlpbhS6D2kP3QMdCElzUVsaCTO7TkCKS4XPd2cAABRweGw6+MIQwtTSEhKwuPSTez9fgu++nMjFFXr/3wb68Hd+9i5ZTuWf7UKNl1scOXiZXy1fDUOnz4KTS2tOuVTkpLxzfIvMXTUcHz7/Tq8CnyFbb9thpKyEpz6OwMA5BXkMW3WdOgbGkBCUhJPvR/jl40/Q0lZGY49uwMATh45jisXLmPN+m9haGyE8NAw/LpxE2TlZDHuswlNzqufsS0+7zkKux6fQ0haLIZY9MKP7vMx/+wvyCjKrVN+qGUvzHQYhj8fnUZERgLM1fWxrO8EFJaV4Nm/573OOqbwjPLD67RYlFdVYnyX/tg0eAE+P/crsorrHr+bg4uJPRb3Hoetj04jOCUawzv1wa9DF2HGqY0ij7UjO/XF/B4j8LvnCYSlv4GlpiG+dJqMgrJiPPn3WLv29t+QZL+7TVaQlsX+CWvgGe3fIjk46Flikq0rjvrdQlRmIpxN7LCi70R8d3sfsovz65Q/GXAX5155CJ5zWGx87zYHLxLDBMt66HfCuM4uOOB7DVGZSdCSV8Ecx2EAgFMB91okjw8hI8lFVFYiboQ9wabBC8QdTuvFp26brQl12ySkjeFyudDS0hJ6KCu/uzhksVjYu3cvhg0bBh6PB0tLSzx9+hRRUVFwdnaGrKwsevbsiejod7/IbdiwAba2tti7dy/09PTA4/Ewfvx45ObmCtYfPnwYly9fBovFAovFgqenJ/r374/FixcLxZeVlQUul4sHDx7UiT0vLw8cDgcvX74EUH2zpKKiAgeHd7/Unzx5Etra2oLnSUlJmDhxIpSVlaGqqoqRI0ciLi5OsL52t82CggJMmTIFsrKy0NbWxtatW+Hs7Izly5cLxVJcXIzZs2dDXl4e+vr62Ldvn2Cd0b8tLOzs7MBiseDs7Nzwh/KRnt30hK1zd9i59IBaB024TRsNBVUl+N1/3OB2Nw+cRaee9uhgalhnnYGVKSwcOkOtgyaUNdXg6O4EDT1tJITX/0tyUzAMg5OXL2PWxIno36s3TA0N8f3KlSgtK8MtL696t+tkZoZls+dgkJMTpCQl6y1XXFKCtX/8jm+XLIG8nFxLpAAAGNvZGbfCfXAz3AfxuWn46+lFZBTmYLhVb5HlB3Z0wPXQx/CK8UdqQRY8o/1xK9wHE20HCpVjs1hY0386jry8idT8rBaLHwB6GdrALzEcfonhyCzKxc0wH+SXFsJB30pkeVM1XRiqaOPYy9uIyUpGbkkhkvIykJCbLihzPsgDvgmhSC3IRmZRHi4HPwKLxYKxaocWy2Nkpz64F/kC9yJ9kZiXgf3PryGzKA/u5j1EljdT10dGYQ6uhz5BemEOQtPf4E74c5iqvYvRXF0fYWlv8DA2EOmFOQhIjsSjmEChMs1tnI0Lbob54EbYU8TnpmH3kwtIL8zBcKs+Isu7dnTAtdDH8Iz2R0pBFjyi/XAz3AcTuwyoVZJBTkmB0KO5MAyDk2fPYta0aejfzwmmxsb4fs3/qr/P9+7Wu93Jc2fRvWs3zJo6FYYGBpg1dSocu3bFibNnhcpJcDhQU1UVPJSVlATr4hMT8ep1CL5ZuQqdLC1hqK+Pb1asRElJCW7fv9+kvNrDsTbw7hNY9LGHVd+uUNZWR5/PhkBOWQEhXqJbu74loyALnqK84FGzxdLAeeNg7eIINX1tKGurw2n6SDAMg6TQlskBAB5evQPHAX3Rw7UfNHV1MGrOJCipquDJbU+R5XWNDWDftzu09DtARUMNXZ16wtzWGrGhEYIyU1fMR+/B/dHBSB+autqYsHAmGIZBZFBos8R89sQpDBkxDMNGDYeBkSGWrFwGDU0NXD5/SWT5KxcuQUNLE0tWLoOBkSGGjRqOwcOH4vSxk4Iydl3t0dfFCQZGhuig2wHjPpsAE1MTvAoMEpQJeRWCPv36oGefXtDW0YbzABc4dHdEeGh4s+Q1xsYZt8Of4Vb4MyTkpmOvzyVkFOZiWD3nvQEdu+Fm6BM8jAlAakEWvGL8cTv8GSZ06S8o85vHMVwLfYyY7GQk5qXjz0enwWKxYNuhY7PELMqELgNwI+wproc+wZvcNOx8fB4ZhTkY2amvyPJuZo648voxPKL9kFKQhQdRL3E97Akm2b1rzVhQVozsknzBo5ueBcoqy+EZ7dciOQwyc8Sj2EA8ig1ESkEWTgbcQ3ZJPlxM7EWWL6koQ35pkeBhqKwNnpQMvGu03DJR7YDIzEQ8i3+NrOI8hKTF4ln8axgqa4t8zU/NJz4Efz+7Aq+YAHGHQkijUeUZIe3Qxo0bMX36dAQEBMDCwgKTJ0/G559/jjVr1uDFi+rm9bUrvaKionDmzBlcvXoVt27dQkBAABYtWgQAWL16NSZMmAB3d3ekpKQgJSUFvXr1wty5c3HixAmUlZUJXuf48ePQ0dGBi4tLnbgUFRVha2sLT09PAEBQUJDg3/z86l/WPD094eRU/WtycXExXFxcICcnh4cPH8Lb2xtycnJwd3dHeXm5yNxXrlyJx48f48qVK7h79y4ePXoEP7+6FzubN29Gt27d4O/vjy+++AILFy5EWFj1L3bPn1c33b937x5SUlJw4cKFxv3hP0BVZSVSYhNhZG0utNzY2hyJkXH1bhfo9Qw5aZnoN2bQe9+DYRjEBkcgOzWjUd2TPkZSWiqycnLQw+7dBZ6UpCTsra0RFNr0G5df//oLvR0c0N3WrsmvVR8JNgdmanp4mSh8Q/IyMRydNEW3dpPkSKC8VmufssoKmKvrg8N6d2qdau+O3JJC3Ar3af7Aa+Cw2NBWUEN0ZpLQ8qjMJOgraYrcxkLDAMl5mehj1BmrnSdjad8JGGTeHRJsjsjyQHXeHBYbJRVl9ZZpCgk2ByaqHRCQHCm0PCA5EhYaorsBh6W/gaqsIrp2qP4uKUrLoaehtdAv8KHpcTBR64COatXd0TTlVGCvay5UprnzMFPXq/P6LxPDGt6nKiuElpVVVsBCwwCcGhUeMpJcnJi8Aaem/ICf3OfDVLX5utglpaQgKzsbPbq9+0FDSkoK9l26ICg4uN7tgkJC0N1BuLtiDwdHBIUIbxOfmAj3MaMxYuIErPl+AxKTkwXrKv49pnOlpATLOBwOJCQkEPAqCB+rPRxrqyorkfEmBXpWwq+t18kUqdENd4c7+8NfOLz6N1zZfBBJYQ1XilWWV4BfVQWu7Me38mvw9SsqkRj9BuZdOgktN7e1QlxY41rmJsa8QVx4FIytzOstU15ehqqqKvBqtLL7WBUVFQgPi4BDd+H926G7A0KCRH8nQl6F1Cnv2MMR4aFhqKys20qUYRi8fP4CCW/i0cXOVrDcxtYGL1+8RMKb6s84KiISrwKD0KOX6B8SPoQEm4OOarrwSxI+7/klhcNS01DkNpLsuue98qoKmNU679XElZCCBJvdYi2V3x5rfROErzd8E0JhrSW62259x1rLWsfamoZa9MSDqJcorRR97dkUHDYbBsraCEkT/n6GpMY2+vje17gLXqfFIqtGK7XIzEQYKmvBSKW6skxdVgk22iYt3gqekPaMum0S0sZcu3YNcrVa4Hz99ddYu3at4PmsWbMwYcIEwbqePXti7dq1GDSo+iZg2bJlmDVrltBrlJaW4vDhw9DVrT5R79ixA0OHDsXmzZuhpaUFGRkZlJWVQatGF4WxY8diyZIluHz5suD9Dh48iJkzZ4JVo+tXTc7OzvD09MSqVavg6emJAQMGICYmBt7e3hgyZAg8PT2xYsUKAMCpU6fAZrPxzz//CF7v4MGDUFJSgqenJ9zc3IReu6CgAIcPH8aJEycwYMAAQXkdHZ06cQwZMgRffPGF4G+0detWeHp6wsLCAurq1ePBqKqqCuVbU1lZmVClIfBh3WeLC4rA8PmQU5QXWi6rKI/C3LpN9AEgOzUDHqevYdraJWBz6q/gKC0uwfYlG1BVWQkWmw33meNgbFP/jUZTZOVUd4lQrdGC5O3zlPSmjYt128sLYdFROLJ1W5Ne530UpWXBYXOQUyL8d88pKYAyT17kNi8TwzDYogeexAUhMjMRZmp6cDfvAUmOBBSl5ZBdko9OmkZwN++BBed/a9H4AYAnJQ0Om43CcuEblKLyEshxRd8IK8vIQ19ZE5X8Kpz0vwuepDSGdeoNGUkuLgU/FLmNq5kD8kuLEJOVJHJ9U8lzeeCwOcit1Zoqr6QAyjKix0QKz4jHloensNp5MiQ5EpBgc/As/jX+9rkiKOMdGwRFrhw2DV4AFosFCTYHN8Oe4sKr+ltHNsW7fUo4j5ySAqjUs0+9SAzFEIueeBz3CpGZCTBT08Ng8+7v9qnifMTnpuM3z+OIyUqGrJQ0xtg448+RyzH/3K9Iym/6OHRZ2dWtI1VVVISWqyqrICWt/rHzsrKzoaos3D1OVVkZWdnZgufWllb4/n//g4GuHrJycrD/6BHMWfQFTh86DCVFRRgaGEBbSws79+3D/1avhoy0NI6fOY2s7GxkZn18q832cKwtLSwGw+eDpyB87peRl0VxXqHIbXiK8nCaNgLqBjqoqqxEhE8grmw5jJGrZ9U7TprP+buQVVKArlXzjRVWU1FBAfh8PuSUhLuEyikqoiC3/spZAPhh7moU5heAz6/CoAkj0cO1X71lrx89D0UVZXTsLLrV7YfIy80Dv6oKyqrC3wllFRVk17NfZmdlQVmlu3B5VRVUVVUhLzcXqmpqAIDCwkKMGzoaFeXlYHM4WPHVSnSrUek2efpUFBUWYfqEKWCz2eDz+Zi7cD4GDHJtcl4Kb49RxSKOUTKiu+y+TAyDu0UPPHnzClGZieiopgc3s+5C573aZjsMQ1ZRnmAczeamKC0HCTanTtfG6mOt6Dx8E0IxzLIXvGMDEZFZ3f10iEVPoWNtTRYaBjBW7YBfPY+3SA7yUjxw2Ow6wyvklxVBUfr9FcCK0rKw0TLBPp/LQsufJ7yGPJeHNS7TAVZ1ReODqJe4Efa0WeMnLYzhizsCUgNVnhHSxri4uOCvv4QHK1WpdaPTufO7QUQ1NatbndjY2AgtKy0tRX5+PhQUqi8u9PX1BRVnANCzZ0/w+XyEh4fXW4HE5XIxdepUHDhwABMmTEBAQAACAwMbnFTA2dkZ+/fvB5/Ph5eXFwYMGAB9fX14eXnB3t4eERERgpZnL1++RFRUFOTlhW96SktLhbqdvhUTE4OKigo4OjoKlikqKsLcvO7NTM2/EYvFgpaWFtLT0+uUq8/PP/+M77//XmjZ+vXrYTzUsZ4t6lGrkpH5N57a+Hw+Lu06ir5j3aGqrdHgS3KluZj702qUl5UjLiQC945fgrK6KgysTD8sNhFuenhg066dgufb1m/4N41aeTB1UvsgqRkZ2Pz3Puz8YaNQS5SWVHveCRar+vMQ5ZjfbSjz5LF91EqwUH2hfifiGSbaDgSf4UNGkouvXaZh66NTyC8TPd7Yp1LffBpvP7NzQQ9Q9u+v8LfCqrueXnv9uM6Awn2MOsNG2wQHn1//9IMNs1hg6vk0dBU1MK/7CJwOuA//5Agoy8hjZrchWNhzNHY+OQ+gejy4cV1csNfnMiIz4qGloIa5jsOR07kAZ4LqdjFvPrVjZtX7eRx9eRvKMgrYOWolWKzqfep2xHN8ZjsQfH71xXNoehxCa0ycEJwaiz1jv8Qo637Y9W+uH+Lm3TvYtHmz4Pm2X36tjrLWd5dhmHp/EHmXWu1jmfA2vXu8ay1jCqBzp04YNXkSrt26hakTJ0JCQgK//bARG3/7Ff2HDQWHw4Fj167o1V24EuKjtbFjrUgiPoL6PhdlLTUoa6kJnmuZ6KMwOw8Bdx6LrDzzv/UIUc9fYeSXsyDRQFf65lA35PefMBb99DXKS8vwJiIa14+eh6q2Buz71t03Hly8CX/vZ/jih68gKdV8ebBQ+xzXcMx1z4lvv/jvlvN4PPxz7CBKSkrg5/sCu7bthHYHHdh1rW7J/eDufdy9eQffbVwPI2MjREVEYueW7VBVU4P7sMHNk1itYxQLqPdYe8L/LpR5Ctg2crngvHc38jkmdBmAKhE3+OM694eziR2+ur6rRSdmqU99k0kdfnETKjIK+GvMlwALyCkuwK1wH0y2cwNfRB5DLXohJisJYelvWjpkIdWfxfv1NuyM4opS+CULtyI0V9fHMMteOOp3CzHZydCUU8YkW1fkWRXi6uuGu6wTQkSjyjNC2hhZWVmYmjZ8YS5Z48L37QWcqGVvb8hEeVvmfTdMc+fOha2tLRITE3HgwAEMGDAABg3MstivXz8UFBTAz88Pjx49wsaNG6Gnp4dNmzbB1tYWGhoasLS0FMTXtWtXHD9e99e+t63Danp7oVT/Res7krVuDlgsVoN/j9rWrFmDlStXCi3jcrk4HdS4sXl48rJgsdl1Wj4U5xVAVrFuy5TykjKkxCYg9U0Sbh+u7kbKMAzAMNg0fRUmf70Ahp2qxxRhsdlQ0ar++2gZdEBmUhqeXL3XLDd0/bp3h3WNysjyiupKl8ycHKjVqMTNzsuFitLHD9QcFhWF7NxcTFu+TLCsis+Hf0gwzly7iicXLwkNNt4UeaVFqOJX1fmVWklaHrnFoseTKq+qwGavk9j28DSUefLILs7HEIteKCovRV5pEYxVdaCtoIqNg+YJtnm7X96auwWzTv+ElILmGwOtuLwUVXw+5KSEB3SXlZJBUXmJyG0KyoqRX1okqDgDgIzCXLBZLChIywr9+t7b0AZ9jW1x2PcG0gqzRb1csygoK0YVvwpKMsLfAUVpOeSWiG5hM66zM0LT43AppLq13JucVOz1uYSfhyzEcf87yCkpwGQ7V3hG+wlmQ32TmwZpCUl80WsMzgZ51Huz+LHe7lPKtVpwKMvI1TtGWXlVBf7wOoGtj05BWUYB2cV5GGrZW7BPicKAQXhGPHQV6x4PG6Nf7z6wtnzXOkfwfc7Khprqu4qX7NwcqCjX/31WVVERamUGANk5uQ1uIyMjAxMjYyQkJgqWWZqb48T+AygsLERFZSWUlZQwY8HnsBLxA0hjtdVjbU3Scjyw2Ow6rcxKCoogo9D4romaxnqI8Kk7m13AbW/43XiE4StnQFVX9I9lzUFWvnrMtYIc4c+iMC8f8ooNT1Cgqln9d9Y20EVBbj7unL5cp/LM49It3D9/HQs2rIaOYdNnaAUARSVFsDmcOq3McnNy6vxw+ZaKqmrd8tk54HA4UFR6N8kRm82Grl71j5YdzTriTewbnDh0TFB5tmf7bkyeMQUD3KrH0jQ2NUFqSiqOHz7a5Mqz/LfHqNrnPRn5Bo9RWx+ewvZHZwTnvcEWPVFUXor8WseosTbO+Mx2INbc+Aux2SlNirUheaWFqBRx/lZ+Tx6/eh7DHw9PQEVGAVnFeRhu1QdF5SXIKxHOgyshif6mXVtsYhkAKCgvRhWfX6eVmTxXts7fVZS+Rl3w9E0wqmpdw462dsKTN8GCGSyT8jIgxZHEjG5DcO3142Y+6xHy30CVZ4QQAEB8fDySk5MFXRyfPn0KNpsNM7PqrlJSUlKoqqrb2sTGxgbdunXD33//jRMnTmDHjh0Nvs/bcc927twJFosFKysr6OjowN/fH9euXRO0OgMAe3t7nD59GhoaGoIWcg0xMTGBpKQknj9/Dj296gvn/Px8REZGCr3u+0j929JJVL5vcbncJs1yypGQgLaRLmKDI2Dh8K4VXGxwBMy6Wtd9Pxku5v38ldCyl/ce483rSIxZOhNK6qIv4t+qrGieX31leTyhGfcYhoGqsjKe+fvDwqR6PJ6Kigr4BQdjycxZ9b3Mezl06YJTO3cJLfvhz20w0NXFjLHjmq3iDAAq+VWIyEyAfQdzPI57N7aSva45nsS9anDbKoYvmAHSxcQez+JDwIBBfG4a5p39RajsTIch4ElKY/eTCyJnMmuKKoaPlPxMmKh1EGqZZKLWod5fy+Nz0tBJyxhSNcZvU5NVBJ/hC12w9zbsDCcTOxx5cRPJ+ZnNGndtlfwqRGclwVbHVDB7G4B/n78WuQ2XI4UqRvi7yq9VYc7lSNapRK8uw6puYdjMdxGV/CpEZCSgq67wPtVV1wKP37dP8fnI/Hf/cDGxh8+b4AYr90xUO3z0zanI77OKCp69eAGLf4/9FRUV8AsMxJLPP6/3dTp36oRnL3wxZcK7GQCf+fqic6e6x7K3ysvLERf/BnY1WgG/9XZogvjEBISGh2PhnDkfnNtbbfVYWxNHQgLqBtpIDI2Gsf27ys7E19EwtG38zJ6Z8Sng1aow9L/tDb/rXhi6bDo0DFtuAg0AkJCUgK6JASICQ2DT4904mRGBr9HJ8QPGtWTq/p09Lt3CvXPXMH/tCuiJmODhY0lKSsLcwgwvnvuir8u764gXz1+gdz/Rk390sumEJ95PhJb5PvOFuaUFJCQauPViGJRXvBtTq6y0FOxaY4lxOBwwH/BDX30q+VWIzEyEXQczofOcXQcz+LxpuAttzfOek4kdnv973ntrXGcXTLJzxbc39yIyM6HJsTbk7bG2m66FoJIIALrpWsC7xrFXlCo+X3Au7m/aFU9FHGtdTLpCkiOBuxENT8zRFFV8Pt7kpMBK0wh+Nbq3dtI0gn9yw91dzdX1oSmvgkeP61aKS3Ek6uTDMEx128eWOPGRlkGfU6tClWeEtDFlZWVITRUee0ZCQgJqamr1bNE40tLSmDFjBv744w/k5+dj6dKlmDBhgqDLpqGhIW7fvo3w8HCoqqpCUVFR0Hpr7ty5WLx4MXg8HkaPHv3e93J2dsaff/6J0aNHg8ViQVlZGVZWVjh9+jS2b98uKDdlyhT8/vvvGDlyJH744Qfo6uoiPj4eFy5cwJdffinUzRQA5OXlMWPGDHz55ZdQUVGBhoYG1q9fDzab/f4uRzVoaGhARkYGt27dgq6uLqSlpaGoqPj+DT9Q98HOuPzXcWgb60HX1BD+Hk+Ql5UD+wG9AAAep6+hICcPIxZMAYvNhoae8AxJsgpy4EhKCC1/fOUetI30oKypiqrKKkQHhOKVty/cZ45v9viB6tZUk0aOxMGzZ6CvowM9HR0cPHsG0lwu3GtUWK7bvBkaqqpYPHMmgOob8piE6kGQKyorkZGVhfCYaPCkZaCnowNZHg+mhoZC7yXNlYaSvEKd5c3hfJAnvnaZiojMeISmxWGIZS9oyCnjWmh114bZDsOgJquI3/4d86SDojos1A0Qlv4GclwZjO3sAkMVbcH6iqpKxOUIV2gUlVW3AKu9vLk8iXuFMZ2dBTNmdtOzgKK0HHzjqwdSHmjmAAWuLC688gQAvEqJgrOJHUbZOMEj8iV4UtJwM+8Ov8QIQbfMPkad0b9jN5wLfIDckgLISVWPn1ZeVVFn4OjmcjnEG8v7TkBUZhLCM97Azaw71GSVcDv8GQBgqv0gqPIU8af3GQCAb2Iovug1Bu7m3eGfFAllnjzmOA5DREa8oOWBb2IYRlj1QUx2MiIyEqAtr4rJdq7wTXhdp6KtuZx75YFvXKYhIiMBr9NiMfTfferqa28AwBzH4VCTVcSvHscAALqK6rDQMEBoWvU+Nb6zC4xUtAXrAWBaV3eEpsUhKS8DPClpjLZ2gqmqLrZ7nxUZw4disViYNH48Dh4/Bn1dXejp6uLgsWPV3+eB78ZZWvfTT9BQV8Pi+dUVap+NG4f5S5fi0InjcO7dB56PvfHs5Qvsr1EBvm33LvTt1RtamhrIycnF/iNHUFRUhGHu7oIy9zw8oKSkBC1NTUTFRGPzjh1w6tMHPRw+sDt8Le3hWNvFtRfu778AdYMO0DLRw+uHL1CQnYdOTtVjZPlcuIuinHwMmDMWABB47wkUVJWhrKMBfmUVIp4FIsbvNQYt/Ezwmv63HuH55QcYOHccFNSUUJxX/X2R5EpBUvrjfxxqSL/hbji5/R/omhrC0NwEPnceIiczGz3dqs8X14+dR15WDiYvmwsA8L75AMpqKtDoUP23jw2NhOeV2+gz5N0Mjw8u3sStk5cwdcU8KGuoIT+numKHK80FV0a6yTGPn/wZNq3fCHNLC3SyscbVi1eQlpqGEWNGAQD27dqDzPQM/O/76rFnR4wZhYtnL2DX1h0YNmo4Ql4F48aVa1j74wbBax4/dBTmlhbQ0dVBRUUlnj1+its3bmHF16sFZXr27Y2jh45AQ0sThsZGiAqPwJkTpzFk+JAm5wQAF1554kvnKYjMSEBoehwGW1Qfo66HVlf8zXIYClVZRfzheQJA9XnPXF3/3/MeD2NsnGCorI3N/64HqrtqTu82GL8+OIq0gmwo/9uKuKSirEUG2weAM4H38e2AGQjPiEdIagyGWfWBhrwKroRUH2vndR8BdVklbHpwBEB1V39LDQO8To+DPJeHCZ37w0hFGz//u76moZY94R0b2OLDL9yOeI55jiMQl5OC6MwkOJnYQYWnIJjdc6yNM5Rl5PHP86tC2/U16oLorCSRY14GpkTBzcwR8TlpiMlOgoacMkZZ90NAcmS9XVo/JRlJrlCraR0FNXRU00V+aRHSCnPEGBkh9aPKM0LamFu3bkFbW/jC3tzcXDBT5McyNTXFmDFjMGTIEGRnZ2PIkCHYvXu3YP28efPg6emJbt26obCwEB4eHnB2dgYATJo0CcuXL8fkyZMhLf3+C1UXFxds2bJFsD0AODk5ISAgQKiFGI/Hw8OHD/H1119jzJgxKCgoQIcOHTBgwIB6W6Jt2bIFCxYswLBhw6CgoICvvvoKCQkJjYrrLQkJCWzfvh0//PAD1q1bh759+wpmCG1OVj3sUFxQBO+Lt1GYmw91XW189uV8KKpVt2wozM1HXuaHXUBUlJXj1qFzKMjOg4SUJFR1NDBy4VRY9Wi52SpnjB2HsrJy/PLXbhQUFsLa3Bw7f9go1KIlNSMDbPa7CsyM7GxMWbpU8PzohQs4euEC7K1tsO8X4RZbn4JXjD8UpGUx1X4QVHiKiMtOwbc39yL93ws4VZ4CNOTedUHjsNgY19kFukoaqOJXISA5Essub2vRLo3vE5waAxlJLpxN7SHP5SG9IBvHXt5CXml1Vy95Lg+KMu+6hZRXVeLwixsYatkLn/cajZLyUgSnxuB+5AtBGQd9K0iwOfjMTniAao+ol/CIqjuLbXN4HBcEBS4PE20HQFlGHvE5qdh475CghYAKTwHqckqC8g+iXkJGgoshFr0wy2EoispLEZQSjSMvbwrKnAl8AIZhMMXODSo8ReSXFsE3IRTH/W+3SA4A4BntDwWuLKZ1fbdPrbm5p959is1iY1zn/tBT1EAlvwqByZFYcmmr0D4lJyWDlf0+gzJPAUXlJYjKTMSKq38iPKPhGRc/xIxJk1FWVoZftm6p/j5bWmLnH5uFv8/paULf5y7WNvhp3Xr8tf8f7Nm/H7o6Ovh5wwZYW71rJZWWkYFvf/geuXl5UFZSgrWVFQ7+tQfaNcbUzMzKwtZdO5GVkwM1VVUMHTQIc6fPaHJO7eFYa+pgg9LCEry85omivAKo6Ghg6NKpkFdVAgAU5xagMDtPUJ5fWYUnZ2+jKDcfEpKSUNZRx5ClU2Fg827ijRBPX/Arq3Bnz2mh9+o23BkOI/qjJdj1cURxQSHunrmK/Jw8aOt3wNxvl0FFo/oHwPycXORmvtvnGT6DG8fOIzs9E2wOB6qa6hg6dSx6uL27VnhyywNVlZU4/LvweLBuE0Zg0Gcjmxxzf9cByM/Lw+H9h5CdmQUjEyP8uvV3aGlX77tZmVlIS0sTlNfuoINftv2OXVt34NK5C1BVU8OSVcvh1N9ZUKakpARbf9uMjPR0cLlc6BsY4Nsf1qG/6wBBmWWrV2D/3r+x7bfNyMnJgZqaGoaPHoEZcz++VXdND2MCoMCVxRT7QVDmKeBNdgrW3tonOEap8BSgIVvzGMXCGBtnwXkvMDkKK6/8KVTRMdyqN6Q4EljrKhzjsZe3cMyvZY63HtF+UJSWxfSug6Eqq4DY7BR8fX234NipylOsdf5mYWKXAdBTqp4wxz85AosubkZqgfD5W1dRA521TbHqasM9KpqDb0Io5KRkMMKqDxSl5ZCUl4Ftj04LZs9UlJar0zVVRpKLrroWOBlwV+RrXn3tDYZhMNq6H5Rl5FFQVozAlCicf+XZwtk0joW6AXaOfjf8ydI+1T883Ah9ip8eHBZXWIQ0iMW0hqpnQohYbdiwAZcuXUJAQMBHbZ+QkABDQ0P4+vrC3t7+/Rt8QkVFRejQoQM2b96MOU3o+tNYR3xvtPh7tLTpDkNQENn2pzKX72gK133L3l+wFbs7/0+su/W3uMNosh/c52HUoW/EHUaTXJr5CwbsXfr+gq3c/c+3oyA17f0FWzl5Lc02f7yd7jAE2x6efn/BVm55v4m49m8rn7ZqWKc+SMlr+oy14qatqA73v1eIO4wmuzVvK5z+WiTuMJrEa+EuzD6zSdxhNNmBCf9D710LxB1GkzxetEfcIXy0nOGTxB2CSMpXT4o7BLGglmeEkI9WUVGBlJQUfPPNN+jRo0erqDjz9/dHWFgYHB0dkZeXhx9++AEAMHJk0399JoQQQgghhBDy30OVZ4SQj/b48WO4uLjAzMwM586dE3c4An/88QfCw8MhJSWFrl274tGjR00eE44QQgghhBBCyH8TVZ4RQrBhwwZs2LDhg7dzdnZuFYOO1mRnZ4eXL1+KOwxCCCGEEEII+Xit7D7rv479/iKEEEIIIYQQQgghhPw3UeUZIYQQQgghhBBCCCH1oG6bhBBCCCGEEEIIIa0Jwxd3BKQGanlGCCGEEEIIIYQQQkg9qPKMEEIIIYQQQgghhJB6ULdNQgghhBBCCCGEkNaET7NttibU8owQQgghhBBCCCGEkHpQ5RkhhBBCCCGEEEIIIfWgbpuEEEIIIYQQQgghrQlD3TZbE2p5RgghhBBCCCGEEEJIPajyjBBCCCGEEEIIIYSQelC3TUIIIYQQQgghhJDWhLpttirU8owQQgghhBBCCCGEkHpQ5RkhhBBCCCGEEEIIEauffvoJvXr1Ao/Hg5KSUqO2YRgGGzZsgI6ODmRkZODs7IyQkBChMmVlZViyZAnU1NQgKyuLESNGIDEx8YNio8ozQgghhBBCCCGEkNaEz2+djxZUXl6O8ePHY+HChY3e5rfffsOWLVuwc+dO+Pr6QktLC66urigoKBCUWb58OS5evIhTp07B29sbhYWFGDZsGKqqqhr9PjTmGSGEEEIIIYQQQggRq++//x4AcOjQoUaVZxgG27Ztw7fffosxY8YAAA4fPgxNTU2cOHECn3/+OfLy8rB//34cPXoUAwcOBAAcO3YMenp6uHfvHgYNGtSo96KWZ4QQQgghhBBCCCHkvcrKypCfny/0KCsrE0sssbGxSE1NhZubm2AZl8uFk5MTnjx5AgB4+fIlKioqhMro6OjA2tpaUKZRGEIIIW1CaWkps379eqa0tFTcoTRJe8ijPeTAMJRHa9IecmCY9pFHe8iBYSiP1qQ95MAw7SOP9pADw1AeRLzWr1/PABB6rF+/vlnf4+DBg4yiouJ7yz1+/JgBwCQlJQktnzdvHuPm5sYwDMMcP36ckZKSqrOtq6srM3/+/EbHxGIYmv+UEELagvz8fCgqKiIvLw8KCgriDuejtYc82kMOAOXRmrSHHID2kUd7yAGgPFqT9pAD0D7yaA85AJQHEa+ysrI6Lc24XC64XK7I8hs2bBB0x6yPr68vunXrJnh+6NAhLF++HLm5uQ1u9+TJE/Tu3RvJycnQ1tYWLJ83bx4SEhJw69YtnDhxArNmzaoTs6urK0xMTLBnz54G3+MtGvOMEEIIIYQQQgghhLxXQxVloixevBifffZZg2UMDQ0/KhYtLS0AQGpqqlDlWXp6OjQ1NQVlysvLkZOTA2VlZaEyvXr1avR7UeUZIYQQQgghhBBCCGl2ampqUFNTa5HXNjIygpaWFu7evQs7OzsA1TN2enl54ddffwUAdO3aFZKSkrh79y4mTJgAAEhJSUFwcDB+++23Rr8XVZ4RQgghhBBCCCGEELGKj49HdnY24uPjUVVVhYCAAACAqakp5OTkAAAWFhb4+eefMXr0aLBYLCxfvhybNm1Cx44d0bFjR2zatAk8Hg+TJ08GACgqKmLOnDlYtWoVVFVVoaKigtWrV8PGxkYw+2ZjUOUZIYS0EVwuF+vXr/+gZtKtUXvIoz3kAFAerUl7yAFoH3m0hxwAyqM1aQ85AO0jj/aQA0B5kPZr3bp1OHz4sOD529ZkHh4ecHZ2BgCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KB79+64c+cO5OXlBWW2bt0KCQkJTJgwASUlJRgwYAAOHToEDofT6NhowgBCCCGEEEIIIYQQQurBFncAhBBCCCGEEEIIIYS0VlR5RgghhBBCCCGEEEJIPajyjBBCCCGEEEIIIYSQelDlGSGEEEIIIYQQQggh9aDKM0IIIZ8MwzCgeWpIc4mKisLt27dRUlICALRviVlpaam4Q2iy9pADIYS0Vv3790dubm6d5fn5+ejfv/+nD4iQD0CzbRJCSCtVVlaG58+fIy4uDsXFxVBXV4ednR2MjIzEHdoHO3LkCH7//XdERkYCAMzMzPDll19i2rRpYo6scaqqqrB161acOXMG8fHxKC8vF1qfnZ0tpsg+XGJiIq5cuSIyjy1btogpqg+TlZWFiRMn4sGDB2CxWIiMjISxsTHmzJkDJSUlbN68WdwhNkpCQoLQ97tTp07gcrniDuuD8Pl8/PTTT9izZw/S0tIQEREBY2NjrF27FoaGhpgzZ464Q3yv9pAD0D72p7y8PFy8eBGPHj2qc+4bNGgQevXqJe4Q36s95EBIS2Gz2UhNTYWGhobQ8vT0dHTo0AEVFRViioyQ95MQdwCEEEKEPXnyBDt27MClS5dQXl4OJSUlyMjIIDs7G2VlZTA2Nsb8+fOxYMECyMvLizvc99qyZQvWrl2LxYsXo3fv3mAYBo8fP8aCBQuQmZmJFStWiDvE9/r+++/xzz//YOXKlVi7di2+/fZbxMXF4dKlS1i3bp24w2u0+/fvY8SIETAyMkJ4eDisra0RFxcHhmFgb28v7vAabcWKFZCQkEB8fDwsLS0FyydOnIgVK1a06sqzN2/eYM+ePTh58iQSEhKEWstJSUmhb9++mD9/PsaOHQs2u/V3EPjxxx9x+PBh/Pbbb5g3b55guY2NDbZu3domKp7acg7tZX9KSUnBunXrcPz4cWhpacHR0RG2traCc5+Hhwf++OMPGBgYYP369Zg4caK4Q66jPeQgiq+vL86ePSvyB5cLFy6IKaoP117yaKuCgoIE/3/9+jVSU1MFz6uqqnDr1i106NBBHKER0ngMIYSQVmPEiBGMtrY2s2rVKsbLy4spKioSWh8dHc0cOnSIGTRoEKOlpcXcuXNHTJE2nqGhIXP48OE6yw8dOsQYGhqKIaIPZ2xszFy7do1hGIaRk5NjoqKiGIZhmD///JOZNGmSOEP7IA4ODszatWsZhqnOIzo6mikoKGBGjBjB7N69W8zRNZ6mpiYTEBDAMMy7PBiGYWJiYhhZWVlxhtagpUuXMvLy8szYsWOZw4cPM6GhoUx+fj5TUVHBpKWlMffv32c2bNjAmJubM506dWKeP38u7pDfy8TEhLl37x7DMMKfRWhoKKOkpCTO0BqtrebQnvYndXV1ZtWqVcyrV6/qLVNcXMycOHGCcXR0ZH7//fdPGF3jtIccajt58iQjKSnJDB06lJGSkmKGDRvGmJubM4qKiszMmTPFHV6jteU8Ll++3OhHa8ZisRg2m82w2WyGxWLVefB4PGb//v3iDpOQBlHlGSGEtCI7d+5kysrKGlU2ODi4TVSecblcJjIyss7yiIgIhsvliiGiD8fj8Zg3b94wDMMwWlpazMuXLxmGqa7MVFBQEGdoH6RmxZ+SkhITHBzMMAzDBAQEMAYGBmKM7MPIyckxERERgv+/rex4/vw5o6KiIs7QGrR69WomPT29UWWvX7/OnD17toUjajppaWkmLi6OYRjhzyIkJKRVV2TW1FZzaE/7U2Pz+Njyn0J7yKE2GxsbZufOnQzDvPtu8Pl8Zt68ecy6devEHF3jteU8alcy1a58elshxWazxR1qg+Li4pjY2FiGxWIxvr6+TFxcnOCRnJzMVFZWijtEQt6r9bbfJoSQ/6BFixZBSkqqUWU7deoEV1fXFo6o6UxNTXHmzJk6y0+fPo2OHTuKIaIPp6uri5SUFADV+dy5cwdAdTeQtjSmkKysLMrKygAAOjo6iI6OFqzLzMwUV1gfrF+/fjhy5IjgOYvFAp/Px++//w4XFxcxRtaw33//Herq6o0qO2TIEIwbN66FI2q6Tp064dGjR3WWnz17FnZ2dmKI6MO11Rza0/7U2Dw+tvyn0B5yqC06OhpDhw4FAHC5XBQVFYHFYmHFihXYt2+fmKNrvLacB5/PFzzu3LkDW1tb3Lx5E7m5ucjLy8ONGzdgb2+PW7duiTvUBhkYGMDQ0BB8Ph/dunWDgYGB4KGtrQ0OhyPuEAl5LxrzjBBC2oDS0lKcPn0aRUVFcHV1bTOVTkD1eGETJ07Ew4cP0bt3b7BYLHh7e+P+/fsiK9Vao9GjR+P+/fvo3r07li1bhkmTJmH//v2Ij49vE2O2vdWjRw88fvwYVlZWGDp0KFatWoVXr17hwoUL6NGjh7jDa7Tff/8dzs7OePHiBcrLy/HVV18hJCQE2dnZePz4sbjDa9B3332H/v37o1evXpCWlhZ3OE22fv16TJs2DUlJSeDz+bhw4QLCw8Nx5MgRXLt2TdzhNUp7yKE2Ly8vFBUVoWfPnlBWVhZ3OI0SFRWFvLw8dO3aVbDs/v37+PHHH1FUVIRRo0bhf//7nxgjfL/2kENNKioqKCgoAAB06NABwcHBsLGxQW5uLoqLi8UcXeO1lzyWL1+OPXv2oE+fPoJlgwYNAo/Hw/z58xEaGirG6BovIiICnp6eSE9PB5/PF1rXlsaRJf9B4m76RgghRNjq1auZpUuXCp6XlZUxtra2jKSkJKOoqMjIysoyT548EWOEH+7FixfMlClTGHt7e8bOzo6ZMmUK4+fnJ+6wPtrTp0+ZzZs3t/oxRmqLjo5mAgMDGYZhmKKiImbhwoWMjY0NM3r0aEG3tbYiJSWFWbduHTN06FBm8ODBzLfffsskJyeLO6z3MjY2ZlgsFsPlcpl+/fox69evZ7y8vBrdXbs1unXrFtOvXz9GVlaWkZGRYXr37s3cvn1b3GF9kLaaw2+//SbU7YzP5zODBg0SdOnS1NQUdM9u7UaNGsV89913gucxMTGMjIwM4+bmxixdupSRk5Njtm7dKr4AG6E95FDTpEmTmM2bNzMMwzA//vgjo66uzsydO5cxMDBgRo8eLeboGq+95CEtLc0EBQXVWR4YGMhIS0uLIaIPt2/fPobD4TCamppMly5dGFtbW8HDzs5O3OER0iAWw9SYlocQQojYWVtbY9OmTRgxYgQA4ODBg1i1ahX8/f2hr6+P2bNnIz09HdevXxdzpISQj5GUlIQHDx7A09MTnp6eiI2NhYyMDHr27AkXFxe4uLigV69e4g6TtAH29vb4+uuvBTM3nj17FjNmzMDdu3dhaWmJ6dOng8fjtYlWvnp6ejhz5gx69uwJoHoW1HPnziEgIAAAsH//fuzYsUPwvDVqDznUlJ2djdLSUujo6IDP5+OPP/6At7c3TE1NsXbt2jbTqrHwzt2fAACyX0lEQVS95NGvXz9ISkri2LFj0NbWBgCkpqZi2rRpKC8vh5eXl5gjfD8DAwN88cUX+Prrr8UdCiEfjCrPCCGklVFQUICfnx9MTU0BAJMmTYK8vLxgXI6AgAAMGTIEycnJ4gzzg6Wnp4tsot+5c2cxRdSwK1euNLrs24pO0nKCgoJgbW0NNpstNOW9KHJyctDT04OkpOQniq5pEhIS4OHhAU9PT5w/fx5FRUWorKwUd1iNMmvWLEydOhX9+/cHi8USdzgfpS3noKysjCdPnsDS0hJAdS6VlZU4evQoAMDHxwfjx49HQkKCOMNsFBkZGUREREBPTw8AMGDAAPTq1QsbN24EUD1uVdeuXZGbmyvGKBvWHnJ4q7KyEsePH8egQYOgpaUl7nAIqrsFjx49GuHh4dDX1wcAxMfHw8zMDJcuXRJcN7ZmCgoKCAgIgLGxsbhDIeSD0ZhnhBDSyrDZbNT8XcPHxwdr164VPFdSUkJOTo44QvsoL1++xIwZMxAaGorav9ewWCxUVVWJKbKGjRo1qlHlWnMOQPXNdWMrBLKzs1s4mo9na2uL1NRUaGhowNbWFiwWq87+VJOioiL27NkjaJHTWkVHR8PT01PQEq2qqqpVT3pQW1ZWFoYOHQpVVVV89tlnmDp1aqseZF+UtpxDRUWF0KQlT58+xbJlywTPdXR02sxkICoqKkhJSYGenh74fD5evHghNKZkeXl5g9/51qA95PCWhIQEFi5c2GbG0aotPz+/0WUVFBRaMJLmY2pqiqCgINy9exdhYWFgGAZWVlYYOHBgm6n4Hz9+PO7cuYMFCxaIOxRCPhhVnhFCSCtjYWGBq1evYuXKlQgJCUF8fLzQzfSbN2+gqakpxgg/zKxZs2BmZob9+/dDU1OzzVzg1W4h11Zt27ZN3CE0i9jYWMHsdLGxsQ2WLSsrw9mzZ4W6s7UWsbGx8PDwELQ0y8vLQ+/eveHk5ITFixfDwcEBEhJt5/LsypUryM3NxZkzZ3DixAls27YN5ubmmDp1KiZPngxDQ0Nxh/hebTkHU1NTPHz4EMbGxoiPj0dERAScnJwE6xMTE6GqqirGCBvPyckJGzduxO7du3H27Fnw+Xyhc9/r169b9WcBtI8caurevTv8/f1hYGAg7lA+mJKSUqOvN1rzD2C1sVgsuLm5wc3NTdyhNNr27dsF/3/bVdbHxwc2NjZ1WogvXbr0U4dHSKNRt01CCGllzp8/j0mTJqFv374ICQmBg4MDrl69Klj/9ddfIzY2tk2MYQMA8vLy8Pf3bxPdCUj7kZOTgzlz5uDChQviDkUIm82Gvr4+vvjiC7i4uMDe3h4cDkfcYTWbxMREnDx5EgcOHEBkZGSb6X5aU1vKYe/evVi1ahUmTpwIHx8fKCkpCc04++OPP+LZs2dC55DWKjY2Fq6uroiNjQWbzcb27duxcOFCwfpRo0bByMgIW7duFWOUDWsPOdR09uxZfPPNN1ixYgW6du0KWVlZofWtddgFAELjf8XFxeGbb77BzJkzBePRPX36FIcPH8bPP/+MGTNmiCvMD1ZUVAQvLy/Ex8ejvLxcaF1rrXgyMjJqVDkWi4WYmJgWjoaQj0eVZ4QQ0grdu3cP169fh5aWFpYsWQIejydY9/3338PZ2VmodUFrNmrUKEybNg1jx44VdyhN0hYvWBtSUlKCiooKoWVtpevKW8XFxSI/j9Z8Qzdx4kQ8fPgQpaWl6Nu3L5ycnODi4gI7O7s20yqzPhUVFbh+/TqOHTuG69evQ0VFBUlJSeIO64O0xRz279+Pa9euQUtLC+vXrxcan+qLL77AwIEDMWbMGDFG2HgVFRV4/fo11NXVoaOjI7QuMDAQenp6UFFREVN0jdMecniLzWbXWfa2y3xrH7KgpgEDBmDu3LmYNGmS0PITJ05g37598PT0FE9gH8jf3x9DhgxBcXExioqKoKKigszMTPB4PGhoaFDFEyEtjCrPCCGkDQoICICtra24w2iUzMxMzJgxA46OjrC2tq7TRL8tDLbfXi5Yi4qK8PXXX+PMmTPIysqqs76t3AhlZGRg1qxZuHnzpsj1bSGPsLAwQddNLy8vlJaWok+fPnBycoKzszMcHBzEHWKjeXh44MSJEzh//jyqqqowZswYTJkyBf379xd5890atYcc6pORkSHo8tyWvXr1Cvv372/TXdHbWg5v3rxpcH1b6c7J4/EQGBiIjh07Ci2PiIiAra0tiouLxRTZh3F2doaZmRn++usvKCkpITAwEJKSkpg6dSqWLVvWZirJCWmrqPKMEELaiLy8PBw/fhz79+9HQEBAm6ggAKrHE5o2bRoKCgrqrGsrv1y3lwvWRYsWwcPDAz/88AOmT5+OXbt2ISkpCXv37sUvv/yCKVOmiDvERpkyZQri4uKwbds2uLi44OLFi0hLS8OPP/6IzZs3Y+jQoeIO8YO9fv0aJ06cwI4dO9rUbJu6urrIysrCoEGDMGXKFAwfPhzS0tLiDuuDtIccamMYBjdv3hS0SisrKxN3SB8lPz8fJ0+exP79+/HixQt07twZAQEB4g7rg7SHHNo6c3NzDBs2DJs3bxZavmrVKly7dg3h4eFiiuzDKCkp4dmzZzA3N4eSkhKePn0KS0tLPHv2DDNmzEBYWJi4Q3yvlStXilzOYrEgLS0NU1NTjBw5ss20ziT/LW1nRFpCCPmPevDgAQ4cOIALFy7AwMAAY8eOxT///CPusBpt6dKlmDZtGtauXdumJjqoKSAgAHv37gWHwwGHw0FZWRmMjY3x22+/YcaMGW2m8uzq1as4cuQInJ2dMXv2bPTt2xempqYwMDDA8ePH20zl2YMHD3D58mU4ODiAzWbDwMAArq6uUFBQwM8//9xmKs/S0tLg6ekJT09PeHh4ICIiAlwuF3379hV3aI22bt06jB8/HsrKyuIO5aO1hxzeiomJwYEDB3D48GEUFhZi6NChOHXqlLjD+mBeXl7Yv38/zp8/j9LSUnz55Zc4ceJEmxo7sz3kcOTIkQbXT58+/RNF0jRbt27F2LFjcfv2bfTo0QNA9Uzm0dHROH/+vJijazxJSUlB935NTU3Ex8fD0tISioqKiI+PF3N0jePv7w8/Pz9UVVXB3NwcDMMgMjISHA4HFhYW2L17N1atWgVvb29YWVmJO1xChFDlGSGEtEKJiYk4dOgQDhw4gKKiIkyYMAEVFRU4f/58m7uYyMrKwooVK9psxRnQPi5YASA7O1swcK+CggKys7MBAH369BEa1Lq1KyoqgoaGBgBARUUFGRkZMDMzg42NDfz8/MQcXcPOnj0r6K4ZHh4OCQkJODo6YsKECXBxcUGvXr3A5XLFHWajzZ8/X9whNFlbz6G0tBTnzp3DP//8Ax8fH7i6uiIlJQUBAQGwtrYWd3iNlpKSgoMHDwrOe5MmTYKXlxd69uyJ6dOnt4lKp/aQQ03Lli0Tel5RUYHi4mJISUmBx+O1mcqzIUOGIDIyEn/99RdCQ0PBMAxGjhyJBQsWQE9PT9zhNZqdnR1evHgBMzMzuLi4YN26dcjMzMTRo0dhY2Mj7vAa5W2rsoMHDwrGWc3Pz8ecOXPQp08fzJs3D5MnT8aKFStw+/ZtMUdLiDCqPCOEkFZmyJAh8Pb2xrBhw7Bjxw64u7uDw+Fgz5494g7to4wZMwYeHh4wMTERdygfrT1csAKAsbEx4uLiYGBgACsrK5w5cwaOjo64evUqlJSUxB1eo5mbmyM8PByGhoawtbXF3r17YWhoiD179kBbW1vc4TVoypQp6NatG0aPHg0XFxf07t0bMjIy4g6rSXx9fXH27FmRkze0ttlO69NWc/jiiy9w6tQpmJubY+rUqTh//jxUVVUhKSnZ5sZqMzIywvjx47Fr1y64urq2ufiB9pFDTTk5OXWWRUZGYuHChfjyyy/FENGHq6iogJubG/bu3YuffvpJ3OE0yaZNmwRDYGzcuBEzZszAwoULYWpqioMHD4o5usb5/fffcffuXaEJihQUFLBhwwa4ublh2bJlWLduHdzc3MQYJSGiUeUZIYS0Mnfu3MHSpUuxcOHCOoPbtkVmZmZYs2YNvL29YWNjU2fCgLYwU2V7uGAFgFmzZiEwMBBOTk5Ys2YNhg4dih07dqCyshJbtmwRd3iNtnz5cqSkpAAA1q9fj0GDBuH48eOQkpLCoUOHxBvce+Tk5EBWVlbcYTSbU6dOYfr06XBzc8Pdu3fh5uaGyMhIpKamYvTo0eIOr1Hacg779u3D119/jW+++Qby8vLiDqdJDAwM4O3tDX19fRgYGMDCwkLcIX2w9pDD+3Ts2BG//PILpk6d2ibG2JKUlERwcHCbn80YALp16yb4v7q6Om7cuCHGaD5OXl4e0tPT6/SiyMjIQH5+PoDqsd1q/4hBSGtAlWeEENLKPHr0CAcOHEC3bt1gYWGBadOmYeLEieIO66P9888/kJOTg5eXF7y8vITWsVisNlF51h4uWAFgxYoVgv+7uLggLCwML168gImJCbp06SLGyD5MzbHZ7OzsEBcXh7CwMOjr60NNTU2Mkb3f24qzpKQknD9/HhEREWCxWOjYsSPGjh2LDh06iDnCD7Np0yZs3boVixYtgry8PP78808YGRnh888/b/WtAN9qyzkcOXIEBw8ehLa2NoYOHYpp06bB3d1d3GF9lPDwcDx+/Bj79++Hg4MDzMzMMHXqVABoMxUf7SGHxuBwOEhOThZ3GI02ffp07N+/H7/88ou4Q2kWGRkZCA8PB4vFgrm5eas/79U0cuRIzJ49G5s3b4aDgwNYLBaeP3+O1atXY9SoUQCA58+fw8zMTLyBEiICzbZJCCGtVHFxMU6dOoUDBw7g+fPnqKqqwpYtWzB79uw238KAkP+y3bt3Y+XKlSgvL4eioiIYhkF+fj6kpKSwZcsWfPHFF+IOsdFkZWUREhICQ0NDqKmpwcPDAzY2NggNDUX//v0FLQRbs/aQQ1xcHA4ePIhDhw6huLgY2dnZOH36NMaNGyfu0D5KYWEhTp48iQMHDuDZs2dwcnLC5MmTMWrUKKirq4s7vEZpDzlcuXJF6DnDMEhJScHOnTuhp6eHmzdviimyD7NkyRIcOXIEpqam6NatW53Wv22l5XVRURGWLFmCo0ePCmYq53A4mD59Onbs2AEejyfmCN+vsLAQK1aswJEjRwSzSktISGDGjBnYunUrZGVlBbPR2traii9QQkSgyjNCCGll4uPjoaenJ/QrdXh4OPbv34+jR48iNzcXrq6udS5qCWnP6pveXpTWfCN0/fp1jBw5EsuXL8eqVasELZtSUlLw+++/Y8eOHbh8+TKGDBki5kgbR09PDzdu3ICNjQ26dOmCb775BpMmTcLTp0/h7u6OvLw8cYf4Xu0hh7cYhsHt27dx4MABXLlyBWpqahgzZgy2b98u7tA+WmhoqOD8l52djYqKCnGH9MHaag61x2xjsVhQV1dH//79sXnz5lbfMvMtFxeXetexWCw8ePDgE0bz8T7//HPcu3cPO3fuRO/evQEA3t7eWLp0KVxdXfHXX3+JOcLGKywsRExMDBiGgYmJCeTk5MQdEiHvRZVnhBDSynA4HKSkpAhmE6ypqqoKV69eFdwYtVYrV67Exo0bISsr+95Kj9Zc0UFaj4Zufmpq7TdCTk5O6Nu3L3788UeR67/77js8evSoThfn1mry5Mno1q0bVq5ciZ9++gl//vknRo4cibt378Le3r5VD7b/VnvIQZTs7GxBt87AwEBxh9NklZWVuHLlCsaMGSPuUD5ae8iBiI+amhrOnTsHZ2dnoeUeHh6YMGECMjIyxBMYIf8RVHlGCCGtDJvNRmpqqsjKs7bCxcUFFy9ehJKSUrv5xZeQ5qCgoABfX1+Ym5uLXB8eHo5u3boJJqho7bKzs1FaWgodHR3w+Xz88ccf8Pb2hqmpKdauXQtlZWVxh/he7SGH9iA5ORlbtmzBunXrhGbiA6oHGf/xxx+xevVqaGpqiinC92sPObRnUVFRiI6ORr9+/SAjIwOGYdrUWHQ8Hg8vX76EpaWl0PKQkBA4OjqiqKhITJE1bMyYMTh06BAUFBTeW3HcVn+sIP8NVHlGCCGtTHuoPCPkU2iLN0JycnIICgqCsbGxyPUxMTHo3LkzCgsLP3FkpC1qTHdmFouFzZs3f4Jommb16tXIz8/Hvn37RK5fsGABFBUV8euvv37iyBqvPeTQXrrI15SVlYUJEybAw8MDLBYLkZGRMDY2xpw5c6CkpNQmvh8AMGDAAKiqquLIkSOQlpYGAJSUlGDGjBnIzs7GvXv3xByhaLNmzcL27dshLy+PWbNmNVi2Lc1gTv57aLZNQghphd7OUNmQtjBLJQCkpaXV+yt7UFAQOnfu/IkjapwPGSOoNX8Wb6d+b4zaLSVaq/puhObOndvqb4Q6deqEy5cvC818WtOlS5fQqVOnTxxV0/D5fERFRSE9PR18Pl9oXb9+/cQU1Ydpqzn4+/uLO4Rmc+vWLezZs6fe9dOnT8e8efNadcVTe8ih9j718uVLVFVVCVrLRkREgMPhoGvXruII76OsWLECkpKSiI+PF2q1NXHiRKxYsaJVnzNq+vPPP+Hu7g5dXV106dIFLBYLAQEBkJaWxu3bt8UdXr1qVohR5Rhpy6jlGSGEtDJsNhu6urrgcDj1lmGxWIiJifmEUX08DQ0N/PPPPxgxYoTQ8j/++ANr165FSUmJmCJrmJGRUaPKtfbPgs1mv7c11tsWW29n72rtpk+fjvT0dPzzzz+wtLREYGAgjI2NcefOHaxYsQIhISHiDrFehw8fxsKFC/HHH39g/vz5kJCo/h2zsrISe/fuxZdffondu3dj5syZ4g20kXx8fDB58mS8efMGtS8p28o+1R5yaA9kZWURGhoKfX19kevfVny01q5pQPvIoaYtW7bA09MThw8fFnRfzsnJwaxZs9C3b1+sWrVKzBE2jpaWFm7fvo0uXbpAXl5ecM6IjY2FjY1Nm2rpW1JSgmPHjiEsLAwMw8DKygpTpkyBjIyMuENrtMrKSnh6eiI6OhqTJ0+GvLw8kpOToaCgQBMHkFaNWp4RQkgr9OLFi3bTbfPrr7/GxIkTBdOQZ2dnY9q0aQgJCcHp06fFHV69YmNjxR1Cs/Dw8BB3CM3uzp07uH37NnR1dYWWd+zYEW/evBFTVI0zY8YMvHr1CosXL8aaNWtgYmICAIiOjkZhYSGWLl3aZirOgOpuaN26dcP169ehra3d6rvNitKWc/D09KwzeHhtX3zxBXbv3v1pAmoCGRkZxMXF1VvxFBcX1+orCNpDDjVt3rwZd+7cERr3T1lZGT/++CPc3NzaTOVZUVEReDxeneWZmZngcrliiOjjycjIYN68eeIO46O9efMG7u7uiI+PR1lZGVxdXSEvL4/ffvsNpaWlDbbcJETcqPKMEEJIi1q1ahUGDhyIqVOnonPnzsjOzkaPHj0QFBTU5gZNLi8vR2xsLExMTAQthlo7JycncYfQ7Nr6jdAff/yBcePG4eTJk4iMjARQ3TXws88+Q48ePcQc3YeJjIzEuXPnYGpqKu5QPlpbzmHkyJHw8PCAvb29yPWLFi3C8ePH20TlWffu3XH06NF6u8keOXIEjo6OnziqD9MecqgpPz8faWlpdbqSp6ent5lJTYDq4+uRI0ewceNGANUtSvl8Pn7//fdGz+QsLh8ys3rtFv6t0bJly9CtWzcEBgZCVVVVsHz06NGYO3euGCMjpBEYQgghrQqLxWLS0tIaLHPs2LFPFE3zyM/PZyZOnMhISEgwEhISzKFDh8Qd0gcpKipiZs+ezXA4HIbD4TDR0dEMwzDMkiVLmJ9//lnM0X2Yhw8fMlOmTGF69uzJJCYmMgzDMEeOHGEePXok5sgab8iQIcx3333HMAzDyMnJMTExMUxVVRUzfvx4ZuzYsWKOrmHff/89U1RUJO4wmo2Liwtz8+ZNcYfRJG05h5UrVzIaGhpMeHh4nXWLFi1i5OTkmIcPH4ohsg/34MEDhsPhMKtWrWJSU1MFy1NTU5mVK1cyHA6HuX//vhgjfL/2kENN06ZNY/T19ZmzZ88yCQkJTEJCAnP27FnG0NCQmT59urjDa7SQkBBGXV2dcXd3Z6SkpJhx48YxlpaWjKamJhMVFSXu8BrEYrEa9WCz2eIOtVFUVVWZsLAwhmGqz99vr6diY2MZGRkZcYZGyHtR5RkhhLQyFhYWTHJycr3rjx8/zkhKSn7CiJrG29ubMTQ0ZLp27cq8fv2a+fvvvxl5eXlm/PjxTHZ2trjDa5SlS5cyXbt2ZR49esTIysoKLvYuX77M2Nraijm6xjt37hwjIyPDzJ07l+FyuYI8du3axQwePFjM0TVeW74RYrPZ760cb0suXLjAWFlZMQcPHmRevHjBBAYGCj3agraew6xZsxh9fX1BZTjDVFfsy8rKMp6enmKM7MPt2bOH4XK5DJvNZpSUlBhlZWWGzWYzXC6X2b17t7jDa5T2kMNbRUVFzMKFCwX5sNlsRkpKilm4cCFTWFgo7vA+SEpKCrNu3Tpm6NChzODBg5lvv/22wWst0jKUlZWZkJAQhmGEK88ePXrEaGhoiDM0Qt6LJgwghJBWxtnZGSUlJXjw4AFkZWWF1p06dQrTp0/Hr7/+Wu9sfa0Nl8vFihUrsHHjRkhKSgKoHt9p2rRpiI+PR2JiopgjfD8DAwOcPn0aPXr0EBpsOCoqCvb29h80o6U42dnZYcWKFZg+fbpQHgEBAXB3d0dqaqq4Q2y01NRU/PXXX3j58iX4fD7s7e2xaNEiaGtrizu0BrHZbKSmprabMQ3ZbHadZSwWq01NQtHWc+Dz+Rg3bhxCQ0Px6NEj/PTTT9i3bx+uXbvW6ruk1VRRUQFJSUkkJSXhzJkziIqKAsMwMDMzw7hx46Crq4vg4GBYW1uLO9R6tYccRCkqKkJ0dDQYhoGpqWmdaxPyacTGxjZ6MqPWauLEiVBUVMS+ffsgLy+PoKAgqKurY+TIkdDX16fZOEmrRpVnhBDSyhQWFsLZ2RlKSkq4efOmoMLpzJkzmDp1KjZt2oTVq1eLOcrG8/LyEjnuFp/Px08//YS1a9eKIaoPw+PxEBwcDGNjY6FKp8DAQPTr1w95eXniDrFReDweXr9+DUNDQ6E8YmJiYGVlhdLSUnGH2O6x2WykpaVBXV1d3KE0i/dN0GBgYPCJIvl47SGH8vJyDB06FIGBgSgqKsKVK1cwYMAAcYf1QcaNG4ezZ8/WO2FDcHAwBgwYgLS0tE8cWeO1hxzao4cPHza4vr4x6lobDoeDfv36Yc6cORg3bhykpaXFHdIHS05OhouLCzgcDiIjI9GtWzdERkZCTU0NDx8+bDc/LJH2iSrPCCGkFcrIyEC/fv1gZWWFc+fO4dy5c5gyZQo2btyIr7/+Wtzh/ec4OTlh3LhxWLJkieCXUiMjIyxevBhRUVG4deuWuENsFBMTE+zduxcDBw4Uqjw7cuQIfvnlF7x+/VrcITbKrVu3ICcnhz59+gAAdu3ahb///htWVlbYtWuX0MxwrQ2bzYa1tfV7J5zw8/P7RBGRtmz79u2C/xcUFGDjxo0YNGhQnYqzpUuXfurQPpienh4GDx6Mffv21VkXEhKC/v37o1+/fjh79qwYomuc9pBDbb6+vjh79izi4+NRXl4utO7ChQtiiurD1Ne69K3W3rr0reDgYBw4cADHjx9HWVkZJk6ciDlz5rSpSSgAoKSkBCdPnoSfn5+g5fiUKVPa1Ey05L+JKs8IIaSVSkhIQJ8+fWBqagpvb2+sW7cO3377rbjD+ihFRUXw8vISefHdFm7qnjx5And3d0yZMgWHDh3C559/jpCQEDx9+hReXl7o2rWruENslN9++w2HDx/GgQMH4Orqihs3buDNmzdYsWIF1q1bh8WLF4s7xEaxsbHBr7/+iiFDhuDVq1fo1q0bVq1ahQcPHsDS0rJVd/tgs9lYtWoV5OTkGiy3fv36TxRR00VHR2Pbtm0IDQ0Fi8WCpaUlli1bBhMTE3GH1mhtNYfGdOFisViIiYn5BNE0TWhoqKBVzS+//CK03MXFBb169cLZs2fB4XDEGGXD2kMONb0dKsLNzQ13796Fm5sbIiMjkZqaitGjR7fqY21NtVuHV1RUwN/fH2vXrsVPP/3U5lppVlZW4urVqzh06BBu3ryJjh07Ys6cOZg2bVq7adVMSKsklpHWCCGE1KvmQNWnT59muFwuM3HixDYziHV8fLzQcz8/P0ZLS4uRl5dnJCQkGHV1dYbFYjGysrKMkZGRmKL8cEFBQcz06dOZTp06MZaWlsyUKVOYoKAgcYf1wf73v/8xMjIyghm6pKWlBTNXthWysrJMbGwswzAMs379esEMmy9fvmQ0NTXFGNn7NWY23bbk1q1bjJSUFOPo6MisWLGCWb58OePo6MhwuVzmzp074g6vUdpDDu3F8+fPGXl5eea3335jGIZhQkNDGS0tLWbEiBFMZWWlmKNrnPaQw1s2NjbMzp07GYZ5N7g7n89n5s2bx6xbt07M0TWdl5cXY29vL+4wPlppaSmzZcsWhsvlMiwWi5GSkmKmTZvWqidC0NbWZiZNmsTs3btX5CzBhLRm1PKMEEJaGTabLTRY9dvDdO3/t9ZuBj/++CNSUlKwc+dOsFgsODs7w8TEBPv27YOuri4CAwNRUlKCqVOnYsWKFRgzZoy4Q/7PKS4uxuvXr8Hn82FlZfXeVlCtjYqKCry9vWFlZYU+ffpg+vTpmD9/PuLi4mBlZYXi4mJxh1gvDoeDlJSUdjOui52dHQYNGiTUygYAvvnmG9y5c6dNdD9tDzm0Jw8ePMCwYcPw1Vdf4e+//4a9vT0uXLggGP+zLWgPOQCArKwsQkJCYGhoCDU1NXh4eMDGxgahoaHo378/UlJSxB1ik4SGhsLBwQGFhYXiDuWDvHjxAgcOHMCpU6cgKyuLGTNmYM6cOUhOTsa6detQUFCA58+fiztMkU6ePAkvLy94enoiIiICmpqacHJygrOzM5ycnGBpaSnuEAmpF1WeEUJIK/O+wavfaq2DWJeUlGDx4sXIyMjAlStXoKSkBB8fH1hYWEBXVxdPnz7F/9m787ia0/d/4K9TokUrRdKeEKGUfQsRxm6aIUoJg5TsM0Mxtj5jS4yypWyRLJOxLxVRg1YplVNkKcIUWqjO+f3h53wdhVPoPu+6no9Hj0/nPu8/Xu/P1NG5zn1fl66uLmJjYzF58mTcuXOHdeQqVWeCpoqKyndMQj42YsQIvH37Fj179sSKFSuQnZ0NHR0dnDt3Dm5ubsjIyGAd8ZPq2rRNeXl53Lp1C61atRJbz8jIQIcOHTgxhIKr93Dw4EH8/PPPEl374MED5OTkoGfPnt851bdx/Phx/Pjjjxg0aBCOHz/OuaITUDfuQVdXF6dOnYK5uTk6duyIxYsXY/z48YiJiYGdnR1nhuUkJyeLPRYKhcjNzYWPjw/Kyspw9epVRsmqZ8OGDdi9ezfS09MxdOhQuLq6YujQoWI93e7evYs2bdqgvLycYVLJPHnyBBEREfjnn39w6NAhCAQCqf1gmBAA+Hy3WkIIIbVOWotiklJQUMCuXbtw8OBBAICcnJzoDzstLS3cv38furq6UFNTQ05ODsuon6WmpvbJiWkfk+Y/9qqzs48rzZ+3bNmCmTNnIiwsDP7+/tDR0QEAnD59GnZ2dozTfV52dnad6kmjqamJxMTESoWnxMREzhQIuXoP/v7+WLZsGZydnTFixIhKOzYKCwtx9epV7Nu3DxcuXMCuXbsYJZWMurp6pdfcK1euoFmzZmJrL168qM1Y1VIX7uFDvXv3xvnz52Fubg57e3t4eHjg0qVLOH/+PKf6hHXq1Els9/573bp1Q2BgIKNU1efv7w8XFxc4OzujefPmVV6jp6cn9b/rr1+/RnR0tGgHWkJCAszNzauczE6INKHiGSGESJGcnBzo6elJfP2jR49EhQNp835HhIWFBW7cuAFTU1P07dsXv/76K2bMmIHg4GCYm5szTvlpERERou/v3buHxYsXY/LkyejevTsAICYmBsHBwVizZg2riBJRVVUVfS8UCnHs2DGoqqrCysoKABAXF4eCggJOHZ/V09PDP//8U2l948aNDNJUT3BwsETXeXl5feck38bUqVMxbdo0ZGVloUePHuDxeIiOjsb//vc/zJs3j3U8iXD1HqKiovDPP/9g8+bN+O2336CkpIRmzZpBXl4e//33H/Ly8qCpqQlnZ2ekpKRIdSEQAHx9fVlH+Gp14R4+tGXLFtHOy19//RVycnKIjo7GmDFjsHTpUsbpJJednS32WEZGBpqampCXl2eUqGYyMzO/eE3Dhg3h5ORUC2lqpmvXrkhOTkb79u3Rr18//Pbbb+jduzfU1NRYRyPki+jYJiGESJFmzZphxIgRmDp16idHjxcWFiI0NBSbNm3C9OnTMXv27FpOWT03b97Ey5cv0b9/f7x48QKTJ09GZGQkjI2NERQUhI4dO7KO+EUDBgyAq6srxo8fL7Z+4MABbN++HZGRkWyCVdOiRYvw4sULBAQEiKa9VVRUYObMmVBRUcHatWsZJ5TMl3YsVqcAXdtkZGTQokULaGlpVdoF8R6Px+NMny2hUAhfX1+sX78ejx8/BgC0aNECCxYsgLu7u8S7N1mqC/fw/PlzREdH4969eygpKUHTpk1hYWEBCwsLsSNdhNQnly5dgpubG2JjYyu1VygsLESPHj0QEBCA3r17M0pYM8XFxVVOL+/QoQOjRJLT0NAAj8fDwIED0a9fP/Tr14/6nBHOoOIZIYRIkRcvXmD16tUIDAyEnJwcrKys0KJFC9FOgtTUVNy+fRtWVlZYsmQJhgwZwjpyvaCoqIikpKQqeyJ16tRJqhvUf0hTUxPR0dFo3bq12Hp6ejp69OiB58+fM0pWPe+HanyKNB+jHTp0KCIiIjB48GC4uLhg2LBhokIm15SXl2P//v0YPHgwmjdvjlevXgEAlJWVGSeTXF24h/ro/UAdLuPCPXyq9yePx0OjRo3QsGHDWk5UPSNGjICNjQ08PT2rfN7Pzw8RERE4duxYLSermfz8fEyePBlnzpyp8nlp/rfvQ8nJyYiMjERUVBSuXLkCGRkZ9O3bFzY2Nvjll19YxyPkk+ijKEIIkSIaGhpYt24dHj9+DH9/f5iamuLZs2eirfoODg6Ii4vD1atXqXBWi3R1dREQEFBpfdu2bdDV1WWQqGbKy8uRlpZWaT0tLQ0CgYBBoppJSEhAfHy86Ovff/9FQEAATE1NcfjwYdbxPuvUqVPIyspC165dsWDBArRs2RKLFi1Ceno662jV1qBBA8yYMQNv3rwB8K7gxLWiU124h7qgbdu2OHDgQKWdNB/LzMzEjBkz8L///a+WkkmuLtzDx9TU1KCurl7pS01NDQoKCtDX14e3t7fU/vuRlJT02T6YgwYNQlxcXC0m+jpz5sxBQUEBYmNjoaCggDNnziA4OBitWrVCeHg463gS69ChA9zd3XHkyBGcPn0aQ4YMwdGjRzFr1izW0Qj5LOp5RgghUkheXh5jxozhVB+qT3n+/Dm8vLwQERGBp0+fVvojmwuNkzdu3IixY8fi7Nmz6NatGwAgNjYWfD4fR44cYZxOcs7OznBxccHdu3fF7sPHxwfOzs6M00muqqO+73dprl27Vup/b7S1tfHrr7/i119/xeXLl7F7925YW1vD3NwcFy5cgIKCAuuIEuvatSsSEhI4PeikLtwD1/31119YtGgRZs2ahUGDBlW56zo6Ohqpqalwc3PDzJkzWUeupC7cw8eCgoLw+++/Y/LkyejSpQuEQiFu3LiB4OBgLFmyBPn5+Vi3bh0aNWqE3377jXXcSp48efLZKacNGjRAfn5+LSb6OpcuXcLff/8Na2tryMjIQF9fH7a2tlBRUcGaNWswbNgw1hG/KCEhAZGRkYiMjMSVK1fw6tUrdOzYER4eHrCxsWEdj5DPouIZIYSQ72rixIng8/mYMmUKmjVrJvXHVKoydOhQZGZmwt/fH2lpaRAKhRg5ciR++eUXTu08W7duHZo3b46NGzciNzcXwLtCzsKFC6W6MbqkTE1NcePGDdYxqsXa2hr37t1DamoqEhISUFZWxqni2cyZMzFv3jw8fPgQnTt3hpKSktjzXOjBUxfugev69++PGzdu4Nq1azh06BAOHDhQqX+bo6MjJk6cKLWNxevCPXwsODgY69evh729vWhtxIgRMDc3x7Zt23Dx4kXo6elh1apVUlk809HRwa1bt2BiYlLl88nJydDW1q7lVDVXVFQkGvyhoaGB/Px8mJqawtzcnDN9Mq2trWFhYYG+ffti6tSp6NOnT6V+dIRIK+p5Rggh5LtSVlZGdHQ0JwYD1Cfve9lw8Y/Wj/vwCIVC5ObmYtmyZbhz5w4SExPZBKuGmJgYBAYGIjQ0FKampnB2dsaECRM486b6vaqa0fN4PFE/Jy704KkL90DI9/Cpfp+ZmZno2LEjiouLkZ2djXbt2kll78/Zs2cjMjISN27cqDRZs6SkBF26dIGNjQ38/PwYJawea2trrFy5EoMHD8aoUaNEO878/PwQFhYGPp/POuIXvXz5kpN/dxAC0M4zQggh31mbNm1QUlLCOgb5CJf/eFVTU6u0g1EoFEJXVxcHDx5klEoyf/75J3bv3o3nz5/DwcEB0dHRMDc3Zx2rxrKzs1lH+Gp14R4I+R5atmyJXbt2wcfHR2x9165dol3Xz58/h7q6Oot4X7RkyRIcPXoUpqamcHNzQ+vWrcHj8ZCWloa//voLFRUV+P3331nHlNicOXNEu8a9vb0xePBg7Nu3Dw0bNkRwcDDjdJLh8t8ehNDOM0IIId/VjRs3sHjxYnh5eaF9+/aV+o/QH1KkuqKiosQey8jIQFNTEyYmJmjQQLo/F5SRkYGenh5++OGHz06q27BhQy2mInXBw4cPER4ejpycnEpN6+nnidREeHg4fvzxR7Rp0wbW1tbg8Xi4ceMG7ty5g7CwMPzwww/w9/dHZmam1P6M3b9/HzNmzMDZs2fx/m0vj8fD4MGDsXXrVhgYGLANWENCoRAlJSW4c+cO9PT00LRpU9aRCKnzqHhGCCHku8rMzMT48eORkJAgtk5Hokh1WFpa4uLFi1BXV8cff/yB+fPnQ1FRkXWsauvXr98X+/7xeDxcunSplhJ9vb179yIgIADZ2dmIiYmBvr4+fH19YWhoiJEjR7KOJxGu38PFixcxYsQIGBoaIj09He3bt8e9e/cgFAphaWnJqZ8nIl3u37+PgIAApKenQygUok2bNpg+fTrnik7//fcf7t69C6FQiFatWkntbrkv2bVrFzZu3Ciawt6qVSvMmTMHrq6ujJMRUvdR8YwQQqQYn8+Hr68v0tLSwOPx0LZtW3h4eMDY2Jh1NIl16dIFDRo0gIeHR5UDA/r27csoGeESBQUFZGZmomXLlpCVlUVeXh40NTVZx6r3/P394eXlhTlz5mDVqlVISUmBkZERgoKCEBwcjIiICNYRv6gu3EOXLl1gZ2eHP/74A8rKykhKSoKWlhYcHBxgZ2eHGTNmsI5IOKasrAyDBg3Ctm3bYGpqyjoOAbB06VJs3LgRs2fPRvfu3QG865+5ZcsWeHh4YOXKlYwTElK3UfGMEEKk1NmzZzFixAh06tQJPXv2hFAoxLVr15CUlIQTJ07A1taWdUSJKCoqIiEhAa1bt2YdhXBY9+7d0bhxY/Tq1QvLly/H/Pnz0bhx4yqv9fLyquV09ZeZmRlWr16NUaNGiYo2RkZGSElJQb9+/fDs2TPWEb+oLtyDsrIyEhMTYWxsDHV1dURHR6Ndu3ZISkrCyJEjce/ePdYRCQdpamri2rVrlQYGEDaaNm2KzZs3Y/z48WLrISEhmD17NideqyIjI9GvXz/WMQipEeluDEIIIfXY4sWL4enpWalR7+LFi7Fo0SLOFM+srKzw4MEDzhfPwsLCEBoaWmU/Ia6MiAfe9Qtbt26d2G7GBQsWoHfv3qyjfVZQUBC8vb3xzz//gMfj4fTp01X2N+PxeFJbPPPx8cHs2bOhpKT0xWv//fdfPHv2DMOGDauFZDWXnZ0NCwuLSuuNGjVCUVERg0TVVxfuQUlJCW/evAEAtGjRAnw+H+3atQMATryh/pSSkhKUlZWJrXGtTyaX78HR0bHKgQGEjYqKClhZWVVa79y5M8rLyxkkqj47Ozvo6OjA2dkZTk5OosEThHABFc8IIURKpaWlITQ0tNK6i4sLfH19az9QDc2ePRseHh5YsGABzM3NKw0M6NChA6NkkvPz88Pvv/8OJycn/P3333B2dgafz8eNGzcwa9Ys1vEktm/fPjg7O2PMmDFwd3cX7WYcMGAAgoKCMGHCBNYRP6l169aiSZoyMjK4ePEitLS0GKeqntTUVOjr6+PHH3/EiBEjYGVlJTp6Wl5ejtTUVERHR2Pfvn3Izc3Fnj17GCf+MkNDQyQmJkJfX19s/fTp0zAzM2OUqnrqwj1069YNV69ehZmZGYYNG4Z58+bh1q1bOHr0KLp168Y6XrUUFxdj4cKFCA0NxfPnzys9z4U+mXXhHgDg7du32LlzJ86fPw8rK6tKhX9pHRJQV02cOBH+/v6V/n/fvn07HBwcGKWqnsePH2Pfvn0ICgrCsmXLMGDAAEyZMgWjRo367BAdQqSCkBBCiFRq2bKlMDQ0tNL6oUOHhLq6ugwS1QyPx6v0JSMjI/pfLmjdurXwwIEDQqFQKGzcuLGQz+cLhUKhcOnSpcJZs2axjFYtbdq0EW7YsKHS+vr164Vt2rRhkKj+SUpKEk6bNk2orq4ulJGREcrJyQkbN24slJGREcrIyAg7d+4s3LZtm7C0tJR1VIkEBgYKdXR0hAcPHhQqKSkJQ0JChCtXrhR9zwV14R74fL4wKSlJKBQKhUVFRcIZM2YIzc3NhaNHjxbeu3ePcbrqmTlzprBt27bCw4cPCxUUFISBgYHCFStWCFu2bCnct28f63gSqQv3IBQKhf369fvkl42NDet49Y6bm5tQRUVF2K5dO+GUKVOEU6ZMEbZr106ooqIidHNzE3p6eoq+uCAhIUE4e/ZsYdOmTYUaGhrC2bNnCxMTE1nHIuSTqOcZIYRIqT/++AMbN27E4sWL0aNHD/B4PERHR+N///sf5s2bhyVLlrCOKJH79+9/9vmPd3tII0VFRaSlpUFfXx9aWlo4f/48OnbsiMzMTHTr1q3KnQXSqFGjRrh9+zZMTEzE1u/evYv27dujtLSUUbL6RygUIjk5Gffu3UNJSQmaNm2KTp06oWnTpqyjVduOHTuwcuVKPHjwAACgo6ODZcuWYcqUKYyTSa4u3ENdoaenhz179qBfv35QUVFBfHw8TExMsHfvXoSEhODUqVOsI35RXbgHIn1sbGwkuo5LE5sfP36M7du3w8fHBw0aNEBpaSm6d++OgIAA0dFzQqQFHdskhBAptXTpUigrK2P9+vX49ddfAbzrZbNs2TK4u7szTic5LhTHvqR58+Z4/vw59PX1oa+vj9jYWHTs2BHZ2dng0mdQurq6uHjxYqXi2cWLF6nvSC3j8Xjo2LEjOnbsyDrKV5s6dSqmTp2KZ8+eQSAQcO44LVA37uG9169fQyAQiK1xpccWALx48QKGhoYA3uV+8eIFAKBXr16cmRpaF+7hQ3fv3gWfz0efPn2goKAAoVBYaXI2+f64MPlXEmVlZfj7778RGBgoOhK8ZcsWjB8/Hi9evMCiRYvw448/IjU1lXVUQsRQ8YwQQqRQeXk59u/fj/Hjx8PT0xOvXr0C8G6iGql9/fv3x4kTJ2BpaYkpU6bA09MTYWFhuHnzJsaMGcM6nsTmzZsHd3d3JCYmiu1mDAoKwqZNm1jHIxzHxV1zH+PqPWRnZ8PNzQ2RkZFiO0jfFzm40mMLAIyMjHDv3j3o6+vDzMwMoaGh6NKlC06cOAE1NTXW8SRSF+4BAJ4/fw57e3tERESAx+MhMzMTRkZGcHV1hZqaGtavX886IuGY2bNnIyQkBMC7Hm5//vkn2rdvL3peSUkJPj4+MDAwYJSQkE+jY5uEECKlPjwqSNgSCAQQCASi6Y6hoaGIjo6GiYkJfvnlF041uT127BjWr1+PtLQ0ABBN2xw5ciTjZISr6sIkWq7fQ48ePQAAHh4eaNasWaVdQX379mURq0Y2btwIWVlZuLu7IyIiAsOGDUNFRQXKy8uxYcMGeHh4sI74RXXhHoB30zafPn2KnTt3om3btkhKSoKRkRHOnTsHT09P3L59m3VEwjEDBgyAq6srxo4d+8m/ncrLy3H16lVOvW6R+oGKZ4QQIqVsbGzg4eGBUaNGsY5CCCFV+nAS7Y4dOypNol21ahXriF9UF+6hcePGiIuLQ+vWrVlH+eZycnJw8+ZNGBsbc/aYM1fvoXnz5jh79iw6duwIZWVlUfEsOzsb5ubmeP36NeuIhGMuX76MHj16iD6MfK+8vBzXrl1Dnz59GCUj5Mvo2CYhhEipmTNnYt68eXj48CE6d+5caUR8hw4dGCWrn65cuYJt27aBz+cjLCwMOjo62Lt3LwwNDdGrVy/W8SRiZGSEGzduoEmTJmLrBQUFsLS0RFZWFqNkX6auri5xj533/YXI97d161Zs374d48ePR3BwMBYuXAgjIyN4eXlx5r9DXbgHa2trPHjwoE4Wz/T09KCnp8c6xlfh6j0UFRVBUVGx0vqzZ8/QqFEjBokI19nY2CA3N7dSX8nCwkLY2Nhw6og5qX+oeEYIIVLqp59+AgCx4QA8Ho+TPWwAIC4uDmlpaeDxeGjbti0sLS1ZR5LYkSNHMGnSJDg4OCAhIQFv3rwBALx69QqrV6/mzOS0e/fuVflz8+bNGzx69IhBIsn5+vqyjvBdcL0Rd05OjujIoIKCgqg/46RJk9CtWzds2bKFZTyJ1IV72LlzJ3755Rc8evQI7du3h5ycnNjz0v5hi5+fn8TXSuvAHD8/P0ybNg3y8vJfvB9pvYeP9enTB3v27MGKFSsAvPsbRCAQYO3atRJPfiTkQ5/6N+758+eVPiQmRNpQ8YwQQqRUdnY26wjfxNOnT/Hzzz8jMjISampqEAqFok8YDx48CE1NTdYRv2jlypUICAiAo6MjDh48KFrv0aMH/vjjD4bJJBMeHi76/uzZs1BVVRU9rqiowMWLF6W+Oa+TkxPrCN/U8+fP8dNPP+HSpUucbsRdFybR1oV7yM/PB5/Ph7Ozs2iNSx+2bNy4Uexxfn4+iouLRc31CwoKoKioCC0tLaktPG3cuBEODg6Ql5evdD8f4vF4UnsPH1u7di369euHmzdv4u3bt1i4cCFu376NFy9e4OrVq6zjEQ55P1yJx+Nh8uTJYjsXKyoqkJycLPoQgxBpRcUzQgiRUnVlUMDs2bPx8uVL3L59G23btgUApKamwsnJCe7u7qKpS9IsPT29yj4cKioqKCgoqP1A1fS+bx6Px6tUhJKTk4OBgQFnijXv8fl87N69G3w+H5s2bYKWlhbOnDkDXV1dtGvXjnW8L/L09ESDBg2Qk5Mj+r0A3u049fT05Mx/j7owibYu3IOLiwssLCwQEhJS5cAAaffhh0UHDhzA1q1bsWvXLtEx1PT0dEydOhXTp09nFfGLPryHuvLhl5mZGZKTk+Hv7w9ZWVkUFRVhzJgxmDVrFrS1tVnHIxzy/kM7oVAIZWVlKCgoiJ5r2LAhunXrhqlTp7KKR4hEaGAAIYRIsb179yIgIADZ2dmIiYmBvr4+fH19YWhoyJnpiKqqqrhw4QKsra3F1q9fv45BgwZxovhkbGyMbdu2YeDAgWJNk/fs2QMfHx+kpqayjigRQ0ND3LhxA02bNmUd5atERUVhyJAh6NmzJy5fvoy0tDQYGRnhzz//xPXr1xEWFsY64hfVlUbcdWESbV24ByUlJSQlJcHExIR1lK9mbGyMsLAwWFhYiK3HxcVh3LhxnCtMvX+rxbWCJiHfw/LlyzF//nw6okk4SYZ1AEIIIVXz9/fH3LlzMXToUBQUFIiO3aipqXGq/5NAIKjUfwd4t+NJIBAwSFR906dPh4eHB/7991/weDw8fvwY+/fvx/z58zFz5kzW8SSWnZ3N+cIZACxevBgrV67E+fPnxQobNjY2iImJYZhMcnWlEbeMjIzY1DR7e3v4+fnB3d2dE0UnoG7cQ//+/ZGUlMQ6xjeRm5uLsrKySusVFRV48uQJg0Q1s2vXLrRv3x7y8vKQl5dH+/btsXPnTtaxqsXQ0BBLly5Feno66yikjvD29oaSkhKePn2KK1euIDo6Gk+fPmUdixCJUPGMEEKk1ObNm7Fjxw78/vvvkJWVFa1bWVnh1q1bDJNVT//+/eHh4YHHjx+L1h49egRPT08MGDCAYTLJLVy4EKNGjYKNjQ1ev36NPn36wNXVFdOnT4ebmxvreBJzd3evspH1li1bMGfOnNoPVEO3bt3C6NGjK61ramri+fPnDBJV3/tG3O9RI27yNYYPHw5PT08sW7YMR44cQXh4uNgXlwwYMABTp07FzZs3Rbu2bt68ienTp2PgwIGM00lm6dKl8PDwwPDhw3H48GEcPnxY9N9oyZIlrONJbPbs2Thz5gzatm2Lzp07w9fXF7m5uaxjEQ57+fIlJk2aBB0dHfTt2xd9+vSBjo4OJk6ciMLCQtbxCPksOrZJCCFSSkFBAXfu3IG+vr7Ysa7MzEx06NABJSUlrCNK5MGDBxg5ciRSUlKgq6sLHo+HnJwcmJub4++//0bLli1ZR/ysiooKREdHw9zcHPLy8khNTYVAIICZmRkaN27MOl616OjoIDw8HJ07dxZbj4+Px4gRI/Dw4UNGyaqnZcuWCA0NRY8ePcR+N44dO4b58+eDz+ezjvhFqamp6NevHzp37oxLly5hxIgRYo24jY2NWUckHCIj8+nPw7kwMOBD+fn5cHJywpkzZ0S7lsvLyzF48GAEBQVBS0uLccIva9q0KTZv3ozx48eLrYeEhGD27Nl49uwZo2Q1k5GRgf379+PgwYPIysqCjY0NJk6cCEdHR9bRCMfY29sjMTERmzdvRvfu3cHj8XDt2jV4eHigQ4cOCA0NZR2RkE+i4hkhhEgpMzMzrFmzBiNHjhQrEPj5+SE4OBhxcXGsI1bL+fPncefOHQiFQpiZmXFmBwEAyMvLIy0tDYaGhqyjfBV5eXmkpKRU6ot09+5dtG/fHqWlpYySVc/ChQsRExODw4cPw9TUFPHx8Xjy5AkcHR3h6OgIb29v1hElkpeXB39/f8TFxUEgEMDS0pIacRPy/2VkZIj+zWjbti1MTU1ZR5KYuro6rl+/jlatWomtZ2RkoEuXLpzo9fkpsbGxmDFjBpKTkzlVlCXSQUlJCWfPnkWvXr3E1q9cuQI7OzsUFRUxSkbIl9G0TUIIkVILFizArFmzUFpaCqFQiOvXryMkJARr1qzhXN8UALC1tYWtrS3rGDVibm6OrKwszhfPTExMcObMmUpHTU+fPg0jIyNGqapv1apVmDx5MnR0dETF2IqKCkyYMIFTR6KaN2+O5cuXs45BiFQyNTXlVMHsQxMnToS/vz82bNggtr59+3Y4ODgwSvV1rl+/jgMHDuDQoUMoLCzEuHHjWEciHNSkSRPR5M0PqaqqQl1dnUEiQiRHO88IIUSK7dixAytXrsSDBw8AvDt2t2zZMkyZMoVxss/z8/PDtGnTIC8vX2WPrQ+5u7vXUqqaO3fuHBYtWoQVK1agc+fOlaZEqaioMEpWPYGBgXBzc8OCBQvQv39/AMDFixexfv16+Pr6cm5MPJ/PR0JCAgQCASwsLCrt8pBmly9f/uzzffr0qaUkhKvq0uvs3LlzsWLFCigpKWHu3LmfvfbjgpQ0mj17Nvbs2QNdXV1069YNwLsdWw8ePICjo6PYEB1pvp/3xzUPHDiAe/fuwcbGBg4ODhgzZgyUlZVZxyMctH37dhw+fBh79uwR7bLOy8uDk5MTxowZg+nTpzNOSMinUfGMEEI44NmzZxAIBJzo9QK8m9B18+ZNNGnS5LO7tXg8HrKysmoxWc182E+Ix+OJvhcKhZzrJ+Tv749Vq1aJBjgYGBhg2bJl1LumllXVo+rDny0u/UyFhYUhNDQUOTk5ePv2rdhz8fHxjFJVDxfvoS69ztrY2ODYsWNQU1P77MAMHo+HS5cu1WKympF06Ie034+MjAysrKwwYcIE/Pzzz2jevDnrSITjLCwscPfuXbx58wZ6enoAgJycHDRq1KjSB2DS+tpL6i86tkkIIVIqOzsb5eXlaNWqFZo2bSpaz8zMhJycHAwMDNiF+4Ls7Owqv+eqiIgI1hG+mRkzZmDGjBnIz8+HgoICZ4YefGk3yoekeSfHe//995/Y47KyMiQkJGDp0qVYtWoVo1TV5+fnh99//x1OTk74+++/4ezsDD6fjxs3bmDWrFms40mEq/dQl15nP3yNrQuvt3XhHgDgzp07nD06S6TTqFGjWEcgpMZo5xkhhEipvn37wsXFBU5OTmLr+/btw86dOxEZGckmGBGTmJiITp06sY4hsfLyckRGRoLP52PChAlQVlbG48ePoaKiItWFtI93csTFxaGiogKtW7cG8O54kaysrGh6JVddvnwZnp6enBkI0qZNG3h7e2P8+PFig028vLzw4sULbNmyhXXEL6oL91BSUgIFBYUqn8vNzaUhFOSrvH37Fk+fPoVAIBBbf79ziBBC6gMqnhFCiJRSUVFBfHx8lZMRraysODOta9y4cbCyssLixYvF1teuXYvr16/j8OHDjJLVXGFhIfbv34+dO3ciKSmJM0fs7t+/Dzs7O+Tk5ODNmzfIyMiAkZER5syZg9LSUgQEBLCOKJENGzYgMjISwcHBogbD//33H5ydndG7d2/MmzePccKaS0tLg7W1NV6/fs06ikQUFRWRlpYGfX19aGlp4fz58+jYsSMyMzPRrVs3PH/+nHXEL6oL99CmTRscOHAAlpaWYuthYWGinabSbMyYMRJfe/To0e+Y5NsoLS3F5s2bERERUWXRiSvH0TIzM+Hi4oJr166JrXOxZQGRPq9fv670u8GVHrKkfqJjm4QQIqV4PB5evXpVab2wsJBTf7BGRUXB29u70rqdnR3WrVvHIFHNXbp0CYGBgTh69Cj09fUxduxY7Nq1i3UsiXl4eMDKygpJSUlo0qSJaH306NFwdXVlmKx61q9fj3PnzolN5lJXV8fKlSsxaNAgThTPkpOTxR4LhULk5ubCx8cHHTt2ZJSq+po3b47nz59DX18f+vr6iI2NRceOHZGdnQ2ufD5bF+7B1tYWPXr0wLJly7Bo0SIUFRXBzc0Nhw8fho+PD+t4X/Th9D2hUIhjx45BVVUVVlZWAN7tNC0oKKhWkY0lFxcXnD9/HuPGjUOXLl3E+hlyyeTJk9GgQQP8888/0NbW5ux9EOmRnZ0NNzc3REZGorS0VLROBVnCBVQ8I4QQKdW7d2+sWbMGISEhkJWVBfCuifiaNWvQq1cvxukk9/r1azRs2LDSupycHF6+fMkg0afl5+dDU1NTbO3hw4cICgpCYGAgioqKYG9vj7KyMhw5cgRmZmaMktZMdHQ0rl69Wum/h76+Ph49esQoVfW9fPkST548Qbt27cTWnz59WmXBWRp16tQJPB6vUnGmW7duCAwMZJSq+vr3748TJ07A0tISU6ZMgaenJ8LCwnDz5k3OFDrqwj1s3rwZw4YNg7OzM06ePCk6in3jxg1OvE7t3r1b9P2iRYtgb2+PgIAAsX/7Zs6cyZldKSdPnsSpU6fQs2dP1lG+SmJiIuLi4tCmTRvWUUgd4eDgAODd9O9mzZpRQZZwChXPCCFESv3555/o06cPWrdujd69ewMArly5gpcvX3Kqp1P79u1x6NAheHl5ia0fPHhQ6t7Ubd++HQ8fPoSfnx/k5OQwdOhQREdH44cffsDmzZthZ2cHWVlZzhxv/JhAIKjyU92HDx9CWVmZQaKaGT16NJydnbF+/Xp069YNABAbG4sFCxZwptjxcYN3GRkZaGpqQl5enlGimtm+fbvo2M0vv/wCDQ0NREdHY/jw4fjll18Yp5NMXbgHABg0aBDGjBkDf39/NGjQACdOnJC611hJBAYGIjo6WlQ4AwBZWVnMnTsXPXr0wNq1axmmk4yOjg6nXlM/xczMDM+ePWMdg9QhycnJiIuLE/UrJYRLqOcZIYRIscePH2PLli1ISkqCgoICOnToADc3N2hoaLCOJrHw8HCMHTsWEyZMQP/+/QEAFy9eREhICA4fPixVk5fevHmDpUuXomnTpli4cCEaNGgAd3d3zJgxQ2yEupycHJKSkjj3xvSnn36Cqqoqtm/fDmVlZSQnJ0NTUxMjR46Enp6e2O4PaVZcXIz58+cjMDAQZWVlAIAGDRpgypQpWLt2LZSUlBgnJKR2vR8AkpeXh507dyIqKgrr1q2Du7s7Vq1aBTk5OdYRJaauro7du3dX+rfh+PHjcHZ2rjSpVhqdPn0afn5+CAgIgL6+Pus4NXbp0iUsWbIEq1evhrm5eaWfI67sBCTSw8bGBr///jsGDhzIOgoh1UbFM0IIId/dyZMnsXr1aiQmJoqKgN7e3ujbty/raFV6+/YtGjZsiJiYGAQGBiI0NBRt2rTBpEmT8NNPP6FFixacLJ49fvwYNjY2kJWVRWZmJqysrJCZmYmmTZvi8uXL0NLSYh2xWoqKisDn8yEUCmFiYsKpopmfn1+V6zweD/Ly8jAxMUGfPn3Edt9Ii4/7tX1Ohw4dvmOSmqsL9/AhZWVlDBs2DAEBAVBTUwMAXLt2DY6OjlBWVkZCQgLbgNUwd+5cBAUF4bfffhPbWerj4wNHR0ds2LCBccIvy8/Ph729PS5fvgxFRcVKRacXL14wSlY9MjIyou8/PF5H/alITfH5fPzyyy+YOHEi2rdvX+l3gwuvt6T+ouIZIYRIqcuXL3/2+T59+tRSElJcXIyDBw8iMDAQ169fR0VFBTZs2AAXFxfOHc0pKSlBSEgI4uPjIRAIYGlpCQcHBygoKLCOVq8YGhoiPz8fxcXFUFdXh1AoREFBARQVFdG4cWM8ffoURkZGiIiIgK6uLuu4YmRkZKrs1/YxaX5zXRfu4UN79+7FpEmTKq2/evUKc+bM4dRgE4FAgHXr1mHTpk3Izc0FAGhra8PDwwPz5s2TyoLyxwYOHIicnBxMmTKlyr5OTk5OjJJVT1RU1Gefl9YPwIj0io2NxYQJE3Dv3j3R2vvXYq683pL6i4pnhBAipT78xPe9D/8Apz8w2EhPT8euXbuwd+9eFBQUwNbWFuHh4axjEY4JCQnB9u3bsXPnThgbGwMA7t69i+nTp2PatGno2bMnfv75ZzRv3hxhYWGM04q7f/++xNdK65G1unAPdVF5eTn279+PwYMHo3nz5qKhMlw7HqioqIiYmBhOTc79lCtXrmDbtm3g8/kICwuDjo4O9u7dC0NDQ04NLyLSwczMDG3btsXChQurLCzT6y2RZlQ8I4QQKVVYWCj2uKysDAkJCVi6dClWrVqFAQMGMEr2ZRoaGsjIyEDTpk2hrq7+2WlKXDm+8rGKigqcOHECgYGBnCqepaenY/PmzUhLSwOPx0ObNm3g5uZG09RqmbGxMY4cOYJOnTqJrSckJGDs2LHIysrCtWvXMHbsWNHuG0K+JDU1FTk5OXj79q1ojcfjYfjw4QxTVY+ioiLS0tI4/Sba0tISW7duFR075aojR45g0qRJcHBwwN69e5GamgojIyNs3boV//zzD06dOsU6IuEYJSUlJCUlwcTEhHUUQqqNpm0SQoiUUlVVrbRma2uLRo0awdPTE3FxcQxSSWbjxo2i44wbN26sk6PIZWVlMWrUKKkaePAlYWFhGD9+PKysrNC9e3cA745QmJub48CBA/jxxx8ZJ6w/cnNzUV5eXmm9vLwceXl5AIAWLVrg1atXtR2NcEBhYaHYvxFZWVkYM2YMkpOTxY6jvn/t5dJO5a5duyIhIYHTxTMfHx/MmzcPq1at4nSj/ZUrVyIgIACOjo44ePCgaL1Hjx74448/GCYjXNW/f38qnhHOop1nhBDCMWlpabC2tsbr169ZRyEcY2RkhIkTJ1Z60+Pt7Y29e/ciKyuLUbL6Z9iwYaLJiBYWFgDe7TqbOnUqmjdvjn/++QcnTpzAb7/9hlu3bjFOS6TNihUrIC8vjwULFgCAaGfZzp070alTJ/z777/Izs7G/PnzsWHDBvTu3Ztl3Go5fPgwFi9eDE9PT3Tu3LnSIBAuNBR/33bh4w+OuNbXSVFREampqTAwMICysjKSkpJgZGSErKwsmJmZobS0lHVEwjHbt2/HypUr4eLiUmVhecSIEYySEfJlVDwjhBAp9fE0OKFQiNzcXPj4+KCsrAxXr15llKx6bGxsMHHiRIwbN67K3XSk9igqKiI5ObnSJ76ZmZno2LEjiouLGSX7suocjeXCH995eXmYNGkSLl68KHrzUF5ejgEDBmDv3r1o1qwZIiIiUFZWhkGDBjFOS6TN06dPMWnSJJiYmOCvv/5C06ZNcfHiRXTs2BE6Ojq4fv06dHR0cPHiRcyfP59T0zY/1e+TS4WnutJo39jYGNu2bcPAgQPFimd79uyBj48PUlNTWUckHFPV7/d7XPn9JvUXHdskhBAp1alTpyqnwXXr1g2BgYGMUlWfubk5lixZAjc3NwwdOhSTJk3C0KFD0bBhQ9bR6p1+/frhypUrlYpn0dHRUr8z5ePjsR//bnBtmEbz5s1x/vx53LlzBxkZGRAKhWjTpg1at24tusbGxoZhQiLNtLS0cPbsWaxZswbAu5/590flmzZtisePH0NHRwcGBgZIT09nGbXasrOzWUf4alwpjn3J9OnT4eHhgcDAQPB4PDx+/BgxMTGYP38+vLy8WMcjHCQQCFhHIKTGaOcZIYRIqY+nwcnIyEBTUxPy8vKMEtWcQCDAhQsXcODAARw7dgyysrIYN24cHBwc6sybDC4ICAiAl5cX7O3tRY2sY2NjcfjwYSxfvhwtWrQQXSvNu7cuXLiARYsWYfXq1ejevTt4PB6uXbuGJUuWYPXq1bC1tWUdUWJv375FdnY2jI2N0aABNz/TLCgoQFhYGPh8PhYsWAANDQ3Ex8ejWbNm0NHRYR1PIly/h969e2Pu3LkYPXo0pk2bhvz8fCxYsAABAQGIj49HSkoK64h1XnJyMtq3bw8ZGZlKO8c/xoWjp+/9/vvv2Lhxo+iIZqNGjTB//nysWLGCcTJCCKldVDwjhBAp9P6o1rZt22Bqaso6zjdVWlqKEydOYNWqVbh16xYndgnVFZ87LvEhaT860b59ewQEBKBXr15i61euXMG0adOQlpbGKJnkiouLMXv2bAQHBwMAMjIyYGRkBHd3d7Ro0QKLFy9mnFAyycnJGDhwIFRVVXHv3j2kp6fDyMgIS5cuxf3797Fnzx7WEb+oLtzD2bNn8erVK4wbNw4PHjzAsGHDkJKSAg0NDYSGhqJ///6sI1bL3r17ERAQgOzsbMTExEBfXx++vr4wNDTEyJEjWcerkoyMDPLy8qClpQUZGZkqd44D0v/6WpXi4mKkpqZCIBDAzMwMjRs3Zh2JcMzQoUMREhIiat+xatUqzJo1C2pqagCA58+fo3fv3nQUmEg1yf6KJoQQUqvk5OSQkpJS56ZU5uXlISAgAP/73/+QnJwMKysr1pHqFYFAINGXtL+x4/P5VfbPe1/84IJff/0VSUlJiIyMFNtNOnDgQBw6dIhhsuqZO3cuJk+ejMzMTLH7GDJkCC5fvswwmeTqwj0MHjwY48aNAwDo6uoiOTkZz549w9OnT6W+cHb27FkUFhaKHvv7+2Pu3LkYOnQoCgoKRK9Hampq8PX1ZZTyy7Kzs6GpqSn6PisrC9nZ2ZW+uDiYRVFREVZWVujSpQsVzkiNnD17Fm/evBE9/t///ocXL16IHpeXl3PuiDmpf6h4RgghUsrR0RG7du1iHeOrvXz5Ert374atrS10dXXh7++P4cOHIyMjA//++y/rePVeQUEB6wjVZm1tjTlz5iA3N1e0lpeXh3nz5qFLly4Mk0nu+PHj2LJlC3r16iVWJDczMwOfz2eYrHpu3LiB6dOnV1rX0dFBXl4eg0TVVxfuoSoaGhoS7zZlKS8vDz179sTDhw8BAJs3b8aOHTvw+++/Q1ZWVnSdlZWVVE+e1dfXF/0u6+vrf/aLkPrm412YdPiNcBE3m2sQQkg98PbtW+zcuRPnz5+HlZUVlJSUxJ7fsGEDo2TV06xZM6irq8Pe3h6rV6+GtbU160j11v/+9z8YGBjgp59+AgD8+OOPOHLkCLS1tXHq1Cl07NiRcULJBAYGYvTo0dDX14eenh4AICcnB6ampjh+/DjbcBLKz8+HlpZWpfWioiJO7TiVl5fHy5cvK62np6eLduFIu7pwD6Wlpdi8eTMiIiLw9OnTSk254+PjGSX7MicnJygrK8POzg4pKSnIzs6GhYVFpesaNWqEoqIiBgklU9cmAhNCCBFHxTNCCJFSKSkpsLS0BPCuH9KHuPLmWigUYtOmTZg4cSIUFRVZx6n3tm3bhn379gEAzp8/jwsXLuDMmTMIDQ3FggULcO7cOcYJJWNiYoLk5GTRtEqhUAgzMzMMHDiQM78b1tbWOHnyJGbPng3g/36nd+zYge7du7OMVi0jR47EH3/8gdDQUADv7iMnJweLFy/G2LFjGaeTTF24BxcXF5w/fx7jxo1Dly5dOPN78N6YMWNEBTNDQ0MkJiZW2qF1+vRpmJmZsYgnkY8nAn8KF3ueEfK1eDxepdclrr1OEUIDAwghhHw3AoEA8vLyuH37Nlq1asU6Tr2noKCAjIwM6OrqwsPDA6Wlpdi2bRsyMjLQtWtX/Pfff6wj1hvXrl2DnZ0dHBwcEBQUhOnTp+P27duIiYlBVFQUOnfuzDqiRF6+fImhQ4fi9u3bePXqFVq0aIG8vDx0794dp06dqrRjVhrVhXtQVVXFqVOn0LNnT9ZRvtru3buxdOlSrF+/HlOmTMHOnTvB5/OxZs0a7Ny5Ez///DPriISQapKRkcGQIUPQqFEjAMCJEyfQv39/0evrmzdvcObMGSosE6lGO88IIURKFRYWoqKiAhoaGmLrL168QIMGDaCiosIomeRkZGTQqlUrPH/+nIpnUkBdXR0PHjyArq4uzpw5g5UrVwJ4t0OQS3+w/vHHH5993svLq5aS1FyPHj1w9epVrFu3DsbGxjh37hwsLS0RExMDc3Nz1vEkpqKigujoaFy6dAnx8fEQCASwtLTEwIEDWUeTWF24Bx0dHSgrK7OO8U04OzujvLwcCxcuRHFxMSZMmAAdHR1s2rSJCmeEcJSTk5PY44kTJ1a6xtHRsbbiEFIjtPOMEEKk1JAhQzB8+HDMnDlTbD0gIADh4eE4deoUo2TVc/LkSfj4+MDf3x/t27dnHadec3Nzwz///INWrVohISEB9+7dQ+PGjXHo0CH873//k+q+SB/6uB9SWVkZsrOz0aBBAxgbG3PmPgj5Vk6fPg0/Pz8EBATUqYb0z549g0AgqLI/ICGEEFKbqHhGCCFSSkNDA1evXkXbtm3F1u/cuYOePXvi+fPnjJJVj7q6OoqLi1FeXo6GDRtCQUFB7PkPR5WT76usrAybNm3CgwcPMHnyZFERytfXF40bN4arqyvjhDX38uVLTJ48GaNHj8akSZNYx5FIRUUFjh07hrS0NPB4PLRt2xYjR45EgwbSfTDAz89P4mvd3d2/Y5Kaqwv38KH8/HzY29vj8uXLUFRUhJycnNjzXHydffr0KdLT08Hj8dC6dWvODG8ghBBSN1HxjBBCpJSSkhJiY2MrHeG6desWunbtiuLiYkbJqic4OPizz3+8lZ+QmkpJScEPP/yAe/fusY7yRSkpKRg5ciTy8vLQunVrAO8Gg2hqaiI8PFyqj24aGhqKPc7Pz0dxcTHU1NQAAAUFBVBUVISWlhaysrIYJPyyunAPHxo4cCBycnIwZcoUNGvWrFIjbi69zr58+RKzZs1CSEiIaGqorKwsfvrpJ/z1119QVVVlnJAQQkh9RMUzQgiRUv369YO5uTk2b94stj5r1iwkJyfjypUrjJIRrktNTUVOTg7evn0rtj5ixAhGib6N6OhoDB8+nBODD7p16wYtLS0EBwdDXV0dAPDff/9h8uTJePr0KWJiYhgnlMyBAwewdetW7Nq1S1QETE9Px9SpUzF9+nQ4ODgwTvhldeEeFBUVERMTg44dO7KO8tXs7e2RmJiIzZs3o3v37uDxeLh27Ro8PDzQoUMH0VRUQgghpDZR8YwQQqTU1atXMXDgQFhbW2PAgAEAgIsXL+LGjRs4d+4cevfuzTih5Ph8Pnbv3g0+n49NmzZBS0sLZ86cga6uLtq1a8c6Xr2RlZWF0aNH49atW+DxeHj/J8D7XSpcGRrw8ZE7oVCI3Nxc7N27F3369EFISAijZJJTUFDAzZs3K/38p6SkwNraGiUlJYySVY+xsTHCwsIq9aGLi4vDuHHjkJ2dzSiZ5OrCPVhaWmLr1q3o1q0b6yhfTUlJCWfPnkWvXr3E1q9cuQI7OzsUFRUxSlYzJSUlKCsrE1vjwsAfQggh4mRYByCEEFK1nj17IiYmBrq6uggNDcWJEydgYmKC5ORkThXOoqKiYG5ujn///RdHjx7F69evAQDJycnw9vZmnK5+8fDwgKGhIZ48eQJFRUXcvn0bly9fhpWVFSIjI1nHk9jGjRvFvvz8/BAZGQknJyds376ddTyJtG7dGk+ePKm0/vTpU5iYmDBIVDO5ubmVCgPAu0JsVfcnjerCPfj4+GDevHmIjIzE8+fP8fLlS7EvLmnSpEmVRzNVVVVFuzSlXXFxMdzc3KClpYXGjRtDXV1d7IsQQgj30M4zQggh31X37t3x448/Yu7cuVBWVkZSUhKMjIxw48YNjBo1Co8ePWIdsd5o2rQpLl26hA4dOkBVVRXXr19H69atcenSJcybNw8JCQmsI9Ybp06dwsKFC7Fs2TLRbqHY2Fj88ccf8PHxEdt1I827VIYPH46cnBzs2rULnTt3Bo/Hw82bNzF16lTo6uoiPDycdcQvqgv3ICPz7vPwj3udCYVC8Hg8zuwqBYDt27fj8OHD2LNnD7S1tQEAeXl5cHJywpgxYzB9+nTGCb9s1qxZiIiIwB9//AFHR0f89ddfePToEbZt2wYfHx9OHAUmhBAijopnhBBCvqvGjRvj1q1bMDQ0FCue3bt3D23atEFpaSnriPWGuro64uLiYGRkBGNjY+zcuRM2Njbg8/kwNzfnzBAKFxcXbNq0CcrKymLrRUVFmD17NgIDAxklk9z7YgfwfwWPj4/RcqHwkZ+fDycnJ5w5c0Y04bG8vByDBw9GUFAQtLS0GCf8srpwD1FRUZ99vm/fvrWU5OtZWFjg7t27ePPmDfT09AAAOTk5aNSoEVq1aiV2bXx8PIuIX6Snp4c9e/agX79+UFFRQXx8PExMTLB3716EhITg1KlTrCMSQgipJumehU4IIYTz1NTUkJubW2m6XUJCAnR0dBilqp/at2+P5ORkGBkZoWvXrvjzzz/RsGFDbN++HUZGRqzjSSw4OBg+Pj6VimclJSXYs2cPJ4pnERERrCN8E5qamjh16hQyMzORlpYGoVCItm3bwtTUlHU0idWFe+BScexLRo0axTrCV3vx4oXo3zwVFRW8ePECANCrVy/MmDGDZTRCCCE1RMUzQggh39WECROwaNEiHD58GDweDwKBAFevXsX8+fPh6OjIOl69smTJElGz7ZUrV+KHH35A79690aRJExw6dIhxui97+fIlhEIhhEIhXr16BXl5edFzFRUVOHXqFCd2CQF1q9gBAK1ataq0K4hr6sI91AV1oRfm+93V+vr6MDMzQ2hoKLp06YITJ05ATU2NdTxCCCE1QMc2CSGEfFdlZWWYPHkyDh48CKFQiAYNGqCiogITJkxAUFAQZGVlWUes1168eAF1dfVKvZKkkYyMzGdz8ng8LF++HL///nstpqqZM2fOoHHjxqLeZn/99Rd27NgBMzMz/PXXX9RUnBAO27hxI2RlZeHu7o6IiAgMGzYMFRUVKC8vx4YNG+Dh4cE6IiGEkGqi4hkhhJBakZWVhfj4eAgEAlhYWNAOD1JtUVFREAqF6N+/P44cOQINDQ3Rcw0bNoS+vj5atGjBMKHkzM3N8b///Q9Dhw7FrVu3YGVlhXnz5uHSpUto27Ytdu/ezToiIeQbycnJwc2bN2FsbIyOHTuyjkMIIaQGqHhGCCFSZMyYMRJfe/To0e+Y5PupqKjArVu3oK+vT7trSI3cv38fenp6nNgt9ymNGzdGSkoKDAwMsGzZMqSkpCAsLAzx8fEYOnQo8vLyWEckhBBCCCH/H/U8I4QQKaKqqso6wjc3Z84cmJubY8qUKaioqEDfvn1x7do1KCoq4p9//kG/fv1YRyQckJycjPbt20NGRgaFhYW4devWJ6/t0KFDLSarmYYNG4qmm164cEHU/09DQwMvX75kGY0QUgN+fn4SX+vu7v4dkxBCCPkeaOcZIYSQ76ply5Y4fvw4rKyscPz4ccycORORkZHYs2cPIiIicPXqVdYRCQfIyMggLy8PWlpaot5nVf0Jw+PxUFFRwSBh9YwYMQJv375Fz549sWLFCmRnZ0NHRwfnzp2Dm5sbMjIyWEeU2JUrV7Bt2zbw+XyEhYVBR0cHe/fuhaGhoainGxcUFxcjJycHb9++FVuX1mKshYWFxLsv4+Pjv3Oab+/t27fIzs6GsbExGjSQ/s/7P54onZ+fj+LiYtGAgIKCAigqKkJLSwtZWVkMEhJCCPkaMqwDEEII+bTy8nJcuHAB27Ztw6tXrwAAjx8/xuvXrxknk9yzZ8/QvHlzAMCpU6dgb28PU1NTTJky5bO7hwj5UHZ2NjQ1NUXfZ2VlITs7u9IXV96UbtmyBQ0aNEBYWBj8/f2ho6MDADh9+jTs7OwYp5PckSNHMHjwYCgoKCAhIQFv3rwBALx69QqrV69mnE4y+fn5+OGHH6CsrIx27drBwsJC7EtajRo1CiNHjsTIkSMxePBg8Pl8NGrUCP369UO/fv0gLy8PPp+PwYMHs45aLcXFxZgyZQoUFRXRrl075OTkAHi3W8vHx4dxuk/78HVo1apV6NSpE9LS0vDixQu8ePECaWlpsLS0xIoVK1hHJYQQUgO084wQQqTU/fv3YWdnh5ycHLx58wYZGRkwMjLCnDlzUFpaioCAANYRJaKvr48dO3ZgwIABMDQ0xNatW/HDDz/g9u3b6NWrF/777z/WEeuVvXv3IiAgANnZ2YiJiYG+vj58fX1haGiIkSNHso5HOMbCwgKenp5wdHSEsrIykpKSYGRkhMTERNjZ2XGid5uDgwPu3bsHX19f2NjY4NixY3jy5AlWrlyJ9evXY9iwYawjfpGrqyu0tbUrFWa8vb3x4MEDBAYGMkpWfR4eHrh69Sp8fX1hZ2eH5ORkGBkZITw8HN7e3khISGAd8YuMjY0RFhZWqfgaFxeHcePGITs7m1EyQgghNSX9e6AJIaSe8vDwgJWVFZKSktCkSRPR+ujRo+Hq6sowWfU4OzvD3t4e2tra4PF4sLW1BQD8+++/aNOmDeN09Yu/vz+8vLwwZ84crFq1SnS8UU1NDb6+vpwpnoWHh1e5zuPxIC8vDxMTk0pHqKQRn8/H7t27wefzsWnTJmhpaeHMmTPQ1dVFu3btWMeTSHp6Ovr06VNpXUVFBQUFBbUfqAYuXbqEv//+G9bW1pCRkYG+vj5sbW2hoqKCNWvWcKJ4dvjwYdy8ebPS+sSJE2FlZcWp4tnx48dx6NAhdOvWTexYqpmZGfh8PsNkksvNzUVZWVml9YqKCjx58oRBIkIIIV+LimeEECKloqOjcfXqVTRs2FBsXV9fH48ePWKUqvqWLVuG9u3b48GDB/jxxx/RqFEjAICsrCwWL17MOF39snnzZuzYsQOjRo0SO/5kZWWF+fPnM0xWPaNGjaqy59n7NR6Ph169euH48eNSO9E1KioKQ4YMQc+ePXH58mWsWrUKWlpaSE5Oxs6dOxEWFsY6okS0tbVx9+5dGBgYiK1HR0fDyMiITahqKioqgpaWFoB3Axvy8/NhamoKc3NzzvQKU1BQQHR0NFq1aiW2Hh0dDXl5eUapaiY/P1/03+NDRUVFnJmwO2DAAEydOhW7du1C586dwePxcPPmTUyfPh0DBw5kHY8QQkgNUM8zQgiRUgKBoMrG5w8fPoSysjKDRDU3btw4eHp6omXLlqI1Jycnzux0qiuys7Or7OHUqFEjFBUVMUhUM+fPn4e1tTXOnz+PwsJCFBYW4vz58+jSpQv++ecfXL58Gc+fP5fqguDixYuxcuVKnD9/XqxAbmNjg5iYGIbJqmf69Onw8PDAv//+Cx6Ph8ePH2P//v2YP38+Zs6cyTqeRFq3bo309HQAQKdOnbBt2zY8evQIAQEB0NbWZpxOMnPmzMGMGTPg5uaGffv2Yd++fXBzc8OsWbPg6enJOl61WFtb4+TJk6LH7wtmO3bsQPfu3VnFqpbAwEDo6OigS5cukJeXR6NGjdC1a1doa2tj586drOMRQgipAdp5RgghUsrW1ha+vr7Yvn07gHdvIF6/fg1vb28MHTqUcTrCRYaGhkhMTIS+vr7Y+unTp2FmZsYoVfV5eHhg+/bt6NGjh2htwIABkJeXx7Rp03D79m34+vrCxcWFYcrPu3XrFg4cOFBpXVNTE8+fP2eQqGYWLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY4nkTlz5iA3NxfAux5hgwcPxv79+9GwYUMEBQWxDSehxYsXw8jICJs2bRL9XLVt2xZBQUGwt7dnnK561qxZAzs7O6SmpqK8vBybNm3C7du3ERMTg6ioKNbxJKKpqYlTp04hIyMDd+7cgVAoRNu2bWFqaso6GiGEkBqigQGEECKlHj9+DBsbG8jKyiIzMxNWVlbIzMxE06ZNcfny5SqPtRDyObt378bSpUuxfv16TJkyBTt37gSfz8eaNWuwc+dO/Pzzz6wjSkRBQQE3btxA+/btxdZv3bqFLl26oKSkBPfv30fbtm1RXFzMKOXntWzZEqGhoejRo4dYo/1jx45h/vz5nOnt9F5xcTFSU1MhEAhgZmaGxo0bs470SWVlZZCTk/vk88XFxbhz5w709PTQtGnTWkxG3rt16xbWrVuHuLg4CAQCWFpaYtGiRTA3N2cdjRBCSD1FxTNCCJFiJSUlOHjwoNgbCAcHBygoKLCORjhqx44dWLlyJR48eAAA0NHRwbJlyzBlyhTGySTXq1cvKCsrY8+ePdDU1ATwrk+So6MjioqKcPnyZVy4cAEzZ85ERkYG47RVW7hwIWJiYnD48GGYmpoiPj4eT548gaOjIxwdHeHt7c06okQKCwtRUVEBDQ0NsfUXL16gQYMGUFFRYZTs03x8fGBkZMS5HVlEus2dOxcrVqyAkpIS5s6d+9lrN2zYUEupCCGEfCtUPCOEEELqoWfPnkEgEHByB2N6ejpGjhyJ7Oxs6OrqgsfjIScnB0ZGRvj7779hamqK48eP49WrV5g0aRLruFUqKyvD5MmTcfDgQQiFQjRo0AAVFRWYMGECgoKCICsryzqiRIYMGYLhw4dX6m8WEBCA8PBwnDp1ilGyT8vIyMDo0aMxbdo0eHh41IlCR0VFBTZu3IjQ0FDk5OTg7du3Ys+/ePGCUTLJvHz5UuJrpbEgC7zrV3js2DGoqanBxsbmk9fxeDxcunSpFpMRQgj5Fqh4Rggh5Lvj8/nYvXs3+Hw+Nm3aBC0tLZw5cwa6urpo164d63iEg4RCIc6ePYuMjAwIhUK0adMGtra2kJHh1iwkPp+PhIQECAQCWFhYVJqWKO00NDRw9epVtG3bVmz9zp076Nmzp9T2b3v16hUmT56MI0eO1IlCh5eXF3bu3Im5c+di6dKl+P3333Hv3j0cP34cXl5ecHd3Zx3xs2RkZCSepFnVIB1CCCHke6PiGSGEkO8qKioKQ4YMQc+ePXH58mWkpaXByMgIf/75J65fv46wsDDWEes0CwsLid+UxsfHf+c0pK5RUlJCbGxspV5Ut27dQteuXaW251xdY2xsDD8/PwwbNgzKyspITEwUrcXGxlY5nEKafDgI4N69e1i8eDEmT54smq4ZExOD4OBgrFmzBk5OTqxiEkIIqceoeEYIIeS76t69O3788UfMnTtXrDH6jRs3MGrUKDx69Ih1xDpt+fLlou9LS0uxdetWmJmZid6UxsbG4vbt25g5cybWrFnDKma1Xbx4ERcvXsTTp08hEAjEngsMDGSU6vO+dDzwQ1w4KggA/fr1g7m5OTZv3iy2PmvWLCQnJ+PKlSuMktUvSkpKSEtLg56eHrS1tXHy5ElYWloiKysLFhYWKCwsZB1RYgMGDICrqyvGjx8vtn7gwAFs374dkZGRbIJ9wZgxYyS+9ujRo98xCSGEkO+hAesAhBBC6rZbt25VuetBU1NTao901SUfNp53dXWFu7s7VqxYUema9wMEuGD58uX4448/YGVlBW1tbYl31rGWkJAg9jguLg4VFRVo3bo1gHe9uGRlZdG5c2cW8Wpk1apVGDhwIJKSkjBgwAAA7wqbN27cwLlz5xink0xpaSk2b96MiIiIKouxXNiR2bJlS+Tm5kJPTw8mJiY4d+4cLC0tcePGDTRq1Ih1vGqJiYlBQEBApXUrKyu4uroySCQZVVVV0fdCoRDHjh2DqqoqrKysALz7fS8oKKhWkY0QQoj0oOIZIYSQ70pNTQ25ubkwNDQUW09ISICOjg6jVPXT4cOHcfPmzUrrEydOhJWVldTu2PpYQEAAgoKCpHYYwKdERESIvt+wYQOUlZURHBwMdXV1AMB///0HZ2dn9O7dm1XEauvZsydiYmKwdu1ahIaGQkFBAR06dMCuXbs407/NxcUF58+fx7hx49ClSxfOFGM/NHr0aFy8eBFdu3aFh4cHxo8fj127diEnJweenp6s41WLrq4uAgICsH79erH1bdu2QVdXl1GqL9u9e7fo+0WLFsHe3h4BAQGi4R8VFRWYOXOm1A48IIQQ8nl0bJMQQqQU16envbdw4ULExMTg8OHDMDU1RXx8PJ48eQJHR0c4OjqK7Ywi31fz5s2xZs0aODs7i63v3r0bixcvxpMnTxglq54mTZrg+vXrMDY2Zh2lxnR0dHDu3LlKAzNSUlIwaNAgPH78mFGy+kdVVRWnTp1Cz549WUf5ZmJjY3Ht2jWYmJhgxIgRrONUy6lTpzB27FgYGxujW7duAN7dD5/Px5EjRzB06FDGCb9MU1MT0dHRol2l76Wnp6NHjx6065oQQjiIdp4RQoiUWr58+Wenp3HFqlWrMHnyZOjo6EAoFMLMzAwVFRWYMGEClixZwjpevTJnzhzMmDEDcXFxYm9KAwMDOfUz5erqigMHDmDp0qWso9TYy5cv8eTJk0rFs6dPn+LVq1eMUtWMQCDA3bt3qzzy2KdPH0apJKejowNlZWXWMb6pbt26iX7HuWbo0KHIzMyEv78/0tLSIBQKMXLkSPzyyy9SvfPsQ+Xl5UhLS6tUPEtLS6v0O0IIIYQbaOcZIYRIKa5PT/sYn89HQkICBAIBLCwsOHOkq64JDQ3Fpk2bkJaWBgBo27YtPDw8YG9vzziZ5Dw8PLBnzx506NABHTp0gJycnNjzXGi27+joiKioKKxfv16skLlgwQL06dMHwcHBjBNKJjY2FhMmTMD9+/fx8Z+UPB4PFRUVjJJJ7vTp0/Dz80NAQAD09fVZx5FYeHi4xNdybfcZ182dOxdBQUH47bffxH6/fXx84OjoyInXKEIIIeKoeEYIIVKqLk1PI+RbsrGx+eRzPB4Ply5dqsU0NVNcXIz58+cjMDAQZWVlAIAGDRpgypQpWLt2LZSUlBgnlEynTp1gamqK5cuXVzm84cMm6tIqPz8f9vb2uHz5MhQVFSsVY6X1iLyMjIzYYx6PV2UBEwAniph1iUAgwLp167Bp0ybk5uYCALS1teHh4YF58+aJ+qARQgjhDjq2SQghUorL09Pmzp0r8bX0CTyprg8b73OVoqIitm7dirVr14LP50MoFMLExIQzRbP3MjMzERYWBhMTE9ZRamz8+PF49OgRVq9ejWbNmnFmYMCHx/8uXLiARYsWYfXq1ejevTt4PB6uXbuGJUuWYPXq1QxT1j/l5eXYv38/HB0dsXDhQrx8+RIAaFAAIYRwHBXPCCFESnF5elpCQoLY47i4OFRUVIj6v2RkZEBWVhadO3dmEY/UIQ8fPgSPx+Ps5FYlJSV06NCBdYwa69q1K+7evcvp4tm1a9cQExODjh07so5SY3PmzEFAQAB69eolWhs8eDAUFRUxbdo00TFt8v01aNAAM2bMEP1/TkUzQgipG6h4RgghUsrHx0f0/bhx46Crq4urV69yYnrahzuDNmzYAGVlZQQHB0NdXR0A8N9//8HZ2Rm9e/dmFZFwmEAgwMqVK7F+/Xq8fv0aAKCsrIx58+bh999/r3ScjXw/s2fPxrx585CXlwdzc/NKRx65UBhs06YNSkpKWMf4Knw+v8ojsqqqqrh3717tB6rnunbtioSEBE710COEEPJ51POMEELId6Wjo4Nz585VmiqYkpKCQYMG4fHjx4ySEa769ddfsWvXLixfvhw9e/aEUCjE1atXsWzZMkydOhWrVq1iHbHeqKpQ+b73FlcGBpw7dw7Lly/HqlWrqiwAcmHnUJ8+fSAnJ4d9+/ZBW1sbAJCXl4dJkybh7du3iIqKYpywfjl8+DAWL14MT09PdO7cudJxbC4UlQkhhIij4hkhhEgpWVlZ9OnTB0eOHIGGhoZo/cmTJ2jRogUn3pQC73YE/f333+jfv7/Y+qVLlzBy5Ei8evWKUTLCVS1atEBAQEClHZh///03Zs6ciUePHjFKVv/cv3//s89zYefN+wLgx73OuFQAvHv3LkaPHo309HTo6ekBAHJycmBqaorjx49L/bFaCwsLiXvNxcfHf+c0X68uFJUJIYSIo2ObhBAipYRCId68eQMrKyuEh4ejffv2Ys9xxejRo+Hs7Iz169ejW7duAIDY2FgsWLAAY8aMYZyufqmoqEBQUBAuXryIp0+fijUcB8CJKZXAu+mHbdq0qbTepk0bqZ2MWFdxoTj2JXVhAIWJiQmSk5Nx/vx53LlzB0KhEGZmZhg4cCAnBiCMGjVK9H1paSm2bt0KMzMzdO/eHcC7fzNu376NmTNnMkpYPdnZ2awjEEII+cZo5xkhhEgpWVlZPHz4ED4+Pti9ezf27t2LkSNHcm7nWXFxMebPn4/AwECUlZUBeNdQecqUKVi7di3npgtymZubG4KCgjBs2DBoa2tXelO9ceNGRsmqp2vXrujatSv8/PzE1mfPno0bN24gNjaWUbLPCw8Pl/haae9r+LHU1FTk5OTg7du3Yutcuw/CnqurK7S1tbFixQqxdW9vbzx48ACBgYGMkhFCCKnPqHhGCCFSSkZGBnl5edDS0sL27dvh7u6OJUuWwNXVFTo6Opwpnr1XVFQEPp8PoVAIExMTKpox0LRpU+zZswdDhw5lHeWrREVFYdiwYdDT00P37t3B4/Fw7do1PHjwAKdOnZLaQRSSDjLg0rGurKwsjB49Grdu3RIdSwP+7wgkV+6joKAAu3btQlpaGng8HszMzODi4lJlE35p4efnh2nTpkFeXr5SIflj7u7utZTq66mqquLmzZto1aqV2HpmZiasrKxQWFjIKFn17N27FwEBAcjOzkZMTAz09fXh6+sLQ0NDjBw5knU8Qggh1UTFM0IIkVIfFs8AIDIyEuPGjYOFhQUuXbrEmTelRHq0aNECkZGRMDU1ZR3lqz1+/Bh//fWX2BG1mTNnokWLFqyj1SvDhw+HrKwsduzYASMjI1y/fh3Pnz/HvHnzsG7dOqktZH7o5s2bGDx4MBQUFNClSxcIhULcvHkTJSUlOHfuHCwtLVlHrJKhoSFu3ryJJk2awNDQ8JPX8Xg8ZGVl1WKyr9O8eXOsWbMGzs7OYuu7d+/G4sWL8eTJE0bJPu3s2bPo1q2bqNjq7+8PLy8vzJkzB6tWrUJKSgqMjIwQFBSE4ODgOnFUmBBC6hsqnhFCiJT68I3Re3fv3sXw4cORkZFBxTNSbevXr0dWVha2bNnCiT5I1fXgwQN4e3vTsa5a1LRpU1y6dAkdOnSAqqoqrl+/jtatW+PSpUuYN28eEhISWEf8ot69e8PExAQ7duxAgwbv2gGXl5fD1dUVWVlZuHz5MuOE9YuPjw+WLVsGV1dXsT6ZgYGB8PLywuLFixknrCw4OBhr167FmTNn0LJlS5iZmWH16tUYNWoUlJWVkZSUBCMjI6SkpKBfv3549uwZ68iEEEKqiYpnhBDCMaWlpXjy5EmdaNRNatfo0aMREREBDQ0NtGvXDnJycmLPHz16lFGybyMpKQmWlpacKSwXFRUhKiqqyl5hXDlmp66ujri4OBgZGcHY2Bg7d+6EjY0N+Hw+zM3NUVxczDriFykoKCAhIaHSEIrU1FRYWVlx4h7qmtDQUGzatAlpaWkAgLZt28LDwwP29vaMk33a0aNH4eXlhZSUFCgoKODOnTvQ19cXK55lZmaiQ4cOKCkpYR2XEEJINdG0TUII4Rh5eXkqnJEaUVNTw+jRo1nHIAASEhIwdOhQFBcXo6ioCBoaGnj27BkUFRWhpaXFmeJZ+/btkZycDCMjI3Tt2hV//vknGjZsiO3bt8PIyIh1PImoqKggJyenUvHswYMHUFZWZpSqesaNGwcrK6tKu7LWrl2L69ev4/Dhw4yS1Yy9vb1UF8qqMmbMGFhYWAB4t3M8MTGx0r/Vp0+fhpmZGYt4hBBCvhIVzwghRIpoaGggIyMDTZs2hbq6+meP1r148aIWk5G6YPfu3awjkP/P09MTw4cPh7+/P9TU1BAbGws5OTlMnDgRHh4erONJbMmSJSgqKgIArFy5Ej/88AN69+6NJk2a4NChQ4zTSeann37ClClTsG7dOvTo0QM8Hg/R0dFYsGABxo8fzzqeRKKiouDt7V1p3c7ODuvWrWOQqH5633tuwYIFmDVrFkpLSyEUCnH9+nWEhIRgzZo12LlzJ+OUhBBCaoKKZ4QQIkU2btwo2ung6+vLNsw3xOfz4evrK5pk9/4IjrGxMeto9VJ+fj7S09PB4/FgamoKTU1N1pHqncTERGzbtg2ysrKQlZXFmzdvYGRkhD///BNOTk4YM2YM64gSGTx4sOh7IyMjpKam4sWLF18s/kuTdevWgcfjwdHREeXl5QAAOTk5zJgxAz4+PozTSeb169do2LBhpXU5OTm8fPmSQaKaq6iowMaNGxEaGlrlkWYufHDk7OyM8vJyLFy4EMXFxZgwYQJ0dHSwadMm/Pzzz6zjEUIIqQHqeUYIIeS7Onv2LEaMGIFOnTqhZ8+eEAqFuHbtGpKSknDixAnY2tqyjlhvFBUVYfbs2dizZw8EAgEAQFZWFo6Ojti8eTMUFRUZJ/y8LxWUCgoKEBUVxYmeZ5qamrh69SpMTU3RunVr+Pn5YfDgwbhz5w4sLS0502ersLAQFRUV0NDQEFt/8eIFGjRoABUVFUbJqq+4uBh8Ph9CoRAmJiZS//vwIWtrawwfPhxeXl5i68uWLcOJEycQFxfHKFn1eXl5YefOnZg7dy6WLl2K33//Hffu3cPx48fh5eXFmSPN7z179gwCgUA0OZsQQgg3UfGMEEKkSHV2CHDlTamFhQUGDx5caQfH4sWLce7cOcTHxzNKVvf5+vrC3NwcAwYMAABMnz4dFy5cwJYtW9CzZ08AQHR0NNzd3WFrawt/f3+Wcb/I2dlZouu4cDx10KBBmDx5MiZMmIBffvkFCQkJcHd3x969e/Hff//h33//ZR1RIkOGDMHw4cMxc+ZMsfWAgACEh4fj1KlTjJLVL+Hh4Rg7diwmTJiA/v37AwAuXryIkJAQHD58GKNGjWIbsBqMjY3h5+eHYcOGQVlZGYmJiaK12NhYHDhwgHVEiT19+lS0y7d169a0y5cQQjiMimeEECJFZGRkvnjUSSgUgsfjcWJ3DfBuwMGtW7fQqlUrsfWMjAx06NABpaWljJLVfXFxcbC3t8eyZcswadIkNG3aFGFhYejXr5/YdREREbC3t0d+fj6boPXQzZs38erVK9jY2CA/Px9OTk6Ijo6GiYkJdu/ejY4dO7KOKBENDQ1cvXoVbdu2FVu/c+cOevbsiefPnzNKJrmioiL4+Pjg4sWLePr0qWhX5ntZWVmMklXPyZMnsXr1aiQmJkJBQQEdOnSAt7c3+vbtyzpatSgpKSEtLQ16enrQ1tbGyZMnYWlpiaysLFhYWKCwsJB1xC96+fIlZs2ahZCQELFdvj/99BP++usvqKqqMk5ICCGkuqjnGSGESJGIiAjWEb45TU1NJCYmViqeJSYm0jGW76xz5874999/4eTkhEmTJqG4uBjNmjWrdJ2WlhZnjgnWFVZWVqLvNTU1ObtD682bN6I+YR8qKytDSUkJg0TV5+rqiqioKEyaNAna2tqc6dX2sWHDhmHYsGGsY3y1li1bIjc3F3p6ejAxMcG5c+dgaWmJGzduoFGjRqzjScTV1RWJiYk4efIkunfvDh6Ph2vXrsHDwwNTp05FaGgo64iEEEKqiXaeEUII+a7++OMPbNy4EYsXLxabZPe///0P8+bNw5IlS1hHrDcGDBiAJk2aYM+ePZCXlwcAlJSUwMnJCS9evMCFCxcYJyRc069fP5ibm2Pz5s1i67NmzUJycjKuXLnCKJnk1NTUcPLkSdFRZi6Li4sTDWYxMzODhYUF60jVtnjxYqioqOC3335DWFgYxo8fDwMDA+Tk5MDT05MTQxyUlJRw9uxZ9OrVS2z9ypUrsLOzE02oJYQQwh1UPCOEEClXXFxc5cSxDh06MEpUPUKhEL6+vli/fj0eP34MAGjRogUWLFgAd3d3zu7y4KKUlBTY2dmhtLQUHTt2BI/HQ2JiIuTl5XH27Fm0a9eOdUTCMVevXsXAgQNhbW0t6q138eJF3LhxA+fOnUPv3r0ZJ/wyQ0NDnDp1qtLRUy55+vQpfv75Z0RGRkJNTQ1CoRCFhYWwsbHBwYMHOd1rKzY2FteuXYOJiQlGjBjBOo5E9PT0cPLkSZibm4utJycnY+jQoXj48CGjZIQQQmqKimeEECKl8vPz4ezsjNOnT1f5PFd6nn3o1atXAABlZWXGSeqvkpIS7Nu3D3fu3IFQKISZmRkcHBygoKDAOhrhqMTERKxdu1as19avv/5a6ai2tNq3bx/+/vtvBAcHc2rC5od++ukn8Pl87N27V1QETE1NhZOTE0xMTBASEsI4Yf2yfft2HD58GHv27IG2tjYAIC8vD05OThgzZgymT5/OOCEhhJDqouIZIYRIKQcHB9y7dw++vr6wsbHBsWPH8OTJE6xcuRLr16+vE71tCCGENQsLC/D5fAiFQhgYGEBOTk7seS5MBFZVVcWFCxdgbW0ttn79+nUMGjQIBQUFbIJJKDw8XOJrubD7zMLCAnfv3sWbN2+gp6cHAMjJyUGjRo0qFZW58PNFCCGEBgYQQojUunTpEv7++29YW1tDRkYG+vr6sLW1hYqKCtasWcOZ4tmTJ08wf/580SS7jz+z4eIOOi4JDw/HkCFDICcn98U3qFx4U0rYe/nypcTXqqiofMck38aoUaNYR/hqAoGgUtEPAOTk5CpND5VGH/834PF4lf6teH/Enwv/ZtSFnylCCCHiaOcZIYRIKRUVFSQnJ8PAwAAGBgbYv38/evbsiezsbLRr144z0xGHDBmCnJwcuLm5VTnJbuTIkYyS1Q8yMjLIy8uDlpYWZGRkPnkdj8fjxJvSuiQqKgrr1q0TNXhv27YtFixYIPV9wmRkZL7Yq1AoFNLPVC0aOXIkCgoKEBISghYtWgAAHj16BAcHB6irq+PYsWOME0ruwoULWLRoEVavXi02qXLJkiVYvXo1bG1tWUckhBBSD9HOM0IIkVKtW7dGeno6DAwM0KlTJ2zbtg0GBgYICAgQ9VDhgujoaFy5cgWdOnViHaVe+nDXCRd2oNQX+/btg7OzM8aMGQN3d3cIhUJcu3YNAwYMQFBQECZMmMA64idFRESwjvBdcHlS5ZYtWzBy5EgYGBhAV1cXPB4POTk5MDc3x759+1jHq5Y5c+YgICBAbFLl4MGDoaioiGnTpiEtLY1hOkIIIfUV7TwjhBAptX//fpSVlWHy5MlISEjA4MGD8fz5czRs2BBBQUH46aefWEeUiJmZGfbv38+pN6KEfG9t27bFtGnT4OnpKba+YcMG7Nixo04UCBITEzlRNK9LkyrPnz8vNgxk4MCBrCNVm4KCAq5fv17lpMquXbuipKSEUTJCCCH1GRXPCCGEI4qLi3Hnzh3o6emhadOmrONI7Ny5c1i/fr1o5xxhx93dHSYmJnB3dxdb37JlC+7evQtfX182weqhRo0a4fbt2zAxMRFbv3v3Ltq3b4/S0lJGyb5OYWEh9u/fj507dyIpKYkTxzZpUqV06dOnD+Tk5LBv3z6xSZWTJk3C27dvERUVxTghIYSQ+oiKZ4QQIuXevn2L7OxsGBsbo0EDbpy2V1dXF+uJVFRUhPLycigqKlZqav3ixYvajldv6ejoIDw8HJ07dxZbj4+Px4gRI/Dw4UNGyeofExMTLFiwANOnTxdb37ZtG9atW4fMzExGyWrm0qVLCAwMxNGjR6Gvr4+xY8di7NixnNhxytVJlX5+fhJf+3HBXJrdvXsXo0ePRnp6utikSlNTUxw/frxSwZkQQgipDdx4F0YIIfVQcXExZs+ejeDgYABARkYGjIyM4O7ujhYtWmDx4sWME34a7WCSTs+fP4eqqmqldRUVFTx79oxBovpr3rx5cHd3R2JiInr06AEej4fo6GgEBQVh06ZNrONJ5OHDhwgKCkJgYCCKiopgb2+PsrIyHDlyBGZmZqzjSYyrkyo3btwo0XU8Ho9TxTMTExMkJydXeQT1S4MqpA0XP/wihBBSNdp5RgghUsrDwwNXr16Fr68v7OzskJycDCMjI4SHh8Pb2xsJCQmsIxKOad++PX755Re4ubmJrW/evBn+/v5ITU1llKx+OnbsGNavXy/qb/Z+2iYXJtAOHToU0dHR+OGHH+Dg4AA7OzvIyspCTk4OSUlJnCqe1aVJlUQ6cPnDL0IIIVWjj0AIIURKHT9+HIcOHUK3bt3EPm03MzMDn89nmKx6Tp06BVlZWQwePFhs/dy5c6ioqMCQIUMYJat/5s6dCzc3N+Tn56N///4AgIsXL2L9+vW0W5CB0aNHY/To0axj1Mi5c+fg7u6OGTNmoFWrVqzjfJW6NKmSqzud/Pz8MG3aNMjLy3/xOCoXdtH9+uuvSEpKQmRkJOzs7ETrAwcOhLe3NxXPCCGEg7jzryohhNQz+fn50NLSqrReVFTEqaMrixcvho+PT6V1gUCAxYsXU/GsFrm4uODNmzdYtWoVVqxYAQAwMDCAv78/HB0dGaerv16/fl3peKCKigqjNJK5cuUKAgMDYWVlhTZt2mDSpEmcmQD8MV1dXcTHx3N6UiXXdzpt3LgRDg4OkJeX/+xxVK4cQa0rH34RQgj5PzKsAxBCCKmatbU1Tp48KXr8/g/wHTt2oHv37qxiVVtmZmaVR7jatGmDu3fvMkhUv82YMQMPHz7EkydP8PLlS2RlZVHhjIHs7GwMGzYMSkpKUFVVhbq6OtTV1aGmpgZ1dXXW8b6oe/fu2LFjB3JzczF9+nQcPHgQOjo6EAgEOH/+PF69esU6osT27NmDN2/ewNbWFrNnz4a7uzsGDhyIt2/fYs+ePazjSeTDnU7y8vKi9YEDB+LQoUMMk0kmOzsbTZo0EX3/qa+srCzGSSVTVz78IoQQ8n+o5xkhhEipa9euwc7ODg4ODggKCsL06dNx+/ZtxMTEICoqqtLERGnVvHlzHDhwQHRM8L0LFy5gwoQJePr0KaNkhLDTo0cPAO96GzZr1qzSG+q+ffuyiPVV0tPTsWvXLuzduxcFBQWwtbVFeHg461hfJCsri9zc3ErFjufPn0NLSwsVFRWMkklOX19ftNNJWVkZSUlJMDIywt27d2FpaYmXL1+yjliv9O3bF+PGjcPs2bOhrKyM5ORkGBoaws3NDXfv3sWZM2dYRySEEFJNdGyTEEKkVI8ePXDt2jWsXbsWxsbGOHfuHCwtLRETEwNzc3PW8SQ2YsQIzJkzB8eOHYOxsTEA4O7du5g3bx5GjBjBOF39ExYWhtDQUOTk5ODt27diz8XHxzNKVf8kJycjLi4OrVu3Zh3lm2ndujX+/PNPrFmzBidOnEBgYCDrSBIRCoVV7gZ6+PBhldNppVFd2uk0btw4WFlZVTpqunbtWly/fh2HDx9mlExya9asgZ2dHVJTU1FeXo5NmzaJffhFCCGEe+jYJiGESKGysjI4OztDUVERwcHBSElJQWpqKvbt28epwhnw7g2PkpIS2rRpA0NDQxgaGqJt27Zo0qQJ1q1bxzpeveLn5wdnZ2doaWkhISEBXbp0QZMmTZCVlUW952qZtbU1Hjx4wDrGdyErK4tRo0ZJ/a4zCwsLWFpagsfjYcCAAbC0tBR9dezYEb179+ZM37O6cswfAKKiojBs2LBK63Z2drh8+TKDRNXXo0cPXL16FcXFxaIPv5o1a4aYmBjO7BonhBAijnaeEUKIFJKTk8OxY8ewdOlS1lG+mqqqKq5du4bz588jKSkJCgoK6NChA/r06cM6Wr2zdetWbN++HePHj0dwcDAWLlwIIyMjeHl54cWLF6zj1Ss7d+7EL7/8gkePHqF9+/aQk5MTe75Dhw6MktUfo0aNAgAkJiZi8ODBaNy4sei5hg0bwsDAAGPHjmWUrnrq0k6n169fo2HDhpXW5eTkOHX81NzcXDTAgRBCCPdRzzNCCJFSzs7OMDc3x9y5c1lH+WZKS0vRqFEjzh0jqisUFRWRlpYGfX19aGlp4fz58+jYsSMyMzPRrVs3PH/+nHXEeiM2NhYTJkzAvXv3RGs8Hk90hJALfbbqiuDgYPz0009ijfa5IjExEZ06dQIA3Lp1C+vWrUNcXBwEAgEsLS2xaNEizu1Wtra2xvDhw+Hl5SW2vmzZMpw4cQJxcXGMkn1edQp70j5NlxBCSGW084wQQqSUiYkJVqxYgWvXrqFz585QUlISe97d3Z1RsuoRCARYtWoVAgIC8OTJE2RkZMDIyAhLly6FgYEBpkyZwjpivdG8eXM8f/4c+vr60NfXR2xsLDp27Ijs7GzQZ2m1y8XFBRYWFggJCalyYACpPU5OTqwj1JilpSUsLCzg6uqKCRMm1ImdTkuXLsXYsWPB5/NFg2YuXryIkJAQqe53pqamJvHvMRXHCSGEe2jnGSGESClDQ8NPPsfj8ZCVlVWLaWrujz/+QHBwMP744w9MnToVKSkpMDIyQmhoKDZu3IiYmBjWEesNV1dX6OrqwtvbGwEBAZg7dy569uyJmzdvYsyYMdi1axfriPWGkpISkpKSYGJiwjpKvScjI/PZooc0FzpiYmIQGBiI0NBQlJWVYezYsXBxcYGNjQ3raF/l5MmTWL16NRITE0VH/b29vaV6Cu2Hx2Pv3buHxYsXY/LkyaKeczExMQgODsaaNWs4XbAlhJD6iopnhBBCvisTExNs27YNAwYMgLKyMpKSkmBkZIQ7d+6ge/fu+O+//1hHrDcEAgEEAgEaNHi38Tw0NBTR0dEwMTHBL7/8UmWfIfJ9DB8+HJMnT+ZMT6267Pjx42LFs7KyMiQkJCA4OBjLly/nxO7YkpIShIaGYvfu3bhy5QoMDAzg4uICJycntGzZknW8emfAgAFwdXXF+PHjxdYPHDiA7du3IzIykk0wQgghNUbFM0IIId+VgoIC7ty5A319fbHiWWpqKrp06YLXr1+zjkhIrdu+fTtWrlwJFxcXmJubVxoYMGLECEbJyHsHDhzAoUOH8Pfff7OOUi18Ph+7d+/Gnj17kJubC1tbW5w6dYp1rGqLi4tDWloaeDwezMzMYGFhwTqSxBQVFZGUlIRWrVqJrWdkZKBTp04oLi5mlIwQQkhNUfGMEELId2VlZYU5c+Zg4sSJYsWz5cuX48KFC7hy5QrriHVacnKyxNfShMfaIyMj88nnaGCAdODz+ejQoQOKiopYR6m2169fY//+/fjtt99QUFDAqZ+np0+f4ueff0ZkZCTU1NQgFApRWFgIGxsbHDx4EJqamqwjflHr1q3xww8/YP369WLr8+bNwz///IP09HRGyQghhNQUDQwghBDyXbi4uGDTpk3w9vbGpEmT8OjRIwgEAhw9ehTp6enYs2cP/vnnH9Yx67xOnTqJpjh+DhVsapdAIGAdgXxGSUkJNm/ezLkjj1FRUQgMDMSRI0cgKysLe3t7Thw7/dDs2bPx8uVL3L59G23btgUApKamwsnJCe7u7ggJCWGc8Ms2btyIsWPH4uzZs+jWrRuAdxN2+Xw+jhw5wjgdIYSQmqCdZ4QQQr4LWVlZ5ObmQktLC2fPnsXq1asRFxcHgUAAS0tLeHl5YdCgQaxj1nn379+X+Fp9ff3vmIQQ6aSuri7W80woFOLVq1dQVFTEvn37pP4I7YMHDxAUFISgoCBkZ2ejR48emDJlCuzt7StNaeYCVVVVXLhwAdbW1mLr169fx6BBg1BQUMAmWDU9fPgQ/v7+SEtLg1AohJmZGX755Rfo6uqyjkYIIaQGqHhGCCHku5CRkUFeXh60tLRYRyFEKvj5+WHatGmQl5eHn5/fZ691d3evpVQkODhY7LGMjAw0NTXRtWtXqKurM0olGVtbW0REREBTUxOOjo5wcXFB69atWcf6KsrKyrhy5Qo6deoktp6QkIC+ffvi5cuXbIIRQgip16h4RgghUuzKlSvYtm0b+Hw+wsLCoKOjg71798LQ0BC9evViHe+zZGRk8OTJE070p6lP9u7di4CAAGRnZyMmJgb6+vrw9fWFoaEhRo4cyTpenWZoaIibN2+iSZMmMDQ0/OR1PB4PWVlZtZiMfEpiYmKlIo40GTFiBKZMmYIffvgBsrKyrON8EyNHjkRBQQFCQkLQokULAMCjR4/g4OAAdXV1HDt2jHFCQggh9dGnu9USQghh6siRIxg8eDAUFBSQkJCAN2/eAABevXqF1atXM04nGVNTU2hoaHz2i9Qef39/zJ07F0OHDhVrIq6mpgZfX1+24eqB7OxsNGnSRPT9p76ocMZWYWEhtm7dCktLS3Tu3Jl1nM8KDw/HyJEj60zhDAC2bNmCV69ewcDAAMbGxjAxMYGhoSFevXqFzZs3s45HCCGknqKdZ4QQIqUsLCzg6ekJR0dHsSmViYmJsLOzQ15eHuuInyUjIwNfX1+oqqp+9jonJ6daSkTMzMywevVqjBo1SuxnKiUlBf369cOzZ89YR6w3SkpKoKCgUOVzubm50NbWruVE5NKlSwgMDMTRo0ehr6+PsWPHYuzYsbCwsGAdrV46f/487ty5I+oXNnDgQNaRCCGE1GM0bZMQQqRUeno6+vTpU2ldRUWFMw2Tf/75Z+p5JkWys7OrLAQ0atQIRUVFDBLVXxYWFjhw4AAsLS3F1sPCwjBjxgzk5+czSla/PHz4EEFBQQgMDERRURHs7e1RVlaGI0eOwMzMjHW8es3W1ha2trasYxBCCCEAqHhGCCFSS1tbG3fv3oWBgYHYenR0NIyMjNiEqoYPp9cR6WBoaIjExMRKUzVPnz5NhYJaZmtrix49emDZsmVYtGgRioqK4ObmhsOHD8PHx4d1vHph6NChiI6Oxg8//IDNmzfDzs4OsrKyCAgIYB2t3vnSAI0P0TANQgghLFDxjBBCpNT06dPh4eGBwMBA8Hg8PH78GDExMZg/fz68vLxYx/si6gogfRYsWIBZs2ahtLQUQqEQ169fR0hICNasWYOdO3eyjlevbN68GcOGDYOzszNOnjyJx48fQ0VFBTdu3KBCZi05d+4c3N3dMWPGDLRq1Yp1nHpt48aNEl3H4/GktnhmYWEh8YdG8fHx3zkNIYSQb42KZ4QQIqUWLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY73RQKBgHUE8hFnZ2eUl5dj4cKFKC4uxoQJE6Cjo4NNmzbh559/Zh2v3hk0aBDGjBkDf39/NGjQACdOnKDCWS26cuUKAgMDYWVlhTZt2mDSpEn46aefWMeql7Kzs1lH+GqjRo0SfV9aWoqtW7fCzMwM3bt3BwDExsbi9u3bmDlzJqOEhBBCvgYNDCCEEClXXFyM1NRUCAQCmJmZoXHjxqwjkTrg2bNnEAgEop50jx49go6ODuNU9Qefz8eECROQl5eHnTt3IioqCuvWrYO7uztWrVoFOTk51hHrjeLiYhw8eBCBgYG4fv06KioqsGHDBri4uEBZWZl1vHrr7du3yM7OhrGxMRo04Nbn/a6urtDW1saKFSvE1r29vfHgwQMEBgYySkYIIaSmqHhGCCEc8fLlS1y6dAmtW7dG27ZtWcchdUReXh5WrVqFnTt3oqSkhHWcekNZWRnDhg1DQEAA1NTUAADXrl0TTddNSEhgG7CeSk9Px65du7B3714UFBTA1tYW4eHhrGPVK8XFxZg9ezaCg4MBABkZGTAyMoK7uztatGiBxYsXM074Zaqqqrh582al48CZmZmwsrJCYWEho2SEEEJqSoZ1AEIIIVWzt7fHli1bAAAlJSWwtraGvb09OnTogCNHjjBOR7ikoKAADg4O0NTURIsWLeDn5weBQAAvLy8YGRkhNjaWdkLUsq1bt+LgwYOiwhkA9OjRAwkJCZUmcJLa07p1a/z55594+PAhQkJCWMepl3799VckJSUhMjIS8vLyovWBAwfi0KFDDJNJTkFBAdHR0ZXWo6Ojxe6JEEIId9DOM0IIkVLNmzfH2bNn0bFjRxw4cADe3t5ISkpCcHAwtm/fTjtTiMRmzpyJEydO4KeffsKZM2eQlpaGwYMHo7S0FN7e3ujbty/riIQQAgDQ19fHoUOH0K1bNygrKyMpKQlGRka4e/cuLC0t8fLlS9YRv8jHxwfLli2Dq6srunXrBgCiDym8vLw4sXuOEEKIOG41ECCEkHqksLAQGhoaAIAzZ85g7NixUFRUxLBhw7BgwQLG6QiXnDx5Ert378bAgQMxc+ZMmJiYwNTUFL6+vqyj1XupqanIycnB27dvRWs8Hg/Dhw9nmIoQdvLz80W9GD9UVFQk8TRL1hYvXgwjIyNs2rQJBw4cAAC0bdsWQUFBsLe3Z5yOEEJITVDxjBBCpJSuri5iYmKgoaGBM2fO4ODBgwCA//77j459kGp5/PixaIqjkZER5OXl4erqyjhV/VJYWAhVVVXR46ysLIwZMwbJycng8Xh4fxDgfXGgoqKCSU5CWLO2tsbJkycxe/ZsAP/3O7Fjxw7R5EousLe3p0IZIYTUIVQ8I4QQKTVnzhw4ODigcePG0NfXR79+/QAAly9fhrm5OdtwhFMEAoHY9EZZWVkoKSkxTFT/+Pn5QV5eXrRr1MPDA7q6ujh79iw6deqEf//9F9nZ2Zg/fz42bNjAOC0h7KxZswZ2dnZITU1FeXk5Nm3ahNu3byMmJgZRUVGs4xFCCKmnqOcZIYRIsbi4OOTk5MDW1haNGzcG8O4InpqaGnr27Mk4HeEKGRkZDBkyBI0aNQIAnDhxAv37969UQDt69CiLePXC06dPMWnSJJiYmOCvv/5C06ZNcfHiRXTs2BE6Ojq4fv06dHR0cPHiRcyfP596GpJ6JzExEZ06dQIA3Lp1C+vWrUNcXBwEAgEsLS2xaNEiznxwVFFRgY0bNyI0NLTSsWwAePHiBaNkhBBCaop2nhFCiBTr3LkzOnfuLLY2bNgwRmkIVzk5OYk9njhxIqMk9ZeWlhbOnj2LNWvWAHj35lpZWRkA0LRpUzx+/Bg6OjowMDBAeno6y6iEMGFpaQkLCwu4urpiwoQJCA4OZh2pxpYvX46dO3di7ty5WLp0KX7//Xfcu3cPx48fh5eXF+t4hBBCaoB2nhFCCCGE1LLevXtj7ty5GD16NKZNm4b8/HwsWLAAAQEBiI+PR0pKCuuIhNSqmJgYBAYGIjQ0FGVlZRg7dixcXFxgY2PDOlq1GRsbw8/PD8OGDYOysjISExNFa7GxsaIhAoQQQriDimeEEEIIIbXs7NmzePXqFcaNG4cHDx5g2LBhSElJgYaGBkJDQ9G/f3/WEQlhoqSkBKGhodi9ezeuXLkCAwMDuLi4wMnJCS1btmQdTyJKSkpIS0uDnp4etLW1cfLkSVhaWiIrKwsWFhYoLCxkHZEQQkg1ybAOQAghhBBS3wwePBjjxo0D8G6ybnJyMp49e4anT59S4YzUawoKCnByckJkZCQyMjIwfvx4bNu2DYaGhhg6dCjreBJp2bIlcnNzAQAmJiY4d+4cAODGjRui3pOEEEK4hXaeEUIIIYQQQqTS69evsX//fvz2228oKChARUUF60hftHjxYqioqOC3335DWFgYxo8fDwMDA+Tk5MDT0xM+Pj6sIxJCCKkmKp4RQogUu3LlCrZt2wY+n4+wsDDo6Ohg7969MDQ0RK9evVjHI4TUUGlpKTZv3oyIiAg8ffoUAoFA7Pn4+HhGyQiRDlFRUQgMDMSRI0cgKysLe3t7TJkyBd26dWMdrdpiY2Nx7do1mJiYYMSIEazjEEIIqQGatkkIIVLqyJEjmDRpEhwcHJCQkIA3b94AAF69eoXVq1fj1KlTjBMSQmrKxcUF58+fx7hx49ClSxfweDzWkQhh7sGDBwgKCkJQUBCys7PRo0cPbN68Gfb29lBSUmIdr8a6devGyaIfIYSQ/0M7zwghREpZWFjA09MTjo6OUFZWRlJSEoyMjJCYmAg7Ozvk5eWxjkgIqSFVVVWcOnUKPXv2ZB2FEKlga2uLiIgIaGpqwtHRES4uLmjdujXrWBILDw+X+FrafUYIIdxDO88IIURKpaeno0+fPpXWVVRUUFBQUPuBCCHfjI6ODpSVlVnHIERqKCgo4MiRI/jhhx8gKyvLOk61jRo1Suwxj8fDx3sU3u8w5ULfNkIIIeJo2iYhhEgpbW1t3L17t9J6dHQ0jIyMGCQihHwr69evx6JFi3D//n3WUQiRCuHh4Rg5ciQnC2cAIBAIRF/nzp1Dp06dcPr0aRQUFKCwsBCnT5+GpaUlzpw5wzoqIYSQGqCdZ4QQIqWmT58ODw8PBAYGgsfj4fHjx4iJicH8+fPh5eXFOh4h5CtYWVmhtLQURkZGUFRUhJycnNjzL168YJSMEPK15syZg4CAALHBPoMHD4aioiKmTZuGtLQ0hukIIYTUBBXPCCFESi1cuBCFhYWwsbFBaWkp+vTpg0aNGmH+/Plwc3NjHY8Q8hXGjx+PR48eYfXq1WjWrBkNDCCkDuHz+VBVVa20rqqqinv37tV+IEIIIV+NBgYQQoiUKy4uRmpqKgQCAczMzNC4cWPWkQghX0lRURExMTHo2LEj6yiEkG+sT58+kJOTw759+6CtrQ0AyMvLw6RJk/D27VtERUUxTkgIIaS6aOcZIYRIOUVFRVhZWbGOQQj5htq0aYOSkhLWMQgh30FgYCBGjx4NfX196OnpAQBycnJgamqK48ePsw1HCCGkRmjnGSGESCkbG5vPHuW6dOlSLaYhhHxL586dw/Lly7Fq1SqYm5tX6nmmoqLCKBkh5FsQCoU4f/487ty5A6FQCDMzMwwcOJCOaBNCCEdR8YwQQqSUp6en2OOysjIkJiYiJSUFTk5O2LRpE6NkhJCvJSPzbuD5x2+khUIheDweKioqWMQihBBCCCFVoGObhBAipTZu3Fjl+rJly/D69etaTkMI+ZYiIiJYRyCEfEN+fn6YNm0a5OXl4efn99lr3d3daykVIYSQb4V2nhFCCMfcvXsXXbp0wYsXL1hHIYQQQggAQ0ND3Lx5E02aNIGhoeEnr+PxeMjKyqrFZIQQQr4F2nlGCCEcExMTA3l5edYxCCGEEPL/ZWdnV/k9IYSQuoGKZ4QQIqXGjBkj9lgoFCI3Nxc3b97E0qVLGaUihBBCCCGEkPpFhnUAQgghVVNVVRX70tDQQL9+/XDq1Cl4e3uzjkcIIYSQKowbNw4+Pj6V1teuXYsff/yRQSJCCCFfi3qeEUIIIYQQQsg3oqmpiUuXLsHc3Fxs/datWxg4cCCePHnCKBkhhJCaomObhBBCCCGM5OfnIz09HTweD6amptDU1GQdiRDylV6/fo2GDRtWWpeTk8PLly8ZJCKEEPK16NgmIYRIKXV1dWhoaEj0RQjhlqKiIri4uKBFixbo06cPevfujRYtWmDKlCkoLi5mHY8Q8hXat2+PQ4cOVVo/ePAgzMzMGCQihBDytWjnGSGESKmlS5di5cqVGDx4MLp37w7g3aTNs2fPYunSpVQ0I4TD5s6di6ioKISHh6Nnz54AgOjoaLi7u2PevHnw9/dnnJAQUlNLly7F2LFjwefz0b9/fwDAxYsXERISgsOHDzNORwghpCao5xkhhEipsWPHwsbGBm5ubmLrW7ZswYULF3D8+HE2wQghX61p06YICwtDv379xNYjIiJgb2+P/Px8NsEIId/EyZMnsXr1aiQmJkJBQQEdOnSAt7c3+vbtyzoaIYSQGqDiGSGESKnGjRsjMTERJiYmYuuZmZmwsLDA69evGSUjhHwtRUVFxMXFoW3btmLrt2/fRpcuXVBUVMQoGSGEEEII+Rj1PCOEECnVpEkTHDt2rNL68ePH0aRJEwaJCCHfSvfu3eHt7Y3S0lLRWklJCZYvXy46pk0I4ba4uDjs27cP+/fvR0JCAus4hBBCvgL1PCOEECm1fPlyTJkyBZGRkaI307GxsThz5gx27tzJOB0h5Gts2rQJdnZ2aNmyJTp27Agej4fExETIy8vj7NmzrOMRQr7C06dP8fPPPyMyMhJqamoQCoUoLCyEjY0NDh48SFN1CSGEg+jYJiGESLF///0Xfn5+SEtLg1AohJmZGdzd3dG1a1fW0QghX6mkpAT79u3DnTt3RL/fDg4OUFBQYB2NEPIVfvrpJ/D5fOzdu1d0NDs1NRVOTk4wMTFBSEgI44SEEEKqi4pnhBBCCCGEEPKNqKqq4sKFC7C2thZbv379OgYNGoSCggI2wQghhNQY9TwjhBBCCKllwcHBOHnypOjxwoULoaamhh49euD+/fsMkxFCvpZAIICcnFyldTk5OQgEAgaJCCGEfC0qnhFCCCGE1LLVq1eLjmfGxMRgy5Yt+PPPP9G0aVN4enoyTkcI+Rr9+/eHh4cHHj9+LFp79OgRPD09MWDAAIbJCCGE1BQd2ySEEEIIqWWKioq4c+cO9PT0sGjRIuTm5mLPnj24ffs2+vXrh/z8fNYRCSE19ODBA4wcORIpKSnQ1dUFj8dDTk4OzM3N8ffff6Nly5asIxJCCKkmmrZJCCGEEFLLGjdujOfPn0NPTw/nzp0T7TaTl5dHSUkJ43SEkK+hq6uL+Ph4nD9/XmwgyMCBA1lHI4QQUkNUPCOEEEIIqWW2trZwdXWFhYUFMjIyMGzYMADA7du3YWBgwDYcIeSbsLW1ha2tLesYhBBCvgEqnhFCiBS7ceMGDh8+jJycHLx9+1bsuaNHjzJKRQj5Wn/99ReWLFmCBw8e4MiRI2jSpAkAIC4uDuPHj2ecjhBSXX5+fhJf6+7u/h2TEEII+R6o5xkhhEipgwcPwtHREYMGDcL58+cxaNAgZGZmIi8vD6NHj8bu3btZRySEEEIIAENDQ4mu4/F4yMrK+s5pCCGEfGtUPCOEECnVoUMHTJ8+HbNmzYKysjKSkpJgaGiI6dOnQ1tbG8uXL2cdkRDyFa5cuYJt27YhKysLhw8fho6ODvbu3QtDQ0P06tWLdTxCCCGEEPL/ybAOQAghpGp8Pl/UB6lRo0YoKioCj8eDp6cntm/fzjgdIeRrHDlyBIMHD4aCggLi4+Px5s0bAMCrV6+wevVqxukIId/C27dvkZ6ejvLyctZRCCGEfCUqnhFCiJTS0NDAq1evAAA6OjpISUkBABQUFKC4uJhlNELIV1q5ciUCAgKwY8cOyMnJidZ79OiB+Ph4hskIIV+ruLgYU6ZMgaKiItq1a4ecnBwA73qd+fj4ME5HCCGkJqh4RgghUqp37944f/48AMDe3h4eHh6YOnUqxo8fjwEDBjBORwj5Gunp6ejTp0+ldRUVFRQUFNR+IELIN/Prr78iKSkJkZGRkJeXF60PHDgQhw4dYpiMEEJITdG0TUIIkVJbtmxBaWkpgHd/iMvJySE6OhpjxozB0qVLGacjhHwNbW1t3L17FwYGBmLr0dHRMDIyYhOKEPJNHD9+HIcOHUK3bt3A4/FE62ZmZuDz+QyTEUIIqSkqnhFCiJTS0NAQfS8jI4OFCxdi4cKFDBMRQr6V6dOnw8PDA4GBgeDxeHj8+DFiYmIwf/58eHl5sY5HCPkK+fn50NLSqrT+vncpIYQQ7qHiGSGESJGXL19KfK2Kisp3TEII+Z4WLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY5HCPkK1tbWOHnyJGbPng0AooLZjh070L17d5bRCCGE1BBPKBQKWYcghBDyjoyMzBc/lRYKheDxeKioqKilVISQ76W4uBipqakQCAQwMzND48aNWUcihHyla9euwc7ODg4ODggKCsL06dNx+/ZtxMTEICoqCp07d2YdkRBCSDXRzjNCCJEiERERrCMQQr6j4uJiLFiwAMePH0dZWRkGDhwIPz8/NG3alHU0QshXSkxMRKdOndCjRw9cvXoV69atg7GxMc6dOwdLS0vExMTA3NycdUxCCCE1QDvPCCGEEEJqyYIFC7B161Y4ODhAXl4eISEh6NevHw4fPsw6GiHkK8nIyMDCwgKurq6YMGECVFVVWUcihBDyjVDxjBBCCCGklhgbG2PVqlX4+eefAQDXr19Hz549UVpaCllZWcbpCCFfIyYmBoGBgQgNDUVZWRnGjh0LFxcX2NjYsI5GCCHkK1HxjBBCCCGkljRs2BDZ2dnQ0dERrSkoKCAjIwO6uroMkxFCvpWSkhKEhoZi9+7duHLlCgwMDODi4gInJye0bNmSdTxCCCE1IMM6ACGEEEJIfVFRUYGGDRuKrTVo0ADl5eWMEhFCvjUFBQU4OTkhMjISGRkZGD9+PLZt2wZDQ0MMHTqUdTxCCCE1QDvPCCGEEEJqiYyMDIYMGYJGjRqJ1k6cOIH+/ftDSUlJtHb06FEW8Qgh38Hr16+xf/9+/PbbbygoKKBp2YQQwkE0bZMQQgghpJY4OTlVWps4cSKDJISQ7y0qKgqBgYE4cuQIZGVlYW9vjylTprCORQghpAZo5xkhhEixsLAwhIaGIicnB2/fvv1/7d1diFZl2wbg8/EvtWIC0RIsM7Vo0krLUIki0yiSyrLpBzR0RCpIs42oQC2CEoLC2ZAoUIv+NAQrzNBMRU0pNSNtFFNDKa3IHDEL0ZlvIz57/Xwn2vhsrXyOAwZmrmdtnFvPxjnXfa8TPtu4cWNBqQCA/2bPnj2ZO3du5s6dm127dmXo0KGpr69PXV3dCdulAPy7uPMMoKQaGhoybty4dOvWLV988UWuueaadOnSJTt37swtt9xSdDwA4D+MGDEivXr1yqxZszJ69Og0NjZm9erVGTdunOIM4F/OsU2Akpo1a1ZeeeWV3HfffXnttdfy+OOP56KLLsq0adOyf//+ouMBAP+hU6dOWbBgQUaOHJm2bdsWHQeA/0eObQKUVOfOndPY2JiePXumW7duWbp0aa644ops3749gwcPzs8//1x0RAAAgNOeY5sAJXXeeecdL8h69uyZdevWJUl27doV//cAAAD4ZyjPAEpq2LBh+eCDD5Ik9fX1mTJlSkaMGJF77rkno0aNKjgdAABAdXBsE6Ckmpub09zcnHbt/riecv78+Vm9enX69OmTBx98MB06dCg4IQAAwOlPeQYAAAAArXBsEwAAAABaoTwDAAAAgFYozwAAAACgFcozAAAAAGiF8gwAAAAAWtGu6AAA/GnAgAGpVCp/69mNGzee4jQAAAAozwBK5I477jj++++//55Zs2altrY2Q4YMSZKsW7cuW7ZsycMPP1xQQgAAgOpSaWlpaSk6BAAnmzBhQrp3755nn332hPn06dOzZ8+ezJ49u6BkAAAA1UN5BlBSNTU1Wb9+ffr27XvCfPv27bn66qvT1NRUUDIAAIDq4YUBACXVqVOnrF69+qT56tWr07FjxwISAQAAVB93ngGU1KOPPpqHHnooGzZsyODBg5P8cefZ7NmzM23atILTAQAAVAfHNgFKbP78+Zk5c2YaGxuTJJdeemkmT56curq6gpMBAABUB+UZAAAAALTCnWcAAAAA0Ap3ngGU1LFjx/LSSy9l/vz52b17d44cOXLC5/v37y8oGQAAQPWweQZQUs8880xefPHF1NXVpampKY899ljuvPPOtGnTJk8//XTR8QAAAKqCO88ASqp3795paGjIrbfemrPPPjubNm06Plu3bl3eeuutoiMCAACc9myeAZTUvn370r9//yTJWWedlaampiTJyJEjs2jRoiKjAQAAVA3lGUBJ9ejRI3v37k2S9OnTJ0uWLEmSfP755znjjDOKjAYAAFA1lGcAJTVq1KgsW7YsSTJ58uRMnTo1ffv2zdixYzN+/PiC0wEAAFQHd54B/EusW7cun376afr06ZPbbrut6DgAAABVQXkGAAAAAK1oV3QAAP70/vvv/+1nbZ8BAACcejbPAEqkTZsTr6KsVCr5v1/TlUolSXLs2LF/LBcAAEC18sIAgBJpbm4+/rNkyZJceeWVWbx4cQ4cOJCmpqYsXrw4AwcOzEcffVR0VAAAgKpg8wygpPr165eXX34511577QnzVatWZeLEiWlsbCwoGQAAQPWweQZQUjt27EhNTc1J85qamnz77bf/fCAAAIAqZPMMoKSuu+66tG/fPm+88Ua6d++eJNm3b1/GjBmTI0eOZOXKlQUnBAAAOP0pzwBK6ptvvsmoUaOybdu2XHDBBUmS3bt35+KLL87ChQvTp0+fghMCAACc/pRnACXW0tKSpUuXZuvWrWlpaUltbW2GDx9+/I2bAAAAnFrKMwAAAABoRbuiAwDwp4aGhkycODEdO3ZMQ0PDXz47adKkfygVAABA9bJ5BlAivXr1yvr169OlS5f06tWr1ecqlUp27tz5DyYDAACoTsozAAAAAGhFm6IDAAAAAEBZKc8ASmr06NGZMWPGSfMXXnghd999dwGJAAAAqo9jmwAl1bVr13zyySfp37//CfOvvvoqw4cPzw8//FBQMgAAgOph8wygpA4dOpQOHTqcNG/fvn0OHjxYQCIAAIDqozwDKKl+/fpl3rx5J83feeed1NbWFpAIAACg+rQrOgAA/93UqVNz1113ZceOHRk2bFiSZNmyZXn77bfz7rvvFpwOAACgOrjzDKDEFi1alOeeey6bNm1Kp06dcvnll2f69Om5/vrri44GAABQFZRnAAAAANAKxzYBSm7Dhg1pbGxMpVJJbW1tBgwYUHQkAACAqqE8AyipH3/8Mffee29WrFiRc845Jy0tLWlqasoNN9yQd955J127di06IgAAwGnP2zYBSuqRRx7JwYMHs2XLluzfvz+//PJLNm/enIMHD2bSpElFxwMAAKgK7jwDKKmampp8/PHHGTRo0Anzzz77LDfddFMOHDhQTDAAAIAqYvMMoKSam5vTvn37k+bt27dPc3NzAYkAAACqj/IMoKSGDRuWyZMn5/vvvz8+++677zJlypTceOONBSYDAACoHo5tApTUnj17cvvtt2fz5s05//zzU6lUsnv37vTv3z/vvfdeevToUXREAACA057yDKDkli5dmq1bt6alpSW1tbUZPnx40ZEAAACqhvIMAAAAAFrRrugAAPypoaHhbz87adKkU5gEAACAxOYZQKn06tXrbz1XqVSyc+fOU5wGAAAA5RkAAAAAtKJN0QEA+GtHjhzJtm3bcvTo0aKjAAAAVB3lGUBJHT58OPX19encuXMuu+yy7N69O8kfd53NmDGj4HQAAADVQXkGUFJPPvlkvvzyy6xYsSIdO3Y8Ph8+fHjmzZtXYDIAAIDq4W2bACW1cOHCzJs3L4MHD06lUjk+r62tzY4dOwpMBgAAUD1sngGU1E8//ZRu3bqdNP/1119PKNMAAAA4dZRnACU1aNCgLFq06Pjf/1uYvfrqqxkyZEhRsQAAAKqKY5sAJfX888/n5ptvztdff52jR49m5syZ2bJlS9auXZuVK1cWHQ8AAKAq2DwDKJlNmzYlSYYOHZo1a9bk8OHD6d27d5YsWZJzzz03a9euzVVXXVVsSAAAgCpRaWlpaSk6BAB/atOmTQYMGJAJEybk/vvvT01NTdGRAAAAqpbNM4CSWbNmTQYOHJgnnngi3bt3z5gxY7J8+fKiYwEAAFQlm2cAJfXbb79l/vz5mTNnTlatWpULL7ww48ePzwMPPJAePXoUHQ8AAKAqKM8A/gV27NiROXPm5PXXX8/evXszYsSIfPjhh0XHAgAAOO0pzwD+JQ4dOpQ333wzTz31VA4cOJBjx44VHQkAAOC0167oAAD8tZUrV2b27NlZsGBB2rZtm7q6utTX1xcdCwAAoCrYPAMooT179mTu3LmZO3dudu3alaFDh6a+vj51dXU588wzi44HAABQNWyeAZTMiBEjsnz58nTt2jVjx47N+PHjc8kllxQdCwAAoCopzwBKplOnTlmwYEFGjhyZtm3bFh0HAACgqjm2CQAAAACtaFN0AAAAAAAoK+UZAAAAALRCeQYAAAAArVCeAQAAAEArlGcAAAAA0ArlGQAAAAC0QnkGAAAAAK34H5+ldikalQeIAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    df_procesado_base

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -9883,1489 +7938,1278 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - "
    Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia específica (P/W)Capacidad combustibleConsumoPotencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)Stalker XE0.06000.00016.88037912000.0NaN0.8715.3012552.1NaN0.21113.600370.08.020.0NaNNaNNaN3.6570.2392.4947562.015.43332NaNNaN10.886208NaN59.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0000.0410.587-0.9990.5350.6630.6650.3360.8150.2570.1280.4720.8460.6960.426
    Techo de servicio máximo0.0411.000-0.152-0.3140.0820.1370.4280.079-0.111-0.071-0.5020.0570.0170.087-0.138
    Área del ala0.587-0.1521.000-0.8310.8670.977-0.3010.0810.7370.4230.0970.8410.9840.8990.941
    Relación de aspecto del ala-0.999-0.314-0.831Stalker VXE300.06000.00017.60237312000.0NaN1.15828315.3264492.5908NaN0.219.958433.08.025.034211NaNNaNNaN4.87680.3181952.494756NaN16.093422NaNNaN17.463292NaN161.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.000-0.790-0.823-0.998-0.305-0.859nannan-0.349-0.744-0.8880.622
    Longitud del fuselaje0.5350.0820.867-0.7901.0000.7860.1500.3890.2560.1800.2600.6930.9950.5990.880
    Peso máximo al despegue (MTOW)0.6630.1370.977-0.8230.786Aerosonde Mk. 4.7 Fixed WingNaN6000.00027.3440514700.0NaN1.5512.53.0NaN0.27742.200NaN19.833.43886NaNNaNNaN4.40.35214.5NaN25.0NaN27.7NaNNaN140.0NaNNaNNaN0.62980.04.0NaNNaNNaN1.0002.0005.0000.0001.0001.0000.0250.4340.6780.5390.5460.7910.8580.8750.947
    Alcance de la aeronave0.6650.428-0.301-0.9980.1500.025Aerosonde Mk. 4.7 VTOL0.06000.00027.344059700.0NaN1.5512.53.0NaN0.27753.500NaN12.033.43886NaNNaNNaN4.40.35211.3NaN25.0NaN42.2NaNNaN140.0NaNNaNNaN0.62980.04.0NaNNaNNaN2.0002.0001.0004.0001.0001.0000.8430.042nannan-0.010-0.7550.804-0.059
    Autonomía de la aeronave0.3360.0790.081-0.3050.3890.4340.843Aerosonde Mk. 4.8 Fixed wingNaN6000.00027.3440518200.0NaN1.5512.53.0NaN0.27754.400NaN19.833.43886NaNNaNNaN4.40.35217.7NaN25.0NaN36.7NaNNaN140.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.0000.297-0.1640.4010.532-0.2010.4610.428
    Velocidad máxima (KIAS)0.815-0.1110.737-0.8590.2560.6780.0420.297Aerosonde Mk. 4.8 VTOL FTUAS0.06000.000NaN15000.0NaNNaN12.5NaNNaNNaN93.000NaN14.0NaNNaNNaNNaNNaNNaN22.7NaNNaNNaN70.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.0000.5390.4460.4000.5120.7150.517
    Velocidad de pérdida (KCAS)0.257-0.0710.423nan0.1800.539nan-0.1640.539AAI AerosondeNaN5500.000NaN15000.0NaN0.5714.7543861.7NaNNaN13.1003270.026.030.845725NaNNaNNaN2.90.196552NaNNaNNaNNaNNaN10.0NaN150.023.098.0NaNNaN1280.01.74NaNNaNNaN2.0002.0001.0004.0001.0001.0000.401nan0.6270.321
    Velocidad de pérdida limpia (KCAS)0.128-0.5020.097nan0.2600.546nan0.4010.446Fulmar XNaN6000.00030.4065849.842NaNNaNNaN1.2NaNNaN20.000800.08.041.7NaNNaNNaN3.0NaNNaNNaN27.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.0000.505nan0.5360.038
    envergadura0.4720.0570.841-0.3490.6930.791-0.0100.5320.4000.4010.505Orbiter 4NaN6000.000NaNNaNNaNNaNNaN1.2NaNNaN55.000NaN24.036.0NaNNaNNaN5.2NaN12.0NaNNaNNaNNaNNaNNaN150.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.0000.8850.7340.924
    Cuerda0.8460.0170.984-0.7440.9950.858-0.755-0.2010.512nannan0.885Orbiter 3NaN6000.000NaNNaNNaNNaNNaN1.2NaNNaN32.00050.06.036.0NaNNaNNaN4.4NaN5.5NaNNaNNaNNaNNaNNaN50.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0001.0005.0000.0001.0001.0000.7760.971
    payload0.6960.0870.899-0.8880.5990.8750.8040.4610.7150.6270.5360.7340.776MantisNaN6000.00018.265826NaNNaNNaNNaN1.48NaNNaN6.50025.02.025.6NaNNaNNaN2.1NaNNaNNaN16.7NaNNaNNaNNaN25.0NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0001.0005.0000.0001.0000.778
    Empty weight0.426-0.1380.9410.6220.8800.947-0.0590.4280.5170.3210.0380.9240.9710.7781.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos213.000ScanEagleNaN6000.00030.62533619500.0NaNNaNNaN1.71NaNNaN26.500NaN18.041.2NaNNaNNaN3.1NaN5.0NaN28.0NaNNaNNaNNaN101.86NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    2Valores NaN12.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weightIntegratorNaN6000.00030.95346519500.0NaNNaNNaN2.5NaNNaN74.800NaN24.046.3NaNNaNNaN4.8NaN18.0NaN28.3NaNNaNNaNNaN92.6NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    ModeloIntegrator VTOL0.05000.000NaNNaNNaNNaNNaNNaNNaNNaN75.000NaN16.0NaNNaNNaNNaNNaNNaN18.0NaNNaNNaNNaNNaN30.0NaNNaNNaNNaNNaNNaNNaNNaNNaN0.02.0002.0001.0004.0001.0001.000
    Velocidad a la que se realiza el crucero (KTAS)nannannan-0.999nannannannan0.815nannannan0.846nannanIntegrator Extended RangeNaN6000.000NaN19500.0NaNNaNNaN2.5NaNNaN74.800500.019.046.3NaNNaNNaN4.8NaN18.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Techo de servicio máximonannannannannannannannannannannannannannannanScanEagle 3NaN6000.00025.70340720.0NaNNaNNaN2.4NaNNaN36.300NaN18.041.2NaNNaNNaN4.0NaN8.6NaN23.5NaNNaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Área del alanannannan-0.8310.8670.977nannan0.737nannan0.8410.9840.8990.941RQ Nan 21A BlackjackNaN6000.00033.79724620.0NaNNaNNaN2.5NaNNaN61.000NaN16.046.3NaNNaNNaN4.8NaN17.7NaN30.9NaNNaNNaNNaN92.6NaNNaNNaNNaNNaN8.0NaNNaNNaN1.0002.0005.0000.0001.0001.000
    Relación de aspecto del ala-0.999nan-0.831nan-0.790-0.823-0.998nan-0.859nannannan-0.744-0.888nan
    Longitud del fuselajenannan0.867-0.790nan0.786nannannannannannan0.995nan0.880
    Peso máximo al despegue (MTOW)nannan0.977-0.8230.786nannannannannannan0.7910.8580.8750.947
    Alcance de la aeronavenannannan-0.998nannannan0.843nannannannan-0.7550.804nan
    Autonomía de la aeronavenannannannannannan0.843nannannannannannannannan
    Velocidad máxima (KIAS)0.815nan0.737-0.859nannannannannannannannannan0.715nan
    Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannan
    Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannan
    envergaduranannan0.841nannan0.791nannannannannannan0.8850.7340.924
    Cuerda0.846nan0.984-0.7440.9950.858-0.755nannannannan0.885nan0.7760.971
    payloadnannan0.899-0.888nan0.8750.804nan0.715nannan0.7340.776nan0.778
    Empty weightnannan0.941nan0.8800.947nannannannannan0.9240.9710.778nan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos68.000
    2Valores NaN157.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Preparando datos para el heatmap ===\n", - "\n", - "=== Generando heatmap ===\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVycPA8S/djbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d26ttiF3QIGHSJ13j+QC5d7L6KA7G/f+fjwPN65c+bMnL5zJtQkSZIQBEEQBEEQBEEQBEEQBKHAqRd2BgRBEARBEARBEARBEATh/wtRGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0RUxgmCIAiCIAiCIAiCIAjCNyIq4wRBEARBEARBEARBEAThGxGVcYIgCIIgCIIgCIIgCILwjYjKOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6IyThAEQRAEQRAEQRAEQRC+EVEZJwiCIPxPW7lyJWpqaly+fFnp902bNsXZ2blA83Du3DkmTpxIVFRUga6nMEycOBE1NbV8T/fmzZv06NEDFxcXdHV1MTQ0pFy5csyYMYOIiIh8X19enDx5EjU1NU6ePFkg6T979gw1NTVWrlxZIOkXtu7du+fbOVi2bFns7e1JTU1VGadatWpYWlqSlJSU5/XlZd9/7tqUVX5uo9ySJImNGzdSo0YNrKys0NXVxcHBAT8/P5YuXfpVadauXZvatWvnb0a/UEFds/KbmpoaEydO/ObrPX36NDo6Ojx//lwW5uzsTNOmTZXGv3z5cr5fn77k3MgP/yvHRIa4uDiGDBmCnZ0durq6lClTho0bN+Zq2dq1a6OmpqbyLywsDIDk5GRcXV2ZM2dOAZZEEISciMo4QRAEQcijc+fO8csvv/wnK+MKwpIlSyhfvjxBQUGMHDmSgwcPsmPHDtq0acOiRYvo1atXYWfxm7K1teX8+fM0adKksLPyr9erVy9CQkI4dOiQ0u8fPHjAuXPn6NKlC9ra2nleX7ly5Th//jzlypXLc1r/NmPGjKFDhw54enqydOlSDhw4wJQpU7C2tmbXrl2Fnb2v1rt3b86fP1/Y2fhXkiSJIUOG0KdPH5ycnAo7O4IKLVu2ZNWqVUyYMIEDBw7g6+tLhw4dWL9+/WeXXbBgAefPn5f7O3bsGFpaWlSuXBkbGxsAtLS0GD9+PJMmTSI8PLygiyQIghKahZ0BQRAEQRD+/zh//jzff/89DRo0YOfOnejo6Mi+a9CgAcOHD+fgwYP5sq6EhAT09fUVwlNTU0lJSZFbd2HS0dGhcuXKhZ2N/wmdOnVi5MiRLF++nMaNGyt8v3z5cgB69uyZp/UkJyejpqaGsbHxf3LffPjwgTlz5tC1a1f+/vtvue+6d+9OWlpaIeUs7xwcHHBwcCjsbPwrHTx4kKtXr+aqUuffTNW1Pa9CQ0MxMDDA2Ng439POrf3793PkyBHWr19Phw4dAKhTpw7Pnz9n5MiRtGvXDg0NDZXLe3l5KYStWrWK5ORkevfuLRfeoUMHhg0bxuLFixk7dmz+FkQQhM8SLeMEQRCE/3ckSWLBggWUKVMGPT09zMzMaN26NU+ePJGLd+TIEZo1a4aDgwO6urq4ubnx3Xff8f79e1mciRMnMnLkSABcXFxkXUEyurVldP/Zu3cvZcuWRU9PD09PT/bu3Qukd9fx9PTEwMCAihUrKnTbuXz5Mu3bt8fZ2Rk9PT2cnZ3p0KGDXBejjHTU1NQ4cuQIPXr0wNzcHAMDAwICAhTKpcq+ffsoU6YMOjo6uLi4MGvWrDxtP2WmTZuGmpoaf//9t9LKMG1tbQIDA2Wf09LSmDFjBiVKlEBHRwcrKyu6du3Kq1ev5JarXbs2JUuW5J9//qFq1aro6+vTs2dPWRfQGTNmMGXKFFxcXNDR0eHEiRNA+vYNDAzE3NwcXV1dypYty+bNmz9bjtzuF4DXr1/Tt29fihYtira2NnZ2drRu3Zo3b94Aqrupnjlzhnr16mFkZIS+vj5Vq1Zl3759cnEy9vuJEyf4/vvvsbS0xMLCgpYtWxISEqKQl02bNlGlShUMDAwwNDTEz8+Pa9euycV58uQJ7du3x87ODh0dHaytralXrx7Xr1//7HZZuXIlHh4e6Ojo4OnpyerVq5XGS0pKYsqUKbL9WqRIEXr06MG7d+9yTN/MzIwWLVqwZ88ehdYcqamprFmzBl9fX3x8fHj06BE9evSgePHi6OvrY29vT0BAALdu3ZJbLqMr6po1axg+fDj29vbo6Ojw6NEjpd1Uv2TfA0RGRn7VOZnb8+zatWs0bdoUKysrdHR0sLOzo0mTJgrnSFbx8fF8/PgRW1tbpd+rq8v/RPja/fWly65fv54qVapgaGiIoaEhZcqUYdmyZXJxDh48SL169TAxMUFfXx9PT09+/fVX2ffKuiR+6XUkKCiIGjVqoK+vT7FixZg+fbpcBWViYiLDhw+nTJkymJiYYG5uTpUqVZS2KIyJiaFPnz5YWFhgaGiIv78/Dx48UIiX2+M1LS2NKVOm4OHhgZ6eHqamppQqVYq5c+fmsBfSLVy4EF9fXzw8PD4bNyfdu3fH0NCQe/fu4efnh4GBAba2tkyfPh2ACxcuUL16dQwMDHB3d2fVqlVK08nNuaHq2g7p17OGDRtia2sru7f++OOPxMfHf1W5Dh06hLW1Na1bt2b79u0kJiZ+VTp5sWPHDgwNDWnTpo1ceI8ePQgJCeHixYtfnOayZcswNDSkXbt2cuHa2tq0a9eOv//+G0mS8pRvQRC+nKiMEwRBEP4TMlo7Zf9T9oD53XffMWTIEOrXr8/OnTtZsGABd+7coWrVqrIKEoDHjx9TpUoVFi5cyOHDhxk/fjwXL16kevXqJCcnA+ldogYOHAjA9u3bZd1CsnZru3HjBmPGjGH06NFs374dExMTWrZsyYQJE1i6dCnTpk1j3bp1REdH07RpUz58+CBb9tmzZ3h4eDBnzhwOHTrEb7/9RmhoKL6+vnKVghl69eqFuro669evZ86cOVy6dInatWt/tgvtsWPHaNasGUZGRmzcuJGZM2eyefNmVqxY8dXbT9k+On78OOXLl6do0aI55ifD999/z+jRo2nQoAG7d+9m8uTJHDx4kKpVqyqUPzQ0lM6dO9OxY0f2799P//79Zd/NmzeP48ePM2vWLA4cOECJEiU4ceIE1apVIyoqikWLFrFr1y7KlClDu3btPjs+Um73y+vXr/H19WXHjh0MGzaMAwcOMGfOHExMTIiMjFSZ/qlTp6hbty7R0dEsW7aMDRs2YGRkREBAAJs2bVKI37t3b7S0tFi/fj0zZszg5MmTdO7cWS7OtGnT6NChA15eXmzevJk1a9YQGxtLjRo1uHv3rixe48aNuXLlCjNmzODIkSMsXLiQsmXLfvYYWrlyJT169MDT05Nt27bx888/M3nyZI4fPy4XLy0tjWbNmjF9+nQ6duzIvn37mD59OkeOHKF27dpyx78yvXr1IikpibVr18qFHzp0iJCQEFk355CQECwsLJg+fToHDx5k/vz5aGpqUqlSJe7fv6+Q7pgxY3jx4gWLFi1iz549WFlZKV3/tzonc3OexcfH06BBA968ecP8+fM5cuQIc+bMwdHRkdjYWJVpW1pa4ubmxoIFC/j999+5d++eyh/jedlfX7Ls+PHj6dSpE3Z2dqxcuZIdO3bQrVs3uUrOZcuW0bhxY9LS0mT7adCgQTlWPMKXXUfCwsLo1KkTnTt3Zvfu3TRq1IgxY8bIHW8fP34kIiKCESNGsHPnTjZs2ED16tVp2bKlXAW0JEk0b95cVtG7Y8cOKleuTKNGjRTymNvjdcaMGUycOJEOHTqwb98+Nm3aRK9evT57PCUlJXH06FHq1KmTY7zcSk5OpmXLljRp0oRdu3bJttPYsWPp1q0bPXv2ZMeOHXh4eNC9e3euXLmikEZuzw1V1/aHDx/SuHFjli1bxsGDBxkyZAibN28mICDgq8rUokUL5s2bR2RkJG3btsXa2pru3btz6NChHMeplCRJ6fOHsr/PuX37Np6enmhqyndgK1WqlOz7L/Hw4UNOnz5N+/btMTQ0VPi+du3aPH/+/IvTFQQhH0iCIAiC8D9sxYoVEpDjn5OTkyz++fPnJUCaPXu2XDovX76U9PT0pFGjRildT1pampScnCw9f/5cAqRdu3bJvps5c6YESE+fPlVYzsnJSdLT05NevXolC7t+/boESLa2tlJ8fLwsfOfOnRIg7d69W2V5U1JSpLi4OMnAwECaO3euwnZo0aKFXPyzZ89KgDRlyhSVaUqSJFWqVEmys7OTPnz4IAuLiYmRzM3NpayPC1+7/SRJksLCwiRAat++fY55yRAcHCwBUv/+/eXCL168KAHS2LFjZWG1atWSAOnYsWNycZ8+fSoBkqurq5SUlCT3XYkSJaSyZctKycnJcuFNmzaVbG1tpdTUVEmSJOnEiRMSIJ04cUJlXlXtl549e0paWlrS3bt3VS6bkccVK1bIwipXrixZWVlJsbGxcusoWbKk5ODgIKWlpUmSlLnfs2+jGTNmSIAUGhoqSZIkvXjxQtLU1JQGDhwoFy82NlaysbGR2rZtK0mSJL1//14CpDlz5qjMrzKpqamSnZ2dVK5cOVneJEmSnj17Jmlpacmdgxs2bJAAadu2bXJpBAUFSYC0YMGCHNeVlpYmubi4SKVKlZILb9WqlaSvry9FR0crXS4lJUVKSkqSihcvLg0dOlQWnrF/a9asqbBMXvb9l5yT3bp1+6rr1OXLlyVA2rlzp8r8qXLp0iXJ0dFRdp00MjKSmjZtKq1evVpuH37J/qpVq5ZUq1atL172yZMnkoaGhtSpUyeV+Y2NjZWMjY2l6tWry+UvuwkTJshds77mOnLx4kW5uF5eXpKfn5/KdaakpEjJyclSr169pLJly8rCDxw4IAFyx4UkSdLUqVMlQJowYUKOaSo7Xps2bSqVKVNG5XKqZJR348aNCt85OTlJTZo0Ubpcxr7Ken3q1q2bwn5NTk6WihQpIgHS1atXZeHh4eGShoaGNGzYMFnYl5wbqq7t2WXco0+dOiUB0o0bN2TfZT8mciMsLEz6888/pWrVqklqamqSlZWV9MMPP0hnzpxROP5y8xyS8fc5xYsXV3qshYSESIA0bdq0LyrH6NGjJUA6f/680u8fPnwoAdLChQu/KF1BEPJOtIwTBEEQ/hNWr15NUFCQwl/16tXl4u3duxc1NTU6d+4s97baxsaG0qVLy3VHe/v2Lf369aNo0aJoamqipaUlG/Q6ODg413krU6YM9vb2ss+enp5A+hvprOPeZIRnbQkSFxfH6NGjcXNzQ1NTE01NTQwNDYmPj1eah06dOsl9rlq1Kk5OTrJumcrEx8cTFBREy5Yt0dXVlYVntMTK6ku2X15l5Ll79+5y4RUrVsTT05Njx47JhZuZmVG3bl2laQUGBqKlpSX7/OjRI+7duyfbXlnL0rhxY0JDQ5W2nsqQ2/1y4MAB6tSpI9u3uREfH8/Fixdp3bq1XEsGDQ0NunTpwqtXrxTylrVrL2S2osg4lg4dOkRKSgpdu3aVK6uuri61atWS7Tdzc3NcXV2ZOXMmv//+O9euXcvV+GH3798nJCSEjh07ynURdHJyomrVqnJx9+7di6mpKQEBAXJ5KVOmDDY2Np89htTU1OjRowc3b96UtbYJDw9nz549tGrVSjbeU0pKCtOmTcPLywttbW00NTXR1tbm4cOHSs+dVq1afbac8G3OydyeZ25ubpiZmTF69GgWLVok18Lxc3x9fXn06BEHDx5k7NixVKlShWPHjtG1a1cCAwNlLeXysr9yu+yRI0dITU3lhx9+UJnWuXPniImJoX///l80M+aXXkdsbGyoWLGiXFipUqUUuiFv2bKFatWqYWhoKLs/LFu2TO4YyFh39mOgY8eOCvnM7fFasWJFbty4Qf/+/Tl06BAxMTG52g4Z3dZVtfj8UmpqanLjNmpqauLm5oatrS1ly5aVhZubm2NlZaW0G3duzw1V1/YnT57QsWNHbGxs0NDQQEtLi1q1agFfdo9WxtramgEDBnDmzBmeP3/OqFGjZC3jXVxc5LrCBgQEKH3+UPaXGzkd319y7KekpLBq1Sq8vb1Vjn2ZcTy8fv061+kKgpA/xAQOgiAIwn+Cp6cnFSpUUAg3MTHh5cuXss9v3rxBkiSsra2VplOsWDEgvXtVw4YNCQkJYdy4cfj4+GBgYEBaWhqVK1f+bFe6rMzNzeU+Z8zyqCo86zg1HTt25NixY4wbNw5fX1+MjY1lP4KU5SFjprTsYTnNlhYZGUlaWprKZbPK7fZTxtLSEn19fZ4+faoyTlYZeVY2rpWdnZ3CjztV418p+y6jm9+IESMYMWKE0mWUdTnMkNv98u7duy8eTD4yMhJJklSWG1DYnxYWFnKfM8bjy8hLRnl9fX2VrjNjjDA1NTWOHTvGpEmTmDFjBsOHD8fc3JxOnToxdepUjIyMlC6fkR9Vx9CzZ89kn9+8eUNUVJTK2U5z2u4ZevTowcSJE1mxYgXly5dn3bp1JCUlyc3EO2zYMObPn8/o0aOpVasWZmZmqKur07t3b6XnTk7HT1bf4pzM7XlmYmLCqVOnmDp1KmPHjiUyMhJbW1v69OnDzz//LFcBrYyWlhZ+fn74+fkB6fuxdevW7N27lwMHDtC4ceM87a/cLpsxflxO50pu4ijzpdeR7OcSpJ9PWfft9u3badu2LW3atGHkyJHY2NigqanJwoULZZOIZKxbU1NTIU1lx0Ruj9cxY8ZgYGDA2rVrWbRoERoaGtSsWZPffvtN6T0wQ0YaWV+4ZNDU1FTZDTOja2X2Y0lfX18hLW1tbYX7Wka4svHXcntuKNt3cXFx1KhRA11dXaZMmYK7uzv6+vq8fPmSli1bftE9+nOio6OJiooiOjoaQLZvMpibm2NiYpIv67KwsFB6bYiIiJCtK7f2799PWFgYo0ePVhknYx/m5/YSBCF3RGWcIAiC8P+KpaUlampqnD59WukEAhlht2/f5saNG6xcuZJu3brJvn/06NE3y2t0dDR79+5lwoQJ/Pjjj7LwjPGKlAkLC1Ma5ubmpnI9ZmZmqKmpqVw2q9xuP2U0NDSoV68eBw4c4NWrV5/9UZ3xAzY0NFQhbkhICJaWlnJhX9KaIGPZMWPG0LJlS6XLqBrk/Ev2S5EiRT47nlV2GT/0QkNDFb7LaN2SveyfkxF/69atstadqjg5OckGzX/w4AGbN29m4sSJJCUlsWjRIqXLZOyr3B5DFhYWKmfNVVXhl5WDgwMNGzZk/fr1zJ49mxUrVuDm5kbNmjVlcdauXUvXrl2ZNm2a3LLv37/H1NRUIc3ctDj5Vufkl5xnPj4+bNy4EUmSuHnzJitXrmTSpEno6enJ5TE3LCwsGDJkCCdPnuT27ds0btw4T/srt8sWKVIEgFevXqkcTzJrnC/xpdeR3Fi7di0uLi5s2rRJ7rj5+PGjwrpTUlIIDw+Xq5BTdkzk9njV1NRk2LBhDBs2jKioKI4ePcrYsWPx8/Pj5cuXKmcZzSinsuPU2tpaZcuojHBVFcN5kdtzQ9m5efz4cUJCQjh58qSsNRzw2bHzcuvBgwds2rSJjRs3cvfuXdzc3OjQoQMdO3akRIkScnFXrVpFjx49cpWu9JmJEnx8fNiwYQMpKSly48ZlTORRsmTJXJdh2bJlaGtr06VLF5VxMo6HrzkPBEHIG9FNVRAEQfh/pWnTpkiSxOvXr6lQoYLCn4+PD5D58J/9h/DixYsV0szeCim/qKmpIUmSQh6WLl2qshXDunXr5D6fO3eO58+fU7t2bZXryZjJNfvscbGxsezZs0cubm63nypjxoxBkiT69OlDUlKSwvfJycmydWZ0S8o+UH9QUBDBwcHUq1cvx3XlxMPDg+LFi3Pjxg2l5ahQoYLKSoYv2S+NGjXixIkTOXZ5zc7AwIBKlSqxfft2uWMqLS2NtWvX4uDggLu7+xeUFvz8/NDU1OTx48cqy6uMu7s7P//8Mz4+Ply9elVl+h4eHtja2rJhwwa5H5vPnz/n3LlzcnGbNm1KeHg4qampSvOR25kee/XqRWRkJOPHj+f69ev06NFD7ke7mpqawj7at29fnrpjfatz8mvOMzU1NUqXLs0ff/yBqalpjvsrOTlZZcu8jO59Ga0w87K/crtsw4YN0dDQYOHChSrTqlq1KiYmJixatOiLZn4siOuImpoa2tracsdbWFiYwmyqGZMlZD8G1q9frzTNLz1eTU1Nad26NT/88AMRERFyLVCzy+gq//jxY4Xv6tevz+3bt5V2c968eTOGhoZUqlRJZdpf62vOjQxfco/Orbdv3/Lbb79RtmxZPDw8WLRoEQ0bNuTSpUs8fPiQSZMmKVTEQf52U23RogVxcXFs27ZNLnzVqlXY2dnlej+EhYWxf/9+mjdvrrS1Z4aM2Wu9vLxyla4gCPlHtIwTBEEQ/l+pVq0affv2pUePHly+fJmaNWtiYGBAaGgoZ86cwcfHh++//54SJUrg6urKjz/+iCRJmJubs2fPHo4cOaKQZsYP47lz59KtWze0tLTw8PDIVQufnBgbG1OzZk1mzpyJpaUlzs7OnDp1imXLlilt2QNw+fJlevfuTZs2bXj58iU//fQT9vb2cjOLKjN58mT8/f1p0KABw4cPJzU1ld9++w0DAwO5lhS53X6qZMxO279/f8qXL8/333+Pt7c3ycnJXLt2jb///puSJUsSEBCAh4cHffv25c8//0RdXZ1GjRrx7Nkzxo0bR9GiRRk6dOhXbdcMixcvplGjRvj5+dG9e3fs7e2JiIggODiYq1evsmXLFqXLfcl+mTRpEgcOHKBmzZqMHTsWHx8foqKiOHjwIMOGDVP6ww7g119/pUGDBtSpU4cRI0agra3NggULuH37Nhs2bPiicYMAnJ2dmTRpEj/99BNPnjzB398fMzMz3rx5w6VLlzAwMOCXX37h5s2bDBgwgDZt2lC8eHG0tbU5fvw4N2/ezLGVlbq6OpMnT6Z37960aNGCPn36EBUVxcSJExW6orVv355169bRuHFjBg8eTMWKFdHS0uLVq1ecOHGCZs2a0aJFi8+WKTAwEEtLS2bOnImGhoZcC1ZIrwhauXIlJUqUoFSpUly5coWZM2d+cTfHrL7VOZnb82zv3r0sWLCA5s2bU6xYMSRJYvv27URFRdGgQQOV6UdHR+Ps7EybNm2oX78+RYsWJS4ujpMnTzJ37lw8PT1lLUbzsr9yu6yzszNjx45l8uTJfPjwgQ4dOmBiYsLdu3d5//49v/zyC4aGhsyePZvevXtTv359+vTpg7W1NY8ePeLGjRv89ddfSvNQENeRpk2bsn37dvr370/r1q15+fIlkydPxtbWlocPH8riNWzYkJo1azJq1Cji4+OpUKECZ8+eZc2aNUrTzM3xGhAQQMmSJalQoQJFihTh+fPnzJkzBycnJ4oXL64yzw4ODhQrVowLFy4waNAgue8GDx7M6tWrqV27tuw6FRkZyaZNm9i6dSu///57nu9nynzt/QrSK2fNzMzo168fEyZMQEtLi3Xr1nHjxo2vzs/+/fuZPn06rVq1YtasWdSpU0euO6oqFhYWOVZ4fYlGjRrRoEEDvv/+e2JiYnBzc2PDhg0cPHiQtWvXoqGhIYvbq1cvVq1axePHjxVaPK9atYqUlBR69+6d4/ouXLgg6+osCMI39q1njBAEQRCE/JQxi1lQUJDS75s0aSI3S2GG5cuXS5UqVZIMDAwkPT09ydXVVeratat0+fJlWZy7d+9KDRo0kIyMjCQzMzOpTZs20osXL5TOgjdmzBjJzs5OUldXl5t9UdUsdYD0ww8/yIVlzKo5c+ZMWdirV6+kVq1aSWZmZpKRkZHk7+8v3b59W3JycpK6deumsB0OHz4sdenSRTI1NZX09PSkxo0bSw8fPvzMVky3e/duqVSpUpK2trbk6OgoTZ8+XeUsdLnZfjm5fv261K1bN8nR0VHS1taWDAwMpLJly0rjx4+X3r59K4uXmpoq/fbbb5K7u7ukpaUlWVpaSp07d5Zevnwpl16tWrUkb29vhfUo26ZZ3bhxQ2rbtq1kZWUlaWlpSTY2NlLdunWlRYsWyeIom1Ezt/tFktJnwOzZs6dkY2MjaWlpSXZ2dlLbtm2lN2/eyOUx62yFkiRJp0+flurWrSvbxpUrV5b27NkjF0fV8a9qFtCdO3dKderUkYyNjSUdHR3JyclJat26tXT06FFJkiTpzZs3Uvfu3aUSJUpIBgYGkqGhoVSqVCnpjz/+kFJSUpRuw6yWLl0qFS9eXNLW1pbc3d2l5cuXK8wUKknpMy/OmjVLKl26tKSrqysZGhpKJUqUkL777rtcH6+SJElDhw6VAKlx48YK30VGRkq9evWSrKysJH19fal69erS6dOnFWb8zNhWW7ZsUUgjL/v+S85JZdtIkj5/nt27d0/q0KGD5OrqKunp6UkmJiZSxYoVpZUrV+a43T5+/CjNmjVLatSokeTo6Cjp6OhIurq6kqenpzRq1CgpPDxcLn5u91f2bfsly0qSJK1evVry9fWVxStbtqzCebF//36pVq1akoGBgaSvry95eXlJv/32m+x7ZdesvF5HlO2f6dOnS87OzpKOjo7k6ekpLVmyROm6o6KipJ49e0qmpqaSvr6+1KBBA+nevXsK95HcHq+zZ8+WqlatKllaWsqu1b169ZKePXumkO/sxo0bJ5mZmUmJiYkK34WFhUnff/+95OjoKGlqakpGRkZS9erVlZ4X3bp1kwwMDBTCVW2/7PfBLzk3VKUpSZJ07tw5qUqVKpK+vr5UpEgRqXfv3tLVq1cVrqe5nU31/fv30sePHz8br6DFxsZKgwYNkmxsbCRtbW2pVKlS0oYNGxTiZcxqq2wmd3d3d8nZ2TnHmYclSZJq1KghBQQE5FfWBUH4AmqS9AXtvAVBEARB+FdauXIlPXr0ICgoKMdBvAVBEIT/n0JCQnBxcWH16tW0a9eusLMjFLLHjx9TvHhxDh06lGNLWkEQCoYYM04QBEEQBEEQBOE/zs7OjiFDhjB16lTS0tIKOztCIZsyZQr16tUTFXGCUEjEmHGCIAiCIAiCIAj/D/z888/o6+vz+vVrlTPXCv99KSkpuLq6MmbMmMLOiiD8vyW6qQqCIAiCIAiCIAiCIAjCNyK6qQqCIAiCIAiCIAiCIAj/av/88w8BAQHY2dmhpqbGzp07P7vMqVOnKF++PLq6uhQrVoxFixYpxNm2bRteXl7o6Ojg5eXFjh07CiD38kRlnCAIgiAIgiAIgiAIgvCvFh8fT+nSpfnrr79yFf/p06c0btyYGjVqcO3aNcaOHcugQYPYtm2bLM758+dp164dXbp04caNG3Tp0oW2bdty8eLFgioGILqpCoIgCIIgCIIgCIIgCP9D1NTU2LFjB82bN1cZZ/To0ezevZvg4GBZWL9+/bhx4wbnz58HoF27dsTExHDgwAFZHH9/f8zMzNiwYUOB5V+0jBMEQRAEQRAEQRAEQRC+uY8fPxITEyP39/Hjx3xJ+/z58zRs2FAuzM/Pj8uXL5OcnJxjnHPnzuVLHlQRs6kKgiAIgiAIgiAIgiD8R1Wb36+ws6BSg3c2/PLLL3JhEyZMYOLEiXlOOywsDGtra7kwa2trUlJSeP/+Pba2tirjhIWF5Xn9ORGVcYIgCP9i/+YbZ26d/WERIVFvCzsbeWJnasWUIysKOxt59nODHkQ2aFHY2cgTsyM7mH2q4LoMfCvDa3Vg9L4FhZ2NPPutSX9G7c3duC3/VjOaDmD37dOFnY08CyxZg07rJxZ2NvJkXceJnHx0pbCzkWe13coTHPaksLORZ542xVh8fmdhZyNPvqvSnLZrfi7sbOTZ5i5TGLJrTmFnI0/mNBvC6qD9hZ2NPOvq27iws/CfM2bMGIYNGyYXpqOjk2/pq6mpyX3OGKkta7iyONnD8puojBMEQRAEQRAEQRAEQRC+OR0dnXytfMvKxsZGoYXb27dv0dTUxMLCIsc42VvL5TcxZpwgCIIgCIIgCIIgCMJ/lNq/+F9BqlKlCkeOHJELO3z4MBUqVEBLSyvHOFWrVi3QvImWcYIgCIIgCIIgCIIgCMK/WlxcHI8ePZJ9fvr0KdevX8fc3BxHR0fGjBnD69evWb16NZA+c+pff/3FsGHD6NOnD+fPn2fZsmVys6QOHjyYmjVr8ttvv9GsWTN27drF0aNHOXPmTIGWRbSMEwRBEARBEARBEARBEP7VLl++TNmyZSlbtiwAw4YNo2zZsowfPx6A0NBQXrx4IYvv4uLC/v37OXnyJGXKlGHy5MnMmzePVq1ayeJUrVqVjRs3smLFCkqVKsXKlSvZtGkTlSpVKtCyiJZxgiAIgiAIgiAIgiAI/1HqBTwZwbdSu3Zt2QQMyqxcuVIhrFatWly9ejXHdFu3bk3r1q3zmr0vIlrGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPU/iPdVP9LRMs4QRAEQRAEQRAEQRAEQfhGRGWcIAiCIAiCIAiCIAiCIHwjopuqIAiCIAiCIAiCIAjCf9R/ZTbV/xLRMk4QBEEQBEEQBEEQBEEQvhFRGScIgiAIgiAIgiAIgiAI34jopioIgiAIgiAIgiAIgvAfpYbopvpvI1rGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPUxGyq/zr/8y3jnJ2dmTNnzjdNT01NjZ07d+ZpPRMnTqRMmTJ5SiO7kydPoqamRlRUVL6mK8jLvp1XrlyJqalpoeape/fuNG/evFDz8G8QHh6OlZUVz549K+ysyPnrr78IDAws7GwIgiAIgiAIgiAI/wKF1jIuICCADx8+cPToUYXvzp8/T9WqVbly5QrlypX7pvkKCgrCwMDgm65T+N/Wrl07GjduXNjZEIBff/2VgIAAnJ2dAXj27BkuLi5cu3ZNVvkdGxtLQEAAYWFh3L9/P8f0nj59irOzM+fOnaNGjRo0aNCAgwcPKsTbtm0bM2bM4N69e6SlpeHo6Ii/vz+zZ88GoE+fPkydOpUzZ85QvXr1fC3z1yht60bHsg0pYeWIpYEpP+5fyOmnNwolLzu37mDT2g2Eh4fj7OLMgKGDKFW2tMr4169eY8Gcv3j29BmWlha079KRwJbNlcY9fvgok8f9QrWa1Zky81dZ+I1r19m0dgMP7t0n/H04k2dMpXqtmvlarvv/XOXOsYt8iI7D1NaSCq3qY+1WVGncsAfPOTJvg0J44M99MLGxACAtNZXbh8/z+OJtEqJiMbE2p2yzOth7FcvXfOeFVvXK6DRpiEZxV9RNjInpN5TUx88KO1vcOXmJm4fOkRAdi5mdFVXa+WNb3Elp3JD7T9k7e5VCeNtffsDUtohC+KNLtzi+dBtOpT3w+6FDvuc9q8pO3tQqVhYjHX3exEWw585ZnkWGqoyvoa5O/eK+lLVzx0hHn+jEOI4/usLlV/dkcXQ1tfHzqERJm2LoaekQ+SGWvXfPcv/diwIrRxWnktRyLZdejtgIdt89zbOIz5WjIuXs3THSMSA6MY5jjy5z+WUwAN9VaYGrhb3CcsFvnrEiaG+BlOHcwROc3HWI2MgorIvaEdijPcW83JXGfRr8kH1rtvLudRhJSUmYWVpQuWFNagY0VBr/+plLrPvjb7x9y9D9xwEFkv8M9Yv70sSzKqZ6RryOfsuaKwdz3PdVnX1o6lkNGyMLEpITuRnyiPXXDhOX9AGAOq7lqO5SmqKmVgA8jQhl041jPAl/XWBlOLn3CIe37yU6Igo7R3va9u1K8ZIllMa9evYS/+w/yssnz0lJTsHWyZ6Ajq3wLi9/z0mIi2fn6s1cOxdEQlw8ltZFaN27Ez6+ZQusHPt37GXnxq1ERkRQ1NmJXgO+w7t0SaVxI8IjWDF/CY8fPCT0VQhNWgXSe2A/uTjn/znL1rWbCH0dQmpKCrYO9jRr25I6fvUKrAwA14+d5/KBU8RHxWJhb03tjgE4eLh8drnXD5+x+dfFWNpb02XyEFn45l8X8+r+E4X4LqVK0GJYj/zMukxD94oEetfAVM+QV1FvWXl5P/fePlcZv7pLaQK9qmNrbEFC0keuhzxkzZUDsvOiVrGy/FCtlcJyndZNJDktpUDKoEw151LUdSuPsa4BYbHh7Lh1iicRIUrjdizbkIqOXgrhoTHh/HZiTUFnVebykTNc2H+CuKgYitjb0KBzcxxLuH52uZcPnrBmynyKONjQZ9pIWfi9oJuc3X2EyDfvSUtNw8zaksqNa+NT3bcgiyEIKhVaZVyvXr1o2bIlz58/x8lJ/qF4+fLllClT5ptXxAEUKaL4sC38NyQlJaGtrZ3v6erp6aGnp5fv6RamgtpWuZGcnIyWltYXL/fhwweWLVvG/v37VcZ59+4djRo1AuDo0aNoamZeAn19fenbty99+vSRhWVcD5YvX87AgQNZunQpL168wNHRURbn6NGjtG/fnmnTphEYGIiamhp3797l2LFjsjg6Ojp07NiRP//8819RGaenpcOj8Ffsv3eOaY36fX6BAnL8yDHm/zGPIaOGUbKUD3t27Gb00JGs3LgGaxtrhfihISGMGTqKJs0C+OmXcdy+eYs5M37HxNSUWnVry8UNCw1j4bwFlCqjWLGX+CER1+Ju+DdtzIQff873cj27EszlbUep2M4Pq2L2PDhzneMLNhP4c28MzE1ULtdsXF+09DLPOx1Dfdn/r+/5hydBd6jSsRHG1haEBD/h1JLt+A/rjHlRm3wvw9dQ09Uh5c49kv45h8GwHwo7OwA8DrrN+U0Hqd6xCdZujgT/c5kD89bSduIPGFqYqlyu7eQBaOvqyD7rGim+pIsNj+Li1sPYFHdU+C6/lbJ1I8CrOjtv/8PzyDAqOXrRs2JTfj+1gajEOKXLdCrrh5GOHltvniA8IRoDbT001DM7RGioqdO7UiBxSR9Ye/UQ0YlxmOoa8jElucDKUdrWjQDvGuy8dYpnkaFUcvSmV8UAZp9cr7Icncv5Y6ijz5abxwmPj8ZQRw91tcxyrL68Hw11DdlnAy1dhtRsz83QRwVShutnL7F7xUZa9OmEcwk3Lhz+h2VT5zJiziTMilgoxNfW0aFao7rYOjmgravD0+CHbFu8Bm0dHSo3rCUXN/JtOHtXbcHFs3iB5D2ryo7edCnnz4rL+3jw7gV13SowqnZnRu2bT3hCtEJ89yKOfF+5BWuvHuLq6/uY6RvT07cpvSsFMuf0JgA8rZ05//w2qy+/JCkthaae1fixThdG75tP5IfYfC9D0D/n2bxkNR3798TV051/Dh7jzwm/MXHhTMytLBXiP7xzD8+yPjTv1g49A33OHT3F/Emz+PH3yTi6OgOQkpzCnJ9/xcjEmO/GDsbM0pzId+HoFOBz3pnjp1j+12K+G/oDJUp6cWjPfiaPHsefqxZTxNpKIX5yUjImpia06dye3Vt2KE3T0MiINp3bYe9YFE0tTS6fv8Sfv/2OqZkpZSuWL5By3L94g5Pr91Cva3Psijtx88RFdvy+nG7ThmFsYaZyuY8JHzj49yYcvVxJiJa/DgQM7EJaSqrs84f4eNaMm4u7r0+BlKGKU0m6V2jM0kt7uP/2BfXdfRlbtytDd89Tel54FHFiQNVWrLqyn8uv7mOuZ0yfyoH0q9KCWafWy+IlJCUyeNccuWW/ZUVcWTt3WvjUYuuN4zyNCKGqcym+q9KcX4+vIUrJubn91kn23D0j+6yups6oOp24EfLwm+X57oVrHFm7E//urSnq7sLV4+fYOPNvvvvtR0wsVR9PiQkf2L1oPS7exYmLli+bnoE+1QIbYGlnjYamBg+v3WHP3xvRNzbCtZTySvz/EnXRTfVfp9C6qTZt2hQrKytWrlwpF56QkMCmTZvo1asXAOfOnaNmzZro6elRtGhRBg0aRHx8vMp0X7x4QbNmzTA0NMTY2Ji2bdvy5s0buTi7d++mQoUK6OrqYmlpScuWLWXfZe+m+vDhQ2rWrImuri5eXl4cOXJEYZ2jR4/G3d0dfX19ihUrxrhx40hOln+YnT59OtbW1hgZGdGrVy8SExNz3D6pqan06tULFxcX9PT08PDwYO7cuTkuk114eDgdOnTAwcEBfX19fHx82LBBsfVFditXrsTR0RF9fX1atGjB7Nmz5bphKusSOWTIEGrXri37LEkSM2bMoFixYujp6VG6dGm2bt2a43oXLFhA8eLF0dXVxdramtatW+cpPWdnZ6ZMmUL37t0xMTGRVbJ87phau3YtFSpUwMjICBsbGzp27Mjbt29z3F5Zt4+zszNqamoKfxlyc7xk9/r1a9q1a4eZmRkWFhY0a9bsi7tinj17llq1aqGvr4+ZmRl+fn5ERkYCULt2bQYMGMCwYcOwtLSkQYMGPHv2DDU1Na5fvy5LIyoqCjU1NU6ePCkLu3PnDk2aNMHY2BgjIyNq1KjB48ePZd+vWLECT09PdHV1KVGiBAsWLJB9l7GOzZs3U7t2bXR1dVm7di1paWlMmjQJBwcHdHR0KFOmjNIWaVkdOHAATU1NqlSpovT7ly9fUqNGDYyMjDhx4gQODg7Y2NjI/jQ0NGT7PGtYfHw8mzdv5vvvv6dp06YK16y9e/dSvXp1Ro4ciYeHB+7u7jRv3pw///xTLl5gYCA7d+7kw4cPOZbjW7jw4g5LLu7m1JPrhZqPLRs20TiwCU2aBeDk4syAYYOwsrZi9zblPy52b9+FlY01A4YNwsnFmSbNAmgU0ITN6zbKxUtNTWXq+El079sTW3tbhXQqVa1Mr359qFmnlsJ3+eHu8Uu4VSlN8aqlMbGxxLd1ffTNjLl/+lqOy+ka6aNnbCj7U89ScfLk0h18GlbB3tsVI0tTPGqUw9bThbvHgwqkDF8j6egpEtduJuVq4bSyVObmkfN4VC9HiRrlMbMtQtV2jTA0M+Huqcs5LqdnZIC+iZHsL+u+AEhLS+P40m2UD6yDcQ4/CvJLDZfSBL0MJuhlMG/jItlz9yzRiXFUdlLecsa9SFGKWdixPGgfj8JfEfkhllfRb3keGSaLU6GoJ/paOqy+fIDnkWFEfYjjWWQYobHhBVeOYmUIenGXSy/vfirHGaI+xFHZWfkPa/cijhSzsGf5pT08ep9ejpdR8uX4kPyRuI8Jsr/iRYqSnJpSYJVx/+w5gm/d6lSqXxNrBzua9WyPqYUZ5w+dVBrfvpgjZWtUwsbRHnMrS8rXqoJHGW+eBsv/qE1LTWP93CU0bBeIuXXBvxhuVKIKJ59c5eTjq4TEvGft1YOEJ0RTv3gFpfHdLBx4Fx/FoQcXeRcfxYN3Lzj+6DLFzO1kcRac287Rh0E8jwojNOY9Sy/tRl1NDW+bgmnBe3THfqo1rE11vzrYOtrTrm9XzCwtOLVfsdcNQLu+XfFrHYCzuyvW9ra06NYeKzsbbl68Kotz9shJ4mPj6D9uGG5eHlhYFcHNuwRFiylvTZsfdm3eQf3GDWnQ1J+izo70HtgPyyJFOLhrn9L41rbW9B7Ujzr+9dE3VN6bx6dsKSrXrEZRZ0ds7e0IaN0c52Iu3L11p8DKceXQaUrW9MWnVkUs7Kyp0ykQI3MTbhy/kONyR1dup0TlMti6Km5jPUN9DEyNZH8vbj9ES1sL94qlCqQMTb2qcfzRFY4/usLrmHesuryf9wnRNPSoqDS+exEH3sZHceDeBd7FRXL/3XOOPgiiWLbWuhIS0Ylxcn/fUm23clx8focLL+7wJi6SHbdPEfUhjurOyrdjYkoSsR8TZH+Optboaely8UXBHT/ZXTxwkjK1K1G2TmUs7a1p2KUFxhamXD12NsflDizfgneVcti7OSt85+TlRgnfUljaW2NmbUlF/1pYFbXlpZLWl4LwLRRaZZympiZdu3Zl5cqVSJIkC9+yZQtJSUl06tSJW7du4efnR8uWLbl58yabNm3izJkzDBigvNm+JEk0b96ciIgITp06xZEjR3j8+DHt2rWTxdm3bx8tW7akSZMmXLt2jWPHjlGhgvIHj7S0NFq2bImGhgYXLlxg0aJFjB49WiGekZERK1eu5O7du8ydO5clS5bwxx9/yL7fvHkzEyZMYOrUqVy+fBlbW1u5CglV63ZwcGDz5s3cvXuX8ePHM3bsWDZv3pzjclklJiZSvnx59u7dy+3bt+nbty9dunTh4sWLKpe5ePEiPXv2pH///ly/fp06deowZcqUXK8zw88//8yKFStYuHAhd+7cYejQoXTu3JlTp04pjX/58mUGDRrEpEmTuH//PgcPHqRmzZpfnV6GmTNnUrJkSa5cucK4ceNydUwlJSUxefJkbty4wc6dO3n69Cndu3fPddmDgoIIDQ0lNDSUV69eUblyZWrUqCH7/nPHS3YJCQnUqVMHQ0ND/vnnH86cOYOhoSH+/v4kJSXlKk/Xr1+nXr16eHt7c/78ec6cOUNAQACpqZlvG1etWoWmpiZnz55l8eLFuUr39evXssrq48ePc+XKFXr27ElKSvrbviVLlvDTTz8xdepUgoODmTZtGuPGjWPVKvluYKNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLmzZv4+fkRGBjIw4eq38j9888/Ks/l+/fvU61aNUqUKMHBgwcxMjLKVfkANm3ahIeHBx4eHnTu3JkVK1bIXbNsbGy4c+cOt2/fzjGdChUqkJyczKVLl3K97v+y5ORkHtx7QIVK8g+4FSr6cvuW8m1599YdKlSU70rgW7ki94PvyY45gNXLVmJqZkqTwKb5n/HPSE1JJeJlGLaeznLhdp7OvHuac1etvb+tYOvYPzkybwNhD+S7xKSmpKCuJd+YXVNLk7ePX+ZLvv+LUlNSeP8iBAcv+S4tDl6uvPnMdts+eTFrRsxi7++rCLn3VOH7q3tPoWdkQInqBd+CX0NNHXuTIjx8J5/nB+9e4mSm2IIUwMvahVfRb6lVrCxj63VlRK2ONPGsimaWFmRe1s48j3pD85I1+Ll+d4bWbEcd13KoUTBvztPLYcWD9/LlePj+Jc5mylt3elm78CrqLbVdy/FT/e6MrN2ZJp7V5MqRnW9RL26EPCQ5Nf9bnaQkp/D68XPcy3jLhbuX9ub5/ccqlpL3+skLnt1/TDFv+W6tR7bswcDYiIr1a6hYMv9oqGvgYm7HrVD5PN8Ke0xxS+Xd6R++f4m5vjGl7dJb7RnrGlCxqBfXc2gpo6OhhYaaOvEf8/8lVEpyCi8ePcWrrHxlglc5Hx4HP8hVGmlpaSR+SMQgS8vXmxevUKxEcdYvWMGITv34pf8o9m/aSVpqWr7mP0NycjKPHzykjK/8taSMbznu3b6bL+uQJIkbV67x+uUrvEspr8DPq9SUFN48e41TSflWnU4l3Ql5pLqL5+3TQUS9i6BK8/q5Ws+t05fxqFQaLZ38772hoa5BMXM7bmSryL8Z8giPIspbQN9/9wILfWPK2qWfzya6BlR28ubaa/lhUHQ1tZnfYgQLW45kdJ3OOJspvigsKBpq6jiYWHHvnfx+uPf2Oc7muctHJSdvHrx7USAtXJVJTUkh9OkrXEp6yIUXK+nBq4fPVC5349RFIt+8p2ZLv8+uQ5Iknt5+QETYu1x1fRWEglCos6n27NmTmTNncvLkSerUqQOkdwdr2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y8+ZNnj59StGi6Q8Ta9aswdvbm6CgIHx9fZk6dSrt27fnl19+kS1XurTy8YmOHj1KcHAwz549w8HBAYBp06bJurll+PnnzG5Ozs7ODB8+nE2bNjFq1CgA5syZQ8+ePenduzcAU6ZM4ejRozm2jtPS0pLLo4uLC+fOnWPz5s20bdtW9UbNwt7enhEjRsg+Dxw4kIMHD7JlyxYqVaqkdJm5c+fi5+fHjz/+CIC7uzvnzp37bKukrOLj4/n99985fvy4rJVSsWLFOHPmDIsXL6ZWLcXWKC9evMDAwICmTZtiZGSEk5MTZcuW/er0MtStW1duG3Tt2vWzx1TPnj1l8YsVK8a8efOoWLEicXFxGBoafrb8Wbs6Dx48mNDQUIKCMluvfO54yW7jxo2oq6uzdOlSWQu7FStWYGpqysmTJ2nYUPm4M1nNmDGDChUqyFUCe3vL/5hwc3NjxowZss+5aXk3f/58TExM2Lhxo6xrqbt75g+MyZMnM3v2bFnrUxcXF+7evcvixYvp1q2bLN6QIUPkWqjOmjWL0aNH0759ewB+++03Tpw4wZw5c5g/f77SvDx79gw7Ozul33Xt2pWqVauybds2NDRU/4hTZtmyZXTu3BkAf39/4uLiOHbsGPXrpz84Dhw4kNOnT+Pj44OTkxOVK1emYcOGdOrUCR2dzG5uBgYGmJqa8uzZsxyP2f8voqOiSUtNxcxcvlWRmYUZkRcilC4TER6OmYV85Z2ZuRmpqalER0VhYWnJrRs32b97H0vXLi+wvOfkY1wCUpqk0K1R18iAxBjlrbr1TAyp3MEfc0cb0pJTeRJ0myN/bqDh4I5Yu6X/ALDzLEbw8SCs3YpiZGlG6P1nvLz5UK5iWJCX+Glf6BnL7ws9YwMSYpS3StA3MaJGlwCKONqSmpLKwws32PvHKgKGd8fW3RmAsEcvuH/mKq3GfZsu3vraumioq8vGH8oQ9zEBIx3lFSfmesY4m9mSkprK6ssHMdDWpXnJmuhp6bD15on0OPrGuOoZcT3kISsu7cPSwIRmJWuirqbOsUc5txz8GhndZOM+JsiFx35MwEhHX+kyFvrGOJvbkpKWyurL+zHQ1qN5yVroa+mw5eZxhfhFTa2wNbZg681jSlLLu/jYONLS0jAyMZYLNzQ1JjZKsQtbVlP6jCQuJpa0tFQatA2kUv3MF45P7z0k6NgZhs4eXyD5zs5IRx8NdXWiE+WvSdEf4jGxVf6c8/D9Sxac287Aaq3R0tBEU12DK6/useqy6qEh2pepT8SHWG6H5X+rk/RtmYaxqXzXfyNTE2Iic94XGY7s2EdS4kfK16gsC3sX9pbwN3epVLsaAyeO4m1IGBsWriQtNY2mHVvmkNrXiY2OIS01DdNs90ITM1MiIyLzlHZ8XDy9WncmOSkZdQ11vhvyg0KlX375EJuAlJaGgbH88aNvbEhCtPIKnMiw95zZcpB2Y/uhnotns9AnLwl/FUbDnq0/G/drGOvoo6GuodBqLToxHlNd5efFg3cvmXdmC0NqtpOdF0Evg1l+KXO8ypCYdyw4t50XUW/Q09KhcYkqTPbvw8i98wkrwJbIGQx00q+9sYmK115jXeXX3qyMdfTxtHJmzZUDBZVFBQmx8UhpaRiayL88NzAxIi4qRukyEWHvOLFpL13GDczxeEpM+MC8gRNJTUlBTV0d/+6tKebjoTL+f4mYTfXfp1Ar40qUKEHVqlVZvnw5derU4fHjx5w+fZrDhw8DcOXKFR49esS6detky0iSRFpaGk+fPsXT01MuveDgYIoWLSqriAPw8vLC1NSU4OBgfH19uX79utyYUDkJDg7G0dFRVhEHKO0Ct3XrVubMmcOjR4+Ii4sjJSUFY2NjuXT69ZN/aK9SpQonTpzIcf2LFi1i6dKlPH/+nA8fPpCUlPRFM7CmpqYyffp0Nm3axOvXr/n48SMfP37McYKK4OBgWrRooZDXL6mMu3v3LomJiTRo0EAuPCkpSVbBll2DBg1wcnKiWLFi+Pv74+/vT4sWLdDX1/+q9DJkbymVm2Pq2rVrTJw4kevXrxMREUFaWvrb0BcvXuDlpTiYqSp///03y5Yt4+zZs3IVdJ87XrLLyHP21lyJiYly3UFzcv36ddq0aZNjHFWtyj6Xbo0aNZSO8fbu3TtevnxJr1695M65lJQUTEzkH56zrjsmJoaQkBCqVasmF6datWrcuKG6+9uHDx8UKugzNGvWjB07drBt27ZcV2ZDeou6S5cusX37diC9RW+7du1Yvny5rDLOwMCAffv28fjxY06cOMGFCxcYPnw4c+fO5fz58+jrZz7o6OnpkZCQoHRdGednVlkr8/6rFB4MJCCHh4XsrXYyKqPU1NRIiE9g2oQpjBg7CpNCnuFYoXWRBKoaHJlYW2BinTnWVJFi9sRHxnD36CVZZZxv6/qc33CA3ZOXgBoYWZrhWrkUjy/cLKAS5Ey7bk30h2Te1+LGTibldnCh5OVzFI8Z1XFNbSwxtckca8ratShxkTHcOHwOW3dnkhI/cmLZdmp0CVQ6jlxBUqh4VVNDVVEyzquN14+SmJLegnpv8Dk6l/Nj5+1/SElLRQ014pM+sO3mSSQkXse8w1jXgJrFyhRIZVxmObLlFT5bjg3XDmeW4+4ZOpdvxI7bp0hJS5WL71vUi9CYcF5GqR5aIl8oXLdyOME/6T9lFB8TP/LiwRP2r92GpY0VZWtUIvFDIhvmLqP1910xMM59q+38IGXb8mo57Ax74yJ0/bTdb4Y+xlTPkI5lGtKzYlOWXNytEL+pZzWqOPkw5djKgh0bK/tm//yuAODSyXPsXbed/uOGyVXoSWkSRqbGdB7YG3UNdZyKFyMqIpLD2/YVSGVcJsWC5PWHs56+Hn8snc+HDx+4efU6yxcswdrOFp+yBdPFE1ByboCyHZKWlsb+xRuo0rwBZja565Z9+59LWDjYYFtM+UuI/KLsHqHqGmVvUoQevk3YevMEN0IeYqZnROfy/vSp3IxF59OH3Hj4/hUP37+SLXP/7Qt+a9KfRiUqsyJIeVfkb0FNLef7YYaKjt58SP6o0JL2m8h2PKU/Iio/nnbOX0ONVv5Y2CqOs5iVjq4OvaeOIOljEs/uPODoup2YFbHAycstP3MuCLlSqJVxkD6Rw4ABA5g/fz4rVqzAycmJevXSZ/pJS0vju+++Y9CgQQrLZR1APYMkKb9xZQ3/koH2lbU4yJ7+hQsXZC3t/Pz8ZK2EMmZR/FqbN29m6NChzJ49mypVqmBkZMTMmTNz7GKa3ezZs/njjz+YM2cOPj4+GBgYMGTIkBy7NuamlYW6urpCvKxjnmVUXu3btw97e/kxE1RVLhgZGXH16lVOnjzJ4cOHGT9+PBMnTiQoKOir0suQveLxc8dUfHw8DRs2pGHDhqxdu5YiRYrw4sUL/Pz8ct0lFODkyZMMHDiQDRs2yLW8/JrjJS0tjfLly8tVIGbI7YQjuTnus2+rjDGSsu7r7GPb5ZRuxn5bsmSJQkvM7K3TlFUQZz/XVJ3fGSwtLWVj4GU3duxYSpUqRadOnZAkSa7rek6WLVtGSkqK3HEnSRJaWlpERkZiZpb5JtvV1RVXV1d69+7NTz/9hLu7O5s2baJHj8zZviIiIlTus19//VWuNSzAhAkT4D86p4yJqQnqGhpEhMu3gouMiFRoLZfB3MJCIX5UZBQaGhoYm5jw7MlTwkJDGTviR9n30qfjsF7V2qzevA57B8VZF/OTjqE+aupqfIiVf7OeGBf/RZU3RZzteRKUOTaLrpE+dfq2IjU5hY/xH9AzMeTarpM5TkJQkJLOXyLlXmZXsLT3ylszFibdT/sieyu4xNh49I0/38o5g5WLA48upld6xryLIDY8ikPzMwfmzrhGLun3C+0mDcTYyjwfcp8pISmR1LQ0hdZjhtp6Cq3MMsR+jCc6MV5WgQXwLi4SdTU1THQNCU+IJvZjPKlSmlyFzNu4SIx1DdBQUydVyt9uefFJH9LLka0lhqGOvspyxCQmEJ0YJ1eOt5/KYapnyPv4zBZQWuqalLYrzuEHuX9O+lIGRuljOWZvBRcXHYuRqeqXaoBsHDhbJwdio2M4snk3ZWtUIjzsLZFv37Pi18xxRjOOqdFt+jLyzylY2uT84/JLxX5MIDUtTaG1j7GugcqxrAK9q/Pg/Qv2BZ8D4GXUG1ak7GNCg55suXFcbgKOxiWqEuhdg1+Pr+Zl1Bul6eWVoXH6WI7ZW8HFRkcrtJbLLuif86ye9zff/TgYz7Ly4xWamJuioaGBukbmSD62Re2JiYwiJTkFTa38/elkZGKMuoY6URHy19DoyGhMzUzzlLa6ujq2Duk9BooVd+XV85dsW7epQCrj9Iz0UVNXJz5bK7iE2Dj0TRSvt0kfPvLm6SvePg/h+NpdwKfjXpL4o+cYWo3ohWOWypHkj0ncv3iDqi0+3xvka8V8TCA1LRVTPfn8muRwXrQoWYv7717IJjt4EfWGxIt7mOzfh43XjxD1QXE5CYnH4a+xMVKc8KUgxH9Uce3V1idWxbU3q0qOXlx+FZzv94Sc6BsZoKaurtAKLiE6FgMTxZcWSR8+Evr0JWHPX3NoVfoL9IzjaVrX4XQc3Q9n7/Qu1Grq6ph/qgC2cbLn/es3nNtzVFTGCYWi0Cvj2rZty+DBg1m/fj2rVq2iT58+sh/c5cqV486dO7i55e7k8PLy4sWLF7x8+VLWOu7u3btER0fLWtGVKlWKY8eOyf1A/lx6ISEhsu5v58+fl4tz9uxZnJyc+Omnn2Rhz5/L98n39PTkwoULdO3aVRZ24ULOg5mePn2aqlWr0r9/f1lYbltBZU2jWbNmsi52aWlpPHz4UKFFYVZeXl4Kecv+uUiRIgrjY12/fl3WOsrLywsdHR1evHjxRd3xNDU1qV+/PvXr12fChAmYmppy/PhxGjRo8FXpKfO5Y+rWrVu8f/+e6dOny46hy5e/rIXAo0ePaNWqFWPHjpXregm5O16U5XnTpk1YWVnl2IIuJxnHffbKnpxkVBqFhobKWiBmncwhI91Vq1YpnQHV2toae3t7njx5QqdOnXK9XmNjY+zs7Dhz5ozcuIHnzp2jYkXlA+gClC1blrVr16r8/ueff0ZTU5NOnTqRlpZGhw4dcsxHSkoKq1evZvbs2QpdgVu1asW6detUjl/p7OyMvr6+3MQgjx8/JjExUWVrzjFjxjBs2DC5MB0dHY4sHZxjPv9XaWlp4V7CncuXgqhRO3M/X7kURLWaymec9fLx5vxp+YF7L1+8hIdnCTQ1NXF0cmT5evnxCJctWkJCQgIDhw3GSsmsdPlNQ1MD86I2hN57hmPpzG4Pofee4eCT+xkSI169Qc9EsfJOQ0sTfVMj0lJTeXH9Pk7lVF/PC9SHRNI+hH0+XiHS0NTE0tGO13cf41I2czu9Cn6Mc+ncz5oW/jJU9mPS1MaS1hO+l/s+aOdxkj8mUbWdPwbmX3eNzkmqlMbr6HcUL1KUO28yx68rbunA3TfPlC7zLCIMH1tXtDU0Sfo0dpqlgQlpUprsR+WzyDDK2BWXa5lmaWBKTGJ8gfzoSi/HW4pbFuVOlm6LxS3ly5XV88hQStm5oq2hRVJqsiyPaVKawo/cUnZuaKprcO1V7sYL+xqaWprYuzrx8MZdfCpldvd7cPMu3r5lcp2OJEmkJKfvFyt7W4b/IX9vPrh+Bx8TE2nWswOmFvlbuQuQmpbK04gQStq4cvnVPVm4j40rV7J8zkpbQ4u0bMeF7HOWF2VNPKvS3Lsmv51Yy9OIkHzPewZNLU0c3VwIvnaLslUzxxINvnab0pVVzxZ66eQ5Vs9dTO9RA/CpqHg/dvVyJ+jkOdLS0mQvJd+8DsXE3DTfK+Ig/V7o6l6c65evUblmZo+A65evUqm68gmpvpYkSZ+dMOxraWhqYu1sz4s7DylePnNcuud3HuJaVrFXiY6eDl2nDJULu3H8PC/uPiZgQGdMisgf9w8u3SQ1ORXPqjn3iMmL1LRUnkSEUMrWjaCXmS29S9m6EfRKectvHQ0thetlxnmR0/ibTmY2BVZRnV2qlMar6Ld4FHGUa93mYeXI7dCcu5C7WThQxNCMC1m63X4LGpqa2Lo48PT2A0r4ZlYeP739APfyiuMe6ujp0OdX+eF+rhw9y/O7D2k5qDumRXK+jmZcj//r1AtoTFjh6xV6ZZyhoSHt2rVj7NixREdHyw2UP3r0aCpXrswPP/xAnz59MDAwIDg4mCNHjijMVAhQv359WeuXOXPmkJKSQv/+/alVq5asG9yECROoV68erq6utG/fnpSUFA4cOKB0vK769evj4eFB165dmT17NjExMXKVKJA+ztaLFy/YuHEjvr6+7Nu3jx075GcCHDx4MN26daNChQpUr16ddevWcefOHYoVUz27lJubG6tXr+bQoUO4uLiwZs0agoKCcHFxyfW2dXNzY9u2bZw7dw4zMzN+//13wsLCcqyMGzRoEFWrVmXGjBk0b96cw4cPK3RRrVu3LjNnzmT16tVUqVKFtWvXcvv2bVklg5GRESNGjGDo0KGkpaVRvXp1YmJiOHfuHIaGhnJjhWXYu3cvT548oWbNmpiZmbF//37S0tLw8PD4qvRU+dwx5ejoiLa2Nn/++Sf9+vXj9u3bTJ48Odfpf/jwgYCAAMqUKUPfvn0JC8v8sWpjY5Or4yW7Tp06MXPmTJo1ayabYfTFixds376dkSNHynWjVmXMmDH4+PjQv39/+vXrh7a2NidOnKBNmzZYWloqXUZPT4/KlSszffp0nJ2def/+vdx4dwADBgzgzz//pH379owZMwYTExMuXLhAxYoV8fDwYOLEiQwaNAhjY2MaNWrEx48fuXz5MpGRkQoVT1mNHDmSCRMm4OrqSpkyZVixYgXXr19X2jowg5+fH2PGjFFosZbVjz/+iIaGBl26dCEtLS3HSsK9e/cSGRlJr169FLrVtm7dmmXLljFgwAAmTpxIQkICjRs3xsnJiaioKObNm0dycrJc1+rTp09TrFgxXF2VDxKro6Pzzbql6mnp4GCS2eTOztiS4pYOxCTG8yYub2PUfIk2Hdrx68QpeJQogbePN3t37ubNm7cEtGwOwJL5i3j37j1jJ6Yfd4Etm7Fzy3bmz/mTps0CuHPrDvt37+PnyRMA0NbRwcVV/rpqaJReiZI1/ENCAq9fZU6mEBoSyqMHDzEyNsbaRvmA+F/Cq25Fzq7eg4WjDUVc7Hlw9jrxETG410i/Rl7ddZIP0bFU6xoAQPCJIAzMTTC1tSQtNZUnl+7w4vp9avXOHDLg3bMQPkTFYuZgTUJULDf3n0GSJLzrKx//szCoGRmibmWJ2qfKA/VPrRDTIqKQIqMKJU+lGlThxPLtWDrZYe1alOB/rhAXEY1nrfRngkvbjxIfFUOdnukvTm4dPY+RhSlmdlakpqby6MJNnl4NpkG/9O7tmlpamNvLHyM6+und47OH56fTT2/Qrkw9XkW95UXUGyoW9cJUz4gLL9JfjPl7VMZY14DNN9LHSrse8oB6xSvQpnRdjjwIwkBbl8YlqnL55T1Z184Lz+9QzdmHAO/qnHt2C0sDU+q4lePss1sFV44n12lXtgGvot/yIjKMSo7emOoZcuH5p3KUqIKJrgGbrqfPhnntdXo52paux+EHFzHQ1qOJZzWCXgYrdFGtWNSLO2FPSEjOebb6vKoZ0ICN85bh4OqMk0cxLh75h6j3EVRpWBuA/Wu3ER0RRYdBvQA4e+A4ZpbmFPk0s/Ozew/5Z/dhqjWqC4CWthY2jvItdnUN0luwZA/PTwfunef7Ki15GhHCw/cvqetWHgt9E449TH8B2a50Pcz0jWVd7a69fkCvSgHUc6vAzdDHmOkZ0rm8P4/evyLq06DuTT2r0bpUHeaf28a7+ChMPrW8S0xJ4mNK7nsX5Fb9Fo1ZMXsBTsWLUaxEcU4fPE7Eu/fUbJzew2bHyo1EhUfQY3j6i+1LJ8+x4veFtOvbFReP4kRHRAGgraON3qdtXqtxA07sOcymxaupG+jH29dhHNi8i7oB/vme/wzN2rZgztRZuHkUx8Pbk8N7D/D+7Tv8AhsDsObvFYS/C2fIT5ljID95mF6pkvghkZioaJ48fIyWliZFndNnJN26dhNuHsWxsbclJTmFKxeCOHnoGP2GKX+JmB/K+9XgwN+bsHZ2wNbNkVsnLxEbHkXpOulj8p3ecoC4yBga9W2Hmro6lg7yE7foGRmiqaWpEA7pEz24lfNCT8Xssfll792zDKzWmifhr3nw7iX13StgaWDCkQfpYz93KNsAcz1j5p/bBsDlV/f4rkpzGrhXlHVT7VahMQ/fv5RNdtC6VB0evntJaGy4bMw4Z3Nbll3aU6Blyerko6t0Ku/Hy6g3PIsIpYqzD2Z6Rpx9lt7qu6lnNUz0DFh39bDccpWcvHkWEfpNxrbLrlKj2uxauA7bYkVxcHPm2olzRIdHUq5eVQBObNpLbGQ0gf06oaaujlVR+ckoDIwN0dDSlAs/u/soti5FMbO2IDUllcfXg7l1Jgj/7jkP5SMIBaXQK+MgvavqsmXLaNiwoVz301KlSnHq1Cl++uknatSogSRJuLq6quxipqamxs6dOxk4cCA1a9ZEXV0df39/uYq72rVrs2XLFiZPnsz06dMxNjaWa32Tlbq6Ojt27KBXr15UrFgRZ2dn5s2bh79/5g25WbNmDB06lAEDBvDx40eaNGnCuHHjmDhxoixOu3btePz4MaNHjyYxMZFWrVrx/fffc+jQIZXbpF+/fly/fp127dqhpqZGhw4d6N+/PwcO5H7wzHHjxvH06VP8/PzQ19enb9++NG/enOho1QPbVq5cmaVLlzJhwgQmTpxI/fr1+fnnn+UqpPz8/Bg3bhyjRo0iMTGRnj170rVrV27dynyAnzx5MlZWVvz66688efIEU1NTypUrx9ixY5Wu19TUlO3btzNx4kQSExMpXrw4GzZskE0y8KXpqfK5Y6pIkSKsXLmSsWPHMm/ePMqVK8esWbMIDAzMVfpv3rzh3r173Lt3T2EyAUmScnW8ZKevr88///zD6NGjadmyJbGxsdjb21OvXr1ct5Rzd3fn8OHDjB07looVK6Knp0elSpU+2zps+fLl9OzZkwoVKuDh4cGMGTPkWolZWFhw/PhxRo4cSa1atdDQ0KBMmTKy8d569+6Nvr4+M2fOZNSoURgYGODj4yObQEOVQYMGERMTw/Dhw3n79i1eXl7s3r2b4sVVtyzy8fGhQoUKbN68me+++05lvJEjR6KhoUG3bt1IS0ujS5cuSuMtW7aM+vXrK1TEQXrLuGnTpnH16lVq1arF/Pnz6dq1K2/evMHMzIyyZcty+PBhPDwyW0Zt2LAh1+NVFrQSRZz4q0VmZeig6ukPIfuDzzP1+CpVi+W7ug3qERMdw+rlK4l4H45zMRem/zEDG9v0B/Hw8HDevsl8c2xrZ8evf8xgwZw/2bV1BxaWlgwcPphadWt/0XrvB99naP/MruoL5vwFgF8Tf34c/5OqxXLNubwnH+M/cPPAWT7ExGNqa0nd/m0wNE8/lj7ExBEfkdn1Ii0llas7jpMQHYeGlmZ6/O/bYO+dWXGblpzC9b3/EPs+Ci0dbey9i1Gta1O09ZWPk1gYtKr4YjAyc7sa/pz+w/HD6o0krtlUKHly9S1JYnwCV/edIiE6DnM7KxoN7ITRp+69CdGxxEVk3hNTU1K5sPUw8VGxaGppYmZnhf/Ajjj6uKtYw7dxM/QR+to61CteAWMdA8LiwlkRtFfWOsxIR1+ua1VSagpLL+6mmXcNBlZvTULSR26GPuLQ/cwunNGJcSy9uIcAr2oMqdGOmMR4zj69ycnH1wqsHDdCH6GvrUv94r7p5YgNZ/mlvbLKHGMdfUz1MrsgJaUms+TCLpqVrMmgGm1JSErkZsgjDt6Xb7FvaWCKi4UdSy7sKrC8ZyhTrSIJsfEc3bKHmMhobBzt6DV2MGZW6V3OYiKjiXqf+cNVkiT2r9tOxNv3aGhoYGFdhEadWlK5YeFO5HPhxR0MdfRpUbIWpnqGvIp+y8yT63ifkH4+mOoZYaGfef/75+l1dLW0aehekU7l/EhISuTOm6dsvH5EFqd+cV+0NDQZUkP+OX3brZNsv3Uy38vgW7MK8TFx7NuwneiIKOycHBjwyygsrNJfNkVHRBHxLnNfnD54jLTUVDYsXMGGhStk4VXq1aT7sPQxMM2LWDB48o9sWbKWST/8iKmFGXUD/fFvnbvnwK9RvW4tYqJj2bR6PZHhETi6ODPut0lYfXo5FBEewbu38uMgDuudWan2+P5D/jl6kiI2VizZlH4P/5iYyOI/5hP+7j3aOtrYOxZl6M8jqV634I47j0ql+RCXwIVdx4iPjsHC3oYWw3pgbJn+gjQ+KpbY8KgvTjcy7B2vHzyj1Yhe+ZxjReef38ZIR59WpepgpmfEy6g3/Hp8De/jowAw0zPC0sBUFv/Uk2voaeng71GJruX9iU9K5E7YE9ZezfyNZ6CtS9/KzTHVMyQhOZGnEaFMOLSUx+E5z7Cen66FPEBfWxc/j8oY6+gTGhvO4gu7ZBWGxroGmOnJ/6bQ1dSmtK0b22+f+mb5zMqrclkSYuM5s+MQcVExFHGwpf3IvphYpr/wi4uKIfr9l71ATv6YxMGVW4mNiEZTWwsLOyuafd8Zr8oF1+JSEHKiJomp2ITPWLlyJUOGDCEqKqqwsyIIOdq/fz8jRozg9u3bsu4l/wa3b9+mXr16PHjwQGnlXk6qzf82MzYWpLM/LCKkoAdUL2B2plZMObLi8xH/5X5u0IPIBi0+H/FfzOzIDmaf2lDY2ciz4bU6MHrfgs9H/Jf7rUl/Ru39q7CzkSczmg5g9+3ThZ2NPAssWYNO6ycWdjbyZF3HiZx8dKWws5Fntd3KE1wAs8h+a542xVh8fmdhZyNPvqvSnLZrfv58xH+5zV2mMGTXnMLORp7MaTaE1UGqZ2D+X9HVt3FhZ+GrNFqquldSYTvQ+/fCzkKh+Fe0jBMEQcgPjRs35uHDh7x+/VpuVuXCFhISwurVq7+4Ik4QBEEQBEEQBEH47xGVcYIg/KcMHvzvm/Ag+wQQgiAIgiAIgiAIwv9f/55+XMK/Vvfu3UUXVUEQBEEQBEEQBEH4H6Smpv6v/fv/6v9vyQVBEARBEARBEARBEAThGxOVcYIgCIIgCIIgCIIgCILwjYgx4wRBEARBEARBEARBEP6j1NXUCjsLQjaiZZwgCIIgCIIgCIIgCIIgfCOiMk4QBEEQBEEQBEEQBEEQvhHRTVUQBEEQBEEQBEEQBOE/Sg3RTfXfRrSMEwRBEARBEARBEARBEIRvRFTGCYIgCIIgCIIgCIIgCMI3IrqpCoIgCIIgCIIgCIIg/EeJ2VT/fUTLOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6KbqiAIgiAIgiAIgiAIwn+Umuim+q8jWsYJgiAIgiAIgiAIgiAIwjciKuMEQRAEQRAEQRAEQRAE4RsR3VQFQRAEQRAEQRAEQRD+o0Q31X8f0TJOEARBEARBEARBEARBEL4RURknCIIgCIIgCIIgCIIgCN+ImiRJUmFnQhAEQRAEQRAEQRAEQch/rVaNLewsqLSt27TCzkKhEGPGCYIg/IuFRL0t7CzkmZ2pFdXm9yvsbOTJ2R8WEXvvQWFnI8+MSrgTc/REYWcjT4zr1+Hp+9eFnY08c7G0507o48LORp5527qyOmh/YWcjT7r6Nv7PHFOxT58VdjbyxMjFmdiQkMLORp4Z2dkRvWRVYWcjz0z6dONlZFhhZyNPiprZ8DYmvLCzkWdWxhY8ef+qsLORJ8UsHYh9+Kiws5FnRsXdCjsLwn+E6KYqCIIgCIIgCIIgCIIgCN+IaBknCIIgCIIgCIIgCILwHyVmU/33ES3jBEEQBEEQBEEQBEEQBOEbEZVxgiAIgiAIgiAIgiAIgvCNiG6qgiAIgiAIgiAIgiAI/1Hqopvqv45oGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0R0UxUEQRAEQRAEQRAEQfiPErOp/vuIlnGCIAiCIAiCIAiCIAiC8I2IyjhBEARBEARBEARBEARB+EZEN1VBEARBEARBEARBEIT/KDVEN9V/G9EyThAEQRAEQRAEQRAEQRC+EVEZJwiCIAiCIAiCIAiCIAjfiOimKgiCIAiCIAiCIAiC8B+lLmZT/dcRLeMEQRAEQRAEQRAEQRAE4RsRlXGCIAiCIAiCIAiCIAiC8I2IyjhBEP6TEhISmDx5Ms+fPy/srAiCIAiCIAiCIBQaNTW1f+3f/1eiMk74f2/lypWYmpp+k3XVrl2bIUOGfJN15acv3UbOzs7MmTOnwPKTGwMHDiQkJAQnJ6cvWu5/dR8JgiAIgiAIgiAI/xvEBA7C/4TP1Zh369aNlStXfpvM/D/Url07GjdunOv4QUFBGBgYFGCOcrZhwwbevHnDrl27vnjZ7du3o6WlVQC5yn87t+5g09oNhIeH4+zizIChgyhVtrTK+NevXmPBnL949vQZlpYWtO/SkcCWzZXGPX74KJPH/UK1mtWZMvNXWfiNa9fZtHYDD+7dJ/x9OJNnTKV6rZr5XbTPKm3rRseyDSlh5YilgSk/7l/I6ac3vnk+ciJJEn9v3MCOQ4eIjY/D292d0d/1w9VRdQXx4xfPWbR+HfcePyb07VuG9epNx8BmcnEWb1jPko0b5MIsTE05tGpNgZRhyf697Dh7htiEBLydnRnVtgOudnYqlzl+/RorDx3g5bt3pKSmUrSIFZ3r1adxpcqyOFcfPmTN0cPce/mC99HRzOzbj9qly+RLnvds38XW9ZuICA/HycWZfoN+oGSZUirj37x2g7//XMDzp8+wsLSkTcd2NGkRKBdnx6at7N2xm3dv3mJsakKN2jXp0a8P2jraAGxcvZ6zp07z6vkLtHV08PLxpuf3fSjq5JgvZQI4sHMvuzZuIzI8gqIuTvQc0BevUiWVxo0Ij2DVgiU8fvCI0FchNG4ZSK+B36lM+8yxU/w++TcqVqvMj1PH51uelbl85AwX9p8gLiqGIvY2NOjcHMcSrp9d7uWDJ6yZMp8iDjb0mTZSFn4v6CZndx8h8s170lLTMLO2pHLj2vhU9823POf3MTVywFBuXVO8XvlWqcTkWenX24T4BFYvWc65f84QFRmFq7sb/YYMwMOzRL6VS5Ik/l67lh0H9hMbF4e3RwlG//ADrs7OKpd5/OwZi9as5t7DR4S+fcOw776jY4uWcnGu3rrFmq1bCH74kPcREcwaP4HaVavmX55XrWLH3r3Exsbi7enJ6MGDcXVxyXG5Y6dOsWjFCl6FhOBgZ0f/Xr2oU6OG7PuA9u0JffNGYbk2zZox+tMLuuP//MP2PXsIfvCA6JgY1i1ZgoebW76USxlJklhy7jQ7b14n9mMi3jZ2jKzvh6tlEZXL7L19k0kH9yqEnx4yCh3N/P3Zt2vrDras20h4eATOLs70HzoAnzKqn0FuXL3Oornzefb0GRaWFrTr3IGAlpn3t0N7DzBzynSF5fafOoy2jg4AnZq3401YmEKcwFbNGTRy6FeVY8eWbWxYu57w9+E4F3Nh0LDBlC5bRmX8a1eu8deceTx78hQLS0s6du1E81YtZN8/ffyEZYuXcv/ePcJCwxg4dDBtO7aTS6NNYEvCQhXL0aJ1S4aNHvHFZdi7fRdb12+WXaO+G9T/s9eoJX8ulF2jWndsR5MWAXJxdmzaxr4s973qtWvSo19v2X2vW6uOvA1TPGeatgzkh+GDv7gMqkiSxN/r17Pj0MH065S7B6O//x7XHF62P37+nEXr1nLv0aP0Z6k+fejYrLnK+Cs2b2b+6lV0CGzG8L598y3vgvA5ojJO+J8QGhoq+/+mTZsYP3489+/fl4Xp6ekVRrb+56WmpqKmpoa6es6NZPX09L5oGxcpovpB8Vvo0KEDHTp0+Kplzc3N8zk3BeP4kWPM/2MeQ0YNo2QpH/bs2M3ooSNZuXEN1jbWCvFDQ0IYM3QUTZoF8NMv47h98xZzZvyOiakpterWlosbFhrGwnkLKKXkoTrxQyKuxd3wb9qYCT/+XFDF+yw9LR0ehb9i/71zTGvUr9DykZNV27exftdOJgwegqOdPcs2b+KH8ePZtmAhBvr6SpdJ/PgRB2sb6letzu/Ll6pMu5ijIwsmTZF91vjMOfy1Vh85zPrjxxjfpRuOVlYsP3iAAX/NZev4XzDQ1VW6jIm+Pj38GuFsY4OWhianb99k0trVmBkZUcXLG4APSR9xd3AgoEpVRi9ZnG/5PXX0BIvnzueH4YPxLlWS/Tv38POIH/l77QqslJwXYSGhjBsxhkYBjRk1fix3bt5m/uy5mJiaUr1OeiXz8UNHWb5oCcPGjMLTx5vXL14ye+oMAL4b/AMAt67fIKBlM9w9PUhLTWPl38v4aego/l63At18uD+dOX6KFX/9TZ8h/fH08eLQ7gNMGTWeuasWUcTaSiF+SlIyxqYmtOrcnr1bduSY9tuwN6xcuBSvUt55zufn3L1wjSNrd+LfvTVF3V24evwcG2f+zXe//YiJpZnK5RITPrB70XpcvIsTFx0r952egT7VAhtgaWeNhqYGD6/dYc/fG9E3NsK1VN4rrgrimBo/7ReSk1Nky8RER9O/ex9q1KklC5szfRbPnjxl5PgxWFhacuzQEcYMHsnf65ZjmU/32FVbNrN+x3YmDBuOo4MDyzas54exY9i2dFnO1ygbW+rXqMnvi5Wfux8SEynuUoyABg0ZNWVyvuRVlueNG1m/ZQsTRo/GsWhRlq1Zww8jR7Jt9WqVeb555w5jJ02iX8+e1KlRgxOnT/PjL7+wbN48Snp5AbB60SJS09Jkyzx++pQfRoygXu3acuUqXbIk9WvXZsqsWflaLmVWX7rAhiuXGO/fFEczc5ZfOMvALRvY0us7DLR1VC5noK3Dll7yle/5XRF34shxFs75i0Ejh+JdqiT7du5hzNDRLNuwSsUzSCg/DRtN42ZN+XHiT9y5eZt5M//AxNSUmnUzj3t9AwNWbpZ/sZRREQcwf8Vi0tJSZZ+fPn7K6EHDqZntOSa3jh0+yrzf5zJs9Ah8Spdi9/adjBw8nDWb12FtY6MQP+R1CKOGDCegeSDjJk3g1o2b/P7bLEzNTKldtw4AiYmJ2NrbUbt+Hf78fZ7S9f69ahlpqZnH29PHTxg6YDB16tf94jKkX6MW8MPwQXiVKsn+nXsZN2IMi9cuV3mNGj9iLP4BjRk5fgx3b95m/ux5mJiayN33VixawtAxI/Hy8ebVi1f8Lrvv9Qdg7tIFpGU5Z54/ecrYIaPkrmP5YdW2razfuYMJQ4emP0tt2sQP435m26LFn7lO2VC/WnV+X7okx/TvPHjAjkMHKe6cc4X+f4GYTfXfR3RTFf4n2NjYyP5MTExQU1OTC/vnn38oX748urq6FCtWjF9++YWUlMwH3aioKPr27Yu1tTW6urqULFmSvXvl3xweOnQIT09PDA0N8ff3l6sATEtLY9KkSTg4OKCjo0OZMmU4ePBgjnmOj4+na9euGBoaYmtry+zZsxXiJCUlMWrUKOzt7TEwMKBSpUqcPHkyx3QnTpyIo6MjOjo62NnZMWjQoFynl9HddO/evXh5eaGjo8OSJUvQ1dUlKipKbj2DBg2iVq1acstltXv3bipUqICuri6Wlpa0bJn5Zjx7N9UXL17QrFkzDA0NMTY2pm3btrxR8gY6w7Nnz1BTU2Pz5s3UqFEDPT09fH19efDgAUFBQVSoUEG2n969eydbLigoiAYNGmBpaYmJiQm1atXi6tWrsu9PnjyJtrY2p0+floXNnj0bS0tL2f7O3k3V2dmZKVOmyPalk5MTu3bt4t27d7Iy+fj4cPnyZbkybNu2DW9vb3R0dHB2dla6//Niy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35D+/d23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18faubzw9aXuvDiDksu7ubUk+uFmg9VJEliw57d9GjTlrpVquLm5MQvQ4aSmPSRg/+cUrmcd3F3BvfoiV/Nmmjn0EJTU0MDSzMz2Z+ZiUnBlOHEMXr4NaJumbK42dkzsUs3EpOSOBR0SeVy5d09qFOmLC42tjgUKUKHOvVws7fn+uPHsjjVvEvyfUAz6pYpm6953r5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGCb9/B26ckdRrWw8bWhvKVfKndoC4P7j2QxZn6+280bOKPczEXihV3ZdjYUbx985aH9x8oW+0X27NlB/UaN6RBU38cnBzpNfA7LKyKcGjXPqXxrWyt6TWwH3X86qGfQyvl1NRU5kyZSfsenbG2VTzf89vFAycpU7sSZetUxtLemoZdWmBsYcrVY2dzXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW17ef5IveS6IY8rI2BhzC3PZ37WgK+jq6MoqJT5+/MiZU//Q64fv8ClTGjsHe7r06o6NrY3K9X4pSZLYsGMnPdq3p2716rg5O/PL8BEkfvzIwRMnVC7n7eHB4D598KtdW+U1qpqvL/27d6du9er5kle5PG/dSo/OnalbsyZuLi788uOPJCYmcvDoUZXLbdi6lUoVKtCjUyecHR3p0akTFcuVY/22bbI4ZqamWJqby/7OnD+Pg50d5UtnvpRq0rAhfbp1o2L58vlaLmUkSWLj1Ut0r1SNOu4lcC1ixYRGASSmJHMo+E6Oy6qpgaWBodxfftu2YTP+AY1p3KwpTi7O9B86ECurIuzZrrxHwt7tu7CytqL/0IE4uTjTuFlT/AMas2W9/DOImpoa5hYWcn9ZmZqZyn138ex57BzsKV2uzFeVY9P6jTRpFkBA80CcXZwZNHwIVtZW7Niq/Flq1/YdWNtYM2j4EJxdnAloHkiTwKZsXLteFsfT24sfBg+gfsMGaGsrP0fMzMywsLSQ/Z07cxZ7B3vKlPvye+KOTVtp2LQR/rJr1A8UsbJi3449SuNnXqN+wNHZCf/AJjRs4s+2LNeoe7fv4vXpvmdta0P5ShWo3aAOD+9lNoRI3xeZ17GLZy9ga2+HTw49NL6UJEls2LWLHu3aUbdqtfTr1LBh6depUzk8S7m7M7hnL/xq1crxWSrhwwfGzZrJTwMHYmSY/+eJIHyOqIwT/ucdOnSIzp07M2jQIO7evcvixYtZuXIlU6dOBdIr0ho1asS5c+dYu3Ytd+/eZfr06WhoaMjSSEhIYNasWaxZs4Z//vmHFy9eMGJEZjPxuXPnMnv2bGbNmsXNmzfx8/MjMDCQhw8fqszXyJEjOXHiBDt27ODw4cOcPHmSK1euyMXp0aMHZ8+eZePGjdy8eZM2bdrg7++vMt2tW7fyxx9/sHjxYh4+fMjOnTvx8fH5ovQSEhL49ddfWbp0KXfu3KFz586YmpqyLctDaWpqKps3b6ZTp05K87Fv3z5atmxJkyZNuHbtGseOHaNChQpK40qSRPPmzYmIiODUqVMcOXKEx48f065dO6Xxs5owYQI///wzV69eRVNTkw4dOjBq1Cjmzp3L6dOnefz4MePHZ3apiomJoWvXrpw+fZrz589TrFgxGjduTGxsekuKjIq2Ll26EB0dzY0bN/jpp59YsmQJtjn8EP3jjz+oVq0a165do0mTJnTp0oWuXbvSuXNnrl69ipubG127dkWSJACuXLlC27Ztad++Pbdu3WLixImMGzcu37pSJycn8+DeAypUqigXXqGiL7dv3Va6zN1bd6hQUb7blm/litwPvidXcb162UpMzUxpEtg0X/L6/9XrN28Ij4ykctnMB2ttLS3KeZfk5r17eU7/RUgI/t27EdinF2NmzuCVkm47efU6/D3hMTFU9vSUhWlraVHOrTg3n+auokOSJC7du8fzN28oV4DduSD9vHh4/wHlKspfi8pVrEDwbeU/XoNv31GIX75SBR7euy87L7xL+/Dw/gPu3w0GIPR1CEHnL1KxaiWVeUmIjwfSK13yKjk5mcf3H1Hat5xceBnfsty7E5yntLes3oCxqQn1m/jlKZ3cSE1JIfTpK1xKesiFFyvpwauHz1Qud+PURSLfvKdmy8/nUZIknt5+QETYu1x1ff2cgjqmsju09wC16teRtaJMTUklLTUNbW1tuXjaOjrcuan8Gv+lXoeFER4ZQeVymRVL2tralPPx4Wbw3XxZR357HRpKeEQElbM8b2hra1OudGlu3lFdQXXz7l0qZXtGqezrq3KZ5ORk9h85QmCjRoU2sHhIdBTh8fFUztJaR1tTk3IOjtx8/TrHZT8kJRG4+C+aLvqTods3c/9N/t4fkpOTeXD/ARUqyT9TlK/ky11VzyC371A+W/wKlXx5ECx/Xnz48IGOzdvSPqA1Pw3/MccXGsnJyRw9eAT/pl+3n9Kfpe5TMduzlG+lity+eUvpMndu3cY3W/yKlStx7+49led3bvJx+MAhGgc2/eJyqL5GleeuimvUvdt3KVdRvkK5XCVfHt57ICuDV+mSPLr/gPt3059X0u97l6hYtbJCehn5OHH4KA2b+OfrOfP6TdinZ6nM+5+2lhblSpbkZnDe7n8Avy1cSDVfXyrl84tBQcgt0U1V+J83depUfvzxR7p16wZAsWLFmDx5MqNGjWLChAkcPXqUS5cuERwcjLu7uyxOVsnJySxatAhX1/SH9wEDBjBp0iTZ97NmzWL06NG0b98egN9++40TJ04wZ84c5s+fr5CnuLg4li1bxurVq2nQoAEAq1atwsHBQRbn8ePHbNiwgVevXmH3afylESNGcPDgQVasWMG0adMU0n3x4gU2NjbUr18fLS0tHB0dqVix4hell5yczIIFCyid5W1vu3btWL9+Pb169QLg2LFjREZG0qZNG5XbvH379vzyyy+ysKzpZXX06FFu3rzJ06dPKVq0KABr1qzB29uboKAgfH1Vj+szYsQI/PzSf4ANHjyYDh06cOzYMapVqwZAr1695Cq46tWrJ7f80qVLMTU15dSpUzRtml65NGXKFI4ePUrfvn25c+cOXbp0oUWLFuSkcePGfPddepeP8ePHs3DhQnx9fWXbZ/To0VSpUoU3b95gY2PD77//Tr169Rg3bhwA7u7u3L17l5kzZ9K9e/cc15Ub0VHRpKWmYmYu363LzMKMyAsRSpeJCA/HzEL+AdLM3IzU1FSio6KwsLTk1o2b7N+9j6Vrl+c5j//fhUdGAmBhYioXbmFqSujbt3lKu6S7O78MGYqTnT3hUVEs27KJXqNHsunP+ZjmQ+VPhvCYGADMjeTTNDc2JixC+XGWIe7DBxqP/ZGklGQ01NUZ3a4DlTy98i1vysRERaePGZb9vDAzIyJceX4jIyIxM8sWX3ZeRGNhaUHt+nWJjoxi+PeDkSSJ1NRUmrYIpF2XjkrTlCSJxfMW4F3KB+diee/2EhsdQ1paGqZmpnLhJmZmREVEfnW6wbfucHTfIX5f+lcec5g7CbHxSGlpGJoYyYUbmBgRFxWjdJmIsHec2LSXLuMGop7lBVp2iQkfmDdwIqkpKaipq+PfvTXFfDxUxs+tgjqmsrp/N5hnT54ydEzmC0B9A308S3qxfuUaHJ0cMTU34+TR49y/G4ydg32eywUQHpmef4tsebUwMyP0Td6uUQUlPCKnPKtubR8eEaF0mXAV17GTZ84QFxdHgL9/HnP89cI/VeibZ2vZam5gQGhMtMrlnMwtGN8oAFfLIsQnfWTTlSB6b1jNum69cTTLn2E4Mp9B5NMzM1d9XkSERyieR+bmcudFUWdHRv38Iy5uxUiIj2f7pm0M6TuAxWuW4+DooJDm2VOniYuLo2GTRl9ZjihSlZXDwlxlOcLDI6hokb3c6eWIiorC0tLyi/Nx+uQ/xMXF0bhp7sdmzqDqGmVqZkakymtUBKYqrlExUdGYy+570YzIct9r0iKQtl2UDwFz/p+zxMXF0aBx/r7YkT1LZeudk/4s9U7JErl36NQp7j1+xOo/5uQpnf8laohuqv82ojJO+J935coVgoKCZC3hIL1lV2JiIgkJCVy/fh0HBwdZRZwy+vr6soo4AFtbW95++sEcExNDSEiIrAIoQ7Vq1bhxQ/mA8Y8fPyYpKYkqVarIwszNzfHwyPxxcPXqVSRJUsjXx48fscjWLD9DmzZtmDNnDsWKFcPf35/GjRsTEBCApqZmrtPT1tamVCn5QV07depElSpVCAkJwc7OjnXr1tG4cWOFHxQZrl+/Tp8+fZR+l11wcDBFixaVVcQBeHl5YWpqSnBwcI6VcVnzaW2dPu5F1paA1tbWsv0EEB4ezpQpUzh58iRv374lNTWVhIQEXrx4IVf+tWvXUqpUKZycnHI162tu8gHw9u1bbGxsCA4Oplkz+UH3q1Wrxpw5c0hNTZVrlZnh48ePfPz4US5MR0f1mDCgZGITifT+KariZ7sJZ7TkU1NTIyE+gWkTpjBi7ChMvtHswv8lB06eZNrCzIr5OePSW2xm30eSJOX5rXG18plvwN2AUiVK0Py7Puw9cZzOOQxQ/DkHLl3k1w2ZXW3+6J8+HpqyMnyOvo4O68b8RMLHjwTdv8cf27dib2lJefe8V5B8Vvb88pltrlC+jOD08BtXr7Nx9Tp+GD6YEt6ehLx6zaK58zFbsYZOPbooJDf/93k8ffyE2QuVjxX0tRTPd+mrH6w/JCQwd+os+o8chLFp/ndxzpHC/lE+SVNaWho756+hRit/LGwVx8XLSkdXh95TR5D0MYlndx5wdN1OzIpY4OSVT60x8/mYyurg3gM4F3PBw8tTLnzkuDH88etMOjVvi7qGOm7uxandoB6PH6hukZ+TA8ePM23eXNnnOZPSx3LLnqP0a9RXrSLfHThyhGm//y77POfX9MktFK5JSsIUKLsWq4i6a/9+qlaqRJGvqFj5Wgfv3ubXIwdkn/9o2RZQdt/O+Qe1j509PnaZFbal7YvSZfUyNl+9zIh6DfM1z0ouSV94XkhywV4lvfEqmTl2pXcpH77v1oedW7YxQMmEAAf27Kdi5YpYFsnbflLI8mfOAYV9gqQ0PLf27t5DpSqV8zQWpPLHwRyeB1Xd1z+F37x6nU2r1/HD8EF4eHsS8iqExXPns36FOR2V3PcO7T1AhcoVscjjvjhw4gTT5me+IJozYaKK/Ob4uPtZYe/eMXvJ3/w1aTI62VogC8K3JCrjhP95aWlp/PLLL3JjlmXQ1dXN1cQD2WfPVFNTU/jB+SU/qnPzYzUtLQ0NDQ2uXLmiUDljqGLcgqJFi3L//n2OHDnC0aNH6d+/PzNnzuTUqVO5Tk9PT08h3xUrVsTV1ZWNGzfy/fffs2PHDlasWKEy718ymYOq7ZSbSoms+yUjbvawrIPH9ujRg/DwcObOnYuTkxM6Ojr4+PiQlJQkl+65c+cAiIiIICIi4rMzv+YmH4AsL8rK9rlj4tdff5VraQjp3XT7DumvENfE1AR1DQ2FN7eREZEKb0czmFtYKMSPioxCQ0MDYxMTnj15SlhoKGNH/JiZ50/lqVe1Nqs3r8M+n1pk/BfVrFiRkh6ZFeFJyckAvI+KxDLLW/eI6GjM87myU09XF1cnZ16GhOQpnZqlSlMyS5eopE/dVcJjorHMMiZdZGwsFp9pgaeurk5Rq/QKFI+iRXn2JoyVhw8VaGWcsakJ6hrqCq0BoiKjVJ4XZuZmREZkjx/56bxIL+PqJSuo69eARoFNAHBxLUZiYiLzfvudDt06yU2As+D3eVw4c45Z8+dQxCp/Btk3MjFGXV2dyGyt4KKjojAxN/2qNMNeh/I27A3TxmReczKuUa3rNuWvNUuwUTJmZF7oGxmgpq6u0AouIToWg2yt5QCSPnwk9OlLwp6/5tCq7Zl5lCSmdR1Ox9H9cPYuDoCaujrmNunb28bJnvev33Buz9E8V8YV1DGVITExkVNHT9C1d3eFdOwc7Jk5fw6JHz4QH5+AhaUF08ZNwtpWcVD53KhZuTIlS2Sef0lJn65RkZFYZnlhFxEVhbmKF3HfWs1q1WQTLACye/n7iAj5PEdG5phnC3NzhVZwEVFRSidsCg0L49LVq8zIdj8uaDXciuNtmzlLdVJq+iQF4fFxWGZ5hotMiMdcP/ez1aurqeFlY8fLyJxbM38JVc8gUZE5PYOYKzmPImXPIMqoq6vj7unB65evFL57ExrGtaArTJj+9ROEmJiaoqHyWUp5K0ILC3MiwsPlwqIi0sth8hUvNsJCQ7ly6TJTZij2hsmNjGtURHi2+0NkJKYqr1HmSq5RUUrve/5Z7nsfEz8w77c/aJ/tvvcm7A3XL1/l52kTv6oMWdWsVImSWRouyJ6lIrM/S0Vhbvr116l7jx4RERVFlyGZlbypaWlcu3ObzXv3cG7HTqUvzgUhv4nKOOF/Xrly5bh//z5uKsYjKlWqFK9eveLBgwc5to5TxdjYGDs7O86cOUPNmjVl4efOnZN1Ec3Ozc0NLS0tLly4gKOjIwCRkZE8ePBANilC2bJlSU1N5e3bt9SoUSPX+dHT0yMwMJDAwEB++OEHSpQowa1bt746vQwdO3Zk3bp1ODg4oK6uTpMmTVTGLVWqFMeOHaNHjx6fTdfLy4sXL17w8uVLWeu4u3fvEh0djaen52eW/jInTpxg4cKFsv30/Plz3r9/Lxfn8ePHDB06lCVLlrB582a6du3KsWPHPjuj7Jfw8vLizJkzcmHnzp3D3d1d5c19zJgxDBs2TC5MR0eH8A+K3VG0tLRwL+HO5UtB1KideUxeuRREtZrKB8z28vHm/Gn5QdIvX7yEh2cJNDU1cXRyZPn6VXLfL1u0hISEBAYOG4yVkhkbhUwG+vpys3pJkoSFmRkXr1+nRLH0VrfJyclcvXObgV275eu6k5KTefbqJWW98tYN1EBXV26GVEmSsDA25uK9YDyKpl/HklNSuProIQOb5dy1OztJkkhKSc5T/j5HS0uL4h7uXAu6QrVamdfAa0FXqFy9qtJlPEt6c/Hsebmwq5cuU7yEB5qfZh/8+DFR4fqgrq6OJEmyCixJkljw+zzO/XOGGX/9gY1d/lVkaWlp4erhxo3L16hcI7McNy5fo2I15eP3fI69Y1H+WL5ALmzDstV8+PCBngO+w8Iq/1sEaWhqYuviwNPbDyjhm9na+OntB7iXL6kQX0dPhz6/jpILu3L0LM/vPqTloO6YFsm5y11K8teN35RVQR1TGf45dpLk5CTq+tVXmQddPT109fSIjYnlyqUgevX/TmXcnCi/Rplz8dpVSnx6fkpOTubqrVsM7Nnrq9aR35Tm2dyci5cvU6J4ekVscnIyV2/cYGDfvirTKeXlxcUrV+iUZeiNi5cvU8pbcQbh3QcPYmZqSvUsPRu+BQNtHbkZUiVJwsLAgIvPn+JhnV4Bm5yaytVXLxhQs06u05UkiQdv3+CWj7Pca2lp4e7hzpVLl6ku9wxymaqqnkFKenP+zDm5sMsXg3D3VDwvsub98cNHuLgWU/ju4N4DmJqZUlnFGGa5LkcJD4IuXpKblCroUhDVayp/jvb2KcnZbM9Sly5eooRXCZXlyMn+PfswNTOjSjXl15PPkb9GZW77q0FXqFK9mtJlSpT0UnGNcs9y3/uImrr8S2V1dQ25+16GI/sOYmJmSsUqX78vMqh8lrp2jRKuWZ6lbt9mYPfP/wZRxbd0aTb+JT/M0KS5c3BycKBbq9b/2Yq4whoDU1BNVMYJ//PGjx9P06ZNKVq0KG3atEFdXZ2bN29y69YtpkyZQq1atahZsyatWrXi999/x83NjXv37qGmpoZ/LscDGTlyJBMmTMDV1ZUyZcqwYsUKrl+/zrp165TGNzQ0pFevXowcORILCwusra356aef5H7Qubu706lTJ7p27crs2bMpW7Ys79+/5/jx4/j4+NC4seLYEStXriQ1NZVKlSqhr6/PmjVr0NPTw8nJCQsLiy9OL6tOnTrxyy+/MHXqVFq3bo1ulh/l2U2YMIF69erh6upK+/btSUlJ4cCBA4waNUohbv369SlVqhSdOnVizpw5pKSk0L9/f2rVqqVy0oev5erqyqpVqyhfvjzR0dGMGDFCrhVfamoqXbp0oWHDhvTo0YNGjRrh4+PD7NmzGTlyZL7lY/jw4fj6+jJ58mTatWvH+fPn+euvv1iwYIHKZXR0dJR3S/2gPH6bDu34deIUPEqUwNvHm707d/PmzVsCWjYHYMn8Rbx7956xE38GILBlM3Zu2c78OX/StFkAd27dYf/uffw8eQKQPjB49gdeQ6P0t/FZwz8kJPD6Vebg0aEhoTx68BAjY2Osbaw/u23yi56WDg4mmT8u7IwtKW7pQExiPG/ivn4crfyipqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x86B//x+9YWVgw4FMFXXJyMk9evvz0/xTehYdz/8kT9PV0Kfqp1cScFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjOS1DHXqseLQQYoWsaKolRUrDx1EV1sbP9/MFxETVq2giKkpAz5V0K04dBAvR0fsixQhJSWVs3dus+/iBX5snznGWkJiIi+zzIQcEv6e+y9fYmJggI2KFgm50bJdG2ZO/pXiJTzwLOnFgV17efvmDU1aBACwfOESwt+/Z+S4MQA0aR7A7m07WTxvAY0CmxB8+y6H9h7gx0/nDUClalXYsXErru5ulPBK76a6eskKKlevKntgnz97LieOHGPC9Cno6evLWloYGBp8trt5bgS0acG8abNx8yiOh3cJDu85yPs372gYmH5dX/v3CsLfhzN4bOa4Y08fps9em/jhAzHR0Tx9+BhNLS2KOjuiraONUzFnuXUYfGp9kz08P1VqVJtdC9dhW6woDm7OXDtxjujwSMrVS/8hemLTXmIjowns1wk1dXWsispXahoYG6KhpSkXfnb3UWxdimJmbUFqSiqPrwdz60wQ/t2Vj3n6pQrimMpwaO8BqtaorrRl0OWLQSBJODgWJeTVa5bOX4yDY1EaNsmfcczU1NTo0KI5KzZuxNHOnqL29qzYuAFdHR3862RW9oyfOQMrC0sG9OwJfLpGfRr6ITklmXfvw7n/+HH6NepT98iEDx/kWuq+Dgvj/uPHmBgZYWP19S921NTU6NC6NSvWrcPRwYGiDg6sWLsWXV1d/OtnVmiOnzYNqyJFGPBpOI32rVrRd/BgVm7YQO1q1Th59iwXr1xh2Tz5ruRpaWnsOXiQpn5+aCr5MR4dE0PY27e8+/SS7/mn7WDxaQbW/KSmpkb7chVZefEcRc3McTQ1Y8XFc+hqauHnmVmJOGH/bqwMjfjhUwXdknOnKWlrj6OZGfFJSWy6GsSDd28YVT9/x/Jq1aEtv/0yFXdPD7xKerNv117evnlLQItAAJYu+Jv3797x44SfAGjashm7tu5g4Zy/aNysKXdv3+Hgnv2MnZQ5CdfqpSvxLOmFfVEHEuLj2bF5G48fPGLQiKFy605LS+PQvgM0aOyPxldUgGXVrmN7pkyYRAkvT7x9SrJ7xy7ehr2heavmACz6ayHv373j51/S89msZQu2b97Gn3/MJaB5M+7cus2+XXuYMDWzJWVycjLPnjz99P8U3r17x8P7D9DT18ehaObYd2lpaezfs49GTRp9VUVehhbtWjNr8nSKl3D/dI3ax7s3b2n86Rq1YuFSwt+/Z8S49J4PTZoHsGfbLv6etwD/T9eow3sPMHriT7I0K1WrwvbP3PcyynBk30HqN2qIhmb+V2CpqanRoVkzVmzZjKPdp2epLZvTr1O1sjxLzZ6d/iz1aVzm9GepjOtUxrPUY/R19ShqZ4eBvj5uzs5y69LV0cXUyFghXBAKkqiME/7n+fn5sXfvXiZNmsSMGTPQ0tKiRIkS9O7dWxZn27ZtjBgxgg4dOhAfH4+bmxvTp0/P9ToGDRpETEwMw4cP5+3bt3h5ebF7926Kf3ozq8zMmTOJi4sjMDAQIyMjhg8fTnS0fCunFStWMGXKFIYPH87r16+xsLCgSpUqKivOTE1NmT59OsOGDSM1NRUfHx/27NkjGxPuS9PLqnjx4vj6+hIUFPTZcdRq167Nli1bmDx5MtOnT8fY2Fiu1WBWampq7Ny5k4EDB1KzZk3U1dXx9/fnzz///GyevtSKFSvo27cvZcuWxdHRkWnTpsnNijt16lSePXvGnj3p073b2NiwdOlS2rZtS4MGDShTpky+5KNcuXJs3ryZ8ePHM3nyZGxtbZk0aVK+TN6QoW6DesREx7B6+Uoi3ofjXMyF6X/MwOZTF6bw8HDeZhnQ2tbOjl//mMGCOX+ya+sOLCwtGTh8MLXq1v6i9d4Pvs/Q/oNknxfMSR/bw6+JPz+O/0nVYvmuRBEn/mqR2ZJwUPX0H977g88z9fgqVYt9U91atuJjUhLTFy8kNi6Oku7u/PXLJLm3vmHv36Ge5e3zu4gIOg3N7DaxZucO1uzcQbmSJfl7avp4SW/eh/PTrFlExcZgZmxMSQ8PVsyYhW0efuSq0rVBQz4mJ/Hbpg3EJiTg7ezCnwMGybWgC4uMkHvbmpj0kd82beBtVBQ6Wlo4WdswqXtPGmYZ6y74xXP6zf1D9vmPbVsBaFKpMhO7dv/q/NaqX4eYmBjWrVhNZHgETsWcmfx/7N13dFTF28Dx7+6m916AQAIhCST03nsHBUEQpIoiYkFRQawgP0FUiqiAIl16R3rvLfQWOiGU9N7L7r5/BDbZZENLQ97nw9lz2JuZuzN7787enfvMzC+TcHXL/lzERMcQkWtyercy7kz4ZRJ/zviDTWs34ODkyHsff0DTVjntWb9BA1AoFCz8ax7RkVHY2tvRoEkjBg/LiR7atG4jAKM/0P/ROOrL0UXSedK0dQsSExJZuXApsTExlPfy5KvJ43F52AEeGx1LVLj+ZNafvvOh7v83r93g4K59OLu68OeKBYUuz/Oq2rAWKYnJHFq3naS4BJzLufPG58OwdcruyEiKSyA+6tk60zPTM9i2YDWJMfEYmRjjWMaFV9/rT9WGRbM6XnGcUwD3Qu5y6fwFJk77yeDrpiQlM3/2HKIio7CysaZpi2YMfndooX605zXo9d6kp2fw4++/k5iUSICfH79PnKTfRkVEolTk3EiMjI7mzfdzpk9YvGY1i9espna16vz1888AXL52jeFjcm7OTfvrTwC6tm3HuFzfyc9V5jfeID09nR+nTycxMZGAKlX4/eef85Q5Qu/mZ42AAH749ltmzZ3L7HnzKFemDJO+/VZvCCzAiVOnCAsP55VOhhcEOHDkCOMnT9Y9/3JC9hDJdwYN4t0i/H5/ZGD9hqRnZfLTrm0kpqXh716G33q9oRdBF56QgDJX+5uYnsakHVuITknGysQUH1dX/nyjv94Q2KLQql1rEuLj+WfuImKis69BJk6drBtGHRMVTURYzufCvYw7P0ydzKzpv7NxzXocnRx5f9RHNG+d06GSlJTEtB9/ITY6BksrSyr5VGba7Bn4+euPojgdeIqIsHA6dXv2BQ/yatO+LQnx8Sz4ex7RUdF4VarIT9N/wc09u8M/Oiqa8LCca6kyZcvw0/Qp/DbtV9atWouTsxMjP/uElq1zOrCjIqN4q/9g3fPl/yxl+T9LqVm7Fr/9mRONdfJEIOFh4XQu5Or1Ldq2IjEhgaXzFxMTHYNnRU++/2WS7gZpTHR0vjbq+18m8teMmfy7diOOTo4Mz9NG9R3UH4VCwaK/5uf63mvIoGH6UbNnAk8TER5RZDcJDBnUs1d2OzVrZva1lK8vv38/Qf8zH2ngWuqjnGvVxWvXsnjtWmoHVOOvZ/j9J0RxU2ifZnIrIYQQpeJB3Iu5qt2zKGPnQpM/hpd2MQrl8PuzSbxyrbSLUWjWfj4k7Npb2sUoFJu2rbgddf/JCV9wXk5luRR6s7SLUWj+7pVYFLiltItRKAPrdX5pzqnE28GlXYxCsfbyJLGQ81++CKzLlCF+zotxY6gwbN8ZxN3YsNIuRqF42LsRkRD95IQvOBcbR25F5Z8/77+kolM5Eq/fKO1iFJp15SJaHKiEDVnxw5MTlZL5fUruhv6LpOgmSRJCCCGEEEIIIYQQQjyWdMYJIYQQQgghhBBCCFFCZM44IYQQQgghhBBCiJeUrKb64pHIOCGEEEIIIYQQQgghSoh0xgkhhBBCCCGEEEIIUUJkmKoQQgghhBBCCCHES0qJDFN90UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJSWrqb54JDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEOI/YebMmXh5eWFmZkadOnU4ePBggWkHDx6MQqHI9/D399elWbBggcE0aWlpxVYH6YwTQgghhBBCCCGEeEkZ6mh6UR7PasWKFXz88cd89dVXnDlzhmbNmtGpUydCQkIMpv/1118JDQ3VPe7evYuDgwOvv/66XjobGxu9dKGhoZiZmT3X+/00pDNOCCGEEEIIIYQQQrzwpk6dytChQ3n77bepUqUK06dPx8PDg1mzZhlMb2tri5ubm+5x8uRJYmNjGTJkiF46hUKhl87Nza1Y6yGdcUIIIYQQQgghhBCixKWnp5OQkKD3SE9PN5g2IyODU6dO0b59e73t7du358iRI0/1enPnzqVt27ZUqFBBb3tSUhIVKlSgXLlydO3alTNnzjxfhZ6SdMYJIYQQQgghhBBCvKSUKF7Yx6RJk7C1tdV7TJo0yWA9oqKiUKvVuLq66m13dXUlLCzsie9DaGgoW7du5e2339bb7ufnx4IFC9i4cSPLli3DzMyMJk2acP369ed/05/AqNj2LIQQQgghhBBCCCFEAcaOHcuoUaP0tpmamj42T9655rRa7VPNP7dgwQLs7Ozo3r273vaGDRvSsGFD3fMmTZpQu3ZtfvvtN2bMmPHE/T4P6YwTQgghhBBCCCGEECXO1NT0iZ1vjzg5OaFSqfJFwUVEROSLlstLq9Uyb948BgwYgImJyWPTKpVK6tWrV6yRcTJMVQghhBBCCCGEEOIlVdorphbVaqomJibUqVOHnTt36m3fuXMnjRs3fmze/fv3c+PGDYYOHfrE19FqtZw9exZ3d/dnKt+zkMg4IYQQQgghhBBCCPHCGzVqFAMGDKBu3bo0atSIv/76i5CQEIYPHw5kD3u9f/8+ixYt0ss3d+5cGjRoQEBAQL59jh8/noYNG1K5cmUSEhKYMWMGZ8+e5Y8//ii2ekhnnBBCCCGEEEIIIYR44fXp04fo6Gi+//57QkNDCQgIYMuWLbrVUUNDQwkJCdHLEx8fz5o1a/j1118N7jMuLo5hw4YRFhaGra0ttWrV4sCBA9SvX7/Y6iGdcUIIIYQQQgghhBAvKeUzDgd90Y0YMYIRI0YY/NuCBQvybbO1tSUlJaXA/U2bNo1p06YVVfGeikKr1WpL9BWFEEIIIYQQQgghRIl4f+0vpV2EAv3x2melXYRSIZFxQgjxAvvfzvmlXYRC+7rdEBKvXCvtYhSKtZ8PTf4YXtrFKLTD788m7q0PSrsYhWI373d6LvyytItRaGsGTaT5TMN3dP9LDoyYScKeA6VdjEKxad2c21H3S7sYheblVJb31vxc2sUolFk9P2dR4JbSLkahDazXmRuRd0u7GIXm7exBn3++Ke1iFMqK/hNemra267zPS7sYhbLprZ9p99fI0i5Goe0cZniYoxDPSjrjhBBCCCGEEEIIIV5Sz7pqqSh+ytIugBBCCCGEEEIIIYQQ/19IZ5wQQgghhBBCCCGEECVEhqkKIYQQQgghhBBCvKQUyDDVF41ExgkhhBBCCCGEEEIIUUKkM04IIYQQQgghhBBCiBIiw1SFEEIIIYQQQgghXlJKWU31hSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5RChqm+cCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxkpJhqi8eiYwTQgghhBBCCCGEEKKESGecEOK5pKWl8b///Y/w8PDSLooQQgghhBBCCPGfIcNUhRDP5ZtvviEhIQFXV9fSLooQQgghhBBCiAIokWGqLxqJjBNCPLP09HQcHR2ZMWNGaRdFCCGEEEIIIYT4T5HOOCHEMzM1NeWLL77A1NS0tIuSz759+1AoFMTFxT11Hk9PT6ZPn16o11UoFKxfv75Q+xBCCCGEEEII8fKTYapCiGd25MgRmjVrRrt27di2bVtpF0c8dPXAaS7tPk5qfBJ27k7U7dkWV28Pg2nDrt1h54xl+ba/8vU72Lo5AqBRq7m44yg3j18kJS4RW1cHar3airJVKxZrPbRaLX8tX8a67dtJTE7C38eHMe8Op1L5CgXmuRlyh9lLl3Dl5k1CIyIYNfRt+r3yql6aP5ctZc5y/To72tmxfeHiYqnH06jh7k2/Wu3xcymPk6UdX2yZxcHb50qtPIaYvdoZkxZNUFiYo751h5R/VqB5EPbYPKbtWmLSqhlKB3u0SclknDxD2uqNkJUFgEnLppi2aobSyQEA9f0w0v7dStaFy0Ve/g6+DXjVvxn2FtbcjYtg/onNBEUEF5i+mVcNugc0x93GkZSMNM48uM7Ck1tISk8FYHyHtwlwy/8ZOHXvChN3Lyry8j/S3b85fWu1xcHCluCYUH47vIrzoTcLTN8joDmvVWuJm7UD4YmxLD69je1Xj+uleb16K171b46rtT3xacnsu3mav45tIEOdVWz1yEur1TJn87+sO3SAxJQU/D29GP1GPyqVKVtgnj1nTrNg2xbuRkaQpVbj4eJC/7bt6dygUbGU8d+1G1i9dAUx0dFU8PJk+EfvE1CzeoHpz585x1+/zeTO7WAcnZx4vV8fuvR4RS/NuhWr2bRuI5HhEdjY2dKsZXOGDH8HE1MTAC6cPcfqpSu4fuU6MdHRfDvpexo3b1qk9WpesSbtfOpha2ZFaEIUq87t4Ub0fYNpB9bpRCPPgHzbHyREMWHn/Hzb65bzY2iDbpx9cJ0/j64v0nLndnLnIY5t2UtSXALOZd1o17875f0qPTHf3Wu3WPy/P3Au58Y7Ez/XbT+z9ygXDgYSeS+7jXPzKkfL3l0oW6ng75/nsWntBtYuW0VMdDTlPT0ZNnIEATWqFZj+wplzzPltNiHBwTg4OtLrzT507t5N9/esrCxWLl7G7q07iI6KopyHB4Pfe5u6Devr0gzp9SYRYfnn+e3S4xVGfPpRkdSrvU99ulVtip25FffiIlh4citXIu8UmL6pZ3Ve8W+Gm7UDKZnpnHtwncWntpGUkZovbeMK1RjZrDeBd4P4Zf/SIimvIS9rW9vZrxGvVWuJg7k1IXHhzDm+kUvhtwtM36VKY7pWaYyLlQORybGsPLeHPTdOlVh5AbpVbcrr1VvjaGFDcGwYs46u5WLYrQLTv1K1Ka/6N8PV2oGIpFiWntnJruuBBtO2rFSLr9oM5nDwecbtmFtcVXihyGqqLx7pjBNCPLN58+bx4Ycf8vfffxMSEkL58uULTKvValGr1RgZSXNTnIJPBXFyzS7q9+mAS8WyXDt0lj0zV/LK129j6WBbYL5XvxmGsbmJ7rmplYXu/2f/PcCtwEs06tcJG1dHHgTdYv+ctXQc1R8HD7diq8vCtWtYumE93438mPJlyjJ35Qre//Zb1sychaWFhcE8aenplHN1o23jpkyd93eB+65Yvjwzv/+f7rlKWboB4ubGptyIvseWK0eY2Gl4qZbFENNObTFt34qUuf+gDo/ArGtHrD77kIQvv4e0dIN5jBvWxazXq6TMW4L6xi2Ubi5YDB0AQNrytQBoYuNIXb0BTUQUACZNGmD54TASx/34xI6+Z9HYsxpD6nVhzvGNXIm4Q3uf+nzVdhAfb5hOVHJ8vvR+LhX4sOnrLAjczMl7V3CwsOHdht0Z0fg1ftq7BICf9y7BSKnS5bE2s2BKtw85GnyxyMqdV2vvOnzYtBdTDyznYtgtXqnalJ+6vs/AZROISIrNl/5V/2YMa/gqP+9bSlBEMFVcPBnd8k0S01I4cucCAO0q12NYw+5M3ruYi2G38LBzZWzr7OP0++E1xVaXvBbt2MbS3Tv5duAQyru4Mm/rZj6YMY3V4/6HpZmZwTy2lpYM6dQZT1d3jI1UHLxwnu8XLcDe2ppGVfN3GBXG/l17+fPXP3j/05H4Vw9gy/p/+fqzL/jrn/m4uOWfMzXsQSjffDaWTt06M/rbL7l0/iJ/TPkVWzs7mrZqDsCe7buYN3sOo8aOpko1f+6H3GXKDz8B8O7I9wFIS03Dy7sS7Tp35H9fjSvSOgHUKefL6zVas/zMTm5G36eZVw3eb9qL73fMIzY1MV/6led2s/7iAd1zpVLBV20Gc/re1XxpHSxseK1aS65H3i3ycud2+dgZdv6zno6De+Hh48XpPUdY/vNfvDv5C2yd7AvMl5aSysbZS/Hyr0xSvH5d7wTdoGqj2pTz8cLI2Iijm/awbPJshv04BhsHuyIp94Hde5kzYxYjPv2IKtX82bZhM999NpZZi+cWeE599/lXdOzWmc++/YKgC5eYOWUGtna2NGmZfU4t+ms++3bs4sMxoyhX3oPTJ07yw5fj+GX2r1TyqQzA9Dl/oNZocup66zZffzJGd14WVqMKAQyq04m5gZu4GhFC28p1Gdt6AKP+/Y3olPztra9zed5v3JOFp7Zy6mF7+06DV3i3YXemHNC/ceZkaUv/2h0ICg8ukrIW5GVta5t51eCdBq8w6+g6LocH08mvIePaD2XE2l+ITI7Ll76TXyMG1enEb4dXcy3qLr5OHnzQtBdJ6SmcuBtUImVuUbEW7zXqwW+HVnEp/DZdqjRmYqfhDF05icjk/Meia5UmvFW/G9MOLOdqZAh+LuX5pNkbJKWncCzkkl5aFyt7hjXozvnQGyVSFyEKIsNUhRDPJDk5mZUrV/Lee+/RtWtXFixYoPf3R8NEt2/fTt26dTE1NeXgwYNotVp++uknKlasiLm5OTVq1GD16tW6fGq1mqFDh+Ll5YW5uTm+vr78+uuvTyzPli1b8PHxwdzcnFatWhEcHJwvzZEjR2jevDnm5uZ4eHjw0UcfkZyc/NR1DgwMpF27djg5OWFra0uLFi04ffr0Y/OMGTMGHx8fLCwsqFixIt988w2ZmZlP/ZrP6vKeE3g3qkHlxjWwdXOiXq+2WNjbcPXgmcfmM7O2wNzGSvdQ5uqcunXiEtXaN6KsfyWsnezwbVYb9ypeXN5j+C5jUdBqtSz7dyNDXu9N60aN8a5QgfEff0JaRjrbDuwvMJ9/ZR9GDnmLDs2bY2JsXGA6I5UKJ3t73cPetuCOypJwLOQSc45vZP+ts6VajoKYtmtF2qbtZJ4+h+Z+KClzF6MwMcakQd0C8xhV8iLr+i0yj59EEx1D1qUrZBw/iZFnTqd91rmLZF24jCY8Ak14BGlr/0Wblo5RJa8iLX+3qk3Zc+MUu6+f5H58JPMDNxOdHE8H3wYG0/s4exCZHMuWK0eJSIrlSsQddlw7QSXHnCitpIxU4tKSdI/q7t6kZ2XqfngVh941WrM56Aibg45wJzaM3w6vJjIpju4Bhn9Ed/BtwMZLh9hz4xShCdHsuXGKzUFH6Fe7nS6Nv5sXF8Nusuv6ScISYwi8G8Tu6yfxdS7aCKDH0Wq1LNuzmyEdO9O6Vm28y5Zl3KAhpGVksD3weIH56vj40qpmbbzc3Snn7ELf1m3xLluOszeK/ofV2hWr6NC1E51e6UJ5zwoM//gDnF1c2LRuo8H0m9f/i4urC8M//oDynhXo9EoX2nfpxOplK3Vpgi5ewr9aAK3at8HN3Y06DerRsl1rrl25pktTr1EDBg8bStOWRdNRklebynU5EnyBw8EXCEuMYdX5vcSmJNK8Yk2D6dOyMkhIT9Y9Kti7YWFixtE7+p3QChQMqdeFTUGHDXZ4F6XjW/dRs2UDarVqiFNZV9oP6IGNox2ndx9+bL6t81bh36g2Zb098/2t+4gB1G3XFLcKZXEq40qXt/ug1WgJvnS9yMq9bvka2nftSIdunSnvWYFhI0fg5OLClvX/Gky/Zf0mnF1dGDZyBOU9K9ChW2fadenI2mWrdGn2bt9F7wH9qNeoAe5ly9ClxyvUblCXtctzrrNs7e1wcHTQPQKPHMe9bBmq1apRJPXqUqUxe26eZs+NU9xPiGThqa1EpyTQ3qe+wfSVnTyISI5j29VjRCbHcTUyhF3XA6noqB8Vq1Ao+LDJ66w6v4fwpJgiKWtBXta2tntAc3ZeC2THtRPci49gzvGNRCXH0dnPcDRx60q12Xr1GAdvnyM8MYYDt8+x81ogPau3KrEy96zekm1Xj7H16jFC4sKZdXQdkUmxdKvaxGD6tpXrsTnoMPtvnSEsMZp9N8+w7eox+tRsq5dOqVAwtvVAFp3aSlhCdElURYgCSWecEOKZrFixAl9fX3x9fenfvz/z589Hq9XmSzd69GgmTZpEUFAQ1atX5+uvv2b+/PnMmjWLS5cu8cknn9C/f3/278/uYNFoNJQrV46VK1dy+fJlvv32W7788ktWrlyZb9+P3L17l9dee43OnTtz9uxZ3n77bb744gu9NBcuXKBDhw689tprnD9/nhUrVnDo0CE++OCDp65zYmIigwYN4uDBgxw7dozKlSvTuXNnEhPzRw88Ym1tzYIFC7h8+TK//vorc+bMYdq0aU/9ms9CnaUm5m4Y7lU89baXqeJJ5G3DQ44e2TR5Pqu//I2dM5YRdk1/KIk6KwulsX5Eo5GxERE3iy/a4X54ONGxsTSsVUu3zcTYmNr+AZy/cqXQ+w958ICOgwfxyjtDGfvzT9wLK7oorJeN0tkRpZ0tWZdyve9ZWWRdvYGRd8FDlbOu38LI0wOVVwXdfoyr+ZN5/pLhDAoFxvXroDA1IetmwUNmnpWRUkUlxzKcfaD/I/rcgxsF/gi6GhGCo4Uttcv6AGBrZkWjCgGcMhD980ibynU5HHye9Kzi6Ww3UqrwcS5PYJ5ohMC7QQS4Gj4OxkojMtT65UlXZ1LFxVMXDXo+9CY+zuWp4pL9XrjbONKwQgDH7hRfhF9e96OiiE6Ip2FVf902E2Njalf24fzNgoeF5abVajlxJYg74WHUruxTpOXLzMzk+tVr1K6v3/lcu35dgi4aPp+DLl7Kl75Og7pcv3KVrIfDtP1rVOP61WtcvZx9TEPvPyDw6HHqNzbcSVzUVAol5e3cuJwnyigoIjhfR0hBGntW40rEHWJSEvS2d6nSmKT0VI4EF1/nNGR/P4XevodXgK/e9ooBvty7HlxgvnP7jxMbHkXz1zo81etkpmegUWswtzIclf2sMjMzuXHtGrXq5Tmn6tUh6KLhYfpXLl2mdr06+unr1+X6lWu6cyozMwNjUxO9NCYmplw+b/jznJmZyd4du2jXpWORDF1TKVVUdCiTL9LoXOgNfJwNT5dxLTIERwsbapbJjtyzNbOkQXl/ztzXb297VWtFQloye28+/iZoYb2sba2RUoW3Y1nOPLimt/3M/Wv4uRj+LjRWGZGZZwhtRlYmPk4eqBTF331gpFTh4+SR77v31L2r+LsavmlnrDLKN+w3PSsTX+fyemXuX7sjcalJbLt6rOgL/oJTKhQv7OP/Kxk3JoR4JnPnzqV///4AdOzYkaSkJHbv3k3btvp3nr7//nvatcu+M5icnMzUqVPZs2cPjRpl34WrWLEihw4d4s8//6RFixYYGxszfvx4XX4vLy+OHDnCypUr6d27t8GyzJo1i4oVKzJt2jQUCgW+vr5cuHCByZMn69L8/PPP9OvXj48//hiAypUrM2PGDFq0aMGsWbMwK2AYVG6tW7fWe/7nn39ib2/P/v376dq1q8E8X3/9te7/np6efPrpp6xYsYLRo0cbTJ+enk56uv6wv6ddICM9KQWtRouZtaXedjNrS9ISDEcAmtta0bBvRxzKu6HJVHMr8CI7f1tG+5H9cPXOjmAqU6UiQXsCcfX2wNrJntCrwdw9f91g52tRiY7NHnrgaGunt93Rzo7QiIhC7TvAx4fxH39ChTJliY6LY+6qFQwd8zkrfvsDOxubQu37ZaR4+J5oEvQ7nTUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nCIdomptaoFKqSI+NUlve1xaInbmlQ3muRoZwvSDKxnVoi/GKiOMlCpOhFxm7nHDESveTuWoYO/GzCNri6zcedmaWWGkVOUbOhiTkoCDh+Hz9sTdy3St0oSDt89xLfIuvs7l6ezXCGOVEXZmVkSnJLDnxinszK35vcenKFBgpFKx7uIBlpzZUWx1ySs6ITtyysFavx4ONjaERT8+YiEpNYXOY0eTkZmFSqlgTN83aVClapGWLyEuHo1ag72D/pBHe3t7YqINR+jExsRib58nvYM9arWa+Lh4HJ0cadm2NfGxcXz63kjdVA5de7xCnwH9irT8BbEyNUelVJKYpv/9kJiWjK2rZQG5ctiYWeLvWpF5Jzbpba/oWJbGntX4YffCIi2vISmJyWg1GqxsrfW2W9pakxSXYDBPTFgke1dsYsA3H6JUqQymyWvvik1Y29vi5V80Hb0J8dnnlF2ec8rOwZ7Ygs6p6BjsGuRPr1arSYiLx8HJkdr167J++WoCalTDvWwZzp06w/FDR/SGpeZ27MBhkpKSaNu5fZHUy6aA9jY+NQm7MtYG81yLustvh1fzcbM+uvY28G4Q8wM369L4OpenVaXajNkys0jK+Tgva1trY2qJykC9YlOTqG1h+Nicvn+V9j71OXrnIjej7+PtWI62PvUwVhlhY2ZpcCh7UbI1e1Rm/c9ybGoi9gWU+dS9K3Tya8iR4PNcj7qHj5MHHX0bYqwywtbMipjUBPxdvejo25Dha34q1vIL8bSkM04I8dSuXr3KiRMnWLs2+4enkZERffr0Yd68efk64+rWzbnre/nyZdLS0nSdc49kZGRQK1cE1OzZs/n777+5c+cOqampZGRkULNmzQLLExQURMOGDfXu6j7q7Hvk1KlT3LhxgyVLlui2abVaNBoNt2/fpkqVKk+sd0REBN9++y179uwhPDwctVpNSkoKISEhBeZZvXo106dP58aNGyQlJZGVlYXNYzp8Jk2apNcZCfDdd99h1OTphzEoyHNnSQt5Nz1i6+qIrauj7rlzxbIkxyZwedcJXWdcvV5tObpsKxsnzAEFWDvZU6lhdW4eO//UZXqSrfv2MXHWH7rn07/5Nrsuee6SabXaQt+9b1In55z0Bqr7+dH93XfYtHcP/V/tXqh9vwyMG9bFYmBf3fOk6bOy/2Oo8/UxHbJGvpUx69qB1MUryLp1B5WrE+Z9e6GJTyD935wFXzRh4SSOm4TCwgLjOjWxeHsASZN/LdIOOQAt+mXN9znJpZytC0Prd2XVuT2cfXAde3NrBtbpyLuNuhvscGvjXZc7sWHciLpXpGU2JG8nuEKhyFe3Rxae3IqDhQ2zXxsNCohNSWTblWP0q90etTb7x3nNMpUZUKcDUw8sJyg8mLK2znzU9HWi63Ri0amtxVKHrSeOMWnpP7rn00Z8+LAu+um0WgMb87AwNWPJl9+Skp5G4NUrTFu9krJOztTx8X1svueStz3iCe1Rvvbr0ebs7edOn2X5oiW8/+lI/Pyr8ODefWb/+gf28xfz5pABRVr0x8l/9hR8TuXWqEIAqZlpnMsVdWpqZMyQep1Zcno7yQYm3y82+Y6N4UnKNRoN6/9YTLOeHXF0d3mqXR/dtJtLR8/Q/6v3MTIpePqD5/Gs33H5/pRzUgHZcw3O+Gkqw998CxTgXqYMbTt3YNeW7Qb3t2PzVuo2qI+jk9Nz18GQvGePQqEo8AZeWVtnBtftzJoLezn34Ab25ta8WbsDbzd4hT+PrcfMyIQPmvTir+MbSExPKdJyPs7L0NYalKcKCkXBX+XLz+7C3tyaKd0+RAHEpSax+/pJelVvhUZruIO3OOQtn0JhqN3K9s/p7dhbWDOj+ygUZHfc7bh2nD4126LRajA3NmVMqwFMO7ichPSnn6pGiOIknXFCiKc2d+5csrKyKFs2ZxiLVqvF2NiY2Fj9aABLy5y765qHd2Y3b96slxdyor9WrlzJJ598wpQpU2jUqBHW1tb8/PPPHD9e8LxBTxOhpdFoePfdd/noo/wrhT1u4YncBg8eTGRkJNOnT6dChQqYmprSqFEjMjIyDKY/duwYb7zxBuPHj6dDhw7Y2tqyfPlypkyZUuBrjB07llGjRultMzU15ecDT14xzNTKAoVSQWqi/h3ptKTkfNFyj+PsWZZbgTlDr8ysLWg1rCfqzCzSk1Mxt7XizIZ9WDnaPfU+n6R5/foE+OZEHGQ8nFcvKi4WJ4ec6KuY+Hgc7IrudQHMzcyoVMGTuw8eFOl+/6syz14g8VZwzoaHi64obW1Qx+fcnVbaWKNNKPiuuFmPLmQcOUHGwaMAaO4/ABNTLAb1JX3T9pyra7Vat4CDOjgElVd5TNu2JHXR8iKpT2J6CmqNGjtz/bvotmZWxOWJ3njktWotuBJxhw2XDgJwJzaMtKwMfuj0LkvP7CQuVzSAicqYJl7VWXF2V5GUtyDxaUlkadQ4WOh35tubWxObYvg4ZKgzmbz3H37ZvxQHcxuiU+LpVrUpyRmpxKdm/wgZWr8bO66eYHPQEQBuxTzAzNiUz1v0Y/GpbU/VKfOsmlevSYBnznCvjIdDe6MTEnDKFQ0bm5iAo/Xjo1WVSiUeLtmdKr4e5QkODWXBti1F2hlnY2eLUqXMF7EUFxuXL1ruEXsHe2Jj8qaPRaVSYWObXadFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt7cncUhKT0VtUaDjZn+94O1mQUJaU/u9GjsWY3jIZd1nQ0Azpb2OFna8V7j13TbHnUu/d7jU8btmEuUgYnin5eFtSUKpTJfFFxKfCKWtvkjZzJS0wm9fZewO/fZvjC7Y12r1YJWy8SBn9JvzHA8/XMiZo9t3svhjbvo98V7uJYvU2TltrE1fE7Fx8bli5Z7xN7Rgdho/Qnr42Lj9M4pW3s7vpn0PRnpGSQkJODo5Mj8WX/j6p5/saWIsHDOnjzDlz98V0S1ggRde2ult93GzJL4NMPtbXf/5lyLDOHfy9lz/IXEhZN2IoPvO7zDinO7sDWzwsXKntEt39TleXROLe03jk82/kq4gUUVntfL1NbmlpCejFqjzhdRZmdmpfedpl+vLH49tIrfD6/Bztya2NQEOvg2JCUj7anaiMKKT8suc95jYWdmTdxjjsWU/cuYfmAF9hbWxKQk0NmvMckZacSnJVPRsQzuNo5M6PCOLs+j82nb21MZsuIHQhNf7jnkFCUwxFg8G+mME0I8laysLBYtWsSUKVNo315/WEPPnj1ZsmRJgfOwVa1aFVNTU0JCQmjRooXBNAcPHqRx48aMGDFCt+3mE+YMqlq1KuvXr9fbduyY/hwQtWvX5tKlS3h7ez92X49z8OBBZs6cSefOnYHsueqioqIKTH/48GEqVKjAV199pdt2586dAtNDdsfb0w5LzUtlpMLBw43QK8GUr5HzQzT0SjDlqhkejmdIzL1wzG3zd96pjI2wsLNGo1YTcvYqFWo/OZrwaVlaWOitkKrVanG0t+f42bP4VawEZM9tc/rSRT4cOKjIXheyO/6C792lVtWiHdr2n5WWjibPCqmauHiMqvqhDnkY+aVSYeTrTeqqDQXvx8Qk/+1srabAKM0cChRFuOpylkbNzegH1HD35kRIzlxM1ct4E3jX8NxMpkbG+YZ1PYoCyFv8Jp7VMFap2H/r8YukFFaWRs21yBDqelTh4O1zuu11y/lxKPjxUapqjUa3Ul4b77ocCb6o++FnZmSS74aGRqNBoXh8xERhWJqZ6a2QqtVqcbSx5XjQZXw9sm+OZGZlcfr6NT7s0fOZ9q1FS0ZW1pMTPgNjY2Mq+/pwJvAUTVo0020/E3iKhk0bG8xTJcCf44eP6m07feIklf18dauKp6en5etwUyqVaLXaYp0G4BG1VkNIXBhVXCroRbdlP3/8IhiVnTxwsbLPNydcWGI0E3bO19vWzb8pZkYmrDq3h9gUw0NHn5fKyAh3r3LcvngNv3rVddtvX7yGT538K+qampvyziT9aSJO7TrMncvXee2jwdg559z8ObppD4c37KTvmHcpU/Hpbto9LWNjY7x9ss+pxi2a6rafOVnwOeXnX5UTR/TPqTOBJ6ns55NvpXoTUxOcnJ3IysriyP6DNGud/5pr5+Zt2NrbUb9RwyKoUTa1Rs2tmAdUd6ukN+dadbdKnLxneL5Xw+1t9vmvQMGD+Cg++/c3vb/3qdkWMyMTFp7cQlQRn1MvU1ubW5ZGzY3o+9QsU1lvwZWaZXw4HlLAXK4PqbUa3Uq4zb1qcOJuULF3HsLDYxF1l9plfTmc672vXc73ifNRqrUa3eIxrSrV5njIJbRoCYkL551VP+qlHVyvMxbGZsw8stbgqrJCFDfpjBNCPJVNmzYRGxvL0KFDsc2zAmWvXr2YO3dugZ1x1tbWfPbZZ3zyySdoNBqaNm1KQkICR44cwcrKikGDBuHt7c2iRYvYvn07Xl5eLF68mMDAQLy8Cl5dcfjw4UyZMoVRo0bx7rvvcurUqXyru44ZM4aGDRvy/vvv884772BpaUlQUBA7d+7kt99+M7zjPLy9vVm8eDF169YlISGBzz//HHNz88emDwkJYfny5dSrV4/Nmzezbt26p3qt51W1dX0OL/oXx/JuOHuV5drhsyTHJODTLHsY8OkN+0iNT6TJwG4ABO0NxNLBFjt3JzRqNbdOXCLk7FVavN1Dt8/I4AekxiViX86VlLhEzm85hFarxb9t8U0yrlAo6NvtFeavXkV59zJ4lCnD/NUrMTMxpWPznB8V306bioujIx887KDLzMzk1t27D/+fRWR0NFdv3cLC3AwP9+yohunz59KsXn3cnJ2JjYtn7qoVJKek0LV1m2Krz5OYG5tSztZZ97yMjROVncqRkJZcpHf8n1f6zr2YdW2PJiICdXgkZl06oM3IJOP4SV0ai7cHoImNJ21N9uqSWecuYtq+FeqQe6hvBaN0ccase1cyz17Q/eowe60bmRcuo42JBTMzTBrUwcivMslTi3ZeoH8vH+Kjpq9zM/o+VyNDaOdTDydLW3ZcPQHAm7Xb42Bhw2+HslccPHn3CsMb96CDbwPO3r+Gnbk1b9XvyrXIu/nmyGlduS4nQoJISi/+IXkrz+3hqzaDuBpxh0vht+lWtQku1vZsuJgdwTes4as4Wdox8eFcXeVsXaji6klQ+G2sTS3oXaMNXo7uTNyTM5fXkTsX6F2jNdei7uqGTg1t0JXDwRd0P4iLm0KhoG/rNszftgUPFxc8nF1ZsG0LZiYmdKiX0858t2Auznb2fNA9O+pq/rYtVK3gSVknZ7LUWRy+eIHNx47xRd83C3qp5/Zan9f5ecIkKvv5UiWgKls3bCIiPJwuPbLb0nmz5hAdFcXn34wFoEv3bmxcs54/Z8yk0ytdCLp4me2btvLFuJx5RBs0acS65aup5OONX9XsYaqL5synYdPGqB7OZZaaksqDezkL8IQ9COXmtRtY21jj4uZa6Hrtvn6SwfW6cCc2jNsxD2jqVQN7CxtdJ8Sr/s2wM7dm4cktevmaeFbjdvQDHiTo35DK0qjzbUvNyO7cz7u9qDTo1JINs5bgXtGDct6enNl7hPjoWGq3ye7U2rtiE4mx8bwy/E0USiUuHu56+S1trFAZG+ltP7ppN/tXb6X7iAHYOjnoIu9MzEwxMXu+G2Z59XijJ1MmTKaynw9+AVXZtnEzkeERdO6efU4tmP030ZFRfPpN9oJUnbt3ZdPaDcz5bRYdunXmysXL7Ni0jdHjvtTt88qlIKKjoqjoXYnoqGiWzluERqOhZ78+eq+t0WjYuWU7bTq2Q2X0dPPmPa3NQUf4oHFPbsY84HrkXdpUrouTpS07r2e3t31rtsPBwoY/jqwBsifjH9bwVdpVrse50OxhqoPqduJ6VE57ezdef67YR0Og824vKi9rW7v+4gFGNX+DG1H3CIq4Q0ffBjhb2bHlSnYn76A6nXC0tGXqgezI9DI2Tvg4l+daZAhWJuZ0D2hOBXs3ph1cUSLlBVhzfh9jWvXnWlQIQeHBdK7SGBcrezYFZUdSvlWvK06Wtvy0L3samrK2zvg5V+BKxB2sTM3pWb0Vng7uur9nqrMIjg3Ve43kh9/febcLUVKkM04I8VTmzp1L27Zt83XEQXZk3MSJEzl9uuCVriZMmICLiwuTJk3i1q1b2NnZUbt2bb78Mvticvjw4Zw9e5Y+ffpk/0Dr25cRI0awdWvB82mUL1+eNWvW8MknnzBz5kzq16/PxIkTeeutt3Rpqlevzv79+/nqq69o1qwZWq2WSpUq0adPnwL3m9e8efMYNmwYtWrVonz58kycOJHPPvuswPSvvvoqn3zyCR988AHp6el06dKFb775hnHjxj31az4rzzpVSE9O5fzWw6QmJGPn7kTrEa9j5ZB9vFITkkiOybmLrMlSc3rdHlLik1AZG2Wnf+91yvpXykmTmcXZTQdIjIrD2NSEsv4VaTKwKyYWT170ojAGvdaT9IwMfvxzFolJSQT4+PD7+O/1IujCoiJRKnNilSJjYnjzk5G654vXr2Px+nXUDgjgrx8mARAeFc1Xv/xCXGIC9jY2BPj6Mv+nX3B3ebr5g4qDn3MFfu+RMzz5o6avA7Al6Cg/5LqYLy3pW3ehMDHBvH8fFJYWqG8FkzTld8gVQad0cABNzg+KtH+3odVqMevRFaW9LdrEJDLPXSRtTc4iCApbayzfGYjC1gZtahrqe/dJnjqTrMuFXzE3tyPBF7A2teD1Gq2xN7cmJC6cibsX6u6A25tb42Rpp0u/9+ZpzIxN6eTXkEF1O5GckcaF0Jv8c1p/3iV3G0equnoyfse8Ii1vQfbcOIWNqSWD6nbG0dKG29GhjNk0k/Ck7KFujhY2uFrlDHFTKZX0qdGG8nauZGnUnLl/jRFrfyEsMWdo3KKTW9FqtbzdoBvOlnbEpSZxJPgCc45vLJE6PTKwfUfSMzOZvGwpiSnJ+HtV5LcPP9GLoAuLidGbTystPZ3Jy5YQEReLqbExFdzc+X7IUNrXrVfk5WvRthUJCQksmb+I2OgYKlT0ZMIvk3B1yx7+FxMdQ0R4TseAWxl3JvwyiT9n/MGmtRtwcHLkvY8/oGmr5ro0/QYNQKFQsPCveURHRmFrb0eDJo0YPGyoLs21K1cZ82FO2/DXb9lzOLbt1IHPvh5T6HqduncVSxNzulRpjI2ZJaEJUfxxeI1udVRbMysc8gxrMzMyoVZZH1ae21Po1y8KVRvWIiUxmUPrtpMUl4BzOXfe+HwYtk7ZUW5JcQnERz3bTY1Tuw6jzlKzZsYCve3NenSgec+ORVLu5m1akRCfwLIF/xATHUMFL0/G/zxR18kaEx1DZJ5zavzPPzDnt1lsWrsRRydH3v34fZq0zDmnMjMyWDxnPmEPQjE3N6duw/p8+s0YrKz1h42ePXmayPAI2nfpVCR1ye3onYtYm1rQs1pL7M2tuRsXzo97F+uilOzMrXC0zLmG3H/rDObGJnTwbciAOh1JzkjjUvhtlpw2PM9dSXhZ29qDt89hbWrBGzXb4mBhw53YMMbtmJvzXWhhg3Ou70KlQkmPgOaUtXVGrVFzPvQmn2/6g4gSvEm4/9YZbMws6V+7Aw4WtgTHhPLV1j91ZXC0sMEl97FQKOlVvRXl7FxQa9ScfXCdkRum646dePycuaJ0KLQlEQ8vhBDiufwvz7Cf/6Kv2w0h8cq10i5GoVj7+dDkj+GlXYxCO/z+bOLeMhzB+l9hN+93ei788skJX3BrBk2k+cwRT074gjswYiYJew6UdjEKxaZ1c25H3X9ywhecl1NZ3lvzc2kXo1Bm9fycRYFbnpzwBTewXmduRN4t7WIUmrezB33++aa0i1EoK/pPeGna2q7zPi/tYhTKprd+pt1fI5+c8AW3c9ivpV2E5/LF5lmlXYQC/djlvdIuQqmQWfyEEEIIIYQQQgghhCghMkxVCCGEEEIIIYQQ4iWlVMgw1ReNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SChmm+sKRyDghhBBCCCGEEEIIIUqIdMYJIYQQQgghhBBCCFFCZJiqEEIIIYQQQgghxEtKVlN98UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJaVAhqm+aCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxklLIaqovHImME0IIIYQQQgghhBCihEhnnBBCCCGEEEIIIYQQJUSGqQohhBBCCCGEEEK8pJQyTPWFI5FxQgghhBBCCCGEEEKUEOmME0IIIYQQQgghhBCihMgwVSGEEEIIIYQQQoiXlKym+uJRaLVabWkXQgghhBBCCCGEEEIUve93zivtIhTo23ZvlXYRSoVExgkhxAsstl2P0i5CodnvXEfCrr2lXYxCsWnbiri3PijtYhSa3bzfafLH8NIuRqEcfn82ccNHlXYxCs1u9lTihn5Y2sUoNLu5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZbNLu0iyDySNiyo7SLUCg2ndsT98mXpV2MQrObNpG4N4aWdjEKxW75XL7dNqe0i1Fo33d8p7SLIF4SMmecEEIIIYQQQgghhBAlRCLjhBBCCCGEEEIIIV5SSmTOuBeNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SCoUMU33RSGScEEIIIYQQQgghhBAlRDrjhBBCCCGEEEIIIYQoITJMVQghhBBCCCGEEOIlJcNUXzwSGSeEEEIIIYQQQgghRAmRzjghhBBCCCGEEEIIIUqIDFMVQgghhBBCCCGEeEkpZZjqC0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLykFMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooRIZ5wQz+jkyZNMmzYNjUZT2kURQgghhBBCCCEeS6lQvLCP/6+kM0785wUHB6NQKDh79myR7VOhULB+/fp826OioujduzcBAQEolUX/8Rk3bhw1a9Ys8v3+fzJ48GC6d+/+1On37duHQqEgLi7uuV9zwYIF2NnZPXd+IYQQQgghhBD/f8gCDqJUDR48mIULFwKgUqkoU6YMXbp0YeLEidjb25dauUJDQ/O9vlarZeDAgXz77be0a9eulEr2clAoFKxbt+6ZOs1E0TJu2hDTLu1RVa6E0taGhOGfoL4ZXNrFArI/a3O2bGLd4UMkpqTg7+nJ6N59qVSmTIF59pw9w4LtW7kbGUmWWo2Hswv927Slc4OGujSnr19n8a4dXLkbQlR8PD8PG07LGjWLtS5mr3bGpEUTFBbmqG/dIeWfFWgehD02j2m7lpi0aobSwR5tUjIZJ8+QtnojZGUBYNKyKaatmqF0cgBAfT+MtH+3knXhcrHW5XFquHvTr1Z7/FzK42RpxxdbZnHw9rlSK48hZl07YNK0IQoLC9TBd0hZtgZNaHiB6a1GjcDIxzvf9swLl0n+4+/sJ6ammL/SCeOaASisrVHfvUfqyvWo79wtnjq80kn/fFqy8snnU9uWmLRqmut8OkvampzzybRzO4xr10Dl7oo2IxP1zdukrtqAJjyiWOrwLF7kdiovrVbLnM3/su7wwYftlhej+/R7fLt15vTDdisiu91ycaF/m3Z0btCoxMpt1qMrJi2borC0QH0zmJRFy9DcD31sHtMOrTFp3RylowPaxCQyAs+QtmodZGbp0ijs7TDv3QOjGv4ojE3QhIWTMncx6uCQ4q6SKEVarZY527ey7uhhElNT8S9fgdE9e1PJ3b3APHvOn2XBzh3cjYoiS6PGw8mZ/i1b07lefV2av7ZtYc72rXr5HKyt2f79xGKri1mHNpg0qofC3Bx1yF1S1mxEE1Zwu2j1/tsYeVfMtz3z8hWS5yzKt920TQvMu3Ygff9hUtdvLtKyP2LW6xVMWrdAYWWB+sYtUuYtQXPvwWPzmHZqi0m7ViidHn6+j58kbdmanM+3mRnmvbtjXK82Cltr1MEhpC5YhvpWcJGXv55HFZp61cDK1JzIpFi2XjnGndiCv/NUCiUtvWtTo4w3VqYWJKQls//mGc7cvwZAnXK+1Czjg4t19m+8B/FR7LoeyP34yCIvuxBPQzrjRKnr2LEj8+fPJysri8uXL/PWW28RFxfHsmXLSq1Mbm5u+bYpFAq2bNlSCqURougpzEzJunSFjANHsBz1fmkXR8+inTtYumc33w4YRHkXF+Zt28oHv//K6m/HY2lmZjCPrYUFQzp0wtPNDWOVEQcvnuf7fxZhb21No6r+AKRmpONTrhzdGjVmzJw/i70epp3aYtq+FSlz/0EdHoFZ145YffYhCV9+D2npBvMYN6yLWa9XSZm3BPWNWyjdXLAYOgCAtOVrAdDExpG6egOaiCgATJo0wPLDYSSO+/GJHTPFxdzYlBvR99hy5QgTOw0vlTI8jmn71pi2aUHKwmWoIyIx69QOq5HDSfjuR0g3fCySZy8AI5XuucLSAuuvPyPzdE4no8WA3qjKuJM8fyna+ARMGtTB6uPhJIz/CW1cfNHW4dH5NG/Jw/OpA1affkDCVxMKPp8a1MWs1yukzF+C+sbt7PPprf4ApK3IPp+MfLzJ2HuQrNt3QKnC/LWuWH36Pglf/wAZGUVah2f1IrdTeS3auZ2le3bx7YDBlHd1Zd7WzXzw2zRWfzeh4HbL0pIhHTvj6eqGsZGKgxcu8P3ihdhb2+jareJk2qU9ph3bkDJnIerQCMxe7YTV6JEkjPmu4HOqUX3MXu9BytxFqK8/bKPeGQRA2tJVACgsLLD++nMyg66S/MvvaBMSUbo4oU1JKfY6idK1aM8ulu7by7f93qS8swvzdm7ng9m/s3rsN4/5/rZkSLsOeLq6YqxScfDSJb5fviT7+9uvii5dRTd3/njvA91zlbL4hraZtm6OacsmpCxdgzoyCrN2rbAa/hYJk6ZCuuF2MXn+ElDl+c747EMyz17Ml1blURaTRvVQP6Hju1B1eKUTpp3bkzJrHurQcMxe64rVl5+SMOorSEszmMe4SQPM+vYi5c/5qK/dQOnuhsXwtwBIW7QCAIt3B6EqV5bkP/5GGxuHSbOGWH39KQmffoM2Nq7Iyh/gVpFOVRqx6fJhQmLDqefhR/86Hfn90Cri05IN5uldsw1Wpuasv3iAmJQELE3M9YZAejqU4XzoDe4GhZOlUdPUqwYD63bi90OrSUx/+dsnxf/j4aAvKhmmKkqdqakpbm5ulCtXjvbt29OnTx927Nihl2b+/PlUqVIFMzMz/Pz8mDlzZoH7U6vVDB06FC8vL8zNzfH19eXXX3/Nl27evHn4+/tjamqKu7s7H3yQ8wWfd5jqhQsXaN26Nebm5jg6OjJs2DCSkpJ0f380NPKXX37B3d0dR0dH3n//fTIzMx9b9x9//BFXV1esra0ZOnQoaQa+HJ+l7gDbtm2jadOm2NnZ4ejoSNeuXbl586bu7xkZGXzwwQe4u7tjZmaGp6cnkyZN0qv7rFmz6NSpE+bm5nh5ebFq1Sq917h//z59+vTB3t4eR0dHXn31VYKDg5/q/fX09ASgR48eKBQK3XOAWbNmUalSJUxMTPD19WXx4sWPratarWbUqFG6uo4ePRqtVquXRqvV8tNPP1GxYkXMzc2pUaMGq1evfux+85o6dSrVqlXD0tISDw8PRowYoXf887p58yavvvoqrq6uWFlZUa9ePXbt2vVMr1ncMnbtJ+2flWSdfrGil7RaLcv27mZIh060rlkL7zJlGTdgEGkZGWwPPFFgvjo+vrSqWQsvN3fKOTvTt1UbvMuW5Wyuc7+JfwDvdXuV1jVrlURVMG3XirRN28k8fQ7N/VBS5i5GYWKMSYO6BeYxquRF1vVbZB4/iSY6Jrsj4vhJjDzL69JknbtI1oXLaMIj0IRHkLb2X7Rp6RhV8iqJahl0LOQSc45vZP+ts6VWhscxbdOctK27yDx7Ac2DMFIWLkVhYoJJ/doF5tGmpKBNSNQ9jKv4QkYmGacefmaMjTGuVZ3Utf+ivnELTWQUaZu2o4mKwbR546KvQ9uWpG3eket8+ufpzqcbt8g8firX+XRK73xKnj6LjMPH0TwIQ3PvPinzlqB0dEDl6VHkdXhWL2o7lZdWq2XZnl0M6diZ1rVqZ7dbA4c8bLeOF5hP1265u1PO2YW+rR+1WzdKpNymHdqQtnErmSfPorn/gJS/FmZ/LhrVLzCPkXdFsq7fJPNoIJqoaLIuBpFxLBAjr5xzyrRrezQxMaT+vQj1reDsdJev6m4giJeTVqtl2f59DGnXntbVa+LtXoZx/fqTlpHJ9tMnC8xXx7syrarXwMvVjXJOzvRt0RJv9zKcvXVTL51KqcTJxkb3sLeyLra6mLZoTNrOfWReuJQd1bl0VXZ7W7tmgXm0KaloE5N0D2Mfb8jMJOPcBf2EJiZY9O9D6sp1aFNTi68OndqStn4zmYGns9v2mXNRmJpg0qRBgXmMfCqRde0GmYePo4mMJuv8JTKOHMeoomd2AmNjjOvXIXXpatRXrmVfg6zeiCYiCtN2rYq0/I09q3H63lVO37tKVHIcW68cIyEtiXrlqxpM7+1UDk8Hd/45tZ1b0Q+IS03ifnwkd+NyohnXnN9L4N0gwhJjiEqOZ8PFgygUCio6li3SsgvxtKQzTrxQbt26xbZt2zA2NtZtmzNnDl999RU//PADQUFBTJw4kW+++UY3vDUvjUZDuXLlWLlyJZcvX+bbb7/lyy+/ZOXKlbo0s2bN4v3332fYsGFcuHCBjRs34u2dfzgSQEpKCh07dsTe3p7AwEBWrVrFrl279DrvAPbu3cvNmzfZu3cvCxcuZMGCBSxYsKDAuq5cuZLvvvuOH374gZMnT+Lu7p6vo+1Z6w6QnJzMqFGjCAwMZPfu3SiVSnr06KFbcGLGjBls3LiRlStXcvXqVf755x+9DjGAb775hp49e3Lu3Dn69+9P3759CQoK0r0frVq1wsrKigMHDnDo0CGsrKzo2LEjGQ+jKB73/gYGBgLZnYyhoaG65+vWrWPkyJF8+umnXLx4kXfffZchQ4awd+/eAus6ZcoU5s2bx9y5czl06BAxMTGsW7dOL83XX3/N/PnzmTVrFpcuXeKTTz6hf//+7N+/v8D95qVUKpkxYwYXL15k4cKF7Nmzh9GjRxeYPikpic6dO7Nr1y7OnDlDhw4d6NatGyEhMjznSe5HRxGdkEDDKjl3w02MjantXZnzt2891T60Wi0nrlzhTng4tQv4XBc3pbMjSjtbsi5dydmYlUXW1RsGh7Hokly/hZGnByqvCrr9GFfzJ/P8JcMZFAqM69dBYWpC1s3bRVmFl4bSyQGlrQ1ZQVdzNmapybp+M+cHxlMwadKAjJNncqLFlEoUKpXe0DwAbWYmRt5F2zGqdHrM+fSYTtisGzcxqpDrfHJyxLha1YLPJ0BhkR29ok1++aMEikpOu5XzI9HE2JjalX04f+tZ2q2gh+1W5eIqqo7S2Sn7nLoYlLMxK4usq9cxqvyYNuraDYw8y6N6+NlROjthXCOAzHM50T/GtWqQdTsEiw/eweb3n7Ca8CUmLZsWV1XEC+J+dDTRiQk09PXTbTMxMqa2tzfnbz/d95NWq+XEtavciYygdiX97++7UZF0+u4rXp3wHV8ums+9qOLp3FU62qO0sSHr6vWcjWo1WTdu63U6P4lJg7pknDkPGfo35i16vUJm0BWyrt0sIGfhKV2cUNrbkZW7rc/KIivoKkY+lQrMl3XlBkZeFVA9/F5RujhhXKsamafPZydQqR5+7+nXSZuRiZFf0V1vqRRK3G2cuBl1X2/7jaj7lLdzNZjHz6UCD+KjaOpVnc9a9uOjZr3p4NsAI6XKYHoAY5URKoWS1EzDkcBCFDcZpipK3aZNm7CyskKtVusiw6ZOnar7+4QJE5gyZQqvvfYaAF5eXly+fJk///yTQYMG5dufsbEx48eP1z338vLiyJEjrFy5kt69ewPwv//9j08//ZSRI0fq0tWrV89g+ZYsWUJqaiqLFi3C0tISgN9//51u3boxefJkXF2zvxTs7e35/fffUalU+Pn50aVLF3bv3s0777xjcL/Tp0/nrbfe4u2339aVadeuXXrRcc9ad4CePXvqPZ87dy4uLi5cvnyZgIAAQkJCqFy5Mk2bNkWhUFChQoV8+3j99dd15ZowYQI7d+7kt99+Y+bMmSxfvhylUsnff/+tC3eeP38+dnZ27Nu3j/bt2z/2/XV2dgbAzs5ObzjwL7/8wuDBgxkxYgQAo0aN4tixY/zyyy+0amX4btv06dMZO3asrs6zZ89m+/btur8nJyczdepU9uzZQ6NG2XPwVKxYkUOHDvHnn3/SokULg/vN6+OPP9b938vLiwkTJvDee+8VGKVYo0YNatSooXv+v//9j3Xr1rFx48Z8nbhCX3RCAgAO1jZ62x1sbAiLiXls3qTUVDp/+QUZWZmolErG9OlLgyqG76AWN4VNdvk1CYl62zUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nFIbovqie+yxcHi6uUlVnuVRlXUnZfGKnI3p6WTdvI1Zl3Ykh4VnR8/Vq43Ks3yRRwApbB/VIUFv+5PPp9OkWllh9cXH6M6nvQdJ37qzwDzmfV4j69rNJ84bJnJExxfQblnbEBYT/di8SakpdP5yDBmZD9utN/qVSLulO6fi85xT8Qm6+SgNyTx+klQbK6y+/gzdObV7P+mbcr57lc5OmLZuTvq2XST/uw1VRU/M+/dGm5lJ5uGCIwXFf1t0YgGfAytrwmKf4vt73NdkZGVlfw569aZBrk49/woVGN9vAOWdXYhOTGDezu0MnTGVFWO+wu7htXlRUVhnR9xpEvVHQGiSklDa2z3VPlTly6Eq40bKw+kAHjGuVR1V2TKkTHv8KJfCUtjZAgV9vh0LzJd59ET253v8F9n7MTIifcde0jc+nK8vLY2sazcwe60ryfdD0cbFY9ykASpvr8fOp/esLEzMUCmVJGXo3xRKzkjFytTcYB57c2vK27uSpVGz7MxOLIzN6OrfBHNjU9ZfPGAwTzufeiSkJXMr+r7Bv79sFAqJw3rRSGecKHWtWrVi1qxZpKSk8Pfff3Pt2jU+/PBDACIjI7l79y5Dhw7V69TKysrC1ta2wH3Onj2bv//+mzt37pCamkpGRoZuldKIiAgePHhAmzZtnqp8QUFB1KhRQ9cRB9CkSRM0Gg1Xr17Vdcb5+/ujyjVXhLu7OxcuXMi3v9z7HT5cf26lRo0a6SLBnrfuN2/e5JtvvuHYsWNERUXpIuJCQkIICAhg8ODBtGvXDl9fXzp27EjXrl1p3759vnLkff5otdpTp05x48YNrK31hwekpaVx8+bNZ35/c78fw4YN09vWpEkTg0OMAeLj4wkNDdUrq5GREXXr1tUNVb18+TJpaWn5FtzIyMigVq2nH6q4d+9eJk6cyOXLl0lISCArK4u0tDSSk5P1zotHkpOTGT9+PJs2beLBgwdkZWWRmpr62Mi49PR00vPMXWVqavrUZXwck9bNsfg451xL+nKCfjREKdp64jiTli3VPZ82InteqLzzWuQdfmyIhakpS8Z+RUp6OoFXrzBt7WrKOjlRx8e3aAttgHHDulgM7Kt7njR9VvZ/DJX7MXUx8q2MWdcOpC5eQdatO6hcnTDv2wtNfALp/27TpdOEhZM4bhIKCwuM69TE4u0BJE3+VTrkAOP6tbHo97ruedKjxRbyvu/PMHeKSeMGqO+H5pt8PmX+UiwGvoHt5HFo1WrUd++TGXgGVfnCDXkxblAXi4Fv6J4n/To7+z95Tx2F4gnnk3f2+fTPSrJuBaNycca8b080XTvodZ48Yv7m66jKlSHxx+mFKv/zeJHbqbyy261/dM+nPZzHKu8ppUX7xPPMwtSMJWO/edhuBTFtzSrKOjkXebtl3Kg+FkP66Z4nTfnjYSENfC4e09wa+flg1q0TqQuXkXXzNipXF8z790YTF0/6hofz6ioVqG/fIW31BgDUd+6iKuuOaZsW0hn3Etl6KpBJK5frnk97J/vzm/eMf7rPgSlLPvuClIx0Aq9dZdr6dZR1dKLOwyjRJlVy5lD0pgzVPb3o/sN4Ngce582WrQtVD+PaNbDo3V33PMnAYgvZHv/ZyM2kQV3UD8JQh9zLyW1ni3mPriTNnqdbQKeoGDdpgMU7A3XPkyY/vHbO9/3whO+Mqr6Y9ehK6tx/yLpxC5WbC+aD+qKJ60r62k0ApPzxNxbvDsF21pTs773bd8g8fFwXgV3cCir+o+vG1ef3kJ6VHbm37cox+tRsy6bLh8nSqPXSN/WqTjX3Ssw/sTnf34QoKdIZJ0qdpaWlbgjjjBkzaNWqFePHj2fChAm6jqQ5c+bQoIH+HAe5O75yW7lyJZ988glTpkyhUaNGWFtb8/PPP3P8ePYFoLm54TsqBdFqtQVOeJl7e+6htY/+9qj8z+N56g7QrVs3PDw8mDNnDmXKlEGj0RAQEKAbQlq7dm1u377N1q1b2bVrF71796Zt27ZPnEftUV01Gg116tRhyZIl+dI4OzujVD7/XRdDHTCFmWz00Xu4efNmypbV/3H8tB1dd+7coXPnzgwfPpwJEybg4ODAoUOHGDp0aIFzAn7++eds376dX375BW9vb8zNzenVq5fuGBgyadIkvYhOgO+++46RBaR/FhlHT5B15ZruuSbq8XeoS1Lz6jUI8MwZZpfx8AI1OiEep1ydzrGJiTja2OTLn5tSqcTDxQUAXw8PgsPDWLBje4l0xmWevUBi7pXEjLK/XpW2Nqhz3ZlW2lijzROhlZtZjy5kHDlBxsGjAGjuPwATUywG9c3uPHl0FapW66Kv1MEhqLzKY9q2JamLlhe06/83Ms9dIvF2rk6zh4swKG1tUOd675XWVo89FjrGxpjUq0lqrs7QRzRR0SRN/QNMTFCYmaJNSMTi7QGF/oxlnrtA4vjgXHUo4Hx6Qh3Muncl42ju8ykUTE2wGNiX9M079H7VmPfrhXHNaiRN/rVIJ+F+Wi9yO5VXwe1WAk62drrtsYmJOFo/Y7sVFsaC7VuLvN3KPHOOxNxD2Y0fnlN2tgbaqIS82XXMenYj48hxMvYfBshemdHUBIsh/bOjZ7RatHHx+SamVz8Iw7huwXM0iv+e5v7VCPjMU/dc9zlITND//k5KwvEJ87splUo8Ho6c8C1bjuDwcBbs2qHrjMvL3NQUb/cy3I0s/CqYmZeCSPwl1wrYj9pbayv97wwrS7SPmS9Yx9gYk1rVSd2mP1ewUbkyKK2tsM61GI1CpUJV0ROTpg2J//zbx3aUPbYOp86ReCPXNWTuz3euxYSUttZo4x/z+e7dnYyDR8nYexAAzd37YGqKxTsDSV+3GbRaNOGRJH3/E5iaoDA3RxsXj8XId4s0IjwlIw21RoOViYXedksTc5IzDM+zl5ieQkJasq4jDiAyKQ6lQoGNmSUxKTn1buJZjWYVa7IwcAvhSS/ud414+UlnnHjhfPfdd3Tq1In33nuPMmXKULZsWW7dusWbb775VPkPHjxI48aNdcMdAb0FDKytrfH09GT37t0FDn/MrWrVqixcuFAvCurw4cMolUp8fHyesXY5qlSpwrFjxxg4MOdO1rFjx3T/d3V1fea6R0dHExQUxJ9//kmzZs0AOHToUL50NjY29OnThz59+tCrVy86duxITEwMDg4OunLkLdejSLLatWuzYsUKXFxcsCmgc+RJ76+xsTFqtf5dqCpVqnDo0CG91z1y5AhVcs0dlputrS3u7u4cO3aM5s2bA9lRg6dOnaJ27ewL/qpVq2JqakpISMhTD0nN6+TJk2RlZTFlyhRdR2Pu+QcNOXjwIIMHD6ZHjx5A9hxyeRe4yGvs2LGMGjVKb5upqSkpXd8oIMczSE1Dk/piRkxZmpnprbCm1WpxtLHh+JUgfD2y52bJzMri9I3rfPhqj2fat1arJSPr8YuoFJm0dDR5Vh/UxMVjVNUv5864SoWRrzepqzYUvB8Tk/wX41pN/lCDfBQojOQrHYD0dDSReY5FfAJGVXxQ3304FEWlwqhyJVLXbXri7kzq1gQjIzKPnyo4UUYG2owMFBbmGFf1I3Xtv4WoAI85n3zzn0+rNz6m8Mb5zyeNNt/5ZN7vdYxrVyfppxlooh4/rLLYvMDtVF4FtltBl/XbrevX+LD7a8+07+x2q2ijZoCH55R+x4UmLh4j/yqo7zzsiFCpMPKtTOrKdQZ28JCJSfY5pLcj/TYq6/pNVO768zop3VzRRJfSuSWKhcHPgbUNx69exbdc9gIw2d/fN/iw2yvPtG8tj/8cZGRlEhweTs2KBc9/9tTSM9Ck63fIaBISMPL1zulUVqkw8vYi9d/8EcV5mdSsBkYqMk+e0dueef0mCY8i1h6y6NsTTUQkabsPPHdHHABpaWjyLAKniY3DqFrVnIhulQqjKr6kLn3MzXdD1yAajeHIxvQMtOkZKCwtMK4eQOrSVfnTPCe1VkNoQhSVnMoSFBGs217JqSxXIu4YzBMSG46/W0VMVEZkqLPPHSdLWzRaDQm5Vl9t4lmdFpVqsejkVh4k/P9aVEb55ItJUcLkyl28cFq2bIm/vz8TJ07k999/Z9y4cXz00UfY2NjQqVMn0tPTOXnyJLGxsfk6LwC8vb1ZtGgR27dvx8vLi8WLFxMYGIiXV85d7HHjxjF8+HBcXFzo1KkTiYmJHD58WDc8Nrc333yT7777jkGDBjFu3DgiIyP58MMPGTBggG6I6vMYOXIkgwYNom7dujRt2pQlS5Zw6dIlKlbMmTj5Wev+aHXTv/76C3d3d0JCQvjiiy/00kybNg13d3dq1qyJUqlk1apVuLm5YWdnp0uzatUqvXKdOHGCuXPn6t6Pn3/+mVdffZXvv/+ecuXKERISwtq1a/n8888pV67cE9/fR511TZo0wdTUFHt7ez7//HN69+5N7dq1adOmDf/++y9r16597CqkI0eO5Mcff6Ry5cpUqVKFqVOnEhcXp/u7tbU1n332GZ988gkajYamTZuSkJDAkSNHsLKyKnDevdwqVapEVlYWv/32G926dePw4cPMnj37sXm8vb1Zu3Yt3bp1Q6FQ8M033zwxStLU1NRgtF5xTaGusLZC6eKE4uF8U8py2ZGDmpi4UomK0ZVLoaBvqzbM374ND2cXPFxcWLB9G2YmJnSol7PC33cL5+NsZ8cHDzvo5m/fRtXy5Snr7ExWlprDly6y+fgxvngjZ1hWSlqa3l30B9FRXL17F1tLS9wcCp4j6Xml79yLWdf2aCIiUIdHYtalA9qMTDKO56wqZ/H2ADSx8aStye5QyTp3EdP2rVCH3EN9KxilizNm3buSefaC7gLZ7LVuZF64jDYmFszMMGlQByO/yiRPLd45aB7H3NiUcrbOuudlbJyo7FSOhLRkwpNiS61cj6TvPoBZx7ZoIqJQR0Ri1rEt2owMMk6c1qWxGNwXTVwCaes36+U1adyAzLMXDS5oYFTVF1CgCY9A6eKE+WvdUIdHkHGk4JV/n7sOu/Zh1qU9mvDI7Dp0bp//fBo6AE1sHGkPOwP1z6c7KF2cMOvehcyzF3Xnk3n/3pg0qEPSb3PQpqWhsMmOYNGmpuWbpLukvajtVF4KhYK+rdsyf/tWPFxcs9utbVsftls5ke3fLZiX3W497KCbv20rVStUeNhuZT1st47yRd+nuwFXWOnbd2PWrSOa8AjUYRGYvdIx+3NxNOf8tRg2OPucWrUegKyzFzDt2Ab1nbuob95G6eqCWc9XyDxzXndOpW/bjdU3ozHt1pHM46dQVfLEtFVTUublj6gXLw+FQkHfFi2Zv2sHHs7OeDg7s2DXDsxMjOlQO2fV5++WLMLZ1o4PumZ30M3ftYOqHuUp6+hEljqLw0GX2Rx4gi9e76PLM33DOpr5B+Bmb09sUhJzd2wnOS2NrvUKXhm0MNL3H8GsbUs0kdGoI6Mxa9syu709fVaXxqJf9hQSaZt36OU1aViXzAtBaFPyRHClZ6AJC9fflpGBNjkl//aiqMPWXZh174ImLBx1aARmPTqjTc8gI9dQcYsRQ9HExJK2PHtuu6zT5zDt3B717RDUN26hdHPBrHd3Mk+d1X2+jar7g0KB5kEYSjcXzN98HXVoGBn7Dhdp+Y8EX+C16i11K6LW9fDD1syKwJDs6Qva+tTDxtSStRf2AXAh9AYtK9Wie7UW7L1+CgsTM9r7NuD0vWu6YahNvarTunJdVp/bQ1xqIlYm2aOlMtSZug48IUqSdMaJF9KoUaMYMmQIY8aM4e2338bCwoKff/6Z0aNHY2lpSbVq1fQm1c9t+PDhnD17lj59+mRfGPTty4gRI9i6dasuzaBBg0hLS2PatGl89tlnODk50atXL4P7s7CwYPv27YwcOZJ69ephYWFBz5499RaZeB59+vTh5s2bjBkzhrS0NHr27Ml7772ntwDBs9ZdqVSyfPlyPvroIwICAvD19WXGjBm0bNlSl8bKyorJkydz/fp1VCoV9erVY8uWLXrDS8ePH8/y5csZMWIEbm5uLFmyhKpVq+rejwMHDjBmzBhee+01EhMTKVu2LG3atNFFyj3p/Z0yZQqjRo1izpw5lC1bluDgYLp3786vv/7Kzz//zEcffYSXlxfz58/XK3ten376KaGhoQwePBilUslbb71Fjx49iI/PCcmfMGECLi4uTJo0iVu3bmFnZ0ft2rX58ssvn+o41axZk6lTpzJ58mTGjh1L8+bNmTRpkl4EX17Tpk3jrbfeonHjxjg5OTFmzBgSHjPspzQYN6qH5ecf6Z5nT8YNqYuWk5Z7kvpSMLBde9IzM5i8YhmJKSn4e3rx2wcf6d2BD4uN0RvCnJaRzuQVy4iIi8PU2JgKrm58P/gt2tfJ+QEQFHKH4b9O0z2ftib77nCXBg0ZN3BwkdcjfesuFCYmmPfvg8LSAvWtYJKm/A65Ip6UDg56USZp/25Dq9Vi1qMrSntbtIlJZJ67SNqanEgrha01lu8MRGFrgzY1DfW9+yRPnUnW5SuUFj/nCvzeI+cGwUdNs+ds2xJ0lB/2FLz6c0lJ37EHhYkx5n17orAwR307hKQZf0J67mNhny8iQOnijFHlijlztuWhMDfDrHsXlHZ2aFNSyDxzntT1W7IjCYq6Dlt3oTA2xrx/75zzaeofec4n/TqkbdqOluzhqnrn09qciEDTVtlR1NZj9AfFp8z7R+9HW2l4kdupvAa260B6RgaTly/Jabc+/Dh/u6XM024tX0pEXGyudmso7esaXlCqqKVv3pHdRg3qi8LCAvWt2yT9NEP/nHJ00D+nNmzJbqN6vYLS3i77nDpzXjc/HID69h2SZ8zG/PXumL3aBU1UFKlLVpF5tOg7qcWLZWDrtqRnZjJ59UoSU1Pwr+DJb8Pfz/M5iM3z/Z3B5NUriYh/+P3t4sr3/QfSvlYdXZqI+Di+XryAuORk7K2sCKjgybyPR+FeDDfSANL3HMhub3u9gsLcHPWdeyTNng/pOdONKO3t8n9nODtiVNGTpFnziqVczyJ949bs7723+qOwtER94xZJE6dCrgg6pVOez/faTWi1YNanO0oHe7QJiWSeOkdaroUoFBbmmPXtmf33pOTshaeWrwN10c67djHsFubGprT0ro21qQURiTH8c2ob8WnZQ4WtTS2wNc+ZtzlDncXCk1voUqUx7zbuQWpGGhfDbrH7es4Nq3rlq2KkVPFGLf25pPfeOMXeG6cRoqQptE8zK7YQ4v8NhULBunXr6N69e2kXRQCx7Z5taOaLyH7nOhJ27S3tYhSKTdtWxL31318J127e7zT5Y/iTE77ADr8/m7jh+SOD/2vsZk8lbmj+aOz/Gru5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZb9PjIc1HyErbseHKiF5hN5/bEffJ0N2BfZHbTJhL3xtDSLkah2C2fy7fb5pR2MQrt+47vPDnRC2j6gRfrJlZuHzfv8+RELyFZ31YIIYQQQgghhBBCiBIinXFCCCGEEEIIIYQQQpQQmTNOCKFHRq4LIYQQQgghxMtDaWhVXFGqJDJOCCGEEEIIIYQQQvwnzJw5Ey8vL8zMzKhTpw4HDx4sMO2+fftQKBT5Hleu6C9+tmbNGqpWrYqpqSlVq1Zl3bp1xVoH6YwTQgghhBBCCCGEEC+8FStW8PHHH/PVV19x5swZmjVrRqdOnQgJCXlsvqtXrxIaGqp7VK5cWfe3o0eP0qdPHwYMGMC5c+cYMGAAvXv35vjx4ltZXjrjhBBCCCGEEEIIIV5ShiLDXpTHs5o6dSpDhw7l7bffpkqVKkyfPh0PDw9mzZr12HwuLi64ubnpHiqVSve36dOn065dO8aOHYufnx9jx46lTZs2TJ8+/ZnL97SkM04IIYQQQgghhBBCvNAyMjI4deoU7du319vevn17jhw58ti8tWrVwt3dnTZt2rB37169vx09ejTfPjt06PDEfRaGLOAghBBCCCGEEEIIIUpceno66enpettMTU0xNTXNlzYqKgq1Wo2rq6vedldXV8LCwgzu393dnb/++os6deqQnp7O4sWLadOmDfv27aN58+YAhIWFPdM+i4J0xgkhhBBCCCGEEEK8pF7k1VQnTZrE+PHj9bZ99913jBs3rsA8eYe3arXaAoe8+vr64uvrq3veqFEj7t69yy+//KLrjHvWfRYF6YwTQgghhBBCCCGEECVu7NixjBo1Sm+boag4ACcnJ1QqVb6ItYiIiHyRbY/TsGFD/vnnH91zNze3Qu/zWcmccUIIIYQQQgghhBCixJmammJjY6P3KKgzzsTEhDp16rBz50697Tt37qRx48ZP/ZpnzpzB3d1d97xRo0b59rljx45n2uezksg4IYQQQgghhBBCiJdUcQ63LGmjRo1iwIAB1K1bl0aNGvHXX38REhLC8OHDgexIu/v377No0SIge6VUT09P/P39ycjI4J9//mHNmjWsWbNGt8+RI0fSvHlzJk+ezKuvvsqGDRvYtWsXhw4dKrZ6SGecEEIIIYQQQgghhHjh9enTh+joaL7//ntCQ0MJCAhgy5YtVKhQAYDQ0FBCQkJ06TMyMvjss8+4f/8+5ubm+Pv7s3nzZjp37qxL07hxY5YvX87XX3/NN998Q6VKlVixYgUNGjQotnpIZ5wQQgghhBBCCCGE+E8YMWIEI0aMMPi3BQsW6D0fPXo0o0ePfuI+e/XqRa9evYqieE9FOuOEEEIIIYQQQgghXlJKWS7ghSNHRAghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxknqZVlN9WUhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEKrVarLe1CCCGEEEIIIYQQQoiiN+fYhtIuQoHeafhqaRehVMiccUII8QKbsn9ZaReh0D5t0ZfbUfdLuxiF4uVUlp4LvyztYhTamkETiRs+qrSLUSh2s6fS5I/hpV2MQjv8/myGrPihtItRaPP7fMX5B9dLuxiFUr1MZVac2VnaxSi0PrXase/GqdIuRqG09K7DqbtBpV2MQqvjUYW910+WdjEKrVXlunyy8dfSLkahTHtl5EvznfH9znmlXYxC+bbdW3Rf8EVpF6PQ1g/+sbSLIF4SMkxVCCGEEEIIIYQQQogSIpFxQgghhBBCCCGEEC8pBbKa6otGIuOEEEIIIYQQQgghhCgh0hknhBBCCCGEEEIIIUQJkWGqQgghhBBCCCGEEC8phUKGqb5oJDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEEKUEBmmKoQQQgghhBBCCPGSUsow1ReORMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5Ssprqi0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLyklMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5Sspvrikcg4If6jgoODUSgUnD17tlj2r1AoWL9+/TPladmyJR9//PFTp1+wYAF2dnaPTXPlyhUaNmyImZkZNWvWfKbyPK9nrUdxHwshhBBCCCGEEC8PiYwT4jkMHjyYuLi4Z+6sKkoeHh6Ehobi5OQEwL59+2jVqhWxsbFP7OD6L/nuu++wtLTk6tWrWFlZlXZxDMp7LErLpX0nOL/9CCnxidiXcaFRn464V65gMO2Dq7fZNGVhvu29x7+Pnbtzvu03Tlxgz99rqFDDlw7v9y2yMv+7dgOrl64gJjqaCl6eDP/ofQJqVi8w/fkz5/jrt5ncuR2Mo5MTr/frQ5cer+ilWbdiNZvWbSQyPAIbO1uatWzOkOHvYGJqAsDyRUs5vP8g9+6EYGJqStVq/rz13jt4VChfZPXq4NuAV/2bYW9hzd24COaf2ExQRHCB6Zt51aB7QHPcbRxJyUjjzIPrLDy5haT0VADGd3ibALeK+fKduneFibsXFVm5DTHr2gGTpg1RWFigDr5DyrI1aELDC0xvNWoERj7e+bZnXrhM8h9/Zz8xNcX8lU4Y1wxAYW2N+u49UleuR33nbnFV44lquHvTr1Z7/FzK42RpxxdbZnHw9rlSK09erbzr0Mm3IXbmVtyPj2TpmZ1cjzL8fg2t35WmXjXybb8fH8nX2/4CQKVQ0qVKY5p4Vcfe3JrQxGhWndvDxbBbxVqP7es3s2HFWuKiYyjnWZ4hH7xDleoBBtPGRsewcOZcbl2/Qdi9B3R6rRtDPhiml2bvtl3MnDw9X94l29diYmJSHFXgxI4DHPp3N0lx8TiXc6fTwJ54Vsl/zgPcuXKTHUs3EPUgjMz0TOycHajbpgmNu7TWpVFnqTmwYQdn9x8nMTYOR3dX2vd7lco1qxZL+R/Zt2knO9ZuIj4mjjLly9J72EAqB/gZTHv68AkObNnF3Vt3yMrMwr1CWbr164l/Hf3zLCUpmfWLVnLmSCApSck4uTrT6+03qVavVrHUYeeGLWxatZ646FjKenowcMRQ/Kr5G0wbGx3DktnzuX39JmH3Q+nQowsDR7ydL93WNRvZ9e82oiKisLa1pkGzxvR5e0CxnU8A+zbvZOfazbpj8fo7Awo8FmeOBLJ/yy7u3bpDVmYm7uXL0bVfT/zr6H93piQls2HxSs4cOak7Fj2Hvkm1ejWLrR5NPKvTqlJtbMwsCUuMZv3FA9yKeVBgepVSRQef+tQp54eNqQVxaUnsvBbIibuXAVAqlLStXJd6HlWwNbMiIimWTZcPcyXyTrHVoUdAC/rVaoejhS23Yx4w49AqzoXeKDD9awEt6FmtJe42joQnxrDw1Fa2XT2eq45KBtbuSCe/RjhZ2hESF86so2s5HnK52OpgyLUDp7m8+wSp8UnYuTtRp2cbXLw9CkyvzsziwtYj3A68RFpiMhZ21gR0aESlRgVfoxW1Tr4N6R7QPPtaKjacuSc2cfkx11LNK9akR0ALytg4kpyRxpn711hwcguJ6Sm6NN2qNqGjb0OcLO1ITE/mSPBFFp/eRqY6qwRqJIQ+6YwT4j9KpVLh5uZW2sUodjdv3qRLly5UqGC4U+lF8CIci5uBFzm6YhtN+3XB1bs8QQdOsnXGP/Qe9z5WjnYF5us94QNMzEx1z82sLfOlSYyO4/jqHbhVLrrOKoD9u/by569/8P6nI/GvHsCW9f/y9Wdf8Nc/83Fxc82XPuxBKN98NpZO3Toz+tsvuXT+In9M+RVbOzuatmoOwJ7tu5g3ew6jxo6mSjV/7ofcZcoPPwHw7sj3Abhw9hzdXnsVnyq+aNQaFvw1l68+Gc1fS+ZjZm5e6Ho19qzGkHpdmHN8I1ci7tDepz5ftR3ExxumE5Ucny+9n0sFPmz6OgsCN3Py3hUcLGx4t2F3RjR+jZ/2LgHg571LMFKqdHmszSyY0u1DjgZfLHR5H8e0fWtM27QgZeEy1BGRmHVqh9XI4SR89yOkpxvMkzx7ARjllFVhaYH115+ReTqnY8tiQG9UZdxJnr8UbXwCJg3qYPXxcBLG/4Q2Lv97VBLMjU25EX2PLVeOMLHT8FIpQ0Hqe1ShX812LD69jeuRd2npXZtRzd/gq21/EpOSkC/90jM7WXV+r+65SqHk+w5vE3g3SLfttWotaFShGgtObiY0IZoAt4p82KQXP+xeSEhcwZ2thXF4zwHm/zGHdz5+D9+Aquz8dys/jBnHtAUzcXZ1yZc+MzMTGzsber7Zm02rNxS4X3NLC35d9KfetuLqOLlw5BRbF66h69A+lPetSOCuQ/zz40w+mPI1dk4O+dKbmJrQoENz3MqXxdjUhJCrN9n493JMTE2o27YpALtX/Mu5Q4G8OqwfTmVcuXEuiGVT5vDO96Nw9yr4x3JhBB44yso5i+g34i0qVfHhwLbd/PbdZMbN+hkHl/w3lq5fukKVWtXoPqgP5pYWHNm1nz++/4Uvpk6gfCVPALIys5j+9SSsbW1498uR2Ds5EBsZjWkRtKuGHN17iEWz5vHWR+/i4+/H7s3bmTx2Aj/P/Q0n1/w3lbIyM7G2s+XVfq+zdc1Gg/s8tHs/y/9ezLDPPsDH34/Qew+Y/fMMAAaMGFos9Th54Cir5iym73tDqFTVh4Nb9/D7uJ/4buZPho/FxStUqRlA94G9Mbe05Oiu/cyc8Atjpnyvdyx+/eZHrG1tGDb2o4fHIgYzc7NiqQNAzTKV6R7QnNXn93I75gGNK1RjWMNX+XHvP8SlJhrMM6hOJ6xNLVhxdheRyXFYm1qgVOQM3Ors14g65fxYeW43EUkx+LpUYEj9rsw4uJL7CZFFXoc23nUY2fR1puxfxvmwm3T3b8Yv3T6g/9LxhCfF5kvf3b85wxt1Z/LefwiKuEMVF0++aNWfxPQUDgdfAGBYg1fp4NOAyfv+4U5sGPU9qjKp03DeXfNzgTdUilrwqSBOrdlNvT7tca5YluuHzrJ35iq6fv02lg42BvMcmreB1MRkGr7ZCWtne9ISk9FqNCVSXsju2H2rflf+PLaBKxHBdPBtwDfthvDh+qkGr6WquFRgZNPezAvcRODdIBwtbBjeqAfvN+7Jj3sXA9mddQPqdOT3Q6u5EhlCGRsnPmr6OgDzAjeVWN1KiwxTffHIMFUhisH+/fupX78+pqamuLu788UXX5CVlXPHpWXLlnz00UeMHj0aBwcH3NzcGDdunN4+rly5QtOmTTEzM6Nq1ars2rVLb+ho7qGRwcHBtGrVCgB7e3sUCgWDBw8GwNPTk+nTp+vtu2bNmnqvd/36dZo3b657rZ07dz6xjsnJyQwcOBArKyvc3d2ZMmVKvjQZGRmMHj2asmXLYmlpSYMGDdi3b98T9/2IQqHg1KlTfP/99ygUCsaNG8e+fftQKBTExcXp0p09exaFQkFwcDAAd+7coVu3btjb22NpaYm/vz9btmzRpb98+TKdO3fGysoKV1dXBgwYQFRUVIHl+Oeff6hbty7W1ta4ubnRr18/IiIidH83NEz1WV+jsM7vPIpv09r4NauDvbszjft0wsrelsv7Tz42n7m1JRa21rqHUqn/taDRaNjz9xrqvNIKGyf7Ii3z2hWr6NC1E51e6UJ5zwoM//gDnF1c2LTO8I+kzev/xcXVheEff0B5zwp0eqUL7bt0YvWylbo0QRcv4V8tgFbt2+Dm7kadBvVo2a41165c06X5Yepk2nfpiGdFLypWrsSoL0cTER7B9avXDL3sM+tWtSl7bpxi9/WT3I+PZH7gZqKT4+ng28Bgeh9nDyKTY9ly5SgRSbFcibjDjmsnqORYVpcmKSOVuLQk3aO6uzfpWZkcuXOhSMpcENM2zUnbuovMsxfQPAgjZeFSFCYmmNSvXWAebUoK2oRE3cO4ii9kZJJx6mFnnLExxrWqk7r2X9Q3bqGJjCJt03Y0UTGYNm9crPV5nGMhl5hzfCP7b50ttTIUpL1vAw7cPsuBW2cJTYxm2ZmdxKQm0LqS4eOQmplOQlqy7uHp4I6FiTmHckX6NfKsxqagw5wPvUlkchx7b57mYtgtOhZwnhaFTavW07pzO9p06UC5Ch4M+WAYTi5O7Ni4xWB6FzdX3vrwXVp0aIOFpUWB+1WgwN7BXu9RXI5s3kPtVo2o07oxzmXd6DyoFzaO9gTuPGgwvbuXB9Wb1MXFwx17F0dqNKuPd/Uq3LlyU5fm3KETNO/eHp9a/ji4OlG/fTO8a1Th8OY9xVaPXeu20KR9S5p2aIV7+bL0GTYQeydH9m/ZZTB9n2ED6dCrG54+lXAt606PQW/gUsaN88dP69Ic3rmP5MQkRnwzCu+qvji6OOPt74dHxeK5mbZlzQZadmxLq87tKFvBg4Ej3sbRxYld/24zmN7ZzZVB779N8/atCjyfrl++ik+AH03atMDZzZXqdWvRuFUzbl0rODKqsHat30qTdg+PhUdZeg8b8Nhj0XvYgFzHwo3ug/rgUsaNCydyjsWRh8fiva8/yXUsfClXTMcCoGWl2hwPucTxkEtEJMWy/tIB4lKTaOJZzWB6P+cKeDuVY87xDVyLuktsaiIhceEEx4bq0tT18GPX9UCCIoKJTkngSPAFrkbcoaV3wd9BhdGnZls2BR3m36DD3IkN49dDq4hIjKVHQAuD6Tv6NmDDpYPsvnGKBwlR7L5xkk1Bh3mzVge9NItObeXonYs8SIhi/aUDHA+5TN+abYulDoZc2RNIpUbV8W5cA1s3J+r2aouFvTXXDp4xmP7B5VuE37hLq/dex93PEytHW5w8y+BcsVyJlflV/6bsun6SXdcDuRcfydwTm4hKjqejb0OD6X2cyxOZFMvmoCNEJMUSFHGHHVdP4O2Ucy3l61yeK+F3OHD7HBFJsZx9cJ2Dt87ppRGiJElnnBBF7P79+3Tu3Jl69epx7tw5Zs2axdy5c/nf//6nl27hwoVYWlpy/PhxfvrpJ77//ntdJ5hGo6F79+5YWFhw/Phx/vrrL7766qsCX9PDw4M1a9YAcPXqVUJDQ/n111+fqrwajYbXXnsNlUrFsWPHmD17NmPGjHlivs8//5y9e/eybt06duzYwb59+zh16pRemiFDhnD48GGWL1/O+fPnef311+nYsSPXr19/qrKFhobi7+/Pp59+SmhoKJ999tlT5Xv//fdJT0/nwIEDXLhwgcmTJ+uGuIaGhtKiRQtq1qzJyZMn2bZtG+Hh4fTu3bvA/WVkZDBhwgTOnTvH+vXruX37tq6zs6ByP+trFIY6K4uokAeUq1pJb3u5qpUIv/n4u65rJ/zJ4s9+YdPUhTy4cjvf309v2o+5tSV+TYv2wjczM5PrV69Ru35dve2169cl6OIlg3mCLl7Kl75Og7pcv3JV19ntX6Ma169e4+rl7Aig0PsPCDx6nPqNC+5gSElOBsDaxvDd4WdhpFRRybEMZx/on+PnHtzA19nwj6CrESE4WthSu6wPALZmVjSqEMCpe1cLfJ02letyOPg86VmZhS5zQZRODihtbcgKylWOLDVZ129iVNHzqfdj0qQBGSfPQEbGwx0rUahUkKk/JESbmYmRt1cRlPzlolIq8bR351KY/ufzUtgtKjk93Q+j5l41uRx+m+hcUXTGSlW+YTkZ6iwqOxdPJFZmZia3rt2gRl394YrV69bi6sUrhdp3Wmoq770xhHdfH8SkseO5ff3mkzM9h6ysLEJv36VS9Sp6272rVyHkWv7205DQ23e5e+0WnlUr5+w3MwsjY2O9dMYmxoRcKaZ6ZGYRcuM2VWvpDzerWrsaN4Oe7qaERqMhLTUNy1zR1OePn6KiX2WWzpzPZ28OZ/yI0WxZsR6NuuijabIyM7l97SbV69bU216tTk2uXX7+88k3oAq3r93kxsMbOOEPwjh74jS1GtR9Qs7n8+hYVKml32FVpVY1bl15umulR8fCItdUHueOn6aiX2WWzVrA5/3f4/sRY9i6ckOxHAvIjr4tZ+vC1YgQve1XI+/gae9uMI+/W0XuxoXT2rsu37UbytjWA3mlalOMc0WBGylVZGnUevky1VlUdChT5HUwUqrwdS7PiZAgve0n7gYZnCYCwFhlREae7+H0rEyqunqienhz01hlRIY6f5rq7oaHthc1dZaamLthuFfR/351r+JF1O37BvPcu3ADx/JuXN51nLVf/cHG8X9xeu0esjKK75ojt+xrqbL5rqXOPriOn4vha6krEXdwtLSlTllf4OG1lGcAJ+/ltAdBEcFUcipL5Yffna5WDtQu56uXRoiSJMNUhShiM2fOxMPDg99//x2FQoGfnx8PHjxgzJgxfPvtt7rIo+rVq/Pdd98BULlyZX7//Xd2795Nu3bt2LFjBzdv3mTfvn264Y8//PAD7dq1M/iaKpUKB4fs4TEuLi7PNGfcrl27CAoKIjg4mHLlsr+cJk6cSKdOnQrMk5SUxNy5c1m0aJGuTAsXLtTlh+zhpcuWLePevXuUKZN90fTZZ5+xbds25s+fz8SJE59YNjc3N4yMjLCysnqmYaAhISH07NmTatWyL24rVsy5iJo1axa1a9fWe/158+bh4eHBtWvX8PHxybe/t956S/f/ihUrMmPGDOrXr09SUpLBeeye5zUKIy0pBa1Gi7mN/hBTcxtLUhKSDOaxsLWm2YBuOJd3R52l5vqxc2yatpBunw7G3ccTgLAbIVw9dJqe3xT9kL2EuHg0ak2+CBZ7e3tiomMM5omNicXePk96B3vUajXxcfE4OjnSsm1r4mPj+PS9kWi1WtRqNV17vEKfAf0M7lOr1fLnjJn4V6+GZ8XCdwRZm1qgUqqIT9V/3+PSErEzr2wwz9XIEKYfXMmoFn0xVhlhpFRxIuQyc4//azC9t1M5Kti7MfPI2kKX93EUDzsnNQn6w4s0CYkonzLySOVZHlVZd1IWr8jZmJ5O1s3bmHVpR3JYeHb0XL3aqDzLo4kovujR/yprEwtUSiUJafrnVHxaMgFmT55H09bMimrulfjz2Hq97RfDbtHBtwHXIkOISIqliqsXtcr6oCymYSyJ8QloNBrs8nyG7eztiYs9XUCuJytbvhzvf/EJ5b0qkJqSwuY1G/n6w9H88vcM3MsVbbRDSkISGo0GK1trve2WttYkxeUfLpzbLyO+JjkhCY1aTatenanTOicK1Lt6FY5s2YNnFW/sXZ24dfEqV06eR6PRFmn5H0lKSESj0WBjZ6u33drOloTYpxsmvnPdZjLS0qnTLCdKJTIsgujwyzRo2YQPx40m4kEYy2YtQKPW0LXfa0Vah8T47DrY2tvpbbe1tyU+Jv9wwqfVuFUzEuPiGf/xl/DwO6Rtt4680rdnIUtsmO5Y2OsfCxt7WxJOP92x2LVuy8NjkXPTKSo8gqvnL1O/ZWM+GDeaiPthLJ+9AI1aTZe+RXssl049cgABAABJREFUACxNzFEplXpzcwEkpqdiY5Z/+gsAR0sbvBzKkKlWMz9wE5Ym5vSq3goLEzOWn82OCrwSEULLirW4GX2f6OQ4KjuXJ8CtYrG0U3ZmVhgpVcSk6n+WY1MTcLQwfLPuxN3LdK3alAO3z3E1MgQ/5/J0qdIYY5URdmZWRKckcDzkMm/UbMvZBze4Hx9J3XJ+NPOqgVJZMkMG0x9eI5pZ60eDmllbkpqQbDBPUlQcETfvoTQyovk7PUhPTiVwxQ7SU9Jo1L9zsZf50bVU3uHN8amJ2Jsbvoa+GhnC1APL+axlP9211PGQy8w5ljPa4tDt89iaWjGx03AUCgVGShVbrxxl7YX9xVqfF0Vxfb+L5yedcUIUsaCgIBo1aqQ3Lr9JkyYkJSVx7949ypfPnnerenX9O9Lu7u66oY9Xr17Fw8NDrwOqfv36xVbe8uXL63WkNWrU6LF5bt68SUZGhl46BwcHfH19dc9Pnz6NVqvN1/GUnp6Oo6NjEZXesI8++oj33nuPHTt20LZtW3r27Kl7v0+dOsXevXsNdqLdvHnTYEfZmTNnGDduHGfPniUmJgbNwzkzQkJCqFo1/wTbz/Ma6enppOeZg8vU1DRfusdRoP8lq33M7zg7Nyfs3HLmonGt5EFSbALndhzB3ceTjLR09s5dS7MBrxicR67I5Lkw0KJ9/JwWedNrH23O3n7u9FmWL1rC+5+OxM+/Cg/u3Wf2r39gP38xbw4ZkG93f0ydwe2bt5gya0bh6pGHFv03P++xya2crQtD63dl1bk9nH1wHXtzawbW6ci7jbob7HBr412XO7Fh3Ii6V6RlNq5fG4t+r+ueJz1abCHvifQMF3MmjRugvh+KOlg/WiJl/lIsBr6B7eRxaNVq1Hfvkxl4BlV5GSpSkLwf5+xz6smdNU29qpOSmcbp+/qRlkvP7GRw3c5M7DQcLRCRFMuh2+cMLvxQpPKcPlq0j/18PIlPVT98quZMdO8bUJXRw0ayde0m3vro3efe72PlK+4T2i1g6LiPyUhL5+71YHYu24CDmzPVm2RHW3Ue3IsNfy1jxqgJKBQK7F2dqNWyIWf2HSue8j+St8haA9sMOLHvCJuWrGXEN6P0OvS0Gi3Wdjb0//BtlColFSpXJC4mlh1rNhd5Z5yOwTo8//l0+ewF1i9dzVsfvUslv8qEPwhj0R9/s9ZxBa/171Oooj5O/u9v7VMdi8D9R9i0dC3vFXQsPnh4LLy9iI+JZcfazcXSGad7XQNtkraAixElCrTAP6e3kZaVHTm9/tIBBtftwprze8nUqFl3cT99arRhbOsBaLUQnRLPibuXqe9RfIub5C+vosCWdn7gFhwsbPir5xhQQGxKIluuHKV/7Q6oH+7n14MrGdOqP0v7jUOLlgfxkWy+coQufiU9LUPexldb4EdFq81u05oM7oaJefa1qPq11hycu556vdthZGJsOGNxUygMnmOQfS31ToNXWHF2N2ceXMPe3JrBdTvzXqMe/H4ke/RQgFtFetVoxZ/HNnA9MgQ3Gyfert+N2OqJrDxffNMCCFEQ6YwToog9+gLLuw30J840zjMkRaFQ6Dp5DO3jeSmVynwXFpmZOWHmhi6SnvTaBV1Y5abRaFCpVJw6dQqVSqX3t8KsivoosjB3GXLXB+Dtt9+mQ4cObN68mR07djBp0iSmTJnChx9+iEajoVu3bkyePDnfvt3d8w+lSE5Opn379rRv355//vkHZ2dnQkJC6NChAxmPht3l8ayvATBp0iTGjx+vt+27777DupWvwfS5mVlZoFAq8kXBpSUmY2Hz9O+1i1c5bhw/D0BCZAyJ0XFs/2Op7u+P3vM5w8fT5/sPsXHJP1n507Kxs0WpUhKbJwouLjauwPme7B3siY3Jmz4WlUqFjW32XetFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt6ceDOnzuDYoSP88sd0nF3yT/b9PBLTU1Br1NiZ60fO2JpZEZdqOErxtWotuBJxhw2XsuecuhMbRlpWBj90epelZ3bq3Rk2URnTxKs6K84ankuoMDLPXSLxdq5Os4eLMChtbVDnio5TWluhTTA8GbceY2NM6tUk1cD8TZqoaJKm/gEmJijMTNEmJGLx9gA0UYajIv8/S8xIQa3RYJsnCs7GzIL4NMNRDbk186rBkeALqPNMvJ2YnsJvh1djpFRhZWpBXGoir1dvRVRyXFEWX8fa1galUklcnqil+Ni4fNFNhaFUKvH2q0zo/YJXcHxeFjZWKJVKkuL0z//k+CQs80TL5WX/cCJ+1/JlSYpPZO/qLbrOOEsba/p9NozMjExSk5Kxtrdl59IN2LkUz40rK5vs+UHzRsElxsfni5bLK/DAURbN+It3vxiZb2ilrYMdKpUKpSqnnXX3KEtCbNzDobhF97PD+uEcp/ExcXrb4+PiC3U+rVqwlKZtW9Kqc3bUf/mKnqSnpfH3tJl07/d6vnlVC+vRsYiPjdPbnhiX8MRjcfLAURbNmMOwLz6iSk39FYkNHQs3jzLFciwAkjNSUWs02Jjq37yzNjXPFy33SEJ6MvFpSbqOOIDwxBiUCgW25tZEJceRnJHKvMBNGClVWJqYEZ+WTNcqTQwuXFNYcWlJZGnUOFrov+/25tYFvl6GOpNJexbz074lOJjbEJ0SzytVm5GckaqLkI9LS2Ls1tmYqIywMbMiKjmO9xr1IDSxZCLBTR9eI6Yl6n9fpCWlFHiz1dzGCnNbK11HHICtmyNoISUusVDXf0/jea6lelVvSVBEMOsvHQCyr6X+PLaeSZ3fY8mZHcSmJtKvVjv23TzNruuB2WniwjEzMmZE49dYdX5vgR19QhQXmTNOiCJWtWpVjhw5otdZdOTIEaytrSlb9umiPvz8/AgJCSE8PGdFu8DAwMfmebRynFqtP7eGs7MzoaE5k+EmJCRw+3bO3DZVq1YlJCSEBw9yfrgcPXr0sa/l7e2NsbExx47l3LWPjY3l2rWcuWZq1aqFWq0mIiICb29vvUdhVh51ds7uNMldp9wLJzzi4eHB8OHDWbt2LZ9++ilz5swBoHbt2ly6dAlPT8985bK0zH9RcuXKFaKiovjxxx9p1qwZfn5+eos3GPKsrwEwduxY4uPj9R5jx459qvdEZWSEU/ky3L+sP7/QvaCbuFZ6+vmfou+GYmGb/YPfzs2JXt+9R89vhuseFar7UsbXi57fDC9w9a2nZWxsTGVfH84E6s8zeCbwFFUC/A3mqRLgny/96RMnqezni5FR9g+L9PS0fD+WHnVIP/pMarVa/pjyK4f3H2TyjCm4lTHcQfo8sjRqbkY/oEaeuWCql/HmauQdg3lMjYzzdXBrtNkdJ3m7xZt4VsNYpWL/LcOTLhdKejqayKicR2g4mvgEjKrkiuRUqTCqXImsW8FP3J1J3ZpgZETm8VMFJ8rIQJuQiMLCHOOqfmSeK97VYf+L1BoNwbGh+LvpD6Ou6urFzSdER/o6l8fV2oGDuRZuyCtLoyYuNRGVQkmdcn6cuV80C5nkZWxsTEUfb86fPKu3/fyps/gG+BnO9By0Wi3BN24XyyIORkZGuHt5cPOC/vxCNy9cobzPMwxz12pR55kzEbLnibNxsEOj1nD5xFn86lQ3kLnwjIyNKO/tRdAZ/QVggs5cpFKVgqdROLHvCAunzebtz9+nWv1a+f5eqaoPkaHhuhuLAOH3Q7F1sCvyzh8jY2O8fCpx4dRZve0XT53Vi5R8Vunp6fmGD2Z/h/D4cPPnpDsWZ/XbvqCzF6joZ3hqA8iOiFs4/U+GfvY+1eoZOBZVfIjIdyzCiuVYAKi1Gu7FR+DjrL/quo9zeb0FGXK7HROKraklJqqcm9MuVvZotBri8wxPzNKoiU9LRqlQUr2MNxfCbhV5HbI0aq5GhlDPQ39OyHoeVbj4hNdTazREJseh0WppW7kuh4Mv5OvYyVBnEZUch0qppGWlWo9tl4uSykiFg4cboVeC9baHXgnGycvw7xLnimVJjU8iMz2nozQhIhaFQoGF3eNvPBSF7Gup+9Qso38tVbOMN1ciCriWUpkYuJbS5klj6HorOyT4/8MITsUL/O//K+mME+I5xcfHc/bsWb1HSEgII0aM4O7du3z44YdcuXKFDRs28N133zFq1KinvqParl07KlWqxKBBgzh//jyHDx/WLeBQUNRahQoVUCgUbNq0icjISJKSsu8ctW7dmsWLF3Pw4EEuXvw/9u46rqrzD+D459LdISgSgiDY3d29Ods5nZsLZ0ydTrc5nXMu1Nk5FTtnd2JOxS4MFASV7s77+4N58QpYgDh/37ev+3rJuc9z7vfhXs4593ueuM5HH32k1lOtZcuWuLu7079/f65cucKJEyeeu1gE5PRsGzRoEN988w2HDx/m+vXrDBgwQK195cuXp2/fvvTv358tW7YQEBCAr68vv/32m9rKpq/K1dUVBwcHJk6cyJ07d9i9e3eelVxHjBjB/v37CQgI4OLFixw5coQKFXIuroYMGUJ0dDS9e/fm3Llz3L9/nwMHDvDxxx/nSWQClC1bFh0dHebMmcP9+/fZsWMHkydPfm6Mr/oakDMk1cTERO3xKsNUK7eqx62TF7l18iIxIRGc3rCPxOg4KjTJ6Xlxbsshji7LHfJ47dA/BF7yIy4siujH4ZzbcoiAi354NcsZDq2lrY1FaVu1h66BHtq6OliUtkVTq/AX8+/37M6+nXvYv2svQYEPWDRrHuFhYXR4rxMAyxYs4Y/JU1XlO3TtRFhoGItmzyco8AH7d+1l/669fNA7d2GMOg3qsXvrDnwOHSH0cQgXz51n5ZLl1G1YX/W5nzd9FkcOHGLsxO/RNzAgOiqa6KjoPMOEX9fOmydp4VaT5q41KG1qzYBa7bEyNOXA7XMA9K3emqENP1CVPx98izqOXrRxr4OtkTnu1mUZVLsTdyJyVpd7WnO3mpwL8iMxLaVIYn2RtMPH0WvbEu2qldCwL4XBR71RpqeT/tSqfQYDeqPXtUOeujr165Bx+TrKpLy9IrQ83dHy9EDD0gKtCuUx+vpLssLCST99rljb8zz62rq4WZVRTexsb2KFm1UZbI2Kb2XOl3Xg9lkaO1elkXMV7Iwt6VW1JZYGphy9l/M+fFCpKZ/U6ZSnXmOXqtyLesSjuIg8z7lY2FOjtDvWhma4WTkwskkvFAoFe249/2ZMYXTs3pXDew5wZM8BHj4IxnveEiLDImjdKWcOojVLvJnzi/rxPMD/PgH+90lNSSU+No4A//sEPzXsedOKtVw+d4Gwx6EE+N9nwe+zCPS/T6vOBc97Whj1OzTn4pHTXDz6DxGPQtm74m/iIqOp1bIRAAfXbefveStV5c/uP8atC9eICgknKiSciz7/cGrXYSo3qqUqE3w3kJvnLhMdFkmgnz8rp85DqVTSsHPxrbbY8r32nDxwlFMHfAgJesTGxauIjoikcfsWAGz1Xs/y6fNV5c/5nGb5jAV8MKgfzu5uxEXHEhcdS8pTf99N2rciMSGRDYtWEvYohGvnLrF343aadmhdLG1o360LR/cewmfvIR49CGbV/KVEhkfSolPOSpbr/1rF/F9nqtUJ9L9PoP99UlNTiY+NJ9D/Pg8f5C50VL1uLQ7t3MfpoycIDwnj2oXLbPJeS416tdB4ppd/UWnZtR2nnrwXwY/YuGQVMRFRz7wXC1TlfY+dZvmMhXQb1BdnD1fiYmKJi1F/Lxq3b0lSQiIbF6/KeS98L7Fv03aadMh/7uGi4HPvInUdvajt4ImNkTldvRpjrm/M6cCcpG+HCvXpUy33s3Dh4W2SMlLpXa0VtkYWuFjY08mzIWeDbpLx76INZc1sqWRXDksDE1ws7Pmsblc0UHDE//krxb+uDZcP0cmzAR0q1MfRvBTDGnTH1ticrf/2tvq8ble+bzFAVd7B1IbW5WtTxtSGCjZOTGo9CBdLexad2a4q42nrRBOXqtibWFHFzpUZnYahQMGaiweKpQ358Whei3unr3Dvn6vEhUZy4e/DJEfH49aoKgCXth/j9MpdqvJOtTzRNdTnzOo9xIVEEuYfzKWtR3GpV+mNDVHdfuMkLd1q0cK1JmVMrfm4VkesDM3Yf/ssAP2qt2F4w9zrP9+HftR1rEhb9zrYGlngYePIJ3U6cSciSHUt5fvwFm3d69LQuTI2RuZUsXOlT7VW+AbfzJO4E+JNkGGqQrwmHx8fqlVTvxv50Ucf4e3tzZ49e/jmm2+oUqUKFhYWDBo0iO+///6l962pqcm2bdv45JNPqFWrFi4uLvzxxx906tQJPT29fOuULl2aSZMm8e233zJw4ED69++Pt7c348aN4/79+3Ts2BFTU1MmT56s1jNOQ0ODrVu3MmjQIGrXro2TkxOzZ8+mbdu2z43xjz/+IDExkc6dO2NsbMyoUaOIi1Mf8rJ8+XJ+/vlnRo0axaNHj7C0tKRevXq0b//6k79qa2uzbt06vvjiC6pUqUKtWrX4+eef6d49d66rrKwshgwZwsOHDzExMaFt27b8+eefANjb23Pq1CnGjh1LmzZtSEtLw9HRkbZt2+abLLW2tsbb25vx48cze/ZsqlevzrRp0+jcuXOBMb7qaxSFcrUqkpqUzMXdx0iOS8TC3oZ2Q/tibGkGQHJcAonRue9PVmYWZzYfICk2AS1tLcztbWg7tA9lKxXt4hLP06RlM+Lj41mzfCUxUdE4ujgxedpUbP/tORkdFU14WG4vxFL2dkyeNpVFs+exa8t2LKws+WLEVzRs1lhVps9HH6JQKFixeBlREZGYmptRp0E9BgwepCqza2vOZL5jvvpaLZ6R48fQusPzP/cv43TgNYx1DehepTnm+sYExYbxy+EVRPw7/M9c3xgrQzNV+aP3LqKnrUs7j7p8VLMdSempXAu5x+qL+9X2a2diiaetE5MOLCt0jC8r7cARFDra6PfuhsJAn6yAIBJnL4KnEpcaFuZ5eoxo2Fij5eZC4qyF+e5Xoa+HXtcOaJiZoUxOJuPSVVK27YHs4lnp72V4WDsy972Rqp+HNcw5puzx+4cpR1aUVFhAzmp+hroGdPZqiKmeEY/iIvjzxHrV6qim+kZ5hlbpa+tSo4wHay/l/4VPW1OL9yo1wcbInNTMdK6G+LPkzA5SMoomKZ2fBs0bkxifwOaV64mJjsbByZHxv07EupQNADFRMUSGqycOx3w6TPX/+3f8OXn4GNa2Nsxfn/N3kJSYxKIZc4mNjsHA0BBnVxcmzfoVtwovHuL/OirVr0FKYhI+f+8lITYeGwc7+n37JWbWOcO2EmLiiXtquLVSqeTQuh3EREShoaGBha0VrXp3oWbLBqoymRkZHN6wi5jwSHT0dHGr6kW3If3RNzTI8/pFpVbjeiTFJ7J73RbiomOxdyzDV5PGYPnvkP246FiiI6JU5U/sO0x2VhbrFixn3YLlqu31WjRmwMicRX4srC0ZPvlbNi1ZzU9DvsXM0pzmndvS9oOCz5eFUa9ZQxLj49myegOx0TGUcSrLmF9+wNo25/MUGx1N1DOfp/Gf5/6NB9y5x+kjx7GytWb2mpze8+/164FCoWDT8jVER0ZjYmpC9Xq16PFx32JpA0DNxvVITEhk9/qtxD95LyZ+k/texKi/F8f3HiE7K4v1C7xZv8Bbtb1ui0YM+Pqp9+Knb9n01yomfzVO9V606ZY3aV9ULj++i6GOPm3c62Cia0BIQhSLz2xXJUJMdA0xf2rYYXpWBgv/2cr7lZoysnEvkjJSufz4Lnv9TqvKaGtq0d6jHpYGpqRlZuAXHsiai/vVhrYWpcP+FzDRM2JgzQ5YGppwP+oxo3fOJSwh52/a0sAUW+PcIZoaGhr0rtqSsmalyMzO4uKj23z+9x+EJuS+Xzqa2nxapwv2JlakZKTxz4PrTD64nMT0N3NTDcCpRgXSk1K4tvcUKfFJmNlZ0fTL7hhZ5Jw3UuMTSYp+arVtXR2af9WT85sOsvf3Fega6lO2ugdVOjZ6YzGfCryKia4BPau2yLmWigll8iFv1bWUhYEJ1kZmqvJH/C+gr6VLe4/6DKzVgaT0VK6G3GPlhb2qMhuvHEGpVNK3WmssDEyJT03CN9iPNZf2I0RJUChfZvInIUSJO3XqFA0bNsTf359y5cqVdDjiKbdv38bDw4O7d+/i6lq0S9VPP7auSPdXEkY16U1A5KOSDqNQnK1K023F+JIOo9D+/ugXYp/6MvpfZLZwBg3mFf0Kv2/aqSELGbhhSkmHUWjLe37H1cd3SzqMQqls78aGSwdLOoxC61mtFT7+zxkW/h/Q1LUGF4L9SjqMQqvhUIGjd4un99ab1MytJl/vmFXSYRTKn52HvzPnjJ8OvrmbccVhQquP6er9bUmHUWjbBvxa0iG8lrf5PNezWvH12n2bSc84Id5SW7duxcjICDc3N/z9/Rk+fDgNGjSQRNxbJjo6ms2bN2NiYoKDw8vPzyaEEEIIIYQQ4v+TJOOEeEslJCQwZswYgoODsbKyomXLlnnmRhMlb9CgQVy4cIEFCxa80hxvQgghhBBCCCH+P0kyToi3VP/+/enfv39JhyFeYOvWrSUdghBCCCGEEEIUqKBFAEXJkdVUhRBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUTJM9e0jPeOEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGsgw1beN9IwTQgghhBBCCCGEEOINkWScEEIIIYQQQgghhBBviAxTFUIIIYQQQgghhHhHKRTSD+ttI++IEEIIIYQQQgghhBBviCTjhBBCCCGEEEIIIYR4Q2SYqhBCCCGEEEIIIcQ7SkMhq6m+baRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0ohw1TfOtIzTgghhBBCCCGEEEKIN0SScUIIIYQQQgghhBBCvCEyTFUIIYQQQgghhBDiHaVAhqm+bRRKpVJZ0kEIIYQQQgghhBBCiKK34/qJkg6hQJ0rNirpEEqE9IwTQoi32Njd80s6hEL7rcOX3Ai5V9JhFIqXXTkaz/+ypMMotONfzid20NCSDqNQzJbOYeCGKSUdRqEt7/kdDeZ9XtJhFNqpIQsJi48s6TAKxdbECm/f3SUdRqENqNWB0TvnlHQYhTKt01CmH1tX0mEU2qgmvZnms6akwyi00U378tH6ySUdRqGs6PUDH6z8rqTDKLTN/afQ1fvbkg6jULYN+JUWi4aVdBiFdviz2SUdgnhHSDJOCCGEEEIIIYQQ4h2lIaupvnVkAQchhBBCCCGEEEIIId4QScYJIYQQQgghhBBCCPGGyDBVIYQQQgghhBBCiHeUQoapvnWkZ5wQQgghhBBCCCGEEG+IJOOEEEIIIYQQQgghhHhDZJiqEEIIIYQQQgghxDtKhqm+faRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0oDGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWtIz3jxFshLCyMn376iZiYmJIORQghhBBCCCGEEKLYSDJOlDilUsmHH36Irq4u5ubmr1TXycmJmTNnFk9ghaRQKNi2bdsr1WnatCkjRowolnj+qz788EN++eWXkg6jUEaPHs2wYcNKOgwhhBBCCCGEEG8BGab6HzRgwABWrFgBgJaWFg4ODrz//vtMmjQJQ0PDEo7u1U2dOhUXFxfGjh37ynV9fX3/k20WL+fq1avs3r2b+fPnq7Y1bdqUY8eOMXXqVL799lu18u3bt2fv3r38+OOPDBgwAGdn5+fu/8cff2TixIkArFixgnnz5nHjxg00NDSoVq0aY8aMoWPHjgAkJiZibm7O6tWr6dmzp2ofPXv2ZOPGjfj7+1OuXDnV9nLlytGzZ09++eUXxowZQ7ly5fj6669fGFNh1HX0oolLNYx1DQhLjGbnjVMExoQUWF5TQ4OWbrWoZl8eY10D4lITOeJ/gfMPb6nK6Gnp0Ma9DhVLuaCvrUtMSgK7bp7idkRQsbVj77ZdbF//NzFR0Tg4O/LxV4PxrFwx37LRUdGsmL+Ee3f8CXn4mPbvd2bQ0M8K3PfJw8eYMfk3ajeoy7dTJhRXE+jq1Zje1VpiYWBKYHQIc05t4mrIvQLLv1exMe9XakopYwvCEmJYdXEf+2+fVSvTvXIzung1xtbYnLjUJHzuXWTxme2kZ2UWWzsA9Dq3Q6dJAxQG+mTdf0Dymo1kPw59bh3dlk3RadYQDQtzlIlJpJ+/TOrfOyAzJ1bd9q3Qrl4FTTtblOkZZN0LIGXTdrLDwos8/mauNWjnXhczfSMexUWw9tJB7kYG51t2UO2ONHSukmf7o7gIvt+3GABNhQYdKtSngXNlzPWNCUmIYtOVI1wPvV/ksb+OKnau9KnWGg+bslgZmvHtngWcCLhSIrFs3bSFdavXEh0ZhZOLM0NHDqNKtaoFlr984RJzZ84h8H4AllZW9Onfhy7d3lM9v3PrDvbv2cv9ewEAuHu48+mQz/D08lSVWbZ4Kd5Llqnt18LCgm37dxZZuy4cPMXZPUdJjI3HunQpWvbrioOHywvrPbwTwOqf52FdphSDfhmt2n7b9yqndxwiJiyS7KxszG2tqN2+KZUa1iyymPNT37ESTV2rYaxrSFhCNNtvnCAg+nGB5TU1NGhVvjY1SrtjrGtIbGoih+/64hvspyrTyLkK9ZwqYa5vTFJ6CldD/Nnj9w+Z2VnF0oYbPue4uv80yXEJmNvbUK9nW+zcHPMt+/h2ALumr8izvcekIZjZWefZ7n/uGkf++hvHKu60GdK7yGN/2k0fX64c+IeUf9tRt0fr57QjkN0zVubZ3n3Sl5iVsgLgzunLHFuxI0+ZgXPHo6VdfF//mrvWoL1HPUz1jXkcF8GaS/u5E5H/8faTOp1pVMDxdvzehUDO8bajZwMaOlfGTN+E0PgoNl45zLXQgs+nhdXGvQ6dPRtibmBMcGw43r678Qt/UGD5Rs5V6OLVCDsTS5LT07j0+A4rL+wlMS1FVcZAW48+1VpRp6wXhrp6hCfEsOLCXi49ulNs7WjnXpeuFRvntCMmjKXndnEzPLDA8o1dqvJexSbYm1iSlJ7KpUd38D6/h4S0ZFWZTp4NaOteFytDMxLSkjgdeJ1VF/eRUUzXIZ09G9KjSgssDUwIjAll/um/ufacc20Xr0Z08WpEKWMLwhNjWHPxAAfv+qqeb1O+NmOa9ctTr+1fI4utDW8TWU317SPJuP+otm3bsnz5cjIyMjhx4gSffPIJSUlJLFiwoKRDe2Xjx49/7brW1nkvnsS7Y+7cuXTv3h1jY2O17Q4ODixfvlwtGff48WOOHDmCnZ2dqkxISG4iatq0aezbt49Dhw6pthkZGQE5Pdfmzp3Lzz//TNeuXcnIyGD16tV06dKFWbNm8dVXX2FkZETNmjU5evSoWjLu2LFjODg4cPToUVUy7uHDh9y/f59mzZoBYGNjQ+vWrVm4cCG//fZbEf+WclS2c6WTZ0O2XT/Og5hQ6pT15OPaHZlxbB2xqYn51ulbrQ3GuvpsvnqUqOQ4DHX00dTI7TCtqdDgkzqdSUxPYfXF/cSlJmKmZ0RaZkaxtAHg5JFjLJ+7mE9HfEmFSp7s37GXn8dMYNaKhVjb2uQpn5megYmZKd369WLXpq3P3Xd4aBjeC/7Cs7JXcYUP5HwZGdrwA2YcX8/10Pt09mzI7x2H0H/dZMIT8w7F7+LViMF1u/CHz1r8wgOpYOPEmKZ9SUhN5vSDawC0cqvF4Lpd+e3oKq6H3sfBzJZxzT8EYO6pv4utLbrtWqLbuhnJy9aQFRaOXsc2GI36ivjvJkNqWr51tOvURO+DziQvX0OWfwAapWww+Djn4jd1wxYAtMq7kn70BJkBD0BDE/33O2I0agjx30+B9PQii7+2QwX6VG3Fqov7uBsRTFPX6oxs3Ivv9i0iOjk+T/m1lw6y6epR1c+aCg1+avOJWrLh/UpNqOdYCe/zuwmJj6JiKReGNviAKYdXEBQbVmSxvy59bV38ox6y59Zpfmn3eYnFcfjAIebMmMXIsaOoWKUyO7ZsY8zw0azcuBrbUqXylH/86DFjRoymY9dOfP/TBK5fucqM36Zjam5G0+Y5x9JLFy7SonUrhleuiI6uLutWrmH0V1+zYsNqrG1yrwecXZyZMW+W6mdNzaIbCHLzzCUOrd5GmwHdKFPemUtHTrPhj8V8+ttYTK0K7t2fmpzCzoVrcfJyIykuQe05PUMD6nduiaW9LZpamvhfusnuxesxNDHCpbJHkcX+tCr2bnSu2Igt13wIjA6hrmNFPqnTiT981hCbkv8548Ma7TDWNWDjlSNEJsVipGugNgdRtdLlaV+hPhuvHCYwOgRrIzN6Vm0JwI4bJ4u8Dfd8r/PPhn007NMBW9ey+B0/z97Zq+kxcQhGlmYF1usx+St09HRVP+sZ572pmxAVy9nNByjlVrbI437WPd8b/LNxPw36tMe2nAO3jl9k35y1dJ/4JUYWpgXW6/7TkGfaYaD2vLaeLj1+GqK2rTgTcbUdPOlbrQ0rL+zhTuRDmpWrzqjGfRi3d0G+x9s1F/ez6cph1c8aCg1+bjuYc8E3Vdu6VW5GfceKLPPdTUh8JJXsyjGsYXcmH/ImKPb5N4VeR32nSgyo2Z6/zu7kVsQDWrnVYnyLj/h6xywik+LylPewceSrBh+w4vwezj+8hYWBCYPrdOGLeu/zh88aALQ0NJnQaiBxqUlMO7aWqOR4rAxNScnI/xxaFBo4Vebj2h1ZdGY7t8IDaeNehx9aDWTothn5tqOCjSPDG/Zgme8ufIP9sDQw4fN67zGkfjd+PboKyEnWfVijLXNPbuZWRBD2JlYMa9gdgGW+u4q8DU3LVePL+u8z++Qmrofep6NnA6a2/4KPN/6S77VUJ8+GDKrdiRnH13E7PAgPG0dGNu5FYnoK/zy4riqXmJbCgA0/q9X9f0jEibeTDFP9j9LV1aVUqVI4ODjQp08f+vbtqxoSqVQq+f3333FxcUFfX58qVaqwefNmVd2YmBj69u2LtbU1+vr6uLm5sXz5ctXz165do3nz5ujr62NpacngwYNJTMz/wgzAx8cHhULB/v37qVatGvr6+jRv3pzw8HD27t1LhQoVMDExoXfv3iQn595d2bdvHw0bNsTMzAxLS0s6duzIvXu5d7pWrlyJkZERd+/eVW0bOnQo5cuXJykpCcg7TFWhULBo0SI6duyIgYEBFSpU4J9//sHf35+mTZtiaGhIvXr11F4HYMGCBZQrVw4dHR3c3d1ZtWrVc3//vr6+tGrVCisrK0xNTWnSpAkXL158bp1nJSUl0b9/f4yMjLCzs2P69Ol5yqSnpzNmzBhKly6NoaEhderUwcfHR/X8gwcP6NSpE+bm5hgaGuLl5cWePXuA3Pdl9+7dVKlSBT09PerUqcO1a9fUXuP06dM0btwYfX19HBwcGDZsmOr3CxASEkKHDh3Q19fH2dmZtWvXqv3eAwMDUSgUXL58WVUnNjYWhUKhFuvNmzdp3749RkZG2Nra8uGHHxIZGVng7yc7O5tNmzbRuXPnPM917NiRqKgoTp06pdrm7e1N69atsbHJSdhoampSqlQp1cPIyAgtLa08286cOcP06dP5448/GD16NK6urlSoUIEpU6YwYsQIRo4cSXBwzl3dZs2aqbXJz8+PlJQUvvzyS7XtR48eRVtbmwYNGqi2de7cmXXr1hXY3sJq5FwF32A/fIP9CE+MYefNU8SlJlLXMf8eZeWtHXCxtGeZ7278ox4Sk5LAw7hwHsTkXtzWdKiAgbYuK8/v5UFMKLEpiQTGhBKSEFVs7di5aSst2remVce2lHEsy6Chn2FpY83+7bvzLW9jZ8ugoZ/TrE0LDJ7TSzYrK4uZP/9Br4H9sP03YVtcelRpzm6/0+z2O82DmFDmnNpMRGIsXSs2zrd8G/c67LhxkiP+FwiJj+KI/wV2+52mT/VWqjJepZy5HnqPQ3fPE5oQjW+wH4fvnsfdOv+eE0VFt2VTUncfIOPiFbIfhZC8dDUKHW106hTcY0ernDOZ/vfJOHuB7KhoMm/cIv3sBbSccr/UJs1cQPqps2Q/DiX74SOSl61Bw9ICTSeHIo2/tXsdjgdc5vj9y4QkRLHu0kGiU+JpXq56vuVTMtKIT01SPZws7DDQ0efkUz3L6jlVYpffKa6G3CMiKZaj9y5yPfQ+bd3rFGnsr+tM0A2WnN3BsfuXSzSOjWs30KFLRzp27YyTsxPDRo3A2taGbZvzT5pv37INm1K2DBs1AidnJzp27Uz7zh3YsDr3uDnh54m81/193NzL4+jkyDffjSVbmc0F3/Nq+9LU1MTSylL1MHvFKTCe59zeY1RpWoeqzepiVdqWVh++h4mlGZcOn3puvX3LNuFZrzqlXfP+zTp6uuJeqzJWpW0xt7WiVtvG2DjYEXw7oMjiflYTl6qcC7rJuaCbhCfGsOPGCWJTEqnnWCnf8u7WZSlnWZq/zu7gbmQwMSkJBMeGqZ0znMztCIwO4dKjO8SkJHAnIpjLj+5SxtS2WNpw9eA/uDesjkejGpjbWVO/ZzuMzE25eez8c+vpGxtiYGqsemhoqH8dys7O5shff1OjczNMnpNgLSrXDv2De4NqeDSsjrmdNfV6tnmFdhipHs+2Q6FA7XkDU6PibAZtPepy/P4ljt2/TEh8JGsvHSA6OZ4WrvmfL1Iy0ohLTVI9nC3sMdDR58T93ONtfadK7Lx5iqsh/kQkxXLE/wLXQu/TzqNusbShU4UGHPG/wGH/8zyKi8D7/B6ikuJoXT7/43t5KwcikmLYc+sfwhNjuBX+gIN3z1HO0l5VprlrDYx09fn96GpuRwQRmRTLrfAHan87Ra2LV0MO3T3Pobu+PIyLYOm5XUQmxdHWPf/fW3nrskQkxrDb7zThiTH4hT/gwO1zuFqVVpVxty7LrbAHHA+4QnhiDJcf3+XE/StqZYrSB5WasffWGfbc+oeg2DDmn95CeGIMnTwb5lu+lVstdvmdwufeJUISojh67yJ7b5+hZ5UWz5RUEpOSoPYQoqRIMu4doa+vT0ZGTm+V77//nuXLl7NgwQJu3LjB119/Tb9+/Th27BgAP/zwAzdv3mTv3r34+fmxYMECrKxyurUnJyfTtm1bzM3N8fX1ZdOmTRw6dIivvvrqhTFMnDiRuXPncvr0aYKDg+nRowczZ85k7dq17N69m4MHDzJnzhxV+YSEBL7++mt8fX05dOgQSqWS9957j+zsbAD69+9P+/bt6du3L5mZmezbt49FixaxZs2a5w5NnTx5Mv379+fy5ct4eHjQp08fPvvsM8aNG8f58zkXNk+3Z+vWrQwfPpxRo0Zx/fp1PvvsMwYOHMjRo0cLegkSEhL46KOPOHHiBGfOnMHNzY327duTkPDyB/RvvvmGo0ePsnXrVg4cOICPjw8XLlxQKzNw4EBOnTrF+vXruXr1Kt27d6dt27aqBOWQIUNIS0vj+PHjXLt2jd9++03V2+vp15k2bRq+vr7Y2NjQuXNn1Wfl2rVrtGnThvfff5+rV6+yYcMGTp48qfb76d+/P48fP8bHx4e///6bxYsXEx7+akPJQkJCaNKkCVWrVuX8+fPs27ePsLAwevToUWCdq1evEhsbS82aeS/idHR06Nu3r1oS2dvbm48//viV4gJYt24dRkZGfPZZ3qGNo0aNIiMjg7//zul51KxZM27fvq3qcXf06FEaNWpE8+bN8yTj6tSpg4FB7l3q2rVrExwczIMHBQ91eF2aCg1Km1pz95mhIHcignE0z/9LkKetMw/jwmniUo3xLfozukkfOlSoj5aG5lNlnHgQG0bXio34vuUAvm7ck2blqqOgeLq5Z2RkcO+2P1VqqSdKqtaqxq0bfgXUejmbVq7DxMyUlh3aFGo/L6KloUl567JqPakAfIP9qGib/zA2bQ0t0rPUexumZWVQwcZJ1VPxasg9yluXpYJNzhd5OxNL6jpW5MxTd3uLmoaVJRpmpmTeyB22TGYmmbf90SpX8HDrTP97aDk6oOnsqNqPdiVPMq7eKLCOwkAPAGVScoFlXpWmhgZO5nbcCFVPaNwIvU85qzIvtY/GzlW5GRZA1FO9OrQ1NPPcRU/PysTNumgTif9lGRkZ3Ll1m1p1aqttr1WnNtev5v+ZvXHtep7ytevW4dbNW2Rm5t9rIS01lczMTExMTNS2Pwx+yHvtOtOjywdMHD+Bxw8fFaI1ubIyMwkNeIhzxfJq250ruvPwbmCB9a4eO0dMWBSN3m/9wtdQKpUEXr9DdGgEZV9i6OvryDln2HDnmekG7kQE4WSR/80Kr1LOBMeG06xcDX5oOZCxzfrR0bOB2jkjIPoxZcxscDDLOe9YGJjgYeOI33OGxr2urMxMIoMeU8aznNr2Mp7lCLuX/7DIJ7ZMXsSq0dPYNWMFj2/lTXhe3HUMfWNDPBrmn7QvSlmZWUQGhVD6mXaU9nR5cTt+Xszqb2awe8ZKHueTuM1IS2fduFmsHfsn++auIzKo4GkrCuvJ8fbZ4frXQ+/h+rLHW5eq3Ay7T1Rybs8tbQ1NMrLV//4zsjKK5XirpaGJi6U9Vx77q22/EuKPu3X+PSRvRwRhaWBKtdI5xwRTPUPqlq3IxYe5w09rlvHgTkQwn9TpzF/dxzGj0zDer9ik2Fa21NLQpJxlaS4/vqu2/fLju3jY5H8D71b4AywNTalR2v3fdhhRz6mi2rQlfuGBlLMqjdu/76etkQXVy7irlSnKNpS3dsiz7wsPb+Flm//1h7amFunPjNxIy8zAw8ZRbdSHvrYua/tMZH3fn5jSdjCuli/3+XwXKN7if/+vZJjqO+DcuXOsXbuWFi1akJSUxIwZMzhy5Aj16tUDwMXFhZMnT7Jo0SKaNGlCUFAQ1apVUyU5nJycVPtas2YNKSkprFy5UpXwmjt3Lp06deK3337D1rbgu5s///yzqifQoEGDGDduHPfu3cPFJedi8oMPPuDo0aOqueG6d++uVn/ZsmWUKlWKmzdvUrFiTm+eRYsWUblyZYYNG8aWLVv48ccfqVWr1nN/HwMHDlQlecaOHUu9evX44YcfaNMm50v48OHDGThwoKr8tGnTGDBgAF9++SUAI0eO5MyZM0ybNk01zPBZzZs3V/t50aJFmJubc+zYMdUcY8+TmJjI0qVLWblyJa1a5fR+WbFiBWXK5J4Q7t27x7p163j48CH29jl32EaPHs2+fftYvnw5v/zyC0FBQXTr1o1KlXLuZD/5XT/txx9/zPMaW7dupUePHvzxxx/06dNHtWiEm5sbs2fPpkmTJixYsIDAwEAOHTqEr6+v6vPy119/4ebm9sI2Pm3BggVUr15dbSGGZcuW4eDgwJ07dyhfvnyeOoGBgWhqaqp6uj1r0KBBNGzYkFmzZnHhwgXi4uLo0KGDag64l3Xnzh1Vr8hn2dvbY2pqyp07ORdVDRo0QFtbGx8fH3r37o2Pjw9NmjShevXqxMXFcffuXdzc3PDx8aFfP/U5KUqXLq1ql6Nj3ouhtLQ00tLUhyzo6urmKZcfAx09NDU0SExPUduemJaMsW7+F6wW+iY4mduRmZXFyvP7MNTRo2vFxuhr67L532F6FgYmlNM35vLjuyw/txsrQ1O6VGyMhkKDw/7Pv2P/OhLi4snOzsbM3Extu6m5ObHRr7/Sst+1GxzavZ8Zf80tZIQvZqpnhJaGZp47rdHJ8Vg4mORb51zwTTpWaMCJgCvciQjG3bos7T3qoa2phZmeEVHJ8Rzxv4CZvjFz3xuFAgVamppsvX6cNZcOFFtbFKY58WbHqw8vyo5PQMPSosB6GecukmJkhNG3IwAFCi1N0o6eIG3vwQLr6Pd8n8w798h+VHRfFo11DNDU0CD+mWHacalJVNR7cQ8RUz0jKtmVY9GZbWrbr4fep417He5EBBGeGEMFW2eqlS5fbF+s/oviYmPJysrC3EL9c2JhaU50VP49a6OjorGwVO+FZG5hQVZWFrGxsaqbhk9bOHch1tbW1Kide9PG08uT8ZO+x6FsWWKiolm5bAVfDvqcFRtWY2pW8JC/l5GckIQyOxtDU/WpEwxNjUmKzf9mXHRoBEc37KLfD1+hoamZbxnIGcY6d+gksjIzUWho0GZAN5wruRcq3oI8mZLg6bmgABLSUjDWNci3joWBKc4WdmRmZ+J9fg+GOnq8X6kpBtp6bPx3qOHlx3cx1NFnSINuKABNDU1OB17lqP+FfPdZGKmJySizleibqN+c1TcxJDk+/9EcBqbGNPqwE9Zl7cjKzOLumSvs+nMFnUYNwK68EwCh/kHcPnmRbj+8mSHeT9ph8Gw7jA1JiU/Kt46BqRGN+nXEytGOrIxM7p69xu4/V9Fx5EfYlc+5vjAtZUWTj7pgUdqG9NQ0bhw5x47fl9Pth88wtbUs8nY8Od7GparHHJeWhOlLHm8r27my8B/1nrPXQu/T1r0ut8ODCE+MxtPWmWql3YvleGusa4CmhiZxz54zUhIxs8+/Dbcjgph1YiMjG/dCW1MLLQ1NfIP9WHoud45KW2MLKhqZceL+FX45vAI7E0s+qdMZDQ0N1fVWcbQj9pnrkLiUBMz1815vP2nHjOPrGd20j6odZ4NusuRM7ryDJwOuYqprxC/tPkehUKClocneW/+w5dqxIm+DqZ4hmvlcS8WkJGBhYJxvnfMP/WjvUY9Tgde4GxlMeSsH2rnXQVtTC1M9I6KT4wmKDed3nzXcj3qsOobN6jKCwZt/41F8RJG3Q4gXkWTcf9SuXbswMjIiMzOTjIwMunTpwpw5c7h58yapqamq5MsT6enpVKtWDYAvvviCbt26cfHiRVq3bk3Xrl2pX78+kDPsrkqVKmo9zxo0aEB2dja3b99+bjKucuXKqv/b2tpiYGCglhyytbXl3Llzqp+DgoKYPHkyZ8+eJTIyUtUjLigoSJWMMzc3Z+nSpbRp04b69evnmbD/ZeIAVMmqJ9tSU1OJj4/HxMQEPz8/Bg8erLaPBg0aMGvWLAoSHh7OhAkTOHLkCGFhYWRlZZGcnExQ0MtNan/v3j3S09NVCVPImWDa3T33wvvixYsolco8iaq0tDQsLXMupIYNG8YXX3zBgQMHaNmyJd26dVNrP5Dva/j55fTauXDhAv7+/qxZs0ZVRqlUkp2dTUBAAHfu3EFLS4vq1XPvDru6ur7yqrcXLlzg6NGjeXrtPfld5JeMS0lJQVdXt8DJRitXroybmxubN2/m6NGjfPjhh2hra79SXC9DqVSqYjAwMKB27dqqZNyxY8f45ptv0NLSokGDBvj4+KCrq0tAQECehK2+vj6A2lDtp02dOpVJkyapbfvxxx+hVv7JyIJiVaNQoMy/qKpN6y8fIjUzZ46uXX6n6Ve9DduuHyczOwsFCpLSU/j7qg9KlDyKj8BEz5DGLlWLJRn3bGwqSuVr3zVLSU5m1pRpfPnNMEwK+UX8VTz7XigUCpQFvBsrzu/FwsCEhe+PAQXEJCew79YZ+lRvTZYy57hY1d6ND2u0Ycbx9fiFBVLa1JphDbsTVaMdKy/sLZKYtevUxKB/L9XPibMW/tuYZwoqFPDsZ+0pWu6u6HVsQ8rqjWTeD0TTxhr93t3I7tiGtF3785TX79sdzTL2JPw6swhakVee8FHkszWvhs6VSc5I5eKj22rb1146yICa7fml3ecogfDEGE4GXMl34Yf/d8/+LSuVz59AOu/fubKA7bB25RoOHzjI7IVz1W5c1G2Qe87DtRxelSvSu2sP9u3eS8++vfLs57U82y6UebZBznDH7fNW06hbWyztnn8s19XT5eMpo8hISyfwxl0Or9mOmbUljp6uRRPzS3hefuPJ+7b24gHVOWPHjZP0r9mOLdd8yMzOopxlaVq41WTLNR+CYsJUN3BapiZz6KlJ1Is0ZvJ+xgpiVspKtcABgG05BxJj4rly4DR25Z1IT03j6NItNPqwc77zyL0t8mtHUnQcVw/+o0rG2bqUwdYl9wZvqXJl2TJlMTeO+lK/V9tii+3Z85yCgs99T2vkXIXkjFQuPFLvCbXm4n4G1urIr+2/UB1vTwRcppFz1SKMWl1+11IFKWNqzce1O7Lp6hGuPLqLmYEx/Wu0Y3DdLiz4N7GoUCiIS01i0ZltZCuV3I9+jLm+CV28GhVLMq5Az7kOKWNqw6d1OrPh8mEuPb6Dub4xA2q254t67zH3dM7okIqlXPigSjMWndnO3YggSplY8UntTsRUTmDj1SPFFHTeM3hBf+OrLuzHXN+EuV1HolDkJO723zlHr6otVd8x/cID1XrqXg8NYGG3b+hasTHzThff/LtCFESScf9RzZo1Y8GCBWhra2Nvb69KQgQE5HRT3717t6onzhNPLlbbtWvHgwcP2L17N4cOHaJFixYMGTKEadOmqSUenvWiFVieToQoFIo8iRGFQqE6GELOvF/Ozs4sWbIEe3t7srOzcXJyIv2ZybuPHz+OpqYmjx8/JikpKc9wlBfFUdC2p2PJ+4Wh4N8D5KxoGxERwcyZM3F0dERXV5d69erlib0geU70+cjOzkZTU5MLFy6g+czd9CdJrU8++YQ2bdqwe/duDhw4wNSpU5k+fTpDhw597r6f/h189tlnDBs2LE+ZsmXLcvv27Tzbn43/yRwlT297Mgz26bY86V35LLsC5u+ysrIiOTmZ9PT0fHutAXz88cfMmzePmzdvqiV6X0X58uU5efJkvq/z+PFj4uPj1XoCNmvWjA0bNnDjxg1SUlJUicomTZpw9OhRdHR00NPTo25d9Xk5oqOjgYIXHRk3bhwjR45U26arq8uEQ0tf2Ibk9FSysrPz9Ggw0tEnMS3/5F9CWs4cLU++VAFEJMagoVBgqmdEVHIcCWlJZCmz1S7ewhNjMNEzRFOhoUoUFRVjUxM0NDSIeaYXXFxsLKYWZq+1z9BHIYSHhvHLuNxE55PP6gfNOzJ31RJKlS66OeTiUhPJzM7CwkD9OGWub0xMcv49Z9KzMvjt6GqmHVuLhb4JUclxdPJsSFJ6CnEpOb0MBtXuxIHb59jtdxqA+9GP0dPW5ZsmfVh1Yd9Lfdl5kYwr10iYFJi7QSvnEkHD1ISsuNzecRrGRijjCx6Sr9e1I+n/nCP9xD8AOb3ddHUw6N+btN0H1L4t6/f5AO2qlUj8bRbKmNhCt+FpCenJZGVn5+mVYaJnkKf3Rn4aOVfhdOA1srLVP+cJacnMObUZLQ1NjHQNiE1JoHvlZkQmxRZl+P9ppmZmaGpq5ukFFxMdk6e33BMWlhZERUXnKa+pqZmnR9u6VWtZvXwlM+bNpJzb85NV+vr6uLi68DD4+UP+XoaBsSEKDQ2SYtV7iybHJWKYz3xc6SlphAYEE/bgEQdW5CxeolQqQank1/6j6TX2M5y8cs4vCg0NLErlnB9sHUsT9SiMf3YeLpZkXFJ6SoHnjGd7yz2RkJpEXGqi2jkjPDEaDYUCM30jIpPiaONel4sPb3MuKGcC/tCEKHQ0tfmgSjMO3/UtgqNULj0jAxQaijy94FITkjAwefm50Wycy+B/9ioA8RHRJETFsn/eWtXzT84XSz6fRM+fhmJiU3Cv4NeR2w71Y1JKQlKeXn/PY+NSBv+z1wp8XqGhwNrJnrjw4pnz9cnx1uzZ462uAfEvc7x1qcLpwKv5Hm9nn9yI9r/H25iUBHpUaVEsx9uEtGSysrMw01fveWWqZ1jgoibvVWzC7fAHqgVKHsSGsSRzBz+3Hcy6y4eITUkgJjmBLGUW2U+d+x7FRWBuYIyWhmaRrzRccDuMCmzHB5Wb4hceyLYbx3PaERPKojPbmNr+C9ZcOkBMSgJ9qrXC595FVWL9QWwYelrafFn/fTZdPVok1yFPxKUmkZWdhbn+s9dSRgXO8ZaelcG0Y2v588R6zPVNiE6Oo0OFBiSlpxZ4zlei5HZEEGVM/z8WBJQe/G8fmTPuP8rQ0BBXV1ccHR3VEk2enp7o6uoSFBSEq6ur2sPBIXe4mrW1NQMGDGD16tXMnDmTxYsXq+pfvnxZbQL/U6dOoaGhkW/vpdcVFRXFtWvX+Oabb6hTpw4ODg4EBgbmKXf69Gl+//13du7ciYmJyQuTTK+jQoUKnDypvsrX6dOnqVChQoF1Tpw4wbBhw2jfvj1eXl7o6uo+dzGCZ7m6uqKtrc2ZM2dU22JiYlTDIQGqVatGVlYW4eHhed7LUk+tROfg4MDnn3/Oli1bGDVqFEuWLFF7rfxew8MjZ3W26tWrc+PGjTz7d3V1RUdHBw8PDzIzM7l06ZJqH/7+/sTGxqp+fpJcenrl0qcXc3j6dZycnPK8TkHz/1WtWhXIWfihIH369OHatWtUrFgRT0/PAss9T69evUhMTGTRokV5nps2bRra2tp069ZNta1Zs2bcvXuXtWvX0rBhQ1WitEmTJvj4+ODj40O9evXQ09NT29f169fR1tbGyyv/lTx1dXUxMTFRe7zsMNUsZTaP4iLyzKHiZlWGBzH5r+4YGB2KiZ4BOpq592SsDE3JVmarhmgExoRiaWCq1u/AytCM+NSkIk/EQU7SvJy7K1fOX1LbfuX8JTy8Cv57fJ7SZR34c9l8pv81V/WoVb8OFatVZvpfc7G0yTv0rTAys7O4ExFETQf1eGuW8eB62P0CauXIys4mIimWbKWSFq41OR14XXVxq6elkyeJn52djULx/N4sryQ1jezwyNzH41CyY+PQ8nxqqJymJlrurmTee87E8jraebunZCt5tnOTfp/uaFevQuIfc8iOLPoviFnZ2QTGhOBVSn1+GU9bZ+5FPnxuXXfrstgaW3DiqYUbnpWZnUVsSgKaCg1qlPHg0qM7BZb9f6OtrU15D3fOn1XvDXX+nC8VK+e/qIxXpYqcP6de3vfsOTw8PdDSyj1OrVu1hpVLvflj9nQ8PF98XEhPT+dB4ANVj/LC0NTSopRzGQKuq7/XAdfvUMbNKU95XX1dPpn6DYOmjFI9qjWvh4WdDYOmjMK+XMErdSpRkpVRPCv85Zwzwin/zDmjvHVZAqPzHyoeEB2CiZ4hOpq515zWhmZkK7NVX/B1NLXyfCHPVmb/23utaL8EamppYVXWnkc31Rfkeuh3D9tyLz+fWFRwiGphA7NSVnzw4xd0++Fz1cOxsjv27s50++FzDC2efzP4dWhqaWJV1o5Hfurnh0d+91+xHaHoP2eBBqVSSVRwGAam+Q/xK6zc4636dClepVzwf8Hx1sPGkVLGls9ddCYjO4uYf4+3Nct45OmxXBQys7O4H/WYyvbqCfDKdq7cjsh/5IuuljbZz37m/00oPvnE3454QCljS7VenHYmlkQnxxd5Ig5y2nEv6hFVn2lHVXtXboXnP2+xrmY+1xjP/KyrqV1AGUXRXYf8K+daKpgaZdSH6tco48GNsOcvbJOVnU3kv9dSzcpV58yD689NFJazLK02L6wQb5Ik494xxsbGjB49mq+//poVK1Zw7949Ll26xLx581ixYgUAEyZMYPv27fj7+3Pjxg127dqlSjz17dsXPT09PvroI65fv87Ro0cZOnQoH3744XOHqL4qMzMzLCwsWLhwIf7+/hw+fJhRo0aplUlISODDDz9k6NChtGvXjrVr17Jx40Y2bdpUZHFAzgIH3t7eLFy4kLt37zJjxgy2bNnC6NGjC6zj6urKqlWr8PPz4+zZs/Tt21c1DPFlGBkZMWjQIL755hsOHz7M9evXGTBggNpKWOXLl6dv377079+fLVu2EBAQgK+vL7/99ptqxdQRI0awf/9+AgICuHjxIkeOHMmTRPzpp5/UXsPKyoquXbsCOXPq/fPPPwwZMoTLly9z9+5dduzYoUp6enh40LJlSwYPHsy5c+e4dOkSgwcPRl9fX9W7Tl9fn7p16/Lrr79y8+ZNjh8/zvfff68Ww5AhQ4iOjqZ3796cO3eO+/fvc+DAAT7++GOysvK/ELG2tqZ69ep5EqVPMzc3JyQkhMOHD7/07/5Z9erVY/jw4XzzzTdMnz6de/fucevWLb7//ntmzZrF9OnT1RLZ9evXR1dXlzlz5tCkSRPV9lq1ahEXF8fff/+d71yDJ06coFGjRq/0OXkVJwKuUMuhAjXLeGBjZE7HCg0w0zfmTFDOZOlt3evS46kVpS4/vkNyehrdqzTHxsgcZws72nvU53zwLdXF4ZkHNzDU0aOTV0OsDE3xsHGkmWt1ThfjogGdur/H4d37ObznAA8fBLFs7mIiwyJo3bk9AKsXL2fWL9PU6gTcvUfA3XukpqQQHxdHwN17BAfmXDjr6Org6OKk9jA0MkJfXx9HF6diGdq88coROlaoT3uPejial+KrBt2wMTZn+/UTAAyu24XxLT5SlS9jakOr8rUpY2pNBRtHfmz1Mc6Wdiw5u11V5vSDa3Sp2IjmrjWwM7akZhkPBtXpyKnAa3kumItS2iEf9Dq0RrtaZTRK22HwcT+U6Rmkn80dpmww6EP03u+k+jnzynV0mzZEu3Z1NKws0fJ0R69rBzIuX1cl6fT79UCnXk2SFq9AmZqKwsQYhYkxFPH7ceD2WRo7V6WRcxXsjC3pVbUllgamHL2Xs/r1B5Wa8kmdTnnqNXapyr2oRzyKyzuHjIuFPTVKu2NtaIablQMjm/RCoVCw59Y/RRr769LX1sXNqoxqkm17EyvcrMpga1T8q0I+rUefnuzavpPdO3YRGBDInBmzCA8No0u39wBYNHcBU36crCrf5f2uhIWEMvfP2QQGBLJ7xy52b99Fz369VWXWrlzDXwuWMHbCOErZ2REVGUVUZJTa8P95M+dy+cIlHj96zM3rN5gw9nuSkpJo27F9kbSrdrsmXPE5y5VjZ4l8FMah1duIj4qhWouc6T58Nuxi58KcnlUKDQ2sHezUHoYmRmhpa2HtYIeOXs4Nl9M7DhFw7TYx4VFEPQ7j3B4frp88j1eDGkUSc36O3b9M7bJe1HKogI2ROZ29GmKmb6RaFKadRz16Vc2d8uTSozskp6fSs2oLbI3McbGwp6NnA84F+anOGTfDAqjnWImq9m5Y6JvgZuVAW4+63AgNKNJeM09UblWPWycvcuvkRWJCIji9YR+J0XFUaJIzh+C5LYc4umyLqvy1Q/8QeMmPuLAooh+Hc27LIQIu+uHVLGfhEC1tbSxK26o9dA300NbVwaK0LZpaxTOgqFLLetw+eZHbpy4RExLBPxv357Sjcc77f27rYY4u3/ZUO84QePlWbju2Hs5pR9PcOZUv7DxG8A1/4iNiiAoO5fjKnUQFh6r2WRz23TpDE5dqOcdbEyv6VGuFpYEpR/6dM7B75eYMrtMlT73GLlXxj3xY8PG2jAfWhmaUt3ZgVNM+Ocfbf3uJF7Wdfqdo4VqD5q41KG1qzYCa7bEyNOXAnZzRF32qtWZogw9U5c8/vEWdsl60Ll8bGyNz3K3L8nHtjtyNCFb14Np/+xzGugYMrN0BO2NLqpd25/1KTdl3+2yxtAFg+42TtHSrRQvXmjlDaWt1xMrQjP3/vma/6m0Y3jB3ETXfh37UdaxIW/c62BpZ4GHjyCd1OnEnIkjVDt+Ht2jrXpeGzpWxMTKnip0rfaq1wjf4ZrFch2y+dpT2HvVo616Xsma2fFHvPWyMzNl5M+d7waDanRjbLHd+5jKm1rR0q0lpE2vcrcvyfYuPcLawY+m5XaoyH9ZoS80yHtgZW1LOsjSjm/TB1bKMap/iv2X+/Pk4Ozujp6dHjRo1OHHiRIFlt2zZQqtWrbC2tsbExIR69eqxf7/61Cne3t4oFIo8j9TU1GJrgwxTfQdNnjwZGxsbpk6dyv379zEzM6N69eqMHz8eyFmJcty4cQQGBqKvr0+jRo1Yv349kDMn1v79+xk+fDi1atXCwMCAbt26MWPGjCKNUVNTkw0bNjBs2DAqVqyIu7s7s2fPpmnTpqoyw4cPx9DQUDXpv5eXF7/99huff/459evXzzMM93V17dqVWbNm8ccffzBs2DCcnZ1Zvny5WizPWrZsGYMHD6ZatWqULVuWX3755bnJu/z88ccfJCYm0rlzZ4yNjRk1ahRxcXFqZZYvX87PP//MqFGjePToEZaWltSrV4/27XO+VGRlZTFkyBAePnyIiYkJbdu25c8//1Tbx6+//srw4cO5e/cuVapUYceOHarhmJUrV+bYsWN89913NGrUCKVSSbly5ejZs6eq/sqVKxk0aBCNGzemVKlSTJ06lRs3bqj1/Fq2bBkff/wxNWvWxN3dnd9//53WrXNXjbO3t+fUqVOMHTuWNm3akJaWhqOjI23btlVLQD5r8ODBeHt7P3c1XzMzsxf/sl9g5syZVK5cmQULFvDDDz+gUCioXr0627Zto1Mn9S/qT4agHjt2TO0zoq2tTb169Th8+HC+ybh169blmROuKF0N8cdAR5cWbjUx0TUkNDGK5b67VD0WjHUNMNPPvWuenpXJX2d30MWrEUMbfkByehpXQ/xVF2qQM+Tyr7M76eTZgBGNehKfmsSpgKv43LuU5/WLSsPmTUiIT2DjirXEREdT1tmJ736bhE2pnJsBMVExRIapX7CP+jS3x+y9O/6cOOSDta0NizZ4F1ucz3PE/wImuoZ8VLM9loYmBESFMHbXfMISc4bgWRqYqCVGNDU06FmlBWXNbMnMzuLSozt8uWUaoQm5Q/ZWnt+LUqnkkzqdsDY0IzYlkdOB11hydkee1y9KaXsPodDWRr9fDxSGBmTdDyRxxjxIzV1sRMPCXK0nXOqu/SjJGa6qYW6KMiGRjCvXSd2Se0Gs26wRAMZjh6u9XvKy1aSfKrovKOeC/TDUNaCzV0NM9Yx4FBfBnyfWq+6Cm+obYWmgPgRSX1uXGmU8WFvA4hjamlq8V6kJNkbmpGamczXEnyVndpCSkZZv+TfNw9qRue/lDnkf1jBnsaQ9fv8w5ciKNxZHi9YtiY+LZ8Vfy4mKjMK5nAu/zZxGKbucnt1RkVGEheb23LUvbc/vM6cx58/ZbN20BUtrK4aPHkHT5rnH022bt5CRkcGEseo3fAZ8+jEfDx4EQER4OJO+/5G42DjMzM3wrOjFwmWLVa9bWJ51q5GSkMyprQdIjI3HuowdPb75FFOrnOGLibEJxEe+2oIzGWnp7Pf+m4ToWLR0tLG0t6XTF33xrFutSGLOz5XHdzHU1qNV+do554yEKJae3an64m2iZ4i52jkjg0VntvNexcYMb9yT5PRUrjz2Z+9TSehD/w5FbetRF1M9IxLTU7gZGqBWpiiVq1WR1KRkLu4+RnJcIhb2NrQb2hdjSzMAkuMSSIzOva7KyszizOYDJMUmoKWthbm9DW2H9qFspaIb+fE6ytXyIi0pmYu7j6va0farPk+1I5Gkp9qRnZXF2c0HVe0ws7emzVe9KVspd0qN9JRUTq7eTXJ8Ijr6ulg6lKLT6I+wcS6aa+f8nAu+iZGuPl0qNsbs3+PtjOPrVKujmuobYWGo3rtQX1uXmmUqsOZi3vlEIed4261SU6yNzEnLTOfqY38W/7ON5GI63p4OvIaxrgEfVG6Gub4xQbFh/HJ4pWpYrLm+MVaGuecMn3uX0NfWpZ1HXT6q2Y6k9FSuh95n9YXc9kQlxzH54HIG1GrP9M5DiU6OZ4/fadWQ0OJwKvAqJroG9KzaIqcdMaFMPuRNxL/tsDAwwdrITFX+iP8F9LV0ae9Rn4G1OpCUnsrVkHtqc9JuvHIEpVJJ32qtsTAwJT41Cd9gP9Zcyv+9Kyyfe5cw0TXkwxptsDAwJTA6hHF7FxKemHN8tTQwweapaykNhQYfVG6Og6kNmdlZXHl8l6Hb/lRde0HOUPyRjXthbmBCUnoK/pEP+XrnrAJ7Pr5rXjTl1H/Jhg0bGDFiBPPnz6dBgwYsWrSIdu3acfPmTcqWzdvr/Pjx47Rq1YpffvkFMzMzli9fTqdOnTh79qxqXn0AExOTPNM0PTvaqSgplC8zeZUQ4j/Hx8eHZs2aERMTUyQJqycePnyIg4ODar7B4pSamoq7uzvr169XW4jiv2b37t188803XL16VW241csYu3t+MUX15vzW4UtuhNx7ccG3mJddORrP/7Kkwyi041/OJ3ZQ0Q/3f5PMls5h4IYpJR1GoS3v+R0N5r2ZFRuL06khCwmLf/lpGt5GtiZWePvuLukwCm1ArQ6M3jmnpMMolGmdhjL92LqSDqPQRjXpzTSfNS8u+JYb3bQvH62f/OKCb7EVvX7gg5XflXQYhba5/xS6er94Ibu32bYBv9JiUd55qv9rDn82u6RDeC0+xbCydVFp6vpqvXbr1KlD9erVWbBggWpbhQoV6Nq1K1OnTn2pfXh5edGzZ08mTJgA5PSMGzFihNp0TMVNhqkKIZ7ryJEj7Nixg4CAAE6fPk2vXr1wcnKicePGxf7aenp6rFy58pXm43sbJSUlsXz58ldOxAkhhBBCCCHEuywtLY34+Hi1R1pa/j1g09PTuXDhgtooLIDWrVtz+vTLDWHPzs4mISEBi2cWlUpMTMTR0ZEyZcrQsWNHtXnTi4Mk44QQz5WRkcH48ePx8vLivffew9raGh8fn2KZays/TZo0yTNU9L+mR48e1KlTp6TDEEIIIYQQQvwf0lAo3trH1KlTMTU1VXsU1MMtMjKSrKysPPPZ29raEhoa+lK/i+nTp5OUlESPHrlzJ3p4eODt7c2OHTtYt24denp6NGjQgLt3777+L/0FpJuGEO+opk2b5ln16HW0adOGNm3aFEFEQgghhBBCCCFErnHjxjFy5Ei1bbq6us+t8+wceEql8qXmxVu3bh0TJ05k+/bt2NjYqLbXrVuXunXrqn5u0KAB1atXZ86cOcyeXTxDkyUZJ4QQQgghhBBCCCHeOF1d3Rcm356wsrJCU1MzTy+48PDwPL3lnrVhwwYGDRrEpk2baNmy5XPLamhoUKtWrWLtGSfDVIUQQgghhBBCCCHeUYq3+N+r0NHRoUaNGhw8eFBt+8GDB6lfv36B9datW8eAAQNYu3YtHTp0eOHrKJVKLl++jJ2d3SvF9yqkZ5wQQgghhBBCCCGEeOuNHDmSDz/8kJo1a1KvXj0WL15MUFAQn3+es0r9uHHjePToEStXrgRyEnH9+/dn1qxZ1K1bV9WrTl9fH1NTUwAmTZpE3bp1cXNzIz4+ntmzZ3P58mXmzZtXbO2QZJwQQgghhBBCCCGEeOv17NmTqKgofvrpJ0JCQqhYsSJ79uzB0dERgJCQEIKCglTlFy1aRGZmJkOGDGHIkCGq7R999BHe3t4AxMbGMnjwYEJDQzE1NaVatWocP36c2rVrF1s7JBknhBBCCCGEEEII8Y5SKN6tGcq+/PJLvvzyy3yfe5Jge8LHx+eF+/vzzz/5888/iyCyl/duvSNCCCGEEEIIIYQQQrzFJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGopXW7VUFD/pGSeEEEIIIYQQQgghxBsiyTghhBBCCCGEEEIIId4QGaYqhBBCCCGEEEII8Y5SyDDVt470jBNCCCGEEEIIIYQQ4g2RZJwQQgghhBBCCCGEEG+IDFMVQgghhBBCCCGEeEdpIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h0lq6m+fRRKpVJZ0kEIIYQQQgghhBBCiKJ37sGNkg6hQLUdvUo6hBIhPeOEEOItNmbX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2JavVfSYRSK+cGtXH18t6TDKLTK9m6ExUeWdBiFZmtiRYN5n5d0GIVyashCeq7+oaTDKLQN/SbzODa8pMMoFHszm5IOQTwjITa2pEMoFGMzM2KHf1vSYRSa2axf6b/up5IOo1BW9p5AQmhYSYdRaMalbEs6BPGOkGScEEIIIYQQQgghxDtKhqm+fWQBByGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5SGDFN960jPOCGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5QCGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQoZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKBmm+vaRnnFCCCGEEEIIIYQQQrwhkowT4hk+Pj4oFApiY2NLOpQi5+TkxMyZM1+7fmBgIAqFgsuXLxdZTEIIIYQQQgghxP8TGaYq/i+dPn2aRo0a0apVK/bt21fS4QhRJOo5VqRJueoY6xoQlhDNjpsnCIwOKbC8poYGLd1qU710eYx1DYlLTeSw/3nOB/sB8Fm99yhnWTpPPb+wQJb77iq2dpw/eJIze46SGBuPdelStOrXlbIe5V5YL/jOfVb9PA/rMqX49JdvVNtv+V7l1I6DxIRFkp2VjbmtFXXbN6VSw1rF1ob8KJVKluzeydaTx0lITsbLyZkxvfpQzj7v7/iJI5cu4r1vD8ER4WRmZeFgY0O/lq1pX6feG4z85Wg3rItuh9ZoupVDw9SE+M+/JuteYEmHxf5tu9m+YQuxUdGUcSrLwK8+pULlivmWjYmKZsX8pdy/60/ow8e0e78TA78arFbm6L5DzP9tZp66a/ZvQUdHp8ji3rppC+tWryU6MgonF2eGjhxGlWpVCyx/+cIl5s6cQ+D9ACytrOjTvw9dur2nen7n1h3s37OX+/cCAHD3cOfTIZ/h6eWpKrNs8VK8lyxT26+FhQXb9u8ssna9jCp2rvSp1hoPm7JYGZrx7Z4FnAi48kZjeJ7W5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG2Rxbxt81Y2rF5HVFQUTs5OfPX1MCpXq1Jg+csXLzF/5lwCAwKxsrKk14d96Px+13zLHjlwiMk/TKJB44b8/MdU1fY13qs44XOcoAcP0NXVxatSRQZ/9QVlHcsWWbvE20WpVLL4r7/Yum0bCQkJeHl5Mfabbyjn4vLceoePHGHhokU8fPSIMqVL8+UXX9CsaVPV8xcvXWLV6tX43bpFZGQk037/naZNmhRrW/TatkSnfm0U+vpkPQgmefM2skPDCyxv9NVgtNzytjPjxi2SFnur9qnXrqXa89nxCcT/MKVIY89PC9eatK9QD1N9Yx7FhbPm4gHuRAQVWL6eY0U6VKiPrbElKRmpXA25x/pLB/M9bhUVpVLJYu/lbN25M+fz4+nJ2BFfU87Z+bn1Dh/zYeHSpTx8/Jgy9vZ8+cmnNGvcWPX8ouXLWOLtrVbH0sKC/Vu3qX6Oio5mzqKFnPH1JSExkepVqvDN8OGULeNQlE0sURrIMNW3jSTjxP+lZcuWMXToUP766y+CgoIoW1YuDP/rMjIy0NbWLukwSkwVO1c6eTVi27VjBMaEUKesF4Nqd2K6z1piUxPzrdOveluMdA3YdPUIUUlxGOnqo6HI7TC98vweNDU0VT8bausxonEvrob4F1s7bp65xMHV22g74AMcyjtz8chp1v+xmM9++xZTK/MC66Ump7Bj4VqcvdxIjEtQe07f0IAGnVthZW+LppYmdy/dYOfi9RiYGFOuskexteVZKw/sY+3hg0zoP5CyNrYs27ubr2b/yeaJP2Oop5dvHVNDQwa2a4+TrR3aWpqcuHaVn1Z6Y25sTD3P/BNKJUWhp0vmjVukHz+N4cghJR0OAKeOHGf5vCV8OuIL3Ct6cnDnXqaMncif3vOxtrXJUz4jIwMTMxO69e3Brs3bC9yvvqEBs1YuUttWlIm4wwcOMWfGLEaOHUXFKpXZsWUbY4aPZuXG1diWKpWn/ONHjxkzYjQdu3bi+58mcP3KVWb8Nh1TczOaNm8GwKULF2nRuhXDK1dER1eXdSvXMPqrr1mxYTXWNtaqfTm7ODNj3izVz5qab34Qhb62Lv5RD9lz6zS/tPv8jb/+89RzrMhHNdqx1HcXt8ODaOlWk3HNP2TkzjlEJcflKe9uXZYh9bux4sJeLjy8hYWBCZ/W6cxndbsy/fg6tbJWhqb0q94Gv7DAIo35yMHDzPtzNiPGjKRi5Urs3LqDsV9/g/f6VdiWss1TPuTxY8Z9PYYOXTrx3aQfuH71GjN/n4GpmRlNmjdVKxsaEsqC2fOpXDVvYu/Kpct0/eA93D0rkJWZxdKFixkzbCTL169CX1+/SNso3g4rVq1i7dq1/DhhAmXLlmXpsmUMGTqUvzduxNDQMN86V69dY/z33/P54ME0a9qUoz4+fDt+PEsXL6ZixZzzXEpKCm5ubnTq2JEx335b7O3QbdEE3WYNSV6ziayISPRaN8foy0+InzIN0tLzrZO0bBVo5l4zKQwNMB4znIzL19TKZYWEkjjvr9wN2cpiacPT6pT1pG/1Nqw4v4e7kcE0c63O6CZ9GLdnPlHJ8XnKl7dy4LO6XVlz6QCXHt3BQt+YAbU68HHtTsw+ubHY4lyxbi1rN27kx3HjKFvGgaWrVjJk1Ej+Xr0GQwODfOtcvX6d8ZMm8fnHg2jWqBFHT5zg24k/snTuPCp65t5scnF2Zv70GaqfNZ96r5RKJaO/+w4tLU2mT/kFQ0ND1mzcwJcjR7JpxUo5XoliI8NUxf+dpKQkNm7cyBdffEHHjh3xfuZOSX5OnTpFkyZNMDAwwNzcnDZt2hATEwPAvn37aNiwIWZmZlhaWtKxY0fu3bunqvtkaOeWLVto1qwZBgYGVKlShX/++eelX0OpVPL777/j4uKCvr4+VapUYfPmzc+NOTw8nE6dOqGvr4+zszNr1qzJUyYuLo7BgwdjY2ODiYkJzZs358qVl+99kJWVxaBBg3B2dkZfXx93d3dmzZpVJHWWL19OhQoV0NPTw8PDg/nz56uee/I73bhxI02bNkVPT4/Vq1eTnZ3NTz/9RJkyZdDV1aVq1apqPR9f5r2Iioqid+/elClTBgMDAypVqsS6dblfmBYtWkTp0qXJzs5Wi7dz58589NFHqp937txJjRo10NPTw8XFhUmTJpGZmfnSv9tX1cilKr5BNzkXfJPwxBh23jxJbEoidZ0q5Vu+vHVZXCxLs+zcTvwjHxKTkkBwbDgPYkJVZVIy0khMS1Y93KwdyMjKLNZk3Nm9PlRtWodqzepiVdqW1h++h4mlGRcPn3puvb3LNuFVrzqlXZ3yPOfo6YpHrcpYlbbF3NaK2m2bYONgR/Dt+8XUiryUSiXrjhxmYNv2NK9WHdfSpZn40UBS09PZ73u2wHo1yrvTrGp1nO3sKGNtQ+/mLXEtXYbL/sX3Hryu9EPHSF29kcyLb08Ppl2bttG8fStadGhDGUcHBn41GCsbKw7s2JNveZtStnw89DOatGmBgWH+F/4AChSYW5irPYrSxrUb6NClIx27dsbJ2Ylho0ZgbWvDts1b8y2/fcs2bErZMmzUCJycnejYtTPtO3dgw+rcY9eEnyfyXvf3cXMvj6OTI998N5ZsZTYXfM+r7UtTUxNLK0vVw8y8aNv2Ms4E3WDJ2R0cu3/5jb/2i3SoUJ8j9y5yxP8Cj+IjWHFhL1HJ8bQuXzvf8m5WDoQnxbLv9hkikmK5HRHEobu+uDzT61ihUDC0QXc2XT1CWGJ0kca8ad0G2nfuQIcunXB0duKrkcOwsbVhx9/5f552bNmOTSlbvho5DEdnJzp06US7Th3YuGa9WrmsrCymTPiJAYM/xq60XZ79/D5rOm07tsfZxRnX8q6M/WEcYaFh3Ll1u0jbJ94OSqWSdevXM3DgQJo3a4ZruXJM+vFHUlNT2bd/f4H11q1fT53atRk4YABOTk4MHDCA2rVqsXZ97uetQf36fPn55zRv1uxNNAXdJg1IPXCUjKs3yA4JI3n1RhTa2ujUqFpgHWVyCsqERNVD290NMjJIv3xVvWBWtlo5ZVJS8TYGaOtej2P3L3Hs/iUex0ey5uIBopPjaO5WM9/y5azKEJEUy8E754hMiuVOZDBH/S/gbJH377yoKJVK1m3axMAPP6R54ya4urgwadx4UtPS2HfoYIH11m3eRJ0aNRnYrx9Ojo4M7NeP2jVqsHbTJrVyWpqaWFlaqh7mZmaq54IePuTazRt8O3IUXhUq4FS2LN9+PZKUlBT2Hz5cXE0WQpJx4v/Phg0bcHd3x93dnX79+rF8+XKUyoLvSl2+fJkWLVrg5eXFP//8w8mTJ+nUqRNZWVlATnJv5MiR+Pr6cvjwYTQ0NHjvvffyJGu+++47Ro8ezeXLlylfvjy9e/dWJWde9Brff/89y5cvZ8GCBdy4cYOvv/6afv36cezYsQLjHjBgAIGBgRw5coTNmzczf/58wsNzu9crlUo6dOhAaGgoe/bs4cKFC1SvXp0WLVoQHf1yXwSys7MpU6YMGzdu5ObNm0yYMIHx48ezcWPBd81eps6SJUv47rvvmDJlCn5+fvzyyy/88MMPrFixQm1fY8eOZdiwYfj5+dGmTRtmzZrF9OnTmTZtGlevXqVNmzZ07tyZu3fvvvR7kZqaSo0aNdi1axfXr19n8ODBfPjhh5w9m5Mw6d69O5GRkRw9elS1v5iYGPbv30/fvn0B2L9/P/369WPYsGHcvHmTRYsW4e3tzZQpxTMMQVOhQWlTG+5EBqttvxsZjJN53l40AJ62zjyMDadpuep813IA3zTtR4cKDdB6qifcs2o5eHLl8V0ysoonqZiVmUlIwEOcK7qrbXep6M7Du4EF1rty7CwxYZE0fr/NC19DqVQScP0O0aERLzX0tag8iowkKj6Oup5eqm062tpUdyvP1aeS98+jVCo5d8uPB2GhVHcrX1yhvjMyMjK4f8efKjWrqW2vXLMat6/fKtS+U1NS+KLXQD7r/hFTx00i4O7LvYcvIyMjgzu3blOrjnpyp1ad2ly/ej3fOjeuXc9TvnbdOty6eavAmwBpqalkZmZiYmKitv1h8EPea9eZHl0+YOL4CTx++KgQrXm3aGpo4mJhn+eGxJUQf8pb5z+U6U5EEJYGJlS1dwPAVM+QOmW9uPRIPSH1QaVmxKcmcfTexSKNOefzdIeaz3w+atauxfVr+X+ebl67Qc3a6sP4a9WtzW0/9c/TyqXemJmb0aFzx5eKJSkxJ+nw7GdOvBsePX5MVFQUdevUUW3T0dGherVqXL12rcB6V69do85TdQDq1q373DrFScPSAg1TEzJvPXXtmJVF5r0AtJwdX3o/OnVrkX7xCqRnqO/f2gqTn8ZjPGEMBh/1RsPSoqhCz5emhgZOFnZcD1U/T10LvY+bVf7HrbuRwVgYmFDZzhUAEz1DapXNuQYsLo9CQoiKjqZuzdxjj46ODtWrVOHq9fyPVQBXb9ygTi3141XdWrW5ekO9TtDDh7R9/z069+zBuEkTefj4seq5jPSc3o66T/Vw19TUREtLi8vXnkmm/ocpFIq39vH/Soapiv87S5cupV+/fgC0bduWxMREDh8+TMuWLfMt//vvv1OzZk21nlleXrlfqLt165Zn/zY2Nty8eVPVvR5g9OjRdOjQAYBJkybh5eWFv78/Hh4ez32NpKQkZsyYwZEjR6hXL2eeKBcXF06ePMmiRYtoks+cGXfu3GHv3r2cOXNGdYGzdOlSKlSooCpz9OhRrl27Rnh4OLq6ugBMmzaNbdu2sXnzZgYPHpxnv8/S1tZm0qRJqp+dnZ05ffo0GzdupEePHq9dZ/LkyUyfPp33339fVeZJUuvp3mcjRoxQlXkS/9ixY+nVqxcAv/32G0ePHmXmzJnMmzdPVe5570Xp0qUZPXq0quzQoUPZt28fmzZtok6dOlhYWNC2bVvWrl1LixYtANi0aRMWFhaqn6dMmcK3336ritXFxYXJkyczZswYfvzxxxf+Xl+VoY4+mhoaJKYlq21PSEvGWDf/3j2WBiY4WdiRmZ3FyvN7MNTRp2vFJhho67Lp6pE85R3MbLAzsWTz1eK7Q5ickIQyOxsjU2O17YamxiTG5h1GARAdGsHRDbv48IehaGgWnEhMTU5h9tCJZGVmotDQoO2AD3Cp5F5g+aIWFZ8zfM3CWP1LqIWJCaFRUc+tm5iSTPtxY0jPyERTQ8HY3n2pU8HzuXUEJMTFk52dnadnl5m5ObExr5/wKF22DEO+/Zqyzo6kJCez++8dfD90DNP+mo1dmYLn/3tZcbGxZGVlYW6h/gXNwtKc6AI+K9FR0VhYqrfT3MKCrKwsYmNjsbKyylNn4dyFWFtbU6N2bs8ITy9Pxk/6HoeyZYmJimblshV8OehzVmxYjamZaaHb9l9nomuApoYmcSnqQ//jUhIxszfOt86dyGDmnNrMiEY90dbUQktDE99gP5b77laVcbcuS7Ny1Rm7Z36++yiMuNg4srOy8vTeNLc0J+ZM/jfeoqOiMLdUT96ZW5iTlZVFXGwsllZWXLtylT07dvPX6mX57uNZSqWS+bPmUqlKZZzLPX/+MPHfFPXv8cnymWOXpYUFIaGh+VVR1cuvTtQLzo3FRWFsBEB2gvqUF9kJCWi8ZE9hzbJl0LQvRfI69VEsmQ+CyFqzkazwCDSMjXOGv474goSpf6JMTi5gb4VjrGuApoYGcanqPfDiU5Mw1ct/6LB/5EMW/rOVIQ26qY5bFx/eZtWF4ptnOyq6gM+PuQUhYc/5/ERHY/nM+2Jpbk7UUx0LKlbwZNL48TiWcSAqJoalq1YyaMiXbPBegZmpKU6OjtiVKsXcxYsZP3o0+np6rNm4gajoaCJL6HMo/j9IMk78X7l9+zbnzp1jy5YtAGhpadGzZ0+WLVtWYDLu8uXLdO/evcB93rt3jx9++IEzZ84QGRmp6hEXFBSkloyrXLmy6v92djndvMPDw/Hw8Hjua9y8eZPU1FRatWqltj09PZ1q1arlW8fPzw8tLS1q1sz9kuXh4YHZU12yL1y4QGJiIpaWlmp1U1JS1IbZvsjChQv566+/ePDgASkpKaSnp1O1atXXrhMREUFwcDCDBg3i008/VdXJzMzE1FT9y+DT7YuPj+fx48c0aNBArUyDBg3yDL193nuRlZXFr7/+yoYNG3j06BFpaWmkpaWpzXXSt29fBg8ezPz589HV1WXNmjX06tVLNf/EhQsX8PX1VesJl5WVRWpqKsnJyRjkM+/Fk9d52pMk6ct6toOnAiioz+eTu1DrLh0gNTPnjuCumyfpV6MdW68fIzM7S618LQdPQuKjCI4tePLiIvPMHTLlU/E+LTs7m23zVtGoW1ss7fLO//U0XT1dPpkymvS0dAJv3OHQmm2YW1vi6OlalJGr7D13hqlrV6t+/vPLoUCepuW8Zy+4I2igq8ea8RNITkvF9/Yt/ty8kdJW1tQo/+aSic/Sad4YgxG5c3kljp9M5nW/EovnuZ79naNEUYhJjMt7elDeM3euQfeKnowZPJy9W3bx8bDPXnu/z3r2M69U5v93oCqfp03KArbD2pVrOHzgILMXzlU7ztRt8NTCIK7l8Kpckd5de7Bv91569u316o14Rz17XFUoFAX2sC9tas2Amu35+9pRrjz2x1zfmL7V2/BJnc4sOrMNPS0dvmrwAYvPbichrXi+jD+JUc0Ljj3Pfm6etE+hUJCclMwvP/7M6PFjMH3quuJ5Zv3xJ/f87zFn0bwXFxb/CXv37eOXX39V/TxzRs58XHmOXflsexGlUvnGesto16iKQc/cxW4SF3kXUPJ5V1XqdOrWIutxKFlBD9W2Z/rdUf0/OySMxMAHmPwwBp3a1UnzOfmKkb+ifEIvqDX2Jlb0q96W7dePcy30HmZ6xvSs1pIBtTqw9FzRLOiz9+ABfpk+XfXzzF9/A/K7TnqJz0Kez5x6nQZ166r+7wpU9vKia5/e7Nq3j349e6KlpcXvP01m8u+/0bxjBzQ1Naldowb1n+mxKURRk2Sc+L+ydOlSMjMzKV06t/eCUqlEW1ubmJgYzPO54/WiSTs7deqEg4MDS5Yswd7enuzsbCpWrEh6uvoEr08vLvDkBPEkcfe813hSZvfu3WpxQ8HJmqcvmp+3Xzs7O3x8fPI8Z/aSF9cbN27k66+/Zvr06dSrVw9jY2P++OMP1ZDO16nzpL1LlizJM2xB85meT/lNBpz3C2zek/jz3ovp06fz559/MnPmTCpVqoShoSEjRoxQez87depEdnY2u3fvplatWpw4cYIZM3Inhc3OzmbSpElqvfae0Ctgov6pU6eq9RgEcnrR1czbo+VZSekpZGVnY6ynnuQz0jXI01vuifjUZOJSE1WJOIDwxBg0FArM9I2ITMqdiFxbQ4sq9m4cuFPw+1oUDIwNUWho5OkFlxyXgKFp3l4n6SlphAQEE/rgEftX5CTYlUolKJX80n8UfcZ+jpNXztAwhYYGFqVyJqkv5ViayEdhnN55qNiScY0rV6WiU27vj/TMnGEqUfHxWJmaqbbHJMRjafz8IVsaGho42OQkG90dyhIYEoL3vj0lmoxL/+ccmbee+lIRWbRzXBUFY1MTNDQ0iI2OUdseFxOLqblZkb2OhoYGrh5uhDx6/OLCL8HUzAxNTc08veBiomPy9JZ7wsLSgqio6DzlNTU18/RoW7dqLauXr2TGvJmUc3v+519fXx8XVxceBgc/t9z/i/i0ZLKyszDTN1LbbqKXsxp1frp6NeZORBA7b+bMexkUG0bquXR+avMpG64cwlTPCBsjc8Y07auq8+S8tLbPRL7eMYuwxJh89/0yTM1M0dDUJDqfz0dBcx1aWFrmKR8bE4umpiYmpqYE3g8gNCSE8aNzJ9JX/nsObVG/KSs3rqH0U71EZ0/7k9MnTjFr0Zx8F04R/02NGzWi4lMjRdIzcs5zkVFRar1xo6OjsSjg2AVgaWmp1osJIDom5rl1ilLG9ZskPHjqGKeVc62pYWxMVnxu7zgNYyOUCfn/navR1kanehVS9hY8z5lKegZZIaFoWL/4Wu91JaQlk5Wdjam++jWziZ4h8an5z1fXybMhdyOD2XMrZ07lYMJJ803n+1YD2Xz1aIHHu1fRuEFDKj7Vyz/38xONleVTn5/YGCye0yPR0sIin89P7HPr6OvrU87ZheCHucnSCu7urF26jMTERDIyMzE3M+Ojzz/D073krrWKmsb/8XDQt5Uk48T/jczMTFauXMn06dNp3bq12nPdunVjzZo1fPXVV3nqVa5cmcOHD+dJlEBO13o/Pz8WLVpEo0aNADh58tXvbD3vNTw9PdHV1SUoKCjfIan5qVChApmZmZw/f57atXOGmty+fZvY2FhVmerVqxMaGoqWlhZOTk6vHDPAiRMnqF+/Pl9++aVq24t61b2ojq2tLaVLl+b+/fuqOdhehomJCfb29pw8eZLGTy1nfvr0adXv4GWcOHGCLl26qIYyZ2dnc/fuXbUhvvr6+rz//vusWbMGf39/ypcvT40aNVTPV69endu3b+Pq+vKJnnHjxjFy5Ei1bbq6uvxwcMkL62Yps3kUF46blQM3QnMXJXCzcuBGWEC+dR7EhFDZvhw6mtqkZ+VcAFkZmpGtzCb2mSFYle1d0dLQ5NLDO/ntqshoamlh51yGgOt38KiV23sx4PodytfIu3Korr4un04do7btwqFTPLh5l/eHDcDM+vkX8pkZxbeghqGentoKqUqlEksTU8763cTdIWf15ozMTC7evcPQ97oVtJt8KVGSXoyLgbyUlFSyUwoeNvI20NbWxqW8K1fPX6ZOo/qq7VcvXKZWg6K7261UKgn0D6DsK8wl9Dza2tqU93Dn/FlfGjfLPeafP+dLw8YN863jVakip0+oL3Lie/YcHp4eaGnlXuqtW7WGlUtXMG3ODDw8Kzy7mzzS09N5EPgg35Uy/x9lZWdxP/oxlUuVwzc4tydo5VLlOP8w/3kIdbW0yXpmDtlsZW6vxcdxkYzeOUft+Z5VW6KnpcOK83uIzGelw1eR83kqz/lzvjRqmntuvHDOlwYFfJ48K3nxzzOfp/Nnz+FeIefzVNaxLMvWqs/hunThEpKTkxk6cjg2/ybclEols6fN5OSx4/w5fzZ29vaFaot4uxgaGqrdFFUqlVhaWnL23Dk8/k1gZGRkcPHSJYYOKXiF7cqVKnH27Fn69u6t2nb27FkqV8p/Aaoil5ZOdpr6zY/suHi03F3JenKTRVMTrXLOpOzc+8Ld6VSrDFqaZPheevFra2qiaWtD5r3A1wj85WRlZxMYHULFUi5ceJg7V2XFUi5cfJT/Yio6Wtp55r5WHbeKKJ9jaGCgtkKqUqnE0sKCs+fP41E+Z17cjIwMLl65wtDPCu51XtnLi7Pnfen71PQ4Z319qexV8Irz6enpBAY9oNpTI2WeMDLKudkS9DAYv9u3+WLQoFdumxAvS5Jx4v/Grl27iImJYdCgQXmGO37wwQcsXbo032TcuHHjqFSpEl9++SWff/45Ojo6HD16lO7du2NhYYGlpSWLFy/Gzs6OoKAgvn2NJdef9xpWVlaMHj2ar7/+muzsbBo2bEh8fDynT5/GyMhIbQ61J9zd3Wnbti2ffvopixcvRktLixEjRqj1wGvZsiX16tWja9eu/Pbbb7i7u/P48WP27NlD165d1YaAFsTV1ZWVK1eyf/9+nJ2dWbVqFb6+vjg7OxeqzsSJExk2bBgmJia0a9eOtLQ0zp8/T0xMTJ6E1dO++eYbfvzxR8qVK0fVqlVZvnw5ly9fzncl2efF9/fff3P69GnMzc2ZMWMGoaGhask4yBmq2qlTJ27cuKFK3D0xYcIEOnbsiIODA927d0dDQ4OrV69y7do1fv7553xfV1dX95WHpT7txP3L9KzWiodx4QTFhFKnrBdm+kaceZAzgW1bj3qY6hmy4fIhAC49ukMLt5r0qNKCA3fOYqijT4cKDfAN9sszRLW2gyc3Qu+TnJH62vG9rDrtmrJ9wRrsXBwo4+rEpaOniYuKoXqLnGTK0Q27SIiJo/PnfVFoaGDjoL6yl6GJEZraWmrbT+04hJ2zA+a2lmRlZnHvsh/XTvrSdkDBw8+LmkKhoHfzFizftwcHGxscrG3x3rcHPR0d2tTKTQz96L0UazNzvuqa06ty+b49eDo6UdrKmsysTE5dv8buM2f4tvfLJ6rfFIWxERo2Vij+nYxa49+eMdnRsShjYkskpo7duzJn6gzKubtS3qsCh3btIzIsgtad2gOwZok30RFRDB0/SlUnwD8noZ2akkp8bBwB/vfR0tLCwSknibppxVrcKrhjV6Y0ycnJ7P17B4H+9xk0/PO8AbymHn16MuXHybh7euBVqSI7t24nPDSMLt1yhlItmruAyIhIvpv0AwBd3u/K1o1/M/fP2XTs2pkb166ze/suJkyZqNrn2pVrWLpwCT/8/COl7OyIisz58qlvoK8aOj9v5lwaNGqATSlbYmNiWLl0BUlJSbTt2L7I2vYy9LV1KWNqrfrZ3sQKN6syxKcmFaqXWFHY7Xear+p34170Y+5GBNPCrSZWhqYcvHsOgN5VW2FhYMK8038DcOHhbQbX7UIrt1pcCckZpvpRzXbcjQwmJiWn101wnPrw/6T0lHy3v67uvXsydeLPuHt44FXJi13bdhAWFk6n97sCsGTeQiIiIhk/8XsAOr/fhW2btjBv5hw6dunEjWs32LNjN99PzpnzVEdXN8+8b0b/zrP19PaZf8zg8P5D/PzHLxgYGqh6exoaGqGr9/rnO/F2UigU9O7Vi+Xe3pR1cMDBwYHl3t7o6enRtk3uAksTJk7Extqar/5N0PXq2ZPBn3+O98qVNG3cGJ/jxzl77hxLFy9W1UlOTlbrxfTo8WNu37mDqYkJpUrlv1BVYaQdO4Veq2ZkR0aRFRGJXqtmKDMySL9wWVXGoG8PsuPiSN2lvlKsTt2aZFy7me8ccHpd2pNx3Q9lTCwKYyP0WjdHoadL+rkLRd6Gp+27/Q+f1X2PgOgQ/CMf0rRcdSwNTDlyN+d1u1dpjrm+MYvPbAdyrhE/rt2R5q41uBZyDzN9Y/pWb829yEd5btgWFYVCQe/u3Vm+ZjVly5TBoUwZlq9ejZ6uLm1b5k7VM2HKFGysrfhqcE6CrtcHHzB42DC8166haYOG+Jw6ydkL51k6N3dI/Mz582hUvwGlbG2IiYll6cqVJCUl0bFtW1WZQ0ePYmZmRilbW/zv32P6nDk0adiQurVe/oa+EK9KknHi/8bSpUtp2bJlnkQc5PSM++WXX7h4Me+k3uXLl+fAgQOMHz+e2rVro6+vT506dejduzcaGhqsX7+eYcOGUbFiRdzd3Zk9ezZNmzZ9pdie9xqQs6CBjY0NU6dO5f79+5iZmVG9enXGjx9f4D6XL1/OJ598QpMmTbC1teXnn3/mhx9+UD2vUCjYs2cP3333HR9//DERERGUKlWKxo0bY2tr+1Jxf/7551y+fJmePXvmnER79+bLL79k796C7xy+TJ1PPvkEAwMD/vjjD8aMGYOhoSGVKlVixIgRz41n2LBhxMfHM2rUKMLDw/H09GTHjh24ubm9VHsAfvjhBwICAmjTpg0GBgYMHjyYrl27EhcXp1auefPmWFhYcPv2bfr06aP2XJs2bdi1axc//fQTv//+O9ra2nh4ePDJJ5+8dByv6kqIPwY6erR0q4WJriGhCVEsO7eL2H+/7JnoGmCmnzvUMz0rgyVnttOlYmOGNepBcnoqVx/7s+/2GbX9Whma4Wxpz5J/L9CKm2fdaiQnJHFy634SY+OxLmNHr28GY2qVk+BJjI0nLvLVvoxnpKWzz3szCdFxaOloY2lvQ5cv+uFZN/85F4tL/9ZtScvI4Ld1a0lITsLL2YU5Q79W60EXGh2tNqw6NS2N39atITw2Bl1tbRxL2fHTwEG0rlkrv5coUdr1amH4zTDVz0bf5yyEkrJyPamrNpRITA2aNyYxPoHNK9cTEx2Ng5Mj43+diHWpnJ47MVExRIZHqNUZ82luG+7f8efk4WNY29owf33ORPVJiUksmjGX2OgYDAwNcXZ1YdKsX3GrUHRDWVq0bkl8XDwr/lpOVGQUzuVc+G3mNErZ5XzpjIqMIiw0TFXevrQ9v8+cxpw/Z7N10xYsra0YPnoETZs3U5XZtnkLGRkZTBj7vdprDfj0Yz4enHPnPyI8nEnf/0hcbBxm5mZ4VvRi4bLFqtd9UzysHZn7Xu6Nl2ENcxLne/z+YcqRFQVVeyP+eXAdY10DulVqirm+McGxYfx6dJVqaL+ZvhGWhrnXGcfuX0JfW4c27nX5sEZbktJTuREWwJqL+wt6iSLXvFUL4uPiWbnMm+jIKJxcnPn1z99zP09RUYSH5X6e7Oztmfrn78yfOYftm7diaWXF0FHDadK86Su97o6/twHw9RfD1LaP/WHcG0/wijfjow8/JC0tjV9//52EhAQqenkxd/ZstR50oWFhaGhoqH6uUrkyUyZPZsGiRSxctIgyZcowdcoUtXmXb/r58flTIyr+nDkTgI4dOjBxwoQib0fa4WMotLXR/6ALCgN9sh4Ek7hgKaTlTu2hYW6WZ7JeDWsrtMo5kzj/r3z3q2FmiuFHvVEYGqBMTCLzQTAJM+YX+w2rs0E3MdIxoItXY8z0jXgYF870Y2uJSv73uKVnhKVB7nHrZMAV9LV0aFm+Fr2rtSY5PZWb4QFsvFx8i3gBfNS7T87n588ZJCQmUrFCBeZOm67Wgy40PAwNjdzrpCoVKzFlwo8sWPoXC5cupYy9PVMnTqSiZ+4Q2LCICL77aRKxcXGYm5lR0dOT5QsWYvdUIjcyKoo/580lKiYGK0tLOrRpwyf983Z4+C/7f1619G2lUBY046wQQogSN2bX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2Javffigm8x84Nbufr4bkmHUWiV7d0Ii48s6TAKzdbEigbziq5XYEk4NWQhPVf/8OKCb7kN/Sbz+E0sslOM7M1kTrm3TcJTU5z8FxmbmRE7/NVHrbxtzGb9Sv91P5V0GIWysvcEEp66kfRfZVzq5TotvG1uFTB1zdvAw7bgUVXvMo0XFxFCCCGEEEIIIYQQQhQFGaYqhBBCCCGEEEII8Y5SIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h2loZB+WG8beUeEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RCoWspvq2kZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKA0ZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKAUyTPVtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQpZTfWtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWto1AqlcqSDkIIIYQQQgghhBBCFL2g6JCSDqFAZS3sSjqEEiE944QQ4i224/qJkg6h0DpXbERA5KOSDqNQnK1K/+fbADntiD98rKTDKBSTFk3YcOlgSYdRaD2rtcLbd3dJh1FoA2p1oOfqH0o6jELZ0G8yDeZ9XtJhFNqpIQvZ5/dPSYdRKG0r1CPB73ZJh1FoxhXcWXtxf0mHUWh9qrdh+rF1JR1GoYxq0puEy1dLOoxCM65amSVntpd0GIXyad0urPTdU9JhFFr/Wu1LOgTxjpBknBBCCCGEEEIIIcQ7SlZTffvIAg5CCCGEEEIIIYQQQrwhheoZd+HCBfz8/FAoFFSoUIHq1asXVVxCCCGEEEIIIYQQQrxzXisZFx4eTq9evfDx8cHMzAylUklcXBzNmjVj/fr1WFtbF3WcQgghhBBCCCGEEOIVKZBhqm+b1xqmOnToUOLj47lx4wbR0dHExMRw/fp14uPjGTZsWFHHKIQQQgghhBBCCCHEO+G1esbt27ePQ4cOUaFCBdU2T09P5s2bR+vWrYssOCGEEEIIIYQQQggh3iWvlYzLzs5GW1s7z3ZtbW2ys7MLHZQQQgghhBBCCCGEKDwNWU31rfNaw1SbN2/O8OHDefz4sWrbo0eP+Prrr2nRokWRBSeEEEIIIYQQQgghxLvktZJxc+fOJSEhAScnJ8qVK4erqyvOzs4kJCQwZ86coo5RCCGEEEIIIYQQQoh3wmsNU3VwcODixYscPHiQW7duoVQq8fT0pGXLlkUdnxBCCCGEEEIIIYR4TQoZpvrWea1k3BOtWrWiVatWRRWLEEIIIYQQQgghhBDvtJdOxs2ePfuldzps2LDXCkYIIYQQQgghhBBCiHfZSyfj/vzzz5cqp1AoJBknhBBCCCGEEEII8RaQ1VTfPi+djAsICCjOOIQQQgghhBBCCCGEeOe91mqqT6Snp3P79m0yMzOLKh4hhBBCCCGEEEIIId5Zr5WMS05OZtCgQRgYGODl5UVQUBCQM1fcr7/+WqQBCiGEEEIIIYQQQojXo3iL//2/eq1k3Lhx47hy5Qo+Pj7o6emptrds2ZINGzYUWXBC/D+7ffs2U6dOJS0traRDEUIIIYQQQgghRBF5rWTctm3bmDt3Lg0bNkTx1ESAnp6e3Lt3r8iCE+L/VUJCAu+99x7Ozs7o6uoW2X6dnJyYOXPma9cPDAxEoVBw+fLlIotJCCGEEEIIIYT4f/LSCzg8LSIiAhsbmzzbk5KS1JJzQhSF06dP06hRI1q1asW+ffteuf7EiRPZtm3bfyqB9NFHH/HJJ5/Qq1evkg5F/Iec3ncUn+37SYiJxdbBns4De+HiWT7fsgF+d9m9ajMRj0JJT0/H3MqSuq0b07hT63zLXz55jjV/LsarVlUGfPtVkcW8c8t2Nq/dQHRUFI7OTnw+bAgVq1YusPzVS1dYPGc+DwICsbSyonufnnR4r7Pq+W+++pprl67kqVerXh0mT5sKQHJSMiuXLOP08ZPExsRSrrwrn4/4CvcKHm9NOwC2btjMrq07iAgLx8TMlEZNGzPw80/R0dUB4NrlK2xeu4G7t+4SHRXFhKk/Ub9xw9duw8tSKpUs2b2TradOkJCcjJeTM2N69qGcvX2BdY5cuoj3/r0ER4STmZWFg40N/Vq0on2desUe77kDxzm58zCJsXFYl7GjXf9uOFVwzbfsg1v3OLB2O5GPQ8lIy8DM2oKaLRpQv0NzVZmszCyObz/A5WNnSYiJxdLOltZ9uuBW1bNY23Hh4CnO7jlKYmw81qVL0bJfVxw8XF5Y7+GdAFb/PA/rMqUY9Mto1fbbvlc5veMQMWGRZGdlY25rRe32TanUsGZxNoPW5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG1xNuOlVLFzpU+11njYlMXK0Ixv9yzgREDe49Pb4sSewxzZtpf4mFhKOZTm/UF9KOflnm/ZezfvsHPlRsIehZCRlo65tSX12zSjWec2bzjqnGPS4vXr2HrgAAlJiXi5lWfsZ59TrmzZAuvcCwpi4do13Lp3j5CIcEZ+PIg+nbvkKRceFcWcld6cvniR1LQ0HO1L88NXQ6ngmv8xpCj5HjjB6V2HSYiNx6ZMKdr074ajR7kX1gu6fR/vn2Zj42DH57+OLfY4n3bD5xxX958mOS4Bc3sb6vVsi52bY75lH98OYNf0FXm295g0BDM7awACLt7k0t4TxIdHk52VjamNBZVa1ad8vSrF2o5nKZVKFm/exNbDh0hITMTLzY2xH39COQeHAutsPXyI3cePcS84GIAKzi582bs3FV3d3kjMlw6fxnfPMZLiErCyt6VZ386UcXd+Yb1HdwJZP3UhVmVs+Wjy12rPpSalcPLvfdw9f53U5BRMrSxo2rsDLlUqFEsbzh88yZmnznut+nWl7Ev8DQTfuc+qf897n/7yjWr7Ld+rnNpxUO28V7d9Uyo1rFUs8b9tJE/z9nmtZFytWrXYvXs3Q4cOBXLf2CVLllCvXvFfWIv/L8uWLWPo0KH89ddfBAUFUfY5F1fvii1btpR0CP85GRkZaGtrl3QYJebyqXPsWL6e9z7ti5OHK2cOHGfplFmMnvkT5taWecrr6OrSoF1z7BzLoKOnS4DfXf5etAodXV3qtm6iVjYmPIpdKzbhXKFoLyCPHTrKolnzGDJqOF6VK7Jn206+H/0ti1cvx6aUbZ7yoY9D+GH0ONp1as+YCeO5cfU686bPwtTMjIbNGgMw4ZdJZGTkLioUHxfHlwM+pVGz3DbN/HUagfcD+GbCOCytrDi8/yDjhn/D4jXLsLK2fivacWT/IZYtXMLIcWOoUMmLR0HBTJ/yOwCfDR8CQGpKKs6u5WjVvi0/fzfxleN+XSsP7mftkUNM+HAAZW1tWbZ3N1/N+ZPNP07G8KmpK55mamjIwLbtcbIthbaWJieuXeOnVSswNzahnqdXscV67fQF9q74m46DelLW3QXfQydZ/et8vpr+PWZWFnnK6+jqUKdNY0qVLY22rg5Bt++x46/16OjqULNlTqLz8IadXDnpS5fBfbCyt8X/ih/rpi/h059GYudc8Bezwrh55hKHVm+jzYBulCnvzKUjp9nwx2I+/W0splbmBdZLTU5h58K1OHm5kRSXoPacnqEB9Tu3xNLeFk0tTfwv3WT34vUYmhjhUvn1E9PPU8+xIh/VaMdS313cDg+ipVtNxjX/kJE75xCVHJenvLt1WYbU78aKC3u58PAWFgYmfFqnM5/V7cr04+vUyloZmtKvehv8wgKLJfbXoa+ti3/UQ/bcOs0v7T4v6XCe6+LJs2xdtpbun/XH2cON0/uPsnDyDMbN+QWLfM4hunq6NGrfEnsnB3R0dbjvd5eNC7zR1dWlfpumbzT2FVu3sHbHdn4cNpyy9qVZumkjQ36cwN/z52Oob5BvndS0NMqUKkXLBg2YsWxpvmXiExMZ9O1YalaqxKwffsTC1JSHoaEYGxoWZ3MAuP7PRfat3EKHj7vj4O7ChUOnWPPrAoZMG49pPseuJ1KTU9g2fxUuFcuT+MzffHG753udfzbso2GfDti6lsXv+Hn2zl5Nj4lDMLI0K7Bej8lfoaOXOwpEzzj396trqE+19o0xK2WFpqYmD67d4diKbeibGOLgVfwJ0SdW7NjO2t27+PGLIZS1s2Pplr8ZMmUyf/85C0N9/XzrXLhxgzb1G1LZvTy62jqs2LGdr6b8zMbpM7CxyPs3VZRunb3M0TU7adm/K6XLO3Hl6Fn+nr6UgVNHYWJZ8DkjLTmFPYvX4+jpSlK8+ucnKzOTTX8swcDEiM5ffYiRhSkJ0bFq711RunnmEgdXb6PtgA9wKO/MxSOnWf/HYj777dsXnvd2LFyLs5dbnr8BfUMDGnRuhdW/5727l26wc/F6DEyMKVdM5z0hnue1hqlOnTqV7777ji+++ILMzExmzZpFq1at8Pb2ZsqUKUUdo/g/lpSUxMaNG/niiy/o2LEj3t7eas97e3tjZmamtm3btm2qBLG3tzeTJk3iypUrKBQKFAqFah9BQUF06dIFIyMjTExM6NGjB2FhYar9TJw4kapVq7Jq1SqcnJwwNTWlV69eJCTkHtjT0tIYNmwYNjY26Onp0bBhQ3x9fVXP+/j4oFAo2L9/P9WqVUNfX5/mzZsTHh7O3r17qVChAiYmJvTu3Zvk5GRVvaZNmzJixAjVz6tXr6ZmzZoYGxtTqlQp+vTpQ3h4+HN/d+Hh4XTq1Al9fX2cnZ1Zs2ZNnjJxcXEMHjwYGxsbTExMaN68OVeuvPxd+6ysLAYNGoSzszP6+vq4u7sza9asIqmzfPlyKlSogJ6eHh4eHsyfP1/13JPhshs3bqRp06bo6emxevVqsv/H3l1HR3G9DRz/xt3dhTgEdwlBg1PcHVqKl7ZAhaKlgpTSlkIpXtzdJVhwJwFCSAiQBIi7bHbfPwKbbHYTLAF+vPdzzp6TzN47e2d3dmfmmefeK5Uyffp0HB0d0dHRoWrVqgrZlC/qbd26lSZNmqCvr0+VKlUICQmRl0lISKBXr144Ojqir6+Pv78/69YVXvQtXrwYBwcHpFKpQns7dOjAgAED5P/v2rWLGjVqoKuri7u7O9OmTSvXmadP7DpEraYNqdM8ABtHezoO7omphRkhB46rLO/g7ky1RnWwdXbA3NqSGo3r4V21IpFh4QrlpPlS1v6+hJY9OmBu8/qBqtJs3bCJoHatad2hLc6uLgwfNwora2t2b9upsvye7buwtrFm+LhROLu60LpDW1q2bc3mdRvlZYyMjTG3MJc/rly4hK6OLgFNC4JxOTk5nAo+wZCRn+FftQr2jg70GzIQWzvbEl/3fWxH2M1bVPSvRJOWzbC1s6VGnVoEtmjK3dt35WVq1avDwE+H0DAw4I3a/SZkMhnrjh5mUKs2NK1WHQ97B6b2H0R2bi4HLpwrsV4NL2+aVK2Gm50djlbW9GraDA8HB65G3CvX9p7Zc5TqTepRo2l9rBxsaTOgK8YWZlw4dFJleTs3Jyo3qIm1kx1m1hZUaVQbj8q+PLhdOATHtVPnCfikJV7VKmJuY0ntlo3wqOLL6T1Hy207zu8LpkpgHao2qYulgw0t+nXC2MKUK0dOl1pv/7JN+NWrjoOHcmaKi58H3rUqY+lgg5mNJbVaBWDtZMfDO5HltRm09a3P0YjLHL13icepz1h5aR8Jmam09KqtsrynpRNPM5LZf+cszzKSufMsmsPhF3C3cFAop6amxugG3dh0/ShP0hPLrf2v62z0LZac20nw/avvuykvdXzHAeo2D6Bei8bYOtnTeWgfzCzNOb1f9X7t6O5CjYC62Dk7YGFjRa3A+vhU8yci9M47bbdMJmPdrp0M6tadpvXq4+HiwrSx48jOyWH/iRMl1qvo6cnYgYMIahSAtqbqG3krt27BxtKSKWPGUsnLC3sbG2pXqYKjnV15bY7c2T3HqNakLtWf/3a1GtAFEwszLhw6VWq93f9uoFKDmjh6upZ7G4u7figE74bV8WlUAzM7K+r3aI2hmQmhwRdLradnZIC+iZH8oa5eeHlq7+2GWzVfzOysMLY2x79ZXcwdbIi7F13emyMnk8lYt3cPgzp1pmmdOng4OzNt5KiCfexUyZ/HzDFj6RYUhLerG64ODnz/2WfIZDLO37hZ7m2+uP8k/gG1qBxYBwt7G5r26YCRuSlXj5wttd7BFVvxrVcNOw/lxIcbJy6QnZ7JJ2MG4ODliomlGY5eblg7l5wV/zbO7TtO1cA6VHt+3Gv5/Lh3+SXHvX3LNlGxXnUcPFyVnnPx88CnyHGvdqvGz49798tlG4TytXDhQtzc3NDV1aVGjRqcPKn63O6F4OBghWuzRYsWKZXZsmULfn5+6Ojo4Ofnx7Zt28qr+cAbBuPq16/P6dOnyczMpEKFChw8eBAbGxtCQkKoUaNGWbdR+H9sw4YNeHt74+3tTd++fVm+fDkymeyV6/fo0YMvv/ySihUrEhsbS2xsLD169EAmk/HJJ5+QmJhIcHAwhw4dIiIigh49eijUj4iIYPv27ezevZvdu3cTHBysMGPwhAkT2LJlCytXruTy5ct4eHgQFBREYqLixcDUqVP5888/OXPmDA8fPqR79+7Mnz+ftWvXsmfPHg4dOsQff/xR4nbk5uYyY8YMrl27xvbt24mMjGTgwIGlbvvAgQOJiori6NGjbN68mYULFyoE8GQyGW3btiUuLo69e/dy6dIlqlevTrNmzZTaXxKpVIqjoyMbN24kNDSUH374gW+//ZaNGze+VZ0lS5bw3Xff8eOPPxIWFsasWbOYPHkyK1cqdmeYOHEiY8aMISwsjKCgIH7//Xfmzp3LnDlzuH79OkFBQXTo0IHwcMUA03fffcdXX33F1atX8fLyolevXvJAWXZ2NjVq1GD37t3cvHmTTz/9lH79+nHuXEGgoVu3bsTHx3Ps2DH5+pKSkjhw4AB9+vQB4MCBA/Tt25cxY8YQGhrK4sWLy/VmhSRPwuOIB3hVVcww8qpSkQd3Xm0cz8f3o4m6E4F7RcVurYc27cLA2IjazRuVWXuhIJMx/M5dqtdW7BJXvXZNwm7eUlkn7OYtpfI16tQk/PadEgOdB3bvo3HzJug+v3OdL8lHmi9FW1tboZy2jg63rr/+CXJ5bUfFKv6E37nLndAwAGIfx3Ah5By169d57TaWpccJ8SSkplLXt7BLpraWFtU9vbh+/9VOZmUyGedvh/HgyROql2N3HYlEQmzkQypUVuw+41HZl+i7rxZwio18yMO793H1K2ynJE+CZrEsXC1tLaJvl8+YufkSCXGRj3CrpPjddKvkzaPwqBLrXQ8+T9KTBBp1Vt31vCiZTEbUzbskxj3D+RW6vr4JDXUN3M3tuR6rGIC9FnsPLyvVGYV3n0VjoW9MVfuC999E14A6zhW58lgx4NPVvwmp2Rkci7hcLm3/2EnyJDyMiMK7aiWF5d5VKxF5+9UC5o/uPyDydjgeld5tdsnjJ09ISEqibtWq8mXaWlpUr1SR67fD3mrdJ86fx9fDg4m//kyLAf3o/cVYth088JYtfrl8iYSYyIdKmTrulX14VMpv15XjZ0l6Ek9gl1bl3UQl+RIJ8dExOPopdiF09KvAk4iHpdbdOmMxq7+aw+55K4m5XfL2yWQyHofdJ+VJQoldX8vD46dPSUhOpm7lwq6x2lpaVPfz4/rdVw8+Z+fkIpFIMDE0LI9myuVLJDyJeoxrsWOGayVPYu5FlVjvxokLJD9NoP4nzVU+H3ElFHsPF46s2sbC0dNZ/u1czu46qnRzuizkSyTERj7CrZJiN3n3lxz3rgWfI+lJPAGdX95dXiaTESk/7r286+vHQAuND/bxujZs2MC4ceP47rvvuHLlCo0aNaJ169ZER6sO1EdGRtKmTRsaNWrElStX+PbbbxkzZgxbtmyRlwkJCaFHjx7069ePa9eu0a9fP7p37y6/BiwPb9RNFcDf31/pwlgQytrSpUvp27cvAK1atSI9PZ0jR47QvLnqA0Vxenp6GBoaoqmpia2trXz5oUOHuH79OpGRkTg9H+9h9erVVKxYkQsXLlCrVsHYAVKplBUrVmBkZARAv379OHLkCD/++CMZGRn8/fffrFixgtatWwMFQaRDhw6xdOlSvv66cIyCmTNn0qBBAwCGDBnCN998Q0REBO7uBRc9Xbt25dixY0ycqHpsj8GDB8v/dnd3Z8GCBdSuXZv09HQMVRzU7969y759+zh79ix16tSRv5e+voUXpceOHePGjRs8ffpUPknEnDlz2L59O5s3b+bTTz996furpaXFtGnT5P+7ublx5swZNm7cSPfu3d+4zowZM5g7dy6dO3eWl3kR1CqafTZu3Dh5mRftnzhxonysvV9++YVjx44xf/58/vrrL3m5r776irZt2wIwbdo0KlasyL179/Dx8cHBwYGvviocV2n06NHs37+fTZs2UadOHczNzWnVqhVr166lWbNmAGzatAlzc3P5/z/++COTJk2St9Xd3Z0ZM2YwYcIEpkyZ8tL39XVlpKUjlUoxMjFWWG5oakxasnLXr6JmDvua9NQ0pNJ8WnTvQJ3mhVlWkbfDuXDkFF/M/aHM25yanFIwXoe5YlcDMzMzEhNUB4OTEpMwMytW3tyM/Px8UpJTsLBU7PZxJzSMqPuRfPFN4eepb6CPbyU/1q5YjbOLM6bmZhw/fJQ7oWHYOypm27zP7Qhs3pSUpGS+/HwsMpmM/Px82nXqQI9+vV+7jWUpISUVAHMjxX3N3MiYuMSEUuumZ2XS5tuJ5ObloaGuzsSevanjW37jrGWmFnwvDE2MFJYbmBiRnpxaat05I74nIzUdaX4+Tbq2oUbT+vLnPCr7cmbvUVx9PTCzseT+zTvcvngdqfTVbxS91nakZSCTSjFQsR0Zyaq7oSXGPePYht30nTwKdY2ST3KzM7P4c/Q08iUS1NTVCRrYBTd/1WOEvS1jHX001DVIyUpXWJ6SlY6pvZHKOnfjH/LH6c2Ma9QDLQ1NNNU1uPAwjOUX9sjLeFs506RCdSbuXahyHcLLZaSlIZVKMTZV/F4bmRiTllT6MeSHIV+QnlJwDGnd4xPqtWhcavmylpCcBIBFsV4SFiamxD579lbrfvwkji3799GnQ0cGde3GrfBw5vy7BC0tLdo1afryFbyhzNSC73zx3y5DEyMiSuh6mhD7lCPrdjFo6thSv/PlJTs9E5lUhp6xYhdePWMDMlPTVdbRNzGiUb/2WDnbkS/JJ/zsNXb/tpL2Xw7EzstVXi43M5v/Js4lPy8fdXU1GvRuqxT0K08JyckAWJiYKCy3MDEh9ln8K6/nz7VrsDI3p7a/f1k2T0nW82OGvoni9YG+iZHScAUvJMU94+SmffT87vMS95+UZ4lEh0XgW68anccPJvlJPIdXbUean0/9T1qU6Ta8OO69zvH7xXGv3+TRLz3uLRg9VX7cazWwK+7ldNwTys+8efMYMmQIQ4cOBWD+/PkcOHCAv//+m59++kmp/KJFi3B2dpZPZOjr68vFixeZM2cOXbp0ka+jRYsWfPPNNwB88803BAcHM3/+fIVeUmXplYNxqamln7gWZWxs/PJCgvASd+7c4fz58/Lx0zQ1NenRowfLli175WBcScLCwnBycpIH4qBgNmBTU1PCwsLkwThXV1d5IA7Azs5Onl0WERFBXl6ePMgGBYGm2rVrExameDe2cuXCgdxtbGzQ19eXB+JeLDt//nyJ7b1y5QpTp07l6tWrJCYmyu9CRUdH4+enfDEbFhaGpqYmNWsWZt/4+PgodOm9dOkS6enpWFgoBjCysrJea1bkRYsW8e+///LgwQOysrLIzc2lapE71K9b59mzZzx8+JAhQ4YwbNgweR2JRIJJsROhotuXmppKTEyMwucB0KBBA6Wut0U/D7vn3U2ePn2Kj48P+fn5/Pzzz2zYsIHHjx+Tk5NDTk4OBkXGiOnTpw+ffvopCxcuREdHhzVr1tCzZ080nh/8L126xIULFxQy4fLz88nOziYzMxN9feUxbF68TlGvPZNu8YFZZTKg9MFaR8ycQE52DtF377P3vy1Y2lpTrVEdsrOyWff7Urp+3h8DY9UXymWiWJtlyEofYLZ4edmLxcp19u/eh6u7G95+iplRX0/+ht9+mk2fT7qjrqGOh5cngS2aEXE3XGkdr6yMt+Pa5ausX7WGkV+OxaeiLzGPHrPo978wW76aPoP6vXk7X9O+8+f4ad1/8v9/+3zU83YqlpMhU15YjL6OLmu+mUxmTg4X7oTx25ZNOFhaUcOrnE+ClZr1ks8GGDJ1HLnZOTwMj+LQuh2Y21pRuUHB702bgV3Z8c86FoyfgZqaGmY2llQLrMuV46V3/3lrKvYxVe+5VCplx1//0ahLKyzslCfbKkpHV4fBP35JXk4uUbfCObJmB6ZWFrj4ld9YTMVDlmpqaiVmvDuYWDGwZhu23DjGtZh7mOkZ0ad6EEPrdGDx2e3oamozqkFX/jm3g7ScTJXrEF5H8f1J9rJDCGNnfUtOVjZRdyPYtXoTlnY21AioW24t3Bd8nFl/FwZe539fcLNIjeLfj5f+JL2UVCbDr4IHI/v1B8DHvQL3o6PZsn9fuQbjChU/Tqj+PKRSKVv/XEVg19Yv/c6XN6XPoZR7FKa2lpjaWsr/t6ngRHpSKtcOnlEIxmnpatNl8nDycnKJCYvk7KYDGFuZYf8KkxG8iX0nTzJryWL5//MnFVyYFz9uyF5+2JNbuWMHB06fYvGUaegUy8wvL0rHOZnqY59UKmX3onXU79QCc9uShyORSWXoGxnSclAX1NXVsXVzJD05lQt7g8s8GCendNxTfb4nlUrZ/tfqVz7uDf3xK3Jzcom6dZfDa7ZjVs7HPeHlSroOUnUtlJuby6VLl5g0aZLC8pYtW3LmzBmV6w8JCaFlS8WeAkFBQSxdulQ+7nhISAhffPGFUpkXAbzy8MrBOFNT01eegSM/P/+NGyQILyxduhSJRIKDQ2G2ikwmQ0tLi6SkgswSdXV1pZP4vLy8l65bVsIBqfjy4hMCqKmpyQNhL15X+eCsvO6i61FTUyt1vcVlZGTQsmVLWrZsyX///YeVlRXR0dEEBQWRm5tb4vapaltRUqkUOzs7jh8/rvRc8XH4SrJx40a++OIL5s6dS7169TAyMmL27NmlpvO+rM6L92HJkiXyrL4XNIrd6TJQMYjym3weRV937ty5/Pbbb8yfPx9/f38MDAwYN26cwnvdvn17pFIpe/bsoVatWpw8eZJ58+bJn5dKpUybNk0ha+8F3RIGuP/pp58UMgYBpkyZQvWuzVSWL8rAyBB1dXWlLLj0lDSMTEu/OfJiHDg7F0fSUlI5tHEn1RrVISHuKUlP41n+U2H36Rf71cRun/L1HzOxtH3zk35jUxPUNdRJKpY9lpyUrJRl9oKZuRlJicXLJ6GhoYFxsazA7Oxsgg8fo//QgUrrsXd0YPZf88nOyiIjIxMLSwtmTZ6OjZ2tUtn3tR2rliynaVALWncoyOB0q+BOdnY2C36ZR68BfRTG1ClPAZWrUMm18IIn93k32oTUVCxNTOXLk9LSsDAqfV9TV1fH6flM7N5OTkTFxbHiwL5yC8bpGxd8L9KLZY9lpKQrZZkVZ2ZdcIFo4+xAekoaxzbvlQfjDIyN6P3Vp+Tl5pGVnoGRmQmH1u7A1Lp8BuTWNzJATV2djGLZAJkp6RiYKGdG52blEBf5kCcPHnNwZcHNLJlMBjIZP/f/ip4TP8O1YkG3TzV1dfnFl42LAwmPnxCy60i5XJSk5mSSL83HVE+xzca6BqRkq86c+aRiAHefRbMrtGCMoOjkJ2Sfz2V60DA2XDuMia4h1oZmTAjsI6/z4jd9be+pfLHzd56kJ5X5tnxsDIwKxulKLXYMSUtJw8jUpIRaBSyeH0PsXZ1IS05l//rt5RqMC6hdm0pehd3vcp9P2BOfnISleeHEBokpyZi/4rlMSSzNzHArNlumm6MjR0NUX+yVFX3jgu98eoridz4jNR1DFTfHcrOyibkfTWzUI/au2AwUfuen9xlHv29GKHVzL2u6hvqoqaspZcFlp2Wgb/zq3TKt3Ry5d+66wjI1dXVMnv++WjrZkRT3jKv7TpVbMC6gZk0qeRb+BhbuY8lYFslqT0xNwbzIcbAkq3ftZPn2rSz8/gc8Xcq/e62e/JiheOzLTE1X+VnkZuXwJPIRTx/EcGT1DqBw/5k7aBLdvh6Ks58HBqZGqGtoKJx/mNtZk5GSRr5EgobmG3e4U/LiuFc8Cy4zJU3l8Ts3K4fYyIfEPXjMgWLHvVn9v6T3xOEqj3u2Lg7EP37CmV2H/18E4zRkH+5sqiVdB02dOlWpbHx8PPn5+djYKE6SZmNjQ1xcnMr1x8XFqSwvkUiIj4/Hzs6uxDIlrbMsvPK3puj4SFFRUUyaNImBAwfKZ08NCQlh5cqVKtMCBeF1SSQSVq1axdy5c5Wi2F26dGHNmjWMGjUKKysr0tLSyMjIkAdmrl69qlBeW1tbKUDs5+dHdHQ0Dx8+lGfHhYaGkpKSotCVszQeHh5oa2tz6tQpevcu6DqWl5fHxYsXFSZfeFu3b98mPj6en3/+Wd7WixdLHwzX19cXiUTCxYsXqV27YGDsO3fukPw81R6gevXqxMXFoampiaur6xu17eTJk9SvX58RI0bIl70sq+5ldWxsbHBwcOD+/fvyMdhehbGxMfb29pw6dYqAgMKulmfOnJG/B6/i5MmTdOzYUd49WiqVEh4errBf6Onp0blzZ9asWcO9e/fw8vJSGC+zevXq3LlzBw+PVz+wf/PNN4wfP15hmY6ODgfCS86YfEFTSxOHCi6EXwvFv051+fK710OpWKvqK7dBJpMheX7Sae1gx5e/KR4U96/dRk52Nh0H98LUouTZ3F6FlpYWnt5eXLlwiQaNC8eju3LhEnUb1ldZx7dSRc6dDlFYdvn8RTx9vNEsdhJ44shx8vJyaRpUchatrp4eunp6pKWmcen8BYaM+OyD2Y6cnGylgNuLmw+vM27m2zLQ1VWYIVUmk2FhbMy5sFC8nQoGeM6TSLgcfpfRnygHn0sjk8nkwb3yoKmpiZ2bExE3buNXu3Csn4gbt/Gp+RrdhGQy8vOU26mlrYWWuSn5knxCz1+lYt3qKiq/PQ1NTWzdHIm8eRfvWoVZvZE37+JVQ3kmWh09HYb+9LXCskuHT/Mg9B6dxwzAxKrk764M1dtaFvKl+dxPjKGybQUuPCzMHq9sW4GLj26rrKOjqUV+sRtV0hc3m1AjJiWer3Ypjrfao2pzdDW1WXlxL/GZr96r4/8zTS1NnCq4cufqLarULTyW3bl6C/861V59RTIZkle4Ifo2DPT0FWZIlclkWJiZce7qVXzcC7ou5uXlcfnmLUYXGdbiTVTx8eXB48cKyx7ExGBnVb7ZZxqamti7OXH/+h18axX+dt2/cRvvGsq/XTp6unz+q2KGyIWDp4gMvUv3cYMxVTEbbnm02dLZnsehEbhVKzxfehQWgWuVVx9HMOFhrFL3SiWygjHFyouBnp7CDKkymQwLU1POXb+Oj1tBADBPksfl0FBG9+5b6rpW7dzB0q1b+PPb7/Gr8G661mpoamLj6kDUrXA8axaOAxl1KxyPaqqPGQN+VDz/vHokhIdh92g/qp/8mOHg6UrY2avIpFLUnp+fJD2Jx8DUqEwDcS+2we75cc9H6bhXSam8jp4Ow36aoLCs4LgXTucxAzEt5bgHyM99hfenpOug0rxKAsbLyhdf/rrrfFuv/M1p3LhwDIjp06czb948evXqJV/WoUMH/P39+eeffxTGdBKEN7F7926SkpIYMmSIUtfErl27snTpUkaNGkWdOnXQ19fn22+/ZfTo0Zw/f15pxlVXV1ciIyO5evUqjo6OGBkZ0bx5cypXrkyfPn2YP38+EomEESNG0LhxY4Wuj6UxMDDg888/5+uvv8bc3BxnZ2d+/fVXMjMzGTJkSFm9FTg7O6Otrc0ff/zB8OHDuXnzJjNmzCi1jre3N61atWLYsGH8888/aGpqMm7cOPSKnFw0b96cevXq8cknn/DLL7/g7e1NTEwMe/fu5ZNPPnml98HDw4NVq1Zx4MAB3NzcWL16NRcuXMDNreS7la9SZ+rUqYwZMwZjY2Nat25NTk4OFy9eJCkpSemHuqivv/6aKVOmUKFCBapWrcry5cu5evWqyplkS2vfli1bOHPmDGZmZsybN4+4uDilIG2fPn1o3749t27dkgfuXvjhhx9o164dTk5OdOvWDXV1da5fv86NGzeYOXOmytctKRX7VQW0b8H6BUtxrOCKi7c75w6dIDk+kXotAwHY+98WUhKT6TWmYN88ve8oZpbmWDkUdNONuh3OiZ0HadC6oOuNlrYWts6KY6jpGhRcABVf/qY69+jG7Bk/4enjjW8lP/bt2M3TJ09o26k9AMv+XkJCfDxfTy7oItL2k/bs3LKdxQsW0rpDW8JuhnJg9z4mTf1ead0Hdu+jfqOGGJsoZ3VcPHcBZDIcnZ2IefSYf/9ajKOzEy3bvtmg1+WxHXUa1GPb+s1U8PLAx6+gm+qqJcup27C+PEM0KzOLmEeFF4pxMbFE3L2HkbER1raKd/bKipqaGr2aNmf5gX04WdvgZG3Niv370NXWJqhWYSbrlBXLsDI1ZdTzAN3y/fvwc3HBwcoKiUTC6Vs32XMuhEm9Xj3g/ibqt23K1r9W4eDujJOXGxcPnyYlPpFazyckObRuB6mJKXQZWdAN7dyBYEwszbGyL3j/HtyJ4PTuI9RpVXgO9DA8irSkZGxdHElNTObY5r3IZDIadni74RNKU7t1Y3b9vRY7dyccPFy5eiyE1IQkqjUrCPge37CbtKRU2g/vjZq6OlZOirM9GhgboqmlqbD8zM7D2Lk5YWpjiVQiIeJqGDdPXSRoYNdy2449YWcYVb8LEYkxhD97SDPPmlgamHDo+U2HXlVbYK5vzF9nCgZUvvToDp/W7UgLz1pciy3opjqgZmvC4x+SlFWQ9fEwRXFm8YzcLJXL3wc9LR0cTQq7fdkbW+Jp6UhqdsYHl7EX2DGI/+b/g7OHK67eHpw5eJyk+AQaBDUBYNfqTaQkJNF3XMF4sif3HsbM0gJrx4J96n5YOEd37Cegbfl9D1RRU1OjV/sOLN+8GWd7e5zs7Fm+eRO6Ojq0KnJj7of5v2FtYc6ofgXXKHl5edx/WDCxQJ5EwrPERO7cv4++ni5OdgWzQ/bu0JHBkyawbNNGWjRsyK274Ww7eIDvRows9+2q27YJ2/5ajb27E45eblw6coaU+CRqNm8IwOF1O0lLSqHTiH6oqatj7aQ4o6WBiSGaWlpKy8tT5Rb1OLZsK5Yu9thUcCLsxCXSE1PwbVxwPnl+62EyklNpMrjguHDjcAhGFqaY2VuTn5/PvbPXibwcRovhhWMOX9l3EisXe4ytzJBK8om+Gc7dkGs06tP2nW2Xmpoavdq0Zfn2rTjb2eJka8fy7VsL9rGGDeXlfvjzD6zNzRnVu+C4tnLHDhZtXM/MMWOxs7Yi/vn4hvq6uujr6ql8rbJSs1Uj9i7egK2bI/Yezlw/do60hGSqNC3IWj2xcR/pSSm0+axnwTHDUbFngL6xARpamgrLqzStx+XDpzm6ZifVWjQgKS6ec7uOUr2F4vAwZaVO60B2/L0GO3cnHD1cuXLsDCkJSVR/ftw7tmE3aUkpdBje5/l3QPm4p6GlqbD89PPjnpmNBfmSfCKuhnHj1AVaDexWLtsgvLrXuQ6ytLREQ0NDKWPt6dOnSpltL9ja2qosr6mpKR+yqaQyJa2zLLxRGDskJETlVLA1a9aUD6InCG9j6dKlNG/eXCkQBwWZcbNmzeLy5ctUr16d//77j6+//pp//vmH5s2bM3XqVIXJB7p06cLWrVtp0qQJycnJLF++nIEDB7J9+3ZGjx5NQEAA6urqtGrVqtQZTVX5+eefkUql9OvXj7S0NGrWrMmBAweUBmd/G1ZWVqxYsYJvv/2WBQsWUL16debMmUOHDh1Krbd8+XKGDh1K48aNsbGxYebMmUyePFn+vJqaGnv37uW7775j8ODBPHv2DFtbWwICAl75R2f48OFcvXqVHj16FJys9OrFiBEj2Ldv31vVGTp0KPr6+syePZsJEyZgYGCAv7//SzMOx4wZQ2pqKl9++SVPnz7Fz8+PnTt34un56jM2Tp48mcjISIKCgtDX1+fTTz/lk08+ISVFsftO06ZNMTc3586dO/LMyBeCgoLYvXs306dP59dff0VLSwsfH59y/X2s2qA2mWkZHN60i9SkFGyd7Rny7VjMnnftSE1KITm+cIB9mUzG3jVbSXwaj4aGBhY2VrTu05m6Ld/d4NuNmzchNTWVNctXkZSQiIu7KzPm/ITN88lWEhMSefqk8ILa1t6OGXN+YvGCv9i9dQfmlhZ8Pm4UDZsEKKz3UfRDbl2/wazfflX5upnpGSxftIT4Z/EYGhvRsHEjBn42RCm77n1uR+8B/VBTU2PlP8tIeBaPiZkpdRrUY+CnhYH+u7fvMHF0YXD6nz/+BqB56yC++l71ZDBloX+LIHJyc/ll/RrSMjOp6OrGH6PHKWTQxSUloqZeeCcxOzeHX9av5WlyEjpaWrjY2DJ94BBa1qxVbu0E8K9fg6z0DI5v2UdacirWTnb0nTRCfpc8LSmVlPjCLsMymYzD63aS9CwBdXV1zG0sadGrIzWbF15sSPLyOLJhN0lP49HW1cGzakW6jOyPnoHyWJBlxa9uNbLSMjm97SDpyalYOdrR/ethmFgWbEd6chqp8a8X3MnLyeXAii2kJSajqa2Fhb0N7T/vg1/d18iEek0hD25ipKNPF/9AzPSMeJj8hJ+PrSY+o+D31VTPEAuDwuN+8P0r6GlpE+Rdl341WpGRm82tJ5GsuVz+M1qWBR8rF/7sVPgdHdOw4IJvb1gIPx79sCZBq96wDhmp6RzYsIOUpBTsnB34bPJ4zJ932U5NTCbpWZFjiFTGrv82k/jkGeoaGljaWtO+XzfqBwW+87YP6NSZnJwcfl68iLT0dCp5efHn1GkKGXRxz56hXiS74VliIn3Gj5P/v3r7NlZv30b1ipX458dZAFT09GTOpG/5c/Uq/t24AXsbG74cMpTWjQPLfZsq1atOVloGwVsPkJ6cgrWTHX0mDpf/dqUnp5Lymt/58lahViWyMzK5vCeYzJR0zO2taT26D0YWpkBBF8P0xMJzqXxJPmc3HyQjOQ1NLU3M7K1pNbo3zv6FXWolObmcWruHjKRUNLU0MbW1pOmQzlSopZwdVZ4GdOhITm4uPy/9l7SMDCp5ePDnt98rZNDFJcSjXuS4t/nQAfIkEibOm6uwrmFdu/FZN9WTnJUVnzpVyUrPJGRHQQDU0sGWzuMHY2JZcH2SkZJKamLya63T2MKUbl8P49jaXaz8/jcMTY2p3rIhtdsGlv0GUHDcy0zL4NS2A/LjXs+vPy1y3Hv970BeTi77V2wmLTHl+XHPmo6f9y3X494HpRxmvn0ftLW1qVGjBocOHaJTp07y5YcOHaJjx44q69SrV49du3YpLDt48CA1a9aUD19Ur149Dh06pDBu3MGDB6lfX3VPl7KgJnuD/i7e3t60a9eOuXMVf1y+/PJLdu/ezZ07rz7NsyAIglCynTdPvu8mvLUOlRoRGf/45QU/YG6WDv/z2wAF25F6JPh9N+OtGDdrzIYrh953M95aj2otWFFkVtD/VQNrtaXHf5NfXvADtqHvDBr8Nfx9N+OtnR65iP1hIS8v+AFr5VuPtLD//esII19v1v6PBI1L07t6EHODy2cWwXfly8a9SLt6/eUFP3BGVSuz5OyO992MtzKsbkdWXdj7vpvx1vrXavO+m/BG0ooMV/ShMXrNMT43bNhAv379WLRoEfXq1eOff/5hyZIl3Lp1CxcXF7755hseP37MqlWrAIiMjKRSpUp89tlnDBs2jJCQEIYPH866devks6meOXOGgIAAfvzxRzp27MiOHTv4/vvvOXXqlNI45mXljdIAfvvtN7p06cKBAweoW7cg3fXs2bNERESwZcuWMm2gIAiCIAiCIAiCIAiCIPTo0YOEhASmT59ObGwslSpVYu/evbg8nyQlNjaW6OhoeXk3Nzf27t3LF198wV9//YW9vT0LFiyQB+IA6tevz/r16/n++++ZPHkyFSpUYMOGDeUWiIM3DMa1adOG8PBwFi5cyO3bt5HJZHTs2JHhw4fLB5gXBEEQBEEQBEEQBEEQ3rN3OAHYuzBixAiFCQGLKj6GPBTMgXD58uVS19m1a1e6di2/sXOLe+OpTxwdHZk1a1ZZtkUQBEEQBEEQBEEQBEEQPmpvHIxLTk5m6dKlhIWFoaamhp+fH4MHD1Y54L4gCIIgCIIgCIIgCIIgCKD+JpUuXrxIhQoV+O2330hMTCQ+Pp558+ZRoUKFl6b+CYIgCIIgCIIgCIIgCO+ITPbhPv6feqPMuC+++IIOHTqwZMkSNDULViGRSBg6dCjjxo3jxIkTZdpIQRAEQRAEQRAEQRAEQfgYvFEw7uLFiwqBOABNTU0mTJhAzZo1y6xxgiAIgiAIgiAIgiAIgvAxeaNuqsbGxgpTxb7w8OFDjIyM3rpRgiAIgiAIgiAIgiAIQhmQyj7cx/9TbxSM69GjB0OGDGHDhg08fPiQR48esX79eoYOHUqvXr3Kuo2CIAiCIAiCIAiCIAiC8FF4o26qc+bMQU1Njf79+yORSJDJZGhra/P555/z888/l3UbBUEQBEEQBEEQBEEQBOGj8EbBOG1tbX7//Xd++uknIiIikMlkeHh4oK+vX9btEwRBEARBEARBEARBEN6UTPq+WyAU81rBuMGDB79SuWXLlr1RYwRBEARBEARBEARBEAThY/ZawbgVK1bg4uJCtWrVkMn+/w60JwiCIAiCIAiCIAiCIAhv4rWCccOHD2f9+vXcv3+fwYMH07dvX8zNzcurbYIgCIIgCIIgCIIgCMLbEMlUH5zXmk114cKFxMbGMnHiRHbt2oWTkxPdu3fnwIEDIlNOEARBEARBEARBEARBEF7itYJxADo6OvTq1YtDhw4RGhpKxYoVGTFiBC4uLqSnp5dHGwVBEARBEARBEARBEATho/BGs6m+oKamhpqaGjKZDKlUzM4hCIIgCIIgCIIgCILwQZGKnowfmtfOjMvJyWHdunW0aNECb29vbty4wZ9//kl0dDSGhobl0UZBEARBEARBEARBEARB+Ci8VmbciBEjWL9+Pc7OzgwaNIj169djYWFRXm0TBEEQBEEQBEEQBEEQhI/KawXjFi1ahLOzM25ubgQHBxMcHKyy3NatW8ukcYIgCIIgCIIgCIIgCMJbEBNufnBeKxjXv39/1NTUyqstgiAIgiAIgiAIgiAIgvBRU5PJRIhUEARBEARBEARBEAThY5QWG/e+m1AiIzvb992E9+KtZlMVBEEQyleftVPfdxPe2preU0mLjHrfzXgrRm6ufL5l9vtuxlv7u8vXJPcf/r6b8VZMVy3i+L1L77sZby3QowZf7frjfTfjrc1pP5qY5Kfvuxlvxd7Umv1hIe+7GW+tlW89Gvz1v/39Pj1yEXOOr3nfzXhrXwX2Yem5Xe+7GW9tSJ32rL184H034630rh7EgpMb33cz3tqYRt0ZvW3e+27GW/mj03jmn9jwvpvx1sYF9HjfTXgzMun7boFQzGvPpioIgiAIgiAIgiAIgiAIwpsRwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVRMFfChEZlxgiAIgiAIgiAIgiAIgvCOiGCcIAiCIAiCIAiCIAiCILwjopuqIAiCIAiCIAiCIAjCx0omuql+aERmnCAIgiAIgiAIgiAIgiC8IyIYJwiCIAiCIAiCIAiCIAjviOimKgiCIAiCIAiCIAiC8LES3VQ/OCIzThAEQRAEQRAEQRAEQRDeERGMEwRBEARBEARBEARBEIR3RHRTFQRBEARBEARBEARB+FhJpe+7BUIxIjNOEARBEARBEARBEARBEN4REYwTBEEQBEEQBEEQBEEQhHdEdFMVBEEQBEEQBEEQBEH4WInZVD84IjNOEIRSPXnyhOnTp5OUlPS+myIIgiAIgiAIgiAI//NEME4QAFdXV+bPn/9O16empsb27dvf6nWmTp1K1apV32odpZHJZPTr1w8dHR3MzMxeq25Zv6evKyAggLVr17631y/qq6++YsyYMe+7GYIgCIIgCIIgCMIHQATjhP9p7du3p3nz5iqfCwkJQU1NjcuXL7/jVsGFCxf49NNP3/nrlrWffvoJd3d3Jk6c+Np13+d7sHv3buLi4ujZs6d8WfHgoEwm48svv8TIyIijR48CEBgYyLhx45TWt3btWjQ0NBg+fLjK11u8eDFVqlTBwMAAU1NTqlWrxi+//CJ/fsKECSxfvpzIyMiy2UBBEARBEARBEIRXJZV9uI//p8SYccL/tCFDhtC5c2cePHiAi4uLwnPLli2jatWqVK9e/Z23y8rK6p2/Znn49ttv37ju+3wPFixYwKBBg1BXV32/IT8/n2HDhrFr1y6OHj1KrVq1Sl3fsmXLmDBhAn///Tfz5s1DX19f/tzSpUsZP348CxYsoHHjxuTk5HD9+nVCQ0PlZaytrWnZsiWLFi1SCNKVteaetWjrWx9TPSMepzxl9aX93HkWXWL5+q7+tPNtgK2RBZl52VyPucfaKwdJz80CoEmF6jR0q4KTqTUAkYmxbLh2hPsJj8ttG6AgUPrPf/+xbd9e0tLTqejtw8SRI6ng6lpinYioKBatXsXt8HvEPn3C+M8+o3enzgplLt+4werNmwgLDyc+MZE5P0whsH79ctmGAPeqtPCqhYmuIbGp8Wy6dpR7Jbxv/Wu0pp5rJaXlManxzDi0XGl5TUcfhtRpz9WYcBaHbC/rpivR7dQO7cCGqBnokx8RReaqdUgfx5ZaRyeoKdpNA1C3MEeWlk7uhStkb9oGeRJ5GTUzU/S6d0KzSkXUtLSRxj0hc+lq8qNK3mffxPHdhzi4dTcpicnYOzvQ/dP+eFbyUVn28unznNh7mIf3HyDJk2Dn4kD73l2oWKOKQrnM9Ay2r9rIlTMXyEzPwNLGiq5D++Bfq1qZtr2o+i7+BHpUw0jHgCdpiey4dZLIxJgSy2uoq9PCqzY1HLwx0jEgOTudI+EXuPAwTF6mkVsV6rn6Y6ZnREZuFtdj77E3LASJNL9M2rx98zY2/LeOhIQEXN1cGfXFGCpXq1Ji+auXr7Bw/p9ERUZhaWlBz3696dD5E5Vljx48zIzJ02gQ0JCZs3+SL1+zYjUnj58g+sEDdHR0qOhfiU9HfY6zi3OZbFNJTu49wtHt+0hNSsbWyYHOQ3pToaK3yrIRoXfZtWojTx7HkpeTi5mVBfWDmtCkQ1C5tvFNVbHzoHe1lvhYO2NpYMqkvX9zMvLa+24WAKHHL3DtYAhZKWmY2VtTt3tL7DxdVJaNuRPFnnmrlJZ3mzYCU1tLpeURF25y9N+tuFTxpuWIHmXe9qKuHD7N+b3HSU9Jw9LBhqZ9OuLk7f7Seo/uRrJu1t9YOdoycOZ4+fIbJy+wb8kGpfLj//0JTW2tMm17aS4cPMmZ3UdIS07F2tGWoP5dcPGp8NJ60Xfus2L6Aqyd7Bj+8+vfEH4bN46d48qBU2Qmp2Nub03Dnq2x93JVWfbx7Ui2z1mmtLz3jDGY2RWcByc8fsL5HUd59iCGtIRkGvZoTZUW5XPuUVQjtyo086yJsa4BsakJbL1xnIgSzkP6Vg+ijktFpeWxqfHMOlLwnbE1sqCtb32cTK2xMDBhy/VjHI+4Up6bwM1j57l64BSZKemY2VvRoEcpn8WdSHbOUT5n6jl9tPyzCD1xkTshV0mMeQqAlYs9dTo1x8bNsdy2QRBKIzLjhP9p7dq1w9ramhUrVigsz8zMZMOGDQwZMgSAM2fOEBAQgJ6eHk5OTowZM4aMjIwS1xsdHU3Hjh0xNDTE2NiY7t278+TJE4UyO3fupGbNmujq6mJpaUnnzoUX/sWzsMLDwwkICEBXVxc/Pz8OHTqk9JoTJ07Ey8sLfX193N3dmTx5Mnl5eQplfv75Z2xsbDAyMmLIkCFkZ2eX+v4cP34cNTU1Dhw4QLVq1dDT06Np06Y8ffqUffv24evri7GxMb169SIzM1Neb//+/TRs2BBTU1MsLCxo164dERER8udXrVqFoaEh4eHh8mWjR4/Gy8tL/r4Wfw/U1NRYvHgx7dq1Q19fH19fX0JCQrh37x6BgYEYGBhQr149hdeJiIigY8eO2NjYYGhoSK1atTh8+HCp2xwfH8/hw4fp0KGDyudzcnLo1q0bhw4d4sSJEy8NxEVFRXHmzBkmTZqEj48PmzdvVnh+165ddO/enSFDhuDh4UHFihXp1asXM2bMUCjXoUMH1q1bV+prvY26zhXpV70VO26d5Lt9i7j9NJoJgX2x0DdRWd7LypnP63YiOOIKE/f8xYJTm3C3cGBoncL3zdfGlZAHN/nx8EqmHFxKfEYKk5r0w0zPqNy2A2Dlpo2s3baVCSNGsnLBH1iYmzHy22/IKLKPFpedk4OjrR2jBg/GwsxcZZms7Gw83dyZMGJkeTUdgBqO3nSr0pT9t88y68hK7sU/YmTDriW+bxuvHWHi7oXyxzd7/yY9J4vLj+4olTXXN6azfyDhzx6W6za8oNO2JTqtmpG1ej1pU35GmpKC4YSxoKtTYh2terXR7daJ7O17SJs0jcylq9GuUwPdbp3kZdT09TH6/mtk+flkzPmTtG+mkbVuM7JSPuM3ceFECBuXrKJNj0/4fsEsPCr58MeUX0h8Gq+yfPit2/hW82f0tAl8+/tMvCv78df0OURHRMnLSPIkzP/+JxKePOOzb8cy/Z859BszFFML1ftdWahi70mHSo04HH6R306s535iDEPrtMdUz7DEOv1qtMbT0omN147yy7HVrLl8gKfphWN/VnPwoo1vfQ7dPc+vx/5j47UjVLH3pI1vvTJp89FDR/jrtwX0HdSPJauWUrlqFSZ+8TVP4p6oLB8bE8M3X0ygctUqLFm1lD4D+/HH3N8JPnpcqWxcbBx/L1hI5arKgb1rV67ySddO/LV0MbMX/EZ+fj4TxownKyurTLZLlcunzrFt2VpadmvP1/OmU8HPi0Uz5pH4LEFleR1dHRq1ac6YH7/lmz9m0bJbB/au2cKZA8fLrY1vQ09Lh3sJj5h3Yv37boqCiAu3CNl4gGptGtLp+0+x9XBm/x9rSU9MKbVet+kj6fPrePnD2Fr5u5uWkMy5zYew9SjfIC5A2NmrHFmzk7odmjNw+hc4ermzec6/pMaXPlZvTmYWe/9Zj4ufh8rntfV0GbHgB4XHuwzE3Qy5zP5VW2n0SUs++2kCzt4VWPPz36TEJ5ZaLzszi+0LV+NeyesdtbRQ+PkbnFq/j5ptGtP9h8+x83Jh1++rSUtILrVen5ljGTh3gvxhYmMhf06Sm4exlRn1urRA36Tk3+yyVN3Bi86VAzlw5xy/HPuPiITHfF6/U4nnIZuvH+PbvYvkj8n7/iEjN4srjwvP87U1NInPTGHnrVOkZKeX+zbcu3CD0xv2Ub1tY7r98Dl2ni7sWfDfSz+LXjPGMGDO1/JH0c8i5k4UnrUr0/HLQXSeNAwjcxN2/7aK9KTUct4aQVBNBOOE/2mampr079+fFStWICsyQ8ymTZvIzc2lT58+3Lhxg6CgIDp37sz169fZsGEDp06dYtSoUSrXKZPJ+OSTT0hMTCQ4OJhDhw4RERFBjx6Fd0X37NlD586dadu2LVeuXOHIkSPUrFlT5fqkUimdO3dGQ0ODs2fPsmjRIpXdPo2MjFixYgWhoaH8/vvvLFmyhN9++03+/MaNG5kyZQo//vgjFy9exM7OjoULF77S+zR16lT+/PNPzpw5w8OHD+nevTvz589n7dq17Nmzh0OHDvHHH3/Iy6elpfHFF19w4cIFDh8+jEwmo1OnTkilUgD69+9PmzZt6NOnDxKJhP3797N48WLWrFmDgYFBie2YMWMG/fv35+rVq/j4+NC7d28+++wzvvnmGy5evAig8Lmkp6fTpk0bDh8+zJUrVwgKCqJ9+/ZER5ecOXPq1Cl5sK+49PR02rZty61btzh9+rTKMsUtW7aMtm3bYmJiQt++fVm6dKnC87a2tpw9e5YHDx6Uup7atWvz8OHDl5Z7U6196nH8/mWOR1wmJjWe/y7vJyEzheaeqvdLDwtHnmUkc+DuOZ5lJHP3WTRH713E3dxeXmbhma0cDr/Ag+Q4YlPj+ff8TtTV1Kho+/K79W9KJpOxbtt2BvXsSdOGDfFwdWXal1+RnZPD/mPHSqxX0dubscOGERQYiLaW6ouNBrVqMWLgQJo2bFhezQegmWdNzkTd4HTUDeLSEtl0/RhJmWkEuFdVWT5bkktqTob84WJmi762LiEPbiqUU0ONQbXasjvsNPEZpV9slhWdoGZk79xH3sWrSB/HkPnPStS0tdGuV7vEOpoe7kjCI8gLuYA0PgHJzTByz15A063wolanXUukiYlk/buK/PtRBeVC7yAtIUj2pg5v20uDloE0DGqCnbMDPT7tj5mlBcF7VQf1e3zan6Cu7XH1qoCNgx2dBvTE2t6W6+cKhzs4feg4GWnpjJg8Hg8/byysrfCo6IOTu+psnLLQ2L0q56NDOR8dytP0JHbeOklyVjr1XPxVlve2cqaChQP/nttJePxDkrLSeJj8hAdJcfIyrmZ2RCXGcuXxXZKy0rj77CFXH4fjaGJTJm3etG4DbTq0pW3H9ri4uTJq/BisbazZuWWbyvI7t+7A2taGUePH4OLmStuO7Wndvi0b1ygGgPLz8/nxh+kM/HQwdg52Suv59fe5tGrXBjd3Nzy8PJg4+RuexD3h7m3l4HZZOb7jAHWbB1CvRWNsnezpPLQPZpbmnN5/VGV5R3cXagTUxc7ZAQsbK2oF1senmj8RoeXXxrdxNvoWS87tJPj+1ffdFAU3Dofg3aAaPg2rY2ZnRb0eQRiamRAafLHUenpGBuibGMofxbPopVIpx5Zuo3r7QIysXm+83DdxcX8wlRvXpkpgHSwcbGjWtyNG5qZcORpSar0Dy7fgW7ca9h6qf3vU1MDQ1Fjh8S6d3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcNLeLqoTP4NqyOX0BNzO2tadSzDUZmxtw8fr7UenrGBhiYGMkfRfcpGzdHGnRrhWftymhovptOaU08ahASdZOQBzd5kpbI1hvHScpKo6Gb6szkbEkuaTmZ8oezmQ16WrqcLXIeEp38hB03T3D58R0k+WWTPV2aa4fO4NOwOn6NamBmZ0XDnm0wNDPmVvCFUuvpGRugb2IkfxT9LJoP60qlJrWxdLbDzM6Kxv07IpPJeBx2v7w358Mgk324j/+nRDBO+J83ePBgoqKiOH78uHzZsmXL6Ny5M2ZmZsyePZvevXszbtw4PD09qV+/PgsWLGDVqlUqM8sOHz7M9evXWbt2LTVq1KBOnTqsXr2a4OBgLlwoOAD8+OOP9OzZk2nTpuHr60uVKlVK7NJ5+PBhwsLCWL16NVWrViUgIIBZs2Yplfv++++pX78+rq6utG/fni+//JKNGzfKn58/fz6DBw9m6NCheHt7M3PmTPz8/F7pPZo5cyYNGjSgWrVqDBkyhODgYP7++2+qVatGo0aN6Nq1K8eKBDq6detGly5d8PT0pFq1aixbtowbN24odL1cvHgxsbGxjBkzhoEDBzJlypSXZpkNGjSI7t274+XlxcSJE4mKiqJPnz4EBQXh6+vL2LFjFT7HKlWq8Nlnn+Hv74+npyczZ87E3d2dnTt3lvgaUVFR2NjYqOyiOmPGDK5evcrJkydxdn753W6pVMqKFSvo27cvAD179pRn870wZcoUTE1NcXV1xdvbm4EDB7Jx40Z54PIFBwcHefvKmoa6Bm7m9tyIjVBYfiMuAk9LJ5V1wuMfYq5vTBV7TwCMdQ2o7eTH1ZhwleUBdDS00FBTJyOn/DJMHsfFkZCUSN3qNeTLtLW1qe7vz/Ww0FJqfhg01NRxNrUl9EmUwvKwp1G4Wzi80jrqu/pz++kDEjMV79S29a1Pek4WZ6JulFVzS6VuZYm6qQmSm4XdGpFIkNwJR9Oz5ICs5O49NF2d0XB3la9Hq0ol8q4VntRrVauCJDIa/VHDMP7zVwxnfIt2YNkGSSV5EqLvReJXrbLCcr/q/kSE3X2ldUilUrKzsjEwKrzJcP3cJdx9PFm7cDlf9RnOtBET2LthO9J8aSlrenMaauo4mFhzt1iX87vPonE1Vw5GAVS0deNh8lOaVKjB5OaDmNikL+38GqCpriEvE5kYg6OpNU6mBcE3c31jfKxdCHsa9dZtzsvL4+7tu9Ssoxi0rVm7Fjdv3FRZJ/TGLWrWVjyG1Kpbmztht5FICrs3r1q6AlMzU9p2aPdKbclIL8jWNjYun0CEJE/Cw4govKsqdjX3rlqJyNv3Sqil6NH9B0TeDsejhO7TgrJ8ST7x0bE4+Cl2eXTwc+dJROmZw1tn/sN/X89jz7xVxNxRHsv1yu4T6Brp49Ow/Lqdv5AvkRAX9RjXYllgbv5ePA6PKrHejRPnSX4aT4NOLUosk5udy6IvZrJw7Aw2z13Kk6jyHWKiqHyJhJjIh1SorLhPu1f24dHdksfPvXL8LElP4gns0qq8m6gkXyLh2YMYnCsqZho6VfQg7iX71IbpC1n+5S9sn7OcR7ffb2BHQ00dJ1Mbbj9VvPl7+8kD3CzsS6ilqK5LJe48fUBSVlp5NPGlCj6LWJyKfb8LPovSh7LYNP1vVn71KzvnLufxSz4LSW4e0vx8dAz03rrNgvAmxJhxwv88Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bvHmjVr5HVkMhlSqZTIyEil7KiwsDCcnJxwcioMYvj5+WFqakpYWBi1atXi6tWrDBs27JXaFxYWhrOzM46OheMR1Kun3A1o8+bNzJ8/n3v37pGeno5EIlG4eAgLC1OaQKBevXoKQbSSVK5ceDFqY2Mj7wpbdNn584V3/aKjo5kxYwbnzp0jPj5eHliKjo6mUqWCCw4zMzOWLl1KUFAQ9evXZ9KkSa/dDgB/f3+FZdnZ2aSmpmJsbExGRgbTpk1j9+7dxMTEIJFIyMrKKjUzLisrC11dXZXPtWzZksOHDzNr1qxXmun14MGDZGRk0Lp1awAsLS1p2bIly5YtkwdU7ezsCAkJ4ebNmwQHB3PmzBkGDBjAv//+y/79++VBQT29ggN9Zgnd8HJycsjJyVFYpqNTclfAoox09NFQVyclW7HrdUpWBiZ2qrtEhMc/ZOGZrYxu0BUtDU001TW49Og2Ky/uLfF1elZtTmJWGjfjyu9EMyGpoPuKRbHZey3MzIh98rTcXresGOrooaGuTlqxzyItOwMTm5KzRl8w1jWgoo07y87vVljubuFAfVd/fjyyskzbWxo1k4LfH2mKYlBQmpKKumXJXTLzzl0ky9gQw++/AtRQ09Qg50gwObsPyMuoW1mi0zSAnP2Hydi1Hw13V/T6dkeWl0fe6XNl0v701DSkUinGpopdtY1MTUhNerXMwkPb9pCbnUONRnXly57FPSXhSSh1AhsweuoEnsbEse7vFUjzpbTr3bmUtb0ZA+3n+1SO4m9HWk4WRjr6KuuY65vgZm6HRCphxcW9GGjr0tk/EH0tXTZeOwLA1ZhwDLT1GNmgC2oUBPXPRF3n2L1Lb93mlOQUpPn5mJkrfo/NLMxIOqu6i1piQgJmForBOzNzM/Lz80lJTsbC0pIb166zd+ce/v1PeYwmVWQyGQt//xP/KpVxq1A+Gb0ZaS/2M8Vgn5GJMWkv2c9+GPIF6SlpSKX5tO7xCfVaNC6XNn6MstMzkUll6Bsr/q7qGRmQlap6GBJ9E0Ma9W2HpYsd+XkSws/dYM9vq2k3fgB2XgXZZXH3orlz+gqdJ39W7tsAkJmWgUwqxcBEsfugvrERGSmqAyGJcc8I3riX3t+NRF1DQ2UZCztr2gzrgZWTHTlZ2Vw6eJI1M/9k4MzxmNuW/5i+makF22VYbLsMTYyIKGG7EmKfcmTdLgZNHVvidpWngn1Kip6x4nmTnrEhmSW0Wd/UkMD+HbF2sSdfIuFOyDV2zF1Bp68Hlzi2WXkzeHEeklPsPCQnE+MSjhlFGesY4GfjVur5YHl78VnoF/8sjAzITFHdRVbfxIjG/Tpg9fyzuHv2GjvnraTjV4NK/CzObjmEgakxjn7l1+NDEEojgnHCR2HIkCGMGjWKv/76i+XLl+Pi4kKzZs2AgsyGzz77jDFjxijVU5UdJZPJUFNTK3X5i8DKq5CpSL0tvv6zZ8/KM+2CgoIwMTFh/fr1zJ0795VfpzRaRbrtqampKfz/YlnRTK527drh5ubGkiVLsLe3RyqV4urqSm5urkK9EydOoKGhQUxMDBkZGS/NPCjejpKWvWjL119/zYEDB5gzZw4eHh7o6enRtWtXpXYUZWlpSVKS6nFWmjVrxpgxY+jYsSP5+fkKXXNVWbZsGYmJiQoTNkilUq5cucKMGTPQKHKyWKlSJSpVqsTIkSM5deoUjRo1Ijg4mCZNmgCQmFhwAVrSxBY//fQT06ZNU1g2ZcoUeI0hU2Qo7mtqakAJmd8Oxlb0r9GabTeDuR4bgameIb2rtmRw7XYsOaecedjOtwH1XPyZeWQFeVKJijW+mX1HjzJrwe/y/+dPLxhrr/g3sOD7V2YvW+5UfOuVPh9V6rlUIisvm2tFMhR1NLUYVKsNay4fICO3/LISterVRn9Qb/n/6XP/Kvij+G+YmlqJ+xWApo8Xuu1bk7VyHZKISDRsrNHr2x1pcgo5O56f3KurkR/5gOzNOwDIf/AQDQc7dJo1LrNgXGF7i/0vU7FMhfPHz7B7zVZGTB6vENCTSWUYmRrTd/RQ1DXUcfF0JzkxiYNb9pRLMK4kpX0fXvyWrr18kGxJwe/lzlun6F+zNVtvHEcizaeChQPNPGuy9cZxopOeYGlgQsdKATTPzuRweOndgF69jcUaKSu94WrFPpgXx081NTUyMzKZNWUmX307ARNT01d6/d9n/0bEvQj+WPzX6zT7DanY0V6yn42d9S05WdlE3Y1g1+pNWNrZUCOgbumVhDdmamupMFGDTQUnMhJTuH4oBDsvF3Kzczi2bDuN+rVD1/DlQYvypfqYJ5VK2f33Ghp0bom5XclBNXsPF4Xuq46erqz8YT6XD52meb9PyqG9JVHxnS5hu7b+uYrArq2xsLN+R21TTel9l8lK/N0ys7XCrEhw07aCM+mJKVw5cOq9BeNeeNOOf3Vc/MjKy+F6zKtl9pYrFW+7qms0ADNbS8yKfL9ffBZXD55W+Vlc2X+Se+dv0PHrQWiWMLzJR0dWPhn8wpsTwTjho9C9e3fGjh3L2rVrWblyJcOGDZP/WFevXp1bt27h4aF6gNvi/Pz8iI6O5uHDh/LsuNDQUFJSUuRZdJUrV+bIkSMMGjToldcXExODvX1BenhIiOI4IKdPn8bFxYXvvvtOvqz42GK+vr6cPXuW/v37y5edPXv2lbbpdSQkJHDjxg0WLlxInTp1AAgODlYqd+bMGX799Vd27drFpEmTGD16NCtXlm3WzsmTJxk4cCCdOhUM/J6env7Sbp7VqlUjLi6OpKQkzIplVwG0aNGC3bt30759e6RSKX/++afKA3tCQgI7duxg/fr1VKxYOMOUVCqlUaNG7Nu3j3btVHeTetF9uOgkITdv3kRLS0thXUV98803jB8/XmGZjo4Og7f8pLJ8UWk5meRLpZjqKt5BNNY1KHGQ3Q4VG3I3Ppo9YWcAeJj8hOWSPUxpMZhN146SXKReG5/6dKjYiJ+OruJhsurB199UQN26VPIpnHEwN7dg0pL4pCQsLQoH3U1MTsZcxef5oUnPySJfKsVYVzFbw0hXn9Tsl09OUN/Vn3PRoeQXOWGyMjDD0sCUz+sXBnpe7LN/dvqSqQeXEp+R/NZtz7tyjbSIIt2HtApOEdRNTcgvkh2nbmyELLXkwY51u7Qn98w5coNPAyB9FAM62ugP6kvOzn0gkyFLTiG/2Iys+TFxaNUsu9mvDY0LxoopngWXlpKilC1X3IUTIaxa8A+fTRqLbzXFcdlMzE3R0NBAXaOwK7ydkwOpSclI8iRoapXtqVVGbsE+VTwLzlBbTylb7oW07AxSstPlgTiAp+mJqKupYapnSHxGCkHedbn86A7nowu6f8elJaCtoUXXKk04En7hjS/kAExMTVDX0CAxQTELLikxSSlb7gVzCwul8slJyWhoaGBsYkLU/UjiYmP59qvCLGzZ8xs3zeoHsmrjGhwcC7uCL5jzG2dOnub3xX9gZVN+F/cGRs/3s+Ti+1kaRi/ZzyxsCi7i7V2dSEtOZf/67SIY94p0DfVRU1cjs1gWXFZaBnrGL89CfsHa3ZF75wq6/qc9SyI9IZkDfxWOU/giIPzv5zPoPn0kxlZlO1GLvpEBaurqSllwmanp6BsrD7afm5VDXOQjnjyI4fCq7YVtlMmYPXAC3ScMw8XPU6memro6tm5OJD15VqbtL4m+ccF2pRfLrM5ITcdQ5XZlE3M/mtioR+xdUTBR1ovtmt5nHP2+GYFbOU/oULBPqStlXmWlZShlaJXGxt2Ru2ff32zDGS/OQ3SKnYfo6JNawjGjqLoulbjwUPE85F0r7bN4ne+3jbuTys/i6oFTXN57kvbjB2DhaPvW7RWENyWCccJHwdDQkB49evDtt9+SkpLCwIED5c9NnDiRunXrMnLkSIYNG4aBgQFhYWFKkxa80Lx5cypXrkyfPn2YP38+EomEESNG0LhxY/kkDVOmTKFZs2ZUqFCBnj17IpFI2LdvHxMmTFC5Pm9vb/r378/cuXNJTU1VCLoBeHh4EB0dzfr166lVqxZ79uxh2zbFQa7Hjh3LgAEDqFmzJg0bNmTNmjXcunVLobtpWTA1NcXc3JxFixZha2vLgwcPlCacSEtLo1+/fowePZrWrVvj7OxMzZo1adeuHd26dSuztnh4eLB161bat2+PmpoakydPVhqLrbhq1aphZWXF6dOnSwyWNW3alD179tCuXTtkMhl//fWXUkBu9erVWFhY0K1bN6Xx59q1a8fSpUtp164dn3/+Ofb29jRt2hRHR0diY2OZOXMmVlZWCt2RT548SaNGjUrMqtTR0XnlbqnF5UvziUyMoZJtBS4+ui1f7m9bgUtF/i9KW0MLabETLfn/Rd6Ltr71+aRiAL8c+4/IxJg3al9pDPT1MSiSeSiTybAwM+fclcv4PA+g5+XlcfnGDUYPHlLmr1/W8mVSopPj8LV2UchuK/i/9LvMnpZOWBuaKY0JF5eWwIxDyxWWta/YEF1NbTZdO0pSZsmBsdeSnYM0W/FCTZqcgmZFX/IfPB8vR0MDTW9PsjaqHoQfAG1tkBYL5UilCne4JeERaNgpThSgbmuDNEH17JNvQlNLE2cPN8Ku3KBa/cKxyMKu3KRK3Rol1jt//Ayrfl/M0Amj8K+tPGZUBT8vLhw/g1Qqlf82PHkci4m5aZkH4qBgn3qc8hQvKyeFLuJeVs4ldhmPTIylsr0H2hpa5OYXBLitDEyRyqQkZxVc3GhraCpla0pl0ufZaaWk1b4CLS0tvHy8uHj+Ao0CA+TLL52/QIMA1WMD+vlXJOTkaYVlF8+dx9vXB01NTZxdnFm2VvGGz9JFS8jMzGT0+LFYPw+4yWQyFsyZz6ngE/y2cAF29q82RtKb0tTSxKmCK3eu3lLYr+5cvYV/ndcYc0wmQ1JsBnWhZBqaGlg62/E47D5u1QrHJXscdh+XKt6l1FSU8DAOveczXJrYWtLlB8XhQC7uOEZedg71erTCwKz04Oqb0NDUxNbVgaibd/GqWRj4j7p5F4/qlZTK6+jpMGjWlwrLrhw+Q3TYPTqO7o9JCcFCmUzG0+jHWDmqHmeyrGloamLv5sT963fwrVU4acD9G7fxrqE88YyOni6f/6o43MmFg6eIDL1L93GDMbWyUKpTHm22crHnYWgE7tULx2R+GBqBW9VXH88x/mEs+qblO+t8afJlUh4mP8HH2pnrsYXnHd7WLkpjCxfnYemItaEZ/0apHtvzXSn4LOx4FKb4WTwKjcD1dT6L6Fj0i3WVvnLgFJf3BNN2bH+sXV9tLF9BKC9iAgfhozFkyBCSkpJo3ry5QvfTypUrExwcTHh4OI0aNaJatWpMnjwZOzvVJyRqamps374dMzMzAgICaN68Oe7u7mzYsEFeJjAwkE2bNrFz506qVq1K06ZNOXdOddcqdXV1tm3bRk5ODrVr12bo0KH8+OOPCmU6duzIF198wahRo6hatSpnzpxh8uTJCmV69OjBDz/8wMSJE6lRowYPHjzg888/f9O3q0QaGhps2LCBy5cvU6lSJcaPH6/UXXbs2LEYGBjIx02rWLEiv/zyC8OHD+fx47IbIPi3337DzMyM+vXr0759e4KCgqhevfTMGQ0NDQYPHqwwRqAqgYGB7N27l9WrV/P5558rdSdetmwZnTp1UjkRRJcuXdi9ezdPnjyhefPmnD17lm7duuHl5UWXLl3Q1dXlyJEjWBTJ7Fq3bt0rjzP4JvbdDqFJheo0dq+GvbElfasHYaFvwpHwglnlelRpxvB6neTlrzy+S00nX5p51MTKwAwvSyf612jNvfhHJD8fsLedbwO6VW7KP+d28CwjGRNdQ0x0DdHR1C637VBTU6NXp09Yvn49x06f5l5UFFPnzkFXR4dWz7v8Avww+1f+XFY4blReXh53IiK4ExFBniSPZ/EJ3ImI4GFM4f6YmZUlLwMFk0XciYgg7mnZjkV3JPwiDdwqU8+lErZG5nSt3AQzfWNORhbcne1YsREDarZRqtfA1Z/IhBhiUhVnFJVI84lJjVd4ZOXmkC3JJSY1vlzvXuccOIJu+1Zo1aiKuoM9+p8OQJabS25I4RiT+p8ORLfbJ4XtvXoDnWYBaNWpibqlBZoVfdHt0oG8K9flXV5z9h9Bo4I7Ou1boW5thVa9Wug0aUjOYeUs3LfRvFMbTh08xumDx4mNfszGf1aT+CyegDYFwxhsW7Ge5XMLZ6U+f/wMy+f9TdchfXHz9iQlMZmUxGSyMgqzCRq3aUF6WjobFq/iyeNYbpy/wr6NOwhs27JM215U8P2r1HauSC0nX6wNzehQsSGmeobyme5a+9SjZ9XCgdyvPL5LZm42Pao2w8bQDHdze9r5NeB8dBgSacEseKFPIqnn4k9Ve0/M9YzxtHSilU9dbsVFvlKX6pfp1qsHe3fsZu/OPTyIjOKv3xbw5MlT2nf+BIAlfy1i1tSZ8vIdOnfkSdwT/pr/Bw8io9i7cw97d+6he5+eAGjr6OBWwV3hYWhkiL6+Pm4V3OVDHsyfPY9D+w/y3fQf0DfQJzEhgcSEBHKyc5TaWFYCOwZx9nAwZw+fIO5hDFuXriUpPoEGQQW/WbtWb+K/+f/Iy5/ce5ib56/wNCaOpzFxnD1ykqM79lMzsH65tfFt6Gnp4GnpiKdlwdi39saWeFo6YmP4frOV/ZvX486py9w5fYWk2GeEbDxAemIKvgEFQdHz245wbPl2efkbh88SdfU2KU8SSIx5yvltR4i8HEbFwIJgvaaWJuYO1goPbX1dtHR1MHewRkOzfMYxq9mqMdeDz3M9+DwJj59wZM0OUhOSqdq0IEsyeONe9ixeBxRkuFk52ik89I0N0dTSwsrRDu3nN/VObztI5PU7JD9N4MmDx+z/dyNPo2Oo2lR5zOLyUrdtEy4fC+HKsRCePY5j/6qtpMQnUbN5QUD+8LqdbFu4Wr5d1k72Cg8Dk4LtsnayR1v3zW5Wvq6qLeoTevISoacukRjzlFPr95KWmELFwILxLEO2HOTw0s3y8tcOneH+lVCSnySQ8PgJIVsOEnEpFP8mdeRl8iUSnkXH8iw6lnxJPunJqTyLjiX5SdndfCru2L1L1HP1p65LRWyMzOns3xhzfSNOPT8Pae/XkH41lCfJqOdSicjEWGLTlNtWMJmQFQ4mVmiqa2CiZ4SDiRWWBqblsg1VWtQn7ORlwk5dJin2Gac37Cv4LBoXfF/Pbj3EkaVb5OWvHT5D5JUwkp8kkPj4KWe3HuL+5VD8mxZ+Flf2n+T89iMEDvgEY0tTMlPSyExJI68cjw8fFKnsw338PyUy44SPRr169VSOzwZQq1Yt+YQOqhTv+ujs7MyOHTtKfb3OnTvTubPq8YGKr8/Ly4uTJ08qLCve1l9//ZVff/1VYdm4ceMU/v/222+VZm395ZdfSmxjYGCg0usMHDhQIXMQYOrUqUydOlX+f/PmzRVmTi3e3mXLlAfPHjNmjMK4fMXfg+LtcHV1VVpWvL2urq4cPXpUoczIkSOVXru4cePGUbFiRR48eICLi4vK9gAEBASQllbYNaToTK7Xr18vcf2dO3cm73kGQ5cuXejSpUup7dmzZw8aGhp07dr1pW1/U2ejb2Goo0+nSo0x1TPkUcpTZh9fQ3xmQdcpUz0jLPQL7+qfiLyKrpY2Lb1q06d6EJm52dx6Esn6q4fkZZp71kJLQ5NxjXoovNaWG8fZeuN4uW3LgG7dycnJ5ec//yQtPY1KPj78OesnhQy6uKfPUFcrDJQ+S0igz8gR8v9Xb9nM6i2bqe5fmX9mzwYg9O5dhk8szF797Z/FALRr3oKpX31VZu2/9OgOBtp6tPWtj7GuAbGp8fx1eot8dlQTXUPM9RXv1OpqalPNwYuN146qWuV7k7PnIGra2ugN6IWavj759yNJ/3UBFDlxVbcwVxhXLnvHXmQyGbpdO6BuZoosLZ28K9fl48MB5Ec+IGPBIvS6fYJux7ZI4+PJWrOJvCJBvrJQK6AeGanp7Fm3lZTEZOxdHBk1bQIW1gXdA1MSk0l8VnjRcXL/EaT5+az7eznr/i7MRqzXLICB4wsyZsytLBg7YxKblvzH9JGTMLUwo2mHVrTq2qFM217UtZhwDLR0aeFVG2MdA+LSElh6bpd8pjtjXQPM9Aq7UeXm57H47A46VQpgbEAPMnOzuRZzj323C4dIOPy8K2orn7qY6BqSnptFaFykQpm30bRFM1JTUlm1bAWJ8Qm4urvx82+/YmtX0CUoISGBp08Ku73b2dvz02+/snD+H+zYvA0LS0tGfzmWxk0DX+t1d27ZDsAXnyuOEztx8je0aqccBC8L1RvWISM1nQMbdpCSlIKdswOfTR6PuXXB+EWpickkFdnPZFIZu/7bTOKTZ6hraGBpa037ft2oHxRYLu17Wz5WLvzZqXAYhTENCzLg94aF8OPRdzepTHEValUkJyOTy3tOkJmSjrm9Na1G9cbIwhSAzJR0MhILuw9L8/M5t/kQGclpaGppYmpvRdCoXjj7K3frfJd861YlOz2DMzsOkZGciqWjLV2/HILJ84lyMpJTSU1QPRZuSbIzsziwfBMZKWno6Oli7eJAr29HYFfh5TPJl5VK9aqTlZZB8NYDpCenYO1kR5+JwzF9nr2XnpxKSvzrbVd586ztT3ZGJhd3HScjJQ0Lexvaj+2HcZF9Ki2hcJ/Kl+RzeuMBMpJT0dTSwtzBmrZj+uFaubBLbUZyGhunF970uXrgNFcPFIxj1mlC+WT8X358FwNtPVp5131+HpLA32e2yY8ZJroGmOkpn4dUtfdky43jKtdpomfIpKb95P8396xJc8+ahD97yIJTm8p8Gzxq+ZOdnsWl3QWfhbm9NW3H9C38fienkV70+y3J58ymws/CzN6KNmP64uJf+FncOn4BqSSfg4s2KLxWzfaB1OrQtMy3QRBeRk1WUvRCEAThf9iOHTswNzenUaNG77spbNy4ERcXF/kYfK+jz9qpZd+gd2xN76mkRUa972a8FSM3Vz7fMvt9N+Ot/d3la5L7D395wQ+Y6apFHC+DGT/ft0CPGny1q/RJZP4XzGk/mpjkD3+m49LYm1qzP6xsgpDvUyvfejT463/7+3165CLmHC89s/1/wVeBfVh6btf7bsZbG1KnPWsvH3h5wQ9Y7+pBLDi58X03462NadSd0dvmve9mvJU/Oo1n/okNLy/4gRsX0OPlhT5AaXfCX17oPTHyfr83Rd4XkRknCMJHqWPHju+7CXLdu3d/300QBEEQBEEQBOH/K5GD9cERY8YJgiAIgiAIgiAIgiAIwjsignGCIAiCIAiCIAiCIAiC8I6IbqqCIAiCIAiCIAiCIAgfK9FN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVT6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VmE31gyMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+V6Kb6wRGZcYIgCIIgCIIgCIIgCILwjohgnCAIgiAIgiAIgiAIgiC8I6KbqiAIgiAIgiAIgiAIwsdKKrqpfmhEZpwgCIIgCIIgCIIgCIIgvCMiGCcIgiAIgiAIgiAIgiAI74jopioIgiAIgiAIgiAIgvCxkknfdwuEYkRmnCAIgiAIgiAIgiAIgiC8I2oymUyM5CcIgiAIgiAIgiAIgvARSrt6/X03oURGVSu/7ya8F6KbqiAIwgfs+L1L77sJby3QowZpMTHvuxlvxcjenlUX9r7vZry1/rXavO8mlIlLD8PedxPeWg0nX+YGr3vfzXhrXzbu9b6bUCbSwu687ya8NSNfb+YcX/O+m/FWvgrsQ4O/hr/vZry10yMXfTTbsfbygffdjLfSu3rQ+25CmZm8/5/33YS3MqPVp+y+dep9N+OttavY8H034c2IHKwPjuimKgiCIAiCIAiCIAiCIAjviAjGCYIgCIIgCIIgCIIgCMI7IrqpCoIgCIIgCIIgCIIgfKRkUtFN9UMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlZhN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlUz6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VVMym+qERmXGCIAiCIAiCIAiCIAiC8I6IYJwgCIIgCIIgCIIgCILw0UhKSqJfv36YmJhgYmJCv379SE5OLrF8Xl4eEydOxN/fHwMDA+zt7enfvz8xMTEK5QIDA1FTU1N49OzZ87XbJ4JxgiAIgiAIgiAIgiAIHyuZ7MN9lJPevXtz9epV9u/fz/79+7l69Sr9+vUrsXxmZiaXL19m8uTJXL58ma1bt3L37l06dOigVHbYsGHExsbKH4sXL37t9okx4wRBEARBEARBEARBEISPQlhYGPv37+fs2bPUqVMHgCVLllCvXj3u3LmDt7e3Uh0TExMOHTqksOyPP/6gdu3aREdH4+zsLF+ur6+Pra3tW7VRZMYJggDAihUr2Ldv3/tuhiAIgiAIgiAIgvD/RE5ODqmpqQqPnJyct1pnSEgIJiYm8kAcQN26dTExMeHMmTOvvJ6UlBTU1NQwNTVVWL5mzRosLS2pWLEiX331FWlpaa/dRhGME/4nuLq6Mn/+/He6PjU1NbZv3/5WrzN16lSqVq36WnWOHz+Omppaqf3Zy9rWrVv59ddfqVu37hvVHzhwIJ988on8/8DAQMaNG1dqnbL6TI8ePYqPjw9SqfSt11Uenj59ipWVFY8fP37fTREEQRAEQRAE4f8jqeyDffz000/ycd1ePH766ae32ty4uDisra2VlltbWxMXF/dK68jOzmbSpEn07t0bY2Nj+fI+ffqwbt06jh8/zuTJk9myZQudO3d+7TaKbqpCuWrfvj1ZWVkcPnxY6bmQkBDq16/PpUuXqF69+jtt14ULFzAwMHinr/mhun//Pt9//z379u3DzMysTNa5detWtLS0ymRdLzNhwgS+++471NUL7i2sWLGCcePGKQQzw8LCaNGiBbVr12bdunXo6Ohw7NgxZs+ezblz58jKysLV1ZXWrVszfvx4HBwcFF7D29ubyMhIIiMjlZ67f/8+3333HcHBwSQmJmJpaUmNGjWYPXs2Xl5eWFtb069fP6ZMmcK///5bru/F8d2HOLh1NymJydg7O9D90/54VvJRWfby6fOc2HuYh/cfIMmTYOfiQPveXahYo4pCucz0DLav2siVMxfITM/A0saKrkP74F+rWpm1WyaT8c/KlWzbvZu0tDQq+voycexYKri5lVrvSHAwi5Yv51FMDI729owYMoQmjRrJn2/fsyexT54o1evWsSMTnweLj544wdZduwi7e5eU1FTWLFmCt4fHW2/TxUOnOLv3GOnJqVg52NKi7yc4+1R4ab2Hd++zeuZfWDnaMmzW1/LlV46FcOPkBZ49Kjh5sHVzJLB7WxwquLx1Wz92h3bsZfem7SQnJOHg6kT/EUPw8a+osmxSQiJrFi0nMjyCuMexBHVqS/8RQ5XK7duyk8O79hP/NB4jEyPqNKpPj6H90NbWLrftuHX8PNcPnCEzJQ0ze2vq9WiFnafqzz/mTiS7565UWt592khM7ayUlt87f4Oj/27BpYo3QSN7lXnbP0YymYx/1q9j28GDpGWkU9HTi4mfDadCkS4sxUVER7No7RpuR0QQ++wp4wcPoXeHjkrlniYk8MeqFZy5fJnsnBxc7B2YPGo0vmXw21RU6PELXDsYQtbzfapu95al7FNR7Jm3Sml5t2kjMLW1VFoeceEmR//diksVb1qO6FGm7X4TVew86F2tJT7WzlgamDJp79+cjLz2vpv12v7XtuPCwZOc2X2EtORUrB1tCerfBZdXOBZG37nPiukLsHayY/jPE99BSz8+tZ38aOhWGUMdfZ6mJ7HvdggPkkoOQGioqdPEowZV7D0w1NEnNTuD4IgrXH58BwA/G1cC3Kthrm+Mhpo6CZkpnI66wbWY8HLbhtP7jnJ8xwFSk5KxdXKg4+CeuPt5qSx7PyycPas28/RxLLm5uZhZWVCvZWMat28pL3P2UDAXj4cQF11wg9yxggtt+nTG2dO93LZBeDXffPMN48ePV1imo6OjsuzUqVOZNm1aqeu7cOECUJBcU5xMJlO5vLi8vDx69uyJVCpl4cKFCs8NGzZM/nelSpXw9PSkZs2aXL58+bXiGiIYJ5SrIUOG0LlzZx48eICLi+IJ3rJly6hateo7D8QBWFkpX4z8f+Xu7k5oaOgrlc3Ly3ulIJu5ufnbNuuVnDlzhvDwcLp161ZimQsXLtC6dWs6duzIP//8g4aGBosXL2bEiBEMGDCALVu24OrqSnR0NKtWrWLu3LnMmzdPXv/UqVNkZ2fTrVs3VqxYwXfffSd/Ljc3lxYtWuDj48PWrVuxs7Pj0aNH7N27l5SUFHm5QYMGUbt2bWbPnl1mAU+l7TwRwsYlq+g9YjAVfL04sf8If0z5hal/z8bcWvlCKfzWbXyr+fPJgB7oGehz5nAwf02fw6R5M3Cu4AqAJE/C/O9/wsjEmM++HYuZpTlJzxLQ0dMr07avXL+etZs2MWXiRJydnFi6ejUjv/6aLatWYaCvr7LO9Vu3+Hb6dIYPHkyTRo04dvIkk6ZNY+mCBVTy8wNg1aJF5BfJmIyIjGTkV1/RLDBQviwrO5sqlSrRPDCQmXPmlMn2hJ69wqH/ttNqYFecvNy4fPQM62f/w2e/TMLEsuTPPzszi52L1uJW0ZP0FMVU9wdh9/CrVx1HLzc0tTQJ2X2Udb8s4tOfJ2Jsblom7f4YhRw7xaq/lzF4zGd4VfThyJ4D/PLNDGYv/QNLG+XjgCQvDyNTEzr27sa+LTtVrvPUkWDW/7uaT78ahVdFH2IfxbBo9gIA+o0YUi7bEXHhJiEb9tOwd1tsPJwJO3GRfQv+o/vUkRhamJZYr/uMUWjrFp7M6hop34RKS0jm3OaD2HqWHEQSlK3ctpW1O3cwZcxYnO0dWLppIyOn/MCWhQsx0FP9u5Wdk4OjrS3NGzRg3rKlKsukpqczZNJEavr78/vkKZibmPAoLg6jMr6BGHHhFiEbD9CgdxtsKjhx+8Rl9v+xlm5TR2BoblJivW7TRxbbp5S3tWCfOoStx4ezT+lp6XAv4RF7b59hVuvh77s5b+x/aTtuhlxm/6qttB3cDSdvdy4dPs2an/9m5JxvMbEs+TwxOzOL7QtX417JS+lYKLyaSrbutPatx+7QU0QnPaGmky/9arTmj1MbScnOUFmnR9XmGOrose3mCRIzUzDQ1kNdrbATXWZeDsERV4jPSEYizcfb2oVOlRqTkZvFvfhHZb4NV06dZ8fy9XQe1hc3Xw9CDgSzZOZ8Jvw+AzMrC6Xy2jraNGjTFHsXR7R1dYgMC2fzolVo6+hQr2VjAO7dvEO1hrVx9fFAU0uLY9v3sXjaPCb8PgMTi/I5PxdejY6OTonBt+JGjRr10plLXV1duX79Ok9U3JR/9uwZNjY2pdbPy8uje/fuREZGcvToUYWsOFWqV6+OlpYW4eHhrxXbEN1UhXLVrl07rK2tWbFihcLyzMxMNmzYwJAhBRcuZ86cISAgAD09PZycnBgzZgwZGaoPFgDR0dF07NgRQ0NDjI2N6d69u9KXbefOndSsWRNdXV0sLS0VUkeLd5EMDw8nICAAXV1d/Pz8lAZuBJg4cSJeXl7o6+vj7u7O5MmTycvLUyjz888/Y2Njg5GREUOGDCE7O/ul79HevXvx8vJCT0+PJk2aEBUVpVTmdd+fF91jFy9ejJOTE/r6+nTr1k2p6+vy5cvx9fVFV1cXHx8fhah/VFQUampqbNy4kcDAQHR1dfnvv//Iz89n/PjxmJqaYmFhwYQJE5AVmwWneDfVp0+f0r59e/T09HBzc2PNmjVKbZ43b558GmknJydGjBhBenp6qe/d+vXradmyJbq6uiqfP3r0KE2bNmXQoEEsXboUDQ0NHj16xJgxYxgzZgzLli0jMDAQV1dXAgIC+Pfff/nhhx8U1rF06VJ69+5Nv379WLZsmcK2hoaGcv/+fRYuXEjdunVxcXGhQYMG/Pjjj9SqVUtezt/fH1tbW7Zt21bq9ryNw9v20qBlIA2DmmDn7ECPT/tjZmlB8F7lrFSAHp/2J6hre1y9KmDjYEenAT2xtrfl+rnL8jKnDx0nIy2dEZPH4+HnjYW1FR4VfXByL7tsLJlMxrrNmxnUty9NAwLwcHNj2qRJZGdns19FRu0L6zZvpk7Nmgzq0wdXZ2cG9elD7erVWbtli7yMmakplubm8sepkBAc7e2pUaUw+69ty5YMGzCA2jVqlNk2ndt3nKqBdajWpC6WDja07NcJYwtTLh85XWq9fcs2UbFedRw8XJWe+2REP2q2aIitiwOW9ja0HdoDmVRG1K3yuyP9Mdi7ZQeBrZrTpE0LHFyc6D9iKBbWlhzetV9leStbGwaMHEpAyyboG6gOqISH3sGrkg8NmjXGytaGyjWrUb9JI+7fvVdu23H9UAjeDavj06gGZnZW1O/RGkMzE0KDL5ZaT8/IAH0TI/njRQbxC1KplKP/bqFGhyYYlxIoFhTJZDLW7drJoG7daVqvPh4uLkwbO47snBz2nzhRYr2Knp6MHTiIoEYBaGuqvrG1cusWbCwtmTJmLJW8vLC3saF2lSo42tmV6TbcOByCd4Nq+DSsjpmdFfV6BL3GPmUof6jap44t3Ub19oEYWX04+9TZ6FssObeT4PtX33dT3sr/0nac3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcN/QjVd63M5Ud3uPToDs8yktl3O4TU7HRqO/upLO9h6YiruR2rL+3nfsJjkrPSeZzyjIfJhddWUYmxhD2N4llGMklZaZx9cJMnaYm4mL7dAPYlObHrILWbNaJuiwBsHO35ZEgvTC3MOXPguMryju4uVG9UB1tnB8ytLanRuB7eVSsRGXZXXqbvF5/SoHVTHNycsXG0o/vnA5HJZIRfDyuXbfjgyKQf7uM1WFpa4uPjU+pDV1eXevXqkZKSwvnz5+V1z507R0pKCvXr1y9x/S8CceHh4Rw+fBgLC+Xgb3G3bt0iLy8Pu9c8VotgnFCuNDU16d+/PytWrFAIYmzatInc3Fz69OnDjRs3CAoKonPnzly/fp0NGzZw6tQpRo0apXKdMpmMTz75hMTERIKDgzl06BARERH06FHYDWLPnj107tyZtm3bcuXKFY4cOULNmjVVrk8qldK5c2c0NDQ4e/YsixYtYuJE5ZR4IyMjVqxYQWhoKL///jtLlizht99+kz+/ceNGpkyZwo8//sjFixexs7NTSmkt7uHDh3Tu3Jk2bdpw9epVhg4dyqRJkxTKvO7788K9e/fYuHEju3btkk/lPHLkSPnzS5Ys4bvvvuPHH38kLCyMWbNmMXnyZFauVOzaNHHiRMaMGUNYWBhBQUHMnTuXZcuWsXTpUk6dOkViYuJLg0wDBw4kKiqKo0ePsnnzZhYuXMjTp08Vyqirq7NgwQJu3rzJypUrOXr0KBMmTCh1vSdOnCjxc922bRtt27blu+++Y/bs2fLlL/a9ktZddHDOtLQ0Nm3aRN++fWnRogUZGRkcP35c/ryVlRXq6ups3ryZ/Pz8Uttau3ZtTp48WWqZNyXJkxB9LxK/apUVlvtV9yeiyElIaaRSKdlZ2RgUyZy5fu4S7j6erF24nK/6DGfaiAns3bAdaX7Zjc/3ODaWhMRE6hb5HLW1talepQrXb90qsd710FDqFPvs69aqVWKdvLw89h46RIfWrV8pNf1N5UskxEY+wq2S4gxN7pW8eRQeVWK9a8HnSHoST0DnoFd6nbycXKT5UvQMVQeMhIIst8i7EVSuWVVhuX+NqtwNvf3G6/Wu5Evk3Qju3S74bj2JiePq+ctUq6P6t+ht5UskxEfH4Oin2LXL0a8CTyIellp364zFrP5qDrvnrSTmdqTS85d3B6NnZIBPw3efof6/7PGTJyQkJVG3yJiw2lpaVK9UkcZPljgAAQAASURBVOu33+6i7sT58/h6eDDx159pMaAfvb8Yy7aDB96yxYryJfnER8fiUGyfcvBzf/k+NfMf/vt6HnvmrSLmjvI+dWX3CXSN9PFpWHZDGQj/e/IlEmIiH1KhsuJQGe6VfXh0V3m/eeHK8bMkPYknsEur8m7iR0tDTR17Y0ulbLV78Y9wMlWdDeRj7UJMyjMaulXh68A+jG3UnSDvOmiqa5T4Ou7m9lgamBCVFFum7YeC89pHEQ/wrqI4pIR3VT+ibr/aja9H9x8Qdece7n7KM2a+kJubQ35+PvoqssaF/32+vr60atWKYcOGcfbsWc6ePcuwYcNo166dwkyqPj4+8mtZiURC165duXjxImvWrCE/P5+4uDji4uLIzc0FICIigunTp3Px4kWioqLYu3cv3bp1o1q1ajRo0OC12ii6qQrlbvDgwcyePZvjx4/TpEkToKCLaufOnTEzM2Ps2LH07t1bnknl6enJggULaNy4MX///bdS1tPhw4e5fv06kZGRODk5AbB69WoqVqzIhQsXqFWrFj/++CM9e/ZU6E9epYriWFhF1xcWFkZUVBSOjo4AzJo1i9atWyuU+/777+V/u7q68uWXX7JhwwZ5UGf+/PkMHjyYoUMLxheaOXMmhw8fLjU77u+//8bd3Z3ffvsNNTU1vL29uXHjBr/88ou8zOzZs1/r/XkhOzublStXyrfpjz/+oG3btsydOxdbW1tmzJjB3Llz5RmDbm5uhIaGsnjxYgYMGCBfz7hx4xSyCufPn88333xDly5dAFi0aBEHDpR8oXD37l327dunMK300qVL8fX1VShXNJPOzc2NGTNm8Pnnn5ca0IyKisLe3l5peXp6Ot26dePbb79VCm6Gh4djbGz8Sncu1q9fj6enJxUrFpwM9OzZk6VLl8r3YwcHBxYsWMCECROYNm0aNWvWpEmTJvTp0wd3d8XxJxwcHLhy5cpLX/NNpKemIZVKMTZV7FpkZGpCalJKCbUUHdq2h9zsHGo0KpzE41ncUxKehFInsAGjp07gaUwc6/5egTRfSrverz9IqSoJiYkAWBTrvmthZqZyvLei9VTVebG+4o6fOkV6ejrtW5XvCX5mWgYyqRRDEyOF5QYmRqQnp6qskxj3jGMbdtNv8mjUNUo+8S3q2IbdGJmZ4FZR9dgpAqSlFHwvTMxMFZabmJmQkpj0xuut36QRackpTBv3Lchk5Ofn07x9Kzr06vKWLVYtOz0TmVSGnrHixYKesQGZqaqzh/VNjGjUrz1WznbkS/IJP3uN3b+tpP2XA7HzcgUg7l40d05dpsvkD7ur24coIblg/7EoNrOahYkpsc+evdW6Hz+JY8v+ffTp0JFBXbtxKzycOf8uQUtLi3ZNmr7Vul94sU/pF9+njAzISlWdda9vYkijvu2wdLEjP09C+Lkb7PltNe3GD8DOqyBbOu5eNHdOX6Hz5M/KpJ3C/67MVNXHQkMTIyJK6HqaEPuUI+t2MWjq2Fc+FgrK9LV10VBXJz03S2F5em4WRjqqb+CZ6xnjbGaLRJrP2isH0dfSpX3Fhuhp6bL9ZrC8nI6mFl8H9kVTXQOpTMru0NNEJJT9BGUZaQXHb0NTxa6BhiYmpCXfLLXu9KFfPT8vzieoe0fqtggoseye1VswMTfDs7LqjEHhf9+aNWsYM2YMLVsWjB3YoUMH/vzzT4Uyd+7ckQ8v9OjRI3buLBimpPgkjMeOHSMwMBBtbW2OHDnC77//Tnp6Ok5OTrRt25YpU6ag8Zq/XSIYJ5Q7Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bun0HVRJpMhlUqJjIxUCtqEhYXh5OQkD8QB+Pn5YWpqSlhYGLVq1eLq1asKAyuWJiwsDGdnZ3nQCqBevXpK5TZv3sz8+fO5d+8e6enpSCQShf7jYWFhDB+ueFFTr149jh07Vupr161bVyFTp/hrv+7784KqbZJKpdy5cwcNDQ0ePnzIkCFDFN4niUSCiYliQKdo5llKSgqxsbEKbdTU1KRmzZpKXVWLbuOLMi/4+PgoTQ997NgxZs2aRWhoKKmpqUgkErKzs8nIyChxso2srCyVwUg9PT0aNmzIkiVL6NWrl8J79KqDdkJB0LBv377y//v27UtAQADJycny9o8cOZL+/ftz7Ngxzp07x6ZNm5g1axY7d+6kRYsWCm3KzMws8bVycnKUpvB+1bET5IpvlkzFMhXOHz/D7jVbGTF5vEJATyaVYWRqTN/RQ1HXUMfF053kxCQObtnzxsG4fYcOMavImHzzn8+UVPwzkalYpqR4HZmsxM3dsXcv9evUwcpSefy8cvGK2yOVStn+12oadWmFhZ3yjE+qhOw+wq2QK/T9biSa2u9mopT/aSq/F2+eHRl69Qbb125m8JjPqODjyZOYOFb99S9bLTbQuW/5DVSvRvH9veSypraWCoPq21RwIj0plWsHz2Dn5Upudg7Hlm6lUb8OKseRExTtCz7OrL8LbwzN/75gOAOlz4S32rUAkMpk+FXwYGS//gD4uFfgfnQ0W/bvK7Ng3JtQtU9lJKZw/VAIdl4uBfvUsu006tcOXZGxK8gpH6dVHailUilb/1xFYNfWr3wsFF5G8SChhlqJx40X5yebrh8lR1IwBM/+2yH0qNqC3aGnkEgLen/kSvJYeGYL2hpauFvY08qnLolZqUQlln12XEG7ii+RvfRHduSPE8nNzuHB3Qj2rN6ChZ011RvVUSp3dNs+rpw6x4jpE9D6/3IuVdqJw0fK3Nyc//77r9QyRa9hXV1dS7ymfcHJyYng4OBSy7wqEYwT3okhQ4YwatQo/vrrL5YvX46LiwvNmjUDCg7An332GWPGjFGq56xiVrKSgilFl+u9xgDzqr5wxdd/9uxZeaZdUFAQJiYmrF+/nrlz577y67zqaxf3uu9PSV5sk5qaGtLng9ovWbJEnq32QvGI/tvOOvtiG0sLrDx48IA2bdowfPhwZsyYgbm5OadOnWLIkCFK4/IVZWlpSVKScoaLhoYG27dvp0uXLjRp0oSjR4/i93xQfy8vL3lQsbTsuNDQUM6dO8eFCxcUui3n5+ezbt06Pv/8c/kyIyMjOnToQIcOHZg5cyZBQUHMnDlTIRiXmJhY6sQhP/30k9LMQFOmTCGwb/sS67xgaFwwFlTxLLi0lBSlbLniLpwIYdWCf/hs0lh8q/krPGdiboqGhgbqGoUjGtg5OZCalIwkT4Km1usfQgIaNJBPsADIU77jExOxLDImQ2JSEualTHZhYW6ulAWXmJyscvKQ2Lg4zl++zK8vmXmpLOgbGaCmrq6UBZeZkoZBsQwBgNysHGIjHxL34DEHVm4Fnn9nZDJm9f+S3hOH41rRU17+7J5jnN55mN6TPsfGWTkrVChk9HyMtJTEZIXlKckpStlyr2PTirU0bB5IkzYF329nd1dysrP597eFfNK7m9IYWm9L11AfNXU1pSy47LQM9I0NX3k91m6O3Dt3HYDUZ4mkJSRz4K+18udf/FYvGT6NHtNHY2z9bibi+V8QULs2lbwKs1Bz8yQAxCcnYVnkNycxJRnzYjeaXpelmRluRW42Arg5OnI05Mxbrbeown1KMQsuKy1DKQOzNNbujtw7dwOAtGdJpCckc+Cv9fLnX+xT/34+g+7TR2JsJfap/y/0jZ8fC1MUj4UZqekYGqs6FmYTcz+a2KhH7F2xGSg8Fk7vM45+34zArZLIBH8VmbnZ5EulGGorBsUNtHVJz1V9UzgtJ5PU7Ax5IA7gWXoy6mpqGOsakJhZ8DnKQP53XFoCVgZmBLhXLfNgnIFRwfE7LUlx/0lPScXIpPSB9C2eT85k5+JIWnIqBzfsUArGHdu+nyNb9jB86lfYuzqpWo0gvBMiGCe8E927d2fs2LGsXbuWlStXMmzYMHlwpnr16ty6dQsPD49XWpefnx/R0dE8fPhQnh0XGhpKSkqKPAOqcuXKHDlyhEGDBr3y+mJiYuRdHkNCQhTKnD59GhcXF4WZNB88eKBQxtfXl7Nnz9K/f3/5srNnz770tbdv366wrHid131/XlC1Terq6nh5eWFjY4ODgwP379+nT58+r7xOExMT7OzsOHv2LAEBBWnfEomES5culThzjK+vLxKJhIsXL1K7dm2gIB246GQSFy9eRCKRMHfuXPmF7MaNG1/anmrVqpU4E6yOjg5bt26la9euNGnShCNHjlCpUiW6du3KpEmT+PXXXxXG/HvhRdbb0qVLCQgI4K+//lJ4fvXq1SxdulQhGFeUmpoaPj4+nDmjeOF08+ZNAovM4llcSVN6hzwsPR0fQFNLE2cPN8Ku3KBa/cKJI8Ku3KRK3ZInJjh//Ayrfl/M0Amj8K+tPL5PBT8vLhw/g1QqlX8uTx7HYmJu+kaBOAADfX2FGVJlMhkW5uacu3gRH8+CoFNeXh6Xr11j9Keflrieyn5+nLt0iT5FZtI9d/EilStWVCq7c/9+zExNaagi47WsaWhqYufmSOTNu/jUKhzDL/LmXbxqVFIqr6Onw7CfFMcvvHT4NA9Cw+k8ZiCmRS5eQ3Yf5fSOQ/Sa+Bn27h/OLIUfKk0tLdy8KnDj0lVqNSzsfn3z0lVq1Fe+S/6qcnJyUFdXvLmgrq5ecMO5HO46a2hqYulsz+PQCNyqFWb5PgqLwLWKTyk1FSU8jEXfpCB4Z2prSdcpir9hF7YfJS8nl/o9WmFgXvrFzv83Bnr6CjOkymQyLMzMOHf1Kj7uBeOu5eXlcfnmLUYXGebhTVTx8eXBY8VuXw9iYrCzKrtsIQ1NDSyd7Xgcdh+3aoX70OOw+7hUKXl8peISHsah93yfMrG1pMsPir0DLu44Rl52DvV6tMLArPQbQ8LHRUNTE3s3J+5fv4NvrcJhYu7fuI13DX+l8jp6unz+q+KwIhcOniIy9C7dxw3GVMXsmYJq+TIpManxVLB0IOxplHx5BUtHbhf5v6jopDgq2rqjraFJbn7BzQYLAxOkMimpJcy+CgVJaqWNK/emNLU0cazgwt1rt/CvW3h9cfdaKBVVnK+WSFYw/lxRx7bv5/Dm3Xw6+QucVEyYJQjvkgjGCe+EoaEhPXr04NtvvyUlJYWBAwfKn5s4cSJ169Zl5MiRDBs2DAMDA8LCwjh06BB//PGH0rqaN29O5cqV6dOnD/Pnz0cikTBixAgaN24s7wo5ZcoUmjVrRoUKFejZsycSiYR9+/apHLS/efPmeHt7079/f+bOnUtqaqpC0A3Aw8OD6Oho1q9fT61atdizZ4/SpAVjx45lwIAB1KxZk4YNG7JmzRpu3bqlNHZYUcOHD2fu3LmMHz+ezz77jEuXLinNPPu6788Lurq6DBgwgDlz5pCamsqYMWPo3r07trYFsx5NnTqVMWPGYGxsTOvWrcnJyeHixYskJSUpBYWKb+fPP/+Mp6cnvr6+zJs3T2mW1qK8vb3lg2f+888/aGpqMm7cOIXsxQoVKiCRSPjjjz9o3749p0+fZtGiRSWu84WgoCClCSeK0tbWZsuWLXTv3p2mTZty5MgR/P39+e233xg1ahSpqan0798fV1dXHj16xKpVqzA0NOTnn39m9erVTJ8+nUqVFAMoQ4cO5ddff+XatWvIZDKmTJlCv3798PPzQ1tbm+DgYJYtW6aQTZeZmcmlS5eYNWtWiW19nSm9VWneqQ3L5y7ExdMddx9PTu4/SuKzeALaFGSgbluxnuSERAZ9OQIoCMQtn/c3PT7tj5u3pzx7SFtHG73ns0g2btOCY7sOsmHxKpp2COLp4zj2bdxB0/ZlN+6ampoavbp2ZfmaNTg7OuLk6Mjy//5DV1eXVs2by8v9MGsW1lZWjHrerbpnly58OnYsK9atI7BBA46fPs25S5dYumCBwvqlUim79u+nXVAQmirGcUhJTSXu6VOexccD8CA6GijIvLNUkWX3Kuq0DmTH32uwc3fC0cOVK8fOkJKQRPVmBTM3Hduwm7SkFDoM74OaujrWTooZmgbGhmhoaSosD9l9hODN+/hkRD9MLM3lmXfaujpo6775fvOxa9OlIwt/mY+7lweeft4c3XOQ+KfxNGtfMFHG+n9XkxifwIhJ4+R1ou7dBwrG3UxNTiXq3n00tbRwdCm4+VO9bi32bdmJi4c7Hj5ePImJZdOKtdSoV6vcxjmq3KIex5ZtxdLFHpsKToSduER6Ygq+jQuOeee3HiYjOZUmgwu6j984HIKRhSlm9tbk5+dz7+x1Ii+H0WJ4d6AgUGnuoDiQt45+QZf/4ssFZWpqavRq34HlmzfjbG+Pk509yzdvQldHh1YBheMT/TD/N6wtzBnVryBAl5eXx/2HBRMk5EkkPEtM5M79++jr6eJkV3DjrHeHjgyeNIFlmzbSomFDbt0NZ9vBA3w3YqRyQ96Cf/N6HF++DSsXO6zdHbl98nLBPhVQcAPn/LYjZCSn0WTQJwDcOHwWI0tTzOysCvapczeIvBxG888Kbohoamli7qAYMNSW71Pvv9uhnpYOjiaF2en2xpZ4WjqSmp3Bk/Q3H0PyXftf2o66bZuw7a/V2Ls74ejlxqUjZ0iJT6Jm84YAHF63k7SkFDqN6Pf8WKiY7W1gYoimlpbScuHlzkRdp0vlJsSkxPMw+Qk1nXwx0TXkfHTBBDMtvGphrGPAlhvHAbgee4/ACtXp5B/I0fCL6GvrEuRdh8uP7si7qAa4V+VxyjMSM1PRUFfHy8qZqvZe7Aotn8nJAtq3ZN2Cf3H0cMXVuwJnD54gKT6Rei0bA7Dnvy2kJCTRe2zBWN2n9h3FzNIca4eCc6fIsHCO7zxAwzaF3fuPbtvH/nXb6fvFMMysLeU9SnR0ddDRUz0G90dF+v+vm+qHTgTjhHdmyJAhLF26lJYtWyp0r6xcuTLBwcF89913NGrUCJlMRoUKFRRmRy1KTU2N7du3M3r0aAICAlBXV6dVq1YKganAwEA2bdrEjBkz+PnnnzE2NpZnchWnrq7Otm3bGDJkCLVr18bV1ZUFCxbQqshA7x07duSLL75g1KhR5OTk0LZtWyZPnszUqVPlZXr06EFERAQTJ04kOzubLl268Pnnn5c6uYGzszNbtmzhiy++YOHChdSuXZtZs2YxePDgN35/XvDw8JDP1JqYmEibNm0UJkMYOnQo+vr6zJ49mwkTJmBgYIC/v7/CRAqqfPnll8TGxjJw4EDU1dUZPHgwnTp1kg98qcry5csZOnQojRs3xsbGhpkzZzJ58mT581WrVmXevHn88ssvfPPNNwQEBPDTTz8pZBmq0rdvXyZOnMidO3cUZsUpSktLi40bN9KrVy95QG7EiBF4eXkxZ84cOnXqRFZWFq6urrRr147x48ezc+dOEhIS6NSpk9L6PD098ff3Z+nSpfzwww+4uroybdo0oqKiUFNTk///xRdfyOvs2LEDZ2dnGjVqVOr2vI1aAfXISE1nz7qtpCQmY+/iyKhpE7CwLjhpT0lMJvFZgrz8yf1HkObns+7v5az7e7l8eb1mAQwcX5DdYG5lwdgZk9i05D+mj5yEqYUZTTu0olXXDmXa9gE9e5KTk8PP8+eTlpZGJV9f/pw9WyGDLu7pU4Xuf1UqVeLHH37g76VLWbRsGY729vz0ww8KXWABzl+6RNyTJ3QoNiHLCyfOnGFakQlTvp0xA4BhAwbwWZGbBq/Dr+7/sXfX0VEdbQCHf3F39wRCgrsEJ1AI7m5toUILpZQKbanQUqgipbSUUtydFnd3AsESgoYEiBF33e+PwIbNbpDGgO99ztlzkrszd9/Zvbv37uw7M/VIT0njyMadpCYmY+fqxMCP38LCtqBzLzUxmaT7z/alKXDPUfJy81g/a5HK9pa9Amglq84Vq6l/C1KTk9mwbDWJ8Qm4errzydQvsXMo6BxIjI8nLkZ1wv3PRxX+GHHr6g2O7TuErYMds5bPA6DX0P5oaWmxduFy4u/HY25hTv2mjeg/4umzjJ9V5UY1yUxL5+zWg6QnpWLtbE+n94ZgZmMJFAyDTo0v/AzOy83jxLpdpCWmoKuni5WzPR3fG4x7LRnmVVpe7dW74HNr7p+kpKZS08eH2ZO+Ucmgi4qNRfuRKRpi4+MZMn6c8v+lmzaydNNG6teoyV9TCn6sqVGlCr98+jmzly7h7zWrcXZw4MORb9CpdZtSjb9yoxpkpaVzdush5THVcczgR46pVNIeOaby8/I4uW638piydLYjYMwg3GtVKeYRni9V7TyY3avwvT22RUEn4raQ40zZV/yPes+bF6kdNZvWJyMljYMbdpKamIS9mxNDJoxSZnz/l3OheDqXom5irGdIG+/6mBkYE50Sz9LA7SRlFkx3YGpgjIVR4TQH2Xm5LDqzlS7VmjOqWW8ysjO5FHWTPddOK8vo6ejSrXoLzA1NyMnL5X5aIusu7ONS1M0yaUO9Fo1JT0ll95rNJCck4eTuwhsT38favmDuyuSERBLvF05XoshXsG3ZeuJj7qOto4ONgx1dhvbB70HnHcCxHfvJy81l8c9zVB6rQ//uBAzsUSbtEOJxtBRPM2mVEOKFMmnSJDZt2kRQUFBFh1LmPvnkE5KSkpg7d25Fh1Ksxo0bM27cOAYPHvzMdQ9cDyyDiMpXG+8GpNy7V9FhlIiZszNLTm+r6DBKbHijzhUdQqkIjAip6BBKrIFbNaYdXFnRYZTYh60HVXQIpSIlJLSiQygxs2q+/HJg+ZMLPsc+ajOE5r+/+Cv8Hh3950vTjhVni/9R+UUwuH5ARYdQar7c8VdFh1Aikzu+xZbLRyo6jBLrWqNFRYfwnyQfKr25R0ubeatmFR1ChSjdWYaFEKKcTZw4EQ8PD/Ly8io6FI1iYmLo27cvgwa9HF9YhRBCCCGEEC8YRf7ze/s/JcNUhRAvNAsLCz7//POKDqNY9vb2GucqFEIIIYQQQgjx/0ky44R4CU2aNOn/YoiqEEIIIYQQQgjxopHMOCGEEEIIIYQQQoiXlSwV8NyRzDghhBBCCCGEEEIIIcqJdMYJIYQQQgghhBBCCFFOZJiqEEIIIYQQQgghxMsqX4apPm8kM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4WSnyKzoCUYRkxgkhhBBCCCGEEEIIUU6kM04IIYQQQgghhBBCiHIiw1SFEEIIIYQQQgghXlb5sprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLyuFDFN93khmnBBCCCGEEEIIIYQQ5URLoZAuUiGEEEIIIYQQQoiXUfLOvRUdQrHMA9pVdAgVQoapCiHEcywk6mZFh1Bi1RwrkTRvcUWHUSIWb77K9diIig6jxLzt3Co6hFKx/9qZig6hxPyrNOSXA8srOowS+6jNkIoOoVSsOLuzokMoscH1A5h/cnNFh1EiI5t0o/nvoyo6jBI7OvrPl6Ydvx1ZW9FhlMh7LfpVdAilZtrBlRUdQol82HoQkUmxFR1GiTlZ2FV0CP+N5GA9d2SYqhBCCCGEEEIIIYQQ5UQ644QQQgghhBBCCCGEKCcyTFUIIYQQQgghhBDiZZWfX9ERiCIkM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4Wckw1eeOZMYJIYQQQgghhBBCCFFOpDNOCCGEEEIIIYQQQohyIsNUhRBCCCGEEEIIIV5W+TJM9XkjmXFCCCGEEEIIIYQQQpQT6YwTQgghhBBCCCGEEKKcyDBVIYQQQgghhBBCiJeVIr+iIxBFSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVYhStGjRIhwcHOjUqVNFhyKEEEIIIYQQQshqqs8h6Yz7P+Lp6cm4ceMYN25cue1PS0uLjRs30rNnz//8OJMmTWLTpk0EBQU9dZ0DBw7g7+9PQkIClpaW//mxn8WGDRv46aefOHr06H+q/9prr5GYmMimTZsAaNOmDXXr1mXmzJnF1imN1/TR1ygsLAwvLy/OnTtH3bp1//M+n0ZpHY/79u3j3XffJTg4GG3t5y/ZNyYmhho1ahAUFISLi0uZPta2jVvYtGodCfHxuHl6MHLM29SoU1Nj2fi4eBb+Po8bV68ReeceXfp05433RqmUOX7oKOuWrSby7j3ycnNxcnWhR//e+Ae0K9N2FKVQKJh37DCbLgSRkpVJDUdnPn4lgMq2dsXW2XLpAt/u2KK2/fC4TzDQLf1T35YN/7Bh5Vri4+Jw9/TkrfffpWadWsWWv3juPPN++5PwsDCsbWzoO2QAnXt2U96fm5vLmqUr2bt9F3H37+Pq5sZr77xBQ7/GyjKv9x1CTFS02r679OrOux+OLd0GvsAObN3N7g1bSYpPxNndhX5vDqNKzaoay547dpqD2/Zw5+ZtcnNycHJ3pevgPtRoUFulXHpqGv8sXcO5Y2dIT03D1sGOPiOHUKtR3TJrR/CB05zfdZyMpBSsnO3x698BpyoeGsveCw1j6/Qlatv7ffMulo62AFw9FsTBxf+qlXl99ufo6snl4bM6veswx7bsJSUxGXtXRwKG98GjauUn1gsPvcmib2dh7+bEqB8mlEOkhc7tOcqpbQdITUrB1sWBtkN64OZb6Yn17ly9xcqpc7BzdeS178Yrt188fJrt81arlR//9/fo6uuVauzPqo6TN4PrdaCqvTu2JpZ8um0Oh2+dr9CY/ovnvR0X953k7M7DpCemYu1iT8uBnXH28dRY9s6Vm2z6eYHa9iHfvY+VU8H5Pe5uNCc37SX29j1S4hJpMbAzdds3K8smvDQuHzjFhZ3HSH9wzmg6oONjzhm32DJtsdr2/t+MxtJJ/Vrr+qmL7Pt7PR51fAkYPajUYt60bgOrlq4kLi4Or0qejPngfWrXq1Ns+aCz5/hj5m/cuhmGra0NA4cNoUefnsr7D+0/yLKFS7h75y55ubm4uLkyYMhAOnTuqCyTm5vLonkL2LNjN/HxcdjY2NCxa2eGjXj1ufxeIV4ucrX1AujWrRsZGRns2bNH7b7jx4/TrFkzAgMDqV+/frnGdfr0aUxMTMr1MZ9XN2/e5IsvvmD79u1YWVmVyj43bNiAnl75Xry6ubkRGRmJra1tmT9WaR0/n3zyCRMnTlSeMBctWsS4ceNITExUlgkJCaF9+/Y0btyYlStXYmBgwP79+/n55585efIkGRkZeHp60qlTJ8aPH6/Waebr68utW7e4deuW2n03b95k4sSJHDx4kPj4eGxtbWnQoAE///wzPj4+2NvbM2zYML7++mv+/vvvEre3OEf2HWTB7Lm8/cFoqtaszs7N25g84Ut+WzwXOwd7tfI52TlYWFrQb+hA/l27UeM+Tc3M6Dd0AC7ubujq6XLm+Cl++3E6llaW1GvcoMzaUtSSUydYGXiKrzp2xd3KmgUnjvLe2pWsHfk2JvoGxdYz0Tdg7ci3VbaVRUfcob37mTdrDu9+OJZqtWqw45+tfP3RZ8xZOh97Rwe18lH3Ivn644l07NaZj776lJCLl/lj2iwsLC1o3qYVAEv+WsiBXXt4b8J4XN3dOHvqDFM+n8Qvf/5KZZ8qAMyc9zt5+YWT8d6+eYsvPphAC/9Wpd7GF9WZQ8dZO28pg955ncrVfTi8fR+zJ/3E13/8hLW9+ufctUtXqFa3Jj2H98fIxITjew7yx+RfmDDtW9wrewKQm5PLr1/+gJmFOW99NhYrW2sSYuMxNDIss3bcOH2Z42t20nxwZxwqu3Hl0Fl2/LaCfpPexdTaoth6/b4djb5h4XvE0MxY5X49QwP6fztaZZt0xD27S8fPsmPJBrqM6IebbyUC9xxl+Q9zGP3L51jYWhdbLzM9g01/LKVSTR9Sk1LKMWIIORHE3uX/0v7V3rhW8SRo/wnW/fI3I7//GHPb4q9jstIz2PbXKjyqe5OenKp2v76RIW/8+InKtoruiAMw0jPgetwdtl05xtROo55c4Tn1PLfj2qmLHF61jdZDu+Hk7c7lg6fZPHMJgyePxczGsth6Q6aMQ9+o8HPKyKzw2jA3OwcLO2u8G9bkyOptZRn+S+XG6UscX72DFoO74ODtTsihM2yftYz+k0Zj+pjXov/kMUXOGerX6SlxiZxctwvHKu6lGvO+3XuZPX0W4z75kFp1avHvxn/4ZNxHLF69FAdHR7XykXfv8em4j+nSsxsTv/mKi+cvMvOnaVhaWdK6bRsAzMzNGPb6cNw9PdDV0+P4kaP8MPl7LK2saNy0CQArlyzn3w3/8NnXE/Gs5EVoyBV+nDwVE1MT+g7sX6ptFKIo6e59AYwcOZJ9+/Zx+/ZttfsWLFhA3bp1y70jDsDOzg5jY+MnF/w/UKlSJYKDg/Hw0PyL06NycnKeap/W1taYmZmVNLRnoqOjg6OjI7pl0GFRVGkcP8eOHePatWv069ev2DKnT5+mZcuWBAQEsHbtWgwMDJg7dy6vvPIKjo6OrF+/nuDgYP7880+SkpKYNm2aSv0jR46QmZlJv379WLRokcp92dnZtG/fnuTkZDZs2EBoaCirV6+mZs2aJCUlKcu9/vrrLF++nISEhBK193H+WbORVzp3oH3Xjrh5uvPGe6OwtbNjxz9bNZZ3cHLgjbGj8O/4CsammjtFa9WrjV+r5rh5uuPk4ky3vj3xrORF8MXLZdaOohQKBavOnuK1Js3x96lKZTt7vu7UjczcHHaGPD4OLS2wNTFVuZWFjavW06FrRwK6dcbd04O33n8XW3t7tm3arLH8tk1bsHOw563338Xd04OAbp1p36UjG1auVZbZv3MP/YcNplHTJji5ONOlV3fqN2nIhlXrlGUsrCyxtrFW3k4fO4mTizO1HvMr8v+bPZu207x9G1oE+OPk5kL/t4ZhZWvDwW3qP24B9H9rGAF9u+HpUxkHF0d6vjoAe2dHLp46qyxzbPcB0lJSeeeLD/Cu7ouNvR3eNXxxrfTkz///6uKe4/g2r0fVFvWxcrKj6YAATK0sCD545rH1jMxMMLYwVd6K/sqvpYXK/cYWZfMeedmd2Lqfev5+1G/bDDsXRzq+2gcLGytO7z7y2Hpb/l5NzeYNca3iWT6BPuLMjoPUbt2YOm2aYOPiQLuhPTCztuTcvuOPrbdz4Xqq+dXD2Vvz8a6lBaaW5iq358GJ8MvMO/kvB28GVXQoJfI8tyNo11Gqt2xAjVYNsXa2p+WgLphaW3DxwKnH1jM2N8HEwkx5e/RzysHLleb9O+LTpDY65XBt+rK4sPs4vi3qU7VlA6yc7Gg2oNMznDPMlLei54z8/Hz2/b2eBt39H9tp/1+sXbGKzt270rVnNzy8PHlv/PvYO9jzz/pNGsv/u2ET9o4OvDf+fTy8POnasxudunVh9bKVyjL1GtSnpX9rPLw8cXF1oe/A/lT2rszF8xeUZS5fvEyLVi1o2qIZTs5OtGnnT6MmjQkNCS3V9j0XFIrn9/Z/SjrjXgBdu3bF3t5erSMgPT2d1atXM3LkSKCgY6JVq1YYGRnh5ubG2LFjSUtLK3a/4eHh9OjRA1NTU8zNzenfvz/R0apDnv79918aNmyIoaEhtra29O7dW3mfp6enyhDKa9eu0apVKwwNDalevTq7d+9We8wJEybg4+ODsbExlSpV4ssvv1TrnPrhhx9wcHDAzMyMkSNHkpmZ+cTnaNu2bfj4+GBkZIS/vz9hYWFqZZ71+Zk0aRJ169Zl7ty5uLm5YWxsTL9+/VQyrgAWLlxItWrVMDQ0pGrVqvzxxx/K+8LCwtDS0mLNmjW0adMGQ0NDli1bRl5eHuPHj8fS0hIbGxs++eQTFEU+iNq0aaMyhDMmJoZu3bphZGSEl5cXy5cvV4t5+vTp1KpVCxMTE9zc3Hj33XdJTVX/5bo4D+N9OCT4wIEDaGlpsXPnTurVq4eRkRFt27YlJiaG7du3U61aNczNzRk0aBDp6ekqsY8ZM4YxY8Yo2/jFF1+otLHo8fNfYl+1ahUdOnTA0FBzRsq+ffto27Ytr7/+OvPnz0dHR4c7d+4wduxYxo4dy4IFC2jTpg2enp60atWKv//+m6+++kplH/Pnz2fw4MEMGzaMBQsWqLQhODiYmzdv8scff+Dn54eHhwfNmzdnypQpNGrUSFmuVq1aODo6snGj5gy0ksrJyeHG1WvUbaTaKV+3UX2uXAoulcdQKBScDzzH3Yg71KiteehrWbiXlEhcWhp+nl7Kbfq6utR3defC3buPrZuRnU33ubPp+udvfLBhDaHRUaUeX05ODtevXqVeo4Yq2+s3akBIMc/9lcvB1G+kmllYv3FDrl25Sm5u7oP9ZqNnoK9SRl/fgOALl4qNY/+uPbTv0hEtLa3/2pyXSm5OLuHXb1Gtnupw4Wr1anHzyrWn2kd+fj6ZGZkYmxZ2Up0/eZZKVauwcs4iPh76Dt++O4Hta/4hPy//MXv67/Jy87gfHolLddUhjy7VKxF9I+KxdTd89xfLPp7O1ulLuBd6S+3+nKxsVn72KysmzGDH7JXcD48s1dj/H+Tl5nLvVgSVa6sOfa5Uuyp3rqo/5w+dO3CChOj7tOnTsdgyZSUvN5eosLt41vRR2e5Vy4e718KKrXfx0CkSY+7TvFf7YstkZ2bz5wff8cf7k1k3bT7RYY//nBYvh7zcXGJu38OthrfKdrfq3kRdD39s3VXf/M6C8T+w6ecF3LlysyzD/L+Ql5vL/fB7uBY5Z7hWr/zkc8bkuSz96Be2TF/MvSvqn19ntxzEyMyEqi1KNwkkJyeH0CtXadSkkcr2Rk0acbmY657LFy+rlW/s15jQkCvKa6lHKRQKAk+dIeJ2OHXq1VVur1W3FoFnAom4XXCcXr96jYvnL+DXzK+ErRLiyaQz7gWgq6vL8OHDWbRokUpHwNq1a8nOzmbIkCFcvHiRgIAAevfuzYULF1i9ejVHjhxhzJgxGvepUCjo2bMn8fHxHDx4kN27d3Pjxg0GDBigLLN161Z69+5Nly5dOHfuHHv37qVhw4Ya95efn0/v3r3R0dHhxIkT/Pnnn0yYoD73iZmZGYsWLSI4OJhff/2VefPmMWPGDOX9a9as4euvv2bKlCmcOXMGJycnlc4tTSIiIujduzedO3cmKCiIN954g08//VSlzLM+Pw9dv36dNWvWsHnzZnbs2EFQUBCjRxcO6Zk3bx4TJ05kypQphISEMHXqVL788ksWL1add2HChAmMHTuWkJAQAgICmDZtGgsWLGD+/PkcOXKE+Pj4J3bUvPbaa4SFhbFv3z7WrVvHH3/8QUxMjEoZbW1tZs2axaVLl1i8eDH79u3jk08+KWaPT2/SpEnMnj2bY8eOERERQf/+/Zk5cyYrVqxg69at7N69m99++02lzuLFi9HV1eXkyZPMmjWLGTNmPHaY5n+J/dChQ8Uekxs3bqRLly5MnDiRn3/+Wbn94fumuH0/OsdgSkoKa9euZejQobRv3560tDQOHDigvN/Ozg5tbW3WrVtHXl7eY2Nt3Lgxhw8ffmyZ/yolKZn8vHwsrVV/pbSwsiQhvmTZeGmpaQzs2Iu+7brx3adf8+bYd9Q6/cpS3IMOc+siQ5qtTUyISy++s9bD2oavOnXjl179mNy1BwY6OryxcgnhCfGlGl9yUpLG597S2oqEOM2PlRAXr7F8Xl4eyYkFGZX1Gzdk06p13I24Q35+PudOB3LyyDHii9nniUNHSU1N5ZXOHUqhVS+H1OQU8vPzMbdSHcZpbmVBckJSMbVU7dm4jezMLBq0bKLcdj86hrNHT5Gfn8+YSZ/QaUBP9mzcxvY1m0ozfKXM1HQU+QqMzVXfA0ZmJmQka/5BydjClJZDu9J+VD/aj+qHhaMtW2csJfJqYYa9haMtrV/tQYd3B+D/Rm909XT596eFJEXHlUk7XlbpyWko8vMxtVDNZDe1MCt26GlcZAx7V26m95jhaOvolEeYKtJTCmI2KRKzsbkZacXEHB8Vy8E12+g6akixMds42dP5zQH0/mAE3d4dgq6+Lsu/m018VGypt0E8XzJS0lHk52Nsrppda2xhQnqS5nO1iaUZ/sN70OndwXR6dzCWjrZs+mUhdzX8cCCe3sNzhlHRc4a5icah5QDGFma0HNaN9qP60+GdAVg62LBlxmIir4Ypy0RdDyf0yFlaDeumcR8lkZSYRH5eHlY2qsP6raytiY/TfE6Kj4vDyrpIeRtr8vLySHokcSI1NZWOrdvzSrM2fDr+E8Z+NI6Gj3TiDR4+lHYdXmF4/yG0a9qaN4eNoO/A/rQLKP5HByFKi+T7viBGjBjBzz//rFyYAAqGqPbu3RsrKyvef/99Bg8erMykqlKlCrNmzaJ169bMmTNHLXNoz549XLhwgVu3buHm5gbA0qVLqVGjBqdPn6ZRo0ZMmTKFgQMH8s033yjr1amjefjTnj17CAkJISwsDFdXVwCmTp2qtqroF198ofzb09OTDz/8kNWrVys7RmbOnMmIESN44403APjuu+/Ys2fPY7Pj5syZQ6VKlZgxYwZaWlr4+vpy8eJFfvzxR2WZn3/++Zmen4cyMzNZvHixsk2//fYbXbp0Ydq0aTg6OjJ58mSmTZumzBj08vIiODiYuXPn8uqrryr3M27cOJWswpkzZ/LZZ5/Rp08fAP7880927txZbBuvXr3K9u3bOXHiBE2aFHwpnD9/PtWqVVMp92gmnZeXF5MnT+add955Yofmk3z33Xc0b94cKBg2/dlnn3Hjxg0qVSqY6Llv377s379fpQPWzc1N7TWZMWMGb775psbH+C+xh4WF4ezsrLY9NTWVfv368fnnn6t1zF67dg1zc3OcnJye2O5Vq1ZRpUoVatSoAcDAgQOZP3++8j3o4uLCrFmz+OSTT/jmm29o2LAh/v7+DBkyRPncPOTi4sK5c+eKfaysrCyysrJUthkYFD8fmmZFM6IUJc6SMjI2Ysbfv5ORkcGFs0Es+GMeDs5O1KpX+8mV/4MdwZf4fvd25f8zehfM16FVpG0Khfq2R9VydqGWc+H8fnVc3Bi2ZD5rzp7ho3al32FV9HlWKB7/3Kvd9fCHlgd3vP3+aGb9NJ1RQ0aAFjg5O/NK5wD2bNP8ObFr63YaNmmMTTnM9/iiUT92FOpvFQ1OHzzGlhUbeOfL8ZhbFnboKfIVmFmaM3TMG2jraOPh7UVSfAK7Nmyly6Dej9lj+bF0tFUu1ADgUNmNtPgkLuw+jpNPwfBCh0quOFRyVZZxrOzOhil/cXn/aZoNLP9srRff0x1n+fn5bJi9hDZ9O2HjpD6fZ8VSqH82URDzljnLad67A9YaJnN/yNnbQ2X4qmsVTxZ/NZOzu4/yyrCeZRCveO4pKPbz1srRDivHwuPJydud1IQkzu08iouvl+ZK4qlpum4qjqZzRmpCMud3HcPJx5PszCz2z99Ay2HdNc4jV1o0n68fdy2lofyDPT1kbGzM38sWkpGRwdnTZ/h95mycXJyp16Dgh+V9u/eye/suvpj8NV6VvLh+9Rqzp8/CxtaWjl1Vv8e+8P6Ph4M+r6Qz7gVRtWpVmjVrxoIFC/D39+fGjRscPnyYXbt2ARAYGMj169dVhi4qFAry8/O5deuWWqdNSEgIbm5uyo44gOrVq2NpaUlISAiNGjUiKCio2I6TokJCQnB3d1d2WgE0bdpUrdy6deuYOXMm169fJzU1ldzcXMzNzVX2M2qU6oS0TZs2Zf/+/Y99bD8/P5UP5KKP/azPz0Oa2pSfn09oaCg6OjpEREQwcuRIlecpNzcXCwvVTIxHs7eSkpKIjIxUiVFXV5eGDRuqDVV9tI0PyzxUtWpVtZVi9+/fz9SpUwkODiY5OZnc3FwyMzNJS0sr0WIJtWsXdrw4ODgohxk/uu3UKdU5QTS9JtOmTSMvLw8dDb+q/5fYMzIyNHakGhkZ0aJFC+bNm8egQYNUXt8ndZI8av78+QwdOlT5/9ChQ2nVqhWJiYnK53706NEMHz6c/fv3c/LkSdauXcvUqVP5999/ad++8Fc1IyMjlaG8RX3//fcqHd8AX3/9NQNGDX9inGYW5mjraJMYr5o1lZSQhKWV5VO0tHja2to4uRZ0eFaqUpk7tyNYv3x1mXXGtfSuQg2nwg7W7AcZh3Fpqdg+MlQwIT0Na+OnP6a1tbSo7uhMRClnxplbWKCto62WBZeUkKiW/faQlY01CXGqGYuJCYno6OhgblHweWhhZcmX339LdlY2ycnJ2NjasHDO3zg4qU9iHBMVTdCZc3w+5etSatXLwdS8YL6bpIREle0pickqnWuanDl0nCWz5vHWp2OpVld1WLaFtSU6Ojpo6xQOLnB0cyY5IZHcnNxSXwDB0NQYLW0t0otkwWWkpKllPjyOfSVXrp+8WOz9Wtpa2Hk6kxQjmXHPwtjcBC1tbVKTklW2pyWnYmquPu9rdkYm926GExl2h22LCuaAVDyYM+fbIeMY9tm7eBUZPlrqMZsVxFw0Cy49ORVjjTFnEXXrDtG377FnySaVmH9+7RP6f/ImHtWrqNXT0tbG0cuNhGjJjHvZGZkZo6WtrZZ5lZ6cppYt9ziOldwIPfH8rA77Iio8Z6i+Fpkpz/Za2Hu5cv1kwdxqybHxpMQlsvP3Fcr7H35nmTfqGwZ8+x7m9sUvVvMkFpYWaOvoqGXBJSYkYG2teb/WNjbq5eMT0NHRweKRc7y2tjaubgXf5ar4VOH2rdusWLRM2Rn356w/GPzqENp1eAWASt6ViYqMYvnipS9fZ5x47khn3Atk5MiRjBkzht9//52FCxfi4eFBu3btgIJfLd9++23Gjh2rVs/dXX21m+I6JB7dbmRk9NSxaepEKrr/EydOKDPtAgICsLCwYNWqVWoT5j+r4jqwHvWsz09xHrZJS0uL/AerGM6bN0+ZrfZQ0c6mkq4a+rCNj+tEun37Np07d2bUqFFMnjwZa2trjhw5wsiRI5960YjiPLqqq5aWltoqr48+H//Ff43d1tZW46IIOjo6bNq0iT59+uDv78++ffuoXr06AD4+PsoO0cdlxwUHB3Py5ElOnz6tkvGXl5fHypUreeedd5TbzMzM6N69O927d+e7774jICCA7777TqUzLj4+Hju74jMKPvvsM8aPH6+yzcDAgJsJT55vR09Pj8o+VQg6cw6/Vs2V24POnKVJC/VO8ZJQKBQlPp4ex0TfQGWFVIVCgY2JCSdv38LXoaAjKicvj7N3whnTyv+p96tQKLgaE433Y16D/0JPTw9vHx/OnQ6kWesWyu3nzgTi16KZxjpVa1Tn1DHVSdLPnT5Dlao+aoun6BvoY2tnS25uLscOHqZl29Zq+9u9dQcWVpY0birzmzxKV08Xd28vQoIuUa9Z4ZCUkKCL1GlS/GrApw8eY8mvfzHy4zHUalRP7f7K1Xw4dfAY+fn5ysmto+9GYWFtWSYrkero6mDr7sTdkJt41Sucl+xuyE086vg+9X7iIqIweswCDQqFgriIaKxdnrdsreebjq4uzl5u3LwQSrVGhaMHbl68gm+DWmrlDYwMeecn1Yzt07uOcCv4Kv3HjcDSzqZcYnb0dCHs0lV8GhbGGHbpKt711ecENTAy4PWpH6psO7fnGOEh1+nx3nAs7DR/WVYoFMSE38XO9cmZ6OLFpqOri72HMxGXr1O5fnXl9ojg63jV0/yDtyax4ZGykEwJ6ejqYuvuzN3gGyrP/Z2QG3jWqfqYmqriIgpfC0tHW/p+/Y7K/ac37SMnK5tmAzpiYl2yhVr09PTwrerDmVOnaelfeJ1z5tQZmrdqobFOjVo1OHbkmGpMJ0/jW63q4xeiUyjIzslW/puVmYm2lurMXTo6OihK8L1GiKclc8a9QPr374+Ojg4rVqxg8eLFvP7668rOmfr163P58mW8vb3Vbvr6+mr7ql69OuHh4UREFE7kGRwcTFJSkjKLqHbt2uzdu/epYnu4v3v37im3HT+u+mXz6NGjeHh4MHHiRBo2bEiVKlXUVoitVq0aJ06cUNlW9H9Nj/2kOs/6/DykqU3a2tr4+Pjg4OCAi4sLN2/eVNunl1fx6fUWFhY4OTmpxJibm0tgYGCxdapVq0Zubi5nzhSughQaGqqymMSZM2fIzc1l2rRp+Pn54ePjoxJ7edP0mlSpUkVjVtx/jb1evXoEB2ueJN/AwIANGzbQuHFj/P39uXSpYALYvn37oq+vz08//aSx3sPndP78+bRq1Yrz588TFBSkvH3yySfMnz+/2Ji0tLSoWrWq2uIgly5dol499S/2j8Zrbm6ucnuWYao9+vdiz9ad7Nm6k4iwcObPnsv9mFgCuncGYOlfC5k55ReVOjev3eDmtRtkZmSSnJjEzWs3iAgrfE+uW7aaoNNniboXyZ3bEfyzegMHdu6lTfu2Tx1XSWlpaTGwfmMWnTzG/muh3IiN4ZvtmzHU1SOgWg1lua+3/cvvhwozaOcdO8zxWze5m5jA1Zhovtu5laux0fSuU/rz3fUa2IddW7aza8t2wsNu89esP4iNjqFzz4J5VRb9+TfTJv+gLN+5Z1diomKY99scwsNuP6i7g96DClcFvnI5hKMHDxN59x6Xzl/kqw8/Iz8/nz6DB6g8dn5+Pru37aRdx/bo6Jb/3FPPu1d6duLorv0c3XWAyIi7rJm3lITYOFp1Lvgha+OiVSycNkdZ/vTBYyyc/id9Rg7Bq6o3SQmJJCUkkpFWmNXaqvMrpKWksuavpUTfjeTi6XPsWPsPrbuU3fwytV5pSuiRs4QePUdCZCzH1+wkNT6Jaq0KOhVPbdzL/oWblOUv7jlBWNAVkqLjiL8Xw6mNe7l1NoQabQo7JQM3HyTi8nWSYxOIi4ji0JLNxEVEKfcpnp5fF3/O7j/Ouf3Hib0bxY4lG0i6n0DDVwq+RO5Z+S8b/1gKFGSL2bs5q9xMLEzR1dPD3s0ZfcNnnZ7gv2nYsTUXDp7iwsFTxN2NZu/yf0iOS6Ru24JO/YNrtrF17kplzHauTio3Y/OCmO1cndB/cK46unEXty6EkhgTR/Ttu+z4ew0x4feo27Z0fxT6L4z0DKhi60oV24IMGWdzW6rYuuJgWrorQpa157kddTs0J/hwIMGHA4m/F8PhVdtIjU+iZuuCz51j63ex++/CFcGDdh/j5tlgEqPvE3c3mmPrd3Ej8DK12xb+sJSXm0tseCSx4ZHk5eaRlpBMbHgkiTK35WPVbt+UK0fOcuXIWRIiYzm2ekfBOaN1wQibUxv2sH/BBmX5i3uOE3YupPCcsWFPwTnDvzEAunp6WLs4qNwMjA3RM9DH2sWhVFa67Td4IFv/2cK2f7dw+1YYs6fPIjoqmu69ewLw1+9/MvXrycry3Xv3JDoyit9n/MbtW2Fs+7eg7oChg5Rlli9aypmTp7l39y63w26zZvkqdm7bQfuOAcoyTVs2Z+miJRw/cozIe5Ec3n+QNStW07JNqxK3SYgnkcy4F4ipqSkDBgzg888/Jykpiddee01534QJE/Dz82P06NG8+eabmJiYEBISonFifYBXXnmF2rVrM2TIEGbOnElubi7vvvsurVu3Vg6F/Prrr2nXrh2VK1dm4MCB5Obmsn37do0T37/yyiv4+voyfPhwpk2bRnJyMhMnTlQp4+3tTXh4OKtWraJRo0Zs3bpVbdGC999/n1dffZWGDRvSokULli9fzuXLl9Xm33rUqFGjmDZtGuPHj+ftt98mMDBQbeXZZ31+HjI0NOTVV1/ll19+ITk5mbFjx9K/f38cHQsydCZNmsTYsWMxNzenU6dOZGVlcebMGRISEtSynIq284cffqBKlSpUq1aN6dOnq63S+ihfX186duzIm2++yV9//YWuri7jxo1TyV6sXLkyubm5/Pbbb3Tr1o2jR4/y559/FrvPshYREaF8Tc6ePctvv/1WbBbkf409ICBAbbGMR+nr67N+/Xr69+9P27Zt2bt3L7Vq1WLGjBmMGTOG5ORkhg8fjqenJ3fu3GHJkiWYmpryww8/sHTpUr799ltq1lTNEnjjjTf46aefOH/+PAqFgq+//pphw4ZRvXp19PX1OXjwIAsWLFDJpktPTycwMJCpU6c+5bP37Fq0bU1yUgqrl6wgIS4edy9PvvzxW+wdHQCIj4sntsiCH+PfKFzA5EboNQ7tOYCdoz3zVhc8p1mZmcyd8TtxsffRN9DHxd2ND774mBYasrPK0vDGfmTl5vDTnh2kZGZSw8mZ3/oOVMmgi05ORvuRzNGUrEy+37WNuPQ0TPUN8HFwYO7AoSpDYEtLq3b+JCcls3LRMuLj4vHw8uSbn6eqPvfRhc+9o7MT3/w8hXm/zWHLhn+xsbXh7XGjaf7IhV9OdjZL5y0k6l4kRkZGNPRrzIdfTsDUTDVjIOjMWWKjY+jQRYZSaNKwVVNSU1LZumojyfGJOHu4MmbSx9jYF2RIJiUkEh9b+KXu0PZ95OflsWrOIlbNWaTc7teuJa99UDCFgrWdDe9/+ylr/17K5DGfYWljRdvuHQnoU/qTWj9UuVENstLSObv1EOlJqVg729NxzGDMbCwBSE9KJS2+cFGK/Lw8Tq7bTVpiCrp6ulg62xEwZhDutQqHEmZnZHJk2VbSk1PRNzLAxs2Rbh+9ir2XS9GHF09Qs2l9MlLSOLhhJ6mJSdi7OTFkwigsH2SMpSYmk3S/ZIvplLZqfnXJTE3j2D+7SUtMxtbVkb4fjsTCtiDmtMRkkuOeLebM9Ax2LlxLWlIKBkaG2Hu4MOjzd3Gq/PQjEMpKVTsPZvcqvC4b26Lgx49tIceZsq/464jnzfPcjiqNa5GZms7pzftJS0rBxsWBru8Pw9y2oKMwPTGFlPhEZfn83DyOrt1BakLyg84ee7q+PwzP2oUZv2mJKaz+5nfl/+d2HuHcziM4+3rS+5M3yq1tL5rKjWqSmZbO2a0HleeMTu8NeeSckULqI+eMvNw8TqzbpTxnWDnb0/G9wbjXKtsh849q274dyUlJLJ6/iPj7cXhV9uLHGT/j+GB6jrj7cURHRyvLO7k488PMn/l9xm9sWrcBG1tb3vtwHK3btlGWycjIYMZP04iNicHAwAB3Dw8mfvsVbdu3U5Z5/6MPmD93HjN/mkZCQgK2trZ069WdV994vdzaXm4k2++5o6V4mjF+4rlx/PhxmjVrRocOHdQm/D99+jQTJ07k+PHjKBQKKleurOy8g4IFE8aNG6ecKD88PJz33nuPvXv3oq2tTceOHfntt99wcHBQ7nPDhg1MnjyZ4OBgzM3NadWqFevXr9e4v6tXrzJy5EhOnTqFp6cns2bNomPHjmzcuJGePXsC8Mknn7BgwQKysrLo0qULfn5+TJo0SaUjaurUqcyYMYPMzEz69OmDg4MDO3fuJCgoqNjnZcuWLXzwwQdERETQuHFjXn/9dUaMGEFCQoJybq8nPT9FTZo0iU2bNvH222/z3XffER8fT+fOnfn777+xsir8BXLFihX8/PPPBAcHY2JiQq1atRg3bhy9evUiLCwMLy8vzp07R926dZV1cnNz+eijj1i4cCHa2tqMGDGC+/fvk5SUxKZNmwBo06YNdevWZebMmQBERUXxxhtvsGfPHhwcHPjuu+/48ssvVV6DGTNm8PPPP5OYmEirVq0YMmQIw4cPV3keitLS0lK+RkXjfbhgyKP1Fy1axLhx41Res4fP1cPXqE2bNtSoUYP8/HxWrFiBjo4Ob7/9NlOnTlVmcxY9fv5L7AkJCcqFEXx9fYuNLycnh0GDBnHw4EH27t1L7dq12bNnD7/88gunTp0iIyMDT09Punbtyvjx4zl27Bj9+/fn3r17Ku+Hh2rXrk2bNm346quvmDx5Mvv27SMsLAwtLS08PT159dVX+eCDD5RD2FauXMk333zDlStXNLbjcUKibj5znedNNcdKJM17cb7saGLx5qtcj414csHnnLed25MLvQD2Xzvz5ELPOf8qDfnlwPInF3zOfdRmSEWHUCpWnC1+EaUXxeD6Acw/ubmiwyiRkU260fz3UU8u+Jw7OvrPl6Ydvx1ZW9FhlMh7Lfo9udALYtrBlRUdQol82HoQkUkv/hySThalO+VJeUleu6miQyiWeb+eFR1ChZDOOCGKUbSDSTy9oh2JZemTTz4hKSmJuXPnlvlj/VeNGzdm3LhxDB48+JnrSmfc80E6454v0hn3/JDOuOeHdMY9P6Qz7vkhnXHPD+mMq1jSGff8kTnjhBAvtIkTJ+Lh4UHeg1U3nzcxMTH07duXQYMGPbmwEEIIIYQQQpS2B6tgP5e3/1MyZ5wQ4oVmYWFR7FDj54G9vb3GeRaFEEIIIYQQQvx/ks44IYoxadIkJk2aVNFhvJAOHDhQ0SEIIYQQQgghhBDPJemME0IIIYQQQgghhHhZ/R8PB31eyZxxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVb4MU33eSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVQghhBBCCCGEEOIlpVDkV3QIogjJjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKwUsprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8Gab6vJHMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlREuhkC5SIYQQQgghhBBCiJdR0pJVFR1CsSyGD6zoECqEDFMVQojn2Nzjmyo6hBJ7u2lPIhKiKjqMEnGzcmTAsi8rOowSWz10MsnbdlV0GCVi3rkDH/z7a0WHUWIzur/Pq6smV3QYJbZ44JekJCZWdBglYmZpybSDKys6jBL7sPUgVpzdWdFhlMjg+gEvfBugoB2/HVlb0WGU2Hst+tH891EVHUaJHB39Jz0WTqjoMErsn9d/5J31P1d0GCUyp8/HdJz3QUWHUWI73pxR0SH8N4r8io5AFCHDVIUQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8WSrgeSOZcUIIIYQQQgghhBBClBPpjBNCCCGEEEIIIYQQopzIMFUhhBBCCCGEEEKIl5VChqk+byQzTgghhBBCCCGEEEK8NBISEhg2bBgWFhZYWFgwbNgwEhMTH1vntddeQ0tLS+Xm5+enUiYrK4v33nsPW1tbTExM6N69O3fu3Hnm+KQzTgghhBBCCCGEEEK8NAYPHkxQUBA7duxgx44dBAUFMWzYsCfW69ixI5GRkcrbtm3bVO4fN24cGzduZNWqVRw5coTU1FS6du1KXl7eM8Unw1SFEEIIIYQQQgghXlb/Z6uphoSEsGPHDk6cOEGTJk0AmDdvHk2bNiU0NBRfX99i6xoYGODo6KjxvqSkJObPn8/SpUt55ZVXAFi2bBlubm7s2bOHgICAp45RMuOEEEIIIYQQQgghxEvh+PHjWFhYKDviAPz8/LCwsODYsWOPrXvgwAHs7e3x8fHhzTffJCYmRnlfYGAgOTk5dOjQQbnN2dmZmjVrPnG/RUlmnBBCCCGEEEIIIYQod1lZWWRlZalsMzAwwMDA4D/vMyoqCnt7e7Xt9vb2REVFFVuvU6dO9OvXDw8PD27dusWXX35J27ZtCQwMxMDAgKioKPT19bGyslKp5+Dg8Nj9aiKZcUIIIYQQQgghhBAvK0X+c3v7/vvvlYssPLx9//33GpsxadIktQUWit7OnDkDgJaWlvrToFBo3P7QgAED6NKlCzVr1qRbt25s376dq1evsnXr1sc/vU/YryaSGSeEEEIIIYQQQgghyt1nn33G+PHjVbYVlxU3ZswYBg4c+Nj9eXp6cuHCBaKjo9Xui42NxcHB4aljc3JywsPDg2vXrgHg6OhIdnY2CQkJKtlxMTExNGvW7Kn3C9IZJ4QQQgghhBBCCCEqwLMMSbW1tcXW1vaJ5Zo2bUpSUhKnTp2icePGAJw8eZKkpKRn6jSLi4sjIiICJycnABo0aICenh67d++mf//+AERGRnLp0iV++umnp94vyDBVIYQQQgghhBBCiJdXfv7zeysD1apVo2PHjrz55pucOHGCEydO8Oabb9K1a1eVlVSrVq3Kxo0bAUhNTeWjjz7i+PHjhIWFceDAAbp164atrS29evUCwMLCgpEjR/Lhhx+yd+9ezp07x9ChQ6lVq5ZyddWnJZlxQgghhBBCCCGEEOKlsXz5csaOHatc+bR79+7Mnj1bpUxoaChJSUkA6OjocPHiRZYsWUJiYiJOTk74+/uzevVqzMzMlHVmzJiBrq4u/fv3JyMjg3bt2rFo0SJ0dHSeKT7pjBNCCCGEEEIIIYQQLw1ra2uWLVv22DIKhUL5t5GRETt37nzifg0NDfntt9/47bffShSfDFMVQogH2rRpw7hx4yo6DCGEEEIIIYQoPQrF83v7PyWZcUII8ZII2nucM9sPkpaYgo2LA20Gd8PV1+uJ9e5eC2PN93OxdXFg2ORxyu1rvp/LndCbauW9alel1/jXSyXmf9ZtZO3yVcTFxePp5cm7H4yhVt06xZY/fzaIP3/9nbBbYdjY2jBg6CC69e6hvH/nlu38/N0PavW2HdyF/oOJYYf0HEB0VJRame59ejL24w9KoVXQwacx3aq3wNLIlDuJMSw+s50rsbeLLd/Cszbda7TE0cya9Jwszt+7xtLAHaRmZ6iVbeZRi/db9ud0RAi/HFxRKvEWR6FQMG/ndjYeP0pKRgY13D34pE9/Kj+YxFaTfReCWLR7FxH375Obn4ebrR1D27Slc6PGyjJ/7djGvJ3bVepZm5mx89uppd6G5p618a9cH3NDE6JS4th06RA34+8VW15HW4cAn8Y0cK2KuYExiZmp7L56mlMRwQBoa2nzSpWGNHKrhoWhKTGpCWwJPvrY17c0tPVuQOeqTbEwMuNeUizLz+3kamyExrJvNOlOSy/199HdpFg+3/4nADpa2nSt3pwWXrWxNDInKjmONef3cjHqRpm2Q6FQ8Nfff7Nx0yZSUlKoUaMGEz7+mMqVKj223t59+/hz7lzu3L2Lq4sL777zDv5t2ijvP3vuHEuXLSPkyhXu37/PLz/9RJvWrcukDZcPnOLCzmOkJ6Vg5WxP0wEdcariobHsvdBbbJm2WG17/29GY+lkB8Cts8Gc236Y5Jh48vPysbC3plb7Zvg0Lf6zsCyc3nWYY1v2kpKYjL2rIwHD++BRtfIT64WH3mTRt7Owd3Ni1A8TyiHSx3sR23Fx30nO7jxMemIq1i72tBzYGWcfT41l71y5yaafF6htH/Ld+1g9OKbi7kZzctNeYm/fIyUukRYDO1O3/bOt8ldW6jh5M7heB6rau2NrYsmn2+Zw+Nb5ig5LqVNVP3rVbI2VkRnhidHMP7WZ4OiwYsu3rlSXXrVa42xuS1p2JufuXmXh6a2kZKUDBZ+1fWv74+/dABtjc+4mx7L4zHbO3b1apu1oVaku7X0aYWFoSmTyfdae38f1uLsayw5v0ImmnjXVtt9Lvs/k3QsBqOtchY5V/bAzsURHW5uY1ET2XDvNqfDgMmtD12rN6VvHH2sjc24nRPHniU1cjlK/Ln2oW/XmdKveEgczK2JTE1kZtJu9184o7+/o68crPo3wsHIE4Pr9Oyw8vZWrseFl1gYhHkc644QQL4zs7Gz09fUrOozHysnJQU9Pr9wfN/TkeQ6s2Ey74T1xruLBhf0n2Th9Aa9OHY+5jVWx9bLSM9jx12rcq1cmPSlV5b5u7w0jPzdP+X9GWhpLv/wVn0a1SiXm/bv3MWfmbMZ+/AE1atdk66bNfPbBBOavXIyDo/qS45H3Ipk4fgKde3Tl00kTuXzhErN+noGFpSWt2hZ+6TY2MWHRmqUqdfUfWaHp94Vzyc8vbNetG7eYMPZDWrVtUyrtaupRk1cbdGL+6S2ExoTzSpWGfNZ2GOM3/0ZcepJaeV87d0Y368PiwO0E3rmCtbE5bzbpztt+PZl2aKVKWVsTC4bWDyDkMV8MStOSfXtYcWA/Xw0egrudPQt272TMn7NZ99mXmBgaaqxjYWzC6+0D8HRwQE9Hh8OXL/PtquVYmZnRtGo1ZblKjk78/s4Y5f862lqlHn9d5yr0rNmKdRf2cyv+Hs08avGWXw9+2L+MxIwUjXVebdAJMwNjVgftITYtETMDY7S1CgcSdK7alAauVVlzfi8xqfH42nvweuOuzDq8hrvJsaXeBoDGbtUZUi+AJYHbuHr/Dv6V6/Nhq8F8tn0O8enJauWXn93J2vN7lf9ra2nzXce3lB2KAH1q+9PMoyYLTm8lMvk+tZwqM7ZFPybvWUR4onpndWlZvHQpK1as4OuvvsLd3Z35CxYw+r33WL9mDSYmJhrrXLh4kc+/+IJRb72Ff5s27D9wgE8//5z5f/1FzZoFXyAzMjKoUqUK3bp25ZNPPy2z+G+cvsTx1TtoMbgLDt7uhBw6w/ZZy+g/aTSmNpbF1us/eQz6hoWfQ4ZmhW01MDGiXudWWDraoqOjw+2LVzm4eBNG5ia41fAus7Y86tLxs+xYsoEuI/rh5luJwD1HWf7DHEb/8jkWttbF1stMz2DTH0upVNOH1CTN76ny9CK249qpixxetY3WQ7vh5O3O5YOn2TxzCYMnj8XsMcfUkCnj0DcqPKaMHjmmcrNzsLCzxrthTY6s3laW4T8zIz0DrsfdYduVY0ztNKqiw1HRwqs2Ixt3Y+7xTYTE3CbAtwlftR/BmI3TuZ+WqFa+mr0n77ccwIJTmzkVEYKNsQXvNOvFmOZ9+H5fwXXIkAYBtKlUj9+PredOYiz1XHz4rO1wJmz9g1uP+WGoJBq4+tKvTltWndvNjbi7tPSqw+gWffl21wISNJz71pzfy6ZLh5T/a2trMbHda5y9E6rclpadyfYrJ4hOiSM3P59aTpUY3qATKVnpZXJN0qpSXd5u2pPfj67jcvQtOldtxncd3+KttT8Qq+G16FKtGa816sqvh1dzNTYCXzt33m/Zn9SsDE6GXwagtrM3B66fJTj6Ftl5ufSr05apnUbx9rofNV6fCVHWZJiqEEIjhULBTz/9RKVKlTAyMqJOnTqsW7cOgAMHDqClpcXevXtp2LAhxsbGNGvWjNDQgpN2aGgoWlpaXLlyRWWf06dPx9PTUzk2Pzg4mM6dO2NqaoqDgwPDhg3j/v37yvJt2rRhzJgxjB8/HltbW9q3bw/Av//+S5UqVTAyMsLf35/FixejpaVFYmIiULAE9aBBg3B1dcXY2JhatWqxcqVqp0ZaWhrDhw/H1NQUJycnpk2bpvYcaGlpsWnTJpVtlpaWLFq0CICwsDC0tLRYs2YNbdq0wdDQkGXLlj3V45e2wJ2HqdmqEbVaN8bG2QH/Id0xs7bg/L4Tj623Z9EGqvrVxamyelaHkakxJpZmylv4pWvo6evh07h2qcS8fuUaOnbrTOceXfHw8uTdD97D3t6OzRv+0Vh+y4Z/sHew590P3sPDy5POPbrSsVtn1q5YpVJOS0sLaxsbldujLK0sVe47efQ4zq4u1Klft1Ta1aVaM/bdOMu+64EFv4AHbicuPZkOPo01lq9i60ZMWiI7Qk8Qm5ZIaGw4e66dppKNi1q73mvej7UX9hGdGl8qsT6OQqFg5cEDvN6+A21r18XbyZlJg4eSmZ3DzrNniq3XwLsK/rXr4OXgiKutHYNat8HbyZmgm6oZVzra2tiamytvVqZmxezxv2tTuT4nwy9zMvwyMakJbLp8iMSMVJp7au5QrmrngbetK/NO/sPV+xEkZKQQnhhNWEKkskxDt6rsuXaakJgw4tKTORZ2kdCY27Txrl/q8T/Usaofh26e4+DNICKT77Pi3C7i05Np591QY/mMnCySMtOUNy9rZ4z1jTh8szD7pJlnLTYHH+VC5HVi0xLZdz2Qi1E36VTVr8zaoVAoWLlqFa+//jpt/f3xrlyZb77+mszMTHY8Zo6WlatW0aRxY15/7TU8PT15/bXXaNyoEStWFb73mzdrxrujRtHW37/M4ge4sPs4vi3qU7VlA6yc7Gg2oBOmVhYEHyz+PQEFHSXGFmbKm7Z24SW4s68XXvWqYeVkh7m9NbXa+WHt4kDU9fLL1jixdT/1/P2o37YZdi6OdHy1DxY2VpzefeSx9bb8vZqazRviWsWzfAJ9ghexHUG7jlK9ZQNqtGqItbM9LQd1wdTagosHTj22nrG5CSYWZsrbo8eUg5crzft3xKdJbXR0n6/cixPhl5l38l8O3gyq6FDU9KjRkj3XTrP72mnuJMUw/9Rm7qclFfu56GvvXpAdHXKMmNQEQmLC2Bl6Em9bV2UZ/8r1WXdhP4F3QolOjWdH6AnO3b1Kz5oty6wd7ao05FjYRY6GXSQqJZ61F/aTkJ5Cq0p1NZbPzM0mOStNefOwcsRY35Djty8py1y7H8H5e9eISonnfloi+6+f5W5SLN5FrlVKS+9abdgZepIdoSeJSIxh7olNxKYm0rV6c43l21VpyPaQYxy6GURUShwHb55jZ+hJ+tdpqyzz0/5lbAk5ys34e9xJiuHXw6vR0tKirkuVMmnDcydf8fze/k9JZ5wQQqMvvviChQsXMmfOHC5fvswHH3zA0KFDOXjwoLLMxIkTmTZtGmfOnEFXV5cRI0YA4OvrS4MGDVi+fLnKPlesWMHgwYPR0tIiMjKS1q1bU7duXc6cOcOOHTuIjo6mf//+KnUWL16Mrq4uR48eZe7cuYSFhdG3b1969uxJUFAQb7/9NhMnTlSpk5mZSYMGDdiyZQuXLl3irbfeYtiwYZw8eVJZ5uOPP2b//v1s3LiRXbt2ceDAAQIDA//TczVhwgTGjh1LSEgIAQEBT/X4pSkvN5fosLt41FS9mPCo6cO968UPnbt0+DSJsfE07fl0y3BfPHwG3yZ10DMoeXZiTk4OV0Ov0rBJI5XtDZo0IvjiJY11gi9dpkGR8g2bNOJqSCi5ubnKbRkZGQzu2Z+B3foy8cNPuRZa/FCQnJwc9uzYTceundDSKnlmlo62DpWsnbkQeV1l+/nI6/jYuWmsczU2HBtjc+o6F7x+FoYmNHGvwbm7oSrl+tbyJzkzjf03zpY4zqdxNy6OuJRk/HyrKrfp6+pR39ubC7duPdU+FAoFp66Gcjs2hvqVVTN8Iu7H0unrifSY/DWfL1nInUc64kuDjpY2rhb2hMaodmiExt7G00rzMNsajpWISIymrXdDvm4/ks/aDqd79RboaReujqWrrUPuI5mVADl5uVSydi7V+B/S0dbG08qJS0WG5lyKuqHyhe9xWlWqS3D0TZVf/vW0dcjJz1Upl5OXQ5VijtPScPfePeLi4vBr0kS5TV9fn/r16nHh4sVi6124eJEmj9QB8PPze2ydspCXm8v98Hu4Vlcd8uhavTLRNzQPGX5ow+S5LP3oF7ZMX8y9K8W/fxQKBXdDbpIUHVfs0NfSlpeby71bEVSuXVVle6XaVblztfhYzx04QUL0fdr06VjWIT6VF7Edebm5xNy+p5YB6Vbd+4mdsau++Z0F439g088LuHOl+KF74unoautQ2caFoLvXVLYH3btKVXvN78UrMbexNbGggasvABaGpjTzrMWZiMIfo3W1dcjOU/2szc7LoZq9Z+k24AEdLW3cLR3VhtaGxISp/chXnGaetbgSc1tj5vVDvnbuOJhZce3+nZKEq5Gutg5VbF05W+Q66OzdUKo5eGqso6etq/F59rFzR0dLc5eHga4+utrayiHFQpS35+unEiHEcyEtLY3p06ezb98+mjZtCkClSpU4cuQIc+fO5a233gJgypQptH4wJ8+nn35Kly5dyMzMxNDQkCFDhjB79mwmT54MwNWrVwkMDGTJkiUAzJkzh/r16zN1auEcUQsWLMDNzY2rV6/i4+MDgLe3Nz/99JOyzKeffoqvry8///wzUNDxd+nSJaZMmaIs4+LiwkcffaT8/7333mPHjh2sXbuWJk2akJqayvz581myZIky227x4sW4uj7dF9uixo0bR+/evVW2Pe7xNcnKyiIrK0tlm8EjQysfJyMlHUV+Pibmpirbjc1NSS9muE1C1H2OrN3BgM9Hof0Uy3BH3owg7k4UHUb0faqYniQpMYn8vDysrFWHDVlZWxEfpznrKz4uHitrqyLlrcnLyyMpMQkbWxvcPN355ItP8fKuRHpaGhtWr2fcW2OYu3QBru7qr+/Rg4dJTU2lQ5dOpdIucwNjdLR1SMpQHfKblJGKpbPmzK+r9yP47eg6xrUcgJ6OLrraOpyOCGHh6a3KMr527vhXrs+EbX+USpxPIy6l4CLc2sxcZbu1qRlRCY/PzEvNyKDzpC/Izs1FR1ubCX370+SRTr0aHh58M3gY7nb2xKUks2D3TkbOms7qCROxLGao4rMy0TdCR8NFdkpWBuaGmh/DxsQcL2tncvLyWHh6Cyb6RvSt7Y+xviGrgvYAcCUmnDaV6nEj7i5xaYlUsXOnpmMltEuhM1cTM31jdLS1ScpMU9melJWGhaFpMbUKWRiaUtvJmz+Pb1TZfjHqJh19/QiNCScmNZ7qDl7Uc/Ets3ZAQdYygE2R972NtTWRGuZxfLSepjoP91deMlPTUeQrMDJXPX6MzE1IT07VWMfYwoyWw7ph5+5EXm4e106cZ8uMxXT78DWcHpkTLDs9k2UTppGXk4e2thbNB3dR6/QrK+nJaSjy8zG1UP2MMrUw40Yx55C4yBj2rtzM65Pef6pzSHl4Edvx8PxtXPT8bWFC+iXNx5SJpRn+w3tg5+lCXk4uoceD2PTLQnp9PAKXp5gnVmj28PydmKn6vCdmpGJlpPn8fSXmNtMPruLjNkOU5++T4Zf560Rhhv+5u1fpUaMll6NvEpUcT21nb5q4V1eZ/qA0mRo8OPcVOWekZKZh4fDk86u5oQk1HCqx4NQWtfsMdfX5vss76GnrkK9QsPLcbq7ElP58qeaGJuho65CQrvq+TchIwdrIXGOdwDtX6FjVj2O3L3L9/h2q2LrRwacJejq6WBiaEp+h3rE4olFX4tKSynz+PiGKI51xQgg1wcHBZGZmKjuqHsrOzqZevXrK/2vXLhyu6PRgQveYmBjc3d0ZOHAgH3/8MSdOnMDPz4/ly5dTt25dqlevDkBgYCD79+/H1FT9y+SNGzeUnXENG6oOwwoNDaVRI9XsqMaNVYf/5eXl8cMPP7B69Wru3r2r7Oh6OB/RjRs3yM7OVnY0QsHS176+vk/3BBVRNMYnPb4m33//Pd98843Ktq+//hqngLpPH0jRL9EKAPUv1vn5+Wybu5KmPdtj5Wj3VLu+dOgUNq6OOFUq3awZtZAVPD5Drch9D4c8P9xcvWYNqtesoby/Ru1avPPqm2xau54xH76vtrvtm7fR2K8xtna2/60BxSiacK+lpaWydPqjXCzseK1hZ9Zf3M/5e9exMjJjSP0A3mjSnbknNmGoq8+Y5n356+Q/Zfrr7fbA03y/pnDY34w3C+byKfpqKFCov3BFGBsYsPyjT0nPzuL01VBmbNqIi40tDbwLsv+aVyt8jbxxpranFz2nfMPW0ycZ0qZtcbv9TxRqrwbFvhbaaKEAlp3dQWZuNgCbLh/itYZdWH9hPzn5eWy8dJABddrxWdthKBQQl57EqYhgGrtVL9W41WIu0g4ttDS2raiWXnVIz8kk8K7qtAHLz+7k9UZd+aHzOyiAmNQEDt8KoqVX3VKLefuOHUz9oXBBlZnTpxfEXvR9rGHbkygUilLJZv0vtCj6OVR8WUtHWywdCz9fHCq7kZqQzPldx1Q64/QM9enz5ShysrK5F3KLE2t3Ym5nhXO5dq5o+HzV8BTn5+ezYfYS2vTthI2TfTnF9ixegnYo0BgzgJWjncq528nbndSEJM7tPCqdcaWg6PlBS8O2h9ws7HnTrzurg/Zw9u5VrI3Mea1RZ95p1pvZRwumdvn75GZGN+/D770+AhREpcSz99oZ2lXRPM1AqbVDbcvTnTOaetQkIyeT8/euqd2XlZvN1D2LMdDVx9fenb61/bmflsS1+4/PDP7vNLwWxbRhxbndWBmbM7PHOLQo6Ljbfe0U/eu0I0+Rr1a+b+22tKlcj0+2/k5OkYy6l9b/8aqlzyvpjBNCqMnPLzhpbd26FRcX1ZR2AwMDbtwomPvp0YUKHn4peljXyckJf39/VqxYgZ+fHytXruTtt99WeYxu3brx448/qj2+0yMrNRbtwNL0BazoRdK0adOYMWMGM2fOpFatWpiYmDBu3Diys7M1li+Opg6UnJwctXJFY3zS42vy2WefMX78eJVtBgYGLDq7vZgahYzMjNHS1iatyC//6SmpGFuod3ZmZ2QRfesOMbfvsW9Zwa+3igdLi88Y8Rl9PhqJe/XCITM5WdmEnjxPs14dnhjL07KwtEBbR0ctCy4xIUEt++0haxtrEjSU19HRwdzCQmMdbW1tfKr5cjdCfRhFdGQU504H8vUPk/9jK9QlZ6WTl5+HpZHq825uaEJSpuYsh541WnE1NpzNwUcBCE+MJvNUNt8GvMnq83uwMDTF3tSKT9oMUdZ5+B5YMXgSH/z7K9GpCSWOvVWNWtT8yFP5f/aDob9xKcnYPvL8JqSmYvOE+d20tbVxsyv4sujr4kpYdDSL9uxSdsYVZWRggLeTMxGxpbcAQlp2Bnn5+ZgbqL4/zQyMiu3UTM5KIykzVdkRBxCdEo+2lhYWRmbcT0skLTuDBae3oKutg4m+IUmZaXSt1vyxw3lKIiU7nbz8fCyLZMGZGxiTXCTzQZOWlepwLOwCefmqX0ZSstKZdWQNeto6mBoYk5CRQv867TROUv5ftWrZkpo1Cjtesx98ft6Pi8PWtrCDKj4+Hmvr4ifXt7GxIS5e9b0fn5Dw2DplwdDUGC1tLbUsuMyUNLXMpsex93Ll+skLKtu0tLWxsC+Y39LWzYmEqFiCth8pl844Y3MTtLS1SU1SPYbTklMxNVd/r2dnZHLvZjiRYXfYtqigw+HhOeTbIeMY9tm7eNX0KfO4i3oR2/Hw/F30mEpPfrZjyrGSG6Ennp8VSV9ED8/fRbPgLIxM1bLlHupT25+Q6DA2Plj84HZCFJnHs/mhyzssP7uThIwUkrPS+H7fEvR0dDEzMCY+PZnhDTsRnVLy87YmqVkPzn1FMsDNDI1JznzyD3rNPGtxMjxYYweWApSLJ9xJisHJzIaOVZtw7UjpdsYlZ6YVvBbGqllwlkZmGheggIIhqTMOrWLW4TVYGZsRn55Mp6pNScvOVDtX9qnVhoF1X+GzbXO4FR+pcX9ClAfpjBNCqKlevToGBgaEh4crh6E+6mFn3JMMGTKECRMmMGjQIG7cuMHAgQOV99WvX5/169fj6emJ7jNMLly1alW2bVNdGezMGdWJsw8fPkyPHj0YOnQoUNDxd+3aNapVK1jJ0dvbGz09PU6cOIG7uzsACQkJXL16VaW9dnZ2REYWnqSvXbtGevqTL2Se9PiaGBgYPPWw1KJ0dHVx8HQh/PI1qjQoXJr+9uVrVK6nnq1jYGTA8O8+UNl2ft9xwoNv0G3MUCzsVL/gXj11gbycPKo1q0dp0dPTw8fXh8BTZ2jRppVye+CpMzRr1UJjneo1a3D8yDGVbWdOnsanmm+xx5BCoeDGtet4Va6kdt+OLduxtLLEr1npTVifl5/Hzfh71HaszOmIEOX22o6VOXPnisY6Brp6ah0l+Q8z/tDiXtJ9Ptr8m8r9A+q+gqGuPovPbON+KXUCmRgaqqyQqlAosDEz52RoKL6uBRmRObm5nL1+nfe6dX+mfStQKDv3NMnOzSEsOpq6lUpvWF6eIp87STH42LlzMarwM8vHzl1t/rWHbsVHUsepCvo6emTnFXQc2Ztaka/IJ6nIF4Dc/DySMtPQ1tKmtrO32jxDpdaO/HzCEiKp4ViJwEfmz6nhWOmJQ2uq2nvgaGbDrJtriy2Tk59HQkYKOlraNHStqrLiakmZmJio/FihUCiwsbHh5KlTVH2QiZyTk8PZc+d4b/ToYvdTu1YtTp48yZBBg5TbTp48Se1apbOy89PS0dXF1t2Zu8E38KpX+Hl+J+QGnnWqPqamqriISI0/lKhQFMwnVh50dHVx9nLj5oVQqjWqo9x+8+IVfBuoP8cGRoa885PqirWndx3hVvBV+o8bgaWdjVqd8vAitkNHVxd7D2ciLl+ncv3C83VE8HWVY+xJYsOf4pgSj5Wbn8eNuLvUca7CiQerb0LBqtwnwzV/Lhro6pGvKHr+Lvi/aGJjTl4u8enJ6Ghp08yjJkduXaAs5CnyCU+Mopq9h0p2W8H/1x9Ts2BBKXtTK46FPf18nLrapT+8Ozc/j2v371DPxUcllnouPpy4rXle4YfyFPncTyuYH7V15XqcCr+skk3Xt7Y/g+q1Z+L2uWWY0SfE05HOOCGEGjMzMz766CM++OAD8vPzadGiBcnJyRw7dgxTU1M8PJ5uUunevXvzzjvv8M477+Dv76+SZTd69GjmzZvHoEGD+Pjjj7G1teX69eusWrWKefPmoVPM3C1vv/0206dPZ8KECYwcOZKgoCDl6qYPs4W8vb1Zv349x44dw8rKiunTpxMVFaXsDDM1NWXkyJF8/PHH2NjY4ODgwMSJE1VWIgNo27Yts2fPxs/Pj/z8fCZMmKCSDVicJz1+WWgQ0JLtf63GwdMVJ293Lh44RUpcInX8CzqaDq/dTmpCMp3eGoCWtja2ro4q9Y3MTNHV01XbDgULPXjXr46RaenM5fVQn0H9+fGbKfhU86V6zRps/WcLMdExdOtV0NHz9x9/cT82lk+/Lligo2vvHvyzbiNzZs6mc4+uBF+6zI7N2/j826+U+1zy9yKq1ayOi5sr6WlpbFyznhtXrzP2I9XOx/z8fHZu3U77zh1LfaW5rSHHGNOsDzfi73EtNoJ2VRpia2LB7msFK+MNqtsea2Nzfj+2HoDAO6G85deD9lUacT6yYJjqqw07ce3Bap4AEUkxKo+Rlp2hcXtp0tLSYlDrNizcsws3Ozvc7OxYtGcXhvp6BNQvHF7z9fIl2FlYMqZrweu2cM8uqru542JjS25eLkdDgtl6+hSf9hugrDPzn420rFETRysrElJTmb9rJ2mZmXRtpHlOxf/qwI2zDKkfQMSDFVGbedTCyshMeXHfpVozLAxNWXFuF1DwWrT3acygeu3ZceUEJvqGdKvegpPhweQ8WLTB3dIBCyNT7iXFYmFoSoCvH9pose/641fTLIkdV07wtl9PbsXf43rcXfwr18PG2IJ91wsWnelXuy1WRmb8dVJ1JeJWlepy/f4d7iapZxxWsnbGytic8IQorIzN6FmzNVpaWmwLOaZWtrRoaWkxaOBAFi5ahLubG25ubixctAhDQ0M6BgQoy301aRL2dnaMedBBN3DAAN4aNYpFS5bQplUrDhw6xMlTp5j/11/KOunp6UTcKcyAvXvvHqFXr2Jhbo6jo/rn2n9Vu31T9i/YgK2HMw6V3Qg5FEhqfBLVWhe8J05t2ENaYjL+IwrmEb245zhmNpZYOduTl5fH9RMXuHU2hPajChcrOrf9MHYezpjbWZGfm0f4pWtcPX6elkO6lFrcT+LXxZ+Nvy/FuZIbrj5eBO49RtL9BBq+UvDjyJ6V/5KSkESvd4ehpa2NvZvqgiUmFqbo6umpbS9vL2I76nZozu6/12Hv6YJjZTcuHzpDanwSNVsXTMlxbP0u0hKSaf9GwZytQbuPYW5jibWLPXm5eYSeOM+NwMt0erewszovN5f4e7EP/s4jLSGZ2PBI9Az0sXSomM7Sh4z0DHC1KBxm62xuSxVbV5Iz00oly7sk/rl8mHEtB3A97g6hMeEE+DbG1sSSHVcKVqYf1qAjNsbmzDy8BoDTESGMbt6Hjr5+nLt7FStjM95o3I2rseHEPzh/+9i6YW1izq24SGxMzBlYtz1aWlpsvHSw2DhKau+1M7zWqAu3E6K4FX+PFl51sDI25/CtguzJHjVaYmlkxuIzqj9uN/esxa24e9xLVl9QKcC3CbcTorifloiOtg41HSvh51GDled2l0kbNlw8wMdthnAtNoKQmDA6VW2GvakVWx+co15v1AUbEwt+ObACKJjyw9fOnSsxtzE1MKZ3rdZ4Wjkx7cH9UDA0dXjDTvy4bynRKfHKLMiMnCyVjPiXloZsR1GxpDNOCKHR5MmTsbe35/vvv+fmzZtYWlpSv359Pv/8c+VQ1CcxNzenW7durF27lgULFqjc5+zszNGjR5kwYQIBAQFkZWXh4eFBx44d1TrFHuXl5cW6dev48MMP+fXXX2natCkTJ07knXfeUWaWffnll9y6dYuAgACMjY1566236NmzJ0lJhSsJ/vzzz6SmptK9e3fMzMz48MMPVe6HguGmr7/+Oq1atcLZ2Zlff/31qVZcfZrHL22+TeqQkZrOiX/2kpaUjI2LI73Gv465bcGQz7TEFFLiEp95vwlRsdy9Gkafj0aWcsTg374tyUlJLJu/hPi4ODwreTF1+o84OBV8cY6/H0dMVGFnk5OzE1Om/8icmbP5d/0mbGxtGD1+LK3aFmYzpqamMuOHX0iIi8fE1ITKPlWY8ecsqtZQ7Qg9ezqQmKhoOnXrXOrtOn77EmYGxvSp1QYrIzMiEqP5Yf9S5S+1lkam2JgUDvs8ePMcRnr6BPj6MaxBR9KyM7kcfYvlZ3eWemzPanjbV8jKyeHHdWtIyUinhocnv40arZJBF5WQoDJ0PDM7mx/XrSEmKREDPT087B34duhwOtRroCwTk5TIF0sXkZiWhpWpKTU9PFkwbjxOpTzsMOjeNUz0jQjwbYK5gTGRKXH8deIfZSenuYGJypCk7Lwc/jy+kd612jC+1UDScjIJuneN7Y90UOnp6NK5alNsjC3Iys0hJCaM5Wd3lumF/KmIYEwNjOhRsxWWhqbcTYpl+qGVytVRLYxMsTZRHc5jpGdAQ9dqxR5Hejq69KnVBjtTK7Jys7lw7zp/Hd9Eek6WxvKl5dVhw8jKyuKHn34iJSWFmjVqMHvWLJUMuqjoaJXzQJ3atZkyeTJz5s7lz7lzcXV15fspU6hZszATODgkhFHvvqv8f8bMmQB07dKFSV8VdtiXVOVGNclMS+fs1oOkJ6Vi7WxPp/eGYGZjCUB6Ugqp8YWf9Xm5eZxYt4u0xBR09XSxcran43uDca9VOPwxNyubIyu2kpaQjK6eLpaOtrQd2ZvKjWoWffgyU7NpfTJS0ji4YSepiUnYuzkxZMIoLB9kSqcmJpN0v2I7Sp7Gi9iOKo1rkZmazunN+0lLSsHGxYGu7w9Tnr/TE1NIiU9Uls/PzePo2h2kJiSjq6eHtYs9Xd8fhmftwnlv0xJTWP3N78r/z+08wrmdR3D29aT3J2+UW9s0qWrnwexehdNyjG3RD4BtIceZsm9xRYUFwJFbFzAzMGZAnXZYG5tzOyGKb3cvVA7NtDIyw9bEUll+3/VAjPQM6FKtGSMadyEtO5MLkddZfKZwihE9HV2G1g/AwdSazNxsAu9cYeahVaRlZ5ZZOwLvhGKib0SXas0wNzQhMvk+vx9dr5xOwcLQFGtj1eG4hrr61HPxYc35fRr3aaCjx6B67bE0MiUnL5eolHgWnt5K4J1QjeVL6tDNIMwNTBhSPwArY3Nux0fy5Y6/iHnQYWttbI69SeG0JtpaWvSu1QZXS3vy8vM4f+8644tM49GtenP0dXT5sv3rKo+1LHAHy56Day7x/0dL8bSTJwkhxHNqypQp/Pnnn0REvHzp5nOPb6roEErs7aY9iUgofqXEF4GblSMDln1Z0WGU2Oqhk0netquiwygR884d+ODfXys6jBKb0f19Xl1VevMVVpTFA78kJTGxosMoETNLS6YdXFnRYZTYh60HseIF/0I5uH7AC98GKGjHb0eKHx7+onivRT+a/z6qosMokaOj/6THwgkVHUaJ/fP6j7yz/ueKDqNE5vT5mI7zPnhywefcjjdnVHQI/0nS7L+eXKiCWIx5q6JDqBCSGSeEeOH88ccfNGrUCBsbG44ePcrPP//MmDFjKjosIYQQQgghhHj+5EsO1vNGOuOEEC+ca9eu8d133xEfH4+7uzsffvghn332WUWHJYQQQgghhBBCPJF0xgkhXjgzZsxgxowXM0VcCCGEEEIIIcT/N+mME0IIIYQQQgghhHhZyVIBz53ilywUQgghhBBCCCGEEEKUKumME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXlQxTfe5IZpwQQgghhBBCCCGEEOVEOuOEEEIIIYQQQgghhCgnMkxVCCGEEEIIIYQQ4mWVn1/REYgiJDNOCCGEEEIIIYQQQohyIp1xQgghhBBCCCGEEEKUExmmKoQQQgghhBBCCPGyktVUnzuSGSeEEEIIIYQQQgghRDmRzjghhBBCCCGEEEIIIcqJDFMVQgghhBBCCCGEeFnJMNXnjmTGCSGEEEIIIYQQQghRTqQzTgghhBBCCCGEEEKIciLDVIUQQgghhBBCCCFeVvkyTPV5I5lxQgghhBBCCCGEEEKUEy2FQmbyE0IIIYQQQgghhHgZJf00q6JDKJbFJ2MrOoQKIcNUhRDiOdZ/6RcVHUKJrRn2HTHJcRUdRonYm9vQ6o93KzqMEjv07h8kfvB5RYdRIpYzptL891EVHUaJHR39J32XTKzoMEps3fApJL7/aUWHUSKWv/5AStCFig6jxMzq1mbW4TUVHUaJjG3Zv6JDEEX0WDihokMokX9e//GlOWeMWDO1osMokQX9P6f1nNEVHUaJHXzn94oO4b9R5Fd0BKIIGaYqhBBCCCGEEEIIIUQ5kc44IYQQQgghhBBCCCHKiQxTFUIIIYQQQgghhHhZyVIBzx3JjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKzyZZjq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLytZTfW5I5lxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVX5+RUcgipDMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJ9IZJ4QQJXTgwAG0tLRITEys6FCEEEIIIYQQQpVC8fze/k/JnHFCiBdSVFQUU6ZMYevWrdy9exd7e3vq1q3LuHHjaNeuXUWHVyE6+DSme42WWBqZcicxhkVntnEl5nax5Vt41aF79RY4mduQnp1F0L1rLA3cTmp2BgCtK9VjdPM+avWGLJ9ETn5uqcS8ce16Vi5bQdz9ODwreTF2/PvUqVe32PLnAs8xe+Yswm7ewsbWlsHDh9CzTy/l/bdu3GT+3L8JvXKFqMgo3vvgffoPHqCyj37dexMVGaW27159ezN+wkel0q6eNVoxqN4rWBtbEBYfyW9H13Ih8kax5XvVbEXvWm1wNLMmOiWBpWd3sDP0pGrctf3pUaMVDmZWJGWmceDGWf468Q/ZeaXzWhTHMKAd+k0boWVkRF54BOnr/yU/KqbY8qaj30DXu5La9pzgK6TNW6K23aBda4y6BpB18CgZm7aWauwAvWq2ZnC99tgYW3Ar/h6zjqzlfOT1Ysv3rtmaPrXa4GRuQ3RKPIsDt7PjkddCR1ub4fU70qlqU2xNLAlPjGbO8Q2cDA8u9dgfFeDbhO7VW2BlbEZEYgyLTm8l5DHv75ZedehRo6Xy/X3u3lWWBG4nNStDWcZYz5DB9drTxL0GJgaGxKQksDhwO+fuXi3Tthh2fAX9Zo0LjqnbEaSv2/T4Y2rMW+hW0XBMXb5C2l+LlPs07PSKyv35ySkkfzmlVGMvjkKh4K91a9m4dw8pqanUqFKFCSPeoLKbW7F1Nu7dw9ZDB7kREQFANa9KvDtoEDW9q5RLzBf3n+TcziOkJ6Zi7WxPi4GdcPbx1Fj27pVbbPplgdr2wZPHYuVkB0Dc3WhO/bOP2Nv3SIlLpMWATtRp36wsmyCeM52q+tGrZmusjMwIT4xm/qnNBEeHFVu+daW69KrVGmdzW9KyMzl39yoLT28lJSsdAB0tbfrW9sffuwE2xubcTY5l8Zmy/4x6GnWcvBlcrwNV7d2xNbHk021zOHzrfEWHpeRfuT4dff2wNDLlblIsK4P2cO1+hMayIxp1pYVXbbXtd5Ni+XLnPOX/7as0wr9yfayNzUnNzuDMnSusu7Cf3Py8MmlDzxotGVj3wbVUQiSzj6577LVUzxqt6F2rdcG1VGoCywJ3sPPqKeX9M7u/Tz0XH7V6x29f4tNtc8qkDUI8jnTGCSFeOGFhYTRv3hxLS0t++uknateuTU5ODjt37mT06NFcuXKlTB43OzsbfX39Mtl3STX1qMlrDTvz96nNhMaE84pPIz5vO5wP/p1FXHqSWnlfOw/GNOvD4sBtnLkTirWROW/6dWdU0178cnCFslx6dibv/zNTpW5pdcTt3bWHWdN/ZfyEj6hVpzb/btjEx+9/yNI1y3FwdFQrf+/uPT4Z9yHdenbny2+/5uL5C0z/8RcsrSxp09YfgMzMTJxcnGnzij+/TZ+l8XH/Wjyf/Lx85f+3btzkgzHv4/9K21JpV1vvBrzXoi/TD63iUtRNuldvwU9dRzN85WRiUhPUyveo0ZK3/Hrw84EVhMSEUc3ek0/aDCElM51jty8CBRfAb/n15Mf9S7kUdRM3Swc+azsMgNlH15dK3JoYtG2FQZvmpK9YT17sfQzb+2M6agTJ30+HrGyNddIWLgcdHeX/WibGmH30HjlBl9TK6ri5oN+0EXl3I8sk/nbeDXi/RT+mHVzJhagb9KzRkl+6jWHoim+I1vBa9KzRilFNe/Lj/mWExNymmr0nn/oPJSUrnaNhBa/FW016EODThB8PLON2QhSN3arzfadRvL3+52K/6JRUM89aBe/vk5u5Enub9lUa8Xm7V/ng31+5n6b+/q5q78GY5n1ZfGYbZ+5cwdrYnLea9OCdpr35+cByAHS1dfiq/eskZabxy8EVxKUnY2tiQUZOVpm04SGDdq0x8G9B+vK1BcdUh7aYvvsGyVN+Kf6YWrBU/Zj65H1ygi6qlMuLjCL1978LN+SX36/ti//9hxVbt/D1O6Nxd3Ji/ob1jJ4ymfUzfsXEyEhjncDLlwlo1oLavj4Y6Omz+N9/GDPlO9ZMm469tU2Zxnvt1EWOrNpO6yFdcfR25/KhM2z+dSmDv30PMxvLYusN+e599IwMlP8bmZko/87NzsHczgrvhjU4snp7WYYvnkMtvGozsnE35h7fREjMbQJ8m/BV+xGM2Tid+2mJauWr2XvyfssBLDi1mVMRIdgYW/BOs16Mad6H7/ctBWBIgwDaVKrH78fWcycxlnouPnzWdjgTtv7Brfh75dxCVUZ6BlyPu8O2K8eY2mlUhcZSVCO3agyq256lZ3dw/f4d2lSuxwctB/DFzr+IT09WK78yaDfrLu5X/q+jpc03HUZy5k7h9bSfew361vZnwektXL9/F0cza0Y27grAqqA9pd4G/8r1GdO8LzMOr+ZS5A261WjBj11G8+qqx11LdefnAyu4EnObag6efNx6MClZ6Ry7XXD98eXOeehpF3Z/mBuaML//Zxy4ca7U4xfiacgwVSHEC+fdd99FS0uLU6dO0bdvX3x8fKhRowbjx4/nxIkThIWFoaWlRVBQkLJOYmIiWlpaHDhwQLktODiYzp07Y2pqioODA8OGDeP+/fvK+9u0acOYMWMYP348tra2tG/fHoBt27bh4+ODkZER/v7+hIWFqcQXFxfHoEGDcHV1xdjYmFq1arFy5cqyfEroWr05+64Hsu964INfjrdxPz2JDr6NNZb3sXMlJi2R7VdOEJuaQGjsbfZcPU0lGxeVcgoUJGWmqtxKy+oVq+jSoxvdenbH08uTsR+Ow97Bno3rNmos/8+GjTg4OjD2w3F4ennSrWd3unTvyqplhZ2H1WpUZ/T7Y3ilQ3v09fU07sfKygobWxvl7diRo7i4ulC3fr1SaVf/Om3ZGnKMrSHHuJ0QxW9H1xGbmkjPmq00lg/wbcK/l4+w73ogkclx7LseyNaQYwyu315ZpoajF5eibrDn2hmiUuI5HRHC3mtn8LXzKJWYi2PQuhmZuw+Qc/Ey+VHRpK9Yi5a+Hvr16xZbR5GegSIlVXnT8/GGnByyz6t2nKCvj/HQAWSs2YgiI0PzzkpoQN1X2BJylM0hR7mdEMWvR9YSk5JAr5qtNZbv6NuEfy4fZu/1QO4l32fv9TNsCTnKkHoBKmWWBG7n+O1L3Eu+z6bLhzgZHsyguq9o3Gdp6Fat4P299/oZ7ibFsujMNuLSkujg00RjeR9bN2LTEth25TgxqQlcibnN7munqGzjrCzT1rsBpgZG/LR/GaGx4dxPS+RKzG1uJ6hnjZYmg9bNydy1n5wLl8mPjCZ92Rq09PTQb1C32Dpqx5RvlYJjKuiCasG8fJVyirS0Mm2LMj6FgpXbtvJ6r960bdIEb3d3vhk9hsysLHYcOVJsve/Gvk+/gAB8Pb3wdHHhi7ffRqFQcOqiesd1aQvafYxqLepTvVVDrJ3taTmwM2ZW5lw6cOqx9YzMTTCxMFPetLULv0o4eLnSvF9HqjSujY6u/N7//6ZHjZbsuXaa3ddOcycphvmnNnM/LYlOVf00lve1dycmNYEtIceISU0gJCaMnaEn8bZ1VZbxr1yfdRf2E3gnlOjUeHaEnuDc3av0rNmyvJpVrBPhl5l38l8O3gyq6FDUBPg05vCt8xy+dZ7IlDhWBu0hPiMZ/8r1NZbPyMkiOTNNefO0csJY34gjj2T6VbZx4dr9O5wMDyYuPYnL0bc4GR6Mp5VTmbShf512bLtyvOBaKjGa2UfXE5uaQI8aml/7Dj6N+Tf4KPtvnCUy5cG11JVjDKrXQVkmJSud+Ixk5a2hW1WycrM5cONsmbThuZOf//ze/k9JZ5wQ4oUSHx/Pjh07GD16NCYmJmr3W1paPtV+IiMjad26NXXr1uXMmTPs2LGD6Oho+vfvr1Ju8eLF6OrqcvToUebOnUtERAS9e/emc+fOBAUF8cYbb/Dpp5+q1MnMzKRBgwZs2bKFS5cu8dZbbzFs2DBOnlQddlhadLR1qGTtrDb07sK96/jauWusExobjo2xOfWcC9L1LQxN8POowbm7oSrlDHX1+b3XR8zp/TET/IeW2kVXTk4OV6+E0riJamdhoyaNuXThosY6ly9eolGR8o39mnAl+Aq5uf8tWy8nJ4dd23fSuXtXtLS0/tM+HqWrrYOPnTunI0JUtp+OCKGmg/owOwA9bV2y83JUtmXl5VDN3hOdB190L0TewMfOnWr2BZ1vTuY2+HnU5MTtsvvSrm1jhba5Obmh1wo35uWRe/0Wul6ajytN9Js0JPvcBchWbaNx3+7khFwh92rxQ05KQldbB187d06Fq74WpyJCqOlYzGuho0t2bpHXIjeH6g6Fr4WejobXKzeH2k7epRh9IV1tHSrZOHP+nur7+3zkk97fFsrhOBaGJvi51+TsncKhXQ1dq3I1NoI3mnTn736fMb3bWHrXbI12KbwPiqNtY422hTm5V4ocUzduoev19B3L+n6NyD57Xu2Y0razxfzbzzH76hOMXx2Eto11aYX+WHdjYohLTMSvdp3CGPX0qF+9Oheuhj6mpqrMrGxyc3OxMDUtizCV8nJzib19D/caqsesWw1vom48Prtz9bd/sPDDH9n0y0LuXLlZlmGKF4iutg6VbVwIuntNZXvQvatUtdf83r4ScxtbEwsauPoCYGFoSjPPWpyJKMzG0tXWUZuKIfvB+VFopqOtjYeVE5ejVd+fl6Nu4W3jWkwtVS0r1SE4+hZxj2TRXbt/B08rR7ysC64D7UwsqeVUmQuPmfbhvyq4lnLTfC31jOfvavYeyvN3UV2qNmXf9UAyczVnZQtR1uRnKyHEC+X69esoFAqqVq1aov3MmTOH+vXrM3XqVOW2BQsW4ObmxtWrV/HxKfgS6+3tzU8//aQs8/nnn1OpUiVmzJiBlpYWvr6+XLx4kR9//FFZxsXFhY8+Kpx77L333mPHjh2sXbuWJk00Z7KUhLmBMTraOmpZa0mZaVgaav5SdzU2gllH1jKu1QD0dHTR1dbhdEQIC05tUZa5lxzLH8c2EJ4YjZGeAZ2rNmVyxzf5eMvvRKXElSjmpMRE8vLysLJW/bJsZWNNfFy8xjpxcfE0LvLl2sramry8PBITE7G1tX3mOA4fOERqaiqdu3Z+5rqaWBiaoqutQ0JGisr2+PRkrN3MNdY5FRFM12rNOXzrPFdjI/C1c6dz1abo6ehiaWhKXHoy+64HYmlkxuxeH6KFFro6Omy8dIjl53aVStyaaJmZAZCfonpc5aemom1l+VT70HF3RcfZkfTVG1S269WrjY6LM+kz/iiVWDWxfPBaxGeoDslJyEjGxvgxr0X1Fhy6dZ7Q2HCq2rnTpVozldfiZHgwA+u+QtC969xNiqWha1VaetVBW7tsOrHMint/Z6Ri6az5/R0aG86vh9cwvtVAlff3/FOblWUczKypaWrJ4Zvnmbp3MU7mNrzRpDva2tqsu7Bf435LSsusIN78FNX3R35KCtpWVk+1D+UxtXKdyvbc2+HkLV9DXkws2mZmBcNfx71DyvczUKSnl04DihH3YPEeGwsLle02FhZExt7XUEOz2SuWY2dtTeNatUozPDWZqeko8vMxMlc9fozMTUlPStFYx9jSlDbDe2Dv4Uxebi6hx8/zz7RF9Pp4RLHzzIn/Hw+vQxKLfE4lZqRiZWSmsc6VmNtMP7iKj9sMUX5OnQy/zF8n/lGWOXf3Kj1qtORy9E2ikuOp7exNE/fqaGtJPklxzPSN0dHWJilTNTM4OSsNC0P1H7GLsjA0oZZjZZXXAQrOj2YGxnzmPxy0CjrM9l0PZNuV46Uaf0EMD87f6UXP3ylYF3P+Ph0RQtdqzThy6zxX76teS1kYmqrtq6q9B5VsXPjxwdQNQlQE6YwTQrxQFA9W3ClpFlNgYCD79+/HVEMGwo0bN5SdcQ0bNlS5LyQkBD8/P5XHb9q0qUqZvLw8fvjhB1avXs3du3fJysoiKytLYybfQw/LPMrAwKCY0pppWoyouBmTXCzseL1RF9Zd2M/5e9ewMjJjaIOOvOnXgz+PFwwTvXb/Dtfu31HWCY0J58cu79Kpqh8LT5fORPtqL6NCob7t0fKo3ql40MKi25/Wln8306SpH7Z2dv+pfnEURV4MLS0tZaxFLT6zHWtjc/7s/QloQUJ6CjuunGBw/Q7kKQpS9+s6V2FYgwCmH1pFSHQYLhZ2jG3Rj7gGnVgSWDpzM+nVr4Nx/57K/1M1LLbwoDXFH1hF6DdpSN69KPLCC48jLUsLjHp1JfXPBfAfMxqfRdHXArSKDX/h6W1YG5vzV58Jytdi25XjDK0fQN6D/fx6eA0T/IeyYvAkFCi4lxTL1ivH6FK1bCeqV2vHY94orhZ2jGjclbUX9nH+7jUsjc0Y3qATb/n1YM6D97eWlhZJmWnMPbGJfIWCm/H3sDIyp0eNlqXWGafXoC7GAwoXWEmdu6iYklo87UGl79dI7ZgCyA0pzPrLj4wmNew25l9+gn7j+mQdKH6o6H+x/fBhps6bq/x/5qefAernJYXisS+TisX//MPOo0eY+/U3GJTT3KSaPn+LC9jK0Q4rx8LPScfK7qTGJ3Fu5xHpjBNKauc+DdsecrOw502/7qwO2sPZu1exNjLntUadeadZb2YfLehs//vkZkY378PvvT4CFESlxLP32hnaVWmocZ+ieE/7KdvcszbpOZmcvaea1etr507Xas1YenYHN+Pv4WBqxaC67Umqnsrm4KNlErMmxR1Pi89sx9rInDm9Py68lgo9weB6HchXqA+D7FK1GTfj7j52obOXTXHPnag40hknhHihVKlSBS0tLUJCQujZs6fGMg/nsHn0pJOTo5q6np+fT7du3VQy2h5yciocilm0A+1pTmTTpk1jxowZzJw5k1q1amFiYsK4cePIzi4+Df7777/nm2++Udn29ddfQ+UnPhzJWenk5edhaaTasWhhaFLsHG+9arYmNDaczcEFX1LDE6PJPLmZyR3fZFXQbhIz1OspUHAj7i6OZiWfWNzC0hIdHR21LLiE+AS1bLmHbGysiY9TzchLjE9AR0cHC0sLjXUeJyoyksBTZ/jup6lPLvyUkjJTyc3PU/vl1srIjIR0zRkn2Xk5/Lh/Gb8cXIG1kTlx6Ul0q96CtOwMkjIKftke2bgbu0JPsTXkGAA34+9hqGfAx60HszRwR7Edfc8i53IIKb88MkTtwZxP2mam5CUXxq5taoIi9SnmDtTTQ79ebTJ2qE7srOvqjLaZKWbjRyu3aenooFPJE/0WfiR9/FWpLHOf+OC1sDFWPTasjMw0TmANBa/F9/uW8tOB5crXonv1lg9ei1Tlfj/b/if6OrqYG5pyPy2Rd5r2IjLl6TOgnkWK8v2tml1iYWii8X0KD97fMbf593LB+/t2YjTzcv/lu45vsTJoD4kZKSSkp5CnyCP/kef6blIsVsZm6GrrlMrqeDmXgkm5/egxVbAIg7aZmeoxZWaKIuUpj6n6dcjYvvvJZbNzyIuMQtvu2TNmn6RVw4bUrFI4xDM7p6BT+X5iIraPZPjFJydhbWH5xP0t3fwvCzdt4I8vvqKKR9nOAwlgaGqMlrY26Umqz3lGShrG5k8/RNahkitXTzw/q0eKivPwOqRoFpyFkalattxDfWr7ExIdxsZLhwC4nRBF5vFsfujyDsvP7iQhI4XkrDS+37cEPR1dzAyMiU9PZnjDTkSnqE/gLwqkZKeTl5+vlgVnZmBCcuaT59Fs6VWH47cvkVdkHq9eNVtz7PYl5Yqxd5Ni0dfR49WGndkSfLQUrkIKPfZaKuMx11IHlvHLoeKvpR4y0NWjrXcDFpzeonFfQpQXyfEVQrxQrK2tCQgI4PfffydNw+TciYmJ2D3IcoqMLFyh8dHFHADq16/P5cuX8fT0xNvbW+X2uAy26tWrc+LECZVtRf8/fPgwPXr0YOjQodSpU4dKlSpx7ZrqPCpFffbZZyQlJancPvvss8fWeSgvP4+b8ffU5qyq7eRNaGy4xjoGOnpqHYsPfzl8XJaZh5UjicVcCD0LPT09fKr6cvqk6mThp0+dpmZtzUO0atSqyelTp1W2nTp5iqrVq6L7HyYL37Z5K5ZWVjRtXnoZTbn5eVyNDaehWzWV7Q1dq3Ip+vHzK+Xl5xOblki+QkE774YcC7uk7GQz1NVXf73y89HSevrMmyfKyib/fnzhLSqG/ORkdH0fOa50dND19iL3lubj6lH6dWuBrg45Z1RXKcu5doPkH38l5ZfZyltu+B1yzp4n5ZfZpdIRBwWvRWhsOI2KvBaN3KpxKerpX4tXqjTkaNhFtQ7P7Lxc7qcloqOtTZvK9ZRfUEpbbn4eN+PuUdv5Gd7funrko368AMp3d2jsbRzNbFTe707mNsSnJ5dKRxzw4JiKK7xFxZCfpOGYquxF7q0nZyfo16tdcEydfoqV73R00HGwJz+55J9XRZkYGeHm6KS8VXJ1xcbSkpMXCheUyMnN4WxwMLV9fB+7ryX//sPf69fx22cTqV75KX59KQU6urrYeTgTEaw6X2NE8A0cK7s99X7uR0RibKl5CKL4/5Kbn8eNuLvUca6isr2uc5ViM48MdPXUPlcLr0NU5eTlEp+ejI6WNs08anIy/HKpxf6yycvP53ZCJNUdvFS213Dw4nrcnWJqFfC1c8fBzJrDN9XPZ/o6umqvl0KhKHitSnmu0YJrqQgauqpOSdPQteoznb/bejfg+O1LanH7V26Ano4uu6+eLmYvQpQP6YwTQrxw/vjjD/Ly8mjcuDHr16/n2rVrhISEMGvWLJo2bYqRkRF+fn788MMPBAcHc+jQIb744guVfYwePZr4+HgGDRrEqVOnuHnzJrt27WLEiBHk5RX/RXTUqFHcuHGD8ePHExoayooVK1i0aJFKGW9vb3bv3s2xY8cICQnh7bffJirq8SsUGhgYYG5urnJ7lmGqW4KP0s67Af6V6+NibserDTtha2KhvNAYVK89o5v1UZY/c+cKjd2r096nMfamVvjaufN6oy5cux+h/NWxb21/6jh5Y29qhYeVI+807YWntRO7rj5+tb2nNWDwQLb8s5mt/24h7FYYs6b/SkxUND379ATgz9lz+O7rb5Xle/TuRXRkFL/N+JWwW2Fs/XcLW//ZzMChg5VlcnJyuBZ6lWuhV8nJySU2NpZroVe5E6F6AZqfn8+2zVvp1KXTf+rIe5w15/fRtVozOldtioeVI2Oa98HezIp/Lh0G4C2/Hnze7lVleVcLe9r7NMbVwo5q9h583X4EXjZOzDtZOF/LsdsX6VGzJW29G+BkZkND16qMbNKVo2EXVTKbSlvWwWMYvtIGvVrV0XZ0wHhQXxTZOWSfDVKWMR7cF8MuHdTq6vs1JOdiCIr0IiulZmWTHxWtciM7G0VaesHfpWh10B66VW9Ol2rN8LByZGzzfjiYWbHxckEmxii/nnzR7jVleTcLezr4NMbVwp5q9p5802EklWycmfvI3DnVHTxpXakuzua21HHyZnq3sWihxfKzZTd/3+aQgvd3W+8GuFjY8VrDztiaWCjfi4PrdeC95n2V5c/cuUIT9xp0eOT9PaJxV67FFr6/d4aewszAmNcbd8HJzIb6Lr70rtWGHaFls9DMQ1kHj2LY3h+92jXQdnLAeEg/FDk5ZAcGKcsYD+mPYdcAtboFx1SwxjngDHt0RqeyF9rWVuh4uGEyYihahgZknwosy+YABcNTB3XuwsJNG9h/6iTXw8OZ9MfvGBoY0LFFC2W5r2b/xuwVhfMTLf7nH+asXsVX77yLk70d9xMTuJ+YQHpm2awu/Ki67ZsRfDiQ4COBxN+L4ciqbaTEJ1GjTcEiOcfX72LP/MJ5+c7vPsbNc8EkRscRdzea4+t3cSMwmFr+hfOg5uXmEhseSWx4JHm5eaQmJhMbHklidMnmGBUvhn8uH6a9TyPaVWmIq4U9Ixt3xdbEkh1XCn6wHNagI+NaFi6SdToiBD+PmnT09cPB1Jqq9h682aQ7V2PDiX/wOeVj64afRw0cTK2p7uDJ1x1GoqWlxcZLByukjY8y0jOgiq0rVR6s/upsbksVW1ccTJ9u/suytPPqKVp51aWFV22czGwYWPcVrI3NlauG9qnVhjcad1Or19KrDjfi7nI3OVbtvvOR1/GvXJ/GbtWxNbGguoMnPWu2IujetTIZ/rjm/F66PLyWsnRgdLM+2JtZKzO+32zSnc/bDleWd7Wwp32VRrhY2FHV3oOvXnkdL2sn5p38V23fXao15cit8yRnlc+K288NheL5vf2fkmGqQogXjpeXF2fPnmXKlCl8+OGHREZGYmdnR4MGDZgzZw5QsBjDiBEjaNiwIb6+vvz000906FDYYeDs7MzRo0eZMGECAQEBZGVl4eHhQceOHZXDXDVxd3dn/fr1fPDBB/zxxx80btyYqVOnMmLECGWZL7/8klu3bhEQEICxsTFvvfUWPXv2JCkpqcyek+O3L2FmYEyf2v5YGZkRkRjN9/uWcj8tEShI7bc1sVSWP3jzHEZ6BnT0bcLwBh1Jy87kctRNlp3dqSxjom/IW349sTQyJT0nk1vxkXy9829uxN0tlZjbdXiF5KQkFv29gLj7cXhVrsRPM3/B8cEw4bj7cUQ/0jnj7OLMTzOn8duMX9m4dgO2dra8/9EHtGnrryxzP/Y+I4a+pvx/1bIVrFq2grr16/Hb3N+V28+cOk10VDSdu3ctlbY8at/1QMwNTHi1YWdsTMy5FRfJhC1/EJ1aMCTXxthc5WJdR1ubAXXa4W7pQG5+HufuXuXdDb8QlVI4hHfJme0oFAreaNINOxNLEjNSORZ2UeNFZmnK2ncILT09jPp2R8vIiLzbd0j9cyFkFQ651rayVLuQ0razQbeSJ6lzFpRpfE+y93og5oamvN6wCzYm5tyMu8dHm2cTnfLwtbDAwaxwWLS2tjaD6r6Cu6Ujufl5nL0byqj1P6ssWKKvo8ebTXrgbG5LRk4Wx29fYvLuhaRml10HyrGwi5gZGNP3wfs7PDGaqXuXFHl/Fw7HPXCj4P3dqaofrzbsRFp2JpeibrIssPD9HZeexOTdC3mtUWemdX+P+PRktoUcY9ODjsqykrX34INjqgdaxkbk3Y4gdc78pzimbNGt7EXqH39r3K+2pQUmrw5Cy8QYRWoaubcjSJn+B4qExDJsTaFXu/cgKzubH+b/TUpaGjW9vZn9+ReYGBkpy0TF3VdZ6GPd7p3k5OYyYfo0lX292bcfb/dTXdm7tFVpXIvMtHTObD5AWlIKNs4OdHt/GOY2lgCkJ6WSEld4zsrLzePomp2kJSajq6eHtYs9XcYOw7O2j7JMWmIKa74tXJQlaOdRgnYexdnHk16fjCzT9oiKd+TWBcwMjBlQpx3WxubcToji290LiS3mOmTf9UCM9AzoUq0ZIxp3IS07kwuR11l8pnAeVD0dXYbWD8DB1JrM3GwC71xh5qFVpGVnlnPr1FW182B2r/HK/8e26AfAtpDjTNm3uKLCAgo6Ok31jehevQUWhqbcTYpl5uHVytVRLQxN1YaAGukZ0MC1KiuDNE8DsDn4CAqFgl41W2FlZEZKVjrnI6+z/uKBMmnD/htnsTA0YXiDTgXXUvGRTNj66LWUBfaPXktpaTGgTjvcHl5L3bvK6I3TVK6loKDTrraTNx9u/q1M4hbiWWgpZCY/IYR4bvVf+sWTCz3n1gz7jpjkFzszwt7chlZ/vFvRYZTYoXf/IPGDzys6jP+xd99xTdxvHMA/SYBA2HvIBlmCAiqKExyIe2vd22rdo+vXOlpbOx11VW3de2/FCSgqirIU2UP23nvkfn9QooGgKCMQn/frlZfm7nvJ8yWXu9xz39EoKls2oufOBeIOo9EeLtqNcYe/E3cYjXZ2+s/IXfaNuMNoFJW/fkVBYPD7C7ZyivYdse3BaXGH0ShLezdvEpJ8uJEHvhZ3CI1yadZvEnPOmH266ca4FYf9E/6Hvn8ven/BVs574c73F2qFctf8LO4Q6qWyoe3/HvoY1DKOEEIIIYQQQgghRFLxqQ1Wa0NjxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpIdRNlRBCCCGEEEIIIURS0WyqrQ61jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBXDF3cEpBZqGUcIIYQQQgghhBBCSAuhZBwhhBBCCCGEEEIIIS2EuqkSQgghhBBCCCGESCo+zaba2lDLOEIIIYQQQgghhBBCWgiLYRhKkRJCCCGEEEIIIYRIoNxV34s7hHqpbPpJ3CGIBXVTJYSQVmz5pa3iDqHRto5cjpjMRHGH0SimGvoYtv9LcYfRaFdn/4Hcz+aIO4xGUTm5Dz/e3i/uMBpt7cDZGHXwG3GH0WgXZ/6K6Sd+FHcYjXJ40lr843tJ3GE02rzuI7HkwmZxh9Eo20evxBqPveIOo9E2uM/HJu8T4g6j0Vb1nYSF5/4QdxiN8vfYLzH79EZxh9Fo+yf8Dz13LhB3GI3ycNFuifks2iRqg9XqUDdVQgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQojEyMnJwbRp06CsrAxlZWVMmzYNubm579yGxWKJfPzxx5tWwi4uLnXWf/bZZx8cH3VTJYQQQgghhBBCCJFUn2A31cmTJyMxMREeHh4AgPnz52PatGm4cuVKvdukpKQIPb9x4wbmzJmDsWPHCi2fN28efvzxzTAdcnJyHxwfJeMIIYQQQgghhBBCiEQIDQ2Fh4cHfH190a1bNwDAP//8A2dnZ4SHh8PS0lLkdjo6OkLPL126BFdXV5iamgot5/F4dcp+KOqmSgghhBBCCCGEEEJaXFlZGfLz84UeZWVljXrNx48fQ1lZWZCIA4Du3btDWVkZjx49atBrpKWl4dq1a5gzp+7kZ8eOHYOGhgY6dOiA1atXo6Cg4INjpGQcIYQQQgghhBBCiKTi81vt45dffhGM61bz+OWXXxpV3dTUVGhpadVZrqWlhdTU1Aa9xqFDh6CoqIgxY8YILZ8yZQpOnDgBLy8vrFmzBufOnatTpiGomyohhBBCCCGEEEIIaXHffvstVq5cKbSMy+WKLLt+/Xr88MMP73w9Pz8/ANWTMdTGMIzI5aLs378fU6ZMgaysrNDyefPmCf5va2uL9u3bo0uXLvD394ejo2ODXhugZBwhhBBCCCGEEEIIEQMul1tv8q22xYsXv3fmUmNjYwQHByMtLa3OuoyMDGhra7/3fR48eIDw8HCcOnXqvWUdHR0hLS2NyMhISsYRQgghhBBCCCGEEEjMbKoaGhrQ0NB4bzlnZ2fk5eXh6dOncHJyAgA8efIEeXl56NGjx3u337dvHzp37oxOnTq9t2xISAgqKiqgq6v7/gq8hcaMI4QQQgghhBBCCCESwdraGu7u7pg3bx58fX3h6+uLefPmYdiwYUIzqVpZWeHChQtC2+bn5+PMmTOYO3dundeNjo7Gjz/+iGfPniEuLg7Xr1/H+PHj4eDggJ49e35QjJSMI4QQQgghhBBCCCES49ixY7Czs4Obmxvc3NzQsWNHHDlyRKhMeHg48vLyhJadPHkSDMNg0qRJdV5TRkYGd+/exaBBg2BpaYmlS5fCzc0Nd+7cAYfD+aD4qJsqIYQQQgghhBBCiKTiS0Y31Q+hpqaGo0ePvrMMI6L77vz58zF//nyR5Q0MDODt7d0k8VHLOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSHUTZUQQgghhBBCCCFEUknIbKqShFrGEUIIIYQQQgghhBDSQigZRwghhBBCCCGEEEJIC6FkHCHkk8ZisXDx4kWJeR9CCCGEEEIIEcLwW+/jE0VjxhFCiATradwR/cw7Q0lWHqkFWbjwwhsx2ckiy052cIOToU2d5Sn5WfjN80izxHf1/CWcPX4a2VlZMDIxxudLv4Ctfcd6ywcHBOGf7X/jdWwc1DU0MG7yRAwdPVyozIVT53DtwmVkpKVDSUUZvVz6YNaCuZDhygAAZoydjPTUtDqvPWzMCCxataxpK/iWIVbOGGPnAjU5RcTnpuGfJ5cRkhZbb/mh1j0wzLoHtBTUkFGUg9NB93Av6nmzxVcf2XEjINOvL1gKPFRFxaB4/zHwE0XvQzW4gwdAZqAr2BpqYAoKUf7kGUpPnAMqKv97UVnITRgF6a6OYCkroiouHiUHT6AqJq75KwQg4r4/Xt19ipK8QqjoaqDz2P7QMjeot3xVRSVe3HiEWL8QlBYUgaeiCNtBzjBzrn9fbWqDLbtjlG0fqPIUkZCThn1Pr+JVely95fuY2mO0bV/oKamjqLwUAUkROPjsOgrKigVlhtv0hLtld2jIq6CgrAiP4l7iiL8HKqoqW6BG1fqbd8EQa2coyykiKS8dx/xvISIjvt7yzka2GGrdA9qK6iipKEVwSjROBtxGYXlJi8UccPcR/K57oyivABp62nCdMgL6libv3S4pIg4nf9kNDX1tzNiwQmhdaVEJfM55IPLZS5QWl0BZQw0uk4bCtJN1c1UDvU06oX/7LlCSlUdKfhbOv/BCdFaSyLJTHQehm1GHOstT8jOx8e5hAICOojqGWveAgYoW1OWVcS7YE17RAc0WPwA4Gdigl0lHKHB5SC/MwY2wx3idk1pveQ6LDVfzzuikZw4FLg/5pUXwjg6Af1I4AMBG2xh9TB2gxlMCh8VGVnEeHsa9QFByZLPWI8TrKYJvPkJxXgFU9bTgPNEduu2NRJZNDo/F1U2H6iyf8MMiqOhq1lke9fQF7v17DkadLDFo0aQmj/1tfUztMdCiK5RlFZCSn4kzQfcQVc8+Nb3zYDgb29ZZnpyfiQ23DwAA7PXaw92qOzTlVcBhs5FemIs7kX54Gv+q2ergauYId8vuUJFTQFJeBk4E3kFkZoLIsrO7DkMvk7rngaS8DKy5+Y/g+cD2XeFq5gg1nhIKy0vwLDEMZ4M9UcmvarZ6NFQnXXNMdnCDlZYhNORV8M31v/EgNkjcYQH49D4L8umhZBwhhEgoBz0LjLbri7NB9xCbnYwexh3xufMo/HLvCHJLCuqUP//CC1de+Qies1lsfOU6pdkuQrzveGLPX7uwaNVS2HS0xfWLV7Fm9bfYc3Q/tHS065RPTU7B2tX/g/vwIfhy7bd4FfwSOzdtg7KKMnq59gEA3Lt5Bwd2/4MV334JG7sOSIxPxOaffwcAfL7sCwDAX//uAp//5i7c65hY/G/5V+jt2rdZ6glUX/TO6zYCfz++gFdpcRhs1R3r3ebgi/N/IqMot075wVbOmNF5MLY/PIuIzARYahhgca9xKCwrxtOE0GaLszbuiMHgDnFD8d/7UZWSBtkxw6Dwv1XIX/kdUFoqchvpnt0gO2kcivccQFVEFNi6OuAtmA0AKD18CgDA+3wGOPrtULTzXzA5uZDp3R0K369C/qo1YHJym7VOcc9D8fzcXXSd6AZN03aI9AmE564zGPb9XMirKYncxmf/JZQUFKH7lMFQ1FRFaUERGH7L3cntadwRs52GYY/vJYSlx2GQZTesGTgLSy5uRmZRXp3y1lpGWNZrAvb7XYVfQijUeUpY4Dwai3qMxa//Jdb7mNpjWmd37PA5i7CMeOgpaWBpr/EAgP1+V1ukXt0MbTDFcRAOPbuOyMwEuJo7YnXfyfj2+i5kFefXKW+hYYDPu4/CsYBbCEiKgJqcImZ2HYrZTsOxzed0i8Qc9iQQnseuYMD0UWhnYYwgzyc4t2kfZv2yCkrqqvVuV1Zcgut7T8LIxhxF+cLH36rKSpz54x/wlBQwYvE0KKgpoyA7FzKy3Garh2M7C4zp6ILTgXcRk52MnsYdsbDHaPx85xByRJwfzgZ74lLIA8FzDouNb/pPQ0DSm/ODDEcKmcV5CEiKwJiOzXc8rWGrY4rB1s64+soH8Tlp6GJgjWmdB2O7z2nklRaJ3Gai/QAocOVw4eV9ZBfnQV5GDmzWm45CxRVl8I4OQGZRLir5VbDUMsJo274oKi9BVGZis9Qj2u8lHp/yQK/JQ6FtbojQ+89wY9tRTFi/CArqKvVuN2HDYqF9RFZRvk6ZgqxcPDl7CzrtDZsjdCGd9S0xvlM/nAy4jeisJPQ26YRFvcbhx1v7Re5Tp4Pu4uLL+4LnbDYL3/WfCf/EcMGyovJS3AjzRVpBFir5fNjpmmJ658EoKCtGaFpck9ehq4E1JtkPxBF/D0RlJsLFzAErek/E9zf3IlvEMelE4G2cfeEpeM5hsfGD2xw8SwwTLOtu2AHjOrpiv99VRGUmQUdRDXOchgEATgbeafI6fCg5aS6ishJxPewRNg5eIO5wBD7Fz4J8eqibKiGk1XJxccHixYuxePFiqKioQF1dHd9//z2Y/2YDOnr0KLp06QJFRUXo6Ohg8uTJSE9PBwAwDANzc3P8+eefQq/58uVLsNlsREdHi3zPFy9eoF+/fpCTk4O6ujrmz5+PwsJCwXo/Pz8MHDgQGhoaUFZWRt++feHv7y/0GpGRkejTpw9kZWVhY2OD27dvN+WfpcFczB3x5HUIfONDkFaYgwsvvZFbUohexqJb85RWlqOgrFjwMFTRhpy0LJ7EhzRLfBdOnYXbsMFwHzEUhsZGWLB8ETS1tHDtwhWR5a9dvAItbS0sWL4IhsZGcB8xFG5D3XHuxJuL8LCXr2BjZwtXt/7Q1tVB525d4DLQFZFhb37cq6iqQE1dTfB48tAXuu30YOfQqVnqCQCjbPvgdoQfbkU8RWJeOv55chmZRbkYYuUssnw/M0fcCPfFg9ggpBVk435sEG5H+GFsR9dmi1EU7uABKL14DRV+/uAnJqF41z6wuDKQ6dmt3m2kLMxQGRGFiodPwM/IQmVwCMofPYGUqXF1AWlpSDt1Rsnxs6gKiwA/LR2lZy+Dn54J7sDmr1/YPT+YOXeEeY9OUNbRQJdxA8BTVUTEA9EteJJfxSAtKgGuC8dD18oYCurK0DDWg6apfrPHWmNkh164E/kMdyL9kJiXgX1PryKzKA/ult1FlrfQNERGYQ6uhT5CemEOQtNf41b4U5hrtBOUsdQ0RFjaa9yPDUJ6YQ4CkyPxICZIqExzc7d0hndMALxjApCcn4lj/reQXZyHfu27iCxvpqGPjKJc3I54isyiXERkJsAz6jlM1HRbLOZnHg9g16crOrp0g7qeNvpNGQFFNRUE3vV953a3Dp6HtbMDdM3rJkVe3PdDaWExRi2dgXYWxlDWUIW+hQm0DPWaqxpwNe+Mx3Ev8fj1S6QVZOP8Cy/klBSgl4no42Cd84Nq9fnB9/VLQZn43DRcenkf/knhqKxq/lYmPYw7wj8xHM8Tw5FRlIsbYY+RX1oosoU3AJhr6MNYTRdHnnsgJisJuSWFSMrLQELum5bScdkpCE2PQ0ZRLnJKCuD739/HSEWn2eoRfPsxLHs5wqp3Z6jqaqLHxMFQUFXGK+9n79xOTlEePGVFwYPNFr6s4/P5uPfvOXQe4QoljfoTxU2lf/sueBT3Ag/jXiC1IBtngj2RU1yAPqb2IsuXVpYjv6xI8DBS1QFPRhaP39qnIjMTEJQcidSCbGQW5cIzyh9JeRkwV2+e49QgCyc8iA3Cg9ggpBRk4UTgHWSX5MPVzFFk+ZKKMuSXFgkexqq64MnIweetlmVm6u0QmZmIJ/GvkFWch5C0WDyJfwVj1ZY7br2Lb3wI/nlyGd4xgeIORcin+Fk0Oz7Teh+fKErGEUJatUOHDkFKSgpPnjzBtm3bsGXLFvz7778AgPLycmzYsAFBQUG4ePEiYmNjMXPmTADVY7TNnj0bBw4cEHq9/fv3o3fv3jAzM6vzXsXFxXB3d4eqqir8/Pxw5swZ3LlzB4sXLxaUKSgowIwZM/DgwQP4+vqiffv2GDJkCAoKqu/68vl8jBkzBhwOB76+vti9eze+/vrrZvrr1I/DYkNfWQthGa+Floelv4ZxAy9cuxl1QERGvMg72o1VUVGByPAIODoJX3Q7OnXGq5eik39hL1/B0amzcPluXREZFoHKyupudTadbBEVHoHwV9V3QlOSkuH3+CmceohOWlRUVMDz1h24DXUHi8VqbLVEkmJzYK7eDgHJEULLA5IiYKUluhuSNEeqTlfB8soKWGgYgMNqmVM3W0sDbFUVVAa/9XlUVqIyNBxSFnW/P4IiYVGQMjECx8xE8DrSDnao8A+uLsDhgMXhABUVQtsx5RWQsjJv8nq8raqyCtkJqdC1Fu5SqGttgsxY0V2pEl9EQd1QB6/uPMH573bi8g974X/+HirLK0SWb2pSbA7M1NshsFYL1cDkyHr3n7D011CXV0bndpYAAGVZBTgb2wq1EAhNj4OZRju016hOKmorqMFR31KoTHPisNkwVtPFy1ThGyMvUmPQXkN0l+HIzASo8ZTQUbd6P1GSlUdXQ5tm70JYo6qyEmlxSTC2tRBabmzbHslRcfVu9+K+H3LTs9Bj1ACR66MDXkHP3Ah3D1/AriU/4sD/NsH3yj2hFrxNicNiw0BFG2Hptc4Paa9hot6wBGB3I1uEp79ulvNDQ3BYbOgpadRprRaVmQgDlbotqwHASssIyXkZ6GXSCV+6TMGy3hMwyLIbpNicet/HVE0PGvLKiMtJadL4a1RVViIzPhn6NsLHVH0bM6RFi+6OV+P8hj04svpPXN18CMlhdYc88L/qDTlFeVj1Ep28aEocFhuGKjp4Vau1Wmh6HEwbmDjrYWyHsPTXIls91bDUNIS2oioim6GVIofNhpGqLkLSYoSWh6TGwly9YTdfept2wqu0WKGWvZGZiTBW1RHcNNCUV4GdrhmCU6KaLngJQ58F+VRQN1VCSKtmYGCALVu2gMViwdLSEi9evMCWLVswb948zJ49W1DO1NQU27Ztg5OTEwoLC6GgoIBZs2Zh7dq1ePr0KZycnFBRUYGjR4/ijz/+EPlex44dQ0lJCQ4fPgx5+eruHjt27MDw4cPx22+/QVtbG/369RPaZs+ePVBVVYW3tzeGDRuGO3fuIDQ0FHFxcdDXr/7BsHHjRgwePLiZ/kKiyXPlwGGzUVBaLLS8oKwYSrK8926vxOXBWssYR57faJb48nPzwK/iQ1VN+G69iqoqcrKyRW6Tk50NFVXh8qpqqqiqqkJ+bh7UNNThMqAf8nLysHrhMjAMg6qqKgwdPQITpokeJ+fx/YcoLCzEwCGDmqZiIihx5cFhc+pctOaUFMKRpyhyG/+kcLhZOOHx65eIzkqCubo+Blh0hTRHCkqy8i1yAcxSUQYA8POEL4z4eflga6jXu13F46coUVKAwg/fVL+OlBTKbnmi7PJ/+1JpKSojoiA7ZhiKklLA5OZBumc3cMxNwE9Nb57K/KessBgMn4GsovB3QFZRHiX5oru1FWbmIj06EWwpKfSZNxplRSXwO3ULZcWlcJ46pFnjBQBFLg8cNqdO1/K8kgKoylmI3CY8Ix6b75/EapfJkOZIQYrNwZP4V/jH97KgjE9sMJS5Ctg4eAFYLBak2BzcCHuM8y+8m7U+Narrxa7TnTC/tAjKsnW72wHViZbdjy9gUc+xgnr5J4bjyHOPlggZJf91T+YpKwgt5ykroihP9HcyJzUDD87cwGffLQSbIzrpk5eRjfjQaFg7O2DMytnITcvEncMXwa+qQo9RA5u8HoLzQ5nw376grBhK3IacH+Rho22CQ8+uN3lsDcWTkQWHza4zVmBheQkU66mDmpwSDFV1UMmvwvGAW+BJy2J4h16Qk5bFxZdv9nuulDS+dJkKKTYHfIaPq68e1juWXmOV/ndMklMS3ufllORRnF8ochuesiJ6TxsOTUNdVFVWIdI3CFe3HMLwVTOha2EMAEiNike4jz/GrmmZbocKgt8ctfap0iIoa4v+Pr9NSVYeHbRNsf9p3S7yslIy+GXoQkizOeAzDE4E3K6TSG4KijL1HJPK6j8mvU1ZVh52OmbY63tJaPnThFdQ5PLwret0gFV9g+Ve1HNcD3vcpPFLEvosyKeCknGEkFate/fuQi2WnJ2dsWnTJlRVVSE4OBjr169HYGAgsrOzBa0I4uPjYWNjA11dXQwdOhT79++Hk5MTrl69itLSUowfP17ke4WGhqJTp06CRBwA9OzZE3w+H+Hh4dDW1kZ6ejrWrl2Le/fuIS0tDVVVVSguLkZ8fLzgNQwNDQWJuJqY36esrAxlZWVCy7jcph8viMUCmAa0Bncy7ICSijK8SBHdnbcp43kbA7yzhVrtdTVdlmteKNg/EKcOH8OiVUth2cEayYnJ2PPXThw/oIbJs6bVeb2bV2+gS3cnqGtqNKoeDVLr7/6uz+Jk4B2oyili0/AlYAHILSnE3chnGNfRFfxmmnVKumc38OZNFzwv/O2v/+KuHeS7dyIpG0vIjh6Gkn1HURkVA46OFuRmTAI/dxjKzldfaBXv/Be8z2dB+e9NYKqqUBX7GhUPn4BjIrqlV9OrveMxdfbFN6sYsFgs9Jw5HDJy1d/JqjH98GDfRXSdMBBSMtLNHGs9WCwwtXeq/+gra2FetxE4FXgXAckRUJVTxMwuQ7DQeTR2PDoHoHq8rXGdXLHH9xIiM+Kho6SBuU7DkdOxAKeD77VcPURUob69S09JA1Md3XHp5X28SI2GiqwiJjoMwMyuQ7Hvqeju7c2hzjHqv32kNj6fj6u7T6DH6IFQ06k7sL5gcz4DnqIC3GaNBZvNho6JPgpz8+F33btZknGC9/3I7boZ2aCkogzBya2hNYlwLVhg1Xt4qvmMzgTfQ1lldctWj7DHmGg/EFdf+QgGcC+vrMCuR+cgw5GGqboe3K26I7skH3HZzdM6ribut73rPK2iowEVnTfnLG0zAxTm5CPo1iPoWhijvLQMnvvOo/e0ESLHkWtOdcOu/zj1NmcjW5RUlIps5VpWWY6Ndw6BKyUDSy1DjOvoisyivHoH8m9qLDTsu9LTuCOKK0rhnxwutNxS0xDDrHvgiL8HYrKToa2gikn2A5FnU4grrx42S8ySij6LRmrIBQBpUZSMI4S0SaWlpXBzc4ObmxuOHj0KTU1NxMfHY9CgQSgvLxeUmzt3LqZNm4YtW7bgwIEDmDhxIng80XfNmXouqIA3P+JnzpyJjIwMbN26FUZGRuByuXB2dha8JyPiRNeQ7o+//PILfvjhB6Fl69atAxxU3rutKEVlJaji86FYqxWcggxPaDbF+nQztMGzxFBUNVPiR0lFGWwOG9lZOULL83JyoFKrtVwNVTU15GQLt5rLzckFh8OBknL1wPuH/zmAfoMGwn3EUACAiZkpykpLsO23LfhsxhShMXXSUtMQ+Mwf329c34Q1qyu/rAhV/Cqo1moFpyKrIHIiDQAor6rEXz5nsOPhOajIKSKnJB+DLLujuLwU+aXv//w+RsXzIBREvbUPSlf/RGCrKKMq980kAWxlRTB59Xcjkp0wCuUPHqPcs3qwd35CEsDlgjdvOsouXAMYBvy0DBT++DvAlQFLTg5Mbh54yz4HPz2zWepWg6vAA4vNQmmB8N320sLiei9a5ZQUIKesIEjEAYCyjjrAAMW5BVDSUmvWmAvKilHFr4KKnPD+oyyrgNwS0S1nxnV0QWh6HC6GVA+O/jonFXt8L+KXIQtxLOAWckoKMNlhILyi/XEn0q+6TG4aZKWk8UWPMTgT7NmgC+jG14sPZTnhv7uSrDzy6xl8f7hNL0RmJghaMSQgHWV+5fh+4CycDfZEXqnov0dTkVOUB4vNRlGu8Pe2OL8QPCWFOuXLS8qQFpuI9NfJuHukuoUGwzAAw2DTrG8w/su5MLQxh7yKItgcjtDxSU1XC0V5BaiqrARHqml/rtecH5S4wn97RS4P+Q04P3Q3soVfwqtmOz80RHF5Kar4fCjICJ/j5GVkUVguug4FZcXILy0SJOIAIKMwF2wWC0qy8oLukQwg+H9qQRY05VXRx9S+WZJxsv8dk2q3gistKBK5T9VHy0QfUU+qhwLIz8hGQVYubu48Llhf89vknwU/YOKPS5r8uFVYs0/VarWkKMtr0Dmrh7EdnsSL3qcYQDDRUWJeOnQV1eFu1Q2RPk2bjCso/++YVLsO3PqPSW/rbdIJj1+/RFWt7uWjbfvi0euXghlKk/IyIMORxowuQ3D11cNmPtK2TfRZkE8FjRlHCGnVfH196zxv3749wsLCkJmZiV9//RW9e/eGlZWVYPKGtw0ZMgTy8vL4+++/cePGDaGurbXZ2NggMDAQRUVvTvQPHz4Em82GhUV1d7AHDx5g6dKlGDJkCDp06AAul4vMzEyh14iPj0dycrJg2ePH72/+/u233yIvL0/o8e233753u/pUMXwk5qXDUlN4sHBLLcP3XlCYq+tDU0EVvq+bZ+IGAJCWlkZ7SwsE+D0XWu7v9xw2th1EbmNlawP/2uWfPkN7KwtI/XexWlZWBhZbOPnJZnPAMEydROntax5QVlWBk7Po8eSaSiW/ClFZSbDXay+03F7P4r1dbaoYPrKK88BnGPQx6YSnCaHNlyQpLQU/Lf3NIzEZ/JxcSNm9NRg6hwMpa0tURryjxaSMTN27r3x+3WaQAFBWDiY3Dyx5HqQ72qLiuehJFJoKR4oDNQMdpITFCS1PCYuDhonocY00TduhJK8QFWVvkvz56TlgsVjgqYjuZtyUKvlViM5Kgr2e8Hh69nrm9e4/XI5Mnf2dX+s5lyNdTxlWva0Em1IVn4+47BTY6pgKLbfVMa23xYuMVH0xi969mhpHSgraxu0QFyLceicuJBJ65sZ1ynPluJjx80pM37Bc8Ojk2h1qupqYvmE5dMyqj8/t2hsjNz1LaIbenLRMyKsoNnkiDqg+riTkpsFKq/b5wQixWcn1bFXNXEMfWgqqeBz38p3lmlsVw0dyfibMak04YqahLzQhw9vic1KhKCsPGc6bv6m6vDL4DP+dF/is/7qzNQeOlBQ0DPWQ9Er4mJoYGg1tM9FjJ4qSlZAi6D6toqOBcesWYuyaBYKHUUdL6FmaYOyaBfXOGt0YVQwf8bmpsK41jqW1lhFi3tPFt72GAbQUVPEo7kWD3685Po8qPh+vc1Jgoy08pmgHbRNEZb17jLrqsezU8CAmqM46GY5UnfM2wzDVbSFb4sDVBtFnQT4VlIwjhLRqCQkJWLlyJcLDw3HixAls374dy5Ytg6GhIWRkZLB9+3bExMTg8uXL2LBhQ53tORwOZs6ciW+//Rbm5ubv7DI6ZcoUyMrKYsaMGXj58iU8PT2xZMkSTJs2Ddra1QNCm5ub48iRIwgNDcWTJ08wZcoUyMnJCV5jwIABsLS0xPTp0xEUFIQHDx7gu+++e289uVwulJSUhB6N7abqFeWP7ka26GZoA20FVYyy7QNVOUU8jKu+ez7MuiemOLrV2a6bUQfEZacgtSCrUe//PqMnjsPNK9dx8+oNxMe9xp6/diEjLR1DRg8HABz4+1/8ueFXQfmho4YjPTUde7ftQnzca9y8egO3rt7A2EkT3sTe0xnXLlyB1517SE1Ogf/TZzj8zwF079UDnLfGa+Lz+bh9zQMDBruBI9U8F1lvu/jyPtwsnDCwfVfoK2thrtNwaCqoCFr4zOg8GCv7fCYor6ekARczR+gpacBCwwBfuUyBkaoODjfTGH71KbtxB7KjhkK6qwPY+u3A+2I2mLJylD98IijD+2IOZD8bI3he6R8E7gAXSDs7ga2pASk7G8hOGIWK54GCJJ1Uxw6Q6mQrWK+w5ktUpaSi3Kv5u4lY9euK6EdBiH4cjLzUTDw/dxfF2flo39seABBwyRuPDr8Zt8i4qw248nLwPXodeSmZSItKQMAFT5g627VYF9VLIT4Y0L4r+pt3gb6yJmZ3HQYNeRXcDK/+HKY6DsKyXm++B36JoehuZAt3y27QVlCDlZYR5nYbLjQhi19iGNwtu6OXSUdoKaiik645JjsMhF/CqzqJu+biEf4YfU0d0cfUHnpKGpjs4AZ1njLuRVYn3cd36of53UcKygckRaCzgRX6mXeGprwK2msYYGrnQYjOTKq3lWBT6+LeGy+8n+LFfT9kJafB89hlFGTlolO/6qT+/dM3cH3PSQAAi82Gpr6O0IOnJA+OtBQ09XUgw5UBAHTq54ySwiLcO3YZ2akZiA4MxZMr9+DQv0ez1cMz6jmcje3Q3agDtBXVMMauL9R4ioKZB4fb9MK0zu51tnM2skVsdgpSRJwfOCw22ilrop2yJqTYHCjLKaKdsiY05FWapQ6P4oLRWd8Kju0soSmvgsFWzlCWVcDT+FAAwECLrhhr5yIoH5wShZLyUoy2c4GmvAqMVHUwyLIb/BPDBV1U+5jaw0y9HVTlFKEhr4wexnaw17No1klCOg50RpiPP8J8/JGTkoFHpzxQmJ0H677VExw9PX8HnvvPC8q/uPMYcQGhyEvLQnZyOp6ev4NY/1B0cHUCAEhJS0OtnbbQg8uThTRXBmrttJslwQsAdyOfoadJRzgb2UJHUQ3jOrpClackaIU0skNvzOhSd5zNnsZ2iM1KRnJ+3ZbRgyy7wUrLCBryytBWVEP/9l3Q3agDnsa/apY63Ix4ij4m9uhl0hG6iur4zH4A1HhK8Ir2BwCMtXPBXKfhdbbrbdIJ0VlJSMrPqLMuKCUKrmaOcDKwgYa8Mmy0jTHKtg8CkyNF9qZoaXLSXLTX0BdM5qOnpIH2GvrQVmj+GXjf5VP8LJrdfy2zW+XjE0XdVAkhrdr06dNRUlICJycncDgcLFmyBPPnzweLxcLBgwfxv//9D9u2bYOjoyP+/PNPjBgxos5rzJkzBxs3bnxnqzgA4PF4uHnzJpYtW4auXbuCx+Nh7Nix2Lx5s6DM/v37MX/+fDg4OMDQ0BAbN27E6tWrBevZbDYuXLiAOXPmwMnJCcbGxti2bRvc3ete1DS3gOQI8GRkMciyO5S4PKQUZGGP7yXBxbiSrDxU5YTvkMtKyaCTrjnOvzWYdXPpO8AVBfn5OH7gCLKzsmFsaowf//wF2jrVic/srCykp71p7aijp4sf/9yIvdt24cr5y1DXUMeC5YvRy7WPoMykGVPBYrFweO8BZGVkQllVBd16dseM+XOE3jvAzx/paelwG9oyn8uD2CAocnmCH5Ovc1Kx/tY+QdcbVZ4SNN+6YGWz2Bht2wftlDVRxa9CcEo0vry6E+mFOaLfoJmUXb4Blow05GZPBUteHlVRMSjcuBkoLX0Tq4aa0A+p0vNXwTCA7MRRYKupgskvQMXzIJSeenMxyeLJQXbS2Or1hUWoePocJScvAFVVzV4n487WKC8qwYsbD1GSXwQVXQ24fDEeCmrVE1aU5heiKPtNN1xprgz6LZ6IZ2du48bvh8CVl4OhoxU6Devd7LHWeBgXDCUuDxPt+0NVThHxOanYcOegYP9R4ylBU0FFUP5e1HPISXExxKoHZnUdiqLyUgSnRAslc08H3QPDMJji4AY1njLyS4vglxCKYwE3W6xeT+JfQUGGh5Ed+kBFTgGJeenY5H0cWcXV3aJVZBWgzlMWlPeJDYKclAwGWHTFJAc3FJeX4lV6LE4H3m2xmK262aOksBiPL91BUW4+NNrpYMzK2VDWqL5wLcrLR3527ge9ppK6CsZ/OQ+ex6/g0PdboKCiBEe3XnAa6tL0FfiPf1IE5GXk4G7ZHUqy8kjJz8Lfjy4Izg/KsvJQrdU1WlZKBvZ67XHuhZfI11SWU8A3/d6MzTmgfRcMaN8FkRkJ2OZzpsnr8DI1BjxpWbiYO0KRy0NaQTaOPL8h6K6swOVBWe5NV8/yqkocfHYNQ617YkGPMSgpL8XL1BhBV22geibr4Ta9oCQrj4qqSmQW5eJs8D28TI2p8/5NxayrLUqLiuF/zRvFeYVQ09PC4CVToKiuAgAozitAYfaboQKqKqvge/YWinILICUtBVU9LbgvmQxDO9ETurSU54nhkJeRw1DrHv/tU5nY+fCcoMuvsqwC1Hh19ymHdhY4HSR6nEouRxqTHAZCRU4BFVWVSC3IxgG/a3ieGC6yfGP5JYRCQUYOI2x6QVlWAUl5Gdj64JRgRs7qOgj/bpKT5qKzvhVOBN4W+ZpXXvmAYRiM/u+GaEFZMYJSour9HrU0K00j7Bi9UvB8aa/qcZWvhz7Gz/cOiSusT/KzIJ8eFvNJpIEJIW2Ri4sL7O3tsXXr1ka9zsOHD+Hi4oLExERBC7e2YvmlreIOodG2jlyOmMx3dyto7Uw19DFs/5fiDqPRrs7+A7mfzXl/wVZM5eQ+/Hh7v7jDaLS1A2dj1MFvxB1Go12c+Sumn/hR3GE0yuFJa/FPrVn32qJ53UdiyYXN7y/Yim0fvRJrPPaKO4xG2+A+H5u8T4g7jEZb1XcSFp4TPQN9W/H32C8x+/RGcYfRaPsn/A89d7bM7LjN5eGi3RLzWbRFufOXizuEeqns3SruEMSCWsYRQiRWWVkZEhISsGbNGkyYMKHNJeIIIYQQQgghpNH44pt0h4hGY8YRQiTWiRMnYGlpiby8PPz+++/iDocQQgghhBBCCKGWcYSQ1svLy6tR28+cORMzZ85sklgIIYQQQgghhJCmQMk4QgghhBBCCCGEEElFUwW0OtRNlRBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVNRNtdWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKTiUzfV1oZaxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpISyGoWk1CCGEEEIIIYQQQiRR7pT54g6hXirH9oo7BLGgMeMIIaQVO+x3XdwhNNr0rkNQEBkl7jAaRbG9OQbuXSbuMBrt9vy/sNbjH3GH0Sg/us/DqIPfiDuMRrs481f037NU3GE02t3Pt6EgNU3cYTSKoo62xBxrt94/Je4wGmV5n4m4GuIj7jAabViHXkjJyxB3GI2mq6wJ939WiDuMRvGYtwV9/14k7jAazXvhTsw+vVHcYTTK/gn/Q8+dC8QdRqM9XLRb3CEQCUHdVAkhhBBCCCGEEEIIaSHUMo4QQgghhBBCCCFEUvH54o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQScUw4o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgohk/dVFsbahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUDM2m2tpQyzhCCPnPzJkzMWrUqA/axtjYGFu3bm2WeAghhBBCCCGESB5qGUfIJ2rmzJk4dOhQneWDBg2Ch4dHs793bm4uLl682Kzv86H++usvME181yguLg4mJiYICAiAvb19k752bc9u+8D3uicKc/Oh2U4HA6eOgqGV2Xu3S4iIwZGfdkJTXwfzNn4pWB7mF4yHl28jJy0T/Co+VLU10H2IC+x6dW3OaoBhGOw9fhwXbnqgoLAQHSws8fXChTAzMqp3m+jXr7H72FGERUUhJT0dK+fNw+SRo+otf+D0aew8fAiTRozEqvnzm7wOw216YXzHflDnKSEuJxV/Pz6Pl6kx9ZYfYdMLIzv0hraiGtILc3A84DbuRPqJLOti5oDv+s/Ew7hgrL+1r8ljf1tXA2v0MukEBa4cMgpzcCPMF69zUustz2Gx4WLuiE565lDg8pBfWgTv6AAEJEUAADrrW8JezwJaiqoAgOS8TNyJ9ENSXkaz1WGwZXeMsu0DVZ4iEnLSsO/pVbxKj6u3fB9Te4y27Qs9JXUUlZciICkCB59dR0FZsaDMcJuecLfsDg15FRSUFeFR3Esc8fdARVVls9VjhE0vTOjUX7BP7Xp0Di/esU+N7NAbIzv0hs5/+9Qx/1u4/dY+NcjCCV+5Tq2znfu/K5u0HgzDYO/BA7hw5QoKCgrQwcYGXy9fATMTk3dud9fbC7v37UNicjL09fTwxdx5cO3TR7B+z4H9+OfgQaFt1NXUcPPCRcHzrOxsbN+zG75+figoLIRjp074ctkyGOobNKpOknKsfen5FIE3fVCcVwhVPU30nDgYehbGIssmhcfi8p8H6iz/7MclUNXVBAC8uv8M4Y8DkZ2cDgDQNNJDt9EDoG2i32x1eHjjHrwu3UR+Ti50DNph5OzPYGpjIbJsTGgkrh0+i/SkFJSXl0NVUx3Obn3Rd7iboIzvbW8883qM1PgkAIC+mRGGTBkDw/amTRr3xbPncfLICWRlZcHE1BiLVyxDR4dO9ZYP9A/Arq3bERsTBw0NdXw2bQpGjh0lWH/f0xtHDxxGUmISqior0c5AHxOnfAa3Ie6CMpWVlTj4z37c8biN7OwsqKurw33YEEybPQNsdtO0zxhm3RPjOrlCTU4Jr3NSsdv3IkLecZwabtMTw216Q1tRFRmFuTgReBt3I58J1rtbdscAi64wUtUBAERlJuKA3zVEZMQ3SbyijOrQG5/ZD4AaTxlxOSnY8fAsglOi31G+D8bY9YWOohrSCnNw9LkHbkY8FazfOmIZHNrV3Scfv36Jb67/3Sx1AABXM0e4W3aHipwCkvIycCLwDiIzE0SWnd11GHqZdKyzPCkvA2tu/iN4PrB9V7iaOUKNp4TC8hI8SwzD2WBPVPKrmq0eDdFJ1xyTHdxgpWUIDXkVfHP9bzyIDRJrTIQ0BCXjCPmEubu748AB4R/XXC5XTNGIn7KysrhD+GivfANw++hFuM8cBwMLE/jfe4STf+zF5799A2UN1Xq3Ky0uweXdx2HSoT0K8wqE1snJ89BzxEBo6GmDI8VBZEAIruw9CZ6SIsw6WjVbXQ6dO4vjFy9g3YoVMNRrh32nTmHRmu9xbvceyPN4outRVgZ9HR0M6NkLm//9R2SZGiEREbhw0wPtjd+dDPhYfU0dsNB5NLb7nEFIWiyGWvfAxsELMOf0L8goyqlTfph1T8x2Go4t908iPCMeVlqGWNH7MxSWFcM3PkSorJaCKuZ3G4XglKhmif1ttjqmGGztjKuvHiI+Jw1dDawwtbM7dvicQV5pkchtJtj3hwJXDhdf3kd2cT7kZeTAZrEE643V9BCcEoWE0DRU8qvQy6QTpncZjB0+Z4WSXU2lp3FHzHYahj2+lxCWHodBlt2wZuAsLLm4GZlFeXXKW2sZYVmvCdjvdxV+CaFQ5ylhgfNoLOoxFr96HgFQnayb1tkdO3zOIiwjHnpKGljaazwAYL/f1SavA1CdgP2ixxhs8zmDl6kxGGbTE78MWYjZpzcivbDuPjXcphfmOA3H5vsnEJ4eDystI6zs8xkKy0vw+PVLQbnCshLMPPWT0LZNnVA8dOI4jp8+jXXffgtDfQPsO3IYi1atxLmjx+r9Pge/fIn//fADFsyeA9feveH54AG+Wb8O+3bshK2NjaCcqYkJdm3aLHjO4XAE/2cYBqu/+w5SUhxs+nkj5OXlcez0KXyxciXOHDoMOTm5j6qPpBxro/xe4OGpG+g9ZRh0zQ0R4u2Ha9uO4rMfFkNRXaXe7SZtWAoZuTe/E2QV5QX/Tw6PQ3unjtAxMwBHWgqBN31wdcthTPxhMRRUlZq8DgE+T3HpwEmMmTcVJtbmeHzTG//8tBVf/bUBqprqdcrLcGXQc0g/6BnpQ0aWi9jQSJzdfRgyXC6c3foCAKJehsOhlxOMrcwhJS0Nz4s3sOeHzfjqrw1QVq//8/0Q927fxY7N27D8q1Ww62SHyxcu4avlq3Ho1BFo6+jUKZ+SlIxvln+JoaOG47sf1uJF0Ats/X0TVFRV0LefCwBAUUkR02ZNh6GxEaSkpfHY5yF+3fALVFRV4eTcDQBw4vAxXD5/Cd+u+w7GpiYIDw3Dbxs2Ql5BHuM+m9DoevUxtcfnzqOw8+FZhKTFYohVD/zkPh/zz/yKjKLcOuWHWvfAzK7D8NeDU4jISIClpiGW9Z6AwrISPPnv3NdRzxxeUf54lRaL8qpKjO/UDxsHL8DnZ39DVnHdY3hjuZo5YnHPcdjy4BRepkRjeIde+G3oIsw4uUHksXZkh96Y330E/vA6jrD017DWNsaXfSejoKwYj/471q65+Q+k2W8uuZVk5bFvwrfwig5o8vhrdDWwxiT7gTji74GozES4mDlgRe+J+P7mXmQX59cpfyLwNs6+8BQ857DY+MFtDp4lhgmWdTfsgHEdXbHf7yqiMpOgo6iGOU7DAAAnA+80W10aQk6ai6isRFwPe4SNgxeINZZWjU/dVFsb6qZKyCeMy+VCR0dH6KGq+ubHJovFwp49ezBs2DDweDxYW1vj8ePHiIqKgouLC+Tl5eHs7Izo6Dd3DNevXw97e3vs2bMHBgYG4PF4GD9+PHJzcwXrDx06hEuXLoHFYoHFYsHLywv9+vXD4sWLheLLysoCl8vFvXv36sSel5cHDoeD58+fA6i+8FJTU0PXrm9aEpw4cQK6urqC50lJSZg4cSJUVVWhrq6OkSNHIi4uTrC+djfVgoICTJkyBfLy8tDV1cWWLVvg4uKC5cuXC8VSXFyM2bNnQ1FREYaGhti7d69gncl/rT8cHBzAYrHg4uLy7g/lIz254QV7l25wcO0OjXbacJs2GkrqKvC/+/Cd293YfwYdnB3Rzty4zjojG3NYde0IjXbaUNXWgJN7X2gZ6CIhvP673I3FMAxOXLqEWRMnol+PnjA3NsYPK1eitKwMHt7e9W7XwcICy2bPwaC+fSEjLV1vueKSEqz58w98t2QJFBUUmqMKGNvRBR7hvrgR7ov43DT8/fgCMgpzMNymp8jyA9p3xbXQh/COCUBqQRa8ogPgEe6LifYDhMqxWSx82286Dj+/gdT8rGaJ/W09jO3gnxgO/8RwZBbl4kaYL/JLC9HV0EZkeXMNfRir6eLo85uIyUpGbkkhkvIykJCbLihzLtgTfgmhSC3IRmZRHi69fAAWiwVT9XbNUoeRHXrhTuQz3In0Q2JeBvY9vYrMojy4W3YXWd5C0xAZhTm4FvoI6YU5CE1/jVvhT2Gu8SY+S01DhKW9xv3YIKQX5iAwORIPYoKEyjS1cXauuBHmi+thjxGfm4Zdj84jvTAHw216iSw/sH1XXA19CK/oAKQUZMEz2h83wn0xsVP/WiUZ5JQUCD2aEsMwOHHmDGZNm4Z+ffrC3NQUP3z7v+rv853b9W534uwZdOvcBbOmToWxkRFmTZ0Kp86dcfzMGaFyUhwONNTVBQ9VFRXBuvjERLx4FYJvVq5CB2trGBsa4psVK1FSUoKbd+9+dJ0k5VgbdPsRrHo5wqZ3Z6jqaqLXZ0OgoKqEEG/RLXJryCnJg6esKHi83aJqwLxxsHV1goahLlR1NdF3+kgwDIOk0Oapx/0rt+DUvze6D+wDbX09jJozCSrqanh000tkeX1TIzj27gYdw3ZQ09JA577OsLS3RWxohKDM1BXz0XNwP7QzMYS2vi4mLJwJhmEQGRzaZHGfOX4SQ0YMw7BRw2FkYowlK5dBS1sLl85dFFn+8vmL0NLRxpKVy2BkYoxho4Zj8PChOHX0hKCMQ2dH9HbtCyMTY7TTb4dxn02AmbkZXgQFC8qEvAhBrz694NyrB3T1dOHS3xVduzkhPDS8Seo1xs4FN8OfwCP8CRJy07HH9yIyCnMxrJ5zX//2XXAj9BHuxwQitSAL3jEBuBn+BBM69ROU+d3zKK6GPkRMdjIS89Lx14NTYLFYsG/Xvklirm1Cp/64HvYY10If4XVuGnY8PIeMwhyM7NBbZHk3CydcfvUQntH+SCnIwr2o57gW9giTHN60tiwoK0Z2Sb7g0cXACmWV5fCK9m+WOgDVLZ8fxAbhQWwQUgqycCLwDrJL8uFq5iiyfElFGfJLiwQPY1Vd8GTk4PNW6zIz9XaIzEzEk/hXyCrOQ0haLJ7Ev4Kxqq7I12xJvvEh+OfJZXjHBIo7FEI+CCXjCCHvtGHDBkyfPh2BgYGwsrLC5MmT8fnnn+Pbb7/Fs2fVXQlqJ9GioqJw+vRpXLlyBR4eHggMDMSiRYsAAKtXr8aECRPg7u6OlJQUpKSkoEePHpg7dy6OHz+OsrIywescO3YMenp6cHV1rROXsrIy7O3t4eXlBQAIDg4W/JufX33Xz8vLC337Vt/tLi4uhqurKxQUFHD//n34+PhAQUEB7u7uKC8vF1n3lStX4uHDh7h8+TJu376NBw8ewN+/7o+nTZs2oUuXLggICMAXX3yBhQsXIiys+m7i06fVXRXu3LmDlJQUnD9/vmF/+A9QVVmJlNhEmNhaCi03tbVEYmRcvdsFeT9BTlom+owZ9N73YBgGsS8jkJ2a0aDuWB8rKS0VWTk56O7w5gejjLQ0HG1tERza+Iuh3/7+Gz27dkU3e4dGv5YoUmwOLDQM8DxR+OLmeWI4OmiLboknzZFCea3WSGWVFbDUNASH9eY0PdXRHbklhfAI9236wGvhsNjQVdJAdGaS0PKozCQYqmiL3MZKywjJeZnoZdIRq10mY2nvCRhk2Q1SbI7I8kB13TksNkoqyuot87Gk2ByYqbdDYHKk0PLA5EhYaYnu8hyW/hrq8sro3K76u6QsqwBnY1uh1gGh6XEw02iH9hrVXe+0FdTgqG8pVKap62GhaVDn9Z8nhr17n6qsEFpWVlkBKy0jcN5KnshJc3F88nqcnPIjfnafD3P1pu1OmJSSgqzsbHTv8uYmiYyMDBw7dULwy5f1bhccEoJuXYW7aHbv6oTgEOFt4hMT4T5mNEZMnIBvf1iPxORkwbqK/47rXBkZwTIOhwMpKSkEvgjGx5CUY21VZSUyXqfAwEb49Q06mCM1+t3d/878+DcOrf4dlzcdQFLYu5NsleUV4FdVgSv/ca0Q3/naFZVIjH4Ny04dhJZb2tsgLqxhLYcTY14jLjwKpjaW9ZYpLy9DVVUVeG+1AGyMiooKhIdFoGs34f27a7euCAkW/Z0IeRFSp7xTdyeEh4ahsrJuS1aGYfD86TMkvI5HJwd7wXI7ezs8f/YcCa+rP+OoiEi8CApG9x6ib058CCk2B+019OGfJHzu808Kh7W2schtpNl1z33lVRWwqHXuextXSgZSbHaztKSuOdb6JQj/1vBLCIWtjuhuyvUda61rHWvfNtTKGfeinqO0UvRvz8bisNkwUtVFSJrw9zMkNbbBx/jepp3wKi0WWW+1oovMTISxqg5M1KqTb5ryKrDTNWuRlvqESCrqpkrIJ+zq1atQqNU66Ouvv8aaNWsEz2fNmoUJEyYI1jk7O2PNmjUYNKj6omLZsmWYNWuW0GuUlpbi0KFD0NevPulv374dQ4cOxaZNm6CjowM5OTmUlZVB563uGGPHjsWSJUtw6dIlwfsdOHAAM2fOBOutbm5vc3FxgZeXF1atWgUvLy/0798fMTEx8PHxwZAhQ+Dl5YUVK1YAAE6ePAk2m41///1X8HoHDhyAiooKvLy84ObmJvTaBQUFOHToEI4fP47+/fsLyuvp6dWJY8iQIfjiiy8Ef6MtW7bAy8sLVlZW0NSsHktHXV1dqL61lZWVCSUigYZ3GS4uKALD50NBWVFoubyyIgpz63ZHAIDs1Ax4nrqKaWuWgM2pP1lSWlyCbUvWo6qyEiw2G+4zx8HUrv4Ll8bKyqnuBqL+VguXmucp6Y0bV+ymtzfCoqNweMvWRr3OuyjLyoPD5iCnRPjvnlNSAFWeoshtnieGYbBVdzyKC0ZkZiIsNAzgbtkd0hwpKMsqILskHx20TeBu2R0Lzv3ebLG/jScjCw6bjcJy4QueovISKHBFX1iryinCUFUblfwqnAi4DZ60LIZ16Ak5aS4uvrwvcpuBFl2RX1qEmKwkkesbQ5HLA4fNQW6t1l55JQVQlRM9plR4Rjw23z+J1S6TIc2RghSbgyfxr/CP72VBGZ/YYChzFbBx8AKwWCxIsTm4EfYY51/U33KzMd7sU8L1yCkpgFo9+9SzxFAMsXLGw7gXiMxMgIWGAQZbdnuzTxXnIz43Hb97HUNMVjLkZWQxxs4Ff41cjvlnf0NSftOM4ZeVXd2CU11NTWi5uqoaUtLqH3swKzsb6qrCXQLVVVWRlZ0teG5rbYMf/vc/GOkbICsnB/uOHMacRV/g1MFDUFFWhrGREXR1dLBj7178b/VqyMnK4tjpU8jKzkZm1se1LJWUY21pYTEYPh88JeHzv5yiPIrzCkVuw1NWRN9pI6BppIeqykpE+Abh8uZDGLl6Vr3jzPmeuw15FSXo2zTteGsAUFRQAD6fDwUV4e6vCsrKKMitP9ELAD/OXY3C/ALw+VUYNGEkug/sU2/Za0fOQVlNFe07im4R/KHycvPAr6qCqrrwd0JVTQ3Z9eyX2VlZUFXrJlxeXQ1VVVXIy82FuoYGAKCwsBDjho5GRXk52BwOVny1El3eSuJNnj4VRYVFmD5hCthsNvh8PuYunI/+gwY2ul5KNcepYhHHKTnRXZSfJ4bB3ao7Hr1+gajMRLTXMICbRTehc19ts7sOQ1ZRnmAc0qakLKsAKTanTjfO6mOt6Dr4JYRimHUP+MQGISKzuqvtECtnoWPt26y0jGCq3g6/eR1r8vhrKMrwwGGz6wwnkV9WBGXZ9yeVlWXlYadjhr2+l4SWP014BUUuD9+6TgdY1cnLe1HPcT3scZPGT5oRwxd3BKQWSsYR8glzdXXF338LDx6rVuuiqWPHNwO6amtXt4ixs7MTWlZaWor8/HwoKVX/WDE0NBQk4gDA2dkZfD4f4eHh9SakuFwupk6div3792PChAkIDAxEUFDQOyd5cHFxwb59+8Dn8+Ht7Y3+/fvD0NAQ3t7ecHR0REREhKBl3PPnzxEVFQVFReGLqNLSUqFutjViYmJQUVEBJycnwTJlZWVYWta9OHr7b8RisaCjo4P09PQ65d7ll19+wQ8//CC0bN26dTAd6lTPFiLUSloy/8VTG5/Px8WdR9B7rDvUdbXe+ZJcWS7m/rwa5WXliAuJwJ1jF6GqqQ4jG/OGx/UONzw9sXHnDsHzrevWAyLiZpg61fsgqRkZ2PTPXuz4cYNQS5nmUnseEBar+vMQ5aj/TajyFLFt1EqwUP3D/1bEE0y0HwA+w4ecNBdfu07DlgcnkV8meqy2llTfHCc1n9nZ4Hso+6+lgEdYdXfbq68e1hnguZdJR9jpmuHA02stO/gziwWmnk9DX1kL87qNwKnAuwhIjoCqnCJmdhmChc6jsePROQDVY+mN6+SKPb6XEJkRDx0lDcx1Go6cjgU4HVy3S33TqR0zq97P4sjzm1CVU8KOUSvBYlXvUzcjnuIz+wHg86t/jIemxyH0rYksXqbGYvfYLzHKtg92/lfXD3Xj9i1s3LRJ8Hzrr79VR1rru8swTL03WQTqHM+Et+nZ/U1rHnMAHTt0wKjJk3DVwwNTJ06ElJQUfv9xAzb8/hv6DRsKDocDp86d0aObcFLjo7TBY61IIj6C+j4XVR0NqOpoCJ7rmBmiMDsPgbceikzGBXg8QNTTFxj55SxIvWPogMaqG+77TxaLfv4a5aVleB0RjWtHzkFdVwuOvevuF/cu3ECAzxN88eNXkJZp2jqwUPsc9+64654Ta778b5bzeDz8e/QASkpK4O/3DDu37oBuOz04dK5uaX7v9l3cvnEL329YBxNTE0RFRGLH5m1Q19CA+7DBTVOxWscpFlDv8fZ4wG2o8pSwdeRywbnvduRTTOjUH1UikgbjOvaDi5kDvrq2s1knyxGlvsm9Dj27ATU5Jfw95kuABeQUF8Aj3BeTHdzAF1GHoVY9EJOVhLD0180dch3Vn8X79TTuiOKKUvgnC7dytNQ0xDDrHjji74GY7GRoK6hikv1A5NkU4sqrd3fTJ4SIRsk4Qj5h8vLyMDd/9w996bd+RNf8GBS1rOYCT5SaMu+7+Jo7dy7s7e2RmJiI/fv3o3///jB6xwyaffr0QUFBAfz9/fHgwQNs2LABBgYG2LhxI+zt7aGlpQVra2tBfJ07d8axY3XvRta0XntbzQ+v+n8AvyFd60KDxWK98+8hyrfffouVK1cKLeNyuTgV/P6xjXiK8mCx2XVaZhTnFUBeuW7LmfKSMqTEJiD1dRJuHqruNsswDMAw2Dh9FSZ/vQDGHarHY2Gx2VDTqf776Bi1Q2ZSGh5dudNkF4h9unWD7VsJzvKK6iROZk4ONN5KDGfn5UJN5eMHzw6LikJ2bi6mLV8mWFbF5yMg5CVOX72CRxcuCg3+/rHySotQxa+qcxddRVYRucWix+Mqr6rAJu8T2Hr/FFR5isguzscQqx4oKi9FXmkRTNX1oKukjg2D5gm2qdkvPeZuxqxTPyOloGnHkCsuL0UVnw8FGeEB9uVl5FBUXiJym4KyYuSXFgkScQCQUZgLNosFJVl5oRYCPY3t0NvUHof8riOtMFvUyzVaQVkxqvhVUJET/g4oyyogt0R0659xHV0Qmh6HiyHVLfle56Rij+9F/DJkIY4F3EJOSQEmOwyEV7S/YLbb17lpkJWSxhc9xuBMsGe9F54fq2afUq3VukRVTqHeMd7Kqyrwp/dxbHlwEqpySsguzsNQ656CfUoUBgzCM+Khr1z3eNhQfXr2gq31mxZEgu9zVjY01N8kcrJzc6CmWv/3WV1NTagVHABk5+S+cxs5OTmYmZgiITFRsMza0hLH9+1HYWEhKioroaqighkLPoeNiJsqDdGWj7Vvk1XggcVm12kFV1JQBDmlhnfH1DY1QIRv3RkLA2/6wP/6AwxfOQPq+vW3CG8MecXq8eoKcoQ/i8K8fCgqv3uyCHXt6r+zrpE+CnLzcevUpTrJOM+LHrh77hoWrF8NPePGzb77NmUVZbA5nDqt4HJzcurcDK2hpq5et3x2DjgcDpRV3kw8xWazoW9QfSO0vUV7vI59jeMHjwqScbu37cLkGVPQ3616PFJTczOkpqTi2KEjjU7G5dccp2qf++QU33mc2nL/JLY9OC049w22ckZReSnyax2nxtq54DP7Afj2+t+IzU5pVKz1ySstRKWI87fqe+rwm9dR/Hn/ONTklJBVnIfhNr1QVF6CvBLhOnClpNHPvHOzTfRTo6C8GFV8fp1WcIpc+Tp/V1F6m3TC49cvUVXrd+xo27549PqlYJbSpLwMyHCkMaPLEFx99bCJz3yEfBooGUcIaXLx8fFITk4WdOl8/Pgx2Gw2LCyqu4bJyMigqqpuSxg7Ozt06dIF//zzD44fP47t27e/831qxo3bsWMHWCwWbGxsoKenh4CAAFy9elXQKg4AHB0dcerUKWhpaQla8L2LmZkZpKWl8fTpUxgYVP8Qz8/PR2RkpNDrvo/Mf62wRNX3bVwu96NnsuVISUHXRB+xLyNg1fVNK73YlxGw6Gxb973kuJj3y1dCy57feYjXryIxZulMqGiKviCoUVnRdHek5Xk8oRkVGYaBuqoqngQEwMqsejyjiooK+L98iSUzZ9X3Mu/VtVMnnNyxU2jZj39thZG+PmaMHdckiTgAqORXISIzAY7tLPEw7s24VI76lngU9+Kd21YxfMEMn65mjngSHwIGDOJz0zDvzK9CZWd2HQKetCx2PTovcpa6xqpi+EjJz4SZRjuh1lNmGu3qvaMfn5OGDjqmkHlrDDwNeWXwGb7QBUBP447oa+aAw89uIDk/s8ljr1HJr0J0VhLs9cwFM/MB+O/5K5HbcDkyqGKEv6v8Wgl4Lke6TlK+ugyrugVkE1+RVPKrEJGRgM76wvtUZ30rPHzfPsXnI/O//cPVzBG+r1++M1lopt6uURe6Ir/Pamp48uwZrP47/ldUVMA/KAhLPv+83tfp2KEDnjzzw5QJb2Z4fOLnh44d6h7PapSXlyMu/jUc3mqpXKNmOIb4xASEhodj4Zw5H1w3oG0fa9/GkZKCppEuEkOjYer4Jnma+CoaxvYNn701Mz4FvFpJyICbPvC/5o2hy6ZDy7j5JjWRkpaCvpkRIoJCYNf9zRijEUGv0MHpA8YEZer+nT0veuDO2auYv2YFDERMuNEY0tLSsLSywLOnfujt+ua3xLOnz9Czj+gJWTrYdcAjn0dCy/ye+MHS2gpSUu+4lGMYlFe8GZesrLQU7FpjsXE4HDAfePNQlEp+FSIzE+HQzkLoXOfQzgK+r9/dbfjtc19fMwc8/e/cV2NcR1dMchiI727sQWRmQqNjrU/NsbaLvpUg4QQAXfSt4PPWsVeUKj5fcC7uZ94Zj0Uca13NOkOaI4XbEe+eJKWxqvh8vM5JgY22Cfzf6s7bQdsEAcnv7t5rqWkIbUU1PHhYN8kuw5GqUyeGYarbZjbHyY80PfqMWh1KxhHyCSsrK0NqqvC4PVJSUtDQ0Khni4aRlZXFjBkz8OeffyI/Px9Lly7FhAkTBF1UjY2NcfPmTYSHh0NdXR3KysqC1mVz587F4sWLwePxMHr06Pe+l4uLC/766y+MHj0aLBYLqqqqsLGxwalTp7Bt2zZBuSlTpuCPP/7AyJEj8eOPP0JfXx/x8fE4f/48vvzyS6FutQCgqKiIGTNm4Msvv4Samhq0tLSwbt06sNns93eveouWlhbk5OTg4eEBfX19yMrKQllZ+f0bfqBug11w6e9j0DU1gL65MQI8HyEvKweO/XsAADxPXUVBTh5GLJgCFpsNLQPh2a/klRTAkZYSWv7w8h3omhhAVVsdVZVViA4MxQsfP7jPHN/k8ddgsViYNHIkDpw5DUM9PRjo6eHAmdOQ5XLh/lYSdO2mTdBSV8fimTMBVF/gxyRUD0pdUVmJjKwshMdEgycrBwM9PcjzeDA3NhZ6L1muLFQUleosb6xzwV742nUqIjLjEZoWhyHWPaCloIqrodXdOGZ3HQYNeWX8/t+YMe2UNWGlaYSw9NdQ4MphbEdXGKvpCtZXVFUiLkc4QVJUVt06rfbypvQo7gXGdHQRzIjaxcAKyrIK8IuvHtx6gEVXKHHlcf6FFwDgRUoUXMwcMMquLzwjn4MnIws3y27wT4wQdEPtZdIR/dp3wdmge8gtKYCCTPX4c+VVFXUG8m4Kl0J8sLz3BERlJiE84zXcLLpBQ14FN8OfAACmOg6COk8Zf/mcBgD4JYbiix5j4G7ZDQFJkVDlKWKO0zBEZMQLWkb4JYZhhE0vxGQnIyIjAbqK6pjsMBB+Ca/qJO6aytkXnvjGdRoiMhLwKi0WQ//bp6688gEAzHEaDg15ZfzmeRQAoK+sCSstI4SmVe9T4zu6wkRNV7AeAKZ1dkdoWhyS8jLAk5HFaNu+MFfXxzafMyJj+BgsFguTxo/HgWNHYaivDwN9fRw4erT6+zzgzThVa3/+GVqaGlg8vzpB99m4cZi/dCkOHj8Gl5694PXQB0+eP8O+txLqW3ftRO8ePaGjrYWcnFzsO3wYRUVFGObuLihzx9MTKioq0NHWRlRMNDZt346+vXqhe9cP6P5fi6QcazsN7IG7+85D06gddMwM8Or+MxRk56FD3+oxxnzP30ZRTj76zxkLAAi68whK6qpQ1dMCv7IKEU+CEOP/CoMWfiZ4zQCPB3h66R4GzB0HJQ0VFOdVf2ekuTKQlv24m03v0me4G05s+xf65sYwtjSD7637yMnMhrNb9bni2tFzyMvKweRlcwEAPjfuQVVDDVrtqv/2saGR8Lp8E72GvJm9896FG/A4cRFTV8yDqpYG8nOqk0RcWS64crJNEvf4yZ9h47oNsLS2Qgc7W1y5cBlpqWkYMWYUAGDvzt3ITM/A/36oHr93xJhRuHDmPHZu2Y5ho4Yj5MVLXL98FWt+Wi94zWMHj8DS2gp6+nqoqKjEk4ePcfO6B1Z8vVpQxrl3Txw5eBhaOtowNjVBVHgETh8/hSHDhzRJvc6/8MKXLlMQmZGA0PQ4DLaqPk5dC61OJM7qOhTq8sr40+s4gOpzn6Wm4X/nPh7G2PWFsaouNv23Hqjumjq9y2D8du8I0gqyofpfS+eSirJmmQDhdNBdfNd/BsIz4hGSGoNhNr2gpaiGyyHVx9p53UZAU14FG+8dBlA9tIG1lhFepcdBkcvDhI79YKKmi1/+W/+2odbO8IkNapHhJm5GPMU8pxGIy0lBdGYS+po5QI2nJJjBdaydC1TlFPHv0ytC2/U26YTorCSR44YGpUTBzcIJ8TlpiMlOgpaCKkbZ9kFgcmS93Xhbipw0V6hVt56SBtpr6CO/tAhphTlijIyQd6NkHCGfMA8PD+jqCl8oWFpaCmYC/Vjm5uYYM2YMhgwZguzsbAwZMgS7du0SrJ83bx68vLzQpUsXFBYWwtPTEy4uLgCASZMmYfny5Zg8eTJkZd//w9fV1RWbN28WbA8Affv2RWBgoFALNh6Ph/v37+Prr7/GmDFjUFBQgHbt2qF///71tpTbvHkzFixYgGHDhkFJSQlfffUVEhISGhRXDSkpKWzbtg0//vgj1q5di969ewtmgG1KNt0dUFxQBJ8LN1GYmw9NfV189uV8KGtUt7wozM1HXuaH/SCpKCuHx8GzKMjOg5SMNNT1tDBy4VTYdG+emUhrzBg7DmVl5fj1710oKCyEraUldvy4QajFTWpGBtjsN0nRjOxsTFm6VPD8yPnzOHL+PBxt7bD3V+FWZc3NOyYASrLymOo4CGo8ZcRlp+C7G3uQ/t8PQnWeErQU3nS347DYGNfRFfoqWqjiVyEwORLLLm1ttu6bDfUyNQZy0ly4mDtCkctDekE2jj73QF5pddc2RS4PynJvusGUV1Xi0LPrGGrdA5/3GI2S8lK8TI3B3chngjJdDW0gxebgMwfhAcM9o57DM6ruTMWN9TAuGEpcHiba94eqnCLic1Kx4c5BQQsGNZ4SNBVUBOXvRT2HnBQXQ6x6YFbXoSgqL0VwSjQOP78hKHM66B4YhsEUBzeo8ZSRX1oEv4RQHAu42eTx1/CKDoASVx7TOr/Zp769sbvefYrNYmNcx34wUNZCJb8KQcmRWHJxi9A+pSAjh5V9PoMqTwlF5SWIykzEiit/ITzj3bNpfqgZkyajrKwMv27ZXP19trbGjj83CX+f09OEvs+dbO3w89p1+Hvfv9i9bx/09fTwy/r1sLV504orLSMD3/34A3Lz8qCqogJbGxsc+Hs3dN8alzQzKwtbdu5AVk4ONNTVMXTQIMydPqNR9ZGUY615VzuUFpbg+VUvFOUVQE1PC0OXToWiugoAoDi3AIXZeYLy/MoqPDpzE0W5+ZCSloaqniaGLJ0KI7s3k6GEePmBX1mFW7tPCb1Xl+Eu6DqiH5qaQy8nFBcU4vbpK8jPyYOuYTvM/W4Z1LSqbyjm5+QiN/PNPs/wGVw/eg7Z6ZlgczhQ19bE0Klj0d3tzW+FRx6eqKqsxKE/hMfTdZswAoM+G9kkcfcb2B/5eXk4tO8gsjOzYGJmgt+2/AEd3ep9NyszC2lpaYLyuu308OvWP7Bzy3ZcPHse6hoaWLJqOfr2cxGUKSkpwZbfNyEjPR1cLheGRkb47se16Dewv6DMstUrsG/PP9j6+ybk5ORAQ0MDw0ePwIy5H9/q/G33YwKhxJXHFMdBUOUp4XV2CtZ47BUcp9R4StCSf/s4xcIYOxfBuS8oOQorL/8llDwZbtMTMhwprBkoHOPR5x446t/0x1zPaH8oy8pjeufBUJdXQmx2Cr6+tktw7FTnKdc6f7MwsVN/GKhUT14UkByBRRc2IbVA+Pytr6yFjrrmWHXl3T0+mopfQigUZOQwwqYXlGUVkJSXga0PTglmR1WWVajTHVdOmovO+lY4EXhb5GteeeUDhmEw2rYPVOUUUVBWjKCUKJx74dXMtXk/K00j7Bj9ZqiXpb2qb2RcD32Mn+8dEldYhLwXixF3KpsQIlHWr1+PixcvIjAw8KO2T0hIgLGxMfz8/ODo6Pj+DVpQUVER2rVrh02bNmHOR3Zz+lCH/a63yPs0p+ldh6AgMkrcYTSKYntzDNy77P0FW7nb8//CWo9/xB1Go/zoPg+jDn4j7jAa7eLMX9F/z9L3F2zl7n6+DQWpae8v2Iop6mhLzLF26/1T7y/Yii3vMxFX/2uF1JYN69ALKXlNMyuxOOkqa8L9nxXiDqNRPOZtQd+/F4k7jEbzXrgTs09vFHcYjbJ/wv/Qc+cCcYfRaA8X7RZ3CB8lZ/gkcYdQL9UrJ8QdglhQyzhCSKtQUVGBlJQUfPPNN+jevXurSMQFBAQgLCwMTk5OyMvLw48//ggAGDmyae6OE0IIIYQQQgj59FAyjhDSKjx8+BCurq6wsLDA2bNnxR2OwJ9//onw8HDIyMigc+fOePDgQaPH1COEEEIIIYQQ8umiZBwhpEmtX78e69ev/+DtXFxcxD4AbG0ODg54/vy5uMMghBBCCCGEkI/Xyq6zCMB+fxFCCCGEEEIIIYQQQkhToGQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUfJpNtbWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKRiqJtqa0Mt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCJEYP//8M3r06AEejwcVFZUGbcMwDNavXw89PT3IycnBxcUFISEhQmXKysqwZMkSaGhoQF5eHiNGjEBiYuIHx0fJOEIIIYQQQgghhBBJxee33kczKS8vx/jx47Fw4cIGb/P7779j8+bN2LFjB/z8/KCjo4OBAweioKBAUGb58uW4cOECTp48CR8fHxQWFmLYsGGoqqr6oPhozDhCCCGEEEIIIYQQIjF++OEHAMDBgwcbVJ5hGGzduhXfffcdxowZAwA4dOgQtLW1cfz4cXz++efIy8vDvn37cOTIEQwYMAAAcPToURgYGODOnTsYNGhQg+OjlnGEEEIIIYQQQgghpMWVlZUhPz9f6FFWVtbiccTGxiI1NRVubm6CZVwuF3379sWjR48AAM+fP0dFRYVQGT09Pdja2grKNBhDCCHkk1RaWsqsW7eOKS0tFXcoH00S6sAwVI/WRBLqwDCSUQ9JqAPDUD1aE0moA8NIRj0koQ4MQ/VoTSShDp+qdevWMQCEHuvWrWuy1z9w4ACjrKz83nIPHz5kADBJSUlCy+fNm8e4ubkxDMMwx44dY2RkZOpsO3DgQGb+/PkfFBeLYWiOW0II+RTl5+dDWVkZeXl5UFJSEnc4H0US6gBQPVoTSagDIBn1kIQ6AFSP1kQS6gBIRj0koQ4A1aM1kYQ6fKrKysrqtITjcrngcrl1yq5fv17Q/bQ+fn5+6NKli+D5wYMHsXz5cuTm5r5zu0ePHqFnz55ITk6Grq6uYPm8efOQkJAADw8PHD9+HLNmzaoT78CBA2FmZobdu3e/8z3eRmPGEUIIIYQQQgghhJAWV1/iTZTFixfjs88+e2cZY2Pjj4pDR0cHAJCamiqUjEtPT4e2tragTHl5OXJycqCqqipUpkePHh/0fpSMI4QQQgghhBBCCCGtmoaGBjQ0NJrltU1MTKCjo4Pbt2/DwcEBQPWMrN7e3vjtt98AAJ07d4a0tDRu376NCRMmAABSUlLw8uVL/P777x/0fpSMI4QQQgghhBBCCCESIz4+HtnZ2YiPj0dVVRUCAwMBAObm5lBQUAAAWFlZ4ZdffsHo0aPBYrGwfPlybNy4Ee3bt0f79u2xceNG8Hg8TJ48GQCgrKyMOXPmYNWqVVBXV4eamhpWr14NOzs7weyqDUXJOEII+URxuVysW7euwc3CWyNJqANA9WhNJKEOgGTUQxLqAFA9WhNJqAMgGfWQhDoAVI/WRBLqQJrW2rVrcejQIcHzmtZunp6ecHFxAQCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KBbt264desWFBUVBWW2bNkCKSkpTJgwASUlJejfvz8OHjwIDofzQfHRBA6EEEIIIYQQQgghhLQQtrgDIIQQQgghhBBCCCHkU0HJOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQMo4QQkibxDAMaA4i0lSioqJw8+ZNlJSUAADtW2JWWloq7hCahKTUgxBCWpt+/fohNze3zvL8/Hz069ev5QMi5APRbKqEEPKJKCsrw9OnTxEXF4fi4mJoamrCwcEBJiYm4g7tgxw+fBh//PEHIiMjAQAWFhb48ssvMW3aNDFH1nBVVVXYsmULTp8+jfj4eJSXlwutz87OFlNkHy4xMRGXL18WWY/NmzeLKaqGy8rKwsSJE3Hv3j2wWCxERkbC1NQUc+bMgYqKCjZt2iTuEBssISFB6PvdoUMHcLlccYfVYHw+Hz///DN2796NtLQ0REREwNTUFGvWrIGxsTHmzJkj7hAbRFLq0db3p7y8PFy4cAEPHjyoc94bNGgQevToIe4QG0RS6kFIU2Oz2UhNTYWWlpbQ8vT0dLRr1w4VFRViioyQhpESdwCEEEKa16NHj7B9+3ZcvHgR5eXlUFFRgZycHLKzs1FWVgZTU1PMnz8fCxYsgKKiorjDfafNmzdjzZo1WLx4MXr27AmGYfDw4UMsWLAAmZmZWLFihbhDbJAffvgB//77L1auXIk1a9bgu+++Q1xcHC5evIi1a9eKO7wGu3v3LkaMGAETExOEh4fD1tYWcXFxYBgGjo6O4g6vQVasWAEpKSnEx8fD2tpasHzixIlYsWJFq0/GvX79Grt378aJEyeQkJAg1KJPRkYGvXv3xvz58zF27Fiw2a27Q8RPP/2EQ4cO4ffff8e8efMEy+3s7LBly5Y2k8Rqy/WQhP0pJSUFa9euxbFjx6CjowMnJyfY29sLznuenp74888/YWRkhHXr1mHixIniDlkkSalHbX5+fjhz5ozIGzjnz58XU1QfTlLq0RYFBwcL/v/q1SukpqYKnldVVcHDwwPt2rUTR2iEfBiGEEKIxBoxYgSjq6vLrFq1ivH29maKioqE1kdHRzMHDx5kBg0axOjo6DC3bt0SU6QNY2xszBw6dKjO8oMHDzLGxsZiiOjjmJqaMlevXmUYhmEUFBSYqKgohmEY5q+//mImTZokztA+SNeuXZk1a9YwDFNdj+joaKagoIAZMWIEs2vXLjFH1zDa2tpMYGAgwzBv6sAwDBMTE8PIy8uLM7T3Wrp0KaOoqMiMHTuWOXToEBMaGsrk5+czFRUVTFpaGnP37l1m/fr1jKWlJdOhQwfm6dOn4g75nczMzJg7d+4wDCP8WYSGhjIqKiriDO2DtNV6SMr+pKmpyaxatYp58eJFvWWKi4uZ48ePM05OTswff/zRgtE1nKTU420nTpxgpKWlmaFDhzIyMjLMsGHDGEtLS0ZZWZmZOXOmuMNrsLZcj0uXLjX40VqxWCyGzWYzbDabYbFYdR48Ho/Zt2+fuMMk5L0oGUcIIRJsx44dTFlZWYPKvnz5stUn47hcLhMZGVlneUREBMPlcsUQ0cfh8XjM69evGYZhGB0dHeb58+cMw1QnR5WUlMQZ2gd5O5GooqLCvHz5kmEYhgkMDGSMjIzEGFnDKSgoMBEREYL/1yROnj59yqipqYkztPdavXo1k55bMlIvAAC8QUlEQVSe3qCy165dY86cOdPMETWOrKwsExcXxzCM8GcREhLS6hOjb2ur9ZCU/amhdfjY8i1FUurxNjs7O2bHjh0Mw7z5bvD5fGbevHnM2rVrxRxdw7XletROXNVOaNUkudhstrhDrVdcXBwTGxvLsFgsxs/Pj4mLixM8kpOTmcrKSnGHSEiDtM725YQQQprEokWLICMj06CyHTp0wMCBA5s5osYxNzfH6dOn6yw/deoU2rdvL4aIPo6+vj5SUlIAVNfp1q1bAKq7vbSlMZnk5eVRVlYGANDT00N0dLRgXWZmprjC+iB9+vTB4cOHBc9ZLBb4fD7++OMPuLq6ijGy9/vjjz+gqanZoLJDhgzBuHHjmjmixunQoQMePHhQZ/mZM2fg4OAghog+Tluth6TsTw2tw8eWbymSUo+3RUdHY+jQoQAALpeLoqIisFgsrFixAnv37hVzdA3XluvB5/MFj1u3bsHe3h43btxAbm4u8vLycP36dTg6OsLDw0PcodbLyMgIxsbG4PP56NKlC4yMjAQPXV1dcDgccYdISIPQmHGEEPIJKi0txalTp1BUVISBAwe2mUTWDz/8gIkTJ+L+/fvo2bMnWCwWfHx8cPfuXZFJutZq9OjRuHv3Lrp164Zly5Zh0qRJ2LdvH+Lj49vMuHcA0L17dzx8+BA2NjYYOnQoVq1ahRcvXuD8+fPo3r27uMNrkD/++AMuLi549uwZysvL8dVXXyEkJATZ2dl4+PChuMN7r++//x79+vVDjx49ICsrK+5wGmXdunWYNm0akpKSwOfzcf78eYSHh+Pw4cO4evWquMNrMEmpx9u8vb1RVFQEZ2dnqKqqijuc94qKikJeXh46d+4sWHb37l389NNPKCoqwqhRo/C///1PjBE2jKTUo4aamhoKCgoAAO3atcPLly9hZ2eH3NxcFBcXizm6hpOUeixfvhy7d+9Gr169BMsGDRoEHo+H+fPnIzQ0VIzRNUxERAS8vLyQnp4OPp8vtK4tjcFLPlHibppHCCGkea1evZpZunSp4HlZWRljb2/PSEtLM8rKyoy8vDzz6NEjMUb4YZ49e8ZMmTKFcXR0ZBwcHJgpU6Yw/v7+4g6rUR4/fsxs2rSpVY/RIkp0dDQTFBTEMAzDFBUVMQsXLmTs7OyY0aNHC7rptQUpKSnM2rVrmaFDhzKDBw9mvvvuOyY5OVncYTWIqakpw2KxGC6Xy/Tp04dZt24d4+3t3eDu6a2Nh4cH06dPH0ZeXp6Rk5Njevbsydy8eVPcYX2wtlqP33//XaibHZ/PZwYNGiTowqatrS3ojt6ajRo1ivn+++8Fz2NiYhg5OTnGzc2NWbp0KaOgoMBs2bJFfAE2kKTUo8akSZOYTZs2MQzDMD/99BOjqanJzJ07lzEyMmJGjx4t5ugaTlLqISsrywQHB9dZHhQUxMjKyoohog+zd+9ehsPhMNra2kynTp0Ye3t7wcPBwUHc4RHyXiyGeWuaJEIIIRLH1tYWGzduxIgRIwAABw4cwKpVqxAQEABDQ0PMnj0b6enpuHbtmpgjJYR8jKSkJNy7dw9eXl7w8vJCbGws5OTk4OzsDFdXV7i6uqJHjx7iDpO0AY6Ojvj6668FM3OeOXMGM2bMwO3bt2FtbY3p06eDx+O1+pbIBgYGOH36NJydnQFUz3B79uxZBAYGAgD27duH7du3C563VpJSjxrZ2dkoLS2Fnp4e+Hw+/vzzT/j4+MDc3Bxr1qxpE60uAcmpR58+fSAtLY2jR49CV1cXAJCamopp06ahvLwc3t7eYo7w3YyMjPDFF1/g66+/FncohHwUSsYRQoiEU1JSgr+/P8zNzQEAkyZNgqKiomBck8DAQAwZMgTJycniDPODpKeni+yS0LFjRzFF9H6XL19ucNmaxClpHsHBwbC1tQWbzUZwcPA7yyooKMDAwADS0tItFF3jJSQkwNPTE15eXjh37hyKiopQWVkp7rDea9asWZg6dSr69esHFosl7nA+Wluuh6qqKh49egRra2sA1XWprKzEkSNHAAC+vr4YP348EhISxBnme8nJySEiIgIGBgYAgP79+6NHjx7YsGEDgOoxvzp37ozc3FwxRvl+klIPAKisrMSxY8cwaNAg6OjoiDscgupu0KNHj0Z4eDgMDQ0BAPHx8bCwsMDFixcFvxtbKyUlJQQGBsLU1FTcoRDyUWjMOEIIkXBsNhtv33fx9fXFmjVrBM9VVFSQk5MjjtA+2PPnzzFjxgyEhoai9r0kFouFqqoqMUX2fqNGjWpQudZeD1VV1QYnGLKzs5s5mo9jb2+P1NRUaGlpwd7eHiwWq87+9DZlZWXs3r1b0FqoNYuOjoaXl5egpVxVVVWrn4iiRlZWFoYOHQp1dXV89tlnmDp1aque8KA+bbkeFRUVQpPIPH78GMuWLRM819PTaxOTs6ipqSElJQUGBgbg8/l49uyZ0Hic5eXl7/zOtxaSUg8AkJKSwsKFC9vEOGSi5OfnN7iskpJSM0bSdMzNzREcHIzbt28jLCwMDMPAxsYGAwYMaBM3EsaPH49bt25hwYIF4g6FkI9CyThCCJFwVlZWuHLlClauXImQkBDEx8cLXZy/fv0a2traYoyw4WbNmgULCwvs27cP2trabeLHYo3arfjaqq1bt4o7hEaLjY0VzDwYGxv7zrJlZWU4c+aMUNe91iQ2Nhaenp6ClnB5eXno2bMn+vbti8WLF6Nr166QkmobP/cuX76M3NxcnD59GsePH8fWrVthaWmJqVOnYvLkyTA2NhZ3iA3Sluthbm6O+/fvw9TUFPHx8YiIiEDfvn0F6xMTE6Guri7GCBumb9++2LBhA3bt2oUzZ86Az+cLnfdevXrVqj+HGpJSjxrdunVDQEAAjIyMxB3KB1NRUWnwb47WfEOtNhaLBTc3N7i5uYk7lAbZtm2b4P813YJ9fX1hZ2dXpwX70qVLWzo8Qj4IdVMlhBAJd+7cOUyaNAm9e/dGSEgIunbtiitXrgjWf/3114iNjW31YwABgKKiIgICAlp91wkiWXJycjBnzhycP39e3KHUwWazYWhoiC+++AKurq5wdHQEh8MRd1hNIjExESdOnMD+/fsRGRnZJrraitKW6rFnzx6sWrUKEydOhK+vL1RUVIRmFf7pp5/w5MkToXNIaxQbG4uBAwciNjYWbDYb27Ztw8KFCwXrR40aBRMTE2zZskWMUb6fpNSjxpkzZ/DNN99gxYoV6Ny5M+Tl5YXWt+ahJt4ePy0uLg7ffPMNZs6cKRjP7/Hjxzh06BB++eUXzJgxQ1xhfrCioiJ4e3sjPj4e5eXlQutaYzLLxMSkQeVYLBZiYmKaORpCGoeScYQQ8gm4c+cOrl27Bh0dHSxZsgQ8Hk+w7ocffoCLi4tQ64fWatSoUZg2bRrGjh0r7lAara39AH6fkpISVFRUCC1rK111AKC4uFjkZ9GaLw4BYOLEibh//z5KS0vRu3dv9O3bF66urnBwcGhTLUdrq6iowLVr13D06FFcu3YNampqSEpKEndYH6wt1mPfvn24evUqdHR0sG7dOqHxvb744gsMGDAAY8aMEWOEDVNRUYFXr15BU1MTenp6QuuCgoJgYGAANTU1MUXXcJJSD6D65kFtNcMEtPYhGt7Wv39/zJ07F5MmTRJafvz4cezduxdeXl7iCewDBQQEYMiQISguLkZRURHU1NSQmZkJHo8HLS0tSmYR0swoGUcIIQSBgYGwt7cXdxjvlZmZiRkzZsDJyQm2trZ1uiS0lYkPJOUHcFFREb7++mucPn0aWVlZdda3hQurjIwMzJo1Czdu3BC5vi3UAQDCwsIEXVW9vb1RWlqKXr16oW/fvnBxcUHXrl3FHWKDeHp64vjx4zh37hyqqqowZswYTJkyBf369RN5Id9aSUo9RMnIyBB0826rXrx4gX379rX5bvdtrR6vX79+5/q20n2Vx+MhKCgI7du3F1oeEREBe3t7FBcXiymyD+Pi4gILCwv8/fffUFFRQVBQEKSlpTF16lQsW7asTSTdCWnLKBlHCCGfqLy8PBw7dgz79u1DYGBgm0g6XL58GdOmTUNBQUGddW3prrqk/ABetGgRPD098eOPP2L69OnYuXMnkpKSsGfPHvz666+YMmWKuEN8rylTpiAuLg5bt26Fq6srLly4gLS0NPz000/YtGkThg4dKu4QP8qrV69w/PhxbN++vc3Mpqqvr4+srCwMGjQIU6ZMwfDhwyErKyvusD6YpNTjbQzD4MaNG4JWc2VlZeIO6YPl5+fjxIkT2LdvH549e4aOHTsiMDBQ3GF9MEmpR1tmaWmJYcOGYdOmTULLV61ahatXryI8PFxMkX0YFRUVPHnyBJaWllBRUcHjx49hbW2NJ0+eYMaMGQgLCxN3iO+0cuVKkctZLBZkZWVhbm6OkSNHtpmWo+TT0zZG9CWEENJk7t27h/379+P8+fMwMjLC2LFj8e+//4o7rAZZunQppk2bhjVr1rSZSSdECQwMxJ49e8DhcMDhcFBWVgZTU1P8/vvvmDFjRptJxl25cgWHDx+Gi4sLZs+ejd69e8Pc3BxGRkY4duxYm0jG3bt3D5cuXULXrl3BZrNhZGSEgQMHQklJCb/88kubSsalpaXBy8sLXl5e8PT0REREBLhcLnr37i3u0Bpk7dq1GD9+PFRVVcUdSqNISj0AICYmBvv378ehQ4dQWFiIoUOH4uTJk+IO64N4e3tj3759OHfuHEpLS/Hll1/i+PHjbW7sUUmox+HDh9+5fvr06S0USeNs2bIFY8eOxc2bN9G9e3cA1TPVR0dH49y5c2KOruGkpaUFwxloa2sjPj4e1tbWUFZWRnx8vJije7+AgAD4+/ujqqoKlpaWYBgGkZGR4HA4sLKywq5du7Bq1Sr4+PjAxsZG3OESUgcl4wgh5BOQmJiIgwcPYv/+/SgqKsKECRNQUVGBc+fOtakfKFlZWVixYkWbTsQBbf8HcI3s7GzBYMpKSkrIzs4GAPTq1UtokPHWrKioCFpaWgAANTU1ZGRkwMLCAnZ2dvD39xdzdO935swZQffU8PBwSElJwcnJCRMmTICrqyt69OgBLpcr7jAbZP78+eIOoUm09XqUlpbi7Nmz+Pfff+Hr64uBAwciJSUFgYGBsLW1FXd4DZKSkoIDBw4IznmTJk2Ct7c3nJ2dMX369DaTwJKUetRYtmyZ0POKigoUFxdDRkYGPB6vzSTjhgwZgsjISPz9998IDQ0FwzAYOXIkFixYAAMDA3GH12AODg549uwZLCws4OrqirVr1yIzMxNHjhyBnZ2duMN7r5pWbwcOHBCMUZufn485c+agV69emDdvHiZPnowVK1bg5s2bYo6WkLooGUcIIRJuyJAh8PHxwbBhw7B9+3a4u7uDw+Fg9+7d4g7tg40ZMwaenp4wMzMTdyiN0tZ/ANcwNTVFXFwcjIyMYGNjg9OnT8PJyQlXrlyBioqKuMNrEEtLS4SHh8PY2Bj29vbYs2cPjI2NsXv3bujq6oo7vPeaMmUKunTpgtGjR8PV1RU9e/aEnJycuMP6aH5+fjhz5ozIyTRa42y29Wmr9fjiiy9w8uRJWFpaYurUqTh37hzU1dUhLS3dpsa6MzExwfjx47Fz504MHDiwTcX+NkmpR42cnJw6yyIjI7Fw4UJ8+eWXYojow1VUVMDNzQ179uzBzz//LO5wGmXjxo2CYT82bNiAGTNmYOHChTA3N8eBAwfEHN37/fHHH7h9+7bQZFFKSkpYv3493NzcsGzZMqxduxZubm5ijJKQ+lEyjhBCJNytW7ewdOlSLFy4sM5gw22NhYUFvv32W/j4+MDOzq7OBA5tZRbStv4DuMasWbMQFBSEvn374ttvv8XQoUOxfft2VFZWYvPmzeIOr0GWL1+OlJQUAMC6deswaNAgHDt2DDIyMjh48KB4g2uAnJwcyMvLizuMJnHy5ElMnz4dbm5uuH37Ntzc3BAZGYnU1FSMHj1a3OE1WFuux969e/H111/jm2++gaKiorjD+WhGRkbw8fGBoaEhjIyMYGVlJe6QPoqk1ONd2rdvj19//RVTp05t9WOUAdUt21++fNmmZ6uu0aVLF8H/NTU1cf36dTFG8+Hy8vKQnp5ep4dHRkYG8vPzAVSPi1f7hgghrQUl4wghRMI9ePAA+/fvR5cuXWBlZYVp06Zh4sSJ4g7ro/z7779QUFCAt7c3vL29hdaxWKw2k4xr6z+Aa6xYsULwf1dXV4SFheHZs2cwMzNDp06dxBhZw709rp2DgwPi4uIQFhYGQ0NDaGhoiDGyhqlJxCUlJeHcuXOIiIgAi8VC+/btMXbsWLRr107METbcxo0bsWXLFixatAiKior466+/YGJigs8//7xNtFKs0ZbrcfjwYRw4cAC6uroYOnQopk2bBnd3d3GH9cHCw8Px8OFD7Nu3D127doWFhQWmTp0KAG0qiSIp9XgfDoeD5ORkcYfRYNOnT8e+ffvw66+/ijuUJpGRkYHw8HCwWCxYWlq2iXMfUN1Ndfbs2di0aRO6du0KFouFp0+fYvXq1Rg1ahQA4OnTp7CwsBBvoITUg2ZTJYSQT0RxcTFOnjyJ/fv34+nTp6iqqsLmzZsxe/bsNt0CgpBP3a5du7By5UqUl5dDWVkZDMMgPz8fMjIy2Lx5M7744gtxh9gg8vLyCAkJgbGxMTQ0NODp6Qk7OzuEhoaiX79+ghaMrZ0k1CMuLg4HDhzAwYMHUVxcjOzsbJw6dQrjxo0Td2gfrLCwECdOnMD+/fvx5MkT9O3bF5MnT8aoUaOgqakp7vAaTBLqcfnyZaHnDMMgJSUFO3bsgIGBAW7cuCGmyD7MkiVLcPjwYZibm6NLly51Wie3lZbhRUVFWLJkCY4cOSKYjZ7D4WD69OnYvn07eDyemCN8t8LCQqxYsQKHDx8WzBguJSWFGTNmYMuWLZCXlxfMNGxvby++QAmpByXjCCFEwsXHx8PAwEDoLnp4eDj27duHI0eOIDc3FwMHDqzzI5kQSbVy5coGl23tF1XXrl3DyJEjsXz5cqxatUrQ8iolJQV//PEHtm/fjkuXLmHIkCFijvT9DAwMcP36ddjZ2aFTp0745ptvMGnSJDx+/Bju7u7Iy8sTd4gNIin1AKqTJTdv3sT+/ftx+fJlaGhoYMyYMdi2bZu4Q/sooaGhgnNfdnY2KioqxB3SR2mr9ag95h2LxYKmpib69euHTZs2tfqWozVcXV3rXcdisXDv3r0WjObjff7557hz5w527NiBnj17AgB8fHywdOlSDBw4EH///beYI2yYwsJCxMTEgGEYmJmZQUFBQdwhEdIglIwjhBAJx+FwkJKSIpgx8m1VVVW4cuWK4EKrNVq5ciU2bNgAeXn59yZRWnvihLQO77qQeltbuKjq27cvevfujZ9++knk+u+//x4PHjyo0627NZo8eTK6dOmClStX4ueff8Zff/2FkSNH4vbt23B0dGzVEx+8TVLqUVt2dragG2tQUJC4w2mUyspKXL58GWPGjBF3KI0iKfUg4qGhoYGzZ8/CxcVFaLmnpycmTJiAjIwM8QRGyCeCknGEECLh2Gw2UlNTRSbj2gJXV1dcuHABKioqEnM3mpCmoqSkBD8/P1haWopcHx4eji5duggmDGnNsrOzUVpaCj09PfD5fPz555/w8fGBubk51qxZA1VVVXGH2CCSUo+2LDk5GZs3b8batWuFZloEqgd9/+mnn7B69Wpoa2uLKcKGkZR6SKqoqChER0ejT58+kJOTA8MwbWosPx6Ph+fPn8Pa2lpoeUhICJycnFBUVCSmyOo3ZswYHDx4EEpKSu9NQrfVGx/k00HJOEIIkXBtPRlHSEtoqxdVCgoKCA4Ohqmpqcj1MTEx6NixIwoLC1s4MtIWNaQLN4vFwqZNm1ogmo+3evVq5OfnY+/evSLXL1iwAMrKyvjtt99aOLIPIwn1kKRhAWpkZWVhwoQJ8PT0BIvFQmRkJExNTTFnzhyoqKi0+u9Hjf79+0NdXR2HDx+GrKwsAKCkpAQzZsxAdnY27ty5I+YI65o1axa2bdsGRUVFzJo1651l29Ls9OTTRLOpEkLIJ6BmFtJ3aQszkaalpdXbAiA4OBgdO3Zs4Yga7kPGWGrNn0V+fn6Dy9ZuydEa1XdRNXfu3DZxUdWhQwdcunRJaGbbt128eBEdOnRo4ag+Hp/PR1RUFNLT08Hn84XW9enTR0xRfbi2Wo+AgABxh9AkPDw8sHv37nrXT58+HfPmzWvVSSxAMupRe596/vw5qqqqBK15IyIiwOFw0LlzZ3GE91FWrFgBaWlpxMfHC7UqmzhxIlasWNHqzxs1/vrrL7i7u0NfXx+dOnUCi8VCYGAgZGVlcfPmTXGHJ9LbCTZKtpG2jlrGEUKIhGOz2dDX1weHw6m3DIvFQkxMTAtG9XG0tLTw77//YsSIEULL//zzT6xZswYlJSViiuz9TExMGlSutX8WbDb7vS3GalqV1czO1ppNnz4d6enp+Pfff2FtbY2goCCYmpri1q1bWLFiBUJCQsQd4jsdOnQICxcuxJ9//on58+dDSqr6PmtlZSX27NmDL7/8Ert27cLMmTPFG2gD+Pr6YvLkyXj9+jVq/zxtK/sTIDn1aMvk5eURGhoKQ0NDketrkiitsRve2ySlHjU2b94MLy8vHDp0SNBdOycnB7NmzULv3r2xatUqMUfYMDo6Orh58yY6deoERUVFwXkjNjYWdnZ2baolcklJCY4ePYqwsDAwDAMbGxtMmTIFcnJy4g6tQSorK+Hl5YXo6GhMnjwZioqKSE5OhpKSEk3kQFo9ahlHCCGfgGfPnklEN9Wvv/4aEydOFExbn52djWnTpiEkJASnTp0Sd3jvFBsbK+4QmoSnp6e4Q2hSt27dws2bN6Gvry+0vH379nj9+rWYomq4GTNm4MWLF1i8eDG+/fZbmJmZAQCio6NRWFiIpUuXtolEHFDd5a5Lly64du0adHV120Q3YVHacj28vLzqDOZe2xdffIFdu3a1TEAfSU5ODnFxcfUmseLi4tpEskFS6lFj06ZNuHXrltC4iaqqqvjpp5/g5ubWZpJxRUVF4PF4dZZnZmaCy+WKIaKPJycnh3nz5ok7jI/y+vVruLu7Iz4+HmVlZRg4cCAUFRXx+++/o7S09J2tSglpDSgZRwghpM1YtWoVBgwYgKlTp6Jjx47Izs5G9+7dERwc3CYHsC4vL0dsbCzMzMwELZpau759+4o7hCYlCRdVf/75J8aNG4cTJ04gMjISQHVXyM8++wzdu3cXc3QNFxkZibNnz8Lc3FzcoTRKW67HyJEj4enpCUdHR5HrFy1ahGPHjrX6ZFy3bt1w5MiRersEHz58GE5OTi0c1YeTlHrUyM/PR1paWp2u8+np6W1ikpkaffr0weHDh7FhwwYA1S1e+Xw+/vjjjwbP1i0uly9fbnDZ2r0QWptly5ahS5cuCAoKgrq6umD56NGjMXfuXDFGRkgDMYQQQiQai8Vi0tLS3lnm6NGjLRRN4+Xn5zMTJ05kpKSkGCkpKebgwYPiDumDFRUVMbNnz2Y4HA7D4XCY6OhohmEYZsmSJcwvv/wi5ug+zP3795kpU6Ywzs7OTGJiIsMwDHP48GHmwYMHYo6sYYYMGcJ8//33DMMwjIKCAhMTE8NUVVUx48ePZ8aOHSvm6N7vhx9+YIqKisQdRpNwdXVlbty4Ie4wGq0t12PlypWMlpYWEx4eXmfdokWLGAUFBeb+/ftiiOzD3Lt3j+FwOMyqVauY1NRUwfLU1FRm5cqVDIfDYe7evSvGCBtGUupRY9q0aYyhoSFz5swZJiEhgUlISGDOnDnDGBsbM9OnTxd3eA0WEhLCaGpqMu7u7oyMjAwzbtw4xtramtHW1maioqLEHd47sVisBj3YbLa4Q30vdXV1JiwsjGGY6vN3zW+p2NhYRk5OTpyhEdIglIwjhBAJZ2VlxSQnJ9e7/tixY4y0tHQLRvTxfHx8GGNjY6Zz587Mq1evmH/++YdRVFRkxo8fz2RnZ4s7vAZbunQp07lzZ+bBgweMvLy84AfkpUuXGHt7ezFH13Bnz55l5OTkmLlz5zJcLldQj507dzKDBw8Wc3QN05YvqhiGYdhs9nuT7W3F+fPnGRsbG+bAgQPMs2fPmKCgIKFHW9HW6zFr1izG0NBQkFxnmOobBfLy8oyXl5cYI/swu3fvZrhcLsNmsxkVFRVGVVWVYbPZDJfLZXbt2iXu8BpMUurBMNU3ohYuXCioD5vNZmRkZJiFCxcyhYWF4g7vg6SkpDBr165lhg4dygwePJj57rvv3vlbizQ9VVVVJiQkhGEY4WTcgwcPGC0tLXGGRkiD0AQOhBAi4VxcXFBSUoJ79+5BXl5eaN3Jkycxffp0/Pbbb/XOxtiacLlcrFixAhs2bIC0tDSA6rGxpk2bhvj4eCQmJoo5woYxMjLCqVOn0L17d6HBn6OiouDo6PhBM5aKk4ODA1asWIHp06cL1SMwMBDu7u5ITU0Vd4gNkpqair///hvPnz8Hn8+Ho6MjFi1aBF1dXXGH9l5sNhupqakSMSYkm82us4zFYrWpCUGAtl8PPp+PcePGITQ0FA8ePMDPP/+MvXv34urVq62+C16NiooKSEtLIykpCadPn0ZUVBQYhoGFhQXGjRsHfX19vHz5Era2tuIO9Z0kpR61FRUVITo6GgzDwNzcvM5vE9IyYmNjGzy5VGs0ceJEKCsrY+/evVBUVERwcDA0NTUxcuRIGBoa0myrpNWjZBwhhEi4wsJCuLi4QEVFBTdu3BAksU6fPo2pU6di48aNWL16tZijbBhvb2+RY5bx+Xz8/PPPWLNmjRii+nA8Hg8vX76EqampUBIrKCgIffr0QV5enrhDbBAej4dXr17B2NhYqB4xMTGwsbFBaWmpuEOUeGw2G2lpadDU1BR3KI32vgkzjIyMWiiSxpGEepSXl2Po0KEICgpCUVERLl++jP79+4s7rAYbN24czpw5U+/kGS9fvkT//v2RlpbWwpF9GEmph6S5f//+O9fXN8Zfa8PhcNCnTx/MmTMH48aNg6ysrLhD+iDJyclwdXUFh8NBZGQkunTpgsjISGhoaOD+/fsScZOKSDZKxhFCyCcgIyMDffr0gY2NDc6ePYuzZ89iypQp2LBhA77++mtxh/fJ6du3L8aNG4clS5YI7uaamJhg8eLFiIqKgoeHh7hDbBAzMzPs2bMHAwYMEErGHT58GL/++itevXol7hDfy8PDAwoKCujVqxcAYOfOnfjnn39gY2ODnTt3Cs361xqx2WzY2tq+dwIQf3//FoqItGXbtm0T/L+goAAbNmzAoEGD6iTili5d2tKhfRADAwMMHjwYe/furbMuJCQE/fr1+z97dx5Wc/r+Afx9StqkhbIkaRE1Qin7FlLD2E2GKMkytpK1maEwlmZsiSEkZYvKMhn7UhE1aJWSnCJLEU2hheqc3x9+zteZwimm53w69+u6uq7Ocz5/vD8zdXTu8zz3jb59+yIsLIxBOsnVl/v40I0bNxAWFoacnBy8fftW7LmjR48ySlUzH9v9+p607359LzU1FYGBgThw4ADevHmDcePGwdXVlVNDQUpLSxESEoKEhATRznZHR0dOTRkmsouKcYQQIiMePnyI3r17w9jYGDExMfDy8sIvv/zCOlaNFRcXIzo6uto/5KX9DeJ7165dg729PRwdHREUFIQZM2bg9u3biI2NRXR0NLp06cI6okR+//13BAcHIzAwELa2tjh16hQePHgADw8PeHl5Yc6cOawjfpa5uTl+++03DBkyBLdu3YKVlRUWLFiAS5cuwdTUVOqPucjJyWHBggVo1KjRJ6/z9vauo0Rfhs/nw9fXF+np6eDxeDA1NYW7uzuMjIxYR6sRrt6HJEfWeDwesrKy6iBN7aWnp4t2/Pj4+Iit29jYoGfPnggLC4O8vDzDlJ9XX+7jvfetMQYPHozz589j8ODByMzMRF5eHkaNGiX1r7fv/Xv3enl5ORITE7Fs2TKsXr2aU7tIAaCiogInTpxAUFAQTp8+jbZt28LV1RWTJk2qF7uuCZFaTDrVEUIIqTMfNg4/fPiwUFFRUThu3DhONBXPyckRe5yQkCBs3ry5UE1NTdigQQOhtra2kMfjCVVVVYUGBgaMUtZOSkqK0MnJSfjNN98ITU1NhY6OjsKUlBTWsWrs559/FiorK4smsCkpKYmmk3KBqqqqMDs7WygUCoXe3t6iCarx8fHCZs2aMUwmGUmmJXPFmTNnhA0bNhR27dpV6OHhIZw3b56wa9euQkVFReG5c+dYx5NYfbkPrrt+/bpQTU1N+PvvvwuFQqEwPT1d2Lx5c+Hw4cOFFRUVjNNJrr7ch1AoFJqbmwu3bt0qFAr/13BfIBAIp02bJvTy8mKc7stFR0cLLS0tWceotbKyMuHGjRuFioqKQh6PJ2zYsKFw0qRJUjuYokWLFsLx48cLd+zYUe0EaEKkHe2MI4SQek5OTk6sefj7l/1/fy+NxypWrVqF3NxcbN26FTweD/3794eRkRF27tyJVq1aITk5GaWlpZg4cSI8PDwwevRo1pFlUklJCdLS0iAQCGBmZvbZXVrSREtLCzExMTAzM0Pv3r3h5OSE6dOn4/79+zAzM0NJSQnriJ8kLy+P3NzcetEbx8LCAnZ2dmI7gADA09MT586d48xR2/pyH/XBpUuX8N1332Hx4sXYtWsXLC0tcfToUVHvVK6oL/ehqqqK27dvo02bNmjatCkiIyNhbm6O9PR0DBgwALm5uawjfpH09HRYW1vj9evXrKPUyM2bNxEYGIhDhw5BVVUVzs7OcHV1xZMnT+Dl5YVXr17h+vXrrGNWERISgujoaERFReHu3bto1qwZ+vXrh/79+6Nfv34wNTVlHZGQT6JiHCGE1HOfayb+njQ2FS8tLcWcOXOQn5+PiIgIaGhoIC4uDu3bt0erVq0QGxsLPT09xMXFYfLkybhz5w7ryB9VkwmpjRs3/g+TkA8NHz4cb9++Ra9evfDrr78iOzsburq6OHfuHObMmYO7d++yjvhJ9WmaqpKSEm7duoW2bduKrd+9excdO3bkzEAQrt7HoUOH8MMPP0h07cOHD5GTk4NevXr9x6m+3PHjx/H9999j8ODBOH78OOcKWO/Vh/vQ09PDqVOnYG5ujk6dOsHT0xPjx49HbGws7O3tOTO8KCUlReyxUChEbm4ufHx8UF5ejqtXrzJKVjMbN27Enj17kJGRgSFDhmDq1KkYMmSIWE+8e/fuoX379qioqGCY9POePn2KyMhI/PXXXzh8+DAEAoFUfshMyIc+3e2XEEII50ljkU1SysrK2L17Nw4dOgQAUFBQEP2RqKOjgwcPHkBPTw8aGhrIyclhGfWzNDQ0PjoR79+k+Q/Imuw+5EIz7q1bt2LWrFkIDw/H9u3boaurCwA4ffo07O3tGaf7vOzs7HrT00dbWxtJSUlVilhJSUmcKjZy9T62b9+O5cuXw8XFBcOHD6+yq6SoqAhXr17F/v37ceHCBezevZtR0s/T1NSs8np75coVNGvWTGytoKCgLmPVWH25j/f69OmD8+fPw9zcHA4ODnB3d8elS5dw/vx5TvVZ69y5s9jpgve6d++OwMBARqlqbvv27ZgyZQpcXFzQvHnzaq9p3bq1VP+uv379GjExMaIdcomJiTA3N0e/fv1YRyPks6gYRwgh9VhOTg5at24t8fWPHz8WFSOkyfvdGhYWFrhx4wZMTEzQr18//PTTT5g5cyaCg4Nhbm7OOOWnRUZGir6/f/8+PD09MXnyZPTo0QMAEBsbi+DgYKxdu5ZVRImoq6uLvhcKhTh27BjU1dVhZWUFAIiPj0dhYSFnjgy3bt0af/31V5X1TZs2MUhTc8HBwRJd5+Xl9R8n+XLTpk3D9OnTkZWVhZ49e4LH4yEmJga//fYbFixYwDqexLh6H9HR0fjrr7+wZcsW/Pzzz1BVVUWzZs2gpKSEf/75B3l5edDW1oaLiwtSU1OlurDo6+vLOsJXUV/u472tW7eKdob+9NNPUFBQQExMDEaPHo1ly5YxTie57OxsscdycnLQ1taGkpISo0S1k5mZ+dlrGjZsCGdn5zpIU3PdunVDSkoKOnTogP79++Pnn39Gnz59oKGhwToaIRKhY6qEEFKPNWvWDMOHD8e0adM+Oqq+qKgIoaGh2Lx5M2bMmIG5c+fWcUrJ3bx5Ey9fvsSAAQNQUFCAyZMnIyoqCkZGRggKCkKnTp1YR5TIwIEDMXXqVIwfP15s/eDBg9i5cyeioqLYBKuhJUuWoKCgAP7+/qJpfpWVlZg1axYaN26MdevWMU74eZ/bUVmTYjYLcnJyaNmyJXR0dKrs0niPx+Nxok+ZUCiEr68vNmzYgCdPngAAWrZsiUWLFsHNzU3inaWs1Yf7ePHiBWJiYnD//n2UlpaiadOmsLCwgIWFhdgRNkJkyaVLlzBnzhzExcVVaSdRVFSEnj17wt/fH3369GGUsHZKSkqqnVDfsWNHRokko6WlBR6Ph0GDBqF///7o378/9YkjnELFOEIIqccKCgqwZs0aBAYGQkFBAVZWVmjZsqVop0NaWhpu374NKysrLF26FN9++y3ryDJBRUUFycnJ1faU6ty5s9QPDXhPW1sbMTExaNeundh6RkYGevbsiRcvXjBKJrn3A04+RpqPDAPAkCFDEBkZCTs7O0yZMgVDhw4VFUa5pKKiAgcOHICdnR2aN2+OV69eAQDU1NQYJ6uZ+nIfsuT9cCOu48J9fKx3Ko/Hg6KiIho2bFjHiWpm+PDhsLGxgYeHR7XP+/n5ITIyEseOHavjZLWTn5+PyZMn48yZM9U+L+3//gHv+vdFRUUhOjoaV65cgZycHPr16wcbGxv8+OOPrOMR8kn00RYhhNRjWlpaWL9+PZ48eYLt27fDxMQEz58/Fx1NcHR0RHx8PK5evUqFuDqkp6cHf3//Kus7duyAnp4eg0S1U1FRgfT09Crr6enpEAgEDBLVXGJiIhISEkRff//9N/z9/WFiYoKwsDDW8T7r1KlTyMrKQrdu3bBo0SK0atUKS5YsQUZGButoNdKgQQPMnDkTb968AfCueMXFAlZ9uQ8uMzU1xcGDB6vs8vm3zMxMzJw5E7/99lsdJauZ+nIfH9LQ0ICmpmaVLw0NDSgrK0NfXx/e3t5S++9HcnLyJ3uJDh48GPHx8XWY6MvMmzcPhYWFiIuLg7KyMs6cOYPg4GC0bdsWERERrONJpGPHjnBzc8ORI0dw+vRpfPvttzh69Chmz57NOhohn0U94wghRAYoKSlh9OjRnOnj9TEvXryAl5cXIiMj8ezZsyp/sHOlifWmTZswZswYnD17Ft27dwcAxMXFgc/n48iRI4zTSc7FxQVTpkzBvXv3xO7Dx8cHLi4ujNNJprqjze93kK5bt44TvzMtWrTATz/9hJ9++gmXL1/Gnj17YG1tDXNzc1y4cAHKysqsI0qkW7duSExM5PTQGaD+3AdX/fHHH1iyZAlmz56NwYMHV7sjPCYmBmlpaZgzZw5mzZrFOnK16st9fCgoKAi//PILJk+ejK5du0IoFOLGjRsIDg7G0qVLkZ+fj/Xr10NRURE///wz67hVPH369JNTbBs0aID8/Pw6TPRlLl26hD///BPW1taQk5ODvr4+bG1t0bhxY6xduxZDhw5lHfGTEhMTERUVhaioKFy5cgWvXr1Cp06d4O7uDhsbG9bxCPksKsYRQgjhjIkTJ4LP58PV1RXNmjWT+iM5HzNkyBBkZmZi+/btSE9Ph1AoxIgRI/Djjz9yamfc+vXr0bx5c2zatAm5ubkA3hWGFi9eLNWN6iVhYmKCGzdusI5RY9bW1rh//z7S0tKQmJiI8vJyzhTjZs2ahQULFuDRo0fo0qULVFVVxZ6X9v5F79WX++CqAQMG4MaNG7h27RoOHz6MgwcPVul95+TkhIkTJ0p1o/f6ch8fCg4OxoYNG+Dg4CBaGz58OMzNzbFjxw5cvHgRrVu3xurVq6WyGKerq4tbt27B2Ni42udTUlLQokWLOk5Ve8XFxaJBLFpaWsjPz4eJiQnMzc050WfU2toaFhYW6NevH6ZNm4a+fftW6eVHiDSjnnGEEEI4Q01NDTExMZwZ1CBL3vcC4tofwv/uYSQUCpGbm4vly5fjzp07SEpKYhOshmJjYxEYGIjQ0FCYmJjAxcUFEyZM4MybdADVDgbg8XiiXlhc6F8E1J/7IORr+1i/1MzMTHTq1AklJSXIzs7GN998I5W9U+fOnYuoqCjcuHGjyuTU0tJSdO3aFTY2NvDz82OUsGasra2xatUq2NnZYeTIkaIdcX5+fggPDwefz2cd8ZNevnzJub85CPkQ7YwjhBDCGe3bt0dpaSnrGKQaXP2DWENDo8oOS6FQCD09PRw6dIhRKsn9/vvv2LNnD168eAFHR0fExMTA3Nycdaxayc7OZh3hq6gv90HI19aqVSvs3r0bPj4+Yuu7d+8W7Qp/8eIFNDU1WcT7rKVLl+Lo0aMwMTHBnDlz0K5dO/B4PKSnp+OPP/5AZWUlfvnlF9YxJTZv3jzRrnZvb2/Y2dlh//79aNiwIYKDgxmn+zyu/t1ByHu0M44QQghn3LhxA56envDy8kKHDh2q9G6hP8xITUVHR4s9lpOTg7a2NoyNjdGggfR/ZiknJ4fWrVvju+++++Qkwo0bN9ZhKlIfPHr0CBEREcjJyakyRIB+nkhtRERE4Pvvv0f79u1hbW0NHo+HGzdu4M6dOwgPD8d3332H7du3IzMzU2p/xh48eICZM2fi7NmzeP82msfjwc7ODtu2bUObNm3YBqwloVCI0tJS3LlzB61bt0bTpk1ZRyKk3qNiHCGEEM7IzMzE+PHjkZiYKLZOx79ITVhaWuLixYvQ1NTEypUrsXDhQqioqLCOVSv9+/f/bO9EHo+HS5cu1VGiL7Nv3z74+/sjOzsbsbGx0NfXh6+vLwwMDDBixAjW8STG9fu4ePEihg8fDgMDA2RkZKBDhw64f/8+hEIhLC0tOfPzRKTPgwcP4O/vj4yMDAiFQrRv3x4zZszgXBHrn3/+wb179yAUCtG2bVup3c33Obt378amTZuQmZkJAGjbti3mzZuHqVOnMk5GSP1HxThCCJEhfD4fvr6+SE9PB4/Hg6mpKdzd3WFkZMQ6mkS6du2KBg0awN3dvdoBDv369WOUjHCJsrIyMjMz0apVK8jLyyMvLw/a2tqsY8m87du3w8vLC/PmzcPq1auRmpoKQ0NDBAUFITg4GJGRkawjSqQ+3EfXrl1hb2+PlStXQk1NDcnJydDR0YGjoyPs7e0xc+ZM1hEJx5SXl2Pw4MHYsWMHTExMWMchAJYtW4ZNmzZh7ty56NGjB4B3/Ue3bt0Kd3d3rFq1inFCQuo3KsYRQoiMOHv2LIYPH47OnTujV69eEAqFuHbtGpKTk3HixAnY2tqyjvhZKioqSExMRLt27VhHIRzWo0cPNGrUCL1798aKFSuwcOFCNGrUqNprvby86jid7DIzM8OaNWswcuRIUQHI0NAQqamp6N+/P54/f846okTqw32oqakhKSkJRkZG0NTURExMDL755hskJydjxIgRuH//PuuIhIO0tbVx7dq1KgMcCBtNmzbFli1bMH78eLH1kJAQzJ07V+pfq6KiotC/f3/WMQipNelvhkIIIeSr8PT0hIeHR5XGyZ6enliyZAkninFWVlZ4+PBhvSjGhYeHIzQ0tNp+TAkJCYxS1Vx0dDTWr18vttty0aJF6NOnD+toHxUUFARvb2/89ddf4PF4OH36dLX94Xg8nlQX43x8fDB37lyoqqp+9tq///4bz58/x9ChQ+sgWe1kZ2fDwsKiyrqioiKKi4sZJKqd+nAfqqqqePPmDQCgZcuW4PP5+OabbwBA6t+gf0xpaSnKy8vF1rjYZ5TL9+Hk5FTtAAfCRmVlJaysrKqsd+nSBRUVFQwS1Yy9vT10dXXh4uICZ2dn0RAQQriCinGEECIj0tPTERoaWmV9ypQp8PX1rftAtTB37ly4u7tj0aJFMDc3rzLAoWPHjoyS1Yyfnx9++eUXODs7488//4SLiwv4fD5u3LiB2bNns44nsf3798PFxQWjR4+Gm5ubaLflwIEDERQUhAkTJrCOWK127dqJJqXKycnh4sWL0NHRYZyq5tLS0qCvr4/vv/8ew4cPh5WVlei4bUVFBdLS0hATE4P9+/cjNzcXe/fuZZz40wwMDJCUlAR9fX2x9dOnT8PMzIxRqpqrD/fRvXt3XL16FWZmZhg6dCgWLFiAW7du4ejRo+jevTvreBIrKSnB4sWLERoaihcvXlR5nit9RuvLfbx9+xYBAQE4f/48rKysqnyQIK1DG+qriRMnYvv27VX+u+/cuROOjo6MUknuyZMn2L9/P4KCgrB8+XIMHDgQrq6uGDly5CcHGhEiLeiYKiGEyAg9PT1s3LgR33//vdh6aGgoFi5ciJycHEbJJCcnJ1dljcfjcW6AQ/v27eHt7Y3x48eLHWPz8vJCQUEBtm7dyjqiRExNTTF9+nR4eHiIrW/cuBG7du1Ceno6o2SyIyUlBX/88QfCwsJQVFQEeXl5KCoqoqSkBABgYWGB6dOnw9nZGYqKiozTftqePXuwbNkybNiwAa6urggICACfz8fatWsREBCAH374gXVEidSH+8jKysLr16/RsWNHlJSUYOHChYiJiYGxsTE2bdpUpdAorWbPno3IyEisXLkSTk5O+OOPP/D48WPs2LEDPj4+nCg4APXnPmxsbD76HJcGzdQXc+fOxd69e6GnpycqssfFxeHhw4dwcnIS+8BT2gulSUlJCAwMREhICAQCARwdHeHq6opOnTqxjkbIR1ExjhBCZMTKlSuxadMmeHp6omfPnuDxeIiJicFvv/2GBQsWYOnSpawjftaDBw8++TxX3iCqqKggPT0d+vr60NHRwfnz59GpUydkZmaie/fu1e58kEaKioq4ffs2jI2Nxdbv3buHDh06oKysjFEy2SMUCpGSkoL79++jtLQUTZs2RefOndG0aVPW0Wpk165dWLVqFR4+fAgA0NXVxfLly+Hq6so4Wc3Ul/vgutatW2Pv3r3o378/GjdujISEBBgbG2Pfvn0ICQnBqVOnWEeUSH25DyJdPlUc/RBXCqVPnjzBzp074ePjgwYNGqCsrAw9evSAv7+/6Jg9IdKEjqkSQoiMWLZsGdTU1LBhwwb89NNPAN71Alq+fDnc3NwYp5MMV4ptn9O8eXO8ePEC+vr60NfXR1xcHDp16oTs7Gxw6TMyPT09XLx4sUox7uLFi9S7pY7xeDx06tSJ87sApk2bhmnTpuH58+cQCAScPD4M1J/7AIDXr19DIBCIrXGlR1lBQQEMDAwAvMtcUFAAAOjduzenJsLWl/t47969e+Dz+ejbty+UlZVFu9tJ3eLCZOfPKS8vx59//onAwEDR8eetW7di/PjxKCgowJIlS/D9998jLS2NdVRCqqBiHCGEyICKigocOHAA48ePh4eHB169egXg3cQ8UvcGDBiAEydOwNLSEq6urvDw8EB4eDhu3ryJ0aNHs44nsQULFsDNzQ1JSUliuy2DgoKwefNm1vEIh3FtR9/HcPU+srOzMWfOHERFRYntcOVaSwBDQ0Pcv38f+vr6MDMzQ2hoKLp27YoTJ05AQ0ODdTyJ1Zf7ePHiBRwcHBAZGQkej4fMzEwYGhpi6tSp0NDQwIYNG1hHJBwyd+5chISEAHjX/+73339Hhw4dRM+rqqrCx8cHbdq0YZSQkE+jY6qEECIjPjwaSdgSCAQQCASiCZ6hoaGifkw//vgjpxoPHzt2DBs2bBD1h3s/TXXEiBGMkxEuqi9Thrl+Hz179gQAuLu7o1mzZlV2LfXr149FrBrbtGkT5OXl4ebmhsjISAwdOhSVlZWoqKjAxo0b4e7uzjqiROrLfTg5OeHZs2cICAiAqampqF/quXPn4OHhgdu3b7OOSDhk4MCBmDp1KsaMGfPRv5sqKipw9epVzrxmEdlCxThCCJERNjY2cHd3x8iRI1lHIYSQKj6cMrxr164qU4ZXr17NOqJE6sN9NGrUCPHx8WjXrh3rKF9VTk4Obt68CSMjI04f6ebqfTRv3hxnz55Fp06dxIYXZWdnw9zcHK9fv2YdkXDI5cuX0bNnT9EHm+9VVFTg2rVr6Nu3L6NkhEiGjqkSQoiMmDVrFhYsWIBHjx6hS5cuUFVVFXu+Y8eOjJLJpitXrmDHjh3g8/kIDw+Hrq4u9u3bBwMDA/Tu3Zt1PIkYGhrixo0baNKkidh6YWEhLC0tkZWVxSjZp2lqakrcn+h9byby39u2bRt27tyJ8ePHIzg4GIsXLxabMswV9eE+rK2t8fDhw3pXjGvdujVat27NOsYX4+p9FBcXQ0VFpcr68+fPpX7aM5E+NjY2yM3NrdKTs6ioCDY2Npw5Tk9kFxXjCCFERowbNw4AxIY18Hg8zvUAAoD4+Hikp6eDx+PB1NQUlpaWrCPVyJEjRzBp0iQ4OjoiMTERb968AQC8evUKa9as4cxkvPv371f7c/PmzRs8fvyYQSLJ+Pr6so7wn+FyY/ScnBzR8UhlZWVRb8tJkyahe/fu2Lp1K8t4EqsP9xEQEIAff/wRjx8/RocOHaCgoCD2vDR/eOPn5yfxtdI8vMjPzw/Tp0+HkpLSZ+9Jmu/jQ3379sXevXvx66+/Anj3N4hAIMC6desknuxJyHsf+/ftxYsXVT5wJkQaUTGOEEJkRHZ2NusIX+zZs2f44YcfEBUVBQ0NDQiFQtEnoIcOHYK2tjbriBJZtWoV/P394eTkhEOHDonWe/bsiZUrVzJMJpmIiAjR92fPnoW6urrocWVlJS5evCjVDZOdnZ1ZR/jqXrx4gXHjxuHSpUucbYxeX6YM14f7yM/PB5/Ph4uLi2iNKx/ebNq0Sexxfn4+SkpKRIMOCgsLoaKiAh0dHakuYm3atAmOjo5QUlKqck8f4vF4Un0fH1q3bh369++Pmzdv4u3bt1i8eDFu376NgoICXL16lXU8whHvB13xeDxMnjxZbFdlZWUlUlJSRB+IECLNqBhHCCEyoj4Mbpg7dy5evnyJ27dvw9TUFACQlpYGZ2dnuLm5iaZqSbuMjIxqe5k0btwYhYWFdR+oht73HeTxeFUKWwoKCmjTpg0nij/v8fl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjScTDwwMNGjRATk6O6HcDeLcj1sPDgxP/P+rLlOH6cB9TpkyBhYUFQkJCqh3gIM0+/ODp4MGD2LZtG3bv3i06cpuRkYFp06ZhxowZrCJK5MP7qA8fpgGAmZkZUlJSsH37dsjLy6O4uBijR4/G7Nmz0aJFC9bxCEe8/wBQKBRCTU0NysrKoucaNmyI7t27Y9q0aaziESIxGuBACCEyZN++ffD390d2djZiY2Ohr68PX19fGBgYcGL6pbq6Oi5cuABra2ux9evXr2Pw4MGcKGQBgJGREXbs2IFBgwaJNbHeu3cvfHx8kJaWxjqiRAwMDHDjxg00bdqUdZRai46OxrfffotevXrh8uXLSE9Ph6GhIX7//Xdcv34d4eHhrCNKpD40Rq8vU4brw32oqqoiOTkZxsbGrKN8ESMjI4SHh8PCwkJsPT4+HmPHjuVkkev9WzcuFUgJ+S+sWLECCxcupCOphLPkWAcghBBSN7Zv34758+djyJAhKCwsFB0z0tDQ4EwPLYFAUKV3EfBuN5ZAIGCQqHZmzJgBd3d3/P333+DxeHjy5AkOHDiAhQsXYtasWazjSSw7O5vThTgA8PT0xKpVq3D+/HmxIomNjQ1iY2MZJquZ+tAYXU5OTmwqnoODA/z8/ODm5saJAtZ79eE+BgwYgOTkZNYxvlhubi7Ky8urrFdWVuLp06cMEtXe7t270aFDBygpKUFJSQkdOnRAQEAA61g1YmBggGXLliEjI4N1FFIPeHt7Q1VVFc+ePcOVK1cQExODZ8+esY5FiMSoGEcIITJiy5Yt2LVrF3755RfIy8uL1q2srHDr1i2GySQ3YMAAuLu748mTJ6K1x48fw8PDAwMHDmSYrGYWL16MkSNHwsbGBq9fv0bfvn0xdepUzJgxA3PmzGEdT2Jubm7VNhbfunUr5s2bV/eBauHWrVsYNWpUlXVtbW28ePGCQaLaed8Y/T1qjE6+xLBhw+Dh4YHly5fjyJEjiIiIEPviioEDB2LatGm4efOmaEfZzZs3MWPGDAwaNIhxOsktW7YM7u7uGDZsGMLCwhAWFib6f7R06VLW8SQ2d+5cnDlzBqampujSpQt8fX2Rm5vLOhbhqJcvX2LSpEnQ1dVFv3790LdvX+jq6mLixIkoKipiHY+Qz6JjqoQQIiOUlZVx584d6Ovrix1jy8zMRMeOHVFaWso64mc9fPgQI0aMQGpqKvT09MDj8ZCTkwNzc3P8+eefaNWqFeuIn1VZWYmYmBiYm5tDSUkJaWlpEAgEMDMzQ6NGjVjHqxFdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ5Fq1aoXQ0FD07NlT7Pfi2LFjWLhwIfh8PuuIEklLS0P//v3RpUsXXLp0CcOHDxdrjG5kZMQ6IuEQObmPf14v7QMcPpSfnw9nZ2ecOXNGtKu6oqICdnZ2CAoKgo6ODuOEkmnatCm2bNmC8ePHi62HhIRg7ty5eP78OaNktXP37l0cOHAAhw4dQlZWFmxsbDBx4kQ4OTmxjkY4xMHBAUlJSdiyZQt69OgBHo+Ha9euwd3dHR07dkRoaCjriIR8EhXjCCFERpiZmWHt2rUYMWKEWNHBz88PwcHBiI+PZx1RYufPn8edO3cgFAphZmbGqR0OAKCkpIT09HQYGBiwjvJFlJSUkJqaWqWv1L1799ChQweUlZUxSia5xYsXIzY2FmFhYTAxMUFCQgKePn0KJycnODk5wdvbm3VEieXl5WH79u2Ij4+HQCCApaUlNUYnBO+KP+//zTA1NYWJiQnrSDWiqamJ69evo23btmLrd+/eRdeuXTnTL7U6cXFxmDlzJlJSUjhT5CXSQVVVFWfPnkXv3r3F1q9cuQJ7e3sUFxczSkaIZGiaKiGEyIhFixZh9uzZKCsrg1AoxPXr1xESEoK1a9dyru+Mra0tbG1tWceoNXNzc2RlZXG+GGdsbIwzZ85UOVp7+vRpGBoaMkpVM6tXr8bkyZOhq6srKu5WVlZiwoQJnDr+Bbwb4rBixQrWMQiROiYmJpwrwH1o4sSJ2L59OzZu3Ci2vnPnTjg6OjJK9WWuX7+OgwcP4vDhwygqKsLYsWNZRyIc06RJE9Fk1Q+pq6tDU1OTQSJCaoZ2xhFCiAzZtWsXVq1ahYcPHwJ4d8xw+fLlcHV1ZZzs4/z8/DB9+nQoKSlV25/sQ25ubnWU6sucO3cOS5Yswa+//oouXbpUmQTWuHFjRslqJjAwEHPmzMGiRYswYMAAAMDFixexYcMG+Pr6Ytq0aYwTSo7P5yMxMRECgQAWFhZVdqBIu8uXL3/y+b59+9ZREsJV9eW1dv78+fj111+hqqqK+fPnf/Lafxe3pNXcuXOxd+9e6OnpoXv37gDe7Sh7+PAhnJycxAYbSfM9vT+eevDgQdy/fx82NjZwdHTE6NGjoaamxjoe4ZidO3ciLCwMe/fuFe0Az8vLg7OzM0aPHo0ZM2YwTkjIp1ExjhBCZNDz588hEAg40S/HwMAAN2/eRJMmTT65k4zH4yErK6sOk9Xeh/2YeDye6HuhUMipfkzAuym9q1evFg3VaNOmDZYvX069f+pYdT2+PvzZ4srPVHh4OEJDQ5GTk4O3b9+KPZeQkMAoVc1x8T7qy2utjY0Njh07Bg0NjU8OL+HxeLh06VIdJqs9SYewSPs9ycnJwcrKChMmTMAPP/yA5s2bs45EOMzCwgL37t3Dmzdv0Lp1awBATk4OFBUVq3ygJq2vu0S20TFVQgiREdnZ2aioqEDbtm3RtGlT0XpmZiYUFBTQpk0bduE+ITs7u9rvuSwyMpJ1hK9m5syZmDlzJvLz86GsrMyJIRSf2y3zIWneZfKhf/75R+xxeXk5EhMTsWzZMqxevZpRqprx8/PDL7/8AmdnZ/z5559wcXEBn8/HjRs3MHv2bNbxJMbV+6gvr7Ufvr7Wl9fa+nIfd+7c4fRxYSJdRo4cyToCIV+EdsYRQoiM6NevH6ZMmQJnZ2ex9f379yMgIABRUVFsghExSUlJ6Ny5M+sYEquoqEBUVBT4fD4mTJgANTU1PHnyBI0bN5bawty/d5nEx8ejsrIS7dq1A/DuKJW8vLxoMimXXb58GR4eHpwY0NK+fXt4e3tj/PjxYkNmvLy8UFBQgK1bt7KOKJH6cB+lpaVQVlau9rnc3FwaCkK+yNu3b/Hs2TMIBAKx9fe7mwghRBZQMY4QQmRE48aNkZCQUO3kSysrK05MYxs7diysrKzg6ekptr5u3Tpcv34dYWFhjJJ9maKiIhw4cAABAQFITk7mzJHCBw8ewN7eHjk5OXjz5g3u3r0LQ0NDzJs3D2VlZfD392cd8bM2btyIqKgoBAcHixo+//PPP3BxcUGfPn2wYMECxgm/THp6OqytrfH69WvWUT5LRUUF6enp0NfXh46ODs6fP49OnTohMzMT3bt3x4sXL1hHlEh9uI/27dvj4MGDsLS0FFsPDw8X7YSVVqNHj5b42qNHj/6HSb6esrIybNmyBZGRkdUWsbhyBC8zMxNTpkzBtWvXxNa52KKBSJfXr19X+b3gSv9dIrvomCohhMgIHo+HV69eVVkvKirizB/A0dHR8Pb2rrJub2+P9evXM0j0ZS5duoTAwEAcPXoU+vr6GDNmDHbv3s06lsTc3d1hZWWF5ORkNGnSRLQ+atQoTJ06lWEyyW3YsAHnzp0Tm7ymqamJVatWYfDgwZwpxqWkpIg9FgqFyM3NhY+PDzp16sQoVc00b94cL168gL6+PvT19REXF4dOnTohOzsbXPrsuD7ch62tLXr27Inly5djyZIlKC4uxpw5cxAWFgYfHx/W8T7pw+mKQqEQx44dg7q6OqysrAC82wlbWFhYo6Ida1OmTMH58+cxduxYdO3aVawfJJdMnjwZDRo0wF9//YUWLVpw9j6IdMjOzsacOXMQFRWFsrIy0ToVdwlXUDGOEEJkRJ8+fbB27VqEhIRAXl4ewLum7mvXrkXv3r0Zp5PM69ev0bBhwyrrCgoKePnyJYNEn5afnw9tbW2xtUePHiEoKAiBgYEoLi6Gg4MDysvLceTIEZiZmTFKWjsxMTG4evVqlf8n+vr6ePz4MaNUNfPy5Us8ffoU33zzjdj6s2fPqi1eS6vOnTuDx+NVKfZ0794dgYGBjFLVzIABA3DixAlYWlrC1dUVHh4eCA8Px82bNzlVOKkP97FlyxYMHToULi4uOHnypOjo+Y0bN6T+dWrPnj2i75csWQIHBwf4+/uL/bs3a9YsTu2aOXnyJE6dOoVevXqxjvJFkpKSEB8fj/bt27OOQuoBR0dHAO8muzdr1oyKu4RzqBhHCCEy4vfff0ffvn3Rrl079OnTBwBw5coVvHz5kjN9sTp06IDDhw/Dy8tLbP3QoUNS+QZx586dePToEfz8/KCgoIAhQ4YgJiYG3333HbZs2QJ7e3vIy8tz4jhndQQCQbWfPD969AhqamoMEtXcqFGj4OLigg0bNqB79+4AgLi4OCxatIgzhROgasN9OTk5aGtrQ0lJiVGimtu5c6fomNGPP/4ILS0txMTEYNiwYfjxxx8Zp5NcfbmPwYMHY/To0di+fTsaNGiAEydOSOXr7KcEBgYiJiZGVIgDAHl5ecyfPx89e/bEunXrGKaTnK6uLmdeUz/FzMwMz58/Zx2D1BMpKSmIj48X9XslhGuoZxwhhMiQJ0+eYOvWrUhOToaysjI6duyIOXPmQEtLi3U0iURERGDMmDGYMGECBgwYAAC4ePEiQkJCEBYWJnWTtd68eYNly5ahadOmWLx4MRo0aAA3NzfMnDkTbdu2FV2noKCA5ORkzr3RHTduHNTV1bFz506oqakhJSUF2traGDFiBFq3bi22Q0ValZSUYOHChQgMDER5eTkAoEGDBnB1dcW6deugqqrKOCEhde/9QJa8vDwEBAQgOjoa69evh5ubG1avXg0FBQXWESWiqamJPXv2VPm34fjx43BxcakyhVhanT59Gn5+fvD394e+vj7rOLV26dIlLF26FGvWrIG5uXmVnyMu7VYk7NnY2OCXX37BoEGDWEchpFaoGEcIIYRTTp48iTVr1iApKUlUUPT29ka/fv1YR/uot2/fomHDhoiNjUVgYCBCQ0PRvn17TJo0CePGjUPLli05WYx78uQJbGxsIC8vj8zMTFhZWSEzMxNNmzbF5cuXoaOjwzqixIqLi8Hn8yEUCmFsbMy5Ipyfn1+16zweD0pKSjA2Nkbfvn3FdghJg3/3uvuUjh07/odJvkx9uY/31NTUMHToUPj7+0NDQwMAcO3aNTg5OUFNTQ2JiYlsA0po/vz5CAoKws8//yy289XHxwdOTk7YuHEj44SSyc/Ph4ODAy5fvgwVFZUqRayCggJGyWpGTk5O9P2HRwqpxxepDT6fjx9//BETJ05Ehw4dqvxecOG1lsg2KsYRQoiMuHz58ief79u3bx0lISUlJTh06BACAwNx/fp1VFZWYuPGjZgyZQrnjiKVlpYiJCQECQkJEAgEsLS0hKOjI5SVlVlHkykGBgbIz89HSUkJNDU1IRQKUVhYCBUVFTRq1AjPnj2DoaEhIiMjoaenxzquiJycXLW97v5N2t+o15f7eG/fvn2YNGlSlfVXr15h3rx5nBk0IxAIsH79emzevBm5ubkAgBYtWsDd3R0LFiyQuuL0xwwaNAg5OTlwdXWttjeWs7Mzo2Q1Ex0d/cnnpflDNSJ94uLiMGHCBNy/f1+09v51mCuvtUS2UTGOEEJkxIefSL/34R/09EcLGxkZGdi9ezf27duHwsJC2NraIiIignUswjEhISHYuXMnAgICYGRkBAC4d+8eZsyYgenTp6NXr1744Ycf0Lx5c4SHhzNO+z8PHjyQ+FppPp5XX+6jPqmoqMCBAwdgZ2eH5s2bi4b8cPEopIqKCmJjYzkzGflTrly5gh07doDP5yM8PBy6urrYt28fDAwMODNMikgHMzMzmJqaYvHixdUWqem1lkg7KsYRQoiMKCoqEntcXl6OxMRELFu2DKtXr8bAgQMZJfs0LS0t3L17F02bNoWmpuYnp2Vx5ahOdSorK3HixAkEBgZyqhiXkZGBLVu2ID09HTweD+3bt8ecOXNoWl4dMzIywpEjR9C5c2ex9cTERIwZMwZZWVm4du0axowZI9ohRMjnpKWlIScnB2/fvhWt8Xg8DBs2jGEqyamoqCA9PZ3zb8otLS2xbds20VFbrjpy5AgmTZoER0dH7Nu3D2lpaTA0NMS2bdvw119/4dSpU6wjEg5RVVVFcnIyjI2NWUchpFZomiohhMgIdXX1Kmu2trZQVFSEh4cH4uPjGaT6vE2bNomObm7atKnejq6Xl5fHyJEjpW4IxaeEh4dj/PjxsLKyQo8ePQC8OzZibm6OgwcP4vvvv2ecUHbk5uaioqKiynpFRQXy8vIAAC1btsSrV6/qOhrhgKKiIrF/I7KysjB69GikpKSIHb99//rLlZ3U3bp1Q2JiIueLcT4+PliwYAFWr17N6cEHq1atgr+/P5ycnHDo0CHRes+ePbFy5UqGyQgXDRgwgIpxhNNoZxwhhMi49PR0WFtb4/Xr16yjEI4xNDTExIkTq7yJ8vb2xr59+5CVlcUomewZOnSoaPKlhYUFgHe74qZNm4bmzZvjr7/+wokTJ/Dzzz/j1q1bjNMSafPrr79CSUkJixYtAgDRzreAgAB07twZf//9N7Kzs7Fw4UJs3LgRffr0YRlXYmFhYfD09ISHhwe6dOlSZTALVxq8v28z8e8Po7jWG0tFRQVpaWlo06YN1NTUkJycDENDQ2RlZcHMzAxlZWWsIxIO2blzJ1atWoUpU6ZUW6QePnw4o2SESIaKcYQQIiP+Pe1PKBQiNzcXPj4+KC8vx9WrVxklk5yNjQ0mTpyIsWPHVrvTj9QtFRUVpKSkVPlUOjMzE506dUJJSQmjZJ9Wk2PAXPljPi8vD5MmTcLFixdFb0gqKiowcOBA7Nu3D82aNUNkZCTKy8sxePBgxmmJtHn27BkmTZoEY2Nj/PHHH2jatCkuXryITp06QVdXF9evX4euri4uXryIhQsXcmaa6sd6pXKtiFVfBh8YGRlhx44dGDRokFgxbu/evfDx8UFaWhrriIRDqvv9fo9Lv99EdtExVUIIkRGdO3eudtpf9+7dERgYyChVzZibm2Pp0qWYM2cOhgwZgkmTJmHIkCFo2LAh62gyqX///rhy5UqVYlxMTIxU75z591Hgf/9ecHGwSfPmzXH+/HncuXMHd+/ehVAoRPv27dGuXTvRNTY2NgwTEmmmo6ODs2fPYu3atQDe/dy/bw/QtGlTPHnyBLq6umjTpg0yMjJYRq2R7Oxs1hG+Cq4U2z5nxowZcHd3R2BgIHg8Hp48eYLY2FgsXLgQXl5erOMRjhEIBKwjEPJFaGccIYTIiH9P+5OTk4O2tjaUlJQYJaodgUCACxcu4ODBgzh27Bjk5eUxduxYODo61ps3LFzh7+8PLy8vODg4iBqLx8XFISwsDCtWrEDLli1F10rrDrMLFy5gyZIlWLNmDXr06AEej4dr165h6dKlWLNmDWxtbVlHrJG3b98iOzsbRkZGaNCAe5+5FhYWIjw8HHw+H4sWLYKWlhYSEhLQrFkz6Orqso4nMa7fR58+fTB//nyMGjUK06dPR35+PhYtWgR/f38kJCQgNTWVdcR6LyUlBR06dICcnFyVne3/xpXjtgDwyy+/YNOmTaIjqYqKili4cCF+/fVXxskIIaRuUTGOEEJkwPujaTt27ICJiQnrOF9NWVkZTpw4gdWrV+PWrVuc2cVUX3zqiMiHpPm4SIcOHeDv74/evXuLrV+5cgXTp09Heno6o2Q1U1JSgrlz5yI4OBgAcPfuXRgaGsLNzQ0tW7aEp6cn44Sfl5KSgkGDBkFdXR33799HRkYGDA0NsWzZMjx48AB79+5lHVEi9eE+zp49i1evXmHs2LF4+PAhhg4ditTUVGhpaSE0NBQDBgxgHVFi+/btg7+/P7KzsxEbGwt9fX34+vrCwMAAI0aMYB3vo+Tk5JCXlwcdHR3IyclVu7MdkO7X148pKSlBWloaBAIBzMzM0KhRI9aRCIcMGTIEISEhonYlq1evxuzZs6GhoQEAePHiBfr06UPHnonUk+yvaEIIIZymoKCA1NTUejWJNC8vD/7+/vjtt9+QkpICKysr1pFkjkAgkOhLmt8o8vn8avsPvi+kcMVPP/2E5ORkREVFie12HTRoEA4fPswwmeTmz5+PyZMnIzMzU+wevv32W1y+fJlhspqpD/dhZ2eHsWPHAgD09PSQkpKC58+f49mzZ1JdiDt79iyKiopEj7dv34758+djyJAhKCwsFL0WaWhowNfXl1FKyWRnZ0NbW1v0fVZWFrKzs6t8cXFQjoqKCqysrNC1a1cqxJEaO3v2LN68eSN6/Ntvv6GgoED0uKKiglPH6YnsomIcIYTICCcnJ+zevZt1jC/y8uVL7NmzB7a2ttDT08P27dsxbNgw3L17F3///TfreATvjudxibW1NebNm4fc3FzRWl5eHhYsWICuXbsyTFYzx48fx9atW9G7d2+xoruZmRn4fD7DZJK7ceMGZsyYUWVdV1cXeXl5DBLVTn25j3/T0tKSeDcsK3l5eejVqxcePXoEANiyZQt27dqFX375BfLy8qLrrKyspH6qsL6+vuh3WV9f/5NfhMiSf+8QpYN+hKu410yEEEJIrbx9+xYBAQE4f/48rKysoKqqKvb8xo0bGSWTXLNmzaCpqQkHBwesWbMG1tbWrCPJtN9++w1t2rTBuHHjAADff/89jhw5ghYtWuDUqVPo1KkT44SfFxgYiFGjRkFfXx+tW7cGAOTk5MDExATHjx9nG64G8vPzoaOjU2W9uLiYMztilZSU8PLlyyrrGRkZoh1CXFAf7qOsrAxbtmxBZGQknj17VqVRekJCAqNkn+bs7Aw1NTXY29sjNTUV2dnZsLCwqHKdoqIiiouLGSSUXH2c+kwIIeR/qBhHCCEyIjU1FZaWlgDe9ZP6EBferAuFQmzevBkTJ06EiooK6zgEwI4dO7B//34AwPnz53HhwgWcOXMGoaGhWLRoEc6dO8c44ecZGxsjJSVFNIlUKBTCzMwMgwYN4sTvxXvW1tY4efIk5s6dC+B/v9O7du1Cjx49WEaT2IgRI7By5UqEhoYCeHcPOTk58PT0xJgxYxink1x9uI8pU6bg/PnzGDt2LLp27cqp34XRo0eLCnAGBgZISkqqsnvs9OnTMDMzYxFPYv+e+vwxXOwZR8iX4PF4VV6TuPQaRch7NMCBEEIIJwgEAigpKeH27dto27Yt6zgEgLKyMu7evQs9PT24u7ujrKwMO3bswN27d9GtWzf8888/rCPKjGvXrsHe3h6Ojo4ICgrCjBkzcPv2bcTGxiI6OhpdunRhHfGzXr58iSFDhuD27dt49eoVWrZsiby8PPTo0QOnTp2qsptXWtWH+1BXV8epU6fQq1cv1lG+yJ49e7Bs2TJs2LABrq6uCAgIAJ/Px9q1axEQEIAffviBdURCSA3Jycnh22+/haKiIgDgxIkTGDBggOi19c2bNzhz5gwVqYnUo51xhBAiI4qKilBZWQktLS2x9YKCAjRo0ACNGzdmlEwycnJyaNu2LV68eEHFOCmhqamJhw8fQk9PD2fOnMGqVasAvNvFyJU/gleuXPnJ5728vOooyZfp2bMnrl69ivXr18PIyAjnzp2DpaUlYmNjYW5uzjqeRBo3boyYmBhcunQJCQkJEAgEsLS0xKBBg1hHq5H6cB+6urpQU1NjHeOLubi4oKKiAosXL0ZJSQkmTJgAXV1dbN68mQpxhHCUs7Oz2OOJEydWucbJyamu4hBSa7QzjhBCZMS3336LYcOGYdasWWLr/v7+iIiIwKlTpxglk9zJkyfh4+OD7du3o0OHDqzjyLw5c+bgr7/+Qtu2bZGYmIj79++jUaNGOHz4MH777Tep7Sv1oX/3kyovL0d2djYaNGgAIyMjTtwDIV/b6dOn4efnB39//3ozIOD58+cQCATV9lYkhBBC6hoV4wghREZoaWnh6tWrMDU1FVu/c+cOevXqhRcvXjBKJjlNTU2UlJSgoqICDRs2hLKystjzH462J/+98vJybN68GQ8fPsTkyZNFhS1fX180atQIU6dOZZywdl6+fInJkydj1KhRmDRpEus4EqusrMSxY8eQnp4OHo8HU1NTjBgxAg0aSO9BCD8/P4mvdXNz+w+TfJn6ch/v5efnw8HBAZcvX4aKigoUFBTEnufaa+2zZ8+QkZEBHo+Hdu3acWaQBiGEkPqLinGEECIjVFVVERcXV+XI2q1bt9CtWzeUlJQwSia54ODgTz7/76MLhNRWamoqvvvuO9y/f591FImkpqZixIgRyMvLQ7t27QC8G9Sira2NiIgIqT2qamBgIPY4Pz8fJSUl0NDQAAAUFhZCRUUFOjo6yMrKYpBQMvXlPt4bNGgQcnJy4OrqimbNmlVpjs6V19qXL19i9uzZCAkJEU2ElZeXx7hx4/DHH39AXV2dcUJCCCGyiopxhBAiI/r37w9zc3Ns2bJFbH327NlISUnBlStXGCUjXJeWloacnBy8fftWbH348OGMEn25mJgYDBs2jDNDKLp37w4dHR0EBwdDU1MTAPDPP/9g8uTJePbsGWJjYxkn/LyDBw9i27Zt2L17t6igmJGRgWnTpmHGjBlwdHRknFAy9eE+VFRUEBsbi06dOrGO8kUcHByQlJSELVu2oEePHuDxeLh27Rrc3d3RsWNH0cRbQgghpK5RMY4QQmTE1atXMWjQIFhbW2PgwIEAgIsXL+LGjRs4d+4c+vTpwzihZPh8Pvbs2QM+n4/NmzdDR0cHZ86cgZ6eHr755hvW8WRKVlYWRo0ahVu3boHH4+H9nxTvd9FwYYjDv48XCoVC5ObmYt++fejbty9CQkIYJasZZWVl3Lx5s8rvQGpqKqytrVFaWsoomeSMjIwQHh5epY9ffHw8xo4di+zsbEbJaqY+3IelpSW2bduG7t27s47yRVRVVXH27Fn07t1bbP3KlSuwt7dHcXExo2S1V1paivLycrE1aR/ARAghpCo51gEIIYTUjV69eiE2NhZ6enoIDQ3FiRMnYGxsjJSUFM4U4qKjo2Fubo6///4bR48exevXrwEAKSkp8Pb2ZpxO9ri7u8PAwABPnz6FiooKbt++jcuXL8PKygpRUVGs40lk06ZNYl9+fn6IioqCs7Mzdu7cyTqexNq1a4enT59WWX/27BmMjY0ZJKq53NzcKkUG4F1Rt7p7k1b14T58fHywYMECREVF4cWLF3j58qXYF1c0adKk2qOo6urqoh2kXFBSUoI5c+ZAR0cHjRo1gqamptgXIYQQ7qGdcYQQQjijR48e+P777zF//nyoqakhOTkZhoaGuHHjBkaOHInHjx+zjihTmjZtikuXLqFjx45QV1fH9evX0a5dO1y6dAkLFixAYmIi64gy49SpU1i8eDGWL18u2s0UFxeHlStXwsfHR2xnkLTuohk2bBhycnKwe/dudOnSBTweDzdv3sS0adOgp6eHiIgI1hElUh/uQ07u3ef1/+4VJxQKwePxOLHrFQB27tyJsLAw7N27Fy1atAAA5OXlwdnZGaNHj8aMGTMYJ5TM7NmzERkZiZUrV8LJyQl//PEHHj9+jB07dsDHx4cTR58JIYSIo2IcIYQQzmjUqBFu3boFAwMDsWLc/fv30b59e5SVlbGOKFM0NTURHx8PQ0NDGBkZISAgADY2NuDz+TA3N+fEUJApU6Zg8+bNUFNTE1svLi7G3LlzERgYyChZzbwvngD/K6D8+9iwtBdS8vPz4ezsjDNnzoimd1ZUVMDOzg5BQUHQ0dFhnFAy9eE+oqOjP/l8v3796ijJl7GwsMC9e/fw5s0btG7dGgCQk5MDRUVFtG3bVuzahIQEFhEl0rp1a+zduxf9+/dH48aNkZCQAGNjY+zbtw8hISE4deoU64iEEEJqSHpn3RNCCCH/oqGhgdzc3CqTCxMTE6Grq8solezq0KEDUlJSYGhoiG7duuH3339Hw4YNsXPnThgaGrKOJ5Hg4GD4+PhUKcaVlpZi7969nCnGRUZGso7wxbS1tXHq1ClkZmYiPT0dQqEQpqamMDExYR2tRurDfXCl2PY5I0eOZB3hqygoKBD9u9e4cWMUFBQAAHr37o2ZM2eyjEYIIaSWqBhHCCGEMyZMmIAlS5YgLCwMPB4PAoEAV69excKFC+Hk5MQ6nsxZunSpqAH6qlWr8N1336FPnz5o0qQJDh8+zDjdp718+RJCoRBCoRCvXr2CkpKS6LnKykqcOnWKEzuY3qsvxRMAaNu2bZVdS1xUX+6Dy+pLL9H3O8D19fVhZmaG0NBQdO3aFSdOnICGhgbreIQQQmqBjqkSQgjhjPLyckyePBmHDh2CUChEgwYNUFlZiQkTJiAoKAjy8vKsI8q8goICaGpqVuk1JW3k5OQ+mZHH42HFihX45Zdf6jBV7Z05cwaNGjUS9Yb7448/sGvXLpiZmeGPP/6gJu+EcNimTZsgLy8PNzc3REZGYujQoaisrERFRQU2btwId3d31hEJIYTUEBXjCCGEcE5WVhYSEhIgEAhgYWFBu09IjUVHR0MoFGLAgAE4cuQItLS0RM81bNgQ+vr6aNmyJcOENWNubo7ffvsNQ4YMwa1bt2BlZYUFCxbg0qVLMDU1xZ49e1hHJIR8JTk5Obh58yaMjIzQqVMn1nEIIYTUAhXjCCGkHhs9erTE1x49evQ/TPLfqKysxK1bt6Cvr087f0itPHjwAK1bt5b6nXyf06hRI6SmpqJNmzZYvnw5UlNTER4ejoSEBAwZMgR5eXmsIxJCCCGEkP9HPeMIIaQeU1dXZx3hq5o3bx7Mzc3h6uqKyspK9OvXD9euXYOKigr++usv9O/fn3VEwgEpKSno0KED5OTkUFRUhFu3bn302o4dO9Zhstpr2LChaHrthQsXRD0UtbS08PLlS5bRCCG14OfnJ/G1bm5u/2ESQggh/wXaGUcIIYQzWrVqhePHj8PKygrHjx/HrFmzEBUVhb179yIyMhJXr15lHZFwgJycHPLy8qCjoyPqHVfdn0M8Hg+VlZUMEtbc8OHD8fbtW/Tq1Qu//vorsrOzoauri3PnzmHOnDm4e/cu64gSuXLlCnbs2AE+n4/w8HDo6upi3759MDAwEPXD44qSkhLk5OTg7du3YuvSWuC1sLCQeIdoQkLCf5zm63r79i2ys7NhZGSEBg24sRfh31PD8/PzUVJSIhrYUFhYCBUVFejo6CArK4tBQkIIIV9CjnUAQgghdaeiogIXLlzAjh078OrVKwDAkydP8Pr1a8bJJPP8+XM0b94cAHDq1Ck4ODjAxMQErq6un9zdRMiHsrOzoa2tLfo+KysL2dnZVb649AZ369ataNCgAcLDw7F9+3bo6uoCAE6fPg17e3vG6SRz5MgR2NnZQVlZGYmJiXjz5g0A4NWrV1izZg3jdJLLz8/Hd999BzU1NXzzzTewsLAQ+5JWI0eOxIgRIzBixAjY2dmBz+dDUVER/fv3R//+/aGkpAQ+nw87OzvWUSVWUlICV1dXqKio4JtvvkFOTg6AdzvJfHx8GKf7tA9fi1avXo3OnTsjPT0dBQUFKCgoQHp6OiwtLfHrr7+yjkoIIaQWaGccIYTIiAcPHsDe3h45OTl48+YN7t69C0NDQ8ybNw9lZWXw9/dnHfGz9PX1sWvXLgwcOBAGBgbYtm0bvvvuO9y+fRu9e/fGP//8wzqizNm3bx/8/f2RnZ2N2NhY6Ovrw9fXFwYGBhgxYgTreIRDLCws4OHhAScnJ6ipqSE5ORmGhoZISkqCvb09Z/reOTo64v79+/D19YWNjQ2OHTuGp0+fYtWqVdiwYQOGDh3KOuJnTZ06FS1atKhS6PH29sbDhw8RGBjIKFnNuLu74+rVq/D19YW9vT1SUlJgaGiIiIgIeHt7IzExkXVEiRgZGSE8PLxKMTc+Ph5jx45FdnY2o2SEEEJqixv7tAkhhHwxd3d3WFlZITk5GU2aNBGtjxo1ClOnTmWYTHIuLi5wcHBAixYtwOPxYGtrCwD4+++/0b59e8bpZM/27dvh5eWFefPmYfXq1aIjnRoaGvD19eVEMS4iIqLadR6PByUlJRgbG1c5Liat+Hw+9uzZAz6fj82bN0NHRwdnzpyBnp4evvnmG9bxPisjIwN9+/atst64cWMUFhbWfaBaunTpEv78809YW1tDTk4O+vr6sLW1RePGjbF27VpOFOPCwsJw8+bNKusTJ06ElZUVZ4pxx48fx+HDh9G9e3exI7hmZmbg8/kMk9VMbm4uysvLq6xXVlbi6dOnDBIRQgj5UlSMI4QQGRETE4OrV6+iYcOGYuv6+vp4/Pgxo1Q1s3z5cnTo0AEPHz7E999/D0VFRQCAvLw8PD09GaeTPVu2bMGuXbswcuRIsSNfVlZWWLhwIcNkkhs5cmS1PePer/F4PPTu3RvHjx+X6om90dHR+Pbbb9GrVy9cvnwZq1evho6ODlJSUhAQEIDw8HDWET+rRYsWuHfvHtq0aSO2HhMTA0NDQzahaqG4uBg6OjoA3g3QyM/Ph4mJCczNzTnTa01ZWRkxMTFo27at2HpMTAyUlJQYpaq5/Px80f+LDxUXF3NqgvLAgQMxbdo07N69G126dAGPx8PNmzcxY8YMDBo0iHU8QgghtUA94wghREYIBIJqm9E/evQIampqDBLVztixY+Hh4YFWrVqJ1pydnTmxC6u+yc7OrrYHlqKiIoqLixkkqrnz58/D2toa58+fR1FREYqKinD+/Hl07doVf/31Fy5fvowXL15IfXHR09MTq1atwvnz58UK7jY2NoiNjWWYTHIzZsyAu7s7/v77b/B4PDx58gQHDhzAwoULMWvWLNbxJNauXTtkZGQAADp37owdO3bg8ePH8Pf3R4sWLRink8y8efMwc+ZMzJkzB/v378f+/fsxZ84czJ49Gx4eHqzjScza2honT54UPX5fgNu1axd69OjBKlaNBQYGQldXF127doWSkhIUFRXRrVs3tGjRAgEBAazjEUIIqQXaGUcIITLC1tYWvr6+2LlzJ4B3b0pev34Nb29vDBkyhHE6wkUGBgZISkqCvr6+2Prp06dhZmbGKFXNuLu7Y+fOnejZs6dobeDAgVBSUsL06dNx+/Zt+Pr6YsqUKQxTft6tW7dw8ODBKuva2tp48eIFg0Q1t3jxYhQVFcHGxgZlZWXo27cvFBUVsXDhQsyZM4d1PInNmzcPubm5AN71WLOzs8OBAwfQsGFDBAUFsQ0nIU9PTxgaGmLz5s2inytTU1MEBQXBwcGBcTrJrV27Fvb29khLS0NFRQU2b96M27dvIzY2FtHR0azjSUxbWxunTp3C3bt3cefOHQiFQpiamsLExIR1NEIIIbVEAxwIIURGPHnyBDY2NpCXl0dmZiasrKyQmZmJpk2b4vLly9Ue5SHkU/bs2YNly5Zhw4YNcHV1RUBAAPh8PtauXYuAgAD88MMPrCN+lrKyMm7cuIEOHTqIrd+6dQtdu3ZFaWkpHjx4AFNTU5SUlDBK+XmtWrVCaGgoevbsKTb84NixY1i4cCGn+mOVlJQgLS0NAoEAZmZmaNSoEetIn1ReXg4FBYWPPl9SUoI7d+6gdevWaNq0aR0mI8C73+X169cjPj4eAoEAlpaWWLJkCczNzVlHI4QQIsOoGEcIITKktLQUhw4dEntT4ujoCGVlZdbRCEft2rULq1atwsOHDwEAurq6WL58OVxdXRknk0zv3r2hpqaGvXv3QltbG8C7PlNOTk4oLi7G5cuXceHCBcyaNQt3795lnPbjFi9ejNjYWISFhcHExAQJCQl4+vQpnJyc4OTkBG9vb9YRP6uoqAiVlZXQ0tISWy8oKECDBg3QuHFjRsk+zcfHB4aGhpzaMUak3/z58/Hrr79CVVUV8+fP/+S1GzdurKNUhBBCvhYqxhFCCCHkiz1//hwCgYBzOywzMjIwYsQIZGdnQ09PDzweDzk5OTA0NMSff/4JExMTHD9+HK9evcKkSZNYx/2o8vJyTJ48GYcOHYJQKESDBg1QWVmJCRMmICgoCPLy8qwjfta3336LYcOGVekP5+/vj4iICJw6dYpRsk+7e/cuRo0ahenTp8Pd3b1eFE4qKyuxadMmhIaGIicnB2/fvhV7vqCggFGyz3v58qXE10prgRd41+/x2LFj0NDQgI2NzUev4/F4uHTpUh0mI4QQ8jVQMY4QQgin8Pl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjEQ4SCoU4e/Ys7t69C6FQiPbt28PW1hZyctybc8Xn85GYmAiBQAALC4sq0zClmZaWFq5evQpTU1Ox9Tt37qBXr15S3fvu1atXmDx5Mo4cOVIvCideXl4ICAjA/PnzsWzZMvzyyy+4f/8+jh8/Di8vL7i5ubGO+FFycnIST0qtbqgRIYQQUheoGEcIIYQzoqOj8e2336JXr164fPky0tPTYWhoiN9//x3Xr19HeHg464j1noWFhcRvdBMSEv7jNKQ+UVVVRVxcXJVeXrdu3UK3bt2kumdffWNkZAQ/Pz8MHToUampqSEpKEq3FxcVVOyxEWnw4mOH+/fvw9PTE5MmTRdNTY2NjERwcjLVr18LZ2ZlVTEIIITKOinGEEEI4o0ePHvj+++8xf/58sSb1N27cwMiRI/H48WPWEeu9FStWiL4vKyvDtm3bYGZmJnqjGxcXh9u3b2PWrFlYu3Ytq5g1cvHiRVy8eBHPnj2DQCAQey4wMJBRqs/73HHID3HhaGT//v1hbm6OLVu2iK3Pnj0bKSkpuHLlCqNkskdVVRXp6elo3bo1WrRogZMnT8LS0hJZWVmwsLBAUVER64gSGThwIKZOnYrx48eLrR88eBA7d+5EVFQUm2ASGD16tMTXHj169D9MQggh5L/QgHUAQgghRFK3bt2qdkeGtra2VB9hq08+HAQwdepUuLm54ddff61yzfuBDtJuxYoVWLlyJaysrNCiRQuJd/1Jg8TERLHH8fHxqKysRLt27QC862UmLy+PLl26sIhXY6tXr8agQYOQnJyMgQMHAnhXKL1x4wbOnTvHOJ3kysrKsGXLFkRGRlZb4OXCjtFWrVohNzcXrVu3hrGxMc6dOwdLS0vcuHEDioqKrONJLDY2Fv7+/lXWraysMHXqVAaJJKeuri76XigU4tixY1BXV4eVlRWAd7/vhYWFNSraEUIIkR5UjCOEEMIZGhoayM3NhYGBgdh6YmIidHV1GaWSXWFhYbh582aV9YkTJ8LKykqqd5W95+/vj6CgIKkezvAxkZGRou83btwINTU1BAcHQ1NTEwDwzz//wMXFBX369GEVsUZ69eqF2NhYrFu3DqGhoVBWVkbHjh2xe/duTvW+mzJlCs6fP4+xY8eia9eunCrwvjdq1ChcvHgR3bp1g7u7O8aPH4/du3cjJycHHh4erONJTE9PD/7+/tiwYYPY+o4dO6Cnp8colWT27Nkj+n7JkiVwcHCAv7+/aBhLZWUlZs2aJdVDKAghhHwcHVMlhBAZweXpeO8tXrwYsbGxCAsLg4mJCRISEvD06VM4OTnByclJbNcW+e81b94ca9euhYuLi9j6nj174OnpiadPnzJKJrkmTZrg+vXrMDIyYh3li+jq6uLcuXNVhpikpqZi8ODBePLkCaNkskddXR2nTp1Cr169WEf5auLi4nDt2jUYGxtj+PDhrONI7NSpUxgzZgyMjIzQvXt3AO/uhc/n48iRIxgyZAjjhJLR1tZGTEyMaNfrexkZGejZsyftDCeEEA6inXGEECIjVqxY8cnpeFywevVqTJ48Gbq6uhAKhTAzM0NlZSUmTJiApUuXso4nc+bNm4eZM2ciPj5e7I1uYGAgZ36mpk6dioMHD2LZsmWso3yRly9f4unTp1WKcc+ePcOrV68Ypao5gUCAe/fuVXu8s2/fvoxS1Yyuri7U1NRYx/iqunfvLvod55IhQ4YgMzMT27dvR3p6OoRCIUaMGIEff/xR6nfGfaiiogLp6elVinHp6elVfk8IIYRwA+2MI4QQGcHl6Xj/xufzkZiYCIFAAAsLC04dYatvQkNDsXnzZqSnpwMATE1N4e7uDgcHB8bJJOPu7o69e/eiY8eO6NixIxQUFMSe58LgAwBwcnJCdHQ0NmzYIFYYXbRoEfr27Yvg4GDGCT8vLi4OEyZMwIMHD/DvP095PB4qKysZJauZ06dPw8/PD/7+/tDX12cdR2IRERESX8ul3XH1wfz58xEUFISff/5Z7Pfbx8cHTk5OnHmdIoQQ8j9UjCOEEBlRX6bjEfI12djYfPQ5Ho+HS5cu1WGa2ispKcHChQsRGBiI8vJyAECDBg3g6uqKdevWQVVVlXHCz+vcuTNMTEywYsWKaodpfNjQXprl5+fDwcEBly9fhoqKSpUCr7S2BJCTkxN7zOPxqi2KAuBMYbS+EAgEWL9+PTZv3ozc3FwAQIsWLeDu7o4FCxaI+sgRQgjhDjqmSgghMoKr0/Hmz58v8bW0O4DU1IdDELhMRUUF27Ztw7p168Dn8yEUCmFsbMyJItx7mZmZCA8Ph7GxMesoX2T8+PF4/Pgx1qxZg2bNmnFmgMOHxx0vXLiAJUuWYM2aNejRowd4PB6uXbuGpUuXYs2aNQxTyp6KigocOHAATk5OWLx4MV6+fAkANLiBEEI4jopxhBAiI7g6HS8xMVHscXx8PCorK0W9c+7evQt5eXl06dKFRTxSjzx69Ag8Ho/Tk3lVVVXRsWNH1jFqpVu3brh37x7ni3HXrl1DbGwsOnXqxDpKrc2bNw/+/v7o3bu3aM3Ozg4qKiqYPn266Fg6+e81aNAAM2fOFP03pyIcIYTUD1SMI4QQGeHj4yP6fuzYsdDT08PVq1elfjrehzuXNm7cCDU1NQQHB0NTUxMA8M8//8DFxQV9+vRhFZFwmEAgwKpVq7Bhwwa8fv0aAKCmpoYFCxbgl19+qXJ0j/x35s6diwULFiAvLw/m5uZVjndypcjYvn17lJaWso7xRfh8frXHgtXV1XH//v26DyTjunXrhsTERE71ICSEEPJp1DOOEEIIZ+jq6uLcuXNVJkampqZi8ODBePLkCaNkhKt++ukn7N69GytWrECvXr0gFApx9epVLF++HNOmTcPq1atZR5QZ1RU+3/ct49IAh3PnzmHFihVYvXp1tUVFLuxs6tu3LxQUFLB//360aNECAJCXl4dJkybh7du3iI6OZpxQtoSFhcHT0xMeHh7o0qVLlePnXClUE0II+R8qxhFCiIyQl5dH3759ceTIEWhpaYnWnz59ipYtW3Lija6amhr+/PNPDBgwQGz90qVLGDFiBF69esUoGeGqli1bwt/fv8ru0D///BOzZs3C48ePGSWTPQ8ePPjk81zZFfS+qPjvXnFcKireu3cPo0aNQkZGBlq3bg0AyMnJgYmJCY4fPy7VR4ktLCwk7tOXkJDwH6f5OupLoZoQQsj/0DFVQgiREUKhEG/evIGVlRUiIiLQoUMHsee4YNSoUXBxccGGDRvQvXt3AEBcXBwWLVqE0aNHM04neyorKxEUFISLFy/i2bNnYg3gAXBiEmlBQQHat29fZb19+/ZSO/WyvuJKse1z6sNQEGNjY6SkpOD8+fO4c+cOhEIhzMzMMGjQIKkfSDFy5EjR92VlZdi2bRvMzMzQo0cPAO/+zbh9+zZmzZrFKGHNZWdns45ACCHkK6OdcYQQIiPk5eXx6NEj+Pj4YM+ePdi3bx9GjBjBqZ1xJSUlWLhwIQIDA1FeXg7gXXNrV1dXrFu3jlOTI+uDOXPmICgoCEOHDkWLFi2qvEnftGkTo2SS69atG7p16wY/Pz+x9blz5+LGjRuIi4tjlOzzIiIiJL5WmvtC/ltaWhpycnLw9u1bsXUu3QORDlOnTkWLFi3w66+/iq17e3vj4cOHCAwMZJSMEEKIrKNiHCGEyAg5OTnk5eVBR0cHO3fuhJubG5YuXYqpU6dCV1eXE8W494qLi8Hn8yEUCmFsbExFOEaaNm2KvXv3YsiQIayj1Fp0dDSGDh2K1q1bo0ePHuDxeLh27RoePnyIU6dOSfVgEEmHS3DlGFtWVhZGjRqFW7duiY7gAf877smFe3ivsLAQu3fvRnp6Ong8HszMzDBlypRqhyJICz8/P0yfPh1KSkpVitP/5ubmVkepvoy6ujpu3ryJtm3biq1nZmbCysoKRUVFjJLV3L59++Dv74/s7GzExsZCX18fvr6+MDAwwIgRI1jHI4QQUkNUjCOEEBnxYTEOAKKiojB27FhYWFjg0qVLnHqjS6RDy5YtERUVBRMTE9ZRvsiTJ0/wxx9/iB3HmzVrFlq2bMk6mkwZNmwY5OXlsWvXLhgaGuL69et48eIFFixYgPXr10t1YfRDN2/ehJ2dHZSVldG1a1cIhULcvHkTpaWlOHfuHCwtLVlHrJaBgQFu3ryJJk2awMDA4KPX8Xg8ZGVl1WGy2mvevDnWrl0LFxcXsfU9e/bA09MTT58+ZZTs086ePYvu3buLirfbt2+Hl5cX5s2bh9WrVyM1NRWGhoYICgpCcHBwvTgaTQghsoaKcYQQIiM+fKP13r179zBs2DDcvXuXinGkxjZs2ICsrCxs3bpV6vtI1dTDhw/h7e1Nx9jqUNOmTXHp0iV07NgR6urquH79Otq1a4dLly5hwYIFSExMZB1RIn369IGxsTF27dqFBg3etWeuqKjA1KlTkZWVhcuXLzNOKDt8fHywfPlyTJ06VazPaGBgILy8vODp6ck4YfWCg4Oxbt06nDlzBq1atYKZmRnWrFmDkSNHQk1NDcnJyTA0NERqair69++P58+fs45MCCGkhqgYRwghMq6srAxPnz6tN83TSd0ZNWoUIiMjoaWlhW+++QYKCgpizx89epRRsi+XnJwMS0tLThWpi4uLER0dXW2/NS4cK9TU1ER8fDwMDQ1hZGSEgIAA2NjYgM/nw9zcHCUlJawjSkRZWRmJiYlVBoOkpaXBysqKM/dRX4SGhmLz5s1IT08HAJiamsLd3R0ODg6Mk33a0aNH4eXlhdTUVCgrK+POnTvQ19cXK8ZlZmaiY8eOKC0tZR2XEEJIDdE0VUIIkXFKSkpUiCO1oqGhgVGjRrGOQQAkJiZiyJAhKCkpQXFxMbS0tPD8+XOoqKhAR0eHE8W4Dh06ICUlBYaGhujWrRt+//13NGzYEDt37oShoSHreBJr3LgxcnJyqhTjHj58CDU1NUapambs2LGwsrKqsnNs3bp1uH79OsLCwhglqzkHBwepL7xVZ/To0bCwsADwbmd7UlJSlX+rT58+DTMzMxbxCCGEfCEqxhFCSD2mpaWFu3fvomnTptDU1PzkUcKCgoI6TEbqgz179rCOQP6fh4cHhg0bhu3bt0NDQwNxcXFQUFDAxIkT4e7uzjqeRJYuXYri4mIAwKpVq/Ddd9+hT58+aNKkCQ4fPsw4neTGjRsHV1dXrF+/Hj179gSPx0NMTAwWLVqE8ePHs44nkejoaHh7e1dZt7e3x/r16xkkkk3ve/ctWrQIs2fPRllZGYRCIa5fv46QkBCsXbsWAQEBjFMSQgipDSrGEUJIPbZp0ybRTgxfX1+2Yb4SPp8PX19f0ZTC90eOjIyMWEeTWfn5+cjIyACPx4OJiQm0tbVZR5I5SUlJ2LFjB+Tl5SEvL483b97A0NAQv//+O5ydnTF69GjWET/Lzs5O9L2hoSHS0tJQUFDw2Q8SpM369evB4/Hg5OSEiooKAICCggJmzpwJHx8fxukk8/r1azRs2LDKuoKCAl6+fMkgUe1UVlZi06ZNCA0Nrfb4Nlc+hHJxcUFFRQUWL16MkpISTJgwAbq6uti8eTN++OEH1vEIIYTUAvWMI4QQwhlnz57F8OHD0blzZ/Tq1QtCoRDXrl1DcnIyTpw4AVtbW9YRZUpxcTHmzp2LvXv3QiAQAADk5eXh5OSELVu2QEVFhXHCj/tccaqwsBDR0dGc6Rmnra2Nq1evwsTEBO3atYOfnx/s7Oxw584dWFpacqJPWVFRESorK6GlpSW2XlBQgAYNGqBx48aMktVOSUkJ+Hw+hEIhjI2Npfr34d+sra0xbNgweHl5ia0vX74cJ06cQHx8PKNkNePl5YWAgADMnz8fy5Ytwy+//IL79+/j+PHj8PLy4sTx7X97/vw5BAKBaDI6IYQQbqJiHCGE1GM12cHAhTe6FhYWsLOzq7K7xNPTE+fOnUNCQgKjZLLB19cX5ubmGDhwIABgxowZuHDhArZu3YpevXoBAGJiYuDm5gZbW1ts376dZdxPcnFxkeg6rhzFHTx4MCZPnowJEybgxx9/RGJiItzc3LBv3z78888/+Pvvv1lH/Kxvv/0Ww4YNw6xZs8TW/f39ERERgVOnTjFKJnsiIiIwZswYTJgwAQMGDAAAXLx4ESEhIQgLC8PIkSPZBpSQkZER/Pz8MHToUKipqSEpKUm0FhcXh4MHD7KOWCPPnj0T7UJu164d7UImhBAOo2IcIYTUY3Jycp893iUUCsHj8TixA0hJSQm3bt1C27Ztxdbv3r2Ljh07oqysjFEy2RAfHw8HBwcsX74ckyZNQtOmTREeHo7+/fuLXRcZGQkHBwfk5+ezCSqDbt68iVevXsHGxgb5+flwdnZGTEwMjI2NsWfPHnTq1Il1xM/S0tLC1atXYWpqKrZ+584d9OrVCy9evGCUrGaKi4vh4+ODixcv4tmzZ6Jdo+9lZWUxSlYzJ0+exJo1a5CUlARlZWV07NgR3t7e6NevH+toElNVVUV6ejpat26NFi1a4OTJk7C0tERWVhYsLCxQVFTEOqJEXr58idmzZyMkJERsF/K4cePwxx9/QF1dnXFCQgghNUU94wghpB6LjIxkHeGr0tbWRlJSUpViXFJSEh3ZqQNdunTB33//DWdnZ0yaNAklJSVo1qxZlet0dHQ4cSyyPrGyshJ9r62tzcldZG/evBH1WPtQeXk5SktLGSSqnalTpyI6OhqTJk1CixYtONXv7kNDhw7F0KFDWcf4Iq1atUJubi5at24NY2NjnDt3DpaWlrhx4wYUFRVZx5PY1KlTkZSUhJMnT6JHjx7g8Xi4du0a3N3dMW3aNISGhrKOSAghpIZoZxwhhBDOWLlyJTZt2gRPT0+xKYW//fYbFixYgKVLl7KOKFMGDhyIJk2aYO/evVBSUgIAlJaWwtnZGQUFBbhw4QLjhIRL+vfvD3Nzc2zZskVsffbs2UhJScGVK1cYJasZDQ0NnDx5UnR0m8vi4+NFw3LMzMxgYWHBOlKNeHp6onHjxvj5558RHh6O8ePHo02bNsjJyYGHhwdnBmqoqqri7Nmz6N27t9j6lStXYG9vL5pCTAghhDuoGEcIITKmpKSk2qlyHTt2ZJRIckKhEL6+vtiwYQOePHkCAGjZsiUWLVoENzc3zu5A4arU1FTY29ujrKwMnTp1Ao/HQ1JSEpSUlHD27Fl88803rCMSDrl69SoGDRoEa2trUV/Cixcv4saNGzh37hz69OnDOKFkDAwMcOrUqSrHbbnk2bNn+OGHHxAVFQUNDQ0IhUIUFRXBxsYGhw4d4myvsri4OFy7dg3GxsYYPnw46zgSa926NU6ePAlzc3Ox9ZSUFAwZMgSPHj1ilIwQQkhtUTGOEEJkRH5+PlxcXHD69Olqn+dCz7gPvXr1CgCgpqbGOIlsKy0txf79+3Hnzh0IhUKYmZnB0dERysrKrKMRDkpKSsK6devE+pT99NNPVY6mS7P9+/fjzz//RHBwMKcmqH5o3Lhx4PP52Ldvn6iomJaWBmdnZxgbGyMkJIRxQtmyc+dOhIWFYe/evWjRogUAIC8vD87Ozhg9ejRmzJjBOCEhhJCaomIcIYTICEdHR9y/fx++vr6wsbHBsWPH8PTpU6xatQobNmzgfG8gQgiRBhYWFuDz+RAKhWjTpg0UFBTEnufC1Gd1dXVcuHAB1tbWYuvXr1/H4MGDUVhYyCaYBCIiIiS+liu74ywsLHDv3j28efMGrVu3BgDk5ORAUVGxSqGaCz9fhBBCaIADIYTIjEuXLuHPP/+EtbU15OTkoK+vD1tbWzRu3Bhr167lRDHu6dOnWLhwoWhK4b8/T+La7j4uioiIwLfffgsFBYXPvunlyhtdws7Lly8lvrZx48b/YZKvZ+TIkawjfDGBQFCliAgACgoKVabDSpt///fn8XhV/q1439KAK/9m1IefKUIIIeJoZxwhhMiIxo0bIyUlBW3atEGbNm1w4MAB9OrVC9nZ2fjmm284Mf3y22+/RU5ODubMmVPtlMIRI0YwSiY75OTkkJeXBx0dHcjJyX30Oh6Px5k3uvVFdHQ01q9fL2q4b2pqikWLFkl1rzU5ObnP9noUCoX081THRowYgcLCQoSEhKBly5YAgMePH8PR0RGampo4duwY44SSuXDhApYsWYI1a9aITSFdunQp1qxZA1tbW9YRCSGEyCjaGUcIITKiXbt2yMjIQJs2bdC5c2fs2LEDbdq0gb+/v6gHjbSLiYnBlStX0LlzZ9ZRZNaHu2KkfYeMLNm/fz9cXFwwevRouLm5QSgU4tq1axg4cCCCgoIwYcIE1hGrFRkZyTrCf4bLk0i3bt2KESNGoE2bNtDT0wOPx0NOTg7Mzc2xf/9+1vEkNm/ePPj7+4tNIbWzs4OKigqmT5+O9PR0hukIIYTIMtoZRwghMuLAgQMoLy/H5MmTkZiYCDs7O7x48QINGzZEUFAQxo0bxzriZ5mZmeHAgQOcelNLSF0wNTXF9OnT4eHhIba+ceNG7Nq1i/NFh6SkJM4U4evTJNLz58+LDWcZNGgQ60g1oqysjOvXr1c7hbRbt24oLS1llIwQQoiso2IcIYTIqJKSEty5cwetW7dG06ZNWceRyLlz57BhwwbRrj7ClpubG4yNjeHm5ia2vnXrVty7dw++vr5sgskgRUVF3L59G8bGxmLr9+7dQ4cOHVBWVsYoWe0VFRXhwIEDCAgIQHJyMmeOqdIkUunRt29fKCgoYP/+/WJTSCdNmoS3b98iOjqacUJCCCGyiopxhBAiY96+fYvs7GwYGRmhQQPp71agqakp1lOquLgYFRUVUFFRqdJgvKCgoK7jyTRdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ7DE2NsaiRYswY8YMsfUdO3Zg/fr1yMzMZJSs5i5duoTAwEAcPXoU+vr6GDNmDMaMGcOZHbFcnUTq5+cn8bX/LsBLq3v37mHUqFHIyMgQm0JqYmKC48ePVyleE0IIIXVF+t+FEUII+SpKSkowd+5cBAcHAwDu3r0LQ0NDuLm5oWXLlvD09GScsHq0u0p6vXjxAurq6lXWGzdujOfPnzNIJLsWLFgANzc3JCUloWfPnuDxeIiJiUFQUBA2b97MOt5nPXr0CEFBQQgMDERxcTEcHBxQXl6OI0eOwMzMjHW8GuHqJNJNmzZJdB2Px+NMMc7Y2BgpKSnVHrf93OAQacS1D9MIIYR8HO2MI4QQGeHu7o6rV6/C19cX9vb2SElJgaGhISIiIuDt7Y3ExETWEQnHdOjQAT/++CPmzJkjtr5lyxZs374daWlpjJLJpmPHjmHDhg2i/nDvp6lK+5ThIUOGICYmBt999x0cHR1hb28PeXl5KCgoIDk5mXPFuPoyiZRID65+mEYIIeTj6CMVQgiREcePH8fhw4fRvXt3sR0BZmZm4PP5DJNJ7tSpU5CXl4ednZ3Y+rlz51BZWYlvv/2WUTLZNH/+fMyZMwf5+fkYMGAAAODixYvYsGED7WhkYNSoURg1ahTrGDV27tw5uLm5YebMmWjbti3rOF+svkwiBbi5E8vPzw/Tp0+HkpLSZ4/ecmWH308//YTk5GRERUXB3t5etD5o0CB4e3tTMY4QQjiIG/+qEkII+WL5+fnQ0dGpsl5cXMyZ4zqenp7w8fGpsi4QCODp6UnFuDo2ZcoUvHnzBqtXr8avv/4KAGjTpg22b98OJycnxulk1+vXr6sch2zcuDGjNJ935coVBAYGwsrKCu3bt8ekSZM4Md35Y/T09JCQkMDpSaRc3om1adMmODo6QklJ6ZNHb7l03LY+fJhGCCFEnBzrAIQQQuqGtbU1Tp48KXr8/g/6Xbt2oUePHqxi1UhmZma1R9bat2+Pe/fuMUhEZs6ciUePHuHp06d4+fIlsrKyqBDHQHZ2NoYOHQpVVVWoq6tDU1MTmpqa0NDQgKamJut4n9SjRw/s2rULubm5mDFjBg4dOgRdXV0IBAKcP38er169Yh2xRvbu3Ys3b97A1tYWc+fOhZubGwYNGoS3b99i7969rONJ5MOdWEpKSqL1QYMG4fDhwwyTfV52djaaNGki+v5jX1lZWYyTSq4+fJhGCCFEHPWMI4QQGXHt2jXY29vD0dERQUFBmDFjBm7fvo3Y2FhER0dXmYgpjZo3b46DBw+KjkS+d+HCBUyYMAHPnj1jlIwQtnr27AngXW/IZs2aVXmD3q9fPxaxai0jIwO7d+/Gvn37UFhYCFtbW0RERLCOJRF5eXnk5uZWKZ68ePECOjo6qKysZJRMcvr6+qKdWGpqakhOToahoSHu3bsHS0tLvHz5knVEmdKvXz+MHTsWc+fOhZqaGlJSUmBgYIA5c+bg3r17OHPmDOuIhBBCaoiOqRJCiIzo2bMnrl27hnXr1sHIyAjnzp2DpaUlYmNjYW5uzjqeRIYPH4558+bh2LFjMDIyAgDcu3cPCxYswPDhwxmnk03h4eEIDQ1FTk4O3r59K/ZcQkICo1SyJyUlBfHx8WjXrh3rKF9Fu3bt8Pvvv2Pt2rU4ceIEAgMDWUeSmFAorHa30qNHj6qdPiyN6stOrLFjx8LKyqrKsdp169bh+vXrCAsLY5SsZtauXQt7e3ukpaWhoqICmzdvFvswjRBCCPfQMVVCCJEB5eXlcHFxgYqKCoKDg5Gamoq0tDTs37+fM4U44N0bKFVVVbRv3x4GBgYwMDCAqakpmjRpgvXr17OOJ3P8/Pzg4uICHR0dJCYmomvXrmjSpAmysrKof18ds7a2xsOHD1nH+Ork5eUxcuRITuyKs7CwgKWlJXg8HgYOHAhLS0vRV6dOndCnTx/O9I2rD20NACA6OhpDhw6tsm5vb4/Lly8zSFQ7PXv2xNWrV1FSUiL6MK1Zs2aIjY3lxK52QgghVdHOOEIIkQEKCgo4duwYli1bxjrKF1FXV8e1a9dw/vx5JCcnQ1lZGR07dkTfvn1ZR5NJ27Ztw86dOzF+/HgEBwdj8eLFMDQ0hJeXFwoKCljHkykBAQH48ccf8fjxY3To0AEKCgpiz3fs2JFRMtkxcuRIAEBSUhLs7OzQqFEj0XMNGzZEmzZtMGbMGEbpaqa+7MR6/fo1GjZsWGVdQUGBc0dtzc3NRQM1CCGEcB/1jCOEEBnh4uICc3NzzJ8/n3WUr6KsrAyKioqcOjJV36ioqCA9PR36+vrQ0dHB+fPn0alTJ2RmZqJ79+548eIF64gyIy4uDhMmTMD9+/dFazweT3Rkkgt9yuqL4OBgjBs3TmzwAVckJSWhc+fOAIBbt25h/fr1iI+Ph0AggKWlJZYsWcKp3dTW1tYYNmwYvLy8xNaXL1+OEydOID4+nlGyz6tJsVCapyUTQgipHu2MI4QQGWFsbIxff/0V165dQ5cuXaCqqir2vJubG6NkkhMIBFi9ejX8/f3x9OlT3L17F4aGhli2bBnatGkDV1dX1hFlSvPmzfHixQvo6+tDX18fcXFx6NSpE7Kzs0Gf9dWtKVOmwMLCAiEhIdUOcCB1x9nZmXWEWrO0tISFhQWmTp2KCRMmcH4n1rJlyzBmzBjw+XzR4J+LFy8iJCRE6vvFaWhoSPx7TMV2QgjhHtoZRwghMsLAwOCjz/F4PGRlZdVhmtpZuXIlgoODsXLlSkybNg2pqakwNDREaGgoNm3ahNjYWNYRZcrUqVOhp6cHb29v+Pv7Y/78+ejVqxdu3ryJ0aNHY/fu3awjygxVVVUkJyfD2NiYdRSZJycn98kiijQXTmJjYxEYGIjQ0FCUl5djzJgxmDJlCmxsbFhHq7WTJ09izZo1SEpKErU28Pb2lvoJwx8eB75//z48PT0xefJkUc++2NhYBAcHY+3atZwuABNCiKyiYhwhhBDOMDY2xo4dOzBw4ECoqakhOTkZhoaGuHPnDnr06IF//vmHdUSZIhAIIBAI0KDBu432oaGhiImJgbGxMX788cdqezWR/8awYcMwefJkzvQkq8+OHz8uVowrLy9HYmIigoODsWLFCk7s4C0tLUVoaCj27NmDK1euoE2bNpgyZQqcnZ3RqlUr1vFkzsCBAzF16lSMHz9ebP3gwYPYuXMnoqKi2AQjhBBSa1SMI4QQwhnKysq4c+cO9PX1xYpxaWlp6Nq1K16/fs06IiFM7Ny5E6tWrcKUKVNgbm5eZYDD8OHDGSUj7x08eBCHDx/Gn3/+yTpKjfD5fOzZswd79+5Fbm4ubG1tcerUKdaxaiQ+Ph7p6eng8XgwMzODhYUF60g1oqKiguTkZLRt21Zs/e7du+jcuTNKSkoYJSOEEFJbVIwjhBDCGVZWVpg3bx4mTpwoVoxbsWIFLly4gCtXrrCOWO+lpKRIfC1N8Kw7cnJyH32OBjhIBz6fj44dO6K4uJh1lBp7/fo1Dhw4gJ9//hmFhYWc+Xl69uwZfvjhB0RFRUFDQwNCoRBFRUWwsbHBoUOHoK2tzTqiRNq1a4fvvvsOGzZsEFtfsGAB/vrrL2RkZDBKRgghpLZogAMhhBCpN2XKFGzevBne3t6YNGkSHj9+DIFAgKNHjyIjIwN79+7FX3/9xTqmTOjcubNoSuenUAGobgkEAtYRyCeUlpZiy5YtnDviGR0djcDAQBw5cgTy8vJwcHDgxDHb9+bOnYuXL1/i9u3bMDU1BQCkpaXB2dkZbm5uCAkJYZxQMps2bcKYMWNw9uxZdO/eHcC7Ccp8Ph9HjhxhnI4QQkht0M44QgghUk9eXh65ubnQ0dHB2bNnsWbNGsTHx0MgEMDS0hJeXl4YPHgw65gy4cGDBxJfq6+v/x8mIUQ6aWpqivWMEwqFePXqFVRUVLB//36pPzL88OFDBAUFISgoCNnZ2ejZsydcXV3h4OBQZQq3tFNXV8eFCxdgbW0ttn79+nUMHjwYhYWFbILVwqNHj7B9+3akp6dDKBTCzMwMP/74I/T09FhHI4QQUgtUjCOEECL15OTkkJeXBx0dHdZRCJEafn5+mD59OpSUlODn5/fJa93c3OooFQkODhZ7LCcnB21tbXTr1g2ampqMUknG1tYWkZGR0NbWhpOTE6ZMmYJ27dqxjlVrampquHLlCjp37iy2npiYiH79+uHly5dsghFCCJF5VIwjhBAZcuXKFezYsQN8Ph/h4eHQ1dXFvn37YGBggN69e7OO91FycnJ4+vQpZ/r7yJJ9+/bB398f2dnZiI2Nhb6+Pnx9fWFgYIARI0awjlevGRgY4ObNm2jSpAkMDAw+eh2Px0NWVlYdJiMfk5SUVKUwJE2GDx8OV1dXfPfdd5CXl2cd54uNGDEChYWFCAkJQcuWLQEAjx8/hqOjIzQ1NXHs2DHGCQkhhMiqj3f7JYQQUq8cOXIEdnZ2UFZWRmJiIt68eQMAePXqFdasWcM43eeZmJhAS0vrk1+kbm3fvh3z58/HkCFDxJq6a2howNfXl204GZCdnY0mTZqIvv/YFxXi2CoqKsK2bdtgaWmJLl26sI7zSRERERgxYkS9KMQBwNatW/Hq1Su0adMGRkZGMDY2hoGBAV69eoUtW7awjkcIIUSG0c44QgiRERYWFvDw8ICTk5PYJNKkpCTY29sjLy+PdcSPkpOTg6+vL9TV1T95nbOzcx0lIgBgZmaGNWvWYOTIkWI/U6mpqejfvz+eP3/OOqLMKC0thbKycrXP5ebmokWLFnWciFy6dAmBgYE4evQo9PX1MWbMGIwZMwYWFhaso8mc8+fP486dO6Jea4MGDWIdiRBCiIyjaaqEECIjMjIy0Ldv3yrrjRs35kQT6x9++IF6xkmZ7OzsagsLioqKKC4uZpBIdllYWODgwYOwtLQUWw8PD8fMmTORn5/PKJlsefToEYKCghAYGIji4mI4ODigvLwcR44cgZmZGet4MsvW1ha2trasYxBCCCEiVIwjhBAZ0aJFC9y7dw9t2rQRW4+JiYGhoSGbUBL6cDIhkR4GBgZISkqqMjX19OnTVHioY7a2tujZsyeWL1+OJUuWoLi4GHPmzEFYWBh8fHxYx5MJQ4YMQUxMDL777jts2bIF9vb2kJeXh7+/P+toMuVzw0w+RINNCCGEsELFOEIIkREzZsyAu7s7AgMDwePx8OTJE8TGxmLhwoXw8vJiHe+TqKOCdFq0aBFmz56NsrIyCIVCXL9+HSEhIVi7di0CAgJYx5MpW7ZswdChQ+Hi4oKTJ0/iyZMnaNy4MW7cuEGF0Tpy7tw5uLm5YebMmWjbti3rODJr06ZNEl3H4/GkuhhnYWEh8QdRCQkJ/3EaQgghXxsV4wghREYsXrwYRUVFsLGxQVlZGfr27QtFRUUsXLgQc+bMYR3vkwQCAesIpBouLi6oqKjA4sWLUVJSggkTJkBXVxebN2/GDz/8wDqezBk8eDBGjx6N7du3o0GDBjhx4gQV4urQlStXEBgYCCsrK7Rv3x6TJk3CuHHjWMeSOdnZ2awjfBUjR44UfV9WVoZt27bBzMwMPXr0AADExcXh9u3bmDVrFqOEhBBCvgQNcCCEEBlTUlKCtLQ0CAQCmJmZoVGjRqwjkXrg+fPnEAgEor5+jx8/hq6uLuNUsoPP52PChAnIy8tDQEAAoqOjsX79eri5uWH16tVQUFBgHVFmlJSU4NChQwgMDMT169dRWVmJjRs3YsqUKVBTU2MdTya9ffsW2dnZMDIyQoMG3NuLMHXqVLRo0QK//vqr2Lq3tzcePnyIwMBARskIIYTUFhXjCCFERr18+RKXLl1Cu3btYGpqyjoOqSfy8vKwevVqBAQEoLS0lHUcmaGmpoahQ4fC398fGhoaAIBr166JpicnJiayDSijMjIysHv3buzbtw+FhYWwtbVFREQE61gyo6SkBHPnzkVwcDAA4O7duzA0NISbmxtatmwJT09Pxgklo66ujps3b1Y5/pyZmQkrKysUFRUxSkYIIaS25FgHIIQQUjccHBywdetWAEBpaSmsra3h4OCAjh074siRI4zTES4pLCyEo6MjtLW10bJlS/j5+UEgEMDLywuGhoaIi4ujnRp1bNu2bTh06JCoEAcAPXv2RGJiYpUJq6TutGvXDr///jsePXqEkJAQ1nFkzk8//YTk5GRERUVBSUlJtD5o0CAcPnyYYbKaUVZWRkxMTJX1mJgYsfsihBDCHbQzjhBCZETz5s1x9uxZdOrUCQcPHoS3tzeSk5MRHByMnTt30s4ZIrFZs2bhxIkTGDduHM6cOYP09HTY2dmhrKwM3t7e6NevH+uIhBACfX19HD58GN27d4eamhqSk5NhaGiIe/fuwdLSEi9fvmQdUSI+Pj5Yvnw5pk6diu7duwOA6EMPLy8vzuzwI4QQ8j/ca5pACCGkVoqKiqClpQUAOHPmDMaMGQMVFRUMHToUixYtYpyOcMnJkyexZ88eDBo0CLNmzYKxsTFMTEzg6+vLOprMS0tLQ05ODt6+fSta4/F4GDZsGMNUhLCRn58v6mP5oeLiYoknlUoDT09PGBoaYvPmzTh48CAAwNTUFEFBQXBwcGCcjhBCSG1QMY4QQmSEnp4eYmNjoaWlhTNnzuDQoUMAgH/++YeOuZAaefLkiWhKp6GhIZSUlDB16lTGqWRLUVER1NXVRY+zsrIwevRopKSkgMfj4f3Bh/cFh8rKSiY5CWHJ2toaJ0+exNy5cwH87/dh165doqmkXOHg4ECFN0IIqUeoGEcIITJi3rx5cHR0RKNGjaCvr4/+/fsDAC5fvgxzc3O24QinCAQCsemc8vLyUFVVZZhI9vj5+UFJSUm0q9Xd3R16eno4e/YsOnfujL///hvZ2dlYuHAhNm7cyDgtIWysXbsW9vb2SEtLQ0VFBTZv3ozbt28jNjYW0dHRrOMRQgiRYdQzjhBCZEh8fDxycnJga2uLRo0aAXh35FBDQwO9evVinI5whZycHL799lsoKioCAE6cOIEBAwZUKcgdPXqURTyZ8OzZM0yaNAnGxsb4448/0LRpU1y8eBGdOnWCrq4url+/Dl1dXVy8eBELFy6knpBEpiQlJaFz584AgFu3bmH9+vWIj4+HQCCApaUllixZwqkPoSorK7Fp0yaEhoZWOYYOAAUFBYySEUIIqS3aGUcIITKkS5cu6NKli9ja0KFDGaUhXOXs7Cz2eOLEiYySyC4dHR2cPXsWa9euBfDuzbqamhoAoGnTpnjy5Al0dXXRpk0bZGRksIxKSJ2ztLSEhYUFpk6digkTJiA4OJh1pC+yYsUKBAQEYP78+Vi2bBl++eUX3L9/H8ePH4eXlxfreIQQQmqBdsYRQgghhHBcnz59MH/+fIwaNQrTp09Hfn4+Fi1aBH9/fyQkJCA1NZV1RELqTGxsLAIDAxEaGory8nKMGTMGU6ZMgY2NDetotWJkZAQ/Pz8MHToUampqSEpKEq3FxcWJhjoQQgjhDirGEUIIIYRw3NmzZ/Hq1SuMHTsWDx8+xNChQ5GamgotLS2EhoZiwIABrCMSUudKS0sRGhqKPXv24MqVK2jTpg2mTJkCZ2dntGrVinU8iamqqiI9PR2tW7dGixYtcPLkSVhaWiIrKwsWFhYoKipiHZEQQkgNybEOQAghhBBCvoydnR3Gjh0L4N3k5JSUFDx//hzPnj2jQhyRWcrKynB2dkZUVBTu3r2L8ePHY8eOHTAwMMCQIUNYx5NYq1atkJubCwAwNjbGuXPnAAA3btwQ9e4khBDCLbQzjhBCCCGEEFLvvX79GgcOHMDPP/+MwsJCVFZWso4kEU9PTzRu3Bg///wzwsPDMX78eLRp0wY5OTnw8PCAj48P64iEEEJqiIpxhBAiQ65cuYIdO3aAz+cjPDwcurq62LdvHwwMDNC7d2/W8QghtVRWVoYtW7YgMjISz549g0AgEHs+ISGBUTJC2IuOjkZgYCCOHDkCeXl5ODg4wNXVFd27d2cdrVbi4uJw7do1GBsbY/jw4azjEEIIqQWapkoIITLiyJEjmDRpEhwdHZGYmIg3b94AAF69eoU1a9bg1KlTjBMSQmprypQpOH/+PMaOHYuuXbuCx+OxjkQIUw8fPkRQUBCCgoKQnZ2Nnj17YsuWLXBwcICqqirreF+ke/funC0kEkIIeYd2xhFCiIywsLCAh4cHnJycoKamhuTkZBgaGiIpKQn29vbIy8tjHZEQUkvq6uo4deoUevXqxToKIczZ2toiMjIS2tracHJywpQpU9CuXTvWsWokIiJC4mtpdxwhhHAP7YwjhBAZkZGRgb59+1ZZb9y4MQoLC+s+ECHkq9HV1YWamhrrGIRIBWVlZRw5cgTfffcd5OXlWceplZEjR4o95vF4+Pceivc7YLnS+44QQsj/0DRVQgiRES1atMC9e/eqrMfExMDQ0JBBIkLI17JhwwYsWbIEDx48YB2FEOYiIiIwYsQIzhbiAEAgEIi+zp07h86dO+P06dMoLCxEUVERTp8+DUtLS5w5c4Z1VEIIIbVAO+MIIURGzJgxA+7u7ggMDASPx8OTJ08QGxuLhQsXwsvLi3U8QsgXsLKyQllZGQwNDaGiogIFBQWx5wsKChglI4R8qXnz5sHf319s0JKdnR1UVFQwffp0pKenM0xHCCGkNqgYRwghMmLx4sUoKiqCjY0NysrK0LdvXygqKmLhwoWYM2cO63iEkC8wfvx4PH78GGvWrEGzZs1ogAMh9Qifz4e6unqVdXV1ddy/f7/uAxFCCPliNMCBEEJkTElJCdLS0iAQCGBmZoZGjRqxjkQI+UIqKiqIjY1Fp06dWEchhHxlffv2hYKCAvbv348WLVoAAPLy8jBp0iS8ffsW0dHRjBMSQgipKdoZRwghMkZFRQVWVlasYxBCvqL27dujtLSUdQxCyH8gMDAQo0aNgr6+Plq3bg0AyMnJgYmJCY4fP842HCGEkFqhnXGEECIjbGxsPnl07dKlS3WYhhDyNZ07dw4rVqzA6tWrYW5uXqVnXOPGjRklI4R8DUKhEOfPn8edO3cgFAphZmaGQYMG0ZF0QgjhKCrGEUKIjPDw8BB7XF5ejqSkJKSmpsLZ2RmbN29mlIwQ8qXk5OQAoMobc6FQCB6Ph8rKShaxCCGEEEJINeiYKiGEyIhNmzZVu758+XK8fv26jtMQQr6myMhI1hEIIV+Rn58fpk+fDiUlJfj5+X3yWjc3tzpKRQgh5GuhnXGEECLj7t27h65du6KgoIB1FEIIIYQAMDAwwM2bN9GkSRMYGBh89Doej4esrKw6TEYIIeRroJ1xhBAi42JjY6GkpMQ6BiGEEEL+X3Z2drXfE0IIqR+oGEcIITJi9OjRYo+FQiFyc3Nx8+ZNLFu2jFEqQgghhBBCCJEtcqwDEEIIqRvq6upiX1paWujfvz9OnToFb29v1vEIIYQQUo2xY8fCx8enyvq6devw/fffM0hECCHkS1HPOEIIIYQQQgiRUtra2rh06RLMzc3F1m/duoVBgwbh6dOnjJIRQgipLTqmSgghhBBST+Tn5yMjIwM8Hg8mJibQ1tZmHYkQ8oVev36Nhg0bVllXUFDAy5cvGSQihBDypeiYKiGEyAhNTU1oaWlJ9EUI4Zbi4mJMmTIFLVu2RN++fdGnTx+0bNkSrq6uKCkpYR2PEPIFOnTogMOHD1dZP3ToEMzMzBgkIoQQ8qVoZxwhhMiIZcuWYdWqVbCzs0OPHj0AvJukevbsWSxbtoyKcIRw2Pz58xEdHY2IiAj06tULABATEwM3NzcsWLAA27dvZ5yQEFJby5Ytw5gxY8Dn8zFgwAAAwMWLFxESEoKwsDDG6QghhNQG9YwjhBAZMWbMGNjY2GDOnDli61u3bsWFCxdw/PhxNsEIIV+sadOmCA8PR//+/cXWIyMj4eDggPz8fDbBCCFfxcmTJ7FmzRokJSVBWVkZHTt2hLe3N/r168c6GiGEkFqgYhwhhMiIRo0aISkpCcbGxmLrmZmZsLCwwOvXrxklI4R8KRUVFcTHx8PU1FRs/fbt2+jatSuKi4sZJSOEEEIIIf9GPeMIIURGNGnSBMeOHauyfvz4cTRp0oRBIkLI19KjRw94e3ujrKxMtFZaWooVK1aIjqUTQrgtPj4e+/fvx4EDB5CYmMg6DiGEkC9APeMIIURGrFixAq6uroiKihK9OY+Li8OZM2cQEBDAOB0h5Ets3rwZ9vb2aNWqFTp16gQej4ekpCQoKSnh7NmzrOMRQr7As2fP8MMPPyAqKgoaGhoQCoUoKiqCjY0NDh06RFOTCSGEg+iYKiGEyJC///4bfn5+SE9Ph1AohJmZGdzc3NCtWzfW0QghX6i0tBT79+/HnTt3RL/fjo6OUFZWZh2NEPIFxo0bBz6fj3379omOoqelpcHZ2RnGxsYICQlhnJAQQkhNUTGOEEIIIYQQQqSUuro6Lly4AGtra7H169evY/DgwSgsLGQTjBBCSK1RzzhCCCGEEI4LDg7GyZMnRY8XL14MDQ0N9OzZEw8ePGCYjBDypQQCARQUFKqsKygoQCAQMEhECCHkS1ExjhBCCCGE49asWSM6jhobG4utW7fi999/R9OmTeHh4cE4HSHkSwwYMADu7u548uSJaO3x48fw8PDAwIEDGSYjhBBSW3RMlRBCCCGE41RUVHDnzh20bt0aS5YsQW5uLvbu3Yvbt2+jf//+yM/PZx2REFJLDx8+xIgRI5Camgo9PT3weDzk5OTA3Nwcf/75J1q1asU6IiGEkBqiaaqEEEIIIRzXqFEjvHjxAq1bt8a5c+dEu+GUlJRQWlrKOB0h5Evo6ekhISEB58+fFxvQMmjQINbRCCGE1BIV4wghhBBCOM7W1hZTp06FhYUF7t69i6FDhwIAbt++jTZt2rANRwj5KmxtbWFra8s6BiGEkK+AinGEECJDbty4gbCwMOTk5ODt27dizx09epRRKkLIl/rjjz+wdOlSPHz4EEeOHEGTJk0AAPHx8Rg/fjzjdISQmvLz85P4Wjc3t/8wCSGEkP8C9YwjhBAZcejQITg5OWHw4ME4f/48Bg8ejMzMTOTl5WHUqFHYs2cP64iEEEIIAWBgYCDRdTweD1lZWf9xGkIIIV8bFeMIIURGdOzYETNmzMDs2bOhpqaG5ORkGBgYYMaMGWjRogVWrFjBOiIh5AtcuXIFO3bsQFZWFsLCwqCrq4t9+/bBwMAAvXv3Zh2PEEIIIYT8PznWAQghhNQNPp8v6iOlqKiI4uJi8Hg8eHh4YOfOnYzTEUK+xJEjR2BnZwdlZWUkJCTgzZs3AIBXr15hzZo1jNMRQr6Gt2/fIiMjAxUVFayjEEII+UJUjCOEEBmhpaWFV69eAQB0dXWRmpoKACgsLERJSQnLaISQL7Rq1Sr4+/tj165dUFBQEK337NkTCQkJDJMR8n/t3XtslvXdP/D3XQ5SdaBT2chAOamxigqKA1R8wDKPmYquHhBRiscpqFGmJuiWZc7EZU6yoZsZoJsHcBimQR3opLEI8cDwABUBcSXzMDMGRJGBtM8fbs364PP8/In0nlyvV9Kk9+e6evfd/kHIu9/v92J7bdy4MbW1tdl1111z8MEHp7GxMcknZ8XddtttZU4HwOehjAMoiGOPPTbz5s1LktTU1GTChAm5+OKLc+655+b4448vczpgeyxfvjxDhw7dZt65c+esW7eu7QMBX5gbb7wxL7/8cubPn59OnTq1zKurqzNjxowyJgPg8/I0VYCC+PnPf55NmzYl+eQ/9h06dEh9fX1GjhyZSZMmlTkdsD26deuWlStXpmfPnq3m9fX16d27d3lCAV+I2bNnZ8aMGRk0aFBKpVLLvKqqKqtWrSpjMgA+L2UcQEF89atfbfm8oqIiEydOzMSJE8uYCPiiXHrppZkwYUKmTp2aUqmUt99+OwsXLsx1112Xm2++udzxgO3w/vvvp2vXrtvM/3X2KwBfPso4gJ3Yhg0bPvO9nTt33oFJgB1p4sSJWb9+fYYNG5ZNmzZl6NCh2WWXXXLdddflyiuvLHc8YDsMHDgwc+bMyVVXXZUkLQXcPffck8GDB5czGgCfU6m5ubm53CEA2DEqKir+n381b25uTqlUytatW9soFbCjbNy4McuWLUtTU1Oqqqqy++67lzsSsJ2ee+65nHjiiRk1alSmT5+eSy+9NEuXLs3ChQtTV1eXI444otwRAfj/ZGUcwE7smWeeKXcEYAfauHFjrr/++syePTtbtmxJdXV1Jk+enL333rvc0YDttGTJkhx++OEZMmRIFixYkJ/85Cfp06dP5s6dmwEDBmThwoXp169fuWMC8DlYGQcA8CV1/fXXZ8qUKRk1alQ6deqUBx98MP/1X/+Vhx9+uNzRgO1UUVGR/v37Z9y4cTnvvPPSpUuXckcC4AuijAMA+JLq06dPfvSjH+Wcc85Jkjz//PM5+uijs2nTprRr167M6YDtsXDhwkydOjUzZ87Mli1bcuaZZ2bs2LEZNmxYuaMBsJ2UcQAAX1IdO3bM6tWr841vfKNlVllZmTfeeCM9evQoYzLgi/LRRx9l5syZmTZtWp599tn07NkzY8eOzZgxY9K9e/dyxwPgc6godwAAAD6frVu3pmPHjq1m7du3z8cff1ymRMAXrbKyMmPGjMn8+fPzxhtv5Nxzz80vf/nL9OrVKyeffHK54wHwOVgZBwDwJVVRUZGTTjopu+yyS8vssccey/Dhw7Pbbru1zB555JFyxAN2gA8++CD3339/brrppqxbt87T0AG+hDxNFQDgS2rMmDHbzM4///wyJAF2tLq6ukydOjWzZs1Ku3btUlNTk9ra2nLHAuBzsDIOoEB+97vfZebMmWlsbMzmzZtbXVu8eHGZUgEAn2bNmjWZPn16pk+fntWrV2fIkCGpra1NTU1Nq9WvAHy5ODMOoCAmT56ciy66KF27ds2f/vSnHHXUUdlrr73y5ptv5qSTTip3PADg34wYMSK9evXKlClTctZZZ6WhoSH19fW56KKLFHEAX3K2qQIUxJQpU/KrX/0q5557bu69995MnDgxvXv3zs0335y1a9eWOx4A8G8qKysza9asnHrqqWnXrl254wDwBbJNFaAgdt111zQ0NGS//fZL165dM2/evBx22GFZsWJFBg0alL/97W/ljggAALDTs00VoCC+/vWvtxRu++23XxYtWpQkWb16dfxdBgAAoG0o4wAKYvjw4XnssceSJLW1tbnmmmsyYsSInH322TnjjDPKnA4AAKAYbFMFKIimpqY0NTWlfftPjgudOXNm6uvr07dv31x22WXp2LFjmRMCAADs/JRxAAAAANBGbFMFAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANtK+3AEA2HH69++fUqn0me5dvHjxDk4DAACAMg5gJ3b66ae3fL5p06ZMmTIlVVVVGTx4cJJk0aJFWbp0aa644ooyJQQAACiWUnNzc3O5QwCw440bNy7dunXLD3/4w1bzW265JWvWrMnUqVPLlAwAAKA4lHEABdGlS5e8+OKL2X///VvNV6xYkSOPPDLr168vUzIAAIDi8AAHgIKorKxMfX39NvP6+vp06tSpDIkAAACKx5lxAAVx9dVX5/LLL89LL72UQYMGJfnkzLipU6fm5ptvLnM6AACAYrBNFaBAZs6cmTvvvDMNDQ1JkoMOOigTJkxITU1NmZMBAAAUgzIOAAAAANqIM+MAAAAAoI04Mw6gILZu3Zo77rgjM2fOTGNjYzZv3tzq+tq1a8uUDAAAoDisjAMoiB/84Af56U9/mpqamqxfvz7XXnttRo4cmYqKinz/+98vdzwAAIBCcGYcQEH06dMnkydPzimnnJKvfOUrWbJkScts0aJFeeCBB8odEQAAYKdnZRxAQbz77rvp169fkmT33XfP+vXrkySnnnpq5syZU85oAAAAhaGMAyiI7t2755133kmS9O3bN3Pnzk2SvPDCC9lll13KGQ0AAKAwlHEABXHGGWfk6aefTpJMmDAhkyZNyv77758LLrggY8eOLXM6AACAYnBmHEBBLVq0KM8991z69u2bb3/72+WOAwAAUAjKOAAAAABoI+3LHQCAHefRRx/9zPdaHQcAALDjWRkHsBOrqGh9NGipVMr//Ge/VColSbZu3dpmuQAAAIrKAxwAdmJNTU0tH3Pnzs3hhx+eJ554IuvWrcv69evzxBNPZMCAAXnyySfLHRUAAKAQrIwDKIhDDjkkd999d4455phW82effTaXXHJJGhoaypQMAACgOKyMAyiIVatWpUuXLtvMu3TpkrfeeqvtAwEAABSQlXEABTF06NB06NAhv/3tb9OtW7ckybvvvpvRo0dn8+bNqaurK3NCAACAnZ8yDqAgVq5cmTPOOCPLly/PvvvumyRpbGzMAQcckNmzZ6dv375lTggAALDzU8YBFEhzc3PmzZuX119/Pc3Nzamqqkp1dXXLE1UBAADYsZRxAAAAANBG2pc7AAA7zuTJk3PJJZekU6dOmTx58v957/jx49soFQAAQHFZGQewE+vVq1defPHF7LXXXunVq9f/el+pVMqbb77ZhskAAACKSRkHAAAAAG2kotwBAAAAAKAolHEABXHWWWfltttu22Z+++235zvf+U4ZEgEAABSPbaoABbHPPvvkj3/8Y/r169dq/uqrr6a6ujrvvfdemZIBAAAUh5VxAAXxwQcfpGPHjtvMO3TokA0bNpQhEQAAQPEo4wAK4pBDDsmMGTO2mT/00EOpqqoqQyIAAIDiaV/uAAC0jUmTJuXMM8/MqlWrMnz48CTJ008/nQcffDAPP/xwmdMBAAAUgzPjAApkzpw5ufXWW7NkyZJUVlbm0EMPzS233JLjjjuu3NEAAAAKQRkHAAAAAG3ENlWAgnnppZfS0NCQUqmUqqqq9O/fv9yRAAAACkMZB1AQf/3rX3POOedk/vz52WOPPdLc3Jz169dn2LBheeihh7LPPvuUOyIAAMBOz9NUAQriqquuyoYNG7J06dKsXbs2f//73/Paa69lw4YNGT9+fLnjAQAAFIIz4wAKokuXLnnqqacycODAVvPnn38+3/rWt7Ju3bryBAMAACgQK+MACqKpqSkdOnTYZt6hQ4c0NTWVIREAAEDxKOMACmL48OGZMGFC3n777ZbZX/7yl1xzzTU5/vjjy5gMAACgOGxTBSiINWvW5LTTTstrr72WHj16pFQqpbGxMf369cvvf//7dO/evdwRAQAAdnrKOICCmTdvXl5//fU0Nzenqqoq1dXV5Y4EAABQGMo4AAAAAGgj7csdAIAdZ/LkyZ/53vHjx+/AJAAAACRWxgHs1Hr16vWZ7iuVSnnzzTd3cBoAAACUcQAAAADQRirKHQCAtrV58+YsX748H3/8cbmjAAAAFI4yDqAgNm7cmNra2uy66645+OCD09jYmOSTs+Juu+22MqcDAAAoBmUcQEHceOONefnllzN//vx06tSpZV5dXZ0ZM2aUMRkAAEBxeJoqQEHMnj07M2bMyKBBg1IqlVrmVVVVWbVqVRmTAQAAFIeVcQAF8f7776dr167bzD/88MNW5RwAAAA7jjIOoCAGDhyYOXPmtLz+VwF3zz33ZPDgweWKBQAAUCi2qQIUxI9//OOceOKJWbZsWT7++OPceeedWbp0aRYuXJi6urpyxwMAACgEK+MAdnJLlixJkgwZMiQLFizIxo0b06dPn8ydOzdf+9rXsnDhwhxxxBHlDQkAAFAQpebm5uZyhwBgx6moqEj//v0zbty4nHfeeenSpUu5IwEAABSWlXEAO7kFCxZkwIABueGGG9KtW7eMHj06zzzzTLljAQAAFJKVcQAF8dFHH2XmzJmZNm1ann322fTs2TNjx47NmDFj0r1793LHAwAAKARlHEABrVq1KtOmTct9992Xd955JyNGjMjjjz9e7lgAAAA7PWUcQEF98MEHuf/++3PTTTdl3bp12bp1a7kjAQAA7PTalzsAAG2rrq4uU6dOzaxZs9KuXbvU1NSktra23LEAAAAKwco4gAJYs2ZNpk+fnunTp2f16tUZMmRIamtrU1NTk912263c8QAAAArDyjiAndyIESPyzDPPZJ999skFF1yQsWPH5sADDyx3LAAAgEJSxgHs5CorKzNr1qyceuqpadeuXbnjAAAAFJptqgAAAADQRirKHQAAAAAAikIZBwAAAABtRBkHAAAAAG1EGQcAADvQ/PnzUyqVsm7dus/8NT179szPfvazHZYJACgfZRwAAIV24YUXplQq5bLLLtvm2hVXXJFSqZQLL7yw7YMBADslZRwAAIXXo0ePPPTQQ/noo49aZps2bcqDDz6Yfffdt4zJAICdjTIOAIDCGzBgQPbdd9888sgjLbNHHnkkPXr0SP/+/Vtm//jHPzJ+/Ph07do1nTp1yjHHHJMXXnih1Xs9/vjjOeCAA1JZWZlhw4blrbfe2ub7Pffccxk6dGgqKyvTo0ePjB8/Ph9++OH/mq+xsTGnnXZadt9993Tu3Dk1NTV57733tv8HBwDanDIOAACSXHTRRZk2bVrL66lTp2bs2LGt7pk4cWJmzZqVe++9N4sXL07fvn1zwgknZO3atUmSNWvWZOTIkTn55JOzZMmSjBs3LjfccEOr93j11VdzwgknZOTIkXnllVcyY8aM1NfX58orr/zUXM3NzTn99NOzdu3a1NXVZd68eVm1alXOPvvsL/g3AAC0BWUcAAAkGT16dOrr6/PWW2/lz3/+cxYsWJDzzz+/5fqHH36Yu+66K7fffntOOumkVFVV5Z577kllZWV+/etfJ0nuuuuu9O7dO3fccUcOPPDAjBo1apvz5m6//facd955ufrqq7P//vtnyJAhmTx5cu67775s2rRpm1xPPfVUXnnllTzwwAM54ogj8s1vfjO/+c1vUldXt82qPADgP1/7cgcAAID/BHvvvXdOOeWU3HvvvWlubs4pp5ySvffeu+X6qlWrsmXLlhx99NEtsw4dOuSoo45KQ0NDkqShoSGDBg1KqVRquWfw4MGtvs9LL72UlStX5v7772+ZNTc3p6mpKatXr85BBx3U6v6Ghob06NEjPXr0aJlVVVVljz32SENDQwYOHPjF/AIAgDahjAMAgH8aO3Zsy3bRX/ziF62uNTc3J0mrou1f83/N/nXP/6WpqSmXXnppxo8fv821T3tYxL+//2eZAwD/2WxTBQCAfzrxxBOzefPmbN68OSeccEKra3379k3Hjh1TX1/fMtuyZUtefPHFltVsVVVVWbRoUauv+5+vBwwYkKVLl6Zv377bfHTs2HGbTFVVVWlsbMyaNWtaZsuWLcv69eu3WUUHAPznU8YBAMA/tWvXLg0NDWloaEi7du1aXdttt91y+eWX5/rrr8+TTz6ZZcuW5eKLL87GjRtTW1ubJLnsssuyatWqXHvttVm+fHkeeOCBTJ8+vdX7fO9738vChQvz3e9+N0uWLMmKFSvy6KOP5qqrrvrUTNXV1Tn00EMzatSoLF68OM8//3wuuOCCHHfccTnyyCN3yO8BANhxlHEAAPBvOnfunM6dO3/qtdtuuy1nnnlmRo8enQEDBmTlypX5wx/+kD333DPJJ9tMZ82alcceeyyHHXZY7r777tx6662t3uPQQw9NXV1dVqxYkWOPPTb9+/fPpEmT0q1bt0/9nqVSKbNnz86ee+6ZoUOHprq6Or17986MGTO+2B8cAGgTpebPcrAFAAAAALDdrIwDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA28t+vkhTTEyLM9QAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    df_procesado_base

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11374,235 +9218,265 @@ " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", @@ -11610,20 +9484,48 @@ " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11634,56 +9536,41 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11694,16 +9581,41 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11714,1369 +9626,1018 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
    Modelo
    Distancia de carrera requerida para despegue0.00.06000.00018.09082413.0NaN0.00.84NaN0.00.75NaNNaN10.000270.04.53NaNNaNNaNNaN2.69NaN3.04.5316.544.86.84.845.0NaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
    Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.02.0001.0001.0004.0001.0001.000
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405DeltaQuad Pro #MAP0.06000.00017.50019213.123NaNNaN30.406584NaN0.9NaN18.26582630.62533630.953465NaN6.200100.01.83NaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.02.35NaN1.2NaN16.0NaNNaNNaN50.050.0NaNNaN17000.010000.013000.016000.0
    Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaN0.02.0001.0001.0004.0001.0001.000
    DeltaQuad Pro #CARGO0.06000.00017.50019213.123NaNNaNNaN0.9NaNNaN6.200100.01.83NaNNaNNaNNaN2.35NaN1.2NaN16.0NaNNaNNaN14.015.517.050.030.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN0.02.0001.0001.0004.0001.0001.000
    Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNV210.06000.00019.68771648800.014.00.8NaN0.93NaNNaN10.000NaN3.033.014.0NaN100.02.15NaN0.841.5NaN18.0NaN0.80.52NaN2.65NaN30.012.5NaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaN3999.00.108NaN2.0001.0001.0004.0001.0001.000
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386V250.06000.00021.8752416000.015.50.52NaN0.93NaNNaN12.500NaN4.033.015.5NaN120.02.45NaN2.2NaN20.0NaNNaN3.45NaN30.024.0NaNNaNNaNNaNNaN4679.00.108NaN2.0001.0001.0004.0001.0001.000
    V320.06000.00021.8752416000.017.0NaNNaN1.0NaNNaN23.500NaN4.533.017.0NaN150.03.2NaN5.0NaN20.0NaNNaN6.45NaN30.025.0NaNNaNNaN
    Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.8869999.00.108NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.7122.0002.0001.0004.0001.0001.000
    Profundidad del fuselajeV350.06000.00027.3440516000.0NaNNaNNaN1.88NaNNaN32.000NaN2.833.0NaNNaNNaN3.5NaN10.0NaN25.0NaNNaNNaNNaN30.0NaNNaNNaNNaNNaNNaN7999.0NaNNaN2.0002.0001.0004.0001.0001.000
    V390.06000.00027.3440516000.0NaNNaNNaNNaNNaNNaN24.000NaN4.533.0NaNNaNNaN3.9NaN5.0NaN25.0NaNNaN
    Ancho del fuselaje0.2110.20.2770.2770.277NaNNaN30.0NaNNaNNaNNaNNaNNaN8999.0NaNNaN2.0002.0001.0004.0001.0001.000
    Volitation VT3700.06000.00027.3440517000.0NaNNaNNaN2.02NaNNaN40.000NaN15.033.0NaNNaNNaN6.5NaN18.0NaN25.0NaNNaNNaNNaN0.3750.3750.375NaNNaNNaN13.00.96NaN
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0NaN8999.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 2600NaN3270.0800.06000.00036.094147NaN50.025.010.00.88NaN2.05NaNNaN500.015.000NaN2.0NaN270.0100.0100.010.0NaNNaN2.6NaN4.0NaN33.0NaNNaN6.5NaNNaNNaN300.0NaN800.0NaNNaNNaNNaN2299.0NaN
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.02.0002.0001.0004.0001.0001.000
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3Skyeye 2930 VTOL0.06000.00026.250288NaN18.01.0NaN2.03NaN33.033.033.033.033.033.0NaN30.028.000NaN33.042.042.038.050.030.03.030.035.0
    Velocidad de pérdida (KCAS)18.0NaNNaN2.93NaN6.0NaN24.0NaNNaN7.1NaNNaNNaNNaNNaNNaN6799.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 360050.06000.000NaNNaN12.51.33NaN2.488NaN14.015.517.0NaN28.000NaN4.5NaN10.018.012.524.015.0NaN24.025.013.013.013.0
    Tasa de ascensoNaNNaNNaNNaN3.6NaN10.0NaNNaNNaNNaN11.5NaNNaNNaNNaN11.5NaNNaNNaN4999.0NaNNaN3.0002.0005.0000.0001.0001.000
    Skyeye 3600 VTOL0.06000.00032.81286NaN24.01.32NaN2.42NaNNaN40.000300.06.033.024.0NaNNaN3.6NaN10.0NaN30.0NaNNaN11.0NaNNaNNaNNaN11.5NaNNaNNaN6999.0NaNNaN2.0002.0001.0004.0001.0001.000
    Radio de giroNaNSkyeye 500060.06000.00036.094147NaN15.02.615NaN3.5NaN0.37590.000NaN8.042.015.0NaNNaN5.0NaN20.0NaN33.0NaNNaN32.0NaNNaNNaNNaN28.01.2NaNNaN9999.0NaNNaN3.0002.0005.0000.0001.0001.000
    Skyeye 5000 VTOL0.06000.00030.625336NaN100.0120.0150.0NaN2.615NaN3.5NaN0.375100.000800.08.042.0NaNNaNNaN5.0NaN25.0NaN28.0NaNNaNNaNNaNNaNNaN
    envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.828.0NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaN13900.0NaNNaN2.0002.0001.0004.0001.0001.000
    Skyeye 5000 VTOL octo0.06000.000NaNNaNNaN2.615NaN3.5NaN0.375100.000NaNNaN38.024.0NaNNaN5.0NaN15.0NaN35.0NaNNaN35.0NaNNaNNaNNaN28.0NaNNaNNaN15999.0NaNNaN2.0002.0001.0008.0001.0001.000
    Volitation VT5100.06000.00032.8128617000.025.0NaNNaN2.905NaNNaN100.000NaN
    payload2.4947562.49475614.511.317.722.75.050.025.0NaNNaN12.05.55.1NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    duracion en VTOL2.0NaNNaN30.0NaNNaNNaNNaNNaNNaN25.05.0NaNNaN16599.0NaNNaN2.0002.0001.0004.0001.0001.000
    Ascend0.06000.00021.8752410000.0NaNNaNNaN4.531.562NaNNaN9.500NaN6.030.013.0NaNNaN2.0NaN0.60.0520.06.08.93.015.0NaNNaNNaNNaNNaNNaN0.050.050.052.0002.0001.0004.0001.0001.000
    Crucero KIAS15.4333216.09342225.025.025.0NaNTransition0.06000.00021.8752413000.0NaN27.8NaNNaN16.728.028.32.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.018.000NaN12.030.033.028.035.030.020.020.025.0
    RTF (dry weight)NaN13.0NaNNaN3.0NaN1.50.0520.011.816.55.815.0NaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.000
    Reach0.06000.00027.3440516000.0NaNNaNNaN4.84.712NaNNaN91.000NaN20.035.013.0NaNNaN6.0NaN7.00.0525.054.084.031.015.0NaNNaNNaNNaNNaNNaN6.011.854.02.0002.0001.0004.0001.0001.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    df_filtrado_base

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + "
    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNModelo
    Stalker XE16.88037912000.00.8715.3012552.113.600370.08.020.0NaNNaN3.6570.2392.49475610.886208
    Stalker VXE3017.60237312000.01.15828315.3264492.590819.958433.08.025.034211NaNNaN4.87680.3181952.49475617.463292
    Aerosonde Mk. 4.7 Fixed Wing27.3440514700.01.5512.53.042.200NaN19.833.43886NaNNaN4.40.35214.5NaN
    Aerosonde Mk. 4.7 VTOL27.344059700.01.5512.53.053.500NaN12.033.43886NaN6.8NaN4.40.35211.3NaN
    Aerosonde Mk. 4.8 Fixed wing27.3440518200.01.5512.53.054.400NaN19.833.43886NaNNaN4.40.35217.7NaN
    Aerosonde Mk. 4.8 VTOL FTUASNaN15000.0NaN12.5NaN93.000NaN14.0NaNNaNNaNNaNNaN22.7NaN8.916.584.0
    Empty weight10.88620817.463292AAI AerosondeNaN15000.00.5714.7543861.713.1003270.026.030.845725NaNNaN2.90.196552NaN10.0
    Fulmar X30.4065849.842NaNNaN1.220.000800.08.041.7NaNNaN3.0NaNNaNNaN
    Orbiter 4NaNNaNNaN4.8NaNNaN2.653.456.451.255.000NaN24.036.0NaNNaN6.57.111.511.032.05.2NaN35.012.0NaN3.05.831.0
    Maximum CrosswindNaNOrbiter 3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.01.232.00050.06.036.0NaNNaN4.4NaN5.5NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
    Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNMantis18.265826NaNNaNNaN1.486.50025.02.025.6NaNNaN2.1NaNNaNNaN
    Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNScanEagle30.62533619500.0NaNNaN1.7126.500NaN18.041.2NaNNaN3.1NaN5.0NaN
    Integrator30.95346519500.0NaNNaN2.574.800NaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN46.3NaNNaN4.8NaN18.0NaN
    Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNIntegrator VTOLNaNNaNNaNNaNNaN75.000NaN16.0NaNNaNNaNNaNNaN18.0NaN
    Capacidad combustibleNaNNaNNaNNaNIntegrator Extended RangeNaN19500.0NaNNaN2.574.800500.019.046.3NaNNaN4.8NaN18.0NaN
    ScanEagle 325.70340720.0NaNNaN2.436.300NaN18.041.2NaNNaN4.0NaN8.6NaN
    RQ Nan 21A Blackjack33.79724620.0NaNNaN2.561.000NaN16.046.3NaNNaN4.8NaN17.7NaN
    DeltaQuad Evo18.09082413.00.84NaN0.7510.000270.04.53NaN11.511.528.028.028.025.0NaNNaN2.69NaN3.04.8
    ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNDeltaQuad Pro #MAP17.50019213.123NaNNaN0.960.96.200100.01.83NaNNaNNaN2.35NaN1.2NaNNaN5.0NaNNaNNaN
    Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNDeltaQuad Pro #CARGO17.50019213.123NaNNaN0.96.200100.01.83NaNNaNNaN2.35NaN1.2NaN
    V2119.68771648800.00.8NaN0.9310.000NaN3.033.014.014.02.15NaN1.52.65
    Potencia HPV2521.8752416000.00.52NaN0.9312.500NaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.033.015.515.52.45NaN2.23.45
    V3221.8752416000.0NaNNaN1.023.500NaN4.533.017.017.03.2NaN5.06.45
    V3527.3440516000.0NaNNaN1.8832.000NaN2.833.0NaNNaN3.5NaN10.0NaN
    V3927.3440516000.0NaNNaNNaN24.000NaN4.533.0NaNNaN3.9NaN5.0NaN
    PrecioNaNNaNNaNNaNNaNNaNNaNVolitation VT37027.3440517000.0NaNNaN2.0240.000NaN15.033.0NaNNaN6.5NaN18.0NaN
    Skyeye 260036.094147NaN0.88NaN2.0515.000NaN2.0NaN10.010.02.6NaN4.06.5
    Skyeye 2930 VTOL26.250288NaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.01.0NaN2.0328.000NaN3.030.018.018.02.93NaN6.07.1
    Tiempo de emergencia en vueloNaNNaNNaNSkyeye 3600NaNNaN1.33NaN2.48828.000NaN4.5NaN12.512.53.6NaN10.011.5
    Skyeye 3600 VTOL32.81286NaN1.32NaN2.4240.000300.06.033.024.024.03.6NaN10.011.0
    Skyeye 500036.094147NaN2.615NaN3.590.000NaN8.042.015.015.05.0NaN20.032.0
    Skyeye 5000 VTOL30.625336NaN2.615NaN3.5100.000800.08.042.0NaNNaN0.1080.1080.1085.0NaN25.0NaN
    Skyeye 5000 VTOL octoNaNNaN2.615NaN3.5100.000NaNNaN38.024.0NaN5.0NaN15.035.0
    Volitation VT51032.8128617000.0NaNNaN2.905100.000NaN5.050.025.025.05.1NaN25.0NaN
    Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNAscend21.8752410000.0NaNNaN1.5629.500NaN6.030.013.0NaN2.0NaN0.63.0
    Transition21.8752413000.0NaNNaN2.318.000NaN12.030.013.0NaN3.0NaN1.55.8
    Reach27.3440516000.0NaNNaN4.71291.000NaN20.035.013.0NaN6.0NaN7.031.0
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Configuración Inicial ===\n", + "\n", + "Valores configurados: Rango MTOW [85% - 115%], Confianza Mínima: 0.50\n", + "\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", + "\n", + "=== Iteración 1: Resumen antes de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de Valores Faltantes Antes de Iteración 1

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    FilaValores Faltantes
    Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.00Stalker XE17.000
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.01Stalker VXE3018.000
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.02Aerosonde Mk. 4.7 Fixed Wing17.000
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.03Aerosonde Mk. 4.7 VTOL16.000
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.04Aerosonde Mk. 4.8 Fixed wing20.000
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.05Aerosonde Mk. 4.8 VTOL FTUAS28.000
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6AAI Aerosonde19.000
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN7Fulmar X26.000
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8Orbiter 428.000
    Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN9Orbiter 327.000
    PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN10Mantis26.000
    CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN11ScanEagle25.000
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12Integrator25.000
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13Integrator VTOL29.000
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14Integrator Extended Range27.000
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15ScanEagle 325.000
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN16RQ Nan 21A Blackjack24.000
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN17DeltaQuad Evo18.000
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN18DeltaQuad Pro #MAP22.000
    Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN19DeltaQuad Pro #CARGO22.000
    indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN20V2116.000
    21V2516.000
    22V3217.000
    23V3523.000
    24V3924.000
    25Volitation VT37022.000
    26Skyeye 260023.000
    27Skyeye 2930 VTOL21.000
    28Skyeye 360023.000
    29Skyeye 3600 VTOL19.000
    30Skyeye 500018.000
    31Skyeye 5000 VTOL21.000
    32Skyeye 5000 VTOL octo22.000
    33Volitation VT51020.000
    34Ascend19.000
    35Transition19.000
    36Reach19.000
    " @@ -13096,8 +10657,8 @@ " .scroll-table {\n", " overflow-x: auto;\n", " overflow-y: auto;\n", - " max-height: 400px;\n", - " max-width: 100%;\n", + " max-height: 100px;\n", + " max-width: 50%;\n", " display: block;\n", " border: 1px solid #ccc;\n", " margin-bottom: 20px;\n", @@ -13123,1003 +10684,19 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    df_filtrado_base

    \n", + "

    Sumatoria Total de Valores Faltantes

    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReachResumenCantidad
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.34405NaNNaN30.406584NaNNaN18.26582630.62533630.953465NaNNaN25.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.625336NaN32.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.842NaNNaNNaN19500.019500.0NaN19500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.0NaNNaNNaNNaNNaNNaNNaN17000.010000.013000.016000.0
    Área del ala0.871.1582831.551.551.55NaN0.57NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.84NaNNaN0.80.52NaNNaNNaNNaN0.881.01.331.322.6152.6152.615NaNNaNNaNNaN
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.754386NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Longitud del fuselaje2.12.59083.03.03.0NaN1.71.21.21.21.481.712.5NaN2.52.42.50.750.90.90.930.931.01.88NaN2.022.052.032.4882.423.53.53.52.9051.5622.34.712
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0NaNNaNNaNNaN3270.0800.0NaN50.025.0NaNNaNNaN500.0NaNNaN270.0100.0100.0NaNNaNNaNNaNNaNNaNNaNNaNNaN300.0NaN800.0NaNNaNNaNNaNNaN
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.0NaN5.06.012.020.0
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.43886NaN30.84572541.736.036.025.641.246.3NaN46.341.246.3NaNNaNNaN33.033.033.033.033.033.0NaN30.0NaN33.042.042.038.050.030.030.035.0
    Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaN24.025.013.013.013.0
    Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.015.517.0NaNNaNNaN10.018.012.524.015.0NaNNaN25.0NaNNaNNaN
    envergadura3.6574.87684.44.44.4NaN2.93.05.24.42.13.14.8NaN4.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.352NaN0.196552NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    payload2.4947562.49475614.511.317.722.7NaNNaN12.05.5NaN5.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    Empty weight10.88620817.463292NaNNaNNaNNaN10.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaN2.653.456.45NaNNaNNaN6.57.111.511.032.0NaN35.0NaN3.05.831.0
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Configuración Inicial ===\n", - "\n", - "Valores configurados: Rango MTOW [85% - 115%], Confianza Mínima: 0.50\n", - "\n", - "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 1 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "=== Iteración 1: Resumen antes de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Antes de Iteración 1

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE32.000
    1Stalker VXE3033.000
    2Aerosonde Mk. 4.7 Fixed Wing32.000
    3Aerosonde Mk. 4.7 VTOL31.000
    4Aerosonde Mk. 4.8 Fixed wing35.000
    5Aerosonde Mk. 4.8 VTOL FTUAS43.000
    6AAI Aerosonde34.000
    7Fulmar X41.000
    8Orbiter 443.000
    9Orbiter 342.000
    10Mantis41.000
    11ScanEagle40.000
    12Integrator40.000
    13Integrator VTOL44.000
    14Integrator Extended Range (ER)42.000
    15ScanEagle 340.000
    16RQ Nan 21A Blackjack39.000
    17DeltaQuad Evo33.000
    18DeltaQuad Pro #MAP37.000
    19DeltaQuad Pro #CARGO37.000
    20V2131.000
    21V2531.000
    22V3232.000
    23V3538.000
    24V3939.000
    25Volitation VT37037.000
    26Skyeye 260038.000
    27Skyeye 2930 VTOL36.000
    28Skyeye 360038.000
    29Skyeye 3600 VTOL34.000
    30Skyeye 500033.000
    31Skyeye 5000 VTOL36.000
    32Skyeye 5000 VTOL octo37.000
    33Volitation VT51035.000
    34Ascend34.000
    35Transition34.000
    36Reach34.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    ResumenCantidad
    0Total de Valores Faltantes1356.0000Total de Valores Faltantes801.000
    " @@ -14291,7 +10868,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "⚠️ Parámetro 'Área del ala' no tiene valor en la aeronave objetivo. Bono = 0.\n", @@ -14852,7 +11429,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Área del ala ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Área del ala ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", @@ -15308,7 +11885,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Relación de aspecto del ala ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Relación de aspecto del ala ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", @@ -15915,7 +12492,7 @@ " Bono total para 'prest': -0.00001\n", " Bono geométrico: 0.100\n", " Bono prestacional: -0.000\n", - " vecino 'Integrator Extended Range (ER)' → sim_i: 1.049\n", + " vecino 'Integrator Extended Range' → sim_i: 1.049\n", "\n", "Detalles del cálculo de confianza:\n", " Confianza que tan similares son los vecinos (familia x Mtow + Bonos): ['1.049']\n", @@ -16711,7 +13288,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Velocidad de pérdida (KCAS) ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", @@ -17131,7 +13708,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", @@ -17643,7 +14220,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Cuerda ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Cuerda ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", @@ -18229,7 +14806,7 @@ "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Empty weight ===\u001b[0m\n", + "=== Imputación por similitud: Integrator Extended Range - Empty weight ===\u001b[0m\n", "\u001b[1m\n", "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", @@ -18486,43 +15063,48 @@ " \n", " \n", " \n", - " Stalker XE\n", - " Stalker VXE30\n", - " Aerosonde Mk. 4.7 Fixed Wing\n", - " Aerosonde Mk. 4.7 VTOL\n", - " Aerosonde Mk. 4.8 Fixed wing\n", - " Aerosonde Mk. 4.8 VTOL FTUAS\n", - " AAI Aerosonde\n", - " Fulmar X\n", - " Orbiter 4\n", - " Orbiter 3\n", - " Mantis\n", - " ScanEagle\n", - " Integrator\n", - " Integrator VTOL\n", - " Integrator Extended Range (ER)\n", - " ScanEagle 3\n", - " RQ Nan 21A Blackjack\n", - " DeltaQuad Evo\n", - " DeltaQuad Pro #MAP\n", - " DeltaQuad Pro #CARGO\n", - " V21\n", - " V25\n", - " V32\n", - " V35\n", - " V39\n", - " Volitation VT370\n", - " Skyeye 2600\n", - " Skyeye 2930 VTOL\n", - " Skyeye 3600\n", - " Skyeye 3600 VTOL\n", - " Skyeye 5000\n", - " Skyeye 5000 VTOL\n", - " Skyeye 5000 VTOL octo\n", - " Volitation VT510\n", - " Ascend\n", - " Transition\n", - " Reach\n", + " Distancia de carrera requerida para despegue\n", + " Altitud a la que se realiza el crucero\n", + " Velocidad a la que se realiza el crucero (KTAS)\n", + " Techo de servicio máximo\n", + " Velocidad de pérdida limpia (KCAS)\n", + " Área del ala\n", + " Relación de aspecto del ala\n", + " Longitud del fuselaje\n", + " Profundidad del fuselaje\n", + " Ancho del fuselaje\n", + " Peso máximo al despegue (MTOW)\n", + " Alcance de la aeronave\n", + " Autonomía de la aeronave\n", + " Velocidad máxima (KIAS)\n", + " Velocidad de pérdida (KCAS)\n", + " Tasa de ascenso\n", + " Radio de giro\n", + " envergadura\n", + " Cuerda\n", + " payload\n", + " duracion en VTOL\n", + " Crucero KIAS\n", + " RTF (dry weight)\n", + " RTF (Including fuel & Batteries)\n", + " Empty weight\n", + " Maximum Crosswind\n", + " Rango de comunicación\n", + " Wing Loading\n", + " Potencia específica (P/W)\n", + " Capacidad combustible\n", + " Consumo\n", + " Potencia Watts\n", + " Potencia HP\n", + " Precio\n", + " Tiempo de emergencia en vuelo\n", + " Distancia de aterrizaje\n", + " Despegue\n", + " Propulsión horizontal\n", + " Propulsión vertical\n", + " Cantidad de motores propulsión vertical\n", + " Cantidad de motores propulsión horizontal\n", + " Misión\n", " \n", " \n", " Modelo\n", @@ -18563,157 +15145,90 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " Distancia de carrera requerida para despegue\n", - " 0.0\n", + " Stalker XE\n", " 0.0\n", + " 6000.000\n", + " 16.880379\n", + " 12000.0\n", " NaN\n", - " 0.0\n", + " 0.87\n", + " 15.301255\n", + " 2.1\n", " NaN\n", - " 0.0\n", + " 0.211\n", + " 13.600\n", + " 370.0\n", + " 8.0\n", + " 20.0\n", " NaN\n", " NaN\n", " NaN\n", + " 3.657\n", + " 0.239\n", + " 2.494756\n", + " 2.0\n", + " 15.43332\n", " NaN\n", " NaN\n", + " 10.886208\n", " NaN\n", + " 59.0\n", " NaN\n", - " 0.0\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " NaN\n", - " 0.0\n", - " 50.0\n", - " 0.0\n", - " 60.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " \n", - " \n", - " Altitud a la que se realiza el crucero\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 5500.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 5000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", - " 6000.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Velocidad a la que se realiza el crucero (KTAS)\n", - " 16.880379\n", + " Stalker VXE30\n", + " 0.0\n", + " 6000.000\n", " 17.602373\n", - " 27.34405\n", - " 27.34405\n", - " 27.34405\n", - " NaN\n", + " 12000.0\n", " NaN\n", - " 30.406584\n", + " 1.158283\n", + " 15.326449\n", + " 2.5908\n", " NaN\n", + " 0.2\n", + " 19.958\n", + " 433.0\n", + " 8.0\n", + " 25.034211\n", " NaN\n", - " 18.265826\n", - " 30.625336\n", - " 30.953465\n", " NaN\n", " NaN\n", - " 25.703407\n", - " 33.797246\n", - " 18.090824\n", - " 17.500192\n", - " 17.500192\n", - " 19.687716\n", - " 21.87524\n", - " 21.87524\n", - " 27.34405\n", - " 27.34405\n", - " 27.34405\n", - " 36.094147\n", - " 26.250288\n", + " 4.8768\n", + " 0.318195\n", + " 2.494756\n", " NaN\n", - " 32.81286\n", - " 36.094147\n", - " 30.625336\n", + " 16.093422\n", " NaN\n", - " 32.81286\n", - " 21.87524\n", - " 21.87524\n", - " 27.34405\n", - " \n", - " \n", - " Techo de servicio máximo\n", - " 12000.0\n", - " 12000.0\n", - " 14700.0\n", - " 9700.0\n", - " 18200.0\n", - " 15000.0\n", - " 15000.0\n", - " 9.842\n", " NaN\n", + " 17.463292\n", " NaN\n", + " 161.0\n", " NaN\n", - " 19500.0\n", - " 19500.0\n", " NaN\n", - " 19500.0\n", - " 20.0\n", - " 20.0\n", - " 13.0\n", - " 13.123\n", - " 13.123\n", - " 48800.0\n", - " 16000.0\n", - " 16000.0\n", - " 16000.0\n", - " 16000.0\n", - " 17000.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -18721,118 +15236,174 @@ " NaN\n", " NaN\n", " NaN\n", - " 17000.0\n", - " 10000.0\n", - " 13000.0\n", - " 16000.0\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Velocidad de pérdida limpia (KCAS)\n", - " NaN\n", + " Aerosonde Mk. 4.7 Fixed Wing\n", " NaN\n", + " 6000.000\n", + " 27.34405\n", + " 14700.0\n", " NaN\n", + " 1.55\n", + " 12.5\n", + " 3.0\n", " NaN\n", + " 0.277\n", + " 42.200\n", " NaN\n", + " 19.8\n", + " 33.43886\n", " NaN\n", " NaN\n", " NaN\n", + " 4.4\n", + " 0.352\n", + " 14.5\n", " NaN\n", + " 25.0\n", " NaN\n", + " 27.7\n", " NaN\n", " NaN\n", + " 140.0\n", " NaN\n", " NaN\n", " NaN\n", + " 0.6\n", + " 2980.0\n", + " 4.0\n", " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Aerosonde Mk. 4.7 VTOL\n", + " 0.0\n", + " 6000.000\n", + " 27.34405\n", + " 9700.0\n", " NaN\n", + " 1.55\n", + " 12.5\n", + " 3.0\n", " NaN\n", - " 14.0\n", - " 15.5\n", - " 17.0\n", + " 0.277\n", + " 53.500\n", " NaN\n", + " 12.0\n", + " 33.43886\n", " NaN\n", " NaN\n", - " 10.0\n", - " 18.0\n", - " 12.5\n", - " 24.0\n", - " 15.0\n", " NaN\n", + " 4.4\n", + " 0.352\n", + " 11.3\n", " NaN\n", " 25.0\n", " NaN\n", + " 42.2\n", + " NaN\n", + " NaN\n", + " 140.0\n", + " NaN\n", " NaN\n", " NaN\n", + " 0.6\n", + " 2980.0\n", + " 4.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Área del ala\n", - " 0.87\n", - " 1.158283\n", - " 1.55\n", - " 1.55\n", - " 1.55\n", - " NaN\n", - " 0.57\n", + " Aerosonde Mk. 4.8 Fixed wing\n", " NaN\n", + " 6000.000\n", + " 27.34405\n", + " 18200.0\n", " NaN\n", + " 1.55\n", + " 12.5\n", + " 3.0\n", " NaN\n", + " 0.277\n", + " 54.400\n", " NaN\n", + " 19.8\n", + " 33.43886\n", " NaN\n", " NaN\n", " NaN\n", + " 4.4\n", + " 0.352\n", + " 17.7\n", " NaN\n", + " 25.0\n", " NaN\n", + " 36.7\n", " NaN\n", - " 0.84\n", " NaN\n", + " 140.0\n", " NaN\n", - " 0.8\n", - " 0.52\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.88\n", - " 1.0\n", - " 1.33\n", - " 1.32\n", - " 2.615\n", - " 2.615\n", - " 2.615\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Relación de aspecto del ala\n", - " 15.301255\n", - " 15.326449\n", - " 12.5\n", - " 12.5\n", - " 12.5\n", - " 12.5\n", - " 14.754386\n", - " NaN\n", - " NaN\n", + " Aerosonde Mk. 4.8 VTOL FTUAS\n", + " 0.0\n", + " 6000.000\n", " NaN\n", + " 15000.0\n", " NaN\n", " NaN\n", + " 12.5\n", " NaN\n", " NaN\n", " NaN\n", + " 93.000\n", " NaN\n", + " 14.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 22.7\n", " NaN\n", " NaN\n", " NaN\n", + " 70.3\n", " NaN\n", " NaN\n", " NaN\n", @@ -18845,72 +15416,82 @@ " NaN\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Longitud del fuselaje\n", - " 2.1\n", - " 2.5908\n", - " 3.0\n", - " 3.0\n", - " 3.0\n", + " AAI Aerosonde\n", + " NaN\n", + " 5500.000\n", + " NaN\n", + " 15000.0\n", " NaN\n", + " 0.57\n", + " 14.754386\n", " 1.7\n", - " 1.2\n", - " 1.2\n", - " 1.2\n", - " 1.48\n", - " 1.71\n", - " 2.5\n", " NaN\n", - " 2.5\n", - " 2.4\n", - " 2.5\n", - " 0.75\n", - " 0.9\n", - " 0.9\n", - " 0.93\n", - " 0.93\n", - " 1.0\n", - " 1.88\n", " NaN\n", - " 2.02\n", - " 2.05\n", - " 2.03\n", - " 2.488\n", - " 2.42\n", - " 3.5\n", - " 3.5\n", - " 3.5\n", - " 2.905\n", - " 1.562\n", - " 2.3\n", - " 4.712\n", - " \n", - " \n", - " Profundidad del fuselaje\n", + " 13.100\n", + " 3270.0\n", + " 26.0\n", + " 30.845725\n", " NaN\n", " NaN\n", " NaN\n", + " 2.9\n", + " 0.196552\n", + " NaN\n", + " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 10.0\n", + " NaN\n", + " 150.0\n", + " 23.0\n", + " 98.0\n", " NaN\n", " NaN\n", + " 1280.0\n", + " 1.74\n", " NaN\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Fulmar X\n", " NaN\n", + " 6000.000\n", + " 30.406584\n", + " 9.842\n", " NaN\n", " NaN\n", " NaN\n", + " 1.2\n", " NaN\n", " NaN\n", + " 20.000\n", + " 800.0\n", + " 8.0\n", + " 41.7\n", " NaN\n", " NaN\n", " NaN\n", + " 3.0\n", " NaN\n", " NaN\n", " NaN\n", + " 27.8\n", " NaN\n", " NaN\n", " NaN\n", @@ -18925,218 +15506,132 @@ " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Ancho del fuselaje\n", - " 0.211\n", - " 0.2\n", - " 0.277\n", - " 0.277\n", - " 0.277\n", - " NaN\n", + " Orbiter 4\n", " NaN\n", + " 6000.000\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 1.2\n", " NaN\n", " NaN\n", + " 55.000\n", " NaN\n", + " 24.0\n", + " 36.0\n", " NaN\n", " NaN\n", " NaN\n", + " 5.2\n", " NaN\n", + " 12.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 150.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.375\n", - " 0.375\n", - " 0.375\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Peso máximo al despegue (MTOW)\n", - " 13.6\n", - " 19.958048\n", - " 42.2\n", - " 53.5\n", - " 54.4\n", - " 93.0\n", - " 13.1\n", - " 20.0\n", - " 55.0\n", - " 32.0\n", - " 6.5\n", - " 26.5\n", - " 74.8\n", - " 75.0\n", - " 74.8\n", - " 36.3\n", - " 61.0\n", - " 10.0\n", - " 6.2\n", - " 6.2\n", - " 10.0\n", - " 12.5\n", - " 23.5\n", - " 32.0\n", - " 24.0\n", - " 40.0\n", - " 15.0\n", - " 28.0\n", - " 28.0\n", - " 40.0\n", - " 90.0\n", - " 100.0\n", - " 100.0\n", - " 100.0\n", - " 9.5\n", - " 18.0\n", - " 91.0\n", - " \n", - " \n", - " Alcance de la aeronave\n", - " 370.0\n", - " 433.0\n", + " Orbiter 3\n", " NaN\n", + " 6000.000\n", " NaN\n", " NaN\n", " NaN\n", - " 3270.0\n", - " 800.0\n", " NaN\n", - " 50.0\n", - " 25.0\n", " NaN\n", + " 1.2\n", " NaN\n", " NaN\n", - " 500.0\n", + " 32.000\n", + " 50.0\n", + " 6.0\n", + " 36.0\n", " NaN\n", " NaN\n", - " 270.0\n", - " 100.0\n", - " 100.0\n", " NaN\n", + " 4.4\n", + " NaN\n", + " 5.5\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 50.0\n", " NaN\n", " NaN\n", - " 300.0\n", " NaN\n", - " 800.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " NaN\n", + " 1.000\n", + " 1.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Autonomía de la aeronave\n", - " 8.0\n", - " 8.0\n", - " 19.8\n", - " 12.0\n", - " 19.8\n", - " 14.0\n", - " 26.0\n", - " 8.0\n", - " 24.0\n", - " 6.0\n", - " 2.0\n", - " 18.0\n", - " 24.0\n", - " 16.0\n", - " 19.0\n", - " 18.0\n", - " 16.0\n", - " 4.53\n", - " 1.83\n", - " 1.83\n", - " 3.0\n", - " 4.0\n", - " 4.5\n", - " 2.8\n", - " 4.5\n", - " 15.0\n", - " 2.0\n", - " 3.0\n", - " 4.5\n", - " 6.0\n", - " 8.0\n", - " 8.0\n", + " Mantis\n", " NaN\n", - " 5.0\n", - " 6.0\n", - " 12.0\n", - " 20.0\n", - " \n", - " \n", - " Velocidad máxima (KIAS)\n", - " 20.0\n", - " 25.034211\n", - " 33.43886\n", - " 33.43886\n", - " 33.43886\n", + " 6000.000\n", + " 18.265826\n", " NaN\n", - " 30.845725\n", - " 41.7\n", - " 36.0\n", - " 36.0\n", - " 25.6\n", - " 41.2\n", - " 46.3\n", " NaN\n", - " 46.3\n", - " 41.2\n", - " 46.3\n", " NaN\n", " NaN\n", + " 1.48\n", " NaN\n", - " 33.0\n", - " 33.0\n", - " 33.0\n", - " 33.0\n", - " 33.0\n", - " 33.0\n", " NaN\n", - " 30.0\n", + " 6.500\n", + " 25.0\n", + " 2.0\n", + " 25.6\n", " NaN\n", - " 33.0\n", - " 42.0\n", - " 42.0\n", - " 38.0\n", - " 50.0\n", - " 30.0\n", - " 30.0\n", - " 35.0\n", - " \n", - " \n", - " Velocidad de pérdida (KCAS)\n", " NaN\n", " NaN\n", + " 2.1\n", " NaN\n", " NaN\n", " NaN\n", + " 16.7\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 25.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19146,38 +15641,42 @@ " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 1.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " ScanEagle\n", " NaN\n", + " 6000.000\n", + " 30.625336\n", + " 19500.0\n", " NaN\n", - " 14.0\n", - " 15.5\n", - " 17.0\n", " NaN\n", " NaN\n", + " 1.71\n", " NaN\n", - " 10.0\n", - " 18.0\n", - " 12.5\n", - " 24.0\n", - " 15.0\n", " NaN\n", - " 24.0\n", - " 25.0\n", - " 13.0\n", - " 13.0\n", - " 13.0\n", - " \n", - " \n", - " Tasa de ascenso\n", + " 26.500\n", " NaN\n", + " 18.0\n", + " 41.2\n", " NaN\n", " NaN\n", " NaN\n", + " 3.1\n", " NaN\n", + " 5.0\n", " NaN\n", + " 28.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 101.86\n", " NaN\n", " NaN\n", " NaN\n", @@ -19187,27 +15686,44 @@ " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Integrator\n", " NaN\n", + " 6000.000\n", + " 30.953465\n", + " 19500.0\n", " NaN\n", " NaN\n", " NaN\n", + " 2.5\n", " NaN\n", " NaN\n", + " 74.800\n", " NaN\n", + " 24.0\n", + " 46.3\n", " NaN\n", " NaN\n", " NaN\n", + " 4.8\n", " NaN\n", + " 18.0\n", " NaN\n", + " 28.3\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 92.6\n", " NaN\n", " NaN\n", - " \n", - " \n", - " Radio de giro\n", " NaN\n", " NaN\n", " NaN\n", @@ -19215,6 +15731,17 @@ " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Integrator VTOL\n", + " 0.0\n", + " 5000.000\n", " NaN\n", " NaN\n", " NaN\n", @@ -19223,21 +15750,22 @@ " NaN\n", " NaN\n", " NaN\n", + " 75.000\n", " NaN\n", + " 16.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 100.0\n", - " 120.0\n", - " 150.0\n", " NaN\n", " NaN\n", + " 18.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 30.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19245,66 +15773,38 @@ " NaN\n", " NaN\n", " NaN\n", - " \n", - " \n", - " envergadura\n", - " 3.657\n", - " 4.8768\n", - " 4.4\n", - " 4.4\n", - " 4.4\n", " NaN\n", - " 2.9\n", - " 3.0\n", - " 5.2\n", - " 4.4\n", - " 2.1\n", - " 3.1\n", - " 4.8\n", " NaN\n", - " 4.8\n", - " 4.0\n", - " 4.8\n", - " 2.69\n", - " 2.35\n", - " 2.35\n", - " 2.15\n", - " 2.45\n", - " 3.2\n", - " 3.5\n", - " 3.9\n", - " 6.5\n", - " 2.6\n", - " 2.93\n", - " 3.6\n", - " 3.6\n", - " 5.0\n", - " 5.0\n", - " 5.0\n", - " 5.1\n", - " 2.0\n", - " 3.0\n", - " 6.0\n", + " 0.0\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Cuerda\n", - " 0.239\n", - " 0.318195\n", - " 0.352\n", - " 0.352\n", - " 0.352\n", + " Integrator Extended Range\n", " NaN\n", - " 0.196552\n", + " 6000.000\n", " NaN\n", + " 19500.0\n", " NaN\n", " NaN\n", " NaN\n", + " 2.5\n", " NaN\n", " NaN\n", + " 74.800\n", + " 500.0\n", + " 19.0\n", + " 46.3\n", " NaN\n", " NaN\n", " NaN\n", + " 4.8\n", " NaN\n", + " 18.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19321,56 +15821,37 @@ " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " ScanEagle 3\n", " NaN\n", + " 6000.000\n", + " 25.703407\n", + " 20.0\n", " NaN\n", " NaN\n", " NaN\n", - " \n", - " \n", - " payload\n", - " 2.494756\n", - " 2.494756\n", - " 14.5\n", - " 11.3\n", - " 17.7\n", - " 22.7\n", + " 2.4\n", " NaN\n", " NaN\n", - " 12.0\n", - " 5.5\n", + " 36.300\n", " NaN\n", - " 5.0\n", - " 18.0\n", - " 18.0\n", - " 18.0\n", - " 8.6\n", - " 17.7\n", - " 3.0\n", - " 1.2\n", - " 1.2\n", - " 1.5\n", - " 2.2\n", - " 5.0\n", - " 10.0\n", - " 5.0\n", " 18.0\n", + " 41.2\n", + " NaN\n", + " NaN\n", + " NaN\n", " 4.0\n", - " 6.0\n", - " 10.0\n", - " 10.0\n", - " 20.0\n", - " 25.0\n", - " 15.0\n", - " 25.0\n", - " 0.6\n", - " 1.5\n", - " 7.0\n", - " \n", - " \n", - " duracion en VTOL\n", - " 2.0\n", " NaN\n", + " 8.6\n", " NaN\n", + " 23.5\n", " NaN\n", " NaN\n", " NaN\n", @@ -19380,83 +15861,91 @@ " NaN\n", " NaN\n", " NaN\n", + " 170.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " RQ Nan 21A Blackjack\n", " NaN\n", - " 4.53\n", + " 6000.000\n", + " 33.797246\n", + " 20.0\n", " NaN\n", " NaN\n", " NaN\n", + " 2.5\n", " NaN\n", " NaN\n", + " 61.000\n", " NaN\n", + " 16.0\n", + " 46.3\n", " NaN\n", " NaN\n", " NaN\n", + " 4.8\n", " NaN\n", + " 17.7\n", " NaN\n", + " 30.9\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 92.6\n", " NaN\n", - " 0.05\n", - " 0.05\n", - " 0.05\n", - " \n", - " \n", - " Crucero KIAS\n", - " 15.43332\n", - " 16.093422\n", - " 25.0\n", - " 25.0\n", - " 25.0\n", " NaN\n", " NaN\n", - " 27.8\n", " NaN\n", " NaN\n", - " 16.7\n", - " 28.0\n", - " 28.3\n", + " 8.0\n", " NaN\n", " NaN\n", - " 23.5\n", - " 30.9\n", - " 16.54\n", - " 16.0\n", - " 16.0\n", - " 18.0\n", - " 20.0\n", - " 20.0\n", - " 25.0\n", - " 25.0\n", - " 25.0\n", - " 33.0\n", - " 24.0\n", " NaN\n", - " 30.0\n", - " 33.0\n", - " 28.0\n", - " 35.0\n", - " 30.0\n", - " 20.0\n", - " 20.0\n", - " 25.0\n", + " 1.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " RTF (dry weight)\n", + " DeltaQuad Evo\n", + " 0.0\n", + " 6000.000\n", + " 18.090824\n", + " 13.0\n", " NaN\n", + " 0.84\n", " NaN\n", + " 0.75\n", " NaN\n", " NaN\n", + " 10.000\n", + " 270.0\n", + " 4.53\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 2.69\n", " NaN\n", + " 3.0\n", + " 4.53\n", + " 16.54\n", + " 4.8\n", + " 6.8\n", + " 4.8\n", + " 45.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19465,55 +15954,89 @@ " NaN\n", " NaN\n", " NaN\n", - " 4.8\n", " NaN\n", + " 0.0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " DeltaQuad Pro #MAP\n", + " 0.0\n", + " 6000.000\n", + " 17.500192\n", + " 13.123\n", " NaN\n", " NaN\n", " NaN\n", + " 0.9\n", " NaN\n", " NaN\n", + " 6.200\n", + " 100.0\n", + " 1.83\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 2.35\n", " NaN\n", + " 1.2\n", " NaN\n", + " 16.0\n", " NaN\n", " NaN\n", " NaN\n", + " 50.0\n", + " 50.0\n", " NaN\n", - " 6.0\n", - " 11.8\n", - " 54.0\n", - " \n", - " \n", - " RTF (Including fuel & Batteries)\n", " NaN\n", " NaN\n", - " 27.7\n", - " 42.2\n", - " 36.7\n", - " 70.3\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 0.0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " DeltaQuad Pro #CARGO\n", + " 0.0\n", + " 6000.000\n", + " 17.500192\n", + " 13.123\n", " NaN\n", " NaN\n", " NaN\n", + " 0.9\n", " NaN\n", " NaN\n", + " 6.200\n", + " 100.0\n", + " 1.83\n", " NaN\n", - " 6.8\n", " NaN\n", " NaN\n", " NaN\n", + " 2.35\n", " NaN\n", + " 1.2\n", " NaN\n", + " 16.0\n", " NaN\n", " NaN\n", " NaN\n", + " 50.0\n", + " 30.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19522,184 +16045,263 @@ " NaN\n", " NaN\n", " NaN\n", - " 8.9\n", - " 16.5\n", - " 84.0\n", + " 0.0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Empty weight\n", - " 10.886208\n", - " 17.463292\n", - " NaN\n", - " NaN\n", + " V21\n", + " 0.0\n", + " 6000.000\n", + " 19.687716\n", + " 48800.0\n", + " 14.0\n", + " 0.8\n", " NaN\n", + " 0.93\n", " NaN\n", - " 10.0\n", " NaN\n", + " 10.000\n", " NaN\n", + " 3.0\n", + " 33.0\n", + " 14.0\n", " NaN\n", + " 100.0\n", + " 2.15\n", " NaN\n", + " 1.5\n", " NaN\n", + " 18.0\n", " NaN\n", " NaN\n", + " 2.65\n", " NaN\n", + " 30.0\n", + " 12.5\n", " NaN\n", " NaN\n", - " 4.8\n", " NaN\n", " NaN\n", - " 2.65\n", - " 3.45\n", - " 6.45\n", " NaN\n", + " 3999.0\n", + " 0.108\n", " NaN\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V25\n", + " 0.0\n", + " 6000.000\n", + " 21.87524\n", + " 16000.0\n", + " 15.5\n", + " 0.52\n", " NaN\n", - " 6.5\n", - " 7.1\n", - " 11.5\n", - " 11.0\n", - " 32.0\n", + " 0.93\n", " NaN\n", - " 35.0\n", " NaN\n", - " 3.0\n", - " 5.8\n", - " 31.0\n", - " \n", - " \n", - " Maximum Crosswind\n", + " 12.500\n", " NaN\n", + " 4.0\n", + " 33.0\n", + " 15.5\n", " NaN\n", + " 120.0\n", + " 2.45\n", " NaN\n", + " 2.2\n", " NaN\n", + " 20.0\n", " NaN\n", " NaN\n", + " 3.45\n", " NaN\n", + " 30.0\n", + " 24.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 4679.0\n", + " 0.108\n", " NaN\n", - " 30.0\n", + " 2.000\n", + " 1.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V32\n", + " 0.0\n", + " 6000.000\n", + " 21.87524\n", + " 16000.0\n", + " 17.0\n", " NaN\n", " NaN\n", + " 1.0\n", " NaN\n", - " 45.0\n", - " 50.0\n", - " 50.0\n", " NaN\n", + " 23.500\n", " NaN\n", + " 4.5\n", + " 33.0\n", + " 17.0\n", " NaN\n", + " 150.0\n", + " 3.2\n", " NaN\n", + " 5.0\n", " NaN\n", + " 20.0\n", " NaN\n", " NaN\n", + " 6.45\n", " NaN\n", + " 30.0\n", + " 25.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 69999.0\n", + " 0.108\n", " NaN\n", - " 15.0\n", - " 15.0\n", - " 15.0\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Rango de comunicación\n", - " 59.0\n", - " 161.0\n", - " 140.0\n", - " 140.0\n", - " 140.0\n", - " NaN\n", - " 150.0\n", - " NaN\n", - " 150.0\n", - " 50.0\n", - " 25.0\n", - " 101.86\n", - " 92.6\n", + " V35\n", + " 0.0\n", + " 6000.000\n", + " 27.34405\n", + " 16000.0\n", " NaN\n", " NaN\n", " NaN\n", - " 92.6\n", + " 1.88\n", " NaN\n", - " 50.0\n", - " 30.0\n", - " 30.0\n", - " 30.0\n", - " 30.0\n", - " 30.0\n", - " 30.0\n", " NaN\n", + " 32.000\n", " NaN\n", + " 2.8\n", + " 33.0\n", " NaN\n", " NaN\n", " NaN\n", + " 3.5\n", " NaN\n", + " 10.0\n", " NaN\n", + " 25.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 30.0\n", " NaN\n", - " \n", - " \n", - " Wing Loading\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 7999.0\n", " NaN\n", - " 23.0\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " V39\n", + " 0.0\n", + " 6000.000\n", + " 27.34405\n", + " 16000.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 24.000\n", " NaN\n", + " 4.5\n", + " 33.0\n", " NaN\n", " NaN\n", " NaN\n", + " 3.9\n", " NaN\n", + " 5.0\n", " NaN\n", - " 12.5\n", - " 24.0\n", " 25.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 30.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 8999.0\n", " NaN\n", " NaN\n", - " NaN\n", - " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Potencia específica (P/W)\n", + " Volitation VT370\n", + " 0.0\n", + " 6000.000\n", + " 27.34405\n", + " 17000.0\n", " NaN\n", " NaN\n", " NaN\n", + " 2.02\n", " NaN\n", " NaN\n", + " 40.000\n", " NaN\n", - " 98.0\n", + " 15.0\n", + " 33.0\n", " NaN\n", " NaN\n", " NaN\n", + " 6.5\n", " NaN\n", + " 18.0\n", " NaN\n", + " 25.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19707,27 +16309,48 @@ " NaN\n", " NaN\n", " NaN\n", + " 13.0\n", + " 0.96\n", " NaN\n", " NaN\n", + " 8999.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 2600\n", " NaN\n", + " 6000.000\n", + " 36.094147\n", " NaN\n", + " 10.0\n", + " 0.88\n", " NaN\n", + " 2.05\n", " NaN\n", " NaN\n", + " 15.000\n", " NaN\n", + " 2.0\n", " NaN\n", + " 10.0\n", " NaN\n", " NaN\n", + " 2.6\n", " NaN\n", + " 4.0\n", " NaN\n", + " 33.0\n", " NaN\n", " NaN\n", + " 6.5\n", " NaN\n", - " \n", - " \n", - " Capacidad combustible\n", " NaN\n", " NaN\n", " NaN\n", @@ -19735,222 +16358,361 @@ " NaN\n", " NaN\n", " NaN\n", + " 2299.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 2930 VTOL\n", + " 0.0\n", + " 6000.000\n", + " 26.250288\n", " NaN\n", + " 18.0\n", + " 1.0\n", " NaN\n", + " 2.03\n", " NaN\n", " NaN\n", + " 28.000\n", " NaN\n", + " 3.0\n", + " 30.0\n", + " 18.0\n", " NaN\n", " NaN\n", + " 2.93\n", " NaN\n", + " 6.0\n", " NaN\n", + " 24.0\n", " NaN\n", " NaN\n", + " 7.1\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 13.0\n", " NaN\n", " NaN\n", - " 11.5\n", - " 11.5\n", - " 28.0\n", - " 28.0\n", - " 28.0\n", - " 25.0\n", " NaN\n", + " 6799.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Consumo\n", - " NaN\n", - " NaN\n", - " 0.6\n", - " 0.6\n", - " NaN\n", - " NaN\n", - " NaN\n", + " Skyeye 3600\n", + " 50.0\n", + " 6000.000\n", " NaN\n", " NaN\n", + " 12.5\n", + " 1.33\n", " NaN\n", + " 2.488\n", " NaN\n", " NaN\n", + " 28.000\n", " NaN\n", + " 4.5\n", " NaN\n", + " 12.5\n", " NaN\n", " NaN\n", + " 3.6\n", " NaN\n", + " 10.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 11.5\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", - " 0.96\n", + " 11.5\n", " NaN\n", " NaN\n", " NaN\n", + " 4999.0\n", " NaN\n", - " 1.2\n", " NaN\n", + " 3.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 3600 VTOL\n", + " 0.0\n", + " 6000.000\n", + " 32.81286\n", " NaN\n", - " 5.0\n", + " 24.0\n", + " 1.32\n", " NaN\n", + " 2.42\n", " NaN\n", " NaN\n", - " \n", - " \n", - " Potencia Watts\n", + " 40.000\n", + " 300.0\n", + " 6.0\n", + " 33.0\n", + " 24.0\n", " NaN\n", " NaN\n", - " 2980.0\n", - " 2980.0\n", + " 3.6\n", " NaN\n", + " 10.0\n", " NaN\n", - " 1280.0\n", + " 30.0\n", " NaN\n", " NaN\n", + " 11.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 11.5\n", " NaN\n", " NaN\n", - " 170.0\n", " NaN\n", + " 6999.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 5000\n", + " 60.0\n", + " 6000.000\n", + " 36.094147\n", " NaN\n", + " 15.0\n", + " 2.615\n", " NaN\n", + " 3.5\n", " NaN\n", + " 0.375\n", + " 90.000\n", " NaN\n", + " 8.0\n", + " 42.0\n", + " 15.0\n", " NaN\n", " NaN\n", + " 5.0\n", " NaN\n", + " 20.0\n", " NaN\n", + " 33.0\n", " NaN\n", " NaN\n", + " 32.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 28.0\n", + " 1.2\n", " NaN\n", " NaN\n", + " 9999.0\n", " NaN\n", " NaN\n", + " 3.000\n", + " 2.000\n", + " 5.000\n", + " 0.000\n", + " 1.000\n", + " 1.000\n", " \n", " \n", - " Potencia HP\n", - " NaN\n", - " NaN\n", - " 4.0\n", - " 4.0\n", + " Skyeye 5000 VTOL\n", + " 0.0\n", + " 6000.000\n", + " 30.625336\n", " NaN\n", " NaN\n", - " 1.74\n", + " 2.615\n", " NaN\n", + " 3.5\n", " NaN\n", + " 0.375\n", + " 100.000\n", + " 800.0\n", + " 8.0\n", + " 42.0\n", " NaN\n", " NaN\n", " NaN\n", + " 5.0\n", " NaN\n", + " 25.0\n", " NaN\n", + " 28.0\n", " NaN\n", " NaN\n", - " 8.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 28.0\n", " NaN\n", " NaN\n", " NaN\n", + " 13900.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Skyeye 5000 VTOL octo\n", + " 0.0\n", + " 6000.000\n", " NaN\n", " NaN\n", " NaN\n", + " 2.615\n", " NaN\n", + " 3.5\n", " NaN\n", + " 0.375\n", + " 100.000\n", " NaN\n", " NaN\n", + " 38.0\n", + " 24.0\n", " NaN\n", " NaN\n", + " 5.0\n", " NaN\n", - " \n", - " \n", - " Precio\n", + " 15.0\n", " NaN\n", + " 35.0\n", " NaN\n", " NaN\n", + " 35.0\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 28.0\n", " NaN\n", " NaN\n", " NaN\n", + " 15999.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 8.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Volitation VT510\n", + " 0.0\n", + " 6000.000\n", + " 32.81286\n", + " 17000.0\n", + " 25.0\n", " NaN\n", " NaN\n", + " 2.905\n", " NaN\n", " NaN\n", + " 100.000\n", " NaN\n", + " 5.0\n", + " 50.0\n", + " 25.0\n", " NaN\n", " NaN\n", + " 5.1\n", " NaN\n", - " 3999.0\n", - " 4679.0\n", - " 69999.0\n", - " 7999.0\n", - " 8999.0\n", - " 8999.0\n", - " 2299.0\n", - " 6799.0\n", - " 4999.0\n", - " 6999.0\n", - " 9999.0\n", - " 13900.0\n", - " 15999.0\n", - " 16599.0\n", + " 25.0\n", " NaN\n", + " 30.0\n", " NaN\n", " NaN\n", - " \n", - " \n", - " Tiempo de emergencia en vuelo\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", " NaN\n", + " 25.0\n", + " 5.0\n", " NaN\n", " NaN\n", + " 16599.0\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Ascend\n", + " 0.0\n", + " 6000.000\n", + " 21.87524\n", + " 10000.0\n", " NaN\n", " NaN\n", " NaN\n", + " 1.562\n", " NaN\n", " NaN\n", + " 9.500\n", " NaN\n", + " 6.0\n", + " 30.0\n", + " 13.0\n", " NaN\n", " NaN\n", + " 2.0\n", " NaN\n", + " 0.6\n", + " 0.05\n", + " 20.0\n", + " 6.0\n", + " 8.9\n", + " 3.0\n", + " 15.0\n", " NaN\n", " NaN\n", - " 0.108\n", - " 0.108\n", - " 0.108\n", " NaN\n", " NaN\n", " NaN\n", @@ -19959,18 +16721,41 @@ " NaN\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Transition\n", + " 0.0\n", + " 6000.000\n", + " 21.87524\n", + " 13000.0\n", " NaN\n", " NaN\n", " NaN\n", + " 2.3\n", " NaN\n", " NaN\n", + " 18.000\n", " NaN\n", - " \n", - " \n", - " Distancia de aterrizaje\n", + " 12.0\n", + " 30.0\n", + " 13.0\n", " NaN\n", " NaN\n", + " 3.0\n", " NaN\n", + " 1.5\n", + " 0.05\n", + " 20.0\n", + " 11.8\n", + " 16.5\n", + " 5.8\n", + " 15.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -19981,20 +16766,41 @@ " NaN\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", + " \n", + " \n", + " Reach\n", " 0.0\n", + " 6000.000\n", + " 27.34405\n", + " 16000.0\n", " NaN\n", " NaN\n", " NaN\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " NaN\n", + " 4.712\n", " NaN\n", " NaN\n", + " 91.000\n", " NaN\n", + " 20.0\n", + " 35.0\n", + " 13.0\n", " NaN\n", " NaN\n", + " 6.0\n", " NaN\n", + " 7.0\n", + " 0.05\n", + " 25.0\n", + " 54.0\n", + " 84.0\n", + " 31.0\n", + " 15.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -20005,1394 +16811,700 @@ " NaN\n", " NaN\n", " NaN\n", + " 2.000\n", + " 2.000\n", + " 1.000\n", + " 4.000\n", + " 1.000\n", + " 1.000\n", " \n", - " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia específica (P/W)Capacidad combustibleConsumoPotencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0Misión
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0Distancia de carrera requerida para despegue1.0000.0630.467nan-0.5050.363nan0.260nan0.4250.168nan-0.0680.316-0.308nannan0.145nan0.229nan0.389nannan0.357nannannannan-0.018-0.240nannan-0.156nannan0.7350.1540.671-0.598nannan
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAltitud a la que se realiza el crucero0.0631.000nan-0.038nan0.301-0.3510.081nannan-0.095-0.955-0.2800.128nannannan0.1360.761-0.183nannannannan0.0600.038-0.325-0.215nannannan0.2770.690nannannan-0.119-0.1090.187-0.159nannan
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNVelocidad a la que se realiza el crucero (KTAS)0.467nan1.0000.0410.1280.587-0.9990.535nan0.9360.6630.6650.3360.8150.257nan0.8030.4720.8460.696-0.6941.0000.9150.7230.426-0.8550.3590.997nan0.4910.4611.0001.000-0.296nannan0.1130.6190.126-0.126nannan
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNTecho de servicio máximonan-0.0380.0411.000-0.502-0.152-0.3140.082nan0.3690.1370.4280.079-0.111-0.071nan-0.8030.0570.0170.087-0.8750.0410.6770.579-0.138-0.961-0.120-0.986nannan0.5150.653-0.933-0.257nannan0.1250.007-0.1250.125nannan
    Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNVelocidad de pérdida limpia (KCAS)-0.505nan0.128-0.5021.0000.097nan0.260nannan0.546nan0.4010.4461.000nan0.9930.505nan0.536nan0.128nannan0.038nannan0.900nan0.0681.000nannan0.163nannan-0.3450.231-0.3450.345nannan
    CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNÁrea del ala0.3630.3010.587-0.1520.0971.000-0.8310.867nan0.9840.977-0.3010.0810.7370.423nan-1.0000.8410.9840.899-1.0000.675nan0.9230.941nan0.595-0.996nan1.0001.0001.0001.0000.899nannan0.2360.4530.1720.055nannan
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNRelación de aspecto del alanan-0.351-0.999-0.314nan-0.8311.000-0.790nan-0.996-0.823-0.998-0.305-0.859nannannan-0.349-0.744-0.888nan-0.999nannan0.622nan-0.298nannannannan-1.000-1.000nannannan-0.247nan0.247-0.247nannan
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNLongitud del fuselaje0.2600.0810.5350.0820.2600.867-0.7901.000nan0.9380.7860.1500.3890.2560.180nan0.9180.6930.9950.599-0.6170.5760.9660.9400.880-0.7180.6760.263nan0.9290.0360.6860.359-0.210nannan0.1110.6150.093-0.004nannan
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNProfundidad del fuselajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAncho del fuselaje0.425nan0.9360.369nan0.984-0.9960.938nan1.0000.9860.982-0.0900.940nannannan0.6710.7600.868nan0.944nannan0.955nan0.323nannannan1.000nannannannannan0.794nan-0.5350.574nannan
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Convertir todo a numérico ===\n", - "\n", - "\n", - "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", - "\n", - "Umbral seleccionado para correlaciones significativas: 0.7\n", - "\n", - "=== Cálculo de tabla completa ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21410,24 +17522,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21446,23 +17568,33 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21471,6 +17603,96 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21480,24 +17702,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21515,24 +17747,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21550,24 +17792,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21586,16 +17838,20 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21603,6 +17859,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21620,24 +17882,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21646,6 +17918,51 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21656,23 +17973,33 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21690,24 +18017,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21726,16 +18063,20 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -21744,6 +18085,12 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21760,21 +18107,31 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21786,33 +18143,133 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21830,12 +18287,15 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21845,9 +18305,16 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21856,6 +18323,96 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21866,23 +18423,33 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21891,6 +18458,96 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21900,24 +18557,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21936,23 +18603,33 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -21970,24 +18647,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22005,24 +18692,34 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22064,6 +18761,16 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22099,6 +18806,16 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despegue1.0000.0630.467nan-0.5050.363nan0.2600.4250.168-0.0950.6630.1370.5460.977-0.8230.786nan-0.0680.316-0.3080.145nan0.2290.9861.0000.0250.4340.6780.539nan0.3890.9730.7910.8580.875-0.4010.7080.9990.9790.947-0.4640.5140.628nan0.3570.9760.7580.5590.8550.052nannan-0.018-0.240-0.1560.7350.1540.671-0.5980.0900.4670.0230.075nannan
    Altitud a la que se realiza el crucero0.0631.000nan-0.038nan0.301-0.3510.081Alcance de la aeronavenan-0.095-0.955-0.2800.128nan0.1360.761-0.1830.6650.428nan-0.301-0.9980.150nan0.9820.0251.0000.8430.042nan0.0600.038-0.325nannan-0.010-0.7550.804-1.0000.665nan-0.119-0.1090.187-0.159nan-0.059-1.0000.670nan
    Velocidad a la que se realiza el crucero (KTAS)0.467nan1.0000.0410.1280.587-0.9990.5350.9360.6630.6650.3360.8150.2570.4720.8460.696-0.6941.0000.7230.426-0.8550.3590.4910.461-0.2960.1130.6190.126-0.126nannan
    Techo de servicio máximonan-0.0380.0411.000-0.502-0.152-0.3140.0820.3690.1370.4280.079-0.111-0.0710.0570.0170.087-0.8750.0410.579-0.138-0.961-0.120nan0.515-0.2570.1250.007-0.1250.125nan0.2620.474-0.2620.262nannan
    Velocidad de pérdida limpia (KCAS)-0.505Autonomía de la aeronave-0.068-0.2800.3360.0790.4010.081-0.3050.389nan0.128-0.5021.0000.097nan0.260nan0.546nan0.4010.4461.0000.505nan0.536nan0.128nan0.038nannan0.0681.0000.163-0.3450.231-0.3450.345nannan
    Área del ala0.3630.3010.587-0.1520.0971.000-0.8310.8670.9840.977-0.3010.0810.7370.4230.8410.9840.899-1.0000.6750.9230.941nan0.5951.0001.0000.8990.2360.4530.1720.055nannan
    Relación de aspecto del alanan-0.351-0.999-0.314nan-0.8311.000-0.790-0.996-0.823-0.998-0.305-0.859nan-0.349-0.744-0.888nan-0.999nan0.622nan-0.298nannannan-0.247nan0.247-0.247nannan
    Longitud del fuselaje0.2600.0810.5350.0820.2600.867-0.7901.0000.9380.7860.1500.3890.2560.1800.6930.9950.599-0.6170.5760.9400.880-0.7180.6760.9290.036-0.2100.1110.6150.093-0.004nannan
    Ancho del fuselaje0.425nan0.9360.369nan0.984-0.9960.9381.0000.9860.982-0.0900.940nan0.6710.7600.868nan0.944nan0.955nan0.323nan1.000nan0.794nan-0.5350.574nannan
    Peso máximo al despegue (MTOW)0.168-0.0950.6630.1370.5460.977-0.8230.7860.9861.0000.0250.4340.6780.5390.7910.8580.875-0.4010.7080.9790.947-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
    Alcance de la aeronavenan-0.9550.6650.428nan-0.301-0.9980.1500.9820.0251.0000.8430.042nan-0.010-0.7550.804-1.0000.665nan-0.059-1.0000.6701.000nan1.0000.2620.474-0.2620.262nannan
    Autonomía de la aeronave-0.068-0.2800.3360.0790.4010.081-0.3050.389-0.0900.4340.843-0.0900.4340.8431.0000.297-0.164nan0.9540.532-0.2010.461-0.5940.3360.9400.6340.428-0.7150.8020.268nan-0.113-0.732-0.391-0.5770.011nannan-0.4240.4770.3610.737-0.8590.256nan0.9400.6780.0420.2971.0000.539nannan0.4000.5120.715-0.9270.7750.9940.8570.517nan0.094-0.215nan0.7050.910-0.6240.9700.015nannan-0.0410.2080.174nan0.180nannan0.539nan-0.1640.5391.000nan0.9930.401nan0.627nan0.417nannan0.321nannan0.900nan0.2301.000nannan0.160nannan-0.2440.154-0.244nan
    Tasa de ascensonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Radio de gironannan0.803-0.8030.993-1.000nan0.918nannan0.973nan0.954nan0.993nan1.0000.992nan0.976nan0.803nannan0.979nannan0.844nannannannannan0.921nannannan0.918nannannannan
    envergadura0.1450.1360.841-0.3490.693nan0.6710.791-0.0100.5320.4000.401nan0.9921.0000.8850.734-0.2580.5010.9830.9360.924-0.4520.6480.780nan0.2970.0850.5220.8350.032nannan-0.1240.5080.2390.984-0.7440.995nan0.7600.858-0.755-0.2010.512nannannan0.8851.0000.776nan0.846nannan0.971nan0.354nannannannan1.0001.000nannannan-0.313nan0.3130.899-0.8880.599nan0.8680.8750.8040.4610.7150.627nan0.9760.7340.7761.000-0.0240.6940.9150.5590.778-0.1420.5460.707nan0.7110.8460.8410.866-0.008nannan-0.0040.4770.162nan-0.617nannan-0.401-1.000-0.594-0.927nannannan-0.258nan-0.0241.000-0.694-0.408-0.402-0.3151.000nannannannannannannannannan-0.188-0.9040.1880.675-0.9990.576nan0.9440.7080.6650.3360.7750.417nan0.8030.5010.8460.694-0.6941.0000.9150.7230.583-0.8550.3590.997nan0.5810.4611.0001.000-0.243nannan0.1430.6080.065nan
    RTF (dry weight)nannan0.9150.677nannannan0.966nannan0.999nan0.9400.994nannannan0.983nan0.915-0.4080.9151.0001.0000.995-0.408nannannannannannannannannannannan0.408nannannannan
    RTF (Including fuel & Batteries)nannannan0.940nannan0.979nan0.6340.857nannannan0.936nan0.559-0.4020.7231.0001.0000.996-0.402nannannannannannannannannannan0.0970.428-0.0970.9410.6220.880nan0.9550.947-0.0590.4280.5170.321nan0.9790.9240.9710.778-0.3150.5830.9950.9961.000-0.3190.8320.530nan0.995nannannan-0.029nannan0.1820.4040.307nan-0.718nannan-0.464-1.000-0.715nannannannan-0.452nan-0.1421.000-0.855-0.408-0.402-0.3191.000nannannannannannannannannan-0.943nannan0.595-0.2980.676nan0.3230.5140.6700.8020.094nannannan0.6480.3540.546nan0.359nannan0.832nan1.0000.215nannannan-1.000-0.972nannannannan
    Capacidad combustible-0.018nan0.491nan0.0681.000Wing Loadingnan-0.2150.997-0.9860.900-0.996nan0.263nannan0.628nan0.268-0.2150.900nan0.8440.780nan0.707nan0.997nannan0.530nan0.2151.000nannannannannan0.568nannannan0.572nannannannan
    Potencia específica (P/W)nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Capacidad combustible-0.018nan0.491nan0.0681.000nan0.929nannan0.9761.000-0.1130.7050.230nannan0.297nan0.711nan0.581nannan0.995nannannannan1.0000.377nannan0.817nannan-0.080nan-0.0801.000nan0.036nan1.0000.758nan-0.7320.9101.000nannan0.085nan0.846nannannannannannan0.3771.000nannan0.998nannan0.113nan-0.375nan
    Potencia Wattsnan0.2771.0000.653nan1.000-1.0000.686nannan0.559nan-0.391-0.624nannannan0.5221.0000.841nan1.000nannannannan-1.000nannannannan1.0001.000nannannan0.232nan-0.2320.232nannan
    Potencia HPnan0.6901.000-0.933nan1.000-1.0000.359nannan0.855nan-0.5770.970nannannan0.8351.0000.866nan1.000nannannannan-0.972nannannannan1.0001.000nannannan-0.694nan0.694-0.694nannan
    Precio-0.156nannan-0.210nannan0.0521.0000.0110.0150.160nan0.9210.032nan-0.008nan-0.243nannan-0.029nannan0.568nan0.8170.998nannan1.000nannan-0.1380.217-0.138nan
    Tiempo de emergencia en vuelonannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Distancia de aterrizajenannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Despegue0.735-0.1190.236-0.2470.111nan0.7940.0900.262-0.424-0.041-0.244nannan-0.124-0.313-0.004-0.1880.143nan0.0970.182nan-0.430nannan-0.0800.1130.232-0.694-0.138nannan1.000-0.010-0.639nan0.615nannan0.4670.4740.4770.2080.154nan0.9180.508nan0.477-0.9040.6080.4080.4280.404-0.9430.6040.572nannannannannan0.217nannan-0.0101.0000.1180.1720.2470.093nan-0.5350.023-0.2620.3610.174-0.244nannan0.2390.3130.1620.1880.065nan-0.0970.307nan0.430nannan-0.080-0.375-0.2320.694-0.138nannan-0.6390.1181.0000.055-0.247-0.004nan0.5740.0750.262-0.361-0.1330.444nannan-0.164-0.313-0.111-0.1880.063nan0.0970.004nan-0.430nannan0.2700.3750.232-0.6940.134nannan0.610-0.083-0.954nannannannannannannannannannannannannan
    Misiónnannannannannannannannannannannannannan
    " @@ -22157,17 +18874,17 @@ " \n", " 0\n", " Total de valores\n", - " 1024.000\n", + " 1764.000\n", " \n", " \n", " 1\n", " Valores numéricos\n", - " 740.000\n", + " 907.000\n", " \n", " \n", " 2\n", " Valores NaN\n", - " 284.000\n", + " 857.000\n", " \n", " \n", "" @@ -22224,10 +18941,10 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

    \n", + "

    Tabla de Correlaciones Filtradas por parametros seleccionados (Para Heatmap)

    \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -22244,24 +18961,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -22651,7 +19350,7 @@ "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alapayloadEmpty weight
    Modelo
    \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -22668,24 +19367,6 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -23049,7 +19730,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVycPA8S/djbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d26ttiF3QIGHSJ13j+QC5d7L6KA7G/f+fjwPN65c+bMnL5zJtQkSZIQBEEQBEEQBEEQBEEQBKHAqRd2BgRBEARBEARBEARBEATh/wtRGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0RUxgmCIAiCIAiCIAiCIAjCNyIq4wRBEARBEARBEARBEAThGxGVcYIgCIIgCIIgCIIgCILwjYjKOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6IyThAEQRAEQRAEQRAEQRC+EVEZJwiCIPxPW7lyJWpqaly+fFnp902bNsXZ2blA83Du3DkmTpxIVFRUga6nMEycOBE1NbV8T/fmzZv06NEDFxcXdHV1MTQ0pFy5csyYMYOIiIh8X19enDx5EjU1NU6ePFkg6T979gw1NTVWrlxZIOkXtu7du+fbOVi2bFns7e1JTU1VGadatWpYWlqSlJSU5/XlZd9/7tqUVX5uo9ySJImNGzdSo0YNrKys0NXVxcHBAT8/P5YuXfpVadauXZvatWvnb0a/UEFds/KbmpoaEydO/ObrPX36NDo6Ojx//lwW5uzsTNOmTZXGv3z5cr5fn77k3MgP/yvHRIa4uDiGDBmCnZ0durq6lClTho0bN+Zq2dq1a6OmpqbyLywsDIDk5GRcXV2ZM2dOAZZEEISciMo4QRAEQcijc+fO8csvv/wnK+MKwpIlSyhfvjxBQUGMHDmSgwcPsmPHDtq0acOiRYvo1atXYWfxm7K1teX8+fM0adKksLPyr9erVy9CQkI4dOiQ0u8fPHjAuXPn6NKlC9ra2nleX7ly5Th//jzlypXLc1r/NmPGjKFDhw54enqydOlSDhw4wJQpU7C2tmbXrl2Fnb2v1rt3b86fP1/Y2fhXkiSJIUOG0KdPH5ycnAo7O4IKLVu2ZNWqVUyYMIEDBw7g6+tLhw4dWL9+/WeXXbBgAefPn5f7O3bsGFpaWlSuXBkbGxsAtLS0GD9+PJMmTSI8PLygiyQIghKahZ0BQRAEQRD+/zh//jzff/89DRo0YOfOnejo6Mi+a9CgAcOHD+fgwYP5sq6EhAT09fUVwlNTU0lJSZFbd2HS0dGhcuXKhZ2N/wmdOnVi5MiRLF++nMaNGyt8v3z5cgB69uyZp/UkJyejpqaGsbHxf3LffPjwgTlz5tC1a1f+/vtvue+6d+9OWlpaIeUs7xwcHHBwcCjsbPwrHTx4kKtXr+aqUuffTNW1Pa9CQ0MxMDDA2Ng439POrf3793PkyBHWr19Phw4dAKhTpw7Pnz9n5MiRtGvXDg0NDZXLe3l5KYStWrWK5ORkevfuLRfeoUMHhg0bxuLFixk7dmz+FkQQhM8SLeMEQRCE/3ckSWLBggWUKVMGPT09zMzMaN26NU+ePJGLd+TIEZo1a4aDgwO6urq4ubnx3Xff8f79e1mciRMnMnLkSABcXFxkXUEyurVldP/Zu3cvZcuWRU9PD09PT/bu3Qukd9fx9PTEwMCAihUrKnTbuXz5Mu3bt8fZ2Rk9PT2cnZ3p0KGDXBejjHTU1NQ4cuQIPXr0wNzcHAMDAwICAhTKpcq+ffsoU6YMOjo6uLi4MGvWrDxtP2WmTZuGmpoaf//9t9LKMG1tbQIDA2Wf09LSmDFjBiVKlEBHRwcrKyu6du3Kq1ev5JarXbs2JUuW5J9//qFq1aro6+vTs2dPWRfQGTNmMGXKFFxcXNDR0eHEiRNA+vYNDAzE3NwcXV1dypYty+bNmz9bjtzuF4DXr1/Tt29fihYtira2NnZ2drRu3Zo3b94Aqrupnjlzhnr16mFkZIS+vj5Vq1Zl3759cnEy9vuJEyf4/vvvsbS0xMLCgpYtWxISEqKQl02bNlGlShUMDAwwNDTEz8+Pa9euycV58uQJ7du3x87ODh0dHaytralXrx7Xr1//7HZZuXIlHh4e6Ojo4OnpyerVq5XGS0pKYsqUKbL9WqRIEXr06MG7d+9yTN/MzIwWLVqwZ88ehdYcqamprFmzBl9fX3x8fHj06BE9evSgePHi6OvrY29vT0BAALdu3ZJbLqMr6po1axg+fDj29vbo6Ojw6NEjpd1Uv2TfA0RGRn7VOZnb8+zatWs0bdoUKysrdHR0sLOzo0mTJgrnSFbx8fF8/PgRW1tbpd+rq8v/RPja/fWly65fv54qVapgaGiIoaEhZcqUYdmyZXJxDh48SL169TAxMUFfXx9PT09+/fVX2ffKuiR+6XUkKCiIGjVqoK+vT7FixZg+fbpcBWViYiLDhw+nTJkymJiYYG5uTpUqVZS2KIyJiaFPnz5YWFhgaGiIv78/Dx48UIiX2+M1LS2NKVOm4OHhgZ6eHqamppQqVYq5c+fmsBfSLVy4EF9fXzw8PD4bNyfdu3fH0NCQe/fu4efnh4GBAba2tkyfPh2ACxcuUL16dQwMDHB3d2fVqlVK08nNuaHq2g7p17OGDRtia2sru7f++OOPxMfHf1W5Dh06hLW1Na1bt2b79u0kJiZ+VTp5sWPHDgwNDWnTpo1ceI8ePQgJCeHixYtfnOayZcswNDSkXbt2cuHa2tq0a9eOv//+G0mS8pRvQRC+nKiMEwRBEP4TMlo7Zf9T9oD53XffMWTIEOrXr8/OnTtZsGABd+7coWrVqrIKEoDHjx9TpUoVFi5cyOHDhxk/fjwXL16kevXqJCcnA+ldogYOHAjA9u3bZd1CsnZru3HjBmPGjGH06NFs374dExMTWrZsyYQJE1i6dCnTpk1j3bp1REdH07RpUz58+CBb9tmzZ3h4eDBnzhwOHTrEb7/9RmhoKL6+vnKVghl69eqFuro669evZ86cOVy6dInatWt/tgvtsWPHaNasGUZGRmzcuJGZM2eyefNmVqxY8dXbT9k+On78OOXLl6do0aI55ifD999/z+jRo2nQoAG7d+9m8uTJHDx4kKpVqyqUPzQ0lM6dO9OxY0f2799P//79Zd/NmzeP48ePM2vWLA4cOECJEiU4ceIE1apVIyoqikWLFrFr1y7KlClDu3btPjs+Um73y+vXr/H19WXHjh0MGzaMAwcOMGfOHExMTIiMjFSZ/qlTp6hbty7R0dEsW7aMDRs2YGRkREBAAJs2bVKI37t3b7S0tFi/fj0zZszg5MmTdO7cWS7OtGnT6NChA15eXmzevJk1a9YQGxtLjRo1uHv3rixe48aNuXLlCjNmzODIkSMsXLiQsmXLfvYYWrlyJT169MDT05Nt27bx888/M3nyZI4fPy4XLy0tjWbNmjF9+nQ6duzIvn37mD59OkeOHKF27dpyx78yvXr1IikpibVr18qFHzp0iJCQEFk355CQECwsLJg+fToHDx5k/vz5aGpqUqlSJe7fv6+Q7pgxY3jx4gWLFi1iz549WFlZKV3/tzonc3OexcfH06BBA968ecP8+fM5cuQIc+bMwdHRkdjYWJVpW1pa4ubmxoIFC/j999+5d++eyh/jedlfX7Ls+PHj6dSpE3Z2dqxcuZIdO3bQrVs3uUrOZcuW0bhxY9LS0mT7adCgQTlWPMKXXUfCwsLo1KkTnTt3Zvfu3TRq1IgxY8bIHW8fP34kIiKCESNGsHPnTjZs2ED16tVp2bKlXAW0JEk0b95cVtG7Y8cOKleuTKNGjRTymNvjdcaMGUycOJEOHTqwb98+Nm3aRK9evT57PCUlJXH06FHq1KmTY7zcSk5OpmXLljRp0oRdu3bJttPYsWPp1q0bPXv2ZMeOHXh4eNC9e3euXLmikEZuzw1V1/aHDx/SuHFjli1bxsGDBxkyZAibN28mICDgq8rUokUL5s2bR2RkJG3btsXa2pru3btz6NChHMeplCRJ6fOHsr/PuX37Np6enmhqyndgK1WqlOz7L/Hw4UNOnz5N+/btMTQ0VPi+du3aPH/+/IvTFQQhH0iCIAiC8D9sxYoVEpDjn5OTkyz++fPnJUCaPXu2XDovX76U9PT0pFGjRildT1pampScnCw9f/5cAqRdu3bJvps5c6YESE+fPlVYzsnJSdLT05NevXolC7t+/boESLa2tlJ8fLwsfOfOnRIg7d69W2V5U1JSpLi4OMnAwECaO3euwnZo0aKFXPyzZ89KgDRlyhSVaUqSJFWqVEmys7OTPnz4IAuLiYmRzM3NpayPC1+7/SRJksLCwiRAat++fY55yRAcHCwBUv/+/eXCL168KAHS2LFjZWG1atWSAOnYsWNycZ8+fSoBkqurq5SUlCT3XYkSJaSyZctKycnJcuFNmzaVbG1tpdTUVEmSJOnEiRMSIJ04cUJlXlXtl549e0paWlrS3bt3VS6bkccVK1bIwipXrixZWVlJsbGxcusoWbKk5ODgIKWlpUmSlLnfs2+jGTNmSIAUGhoqSZIkvXjxQtLU1JQGDhwoFy82NlaysbGR2rZtK0mSJL1//14CpDlz5qjMrzKpqamSnZ2dVK5cOVneJEmSnj17Jmlpacmdgxs2bJAAadu2bXJpBAUFSYC0YMGCHNeVlpYmubi4SKVKlZILb9WqlaSvry9FR0crXS4lJUVKSkqSihcvLg0dOlQWnrF/a9asqbBMXvb9l5yT3bp1+6rr1OXLlyVA2rlzp8r8qXLp0iXJ0dFRdp00MjKSmjZtKq1evVpuH37J/qpVq5ZUq1atL172yZMnkoaGhtSpUyeV+Y2NjZWMjY2l6tWry+UvuwkTJshds77mOnLx4kW5uF5eXpKfn5/KdaakpEjJyclSr169pLJly8rCDxw4IAFyx4UkSdLUqVMlQJowYUKOaSo7Xps2bSqVKVNG5XKqZJR348aNCt85OTlJTZo0Ubpcxr7Ken3q1q2bwn5NTk6WihQpIgHS1atXZeHh4eGShoaGNGzYMFnYl5wbqq7t2WXco0+dOiUB0o0bN2TfZT8mciMsLEz6888/pWrVqklqamqSlZWV9MMPP0hnzpxROP5y8xyS8fc5xYsXV3qshYSESIA0bdq0LyrH6NGjJUA6f/680u8fPnwoAdLChQu/KF1BEPJOtIwTBEEQ/hNWr15NUFCQwl/16tXl4u3duxc1NTU6d+4s97baxsaG0qVLy3VHe/v2Lf369aNo0aJoamqipaUlG/Q6ODg413krU6YM9vb2ss+enp5A+hvprOPeZIRnbQkSFxfH6NGjcXNzQ1NTE01NTQwNDYmPj1eah06dOsl9rlq1Kk5OTrJumcrEx8cTFBREy5Yt0dXVlYVntMTK6ku2X15l5Ll79+5y4RUrVsTT05Njx47JhZuZmVG3bl2laQUGBqKlpSX7/OjRI+7duyfbXlnL0rhxY0JDQ5W2nsqQ2/1y4MAB6tSpI9u3uREfH8/Fixdp3bq1XEsGDQ0NunTpwqtXrxTylrVrL2S2osg4lg4dOkRKSgpdu3aVK6uuri61atWS7Tdzc3NcXV2ZOXMmv//+O9euXcvV+GH3798nJCSEjh07ynURdHJyomrVqnJx9+7di6mpKQEBAXJ5KVOmDDY2Np89htTU1OjRowc3b96UtbYJDw9nz549tGrVSjbeU0pKCtOmTcPLywttbW00NTXR1tbm4cOHSs+dVq1afbac8G3OydyeZ25ubpiZmTF69GgWLVok18Lxc3x9fXn06BEHDx5k7NixVKlShWPHjtG1a1cCAwNlLeXysr9yu+yRI0dITU3lhx9+UJnWuXPniImJoX///l80M+aXXkdsbGyoWLGiXFipUqUUuiFv2bKFatWqYWhoKLs/LFu2TO4YyFh39mOgY8eOCvnM7fFasWJFbty4Qf/+/Tl06BAxMTG52g4Z3dZVtfj8UmpqanLjNmpqauLm5oatrS1ly5aVhZubm2NlZaW0G3duzw1V1/YnT57QsWNHbGxs0NDQQEtLi1q1agFfdo9WxtramgEDBnDmzBmeP3/OqFGjZC3jXVxc5LrCBgQEKH3+UPaXGzkd319y7KekpLBq1Sq8vb1Vjn2ZcTy8fv061+kKgpA/xAQOgiAIwn+Cp6cnFSpUUAg3MTHh5cuXss9v3rxBkiSsra2VplOsWDEgvXtVw4YNCQkJYdy4cfj4+GBgYEBaWhqVK1f+bFe6rMzNzeU+Z8zyqCo86zg1HTt25NixY4wbNw5fX1+MjY1lP4KU5SFjprTsYTnNlhYZGUlaWprKZbPK7fZTxtLSEn19fZ4+faoyTlYZeVY2rpWdnZ3CjztV418p+y6jm9+IESMYMWKE0mWUdTnMkNv98u7duy8eTD4yMhJJklSWG1DYnxYWFnKfM8bjy8hLRnl9fX2VrjNjjDA1NTWOHTvGpEmTmDFjBsOHD8fc3JxOnToxdepUjIyMlC6fkR9Vx9CzZ89kn9+8eUNUVJTK2U5z2u4ZevTowcSJE1mxYgXly5dn3bp1JCUlyc3EO2zYMObPn8/o0aOpVasWZmZmqKur07t3b6XnTk7HT1bf4pzM7XlmYmLCqVOnmDp1KmPHjiUyMhJbW1v69OnDzz//LFcBrYyWlhZ+fn74+fkB6fuxdevW7N27lwMHDtC4ceM87a/cLpsxflxO50pu4ijzpdeR7OcSpJ9PWfft9u3badu2LW3atGHkyJHY2NigqanJwoULZZOIZKxbU1NTIU1lx0Ruj9cxY8ZgYGDA2rVrWbRoERoaGtSsWZPffvtN6T0wQ0YaWV+4ZNDU1FTZDTOja2X2Y0lfX18hLW1tbYX7Wka4svHXcntuKNt3cXFx1KhRA11dXaZMmYK7uzv6+vq8fPmSli1bftE9+nOio6OJiooiOjoaQLZvMpibm2NiYpIv67KwsFB6bYiIiJCtK7f2799PWFgYo0ePVhknYx/m5/YSBCF3RGWcIAiC8P+KpaUlampqnD59WukEAhlht2/f5saNG6xcuZJu3brJvn/06NE3y2t0dDR79+5lwoQJ/Pjjj7LwjPGKlAkLC1Ma5ubmpnI9ZmZmqKmpqVw2q9xuP2U0NDSoV68eBw4c4NWrV5/9UZ3xAzY0NFQhbkhICJaWlnJhX9KaIGPZMWPG0LJlS6XLqBrk/Ev2S5EiRT47nlV2GT/0QkNDFb7LaN2SveyfkxF/69atstadqjg5OckGzX/w4AGbN29m4sSJJCUlsWjRIqXLZOyr3B5DFhYWKmfNVVXhl5WDgwMNGzZk/fr1zJ49mxUrVuDm5kbNmjVlcdauXUvXrl2ZNm2a3LLv37/H1NRUIc3ctDj5Vufkl5xnPj4+bNy4EUmSuHnzJitXrmTSpEno6enJ5TE3LCwsGDJkCCdPnuT27ds0btw4T/srt8sWKVIEgFevXqkcTzJrnC/xpdeR3Fi7di0uLi5s2rRJ7rj5+PGjwrpTUlIIDw+Xq5BTdkzk9njV1NRk2LBhDBs2jKioKI4ePcrYsWPx8/Pj5cuXKmcZzSinsuPU2tpaZcuojHBVFcN5kdtzQ9m5efz4cUJCQjh58qSsNRzw2bHzcuvBgwds2rSJjRs3cvfuXdzc3OjQoQMdO3akRIkScnFXrVpFjx49cpWu9JmJEnx8fNiwYQMpKSly48ZlTORRsmTJXJdh2bJlaGtr06VLF5VxMo6HrzkPBEHIG9FNVRAEQfh/pWnTpkiSxOvXr6lQoYLCn4+PD5D58J/9h/DixYsV0szeCim/qKmpIUmSQh6WLl2qshXDunXr5D6fO3eO58+fU7t2bZXryZjJNfvscbGxsezZs0cubm63nypjxoxBkiT69OlDUlKSwvfJycmydWZ0S8o+UH9QUBDBwcHUq1cvx3XlxMPDg+LFi3Pjxg2l5ahQoYLKSoYv2S+NGjXixIkTOXZ5zc7AwIBKlSqxfft2uWMqLS2NtWvX4uDggLu7+xeUFvz8/NDU1OTx48cqy6uMu7s7P//8Mz4+Ply9elVl+h4eHtja2rJhwwa5H5vPnz/n3LlzcnGbNm1KeHg4qampSvOR25kee/XqRWRkJOPHj+f69ev06NFD7ke7mpqawj7at29fnrpjfatz8mvOMzU1NUqXLs0ff/yBqalpjvsrOTlZZcu8jO59Ga0w87K/crtsw4YN0dDQYOHChSrTqlq1KiYmJixatOiLZn4siOuImpoa2tracsdbWFiYwmyqGZMlZD8G1q9frzTNLz1eTU1Nad26NT/88AMRERFyLVCzy+gq//jxY4Xv6tevz+3bt5V2c968eTOGhoZUqlRJZdpf62vOjQxfco/Orbdv3/Lbb79RtmxZPDw8WLRoEQ0bNuTSpUs8fPiQSZMmKVTEQf52U23RogVxcXFs27ZNLnzVqlXY2dnlej+EhYWxf/9+mjdvrrS1Z4aM2Wu9vLxyla4gCPlHtIwTBEEQ/l+pVq0affv2pUePHly+fJmaNWtiYGBAaGgoZ86cwcfHh++//54SJUrg6urKjz/+iCRJmJubs2fPHo4cOaKQZsYP47lz59KtWze0tLTw8PDIVQufnBgbG1OzZk1mzpyJpaUlzs7OnDp1imXLlilt2QNw+fJlevfuTZs2bXj58iU//fQT9vb2cjOLKjN58mT8/f1p0KABw4cPJzU1ld9++w0DAwO5lhS53X6qZMxO279/f8qXL8/333+Pt7c3ycnJXLt2jb///puSJUsSEBCAh4cHffv25c8//0RdXZ1GjRrx7Nkzxo0bR9GiRRk6dOhXbdcMixcvplGjRvj5+dG9e3fs7e2JiIggODiYq1evsmXLFqXLfcl+mTRpEgcOHKBmzZqMHTsWHx8foqKiOHjwIMOGDVP6ww7g119/pUGDBtSpU4cRI0agra3NggULuH37Nhs2bPiicYMAnJ2dmTRpEj/99BNPnjzB398fMzMz3rx5w6VLlzAwMOCXX37h5s2bDBgwgDZt2lC8eHG0tbU5fvw4N2/ezLGVlbq6OpMnT6Z37960aNGCPn36EBUVxcSJExW6orVv355169bRuHFjBg8eTMWKFdHS0uLVq1ecOHGCZs2a0aJFi8+WKTAwEEtLS2bOnImGhoZcC1ZIrwhauXIlJUqUoFSpUly5coWZM2d+cTfHrL7VOZnb82zv3r0sWLCA5s2bU6xYMSRJYvv27URFRdGgQQOV6UdHR+Ps7EybNm2oX78+RYsWJS4ujpMnTzJ37lw8PT1lLUbzsr9yu6yzszNjx45l8uTJfPjwgQ4dOmBiYsLdu3d5//49v/zyC4aGhsyePZvevXtTv359+vTpg7W1NY8ePeLGjRv89ddfSvNQENeRpk2bsn37dvr370/r1q15+fIlkydPxtbWlocPH8riNWzYkJo1azJq1Cji4+OpUKECZ8+eZc2aNUrTzM3xGhAQQMmSJalQoQJFihTh+fPnzJkzBycnJ4oXL64yzw4ODhQrVowLFy4waNAgue8GDx7M6tWrqV27tuw6FRkZyaZNm9i6dSu///57nu9nynzt/QrSK2fNzMzo168fEyZMQEtLi3Xr1nHjxo2vzs/+/fuZPn06rVq1YtasWdSpU0euO6oqFhYWOVZ4fYlGjRrRoEEDvv/+e2JiYnBzc2PDhg0cPHiQtWvXoqGhIYvbq1cvVq1axePHjxVaPK9atYqUlBR69+6d4/ouXLgg6+osCMI39q1njBAEQRCE/JQxi1lQUJDS75s0aSI3S2GG5cuXS5UqVZIMDAwkPT09ydXVVeratat0+fJlWZy7d+9KDRo0kIyMjCQzMzOpTZs20osXL5TOgjdmzBjJzs5OUldXl5t9UdUsdYD0ww8/yIVlzKo5c+ZMWdirV6+kVq1aSWZmZpKRkZHk7+8v3b59W3JycpK6deumsB0OHz4sdenSRTI1NZX09PSkxo0bSw8fPvzMVky3e/duqVSpUpK2trbk6OgoTZ8+XeUsdLnZfjm5fv261K1bN8nR0VHS1taWDAwMpLJly0rjx4+X3r59K4uXmpoq/fbbb5K7u7ukpaUlWVpaSp07d5Zevnwpl16tWrUkb29vhfUo26ZZ3bhxQ2rbtq1kZWUlaWlpSTY2NlLdunWlRYsWyeIom1Ezt/tFktJnwOzZs6dkY2MjaWlpSXZ2dlLbtm2lN2/eyOUx62yFkiRJp0+flurWrSvbxpUrV5b27NkjF0fV8a9qFtCdO3dKderUkYyNjSUdHR3JyclJat26tXT06FFJkiTpzZs3Uvfu3aUSJUpIBgYGkqGhoVSqVCnpjz/+kFJSUpRuw6yWLl0qFS9eXNLW1pbc3d2l5cuXK8wUKknpMy/OmjVLKl26tKSrqysZGhpKJUqUkL777rtcH6+SJElDhw6VAKlx48YK30VGRkq9evWSrKysJH19fal69erS6dOnFWb8zNhWW7ZsUUgjL/v+S85JZdtIkj5/nt27d0/q0KGD5OrqKunp6UkmJiZSxYoVpZUrV+a43T5+/CjNmjVLatSokeTo6Cjp6OhIurq6kqenpzRq1CgpPDxcLn5u91f2bfsly0qSJK1evVry9fWVxStbtqzCebF//36pVq1akoGBgaSvry95eXlJv/32m+x7ZdesvF5HlO2f6dOnS87OzpKOjo7k6ekpLVmyROm6o6KipJ49e0qmpqaSvr6+1KBBA+nevXsK95HcHq+zZ8+WqlatKllaWsqu1b169ZKePXumkO/sxo0bJ5mZmUmJiYkK34WFhUnff/+95OjoKGlqakpGRkZS9erVlZ4X3bp1kwwMDBTCVW2/7PfBLzk3VKUpSZJ07tw5qUqVKpK+vr5UpEgRqXfv3tLVq1cVrqe5nU31/fv30sePHz8br6DFxsZKgwYNkmxsbCRtbW2pVKlS0oYNGxTiZcxqq2wmd3d3d8nZ2TnHmYclSZJq1KghBQQE5FfWBUH4AmqS9AXtvAVBEARB+FdauXIlPXr0ICgoKMdBvAVBEIT/n0JCQnBxcWH16tW0a9eusLMjFLLHjx9TvHhxDh06lGNLWkEQCoYYM04QBEEQBEEQBOE/zs7OjiFDhjB16lTS0tIKOztCIZsyZQr16tUTFXGCUEjEmHGCIAiCIAiCIAj/D/z888/o6+vz+vVrlTPXCv99KSkpuLq6MmbMmMLOiiD8vyW6qQqCIAiCIAiCIAiCIAjCNyK6qQqCIAiCIAiCIAiCIAj/av/88w8BAQHY2dmhpqbGzp07P7vMqVOnKF++PLq6uhQrVoxFixYpxNm2bRteXl7o6Ojg5eXFjh07CiD38kRlnCAIgiAIgiAIgiAIgvCvFh8fT+nSpfnrr79yFf/p06c0btyYGjVqcO3aNcaOHcugQYPYtm2bLM758+dp164dXbp04caNG3Tp0oW2bdty8eLFgioGILqpCoIgCIIgCIIgCIIgCP9D1NTU2LFjB82bN1cZZ/To0ezevZvg4GBZWL9+/bhx4wbnz58HoF27dsTExHDgwAFZHH9/f8zMzNiwYUOB5V+0jBMEQRAEQRAEQRAEQRC+uY8fPxITEyP39/Hjx3xJ+/z58zRs2FAuzM/Pj8uXL5OcnJxjnHPnzuVLHlQRs6kKgiAIgiAIgiAIgiD8R1Wb36+ws6BSg3c2/PLLL3JhEyZMYOLEiXlOOywsDGtra7kwa2trUlJSeP/+Pba2tirjhIWF5Xn9ORGVcYIgCP9i/+YbZ26d/WERIVFvCzsbeWJnasWUIysKOxt59nODHkQ2aFHY2cgTsyM7mH2q4LoMfCvDa3Vg9L4FhZ2NPPutSX9G7c3duC3/VjOaDmD37dOFnY08CyxZg07rJxZ2NvJkXceJnHx0pbCzkWe13coTHPaksLORZ542xVh8fmdhZyNPvqvSnLZrfi7sbOTZ5i5TGLJrTmFnI0/mNBvC6qD9hZ2NPOvq27iws/CfM2bMGIYNGyYXpqOjk2/pq6mpyX3OGKkta7iyONnD8puojBMEQRAEQRAEQRAEQRC+OR0dnXytfMvKxsZGoYXb27dv0dTUxMLCIsc42VvL5TcxZpwgCIIgCIIgCIIgCMJ/lNq/+F9BqlKlCkeOHJELO3z4MBUqVEBLSyvHOFWrVi3QvImWcYIgCIIgCIIgCIIgCMK/WlxcHI8ePZJ9fvr0KdevX8fc3BxHR0fGjBnD69evWb16NZA+c+pff/3FsGHD6NOnD+fPn2fZsmVys6QOHjyYmjVr8ttvv9GsWTN27drF0aNHOXPmTIGWRbSMEwRBEARBEARBEARBEP7VLl++TNmyZSlbtiwAw4YNo2zZsowfPx6A0NBQXrx4IYvv4uLC/v37OXnyJGXKlGHy5MnMmzePVq1ayeJUrVqVjRs3smLFCkqVKsXKlSvZtGkTlSpVKtCyiJZxgiAIgiAIgiAIgiAI/1HqBTwZwbdSu3Zt2QQMyqxcuVIhrFatWly9ejXHdFu3bk3r1q3zmr0vIlrGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPU/iPdVP9LRMs4QRAEQRAEQRAEQRAEQfhGRGWcIAiCIAiCIAiCIAiCIHwjopuqIAiCIAiCIAiCIAjCf9R/ZTbV/xLRMk4QBEEQBEEQBEEQBEEQvhFRGScIgiAIgiAIgiAIgiAI34jopioIgiAIgiAIgiAIgvAfpYbopvpvI1rGCYIgCIIgCIIgCIIgCMI3IirjBEEQBEEQBEEQBEEQBOEbEd1UBUEQBEEQBEEQBEEQ/qPUxGyq/zr/8y3jnJ2dmTNnzjdNT01NjZ07d+ZpPRMnTqRMmTJ5SiO7kydPoqamRlRUVL6mK8jLvp1XrlyJqalpoeape/fuNG/evFDz8G8QHh6OlZUVz549K+ysyPnrr78IDAws7GwIgiAIgiAIgiAI/wKF1jIuICCADx8+cPToUYXvzp8/T9WqVbly5QrlypX7pvkKCgrCwMDgm65T+N/Wrl07GjduXNjZEIBff/2VgIAAnJ2dAXj27BkuLi5cu3ZNVvkdGxtLQEAAYWFh3L9/P8f0nj59irOzM+fOnaNGjRo0aNCAgwcPKsTbtm0bM2bM4N69e6SlpeHo6Ii/vz+zZ88GoE+fPkydOpUzZ85QvXr1fC3z1yht60bHsg0pYeWIpYEpP+5fyOmnNwolLzu37mDT2g2Eh4fj7OLMgKGDKFW2tMr4169eY8Gcv3j29BmWlha079KRwJbNlcY9fvgok8f9QrWa1Zky81dZ+I1r19m0dgMP7t0n/H04k2dMpXqtmvlarvv/XOXOsYt8iI7D1NaSCq3qY+1WVGncsAfPOTJvg0J44M99MLGxACAtNZXbh8/z+OJtEqJiMbE2p2yzOth7FcvXfOeFVvXK6DRpiEZxV9RNjInpN5TUx88KO1vcOXmJm4fOkRAdi5mdFVXa+WNb3Elp3JD7T9k7e5VCeNtffsDUtohC+KNLtzi+dBtOpT3w+6FDvuc9q8pO3tQqVhYjHX3exEWw585ZnkWGqoyvoa5O/eK+lLVzx0hHn+jEOI4/usLlV/dkcXQ1tfHzqERJm2LoaekQ+SGWvXfPcv/diwIrRxWnktRyLZdejtgIdt89zbOIz5WjIuXs3THSMSA6MY5jjy5z+WUwAN9VaYGrhb3CcsFvnrEiaG+BlOHcwROc3HWI2MgorIvaEdijPcW83JXGfRr8kH1rtvLudRhJSUmYWVpQuWFNagY0VBr/+plLrPvjb7x9y9D9xwEFkv8M9Yv70sSzKqZ6RryOfsuaKwdz3PdVnX1o6lkNGyMLEpITuRnyiPXXDhOX9AGAOq7lqO5SmqKmVgA8jQhl041jPAl/XWBlOLn3CIe37yU6Igo7R3va9u1K8ZIllMa9evYS/+w/yssnz0lJTsHWyZ6Ajq3wLi9/z0mIi2fn6s1cOxdEQlw8ltZFaN27Ez6+ZQusHPt37GXnxq1ERkRQ1NmJXgO+w7t0SaVxI8IjWDF/CY8fPCT0VQhNWgXSe2A/uTjn/znL1rWbCH0dQmpKCrYO9jRr25I6fvUKrAwA14+d5/KBU8RHxWJhb03tjgE4eLh8drnXD5+x+dfFWNpb02XyEFn45l8X8+r+E4X4LqVK0GJYj/zMukxD94oEetfAVM+QV1FvWXl5P/fePlcZv7pLaQK9qmNrbEFC0keuhzxkzZUDsvOiVrGy/FCtlcJyndZNJDktpUDKoEw151LUdSuPsa4BYbHh7Lh1iicRIUrjdizbkIqOXgrhoTHh/HZiTUFnVebykTNc2H+CuKgYitjb0KBzcxxLuH52uZcPnrBmynyKONjQZ9pIWfi9oJuc3X2EyDfvSUtNw8zaksqNa+NT3bcgiyEIKhVaZVyvXr1o2bIlz58/x8lJ/qF4+fLllClT5ptXxAEUKaL4sC38NyQlJaGtrZ3v6erp6aGnp5fv6RamgtpWuZGcnIyWltYXL/fhwweWLVvG/v37VcZ59+4djRo1AuDo0aNoamZeAn19fenbty99+vSRhWVcD5YvX87AgQNZunQpL168wNHRURbn6NGjtG/fnmnTphEYGIiamhp3797l2LFjsjg6Ojp07NiRP//8819RGaenpcOj8Ffsv3eOaY36fX6BAnL8yDHm/zGPIaOGUbKUD3t27Gb00JGs3LgGaxtrhfihISGMGTqKJs0C+OmXcdy+eYs5M37HxNSUWnVry8UNCw1j4bwFlCqjWLGX+CER1+Ju+DdtzIQff873cj27EszlbUep2M4Pq2L2PDhzneMLNhP4c28MzE1ULtdsXF+09DLPOx1Dfdn/r+/5hydBd6jSsRHG1haEBD/h1JLt+A/rjHlRm3wvw9dQ09Uh5c49kv45h8GwHwo7OwA8DrrN+U0Hqd6xCdZujgT/c5kD89bSduIPGFqYqlyu7eQBaOvqyD7rGim+pIsNj+Li1sPYFHdU+C6/lbJ1I8CrOjtv/8PzyDAqOXrRs2JTfj+1gajEOKXLdCrrh5GOHltvniA8IRoDbT001DM7RGioqdO7UiBxSR9Ye/UQ0YlxmOoa8jElucDKUdrWjQDvGuy8dYpnkaFUcvSmV8UAZp9cr7Icncv5Y6ijz5abxwmPj8ZQRw91tcxyrL68Hw11DdlnAy1dhtRsz83QRwVShutnL7F7xUZa9OmEcwk3Lhz+h2VT5zJiziTMilgoxNfW0aFao7rYOjmgravD0+CHbFu8Bm0dHSo3rCUXN/JtOHtXbcHFs3iB5D2ryo7edCnnz4rL+3jw7gV13SowqnZnRu2bT3hCtEJ89yKOfF+5BWuvHuLq6/uY6RvT07cpvSsFMuf0JgA8rZ05//w2qy+/JCkthaae1fixThdG75tP5IfYfC9D0D/n2bxkNR3798TV051/Dh7jzwm/MXHhTMytLBXiP7xzD8+yPjTv1g49A33OHT3F/Emz+PH3yTi6OgOQkpzCnJ9/xcjEmO/GDsbM0pzId+HoFOBz3pnjp1j+12K+G/oDJUp6cWjPfiaPHsefqxZTxNpKIX5yUjImpia06dye3Vt2KE3T0MiINp3bYe9YFE0tTS6fv8Sfv/2OqZkpZSuWL5By3L94g5Pr91Cva3Psijtx88RFdvy+nG7ThmFsYaZyuY8JHzj49yYcvVxJiJa/DgQM7EJaSqrs84f4eNaMm4u7r0+BlKGKU0m6V2jM0kt7uP/2BfXdfRlbtytDd89Tel54FHFiQNVWrLqyn8uv7mOuZ0yfyoH0q9KCWafWy+IlJCUyeNccuWW/ZUVcWTt3WvjUYuuN4zyNCKGqcym+q9KcX4+vIUrJubn91kn23D0j+6yups6oOp24EfLwm+X57oVrHFm7E//urSnq7sLV4+fYOPNvvvvtR0wsVR9PiQkf2L1oPS7exYmLli+bnoE+1QIbYGlnjYamBg+v3WHP3xvRNzbCtZTySvz/EnXRTfVfp9C6qTZt2hQrKytWrlwpF56QkMCmTZvo1asXAOfOnaNmzZro6elRtGhRBg0aRHx8vMp0X7x4QbNmzTA0NMTY2Ji2bdvy5s0buTi7d++mQoUK6OrqYmlpScuWLWXfZe+m+vDhQ2rWrImuri5eXl4cOXJEYZ2jR4/G3d0dfX19ihUrxrhx40hOln+YnT59OtbW1hgZGdGrVy8SExNz3D6pqan06tULFxcX9PT08PDwYO7cuTkuk114eDgdOnTAwcEBfX19fHx82LBBsfVFditXrsTR0RF9fX1atGjB7Nmz5bphKusSOWTIEGrXri37LEkSM2bMoFixYujp6VG6dGm2bt2a43oXLFhA8eLF0dXVxdramtatW+cpPWdnZ6ZMmUL37t0xMTGRVbJ87phau3YtFSpUwMjICBsbGzp27Mjbt29z3F5Zt4+zszNqamoKfxlyc7xk9/r1a9q1a4eZmRkWFhY0a9bsi7tinj17llq1aqGvr4+ZmRl+fn5ERkYCULt2bQYMGMCwYcOwtLSkQYMGPHv2DDU1Na5fvy5LIyoqCjU1NU6ePCkLu3PnDk2aNMHY2BgjIyNq1KjB48ePZd+vWLECT09PdHV1KVGiBAsWLJB9l7GOzZs3U7t2bXR1dVm7di1paWlMmjQJBwcHdHR0KFOmjNIWaVkdOHAATU1NqlSpovT7ly9fUqNGDYyMjDhx4gQODg7Y2NjI/jQ0NGT7PGtYfHw8mzdv5vvvv6dp06YK16y9e/dSvXp1Ro4ciYeHB+7u7jRv3pw///xTLl5gYCA7d+7kw4cPOZbjW7jw4g5LLu7m1JPrhZqPLRs20TiwCU2aBeDk4syAYYOwsrZi9zblPy52b9+FlY01A4YNwsnFmSbNAmgU0ITN6zbKxUtNTWXq+El079sTW3tbhXQqVa1Mr359qFmnlsJ3+eHu8Uu4VSlN8aqlMbGxxLd1ffTNjLl/+lqOy+ka6aNnbCj7U89ScfLk0h18GlbB3tsVI0tTPGqUw9bThbvHgwqkDF8j6egpEtduJuVq4bSyVObmkfN4VC9HiRrlMbMtQtV2jTA0M+Huqcs5LqdnZIC+iZHsL+u+AEhLS+P40m2UD6yDcQ4/CvJLDZfSBL0MJuhlMG/jItlz9yzRiXFUdlLecsa9SFGKWdixPGgfj8JfEfkhllfRb3keGSaLU6GoJ/paOqy+fIDnkWFEfYjjWWQYobHhBVeOYmUIenGXSy/vfirHGaI+xFHZWfkPa/cijhSzsGf5pT08ep9ejpdR8uX4kPyRuI8Jsr/iRYqSnJpSYJVx/+w5gm/d6lSqXxNrBzua9WyPqYUZ5w+dVBrfvpgjZWtUwsbRHnMrS8rXqoJHGW+eBsv/qE1LTWP93CU0bBeIuXXBvxhuVKIKJ59c5eTjq4TEvGft1YOEJ0RTv3gFpfHdLBx4Fx/FoQcXeRcfxYN3Lzj+6DLFzO1kcRac287Rh0E8jwojNOY9Sy/tRl1NDW+bgmnBe3THfqo1rE11vzrYOtrTrm9XzCwtOLVfsdcNQLu+XfFrHYCzuyvW9ra06NYeKzsbbl68Kotz9shJ4mPj6D9uGG5eHlhYFcHNuwRFiylvTZsfdm3eQf3GDWnQ1J+izo70HtgPyyJFOLhrn9L41rbW9B7Ujzr+9dE3VN6bx6dsKSrXrEZRZ0ds7e0IaN0c52Iu3L11p8DKceXQaUrW9MWnVkUs7Kyp0ykQI3MTbhy/kONyR1dup0TlMti6Km5jPUN9DEyNZH8vbj9ES1sL94qlCqQMTb2qcfzRFY4/usLrmHesuryf9wnRNPSoqDS+exEH3sZHceDeBd7FRXL/3XOOPgiiWLbWuhIS0Ylxcn/fUm23clx8focLL+7wJi6SHbdPEfUhjurOyrdjYkoSsR8TZH+Optboaely8UXBHT/ZXTxwkjK1K1G2TmUs7a1p2KUFxhamXD12NsflDizfgneVcti7OSt85+TlRgnfUljaW2NmbUlF/1pYFbXlpZLWl4LwLRRaZZympiZdu3Zl5cqVSJIkC9+yZQtJSUl06tSJW7du4efnR8uWLbl58yabNm3izJkzDBigvNm+JEk0b96ciIgITp06xZEjR3j8+DHt2rWTxdm3bx8tW7akSZMmXLt2jWPHjlGhgvIHj7S0NFq2bImGhgYXLlxg0aJFjB49WiGekZERK1eu5O7du8ydO5clS5bwxx9/yL7fvHkzEyZMYOrUqVy+fBlbW1u5CglV63ZwcGDz5s3cvXuX8ePHM3bsWDZv3pzjclklJiZSvnx59u7dy+3bt+nbty9dunTh4sWLKpe5ePEiPXv2pH///ly/fp06deowZcqUXK8zw88//8yKFStYuHAhd+7cYejQoXTu3JlTp04pjX/58mUGDRrEpEmTuH//PgcPHqRmzZpfnV6GmTNnUrJkSa5cucK4ceNydUwlJSUxefJkbty4wc6dO3n69Cndu3fPddmDgoIIDQ0lNDSUV69eUblyZWrUqCH7/nPHS3YJCQnUqVMHQ0ND/vnnH86cOYOhoSH+/v4kJSXlKk/Xr1+nXr16eHt7c/78ec6cOUNAQACpqZlvG1etWoWmpiZnz55l8eLFuUr39evXssrq48ePc+XKFXr27ElKSvrbviVLlvDTTz8xdepUgoODmTZtGuPGjWPVKvluYKNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLmzZv4+fkRGBjIw4eq38j9888/Ks/l+/fvU61aNUqUKMHBgwcxMjLKVfkANm3ahIeHBx4eHnTu3JkVK1bIXbNsbGy4c+cOt2/fzjGdChUqkJyczKVLl3K97v+y5ORkHtx7QIVK8g+4FSr6cvuW8m1599YdKlSU70rgW7ki94PvyY45gNXLVmJqZkqTwKb5n/HPSE1JJeJlGLaeznLhdp7OvHuac1etvb+tYOvYPzkybwNhD+S7xKSmpKCuJd+YXVNLk7ePX+ZLvv+LUlNSeP8iBAcv+S4tDl6uvPnMdts+eTFrRsxi7++rCLn3VOH7q3tPoWdkQInqBd+CX0NNHXuTIjx8J5/nB+9e4mSm2IIUwMvahVfRb6lVrCxj63VlRK2ONPGsimaWFmRe1s48j3pD85I1+Ll+d4bWbEcd13KoUTBvztPLYcWD9/LlePj+Jc5mylt3elm78CrqLbVdy/FT/e6MrN2ZJp7V5MqRnW9RL26EPCQ5Nf9bnaQkp/D68XPcy3jLhbuX9ub5/ccqlpL3+skLnt1/TDFv+W6tR7bswcDYiIr1a6hYMv9oqGvgYm7HrVD5PN8Ke0xxS+Xd6R++f4m5vjGl7dJb7RnrGlCxqBfXc2gpo6OhhYaaOvEf8/8lVEpyCi8ePcWrrHxlglc5Hx4HP8hVGmlpaSR+SMQgS8vXmxevUKxEcdYvWMGITv34pf8o9m/aSVpqWr7mP0NycjKPHzykjK/8taSMbznu3b6bL+uQJIkbV67x+uUrvEspr8DPq9SUFN48e41TSflWnU4l3Ql5pLqL5+3TQUS9i6BK8/q5Ws+t05fxqFQaLZ38772hoa5BMXM7bmSryL8Z8giPIspbQN9/9wILfWPK2qWfzya6BlR28ubaa/lhUHQ1tZnfYgQLW45kdJ3OOJspvigsKBpq6jiYWHHvnfx+uPf2Oc7muctHJSdvHrx7USAtXJVJTUkh9OkrXEp6yIUXK+nBq4fPVC5349RFIt+8p2ZLv8+uQ5Iknt5+QETYu1x1fRWEglCos6n27NmTmTNncvLkSerUqQOkdwdr2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y8+ZNnj59StGi6Q8Ta9aswdvbm6CgIHx9fZk6dSrt27fnl19+kS1XurTy8YmOHj1KcHAwz549w8HBAYBp06bJurll+PnnzG5Ozs7ODB8+nE2bNjFq1CgA5syZQ8+ePenduzcAU6ZM4ejRozm2jtPS0pLLo4uLC+fOnWPz5s20bdtW9UbNwt7enhEjRsg+Dxw4kIMHD7JlyxYqVaqkdJm5c+fi5+fHjz/+CIC7uzvnzp37bKukrOLj4/n99985fvy4rJVSsWLFOHPmDIsXL6ZWLcXWKC9evMDAwICmTZtiZGSEk5MTZcuW/er0MtStW1duG3Tt2vWzx1TPnj1l8YsVK8a8efOoWLEicXFxGBoafrb8Wbs6Dx48mNDQUIKCMluvfO54yW7jxo2oq6uzdOlSWQu7FStWYGpqysmTJ2nYUPm4M1nNmDGDChUqyFUCe3vL/5hwc3NjxowZss+5aXk3f/58TExM2Lhxo6xrqbt75g+MyZMnM3v2bFnrUxcXF+7evcvixYvp1q2bLN6QIUPkWqjOmjWL0aNH0759ewB+++03Tpw4wZw5c5g/f77SvDx79gw7Ozul33Xt2pWqVauybds2NDRU/4hTZtmyZXTu3BkAf39/4uLiOHbsGPXrpz84Dhw4kNOnT+Pj44OTkxOVK1emYcOGdOrUCR2dzG5uBgYGmJqa8uzZsxyP2f8voqOiSUtNxcxcvlWRmYUZkRcilC4TER6OmYV85Z2ZuRmpqalER0VhYWnJrRs32b97H0vXLi+wvOfkY1wCUpqk0K1R18iAxBjlrbr1TAyp3MEfc0cb0pJTeRJ0myN/bqDh4I5Yu6X/ALDzLEbw8SCs3YpiZGlG6P1nvLz5UK5iWJCX+Glf6BnL7ws9YwMSYpS3StA3MaJGlwCKONqSmpLKwws32PvHKgKGd8fW3RmAsEcvuH/mKq3GfZsu3vraumioq8vGH8oQ9zEBIx3lFSfmesY4m9mSkprK6ssHMdDWpXnJmuhp6bD15on0OPrGuOoZcT3kISsu7cPSwIRmJWuirqbOsUc5txz8GhndZOM+JsiFx35MwEhHX+kyFvrGOJvbkpKWyurL+zHQ1qN5yVroa+mw5eZxhfhFTa2wNbZg681jSlLLu/jYONLS0jAyMZYLNzQ1JjZKsQtbVlP6jCQuJpa0tFQatA2kUv3MF45P7z0k6NgZhs4eXyD5zs5IRx8NdXWiE+WvSdEf4jGxVf6c8/D9Sxac287Aaq3R0tBEU12DK6/useqy6qEh2pepT8SHWG6H5X+rk/RtmYaxqXzXfyNTE2Iic94XGY7s2EdS4kfK16gsC3sX9pbwN3epVLsaAyeO4m1IGBsWriQtNY2mHVvmkNrXiY2OIS01DdNs90ITM1MiIyLzlHZ8XDy9WncmOSkZdQ11vhvyg0KlX375EJuAlJaGgbH88aNvbEhCtPIKnMiw95zZcpB2Y/uhnotns9AnLwl/FUbDnq0/G/drGOvoo6GuodBqLToxHlNd5efFg3cvmXdmC0NqtpOdF0Evg1l+KXO8ypCYdyw4t50XUW/Q09KhcYkqTPbvw8i98wkrwJbIGQx00q+9sYmK115jXeXX3qyMdfTxtHJmzZUDBZVFBQmx8UhpaRiayL88NzAxIi4qRukyEWHvOLFpL13GDczxeEpM+MC8gRNJTUlBTV0d/+6tKebjoTL+f4mYTfXfp1Ar40qUKEHVqlVZvnw5derU4fHjx5w+fZrDhw8DcOXKFR49esS6detky0iSRFpaGk+fPsXT01MuveDgYIoWLSqriAPw8vLC1NSU4OBgfH19uX79utyYUDkJDg7G0dFRVhEHKO0Ct3XrVubMmcOjR4+Ii4sjJSUFY2NjuXT69ZN/aK9SpQonTpzIcf2LFi1i6dKlPH/+nA8fPpCUlPRFM7CmpqYyffp0Nm3axOvXr/n48SMfP37McYKK4OBgWrRooZDXL6mMu3v3LomJiTRo0EAuPCkpSVbBll2DBg1wcnKiWLFi+Pv74+/vT4sWLdDX1/+q9DJkbymVm2Pq2rVrTJw4kevXrxMREUFaWvrb0BcvXuDlpTiYqSp///03y5Yt4+zZs3IVdJ87XrLLyHP21lyJiYly3UFzcv36ddq0aZNjHFWtyj6Xbo0aNZSO8fbu3TtevnxJr1695M65lJQUTEzkH56zrjsmJoaQkBCqVasmF6datWrcuKG6+9uHDx8UKugzNGvWjB07drBt27ZcV2ZDeou6S5cusX37diC9RW+7du1Yvny5rDLOwMCAffv28fjxY06cOMGFCxcYPnw4c+fO5fz58+jrZz7o6OnpkZCQoHRdGednVlkr8/6rFB4MJCCHh4XsrXYyKqPU1NRIiE9g2oQpjBg7CpNCnuFYoXWRBKoaHJlYW2BinTnWVJFi9sRHxnD36CVZZZxv6/qc33CA3ZOXgBoYWZrhWrkUjy/cLKAS5Ey7bk30h2Te1+LGTibldnCh5OVzFI8Z1XFNbSwxtckca8ratShxkTHcOHwOW3dnkhI/cmLZdmp0CVQ6jlxBUqh4VVNDVVEyzquN14+SmJLegnpv8Dk6l/Nj5+1/SElLRQ014pM+sO3mSSQkXse8w1jXgJrFyhRIZVxmObLlFT5bjg3XDmeW4+4ZOpdvxI7bp0hJS5WL71vUi9CYcF5GqR5aIl8oXLdyOME/6T9lFB8TP/LiwRP2r92GpY0VZWtUIvFDIhvmLqP1910xMM59q+38IGXb8mo57Ax74yJ0/bTdb4Y+xlTPkI5lGtKzYlOWXNytEL+pZzWqOPkw5djKgh0bK/tm//yuAODSyXPsXbed/uOGyVXoSWkSRqbGdB7YG3UNdZyKFyMqIpLD2/YVSGVcJsWC5PWHs56+Hn8snc+HDx+4efU6yxcswdrOFp+yBdPFE1ByboCyHZKWlsb+xRuo0rwBZja565Z9+59LWDjYYFtM+UuI/KLsHqHqGmVvUoQevk3YevMEN0IeYqZnROfy/vSp3IxF59OH3Hj4/hUP37+SLXP/7Qt+a9KfRiUqsyJIeVfkb0FNLef7YYaKjt58SP6o0JL2m8h2PKU/Iio/nnbOX0ONVv5Y2CqOs5iVjq4OvaeOIOljEs/uPODoup2YFbHAycstP3MuCLlSqJVxkD6Rw4ABA5g/fz4rVqzAycmJevXSZ/pJS0vju+++Y9CgQQrLZR1APYMkKb9xZQ3/koH2lbU4yJ7+hQsXZC3t/Pz8ZK2EMmZR/FqbN29m6NChzJ49mypVqmBkZMTMmTNz7GKa3ezZs/njjz+YM2cOPj4+GBgYMGTIkBy7NuamlYW6urpCvKxjnmVUXu3btw97e/kxE1RVLhgZGXH16lVOnjzJ4cOHGT9+PBMnTiQoKOir0suQveLxc8dUfHw8DRs2pGHDhqxdu5YiRYrw4sUL/Pz8ct0lFODkyZMMHDiQDRs2yLW8/JrjJS0tjfLly8tVIGbI7YQjuTnus2+rjDGSsu7r7GPb5ZRuxn5bsmSJQkvM7K3TlFUQZz/XVJ3fGSwtLWVj4GU3duxYSpUqRadOnZAkSa7rek6WLVtGSkqK3HEnSRJaWlpERkZiZpb5JtvV1RVXV1d69+7NTz/9hLu7O5s2baJHj8zZviIiIlTus19//VWuNSzAhAkT4D86p4yJqQnqGhpEhMu3gouMiFRoLZfB3MJCIX5UZBQaGhoYm5jw7MlTwkJDGTviR9n30qfjsF7V2qzevA57B8VZF/OTjqE+aupqfIiVf7OeGBf/RZU3RZzteRKUOTaLrpE+dfq2IjU5hY/xH9AzMeTarpM5TkJQkJLOXyLlXmZXsLT3ylszFibdT/sieyu4xNh49I0/38o5g5WLA48upld6xryLIDY8ikPzMwfmzrhGLun3C+0mDcTYyjwfcp8pISmR1LQ0hdZjhtp6Cq3MMsR+jCc6MV5WgQXwLi4SdTU1THQNCU+IJvZjPKlSmlyFzNu4SIx1DdBQUydVyt9uefFJH9LLka0lhqGOvspyxCQmEJ0YJ1eOt5/KYapnyPv4zBZQWuqalLYrzuEHuX9O+lIGRuljOWZvBRcXHYuRqeqXaoBsHDhbJwdio2M4snk3ZWtUIjzsLZFv37Pi18xxRjOOqdFt+jLyzylY2uT84/JLxX5MIDUtTaG1j7GugcqxrAK9q/Pg/Qv2BZ8D4GXUG1ak7GNCg55suXFcbgKOxiWqEuhdg1+Pr+Zl1Bul6eWVoXH6WI7ZW8HFRkcrtJbLLuif86ye9zff/TgYz7Ly4xWamJuioaGBukbmSD62Re2JiYwiJTkFTa38/elkZGKMuoY6URHy19DoyGhMzUzzlLa6ujq2Duk9BooVd+XV85dsW7epQCrj9Iz0UVNXJz5bK7iE2Dj0TRSvt0kfPvLm6SvePg/h+NpdwKfjXpL4o+cYWo3ohWOWypHkj0ncv3iDqi0+3xvka8V8TCA1LRVTPfn8muRwXrQoWYv7717IJjt4EfWGxIt7mOzfh43XjxD1QXE5CYnH4a+xMVKc8KUgxH9Uce3V1idWxbU3q0qOXlx+FZzv94Sc6BsZoKaurtAKLiE6FgMTxZcWSR8+Evr0JWHPX3NoVfoL9IzjaVrX4XQc3Q9n7/Qu1Grq6ph/qgC2cbLn/es3nNtzVFTGCYWi0Cvj2rZty+DBg1m/fj2rVq2iT58+sh/c5cqV486dO7i55e7k8PLy4sWLF7x8+VLWOu7u3btER0fLWtGVKlWKY8eOyf1A/lx6ISEhsu5v58+fl4tz9uxZnJyc+Omnn2Rhz5/L98n39PTkwoULdO3aVRZ24ULOg5mePn2aqlWr0r9/f1lYbltBZU2jWbNmsi52aWlpPHz4UKFFYVZeXl4Kecv+uUiRIgrjY12/fl3WOsrLywsdHR1evHjxRd3xNDU1qV+/PvXr12fChAmYmppy/PhxGjRo8FXpKfO5Y+rWrVu8f/+e6dOny46hy5e/rIXAo0ePaNWqFWPHjpXregm5O16U5XnTpk1YWVnl2IIuJxnHffbKnpxkVBqFhobKWiBmncwhI91Vq1YpnQHV2toae3t7njx5QqdOnXK9XmNjY+zs7Dhz5ozcuIHnzp2jYkXlA+gClC1blrVr16r8/ueff0ZTU5NOnTqRlpZGhw4dcsxHSkoKq1evZvbs2QpdgVu1asW6detUjl/p7OyMvr6+3MQgjx8/JjExUWVrzjFjxjBs2DC5MB0dHY4sHZxjPv9XaWlp4V7CncuXgqhRO3M/X7kURLWaymec9fLx5vxp+YF7L1+8hIdnCTQ1NXF0cmT5evnxCJctWkJCQgIDhw3GSsmsdPlNQ1MD86I2hN57hmPpzG4Pofee4eCT+xkSI169Qc9EsfJOQ0sTfVMj0lJTeXH9Pk7lVF/PC9SHRNI+hH0+XiHS0NTE0tGO13cf41I2czu9Cn6Mc+ncz5oW/jJU9mPS1MaS1hO+l/s+aOdxkj8mUbWdPwbmX3eNzkmqlMbr6HcUL1KUO28yx68rbunA3TfPlC7zLCIMH1tXtDU0Sfo0dpqlgQlpUprsR+WzyDDK2BWXa5lmaWBKTGJ8gfzoSi/HW4pbFuVOlm6LxS3ly5XV88hQStm5oq2hRVJqsiyPaVKawo/cUnZuaKprcO1V7sYL+xqaWprYuzrx8MZdfCpldvd7cPMu3r5lcp2OJEmkJKfvFyt7W4b/IX9vPrh+Bx8TE2nWswOmFvlbuQuQmpbK04gQStq4cvnVPVm4j40rV7J8zkpbQ4u0bMeF7HOWF2VNPKvS3Lsmv51Yy9OIkHzPewZNLU0c3VwIvnaLslUzxxINvnab0pVVzxZ66eQ5Vs9dTO9RA/CpqHg/dvVyJ+jkOdLS0mQvJd+8DsXE3DTfK+Ig/V7o6l6c65evUblmZo+A65evUqm68gmpvpYkSZ+dMOxraWhqYu1sz4s7DylePnNcuud3HuJaVrFXiY6eDl2nDJULu3H8PC/uPiZgQGdMisgf9w8u3SQ1ORXPqjn3iMmL1LRUnkSEUMrWjaCXmS29S9m6EfRKectvHQ0thetlxnmR0/ibTmY2BVZRnV2qlMar6Ld4FHGUa93mYeXI7dCcu5C7WThQxNCMC1m63X4LGpqa2Lo48PT2A0r4ZlYeP739APfyiuMe6ujp0OdX+eF+rhw9y/O7D2k5qDumRXK+jmZcj//r1AtoTFjh6xV6ZZyhoSHt2rVj7NixREdHyw2UP3r0aCpXrswPP/xAnz59MDAwIDg4mCNHjijMVAhQv359WeuXOXPmkJKSQv/+/alVq5asG9yECROoV68erq6utG/fnpSUFA4cOKB0vK769evj4eFB165dmT17NjExMXKVKJA+ztaLFy/YuHEjvr6+7Nu3jx075GcCHDx4MN26daNChQpUr16ddevWcefOHYoVUz27lJubG6tXr+bQoUO4uLiwZs0agoKCcHFxyfW2dXNzY9u2bZw7dw4zMzN+//13wsLCcqyMGzRoEFWrVmXGjBk0b96cw4cPK3RRrVu3LjNnzmT16tVUqVKFtWvXcvv2bVklg5GRESNGjGDo0KGkpaVRvXp1YmJiOHfuHIaGhnJjhWXYu3cvT548oWbNmpiZmbF//37S0tLw8PD4qvRU+dwx5ejoiLa2Nn/++Sf9+vXj9u3bTJ48Odfpf/jwgYCAAMqUKUPfvn0JC8v8sWpjY5Or4yW7Tp06MXPmTJo1ayabYfTFixds376dkSNHynWjVmXMmDH4+PjQv39/+vXrh7a2NidOnKBNmzZYWloqXUZPT4/KlSszffp0nJ2def/+vdx4dwADBgzgzz//pH379owZMwYTExMuXLhAxYoV8fDwYOLEiQwaNAhjY2MaNWrEx48fuXz5MpGRkQoVT1mNHDmSCRMm4OrqSpkyZVixYgXXr19X2jowg5+fH2PGjFFosZbVjz/+iIaGBl26dCEtLS3HSsK9e/cSGRlJr169FLrVtm7dmmXLljFgwAAmTpxIQkICjRs3xsnJiaioKObNm0dycrJc1+rTp09TrFgxXF2VDxKro6Pzzbql6mnp4GCS2eTOztiS4pYOxCTG8yYub2PUfIk2Hdrx68QpeJQogbePN3t37ubNm7cEtGwOwJL5i3j37j1jJ6Yfd4Etm7Fzy3bmz/mTps0CuHPrDvt37+PnyRMA0NbRwcVV/rpqaJReiZI1/ENCAq9fZU6mEBoSyqMHDzEyNsbaRvmA+F/Cq25Fzq7eg4WjDUVc7Hlw9jrxETG410i/Rl7ddZIP0bFU6xoAQPCJIAzMTTC1tSQtNZUnl+7w4vp9avXOHDLg3bMQPkTFYuZgTUJULDf3n0GSJLzrKx//szCoGRmibmWJ2qfKA/VPrRDTIqKQIqMKJU+lGlThxPLtWDrZYe1alOB/rhAXEY1nrfRngkvbjxIfFUOdnukvTm4dPY+RhSlmdlakpqby6MJNnl4NpkG/9O7tmlpamNvLHyM6+und47OH56fTT2/Qrkw9XkW95UXUGyoW9cJUz4gLL9JfjPl7VMZY14DNN9LHSrse8oB6xSvQpnRdjjwIwkBbl8YlqnL55T1Z184Lz+9QzdmHAO/qnHt2C0sDU+q4lePss1sFV44n12lXtgGvot/yIjKMSo7emOoZcuH5p3KUqIKJrgGbrqfPhnntdXo52paux+EHFzHQ1qOJZzWCXgYrdFGtWNSLO2FPSEjOebb6vKoZ0ICN85bh4OqMk0cxLh75h6j3EVRpWBuA/Wu3ER0RRYdBvQA4e+A4ZpbmFPk0s/Ozew/5Z/dhqjWqC4CWthY2jvItdnUN0luwZA/PTwfunef7Ki15GhHCw/cvqetWHgt9E449TH8B2a50Pcz0jWVd7a69fkCvSgHUc6vAzdDHmOkZ0rm8P4/evyLq06DuTT2r0bpUHeaf28a7+ChMPrW8S0xJ4mNK7nsX5Fb9Fo1ZMXsBTsWLUaxEcU4fPE7Eu/fUbJzew2bHyo1EhUfQY3j6i+1LJ8+x4veFtOvbFReP4kRHRAGgraON3qdtXqtxA07sOcymxaupG+jH29dhHNi8i7oB/vme/wzN2rZgztRZuHkUx8Pbk8N7D/D+7Tv8AhsDsObvFYS/C2fIT5ljID95mF6pkvghkZioaJ48fIyWliZFndNnJN26dhNuHsWxsbclJTmFKxeCOHnoGP2GKX+JmB/K+9XgwN+bsHZ2wNbNkVsnLxEbHkXpOulj8p3ecoC4yBga9W2Hmro6lg7yE7foGRmiqaWpEA7pEz24lfNCT8Xssfll792zDKzWmifhr3nw7iX13StgaWDCkQfpYz93KNsAcz1j5p/bBsDlV/f4rkpzGrhXlHVT7VahMQ/fv5RNdtC6VB0evntJaGy4bMw4Z3Nbll3aU6Blyerko6t0Ku/Hy6g3PIsIpYqzD2Z6Rpx9lt7qu6lnNUz0DFh39bDccpWcvHkWEfpNxrbLrlKj2uxauA7bYkVxcHPm2olzRIdHUq5eVQBObNpLbGQ0gf06oaaujlVR+ckoDIwN0dDSlAs/u/soti5FMbO2IDUllcfXg7l1Jgj/7jkP5SMIBaXQK+MgvavqsmXLaNiwoVz301KlSnHq1Cl++uknatSogSRJuLq6quxipqamxs6dOxk4cCA1a9ZEXV0df39/uYq72rVrs2XLFiZPnsz06dMxNjaWa32Tlbq6Ojt27KBXr15UrFgRZ2dn5s2bh79/5g25WbNmDB06lAEDBvDx40eaNGnCuHHjmDhxoixOu3btePz4MaNHjyYxMZFWrVrx/fffc+jQIZXbpF+/fly/fp127dqhpqZGhw4d6N+/PwcO5H7wzHHjxvH06VP8/PzQ19enb9++NG/enOho1QPbVq5cmaVLlzJhwgQmTpxI/fr1+fnnn+UqpPz8/Bg3bhyjRo0iMTGRnj170rVrV27dynyAnzx5MlZWVvz66688efIEU1NTypUrx9ixY5Wu19TUlO3btzNx4kQSExMpXrw4GzZskE0y8KXpqfK5Y6pIkSKsXLmSsWPHMm/ePMqVK8esWbMIDAzMVfpv3rzh3r173Lt3T2EyAUmScnW8ZKevr88///zD6NGjadmyJbGxsdjb21OvXr1ct5Rzd3fn8OHDjB07looVK6Knp0elSpU+2zps+fLl9OzZkwoVKuDh4cGMGTPkWolZWFhw/PhxRo4cSa1atdDQ0KBMmTKy8d569+6Nvr4+M2fOZNSoURgYGODj4yObQEOVQYMGERMTw/Dhw3n79i1eXl7s3r2b4sVVtyzy8fGhQoUKbN68me+++05lvJEjR6KhoUG3bt1IS0ujS5cuSuMtW7aM+vXrK1TEQXrLuGnTpnH16lVq1arF/Pnz6dq1K2/evMHMzIyyZcty+PBhPDwyW0Zt2LAh1+NVFrQSRZz4q0VmZeig6ukPIfuDzzP1+CpVi+W7ug3qERMdw+rlK4l4H45zMRem/zEDG9v0B/Hw8HDevsl8c2xrZ8evf8xgwZw/2bV1BxaWlgwcPphadWt/0XrvB99naP/MruoL5vwFgF8Tf34c/5OqxXLNubwnH+M/cPPAWT7ExGNqa0nd/m0wNE8/lj7ExBEfkdn1Ii0llas7jpMQHYeGlmZ6/O/bYO+dWXGblpzC9b3/EPs+Ci0dbey9i1Gta1O09ZWPk1gYtKr4YjAyc7sa/pz+w/HD6o0krtlUKHly9S1JYnwCV/edIiE6DnM7KxoN7ITRp+69CdGxxEVk3hNTU1K5sPUw8VGxaGppYmZnhf/Ajjj6uKtYw7dxM/QR+to61CteAWMdA8LiwlkRtFfWOsxIR1+ua1VSagpLL+6mmXcNBlZvTULSR26GPuLQ/cwunNGJcSy9uIcAr2oMqdGOmMR4zj69ycnH1wqsHDdCH6GvrUv94r7p5YgNZ/mlvbLKHGMdfUz1MrsgJaUms+TCLpqVrMmgGm1JSErkZsgjDt6Xb7FvaWCKi4UdSy7sKrC8ZyhTrSIJsfEc3bKHmMhobBzt6DV2MGZW6V3OYiKjiXqf+cNVkiT2r9tOxNv3aGhoYGFdhEadWlK5YeFO5HPhxR0MdfRpUbIWpnqGvIp+y8yT63ifkH4+mOoZYaGfef/75+l1dLW0aehekU7l/EhISuTOm6dsvH5EFqd+cV+0NDQZUkP+OX3brZNsv3Uy38vgW7MK8TFx7NuwneiIKOycHBjwyygsrNJfNkVHRBHxLnNfnD54jLTUVDYsXMGGhStk4VXq1aT7sPQxMM2LWDB48o9sWbKWST/8iKmFGXUD/fFvnbvnwK9RvW4tYqJj2bR6PZHhETi6ODPut0lYfXo5FBEewbu38uMgDuudWan2+P5D/jl6kiI2VizZlH4P/5iYyOI/5hP+7j3aOtrYOxZl6M8jqV634I47j0ql+RCXwIVdx4iPjsHC3oYWw3pgbJn+gjQ+KpbY8KgvTjcy7B2vHzyj1Yhe+ZxjReef38ZIR59WpepgpmfEy6g3/Hp8De/jowAw0zPC0sBUFv/Uk2voaeng71GJruX9iU9K5E7YE9ZezfyNZ6CtS9/KzTHVMyQhOZGnEaFMOLSUx+E5z7Cen66FPEBfWxc/j8oY6+gTGhvO4gu7ZBWGxroGmOnJ/6bQ1dSmtK0b22+f+mb5zMqrclkSYuM5s+MQcVExFHGwpf3IvphYpr/wi4uKIfr9l71ATv6YxMGVW4mNiEZTWwsLOyuafd8Zr8oF1+JSEHKiJomp2ITPWLlyJUOGDCEqKqqwsyIIOdq/fz8jRozg9u3bsu4l/wa3b9+mXr16PHjwQGnlXk6qzf82MzYWpLM/LCKkoAdUL2B2plZMObLi8xH/5X5u0IPIBi0+H/FfzOzIDmaf2lDY2ciz4bU6MHrfgs9H/Jf7rUl/Ru39q7CzkSczmg5g9+3ThZ2NPAssWYNO6ycWdjbyZF3HiZx8dKWws5Fntd3KE1wAs8h+a542xVh8fmdhZyNPvqvSnLZrfv58xH+5zV2mMGTXnMLORp7MaTaE1UGqZ2D+X9HVt3FhZ+GrNFqquldSYTvQ+/fCzkKh+Fe0jBMEQcgPjRs35uHDh7x+/VpuVuXCFhISwurVq7+4Ik4QBEEQBEEQBEH47xGVcYIg/KcMHvzvm/Ag+wQQgiAIgiAIgiAIwv9f/55+XMK/Vvfu3UUXVUEQBEEQBEEQBEH4H6Smpv6v/fv/6v9vyQVBEARBEARBEARBEAThGxOVcYIgCIIgCIIgCIIgCILwjYgx4wRBEARBEARBEARBEP6j1NXUCjsLQjaiZZwgCIIgCIIgCIIgCIIgfCOiMk4QBEEQBEEQBEEQBEEQvhHRTVUQBEEQBEEQBEEQBOE/Sg3RTfXfRrSMEwRBEARBEARBEARBEIRvRFTGCYIgCIIgCIIgCIIgCMI3IrqpCoIgCIIgCIIgCIIg/EeJ2VT/fUTLOEEQBEEQBEEQBEEQBEH4RkRlnCAIgiAIgiAIgiAIgiB8I6KbqiAIgiAIgiAIgiAIwn+Umuim+q8jWsYJgiAIgiAIgiAIgiAIwjciKuMEQRAEQRAEQRAEQRAE4RsR3VQFQRAEQRAEQRAEQRD+o0Q31X8f0TJOEARBEARBEARBEARBEL4RURknCIIgCIIgCIIgCIIgCN+ImiRJUmFnQhAEQRAEQRAEQRAEQch/rVaNLewsqLSt27TCzkKhEGPGCYIg/IuFRL0t7CzkmZ2pFdXm9yvsbOTJ2R8WEXvvQWFnI8+MSrgTc/REYWcjT4zr1+Hp+9eFnY08c7G0507o48LORp5527qyOmh/YWcjT7r6Nv7PHFOxT58VdjbyxMjFmdiQkMLORp4Z2dkRvWRVYWcjz0z6dONlZFhhZyNPiprZ8DYmvLCzkWdWxhY8ef+qsLORJ8UsHYh9+Kiws5FnRsXdCjsLwn+E6KYqCIIgCIIgCIIgCIIgCN+IaBknCIIgCIIgCIIgCILwHyVmU/33ES3jBEEQBEEQBEEQBEEQBOEbEZVxgiAIgiAIgiAIgiAIgvCNiG6qgiAIgiAIgiAIgiAI/1Hqopvqv45oGScIgiAIgiAIgiAIgiAI34iojBMEQRAEQRAEQRAEQRCEb0R0UxUEQRAEQRAEQRAEQfiPErOp/vuIlnGCIAiCIAiCIAiCIAiC8I2IyjhBEARBEARBEARBEARB+EZEN1VBEARBEARBEARBEIT/KDVEN9V/G9EyThAEQRAEQRAEQRAEQRC+EVEZJwiCIAiCIAiCIAiCIAjfiOimKgiCIAiCIAiCIAiC8B+lLmZT/dcRLeMEQRAEQRAEQRAEQRAE4RsRlXGCIAiCIAiCIAiCIAiC8I2IyjhBEP6TEhISmDx5Ms+fPy/srAiCIAiCIAiCIBQaNTW1f+3f/1eiMk74f2/lypWYmpp+k3XVrl2bIUOGfJN15acv3UbOzs7MmTOnwPKTGwMHDiQkJAQnJ6cvWu5/dR8JgiAIgiAIgiAI/xvEBA7C/4TP1Zh369aNlStXfpvM/D/Url07GjdunOv4QUFBGBgYFGCOcrZhwwbevHnDrl27vnjZ7du3o6WlVQC5yn87t+5g09oNhIeH4+zizIChgyhVtrTK+NevXmPBnL949vQZlpYWtO/SkcCWzZXGPX74KJPH/UK1mtWZMvNXWfiNa9fZtHYDD+7dJ/x9OJNnTKV6rZr5XbTPKm3rRseyDSlh5YilgSk/7l/I6ac3vnk+ciJJEn9v3MCOQ4eIjY/D292d0d/1w9VRdQXx4xfPWbR+HfcePyb07VuG9epNx8BmcnEWb1jPko0b5MIsTE05tGpNgZRhyf697Dh7htiEBLydnRnVtgOudnYqlzl+/RorDx3g5bt3pKSmUrSIFZ3r1adxpcqyOFcfPmTN0cPce/mC99HRzOzbj9qly+RLnvds38XW9ZuICA/HycWZfoN+oGSZUirj37x2g7//XMDzp8+wsLSkTcd2NGkRKBdnx6at7N2xm3dv3mJsakKN2jXp0a8P2jraAGxcvZ6zp07z6vkLtHV08PLxpuf3fSjq5JgvZQI4sHMvuzZuIzI8gqIuTvQc0BevUiWVxo0Ij2DVgiU8fvCI0FchNG4ZSK+B36lM+8yxU/w++TcqVqvMj1PH51uelbl85AwX9p8gLiqGIvY2NOjcHMcSrp9d7uWDJ6yZMp8iDjb0mTZSFn4v6CZndx8h8s170lLTMLO2pHLj2vhU9823POf3MTVywFBuXVO8XvlWqcTkWenX24T4BFYvWc65f84QFRmFq7sb/YYMwMOzRL6VS5Ik/l67lh0H9hMbF4e3RwlG//ADrs7OKpd5/OwZi9as5t7DR4S+fcOw776jY4uWcnGu3rrFmq1bCH74kPcREcwaP4HaVavmX55XrWLH3r3Exsbi7enJ6MGDcXVxyXG5Y6dOsWjFCl6FhOBgZ0f/Xr2oU6OG7PuA9u0JffNGYbk2zZox+tMLuuP//MP2PXsIfvCA6JgY1i1ZgoebW76USxlJklhy7jQ7b14n9mMi3jZ2jKzvh6tlEZXL7L19k0kH9yqEnx4yCh3N/P3Zt2vrDras20h4eATOLs70HzoAnzKqn0FuXL3Oornzefb0GRaWFrTr3IGAlpn3t0N7DzBzynSF5fafOoy2jg4AnZq3401YmEKcwFbNGTRy6FeVY8eWbWxYu57w9+E4F3Nh0LDBlC5bRmX8a1eu8deceTx78hQLS0s6du1E81YtZN8/ffyEZYuXcv/ePcJCwxg4dDBtO7aTS6NNYEvCQhXL0aJ1S4aNHvHFZdi7fRdb12+WXaO+G9T/s9eoJX8ulF2jWndsR5MWAXJxdmzaxr4s973qtWvSo19v2X2vW6uOvA1TPGeatgzkh+GDv7gMqkiSxN/r17Pj0MH065S7B6O//x7XHF62P37+nEXr1nLv0aP0Z6k+fejYrLnK+Cs2b2b+6lV0CGzG8L598y3vgvA5ojJO+J8QGhoq+/+mTZsYP3489+/fl4Xp6ekVRrb+56WmpqKmpoa6es6NZPX09L5oGxcpovpB8Vvo0KEDHTp0+Kplzc3N8zk3BeP4kWPM/2MeQ0YNo2QpH/bs2M3ooSNZuXEN1jbWCvFDQ0IYM3QUTZoF8NMv47h98xZzZvyOiakpterWlosbFhrGwnkLKKXkoTrxQyKuxd3wb9qYCT/+XFDF+yw9LR0ehb9i/71zTGvUr9DykZNV27exftdOJgwegqOdPcs2b+KH8ePZtmAhBvr6SpdJ/PgRB2sb6letzu/Ll6pMu5ijIwsmTZF91vjMOfy1Vh85zPrjxxjfpRuOVlYsP3iAAX/NZev4XzDQ1VW6jIm+Pj38GuFsY4OWhianb99k0trVmBkZUcXLG4APSR9xd3AgoEpVRi9ZnG/5PXX0BIvnzueH4YPxLlWS/Tv38POIH/l77QqslJwXYSGhjBsxhkYBjRk1fix3bt5m/uy5mJiaUr1OeiXz8UNHWb5oCcPGjMLTx5vXL14ye+oMAL4b/AMAt67fIKBlM9w9PUhLTWPl38v4aego/l63At18uD+dOX6KFX/9TZ8h/fH08eLQ7gNMGTWeuasWUcTaSiF+SlIyxqYmtOrcnr1bduSY9tuwN6xcuBSvUt55zufn3L1wjSNrd+LfvTVF3V24evwcG2f+zXe//YiJpZnK5RITPrB70XpcvIsTFx0r952egT7VAhtgaWeNhqYGD6/dYc/fG9E3NsK1VN4rrgrimBo/7ReSk1Nky8RER9O/ex9q1KklC5szfRbPnjxl5PgxWFhacuzQEcYMHsnf65ZjmU/32FVbNrN+x3YmDBuOo4MDyzas54exY9i2dFnO1ygbW+rXqMnvi5Wfux8SEynuUoyABg0ZNWVyvuRVlueNG1m/ZQsTRo/GsWhRlq1Zww8jR7Jt9WqVeb555w5jJ02iX8+e1KlRgxOnT/PjL7+wbN48Snp5AbB60SJS09Jkyzx++pQfRoygXu3acuUqXbIk9WvXZsqsWflaLmVWX7rAhiuXGO/fFEczc5ZfOMvALRvY0us7DLR1VC5noK3Dll7yle/5XRF34shxFs75i0Ejh+JdqiT7du5hzNDRLNuwSsUzSCg/DRtN42ZN+XHiT9y5eZt5M//AxNSUmnUzj3t9AwNWbpZ/sZRREQcwf8Vi0tJSZZ+fPn7K6EHDqZntOSa3jh0+yrzf5zJs9Ah8Spdi9/adjBw8nDWb12FtY6MQP+R1CKOGDCegeSDjJk3g1o2b/P7bLEzNTKldtw4AiYmJ2NrbUbt+Hf78fZ7S9f69ahlpqZnH29PHTxg6YDB16tf94jKkX6MW8MPwQXiVKsn+nXsZN2IMi9cuV3mNGj9iLP4BjRk5fgx3b95m/ux5mJiayN33VixawtAxI/Hy8ebVi1f8Lrvv9Qdg7tIFpGU5Z54/ecrYIaPkrmP5YdW2razfuYMJQ4emP0tt2sQP435m26LFn7lO2VC/WnV+X7okx/TvPHjAjkMHKe6cc4X+f4GYTfXfR3RTFf4n2NjYyP5MTExQU1OTC/vnn38oX748urq6FCtWjF9++YWUlMwH3aioKPr27Yu1tTW6urqULFmSvXvl3xweOnQIT09PDA0N8ff3l6sATEtLY9KkSTg4OKCjo0OZMmU4ePBgjnmOj4+na9euGBoaYmtry+zZsxXiJCUlMWrUKOzt7TEwMKBSpUqcPHkyx3QnTpyIo6MjOjo62NnZMWjQoFynl9HddO/evXh5eaGjo8OSJUvQ1dUlKipKbj2DBg2iVq1acstltXv3bipUqICuri6Wlpa0bJn5Zjx7N9UXL17QrFkzDA0NMTY2pm3btrxR8gY6w7Nnz1BTU2Pz5s3UqFEDPT09fH19efDgAUFBQVSoUEG2n969eydbLigoiAYNGmBpaYmJiQm1atXi6tWrsu9PnjyJtrY2p0+floXNnj0bS0tL2f7O3k3V2dmZKVOmyPalk5MTu3bt4t27d7Iy+fj4cPnyZbkybNu2DW9vb3R0dHB2dla6//Niy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35D+/d23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18faubzw9aXuvDiDksu7ubUk+uFmg9VJEliw57d9GjTlrpVquLm5MQvQ4aSmPSRg/+cUrmcd3F3BvfoiV/Nmmjn0EJTU0MDSzMz2Z+ZiUnBlOHEMXr4NaJumbK42dkzsUs3EpOSOBR0SeVy5d09qFOmLC42tjgUKUKHOvVws7fn+uPHsjjVvEvyfUAz6pYpm6953r5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGCb9/B26ckdRrWw8bWhvKVfKndoC4P7j2QxZn6+280bOKPczEXihV3ZdjYUbx985aH9x8oW+0X27NlB/UaN6RBU38cnBzpNfA7LKyKcGjXPqXxrWyt6TWwH3X86qGfQyvl1NRU5kyZSfsenbG2VTzf89vFAycpU7sSZetUxtLemoZdWmBsYcrVY2dzXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW17ef5IveS6IY8rI2BhzC3PZ37WgK+jq6MoqJT5+/MiZU//Q64fv8ClTGjsHe7r06o6NrY3K9X4pSZLYsGMnPdq3p2716rg5O/PL8BEkfvzIwRMnVC7n7eHB4D598KtdW+U1qpqvL/27d6du9er5kle5PG/dSo/OnalbsyZuLi788uOPJCYmcvDoUZXLbdi6lUoVKtCjUyecHR3p0akTFcuVY/22bbI4ZqamWJqby/7OnD+Pg50d5UtnvpRq0rAhfbp1o2L58vlaLmUkSWLj1Ut0r1SNOu4lcC1ixYRGASSmJHMo+E6Oy6qpgaWBodxfftu2YTP+AY1p3KwpTi7O9B86ECurIuzZrrxHwt7tu7CytqL/0IE4uTjTuFlT/AMas2W9/DOImpoa5hYWcn9ZmZqZyn138ex57BzsKV2uzFeVY9P6jTRpFkBA80CcXZwZNHwIVtZW7Niq/Flq1/YdWNtYM2j4EJxdnAloHkiTwKZsXLteFsfT24sfBg+gfsMGaGsrP0fMzMywsLSQ/Z07cxZ7B3vKlPvye+KOTVtp2LQR/rJr1A8UsbJi3449SuNnXqN+wNHZCf/AJjRs4s+2LNeoe7fv4vXpvmdta0P5ShWo3aAOD+9lNoRI3xeZ17GLZy9ga2+HTw49NL6UJEls2LWLHu3aUbdqtfTr1LBh6depUzk8S7m7M7hnL/xq1crxWSrhwwfGzZrJTwMHYmSY/+eJIHyOqIwT/ucdOnSIzp07M2jQIO7evcvixYtZuXIlU6dOBdIr0ho1asS5c+dYu3Ytd+/eZfr06WhoaMjSSEhIYNasWaxZs4Z//vmHFy9eMGJEZjPxuXPnMnv2bGbNmsXNmzfx8/MjMDCQhw8fqszXyJEjOXHiBDt27ODw4cOcPHmSK1euyMXp0aMHZ8+eZePGjdy8eZM2bdrg7++vMt2tW7fyxx9/sHjxYh4+fMjOnTvx8fH5ovQSEhL49ddfWbp0KXfu3KFz586YmpqyLctDaWpqKps3b6ZTp05K87Fv3z5atmxJkyZNuHbtGseOHaNChQpK40qSRPPmzYmIiODUqVMcOXKEx48f065dO6Xxs5owYQI///wzV69eRVNTkw4dOjBq1Cjmzp3L6dOnefz4MePHZ3apiomJoWvXrpw+fZrz589TrFgxGjduTGxsekuKjIq2Ll26EB0dzY0bN/jpp59YsmQJtjn8EP3jjz+oVq0a165do0mTJnTp0oWuXbvSuXNnrl69ipubG127dkWSJACuXLlC27Ztad++Pbdu3WLixImMGzcu37pSJycn8+DeAypUqigXXqGiL7dv3Va6zN1bd6hQUb7blm/litwPvidXcb162UpMzUxpEtg0X/L6/9XrN28Ij4ykctnMB2ttLS3KeZfk5r17eU7/RUgI/t27EdinF2NmzuCVkm47efU6/D3hMTFU9vSUhWlraVHOrTg3n+auokOSJC7du8fzN28oV4DduSD9vHh4/wHlKspfi8pVrEDwbeU/XoNv31GIX75SBR7euy87L7xL+/Dw/gPu3w0GIPR1CEHnL1KxaiWVeUmIjwfSK13yKjk5mcf3H1Hat5xceBnfsty7E5yntLes3oCxqQn1m/jlKZ3cSE1JIfTpK1xKesiFFyvpwauHz1Qud+PURSLfvKdmy8/nUZIknt5+QETYu1x1ff2cgjqmsju09wC16teRtaJMTUklLTUNbW1tuXjaOjrcuan8Gv+lXoeFER4ZQeVymRVL2tralPPx4Wbw3XxZR357HRpKeEQElbM8b2hra1OudGlu3lFdQXXz7l0qZXtGqezrq3KZ5ORk9h85QmCjRoU2sHhIdBTh8fFUztJaR1tTk3IOjtx8/TrHZT8kJRG4+C+aLvqTods3c/9N/t4fkpOTeXD/ARUqyT9TlK/ky11VzyC371A+W/wKlXx5ECx/Xnz48IGOzdvSPqA1Pw3/MccXGsnJyRw9eAT/pl+3n9Kfpe5TMduzlG+lity+eUvpMndu3cY3W/yKlStx7+49led3bvJx+MAhGgc2/eJyqL5GleeuimvUvdt3KVdRvkK5XCVfHt57ICuDV+mSPLr/gPt3059X0u97l6hYtbJCehn5OHH4KA2b+OfrOfP6TdinZ6nM+5+2lhblSpbkZnDe7n8Avy1cSDVfXyrl84tBQcgt0U1V+J83depUfvzxR7p16wZAsWLFmDx5MqNGjWLChAkcPXqUS5cuERwcjLu7uyxOVsnJySxatAhX1/SH9wEDBjBp0iTZ97NmzWL06NG0b98egN9++40TJ04wZ84c5s+fr5CnuLg4li1bxurVq2nQoAEAq1atwsHBQRbn8ePHbNiwgVevXmH3afylESNGcPDgQVasWMG0adMU0n3x4gU2NjbUr18fLS0tHB0dqVix4hell5yczIIFCyid5W1vu3btWL9+Pb169QLg2LFjREZG0qZNG5XbvH379vzyyy+ysKzpZXX06FFu3rzJ06dPKVq0KABr1qzB29uboKAgfH1Vj+szYsQI/PzSf4ANHjyYDh06cOzYMapVqwZAr1695Cq46tWrJ7f80qVLMTU15dSpUzRtml65NGXKFI4ePUrfvn25c+cOXbp0oUWLFuSkcePGfPddepeP8ePHs3DhQnx9fWXbZ/To0VSpUoU3b95gY2PD77//Tr169Rg3bhwA7u7u3L17l5kzZ9K9e/cc15Ub0VHRpKWmYmYu363LzMKMyAsRSpeJCA/HzEL+AdLM3IzU1FSio6KwsLTk1o2b7N+9j6Vrl+c5j//fhUdGAmBhYioXbmFqSujbt3lKu6S7O78MGYqTnT3hUVEs27KJXqNHsunP+ZjmQ+VPhvCYGADMjeTTNDc2JixC+XGWIe7DBxqP/ZGklGQ01NUZ3a4DlTy98i1vysRERaePGZb9vDAzIyJceX4jIyIxM8sWX3ZeRGNhaUHt+nWJjoxi+PeDkSSJ1NRUmrYIpF2XjkrTlCSJxfMW4F3KB+diee/2EhsdQ1paGqZmpnLhJmZmREVEfnW6wbfucHTfIX5f+lcec5g7CbHxSGlpGJoYyYUbmBgRFxWjdJmIsHec2LSXLuMGop7lBVp2iQkfmDdwIqkpKaipq+PfvTXFfDxUxs+tgjqmsrp/N5hnT54ydEzmC0B9A308S3qxfuUaHJ0cMTU34+TR49y/G4ydg32eywUQHpmef4tsebUwMyP0Td6uUQUlPCKnPKtubR8eEaF0mXAV17GTZ84QFxdHgL9/HnP89cI/VeibZ2vZam5gQGhMtMrlnMwtGN8oAFfLIsQnfWTTlSB6b1jNum69cTTLn2E4Mp9B5NMzM1d9XkSERyieR+bmcudFUWdHRv38Iy5uxUiIj2f7pm0M6TuAxWuW4+DooJDm2VOniYuLo2GTRl9ZjihSlZXDwlxlOcLDI6hokb3c6eWIiorC0tLyi/Nx+uQ/xMXF0bhp7sdmzqDqGmVqZkakymtUBKYqrlExUdGYy+570YzIct9r0iKQtl2UDwFz/p+zxMXF0aBx/r7YkT1LZeudk/4s9U7JErl36NQp7j1+xOo/5uQpnf8laohuqv82ojJO+J935coVgoKCZC3hIL1lV2JiIgkJCVy/fh0HBwdZRZwy+vr6soo4AFtbW95++sEcExNDSEiIrAIoQ7Vq1bhxQ/mA8Y8fPyYpKYkqVarIwszNzfHwyPxxcPXqVSRJUsjXx48fscjWLD9DmzZtmDNnDsWKFcPf35/GjRsTEBCApqZmrtPT1tamVCn5QV07depElSpVCAkJwc7OjnXr1tG4cWOFHxQZrl+/Tp8+fZR+l11wcDBFixaVVcQBeHl5YWpqSnBwcI6VcVnzaW2dPu5F1paA1tbWsv0EEB4ezpQpUzh58iRv374lNTWVhIQEXrx4IVf+tWvXUqpUKZycnHI162tu8gHw9u1bbGxsCA4Oplkz+UH3q1Wrxpw5c0hNTZVrlZnh48ePfPz4US5MR0f1mDCgZGITifT+KariZ7sJZ7TkU1NTIyE+gWkTpjBi7ChMvtHswv8lB06eZNrCzIr5OePSW2xm30eSJOX5rXG18plvwN2AUiVK0Py7Puw9cZzOOQxQ/DkHLl3k1w2ZXW3+6J8+HpqyMnyOvo4O68b8RMLHjwTdv8cf27dib2lJefe8V5B8Vvb88pltrlC+jOD08BtXr7Nx9Tp+GD6YEt6ehLx6zaK58zFbsYZOPbooJDf/93k8ffyE2QuVjxX0tRTPd+mrH6w/JCQwd+os+o8chLFp/ndxzpHC/lE+SVNaWho756+hRit/LGwVx8XLSkdXh95TR5D0MYlndx5wdN1OzIpY4OSVT60x8/mYyurg3gM4F3PBw8tTLnzkuDH88etMOjVvi7qGOm7uxandoB6PH6hukZ+TA8ePM23eXNnnOZPSx3LLnqP0a9RXrSLfHThyhGm//y77POfX9MktFK5JSsIUKLsWq4i6a/9+qlaqRJGvqFj5Wgfv3ubXIwdkn/9o2RZQdt/O+Qe1j509PnaZFbal7YvSZfUyNl+9zIh6DfM1z0ouSV94XkhywV4lvfEqmTl2pXcpH77v1oedW7YxQMmEAAf27Kdi5YpYFsnbflLI8mfOAYV9gqQ0PLf27t5DpSqV8zQWpPLHwRyeB1Xd1z+F37x6nU2r1/HD8EF4eHsS8iqExXPns36FOR2V3PcO7T1AhcoVscjjvjhw4gTT5me+IJozYaKK/Ob4uPtZYe/eMXvJ3/w1aTI62VogC8K3JCrjhP95aWlp/PLLL3JjlmXQ1dXN1cQD2WfPVFNTU/jB+SU/qnPzYzUtLQ0NDQ2uXLmiUDljqGLcgqJFi3L//n2OHDnC0aNH6d+/PzNnzuTUqVO5Tk9PT08h3xUrVsTV1ZWNGzfy/fffs2PHDlasWKEy718ymYOq7ZSbSoms+yUjbvawrIPH9ujRg/DwcObOnYuTkxM6Ojr4+PiQlJQkl+65c+cAiIiIICIi4rMzv+YmH4AsL8rK9rlj4tdff5VraQjp3XT7DumvENfE1AR1DQ2FN7eREZEKb0czmFtYKMSPioxCQ0MDYxMTnj15SlhoKGNH/JiZ50/lqVe1Nqs3r8M+n1pk/BfVrFiRkh6ZFeFJyckAvI+KxDLLW/eI6GjM87myU09XF1cnZ16GhOQpnZqlSlMyS5eopE/dVcJjorHMMiZdZGwsFp9pgaeurk5Rq/QKFI+iRXn2JoyVhw8VaGWcsakJ6hrqCq0BoiKjVJ4XZuZmREZkjx/56bxIL+PqJSuo69eARoFNAHBxLUZiYiLzfvudDt06yU2As+D3eVw4c45Z8+dQxCp/Btk3MjFGXV2dyGyt4KKjojAxN/2qNMNeh/I27A3TxmReczKuUa3rNuWvNUuwUTJmZF7oGxmgpq6u0AouIToWg2yt5QCSPnwk9OlLwp6/5tCq7Zl5lCSmdR1Ox9H9cPYuDoCaujrmNunb28bJnvev33Buz9E8V8YV1DGVITExkVNHT9C1d3eFdOwc7Jk5fw6JHz4QH5+AhaUF08ZNwtpWcVD53KhZuTIlS2Sef0lJn65RkZFYZnlhFxEVhbmKF3HfWs1q1WQTLACye/n7iAj5PEdG5phnC3NzhVZwEVFRSidsCg0L49LVq8zIdj8uaDXciuNtmzlLdVJq+iQF4fFxWGZ5hotMiMdcP/ez1aurqeFlY8fLyJxbM38JVc8gUZE5PYOYKzmPImXPIMqoq6vj7unB65evFL57ExrGtaArTJj+9ROEmJiaoqHyWUp5K0ILC3MiwsPlwqIi0sth8hUvNsJCQ7ly6TJTZij2hsmNjGtURHi2+0NkJKYqr1HmSq5RUUrve/5Z7nsfEz8w77c/aJ/tvvcm7A3XL1/l52kTv6oMWdWsVImSWRouyJ6lIrM/S0Vhbvr116l7jx4RERVFlyGZlbypaWlcu3ObzXv3cG7HTqUvzgUhv4nKOOF/Xrly5bh//z5uKsYjKlWqFK9eveLBgwc5to5TxdjYGDs7O86cOUPNmjVl4efOnZN1Ec3Ozc0NLS0tLly4gKOjIwCRkZE8ePBANilC2bJlSU1N5e3bt9SoUSPX+dHT0yMwMJDAwEB++OEHSpQowa1bt746vQwdO3Zk3bp1ODg4oK6uTpMmTVTGLVWqFMeOHaNHjx6fTdfLy4sXL17w8uVLWeu4u3fvEh0djaen52eW/jInTpxg4cKFsv30/Plz3r9/Lxfn8ePHDB06lCVLlrB582a6du3KsWPHPjuj7Jfw8vLizJkzcmHnzp3D3d1d5c19zJgxDBs2TC5MR0eH8A+K3VG0tLRwL+HO5UtB1KideUxeuRREtZrKB8z28vHm/Gn5QdIvX7yEh2cJNDU1cXRyZPn6VXLfL1u0hISEBAYOG4yVkhkbhUwG+vpys3pJkoSFmRkXr1+nRLH0VrfJyclcvXObgV275eu6k5KTefbqJWW98tYN1EBXV26GVEmSsDA25uK9YDyKpl/HklNSuProIQOb5dy1OztJkkhKSc5T/j5HS0uL4h7uXAu6QrVamdfAa0FXqFy9qtJlPEt6c/Hsebmwq5cuU7yEB5qfZh/8+DFR4fqgrq6OJEmyCixJkljw+zzO/XOGGX/9gY1d/lVkaWlp4erhxo3L16hcI7McNy5fo2I15eP3fI69Y1H+WL5ALmzDstV8+PCBngO+w8Iq/1sEaWhqYuviwNPbDyjhm9na+OntB7iXL6kQX0dPhz6/jpILu3L0LM/vPqTloO6YFsm5y11K8teN35RVQR1TGf45dpLk5CTq+tVXmQddPT109fSIjYnlyqUgevX/TmXcnCi/Rplz8dpVSnx6fkpOTubqrVsM7Nnrq9aR35Tm2dyci5cvU6J4ekVscnIyV2/cYGDfvirTKeXlxcUrV+iUZeiNi5cvU8pbcQbh3QcPYmZqSvUsPRu+BQNtHbkZUiVJwsLAgIvPn+JhnV4Bm5yaytVXLxhQs06u05UkiQdv3+CWj7Pca2lp4e7hzpVLl6ku9wxymaqqnkFKenP+zDm5sMsXg3D3VDwvsub98cNHuLgWU/ju4N4DmJqZUlnFGGa5LkcJD4IuXpKblCroUhDVayp/jvb2KcnZbM9Sly5eooRXCZXlyMn+PfswNTOjSjXl15PPkb9GZW77q0FXqFK9mtJlSpT0UnGNcs9y3/uImrr8S2V1dQ25+16GI/sOYmJmSsUqX78vMqh8lrp2jRKuWZ6lbt9mYPfP/wZRxbd0aTb+JT/M0KS5c3BycKBbq9b/2Yq4whoDU1BNVMYJ//PGjx9P06ZNKVq0KG3atEFdXZ2bN29y69YtpkyZQq1atahZsyatWrXi999/x83NjXv37qGmpoZ/LscDGTlyJBMmTMDV1ZUyZcqwYsUKrl+/zrp165TGNzQ0pFevXowcORILCwusra356aef5H7Qubu706lTJ7p27crs2bMpW7Ys79+/5/jx4/j4+NC4seLYEStXriQ1NZVKlSqhr6/PmjVr0NPTw8nJCQsLiy9OL6tOnTrxyy+/MHXqVFq3bo1ulh/l2U2YMIF69erh6upK+/btSUlJ4cCBA4waNUohbv369SlVqhSdOnVizpw5pKSk0L9/f2rVqqVy0oev5erqyqpVqyhfvjzR0dGMGDFCrhVfamoqXbp0oWHDhvTo0YNGjRrh4+PD7NmzGTlyZL7lY/jw4fj6+jJ58mTatWvH+fPn+euvv1iwYIHKZXR0dJR3S/2gPH6bDu34deIUPEqUwNvHm707d/PmzVsCWjYHYMn8Rbx7956xE38GILBlM3Zu2c78OX/StFkAd27dYf/uffw8eQKQPjB49gdeQ6P0t/FZwz8kJPD6Vebg0aEhoTx68BAjY2Osbaw/u23yi56WDg4mmT8u7IwtKW7pQExiPG/ivn4crfyipqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x86B//x+9YWVgw4FMFXXJyMk9evvz0/xTehYdz/8kT9PV0Kfqp1cScFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjOS1DHXqseLQQYoWsaKolRUrDx1EV1sbP9/MFxETVq2giKkpAz5V0K04dBAvR0fsixQhJSWVs3dus+/iBX5snznGWkJiIi+zzIQcEv6e+y9fYmJggI2KFgm50bJdG2ZO/pXiJTzwLOnFgV17efvmDU1aBACwfOESwt+/Z+S4MQA0aR7A7m07WTxvAY0CmxB8+y6H9h7gx0/nDUClalXYsXErru5ulPBK76a6eskKKlevKntgnz97LieOHGPC9Cno6evLWloYGBp8trt5bgS0acG8abNx8yiOh3cJDu85yPs372gYmH5dX/v3CsLfhzN4bOa4Y08fps9em/jhAzHR0Tx9+BhNLS2KOjuiraONUzFnuXUYfGp9kz08P1VqVJtdC9dhW6woDm7OXDtxjujwSMrVS/8hemLTXmIjowns1wk1dXWsispXahoYG6KhpSkXfnb3UWxdimJmbUFqSiqPrwdz60wQ/t2Vj3n6pQrimMpwaO8BqtaorrRl0OWLQSBJODgWJeTVa5bOX4yDY1EaNsmfcczU1NTo0KI5KzZuxNHOnqL29qzYuAFdHR3862RW9oyfOQMrC0sG9OwJfLpGfRr6ITklmXfvw7n/+HH6NepT98iEDx/kWuq+Dgvj/uPHmBgZYWP19S921NTU6NC6NSvWrcPRwYGiDg6sWLsWXV1d/OtnVmiOnzYNqyJFGPBpOI32rVrRd/BgVm7YQO1q1Th59iwXr1xh2Tz5ruRpaWnsOXiQpn5+aCr5MR4dE0PY27e8+/SS7/mn7WDxaQbW/KSmpkb7chVZefEcRc3McTQ1Y8XFc+hqauHnmVmJOGH/bqwMjfjhUwXdknOnKWlrj6OZGfFJSWy6GsSDd28YVT9/x/Jq1aEtv/0yFXdPD7xKerNv117evnlLQItAAJYu+Jv3797x44SfAGjashm7tu5g4Zy/aNysKXdv3+Hgnv2MnZQ5CdfqpSvxLOmFfVEHEuLj2bF5G48fPGLQiKFy605LS+PQvgM0aOyPxldUgGXVrmN7pkyYRAkvT7x9SrJ7xy7ehr2heavmACz6ayHv373j51/S89msZQu2b97Gn3/MJaB5M+7cus2+XXuYMDWzJWVycjLPnjz99P8U3r17x8P7D9DT18ehaObYd2lpaezfs49GTRp9VUVehhbtWjNr8nSKl3D/dI3ax7s3b2n86Rq1YuFSwt+/Z8S49J4PTZoHsGfbLv6etwD/T9eow3sPMHriT7I0K1WrwvbP3PcyynBk30HqN2qIhmb+V2CpqanRoVkzVmzZjKPdp2epLZvTr1O1sjxLzZ6d/iz1aVzm9GepjOtUxrPUY/R19ShqZ4eBvj5uzs5y69LV0cXUyFghXBAKkqiME/7n+fn5sXfvXiZNmsSMGTPQ0tKiRIkS9O7dWxZn27ZtjBgxgg4dOhAfH4+bmxvTp0/P9ToGDRpETEwMw4cP5+3bt3h5ebF7926Kf3ozq8zMmTOJi4sjMDAQIyMjhg8fTnS0fCunFStWMGXKFIYPH87r16+xsLCgSpUqKivOTE1NmT59OsOGDSM1NRUfHx/27NkjGxPuS9PLqnjx4vj6+hIUFPTZcdRq167Nli1bmDx5MtOnT8fY2Fiu1WBWampq7Ny5k4EDB1KzZk3U1dXx9/fnzz///GyevtSKFSvo27cvZcuWxdHRkWnTpsnNijt16lSePXvGnj3p073b2NiwdOlS2rZtS4MGDShTpky+5KNcuXJs3ryZ8ePHM3nyZGxtbZk0aVK+TN6QoW6DesREx7B6+Uoi3ofjXMyF6X/MwOZTF6bw8HDeZhnQ2tbOjl//mMGCOX+ya+sOLCwtGTh8MLXq1v6i9d4Pvs/Q/oNknxfMSR/bw6+JPz+O/0nVYvmuRBEn/mqR2ZJwUPX0H977g88z9fgqVYt9U91atuJjUhLTFy8kNi6Oku7u/PXLJLm3vmHv36Ge5e3zu4gIOg3N7DaxZucO1uzcQbmSJfl7avp4SW/eh/PTrFlExcZgZmxMSQ8PVsyYhW0efuSq0rVBQz4mJ/Hbpg3EJiTg7ezCnwMGybWgC4uMkHvbmpj0kd82beBtVBQ6Wlo4WdswqXtPGmYZ6y74xXP6zf1D9vmPbVsBaFKpMhO7dv/q/NaqX4eYmBjWrVhNZHgETsWcmfx/7N13dFTF28Dx7+6m916AQAIhCST03nsHBUEQpIoiYkFRQawgP0FUiqiAIl16R3rvLfQWOiGU9N7L7r5/BDbZZENLQ97nw9lz2JuZuzN7787enfvMzC+TcHXL/lzERMcQkWtyercy7kz4ZRJ/zviDTWs34ODkyHsff0DTVjntWb9BA1AoFCz8ax7RkVHY2tvRoEkjBg/LiR7atG4jAKM/0P/ROOrL0UXSedK0dQsSExJZuXApsTExlPfy5KvJ43F52AEeGx1LVLj+ZNafvvOh7v83r93g4K59OLu68OeKBYUuz/Oq2rAWKYnJHFq3naS4BJzLufPG58OwdcruyEiKSyA+6tk60zPTM9i2YDWJMfEYmRjjWMaFV9/rT9WGRbM6XnGcUwD3Qu5y6fwFJk77yeDrpiQlM3/2HKIio7CysaZpi2YMfndooX605zXo9d6kp2fw4++/k5iUSICfH79PnKTfRkVEolTk3EiMjI7mzfdzpk9YvGY1i9espna16vz1888AXL52jeFjcm7OTfvrTwC6tm3HuFzfyc9V5jfeID09nR+nTycxMZGAKlX4/eef85Q5Qu/mZ42AAH749ltmzZ3L7HnzKFemDJO+/VZvCCzAiVOnCAsP55VOhhcEOHDkCOMnT9Y9/3JC9hDJdwYN4t0i/H5/ZGD9hqRnZfLTrm0kpqXh716G33q9oRdBF56QgDJX+5uYnsakHVuITknGysQUH1dX/nyjv94Q2KLQql1rEuLj+WfuImKis69BJk6drBtGHRMVTURYzufCvYw7P0ydzKzpv7NxzXocnRx5f9RHNG+d06GSlJTEtB9/ITY6BksrSyr5VGba7Bn4+euPojgdeIqIsHA6dXv2BQ/yatO+LQnx8Sz4ex7RUdF4VarIT9N/wc09u8M/Oiqa8LCca6kyZcvw0/Qp/DbtV9atWouTsxMjP/uElq1zOrCjIqN4q/9g3fPl/yxl+T9LqVm7Fr/9mRONdfJEIOFh4XQu5Or1Ldq2IjEhgaXzFxMTHYNnRU++/2WS7gZpTHR0vjbq+18m8teMmfy7diOOTo4Mz9NG9R3UH4VCwaK/5uf63mvIoGH6UbNnAk8TER5RZDcJDBnUs1d2OzVrZva1lK8vv38/Qf8zH2ngWuqjnGvVxWvXsnjtWmoHVOOvZ/j9J0RxU2ifZnIrIYQQpeJB3Iu5qt2zKGPnQpM/hpd2MQrl8PuzSbxyrbSLUWjWfj4k7Npb2sUoFJu2rbgddf/JCV9wXk5luRR6s7SLUWj+7pVYFLiltItRKAPrdX5pzqnE28GlXYxCsfbyJLGQ81++CKzLlCF+zotxY6gwbN8ZxN3YsNIuRqF42LsRkRD95IQvOBcbR25F5Z8/77+kolM5Eq/fKO1iFJp15SJaHKiEDVnxw5MTlZL5fUruhv6LpOgmSRJCCCGEEEIIIYQQQjyWdMYJIYQQQgghhBBCCFFCZM44IYQQQgghhBBCiJeUrKb64pHIOCGEEEIIIYQQQgghSoh0xgkhhBBCCCGEEEIIUUJkmKoQQgghhBBCCCHES0qJDFN90UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJSWrqb54JDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEOI/YebMmXh5eWFmZkadOnU4ePBggWkHDx6MQqHI9/D399elWbBggcE0aWlpxVYH6YwTQgghhBBCCCGEeEkZ6mh6UR7PasWKFXz88cd89dVXnDlzhmbNmtGpUydCQkIMpv/1118JDQ3VPe7evYuDgwOvv/66XjobGxu9dKGhoZiZmT3X+/00pDNOCCGEEEIIIYQQQrzwpk6dytChQ3n77bepUqUK06dPx8PDg1mzZhlMb2tri5ubm+5x8uRJYmNjGTJkiF46hUKhl87Nza1Y6yGdcUIIIYQQQgghhBCixKWnp5OQkKD3SE9PN5g2IyODU6dO0b59e73t7du358iRI0/1enPnzqVt27ZUqFBBb3tSUhIVKlSgXLlydO3alTNnzjxfhZ6SdMYJIYQQQgghhBBCvKSUKF7Yx6RJk7C1tdV7TJo0yWA9oqKiUKvVuLq66m13dXUlLCzsie9DaGgoW7du5e2339bb7ufnx4IFC9i4cSPLli3DzMyMJk2acP369ed/05/AqNj2LIQQQgghhBBCCCFEAcaOHcuoUaP0tpmamj42T9655rRa7VPNP7dgwQLs7Ozo3r273vaGDRvSsGFD3fMmTZpQu3ZtfvvtN2bMmPHE/T4P6YwTQgghhBBCCCGEECXO1NT0iZ1vjzg5OaFSqfJFwUVEROSLlstLq9Uyb948BgwYgImJyWPTKpVK6tWrV6yRcTJMVQghhBBCCCGEEOIlVdorphbVaqomJibUqVOHnTt36m3fuXMnjRs3fmze/fv3c+PGDYYOHfrE19FqtZw9exZ3d/dnKt+zkMg4IYQQQgghhBBCCPHCGzVqFAMGDKBu3bo0atSIv/76i5CQEIYPHw5kD3u9f/8+ixYt0ss3d+5cGjRoQEBAQL59jh8/noYNG1K5cmUSEhKYMWMGZ8+e5Y8//ii2ekhnnBBCCCGEEEIIIYR44fXp04fo6Gi+//57QkNDCQgIYMuWLbrVUUNDQwkJCdHLEx8fz5o1a/j1118N7jMuLo5hw4YRFhaGra0ttWrV4sCBA9SvX7/Y6iGdcUIIIYQQQgghhBAvKeUzDgd90Y0YMYIRI0YY/NuCBQvybbO1tSUlJaXA/U2bNo1p06YVVfGeikKr1WpL9BWFEEIIIYQQQgghRIl4f+0vpV2EAv3x2melXYRSIZFxQgjxAvvfzvmlXYRC+7rdEBKvXCvtYhSKtZ8PTf4YXtrFKLTD788m7q0PSrsYhWI373d6LvyytItRaGsGTaT5TMN3dP9LDoyYScKeA6VdjEKxad2c21H3S7sYheblVJb31vxc2sUolFk9P2dR4JbSLkahDazXmRuRd0u7GIXm7exBn3++Ke1iFMqK/hNemra267zPS7sYhbLprZ9p99fI0i5Goe0cZniYoxDPSjrjhBBCCCGEEEIIIV5Sz7pqqSh+ytIugBBCCCGEEEIIIYQQ/19IZ5wQQgghhBBCCCGEECVEhqkKIYQQQgghhBBCvKQUyDDVF41ExgkhhBBCCCGEEEIIUUKkM04IIYQQQgghhBBCiBIiw1SFEEIIIYQQQgghXlJKWU31hSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5RChqm+cCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxkpJhqi8eiYwTQgghhBBCCCGEEKKESGecEOK5pKWl8b///Y/w8PDSLooQQgghhBBCCPGfIcNUhRDP5ZtvviEhIQFXV9fSLooQQgghhBBCiAIokWGqLxqJjBNCPLP09HQcHR2ZMWNGaRdFCCGEEEIIIYT4T5HOOCHEMzM1NeWLL77A1NS0tIuSz759+1AoFMTFxT11Hk9PT6ZPn16o11UoFKxfv75Q+xBCCCGEEEII8fKTYapCiGd25MgRmjVrRrt27di2bVtpF0c8dPXAaS7tPk5qfBJ27k7U7dkWV28Pg2nDrt1h54xl+ba/8vU72Lo5AqBRq7m44yg3j18kJS4RW1cHar3airJVKxZrPbRaLX8tX8a67dtJTE7C38eHMe8Op1L5CgXmuRlyh9lLl3Dl5k1CIyIYNfRt+r3yql6aP5ctZc5y/To72tmxfeHiYqnH06jh7k2/Wu3xcymPk6UdX2yZxcHb50qtPIaYvdoZkxZNUFiYo751h5R/VqB5EPbYPKbtWmLSqhlKB3u0SclknDxD2uqNkJUFgEnLppi2aobSyQEA9f0w0v7dStaFy0Ve/g6+DXjVvxn2FtbcjYtg/onNBEUEF5i+mVcNugc0x93GkZSMNM48uM7Ck1tISk8FYHyHtwlwy/8ZOHXvChN3Lyry8j/S3b85fWu1xcHCluCYUH47vIrzoTcLTN8joDmvVWuJm7UD4YmxLD69je1Xj+uleb16K171b46rtT3xacnsu3mav45tIEOdVWz1yEur1TJn87+sO3SAxJQU/D29GP1GPyqVKVtgnj1nTrNg2xbuRkaQpVbj4eJC/7bt6dygUbGU8d+1G1i9dAUx0dFU8PJk+EfvE1CzeoHpz585x1+/zeTO7WAcnZx4vV8fuvR4RS/NuhWr2bRuI5HhEdjY2dKsZXOGDH8HE1MTAC6cPcfqpSu4fuU6MdHRfDvpexo3b1qk9WpesSbtfOpha2ZFaEIUq87t4Ub0fYNpB9bpRCPPgHzbHyREMWHn/Hzb65bzY2iDbpx9cJ0/j64v0nLndnLnIY5t2UtSXALOZd1o17875f0qPTHf3Wu3WPy/P3Au58Y7Ez/XbT+z9ygXDgYSeS+7jXPzKkfL3l0oW6ng75/nsWntBtYuW0VMdDTlPT0ZNnIEATWqFZj+wplzzPltNiHBwTg4OtLrzT507t5N9/esrCxWLl7G7q07iI6KopyHB4Pfe5u6Devr0gzp9SYRYfnn+e3S4xVGfPpRkdSrvU99ulVtip25FffiIlh4citXIu8UmL6pZ3Ve8W+Gm7UDKZnpnHtwncWntpGUkZovbeMK1RjZrDeBd4P4Zf/SIimvIS9rW9vZrxGvVWuJg7k1IXHhzDm+kUvhtwtM36VKY7pWaYyLlQORybGsPLeHPTdOlVh5AbpVbcrr1VvjaGFDcGwYs46u5WLYrQLTv1K1Ka/6N8PV2oGIpFiWntnJruuBBtO2rFSLr9oM5nDwecbtmFtcVXihyGqqLx7pjBNCPLN58+bx4Ycf8vfffxMSEkL58uULTKvValGr1RgZSXNTnIJPBXFyzS7q9+mAS8WyXDt0lj0zV/LK129j6WBbYL5XvxmGsbmJ7rmplYXu/2f/PcCtwEs06tcJG1dHHgTdYv+ctXQc1R8HD7diq8vCtWtYumE93438mPJlyjJ35Qre//Zb1sychaWFhcE8aenplHN1o23jpkyd93eB+65Yvjwzv/+f7rlKWboB4ubGptyIvseWK0eY2Gl4qZbFENNObTFt34qUuf+gDo/ArGtHrD77kIQvv4e0dIN5jBvWxazXq6TMW4L6xi2Ubi5YDB0AQNrytQBoYuNIXb0BTUQUACZNGmD54TASx/34xI6+Z9HYsxpD6nVhzvGNXIm4Q3uf+nzVdhAfb5hOVHJ8vvR+LhX4sOnrLAjczMl7V3CwsOHdht0Z0fg1ftq7BICf9y7BSKnS5bE2s2BKtw85GnyxyMqdV2vvOnzYtBdTDyznYtgtXqnalJ+6vs/AZROISIrNl/5V/2YMa/gqP+9bSlBEMFVcPBnd8k0S01I4cucCAO0q12NYw+5M3ruYi2G38LBzZWzr7OP0++E1xVaXvBbt2MbS3Tv5duAQyru4Mm/rZj6YMY3V4/6HpZmZwTy2lpYM6dQZT1d3jI1UHLxwnu8XLcDe2ppGVfN3GBXG/l17+fPXP3j/05H4Vw9gy/p/+fqzL/jrn/m4uOWfMzXsQSjffDaWTt06M/rbL7l0/iJ/TPkVWzs7mrZqDsCe7buYN3sOo8aOpko1f+6H3GXKDz8B8O7I9wFIS03Dy7sS7Tp35H9fjSvSOgHUKefL6zVas/zMTm5G36eZVw3eb9qL73fMIzY1MV/6led2s/7iAd1zpVLBV20Gc/re1XxpHSxseK1aS65H3i3ycud2+dgZdv6zno6De+Hh48XpPUdY/vNfvDv5C2yd7AvMl5aSysbZS/Hyr0xSvH5d7wTdoGqj2pTz8cLI2Iijm/awbPJshv04BhsHuyIp94Hde5kzYxYjPv2IKtX82bZhM999NpZZi+cWeE599/lXdOzWmc++/YKgC5eYOWUGtna2NGmZfU4t+ms++3bs4sMxoyhX3oPTJ07yw5fj+GX2r1TyqQzA9Dl/oNZocup66zZffzJGd14WVqMKAQyq04m5gZu4GhFC28p1Gdt6AKP+/Y3olPztra9zed5v3JOFp7Zy6mF7+06DV3i3YXemHNC/ceZkaUv/2h0ICg8ukrIW5GVta5t51eCdBq8w6+g6LocH08mvIePaD2XE2l+ITI7Ll76TXyMG1enEb4dXcy3qLr5OHnzQtBdJ6SmcuBtUImVuUbEW7zXqwW+HVnEp/DZdqjRmYqfhDF05icjk/Meia5UmvFW/G9MOLOdqZAh+LuX5pNkbJKWncCzkkl5aFyt7hjXozvnQGyVSFyEKIsNUhRDPJDk5mZUrV/Lee+/RtWtXFixYoPf3R8NEt2/fTt26dTE1NeXgwYNotVp++uknKlasiLm5OTVq1GD16tW6fGq1mqFDh+Ll5YW5uTm+vr78+uuvTyzPli1b8PHxwdzcnFatWhEcHJwvzZEjR2jevDnm5uZ4eHjw0UcfkZyc/NR1DgwMpF27djg5OWFra0uLFi04ffr0Y/OMGTMGHx8fLCwsqFixIt988w2ZmZlP/ZrP6vKeE3g3qkHlxjWwdXOiXq+2WNjbcPXgmcfmM7O2wNzGSvdQ5uqcunXiEtXaN6KsfyWsnezwbVYb9ypeXN5j+C5jUdBqtSz7dyNDXu9N60aN8a5QgfEff0JaRjrbDuwvMJ9/ZR9GDnmLDs2bY2JsXGA6I5UKJ3t73cPetuCOypJwLOQSc45vZP+ts6VajoKYtmtF2qbtZJ4+h+Z+KClzF6MwMcakQd0C8xhV8iLr+i0yj59EEx1D1qUrZBw/iZFnTqd91rmLZF24jCY8Ak14BGlr/0Wblo5RJa8iLX+3qk3Zc+MUu6+f5H58JPMDNxOdHE8H3wYG0/s4exCZHMuWK0eJSIrlSsQddlw7QSXHnCitpIxU4tKSdI/q7t6kZ2XqfngVh941WrM56Aibg45wJzaM3w6vJjIpju4Bhn9Ed/BtwMZLh9hz4xShCdHsuXGKzUFH6Fe7nS6Nv5sXF8Nusuv6ScISYwi8G8Tu6yfxdS7aCKDH0Wq1LNuzmyEdO9O6Vm28y5Zl3KAhpGVksD3weIH56vj40qpmbbzc3Snn7ELf1m3xLluOszeK/ofV2hWr6NC1E51e6UJ5zwoM//gDnF1c2LRuo8H0m9f/i4urC8M//oDynhXo9EoX2nfpxOplK3Vpgi5ewr9aAK3at8HN3Y06DerRsl1rrl25pktTr1EDBg8bStOWRdNRklebynU5EnyBw8EXCEuMYdX5vcSmJNK8Yk2D6dOyMkhIT9Y9Kti7YWFixtE7+p3QChQMqdeFTUGHDXZ4F6XjW/dRs2UDarVqiFNZV9oP6IGNox2ndx9+bL6t81bh36g2Zb098/2t+4gB1G3XFLcKZXEq40qXt/ug1WgJvnS9yMq9bvka2nftSIdunSnvWYFhI0fg5OLClvX/Gky/Zf0mnF1dGDZyBOU9K9ChW2fadenI2mWrdGn2bt9F7wH9qNeoAe5ly9ClxyvUblCXtctzrrNs7e1wcHTQPQKPHMe9bBmq1apRJPXqUqUxe26eZs+NU9xPiGThqa1EpyTQ3qe+wfSVnTyISI5j29VjRCbHcTUyhF3XA6noqB8Vq1Ao+LDJ66w6v4fwpJgiKWtBXta2tntAc3ZeC2THtRPci49gzvGNRCXH0dnPcDRx60q12Xr1GAdvnyM8MYYDt8+x81ogPau3KrEy96zekm1Xj7H16jFC4sKZdXQdkUmxdKvaxGD6tpXrsTnoMPtvnSEsMZp9N8+w7eox+tRsq5dOqVAwtvVAFp3aSlhCdElURYgCSWecEOKZrFixAl9fX3x9fenfvz/z589Hq9XmSzd69GgmTZpEUFAQ1atX5+uvv2b+/PnMmjWLS5cu8cknn9C/f3/278/uYNFoNJQrV46VK1dy+fJlvv32W7788ktWrlyZb9+P3L17l9dee43OnTtz9uxZ3n77bb744gu9NBcuXKBDhw689tprnD9/nhUrVnDo0CE++OCDp65zYmIigwYN4uDBgxw7dozKlSvTuXNnEhPzRw88Ym1tzYIFC7h8+TK//vorc+bMYdq0aU/9ms9CnaUm5m4Y7lU89baXqeJJ5G3DQ44e2TR5Pqu//I2dM5YRdk1/KIk6KwulsX5Eo5GxERE3iy/a4X54ONGxsTSsVUu3zcTYmNr+AZy/cqXQ+w958ICOgwfxyjtDGfvzT9wLK7oorJeN0tkRpZ0tWZdyve9ZWWRdvYGRd8FDlbOu38LI0wOVVwXdfoyr+ZN5/pLhDAoFxvXroDA1IetmwUNmnpWRUkUlxzKcfaD/I/rcgxsF/gi6GhGCo4Uttcv6AGBrZkWjCgGcMhD980ibynU5HHye9Kzi6Ww3UqrwcS5PYJ5ohMC7QQS4Gj4OxkojMtT65UlXZ1LFxVMXDXo+9CY+zuWp4pL9XrjbONKwQgDH7hRfhF9e96OiiE6Ip2FVf902E2Njalf24fzNgoeF5abVajlxJYg74WHUruxTpOXLzMzk+tVr1K6v3/lcu35dgi4aPp+DLl7Kl75Og7pcv3KVrIfDtP1rVOP61WtcvZx9TEPvPyDw6HHqNzbcSVzUVAol5e3cuJwnyigoIjhfR0hBGntW40rEHWJSEvS2d6nSmKT0VI4EF1/nNGR/P4XevodXgK/e9ooBvty7HlxgvnP7jxMbHkXz1zo81etkpmegUWswtzIclf2sMjMzuXHtGrXq5Tmn6tUh6KLhYfpXLl2mdr06+unr1+X6lWu6cyozMwNjUxO9NCYmplw+b/jznJmZyd4du2jXpWORDF1TKVVUdCiTL9LoXOgNfJwNT5dxLTIERwsbapbJjtyzNbOkQXl/ztzXb297VWtFQloye28+/iZoYb2sba2RUoW3Y1nOPLimt/3M/Wv4uRj+LjRWGZGZZwhtRlYmPk4eqBTF331gpFTh4+SR77v31L2r+LsavmlnrDLKN+w3PSsTX+fyemXuX7sjcalJbLt6rOgL/oJTKhQv7OP/Kxk3JoR4JnPnzqV///4AdOzYkaSkJHbv3k3btvp3nr7//nvatcu+M5icnMzUqVPZs2cPjRpl34WrWLEihw4d4s8//6RFixYYGxszfvx4XX4vLy+OHDnCypUr6d27t8GyzJo1i4oVKzJt2jQUCgW+vr5cuHCByZMn69L8/PPP9OvXj48//hiAypUrM2PGDFq0aMGsWbMwK2AYVG6tW7fWe/7nn39ib2/P/v376dq1q8E8X3/9te7/np6efPrpp6xYsYLRo0cbTJ+enk56uv6wv6ddICM9KQWtRouZtaXedjNrS9ISDEcAmtta0bBvRxzKu6HJVHMr8CI7f1tG+5H9cPXOjmAqU6UiQXsCcfX2wNrJntCrwdw9f91g52tRiY7NHnrgaGunt93Rzo7QiIhC7TvAx4fxH39ChTJliY6LY+6qFQwd8zkrfvsDOxubQu37ZaR4+J5oEvQ7nTUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nCIdomptaoFKqSI+NUlve1xaInbmlQ3muRoZwvSDKxnVoi/GKiOMlCpOhFxm7nHDESveTuWoYO/GzCNri6zcedmaWWGkVOUbOhiTkoCDh+Hz9sTdy3St0oSDt89xLfIuvs7l6ezXCGOVEXZmVkSnJLDnxinszK35vcenKFBgpFKx7uIBlpzZUWx1ySs6ITtyysFavx4ONjaERT8+YiEpNYXOY0eTkZmFSqlgTN83aVClapGWLyEuHo1ag72D/pBHe3t7YqINR+jExsRib58nvYM9arWa+Lh4HJ0cadm2NfGxcXz63kjdVA5de7xCnwH9irT8BbEyNUelVJKYpv/9kJiWjK2rZQG5ctiYWeLvWpF5Jzbpba/oWJbGntX4YffCIi2vISmJyWg1GqxsrfW2W9pakxSXYDBPTFgke1dsYsA3H6JUqQymyWvvik1Y29vi5V80Hb0J8dnnlF2ec8rOwZ7Ygs6p6BjsGuRPr1arSYiLx8HJkdr167J++WoCalTDvWwZzp06w/FDR/SGpeZ27MBhkpKSaNu5fZHUy6aA9jY+NQm7MtYG81yLustvh1fzcbM+uvY28G4Q8wM369L4OpenVaXajNkys0jK+Tgva1trY2qJykC9YlOTqG1h+Nicvn+V9j71OXrnIjej7+PtWI62PvUwVhlhY2ZpcCh7UbI1e1Rm/c9ybGoi9gWU+dS9K3Tya8iR4PNcj7qHj5MHHX0bYqwywtbMipjUBPxdvejo25Dha34q1vIL8bSkM04I8dSuXr3KiRMnWLs2+4enkZERffr0Yd68efk64+rWzbnre/nyZdLS0nSdc49kZGRQK1cE1OzZs/n777+5c+cOqampZGRkULNmzQLLExQURMOGDfXu6j7q7Hvk1KlT3LhxgyVLlui2abVaNBoNt2/fpkqVKk+sd0REBN9++y179uwhPDwctVpNSkoKISEhBeZZvXo106dP58aNGyQlJZGVlYXNYzp8Jk2apNcZCfDdd99h1OTphzEoyHNnSQt5Nz1i6+qIrauj7rlzxbIkxyZwedcJXWdcvV5tObpsKxsnzAEFWDvZU6lhdW4eO//UZXqSrfv2MXHWH7rn07/5Nrsuee6SabXaQt+9b1In55z0Bqr7+dH93XfYtHcP/V/tXqh9vwyMG9bFYmBf3fOk6bOy/2Oo8/UxHbJGvpUx69qB1MUryLp1B5WrE+Z9e6GJTyD935wFXzRh4SSOm4TCwgLjOjWxeHsASZN/LdIOOQAt+mXN9znJpZytC0Prd2XVuT2cfXAde3NrBtbpyLuNuhvscGvjXZc7sWHciLpXpGU2JG8nuEKhyFe3Rxae3IqDhQ2zXxsNCohNSWTblWP0q90etTb7x3nNMpUZUKcDUw8sJyg8mLK2znzU9HWi63Ri0amtxVKHrSeOMWnpP7rn00Z8+LAu+um0WgMb87AwNWPJl9+Skp5G4NUrTFu9krJOztTx8X1svueStz3iCe1Rvvbr0ebs7edOn2X5oiW8/+lI/Pyr8ODefWb/+gf28xfz5pABRVr0x8l/9hR8TuXWqEIAqZlpnMsVdWpqZMyQep1Zcno7yQYm3y82+Y6N4UnKNRoN6/9YTLOeHXF0d3mqXR/dtJtLR8/Q/6v3MTIpePqD5/Gs33H5/pRzUgHZcw3O+Gkqw998CxTgXqYMbTt3YNeW7Qb3t2PzVuo2qI+jk9Nz18GQvGePQqEo8AZeWVtnBtftzJoLezn34Ab25ta8WbsDbzd4hT+PrcfMyIQPmvTir+MbSExPKdJyPs7L0NYalKcKCkXBX+XLz+7C3tyaKd0+RAHEpSax+/pJelVvhUZruIO3OOQtn0JhqN3K9s/p7dhbWDOj+ygUZHfc7bh2nD4126LRajA3NmVMqwFMO7ichPSnn6pGiOIknXFCiKc2d+5csrKyKFs2ZxiLVqvF2NiY2Fj9aABLy5y765qHd2Y3b96slxdyor9WrlzJJ598wpQpU2jUqBHW1tb8/PPPHD9e8LxBTxOhpdFoePfdd/noo/wrhT1u4YncBg8eTGRkJNOnT6dChQqYmprSqFEjMjIyDKY/duwYb7zxBuPHj6dDhw7Y2tqyfPlypkyZUuBrjB07llGjRultMzU15ecDT14xzNTKAoVSQWqi/h3ptKTkfNFyj+PsWZZbgTlDr8ysLWg1rCfqzCzSk1Mxt7XizIZ9WDnaPfU+n6R5/foE+OZEHGQ8nFcvKi4WJ4ec6KuY+Hgc7IrudQHMzcyoVMGTuw8eFOl+/6syz14g8VZwzoaHi64obW1Qx+fcnVbaWKNNKPiuuFmPLmQcOUHGwaMAaO4/ABNTLAb1JX3T9pyra7Vat4CDOjgElVd5TNu2JHXR8iKpT2J6CmqNGjtz/bvotmZWxOWJ3njktWotuBJxhw2XDgJwJzaMtKwMfuj0LkvP7CQuVzSAicqYJl7VWXF2V5GUtyDxaUlkadQ4WOh35tubWxObYvg4ZKgzmbz3H37ZvxQHcxuiU+LpVrUpyRmpxKdm/wgZWr8bO66eYHPQEQBuxTzAzNiUz1v0Y/GpbU/VKfOsmlevSYBnznCvjIdDe6MTEnDKFQ0bm5iAo/Xjo1WVSiUeLtmdKr4e5QkODWXBti1F2hlnY2eLUqXMF7EUFxuXL1ruEXsHe2Jj8qaPRaVSYWObXadFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt7cncUhKT0VtUaDjZn+94O1mQUJaU/u9GjsWY3jIZd1nQ0Azpb2OFna8V7j13TbHnUu/d7jU8btmEuUgYnin5eFtSUKpTJfFFxKfCKWtvkjZzJS0wm9fZewO/fZvjC7Y12r1YJWy8SBn9JvzHA8/XMiZo9t3svhjbvo98V7uJYvU2TltrE1fE7Fx8bli5Z7xN7Rgdho/Qnr42Lj9M4pW3s7vpn0PRnpGSQkJODo5Mj8WX/j6p5/saWIsHDOnjzDlz98V0S1ggRde2ult93GzJL4NMPtbXf/5lyLDOHfy9lz/IXEhZN2IoPvO7zDinO7sDWzwsXKntEt39TleXROLe03jk82/kq4gUUVntfL1NbmlpCejFqjzhdRZmdmpfedpl+vLH49tIrfD6/Bztya2NQEOvg2JCUj7anaiMKKT8suc95jYWdmTdxjjsWU/cuYfmAF9hbWxKQk0NmvMckZacSnJVPRsQzuNo5M6PCOLs+j82nb21MZsuIHQhNf7jnkFCUwxFg8G+mME0I8laysLBYtWsSUKVNo315/WEPPnj1ZsmRJgfOwVa1aFVNTU0JCQmjRooXBNAcPHqRx48aMGDFCt+3mE+YMqlq1KuvXr9fbduyY/hwQtWvX5tKlS3h7ez92X49z8OBBZs6cSefOnYHsueqioqIKTH/48GEqVKjAV199pdt2586dAtNDdsfb0w5LzUtlpMLBw43QK8GUr5HzQzT0SjDlqhkejmdIzL1wzG3zd96pjI2wsLNGo1YTcvYqFWo/OZrwaVlaWOitkKrVanG0t+f42bP4VawEZM9tc/rSRT4cOKjIXheyO/6C792lVtWiHdr2n5WWjibPCqmauHiMqvqhDnkY+aVSYeTrTeqqDQXvx8Qk/+1srabAKM0cChRFuOpylkbNzegH1HD35kRIzlxM1ct4E3jX8NxMpkbG+YZ1PYoCyFv8Jp7VMFap2H/r8YukFFaWRs21yBDqelTh4O1zuu11y/lxKPjxUapqjUa3Ul4b77ocCb6o++FnZmSS74aGRqNBoXh8xERhWJqZ6a2QqtVqcbSx5XjQZXw9sm+OZGZlcfr6NT7s0fOZ9q1FS0ZW1pMTPgNjY2Mq+/pwJvAUTVo0020/E3iKhk0bG8xTJcCf44eP6m07feIklf18dauKp6en5etwUyqVaLXaYp0G4BG1VkNIXBhVXCroRbdlP3/8IhiVnTxwsbLPNydcWGI0E3bO19vWzb8pZkYmrDq3h9gUw0NHn5fKyAh3r3LcvngNv3rVddtvX7yGT538K+qampvyziT9aSJO7TrMncvXee2jwdg559z8ObppD4c37KTvmHcpU/Hpbto9LWNjY7x9ss+pxi2a6rafOVnwOeXnX5UTR/TPqTOBJ6ns55NvpXoTUxOcnJ3IysriyP6DNGud/5pr5+Zt2NrbUb9RwyKoUTa1Rs2tmAdUd6ukN+dadbdKnLxneL5Xw+1t9vmvQMGD+Cg++/c3vb/3qdkWMyMTFp7cQlQRn1MvU1ubW5ZGzY3o+9QsU1lvwZWaZXw4HlLAXK4PqbUa3Uq4zb1qcOJuULF3HsLDYxF1l9plfTmc672vXc73ifNRqrUa3eIxrSrV5njIJbRoCYkL551VP+qlHVyvMxbGZsw8stbgqrJCFDfpjBNCPJVNmzYRGxvL0KFDsc2zAmWvXr2YO3dugZ1x1tbWfPbZZ3zyySdoNBqaNm1KQkICR44cwcrKikGDBuHt7c2iRYvYvn07Xl5eLF68mMDAQLy8Cl5dcfjw4UyZMoVRo0bx7rvvcurUqXyru44ZM4aGDRvy/vvv884772BpaUlQUBA7d+7kt99+M7zjPLy9vVm8eDF169YlISGBzz//HHNz88emDwkJYfny5dSrV4/Nmzezbt26p3qt51W1dX0OL/oXx/JuOHuV5drhsyTHJODTLHsY8OkN+0iNT6TJwG4ABO0NxNLBFjt3JzRqNbdOXCLk7FVavN1Dt8/I4AekxiViX86VlLhEzm85hFarxb9t8U0yrlAo6NvtFeavXkV59zJ4lCnD/NUrMTMxpWPznB8V306bioujIx887KDLzMzk1t27D/+fRWR0NFdv3cLC3AwP9+yohunz59KsXn3cnJ2JjYtn7qoVJKek0LV1m2Krz5OYG5tSztZZ97yMjROVncqRkJZcpHf8n1f6zr2YdW2PJiICdXgkZl06oM3IJOP4SV0ai7cHoImNJ21N9uqSWecuYtq+FeqQe6hvBaN0ccase1cyz17Q/eowe60bmRcuo42JBTMzTBrUwcivMslTi3ZeoH8vH+Kjpq9zM/o+VyNDaOdTDydLW3ZcPQHAm7Xb42Bhw2+HslccPHn3CsMb96CDbwPO3r+Gnbk1b9XvyrXIu/nmyGlduS4nQoJISi/+IXkrz+3hqzaDuBpxh0vht+lWtQku1vZsuJgdwTes4as4Wdox8eFcXeVsXaji6klQ+G2sTS3oXaMNXo7uTNyTM5fXkTsX6F2jNdei7uqGTg1t0JXDwRd0P4iLm0KhoG/rNszftgUPFxc8nF1ZsG0LZiYmdKiX0858t2Auznb2fNA9O+pq/rYtVK3gSVknZ7LUWRy+eIHNx47xRd83C3qp5/Zan9f5ecIkKvv5UiWgKls3bCIiPJwuPbLb0nmz5hAdFcXn34wFoEv3bmxcs54/Z8yk0ytdCLp4me2btvLFuJx5RBs0acS65aup5OONX9XsYaqL5synYdPGqB7OZZaaksqDezkL8IQ9COXmtRtY21jj4uZa6Hrtvn6SwfW6cCc2jNsxD2jqVQN7CxtdJ8Sr/s2wM7dm4cktevmaeFbjdvQDHiTo35DK0qjzbUvNyO7cz7u9qDTo1JINs5bgXtGDct6enNl7hPjoWGq3ye7U2rtiE4mx8bwy/E0USiUuHu56+S1trFAZG+ltP7ppN/tXb6X7iAHYOjnoIu9MzEwxMXu+G2Z59XijJ1MmTKaynw9+AVXZtnEzkeERdO6efU4tmP030ZFRfPpN9oJUnbt3ZdPaDcz5bRYdunXmysXL7Ni0jdHjvtTt88qlIKKjoqjoXYnoqGiWzluERqOhZ78+eq+t0WjYuWU7bTq2Q2X0dPPmPa3NQUf4oHFPbsY84HrkXdpUrouTpS07r2e3t31rtsPBwoY/jqwBsifjH9bwVdpVrse50OxhqoPqduJ6VE57ezdef67YR0Og824vKi9rW7v+4gFGNX+DG1H3CIq4Q0ffBjhb2bHlSnYn76A6nXC0tGXqgezI9DI2Tvg4l+daZAhWJuZ0D2hOBXs3ph1cUSLlBVhzfh9jWvXnWlQIQeHBdK7SGBcrezYFZUdSvlWvK06Wtvy0L3samrK2zvg5V+BKxB2sTM3pWb0Vng7uur9nqrMIjg3Ve43kh9/febcLUVKkM04I8VTmzp1L27Zt83XEQXZk3MSJEzl9uuCVriZMmICLiwuTJk3i1q1b2NnZUbt2bb78Mvticvjw4Zw9e5Y+ffpk/0Dr25cRI0awdWvB82mUL1+eNWvW8MknnzBz5kzq16/PxIkTeeutt3Rpqlevzv79+/nqq69o1qwZWq2WSpUq0adPnwL3m9e8efMYNmwYtWrVonz58kycOJHPPvuswPSvvvoqn3zyCR988AHp6el06dKFb775hnHjxj31az4rzzpVSE9O5fzWw6QmJGPn7kTrEa9j5ZB9vFITkkiOybmLrMlSc3rdHlLik1AZG2Wnf+91yvpXykmTmcXZTQdIjIrD2NSEsv4VaTKwKyYWT170ojAGvdaT9IwMfvxzFolJSQT4+PD7+O/1IujCoiJRKnNilSJjYnjzk5G654vXr2Px+nXUDgjgrx8mARAeFc1Xv/xCXGIC9jY2BPj6Mv+nX3B3ebr5g4qDn3MFfu+RMzz5o6avA7Al6Cg/5LqYLy3pW3ehMDHBvH8fFJYWqG8FkzTld8gVQad0cABNzg+KtH+3odVqMevRFaW9LdrEJDLPXSRtTc4iCApbayzfGYjC1gZtahrqe/dJnjqTrMuFXzE3tyPBF7A2teD1Gq2xN7cmJC6cibsX6u6A25tb42Rpp0u/9+ZpzIxN6eTXkEF1O5GckcaF0Jv8c1p/3iV3G0equnoyfse8Ii1vQfbcOIWNqSWD6nbG0dKG29GhjNk0k/Ck7KFujhY2uFrlDHFTKZX0qdGG8nauZGnUnLl/jRFrfyEsMWdo3KKTW9FqtbzdoBvOlnbEpSZxJPgCc45vLJE6PTKwfUfSMzOZvGwpiSnJ+HtV5LcPP9GLoAuLidGbTystPZ3Jy5YQEReLqbExFdzc+X7IUNrXrVfk5WvRthUJCQksmb+I2OgYKlT0ZMIvk3B1yx7+FxMdQ0R4TseAWxl3JvwyiT9n/MGmtRtwcHLkvY8/oGmr5ro0/QYNQKFQsPCveURHRmFrb0eDJo0YPGyoLs21K1cZ82FO2/DXb9lzOLbt1IHPvh5T6HqduncVSxNzulRpjI2ZJaEJUfxxeI1udVRbMysc8gxrMzMyoVZZH1ae21Po1y8KVRvWIiUxmUPrtpMUl4BzOXfe+HwYtk7ZUW5JcQnERz3bTY1Tuw6jzlKzZsYCve3NenSgec+ORVLu5m1akRCfwLIF/xATHUMFL0/G/zxR18kaEx1DZJ5zavzPPzDnt1lsWrsRRydH3v34fZq0zDmnMjMyWDxnPmEPQjE3N6duw/p8+s0YrKz1h42ePXmayPAI2nfpVCR1ye3onYtYm1rQs1pL7M2tuRsXzo97F+uilOzMrXC0zLmG3H/rDObGJnTwbciAOh1JzkjjUvhtlpw2PM9dSXhZ29qDt89hbWrBGzXb4mBhw53YMMbtmJvzXWhhg3Ou70KlQkmPgOaUtXVGrVFzPvQmn2/6g4gSvEm4/9YZbMws6V+7Aw4WtgTHhPLV1j91ZXC0sMEl97FQKOlVvRXl7FxQa9ScfXCdkRum646dePycuaJ0KLQlEQ8vhBDiufwvz7Cf/6Kv2w0h8cq10i5GoVj7+dDkj+GlXYxCO/z+bOLeMhzB+l9hN+93ei788skJX3BrBk2k+cwRT074gjswYiYJew6UdjEKxaZ1c25H3X9ywhecl1NZ3lvzc2kXo1Bm9fycRYFbnpzwBTewXmduRN4t7WIUmrezB33++aa0i1EoK/pPeGna2q7zPi/tYhTKprd+pt1fI5+c8AW3c9ivpV2E5/LF5lmlXYQC/djlvdIuQqmQWfyEEEIIIYQQQgghhCghMkxVCCGEEEIIIYQQ4iWlVMgw1ReNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SChmm+sKRyDghhBBCCCGEEEIIIUqIdMYJIYQQQgghhBBCCFFCZJiqEEIIIYQQQgghxEtKVlN98UhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEyTFUIIYQQQgghhBDiJaVAhqm+aCQyTgghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxklLIaqovHImME0IIIYQQQgghhBCihEhnnBBCCCGEEEIIIYQQJUSGqQohhBBCCCGEEEK8pJQyTPWFI5FxQgghhBBCCCGEEEKUEOmME0IIIYQQQgghhBCihMgwVSGEEEIIIYQQQoiXlKym+uJRaLVabWkXQgghhBBCCCGEEEIUve93zivtIhTo23ZvlXYRSoVExgkhxAsstl2P0i5CodnvXEfCrr2lXYxCsWnbiri3PijtYhSa3bzfafLH8NIuRqEcfn82ccNHlXYxCs1u9lTihn5Y2sUoNLu5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZbNLu0iyDySNiyo7SLUCg2ndsT98mXpV2MQrObNpG4N4aWdjEKxW75XL7dNqe0i1Fo33d8p7SLIF4SMmecEEIIIYQQQgghhBAlRCLjhBBCCCGEEEIIIV5SSmTOuBeNRMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5SCoUMU33RSGScEEIIIYQQQgghhBAlRDrjhBBCCCGEEEIIIYQoITJMVQghhBBCCCGEEOIlJcNUXzwSGSeEEEIIIYQQQgghRAmRzjghhBBCCCGEEEIIIUqIDFMVQgghhBBCCCGEeEkpZZjqC0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLykFMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooRIZ5wQz+jkyZNMmzYNjUZT2kURQgghhBBCCCEeS6lQvLCP/6+kM0785wUHB6NQKDh79myR7VOhULB+/fp826OioujduzcBAQEolUX/8Rk3bhw1a9Ys8v3+fzJ48GC6d+/+1On37duHQqEgLi7uuV9zwYIF2NnZPXd+IYQQQgghhBD/f8gCDqJUDR48mIULFwKgUqkoU6YMXbp0YeLEidjb25dauUJDQ/O9vlarZeDAgXz77be0a9eulEr2clAoFKxbt+6ZOs1E0TJu2hDTLu1RVa6E0taGhOGfoL4ZXNrFArI/a3O2bGLd4UMkpqTg7+nJ6N59qVSmTIF59pw9w4LtW7kbGUmWWo2Hswv927Slc4OGujSnr19n8a4dXLkbQlR8PD8PG07LGjWLtS5mr3bGpEUTFBbmqG/dIeWfFWgehD02j2m7lpi0aobSwR5tUjIZJ8+QtnojZGUBYNKyKaatmqF0cgBAfT+MtH+3knXhcrHW5XFquHvTr1Z7/FzK42RpxxdbZnHw9rlSK48hZl07YNK0IQoLC9TBd0hZtgZNaHiB6a1GjcDIxzvf9swLl0n+4+/sJ6ammL/SCeOaASisrVHfvUfqyvWo79wtnjq80kn/fFqy8snnU9uWmLRqmut8OkvampzzybRzO4xr10Dl7oo2IxP1zdukrtqAJjyiWOrwLF7kdiovrVbLnM3/su7wwYftlhej+/R7fLt15vTDdisiu91ycaF/m3Z0btCoxMpt1qMrJi2borC0QH0zmJRFy9DcD31sHtMOrTFp3RylowPaxCQyAs+QtmodZGbp0ijs7TDv3QOjGv4ojE3QhIWTMncx6uCQ4q6SKEVarZY527ey7uhhElNT8S9fgdE9e1PJ3b3APHvOn2XBzh3cjYoiS6PGw8mZ/i1b07lefV2av7ZtYc72rXr5HKyt2f79xGKri1mHNpg0qofC3Bx1yF1S1mxEE1Zwu2j1/tsYeVfMtz3z8hWS5yzKt920TQvMu3Ygff9hUtdvLtKyP2LW6xVMWrdAYWWB+sYtUuYtQXPvwWPzmHZqi0m7ViidHn6+j58kbdmanM+3mRnmvbtjXK82Cltr1MEhpC5YhvpWcJGXv55HFZp61cDK1JzIpFi2XjnGndiCv/NUCiUtvWtTo4w3VqYWJKQls//mGc7cvwZAnXK+1Czjg4t19m+8B/FR7LoeyP34yCIvuxBPQzrjRKnr2LEj8+fPJysri8uXL/PWW28RFxfHsmXLSq1Mbm5u+bYpFAq2bNlSCqURougpzEzJunSFjANHsBz1fmkXR8+inTtYumc33w4YRHkXF+Zt28oHv//K6m/HY2lmZjCPrYUFQzp0wtPNDWOVEQcvnuf7fxZhb21No6r+AKRmpONTrhzdGjVmzJw/i70epp3aYtq+FSlz/0EdHoFZ145YffYhCV9+D2npBvMYN6yLWa9XSZm3BPWNWyjdXLAYOgCAtOVrAdDExpG6egOaiCgATJo0wPLDYSSO+/GJHTPFxdzYlBvR99hy5QgTOw0vlTI8jmn71pi2aUHKwmWoIyIx69QOq5HDSfjuR0g3fCySZy8AI5XuucLSAuuvPyPzdE4no8WA3qjKuJM8fyna+ARMGtTB6uPhJIz/CW1cfNHW4dH5NG/Jw/OpA1affkDCVxMKPp8a1MWs1yukzF+C+sbt7PPprf4ApK3IPp+MfLzJ2HuQrNt3QKnC/LWuWH36Pglf/wAZGUVah2f1IrdTeS3auZ2le3bx7YDBlHd1Zd7WzXzw2zRWfzeh4HbL0pIhHTvj6eqGsZGKgxcu8P3ihdhb2+jareJk2qU9ph3bkDJnIerQCMxe7YTV6JEkjPmu4HOqUX3MXu9BytxFqK8/bKPeGQRA2tJVACgsLLD++nMyg66S/MvvaBMSUbo4oU1JKfY6idK1aM8ulu7by7f93qS8swvzdm7ng9m/s3rsN4/5/rZkSLsOeLq6YqxScfDSJb5fviT7+9uvii5dRTd3/njvA91zlbL4hraZtm6OacsmpCxdgzoyCrN2rbAa/hYJk6ZCuuF2MXn+ElDl+c747EMyz17Ml1blURaTRvVQP6Hju1B1eKUTpp3bkzJrHurQcMxe64rVl5+SMOorSEszmMe4SQPM+vYi5c/5qK/dQOnuhsXwtwBIW7QCAIt3B6EqV5bkP/5GGxuHSbOGWH39KQmffoM2Nq7Iyh/gVpFOVRqx6fJhQmLDqefhR/86Hfn90Cri05IN5uldsw1Wpuasv3iAmJQELE3M9YZAejqU4XzoDe4GhZOlUdPUqwYD63bi90OrSUx/+dsnxf/j4aAvKhmmKkqdqakpbm5ulCtXjvbt29OnTx927Nihl2b+/PlUqVIFMzMz/Pz8mDlzZoH7U6vVDB06FC8vL8zNzfH19eXXX3/Nl27evHn4+/tjamqKu7s7H3yQ8wWfd5jqhQsXaN26Nebm5jg6OjJs2DCSkpJ0f380NPKXX37B3d0dR0dH3n//fTIzMx9b9x9//BFXV1esra0ZOnQoaQa+HJ+l7gDbtm2jadOm2NnZ4ejoSNeuXbl586bu7xkZGXzwwQe4u7tjZmaGp6cnkyZN0qv7rFmz6NSpE+bm5nh5ebFq1Sq917h//z59+vTB3t4eR0dHXn31VYKDg5/q/fX09ASgR48eKBQK3XOAWbNmUalSJUxMTPD19WXx4sWPratarWbUqFG6uo4ePRqtVquXRqvV8tNPP1GxYkXMzc2pUaMGq1evfux+85o6dSrVqlXD0tISDw8PRowYoXf887p58yavvvoqrq6uWFlZUa9ePXbt2vVMr1ncMnbtJ+2flWSdfrGil7RaLcv27mZIh060rlkL7zJlGTdgEGkZGWwPPFFgvjo+vrSqWQsvN3fKOTvTt1UbvMuW5Wyuc7+JfwDvdXuV1jVrlURVMG3XirRN28k8fQ7N/VBS5i5GYWKMSYO6BeYxquRF1vVbZB4/iSY6Jrsj4vhJjDzL69JknbtI1oXLaMIj0IRHkLb2X7Rp6RhV8iqJahl0LOQSc45vZP+ts6VWhscxbdOctK27yDx7Ac2DMFIWLkVhYoJJ/doF5tGmpKBNSNQ9jKv4QkYmGacefmaMjTGuVZ3Utf+ivnELTWQUaZu2o4mKwbR546KvQ9uWpG3eket8+ufpzqcbt8g8firX+XRK73xKnj6LjMPH0TwIQ3PvPinzlqB0dEDl6VHkdXhWL2o7lZdWq2XZnl0M6diZ1rVqZ7dbA4c8bLeOF5hP1265u1PO2YW+rR+1WzdKpNymHdqQtnErmSfPorn/gJS/FmZ/LhrVLzCPkXdFsq7fJPNoIJqoaLIuBpFxLBAjr5xzyrRrezQxMaT+vQj1reDsdJev6m4giJeTVqtl2f59DGnXntbVa+LtXoZx/fqTlpHJ9tMnC8xXx7syrarXwMvVjXJOzvRt0RJv9zKcvXVTL51KqcTJxkb3sLeyLra6mLZoTNrOfWReuJQd1bl0VXZ7W7tmgXm0KaloE5N0D2Mfb8jMJOPcBf2EJiZY9O9D6sp1aFNTi68OndqStn4zmYGns9v2mXNRmJpg0qRBgXmMfCqRde0GmYePo4mMJuv8JTKOHMeoomd2AmNjjOvXIXXpatRXrmVfg6zeiCYiCtN2rYq0/I09q3H63lVO37tKVHIcW68cIyEtiXrlqxpM7+1UDk8Hd/45tZ1b0Q+IS03ifnwkd+NyohnXnN9L4N0gwhJjiEqOZ8PFgygUCio6li3SsgvxtKQzTrxQbt26xbZt2zA2NtZtmzNnDl999RU//PADQUFBTJw4kW+++UY3vDUvjUZDuXLlWLlyJZcvX+bbb7/lyy+/ZOXKlbo0s2bN4v3332fYsGFcuHCBjRs34u2dfzgSQEpKCh07dsTe3p7AwEBWrVrFrl279DrvAPbu3cvNmzfZu3cvCxcuZMGCBSxYsKDAuq5cuZLvvvuOH374gZMnT+Lu7p6vo+1Z6w6QnJzMqFGjCAwMZPfu3SiVSnr06KFbcGLGjBls3LiRlStXcvXqVf755x+9DjGAb775hp49e3Lu3Dn69+9P3759CQoK0r0frVq1wsrKigMHDnDo0CGsrKzo2LEjGQ+jKB73/gYGBgLZnYyhoaG65+vWrWPkyJF8+umnXLx4kXfffZchQ4awd+/eAus6ZcoU5s2bx9y5czl06BAxMTGsW7dOL83XX3/N/PnzmTVrFpcuXeKTTz6hf//+7N+/v8D95qVUKpkxYwYXL15k4cKF7Nmzh9GjRxeYPikpic6dO7Nr1y7OnDlDhw4d6NatGyEhMjznSe5HRxGdkEDDKjl3w02MjantXZnzt2891T60Wi0nrlzhTng4tQv4XBc3pbMjSjtbsi5dydmYlUXW1RsGh7Hokly/hZGnByqvCrr9GFfzJ/P8JcMZFAqM69dBYWpC1s3bRVmFl4bSyQGlrQ1ZQVdzNmapybp+M+cHxlMwadKAjJNncqLFlEoUKpXe0DwAbWYmRt5F2zGqdHrM+fSYTtisGzcxqpDrfHJyxLha1YLPJ0BhkR29ok1++aMEikpOu5XzI9HE2JjalX04f+tZ2q2gh+1W5eIqqo7S2Sn7nLoYlLMxK4usq9cxqvyYNuraDYw8y6N6+NlROjthXCOAzHM50T/GtWqQdTsEiw/eweb3n7Ca8CUmLZsWV1XEC+J+dDTRiQk09PXTbTMxMqa2tzfnbz/d95NWq+XEtavciYygdiX97++7UZF0+u4rXp3wHV8ums+9qOLp3FU62qO0sSHr6vWcjWo1WTdu63U6P4lJg7pknDkPGfo35i16vUJm0BWyrt0sIGfhKV2cUNrbkZW7rc/KIivoKkY+lQrMl3XlBkZeFVA9/F5RujhhXKsamafPZydQqR5+7+nXSZuRiZFf0V1vqRRK3G2cuBl1X2/7jaj7lLdzNZjHz6UCD+KjaOpVnc9a9uOjZr3p4NsAI6XKYHoAY5URKoWS1EzDkcBCFDcZpipK3aZNm7CyskKtVusiw6ZOnar7+4QJE5gyZQqvvfYaAF5eXly+fJk///yTQYMG5dufsbEx48eP1z338vLiyJEjrFy5kt69ewPwv//9j08//ZSRI0fq0tWrV89g+ZYsWUJqaiqLFi3C0tISgN9//51u3boxefJkXF2zvxTs7e35/fffUalU+Pn50aVLF3bv3s0777xjcL/Tp0/nrbfe4u2339aVadeuXXrRcc9ad4CePXvqPZ87dy4uLi5cvnyZgIAAQkJCqFy5Mk2bNkWhUFChQoV8+3j99dd15ZowYQI7d+7kt99+Y+bMmSxfvhylUsnff/+tC3eeP38+dnZ27Nu3j/bt2z/2/XV2dgbAzs5ObzjwL7/8wuDBgxkxYgQAo0aN4tixY/zyyy+0amX4btv06dMZO3asrs6zZ89m+/btur8nJyczdepU9uzZQ6NG2XPwVKxYkUOHDvHnn3/SokULg/vN6+OPP9b938vLiwkTJvDee+8VGKVYo0YNatSooXv+v//9j3Xr1rFx48Z8nbhCX3RCAgAO1jZ62x1sbAiLiXls3qTUVDp/+QUZWZmolErG9OlLgyqG76AWN4VNdvk1CYl62zUJiSgdHQrMl3niFKnWVliN/QRQoDBSkb7nAOlbduqlU5Ytg/VXn4KxEaSnk/z7nFIbovqie+yxcHi6uUlVnuVRlXUnZfGKnI3p6WTdvI1Zl3Ykh4VnR8/Vq43Ks3yRRwApbB/VIUFv+5PPp9OkWllh9cXH6M6nvQdJ37qzwDzmfV4j69rNJ84bJnJExxfQblnbEBYT/di8SakpdP5yDBmZD9utN/qVSLulO6fi85xT8Qm6+SgNyTx+klQbK6y+/gzdObV7P+mbcr57lc5OmLZuTvq2XST/uw1VRU/M+/dGm5lJ5uGCIwXFf1t0YgGfAytrwmKf4vt73NdkZGVlfw569aZBrk49/woVGN9vAOWdXYhOTGDezu0MnTGVFWO+wu7htXlRUVhnR9xpEvVHQGiSklDa2z3VPlTly6Eq40bKw+kAHjGuVR1V2TKkTHv8KJfCUtjZAgV9vh0LzJd59ET253v8F9n7MTIifcde0jc+nK8vLY2sazcwe60ryfdD0cbFY9ykASpvr8fOp/esLEzMUCmVJGXo3xRKzkjFytTcYB57c2vK27uSpVGz7MxOLIzN6OrfBHNjU9ZfPGAwTzufeiSkJXMr+r7Bv79sFAqJw3rRSGecKHWtWrVi1qxZpKSk8Pfff3Pt2jU+/PBDACIjI7l79y5Dhw7V69TKysrC1ta2wH3Onj2bv//+mzt37pCamkpGRoZuldKIiAgePHhAmzZtnqp8QUFB1KhRQ9cRB9CkSRM0Gg1Xr17Vdcb5+/ujyjVXhLu7OxcuXMi3v9z7HT5cf26lRo0a6SLBnrfuN2/e5JtvvuHYsWNERUXpIuJCQkIICAhg8ODBtGvXDl9fXzp27EjXrl1p3759vnLkff5otdpTp05x48YNrK31hwekpaVx8+bNZ35/c78fw4YN09vWpEkTg0OMAeLj4wkNDdUrq5GREXXr1tUNVb18+TJpaWn5FtzIyMigVq2nH6q4d+9eJk6cyOXLl0lISCArK4u0tDSSk5P1zotHkpOTGT9+PJs2beLBgwdkZWWRmpr62Mi49PR00vPMXWVqavrUZXwck9bNsfg451xL+nKCfjREKdp64jiTli3VPZ82InteqLzzWuQdfmyIhakpS8Z+RUp6OoFXrzBt7WrKOjlRx8e3aAttgHHDulgM7Kt7njR9VvZ/DJX7MXUx8q2MWdcOpC5eQdatO6hcnTDv2wtNfALp/27TpdOEhZM4bhIKCwuM69TE4u0BJE3+VTrkAOP6tbHo97ruedKjxRbyvu/PMHeKSeMGqO+H5pt8PmX+UiwGvoHt5HFo1WrUd++TGXgGVfnCDXkxblAXi4Fv6J4n/To7+z95Tx2F4gnnk3f2+fTPSrJuBaNycca8b080XTvodZ48Yv7m66jKlSHxx+mFKv/zeJHbqbyy261/dM+nPZzHKu8ppUX7xPPMwtSMJWO/edhuBTFtzSrKOjkXebtl3Kg+FkP66Z4nTfnjYSENfC4e09wa+flg1q0TqQuXkXXzNipXF8z790YTF0/6hofz6ioVqG/fIW31BgDUd+6iKuuOaZsW0hn3Etl6KpBJK5frnk97J/vzm/eMf7rPgSlLPvuClIx0Aq9dZdr6dZR1dKLOwyjRJlVy5lD0pgzVPb3o/sN4Ngce582WrQtVD+PaNbDo3V33PMnAYgvZHv/ZyM2kQV3UD8JQh9zLyW1ni3mPriTNnqdbQKeoGDdpgMU7A3XPkyY/vHbO9/3whO+Mqr6Y9ehK6tx/yLpxC5WbC+aD+qKJ60r62k0ApPzxNxbvDsF21pTs773bd8g8fFwXgV3cCir+o+vG1ef3kJ6VHbm37cox+tRsy6bLh8nSqPXSN/WqTjX3Ssw/sTnf34QoKdIZJ0qdpaWlbgjjjBkzaNWqFePHj2fChAm6jqQ5c+bQoIH+HAe5O75yW7lyJZ988glTpkyhUaNGWFtb8/PPP3P8ePYFoLm54TsqBdFqtQVOeJl7e+6htY/+9qj8z+N56g7QrVs3PDw8mDNnDmXKlEGj0RAQEKAbQlq7dm1u377N1q1b2bVrF71796Zt27ZPnEftUV01Gg116tRhyZIl+dI4OzujVD7/XRdDHTCFmWz00Xu4efNmypbV/3H8tB1dd+7coXPnzgwfPpwJEybg4ODAoUOHGDp0aIFzAn7++eds376dX375BW9vb8zNzenVq5fuGBgyadIkvYhOgO+++46RBaR/FhlHT5B15ZruuSbq8XeoS1Lz6jUI8MwZZpfx8AI1OiEep1ydzrGJiTja2OTLn5tSqcTDxQUAXw8PgsPDWLBje4l0xmWevUBi7pXEjLK/XpW2Nqhz3ZlW2lijzROhlZtZjy5kHDlBxsGjAGjuPwATUywG9c3uPHl0FapW66Kv1MEhqLzKY9q2JamLlhe06/83Ms9dIvF2rk6zh4swKG1tUOd675XWVo89FjrGxpjUq0lqrs7QRzRR0SRN/QNMTFCYmaJNSMTi7QGF/oxlnrtA4vjgXHUo4Hx6Qh3Muncl42ju8ykUTE2wGNiX9M079H7VmPfrhXHNaiRN/rVIJ+F+Wi9yO5VXwe1WAk62drrtsYmJOFo/Y7sVFsaC7VuLvN3KPHOOxNxD2Y0fnlN2tgbaqIS82XXMenYj48hxMvYfBshemdHUBIsh/bOjZ7RatHHx+SamVz8Iw7huwXM0iv+e5v7VCPjMU/dc9zlITND//k5KwvEJ87splUo8Ho6c8C1bjuDwcBbs2qHrjMvL3NQUb/cy3I0s/CqYmZeCSPwl1wrYj9pbayv97wwrS7SPmS9Yx9gYk1rVSd2mP1ewUbkyKK2tsM61GI1CpUJV0ROTpg2J//zbx3aUPbYOp86ReCPXNWTuz3euxYSUttZo4x/z+e7dnYyDR8nYexAAzd37YGqKxTsDSV+3GbRaNOGRJH3/E5iaoDA3RxsXj8XId4s0IjwlIw21RoOViYXedksTc5IzDM+zl5ieQkJasq4jDiAyKQ6lQoGNmSUxKTn1buJZjWYVa7IwcAvhSS/ud414+UlnnHjhfPfdd3Tq1In33nuPMmXKULZsWW7dusWbb775VPkPHjxI48aNdcMdAb0FDKytrfH09GT37t0FDn/MrWrVqixcuFAvCurw4cMolUp8fHyesXY5qlSpwrFjxxg4MOdO1rFjx3T/d3V1fea6R0dHExQUxJ9//kmzZs0AOHToUL50NjY29OnThz59+tCrVy86duxITEwMDg4OunLkLdejSLLatWuzYsUKXFxcsCmgc+RJ76+xsTFqtf5dqCpVqnDo0CG91z1y5AhVcs0dlputrS3u7u4cO3aM5s2bA9lRg6dOnaJ27ewL/qpVq2JqakpISMhTD0nN6+TJk2RlZTFlyhRdR2Pu+QcNOXjwIIMHD6ZHjx5A9hxyeRe4yGvs2LGMGjVKb5upqSkpXd8oIMczSE1Dk/piRkxZmpnprbCm1WpxtLHh+JUgfD2y52bJzMri9I3rfPhqj2fat1arJSPr8YuoFJm0dDR5Vh/UxMVjVNUv5864SoWRrzepqzYUvB8Tk/wX41pN/lCDfBQojOQrHYD0dDSReY5FfAJGVXxQ3304FEWlwqhyJVLXbXri7kzq1gQjIzKPnyo4UUYG2owMFBbmGFf1I3Xtv4WoAI85n3zzn0+rNz6m8Mb5zyeNNt/5ZN7vdYxrVyfppxlooh4/rLLYvMDtVF4FtltBl/XbrevX+LD7a8+07+x2q2ijZoCH55R+x4UmLh4j/yqo7zzsiFCpMPKtTOrKdQZ28JCJSfY5pLcj/TYq6/pNVO768zop3VzRRJfSuSWKhcHPgbUNx69exbdc9gIw2d/fN/iw2yvPtG8tj/8cZGRlEhweTs2KBc9/9tTSM9Ck63fIaBISMPL1zulUVqkw8vYi9d/8EcV5mdSsBkYqMk+e0dueef0mCY8i1h6y6NsTTUQkabsPPHdHHABpaWjyLAKniY3DqFrVnIhulQqjKr6kLn3MzXdD1yAajeHIxvQMtOkZKCwtMK4eQOrSVfnTPCe1VkNoQhSVnMoSFBGs217JqSxXIu4YzBMSG46/W0VMVEZkqLPPHSdLWzRaDQm5Vl9t4lmdFpVqsejkVh4k/P9aVEb55ItJUcLkyl28cFq2bIm/vz8TJ07k999/Z9y4cXz00UfY2NjQqVMn0tPTOXnyJLGxsfk6LwC8vb1ZtGgR27dvx8vLi8WLFxMYGIiXV85d7HHjxjF8+HBcXFzo1KkTiYmJHD58WDc8Nrc333yT7777jkGDBjFu3DgiIyP58MMPGTBggG6I6vMYOXIkgwYNom7dujRt2pQlS5Zw6dIlKlbMmTj5Wev+aHXTv/76C3d3d0JCQvjiiy/00kybNg13d3dq1qyJUqlk1apVuLm5YWdnp0uzatUqvXKdOHGCuXPn6t6Pn3/+mVdffZXvv/+ecuXKERISwtq1a/n8888pV67cE9/fR511TZo0wdTUFHt7ez7//HN69+5N7dq1adOmDf/++y9r16597CqkI0eO5Mcff6Ry5cpUqVKFqVOnEhcXp/u7tbU1n332GZ988gkajYamTZuSkJDAkSNHsLKyKnDevdwqVapEVlYWv/32G926dePw4cPMnj37sXm8vb1Zu3Yt3bp1Q6FQ8M033zwxStLU1NRgtF5xTaGusLZC6eKE4uF8U8py2ZGDmpi4UomK0ZVLoaBvqzbM374ND2cXPFxcWLB9G2YmJnSol7PC33cL5+NsZ8cHDzvo5m/fRtXy5Snr7ExWlprDly6y+fgxvngjZ1hWSlqa3l30B9FRXL17F1tLS9wcCp4j6Xml79yLWdf2aCIiUIdHYtalA9qMTDKO56wqZ/H2ADSx8aStye5QyTp3EdP2rVCH3EN9KxilizNm3buSefaC7gLZ7LVuZF64jDYmFszMMGlQByO/yiRPLd45aB7H3NiUcrbOuudlbJyo7FSOhLRkwpNiS61cj6TvPoBZx7ZoIqJQR0Ri1rEt2owMMk6c1qWxGNwXTVwCaes36+U1adyAzLMXDS5oYFTVF1CgCY9A6eKE+WvdUIdHkHGk4JV/n7sOu/Zh1qU9mvDI7Dp0bp//fBo6AE1sHGkPOwP1z6c7KF2cMOvehcyzF3Xnk3n/3pg0qEPSb3PQpqWhsMmOYNGmpuWbpLukvajtVF4KhYK+rdsyf/tWPFxcs9utbVsftls5ke3fLZiX3W497KCbv20rVStUeNhuZT1st47yRd+nuwFXWOnbd2PWrSOa8AjUYRGYvdIx+3NxNOf8tRg2OPucWrUegKyzFzDt2Ab1nbuob95G6eqCWc9XyDxzXndOpW/bjdU3ozHt1pHM46dQVfLEtFVTUublj6gXLw+FQkHfFi2Zv2sHHs7OeDg7s2DXDsxMjOlQO2fV5++WLMLZ1o4PumZ30M3ftYOqHuUp6+hEljqLw0GX2Rx4gi9e76PLM33DOpr5B+Bmb09sUhJzd2wnOS2NrvUKXhm0MNL3H8GsbUs0kdGoI6Mxa9syu709fVaXxqJf9hQSaZt36OU1aViXzAtBaFPyRHClZ6AJC9fflpGBNjkl//aiqMPWXZh174ImLBx1aARmPTqjTc8gI9dQcYsRQ9HExJK2PHtuu6zT5zDt3B717RDUN26hdHPBrHd3Mk+d1X2+jar7g0KB5kEYSjcXzN98HXVoGBn7Dhdp+Y8EX+C16i11K6LW9fDD1syKwJDs6Qva+tTDxtSStRf2AXAh9AYtK9Wie7UW7L1+CgsTM9r7NuD0vWu6YahNvarTunJdVp/bQ1xqIlYm2aOlMtSZug48IUqSdMaJF9KoUaMYMmQIY8aM4e2338bCwoKff/6Z0aNHY2lpSbVq1fQm1c9t+PDhnD17lj59+mRfGPTty4gRI9i6dasuzaBBg0hLS2PatGl89tlnODk50atXL4P7s7CwYPv27YwcOZJ69ephYWFBz5499RaZeB59+vTh5s2bjBkzhrS0NHr27Ml7772ntwDBs9ZdqVSyfPlyPvroIwICAvD19WXGjBm0bNlSl8bKyorJkydz/fp1VCoV9erVY8uWLXrDS8ePH8/y5csZMWIEbm5uLFmyhKpVq+rejwMHDjBmzBhee+01EhMTKVu2LG3atNFFyj3p/Z0yZQqjRo1izpw5lC1bluDgYLp3786vv/7Kzz//zEcffYSXlxfz58/XK3ten376KaGhoQwePBilUslbb71Fjx49iI/PCcmfMGECLi4uTJo0iVu3bmFnZ0ft2rX58ssvn+o41axZk6lTpzJ58mTGjh1L8+bNmTRpkl4EX17Tpk3jrbfeonHjxjg5OTFmzBgSHjPspzQYN6qH5ecf6Z5nT8YNqYuWk5Z7kvpSMLBde9IzM5i8YhmJKSn4e3rx2wcf6d2BD4uN0RvCnJaRzuQVy4iIi8PU2JgKrm58P/gt2tfJ+QEQFHKH4b9O0z2ftib77nCXBg0ZN3BwkdcjfesuFCYmmPfvg8LSAvWtYJKm/A65Ip6UDg56USZp/25Dq9Vi1qMrSntbtIlJZJ67SNqanEgrha01lu8MRGFrgzY1DfW9+yRPnUnW5SuUFj/nCvzeI+cGwUdNs+ds2xJ0lB/2FLz6c0lJ37EHhYkx5n17orAwR307hKQZf0J67mNhny8iQOnijFHlijlztuWhMDfDrHsXlHZ2aFNSyDxzntT1W7IjCYq6Dlt3oTA2xrx/75zzaeofec4n/TqkbdqOluzhqnrn09qciEDTVtlR1NZj9AfFp8z7R+9HW2l4kdupvAa260B6RgaTly/Jabc+/Dh/u6XM024tX0pEXGyudmso7esaXlCqqKVv3pHdRg3qi8LCAvWt2yT9NEP/nHJ00D+nNmzJbqN6vYLS3i77nDpzXjc/HID69h2SZ8zG/PXumL3aBU1UFKlLVpF5tOg7qcWLZWDrtqRnZjJ59UoSU1Pwr+DJb8Pfz/M5iM3z/Z3B5NUriYh/+P3t4sr3/QfSvlYdXZqI+Di+XryAuORk7K2sCKjgybyPR+FeDDfSANL3HMhub3u9gsLcHPWdeyTNng/pOdONKO3t8n9nODtiVNGTpFnziqVczyJ949bs7723+qOwtER94xZJE6dCrgg6pVOez/faTWi1YNanO0oHe7QJiWSeOkdaroUoFBbmmPXtmf33pOTshaeWrwN10c67djHsFubGprT0ro21qQURiTH8c2ob8WnZQ4WtTS2wNc+ZtzlDncXCk1voUqUx7zbuQWpGGhfDbrH7es4Nq3rlq2KkVPFGLf25pPfeOMXeG6cRoqQptE8zK7YQ4v8NhULBunXr6N69e2kXRQCx7Z5taOaLyH7nOhJ27S3tYhSKTdtWxL31318J127e7zT5Y/iTE77ADr8/m7jh+SOD/2vsZk8lbmj+aOz/Gru5v/3n2yn7netI2L2/tItRaDZtWhA38L/9+bZb9PjIc1HyErbseHKiF5hN5/bEffJ0N2BfZHbTJhL3xtDSLkah2C2fy7fb5pR2MQrt+47vPDnRC2j6gRfrJlZuHzfv8+RELyFZ31YIIYQQQgghhBBCiBIinXFCCCGEEEIIIYQQQpQQmTNOCKFHRq4LIYQQQgghxMtDaWhVXFGqJDJOCCGEEEIIIYQQQvwnzJw5Ey8vL8zMzKhTpw4HDx4sMO2+fftQKBT5Hleu6C9+tmbNGqpWrYqpqSlVq1Zl3bp1xVoH6YwTQgghhBBCCCGEEC+8FStW8PHHH/PVV19x5swZmjVrRqdOnQgJCXlsvqtXrxIaGqp7VK5cWfe3o0eP0qdPHwYMGMC5c+cYMGAAvXv35vjx4ltZXjrjhBBCCCGEEEIIIV5ShiLDXpTHs5o6dSpDhw7l7bffpkqVKkyfPh0PDw9mzZr12HwuLi64ubnpHiqVSve36dOn065dO8aOHYufnx9jx46lTZs2TJ8+/ZnL97SkM04IIYQQQgghhBBCvNAyMjI4deoU7du319vevn17jhw58ti8tWrVwt3dnTZt2rB37169vx09ejTfPjt06PDEfRaGLOAghBBCCCGEEEIIIUpceno66enpettMTU0xNTXNlzYqKgq1Wo2rq6vedldXV8LCwgzu393dnb/++os6deqQnp7O4sWLadOmDfv27aN58+YAhIWFPdM+i4J0xgkhhBBCCCGEEEK8pF7k1VQnTZrE+PHj9bZ99913jBs3rsA8eYe3arXaAoe8+vr64uvrq3veqFEj7t69yy+//KLrjHvWfRYF6YwTQgghhBBCCCGEECVu7NixjBo1Sm+boag4ACcnJ1QqVb6ItYiIiHyRbY/TsGFD/vnnH91zNze3Qu/zWcmccUIIIYQQQgghhBCixJmammJjY6P3KKgzzsTEhDp16rBz50697Tt37qRx48ZP/ZpnzpzB3d1d97xRo0b59rljx45n2uezksg4IYQQQgghhBBCiJdUcQ63LGmjRo1iwIAB1K1bl0aNGvHXX38REhLC8OHDgexIu/v377No0SIge6VUT09P/P39ycjI4J9//mHNmjWsWbNGt8+RI0fSvHlzJk+ezKuvvsqGDRvYtWsXhw4dKrZ6SGecEEIIIYQQQgghhHjh9enTh+joaL7//ntCQ0MJCAhgy5YtVKhQAYDQ0FBCQkJ06TMyMvjss8+4f/8+5ubm+Pv7s3nzZjp37qxL07hxY5YvX87XX3/NN998Q6VKlVixYgUNGjQotnpIZ5wQQgghhBBCCCGE+E8YMWIEI0aMMPi3BQsW6D0fPXo0o0ePfuI+e/XqRa9evYqieE9FOuOEEEIIIYQQQgghXlJKWS7ghSNHRAghhBBCCCGEEEKIEiKdcUIIIYQQQgghhBBClBAZpiqEEEIIIYQQQgjxknqZVlN9WUhknBBCCCGEEEIIIYQQJUQ644QQQgghhBBCCCGEKCEKrVarLe1CCCGEEEIIIYQQQoiiN+fYhtIuQoHeafhqaRehVMiccUII8QKbsn9ZaReh0D5t0ZfbUfdLuxiF4uVUlp4LvyztYhTamkETiRs+qrSLUSh2s6fS5I/hpV2MQjv8/myGrPihtItRaPP7fMX5B9dLuxiFUr1MZVac2VnaxSi0PrXase/GqdIuRqG09K7DqbtBpV2MQqvjUYW910+WdjEKrVXlunyy8dfSLkahTHtl5EvznfH9znmlXYxC+bbdW3Rf8EVpF6PQ1g/+sbSLIF4SMkxVCCGEEEIIIYQQQogSIpFxQgghhBBCCCGEEC8pBbKa6otGIuOEEEIIIYQQQgghhCgh0hknhBBCCCGEEEIIIUQJkWGqQgghhBBCCCGEEC8phUKGqb5oJDJOCCGEEEIIIYQQQogSIp1xQgghhBBCCCGEEEKUEBmmKoQQQgghhBBCCPGSUsow1ReORMYJIYQQQgghhBBCCFFCpDNOCCGEEEIIIYQQQogSIsNUhRBCCCGEEEIIIV5Ssprqi0ci44QQQgghhBBCCCGEKCHSGSeEEEIIIYQQQgghRAmRYapCCCGEEEIIIYQQLyklMkz1RSORcUIIIYQQQgghhBBClBDpjBNCCCGEEEIIIYQQooTIMFUhhBBCCCGEEEKIl5Sspvrikcg4If6jgoODUSgUnD17tlj2r1AoWL9+/TPladmyJR9//PFTp1+wYAF2dnaPTXPlyhUaNmyImZkZNWvWfKbyPK9nrUdxHwshhBBCCCGEEC8PiYwT4jkMHjyYuLi4Z+6sKkoeHh6Ehobi5OQEwL59+2jVqhWxsbFP7OD6L/nuu++wtLTk6tWrWFlZlXZxDMp7LErLpX0nOL/9CCnxidiXcaFRn464V65gMO2Dq7fZNGVhvu29x7+Pnbtzvu03Tlxgz99rqFDDlw7v9y2yMv+7dgOrl64gJjqaCl6eDP/ofQJqVi8w/fkz5/jrt5ncuR2Mo5MTr/frQ5cer+ilWbdiNZvWbSQyPAIbO1uatWzOkOHvYGJqAsDyRUs5vP8g9+6EYGJqStVq/rz13jt4VChfZPXq4NuAV/2bYW9hzd24COaf2ExQRHCB6Zt51aB7QHPcbRxJyUjjzIPrLDy5haT0VADGd3ibALeK+fKduneFibsXFVm5DTHr2gGTpg1RWFigDr5DyrI1aELDC0xvNWoERj7e+bZnXrhM8h9/Zz8xNcX8lU4Y1wxAYW2N+u49UleuR33nbnFV44lquHvTr1Z7/FzK42RpxxdbZnHw9rlSK09erbzr0Mm3IXbmVtyPj2TpmZ1cjzL8fg2t35WmXjXybb8fH8nX2/4CQKVQ0qVKY5p4Vcfe3JrQxGhWndvDxbBbxVqP7es3s2HFWuKiYyjnWZ4hH7xDleoBBtPGRsewcOZcbl2/Qdi9B3R6rRtDPhiml2bvtl3MnDw9X94l29diYmJSHFXgxI4DHPp3N0lx8TiXc6fTwJ54Vsl/zgPcuXKTHUs3EPUgjMz0TOycHajbpgmNu7TWpVFnqTmwYQdn9x8nMTYOR3dX2vd7lco1qxZL+R/Zt2knO9ZuIj4mjjLly9J72EAqB/gZTHv68AkObNnF3Vt3yMrMwr1CWbr164l/Hf3zLCUpmfWLVnLmSCApSck4uTrT6+03qVavVrHUYeeGLWxatZ646FjKenowcMRQ/Kr5G0wbGx3DktnzuX39JmH3Q+nQowsDR7ydL93WNRvZ9e82oiKisLa1pkGzxvR5e0CxnU8A+zbvZOfazbpj8fo7Awo8FmeOBLJ/yy7u3bpDVmYm7uXL0bVfT/zr6H93piQls2HxSs4cOak7Fj2Hvkm1ejWLrR5NPKvTqlJtbMwsCUuMZv3FA9yKeVBgepVSRQef+tQp54eNqQVxaUnsvBbIibuXAVAqlLStXJd6HlWwNbMiIimWTZcPcyXyTrHVoUdAC/rVaoejhS23Yx4w49AqzoXeKDD9awEt6FmtJe42joQnxrDw1Fa2XT2eq45KBtbuSCe/RjhZ2hESF86so2s5HnK52OpgyLUDp7m8+wSp8UnYuTtRp2cbXLw9CkyvzsziwtYj3A68RFpiMhZ21gR0aESlRgVfoxW1Tr4N6R7QPPtaKjacuSc2cfkx11LNK9akR0ALytg4kpyRxpn711hwcguJ6Sm6NN2qNqGjb0OcLO1ITE/mSPBFFp/eRqY6qwRqJIQ+6YwT4j9KpVLh5uZW2sUodjdv3qRLly5UqGC4U+lF8CIci5uBFzm6YhtN+3XB1bs8QQdOsnXGP/Qe9z5WjnYF5us94QNMzEx1z82sLfOlSYyO4/jqHbhVLrrOKoD9u/by569/8P6nI/GvHsCW9f/y9Wdf8Nc/83Fxc82XPuxBKN98NpZO3Toz+tsvuXT+In9M+RVbOzuatmoOwJ7tu5g3ew6jxo6mSjV/7ofcZcoPPwHw7sj3Abhw9hzdXnsVnyq+aNQaFvw1l68+Gc1fS+ZjZm5e6Ho19qzGkHpdmHN8I1ci7tDepz5ftR3ExxumE5Ucny+9n0sFPmz6OgsCN3Py3hUcLGx4t2F3RjR+jZ/2LgHg571LMFKqdHmszSyY0u1DjgZfLHR5H8e0fWtM27QgZeEy1BGRmHVqh9XI4SR89yOkpxvMkzx7ARjllFVhaYH115+ReTqnY8tiQG9UZdxJnr8UbXwCJg3qYPXxcBLG/4Q2Lv97VBLMjU25EX2PLVeOMLHT8FIpQ0Hqe1ShX812LD69jeuRd2npXZtRzd/gq21/EpOSkC/90jM7WXV+r+65SqHk+w5vE3g3SLfttWotaFShGgtObiY0IZoAt4p82KQXP+xeSEhcwZ2thXF4zwHm/zGHdz5+D9+Aquz8dys/jBnHtAUzcXZ1yZc+MzMTGzsber7Zm02rNxS4X3NLC35d9KfetuLqOLlw5BRbF66h69A+lPetSOCuQ/zz40w+mPI1dk4O+dKbmJrQoENz3MqXxdjUhJCrN9n493JMTE2o27YpALtX/Mu5Q4G8OqwfTmVcuXEuiGVT5vDO96Nw9yr4x3JhBB44yso5i+g34i0qVfHhwLbd/PbdZMbN+hkHl/w3lq5fukKVWtXoPqgP5pYWHNm1nz++/4Uvpk6gfCVPALIys5j+9SSsbW1498uR2Ds5EBsZjWkRtKuGHN17iEWz5vHWR+/i4+/H7s3bmTx2Aj/P/Q0n1/w3lbIyM7G2s+XVfq+zdc1Gg/s8tHs/y/9ezLDPPsDH34/Qew+Y/fMMAAaMGFos9Th54Cir5iym73tDqFTVh4Nb9/D7uJ/4buZPho/FxStUqRlA94G9Mbe05Oiu/cyc8Atjpnyvdyx+/eZHrG1tGDb2o4fHIgYzc7NiqQNAzTKV6R7QnNXn93I75gGNK1RjWMNX+XHvP8SlJhrMM6hOJ6xNLVhxdheRyXFYm1qgVOQM3Ors14g65fxYeW43EUkx+LpUYEj9rsw4uJL7CZFFXoc23nUY2fR1puxfxvmwm3T3b8Yv3T6g/9LxhCfF5kvf3b85wxt1Z/LefwiKuEMVF0++aNWfxPQUDgdfAGBYg1fp4NOAyfv+4U5sGPU9qjKp03DeXfNzgTdUilrwqSBOrdlNvT7tca5YluuHzrJ35iq6fv02lg42BvMcmreB1MRkGr7ZCWtne9ISk9FqNCVSXsju2H2rflf+PLaBKxHBdPBtwDfthvDh+qkGr6WquFRgZNPezAvcRODdIBwtbBjeqAfvN+7Jj3sXA9mddQPqdOT3Q6u5EhlCGRsnPmr6OgDzAjeVWN1KiwxTffHIMFUhisH+/fupX78+pqamuLu788UXX5CVlXPHpWXLlnz00UeMHj0aBwcH3NzcGDdunN4+rly5QtOmTTEzM6Nq1ars2rVLb+ho7qGRwcHBtGrVCgB7e3sUCgWDBw8GwNPTk+nTp+vtu2bNmnqvd/36dZo3b657rZ07dz6xjsnJyQwcOBArKyvc3d2ZMmVKvjQZGRmMHj2asmXLYmlpSYMGDdi3b98T9/2IQqHg1KlTfP/99ygUCsaNG8e+fftQKBTExcXp0p09exaFQkFwcDAAd+7coVu3btjb22NpaYm/vz9btmzRpb98+TKdO3fGysoKV1dXBgwYQFRUVIHl+Oeff6hbty7W1ta4ubnRr18/IiIidH83NEz1WV+jsM7vPIpv09r4NauDvbszjft0wsrelsv7Tz42n7m1JRa21rqHUqn/taDRaNjz9xrqvNIKGyf7Ii3z2hWr6NC1E51e6UJ5zwoM//gDnF1c2LTO8I+kzev/xcXVheEff0B5zwp0eqUL7bt0YvWylbo0QRcv4V8tgFbt2+Dm7kadBvVo2a41165c06X5Yepk2nfpiGdFLypWrsSoL0cTER7B9avXDL3sM+tWtSl7bpxi9/WT3I+PZH7gZqKT4+ng28Bgeh9nDyKTY9ly5SgRSbFcibjDjmsnqORYVpcmKSOVuLQk3aO6uzfpWZkcuXOhSMpcENM2zUnbuovMsxfQPAgjZeFSFCYmmNSvXWAebUoK2oRE3cO4ii9kZJJx6mFnnLExxrWqk7r2X9Q3bqGJjCJt03Y0UTGYNm9crPV5nGMhl5hzfCP7b50ttTIUpL1vAw7cPsuBW2cJTYxm2ZmdxKQm0LqS4eOQmplOQlqy7uHp4I6FiTmHckX6NfKsxqagw5wPvUlkchx7b57mYtgtOhZwnhaFTavW07pzO9p06UC5Ch4M+WAYTi5O7Ni4xWB6FzdX3vrwXVp0aIOFpUWB+1WgwN7BXu9RXI5s3kPtVo2o07oxzmXd6DyoFzaO9gTuPGgwvbuXB9Wb1MXFwx17F0dqNKuPd/Uq3LlyU5fm3KETNO/eHp9a/ji4OlG/fTO8a1Th8OY9xVaPXeu20KR9S5p2aIV7+bL0GTYQeydH9m/ZZTB9n2ED6dCrG54+lXAt606PQW/gUsaN88dP69Ic3rmP5MQkRnwzCu+qvji6OOPt74dHxeK5mbZlzQZadmxLq87tKFvBg4Ej3sbRxYld/24zmN7ZzZVB779N8/atCjyfrl++ik+AH03atMDZzZXqdWvRuFUzbl0rODKqsHat30qTdg+PhUdZeg8b8Nhj0XvYgFzHwo3ug/rgUsaNCydyjsWRh8fiva8/yXUsfClXTMcCoGWl2hwPucTxkEtEJMWy/tIB4lKTaOJZzWB6P+cKeDuVY87xDVyLuktsaiIhceEEx4bq0tT18GPX9UCCIoKJTkngSPAFrkbcoaV3wd9BhdGnZls2BR3m36DD3IkN49dDq4hIjKVHQAuD6Tv6NmDDpYPsvnGKBwlR7L5xkk1Bh3mzVge9NItObeXonYs8SIhi/aUDHA+5TN+abYulDoZc2RNIpUbV8W5cA1s3J+r2aouFvTXXDp4xmP7B5VuE37hLq/dex93PEytHW5w8y+BcsVyJlflV/6bsun6SXdcDuRcfydwTm4hKjqejb0OD6X2cyxOZFMvmoCNEJMUSFHGHHVdP4O2Ucy3l61yeK+F3OHD7HBFJsZx9cJ2Dt87ppRGiJElnnBBF7P79+3Tu3Jl69epx7tw5Zs2axdy5c/nf//6nl27hwoVYWlpy/PhxfvrpJ77//ntdJ5hGo6F79+5YWFhw/Phx/vrrL7766qsCX9PDw4M1a9YAcPXqVUJDQ/n111+fqrwajYbXXnsNlUrFsWPHmD17NmPGjHlivs8//5y9e/eybt06duzYwb59+zh16pRemiFDhnD48GGWL1/O+fPnef311+nYsSPXr19/qrKFhobi7+/Pp59+SmhoKJ999tlT5Xv//fdJT0/nwIEDXLhwgcmTJ+uGuIaGhtKiRQtq1qzJyZMn2bZtG+Hh4fTu3bvA/WVkZDBhwgTOnTvH+vXruX37tq6zs6ByP+trFIY6K4uokAeUq1pJb3u5qpUIv/n4u65rJ/zJ4s9+YdPUhTy4cjvf309v2o+5tSV+TYv2wjczM5PrV69Ru35dve2169cl6OIlg3mCLl7Kl75Og7pcv3JV19ntX6Ma169e4+rl7Aig0PsPCDx6nPqNC+5gSElOBsDaxvDd4WdhpFRRybEMZx/on+PnHtzA19nwj6CrESE4WthSu6wPALZmVjSqEMCpe1cLfJ02letyOPg86VmZhS5zQZRODihtbcgKylWOLDVZ129iVNHzqfdj0qQBGSfPQEbGwx0rUahUkKk/JESbmYmRt1cRlPzlolIq8bR351KY/ufzUtgtKjk93Q+j5l41uRx+m+hcUXTGSlW+YTkZ6iwqOxdPJFZmZia3rt2gRl394YrV69bi6sUrhdp3Wmoq770xhHdfH8SkseO5ff3mkzM9h6ysLEJv36VS9Sp6272rVyHkWv7205DQ23e5e+0WnlUr5+w3MwsjY2O9dMYmxoRcKaZ6ZGYRcuM2VWvpDzerWrsaN4Oe7qaERqMhLTUNy1zR1OePn6KiX2WWzpzPZ28OZ/yI0WxZsR6NuuijabIyM7l97SbV69bU216tTk2uXX7+88k3oAq3r93kxsMbOOEPwjh74jS1GtR9Qs7n8+hYVKml32FVpVY1bl15umulR8fCItdUHueOn6aiX2WWzVrA5/3f4/sRY9i6ckOxHAvIjr4tZ+vC1YgQve1XI+/gae9uMI+/W0XuxoXT2rsu37UbytjWA3mlalOMc0WBGylVZGnUevky1VlUdChT5HUwUqrwdS7PiZAgve0n7gYZnCYCwFhlREae7+H0rEyqunqienhz01hlRIY6f5rq7oaHthc1dZaamLthuFfR/351r+JF1O37BvPcu3ADx/JuXN51nLVf/cHG8X9xeu0esjKK75ojt+xrqbL5rqXOPriOn4vha6krEXdwtLSlTllf4OG1lGcAJ+/ltAdBEcFUcipL5Yffna5WDtQu56uXRoiSJMNUhShiM2fOxMPDg99//x2FQoGfnx8PHjxgzJgxfPvtt7rIo+rVq/Pdd98BULlyZX7//Xd2795Nu3bt2LFjBzdv3mTfvn264Y8//PAD7dq1M/iaKpUKB4fs4TEuLi7PNGfcrl27CAoKIjg4mHLlsr+cJk6cSKdOnQrMk5SUxNy5c1m0aJGuTAsXLtTlh+zhpcuWLePevXuUKZN90fTZZ5+xbds25s+fz8SJE59YNjc3N4yMjLCysnqmYaAhISH07NmTatWyL24rVsy5iJo1axa1a9fWe/158+bh4eHBtWvX8PHxybe/t956S/f/ihUrMmPGDOrXr09SUpLBeeye5zUKIy0pBa1Gi7mN/hBTcxtLUhKSDOaxsLWm2YBuOJd3R52l5vqxc2yatpBunw7G3ccTgLAbIVw9dJqe3xT9kL2EuHg0ak2+CBZ7e3tiomMM5omNicXePk96B3vUajXxcfE4OjnSsm1r4mPj+PS9kWi1WtRqNV17vEKfAf0M7lOr1fLnjJn4V6+GZ8XCdwRZm1qgUqqIT9V/3+PSErEzr2wwz9XIEKYfXMmoFn0xVhlhpFRxIuQyc4//azC9t1M5Kti7MfPI2kKX93EUDzsnNQn6w4s0CYkonzLySOVZHlVZd1IWr8jZmJ5O1s3bmHVpR3JYeHb0XL3aqDzLo4kovujR/yprEwtUSiUJafrnVHxaMgFmT55H09bMimrulfjz2Hq97RfDbtHBtwHXIkOISIqliqsXtcr6oCymYSyJ8QloNBrs8nyG7eztiYs9XUCuJytbvhzvf/EJ5b0qkJqSwuY1G/n6w9H88vcM3MsVbbRDSkISGo0GK1trve2WttYkxeUfLpzbLyO+JjkhCY1aTatenanTOicK1Lt6FY5s2YNnFW/sXZ24dfEqV06eR6PRFmn5H0lKSESj0WBjZ6u33drOloTYpxsmvnPdZjLS0qnTLCdKJTIsgujwyzRo2YQPx40m4kEYy2YtQKPW0LXfa0Vah8T47DrY2tvpbbe1tyU+Jv9wwqfVuFUzEuPiGf/xl/DwO6Rtt4680rdnIUtsmO5Y2OsfCxt7WxJOP92x2LVuy8NjkXPTKSo8gqvnL1O/ZWM+GDeaiPthLJ+9AI1aTZe+RXssl049cgABAABJREFUACxNzFEplXpzcwEkpqdiY5Z/+gsAR0sbvBzKkKlWMz9wE5Ym5vSq3goLEzOWn82OCrwSEULLirW4GX2f6OQ4KjuXJ8CtYrG0U3ZmVhgpVcSk6n+WY1MTcLQwfLPuxN3LdK3alAO3z3E1MgQ/5/J0qdIYY5URdmZWRKckcDzkMm/UbMvZBze4Hx9J3XJ+NPOqgVJZMkMG0x9eI5pZ60eDmllbkpqQbDBPUlQcETfvoTQyovk7PUhPTiVwxQ7SU9Jo1L9zsZf50bVU3uHN8amJ2Jsbvoa+GhnC1APL+axlP9211PGQy8w5ljPa4tDt89iaWjGx03AUCgVGShVbrxxl7YX9xVqfF0Vxfb+L5yedcUIUsaCgIBo1aqQ3Lr9JkyYkJSVx7949ypfPnnerenX9O9Lu7u66oY9Xr17Fw8NDrwOqfv36xVbe8uXL63WkNWrU6LF5bt68SUZGhl46BwcHfH19dc9Pnz6NVqvN1/GUnp6Oo6NjEZXesI8++oj33nuPHTt20LZtW3r27Kl7v0+dOsXevXsNdqLdvHnTYEfZmTNnGDduHGfPniUmJgbNwzkzQkJCqFo1/wTbz/Ma6enppOeZg8vU1DRfusdRoP8lq33M7zg7Nyfs3HLmonGt5EFSbALndhzB3ceTjLR09s5dS7MBrxicR67I5Lkw0KJ9/JwWedNrH23O3n7u9FmWL1rC+5+OxM+/Cg/u3Wf2r39gP38xbw4ZkG93f0ydwe2bt5gya0bh6pGHFv03P++xya2crQtD63dl1bk9nH1wHXtzawbW6ci7jbob7HBr412XO7Fh3Ii6V6RlNq5fG4t+r+ueJz1abCHvifQMF3MmjRugvh+KOlg/WiJl/lIsBr6B7eRxaNVq1Hfvkxl4BlV5GSpSkLwf5+xz6smdNU29qpOSmcbp+/qRlkvP7GRw3c5M7DQcLRCRFMuh2+cMLvxQpPKcPlq0j/18PIlPVT98quZMdO8bUJXRw0ayde0m3vro3efe72PlK+4T2i1g6LiPyUhL5+71YHYu24CDmzPVm2RHW3Ue3IsNfy1jxqgJKBQK7F2dqNWyIWf2HSue8j+St8haA9sMOLHvCJuWrGXEN6P0OvS0Gi3Wdjb0//BtlColFSpXJC4mlh1rNhd5Z5yOwTo8//l0+ewF1i9dzVsfvUslv8qEPwhj0R9/s9ZxBa/171Oooj5O/u9v7VMdi8D9R9i0dC3vFXQsPnh4LLy9iI+JZcfazcXSGad7XQNtkraAixElCrTAP6e3kZaVHTm9/tIBBtftwprze8nUqFl3cT99arRhbOsBaLUQnRLPibuXqe9RfIub5C+vosCWdn7gFhwsbPir5xhQQGxKIluuHKV/7Q6oH+7n14MrGdOqP0v7jUOLlgfxkWy+coQufiU9LUPexldb4EdFq81u05oM7oaJefa1qPq11hycu556vdthZGJsOGNxUygMnmOQfS31ToNXWHF2N2ceXMPe3JrBdTvzXqMe/H4ke/RQgFtFetVoxZ/HNnA9MgQ3Gyfert+N2OqJrDxffNMCCFEQ6YwToog9+gLLuw30J840zjMkRaFQ6Dp5DO3jeSmVynwXFpmZOWHmhi6SnvTaBV1Y5abRaFCpVJw6dQqVSqX3t8KsivoosjB3GXLXB+Dtt9+mQ4cObN68mR07djBp0iSmTJnChx9+iEajoVu3bkyePDnfvt3d8w+lSE5Opn379rRv355//vkHZ2dnQkJC6NChAxmPht3l8ayvATBp0iTGjx+vt+27777DupWvwfS5mVlZoFAq8kXBpSUmY2Hz9O+1i1c5bhw/D0BCZAyJ0XFs/2Op7u+P3vM5w8fT5/sPsXHJP1n507Kxs0WpUhKbJwouLjauwPme7B3siY3Jmz4WlUqFjW32XetFc+bTukM7Or3SBQCvShVJS0tjxuSp9B30pt6ceDOnzuDYoSP88sd0nF3yT/b9PBLTU1Br1NiZ60fO2JpZEZdqOErxtWotuBJxhw2XsuecuhMbRlpWBj90epelZ3bq3Rk2URnTxKs6K84ankuoMDLPXSLxdq5Os4eLMChtbVDnio5TWluhTTA8GbceY2NM6tUk1cD8TZqoaJKm/gEmJijMTNEmJGLx9gA0UYajIv8/S8xIQa3RYJsnCs7GzIL4NMNRDbk186rBkeALqPNMvJ2YnsJvh1djpFRhZWpBXGoir1dvRVRyXFEWX8fa1galUklcnqil+Ni4fNFNhaFUKvH2q0zo/YJXcHxeFjZWKJVKkuL0z//k+CQs80TL5WX/cCJ+1/JlSYpPZO/qLbrOOEsba/p9NozMjExSk5Kxtrdl59IN2LkUz40rK5vs+UHzRsElxsfni5bLK/DAURbN+It3vxiZb2ilrYMdKpUKpSqnnXX3KEtCbNzDobhF97PD+uEcp/ExcXrb4+PiC3U+rVqwlKZtW9Kqc3bUf/mKnqSnpfH3tJl07/d6vnlVC+vRsYiPjdPbnhiX8MRjcfLAURbNmMOwLz6iSk39FYkNHQs3jzLFciwAkjNSUWs02Jjq37yzNjXPFy33SEJ6MvFpSbqOOIDwxBiUCgW25tZEJceRnJHKvMBNGClVWJqYEZ+WTNcqTQwuXFNYcWlJZGnUOFrov+/25tYFvl6GOpNJexbz074lOJjbEJ0SzytVm5GckaqLkI9LS2Ls1tmYqIywMbMiKjmO9xr1IDSxZCLBTR9eI6Yl6n9fpCWlFHiz1dzGCnNbK11HHICtmyNoISUusVDXf0/jea6lelVvSVBEMOsvHQCyr6X+PLaeSZ3fY8mZHcSmJtKvVjv23TzNruuB2WniwjEzMmZE49dYdX5vgR19QhQXmTNOiCJWtWpVjhw5otdZdOTIEaytrSlb9umiPvz8/AgJCSE8PGdFu8DAwMfmebRynFqtP7eGs7MzoaE5k+EmJCRw+3bO3DZVq1YlJCSEBw9yfrgcPXr0sa/l7e2NsbExx47l3LWPjY3l2rWcuWZq1aqFWq0mIiICb29vvUdhVh51ds7uNMldp9wLJzzi4eHB8OHDWbt2LZ9++ilz5swBoHbt2ly6dAlPT8985bK0zH9RcuXKFaKiovjxxx9p1qwZfn5+eos3GPKsrwEwduxY4uPj9R5jx459qvdEZWSEU/ky3L+sP7/QvaCbuFZ6+vmfou+GYmGb/YPfzs2JXt+9R89vhuseFar7UsbXi57fDC9w9a2nZWxsTGVfH84E6s8zeCbwFFUC/A3mqRLgny/96RMnqezni5FR9g+L9PS0fD+WHnVIP/pMarVa/pjyK4f3H2TyjCm4lTHcQfo8sjRqbkY/oEaeuWCql/HmauQdg3lMjYzzdXBrtNkdJ3m7xZt4VsNYpWL/LcOTLhdKejqayKicR2g4mvgEjKrkiuRUqTCqXImsW8FP3J1J3ZpgZETm8VMFJ8rIQJuQiMLCHOOqfmSeK97VYf+L1BoNwbGh+LvpD6Ou6urFzSdER/o6l8fV2oGDuRZuyCtLoyYuNRGVQkmdcn6cuV80C5nkZWxsTEUfb86fPKu3/fyps/gG+BnO9By0Wi3BN24XyyIORkZGuHt5cPOC/vxCNy9cobzPMwxz12pR55kzEbLnibNxsEOj1nD5xFn86lQ3kLnwjIyNKO/tRdAZ/QVggs5cpFKVgqdROLHvCAunzebtz9+nWv1a+f5eqaoPkaHhuhuLAOH3Q7F1sCvyzh8jY2O8fCpx4dRZve0XT53Vi5R8Vunp6fmGD2Z/h/D4cPPnpDsWZ/XbvqCzF6joZ3hqA8iOiFs4/U+GfvY+1eoZOBZVfIjIdyzCiuVYAKi1Gu7FR+DjrL/quo9zeb0FGXK7HROKraklJqqcm9MuVvZotBri8wxPzNKoiU9LRqlQUr2MNxfCbhV5HbI0aq5GhlDPQ39OyHoeVbj4hNdTazREJseh0WppW7kuh4Mv5OvYyVBnEZUch0qppGWlWo9tl4uSykiFg4cboVeC9baHXgnGycvw7xLnimVJjU8iMz2nozQhIhaFQoGF3eNvPBSF7Gup+9Qso38tVbOMN1ciCriWUpkYuJbS5klj6HorOyT4/8MITsUL/O//K+mME+I5xcfHc/bsWb1HSEgII0aM4O7du3z44YdcuXKFDRs28N133zFq1KinvqParl07KlWqxKBBgzh//jyHDx/WLeBQUNRahQoVUCgUbNq0icjISJKSsu8ctW7dmsWLF3Pw4EEuXvw/9u46rqrzD+D459LdISgSgiDY3d29Ods5nZsLZ0ydTrc5nXMu1Nk5FTtnd2JOxS4MFASV7s77+4N58QpYgDh/37ev+3rJuc9z7vfhXs4593ueuM5HH32k1lOtZcuWuLu7079/f65cucKJEyeeu1gE5PRsGzRoEN988w2HDx/m+vXrDBgwQK195cuXp2/fvvTv358tW7YQEBCAr68vv/32m9rKpq/K1dUVBwcHJk6cyJ07d9i9e3eelVxHjBjB/v37CQgI4OLFixw5coQKFXIuroYMGUJ0dDS9e/fm3Llz3L9/nwMHDvDxxx/nSWQClC1bFh0dHebMmcP9+/fZsWMHkydPfm6Mr/oakDMk1cTERO3xKsNUK7eqx62TF7l18iIxIRGc3rCPxOg4KjTJ6Xlxbsshji7LHfJ47dA/BF7yIy4siujH4ZzbcoiAi354NcsZDq2lrY1FaVu1h66BHtq6OliUtkVTq/AX8+/37M6+nXvYv2svQYEPWDRrHuFhYXR4rxMAyxYs4Y/JU1XlO3TtRFhoGItmzyco8AH7d+1l/669fNA7d2GMOg3qsXvrDnwOHSH0cQgXz51n5ZLl1G1YX/W5nzd9FkcOHGLsxO/RNzAgOiqa6KjoPMOEX9fOmydp4VaT5q41KG1qzYBa7bEyNOXA7XMA9K3emqENP1CVPx98izqOXrRxr4OtkTnu1mUZVLsTdyJyVpd7WnO3mpwL8iMxLaVIYn2RtMPH0WvbEu2qldCwL4XBR71RpqeT/tSqfQYDeqPXtUOeujr165Bx+TrKpLy9IrQ83dHy9EDD0gKtCuUx+vpLssLCST99rljb8zz62rq4WZVRTexsb2KFm1UZbI2Kb2XOl3Xg9lkaO1elkXMV7Iwt6VW1JZYGphy9l/M+fFCpKZ/U6ZSnXmOXqtyLesSjuIg8z7lY2FOjtDvWhma4WTkwskkvFAoFe249/2ZMYXTs3pXDew5wZM8BHj4IxnveEiLDImjdKWcOojVLvJnzi/rxPMD/PgH+90lNSSU+No4A//sEPzXsedOKtVw+d4Gwx6EE+N9nwe+zCPS/T6vOBc97Whj1OzTn4pHTXDz6DxGPQtm74m/iIqOp1bIRAAfXbefveStV5c/uP8atC9eICgknKiSciz7/cGrXYSo3qqUqE3w3kJvnLhMdFkmgnz8rp85DqVTSsHPxrbbY8r32nDxwlFMHfAgJesTGxauIjoikcfsWAGz1Xs/y6fNV5c/5nGb5jAV8MKgfzu5uxEXHEhcdS8pTf99N2rciMSGRDYtWEvYohGvnLrF343aadmhdLG1o360LR/cewmfvIR49CGbV/KVEhkfSolPOSpbr/1rF/F9nqtUJ9L9PoP99UlNTiY+NJ9D/Pg8f5C50VL1uLQ7t3MfpoycIDwnj2oXLbPJeS416tdB4ppd/UWnZtR2nnrwXwY/YuGQVMRFRz7wXC1TlfY+dZvmMhXQb1BdnD1fiYmKJi1F/Lxq3b0lSQiIbF6/KeS98L7Fv03aadMh/7uGi4HPvInUdvajt4ImNkTldvRpjrm/M6cCcpG+HCvXpUy33s3Dh4W2SMlLpXa0VtkYWuFjY08mzIWeDbpLx76INZc1sqWRXDksDE1ws7Pmsblc0UHDE//krxb+uDZcP0cmzAR0q1MfRvBTDGnTH1ticrf/2tvq8ble+bzFAVd7B1IbW5WtTxtSGCjZOTGo9CBdLexad2a4q42nrRBOXqtibWFHFzpUZnYahQMGaiweKpQ358Whei3unr3Dvn6vEhUZy4e/DJEfH49aoKgCXth/j9MpdqvJOtTzRNdTnzOo9xIVEEuYfzKWtR3GpV+mNDVHdfuMkLd1q0cK1JmVMrfm4VkesDM3Yf/ssAP2qt2F4w9zrP9+HftR1rEhb9zrYGlngYePIJ3U6cSciSHUt5fvwFm3d69LQuTI2RuZUsXOlT7VW+AbfzJO4E+JNkGGqQrwmHx8fqlVTvxv50Ucf4e3tzZ49e/jmm2+oUqUKFhYWDBo0iO+///6l962pqcm2bdv45JNPqFWrFi4uLvzxxx906tQJPT29fOuULl2aSZMm8e233zJw4ED69++Pt7c348aN4/79+3Ts2BFTU1MmT56s1jNOQ0ODrVu3MmjQIGrXro2TkxOzZ8+mbdu2z43xjz/+IDExkc6dO2NsbMyoUaOIi1Mf8rJ8+XJ+/vlnRo0axaNHj7C0tKRevXq0b//6k79qa2uzbt06vvjiC6pUqUKtWrX4+eef6d49d66rrKwshgwZwsOHDzExMaFt27b8+eefANjb23Pq1CnGjh1LmzZtSEtLw9HRkbZt2+abLLW2tsbb25vx48cze/ZsqlevzrRp0+jcuXOBMb7qaxSFcrUqkpqUzMXdx0iOS8TC3oZ2Q/tibGkGQHJcAonRue9PVmYWZzYfICk2AS1tLcztbWg7tA9lKxXt4hLP06RlM+Lj41mzfCUxUdE4ujgxedpUbP/tORkdFU14WG4vxFL2dkyeNpVFs+exa8t2LKws+WLEVzRs1lhVps9HH6JQKFixeBlREZGYmptRp0E9BgwepCqza2vOZL5jvvpaLZ6R48fQusPzP/cv43TgNYx1DehepTnm+sYExYbxy+EVRPw7/M9c3xgrQzNV+aP3LqKnrUs7j7p8VLMdSempXAu5x+qL+9X2a2diiaetE5MOLCt0jC8r7cARFDra6PfuhsJAn6yAIBJnL4KnEpcaFuZ5eoxo2Fij5eZC4qyF+e5Xoa+HXtcOaJiZoUxOJuPSVVK27YHs4lnp72V4WDsy972Rqp+HNcw5puzx+4cpR1aUVFhAzmp+hroGdPZqiKmeEY/iIvjzxHrV6qim+kZ5hlbpa+tSo4wHay/l/4VPW1OL9yo1wcbInNTMdK6G+LPkzA5SMoomKZ2fBs0bkxifwOaV64mJjsbByZHxv07EupQNADFRMUSGqycOx3w6TPX/+3f8OXn4GNa2Nsxfn/N3kJSYxKIZc4mNjsHA0BBnVxcmzfoVtwovHuL/OirVr0FKYhI+f+8lITYeGwc7+n37JWbWOcO2EmLiiXtquLVSqeTQuh3EREShoaGBha0VrXp3oWbLBqoymRkZHN6wi5jwSHT0dHGr6kW3If3RNzTI8/pFpVbjeiTFJ7J73RbiomOxdyzDV5PGYPnvkP246FiiI6JU5U/sO0x2VhbrFixn3YLlqu31WjRmwMicRX4srC0ZPvlbNi1ZzU9DvsXM0pzmndvS9oOCz5eFUa9ZQxLj49myegOx0TGUcSrLmF9+wNo25/MUGx1N1DOfp/Gf5/6NB9y5x+kjx7GytWb2mpze8+/164FCoWDT8jVER0ZjYmpC9Xq16PFx32JpA0DNxvVITEhk9/qtxD95LyZ+k/texKi/F8f3HiE7K4v1C7xZv8Bbtb1ui0YM+Pqp9+Knb9n01yomfzVO9V606ZY3aV9ULj++i6GOPm3c62Cia0BIQhSLz2xXJUJMdA0xf2rYYXpWBgv/2cr7lZoysnEvkjJSufz4Lnv9TqvKaGtq0d6jHpYGpqRlZuAXHsiai/vVhrYWpcP+FzDRM2JgzQ5YGppwP+oxo3fOJSwh52/a0sAUW+PcIZoaGhr0rtqSsmalyMzO4uKj23z+9x+EJuS+Xzqa2nxapwv2JlakZKTxz4PrTD64nMT0N3NTDcCpRgXSk1K4tvcUKfFJmNlZ0fTL7hhZ5Jw3UuMTSYp+arVtXR2af9WT85sOsvf3Fega6lO2ugdVOjZ6YzGfCryKia4BPau2yLmWigll8iFv1bWUhYEJ1kZmqvJH/C+gr6VLe4/6DKzVgaT0VK6G3GPlhb2qMhuvHEGpVNK3WmssDEyJT03CN9iPNZf2I0RJUChfZvInIUSJO3XqFA0bNsTf359y5cqVdDjiKbdv38bDw4O7d+/i6lq0S9VPP7auSPdXEkY16U1A5KOSDqNQnK1K023F+JIOo9D+/ugXYp/6MvpfZLZwBg3mFf0Kv2/aqSELGbhhSkmHUWjLe37H1cd3SzqMQqls78aGSwdLOoxC61mtFT7+zxkW/h/Q1LUGF4L9SjqMQqvhUIGjd4un99ab1MytJl/vmFXSYRTKn52HvzPnjJ8OvrmbccVhQquP6er9bUmHUWjbBvxa0iG8lrf5PNezWvH12n2bSc84Id5SW7duxcjICDc3N/z9/Rk+fDgNGjSQRNxbJjo6ms2bN2NiYoKDw8vPzyaEEEIIIYQQ4v+TJOOEeEslJCQwZswYgoODsbKyomXLlnnmRhMlb9CgQVy4cIEFCxa80hxvQgghhBBCCCH+P0kyToi3VP/+/enfv39JhyFeYOvWrSUdghBCCCGEEEIUqKBFAEXJkdVUhRBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUTJM9e0jPeOEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGsgw1beN9IwTQgghhBBCCCGEEOINkWScEEIIIYQQQgghhBBviAxTFUIIIYQQQgghhHhHKRTSD+ttI++IEEIIIYQQQgghhBBviCTjhBBCCCGEEEIIIYR4Q2SYqhBCCCGEEEIIIcQ7SkMhq6m+baRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0ohw1TfOtIzTgghhBBCCCGEEEKIN0SScUIIIYQQQgghhBBCvCEyTFUIIYQQQgghhBDiHaVAhqm+bRRKpVJZ0kEIIYQQQgghhBBCiKK34/qJkg6hQJ0rNirpEEqE9IwTQoi32Njd80s6hEL7rcOX3Ai5V9JhFIqXXTkaz/+ypMMotONfzid20NCSDqNQzJbOYeCGKSUdRqEt7/kdDeZ9XtJhFNqpIQsJi48s6TAKxdbECm/f3SUdRqENqNWB0TvnlHQYhTKt01CmH1tX0mEU2qgmvZnms6akwyi00U378tH6ySUdRqGs6PUDH6z8rqTDKLTN/afQ1fvbkg6jULYN+JUWi4aVdBiFdviz2SUdgnhHSDJOCCGEEEIIIYQQ4h2lIaupvnVkAQchhBBCCCGEEEIIId4QScYJIYQQQgghhBBCCPGGyDBVIYQQQgghhBBCiHeUQoapvnWkZ5wQQgghhBBCCCGEEG+IJOOEEEIIIYQQQgghhHhDZJiqEEIIIYQQQgghxDtKhqm+faRnnBBCCCGEEEIIIYQQb4gk44QQQgghhBBCCCGEeENkmKoQQgghhBBCCCHEO0oDGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWtIz3jxFshLCyMn376iZiYmJIORQghhBBCCCGEEKLYSDJOlDilUsmHH36Irq4u5ubmr1TXycmJmTNnFk9ghaRQKNi2bdsr1WnatCkjRowolnj+qz788EN++eWXkg6jUEaPHs2wYcNKOgwhhBBCCCGEEG8BGab6HzRgwABWrFgBgJaWFg4ODrz//vtMmjQJQ0PDEo7u1U2dOhUXFxfGjh37ynV9fX3/k20WL+fq1avs3r2b+fPnq7Y1bdqUY8eOMXXqVL799lu18u3bt2fv3r38+OOPDBgwAGdn5+fu/8cff2TixIkArFixgnnz5nHjxg00NDSoVq0aY8aMoWPHjgAkJiZibm7O6tWr6dmzp2ofPXv2ZOPGjfj7+1OuXDnV9nLlytGzZ09++eUXxowZQ7ly5fj6669fGFNh1HX0oolLNYx1DQhLjGbnjVMExoQUWF5TQ4OWbrWoZl8eY10D4lITOeJ/gfMPb6nK6Gnp0Ma9DhVLuaCvrUtMSgK7bp7idkRQsbVj77ZdbF//NzFR0Tg4O/LxV4PxrFwx37LRUdGsmL+Ee3f8CXn4mPbvd2bQ0M8K3PfJw8eYMfk3ajeoy7dTJhRXE+jq1Zje1VpiYWBKYHQIc05t4mrIvQLLv1exMe9XakopYwvCEmJYdXEf+2+fVSvTvXIzung1xtbYnLjUJHzuXWTxme2kZ2UWWzsA9Dq3Q6dJAxQG+mTdf0Dymo1kPw59bh3dlk3RadYQDQtzlIlJpJ+/TOrfOyAzJ1bd9q3Qrl4FTTtblOkZZN0LIGXTdrLDwos8/mauNWjnXhczfSMexUWw9tJB7kYG51t2UO2ONHSukmf7o7gIvt+3GABNhQYdKtSngXNlzPWNCUmIYtOVI1wPvV/ksb+OKnau9KnWGg+bslgZmvHtngWcCLhSIrFs3bSFdavXEh0ZhZOLM0NHDqNKtaoFlr984RJzZ84h8H4AllZW9Onfhy7d3lM9v3PrDvbv2cv9ewEAuHu48+mQz/D08lSVWbZ4Kd5Llqnt18LCgm37dxZZuy4cPMXZPUdJjI3HunQpWvbrioOHywvrPbwTwOqf52FdphSDfhmt2n7b9yqndxwiJiyS7KxszG2tqN2+KZUa1iyymPNT37ESTV2rYaxrSFhCNNtvnCAg+nGB5TU1NGhVvjY1SrtjrGtIbGoih+/64hvspyrTyLkK9ZwqYa5vTFJ6CldD/Nnj9w+Z2VnF0oYbPue4uv80yXEJmNvbUK9nW+zcHPMt+/h2ALumr8izvcekIZjZWefZ7n/uGkf++hvHKu60GdK7yGN/2k0fX64c+IeUf9tRt0fr57QjkN0zVubZ3n3Sl5iVsgLgzunLHFuxI0+ZgXPHo6VdfF//mrvWoL1HPUz1jXkcF8GaS/u5E5H/8faTOp1pVMDxdvzehUDO8bajZwMaOlfGTN+E0PgoNl45zLXQgs+nhdXGvQ6dPRtibmBMcGw43r678Qt/UGD5Rs5V6OLVCDsTS5LT07j0+A4rL+wlMS1FVcZAW48+1VpRp6wXhrp6hCfEsOLCXi49ulNs7WjnXpeuFRvntCMmjKXndnEzPLDA8o1dqvJexSbYm1iSlJ7KpUd38D6/h4S0ZFWZTp4NaOteFytDMxLSkjgdeJ1VF/eRUUzXIZ09G9KjSgssDUwIjAll/um/ufacc20Xr0Z08WpEKWMLwhNjWHPxAAfv+qqeb1O+NmOa9ctTr+1fI4utDW8TWU317SPJuP+otm3bsnz5cjIyMjhx4gSffPIJSUlJLFiwoKRDe2Xjx49/7brW1nkvnsS7Y+7cuXTv3h1jY2O17Q4ODixfvlwtGff48WOOHDmCnZ2dqkxISG4iatq0aezbt49Dhw6pthkZGQE5Pdfmzp3Lzz//TNeuXcnIyGD16tV06dKFWbNm8dVXX2FkZETNmjU5evSoWjLu2LFjODg4cPToUVUy7uHDh9y/f59mzZoBYGNjQ+vWrVm4cCG//fZbEf+WclS2c6WTZ0O2XT/Og5hQ6pT15OPaHZlxbB2xqYn51ulbrQ3GuvpsvnqUqOQ4DHX00dTI7TCtqdDgkzqdSUxPYfXF/cSlJmKmZ0RaZkaxtAHg5JFjLJ+7mE9HfEmFSp7s37GXn8dMYNaKhVjb2uQpn5megYmZKd369WLXpq3P3Xd4aBjeC/7Cs7JXcYUP5HwZGdrwA2YcX8/10Pt09mzI7x2H0H/dZMIT8w7F7+LViMF1u/CHz1r8wgOpYOPEmKZ9SUhN5vSDawC0cqvF4Lpd+e3oKq6H3sfBzJZxzT8EYO6pv4utLbrtWqLbuhnJy9aQFRaOXsc2GI36ivjvJkNqWr51tOvURO+DziQvX0OWfwAapWww+Djn4jd1wxYAtMq7kn70BJkBD0BDE/33O2I0agjx30+B9PQii7+2QwX6VG3Fqov7uBsRTFPX6oxs3Ivv9i0iOjk+T/m1lw6y6epR1c+aCg1+avOJWrLh/UpNqOdYCe/zuwmJj6JiKReGNviAKYdXEBQbVmSxvy59bV38ox6y59Zpfmn3eYnFcfjAIebMmMXIsaOoWKUyO7ZsY8zw0azcuBrbUqXylH/86DFjRoymY9dOfP/TBK5fucqM36Zjam5G0+Y5x9JLFy7SonUrhleuiI6uLutWrmH0V1+zYsNqrG1yrwecXZyZMW+W6mdNzaIbCHLzzCUOrd5GmwHdKFPemUtHTrPhj8V8+ttYTK0K7t2fmpzCzoVrcfJyIykuQe05PUMD6nduiaW9LZpamvhfusnuxesxNDHCpbJHkcX+tCr2bnSu2Igt13wIjA6hrmNFPqnTiT981hCbkv8548Ma7TDWNWDjlSNEJsVipGugNgdRtdLlaV+hPhuvHCYwOgRrIzN6Vm0JwI4bJ4u8Dfd8r/PPhn007NMBW9ey+B0/z97Zq+kxcQhGlmYF1usx+St09HRVP+sZ572pmxAVy9nNByjlVrbI437WPd8b/LNxPw36tMe2nAO3jl9k35y1dJ/4JUYWpgXW6/7TkGfaYaD2vLaeLj1+GqK2rTgTcbUdPOlbrQ0rL+zhTuRDmpWrzqjGfRi3d0G+x9s1F/ez6cph1c8aCg1+bjuYc8E3Vdu6VW5GfceKLPPdTUh8JJXsyjGsYXcmH/ImKPb5N4VeR32nSgyo2Z6/zu7kVsQDWrnVYnyLj/h6xywik+LylPewceSrBh+w4vwezj+8hYWBCYPrdOGLeu/zh88aALQ0NJnQaiBxqUlMO7aWqOR4rAxNScnI/xxaFBo4Vebj2h1ZdGY7t8IDaeNehx9aDWTothn5tqOCjSPDG/Zgme8ufIP9sDQw4fN67zGkfjd+PboKyEnWfVijLXNPbuZWRBD2JlYMa9gdgGW+u4q8DU3LVePL+u8z++Qmrofep6NnA6a2/4KPN/6S77VUJ8+GDKrdiRnH13E7PAgPG0dGNu5FYnoK/zy4riqXmJbCgA0/q9X9f0jEibeTDFP9j9LV1aVUqVI4ODjQp08f+vbtqxoSqVQq+f3333FxcUFfX58qVaqwefNmVd2YmBj69u2LtbU1+vr6uLm5sXz5ctXz165do3nz5ujr62NpacngwYNJTMz/wgzAx8cHhULB/v37qVatGvr6+jRv3pzw8HD27t1LhQoVMDExoXfv3iQn595d2bdvHw0bNsTMzAxLS0s6duzIvXu5d7pWrlyJkZERd+/eVW0bOnQo5cuXJykpCcg7TFWhULBo0SI6duyIgYEBFSpU4J9//sHf35+mTZtiaGhIvXr11F4HYMGCBZQrVw4dHR3c3d1ZtWrVc3//vr6+tGrVCisrK0xNTWnSpAkXL158bp1nJSUl0b9/f4yMjLCzs2P69Ol5yqSnpzNmzBhKly6NoaEhderUwcfHR/X8gwcP6NSpE+bm5hgaGuLl5cWePXuA3Pdl9+7dVKlSBT09PerUqcO1a9fUXuP06dM0btwYfX19HBwcGDZsmOr3CxASEkKHDh3Q19fH2dmZtWvXqv3eAwMDUSgUXL58WVUnNjYWhUKhFuvNmzdp3749RkZG2Nra8uGHHxIZGVng7yc7O5tNmzbRuXPnPM917NiRqKgoTp06pdrm7e1N69atsbHJSdhoampSqlQp1cPIyAgtLa08286cOcP06dP5448/GD16NK6urlSoUIEpU6YwYsQIRo4cSXBwzl3dZs2aqbXJz8+PlJQUvvzyS7XtR48eRVtbmwYNGqi2de7cmXXr1hXY3sJq5FwF32A/fIP9CE+MYefNU8SlJlLXMf8eZeWtHXCxtGeZ7278ox4Sk5LAw7hwHsTkXtzWdKiAgbYuK8/v5UFMKLEpiQTGhBKSEFVs7di5aSst2remVce2lHEsy6Chn2FpY83+7bvzLW9jZ8ugoZ/TrE0LDJ7TSzYrK4uZP/9Br4H9sP03YVtcelRpzm6/0+z2O82DmFDmnNpMRGIsXSs2zrd8G/c67LhxkiP+FwiJj+KI/wV2+52mT/VWqjJepZy5HnqPQ3fPE5oQjW+wH4fvnsfdOv+eE0VFt2VTUncfIOPiFbIfhZC8dDUKHW106hTcY0ernDOZ/vfJOHuB7KhoMm/cIv3sBbSccr/UJs1cQPqps2Q/DiX74SOSl61Bw9ICTSeHIo2/tXsdjgdc5vj9y4QkRLHu0kGiU+JpXq56vuVTMtKIT01SPZws7DDQ0efkUz3L6jlVYpffKa6G3CMiKZaj9y5yPfQ+bd3rFGnsr+tM0A2WnN3BsfuXSzSOjWs30KFLRzp27YyTsxPDRo3A2taGbZvzT5pv37INm1K2DBs1AidnJzp27Uz7zh3YsDr3uDnh54m81/193NzL4+jkyDffjSVbmc0F3/Nq+9LU1MTSylL1MHvFKTCe59zeY1RpWoeqzepiVdqWVh++h4mlGZcOn3puvX3LNuFZrzqlXfP+zTp6uuJeqzJWpW0xt7WiVtvG2DjYEXw7oMjiflYTl6qcC7rJuaCbhCfGsOPGCWJTEqnnWCnf8u7WZSlnWZq/zu7gbmQwMSkJBMeGqZ0znMztCIwO4dKjO8SkJHAnIpjLj+5SxtS2WNpw9eA/uDesjkejGpjbWVO/ZzuMzE25eez8c+vpGxtiYGqsemhoqH8dys7O5shff1OjczNMnpNgLSrXDv2De4NqeDSsjrmdNfV6tnmFdhipHs+2Q6FA7XkDU6PibAZtPepy/P4ljt2/TEh8JGsvHSA6OZ4WrvmfL1Iy0ohLTVI9nC3sMdDR58T93ONtfadK7Lx5iqsh/kQkxXLE/wLXQu/TzqNusbShU4UGHPG/wGH/8zyKi8D7/B6ikuJoXT7/43t5KwcikmLYc+sfwhNjuBX+gIN3z1HO0l5VprlrDYx09fn96GpuRwQRmRTLrfAHan87Ra2LV0MO3T3Pobu+PIyLYOm5XUQmxdHWPf/fW3nrskQkxrDb7zThiTH4hT/gwO1zuFqVVpVxty7LrbAHHA+4QnhiDJcf3+XE/StqZYrSB5WasffWGfbc+oeg2DDmn95CeGIMnTwb5lu+lVstdvmdwufeJUISojh67yJ7b5+hZ5UWz5RUEpOSoPYQoqRIMu4doa+vT0ZGTm+V77//nuXLl7NgwQJu3LjB119/Tb9+/Th27BgAP/zwAzdv3mTv3r34+fmxYMECrKxyurUnJyfTtm1bzM3N8fX1ZdOmTRw6dIivvvrqhTFMnDiRuXPncvr0aYKDg+nRowczZ85k7dq17N69m4MHDzJnzhxV+YSEBL7++mt8fX05dOgQSqWS9957j+zsbAD69+9P+/bt6du3L5mZmezbt49FixaxZs2a5w5NnTx5Mv379+fy5ct4eHjQp08fPvvsM8aNG8f58zkXNk+3Z+vWrQwfPpxRo0Zx/fp1PvvsMwYOHMjRo0cLegkSEhL46KOPOHHiBGfOnMHNzY327duTkPDyB/RvvvmGo0ePsnXrVg4cOICPjw8XLlxQKzNw4EBOnTrF+vXruXr1Kt27d6dt27aqBOWQIUNIS0vj+PHjXLt2jd9++03V2+vp15k2bRq+vr7Y2NjQuXNn1Wfl2rVrtGnThvfff5+rV6+yYcMGTp48qfb76d+/P48fP8bHx4e///6bxYsXEx7+akPJQkJCaNKkCVWrVuX8+fPs27ePsLAwevToUWCdq1evEhsbS82aeS/idHR06Nu3r1oS2dvbm48//viV4gJYt24dRkZGfPZZ3qGNo0aNIiMjg7//zul51KxZM27fvq3qcXf06FEaNWpE8+bN8yTj6tSpg4FB7l3q2rVrExwczIMHBQ91eF2aCg1Km1pz95mhIHcignE0z/9LkKetMw/jwmniUo3xLfozukkfOlSoj5aG5lNlnHgQG0bXio34vuUAvm7ck2blqqOgeLq5Z2RkcO+2P1VqqSdKqtaqxq0bfgXUejmbVq7DxMyUlh3aFGo/L6KloUl567JqPakAfIP9qGib/zA2bQ0t0rPUexumZWVQwcZJ1VPxasg9yluXpYJNzhd5OxNL6jpW5MxTd3uLmoaVJRpmpmTeyB22TGYmmbf90SpX8HDrTP97aDk6oOnsqNqPdiVPMq7eKLCOwkAPAGVScoFlXpWmhgZO5nbcCFVPaNwIvU85qzIvtY/GzlW5GRZA1FO9OrQ1NPPcRU/PysTNumgTif9lGRkZ3Ll1m1p1aqttr1WnNtev5v+ZvXHtep7ytevW4dbNW2Rm5t9rIS01lczMTExMTNS2Pwx+yHvtOtOjywdMHD+Bxw8fFaI1ubIyMwkNeIhzxfJq250ruvPwbmCB9a4eO0dMWBSN3m/9wtdQKpUEXr9DdGgEZV9i6OvryDln2HDnmekG7kQE4WSR/80Kr1LOBMeG06xcDX5oOZCxzfrR0bOB2jkjIPoxZcxscDDLOe9YGJjgYeOI33OGxr2urMxMIoMeU8aznNr2Mp7lCLuX/7DIJ7ZMXsSq0dPYNWMFj2/lTXhe3HUMfWNDPBrmn7QvSlmZWUQGhVD6mXaU9nR5cTt+Xszqb2awe8ZKHueTuM1IS2fduFmsHfsn++auIzKo4GkrCuvJ8fbZ4frXQ+/h+rLHW5eq3Ay7T1Rybs8tbQ1NMrLV//4zsjKK5XirpaGJi6U9Vx77q22/EuKPu3X+PSRvRwRhaWBKtdI5xwRTPUPqlq3IxYe5w09rlvHgTkQwn9TpzF/dxzGj0zDer9ik2Fa21NLQpJxlaS4/vqu2/fLju3jY5H8D71b4AywNTalR2v3fdhhRz6mi2rQlfuGBlLMqjdu/76etkQXVy7irlSnKNpS3dsiz7wsPb+Flm//1h7amFunPjNxIy8zAw8ZRbdSHvrYua/tMZH3fn5jSdjCuli/3+XwXKN7if/+vZJjqO+DcuXOsXbuWFi1akJSUxIwZMzhy5Aj16tUDwMXFhZMnT7Jo0SKaNGlCUFAQ1apVUyU5nJycVPtas2YNKSkprFy5UpXwmjt3Lp06deK3337D1rbgu5s///yzqifQoEGDGDduHPfu3cPFJedi8oMPPuDo0aOqueG6d++uVn/ZsmWUKlWKmzdvUrFiTm+eRYsWUblyZYYNG8aWLVv48ccfqVWr1nN/HwMHDlQlecaOHUu9evX44YcfaNMm50v48OHDGThwoKr8tGnTGDBgAF9++SUAI0eO5MyZM0ybNk01zPBZzZs3V/t50aJFmJubc+zYMdUcY8+TmJjI0qVLWblyJa1a5fR+WbFiBWXK5J4Q7t27x7p163j48CH29jl32EaPHs2+fftYvnw5v/zyC0FBQXTr1o1KlXLuZD/5XT/txx9/zPMaW7dupUePHvzxxx/06dNHtWiEm5sbs2fPpkmTJixYsIDAwEAOHTqEr6+v6vPy119/4ebm9sI2Pm3BggVUr15dbSGGZcuW4eDgwJ07dyhfvnyeOoGBgWhqaqp6uj1r0KBBNGzYkFmzZnHhwgXi4uLo0KGDag64l3Xnzh1Vr8hn2dvbY2pqyp07ORdVDRo0QFtbGx8fH3r37o2Pjw9NmjShevXqxMXFcffuXdzc3PDx8aFfP/U5KUqXLq1ql6Nj3ouhtLQ00tLUhyzo6urmKZcfAx09NDU0SExPUduemJaMsW7+F6wW+iY4mduRmZXFyvP7MNTRo2vFxuhr67L532F6FgYmlNM35vLjuyw/txsrQ1O6VGyMhkKDw/7Pv2P/OhLi4snOzsbM3Extu6m5ObHRr7/Sst+1GxzavZ8Zf80tZIQvZqpnhJaGZp47rdHJ8Vg4mORb51zwTTpWaMCJgCvciQjG3bos7T3qoa2phZmeEVHJ8Rzxv4CZvjFz3xuFAgVamppsvX6cNZcOFFtbFKY58WbHqw8vyo5PQMPSosB6GecukmJkhNG3IwAFCi1N0o6eIG3vwQLr6Pd8n8w798h+VHRfFo11DNDU0CD+mWHacalJVNR7cQ8RUz0jKtmVY9GZbWrbr4fep417He5EBBGeGEMFW2eqlS5fbF+s/oviYmPJysrC3EL9c2JhaU50VP49a6OjorGwVO+FZG5hQVZWFrGxsaqbhk9bOHch1tbW1Kide9PG08uT8ZO+x6FsWWKiolm5bAVfDvqcFRtWY2pW8JC/l5GckIQyOxtDU/WpEwxNjUmKzf9mXHRoBEc37KLfD1+hoamZbxnIGcY6d+gksjIzUWho0GZAN5wruRcq3oI8mZLg6bmgABLSUjDWNci3joWBKc4WdmRmZ+J9fg+GOnq8X6kpBtp6bPx3qOHlx3cx1NFnSINuKABNDU1OB17lqP+FfPdZGKmJySizleibqN+c1TcxJDk+/9EcBqbGNPqwE9Zl7cjKzOLumSvs+nMFnUYNwK68EwCh/kHcPnmRbj+8mSHeT9ph8Gw7jA1JiU/Kt46BqRGN+nXEytGOrIxM7p69xu4/V9Fx5EfYlc+5vjAtZUWTj7pgUdqG9NQ0bhw5x47fl9Pth88wtbUs8nY8Od7GparHHJeWhOlLHm8r27my8B/1nrPXQu/T1r0ut8ODCE+MxtPWmWql3YvleGusa4CmhiZxz54zUhIxs8+/Dbcjgph1YiMjG/dCW1MLLQ1NfIP9WHoud45KW2MLKhqZceL+FX45vAI7E0s+qdMZDQ0N1fVWcbQj9pnrkLiUBMz1815vP2nHjOPrGd20j6odZ4NusuRM7ryDJwOuYqprxC/tPkehUKClocneW/+w5dqxIm+DqZ4hmvlcS8WkJGBhYJxvnfMP/WjvUY9Tgde4GxlMeSsH2rnXQVtTC1M9I6KT4wmKDed3nzXcj3qsOobN6jKCwZt/41F8RJG3Q4gXkWTcf9SuXbswMjIiMzOTjIwMunTpwpw5c7h58yapqamq5MsT6enpVKtWDYAvvviCbt26cfHiRVq3bk3Xrl2pX78+kDPsrkqVKmo9zxo0aEB2dja3b99+bjKucuXKqv/b2tpiYGCglhyytbXl3Llzqp+DgoKYPHkyZ8+eJTIyUtUjLigoSJWMMzc3Z+nSpbRp04b69evnmbD/ZeIAVMmqJ9tSU1OJj4/HxMQEPz8/Bg8erLaPBg0aMGvWLAoSHh7OhAkTOHLkCGFhYWRlZZGcnExQ0MtNan/v3j3S09NVCVPImWDa3T33wvvixYsolco8iaq0tDQsLXMupIYNG8YXX3zBgQMHaNmyJd26dVNrP5Dva/j55fTauXDhAv7+/qxZs0ZVRqlUkp2dTUBAAHfu3EFLS4vq1XPvDru6ur7yqrcXLlzg6NGjeXrtPfld5JeMS0lJQVdXt8DJRitXroybmxubN2/m6NGjfPjhh2hra79SXC9DqVSqYjAwMKB27dqqZNyxY8f45ptv0NLSokGDBvj4+KCrq0tAQECehK2+vj6A2lDtp02dOpVJkyapbfvxxx+hVv7JyIJiVaNQoMy/qKpN6y8fIjUzZ46uXX6n6Ve9DduuHyczOwsFCpLSU/j7qg9KlDyKj8BEz5DGLlWLJRn3bGwqSuVr3zVLSU5m1pRpfPnNMEwK+UX8VTz7XigUCpQFvBsrzu/FwsCEhe+PAQXEJCew79YZ+lRvTZYy57hY1d6ND2u0Ycbx9fiFBVLa1JphDbsTVaMdKy/sLZKYtevUxKB/L9XPibMW/tuYZwoqFPDsZ+0pWu6u6HVsQ8rqjWTeD0TTxhr93t3I7tiGtF3785TX79sdzTL2JPw6swhakVee8FHkszWvhs6VSc5I5eKj22rb1146yICa7fml3ecogfDEGE4GXMl34Yf/d8/+LSuVz59AOu/fubKA7bB25RoOHzjI7IVz1W5c1G2Qe87DtRxelSvSu2sP9u3eS8++vfLs57U82y6UebZBznDH7fNW06hbWyztnn8s19XT5eMpo8hISyfwxl0Or9mOmbUljp6uRRPzS3hefuPJ+7b24gHVOWPHjZP0r9mOLdd8yMzOopxlaVq41WTLNR+CYsJUN3BapiZz6KlJ1Is0ZvJ+xgpiVspKtcABgG05BxJj4rly4DR25Z1IT03j6NItNPqwc77zyL0t8mtHUnQcVw/+o0rG2bqUwdYl9wZvqXJl2TJlMTeO+lK/V9tii+3Z85yCgs99T2vkXIXkjFQuPFLvCbXm4n4G1urIr+2/UB1vTwRcppFz1SKMWl1+11IFKWNqzce1O7Lp6hGuPLqLmYEx/Wu0Y3DdLiz4N7GoUCiIS01i0ZltZCuV3I9+jLm+CV28GhVLMq5Az7kOKWNqw6d1OrPh8mEuPb6Dub4xA2q254t67zH3dM7okIqlXPigSjMWndnO3YggSplY8UntTsRUTmDj1SPFFHTeM3hBf+OrLuzHXN+EuV1HolDkJO723zlHr6otVd8x/cID1XrqXg8NYGG3b+hasTHzThff/LtCFESScf9RzZo1Y8GCBWhra2Nvb69KQgQE5HRT3717t6onzhNPLlbbtWvHgwcP2L17N4cOHaJFixYMGTKEadOmqSUenvWiFVieToQoFIo8iRGFQqE6GELOvF/Ozs4sWbIEe3t7srOzcXJyIv2ZybuPHz+OpqYmjx8/JikpKc9wlBfFUdC2p2PJ+4Wh4N8D5KxoGxERwcyZM3F0dERXV5d69erlib0geU70+cjOzkZTU5MLFy6g+czd9CdJrU8++YQ2bdqwe/duDhw4wNSpU5k+fTpDhw597r6f/h189tlnDBs2LE+ZsmXLcvv27Tzbn43/yRwlT297Mgz26bY86V35LLsC5u+ysrIiOTmZ9PT0fHutAXz88cfMmzePmzdvqiV6X0X58uU5efJkvq/z+PFj4uPj1XoCNmvWjA0bNnDjxg1SUlJUicomTZpw9OhRdHR00NPTo25d9Xk5oqOjgYIXHRk3bhwjR45U26arq8uEQ0tf2Ibk9FSysrPz9Ggw0tEnMS3/5F9CWs4cLU++VAFEJMagoVBgqmdEVHIcCWlJZCmz1S7ewhNjMNEzRFOhoUoUFRVjUxM0NDSIeaYXXFxsLKYWZq+1z9BHIYSHhvHLuNxE55PP6gfNOzJ31RJKlS66OeTiUhPJzM7CwkD9OGWub0xMcv49Z9KzMvjt6GqmHVuLhb4JUclxdPJsSFJ6CnEpOb0MBtXuxIHb59jtdxqA+9GP0dPW5ZsmfVh1Yd9Lfdl5kYwr10iYFJi7QSvnEkHD1ISsuNzecRrGRijjCx6Sr9e1I+n/nCP9xD8AOb3ddHUw6N+btN0H1L4t6/f5AO2qlUj8bRbKmNhCt+FpCenJZGVn5+mVYaJnkKf3Rn4aOVfhdOA1srLVP+cJacnMObUZLQ1NjHQNiE1JoHvlZkQmxRZl+P9ppmZmaGpq5ukFFxMdk6e33BMWlhZERUXnKa+pqZmnR9u6VWtZvXwlM+bNpJzb85NV+vr6uLi68DD4+UP+XoaBsSEKDQ2SYtV7iybHJWKYz3xc6SlphAYEE/bgEQdW5CxeolQqQank1/6j6TX2M5y8cs4vCg0NLErlnB9sHUsT9SiMf3YeLpZkXFJ6SoHnjGd7yz2RkJpEXGqi2jkjPDEaDYUCM30jIpPiaONel4sPb3MuKGcC/tCEKHQ0tfmgSjMO3/UtgqNULj0jAxQaijy94FITkjAwefm50Wycy+B/9ioA8RHRJETFsn/eWtXzT84XSz6fRM+fhmJiU3Cv4NeR2w71Y1JKQlKeXn/PY+NSBv+z1wp8XqGhwNrJnrjw4pnz9cnx1uzZ462uAfEvc7x1qcLpwKv5Hm9nn9yI9r/H25iUBHpUaVEsx9uEtGSysrMw01fveWWqZ1jgoibvVWzC7fAHqgVKHsSGsSRzBz+3Hcy6y4eITUkgJjmBLGUW2U+d+x7FRWBuYIyWhmaRrzRccDuMCmzHB5Wb4hceyLYbx3PaERPKojPbmNr+C9ZcOkBMSgJ9qrXC595FVWL9QWwYelrafFn/fTZdPVok1yFPxKUmkZWdhbn+s9dSRgXO8ZaelcG0Y2v588R6zPVNiE6Oo0OFBiSlpxZ4zlei5HZEEGVM/z8WBJQe/G8fmTPuP8rQ0BBXV1ccHR3VEk2enp7o6uoSFBSEq6ur2sPBIXe4mrW1NQMGDGD16tXMnDmTxYsXq+pfvnxZbQL/U6dOoaGhkW/vpdcVFRXFtWvX+Oabb6hTpw4ODg4EBgbmKXf69Gl+//13du7ciYmJyQuTTK+jQoUKnDypvsrX6dOnqVChQoF1Tpw4wbBhw2jfvj1eXl7o6uo+dzGCZ7m6uqKtrc2ZM2dU22JiYlTDIQGqVatGVlYW4eHhed7LUk+tROfg4MDnn3/Oli1bGDVqFEuWLFF7rfxew8MjZ3W26tWrc+PGjTz7d3V1RUdHBw8PDzIzM7l06ZJqH/7+/sTGxqp+fpJcenrl0qcXc3j6dZycnPK8TkHz/1WtWhXIWfihIH369OHatWtUrFgRT0/PAss9T69evUhMTGTRokV5nps2bRra2tp069ZNta1Zs2bcvXuXtWvX0rBhQ1WitEmTJvj4+ODj40O9evXQ09NT29f169fR1tbGyyv/lTx1dXUxMTFRe7zsMNUsZTaP4iLyzKHiZlWGBzH5r+4YGB2KiZ4BOpq592SsDE3JVmarhmgExoRiaWCq1u/AytCM+NSkIk/EQU7SvJy7K1fOX1LbfuX8JTy8Cv57fJ7SZR34c9l8pv81V/WoVb8OFatVZvpfc7G0yTv0rTAys7O4ExFETQf1eGuW8eB62P0CauXIys4mIimWbKWSFq41OR14XXVxq6elkyeJn52djULx/N4sryQ1jezwyNzH41CyY+PQ8nxqqJymJlrurmTee87E8jraebunZCt5tnOTfp/uaFevQuIfc8iOLPoviFnZ2QTGhOBVSn1+GU9bZ+5FPnxuXXfrstgaW3DiqYUbnpWZnUVsSgKaCg1qlPHg0qM7BZb9f6OtrU15D3fOn1XvDXX+nC8VK+e/qIxXpYqcP6de3vfsOTw8PdDSyj1OrVu1hpVLvflj9nQ8PF98XEhPT+dB4ANVj/LC0NTSopRzGQKuq7/XAdfvUMbNKU95XX1dPpn6DYOmjFI9qjWvh4WdDYOmjMK+XMErdSpRkpVRPCv85Zwzwin/zDmjvHVZAqPzHyoeEB2CiZ4hOpq515zWhmZkK7NVX/B1NLXyfCHPVmb/23utaL8EamppYVXWnkc31Rfkeuh3D9tyLz+fWFRwiGphA7NSVnzw4xd0++Fz1cOxsjv27s50++FzDC2efzP4dWhqaWJV1o5Hfurnh0d+91+xHaHoP2eBBqVSSVRwGAam+Q/xK6zc4636dClepVzwf8Hx1sPGkVLGls9ddCYjO4uYf4+3Nct45OmxXBQys7O4H/WYyvbqCfDKdq7cjsh/5IuuljbZz37m/00oPvnE3454QCljS7VenHYmlkQnxxd5Ig5y2nEv6hFVn2lHVXtXboXnP2+xrmY+1xjP/KyrqV1AGUXRXYf8K+daKpgaZdSH6tco48GNsOcvbJOVnU3kv9dSzcpV58yD689NFJazLK02L6wQb5Ik494xxsbGjB49mq+//poVK1Zw7949Ll26xLx581ixYgUAEyZMYPv27fj7+3Pjxg127dqlSjz17dsXPT09PvroI65fv87Ro0cZOnQoH3744XOHqL4qMzMzLCwsWLhwIf7+/hw+fJhRo0aplUlISODDDz9k6NChtGvXjrVr17Jx40Y2bdpUZHFAzgIH3t7eLFy4kLt37zJjxgy2bNnC6NGjC6zj6urKqlWr8PPz4+zZs/Tt21c1DPFlGBkZMWjQIL755hsOHz7M9evXGTBggNpKWOXLl6dv377079+fLVu2EBAQgK+vL7/99ptqxdQRI0awf/9+AgICuHjxIkeOHMmTRPzpp5/UXsPKyoquXbsCOXPq/fPPPwwZMoTLly9z9+5dduzYoUp6enh40LJlSwYPHsy5c+e4dOkSgwcPRl9fX9W7Tl9fn7p16/Lrr79y8+ZNjh8/zvfff68Ww5AhQ4iOjqZ3796cO3eO+/fvc+DAAT7++GOysvK/ELG2tqZ69ep5EqVPMzc3JyQkhMOHD7/07/5Z9erVY/jw4XzzzTdMnz6de/fucevWLb7//ntmzZrF9OnT1RLZ9evXR1dXlzlz5tCkSRPV9lq1ahEXF8fff/+d71yDJ06coFGjRq/0OXkVJwKuUMuhAjXLeGBjZE7HCg0w0zfmTFDOZOlt3evS46kVpS4/vkNyehrdqzTHxsgcZws72nvU53zwLdXF4ZkHNzDU0aOTV0OsDE3xsHGkmWt1ThfjogGdur/H4d37ObznAA8fBLFs7mIiwyJo3bk9AKsXL2fWL9PU6gTcvUfA3XukpqQQHxdHwN17BAfmXDjr6Org6OKk9jA0MkJfXx9HF6diGdq88coROlaoT3uPejial+KrBt2wMTZn+/UTAAyu24XxLT5SlS9jakOr8rUpY2pNBRtHfmz1Mc6Wdiw5u11V5vSDa3Sp2IjmrjWwM7akZhkPBtXpyKnAa3kumItS2iEf9Dq0RrtaZTRK22HwcT+U6Rmkn80dpmww6EP03u+k+jnzynV0mzZEu3Z1NKws0fJ0R69rBzIuX1cl6fT79UCnXk2SFq9AmZqKwsQYhYkxFPH7ceD2WRo7V6WRcxXsjC3pVbUllgamHL2Xs/r1B5Wa8kmdTnnqNXapyr2oRzyKyzuHjIuFPTVKu2NtaIablQMjm/RCoVCw59Y/RRr769LX1sXNqoxqkm17EyvcrMpga1T8q0I+rUefnuzavpPdO3YRGBDInBmzCA8No0u39wBYNHcBU36crCrf5f2uhIWEMvfP2QQGBLJ7xy52b99Fz369VWXWrlzDXwuWMHbCOErZ2REVGUVUZJTa8P95M+dy+cIlHj96zM3rN5gw9nuSkpJo27F9kbSrdrsmXPE5y5VjZ4l8FMah1duIj4qhWouc6T58Nuxi58KcnlUKDQ2sHezUHoYmRmhpa2HtYIeOXs4Nl9M7DhFw7TYx4VFEPQ7j3B4frp88j1eDGkUSc36O3b9M7bJe1HKogI2ROZ29GmKmb6RaFKadRz16Vc2d8uTSozskp6fSs2oLbI3McbGwp6NnA84F+anOGTfDAqjnWImq9m5Y6JvgZuVAW4+63AgNKNJeM09UblWPWycvcuvkRWJCIji9YR+J0XFUaJIzh+C5LYc4umyLqvy1Q/8QeMmPuLAooh+Hc27LIQIu+uHVLGfhEC1tbSxK26o9dA300NbVwaK0LZpaxTOgqFLLetw+eZHbpy4RExLBPxv357Sjcc77f27rYY4u3/ZUO84QePlWbju2Hs5pR9PcOZUv7DxG8A1/4iNiiAoO5fjKnUQFh6r2WRz23TpDE5dqOcdbEyv6VGuFpYEpR/6dM7B75eYMrtMlT73GLlXxj3xY8PG2jAfWhmaUt3ZgVNM+Ocfbf3uJF7Wdfqdo4VqD5q41KG1qzYCa7bEyNOXAnZzRF32qtWZogw9U5c8/vEWdsl60Ll8bGyNz3K3L8nHtjtyNCFb14Np/+xzGugYMrN0BO2NLqpd25/1KTdl3+2yxtAFg+42TtHSrRQvXmjlDaWt1xMrQjP3/vma/6m0Y3jB3ETXfh37UdaxIW/c62BpZ4GHjyCd1OnEnIkjVDt+Ht2jrXpeGzpWxMTKnip0rfaq1wjf4ZrFch2y+dpT2HvVo616Xsma2fFHvPWyMzNl5M+d7waDanRjbLHd+5jKm1rR0q0lpE2vcrcvyfYuPcLawY+m5XaoyH9ZoS80yHtgZW1LOsjSjm/TB1bKMap/iv2X+/Pk4Ozujp6dHjRo1OHHiRIFlt2zZQqtWrbC2tsbExIR69eqxf7/61Cne3t4oFIo8j9TU1GJrgwxTfQdNnjwZGxsbpk6dyv379zEzM6N69eqMHz8eyFmJcty4cQQGBqKvr0+jRo1Yv349kDMn1v79+xk+fDi1atXCwMCAbt26MWPGjCKNUVNTkw0bNjBs2DAqVqyIu7s7s2fPpmnTpqoyw4cPx9DQUDXpv5eXF7/99huff/459evXzzMM93V17dqVWbNm8ccffzBs2DCcnZ1Zvny5WizPWrZsGYMHD6ZatWqULVuWX3755bnJu/z88ccfJCYm0rlzZ4yNjRk1ahRxcXFqZZYvX87PP//MqFGjePToEZaWltSrV4/27XO+VGRlZTFkyBAePnyIiYkJbdu25c8//1Tbx6+//srw4cO5e/cuVapUYceOHarhmJUrV+bYsWN89913NGrUCKVSSbly5ejZs6eq/sqVKxk0aBCNGzemVKlSTJ06lRs3bqj1/Fq2bBkff/wxNWvWxN3dnd9//53WrXNXjbO3t+fUqVOMHTuWNm3akJaWhqOjI23btlVLQD5r8ODBeHt7P3c1XzMzsxf/sl9g5syZVK5cmQULFvDDDz+gUCioXr0627Zto1Mn9S/qT4agHjt2TO0zoq2tTb169Th8+HC+ybh169blmROuKF0N8cdAR5cWbjUx0TUkNDGK5b67VD0WjHUNMNPPvWuenpXJX2d30MWrEUMbfkByehpXQ/xVF2qQM+Tyr7M76eTZgBGNehKfmsSpgKv43LuU5/WLSsPmTUiIT2DjirXEREdT1tmJ736bhE2pnJsBMVExRIapX7CP+jS3x+y9O/6cOOSDta0NizZ4F1ucz3PE/wImuoZ8VLM9loYmBESFMHbXfMISc4bgWRqYqCVGNDU06FmlBWXNbMnMzuLSozt8uWUaoQm5Q/ZWnt+LUqnkkzqdsDY0IzYlkdOB11hydkee1y9KaXsPodDWRr9fDxSGBmTdDyRxxjxIzV1sRMPCXK0nXOqu/SjJGa6qYW6KMiGRjCvXSd2Se0Gs26wRAMZjh6u9XvKy1aSfKrovKOeC/TDUNaCzV0NM9Yx4FBfBnyfWq+6Cm+obYWmgPgRSX1uXGmU8WFvA4hjamlq8V6kJNkbmpGamczXEnyVndpCSkZZv+TfNw9qRue/lDnkf1jBnsaQ9fv8w5ciKNxZHi9YtiY+LZ8Vfy4mKjMK5nAu/zZxGKbucnt1RkVGEheb23LUvbc/vM6cx58/ZbN20BUtrK4aPHkHT5rnH022bt5CRkcGEseo3fAZ8+jEfDx4EQER4OJO+/5G42DjMzM3wrOjFwmWLVa9bWJ51q5GSkMyprQdIjI3HuowdPb75FFOrnOGLibEJxEe+2oIzGWnp7Pf+m4ToWLR0tLG0t6XTF33xrFutSGLOz5XHdzHU1qNV+do554yEKJae3an64m2iZ4i52jkjg0VntvNexcYMb9yT5PRUrjz2Z+9TSehD/w5FbetRF1M9IxLTU7gZGqBWpiiVq1WR1KRkLu4+RnJcIhb2NrQb2hdjSzMAkuMSSIzOva7KyszizOYDJMUmoKWthbm9DW2H9qFspaIb+fE6ytXyIi0pmYu7j6va0farPk+1I5Gkp9qRnZXF2c0HVe0ws7emzVe9KVspd0qN9JRUTq7eTXJ8Ijr6ulg6lKLT6I+wcS6aa+f8nAu+iZGuPl0qNsbs3+PtjOPrVKujmuobYWGo3rtQX1uXmmUqsOZi3vlEIed4261SU6yNzEnLTOfqY38W/7ON5GI63p4OvIaxrgEfVG6Gub4xQbFh/HJ4pWpYrLm+MVaGuecMn3uX0NfWpZ1HXT6q2Y6k9FSuh95n9YXc9kQlxzH54HIG1GrP9M5DiU6OZ4/fadWQ0OJwKvAqJroG9KzaIqcdMaFMPuRNxL/tsDAwwdrITFX+iP8F9LV0ae9Rn4G1OpCUnsrVkHtqc9JuvHIEpVJJ32qtsTAwJT41Cd9gP9Zcyv+9Kyyfe5cw0TXkwxptsDAwJTA6hHF7FxKemHN8tTQwweapaykNhQYfVG6Og6kNmdlZXHl8l6Hb/lRde0HOUPyRjXthbmBCUnoK/pEP+XrnrAJ7Pr5rXjTl1H/Jhg0bGDFiBPPnz6dBgwYsWrSIdu3acfPmTcqWzdvr/Pjx47Rq1YpffvkFMzMzli9fTqdOnTh79qxqXn0AExOTPNM0PTvaqSgplC8zeZUQ4j/Hx8eHZs2aERMTUyQJqycePnyIg4ODar7B4pSamoq7uzvr169XW4jiv2b37t188803XL16VW241csYu3t+MUX15vzW4UtuhNx7ccG3mJddORrP/7Kkwyi041/OJ3ZQ0Q/3f5PMls5h4IYpJR1GoS3v+R0N5r2ZFRuL06khCwmLf/lpGt5GtiZWePvuLukwCm1ArQ6M3jmnpMMolGmdhjL92LqSDqPQRjXpzTSfNS8u+JYb3bQvH62f/OKCb7EVvX7gg5XflXQYhba5/xS6er94Ibu32bYBv9JiUd55qv9rDn82u6RDeC0+xbCydVFp6vpqvXbr1KlD9erVWbBggWpbhQoV6Nq1K1OnTn2pfXh5edGzZ08mTJgA5PSMGzFihNp0TMVNhqkKIZ7ryJEj7Nixg4CAAE6fPk2vXr1wcnKicePGxf7aenp6rFy58pXm43sbJSUlsXz58ldOxAkhhBBCCCHEuywtLY34+Hi1R1pa/j1g09PTuXDhgtooLIDWrVtz+vTLDWHPzs4mISEBi2cWlUpMTMTR0ZEyZcrQsWNHtXnTi4Mk44QQz5WRkcH48ePx8vLivffew9raGh8fn2KZays/TZo0yTNU9L+mR48e1KlTp6TDEEIIIYQQQvwf0lAo3trH1KlTMTU1VXsU1MMtMjKSrKysPPPZ29raEhoa+lK/i+nTp5OUlESPHrlzJ3p4eODt7c2OHTtYt24denp6NGjQgLt3777+L/0FpJuGEO+opk2b5ln16HW0adOGNm3aFEFEQgghhBBCCCFErnHjxjFy5Ei1bbq6us+t8+wceEql8qXmxVu3bh0TJ05k+/bt2NjYqLbXrVuXunXrqn5u0KAB1atXZ86cOcyeXTxDkyUZJ4QQQgghhBBCCCHeOF1d3Rcm356wsrJCU1MzTy+48PDwPL3lnrVhwwYGDRrEpk2baNmy5XPLamhoUKtWrWLtGSfDVIUQQgghhBBCCCHeUYq3+N+r0NHRoUaNGhw8eFBt+8GDB6lfv36B9datW8eAAQNYu3YtHTp0eOHrKJVKLl++jJ2d3SvF9yqkZ5wQQgghhBBCCCGEeOuNHDmSDz/8kJo1a1KvXj0WL15MUFAQn3+es0r9uHHjePToEStXrgRyEnH9+/dn1qxZ1K1bV9WrTl9fH1NTUwAmTZpE3bp1cXNzIz4+ntmzZ3P58mXmzZtXbO2QZJwQQgghhBBCCCGEeOv17NmTqKgofvrpJ0JCQqhYsSJ79uzB0dERgJCQEIKCglTlFy1aRGZmJkOGDGHIkCGq7R999BHe3t4AxMbGMnjwYEJDQzE1NaVatWocP36c2rVrF1s7JBknhBBCCCGEEEII8Y5SKN6tGcq+/PJLvvzyy3yfe5Jge8LHx+eF+/vzzz/5888/iyCyl/duvSNCCCGEEEIIIYQQQrzFJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RGopXW7VUFD/pGSeEEEIIIYQQQgghxBsiyTghhBBCCCGEEEIIId4QGaYqhBBCCCGEEEII8Y5SyDDVt470jBNCCCGEEEIIIYQQ4g2RZJwQQgghhBBCCCGEEG+IDFMVQgghhBBCCCGEeEdpIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h0lq6m+fRRKpVJZ0kEIIYQQQgghhBBCiKJ37sGNkg6hQLUdvUo6hBIhPeOEEOItNmbX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2JavVfSYRSK+cGtXH18t6TDKLTK9m6ExUeWdBiFZmtiRYN5n5d0GIVyashCeq7+oaTDKLQN/SbzODa8pMMoFHszm5IOQTwjITa2pEMoFGMzM2KHf1vSYRSa2axf6b/up5IOo1BW9p5AQmhYSYdRaMalbEs6BPGOkGScEEIIIYQQQgghxDtKhqm+fWQBByGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5SGDFN960jPOCGEEEIIIYQQQggh3hBJxgkhhBBCCCGEEEII8YbIMFUhhBBCCCGEEEKId5QCGab6tpGecUIIIYQQQgghhBBCvCGSjBNCCCGEEEIIIYQQ4g2RYapCCCGEEEIIIYQQ7yhZTfXtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQoZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKBmm+vaRnnFCCCGEEEIIIYQQQrwhkowT4hk+Pj4oFApiY2NLOpQi5+TkxMyZM1+7fmBgIAqFgsuXLxdZTEIIIYQQQgghxP8TGaYq/i+dPn2aRo0a0apVK/bt21fS4QhRJOo5VqRJueoY6xoQlhDNjpsnCIwOKbC8poYGLd1qU710eYx1DYlLTeSw/3nOB/sB8Fm99yhnWTpPPb+wQJb77iq2dpw/eJIze46SGBuPdelStOrXlbIe5V5YL/jOfVb9PA/rMqX49JdvVNtv+V7l1I6DxIRFkp2VjbmtFXXbN6VSw1rF1ob8KJVKluzeydaTx0lITsbLyZkxvfpQzj7v7/iJI5cu4r1vD8ER4WRmZeFgY0O/lq1pX6feG4z85Wg3rItuh9ZoupVDw9SE+M+/JuteYEmHxf5tu9m+YQuxUdGUcSrLwK8+pULlivmWjYmKZsX8pdy/60/ow8e0e78TA78arFbm6L5DzP9tZp66a/ZvQUdHp8ji3rppC+tWryU6MgonF2eGjhxGlWpVCyx/+cIl5s6cQ+D9ACytrOjTvw9dur2nen7n1h3s37OX+/cCAHD3cOfTIZ/h6eWpKrNs8VK8lyxT26+FhQXb9u8ssna9jCp2rvSp1hoPm7JYGZrx7Z4FnAi48kZjeJ7W5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG2Rxbxt81Y2rF5HVFQUTs5OfPX1MCpXq1Jg+csXLzF/5lwCAwKxsrKk14d96Px+13zLHjlwiMk/TKJB44b8/MdU1fY13qs44XOcoAcP0NXVxatSRQZ/9QVlHcsWWbvE20WpVLL4r7/Yum0bCQkJeHl5Mfabbyjn4vLceoePHGHhokU8fPSIMqVL8+UXX9CsaVPV8xcvXWLV6tX43bpFZGQk037/naZNmhRrW/TatkSnfm0U+vpkPQgmefM2skPDCyxv9NVgtNzytjPjxi2SFnur9qnXrqXa89nxCcT/MKVIY89PC9eatK9QD1N9Yx7FhbPm4gHuRAQVWL6eY0U6VKiPrbElKRmpXA25x/pLB/M9bhUVpVLJYu/lbN25M+fz4+nJ2BFfU87Z+bn1Dh/zYeHSpTx8/Jgy9vZ8+cmnNGvcWPX8ouXLWOLtrVbH0sKC/Vu3qX6Oio5mzqKFnPH1JSExkepVqvDN8OGULeNQlE0sURrIMNW3jSTjxP+lZcuWMXToUP766y+CgoIoW1YuDP/rMjIy0NbWLukwSkwVO1c6eTVi27VjBMaEUKesF4Nqd2K6z1piUxPzrdOveluMdA3YdPUIUUlxGOnqo6HI7TC98vweNDU0VT8bausxonEvrob4F1s7bp65xMHV22g74AMcyjtz8chp1v+xmM9++xZTK/MC66Ump7Bj4VqcvdxIjEtQe07f0IAGnVthZW+LppYmdy/dYOfi9RiYGFOuskexteVZKw/sY+3hg0zoP5CyNrYs27ubr2b/yeaJP2Oop5dvHVNDQwa2a4+TrR3aWpqcuHaVn1Z6Y25sTD3P/BNKJUWhp0vmjVukHz+N4cghJR0OAKeOHGf5vCV8OuIL3Ct6cnDnXqaMncif3vOxtrXJUz4jIwMTMxO69e3Brs3bC9yvvqEBs1YuUttWlIm4wwcOMWfGLEaOHUXFKpXZsWUbY4aPZuXG1diWKpWn/ONHjxkzYjQdu3bi+58mcP3KVWb8Nh1TczOaNm8GwKULF2nRuhXDK1dER1eXdSvXMPqrr1mxYTXWNtaqfTm7ODNj3izVz5qab34Qhb62Lv5RD9lz6zS/tPv8jb/+89RzrMhHNdqx1HcXt8ODaOlWk3HNP2TkzjlEJcflKe9uXZYh9bux4sJeLjy8hYWBCZ/W6cxndbsy/fg6tbJWhqb0q94Gv7DAIo35yMHDzPtzNiPGjKRi5Urs3LqDsV9/g/f6VdiWss1TPuTxY8Z9PYYOXTrx3aQfuH71GjN/n4GpmRlNmjdVKxsaEsqC2fOpXDVvYu/Kpct0/eA93D0rkJWZxdKFixkzbCTL169CX1+/SNso3g4rVq1i7dq1/DhhAmXLlmXpsmUMGTqUvzduxNDQMN86V69dY/z33/P54ME0a9qUoz4+fDt+PEsXL6ZixZzzXEpKCm5ubnTq2JEx335b7O3QbdEE3WYNSV6ziayISPRaN8foy0+InzIN0tLzrZO0bBVo5l4zKQwNMB4znIzL19TKZYWEkjjvr9wN2cpiacPT6pT1pG/1Nqw4v4e7kcE0c63O6CZ9GLdnPlHJ8XnKl7dy4LO6XVlz6QCXHt3BQt+YAbU68HHtTsw+ubHY4lyxbi1rN27kx3HjKFvGgaWrVjJk1Ej+Xr0GQwODfOtcvX6d8ZMm8fnHg2jWqBFHT5zg24k/snTuPCp65t5scnF2Zv70GaqfNZ96r5RKJaO/+w4tLU2mT/kFQ0ND1mzcwJcjR7JpxUo5XoliI8NUxf+dpKQkNm7cyBdffEHHjh3xfuZOSX5OnTpFkyZNMDAwwNzcnDZt2hATEwPAvn37aNiwIWZmZlhaWtKxY0fu3bunqvtkaOeWLVto1qwZBgYGVKlShX/++eelX0OpVPL777/j4uKCvr4+VapUYfPmzc+NOTw8nE6dOqGvr4+zszNr1qzJUyYuLo7BgwdjY2ODiYkJzZs358qVl+99kJWVxaBBg3B2dkZfXx93d3dmzZpVJHWWL19OhQoV0NPTw8PDg/nz56uee/I73bhxI02bNkVPT4/Vq1eTnZ3NTz/9RJkyZdDV1aVq1apqPR9f5r2Iioqid+/elClTBgMDAypVqsS6dblfmBYtWkTp0qXJzs5Wi7dz58589NFHqp937txJjRo10NPTw8XFhUmTJpGZmfnSv9tX1cilKr5BNzkXfJPwxBh23jxJbEoidZ0q5Vu+vHVZXCxLs+zcTvwjHxKTkkBwbDgPYkJVZVIy0khMS1Y93KwdyMjKLNZk3Nm9PlRtWodqzepiVdqW1h++h4mlGRcPn3puvb3LNuFVrzqlXZ3yPOfo6YpHrcpYlbbF3NaK2m2bYONgR/Dt+8XUiryUSiXrjhxmYNv2NK9WHdfSpZn40UBS09PZ73u2wHo1yrvTrGp1nO3sKGNtQ+/mLXEtXYbL/sX3Hryu9EPHSF29kcyLb08Ppl2bttG8fStadGhDGUcHBn41GCsbKw7s2JNveZtStnw89DOatGmBgWH+F/4AChSYW5irPYrSxrUb6NClIx27dsbJ2Ylho0ZgbWvDts1b8y2/fcs2bErZMmzUCJycnejYtTPtO3dgw+rcY9eEnyfyXvf3cXMvj6OTI998N5ZsZTYXfM+r7UtTUxNLK0vVw8y8aNv2Ms4E3WDJ2R0cu3/5jb/2i3SoUJ8j9y5yxP8Cj+IjWHFhL1HJ8bQuXzvf8m5WDoQnxbLv9hkikmK5HRHEobu+uDzT61ihUDC0QXc2XT1CWGJ0kca8ad0G2nfuQIcunXB0duKrkcOwsbVhx9/5f552bNmOTSlbvho5DEdnJzp06US7Th3YuGa9WrmsrCymTPiJAYM/xq60XZ79/D5rOm07tsfZxRnX8q6M/WEcYaFh3Ll1u0jbJ94OSqWSdevXM3DgQJo3a4ZruXJM+vFHUlNT2bd/f4H11q1fT53atRk4YABOTk4MHDCA2rVqsXZ97uetQf36fPn55zRv1uxNNAXdJg1IPXCUjKs3yA4JI3n1RhTa2ujUqFpgHWVyCsqERNVD290NMjJIv3xVvWBWtlo5ZVJS8TYGaOtej2P3L3Hs/iUex0ey5uIBopPjaO5WM9/y5azKEJEUy8E754hMiuVOZDBH/S/gbJH377yoKJVK1m3axMAPP6R54ya4urgwadx4UtPS2HfoYIH11m3eRJ0aNRnYrx9Ojo4M7NeP2jVqsHbTJrVyWpqaWFlaqh7mZmaq54IePuTazRt8O3IUXhUq4FS2LN9+PZKUlBT2Hz5cXE0WQpJx4v/Phg0bcHd3x93dnX79+rF8+XKUyoLvSl2+fJkWLVrg5eXFP//8w8mTJ+nUqRNZWVlATnJv5MiR+Pr6cvjwYTQ0NHjvvffyJGu+++47Ro8ezeXLlylfvjy9e/dWJWde9Brff/89y5cvZ8GCBdy4cYOvv/6afv36cezYsQLjHjBgAIGBgRw5coTNmzczf/58wsNzu9crlUo6dOhAaGgoe/bs4cKFC1SvXp0WLVoQHf1yXwSys7MpU6YMGzdu5ObNm0yYMIHx48ezcWPBd81eps6SJUv47rvvmDJlCn5+fvzyyy/88MMPrFixQm1fY8eOZdiwYfj5+dGmTRtmzZrF9OnTmTZtGlevXqVNmzZ07tyZu3fvvvR7kZqaSo0aNdi1axfXr19n8ODBfPjhh5w9m5Mw6d69O5GRkRw9elS1v5iYGPbv30/fvn0B2L9/P/369WPYsGHcvHmTRYsW4e3tzZQpxTMMQVOhQWlTG+5EBqttvxsZjJN53l40AJ62zjyMDadpuep813IA3zTtR4cKDdB6qifcs2o5eHLl8V0ysoonqZiVmUlIwEOcK7qrbXep6M7Du4EF1rty7CwxYZE0fr/NC19DqVQScP0O0aERLzX0tag8iowkKj6Oup5eqm062tpUdyvP1aeS98+jVCo5d8uPB2GhVHcrX1yhvjMyMjK4f8efKjWrqW2vXLMat6/fKtS+U1NS+KLXQD7r/hFTx00i4O7LvYcvIyMjgzu3blOrjnpyp1ad2ly/ej3fOjeuXc9TvnbdOty6eavAmwBpqalkZmZiYmKitv1h8EPea9eZHl0+YOL4CTx++KgQrXm3aGpo4mJhn+eGxJUQf8pb5z+U6U5EEJYGJlS1dwPAVM+QOmW9uPRIPSH1QaVmxKcmcfTexSKNOefzdIeaz3w+atauxfVr+X+ebl67Qc3a6sP4a9WtzW0/9c/TyqXemJmb0aFzx5eKJSkxJ+nw7GdOvBsePX5MVFQUdevUUW3T0dGherVqXL12rcB6V69do85TdQDq1q373DrFScPSAg1TEzJvPXXtmJVF5r0AtJwdX3o/OnVrkX7xCqRnqO/f2gqTn8ZjPGEMBh/1RsPSoqhCz5emhgZOFnZcD1U/T10LvY+bVf7HrbuRwVgYmFDZzhUAEz1DapXNuQYsLo9CQoiKjqZuzdxjj46ODtWrVOHq9fyPVQBXb9ygTi3141XdWrW5ekO9TtDDh7R9/z069+zBuEkTefj4seq5jPSc3o66T/Vw19TUREtLi8vXnkmm/ocpFIq39vH/Soapiv87S5cupV+/fgC0bduWxMREDh8+TMuWLfMt//vvv1OzZk21nlleXrlfqLt165Zn/zY2Nty8eVPVvR5g9OjRdOjQAYBJkybh5eWFv78/Hh4ez32NpKQkZsyYwZEjR6hXL2eeKBcXF06ePMmiRYtoks+cGXfu3GHv3r2cOXNGdYGzdOlSKlSooCpz9OhRrl27Rnh4OLq6ugBMmzaNbdu2sXnzZgYPHpxnv8/S1tZm0qRJqp+dnZ05ffo0GzdupEePHq9dZ/LkyUyfPp33339fVeZJUuvp3mcjRoxQlXkS/9ixY+nVqxcAv/32G0ePHmXmzJnMmzdPVe5570Xp0qUZPXq0quzQoUPZt28fmzZtok6dOlhYWNC2bVvWrl1LixYtANi0aRMWFhaqn6dMmcK3336ritXFxYXJkyczZswYfvzxxxf+Xl+VoY4+mhoaJKYlq21PSEvGWDf/3j2WBiY4WdiRmZ3FyvN7MNTRp2vFJhho67Lp6pE85R3MbLAzsWTz1eK7Q5ickIQyOxsjU2O17YamxiTG5h1GARAdGsHRDbv48IehaGgWnEhMTU5h9tCJZGVmotDQoO2AD3Cp5F5g+aIWFZ8zfM3CWP1LqIWJCaFRUc+tm5iSTPtxY0jPyERTQ8HY3n2pU8HzuXUEJMTFk52dnadnl5m5ObExr5/wKF22DEO+/Zqyzo6kJCez++8dfD90DNP+mo1dmYLn/3tZcbGxZGVlYW6h/gXNwtKc6AI+K9FR0VhYqrfT3MKCrKwsYmNjsbKyylNn4dyFWFtbU6N2bs8ITy9Pxk/6HoeyZYmJimblshV8OehzVmxYjamZaaHb9l9nomuApoYmcSnqQ//jUhIxszfOt86dyGDmnNrMiEY90dbUQktDE99gP5b77laVcbcuS7Ny1Rm7Z36++yiMuNg4srOy8vTeNLc0J+ZM/jfeoqOiMLdUT96ZW5iTlZVFXGwsllZWXLtylT07dvPX6mX57uNZSqWS+bPmUqlKZZzLPX/+MPHfFPXv8cnymWOXpYUFIaGh+VVR1cuvTtQLzo3FRWFsBEB2gvqUF9kJCWi8ZE9hzbJl0LQvRfI69VEsmQ+CyFqzkazwCDSMjXOGv474goSpf6JMTi5gb4VjrGuApoYGcanqPfDiU5Mw1ct/6LB/5EMW/rOVIQ26qY5bFx/eZtWF4ptnOyq6gM+PuQUhYc/5/ERHY/nM+2Jpbk7UUx0LKlbwZNL48TiWcSAqJoalq1YyaMiXbPBegZmpKU6OjtiVKsXcxYsZP3o0+np6rNm4gajoaCJL6HMo/j9IMk78X7l9+zbnzp1jy5YtAGhpadGzZ0+WLVtWYDLu8uXLdO/evcB93rt3jx9++IEzZ84QGRmp6hEXFBSkloyrXLmy6v92djndvMPDw/Hw8Hjua9y8eZPU1FRatWqltj09PZ1q1arlW8fPzw8tLS1q1sz9kuXh4YHZU12yL1y4QGJiIpaWlmp1U1JS1IbZvsjChQv566+/ePDgASkpKaSnp1O1atXXrhMREUFwcDCDBg3i008/VdXJzMzE1FT9y+DT7YuPj+fx48c0aNBArUyDBg3yDL193nuRlZXFr7/+yoYNG3j06BFpaWmkpaWpzXXSt29fBg8ezPz589HV1WXNmjX06tVLNf/EhQsX8PX1VesJl5WVRWpqKsnJyRjkM+/Fk9d52pMk6ct6toOnAiioz+eTu1DrLh0gNTPnjuCumyfpV6MdW68fIzM7S618LQdPQuKjCI4tePLiIvPMHTLlU/E+LTs7m23zVtGoW1ss7fLO//U0XT1dPpkymvS0dAJv3OHQmm2YW1vi6OlalJGr7D13hqlrV6t+/vPLoUCepuW8Zy+4I2igq8ea8RNITkvF9/Yt/ty8kdJW1tQo/+aSic/Sad4YgxG5c3kljp9M5nW/EovnuZ79naNEUYhJjMt7elDeM3euQfeKnowZPJy9W3bx8bDPXnu/z3r2M69U5v93oCqfp03KArbD2pVrOHzgILMXzlU7ztRt8NTCIK7l8Kpckd5de7Bv91569u316o14Rz17XFUoFAX2sC9tas2Amu35+9pRrjz2x1zfmL7V2/BJnc4sOrMNPS0dvmrwAYvPbichrXi+jD+JUc0Ljj3Pfm6etE+hUJCclMwvP/7M6PFjMH3quuJ5Zv3xJ/f87zFn0bwXFxb/CXv37eOXX39V/TxzRs58XHmOXflsexGlUvnGesto16iKQc/cxW4SF3kXUPJ5V1XqdOrWIutxKFlBD9W2Z/rdUf0/OySMxMAHmPwwBp3a1UnzOfmKkb+ifEIvqDX2Jlb0q96W7dePcy30HmZ6xvSs1pIBtTqw9FzRLOiz9+ABfpk+XfXzzF9/A/K7TnqJz0Kez5x6nQZ166r+7wpU9vKia5/e7Nq3j349e6KlpcXvP01m8u+/0bxjBzQ1Naldowb1n+mxKURRk2Sc+L+ydOlSMjMzKV06t/eCUqlEW1ubmJgYzPO54/WiSTs7deqEg4MDS5Yswd7enuzsbCpWrEh6uvoEr08vLvDkBPEkcfe813hSZvfu3WpxQ8HJmqcvmp+3Xzs7O3x8fPI8Z/aSF9cbN27k66+/Zvr06dSrVw9jY2P++OMP1ZDO16nzpL1LlizJM2xB85meT/lNBpz3C2zek/jz3ovp06fz559/MnPmTCpVqoShoSEjRoxQez87depEdnY2u3fvplatWpw4cYIZM3Inhc3OzmbSpElqvfae0Ctgov6pU6eq9RgEcnrR1czbo+VZSekpZGVnY6ynnuQz0jXI01vuifjUZOJSE1WJOIDwxBg0FArM9I2ITMqdiFxbQ4sq9m4cuFPw+1oUDIwNUWho5OkFlxyXgKFp3l4n6SlphAQEE/rgEftX5CTYlUolKJX80n8UfcZ+jpNXztAwhYYGFqVyJqkv5ViayEdhnN55qNiScY0rV6WiU27vj/TMnGEqUfHxWJmaqbbHJMRjafz8IVsaGho42OQkG90dyhIYEoL3vj0lmoxL/+ccmbee+lIRWbRzXBUFY1MTNDQ0iI2OUdseFxOLqblZkb2OhoYGrh5uhDx6/OLCL8HUzAxNTc08veBiomPy9JZ7wsLSgqio6DzlNTU18/RoW7dqLauXr2TGvJmUc3v+519fXx8XVxceBgc/t9z/i/i0ZLKyszDTN1LbbqKXsxp1frp6NeZORBA7b+bMexkUG0bquXR+avMpG64cwlTPCBsjc8Y07auq8+S8tLbPRL7eMYuwxJh89/0yTM1M0dDUJDqfz0dBcx1aWFrmKR8bE4umpiYmpqYE3g8gNCSE8aNzJ9JX/nsObVG/KSs3rqH0U71EZ0/7k9MnTjFr0Zx8F04R/02NGzWi4lMjRdIzcs5zkVFRar1xo6OjsSjg2AVgaWmp1osJIDom5rl1ilLG9ZskPHjqGKeVc62pYWxMVnxu7zgNYyOUCfn/navR1kanehVS9hY8z5lKegZZIaFoWL/4Wu91JaQlk5Wdjam++jWziZ4h8an5z1fXybMhdyOD2XMrZ07lYMJJ803n+1YD2Xz1aIHHu1fRuEFDKj7Vyz/38xONleVTn5/YGCye0yPR0sIin89P7HPr6OvrU87ZheCHucnSCu7urF26jMTERDIyMzE3M+Ojzz/D073krrWKmsb/8XDQt5Uk48T/jczMTFauXMn06dNp3bq12nPdunVjzZo1fPXVV3nqVa5cmcOHD+dJlEBO13o/Pz8WLVpEo0aNADh58tXvbD3vNTw9PdHV1SUoKCjfIan5qVChApmZmZw/f57atXOGmty+fZvY2FhVmerVqxMaGoqWlhZOTk6vHDPAiRMnqF+/Pl9++aVq24t61b2ojq2tLaVLl+b+/fuqOdhehomJCfb29pw8eZLGTy1nfvr0adXv4GWcOHGCLl26qIYyZ2dnc/fuXbUhvvr6+rz//vusWbMGf39/ypcvT40aNVTPV69endu3b+Pq+vKJnnHjxjFy5Ei1bbq6uvxwcMkL62Yps3kUF46blQM3QnMXJXCzcuBGWEC+dR7EhFDZvhw6mtqkZ+VcAFkZmpGtzCb2mSFYle1d0dLQ5NLDO/ntqshoamlh51yGgOt38KiV23sx4PodytfIu3Korr4un04do7btwqFTPLh5l/eHDcDM+vkX8pkZxbeghqGentoKqUqlEksTU8763cTdIWf15ozMTC7evcPQ97oVtJt8KVGSXoyLgbyUlFSyUwoeNvI20NbWxqW8K1fPX6ZOo/qq7VcvXKZWg6K7261UKgn0D6DsK8wl9Dza2tqU93Dn/FlfGjfLPeafP+dLw8YN863jVakip0+oL3Lie/YcHp4eaGnlXuqtW7WGlUtXMG3ODDw8Kzy7mzzS09N5EPgg35Uy/x9lZWdxP/oxlUuVwzc4tydo5VLlOP8w/3kIdbW0yXpmDtlsZW6vxcdxkYzeOUft+Z5VW6KnpcOK83uIzGelw1eR83kqz/lzvjRqmntuvHDOlwYFfJ48K3nxzzOfp/Nnz+FeIefzVNaxLMvWqs/hunThEpKTkxk6cjg2/ybclEols6fN5OSx4/w5fzZ29vaFaot4uxgaGqrdFFUqlVhaWnL23Dk8/k1gZGRkcPHSJYYOKXiF7cqVKnH27Fn69u6t2nb27FkqV8p/Aaoil5ZOdpr6zY/suHi03F3JenKTRVMTrXLOpOzc+8Ld6VSrDFqaZPheevFra2qiaWtD5r3A1wj85WRlZxMYHULFUi5ceJg7V2XFUi5cfJT/Yio6Wtp55r5WHbeKKJ9jaGCgtkKqUqnE0sKCs+fP41E+Z17cjIwMLl65wtDPCu51XtnLi7Pnfen71PQ4Z319qexV8Irz6enpBAY9oNpTI2WeMDLKudkS9DAYv9u3+WLQoFdumxAvS5Jx4v/Grl27iImJYdCgQXmGO37wwQcsXbo032TcuHHjqFSpEl9++SWff/45Ojo6HD16lO7du2NhYYGlpSWLFy/Gzs6OoKAgvn2NJdef9xpWVlaMHj2ar7/+muzsbBo2bEh8fDynT5/GyMhIbQ61J9zd3Wnbti2ffvopixcvRktLixEjRqj1wGvZsiX16tWja9eu/Pbbb7i7u/P48WP27NlD165d1YaAFsTV1ZWVK1eyf/9+nJ2dWbVqFb6+vjg7OxeqzsSJExk2bBgmJia0a9eOtLQ0zp8/T0xMTJ6E1dO++eYbfvzxR8qVK0fVqlVZvnw5ly9fzncl2efF9/fff3P69GnMzc2ZMWMGoaGhask4yBmq2qlTJ27cuKFK3D0xYcIEOnbsiIODA927d0dDQ4OrV69y7do1fv7553xfV1dX95WHpT7txP3L9KzWiodx4QTFhFKnrBdm+kaceZAzgW1bj3qY6hmy4fIhAC49ukMLt5r0qNKCA3fOYqijT4cKDfAN9sszRLW2gyc3Qu+TnJH62vG9rDrtmrJ9wRrsXBwo4+rEpaOniYuKoXqLnGTK0Q27SIiJo/PnfVFoaGDjoL6yl6GJEZraWmrbT+04hJ2zA+a2lmRlZnHvsh/XTvrSdkDBw8+LmkKhoHfzFizftwcHGxscrG3x3rcHPR0d2tTKTQz96L0UazNzvuqa06ty+b49eDo6UdrKmsysTE5dv8buM2f4tvfLJ6rfFIWxERo2Vij+nYxa49+eMdnRsShjYkskpo7duzJn6gzKubtS3qsCh3btIzIsgtad2gOwZok30RFRDB0/SlUnwD8noZ2akkp8bBwB/vfR0tLCwSknibppxVrcKrhjV6Y0ycnJ7P17B4H+9xk0/PO8AbymHn16MuXHybh7euBVqSI7t24nPDSMLt1yhlItmruAyIhIvpv0AwBd3u/K1o1/M/fP2XTs2pkb166ze/suJkyZqNrn2pVrWLpwCT/8/COl7OyIisz58qlvoK8aOj9v5lwaNGqATSlbYmNiWLl0BUlJSbTt2L7I2vYy9LV1KWNqrfrZ3sQKN6syxKcmFaqXWFHY7Xear+p34170Y+5GBNPCrSZWhqYcvHsOgN5VW2FhYMK8038DcOHhbQbX7UIrt1pcCckZpvpRzXbcjQwmJiWn101wnPrw/6T0lHy3v67uvXsydeLPuHt44FXJi13bdhAWFk6n97sCsGTeQiIiIhk/8XsAOr/fhW2btjBv5hw6dunEjWs32LNjN99PzpnzVEdXN8+8b0b/zrP19PaZf8zg8P5D/PzHLxgYGqh6exoaGqGr9/rnO/F2UigU9O7Vi+Xe3pR1cMDBwYHl3t7o6enRtk3uAksTJk7Extqar/5N0PXq2ZPBn3+O98qVNG3cGJ/jxzl77hxLFy9W1UlOTlbrxfTo8WNu37mDqYkJpUrlv1BVYaQdO4Veq2ZkR0aRFRGJXqtmKDMySL9wWVXGoG8PsuPiSN2lvlKsTt2aZFy7me8ccHpd2pNx3Q9lTCwKYyP0WjdHoadL+rkLRd6Gp+27/Q+f1X2PgOgQ/CMf0rRcdSwNTDlyN+d1u1dpjrm+MYvPbAdyrhE/rt2R5q41uBZyDzN9Y/pWb829yEd5btgWFYVCQe/u3Vm+ZjVly5TBoUwZlq9ejZ6uLm1b5k7VM2HKFGysrfhqcE6CrtcHHzB42DC8166haYOG+Jw6ydkL51k6N3dI/Mz582hUvwGlbG2IiYll6cqVJCUl0bFtW1WZQ0ePYmZmRilbW/zv32P6nDk0adiQurVe/oa+EK9KknHi/8bSpUtp2bJlnkQc5PSM++WXX7h4Me+k3uXLl+fAgQOMHz+e2rVro6+vT506dejduzcaGhqsX7+eYcOGUbFiRdzd3Zk9ezZNmzZ9pdie9xqQs6CBjY0NU6dO5f79+5iZmVG9enXGjx9f4D6XL1/OJ598QpMmTbC1teXnn3/mhx9+UD2vUCjYs2cP3333HR9//DERERGUKlWKxo0bY2tr+1Jxf/7551y+fJmePXvmnER79+bLL79k796C7xy+TJ1PPvkEAwMD/vjjD8aMGYOhoSGVKlVixIgRz41n2LBhxMfHM2rUKMLDw/H09GTHjh24ubm9VHsAfvjhBwICAmjTpg0GBgYMHjyYrl27EhcXp1auefPmWFhYcPv2bfr06aP2XJs2bdi1axc//fQTv//+O9ra2nh4ePDJJ5+8dByv6kqIPwY6erR0q4WJriGhCVEsO7eL2H+/7JnoGmCmnzvUMz0rgyVnttOlYmOGNepBcnoqVx/7s+/2GbX9Whma4Wxpz5J/L9CKm2fdaiQnJHFy634SY+OxLmNHr28GY2qVk+BJjI0nLvLVvoxnpKWzz3szCdFxaOloY2lvQ5cv+uFZN/85F4tL/9ZtScvI4Ld1a0lITsLL2YU5Q79W60EXGh2tNqw6NS2N39atITw2Bl1tbRxL2fHTwEG0rlkrv5coUdr1amH4zTDVz0bf5yyEkrJyPamrNpRITA2aNyYxPoHNK9cTEx2Ng5Mj43+diHWpnJ47MVExRIZHqNUZ82luG+7f8efk4WNY29owf33ORPVJiUksmjGX2OgYDAwNcXZ1YdKsX3GrUHRDWVq0bkl8XDwr/lpOVGQUzuVc+G3mNErZ5XzpjIqMIiw0TFXevrQ9v8+cxpw/Z7N10xYsra0YPnoETZs3U5XZtnkLGRkZTBj7vdprDfj0Yz4enHPnPyI8nEnf/0hcbBxm5mZ4VvRi4bLFqtd9UzysHZn7Xu6Nl2ENcxLne/z+YcqRFQVVeyP+eXAdY10DulVqirm+McGxYfx6dJVqaL+ZvhGWhrnXGcfuX0JfW4c27nX5sEZbktJTuREWwJqL+wt6iSLXvFUL4uPiWbnMm+jIKJxcnPn1z99zP09RUYSH5X6e7Oztmfrn78yfOYftm7diaWXF0FHDadK86Su97o6/twHw9RfD1LaP/WHcG0/wijfjow8/JC0tjV9//52EhAQqenkxd/ZstR50oWFhaGhoqH6uUrkyUyZPZsGiRSxctIgyZcowdcoUtXmXb/r58flTIyr+nDkTgI4dOjBxwoQib0fa4WMotLXR/6ALCgN9sh4Ek7hgKaTlTu2hYW6WZ7JeDWsrtMo5kzj/r3z3q2FmiuFHvVEYGqBMTCLzQTAJM+YX+w2rs0E3MdIxoItXY8z0jXgYF870Y2uJSv73uKVnhKVB7nHrZMAV9LV0aFm+Fr2rtSY5PZWb4QFsvFx8i3gBfNS7T87n588ZJCQmUrFCBeZOm67Wgy40PAwNjdzrpCoVKzFlwo8sWPoXC5cupYy9PVMnTqSiZ+4Q2LCICL77aRKxcXGYm5lR0dOT5QsWYvdUIjcyKoo/580lKiYGK0tLOrRpwyf983Z4+C/7f1619G2lUBY046wQQogSN2bX3JIOodB+7/gVK333lHQYhdK/Vnvijxwv6TAKzaR5Y2Javffigm8x84Nbufr4bkmHUWiV7d0Ii48s6TAKzdbEigbziq5XYEk4NWQhPVf/8OKCb7kN/Sbz+E0sslOM7M1kTrm3TcJTU5z8FxmbmRE7/NVHrbxtzGb9Sv91P5V0GIWysvcEEp66kfRfZVzq5TotvG1uFTB1zdvAw7bgUVXvMo0XFxFCCCGEEEIIIYQQQhQFGaYqhBBCCCGEEEII8Y5SIMNU3zbSM04IIYQQQgghhBBCiDdEknFCCCGEEEIIIYQQQrwhMkxVCCGEEEIIIYQQ4h2loZB+WG8beUeEEEIIIYQQQgghhHhDJBknhBBCCCGEEEIIIcQbIsNUhRBCCCGEEEIIId5RCoWspvq2kZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKA0ZpvrWkZ5xQgghhBBCCCGEEEK8IZKME0IIIYQQQgghhBDiDZFhqkIIIYQQQgghhBDvKAUyTPVtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeUQpZTfWtIz3jhBBCCCGEEEIIIYR4QyQZJ4QQQgghhBBCCCHEGyLDVIUQQgghhBBCCCHeURoyTPWto1AqlcqSDkIIIYQQQgghhBBCFL2g6JCSDqFAZS3sSjqEEiE944QQ4i224/qJkg6h0DpXbERA5KOSDqNQnK1K/+fbADntiD98rKTDKBSTFk3YcOlgSYdRaD2rtcLbd3dJh1FoA2p1oOfqH0o6jELZ0G8yDeZ9XtJhFNqpIQvZ5/dPSYdRKG0r1CPB73ZJh1FoxhXcWXtxf0mHUWh9qrdh+rF1JR1GoYxq0puEy1dLOoxCM65amSVntpd0GIXyad0urPTdU9JhFFr/Wu1LOgTxjpBknBBCCCGEEEIIIcQ7SlZTffvIAg5CCCGEEEIIIYQQQrwhheoZd+HCBfz8/FAoFFSoUIHq1asXVVxCCCGEEEIIIYQQQrxzXisZFx4eTq9evfDx8cHMzAylUklcXBzNmjVj/fr1WFtbF3WcQgghhBBCCCGEEOIVKZBhqm+b1xqmOnToUOLj47lx4wbR0dHExMRw/fp14uPjGTZsWFHHKIQQQgghhBBCCCHEO+G1esbt27ePQ4cOUaFCBdU2T09P5s2bR+vWrYssOCGEEEIIIYQQQggh3iWvlYzLzs5GW1s7z3ZtbW2ys7MLHZQQQgghhBBCCCGEKDwNWU31rfNaw1SbN2/O8OHDefz4sWrbo0eP+Prrr2nRokWRBSeEEEIIIYQQQgghxLvktZJxc+fOJSEhAScnJ8qVK4erqyvOzs4kJCQwZ86coo5RCCGEEEIIIYQQQoh3wmsNU3VwcODixYscPHiQW7duoVQq8fT0pGXLlkUdnxBCCCGEEEIIIYR4TQoZpvrWea1k3BOtWrWiVatWRRWLEEIIIYQQQgghhBDvtJdOxs2ePfuldzps2LDXCkYIIYQQQgghhBBCiHfZSyfj/vzzz5cqp1AoJBknhBBCCCGEEEII8RaQ1VTfPi+djAsICCjOOIQQQgghhBBCCCGEeOe91mqqT6Snp3P79m0yMzOLKh4hhBBCCCGEEEIIId5Zr5WMS05OZtCgQRgYGODl5UVQUBCQM1fcr7/+WqQBCiGEEEIIIYQQQojXo3iL//2/eq1k3Lhx47hy5Qo+Pj7o6emptrds2ZINGzYUWXBC/D+7ffs2U6dOJS0traRDEUIIIYQQQgghRBF5rWTctm3bmDt3Lg0bNkTx1ESAnp6e3Lt3r8iCE+L/VUJCAu+99x7Ozs7o6uoW2X6dnJyYOXPma9cPDAxEoVBw+fLlIotJCCGEEEIIIYT4f/LSCzg8LSIiAhsbmzzbk5KS1JJzQhSF06dP06hRI1q1asW+ffteuf7EiRPZtm3bfyqB9NFHH/HJJ5/Qq1evkg5F/Iec3ncUn+37SYiJxdbBns4De+HiWT7fsgF+d9m9ajMRj0JJT0/H3MqSuq0b07hT63zLXz55jjV/LsarVlUGfPtVkcW8c8t2Nq/dQHRUFI7OTnw+bAgVq1YusPzVS1dYPGc+DwICsbSyonufnnR4r7Pq+W+++pprl67kqVerXh0mT5sKQHJSMiuXLOP08ZPExsRSrrwrn4/4CvcKHm9NOwC2btjMrq07iAgLx8TMlEZNGzPw80/R0dUB4NrlK2xeu4G7t+4SHRXFhKk/Ub9xw9duw8tSKpUs2b2TradOkJCcjJeTM2N69qGcvX2BdY5cuoj3/r0ER4STmZWFg40N/Vq0on2desUe77kDxzm58zCJsXFYl7GjXf9uOFVwzbfsg1v3OLB2O5GPQ8lIy8DM2oKaLRpQv0NzVZmszCyObz/A5WNnSYiJxdLOltZ9uuBW1bNY23Hh4CnO7jlKYmw81qVL0bJfVxw8XF5Y7+GdAFb/PA/rMqUY9Mto1fbbvlc5veMQMWGRZGdlY25rRe32TanUsGZxNoPW5WvTybMhZvpGPIwNZ8X5vdyKeFBg+YZOlens1YhSxhYkZ6Rx5fFdVl3YR2J6Sp6y9R0rMbxRD3yD/Zh2bG1xNuOlVLFzpU+11njYlMXK0Ixv9yzgREDe49Pb4sSewxzZtpf4mFhKOZTm/UF9KOflnm/ZezfvsHPlRsIehZCRlo65tSX12zSjWec2bzjqnGPS4vXr2HrgAAlJiXi5lWfsZ59TrmzZAuvcCwpi4do13Lp3j5CIcEZ+PIg+nbvkKRceFcWcld6cvniR1LQ0HO1L88NXQ6ngmv8xpCj5HjjB6V2HSYiNx6ZMKdr074ajR7kX1gu6fR/vn2Zj42DH57+OLfY4n3bD5xxX958mOS4Bc3sb6vVsi52bY75lH98OYNf0FXm295g0BDM7awACLt7k0t4TxIdHk52VjamNBZVa1ad8vSrF2o5nKZVKFm/exNbDh0hITMTLzY2xH39COQeHAutsPXyI3cePcS84GIAKzi582bs3FV3d3kjMlw6fxnfPMZLiErCyt6VZ386UcXd+Yb1HdwJZP3UhVmVs+Wjy12rPpSalcPLvfdw9f53U5BRMrSxo2rsDLlUqFEsbzh88yZmnznut+nWl7Ev8DQTfuc+qf897n/7yjWr7Ld+rnNpxUO28V7d9Uyo1rFUs8b9tJE/z9nmtZFytWrXYvXs3Q4cOBXLf2CVLllCvXvFfWIv/L8uWLWPo0KH89ddfBAUFUfY5F1fvii1btpR0CP85GRkZaGtrl3QYJebyqXPsWL6e9z7ti5OHK2cOHGfplFmMnvkT5taWecrr6OrSoF1z7BzLoKOnS4DfXf5etAodXV3qtm6iVjYmPIpdKzbhXKFoLyCPHTrKolnzGDJqOF6VK7Jn206+H/0ti1cvx6aUbZ7yoY9D+GH0ONp1as+YCeO5cfU686bPwtTMjIbNGgMw4ZdJZGTkLioUHxfHlwM+pVGz3DbN/HUagfcD+GbCOCytrDi8/yDjhn/D4jXLsLK2fivacWT/IZYtXMLIcWOoUMmLR0HBTJ/yOwCfDR8CQGpKKs6u5WjVvi0/fzfxleN+XSsP7mftkUNM+HAAZW1tWbZ3N1/N+ZPNP07G8KmpK55mamjIwLbtcbIthbaWJieuXeOnVSswNzahnqdXscV67fQF9q74m46DelLW3QXfQydZ/et8vpr+PWZWFnnK6+jqUKdNY0qVLY22rg5Bt++x46/16OjqULNlTqLz8IadXDnpS5fBfbCyt8X/ih/rpi/h059GYudc8Bezwrh55hKHVm+jzYBulCnvzKUjp9nwx2I+/W0splbmBdZLTU5h58K1OHm5kRSXoPacnqEB9Tu3xNLeFk0tTfwv3WT34vUYmhjhUvn1E9PPU8+xIh/VaMdS313cDg+ipVtNxjX/kJE75xCVHJenvLt1WYbU78aKC3u58PAWFgYmfFqnM5/V7cr04+vUyloZmtKvehv8wgKLJfbXoa+ti3/UQ/bcOs0v7T4v6XCe6+LJs2xdtpbun/XH2cON0/uPsnDyDMbN+QWLfM4hunq6NGrfEnsnB3R0dbjvd5eNC7zR1dWlfpumbzT2FVu3sHbHdn4cNpyy9qVZumkjQ36cwN/z52Oob5BvndS0NMqUKkXLBg2YsWxpvmXiExMZ9O1YalaqxKwffsTC1JSHoaEYGxoWZ3MAuP7PRfat3EKHj7vj4O7ChUOnWPPrAoZMG49pPseuJ1KTU9g2fxUuFcuT+MzffHG753udfzbso2GfDti6lsXv+Hn2zl5Nj4lDMLI0K7Bej8lfoaOXOwpEzzj396trqE+19o0xK2WFpqYmD67d4diKbeibGOLgVfwJ0SdW7NjO2t27+PGLIZS1s2Pplr8ZMmUyf/85C0N9/XzrXLhxgzb1G1LZvTy62jqs2LGdr6b8zMbpM7CxyPs3VZRunb3M0TU7adm/K6XLO3Hl6Fn+nr6UgVNHYWJZ8DkjLTmFPYvX4+jpSlK8+ucnKzOTTX8swcDEiM5ffYiRhSkJ0bFq711RunnmEgdXb6PtgA9wKO/MxSOnWf/HYj777dsXnvd2LFyLs5dbnr8BfUMDGnRuhdW/5727l26wc/F6DEyMKVdM5z0hnue1hqlOnTqV7777ji+++ILMzExmzZpFq1at8Pb2ZsqUKUUdo/g/lpSUxMaNG/niiy/o2LEj3t7eas97e3tjZmamtm3btm2qBLG3tzeTJk3iypUrKBQKFAqFah9BQUF06dIFIyMjTExM6NGjB2FhYar9TJw4kapVq7Jq1SqcnJwwNTWlV69eJCTkHtjT0tIYNmwYNjY26Onp0bBhQ3x9fVXP+/j4oFAo2L9/P9WqVUNfX5/mzZsTHh7O3r17qVChAiYmJvTu3Zvk5GRVvaZNmzJixAjVz6tXr6ZmzZoYGxtTqlQp+vTpQ3h4+HN/d+Hh4XTq1Al9fX2cnZ1Zs2ZNnjJxcXEMHjwYGxsbTExMaN68OVeuvPxd+6ysLAYNGoSzszP6+vq4u7sza9asIqmzfPlyKlSogJ6eHh4eHsyfP1/13JPhshs3bqRp06bo6emxevVqsv/H3l1HR3G9DRz/xt3dhTgEdwlBg1PcHVqKl7ZAhaKlgpTSlkIpXtzdJVhwJwFCSAiQBIi7bHbfPwKbbHYTLAF+vPdzzp6TzN47e2d3dmfmmefeK5Uyffp0HB0d0dHRoWrVqgrZlC/qbd26lSZNmqCvr0+VKlUICQmRl0lISKBXr144Ojqir6+Pv78/69YVXvQtXrwYBwcHpFKpQns7dOjAgAED5P/v2rWLGjVqoKuri7u7O9OmTSvXmadP7DpEraYNqdM8ABtHezoO7omphRkhB46rLO/g7ky1RnWwdXbA3NqSGo3r4V21IpFh4QrlpPlS1v6+hJY9OmBu8/qBqtJs3bCJoHatad2hLc6uLgwfNwora2t2b9upsvye7buwtrFm+LhROLu60LpDW1q2bc3mdRvlZYyMjTG3MJc/rly4hK6OLgFNC4JxOTk5nAo+wZCRn+FftQr2jg70GzIQWzvbEl/3fWxH2M1bVPSvRJOWzbC1s6VGnVoEtmjK3dt35WVq1avDwE+H0DAw4I3a/SZkMhnrjh5mUKs2NK1WHQ97B6b2H0R2bi4HLpwrsV4NL2+aVK2Gm50djlbW9GraDA8HB65G3CvX9p7Zc5TqTepRo2l9rBxsaTOgK8YWZlw4dFJleTs3Jyo3qIm1kx1m1hZUaVQbj8q+PLhdOATHtVPnCfikJV7VKmJuY0ntlo3wqOLL6T1Hy207zu8LpkpgHao2qYulgw0t+nXC2MKUK0dOl1pv/7JN+NWrjoOHcmaKi58H3rUqY+lgg5mNJbVaBWDtZMfDO5HltRm09a3P0YjLHL13icepz1h5aR8Jmam09KqtsrynpRNPM5LZf+cszzKSufMsmsPhF3C3cFAop6amxugG3dh0/ShP0hPLrf2v62z0LZac20nw/avvuykvdXzHAeo2D6Bei8bYOtnTeWgfzCzNOb1f9X7t6O5CjYC62Dk7YGFjRa3A+vhU8yci9M47bbdMJmPdrp0M6tadpvXq4+HiwrSx48jOyWH/iRMl1qvo6cnYgYMIahSAtqbqG3krt27BxtKSKWPGUsnLC3sbG2pXqYKjnV15bY7c2T3HqNakLtWf/3a1GtAFEwszLhw6VWq93f9uoFKDmjh6upZ7G4u7figE74bV8WlUAzM7K+r3aI2hmQmhwRdLradnZIC+iZH8oa5eeHlq7+2GWzVfzOysMLY2x79ZXcwdbIi7F13emyMnk8lYt3cPgzp1pmmdOng4OzNt5KiCfexUyZ/HzDFj6RYUhLerG64ODnz/2WfIZDLO37hZ7m2+uP8k/gG1qBxYBwt7G5r26YCRuSlXj5wttd7BFVvxrVcNOw/lxIcbJy6QnZ7JJ2MG4ODliomlGY5eblg7l5wV/zbO7TtO1cA6VHt+3Gv5/Lh3+SXHvX3LNlGxXnUcPFyVnnPx88CnyHGvdqvGz49798tlG4TytXDhQtzc3NDV1aVGjRqcPKn63O6F4OBghWuzRYsWKZXZsmULfn5+6Ojo4Ofnx7Zt28qr+cAbBuPq16/P6dOnyczMpEKFChw8eBAbGxtCQkKoUaNGWbdR+H9sw4YNeHt74+3tTd++fVm+fDkymeyV6/fo0YMvv/ySihUrEhsbS2xsLD169EAmk/HJJ5+QmJhIcHAwhw4dIiIigh49eijUj4iIYPv27ezevZvdu3cTHBysMGPwhAkT2LJlCytXruTy5ct4eHgQFBREYqLixcDUqVP5888/OXPmDA8fPqR79+7Mnz+ftWvXsmfPHg4dOsQff/xR4nbk5uYyY8YMrl27xvbt24mMjGTgwIGlbvvAgQOJiori6NGjbN68mYULFyoE8GQyGW3btiUuLo69e/dy6dIlqlevTrNmzZTaXxKpVIqjoyMbN24kNDSUH374gW+//ZaNGze+VZ0lS5bw3Xff8eOPPxIWFsasWbOYPHkyK1cqdmeYOHEiY8aMISwsjKCgIH7//Xfmzp3LnDlzuH79OkFBQXTo0IHwcMUA03fffcdXX33F1atX8fLyolevXvJAWXZ2NjVq1GD37t3cvHmTTz/9lH79+nHuXEGgoVu3bsTHx3Ps2DH5+pKSkjhw4AB9+vQB4MCBA/Tt25cxY8YQGhrK4sWLy/VmhSRPwuOIB3hVVcww8qpSkQd3Xm0cz8f3o4m6E4F7RcVurYc27cLA2IjazRuVWXuhIJMx/M5dqtdW7BJXvXZNwm7eUlkn7OYtpfI16tQk/PadEgOdB3bvo3HzJug+v3OdL8lHmi9FW1tboZy2jg63rr/+CXJ5bUfFKv6E37nLndAwAGIfx3Ah5By169d57TaWpccJ8SSkplLXt7BLpraWFtU9vbh+/9VOZmUyGedvh/HgyROql2N3HYlEQmzkQypUVuw+41HZl+i7rxZwio18yMO793H1K2ynJE+CZrEsXC1tLaJvl8+YufkSCXGRj3CrpPjddKvkzaPwqBLrXQ8+T9KTBBp1Vt31vCiZTEbUzbskxj3D+RW6vr4JDXUN3M3tuR6rGIC9FnsPLyvVGYV3n0VjoW9MVfuC999E14A6zhW58lgx4NPVvwmp2Rkci7hcLm3/2EnyJDyMiMK7aiWF5d5VKxF5+9UC5o/uPyDydjgeld5tdsnjJ09ISEqibtWq8mXaWlpUr1SR67fD3mrdJ86fx9fDg4m//kyLAf3o/cVYth088JYtfrl8iYSYyIdKmTrulX14VMpv15XjZ0l6Ek9gl1bl3UQl+RIJ8dExOPopdiF09KvAk4iHpdbdOmMxq7+aw+55K4m5XfL2yWQyHofdJ+VJQoldX8vD46dPSUhOpm7lwq6x2lpaVPfz4/rdVw8+Z+fkIpFIMDE0LI9myuVLJDyJeoxrsWOGayVPYu5FlVjvxokLJD9NoP4nzVU+H3ElFHsPF46s2sbC0dNZ/u1czu46qnRzuizkSyTERj7CrZJiN3n3lxz3rgWfI+lJPAGdX95dXiaTESk/7r286+vHQAuND/bxujZs2MC4ceP47rvvuHLlCo0aNaJ169ZER6sO1EdGRtKmTRsaNWrElStX+PbbbxkzZgxbtmyRlwkJCaFHjx7069ePa9eu0a9fP7p37y6/BiwPb9RNFcDf31/pwlgQytrSpUvp27cvAK1atSI9PZ0jR47QvLnqA0Vxenp6GBoaoqmpia2trXz5oUOHuH79OpGRkTg9H+9h9erVVKxYkQsXLlCrVsHYAVKplBUrVmBkZARAv379OHLkCD/++CMZGRn8/fffrFixgtatWwMFQaRDhw6xdOlSvv66cIyCmTNn0qBBAwCGDBnCN998Q0REBO7uBRc9Xbt25dixY0ycqHpsj8GDB8v/dnd3Z8GCBdSuXZv09HQMVRzU7969y759+zh79ix16tSRv5e+voUXpceOHePGjRs8ffpUPknEnDlz2L59O5s3b+bTTz996furpaXFtGnT5P+7ublx5swZNm7cSPfu3d+4zowZM5g7dy6dO3eWl3kR1CqafTZu3Dh5mRftnzhxonysvV9++YVjx44xf/58/vrrL3m5r776irZt2wIwbdo0KlasyL179/Dx8cHBwYGvviocV2n06NHs37+fTZs2UadOHczNzWnVqhVr166lWbNmAGzatAlzc3P5/z/++COTJk2St9Xd3Z0ZM2YwYcIEpkyZ8tL39XVlpKUjlUoxMjFWWG5oakxasnLXr6JmDvua9NQ0pNJ8WnTvQJ3mhVlWkbfDuXDkFF/M/aHM25yanFIwXoe5YlcDMzMzEhNUB4OTEpMwMytW3tyM/Px8UpJTsLBU7PZxJzSMqPuRfPFN4eepb6CPbyU/1q5YjbOLM6bmZhw/fJQ7oWHYOypm27zP7Qhs3pSUpGS+/HwsMpmM/Px82nXqQI9+vV+7jWUpISUVAHMjxX3N3MiYuMSEUuumZ2XS5tuJ5ObloaGuzsSevanjW37jrGWmFnwvDE2MFJYbmBiRnpxaat05I74nIzUdaX4+Tbq2oUbT+vLnPCr7cmbvUVx9PTCzseT+zTvcvngdqfTVbxS91nakZSCTSjFQsR0Zyaq7oSXGPePYht30nTwKdY2ST3KzM7P4c/Q08iUS1NTVCRrYBTd/1WOEvS1jHX001DVIyUpXWJ6SlY6pvZHKOnfjH/LH6c2Ma9QDLQ1NNNU1uPAwjOUX9sjLeFs506RCdSbuXahyHcLLZaSlIZVKMTZV/F4bmRiTllT6MeSHIV+QnlJwDGnd4xPqtWhcavmylpCcBIBFsV4SFiamxD579lbrfvwkji3799GnQ0cGde3GrfBw5vy7BC0tLdo1afryFbyhzNSC73zx3y5DEyMiSuh6mhD7lCPrdjFo6thSv/PlJTs9E5lUhp6xYhdePWMDMlPTVdbRNzGiUb/2WDnbkS/JJ/zsNXb/tpL2Xw7EzstVXi43M5v/Js4lPy8fdXU1GvRuqxT0K08JyckAWJiYKCy3MDEh9ln8K6/nz7VrsDI3p7a/f1k2T0nW82OGvoni9YG+iZHScAUvJMU94+SmffT87vMS95+UZ4lEh0XgW68anccPJvlJPIdXbUean0/9T1qU6Ta8OO69zvH7xXGv3+TRLz3uLRg9VX7cazWwK+7ldNwTys+8efMYMmQIQ4cOBWD+/PkcOHCAv//+m59++kmp/KJFi3B2dpZPZOjr68vFixeZM2cOXbp0ka+jRYsWfPPNNwB88803BAcHM3/+fIVeUmXplYNxqamln7gWZWxs/PJCgvASd+7c4fz58/Lx0zQ1NenRowfLli175WBcScLCwnBycpIH4qBgNmBTU1PCwsLkwThXV1d5IA7Azs5Onl0WERFBXl6ePMgGBYGm2rVrExameDe2cuXCgdxtbGzQ19eXB+JeLDt//nyJ7b1y5QpTp07l6tWrJCYmyu9CRUdH4+enfDEbFhaGpqYmNWsWZt/4+PgodOm9dOkS6enpWFgoBjCysrJea1bkRYsW8e+///LgwQOysrLIzc2lapE71K9b59mzZzx8+JAhQ4YwbNgweR2JRIJJsROhotuXmppKTEyMwucB0KBBA6Wut0U/D7vn3U2ePn2Kj48P+fn5/Pzzz2zYsIHHjx+Tk5NDTk4OBkXGiOnTpw+ffvopCxcuREdHhzVr1tCzZ080nh/8L126xIULFxQy4fLz88nOziYzMxN9feUxbF68TlGvPZNu8YFZZTKg9MFaR8ycQE52DtF377P3vy1Y2lpTrVEdsrOyWff7Urp+3h8DY9UXymWiWJtlyEofYLZ4edmLxcp19u/eh6u7G95+iplRX0/+ht9+mk2fT7qjrqGOh5cngS2aEXE3XGkdr6yMt+Pa5ausX7WGkV+OxaeiLzGPHrPo978wW76aPoP6vXk7X9O+8+f4ad1/8v9/+3zU83YqlpMhU15YjL6OLmu+mUxmTg4X7oTx25ZNOFhaUcOrnE+ClZr1ks8GGDJ1HLnZOTwMj+LQuh2Y21pRuUHB702bgV3Z8c86FoyfgZqaGmY2llQLrMuV46V3/3lrKvYxVe+5VCplx1//0ahLKyzslCfbKkpHV4fBP35JXk4uUbfCObJmB6ZWFrj4ld9YTMVDlmpqaiVmvDuYWDGwZhu23DjGtZh7mOkZ0ad6EEPrdGDx2e3oamozqkFX/jm3g7ScTJXrEF5H8f1J9rJDCGNnfUtOVjZRdyPYtXoTlnY21AioW24t3Bd8nFl/FwZe539fcLNIjeLfj5f+JL2UVCbDr4IHI/v1B8DHvQL3o6PZsn9fuQbjChU/Tqj+PKRSKVv/XEVg19Yv/c6XN6XPoZR7FKa2lpjaWsr/t6ngRHpSKtcOnlEIxmnpatNl8nDycnKJCYvk7KYDGFuZYf8KkxG8iX0nTzJryWL5//MnFVyYFz9uyF5+2JNbuWMHB06fYvGUaegUy8wvL0rHOZnqY59UKmX3onXU79QCc9uShyORSWXoGxnSclAX1NXVsXVzJD05lQt7g8s8GCendNxTfb4nlUrZ/tfqVz7uDf3xK3Jzcom6dZfDa7ZjVs7HPeHlSroOUnUtlJuby6VLl5g0aZLC8pYtW3LmzBmV6w8JCaFlS8WeAkFBQSxdulQ+7nhISAhffPGFUpkXAbzy8MrBOFNT01eegSM/P/+NGyQILyxduhSJRIKDQ2G2ikwmQ0tLi6SkgswSdXV1pZP4vLy8l65bVsIBqfjy4hMCqKmpyQNhL15X+eCsvO6i61FTUyt1vcVlZGTQsmVLWrZsyX///YeVlRXR0dEEBQWRm5tb4vapaltRUqkUOzs7jh8/rvRc8XH4SrJx40a++OIL5s6dS7169TAyMmL27NmlpvO+rM6L92HJkiXyrL4XNIrd6TJQMYjym3weRV937ty5/Pbbb8yfPx9/f38MDAwYN26cwnvdvn17pFIpe/bsoVatWpw8eZJ58+bJn5dKpUybNk0ha+8F3RIGuP/pp58UMgYBpkyZQvWuzVSWL8rAyBB1dXWlLLj0lDSMTEu/OfJiHDg7F0fSUlI5tHEn1RrVISHuKUlP41n+U2H36Rf71cRun/L1HzOxtH3zk35jUxPUNdRJKpY9lpyUrJRl9oKZuRlJicXLJ6GhoYFxsazA7Oxsgg8fo//QgUrrsXd0YPZf88nOyiIjIxMLSwtmTZ6OjZ2tUtn3tR2rliynaVALWncoyOB0q+BOdnY2C36ZR68BfRTG1ClPAZWrUMm18IIn93k32oTUVCxNTOXLk9LSsDAqfV9TV1fH6flM7N5OTkTFxbHiwL5yC8bpGxd8L9KLZY9lpKQrZZkVZ2ZdcIFo4+xAekoaxzbvlQfjDIyN6P3Vp+Tl5pGVnoGRmQmH1u7A1Lp8BuTWNzJATV2djGLZAJkp6RiYKGdG52blEBf5kCcPHnNwZcHNLJlMBjIZP/f/ip4TP8O1YkG3TzV1dfnFl42LAwmPnxCy60i5XJSk5mSSL83HVE+xzca6BqRkq86c+aRiAHefRbMrtGCMoOjkJ2Sfz2V60DA2XDuMia4h1oZmTAjsI6/z4jd9be+pfLHzd56kJ5X5tnxsDIwKxulKLXYMSUtJw8jUpIRaBSyeH0PsXZ1IS05l//rt5RqMC6hdm0pehd3vcp9P2BOfnISleeHEBokpyZi/4rlMSSzNzHArNlumm6MjR0NUX+yVFX3jgu98eoridz4jNR1DFTfHcrOyibkfTWzUI/au2AwUfuen9xlHv29GKHVzL2u6hvqoqaspZcFlp2Wgb/zq3TKt3Ry5d+66wjI1dXVMnv++WjrZkRT3jKv7TpVbMC6gZk0qeRb+BhbuY8lYFslqT0xNwbzIcbAkq3ftZPn2rSz8/gc8Xcq/e62e/JiheOzLTE1X+VnkZuXwJPIRTx/EcGT1DqBw/5k7aBLdvh6Ks58HBqZGqGtoKJx/mNtZk5GSRr5EgobmG3e4U/LiuFc8Cy4zJU3l8Ts3K4fYyIfEPXjMgWLHvVn9v6T3xOEqj3u2Lg7EP37CmV2H/18E4zRkH+5sqiVdB02dOlWpbHx8PPn5+djYKE6SZmNjQ1xcnMr1x8XFqSwvkUiIj4/Hzs6uxDIlrbMsvPK3puj4SFFRUUyaNImBAwfKZ08NCQlh5cqVKtMCBeF1SSQSVq1axdy5c5Wi2F26dGHNmjWMGjUKKysr0tLSyMjIkAdmrl69qlBeW1tbKUDs5+dHdHQ0Dx8+lGfHhYaGkpKSotCVszQeHh5oa2tz6tQpevcu6DqWl5fHxYsXFSZfeFu3b98mPj6en3/+Wd7WixdLHwzX19cXiUTCxYsXqV27YGDsO3fukPw81R6gevXqxMXFoampiaur6xu17eTJk9SvX58RI0bIl70sq+5ldWxsbHBwcOD+/fvyMdhehbGxMfb29pw6dYqAgMKulmfOnJG/B6/i5MmTdOzYUd49WiqVEh4errBf6Onp0blzZ9asWcO9e/fw8vJSGC+zevXq3LlzBw+PVz+wf/PNN4wfP15hmY6ODgfCS86YfEFTSxOHCi6EXwvFv051+fK710OpWKvqK7dBJpMheX7Sae1gx5e/KR4U96/dRk52Nh0H98LUouTZ3F6FlpYWnt5eXLlwiQaNC8eju3LhEnUb1ldZx7dSRc6dDlFYdvn8RTx9vNEsdhJ44shx8vJyaRpUchatrp4eunp6pKWmcen8BYaM+OyD2Y6cnGylgNuLmw+vM27m2zLQ1VWYIVUmk2FhbMy5sFC8nQoGeM6TSLgcfpfRnygHn0sjk8nkwb3yoKmpiZ2bExE3buNXu3Csn4gbt/Gp+RrdhGQy8vOU26mlrYWWuSn5knxCz1+lYt3qKiq/PQ1NTWzdHIm8eRfvWoVZvZE37+JVQ3kmWh09HYb+9LXCskuHT/Mg9B6dxwzAxKrk764M1dtaFvKl+dxPjKGybQUuPCzMHq9sW4GLj26rrKOjqUV+sRtV0hc3m1AjJiWer3Ypjrfao2pzdDW1WXlxL/GZr96r4/8zTS1NnCq4cufqLarULTyW3bl6C/861V59RTIZkle4Ifo2DPT0FWZIlclkWJiZce7qVXzcC7ou5uXlcfnmLUYXGdbiTVTx8eXB48cKyx7ExGBnVb7ZZxqamti7OXH/+h18axX+dt2/cRvvGsq/XTp6unz+q2KGyIWDp4gMvUv3cYMxVTEbbnm02dLZnsehEbhVKzxfehQWgWuVVx9HMOFhrFL3SiWygjHFyouBnp7CDKkymQwLU1POXb+Oj1tBADBPksfl0FBG9+5b6rpW7dzB0q1b+PPb7/Gr8G661mpoamLj6kDUrXA8axaOAxl1KxyPaqqPGQN+VDz/vHokhIdh92g/qp/8mOHg6UrY2avIpFLUnp+fJD2Jx8DUqEwDcS+2we75cc9H6bhXSam8jp4Ow36aoLCs4LgXTucxAzEt5bgHyM99hfenpOug0rxKAsbLyhdf/rrrfFuv/M1p3LhwDIjp06czb948evXqJV/WoUMH/P39+eeffxTGdBKEN7F7926SkpIYMmSIUtfErl27snTpUkaNGkWdOnXQ19fn22+/ZfTo0Zw/f15pxlVXV1ciIyO5evUqjo6OGBkZ0bx5cypXrkyfPn2YP38+EomEESNG0LhxY4Wuj6UxMDDg888/5+uvv8bc3BxnZ2d+/fVXMjMzGTJkSFm9FTg7O6Otrc0ff/zB8OHDuXnzJjNmzCi1jre3N61atWLYsGH8888/aGpqMm7cOPSKnFw0b96cevXq8cknn/DLL7/g7e1NTEwMe/fu5ZNPPnml98HDw4NVq1Zx4MAB3NzcWL16NRcuXMDNreS7la9SZ+rUqYwZMwZjY2Nat25NTk4OFy9eJCkpSemHuqivv/6aKVOmUKFCBapWrcry5cu5evWqyplkS2vfli1bOHPmDGZmZsybN4+4uDilIG2fPn1o3749t27dkgfuXvjhhx9o164dTk5OdOvWDXV1da5fv86NGzeYOXOmytctKRX7VQW0b8H6BUtxrOCKi7c75w6dIDk+kXotAwHY+98WUhKT6TWmYN88ve8oZpbmWDkUdNONuh3OiZ0HadC6oOuNlrYWts6KY6jpGhRcABVf/qY69+jG7Bk/4enjjW8lP/bt2M3TJ09o26k9AMv+XkJCfDxfTy7oItL2k/bs3LKdxQsW0rpDW8JuhnJg9z4mTf1ead0Hdu+jfqOGGJsoZ3VcPHcBZDIcnZ2IefSYf/9ajKOzEy3bvtmg1+WxHXUa1GPb+s1U8PLAx6+gm+qqJcup27C+PEM0KzOLmEeFF4pxMbFE3L2HkbER1raKd/bKipqaGr2aNmf5gX04WdvgZG3Niv370NXWJqhWYSbrlBXLsDI1ZdTzAN3y/fvwc3HBwcoKiUTC6Vs32XMuhEm9Xj3g/ibqt23K1r9W4eDujJOXGxcPnyYlPpFazyckObRuB6mJKXQZWdAN7dyBYEwszbGyL3j/HtyJ4PTuI9RpVXgO9DA8irSkZGxdHElNTObY5r3IZDIadni74RNKU7t1Y3b9vRY7dyccPFy5eiyE1IQkqjUrCPge37CbtKRU2g/vjZq6OlZOirM9GhgboqmlqbD8zM7D2Lk5YWpjiVQiIeJqGDdPXSRoYNdy2449YWcYVb8LEYkxhD97SDPPmlgamHDo+U2HXlVbYK5vzF9nCgZUvvToDp/W7UgLz1pciy3opjqgZmvC4x+SlFWQ9fEwRXFm8YzcLJXL3wc9LR0cTQq7fdkbW+Jp6UhqdsYHl7EX2DGI/+b/g7OHK67eHpw5eJyk+AQaBDUBYNfqTaQkJNF3XMF4sif3HsbM0gJrx4J96n5YOEd37Cegbfl9D1RRU1OjV/sOLN+8GWd7e5zs7Fm+eRO6Ojq0KnJj7of5v2FtYc6ofgXXKHl5edx/WDCxQJ5EwrPERO7cv4++ni5OdgWzQ/bu0JHBkyawbNNGWjRsyK274Ww7eIDvRows9+2q27YJ2/5ajb27E45eblw6coaU+CRqNm8IwOF1O0lLSqHTiH6oqatj7aQ4o6WBiSGaWlpKy8tT5Rb1OLZsK5Yu9thUcCLsxCXSE1PwbVxwPnl+62EyklNpMrjguHDjcAhGFqaY2VuTn5/PvbPXibwcRovhhWMOX9l3EisXe4ytzJBK8om+Gc7dkGs06tP2nW2Xmpoavdq0Zfn2rTjb2eJka8fy7VsL9rGGDeXlfvjzD6zNzRnVu+C4tnLHDhZtXM/MMWOxs7Yi/vn4hvq6uujr6ql8rbJSs1Uj9i7egK2bI/Yezlw/do60hGSqNC3IWj2xcR/pSSm0+axnwTHDUbFngL6xARpamgrLqzStx+XDpzm6ZifVWjQgKS6ec7uOUr2F4vAwZaVO60B2/L0GO3cnHD1cuXLsDCkJSVR/ftw7tmE3aUkpdBje5/l3QPm4p6GlqbD89PPjnpmNBfmSfCKuhnHj1AVaDexWLtsgvLrXuQ6ytLREQ0NDKWPt6dOnSpltL9ja2qosr6mpKR+yqaQyJa2zLLxRGDskJETlVLA1a9aUD6InCG9j6dKlNG/eXCkQBwWZcbNmzeLy5ctUr16d//77j6+//pp//vmH5s2bM3XqVIXJB7p06cLWrVtp0qQJycnJLF++nIEDB7J9+3ZGjx5NQEAA6urqtGrVqtQZTVX5+eefkUql9OvXj7S0NGrWrMmBAweUBmd/G1ZWVqxYsYJvv/2WBQsWUL16debMmUOHDh1Krbd8+XKGDh1K48aNsbGxYebMmUyePFn+vJqaGnv37uW7775j8ODBPHv2DFtbWwICAl75R2f48OFcvXqVHj16FJys9OrFiBEj2Ldv31vVGTp0KPr6+syePZsJEyZgYGCAv7//SzMOx4wZQ2pqKl9++SVPnz7Fz8+PnTt34un56jM2Tp48mcjISIKCgtDX1+fTTz/lk08+ISVFsftO06ZNMTc3586dO/LMyBeCgoLYvXs306dP59dff0VLSwsfH59y/X2s2qA2mWkZHN60i9SkFGyd7Rny7VjMnnftSE1KITm+cIB9mUzG3jVbSXwaj4aGBhY2VrTu05m6Ld/d4NuNmzchNTWVNctXkZSQiIu7KzPm/ITN88lWEhMSefqk8ILa1t6OGXN+YvGCv9i9dQfmlhZ8Pm4UDZsEKKz3UfRDbl2/wazfflX5upnpGSxftIT4Z/EYGhvRsHEjBn42RCm77n1uR+8B/VBTU2PlP8tIeBaPiZkpdRrUY+CnhYH+u7fvMHF0YXD6nz/+BqB56yC++l71ZDBloX+LIHJyc/ll/RrSMjOp6OrGH6PHKWTQxSUloqZeeCcxOzeHX9av5WlyEjpaWrjY2DJ94BBa1qxVbu0E8K9fg6z0DI5v2UdacirWTnb0nTRCfpc8LSmVlPjCLsMymYzD63aS9CwBdXV1zG0sadGrIzWbF15sSPLyOLJhN0lP49HW1cGzakW6jOyPnoHyWJBlxa9uNbLSMjm97SDpyalYOdrR/ethmFgWbEd6chqp8a8X3MnLyeXAii2kJSajqa2Fhb0N7T/vg1/d18iEek0hD25ipKNPF/9AzPSMeJj8hJ+PrSY+o+D31VTPEAuDwuN+8P0r6GlpE+Rdl341WpGRm82tJ5GsuVz+M1qWBR8rF/7sVPgdHdOw4IJvb1gIPx79sCZBq96wDhmp6RzYsIOUpBTsnB34bPJ4zJ932U5NTCbpWZFjiFTGrv82k/jkGeoaGljaWtO+XzfqBwW+87YP6NSZnJwcfl68iLT0dCp5efHn1GkKGXRxz56hXiS74VliIn3Gj5P/v3r7NlZv30b1ipX458dZAFT09GTOpG/5c/Uq/t24AXsbG74cMpTWjQPLfZsq1atOVloGwVsPkJ6cgrWTHX0mDpf/dqUnp5Lymt/58lahViWyMzK5vCeYzJR0zO2taT26D0YWpkBBF8P0xMJzqXxJPmc3HyQjOQ1NLU3M7K1pNbo3zv6FXWolObmcWruHjKRUNLU0MbW1pOmQzlSopZwdVZ4GdOhITm4uPy/9l7SMDCp5ePDnt98rZNDFJcSjXuS4t/nQAfIkEibOm6uwrmFdu/FZN9WTnJUVnzpVyUrPJGRHQQDU0sGWzuMHY2JZcH2SkZJKamLya63T2MKUbl8P49jaXaz8/jcMTY2p3rIhtdsGlv0GUHDcy0zL4NS2A/LjXs+vPy1y3Hv970BeTi77V2wmLTHl+XHPmo6f9y3X494HpRxmvn0ftLW1qVGjBocOHaJTp07y5YcOHaJjx44q69SrV49du3YpLDt48CA1a9aUD19Ur149Dh06pDBu3MGDB6lfX3VPl7KgJnuD/i7e3t60a9eOuXMVf1y+/PJLdu/ezZ07rz7NsyAIglCynTdPvu8mvLUOlRoRGf/45QU/YG6WDv/z2wAF25F6JPh9N+OtGDdrzIYrh953M95aj2otWFFkVtD/VQNrtaXHf5NfXvADtqHvDBr8Nfx9N+OtnR65iP1hIS8v+AFr5VuPtLD//esII19v1v6PBI1L07t6EHODy2cWwXfly8a9SLt6/eUFP3BGVSuz5OyO992MtzKsbkdWXdj7vpvx1vrXavO+m/BG0ooMV/ShMXrNMT43bNhAv379WLRoEfXq1eOff/5hyZIl3Lp1CxcXF7755hseP37MqlWrAIiMjKRSpUp89tlnDBs2jJCQEIYPH866devks6meOXOGgIAAfvzxRzp27MiOHTv4/vvvOXXqlNI45mXljdIAfvvtN7p06cKBAweoW7cg3fXs2bNERESwZcuWMm2gIAiCIAiCIAiCIAiCIPTo0YOEhASmT59ObGwslSpVYu/evbg8nyQlNjaW6OhoeXk3Nzf27t3LF198wV9//YW9vT0LFiyQB+IA6tevz/r16/n++++ZPHkyFSpUYMOGDeUWiIM3DMa1adOG8PBwFi5cyO3bt5HJZHTs2JHhw4fLB5gXBEEQBEEQBEEQBEEQ3rN3OAHYuzBixAiFCQGLKj6GPBTMgXD58uVS19m1a1e6di2/sXOLe+OpTxwdHZk1a1ZZtkUQBEEQBEEQBEEQBEEQPmpvHIxLTk5m6dKlhIWFoaamhp+fH4MHD1Y54L4gCIIgCIIgCIIgCIIgCKD+JpUuXrxIhQoV+O2330hMTCQ+Pp558+ZRoUKFl6b+CYIgCIIgCIIgCIIgCO+ITPbhPv6feqPMuC+++IIOHTqwZMkSNDULViGRSBg6dCjjxo3jxIkTZdpIQRAEQRAEQRAEQRAEQfgYvFEw7uLFiwqBOABNTU0mTJhAzZo1y6xxgiAIgiAIgiAIgiAIgvAxeaNuqsbGxgpTxb7w8OFDjIyM3rpRgiAIgiAIgiAIgiAIQhmQyj7cx/9TbxSM69GjB0OGDGHDhg08fPiQR48esX79eoYOHUqvXr3Kuo2CIAiCIAiCIAiCIAiC8FF4o26qc+bMQU1Njf79+yORSJDJZGhra/P555/z888/l3UbBUEQBEEQBEEQBEEQBOGj8EbBOG1tbX7//Xd++uknIiIikMlkeHh4oK+vX9btEwRBEARBEARBEARBEN6UTPq+WyAU81rBuMGDB79SuWXLlr1RYwRBEARBEARBEARBEAThY/ZawbgVK1bg4uJCtWrVkMn+/w60JwiCIAiCIAiCIAiCIAhv4rWCccOHD2f9+vXcv3+fwYMH07dvX8zNzcurbYIgCIIgCIIgCIIgCMLbEMlUH5zXmk114cKFxMbGMnHiRHbt2oWTkxPdu3fnwIEDIlNOEARBEARBEARBEARBEF7itYJxADo6OvTq1YtDhw4RGhpKxYoVGTFiBC4uLqSnp5dHGwVBEARBEARBEARBEATho/BGs6m+oKamhpqaGjKZDKlUzM4hCIIgCIIgCIIgCILwQZGKnowfmtfOjMvJyWHdunW0aNECb29vbty4wZ9//kl0dDSGhobl0UZBEARBEARBEARBEARB+Ci8VmbciBEjWL9+Pc7OzgwaNIj169djYWFRXm0TBEEQBEEQBEEQBEEQhI/KawXjFi1ahLOzM25ubgQHBxMcHKyy3NatW8ukcYIgCIIgCIIgCIIgCMJbEBNufnBeKxjXv39/1NTUyqstgiAIgiAIgiAIgiAIgvBRU5PJRIhUEARBEARBEARBEAThY5QWG/e+m1AiIzvb992E9+KtZlMVBEEQyleftVPfdxPe2preU0mLjHrfzXgrRm6ufL5l9vtuxlv7u8vXJPcf/r6b8VZMVy3i+L1L77sZby3QowZf7frjfTfjrc1pP5qY5Kfvuxlvxd7Umv1hIe+7GW+tlW89Gvz1v/39Pj1yEXOOr3nfzXhrXwX2Yem5Xe+7GW9tSJ32rL184H034630rh7EgpMb33cz3tqYRt0ZvW3e+27GW/mj03jmn9jwvpvx1sYF9HjfTXgzMun7boFQzGvPpioIgiAIgiAIgiAIgiAIwpsRwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVRMFfChEZlxgiAIgiAIgiAIgiAIgvCOiGCcIAiCIAiCIAiCIAiCILwjopuqIAiCIAiCIAiCIAjCx0omuql+aERmnCAIgiAIgiAIgiAIgiC8IyIYJwiCIAiCIAiCIAiCIAjviOimKgiCIAiCIAiCIAiC8LES3VQ/OCIzThAEQRAEQRAEQRAEQRDeERGMEwRBEARBEARBEARBEIR3RHRTFQRBEARBEARBEARB+FhJpe+7BUIxIjNOEARBEARBEARBEARBEN4REYwTBEEQBEEQBEEQBEEQhHdEdFMVBEEQBEEQBEEQBEH4WInZVD84IjNOEIRSPXnyhOnTp5OUlPS+myIIgiAIgiAIgiAI//NEME4QAFdXV+bPn/9O16empsb27dvf6nWmTp1K1apV32odpZHJZPTr1w8dHR3MzMxeq25Zv6evKyAggLVr17631y/qq6++YsyYMe+7GYIgCIIgCIIgCMIHQATjhP9p7du3p3nz5iqfCwkJQU1NjcuXL7/jVsGFCxf49NNP3/nrlrWffvoJd3d3Jk6c+Np13+d7sHv3buLi4ujZs6d8WfHgoEwm48svv8TIyIijR48CEBgYyLhx45TWt3btWjQ0NBg+fLjK11u8eDFVqlTBwMAAU1NTqlWrxi+//CJ/fsKECSxfvpzIyMiy2UBBEARBEARBEIRXJZV9uI//p8SYccL/tCFDhtC5c2cePHiAi4uLwnPLli2jatWqVK9e/Z23y8rK6p2/Znn49ttv37ju+3wPFixYwKBBg1BXV32/IT8/n2HDhrFr1y6OHj1KrVq1Sl3fsmXLmDBhAn///Tfz5s1DX19f/tzSpUsZP348CxYsoHHjxuTk5HD9+nVCQ0PlZaytrWnZsiWLFi1SCNKVteaetWjrWx9TPSMepzxl9aX93HkWXWL5+q7+tPNtgK2RBZl52VyPucfaKwdJz80CoEmF6jR0q4KTqTUAkYmxbLh2hPsJj8ttG6AgUPrPf/+xbd9e0tLTqejtw8SRI6ng6lpinYioKBatXsXt8HvEPn3C+M8+o3enzgplLt+4werNmwgLDyc+MZE5P0whsH79ctmGAPeqtPCqhYmuIbGp8Wy6dpR7Jbxv/Wu0pp5rJaXlManxzDi0XGl5TUcfhtRpz9WYcBaHbC/rpivR7dQO7cCGqBnokx8RReaqdUgfx5ZaRyeoKdpNA1C3MEeWlk7uhStkb9oGeRJ5GTUzU/S6d0KzSkXUtLSRxj0hc+lq8qNK3mffxPHdhzi4dTcpicnYOzvQ/dP+eFbyUVn28unznNh7mIf3HyDJk2Dn4kD73l2oWKOKQrnM9Ay2r9rIlTMXyEzPwNLGiq5D++Bfq1qZtr2o+i7+BHpUw0jHgCdpiey4dZLIxJgSy2uoq9PCqzY1HLwx0jEgOTudI+EXuPAwTF6mkVsV6rn6Y6ZnREZuFtdj77E3LASJNL9M2rx98zY2/LeOhIQEXN1cGfXFGCpXq1Ji+auXr7Bw/p9ERUZhaWlBz3696dD5E5Vljx48zIzJ02gQ0JCZs3+SL1+zYjUnj58g+sEDdHR0qOhfiU9HfY6zi3OZbFNJTu49wtHt+0hNSsbWyYHOQ3pToaK3yrIRoXfZtWojTx7HkpeTi5mVBfWDmtCkQ1C5tvFNVbHzoHe1lvhYO2NpYMqkvX9zMvLa+24WAKHHL3DtYAhZKWmY2VtTt3tL7DxdVJaNuRPFnnmrlJZ3mzYCU1tLpeURF25y9N+tuFTxpuWIHmXe9qKuHD7N+b3HSU9Jw9LBhqZ9OuLk7f7Seo/uRrJu1t9YOdoycOZ4+fIbJy+wb8kGpfLj//0JTW2tMm17aS4cPMmZ3UdIS07F2tGWoP5dcPGp8NJ60Xfus2L6Aqyd7Bj+8+vfEH4bN46d48qBU2Qmp2Nub03Dnq2x93JVWfbx7Ui2z1mmtLz3jDGY2RWcByc8fsL5HUd59iCGtIRkGvZoTZUW5XPuUVQjtyo086yJsa4BsakJbL1xnIgSzkP6Vg+ijktFpeWxqfHMOlLwnbE1sqCtb32cTK2xMDBhy/VjHI+4Up6bwM1j57l64BSZKemY2VvRoEcpn8WdSHbOUT5n6jl9tPyzCD1xkTshV0mMeQqAlYs9dTo1x8bNsdy2QRBKIzLjhP9p7dq1w9ramhUrVigsz8zMZMOGDQwZMgSAM2fOEBAQgJ6eHk5OTowZM4aMjIwS1xsdHU3Hjh0xNDTE2NiY7t278+TJE4UyO3fupGbNmujq6mJpaUnnzoUX/sWzsMLDwwkICEBXVxc/Pz8OHTqk9JoTJ07Ey8sLfX193N3dmTx5Mnl5eQplfv75Z2xsbDAyMmLIkCFkZ2eX+v4cP34cNTU1Dhw4QLVq1dDT06Np06Y8ffqUffv24evri7GxMb169SIzM1Neb//+/TRs2BBTU1MsLCxo164dERER8udXrVqFoaEh4eHh8mWjR4/Gy8tL/r4Wfw/U1NRYvHgx7dq1Q19fH19fX0JCQrh37x6BgYEYGBhQr149hdeJiIigY8eO2NjYYGhoSK1atTh8+HCp2xwfH8/hw4fp0KGDyudzcnLo1q0bhw4d4sSJEy8NxEVFRXHmzBkmTZqEj48PmzdvVnh+165ddO/enSFDhuDh4UHFihXp1asXM2bMUCjXoUMH1q1bV+prvY26zhXpV70VO26d5Lt9i7j9NJoJgX2x0DdRWd7LypnP63YiOOIKE/f8xYJTm3C3cGBoncL3zdfGlZAHN/nx8EqmHFxKfEYKk5r0w0zPqNy2A2Dlpo2s3baVCSNGsnLBH1iYmzHy22/IKLKPFpedk4OjrR2jBg/GwsxcZZms7Gw83dyZMGJkeTUdgBqO3nSr0pT9t88y68hK7sU/YmTDriW+bxuvHWHi7oXyxzd7/yY9J4vLj+4olTXXN6azfyDhzx6W6za8oNO2JTqtmpG1ej1pU35GmpKC4YSxoKtTYh2terXR7daJ7O17SJs0jcylq9GuUwPdbp3kZdT09TH6/mtk+flkzPmTtG+mkbVuM7JSPuM3ceFECBuXrKJNj0/4fsEsPCr58MeUX0h8Gq+yfPit2/hW82f0tAl8+/tMvCv78df0OURHRMnLSPIkzP/+JxKePOOzb8cy/Z859BszFFML1ftdWahi70mHSo04HH6R306s535iDEPrtMdUz7DEOv1qtMbT0omN147yy7HVrLl8gKfphWN/VnPwoo1vfQ7dPc+vx/5j47UjVLH3pI1vvTJp89FDR/jrtwX0HdSPJauWUrlqFSZ+8TVP4p6oLB8bE8M3X0ygctUqLFm1lD4D+/HH3N8JPnpcqWxcbBx/L1hI5arKgb1rV67ySddO/LV0MbMX/EZ+fj4TxownKyurTLZLlcunzrFt2VpadmvP1/OmU8HPi0Uz5pH4LEFleR1dHRq1ac6YH7/lmz9m0bJbB/au2cKZA8fLrY1vQ09Lh3sJj5h3Yv37boqCiAu3CNl4gGptGtLp+0+x9XBm/x9rSU9MKbVet+kj6fPrePnD2Fr5u5uWkMy5zYew9SjfIC5A2NmrHFmzk7odmjNw+hc4ermzec6/pMaXPlZvTmYWe/9Zj4ufh8rntfV0GbHgB4XHuwzE3Qy5zP5VW2n0SUs++2kCzt4VWPPz36TEJ5ZaLzszi+0LV+NeyesdtbRQ+PkbnFq/j5ptGtP9h8+x83Jh1++rSUtILrVen5ljGTh3gvxhYmMhf06Sm4exlRn1urRA36Tk3+yyVN3Bi86VAzlw5xy/HPuPiITHfF6/U4nnIZuvH+PbvYvkj8n7/iEjN4srjwvP87U1NInPTGHnrVOkZKeX+zbcu3CD0xv2Ub1tY7r98Dl2ni7sWfDfSz+LXjPGMGDO1/JH0c8i5k4UnrUr0/HLQXSeNAwjcxN2/7aK9KTUct4aQVBNBOOE/2mampr079+fFStWICsyQ8ymTZvIzc2lT58+3Lhxg6CgIDp37sz169fZsGEDp06dYtSoUSrXKZPJ+OSTT0hMTCQ4OJhDhw4RERFBjx6Fd0X37NlD586dadu2LVeuXOHIkSPUrFlT5fqkUimdO3dGQ0ODs2fPsmjRIpXdPo2MjFixYgWhoaH8/vvvLFmyhN9++03+/MaNG5kyZQo//vgjFy9exM7OjoULF77S+zR16lT+/PNPzpw5w8OHD+nevTvz589n7dq17Nmzh0OHDvHHH3/Iy6elpfHFF19w4cIFDh8+jEwmo1OnTkilUgD69+9PmzZt6NOnDxKJhP3797N48WLWrFmDgYFBie2YMWMG/fv35+rVq/j4+NC7d28+++wzvvnmGy5evAig8Lmkp6fTpk0bDh8+zJUrVwgKCqJ9+/ZER5ecOXPq1Cl5sK+49PR02rZty61btzh9+rTKMsUtW7aMtm3bYmJiQt++fVm6dKnC87a2tpw9e5YHDx6Uup7atWvz8OHDl5Z7U6196nH8/mWOR1wmJjWe/y7vJyEzheaeqvdLDwtHnmUkc+DuOZ5lJHP3WTRH713E3dxeXmbhma0cDr/Ag+Q4YlPj+ff8TtTV1Kho+/K79W9KJpOxbtt2BvXsSdOGDfFwdWXal1+RnZPD/mPHSqxX0dubscOGERQYiLaW6ouNBrVqMWLgQJo2bFhezQegmWdNzkTd4HTUDeLSEtl0/RhJmWkEuFdVWT5bkktqTob84WJmi762LiEPbiqUU0ONQbXasjvsNPEZpV9slhWdoGZk79xH3sWrSB/HkPnPStS0tdGuV7vEOpoe7kjCI8gLuYA0PgHJzTByz15A063wolanXUukiYlk/buK/PtRBeVC7yAtIUj2pg5v20uDloE0DGqCnbMDPT7tj5mlBcF7VQf1e3zan6Cu7XH1qoCNgx2dBvTE2t6W6+cKhzs4feg4GWnpjJg8Hg8/byysrfCo6IOTu+psnLLQ2L0q56NDOR8dytP0JHbeOklyVjr1XPxVlve2cqaChQP/nttJePxDkrLSeJj8hAdJcfIyrmZ2RCXGcuXxXZKy0rj77CFXH4fjaGJTJm3etG4DbTq0pW3H9ri4uTJq/BisbazZuWWbyvI7t+7A2taGUePH4OLmStuO7Wndvi0b1ygGgPLz8/nxh+kM/HQwdg52Suv59fe5tGrXBjd3Nzy8PJg4+RuexD3h7m3l4HZZOb7jAHWbB1CvRWNsnezpPLQPZpbmnN5/VGV5R3cXagTUxc7ZAQsbK2oF1senmj8RoeXXxrdxNvoWS87tJPj+1ffdFAU3Dofg3aAaPg2rY2ZnRb0eQRiamRAafLHUenpGBuibGMofxbPopVIpx5Zuo3r7QIysXm+83DdxcX8wlRvXpkpgHSwcbGjWtyNG5qZcORpSar0Dy7fgW7ca9h6qf3vU1MDQ1Fjh8S6d3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcNLeLqoTP4NqyOX0BNzO2tadSzDUZmxtw8fr7UenrGBhiYGMkfRfcpGzdHGnRrhWftymhovptOaU08ahASdZOQBzd5kpbI1hvHScpKo6Gb6szkbEkuaTmZ8oezmQ16WrqcLXIeEp38hB03T3D58R0k+WWTPV2aa4fO4NOwOn6NamBmZ0XDnm0wNDPmVvCFUuvpGRugb2IkfxT9LJoP60qlJrWxdLbDzM6Kxv07IpPJeBx2v7w358Mgk324j/+nRDBO+J83ePBgoqKiOH78uHzZsmXL6Ny5M2ZmZsyePZvevXszbtw4PD09qV+/PgsWLGDVqlUqM8sOHz7M9evXWbt2LTVq1KBOnTqsXr2a4OBgLlwoOAD8+OOP9OzZk2nTpuHr60uVKlVK7NJ5+PBhwsLCWL16NVWrViUgIIBZs2Yplfv++++pX78+rq6utG/fni+//JKNGzfKn58/fz6DBw9m6NCheHt7M3PmTPz8/F7pPZo5cyYNGjSgWrVqDBkyhODgYP7++2+qVatGo0aN6Nq1K8eKBDq6detGly5d8PT0pFq1aixbtowbN24odL1cvHgxsbGxjBkzhoEDBzJlypSXZpkNGjSI7t274+XlxcSJE4mKiqJPnz4EBQXh6+vL2LFjFT7HKlWq8Nlnn+Hv74+npyczZ87E3d2dnTt3lvgaUVFR2NjYqOyiOmPGDK5evcrJkydxdn753W6pVMqKFSvo27cvAD179pRn870wZcoUTE1NcXV1xdvbm4EDB7Jx40Z54PIFBwcHefvKmoa6Bm7m9tyIjVBYfiMuAk9LJ5V1wuMfYq5vTBV7TwCMdQ2o7eTH1ZhwleUBdDS00FBTJyOn/DJMHsfFkZCUSN3qNeTLtLW1qe7vz/Ww0FJqfhg01NRxNrUl9EmUwvKwp1G4Wzi80jrqu/pz++kDEjMV79S29a1Pek4WZ6JulFVzS6VuZYm6qQmSm4XdGpFIkNwJR9Oz5ICs5O49NF2d0XB3la9Hq0ol8q4VntRrVauCJDIa/VHDMP7zVwxnfIt2YNkGSSV5EqLvReJXrbLCcr/q/kSE3X2ldUilUrKzsjEwKrzJcP3cJdx9PFm7cDlf9RnOtBET2LthO9J8aSlrenMaauo4mFhzt1iX87vPonE1Vw5GAVS0deNh8lOaVKjB5OaDmNikL+38GqCpriEvE5kYg6OpNU6mBcE3c31jfKxdCHsa9dZtzsvL4+7tu9Ssoxi0rVm7Fjdv3FRZJ/TGLWrWVjyG1Kpbmztht5FICrs3r1q6AlMzU9p2aPdKbclIL8jWNjYun0CEJE/Cw4govKsqdjX3rlqJyNv3Sqil6NH9B0TeDsejhO7TgrJ8ST7x0bE4+Cl2eXTwc+dJROmZw1tn/sN/X89jz7xVxNxRHsv1yu4T6Brp49Ow/Lqdv5AvkRAX9RjXYllgbv5ePA6PKrHejRPnSX4aT4NOLUosk5udy6IvZrJw7Aw2z13Kk6jyHWKiqHyJhJjIh1SorLhPu1f24dHdksfPvXL8LElP4gns0qq8m6gkXyLh2YMYnCsqZho6VfQg7iX71IbpC1n+5S9sn7OcR7ffb2BHQ00dJ1Mbbj9VvPl7+8kD3CzsS6ilqK5LJe48fUBSVlp5NPGlCj6LWJyKfb8LPovSh7LYNP1vVn71KzvnLufxSz4LSW4e0vx8dAz03rrNgvAmxJhxwv88Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bvHmjVr5HVkMhlSqZTIyEil7KiwsDCcnJxwcioMYvj5+WFqakpYWBi1atXi6tWrDBs27JXaFxYWhrOzM46OheMR1Kun3A1o8+bNzJ8/n3v37pGeno5EIlG4eAgLC1OaQKBevXoKQbSSVK5ceDFqY2Mj7wpbdNn584V3/aKjo5kxYwbnzp0jPj5eHliKjo6mUqWCCw4zMzOWLl1KUFAQ9evXZ9KkSa/dDgB/f3+FZdnZ2aSmpmJsbExGRgbTpk1j9+7dxMTEIJFIyMrKKjUzLisrC11dXZXPtWzZksOHDzNr1qxXmun14MGDZGRk0Lp1awAsLS1p2bIly5YtkwdU7ezsCAkJ4ebNmwQHB3PmzBkGDBjAv//+y/79++VBQT29ggN9Zgnd8HJycsjJyVFYpqNTclfAoox09NFQVyclW7HrdUpWBiZ2qrtEhMc/ZOGZrYxu0BUtDU001TW49Og2Ky/uLfF1elZtTmJWGjfjyu9EMyGpoPuKRbHZey3MzIh98rTcXresGOrooaGuTlqxzyItOwMTm5KzRl8w1jWgoo07y87vVljubuFAfVd/fjyyskzbWxo1k4LfH2mKYlBQmpKKumXJXTLzzl0ky9gQw++/AtRQ09Qg50gwObsPyMuoW1mi0zSAnP2Hydi1Hw13V/T6dkeWl0fe6XNl0v701DSkUinGpopdtY1MTUhNerXMwkPb9pCbnUONRnXly57FPSXhSSh1AhsweuoEnsbEse7vFUjzpbTr3bmUtb0ZA+3n+1SO4m9HWk4WRjr6KuuY65vgZm6HRCphxcW9GGjr0tk/EH0tXTZeOwLA1ZhwDLT1GNmgC2oUBPXPRF3n2L1Lb93mlOQUpPn5mJkrfo/NLMxIOqu6i1piQgJmForBOzNzM/Lz80lJTsbC0pIb166zd+ce/v1PeYwmVWQyGQt//xP/KpVxq1A+Gb0ZaS/2M8Vgn5GJMWkv2c9+GPIF6SlpSKX5tO7xCfVaNC6XNn6MstMzkUll6Bsr/q7qGRmQlap6GBJ9E0Ma9W2HpYsd+XkSws/dYM9vq2k3fgB2XgXZZXH3orlz+gqdJ39W7tsAkJmWgUwqxcBEsfugvrERGSmqAyGJcc8I3riX3t+NRF1DQ2UZCztr2gzrgZWTHTlZ2Vw6eJI1M/9k4MzxmNuW/5i+makF22VYbLsMTYyIKGG7EmKfcmTdLgZNHVvidpWngn1Kip6x4nmTnrEhmSW0Wd/UkMD+HbF2sSdfIuFOyDV2zF1Bp68Hlzi2WXkzeHEeklPsPCQnE+MSjhlFGesY4GfjVur5YHl78VnoF/8sjAzITFHdRVbfxIjG/Tpg9fyzuHv2GjvnraTjV4NK/CzObjmEgakxjn7l1+NDEEojgnHCR2HIkCGMGjWKv/76i+XLl+Pi4kKzZs2AgsyGzz77jDFjxijVU5UdJZPJUFNTK3X5i8DKq5CpSL0tvv6zZ8/KM+2CgoIwMTFh/fr1zJ0795VfpzRaRbrtqampKfz/YlnRTK527drh5ubGkiVLsLe3RyqV4urqSm5urkK9EydOoKGhQUxMDBkZGS/NPCjejpKWvWjL119/zYEDB5gzZw4eHh7o6enRtWtXpXYUZWlpSVKS6nFWmjVrxpgxY+jYsSP5+fkKXXNVWbZsGYmJiQoTNkilUq5cucKMGTPQKHKyWKlSJSpVqsTIkSM5deoUjRo1Ijg4mCZNmgCQmFhwAVrSxBY//fQT06ZNU1g2ZcoUeI0hU2Qo7mtqakAJmd8Oxlb0r9GabTeDuR4bgameIb2rtmRw7XYsOaecedjOtwH1XPyZeWQFeVKJijW+mX1HjzJrwe/y/+dPLxhrr/g3sOD7V2YvW+5UfOuVPh9V6rlUIisvm2tFMhR1NLUYVKsNay4fICO3/LISterVRn9Qb/n/6XP/Kvij+G+YmlqJ+xWApo8Xuu1bk7VyHZKISDRsrNHr2x1pcgo5O56f3KurkR/5gOzNOwDIf/AQDQc7dJo1LrNgXGF7i/0vU7FMhfPHz7B7zVZGTB6vENCTSWUYmRrTd/RQ1DXUcfF0JzkxiYNb9pRLMK4kpX0fXvyWrr18kGxJwe/lzlun6F+zNVtvHEcizaeChQPNPGuy9cZxopOeYGlgQsdKATTPzuRweOndgF69jcUaKSu94WrFPpgXx081NTUyMzKZNWUmX307ARNT01d6/d9n/0bEvQj+WPzX6zT7DanY0V6yn42d9S05WdlE3Y1g1+pNWNrZUCOgbumVhDdmamupMFGDTQUnMhJTuH4oBDsvF3Kzczi2bDuN+rVD1/DlQYvypfqYJ5VK2f33Ghp0bom5XclBNXsPF4Xuq46erqz8YT6XD52meb9PyqG9JVHxnS5hu7b+uYrArq2xsLN+R21TTel9l8lK/N0ys7XCrEhw07aCM+mJKVw5cOq9BeNeeNOOf3Vc/MjKy+F6zKtl9pYrFW+7qms0ADNbS8yKfL9ffBZXD55W+Vlc2X+Se+dv0PHrQWiWMLzJR0dWPhn8wpsTwTjho9C9e3fGjh3L2rVrWblyJcOGDZP/WFevXp1bt27h4aF6gNvi/Pz8iI6O5uHDh/LsuNDQUFJSUuRZdJUrV+bIkSMMGjToldcXExODvX1BenhIiOI4IKdPn8bFxYXvvvtOvqz42GK+vr6cPXuW/v37y5edPXv2lbbpdSQkJHDjxg0WLlxInTp1AAgODlYqd+bMGX799Vd27drFpEmTGD16NCtXlm3WzsmTJxk4cCCdOhUM/J6env7Sbp7VqlUjLi6OpKQkzIplVwG0aNGC3bt30759e6RSKX/++afKA3tCQgI7duxg/fr1VKxYOMOUVCqlUaNG7Nu3j3btVHeTetF9uOgkITdv3kRLS0thXUV98803jB8/XmGZjo4Og7f8pLJ8UWk5meRLpZjqKt5BNNY1KHGQ3Q4VG3I3Ppo9YWcAeJj8hOWSPUxpMZhN146SXKReG5/6dKjYiJ+OruJhsurB199UQN26VPIpnHEwN7dg0pL4pCQsLQoH3U1MTsZcxef5oUnPySJfKsVYVzFbw0hXn9Tsl09OUN/Vn3PRoeQXOWGyMjDD0sCUz+sXBnpe7LN/dvqSqQeXEp+R/NZtz7tyjbSIIt2HtApOEdRNTcgvkh2nbmyELLXkwY51u7Qn98w5coNPAyB9FAM62ugP6kvOzn0gkyFLTiG/2Iys+TFxaNUsu9mvDY0LxoopngWXlpKilC1X3IUTIaxa8A+fTRqLbzXFcdlMzE3R0NBAXaOwK7ydkwOpSclI8iRoapXtqVVGbsE+VTwLzlBbTylb7oW07AxSstPlgTiAp+mJqKupYapnSHxGCkHedbn86A7nowu6f8elJaCtoUXXKk04En7hjS/kAExMTVDX0CAxQTELLikxSSlb7gVzCwul8slJyWhoaGBsYkLU/UjiYmP59qvCLGzZ8xs3zeoHsmrjGhwcC7uCL5jzG2dOnub3xX9gZVN+F/cGRs/3s+Ti+1kaRi/ZzyxsCi7i7V2dSEtOZf/67SIY94p0DfVRU1cjs1gWXFZaBnrGL89CfsHa3ZF75wq6/qc9SyI9IZkDfxWOU/giIPzv5zPoPn0kxlZlO1GLvpEBaurqSllwmanp6BsrD7afm5VDXOQjnjyI4fCq7YVtlMmYPXAC3ScMw8XPU6memro6tm5OJD15VqbtL4m+ccF2pRfLrM5ITcdQ5XZlE3M/mtioR+xdUTBR1ovtmt5nHP2+GYFbOU/oULBPqStlXmWlZShlaJXGxt2Ru2ff32zDGS/OQ3SKnYfo6JNawjGjqLoulbjwUPE85F0r7bN4ne+3jbuTys/i6oFTXN57kvbjB2DhaPvW7RWENyWCccJHwdDQkB49evDtt9+SkpLCwIED5c9NnDiRunXrMnLkSIYNG4aBgQFhYWFKkxa80Lx5cypXrkyfPn2YP38+EomEESNG0LhxY/kkDVOmTKFZs2ZUqFCBnj17IpFI2LdvHxMmTFC5Pm9vb/r378/cuXNJTU1VCLoBeHh4EB0dzfr166lVqxZ79uxh2zbFQa7Hjh3LgAEDqFmzJg0bNmTNmjXcunVLobtpWTA1NcXc3JxFixZha2vLgwcPlCacSEtLo1+/fowePZrWrVvj7OxMzZo1adeuHd26dSuztnh4eLB161bat2+PmpoakydPVhqLrbhq1aphZWXF6dOnSwyWNW3alD179tCuXTtkMhl//fWXUkBu9erVWFhY0K1bN6Xx59q1a8fSpUtp164dn3/+Ofb29jRt2hRHR0diY2OZOXMmVlZWCt2RT548SaNGjUrMqtTR0XnlbqnF5UvziUyMoZJtBS4+ui1f7m9bgUtF/i9KW0MLabETLfn/Rd6Ltr71+aRiAL8c+4/IxJg3al9pDPT1MSiSeSiTybAwM+fclcv4PA+g5+XlcfnGDUYPHlLmr1/W8mVSopPj8LV2UchuK/i/9LvMnpZOWBuaKY0JF5eWwIxDyxWWta/YEF1NbTZdO0pSZsmBsdeSnYM0W/FCTZqcgmZFX/IfPB8vR0MDTW9PsjaqHoQfAG1tkBYL5UilCne4JeERaNgpThSgbmuDNEH17JNvQlNLE2cPN8Ku3KBa/cKxyMKu3KRK3Rol1jt//Ayrfl/M0Amj8K+tPGZUBT8vLhw/g1Qqlf82PHkci4m5aZkH4qBgn3qc8hQvKyeFLuJeVs4ldhmPTIylsr0H2hpa5OYXBLitDEyRyqQkZxVc3GhraCpla0pl0ufZaaWk1b4CLS0tvHy8uHj+Ao0CA+TLL52/QIMA1WMD+vlXJOTkaYVlF8+dx9vXB01NTZxdnFm2VvGGz9JFS8jMzGT0+LFYPw+4yWQyFsyZz6ngE/y2cAF29q82RtKb0tTSxKmCK3eu3lLYr+5cvYV/ndcYc0wmQ1JsBnWhZBqaGlg62/E47D5u1QrHJXscdh+XKt6l1FSU8DAOveczXJrYWtLlB8XhQC7uOEZedg71erTCwKz04Oqb0NDUxNbVgaibd/GqWRj4j7p5F4/qlZTK6+jpMGjWlwrLrhw+Q3TYPTqO7o9JCcFCmUzG0+jHWDmqHmeyrGloamLv5sT963fwrVU4acD9G7fxrqE88YyOni6f/6o43MmFg6eIDL1L93GDMbWyUKpTHm22crHnYWgE7tULx2R+GBqBW9VXH88x/mEs+qblO+t8afJlUh4mP8HH2pnrsYXnHd7WLkpjCxfnYemItaEZ/0apHtvzXSn4LOx4FKb4WTwKjcD1dT6L6Fj0i3WVvnLgFJf3BNN2bH+sXV9tLF9BKC9iAgfhozFkyBCSkpJo3ry5QvfTypUrExwcTHh4OI0aNaJatWpMnjwZOzvVJyRqamps374dMzMzAgICaN68Oe7u7mzYsEFeJjAwkE2bNrFz506qVq1K06ZNOXdOddcqdXV1tm3bRk5ODrVr12bo0KH8+OOPCmU6duzIF198wahRo6hatSpnzpxh8uTJCmV69OjBDz/8wMSJE6lRowYPHjzg888/f9O3q0QaGhps2LCBy5cvU6lSJcaPH6/UXXbs2LEYGBjIx02rWLEiv/zyC8OHD+fx47IbIPi3337DzMyM+vXr0759e4KCgqhevfTMGQ0NDQYPHqwwRqAqgYGB7N27l9WrV/P5558rdSdetmwZnTp1UjkRRJcuXdi9ezdPnjyhefPmnD17lm7duuHl5UWXLl3Q1dXlyJEjWBTJ7Fq3bt0rjzP4JvbdDqFJheo0dq+GvbElfasHYaFvwpHwglnlelRpxvB6neTlrzy+S00nX5p51MTKwAwvSyf612jNvfhHJD8fsLedbwO6VW7KP+d28CwjGRNdQ0x0DdHR1C637VBTU6NXp09Yvn49x06f5l5UFFPnzkFXR4dWz7v8Avww+1f+XFY4blReXh53IiK4ExFBniSPZ/EJ3ImI4GFM4f6YmZUlLwMFk0XciYgg7mnZjkV3JPwiDdwqU8+lErZG5nSt3AQzfWNORhbcne1YsREDarZRqtfA1Z/IhBhiUhVnFJVI84lJjVd4ZOXmkC3JJSY1vlzvXuccOIJu+1Zo1aiKuoM9+p8OQJabS25I4RiT+p8ORLfbJ4XtvXoDnWYBaNWpibqlBZoVfdHt0oG8K9flXV5z9h9Bo4I7Ou1boW5thVa9Wug0aUjOYeUs3LfRvFMbTh08xumDx4mNfszGf1aT+CyegDYFwxhsW7Ge5XMLZ6U+f/wMy+f9TdchfXHz9iQlMZmUxGSyMgqzCRq3aUF6WjobFq/iyeNYbpy/wr6NOwhs27JM215U8P2r1HauSC0nX6wNzehQsSGmeobyme5a+9SjZ9XCgdyvPL5LZm42Pao2w8bQDHdze9r5NeB8dBgSacEseKFPIqnn4k9Ve0/M9YzxtHSilU9dbsVFvlKX6pfp1qsHe3fsZu/OPTyIjOKv3xbw5MlT2nf+BIAlfy1i1tSZ8vIdOnfkSdwT/pr/Bw8io9i7cw97d+6he5+eAGjr6OBWwV3hYWhkiL6+Pm4V3OVDHsyfPY9D+w/y3fQf0DfQJzEhgcSEBHKyc5TaWFYCOwZx9nAwZw+fIO5hDFuXriUpPoEGQQW/WbtWb+K/+f/Iy5/ce5ib56/wNCaOpzFxnD1ykqM79lMzsH65tfFt6Gnp4GnpiKdlwdi39saWeFo6YmP4frOV/ZvX486py9w5fYWk2GeEbDxAemIKvgEFQdHz245wbPl2efkbh88SdfU2KU8SSIx5yvltR4i8HEbFwIJgvaaWJuYO1goPbX1dtHR1MHewRkOzfMYxq9mqMdeDz3M9+DwJj59wZM0OUhOSqdq0IEsyeONe9ixeBxRkuFk52ik89I0N0dTSwsrRDu3nN/VObztI5PU7JD9N4MmDx+z/dyNPo2Oo2lR5zOLyUrdtEy4fC+HKsRCePY5j/6qtpMQnUbN5QUD+8LqdbFu4Wr5d1k72Cg8Dk4LtsnayR1v3zW5Wvq6qLeoTevISoacukRjzlFPr95KWmELFwILxLEO2HOTw0s3y8tcOneH+lVCSnySQ8PgJIVsOEnEpFP8mdeRl8iUSnkXH8iw6lnxJPunJqTyLjiX5SdndfCru2L1L1HP1p65LRWyMzOns3xhzfSNOPT8Pae/XkH41lCfJqOdSicjEWGLTlNtWMJmQFQ4mVmiqa2CiZ4SDiRWWBqblsg1VWtQn7ORlwk5dJin2Gac37Cv4LBoXfF/Pbj3EkaVb5OWvHT5D5JUwkp8kkPj4KWe3HuL+5VD8mxZ+Flf2n+T89iMEDvgEY0tTMlPSyExJI68cjw8fFKnsw338PyUy44SPRr169VSOzwZQq1Yt+YQOqhTv+ujs7MyOHTtKfb3OnTvTubPq8YGKr8/Ly4uTJ08qLCve1l9//ZVff/1VYdm4ceMU/v/222+VZm395ZdfSmxjYGCg0usMHDhQIXMQYOrUqUydOlX+f/PmzRVmTi3e3mXLlAfPHjNmjMK4fMXfg+LtcHV1VVpWvL2urq4cPXpUoczIkSOVXru4cePGUbFiRR48eICLi4vK9gAEBASQllbYNaToTK7Xr18vcf2dO3cm73kGQ5cuXejSpUup7dmzZw8aGhp07dr1pW1/U2ejb2Goo0+nSo0x1TPkUcpTZh9fQ3xmQdcpUz0jLPQL7+qfiLyKrpY2Lb1q06d6EJm52dx6Esn6q4fkZZp71kJLQ5NxjXoovNaWG8fZeuN4uW3LgG7dycnJ5ec//yQtPY1KPj78OesnhQy6uKfPUFcrDJQ+S0igz8gR8v9Xb9nM6i2bqe5fmX9mzwYg9O5dhk8szF797Z/FALRr3oKpX31VZu2/9OgOBtp6tPWtj7GuAbGp8fx1eot8dlQTXUPM9RXv1OpqalPNwYuN146qWuV7k7PnIGra2ugN6IWavj759yNJ/3UBFDlxVbcwVxhXLnvHXmQyGbpdO6BuZoosLZ28K9fl48MB5Ec+IGPBIvS6fYJux7ZI4+PJWrOJvCJBvrJQK6AeGanp7Fm3lZTEZOxdHBk1bQIW1gXdA1MSk0l8VnjRcXL/EaT5+az7eznr/i7MRqzXLICB4wsyZsytLBg7YxKblvzH9JGTMLUwo2mHVrTq2qFM217UtZhwDLR0aeFVG2MdA+LSElh6bpd8pjtjXQPM9Aq7UeXm57H47A46VQpgbEAPMnOzuRZzj323C4dIOPy8K2orn7qY6BqSnptFaFykQpm30bRFM1JTUlm1bAWJ8Qm4urvx82+/YmtX0CUoISGBp08Ku73b2dvz02+/snD+H+zYvA0LS0tGfzmWxk0DX+t1d27ZDsAXnyuOEztx8je0aqccBC8L1RvWISM1nQMbdpCSlIKdswOfTR6PuXXB+EWpickkFdnPZFIZu/7bTOKTZ6hraGBpa037ft2oHxRYLu17Wz5WLvzZqXAYhTENCzLg94aF8OPRdzepTHEValUkJyOTy3tOkJmSjrm9Na1G9cbIwhSAzJR0MhILuw9L8/M5t/kQGclpaGppYmpvRdCoXjj7K3frfJd861YlOz2DMzsOkZGciqWjLV2/HILJ84lyMpJTSU1QPRZuSbIzsziwfBMZKWno6Oli7eJAr29HYFfh5TPJl5VK9aqTlZZB8NYDpCenYO1kR5+JwzF9nr2XnpxKSvzrbVd586ztT3ZGJhd3HScjJQ0Lexvaj+2HcZF9Ki2hcJ/Kl+RzeuMBMpJT0dTSwtzBmrZj+uFaubBLbUZyGhunF970uXrgNFcPFIxj1mlC+WT8X358FwNtPVp5131+HpLA32e2yY8ZJroGmOkpn4dUtfdky43jKtdpomfIpKb95P8396xJc8+ahD97yIJTm8p8Gzxq+ZOdnsWl3QWfhbm9NW3H9C38fienkV70+y3J58ymws/CzN6KNmP64uJf+FncOn4BqSSfg4s2KLxWzfaB1OrQtMy3QRBeRk1WUvRCEAThf9iOHTswNzenUaNG77spbNy4ERcXF/kYfK+jz9qpZd+gd2xN76mkRUa972a8FSM3Vz7fMvt9N+Ot/d3la5L7D395wQ+Y6apFHC+DGT/ft0CPGny1q/RJZP4XzGk/mpjkD3+m49LYm1qzP6xsgpDvUyvfejT463/7+3165CLmHC89s/1/wVeBfVh6btf7bsZbG1KnPWsvH3h5wQ9Y7+pBLDi58X03462NadSd0dvmve9mvJU/Oo1n/okNLy/4gRsX0OPlhT5AaXfCX17oPTHyfr83Rd4XkRknCMJHqWPHju+7CXLdu3d/300QBEEQBEEQBOH/K5GD9cERY8YJgiAIgiAIgiAIgiAIwjsignGCIAiCIAiCIAiCIAiC8I6IbqqCIAiCIAiCIAiCIAgfK9FN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlVT6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VmE31gyMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+V6Kb6wRGZcYIgCIIgCIIgCIIgCILwjohgnCAIgiAIgiAIgiAIgiC8I6KbqiAIgiAIgiAIgiAIwsdKKrqpfmhEZpwgCIIgCIIgCIIgCIIgvCMiGCcIgiAIgiAIgiAIgiAI74jopioIgiAIgiAIgiAIgvCxkknfdwuEYkRmnCAIgiAIgiAIgiAIgiC8I2oymUyM5CcIgiAIgiAIgiAIgvARSrt6/X03oURGVSu/7ya8F6KbqiAIwgfs+L1L77sJby3QowZpMTHvuxlvxcjenlUX9r7vZry1/rXavO8mlIlLD8PedxPeWg0nX+YGr3vfzXhrXzbu9b6bUCbSwu687ya8NSNfb+YcX/O+m/FWvgrsQ4O/hr/vZry10yMXfTTbsfbygffdjLfSu3rQ+25CmZm8/5/33YS3MqPVp+y+dep9N+OttavY8H034c2IHKwPjuimKgiCIAiCIAiCIAiCIAjviAjGCYIgCIIgCIIgCIIgCMI7IrqpCoIgCIIgCIIgCIIgfKRkUtFN9UMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlZhN9YMjMuMEQRAEQRAEQRAEQRAE4R0RwThBEARBEARBEARBEARBeEdEN1VBEARBEARBEARBEISPlUz6vlsgFCMy4wRBEARBEARBEARBEAThHRHBOEEQBEEQBEEQBEEQBEF4R0Q3VUEQBEEQBEEQBEEQhI+VVMym+qERmXGCIAiCIAiCIAiCIAiC8I6IYJwgCIIgCIIgCIIgCILw0UhKSqJfv36YmJhgYmJCv379SE5OLrF8Xl4eEydOxN/fHwMDA+zt7enfvz8xMTEK5QIDA1FTU1N49OzZ87XbJ4JxgiAIgiAIgiAIgiAIHyuZ7MN9lJPevXtz9epV9u/fz/79+7l69Sr9+vUrsXxmZiaXL19m8uTJXL58ma1bt3L37l06dOigVHbYsGHExsbKH4sXL37t9okx4wRBEARBEARBEARBEISPQlhYGPv37+fs2bPUqVMHgCVLllCvXj3u3LmDt7e3Uh0TExMOHTqksOyPP/6gdu3aREdH4+zsLF+ur6+Pra3tW7VRZMYJggDAihUr2Ldv3/tuhiAIgiAIgiAIgvD/RE5ODqmpqQqPnJyct1pnSEgIJiYm8kAcQN26dTExMeHMmTOvvJ6UlBTU1NQwNTVVWL5mzRosLS2pWLEiX331FWlpaa/dRhGME/4nuLq6Mn/+/He6PjU1NbZv3/5WrzN16lSqVq36WnWOHz+Omppaqf3Zy9rWrVv59ddfqVu37hvVHzhwIJ988on8/8DAQMaNG1dqnbL6TI8ePYqPjw9SqfSt11Uenj59ipWVFY8fP37fTREEQRAEQRAE4f8jqeyDffz000/ycd1ePH766ae32ty4uDisra2VlltbWxMXF/dK68jOzmbSpEn07t0bY2Nj+fI+ffqwbt06jh8/zuTJk9myZQudO3d+7TaKbqpCuWrfvj1ZWVkcPnxY6bmQkBDq16/PpUuXqF69+jtt14ULFzAwMHinr/mhun//Pt9//z379u3DzMysTNa5detWtLS0ymRdLzNhwgS+++471NUL7i2sWLGCcePGKQQzw8LCaNGiBbVr12bdunXo6Ohw7NgxZs+ezblz58jKysLV1ZXWrVszfvx4HBwcFF7D29ubyMhIIiMjlZ67f/8+3333HcHBwSQmJmJpaUmNGjWYPXs2Xl5eWFtb069fP6ZMmcK///5bru/F8d2HOLh1NymJydg7O9D90/54VvJRWfby6fOc2HuYh/cfIMmTYOfiQPveXahYo4pCucz0DLav2siVMxfITM/A0saKrkP74F+rWpm1WyaT8c/KlWzbvZu0tDQq+voycexYKri5lVrvSHAwi5Yv51FMDI729owYMoQmjRrJn2/fsyexT54o1evWsSMTnweLj544wdZduwi7e5eU1FTWLFmCt4fHW2/TxUOnOLv3GOnJqVg52NKi7yc4+1R4ab2Hd++zeuZfWDnaMmzW1/LlV46FcOPkBZ49Kjh5sHVzJLB7WxwquLx1Wz92h3bsZfem7SQnJOHg6kT/EUPw8a+osmxSQiJrFi0nMjyCuMexBHVqS/8RQ5XK7duyk8O79hP/NB4jEyPqNKpPj6H90NbWLrftuHX8PNcPnCEzJQ0ze2vq9WiFnafqzz/mTiS7565UWt592khM7ayUlt87f4Oj/27BpYo3QSN7lXnbP0YymYx/1q9j28GDpGWkU9HTi4mfDadCkS4sxUVER7No7RpuR0QQ++wp4wcPoXeHjkrlniYk8MeqFZy5fJnsnBxc7B2YPGo0vmXw21RU6PELXDsYQtbzfapu95al7FNR7Jm3Sml5t2kjMLW1VFoeceEmR//diksVb1qO6FGm7X4TVew86F2tJT7WzlgamDJp79+cjLz2vpv12v7XtuPCwZOc2X2EtORUrB1tCerfBZdXOBZG37nPiukLsHayY/jPE99BSz8+tZ38aOhWGUMdfZ6mJ7HvdggPkkoOQGioqdPEowZV7D0w1NEnNTuD4IgrXH58BwA/G1cC3Kthrm+Mhpo6CZkpnI66wbWY8HLbhtP7jnJ8xwFSk5KxdXKg4+CeuPt5qSx7PyycPas28/RxLLm5uZhZWVCvZWMat28pL3P2UDAXj4cQF11wg9yxggtt+nTG2dO93LZBeDXffPMN48ePV1imo6OjsuzUqVOZNm1aqeu7cOECUJBcU5xMJlO5vLi8vDx69uyJVCpl4cKFCs8NGzZM/nelSpXw9PSkZs2aXL58+bXiGiIYJ5SrIUOG0LlzZx48eICLi+IJ3rJly6hateo7D8QBWFkpX4z8f+Xu7k5oaOgrlc3Ly3ulIJu5ufnbNuuVnDlzhvDwcLp161ZimQsXLtC6dWs6duzIP//8g4aGBosXL2bEiBEMGDCALVu24OrqSnR0NKtWrWLu3LnMmzdPXv/UqVNkZ2fTrVs3VqxYwXfffSd/Ljc3lxYtWuDj48PWrVuxs7Pj0aNH7N27l5SUFHm5QYMGUbt2bWbPnl1mAU+l7TwRwsYlq+g9YjAVfL04sf8If0z5hal/z8bcWvlCKfzWbXyr+fPJgB7oGehz5nAwf02fw6R5M3Cu4AqAJE/C/O9/wsjEmM++HYuZpTlJzxLQ0dMr07avXL+etZs2MWXiRJydnFi6ejUjv/6aLatWYaCvr7LO9Vu3+Hb6dIYPHkyTRo04dvIkk6ZNY+mCBVTy8wNg1aJF5BfJmIyIjGTkV1/RLDBQviwrO5sqlSrRPDCQmXPmlMn2hJ69wqH/ttNqYFecvNy4fPQM62f/w2e/TMLEsuTPPzszi52L1uJW0ZP0FMVU9wdh9/CrVx1HLzc0tTQJ2X2Udb8s4tOfJ2Jsblom7f4YhRw7xaq/lzF4zGd4VfThyJ4D/PLNDGYv/QNLG+XjgCQvDyNTEzr27sa+LTtVrvPUkWDW/7uaT78ahVdFH2IfxbBo9gIA+o0YUi7bEXHhJiEb9tOwd1tsPJwJO3GRfQv+o/vUkRhamJZYr/uMUWjrFp7M6hop34RKS0jm3OaD2HqWHEQSlK3ctpW1O3cwZcxYnO0dWLppIyOn/MCWhQsx0FP9u5Wdk4OjrS3NGzRg3rKlKsukpqczZNJEavr78/vkKZibmPAoLg6jMr6BGHHhFiEbD9CgdxtsKjhx+8Rl9v+xlm5TR2BoblJivW7TRxbbp5S3tWCfOoStx4ezT+lp6XAv4RF7b59hVuvh77s5b+x/aTtuhlxm/6qttB3cDSdvdy4dPs2an/9m5JxvMbEs+TwxOzOL7QtX417JS+lYKLyaSrbutPatx+7QU0QnPaGmky/9arTmj1MbScnOUFmnR9XmGOrose3mCRIzUzDQ1kNdrbATXWZeDsERV4jPSEYizcfb2oVOlRqTkZvFvfhHZb4NV06dZ8fy9XQe1hc3Xw9CDgSzZOZ8Jvw+AzMrC6Xy2jraNGjTFHsXR7R1dYgMC2fzolVo6+hQr2VjAO7dvEO1hrVx9fFAU0uLY9v3sXjaPCb8PgMTi/I5PxdejY6OTonBt+JGjRr10plLXV1duX79Ok9U3JR/9uwZNjY2pdbPy8uje/fuREZGcvToUYWsOFWqV6+OlpYW4eHhrxXbEN1UhXLVrl07rK2tWbFihcLyzMxMNmzYwJAhBRcuZ86cISAgAD09PZycnBgzZgwZGaoPFgDR0dF07NgRQ0NDjI2N6d69u9KXbefOndSsWRNdXV0sLS0VUkeLd5EMDw8nICAAXV1d/Pz8lAZuBJg4cSJeXl7o6+vj7u7O5MmTycvLUyjz888/Y2Njg5GREUOGDCE7O/ul79HevXvx8vJCT0+PJk2aEBUVpVTmdd+fF91jFy9ejJOTE/r6+nTr1k2p6+vy5cvx9fVFV1cXHx8fhah/VFQUampqbNy4kcDAQHR1dfnvv//Iz89n/PjxmJqaYmFhwYQJE5AVmwWneDfVp0+f0r59e/T09HBzc2PNmjVKbZ43b558GmknJydGjBhBenp6qe/d+vXradmyJbq6uiqfP3r0KE2bNmXQoEEsXboUDQ0NHj16xJgxYxgzZgzLli0jMDAQV1dXAgIC+Pfff/nhhx8U1rF06VJ69+5Nv379WLZsmcK2hoaGcv/+fRYuXEjdunVxcXGhQYMG/Pjjj9SqVUtezt/fH1tbW7Zt21bq9ryNw9v20qBlIA2DmmDn7ECPT/tjZmlB8F7lrFSAHp/2J6hre1y9KmDjYEenAT2xtrfl+rnL8jKnDx0nIy2dEZPH4+HnjYW1FR4VfXByL7tsLJlMxrrNmxnUty9NAwLwcHNj2qRJZGdns19FRu0L6zZvpk7Nmgzq0wdXZ2cG9elD7erVWbtli7yMmakplubm8sepkBAc7e2pUaUw+69ty5YMGzCA2jVqlNk2ndt3nKqBdajWpC6WDja07NcJYwtTLh85XWq9fcs2UbFedRw8XJWe+2REP2q2aIitiwOW9ja0HdoDmVRG1K3yuyP9Mdi7ZQeBrZrTpE0LHFyc6D9iKBbWlhzetV9leStbGwaMHEpAyyboG6gOqISH3sGrkg8NmjXGytaGyjWrUb9JI+7fvVdu23H9UAjeDavj06gGZnZW1O/RGkMzE0KDL5ZaT8/IAH0TI/njRQbxC1KplKP/bqFGhyYYlxIoFhTJZDLW7drJoG7daVqvPh4uLkwbO47snBz2nzhRYr2Knp6MHTiIoEYBaGuqvrG1cusWbCwtmTJmLJW8vLC3saF2lSo42tmV6TbcOByCd4Nq+DSsjpmdFfV6BL3GPmUof6jap44t3Ub19oEYWX04+9TZ6FssObeT4PtX33dT3sr/0nac3XOMak3qUr1pfawcbGk1oAsmFmZcOHSq1Hq7/91ApQY1cfR0fTcN/QjVd63M5Ud3uPToDs8yktl3O4TU7HRqO/upLO9h6YiruR2rL+3nfsJjkrPSeZzyjIfJhddWUYmxhD2N4llGMklZaZx9cJMnaYm4mL7dAPYlObHrILWbNaJuiwBsHO35ZEgvTC3MOXPguMryju4uVG9UB1tnB8ytLanRuB7eVSsRGXZXXqbvF5/SoHVTHNycsXG0o/vnA5HJZIRfDyuXbfjgyKQf7uM1WFpa4uPjU+pDV1eXevXqkZKSwvnz5+V1z507R0pKCvXr1y9x/S8CceHh4Rw+fBgLC+Xgb3G3bt0iLy8Pu9c8VotgnFCuNDU16d+/PytWrFAIYmzatInc3Fz69OnDjRs3CAoKonPnzly/fp0NGzZw6tQpRo0apXKdMpmMTz75hMTERIKDgzl06BARERH06FHYDWLPnj107tyZtm3bcuXKFY4cOULNmjVVrk8qldK5c2c0NDQ4e/YsixYtYuJE5ZR4IyMjVqxYQWhoKL///jtLlizht99+kz+/ceNGpkyZwo8//sjFixexs7NTSmkt7uHDh3Tu3Jk2bdpw9epVhg4dyqRJkxTKvO7788K9e/fYuHEju3btkk/lPHLkSPnzS5Ys4bvvvuPHH38kLCyMWbNmMXnyZFauVOzaNHHiRMaMGUNYWBhBQUHMnTuXZcuWsXTpUk6dOkViYuJLg0wDBw4kKiqKo0ePsnnzZhYuXMjTp08Vyqirq7NgwQJu3rzJypUrOXr0KBMmTCh1vSdOnCjxc922bRtt27blu+++Y/bs2fLlL/a9ktZddHDOtLQ0Nm3aRN++fWnRogUZGRkcP35c/ryVlRXq6ups3ryZ/Pz8Uttau3ZtTp48WWqZNyXJkxB9LxK/apUVlvtV9yeiyElIaaRSKdlZ2RgUyZy5fu4S7j6erF24nK/6DGfaiAns3bAdaX7Zjc/3ODaWhMRE6hb5HLW1talepQrXb90qsd710FDqFPvs69aqVWKdvLw89h46RIfWrV8pNf1N5UskxEY+wq2S4gxN7pW8eRQeVWK9a8HnSHoST0DnoFd6nbycXKT5UvQMVQeMhIIst8i7EVSuWVVhuX+NqtwNvf3G6/Wu5Evk3Qju3S74bj2JiePq+ctUq6P6t+ht5UskxEfH4Oin2LXL0a8CTyIellp364zFrP5qDrvnrSTmdqTS85d3B6NnZIBPw3efof6/7PGTJyQkJVG3yJiw2lpaVK9UkcZPljgAAQAASURBVOu33+6i7sT58/h6eDDx159pMaAfvb8Yy7aDB96yxYryJfnER8fiUGyfcvBzf/k+NfMf/vt6HnvmrSLmjvI+dWX3CXSN9PFpWHZDGQj/e/IlEmIiH1KhsuJQGe6VfXh0V3m/eeHK8bMkPYknsEur8m7iR0tDTR17Y0ulbLV78Y9wMlWdDeRj7UJMyjMaulXh68A+jG3UnSDvOmiqa5T4Ou7m9lgamBCVFFum7YeC89pHEQ/wrqI4pIR3VT+ibr/aja9H9x8Qdece7n7KM2a+kJubQ35+PvoqssaF/32+vr60atWKYcOGcfbsWc6ePcuwYcNo166dwkyqPj4+8mtZiURC165duXjxImvWrCE/P5+4uDji4uLIzc0FICIigunTp3Px4kWioqLYu3cv3bp1o1q1ajRo0OC12ii6qQrlbvDgwcyePZvjx4/TpEkToKCLaufOnTEzM2Ps2LH07t1bnknl6enJggULaNy4MX///bdS1tPhw4e5fv06kZGRODk5AbB69WoqVqzIhQsXqFWrFj/++CM9e/ZU6E9epYriWFhF1xcWFkZUVBSOjo4AzJo1i9atWyuU+/777+V/u7q68uWXX7JhwwZ5UGf+/PkMHjyYoUMLxheaOXMmhw8fLjU77u+//8bd3Z3ffvsNNTU1vL29uXHjBr/88ou8zOzZs1/r/XkhOzublStXyrfpjz/+oG3btsydOxdbW1tmzJjB3Llz5RmDbm5uhIaGsnjxYgYMGCBfz7hx4xSyCufPn88333xDly5dAFi0aBEHDpR8oXD37l327dunMK300qVL8fX1VShXNJPOzc2NGTNm8Pnnn5ca0IyKisLe3l5peXp6Ot26dePbb79VCm6Gh4djbGz8Sncu1q9fj6enJxUrFpwM9OzZk6VLl8r3YwcHBxYsWMCECROYNm0aNWvWpEmTJvTp0wd3d8XxJxwcHLhy5cpLX/NNpKemIZVKMTZV7FpkZGpCalJKCbUUHdq2h9zsHGo0KpzE41ncUxKehFInsAGjp07gaUwc6/5egTRfSrverz9IqSoJiYkAWBTrvmthZqZyvLei9VTVebG+4o6fOkV6ejrtW5XvCX5mWgYyqRRDEyOF5QYmRqQnp6qskxj3jGMbdtNv8mjUNUo+8S3q2IbdGJmZ4FZR9dgpAqSlFHwvTMxMFZabmJmQkpj0xuut36QRackpTBv3Lchk5Ofn07x9Kzr06vKWLVYtOz0TmVSGnrHixYKesQGZqaqzh/VNjGjUrz1WznbkS/IJP3uN3b+tpP2XA7HzcgUg7l40d05dpsvkD7ur24coIblg/7EoNrOahYkpsc+evdW6Hz+JY8v+ffTp0JFBXbtxKzycOf8uQUtLi3ZNmr7Vul94sU/pF9+njAzISlWdda9vYkijvu2wdLEjP09C+Lkb7PltNe3GD8DOqyBbOu5eNHdOX6Hz5M/KpJ3C/67MVNXHQkMTIyJK6HqaEPuUI+t2MWjq2Fc+FgrK9LV10VBXJz03S2F5em4WRjqqb+CZ6xnjbGaLRJrP2isH0dfSpX3Fhuhp6bL9ZrC8nI6mFl8H9kVTXQOpTMru0NNEJJT9BGUZaQXHb0NTxa6BhiYmpCXfLLXu9KFfPT8vzieoe0fqtggoseye1VswMTfDs7LqjEHhf9+aNWsYM2YMLVsWjB3YoUMH/vzzT4Uyd+7ckQ8v9OjRI3buLBimpPgkjMeOHSMwMBBtbW2OHDnC77//Tnp6Ok5OTrRt25YpU6ag8Zq/XSIYJ5Q7Hx8f6tevz7Jly2jSpAkRERGcPHmSgwcPAnDp0iXu3bun0HVRJpMhlUqJjIxUCtqEhYXh5OQkD8QB+Pn5YWpqSlhYGLVq1eLq1asKAyuWJiwsDGdnZ3nQCqBevXpK5TZv3sz8+fO5d+8e6enpSCQShf7jYWFhDB+ueFFTr149jh07Vupr161bVyFTp/hrv+7784KqbZJKpdy5cwcNDQ0ePnzIkCFDFN4niUSCiYliQKdo5llKSgqxsbEKbdTU1KRmzZpKXVWLbuOLMi/4+PgoTQ997NgxZs2aRWhoKKmpqUgkErKzs8nIyChxso2srCyVwUg9PT0aNmzIkiVL6NWrl8J79KqDdkJB0LBv377y//v27UtAQADJycny9o8cOZL+/ftz7Ngxzp07x6ZNm5g1axY7d+6kRYsWCm3KzMws8bVycnKUpvB+1bET5IpvlkzFMhXOHz/D7jVbGTF5vEJATyaVYWRqTN/RQ1HXUMfF053kxCQObtnzxsG4fYcOMavImHzzn8+UVPwzkalYpqR4HZmsxM3dsXcv9evUwcpSefy8cvGK2yOVStn+12oadWmFhZ3yjE+qhOw+wq2QK/T9biSa2u9mopT/aSq/F2+eHRl69Qbb125m8JjPqODjyZOYOFb99S9bLTbQuW/5DVSvRvH9veSypraWCoPq21RwIj0plWsHz2Dn5Upudg7Hlm6lUb8OKseRExTtCz7OrL8LbwzN/75gOAOlz4S32rUAkMpk+FXwYGS//gD4uFfgfnQ0W/bvK7Ng3JtQtU9lJKZw/VAIdl4uBfvUsu006tcOXZGxK8gpH6dVHailUilb/1xFYNfWr3wsFF5G8SChhlqJx40X5yebrh8lR1IwBM/+2yH0qNqC3aGnkEgLen/kSvJYeGYL2hpauFvY08qnLolZqUQlln12XEG7ii+RvfRHduSPE8nNzuHB3Qj2rN6ChZ011RvVUSp3dNs+rpw6x4jpE9D6/3IuVdqJw0fK3Nyc//77r9QyRa9hXV1dS7ymfcHJyYng4OBSy7wqEYwT3okhQ4YwatQo/vrrL5YvX46LiwvNmjUDCg7An332GWPGjFGq56xiVrKSgilFl+u9xgDzqr5wxdd/9uxZeaZdUFAQJiYmrF+/nrlz577y67zqaxf3uu9PSV5sk5qaGtLng9ovWbJEnq32QvGI/tvOOvtiG0sLrDx48IA2bdowfPhwZsyYgbm5OadOnWLIkCFK4/IVZWlpSVKScoaLhoYG27dvp0uXLjRp0oSjR4/i93xQfy8vL3lQsbTsuNDQUM6dO8eFCxcUui3n5+ezbt06Pv/8c/kyIyMjOnToQIcOHZg5cyZBQUHMnDlTIRiXmJhY6sQhP/30k9LMQFOmTCGwb/sS67xgaFwwFlTxLLi0lBSlbLniLpwIYdWCf/hs0lh8q/krPGdiboqGhgbqGoUjGtg5OZCalIwkT4Km1usfQgIaNJBPsADIU77jExOxLDImQ2JSEualTHZhYW6ulAWXmJyscvKQ2Lg4zl++zK8vmXmpLOgbGaCmrq6UBZeZkoZBsQwBgNysHGIjHxL34DEHVm4Fnn9nZDJm9f+S3hOH41rRU17+7J5jnN55mN6TPsfGWTkrVChk9HyMtJTEZIXlKckpStlyr2PTirU0bB5IkzYF329nd1dysrP597eFfNK7m9IYWm9L11AfNXU1pSy47LQM9I0NX3k91m6O3Dt3HYDUZ4mkJSRz4K+18udf/FYvGT6NHtNHY2z9bibi+V8QULs2lbwKs1Bz8yQAxCcnYVnkNycxJRnzYjeaXpelmRluRW42Arg5OnI05Mxbrbeown1KMQsuKy1DKQOzNNbujtw7dwOAtGdJpCckc+Cv9fLnX+xT/34+g+7TR2JsJfap/y/0jZ8fC1MUj4UZqekYGqs6FmYTcz+a2KhH7F2xGSg8Fk7vM45+34zArZLIBH8VmbnZ5EulGGorBsUNtHVJz1V9UzgtJ5PU7Ax5IA7gWXoy6mpqGOsakJhZ8DnKQP53XFoCVgZmBLhXLfNgnIFRwfE7LUlx/0lPScXIpPSB9C2eT85k5+JIWnIqBzfsUArGHdu+nyNb9jB86lfYuzqpWo0gvBMiGCe8E927d2fs2LGsXbuWlStXMmzYMHlwpnr16ty6dQsPD49XWpefnx/R0dE8fPhQnh0XGhpKSkqKPAOqcuXKHDlyhEGDBr3y+mJiYuRdHkNCQhTKnD59GhcXF4WZNB88eKBQxtfXl7Nnz9K/f3/5srNnz770tbdv366wrHid131/XlC1Terq6nh5eWFjY4ODgwP379+nT58+r7xOExMT7OzsOHv2LAEBBWnfEomES5culThzjK+vLxKJhIsXL1K7dm2gIB246GQSFy9eRCKRMHfuXPmF7MaNG1/anmrVqpU4E6yOjg5bt26la9euNGnShCNHjlCpUiW6du3KpEmT+PXXXxXG/HvhRdbb0qVLCQgI4K+//lJ4fvXq1SxdulQhGFeUmpoaPj4+nDmjeOF08+ZNAovM4llcSVN6hzwsPR0fQFNLE2cPN8Ku3KBa/cKJI8Ku3KRK3ZInJjh//Ayrfl/M0Amj8K+tPL5PBT8vLhw/g1QqlX8uTx7HYmJu+kaBOAADfX2FGVJlMhkW5uacu3gRH8+CoFNeXh6Xr11j9Keflrieyn5+nLt0iT5FZtI9d/EilStWVCq7c/9+zExNaagi47WsaWhqYufmSOTNu/jUKhzDL/LmXbxqVFIqr6Onw7CfFMcvvHT4NA9Cw+k8ZiCmRS5eQ3Yf5fSOQ/Sa+Bn27h/OLIUfKk0tLdy8KnDj0lVqNSzsfn3z0lVq1Fe+S/6qcnJyUFdXvLmgrq5ecMO5HO46a2hqYulsz+PQCNyqFWb5PgqLwLWKTyk1FSU8jEXfpCB4Z2prSdcpir9hF7YfJS8nl/o9WmFgXvrFzv83Bnr6CjOkymQyLMzMOHf1Kj7uBeOu5eXlcfnmLUYXGebhTVTx8eXBY8VuXw9iYrCzKrtsIQ1NDSyd7Xgcdh+3aoX70OOw+7hUKXl8peISHsah93yfMrG1pMsPir0DLu44Rl52DvV6tMLArPQbQ8LHRUNTE3s3J+5fv4NvrcJhYu7fuI13DX+l8jp6unz+q+KwIhcOniIy9C7dxw3GVMXsmYJq+TIpManxVLB0IOxplHx5BUtHbhf5v6jopDgq2rqjraFJbn7BzQYLAxOkMimpJcy+CgVJaqWNK/emNLU0cazgwt1rt/CvW3h9cfdaKBVVnK+WSFYw/lxRx7bv5/Dm3Xw6+QucVEyYJQjvkgjGCe+EoaEhPXr04NtvvyUlJYWBAwfKn5s4cSJ169Zl5MiRDBs2DAMDA8LCwjh06BB//PGH0rqaN29O5cqV6dOnD/Pnz0cikTBixAgaN24s7wo5ZcoUmjVrRoUKFejZsycSiYR9+/apHLS/efPmeHt7079/f+bOnUtqaqpC0A3Aw8OD6Oho1q9fT61atdizZ4/SpAVjx45lwIAB1KxZk4YNG7JmzRpu3bqlNHZYUcOHD2fu3LmMHz+ezz77jEuXLinNPPu6788Lurq6DBgwgDlz5pCamsqYMWPo3r07trYFsx5NnTqVMWPGYGxsTOvWrcnJyeHixYskJSUpBYWKb+fPP/+Mp6cnvr6+zJs3T2mW1qK8vb3lg2f+888/aGpqMm7cOIXsxQoVKiCRSPjjjz9o3749p0+fZtGiRSWu84WgoCClCSeK0tbWZsuWLXTv3p2mTZty5MgR/P39+e233xg1ahSpqan0798fV1dXHj16xKpVqzA0NOTnn39m9erVTJ8+nUqVFAMoQ4cO5ddff+XatWvIZDKmTJlCv3798PPzQ1tbm+DgYJYtW6aQTZeZmcmlS5eYNWtWiW19nSm9VWneqQ3L5y7ExdMddx9PTu4/SuKzeALaFGSgbluxnuSERAZ9OQIoCMQtn/c3PT7tj5u3pzx7SFtHG73ns0g2btOCY7sOsmHxKpp2COLp4zj2bdxB0/ZlN+6ampoavbp2ZfmaNTg7OuLk6Mjy//5DV1eXVs2by8v9MGsW1lZWjHrerbpnly58OnYsK9atI7BBA46fPs25S5dYumCBwvqlUim79u+nXVAQmirGcUhJTSXu6VOexccD8CA6GijIvLNUkWX3Kuq0DmTH32uwc3fC0cOVK8fOkJKQRPVmBTM3Hduwm7SkFDoM74OaujrWTooZmgbGhmhoaSosD9l9hODN+/hkRD9MLM3lmXfaujpo6775fvOxa9OlIwt/mY+7lweeft4c3XOQ+KfxNGtfMFHG+n9XkxifwIhJ4+R1ou7dBwrG3UxNTiXq3n00tbRwdCm4+VO9bi32bdmJi4c7Hj5ePImJZdOKtdSoV6vcxjmq3KIex5ZtxdLFHpsKToSduER6Ygq+jQuOeee3HiYjOZUmgwu6j984HIKRhSlm9tbk5+dz7+x1Ii+H0WJ4d6AgUGnuoDiQt45+QZf/4ssFZWpqavRq34HlmzfjbG+Pk509yzdvQldHh1YBheMT/TD/N6wtzBnVryBAl5eXx/2HBRMk5EkkPEtM5M79++jr6eJkV3DjrHeHjgyeNIFlmzbSomFDbt0NZ9vBA3w3YqRyQ96Cf/N6HF++DSsXO6zdHbl98nLBPhVQcAPn/LYjZCSn0WTQJwDcOHwWI0tTzOysCvapczeIvBxG888Kbohoamli7qAYMNSW71Pvv9uhnpYOjiaF2en2xpZ4WjqSmp3Bk/Q3H0PyXftf2o66bZuw7a/V2Ls74ejlxqUjZ0iJT6Jm84YAHF63k7SkFDqN6Pf8WKiY7W1gYoimlpbScuHlzkRdp0vlJsSkxPMw+Qk1nXwx0TXkfHTBBDMtvGphrGPAlhvHAbgee4/ACtXp5B/I0fCL6GvrEuRdh8uP7si7qAa4V+VxyjMSM1PRUFfHy8qZqvZe7Aotn8nJAtq3ZN2Cf3H0cMXVuwJnD54gKT6Rei0bA7Dnvy2kJCTRe2zBWN2n9h3FzNIca4eCc6fIsHCO7zxAwzaF3fuPbtvH/nXb6fvFMMysLeU9SnR0ddDRUz0G90dF+v+vm+qHTgTjhHdmyJAhLF26lJYtWyp0r6xcuTLBwcF89913NGrUCJlMRoUKFRRmRy1KTU2N7du3M3r0aAICAlBXV6dVq1YKganAwEA2bdrEjBkz+PnnnzE2NpZnchWnrq7Otm3bGDJkCLVr18bV1ZUFCxbQqshA7x07duSLL75g1KhR5OTk0LZtWyZPnszUqVPlZXr06EFERAQTJ04kOzubLl268Pnnn5c6uYGzszNbtmzhiy++YOHChdSuXZtZs2YxePDgN35/XvDw8JDP1JqYmEibNm0UJkMYOnQo+vr6zJ49mwkTJmBgYIC/v7/CRAqqfPnll8TGxjJw4EDU1dUZPHgwnTp1kg98qcry5csZOnQojRs3xsbGhpkzZzJ58mT581WrVmXevHn88ssvfPPNNwQEBPDTTz8pZBmq0rdvXyZOnMidO3cUZsUpSktLi40bN9KrVy95QG7EiBF4eXkxZ84cOnXqRFZWFq6urrRr147x48ezc+dOEhIS6NSpk9L6PD098ff3Z+nSpfzwww+4uroybdo0oqKiUFNTk///xRdfyOvs2LEDZ2dnGjVqVOr2vI1aAfXISE1nz7qtpCQmY+/iyKhpE7CwLjhpT0lMJvFZgrz8yf1HkObns+7v5az7e7l8eb1mAQwcX5DdYG5lwdgZk9i05D+mj5yEqYUZTTu0olXXDmXa9gE9e5KTk8PP8+eTlpZGJV9f/pw9WyGDLu7pU4Xuf1UqVeLHH37g76VLWbRsGY729vz0ww8KXWABzl+6RNyTJ3QoNiHLCyfOnGFakQlTvp0xA4BhAwbwWZGbBq/Dr+7/sXfX0VEdbQCHf3F39wRCgrsEJ1AI7m5toUILpZQKbanQUqgipbSUUtydFnd3AsESgoYEiBF33e+PwIbNbpDGgO99ztlzkrszd9/Zvbv37uw7M/VIT0njyMadpCYmY+fqxMCP38LCtqBzLzUxmaT7z/alKXDPUfJy81g/a5HK9pa9Amglq84Vq6l/C1KTk9mwbDWJ8Qm4errzydQvsXMo6BxIjI8nLkZ1wv3PRxX+GHHr6g2O7TuErYMds5bPA6DX0P5oaWmxduFy4u/HY25hTv2mjeg/4umzjJ9V5UY1yUxL5+zWg6QnpWLtbE+n94ZgZmMJFAyDTo0v/AzOy83jxLpdpCWmoKuni5WzPR3fG4x7LRnmVVpe7dW74HNr7p+kpKZS08eH2ZO+Ucmgi4qNRfuRKRpi4+MZMn6c8v+lmzaydNNG6teoyV9TCn6sqVGlCr98+jmzly7h7zWrcXZw4MORb9CpdZtSjb9yoxpkpaVzdush5THVcczgR46pVNIeOaby8/I4uW638piydLYjYMwg3GtVKeYRni9V7TyY3avwvT22RUEn4raQ40zZV/yPes+bF6kdNZvWJyMljYMbdpKamIS9mxNDJoxSZnz/l3OheDqXom5irGdIG+/6mBkYE50Sz9LA7SRlFkx3YGpgjIVR4TQH2Xm5LDqzlS7VmjOqWW8ysjO5FHWTPddOK8vo6ejSrXoLzA1NyMnL5X5aIusu7ONS1M0yaUO9Fo1JT0ll95rNJCck4eTuwhsT38favmDuyuSERBLvF05XoshXsG3ZeuJj7qOto4ONgx1dhvbB70HnHcCxHfvJy81l8c9zVB6rQ//uBAzsUSbtEOJxtBRPM2mVEOKFMmnSJDZt2kRQUFBFh1LmPvnkE5KSkpg7d25Fh1Ksxo0bM27cOAYPHvzMdQ9cDyyDiMpXG+8GpNy7V9FhlIiZszNLTm+r6DBKbHijzhUdQqkIjAip6BBKrIFbNaYdXFnRYZTYh60HVXQIpSIlJLSiQygxs2q+/HJg+ZMLPsc+ajOE5r+/+Cv8Hh3950vTjhVni/9R+UUwuH5ARYdQar7c8VdFh1Aikzu+xZbLRyo6jBLrWqNFRYfwnyQfKr25R0ubeatmFR1ChSjdWYaFEKKcTZw4EQ8PD/Ly8io6FI1iYmLo27cvgwa9HF9YhRBCCCGEEC8YRf7ze/s/JcNUhRAvNAsLCz7//POKDqNY9vb2GucqFEIIIYQQQgjx/0ky44R4CU2aNOn/YoiqEEIIIYQQQgjxopHMOCGEEEIIIYQQQoiXlSwV8NyRzDghhBBCCCGEEEIIIcqJdMYJIYQQQgghhBBCCFFOZJiqEEIIIYQQQgghxMsqX4apPm8kM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4WSnyKzoCUYRkxgkhhBBCCCGEEEIIUU6kM04IIYQQQgghhBBCiHIiw1SFEEIIIYQQQgghXlb5sprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLyuFDFN93khmnBBCCCGEEEIIIYQQ5URLoZAuUiGEEEIIIYQQQoiXUfLOvRUdQrHMA9pVdAgVQoapCiHEcywk6mZFh1Bi1RwrkTRvcUWHUSIWb77K9diIig6jxLzt3Co6hFKx/9qZig6hxPyrNOSXA8srOowS+6jNkIoOoVSsOLuzokMoscH1A5h/cnNFh1EiI5t0o/nvoyo6jBI7OvrPl6Ydvx1ZW9FhlMh7LfpVdAilZtrBlRUdQol82HoQkUmxFR1GiTlZ2FV0CP+N5GA9d2SYqhBCCCGEEEIIIYQQ5UQ644QQQgghhBBCCCGEKCcyTFUIIYQQQgghhBDiZZWfX9ERiCIkM04IIYQQQgghhBBCiHIinXFCCCGEEEIIIYQQQpQTGaYqhBBCCCGEEEII8bKS1VSfO5IZJ4QQQgghhBBCCCFEOZHOOCGEEEIIIYQQQgghyokMUxVCCCGEEEIIIYR4Wckw1eeOZMYJIYQQQgghhBBCCFFOpDNOCCGEEEIIIYQQQohyIsNUhRBCCCGEEEIIIV5W+TJM9XkjmXFCCCGEEEIIIYQQQpQT6YwTQgghhBBCCCGEEKKcyDBVIYQQQgghhBBCiJeVIr+iIxBFSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVYhStGjRIhwcHOjUqVNFhyKEEEIIIYQQQshqqs8h6Yz7P+Lp6cm4ceMYN25cue1PS0uLjRs30rNnz//8OJMmTWLTpk0EBQU9dZ0DBw7g7+9PQkIClpaW//mxn8WGDRv46aefOHr06H+q/9prr5GYmMimTZsAaNOmDXXr1mXmzJnF1imN1/TR1ygsLAwvLy/OnTtH3bp1//M+n0ZpHY/79u3j3XffJTg4GG3t5y/ZNyYmhho1ahAUFISLi0uZPta2jVvYtGodCfHxuHl6MHLM29SoU1Nj2fi4eBb+Po8bV68ReeceXfp05433RqmUOX7oKOuWrSby7j3ycnNxcnWhR//e+Ae0K9N2FKVQKJh37DCbLgSRkpVJDUdnPn4lgMq2dsXW2XLpAt/u2KK2/fC4TzDQLf1T35YN/7Bh5Vri4+Jw9/TkrfffpWadWsWWv3juPPN++5PwsDCsbWzoO2QAnXt2U96fm5vLmqUr2bt9F3H37+Pq5sZr77xBQ7/GyjKv9x1CTFS02r679OrOux+OLd0GvsAObN3N7g1bSYpPxNndhX5vDqNKzaoay547dpqD2/Zw5+ZtcnNycHJ3pevgPtRoUFulXHpqGv8sXcO5Y2dIT03D1sGOPiOHUKtR3TJrR/CB05zfdZyMpBSsnO3x698BpyoeGsveCw1j6/Qlatv7ffMulo62AFw9FsTBxf+qlXl99ufo6snl4bM6veswx7bsJSUxGXtXRwKG98GjauUn1gsPvcmib2dh7+bEqB8mlEOkhc7tOcqpbQdITUrB1sWBtkN64OZb6Yn17ly9xcqpc7BzdeS178Yrt188fJrt81arlR//9/fo6uuVauzPqo6TN4PrdaCqvTu2JpZ8um0Oh2+dr9CY/ovnvR0X953k7M7DpCemYu1iT8uBnXH28dRY9s6Vm2z6eYHa9iHfvY+VU8H5Pe5uNCc37SX29j1S4hJpMbAzdds3K8smvDQuHzjFhZ3HSH9wzmg6oONjzhm32DJtsdr2/t+MxtJJ/Vrr+qmL7Pt7PR51fAkYPajUYt60bgOrlq4kLi4Or0qejPngfWrXq1Ns+aCz5/hj5m/cuhmGra0NA4cNoUefnsr7D+0/yLKFS7h75y55ubm4uLkyYMhAOnTuqCyTm5vLonkL2LNjN/HxcdjY2NCxa2eGjXj1ufxeIV4ucrX1AujWrRsZGRns2bNH7b7jx4/TrFkzAgMDqV+/frnGdfr0aUxMTMr1MZ9XN2/e5IsvvmD79u1YWVmVyj43bNiAnl75Xry6ubkRGRmJra1tmT9WaR0/n3zyCRMnTlSeMBctWsS4ceNITExUlgkJCaF9+/Y0btyYlStXYmBgwP79+/n55585efIkGRkZeHp60qlTJ8aPH6/Waebr68utW7e4deuW2n03b95k4sSJHDx4kPj4eGxtbWnQoAE///wzPj4+2NvbM2zYML7++mv+/vvvEre3OEf2HWTB7Lm8/cFoqtaszs7N25g84Ut+WzwXOwd7tfI52TlYWFrQb+hA/l27UeM+Tc3M6Dd0AC7ubujq6XLm+Cl++3E6llaW1GvcoMzaUtSSUydYGXiKrzp2xd3KmgUnjvLe2pWsHfk2JvoGxdYz0Tdg7ci3VbaVRUfcob37mTdrDu9+OJZqtWqw45+tfP3RZ8xZOh97Rwe18lH3Ivn644l07NaZj776lJCLl/lj2iwsLC1o3qYVAEv+WsiBXXt4b8J4XN3dOHvqDFM+n8Qvf/5KZZ8qAMyc9zt5+YWT8d6+eYsvPphAC/9Wpd7GF9WZQ8dZO28pg955ncrVfTi8fR+zJ/3E13/8hLW9+ufctUtXqFa3Jj2H98fIxITjew7yx+RfmDDtW9wrewKQm5PLr1/+gJmFOW99NhYrW2sSYuMxNDIss3bcOH2Z42t20nxwZxwqu3Hl0Fl2/LaCfpPexdTaoth6/b4djb5h4XvE0MxY5X49QwP6fztaZZt0xD27S8fPsmPJBrqM6IebbyUC9xxl+Q9zGP3L51jYWhdbLzM9g01/LKVSTR9Sk1LKMWIIORHE3uX/0v7V3rhW8SRo/wnW/fI3I7//GHPb4q9jstIz2PbXKjyqe5OenKp2v76RIW/8+InKtoruiAMw0jPgetwdtl05xtROo55c4Tn1PLfj2qmLHF61jdZDu+Hk7c7lg6fZPHMJgyePxczGsth6Q6aMQ9+o8HPKyKzw2jA3OwcLO2u8G9bkyOptZRn+S+XG6UscX72DFoO74ODtTsihM2yftYz+k0Zj+pjXov/kMUXOGerX6SlxiZxctwvHKu6lGvO+3XuZPX0W4z75kFp1avHvxn/4ZNxHLF69FAdHR7XykXfv8em4j+nSsxsTv/mKi+cvMvOnaVhaWdK6bRsAzMzNGPb6cNw9PdDV0+P4kaP8MPl7LK2saNy0CQArlyzn3w3/8NnXE/Gs5EVoyBV+nDwVE1MT+g7sX6ptFKIo6e59AYwcOZJ9+/Zx+/ZttfsWLFhA3bp1y70jDsDOzg5jY+MnF/w/UKlSJYKDg/Hw0PyL06NycnKeap/W1taYmZmVNLRnoqOjg6OjI7pl0GFRVGkcP8eOHePatWv069ev2DKnT5+mZcuWBAQEsHbtWgwMDJg7dy6vvPIKjo6OrF+/nuDgYP7880+SkpKYNm2aSv0jR46QmZlJv379WLRokcp92dnZtG/fnuTkZDZs2EBoaCirV6+mZs2aJCUlKcu9/vrrLF++nISEhBK193H+WbORVzp3oH3Xjrh5uvPGe6OwtbNjxz9bNZZ3cHLgjbGj8O/4CsammjtFa9WrjV+r5rh5uuPk4ky3vj3xrORF8MXLZdaOohQKBavOnuK1Js3x96lKZTt7vu7UjczcHHaGPD4OLS2wNTFVuZWFjavW06FrRwK6dcbd04O33n8XW3t7tm3arLH8tk1bsHOw563338Xd04OAbp1p36UjG1auVZbZv3MP/YcNplHTJji5ONOlV3fqN2nIhlXrlGUsrCyxtrFW3k4fO4mTizO1HvMr8v+bPZu207x9G1oE+OPk5kL/t4ZhZWvDwW3qP24B9H9rGAF9u+HpUxkHF0d6vjoAe2dHLp46qyxzbPcB0lJSeeeLD/Cu7ouNvR3eNXxxrfTkz///6uKe4/g2r0fVFvWxcrKj6YAATK0sCD545rH1jMxMMLYwVd6K/sqvpYXK/cYWZfMeedmd2Lqfev5+1G/bDDsXRzq+2gcLGytO7z7y2Hpb/l5NzeYNca3iWT6BPuLMjoPUbt2YOm2aYOPiQLuhPTCztuTcvuOPrbdz4Xqq+dXD2Vvz8a6lBaaW5iq358GJ8MvMO/kvB28GVXQoJfI8tyNo11Gqt2xAjVYNsXa2p+WgLphaW3DxwKnH1jM2N8HEwkx5e/RzysHLleb9O+LTpDY65XBt+rK4sPs4vi3qU7VlA6yc7Gg2oNMznDPMlLei54z8/Hz2/b2eBt39H9tp/1+sXbGKzt270rVnNzy8PHlv/PvYO9jzz/pNGsv/u2ET9o4OvDf+fTy8POnasxudunVh9bKVyjL1GtSnpX9rPLw8cXF1oe/A/lT2rszF8xeUZS5fvEyLVi1o2qIZTs5OtGnnT6MmjQkNCS3V9j0XFIrn9/Z/SjrjXgBdu3bF3t5erSMgPT2d1atXM3LkSKCgY6JVq1YYGRnh5ubG2LFjSUtLK3a/4eHh9OjRA1NTU8zNzenfvz/R0apDnv79918aNmyIoaEhtra29O7dW3mfp6enyhDKa9eu0apVKwwNDalevTq7d+9We8wJEybg4+ODsbExlSpV4ssvv1TrnPrhhx9wcHDAzMyMkSNHkpmZ+cTnaNu2bfj4+GBkZIS/vz9hYWFqZZ71+Zk0aRJ169Zl7ty5uLm5YWxsTL9+/VQyrgAWLlxItWrVMDQ0pGrVqvzxxx/K+8LCwtDS0mLNmjW0adMGQ0NDli1bRl5eHuPHj8fS0hIbGxs++eQTFEU+iNq0aaMyhDMmJoZu3bphZGSEl5cXy5cvV4t5+vTp1KpVCxMTE9zc3Hj33XdJTVX/5bo4D+N9OCT4wIEDaGlpsXPnTurVq4eRkRFt27YlJiaG7du3U61aNczNzRk0aBDp6ekqsY8ZM4YxY8Yo2/jFF1+otLHo8fNfYl+1ahUdOnTA0FBzRsq+ffto27Ytr7/+OvPnz0dHR4c7d+4wduxYxo4dy4IFC2jTpg2enp60atWKv//+m6+++kplH/Pnz2fw4MEMGzaMBQsWqLQhODiYmzdv8scff+Dn54eHhwfNmzdnypQpNGrUSFmuVq1aODo6snGj5gy0ksrJyeHG1WvUbaTaKV+3UX2uXAoulcdQKBScDzzH3Yg71KiteehrWbiXlEhcWhp+nl7Kbfq6utR3defC3buPrZuRnU33ubPp+udvfLBhDaHRUaUeX05ODtevXqVeo4Yq2+s3akBIMc/9lcvB1G+kmllYv3FDrl25Sm5u7oP9ZqNnoK9SRl/fgOALl4qNY/+uPbTv0hEtLa3/2pyXSm5OLuHXb1Gtnupw4Wr1anHzyrWn2kd+fj6ZGZkYmxZ2Up0/eZZKVauwcs4iPh76Dt++O4Hta/4hPy//MXv67/Jy87gfHolLddUhjy7VKxF9I+KxdTd89xfLPp7O1ulLuBd6S+3+nKxsVn72KysmzGDH7JXcD48s1dj/H+Tl5nLvVgSVa6sOfa5Uuyp3rqo/5w+dO3CChOj7tOnTsdgyZSUvN5eosLt41vRR2e5Vy4e718KKrXfx0CkSY+7TvFf7YstkZ2bz5wff8cf7k1k3bT7RYY//nBYvh7zcXGJu38OthrfKdrfq3kRdD39s3VXf/M6C8T+w6ecF3LlysyzD/L+Ql5vL/fB7uBY5Z7hWr/zkc8bkuSz96Be2TF/MvSvqn19ntxzEyMyEqi1KNwkkJyeH0CtXadSkkcr2Rk0acbmY657LFy+rlW/s15jQkCvKa6lHKRQKAk+dIeJ2OHXq1VVur1W3FoFnAom4XXCcXr96jYvnL+DXzK+ErRLiyaQz7gWgq6vL8OHDWbRokUpHwNq1a8nOzmbIkCFcvHiRgIAAevfuzYULF1i9ejVHjhxhzJgxGvepUCjo2bMn8fHxHDx4kN27d3Pjxg0GDBigLLN161Z69+5Nly5dOHfuHHv37qVhw4Ya95efn0/v3r3R0dHhxIkT/Pnnn0yYoD73iZmZGYsWLSI4OJhff/2VefPmMWPGDOX9a9as4euvv2bKlCmcOXMGJycnlc4tTSIiIujduzedO3cmKCiIN954g08//VSlzLM+Pw9dv36dNWvWsHnzZnbs2EFQUBCjRxcO6Zk3bx4TJ05kypQphISEMHXqVL788ksWL1add2HChAmMHTuWkJAQAgICmDZtGgsWLGD+/PkcOXKE+Pj4J3bUvPbaa4SFhbFv3z7WrVvHH3/8QUxMjEoZbW1tZs2axaVLl1i8eDH79u3jk08+KWaPT2/SpEnMnj2bY8eOERERQf/+/Zk5cyYrVqxg69at7N69m99++02lzuLFi9HV1eXkyZPMmjWLGTNmPHaY5n+J/dChQ8Uekxs3bqRLly5MnDiRn3/+Wbn94fumuH0/OsdgSkoKa9euZejQobRv3560tDQOHDigvN/Ozg5tbW3WrVtHXl7eY2Nt3Lgxhw8ffmyZ/yolKZn8vHwsrVV/pbSwsiQhvmTZeGmpaQzs2Iu+7brx3adf8+bYd9Q6/cpS3IMOc+siQ5qtTUyISy++s9bD2oavOnXjl179mNy1BwY6OryxcgnhCfGlGl9yUpLG597S2oqEOM2PlRAXr7F8Xl4eyYkFGZX1Gzdk06p13I24Q35+PudOB3LyyDHii9nniUNHSU1N5ZXOHUqhVS+H1OQU8vPzMbdSHcZpbmVBckJSMbVU7dm4jezMLBq0bKLcdj86hrNHT5Gfn8+YSZ/QaUBP9mzcxvY1m0ozfKXM1HQU+QqMzVXfA0ZmJmQka/5BydjClJZDu9J+VD/aj+qHhaMtW2csJfJqYYa9haMtrV/tQYd3B+D/Rm909XT596eFJEXHlUk7XlbpyWko8vMxtVDNZDe1MCt26GlcZAx7V26m95jhaOvolEeYKtJTCmI2KRKzsbkZacXEHB8Vy8E12+g6akixMds42dP5zQH0/mAE3d4dgq6+Lsu/m018VGypt0E8XzJS0lHk52Nsrppda2xhQnqS5nO1iaUZ/sN70OndwXR6dzCWjrZs+mUhdzX8cCCe3sNzhlHRc4a5icah5QDGFma0HNaN9qP60+GdAVg62LBlxmIir4Ypy0RdDyf0yFlaDeumcR8lkZSYRH5eHlY2qsP6raytiY/TfE6Kj4vDyrpIeRtr8vLySHokcSI1NZWOrdvzSrM2fDr+E8Z+NI6Gj3TiDR4+lHYdXmF4/yG0a9qaN4eNoO/A/rQLKP5HByFKi+T7viBGjBjBzz//rFyYAAqGqPbu3RsrKyvef/99Bg8erMykqlKlCrNmzaJ169bMmTNHLXNoz549XLhwgVu3buHm5gbA0qVLqVGjBqdPn6ZRo0ZMmTKFgQMH8s033yjr1amjefjTnj17CAkJISwsDFdXVwCmTp2qtqroF198ofzb09OTDz/8kNWrVys7RmbOnMmIESN44403APjuu+/Ys2fPY7Pj5syZQ6VKlZgxYwZaWlr4+vpy8eJFfvzxR2WZn3/++Zmen4cyMzNZvHixsk2//fYbXbp0Ydq0aTg6OjJ58mSmTZumzBj08vIiODiYuXPn8uqrryr3M27cOJWswpkzZ/LZZ5/Rp08fAP7880927txZbBuvXr3K9u3bOXHiBE2aFHwpnD9/PtWqVVMp92gmnZeXF5MnT+add955Yofmk3z33Xc0b94cKBg2/dlnn3Hjxg0qVSqY6Llv377s379fpQPWzc1N7TWZMWMGb775psbH+C+xh4WF4ezsrLY9NTWVfv368fnnn6t1zF67dg1zc3OcnJye2O5Vq1ZRpUoVatSoAcDAgQOZP3++8j3o4uLCrFmz+OSTT/jmm29o2LAh/v7+DBkyRPncPOTi4sK5c+eKfaysrCyysrJUthkYFD8fmmZFM6IUJc6SMjI2Ysbfv5ORkcGFs0Es+GMeDs5O1KpX+8mV/4MdwZf4fvd25f8zehfM16FVpG0Khfq2R9VydqGWc+H8fnVc3Bi2ZD5rzp7ho3al32FV9HlWKB7/3Kvd9fCHlgd3vP3+aGb9NJ1RQ0aAFjg5O/NK5wD2bNP8ObFr63YaNmmMTTnM9/iiUT92FOpvFQ1OHzzGlhUbeOfL8ZhbFnboKfIVmFmaM3TMG2jraOPh7UVSfAK7Nmyly6Dej9lj+bF0tFUu1ADgUNmNtPgkLuw+jpNPwfBCh0quOFRyVZZxrOzOhil/cXn/aZoNLP9srRff0x1n+fn5bJi9hDZ9O2HjpD6fZ8VSqH82URDzljnLad67A9YaJnN/yNnbQ2X4qmsVTxZ/NZOzu4/yyrCeZRCveO4pKPbz1srRDivHwuPJydud1IQkzu08iouvl+ZK4qlpum4qjqZzRmpCMud3HcPJx5PszCz2z99Ay2HdNc4jV1o0n68fdy2lofyDPT1kbGzM38sWkpGRwdnTZ/h95mycXJyp16Dgh+V9u/eye/suvpj8NV6VvLh+9Rqzp8/CxtaWjl1Vv8e+8P6Ph4M+r6Qz7gVRtWpVmjVrxoIFC/D39+fGjRscPnyYXbt2ARAYGMj169dVhi4qFAry8/O5deuWWqdNSEgIbm5uyo44gOrVq2NpaUlISAiNGjUiKCio2I6TokJCQnB3d1d2WgE0bdpUrdy6deuYOXMm169fJzU1ldzcXMzNzVX2M2qU6oS0TZs2Zf/+/Y99bD8/P5UP5KKP/azPz0Oa2pSfn09oaCg6OjpEREQwcuRIlecpNzcXCwvVTIxHs7eSkpKIjIxUiVFXV5eGDRuqDVV9tI0PyzxUtWpVtZVi9+/fz9SpUwkODiY5OZnc3FwyMzNJS0sr0WIJtWsXdrw4ODgohxk/uu3UKdU5QTS9JtOmTSMvLw8dDb+q/5fYMzIyNHakGhkZ0aJFC+bNm8egQYNUXt8ndZI8av78+QwdOlT5/9ChQ2nVqhWJiYnK53706NEMHz6c/fv3c/LkSdauXcvUqVP5999/ad++8Fc1IyMjlaG8RX3//fcqHd8AX3/9NQNGDX9inGYW5mjraJMYr5o1lZSQhKWV5VO0tHja2to4uRZ0eFaqUpk7tyNYv3x1mXXGtfSuQg2nwg7W7AcZh3Fpqdg+MlQwIT0Na+OnP6a1tbSo7uhMRClnxplbWKCto62WBZeUkKiW/faQlY01CXGqGYuJCYno6OhgblHweWhhZcmX339LdlY2ycnJ2NjasHDO3zg4qU9iHBMVTdCZc3w+5etSatXLwdS8YL6bpIREle0pickqnWuanDl0nCWz5vHWp2OpVld1WLaFtSU6Ojpo6xQOLnB0cyY5IZHcnNxSXwDB0NQYLW0t0otkwWWkpKllPjyOfSVXrp+8WOz9Wtpa2Hk6kxQjmXHPwtjcBC1tbVKTklW2pyWnYmquPu9rdkYm926GExl2h22LCuaAVDyYM+fbIeMY9tm7eBUZPlrqMZsVxFw0Cy49ORVjjTFnEXXrDtG377FnySaVmH9+7RP6f/ImHtWrqNXT0tbG0cuNhGjJjHvZGZkZo6WtrZZ5lZ6cppYt9ziOldwIPfH8rA77Iio8Z6i+Fpkpz/Za2Hu5cv1kwdxqybHxpMQlsvP3Fcr7H35nmTfqGwZ8+x7m9sUvVvMkFpYWaOvoqGXBJSYkYG2teb/WNjbq5eMT0NHRweKRc7y2tjaubgXf5ar4VOH2rdusWLRM2Rn356w/GPzqENp1eAWASt6ViYqMYvnipS9fZ5x47khn3Atk5MiRjBkzht9//52FCxfi4eFBu3btgIJfLd9++23Gjh2rVs/dXX21m+I6JB7dbmRk9NSxaepEKrr/EydOKDPtAgICsLCwYNWqVWoT5j+r4jqwHvWsz09xHrZJS0uL/AerGM6bN0+ZrfZQ0c6mkq4a+rCNj+tEun37Np07d2bUqFFMnjwZa2trjhw5wsiRI5960YjiPLqqq5aWltoqr48+H//Ff43d1tZW46IIOjo6bNq0iT59+uDv78++ffuoXr06AD4+PsoO0cdlxwUHB3Py5ElOnz6tkvGXl5fHypUreeedd5TbzMzM6N69O927d+e7774jICCA7777TqUzLj4+Hju74jMKPvvsM8aPH6+yzcDAgJsJT55vR09Pj8o+VQg6cw6/Vs2V24POnKVJC/VO8ZJQKBQlPp4ex0TfQGWFVIVCgY2JCSdv38LXoaAjKicvj7N3whnTyv+p96tQKLgaE433Y16D/0JPTw9vHx/OnQ6kWesWyu3nzgTi16KZxjpVa1Tn1DHVSdLPnT5Dlao+aoun6BvoY2tnS25uLscOHqZl29Zq+9u9dQcWVpY0birzmzxKV08Xd28vQoIuUa9Z4ZCUkKCL1GlS/GrApw8eY8mvfzHy4zHUalRP7f7K1Xw4dfAY+fn5ysmto+9GYWFtWSYrkero6mDr7sTdkJt41Sucl+xuyE086vg+9X7iIqIweswCDQqFgriIaKxdnrdsreebjq4uzl5u3LwQSrVGhaMHbl68gm+DWmrlDYwMeecn1Yzt07uOcCv4Kv3HjcDSzqZcYnb0dCHs0lV8GhbGGHbpKt711ecENTAy4PWpH6psO7fnGOEh1+nx3nAs7DR/WVYoFMSE38XO9cmZ6OLFpqOri72HMxGXr1O5fnXl9ojg63jV0/yDtyax4ZGykEwJ6ejqYuvuzN3gGyrP/Z2QG3jWqfqYmqriIgpfC0tHW/p+/Y7K/ac37SMnK5tmAzpiYl2yhVr09PTwrerDmVOnaelfeJ1z5tQZmrdqobFOjVo1OHbkmGpMJ0/jW63q4xeiUyjIzslW/puVmYm2lurMXTo6OihK8L1GiKclc8a9QPr374+Ojg4rVqxg8eLFvP7668rOmfr163P58mW8vb3Vbvr6+mr7ql69OuHh4UREFE7kGRwcTFJSkjKLqHbt2uzdu/epYnu4v3v37im3HT+u+mXz6NGjeHh4MHHiRBo2bEiVKlXUVoitVq0aJ06cUNlW9H9Nj/2kOs/6/DykqU3a2tr4+Pjg4OCAi4sLN2/eVNunl1fx6fUWFhY4OTmpxJibm0tgYGCxdapVq0Zubi5nzhSughQaGqqymMSZM2fIzc1l2rRp+Pn54ePjoxJ7edP0mlSpUkVjVtx/jb1evXoEB2ueJN/AwIANGzbQuHFj/P39uXSpYALYvn37oq+vz08//aSx3sPndP78+bRq1Yrz588TFBSkvH3yySfMnz+/2Ji0tLSoWrWq2uIgly5dol499S/2j8Zrbm6ucnuWYao9+vdiz9ad7Nm6k4iwcObPnsv9mFgCuncGYOlfC5k55ReVOjev3eDmtRtkZmSSnJjEzWs3iAgrfE+uW7aaoNNniboXyZ3bEfyzegMHdu6lTfu2Tx1XSWlpaTGwfmMWnTzG/muh3IiN4ZvtmzHU1SOgWg1lua+3/cvvhwozaOcdO8zxWze5m5jA1Zhovtu5laux0fSuU/rz3fUa2IddW7aza8t2wsNu89esP4iNjqFzz4J5VRb9+TfTJv+gLN+5Z1diomKY99scwsNuP6i7g96DClcFvnI5hKMHDxN59x6Xzl/kqw8/Iz8/nz6DB6g8dn5+Pru37aRdx/bo6Jb/3FPPu1d6duLorv0c3XWAyIi7rJm3lITYOFp1Lvgha+OiVSycNkdZ/vTBYyyc/id9Rg7Bq6o3SQmJJCUkkpFWmNXaqvMrpKWksuavpUTfjeTi6XPsWPsPrbuU3fwytV5pSuiRs4QePUdCZCzH1+wkNT6Jaq0KOhVPbdzL/oWblOUv7jlBWNAVkqLjiL8Xw6mNe7l1NoQabQo7JQM3HyTi8nWSYxOIi4ji0JLNxEVEKfcpnp5fF3/O7j/Ouf3Hib0bxY4lG0i6n0DDVwq+RO5Z+S8b/1gKFGSL2bs5q9xMLEzR1dPD3s0ZfcNnnZ7gv2nYsTUXDp7iwsFTxN2NZu/yf0iOS6Ru24JO/YNrtrF17kplzHauTio3Y/OCmO1cndB/cK46unEXty6EkhgTR/Ttu+z4ew0x4feo27Z0fxT6L4z0DKhi60oV24IMGWdzW6rYuuJgWrorQpa157kddTs0J/hwIMGHA4m/F8PhVdtIjU+iZuuCz51j63ex++/CFcGDdh/j5tlgEqPvE3c3mmPrd3Ej8DK12xb+sJSXm0tseCSx4ZHk5eaRlpBMbHgkiTK35WPVbt+UK0fOcuXIWRIiYzm2ekfBOaN1wQibUxv2sH/BBmX5i3uOE3YupPCcsWFPwTnDvzEAunp6WLs4qNwMjA3RM9DH2sWhVFa67Td4IFv/2cK2f7dw+1YYs6fPIjoqmu69ewLw1+9/MvXrycry3Xv3JDoyit9n/MbtW2Fs+7eg7oChg5Rlli9aypmTp7l39y63w26zZvkqdm7bQfuOAcoyTVs2Z+miJRw/cozIe5Ec3n+QNStW07JNqxK3SYgnkcy4F4ipqSkDBgzg888/Jykpiddee01534QJE/Dz82P06NG8+eabmJiYEBISonFifYBXXnmF2rVrM2TIEGbOnElubi7vvvsurVu3Vg6F/Prrr2nXrh2VK1dm4MCB5Obmsn37do0T37/yyiv4+voyfPhwpk2bRnJyMhMnTlQp4+3tTXh4OKtWraJRo0Zs3bpVbdGC999/n1dffZWGDRvSokULli9fzuXLl9Xm33rUqFGjmDZtGuPHj+ftt98mMDBQbeXZZ31+HjI0NOTVV1/ll19+ITk5mbFjx9K/f38cHQsydCZNmsTYsWMxNzenU6dOZGVlcebMGRISEtSynIq284cffqBKlSpUq1aN6dOnq63S+ihfX186duzIm2++yV9//YWuri7jxo1TyV6sXLkyubm5/Pbbb3Tr1o2jR4/y559/FrvPshYREaF8Tc6ePctvv/1WbBbkf409ICBAbbGMR+nr67N+/Xr69+9P27Zt2bt3L7Vq1WLGjBmMGTOG5ORkhg8fjqenJ3fu3GHJkiWYmpryww8/sHTpUr799ltq1lTNEnjjjTf46aefOH/+PAqFgq+//pphw4ZRvXp19PX1OXjwIAsWLFDJpktPTycwMJCpU6c+5bP37Fq0bU1yUgqrl6wgIS4edy9PvvzxW+wdHQCIj4sntsiCH+PfKFzA5EboNQ7tOYCdoz3zVhc8p1mZmcyd8TtxsffRN9DHxd2ND774mBYasrPK0vDGfmTl5vDTnh2kZGZSw8mZ3/oOVMmgi05ORvuRzNGUrEy+37WNuPQ0TPUN8HFwYO7AoSpDYEtLq3b+JCcls3LRMuLj4vHw8uSbn6eqPvfRhc+9o7MT3/w8hXm/zWHLhn+xsbXh7XGjaf7IhV9OdjZL5y0k6l4kRkZGNPRrzIdfTsDUTDVjIOjMWWKjY+jQRYZSaNKwVVNSU1LZumojyfGJOHu4MmbSx9jYF2RIJiUkEh9b+KXu0PZ95OflsWrOIlbNWaTc7teuJa99UDCFgrWdDe9/+ylr/17K5DGfYWljRdvuHQnoU/qTWj9UuVENstLSObv1EOlJqVg729NxzGDMbCwBSE9KJS2+cFGK/Lw8Tq7bTVpiCrp6ulg62xEwZhDutQqHEmZnZHJk2VbSk1PRNzLAxs2Rbh+9ir2XS9GHF09Qs2l9MlLSOLhhJ6mJSdi7OTFkwigsH2SMpSYmk3S/ZIvplLZqfnXJTE3j2D+7SUtMxtbVkb4fjsTCtiDmtMRkkuOeLebM9Ax2LlxLWlIKBkaG2Hu4MOjzd3Gq/PQjEMpKVTsPZvcqvC4b26Lgx49tIceZsq/464jnzfPcjiqNa5GZms7pzftJS0rBxsWBru8Pw9y2oKMwPTGFlPhEZfn83DyOrt1BakLyg84ee7q+PwzP2oUZv2mJKaz+5nfl/+d2HuHcziM4+3rS+5M3yq1tL5rKjWqSmZbO2a0HleeMTu8NeeSckULqI+eMvNw8TqzbpTxnWDnb0/G9wbjXKtsh849q274dyUlJLJ6/iPj7cXhV9uLHGT/j+GB6jrj7cURHRyvLO7k488PMn/l9xm9sWrcBG1tb3vtwHK3btlGWycjIYMZP04iNicHAwAB3Dw8mfvsVbdu3U5Z5/6MPmD93HjN/mkZCQgK2trZ069WdV994vdzaXm4k2++5o6V4mjF+4rlx/PhxmjVrRocOHdQm/D99+jQTJ07k+PHjKBQKKleurOy8g4IFE8aNG6ecKD88PJz33nuPvXv3oq2tTceOHfntt99wcHBQ7nPDhg1MnjyZ4OBgzM3NadWqFevXr9e4v6tXrzJy5EhOnTqFp6cns2bNomPHjmzcuJGePXsC8Mknn7BgwQKysrLo0qULfn5+TJo0SaUjaurUqcyYMYPMzEz69OmDg4MDO3fuJCgoqNjnZcuWLXzwwQdERETQuHFjXn/9dUaMGEFCQoJybq8nPT9FTZo0iU2bNvH222/z3XffER8fT+fOnfn777+xsir8BXLFihX8/PPPBAcHY2JiQq1atRg3bhy9evUiLCwMLy8vzp07R926dZV1cnNz+eijj1i4cCHa2tqMGDGC+/fvk5SUxKZNmwBo06YNdevWZebMmQBERUXxxhtvsGfPHhwcHPjuu+/48ssvVV6DGTNm8PPPP5OYmEirVq0YMmQIw4cPV3keitLS0lK+RkXjfbhgyKP1Fy1axLhx41Res4fP1cPXqE2bNtSoUYP8/HxWrFiBjo4Ob7/9NlOnTlVmcxY9fv5L7AkJCcqFEXx9fYuNLycnh0GDBnHw4EH27t1L7dq12bNnD7/88gunTp0iIyMDT09Punbtyvjx4zl27Bj9+/fn3r17Ku+Hh2rXrk2bNm346quvmDx5Mvv27SMsLAwtLS08PT159dVX+eCDD5RD2FauXMk333zDlStXNLbjcUKibj5znedNNcdKJM17cb7saGLx5qtcj414csHnnLed25MLvQD2Xzvz5ELPOf8qDfnlwPInF3zOfdRmSEWHUCpWnC1+EaUXxeD6Acw/ubmiwyiRkU260fz3UU8u+Jw7OvrPl6Ydvx1ZW9FhlMh7Lfo9udALYtrBlRUdQol82HoQkUkv/hySThalO+VJeUleu6miQyiWeb+eFR1ChZDOOCGKUbSDSTy9oh2JZemTTz4hKSmJuXPnlvlj/VeNGzdm3LhxDB48+JnrSmfc80E6454v0hn3/JDOuOeHdMY9P6Qz7vkhnXHPD+mMq1jSGff8kTnjhBAvtIkTJ+Lh4UHeg1U3nzcxMTH07duXQYMGPbmwEEIIIYQQQpS2B6tgP5e3/1MyZ5wQ4oVmYWFR7FDj54G9vb3GeRaFEEIIIYQQQvx/ks44IYoxadIkJk2aVNFhvJAOHDhQ0SEIIYQQQgghhBDPJemME0IIIYQQQgghhHhZ/R8PB31eyZxxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVb4MU33eSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJzJMVQghhBBCCCGEEOIlpVDkV3QIogjJjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKwUsprq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8Gab6vJHMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlREuhkC5SIYQQQgghhBBCiJdR0pJVFR1CsSyGD6zoECqEDFMVQojn2Nzjmyo6hBJ7u2lPIhKiKjqMEnGzcmTAsi8rOowSWz10MsnbdlV0GCVi3rkDH/z7a0WHUWIzur/Pq6smV3QYJbZ44JekJCZWdBglYmZpybSDKys6jBL7sPUgVpzdWdFhlMjg+gEvfBugoB2/HVlb0WGU2Hst+tH891EVHUaJHB39Jz0WTqjoMErsn9d/5J31P1d0GCUyp8/HdJz3QUWHUWI73pxR0SH8N4r8io5AFCHDVIUQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQL6t8WSrgeSOZcUIIIYQQQgghhBBClBPpjBNCCCGEEEIIIYQQopzIMFUhhBBCCCGEEEKIl5VChqk+byQzTgghhBBCCCGEEEK8NBISEhg2bBgWFhZYWFgwbNgwEhMTH1vntddeQ0tLS+Xm5+enUiYrK4v33nsPW1tbTExM6N69O3fu3Hnm+KQzTgghhBBCCCGEEEK8NAYPHkxQUBA7duxgx44dBAUFMWzYsCfW69ixI5GRkcrbtm3bVO4fN24cGzduZNWqVRw5coTU1FS6du1KXl7eM8Unw1SFEEIIIYQQQgghXlb/Z6uphoSEsGPHDk6cOEGTJk0AmDdvHk2bNiU0NBRfX99i6xoYGODo6KjxvqSkJObPn8/SpUt55ZVXAFi2bBlubm7s2bOHgICAp45RMuOEEEIIIYQQQgghxEvh+PHjWFhYKDviAPz8/LCwsODYsWOPrXvgwAHs7e3x8fHhzTffJCYmRnlfYGAgOTk5dOjQQbnN2dmZmjVrPnG/RUlmnBBCCCGEEEIIIYQod1lZWWRlZalsMzAwwMDA4D/vMyoqCnt7e7Xt9vb2REVFFVuvU6dO9OvXDw8PD27dusWXX35J27ZtCQwMxMDAgKioKPT19bGyslKp5+Dg8Nj9aiKZcUIIIYQQQgghhBAvK0X+c3v7/vvvlYssPLx9//33GpsxadIktQUWit7OnDkDgJaWlvrToFBo3P7QgAED6NKlCzVr1qRbt25s376dq1evsnXr1sc/vU/YryaSGSeEEEIIIYQQQgghyt1nn33G+PHjVbYVlxU3ZswYBg4c+Nj9eXp6cuHCBaKjo9Xui42NxcHB4aljc3JywsPDg2vXrgHg6OhIdnY2CQkJKtlxMTExNGvW7Kn3C9IZJ4QQQgghhBBCCCEqwLMMSbW1tcXW1vaJ5Zo2bUpSUhKnTp2icePGAJw8eZKkpKRn6jSLi4sjIiICJycnABo0aICenh67d++mf//+AERGRnLp0iV++umnp94vyDBVIYQQQgghhBBCiJdXfv7zeysD1apVo2PHjrz55pucOHGCEydO8Oabb9K1a1eVlVSrVq3Kxo0bAUhNTeWjjz7i+PHjhIWFceDAAbp164atrS29evUCwMLCgpEjR/Lhhx+yd+9ezp07x9ChQ6lVq5ZyddWnJZlxQgghhBBCCCGEEOKlsXz5csaOHatc+bR79+7Mnj1bpUxoaChJSUkA6OjocPHiRZYsWUJiYiJOTk74+/uzevVqzMzMlHVmzJiBrq4u/fv3JyMjg3bt2rFo0SJ0dHSeKT7pjBNCCCGEEEIIIYQQLw1ra2uWLVv22DIKhUL5t5GRETt37nzifg0NDfntt9/47bffShSfDFMVQogH2rRpw7hx4yo6DCGEEEIIIYQoPQrF83v7PyWZcUII8ZII2nucM9sPkpaYgo2LA20Gd8PV1+uJ9e5eC2PN93OxdXFg2ORxyu1rvp/LndCbauW9alel1/jXSyXmf9ZtZO3yVcTFxePp5cm7H4yhVt06xZY/fzaIP3/9nbBbYdjY2jBg6CC69e6hvH/nlu38/N0PavW2HdyF/oOJYYf0HEB0VJRame59ejL24w9KoVXQwacx3aq3wNLIlDuJMSw+s50rsbeLLd/Cszbda7TE0cya9Jwszt+7xtLAHaRmZ6iVbeZRi/db9ud0RAi/HFxRKvEWR6FQMG/ndjYeP0pKRgY13D34pE9/Kj+YxFaTfReCWLR7FxH375Obn4ebrR1D27Slc6PGyjJ/7djGvJ3bVepZm5mx89uppd6G5p618a9cH3NDE6JS4th06RA34+8VW15HW4cAn8Y0cK2KuYExiZmp7L56mlMRwQBoa2nzSpWGNHKrhoWhKTGpCWwJPvrY17c0tPVuQOeqTbEwMuNeUizLz+3kamyExrJvNOlOSy/199HdpFg+3/4nADpa2nSt3pwWXrWxNDInKjmONef3cjHqRpm2Q6FQ8Nfff7Nx0yZSUlKoUaMGEz7+mMqVKj223t59+/hz7lzu3L2Lq4sL777zDv5t2ijvP3vuHEuXLSPkyhXu37/PLz/9RJvWrcukDZcPnOLCzmOkJ6Vg5WxP0wEdcariobHsvdBbbJm2WG17/29GY+lkB8Cts8Gc236Y5Jh48vPysbC3plb7Zvg0Lf6zsCyc3nWYY1v2kpKYjL2rIwHD++BRtfIT64WH3mTRt7Owd3Ni1A8TyiHSx3sR23Fx30nO7jxMemIq1i72tBzYGWcfT41l71y5yaafF6htH/Ld+1g9OKbi7kZzctNeYm/fIyUukRYDO1O3/bOt8ldW6jh5M7heB6rau2NrYsmn2+Zw+Nb5ig5LqVNVP3rVbI2VkRnhidHMP7WZ4OiwYsu3rlSXXrVa42xuS1p2JufuXmXh6a2kZKUDBZ+1fWv74+/dABtjc+4mx7L4zHbO3b1apu1oVaku7X0aYWFoSmTyfdae38f1uLsayw5v0ImmnjXVtt9Lvs/k3QsBqOtchY5V/bAzsURHW5uY1ET2XDvNqfDgMmtD12rN6VvHH2sjc24nRPHniU1cjlK/Ln2oW/XmdKveEgczK2JTE1kZtJu9184o7+/o68crPo3wsHIE4Pr9Oyw8vZWrseFl1gYhHkc644QQL4zs7Gz09fUrOozHysnJQU9Pr9wfN/TkeQ6s2Ey74T1xruLBhf0n2Th9Aa9OHY+5jVWx9bLSM9jx12rcq1cmPSlV5b5u7w0jPzdP+X9GWhpLv/wVn0a1SiXm/bv3MWfmbMZ+/AE1atdk66bNfPbBBOavXIyDo/qS45H3Ipk4fgKde3Tl00kTuXzhErN+noGFpSWt2hZ+6TY2MWHRmqUqdfUfWaHp94Vzyc8vbNetG7eYMPZDWrVtUyrtaupRk1cbdGL+6S2ExoTzSpWGfNZ2GOM3/0ZcepJaeV87d0Y368PiwO0E3rmCtbE5bzbpztt+PZl2aKVKWVsTC4bWDyDkMV8MStOSfXtYcWA/Xw0egrudPQt272TMn7NZ99mXmBgaaqxjYWzC6+0D8HRwQE9Hh8OXL/PtquVYmZnRtGo1ZblKjk78/s4Y5f862lqlHn9d5yr0rNmKdRf2cyv+Hs08avGWXw9+2L+MxIwUjXVebdAJMwNjVgftITYtETMDY7S1CgcSdK7alAauVVlzfi8xqfH42nvweuOuzDq8hrvJsaXeBoDGbtUZUi+AJYHbuHr/Dv6V6/Nhq8F8tn0O8enJauWXn93J2vN7lf9ra2nzXce3lB2KAH1q+9PMoyYLTm8lMvk+tZwqM7ZFPybvWUR4onpndWlZvHQpK1as4OuvvsLd3Z35CxYw+r33WL9mDSYmJhrrXLh4kc+/+IJRb72Ff5s27D9wgE8//5z5f/1FzZoFXyAzMjKoUqUK3bp25ZNPPy2z+G+cvsTx1TtoMbgLDt7uhBw6w/ZZy+g/aTSmNpbF1us/eQz6hoWfQ4ZmhW01MDGiXudWWDraoqOjw+2LVzm4eBNG5ia41fAus7Y86tLxs+xYsoEuI/rh5luJwD1HWf7DHEb/8jkWttbF1stMz2DTH0upVNOH1CTN76ny9CK249qpixxetY3WQ7vh5O3O5YOn2TxzCYMnj8XsMcfUkCnj0DcqPKaMHjmmcrNzsLCzxrthTY6s3laW4T8zIz0DrsfdYduVY0ztNKqiw1HRwqs2Ixt3Y+7xTYTE3CbAtwlftR/BmI3TuZ+WqFa+mr0n77ccwIJTmzkVEYKNsQXvNOvFmOZ9+H5fwXXIkAYBtKlUj9+PredOYiz1XHz4rO1wJmz9g1uP+WGoJBq4+tKvTltWndvNjbi7tPSqw+gWffl21wISNJz71pzfy6ZLh5T/a2trMbHda5y9E6rclpadyfYrJ4hOiSM3P59aTpUY3qATKVnpZXJN0qpSXd5u2pPfj67jcvQtOldtxncd3+KttT8Qq+G16FKtGa816sqvh1dzNTYCXzt33m/Zn9SsDE6GXwagtrM3B66fJTj6Ftl5ufSr05apnUbx9rofNV6fCVHWZJiqEEIjhULBTz/9RKVKlTAyMqJOnTqsW7cOgAMHDqClpcXevXtp2LAhxsbGNGvWjNDQgpN2aGgoWlpaXLlyRWWf06dPx9PTUzk2Pzg4mM6dO2NqaoqDgwPDhg3j/v37yvJt2rRhzJgxjB8/HltbW9q3bw/Av//+S5UqVTAyMsLf35/FixejpaVFYmIiULAE9aBBg3B1dcXY2JhatWqxcqVqp0ZaWhrDhw/H1NQUJycnpk2bpvYcaGlpsWnTJpVtlpaWLFq0CICwsDC0tLRYs2YNbdq0wdDQkGXLlj3V45e2wJ2HqdmqEbVaN8bG2QH/Id0xs7bg/L4Tj623Z9EGqvrVxamyelaHkakxJpZmylv4pWvo6evh07h2qcS8fuUaOnbrTOceXfHw8uTdD97D3t6OzRv+0Vh+y4Z/sHew590P3sPDy5POPbrSsVtn1q5YpVJOS0sLaxsbldujLK0sVe47efQ4zq4u1Klft1Ta1aVaM/bdOMu+64EFv4AHbicuPZkOPo01lq9i60ZMWiI7Qk8Qm5ZIaGw4e66dppKNi1q73mvej7UX9hGdGl8qsT6OQqFg5cEDvN6+A21r18XbyZlJg4eSmZ3DzrNniq3XwLsK/rXr4OXgiKutHYNat8HbyZmgm6oZVzra2tiamytvVqZmxezxv2tTuT4nwy9zMvwyMakJbLp8iMSMVJp7au5QrmrngbetK/NO/sPV+xEkZKQQnhhNWEKkskxDt6rsuXaakJgw4tKTORZ2kdCY27Txrl/q8T/Usaofh26e4+DNICKT77Pi3C7i05Np591QY/mMnCySMtOUNy9rZ4z1jTh8szD7pJlnLTYHH+VC5HVi0xLZdz2Qi1E36VTVr8zaoVAoWLlqFa+//jpt/f3xrlyZb77+mszMTHY8Zo6WlatW0aRxY15/7TU8PT15/bXXaNyoEStWFb73mzdrxrujRtHW37/M4ge4sPs4vi3qU7VlA6yc7Gg2oBOmVhYEHyz+PQEFHSXGFmbKm7Z24SW4s68XXvWqYeVkh7m9NbXa+WHt4kDU9fLL1jixdT/1/P2o37YZdi6OdHy1DxY2VpzefeSx9bb8vZqazRviWsWzfAJ9ghexHUG7jlK9ZQNqtGqItbM9LQd1wdTagosHTj22nrG5CSYWZsrbo8eUg5crzft3xKdJbXR0n6/cixPhl5l38l8O3gyq6FDU9KjRkj3XTrP72mnuJMUw/9Rm7qclFfu56GvvXpAdHXKMmNQEQmLC2Bl6Em9bV2UZ/8r1WXdhP4F3QolOjWdH6AnO3b1Kz5oty6wd7ao05FjYRY6GXSQqJZ61F/aTkJ5Cq0p1NZbPzM0mOStNefOwcsRY35Djty8py1y7H8H5e9eISonnfloi+6+f5W5SLN5FrlVKS+9abdgZepIdoSeJSIxh7olNxKYm0rV6c43l21VpyPaQYxy6GURUShwHb55jZ+hJ+tdpqyzz0/5lbAk5ys34e9xJiuHXw6vR0tKirkuVMmnDcydf8fze/k9JZ5wQQqMvvviChQsXMmfOHC5fvswHH3zA0KFDOXjwoLLMxIkTmTZtGmfOnEFXV5cRI0YA4OvrS4MGDVi+fLnKPlesWMHgwYPR0tIiMjKS1q1bU7duXc6cOcOOHTuIjo6mf//+KnUWL16Mrq4uR48eZe7cuYSFhdG3b1969uxJUFAQb7/9NhMnTlSpk5mZSYMGDdiyZQuXLl3irbfeYtiwYZw8eVJZ5uOPP2b//v1s3LiRXbt2ceDAAQIDA//TczVhwgTGjh1LSEgIAQEBT/X4pSkvN5fosLt41FS9mPCo6cO968UPnbt0+DSJsfE07fl0y3BfPHwG3yZ10DMoeXZiTk4OV0Ov0rBJI5XtDZo0IvjiJY11gi9dpkGR8g2bNOJqSCi5ubnKbRkZGQzu2Z+B3foy8cNPuRZa/FCQnJwc9uzYTceundDSKnlmlo62DpWsnbkQeV1l+/nI6/jYuWmsczU2HBtjc+o6F7x+FoYmNHGvwbm7oSrl+tbyJzkzjf03zpY4zqdxNy6OuJRk/HyrKrfp6+pR39ubC7duPdU+FAoFp66Gcjs2hvqVVTN8Iu7H0unrifSY/DWfL1nInUc64kuDjpY2rhb2hMaodmiExt7G00rzMNsajpWISIymrXdDvm4/ks/aDqd79RboaReujqWrrUPuI5mVADl5uVSydi7V+B/S0dbG08qJS0WG5lyKuqHyhe9xWlWqS3D0TZVf/vW0dcjJz1Upl5OXQ5VijtPScPfePeLi4vBr0kS5TV9fn/r16nHh4sVi6124eJEmj9QB8PPze2ydspCXm8v98Hu4Vlcd8uhavTLRNzQPGX5ow+S5LP3oF7ZMX8y9K8W/fxQKBXdDbpIUHVfs0NfSlpeby71bEVSuXVVle6XaVblztfhYzx04QUL0fdr06VjWIT6VF7Edebm5xNy+p5YB6Vbd+4mdsau++Z0F439g088LuHOl+KF74unoautQ2caFoLvXVLYH3btKVXvN78UrMbexNbGggasvABaGpjTzrMWZiMIfo3W1dcjOU/2szc7LoZq9Z+k24AEdLW3cLR3VhtaGxISp/chXnGaetbgSc1tj5vVDvnbuOJhZce3+nZKEq5Gutg5VbF05W+Q66OzdUKo5eGqso6etq/F59rFzR0dLc5eHga4+utrayiHFQpS35+unEiHEcyEtLY3p06ezb98+mjZtCkClSpU4cuQIc+fO5a233gJgypQptH4wJ8+nn35Kly5dyMzMxNDQkCFDhjB79mwmT54MwNWrVwkMDGTJkiUAzJkzh/r16zN1auEcUQsWLMDNzY2rV6/i4+MDgLe3Nz/99JOyzKeffoqvry8///wzUNDxd+nSJaZMmaIs4+LiwkcffaT8/7333mPHjh2sXbuWJk2akJqayvz581myZIky227x4sW4uj7dF9uixo0bR+/evVW2Pe7xNcnKyiIrK0tlm8EjQysfJyMlHUV+Pibmpirbjc1NSS9muE1C1H2OrN3BgM9Hof0Uy3BH3owg7k4UHUb0faqYniQpMYn8vDysrFWHDVlZWxEfpznrKz4uHitrqyLlrcnLyyMpMQkbWxvcPN355ItP8fKuRHpaGhtWr2fcW2OYu3QBru7qr+/Rg4dJTU2lQ5dOpdIucwNjdLR1SMpQHfKblJGKpbPmzK+r9yP47eg6xrUcgJ6OLrraOpyOCGHh6a3KMr527vhXrs+EbX+USpxPIy6l4CLc2sxcZbu1qRlRCY/PzEvNyKDzpC/Izs1FR1ubCX370+SRTr0aHh58M3gY7nb2xKUks2D3TkbOms7qCROxLGao4rMy0TdCR8NFdkpWBuaGmh/DxsQcL2tncvLyWHh6Cyb6RvSt7Y+xviGrgvYAcCUmnDaV6nEj7i5xaYlUsXOnpmMltEuhM1cTM31jdLS1ScpMU9melJWGhaFpMbUKWRiaUtvJmz+Pb1TZfjHqJh19/QiNCScmNZ7qDl7Uc/Ets3ZAQdYygE2R972NtTWRGuZxfLSepjoP91deMlPTUeQrMDJXPX6MzE1IT07VWMfYwoyWw7ph5+5EXm4e106cZ8uMxXT78DWcHpkTLDs9k2UTppGXk4e2thbNB3dR6/QrK+nJaSjy8zG1UP2MMrUw40Yx55C4yBj2rtzM65Pef6pzSHl4Edvx8PxtXPT8bWFC+iXNx5SJpRn+w3tg5+lCXk4uoceD2PTLQnp9PAKXp5gnVmj28PydmKn6vCdmpGJlpPn8fSXmNtMPruLjNkOU5++T4Zf560Rhhv+5u1fpUaMll6NvEpUcT21nb5q4V1eZ/qA0mRo8OPcVOWekZKZh4fDk86u5oQk1HCqx4NQWtfsMdfX5vss76GnrkK9QsPLcbq7ElP58qeaGJuho65CQrvq+TchIwdrIXGOdwDtX6FjVj2O3L3L9/h2q2LrRwacJejq6WBiaEp+h3rE4olFX4tKSynz+PiGKI51xQgg1wcHBZGZmKjuqHsrOzqZevXrK/2vXLhyu6PRgQveYmBjc3d0ZOHAgH3/8MSdOnMDPz4/ly5dTt25dqlevDkBgYCD79+/H1FT9y+SNGzeUnXENG6oOwwoNDaVRI9XsqMaNVYf/5eXl8cMPP7B69Wru3r2r7Oh6OB/RjRs3yM7OVnY0QsHS176+vk/3BBVRNMYnPb4m33//Pd98843Ktq+//hqngLpPH0jRL9EKAPUv1vn5+Wybu5KmPdtj5Wj3VLu+dOgUNq6OOFUq3awZtZAVPD5Drch9D4c8P9xcvWYNqtesoby/Ru1avPPqm2xau54xH76vtrvtm7fR2K8xtna2/60BxSiacK+lpaWydPqjXCzseK1hZ9Zf3M/5e9exMjJjSP0A3mjSnbknNmGoq8+Y5n356+Q/Zfrr7fbA03y/pnDY34w3C+byKfpqKFCov3BFGBsYsPyjT0nPzuL01VBmbNqIi40tDbwLsv+aVyt8jbxxpranFz2nfMPW0ycZ0qZtcbv9TxRqrwbFvhbaaKEAlp3dQWZuNgCbLh/itYZdWH9hPzn5eWy8dJABddrxWdthKBQQl57EqYhgGrtVL9W41WIu0g4ttDS2raiWXnVIz8kk8K7qtAHLz+7k9UZd+aHzOyiAmNQEDt8KoqVX3VKLefuOHUz9oXBBlZnTpxfEXvR9rGHbkygUilLJZv0vtCj6OVR8WUtHWywdCz9fHCq7kZqQzPldx1Q64/QM9enz5ShysrK5F3KLE2t3Ym5nhXO5dq5o+HzV8BTn5+ezYfYS2vTthI2TfTnF9ixegnYo0BgzgJWjncq528nbndSEJM7tPCqdcaWg6PlBS8O2h9ws7HnTrzurg/Zw9u5VrI3Mea1RZ95p1pvZRwumdvn75GZGN+/D770+AhREpcSz99oZ2lXRPM1AqbVDbcvTnTOaetQkIyeT8/euqd2XlZvN1D2LMdDVx9fenb61/bmflsS1+4/PDP7vNLwWxbRhxbndWBmbM7PHOLQo6Ljbfe0U/eu0I0+Rr1a+b+22tKlcj0+2/k5OkYy6l9b/8aqlzyvpjBNCqMnPLzhpbd26FRcX1ZR2AwMDbtwomPvp0YUKHn4peljXyckJf39/VqxYgZ+fHytXruTtt99WeYxu3brx448/qj2+0yMrNRbtwNL0BazoRdK0adOYMWMGM2fOpFatWpiYmDBu3Diys7M1li+Opg6UnJwctXJFY3zS42vy2WefMX78eJVtBgYGLDq7vZgahYzMjNHS1iatyC//6SmpGFuod3ZmZ2QRfesOMbfvsW9Zwa+3igdLi88Y8Rl9PhqJe/XCITM5WdmEnjxPs14dnhjL07KwtEBbR0ctCy4xIUEt++0haxtrEjSU19HRwdzCQmMdbW1tfKr5cjdCfRhFdGQU504H8vUPk/9jK9QlZ6WTl5+HpZHq825uaEJSpuYsh541WnE1NpzNwUcBCE+MJvNUNt8GvMnq83uwMDTF3tSKT9oMUdZ5+B5YMXgSH/z7K9GpCSWOvVWNWtT8yFP5f/aDob9xKcnYPvL8JqSmYvOE+d20tbVxsyv4sujr4kpYdDSL9uxSdsYVZWRggLeTMxGxpbcAQlp2Bnn5+ZgbqL4/zQyMiu3UTM5KIykzVdkRBxCdEo+2lhYWRmbcT0skLTuDBae3oKutg4m+IUmZaXSt1vyxw3lKIiU7nbz8fCyLZMGZGxiTXCTzQZOWlepwLOwCefmqX0ZSstKZdWQNeto6mBoYk5CRQv867TROUv5ftWrZkpo1Cjtesx98ft6Pi8PWtrCDKj4+Hmvr4ifXt7GxIS5e9b0fn5Dw2DplwdDUGC1tLbUsuMyUNLXMpsex93Ll+skLKtu0tLWxsC+Y39LWzYmEqFiCth8pl844Y3MTtLS1SU1SPYbTklMxNVd/r2dnZHLvZjiRYXfYtqigw+HhOeTbIeMY9tm7eNX0KfO4i3oR2/Hw/F30mEpPfrZjyrGSG6Ennp8VSV9ED8/fRbPgLIxM1bLlHupT25+Q6DA2Plj84HZCFJnHs/mhyzssP7uThIwUkrPS+H7fEvR0dDEzMCY+PZnhDTsRnVLy87YmqVkPzn1FMsDNDI1JznzyD3rNPGtxMjxYYweWApSLJ9xJisHJzIaOVZtw7UjpdsYlZ6YVvBbGqllwlkZmGheggIIhqTMOrWLW4TVYGZsRn55Mp6pNScvOVDtX9qnVhoF1X+GzbXO4FR+pcX9ClAfpjBNCqKlevToGBgaEh4crh6E+6mFn3JMMGTKECRMmMGjQIG7cuMHAgQOV99WvX5/169fj6emJ7jNMLly1alW2bVNdGezMGdWJsw8fPkyPHj0YOnQoUNDxd+3aNapVK1jJ0dvbGz09PU6cOIG7uzsACQkJXL16VaW9dnZ2REYWnqSvXbtGevqTL2Se9PiaGBgYPPWw1KJ0dHVx8HQh/PI1qjQoXJr+9uVrVK6nnq1jYGTA8O8+UNl2ft9xwoNv0G3MUCzsVL/gXj11gbycPKo1q0dp0dPTw8fXh8BTZ2jRppVye+CpMzRr1UJjneo1a3D8yDGVbWdOnsanmm+xx5BCoeDGtet4Va6kdt+OLduxtLLEr1npTVifl5/Hzfh71HaszOmIEOX22o6VOXPnisY6Brp6ah0l+Q8z/tDiXtJ9Ptr8m8r9A+q+gqGuPovPbON+KXUCmRgaqqyQqlAosDEz52RoKL6uBRmRObm5nL1+nfe6dX+mfStQKDv3NMnOzSEsOpq6lUpvWF6eIp87STH42LlzMarwM8vHzl1t/rWHbsVHUsepCvo6emTnFXQc2Ztaka/IJ6nIF4Dc/DySMtPQ1tKmtrO32jxDpdaO/HzCEiKp4ViJwEfmz6nhWOmJQ2uq2nvgaGbDrJtriy2Tk59HQkYKOlraNHStqrLiakmZmJio/FihUCiwsbHh5KlTVH2QiZyTk8PZc+d4b/ToYvdTu1YtTp48yZBBg5TbTp48Se1apbOy89PS0dXF1t2Zu8E38KpX+Hl+J+QGnnWqPqamqriISI0/lKhQFMwnVh50dHVx9nLj5oVQqjWqo9x+8+IVfBuoP8cGRoa885PqirWndx3hVvBV+o8bgaWdjVqd8vAitkNHVxd7D2ciLl+ncv3C83VE8HWVY+xJYsOf4pgSj5Wbn8eNuLvUca7CiQerb0LBqtwnwzV/Lhro6pGvKHr+Lvi/aGJjTl4u8enJ6Ghp08yjJkduXaAs5CnyCU+Mopq9h0p2W8H/1x9Ts2BBKXtTK46FPf18nLrapT+8Ozc/j2v371DPxUcllnouPpy4rXle4YfyFPncTyuYH7V15XqcCr+skk3Xt7Y/g+q1Z+L2uWWY0SfE05HOOCGEGjMzMz766CM++OAD8vPzadGiBcnJyRw7dgxTU1M8PJ5uUunevXvzzjvv8M477+Dv76+SZTd69GjmzZvHoEGD+Pjjj7G1teX69eusWrWKefPmoVPM3C1vv/0206dPZ8KECYwcOZKgoCDl6qYPs4W8vb1Zv349x44dw8rKiunTpxMVFaXsDDM1NWXkyJF8/PHH2NjY4ODgwMSJE1VWIgNo27Yts2fPxs/Pj/z8fCZMmKCSDVicJz1+WWgQ0JLtf63GwdMVJ293Lh44RUpcInX8CzqaDq/dTmpCMp3eGoCWtja2ro4q9Y3MTNHV01XbDgULPXjXr46RaenM5fVQn0H9+fGbKfhU86V6zRps/WcLMdExdOtV0NHz9x9/cT82lk+/Lligo2vvHvyzbiNzZs6mc4+uBF+6zI7N2/j826+U+1zy9yKq1ayOi5sr6WlpbFyznhtXrzP2I9XOx/z8fHZu3U77zh1LfaW5rSHHGNOsDzfi73EtNoJ2VRpia2LB7msFK+MNqtsea2Nzfj+2HoDAO6G85deD9lUacT6yYJjqqw07ce3Bap4AEUkxKo+Rlp2hcXtp0tLSYlDrNizcsws3Ozvc7OxYtGcXhvp6BNQvHF7z9fIl2FlYMqZrweu2cM8uqru542JjS25eLkdDgtl6+hSf9hugrDPzn420rFETRysrElJTmb9rJ2mZmXRtpHlOxf/qwI2zDKkfQMSDFVGbedTCyshMeXHfpVozLAxNWXFuF1DwWrT3acygeu3ZceUEJvqGdKvegpPhweQ8WLTB3dIBCyNT7iXFYmFoSoCvH9pose/641fTLIkdV07wtl9PbsXf43rcXfwr18PG2IJ91wsWnelXuy1WRmb8dVJ1JeJWlepy/f4d7iapZxxWsnbGytic8IQorIzN6FmzNVpaWmwLOaZWtrRoaWkxaOBAFi5ahLubG25ubixctAhDQ0M6BgQoy301aRL2dnaMedBBN3DAAN4aNYpFS5bQplUrDhw6xMlTp5j/11/KOunp6UTcKcyAvXvvHqFXr2Jhbo6jo/rn2n9Vu31T9i/YgK2HMw6V3Qg5FEhqfBLVWhe8J05t2ENaYjL+IwrmEb245zhmNpZYOduTl5fH9RMXuHU2hPajChcrOrf9MHYezpjbWZGfm0f4pWtcPX6elkO6lFrcT+LXxZ+Nvy/FuZIbrj5eBO49RtL9BBq+UvDjyJ6V/5KSkESvd4ehpa2NvZvqgiUmFqbo6umpbS9vL2I76nZozu6/12Hv6YJjZTcuHzpDanwSNVsXTMlxbP0u0hKSaf9GwZytQbuPYW5jibWLPXm5eYSeOM+NwMt0erewszovN5f4e7EP/s4jLSGZ2PBI9Az0sXSomM7Sh4z0DHC1KBxm62xuSxVbV5Iz00oly7sk/rl8mHEtB3A97g6hMeEE+DbG1sSSHVcKVqYf1qAjNsbmzDy8BoDTESGMbt6Hjr5+nLt7FStjM95o3I2rseHEPzh/+9i6YW1izq24SGxMzBlYtz1aWlpsvHSw2DhKau+1M7zWqAu3E6K4FX+PFl51sDI25/CtguzJHjVaYmlkxuIzqj9uN/esxa24e9xLVl9QKcC3CbcTorifloiOtg41HSvh51GDled2l0kbNlw8wMdthnAtNoKQmDA6VW2GvakVWx+co15v1AUbEwt+ObACKJjyw9fOnSsxtzE1MKZ3rdZ4Wjkx7cH9UDA0dXjDTvy4bynRKfHKLMiMnCyVjPiXloZsR1GxpDNOCKHR5MmTsbe35/vvv+fmzZtYWlpSv359Pv/8c+VQ1CcxNzenW7durF27lgULFqjc5+zszNGjR5kwYQIBAQFkZWXh4eFBx44d1TrFHuXl5cW6dev48MMP+fXXX2natCkTJ07knXfeUWaWffnll9y6dYuAgACMjY1566236NmzJ0lJhSsJ/vzzz6SmptK9e3fMzMz48MMPVe6HguGmr7/+Oq1atcLZ2Zlff/31qVZcfZrHL22+TeqQkZrOiX/2kpaUjI2LI73Gv465bcGQz7TEFFLiEp95vwlRsdy9Gkafj0aWcsTg374tyUlJLJu/hPi4ODwreTF1+o84OBV8cY6/H0dMVGFnk5OzE1Om/8icmbP5d/0mbGxtGD1+LK3aFmYzpqamMuOHX0iIi8fE1ITKPlWY8ecsqtZQ7Qg9ezqQmKhoOnXrXOrtOn77EmYGxvSp1QYrIzMiEqP5Yf9S5S+1lkam2JgUDvs8ePMcRnr6BPj6MaxBR9KyM7kcfYvlZ3eWemzPanjbV8jKyeHHdWtIyUinhocnv40arZJBF5WQoDJ0PDM7mx/XrSEmKREDPT087B34duhwOtRroCwTk5TIF0sXkZiWhpWpKTU9PFkwbjxOpTzsMOjeNUz0jQjwbYK5gTGRKXH8deIfZSenuYGJypCk7Lwc/jy+kd612jC+1UDScjIJuneN7Y90UOnp6NK5alNsjC3Iys0hJCaM5Wd3lumF/KmIYEwNjOhRsxWWhqbcTYpl+qGVytVRLYxMsTZRHc5jpGdAQ9dqxR5Hejq69KnVBjtTK7Jys7lw7zp/Hd9Eek6WxvKl5dVhw8jKyuKHn34iJSWFmjVqMHvWLJUMuqjoaJXzQJ3atZkyeTJz5s7lz7lzcXV15fspU6hZszATODgkhFHvvqv8f8bMmQB07dKFSV8VdtiXVOVGNclMS+fs1oOkJ6Vi7WxPp/eGYGZjCUB6Ugqp8YWf9Xm5eZxYt4u0xBR09XSxcran43uDca9VOPwxNyubIyu2kpaQjK6eLpaOtrQd2ZvKjWoWffgyU7NpfTJS0ji4YSepiUnYuzkxZMIoLB9kSqcmJpN0v2I7Sp7Gi9iOKo1rkZmazunN+0lLSsHGxYGu7w9Tnr/TE1NIiU9Uls/PzePo2h2kJiSjq6eHtYs9Xd8fhmftwnlv0xJTWP3N78r/z+08wrmdR3D29aT3J2+UW9s0qWrnwexehdNyjG3RD4BtIceZsm9xRYUFwJFbFzAzMGZAnXZYG5tzOyGKb3cvVA7NtDIyw9bEUll+3/VAjPQM6FKtGSMadyEtO5MLkddZfKZwihE9HV2G1g/AwdSazNxsAu9cYeahVaRlZ5ZZOwLvhGKib0SXas0wNzQhMvk+vx9dr5xOwcLQFGtj1eG4hrr61HPxYc35fRr3aaCjx6B67bE0MiUnL5eolHgWnt5K4J1QjeVL6tDNIMwNTBhSPwArY3Nux0fy5Y6/iHnQYWttbI69SeG0JtpaWvSu1QZXS3vy8vM4f+8644tM49GtenP0dXT5sv3rKo+1LHAHy56Day7x/0dL8bSTJwkhxHNqypQp/Pnnn0REvHzp5nOPb6roEErs7aY9iUgofqXEF4GblSMDln1Z0WGU2Oqhk0netquiwygR884d+ODfXys6jBKb0f19Xl1VevMVVpTFA78kJTGxosMoETNLS6YdXFnRYZTYh60HseIF/0I5uH7AC98GKGjHb0eKHx7+onivRT+a/z6qosMokaOj/6THwgkVHUaJ/fP6j7yz/ueKDqNE5vT5mI7zPnhywefcjjdnVHQI/0nS7L+eXKiCWIx5q6JDqBCSGSeEeOH88ccfNGrUCBsbG44ePcrPP//MmDFjKjosIYQQQgghhHj+5EsO1vNGOuOEEC+ca9eu8d133xEfH4+7uzsffvghn332WUWHJYQQQgghhBBCPJF0xgkhXjgzZsxgxowXM0VcCCGEEEIIIcT/N+mME0IIIYQQQgghhHhZyVIBz53ilywUQgghhBBCCCGEEEKUKumME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXlQxTfe5IZpwQQgghhBBCCCGEEOVEOuOEEEIIIYQQQgghhCgnMkxVCCGEEEIIIYQQ4mWVn1/REYgiJDNOCCGEEEIIIYQQQohyIp1xQgghhBBCCCGEEEKUExmmKoQQQgghhBBCCPGyktVUnzuSGSeEEEIIIYQQQgghRDmRzjghhBBCCCGEEEIIIcqJDFMVQgghhBBCCCGEeFnJMNXnjmTGCSGEEEIIIYQQQghRTqQzTgghhBBCCCGEEEKIciLDVIUQQgghhBBCCCFeVvkyTPV5I5lxQgghhBBCCCGEEEKUEy2FQmbyE0IIIYQQQgghhHgZJf00q6JDKJbFJ2MrOoQKIcNUhRDiOdZ/6RcVHUKJrRn2HTHJcRUdRonYm9vQ6o93KzqMEjv07h8kfvB5RYdRIpYzptL891EVHUaJHR39J32XTKzoMEps3fApJL7/aUWHUSKWv/5AStCFig6jxMzq1mbW4TUVHUaJjG3Zv6JDEEX0WDihokMokX9e//GlOWeMWDO1osMokQX9P6f1nNEVHUaJHXzn94oO4b9R5Fd0BKIIGaYqhBBCCCGEEEIIIUQ5kc44IYQQQgghhBBCCCHKiQxTFUIIIYQQQgghhHhZyVIBzx3JjBNCCCGEEEIIIYQQopxIZ5wQQgghhBBCCCGEEOVEhqkKIYQQQgghhBBCvKzyZZjq80Yy44QQQgghhBBCCCGEKCfSGSeEEEIIIYQQQgghRDmRYapCCCGEEEIIIYQQLytZTfW5I5lxQgghhBBCCCGEEEKUE+mME0IIIYQQQgghhBCinMgwVSGEEEIIIYQQQoiXVX5+RUcgipDMOCGEEEIIIYQQQgghyol0xgkhhBBCCCGEEEIIUU5kmKoQQgghhBBCCCHEy0pWU33uSGacEEIIIYQQQgghhBDlRDrjhBBCCCGEEEIIIYQoJ9IZJ4QQJXTgwAG0tLRITEys6FCEEEIIIYQQQpVC8fze/k/JnHFCiBdSVFQUU6ZMYevWrdy9exd7e3vq1q3LuHHjaNeuXUWHVyE6+DSme42WWBqZcicxhkVntnEl5nax5Vt41aF79RY4mduQnp1F0L1rLA3cTmp2BgCtK9VjdPM+avWGLJ9ETn5uqcS8ce16Vi5bQdz9ODwreTF2/PvUqVe32PLnAs8xe+Yswm7ewsbWlsHDh9CzTy/l/bdu3GT+3L8JvXKFqMgo3vvgffoPHqCyj37dexMVGaW27159ezN+wkel0q6eNVoxqN4rWBtbEBYfyW9H13Ih8kax5XvVbEXvWm1wNLMmOiWBpWd3sDP0pGrctf3pUaMVDmZWJGWmceDGWf468Q/ZeaXzWhTHMKAd+k0boWVkRF54BOnr/yU/KqbY8qaj30DXu5La9pzgK6TNW6K23aBda4y6BpB18CgZm7aWauwAvWq2ZnC99tgYW3Ar/h6zjqzlfOT1Ysv3rtmaPrXa4GRuQ3RKPIsDt7PjkddCR1ub4fU70qlqU2xNLAlPjGbO8Q2cDA8u9dgfFeDbhO7VW2BlbEZEYgyLTm8l5DHv75ZedehRo6Xy/X3u3lWWBG4nNStDWcZYz5DB9drTxL0GJgaGxKQksDhwO+fuXi3Tthh2fAX9Zo0LjqnbEaSv2/T4Y2rMW+hW0XBMXb5C2l+LlPs07PSKyv35ySkkfzmlVGMvjkKh4K91a9m4dw8pqanUqFKFCSPeoLKbW7F1Nu7dw9ZDB7kREQFANa9KvDtoEDW9q5RLzBf3n+TcziOkJ6Zi7WxPi4GdcPbx1Fj27pVbbPplgdr2wZPHYuVkB0Dc3WhO/bOP2Nv3SIlLpMWATtRp36wsmyCeM52q+tGrZmusjMwIT4xm/qnNBEeHFVu+daW69KrVGmdzW9KyMzl39yoLT28lJSsdAB0tbfrW9sffuwE2xubcTY5l8Zmy/4x6GnWcvBlcrwNV7d2xNbHk021zOHzrfEWHpeRfuT4dff2wNDLlblIsK4P2cO1+hMayIxp1pYVXbbXtd5Ni+XLnPOX/7as0wr9yfayNzUnNzuDMnSusu7Cf3Py8MmlDzxotGVj3wbVUQiSzj6577LVUzxqt6F2rdcG1VGoCywJ3sPPqKeX9M7u/Tz0XH7V6x29f4tNtc8qkDUI8jnTGCSFeOGFhYTRv3hxLS0t++uknateuTU5ODjt37mT06NFcuXKlTB43OzsbfX39Mtl3STX1qMlrDTvz96nNhMaE84pPIz5vO5wP/p1FXHqSWnlfOw/GNOvD4sBtnLkTirWROW/6dWdU0178cnCFslx6dibv/zNTpW5pdcTt3bWHWdN/ZfyEj6hVpzb/btjEx+9/yNI1y3FwdFQrf+/uPT4Z9yHdenbny2+/5uL5C0z/8RcsrSxp09YfgMzMTJxcnGnzij+/TZ+l8XH/Wjyf/Lx85f+3btzkgzHv4/9K21JpV1vvBrzXoi/TD63iUtRNuldvwU9dRzN85WRiUhPUyveo0ZK3/Hrw84EVhMSEUc3ek0/aDCElM51jty8CBRfAb/n15Mf9S7kUdRM3Swc+azsMgNlH15dK3JoYtG2FQZvmpK9YT17sfQzb+2M6agTJ30+HrGyNddIWLgcdHeX/WibGmH30HjlBl9TK6ri5oN+0EXl3I8sk/nbeDXi/RT+mHVzJhagb9KzRkl+6jWHoim+I1vBa9KzRilFNe/Lj/mWExNymmr0nn/oPJSUrnaNhBa/FW016EODThB8PLON2QhSN3arzfadRvL3+52K/6JRUM89aBe/vk5u5Enub9lUa8Xm7V/ng31+5n6b+/q5q78GY5n1ZfGYbZ+5cwdrYnLea9OCdpr35+cByAHS1dfiq/eskZabxy8EVxKUnY2tiQUZOVpm04SGDdq0x8G9B+vK1BcdUh7aYvvsGyVN+Kf6YWrBU/Zj65H1ygi6qlMuLjCL1978LN+SX36/ti//9hxVbt/D1O6Nxd3Ji/ob1jJ4ymfUzfsXEyEhjncDLlwlo1oLavj4Y6Omz+N9/GDPlO9ZMm469tU2Zxnvt1EWOrNpO6yFdcfR25/KhM2z+dSmDv30PMxvLYusN+e599IwMlP8bmZko/87NzsHczgrvhjU4snp7WYYvnkMtvGozsnE35h7fREjMbQJ8m/BV+xGM2Tid+2mJauWr2XvyfssBLDi1mVMRIdgYW/BOs16Mad6H7/ctBWBIgwDaVKrH78fWcycxlnouPnzWdjgTtv7Brfh75dxCVUZ6BlyPu8O2K8eY2mlUhcZSVCO3agyq256lZ3dw/f4d2lSuxwctB/DFzr+IT09WK78yaDfrLu5X/q+jpc03HUZy5k7h9bSfew361vZnwektXL9/F0cza0Y27grAqqA9pd4G/8r1GdO8LzMOr+ZS5A261WjBj11G8+qqx11LdefnAyu4EnObag6efNx6MClZ6Ry7XXD98eXOeehpF3Z/mBuaML//Zxy4ca7U4xfiacgwVSHEC+fdd99FS0uLU6dO0bdvX3x8fKhRowbjx4/nxIkThIWFoaWlRVBQkLJOYmIiWlpaHDhwQLktODiYzp07Y2pqioODA8OGDeP+/fvK+9u0acOYMWMYP348tra2tG/fHoBt27bh4+ODkZER/v7+hIWFqcQXFxfHoEGDcHV1xdjYmFq1arFy5cqyfEroWr05+64Hsu964INfjrdxPz2JDr6NNZb3sXMlJi2R7VdOEJuaQGjsbfZcPU0lGxeVcgoUJGWmqtxKy+oVq+jSoxvdenbH08uTsR+Ow97Bno3rNmos/8+GjTg4OjD2w3F4ennSrWd3unTvyqplhZ2H1WpUZ/T7Y3ilQ3v09fU07sfKygobWxvl7diRo7i4ulC3fr1SaVf/Om3ZGnKMrSHHuJ0QxW9H1xGbmkjPmq00lg/wbcK/l4+w73ogkclx7LseyNaQYwyu315ZpoajF5eibrDn2hmiUuI5HRHC3mtn8LXzKJWYi2PQuhmZuw+Qc/Ey+VHRpK9Yi5a+Hvr16xZbR5GegSIlVXnT8/GGnByyz6t2nKCvj/HQAWSs2YgiI0PzzkpoQN1X2BJylM0hR7mdEMWvR9YSk5JAr5qtNZbv6NuEfy4fZu/1QO4l32fv9TNsCTnKkHoBKmWWBG7n+O1L3Eu+z6bLhzgZHsyguq9o3Gdp6Fat4P299/oZ7ibFsujMNuLSkujg00RjeR9bN2LTEth25TgxqQlcibnN7munqGzjrCzT1rsBpgZG/LR/GaGx4dxPS+RKzG1uJ6hnjZYmg9bNydy1n5wLl8mPjCZ92Rq09PTQb1C32Dpqx5RvlYJjKuiCasG8fJVyirS0Mm2LMj6FgpXbtvJ6r960bdIEb3d3vhk9hsysLHYcOVJsve/Gvk+/gAB8Pb3wdHHhi7ffRqFQcOqiesd1aQvafYxqLepTvVVDrJ3taTmwM2ZW5lw6cOqx9YzMTTCxMFPetLULv0o4eLnSvF9HqjSujY6u/N7//6ZHjZbsuXaa3ddOcycphvmnNnM/LYlOVf00lve1dycmNYEtIceISU0gJCaMnaEn8bZ1VZbxr1yfdRf2E3gnlOjUeHaEnuDc3av0rNmyvJpVrBPhl5l38l8O3gyq6FDUBPg05vCt8xy+dZ7IlDhWBu0hPiMZ/8r1NZbPyMkiOTNNefO0csJY34gjj2T6VbZx4dr9O5wMDyYuPYnL0bc4GR6Mp5VTmbShf512bLtyvOBaKjGa2UfXE5uaQI8aml/7Dj6N+Tf4KPtvnCUy5cG11JVjDKrXQVkmJSud+Ixk5a2hW1WycrM5cONsmbThuZOf//ze/k9JZ5wQ4oUSHx/Pjh07GD16NCYmJmr3W1paPtV+IiMjad26NXXr1uXMmTPs2LGD6Oho+vfvr1Ju8eLF6OrqcvToUebOnUtERAS9e/emc+fOBAUF8cYbb/Dpp5+q1MnMzKRBgwZs2bKFS5cu8dZbbzFs2DBOnlQddlhadLR1qGTtrDb07sK96/jauWusExobjo2xOfWcC9L1LQxN8POowbm7oSrlDHX1+b3XR8zp/TET/IeW2kVXTk4OV6+E0riJamdhoyaNuXThosY6ly9eolGR8o39mnAl+Aq5uf8tWy8nJ4dd23fSuXtXtLS0/tM+HqWrrYOPnTunI0JUtp+OCKGmg/owOwA9bV2y83JUtmXl5VDN3hOdB190L0TewMfOnWr2BZ1vTuY2+HnU5MTtsvvSrm1jhba5Obmh1wo35uWRe/0Wul6ajytN9Js0JPvcBchWbaNx3+7khFwh92rxQ05KQldbB187d06Fq74WpyJCqOlYzGuho0t2bpHXIjeH6g6Fr4WejobXKzeH2k7epRh9IV1tHSrZOHP+nur7+3zkk97fFsrhOBaGJvi51+TsncKhXQ1dq3I1NoI3mnTn736fMb3bWHrXbI12KbwPiqNtY422hTm5V4ocUzduoev19B3L+n6NyD57Xu2Y0razxfzbzzH76hOMXx2Eto11aYX+WHdjYohLTMSvdp3CGPX0qF+9Oheuhj6mpqrMrGxyc3OxMDUtizCV8nJzib19D/caqsesWw1vom48Prtz9bd/sPDDH9n0y0LuXLlZlmGKF4iutg6VbVwIuntNZXvQvatUtdf83r4ScxtbEwsauPoCYGFoSjPPWpyJKMzG0tXWUZuKIfvB+VFopqOtjYeVE5ejVd+fl6Nu4W3jWkwtVS0r1SE4+hZxj2TRXbt/B08rR7ysC64D7UwsqeVUmQuPmfbhvyq4lnLTfC31jOfvavYeyvN3UV2qNmXf9UAyczVnZQtR1uRnKyHEC+X69esoFAqqVq1aov3MmTOH+vXrM3XqVOW2BQsW4ObmxtWrV/HxKfgS6+3tzU8//aQs8/nnn1OpUiVmzJiBlpYWvr6+XLx4kR9//FFZxsXFhY8+Kpx77L333mPHjh2sXbuWJk00Z7KUhLmBMTraOmpZa0mZaVgaav5SdzU2gllH1jKu1QD0dHTR1dbhdEQIC05tUZa5lxzLH8c2EJ4YjZGeAZ2rNmVyxzf5eMvvRKXElSjmpMRE8vLysLJW/bJsZWNNfFy8xjpxcfE0LvLl2sramry8PBITE7G1tX3mOA4fOERqaiqdu3Z+5rqaWBiaoqutQ0JGisr2+PRkrN3MNdY5FRFM12rNOXzrPFdjI/C1c6dz1abo6ehiaWhKXHoy+64HYmlkxuxeH6KFFro6Omy8dIjl53aVStyaaJmZAZCfonpc5aemom1l+VT70HF3RcfZkfTVG1S269WrjY6LM+kz/iiVWDWxfPBaxGeoDslJyEjGxvgxr0X1Fhy6dZ7Q2HCq2rnTpVozldfiZHgwA+u+QtC969xNiqWha1VaetVBW7tsOrHMint/Z6Ri6az5/R0aG86vh9cwvtVAlff3/FOblWUczKypaWrJ4Zvnmbp3MU7mNrzRpDva2tqsu7Bf435LSsusIN78FNX3R35KCtpWVk+1D+UxtXKdyvbc2+HkLV9DXkws2mZmBcNfx71DyvczUKSnl04DihH3YPEeGwsLle02FhZExt7XUEOz2SuWY2dtTeNatUozPDWZqeko8vMxMlc9fozMTUlPStFYx9jSlDbDe2Dv4Uxebi6hx8/zz7RF9Pp4RLHzzIn/Hw+vQxKLfE4lZqRiZWSmsc6VmNtMP7iKj9sMUX5OnQy/zF8n/lGWOXf3Kj1qtORy9E2ikuOp7exNE/fqaGtJPklxzPSN0dHWJilTNTM4OSsNC0P1H7GLsjA0oZZjZZXXAQrOj2YGxnzmPxy0CjrM9l0PZNuV46Uaf0EMD87f6UXP3ylYF3P+Ph0RQtdqzThy6zxX76teS1kYmqrtq6q9B5VsXPjxwdQNQlQE6YwTQrxQFA9W3ClpFlNgYCD79+/HVEMGwo0bN5SdcQ0bNlS5LyQkBD8/P5XHb9q0qUqZvLw8fvjhB1avXs3du3fJysoiKytLYybfQw/LPMrAwKCY0pppWoyouBmTXCzseL1RF9Zd2M/5e9ewMjJjaIOOvOnXgz+PFwwTvXb/Dtfu31HWCY0J58cu79Kpqh8LT5fORPtqL6NCob7t0fKo3ql40MKi25/Wln8306SpH7Z2dv+pfnEURV4MLS0tZaxFLT6zHWtjc/7s/QloQUJ6CjuunGBw/Q7kKQpS9+s6V2FYgwCmH1pFSHQYLhZ2jG3Rj7gGnVgSWDpzM+nVr4Nx/57K/1M1LLbwoDXFH1hF6DdpSN69KPLCC48jLUsLjHp1JfXPBfAfMxqfRdHXArSKDX/h6W1YG5vzV58Jytdi25XjDK0fQN6D/fx6eA0T/IeyYvAkFCi4lxTL1ivH6FK1bCeqV2vHY94orhZ2jGjclbUX9nH+7jUsjc0Y3qATb/n1YM6D97eWlhZJmWnMPbGJfIWCm/H3sDIyp0eNlqXWGafXoC7GAwoXWEmdu6iYklo87UGl79dI7ZgCyA0pzPrLj4wmNew25l9+gn7j+mQdKH6o6H+x/fBhps6bq/x/5qefAernJYXisS+TisX//MPOo0eY+/U3GJTT3KSaPn+LC9jK0Q4rx8LPScfK7qTGJ3Fu5xHpjBNKauc+DdsecrOw502/7qwO2sPZu1exNjLntUadeadZb2YfLehs//vkZkY378PvvT4CFESlxLP32hnaVWmocZ+ieE/7KdvcszbpOZmcvaea1etr507Xas1YenYHN+Pv4WBqxaC67Umqnsrm4KNlErMmxR1Pi89sx9rInDm9Py68lgo9weB6HchXqA+D7FK1GTfj7j52obOXTXHPnag40hknhHihVKlSBS0tLUJCQujZs6fGMg/nsHn0pJOTo5q6np+fT7du3VQy2h5yciocilm0A+1pTmTTpk1jxowZzJw5k1q1amFiYsK4cePIzi4+Df7777/nm2++Udn29ddfQ+UnPhzJWenk5edhaaTasWhhaFLsHG+9arYmNDaczcEFX1LDE6PJPLmZyR3fZFXQbhIz1OspUHAj7i6OZiWfWNzC0hIdHR21LLiE+AS1bLmHbGysiY9TzchLjE9AR0cHC0sLjXUeJyoyksBTZ/jup6lPLvyUkjJTyc3PU/vl1srIjIR0zRkn2Xk5/Lh/Gb8cXIG1kTlx6Ul0q96CtOwMkjIKftke2bgbu0JPsTXkGAA34+9hqGfAx60HszRwR7Edfc8i53IIKb88MkTtwZxP2mam5CUXxq5taoIi9SnmDtTTQ79ebTJ2qE7srOvqjLaZKWbjRyu3aenooFPJE/0WfiR9/FWpLHOf+OC1sDFWPTasjMw0TmANBa/F9/uW8tOB5crXonv1lg9ei1Tlfj/b/if6OrqYG5pyPy2Rd5r2IjLl6TOgnkWK8v2tml1iYWii8X0KD97fMbf593LB+/t2YjTzcv/lu45vsTJoD4kZKSSkp5CnyCP/kef6blIsVsZm6GrrlMrqeDmXgkm5/egxVbAIg7aZmeoxZWaKIuUpj6n6dcjYvvvJZbNzyIuMQtvu2TNmn6RVw4bUrFI4xDM7p6BT+X5iIraPZPjFJydhbWH5xP0t3fwvCzdt4I8vvqKKR9nOAwlgaGqMlrY26Umqz3lGShrG5k8/RNahkitXTzw/q0eKivPwOqRoFpyFkalattxDfWr7ExIdxsZLhwC4nRBF5vFsfujyDsvP7iQhI4XkrDS+37cEPR1dzAyMiU9PZnjDTkSnqE/gLwqkZKeTl5+vlgVnZmBCcuaT59Fs6VWH47cvkVdkHq9eNVtz7PYl5Yqxd5Ni0dfR49WGndkSfLQUrkIKPfZaKuMx11IHlvHLoeKvpR4y0NWjrXcDFpzeonFfQpQXyfEVQrxQrK2tCQgI4PfffydNw+TciYmJ2D3IcoqMLFyh8dHFHADq16/P5cuX8fT0xNvbW+X2uAy26tWrc+LECZVtRf8/fPgwPXr0YOjQodSpU4dKlSpx7ZrqPCpFffbZZyQlJancPvvss8fWeSgvP4+b8ffU5qyq7eRNaGy4xjoGOnpqHYsPfzl8XJaZh5UjicVcCD0LPT09fKr6cvqk6mThp0+dpmZtzUO0atSqyelTp1W2nTp5iqrVq6L7HyYL37Z5K5ZWVjRtXnoZTbn5eVyNDaehWzWV7Q1dq3Ip+vHzK+Xl5xOblki+QkE774YcC7uk7GQz1NVXf73y89HSevrMmyfKyib/fnzhLSqG/ORkdH0fOa50dND19iL3lubj6lH6dWuBrg45Z1RXKcu5doPkH38l5ZfZyltu+B1yzp4n5ZfZpdIRBwWvRWhsOI2KvBaN3KpxKerpX4tXqjTkaNhFtQ7P7Lxc7qcloqOtTZvK9ZRfUEpbbn4eN+PuUdv5Gd7funrko368AMp3d2jsbRzNbFTe707mNsSnJ5dKRxzw4JiKK7xFxZCfpOGYquxF7q0nZyfo16tdcEydfoqV73R00HGwJz+55J9XRZkYGeHm6KS8VXJ1xcbSkpMXCheUyMnN4WxwMLV9fB+7ryX//sPf69fx22cTqV75KX59KQU6urrYeTgTEaw6X2NE8A0cK7s99X7uR0RibKl5CKL4/5Kbn8eNuLvUca6isr2uc5ViM48MdPXUPlcLr0NU5eTlEp+ejI6WNs08anIy/HKpxf6yycvP53ZCJNUdvFS213Dw4nrcnWJqFfC1c8fBzJrDN9XPZ/o6umqvl0KhKHitSnmu0YJrqQgauqpOSdPQteoznb/bejfg+O1LanH7V26Ano4uu6+eLmYvQpQP6YwTQrxw/vjjD/Ly8mjcuDHr16/n2rVrhISEMGvWLJo2bYqRkRF+fn788MMPBAcHc+jQIb744guVfYwePZr4+HgGDRrEqVOnuHnzJrt27WLEiBHk5RX/RXTUqFHcuHGD8ePHExoayooVK1i0aJFKGW9vb3bv3s2xY8cICQnh7bffJirq8SsUGhgYYG5urnJ7lmGqW4KP0s67Af6V6+NibserDTtha2KhvNAYVK89o5v1UZY/c+cKjd2r096nMfamVvjaufN6oy5cux+h/NWxb21/6jh5Y29qhYeVI+807YWntRO7rj5+tb2nNWDwQLb8s5mt/24h7FYYs6b/SkxUND379ATgz9lz+O7rb5Xle/TuRXRkFL/N+JWwW2Fs/XcLW//ZzMChg5VlcnJyuBZ6lWuhV8nJySU2NpZroVe5E6F6AZqfn8+2zVvp1KXTf+rIe5w15/fRtVozOldtioeVI2Oa98HezIp/Lh0G4C2/Hnze7lVleVcLe9r7NMbVwo5q9h583X4EXjZOzDtZOF/LsdsX6VGzJW29G+BkZkND16qMbNKVo2EXVTKbSlvWwWMYvtIGvVrV0XZ0wHhQXxTZOWSfDVKWMR7cF8MuHdTq6vs1JOdiCIr0IiulZmWTHxWtciM7G0VaesHfpWh10B66VW9Ol2rN8LByZGzzfjiYWbHxckEmxii/nnzR7jVleTcLezr4NMbVwp5q9p5802EklWycmfvI3DnVHTxpXakuzua21HHyZnq3sWihxfKzZTd/3+aQgvd3W+8GuFjY8VrDztiaWCjfi4PrdeC95n2V5c/cuUIT9xp0eOT9PaJxV67FFr6/d4aewszAmNcbd8HJzIb6Lr70rtWGHaFls9DMQ1kHj2LY3h+92jXQdnLAeEg/FDk5ZAcGKcsYD+mPYdcAtboFx1SwxjngDHt0RqeyF9rWVuh4uGEyYihahgZknwosy+YABcNTB3XuwsJNG9h/6iTXw8OZ9MfvGBoY0LFFC2W5r2b/xuwVhfMTLf7nH+asXsVX77yLk70d9xMTuJ+YQHpm2awu/Ki67ZsRfDiQ4COBxN+L4ciqbaTEJ1GjTcEiOcfX72LP/MJ5+c7vPsbNc8EkRscRdzea4+t3cSMwmFr+hfOg5uXmEhseSWx4JHm5eaQmJhMbHklidMnmGBUvhn8uH6a9TyPaVWmIq4U9Ixt3xdbEkh1XCn6wHNagI+NaFi6SdToiBD+PmnT09cPB1Jqq9h682aQ7V2PDiX/wOeVj64afRw0cTK2p7uDJ1x1GoqWlxcZLByukjY8y0jOgiq0rVR6s/upsbksVW1ccTJ9u/suytPPqKVp51aWFV22czGwYWPcVrI3NlauG9qnVhjcad1Or19KrDjfi7nI3OVbtvvOR1/GvXJ/GbtWxNbGguoMnPWu2IujetTIZ/rjm/F66PLyWsnRgdLM+2JtZKzO+32zSnc/bDleWd7Wwp32VRrhY2FHV3oOvXnkdL2sn5p38V23fXao15cit8yRnlc+K288NheL5vf2fkmGqQogXjpeXF2fPnmXKlCl8+OGHREZGYmdnR4MGDZgzZw5QsBjDiBEjaNiwIb6+vvz000906FDYYeDs7MzRo0eZMGECAQEBZGVl4eHhQceOHZXDXDVxd3dn/fr1fPDBB/zxxx80btyYqVOnMmLECGWZL7/8klu3bhEQEICxsTFvvfUWPXv2JCkpqcyek+O3L2FmYEyf2v5YGZkRkRjN9/uWcj8tEShI7bc1sVSWP3jzHEZ6BnT0bcLwBh1Jy87kctRNlp3dqSxjom/IW349sTQyJT0nk1vxkXy9829uxN0tlZjbdXiF5KQkFv29gLj7cXhVrsRPM3/B8cEw4bj7cUQ/0jnj7OLMTzOn8duMX9m4dgO2dra8/9EHtGnrryxzP/Y+I4a+pvx/1bIVrFq2grr16/Hb3N+V28+cOk10VDSdu3ctlbY8at/1QMwNTHi1YWdsTMy5FRfJhC1/EJ1aMCTXxthc5WJdR1ubAXXa4W7pQG5+HufuXuXdDb8QlVI4hHfJme0oFAreaNINOxNLEjNSORZ2UeNFZmnK2ncILT09jPp2R8vIiLzbd0j9cyFkFQ651rayVLuQ0razQbeSJ6lzFpRpfE+y93og5oamvN6wCzYm5tyMu8dHm2cTnfLwtbDAwaxwWLS2tjaD6r6Cu6Ujufl5nL0byqj1P6ssWKKvo8ebTXrgbG5LRk4Wx29fYvLuhaRml10HyrGwi5gZGNP3wfs7PDGaqXuXFHl/Fw7HPXCj4P3dqaofrzbsRFp2JpeibrIssPD9HZeexOTdC3mtUWemdX+P+PRktoUcY9ODjsqykrX34INjqgdaxkbk3Y4gdc78pzimbNGt7EXqH39r3K+2pQUmrw5Cy8QYRWoaubcjSJn+B4qExDJsTaFXu/cgKzubH+b/TUpaGjW9vZn9+ReYGBkpy0TF3VdZ6GPd7p3k5OYyYfo0lX292bcfb/dTXdm7tFVpXIvMtHTObD5AWlIKNs4OdHt/GOY2lgCkJ6WSEld4zsrLzePomp2kJSajq6eHtYs9XcYOw7O2j7JMWmIKa74tXJQlaOdRgnYexdnHk16fjCzT9oiKd+TWBcwMjBlQpx3WxubcToji290LiS3mOmTf9UCM9AzoUq0ZIxp3IS07kwuR11l8pnAeVD0dXYbWD8DB1JrM3GwC71xh5qFVpGVnlnPr1FW182B2r/HK/8e26AfAtpDjTNm3uKLCAgo6Ok31jehevQUWhqbcTYpl5uHVytVRLQxN1YaAGukZ0MC1KiuDNE8DsDn4CAqFgl41W2FlZEZKVjrnI6+z/uKBMmnD/htnsTA0YXiDTgXXUvGRTNj66LWUBfaPXktpaTGgTjvcHl5L3bvK6I3TVK6loKDTrraTNx9u/q1M4hbiWWgpZCY/IYR4bvVf+sWTCz3n1gz7jpjkFzszwt7chlZ/vFvRYZTYoXf/IPGDzys6jP+xd99xTdxvHMA/SYBA2HvIBlmCAiqKExyIe2vd22rdo+vXOlpbOx11VW3de2/FCSgqirIU2UP23nvkfn9QooGgKCMQn/frlZfm7nvJ8yWXu9xz39EoKls2oufOBeIOo9EeLtqNcYe/E3cYjXZ2+s/IXfaNuMNoFJW/fkVBYPD7C7ZyivYdse3BaXGH0ShLezdvEpJ8uJEHvhZ3CI1yadZvEnPOmH266ca4FYf9E/6Hvn8ven/BVs574c73F2qFctf8LO4Q6qWyoe3/HvoY1DKOEEIIIYQQQgghRFLxqQ1Wa0NjxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpIdRNlRBCCCGEEEIIIURS0WyqrQ61jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBXDF3cEpBZqGUcIIYQQQgghhBBCSAuhZBwhhBBCCCGEEEIIIS2EuqkSQgghhBBCCCGESCo+zaba2lDLOEIIIYQQQgghhBBCWgiLYRhKkRJCCCGEEEIIIYRIoNxV34s7hHqpbPpJ3CGIBXVTJYSQVmz5pa3iDqHRto5cjpjMRHGH0SimGvoYtv9LcYfRaFdn/4Hcz+aIO4xGUTm5Dz/e3i/uMBpt7cDZGHXwG3GH0WgXZ/6K6Sd+FHcYjXJ40lr843tJ3GE02rzuI7HkwmZxh9Eo20evxBqPveIOo9E2uM/HJu8T4g6j0Vb1nYSF5/4QdxiN8vfYLzH79EZxh9Fo+yf8Dz13LhB3GI3ycNFuifks2iRqg9XqUDdVQgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQojEyMnJwbRp06CsrAxlZWVMmzYNubm579yGxWKJfPzxx5tWwi4uLnXWf/bZZx8cH3VTJYQQQgghhBBCCJFUn2A31cmTJyMxMREeHh4AgPnz52PatGm4cuVKvdukpKQIPb9x4wbmzJmDsWPHCi2fN28efvzxzTAdcnJyHxwfJeMIIYQQQgghhBBCiEQIDQ2Fh4cHfH190a1bNwDAP//8A2dnZ4SHh8PS0lLkdjo6OkLPL126BFdXV5iamgot5/F4dcp+KOqmSgghhBBCCCGEEEJaXFlZGfLz84UeZWVljXrNx48fQ1lZWZCIA4Du3btDWVkZjx49atBrpKWl4dq1a5gzp+7kZ8eOHYOGhgY6dOiA1atXo6Cg4INjpGQcIYQQQgghhBBCiKTi81vt45dffhGM61bz+OWXXxpV3dTUVGhpadVZrqWlhdTU1Aa9xqFDh6CoqIgxY8YILZ8yZQpOnDgBLy8vrFmzBufOnatTpiGomyohhBBCCCGEEEIIaXHffvstVq5cKbSMy+WKLLt+/Xr88MMP73w9Pz8/ANWTMdTGMIzI5aLs378fU6ZMgaysrNDyefPmCf5va2uL9u3bo0uXLvD394ejo2ODXhugZBwhhBBCCCGEEEIIEQMul1tv8q22xYsXv3fmUmNjYwQHByMtLa3OuoyMDGhra7/3fR48eIDw8HCcOnXqvWUdHR0hLS2NyMhISsYRQgghhBBCCCGEEEjMbKoaGhrQ0NB4bzlnZ2fk5eXh6dOncHJyAgA8efIEeXl56NGjx3u337dvHzp37oxOnTq9t2xISAgqKiqgq6v7/gq8hcaMI4QQQgghhBBCCCESwdraGu7u7pg3bx58fX3h6+uLefPmYdiwYUIzqVpZWeHChQtC2+bn5+PMmTOYO3dundeNjo7Gjz/+iGfPniEuLg7Xr1/H+PHj4eDggJ49e35QjJSMI4QQQgghhBBCCCES49ixY7Czs4Obmxvc3NzQsWNHHDlyRKhMeHg48vLyhJadPHkSDMNg0qRJdV5TRkYGd+/exaBBg2BpaYmlS5fCzc0Nd+7cAYfD+aD4qJsqIYQQQgghhBBCiKTiS0Y31Q+hpqaGo0ePvrMMI6L77vz58zF//nyR5Q0MDODt7d0k8VHLOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSHUTZUQQgghhBBCCCFEUknIbKqShFrGEUIIIYQQQgghhBDSQigZRwghhBBCCCGEEEJIC6FkHCHkk8ZisXDx4kWJeR9CCCGEEEIIEcLwW+/jE0VjxhFCiATradwR/cw7Q0lWHqkFWbjwwhsx2ckiy052cIOToU2d5Sn5WfjN80izxHf1/CWcPX4a2VlZMDIxxudLv4Ctfcd6ywcHBOGf7X/jdWwc1DU0MG7yRAwdPVyozIVT53DtwmVkpKVDSUUZvVz6YNaCuZDhygAAZoydjPTUtDqvPWzMCCxataxpK/iWIVbOGGPnAjU5RcTnpuGfJ5cRkhZbb/mh1j0wzLoHtBTUkFGUg9NB93Av6nmzxVcf2XEjINOvL1gKPFRFxaB4/zHwE0XvQzW4gwdAZqAr2BpqYAoKUf7kGUpPnAMqKv97UVnITRgF6a6OYCkroiouHiUHT6AqJq75KwQg4r4/Xt19ipK8QqjoaqDz2P7QMjeot3xVRSVe3HiEWL8QlBYUgaeiCNtBzjBzrn9fbWqDLbtjlG0fqPIUkZCThn1Pr+JVely95fuY2mO0bV/oKamjqLwUAUkROPjsOgrKigVlhtv0hLtld2jIq6CgrAiP4l7iiL8HKqoqW6BG1fqbd8EQa2coyykiKS8dx/xvISIjvt7yzka2GGrdA9qK6iipKEVwSjROBtxGYXlJi8UccPcR/K57oyivABp62nCdMgL6libv3S4pIg4nf9kNDX1tzNiwQmhdaVEJfM55IPLZS5QWl0BZQw0uk4bCtJN1c1UDvU06oX/7LlCSlUdKfhbOv/BCdFaSyLJTHQehm1GHOstT8jOx8e5hAICOojqGWveAgYoW1OWVcS7YE17RAc0WPwA4Gdigl0lHKHB5SC/MwY2wx3idk1pveQ6LDVfzzuikZw4FLg/5pUXwjg6Af1I4AMBG2xh9TB2gxlMCh8VGVnEeHsa9QFByZLPWI8TrKYJvPkJxXgFU9bTgPNEduu2NRJZNDo/F1U2H6iyf8MMiqOhq1lke9fQF7v17DkadLDFo0aQmj/1tfUztMdCiK5RlFZCSn4kzQfcQVc8+Nb3zYDgb29ZZnpyfiQ23DwAA7PXaw92qOzTlVcBhs5FemIs7kX54Gv+q2ergauYId8vuUJFTQFJeBk4E3kFkZoLIsrO7DkMvk7rngaS8DKy5+Y/g+cD2XeFq5gg1nhIKy0vwLDEMZ4M9UcmvarZ6NFQnXXNMdnCDlZYhNORV8M31v/EgNkjcYQH49D4L8umhZBwhhEgoBz0LjLbri7NB9xCbnYwexh3xufMo/HLvCHJLCuqUP//CC1de+Qies1lsfOU6pdkuQrzveGLPX7uwaNVS2HS0xfWLV7Fm9bfYc3Q/tHS065RPTU7B2tX/g/vwIfhy7bd4FfwSOzdtg7KKMnq59gEA3Lt5Bwd2/4MV334JG7sOSIxPxOaffwcAfL7sCwDAX//uAp//5i7c65hY/G/5V+jt2rdZ6glUX/TO6zYCfz++gFdpcRhs1R3r3ebgi/N/IqMot075wVbOmNF5MLY/PIuIzARYahhgca9xKCwrxtOE0GaLszbuiMHgDnFD8d/7UZWSBtkxw6Dwv1XIX/kdUFoqchvpnt0gO2kcivccQFVEFNi6OuAtmA0AKD18CgDA+3wGOPrtULTzXzA5uZDp3R0K369C/qo1YHJym7VOcc9D8fzcXXSd6AZN03aI9AmE564zGPb9XMirKYncxmf/JZQUFKH7lMFQ1FRFaUERGH7L3cntadwRs52GYY/vJYSlx2GQZTesGTgLSy5uRmZRXp3y1lpGWNZrAvb7XYVfQijUeUpY4Dwai3qMxa//Jdb7mNpjWmd37PA5i7CMeOgpaWBpr/EAgP1+V1ukXt0MbTDFcRAOPbuOyMwEuJo7YnXfyfj2+i5kFefXKW+hYYDPu4/CsYBbCEiKgJqcImZ2HYrZTsOxzed0i8Qc9iQQnseuYMD0UWhnYYwgzyc4t2kfZv2yCkrqqvVuV1Zcgut7T8LIxhxF+cLH36rKSpz54x/wlBQwYvE0KKgpoyA7FzKy3Garh2M7C4zp6ILTgXcRk52MnsYdsbDHaPx85xByRJwfzgZ74lLIA8FzDouNb/pPQ0DSm/ODDEcKmcV5CEiKwJiOzXc8rWGrY4rB1s64+soH8Tlp6GJgjWmdB2O7z2nklRaJ3Gai/QAocOVw4eV9ZBfnQV5GDmzWm45CxRVl8I4OQGZRLir5VbDUMsJo274oKi9BVGZis9Qj2u8lHp/yQK/JQ6FtbojQ+89wY9tRTFi/CArqKvVuN2HDYqF9RFZRvk6ZgqxcPDl7CzrtDZsjdCGd9S0xvlM/nAy4jeisJPQ26YRFvcbhx1v7Re5Tp4Pu4uLL+4LnbDYL3/WfCf/EcMGyovJS3AjzRVpBFir5fNjpmmJ658EoKCtGaFpck9ehq4E1JtkPxBF/D0RlJsLFzAErek/E9zf3IlvEMelE4G2cfeEpeM5hsfGD2xw8SwwTLOtu2AHjOrpiv99VRGUmQUdRDXOchgEATgbeafI6fCg5aS6ishJxPewRNg5eIO5wBD7Fz4J8eqibKiGk1XJxccHixYuxePFiqKioQF1dHd9//z2Y/2YDOnr0KLp06QJFRUXo6Ohg8uTJSE9PBwAwDANzc3P8+eefQq/58uVLsNlsREdHi3zPFy9eoF+/fpCTk4O6ujrmz5+PwsJCwXo/Pz8MHDgQGhoaUFZWRt++feHv7y/0GpGRkejTpw9kZWVhY2OD27dvN+WfpcFczB3x5HUIfONDkFaYgwsvvZFbUohexqJb85RWlqOgrFjwMFTRhpy0LJ7EhzRLfBdOnYXbsMFwHzEUhsZGWLB8ETS1tHDtwhWR5a9dvAItbS0sWL4IhsZGcB8xFG5D3XHuxJuL8LCXr2BjZwtXt/7Q1tVB525d4DLQFZFhb37cq6iqQE1dTfB48tAXuu30YOfQqVnqCQCjbPvgdoQfbkU8RWJeOv55chmZRbkYYuUssnw/M0fcCPfFg9ggpBVk435sEG5H+GFsR9dmi1EU7uABKL14DRV+/uAnJqF41z6wuDKQ6dmt3m2kLMxQGRGFiodPwM/IQmVwCMofPYGUqXF1AWlpSDt1Rsnxs6gKiwA/LR2lZy+Dn54J7sDmr1/YPT+YOXeEeY9OUNbRQJdxA8BTVUTEA9EteJJfxSAtKgGuC8dD18oYCurK0DDWg6apfrPHWmNkh164E/kMdyL9kJiXgX1PryKzKA/ult1FlrfQNERGYQ6uhT5CemEOQtNf41b4U5hrtBOUsdQ0RFjaa9yPDUJ6YQ4CkyPxICZIqExzc7d0hndMALxjApCcn4lj/reQXZyHfu27iCxvpqGPjKJc3I54isyiXERkJsAz6jlM1HRbLOZnHg9g16crOrp0g7qeNvpNGQFFNRUE3vV953a3Dp6HtbMDdM3rJkVe3PdDaWExRi2dgXYWxlDWUIW+hQm0DPWaqxpwNe+Mx3Ev8fj1S6QVZOP8Cy/klBSgl4no42Cd84Nq9fnB9/VLQZn43DRcenkf/knhqKxq/lYmPYw7wj8xHM8Tw5FRlIsbYY+RX1oosoU3AJhr6MNYTRdHnnsgJisJuSWFSMrLQELum5bScdkpCE2PQ0ZRLnJKCuD739/HSEWn2eoRfPsxLHs5wqp3Z6jqaqLHxMFQUFXGK+9n79xOTlEePGVFwYPNFr6s4/P5uPfvOXQe4QoljfoTxU2lf/sueBT3Ag/jXiC1IBtngj2RU1yAPqb2IsuXVpYjv6xI8DBS1QFPRhaP39qnIjMTEJQcidSCbGQW5cIzyh9JeRkwV2+e49QgCyc8iA3Cg9ggpBRk4UTgHWSX5MPVzFFk+ZKKMuSXFgkexqq64MnIweetlmVm6u0QmZmIJ/GvkFWch5C0WDyJfwVj1ZY7br2Lb3wI/nlyGd4xgeIORcin+Fk0Oz7Teh+fKErGEUJatUOHDkFKSgpPnjzBtm3bsGXLFvz7778AgPLycmzYsAFBQUG4ePEiYmNjMXPmTADVY7TNnj0bBw4cEHq9/fv3o3fv3jAzM6vzXsXFxXB3d4eqqir8/Pxw5swZ3LlzB4sXLxaUKSgowIwZM/DgwQP4+vqiffv2GDJkCAoKqu/68vl8jBkzBhwOB76+vti9eze+/vrrZvrr1I/DYkNfWQthGa+Floelv4ZxAy9cuxl1QERGvMg72o1VUVGByPAIODoJX3Q7OnXGq5eik39hL1/B0amzcPluXREZFoHKyupudTadbBEVHoHwV9V3QlOSkuH3+CmceohOWlRUVMDz1h24DXUHi8VqbLVEkmJzYK7eDgHJEULLA5IiYKUluhuSNEeqTlfB8soKWGgYgMNqmVM3W0sDbFUVVAa/9XlUVqIyNBxSFnW/P4IiYVGQMjECx8xE8DrSDnao8A+uLsDhgMXhABUVQtsx5RWQsjJv8nq8raqyCtkJqdC1Fu5SqGttgsxY0V2pEl9EQd1QB6/uPMH573bi8g974X/+HirLK0SWb2pSbA7M1NshsFYL1cDkyHr3n7D011CXV0bndpYAAGVZBTgb2wq1EAhNj4OZRju016hOKmorqMFR31KoTHPisNkwVtPFy1ThGyMvUmPQXkN0l+HIzASo8ZTQUbd6P1GSlUdXQ5tm70JYo6qyEmlxSTC2tRBabmzbHslRcfVu9+K+H3LTs9Bj1ACR66MDXkHP3Ah3D1/AriU/4sD/NsH3yj2hFrxNicNiw0BFG2Hptc4Paa9hot6wBGB3I1uEp79ulvNDQ3BYbOgpadRprRaVmQgDlbotqwHASssIyXkZ6GXSCV+6TMGy3hMwyLIbpNicet/HVE0PGvLKiMtJadL4a1RVViIzPhn6NsLHVH0bM6RFi+6OV+P8hj04svpPXN18CMlhdYc88L/qDTlFeVj1Ep28aEocFhuGKjp4Vau1Wmh6HEwbmDjrYWyHsPTXIls91bDUNIS2oioim6GVIofNhpGqLkLSYoSWh6TGwly9YTdfept2wqu0WKGWvZGZiTBW1RHcNNCUV4GdrhmCU6KaLngJQ58F+VRQN1VCSKtmYGCALVu2gMViwdLSEi9evMCWLVswb948zJ49W1DO1NQU27Ztg5OTEwoLC6GgoIBZs2Zh7dq1ePr0KZycnFBRUYGjR4/ijz/+EPlex44dQ0lJCQ4fPgx5+eruHjt27MDw4cPx22+/QVtbG/369RPaZs+ePVBVVYW3tzeGDRuGO3fuIDQ0FHFxcdDXr/7BsHHjRgwePLiZ/kKiyXPlwGGzUVBaLLS8oKwYSrK8926vxOXBWssYR57faJb48nPzwK/iQ1VN+G69iqoqcrKyRW6Tk50NFVXh8qpqqqiqqkJ+bh7UNNThMqAf8nLysHrhMjAMg6qqKgwdPQITpokeJ+fx/YcoLCzEwCGDmqZiIihx5cFhc+pctOaUFMKRpyhyG/+kcLhZOOHx65eIzkqCubo+Blh0hTRHCkqy8i1yAcxSUQYA8POEL4z4eflga6jXu13F46coUVKAwg/fVL+OlBTKbnmi7PJ/+1JpKSojoiA7ZhiKklLA5OZBumc3cMxNwE9Nb57K/KessBgMn4GsovB3QFZRHiX5oru1FWbmIj06EWwpKfSZNxplRSXwO3ULZcWlcJ46pFnjBQBFLg8cNqdO1/K8kgKoylmI3CY8Ix6b75/EapfJkOZIQYrNwZP4V/jH97KgjE9sMJS5Ctg4eAFYLBak2BzcCHuM8y+8m7U+Narrxa7TnTC/tAjKsnW72wHViZbdjy9gUc+xgnr5J4bjyHOPlggZJf91T+YpKwgt5ykroihP9HcyJzUDD87cwGffLQSbIzrpk5eRjfjQaFg7O2DMytnITcvEncMXwa+qQo9RA5u8HoLzQ5nw376grBhK3IacH+Rho22CQ8+uN3lsDcWTkQWHza4zVmBheQkU66mDmpwSDFV1UMmvwvGAW+BJy2J4h16Qk5bFxZdv9nuulDS+dJkKKTYHfIaPq68e1juWXmOV/ndMklMS3ufllORRnF8ochuesiJ6TxsOTUNdVFVWIdI3CFe3HMLwVTOha2EMAEiNike4jz/GrmmZbocKgt8ctfap0iIoa4v+Pr9NSVYeHbRNsf9p3S7yslIy+GXoQkizOeAzDE4E3K6TSG4KijL1HJPK6j8mvU1ZVh52OmbY63tJaPnThFdQ5PLwret0gFV9g+Ve1HNcD3vcpPFLEvosyKeCknGEkFate/fuQi2WnJ2dsWnTJlRVVSE4OBjr169HYGAgsrOzBa0I4uPjYWNjA11dXQwdOhT79++Hk5MTrl69itLSUowfP17ke4WGhqJTp06CRBwA9OzZE3w+H+Hh4dDW1kZ6ejrWrl2Le/fuIS0tDVVVVSguLkZ8fLzgNQwNDQWJuJqY36esrAxlZWVCy7jcph8viMUCmAa0Bncy7ICSijK8SBHdnbcp43kbA7yzhVrtdTVdlmteKNg/EKcOH8OiVUth2cEayYnJ2PPXThw/oIbJs6bVeb2bV2+gS3cnqGtqNKoeDVLr7/6uz+Jk4B2oyili0/AlYAHILSnE3chnGNfRFfxmmnVKumc38OZNFzwv/O2v/+KuHeS7dyIpG0vIjh6Gkn1HURkVA46OFuRmTAI/dxjKzldfaBXv/Be8z2dB+e9NYKqqUBX7GhUPn4BjIrqlV9OrveMxdfbFN6sYsFgs9Jw5HDJy1d/JqjH98GDfRXSdMBBSMtLNHGs9WCwwtXeq/+gra2FetxE4FXgXAckRUJVTxMwuQ7DQeTR2PDoHoHq8rXGdXLHH9xIiM+Kho6SBuU7DkdOxAKeD77VcPURUob69S09JA1Md3XHp5X28SI2GiqwiJjoMwMyuQ7Hvqeju7c2hzjHqv32kNj6fj6u7T6DH6IFQ06k7sL5gcz4DnqIC3GaNBZvNho6JPgpz8+F33btZknGC9/3I7boZ2aCkogzBya2hNYlwLVhg1Xt4qvmMzgTfQ1lldctWj7DHmGg/EFdf+QgGcC+vrMCuR+cgw5GGqboe3K26I7skH3HZzdM6ribut73rPK2iowEVnTfnLG0zAxTm5CPo1iPoWhijvLQMnvvOo/e0ESLHkWtOdcOu/zj1NmcjW5RUlIps5VpWWY6Ndw6BKyUDSy1DjOvoisyivHoH8m9qLDTsu9LTuCOKK0rhnxwutNxS0xDDrHvgiL8HYrKToa2gikn2A5FnU4grrx42S8ySij6LRmrIBQBpUZSMI4S0SaWlpXBzc4ObmxuOHj0KTU1NxMfHY9CgQSgvLxeUmzt3LqZNm4YtW7bgwIEDmDhxIng80XfNmXouqIA3P+JnzpyJjIwMbN26FUZGRuByuXB2dha8JyPiRNeQ7o+//PILfvjhB6Fl69atAxxU3rutKEVlJaji86FYqxWcggxPaDbF+nQztMGzxFBUNVPiR0lFGWwOG9lZOULL83JyoFKrtVwNVTU15GQLt5rLzckFh8OBknL1wPuH/zmAfoMGwn3EUACAiZkpykpLsO23LfhsxhShMXXSUtMQ+Mwf329c34Q1qyu/rAhV/Cqo1moFpyKrIHIiDQAor6rEXz5nsOPhOajIKSKnJB+DLLujuLwU+aXv//w+RsXzIBREvbUPSlf/RGCrKKMq980kAWxlRTB59Xcjkp0wCuUPHqPcs3qwd35CEsDlgjdvOsouXAMYBvy0DBT++DvAlQFLTg5Mbh54yz4HPz2zWepWg6vAA4vNQmmB8N320sLiei9a5ZQUIKesIEjEAYCyjjrAAMW5BVDSUmvWmAvKilHFr4KKnPD+oyyrgNwS0S1nxnV0QWh6HC6GVA+O/jonFXt8L+KXIQtxLOAWckoKMNlhILyi/XEn0q+6TG4aZKWk8UWPMTgT7NmgC+jG14sPZTnhv7uSrDzy6xl8f7hNL0RmJghaMSQgHWV+5fh+4CycDfZEXqnov0dTkVOUB4vNRlGu8Pe2OL8QPCWFOuXLS8qQFpuI9NfJuHukuoUGwzAAw2DTrG8w/su5MLQxh7yKItgcjtDxSU1XC0V5BaiqrARHqml/rtecH5S4wn97RS4P+Q04P3Q3soVfwqtmOz80RHF5Kar4fCjICJ/j5GVkUVguug4FZcXILy0SJOIAIKMwF2wWC0qy8oLukQwg+H9qQRY05VXRx9S+WZJxsv8dk2q3gistKBK5T9VHy0QfUU+qhwLIz8hGQVYubu48Llhf89vknwU/YOKPS5r8uFVYs0/VarWkKMtr0Dmrh7EdnsSL3qcYQDDRUWJeOnQV1eFu1Q2RPk2bjCso/++YVLsO3PqPSW/rbdIJj1+/RFWt7uWjbfvi0euXghlKk/IyIMORxowuQ3D11cNmPtK2TfRZkE8FjRlHCGnVfH196zxv3749wsLCkJmZiV9//RW9e/eGlZWVYPKGtw0ZMgTy8vL4+++/cePGDaGurbXZ2NggMDAQRUVvTvQPHz4Em82GhUV1d7AHDx5g6dKlGDJkCDp06AAul4vMzEyh14iPj0dycrJg2ePH72/+/u233yIvL0/o8e233753u/pUMXwk5qXDUlN4sHBLLcP3XlCYq+tDU0EVvq+bZ+IGAJCWlkZ7SwsE+D0XWu7v9xw2th1EbmNlawP/2uWfPkN7KwtI/XexWlZWBhZbOPnJZnPAMEydROntax5QVlWBk7Po8eSaSiW/ClFZSbDXay+03F7P4r1dbaoYPrKK88BnGPQx6YSnCaHNlyQpLQU/Lf3NIzEZ/JxcSNm9NRg6hwMpa0tURryjxaSMTN27r3x+3WaQAFBWDiY3Dyx5HqQ72qLiuehJFJoKR4oDNQMdpITFCS1PCYuDhonocY00TduhJK8QFWVvkvz56TlgsVjgqYjuZtyUKvlViM5Kgr2e8Hh69nrm9e4/XI5Mnf2dX+s5lyNdTxlWva0Em1IVn4+47BTY6pgKLbfVMa23xYuMVH0xi969mhpHSgraxu0QFyLceicuJBJ65sZ1ynPluJjx80pM37Bc8Ojk2h1qupqYvmE5dMyqj8/t2hsjNz1LaIbenLRMyKsoNnkiDqg+riTkpsFKq/b5wQixWcn1bFXNXEMfWgqqeBz38p3lmlsVw0dyfibMak04YqahLzQhw9vic1KhKCsPGc6bv6m6vDL4DP+dF/is/7qzNQeOlBQ0DPWQ9Er4mJoYGg1tM9FjJ4qSlZAi6D6toqOBcesWYuyaBYKHUUdL6FmaYOyaBfXOGt0YVQwf8bmpsK41jqW1lhFi3tPFt72GAbQUVPEo7kWD3685Po8qPh+vc1Jgoy08pmgHbRNEZb17jLrqsezU8CAmqM46GY5UnfM2wzDVbSFb4sDVBtFnQT4VlIwjhLRqCQkJWLlyJcLDw3HixAls374dy5Ytg6GhIWRkZLB9+3bExMTg8uXL2LBhQ53tORwOZs6ciW+//Rbm5ubv7DI6ZcoUyMrKYsaMGXj58iU8PT2xZMkSTJs2Ddra1QNCm5ub48iRIwgNDcWTJ08wZcoUyMnJCV5jwIABsLS0xPTp0xEUFIQHDx7gu+++e289uVwulJSUhB6N7abqFeWP7ka26GZoA20FVYyy7QNVOUU8jKu+ez7MuiemOLrV2a6bUQfEZacgtSCrUe//PqMnjsPNK9dx8+oNxMe9xp6/diEjLR1DRg8HABz4+1/8ueFXQfmho4YjPTUde7ftQnzca9y8egO3rt7A2EkT3sTe0xnXLlyB1517SE1Ogf/TZzj8zwF079UDnLfGa+Lz+bh9zQMDBruBI9U8F1lvu/jyPtwsnDCwfVfoK2thrtNwaCqoCFr4zOg8GCv7fCYor6ekARczR+gpacBCwwBfuUyBkaoODjfTGH71KbtxB7KjhkK6qwPY+u3A+2I2mLJylD98IijD+2IOZD8bI3he6R8E7gAXSDs7ga2pASk7G8hOGIWK54GCJJ1Uxw6Q6mQrWK+w5ktUpaSi3Kv5u4lY9euK6EdBiH4cjLzUTDw/dxfF2flo39seABBwyRuPDr8Zt8i4qw248nLwPXodeSmZSItKQMAFT5g627VYF9VLIT4Y0L4r+pt3gb6yJmZ3HQYNeRXcDK/+HKY6DsKyXm++B36JoehuZAt3y27QVlCDlZYR5nYbLjQhi19iGNwtu6OXSUdoKaiik645JjsMhF/CqzqJu+biEf4YfU0d0cfUHnpKGpjs4AZ1njLuRVYn3cd36of53UcKygckRaCzgRX6mXeGprwK2msYYGrnQYjOTKq3lWBT6+LeGy+8n+LFfT9kJafB89hlFGTlolO/6qT+/dM3cH3PSQAAi82Gpr6O0IOnJA+OtBQ09XUgw5UBAHTq54ySwiLcO3YZ2akZiA4MxZMr9+DQv0ez1cMz6jmcje3Q3agDtBXVMMauL9R4ioKZB4fb9MK0zu51tnM2skVsdgpSRJwfOCw22ilrop2yJqTYHCjLKaKdsiY05FWapQ6P4oLRWd8Kju0soSmvgsFWzlCWVcDT+FAAwECLrhhr5yIoH5wShZLyUoy2c4GmvAqMVHUwyLIb/BPDBV1U+5jaw0y9HVTlFKEhr4wexnaw17No1klCOg50RpiPP8J8/JGTkoFHpzxQmJ0H677VExw9PX8HnvvPC8q/uPMYcQGhyEvLQnZyOp6ev4NY/1B0cHUCAEhJS0OtnbbQg8uThTRXBmrttJslwQsAdyOfoadJRzgb2UJHUQ3jOrpClackaIU0skNvzOhSd5zNnsZ2iM1KRnJ+3ZbRgyy7wUrLCBryytBWVEP/9l3Q3agDnsa/apY63Ix4ij4m9uhl0hG6iur4zH4A1HhK8Ir2BwCMtXPBXKfhdbbrbdIJ0VlJSMrPqLMuKCUKrmaOcDKwgYa8Mmy0jTHKtg8CkyNF9qZoaXLSXLTX0BdM5qOnpIH2GvrQVmj+GXjf5VP8LJrdfy2zW+XjE0XdVAkhrdr06dNRUlICJycncDgcLFmyBPPnzweLxcLBgwfxv//9D9u2bYOjoyP+/PNPjBgxos5rzJkzBxs3bnxnqzgA4PF4uHnzJpYtW4auXbuCx+Nh7Nix2Lx5s6DM/v37MX/+fDg4OMDQ0BAbN27E6tWrBevZbDYuXLiAOXPmwMnJCcbGxti2bRvc3ete1DS3gOQI8GRkMciyO5S4PKQUZGGP7yXBxbiSrDxU5YTvkMtKyaCTrjnOvzWYdXPpO8AVBfn5OH7gCLKzsmFsaowf//wF2jrVic/srCykp71p7aijp4sf/9yIvdt24cr5y1DXUMeC5YvRy7WPoMykGVPBYrFweO8BZGVkQllVBd16dseM+XOE3jvAzx/paelwG9oyn8uD2CAocnmCH5Ovc1Kx/tY+QdcbVZ4SNN+6YGWz2Bht2wftlDVRxa9CcEo0vry6E+mFOaLfoJmUXb4Blow05GZPBUteHlVRMSjcuBkoLX0Tq4aa0A+p0vNXwTCA7MRRYKupgskvQMXzIJSeenMxyeLJQXbS2Or1hUWoePocJScvAFVVzV4n487WKC8qwYsbD1GSXwQVXQ24fDEeCmrVE1aU5heiKPtNN1xprgz6LZ6IZ2du48bvh8CVl4OhoxU6Devd7LHWeBgXDCUuDxPt+0NVThHxOanYcOegYP9R4ylBU0FFUP5e1HPISXExxKoHZnUdiqLyUgSnRAslc08H3QPDMJji4AY1njLyS4vglxCKYwE3W6xeT+JfQUGGh5Ed+kBFTgGJeenY5H0cWcXV3aJVZBWgzlMWlPeJDYKclAwGWHTFJAc3FJeX4lV6LE4H3m2xmK262aOksBiPL91BUW4+NNrpYMzK2VDWqL5wLcrLR3527ge9ppK6CsZ/OQ+ex6/g0PdboKCiBEe3XnAa6tL0FfiPf1IE5GXk4G7ZHUqy8kjJz8Lfjy4Izg/KsvJQrdU1WlZKBvZ67XHuhZfI11SWU8A3/d6MzTmgfRcMaN8FkRkJ2OZzpsnr8DI1BjxpWbiYO0KRy0NaQTaOPL8h6K6swOVBWe5NV8/yqkocfHYNQ617YkGPMSgpL8XL1BhBV22geibr4Ta9oCQrj4qqSmQW5eJs8D28TI2p8/5NxayrLUqLiuF/zRvFeYVQ09PC4CVToKiuAgAozitAYfaboQKqKqvge/YWinILICUtBVU9LbgvmQxDO9ETurSU54nhkJeRw1DrHv/tU5nY+fCcoMuvsqwC1Hh19ymHdhY4HSR6nEouRxqTHAZCRU4BFVWVSC3IxgG/a3ieGC6yfGP5JYRCQUYOI2x6QVlWAUl5Gdj64JRgRs7qOgj/bpKT5qKzvhVOBN4W+ZpXXvmAYRiM/u+GaEFZMYJSour9HrU0K00j7Bi9UvB8aa/qcZWvhz7Gz/cOiSusT/KzIJ8eFvNJpIEJIW2Ri4sL7O3tsXXr1ka9zsOHD+Hi4oLExERBC7e2YvmlreIOodG2jlyOmMx3dyto7Uw19DFs/5fiDqPRrs7+A7mfzXl/wVZM5eQ+/Hh7v7jDaLS1A2dj1MFvxB1Go12c+Sumn/hR3GE0yuFJa/FPrVn32qJ53UdiyYXN7y/Yim0fvRJrPPaKO4xG2+A+H5u8T4g7jEZb1XcSFp4TPQN9W/H32C8x+/RGcYfRaPsn/A89d7bM7LjN5eGi3RLzWbRFufOXizuEeqns3SruEMSCWsYRQiRWWVkZEhISsGbNGkyYMKHNJeIIIYQQQgghpNH44pt0h4hGY8YRQiTWiRMnYGlpiby8PPz+++/iDocQQgghhBBCCKGWcYSQ1svLy6tR28+cORMzZ85sklgIIYQQQgghhJCmQMk4QgghhBBCCCGEEElFUwW0OtRNlRBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVNRNtdWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKTiUzfV1oZaxhFCCCGEEEIIIYQQ0kIoGUcIIYQQQgghhBBCSAuhbqqEEEIIIYQQQgghkorhizsCUgu1jCOEEEIIIYQQQgghpIVQMo4QQgghhBBCCCGEkBZC3VQJIYQQQgghhBBCJBVDs6m2NtQyjhBCCCGEEEIIIYSQFkLJOEIIIYQQQgghhBBCWgh1UyWEEEIIIYQQQgiRVHzqptraUMs4QgghhBBCCCGEEEJaCCXjCCGEEEIIIYQQQghpISyGoWk1CCGEEEIIIYQQQiRR7pT54g6hXirH9oo7BLGgMeMIIaQVO+x3XdwhNNr0rkNQEBkl7jAaRbG9OQbuXSbuMBrt9vy/sNbjH3GH0Sg/us/DqIPfiDuMRrs481f037NU3GE02t3Pt6EgNU3cYTSKoo62xBxrt94/Je4wGmV5n4m4GuIj7jAabViHXkjJyxB3GI2mq6wJ939WiDuMRvGYtwV9/14k7jAazXvhTsw+vVHcYTTK/gn/Q8+dC8QdRqM9XLRb3CEQCUHdVAkhhBBCCCGEEEIIaSHUMo4QQgghhBBCCCFEUvH54o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQScUw4o6A1EIt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgohk/dVFsbahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUDM2m2tpQyzhCCPnPzJkzMWrUqA/axtjYGFu3bm2WeAghhBBCCCGESB5qGUfIJ2rmzJk4dOhQneWDBg2Ch4dHs793bm4uLl682Kzv86H++usvME181yguLg4mJiYICAiAvb19k752bc9u+8D3uicKc/Oh2U4HA6eOgqGV2Xu3S4iIwZGfdkJTXwfzNn4pWB7mF4yHl28jJy0T/Co+VLU10H2IC+x6dW3OaoBhGOw9fhwXbnqgoLAQHSws8fXChTAzMqp3m+jXr7H72FGERUUhJT0dK+fNw+SRo+otf+D0aew8fAiTRozEqvnzm7wOw216YXzHflDnKSEuJxV/Pz6Pl6kx9ZYfYdMLIzv0hraiGtILc3A84DbuRPqJLOti5oDv+s/Ew7hgrL+1r8ljf1tXA2v0MukEBa4cMgpzcCPMF69zUustz2Gx4WLuiE565lDg8pBfWgTv6AAEJEUAADrrW8JezwJaiqoAgOS8TNyJ9ENSXkaz1WGwZXeMsu0DVZ4iEnLSsO/pVbxKj6u3fB9Te4y27Qs9JXUUlZciICkCB59dR0FZsaDMcJuecLfsDg15FRSUFeFR3Esc8fdARVVls9VjhE0vTOjUX7BP7Xp0Di/esU+N7NAbIzv0hs5/+9Qx/1u4/dY+NcjCCV+5Tq2znfu/K5u0HgzDYO/BA7hw5QoKCgrQwcYGXy9fATMTk3dud9fbC7v37UNicjL09fTwxdx5cO3TR7B+z4H9+OfgQaFt1NXUcPPCRcHzrOxsbN+zG75+figoLIRjp074ctkyGOobNKpOknKsfen5FIE3fVCcVwhVPU30nDgYehbGIssmhcfi8p8H6iz/7MclUNXVBAC8uv8M4Y8DkZ2cDgDQNNJDt9EDoG2i32x1eHjjHrwu3UR+Ti50DNph5OzPYGpjIbJsTGgkrh0+i/SkFJSXl0NVUx3Obn3Rd7iboIzvbW8883qM1PgkAIC+mRGGTBkDw/amTRr3xbPncfLICWRlZcHE1BiLVyxDR4dO9ZYP9A/Arq3bERsTBw0NdXw2bQpGjh0lWH/f0xtHDxxGUmISqior0c5AHxOnfAa3Ie6CMpWVlTj4z37c8biN7OwsqKurw33YEEybPQNsdtO0zxhm3RPjOrlCTU4Jr3NSsdv3IkLecZwabtMTw216Q1tRFRmFuTgReBt3I58J1rtbdscAi64wUtUBAERlJuKA3zVEZMQ3SbyijOrQG5/ZD4AaTxlxOSnY8fAsglOi31G+D8bY9YWOohrSCnNw9LkHbkY8FazfOmIZHNrV3Scfv36Jb67/3Sx1AABXM0e4W3aHipwCkvIycCLwDiIzE0SWnd11GHqZdKyzPCkvA2tu/iN4PrB9V7iaOUKNp4TC8hI8SwzD2WBPVPKrmq0eDdFJ1xyTHdxgpWUIDXkVfHP9bzyIDRJrTIQ0BCXjCPmEubu748AB4R/XXC5XTNGIn7KysrhD+GivfANw++hFuM8cBwMLE/jfe4STf+zF5799A2UN1Xq3Ky0uweXdx2HSoT0K8wqE1snJ89BzxEBo6GmDI8VBZEAIruw9CZ6SIsw6WjVbXQ6dO4vjFy9g3YoVMNRrh32nTmHRmu9xbvceyPN4outRVgZ9HR0M6NkLm//9R2SZGiEREbhw0wPtjd+dDPhYfU0dsNB5NLb7nEFIWiyGWvfAxsELMOf0L8goyqlTfph1T8x2Go4t908iPCMeVlqGWNH7MxSWFcM3PkSorJaCKuZ3G4XglKhmif1ttjqmGGztjKuvHiI+Jw1dDawwtbM7dvicQV5pkchtJtj3hwJXDhdf3kd2cT7kZeTAZrEE643V9BCcEoWE0DRU8qvQy6QTpncZjB0+Z4WSXU2lp3FHzHYahj2+lxCWHodBlt2wZuAsLLm4GZlFeXXKW2sZYVmvCdjvdxV+CaFQ5ylhgfNoLOoxFr96HgFQnayb1tkdO3zOIiwjHnpKGljaazwAYL/f1SavA1CdgP2ixxhs8zmDl6kxGGbTE78MWYjZpzcivbDuPjXcphfmOA3H5vsnEJ4eDystI6zs8xkKy0vw+PVLQbnCshLMPPWT0LZNnVA8dOI4jp8+jXXffgtDfQPsO3IYi1atxLmjx+r9Pge/fIn//fADFsyeA9feveH54AG+Wb8O+3bshK2NjaCcqYkJdm3aLHjO4XAE/2cYBqu/+w5SUhxs+nkj5OXlcez0KXyxciXOHDoMOTm5j6qPpBxro/xe4OGpG+g9ZRh0zQ0R4u2Ha9uO4rMfFkNRXaXe7SZtWAoZuTe/E2QV5QX/Tw6PQ3unjtAxMwBHWgqBN31wdcthTPxhMRRUlZq8DgE+T3HpwEmMmTcVJtbmeHzTG//8tBVf/bUBqprqdcrLcGXQc0g/6BnpQ0aWi9jQSJzdfRgyXC6c3foCAKJehsOhlxOMrcwhJS0Nz4s3sOeHzfjqrw1QVq//8/0Q927fxY7N27D8q1Ww62SHyxcu4avlq3Ho1BFo6+jUKZ+SlIxvln+JoaOG47sf1uJF0Ats/X0TVFRV0LefCwBAUUkR02ZNh6GxEaSkpfHY5yF+3fALVFRV4eTcDQBw4vAxXD5/Cd+u+w7GpiYIDw3Dbxs2Ql5BHuM+m9DoevUxtcfnzqOw8+FZhKTFYohVD/zkPh/zz/yKjKLcOuWHWvfAzK7D8NeDU4jISIClpiGW9Z6AwrISPPnv3NdRzxxeUf54lRaL8qpKjO/UDxsHL8DnZ39DVnHdY3hjuZo5YnHPcdjy4BRepkRjeIde+G3oIsw4uUHksXZkh96Y330E/vA6jrD017DWNsaXfSejoKwYj/471q65+Q+k2W8uuZVk5bFvwrfwig5o8vhrdDWwxiT7gTji74GozES4mDlgRe+J+P7mXmQX59cpfyLwNs6+8BQ857DY+MFtDp4lhgmWdTfsgHEdXbHf7yqiMpOgo6iGOU7DAAAnA+80W10aQk6ai6isRFwPe4SNgxeINZZWjU/dVFsb6qZKyCeMy+VCR0dH6KGq+ubHJovFwp49ezBs2DDweDxYW1vj8ePHiIqKgouLC+Tl5eHs7Izo6Dd3DNevXw97e3vs2bMHBgYG4PF4GD9+PHJzcwXrDx06hEuXLoHFYoHFYsHLywv9+vXD4sWLheLLysoCl8vFvXv36sSel5cHDoeD58+fA6i+8FJTU0PXrm9aEpw4cQK6urqC50lJSZg4cSJUVVWhrq6OkSNHIi4uTrC+djfVgoICTJkyBfLy8tDV1cWWLVvg4uKC5cuXC8VSXFyM2bNnQ1FREYaGhti7d69gncl/rT8cHBzAYrHg4uLy7g/lIz254QV7l25wcO0OjXbacJs2GkrqKvC/+/Cd293YfwYdnB3Rzty4zjojG3NYde0IjXbaUNXWgJN7X2gZ6CIhvP673I3FMAxOXLqEWRMnol+PnjA3NsYPK1eitKwMHt7e9W7XwcICy2bPwaC+fSEjLV1vueKSEqz58w98t2QJFBUUmqMKGNvRBR7hvrgR7ov43DT8/fgCMgpzMNymp8jyA9p3xbXQh/COCUBqQRa8ogPgEe6LifYDhMqxWSx82286Dj+/gdT8rGaJ/W09jO3gnxgO/8RwZBbl4kaYL/JLC9HV0EZkeXMNfRir6eLo85uIyUpGbkkhkvIykJCbLihzLtgTfgmhSC3IRmZRHi69fAAWiwVT9XbNUoeRHXrhTuQz3In0Q2JeBvY9vYrMojy4W3YXWd5C0xAZhTm4FvoI6YU5CE1/jVvhT2Gu8SY+S01DhKW9xv3YIKQX5iAwORIPYoKEyjS1cXauuBHmi+thjxGfm4Zdj84jvTAHw216iSw/sH1XXA19CK/oAKQUZMEz2h83wn0xsVP/WiUZ5JQUCD2aEsMwOHHmDGZNm4Z+ffrC3NQUP3z7v+rv853b9W534uwZdOvcBbOmToWxkRFmTZ0Kp86dcfzMGaFyUhwONNTVBQ9VFRXBuvjERLx4FYJvVq5CB2trGBsa4psVK1FSUoKbd+9+dJ0k5VgbdPsRrHo5wqZ3Z6jqaqLXZ0OgoKqEEG/RLXJryCnJg6esKHi83aJqwLxxsHV1goahLlR1NdF3+kgwDIOk0Oapx/0rt+DUvze6D+wDbX09jJozCSrqanh000tkeX1TIzj27gYdw3ZQ09JA577OsLS3RWxohKDM1BXz0XNwP7QzMYS2vi4mLJwJhmEQGRzaZHGfOX4SQ0YMw7BRw2FkYowlK5dBS1sLl85dFFn+8vmL0NLRxpKVy2BkYoxho4Zj8PChOHX0hKCMQ2dH9HbtCyMTY7TTb4dxn02AmbkZXgQFC8qEvAhBrz694NyrB3T1dOHS3xVduzkhPDS8Seo1xs4FN8OfwCP8CRJy07HH9yIyCnMxrJ5zX//2XXAj9BHuxwQitSAL3jEBuBn+BBM69ROU+d3zKK6GPkRMdjIS89Lx14NTYLFYsG/Xvklirm1Cp/64HvYY10If4XVuGnY8PIeMwhyM7NBbZHk3CydcfvUQntH+SCnIwr2o57gW9giTHN60tiwoK0Z2Sb7g0cXACmWV5fCK9m+WOgDVLZ8fxAbhQWwQUgqycCLwDrJL8uFq5iiyfElFGfJLiwQPY1Vd8GTk4PNW6zIz9XaIzEzEk/hXyCrOQ0haLJ7Ev4Kxqq7I12xJvvEh+OfJZXjHBIo7FEI+CCXjCCHvtGHDBkyfPh2BgYGwsrLC5MmT8fnnn+Pbb7/Fs2fVXQlqJ9GioqJw+vRpXLlyBR4eHggMDMSiRYsAAKtXr8aECRPg7u6OlJQUpKSkoEePHpg7dy6OHz+OsrIywescO3YMenp6cHV1rROXsrIy7O3t4eXlBQAIDg4W/JufX33Xz8vLC337Vt/tLi4uhqurKxQUFHD//n34+PhAQUEB7u7uKC8vF1n3lStX4uHDh7h8+TJu376NBw8ewN+/7o+nTZs2oUuXLggICMAXX3yBhQsXIiys+m7i06fVXRXu3LmDlJQUnD9/vmF/+A9QVVmJlNhEmNhaCi03tbVEYmRcvdsFeT9BTlom+owZ9N73YBgGsS8jkJ2a0aDuWB8rKS0VWTk56O7w5gejjLQ0HG1tERza+Iuh3/7+Gz27dkU3e4dGv5YoUmwOLDQM8DxR+OLmeWI4OmiLboknzZFCea3WSGWVFbDUNASH9eY0PdXRHbklhfAI9236wGvhsNjQVdJAdGaS0PKozCQYqmiL3MZKywjJeZnoZdIRq10mY2nvCRhk2Q1SbI7I8kB13TksNkoqyuot87Gk2ByYqbdDYHKk0PLA5EhYaYnu8hyW/hrq8sro3K76u6QsqwBnY1uh1gGh6XEw02iH9hrVXe+0FdTgqG8pVKap62GhaVDn9Z8nhr17n6qsEFpWVlkBKy0jcN5KnshJc3F88nqcnPIjfnafD3P1pu1OmJSSgqzsbHTv8uYmiYyMDBw7dULwy5f1bhccEoJuXYW7aHbv6oTgEOFt4hMT4T5mNEZMnIBvf1iPxORkwbqK/47rXBkZwTIOhwMpKSkEvgjGx5CUY21VZSUyXqfAwEb49Q06mCM1+t3d/878+DcOrf4dlzcdQFLYu5NsleUV4FdVgSv/ca0Q3/naFZVIjH4Ny04dhJZb2tsgLqxhLYcTY14jLjwKpjaW9ZYpLy9DVVUVeG+1AGyMiooKhIdFoGs34f27a7euCAkW/Z0IeRFSp7xTdyeEh4ahsrJuS1aGYfD86TMkvI5HJwd7wXI7ezs8f/YcCa+rP+OoiEi8CApG9x6ib058CCk2B+019OGfJHzu808Kh7W2schtpNl1z33lVRWwqHXuextXSgZSbHaztKSuOdb6JQj/1vBLCIWtjuhuyvUda61rHWvfNtTKGfeinqO0UvRvz8bisNkwUtVFSJrw9zMkNbbBx/jepp3wKi0WWW+1oovMTISxqg5M1KqTb5ryKrDTNWuRlvqESCrqpkrIJ+zq1atQqNU66Ouvv8aaNWsEz2fNmoUJEyYI1jk7O2PNmjUYNKj6omLZsmWYNWuW0GuUlpbi0KFD0NevPulv374dQ4cOxaZNm6CjowM5OTmUlZVB563uGGPHjsWSJUtw6dIlwfsdOHAAM2fOBOutbm5vc3FxgZeXF1atWgUvLy/0798fMTEx8PHxwZAhQ+Dl5YUVK1YAAE6ePAk2m41///1X8HoHDhyAiooKvLy84ObmJvTaBQUFOHToEI4fP47+/fsLyuvp6dWJY8iQIfjiiy8Ef6MtW7bAy8sLVlZW0NSsHktHXV1dqL61lZWVCSUigYZ3GS4uKALD50NBWVFoubyyIgpz63ZHAIDs1Ax4nrqKaWuWgM2pP1lSWlyCbUvWo6qyEiw2G+4zx8HUrv4Ll8bKyqnuBqL+VguXmucp6Y0bV+ymtzfCoqNweMvWRr3OuyjLyoPD5iCnRPjvnlNSAFWeoshtnieGYbBVdzyKC0ZkZiIsNAzgbtkd0hwpKMsqILskHx20TeBu2R0Lzv3ebLG/jScjCw6bjcJy4QueovISKHBFX1iryinCUFUblfwqnAi4DZ60LIZ16Ak5aS4uvrwvcpuBFl2RX1qEmKwkkesbQ5HLA4fNQW6t1l55JQVQlRM9plR4Rjw23z+J1S6TIc2RghSbgyfxr/CP72VBGZ/YYChzFbBx8AKwWCxIsTm4EfYY51/U33KzMd7sU8L1yCkpgFo9+9SzxFAMsXLGw7gXiMxMgIWGAQZbdnuzTxXnIz43Hb97HUNMVjLkZWQxxs4Ff41cjvlnf0NSftOM4ZeVXd2CU11NTWi5uqoaUtLqH3swKzsb6qrCXQLVVVWRlZ0teG5rbYMf/vc/GOkbICsnB/uOHMacRV/g1MFDUFFWhrGREXR1dLBj7178b/VqyMnK4tjpU8jKzkZm1se1LJWUY21pYTEYPh88JeHzv5yiPIrzCkVuw1NWRN9pI6BppIeqykpE+Abh8uZDGLl6Vr3jzPmeuw15FSXo2zTteGsAUFRQAD6fDwUV4e6vCsrKKMitP9ELAD/OXY3C/ALw+VUYNGEkug/sU2/Za0fOQVlNFe07im4R/KHycvPAr6qCqrrwd0JVTQ3Z9eyX2VlZUFXrJlxeXQ1VVVXIy82FuoYGAKCwsBDjho5GRXk52BwOVny1El3eSuJNnj4VRYVFmD5hCthsNvh8PuYunI/+gwY2ul5KNcepYhHHKTnRXZSfJ4bB3ao7Hr1+gajMRLTXMICbRTehc19ts7sOQ1ZRnmAc0qakLKsAKTanTjfO6mOt6Dr4JYRimHUP+MQGISKzuqvtECtnoWPt26y0jGCq3g6/eR1r8vhrKMrwwGGz6wwnkV9WBGXZ9yeVlWXlYadjhr2+l4SWP014BUUuD9+6TgdY1cnLe1HPcT3scZPGT5oRwxd3BKQWSsYR8glzdXXF338LDx6rVuuiqWPHNwO6amtXt4ixs7MTWlZaWor8/HwoKVX/WDE0NBQk4gDA2dkZfD4f4eHh9SakuFwupk6div3792PChAkIDAxEUFDQOyd5cHFxwb59+8Dn8+Ht7Y3+/fvD0NAQ3t7ecHR0REREhKBl3PPnzxEVFQVFReGLqNLSUqFutjViYmJQUVEBJycnwTJlZWVYWta9OHr7b8RisaCjo4P09PQ65d7ll19+wQ8//CC0bN26dTAd6lTPFiLUSloy/8VTG5/Px8WdR9B7rDvUdbXe+ZJcWS7m/rwa5WXliAuJwJ1jF6GqqQ4jG/OGx/UONzw9sXHnDsHzrevWAyLiZpg61fsgqRkZ2PTPXuz4cYNQS5nmUnseEBar+vMQ5aj/TajyFLFt1EqwUP3D/1bEE0y0HwA+w4ecNBdfu07DlgcnkV8meqy2llTfHCc1n9nZ4Hso+6+lgEdYdXfbq68e1hnguZdJR9jpmuHA02stO/gziwWmnk9DX1kL87qNwKnAuwhIjoCqnCJmdhmChc6jsePROQDVY+mN6+SKPb6XEJkRDx0lDcx1Go6cjgU4HVy3S33TqR0zq97P4sjzm1CVU8KOUSvBYlXvUzcjnuIz+wHg86t/jIemxyH0rYksXqbGYvfYLzHKtg92/lfXD3Xj9i1s3LRJ8Hzrr79VR1rru8swTL03WQTqHM+Et+nZ/U1rHnMAHTt0wKjJk3DVwwNTJ06ElJQUfv9xAzb8/hv6DRsKDocDp86d0aObcFLjo7TBY61IIj6C+j4XVR0NqOpoCJ7rmBmiMDsPgbceikzGBXg8QNTTFxj55SxIvWPogMaqG+77TxaLfv4a5aVleB0RjWtHzkFdVwuOvevuF/cu3ECAzxN88eNXkJZp2jqwUPsc9+64654Ta778b5bzeDz8e/QASkpK4O/3DDu37oBuOz04dK5uaX7v9l3cvnEL329YBxNTE0RFRGLH5m1Q19CA+7DBTVOxWscpFlDv8fZ4wG2o8pSwdeRywbnvduRTTOjUH1UikgbjOvaDi5kDvrq2s1knyxGlvsm9Dj27ATU5Jfw95kuABeQUF8Aj3BeTHdzAF1GHoVY9EJOVhLD0180dch3Vn8X79TTuiOKKUvgnC7dytNQ0xDDrHjji74GY7GRoK6hikv1A5NkU4sqrd3fTJ4SIRsk4Qj5h8vLyMDd/9w996bd+RNf8GBS1rOYCT5SaMu+7+Jo7dy7s7e2RmJiI/fv3o3///jB6xwyaffr0QUFBAfz9/fHgwQNs2LABBgYG2LhxI+zt7aGlpQVra2tBfJ07d8axY3XvRta0XntbzQ+v+n8AvyFd60KDxWK98+8hyrfffouVK1cKLeNyuTgV/P6xjXiK8mCx2XVaZhTnFUBeuW7LmfKSMqTEJiD1dRJuHqruNsswDMAw2Dh9FSZ/vQDGHarHY2Gx2VDTqf776Bi1Q2ZSGh5dudNkF4h9unWD7VsJzvKK6iROZk4ONN5KDGfn5UJN5eMHzw6LikJ2bi6mLV8mWFbF5yMg5CVOX72CRxcuCg3+/rHySotQxa+qcxddRVYRucWix+Mqr6rAJu8T2Hr/FFR5isguzscQqx4oKi9FXmkRTNX1oKukjg2D5gm2qdkvPeZuxqxTPyOloGnHkCsuL0UVnw8FGeEB9uVl5FBUXiJym4KyYuSXFgkScQCQUZgLNosFJVl5oRYCPY3t0NvUHof8riOtMFvUyzVaQVkxqvhVUJET/g4oyyogt0R0659xHV0Qmh6HiyHVLfle56Rij+9F/DJkIY4F3EJOSQEmOwyEV7S/YLbb17lpkJWSxhc9xuBMsGe9F54fq2afUq3VukRVTqHeMd7Kqyrwp/dxbHlwEqpySsguzsNQ656CfUoUBgzCM+Khr1z3eNhQfXr2gq31mxZEgu9zVjY01N8kcrJzc6CmWv/3WV1NTagVHABk5+S+cxs5OTmYmZgiITFRsMza0hLH9+1HYWEhKioroaqighkLPoeNiJsqDdGWj7Vvk1XggcVm12kFV1JQBDmlhnfH1DY1QIRv3RkLA2/6wP/6AwxfOQPq+vW3CG8MecXq8eoKcoQ/i8K8fCgqv3uyCHXt6r+zrpE+CnLzcevUpTrJOM+LHrh77hoWrF8NPePGzb77NmUVZbA5nDqt4HJzcurcDK2hpq5et3x2DjgcDpRV3kw8xWazoW9QfSO0vUV7vI59jeMHjwqScbu37cLkGVPQ3616PFJTczOkpqTi2KEjjU7G5dccp2qf++QU33mc2nL/JLY9OC049w22ckZReSnyax2nxtq54DP7Afj2+t+IzU5pVKz1ySstRKWI87fqe+rwm9dR/Hn/ONTklJBVnIfhNr1QVF6CvBLhOnClpNHPvHOzTfRTo6C8GFV8fp1WcIpc+Tp/V1F6m3TC49cvUVXrd+xo27549PqlYJbSpLwMyHCkMaPLEFx99bCJz3yEfBooGUcIaXLx8fFITk4WdOl8/Pgx2Gw2LCyqu4bJyMigqqpuSxg7Ozt06dIF//zzD44fP47t27e/831qxo3bsWMHWCwWbGxsoKenh4CAAFy9elXQKg4AHB0dcerUKWhpaQla8L2LmZkZpKWl8fTpUxgYVP8Qz8/PR2RkpNDrvo/Mf62wRNX3bVwu96NnsuVISUHXRB+xLyNg1fVNK73YlxGw6Gxb973kuJj3y1dCy57feYjXryIxZulMqGiKviCoUVnRdHek5Xk8oRkVGYaBuqoqngQEwMqsejyjiooK+L98iSUzZ9X3Mu/VtVMnnNyxU2jZj39thZG+PmaMHdckiTgAqORXISIzAY7tLPEw7s24VI76lngU9+Kd21YxfMEMn65mjngSHwIGDOJz0zDvzK9CZWd2HQKetCx2PTovcpa6xqpi+EjJz4SZRjuh1lNmGu3qvaMfn5OGDjqmkHlrDDwNeWXwGb7QBUBP447oa+aAw89uIDk/s8ljr1HJr0J0VhLs9cwFM/MB+O/5K5HbcDkyqGKEv6v8Wgl4Lke6TlK+ugyrugVkE1+RVPKrEJGRgM76wvtUZ30rPHzfPsXnI/O//cPVzBG+r1++M1lopt6uURe6Ir/Pamp48uwZrP47/ldUVMA/KAhLPv+83tfp2KEDnjzzw5QJb2Z4fOLnh44d6h7PapSXlyMu/jUc3mqpXKNmOIb4xASEhodj4Zw5H1w3oG0fa9/GkZKCppEuEkOjYer4Jnma+CoaxvYNn701Mz4FvFpJyICbPvC/5o2hy6ZDy7j5JjWRkpaCvpkRIoJCYNf9zRijEUGv0MHpA8YEZer+nT0veuDO2auYv2YFDERMuNEY0tLSsLSywLOnfujt+ua3xLOnz9Czj+gJWTrYdcAjn0dCy/ye+MHS2gpSUu+4lGMYlFe8GZesrLQU7FpjsXE4HDAfePNQlEp+FSIzE+HQzkLoXOfQzgK+r9/dbfjtc19fMwc8/e/cV2NcR1dMchiI727sQWRmQqNjrU/NsbaLvpUg4QQAXfSt4PPWsVeUKj5fcC7uZ94Zj0Uca13NOkOaI4XbEe+eJKWxqvh8vM5JgY22Cfzf6s7bQdsEAcnv7t5rqWkIbUU1PHhYN8kuw5GqUyeGYarbZjbHyY80PfqMWh1KxhHyCSsrK0NqqvC4PVJSUtDQ0Khni4aRlZXFjBkz8OeffyI/Px9Lly7FhAkTBF1UjY2NcfPmTYSHh0NdXR3KysqC1mVz587F4sWLwePxMHr06Pe+l4uLC/766y+MHj0aLBYLqqqqsLGxwalTp7Bt2zZBuSlTpuCPP/7AyJEj8eOPP0JfXx/x8fE4f/48vvzyS6FutQCgqKiIGTNm4Msvv4Samhq0tLSwbt06sNns93eveouWlhbk5OTg4eEBfX19yMrKQllZ+f0bfqBug11w6e9j0DU1gL65MQI8HyEvKweO/XsAADxPXUVBTh5GLJgCFpsNLQPh2a/klRTAkZYSWv7w8h3omhhAVVsdVZVViA4MxQsfP7jPHN/k8ddgsViYNHIkDpw5DUM9PRjo6eHAmdOQ5XLh/lYSdO2mTdBSV8fimTMBVF/gxyRUD0pdUVmJjKwshMdEgycrBwM9PcjzeDA3NhZ6L1muLFQUleosb6xzwV742nUqIjLjEZoWhyHWPaCloIqrodXdOGZ3HQYNeWX8/t+YMe2UNWGlaYSw9NdQ4MphbEdXGKvpCtZXVFUiLkc4QVJUVt06rfbypvQo7gXGdHQRzIjaxcAKyrIK8IuvHtx6gEVXKHHlcf6FFwDgRUoUXMwcMMquLzwjn4MnIws3y27wT4wQdEPtZdIR/dp3wdmge8gtKYCCTPX4c+VVFXUG8m4Kl0J8sLz3BERlJiE84zXcLLpBQ14FN8OfAACmOg6COk8Zf/mcBgD4JYbiix5j4G7ZDQFJkVDlKWKO0zBEZMQLWkb4JYZhhE0vxGQnIyIjAbqK6pjsMBB+Ca/qJO6aytkXnvjGdRoiMhLwKi0WQ//bp6688gEAzHEaDg15ZfzmeRQAoK+sCSstI4SmVe9T4zu6wkRNV7AeAKZ1dkdoWhyS8jLAk5HFaNu+MFfXxzafMyJj+BgsFguTxo/HgWNHYaivDwN9fRw4erT6+zzgzThVa3/+GVqaGlg8vzpB99m4cZi/dCkOHj8Gl5694PXQB0+eP8O+txLqW3ftRO8ePaGjrYWcnFzsO3wYRUVFGObuLihzx9MTKioq0NHWRlRMNDZt346+vXqhe9cP6P5fi6QcazsN7IG7+85D06gddMwM8Or+MxRk56FD3+oxxnzP30ZRTj76zxkLAAi68whK6qpQ1dMCv7IKEU+CEOP/CoMWfiZ4zQCPB3h66R4GzB0HJQ0VFOdVf2ekuTKQlv24m03v0me4G05s+xf65sYwtjSD7637yMnMhrNb9bni2tFzyMvKweRlcwEAPjfuQVVDDVrtqv/2saGR8Lp8E72GvJm9896FG/A4cRFTV8yDqpYG8nOqk0RcWS64crJNEvf4yZ9h47oNsLS2Qgc7W1y5cBlpqWkYMWYUAGDvzt3ITM/A/36oHr93xJhRuHDmPHZu2Y5ho4Yj5MVLXL98FWt+Wi94zWMHj8DS2gp6+nqoqKjEk4ePcfO6B1Z8vVpQxrl3Txw5eBhaOtowNjVBVHgETh8/hSHDhzRJvc6/8MKXLlMQmZGA0PQ4DLaqPk5dC61OJM7qOhTq8sr40+s4gOpzn6Wm4X/nPh7G2PWFsaouNv23Hqjumjq9y2D8du8I0gqyofpfS+eSirJmmQDhdNBdfNd/BsIz4hGSGoNhNr2gpaiGyyHVx9p53UZAU14FG+8dBlA9tIG1lhFepcdBkcvDhI79YKKmi1/+W/+2odbO8IkNapHhJm5GPMU8pxGIy0lBdGYS+po5QI2nJJjBdaydC1TlFPHv0ytC2/U26YTorCSR44YGpUTBzcIJ8TlpiMlOgpaCKkbZ9kFgcmS93Xhbipw0V6hVt56SBtpr6CO/tAhphTlijIyQd6NkHCGfMA8PD+jqCl8oWFpaCmYC/Vjm5uYYM2YMhgwZguzsbAwZMgS7du0SrJ83bx68vLzQpUsXFBYWwtPTEy4uLgCASZMmYfny5Zg8eTJkZd//w9fV1RWbN28WbA8Affv2RWBgoFALNh6Ph/v37+Prr7/GmDFjUFBQgHbt2qF///71tpTbvHkzFixYgGHDhkFJSQlfffUVEhISGhRXDSkpKWzbtg0//vgj1q5di969ewtmgG1KNt0dUFxQBJ8LN1GYmw9NfV189uV8KGtUt7wozM1HXuaH/SCpKCuHx8GzKMjOg5SMNNT1tDBy4VTYdG+emUhrzBg7DmVl5fj1710oKCyEraUldvy4QajFTWpGBtjsN0nRjOxsTFm6VPD8yPnzOHL+PBxt7bD3V+FWZc3NOyYASrLymOo4CGo8ZcRlp+C7G3uQ/t8PQnWeErQU3nS347DYGNfRFfoqWqjiVyEwORLLLm1ttu6bDfUyNQZy0ly4mDtCkctDekE2jj73QF5pddc2RS4PynJvusGUV1Xi0LPrGGrdA5/3GI2S8lK8TI3B3chngjJdDW0gxebgMwfhAcM9o57DM6ruTMWN9TAuGEpcHiba94eqnCLic1Kx4c5BQQsGNZ4SNBVUBOXvRT2HnBQXQ6x6YFbXoSgqL0VwSjQOP78hKHM66B4YhsEUBzeo8ZSRX1oEv4RQHAu42eTx1/CKDoASVx7TOr/Zp769sbvefYrNYmNcx34wUNZCJb8KQcmRWHJxi9A+pSAjh5V9PoMqTwlF5SWIykzEiit/ITzj3bNpfqgZkyajrKwMv27ZXP19trbGjj83CX+f09OEvs+dbO3w89p1+Hvfv9i9bx/09fTwy/r1sLV504orLSMD3/34A3Lz8qCqogJbGxsc+Hs3dN8alzQzKwtbdu5AVk4ONNTVMXTQIMydPqNR9ZGUY615VzuUFpbg+VUvFOUVQE1PC0OXToWiugoAoDi3AIXZeYLy/MoqPDpzE0W5+ZCSloaqniaGLJ0KI7s3k6GEePmBX1mFW7tPCb1Xl+Eu6DqiH5qaQy8nFBcU4vbpK8jPyYOuYTvM/W4Z1LSqbyjm5+QiN/PNPs/wGVw/eg7Z6ZlgczhQ19bE0Klj0d3tzW+FRx6eqKqsxKE/hMfTdZswAoM+G9kkcfcb2B/5eXk4tO8gsjOzYGJmgt+2/AEd3ep9NyszC2lpaYLyuu308OvWP7Bzy3ZcPHse6hoaWLJqOfr2cxGUKSkpwZbfNyEjPR1cLheGRkb47se16Dewv6DMstUrsG/PP9j6+ybk5ORAQ0MDw0ePwIy5H9/q/G33YwKhxJXHFMdBUOUp4XV2CtZ47BUcp9R4StCSf/s4xcIYOxfBuS8oOQorL/8llDwZbtMTMhwprBkoHOPR5x446t/0x1zPaH8oy8pjeufBUJdXQmx2Cr6+tktw7FTnKdc6f7MwsVN/GKhUT14UkByBRRc2IbVA+Pytr6yFjrrmWHXl3T0+mopfQigUZOQwwqYXlGUVkJSXga0PTglmR1WWVajTHVdOmovO+lY4EXhb5GteeeUDhmEw2rYPVOUUUVBWjKCUKJx74dXMtXk/K00j7Bj9ZqiXpb2qb2RcD32Mn+8dEldYhLwXixF3KpsQIlHWr1+PixcvIjAw8KO2T0hIgLGxMfz8/ODo6Pj+DVpQUVER2rVrh02bNmHOR3Zz+lCH/a63yPs0p+ldh6AgMkrcYTSKYntzDNy77P0FW7nb8//CWo9/xB1Go/zoPg+jDn4j7jAa7eLMX9F/z9L3F2zl7n6+DQWpae8v2Iop6mhLzLF26/1T7y/Yii3vMxFX/2uF1JYN69ALKXlNMyuxOOkqa8L9nxXiDqNRPOZtQd+/F4k7jEbzXrgTs09vFHcYjbJ/wv/Qc+cCcYfRaA8X7RZ3CB8lZ/gkcYdQL9UrJ8QdglhQyzhCSKtQUVGBlJQUfPPNN+jevXurSMQFBAQgLCwMTk5OyMvLw48//ggAGDmyae6OE0IIIYQQQgj59FAyjhDSKjx8+BCurq6wsLDA2bNnxR2OwJ9//onw8HDIyMigc+fOePDgQaPH1COEEEIIIYQQ8umiZBwhpEmtX78e69ev/+DtXFxcxD4AbG0ODg54/vy5uMMghBBCCCGEkI/Xyq6zCMB+fxFCCCGEEEIIIYQQQkhToGQcIYQQQgghhBBCCCEthLqpEkIIIYQQQgghhEgqhi/uCEgt1DKOEEIIIYQQQgghhJAWQsk4QgghhBBCCCGEEEJaCHVTJYQQQgghhBBCCJFUfJpNtbWhlnGEEEIIIYQQQgghhLQQSsYRQgghhBBCCCGEENJCqJsqIYQQQgghhBBCiKRiqJtqa0Mt4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQN1VCCCGEEEIIIYQQSUXdVFsdahlHCCGEEEIIIYQQQkgLoWQcIYQQQgghhBBCCJEYP//8M3r06AEejwcVFZUGbcMwDNavXw89PT3IycnBxcUFISEhQmXKysqwZMkSaGhoQF5eHiNGjEBiYuIHx0fJOEIIIYQQQgghhBBJxee33kczKS8vx/jx47Fw4cIGb/P7779j8+bN2LFjB/z8/KCjo4OBAweioKBAUGb58uW4cOECTp48CR8fHxQWFmLYsGGoqqr6oPhozDhCCCGEEEIIIYQQIjF++OEHAMDBgwcbVJ5hGGzduhXfffcdxowZAwA4dOgQtLW1cfz4cXz++efIy8vDvn37cOTIEQwYMAAAcPToURgYGODOnTsYNGhQg+OjlnGEEEIIIYQQQgghpMWVlZUhPz9f6FFWVtbiccTGxiI1NRVubm6CZVwuF3379sWjR48AAM+fP0dFRYVQGT09Pdja2grKNBhDCCHkk1RaWsqsW7eOKS0tFXcoH00S6sAwVI/WRBLqwDCSUQ9JqAPDUD1aE0moA8NIRj0koQ4MQ/VoTSShDp+qdevWMQCEHuvWrWuy1z9w4ACjrKz83nIPHz5kADBJSUlCy+fNm8e4ubkxDMMwx44dY2RkZOpsO3DgQGb+/PkfFBeLYWiOW0II+RTl5+dDWVkZeXl5UFJSEnc4H0US6gBQPVoTSagDIBn1kIQ6AFSP1kQS6gBIRj0koQ4A1aM1kYQ6fKrKysrqtITjcrngcrl1yq5fv17Q/bQ+fn5+6NKli+D5wYMHsXz5cuTm5r5zu0ePHqFnz55ITk6Grq6uYPm8efOQkJAADw8PHD9+HLNmzaoT78CBA2FmZobdu3e/8z3eRmPGEUIIIYQQQgghhJAWV1/iTZTFixfjs88+e2cZY2Pjj4pDR0cHAJCamiqUjEtPT4e2tragTHl5OXJycqCqqipUpkePHh/0fpSMI4QQQgghhBBCCCGtmoaGBjQ0NJrltU1MTKCjo4Pbt2/DwcEBQPWMrN7e3vjtt98AAJ07d4a0tDRu376NCRMmAABSUlLw8uVL/P777x/0fpSMI4QQQgghhBBCCCESIz4+HtnZ2YiPj0dVVRUCAwMBAObm5lBQUAAAWFlZ4ZdffsHo0aPBYrGwfPlybNy4Ee3bt0f79u2xceNG8Hg8TJ48GQCgrKyMOXPmYNWqVVBXV4eamhpWr14NOzs7weyqDUXJOEII+URxuVysW7euwc3CWyNJqANA9WhNJKEOgGTUQxLqAFA9WhNJqAMgGfWQhDoAVI/WRBLqQJrW2rVrcejQIcHzmtZunp6ecHFxAQCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KBbt264desWFBUVBWW2bNkCKSkpTJgwASUlJejfvz8OHjwIDofzQfHRBA6EEEIIIYQQQgghhLQQtrgDIIQQQgghhBBCCCHkU0HJOEIIIYQQQgghhBBCWggl4wghhBBCCCGEEEIIaSGUjCOEEEIIIYQQQgghpIVQMo4QQkibxDAMaA4i0lSioqJw8+ZNlJSUAADtW2JWWloq7hCahKTUgxBCWpt+/fohNze3zvL8/Hz069ev5QMi5APRbKqEEPKJKCsrw9OnTxEXF4fi4mJoamrCwcEBJiYm4g7tgxw+fBh//PEHIiMjAQAWFhb48ssvMW3aNDFH1nBVVVXYsmULTp8+jfj4eJSXlwutz87OFlNkHy4xMRGXL18WWY/NmzeLKaqGy8rKwsSJE3Hv3j2wWCxERkbC1NQUc+bMgYqKCjZt2iTuEBssISFB6PvdoUMHcLlccYfVYHw+Hz///DN2796NtLQ0REREwNTUFGvWrIGxsTHmzJkj7hAbRFLq0db3p7y8PFy4cAEPHjyoc94bNGgQevToIe4QG0RS6kFIU2Oz2UhNTYWWlpbQ8vT0dLRr1w4VFRViioyQhpESdwCEEEKa16NHj7B9+3ZcvHgR5eXlUFFRgZycHLKzs1FWVgZTU1PMnz8fCxYsgKKiorjDfafNmzdjzZo1WLx4MXr27AmGYfDw4UMsWLAAmZmZWLFihbhDbJAffvgB//77L1auXIk1a9bgu+++Q1xcHC5evIi1a9eKO7wGu3v3LkaMGAETExOEh4fD1tYWcXFxYBgGjo6O4g6vQVasWAEpKSnEx8fD2tpasHzixIlYsWJFq0/GvX79Grt378aJEyeQkJAg1KJPRkYGvXv3xvz58zF27Fiw2a27Q8RPP/2EQ4cO4ffff8e8efMEy+3s7LBly5Y2k8Rqy/WQhP0pJSUFa9euxbFjx6CjowMnJyfY29sLznuenp74888/YWRkhHXr1mHixIniDlkkSalHbX5+fjhz5ozIGzjnz58XU1QfTlLq0RYFBwcL/v/q1SukpqYKnldVVcHDwwPt2rUTR2iEfBiGEEKIxBoxYgSjq6vLrFq1ivH29maKioqE1kdHRzMHDx5kBg0axOjo6DC3bt0SU6QNY2xszBw6dKjO8oMHDzLGxsZiiOjjmJqaMlevXmUYhmEUFBSYqKgohmEY5q+//mImTZokztA+SNeuXZk1a9YwDFNdj+joaKagoIAZMWIEs2vXLjFH1zDa2tpMYGAgwzBv6sAwDBMTE8PIy8uLM7T3Wrp0KaOoqMiMHTuWOXToEBMaGsrk5+czFRUVTFpaGnP37l1m/fr1jKWlJdOhQwfm6dOn4g75nczMzJg7d+4wDCP8WYSGhjIqKiriDO2DtNV6SMr+pKmpyaxatYp58eJFvWWKi4uZ48ePM05OTswff/zRgtE1nKTU420nTpxgpKWlmaFDhzIyMjLMsGHDGEtLS0ZZWZmZOXOmuMNrsLZcj0uXLjX40VqxWCyGzWYzbDabYbFYdR48Ho/Zt2+fuMMk5L0oGUcIIRJsx44dTFlZWYPKvnz5stUn47hcLhMZGVlneUREBMPlcsUQ0cfh8XjM69evGYZhGB0dHeb58+cMw1QnR5WUlMQZ2gd5O5GooqLCvHz5kmEYhgkMDGSMjIzEGFnDKSgoMBEREYL/1yROnj59yqipqYkztPdavXo1k55bMlIvAAC8QUlEQVSe3qCy165dY86cOdPMETWOrKwsExcXxzCM8GcREhLS6hOjb2ur9ZCU/amhdfjY8i1FUurxNjs7O2bHjh0Mw7z5bvD5fGbevHnM2rVrxRxdw7XletROXNVOaNUkudhstrhDrVdcXBwTGxvLsFgsxs/Pj4mLixM8kpOTmcrKSnGHSEiDtM725YQQQprEokWLICMj06CyHTp0wMCBA5s5osYxNzfH6dOn6yw/deoU2rdvL4aIPo6+vj5SUlIAVNfp1q1bAKq7vbSlMZnk5eVRVlYGANDT00N0dLRgXWZmprjC+iB9+vTB4cOHBc9ZLBb4fD7++OMPuLq6ijGy9/vjjz+gqanZoLJDhgzBuHHjmjmixunQoQMePHhQZ/mZM2fg4OAghog+Tluth6TsTw2tw8eWbymSUo+3RUdHY+jQoQAALpeLoqIisFgsrFixAnv37hVzdA3XluvB5/MFj1u3bsHe3h43btxAbm4u8vLycP36dTg6OsLDw0PcodbLyMgIxsbG4PP56NKlC4yMjAQPXV1dcDgccYdISIPQmHGEEPIJKi0txalTp1BUVISBAwe2mUTWDz/8gIkTJ+L+/fvo2bMnWCwWfHx8cPfuXZFJutZq9OjRuHv3Lrp164Zly5Zh0qRJ2LdvH+Lj49vMuHcA0L17dzx8+BA2NjYYOnQoVq1ahRcvXuD8+fPo3r27uMNrkD/++AMuLi549uwZysvL8dVXXyEkJATZ2dl4+PChuMN7r++//x79+vVDjx49ICsrK+5wGmXdunWYNm0akpKSwOfzcf78eYSHh+Pw4cO4evWquMNrMEmpx9u8vb1RVFQEZ2dnqKqqijuc94qKikJeXh46d+4sWHb37l389NNPKCoqwqhRo/C///1PjBE2jKTUo4aamhoKCgoAAO3atcPLly9hZ2eH3NxcFBcXizm6hpOUeixfvhy7d+9Gr169BMsGDRoEHo+H+fPnIzQ0VIzRNUxERAS8vLyQnp4OPp8vtK4tjcFLPlHibppHCCGkea1evZpZunSp4HlZWRljb2/PSEtLM8rKyoy8vDzz6NEjMUb4YZ49e8ZMmTKFcXR0ZBwcHJgpU6Yw/v7+4g6rUR4/fsxs2rSpVY/RIkp0dDQTFBTEMAzDFBUVMQsXLmTs7OyY0aNHC7rptQUpKSnM2rVrmaFDhzKDBw9mvvvuOyY5OVncYTWIqakpw2KxGC6Xy/Tp04dZt24d4+3t3eDu6a2Nh4cH06dPH0ZeXp6Rk5Njevbsydy8eVPcYX2wtlqP33//XaibHZ/PZwYNGiTowqatrS3ojt6ajRo1ivn+++8Fz2NiYhg5OTnGzc2NWbp0KaOgoMBs2bJFfAE2kKTUo8akSZOYTZs2MQzDMD/99BOjqanJzJ07lzEyMmJGjx4t5ugaTlLqISsrywQHB9dZHhQUxMjKyoohog+zd+9ehsPhMNra2kynTp0Ye3t7wcPBwUHc4RHyXiyGeWuaJEIIIRLH1tYWGzduxIgRIwAABw4cwKpVqxAQEABDQ0PMnj0b6enpuHbtmpgjJYR8jKSkJNy7dw9eXl7w8vJCbGws5OTk4OzsDFdXV7i6uqJHjx7iDpO0AY6Ojvj6668FM3OeOXMGM2bMwO3bt2FtbY3p06eDx+O1+pbIBgYGOH36NJydnQFUz3B79uxZBAYGAgD27duH7du3C563VpJSjxrZ2dkoLS2Fnp4e+Hw+/vzzT/j4+MDc3Bxr1qxpE60uAcmpR58+fSAtLY2jR49CV1cXAJCamopp06ahvLwc3t7eYo7w3YyMjPDFF1/g66+/FncohHwUSsYRQoiEU1JSgr+/P8zNzQEAkyZNgqKiomBck8DAQAwZMgTJycniDPODpKeni+yS0LFjRzFF9H6XL19ucNmaxClpHsHBwbC1tQWbzUZwcPA7yyooKMDAwADS0tItFF3jJSQkwNPTE15eXjh37hyKiopQWVkp7rDea9asWZg6dSr69esHFosl7nA+Wluuh6qqKh49egRra2sA1XWprKzEkSNHAAC+vr4YP348EhISxBnme8nJySEiIgIGBgYAgP79+6NHjx7YsGEDgOoxvzp37ozc3FwxRvl+klIPAKisrMSxY8cwaNAg6OjoiDscgupu0KNHj0Z4eDgMDQ0BAPHx8bCwsMDFixcFvxtbKyUlJQQGBsLU1FTcoRDyUWjMOEIIkXBsNhtv33fx9fXFmjVrBM9VVFSQk5MjjtA+2PPnzzFjxgyEhoai9r0kFouFqqoqMUX2fqNGjWpQudZeD1VV1QYnGLKzs5s5mo9jb2+P1NRUaGlpwd7eHiwWq87+9DZlZWXs3r1b0FqoNYuOjoaXl5egpVxVVVWrn4iiRlZWFoYOHQp1dXV89tlnmDp1aque8KA+bbkeFRUVQpPIPH78GMuWLRM819PTaxOTs6ipqSElJQUGBgbg8/l49uyZ0Hic5eXl7/zOtxaSUg8AkJKSwsKFC9vEOGSi5OfnN7iskpJSM0bSdMzNzREcHIzbt28jLCwMDMPAxsYGAwYMaBM3EsaPH49bt25hwYIF4g6FkI9CyThCCJFwVlZWuHLlClauXImQkBDEx8cLXZy/fv0a2traYoyw4WbNmgULCwvs27cP2trabeLHYo3arfjaqq1bt4o7hEaLjY0VzDwYGxv7zrJlZWU4c+aMUNe91iQ2Nhaenp6ClnB5eXno2bMn+vbti8WLF6Nr166QkmobP/cuX76M3NxcnD59GsePH8fWrVthaWmJqVOnYvLkyTA2NhZ3iA3Sluthbm6O+/fvw9TUFPHx8YiIiEDfvn0F6xMTE6Guri7GCBumb9++2LBhA3bt2oUzZ86Az+cLnfdevXrVqj+HGpJSjxrdunVDQEAAjIyMxB3KB1NRUWnwb47WfEOtNhaLBTc3N7i5uYk7lAbZtm2b4P813YJ9fX1hZ2dXpwX70qVLWzo8Qj4IdVMlhBAJd+7cOUyaNAm9e/dGSEgIunbtiitXrgjWf/3114iNjW31YwABgKKiIgICAlp91wkiWXJycjBnzhycP39e3KHUwWazYWhoiC+++AKurq5wdHQEh8MRd1hNIjExESdOnMD+/fsRGRnZJrraitKW6rFnzx6sWrUKEydOhK+vL1RUVIRmFf7pp5/w5MkToXNIaxQbG4uBAwciNjYWbDYb27Ztw8KFCwXrR40aBRMTE2zZskWMUb6fpNSjxpkzZ/DNN99gxYoV6Ny5M+Tl5YXWt+ahJt4ePy0uLg7ffPMNZs6cKRjP7/Hjxzh06BB++eUXzJgxQ1xhfrCioiJ4e3sjPj4e5eXlQutaYzLLxMSkQeVYLBZiYmKaORpCGoeScYQQ8gm4c+cOrl27Bh0dHSxZsgQ8Hk+w7ocffoCLi4tQ64fWatSoUZg2bRrGjh0r7lAara39AH6fkpISVFRUCC1rK111AKC4uFjkZ9GaLw4BYOLEibh//z5KS0vRu3dv9O3bF66urnBwcGhTLUdrq6iowLVr13D06FFcu3YNampqSEpKEndYH6wt1mPfvn24evUqdHR0sG7dOqHxvb744gsMGDAAY8aMEWOEDVNRUYFXr15BU1MTenp6QuuCgoJgYGAANTU1MUXXcJJSD6D65kFtNcMEtPYhGt7Wv39/zJ07F5MmTRJafvz4cezduxdeXl7iCewDBQQEYMiQISguLkZRURHU1NSQmZkJHo8HLS0tSmYR0swoGUcIIQSBgYGwt7cXdxjvlZmZiRkzZsDJyQm2trZ1uiS0lYkPJOUHcFFREb7++mucPn0aWVlZdda3hQurjIwMzJo1Czdu3BC5vi3UAQDCwsIEXVW9vb1RWlqKXr16oW/fvnBxcUHXrl3FHWKDeHp64vjx4zh37hyqqqowZswYTJkyBf369RN5Id9aSUo9RMnIyBB0826rXrx4gX379rX5bvdtrR6vX79+5/q20n2Vx+MhKCgI7du3F1oeEREBe3t7FBcXiymyD+Pi4gILCwv8/fffUFFRQVBQEKSlpTF16lQsW7asTSTdCWnLKBlHCCGfqLy8PBw7dgz79u1DYGBgm0g6XL58GdOmTUNBQUGddW3prrqk/ABetGgRPD098eOPP2L69OnYuXMnkpKSsGfPHvz666+YMmWKuEN8rylTpiAuLg5bt26Fq6srLly4gLS0NPz000/YtGkThg4dKu4QP8qrV69w/PhxbN++vc3Mpqqvr4+srCwMGjQIU6ZMwfDhwyErKyvusD6YpNTjbQzD4MaNG4JWc2VlZeIO6YPl5+fjxIkT2LdvH549e4aOHTsiMDBQ3GF9MEmpR1tmaWmJYcOGYdOmTULLV61ahatXryI8PFxMkX0YFRUVPHnyBJaWllBRUcHjx49hbW2NJ0+eYMaMGQgLCxN3iO+0cuVKkctZLBZkZWVhbm6OkSNHtpmWo+TT0zZG9CWEENJk7t27h/379+P8+fMwMjLC2LFj8e+//4o7rAZZunQppk2bhjVr1rSZSSdECQwMxJ49e8DhcMDhcFBWVgZTU1P8/vvvmDFjRptJxl25cgWHDx+Gi4sLZs+ejd69e8Pc3BxGRkY4duxYm0jG3bt3D5cuXULXrl3BZrNhZGSEgQMHQklJCb/88kubSsalpaXBy8sLXl5e8PT0REREBLhcLnr37i3u0Bpk7dq1GD9+PFRVVcUdSqNISj0AICYmBvv378ehQ4dQWFiIoUOH4uTJk+IO64N4e3tj3759OHfuHEpLS/Hll1/i+PHjbW7sUUmox+HDh9+5fvr06S0USeNs2bIFY8eOxc2bN9G9e3cA1TPVR0dH49y5c2KOruGkpaUFwxloa2sjPj4e1tbWUFZWRnx8vJije7+AgAD4+/ujqqoKlpaWYBgGkZGR4HA4sLKywq5du7Bq1Sr4+PjAxsZG3OESUgcl4wgh5BOQmJiIgwcPYv/+/SgqKsKECRNQUVGBc+fOtakfKFlZWVixYkWbTsQBbf8HcI3s7GzBYMpKSkrIzs4GAPTq1UtokPHWrKioCFpaWgAANTU1ZGRkwMLCAnZ2dvD39xdzdO935swZQffU8PBwSElJwcnJCRMmTICrqyt69OgBLpcr7jAbZP78+eIOoUm09XqUlpbi7Nmz+Pfff+Hr64uBAwciJSUFgYGBsLW1FXd4DZKSkoIDBw4IznmTJk2Ct7c3nJ2dMX369DaTwJKUetRYtmyZ0POKigoUFxdDRkYGPB6vzSTjhgwZgsjISPz9998IDQ0FwzAYOXIkFixYAAMDA3GH12AODg549uwZLCws4OrqirVr1yIzMxNHjhyBnZ2duMN7r5pWbwcOHBCMUZufn485c+agV69emDdvHiZPnowVK1bg5s2bYo6WkLooGUcIIRJuyJAh8PHxwbBhw7B9+3a4u7uDw+Fg9+7d4g7tg40ZMwaenp4wMzMTdyiN0tZ/ANcwNTVFXFwcjIyMYGNjg9OnT8PJyQlXrlyBioqKuMNrEEtLS4SHh8PY2Bj29vbYs2cPjI2NsXv3bujq6oo7vPeaMmUKunTpgtGjR8PV1RU9e/aEnJycuMP6aH5+fjhz5ozIyTRa42y29Wmr9fjiiy9w8uRJWFpaYurUqTh37hzU1dUhLS3dpsa6MzExwfjx47Fz504MHDiwTcX+NkmpR42cnJw6yyIjI7Fw4UJ8+eWXYojow1VUVMDNzQ179uzBzz//LO5wGmXjxo2CYT82bNiAGTNmYOHChTA3N8eBAwfEHN37/fHHH7h9+7bQZFFKSkpYv3493NzcsGzZMqxduxZubm5ijJKQ+lEyjhBCJNytW7ewdOlSLFy4sM5gw22NhYUFvv32W/j4+MDOzq7OBA5tZRbStv4DuMasWbMQFBSEvn374ttvv8XQoUOxfft2VFZWYvPmzeIOr0GWL1+OlJQUAMC6deswaNAgHDt2DDIyMjh48KB4g2uAnJwcyMvLizuMJnHy5ElMnz4dbm5uuH37Ntzc3BAZGYnU1FSMHj1a3OE1WFuux969e/H111/jm2++gaKiorjD+WhGRkbw8fGBoaEhjIyMYGVlJe6QPoqk1ONd2rdvj19//RVTp05t9WOUAdUt21++fNmmZ6uu0aVLF8H/NTU1cf36dTFG8+Hy8vKQnp5ep4dHRkYG8vPzAVSPi1f7hgghrQUl4wghRMI9ePAA+/fvR5cuXWBlZYVp06Zh4sSJ4g7ro/z7779QUFCAt7c3vL29hdaxWKw2k4xr6z+Aa6xYsULwf1dXV4SFheHZs2cwMzNDp06dxBhZw709rp2DgwPi4uIQFhYGQ0NDaGhoiDGyhqlJxCUlJeHcuXOIiIgAi8VC+/btMXbsWLRr107METbcxo0bsWXLFixatAiKior466+/YGJigs8//7xNtFKs0ZbrcfjwYRw4cAC6uroYOnQopk2bBnd3d3GH9cHCw8Px8OFD7Nu3D127doWFhQWmTp0KAG0qiSIp9XgfDoeD5ORkcYfRYNOnT8e+ffvw66+/ijuUJpGRkYHw8HCwWCxYWlq2iXMfUN1Ndfbs2di0aRO6du0KFouFp0+fYvXq1Rg1ahQA4OnTp7CwsBBvoITUg2ZTJYSQT0RxcTFOnjyJ/fv34+nTp6iqqsLmzZsxe/bsNt0CgpBP3a5du7By5UqUl5dDWVkZDMMgPz8fMjIy2Lx5M7744gtxh9gg8vLyCAkJgbGxMTQ0NODp6Qk7OzuEhoaiX79+ghaMrZ0k1CMuLg4HDhzAwYMHUVxcjOzsbJw6dQrjxo0Td2gfrLCwECdOnMD+/fvx5MkT9O3bF5MnT8aoUaOgqakp7vAaTBLqcfnyZaHnDMMgJSUFO3bsgIGBAW7cuCGmyD7MkiVLcPjwYZibm6NLly51Wie3lZbhRUVFWLJkCY4cOSKYjZ7D4WD69OnYvn07eDyemCN8t8LCQqxYsQKHDx8WzBguJSWFGTNmYMuWLZCXlxfMNGxvby++QAmpByXjCCFEwsXHx8PAwEDoLnp4eDj27duHI0eOIDc3FwMHDqzzI5kQSbVy5coGl23tF1XXrl3DyJEjsXz5cqxatUrQ8iolJQV//PEHtm/fjkuXLmHIkCFijvT9DAwMcP36ddjZ2aFTp0745ptvMGnSJDx+/Bju7u7Iy8sTd4gNIin1AKqTJTdv3sT+/ftx+fJlaGhoYMyYMdi2bZu4Q/sooaGhgnNfdnY2KioqxB3SR2mr9ag95h2LxYKmpib69euHTZs2tfqWozVcXV3rXcdisXDv3r0WjObjff7557hz5w527NiBnj17AgB8fHywdOlSDBw4EH///beYI2yYwsJCxMTEgGEYmJmZQUFBQdwhEdIglIwjhBAJx+FwkJKSIpgx8m1VVVW4cuWK4EKrNVq5ciU2bNgAeXn59yZRWnvihLQO77qQeltbuKjq27cvevfujZ9++knk+u+//x4PHjyo0627NZo8eTK6dOmClStX4ueff8Zff/2FkSNH4vbt23B0dGzVEx+8TVLqUVt2dragG2tQUJC4w2mUyspKXL58GWPGjBF3KI0iKfUg4qGhoYGzZ8/CxcVFaLmnpycmTJiAjIwM8QRGyCeCknGEECLh2Gw2UlNTRSbj2gJXV1dcuHABKioqEnM3mpCmoqSkBD8/P1haWopcHx4eji5duggmDGnNsrOzUVpaCj09PfD5fPz555/w8fGBubk51qxZA1VVVXGH2CCSUo+2LDk5GZs3b8batWuFZloEqgd9/+mnn7B69Wpoa2uLKcKGkZR6SKqoqChER0ejT58+kJOTA8MwbWosPx6Ph+fPn8Pa2lpoeUhICJycnFBUVCSmyOo3ZswYHDx4EEpKSu9NQrfVGx/k00HJOEIIkXBtPRlHSEtoqxdVCgoKCA4Ohqmpqcj1MTEx6NixIwoLC1s4MtIWNaQLN4vFwqZNm1ogmo+3evVq5OfnY+/evSLXL1iwAMrKyvjtt99aOLIPIwn1kKRhAWpkZWVhwoQJ8PT0BIvFQmRkJExNTTFnzhyoqKi0+u9Hjf79+0NdXR2HDx+GrKwsAKCkpAQzZsxAdnY27ty5I+YI65o1axa2bdsGRUVFzJo1651l29Ls9OTTRLOpEkLIJ6BmFtJ3aQszkaalpdXbAiA4OBgdO3Zs4Yga7kPGWGrNn0V+fn6Dy9ZuydEa1XdRNXfu3DZxUdWhQwdcunRJaGbbt128eBEdOnRo4ag+Hp/PR1RUFNLT08Hn84XW9enTR0xRfbi2Wo+AgABxh9AkPDw8sHv37nrXT58+HfPmzWvVSSxAMupRe596/vw5qqqqBK15IyIiwOFw0LlzZ3GE91FWrFgBaWlpxMfHC7UqmzhxIlasWNHqzxs1/vrrL7i7u0NfXx+dOnUCi8VCYGAgZGVlcfPmTXGHJ9LbCTZKtpG2jlrGEUKIhGOz2dDX1weHw6m3DIvFQkxMTAtG9XG0tLTw77//YsSIEULL//zzT6xZswYlJSViiuz9TExMGlSutX8WbDb7vS3GalqV1czO1ppNnz4d6enp+Pfff2FtbY2goCCYmpri1q1bWLFiBUJCQsQd4jsdOnQICxcuxJ9//on58+dDSqr6PmtlZSX27NmDL7/8Ert27cLMmTPFG2gD+Pr6YvLkyXj9+jVq/zxtK/sTIDn1aMvk5eURGhoKQ0NDketrkiitsRve2ySlHjU2b94MLy8vHDp0SNBdOycnB7NmzULv3r2xatUqMUfYMDo6Orh58yY6deoERUVFwXkjNjYWdnZ2baolcklJCY4ePYqwsDAwDAMbGxtMmTIFcnJy4g6tQSorK+Hl5YXo6GhMnjwZioqKSE5OhpKSEk3kQFo9ahlHCCGfgGfPnklEN9Wvv/4aEydOFExbn52djWnTpiEkJASnTp0Sd3jvFBsbK+4QmoSnp6e4Q2hSt27dws2bN6Gvry+0vH379nj9+rWYomq4GTNm4MWLF1i8eDG+/fZbmJmZAQCio6NRWFiIpUuXtolEHFDd5a5Lly64du0adHV120Q3YVHacj28vLzqDOZe2xdffIFdu3a1TEAfSU5ODnFxcfUmseLi4tpEskFS6lFj06ZNuHXrltC4iaqqqvjpp5/g5ubWZpJxRUVF4PF4dZZnZmaCy+WKIaKPJycnh3nz5ok7jI/y+vVruLu7Iz4+HmVlZRg4cCAUFRXx+++/o7S09J2tSglpDSgZRwghpM1YtWoVBgwYgKlTp6Jjx47Izs5G9+7dERwc3CYHsC4vL0dsbCzMzMwELZpau759+4o7hCYlCRdVf/75J8aNG4cTJ04gMjISQHVXyM8++wzdu3cXc3QNFxkZibNnz8Lc3FzcoTRKW67HyJEj4enpCUdHR5HrFy1ahGPHjrX6ZFy3bt1w5MiRersEHz58GE5OTi0c1YeTlHrUyM/PR1paWp2u8+np6W1ikpkaffr0weHDh7FhwwYA1S1e+Xw+/vjjjwbP1i0uly9fbnDZ2r0QWptly5ahS5cuCAoKgrq6umD56NGjMXfuXDFGRkgDMYQQQiQai8Vi0tLS3lnm6NGjLRRN4+Xn5zMTJ05kpKSkGCkpKebgwYPiDumDFRUVMbNnz2Y4HA7D4XCY6OhohmEYZsmSJcwvv/wi5ug+zP3795kpU6Ywzs7OTGJiIsMwDHP48GHmwYMHYo6sYYYMGcJ8//33DMMwjIKCAhMTE8NUVVUx48ePZ8aOHSvm6N7vhx9+YIqKisQdRpNwdXVlbty4Ie4wGq0t12PlypWMlpYWEx4eXmfdokWLGAUFBeb+/ftiiOzD3Lt3j+FwOMyqVauY1NRUwfLU1FRm5cqVDIfDYe7evSvGCBtGUupRY9q0aYyhoSFz5swZJiEhgUlISGDOnDnDGBsbM9OnTxd3eA0WEhLCaGpqMu7u7oyMjAwzbtw4xtramtHW1maioqLEHd47sVisBj3YbLa4Q30vdXV1JiwsjGGY6vN3zW+p2NhYRk5OTpyhEdIglIwjhBAJZ2VlxSQnJ9e7/tixY4y0tHQLRvTxfHx8GGNjY6Zz587Mq1evmH/++YdRVFRkxo8fz2RnZ4s7vAZbunQp07lzZ+bBgweMvLy84AfkpUuXGHt7ezFH13Bnz55l5OTkmLlz5zJcLldQj507dzKDBw8Wc3QN05YvqhiGYdhs9nuT7W3F+fPnGRsbG+bAgQPMs2fPmKCgIKFHW9HW6zFr1izG0NBQkFxnmOobBfLy8oyXl5cYI/swu3fvZrhcLsNmsxkVFRVGVVWVYbPZDJfLZXbt2iXu8BpMUurBMNU3ohYuXCioD5vNZmRkZJiFCxcyhYWF4g7vg6SkpDBr165lhg4dygwePJj57rvv3vlbizQ9VVVVJiQkhGEY4WTcgwcPGC0tLXGGRkiD0AQOhBAi4VxcXFBSUoJ79+5BXl5eaN3Jkycxffp0/Pbbb/XOxtiacLlcrFixAhs2bIC0tDSA6rGxpk2bhvj4eCQmJoo5woYxMjLCqVOn0L17d6HBn6OiouDo6PhBM5aKk4ODA1asWIHp06cL1SMwMBDu7u5ITU0Vd4gNkpqair///hvPnz8Hn8+Ho6MjFi1aBF1dXXGH9l5sNhupqakSMSYkm82us4zFYrWpCUGAtl8PPp+PcePGITQ0FA8ePMDPP/+MvXv34urVq62+C16NiooKSEtLIykpCadPn0ZUVBQYhoGFhQXGjRsHfX19vHz5Era2tuIO9Z0kpR61FRUVITo6GgzDwNzcvM5vE9IyYmNjGzy5VGs0ceJEKCsrY+/evVBUVERwcDA0NTUxcuRIGBoa0myrpNWjZBwhhEi4wsJCuLi4QEVFBTdu3BAksU6fPo2pU6di48aNWL16tZijbBhvb2+RY5bx+Xz8/PPPWLNmjRii+nA8Hg8vX76EqampUBIrKCgIffr0QV5enrhDbBAej4dXr17B2NhYqB4xMTGwsbFBaWmpuEOUeGw2G2lpadDU1BR3KI32vgkzjIyMWiiSxpGEepSXl2Po0KEICgpCUVERLl++jP79+4s7rAYbN24czpw5U+/kGS9fvkT//v2RlpbWwpF9GEmph6S5f//+O9fXN8Zfa8PhcNCnTx/MmTMH48aNg6ysrLhD+iDJyclwdXUFh8NBZGQkunTpgsjISGhoaOD+/fsScZOKSDZKxhFCyCcgIyMDffr0gY2NDc6ePYuzZ89iypQp2LBhA77++mtxh/fJ6du3L8aNG4clS5YI7uaamJhg8eLFiIqKgoeHh7hDbBAzMzPs2bMHAwYMEErGHT58GL/++itevXol7hDfy8PDAwoKCujVqxcAYOfOnfjnn39gY2ODnTt3Cs361xqx2WzY2tq+dwIQf3//FoqItGXbtm0T/L+goAAbNmzAoEGD6iTili5d2tKhfRADAwMMHjwYe/furbMuJCQE/fr1+z97dx5Wc/r+Afx9StqkhbIkaRE1Qin7FlLD2E2GKMkytpK1maEwlmZsiSEkZYvKMhn7UhE1aJWSnCJLEU2hheqc3x9+zteZwimm53w69+u6uq7Ocz5/vD8zdXTu8zz3jb59+yIsLIxBOsnVl/v40I0bNxAWFoacnBy8fftW7LmjR48ySlUzH9v9+p607359LzU1FYGBgThw4ADevHmDcePGwdXVlVNDQUpLSxESEoKEhATRznZHR0dOTRkmsouKcYQQIiMePnyI3r17w9jYGDExMfDy8sIvv/zCOlaNFRcXIzo6uto/5KX9DeJ7165dg729PRwdHREUFIQZM2bg9u3biI2NRXR0NLp06cI6okR+//13BAcHIzAwELa2tjh16hQePHgADw8PeHl5Yc6cOawjfpa5uTl+++03DBkyBLdu3YKVlRUWLFiAS5cuwdTUVOqPucjJyWHBggVo1KjRJ6/z9vauo0Rfhs/nw9fXF+np6eDxeDA1NYW7uzuMjIxYR6sRrt6HJEfWeDwesrKy6iBN7aWnp4t2/Pj4+Iit29jYoGfPnggLC4O8vDzDlJ9XX+7jvfetMQYPHozz589j8ODByMzMRF5eHkaNGiX1r7fv/Xv3enl5ORITE7Fs2TKsXr2aU7tIAaCiogInTpxAUFAQTp8+jbZt28LV1RWTJk2qF7uuCZFaTDrVEUIIqTMfNg4/fPiwUFFRUThu3DhONBXPyckRe5yQkCBs3ry5UE1NTdigQQOhtra2kMfjCVVVVYUGBgaMUtZOSkqK0MnJSfjNN98ITU1NhY6OjsKUlBTWsWrs559/FiorK4smsCkpKYmmk3KBqqqqMDs7WygUCoXe3t6iCarx8fHCZs2aMUwmGUmmJXPFmTNnhA0bNhR27dpV6OHhIZw3b56wa9euQkVFReG5c+dYx5NYfbkPrrt+/bpQTU1N+PvvvwuFQqEwPT1d2Lx5c+Hw4cOFFRUVjNNJrr7ch1AoFJqbmwu3bt0qFAr/13BfIBAIp02bJvTy8mKc7stFR0cLLS0tWceotbKyMuHGjRuFioqKQh6PJ2zYsKFw0qRJUjuYokWLFsLx48cLd+zYUe0EaEKkHe2MI4SQek5OTk6sefj7l/1/fy+NxypWrVqF3NxcbN26FTweD/3794eRkRF27tyJVq1aITk5GaWlpZg4cSI8PDwwevRo1pFlUklJCdLS0iAQCGBmZvbZXVrSREtLCzExMTAzM0Pv3r3h5OSE6dOn4/79+zAzM0NJSQnriJ8kLy+P3NzcetEbx8LCAnZ2dmI7gADA09MT586d48xR2/pyH/XBpUuX8N1332Hx4sXYtWsXLC0tcfToUVHvVK6oL/ehqqqK27dvo02bNmjatCkiIyNhbm6O9PR0DBgwALm5uawjfpH09HRYW1vj9evXrKPUyM2bNxEYGIhDhw5BVVUVzs7OcHV1xZMnT+Dl5YVXr17h+vXrrGNWERISgujoaERFReHu3bto1qwZ+vXrh/79+6Nfv34wNTVlHZGQT6JiHCGE1HOfayb+njQ2FS8tLcWcOXOQn5+PiIgIaGhoIC4uDu3bt0erVq0QGxsLPT09xMXFYfLkybhz5w7ryB9VkwmpjRs3/g+TkA8NHz4cb9++Ra9evfDrr78iOzsburq6OHfuHObMmYO7d++yjvhJ9WmaqpKSEm7duoW2bduKrd+9excdO3bkzEAQrt7HoUOH8MMPP0h07cOHD5GTk4NevXr9x6m+3PHjx/H9999j8ODBOH78OOcKWO/Vh/vQ09PDqVOnYG5ujk6dOsHT0xPjx49HbGws7O3tOTO8KCUlReyxUChEbm4ufHx8UF5ejqtXrzJKVjMbN27Enj17kJGRgSFDhmDq1KkYMmSIWE+8e/fuoX379qioqGCY9POePn2KyMhI/PXXXzh8+DAEAoFUfshMyIc+3e2XEEII50ljkU1SysrK2L17Nw4dOgQAUFBQEP2RqKOjgwcPHkBPTw8aGhrIyclhGfWzNDQ0PjoR79+k+Q/Imuw+5EIz7q1bt2LWrFkIDw/H9u3boaurCwA4ffo07O3tGaf7vOzs7HrT00dbWxtJSUlVilhJSUmcKjZy9T62b9+O5cuXw8XFBcOHD6+yq6SoqAhXr17F/v37ceHCBezevZtR0s/T1NSs8np75coVNGvWTGytoKCgLmPVWH25j/f69OmD8+fPw9zcHA4ODnB3d8elS5dw/vx5TvVZ69y5s9jpgve6d++OwMBARqlqbvv27ZgyZQpcXFzQvHnzaq9p3bq1VP+uv379GjExMaIdcomJiTA3N0e/fv1YRyPks6gYRwgh9VhOTg5at24t8fWPHz8WFSOkyfvdGhYWFrhx4wZMTEzQr18//PTTT5g5cyaCg4Nhbm7OOOWnRUZGir6/f/8+PD09MXnyZPTo0QMAEBsbi+DgYKxdu5ZVRImoq6uLvhcKhTh27BjU1dVhZWUFAIiPj0dhYSFnjgy3bt0af/31V5X1TZs2MUhTc8HBwRJd5+Xl9R8n+XLTpk3D9OnTkZWVhZ49e4LH4yEmJga//fYbFixYwDqexLh6H9HR0fjrr7+wZcsW/Pzzz1BVVUWzZs2gpKSEf/75B3l5edDW1oaLiwtSU1OlurDo6+vLOsJXUV/u472tW7eKdob+9NNPUFBQQExMDEaPHo1ly5YxTie57OxsscdycnLQ1taGkpISo0S1k5mZ+dlrGjZsCGdn5zpIU3PdunVDSkoKOnTogP79++Pnn39Gnz59oKGhwToaIRKhY6qEEFKPNWvWDMOHD8e0adM+Oqq+qKgIoaGh2Lx5M2bMmIG5c+fWcUrJ3bx5Ey9fvsSAAQNQUFCAyZMnIyoqCkZGRggKCkKnTp1YR5TIwIEDMXXqVIwfP15s/eDBg9i5cyeioqLYBKuhJUuWoKCgAP7+/qJpfpWVlZg1axYaN26MdevWMU74eZ/bUVmTYjYLcnJyaNmyJXR0dKrs0niPx+Nxok+ZUCiEr68vNmzYgCdPngAAWrZsiUWLFsHNzU3inaWs1Yf7ePHiBWJiYnD//n2UlpaiadOmsLCwgIWFhdgRNkJkyaVLlzBnzhzExcVVaSdRVFSEnj17wt/fH3369GGUsHZKSkqqnVDfsWNHRokko6WlBR6Ph0GDBqF///7o378/9YkjnELFOEIIqccKCgqwZs0aBAYGQkFBAVZWVmjZsqVop0NaWhpu374NKysrLF26FN9++y3ryDJBRUUFycnJ1faU6ty5s9QPDXhPW1sbMTExaNeundh6RkYGevbsiRcvXjBKJrn3A04+RpqPDAPAkCFDEBkZCTs7O0yZMgVDhw4VFUa5pKKiAgcOHICdnR2aN2+OV69eAQDU1NQYJ6uZ+nIfsuT9cCOu48J9fKx3Ko/Hg6KiIho2bFjHiWpm+PDhsLGxgYeHR7XP+/n5ITIyEseOHavjZLWTn5+PyZMn48yZM9U+L+3//gHv+vdFRUUhOjoaV65cgZycHPr16wcbGxv8+OOPrOMR8kn00RYhhNRjWlpaWL9+PZ48eYLt27fDxMQEz58/Fx1NcHR0RHx8PK5evUqFuDqkp6cHf3//Kus7duyAnp4eg0S1U1FRgfT09Crr6enpEAgEDBLVXGJiIhISEkRff//9N/z9/WFiYoKwsDDW8T7r1KlTyMrKQrdu3bBo0SK0atUKS5YsQUZGButoNdKgQQPMnDkTb968AfCueMXFAlZ9uQ8uMzU1xcGDB6vs8vm3zMxMzJw5E7/99lsdJauZ+nIfH9LQ0ICmpmaVLw0NDSgrK0NfXx/e3t5S++9HcnLyJ3uJDh48GPHx8XWY6MvMmzcPhYWFiIuLg7KyMs6cOYPg4GC0bdsWERERrONJpGPHjnBzc8ORI0dw+vRpfPvttzh69Chmz57NOhohn0U94wghRAYoKSlh9OjRnOnj9TEvXryAl5cXIiMj8ezZsyp/sHOlifWmTZswZswYnD17Ft27dwcAxMXFgc/n48iRI4zTSc7FxQVTpkzBvXv3xO7Dx8cHLi4ujNNJprqjze93kK5bt44TvzMtWrTATz/9hJ9++gmXL1/Gnj17YG1tDXNzc1y4cAHKysqsI0qkW7duSExM5PTQGaD+3AdX/fHHH1iyZAlmz56NwYMHV7sjPCYmBmlpaZgzZw5mzZrFOnK16st9fCgoKAi//PILJk+ejK5du0IoFOLGjRsIDg7G0qVLkZ+fj/Xr10NRURE///wz67hVPH369JNTbBs0aID8/Pw6TPRlLl26hD///BPW1taQk5ODvr4+bG1t0bhxY6xduxZDhw5lHfGTEhMTERUVhaioKFy5cgWvXr1Cp06d4O7uDhsbG9bxCPksKsYRQgjhjIkTJ4LP58PV1RXNmjWT+iM5HzNkyBBkZmZi+/btSE9Ph1AoxIgRI/Djjz9yamfc+vXr0bx5c2zatAm5ubkA3hWGFi9eLNWN6iVhYmKCGzdusI5RY9bW1rh//z7S0tKQmJiI8vJyzhTjZs2ahQULFuDRo0fo0qULVFVVxZ6X9v5F79WX++CqAQMG4MaNG7h27RoOHz6MgwcPVul95+TkhIkTJ0p1o/f6ch8fCg4OxoYNG+Dg4CBaGz58OMzNzbFjxw5cvHgRrVu3xurVq6WyGKerq4tbt27B2Ni42udTUlLQokWLOk5Ve8XFxaJBLFpaWsjPz4eJiQnMzc050WfU2toaFhYW6NevH6ZNm4a+fftW6eVHiDSjnnGEEEI4Q01NDTExMZwZ1CBL3vcC4tofwv/uYSQUCpGbm4vly5fjzp07SEpKYhOshmJjYxEYGIjQ0FCYmJjAxcUFEyZM4MybdADVDgbg8XiiXlhc6F8E1J/7IORr+1i/1MzMTHTq1AklJSXIzs7GN998I5W9U+fOnYuoqCjcuHGjyuTU0tJSdO3aFTY2NvDz82OUsGasra2xatUq2NnZYeTIkaIdcX5+fggPDwefz2cd8ZNevnzJub85CPkQ7YwjhBDCGe3bt0dpaSnrGKQaXP2DWENDo8oOS6FQCD09PRw6dIhRKsn9/vvv2LNnD168eAFHR0fExMTA3Nycdaxayc7OZh3hq6gv90HI19aqVSvs3r0bPj4+Yuu7d+8W7Qp/8eIFNDU1WcT7rKVLl+Lo0aMwMTHBnDlz0K5dO/B4PKSnp+OPP/5AZWUlfvnlF9YxJTZv3jzRrnZvb2/Y2dlh//79aNiwIYKDgxmn+zyu/t1ByHu0M44QQghn3LhxA56envDy8kKHDh2q9G6hP8xITUVHR4s9lpOTg7a2NoyNjdGggfR/ZiknJ4fWrVvju+++++Qkwo0bN9ZhKlIfPHr0CBEREcjJyakyRIB+nkhtRERE4Pvvv0f79u1hbW0NHo+HGzdu4M6dOwgPD8d3332H7du3IzMzU2p/xh48eICZM2fi7NmzeP82msfjwc7ODtu2bUObNm3YBqwloVCI0tJS3LlzB61bt0bTpk1ZRyKk3qNiHCGEEM7IzMzE+PHjkZiYKLZOx79ITVhaWuLixYvQ1NTEypUrsXDhQqioqLCOVSv9+/f/bO9EHo+HS5cu1VGiL7Nv3z74+/sjOzsbsbGx0NfXh6+vLwwMDDBixAjW8STG9fu4ePEihg8fDgMDA2RkZKBDhw64f/8+hEIhLC0tOfPzRKTPgwcP4O/vj4yMDAiFQrRv3x4zZszgXBHrn3/+wb179yAUCtG2bVup3c33Obt378amTZuQmZkJAGjbti3mzZuHqVOnMk5GSP1HxThCCJEhfD4fvr6+SE9PB4/Hg6mpKdzd3WFkZMQ6mkS6du2KBg0awN3dvdoBDv369WOUjHCJsrIyMjMz0apVK8jLyyMvLw/a2tqsY8m87du3w8vLC/PmzcPq1auRmpoKQ0NDBAUFITg4GJGRkawjSqQ+3EfXrl1hb2+PlStXQk1NDcnJydDR0YGjoyPs7e0xc+ZM1hEJx5SXl2Pw4MHYsWMHTExMWMchAJYtW4ZNmzZh7ty56NGjB4B3/Ue3bt0Kd3d3rFq1inFCQuo3KsYRQoiMOHv2LIYPH47OnTujV69eEAqFuHbtGpKTk3HixAnY2tqyjvhZKioqSExMRLt27VhHIRzWo0cPNGrUCL1798aKFSuwcOFCNGrUqNprvby86jid7DIzM8OaNWswcuRIUQHI0NAQqamp6N+/P54/f846okTqw32oqakhKSkJRkZG0NTURExMDL755hskJydjxIgRuH//PuuIhIO0tbVx7dq1KgMcCBtNmzbFli1bMH78eLH1kJAQzJ07V+pfq6KiotC/f3/WMQipNelvhkIIIeSr8PT0hIeHR5XGyZ6enliyZAkninFWVlZ4+PBhvSjGhYeHIzQ0tNp+TAkJCYxS1Vx0dDTWr18vttty0aJF6NOnD+toHxUUFARvb2/89ddf4PF4OH36dLX94Xg8nlQX43x8fDB37lyoqqp+9tq///4bz58/x9ChQ+sgWe1kZ2fDwsKiyrqioiKKi4sZJKqd+nAfqqqqePPmDQCgZcuW4PP5+OabbwBA6t+gf0xpaSnKy8vF1rjYZ5TL9+Hk5FTtAAfCRmVlJaysrKqsd+nSBRUVFQwS1Yy9vT10dXXh4uICZ2dn0RAQQriCinGEECIj0tPTERoaWmV9ypQp8PX1rftAtTB37ly4u7tj0aJFMDc3rzLAoWPHjoyS1Yyfnx9++eUXODs7488//4SLiwv4fD5u3LiB2bNns44nsf3798PFxQWjR4+Gm5ubaLflwIEDERQUhAkTJrCOWK127dqJJqXKycnh4sWL0NHRYZyq5tLS0qCvr4/vv/8ew4cPh5WVlei4bUVFBdLS0hATE4P9+/cjNzcXe/fuZZz40wwMDJCUlAR9fX2x9dOnT8PMzIxRqpqrD/fRvXt3XL16FWZmZhg6dCgWLFiAW7du4ejRo+jevTvreBIrKSnB4sWLERoaihcvXlR5nit9RuvLfbx9+xYBAQE4f/48rKysqnyQIK1DG+qriRMnYvv27VX+u+/cuROOjo6MUknuyZMn2L9/P4KCgrB8+XIMHDgQrq6uGDly5CcHGhEiLeiYKiGEyAg9PT1s3LgR33//vdh6aGgoFi5ciJycHEbJJCcnJ1dljcfjcW6AQ/v27eHt7Y3x48eLHWPz8vJCQUEBtm7dyjqiRExNTTF9+nR4eHiIrW/cuBG7du1Ceno6o2SyIyUlBX/88QfCwsJQVFQEeXl5KCoqoqSkBABgYWGB6dOnw9nZGYqKiozTftqePXuwbNkybNiwAa6urggICACfz8fatWsREBCAH374gXVEidSH+8jKysLr16/RsWNHlJSUYOHChYiJiYGxsTE2bdpUpdAorWbPno3IyEisXLkSTk5O+OOPP/D48WPs2LEDPj4+nCg4APXnPmxsbD76HJcGzdQXc+fOxd69e6GnpycqssfFxeHhw4dwcnIS+8BT2gulSUlJCAwMREhICAQCARwdHeHq6opOnTqxjkbIR1ExjhBCZMTKlSuxadMmeHp6omfPnuDxeIiJicFvv/2GBQsWYOnSpawjftaDBw8++TxX3iCqqKggPT0d+vr60NHRwfnz59GpUydkZmaie/fu1e58kEaKioq4ffs2jI2Nxdbv3buHDh06oKysjFEy2SMUCpGSkoL79++jtLQUTZs2RefOndG0aVPW0Wpk165dWLVqFR4+fAgA0NXVxfLly+Hq6so4Wc3Ul/vgutatW2Pv3r3o378/GjdujISEBBgbG2Pfvn0ICQnBqVOnWEeUSH25DyJdPlUc/RBXCqVPnjzBzp074ePjgwYNGqCsrAw9evSAv7+/6Jg9IdKEjqkSQoiMWLZsGdTU1LBhwwb89NNPAN71Alq+fDnc3NwYp5MMV4ptn9O8eXO8ePEC+vr60NfXR1xcHDp16oTs7Gxw6TMyPT09XLx4sUox7uLFi9S7pY7xeDx06tSJ87sApk2bhmnTpuH58+cQCAScPD4M1J/7AIDXr19DIBCIrXGlR1lBQQEMDAwAvMtcUFAAAOjduzenJsLWl/t47969e+Dz+ejbty+UlZVFu9tJ3eLCZOfPKS8vx59//onAwEDR8eetW7di/PjxKCgowJIlS/D9998jLS2NdVRCqqBiHCGEyICKigocOHAA48ePh4eHB169egXg3cQ8UvcGDBiAEydOwNLSEq6urvDw8EB4eDhu3ryJ0aNHs44nsQULFsDNzQ1JSUliuy2DgoKwefNm1vEIh3FtR9/HcPU+srOzMWfOHERFRYntcOVaSwBDQ0Pcv38f+vr6MDMzQ2hoKLp27YoTJ05AQ0ODdTyJ1Zf7ePHiBRwcHBAZGQkej4fMzEwYGhpi6tSp0NDQwIYNG1hHJBwyd+5chISEAHjX/+73339Hhw4dRM+rqqrCx8cHbdq0YZSQkE+jY6qEECIjPjwaSdgSCAQQCASiCZ6hoaGifkw//vgjpxoPHzt2DBs2bBD1h3s/TXXEiBGMkxEuqi9Thrl+Hz179gQAuLu7o1mzZlV2LfXr149FrBrbtGkT5OXl4ebmhsjISAwdOhSVlZWoqKjAxo0b4e7uzjqiROrLfTg5OeHZs2cICAiAqampqF/quXPn4OHhgdu3b7OOSDhk4MCBmDp1KsaMGfPRv5sqKipw9epVzrxmEdlCxThCCJERNjY2cHd3x8iRI1lHIYSQKj6cMrxr164qU4ZXr17NOqJE6sN9NGrUCPHx8WjXrh3rKF9VTk4Obt68CSMjI04f6ebqfTRv3hxnz55Fp06dxIYXZWdnw9zcHK9fv2YdkXDI5cuX0bNnT9EHm+9VVFTg2rVr6Nu3L6NkhEiGjqkSQoiMmDVrFhYsWIBHjx6hS5cuUFVVFXu+Y8eOjJLJpitXrmDHjh3g8/kIDw+Hrq4u9u3bBwMDA/Tu3Zt1PIkYGhrixo0baNKkidh6YWEhLC0tkZWVxSjZp2lqakrcn+h9byby39u2bRt27tyJ8ePHIzg4GIsXLxabMswV9eE+rK2t8fDhw3pXjGvdujVat27NOsYX4+p9FBcXQ0VFpcr68+fPpX7aM5E+NjY2yM3NrdKTs6ioCDY2Npw5Tk9kFxXjCCFERowbNw4AxIY18Hg8zvUAAoD4+Hikp6eDx+PB1NQUlpaWrCPVyJEjRzBp0iQ4OjoiMTERb968AQC8evUKa9as4cxkvPv371f7c/PmzRs8fvyYQSLJ+Pr6so7wn+FyY/ScnBzR8UhlZWVRb8tJkyahe/fu2Lp1K8t4EqsP9xEQEIAff/wRjx8/RocOHaCgoCD2vDR/eOPn5yfxtdI8vMjPzw/Tp0+HkpLSZ+9Jmu/jQ3379sXevXvx66+/Anj3N4hAIMC6desknuxJyHsf+/ftxYsXVT5wJkQaUTGOEEJkRHZ2NusIX+zZs2f44YcfEBUVBQ0NDQiFQtEnoIcOHYK2tjbriBJZtWoV/P394eTkhEOHDonWe/bsiZUrVzJMJpmIiAjR92fPnoW6urrocWVlJS5evCjVDZOdnZ1ZR/jqXrx4gXHjxuHSpUucbYxeX6YM14f7yM/PB5/Ph4uLi2iNKx/ebNq0Sexxfn4+SkpKRIMOCgsLoaKiAh0dHakuYm3atAmOjo5QUlKqck8f4vF4Un0fH1q3bh369++Pmzdv4u3bt1i8eDFu376NgoICXL16lXU8whHvB13xeDxMnjxZbFdlZWUlUlJSRB+IECLNqBhHCCEyoj4Mbpg7dy5evnyJ27dvw9TUFACQlpYGZ2dnuLm5iaZqSbuMjIxqe5k0btwYhYWFdR+oht73HeTxeFUKWwoKCmjTpg0nij/v8fl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjScTDwwMNGjRATk6O6HcDeLcj1sPDgxP/P+rLlOH6cB9TpkyBhYUFQkJCqh3gIM0+/ODp4MGD2LZtG3bv3i06cpuRkYFp06ZhxowZrCJK5MP7qA8fpgGAmZkZUlJSsH37dsjLy6O4uBijR4/G7Nmz0aJFC9bxCEe8/wBQKBRCTU0NysrKoucaNmyI7t27Y9q0aaziESIxGuBACCEyZN++ffD390d2djZiY2Ohr68PX19fGBgYcGL6pbq6Oi5cuABra2ux9evXr2Pw4MGcKGQBgJGREXbs2IFBgwaJNbHeu3cvfHx8kJaWxjqiRAwMDHDjxg00bdqUdZRai46OxrfffotevXrh8uXLSE9Ph6GhIX7//Xdcv34d4eHhrCNKpD40Rq8vU4brw32oqqoiOTkZxsbGrKN8ESMjI4SHh8PCwkJsPT4+HmPHjuVkkev9WzcuFUgJ+S+sWLECCxcupCOphLPkWAcghBBSN7Zv34758+djyJAhKCwsFB0z0tDQ4EwPLYFAUKV3EfBuN5ZAIGCQqHZmzJgBd3d3/P333+DxeHjy5AkOHDiAhQsXYtasWazjSSw7O5vThTgA8PT0xKpVq3D+/HmxIomNjQ1iY2MZJquZ+tAYXU5OTmwqnoODA/z8/ODm5saJAtZ79eE+BgwYgOTkZNYxvlhubi7Ky8urrFdWVuLp06cMEtXe7t270aFDBygpKUFJSQkdOnRAQEAA61g1YmBggGXLliEjI4N1FFIPeHt7Q1VVFc+ePcOVK1cQExODZ8+esY5FiMSoGEcIITJiy5Yt2LVrF3755RfIy8uL1q2srHDr1i2GySQ3YMAAuLu748mTJ6K1x48fw8PDAwMHDmSYrGYWL16MkSNHwsbGBq9fv0bfvn0xdepUzJgxA3PmzGEdT2Jubm7VNhbfunUr5s2bV/eBauHWrVsYNWpUlXVtbW28ePGCQaLaed8Y/T1qjE6+xLBhw+Dh4YHly5fjyJEjiIiIEPviioEDB2LatGm4efOmaEfZzZs3MWPGDAwaNIhxOsktW7YM7u7uGDZsGMLCwhAWFib6f7R06VLW8SQ2d+5cnDlzBqampujSpQt8fX2Rm5vLOhbhqJcvX2LSpEnQ1dVFv3790LdvX+jq6mLixIkoKipiHY+Qz6JjqoQQIiOUlZVx584d6Ovrix1jy8zMRMeOHVFaWso64mc9fPgQI0aMQGpqKvT09MDj8ZCTkwNzc3P8+eefaNWqFeuIn1VZWYmYmBiYm5tDSUkJaWlpEAgEMDMzQ6NGjVjHqxFdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ5Fq1aoXQ0FD07NlT7Pfi2LFjWLhwIfh8PuuIEklLS0P//v3RpUsXXLp0CcOHDxdrjG5kZMQ6IuEQObmPf14v7QMcPpSfnw9nZ2ecOXNGtKu6oqICdnZ2CAoKgo6ODuOEkmnatCm2bNmC8ePHi62HhIRg7ty5eP78OaNktXP37l0cOHAAhw4dQlZWFmxsbDBx4kQ4OTmxjkY4xMHBAUlJSdiyZQt69OgBHo+Ha9euwd3dHR07dkRoaCjriIR8EhXjCCFERpiZmWHt2rUYMWKEWNHBz88PwcHBiI+PZx1RYufPn8edO3cgFAphZmbGqR0OAKCkpIT09HQYGBiwjvJFlJSUkJqaWqWv1L1799ChQweUlZUxSia5xYsXIzY2FmFhYTAxMUFCQgKePn0KJycnODk5wdvbm3VEieXl5WH79u2Ij4+HQCCApaUlNUYnBO+KP+//zTA1NYWJiQnrSDWiqamJ69evo23btmLrd+/eRdeuXTnTL7U6cXFxmDlzJlJSUjhT5CXSQVVVFWfPnkXv3r3F1q9cuQJ7e3sUFxczSkaIZGiaKiGEyIhFixZh9uzZKCsrg1AoxPXr1xESEoK1a9dyru+Mra0tbG1tWceoNXNzc2RlZXG+GGdsbIwzZ85UOVp7+vRpGBoaMkpVM6tXr8bkyZOhq6srKu5WVlZiwoQJnDr+Bbwb4rBixQrWMQiROiYmJpwrwH1o4sSJ2L59OzZu3Ci2vnPnTjg6OjJK9WWuX7+OgwcP4vDhwygqKsLYsWNZRyIc06RJE9Fk1Q+pq6tDU1OTQSJCaoZ2xhFCiAzZtWsXVq1ahYcPHwJ4d8xw+fLlcHV1ZZzs4/z8/DB9+nQoKSlV25/sQ25ubnWU6sucO3cOS5Yswa+//oouXbpUmQTWuHFjRslqJjAwEHPmzMGiRYswYMAAAMDFixexYcMG+Pr6Ytq0aYwTSo7P5yMxMRECgQAWFhZVdqBIu8uXL3/y+b59+9ZREsJV9eW1dv78+fj111+hqqqK+fPnf/Lafxe3pNXcuXOxd+9e6OnpoXv37gDe7Sh7+PAhnJycxAYbSfM9vT+eevDgQdy/fx82NjZwdHTE6NGjoaamxjoe4ZidO3ciLCwMe/fuFe0Az8vLg7OzM0aPHo0ZM2YwTkjIp1ExjhBCZNDz588hEAg40S/HwMAAN2/eRJMmTT65k4zH4yErK6sOk9Xeh/2YeDye6HuhUMipfkzAuym9q1evFg3VaNOmDZYvX069f+pYdT2+PvzZ4srPVHh4OEJDQ5GTk4O3b9+KPZeQkMAoVc1x8T7qy2utjY0Njh07Bg0NjU8OL+HxeLh06VIdJqs9SYewSPs9ycnJwcrKChMmTMAPP/yA5s2bs45EOMzCwgL37t3Dmzdv0Lp1awBATk4OFBUVq3ygJq2vu0S20TFVQgiREdnZ2aioqEDbtm3RtGlT0XpmZiYUFBTQpk0bduE+ITs7u9rvuSwyMpJ1hK9m5syZmDlzJvLz86GsrMyJIRSf2y3zIWneZfKhf/75R+xxeXk5EhMTsWzZMqxevZpRqprx8/PDL7/8AmdnZ/z5559wcXEBn8/HjRs3MHv2bNbxJMbV+6gvr7Ufvr7Wl9fa+nIfd+7c4fRxYSJdRo4cyToCIV+EdsYRQoiM6NevH6ZMmQJnZ2ex9f379yMgIABRUVFsghExSUlJ6Ny5M+sYEquoqEBUVBT4fD4mTJgANTU1PHnyBI0bN5bawty/d5nEx8ejsrIS7dq1A/DuKJW8vLxoMimXXb58GR4eHpwY0NK+fXt4e3tj/PjxYkNmvLy8UFBQgK1bt7KOKJH6cB+lpaVQVlau9rnc3FwaCkK+yNu3b/Hs2TMIBAKx9fe7mwghRBZQMY4QQmRE48aNkZCQUO3kSysrK05MYxs7diysrKzg6ekptr5u3Tpcv34dYWFhjJJ9maKiIhw4cAABAQFITk7mzJHCBw8ewN7eHjk5OXjz5g3u3r0LQ0NDzJs3D2VlZfD392cd8bM2btyIqKgoBAcHixo+//PPP3BxcUGfPn2wYMECxgm/THp6OqytrfH69WvWUT5LRUUF6enp0NfXh46ODs6fP49OnTohMzMT3bt3x4sXL1hHlEh9uI/27dvj4MGDsLS0FFsPDw8X7YSVVqNHj5b42qNHj/6HSb6esrIybNmyBZGRkdUWsbhyBC8zMxNTpkzBtWvXxNa52KKBSJfXr19X+b3gSv9dIrvomCohhMgIHo+HV69eVVkvKirizB/A0dHR8Pb2rrJub2+P9evXM0j0ZS5duoTAwEAcPXoU+vr6GDNmDHbv3s06lsTc3d1hZWWF5ORkNGnSRLQ+atQoTJ06lWEyyW3YsAHnzp0Tm7ymqamJVatWYfDgwZwpxqWkpIg9FgqFyM3NhY+PDzp16sQoVc00b94cL168gL6+PvT19REXF4dOnTohOzsbXPrsuD7ch62tLXr27Inly5djyZIlKC4uxpw5cxAWFgYfHx/W8T7pw+mKQqEQx44dg7q6OqysrAC82wlbWFhYo6Ida1OmTMH58+cxduxYdO3aVawfJJdMnjwZDRo0wF9//YUWLVpw9j6IdMjOzsacOXMQFRWFsrIy0ToVdwlXUDGOEEJkRJ8+fbB27VqEhIRAXl4ewLum7mvXrkXv3r0Zp5PM69ev0bBhwyrrCgoKePnyJYNEn5afnw9tbW2xtUePHiEoKAiBgYEoLi6Gg4MDysvLceTIEZiZmTFKWjsxMTG4evVqlf8n+vr6ePz4MaNUNfPy5Us8ffoU33zzjdj6s2fPqi1eS6vOnTuDx+NVKfZ0794dgYGBjFLVzIABA3DixAlYWlrC1dUVHh4eCA8Px82bNzlVOKkP97FlyxYMHToULi4uOHnypOjo+Y0bN6T+dWrPnj2i75csWQIHBwf4+/uL/bs3a9YsTu2aOXnyJE6dOoVevXqxjvJFkpKSEB8fj/bt27OOQuoBR0dHAO8muzdr1oyKu4RzqBhHCCEy4vfff0ffvn3Rrl079OnTBwBw5coVvHz5kjN9sTp06IDDhw/Dy8tLbP3QoUNS+QZx586dePToEfz8/KCgoIAhQ4YgJiYG3333HbZs2QJ7e3vIy8tz4jhndQQCQbWfPD969AhqamoMEtXcqFGj4OLigg0bNqB79+4AgLi4OCxatIgzhROgasN9OTk5aGtrQ0lJiVGimtu5c6fomNGPP/4ILS0txMTEYNiwYfjxxx8Zp5NcfbmPwYMHY/To0di+fTsaNGiAEydOSOXr7KcEBgYiJiZGVIgDAHl5ecyfPx89e/bEunXrGKaTnK6uLmdeUz/FzMwMz58/Zx2D1BMpKSmIj48X9XslhGuoZxwhhMiQJ0+eYOvWrUhOToaysjI6duyIOXPmQEtLi3U0iURERGDMmDGYMGECBgwYAAC4ePEiQkJCEBYWJnWTtd68eYNly5ahadOmWLx4MRo0aAA3NzfMnDkTbdu2FV2noKCA5ORkzr3RHTduHNTV1bFz506oqakhJSUF2traGDFiBFq3bi22Q0ValZSUYOHChQgMDER5eTkAoEGDBnB1dcW6deugqqrKOCEhde/9QJa8vDwEBAQgOjoa69evh5ubG1avXg0FBQXWESWiqamJPXv2VPm34fjx43BxcakyhVhanT59Gn5+fvD394e+vj7rOLV26dIlLF26FGvWrIG5uXmVnyMu7VYk7NnY2OCXX37BoEGDWEchpFaoGEcIIYRTTp48iTVr1iApKUlUUPT29ka/fv1YR/uot2/fomHDhoiNjUVgYCBCQ0PRvn17TJo0CePGjUPLli05WYx78uQJbGxsIC8vj8zMTFhZWSEzMxNNmzbF5cuXoaOjwzqixIqLi8Hn8yEUCmFsbMy5Ipyfn1+16zweD0pKSjA2Nkbfvn3FdghJg3/3uvuUjh07/odJvkx9uY/31NTUMHToUPj7+0NDQwMAcO3aNTg5OUFNTQ2JiYlsA0po/vz5CAoKws8//yy289XHxwdOTk7YuHEj44SSyc/Ph4ODAy5fvgwVFZUqRayCggJGyWpGTk5O9P2HRwqpxxepDT6fjx9//BETJ05Ehw4dqvxecOG1lsg2KsYRQoiMuHz58ief79u3bx0lISUlJTh06BACAwNx/fp1VFZWYuPGjZgyZQrnjiKVlpYiJCQECQkJEAgEsLS0hKOjI5SVlVlHkykGBgbIz89HSUkJNDU1IRQKUVhYCBUVFTRq1AjPnj2DoaEhIiMjoaenxzquiJycXLW97v5N2t+o15f7eG/fvn2YNGlSlfVXr15h3rx5nBk0IxAIsH79emzevBm5ubkAgBYtWsDd3R0LFiyQuuL0xwwaNAg5OTlwdXWttjeWs7Mzo2Q1Ex0d/cnnpflDNSJ94uLiMGHCBNy/f1+09v51mCuvtUS2UTGOEEJkxIefSL/34R/09EcLGxkZGdi9ezf27duHwsJC2NraIiIignUswjEhISHYuXMnAgICYGRkBAC4d+8eZsyYgenTp6NXr1744Ycf0Lx5c4SHhzNO+z8PHjyQ+FppPp5XX+6jPqmoqMCBAwdgZ2eH5s2bi4b8cPEopIqKCmJjYzkzGflTrly5gh07doDP5yM8PBy6urrYt28fDAwMODNMikgHMzMzmJqaYvHixdUWqem1lkg7KsYRQoiMKCoqEntcXl6OxMRELFu2DKtXr8bAgQMZJfs0LS0t3L17F02bNoWmpuYnp2Vx5ahOdSorK3HixAkEBgZyqhiXkZGBLVu2ID09HTweD+3bt8ecOXNoWl4dMzIywpEjR9C5c2ex9cTERIwZMwZZWVm4du0axowZI9ohRMjnpKWlIScnB2/fvhWt8Xg8DBs2jGEqyamoqCA9PZ3zb8otLS2xbds20VFbrjpy5AgmTZoER0dH7Nu3D2lpaTA0NMS2bdvw119/4dSpU6wjEg5RVVVFcnIyjI2NWUchpFZomiohhMgIdXX1Kmu2trZQVFSEh4cH4uPjGaT6vE2bNomObm7atKnejq6Xl5fHyJEjpW4IxaeEh4dj/PjxsLKyQo8ePQC8OzZibm6OgwcP4vvvv2ecUHbk5uaioqKiynpFRQXy8vIAAC1btsSrV6/qOhrhgKKiIrF/I7KysjB69GikpKSIHb99//rLlZ3U3bp1Q2JiIueLcT4+PliwYAFWr17N6cEHq1atgr+/P5ycnHDo0CHRes+ePbFy5UqGyQgXDRgwgIpxhNNoZxwhhMi49PR0WFtb4/Xr16yjEI4xNDTExIkTq7yJ8vb2xr59+5CVlcUomewZOnSoaPKlhYUFgHe74qZNm4bmzZvjr7/+wokTJ/Dzzz/j1q1bjNMSafPrr79CSUkJixYtAgDRzreAgAB07twZf//9N7Kzs7Fw4UJs3LgRffr0YRlXYmFhYfD09ISHhwe6dOlSZTALVxq8v28z8e8Po7jWG0tFRQVpaWlo06YN1NTUkJycDENDQ2RlZcHMzAxlZWWsIxIO2blzJ1atWoUpU6ZUW6QePnw4o2SESIaKcYQQIiP+Pe1PKBQiNzcXPj4+KC8vx9WrVxklk5yNjQ0mTpyIsWPHVrvTj9QtFRUVpKSkVPlUOjMzE506dUJJSQmjZJ9Wk2PAXPljPi8vD5MmTcLFixdFb0gqKiowcOBA7Nu3D82aNUNkZCTKy8sxePBgxmmJtHn27BkmTZoEY2Nj/PHHH2jatCkuXryITp06QVdXF9evX4euri4uXryIhQsXcmaa6sd6pXKtiFVfBh8YGRlhx44dGDRokFgxbu/evfDx8UFaWhrriIRDqvv9fo9Lv99EdtExVUIIkRGdO3eudtpf9+7dERgYyChVzZibm2Pp0qWYM2cOhgwZgkmTJmHIkCFo2LAh62gyqX///rhy5UqVYlxMTIxU75z591Hgf/9ecHGwSfPmzXH+/HncuXMHd+/ehVAoRPv27dGuXTvRNTY2NgwTEmmmo6ODs2fPYu3atQDe/dy/bw/QtGlTPHnyBLq6umjTpg0yMjJYRq2R7Oxs1hG+Cq4U2z5nxowZcHd3R2BgIHg8Hp48eYLY2FgsXLgQXl5erOMRjhEIBKwjEPJFaGccIYTIiH9P+5OTk4O2tjaUlJQYJaodgUCACxcu4ODBgzh27Bjk5eUxduxYODo61ps3LFzh7+8PLy8vODg4iBqLx8XFISwsDCtWrEDLli1F10rrDrMLFy5gyZIlWLNmDXr06AEej4dr165h6dKlWLNmDWxtbVlHrJG3b98iOzsbRkZGaNCAe5+5FhYWIjw8HHw+H4sWLYKWlhYSEhLQrFkz6Orqso4nMa7fR58+fTB//nyMGjUK06dPR35+PhYtWgR/f38kJCQgNTWVdcR6LyUlBR06dICcnFyVne3/xpXjtgDwyy+/YNOmTaIjqYqKili4cCF+/fVXxskIIaRuUTGOEEJkwPujaTt27ICJiQnrOF9NWVkZTpw4gdWrV+PWrVuc2cVUX3zqiMiHpPm4SIcOHeDv74/evXuLrV+5cgXTp09Heno6o2Q1U1JSgrlz5yI4OBgAcPfuXRgaGsLNzQ0tW7aEp6cn44Sfl5KSgkGDBkFdXR33799HRkYGDA0NsWzZMjx48AB79+5lHVEi9eE+zp49i1evXmHs2LF4+PAhhg4ditTUVGhpaSE0NBQDBgxgHVFi+/btg7+/P7KzsxEbGwt9fX34+vrCwMAAI0aMYB3vo+Tk5JCXlwcdHR3IyclVu7MdkO7X148pKSlBWloaBAIBzMzM0KhRI9aRCIcMGTIEISEhonYlq1evxuzZs6GhoQEAePHiBfr06UPHnonUk+yvaEIIIZymoKCA1NTUejWJNC8vD/7+/vjtt9+QkpICKysr1pFkjkAgkOhLmt8o8vn8avsPvi+kcMVPP/2E5ORkREVFie12HTRoEA4fPswwmeTmz5+PyZMnIzMzU+wevv32W1y+fJlhspqpD/dhZ2eHsWPHAgD09PSQkpKC58+f49mzZ1JdiDt79iyKiopEj7dv34758+djyJAhKCwsFL0WaWhowNfXl1FKyWRnZ0NbW1v0fVZWFrKzs6t8cXFQjoqKCqysrNC1a1cqxJEaO3v2LN68eSN6/Ntvv6GgoED0uKKiglPH6YnsomIcIYTICCcnJ+zevZt1jC/y8uVL7NmzB7a2ttDT08P27dsxbNgw3L17F3///TfreATvjudxibW1NebNm4fc3FzRWl5eHhYsWICuXbsyTFYzx48fx9atW9G7d2+xoruZmRn4fD7DZJK7ceMGZsyYUWVdV1cXeXl5DBLVTn25j3/T0tKSeDcsK3l5eejVqxcePXoEANiyZQt27dqFX375BfLy8qLrrKyspH6qsL6+vuh3WV9f/5NfhMiSf+8QpYN+hKu410yEEEJIrbx9+xYBAQE4f/48rKysoKqqKvb8xo0bGSWTXLNmzaCpqQkHBwesWbMG1tbWrCPJtN9++w1t2rTBuHHjAADff/89jhw5ghYtWuDUqVPo1KkT44SfFxgYiFGjRkFfXx+tW7cGAOTk5MDExATHjx9nG64G8vPzoaOjU2W9uLiYMztilZSU8PLlyyrrGRkZoh1CXFAf7qOsrAxbtmxBZGQknj17VqVRekJCAqNkn+bs7Aw1NTXY29sjNTUV2dnZsLCwqHKdoqIiiouLGSSUXH2c+kwIIeR/qBhHCCEyIjU1FZaWlgDe9ZP6EBferAuFQmzevBkTJ06EiooK6zgEwI4dO7B//34AwPnz53HhwgWcOXMGoaGhWLRoEc6dO8c44ecZGxsjJSVFNIlUKBTCzMwMgwYN4sTvxXvW1tY4efIk5s6dC+B/v9O7du1Cjx49WEaT2IgRI7By5UqEhoYCeHcPOTk58PT0xJgxYxink1x9uI8pU6bg/PnzGDt2LLp27cqp34XRo0eLCnAGBgZISkqqsnvs9OnTMDMzYxFPYv+e+vwxXOwZR8iX4PF4VV6TuPQaRch7NMCBEEIIJwgEAigpKeH27dto27Yt6zgEgLKyMu7evQs9PT24u7ujrKwMO3bswN27d9GtWzf8888/rCPKjGvXrsHe3h6Ojo4ICgrCjBkzcPv2bcTGxiI6OhpdunRhHfGzXr58iSFDhuD27dt49eoVWrZsiby8PPTo0QOnTp2qsptXWtWH+1BXV8epU6fQq1cv1lG+yJ49e7Bs2TJs2LABrq6uCAgIAJ/Px9q1axEQEIAffviBdURCSA3Jycnh22+/haKiIgDgxIkTGDBggOi19c2bNzhz5gwVqYnUo51xhBAiI4qKilBZWQktLS2x9YKCAjRo0ACNGzdmlEwycnJyaNu2LV68eEHFOCmhqamJhw8fQk9PD2fOnMGqVasAvNvFyJU/gleuXPnJ5728vOooyZfp2bMnrl69ivXr18PIyAjnzp2DpaUlYmNjYW5uzjqeRBo3boyYmBhcunQJCQkJEAgEsLS0xKBBg1hHq5H6cB+6urpQU1NjHeOLubi4oKKiAosXL0ZJSQkmTJgAXV1dbN68mQpxhHCUs7Oz2OOJEydWucbJyamu4hBSa7QzjhBCZMS3336LYcOGYdasWWLr/v7+iIiIwKlTpxglk9zJkyfh4+OD7du3o0OHDqzjyLw5c+bgr7/+Qtu2bZGYmIj79++jUaNGOHz4MH777Tep7Sv1oX/3kyovL0d2djYaNGgAIyMjTtwDIV/b6dOn4efnB39//3ozIOD58+cQCATV9lYkhBBC6hoV4wghREZoaWnh6tWrMDU1FVu/c+cOevXqhRcvXjBKJjlNTU2UlJSgoqICDRs2hLKystjzH462J/+98vJybN68GQ8fPsTkyZNFhS1fX180atQIU6dOZZywdl6+fInJkydj1KhRmDRpEus4EqusrMSxY8eQnp4OHo8HU1NTjBgxAg0aSO9BCD8/P4mvdXNz+w+TfJn6ch/v5efnw8HBAZcvX4aKigoUFBTEnufaa+2zZ8+QkZEBHo+Hdu3acWaQBiGEkPqLinGEECIjVFVVERcXV+XI2q1bt9CtWzeUlJQwSia54ODgTz7/76MLhNRWamoqvvvuO9y/f591FImkpqZixIgRyMvLQ7t27QC8G9Sira2NiIgIqT2qamBgIPY4Pz8fJSUl0NDQAAAUFhZCRUUFOjo6yMrKYpBQMvXlPt4bNGgQcnJy4OrqimbNmlVpjs6V19qXL19i9uzZCAkJEU2ElZeXx7hx4/DHH39AXV2dcUJCCCGyiopxhBAiI/r37w9zc3Ns2bJFbH327NlISUnBlStXGCUjXJeWloacnBy8fftWbH348OGMEn25mJgYDBs2jDNDKLp37w4dHR0EBwdDU1MTAPDPP/9g8uTJePbsGWJjYxkn/LyDBw9i27Zt2L17t6igmJGRgWnTpmHGjBlwdHRknFAy9eE+VFRUEBsbi06dOrGO8kUcHByQlJSELVu2oEePHuDxeLh27Rrc3d3RsWNH0cRbQgghpK5RMY4QQmTE1atXMWjQIFhbW2PgwIEAgIsXL+LGjRs4d+4c+vTpwzihZPh8Pvbs2QM+n4/NmzdDR0cHZ86cgZ6eHr755hvW8WRKVlYWRo0ahVu3boHH4+H9nxTvd9FwYYjDv48XCoVC5ObmYt++fejbty9CQkIYJasZZWVl3Lx5s8rvQGpqKqytrVFaWsoomeSMjIwQHh5epY9ffHw8xo4di+zsbEbJaqY+3IelpSW2bduG7t27s47yRVRVVXH27Fn07t1bbP3KlSuwt7dHcXExo2S1V1paivLycrE1aR/ARAghpCo51gEIIYTUjV69eiE2NhZ6enoIDQ3FiRMnYGxsjJSUFM4U4qKjo2Fubo6///4bR48exevXrwEAKSkp8Pb2ZpxO9ri7u8PAwABPnz6FiooKbt++jcuXL8PKygpRUVGs40lk06ZNYl9+fn6IioqCs7Mzdu7cyTqexNq1a4enT59WWX/27BmMjY0ZJKq53NzcKkUG4F1Rt7p7k1b14T58fHywYMECREVF4cWLF3j58qXYF1c0adKk2qOo6urqoh2kXFBSUoI5c+ZAR0cHjRo1gqamptgXIYQQ7qGdcYQQQjijR48e+P777zF//nyoqakhOTkZhoaGuHHjBkaOHInHjx+zjihTmjZtikuXLqFjx45QV1fH9evX0a5dO1y6dAkLFixAYmIi64gy49SpU1i8eDGWL18u2s0UFxeHlStXwsfHR2xnkLTuohk2bBhycnKwe/dudOnSBTweDzdv3sS0adOgp6eHiIgI1hElUh/uQ07u3ef1/+4VJxQKwePxOLHrFQB27tyJsLAw7N27Fy1atAAA5OXlwdnZGaNHj8aMGTMYJ5TM7NmzERkZiZUrV8LJyQl//PEHHj9+jB07dsDHx4cTR58JIYSIo2IcIYQQzmjUqBFu3boFAwMDsWLc/fv30b59e5SVlbGOKFM0NTURHx8PQ0NDGBkZISAgADY2NuDz+TA3N+fEUJApU6Zg8+bNUFNTE1svLi7G3LlzERgYyChZzbwvngD/K6D8+9iwtBdS8vPz4ezsjDNnzoimd1ZUVMDOzg5BQUHQ0dFhnFAy9eE+oqOjP/l8v3796ijJl7GwsMC9e/fw5s0btG7dGgCQk5MDRUVFtG3bVuzahIQEFhEl0rp1a+zduxf9+/dH48aNkZCQAGNjY+zbtw8hISE4deoU64iEEEJqSHpn3RNCCCH/oqGhgdzc3CqTCxMTE6Grq8solezq0KEDUlJSYGhoiG7duuH3339Hw4YNsXPnThgaGrKOJ5Hg4GD4+PhUKcaVlpZi7969nCnGRUZGso7wxbS1tXHq1ClkZmYiPT0dQqEQpqamMDExYR2tRurDfXCl2PY5I0eOZB3hqygoKBD9u9e4cWMUFBQAAHr37o2ZM2eyjEYIIaSWqBhHCCGEMyZMmIAlS5YgLCwMPB4PAoEAV69excKFC+Hk5MQ6nsxZunSpqAH6qlWr8N1336FPnz5o0qQJDh8+zDjdp718+RJCoRBCoRCvXr2CkpKS6LnKykqcOnWKEzuY3qsvxRMAaNu2bZVdS1xUX+6Dy+pLL9H3O8D19fVhZmaG0NBQdO3aFSdOnICGhgbreIQQQmqBjqkSQgjhjPLyckyePBmHDh2CUChEgwYNUFlZiQkTJiAoKAjy8vKsI8q8goICaGpqVuk1JW3k5OQ+mZHH42HFihX45Zdf6jBV7Z05cwaNGjUS9Yb7448/sGvXLpiZmeGPP/6gJu+EcNimTZsgLy8PNzc3REZGYujQoaisrERFRQU2btwId3d31hEJIYTUEBXjCCGEcE5WVhYSEhIgEAhgYWFBu09IjUVHR0MoFGLAgAE4cuQItLS0RM81bNgQ+vr6aNmyJcOENWNubo7ffvsNQ4YMwa1bt2BlZYUFCxbg0qVLMDU1xZ49e1hHJIR8JTk5Obh58yaMjIzQqVMn1nEIIYTUAhXjCCGkHhs9erTE1x49evQ/TPLfqKysxK1bt6Cvr087f0itPHjwAK1bt5b6nXyf06hRI6SmpqJNmzZYvnw5UlNTER4ejoSEBAwZMgR5eXmsIxJCCCGEkP9HPeMIIaQeU1dXZx3hq5o3bx7Mzc3h6uqKyspK9OvXD9euXYOKigr++usv9O/fn3VEwgEpKSno0KED5OTkUFRUhFu3bn302o4dO9Zhstpr2LChaHrthQsXRD0UtbS08PLlS5bRCCG14OfnJ/G1bm5u/2ESQggh/wXaGUcIIYQzWrVqhePHj8PKygrHjx/HrFmzEBUVhb179yIyMhJXr15lHZFwgJycHPLy8qCjoyPqHVfdn0M8Hg+VlZUMEtbc8OHD8fbtW/Tq1Qu//vorsrOzoauri3PnzmHOnDm4e/cu64gSuXLlCnbs2AE+n4/w8HDo6upi3759MDAwEPXD44qSkhLk5OTg7du3YuvSWuC1sLCQeIdoQkLCf5zm63r79i2ys7NhZGSEBg24sRfh31PD8/PzUVJSIhrYUFhYCBUVFejo6CArK4tBQkIIIV9CjnUAQgghdaeiogIXLlzAjh078OrVKwDAkydP8Pr1a8bJJPP8+XM0b94cAHDq1Ck4ODjAxMQErq6un9zdRMiHsrOzoa2tLfo+KysL2dnZVb649AZ369ataNCgAcLDw7F9+3bo6uoCAE6fPg17e3vG6SRz5MgR2NnZQVlZGYmJiXjz5g0A4NWrV1izZg3jdJLLz8/Hd999BzU1NXzzzTewsLAQ+5JWI0eOxIgRIzBixAjY2dmBz+dDUVER/fv3R//+/aGkpAQ+nw87OzvWUSVWUlICV1dXqKio4JtvvkFOTg6AdzvJfHx8GKf7tA9fi1avXo3OnTsjPT0dBQUFKCgoQHp6OiwtLfHrr7+yjkoIIaQWaGccIYTIiAcPHsDe3h45OTl48+YN7t69C0NDQ8ybNw9lZWXw9/dnHfGz9PX1sWvXLgwcOBAGBgbYtm0bvvvuO9y+fRu9e/fGP//8wzqizNm3bx/8/f2RnZ2N2NhY6Ovrw9fXFwYGBhgxYgTreIRDLCws4OHhAScnJ6ipqSE5ORmGhoZISkqCvb09Z/reOTo64v79+/D19YWNjQ2OHTuGp0+fYtWqVdiwYQOGDh3KOuJnTZ06FS1atKhS6PH29sbDhw8RGBjIKFnNuLu74+rVq/D19YW9vT1SUlJgaGiIiIgIeHt7IzExkXVEiRgZGSE8PLxKMTc+Ph5jx45FdnY2o2SEEEJqixv7tAkhhHwxd3d3WFlZITk5GU2aNBGtjxo1ClOnTmWYTHIuLi5wcHBAixYtwOPxYGtrCwD4+++/0b59e8bpZM/27dvh5eWFefPmYfXq1aIjnRoaGvD19eVEMS4iIqLadR6PByUlJRgbG1c5Liat+Hw+9uzZAz6fj82bN0NHRwdnzpyBnp4evvnmG9bxPisjIwN9+/atst64cWMUFhbWfaBaunTpEv78809YW1tDTk4O+vr6sLW1RePGjbF27VpOFOPCwsJw8+bNKusTJ06ElZUVZ4pxx48fx+HDh9G9e3exI7hmZmbg8/kMk9VMbm4uysvLq6xXVlbi6dOnDBIRQgj5UlSMI4QQGRETE4OrV6+iYcOGYuv6+vp4/Pgxo1Q1s3z5cnTo0AEPHz7E999/D0VFRQCAvLw8PD09GaeTPVu2bMGuXbswcuRIsSNfVlZWWLhwIcNkkhs5cmS1PePer/F4PPTu3RvHjx+X6om90dHR+Pbbb9GrVy9cvnwZq1evho6ODlJSUhAQEIDw8HDWET+rRYsWuHfvHtq0aSO2HhMTA0NDQzahaqG4uBg6OjoA3g3QyM/Ph4mJCczNzTnTa01ZWRkxMTFo27at2HpMTAyUlJQYpaq5/Px80f+LDxUXF3NqgvLAgQMxbdo07N69G126dAGPx8PNmzcxY8YMDBo0iHU8QgghtUA94wghREYIBIJqm9E/evQIampqDBLVztixY+Hh4YFWrVqJ1pydnTmxC6u+yc7OrrYHlqKiIoqLixkkqrnz58/D2toa58+fR1FREYqKinD+/Hl07doVf/31Fy5fvowXL15IfXHR09MTq1atwvnz58UK7jY2NoiNjWWYTHIzZsyAu7s7/v77b/B4PDx58gQHDhzAwoULMWvWLNbxJNauXTtkZGQAADp37owdO3bg8ePH8Pf3R4sWLRink8y8efMwc+ZMzJkzB/v378f+/fsxZ84czJ49Gx4eHqzjScza2honT54UPX5fgNu1axd69OjBKlaNBQYGQldXF127doWSkhIUFRXRrVs3tGjRAgEBAazjEUIIqQXaGUcIITLC1tYWvr6+2LlzJ4B3b0pev34Nb29vDBkyhHE6wkUGBgZISkqCvr6+2Prp06dhZmbGKFXNuLu7Y+fOnejZs6dobeDAgVBSUsL06dNx+/Zt+Pr6YsqUKQxTft6tW7dw8ODBKuva2tp48eIFg0Q1t3jxYhQVFcHGxgZlZWXo27cvFBUVsXDhQsyZM4d1PInNmzcPubm5AN71WLOzs8OBAwfQsGFDBAUFsQ0nIU9PTxgaGmLz5s2inytTU1MEBQXBwcGBcTrJrV27Fvb29khLS0NFRQU2b96M27dvIzY2FtHR0azjSUxbWxunTp3C3bt3cefOHQiFQpiamsLExIR1NEIIIbVEAxwIIURGPHnyBDY2NpCXl0dmZiasrKyQmZmJpk2b4vLly9Ue5SHkU/bs2YNly5Zhw4YNcHV1RUBAAPh8PtauXYuAgAD88MMPrCN+lrKyMm7cuIEOHTqIrd+6dQtdu3ZFaWkpHjx4AFNTU5SUlDBK+XmtWrVCaGgoevbsKTb84NixY1i4cCGn+mOVlJQgLS0NAoEAZmZmaNSoEetIn1ReXg4FBYWPPl9SUoI7d+6gdevWaNq0aR0mI8C73+X169cjPj4eAoEAlpaWWLJkCczNzVlHI4QQIsOoGEcIITKktLQUhw4dEntT4ujoCGVlZdbRCEft2rULq1atwsOHDwEAurq6WL58OVxdXRknk0zv3r2hpqaGvXv3QltbG8C7PlNOTk4oLi7G5cuXceHCBcyaNQt3795lnPbjFi9ejNjYWISFhcHExAQJCQl4+vQpnJyc4OTkBG9vb9YRP6uoqAiVlZXQ0tISWy8oKECDBg3QuHFjRsk+zcfHB4aGhpzaMUak3/z58/Hrr79CVVUV8+fP/+S1GzdurKNUhBBCvhYqxhFCCCHkiz1//hwCgYBzOywzMjIwYsQIZGdnQ09PDzweDzk5OTA0NMSff/4JExMTHD9+HK9evcKkSZNYx/2o8vJyTJ48GYcOHYJQKESDBg1QWVmJCRMmICgoCPLy8qwjfta3336LYcOGVekP5+/vj4iICJw6dYpRsk+7e/cuRo0ahenTp8Pd3b1eFE4qKyuxadMmhIaGIicnB2/fvhV7vqCggFGyz3v58qXE10prgRd41+/x2LFj0NDQgI2NzUev4/F4uHTpUh0mI4QQ8jVQMY4QQgin8Pl87NmzB3w+H5s3b4aOjg7OnDkDPT09fPPNN6zjEQ4SCoU4e/Ys7t69C6FQiPbt28PW1hZyctybc8Xn85GYmAiBQAALC4sq0zClmZaWFq5evQpTU1Ox9Tt37qBXr15S3fvu1atXmDx5Mo4cOVIvCideXl4ICAjA/PnzsWzZMvzyyy+4f/8+jh8/Di8vL7i5ubGO+FFycnIST0qtbqgRIYQQUheoGEcIIYQzoqOj8e2336JXr164fPky0tPTYWhoiN9//x3Xr19HeHg464j1noWFhcRvdBMSEv7jNKQ+UVVVRVxcXJVeXrdu3UK3bt2kumdffWNkZAQ/Pz8MHToUampqSEpKEq3FxcVVOyxEWnw4mOH+/fvw9PTE5MmTRdNTY2NjERwcjLVr18LZ2ZlVTEIIITKOinGEEEI4o0ePHvj+++8xf/58sSb1N27cwMiRI/H48WPWEeu9FStWiL4vKyvDtm3bYGZmJnqjGxcXh9u3b2PWrFlYu3Ytq5g1cvHiRVy8eBHPnj2DQCAQey4wMJBRqs/73HHID3HhaGT//v1hbm6OLVu2iK3Pnj0bKSkpuHLlCqNkskdVVRXp6elo3bo1WrRogZMnT8LS0hJZWVmwsLBAUVER64gSGThwIKZOnYrx48eLrR88eBA7d+5EVFQUm2ASGD16tMTXHj169D9MQggh5L/QgHUAQgghRFK3bt2qdkeGtra2VB9hq08+HAQwdepUuLm54ddff61yzfuBDtJuxYoVWLlyJaysrNCiRQuJd/1Jg8TERLHH8fHxqKysRLt27QC862UmLy+PLl26sIhXY6tXr8agQYOQnJyMgQMHAnhXKL1x4wbOnTvHOJ3kysrKsGXLFkRGRlZb4OXCjtFWrVohNzcXrVu3hrGxMc6dOwdLS0vcuHEDioqKrONJLDY2Fv7+/lXWraysMHXqVAaJJKeuri76XigU4tixY1BXV4eVlRWAd7/vhYWFNSraEUIIkR5UjCOEEMIZGhoayM3NhYGBgdh6YmIidHV1GaWSXWFhYbh582aV9YkTJ8LKykqqd5W95+/vj6CgIKkezvAxkZGRou83btwINTU1BAcHQ1NTEwDwzz//wMXFBX369GEVsUZ69eqF2NhYrFu3DqGhoVBWVkbHjh2xe/duTvW+mzJlCs6fP4+xY8eia9eunCrwvjdq1ChcvHgR3bp1g7u7O8aPH4/du3cjJycHHh4erONJTE9PD/7+/tiwYYPY+o4dO6Cnp8colWT27Nkj+n7JkiVwcHCAv7+/aBhLZWUlZs2aJdVDKAghhHwcHVMlhBAZweXpeO8tXrwYsbGxCAsLg4mJCRISEvD06VM4OTnByclJbNcW+e81b94ca9euhYuLi9j6nj174OnpiadPnzJKJrkmTZrg+vXrMDIyYh3li+jq6uLcuXNVhpikpqZi8ODBePLkCaNkskddXR2nTp1Cr169WEf5auLi4nDt2jUYGxtj+PDhrONI7NSpUxgzZgyMjIzQvXt3AO/uhc/n48iRIxgyZAjjhJLR1tZGTEyMaNfrexkZGejZsyftDCeEEA6inXGEECIjVqxY8cnpeFywevVqTJ48Gbq6uhAKhTAzM0NlZSUmTJiApUuXso4nc+bNm4eZM2ciPj5e7I1uYGAgZ36mpk6dioMHD2LZsmWso3yRly9f4unTp1WKcc+ePcOrV68Ypao5gUCAe/fuVXu8s2/fvoxS1Yyuri7U1NRYx/iqunfvLvod55IhQ4YgMzMT27dvR3p6OoRCIUaMGIEff/xR6nfGfaiiogLp6elVinHp6elVfk8IIYRwA+2MI4QQGcHl6Xj/xufzkZiYCIFAAAsLC04dYatvQkNDsXnzZqSnpwMATE1N4e7uDgcHB8bJJOPu7o69e/eiY8eO6NixIxQUFMSe58LgAwBwcnJCdHQ0NmzYIFYYXbRoEfr27Yvg4GDGCT8vLi4OEyZMwIMHD/DvP095PB4qKysZJauZ06dPw8/PD/7+/tDX12cdR2IRERESX8ul3XH1wfz58xEUFISff/5Z7Pfbx8cHTk5OnHmdIoQQ8j9UjCOEEBlRX6bjEfI12djYfPQ5Ho+HS5cu1WGa2ispKcHChQsRGBiI8vJyAECDBg3g6uqKdevWQVVVlXHCz+vcuTNMTEywYsWKaodpfNjQXprl5+fDwcEBly9fhoqKSpUCr7S2BJCTkxN7zOPxqi2KAuBMYbS+EAgEWL9+PTZv3ozc3FwAQIsWLeDu7o4FCxaI+sgRQgjhDjqmSgghMoKr0/Hmz58v8bW0O4DU1IdDELhMRUUF27Ztw7p168Dn8yEUCmFsbMyJItx7mZmZCA8Ph7GxMesoX2T8+PF4/Pgx1qxZg2bNmnFmgMOHxx0vXLiAJUuWYM2aNejRowd4PB6uXbuGpUuXYs2aNQxTyp6KigocOHAATk5OWLx4MV6+fAkANLiBEEI4jopxhBAiI7g6HS8xMVHscXx8PCorK0W9c+7evQt5eXl06dKFRTxSjzx69Ag8Ho/Tk3lVVVXRsWNH1jFqpVu3brh37x7ni3HXrl1DbGwsOnXqxDpKrc2bNw/+/v7o3bu3aM3Ozg4qKiqYPn266Fg6+e81aNAAM2fOFP03pyIcIYTUD1SMI4QQGeHj4yP6fuzYsdDT08PVq1elfjrehzuXNm7cCDU1NQQHB0NTUxMA8M8//8DFxQV9+vRhFZFwmEAgwKpVq7Bhwwa8fv0aAKCmpoYFCxbgl19+qXJ0j/x35s6diwULFiAvLw/m5uZVjndypcjYvn17lJaWso7xRfh8frXHgtXV1XH//v26DyTjunXrhsTERE71ICSEEPJp1DOOEEIIZ+jq6uLcuXNVJkampqZi8ODBePLkCaNkhKt++ukn7N69GytWrECvXr0gFApx9epVLF++HNOmTcPq1atZR5QZ1RU+3/ct49IAh3PnzmHFihVYvXp1tUVFLuxs6tu3LxQUFLB//360aNECAJCXl4dJkybh7du3iI6OZpxQtoSFhcHT0xMeHh7o0qVLlePnXClUE0II+R8qxhFCiIyQl5dH3759ceTIEWhpaYnWnz59ipYtW3Lija6amhr+/PNPDBgwQGz90qVLGDFiBF69esUoGeGqli1bwt/fv8ru0D///BOzZs3C48ePGSWTPQ8ePPjk81zZFfS+qPjvXnFcKireu3cPo0aNQkZGBlq3bg0AyMnJgYmJCY4fPy7VR4ktLCwk7tOXkJDwH6f5OupLoZoQQsj/0DFVQgiREUKhEG/evIGVlRUiIiLQoUMHsee4YNSoUXBxccGGDRvQvXt3AEBcXBwWLVqE0aNHM04neyorKxEUFISLFy/i2bNnYg3gAXBiEmlBQQHat29fZb19+/ZSO/WyvuJKse1z6sNQEGNjY6SkpOD8+fO4c+cOhEIhzMzMMGjQIKkfSDFy5EjR92VlZdi2bRvMzMzQo0cPAO/+zbh9+zZmzZrFKGHNZWdns45ACCHkK6OdcYQQIiPk5eXx6NEj+Pj4YM+ePdi3bx9GjBjBqZ1xJSUlWLhwIQIDA1FeXg7gXXNrV1dXrFu3jlOTI+uDOXPmICgoCEOHDkWLFi2qvEnftGkTo2SS69atG7p16wY/Pz+x9blz5+LGjRuIi4tjlOzzIiIiJL5WmvtC/ltaWhpycnLw9u1bsXUu3QORDlOnTkWLFi3w66+/iq17e3vj4cOHCAwMZJSMEEKIrKNiHCGEyAg5OTnk5eVBR0cHO3fuhJubG5YuXYqpU6dCV1eXE8W494qLi8Hn8yEUCmFsbExFOEaaNm2KvXv3YsiQIayj1Fp0dDSGDh2K1q1bo0ePHuDxeLh27RoePnyIU6dOSfVgEEmHS3DlGFtWVhZGjRqFW7duiY7gAf877smFe3ivsLAQu3fvRnp6Ong8HszMzDBlypRqhyJICz8/P0yfPh1KSkpVitP/5ubmVkepvoy6ujpu3ryJtm3biq1nZmbCysoKRUVFjJLV3L59++Dv74/s7GzExsZCX18fvr6+MDAwwIgRI1jHI4QQUkNUjCOEEBnxYTEOAKKiojB27FhYWFjg0qVLnHqjS6RDy5YtERUVBRMTE9ZRvsiTJ0/wxx9/iB3HmzVrFlq2bMk6mkwZNmwY5OXlsWvXLhgaGuL69et48eIFFixYgPXr10t1YfRDN2/ehJ2dHZSVldG1a1cIhULcvHkTpaWlOHfuHCwtLVlHrJaBgQFu3ryJJk2awMDA4KPX8Xg8ZGVl1WGy2mvevDnWrl0LFxcXsfU9e/bA09MTT58+ZZTs086ePYvu3buLirfbt2+Hl5cX5s2bh9WrVyM1NRWGhoYICgpCcHBwvTgaTQghsoaKcYQQIiM+fKP13r179zBs2DDcvXuXinGkxjZs2ICsrCxs3bpV6vtI1dTDhw/h7e1Nx9jqUNOmTXHp0iV07NgR6urquH79Otq1a4dLly5hwYIFSExMZB1RIn369IGxsTF27dqFBg3etWeuqKjA1KlTkZWVhcuXLzNOKDt8fHywfPlyTJ06VazPaGBgILy8vODp6ck4YfWCg4Oxbt06nDlzBq1atYKZmRnWrFmDkSNHQk1NDcnJyTA0NERqair69++P58+fs45MCCGkhqgYRwghMq6srAxPnz6tN83TSd0ZNWoUIiMjoaWlhW+++QYKCgpizx89epRRsi+XnJwMS0tLThWpi4uLER0dXW2/NS4cK9TU1ER8fDwMDQ1hZGSEgIAA2NjYgM/nw9zcHCUlJawjSkRZWRmJiYlVBoOkpaXBysqKM/dRX4SGhmLz5s1IT08HAJiamsLd3R0ODg6Mk33a0aNH4eXlhdTUVCgrK+POnTvQ19cXK8ZlZmaiY8eOKC0tZR2XEEJIDdE0VUIIkXFKSkpUiCO1oqGhgVGjRrGOQQAkJiZiyJAhKCkpQXFxMbS0tPD8+XOoqKhAR0eHE8W4Dh06ICUlBYaGhujWrRt+//13NGzYEDt37oShoSHreBJr3LgxcnJyqhTjHj58CDU1NUapambs2LGwsrKqsnNs3bp1uH79OsLCwhglqzkHBwepL7xVZ/To0bCwsADwbmd7UlJSlX+rT58+DTMzMxbxCCGEfCEqxhFCSD2mpaWFu3fvomnTptDU1PzkUcKCgoI6TEbqgz179rCOQP6fh4cHhg0bhu3bt0NDQwNxcXFQUFDAxIkT4e7uzjqeRJYuXYri4mIAwKpVq/Ddd9+hT58+aNKkCQ4fPsw4neTGjRsHV1dXrF+/Hj179gSPx0NMTAwWLVqE8ePHs44nkejoaHh7e1dZt7e3x/r16xkkkk3ve/ctWrQIs2fPRllZGYRCIa5fv46QkBCsXbsWAQEBjFMSQgipDSrGEUJIPbZp0ybRTgxfX1+2Yb4SPp8PX19f0ZTC90eOjIyMWEeTWfn5+cjIyACPx4OJiQm0tbVZR5I5SUlJ2LFjB+Tl5SEvL483b97A0NAQv//+O5ydnTF69GjWET/Lzs5O9L2hoSHS0tJQUFDw2Q8SpM369evB4/Hg5OSEiooKAICCggJmzpwJHx8fxukk8/r1azRs2LDKuoKCAl6+fMkgUe1UVlZi06ZNCA0Nrfb4Nlc+hHJxcUFFRQUWL16MkpISTJgwAbq6uti8eTN++OEH1vEIIYTUAvWMI4QQwhlnz57F8OHD0blzZ/Tq1QtCoRDXrl1DcnIyTpw4AVtbW9YRZUpxcTHmzp2LvXv3QiAQAADk5eXh5OSELVu2QEVFhXHCj/tccaqwsBDR0dGc6Rmnra2Nq1evwsTEBO3atYOfnx/s7Oxw584dWFpacqJPWVFRESorK6GlpSW2XlBQgAYNGqBx48aMktVOSUkJ+Hw+hEIhjI2Npfr34d+sra0xbNgweHl5ia0vX74cJ06cQHx8PKNkNePl5YWAgADMnz8fy5Ytwy+//IL79+/j+PHj8PLy4sTx7X97/vw5BAKBaDI6IYQQbqJiHCGE1GM12cHAhTe6FhYWsLOzq7K7xNPTE+fOnUNCQgKjZLLB19cX5ubmGDhwIABgxowZuHDhArZu3YpevXoBAGJiYuDm5gZbW1ts376dZdxPcnFxkeg6rhzFHTx4MCZPnowJEybgxx9/RGJiItzc3LBv3z78888/+Pvvv1lH/Kxvv/0Ww4YNw6xZs8TW/f39ERERgVOnTjFKJnsiIiIwZswYTJgwAQMGDAAAXLx4ESEhIQgLC8PIkSPZBpSQkZER/Pz8MHToUKipqSEpKUm0FhcXh4MHD7KOWCPPnj0T7UJu164d7UImhBAOo2IcIYTUY3Jycp893iUUCsHj8TixA0hJSQm3bt1C27Ztxdbv3r2Ljh07oqysjFEy2RAfHw8HBwcsX74ckyZNQtOmTREeHo7+/fuLXRcZGQkHBwfk5+ezCSqDbt68iVevXsHGxgb5+flwdnZGTEwMjI2NsWfPHnTq1Il1xM/S0tLC1atXYWpqKrZ+584d9OrVCy9evGCUrGaKi4vh4+ODixcv4tmzZ6Jdo+9lZWUxSlYzJ0+exJo1a5CUlARlZWV07NgR3t7e6NevH+toElNVVUV6ejpat26NFi1a4OTJk7C0tERWVhYsLCxQVFTEOqJEXr58idmzZyMkJERsF/K4cePwxx9/QF1dnXFCQgghNUU94wghpB6LjIxkHeGr0tbWRlJSUpViXFJSEh3ZqQNdunTB33//DWdnZ0yaNAklJSVo1qxZlet0dHQ4cSyyPrGyshJ9r62tzcldZG/evBH1WPtQeXk5SktLGSSqnalTpyI6OhqTJk1CixYtONXv7kNDhw7F0KFDWcf4Iq1atUJubi5at24NY2NjnDt3DpaWlrhx4wYUFRVZx5PY1KlTkZSUhJMnT6JHjx7g8Xi4du0a3N3dMW3aNISGhrKOSAghpIZoZxwhhBDOWLlyJTZt2gRPT0+xKYW//fYbFixYgKVLl7KOKFMGDhyIJk2aYO/evVBSUgIAlJaWwtnZGQUFBbhw4QLjhIRL+vfvD3Nzc2zZskVsffbs2UhJScGVK1cYJasZDQ0NnDx5UnR0m8vi4+NFw3LMzMxgYWHBOlKNeHp6onHjxvj5558RHh6O8ePHo02bNsjJyYGHhwdnBmqoqqri7Nmz6N27t9j6lStXYG9vL5pCTAghhDuoGEcIITKmpKSk2qlyHTt2ZJRIckKhEL6+vtiwYQOePHkCAGjZsiUWLVoENzc3zu5A4arU1FTY29ujrKwMnTp1Ao/HQ1JSEpSUlHD27Fl88803rCMSDrl69SoGDRoEa2trUV/Cixcv4saNGzh37hz69OnDOKFkDAwMcOrUqSrHbbnk2bNn+OGHHxAVFQUNDQ0IhUIUFRXBxsYGhw4d4myvsri4OFy7dg3GxsYYPnw46zgSa926NU6ePAlzc3Ox9ZSUFAwZMgSPHj1ilIwQQkhtUTGOEEJkRH5+PlxcXHD69Olqn+dCz7gPvXr1CgCgpqbGOIlsKy0txf79+3Hnzh0IhUKYmZnB0dERysrKrKMRDkpKSsK6devE+pT99NNPVY6mS7P9+/fjzz//RHBwMKcmqH5o3Lhx4PP52Ldvn6iomJaWBmdnZxgbGyMkJIRxQtmyc+dOhIWFYe/evWjRogUAIC8vD87Ozhg9ejRmzJjBOCEhhJCaomIcIYTICEdHR9y/fx++vr6wsbHBsWPH8PTpU6xatQobNmzgfG8gQgiRBhYWFuDz+RAKhWjTpg0UFBTEnufC1Gd1dXVcuHAB1tbWYuvXr1/H4MGDUVhYyCaYBCIiIiS+liu74ywsLHDv3j28efMGrVu3BgDk5ORAUVGxSqGaCz9fhBBCaIADIYTIjEuXLuHPP/+EtbU15OTkoK+vD1tbWzRu3Bhr167lRDHu6dOnWLhwoWhK4b8/T+La7j4uioiIwLfffgsFBYXPvunlyhtdws7Lly8lvrZx48b/YZKvZ+TIkawjfDGBQFCliAgACgoKVabDSpt///fn8XhV/q1439KAK/9m1IefKUIIIeJoZxwhhMiIxo0bIyUlBW3atEGbNm1w4MAB9OrVC9nZ2fjmm284Mf3y22+/RU5ODubMmVPtlMIRI0YwSiY75OTkkJeXBx0dHcjJyX30Oh6Px5k3uvVFdHQ01q9fL2q4b2pqikWLFkl1rzU5ObnP9noUCoX081THRowYgcLCQoSEhKBly5YAgMePH8PR0RGampo4duwY44SSuXDhApYsWYI1a9aITSFdunQp1qxZA1tbW9YRCSGEyCjaGUcIITKiXbt2yMjIQJs2bdC5c2fs2LEDbdq0gb+/v6gHjbSLiYnBlStX0LlzZ9ZRZNaHu2KkfYeMLNm/fz9cXFwwevRouLm5QSgU4tq1axg4cCCCgoIwYcIE1hGrFRkZyTrCf4bLk0i3bt2KESNGoE2bNtDT0wOPx0NOTg7Mzc2xf/9+1vEkNm/ePPj7+4tNIbWzs4OKigqmT5+O9PR0hukIIYTIMtoZRwghMuLAgQMoLy/H5MmTkZiYCDs7O7x48QINGzZEUFAQxo0bxzriZ5mZmeHAgQOcelNLSF0wNTXF9OnT4eHhIba+ceNG7Nq1i/NFh6SkJM4U4evTJNLz58+LDWcZNGgQ60g1oqysjOvXr1c7hbRbt24oLS1llIwQQoiso2IcIYTIqJKSEty5cwetW7dG06ZNWceRyLlz57BhwwbRrj7ClpubG4yNjeHm5ia2vnXrVty7dw++vr5sgskgRUVF3L59G8bGxmLr9+7dQ4cOHVBWVsYoWe0VFRXhwIEDCAgIQHJyMmeOqdIkUunRt29fKCgoYP/+/WJTSCdNmoS3b98iOjqacUJCCCGyiopxhBAiY96+fYvs7GwYGRmhQQPp71agqakp1lOquLgYFRUVUFFRqdJgvKCgoK7jyTRdXV1ERESgS5cuYusJCQkYPnw4Hj16xCiZ7DE2NsaiRYswY8YMsfUdO3Zg/fr1yMzMZJSs5i5duoTAwEAcPXoU+vr6GDNmDMaMGcOZHbFcnUTq5+cn8bX/LsBLq3v37mHUqFHIyMgQm0JqYmKC48ePVyleE0IIIXVF+t+FEUII+SpKSkowd+5cBAcHAwDu3r0LQ0NDuLm5oWXLlvD09GScsHq0u0p6vXjxAurq6lXWGzdujOfPnzNIJLsWLFgANzc3JCUloWfPnuDxeIiJiUFQUBA2b97MOt5nPXr0CEFBQQgMDERxcTEcHBxQXl6OI0eOwMzMjHW8GuHqJNJNmzZJdB2Px+NMMc7Y2BgpKSnVHrf93OAQacS1D9MIIYR8HO2MI4QQGeHu7o6rV6/C19cX9vb2SElJgaGhISIiIuDt7Y3ExETWEQnHdOjQAT/++CPmzJkjtr5lyxZs374daWlpjJLJpmPHjmHDhg2i/nDvp6lK+5ThIUOGICYmBt999x0cHR1hb28PeXl5KCgoIDk5mXPFuPoyiZRID65+mEYIIeTj6CMVQgiREcePH8fhw4fRvXt3sR0BZmZm4PP5DJNJ7tSpU5CXl4ednZ3Y+rlz51BZWYlvv/2WUTLZNH/+fMyZMwf5+fkYMGAAAODixYvYsGED7WhkYNSoURg1ahTrGDV27tw5uLm5YebMmWjbti3rOF+svkwiBbi5E8vPzw/Tp0+HkpLSZ4/ecmWH308//YTk5GRERUXB3t5etD5o0CB4e3tTMY4QQjiIG/+qEkII+WL5+fnQ0dGpsl5cXMyZ4zqenp7w8fGpsi4QCODp6UnFuDo2ZcoUvHnzBqtXr8avv/4KAGjTpg22b98OJycnxulk1+vXr6sch2zcuDGjNJ935coVBAYGwsrKCu3bt8ekSZM4Md35Y/T09JCQkMDpSaRc3om1adMmODo6QklJ6ZNHb7l03LY+fJhGCCFEnBzrAIQQQuqGtbU1Tp48KXr8/g/6Xbt2oUePHqxi1UhmZma1R9bat2+Pe/fuMUhEZs6ciUePHuHp06d4+fIlsrKyqBDHQHZ2NoYOHQpVVVWoq6tDU1MTmpqa0NDQgKamJut4n9SjRw/s2rULubm5mDFjBg4dOgRdXV0IBAKcP38er169Yh2xRvbu3Ys3b97A1tYWc+fOhZubGwYNGoS3b99i7969rONJ5MOdWEpKSqL1QYMG4fDhwwyTfV52djaaNGki+v5jX1lZWYyTSq4+fJhGCCFEHPWMI4QQGXHt2jXY29vD0dERQUFBmDFjBm7fvo3Y2FhER0dXmYgpjZo3b46DBw+KjkS+d+HCBUyYMAHPnj1jlIwQtnr27AngXW/IZs2aVXmD3q9fPxaxai0jIwO7d+/Gvn37UFhYCFtbW0RERLCOJRF5eXnk5uZWKZ68ePECOjo6qKysZJRMcvr6+qKdWGpqakhOToahoSHu3bsHS0tLvHz5knVEmdKvXz+MHTsWc+fOhZqaGlJSUmBgYIA5c+bg3r17OHPmDOuIhBBCaoiOqRJCiIzo2bMnrl27hnXr1sHIyAjnzp2DpaUlYmNjYW5uzjqeRIYPH4558+bh2LFjMDIyAgDcu3cPCxYswPDhwxmnk03h4eEIDQ1FTk4O3r59K/ZcQkICo1SyJyUlBfHx8WjXrh3rKF9Fu3bt8Pvvv2Pt2rU4ceIEAgMDWUeSmFAorHa30qNHj6qdPiyN6stOrLFjx8LKyqrKsdp169bh+vXrCAsLY5SsZtauXQt7e3ukpaWhoqICmzdvFvswjRBCCPfQMVVCCJEB5eXlcHFxgYqKCoKDg5Gamoq0tDTs37+fM4U44N0bKFVVVbRv3x4GBgYwMDCAqakpmjRpgvXr17OOJ3P8/Pzg4uICHR0dJCYmomvXrmjSpAmysrKof18ds7a2xsOHD1nH+Ork5eUxcuRITuyKs7CwgKWlJXg8HgYOHAhLS0vRV6dOndCnTx/O9I2rD20NACA6OhpDhw6tsm5vb4/Lly8zSFQ7PXv2xNWrV1FSUiL6MK1Zs2aIjY3lxK52QgghVdHOOEIIkQEKCgo4duwYli1bxjrKF1FXV8e1a9dw/vx5JCcnQ1lZGR07dkTfvn1ZR5NJ27Ztw86dOzF+/HgEBwdj8eLFMDQ0hJeXFwoKCljHkykBAQH48ccf8fjxY3To0AEKCgpiz3fs2JFRMtkxcuRIAEBSUhLs7OzQqFEj0XMNGzZEmzZtMGbMGEbpaqa+7MR6/fo1GjZsWGVdQUGBc0dtzc3NRQM1CCGEcB/1jCOEEBnh4uICc3NzzJ8/n3WUr6KsrAyKioqcOjJV36ioqCA9PR36+vrQ0dHB+fPn0alTJ2RmZqJ79+548eIF64gyIy4uDhMmTMD9+/dFazweT3Rkkgt9yuqL4OBgjBs3TmzwAVckJSWhc+fOAIBbt25h/fr1iI+Ph0AggKWlJZYsWcKp3dTW1tYYNmwYvLy8xNaXL1+OEydOID4+nlGyz6tJsVCapyUTQgipHu2MI4QQGWFsbIxff/0V165dQ5cuXaCqqir2vJubG6NkkhMIBFi9ejX8/f3x9OlT3L17F4aGhli2bBnatGkDV1dX1hFlSvPmzfHixQvo6+tDX18fcXFx6NSpE7Kzs0Gf9dWtKVOmwMLCAiEhIdUOcCB1x9nZmXWEWrO0tISFhQWmTp2KCRMmcH4n1rJlyzBmzBjw+XzR4J+LFy8iJCRE6vvFaWhoSPx7TMV2QgjhHtoZRwghMsLAwOCjz/F4PGRlZdVhmtpZuXIlgoODsXLlSkybNg2pqakwNDREaGgoNm3ahNjYWNYRZcrUqVOhp6cHb29v+Pv7Y/78+ejVqxdu3ryJ0aNHY/fu3awjygxVVVUkJyfD2NiYdRSZJycn98kiijQXTmJjYxEYGIjQ0FCUl5djzJgxmDJlCmxsbFhHq7WTJ09izZo1SEpKErU28Pb2lvoJwx8eB75//z48PT0xefJkUc++2NhYBAcHY+3atZwuABNCiKyiYhwhhBDOMDY2xo4dOzBw4ECoqakhOTkZhoaGuHPnDnr06IF//vmHdUSZIhAIIBAI0KDBu432oaGhiImJgbGxMX788cdqezWR/8awYcMwefJkzvQkq8+OHz8uVowrLy9HYmIigoODsWLFCk7s4C0tLUVoaCj27NmDK1euoE2bNpgyZQqcnZ3RqlUr1vFkzsCBAzF16lSMHz9ebP3gwYPYuXMnoqKi2AQjhBBSa1SMI4QQwhnKysq4c+cO9PX1xYpxaWlp6Nq1K16/fs06IiFM7Ny5E6tWrcKUKVNgbm5eZYDD8OHDGSUj7x08eBCHDx/Gn3/+yTpKjfD5fOzZswd79+5Fbm4ubG1tcerUKdaxaiQ+Ph7p6eng8XgwMzODhYUF60g1oqKiguTkZLRt21Zs/e7du+jcuTNKSkoYJSOEEFJbVIwjhBDCGVZWVpg3bx4mTpwoVoxbsWIFLly4gCtXrrCOWO+lpKRIfC1N8Kw7cnJyH32OBjhIBz6fj44dO6K4uJh1lBp7/fo1Dhw4gJ9//hmFhYWc+Xl69uwZfvjhB0RFRUFDQwNCoRBFRUWwsbHBoUOHoK2tzTqiRNq1a4fvvvsOGzZsEFtfsGAB/vrrL2RkZDBKRgghpLZogAMhhBCpN2XKFGzevBne3t6YNGkSHj9+DIFAgKNHjyIjIwN79+7FX3/9xTqmTOjcubNoSuenUAGobgkEAtYRyCeUlpZiy5YtnDviGR0djcDAQBw5cgTy8vJwcHDgxDHb9+bOnYuXL1/i9u3bMDU1BQCkpaXB2dkZbm5uCAkJYZxQMps2bcKYMWNw9uxZdO/eHcC7Ccp8Ph9HjhxhnI4QQkht0M44QgghUk9eXh65ubnQ0dHB2bNnsWbNGsTHx0MgEMDS0hJeXl4YPHgw65gy4cGDBxJfq6+v/x8mIUQ6aWpqivWMEwqFePXqFVRUVLB//36pPzL88OFDBAUFISgoCNnZ2ejZsydcXV3h4OBQZQq3tFNXV8eFCxdgbW0ttn79+nUMHjwYhYWFbILVwqNHj7B9+3akp6dDKBTCzMwMP/74I/T09FhHI4QQUgtUjCOEECL15OTkkJeXBx0dHdZRCJEafn5+mD59OpSUlODn5/fJa93c3OooFQkODhZ7LCcnB21tbXTr1g2ampqMUknG1tYWkZGR0NbWhpOTE6ZMmYJ27dqxjlVrampquHLlCjp37iy2npiYiH79+uHly5dsghFCCJF5VIwjhBAZcuXKFezYsQN8Ph/h4eHQ1dXFvn37YGBggN69e7OO91FycnJ4+vQpZ/r7yJJ9+/bB398f2dnZiI2Nhb6+Pnx9fWFgYIARI0awjlevGRgY4ObNm2jSpAkMDAw+eh2Px0NWVlYdJiMfk5SUVKUwJE2GDx8OV1dXfPfdd5CXl2cd54uNGDEChYWFCAkJQcuWLQEAjx8/hqOjIzQ1NXHs2DHGCQkhhMiqj3f7JYQQUq8cOXIEdnZ2UFZWRmJiIt68eQMAePXqFdasWcM43eeZmJhAS0vrk1+kbm3fvh3z58/HkCFDxJq6a2howNfXl204GZCdnY0mTZqIvv/YFxXi2CoqKsK2bdtgaWmJLl26sI7zSRERERgxYkS9KMQBwNatW/Hq1Su0adMGRkZGMDY2hoGBAV69eoUtW7awjkcIIUSG0c44QgiRERYWFvDw8ICTk5PYJNKkpCTY29sjLy+PdcSPkpOTg6+vL9TV1T95nbOzcx0lIgBgZmaGNWvWYOTIkWI/U6mpqejfvz+eP3/OOqLMKC0thbKycrXP5ebmokWLFnWciFy6dAmBgYE4evQo9PX1MWbMGIwZMwYWFhaso8mc8+fP486dO6Jea4MGDWIdiRBCiIyjaaqEECIjMjIy0Ldv3yrrjRs35kQT6x9++IF6xkmZ7OzsagsLioqKKC4uZpBIdllYWODgwYOwtLQUWw8PD8fMmTORn5/PKJlsefToEYKCghAYGIji4mI4ODigvLwcR44cgZmZGet4MsvW1ha2trasYxBCCCEiVIwjhBAZ0aJFC9y7dw9t2rQRW4+JiYGhoSGbUBL6cDIhkR4GBgZISkqqMjX19OnTVHioY7a2tujZsyeWL1+OJUuWoLi4GHPmzEFYWBh8fHxYx5MJQ4YMQUxMDL777jts2bIF9vb2kJeXh7+/P+toMuVzw0w+RINNCCGEsELFOEIIkREzZsyAu7s7AgMDwePx8OTJE8TGxmLhwoXw8vJiHe+TqKOCdFq0aBFmz56NsrIyCIVCXL9+HSEhIVi7di0CAgJYx5MpW7ZswdChQ+Hi4oKTJ0/iyZMnaNy4MW7cuEGF0Tpy7tw5uLm5YebMmWjbti3rODJr06ZNEl3H4/GkuhhnYWEh8QdRCQkJ/3EaQgghXxsV4wghREYsXrwYRUVFsLGxQVlZGfr27QtFRUUsXLgQc+bMYR3vkwQCAesIpBouLi6oqKjA4sWLUVJSggkTJkBXVxebN2/GDz/8wDqezBk8eDBGjx6N7du3o0GDBjhx4gQV4urQlStXEBgYCCsrK7Rv3x6TJk3CuHHjWMeSOdnZ2awjfBUjR44UfV9WVoZt27bBzMwMPXr0AADExcXh9u3bmDVrFqOEhBBCvgQNcCCEEBlTUlKCtLQ0CAQCmJmZoVGjRqwjkXrg+fPnEAgEor5+jx8/hq6uLuNUsoPP52PChAnIy8tDQEAAoqOjsX79eri5uWH16tVQUFBgHVFmlJSU4NChQwgMDMT169dRWVmJjRs3YsqUKVBTU2MdTya9ffsW2dnZMDIyQoMG3NuLMHXqVLRo0QK//vqr2Lq3tzcePnyIwMBARskIIYTUFhXjCCFERr18+RKXLl1Cu3btYGpqyjoOqSfy8vKwevVqBAQEoLS0lHUcmaGmpoahQ4fC398fGhoaAIBr166JpicnJiayDSijMjIysHv3buzbtw+FhYWwtbVFREQE61gyo6SkBHPnzkVwcDAA4O7duzA0NISbmxtatmwJT09Pxgklo66ujps3b1Y5/pyZmQkrKysUFRUxSkYIIaS25FgHIIQQUjccHBywdetWAEBpaSmsra3h4OCAjh074siRI4zTES4pLCyEo6MjtLW10bJlS/j5+UEgEMDLywuGhoaIi4ujnRp1bNu2bTh06JCoEAcAPXv2RGJiYpUJq6TutGvXDr///jsePXqEkJAQ1nFkzk8//YTk5GRERUVBSUlJtD5o0CAcPnyYYbKaUVZWRkxMTJX1mJgYsfsihBDCHbQzjhBCZETz5s1x9uxZdOrUCQcPHoS3tzeSk5MRHByMnTt30s4ZIrFZs2bhxIkTGDduHM6cOYP09HTY2dmhrKwM3t7e6NevH+uIhBACfX19HD58GN27d4eamhqSk5NhaGiIe/fuwdLSEi9fvmQdUSI+Pj5Yvnw5pk6diu7duwOA6EMPLy8vzuzwI4QQ8j/ca5pACCGkVoqKiqClpQUAOHPmDMaMGQMVFRUMHToUixYtYpyOcMnJkyexZ88eDBo0CLNmzYKxsTFMTEzg6+vLOprMS0tLQ05ODt6+fSta4/F4GDZsGMNUhLCRn58v6mP5oeLiYoknlUoDT09PGBoaYvPmzTh48CAAwNTUFEFBQXBwcGCcjhBCSG1QMY4QQmSEnp4eYmNjoaWlhTNnzuDQoUMAgH/++YeOuZAaefLkiWhKp6GhIZSUlDB16lTGqWRLUVER1NXVRY+zsrIwevRopKSkgMfj4f3Bh/cFh8rKSiY5CWHJ2toaJ0+exNy5cwH87/dh165doqmkXOHg4ECFN0IIqUeoGEcIITJi3rx5cHR0RKNGjaCvr4/+/fsDAC5fvgxzc3O24QinCAQCsemc8vLyUFVVZZhI9vj5+UFJSUm0q9Xd3R16eno4e/YsOnfujL///hvZ2dlYuHAhNm7cyDgtIWysXbsW9vb2SEtLQ0VFBTZv3ozbt28jNjYW0dHRrOMRQgiRYdQzjhBCZEh8fDxycnJga2uLRo0aAXh35FBDQwO9evVinI5whZycHL799lsoKioCAE6cOIEBAwZUKcgdPXqURTyZ8OzZM0yaNAnGxsb4448/0LRpU1y8eBGdOnWCrq4url+/Dl1dXVy8eBELFy6knpBEpiQlJaFz584AgFu3bmH9+vWIj4+HQCCApaUllixZwqkPoSorK7Fp0yaEhoZWOYYOAAUFBYySEUIIqS3aGUcIITKkS5cu6NKli9ja0KFDGaUhXOXs7Cz2eOLEiYySyC4dHR2cPXsWa9euBfDuzbqamhoAoGnTpnjy5Al0dXXRpk0bZGRksIxKSJ2ztLSEhYUFpk6digkTJiA4OJh1pC+yYsUKBAQEYP78+Vi2bBl++eUX3L9/H8ePH4eXlxfreIQQQmqBdsYRQgghhHBcnz59MH/+fIwaNQrTp09Hfn4+Fi1aBH9/fyQkJCA1NZV1RELqTGxsLAIDAxEaGory8nKMGTMGU6ZMgY2NDetotWJkZAQ/Pz8MHToUampqSEpKEq3FxcWJhjoQQgjhDirGEUIIIYRw3NmzZ/Hq1SuMHTsWDx8+xNChQ5GamgotLS2EhoZiwIABrCMSUudKS0sRGhqKPXv24MqVK2jTpg2mTJkCZ2dntGrVinU8iamqqiI9PR2tW7dGixYtcPLkSVhaWiIrKwsWFhYoKipiHZEQQkgNybEOQAghhBBCvoydnR3Gjh0L4N3k5JSUFDx//hzPnj2jQhyRWcrKynB2dkZUVBTu3r2L8ePHY8eOHTAwMMCQIUNYx5NYq1atkJubCwAwNjbGuXPnAAA3btwQ9e4khBDCLbQzjhBCCCGEEFLvvX79GgcOHMDPP/+MwsJCVFZWso4kEU9PTzRu3Bg///wzwsPDMX78eLRp0wY5OTnw8PCAj48P64iEEEJqiIpxhBAiQ65cuYIdO3aAz+cjPDwcurq62LdvHwwMDNC7d2/W8QghtVRWVoYtW7YgMjISz549g0AgEHs+ISGBUTJC2IuOjkZgYCCOHDkCeXl5ODg4wNXVFd27d2cdrVbi4uJw7do1GBsbY/jw4azjEEIIqQWapkoIITLiyJEjmDRpEhwdHZGYmIg3b94AAF69eoU1a9bg1KlTjBMSQmprypQpOH/+PMaOHYuuXbuCx+OxjkQIUw8fPkRQUBCCgoKQnZ2Nnj17YsuWLXBwcICqqirreF+ke/funC0kEkIIeYd2xhFCiIywsLCAh4cHnJycoKamhuTkZBgaGiIpKQn29vbIy8tjHZEQUkvq6uo4deoUevXqxToKIczZ2toiMjIS2tracHJywpQpU9CuXTvWsWokIiJC4mtpdxwhhHAP7YwjhBAZkZGRgb59+1ZZb9y4MQoLC+s+ECHkq9HV1YWamhrrGIRIBWVlZRw5cgTfffcd5OXlWceplZEjR4o95vF4+Pceivc7YLnS+44QQsj/0DRVQgiRES1atMC9e/eqrMfExMDQ0JBBIkLI17JhwwYsWbIEDx48YB2FEOYiIiIwYsQIzhbiAEAgEIi+zp07h86dO+P06dMoLCxEUVERTp8+DUtLS5w5c4Z1VEIIIbVAO+MIIURGzJgxA+7u7ggMDASPx8OTJ08QGxuLhQsXwsvLi3U8QsgXsLKyQllZGQwNDaGiogIFBQWx5wsKChglI4R8qXnz5sHf319s0JKdnR1UVFQwffp0pKenM0xHCCGkNqgYRwghMmLx4sUoKiqCjY0NysrK0LdvXygqKmLhwoWYM2cO63iEkC8wfvx4PH78GGvWrEGzZs1ogAMh9Qifz4e6unqVdXV1ddy/f7/uAxFCCPliNMCBEEJkTElJCdLS0iAQCGBmZoZGjRqxjkQI+UIqKiqIjY1Fp06dWEchhHxlffv2hYKCAvbv348WLVoAAPLy8jBp0iS8ffsW0dHRjBMSQgipKdoZRwghMkZFRQVWVlasYxBCvqL27dujtLSUdQxCyH8gMDAQo0aNgr6+Plq3bg0AyMnJgYmJCY4fP842HCGEkFqhnXGEECIjbGxsPnl07dKlS3WYhhDyNZ07dw4rVqzA6tWrYW5uXqVnXOPGjRklI4R8DUKhEOfPn8edO3cgFAphZmaGQYMG0ZF0QgjhKCrGEUKIjPDw8BB7XF5ejqSkJKSmpsLZ2RmbN29mlIwQ8qXk5OQAoMobc6FQCB6Ph8rKShaxCCGEEEJINeiYKiGEyIhNmzZVu758+XK8fv26jtMQQr6myMhI1hEIIV+Rn58fpk+fDiUlJfj5+X3yWjc3tzpKRQgh5GuhnXGEECLj7t27h65du6KgoIB1FEIIIYQAMDAwwM2bN9GkSRMYGBh89Doej4esrKw6TEYIIeRroJ1xhBAi42JjY6GkpMQ6BiGEEEL+X3Z2drXfE0IIqR+oGEcIITJi9OjRYo+FQiFyc3Nx8+ZNLFu2jFEqQgghhBBCCJEtcqwDEEIIqRvq6upiX1paWujfvz9OnToFb29v1vEIIYQQUo2xY8fCx8enyvq6devw/fffM0hECCHkS1HPOEIIIYQQQgiRUtra2rh06RLMzc3F1m/duoVBgwbh6dOnjJIRQgipLTqmSgghhBBST+Tn5yMjIwM8Hg8mJibQ1tZmHYkQ8oVev36Nhg0bVllXUFDAy5cvGSQihBDypeiYKiGEyAhNTU1oaWlJ9EUI4Zbi4mJMmTIFLVu2RN++fdGnTx+0bNkSrq6uKCkpYR2PEPIFOnTogMOHD1dZP3ToEMzMzBgkIoQQ8qVoZxwhhMiIZcuWYdWqVbCzs0OPHj0AvJukevbsWSxbtoyKcIRw2Pz58xEdHY2IiAj06tULABATEwM3NzcsWLAA27dvZ5yQEFJby5Ytw5gxY8Dn8zFgwAAAwMWLFxESEoKwsDDG6QghhNQG9YwjhBAZMWbMGNjY2GDOnDli61u3bsWFCxdw/PhxNsEIIV+sadOmCA8PR//+/cXWIyMj4eDggPz8fDbBCCFfxcmTJ7FmzRokJSVBWVkZHTt2hLe3N/r168c6GiGEkFqgYhwhhMiIRo0aISkpCcbGxmLrmZmZsLCwwOvXrxklI4R8KRUVFcTHx8PU1FRs/fbt2+jatSuKi4sZJSOEEEIIIf9GPeMIIURGNGnSBMeOHauyfvz4cTRp0oRBIkLI19KjRw94e3ujrKxMtFZaWooVK1aIjqUTQrgtPj4e+/fvx4EDB5CYmMg6DiGEkC9APeMIIURGrFixAq6uroiKihK9OY+Li8OZM2cQEBDAOB0h5Ets3rwZ9vb2aNWqFTp16gQej4ekpCQoKSnh7NmzrOMRQr7As2fP8MMPPyAqKgoaGhoQCoUoKiqCjY0NDh06RFOTCSGEg+iYKiGEyJC///4bfn5+SE9Ph1AohJmZGdzc3NCtWzfW0QghX6i0tBT79+/HnTt3RL/fjo6OUFZWZh2NEPIFxo0bBz6fj3379omOoqelpcHZ2RnGxsYICQlhnJAQQkhNUTGOEEIIIYQQQqSUuro6Lly4AGtra7H169evY/DgwSgsLGQTjBBCSK1RzzhCCCGEEI4LDg7GyZMnRY8XL14MDQ0N9OzZEw8ePGCYjBDypQQCARQUFKqsKygoQCAQMEhECCHkS1ExjhBCCCGE49asWSM6jhobG4utW7fi999/R9OmTeHh4cE4HSHkSwwYMADu7u548uSJaO3x48fw8PDAwIEDGSYjhBBSW3RMlRBCCCGE41RUVHDnzh20bt0aS5YsQW5uLvbu3Yvbt2+jf//+yM/PZx2REFJLDx8+xIgRI5Camgo9PT3weDzk5OTA3Nwcf/75J1q1asU6IiGEkBqiaaqEEEIIIRzXqFEjvHjxAq1bt8a5c+dEu+GUlJRQWlrKOB0h5Evo6ekhISEB58+fFxvQMmjQINbRCCGE1BIV4wghhBBCOM7W1hZTp06FhYUF7t69i6FDhwIAbt++jTZt2rANRwj5KmxtbWFra8s6BiGEkK+AinGEECJDbty4gbCwMOTk5ODt27dizx09epRRKkLIl/rjjz+wdOlSPHz4EEeOHEGTJk0AAPHx8Rg/fjzjdISQmvLz85P4Wjc3t/8wCSGEkP8C9YwjhBAZcejQITg5OWHw4ME4f/48Bg8ejMzMTOTl5WHUqFHYs2cP64iEEEIIAWBgYCDRdTweD1lZWf9xGkIIIV8bFeMIIURGdOzYETNmzMDs2bOhpqaG5ORkGBgYYMaMGWjRogVWrFjBOiIh5AtcuXIFO3bsQFZWFsLCwqCrq4t9+/bBwMAAvXv3Zh2PEEIIIYT8PznWAQghhNQNPp8v6iOlqKiI4uJi8Hg8eHh4YOfOnYzTEUK+xJEjR2BnZwdlZWUkJCTgzZs3AIBXr15hzZo1jNMRQr6Gt2/fIiMjAxUVFayjEEII+UJUjCOEEBmhpaWFV69eAQB0dXWRmpoKACgsLERJSQnLaISQL7Rq1Sr4+/tj165dUFBQEK337NkTCQkJDJMR8n/t3XtslvXdP/D3XQ5SdaBT2chAOamxigqKA1R8wDKPmYquHhBRiscpqFGmJuiWZc7EZU6yoZsZoJsHcBimQR3opLEI8cDwABUBcSXzMDMGRJGBtM8fbs364PP8/In0nlyvV9Kk9+e6evfd/kHIu9/v92J7bdy4MbW1tdl1111z8MEHp7GxMcknZ8XddtttZU4HwOehjAMoiGOPPTbz5s1LktTU1GTChAm5+OKLc+655+b4448vczpgeyxfvjxDhw7dZt65c+esW7eu7QMBX5gbb7wxL7/8cubPn59OnTq1zKurqzNjxowyJgPg8/I0VYCC+PnPf55NmzYl+eQ/9h06dEh9fX1GjhyZSZMmlTkdsD26deuWlStXpmfPnq3m9fX16d27d3lCAV+I2bNnZ8aMGRk0aFBKpVLLvKqqKqtWrSpjMgA+L2UcQEF89atfbfm8oqIiEydOzMSJE8uYCPiiXHrppZkwYUKmTp2aUqmUt99+OwsXLsx1112Xm2++udzxgO3w/vvvp2vXrtvM/3X2KwBfPso4gJ3Yhg0bPvO9nTt33oFJgB1p4sSJWb9+fYYNG5ZNmzZl6NCh2WWXXXLdddflyiuvLHc8YDsMHDgwc+bMyVVXXZUkLQXcPffck8GDB5czGgCfU6m5ubm53CEA2DEqKir+n381b25uTqlUytatW9soFbCjbNy4McuWLUtTU1Oqqqqy++67lzsSsJ2ee+65nHjiiRk1alSmT5+eSy+9NEuXLs3ChQtTV1eXI444otwRAfj/ZGUcwE7smWeeKXcEYAfauHFjrr/++syePTtbtmxJdXV1Jk+enL333rvc0YDttGTJkhx++OEZMmRIFixYkJ/85Cfp06dP5s6dmwEDBmThwoXp169fuWMC8DlYGQcA8CV1/fXXZ8qUKRk1alQ6deqUBx98MP/1X/+Vhx9+uNzRgO1UUVGR/v37Z9y4cTnvvPPSpUuXckcC4AuijAMA+JLq06dPfvSjH+Wcc85Jkjz//PM5+uijs2nTprRr167M6YDtsXDhwkydOjUzZ87Mli1bcuaZZ2bs2LEZNmxYuaMBsJ2UcQAAX1IdO3bM6tWr841vfKNlVllZmTfeeCM9evQoYzLgi/LRRx9l5syZmTZtWp599tn07NkzY8eOzZgxY9K9e/dyxwPgc6godwAAAD6frVu3pmPHjq1m7du3z8cff1ymRMAXrbKyMmPGjMn8+fPzxhtv5Nxzz80vf/nL9OrVKyeffHK54wHwOVgZBwDwJVVRUZGTTjopu+yyS8vssccey/Dhw7Pbbru1zB555JFyxAN2gA8++CD3339/brrppqxbt87T0AG+hDxNFQDgS2rMmDHbzM4///wyJAF2tLq6ukydOjWzZs1Ku3btUlNTk9ra2nLHAuBzsDIOoEB+97vfZebMmWlsbMzmzZtbXVu8eHGZUgEAn2bNmjWZPn16pk+fntWrV2fIkCGpra1NTU1Nq9WvAHy5ODMOoCAmT56ciy66KF27ds2f/vSnHHXUUdlrr73y5ptv5qSTTip3PADg34wYMSK9evXKlClTctZZZ6WhoSH19fW56KKLFHEAX3K2qQIUxJQpU/KrX/0q5557bu69995MnDgxvXv3zs0335y1a9eWOx4A8G8qKysza9asnHrqqWnXrl254wDwBbJNFaAgdt111zQ0NGS//fZL165dM2/evBx22GFZsWJFBg0alL/97W/ljggAALDTs00VoCC+/vWvtxRu++23XxYtWpQkWb16dfxdBgAAoG0o4wAKYvjw4XnssceSJLW1tbnmmmsyYsSInH322TnjjDPKnA4AAKAYbFMFKIimpqY0NTWlfftPjgudOXNm6uvr07dv31x22WXp2LFjmRMCAADs/JRxAAAAANBGbFMFAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANtK+3AEA2HH69++fUqn0me5dvHjxDk4DAACAMg5gJ3b66ae3fL5p06ZMmTIlVVVVGTx4cJJk0aJFWbp0aa644ooyJQQAACiWUnNzc3O5QwCw440bNy7dunXLD3/4w1bzW265JWvWrMnUqVPLlAwAAKA4lHEABdGlS5e8+OKL2X///VvNV6xYkSOPPDLr168vUzIAAIDi8AAHgIKorKxMfX39NvP6+vp06tSpDIkAAACKx5lxAAVx9dVX5/LLL89LL72UQYMGJfnkzLipU6fm5ptvLnM6AACAYrBNFaBAZs6cmTvvvDMNDQ1JkoMOOigTJkxITU1NmZMBAAAUgzIOAAAAANqIM+MAAAAAoI04Mw6gILZu3Zo77rgjM2fOTGNjYzZv3tzq+tq1a8uUDAAAoDisjAMoiB/84Af56U9/mpqamqxfvz7XXnttRo4cmYqKinz/+98vdzwAAIBCcGYcQEH06dMnkydPzimnnJKvfOUrWbJkScts0aJFeeCBB8odEQAAYKdnZRxAQbz77rvp169fkmT33XfP+vXrkySnnnpq5syZU85oAAAAhaGMAyiI7t2755133kmS9O3bN3Pnzk2SvPDCC9lll13KGQ0AAKAwlHEABXHGGWfk6aefTpJMmDAhkyZNyv77758LLrggY8eOLXM6AACAYnBmHEBBLVq0KM8991z69u2bb3/72+WOAwAAUAjKOAAAAABoI+3LHQCAHefRRx/9zPdaHQcAALDjWRkHsBOrqGh9NGipVMr//Ge/VColSbZu3dpmuQAAAIrKAxwAdmJNTU0tH3Pnzs3hhx+eJ554IuvWrcv69evzxBNPZMCAAXnyySfLHRUAAKAQrIwDKIhDDjkkd999d4455phW82effTaXXHJJGhoaypQMAACgOKyMAyiIVatWpUuXLtvMu3TpkrfeeqvtAwEAABSQlXEABTF06NB06NAhv/3tb9OtW7ckybvvvpvRo0dn8+bNqaurK3NCAACAnZ8yDqAgVq5cmTPOOCPLly/PvvvumyRpbGzMAQcckNmzZ6dv375lTggAALDzU8YBFEhzc3PmzZuX119/Pc3Nzamqqkp1dXXLE1UBAADYsZRxAAAAANBG2pc7AAA7zuTJk3PJJZekU6dOmTx58v957/jx49soFQAAQHFZGQewE+vVq1defPHF7LXXXunVq9f/el+pVMqbb77ZhskAAACKSRkHAAAAAG2kotwBAAAAAKAolHEABXHWWWfltttu22Z+++235zvf+U4ZEgEAABSPbaoABbHPPvvkj3/8Y/r169dq/uqrr6a6ujrvvfdemZIBAAAUh5VxAAXxwQcfpGPHjtvMO3TokA0bNpQhEQAAQPEo4wAK4pBDDsmMGTO2mT/00EOpqqoqQyIAAIDiaV/uAAC0jUmTJuXMM8/MqlWrMnz48CTJ008/nQcffDAPP/xwmdMBAAAUgzPjAApkzpw5ufXWW7NkyZJUVlbm0EMPzS233JLjjjuu3NEAAAAKQRkHAAAAAG3ENlWAgnnppZfS0NCQUqmUqqqq9O/fv9yRAAAACkMZB1AQf/3rX3POOedk/vz52WOPPdLc3Jz169dn2LBheeihh7LPPvuUOyIAAMBOz9NUAQriqquuyoYNG7J06dKsXbs2f//73/Paa69lw4YNGT9+fLnjAQAAFIIz4wAKokuXLnnqqacycODAVvPnn38+3/rWt7Ju3bryBAMAACgQK+MACqKpqSkdOnTYZt6hQ4c0NTWVIREAAEDxKOMACmL48OGZMGFC3n777ZbZX/7yl1xzzTU5/vjjy5gMAACgOGxTBSiINWvW5LTTTstrr72WHj16pFQqpbGxMf369cvvf//7dO/evdwRAQAAdnrKOICCmTdvXl5//fU0Nzenqqoq1dXV5Y4EAABQGMo4AAAAAGgj7csdAIAdZ/LkyZ/53vHjx+/AJAAAACRWxgHs1Hr16vWZ7iuVSnnzzTd3cBoAAACUcQAAAADQRirKHQCAtrV58+YsX748H3/8cbmjAAAAFI4yDqAgNm7cmNra2uy66645+OCD09jYmOSTs+Juu+22MqcDAAAoBmUcQEHceOONefnllzN//vx06tSpZV5dXZ0ZM2aUMRkAAEBxeJoqQEHMnj07M2bMyKBBg1IqlVrmVVVVWbVqVRmTAQAAFIeVcQAF8f7776dr167bzD/88MNW5RwAAAA7jjIOoCAGDhyYOXPmtLz+VwF3zz33ZPDgweWKBQAAUCi2qQIUxI9//OOceOKJWbZsWT7++OPceeedWbp0aRYuXJi6urpyxwMAACgEK+MAdnJLlixJkgwZMiQLFizIxo0b06dPn8ydOzdf+9rXsnDhwhxxxBHlDQkAAFAQpebm5uZyhwBgx6moqEj//v0zbty4nHfeeenSpUu5IwEAABSWlXEAO7kFCxZkwIABueGGG9KtW7eMHj06zzzzTLljAQAAFJKVcQAF8dFHH2XmzJmZNm1ann322fTs2TNjx47NmDFj0r1793LHAwAAKARlHEABrVq1KtOmTct9992Xd955JyNGjMjjjz9e7lgAAAA7PWUcQEF98MEHuf/++3PTTTdl3bp12bp1a7kjAQAA7PTalzsAAG2rrq4uU6dOzaxZs9KuXbvU1NSktra23LEAAAAKwco4gAJYs2ZNpk+fnunTp2f16tUZMmRIamtrU1NTk912263c8QAAAArDyjiAndyIESPyzDPPZJ999skFF1yQsWPH5sADDyx3LAAAgEJSxgHs5CorKzNr1qyceuqpadeuXbnjAAAAFJptqgAAAADQRirKHQAAAAAAikIZBwAAAABtRBkHAAAAAG1EGQcAADvQ/PnzUyqVsm7dus/8NT179szPfvazHZYJACgfZRwAAIV24YUXplQq5bLLLtvm2hVXXJFSqZQLL7yw7YMBADslZRwAAIXXo0ePPPTQQ/noo49aZps2bcqDDz6Yfffdt4zJAICdjTIOAIDCGzBgQPbdd9888sgjLbNHHnkkPXr0SP/+/Vtm//jHPzJ+/Ph07do1nTp1yjHHHJMXXnih1Xs9/vjjOeCAA1JZWZlhw4blrbfe2ub7Pffccxk6dGgqKyvTo0ePjB8/Ph9++OH/mq+xsTGnnXZadt9993Tu3Dk1NTV57733tv8HBwDanDIOAACSXHTRRZk2bVrL66lTp2bs2LGt7pk4cWJmzZqVe++9N4sXL07fvn1zwgknZO3atUmSNWvWZOTIkTn55JOzZMmSjBs3LjfccEOr93j11VdzwgknZOTIkXnllVcyY8aM1NfX58orr/zUXM3NzTn99NOzdu3a1NXVZd68eVm1alXOPvvsL/g3AAC0BWUcAAAkGT16dOrr6/PWW2/lz3/+cxYsWJDzzz+/5fqHH36Yu+66K7fffntOOumkVFVV5Z577kllZWV+/etfJ0nuuuuu9O7dO3fccUcOPPDAjBo1apvz5m6//facd955ufrqq7P//vtnyJAhmTx5cu67775s2rRpm1xPPfVUXnnllTzwwAM54ogj8s1vfjO/+c1vUldXt82qPADgP1/7cgcAAID/BHvvvXdOOeWU3HvvvWlubs4pp5ySvffeu+X6qlWrsmXLlhx99NEtsw4dOuSoo45KQ0NDkqShoSGDBg1KqVRquWfw4MGtvs9LL72UlStX5v7772+ZNTc3p6mpKatXr85BBx3U6v6Ghob06NEjPXr0aJlVVVVljz32SENDQwYOHPjF/AIAgDahjAMAgH8aO3Zsy3bRX/ziF62uNTc3J0mrou1f83/N/nXP/6WpqSmXXnppxo8fv821T3tYxL+//2eZAwD/2WxTBQCAfzrxxBOzefPmbN68OSeccEKra3379k3Hjh1TX1/fMtuyZUtefPHFltVsVVVVWbRoUauv+5+vBwwYkKVLl6Zv377bfHTs2HGbTFVVVWlsbMyaNWtaZsuWLcv69eu3WUUHAPznU8YBAMA/tWvXLg0NDWloaEi7du1aXdttt91y+eWX5/rrr8+TTz6ZZcuW5eKLL87GjRtTW1ubJLnsssuyatWqXHvttVm+fHkeeOCBTJ8+vdX7fO9738vChQvz3e9+N0uWLMmKFSvy6KOP5qqrrvrUTNXV1Tn00EMzatSoLF68OM8//3wuuOCCHHfccTnyyCN3yO8BANhxlHEAAPBvOnfunM6dO3/qtdtuuy1nnnlmRo8enQEDBmTlypX5wx/+kD333DPJJ9tMZ82alcceeyyHHXZY7r777tx6662t3uPQQw9NXV1dVqxYkWOPPTb9+/fPpEmT0q1bt0/9nqVSKbNnz86ee+6ZoUOHprq6Or17986MGTO+2B8cAGgTpebPcrAFAAAAALDdrIwDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA2oowDAAAAgDaijAMAAACANqKMAwAAAIA28t+vkhTTEyLM9QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhVyeP48TfdjbSEIAiIjd0FBtjdua5r5+qusda6xq66a63d3d2d2IXdAgYdInV+fyAXLvdeRIHF3+c7Lx+exzt3zpyZ03fOhJokSRKCIAiCIAiCIAiCIAiCIChQL+wMCIIgCIIgCIIgCIIgCML3SlSeCYIgCIIgCIIgCIIgCIIKovJMEARBEARBEARBEARBEFQQlWeCIAiCIAiCIAiCIAiCoIKoPBMEQRAEQRAEQRAEQRAEFUTlmSAIgiAIgiAIgiAIgiCoICrPBEEQBEEQBEEQBEEQBEEFUXkmCIIgCIIgCIIgCIIgCCqIyjNBEARBEARBEARBEARBUEFUngmCIAj/qZUrV6KmpsaVK1eUft+0aVOcnZ0LNA/nz59n4sSJREVFFeh6CsPEiRNRU1PL93Rv3bpFjx49cHFxQVdXF0NDQ8qVK8eMGTOIiIjI9/XlxcmTJ1FTU+PkyZMFkv7z589RU1Nj5cqVBZJ+YevevXu+nYNly5bF3t6e1NRUlXGqVauGpaUlSUlJeV5fXvb9l65NWeXnNsotSZLYuHEjNWrUwMrKCl1dXRwcHPDz82Pp0qXflGbt2rWpXbt2/mb0KxXUNSu/qampMXHixP98vWfOnEFHR4cXL17IwpydnWnatKnS+FeuXMn369PXnBv54f+XYyJDXFwcQ4YMwc7ODl1dXcqUKcPGjRtztWzt2rVRU1NT+RcWFgZAcnIyrq6uzJkzpwBLIghCTkTlmSAIgvB/zvnz5/ntt9/+JyvPCsKSJUsoX748QUFBjBw5koMHD7Jjxw7atGnDokWL6NWrV2Fn8T9la2vLhQsXaNKkSWFn5bvXq1cvQkJCOHTokNLvHz58yPnz5+nSpQva2tp5Xl+5cuW4cOEC5cqVy3Na35sxY8bQoUMHPD09Wbp0KQcOHGDKlClYW1uza9euws7eN+vduzcXLlwo7Gx8lyRJYsiQIfTp0wcnJ6fCzo6gQsuWLVm1ahUTJkzgwIED+Pr60qFDB9avX//FZRcsWMCFCxfk/o4dO4aWlhaVK1fGxsYGAC0tLcaPH8+kSZMIDw8v6CIJgqCEZmFnQBAEQRCE79eFCxf48ccfadCgATt37kRHR0f2XYMGDRg+fDgHDx7Ml3UlJCSgr6+vEJ6amkpKSorcuguTjo4OlStXLuxs/H+hU6dOjBw5kuXLl9O4cWOF75cvXw5Az54987Se5ORk1NTUMDY2/p/cNx8/fmTOnDl07dqVf//9V+677t27k5aWVkg5yzsHBwccHBwKOxvfpYMHD3Lt2rVcVcJ8z1Rd2/MqNDQUAwMDjI2N8z3t3Nq/fz9Hjhxh/fr1dOjQAYA6derw4sULRo4cSbt27dDQ0FC5vJeXl0LYqlWrSE5Opnfv3nLhHTp0YNiwYSxevJixY8fmb0EEQfgi0fJMEARB+O5JksSCBQsoU6YMenp6mJmZ0bp1a54+fSoX78iRIzRr1gwHBwd0dXVxc3Pjhx9+4MOHD7I4EydOZOTIkQC4uLjIukZkdPPK6A6zd+9eypYti56eHp6enuzduxdI777i6emJgYEBFStWVOjGcuXKFdq3b4+zszN6eno4OzvToUMHuS43Gemoqalx5MgRevTogbm5OQYGBgQEBCiUS5V9+/ZRpkwZdHR0cHFxYdasWXnafspMmzYNNTU1/v33X6WVV9ra2gQGBso+p6WlMWPGDEqUKIGOjg5WVlZ07dqV169fyy1Xu3ZtSpYsyenTp6latSr6+vr07NlT1iVyxowZTJkyBRcXF3R0dDhx4gSQvn0DAwMxNzdHV1eXsmXLsnnz5i+WI7f7BeDNmzf07duXokWLoq2tjZ2dHa1bt+bt27eA6m6bZ8+epV69ehgZGaGvr0/VqlXZt2+fXJyM/X7ixAl+/PFHLC0tsbCwoGXLloSEhCjkZdOmTVSpUgUDAwMMDQ3x8/Pj+vXrcnGePn1K+/btsbOzQ0dHB2tra+rVq8eNGze+uF1WrlyJh4cHOjo6eHp6snr1aqXxkpKSmDJlimy/FilShB49evD+/fsc0zczM6NFixbs2bNHobVEamoqa9aswdfXFx8fHx4/fkyPHj0oXrw4+vr62NvbExAQwO3bt+WWy+iauWbNGoYPH469vT06Ojo8fvxYabfNr9n3AJGRkd90Tub2PLt+/TpNmzbFysoKHR0d7OzsaNKkicI5klV8fDyfPn3C1tZW6ffq6vKP9N+6v7522fXr11OlShUMDQ0xNDSkTJkyLFu2TC7OwYMHqVevHiYmJujr6+Pp6cnvv/8u+15ZF72vvY4EBQVRo0YN9PX1KVasGNOnT5erUExMTGT48OGUKVMGExMTzM3NqVKlitIWezExMfTp0wcLCwsMDQ3x9/fn4cOHCvFye7ympaUxZcoUPDw80NPTw9TUlFKlSjF37twc9kK6hQsX4uvri4eHxxfj5qR79+4YGhpy//59/Pz8MDAwwNbWlunTpwNw8eJFqlevjoGBAe7u7qxatUppOrk5N1Rd2yH9etawYUNsbW1l99aff/6Z+Pj4byrXoUOHsLa2pnXr1mzfvp3ExMRvSicvduzYgaGhIW3atJEL79GjByEhIVy6dOmr01y2bBmGhoa0a9dOLlxbW5t27drx77//IklSnvItCMLXE5VngiAIQqHIaE2U/U/ZA+EPP/zAkCFDqF+/Pjt37mTBggXcvXuXqlWryio0AJ48eUKVKlVYuHAhhw8fZvz48Vy6dInq1auTnJwMpHcRGjhwIADbt2+XdZPI2s3r5s2bjBkzhtGjR7N9+3ZMTExo2bIlEyZMYOnSpUybNo1169YRHR1N06ZN+fjxo2zZ58+f4+HhwZw5czh06BB//PEHoaGh+Pr6ylXiZejVqxfq6uqsX7+eOXPmcPnyZWrXrv3FLqXHjh2jWbNmGBkZsXHjRmbOnMnmzZtZsWLFN28/Zfvo+PHjlC9fnqJFi+aYnww//vgjo0ePpkGDBuzevZvJkydz8OBBqlatqlD+0NBQOnfuTMeOHdm/fz/9+/eXfTdv3jyOHz/OrFmzOHDgACVKlODEiRNUq1aNqKgoFi1axK5duyhTpgzt2rX74vg+ud0vb968wdfXlx07djBs2DAOHDjAnDlzMDExITIyUmX6p06dom7dukRHR7Ns2TI2bNiAkZERAQEBbNq0SSF+79690dLSYv369cyYMYOTJ0/SuXNnuTjTpk2jQ4cOeHl5sXnzZtasWUNsbCw1atTg3r17sniNGzfm6tWrzJgxgyNHjrBw4ULKli37xWNo5cqV9OjRA09PT7Zt28avv/7K5MmTOX78uFy8tLQ0mjVrxvTp0+nYsSP79u1j+vTpHDlyhNq1a8sd/8r06tWLpKQk1q5dKxd+6NAhQkJCZN1+Q0JCsLCwYPr06Rw8eJD58+ejqalJpUqVePDggUK6Y8aM4eXLlyxatIg9e/ZgZWWldP3/1TmZm/MsPj6eBg0a8PbtW+bPn8+RI0eYM2cOjo6OxMbGqkzb0tISNzc3FixYwJ9//sn9+/dV/njOy/76mmXHjx9Pp06dsLOzY+XKlezYsYNu3brJVUouW7aMxo0bk5aWJttPgwYNyrGiEL7uOhIWFkanTp3o3Lkzu3fvplGjRowZM0buePv06RMRERGMGDGCnTt3smHDBqpXr07Lli3lKowlSaJ58+ayitkdO3ZQuXJlGjVqpJDH3B6vM2bMYOLEiXTo0IF9+/axadMmevXq9cXjKSkpiaNHj1KnTp0c4+VWcnIyLVu2pEmTJuzatUu2ncaOHUu3bt3o2bMnO3bswMPDg+7du3P16lWFNHJ7bqi6tj969IjGjRuzbNkyDh48yJAhQ9i8eTMBAQHfVKYWLVowb948IiMjadu2LdbW1nTv3p1Dhw7lOM6iJElKnz+U/X3JnTt38PT0RFNTvkNXqVKlZN9/jUePHnHmzBnat2+PoaGhwve1a9fmxYsXX52uIAj5QBIEQRCE/9CKFSskIMc/JycnWfwLFy5IgDR79my5dF69eiXp6elJo0aNUrqetLQ0KTk5WXrx4oUESLt27ZJ9N3PmTAmQnj17prCck5OTpKenJ71+/VoWduPGDQmQbG1tpfj4eFn4zp07JUDavXu3yvKmpKRIcXFxkoGBgTR37lyF7dCiRQu5+OfOnZMAacqUKSrTlCRJqlSpkmRnZyd9/PhRFhYTEyOZm5tLWW/v37r9JEmSwsLCJEBq3759jnnJEBwcLAFS//795cIvXbokAdLYsWNlYbVq1ZIA6dixY3Jxnz17JgGSq6urlJSUJPddiRIlpLJly0rJycly4U2bNpVsbW2l1NRUSZIk6cSJExIgnThxQmVeVe2Xnj17SlpaWtK9e/dULpuRxxUrVsjCKleuLFlZWUmxsbFy6yhZsqTk4OAgpaWlSZKUud+zb6MZM2ZIgBQaGipJkiS9fPlS0tTUlAYOHCgXLzY2VrKxsZHatm0rSZIkffjwQQKkOXPmqMyvMqmpqZKdnZ1Urlw5Wd4kSZKeP38uaWlpyZ2DGzZskABp27ZtcmkEBQVJgLRgwYIc15WWlia5uLhIpUqVkgtv1aqVpK+vL0VHRytdLiUlRUpKSpKKFy8uDR06VBaesX9r1qypsExe9v3XnJPdunX7puvUlStXJEDauXOnyvypcvnyZcnR0VF2nTQyMpKaNm0qrV69Wm4ffs3+qlWrllSrVq2vXvbp06eShoaG1KlTJ5X5jY2NlYyNjaXq1avL5S+7CRMmyF2zvuU6cunSJbm4Xl5ekp+fn8p1pqSkSMnJyVKvXr2ksmXLysIPHDggAXLHhSRJ0tSpUyVAmjBhQo5pKjtemzZtKpUpU0blcqpklHfjxo0K3zk5OUlNmjRRulzGvsp6ferWrZvCfk1OTpaKFCkiAdK1a9dk4eHh4ZKGhoY0bNgwWdjXnBuqru3ZZdyjT506JQHSzZs3Zd9lPyZyIywsTPr777+latWqSWpqapKVlZX0008/SWfPnlU4/nLzHJLx9yXFixdXeqyFhIRIgDRt2rSvKsfo0aMlQLpw4YLS7x89eiQB0sKFC78qXUEQ8k60PBMEQRAKxerVqwkKClL4q169uly8vXv3oqamRufOneXeBtvY2FC6dGm57lnv3r2jX79+FC1aFE1NTbS0tGSDLAcHB+c6b2XKlMHe3l722dPTE0h/45t13JaM8KwtLeLi4hg9ejRubm5oamqiqamJoaEh8fHxSvPQqVMnuc9Vq1bFyclJ1k1Rmfj4eIKCgmjZsiW6urqy8IyWTll9zfbLq4w8d+/eXS68YsWKeHp6cuzYMblwMzMz6tatqzStwMBAtLS0ZJ8fP37M/fv3Zdsra1kaN25MaGio0tZJGXK7Xw4cOECdOnVk+zY34uPjuXTpEq1bt5ZrKaChoUGXLl14/fq1Qt6ydnWFzFYKGcfSoUOHSElJoWvXrnJl1dXVpVatWrL9Zm5ujqurKzNnzuTPP//k+vXruRr/6sGDB4SEhNCxY0e5LnNOTk5UrVpVLu7evXsxNTUlICBALi9lypTBxsbmi8eQmpoaPXr04NatW7LWLOHh4ezZs4dWrVrJxitKSUlh2rRpeHl5oa2tjaamJtra2jx69EjpudOqVasvlhP+m3Myt+eZm5sbZmZmjB49mkWLFsm1IPwSX19fHj9+zMGDBxk7dixVqlTh2LFjdO3alcDAQFlLtLzsr9wue+TIEVJTU/npp59UpnX+/HliYmLo37//V82c+LXXERsbGypWrCgXVqpUKYVuuVu2bKFatWoYGhrK7g/Lli2TOwYy1p39GOjYsaNCPnN7vFasWJGbN2/Sv39/Dh06RExMTK62Q0Y3blUtKr+Wmpqa3LiDmpqauLm5YWtrS9myZWXh5ubmWFlZKe3WnNtzQ9W1/enTp3Ts2BEbGxs0NDTQ0tKiVq1awNfdo5WxtrZmwIABnD17lhcvXjBq1ChZy3MXFxe5rqEBAQFKnz+U/eVGTsf31xz7KSkprFq1Cm9vb5VjN2YcD2/evMl1uoIg5A8xYYAgCIJQKDw9PalQoYJCuImJCa9evZJ9fvv2LZIkYW1trTSdYsWKAendjRo2bEhISAjjxo3Dx8cHAwMD0tLSqFy58he7lmVlbm4u9zljFkBV4VnHWenYsSPHjh1j3Lhx+Pr6YmxsLPvRoiwPGTNpZQ/LaTatyMhI0tLSVC6bVW63nzKWlpbo6+vz7NkzlXGyysizsnGZ7OzsFH6MqRq/Sdl3Gd3eRowYwYgRI5Quo6wLXobc7pf3799/9eDlkZGRSJKkstyAwv60sLCQ+5wxnlxGXjLK6+vrq3SdGWNcqampcezYMSZNmsSMGTMYPnw45ubmdOrUialTp2JkZKR0+Yz8qDqGnj9/Lvv89u1boqKiVM6GmdN2z9CjRw8mTpzIihUrKF++POvWrSMpKUluptZhw4Yxf/58Ro8eTa1atTAzM0NdXZ3evXsrPXdyOn6y+i/OydyeZyYmJpw6dYqpU6cyduxYIiMjsbW1pU+fPvz6669yFcbKaGlp4efnh5+fH5C+H1u3bs3evXs5cOAAjRs3ztP+yu2yGeOf5XSu5CaOMl97Hcl+LkH6+ZR1327fvp22bdvSpk0bRo4ciY2NDZqamixcuFA2aUXGujU1NRXSVHZM5PZ4HTNmDAYGBqxdu5ZFixahoaFBzZo1+eOPP5TeAzNkpJH1BUkGTU1Nld0SM7oaZj+W9PX1FdLS1tZWuK9lhCsbPyy354ayfRcXF0eNGjXQ1dVlypQpuLu7o6+vz6tXr2jZsuVX3aO/JDo6mqioKKKjowFk+yaDubk5JiYm+bIuCwsLpdeGiIgI2bpya//+/YSFhTF69GiVcTL2YX5uL0EQckdUngmCIAjfNUtLS9TU1Dhz5ozSAeszwu7cucPNmzdZuXIl3bp1k33/+PHj/yyv0dHR7N27lwkTJvDzzz/LwjPG21EmLCxMaZibm5vK9ZiZmaGmpqZy2axyu/2U0dDQoF69ehw4cIDXr19/8Udwxg/O0NBQhbghISFYWlrKhX3N2/qMZceMGUPLli2VLqNqUO2v2S9FihT54nhM2WX8MAsNDVX4LqP1SPayf0lG/K1bt8paT6ri5OQkG6T94cOHbN68mYkTJ5KUlMSiRYuULpOxr3J7DFlYWKicVVVVBV1WDg4ONGzYkPXr1zN79mxWrFiBm5sbNWvWlMVZu3YtXbt2Zdq0aXLLfvjwAVNTU4U0c9Oi4786J7/mPPPx8WHjxo1IksStW7dYuXIlkyZNQk9PTy6PuWFhYcGQIUM4efIkd+7coXHjxnnaX7ldtkiRIgC8fv1a5XiIWeN8ja+9juTG2rVrcXFxYdOmTXLHzadPnxTWnZKSQnh4uFwFmrJjIrfHq6amJsOGDWPYsGFERUVx9OhRxo4di5+fH69evVI5C2VGOZUdp9bW1ipbHmWEq6rIzYvcnhvKzs3jx48TEhLCyZMnZa3NgC+O/ZZbDx8+ZNOmTWzcuJF79+7h5uZGhw4d6NixIyVKlJCLu2rVKnr06JGrdKUvDMzv4+PDhg0bSElJkRv3LGPiiJIlS+a6DMuWLUNbW5suXbqojJNxPHzLeSAIQt6IbpuCIAjCd61p06ZIksSbN2+oUKGCwp+Pjw+Q+bCe/Yfr4sWLFdLM3sonv6ipqSFJkkIeli5dqrKVwLp16+Q+nz9/nhcvXlC7dm2V68mY6TP77GKxsbHs2bNHLm5ut58qY8aMQZIk+vTpQ1JSksL3ycnJsnVmdNPJPjB8UFAQwcHB1KtXL8d15cTDw4PixYtz8+ZNpeWoUKGCykqBr9kvjRo14sSJEzl2Ac3OwMCASpUqsX37drljKi0tjbVr1+Lg4IC7u/tXlBb8/PzQ1NTkyZMnKsurjLu7O7/++is+Pj5cu3ZNZfoeHh7Y2tqyYcMGuR+HL1684Pz583JxmzZtSnh4OKmpqUrzkduZAHv16kVkZCTjx4/nxo0b9OjRQ+5HtpqamsI+2rdvX566J/1X5+S3nGdqamqULl2av/76C1NT0xz3V3JyssqWbxnd3TJaOeZlf+V22YYNG6KhocHChQtVplW1alVMTExYtGjRV80MWBDXETU1NbS1teWOt7CwMIXZNjMG589+DKxfv15pml97vJqamtK6dWt++uknIiIi5Fp4ZpfRdfzJkycK39WvX587d+4o7fa7efNmDA0NqVSpksq0v9W3nBsZvuYenVvv3r3jjz/+oGzZsnh4eLBo0SIaNmzI5cuXefToEZMmTVKoOIP87bbZokUL4uLi2LZtm1z4qlWrsLOzy/V+CAsLY//+/TRv3lxpa8oMGbObenl55SpdQRDyj2h5JgiCIHzXqlWrRt++fenRowdXrlyhZs2aGBgYEBoaytmzZ/Hx8eHHH3+kRIkSuLq68vPPPyNJEubm5uzZs4cjR44opJnxQ3bu3Ll069YNLS0tPDw8ctWCJifGxsbUrFmTmTNnYmlpibOzM6dOnWLZsmVKW84AXLlyhd69e9OmTRtevXrFL7/8gr29vdzMk8pMnjwZf39/GjRowPDhw0lNTeWPP/7AwMBArqVCbrefKhmzl/bv35/y5cvz448/4u3tTXJyMtevX+fff/+lZMmSBAQE4OHhQd++ffn7779RV1enUaNGPH/+nHHjxlG0aFGGDh36Tds1w+LFi2nUqBF+fn50794de3t7IiIiCA4O5tq1a2zZskXpcl+zXyZNmsSBAweoWbMmY8eOxcfHh6ioKA4ePMiwYcOU/hAD+P3332nQoAF16tRhxIgRaGtrs2DBAu7cucOGDRu+atwbAGdnZyZNmsQvv/zC06dP8ff3x8zMjLdv33L58mUMDAz47bffuHXrFgMGDKBNmzYUL14cbW1tjh8/zq1bt3JsxaSurs7kyZPp3bs3LVq0oE+fPkRFRTFx4kSFrlnt27dn3bp1NG7cmMGDB1OxYkW0tLR4/fo1J06coFmzZrRo0eKLZQoMDMTS0pKZM2eioaEh10IU0ituVq5cSYkSJShVqhRXr15l5syZX93tL6v/6pzM7Xm2d+9eFixYQPPmzSlWrBiSJLF9+3aioqJo0KCByvSjo6NxdnamTZs21K9fn6JFixIXF8fJkyeZO3cunp6eshaZedlfuV3W2dmZsWPHMnnyZD5+/EiHDh0wMTHh3r17fPjwgd9++w1DQ0Nmz55N7969qV+/Pn369MHa2prHjx9z8+ZN/vnnH6V5KIjrSNOmTdm+fTv9+/endevWvHr1ismTJ2Nra8ujR49k8Ro2bEjNmjUZNWoU8fHxVKhQgXPnzrFmzRqlaebmeA0ICKBkyZJUqFCBIkWK8OLFC+bMmYOTkxPFixdXmWcHBweKFSvGxYsXGTRokNx3gwcPZvXq1dSuXVt2nYqMjGTTpk1s3bqVP//8M8/3M2W+9X4F6ZWpZmZm9OvXjwkTJqClpcW6deu4efPmN+dn//79TJ8+nVatWjFr1izq1Kkj1z1TFQsLixwrqL5Go0aNaNCgAT/++CMxMTG4ubmxYcMGDh48yNq1a9HQ0JDF7dWrF6tWreLJkycKLYpXrVpFSkoKvXv3znF9Fy9elHX9FQThP/Zfz1AgCIIg/N+WMctVUFCQ0u+bNGkiN4tdhuXLl0uVKlWSDAwMJD09PcnV1VXq2rWrdOXKFVmce/fuSQ0aNJCMjIwkMzMzqU2bNtLLly+VzpI2ZswYyc7OTlJXV5ebnU/VLGaA9NNPP8mFZcy6OHPmTFnY69evpVatWklmZmaSkZGR5O/vL925c0dycnKSunXrprAdDh8+LHXp0kUyNTWV9PT0pMaNG0uPHj36wlZMt3v3bqlUqVKStra25OjoKE2fPl3lLGW52X45uXHjhtStWzfJ0dFR0tbWlgwMDKSyZctK48ePl969eyeLl5qaKv3xxx+Su7u7pKWlJVlaWkqdO3eWXr16JZderVq1JG9vb4X1KNumWd28eVNq27atZGVlJWlpaUk2NjZS3bp1pUWLFsniKJtxMbf7RZLSZ0js2bOnZGNjI2lpaUl2dnZS27Ztpbdv38rlMetsdpIkSWfOnJHq1q0r28aVK1eW9uzZIxdH1fGvapbInTt3SnXq1JGMjY0lHR0dycnJSWrdurV09OhRSZIk6e3bt1L37t2lEiVKSAYGBpKhoaFUqlQp6a+//pJSUlKUbsOsli5dKhUvXlzS1taW3N3dpeXLlyvMJClJ6TPzzZo1SypdurSkq6srGRoaSiVKlJB++OGHXB+vkiRJQ4cOlQCpcePGCt9FRkZKvXr1kqysrCR9fX2pevXq0pkzZxRmhMzYVlu2bFFIIy/7/mvOSWXbSJK+fJ7dv39f6tChg+Tq6irp6elJJiYmUsWKFaWVK1fmuN0+ffokzZo1S2rUqJHk6Ogo6ejoSLq6upKnp6c0atQoKTw8XC5+bvdX9m37NctKkiStXr1a8vX1lcUrW7aswnmxf/9+qVatWpKBgYGkr68veXl5SX/88Yfse2XXrLxeR5Ttn+nTp0vOzs6Sjo6O5OnpKS1ZskTpuqOioqSePXtKpqamkr6+vtSgQQPp/v37CveR3B6vs2fPlqpWrSpZWlrKrtW9evWSnj9/rpDv7MaNGyeZmZlJiYmJCt+FhYVJP/74o+To6ChpampKRkZGUvXq1ZWeF926dZMMDAwUwlVtv+z3wa85N1SlKUmSdP78ealKlSqSvr6+VKRIEal3797StWvXFK6nuZ1t88OHD9KnT5++GK+gxcbGSoMGDZJsbGwkbW1tqVSpUtKGDRsU4mXMeqpspm93d3fJ2dk5x5lpJUmSatSoIQUEBORX1gVB+ApqkvQV7agFQRAEQcgXK1eupEePHgQFBeU4aLQgCILwf1NISAguLi6sXr2adu3aFXZ2hEL25MkTihcvzqFDh3JsqSoIQsEQY54JgiAIgiAIgiB8Z+zs7BgyZAhTp04lLS2tsLMjFLIpU6ZQr149UXEmCIVEjHkmCIIgCIIgCILwHfr111/R19fnzZs3Kmc2Ff73paSk4OrqypgxYwo7K4Lwf5botikIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCEK+O336NAEBAdjZ2aGmpsbOnTu/uMypU6coX748urq6FCtWjEWLFinE2bZtG15eXujo6ODl5cWOHTsKIPeZROWZIAiCIAiCIAiCIAiCkO/i4+MpXbo0//zzT67iP3v2jMaNG1OjRg2uX7/O2LFjGTRoENu2bZPFuXDhAu3ataNLly7cvHmTLl260LZtWy5dulRQxRDdNgVBEARBEARBEARBEISCpaamxo4dO2jevLnKOKNHj2b37t0EBwfLwvr168fNmze5cOECAO3atSMmJoYDBw7I4vj7+2NmZsaGDRsKJO+i5ZkgCIIgCIIgCIIgCILwRZ8+fSImJkbu79OnT/mW/oULF2jYsKFcmJ+fH1euXCE5OTnHOOfPn8+3fGQnZtsUBEEQBEEQBEEQBEH4jlSb36+ws6BUg/c2/Pbbb3JhEyZMYOLEifmSflhYGNbW1nJh1tbWpKSk8OHDB2xtbVXGCQsLy5c8KCMqzwRBEPLR93qT+xrnflpESNS7ws5GntmZWjHlyIrCzkae/NqgB5ENWhR2NvLM7MgOZp8qmCb0/5XhtTowet+Cws5Gnv3RpD+j9uZuzJHv2YymA9h950xhZyNPAkvWoNP6iYWdjTxb13EiJx9fLexs5Eltt/IEhz0t7GzkmadNMRZf2FnY2cizH6o0p+2aXws7G3myucsUhuyaU9jZyLM5zYawOmh/YWcjT7r6Ni7sLPzPGTNmDMOGDZML09HRydd1qKmpyX3OGG0sa7iyONnD8pOoPBMEQRAEQRAEQRAEQRC+SEdHJ98ry7KysbFRaEH27t07NDU1sbCwyDFO9tZo+UmMeSYIgiAIgiAIgiAIgvAdUftO/xW0KlWqcOTIEbmww4cPU6FCBbS0tHKMU7Vq1QLLl2h5JgiCIAiCIAiCIAiCIOS7uLg4Hj9+LPv87Nkzbty4gbm5OY6OjowZM4Y3b96wevVqIH1mzX/++Ydhw4bRp08fLly4wLJly+Rm0Rw8eDA1a9bkjz/+oFmzZuzatYujR49y9uzZAiuHaHkmCIIgCIIgCIIgCIIg5LsrV65QtmxZypYtC8CwYcMoW7Ys48ePByA0NJSXL1/K4ru4uLB//35OnjxJmTJlmDx5MvPmzaNVq1ayOFWrVmXjxo2sWLGCUqVKsXLlSjZt2kSlSpUKrByi5ZkgCIIgCIIgCIIgCMJ3RL0AB7//L9WuXVs24L8yK1euVAirVasW165dyzHd1q1b07p167xmL9dEyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndE7X+k2+b/CtHyTBAEQRAEQRAEQRAEQRBUEJVngiAIgiAIgiAIgiAIgqCC6LYpCIIgCIIgCIIgCILwHflfmW3zf4VoeSYIgiAIgiAIgiAIgiAIKojKM0EQBEEQBEEQBEEQBEFQQXTbFARBEARBEARBEARB+I6oIbptfk9EyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndETcy2+V35z1ueOTs7M2fOnP80PTU1NXbu3Jmn9UycOJEyZcrkKY3sTp48iZqaGlFRUfmariAv+3ZeuXIlpqamhZqn7t2707x580LNw/cgPDwcKysrnj9/XthZkfPPP/8QGBhY2NkQBEEQBEEQBEEQvgO5bnkWEBDAx48fOXr0qMJ3Fy5coGrVqly9epVy5crlawa/JCgoCAMDg/90ncL/39q1a0fjxo0LOxsC8PvvvxMQEICzszMAz58/x8XFhevXr8sqq2NjYwkICCAsLIwHDx7kmN6zZ89wdnbm/Pnz1KhRgwYNGnDw4EGFeNu2bWPGjBncv3+ftLQ0HB0d8ff3Z/bs2QD06dOHqVOncvbsWapXr56vZf4WpW3d6Fi2ISWsHLE0MOXn/Qs58+xmoeVn59YdbFq7gfDwcJxdnBkwdBClypZWGf/GtessmPMPz589x9LSgvZdOhLYsrnSuMcPH2XyuN+oVrM6U2b+Lgu/ef0Gm9Zu4OH9B4R/CGfyjKlUr1UzX8v14PQ17h67xMfoOExtLanQqj7WbkWVxg17+IIj8zYohAf+2gcTGwsA0lJTuXP4Ak8u3SEhKhYTa3PKNquDvVexfM13XmhVr4xOk4ZoFHdF3cSYmH5DSX3yvLCzxd2Tl7l16DwJ0bGY2VlRpZ0/tsWdlMYNefCMvbNXKYS3/e0nTG2LKIQ/vnyb40u34VTaA7+fOuR73rOq7ORNrWJlMdLR521cBHvunuN5ZKjK+Brq6tQv7ktZO3eMdPSJTozj+OOrXHl9XxZHV1MbP49KlLQphp6WDpEfY9l77xwP3r8skDJUcSpJLddy6WWIjWD3vTM8j/hSGSpSzt4dIx0DohPjOPb4CldeBQPwQ5UWuFrYKywX/PY5K4L2FkgZAM4fPMHJXYeIjYzCuqgdgT3aU8zLXWncZ8GP2LdmK+/fhJGUlISZpQWVG9akZkBDpfFvnL3Mur/+xdu3DN1/HlBgZahf3JcmnlUx1TPiTfQ71lw9mON+r+rsQ1PPatgYWZCQnMitkMesv36YuKSPANRxLUd1l9IUNbUC4FlEKJtuHuNp+JsCKwPAyb1HOLx9L9ERUdg52tO2b1eKlyyhNO61c5c5vf8or56+ICU5BVsnewI6tsK7vPw9JyEunp2rN3P9fBAJcfFYWhehde9O+PiWLbBy7N+xl50btxIZEUFRZyd6DfgB79IllcaNCI9gxfwlPHn4iNDXITRpFUjvgf3k4lw4fY6tazcR+iaE1JQUbB3sada2JXX86hVYGW4cu8CVA6eIj4rFwt6a2h0DcPBw+eJybx49Z/Pvi7G0t6bL5CGy8M2/L+b1g6cK8V1KlaDFsB75mXU5Dd0rEuhdA1M9Q15HvWPllf3cf/dCZfzqLqUJ9KqOrbEFCUmfuBHyiDVXD8jOjVrFyvJTtVYKy3VaN5HktJQCK0d21ZxLUdetPMa6BoTFhrPj9imeRoQojduxbEMqOnophIfGhPPHiTUFnVWZK0fOcnH/CeKiYihib0ODzs1xLOH6xeVePXzKminzKeJgQ59pI2Xh94NucW73ESLffiAtNQ0za0sqN66NT3XfgiyGICiV68qzXr160bJlS168eIGTk/wD7PLlyylTpsx/XnEGUKSI4oOx8L8hKSkJbW3tfE9XT08PPT29fE+3MBXUtsqN5ORktLS0vnq5jx8/smzZMvbv368yzvv372nUqBEAR48eRVMz85Ll6+tL37596dOnjyws43qwfPlyBg4cyNKlS3n58iWOjo6yOEePHqV9+/ZMmzaNwMBA1NTUuHfvHseOHZPF0dHRoWPHjvz999/fReWZnpYOj8Nfs//+eaY16vflBQrQ8SPHmP/XPIaMGkbJUj7s2bGb0UNHsnLjGqxtrBXih4aEMGboKJo0C+CX38Zx59Zt5sz4ExNTU2rVrS0XNyw0jIXzFlCqjGJFXOLHRFyLu+HftDETfv4138v1/GowV7YdpWI7P6yK2fPw7A2OL9hM4K+9MTA3Ublcs3F90dLLPPd0DPVl/7+x5zRPg+5SpWMjjK0tCAl+yqkl2/Ef1hnzojb5XoZvoaarQ8rd+ySdPo/BsJ8KOzsAPAm6w4VNB6nesQnWbo4En77CgXlraTvxJwwtTFUu13byALR1dWSfdY0UX6zFhkdxaethbIo7KnyX30rZuhHgVZ2dd07zIjKMSo5e9KzYlD9PbSAqMU7pMp3K+mGko8fWWycIT4jGQFsPDfXMTgIaaur0rhRIXNJH1l47RHRiHKa6hnxKSS6QMpS2dSPAuwY7b5/ieWQolRy96VUxgNkn16ssQ+dy/hjq6LPl1nHC46Mx1NFDXS2zDKuv7EdDXUP22UBLlyE123Mr9HGBlAHgxrnL7F6xkRZ9OuFcwo2Lh0+zbOpcRsyZhFkRC4X42jo6VGtUF1snB7R1dXgW/Ihti9egraND5Ya15OJGvgtn76otuHgWL7D8A1R29KZLOX9WXNnHw/cvqetWgVG1OzNq33zCE6IV4rsXceTHyi1Ye+0Q1948wEzfmJ6+TeldKZA5ZzYB4GntzIUXd1h95RVJaSk09azGz3W6MHrffCI/xhZIOYJOX2DzktV07N8TV093Th88xt8T/mDiwpmYW1kqxH909z6eZX1o3q0degb6nD96ivmTZvHzn5NxdHUGICU5hTm//o6RiTE/jB2MmaU5ke/D0SnAZ72zx0+x/J/F/DD0J0qU9OLQnv1MHj2Ov1ctpoi1lUL85KRkTExNaNO5Pbu37FCapqGREW06t8PesSiaWppcuXCZv//4E1MzU8pWLJ/vZXhw6SYn1++hXtfm2BV34taJS+z4czndpg3D2MJM5XKfEj5y8N9NOHq5khAtfx0IGNiFtJRU2eeP8fGsGTcXd1+ffM9/hipOJeleoTFLL+/hwbuX1Hf3ZWzdrgzdPU/pueFRxIkBVVux6up+rrx+gLmeMX0qB9KvSgtmnVovi5eQlMjgXXPklv0vK87K2rnTwqcWW28e51lECFWdS/FDleb8fnwNUUrOz+23T7Ln3lnZZ3U1dUbV6cTNkEf/WZ7vXbzOkbU78e/emqLuLlw7fp6NM//lhz9+xsRS9TGVmPCR3YvW4+JdnLho+bLpGehTLbABlnbWaGhq8Oj6Xfb8uxF9YyNcSymvdP9foi66bX5Xct1ts2nTplhZWbFy5Uq58ISEBDZt2kSvXr0AOH/+PDVr1kRPT4+iRYsyaNAg4uPjVab78uVLmjVrhqGhIcbGxrRt25a3b9/Kxdm9ezcVKlRAV1cXS0tLWrZsKfsue7fNR48eUbNmTXR1dfHy8uLIkSMK6xw9ejTu7u7o6+tTrFgxxo0bR3Ky/IPn9OnTsba2xsjIiF69epGYmJjj9klNTaVXr164uLigp6eHh4cHc+fOzXGZ7MLDw+nQoQMODg7o6+vj4+PDhg2KLRuyW7lyJY6Ojujr69OiRQtmz54t1y1RWRfBIUOGULt2bdlnSZKYMWMGxYoVQ09Pj9KlS7N169Yc17tgwQKKFy+Orq4u1tbWtG7dOk/pOTs7M2XKFLp3746JiYmsUuRLx9TatWupUKECRkZG2NjY0LFjR969e5fj9sq6fZydnVFTU1P4y5Cb4yW7N2/e0K5dO8zMzLCwsKBZs2Zf3TXx3Llz1KpVC319fczMzPDz8yMyMhKA2rVrM2DAAIYNG4alpSUNGjTg+fPnqKmpcePGDVkaUVFRqKmpcfLkSVnY3bt3adKkCcbGxhgZGVGjRg2ePHki+37FihV4enqiq6tLiRIlWLBggey7jHVs3ryZ2rVro6ury9q1a0lLS2PSpEk4ODigo6NDmTJllLb4yurAgQNoampSpUoVpd+/evWKGjVqYGRkxIkTJ3BwcMDGxkb2p6GhIdvnWcPi4+PZvHkzP/74I02bNlW4Zu3du5fq1aszcuRIPDw8cHd3p3nz5vz9999y8QIDA9m5cycfP37MsRz/hYsv77Lk0m5OPb1R2Flhy4ZNNA5sQpNmATi5ODNg2CCsrK3YvU35j4Hd23dhZWPNgGGDcHJxpkmzABoFNGHzuo1y8VJTU5k6fhLd+/bE1t5WIZ1KVSvTq18fatappfBdfrh3/DJuVUpTvGppTGws8W1dH30zYx6cuZ7jcrpG+ugZG8r+1LNUdDy9fBefhlWw93bFyNIUjxrlsPV04d7xoAIpw7dIOnqKxLWbSblWeC0Zs7t15AIe1ctRokZ5zGyLULVdIwzNTLh36kqOy+kZGaBvYiT7y7ovANLS0ji+dBvlA+tgnMNDfH6p4VKaoFfBBL0K5l1cJHvunSM6MY7KTspbprgXKUoxCzuWB+3jcfhrIj/G8jr6HS8iw2RxKhT1RF9Lh9VXDvAiMoyoj3E8jwwjNDa8YMpQrAxBL+9x+dW9z2U4S9THOCo7K/8h7F7EkWIW9iy/vIfHH9LL8CpKvgwfkz8R9ylB9le8SFGSU1MKtPLs9J4j+NatTqX6NbF2sKNZz/aYWphx4dBJpfHtizlStkYlbBztMbeypHytKniU8eZZsPyP0LTUNNbPXULDdoGYWxfsy9xGJapw8uk1Tj65RkjMB9ZeO0h4QjT1i1dQGt/NwoH38VEceniJ9/FRPHz/kuOPr1DM3E4WZ8H57Rx9FMSLqDBCYz6w9PJu1NXU8LYpuNaxR3fsp1rD2lT3q4Otoz3t+nbFzNKCU/sVe7YAtOvbFb/WATi7u2Jtb0uLbu2xsrPh1qVrsjjnjpwkPjaO/uOG4eblgYVVEdy8S1C0mPLWqvlh1+Yd1G/ckAZN/Snq7Ejvgf2wLFKEg7v2KY1vbWtN70H9qONfH31D5T1mfMqWonLNahR1dsTW3o6A1s1xLubCvdt3C6QMVw+doWRNX3xqVcTCzpo6nQIxMjfh5vGLOS53dOV2SlQug62r4vbVM9THwNRI9vfyziO0tLVwr1iqQMoA0NSrGscfX+X446u8iXnPqiv7+ZAQTUOPikrjuxdx4F18FAfuX+R9XCQP3r/g6MMgimVrESshEZ0YJ/f3X6rtVo5LL+5y8eVd3sZFsuPOKaI+xlHdWfm2TExJIvZTguzP0dQaPS1dLr0smONHmUsHTlKmdiXK1qmMpb01Dbu0wNjClGvHzuW43IHlW/CuUg57N2eF75y83CjhWwpLe2vMrC2p6F8Lq6K2vFLSwlEQClquK880NTXp2rUrK1euRJIkWfiWLVtISkqiU6dO3L59Gz8/P1q2bMmtW7fYtGkTZ8+eZcAA5U3YJUmiefPmREREcOrUKY4cOcKTJ09o166dLM6+ffto2bIlTZo04fr16xw7dowKFZQ/KKSlpdGyZUs0NDS4ePEiixYtYvTo0QrxjIyMWLlyJffu3WPu3LksWbKEv/76S/b95s2bmTBhAlOnTuXKlSvY2trKVSCoWreDgwObN2/m3r17jB8/nrFjx7J58+Ycl8sqMTGR8uXLs3fvXu7cuUPfvn3p0qULly5dUrnMpUuX6NmzJ/379+fGjRvUqVOHKVOm5HqdGX799VdWrFjBwoULuXv3LkOHDqVz586cOnVKafwrV64waNAgJk2axIMHDzh48CA1a9b85vQyzJw5k5IlS3L16lXGjRuXq2MqKSmJyZMnc/PmTXbu3MmzZ8/o3r17rsseFBREaGgooaGhvH79msqVK1OjRg3Z9186XrJLSEigTp06GBoacvr0ac6ePYuhoSH+/v4kJSXlKk83btygXr16eHt7c+HCBc6ePUtAQACpqZlv81atWoWmpibnzp1j8eLFuUr3zZs3ssrl48ePc/XqVXr27ElKSvqbtCVLlvDLL78wdepUgoODmTZtGuPGjWPVKvkuUaNHj2bQoEEEBwfj5+fH3LlzmT17NrNmzeLWrVv4+fkRGBjIo0eq33adPn1a5bn84MEDqlWrRokSJTh48CBGRka5Kh/Apk2b8PDwwMPDg86dO7NixQq5a5aNjQ13797lzp07OaZToUIFkpOTuXz5cq7X/b8uOTmZh/cfUqGS/ANphYq+3LmtfHveu32XChXlm9b7Vq7Ig+D7suMOYPWylZiamdIksGn+Z/wLUlNSiXgVhq2ns1y4nacz75/l3H1p7x8r2Dr2b47M20DYQ/kuIqkpKahryTfw1tTS5N2TV/mS7/9FqSkpfHgZgoOXfBcPBy9X3n5hu22fvJg1I2ax989VhNx/pvD9tb2n0DMyoET1gm8lr6Gmjr1JER69l8/zw/evcDJTbKEJ4GXtwuvod9QqVpax9boyolZHmnhWRTNLKy0va2deRL2lecka/Fq/O0NrtqOOaznUyP830+llsOLhB/kyPPrwCmcz5S0nvaxdeB31jtqu5filfndG1u5ME89qcmXIzreoFzdDHpGcWjAtOlKSU3jz5AXuZbzlwt1Le/PiwRMVS8l78/Qlzx88oZi3fDfPI1v2YGBsRMX6NVQsmT801DVwMbfjdqh8fm+HPaG4pfKu5Y8+vMJc35jSdukt4ox1DahY1IsbObRC0dHQQkNNnfhPBfPSKCU5hZePn+FVVv7Hv1c5H54EP8xVGmlpaSR+TMQgS8vSW5euUqxEcdYvWMGITv34rf8o9m/aSVpqWr7mP0NycjJPHj6ijK/8taSMbznu37mXL+uQJImbV6/z5tVrvEspr3DPi9SUFN4+f4NTSfkWk04l3Ql5rLq7450zQUS9j6BK8/q5Ws/tM1fwqFQaLZ2C6R2hoa5BMXM7bmarfL8V8hiPIspbGD94/xILfWPK2qWfzya6BlR28ub6G/mhQXQ1tZnfYgQLW45kdJ3OOJspvtgrKBpq6jiYWHH/vfy+uP/uBc7muctHJSdvHr5/WWCtSLNLTUkh9NlrXEp6yIUXK+nB60fPVS5389QlIt9+oGZLvy+uQ5Iknt15SETY+1x1BRWE/PZVs2327NmTmTNncvLkSerUqQOkd49q2bIlZmZmDB48mI4dOzJkyBAAihcvzrx586hVqxYLFy5EV1dXLr2jR49y69Ytnj17RtGi6Tf/NWvW4O3tTVBQEL6+vkydOpX27dvz22+/yZYrXVr52DpHjx4lODiY58+f4+DgAMC0adNk3b4y/PprZpcfZ2dnhg8fzqZNmxg1ahQAc+bMoWfPnvTu3RuAKVOmcPTo0Rxbn2lpacnl0cXFhfPnz7N582batm2reqNmYW9vz4gRI2SfBw4cyMGDB9myZQuVKlVSuszcuXPx8/Pj559/BsDd3Z3z589/sdVPVvHx8fz5558cP35c1gqoWLFinD17lsWLF1OrlmJLj5cvX2JgYEDTpk0xMjLCycmJsmXLfnN6GerWrSu3Dbp27frFY6pnz56y+MWKFWPevHlUrFiRuLg4DA0Nv1j+rF1/Bw8eTGhoKEFBmS1DvnS8ZLdx40bU1dVZunSprAXbihUrMDU15eTJkzRsqHzMlKxmzJhBhQoV5Cptvb3lH/zd3NyYMWOG7HNuWrbNnz8fExMTNm7cKOtq6e6e+WNg8uTJzJ49W9a608XFhXv37rF48WK6desmizdkyBC5FqCzZs1i9OjRtG/fHoA//viDEydOMGfOHObPn680L8+fP8fOzk7pd127dqVq1aps27YNDQ3VP7qUWbZsGZ07dwbA39+fuLg4jh07Rv366Q96AwcO5MyZM/j4+ODk5ETlypVp2LAhnTp1Qkcns8uXgYEBpqamPH/+XOkx++nTJz59+iQXlnX5/0XRUdGkpaZiZi7fasfMwozIixFKl4kID8fMQr6yzczcjNTUVKKjorCwtOT2zVvs372PpWuXF1jec/IpLgEpTVLo5qdrZEBijPKW03omhlTu4I+5ow1pyak8DbrDkb830HBwR6zd0h/Y7TyLEXw8CGu3ohhZmhH64Dmvbj2Sq8wV5CV+3hd6xvL7Qs/YgIQY5W/99U2MqNElgCKOtqSmpPLo4k32/rWKgOHdsXV3BiDs8UsenL1Gq3H/TbdnfW1dNNTVZePnZIj7lICRjvLKDnM9Y5zNbElJTWX1lYMYaOvSvGRN9LR02HrrRHocfWNc9Yy4EfKIFZf3YWlgQrOSNVFXU+fY45xb5n2tjC6jcZ8S5MJjPyVgpKOvdBkLfWOczW1JSUtl9ZX9GGjr0bxkLfS1dNhy67hC/KKmVtgaW7D11jElqeWP+Ng40tLSMDIxlgs3NDUmNkqxS1dWU/qMJC4mlrS0VBq0DaRS/cyXhM/uPyLo2FmGzh5fIPnOykhHHw11daIT5a9H0R/jMbFV/pzz6MMrFpzfzsBqrdHS0ERTXYOrr++z6orqoRLal6lPxMdY7oQVTIuO9G2ZhrGpfFd4I1MTYiJz3hcZjuzYR1LiJ8rXqCwLex/2jvC396hUuxoDJ47iXUgYGxauJC01jaYdW+aQ2reJjY4hLTUN02z3QhMzUyIjIvOUdnxcPL1adyY5KRl1DXV+GPKTQiVdfvgYm4CUloaBsfzxo29sSEK08sqWyLAPnN1ykHZj+6Gei2ez0KevCH8dRsOerb8Y91sZ6+ijoa6h0CosOjEeU13l58bD96+Yd3YLQ2q2k50bQa+CWX45c8zFkJj3LDi/nZdRb9HT0qFxiSpM9u/DyL3zCSuglr5ZGeikX39jExWvv8a6yq+/WRnr6ONp5cyaqwcKKosKEmLjkdLSMDSRf+FtYGJEXFSM0mUiwt5zYtNeuowbmOMxlZjwkXkDJ5KakoKaujr+3VtTzMdDZfz/JWK2ze/LV1WelShRgqpVq7J8+XLq1KnDkydPOHPmDIcPHwbg6tWrPH78mHXr1smWkSSJtLQ0nj17hqenp1x6wcHBFC1aVFZxBuDl5YWpqSnBwcH4+vpy48YNuTGNchIcHIyjo6Os4gxQ2iVs69atzJkzh8ePHxMXF0dKSgrGxsZy6fTrJ/+AXaVKFU6cOJHj+hctWsTSpUt58eIFHz9+JCkp6atm6ExNTWX69Ols2rSJN2/eyH6c5zQhQnBwMC1atFDI69dUnt27d4/ExEQaNGggF56UlCSrEMuuQYMGODk5UaxYMfz9/fH396dFixbo6+t/U3oZsrdEys0xdf36dSZOnMiNGzeIiIggLS39TePLly/x8lIcOFOVf//9l2XLlnHu3Dm5CrUvHS/ZZeQ5e2upxMREue6ROblx4wZt2rTJMY6qVltfSrdGjRpKxyh7//49r169olevXnLnXEpKCiYm8g+6WdcdExNDSEgI1apVk4tTrVo1bt5U3RXs48ePChXqGZo1a8aOHTvYtm1briufIb3F2uXLl9m+fTuQ3mK2Xbt2LF++XFZ5ZmBgwL59+3jy5AknTpzg4sWLDB8+nLlz53LhwgX09TMfSvT09EhISFC6rt9//12uwhxgwoQJ8H9gGEaFG7kE5HBzz94qJqPySE1NjYT4BKZNmMKIsaMwKeRZcBVa70igqkGPibUFJtaZYyUVKWZPfGQM945ellWe+bauz4UNB9g9eQmogZGlGa6VS/Hk4q0CKkHOtOvWRH9I5r0tbuxkUu4EF0pevkTxmFEd19TGElObzLGSrF2LEhcZw83D57F1dyYp8RMnlm2nRpdApeOgFSSFilI1NVQVJeO82njjKIkp6a2U9wafp3M5P3beOU1KWipqqBGf9JFtt04iIfEm5j3GugbULFYm3yvPMsuQLZ/wxTJsuH44swz3ztK5fCN23DlFSlqqXHzfol6ExoTzKkr1UAv5RuG6lcMJ/ln/KaP4lPiJlw+fsn/tNixtrChboxKJHxPZMHcZrX/sioFx7ltG55WUbcur5bAz7I2L0PXzdr8V+gRTPUM6lmlIz4pNWXJpt0L8pp7VqOLkw5RjKwt+XKfsm/3LuwKAyyfPs3fddvqPGyZXASelSRiZGtN5YG/UNdRxKl6MqIhIDm/bVyCVZ5kUC5LXH7p6+nr8tXQ+Hz9+5Na1GyxfsARrO1t8yhZQt0dl93MlOyMtLY39izdQpXkDzGxy96Bz5/RlLBxssC2m/IVBflJ2j1B1nbI3KUIP3yZsvXWCmyGPMNMzonN5f/pUbsaiC+lDUDz68JpHH17Llnnw7iV/NOlPoxKVWRGkvGvuf0FNLef7YYaKjt58TP6k0Fr1P5HtmEp/RFR+TO2cv4YarfyxsFUcJzArHV0dek8dQdKnJJ7ffcjRdTsxK2KBk5dbfuZcEL7oqyrPIH3igAEDBjB//nxWrFiBk5MT9eqlzwKTlpbGDz/8wKBBgxSWyzpgdwZJUn6TyRr+NQO7K3ubnz39ixcvylqy+fn5yVrhZMyy9602b97M0KFDmT17NlWqVMHIyIiZM2fm2OUyu9mzZ/PXX38xZ84cfHx8MDAwYMiQITl29ctNCwZ1dXWFeFnH7MqobNq3bx/29vL9/VW1pDEyMuLatWucPHmSw4cPM378eCZOnEhQUNA3pZche0Xhl46p+Ph4GjZsSMOGDVm7di1FihTh5cuX+Pn55bqLJMDJkycZOHAgGzZskGvZ+C3HS1paGuXLl5er8MuQ2wkucnPcZ99WGeP7ZN3X2cdmyyndjP22ZMkShZaO2Vt/KavQzX6uqTq/M1haWsrGcMtu7NixlCpVik6dOiFJklxX7pwsW7aMlJQUueNOkiS0tLSIjIzEzCzzLbGrqyuurq707t2bX375BXd3dzZt2kSPHpmzQUVERKjcZ2PGjGHYsGFyYTo6OhxZOjhXef3/kYmpCeoaGkSEy7cyi4yIVGiNlsHcwkIhflRkFBoaGhibmPD86TPCQkMZO+Jn2ffS52OxXtXarN68DnsHxZn58pOOoT5q6mp8jJV/c50YF/9VlS1FnO15GpQ5toiukT51+rYiNTmFT/Ef0TMx5PqukzkOel+Qki5cJuV+ZteotA/KWwsWJt3P+yJ7K7PE2Hj0jb/ckjiDlYsDjy+lV1LGvI8gNjyKQ/MzB4LOuE4u6fcb7SYNxNjKPB9ynykhKZHUtDSFFlqG2noKLbkyxH6KJzoxXlbpBPA+LhJ1NTVMdA0JT4gm9lM8qVKaXCXKu7hIjHUN0FBTJ1XKv25q8Ukf08uQrZWDoY6+yjLEJCYQnRgnV4Z3n8tgqmfIh/jM1kVa6pqUtivO4Ye5f076FgZG6WMRZm9lFhcdi5Gp6hdhgGwcM1snB2KjYziyeTdla1QiPOwdke8+sOL3zLEyM46p0W36MvLvKVja5Pxj8GvEfkogNS1NoSWNsa6BynGYAr2r8/DDS/YFnwfgVdRbVqTsY0KDnmy5eVxuwofGJaoS6F2D34+v5lXUW6Xp5QdD4/SxCLO3MouNjlZojZZd0OkLrJ73Lz/8PBjPsvJj7pmYm6KhoYG6RuZoNLZF7YmJjCIlOQVNra/+uZMjIxNj1DXUiYqQv4ZGR0Zjamaap7TV1dWxdUhvlV+suCuvX7xi27pN+V55pmekj5q6OvHZWpklxMahb6J4rU36+Im3z17z7kUIx9fuAj4f85LEXz3H0GpELxyzVGQkf0riwaWbVG3x5d4WeRHzKYHUtFRM9eTzbJLDudGiZC0evH8pG1z/ZdRbEi/tYbJ/HzbeOELUR8XlJCSehL/BxkhxgpGCEP9JxfVXW59YFdffrCo5enHldXC+3hO+RN/IADV1dYVWZgnRsRiYKL5kSPr4idBnrwh78YZDq9JfemccU9O6Dqfj6H44e6d3K1ZTV8f8c6WtjZM9H9685fyeo6LyTPjPffXdpG3btgwePJj169ezatUq+vTpI/uBXK5cOe7evYubW+4OZC8vL16+fMmrV69krc/u3btHdHS0rJVaqVKlOHbsmNwP2i+lFxISIusOduHCBbk4586dw8nJiV9++UUW9uKFfH9yT09PLl68SNeuXWVhFy/mPHjmmTNnqFq1Kv3795eF5baVUdY0mjVrJutylpaWxqNHjxRa7GXl5eWlkLfsn4sUKaIwvtONGzdkrY+8vLzQ0dHh5cuXOXapzE5TU5P69etTv359JkyYgKmpKcePH6dBgwbflJ4yXzqmbt++zYcPH5g+fbrsGLpy5evevj9+/JhWrVoxduxYua6IkLvjRVmeN23ahJWVVY4t1HKScdxnb9mUk4xKntDQUFkLv6yTB2Sku2rVKqUzZFpbW2Nvb8/Tp0/p1KlTrtdrbGyMnZ0dZ8+elRv37vz581SsqHywVoCyZcuydu1ald//+uuvaGpq0qlTJ9LS0ujQoUOO+UhJSWH16tXMnj1boWtsq1atWLduncrxF52dndHX15ebiOLJkyckJiaqbC2po6PzP99NMzstLS3cS7hz5XIQNWpn7uurl4OoVlP5rKRePt5cOCM/UOyVS5fx8CyBpqYmjk6OLF8vP6beskVLSEhIYOCwwVgpmbUsv2loamBe1IbQ+89xLJ3ZDSD0/nMcfHI/g17E67fomShWtmloaaJvakRaaiovbzzAqZzqa3qB+phI2sewL8crRBqamlg62vHm3hNcymZup9fBT3AunftZtcJfhcp+AJraWNJ6wo9y3wftPE7ypySqtvPHwPzbrtM5SZXSeBP9nuJFinL3beb4a8UtHbj39rnSZZ5HhOFj64q2hiZJn8f/sjQwIU1Kk/0IfB4ZRhm74nKtvywNTIlJjM/3H0npZXhHccui3M3Sja+4pXyZsnoRGUopO1e0NbRISk2W5S9NSlP4QVrKzg1NdQ2uv87dWFffSlNLE3tXJx7dvIdPpczubw9v3cPbt0yu05EkiZTk9P1iZW/L8L/k788H1+/gU2IizXp2wNQifytjU9NSeRYRQkkbV668vi8L97Fx5WqWz1lpa2iRlu2YkH3O8mKriWdVmnvX5I8Ta3kWEZKv+c5OU0sTRzcXgq/fpmzVzLEwg6/foXRl1bNJXj55ntVzF9N71AB8Kirek1293Ak6eZ60tDTZi8S3b0IxMTfN94ozSL8XuroX58aV61Sumdnq/saVa1SqrnwSpG8lSdIXJ6n6Fhqamlg72/Py7iOKl88cU+3F3Ue4llXstaGjp0PXKUPlwm4ev8DLe08IGNAZkyLyx/zDy7dITU7Fs2rOPU7yKjUtlacRIZSydSPoVWZL6lK2bgS9Vt6yWkdDS+F6mXFu5DR+pJOZTYFWLmeVKqXxOvodHkUc5VqPeVg5cic0527VbhYOFDE042KWbqj/BQ1NTWxdHHh25yElfDMre5/deYh7ecVx+3T0dOjzu/wQOFePnuPFvUe0HNQd0yI5X0czrsf/69QLYExT4dt99R3F0NCQdu3aMXbsWKKjo+UGZh89ejSVK1fmp59+ok+fPhgYGBAcHMyRI0cUZrIDqF+/vqx1yZw5c0hJSaF///7UqlVL1i1swoQJ1KtXD1dXV9q3b09KSgoHDhxQOt5U/fr18fDwoGvXrsyePZuYmBi5Sg9IHyfq5cuXbNy4EV9fX/bt28eOHfKzxA0ePJhu3bpRoUIFqlevzrp167h79y7FiqmefcjNzY3Vq1dz6NAhXFxcWLNmDUFBQbi4uOR627q5ubFt2zbOnz+PmZkZf/75J2FhYTlWng0aNIiqVasyY8YMmjdvzuHDhxW6bNatW5eZM2eyevVqqlSpwtq1a7lz546sUsDIyIgRI0YwdOhQ0tLSqF69OjExMZw/fx5DQ0O5sa4y7N27l6dPn1KzZk3MzMzYv38/aWlpeHh4fFN6qnzpmHJ0dERbW5u///6bfv36cefOHSZPnpzr9D9+/EhAQABlypShb9++hIVl/rC0sbHJ1fGSXadOnZg5cybNmjWTzUD58uVLtm/fzsiRI+W6FasyZswYfHx86N+/P/369UNbW5sTJ07Qpk0bLC0Vp3KH9FZllStXZvr06Tg7O/Phwwe58doABgwYwN9//0379u0ZM2YMJiYmXLx4kYoVK+Lh4cHEiRMZNGgQxsbGNGrUiE+fPnHlyhUiIyMVWlllNXLkSCZMmICrqytlypRhxYoV3LhxQ2nruwx+fn6MGTNGoUVYVj///DMaGhp06dKFtLS0HCv19u7dS2RkJL169VLoZtq6dWuWLVvGgAEDmDhxIgkJCTRu3BgnJyeioqKYN28eycnJcl2Nz5w5Q7FixXB1LfwBSfW0dHAwyWwBZ2dsSXFLB2IS43kbl7fxVb5Wmw7t+H3iFDxKlMDbx5u9O3fz9u07Alo2B2DJ/EW8f/+BsRPTj73Als3YuWU78+f8TdNmAdy9fZf9u/fx6+QJAGjr6ODiKn9tNTRKr/TIGv4xIYE3rzMH7w8NCeXxw0cYGRtjbaN8APav4VW3IudW78HC0YYiLvY8PHeD+IgY3GukXyev7TrJx+hYqnUNACD4RBAG5iaY2lqSlprK08t3eXnjAbV6Z3ajf/88hI9RsZg5WJMQFcut/WeRJAnv+srHsCwMakaGqFtZovb5x77651Z+aRFRSJFRhZKnUg2qcGL5diyd7LB2LUrw6avERUTjWSv9ueDy9qPER8VQp2f6y47bRy9gZGGKmZ0VqampPL54i2fXgmnQL73Lt6aWFub28seIjn56l/Hs4fnpzLObtCtTj9dR73gZ9ZaKRb0w1TPi4sv0l1n+HpUx1jVg88308b5uhDykXvEKtCldlyMPgzDQ1qVxiapceXVf1t3x4ou7VHP2IcC7Ouef38bSwJQ6buU49/x2wZTh6Q3alW3A6+h3vIwMo5KjN6Z6hlx88bkMJapgomvAphvpMyVef5Nehral63H44SUMtPVo4lmNoFfBCl02Kxb14m7YUxKSc57NPD/UDGjAxnnLcHB1xsmjGJeOnCbqQwRVGtYGYP/abURHRNFhUPrM8ecOHMfM0pwin2f+fX7/Ead3H6Zao7oAaGlrYeMo3yJW1yC9hUj28Pxy4P4FfqzSkmcRITz68Iq6buWx0Dfh2KP0F4btStfDTN9Y1u3s+puH9KoUQD23CtwKfYKZniGdy/vz+MNroj4PIN7UsxqtS9Vh/vltvI+PwuRzy7bElCQ+peS+9f7XqN+iMStmL8CpeDGKlSjOmYPHiXj/gZqN03ux7Fi5kajwCHoMT38ZffnkeVb8uZB2fbvi4lGc6IgoALR1tNH7vM1rNW7AiT2H2bR4NXUD/Xj3JowDm3dRN8C/QMoA0KxtC+ZMnYWbR3E8vD05vPcAH969xy+wMQBr/l1B+PtwhvySOY7v00fplSCJHxOJiYrm6aMnaGlpUtQ5fdbKrWs34eZRHBt7W1KSU7h6MYiTh47Rb5jyF395Vd6vBgf+3YS1swO2bo7cPnmZ2PAoStdJH0/uzJYDxEXG0KhvO9TU1bF0kJ8oRM/IEE0tTYVwSJ9YwK2cF3oqZhbNT3vvnWNgtdY8DX/Dw/evqO9eAUsDE448TB+/uEPZBpjrGTP//DYArry+zw9VmtPAvaKs22a3Co159OGVbHD91qXq8Oj9K0Jjw2Vjnjmb27Ls8p4CL0+Gk4+v0am8H6+i3vI8IpQqzj6Y6Rlx7nl6q+qmntUw0TNg3bXDcstVcvLmeUTofzI2W3aVGtVm18J12BYrioObM9dPnCc6PJJy9aoCcGLTXmIjowns1wk1dXWsispPfmBgbIiGlqZc+LndR7F1KYqZtQWpKak8uRHM7bNB+HfPeXgbQSgI3/Q6plevXixbtoyGDRvKdccsVaoUp06d4pdffqFGjRpIkoSrq6vKLldqamrs3LmTgQMHUrNmTdTV1fH395eraKtduzZbtmxh8uTJTJ8+HWNjY7nWLVmpq6uzY8cOevXqRcWKFXF2dmbevHn4+2fePJs1a8bQoUMZMGAAnz59okmTJowbN46JEyfK4rRr144nT54wevRoEhMTadWqFT/++COHDh1SuU369evHjRs3aNeuHWpqanTo0IH+/ftz4EDuB2ocN24cz549w8/PD319ffr27Uvz5s2JjlY9iGrlypVZunQpEyZMYOLEidSvX59ff/1VrgLJz8+PcePGMWrUKBITE+nZsyddu3bl9u3Mh+3JkydjZWXF77//ztOnTzE1NaVcuXKMHTtW6XpNTU3Zvn07EydOJDExkeLFi7NhwwbZoPZfm54qXzqmihQpwsqVKxk7dizz5s2jXLlyzJo1i8DAwFyl//btW+7fv8/9+/cVBq+XJClXx0t2+vr6nD59mtGjR9OyZUtiY2Oxt7enXr16uW6J5u7uzuHDhxk7diwVK1ZET0+PSpUqfbH11fLly+nZsycVKlTAw8ODGTNmyLXCsrCw4Pjx44wcOZJatWqhoaFBmTJlZOOV9e7dG319fWbOnMmoUaMwMDDAx8dHNmGDKoMGDSImJobhw4fz7t07vLy82L17N8WLq2614+PjQ4UKFdi8eTM//PCDyngjR45EQ0ODbt26kZaWRpcuXZTGW7ZsGfXr11eoOIP0lmfTpk3j2rVr1KpVi/nz59O1a1fevn2LmZkZZcuW5fDhw3h4ZLY62rBhQ67HWyxoJYo48U+LzMrLQdXTHxj2B19g6vFVqhYrEHUb1CMmOobVy1cS8SEc52IuTP9rBja26Q/P4eHhvHub+WbW1s6O3/+awYI5f7Nr6w4sLC0ZOHwwterW/qr1Pgh+wND+md23F8z5BwC/Jv78PP4XVYvlmnN5Tz7Ff+TWgXN8jInH1NaSuv3bYGiefjx9jIkjPiKzK0JaSirXdhwnIToODS3N9Pg/tsHeO7OyNS05hRt7TxP7IQotHW3svYtRrWtTtPWVj/VXGLSq+GIwMnO7Gv6a/kPv4+qNJK7ZVCh5cvUtSWJ8Atf2nSIhOg5zOysaDeyE0efurgnRscRFZN4XU1NSubj1MPFRsWhqaWJmZ4X/wI44+rirWMN/41boY/S1dahXvALGOgaExYWzImivrAWWkY6+XFejpNQUll7aTTPvGgys3pqEpE/cCn3MoQeZ3RqjE+NYemkPAV7VGFKjHTGJ8Zx7douTT64XSBluhj5GX1uX+sV908sQG87yy3tllS/GOvqY6mV2x0lKTWbJxV00K1mTQTXakpCUyK2Qxxx8IN8i3tLAFBcLO5Zc3FUg+c6uTLWKJMTGc3TLHmIio7FxtKPX2MGYWaV3wYqJjCbqQ+YPTUmS2L9uOxHvPqChoYGFdREadWpJ5YZ5a02fFxdf3sVQR58WJWthqmfI6+h3zDy5jg8J6eeCqZ4RFvqZ97/Tz26gq6VNQ/eKdCrnR0JSInffPmPjjSOyOPWL+6KlocmQGvLP6dtun2T77ZMFUg7fmlWIj4lj34btREdEYefkwIDfRmFhlf6CKDoiioj3mfvizMFjpKWmsmHhCjYsXCELr1KvJt2HpY/haF7EgsGTf2bLkrVM+ulnTC3MqBvoj3/r3D0LfovqdWsREx3LptXriQyPwNHFmXF/TMLq88uciPAI3r+TH8tvWO/MSrAnDx5x+uhJithYsWRT+n38U2Iii/+aT/j7D2jraGPvWJShv46ket2COe48KpXmY1wCF3cdIz46Bgt7G1oM64GxZfoLzfioWGLDo7463ciw97x5+JxWI3rlc46Vu/DiDkY6+rQqVQczPSNeRb3l9+Nr+BAfBYCZnhGWBqay+KeeXkdPSwd/j0p0Le9PfFIid8OesvZa5u88A21d+lZujqmeIQnJiTyLCGXCoaU8Cc95Bu78dD3kIfrauvh5VMZYR5/Q2HAWX9wlq+Az1jXATE/+d4Wupjalbd3YfufUf5bPrLwqlyUhNp6zOw4RFxVDEQdb2o/si4ll+gu6uKgYoj983Uvf5E9JHFy5ldiIaDS1tbCws6LZj53xqlywrRoFQRk1SUz79T9n5cqVDBkyhKioqMLOiiDkaP/+/YwYMYI7d+7Iulp8D+7cuUO9evV4+PCh0sq4nFSb/9/M5leQzv20iJD/YgDvAmZnasWUIyu+HPE79muDHkQ2aPHliN85syM7mH1qQ2FnI0+G1+rA6H0LvhzxO/dHk/6M2vtPYWcjz2Y0HcDuO2cKOxt5EliyBp3WTyzsbOTZuo4TOfn4amFnI09qu5UnuIBmGf0vedoUY/GFnYWdjTz7oUpz2q759csRv2Obu0xhyK45hZ2NPJvTbAirg1TP0vv/g66+jQs7C9+s0VLVPX8K04HefxZ2FgpF/g8EIAiCkEuNGzfm0aNHvHnzRm7W3cIWEhLC6tWrv7riTBAEQRAEQRAEQfjfIyrPBEEoVIMHf3+zU2afcEAQBEEQBEEQBEH4v+v76Scl5Jvu3buLLpuCIAiCIAiCIAiC8P8pNTX17/Lv/6r/uyUXBEEQBEEQBEEQBEEQhC8QlWeCIAiCIAiCIAiCIAiCoIIY80wQBEEQBEEQBEEQBOE7oq6mVthZELIQLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCN8RNUS3ze+JaHkmCIIgCIIgCIIgCIIgCCqIyjNBEARBEARBEARBEARBUEF02xQEQRAEQRAEQRAEQfiOiNk2vy+i5ZkgCIIgCIIgCIIgCIIgqCAqzwRBEARBEARBEARBEARBBdFtUxAEQRAEQRAEQRAE4TuiJrptfldEyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndEdNv8voiWZ4IgCIIgCIIgCIIgCIKggqg8EwRBEARBEARBEARBEAQV1CRJkgo7E4IgCIIgCIIgCIIgCEK6VqvGFnYWlNrWbVphZ6FQiDHPBEEQ8lFI1LvCzkKe2ZlaUW1+v8LORp6d+2kRsfcfFnY28sSohDsxR08UdjbyzLh+HZ59eFPY2cgTF0t77oY+Kexs5Jm3rSurg/YXdjbyrKtv4/+JYyr22fPCzkaeGbk4ExsSUtjZyBMjOzuil6wq7GzkmUmfbryKDCvsbORZUTMb3sWEF3Y28sTK2IKnH14XdjbyrJilA7GPHhd2NvLEqLhbYWdB+B8hum0KgiAIgiAIgiAIgiAIggqi5ZkgCIIgCIIgCIIgCMJ3RMy2+X0RLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKohum4IgCIIgCIIgCIIgCN8RddFt87siWp4JgiAIgiAIgiAIgiAIggqi8kwQBEEQBEEQBEEQBEEQVBDdNgVBEARBEARBEARBEL4jYrbN74toeSYIgiAIgiAIgiAIgiAIKojKM0EQBEEQBEEQBEEQBEFQQXTbFARBEARBEARBEARB+I6oIbptfk9EyzNBEARBEARBEARBEARBUEFUngmCIAiCIAiCIAiCIAiCCqLbpiAIgiAIgiAIgiAIwndEXcy2+V0RLc8EQRAEQRAEQRAEQRAEQQVReSYIgiAIgiAIgiAIgiAIKojKM0EQvhsJCQlMnjyZFy9eFHZWBEEQBEEQBEEQCo2amtp3+fd/lag8E/6/tHLlSkxNTf+TddWuXZshQ4b8J+vKT1+7jZydnZkzZ06B5Sc3Bg4cSEhICE5OTl+13P+v+0gQBEEQBEEQBEH4/okJA4QC86Va6W7durFy5cr/JjP/B7Vr147GjRvnOn5QUBAGBgYFmKOcbdiwgbdv37Jr166vXnb79u1oaWkVQK7y186tO9i0dgPh4eE4uzgzYOggSpUtrTL+jWvXWTDnH54/e46lpQXtu3QksGVzpXGPHz7K5HG/Ua1mdabM/F0WfvP6DTat3cDD+w8I/xDO5BlTqV6rZn4XLVdK27rRsWxDSlg5Ymlgys/7F3Lm2c1CyYsykiTx78YN7Dh0iNj4OLzd3Rn9Qz9cHVVX5j55+YJF69dx/8kTQt+9Y1iv3nQMbCYXZ/GG9SzZuEEuzMLUlEOr1hRYOZbs38uOc2eJTUjA29mZUW074Gpnp3KZ4zeus/LQAV69f09KaipFi1jRuV59GleqLItz7dEj1hw9zP1XL/kQHc3Mvv2oXbpMnvO7Z/sutq7fRER4OE4uzvQb9BMly5RSGf/W9Zv8+/cCXjx7joWlJW06tqNJi0C5ODs2bWXvjt28f/sOY1MTatSuSY9+fdDW0QZg4+r1nDt1htcvXqKto4OXjzc9f+xDUSfHPJcnqwM797Jr4zYiwyMo6uJEzwF98SpVUmnciPAIVi1YwpOHjwl9HULjloH0GviDyrTPHjvFn5P/oGK1yvw8dXy+5jurK0fOcnH/CeKiYihib0ODzs1xLOH6xeVePXzKminzKeJgQ59pI2Xh94NucW73ESLffiAtNQ0za0sqN66NT3XffMtzfh9TIwcM5fZ1xWuVb5VKTJ6Vfr1NiE9g9ZLlnD99lqjIKFzd3eg3ZAAeniXyrVzw+Tq1di07DuwnNi4Ob48SjP7pJ1ydnVUu8+T5cxatWc39R48JffeWYT/8QMcWLeXiXLt9mzVbtxD86BEfIiKYNX4CtatWzb88r1rFjr17iY2NxdvTk9GDB+Pq4pLjcsdOnWLRihW8DgnBwc6O/r16UadGDdn3Ae3bE/r2rcJybZo1Y/TnF2rHT59m+549BD98SHRMDOuWLMHDzS1fypWdJEksOX+GnbduEPspEW8bO0bW98PVsojKZfbeucWkg3sVws8MGYWOZv7/TNu1dQdb1m0kPDwCZxdn+g8dgE8Z1c8hN6/dYNHc+Tx/9hwLSwvade5AQMvMe9yhvQeYOWW6wnL7Tx1GW0cHgE7N2/E2LEwhTmCr5gwaOfSry7BjyzY2rF1P+IdwnIu5MGjYYEqXLaMy/vWr1/lnzjyeP32GhaUlHbt2onmrFrLvnz15yrLFS3lw/z5hoWEMHDqYth3byaXRJrAlYaGKZWjRuiXDRo/46jIA7N2+i63rN8uuUz8M6v/F69SSvxfKrlOtO7ajSYsAuTg7Nm1jX5Z7X/XaNenRr7fs3tetVUfehSmeM01bBvLT8MHfVI7sJEni3/Xr2XHoYPo1yt2D0T/+iGsOL8afvHjBonVruf/4cfqzVJ8+dGzWXGX8FZs3M3/1KjoENmN43775km9ByA1ReSYUmNDQUNn/N23axPjx43nw4IEsTE9PrzCy9f+91NRU1NTUUFfPueGonp7eV23jIkVUP9z9Fzp06ECHDh2+aVlzc/N8zk3+O37kGPP/mseQUcMoWcqHPTt2M3roSFZuXIO1jbVC/NCQEMYMHUWTZgH88ts47ty6zZwZf2JiakqturXl4oaFhrFw3gJKKXkATvyYiGtxN/ybNmbCz78WVPFyRU9Lh8fhr9l//zzTGvUr1Lwos2r7Ntbv2smEwUNwtLNn2eZN/DR+PNsWLMRAX1/pMomfPuFgbUP9qtX5c/lSlWkXc3RkwaQpss8aXzh/82L1kcOsP36M8V264WhlxfKDBxjwz1y2jv8NA11dpcuY6OvTw68RzjY2aGlocubOLSatXY2ZkRFVvLwB+Jj0CXcHBwKqVGX0ksX5ktdTR0+weO58fho+GO9SJdm/cw+/jviZf9euwErJeREWEsq4EWNoFNCYUePHcvfWHebPnouJqSnV66RXCh8/dJTli5YwbMwoPH28efPyFbOnzgDgh8E/AXD7xk0CWjbD3dODtNQ0Vv67jF+GjuLfdSvQzad709njp1jxz7/0GdIfTx8vDu0+wJRR45m7ahFFrK0U4qckJWNsakKrzu3Zu2VHjmm/C3vLyoVL8SrlnS95VeXexescWbsT/+6tKeruwrXj59k4819++ONnTCzNVC6XmPCR3YvW4+JdnLjoWLnv9Az0qRbYAEs7azQ0NXh0/S57/t2IvrERrqXyXtFUEMfU+Gm/kZycIlsmJjqa/t37UKNOLVnYnOmzeP70GSPHj8HC0pJjh44wZvBI/l23HMt8vL+u2rKZ9Tu2M2HYcBwdHFi2YT0/jR3DtqXLcr5O2dhSv0ZN/lys/Nz9mJhIcZdiBDRoyKgpk/MtvwCrNm5k/ZYtTBg9GseiRVm2Zg0/jRzJttWrVeb51t27jJ00iX49e1KnRg1OnDnDz7/9xrJ58yjp5QXA6kWLSE1Lky3z5Nkzfhoxgnq1a8uVq3TJktSvXZsps2bla7myW335IhuuXma8f1MczcxZfvEcA7dsYEuvHzDQ1lG5nIG2Dlt6yVeUF0TF2Ykjx1k45x8GjRyKd6mS7Nu5hzFDR7NswyoVzyGh/DJsNI2bNeXnib9w99Yd5s38CxNTU2rWzTz29Q0MWLlZ/mVQRsUZwPwVi0lLS5V9fvbkGaMHDadmtmeZ3Dh2+Cjz/pzLsNEj8Cldit3bdzJy8HDWbF6HtY2NQvyQNyGMGjKcgOaBjJs0gds3b/HnH7MwNTOldt06ACQmJmJrb0ft+nX4+895Stf776plpKVmHmvPnjxl6IDB1Klf96vLABnXqQX8NHwQXqVKsn/nXsaNGMPitctVXqfGjxiLf0BjRo4fw71bd5g/ex4mpiZy974Vi5YwdMxIvHy8ef3yNX/K7n39AZi7dAFpWc6ZF0+fMXbIKLlrWV6t2raV9Tt3MGHo0PRnqU2b+Gncr2xbtPgL1ygb6lerzp9Ll+SY/t2HD9lx6CDFnXOufP9fIWbb/L6IbptCgbGxsZH9mZiYoKamJhd2+vRpypcvj66uLsWKFeO3334jJSXz4TQqKoq+fftibW2Nrq4uJUuWZO9e+bdzhw4dwtPTE0NDQ/z9/eUq7NLS0pg0aRIODg7o6OhQpkwZDh48mGOe4+Pj6dq1K4aGhtja2jJ79myFOElJSYwaNQp7e3sMDAyoVKkSJ0+ezDHdiRMn4ujoiI6ODnZ2dgwaNCjX6WV0v9y7dy9eXl7o6OiwZMkSdHV1iYqKklvPoEGDqFWrltxyWe3evZsKFSqgq6uLpaUlLVtmvnnO3m3z5cuXNGvWDENDQ4yNjWnbti1vlbzhzfD8+XPU1NTYvHkzNWrUQE9PD19fXx4+fEhQUBAVKlSQ7af379/LlgsKCqJBgwZYWlpiYmJCrVq1uHbtmuz7kydPoq2tzZkzZ2Rhs2fPxtLSUra/s3fbdHZ2ZsqUKbJ96eTkxK5du3j//r2sTD4+Ply5ckWuDNu2bcPb2xsdHR2cnZ2V7v9vtWXDJhoHNqFJswCcXJwZMGwQVtZW7N6m/Efy7u27sLKxZsCwQTi5ONOkWQCNApqwed1GuXipqalMHT+J7n17Ymtvq5BOpaqV6dWvDzXz8cHoW118eZcll3Zz6umNws6KAkmS2LBnNz3atKVulaq4OTnx25ChJCZ94uDpUyqX8y7uzuAePfGrWRPtHFo/ampoYGlmJvszMzEpiGKkl+PEMXr4NaJumbK42dkzsUs3EpOSOBR0WeVy5d09qFOmLC42tjgUKUKHOvVws7fnxpMnsjjVvEvyY0Az6pYpm2/53b5pC35NG9EosAmOzk70GzKAIlZW7N2xW2n8fTv3YGVtRb8hA3B0dqJRYBMaNmnE1g2bZXGC79zF26ckdRrWw8bWhvKVfKndoC4P7z+UxZn65x80bOKPczEXihV3ZdjYUbx7+45HDx4qW+032bNlB/UaN6RBU38cnBzpNfAHLKyKcGjXPqXxrWyt6TWwH3X86qGfQyvg1NRU5kyZSfsenbG2VTzn89OlAycpU7sSZetUxtLemoZdWmBsYcq1Y+dyXO7A8i14VymHvZuzwndOXm6U8C2Fpb01ZtaWVPSvhVVRW149eJoveS6IY8rI2BhzC3PZ3/Wgq+jq6MoqED59+sTZU6fp9dMP+JQpjZ2DPV16dcfG1kbler+FJEls2LGTHu3bU7d6ddycnflt+AgSP33i4IkTKpfz9vBgcJ8++NWurfI6Vc3Xl/7du1O3evV8y68sz1u30qNzZ+rWrImbiwu//fwziYmJHDx6VOVyG7ZupVKFCvTo1AlnR0d6dOpExXLlWL9tmyyOmakplubmsr+zFy7gYGdH+dKZL5KaNGxIn27dqFi+fL6WS1k5N167TPdK1ajjXgLXIlZMaBRAYkoyh4Lv5rismhpYGhjK/RWEbRs24x/QmMbNmuLk4kz/oQOxsirCnu3KW/zv3b4LK2sr+g8diJOLM42bNcU/oDFb1ss/h6ipqWFuYSH3l5Wpmancd5fOXcDOwZ7S5cp8dRk2rd9Ik2YBBDQPxNnFmUHDh2BlbcWOrcqfpXZt34G1jTWDhg/B2cWZgOaBNAlsysa162VxPL29+GnwAOo3bIC2tvLzw8zMDAtLC9nf+bPnsHewp0y5b7sf7ti0lYZNG+Evu079RBErK/bt2KM0fuZ16iccnZ3wD2xCwyb+bMtynbp/5x5en+991rY2lK9UgdoN6vDofmbDhfR9kXktu3TuIrb2dvjk0Avia0iSxIZdu+jRrh11q1ZLv0YNG5Z+jTqVw7OUuzuDe/bCr1atHJ+lEj5+ZNysmfwycCBGhgVznghCTkTlmVAoDh06ROfOnRk0aBD37t1j8eLFrFy5kqlTpwLpFV+NGjXi/PnzrF27lnv37jF9+nQ0NDRkaSQkJDBr1izWrFnD6dOnefnyJSNGZDadnjt3LrNnz2bWrFncunULPz8/AgMDefTokcp8jRw5khMnTrBjxw4OHz7MyZMnuXr1qlycHj16cO7cOTZu3MitW7do06YN/v7+KtPdunUrf/31F4sXL+bRo0fs3LkTHx+fr0ovISGB33//naVLl3L37l06d+6Mqakp27I8RKamprJ582Y6deqkNB/79u2jZcuWNGnShOvXr3Ps2DEqVKigNK4kSTRv3pyIiAhOnTrFkSNHePLkCe3atVMaP6sJEybw66+/cu3aNTQ1NenQoQOjRo1i7ty5nDlzhidPnjB+fGYXo5iYGLp27cqZM2e4cOECxYoVo3HjxsTGprdWyKgY69KlC9HR0dy8eZNffvmFJUuWYJvDD8e//vqLatWqcf36dZo0aUKXLl3o2rUrnTt35tq1a7i5udG1a1ckSQLg6tWrtG3blvbt23P79m0mTpzIuHHj8qVrcXJyMg/vP6RCpYpy4RUq+nLn9h2ly9y7fZcKFeW7MflWrsiD4Ptylcyrl63E1MyUJoFN85zP/8vevH1LeGQklctmPghra2lRzrskt+7fz3P6L0NC8O/ejcA+vRgzcwavlXRhyQ9vwj8QHhNDZU9PWZi2lhbl3Ipz61nuKickSeLy/fu8ePuWcgXUvQnSz4tHDx5SrqL8dahcxQoE31H+YzP4zl2F+OUrVeDR/Qey88K7tA+PHjzkwb1gAELfhBB04RIVq1ZSmZeE+HggvZIkPyQnJ/PkwWNK+5aTCy/jW5b7d4PzlPaW1RswNjWhfhO/PKXzJakpKYQ+e41LSQ+58GIlPXj96LnK5W6eukTk2w/UbPnl/EmSxLM7D4kIe5+rrqBfUlDHVHaH9h6gVv06slaKqSmppKWmoa2tLRdPW0eHu7eUX+O/xZuwMMIjI6hcLrMiSFtbm3I+PtwKvpdv68lPb0JDCY+IoHKW5w1tbW3KlS7NrbuqK5Vu3btHpWzPKJV9fVUuk5yczP4jRwhs1KhQBrMOiY4iPD6eyllaw2hralLOwZFbb97kuOzHpCQCF/9D00V/M3T7Zh68zf/7Q3JyMg8fPKRCJfnnivKVfLmn6jnkzl3KZ4tfoZIvD4Plz42PHz/SsXlb2ge05pfhP+f4EiI5OZmjB4/g3/Tr91P6s9QDKmZ7lvKtVJE7t24rXebu7Tv4ZotfsXIl7t+7r/L8zk0+Dh84ROPApt90rKm+TpXnnorr1P079yhXUb4CuFwlXx7dfygrh1fpkjx+8JAH99KfWdLvfZepWLWyQnoZ+Thx+CgNm/jn2znz5m3Y52epzHuftpYW5UqW5FZw3u59AH8sXEg1X18q5eNLPEH4GqLbplAopk6dys8//0y3bt0AKFasGJMnT2bUqFFMmDCBo0ePcvnyZYKDg3F3d5fFySo5OZlFixbh6pr+wD1gwAAmTZok+37WrFmMHj2a9u3bA/DHH39w4sQJ5syZw/z58xXyFBcXx7Jly1i9ejUNGjQAYNWqVTg4OMjiPHnyhA0bNvD69WvsPo8fNGLECA4ePMiKFSuYNm2aQrovX77ExsaG+vXro6WlhaOjIxUrVvyq9JKTk1mwYAGls7xNbdeuHevXr6dXr14AHDt2jMjISNq0aaNym7dv357ffvtNFpY1vayOHj3KrVu3ePbsGUWLFgVgzZo1eHt7ExQUhK+v6rFpRowYgZ9f+o+mwYMH06FDB44dO0a1atUA6NWrl1yFVL169eSWX7p0Kaamppw6dYqmTdMrhKZMmcLRo0fp27cvd+/epUuXLrRo0YKcNG7cmB9+SO8GMX78eBYuXIivr69s+4wePZoqVarw9u1bbGxs+PPPP6lXrx7jxo0DwN3dnXv37jFz5ky6d++e47q+JDoqmrTUVMzM5bs5mVmYEXkxQukyEeHhmFnIP/CZmZuRmppKdFQUFpaW3L55i/2797F07fI85U+A8MhIACxMTOXCLUxNCX33Lk9pl3R357chQ3Gysyc8KoplWzbRa/RINv09H9N8qqzJEB4TA4C5kXy65sbGhEUoP9YyxH38SOOxP5OUkoyGujqj23WgkqdXvuYvq5io6PQxr7KfF2ZmRIQrz2tkRCRmZtniy86LaCwsLahdvy7RkVEM/3EwkiSRmppK0xaBtOvSUWmakiSxeN4CvEv54Fwsf7qBxEbHkJaWhqmZqVy4iZkZURGR35xu8O27HN13iD+X/pPHHH5ZQmw8UloahiZGcuEGJkbERcUoXSYi7D0nNu2ly7iBqGd52ZVdYsJH5g2cSGpKCmrq6vh3b00xHw+V8XOroI6prB7cC+b502cMHZP5sk7fQB/Pkl6sX7kGRydHTM3NOHn0OA/uBWPnYJ/ncmUIj0wvg0W2/FqYmRH6Nm/XqYISHpFTnlW3Zg+PiFC6TLiK69jJs2eJi4sjwN8/jzn+NuGfK+DNs7UaNTcwIDQmWuVyTuYWjG8UgKtlEeKTPrHpahC9N6xmXbfeOJrl35AUmc8h8mmamas+NyLCIxTPJXNzuXOjqLMjo379GRe3YiTEx7N90zaG9B3A4jXLcXB0UEjz3KkzxMXF0bBJo28oQxSpyspgYa6yDOHhEVS0yF7m9DJERUVhaWn51fk4c/I0cXFxNG6a+3GFs1J1nTI1MyNS5XUqAlMV16mYqGjMZfe+aEZkufc1aRFI2y7Kh0S5cPoccXFxNGicfy9iZM9S2Xq+pD9LvVeyRO4dOnWK+08es/qvOXlK5/83aohum98TUXkmFIqrV68SFBQka2kG6S2nEhMTSUhI4MaNGzg4OMgqzpTR19eXVZwB2Nra8u7zj9yYmBhCQkJkFTYZqlWrxs2bygcof/LkCUlJSVSpUkUWZm5ujodH5gP9tWvXkCRJIV+fPn3CIlsz9Qxt2rRhzpw5FCtWDH9/fxo3bkxAQACampq5Tk9bW5tSpeQHEe3UqRNVqlQhJCQEOzs71q1bR+PGjRV+BGS4ceMGffr0UfpddsHBwRQtWlRWcQbg5eWFqakpwcHBOVaeZc2ntXX6uA1ZW9pZW1vL9hNAeHg4U6ZM4eTJk7x7947U1FQSEhJ4+fKlXPnXrl1LqVKlcHJyytWsoLnJB8C7d++wsbEhODiYZs3kB3qvVq0ac+bMITU1Va7VI6Tvo0+fPsmF6eioHtMElEyiIZHeX0NV/Gw3zIxWcmpqaiTEJzBtwhRGjB2FyX808+z/kgMnTzJtYWYl+pxx6a0hs+8jSZLy/Ea2WvnMt8tuQKkSJWj+Qx/2njhO5xwGxM2NA5cv8fuGzO4nf/VPH9NLWTm+RF9Hh3VjfiHh0yeCHtznr+1bsbe0pLx73is1cpQ9r3xhmyuULSM4PfzmtRtsXL2On4YPpoS3JyGv37Bo7nzMVqyhU48uCsnN/3Mez548ZfZC5WPd5IXiOS9984Pwx4QE5k6dRf+RgzA2LZhuv0op7B/lEwKlpaWxc/4aarTyx8JWcUy3rHR0deg9dQRJn5J4fvchR9ftxKyIBU5e+dTSMZ+PqawO7j2AczEXPLw85cJHjhvDX7/PpFPztqhrqOPmXpzaDerx5KHq1u5fcuD4cabNmyv7PGdS+lhk2XOVfp365tXkqwNHjjDtzz9ln+f8nj6hgsI1SUmYAmXXYxVRd+3fT9VKlSjyDZUh3+LgvTv8fuSA7PNfLdsCyu7bOf/49bGzx8cus4K1tH1RuqxexuZrVxhRr2E+51rxkUOSvrAfVNxLMoK9SnrjVTJz7EXvUj782K0PO7dsY4CSAegP7NlPxcoVsSzy7ftJIbtfOP4V9gmS0vDc2rt7D5WqVM7zWIbKHwlzeCZUdV//HH7r2g02rV7HT8MH4eHtScjrEBbPnc/6FeZ0VHLvO7T3ABUqV8QiD/viwIkTTJuf+TJnzoSJKvKa4+PuF4W9f8/sJf/yz6TJ6GRr4SsI/yVReSYUirS0NH777Te5Mbcy6Orq5mqg++yzK6qpqSn8QPyaH8K5+XGZlpaGhoYGV69eVahMMVTR975o0aI8ePCAI0eOcPToUfr378/MmTM5depUrtPT09NTyHfFihVxdXVl48aN/Pjjj+zYsYMVK1aozPvXTB6gajvlpiIh637JiJs9LOtgpT169CA8PJy5c+fi5OSEjo4OPj4+JCUlyaV7/vx5ACIiIoiIiPjizKC5yQcgy4uysuV0TPz+++9yrfggvctq3yH9FeKamJqgrqGh8GY0MiJS4c1jBnMLC4X4UZFRaGhoYGxiwvOnzwgLDWXsiJ8z8/u5LPWq1mb15nXY52OLh/81NStWpKRHZqV1UnIyAB+iIrHM8lY7Ijoa83yunNTT1cXVyZlXISF5TqtmqdKUzNJNKOlz943wmGgss4yrFhkbi8UXWrmpq6tT1Cq90sOjaFGevw1j5eFDBVZ5ZmxqgrqGusKb9qjIKJXnhZm5GZER2eNHfj4v0su3eskK6vo1oFFgEwBcXIuRmJjIvD/+pEO3TnKTrSz4cx4Xz55n1vw5FLHKv0HdjUyMUVdXJzJbK7PoqChMzE2/Kc2wN6G8C3vLtDGZ152Ma1Truk35Z80SbJSMe/it9I0MUFNXV2hllhAdi0G21mgASR8/EfrsFWEv3nBo1fbM/EkS07oOp+Pofjh7FwdATV0dc5v07W3jZM+HN285v+donivPCuqYypCYmMipoyfo2ru7Qjp2DvbMnD+HxI8fiY9PwMLSgmnjJmFtqziIeW7VrFyZkiUyz7+kpM/XqchILLO8YIuIisJcxYuz/1rNatVkA/oDsnv5h4gI+TxHRuaYZwtzc4VWZhFRUUonCAoNC+PytWvMyHZPLkg13IrjbZs5g3FSavqA+OHxcVhmeX6LTIjHXD/3M5mrq6nhZWPHq8icWwp/LVXPIVGROT2HmCs5lyJlzyHKqKur4+7pwZtXrxW+exsaxvWgq0yY/m0TUpiYmqKh8llKeSs9CwtzIsLD5csQkV4Gk294CREWGsrVy1eYMkOxp0luZVynIsKz3R8iIzFVeZ0yV3KdilJ67/PPcu/7lPiReX/8Rfts9763YW+5ceUav06b+M3lAKhZqRIlszQykD1LRWZ/lorC3PTbr1H3Hz8mIiqKLkMyK2RT09K4fvcOm/fu4fyOnQq/owShIIjKM6FQlCtXjgcPHuCmYjydUqVK8fr1ax4+fJhj6zNVjI2NsbOz4+zZs9SsWVMWfv78eVmXyezc3NzQ0tLi4sWLODo6AhAZGcnDhw9lg/CXLVuW1NRU3r17R40s06V/iZ6eHoGBgQQGBvLTTz9RokQJbt++/c3pZejYsSPr1q3DwcEBdXV1mjRpojJuqVKlOHbsGD169Phiul5eXrx8+ZJXr17JWp/du3eP6OhoPD09v7D01zlx4gQLFy6U7acXL17w4cMHuThPnjxh6NChLFmyhM2bN9O1a1eOHTv2xRlHv4aXlxdnz56VCzt//jzu7u5Kb8hjxoxh2LBhcmE6OjqEf1TsnqGlpYV7CXeuXA6iRu3M4/Hq5SCq1VQ+OLOXjzcXzsgPyn3l0mU8PEugqamJo5Mjy9evkvt+2aIlJCQkMHDYYKyUzOYnZDLQ15eb9UmSJCzMzLh04wYliqW3aE1OTuba3TsM7NotX9edlJzM89evKOuV9y6RBrq6cjNoSpKEhbExl+4H41E0/TqWnJLCtcePGNgs567O2UmSRFJKcp7zqIqWlhbFPdy5HnSVarUyr3/Xg65SuXpVpct4lvTm0rkLcmHXLl+heAkPND/PTvfpU6LCtUFdXR1JkmSVTZIkseDPeZw/fZYZ//yFjV3+DryvpaWFq4cbN69cp3KNzLLcvHKditWUjz/zJfaORflr+QK5sA3LVvPx40d6DvgBC6v8bXGjoamJrYsDz+48pIRvZkveZ3ce4l6+pEJ8HT0d+vw+Si7s6tFzvLj3iJaDumNaJOcuaCnJ3zb+UFYFdUxlOH3sJMnJSdT1q68yD7p6eujq6REbE8vVy0H06v+Dyrhfovw6Zc6l69co8fn5KTk5mWu3bzOwZ69vXk9+Uppnc3MuXblCieLplafJyclcu3mTgX37qkynlJcXl65epVOWoSguXblCKW/FGWZ3HzyImakp1bP0HChoBto6cjNoSpKEhYEBl148w8M6vcI0OTWVa69fMqBmnVynK0kSD9+9xS2fZ0DX0tLC3cOdq5evUF3uOeQKVVU9h5T05sLZ83JhVy4F4e6peG5kkCSJJ48e4+JaTOG7g3sPYGpmSmUVY3DlqgwlPAi6dFluEqSgy0FUr6n8GdrbpyTnsj1LXb50mRJeJVSWISf79+zD1MyMKtWUX09yQ/46lbntrwVdpUr1akqXKVHSS8V1yj3Lve8TauryL4HV1TXk7n0Zjuw7iImZKRWrfNu+yKDyWer6dUq4ZnmWunOHgd2//PtDFd/Spdn4j/yQO5PmzsHJwYFurVr/T1ecFcYYjoJqovJMKBTjx4+nadOmFC1alDZt2qCurs6tW7e4ffs2U6ZMoVatWtSsWZNWrVrx559/4ubmxv3791FTU8M/l+NZjBw5kgkTJuDq6kqZMmVYsWIFN27cYN26dUrjGxoa0qtXL0aOHImFhQXW1tb88ssvcj/C3N3d6dSpE127dmX27NmULVuWDx8+cPz4cXx8fGjcWHH8g5UrV5KamkqlSpXQ19dnzZo16Onp4eTkhIWFxVenl1WnTp347bffmDp1Kq1bt0Y3y4/o7CZMmEC9evVwdXWlffv2pKSkcODAAUaNGqUQt379+pQqVYpOnToxZ84cUlJS6N+/P7Vq1VI5ycC3cnV1ZdWqVZQvX57o6GhGjBgh10ouNTWVLl260LBhQ3r06EGjRo3w8fFh9uzZjBw5Mt/yMXz4cHx9fZk8eTLt2rXjwoUL/PPPPyxYsEBpfB0dHeXdND8qT79Nh3b8PnEKHiVK4O3jzd6du3n79h0BLZsDsGT+It6//8DYib8CENiyGTu3bGf+nL9p2iyAu7fvsn/3Pn6dPAFIH4g6+8OpoVH62+6s4R8TEnjzOnOw4tCQUB4/fISRsbHSqekLkp6WDg4mmT8I7IwtKW7pQExiPG/jvn0cqPygpqZGh4BAVmzdgqOtHUXt7FixdTO62jr418x8SB//159YWVgw4HOFWnJyMk9fvfr8/xTeh4fz4OlT9PV0Kfq5VcKcFcuo4VsRmyJFiIyKZtmWTcQnJNC0bj3FjORHOerUY8WhgxQtYkVRKytWHjqIrrY2fr6ZLw4mrFpBEVNTBnyuUFtx6CBejo7YFylCSkoq5+7eYd+li/zcPnOcsITERF5lmSk3JPwDD169wsTAABsVb/2/pGW7Nsyc/DvFS3jgWdKLA7v28u7tW5q0CABg+cIlhH/4wMhxYwBo0jyA3dt2snjeAhoFNiH4zj0O7T3Az5/PG4BK1aqwY+NWXN3dKOGV3m1z9ZIVVK5eVfaAPX/2XE4cOcaE6VPQ09eXtWQwMDT4Yvfr3Apo04J502bj5lEcD+8SHN5zkA9v39MwMP26vvbfFYR/CGfw2Myxs549Sp/dNPHjR2Kio3n26AmaWloUdXZEW0cbp2LOcusw+NzCJXt4fqnUqDa7Fq7DtlhRHNycuX7iPNHhkZSrl/7D8cSmvcRGRhPYrxNq6upYFZWvhDQwNkRDS1Mu/Nzuo9i6FMXM2oLUlFSe3Ajm9tkg/LsrH6/zaxXEMZXh0N4DVK1RXWmrmyuXgkCScHAsSsjrNyydvxgHx6I0bJJ/Y3CpqanRoUVzVmzciKOdPUXt7VmxcQO6Ojr418msoBk/cwZWFpYM6NkT+Hyd+jwUQnJKMu8/hPPgyZP069TnLoMJHz/KtYZ9ExbGgydPMDEywsbq21/GqKmp0aF1a1asW4ejgwNFHRxYsXYturq6+NfPrIQcP20aVkWKMODz8BLtW7Wi7+DBrNywgdrVqnHy3DkuXb3Ksnny3avT0tLYc/AgTf380FTyAzo6Joawd+94//ml3IvP28Hi8wyd+UVNTY325Sqy8tJ5ipqZ42hqxopL59HV1MLPM7PCb8L+3VgZGvHT5wq1JefPUNLWHkczM+KTkth0LYiH798yqn7+TwjSqkNb/vhtKu6eHniV9Gbfrr28e/uOgBaBACxd8C8f3r/n5wm/ANC0ZTN2bd3Bwjn/0LhZU+7ducvBPfsZOylz0qfVS1fiWdIL+6IOJMTHs2PzNp48fMygEUPl1p2WlsahfQdo0NgfjW+otMrQrmN7pkyYRAkvT7x9SrJ7xy7ehb2leavmACz6ZyEf3r/n19/S89isZQu2b97G33/NJaB5M+7evsO+XXuYMDWzlWJycjLPnz77/P8U3r9/z6MHD9HT18ehaOa4bWlpaezfs49GTRp9U8VbVi3atWbW5OkUL+H++Tq1j/dv39H483VqxcKlhH/4wIhx6b0LmjQPYM+2Xfw7bwH+n69Th/ceYPTEX2RpVqpWhe1fuPdllOPIvoPUb9QQDc38rXRSU1OjQ7NmrNiyGUe7z89SWzanX6NqZXmWmj07/Vnq85jC6c9SGdeojGepJ+jr6lHUzg4DfX3cnJ3l1qWro4upkbFCuCAUJFF5JhQKPz8/9u7dy6RJk5gxYwZaWlqUKFGC3r17y+Js27aNESNG0KFDB+Lj43Fzc2P69Om5XsegQYOIiYlh+PDhvHv3Di8vL3bv3k3xz28+lZk5cyZxcXEEBgZiZGTE8OHDiY6Wb0m0YsUKpkyZwvDhw3nz5g0WFhZUqVJFZUWXqakp06dPZ9iwYaSmpuLj48OePXtkY5p9bXpZFS9eHF9fX4KCgr44Dljt2rXZsmULkydPZvr06RgbG8u1ystKTU2NnTt3MnDgQGrWrIm6ujr+/v78/fffX8zT11qxYgV9+/albNmyODo6Mm3aNLlZU6dOncrz58/Zsyd9+m4bGxuWLl1K27ZtadCgAWXKlMmXfJQrV47Nmzczfvx4Jk+ejK2tLZMmTcrzZAEZ6jaoR0x0DKuXryTiQzjOxVyY/tcMbD536QkPD+ddlsGTbe3s+P2vGSyY8ze7tu7AwtKSgcMHU6tu7a9a74PgBwztP0j2ecGc9LEp/Jr48/P4X1QtViBKFHHinxaZrfUGVU//sbw/+AJTj69Stdh/plvLVnxKSmL64oXExsVR0t2df36bJPdWNezDe9SzvNl9HxFBp6GZ3QjW7NzBmp07KFeyJP9OTR/r5+2HcH6ZNYuo2BjMjI0p6eHBihmzsM3DD9KcdG3QkE/JSfyxaQOxCQl4O7vw94BBci3UwiIj5N5mJiZ94o9NG3gXFYWOlhZO1jZM6t6ThlnGawt++YJ+c/+Sff5r21YAmlSqzMSu3b8pr7Xq1yEmJoZ1K1YTGR6BU7H/x959hzdV/Q8cfyfp3nsAhRZKW2jZe+8NCoLwBZmiiDhQVBAnyk8QFURUQJEteyN771X2KqtQyujeeyT5/VFImzZh2Nb26/fzep48T3N7zs05uTcnN597hjeTf5iKu0fe5yI+Lp7oAhOhe1TwZPIPU/lt1q9sWb8JJxdn3nzvbVq2y2/LBg0bgkKhYPHvC4iLicXe0YEmLZoxfFR+z5wtGzYDMP5t/R944z4ZX2LBjpbt25CSnMLqxctJiI+nso83n077CrdHQeuEuARio/QnUP7g9Xd0f4feuMXhPQdwdXfjt1WLSqRMz6tm03qkp6RxZMNOUhOTca3kyX8+GoW9S17QITUxmaTY5wt852Rls2PRWlLikzAxM8W5ghsvvjmYmk1LZvW00jinAO6H3+PKxUtM+fE7g6+bnprGwrnziI2JxcbOlpZtWjH8jZHF/pFd2LCX+5OVlc23v/xCSmoKQQEB/DJlqn47FR2DUpF/4y8mLo5X3sqfUmDpurUsXbeW+rVq8/v33wNw9cYNRk/Iv5n24++/AdCzYycmFfhO/ltl/s9/yMrK4tuZM0lJSSGoRg1++f77QmWO1rtZWScoiG+++II58+czd8ECKlWowNQvvtAbEgpw6swZIqOieKGb4QnoDx07xlfTpumefzI5b8jg68OG8UYJfb8/NrRxU7Jyc/huzw5SMjMJ9KzAz/3+o9dDLSo5GWWBtjclK5Opu7YRl56GjZk5fu7u/PafwXpDQktKu07tSU5K4s/5S4iPy7sOmTJjmm5ocXxsHNGR+Z8NzwqefDNjGnNm/sLmdRtxdnHmrXHv0rp9fhAkNTWVH7/9gYS4eKxtrKnmV50f584iIFB/lMLZ4DNER0bRrdffm2T/sQ6dO5KclMSiPxYQFxuHT7WqfDfzBzwerb4eFxtHVGT+tVSFihX4buZ0fv7xJzasWY+LqwtjP3yftu3zg82xMbG8Oni47vnKP5ez8s/l1K1fj59/y+/tdPpUMFGRUXQvgdXN23RsR0pyMssXLiU+Lh7vqt58/cNU3U3N+Li4Iu3U1z9M4fdZs/lr/WacXZwZXaidGjhsMAqFgiW/Lyzw3deUYaP0e6WeCz5LdFR0iQb2CxrWt19eGzVndt61lL8/v3w9Wf/zHmPgWurd/GvVpevXs3T9euoH1eL35/jtJ0RpU2ifZaInIYQQz+RhYvlc8ex5VHBwo8Wvo8u6GMV29K25pFy7UdbFKBbbAD+S9+wv62IUm13HdtyJffD0hOWYj0tFrkSElnUxii3QsxpLgreVdTGKbWij7v+KcyrlTlhZF6PYbH28SSmBORzLkm2FCiTNK/ubOMVl//ow7iVElnUxis3L0YPo5LinJyzH3OycuR1bdO63/zZVXSqRcvNWWRejWGyrl9BiNGVgxKpvnp6oDCwc8M/egC8vSm7CICGEEEIIIYQQQggh/mUkeCaEEEIIIYQQQgghhBEy55kQQgghhBBCCCFEOSKrbZYv0vNMCCGEEEIIIYQQQggjJHgmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQohxRIsM2yxPpeSaEEEIIIYQQQgghhBESPBNCCCGEEEIIIYQQwggZtimEEEIIIYQQQghRjshqm+WL9DwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCiFIxe/ZsfHx8sLCwoEGDBhw+fNho2uHDh6NQKIo8AgMDdWkWLVpkME1mZmap1UGCZ0IIIYQQQgghhBDliKHgUHl4PK9Vq1bx3nvv8emnn3Lu3DlatWpFt27dCA8PN5j+p59+IiIiQve4d+8eTk5OvPzyy3rp7Ozs9NJFRERgYWHxt97rZyHBMyGEEEIIIYQQQghR4mbMmMHIkSN57bXXqFGjBjNnzsTLy4s5c+YYTG9vb4+Hh4fucfr0aRISEhgxYoReOoVCoZfOw8OjVOshwTMhhBBCCCGEEEII8VRZWVkkJyfrPbKysgymzc7O5syZM3Tu3Flve+fOnTl27Ngzvd78+fPp2LEjVapU0duemppKlSpVqFSpEj179uTcuXN/r0LPSIJnQgghhBBCCCGEEOWIEkW5fEydOhV7e3u9x9SpUw3WITY2FrVajbu7u952d3d3IiMjn/oeREREsH37dl577TW97QEBASxatIjNmzezYsUKLCwsaNGiBTdv3vz7b/hTmJTanoUQQgghhBBCCCHEv8bEiRMZN26c3jZzc/Mn5ik8V5pWq32m+dMWLVqEg4MDvXv31tvetGlTmjZtqnveokUL6tevz88//8ysWbOeut+/Q4JnQgghhBBCCCGEEOKpzM3Nnxose8zFxQWVSlWkl1l0dHSR3miFabVaFixYwJAhQzAzM3tiWqVSSaNGjUq155kM2xRCCCGEEEIIIYQoR8p6Vc2SWG3TzMyMBg0asHv3br3tu3fvpnnz5k/Me/DgQW7dusXIkSOf+jparZbz58/j6en5XOV7HtLzTAghhBBCCCGEEEKUuHHjxjFkyBAaNmxIs2bN+P333wkPD2f06NFA3jDQBw8esGTJEr188+fPp0mTJgQFBRXZ51dffUXTpk2pXr06ycnJzJo1i/Pnz/Prr7+WWj0keCaEEEIIIYQQQgghStyAAQOIi4vj66+/JiIigqCgILZt26ZbPTMiIoLw8HC9PElJSaxbt46ffvrJ4D4TExMZNWoUkZGR2NvbU69ePQ4dOkTjxo1LrR4KrVarLbW9CyGEEEIIIYQQQojn8tb6H8q6CAb9+tKHZV2EMiE9z4QQogT93+6FZV2EYvus0whSrt0o62IUm22AHy1+HV3WxSiWo2/NJfHVt8u6GMXmsOAX+i7+pKyLUSzrhk2h9ewxZV2MYjs0ZjbJ+w6VdTGKza59a+7EPijrYhSLj0tF3lz3fVkXo9jm9P2IJcHbyroYxTK0UXduxdwr62IUm6+rFwP+/Lysi1FsqwZP/q9vbw+NmU3PBR+VdTGKbcur39Pp97FlXYxi2T3KcM8lIZ6XLBgghBBCCCGEEEIIIYQR0vNMCCGEEEIIIYQQohx53pUtRemSnmdCCCGEEEIIIYQQQhghwTMhhBBCCCGEEEIIIYyQYZtCCCGEEEIIIYQQ5YgCGbZZnkjPMyGEEEIIIYQQQgghjJDgmRBCCCGEEEIIIYQQRsiwTSGEEEIIIYQQQohyRCmrbZYr0vNMCCGEEEIIIYQQQggjJHgmhBBCCCGEEEIIIYQRMmxTCCGEEEIIIYQQohxRyLDNckV6ngkhhBBCCCGEEEIIYYQEz4QQQgghhBBCCCGEMEKGbQohhBBCCCGEEEKUIzJss3yRnmdCCCGEEEIIIYQQQhghwTMh/kdkZmbyf//3f0RFRZV1UYQQQgghhBBCiP8aMmxTiP8Rn3/+OcnJybi7u5d1UYQQQgghhBBCPIESGbZZnkjPMyH+B2RlZeHs7MysWbPKuihCCCGEEEIIIcR/FQmeCfE/wNzcnI8//hhzc/OyLkoRBw4cQKFQkJiY+Mx5vL29mTlzZrFeV6FQsHHjxmLtQwghhBBCCCHEv58M2xTif8CxY8do1aoVnTp1YseOHWVdHFHA9UNnubL3JBlJqTh4utCwb0fcfb0Mpo28cZfds1YU2f7CZ69j7+EMgEat5vKu44SevEx6Ygr27k7Ue7EdFWtWLbU6aLVafl+5gg07d5KSlkqgnx8T3hhNtcpVjOYJDb/L3OXLuBYaSkR0NONGvsagF17US/PbiuXMW6lfX2cHB3YuXloq9XgWdTx9GVSvMwFulXGxduDjbXM4fOdCmZXHGIsXu2PWpgUKK0vUt++S/ucqNA8jn5jHvFNbzNq1QunkiDY1jezT58hcuxlycwEwa9sS83atULo4AaB+EEnmX9vJvXS1xMvfxb8JLwa2wtHKlnuJ0Sw8tZWQ6DCj6Vv51KF3UGs87ZxJz87k3MObLD69jdSsDAC+6vIaQR5FPwNn7l9jyt4lJV7+x3oHtmZgvY44WdkTFh/Bz0fXcDEi1Gj6PkGtealWWzxsnYhKSWDp2R3svH5SL83LtdvxYmBr3G0dScpM40DoWX4/sYlsdW6p1aMwrVbLvK1/seHIIVLS0wn09mH8fwZRrUJFo3n2nTvLoh3buBcTTa5ajZebG4M7dqZ7k2YlXr6/1m9i7fJVxMfFUcXHm9HvvkVQ3dpG0188d4Hff57N3TthOLu48PKgAfTo84Jemg2r1rJlw2ZioqKxc7CnVdvWjBj9OmbmZgBcOn+BtctXcfPaTeLj4vhi6tc0b92yROvVumpdOvk1wt7ChojkWNZc2MetuAcG0w5t0I1m3kFFtj9MjmXy7oVFtjesFMDIJr04//Amvx3fWKLlLuz07iOc2Laf1MRkXCt60GlwbyoHVHtqvns3brP0/37FtZIHr0/5SLf93P7jXDocTMz9vDbOw6cSbfv3oGI1499Bz2vL+k2sX7GG+Lg4Knt7M2rsGILq1DKa/tK5C8z7eS7hYWE4OTvT75UBdO/dS/f/3NxcVi9dwd7tu4iLjaWSlxfD33yNhk0b69KM6PcK0ZFF56nt0ecFxnzwbonUq7NfY3rVbImDpQ33E6NZfHo712LuGk3f0rs2LwS2wsPWifScLC48vMnSMztIzc4okrZ5lVqMbdWf4Hsh/HBweYmU15h/a1vbPaAZL9Vqi5OlLeGJUcw7uZkrUXeMpu9Rozk9azTHzcaJmLQEVl/Yx75bZ/6x8gL0qtmSl2u3x9nKjrCESOYcX8/lyNtG079QsyUvBrbC3daJ6NQElp/bzZ6bwQbTtq1Wj087DOdo2EUm7ZpfWlUoV2S1zfJFgmdC/A9YsGAB77zzDn/88Qfh4eFUrlzZaFqtVotarcbERJqH0hZ2JoTT6/bQeEAX3KpW5MaR8+ybvZoXPnsNayd7o/le/HwUppZmuufmNla6v8//dYjbwVdoNqgbdu7OPAy5zcF56+k6bjBOXh6lUo/F69exfNNGvhz7HpUrVGT+6lW89cUXrJs9B2srK4N5MrOyqOTuQcfmLZmx4A+j+65auTKzv/4/3XOVsmw7TFuamnMr7j7brh1jSrfRZVoWY8y7dcS8czvS5/+JOioai55dsfnwHZI/+RoyswzmMW3aEIt+L5K+YBnqW7dRerhhNXIIAJkr1wOgSUgkY+0mNNGxAJi1aIL1O6NImfTtUwNzz6O5dy1GNOrBvJObuRZ9l85+jfm04zDe2zST2LSkIukD3KrwTsuXWRS8ldP3r+FkZccbTXszpvlLfLd/GQDf71+GiVKly2NrYcX0Xu9wPOxyiZW7sPa+DXinZT9mHFrJ5cjbvFCzJd/1fIuhKyYTnZpQJP2Lga0Y1fRFvj+wnJDoMGq4eTO+7SukZKZz7O4lADpVb8Sopr2Ztn8plyNv4+XgzsT2ecfpl6PrSq0uhS3ZtYPle3fzxdARVHZzZ8H2rbw960fWTvo/rC0sDOaxt7ZmRLfueLt7Ymqi4vCli3y9ZBGOtrY0q1k0yPN3Hdyzn99++pW3PhhLYO0gtm38i88+/Jjf/1yIm0fROT8jH0bw+YcT6darO+O/+IQrFy/z6/SfsHdwoGW71gDs27mHBXPnMW7ieGrUCuRB+D2mf/MdAG+MfQuAzIxMfHyr0al7V/7v00klVp/HGlTy5+U67Vl5bjehcQ9o5VOHt1r24+tdC0jISCmSfvWFvWy8fEj3XKlU8GmH4Zy9f71IWicrO16q1ZabMfdKvNyFXT1xjt1/bqTr8H54+flwdt8xVn7/O29M+xh7F0ej+TLTM9g8dzk+gdVJTdKv792QW9RsVp9Kfj6YmJpwfMs+Vkyby6hvJ2Dn5FDsMh/au595s+Yw5oN3qVErkB2btvLlhxOZs3S+0XPqy48+pWuv7nz4xceEXLrC7OmzsHewp0XbvHNqye8LObBrD+9MGEelyl6cPXWabz6ZxA9zf6KaX3UAZs77FbVGk1/P23f47P0JuvOyuJpVCWJYg27MD97C9ehwOlZvyMT2Qxj318/EpRdta/1dK/NW874sPrOdM4/a2tebvMAbTXsz/ZD+jS4Xa3sG1+9CSFRYiZT1Sf6tbW0rnzq83uQF5hzfwNWoMLoFNGVS55GMWf8DMWmJRdJ3C2jGsAbd+PnoWm7E3sPfxYu3W/YjNSudU/dC/pEyt6lajzeb9eHnI2u4EnWHHjWaM6XbaEaunkpMWtFj0bNGC15t3IsfD63kekw4AW6Veb/Vf0jNSudE+BW9tG42joxq0puLEbf+kboIYYgM2xTiXy4tLY3Vq1fz5ptv0rNnTxYtWqT3/8fDJnfu3EnDhg0xNzfn8OHDaLVavvvuO6pWrYqlpSV16tRh7dq1unxqtZqRI0fi4+ODpaUl/v7+/PTTT08tz7Zt2/Dz88PS0pJ27doRFhZWJM2xY8do3bo1lpaWeHl58e6775KWlvbMdQ4ODqZTp064uLhgb29PmzZtOHv27BPzTJgwAT8/P6ysrKhatSqff/45OTk5z/yaf8fVfafwbVaH6s3rYO/hQqN+HbFytOP64XNPzGdha4WlnY3uoSwQULp96gq1OjejYmA1bF0c8G9VH88aPlzdZ/guXnFptVpW/LWZES/3p32z5vhWqcJX771PZnYWOw4dNJovsLofY0e8SpfWrTEzNTWazkSlwsXRUfdwtDceVPwnnAi/wryTmzl4+3yZluNJzDu1I3PLTnLOXkDzIIL0+UtRmJli1qSh0Twm1XzIvXmbnJOn0cTFk3vlGtknT2PinR9oz71wmdxLV9FERaOJiiZz/V9oM7MwqeZTouXvVbMl+26dYe/N0zxIimFh8Fbi0pLo4t/EYHo/Vy9i0hLYdu040akJXIu+y64bp6jmnN8LKjU7g8TMVN2jtqcvWbk5uh9KpaF/nfZsDTnG1pBj3E2I5Oeja4lJTaR3kOEfvl38m7D5yhH23TpDRHIc+26dYWvIMQbV76RLE+jhw+XIUPbcPE1kSjzB90LYe/M0/q4l18PmabRaLSv27WVE1+60r1cf34oVmTRsBJnZ2ewMPmk0XwM/f9rVrY+PpyeVXN0Y2L4jvhUrcf5Wyf4QWr9qDV16dqPbCz2o7F2F0e+9jaubG1s2bDaYfuvGv3Bzd2P0e29T2bsK3V7oQece3Vi7YrUuTcjlKwTWCqJd5w54eHrQoEkj2nZqz41rN3RpGjVrwvBRI2nZtmQCG4V1qN6QY2GXOBp2iciUeNZc3E9Cegqtq9Y1mD4zN5vkrDTdo4qjB1ZmFhy/qx8wVqBgRKMebAk5ajA4XdJObj9A3bZNqNeuKS4V3ek8pA92zg6c3Xv0ifm2L1hDYLP6VPT1LvK/3mOG0LBTSzyqVMSlgjs9XhuAVqMl7MrNEinzhpXr6NyzK116daeydxVGjR2Di5sb2zb+ZTD9to1bcHV3Y9TYMVT2rkKXXt3p1KMr61es0aXZv3MP/YcMolGzJnhWrECPPi9Qv0lD1q/Mv86yd3TAydlJ9wg+dhLPihWoVa9OidSrR43m7As9y75bZ3iQHMPiM9uJS0+ms19jg+mru3gRnZbIjusniElL5HpMOHtuBlPVWb/HqUKh4J0WL7Pm4j6iUuNLpKxP8m9ta3sHtWb3jWB23TjF/aRo5p3cTGxaIt0DDPfWbV+tPtuvn+DwnQtEpcRz6M4Fdt8Ipm/tdv9YmfvWbsuO6yfYfv0E4YlRzDm+gZjUBHrVbGEwfcfqjdgacpSDt88RmRLHgdBz7Lh+ggF1O+qlUyoUTGw/lCVnthOZHPdPVEUIgyR4JsS/3KpVq/D398ff35/BgwezcOFCtFptkXTjx49n6tSphISEULt2bT777DMWLlzInDlzuHLlCu+//z6DBw/m4MG8gIhGo6FSpUqsXr2aq1ev8sUXX/DJJ5+wevXqIvt+7N69e7z00kt0796d8+fP89prr/Hxxx/rpbl06RJdunThpZde4uLFi6xatYojR47w9ttvP3OdU1JSGDZsGIcPH+bEiRNUr16d7t27k5JS9O78Y7a2tixatIirV6/y008/MW/ePH788cdnfs3npc5VE38vEs8a3nrbK9TwJuaO4WE4j22ZtpC1n/zM7lkriLyhP7xCnZuL0lS/16CJqQnRoaXTo+BBVBRxCQk0rVdPt83M1JT6gUFcvHat2PsPf/iQrsOH8cLrI5n4/Xfcjyy5Hk7/RkpXZ5QO9uReKfDe5+aSe/0WJr7Gh+7m3ryNibcXKp8quv2Y1gok5+IVwxkUCkwbN0BhbkZuqPEhJM/LRKmimnMFzj/U/9F74eEtoz9arkeH42xlT/2KfgDYW9jQrEoQZwz0sHmsQ/WGHA27SFZu6QTITZQq/FwrE1zobn/wvRCC3A0fB1OlCdlq/fJkqXOo4eat63F5MSIUP9fK1HDLey887ZxpWiWIE3dLrwddYQ9iY4lLTqJpzUDdNjNTU+pX9+NiqPFhUgVptVpOXQvhblQk9av7lVjZcnJyuHn9BvUb6weK6zduSMhlw+dyyOUrRdI3aNKQm9euk/toyHJgnVrcvH6D61fzjmfEg4cEHz9J4+aGA7olTaVQUtnBg6uFevGERIcVCVwY09y7Ftei7xKfnqy3vUeN5qRmZXAsrPQCyY+pc3OJuHMfnyB/ve1Vg/y5fzPMaL4LB0+SEBVL65e6PNPr5GRlo1FrsLQx3PP5eeTk5HDrxg3qNSp0TjVqQMhlw0PWr125Sv1GDfTTN27IzWs3dOdUTk42puZmemnMzMy5etHwZzknJ4f9u/bQqUfXEhnGpVKqqOpUoUgvngsRt/BzNTx1xI2YcJyt7KhbIa9nnL2FNU0qB3LugX5b269WO5Iz09gf+uSbliXh39rWmihV+DpX5NzDG3rbzz24QYCb4e9CU5UJOYWGlGbn5uDn4oVKUfo/+U2UKvxcvIp89565f51Ad8M32UxVJkWGwWbl5uDvWlmvzIPrdyUxI5Ud10+UfMHLOaVCUS4f/6tkXJYQ/3Lz589n8ODBAHTt2pXU1FT27t1Lx476d3W+/vprOnXKu+uWlpbGjBkz2LdvH82a5d3hqlq1KkeOHOG3336jTZs2mJqa8tVXX+ny+/j4cOzYMVavXk3//v0NlmXOnDlUrVqVH3/8EYVCgb+/P5cuXWLatGm6NN9//z2DBg3ivffeA6B69erMmjWLNm3aMGfOHCyMDAkqqH379nrPf/vtNxwdHTl48CA9e/Y0mOezzz7T/e3t7c0HH3zAqlWrGD9+vMH0WVlZZGXpD4F7ngUZslLT0Wq0WNha6223sLUmM9lwLztLexuaDuyKU2UPNDlqbgdfZvfPK+g8dhDuvnk9hCrUqErIvmDcfb2wdXEk4noY9y7eNBgwLQlxCXnd8J3tHfS2Ozs4EBEdXax9B/n58dV771OlQkXiEhOZv2YVIyd8xKqff8XBzq5Y+/63Ujx6XzTJ+oFiTXIKSmcno/lyTp0hw9YGm4nvAwoUJiqy9h0ia9tuvXTKihWw/fQDMDWBrCzSfplXokM2bc2tUClVJGWk6m1PzEzBwbK6wTzXY8KZeXg149oMxFRlgolSxanwq8w/abhXiK9LJao4ejD72PoSK3dh9hY2mChVRYbTxacn4+Rl+Nw9de8qPWu04PCdC9yIuYe/a2W6BzTDVGWCg4UNcenJ7Lt1BgdLW37p8wEKFJioVGy4fIhl53aVWl0Ki0vO653kZKtfDyc7OyLjntwjIDUjne4Tx5Odk4tKqWDCwFdoUqNmiZUtOTEJjVqDo5P+8D9HR0fi4wz3gEmIT8DRsVB6J0fUajVJiUk4uzjTtmN7khIS+eDNsbqpDXr2eYEBQwaVWNmfxMbcEpVSSUqm/ndDSmYa9u7WRnLls7OwJtC9KgtObdHbXtW5Is29a/HN3sUlWl5j0lPS0Go02Njb6m23trclNTHZYJ74yBj2r9rCkM/fQalSGUxT2P5VW7B1tMcnsPiB2eSkvHPKodA55eDkSIKxcyouHocmRdOr1WqSE5NwcnGmfuOGbFy5lqA6tfCsWIELZ85x8sgxvWGaBZ04dJTU1FQ6du9c7DoB2Blpa5MyUnGoYGswz43Ye/x8dC3vtRqga2uD74WwMHirLo2/a2XaVavPhG2zS6ScT/NvbWvtzK1RGahXQkYq9a0MH5+zD67T2a8xx+9eJjTuAb7Olejo1whTlQl2FtYGh3eXJHuLx2XW/ywnZKTgaKTMZ+5fo1tAU46FXeRm7H38XLzo6t8UU5UJ9hY2xGckE+juQ1f/poxe912pll+IZyHBMyH+xa5fv86pU6dYvz7vR6KJiQkDBgxgwYIFRYJnDRvm31W9evUqmZmZumDaY9nZ2dQr0MNo7ty5/PHHH9y9e5eMjAyys7OpW7eu0fKEhITQtGlTvbumj4Nzj505c4Zbt26xbNky3TatVotGo+HOnTvUqFHjqfWOjo7miy++YN++fURFRaFWq0lPTyc8PNxonrVr1zJz5kxu3bpFamoqubm52D0hQDN16lS94CHAl19+iUmL5+vSr6DQ3RstFN70mL27M/buzrrnrlUrkpaQzNU9p3TBs0b9OnJ8xXY2T54HCrB1caRa09qEnrj4XOUyZvuBA0yZ86vu+czPv8irR6G7UFqttth3x1s0yD8nfYHaAQH0fuN1tuzfx+AXexdr3/8Wpk0bYjV0oO556sw5eX8YCpY+IYBq4l8di55dyFi6itzbd1G5u2A5sB+apGSy/spfZEQTGUXKpKkorKwwbVAXq9eGkDrtpxINoAFo0S9rkc9JAZXs3RjZuCdrLuzj/MObOFraMrRBV95o1ttggKyDb0PuJkRyK/Z+iZbZkMJBa4VCUaRujy0+vR0nKzvmvjQeFJCQnsKOaycYVL8zam3eD+q6FaozpEEXZhxaSUhUGBXtXXm35cvENejGkjPbS6UO20+dYOryP3XPfxzzzqO66KfTag1sLMTK3IJln3xBelYmwdev8ePa1VR0caWBn/8T8z23wu0RT2mPirRfjzfnbb9w9jwrlyzjrQ/GEhBYg4f3HzD3p19xXLiUV0YMKdGiP0nRM8f4+VRQsypBZORkcqFAj05zE1NGNOrOsrM7STMw2XupKnJ8DE+KrdFo2PjrUlr17Yqzp9sz7fr4lr1cOX6OwZ++hYmZ8SkBntfzfscV+Vf+SQXkzZU367sZjH7lVVCAZ4UKdOzehT3bdhrc366t22nYpDHOLi5/uw6GFD57FAqF0ZttFe1dGd6wO+su7efCw1s4WtrySv0uvNbkBX47sRELEzPebtGP309uIiUrvUTL+TT/hrbWoEJVUCiMf5WvPL8HR0tbpvd6BwWQmJHK3pun6Ve7HRqt4aBsaShcPoXCUNuV58+zO3G0smVW73EoyAu07bpxkgF1O6LRarA0NWdCuyH8eHglyVnPPn2LEKVFgmdC/IvNnz+f3NxcKlbMH9ah1WoxNTUlIUH/bru1df7da82jO59bt27Vywv5vatWr17N+++/z/Tp02nWrBm2trZ8//33nDxpfM6bZ+n9pNFoeOONN3j33aIrST1poYOChg8fTkxMDDNnzqRKlSqYm5vTrFkzsrOzDaY/ceIE//nPf/jqq6/o0qUL9vb2rFy5kunTpxt9jYkTJzJu3Di9bebm5nx/6NlWlDK3sUKhVJCRon/XNzM1rUhvtCdx9a7I7eD84UgWtla0G9UXdU4uWWkZWNrbcG7TAWycHZ55n0/SunFjgvzz7+ZnP5oXLjYxARen/J5N8UlJODmUzGs+ZmlhQbUq3tx7+LBE9/vfLOf8JVJuh+VveLTQh9LeDnVS/t1fpZ0t2mTjd50t+vQg+9gpsg8fB0Dz4CGYmWM1bCBZW3bmXw2r1boFA9Rh4ah8KmPesS0ZS1aWSH1SstJRa9Q4WOrfpba3sCGxUA+Jx16q1YZr0XfZdOUwAHcTIsnMzeabbm+w/NxuEgvcbTdTmdLCpzarzu8pkfIak5SZSq5GjZOVfgDe0dKWhHTDxyFbncO0/X/yw8HlOFnaEZeeRK+aLUnLziApI+9Hw8jGvdh1/RRbQ44BcDv+IRam5nzUZhBLz+x4pkDK82pduy5B3vnDn7IfDXWNS07GpUCP04SUZJxtn9wjVKlU4uWWFwTx96pMWEQEi3ZsK7HgmZ2DPUqVskiPoMSExCK90R5zdHIkIb5w+gRUKhV29nn1WTJvIe27dKLbCz0A8KlWlczMTGZNm8HAYa/ozTtZGlKzMlBrNNhZ6H832FpYkZz59CBFc+9anAy/qgsMALhaO+Ji7cCbzV/SbXscDPqlzwdM2jWfWAOTkheHla01CqWySC+z9KQUrO2L9kzJzsgi4s49Iu8+YOfivEC4VqsFrZYpQz9g0ITReAfm90g9sXU/RzfvYdDHb+JeuUKJlNnO3vA5lZSQWKQ32mOOzk4kxOlPjp6YkKh3Ttk7OvD51K/JzsomOTkZZxdnFs75A3fPogv7REdGcf70OT755ssSqRNAsq6ttdHbbmdhTVKm4ba2d2BrbsSE89fVvPnpwhOjyDyVzdddXmfVhT3YW9jgZuPI+Lav6PI8PqeWD5rE+5t/IsrABP7F8W9qawtKzkpDrVEX6bHlYGGj952mX69cfjqyhl+OrsPB0paEjGS6+DclPTvzmdqJ4krKzCtz4WPhYGFL4hOOxfSDK5h5aBWOVrbEpyfTPaA5admZJGWmUdW5Ap52zkzu8rouz+NzasdrMxix6hsiUv7dc6Ap/oEht+LZSfBMiH+p3NxclixZwvTp0+ncWb+bf9++fVm2bJnRecRq1qyJubk54eHhtGnTxmCaw4cP07x5c8aMGaPbFvqU+W5q1qzJxo0b9badOKE/f0H9+vW5cuUKvr6+T9zXkxw+fJjZs2fTvXt3IG+utdjYWKPpjx49SpUqVfj000912+7eNb5UO+QFyp5nmGZhKhMVTl4eRFwLo3Kd/B+OEdfCqFTL8PA0Q+LvR2FpXzTYpjI1wcrBFo1aTfj561Sp//Qee8/C2spKbwVNrVaLs6MjJ8+fJ6BqNSBvbpazVy7zztBhJfKaj2Xn5BB2/x71apbcMK//eplZaAqtoKlJTMKkZgDq8Ec9q1QqTPx9yVizyfh+zMyK3i7Waoz2gsynQFGCK/PmatSExj2kjqcvp8Lz5xOqXcGX4HuG5xcyNzEtMtTp8V32wsVv4V0LU5WKg7efvChHceVq1NyICaehVw0O37mg296wUgBHwp7cC1St0ehWUuvg25BjYZd1P9QsTMyK3ITQaDQoFE/ukVAc1hYWeitoarVanO3sORlyFX+vvBsaObm5nL15g3f69H2ufWvRkp2b+/SEz8jU1JTq/n6cCz5DizatdNvPBZ+hacvmBvPUCArk5NHjetvOnjpN9QB/3arTWVmZRQJkSqUSrVZbakPiC1JrNYQnRlLDrYpe77G8509ecKG6ixduNo5F5jSLTIlj8u6Fett6BbbEwsSMNRf2kZBueBhlcahMTPD0qcSdyzcIaFRbt/3O5Rv4NSi64qq5pTmvT9WfOuHMnqPcvXqTl94djoNr/g2b41v2cXTTbgZOeIMKVZ/tRtuzMDU1xdcv75xq3qalbvu508bPqYDAmpw6pn9OnQs+TfUAvyIrmZuZm+Hi6kJubi7HDh6mVfui11y7t+7A3tGBxs2alkCN8qg1am7HP6S2RzW9+cJqe1Tj9H3D85Uabmvzzn8FCh4mxfLhXz/r/X9A3Y5YmJix+PQ2YkvhnPo3tbUF5WrU3Ip7QN0K1fUW+ahbwY+T4UbmIn1ErdXoVktt7VOHU/dCSj3YB4+ORew96lf052iB975+Jf+nzqmo1mp0C5a0q1afk+FX0KIlPDGK19d8q5d2eKPuWJlaMPvYeoOrjgpRmiR4JsS/1JYtW0hISGDkyJHYF1qhsF+/fsyfP99o8MzW1pYPP/yQ999/H41GQ8uWLUlOTubYsWPY2NgwbNgwfH19WbJkCTt37sTHx4elS5cSHByMj4/xlfdGjx7N9OnTGTduHG+88QZnzpwpsvrnhAkTaNq0KW+99Ravv/461tbWhISEsHv3bn7++WfDOy7E19eXpUuX0rBhQ5KTk/noo4+wtLR8Yvrw8HBWrlxJo0aN2Lp1Kxs2bHim1yqOmu0bc3TJXzhX9sDVpyI3jp4nLT4Zv1Z5Q2PPbjpARlIKLYb2AiBkfzDWTvY4eLqgUau5feoK4eev0+a1Prp9xoQ9JCMxBcdK7qQnpnBx2xG0Wi2BHUtnYmuFQsHAXi+wcO0aKntWwKtCBRauXY2FmTldW+f/CPjixxm4OTvz9qOAWk5ODrfv3Xv0dy4xcXFcv30bK0sLvDzzegzMXDifVo0a4+HqSkJiEvPXrCItPZ2e7TuUSl2ehaWpOZXsXXXPK9i5UN2lEsmZaSV+R/3vytq9H4uendFER6OOisGiRxe02TlknzytS2P12hA0CUlkrstbgTD3wmXMO7dDHX4f9e0wlG6uWPTuSc75S7pfCRYv9SLn0lW08QlgYYFZkwaYBFQnbUbJzm3z19UjvNvyZULjHnA9JpxOfo1wsbZn1/VTALxSvzNOVnb8fCRvVbrT964xunkfuvg34fyDGzhY2vJq457ciLlXZI6X9tUbcio8hNSs0h+mtvrCPj7tMIzr0Xe5EnWHXjVb4GbryKbLeT3kRjV9ERdrB6Y8mm+qkr0bNdy9CYm6g625Ff3rdMDH2ZMp+/Lnozp29xL967TnRuw93VCikU16cjTsku5HbGlTKBQMbN+BhTu24eXmhperO4t2bMPCzIwujfLbmS8XzcfVwZG3e+f1bFq4Yxs1q3hT0cWVXHUuRy9fYuuJE3w88BVjL/W3vDTgZb6fPJXqAf7UCKrJ9k1biI6KokefvHZ0wZx5xMXG8tHnEwHo0bsXm9dt5LdZs+n2Qg9CLl9l55btfDwpfx7MJi2asWHlWqr5+RJQM2/Y5pJ5C2nasjmqR/NwZaRn8PB+/mIvkQ8jCL1xC1s7W9w83Itdr703TzO8UQ/uJkRyJ/4hLX3q4GhlpwsYvBjYCgdLWxaf3qaXr4V3Le7EPeRhsv4NpFyNusi2jOy8QHzh7SWpSbe2bJqzDM+qXlTy9ebc/mMkxSVQv0NeIGr/qi2kJCTxwuhXUCiVuHl56uW3trNBZWqit/34lr0cXLud3mOGYO/ipOvZZmZhjpnF37/J9Vif//Rl+uRpVA/wIyCoJjs2byUmKpruvfPOqUVz/yAuJpYPPs9bAKl7755sWb+JeT/PoUuv7ly7fJVdW3YwftInun1euxJCXGwsVX2rERcbx/IFS9BoNPQdNEDvtTUaDbu37aRD106oTJ5tzrdntTXkGG8370to/ENuxtyjQ/WGuFjbs/tmXls7sG4nnKzs+PXYOiBv4vdRTV+kU/VGXIjIG7Y5rGE3bsbmt7X3kvTnOn08JLjw9pL0b21rN14+xLjW/+FW7H1Cou/S1b8JrjYObLuWF5gd1qAbztb2zDiU1/O7gp0Lfq6VuRETjo2ZJb2DWlPF0YMfD6/6R8oLsO7iASa0G8yN2HBCosLoXqM5bjaObAnJ6634aqOeuFjb892BvKlZKtq7EuBahWvRd7Ext6Rv7XZ4O3nq/p+jziUsIULvNdIefX8X3i7EP0GCZ0L8S82fP5+OHTsWCZxBXs+zKVOmcPas8ZWQJk+ejJubG1OnTuX27ds4ODhQv359Pvkk7+Jv9OjRnD9/ngEDBuT9mBo4kDFjxrB9u/G5ICpXrsy6det4//33mT17No0bN2bKlCm8+uqrujS1a9fm4MGDfPrpp7Rq1QqtVku1atUYMGCA0f0WtmDBAkaNGkW9evWoXLkyU6ZM4cMPPzSa/sUXX+T999/n7bffJisrix49evD5558zadKkZ37Nv8O7QQ2y0jK4uP0oGclpOHi60H7My9g45R2zjORU0uLz79RqctWc3bCP9KRUVKYmeenffJmKgdXy0+Tkcn7LIVJiEzE1N6NiYFVaDO2JmdXTF1r4u4a91Jes7Gy+/W0OKampBPn58ctXX+v1UIuMjUGpzO8HFBMfzyvvj9U9X7pxA0s3bqB+UBC/fzMVgKjYOD794QcSU5JxtLMjyN+fhd/9gKfbs819UxoCXKvwS5/84brvtnwZgG0hx/mmwIV3WcravgeFmRmWgwegsLZCfTuM1Om/QIEeakonJ9Dk/wDI/GsHWq0Wiz49UTrao01JJefCZTLX5U+6r7C3xfr1oSjs7dBmZKK+/4C0GbPJvVr8VVULOhZ2CVtzK16u0x5HS1vCE6OYsnex7g6zo6UtLtYOuvT7Q89iYWpOt4CmDGvYjbTsTC5FhPLnWf25gzztnKnp7s1XuxaUaHmN2XfrDHbm1gxr2B1nazvuxEUwYctsolLzhn85W9nhbpM/7EulVDKgTgcqO7iTq1Fz7sENxqz/gciU/OFiS05vR6vV8lqTXrhaO5CYkcqxsEvMO7n5H6nTY0M7dyUrJ4dpK5aTkp5GoE9Vfn7nfb0eapHx8XpzQmVmZTFtxTKiExMwNzWliocnX48YSeeGjUq0bG06tiM5OZllC5eQEBdPlareTP5hKu4eecPh4uPiiY7K/yHvUcGTyT9M5bdZv7Jl/SacXJx58723admutS7NoGFDUCgULP59AXExsdg7OtCkRTOGjxqpS3Pj2nUmvJPfNvz+c978gx27deHDzyYUu15n7l/H2sySHjWaY2dhTURyLL8eXadbPdPewganQkO8LEzMqFfRj9UX9hX79UtKzab1SE9J48iGnaQmJuNayZP/fDQKe5e8XmSpickkxT7fjYgze46izlWzbtYive2t+nShdd+uxS5z6w7tSE5KZsWiP4mPi6eKjzdffT9FFxSNj4snptA59dX33zDv5zlsWb8ZZxdn3njvLVq0zT+ncrKzWTpvIZEPI7C0tKRh08Z88PkEbGz1h1GeP32WmKhoOvfoVux6FHb87mVsza3oW6stjpa23EuM4tv9S3U9gBwsbXC2zr+GPHj7HJamZnTxb8qQBl1Jy87kStQdlp01PE/bP+Xf2tYevnMBW3Mr/lO3I05WdtxNiGTSrvn534VWdrgW+C5UKpT0CWpNRXtX1Bo1FyNC+WjLr0T/gzf2Dt4+h52FNYPrd8HJyp6w+Ag+3f6brgzOVna4FTwWCiX9arejkoMbao2a8w9vMnbTTN2xE0+e81X88xTaf6K/uRBC/I/4v0LDYP4bfdZpBCnXbjw9YTlnG+BHi19Hl3UxiuXoW3NJfNVwD9H/Jg4LfqHv4k+enrAcWzdsCq1nj3l6wnLu0JjZJO87VNbFKDa79q25E/vg6QnLMR+Xiry57vuyLkaxzen7EUuCtz09YTk2tFF3bsXcK+tiFJuvqxcD/vy8rItRbKsGT/6vb28PjZlNzwUflXUxim3Lq9/T6fexT09Yju0e9VNZF+Fv+3jrnLIugkHf9nizrItQJmQGOiGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliFIhwzbLE+l5JoQQQgghhBBCCCGEERI8E0IIIYQQQgghhBDCCBm2KYQQQgghhBBCCFGOKGTYZrkiPc+EEEIIIYQQQgghhDBCgmdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQgghyhFZbbN8kZ5nQgghhBBCCCGEEEIYIcEzIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEOWIAhm2WZ5IzzMhhBBCCCGEEEIIIYyQ4JkQQgghhBBCCCGEEEbIsE0hhBBCCCGEEEKIckQhq22WK9LzTAghhBBCCCGEEEIIIyR4JoQQQgghhBBCCCGEETJsUwghhBBCCCGEEKIcUcqwzXJFep4JIYQQQgghhBBCCGGEBM+EEEIIIYQQQgghhDBChm0KIYQQQgghhBBClCOy2mb5otBqtdqyLoQQQgghhBBCCCGEyPP17gVlXQSDvuj0alkXoUxIzzMhhChBCZ36lHURis1x9waS9+wv62IUm13HdiS++nZZF6NYHBb8QotfR5d1MYrt6FtzSRw9rqyLUSwOc2eQOPKdsi5GsTnM//nf007tPVjWxSgWuw5tSBz63//5dlgyt6yLIApI3rarrItQbHbdO5P4/idlXYxicfhxCon/GVnWxSg2h5Xz+WLHvLIuRrF83fX1si6C+JeQ4JkQQgghhBBCCCFEOaJEhm2WJ7JggBBCCCGEEEIIIYQQRkjwTAghhBBCCCGEEEIII2TYphBCCCGEEEIIIUQ5Iqttli/S80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHJFhm+WL9DwTQgghhBBCCCGEEMIICZ4JIYQQQgghhBBCCGGEDNsUQgghhBBCCCGEKEeUMmyzXJGeZ0IIIYQQQgghhBBCGCHBMyGEEEIIIYQQQgghjJBhm0IIIYQQQgghhBDliAIZtlmeSM8zIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEVtssX6TnmfifcPr0aX788Uc0Gk1ZF0UIIYQQQgghhBD/RSR4JspEWFgYCoWC8+fPl9g+FQoFGzduLLI9NjaW/v37ExQUhFJZ8qf8pEmTqFu3bonv93/J8OHD6d279zOnP3DgAAqFgsTExL/9mosWLcLBweFv5xdCCCGEEEII8b9Bhm2K5zZ8+HAWL14MgEqlokKFCvTo0YMpU6bg6OhYZuWKiIgo8vparZahQ4fyxRdf0KlTpzIq2b+DQqFgw4YNzxXkEiXLtGVTzHt0RlW9Gkp7O5JHv486NKysi4VWq2Xeti1sOHqElPR0Ar29Gd9/INUqVDCaZ9/5cyzauZ17MTHkqtV4uboxuENHujdpqktz9uZNlu7ZxbV74cQmJfH9qNG0rVO3VOti8WJ3zNq0QGFlifr2XdL/XIXmYeQT85h3aotZu1YonRzRpqaRffocmWs3Q24uAGZtW2LerhVKFycA1A8iyfxrO7mXrpZqXZ6kjqcvg+p1JsCtMi7WDny8bQ6H71wos/IYYtGzC2Ytm6KwskIddpf0FevQREQZTW8zbgwmfr5Ftudcukrar3/kPTE3x/KFbpjWDUJha4v63n0yVm9EffdeaVUDixe66Z9Ty1Y//Zzq2Bazdi0LnFPnyVyXf06Zd++Eaf06qDzd0WbnoA69Q8aaTWiiokutHs+ivLZRhmi1WuZt/YsNRw8/ard8GD9g0JPbrXNnH7Vb0Xntlpsbgzt0onuTZv9gycGiT0/M2rZEYW2FOjSM9CUr0DyIeGIe8y7tMWvfGqWzE9qUVLKDz5G5ZgPk5OrSKBwdsOzfB5M6gShMzdBERpE+fynqsPDSrpIoI1qtlnk7t7Ph+FFSMjIIrFyF8X37U83T02iefRfPs2j3Lu7FxpKrUePl4srgtu3p3qixLs3vO7Yxb+d2vXxOtrbs/HpKqdXFoksHzJo1QmFpiTr8HunrNqOJNN4m2rz1Gia+VYtsz7l6jbR5S4psN+/QBsueXcg6eJSMjVtLtOwFWfR7AbP2bVDYWKG+dZv0BcvQ3H/4xDzm3Tpi1qkdSpdHn++Tp8lcsS7/821hgWX/3pg2qo/C3hZ1WDgZi1agvh1W4uVv5FWDlj51sDG3JCY1ge3XTnA3wfh3nkqhpK1vfepU8MXG3IrkzDQOhp7j3IMbADSo5E/dCn642eb9xnuYFMuem8E8SIop8bKXRwoZtlmuSPBM/C1du3Zl4cKF5ObmcvXqVV599VUSExNZsWJFmZXJw8OjyDaFQsG2bdvKoDRClDyFhTm5V66RfegY1uPeKuvi6CzZvYvl+/byxZBhVHZzY8GO7bz9y0+s/eIrrC0sDOaxt7JiRJdueHt4YKoy4fDli3z95xIcbW1pVjMQgIzsLPwqVaJXs+ZMmPdbqdfDvFtHzDu3I33+n6ijorHo2RWbD98h+ZOvITPLYB7Tpg2x6Pci6QuWob51G6WHG1YjhwCQuXI9AJqERDLWbkITHQuAWYsmWL8zipRJ3z41iFJaLE3NuRV3n23XjjGl2+gyKcOTmHduj3mHNqQvXoE6OgaLbp2wGTua5C+/hSzDxyJt7iIwUemeK6ytsP3sQ3LO5gcFrYb0R1XBk7SFy9EmJWPWpAE2740m+avv0CYmlXw9Hp9TC5Y9Oqe6YPPB2yR/Otn4OdWkIRb9XiB94TLUt+7knVOvDgYgc1XeOWXi50v2/sPk3rkLShWWL/XE5oO3SP7sG8jOLvF6PKvy2kYZsmT3Tpbv28MXQ4ZT2d2dBdu38vbPP7L2y8nG2y1ra0Z07Y63uwemJioOX7rE10sX42hrp2u3Spt5j86Yd+1A+rzFqCOisXixGzbjx5I84Uvj51Szxli83If0+UtQ33zUTr0+DIDM5WsAUFhZYfvZR+SEXCfth1/QJqegdHNBm57+j9RLlI0l+/aw/MB+vhj0CpVd3Viweydvz/2FtRM/f8L3tzUjOnXB290dU5WKw1eu8PXKZXnf3wE1dOmqenjy65tv656rlKUXBDBv3xrzti1IX74OdUwsFp3aYTP6VZKnzoAsw21i2sJloCr0nfHhO+Scv1wkrcqrImbNGqF+SpC6uMxf6IZ5986kz1mAOiIKi5d6YvPJBySP+xQyMw3mMW3RBIuB/Uj/bSHqG7dQenpgNfpVADKXrALA6o1hqCpVJO3XP9AmJGLWqik2n31A8gefo01ILLHyB3lUpVuNZmy5epTwhCgaeQUwuEFXfjmyhqTMNIN5+tftgI25JRsvHyI+PRlrM0u9eb68nSpwMeIW90KiyNWoaelTh6ENu/HLkbWkZEn7JP5ZMmxT/C3m5uZ4eHhQqVIlOnfuzIABA9i1a5demoULF1KjRg0sLCwICAhg9uzZRvenVqsZOXIkPj4+WFpa4u/vz08//VQk3YIFCwgMDMTc3BxPT0/efjv/S7nwsM1Lly7Rvn17LC0tcXZ2ZtSoUaSmpur+/3io4A8//ICnpyfOzs689dZb5OTkPLHu3377Le7u7tja2jJy5EgyDXyZPU/dAXbs2EHLli1xcHDA2dmZnj17Ehoaqvt/dnY2b7/9Np6enlhYWODt7c3UqVP16j5nzhy6deuGpaUlPj4+rFmzRu81Hjx4wIABA3B0dMTZ2ZkXX3yRsLCwZ3p/vb29AejTpw8KhUL3HGDOnDlUq1YNMzMz/P39Wbp06RPrqlarGTdunK6u48ePR6vV6qXRarV89913VK1aFUtLS+rUqcPatWufuN/CZsyYQa1atbC2tsbLy4sxY8boHf/CQkNDefHFF3F3d8fGxoZGjRqxZ8+e53rN0pa95yCZf64m92z56SGk1WpZsX8vI7p0o33devhWqMikIcPIzM5mZ/Apo/ka+PnTrm49fDw8qeTqysB2HfCtWJHzBc77FoFBvNnrRdrXrfdPVAXzTu3I3LKTnLMX0DyIIH3+UhRmppg1aWg0j0k1H3Jv3ibn5Gk0cfF5gYOTpzHxrqxLk3vhMrmXrqKJikYTFU3m+r/QZmZhUs3nn6iWQSfCrzDv5GYO3j5fZmV4EvMOrcncvoec85fQPIwkffFyFGZmmDWubzSPNj0dbXKK7mFawx+yc8g+8+jzYmqKab3aZKz/C/Wt22hiYsncshNNbDzmrZuXTj06tiVz664C59Sfz3ZO3bpNzskzBc6pM3rnVNrMOWQfPYnmYSSa+w9IX7AMpbMTKm+vUqnHsyqPbZQhWq2WFfv2MKJrd9rXq5/Xbg0d8ajdOmk0n67d8vSkkqsbA9s/brdu/WNlN+/SgczN28k5fR7Ng4ek/74477PRrLHRPCa+Vcm9GUrO8WA0sXHkXg4h+0QwJj7555R5z85o4uPJ+GMJ6ttheemuXtcF/cW/j1arZcXBA4zo1Jn2tevi61mBSYMGk5mdw86zp43ma+BbnXa16+Dj7kElF1cGtmmLr2cFzt8O1UunUipxsbPTPRxtbEutLuZtmpO5+wA5l67k9Zhcviavra1f12gebXoG2pRU3cPUzxdycsi+cEk/oZkZVoMHkLF6A9qMjFKrA+TdcMncuJWc4LN5bfvs+SjMzTBr0cRoHhO/auTeuEXO0ZNoYuLIvXiF7GMnManqnZfA1BTTxg3IWL4W9bUbedchazejiY7FvFO7Ei1/c+9anL1/nbP3rxOblsj2aydIzkylUeWaBtP7ulTC28mTP8/s5HbcQxIzUnmQFMO9xPweg+su7if4XgiRKfHEpiWx6fJhFAoFVZ0rlmjZhXgWEjwTxXb79m127NiBqampbtu8efP49NNP+eabbwgJCWHKlCl8/vnnuuGehWk0GipVqsTq1au5evUqX3zxBZ988gmrV6/WpZkzZw5vvfUWo0aN4tKlS2zevBlf36JDdADS09Pp2rUrjo6OBAcHs2bNGvbs2aMXbAPYv38/oaGh7N+/n8WLF7No0SIWLVpktK6rV6/myy+/5JtvvuH06dN4enoWCYw9b90B0tLSGDduHMHBwezduxelUkmfPn10CxzMmjWLzZs3s3r1aq5fv86ff/6pF8AC+Pzzz+nbty8XLlxg8ODBDBw4kJCQEN370a5dO2xsbDh06BBHjhzBxsaGrl27kv2ol8KT3t/g4GAgLygYERGhe75hwwbGjh3LBx98wOXLl3njjTcYMWIE+/fvN1rX6dOns2DBAubPn8+RI0eIj49nw4YNemk+++wzFi5cyJw5c7hy5Qrvv/8+gwcP5uDBg0b3W5hSqWTWrFlcvnyZxYsXs2/fPsaPH280fWpqKt27d2fPnj2cO3eOLl260KtXL8LDZbjKkzyIiyUuOZmmNfLvNpuZmlLftzoX79x+pn1otVpOXbvG3ago6hv5TJc2paszSgd7cq9cy9+Ym0vu9VsGh3Xokty8jYm3FyqfKrr9mNYKJOfiFcMZFApMGzdAYW5GbuidkqzCv4bSxQmlvR25IdfzN+aqyb0Zmv9j4BmYtWhC9ulz+T2xlEoUKpXeMDUAbU4OJr4lH8hUujzhnHpC4DT3VigmVQqcUy7OmNaqafycAhRWeT1EtGlyF/5Z5Ldb+T/ozExNqV/dj4u3n6fdCnnUblUvraLqUbq65J1Tl0PyN+bmknv9JibVn9BO3biFiXdlVI8+P0pXF0zrBJFzIb+HjWm9OuTeCcfq7dex++U7bCZ/glnblqVVFVEOPIiLIy4lmab+AbptZiam1Pf15eKdZ/t+0mq1nLpxnbsx0dSvpv/9fS82hm5ffsqLk7/kkyULuR9bOoFYpbMjSjs7cq/fzN+oVpN7645egPhpzJo0JPvcRcjWv4lu1e8FckKukXsj1EjOkqF0c0Hp6EBuwbY+N5fckOuY+FUzmi/32i1MfKqgevS9onRzwbReLXLOXsxLoFI9+u7Tr5c2OweTgJK75lIplHjauRAa+0Bv+63YB1R2cDeYJ8CtCg+TYmnpU5sP2w7i3Vb96eLfBBOlymB6AFOVCSqFkowcwz1t/20UCmW5fPyvkmGb4m/ZsmULNjY2qNVqXc+rGTNm6P4/efJkpk+fzksvvQSAj48PV69e5bfffmPYsGFF9mdqaspXX32le+7j48OxY8dYvXo1/fv3B+D//u//+OCDDxg7dqwuXaNGjQyWb9myZWRkZLBkyRKsra0B+OWXX+jVqxfTpk3D3T2vEXd0dOSXX35BpVIREBBAjx492Lt3L6+//rrB/c6cOZNXX32V1157TVemPXv26PU+e966A/Tt21fv+fz583Fzc+Pq1asEBQURHh5O9erVadmyJQqFgipVqhTZx8svv6wr1+TJk9m9ezc///wzs2fPZuXKlSiVSv744w/d2PmFCxfi4ODAgQMH6Ny58xPfX1dXVwAcHBz0hsf+8MMPDB8+nDFjxgAwbtw4Tpw4wQ8//EC7dobvZs2cOZOJEyfq6jx37lx27typ+39aWhozZsxg3759NGuWN49M1apVOXLkCL/99htt2rQxuN/C3nvvPd3fPj4+TJ48mTfffNNoL8A6depQp04d3fP/+7//Y8OGDWzevLlI0BUgKyuLrELDx8zNzZ+pbP8mccnJADjZ2ultd7KzIzI+/ol5UzMy6P7Jx2Tn5qBSKpkwYCBNahi+O1naFHZ55dckp+ht1ySnoHR2Mpov59QZMmxtsJn4PqBAYaIia98hsrbt1kunrFgB208/AFMTyMoi7Zd5ZTZks7x74rFwerZ5NVXelVFV9CR96ar8jVlZ5IbewaJHJ9Iio/J6pzWqj8q7cqn0rlHYP65Hst72p59TZ8mwscHm4/fQnVP7D5O1fbfRPJYDXiL3RuhT570SeeKSjLRbtnZExsc9MW9qRjrdP5lAds6jdus/g/6xdkt3TiUVOqeSknVzKhqSc/I0GXY22Hz2Ibpzau9Bsrbkf/cqXV0wb9+arB17SPtrB6qq3lgO7o82J4eco8Z744n/XnEpRj4HNrZEJjzD9/ekz8jOzc37HPTrT5MCQbjAKlX4atAQKru6EZeSzILdOxk5awarJnyKw6Pr8pKisM3r0aZJ0R9doElNReno8Ez7UFWuhKqCB+mPhsY/ZlqvNqqKFUj/8ckjSEqCwsEeMPb5djaaL+f4qbzP91cf5+3HxISsXfvJ2vxozrnMTHJv3MLipZ6kPYhAm5iEaYsmqHx9njgn3POyMrNApVSSmq1/EyctOwMbc0uDeRwtbans6E6uRs2Kc7uxMrWgZ2ALLE3N2Xj5kME8nfwakZyZxu24Bwb/L0RpkuCZ+FvatWvHnDlzSE9P548//uDGjRu88847AMTExHDv3j1GjhypF4TKzc3F3t7e6D7nzp3LH3/8wd27d8nIyCA7O1u3imV0dDQPHz6kQ4cOz1S+kJAQ6tSpowucAbRo0QKNRsP169d1wbPAwEBUBeY78PT05NKlS0X2V3C/o0frzw/UrFkzXU+rv1v30NBQPv/8c06cOEFsbKyux1l4eDhBQUEMHz6cTp064e/vT9euXenZsyedO3cuUo7Czx+vZnrmzBlu3bqFra1+l/nMzExCQ0Of+/0t+H6MGjVKb1uLFi0MDrkFSEpKIiIiQq+sJiYmNGzYUDd08+rVq2RmZhZZ4CE7O5t69Z59+N7+/fuZMmUKV69eJTk5mdzcXDIzM0lLS9M7Lx5LS0vjq6++YsuWLTx8+JDc3FwyMjKM9jybOnWqXsAX4Msvv2SswdTPz6x9a6zeyz/XUj+ZrN/boIxsP3WSqSuW657/OCZvXqPCE5oWHopriJW5Ocsmfkp6VhbB16/x4/q1VHRxoYGff8kW2gDTpg2xGjpQ9zx15py8PwyV+wl1MfGvjkXPLmQsXUXu7buo3F2wHNgPTVIyWX/t0KXTREaRMmkqCisrTBvUxeq1IaRO+0kCaIBp4/pYDXpZ9zz18eT+hd/355g016x5E9QPIopMdJ6+cDlWQ/+D/bRJaNVq1PcekBN8DlXl4g//MG3SEKuh/9E9T/1pbt4fhU8fheIp55Rv3jn152pyb4ehcnPFcmBfND276AU7HrN85WVUlSqQ8u3MYtfheZTXNsqQvHbrT93zHx/Nw1T4lNKifep5ZmVuwbKJnz9qt0L4cd0aKrq4lkq7ZdqsMVYjBumep07/9VFBDXw2ntDkmgT4YdGrGxmLV5AbegeVuxuWg/ujSUwia9OjeWGVCtR37pK5dhMA6rv3UFX0xLxDGwme/UtsPxPM1NUrdc9/fD3v81v4jH+2z4E5yz78mPTsLIJvXOfHjRuo6OxCg0e9MFvUyJ8D0JcK1Pb2ofc3X7E1+CSvtG1frHqY1q+DVf/euuepBib3z/Pkz0VBZk0aon4YiTr8fn5uB3ss+/Qkde4C3WItJcm0RROsXh+qe5467dG1c5Hvh6d8Z9T0x6JPTzLm/0nurduoPNywHDYQTWJPstZvASD91z+wemME9nOm53333blLztGTuh7Opc1Y8R9fO669uI+s3LyecTuunWBA3Y5suXqUXI1aL31Ln9rU8qzGwlNbi/xPiH+CBM/E32Jtba0b0jdr1izatWvHV199xeTJk3WBn3nz5tGkif4Y/YKBqoJWr17N+++/z/Tp02nWrBm2trZ8//33nDyZd8FmaWn4joUxWq3W6OokBbcXHGr6+H+Py/93/J26A/Tq1QsvLy/mzZtHhQoV0Gg0BAUF6YZU1q9fnzt37rB9+3b27NlD//796dix41PnAXtcV41GQ4MGDVi2bFmRNK6uriiVf7/7raGgSXFWhnn8Hm7dupWKFfV/0D5rz667d+/SvXt3Ro8ezeTJk3FycuLIkSOMHDnS6Jx2H330ETt37uSHH37A19cXS0tL+vXrpzsGhU2cOJFx48YVKV96z/8YTP+8so+fIvfaDd1zTeyT7wL/U1rXrkOQd/6Qs+xHF5RxyUm4FAgQJ6Sk4GxnVyR/QUqlEi83NwD8vbwIi4pk0a6d/0jwLOf8JVIKrjJlkvd1qLS3Q13grq/SzhZtoR5QBVn06UH2sVNkHz4OgObBQzAzx2rYwLxAx+MrRrVa17tJHRaOyqcy5h3bkrFkpbFd/8/IuXCFlDsFglyPJv1X2tuhLvDeK21tnngsdExNMWtUl4wCwcvHNLFxpM74FczMUFiYo01Oweq1ISXy+cq5cImUr8LyNxg7p55SD4vePck+XvCcigBzM6yGDiRr6y69XyGWg/phWrcWqdN+KtFJn59FeW2jDDHebiXjYu+g256QkoKz7XO2W5GRLNq5vVTarZxzF0gpOLzb9NE55WBvoJ1KLpxdx6JvL7KPnST74FGAvJX7zM2wGjE4r3eKVos2ManIZOjqh5GYNjQ+z6D479I6sBZBH3rrnus+BynJ+t/fqak4P2V+MqVSidejUQn+FSsRFhXFoj27dMGzwizNzfH1rMC9mOKvkJhzJYSUHwqskPy4rbW10f/OsLFG+4S5bnVMTTGrV5uMHfrz3JpUqoDS1gbbAoufKFQqVFW9MWvZlKSPvnhiUOup9ThzgZRbBW7CFvx8F1jARmlvizbpCZ/v/r3JPnyc7P2HAdDcewDm5li9PpSsDVtBq0UTFUPq19+BuRkKS0u0iUlYjX2jRHtdp2dnotZosDGz0ttubWZJWrbhueJSstJJzkzTBc4AYlITUSoU2FlYE5+eX+8W3rVoVbUui4O3EZVafr9vSpqySHhblCUJnokS8eWXX9KtWzfefPNNKlSoQMWKFbl9+zavvPLKM+U/fPgwzZs31w3/A/QmzLe1tcXb25u9e/caHQ5YUM2aNVm8eLFeL6OjR4+iVCrx8/N7ztrlq1GjBidOnGDo0Pw7RSdOnND97e7u/tx1j4uLIyQkhN9++41WrVoBcOTIkSLp7OzsGDBgAAMGDKBfv3507dqV+Ph4nJycdOUoXK7HPbXq16/PqlWrcHNzw85IQONp76+pqSlqtf5dnho1anDkyBG91z127Bg1Csx/VZC9vT2enp6cOHGC1q1bA3m98s6cOUP9+nkX6DVr1sTc3Jzw8PBnHqJZ2OnTp8nNzWX69Om6wGDB+fMMOXz4MMOHD6dPnz5A3hxohRdUKMjc3NxgMK/EZhzKyESTUf56JVlbWOitwKXVanG2s+PktRD8vfLmFsnJzeXsrZu882Kf59q3VqslO/fJC3aUmMwsNIVWptMkJmFSMyD/zrNKhYm/LxlrNhnfj5lZ0YtnraborfwiFChM5CsYgKwsNDGFjkVSMiY1/FDfezQsQ6XCpHo1MjZseeruzBrWBRMTck6eMZ4oOxttdjYKK0tMawaQsf6vYlTgEaPnlH/Rc2rt5idUwLToOaXRFjmnLAe9jGn92qR+NwtN7JOHGpaKctpGGWK03Qq5qt9u3bzBO71feq5957VbJd8rBXh0TukHGzSJSZgE1kB991HwQKXCxL86Gas3GNjBI2ZmeeeQ3o7026ncm6GoPPXnJVJ6uKOJK4NzS5QKg58DWztOXr+Of6W8xUbyvr9v8U6vF55r31qe/DnIzs0hLCqKulWNz931zLKy0WTpB080ycmY+PvmB4BVKkx8fcj4q2hv3cLM6tYCExU5p8/pbc+5GUry495gj1gN7IsmOobMvYeKFTgDIDMTTaFFxzQJiZjUqpnfa1qlwqSGPxnLn3Cz3NB1iEZjuPdgVjbarGwU1laY1g4iY/maomn+JrVWQ0RyLNVcKhISHabbXs2lItei7xrME54QRaBHVcxUJmSr884fF2t7NFoNyQVW52zhXZs21eqx5PR2HibLIiai7MiVuygRbdu2JTAwkClTpvDLL78wadIk3n33Xezs7OjWrRtZWVmcPn2ahISEIr11AHx9fVmyZAk7d+7Ex8eHpUuXEhwcjI9P/p3iSZMmMXr0aNzc3OjWrRspKSkcPXpUN1y0oFdeeYUvv/ySYcOGMWnSJGJiYnjnnXcYMmSIbsjm3zF27FiGDRtGw4YNadmyJcuWLePKlStUrZo/Ue/z1v3x6pe///47np6ehIeH8/HHH+ul+fHHH/H09KRu3boolUrWrFmDh4cHDg4OujRr1qzRK9epU6eYP3++7v34/vvvefHFF/n666+pVKkS4eHhrF+/no8++ohKlSo99f19HFxr0aIF5ubmODo68tFHH9G/f3/q169Phw4d+Ouvv1i/fv0TV6kcO3Ys3377LdWrV6dGjRrMmDGDxMRE3f9tbW358MMPef/999FoNLRs2ZLk5GSOHTuGjY2N0XnjCqpWrRq5ubn8/PPP9OrVi6NHjzJ37twn5vH19WX9+vX06tULhULB559/XqxeiKVBYWuD0s0FxaP5kpSV8nrmaeIT//FeJ7oyKRQMbNeBhTt34OXqhpebG4t27sDCzIwujfJXf/ty8UJcHRx4+1FAbeHOHdSsXJmKrq7k5qo5euUyW0+e4OP/5A9RSs/M1LtL/TAuluv37mFvbY2Hk/H5ff6urN37sejZGU10NOqoGCx6dEGbnUP2yfxVx6xeG4ImIYnMdXnBj9wLlzHv3A51+H3Ut8NQurli0bsnOecv6S5mLV7qRc6lq2jjE8DCArMmDTAJqE7ajNKfQ8UYS1NzKtm76p5XsHOhukslkjPTiEpNKLNyPZa19xAWXTuiiY5FHR2DRdeOaLOzyT51VpfGavhANInJZG7cqpfXrHkTcs5fNjh5vklNf0CBJioapZsLli/1Qh0VTfYx4yvDFqseew5g0aMzmqiYvHp071z0nBo5BE1CIpmPAnj659RdlG4uWPTuQc75y7pzynJwf8yaNCD153loMzNR2OX1EtFmZBaZFPqfVB7bKEMUCgUD23dk4c7teLm557VbO7Y/arfye41/uWhBXrv1KKC2cMd2alap8qjdyn3Ubh3n44HPdrOsJGTt3ItFr65ooqJRR0Zj8ULXvM/G8fxz2GrU8Lxzas1GAHLPX8K8awfUd++hDr2D0t0Ni74vkHPuou6cytqxF5vPx2Peqys5J8+gquaNebuWpC8o2mNd/DsoFAoGtmnLwj278HJ1xcvVlUV7dmFhZkqX+vkrAn+5bAmu9g683TMvoLZwzy5qelWmorMLuepcjoZcZWvwKT5+eYAuz8xNG2gVGISHoyMJqanM37WTtMxMejYyvmpkcWQdPIZFx7ZoYuJQx8Rh0bFtXlt79rwujdWgvCkVMrfu0str1rQhOZdC0KYX6h2VlY0mMkp/W3Y22rT0ottLqh7b92DRuweayCjUEdFY9OmONiub7AJDp63GjEQTn0Dmyrz52XLPXsC8e2fUd8JR37qN0sMNi/69yTlzXvf5NqkdCAoFmoeRKD3csHzlZdQRkWQfOFqi5T8WdomXarfVrZjZ0CsAewsbgsPzhvR39GuEnbk16y8dAOBSxC3aVqtH71pt2H/zDFZmFnT2b8LZ+zd0wzJb+tSmffWGrL2wj8SMFGzM8kYjZatzdAE3If4pEjwTJWbcuHGMGDGCCRMm8Nprr2FlZcX333/P+PHjsba2platWnqTuBc0evRozp8/z4ABA/K+zAcOZMyYMWzfvl2XZtiwYWRmZvLjjz/y4Ycf4uLiQr9+/Qzuz8rKip07dzJ27FgaNWqElZUVffv21VvU4O8YMGAAoaGhTJgwgczMTPr27cubb76pN+H989ZdqVSycuVK3n33XYKCgvD392fWrFm0bdtWl8bGxoZp06Zx8+ZNVCoVjRo1Ytu2bXrDLb/66itWrlzJmDFj8PDwYNmyZdSsWVP3fhw6dIgJEybw0ksvkZKSQsWKFenQoYOuJ9rT3t/p06czbtw45s2bR8WKFQkLC6N379789NNPfP/997z77rv4+PiwcOFCvbIX9sEHHxAREcHw4cNRKpW8+uqr9OnTh6Sk/C7qkydPxs3NjalTp3L79m0cHByoX78+n3zyyTMdp7p16zJjxgymTZvGxIkTad26NVOnTtXrIVfYjz/+yKuvvkrz5s1xcXFhwoQJJD9hGExZMG3WCOuP3tU9z5v8GTKWrCSz4MTo/7ChnTqTlZPNtFUrSElPJ9Dbh5/fflfvDndkQrzecN7M7CymrVpBdGIi5qamVHH34Ovhr9K5Qf4Fe0j4XUb/9KPu+Y/r8u689mjSlElDh5d4PbK270FhZobl4AEorK1Q3w4jdfovUKA3kdLJSa8HR+ZfO9BqtVj06YnS0R5tSio5Fy6TuS6/J5PC3hbr14eisLdDm5GJ+v4D0mbMJvfqNcpKgGsVfumTH8x/t2XenGPbQo7zzT7jKwP/U7J27UNhZorlwL4orCxR3wknddZvkFXwWDgWuduudHPFpHrV/PnGClFYWmDRuwdKBwe06enknLtIxsZteXfpS6Me2/egMDXFcnD//HNqxq+Fzin9emRu2YmWvOGbeufU+vxed+bt8nop207Qn2UxfcGfej+y/mnltY0yZGinLmRlZzNt5bL8duud94q2W8pC7dbK5UQnJhRot0bSuaHhxYtKQ9bWXXnt1LCBKKysUN++Q+p3s/TPKWcn/XNq07a8dqrfCygdHfLOqXMXdfObAajv3CVt1lwsX+6NxYs90MTGkrFsDTnHSyewLMqHoe07kpWTw7S1q0nJSCewijc/j36r0OcgodD3dzbT1q4mOunR97ebO18PHkrneg10aaKTEvls6SIS09JwtLEhqIo3C94bh2cp3PgCyNp3KK+t7fcCCktL1Hfvkzp3IWTlT72hdHQo+p3h6oxJVW9S5ywolXI9r6zN2/O++14djMLaGvWt26ROmQEFeqgpXQp9vtdvQasFiwG9UTo5ok1OIefMBTILLH6gsLLEYmDfvP+npuUtdrRyA6hLdt6wy5G3sTQ1p61vfWzNrYhOiefPMztIyswbPmtrboW9Zf68w9nqXBaf3kaPGs15o3kfMrIzuRx5m703828wNapcExOliv/U058Lef+tM+y/dZZ/u+JMhSNKnkL7LLM6CyHKNYVCwYYNG+jdu3dZF+V/XkKn5xuqWB457t5A8p79ZV2MYrPr2I7EV4uulPrfxGHBL7T4dfTTE5ZzR9+aS+Looj1v/5s4zJ1B4siiPZ3/2zjM//nf007tPVjWxSgWuw5tSBz63//5dljy5J7d4p+VvG3X0xOVc3bdO5P4/rPdMC2vHH6cQuJ/RpZ1MYrNYeV8vtgxr6yLUSxfd3396YnKqZmHyteNp8feaz3g6Yn+hf7+LOFCCCGEEEIIIYQQQvzLybBNIYQQQgghhBBCiHJEKcM2yxUJngnxLyCjr4UQQgghhBBCiNIhwzaFEEIIIYQQQgghRKmYPXs2Pj4+WFhY0KBBAw4fPmw07YEDB1AoFEUe167pL7a1bt06atasibm5OTVr1mTDhg2lWgcJngkhhBBCCCGEEEKUI4YCSOXh8bxWrVrFe++9x6effsq5c+do1aoV3bp1Izw8/In5rl+/TkREhO5RvXp13f+OHz/OgAEDGDJkCBcuXGDIkCH079+fkydLb9VxCZ4JIYQQQgghhBBCiBI3Y8YMRo4cyWuvvUaNGjWYOXMmXl5ezJkz54n53Nzc8PDw0D1UKpXufzNnzqRTp05MnDiRgIAAJk6cSIcOHZg5c2ap1UOCZ0IIIYQQQgghhBDiqbKyskhOTtZ7ZGVlGUybnZ3NmTNn6Ny5s972zp07c+zYsSe+Tr169fD09KRDhw7s379f73/Hjx8vss8uXbo8dZ/FIcEzIYQQQgghhBBCiHJEqVCUy8fUqVOxt7fXe0ydOtVgHWJjY1Gr1bi7u+ttd3d3JzIy0mAeT09Pfv/9d9atW8f69evx9/enQ4cOHDp0SJcmMjLyufZZEmS1TSGEEEIIIYQQQgjxVBMnTmTcuHF628zNzZ+Yp/BcaVqt1uj8af7+/vj7++ueN2vWjHv37vHDDz/QunXrv7XPkiDBMyGEEEIIIYQQQgjxVObm5k8Nlj3m4uKCSqUq0iMsOjq6SM+xJ2natCl//vmn7rmHh0ex9/m8ZNimEEIIIYQQQgghRDlS1qtqlsRqm2ZmZjRo0IDdu3frbd+9ezfNmzd/5v2cO3cOT09P3fNmzZoV2eeuXbuea5/PS3qeCSGEEEIIIYQQQogSN27cOIYMGULDhg1p1qwZv//+O+Hh4YwePRrIGwb64MEDlixZAuStpOnt7U1gYCDZ2dn8+eefrFu3jnXr1un2OXbsWFq3bs20adN48cUX2bRpE3v27OHIkSOlVg8JngkhhBBCCCGEEEKIEjdgwADi4uL4+uuviYiIICgoiG3btlGlShUAIiIiCA8P16XPzs7mww8/5MGDB1haWhIYGMjWrVvp3r27Lk3z5s1ZuXIln332GZ9//jnVqlVj1apVNGnSpNTqIcEzIYQQQgghhBBCiHJE+S+aZWvMmDGMGTPG4P8WLVqk93z8+PGMHz/+qfvs168f/fr1K4niPZN/z9EQQgghhBBCCCGEEKKESfBMCCGEEEIIIYQQQggjZNimEEIIIYQQQgghRDnyvCtbitIlPc+EEEIIIYQQQgghhDBCgmdCCCGEEEIIIYQQQhghwzaFEEIIIYQQQgghyhGlDNssVxRarVZb1oUQQgghhBBCCCGEEHnmndhU1kUw6PWmL5Z1EcqE9DwTQogSNP3girIuQrF90GYgd2IflHUxis3HpSJ9F39S1sUolnXDppA4elxZF6PYHObOoMWvo8u6GMVy9K25jFj1TVkXo9gWDviUiw9vlnUxiq12heqsOre7rItRLAPqdeLArTNlXYxia+vbgDP3Qsq6GMXSwKsG+2+eLutiFFu76g15f/NPZV2MYvvxhbH/iu+Mr3cvKOtiFNsXnV6l96KPy7oYxbJx+LdlXQTxLyHBMyGEEEIIIYQQQohyRIEM2yxPZMEAIYQQQgghhBBCCCGMkOCZEEIIIYQQQgghhBBGyLBNIYQQQgghhBBCiHJEIattlivS80wIIYQQQgghhBBCCCMkeCaEEEIIIYQQQgghhBEybFMIIYQQQgghhBCiHFHKsM1yRXqeCSGEEEIIIYQQQghhhATPhBBCCCGEEEIIIYQwQoZtCiGEEEIIIYQQQpQjstpm+SI9z4QQQgghhBBCCCGEMEKCZ0IIIYQQQgghhBBCGCHDNoUQQgghhBBCCCHKESUybLM8kZ5nQgghhBBCCCGEEEIYIcEzIYQQQgghhBBCCCGMkGGbQgghhBBCCCGEEOWIrLZZvkjPMyGEEEIIIYQQQgghjJDgmRD/oLCwMBQKBefPny+V/SsUCjZu3Phcedq2bct77733zOkXLVqEg4PDE9Ncu3aNpk2bYmFhQd26dZ+rPH/X89ajtI+FEEIIIYQQQoh/Bxm2Kf5nDB8+nMTExOcOLpUkLy8vIiIicHFxAeDAgQO0a9eOhISEpwak/pt8+eWXWFtbc/36dWxsbMq6OAYVPhZl5cqBU1zceYz0pBQcK7jRbEBXPKtXMZj24fU7bJm+uMj2/l+9hYOna5Htt05dYt8f66hSx58ubw0ssTL/tX4Ta5evIj4ujio+3ox+9y2C6tY2mv7iuQv8/vNs7t4Jw9nFhZcHDaBHnxf00mxYtZYtGzYTExWNnYM9rdq2ZsTo1zEzNwNg5ZLlHD14mPt3wzEzN6dmrUBeffN1vKpULrF6dfFvwouBrXC0suVeYjQLT20lJDrMaPpWPnXoHdQaTztn0rMzOffwJotPbyM1KwOAr7q8RpBH1SL5zty/xpS9S0qs3IZY9OyCWcumKKysUIfdJX3FOjQRUUbT24wbg4mfb5HtOZeukvbrH3lPzM2xfKEbpnWDUNjaor53n4zVG1HfvVda1XiqOp6+DKrXmQC3yrhYO/DxtjkcvnOhzMpTWDvfBnTzb4qDpQ0PkmJYfm43N2MNv18jG/ekpU+dItsfJMXw2Y7fAVAplPSo0ZwWPrVxtLQlIiWONRf2cTnydqnVYefGrWxatZ7EuHgqeVdmxNuvU6N2kMG0CXHxLJ49n9s3bxF5/yHdXurFiLdH6aXZv2MPs6fNLJJ32c71mJmZlUYVADi16xBH/tpLamISrpU86Ta0L941ip7zAHevhbJr+SZiH0aSk5WDg6sTDTu0oHmP9ro06lw1hzbt4vzBk6QkJOLs6U7nQS9SvW7NUqvDgS272bV+C0nxiVSoXJH+o4ZSPSjAYNqzR09xaNse7t2+S25OLp5VKtJrUF8CG+ifY+mpaWxcsppzx4JJT03Dxd2Vfq+9Qq1G9UqtHrs3bWPLmo0kxiVQ0duLoWNGElAr0GDahLh4ls1dyJ2boUQ+iKBLnx4MHfNakXTb121mz187iI2OxdbeliatmjPgtSGlek4d2Lqb3eu36o7Hy68PMXo8zh0L5uC2Pdy/fZfcnBw8K1ei56C+BDbQ/+5MT01j09LVnDt2Wnc8+o58hVqN6pZKHVp416ZdtfrYWVgTmRLHxsuHuB3/0Gh6lVJFF7/GNKgUgJ25FYmZqey+Ecype1cBUCqUdKzekEZeNbC3sCE6NYEtV49yLeZuqZT/sT5BbRhUrxPOVvbciX/IrCNruBBxy2j6l4La0LdWWzztnIlKiWfxme3suH6yQD2VDK3flW4BzXCxdiA8MYo5x9dzMvxqqdajsBuHznJ17ykyklJx8HShQd8OuPl6GU2vzsnl0vZj3Am+QmZKGlYOtgR1aUa1Zsav0UpaN/+m9A5qnXctlRDF/FNbuPqEa6nWVevSJ6gNFeycScvO5NyDGyw6vY2UrHRdml41W9DVvyku1g6kZKVxLOwyS8/uIEed+w/UqGzJsM3yRYJnQvyDVCoVHh4eZV2MUhcaGkqPHj2oUsVwEKg8KA/HIjT4MsdX7aDloB64+1Ym5NBpts/6k/6T3sLG2cFovv6T38bMwlz33MLWukialLhETq7dhUf1kgsuARzcs5/ffvqVtz4YS2DtILZt/IvPPvyY3/9ciJuHe5H0kQ8j+PzDiXTr1Z3xX3zClYuX+XX6T9g7ONCyXWsA9u3cw4K58xg3cTw1agXyIPwe07/5DoA3xr4FwKXzF+j10ov41fBHo9aw6Pf5fPr+eH5fthALS8ti16u5dy1GNOrBvJObuRZ9l85+jfm04zDe2zST2LSkIukD3KrwTsuXWRS8ldP3r+FkZccbTXszpvlLfLd/GQDf71+GiVKly2NrYcX0Xu9wPOxyscv7JOad22PeoQ3pi1egjo7BolsnbMaOJvnLbyEry2CetLmLwCS/rAprK2w/+5Ccs/mBKKsh/VFV8CRt4XK0ScmYNWmAzXujSf7qO7SJRd+jf4KlqTm34u6z7doxpnQbXSZlMKaxVw0G1e3E0rM7uBlzj7a+9RnX+j98uuM34tOTi6Rffm43ay7u1z1XKZR83eU1gu+F6La9VKsNzarUYtHprUQkxxHkUZV3WvTjm72LCU80Hhz9u47uO8TCX+fx+ntv4h9Uk91/beebCZP4cdFsXN3diqTPycnBzsGOvq/0Z8vaTUb3a2ltxU9LftPbVppBjkvHzrB98Tp6jhxAZf+qBO85wp/fzubt6Z/h4OJUJL2ZuRlNurTGo3JFTM3NCL8eyuY/VmJmbkbDji0B2LvqLy4cCebFUYNwqeDOrQshrJg+j9e/Hoenj/Eft39X8KHjrJ63hEFjXqVaDT8O7djLz19OY9Kc73FyK3oT6OaVa9SoV4vewwZgaW3FsT0H+fXrH/h4xmQqV/MGIDcnl5mfTcXW3o43PhmLo4sTCTFxmJdAm2rM8f1HWDJnAa+++wZ+gQHs3bqTaRMn8/38n3FxL3oTKDcnB1sHe14c9DLb1202uM8jew+y8o+ljPrwbfwCA4i4/5C5388CYMiYkaVSj9OHjrNm3lIGvjmCajX9OLx9H79M+o4vZ39n+HhcvkaNukH0HtofS2trju85yOzJPzBh+td6x+Onz7/F1t6OURPffXQ84rGwtCiVOtStUJ3eQa1Ze3E/d+If0rxKLUY1fZFv9/9JYkaKwTzDGnTD1tyKVef3EJOWiK25FUpF/kCm7gHNaFApgNUX9hKdGo+/WxVGNO7JrMOreZAcUyr16ODbgLEtX2b6wRVcjAyld2Arfuj1NoOXf0VUakKR9L0DWzO6WW+m7f+TkOi71HDz5uN2g0nJSudo2CUARjV5kS5+TZh24E/uJkTS2KsmU7uN5o113xu9AVLSws6EcGbdXhoN6Ixr1YrcPHKe/bPX0POz17B2sjOY58iCTWSkpNH0lW7YujqSmZKGVqP5R8oLecHYVxv35LcTm7gWHUYX/yZ83mkE72ycYfBaqoZbFca27M+C4C0E3wvB2cqO0c368Fbzvny7fymQF1wb0qArvxxZy7WYcCrYufBuy5cBWBC85R+rmxAgwzaF0Dl48CCNGzfG3NwcT09PPv74Y3Jz8+9otG3blnfffZfx48fj5OSEh4cHkyZN0tvHtWvXaNmyJRYWFtSsWZM9e/boDaUsOFQwLCyMdu3aAeDo6IhCoWD48OEAeHt7M3PmTL19161bV+/1bt68SevWrXWvtXv37qfWMS0tjaFDh2JjY4OnpyfTp08vkiY7O5vx48dTsWJFrK2tadKkCQcOHHjqvh9TKBScOXOGr7/+GoVCwaRJkzhw4AAKhYLExERduvPnz6NQKAgLCwPg7t279OrVC0dHR6ytrQkMDGTbtm269FevXqV79+7Y2Njg7u7OkCFDiI2NNVqOP//8k4YNG2Jra4uHhweDBg0iOjpa939Dwzaf9zWK6+Lu4/i3rE9AqwY4errSfEA3bBztuXrw9BPzWdpaY2Vvq3solfpNuUajYd8f62jwQjvsXBxLtMzrV62hS89udHuhB5W9qzD6vbdxdXNjywbDP2q2bvwLN3c3Rr/3NpW9q9DthR507tGNtStW69KEXL5CYK0g2nXugIenBw2aNKJtp/bcuHZDl+abGdPo3KMr3lV9qFq9GuM+GU90VDQ3r98w9LLPrVfNluy7dYa9N0/zICmGhcFbiUtLoot/E4Pp/Vy9iElLYNu140SnJnAt+i67bpyimnNFXZrU7AwSM1N1j9qevmTl5nDs7qUSKbMx5h1ak7l9DznnL6F5GEn64uUozMwwa1zfaB5tejra5BTdw7SGP2TnkH3mUfDM1BTTerXJWP8X6lu30cTEkrllJ5rYeMxbNy/V+jzJifArzDu5mYO3z5dZGYzp7N+EQ3fOc+j2eSJS4lhxbjfxGcm0r2b4OGTkZJGcmaZ7eDt5YmVmyZECPemaeddiS8hRLkaEEpOWyP7Qs1yOvE1XI+dpcW1Zs5H23TvRoUcXKlXxYsTbo3Bxc2HX5m0G07t5uPPqO2/QpksHrKytjO5XgQJHJ0e9R2k6tnUf9ds1o0H75rhW9KD7sH7YOTsSvPuwwfSePl7UbtEQNy9PHN2cqdOqMb61a3D3WqguzYUjp2jduzN+9QJxcnehcedW+NapwdGt+0qlDns2bKNF57a07NIOz8oVGTBqKI4uzhzctsdg+gGjhtKlXy+8/arhXtGTPsP+g1sFDy6ePKtLc3T3AdJSUhnz+Th8a/rj7OaKb2AAXlVL78bXtnWbaNu1I+26d6JiFS+GjnkNZzcX9vy1w2B6Vw93hr31Gq07tzN6Tt28eh2/oABadGiDq4c7tRvWo3m7Vty+YbznUXHt2bidFp0eHQ+vivQfNeSJx6P/qCEFjocHvYcNwK2CB5dO5R+PY4+Ox5ufvV/gePhTqZSOR9tq9TkZfoWT4VeITk1g45VDJGak0sK7lsH0Aa5V8HWpxLyTm7gRe4+EjBTCE6MIS4jQpWnoFcCem8GERIcRl57MsbBLXI++S1tf498/xTWgbke2hBzlr5Cj3E2I5Kcja4hOSaBPUBuD6bv6N2HTlcPsvXWGh8mx7L11mi0hR3mlXhe9NEvObOf43cs8TI5l45VDnAy/ysC6HUutHoVd2xdMtWa18W1eB3sPFxr264iVoy03Dp8zmP7h1dtE3bpHuzdfxjPAGxtne1y8K+BatdI/VuYXA1uy5+Zp9twM5n5SDPNPbSE2LYmu/k0NpvdzrUxMagJbQ44RnZpASPRddl0/ha9L/rWUv2tlrkXd5dCdC0SnJnD+4U0O376gl0aIf4oEz4QAHjx4QPfu3WnUqBEXLlxgzpw5zJ8/n//7v//TS7d48WKsra05efIk3333HV9//bUuaKXRaOjduzdWVlacPHmS33//nU8//dToa3p5ebFu3ToArl+/TkREBD/99NMzlVej0fDSSy+hUqk4ceIEc+fOZcKECU/N99FHH7F//342bNjArl27OHDgAGfOnNFLM2LECI4ePcrKlSu5ePEiL7/8Ml27duXmzZvPVLaIiAgCAwP54IMPiIiI4MMPP3ymfG+99RZZWVkcOnSIS5cuMW3aNN2Qz4iICNq0aUPdunU5ffo0O3bsICoqiv79+xvdX3Z2NpMnT+bChQts3LiRO3fu6IKTxsr9vK9RHOrcXGLDH1KpZjW97ZVqViMq9Ml3NddP/o2lH/7AlhmLeXjtTpH/n91yEEtbawJaluzFak5ODjev36B+44Z62+s3bkjI5SsG84RcvlIkfYMmDbl57bouOB1YpxY3r9/g+tW8HjYRDx4SfPwkjZsbDwikp6UBYGtn+O7r8zBRqqjmXIHzD/XP8QsPb+HvavhHy/XocJyt7Klf0Q8AewsbmlUJ4sz960Zfp0P1hhwNu0hWbk6xy2yM0sUJpb0duSEFypGrJvdmKCZVvZ95P2YtmpB9+hxkZz/asRKFSgU5+kMktDk5mPj6lEDJ/11USiXejp5cidT/fF6JvE01l2f7IdPapy5Xo+4QV6CXmqlSVWSYSrY6l+quJd/TKScnh9s3blGnof7wvdoN63H98rVi7TszI4M3/zOCN14extSJX3HnZujTM/1Nubm5RNy5R7XaNfS2+9auQfiNou2nIRF37nHvxm28a1bP329OLiampnrpTM1MCb9W8nXJzckl/NYdatbTH3pVs34tQkOe7QaCRqMhMyMT6wI9lS+ePEPVgOosn72QD18ZzVdjxrNt1UY06tLpqZKbk8OdG6HUblhXb3utBnW5cfXvn1P+QTW4cyOUW49uuEQ9jOT8qbPUa9LwKTn/nsfHo0Y9/SBTjXq1uH3t2a6VHh8PqwJTW1w4eZaqAdVZMWcRHw1+k6/HTGD76k2lcjxUCiWV7N24Hh2ut/16zF28HT0N5gn0qMq9xCja+zbky04jmdh+KC/UbIlpgR7WJkoVuRq1Xr4cdS5VnSqUeB0ev56/a2VOhYfobT91L8TgtAkApioTsgt9D2fl5lDT3RvVo5uRpioTstVF09T2NDzUu6Spc9XE34vEs4b+96tnDR9i7zwwmOf+pVs4V/bg6p6TrP/0VzZ/9Ttn1+8jN7v0rjkKyruWqljkWur8w5sEuBm+lroWfRdna3saVPQHHl1LeQdx+n5+exASHUY1l4pUf/Td6W7jRP1K/npp/s2UCkW5fPyvkmGbQgCzZ8/Gy8uLX375BYVCQUBAAA8fPmTChAl88cUXup49tWvX5ssvvwSgevXq/PLLL+zdu5dOnTqxa9cuQkNDOXDggG444DfffEOnTp0MvqZKpcLJKW+4iJub23PNebZnzx5CQkIICwujUqW8L5MpU6bQrVs3o3lSU1OZP38+S5Ys0ZVp8eLFuvyQN9xyxYoV3L9/nwoV8i50PvzwQ3bs2MHChQuZMmXKU8vm4eGBiYkJNjY2zzUsMjw8nL59+1KrVt7FaNWq+Rc9c+bMoX79+nqvv2DBAry8vLhx4wZ+fn5F9vfqq6/q/q5atSqzZs2icePGpKamGpyH7e+8RnFkpqaj1WixtNMfcmlpZ016cqrBPFb2trQa0gvXyp6oc9XcPHGBLT8uptcHw/H08wYg8lY414+cpe/nJT+ELTkxCY1aU6SXiKOjI/Fx8QbzJMQn4OhYKL2TI2q1mqTEJJxdnGnbsT1JCYl88OZYtFotarWann1eYMCQQQb3qdVq+W3WbAJr18K7avEDN7bmVqiUKpIy9N/3xMwUHCyrG8xzPSacmYdXM67NQExVJpgoVZwKv8r8k38ZTO/rUokqjh7MPra+2OV9EsWjYKImWX/IjSY5BeUz9u5ReVdGVdGT9KWr8jdmZZEbegeLHp1Ii4zK653WqD4q78pookuvd+Z/K1szK1RKJcmZ+udUUmYaQRZPnwfS3sKGWp7V+O3ERr3tlyNv08W/CTdiwolOTaCGuw/1KvqVyoVsSlIyGo0Gh0KfXwdHRxITzhrJ9XQVK1firY/fp7JPFTLS09m6bjOfvTOeH/6YhWelku9JkJ6cikajwcbeVm+7tb0tqYlFh88W9MOYz0hLTkWjVtOuX3catM/vZelbuwbHtu3Du4Yvju4u3L58nWunL6LRaEu8DqnJKWg0Guwc7PW22zrYk5zwbEOmd2/YSnZmFg1a5fcAiYmMJi7qKk3atuCdSeOJfhjJijmL0Kg19Bz0UonWASAlKa8e9o4OetvtHe1Jii86vO5ZNW/XipTEJL567xN49B3SsVdXXhjYt5glNkx3PBz1j4edoz3JZ5/teOzZsO3R8ci/SRQbFc31i1dp3LY5b08aT/SDSFbOXYRGrabHwJI9HtZmlqiUSr15pQBSsjKwsyg6FQSAs7UdPk4VyFGrWRi8BWszS/rVboeVmQUrz+f1uLsWHU7bqvUIjXtAXFoi1V0rE+RRtdR+bDtY2GCiVBGfof9ZTshIxtnK8M21U/eu0rNmSw7ducD1mHACXCvTo0ZzTFUmUDSnMgABAABJREFUOFjYEJeezMnwq/ynbkfOP7zFg6QYGlYKoJVPHZTKfyZokPXoGtHCVr+3pYWtNRnJaQbzpMYmEh16H6WJCa1f70NWWgbBq3aRlZ5Js8HdS73Mj6+lCg/5TcpIwdHS8DX09ZhwZhxayYdtB+mupU6GX2XeifzRDEfuXMTe3IYp3UajUCgwUarYfu046y8dLNX6CGGIBM+EAEJCQmjWrJnepIwtWrQgNTWV+/fvU7ly3rxRtWvr3/X19PTUDQW8fv06Xl5eegGjxo0bl1p5K1eurBf4atas2RPzhIaGkp2drZfOyckJf39/3fOzZ8+i1WqLBIqysrJwdnYuodIb9u677/Lmm2+ya9cuOnbsSN++fXXv95kzZ9i/f7/BoFdoaKjBwNa5c+eYNGkS58+fJz4+Hs2jOR/Cw8OpWbPohM7P+xpZWVlkFZo/ytzcnOelQP9CTPuE310OHi44eOTPpeJezYvUhGQu7DqGp5832ZlZ7J+/nlZDXjA4D1qJKXQRrEX75AlNC6fXPt6ct/3C2fOsXLKMtz4YS0BgDR7ef8Dcn37FceFSXhkxpMjufp0xizuht5k+Z1bx6lGIFv03v/CxKaiSvRsjG/dkzYV9nH94E0dLW4Y26MobzXobDJB18G3I3YRIbsXeL9Eymzauj9Wgl3XPUx9P7l/4RHqOHy5mzZugfhCBOky/R0L6wuVYDf0P9tMmoVWrUd97QE7wOVSVZeiEMYU/znnn1NODKy19apOek8nZB/o9GZef283wht2Z0m00WiA6NYEjdy4YXGigxBQ6dbRon/jZeBq/mgH41cyfVN0/qCbjR41l+/otvPruG397v09VpMhPabeAkZPeIzszi3s3w9i9YhNOHq7UbpHXm6n78H5s+n0Fs8ZNRqFQ4OjuQr22TTl34ETplB+K1kFrYJsBpw4cY8uy9Yz5fJxeAE6r0WLrYMfgd15DqVJSpXpVEuMT2LVua6kEz3QM1uPvn1NXz19i4/K1vPruG1QLqE7Uw0iW/PoH651X8dLgAcUq6pMU/f7WPtPxCD54jC3L1/OmsePx9qPj4etDUnwCu9ZvLfHgme41DbRHWiMXIkoUaIE/z+4gMzevV/LGK4cY3rAH6y7uJ0ejZsPlgwyo04GJ7Yeg1UJcehKn7l2lsVfpLaRhuMwKoy3twuBtOFnZ8XvfCaCAhPQUtl07zuD6XVA/2s9Ph1czod1glg+ahBYtD5Ni2HrtGD0C/ulpCgo3wFqjHxWtNq9NazG8F2aWedej6pfac3j+Rhr174SJmanhjKVNoTB4nkHetdTrTV5g1fm9nHt4A0dLW4Y37M6bzfrwy7G80TlBHlXpV6cdv53YxM2YcDzsXHitcS8Saqew+mLpDJMXwhgJnglB/hdO4W2gv8qJaaEhGgqFQheUMbSPv0upVBa5EMjJye92bejC5mmvbexiqCCNRoNKpeLMmTOoVCq9/xVn1czHPfcKlqFgfQBee+01unTpwtatW9m1axdTp05l+vTpvPPOO2g0Gnr16sW0adOK7NvTs+jwgrS0NDp37kznzp35888/cXV1JTw8nC5dupD9eBhaIc/7GlOnTuWrr77S2/bll19i286/SFpDLGysUCgVRXqZZaakYWX37O+1m08lbp28CEByTDwpcYns/HW57v+P3/N5o79iwNfvYOdWdHLsZ2XnYI9SpSShUC+zxIREo3MWOTo5khBfOH0CKpUKO/u8u8JL5i2kfZdOdHuhBwA+1aqSmZnJrGkzGDjsFb053WbPmMWJI8f44deZuLoVnVz670jJSketUeNgqd8zxd7ChsQMw70AX6rVhmvRd9l0JW/OpLsJkWTmZvNNtzdYfm633p1XM5UpLXxqs+q84blwiiPnwhVS7hQIcj2a9F9pb4e6QO8zpa0N2mTDE0DrMTXFrFFdMgzMP6SJjSN1xq9gZobCwhxtcgpWrw1BE2u41+H/spTsdNQaDfaFepnZWViRlGm410BBrXzqcCzsEupCEz2nZKXz89G1mChV2JhbkZiRwsu12xGblliSxQfA1t4OpVJJYqEeQUkJiUV6DhWHUqnEN6A6EQ+Mr/BXHFZ2NiiVSlIT9c//tKRUrAv1RivM8dHE7+6VK5KalML+tdt0wTNrO1sGfTiKnOwcMlLTsHW0Z/fyTTi4lfyNJhu7vLktC/cyS0lKKtIbrbDgQ8dZMut33vh4bJFhhvZODqhUKpSq/DbW06siyQmJj4alluzPBNtHc3QmxSfqbU9KTCrWObVm0XJadmxLu+55veorV/UmKzOTP36cTe9BLxeZF7S4Hh+PpIREve0piclPPR6nDx1nyax5jPr4XWrU1V+11tDx8PCqUCrHIy07A7VGg525/o02W3PLIr3RHkvOSiMpM1UXOAOISolHqVBgb2lLbFoiadkZLAjegolShbWZBUmZafSs0cLgIiklITEzlVyNGmcr/ffd0dLW6Gtmq3OYum8p3x1YhpOlHXHpSbxQsxVp2Rm6HuiJmalM3D4XM5UJdhY2xKYl8mazPkSk/DM9rc0fXSNmpuh/X2Smphu9OWppZ4OlvY0ucAZg7+EMWkhPTCnW9d+z+DvXUv1qtyUkOoyNVw4BeddSv53YyNTub7Ls3C4SMlIYVK8TB0LPsudmcF6axCgsTEwZ0/wl1lzcbzQw929RnJtVouTJnGdCADVr1uTYsWN6wZ1jx45ha2tLxYrP1qsiICCA8PBwoqLyVzwLDg5+Yp7Hq4up1frzQ7i6uhIRkT8Ba3JyMnfu5M/NUrNmTcLDw3n4MP/HxvHjx5/4Wr6+vpiamnLiRP5d8YSEBG7cyJ8vpV69eqjVaqKjo/H19dV7FGdlSlfXvCBHwToVnKj/MS8vL0aPHs369ev54IMPmDdvHgD169fnypUreHt7FymXtXXRi4hr164RGxvLt99+S6tWrQgICNBbLMCQ532NiRMnkpSUpPeYOHHiM78nKhMTXCpX4MFV/flx7oeE4l7t2ecvirsXgZV93g90Bw8X+n35Jn0/H617VKntTwV/H/p+Ptro6kzPytTUlOr+fpwL1p8n71zwGWoEBRrMUyMosEj6s6dOUz3AHxOTvB8CWVmZRX7cPA4gP/5MarVafp3+E0cPHmbarOl4VDA8J8vfkatRExr3kDqF5jKpXcGX6zF3DeYxNzEtEpDWaPMCHYUvc1p418JUpeLgbcOT/BZLVhaamNj8R0QUmqRkTGoU6CmpUmFSvRq5t8OeujuzhnXBxISck2eMJ8rORpucgsLKEtOaAeRcKN3VQ/8bqTUawhIiCPTQH1Zc092H0Kf0PvR3rYy7rROHCywUUFiuRk1iRgoqhZIGlQI496BkFs4oyNTUlKp+vlw8fV5v+8Uz5/EPCjCc6W/QarWE3bpTaosGmJiY4OnjRegl/flxQi9do7Lfcwz71mpRF5rzD/LmObNzckCj1nD11HkCGtQ2kLl4TExNqOzrQ8g5/cVGQs5dploN41MKnDpwjMU/zuW1j96iVuN6Rf5fraYfMRFRupuAAFEPIrB3cijxwBmAiakpPn7VuHTmvN72y2fO6/VGfF5ZWVlFhtPlfYfw5O7cf5PueJzXb/tCzl+iaoDhof6Q1+Ns8czfGPnhW9RqZOB41PAjusjxiCyV46HWarifFI2fq/6K3H6ulfUWACjoTnwE9ubWmKnybyS72Tii0WpIKjRUL1ejJikzDaVCSe0KvlyKvF2i5S/4OtdjwmnkpT+nYSOvGlx+ymuqNRpi0hLRaLV0rN6Qo2GXigRistW5xKYlolIqaVut3hPb5ZKkMlHh5OVBxLUwve0R18Jw8TH8u8S1akUyklLJycoPbiZHJ6BQKLByePKNgpKQdy31gLoV9K+l6lbw5Vq0kWsplZmBayltoTSGrrfyut3+D0+9JcqIBM/E/5SkpCTOnz+v9wgPD2fMmDHcu3ePd955h2vXrrFp0ya+/PJLxo0b98x3LDt16kS1atUYNmwYFy9e5OjRo7oFA4z1CqtSpQoKhYItW7YQExNDamrenZn27duzdOlSDh8+zOXLlxk2bJheT7COHTvi7+/P0KFDuXDhAocPH37i4gSQ13Ns5MiRfPTRR+zdu5fLly8zfPhwvfr5+fnxyiuvMHToUNavX8+dO3cIDg5m2rT/Z+++w6OovgaOfze99046CQkJvffeuyJSRRBFlCogCCqCqFgAQTpI70V6772F3kIJEBIghfTe9/0jsmFJlmISE9/f+fjs87iz986em11mZs/c8ovaypdvy8vLCxcXFyZOnMjdu3fZtWtXvpU+R4wYwb59+3j48CGXLl3i8OHDlC+fezE0ePBgYmJi6NmzJ+fPn+fBgwfs37+fjz76KF/iEcDV1RU9PT1mzZrFgwcP2L59O5MnT35ljG/7Hvr6+piZmak93nbYZqWWdbl98hK3T14iNuwZp9fvJSkmnvKNc3s2nN98kCNL8oYAXj94huDLgcRHRBPzNJLzmw/y8FIg/k1zhwfr6OpiVcZe7aFvZICuvh5WZezR1in8xfe73buxd8du9u3cQ0jwIxbMnENkRATt3+kIwJJ5i/ht8hRV+fZdOhIRHsGCP+YSEvyIfTv3sG/nHt7rmbcQQ+36ddm1ZTtHDx4m/GkYl85fYMWipdRpUE/1vZ8zbSaH9x9k7MRvMDQyIiY6hpjomHxDZ/+pHbdO0ty7Bs28qlPG3JZ+NdthY2zO/jvnAehdrRVDG7ynKn8h9Da13fxp7VMbexNLfGxdGVCrI3ef5a5A9qJm3jU4HxJIUnpqkcT6OumHjmPQpgW6VSqi5eSA0Yc9UWZkkPHCqm5G/Xpi0KV9vrp69WqTeeUGyuT8PQ90/HzQ8fNFy9oKnfLlMPnic7IjIsk4fb5Y2/Mqhrr6eNs4qyYSdjKzwdvGGXuT4l298U3sv3OORh5VaOhRGUdTa3pUaYG1kTlH7ud+Du9VbMLHtTvmq9fIswr3o5/wJP5Zvtc8rZyoXsYHW2MLvG1cGNm4BwqFgt23X33z5J/q0K0Lh3bv5/Du/Tx+FMqyOYuIinhGq4658+esXrSMWT+pH8sfBj3gYdAD0lLTSIiL52HQA0JfGAK8cfkarpy/SMTTcB4GPWDerzMJDnpAy06a5+wsrHrtm3Hp8GkuHTnDsyfh7Fn+F/FRMdRs0RCAA2u38decFary5/Yd4/bF60SHRRIdFsmlo2c4tfMQlRrWVJUJvRfMrfNXiImIIjgwiBVT5qBUKmnQqXhW42vxTjtO7j/Cqf1HCQt5woaFK4l5FkWjds0B2LJsHUunzVWVP3/0NEunz+O9AX3w8PEmPiaO+Jg4Ul/4t924XUuSEpNYv2AFEU/CuH7+Mns2bKNJ+1bF0gaAdl07c2TPQY7uOciTR6GsnLuYqMgomnfMXelw3Z8rmfvzDLU6wUEPCA56QFpaGglxCQQHPeDxo7yFdarVqcnBHXs5feQEkWERXL94hY3L1lC9bk20XupFX1RadGnLqeefR+gTNixaSeyz6Jc+j3mq8gHHTrN0+ny6DuiNh68X8bFxxMeqfx6N2rUgOTGJDQtX5n4eAZfZu3EbjdsXPHduYR29f4k6bv7UcvHDzsSSLv6NsDQ05XRwbpK2ffl69Kqa9124+PgOyZlp9KzaEnsTKzytnOjo14BzIbfI/HuRAFcLeyo6lsXayAxPKyc+rdMFLRQcDnr1KuKFsf7KQTr61ad9+Xq4WTowrH437E0t2fJ3b6ZBdbrwTfN+qvIu5na0KlcLZ3M7ytu5M6nVADytnVhwdpuqjJ+9O409q+BkZkNlRy+mdxyGAgWrL+0vtna8zLdZTe6fvsr9M9eID4/i4l+HSIlJwLthFQAubzvG6RU7VeXda/qhb2zI2VW7iQ+LIiIolMtbjuBZt+K/NmRz282TtPCuSXOvGjib2/JRzQ7YGFuw7845APpUa83wBnnXfwGPA6njVoE2PrWxN7HC186Nj2t35O6zENW1VMDj27TxqUMDj0rYmVhS2dGLXlVbEhB6K1+iTYjiJsM2xf+Uo0ePUrWq+t2+Dz/8kGXLlrF7926+/PJLKleujJWVFQMGDOCbb755431ra2uzdetWPv74Y2rWrImnpye//fYbHTt2xMDAoMA6ZcqUYdKkSXz11Vf079+fvn37smzZMsaNG8eDBw/o0KED5ubmTJ48Wa3nmZaWFlu2bGHAgAHUqlULd3d3/vjjD9q0afPKGH/77TeSkpLo1KkTpqamjBo1ivh49WEgS5cu5YcffmDUqFE8efIEa2tr6tatS7t2/3yyUV1dXdauXctnn31G5cqVqVmzJj/88APduuXN1ZSdnc3gwYN5/PgxZmZmtGnTht9//x0AJycnTp06xdixY2ndujXp6em4ubnRpk2bApObtra2LFu2jPHjx/PHH39QrVo1pk6dSqdOnTTG+LbvURTK1qxAWnIKl3YdIyU+CSsnO9oO7Y2ptQUAKfGJJMXkfT7ZWdmc3bSf5LhEdHR1sHSyo83QXrhWLNrFDF6lcYumJCQksHrpCmKjY3DzdGfy1CnY/90zMSY6hsiIvF5+Dk6OTJ46hQV/zGHn5m1Y2Vjz2YghNGjaSFWm14cfoFAoWL5wCdHPojC3tKB2/br0GzhAVWbnltzJY8cM+UItnpHjx9Cq/au/92/idPB1TPWN6Fa5GZaGpoTERfDToeU8+3s4nKWhKTbGFqryR+5fwkBXn7a+dfiwRluSM9K4HnafVZf2qe3X0cwaP3t3Ju1fUugY31T6/sMo9HQx7NkVhZEh2Q9DSPpjAbyQaNSysszXI0PLzhYdb0+SZs4vcL8KQwMMurRHy8ICZUoKmZevkbp1N+QU/Upwb8rX1o3Z74xUPR/WIPeYsjvwDD8eXl5SYQG5q70Z6xvRyb8B5gYmPIl/xu8n1qlWzzQ3NMk31MhQV5/qzr6suVzwDzRdbR3eqdgYOxNL0rIyuBYWxKKz20nNLJok8svqN2tEUkIim1asIzYmBhd3N8b/PBFbBzsAYqNjiYpUT/KN+WSY6v8f3A3i5KFj2NrbMXdd7r+B5KRkFkyfTVxMLEbGxnh4eTJp5s94l3+zIe//RMV61UlNSuboX3tIjEvAzsWRPl99joVt7jCmxNgE4l8YfqxUKjm4djuxz6LR0tLCyt6Glj07U6NFfVWZrMxMDq3fSWxkFHoG+nhX8afr4L4YGhvle/+iULNRXZITkti1djPxMXE4uTkzZNIYrP8evh4fE0fMs2hV+RN7D5GTnc3aeUtZO2+panvd5o3oNzJ3QRkrW2uGT/6KjYtW8f3gr7CwtqRZpza0eU/zubKw6jZtQFJCAptXrScuJhZnd1fG/PQttva536m4mBiiX/pOjR+U92/84d37nD58HBt7W/5Ynds7/Z0+76NQKNi4dDUxUTGYmZtRrW5N3v+od7G1o0ajuiQlJrFr3RYSnn8eE7/M+zxi1T+P43sOk5Odzbp5y1g3b5lqe53mDen3xQufx/dfsfHPlUweMk71ebTumj/JXhSuPL2HsZ4hrX1qY6ZvRFhiNAvPblMlLcz0jbF8YQheRnYm889s4d2KTRjZqAfJmWlceXqPPYGnVWV0tXVo51sXayNz0rMyCYwMZvWlfWpDPYvaoaCLmBmY0L9Ge6yNzXgQ/ZTRO2YTkZj7b9rayBx707whi1paWvSs0gJXCweycrK59OQOg/76jfDEvM9LT1uXT2p3xsnMhtTMdM48usHkA0tJyvh3boIBuFcvT0ZyKtf3nCI1IRkLRxuafN4NE6vc80ZaQhLJMS+sxqyvR7Mh3bmw8QB7fl2OvrEhrtV8qdyh4b8W86nga5jpG9G9SvPca6nYcCYfXKa6lrIyMsPWxEJV/nDQRQx19GnnW4/+NduTnJHGtbD7rLi4R1Vmw9XDKJVKeldthZWROQlpyQSEBrL68j7+F/wvr2xZGimUbzIRkhDiHzl16hQNGjQgKCiIsmXLlnQ44gV37tzB19eXe/fu4eVVdEuPTzu2tsj2VVJGNe7Jw6iCl0L/L/GwKUPX5eNLOoxC+evDn4h74Yfjf5XF/OnUn1P0K8D+m04Nnk//9T+WdBiFtrT711x7eq+kwyi0Sk7erL98oKTDKJTuVVtyNOgVQ6T/I5p4VediaGBJh1Eo1V3Kc+Re8fWO+rc09a7BF9tnlnQYhfZ7p+H/L84Z3x/4926cFZcJLT+iy7KvSjqMQtna7+eSDuEfK63nue5Vi6dHbGknPc+EKEJbtmzBxMQEb29vgoKCGD58OPXr15fEWSkTExPDpk2bMDMzw8XlzecXE0IIIYQQQgjxv0eSZ0IUocTERMaMGUNoaCg2Nja0aNEi39xeouQNGDCAixcvMm/evLeep0wIIYQQQgghipumebNFyZDkmRBFqG/fvvTt27ekwxCvsWXLlpIOQQghhBBCCCHEf4SstimEEEIIIYQQQgghhAbS80wIIYQQQgghhBCiFJFhm6WL9DwTQgghhBBCCCGEEEIDSZ4JIYQQQgghhBBCCKGBDNsUQgghhBBCCCGEKEW0kGGbpYn0PBNCCCGEEEIIIYQQQgNJngkhhBBCCCGEEEIIoYEM2xRCCCGEEEIIIYQoRRQK6etUmsinIYQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKaClktc3SRHqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiChm2WapIzzMhhBBCCCGEEEIIITSQ5JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIUkSBDNssTRRKpVJZ0kEIIYQQQgghhBBCiFzbb5wo6RAK1KlCw5IOoURIzzMhhChCY3fNLekQCu2X9p9zM+x+SYdRaP6OZWk09/OSDqNQjn8+l7gBQ0s6jEKzWDyL/ut/LOkwCmVp96+pP2dQSYdRaKcGzyciIaqkwyg0ezMblgXsKukwCqVfzfaM3jGrpMMotKkdhzLt2NqSDqNQRjXuydSjq0s6jEIb3aQ3H66bXNJhFNryHt/y3oqvSzqMQtnU90e6LPuqpMMotK39fqb5gmElHUahHPr0j5IOQfw/IckzIYQQQgghhBBCiFJES1bbLFVkwQAhhBBCCCGEEEIIITSQ5JkQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIUkQhwzZLFel5JoQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKyLDN0kV6ngkhhBBCCCGEEEIIoYEkz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEKUIlrIsM3SRHqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQistpm6SI9z4QQQgghhBBCCCGE0ECSZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCFKES0ZtlmqSM8zIYQQQgghhBBCCCE0kOSZ+EciIiL4/vvviY2NLelQhBBCCCGEEEIIIYqNJM/EW1MqlXzwwQfo6+tjaWn5VnXd3d2ZMWNG8QRWSAqFgq1bt75VnSZNmjBixIhiiee/6oMPPuCnn34q6TAKZfTo0QwbNqykwxBCCCGEEEL8j1IoFKXy8b9K5jz7F/Tr14/ly5cDoKOjg4uLC++++y6TJk3C2Ni4hKN7e1OmTMHT05OxY8e+dd2AgID/ZJvFm7l27Rq7du1i7ty5qm1NmjTh2LFjTJkyha+++kqtfLt27dizZw/fffcd/fr1w8PD45X7/+6775g4cSIAy5cvZ86cOdy8eRMtLS2qVq3KmDFj6NChAwBJSUlYWlqyatUqunfvrtpH9+7d2bBhA0FBQZQtW1a1vWzZsnTv3p2ffvqJMWPGULZsWb744ovXxlRYddz8aexZFVN9IyKSYthx8xTBsWEay2tradHCuyZVncphqm9EfFoSh4MucuHxbVUZAx09WvvUpoKDJ4a6+sSmJrLz1inuPAspljbs2bqTbev+IjY6BhcPNz4aMhC/ShUKLBsTHcPyuYu4fzeIsMdPafduJwYM/VTjvk8eOsb0yb9Qq34dvvpxQrHE/1wX/0b0rNoCKyNzgmPCmHVqI9fC7mss/06FRrxbsQkOplZEJMay8tJe9t05p1amW6WmdPZvhL2pJfFpyRy9f4mFZ7eRkZ1VrG0x6NQWvcb1URgZkv3gESmrN5DzNPyVdfRbNEGvaQO0rCxRJiWTceEKaX9th6zcWPXbtUS3WmW0He1RZmSSff8hqRu3kRMRWeTxN/WqTlufOlgYmvAk/hlrLh/gXlRogWUH1OpAA4/K+bY/iX/GN3sXAqCt0KJ9+XrU96iEpaEpYYnRbLx6mBvhD4o89rdV2dGLXlVb4Wvnio2xBV/tnseJh1dLLJ4tGzezdtUaYqKicff0YOjIYVSuWkVj+SsXLzN7xiyCHzzE2saGXn170bnrO6rXd2zZzr7de3hw/yEAPr4+fDL4U/z8/VRllixczLJFS9T2a2VlxdZ9O4qsXRcPnOLc7iMkxSVgW8aBFn264OLr+dp6j+8+ZNUPc7B1dmDAT6NV2+8EXOP09oPERkSRk52Dpb0Ntdo1oWKDGkUW88vquVWkiVdVTPWNiUiMYdvNEzyMeaqxvLaWFi3L1aJ6GR9M9Y2JS0vi0L0AAkIDVWUaelSmrntFLA1NSc5I5VpYELsDz5CVk11s7bh59DzX9p0mJT4RSyc76nZvg6O3W4Fln955yM5py/Ntf3/SYCwcbfNtDzp/ncN//oVbZR9aD+5Z5LG/6NbRAK7uP0Pq3+2o836rV7QjmF3TV+Tb3m3S51g42ABw9/QVji3fnq9M/9nj0dEtnp9szbyq0863LuaGpjyNf8bqy/u4+6zgY+3HtTvRUMOxdvye+UDusbaDX30aeFTCwtCM8IRoNlw9xPVwzefSotDapzad/BpgaWRKaFwkywJ2ERj5SGP5hh6V6ezfEEcza1Iy0rn89C4rLu4hKT1VVcZI14BeVVtS29UfY30DIhNjWX5xD5ef3C2WNrT1qUOXCo1y2xAbweLzO7kVGayxfCPPKrxToTFOZtYkZ6Rx+cldll3YTWJ6iqpMR7/6tPGpg42xBYnpyZwOvsHKS3vJLMZrkE5+DXi/cnOsjcwIjg1n7um/uP6Kc21n/4Z09m+Ig6kVkUmxrL60nwP3AlSvty5XizFN++Sr1+bPkcXaDiEKIsmzf0mbNm1YunQpmZmZnDhxgo8//pjk5GTmzZtX0qG9tfHjx//jura2+S90xP8fs2fPplu3bpiamqptd3FxYenSpWrJs6dPn3L48GEcHR1VZcLC8pJGU6dOZe/evRw8eFC1zcTEBMjtGTZ79mx++OEHunTpQmZmJqtWraJz587MnDmTIUOGYGJiQo0aNThy5Iha8uzYsWO4uLhw5MgRVfLs8ePHPHjwgKZNmwJgZ2dHq1atmD9/Pr/88ksR/5XyVHL0oqNfA7beOM6j2HBqu/rxUa0OTD+2lri0pALr9K7aGlN9QzZdO0J0SjzGeoZoa+V1ItZWaPFx7U4kZaSy6tI+4tOSsDAwIT0rs1jacPLwMZbOXsgnIz6nfEU/9m3fww9jJjBz+Xxs7e3ylc/KyMTMwpyufXqwc+OWV+47MjyCZfP+xK+Sf7HE/qJmXtUZ2uA9ph9fx43wB3Tya8CvHQbTd+1kIpPyD0/v7N+QgXU689vRNQRGBlPezp0xTXqTmJbC6UfXAWjpXZOBdbrwy5GV3Ah/gIuFPeOafQDA7FN/FVtb9Nu2QL9VU1KWrCY7IhKDDq0xGTWEhK8nQ1p6gXV0a9fA4L1OpCxdTXbQQ7Qc7DD6KPdiNW39ZgB0ynmRceQEWQ8fgZY2hu92wGTUYBK++REyMoos/lou5elVpSUrL+3l3rNQmnhVY2SjHny9dwExKQn5yq+5fICN146onmsrtPi+9cdqCYJ3KzamrltFll3YRVhCNBUcPBla/z1+PLSckLiIIov9nzDU1Sco+jG7b5/mp7aDSjSWQ/sPMmv6TEaOHUWFypXYvnkrY4aPZsWGVdg7OOQr//TJU8aMGE2HLh355vsJ3Lh6jem/TMPc0oImzXKPp5cvXqJ5q5YMr1QBPX191q5YzeghX7B8/Sps7fKuCTw8PZg+Z6bqubZ20Q2OuHX2MgdXbaV1v644l/Pg8uHTrP9tIZ/8MhZzG8096NNSUtkxfw3u/t4kxyeqvWZgbES9Ti2wdrJHW0eboMu32LVwHcZmJnhW8i2y2J+r7ORNpwoN2Xz9KMExYdRxq8DHtTvy29HVxKUWfL74oHpbTPWN2HD1MFHJcZjoG6lNPl21TDnala/HhquHCI4Jw9bEgu5VWgCw/ebJIm8DwP2AG5xZv5cGvdpj7+VK4PEL7PljFe9PHIyJtYXGeu9PHoKegb7quYFp/huxidFxnNu0Hwdv1+IIXc39gJuc2bCP+r3aYV/WhdvHL7F31hq6TfwcEytzjfW6fT/4pXYYqb2ua6DP+98PVttWXImzWi5+9K7amhUXd3M36jFNy1ZjVKNejNszr8Bj7epL+9h49ZDquZZCix/aDOR86C3Vtq6VmlLPrQJLAnYRlhBFRceyDGvQjckHlxES9+obOP9UPfeK9KvRjj/P7eD2s0e09K7J+OYf8sX2mUQlx+cr72vnxpD677H8wm4uPL6NlZEZA2t35rO67/Lb0dUA6GhpM6Flf+LTkpl6bA3RKQnYGJuTmlnwObSw6rtX4qNaHVhwdhu3I4Np7VObb1v2Z+jW6QW2obydG8MbvM+SgJ0EhAZibWTGoLrvMLheV34+shLITa59UL0Ns09u4vazEJzMbBjWoBsASwJ2Fks7mpStyuf13uWPkxu5Ef6ADn71mdLuMz7a8FOB11Id/RowoFZHph9fy53IEHzt3BjZqAdJGamceXRDVS4pPZV+639QqyuJM1ESZNjmv0RfXx8HBwdcXFzo1asXvXv3Vg0RVCqV/Prrr3h6emJoaEjlypXZtGmTqm5sbCy9e/fG1tYWQ0NDvL29Wbp0qer169ev06xZMwwNDbG2tmbgwIEkJRV8IQVw9OhRFAoF+/bto2rVqhgaGtKsWTMiIyPZs2cP5cuXx8zMjJ49e5KSknf3Yu/evTRo0AALCwusra3p0KED9+/n3UlasWIFJiYm3Lt3T7Vt6NChlCtXjuTkZCD/sE2FQsGCBQvo0KEDRkZGlC9fnjNnzhAUFESTJk0wNjambt26au8DMG/ePMqWLYuenh4+Pj6sXLnylX//gIAAWrZsiY2NDebm5jRu3JhLly69ss7LkpOT6du3LyYmJjg6OjJt2rR8ZTIyMhgzZgxlypTB2NiY2rVrc/ToUdXrjx49omPHjlhaWmJsbIy/vz+7d+8G8j6XXbt2UblyZQwMDKhduzbXr19Xe4/Tp0/TqFEjDA0NcXFxYdiwYaq/L0BYWBjt27fH0NAQDw8P1qxZo/Z3Dw4ORqFQcOXKFVWduLg4FAqFWqy3bt2iXbt2mJiYYG9vzwcffEBUVJTGv09OTg4bN26kU6dO+V7r0KED0dHRnDp1SrVt2bJltGrVCju73ASLtrY2Dg4OqoeJiQk6Ojr5tp09e5Zp06bx22+/MXr0aLy8vChfvjw//vgjI0aMYOTIkYSG5t41bdq0qVqbAgMDSU1N5fPPP1fbfuTIEXR1dalfv75qW6dOnVi7dq3G9haFhh6VCQgNJCA0kMikWHbcOkV8WhJ13ArutVXO1gVPayeWBOwiKPoxsamJPI6P5FFs3gVpDZfyGOnqs+LCHh7FhhOXmkRwbDhhidHF0oYdG7fQvF0rWnZog7ObKwOGfoq1nS37tu0qsLydoz0Dhg6iaevmGL2iF2p2djYzfviNHv37YP93grU4vV+5GbsCT7Mr8DSPYsOZdWoTz5Li6FKhUYHlW/vUZvvNkxwOukhYQjSHgy6yK/A0vaq1VJXxd/DgRvh9Dt67QHhiDAGhgRy6dwEf24J7JhQV/RZNSNu1n8xLV8l5EkbK4lUo9HTRq625R4xOWQ+ygh6Qee4iOdExZN28Tca5i+i45/0ITZ4xj4xT58h5Gk7O4yekLFmNlrUV2u4uRRp/K5/aHH94heMPrhCWGM3ayweISU2gWdlqBZZPzUwnIS1Z9XC3csRIz5CTL/TequtekZ2Bp7gWdp9nyXEcuX+JG+EPaONTu0hj/yfOhtxk0bntHHtwpaRDYcOa9bTv3IEOXTrh7uHOsFEjsLW3Y+umghPd2zZvxc7BnmGjRuDu4U6HLp1o16k961flHTsn/DCRd7q9i7dPOdzc3fjy67HkKHO4GHBBbV/a2tpY21irHhZvOS3Eq5zfc4zKTWpTpWkdbMrY0/KDdzCztuDyoVOvrLd3yUb86lajjFf+f7Nufl741KyETRl7LO1tqNmmEXYujoTeeVhkcb+osWcVzofc4nzILSKTYtl+8wRxqUnUdatYYHkfW1fKWpfhz3PbuRcVSmxqIqFxEWrnC3dLR4Jjwrj85C6xqYncfRbKlSf3cDa3L5Y2AFw7cAafBtXwbVgdS0db6nVvi4mlObeOXXhlPUNTY4zMTVUPLS31nzA5OTkc/vMvqndqitkrEqJF5frBM/jUr4pvg2pYOtpSt3vrt2iHierxcjsUCtReNzI3KbY2tPGtw/EHlzn24AphCVGsubyfmJQEmnsVfK5IzUwnPi1Z9fCwcsJIz5ATD/KOtfXcK7Lj1imuhQXxLDmOw0EXuR7+gLa+dYqtHR3L1+dw0EUOBV3gSfwzll3YTXRyPK3KFXx8L2fjwrPkWHbfPkNkUiy3Ix9x4N55ylo7qco086qOib4hvx5ZxZ1nIUQlx3E78pHav5+i1Nm/AQfvXeDgvQAexz9j8fmdRCXH08an4L9bOVtXniXFsivwNJFJsQRGPmL/nfN42ZRRlfGxdeV2xCOOP7xKZFIsV57e48SDq2plitp7FZuy5/ZZdt8+Q0hcBHNPbyYyKZaOfg0KLN/SuyY7A09x9P5lwhKjOXL/EnvunKV75eYvlVQSm5qo9vhfoSil//2vkuRZCTE0NCQzM7cnyDfffMPSpUuZN28eN2/e5IsvvqBPnz4cO3YMgG+//ZZbt26xZ88eAgMDmTdvHjY2uV28U1JSaNOmDZaWlgQEBLBx40YOHjzIkCFDXhvDxIkTmT17NqdPnyY0NJT333+fGTNmsGbNGnbt2sWBAweYNWuWqnxiYiJffPEFAQEBHDx4EKVSyTvvvENOTg4Affv2pV27dvTu3ZusrCz27t3LggULWL169SuHak6ePJm+ffty5coVfH196dWrF59++injxo3jwoXci5AX27NlyxaGDx/OqFGjuHHjBp9++in9+/fnyJEjmt6CxMREPvzwQ06cOMHZs2fx9vamXbt2JCa++cH3yy+/5MiRI2zZsoX9+/dz9OhRLl68qFamf//+nDp1inXr1nHt2jW6detGmzZtVAnFwYMHk56ezvHjx7l+/Tq//PKLqjfVi+8zdepUAgICsLOzo1OnTqrvyvXr12ndujXvvvsu165dY/369Zw8eVLt79O3b1+ePn3K0aNH+euvv1i4cCGRkW83rCosLIzGjRtTpUoVLly4wN69e4mIiOD999/XWOfatWvExcVRo0b+iy49PT169+6tlvRdtmwZH3300VvFBbB27VpMTEz49NP8Q/1GjRpFZmYmf/2V26unadOm3LlzR9Wj7ciRIzRs2JBmzZrlS57Vrl0bI6O8O8C1atUiNDSUR480d/svDG2FFmXMbbn30vCIu89CcbMs+IeLn70Hj+MjaexZlfHN+zK6cS/al6+Hjpb2C2XceRQXQZcKDfmmRT++aNSdpmWrFcuJLjMzk/t3gqhcUz2pUaVmVW7fDNRQ681sXLEWMwtzWrRvXaj9vAkdLW3K2bqq9VQCCAgNpIJ9wcO6dLV0yMhW782Xnp1JeTt3VU/Aa2H3KWfrSnm73B/ejmbW1HGrwNkX7qYWNS0ba7QszMm6mTeMl6wssu4EoVNW8xDkrKD76Li5oO3hptqPbkU/Mq/d1FhHYWQAgDI5RWOZt6WtpYW7pSM3w9UTEDfDH1DWxvmN9tHIowq3Ih4S/ULPCV0t7Xx3qTOys/C2LdrE339ZZmYmd2/foWbtWmrba9auxY1rBX9nb16/ka98rTq1uX3rNllZBfcKSE9LIysrCzMzM7Xtj0Mf807bTrzf+T0mjp/A08dPCtGaPNlZWYQ/fIxHhXJq2z0q+PD4XrDGeteOnSc2IpqG77Z67XsolUqCb9wlJvwZrm8wFPRt5Z4v7Lj70tD7u89CcLcq+OaCv4MHoXGRNC1bnW9b9Gds0z508Kuvdr54GPMUZws7XCxyzzlWRmb42rkR+IqhYoWRnZVFVMhTnP3Kqm139itLxP2Chwo+t3nyAlaOnsrO6ct5ejt/gvLSzmMYmhrj26DgJHtRys7KJiokjDIvtaOMn+fr2/HDQlZ9OZ1d01fwtIBEa2Z6BmvHzWTN2N/ZO3stUSGap3EojOfH2peHrt8Iv4/Xmx5rPatwK+IB0Sl5PaN0tbTJzFH/t5+ZnVlsx1odLW08rZ24+jRIbfvVsCB8bAvugXjnWQjWRuZULZN7TDA3MKaOawUuPc4bjlnD2Ze7z0L5uHYn/uw2jukdh/FuhcZqPTeLsg1lrctw5ek9te1Xnt7D167gm223Ix9hbWxO9TI+f7fBhLruFdSm8AiMDKasTRm8//487U2sqObso1amqNtRztYl3/4vPr6Nv33B1x+62jpkvDQyIj0rE187N7VRFYa6+qzpNZF1vb/nxzYD8bJ+s++oEEVNhm2WgPPnz7NmzRqaN29OcnIy06dP5/Dhw9StWxcAT09PTp48yYIFC2jcuDEhISFUrVpVlZRwd3dX7Wv16tWkpqayYsUKVYJq9uzZdOzYkV9++QV7e813D3/44QdVT5sBAwYwbtw47t+/j6dn7oXfe++9x5EjR1Rzm3Xr1k2t/pIlS3BwcODWrVtUqJDbU2bBggVUqlSJYcOGsXnzZr777jtq1qz5yr9H//79VUmZsWPHUrduXb799ltat8790Tx8+HD69++vKj916lT69evH559/DsDIkSM5e/YsU6dOVQ27e1mzZs3Uni9YsABLS0uOHTummiPrVZKSkli8eDErVqygZcvcniXLly/H2Tnv4H3//n3Wrl3L48ePcXLKvXs1evRo9u7dy9KlS/npp58ICQmha9euVKyYe6f4+d/6Rd99912+99iyZQvvv/8+v/32G7169VItUuDt7c0ff/xB48aNmTdvHsHBwRw8eJCAgADV9+XPP//E29v7tW180bx586hWrZraxP9LlizBxcWFu3fvUq5cuXx1goOD0dbWVvUke9mAAQNo0KABM2fO5OLFi8THx9O+fXvVHGZv6u7du6pehy9zcnLC3Nycu3dzL4Dq16+Prq4uR48epWfPnhw9epTGjRtTrVo14uPjuXfvHt7e3hw9epQ+fdTnUyhTpoyqXW5u+S9e0tPTSU9X776vr6+fr5wmRnoGaGtpkZSRqrY9KT0FU/2CLzKtDM1wt3QkKzubFRf2YqxnQJcKjTDU1WfT38PWrIzMKGtoypWn91h6fhc2xuZ0rtAILYUWh4JefUf8bSXGJ5CTk4OFpYXadnNLS+Ji/vlKvIHXb3Jw1z6m/zm7kBG+GXMDE3S0tPPdyYxJScDKxazAOudDb9GhfH1OPLzK3Weh+Ni60s63LrraOlgYmBCdksDhoItYGJoy+51RKFCgo63NlhvHWX15f7G1RWGeG29OgvqQm5yERLSsrTTWyzx/iVQTE0y+GgEoUOhok37kBOl7DmisY9j9XbLu3ifnSdH9uDPVM0JbS4uEl4Ytx6clU8Hg9T0wzA1MqOhYlgVnt6ptvxH+gNY+tbn7LITIpFjK23tQtUy5Yvkh9F8VHxdHdnY2llbq3xMra0tiogvuuRoTHYOVtXovH0srK7Kzs4mLi1Pd6HvR/NnzsbW1pXqtvBstfv5+jJ/0DS6ursRGx7BiyXI+HzCI5etXYW6heQjcm0hJTEaZk4Oxufp0AsbmpiTHFXwDLSb8GUfW76TPt0PQ0tYusAzkDuucPXQS2VlZKLS0aN2vKx4VfQoVb0GeD89/cS4jgMT0VEz1jQqsY2VkjoeVI1k5WSy7sBtjPQPerdgEI10DNvw99O7K03sY6xkyuH5XFIC2ljang69xJOhigfssrLSkFJQ5SgzN1G+oGpoZk5JQ8IgJI3NTGn7QEVtXR7Kzsrl39io7f19Ox1H9cCznDkB4UAh3Tl6i67f/zrDn5+0werkdpsakJiQXWMfI3ISGfTpg4+ZIdmYW985dZ9fvK+kw8kMcy+VeY5g72ND4w85YlbEjIy2dm4fPs/3XpXT99lPM7a2LtA3Pj7XxaerxxqcnY/6Gx9pKjl7MP6PeK/V6+APa+NThTmQIkUkx+Nl7ULWMT7Eda031jdDW0ib+5XNGahIWTgW3486zEGae2MDIRj3Q1dZBR0ubgNBAFp/Pm2PR3tSKCiYWnHhwlZ8OLcfRzJqPa3dCS0tLdb1V1G2Ie+kaJD41EUvD/Nfbz9sw/fg6RjfppWrDuZBbLDqbN2feyYfXMNc34ae2g1AoFOhoabPn9hk2Xz9WpPE/Z25gjHYB11KxqYlYGZkWWOfC40Da+dblVPB17kWFUs7GhbY+tdHV1sHcwISYlARC4iL59ehqHkQ/VR3HZnYewcBNv/Ak4VmxtEUITSR59i/ZuXMnJiYmZGVlkZmZSefOnZk1axa3bt0iLS1NlSx5LiMjg6pVqwLw2Wef0bVrVy5dukSrVq3o0qUL9erVA3KHoVWuXFmtZ1f9+vXJycnhzp07r0yeVapUSfX/9vb2GBkZqSVz7O3tOX/+vOp5SEgIkydP5ty5c0RFRal6nIWEhKiSZ5aWlixevJjWrVtTr169fBPEv0kcgCq59HxbWloaCQkJmJmZERgYyMCBA9X2Ub9+fWbOnIkmkZGRTJgwgcOHDxMREUF2djYpKSmEhLzZBOr3798nIyNDleCE3MmMfXzyLpIvXbqEUqnMl1hKT0/H2jr3omfYsGF89tln7N+/nxYtWtC1a1e19gMFvkdgYG6PmIsXLxIUFMTq1atVZZRKJTk5OTx8+JC7d++io6NDtWp5d169vLzeelXUixcvcuTIkXy94p7/LQpKnqWmpqKvr69xBZZKlSrh7e3Npk2bOHLkCB988AG6urpvFdebUCqVqhiMjIyoVauWKnl27NgxvvzyS3R0dKhfvz5Hjx5FX1+fhw8f5kuwGhoaAqgNXX7RlClTmDRpktq27777DmoWnDx8VbxqFAqUBRdVtWvdlYOkZeXOMbUz8DR9qrVm643jZOVko0BBckYqf107ihIlTxKeYWZgTCPPKkWePHs5LhWl8h/3dEtNSWHmj1P5/MthmBXyR/PbevmzUCgUKDV8Gssv7MHKyIz5744BBcSmJLL39ll6VWtFtjL32FjFyZsPqrdm+vF1BEYEU8bclmENuhFdvS0rLu4pkph1a9fAqG8P1fOkmfP/bsxLBRUKePm79gIdHy8MOrQmddUGsh4Eo21ni2HPruR0aE36zn35yhv27oa2sxOJP88oglbkly98FAVsza+BRyVSMtO49OSO2vY1lw/Qr0Y7fmo7CCUQmRTLyYdXC1xo4H/dy/+elcoC/o2/WD7fv3Wlhu2wZsVqDu0/wB/zZ6vdbKhTP++8h1dZ/CtVoGeX99m7aw/de/fIt59/5OV2ocy3DXKH/22bs4qGXdtg7fjq47m+gT4f/TiKzPQMgm/e49DqbVjYWuPm51U0Mb/Gq/IRzz+zNZf2q84X22+epG+Ntmy+fpSsnGzKWpehuXcNNl8/SkhshOpmS4u0FA6+MGF3kcdN/u+YJhYONqoJ9QHsy7qQFJvA1f2ncSznTkZaOkcWb6bhB50KnAettCioHckx8Vw7cEaVPLP3dMbeM++mrENZVzb/uJCbRwKo16NNscT18jlOgebz3osaelQmJTONi0/UexmtvrSP/jU78HO7z1TH2hMPr9DQo0oRRp1fQddSmjib2/JRrQ5svHaYq0/uYWFkSt/qbRlYpzPz/k4GKhQK4tOSWXB2KzlKJQ9inmJpaEZn/4ZFnjzT6BXXIM7mdnxSuxPrrxzi8tO7WBqa0q9GOz6r+w6zT+eOvqjg4Ml7lZuy4Ow27j0LwcHMho9rdSS2UiIbrh0uxsDzn8E1/RtfeXEfloZmzO4yEoUiN9G27+55elRpofqdGRgZrNYb9kb4Q+Z3/ZIuFRox53TxzR9bWshNvtJFkmf/kqZNmzJv3jx0dXVxcnJSJQ0ePsztsr1r1y5VT5fnnl9Ytm3blkePHrFr1y4OHjxI8+bNGTx4MFOnTlVLFLzsdcvIvpi4UCgU+RIZCoVCdeCC3HmrPDw8WLRoEU5OTuTk5ODu7k7GSxNFHz9+HG1tbZ4+fUpycnK+oRmvi0PTthdjyX9xr/nvALkrnj579owZM2bg5uaGvr4+devWzRe7JvlOygXIyclBW1ubixcvov3SnernSaiPP/6Y1q1bs2vXLvbv38+UKVOYNm0aQ4cOfeW+X/wbfPrppwwbNixfGVdXV+7cuZNv+8vxP59f48Vtz4eFvtiW570XX+aoYf4pGxsbUlJSyMjIKLBXGMBHH33EnDlzuHXrllpi9m2UK1eOkydPFvg+T58+JSEhQa2nXdOmTVm/fj03b94kNTVVlVhs3LgxR44cQU9PDwMDA+rUUZ9XIiYmBtC8yMW4ceMYOXKk2jZ9fX0mHFz8Ru1IyUgjOycnX68BEz1DktILTtglpufOM/L8hxDAs6RYtBQKzA1MiE6JJzE9mWxljtoFV2RSLGYGxmgrtFSJnaJgam6GlpYWsS/1MouPi8PcyuIf7TP8SRiR4RH8NC4vMfn8u/pesw7MXrkIhzJFOwdafFoSWTnZWBmpH6ssDU2JTSm4Z0pGdia/HFnF1GNrsDI0Izolno5+DUjOSCU+NfdO/oBaHdl/5zy7Ak8D8CDmKQa6+nzZuBcrL+59ox8or5N59TqJk4LzNujknta1zM3Ijs/rfaZlaoIyQfMwdYMuHcg4c56ME2cAcnuT6eth1Lcn6bv2q/26Nez1HrpVKpL0y0yUsXGFbsOLEjNSyM7JydfzwczAKF8PiYI09KjM6eDrZOeof88T01OYdWoTOlramOgbEZeaSLdKTYlKjivK8P/TzC0s0NbWztfLLDYmNl9vtOesrK2Ijo7JV15bWztfj7G1K9ewaukKps+ZQVnvVyeXDA0N8fTy5HHoq4fAvQkjU2MUWlokx6n3xkyJT8K4gPmkMlLTCX8YSsSjJ+xfnrtYhlKpBKWSn/uOpsfYT3H3zz3HKLS0sHLIPUfYu5Uh+kkEZ3YcKvLkWXJGqsbzxcu90Z5LTEsmPi1J7XwRmRSDlkKBhaEJUcnxtPapw6XHdzgfkjvhe3hiNHraurxXuSmH7gUUwRFKnYGJEQotRb5eZmmJyRiZvfncXnYezgSduwZAwrMYEqPj2Ddnjer15+eMRYMm0f37oZjZae51+0/ktUP9mJSamJyvV92r2Hk6E3TuusbXFVoKbN2diI8s+jlLnx9rLV4+1uobkfAmx1rPypwOvlbgsfaPkxvQ/ftYG5uayPuVmxfbsTYxPYXsnGwsDNV7NpkbGGtcSOOdCo25E/lItSjGo7gIFmVt54c2A1l75SBxqYnEpiSSrcwm54Vz35P4Z1gamaKjpV2kq9FqboOJxja8V6kJgZHBbL15PLcNseEsOLuVKe0+Y/Xl/cSmJtKrakuO3r+kSoQ/iovAQEeXz+u9y8ZrR4rkGuRF8WnJZOdkY2n48rWUicY5yjKyM5l6bA2/n1iHpaEZMSnxtC9fn+SMNI3nfCVK7jwLwdlcFqET/z6Z8+xfYmxsjJeXF25ubmqJIT8/P/T19QkJCcHLy0vt4eKSN3TL1taWfv36sWrVKmbMmMHChQtV9a9cuaI2YfypU6fQ0tIqsHfQPxUdHc3169f58ssvqV27Ni4uLgQHB+crd/r0aX799Vd27NiBmZnZa5NC/0T58uU5eVJ9FajTp09Tvnx5jXVOnDjBsGHDaNeuHf7+/ujr679y8vuXeXl5oaury9mzZ1XbYmNjVcMDAapWrUp2djaRkZH5PkuHF1Ypc3FxYdCgQWzevJlRo0axaNEitfcq6D18fXNX7qpWrRo3b97Mt38vLy/09PTw9fUlKyuLy5cvq/YRFBREXFyc6vnzZNCLK1u+uHjAi+/j7u6e7300zV9XpUoVIHehAU169erF9evXqVChAn5+fhrLvUqPHj1ISkpiwYIF+V6bOnUqurq6dO3aVbWtadOm3Lt3jzVr1tCgQQNVYrNx48YcPXqUo0ePUrduXQwMDNT2dePGDXR1dfH3L3ilR319fczMzNQebzNsM1uZw5P4Z/nmAfG2ceZRbMGr/wXHhGNmYISedt59Dxtjc3KUOaohC8Gx4Vgbmavd17cxtiAhLblIE2eQm+Qu6+PF1QuX1bZfvXAZX3/N/x5fpYyrC78vmcu0P2erHjXr1aZC1UpM+3M21nb5h4EVVlZONnefhVDDRT3mGs6+3IjQvLw6QHZODs+S48hRKmnuVYPTwTdUF6QGOnr5Eu85OTkoFK/uMfJW0tLJiYzKezwNJycuHh2/F4aOaWuj4+NF1v1XTGSup5u/+0eOkpc7Dxn26oZutcok/TaLnKii/0GXnZNDcGwY/g7q86P42XtwP+rxK+v62Lpib2rFiRcWCnhZVk42camJaCu0qO7sy+UndzWW/V+jq6tLOV8fLpxT73F04XwAFSoVvIiJf8UKXDivXj7g3Hl8/XzR0ck7Tq1duZoVi5fx2x/T8PV7/bEhIyODR8GPVL22C0NbRwcHD2ce3lD/rB/euIuzt3u+8vqG+nw85UsG/DhK9ajarC5WjnYM+HEUTmU1r+SoREl2ZtGvAJd7voik3Evni3K2rgTHFDxs+mFMGGYGxuhp511z2hpbkKPMUf0g19PWyfcDOkeZ83fPsKLv7aCto4ONqxNPbqkvAvU48D72Zd98Tqzo0DDVRPoWDja8991ndP12kOrhVskHJx8Pun47CGOrV9/A/Se0dbSxcXXkSaD6+eFJ4IO3bEc4hq9YEECpVBIdGoGRecFD3goj71irPn2Iv4MnQa851vraueFgav3KRU4yc7KJ/ftYW8PZN19v4KKSlZPNg+inVHJST1hXcvTizrOCR5fo6+iS8/L3/u8k4PNv/Z1nj3AwtVbrJeloZk1MSkKRJs4gtw33o59Q5aU2VHHy4nZkwfPu6msXcH3x0nN9bV0NZRRFdw3ygtxrqVCqO6sPXa/u7MvNiFcvpJKdk0PU39dSTctW4+yjG69M7pW1LqM2r6kQ/xZJnpUwU1NTRo8ezRdffMHy5cu5f/8+ly9fZs6cOSxfvhyACRMmsG3bNoKCgrh58yY7d+5UJYp69+6NgYEBH374ITdu3ODIkSMMHTqUDz744JVDNt+WhYUFVlZWzJ8/n6CgIA4dOsSoUaPUyiQmJvLBBx8wdOhQ2rZty5o1a9iwYQMbN24ssjggd0L9ZcuWMX/+fO7du8f06dPZvHkzo0eP1ljHy8uLlStXEhgYyLlz5+jdu7dqWN6bMDExYcCAAXz55ZccOnSIGzdu0K9fP7VVksqVK0fv3r3p27cvmzdv5uHDhwQEBPDLL7+oVtQcMWIE+/bt4+HDh1y6dInDhw/nS/p9//33au9hY2NDly5dgNw54c6cOcPgwYO5cuUK9+7dY/v27aokpa+vLy1atGDgwIGcP3+ey5cvM3DgQAwNDVW91wwNDalTpw4///wzt27d4vjx43zzzTdqMQwePJiYmBh69uzJ+fPnefDgAfv37+ejjz4iO7vgiwZbW1uqVauWL7H5IktLS8LCwjh06JDGMq9Tt25dhg8fzpdffsm0adO4f/8+t2/f5ptvvmHmzJlMmzZNLfFcr1499PX1mTVrFo0bN1Ztr1mzJvHx8fz1118FzpV34sQJGjZs+Fbfk7d14uFVarqUp4azL3YmlnQoXx8LQ1POhuROzt3Gpw7vv7Di0JWnd0nJSKdb5WbYmVjiYeVIO996XAi9rbqYO/voJsZ6BnT0b4CNsTm+dm409arG6WKapL5jt3c4tGsfh3bv5/GjEJbMXkhUxDNadWoHwKqFS5n501S1Og/v3efhvfukpaaSEB/Pw3v3CQ3OvcjV09fDzdNd7WFsYoKhoSFunu7FMtQXYMPVw3QoX492vnVxs3RgSP2u2Jlasu3GCQAG1unM+OYfqso7m9vRslwtnM1tKW/nxnctP8LD2pFF57apypx+dJ3OFRrSzKs6jqbW1HD2ZUDtDpwKvp7vIrcopR88ikH7VuhWrYRWGUeMPuqDMiOTjHN5w3aNBnyAwbsdVc+zrt5Av0kDdGtVQ8vGGh0/Hwy6tCfzyg1VUs2wz/vo1a1B8sLlKNPSUJiZojAzhSL+TPbfOUcjjyo09KiMo6k1Paq0wNrInCP3c1dIfq9iEz6u3TFfvUaeVbgf/YQn8fnnQPG0cqJ6GR9sjS3wtnFhZOMeKBQKdt8+U6Sx/xOGuvp42zirJnV2MrPB28YZe5PiXzHwZe/36s7ObTvYtX0nwQ+DmTV9JpHhEXTu+g4AC2bP48fvJqvKd363CxFh4cz+/Q+CHwaza/tOdm3bSfc+PVVl1qxYzZ/zFjF2wjgcHB2JjoomOipabUj8nBmzuXLxMk+fPOXWjZtMGPsNycnJtOnQrkjaVattY64ePcfVY+eIehLBwVVbSYiOpWrz3Ckwjq7fyY75uT2XFFpa2Lo4qj2MzUzQ0dXB1sURPYPcmySntx/k4fU7xEZGE/00gvO7j3Lj5AX861cvkphfduzBFWq5+lPTpTx2JpZ08m+AhaGJagGStr516VElbwqQy0/ukpKRRvcqzbE3scTTyokOfvU5HxKoOl/cinhIXbeKVHHyxsrQDG8bF9r41uFm+MMi75XyXKWWdbl98hK3T14iNuwZp9fvJSkmnvKNc+fAO7/5IEeWbFaVv37wDMGXA4mPiCbmaSTnNx/k4aVA/JvmLlSho6uLVRl7tYe+kQG6+npYlbFHW6d4BtlUbFGXOycvcefUZWLDnnFmw77cdjTK/fzPbznEkaVbX2jHWYKv3M5rx5ZDue1okjcv8MUdxwi9GUTCs1iiQ8M5vmIH0aHhqn0Wtb23z9LYs2rusdbMhl5VW2JtZM7hv+e861apGQNrd85Xr5FnFYKiHms+1jr7YmtsQTlbF0Y16ZV7rP27B3Zx2BF4iuZe1WnmVZ0y5rb0q9EOG2Nz9t/NHeHQq2orhtZ/T1X+wuPb1Hb1p1W5WtiZWOJj68pHtTpw71moqofUvjvnMdU3on+t9jiaWlOtjA/vVmzC3jvniqUN226epIV3TZp71cgdVlqzAzbGFuz7+/36VGvN8AZ5i3YFPA6kjlsF2vjUxt7ECl87Nz6u3ZG7z0JUbQh4fJs2PnVo4FEJOxNLKjt60atqSwJCbxXbNcim60do51uXNj51cLWw57O672BnYsmOW7m/DQbU6sjYpnlzDDub29LCuwZlzGzxsXXlm+Yf4mHlyOLzO1VlPqjehhrOvjiaWlPWugyjG/fCy9pZtc//7xQKRal8/BNz587Fw8MDAwMDqlevzokTJzSW3bx5My1btsTW1hYzMzPq1q3Lvn3q04gsW7aswNjS0tL+UXxvQoZtlgKTJ0/Gzs6OKVOm8ODBAywsLKhWrRrjx48HclcqHDduHMHBwRgaGtKwYUPWrVsH5M7ptG/fPoYPH07NmjUxMjKia9euTJ8+vUhj1NbWZv369QwbNowKFSrg4+PDH3/8QZMmTVRlhg8fjrGxsWqSeX9/f3755RcGDRpEvXr18g1L/ae6dOnCzJkz+e233xg2bBgeHh4sXbpULZaXLVmyhIEDB1K1alVcXV356aefXplsK8hvv/1GUlISnTp1wtTUlFGjRhEfH69WZunSpfzwww+MGjWKJ0+eYG1tTd26dWnXLvcHQHZ2NoMHD+bx48eYmZnRpk0bfv/9d7V9/PzzzwwfPpx79+5RuXJltm/frhqeWKlSJY4dO8bXX39Nw4YNUSqVlC1blu7du6vqr1ixggEDBtCoUSMcHByYMmUKN2/eVOtZtWTJEj766CNq1KiBj48Pv/76K61a5a0o5uTkxKlTpxg7diytW7cmPT0dNzc32rRpk29Z9RcNHDiQZcuWvXK1VwsLi9f/sV9jxowZVKpUiXnz5vHtt9+iUCioVq0aW7dupWNH9R/Vz4dkHjt2TO07oqurS926dTl06FCBybO1a9fmm9OsqF0LC8JIT5/m3jUw0zcmPCmapQE7Vb0CTPWNsDDMuyudkZ3Fn+e209m/IUMbvEdKRjrXwoJUF1eQOwTxz3M76OhXnxENu5OQlsyph9c4ev9yvvcvCg2aNSYxIZENy9cQGxODq4c7X/8yCTuH3OR9bHQsURHqF9ijPsnrkXr/bhAnDh7F1t6OBeuXFUuMb+Jw0EXM9I35sEY7rI3NeBgdxtidc4lIyh2SZm1kppbM0NbSonvl5rha2JOVk83lJ3f5fPNUwhPzhrCtuLAHpVLJx7U7YmtsQVxqEqeDr7Po3PZ871+U0vccRKGri2Gf91EYG5H9IJik6XMgLW+BCy0rS7WeZmk796Ekd/imlqU5ysQkMq/eIG1z3gWsftOGAJiOHa72filLVpFxquh+UJwPDcRY34hO/g0wNzDhSfwzfj+xTnWX2dzQBGsj9SGBhrr6VHf2ZY2GxRh0tXV4p2Jj7EwsScvK4FpYEIvObic1M73A8v8mX1s3Zr+TNwR8WIPcxXl2B57hx8PL/9VYmrdqQUJ8Asv/XEp0VDQeZT35ZcZUHBxze09HR0UTEZ7XM9apjBO/zpjKrN//YMvGzVjb2jB89AiaNMs7pm7dtJnMzEwmjFW/SdPvk4/4aOAAAJ5FRjLpm++Ij4vHwtICvwr+zF+yUPW+heVXpyqpiSmc2rKfpLgEbJ0def/LTzC3yR3OlxSXSELU2y1ykpmewb5lf5EYE4eOni7WTvZ0/Kw3fnWqFknML7v69B7Guga0LFcr93yRGM3icztUP5TNDIyxVDtfZLLg7DbeqdCI4Y26k5KRxtWnQex5IWF88O+hmW1862BuYEJSRiq3wh+qlSlqZWtWIC05hUu7jpESn4SVkx1th/bG1NoCgJT4RJJi8q6tsrOyObtpP8lxiejo6mDpZEebob1wrVh0oyv+ibI1/UlPTuHSruOqdrQZ0uuFdiSR/EI7crKzObfpgKodFk62tB7SE9eKedNMZKSmcXLVLlISktAz1MfaxYGOoz/EzqNorp9fdj70Fib6hnSu0AiLv4+104+vVa2eaW5ogpWxes89Q119ajiXZ/Wl/HNhQu6xtmvFJtiaWJKelcG1p0EsPLOVlGI81p4Ovo6pvhHvVWqKpaEpIXER/HRohWqoqKWhKTbGeeeMo/cvY6irT1vfOnxYoy3JGWncCH/Aqot5bYpOiWfygaX0q9mOaZ2GEpOSwO7A06phkkXtVPA1zPSN6F6leW4bYsOZfHAZz/5ug5WRGbYmFqryh4MuYqijTzvfevSv2Z7kjDSuhd1Xm091w9XDKJVKeldthZWROQlpyQSEBrL6csGfXVE4ev8yZvrGfFC9NVZG5gTHhDFuz3wik3KPr9ZGZti9cC2lpdDivUrNcDG3Iysnm6tP7zF06++qay/IHZ4+slEPLI3MSM5IJSjqMV/smKmxZ6EondavX8+IESOYO3cu9evXZ8GCBbRt25Zbt27h6pq/R/fx48dp2bIlP/30ExYWFixdupSOHTty7tw51bzwAGZmZvmmLXp5NFFRUijfZDInIUSxO3r0KE2bNiU2NrZIEkzPPX78GBcXF9V8ecUpLS0NHx8f1q1bp7bwwX/Nrl27+PLLL7l27Zra0KM3MXbX3GKK6t/zS/vPuRl2//UFSzl/x7I0mvt5SYdRKMc/n0vcgKIf/v5vs1g8i/7rfyzpMAplafevqT/n31nNrzidGjyfiIQ3n7agtLI3s2FZwK6SDqNQ+tVsz+gds0o6jEKb2nEo046tLekwCmVU455MPbr69QVLudFNevPhusmvL1jKLe/xLe+t+LqkwyiUTX1/pMuy1y+cVtpt7fczzRfkn2v5v+TQp3+UdAj/2NFiWv24sOq6VCA9XT0prq+vr3EKm9q1a1OtWjXmzZun2la+fHm6dOnClClT3ug9/f396d69OxMmTABye56NGDFCbXqi4ibDNoX4f+bw4cNs376dhw8fcvr0aXr06IG7uzuNGjUq9vc2MDBgxYoVbzWfXGmUnJzM0qVL3zpxJoQQQgghhBBFQUuhKJWPKVOmYG5urvbQlATLyMjg4sWLaqOcAFq1asXp0282pDsnJ4fExESsXlrAKCkpCTc3N5ydnenQoYPavN/FQX4ZCvH/TGZmJuPHj+fBgweYmppSr149Vq9eXWxzRb3sxXnF/qvef//91xcSQgghhBBCiP8x48aNY+TIkWrbNPU6i4qKIjs7O9987Pb29oSHh7/R+02bNo3k5GS132i+vr4sW7aMihUrkpCQwMyZM6lfvz5Xr17F29v7FXv75yR5JkQp0aRJk3yr4vwTrVu3pnXr1kUQkRBCCCGEEEIIkedVQzQ1eXmhAaVS+UaLD6xdu5aJEyeybds27OzsVNvr1KlDnTp1VM/r169PtWrVmDVrFn/8UTxDdSV5JoQQQgghhBBCCFGKKPhnK1uWJjY2Nmhra+frZRYZGZmvN9rL1q9fz4ABA9i4cSMtWrR4ZVktLS1q1qzJvXv3Ch2zxvcotj0LIYQQQgghhBBCiP9Jenp6VK9enQMHDqhtP3DgAPXq1dNYb+3atfTr1481a9bQvn37176PUqnkypUrODo6FjpmTaTnmRBCCCGEEEIIIYQociNHjuSDDz6gRo0a1K1bl4ULFxISEsKgQbmrmI8bN44nT56wYsUKIDdx1rdvX2bOnEmdOnVUvdYMDQ0xNzcHYNKkSdSpUwdvb28SEhL4448/uHLlCnPmzCm2dkjyTAghhBBCCCGEEKIUUSj+fwwU7N69O9HR0Xz//feEhYVRoUIFdu/ejZubGwBhYWGEhISoyi9YsICsrCwGDx7M4MGDVds//PBDli1bBkBcXBwDBw4kPDwcc3NzqlatyvHjx6lVq1axtUOSZ0IIIYQQQgghhBCiWHz++ed8/vnnBb72PCH23NGjR1+7v99//53ff/+9CCJ7c/8/UplCCCGEEEIIIYQQQhQD6XkmhBBCCCGEEEIIUYpoKf77q23+fyI9z4QQQgghhBBCCCGE0ECSZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCFKEYUM2yxVpOeZEEIIIYQQQgghhBAaSPJMCCGEEEIIIYQQQggNZNimEEIIIYQQQgghRCmihQzbLE2k55kQQgghhBBCCCGEEBpI8kwIIYQQQgghhBBCCA1k2KYQQgghhBBCCCFEKSKrbZYu0vNMCCGEEEIIIYQQQggNFEqlUlnSQQghhBBCCCGEEEKIXOcf3SzpEApUy82/pEMoETJsUwghitCYnbNLOoRC+7XDEFYE7C7pMAqtb812JBw+XtJhFIpZs0bEtnynpMMoNMsDW7j29F5Jh1EolZy8iUiIKukwCs3ezIb6cwaVdBiFdmrwfLqv+rakwyiU9X0m8zQusqTDKDQnC7uSDkG8IDEurqRDKDRTCwvihn9V0mEUisXMn+m79vuSDqPQVvScQGJ4REmHUSimDvYlHcI/JsM2SxcZtimEEEIIIYQQQgghhAaSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRimjJsM1SRXqeCSGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiCmTYZmkiPc+EEEIIIYQQQgghhNBAkmdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghShFZbbN0kZ5nQgghhBBCCCGEEEJoIMkzIYQQQgghhBBCCCE0kGGbQgghhBBCCCGEEKWIQoZtlirS80wIIYQQQgghhBBCCA0keSaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiFJFhm6WL9DwTQgghhBBCCCGEEEIDSZ4JIYQQQgghhBBCCKGBJM/E/wtHjx5FoVAQFxdX0qEUOXd3d2bMmPGP6wcHB6NQKLhy5UqRxSSEEEIIIYQQQvyvkDnPxH/G6dOnadiwIS1btmTv3r0lHY4QRaKuWwUal62Gqb4REYkxbL91guCYMI3ltbW0aOFdi2plymGqb0x8WhKHgi5wITQQgE/rvkNZ6zL56gVGBLM0YGextOHCgZOc3X2EpLgEbMs40LJPF1x9y762XujdB6z8YQ62zg588tOXqu23A65xavsBYiOiyMnOwdLehjrtmlCxQc1iiV8TpVLJol072HLyOIkpKfi7ezCmRy/KOuX/+z53+PIllu3dTeizSLKys3Gxs6NPi1a0q133X4z8zek2qIN++1Zoe5dFy9yMhEFfkH0/uKTDYt/WXWxbv5m46Bic3V3pP+QTyleqUGDZ2OgYls9dzIN7QYQ/fkrbdzvSf8hAtTJH9h5k7i8z8tVdvW8zenp6RRLzlo2bWbtqDTFR0bh7ejB05DAqV62isfyVi5eZPWMWwQ8eYm1jQ6++vejc9R3V6zu2bGff7j08uP8QAB9fHz4Z/Cl+/n6qMksWLmbZoiVq+7WysmLrvh1F0qa3UdnRi15VW+Fr54qNsQVf7Z7HiYdX//U4NGlVrhYd/RpgYWjC47hIll/Yw+1njzSWb+BeiU7+DXEwtSIlM52rT++x8uJekjJS85Wt51aR4Q3fJyA0kKnH1hRZzFs3bWH9qrVER0fj7uHOkC+GUalqZY3lr1y6zNwZswl+GIyNjTU9PuhFp3e7FFj28P6DTP52EvUbNeCH36aotq9etpITR48T8ugR+vr6+FeswMAhn+Hq5lpk7RKlh1KpZOGff7Jl61YSExPx9/dn7JdfUtbT85X1Dh0+zPwFC3j85AnOZcrw+Wef0bRJE9Xrly5fZuWqVQTevk1UVBRTf/2VJo0bF2tbDNq0QK9eLRSGhmQ/CiVl01ZywiM1ljcZMhAd7/ztzLx5m+SFy1T7NGjbQu31nIREEr79sUhj16S5Vw3ala+LuaEpT+IjWX1pP3efhWgsX9etAu3L18Pe1JrUzDSuhd1n3eUDBR63iopSqWThsqVs2bEj9zvk58fYEV9Q1sPjlfUOHTvK/MWLefz0Kc5OTnz+8Sc0bdRI9fqCpUtYtGyZWh1rKyv2bdmqeh4dE8OsBfM5GxBAYlIS1SpX5svhw3F1dinKJpYoLWTOs9JEkmfiP2PJkiUMHTqUP//8k5CQEFxd5ULuvy4zMxNdXd2SDqPEVHb0oqN/Q7ZeP0ZwbBi1Xf0ZUKsj046uIS4tqcA6faq1wUTfiI3XDhOdHI+JviFairxOxCsu7EZbS1v13FjXgBGNenAtLKhY2nDr7GUOrNpKm37v4VLOg0uHT7Put4V8+stXmNtYaqyXlpLK9vlr8PD3Jik+Ue01Q2Mj6ndqiY2TPdo62ty7fJMdC9dhZGZK2Uq+xdKOgqzYv5c1hw4woW9/XO3sWbJnF0P++J1NE3/A2MCgwDrmxsb0b9sOd3tHdHW0OXH9Gt+vWIalqSl1/QpO/pQkhYE+WTdvk3H8NMYjB5d0OACcOnycpXMW8cmIz/Cp4MeBHXv4cexEfl82F1t7u3zlMzMzMbMwo2vv99m5aZvG/RoaGzFzxQK1bUWVODu0/yCzps9k5NhRVKhcie2btzJm+GhWbFiFvYNDvvJPnzxlzIjRdOjSkW++n8CNq9eY/ss0zC0taNKsKQCXL16ieauWDK9UAT19fdauWM3oIV+wfP0qbO1sVfvy8PRg+pyZqufa2iUzqMBQV5+g6Mfsvn2an9oOKpEYNKnrVoEPq7dlccBO7kSG0MK7BuOafcDIHbOITonPV97H1pXB9bqy/OIeLj6+jZWRGZ/U7sSndbow7fhatbI2xub0qdaawIjgIo358IFDzPn9D0aMGUmFShXZsWU7Y7/4kmXrVmLvYJ+vfNjTp4z7YgztO3fk60nfcuPadWb8Oh1zCwsaN2uiVjY8LJx5f8ylUpX8ibirl6/Q5b138PErT3ZWNovnL2TMsJEsXbcSQ0PDIm2jKHnLV65kzZo1fDdhAq6urixesoTBQ4fy14YNGBsbF1jn2vXrjP/mGwYNHEjTJk04cvQoX40fz+KFC6lQIfc8l5qaire3Nx07dGDMV18Vezv0mzdGv2kDUlZvJPtZFAatmmHy+cck/DgV0jMKrJO8ZCVo510vKYyNMB0znMwr19XKZYeFkzTnz7wNOcpiacPLarv60btaa5Zf2M29qFCaelVjdONejNs9l+iUhHzly9m48GmdLqy+vJ/LT+5iZWhKv5rt+ahWR/44uaHY4ly+dg1rNmzgu3HjcHV2YfHKFQweNZK/Vq3G2MiowDrXbtxg/KRJDPpoAE0bNuTIiRN8NfE7Fs+eQwW/vBtEnh4ezJ02XfVc+4XPS6lUMvrrr9HR0Wbajz9hbGzM6g3r+XzkSDYuXyHHK1EsZNim+E9ITk5mw4YNfPbZZ3To0IFlL92JKMipU6do3LgxRkZGWFpa0rp1a2JjYwHYu3cvDRo0wMLCAmtrazp06MD9+/dVdZ8Pddy8eTNNmzbFyMiIypUrc+bMmTd+D6VSya+//oqnpyeGhoZUrlyZTZs2vTLmyMhIOnbsiKGhIR4eHqxevTpfmfj4eAYOHIidnR1mZmY0a9aMq1ff/O5+dnY2AwYMwMPDA0NDQ3x8fJg5c2aR1Fm6dCnly5fHwMAAX19f5s6dq3rt+d90w4YNNGnSBAMDA1atWkVOTg7ff/89zs7O6OvrU6VKFbWehW/yWURHR9OzZ0+cnZ0xMjKiYsWKrF2b9wNnwYIFlClThpycHLV4O3XqxIcffqh6vmPHDqpXr46BgQGenp5MmjSJrKysN/7bvq2GnlUICLnF+dBbRCbFsuPWSeJSk6jjXrHA8uVsXfG0LsOS8zsIinpMbGoioXGRPIoNV5VJzUwnKT1F9fC2dSEzO6vYkmfn9hylSpPaVG1aB5sy9rT64B3MrC24dOjUK+vtWbIR/7rVKOPlnu81Nz8vfGtWwqaMPZb2NtRq0xg7F0dC7zwoljYURKlUsvbwIfq3aUezqtXwKlOGiR/2Jy0jg30B5zTWq17Oh6ZVquHh6IizrR09m7XAq4wzV4KK5+9fWBkHj5G2agNZl0pPD6GdG7fSrF1LmrdvjbObC/2HDMTGzob923cXWN7OwZ6Phn5K49bNMTIu+EIdQIECSytLtUdR2bBmPe07d6BDl064e7gzbNQIbO3t2LppS4Hlt23eip2DPcNGjcDdw50OXTrRrlN71q/KO25N+GEi73R7F2+fcri5u/Hl12PJUeZwMeCC2r60tbWxtrFWPSwsi65db+NsyE0WndvOsQdXSuT9X6V9+Xocvn+Jw0EXeZLwjOUX9xCdkkCrcrUKLO9t40Jkchx775zlWXIcd56FcPBeAJ4v9epVKBQMrd+NjdcOE5EUU6Qxb1y7nnad2tO+c0fcPNwZMnIYdvZ2bP+r4O/U9s3bsHOwZ8jIYbh5uNO+c0fadmzPhtXr1MplZ2fz44Tv6TfwIxzLOObbz68zp9GmQzs8PD3wKufF2G/HEREewd3bd4q0faLkKZVK1q5bR//+/WnWtCleZcsy6bvvSEtLY+++fRrrrV23jtq1atG/Xz/c3d3p368ftWrWZM26vO9a/Xr1+HzQIJo1bfpvNAX9xvVJ23+EzGs3yQmLIGXVBhS6uuhVr6KxjjIlFWVikuqh6+MNmZlkXLmmXjA7R62cMjm5eBvztzY+dTn24DLHHlzmaUIUqy/tJyYlnmbeNQosX9bGmWfJcRy4e56o5DjuRoVyJOgiHlb5/50XFaVSydqNG+n/wQc0a9QYL09PJo0bT1p6OnsPHtBYb+2mjdSuXoP+ffrg7uZG/z59qFW9Oms2blQrp6OtjY21tephaWGhei3k8WOu37rJVyNH4V++PO6urnz1xUhSU1PZd+hQcTVZ/I+T5Jn4T1i/fj0+Pj74+PjQp08fli5dilKp+c7PlStXaN68Of7+/pw5c4aTJ0/SsWNHsrOzgdxk3MiRIwkICODQoUNoaWnxzjvv5EuufP3114wePZorV65Qrlw5evbsqUqmvO49vvnmG5YuXcq8efO4efMmX3zxBX369OHYsWMa4+7Xrx/BwcEcPnyYTZs2MXfuXCIj87qcK5VK2rdvT3h4OLt37+bixYtUq1aN5s2bExPzZhfuOTk5ODs7s2HDBm7dusWECRMYP348GzZoviv1JnUWLVrE119/zY8//khgYCA//fQT3377LcuXL1fb19ixYxk2bBiBgYG0bt2amTNnMm3aNKZOncq1a9do3bo1nTp14t69e2/8WaSlpVG9enV27tzJjRs3GDhwIB988AHnzuUmObp160ZUVBRHjhxR7S82NpZ9+/bRu3dvAPbt20efPn0YNmwYt27dYsGCBSxbtowffyyervnaCi3KmNtxNypUbfu9qFDcLfP3VAHws/fgcVwkTcpW4+sW/fiySR/al6+Pzgs9zV5W08WPq0/vkZld9EnA7Kwswh4+xqOCj9p2zwo+PL4XrLHe1WPniI2IotG7rV/7Hkqlkoc37hIT/uyNhoIWlSdRUUQnxFPHz1+1TU9Xl2re5bj2QqL9VZRKJedvB/IoIpxq3uWKK9T/VzIzM3lwN4jKNaqqba9Uoyp3btwu1L7TUlP5rEd/Pu32IVPGTeLhvTf7HF8nMzOTu7fvULO2eiKmZu1a3Lh2o8A6N6/fyFe+Vp3a3L51W2PCPj0tjaysLMzMzNS2Pw59zDttO/F+5/eYOH4CTx8/KURr/v/R1tLG08op3w2Eq2FBlLMteGjP3WchWBuZUcXJGwBzA2Nqu/pz+Yl6Aum9ik1JSEvmyP1LRRpz7nfqLjVe+o7UqFWTG9cL/k7dun6TGrXUh7bXrFOLO4Hq36kVi5dhYWlB+04d3iiW5KTcRMHL3zvx3/fk6VOio6OpU7u2apuenh7Vqlbl2vXrGutdu36d2i/UAahTp84r6xQnLWsrtMzNyLr9wnVjdjZZ9x+i4+H2xvvRq1OTjEtXISNTff+2Nph9Px7TCWMw+rAnWtZWRRW6RtpaWrhbOXIjXP08dT38Ad42BR+37kWFYmVkRiVHLwDMDIyp6Zp7DVhcnoSFER0TQ50aeccePT09qlWuzLUbBR+rAK7dvEntmurHqzo1a3HtpnqdkMePafPuO3Tq/j7jJk3k8dOnqtcyM3J7FOq/0INcW1sbHR0drlx/KQH6H6ZQKErl43+VDNsU/wmLFy+mT58+ALRp04akpCQOHTpEixYtCiz/66+/UqNGDbWeT/7+eT+Cu3btmm//dnZ23Lp1S9XlHGD06NG0b98egEmTJuHv709QUBC+vr6vfI/k5GSmT5/O4cOHqVs3d64jT09PTp48yYIFC2hcwLwPd+/eZc+ePZw9e1Z1UbJ48WLKly+vKnPkyBGuX79OZGQk+vr6AEydOpWtW7eyadMmBg4cmG+/L9PV1WXSpEmq5x4eHpw+fZoNGzbw/vvv/+M6kydPZtq0abz77ruqMs+TUC/27hoxYoSqzPP4x44dS48ePQD45ZdfOHLkCDNmzGDOnDmqcq/6LMqUKcPo0aNVZYcOHcrevXvZuHEjtWvXxsrKijZt2rBmzRqaN28OwMaNG7GyslI9//HHH/nqq69UsXp6ejJ58mTGjBnDd999l+9vkp6eTnp6utq255/JmzDWM0RbS4uk9BS17YnpKZjqF9x7xtrIDHcrR7JysllxYTfGeoZ0qdAYI119Nl47nK+8i4UdjmbWbLpWPHfgUhKTUebkYGJuqrbd2NyUpLj8QwoAYsKfcWT9Tj74diha2pqTfmkpqfwxdCLZWVkotLRo0+89PCv6aCxf1KITcodyWZmq/2C0MjMjPDr6lXWTUlNoN24MGZlZaGspGNuzN7XL+72yjsiVGJ9ATk5Ovt5TFpaWxMX+8wRFGVdnBn/1Ba4ebqSmpLDrr+18M3QMU//8A0dnzXPYvYn4uDiys7OxtFL/QWVlbUmMhu9KTHQMVtbqbbS0siI7O5u4uDhsbGzy1Zk/ez62trZUr5XX68DP34/xk77BxdWV2OgYVixZzucDBrF8/SrMLcwL1a7/L8z0jdDW0iY+VX0ofHxqEhZOpgXWuRsVyqxTmxjRsDu62jroaGkTEBrI0oBdqjI+tq40LVuNsbvnFriPwoiPiycnOztf70hLa0tizxZ8oywmOhpLa/Vkm6WVJdnZ2cTHxWFtY8P1q9fYvX0Xf65aUuA+XqZUKpk7czYVK1fCo+yr58AS/z3Rfx+frF86dllbWREWHl5QFVW9gupEv+bcWFwUpiYA5CSqTwGRk5iI1hv2xNV2dUbbyYGUteojRLIehZC9egPZkc/QMjXNHQ464jMSp/yOMiVFw94Kz1TfCG0tLeLT1Hu5JaQlY25Q8HDaoKjHzD+zhcH1u6qOW5ce32HlxeKbJzo6RsN3yNKKsIhXfIdiYrB+6bOxtrQk+oWOABXK+zFp/HjcnF2Ijo1l8coVDBj8OeuXLcfC3Bx3NzccHRyYvXAh40ePxtDAgNUb1hMdE0NUCX0Xxf9/kjwTpd6dO3c4f/48mzdvBkBHR4fu3buzZMkSjcmzK1eu0K1bN437vH//Pt9++y1nz54lKipK1eMsJCRELXlWqVIl1f87OuZ2e46MjMTX1/eV73Hr1i3S0tJo2bKl2vaMjAyqVq1aYJ3AwEB0dHSoUSPvh5Gvry8WL3RRvnjxIklJSVhbW6vVTU1NVRt2+jrz58/nzz//5NGjR6SmppKRkUGVKlX+cZ1nz54RGhrKgAED+OSTT1R1srKyMDdX/wH3YvsSEhJ4+vQp9evXVytTv379fENRX/VZZGdn8/PPP7N+/XqePHmiSmy9OF9H7969GThwIHPnzkVfX5/Vq1fTo0cP1fwJFy9eJCAgQK2nWXZ2NmlpaaSkpGD00rwNU6ZMUUsoArlJthr5f/S+yssdKBWApj6Vz+/0rL28n7Ss3DtuO2+dpE/1tmy5cYysnGy18jVd/AhLiCY0TvOEuUXipTtQyhdifVFOTg5b56ykYdc2WDvmn7vqRfoG+nz842gy0jMIvnmXg6u3YmlrjZufV1FGrrLn/FmmrFmlev7750OBfE3L/bxec8fNSN+A1eMnkJKeRsCd2/y+aQNlbGypXu7fS/4VRK9ZI4xG5M1FlTR+Mlk3Akswold4+e+OEkUhJs0t5+dLOb+8+fJ8KvgxZuBw9mzeyUfDPv3H+33Ry995pbLgfweq8vnao9SwHdasWM2h/Qf4Y/5stSR9nfovLEThVRb/ShXo2eV99u7aQ/fePd6+Ef+PvXxcVSgUGnuwlzG3pV+Ndvx1/QhXnwZhaWhK72qt+bh2Jxac3YqBjh5D6r/HwnPbSEwvvh/Q+b4/rzn+vPzded4+hUJBSnIKP333A6PHj8H8heuKV5n52+/cD7rPrAVzXl9YlHp79u7lp59/Vj2fMT13Lql8x64Ctr2OUqn813qj6FavglH3vMVVkhYs01DyVVdU6vTq1CT7aTjZIY/VtmcF3lX9f05YBEnBjzD7dgx6taqRfvTkW0b+DxQQvqYWOZnZ0KdaG7bdOM718PtYGJjSvWoL+tVsz+LzRbOIzJ4D+/lp2jTV8xk//wIUdK30Bt+HfN879Tr169RR/b8XUMnfny69erJz7176dO+Ojo4Ov34/mcm//kKzDu3R1tamVvXq1HupV6QQRUmSZ6LUW7x4MVlZWZQpk9c7QKlUoqurS2xsLJYF3FV63SSRHTt2xMXFhUWLFuHk5EROTg4VKlQgI0N9UtEXJ7N/fkB/nmh71Xs8L7Nr1y61uEFz76QXL3JftV9HR0eOHj2a7zWLN7wY3rBhA1988QXTpk2jbt26mJqa8ttvv6mGOP6TOs/bu2jRonxd+bVf6l1U0AS0+X905j/pvuqzmDZtGr///jszZsygYsWKGBsbM2LECLXPs2PHjuTk5LBr1y5q1qzJiRMnmD49bxLSnJwcJk2apNYr7jmDAiaHHzduHCNHjlTbpq+vz7cHFuUrW5DkjFSyc3IwNVBPypnoG+XrjfZcQloK8WlJqsQZQGRSLFoKBRaGJkQl5018raulQ2Unb/bf1fy5FpaRqTEKLa18vcxS4hMxNs/foyMjNZ2wh6GEP3rCvuW5yXClUglKJT/1HUWvsYNw988dJqXQ0sLKIXdSdAe3MkQ9ieD0joPFljxrVKkKFdzzelZkZOUO24hOSMDG3EK1PTYxAWvTVw9f0tLSwsUuNzno4+JKcFgYy/buLvHkWcaZ82TdfuGHQFTRztFUFEzNzdDS0iIuJlZte3xsHOaWFkX2PlpaWnj5ehP25OnrC7+GuYUF2tra+XqZxcbE5uuN9pyVtRXR0TH5ymtra+frMbZ25RpWLV3B9DkzKOv96u+/oaEhnl6ePA4NfWW5/yUJ6Slk52RjYWiitt3MIHe14oJ08W/E3Wch7LiVO3djSFwEaecz+L71J6y/ehBzAxPsTCwZ06S3qs7z89KaXhP5YvtMIpJiC9z3mzC3MEdLW5uYAr4jmubqs7K2zlc+LjYObW1tzMzNCX7wkPCwMMaPzpu8Xfn3ObR5vSas2LCaMi/0wvxj6u+cPnGKmQtmFbhQh/jvadSwIRVeGIWRkZl7nouKjlbr7RoTE4OVhmMXgLW1tVoPIYCY2NhX1ilKmTdukfjohWOcTu51ppapKdkJeb3PtExNUCYW/G9cja4uetUqk7pH8xxdKhmZZIeFo2X7djdK31ZiegrZOTmYG6pfM5sZGJOQVvCcax39GnAvKpTdt3PnBA4lkvSADL5p2Z9N145oPN69jUb1G1DhhZ70ed+hGGysX/gOxcVi9Ypef9ZWVgV8h+JeWcfQ0JCyHp6EPs5LcJb38WHN4iUkJSWRmZWFpYUFHw76FD+fkr3eKkpa/8NDJEsjSZ6JUi0rK4sVK1Ywbdo0WrVqpfZa165dWb16NUOGDMlXr1KlShw6dChfzyDI7W4eGBjIggULaNiwIQAnT7793aNXvYefnx/6+vqEhIQUOESzIOXLlycrK4sLFy5Qq1bu0Is7d+4QFxenKlOtWjXCw8PR0dHB3d39rWMGOHHiBPXq1ePzzz9XbXtdr7XX1bG3t6dMmTI8ePBANYfYmzAzM8PJyYmTJ0/S6IXlqU+fPq36G7yJEydO0LlzZ9XQ3pycHO7du6c25NXQ0JB3332X1atXExQURLly5ahevbrq9WrVqnHnzh28vN4sOaOvr/9WwzRflq3M4Ul8JN42LtwMz5sI39vGhZsRDwus8yg2jEpOZdHT1iUjO/eCxcbYghxlDnEvDUmq5OSFjpY2lx/fLWhXRUJbRwdHD2ce3riLb828noEPb9ylXPX8K0vqG+rzyZQxatsuHjzFo1v3eHdYPyxsX33hnZVZfIs3GBsYqK2gqVQqsTYz51zgLXxcclf2zczK4tK9uwx9p6um3RRIiZKMYlx44o2lppGTqnkYRWmgq6uLZzkvrl24Qu2G9VTbr128Qs36RXc3WalUEhz0ENe3mA9HE11dXcr5+nDhXACNmuYd7y+cD6BBowYF1vGvWIHTJ9QX1Qg4dx5fP190dPIuzdauXM2KxcuZOms6vn7lX95NPhkZGTwKflTgKor/q7JzsnkQ85RKDmUJCM3raVnJoSwXHhc8j56+ji7ZL82BmqPM6xn4ND6K0Ttmqb3evUoLDHT0WH5hN1EFrIT3NnK/U+W4cD6Ahk3yzo0XzwdQX8N3yq+iP2de+k5dOHcen/K53ylXN1eWrFGfg3Tx/EWkpKQwdORw7P5OkCmVSv6YOoOTx47z+9w/cHRyKlRbROlhbGysdgNTqVRibW3NufPn8f072ZCZmcmly5cZOljz6suVKlbk3Llz9O7ZU7Xt3LlzVKpY8GJHRS49g5x09ZsVOfEJ6Ph4kf38hoi2NjplPUjdsee1u9OrWgl0tMkMuPz699bWRtvejqz7wf8g8DeXnZNDcEwYFRw8ufg4b67FCg6eXHpS8OIdejq6+eZuVh23iij/YmxkpLaCplKpxNrKinMXLuBbLndu18zMTC5dvcrQTzX36q7k78+5CwH0fmG6mHMBAVTy17wqeUZGBsEhj6j6wkiU50xMcm+OhDwOJfDOHT4bMOCt2ybEm5DkmSjVdu7cSWxsLAMGDMg3/O+9995j8eLFBSbPxo0bR8WKFfn8888ZNGgQenp6HDlyhG7dumFlZYW1tTULFy7E0dGRkJAQvvoHy2i/6j1sbGwYPXo0X3zxBTk5OTRo0ICEhAROnz6NiYmJ2hxgz/n4+NCmTRs++eQTFi5ciI6ODiNGjFDr4daiRQvq1q1Lly5d+OWXX/Dx8eHp06fs3r2bLl26qA2J1MTLy4sVK1awb98+PDw8WLlyJQEBAXh4eBSqzsSJExk2bBhmZma0bduW9PR0Lly4QGxsbL4eWi/68ssv+e677yhbtixVqlRh6dKlXLlypcCVRl8V319//cXp06extLRk+vTphIeHqyXPIHfoZseOHbl586Yq0fbchAkT6NChAy4uLnTr1g0tLS2uXbvG9evX+eGHH944lrdx4sEVuldtyeP4SEJiw6nt6o+FoQlnH+VOmNrGty7mBsasv3IQgMtP7tLcuwbvV27O/rvnMNYzpH35+gSEBuYbslnLxY+b4Q9IyUwrltifq922CdvmrcbR0wVnL3cuHzlNfHQs1ZrnJj6OrN9JYmw8nQb1RqGlhZ2L+qpPxmYmaOvqqG0/tf0gjh4uWNpbk52Vzf0rgVw/GUCbfpqHYhc1hUJBz2bNWbp3Ny52drjY2rNs724M9PRoXTMvifPdssXYWlgypEtuj8Wle3fj5+ZOGRtbsrKzOHXjOrvOnuWrnm+eVP43KUxN0LKzQfH3BMhaf/c8yYmJQxkbVyIxdejWhVlTplPWx4ty/uU5uHMvURHPaNWxHQCrFy0j5lk0Q8ePUtV5GJSbgE5LTSMhLp6HQQ/Q0dHBxT038blx+Rq8y/vg6FyGlJQU9vy1neCgBwwYPih/AP/A+7268+N3k/Hx88W/YgV2bNlGZHgEnbvmDi1aMHseUc+i+HrStwB0frcLWzb8xezf/6BDl07cvH6DXdt2MuHHiap9rlmxmsXzF/HtD9/h4OhIdFTuj0VDI0PVMPI5M2ZTv2F97BzsiYuNZcXi5SQnJ9OmQ7siadfbMNTVx9ncVvXcycwGbxtnEtKSC9ULqyjsCjzNkHpduR/zlHvPQmnuXQMbY3MO3DsPQM8qLbEyMmPO6b8AuPj4DgPrdKald02uhuUO2/ywRlvuRYUSm5rbsyU0Xn04fHJGaoHb/6luPbszZeIP+Pj64l/Rn51btxMREUnHd7sAsGjOfJ49i2L8xG8A6PRuZ7Zu3MycGbPo0LkjN6/fZPf2XXwzOXfOTj19/Xzzlpn8PVfUi9tn/DadQ/sO8sNvP2FkbKTqUWlsbIK+wT+/YSRKH4VCQc8ePVi6bBmuLi64uLiwdNkyDAwMaNM6b0GfCRMnYmdry5C/E2o9undn4KBBLFuxgiaNGnH0+HHOnT/P4oULVXVSUlLUegg9efqUO3fvYm5mhoNDwYsiFUb6sVMYtGxKTlQ02c+iMGjZFGVmJhkXr6jKGPV+n5z4eNJ2qq8kqlenBpnXbxU4h5lB53Zk3ghEGRuHwtQEg1bNUBjok3H+YpG34WV775zh0zrv8DAmjKCoxzQpWw1rI3MO38t9726Vm2FpaMrCs9uA3GvEj2p1oJlXda6H3cfC0JTe1VpxP+pJvhusRUWhUNCzWzeWrl6Fq7MzLs7OLF21CgN9fdq0yJu6ZsKPP2Jna8OQgbkJtR7vvcfAYcNYtmY1Teo34Oipk5y7eIHFs/OGiM+YO4eG9erjYG9HbGwci1esIDk5mQ5t2qjKHDxyBAsLCxzs7Ql6cJ9ps2bRuEED6tR88xvwQrwNSZ6JUm3x4sW0aNEiX+IMcnue/fTTT1y6lH8S6XLlyrF//37Gjx9PrVq1MDQ0pHbt2vTs2RMtLS3WrVvHsGHDqFChAj4+Pvzxxx80adLkrWJ71XtA7gT6dnZ2TJkyhQcPHmBhYUG1atUYP368xn0uXbqUjz/+mMaNG2Nvb88PP/zAt99+q3pdoVCwe/duvv76az766COePXuGg4MDjRo1wt7e/o3iHjRoEFeuXKF79+65J72ePfn888/Zs0fz3bk3qfPxxx9jZGTEb7/9xpgxYzA2NqZixYqMGDHilfEMGzaMhIQERo0aRWRkJH5+fmzfvh1vb+83ag/At99+y8OHD2ndujVGRkYMHDiQLl26EB8fr1auWbNmWFlZcefOHXr16qX2WuvWrdm5cyfff/89v/76K7q6uvj6+vLxxx+/cRxv62pYEEZ6BrTwromZvjHhidEsOb+TuL9/nJnpG2FhmDf8MSM7k0Vnt9G5QiOGNXyflIw0rj0NYu+ds2r7tTG2wMPaiUV/X1AVJ786VUlJTObkln0kxSVg6+xIjy8HYm6Tm4xJiksgPurtfjhnpmewd9kmEmPi0dHTxdrJjs6f9cGvTsHzBRaXvq3akJ6ZyS9r15CYkoy/hyezhn6h1kMtPCZGbYhxWno6v6xdTWRcLPq6urg5OPJ9/wG0qlGzoLcocbp1a2L85TDVc5NvchfeSF2xjrSV60skpvrNGpGUkMimFeuIjYnBxd2N8T9PxNYht2dMbHQsUZHP1OqM+SSvDQ/uBnHy0DFs7e2Yuy53YvTkpGQWTJ9NXEwsRsbGeHh5Mmnmz3iXL5qhHc1btSAhPoHlfy4lOioaj7Ke/DJjKg6OuT8So6OiiQiPUJV3KuPErzOmMuv3P9iycTPWtjYMHz2CJs2aqsps3bSZzMxMJoz9Ru29+n3yER8NzL2r/iwykknffEd8XDwWlhb4VfBn/pKFqvf9N/naujH7nbwbJcMa5Ca7dwee4cfDyzVV+1eceXQDU30julZsgqWhKaFxEfx8ZKVqqLuFoQnWxnnXGcceXMZQV4/WPnX4oHobkjPSuBnxkNWX9ml6iyLXrGVzEuITWLFkGTFR0bh7evDz77/mfaeio4mMyPtOOTo5MeX3X5k7YxbbNm3B2saGoaOG07hZk7d63+1/bQXgi8+GqW0f++24EknKiuL14QcfkJ6ezs+//kpiYiIV/P2Z/ccfaj3UwiMi0NLSUj2vXKkSP06ezLwFC5i/YAHOzs5M+fFHtTmDbwUGMuiF0Qq/z5gBQIf27Zk4YUKRtyP90DEUuroYvtcZhZEh2Y9CSZq3GNLzprnQsrTIN9Gslq0NOmU9SJr7Z4H71bIwx/jDniiMjVAmJZP1KJTE6XP/lZtL50JuYaJnRGf/RlgYmvA4PpJpx9YQnfL3ccvABGujvOPWyYdXMdTRo0W5mvSs2oqUjDRuRT5kw5XiWTTquQ979sr9Dv0+ncSkJCqUL8/sqdPUeqiFR0agpZV3rVS5QkV+nPAd8xb/yfzFi3F2cmLKxIlU8MsbEhrx7Blffz+JuPh4LC0sqODnx9J583F8IfkaFR3N73NmEx0bi421Ne1bt+bjvvk7KPyX/S+vbFkaKZSaZksVQgjx1sbsnF3SIRTarx2GsCJgd0mHUWh9a7Yj4fDxkg6jUMyaNSK25TuvL1jKWR7YwrWn90o6jEKp5ORNREJUSYdRaPZmNtSfUzQ97krSqcHz6b7q29cXLMXW95nM0+Je0OVf4GQhc6KVJokvTPfxX2VqYUHc8LcfFVKaWMz8mb5rvy/pMAptRc8JJL5w8+e/yNThzToYlEa3NUzlUtJ87TWPWPr/TOv1RYQQQgghhBBCCCGE+N8kwzaFEEIIIYQQQgghShEFMmyzNJGeZ0IIIYQQQgghhBBCaCDJMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBCliJZC+jqVJvJpCCGEEEIIIYQQQgihgSTPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQpQiCoWstlmaSM8zIYQQQgghhBBCCCE0kOSZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiFJES4ZtlirS80wIIYQQQgghhBBCCA0keSaEEEIIIYQQQgghhAYybFMIIYQQQgghhBCiFFEgwzZLE+l5JoQQQgghhBBCCCGEBpI8E0IIIYQQQgghhBBCAxm2KYQQQgghhBBCCFGKKGS1zVJFep4JIYQQQgghhBBCCKGBJM+EEEIIIYQQQgghhNBAhm0KIYQQQgghhBBClCJaMmyzVFEolUplSQchhBBCCCGEEEIIIXKFxISVdAgFcrVyLOkQSoT0PBNCiCK0/caJkg6h0DpVaMjDqCclHUahediU+c+3w8OmDAmHjpV0GIVm1rwx6y8fKOkwCqV71ZYsC9hV0mEUWr+a7em+6tuSDqPQ1veZTP05g0o6jEI5NXg+ewPPlHQYhdamfF0SA++UdBiFYlrehzWX9pV0GIXWq1prph1bW9JhFNqoxj1JvHKtpMMoFNMqlVh0dltJh1Fon9TpzIqA3SUdRqH0rdmupEMQ/09I8kwIIYQQQgghhBCiFJHVNksXWTBACCGEEEIIIYQQQggNJHkmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQohRRIMM2SxPpeSaEEEIIIYQQQgghhAaSPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRimjJapulivQ8E0IIIYQQQgghhBBCA0meCSGEEEIIIYQQQgihgQzbFEIIIYQQQgghhChFFDJss1SRnmdCCCGEEEIIIYQQQmggyTMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQpYistlm6SM8zIYQQQgghhBBCCCE0kOSZEEIIIYQQQgghhBAayLBNIYQQQgghhBBCiFJEgQzbLE2k55kQRejOnTtMmTKF9PT0kg5FCCGEEEIIIYQQRUCSZ0IUkcTERN555x08PDzQ19cvsv26u7szY8aMf1w/ODgYhULBlStXiiwmIYQQQgghhBDif4UM2xTF4vTp0zRs2JCWLVuyd+/et64/ceJEtm7d+p9K+Hz44Yd8/PHH9OjRo6RDEf8hp/ce4ei2fSTGxmHv4kSn/j3w9CtXYNmHgffYtXITz56Ek5GRgaWNNXVaNaJRx1YFlr9y8jyrf1+If80q9PtqSJHFvGPzNjatWU9MdDRuHu4MGjaYClUqaSx/7fJVFs6ay6OHwVjb2NCtV3fav9NJ9fqXQ77g+uWr+erVrFubyVOnAJCSnMKKRUs4ffwkcbFxlC3nxaARQ/Ap71sq2gCwZf0mdm7ZzrOISMwszGnYpBH9B32Cnr4eANevXGXTmvXcu32PmOhoJkz5nnqNGvyj+N+GUqlk0a4dbDl1gsSUFPzdPRjTvRdlnZw01jl8+RLL9u0h9FkkWdnZuNjZ0ad5S9rVrlvs8QKc33+ckzsOkRQXj62zI237dsW9vFeBZR/dvs/+NduIehpOZnomFrZW1Ghen3rtm6nKZGdlc3zbfq4cO0dibBzWjva06tUZ7yp+xdqOiwdOcW73EZLiErAt40CLPl1w8fV8bb3Hdx+y6oc52Do7MOCn0artdwKucXr7QWIjosjJzsHS3oZa7ZpQsUGNYmtDq3K16OjXAAtDEx7HRbL8wh5uP3uksXwD90p08m+Ig6kVKZnpXH16j5UX95KUkZqvbD23igxv+D4BoYFMPbam2Nrwpio7etGrait87VyxMbbgq93zOPEw/7GpNDmx+xCHt+4hITYOB5cyvDugF2X9fQose//WXXas2EDEkzAy0zOwtLWmXuumNO3U+l+NWalUsnDdWrbs309ichL+3uUY++kgyrq6aqxzPySE+WtWc/v+fcKeRTLyowH06tQ5X7nI6GhmrVjG6UuXSEtPx82pDN8OGUp5r4KPH0UpYP8JTu88RGJcAnbODrTu2xU337KvrRdy5wHLvv8DOxdHBv08ttjjfNHNo+e5tu80KfGJWDrZUbd7Gxy93Qos+/TOQ3ZOW55v+/uTBmPhaAvAw0u3uLznBAmRMeRk52BuZ0XFlvUoV7dysbbjZUqlkoWbNrLl0EESk5Lw9/Zm7EcfU9bFRWOdLYcOsuv4Me6HhgJQ3sOTz3v2pIKX978S8+VDpwnYfYzk+ERsnOxp2rsTzj4er6335G4w66bMx8bZng8nf6H2WlpyKif/2su9CzdIS0nF3MaKJj3b41m5fHE1gwsHTnL2hfNeyz5dcH2Dfwehdx+w8u/z3ic/fanafjvgGqe2H1A779Vp14SKDWoWWxtKE4WstlmqSPJMFIslS5YwdOhQ/vzzT0JCQnB9xQXR/xebN28u6RD+czIzM9HV1S3pMErMlVPn2b50He980ht3Xy/O7j/O4h9nMnrG91jaWucrr6evT/22zXB0c0bPQJ+Hgff4a8FK9PT1qdOqsVrZ2Mhodi7fiEf5or3oO3bwCAtmzmHwqOH4V6rA7q07+Gb0VyxctRQ7B/t85cOfhvHt6HG07diOMRPGc/PaDeZMm4m5hQUNmjYCYMJPk8jMzFLVSYiP5/N+n9CwaV6bZvw8leAHD/lywjisbWw4tO8A44Z/ycLVS7CxtS3xNhzed5Al8xcxctwYylf050lIKNN+/BWAT4cPBiAtNQ0Pr7K0bNeGH76e+FYxF8aKA/tYc/ggEz7oh6u9PUv27GLIrN/Z9N1kjA0MCqxjbmxM/zbtcLd3QFdHmxPXr/P9yuVYmppR18+/WOO9fvoie5b/RYcB3XH18STg4ElW/TyXIdO+wcLGKl95PX09arduhINrGXT19Qi5c5/tf65DT1+PGi1yk5OH1u/g6skAOg/shY2TPUFXA1k7bRGffD8SRw/NP6YK49bZyxxctZXW/briXM6Dy4dPs/63hXzyy1jMbSw11ktLSWXH/DW4+3uTHJ+o9pqBsRH1OrXA2skebR1tgi7fYtfCdRibmeBZ6Z8lkl+lrlsFPqzelsUBO7kTGUIL7xqMa/YBI3fMIjolPl95H1tXBtfryvKLe7j4+DZWRmZ8UrsTn9bpwrTja9XK2hib06daawIjgos87n/KUFefoOjH7L59mp/aDirpcF7r0slzbFmyhm6f9sXD15vT+44wf/J0xs36CasCziH6Bvo0bNcCJ3cX9PT1eBB4jw3zlqGvr0+91k3+tbiXb9nMmu3b+G7YcFydyrB44wYGfzeBv+bOxdjQqMA6aenpODs40KJ+faYvWVxgmYSkJAZ8NZYaFSsy89vvsDI353F4OKbGxsXZHABunLnE3hWbaf9RN1x8PLl48BSrf57H4KnjMS/guPVcWkoqW+euxLNCOZJe+vde3O4H3ODM+r006NUeey9XAo9fYM8fq3h/4mBMrC001nt/8hD0DPJGWBiY5v199Y0NqdquERYONmhra/Po+l2OLd+KoZkxLv7Fn8B8bvn2bazZtZPvPhuMq6Mjizf/xeAfJ/PX7zMxNjQssM7FmzdpXa8BlXzKoa+rx/Lt2xjy4w9smDYdO6v8/56K0u1zVziyegct+nahTDl3rh45x1/TFtN/yijMrDWfL9JTUtm9cB1ufl4kJ6h/f7Kzstj42yKMzEzoNOQDTKzMSYyJU/vsitqts5c5sGorbfq9h0s5Dy4dPs263xby6S9fvfa8t33+Gjz8vfP9OzA0NqJ+p5bY/H3eu3f5JjsWrsPIzJSyxXDeE+JVZNimKHLJycls2LCBzz77jA4dOrBs2TK115ctW4aFhYXatq1bt6oy68uWLWPSpElcvXoVhUKBQqFQ7SMkJITOnTtjYmKCmZkZ77//PhEREar9TJw4kSpVqrBy5Urc3d0xNzenR48eJCbmHYjT09MZNmwYdnZ2GBgY0KBBAwICAlSvHz16FIVCwb59+6hatSqGhoY0a9aMyMhI9uzZQ/ny5TEzM6Nnz56kpKSo6jVp0oQRI0aonq9atYoaNWpgamqKg4MDvXr1IjIy8pV/u8jISDp27IihoSEeHh6sXr06X5n4+HgGDhyInZ0dZmZmNGvWjKtX3/zOeHZ2NgMGDMDDwwNDQ0N8fHyYOXNmkdRZunQp5cuXx8DAAF9fX+bOnat67fnw0Q0bNtCkSRMMDAxYtWoVOTk5fP/99zg7O6Ovr0+VKlXUeis+r7d582aaNm2KkZERlStX5syZM6oy0dHR9OzZE2dnZ4yMjKhYsSJr1+b9UFuwYAFlypQhJydHLd5OnTrx4Ycfqp7v2LGD6tWrY2BggKenJ5MmTSIrK4vicnzHAWo2a0DtFo2wd3ai80c9sLC25My+owWWL+PpStWGtXFwLYOVnQ3VG9fFp4o/DwPvqZXLyc5hzcxFtOreCSv7t0ssvc7m9Rtp3aEtbTu1x9XdjUEjhmBrZ8fOLdsLLL9r6w7s7O0YNGIIru5utO3Unlbt27Jp7QZVGVMzM6ysrVSPywEXMdA3oFGz3ORZeno6J48dZ8DgT6lYpTJOzmX4YEA/HBwdNL7vv92GwBs38a9YgaatmuPg6ED12jVp0rIZd2/fVZWpWbc2/QYOoEGTRm8d8z+lVCpZe/gg/du0o1nVang5lWFi3/6kZWSwL+CcxnrVy/nQtEpVPBwdcba1o2ez5niVKcOV+0HFHvPpXYep1rQu1ZvVw7aMA+0+fA8za0sCDpwosLyjhwuV6tfAzsURSztrKjeshVel8jy6fV9V5urJ8zTq0opyVf2xsrehVquGeFUuz6ldh4utHef3HKNyk9pUaVrn/9i76/Aorq+B49+4EXcXkpAEdw+BAsEpTrFSpIKXtkBpKVAoNWgpbSmU4gWKu7u7S7AQCBYg7rr7/hHYZLObYElDf+/5PE+eB2bvzN7Znd2ZPXPuudi5OtKsdwcsbK04u/twkettm7eSoLrVcPXVzP7wDPKlXM1K2Lk6Yu1oR80WwTi4O3P3WkSJ7EPrwHrsCT/DnpunuZ/4hIWntxKTmkhz/1pa2/vZufM4JZ5t147xJCWea08i2XXjJD62rmrtdHR0GFq/Cysv7OFRcmyJ9P1VHIu8zJzjG9h/61xpd+WF7Fu/nTpNg6nbrBFO7i50HNATazsbDm/Tfly7+XhSPbgOzh6u2DraUzOkHgFVKxJ+5dq/1melUsmyjRt4r0tXmtSth6+nJxOHjyA9I4NtBw4Uul55Pz+G932P0IbBGOprv+m2cM1qHO3sGD9sOBX8/XFxdKRW5cq4OTuX1O6oHNu8l6qN61Dt6fdWi3c7YWlrzcmdh4pcb9Nfy6lQvwZufl4l3seCLuw8SrkG1QhoWB1rZ3vqdWtJGWtLruw/VeR6JuZmmFqaq/50dfN+TrqU88a7aiDWzvZYONhQ8a062Lg6EnUzsqR3R0WpVLJsy2be69CRJrVr4+vhwcTBQ3KPsUOFvx+Thw2nS2go5by88XJ15csPPkCpVHLi4qUS7/OpbQepGFyTSiG1sXVxpEnPdpjbWHFu97Ei19uxYA2Bdavi7KuZpHDxwEnSk1N5e9i7uPp7YWlnjZu/Nw4ehWedv67jW/dRJaQ2VZ+e95o/Pe+dec55b+u8lZSvWw1XXy+NxzyDfAnId96r1aLR0/PerRLaC1FSZs6cibe3N8bGxlSvXp2DB7Vf1z2zf/9+td9ls2bN0mizevVqgoKCMDIyIigoiLVr15ZU9wEJnokSsHz5csqVK0e5cuXo1asX8+fPR6lUvvD63bp145NPPqF8+fI8fPiQhw8f0q1bN5RKJW+//TaxsbHs37+fnTt3Eh4eTrdu3dTWDw8PZ926dWzatIlNmzaxf/9+vvvuO9Xjo0aNYvXq1SxcuJAzZ87g6+tLaGgosbHqF/ATJkzgt99+48iRI9y9e5euXbsyffp0li5dyubNm9m5cye//vprofuRmZnJpEmTOH/+POvWrSMiIoK+ffsWue99+/bl9u3b7Nmzh1WrVjFz5ky1gJtSqaR169ZERUWxZcsWTp8+TbVq1Xjrrbc0+l8YhUKBm5sbK1as4MqVK3z11VeMHTuWFStWvNY6c+bM4YsvvuCbb74hLCyMKVOmMG7cOBYuVE/xHz16NMOGDSMsLIzQ0FB++eUXpk2bxtSpU7lw4QKhoaG0a9eOGzfUA0JffPEFn376KefOncPf35933nlHFdhKT0+nevXqbNq0iUuXLvH+++/Tu3dvjh/PDQ506dKF6Oho9u7dq9peXFwc27dvp2fPngBs376dXr16MWzYMK5cucLs2bNZsGAB33zzzQu9ri8rOyub++F38K+insXjX7k8d66FF7KWuvu3Irl9LRyf8urDPHeu3IiZhTm1mjYstv5CbqbgjWvXqVZLfYhYtVo1CLt0Wes6YZcua7SvXrsGN65eKzQwuX3TVho1bYzx07vDOdk5KHIUGBoaqrUzNDLi8oWXu6gtqX0oX7kiN65d59qVMAAe3n/AyaPHqVWv9kv1r7jdj4kmJjGROoF5wxMNDQyo5ufPhVsvduGpVCo5cTWMO48eUa2Eh69kZ2fzMOIuZSupDynxrRRI5PUXCxA9jLjL3eu38ArK62t2Vjb6BbJcDQwNiLz6Yp+1l5WTnU1UxD28K6h/Nr0rlOPejduFrndh/wniHsXQsKP2odj5KZVKbl+6TmzUEzxeYCjoy9LT1cPHxoULD9UDpucf3sTfXnu23vUnkdiaWlDFJfe1tzQ2o7ZHec7eVw/OdK7YmMT0FPaGnyn2fv9/kZ2Vzd3w25SrUkFtebkqFYi4+mJB7nu37hBx9Qa+Ff697I37jx4RExdHnSpVVMsMDQyoVqE8F66Gvda2D5w4QaCvL6N/+I5m7/amx8fDWbtj+2v2+PlysrN5EHFXIwvGp1IA94r43jq77xhxj6IJ6dSipLuoISc7m+jIB7gFqQ+ncwsqy6Pwu0Wuu2bSbBZ/OpVNPy3kwdXC90+pVHI/7BYJj2IKHQpaEu4/fkxMfDx1KuUNFTU0MKBaUBAXrr94oDg9I5Ps7Gwsy5QpiW6q5GRn8+j2fbwKnC+8Kvjx4ObtQte7eOAk8Y9jqPd2U62Ph5+9gouvJ7sXrWXm0K+ZP3Yaxzbu0biRXFxysrN5GHEP7wrqw8Z9nnPeO7//OHGPognu+Pzh40qlkgjVee/5Q0H/Fxig90b+vazly5czYsQIvvjiC86ePUvDhg1p2bIlkZHaA+sRERG0atWKhg0bcvbsWcaOHcuwYcNYvXq1qs3Ro0fp1q0bvXv35vz58/Tu3ZuuXbuqfv+VBBm2KYrd3Llz6dWrFwAtWrQgOTmZ3bt307Sp9i/3gkxMTChTpgz6+vo4OTmplu/cuZMLFy4QERGB+9OaBYsXL6Z8+fKcPHmSmjVzx74rFAoWLFiAubk5AL1792b37t188803pKSk8Mcff7BgwQJatmwJ5AZ9du7cydy5c/nss7wx9pMnT6Z+/foA9O/fn88//5zw8HB8fHJ/pHTu3Jm9e/cyerT2+hT9+vVT/dvHx4cZM2ZQq1YtkpOTKaPlRHz9+nW2bt3KsWPHqF27tuq1DAzM+xG5d+9eLl68yOPHj1WTEkydOpV169axatUq3n///ee+vgYGBkycOFH1f29vb44cOcKKFSvo2rXrK68zadIkpk2bRseOHVVtngWh8md3jRgxQtXmWf9Hjx6tqhX3/fffs3fvXqZPn87vv/+uavfpp5/SunVrACZOnEj58uW5efMmAQEBuLq68umneXWBhg4dyrZt21i5ciW1a9fGxsaGFi1asHTpUt566y0AVq5ciY2Njer/33zzDWPGjFH11cfHh0mTJjFq1CjGjx//3Nf1ZaUkJaNQKDC3tFBbXsbKgqR4zeFQ+U0e+BnJiUkoFDk069qO2k3zMpkirt7g5O5DfDztq2Lvc2J8Qm69CRv11Htra2tiY7QHb+Ni47C2LtDexpqcnBwS4hOwtVMfCnHtShi3b0Xw8ed576epmSmBFYJYumAxHp4eWNlYs2/XHq5dCcPFTT2jpbT2IaRpExLi4vnko+EolUpycnJo06Ed3Xr3eKn+FbeYhEQAbMzVjzMbcwuiYmOKXDc5LZVWY0eTmZWFnq4uo7v3oHZgydYIS03M/VyUsTRXW25maU5yfGKR604d9CUpickocnJo3LkV1ZvUUz3mWymQI1v24BXoi7WjHbcuXePqqQsoFC9+Y+el9iMpBaVCgZmW/UiJ1z40KzbqCXuXb6LXuCHo6hV+YZqemsZvQyeSk52Njq4uoX074V1Re42r12FhZIqerh4JaclqyxPSkrFyMde6zvXou/x6eBUjGnbDQE8ffV09Tt4NY/7Jzao25ew9aFy2GqO3zNS6DfFiUpKSUCgUWFipf7bNLS1Iiiv6HPJV/49JTsg9h7Ts9jZ1mzUqsn1xiomPA8C2wAgEW0srHj558lrbvv8oitXbttKzXXve69yFyzduMPWvORgYGNCmcZPnb+AVpSbmft4Lfm+VsTQnvJChmDEPH7N72UbemzC8yM97SUlPTkWpUGJioT6k1cTCjNTEZK3rmFqa07B3W+w9nMnJzuHGsfNs+nkhbT/pi7O/l6pdZmo6f4+eRk5WDrq6OtTv0VojSFeSYuLjAbC1tFRbbmtpycMn0S+8nd+WLsHexoZaFSsWZ/c0pD09X5haqv82MLU01xi6/0xc1BMOrtxK9y8+KvT4SXgSS2RYOIF1q9JxZD/iH0Wza9E6FDk51Hu7WbHvx7Pz3sucv5+d93qPG/rc896MoRNU570WfTvjUwLnPVFyfvrpJ/r378+AAQMAmD59Otu3b+ePP/7g22+/1Wg/a9YsPDw8VJPmBQYGcurUKaZOnUqnTp1U22jWrBmff/45AJ9//jn79+9n+vTpaiOQipMEz0SxunbtGidOnFDV/9LX16dbt27MmzfvhYNnhQkLC8Pd3V0VOAMICgrCysqKsLAwVfDMy8tLFTgDcHZ2VmVvhYeHk5WVpQqKQW5gqFatWoSFqd/xrFQpr3i4o6MjpqamqsDZs2UnTpwotL9nz55lwoQJnDt3jtjYWNWdnsjISIKCNH+AhoWFoa+vT40aeRkuAQEBakNcT58+TXJyMra26gGHtLQ0wsNfPINi1qxZ/PXXX9y5c4e0tDQyMzOpku8u8Muu8+TJE+7evUv//v0ZOHCgap3s7GwsC1y85N+/xMREHjx4oPZ+ANSvX19jKGr+98P56RCMx48fExAQQE5ODt999x3Lly/n/v37ZGRkkJGRgVm+Oic9e/bk/fffZ+bMmRgZGbFkyRK6d++O3tOT9enTpzl58qRapllOTg7p6emkpqZiaqpeh+XZc+T3SrOsFiwEqlQCRRcHHTR5FBnpGURev8WWv1dj5+RA1Ya1SU9LZ9kvc+n8UR/MLLT/uC0WBfqsRFl0QdOC7ZXPFmuus23TVrx8vCkXpJ559Nm4z/n52x/p+XZXdPV08fX3I6TZW4Rfv6GxjdLYh/NnzvHPoiUM/mQ4AeUDeXDvPrN++R3r+Yvp+V7vV+vjK9h64jjfLvtb9f+fPxrytJ/q7ZQoNRcWYGpkzJLPx5GakcHJa2H8vHolrnb2VPf/Fy5YNbr2nPcH6D9hBJnpGdy9cZudy9Zj42RPpfq53zet+nZm/Z/LmDFyEjo6Olg72lE1pA5n9xU9JOa1aTnOtL3uCoWC9b//TcNOLbB1dihyk0bGRvT75hOyMjK5ffkGu5esx8reFs+gkqknVDC8qKOjU2g2uaulPX1rtGL1xb2cf3ATaxNzelYLZUDtdsw+tg5jfUOG1O/Mn8fXk5SRqnUb4mUVPJ6UzzuFMHzKWDLS0rl9PZyNi1di5+xI9eA6JdK7rfv3MeWPvEDp9C9zb+zoUPCz8dyvpOdSKJUElfVlcO8+AAT4lOVWZCSrt20t0eBZnoLnCe3vhUKhYM1viwjp3PK5n/eSpvE+FHE/wcrJDisnO9X/Hcu6kxyXyPkdR9SCZwbGhnQa9yFZGZk8CIvg2MrtWNhb4/ICxe9fxdaDB5kyZ7bq/9PH5P6QLnjOUD7/tKeycP16th8+xOzxEzEqkPVeUjTOcUrt5z2FQsGmWcuo16EZNk6Fl+ZQKpSYmpeh+Xud0NXVxcnbjeT4RE5u2V8iwTMVjfOe9us9hULBut8Xv/B5b8A3n5KZkcnty9fZtWQd1iV43hPPV9jvIG2/hTIzMzl9+jRjxoxRW968eXOOHDmidftHjx6leXP1LPzQ0FDmzp2rqpl99OhRPv74Y402zwJuJUGCZ6JYzZ07l+zsbFxd87JBlEolBgYGxMXlZm/o6upqXHhnZWU9d9vKQk4iBZcXLECvo6OjClw9e17NE6rmtvNvR0dHp8jtFpSSkkLz5s1p3rw5f//9N/b29kRGRhIaGkpmZmah+6etb/kpFAqcnZ3Zt2+fxmMF68gVZsWKFXz88cdMmzaNunXrYm5uzo8//lhkiuvz1nn2OsyZM0eVNfeMXoE7SWZaCve+yvuR/3mnTZvGzz//zPTp06lYsSJmZmaMGDFC7bVu27YtCoWCzZs3U7NmTQ4ePMhPP/2kelyhUDBx4kS1rLhnjLUUVf/222/VsvEAxo8fT7XOb2m01cbMvAy6uroaWWbJCUmYF8gkKOhZHTNnTzeSEhLZuWIDVRvWJibqMXGPo5n/bd5w4mfH1egu7/PZr5Oxc3r1C3ULK0t09XSJK5ChFR8Xr5HJ9Yy1jTVxsQXbx6Gnp4dFgay79PR09u/aS58BfTW24+Lmyo+/Tyc9LY2UlFRs7WyZMu5rHJ2dNNqWxj4smjOfJqHNaNkuNzvSu6wP6enpzPj+J955t6daTZiSFFypMhW88n6gZD4dVhqTmIidpZVqeVxSErbmRR9nurq6uDvkHi/l3N25HRXFgu1bSzR4ZmqR+7lILpCdlZKQrJHFVZC1Q+6POkcPV5ITkti7aosqeGZmYU6PT98nKzOLtOQUzK0t2bl0PVYOJVME2tTcDB1dXVIK3G1PTUjGzFIz8zgzLYOoiLs8unOfHQtzbz4plUpQKvmuz6d0H/0BXuVzh0Lq6OqqfjA5eroSc/8RRzfuLvYfEYkZqeQocrAyUe+vhbEZCenaM1PeLh/M9SeRbLySW98mMv4R6Scy+Tp0IMvP78LSuAwOZawZFdJTtc6z7/OlPSbw8YZfeJQcV6z78b/KzDy31lRigXNIUkIS5laWhayVy/bpOcTFy52k+ES2/bOuxIJnwbVqUcE/bzha5tPJYaLj47CzySukH5sQj80LXscUxs7aGu8Csyl6u7mx56j2H2fFxdQi9/OenKD+eU9JTKaMlhtZmWnpPLgVycPb99iyYBWQ93n/uucIen8+SGPId3EzLmOKjq6ORpZZelIKphYvPkzRwduNm8cvqC3T0dXF8ul3q527M3FRTzi39VCJBc+Ca9Sggl/e91/eMRaPXb6s8djEBGzynQcLs3jjBuavW8PML7/Cz7Pkh5uaqM4X6ue91MRkre9FZloGjyLu8fjOA3YvXg/kHT/T3htDl88G4BHki5mVObp6emrXHzbODqQkJJGTnY2efvGGAZ6d9wpmmaUmJGk9f2emZfAw4i5Rd+6zvcB5b0qfT+gx+kOt5z0nT1ei7z/iyMZd/y+CZ3rKN3O2zcJ+B02YMEGjbXR0NDk5OTg6qk/K5ejoSFRUlNbtR0VFaW2fnZ1NdHQ0zs7OhbYpbJvFQYJnothkZ2ezaNEipk2bphEp7tSpE0uWLGHIkCHY29uTlJRESkqKKpBy7tw5tfaGhobk5OSoLQsKCiIyMpK7d++qss+uXLlCQkKC2tDGovj6+mJoaMihQ4fo0SN3OFVWVhanTp1SK/b/uq5evUp0dDTfffedqq+nThVdgDUwMJDs7GxOnTpFrVq5xZivXbtG/NP0c4Bq1aoRFRWFvr4+Xl5er9S3gwcPUq9ePQYNGqRa9rysteet4+joiKurK7du3VLVEHsRFhYWuLi4cOjQIYKD84YeHjlyRPUavIiDBw/Svn171XBhhULBjRs31I4LExMTOnbsyJIlS7h58yb+/v5Ur15d9Xi1atW4du0avi84nf3nn3/OyJEj1ZYZGRmx/Ubh2Yj56Rvo41rWkxvnr1CxdjXV8usXrlC+ZpUX2gbkXmhkP71QdHB15pOf1U9k25auJSM9nfb93sHKtvAZv16EgYEBfuX8OXvyNPUb5dVTO3vyNHUa1NO6TmCF8hw/fFRt2ZkTp/ALKId+gQu3A7v3kZWVSZPQwrNUjU1MMDYxISkxidMnTtJ/0AdvxD5kZKRrBMie3Sh4mZqPr8vM2FhtBk2lUomthQXHw65Qzj23oHBWdjZnblxn6NuageKiKJVKVTCupOjr6+Ps7U74xasE1cqrVxN+8SoBNV5i6IxSSU6WZl8NDA0wsLEiJzuHKyfOUb5ONS0rvz49fX2cvN2IuHSdcjXzsmYjLl3Hv7rmbKVGJkYM+PYztWWndx3mzpWbdBz2Lpb2hX92lWjf19eVo8jhVuwDKjmV5eTdvMzsSk5lOXXvqtZ1jPQNyClwU0nx7MYQOjxIiObTjeq1QrtVaYqxviELT20hOrXoobkij76BPu5lvbh27jKV6+Sdy66du0zF2lVffENKJdkvcAPzVZmZmKrNoKlUKrG1tub4uXME+OQO5cvKyuLMpcsMzVfi4VVUDgjkzv37asvuPHiAs33JZnfp6evj4u3OrQvXCKyZ97116+JVylXX/N4yMjHmox/UMzBO7jhExJXrdB3RDystM6WWRJ/tPFy4fyUc76p510r3wsLxqvziNfBi7j7UGG6oQZlbD6ukmJmYqM2gqVQqsbWy4viFCwR45wbssrKzOHPlCkN79CpyW4s2rGfumtX8NvZLgsr+O0NN9fT1cfRy5fblG/jVyKthePvyDXyraj9fvPuN+vXnud1HuRt2k7ZDeqvOF65+XoQdO4dSoUDn6fVJ3KNozKzMiz1w9mw/nJ+e9wI0znsVNNobmRgx8NtRastyz3s36DisL1ZFnPcA1bWvKB2F/Q4qyoskSzyvfcHlL7vN1yXBM1FsNm3aRFxcHP3799cYqte5c2fmzp3LkCFDqF27NqampowdO5ahQ4dy4sQJjRk5vby8iIiI4Ny5c7i5uWFubk7Tpk2pVKkSPXv2ZPr06WRnZzNo0CAaNWqkNhSwKGZmZnz00Ud89tln2NjY4OHhwQ8//EBqair9+/cvrpcCDw8PDA0N+fXXX/nwww+5dOkSkyZNKnKdcuXK0aJFCwYOHMiff/6Jvr4+I0aMwCTfBUHTpk2pW7cub7/9Nt9//z3lypXjwYMHbNmyhbfffvuFXgdfX18WLVrE9u3b8fb2ZvHixZw8eRJv78LvCL7IOhMmTGDYsGFYWFjQsmVLMjIyOHXqFHFxcRpfrvl99tlnjB8/nrJly1KlShXmz5/PuXPntM40WlT/Vq9ezZEjR7C2tuann34iKipKI6jas2dP2rZty+XLl1WBtme++uor2rRpg7u7O126dEFXV5cLFy5w8eJFJk+erPGchaUmv4zgts34Z8Zc3Mp64VnOh+M7DxAfHUvd5iEAbPl7NQmx8bwzLPfYPLx1D9Z2Nti75g5bvX31Bgc27KB+y9zhKAaGBjh5qNcAMzbL/dFScPmr6titCz9O+ha/gHIEVghi6/pNPH70iNYd2gIw7485xERH89m43GETrd9uy4bV65g9YyYt27Um7NIVtm/aypgJX2pse/umrdRr2AALS82siVPHT4JSiZuHOw/u3eev32fj5uFO89YvX2i5JPahdv26rP1nFWX9fQkIyh22uWjOfOo0qKfKvkxLTePBvbwfdlEPHhJ+/SbmFuY4OKnfOSsuOjo6vNOkKfO3b8XdwRF3BwcWbNuKsaEhoTXzskTHL5iHvZUVQ54G1OZv20qQpyeu9vZkZ2dz+PIlNh8/yph3Xjw4/qrqtW7Cmt8X4erjgbu/N6d2HSYhOpaaTyfA2LlsPYmxCXQanDs06/j2/Vja2WDvkvsa3rkWzuFNu6ndIq+O090bt0mKi8fJ043E2Hj2rtqCUqmkQbvXKydQlFotG7Hxj6U4+7jj6uvFub1HSYyJo+pbuUHafcs3kRSXSNsPe6Cjq4u9u/qMgGYWZdA30FdbfmTDLpy93bFytEORnU34uTAuHTpFaN/OJbIPm8OOMKReJ8JjH3DjyV3e8quBnZklO5/eJHinSjNsTC34/UhuAd/T967xfp32NPOryfmHucM2363RkhvRd4lLy82quJugPut0Smaa1uWlwcTACDfLvGFQLhZ2+Nm5kZie8kZmxIW0D+Xv6X/i4euFVzlfjuzYR1x0DPVDGwOwcfFKEmLi6DUitx7qwS27sLazxcEt95i6FXaDPeu3Edy65D4HBeno6PBO23bMX7UKDxcX3J1dmL9qJcZGRrTIdxPtq+k/42Brw5DeuQG1rKwsbt3NLWSflZ3Nk9hYrt26hamJMe7OubMH9mjXnn5jRjFv5QqaNWjA5es3WLtjO18MGlzi+1WndWPW/r4YFx933Py9Ob37CAnRcdRo2gCAXcs2kBSXQIdBvdHR1cXBXX3GQzPLMugbGGgsL0mVmtVl77w12Hm64FjWnbADp0mOTSCwUe615Ik1u0iJT6Rxv9zzwsVdRzG3tcLaxYGcnBxuHrtAxJkwmn2YVy/37NaD2Hu6YGFvjSI7h8hLN7h+9DwNe7b+1/ZLR0eHd1q1Zv66NXg4O+Hu5Mz8dWtyj7EGDVTtvvrtVxxsbBjSI/e8tnD9emat+IfJw4bj7GBP9NP6fKbGxpgam2h9ruJSo0VDtsxejpO3Gy6+HlzYe5ykmHgqN8nNCD2wYivJcQm0+qB77vnCTT3r3tTCDD0DfbXllZvU5cyuw+xZsoGqzeoTFxXN8Y17qNZMvVRKcardMoT1fyzB2ccdN18vzu49QkJMHNWenvf2Lt9EUlwC7T7s+fRzoHne0zPQV1t++Ol5z9rRlpzsHMLPhXHx0Ela9O1SYvshnu9lfgfZ2dmhp6enkRH2+PFjjcyxZ5ycnLS219fXV5UvKqxNYdssDhI8E8Vm7ty5NG3aVCNwBrmZZ1OmTOHMmTNUq1aNv//+m88++4w///yTpk2bMmHCBLVi9506dWLNmjU0btyY+Ph45s+fT9++fVm3bh1Dhw4lODgYXV1dWrRoUeSMl9p89913KBQKevfuTVJSEjVq1GD79u0aBcFfh729PQsWLGDs2LHMmDGDatWqMXXqVNq1a1fkevPnz2fAgAE0atQIR0dHJk+ezLhx41SP6+josGXLFr744gv69evHkydPcHJyIjg4+IW/KD788EPOnTtHt27dci8w3nmHQYMGsXXr1tdaZ8CAAZiamvLjjz8yatQozMzMqFix4nMz+oYNG0ZiYiKffPIJjx8/JigoiA0bNuDn9+Kz+o0bN46IiAhCQ0MxNTXl/fff5+233yYhQX04S5MmTbCxseHatWuqzMNnQkND2bRpE19//TU//PADBgYGBAQEqApbloQq9WuRmpTCrpUbSYxLwMnDhf5jh2P9dLhDYlwC8dF5Rd2VSiVblqwh9nE0enp62Dra07JnR+o0//eKPTdq2pjExESWzF9EXEwsnj5eTJr6LY5PJ/eIjYnl8aO8H8FOLs5Mmvots2f8zqY167Gxs+WjEUNo0DhYbbv3Iu9y+cJFpvz8g9bnTU1OYf6sOUQ/iaaMhTkNGjWk7wf9NbLXSmsferzbGx0dHRb+OY+YJ9FYWltRu35d+r6fF5S/fvUao4fmBZL//PUPAJq2DOXTL7VPPFIc+jQLJSMzk+//WUJSairlvbz5degItQy1qLhYdHTz7tSlZ2bw/T9LeRwfh5GBAZ6OTnzdtz/Na9QssX4+U7FeddKSU9i3eitJ8Yk4uDvTa8wg1V3opLhEEqLzhtEqlUp2LdtA3JMYdHV1sXG0o9k77anRNO8HQnZWFruXbyLucTSGxkb4VSlPp8F9MDEz1Xj+4hJUpyppSakcXruD5PhE7N2c6frZQCztcvcjOT6JxOiXC8hkZWSyfcFqkmLj0Tc0wNbFkbYf9SSozktkGr2Eo3cuYW5kSqeKIVibmHM3/hHf7V1MdErud6uVSRlszfLO+ftvncXEwJDQcnXoXb0FKZnpXH4UwZIzJT/jYXEIsPfktw55n9FhDXJ/nG0JO8o3exYWtlqpqdagNimJyWxfvp6EuAScPVz5YNxIbJ4OYU6MjSfuSb5ziELJxr9XEfvoCbp6etg5OdC2dxfqhYb8q/1+t0NHMjIy+G72LJKSk6ng789vEyaqZahFPXmCbr7sgSexsfQcOUL1/8Xr1rJ43Vqqla/An99MAaC8nx9Tx4zlt8WL+GvFclwcHfmk/wBaNgop8X2qULcaaUkp7F+zneT4BBzcnek5+kPV91ZyfCIJL/l5L2lla1YgPSWVM5v3k5qQjI2LAy2H9sTc1grIHW6XHJt3HZWTncOxVTtIiU9C30AfaxcHWgztgUfFvCGm2RmZHFq6mZS4RPQN9LFysqNJ/46UramZeVSS3m3XnozMTL6b+xdJKSlU8PXlt7FfqmWoRcVEo5vvvLdq53aysrMZ/dM0tW0N7NyFD7pon1CruATUrkJacipH1+cGLO1cneg4sh+Wdrm/TVISEkmMjX+pbVrYWtHls4HsXbqRhV/+TBkrC6o1b0Ct1iHFvwNPBdWpSmpSCofWbled97p/9n6+897Lfw6yMjLZtmAVSbEJT897DrT/qFeJnffeOCU0O+q/ydDQkOrVq7Nz5046dOigWr5z507at2+vdZ26deuyceNGtWU7duygRo0aqlI+devWZefOnWp1z3bs2EG9etpHkhQHHeW/OZ5ECCH+x224dLC0u/Da2lVoSET0/ec3fMN527n+5/fD286VxN37S7sbr83irUYsP7uztLvxWrpVbcaCfLNG/lf1rdmabn+Pe37DN9zyXpOo//uHpd2N13J48Cy2hR19fsM3XIvAuiSFXSvtbrwW88ByLP2PBHmL0qNaKNP2l8wsc/+mTxq9Q9K5C89v+AYzr1KJOcfWl3Y3XtvAOu1ZdHJLaXfjtfSp2aq0u/DKkvKV73mTmL9kjcrly5fTu3dvZs2aRd26dfnzzz+ZM2cOly9fxtPTk88//5z79++zaNEiACIiIqhQoQIffPABAwcO5OjRo3z44YcsW7ZMNdvmkSNHCA4O5ptvvqF9+/asX7+eL7/8kkOHDmnU4C4uknkmhBBCCCGEEEIIIYpdt27diImJ4euvv+bhw4dUqFCBLVu24Pl0Uo6HDx8SGRmpau/t7c2WLVv4+OOP+f3333FxcWHGjBmqwBlAvXr1+Oeff/jyyy8ZN24cZcuWZfny5SUWOAMJngkhhBBCCCGEEEK8Wf6HBgkOGjRIbfK5/ArWPwdo1KgRZ86cKXKbnTt3pnPnkqn7qo3u85sIIYQQQgghhBBCCPH/kwTPhBBCCCGEEEIIIYQohAzbFEIIIYQQQgghhHiT/A8N2/xfIJlnQgghhBBCCCGEEEIUQoJnQgghhBBCCCGEEEIUQoZtCiGEEEIIIYQQQrxJFDJs800imWdCCCGEEEIIIYQQQhRCgmdCCCGEEEIIIYQQQhRChm0KIYQQQgghhBBCvEmUitLugchHMs+EEEIIIYQQQgghhCiEBM+EEEIIIYQQQgghhCiEDNsUQgghhBBCCCGEeJMoZbbNN4lkngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEIIUQgZtimEEEIIIYQQQgjxJlHIsM03iWSeCSGEEEIIIYQQQghRCAmeCSGEEEIIIYQQQghRCBm2KYQQQgghhBBCCPEmkdk23yg6SqW8I0IIIYQQQgghhBBviqSHUaXdBa3MnZ1KuwulQjLPhBCiGPVcOqG0u/DalvSYQFLE7dLuxmsz9/bio9U/lnY3XssfnT4jvs+Hpd2N12a1aBb7bp4u7W68lhDf6ny68dfS7sZrm9p2KA/iH5d2N16bi5UD28KOlnY3XkuLwLrU//2///k+PHgWU/ctKe1uvJZPQ3oy9/jG0u7Ga+tfuy1Lz2wv7W68th7VQplxcEVpd+O1DGvYlaFrfyrtbry2XzuMZPqB5aXdjdcyIrhbaXdB/I+Q4JkQQgghhBBCCCHEm0SpKO0eiHxkwgAhhBBCCCGEEEIIIQohwTMhhBBCCCGEEEIIIQohwzaFEEIIIYQQQggh3iQKmdvxTSKZZ0IIIYQQQgghhBBCFEKCZ0IIIYQQQgghhBBCFEKGbQohhBBCCCGEEEK8SZQybPNNIplnQgghhBBCCCGEEEIUQoJnQgghhBBCCCGEEEIUQoZtCiGEEEIIIYQQQrxJZNjmG0Uyz4QQQgghhBBCCCGEKIQEz4QQQgghhBBCCCGEKIQM2xRCCCGEEEIIIYR4kygUpd0DkY9kngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEIIUQgZtimEEEIIIYQQQgjxJpHZNt8oknkmxP+YR48e8fXXXxMXF1faXRFCCCGEEEIIIf7zJHgm/pO8vLyYPn36v7o9HR0d1q1b91rPM2HCBKpUqfJa2yiKUqmkd+/eGBkZYW1t/VLrFvdr+rKCg4NZunRpqT1/fp9++inDhg0r7W4IIYQQQgghhHgDSPBM/Kvatm1L06ZNtT529OhRdHR0OHPmzL/cKzh58iTvv//+v/68xe3bb7/Fx8eH0aNHv/S6pfkabNq0iaioKLp3765aVjCYp1Qq+eSTTzA3N2fPnj0AhISEMGLECI3tLV26FD09PT788EOtzzd79mwqV66MmZkZVlZWVK1ale+//171+KhRo5g/fz4RERHFs4NCCCGEEEII8TIUyjfz7/8pqXkm/lX9+/enY8eO3LlzB09PT7XH5s2bR5UqVahWrdq/3i97e/t//TlLwtixY1953dJ8DWbMmMF7772Hrq72eH5OTg4DBw5k48aN7Nmzh5o1axa5vXnz5jFq1Cj++OMPfvrpJ0xNTVWPzZ07l5EjRzJjxgwaNWpERkYGFy5c4MqVK6o2Dg4ONG/enFmzZqkF1UpCU7+atA6sh5WJOfcTHrP49DauPYkstH09r4q0CayPk7ktqVnpXHhwk6Vnd5CcmQZA47LVaOBdGXcrBwAiYh+y/PxubsXcL7F9UCqV/Pn336zduoWk5GTKlwtg9ODBlPXyKnSd8Nu3mbV4EVdv3OTh40eM/OADenToqNbmzMWLLF61krAbN4iOjWXqV+MJqVevxPYj2KcKzfxrYmlchoeJ0aw8v4ebhbxufaq3pK5XBY3lDxKjmbRzvsbyGm4B9K/dlnMPbjD76Lri7roG4w5tMAxpgI6ZKTnht0ldtAzF/YdFrmMU2gTDJsHo2tqgTEom8+RZ0leuhaxsVRsdaytMunZAv3J5dAwMUUQ9InXuYnJuF37Mvop9m3ayY80mEmLjcfFwpev7ffCrEKC17ZnDJziwZRd3b90hOysbZ09X2vboRPnqldXapSansG7RCs4eOUlqcgp2jvZ0HtCTijWrFmvf86vnWZEQ36qYG5nxKCmW9ZcPEhH7oND2erq6NPOvRXXXcpgbmRGfnszuGyc5eTdM1aahd2XqelXE2sSclMw0Ljy8yZawo2Qrcoqlz+tWrWX538uIiYnBy9uLIR8Po1LVyoW2P3fmLDOn/8btiNvY2dnSvXcP2nV8W2vbPTt2MWncROoHN2Dyj9+qli9ZsJiD+w4QeecORkZGlK9YgfeHfISHp0ex7JM2B7fsZs+6rSTGxePk7krH/j0oW76c1rbhV66zcdEKHt1/SFZGJtb2ttQLbUzjdqEl1r/XUdnZlx5VmxPg4IGdmRVjtvzBwYjzpd0tlSv7TnJ+x1HSEpKwdnGgTtfmOPt5am374NptNv+0SGN5l4mDsHKy01gefvISe/5ag2flcjQf1K3Y+57f2V2HObFlH8kJSdi5OtKkZ3vcy/k8d7171yNYNuUP7N2c6Dt5pGr5xYMn2TpnuUb7kX99i76hQbH2vSgndxzkyKbdJMUn4uDmRGifTngGlH3uepHXbrHg6xk4uDvz4XcvfxP3dVzce5yz2w+RGp+MjYsDDbq3xMXfS2vb+1cjWDd1nsbyHpOGYe2cey0cc/8RJ9bv4cmdByTFxNOgW0sqNyu56w/I/W5/y68GFsZmPEyMYc3FfYQXcg3Sq1ootT3Layx/mBjNlN25nxcnc1taB9bD3coBWzNLVl/Yy77wsyW5CwBc2nuCc9sPkZqQjLWLPfW7FfFeXItgw1TNa6buXw9VvRdXDpzi2tFzxD54DIC9pwu1OzTF0dutxPZBiMJI5pn4V7Vp0wYHBwcWLFigtjw1NZXly5fTv39/AI4cOUJwcDAmJia4u7szbNgwUlJSCt1uZGQk7du3p0yZMlhYWNC1a1cePXqk1mbDhg3UqFEDY2Nj7Ozs6Ngx74d6wSynGzduEBwcjLGxMUFBQezcuVPjOUePHo2/vz+mpqb4+Pgwbtw4srKy1Np89913ODo6Ym5uTv/+/UlPTy/y9dm3bx86Ojps376dqlWrYmJiQpMmTXj8+DFbt24lMDAQCwsL3nnnHVJTU1Xrbdu2jQYNGmBlZYWtrS1t2rQhPDxc9fiiRYsoU6YMN27cUC0bOnQo/v7+qte14Gugo6PD7NmzadOmDaampgQGBnL06FFu3rxJSEgIZmZm1K1bV+15wsPDad++PY6OjpQpU4aaNWuya9euIvc5OjqaXbt20a5dO62PZ2Rk0KVLF3bu3MmBAweeGzi7ffs2R44cYcyYMQQEBLBq1Sq1xzdu3EjXrl3p378/vr6+lC9fnnfeeYdJkyaptWvXrh3Lli0r8rleVx2P8vSu1oL1lw/yxdZZXH0cyaiQXtiaWmpt72/vwUd1OrA//CyjN//OjEMr8bF1ZUDtvNcu0NGLo3cu8c2uhYzfMZfolATGNO6NtYl5ie3HwpUrWLp2DaMGDWbhjF+xtbFm8NjPScl3jBaUnpGBm5MzQ/r1w9baRmubtPR0/Lx9GDVocEl1XaW6Wzm6VG7CtqvHmLJ7ITej7zG4QedCX7cV53czetNM1d/nW/4gOSONM/euabS1MbWgY8UQbjy5W9K7AYBR6+YYtXiLtMX/kDT+OxQJCZQZNRyMjQpdx6BuLYy7dCB93WaSxkwkde5iDGtXx7hLB1UbHVNTzL/8DGVODilTfyPp84mkLVuFsoj3+VWcPHCUFXMW0arb23w5Ywq+FQL4dfz3xD6O1tr+xuWrBFatyNCJoxj7y2TKVQri96+nEhl+W9UmOyub6V9+S8yjJ3wwdjhf/zmV3sMGYGWr/dgrDpVd/GhXoSG7bpzi5wP/cCv2AQNqt8XKpEyh6/Su3hI/O3dWnN/D93sXs+TMdh4n59WvrOrqT6vAeuy8foIf9v7NivO7qeziR6vAusXS5z07d/P7zzPo9V5v5iyaS6UqlRn98Wc8inqktf3DBw/4/ONRVKpSmTmL5tKzb29+nfYL+/fs02gb9TCKP2bMpFIVzUDc+bPneLtzB36fO5sfZ/xMTk4Oo4aNJC0trVj2q6Azh46zdt5Smndpy2c/fU3ZIH9mTfqJ2CcxWtsbGRvRsFVThn0zls9/nULzLu3YsmQ1R7bvK5H+vS4TAyNuxtzjpwP/lHZXNISfvMzRFdup2qoBHb58HydfD7b9upTk2IQi1+vy9WB6/jBS9WfhoPnZTYqJ5/iqnTj5llzQ9ZmwY+fYvWQDddo1pe/XH+Pm78OqqX+RGF10vdmM1DS2/PkPnkG+Wh83NDFm0Iyv1P7+zcDZpaNn2LZoDQ3fbs4H347Co1xZlnz3BwnRsUWul56axrqZi/Gp4P8v9TTPjRMXOfTPVmq0akTXrz7C2d+Tjb8sJikmvsj1ek4eTt9po1R/lo62qseyM7OwsLembqdmmFoW/p1dXKq5+tOxUgjbrx3n+71/Ex5zn4/qdSj0GmTVhb2M3TJL9Tdu65+kZKZx9n7edb6hnj7RqQlsuHyIhPTkEt8HgJsnL3J4+VaqtW5El68+wtnPk80z/n7ue/HOpGG8O/Uz1V/+9+LBtdv41apE+0/eo+OYgZjbWLLp50UkxyWW8N4IoUmCZ+Jfpa+vT58+fViwYAHKfLOHrFy5kszMTHr27MnFixcJDQ2lY8eOXLhwgeXLl3Po0CGGDBmidZtKpZK3336b2NhY9u/fz86dOwkPD6dbt7w7jps3b6Zjx460bt2as2fPsnv3bmrUqKF1ewqFgo4dO6Knp8exY8eYNWuW1mGQ5ubmLFiwgCtXrvDLL78wZ84cfv75Z9XjK1asYPz48XzzzTecOnUKZ2dnZs6c+UKv04QJE/jtt984cuQId+/epWvXrkyfPp2lS5eyefNmdu7cya+//qpqn5SUxMcff8zJkyfZtWsXSqWSDh06oFAoAOjTpw+tWrWiZ8+eZGdns23bNmbPns2SJUswMzMrtB+TJk2iT58+nDt3joCAAHr06MEHH3zA559/zqlTpwDU3pfk5GRatWrFrl27OHv2LKGhobRt25bIyMKzUg4dOqQKzhWUnJxM69atuXz5MocPH9bapqB58+bRunVrLC0t6dWrF3PnzlV73MnJiWPHjnHnzp0it1OrVi3u3r373Havo2VAXfbdOsO+8DM8SIzm7zPbiElNoKmf9mPT19aNJynxbL9+nCcp8Vx/Esmem6fwsXFRtZl5ZA27bpzkTnwUDxOj+evEBnR1dCjv9Py74a9CqVSybO063uvenSYNGuDr5cXETz4lPSODbXv3Frpe+XLlGD5wIKEhIRgaaP9hUL9mTQb17UuTBg1KpO/5veVXgyO3L3L49kWikmJZeWEvcalJBPtU0do+PTuTxIwU1Z+ntROmhsYcvXNJrZ0OOrxXszWbwg4TnVL0j8PiYhT6FukbtpJ16hyK+w9I/XMhOoaGGNatVeg6+r4+ZN8IJ+voSRTRMWRfCiPz2En0vfN+hBq1aY4iNpa0vxaRc+t2brsr11AUEtR6VbvWbqF+8xAahDbG2cOVbu/3wdrOlv1btAfiu73fh9DObfHyL4ujqzMd3u2Og4sTF47nlQA4vHMfKUnJDBo3Et+gctg62ONbPgB3H+3ZLsWhkU8VTkRe4UTkFR4nx7Hh8kHi05Kp61lRa/ty9h6UtXXlr+MbuBF9l7i0JO7GP+JOXJSqjZe1M7djH3L2/nXi0pK4/uQu5+7fwM3SsVj6vHLZclq1a03r9m3x9PZiyMhhODg6sGH1Wq3tN6xZj4OTI0NGDsPT24vW7dvSsm1rVixRD9rk5OTwzVdf0/f9fji7Omts54dfptGiTSu8fbzx9fdl9LjPeRT1iOtXNYPRxWHf+u3UaRpM3WaNcHJ3oeOAnljb2XB42x6t7d18PKkeXAdnD1dsHe2pGVKPgKoVCb9SMv17XcciLzPn+Ab23zpX2l3RcHHXUcrVr0pAg2pYO9tTt1soZawtubL/VJHrmZibYWpZRvVXMFNdoVCwd+5aqrUNwdz+5Wq+vopT2/ZTqVEtKofUxtbVkbd6tcfcxoqze44Wud72+asJrFMVF1/t3z06OlDGykLt7990bPNeqjauQ7Um9bB3daLFu52wtLXm5M5DRa636a/lVKhfAzc/r3+no/mc23mEwAbVCAqugY2LAw27t8Lc2oJL+04UuZ6JhRlmluaqv/zHlKO3G/W7tMCvViX09Et+oFZj3+ocvX2Jo3cu8SgpljUX9xGXlkQDb+1Zv+nZmSRlpKr+PKwdMTEw5li+a5DI+Eesv3SAM/evkZ1TPJnJz3N+5xECGlQjqGF1rJ3tadC9FWWsLbi8/2SR65lYmGFqaa76y/9eNB3YmQqNa2Hn4Yy1sz2N+rRHqVRyP+xWSe/Om0GpfDP//p+S4Jn41/Xr14/bt2+zb98+1bJ58+bRsWNHrK2t+fHHH+nRowcjRozAz8+PevXqMWPGDBYtWqQ1c2vXrl1cuHCBpUuXUr16dWrXrs3ixYvZv38/J0/mfll/8803dO/enYkTJxIYGEjlypULHeK4a9cuwsLCWLx4MVWqVCE4OJgpU6ZotPvyyy+pV68eXl5etG3blk8++YQVK1aoHp8+fTr9+vVjwIABlCtXjsmTJxMUFPRCr9HkyZOpX78+VatWpX///uzfv58//viDqlWr0rBhQzp37szefIGJLl260KlTJ/z8/KhatSrz5s3j4sWLakMRZ8+ezcOHDxk2bBh9+/Zl/Pjxz83ieu+99+jatSv+/v6MHj2a27dv07NnT0JDQwkMDGT48OFq72PlypX54IMPqFixIn5+fkyePBkfHx82bNhQ6HPcvn0bR0dHrUM2J02axLlz5zh48CAeHs+/k6xQKFiwYAG9evUCoHv37qpsuWfGjx+PlZUVXl5elCtXjr59+7JixQpVoPEZV1dXVf9Kgp6uHt42Llx8GK62/GJUOH527lrXuRF9FxtTCyq7+AFgYWxGLfcgzj24obU9gJGeAXo6uqRklEwGx/2oKGLiYqlTrbpqmaGhIdUqVuRC2JUi1nxz6Ono4mHlxJVHt9WWhz2+jY+t6wtto55XRa4+vkNsqvqd0NaB9UjOSOPI7YvF1d0i6drboWtlSfalvGF+ZGeTfe0G+n6FB1Czr99E38sDPR8v1XYMKlcg63zehbhB1cpkR0RiOmQgFr/9QJlJYzEMKd7AZnZWNpE3IwiqWklteVC1ioSHXX+hbSgUCtLT0jEzz7sxcOH4aXwC/Fg6cz6f9vyQiYNGsWX5OhQ5iiK29Or0dHRxtXTgeoEh2NefROJloxk8Aijv5M3d+Mc0LludcU3fY3TjXrQJqo++rp6qTUTsA9ysHHC3yg2W2ZhaEODgSdjj26/d56ysLK5fvU6N2upB1hq1anLp4iWt61y5eJkatdTPIzXr1OJa2FWys/OG+y6auwAraytat2vzQn1JSc7NiLawKP7AQXZWNnfDb1Ouivqw63JVKhBx9WYha6m7d+sOEVdv4FvIUGKhXU52DtGRD3ENUh8C6Brkw6PwojNz10z+k78/+4nNPy3iwTXNeqRnNx3A2NyUgAYlNwz7mZzsbKJu38erQJaVd0V/7t+4Xeh6Fw+cIP5xNPU7NCu0TWZ6JrM+nszM4ZNYNW0uj26XXMmFgnKys3kQcZeyldSPa59KAdy7XngN2LP7jhH3KJqQTi1KuosacrKzeXLnAR7l1TP53Mv7EvWcY2r51zOZ/8n3rJs6n3tXSy8Qo6eji7uVI1cfq9+svfroDt62LoWspa6OZwWuPb5DXFpSSXTxheS+Fw9xL/D5zn0vii7tsPLrP1j46Q9smDaf+895L7Izs1Dk5GBkZvLafRbiZUnNM/GvCwgIoF69esybN4/GjRsTHh7OwYMH2bFjBwCnT5/m5s2bLFmyRLWOUqlEoVAQERGhkX0UFhaGu7s77u55AYegoCCsrKwICwujZs2anDt3joEDB75Q/8LCwvDw8MDNLW8sfd26mkNiVq1axfTp07l58ybJyclkZ2erXeiHhYVpFKyvW7euWtCrMJUq5f1wdHR0VA0Nzb/sxIm8O2qRkZFMmjSJ48ePEx0drQoERUZGUqFC7g8Ea2tr5s6dS2hoKPXq1WPMmDEv3Q+AihUrqi1LT08nMTERCwsLUlJSmDhxIps2beLBgwdkZ2eTlpZWZOZZWloaxsbGWh9r3rw5u3btYsqUKS80E+iOHTtISUmhZcuWANjZ2dG8eXPmzZunCoA6Oztz9OhRLl26xP79+zly5Ajvvvsuf/31F9u2bVMF8UxMck/KqYUMScvIyCAjI0NtmZFR4cPiCjI3MkVPV5eEdPXhyAlpKVg6ax8icCP6LjOPrGFo/c4Y6Omjr6vH6XtXWXhqS6HP071KU2LTkrgUVTIXhjFxuUM5bAvM7mprbc3DR49L5DmLWxkjE/R0dUkq8F4kpadg6Vh4ZuYzFsZmlHf0Yd6JTWrLfWxdqedVkW92LyzW/hZFxzL3O0iRoB7EUyQkomtX+BDFrOOnSLMoQ5kvPwV00NHXI2P3fjI2bVe10bW3w6hJMBnbdpGycRt6Pl6Y9OqKMiuLrMPHi6X/yYlJKBQKLKzUhy6bW1mSGPdimXs7124mMz2D6g3rqJY9iXpMzKMr1A6pz9AJo3j8IIplfyxAkaOgTY+ORWzt1ZgZPj2mMtS/P5Iy0jA3MtW6jo2pJd42zmQrsllwagtmhsZ0rBiCqYExK87vBuDcgxuYGZowuH4ndMgNwh+5fYG9N0+/dp8T4hNQ5ORgbaP+Wba2tSbumPYhW7ExMVjbqgfbrG2sycnJISE+Hls7Oy6ev8CWDZv562/NGkPaKJVKZv7yGxUrV8K7bPFnzKYkPTvG1ANz5pYWJD3nGPuq/8ckJyShUOTQstvb1G3WqNj7978sPTkVpUKJqYX696qJuRlpidpLc5halqFhrzbYeTqTk5XNjeMX2fzzYtqMfBdn/9zsraibkVw7fJaO4z4o8X0ASE1KQalQYGapPqTO1MKclATtwYvYqCfsX7GFHl8MRldPT2sbW2cHWg3shr27Mxlp6ZzecZAlk3+j7+SR2DiVfF3a1MTc/SpTYL/KWJoTXsh+xTx8zO5lG3lvwvBC96sk5R5TCkws1K+bTCzKkFpIn02tyhDSpz0Oni7kZGdz7eh51k9bQIfP+hVam6skmT27BskocA2SkYpFIeeL/CyMzAhy9C7yWvDf8Oy9MC34XpibkZqgfdioqaU5jXq3w/7pe3H92Hk2/LSQ9p++V+h7cWz1TsysLHALKpkRFUIURYJnolT079+fIUOG8PvvvzN//nw8PT156623gNysgQ8++IBhw4ZprKct+0ipVKKjo1Pk8meBkBeh1JKKWnD7x44dU2WyhYaGYmlpyT///MO0adNe+HmKYpBvGJuOjo7a/58ty58p1aZNG7y9vZkzZw4uLi4oFAq8vLzIzMxUW+/AgQPo6enx4MEDUlJSnntXv2A/Clv2rC+fffYZ27dvZ+rUqfj6+mJiYkLnzp01+pGfnZ0dcXHaa4S89dZbDBs2jPbt25OTk6M2VFWbefPmERsbqzZBgEKh4OzZs0yaNAm9fBd2FSpUoEKFCgwePJhDhw7RsGFD9u/fT+PGjQGIjc39sVjYRArffvstEydOVFs2fvx4eMlyH0rUjzcdHaCQbGhXC3v6VG/J2kv7ufAwHCuTMvSo0px+tdow57hmdl+bwPrU9azI5N0LyFJka9niy9u6Zw9TZvyi+v/0r3NrxRX8BOZ+/orlKf81Wj75Gu+PNnU9K5CWlc75fBmARvoGvFezFUvObCcls2Sy/iC3Vpnpez1U/0+e9nvuPwp+j+noFHpcAegH+GPctiVpC5eRHR6BnqMDJr26oohPIGP90wtyXR1yIu6Qvmo9ADl37qLn6ozRW42KLXiW198C/1dqWabFiX1H2LRkDYPGjVQLwCkVSsytLOg1dAC6erp4+vkQHxvHjtWbSyR4VpiiPhPPvk+XntlBenbud+aGy4foU6Mlay7uI1uRQ1lbV97yq8Gai/uIjHuEnZkl7SsE0zQ9lV03ih4W8+J9LNBJZdEd1ynwxjw7h+ro6JCaksqU8ZP5dOwoLK2sXuj5f/nxZ8JvhvPr7N9fptuvQMtB9pxjbPiUsWSkpXP7ejgbF6/EztmR6sF1il5JvBYrJzu1iQEcy7qTEpvAhZ1Hcfb3JDM9g73z1tGwdxuMyzw/0FCytJ/3FAoFm/5YQv2OzbFxLjwI5uLrqTac083Pi4VfTefMzsM07f12CfS3MFo+04Xs15rfFhHSuSW2zg7/Ut+003jdlcpCv7esneyxzheMdCrrQXJsAme3HyqV4NkzrzoQrrZnEGlZGVx48GKZsyVOy8uu7XcagLWTHdb5Pt/P3otzOw5rfS/ObjvIzRMXaf/Ze+gXUvLjf46yZDLkxauR4JkoFV27dmX48OEsXbqUhQsXMnDgQNUXa7Vq1bh8+TK+vtqLqRYUFBREZGQkd+/eVWWfXblyhYSEBFWWWqVKldi9ezfvvffeC2/vwYMHuLjkpksfPapew+Lw4cN4enryxRdfqJYVrI0VGBjIsWPH6NOnj2rZsWPHXmifXkZMTAwXL15k5syZ1K5dG4D9+/drtDty5Ag//PADGzduZMyYMQwdOpSFC4s3I+bgwYP07duXDh1yi4wnJyc/d9hj1apViYqKIi4uDusC2UsAzZo1Y9OmTbRt2xaFQsFvv/2m9SQcExPD+vXr+eeffyhfPm8GIoVCQcOGDdm6dStt2mgfMvRsOG3+SSkuXbqEgYGB2rby+/zzzxk5cqTaMiMjI/qt/lZr+4KSMlLJUSiwMla/Q2dhbFZoYdd25RtwPTqSzWFHALgb/4j52ZsZ36wfK8/vIT7feq0C6tGufEO+3bOIu/Hai32/iuA6dagQkDcjXWZm7iQZ0XFx2NnmFXiNjY/HRsv7+SZKzkgjR6HAwlg9G8Lc2JTE9OcXw6/nVZHjkVfIyXeBY29mjZ2ZFR/VywvMPDtuf+vwCRN2zCU6Jf61+5519jxJ4fmG0xjkntZ1rSzJyZd9pmthjjKx8OK6xp3aknnkOJn7DwOguPcAjAwxfa8XGRu2glKJMj6BnAIzduY8iMKgRvHNkFzGIrfWScEss6SEBI1stIJOHjjKohl/8sGY4QRWVa8rZmljhZ6eHrp6ecPDnd1dSYyLJzsrG32D4r0cSsnMPaYKZpmVMTTRyEZ7Jik9hYT0ZFXgDOBxciy6OjpYmZQhOiWB0HJ1OHPvGicic4dERyXFYKhnQOfKjdl94+Qr//gCsLSyRFdPj9gY9SyzuNg4jWy0Z2xsbTXax8fFo6enh4WlJbdvRRD18CFjP83LdFY+vdnyVr0QFq1Ygqtb3tDoGVN/5sjBw/wy+1fsHUvmx7iZ+dNjLL7gMZaE+XOOMVvH3B/cLl7uJMUnsu2fdRI8ewnGZUzR0dUhtUCWWVpSCiYWz8/yfcbBx42bx3OHwic9iSM5Jp7tv+fV2XsWwP3ro0l0/XowFvbFOzGIqbkZOrq6GllmqYnJmFpoFnjPTMsgKuIej+48YNeidXl9VCr5se8ouo4aiGeQn8Z6Orq6OHm7E/foSbH2vzCmFrn7lVwgczklMZkyWvcrnQe3Inl4+x5bFuROzvRsv77uOYLenw/Cu4QnEMg9pnQ1MpvSklI0MqCK4ujjxvVjpTMjbcqzaxCjAtcgRqYkFnK+yK+OZwVO3lW/BikNRb0XL/P5dvRx1/penNt+iDNbDtJ25LvYujm9dn+FeBUSPBOlokyZMnTr1o2xY8eSkJBA3759VY+NHj2aOnXqMHjwYAYOHIiZmRlhYWEaRfKfadq0KZUqVaJnz55Mnz6d7OxsBg0aRKNGjVSTAowfP5633nqLsmXL0r17d7Kzs9m6dSujRo3Sur1y5crRp08fpk2bRmJiolqQDMDX15fIyEj++ecfatasyebNm1m7Vr2g8vDhw3n33XepUaMGDRo0YMmSJVy+fFlt+GVxsLKywsbGhlmzZuHk5MSdO3c0JjhISkqid+/eDB06lJYtW+Lh4UGNGjVo06YNXbp0Kba++Pr6smbNGtq2bYuOjg7jxo3TqCVWUNWqVbG3t+fw4cOFBreaNGnC5s2badOmDUqlkt9//10jgLZ48WJsbW3p0qWLRv20Nm3aMHfuXNq0acNHH32Ei4sLTZo0wc3NjYcPHzJ58mTs7e3VhucePHiQhg0bFpq1aGRk9FLDNAvKUeQQEfuACk5lOXXvqmp5RaeynM73//wM9QxQFLg4Uv0/3+vROrAeb5cP5vu9fxMR++CV+6iNmakpZvky+5RKJbbWNhw/e4aApwHvrKwszly8yNB+/Yv1uUtKjlJBZHwUgQ6eatljuf8v+k6un507DmWsNWqaRSXFMGmn+vTrbcs3wFjfkJXn9xCXWngg66WkZ6BIV/9hpYhPQL98IDl3ntZ70dNDv5wfaSu0F30HwNAQFAVCLwqF2h3k7Bvh6DmrF6bXdXJEEaN9hsJXoW+gj4evN2FnL1K1Xl4trbCzl6hcp3qh653Yd4RFv8xmwKghVKylWfOobJA/J/cdQaFQqL4fHt1/iKWNVbEHziD3mLqf8Bh/e3e1IdP+9h6FDqGOiH1IJRdfDPUMyMzJDUrbm1mhUCqIT8v9MWKop6+RDalQKp5mfxWRtvoCDAwM8A/w59SJkzQMCVYtP33iJPWDtde2C6pYnqMHD6stO3X8BOUCA9DX18fD04N5S9Vv0sydNYfU1FSGjhyOw9MAmVKpZMbU6Rzaf4CfZ87A2eXF6vy8Cn0DfdzLenHt3GW1Y+rauctUrP0S9bKUSrILzLAtiqanr4edhzP3w27hXTWvrtb9sFt4Vi5XxJrqYu5GYfJ0BkRLJzs6faVeIuPU+r1kpWdQt1sLzKyLDoi+Cj19fZy8XLl96Tr+NfIC9bcvXce3WgWN9kYmRrw35RO1ZWd3HSEy7Cbth/bBspDgnlKp5HHkfezdtNdJLG56+vq4eLtz68I1AmvmFaq/dfEq5aprTnRiZGLMRz+olwA5ueMQEVeu03VEP6zsbTXWKYk+23u6cPdKOD7V8uoK370SjneVF69JGH33IaZWJTcreVFylAruxj8iwMGDCw/zrjnKOXhq1MUtyNfODYcy1vx1W3tdyn9T7nvhzL0w9ffi3pVwvF7mvYh8iGmBocNntx/izOb9tB7eBwevF6tFK0RJkAkDRKnp378/cXFxNG3aVG04ZqVKldi/fz83btygYcOGVK1alXHjxuHsrP3iQUdHh3Xr1mFtbU1wcDBNmzbFx8eH5cuXq9qEhISwcuVKNmzYQJUqVWjSpAnHj2sfZqSrq8vatWvJyMigVq1aDBgwgG+++UatTfv27fn4448ZMmQIVapU4ciRI4wbN06tTbdu3fjqq68YPXo01atX586dO3z00Uev+nIVSk9Pj+XLl3PmzBkqVKjAyJEjNYaPDh8+HDMzM1Xdr/Lly/P999/z4Ycfcv9+8RWj/fnnn7G2tqZevXq0bduW0NBQqlUrOitFT0+Pfv36qdW40yYkJIQtW7awePFiPvroI43htfPmzaNDhw5aJx7o1KkTmzZt4tGjRzRt2pRjx47RpUsX/P396dSpE8bGxuzevRvbfJlTy5Yte+E6ea9q69WjNC5bjUY+VXGxsKNXtVBsTS3ZfSN31rFuld/iw7odVO3P3r9ODfdA3vKtgb2ZNf527vSp3pKb0feIf1oktk1gfbpUasKfx9fzJCUeS+MyWBqXwUjfsET2QUdHh3c6vM38f/5h7+HD3Lx9mwnTpmJsZESLp0NgAb768Qd+m5dX8ygrK4tr4eFcCw8nKzuLJ9ExXAsP5+6DvOMxNS1N1QZyJye4Fh5O1OPir6W2+8Yp6ntXoq5nBZzMbehcqTHWphYcjMi9+9m+fEPerdFKY736XhWJiHnAg0T1GSezFTk8SIxW+0vLzCA9O5MHidEleoc4Y/tujNu2wKB6FXRdXTB9/12UmZlkHs2rk2j6fl+Mu7yd199zFzF6KxiD2jXQtbNFv3wgxp3akXX2gmoIaMa23eiV9cGobQt0HewxqFsTo8YNyNilmen6Opp2aMWhHXs5vGMfDyPvs+LPxcQ+iSa4Ve7Q/rUL/mH+tLyZi0/sO8L8n/6gc/9eeJfzIyE2noTYeNJS8u7YN2rVjOSkZJbPXsSj+w+5eOIsW1esJ6R182Lte377b52jlkd5aroH4lDGmnblG2BlUkY1G1rLgLp0r5JXOPzs/eukZqbTrcpbOJaxxsfGhTZB9TkRGUa2InemtCuPIqjrWZEqLn7YmFjgZ+dOi4A6XI6KeKEhxs/T5Z1ubFm/iS0bNnMn4ja//zyDR48e07bj2wDM+X0WUyZMVrVv17E9j6Ie8fv0X7kTcZstGzazZcNmuvbsDoChkRHeZX3U/sqYl8HU1BTvsj6qMgDTf/yJndt28MXXX2FqZkpsTAyxMTFkpGdo9LE4hLQP5diu/RzbdYCouw9YM3cpcdEx1A/N/c7auHglf0//U9X+4JZdXDpxlscPonj8IIpjuw+yZ/02aoTUK5H+vS4TAyP87Nzws8ut3epiYYefnRuOZUo/G7hi07pcO3SGa4fPEvfwCUdXbCc5NoHA4NxA5om1u9k7f52q/cVdx7h97ioJj2KIffCYE2t3E3EmjPIhucF1fQN9bFwd1P4MTY0xMDbCxtUBPf2SqcNVo0UjLuw/wYX9J4i5/4jdS9aTGBNPlSa5mYj7V2xh8+xlQG4Gmb2bs9qfqUUZ9A0MsHdzxvDpjbjDa3cQceEa8Y9jeHTnPtv+WsHjyAdUaaJZd7ek1GndmDN7j3J271Ge3I9i26I1JETHUaNpbgB917INrJ25WLVfDu4uan9mlrn75eDugqHxq99gfBlVmtXjysHTXDl0mtgHjzn0zxaSYhMoH5Jbj/Ho6h3smrtK1f78ziPcOnuF+EcxxNx/xNHVOwg/fYWKjWur2uRkZ/Mk8iFPIh+Sk51DcnwiTyIfEv+o+G4W5bf35mnqelWkjmd5HM1t6FixETam5hx6eg3SNqgBvatrTshQ17MCEbEPeZik2a/ciWvscbW0R19XD0sTc1wt7bEzsyqRfQCo3KweYQfPEHboDHEPn3B4+dbc96JR7uf12Jqd7J67WtX+/K4jRJwNI/5RDLH3H3NszU5unblCxSZ578XZbQc5sW43Ie++jYWdFakJSaQmJJFVQueHN45C+Wb+/T8lmWei1NStW1drfTGAmjVrqiYQ0KbgUEAPDw/Wr19f5PN17NiRjh2117YpuD1/f38OHjyotqxgX3/44Qd++OEHtWUjRoxQ+//YsWM1ZvX8/vvvC+1jSEiIxvP07dtXLTMPYMKECUyYMEH1/6ZNm6rNrFmwv/PmaRZqHjZsmFpduYKvQcF+eHl5aSwr2F8vLy/27Nmj1mbw4MEaz13QiBEjKF++PHfu3MHT01NrfwCCg4NJSsobJpF/ps8LFy4Uuv2OHTuS9TRDoFOnTnTq1KnI/mzevBk9PT06d+783L6/jmORlyljZEqHCo2wMinDvYTH/LhvCdGpucOJrEzMsTXNu2t+IOIcxgaGNPevRc9qoaRmpnP5UQT/nNupatPUryYGevqMaNhN7blWX9zHmov7SmQ/3u3SlYyMTL777TeSkpOoEBDAb1O+VctQi3r8BF2dvMDmk5gYeg4epPr/4tWrWLx6FdUqVuLPH38E4Mr163w4Oi879Oc/ZwPQpmkzJnz6abHuw+l71zAzNKF1YD0sjM14mBjN74dXq2bPtDQug42p+p1QY31Dqrr6s+L8Hm2bLDUZm3egY2iIybvvoGNqSs6tCJJ/mAH5LjR1bW3U6qKlr9+CUqnEuHM7dK2tUCYlk3X2gqq+GUBOxB1SZszCpMvbGLdvjSI6mrQlK8nKF5QrDjWD65KSmMzmZWtIiI3HxdONIRNHYeuQO2QuITae2Cd5PxQObtuNIieHZX/MZ9kfedl+dd8Kpu/I3IwUG3tbhk8aw8o5f/P14DFY2VrTpF0LWnRuV6x9z+/8gxuYGRjTzL8WFkZmRCXFMPf4RtVsaBbGZlib5A0ryszJYvax9XSoEMzw4G6kZqZz/sFNtl7NKxuw6+nQzBYBdbA0LkNyZhpXoiLU2ryOJs3eIjEhkUXzFhAbHYOXjzff/fwDTs65Q2RiYmJ4/ChvGLiziwvf/vwDM6f/yvpVa7G1s2PoJ8Np1CTkpZ53w+p1AHz8kXqt09HjPqdFG82g9euq1qA2KYnJbF++noS4BJw9XPlg3EhsHHJr7yTGxhOX7xhTKpRs/HsVsY+eoKunh52TA217d6FeaEix9604BNh78luHvLICwxrkZphvCTvKN3v+vQlMtClbszwZKamc2XyA1IRkbFwcaDGkB+a2VgCkJiSTEps3pFaRk8PxVTtJiU9C30AfKxd7Qoe8g0dFzWGO/6bAOlVIT07hyPqdpMQnYufmROdP+mP5dGKWlPhEEmO013MtTHpqGtvnryQlIQkjE2McPF15Z+wgnMs+f7bx4lKhbjXSklLYv2Y7yfEJOLg703P0h1g9zY5Ljk8kIfrl9quk+dWqSHpKKqc27iMlIQlbF0faDu+NRb5jKikm75jKyc7h8IrtpMQnom9ggI2rA62H9carUt4Q05T4JFZ8nXeT5tz2w5zbnluHq8Oo4s+qP3P/OmaGJrQoV+fpNUgMfxxZqzpfWBqbYW2ieQ1SxcWP1Rf3ad2mpUkZxjTprfp/U78aNPWrwY0nd5lxaGWx7wOAb82KpCencXpT7nth4+JA62G98j7f8Ukk5/98Z+dwZGXee2HtYk+rYb3wrJj3XlzedxJFdg47Zi1Xe64abUOo2a5JieyHEIXRURYWvRBCiH/R+vXrsbGxoWHDhqXdFVasWIGnp6eqhtzL6Ll0QvF36F+2pMcEkiJul3Y3Xpu5txcfrf6xtLvxWv7o9BnxfT58fsM3nNWiWewrhhkhS1OIb3U+3Vj0pCX/BVPbDuVB/H9jJtyiuFg5sC2seIKGpaVFYF3q//7f/3wfHjyLqfuKzh5/030a0pO5xzeWdjdeW//abVl6ZvvzG77helQLZcbBFaXdjdcyrGFXhq79qbS78dp+7TCS6QeWP7/hG2xEcLfnN3pDJV278fxGpcC8XOnewCgtknkmhHgjtG/fvrS7oNK1a9fS7oIQQgghhBDi/zPJc3qjSM0zIYQQQgghhBBCCCEKIcEzIYQQQgghhBBCCCEKIcM2hRBCCCGEEEIIId4kMmzzjSKZZ0IIIYQQQgghhBBCFEKCZ0IIIYQQQgghhBBCFEKGbQohhBBCCCGEEEK8SRSK0u6ByEcyz4QQQgghhBBCCCGEKIQEz4QQQgghhBBCCCGEKIQM2xRCCCGEEEIIIYR4k8hsm28UyTwTQgghhBBCCCGEEKIQEjwTQgghhBBCCCGEEKIQMmxTCCGEEEIIIYQQ4k0iwzbfKJJ5JoQQQgghhBBCCCFEISR4JoQQQgghhBBCCCFEIWTYphBCCCGEEEIIIcSbRCHDNt8kknkmhBBCCCGEEEIIIUQhJHgmhBBCCCGEEEIIIUQhZNimEEIIIYQQQgghxJtEqSjtHoh8JPNMCCGEEEIIIYQQQohC6CiVSqlCJ4QQQgghhBBCCPGGSDp3obS7oJV5lUql3YVSIcM2hRCiGO27ebq0u/DaQnyrk/TgQWl347WZu7iw6OSW0u7Ga+lTs1Vpd6HYnL4bVtpdeC3V3QOZtn9ZaXfjtX3S6J3S7kKxSQq7VtpdeC3mgeWYum9JaXfjtX0a0pP6v39Y2t14LYcHz/rP7wPk7sfSM9tLuxuvrUe10NLuQrEYt+3P0u7Ca5vU4n02XT5U2t14LW3KNyjtLrw6yXN6o8iwTSGEEEIIIYQQQgghCiHBMyGEEEIIIYQQQgghCiHDNoUQQgghhBBCCCHeIEqFDNt8k0jmmRBCCCGEEEIIIYQQhZDgmRBCCCGEEEIIIYQQhZBhm0IIIYQQQgghhBBvEplt840imWdCCCGEEEIIIYQQQhRCgmdCCCGEEEIIIYQQQhRChm0KIYQQQgghhBBCvEmUitLugchHMs+EEEIIIYQQQgghhCiEBM+EEEIIIYQQQgghhCiEDNsUQgghhBBCCCGEeJMoZLbNN4lkngkhhBBCCCGEEEIIUQgJngkhhBBCCCGEEEKIUhUXF0fv3r2xtLTE0tKS3r17Ex8fX2j7rKwsRo8eTcWKFTEzM8PFxYU+ffrw4MEDtXYhISHo6Oio/XXv3v2l+ibBMyGEEEIIIYQQQog3iVL5Zv6VoB49enDu3Dm2bdvGtm3bOHfuHL179y60fWpqKmfOnGHcuHGcOXOGNWvWcP36ddq1a6fRduDAgTx8+FD1N3v27Jfqm9Q8E0IIIYQQQgghhBClJiwsjG3btnHs2DFq164NwJw5c6hbty7Xrl2jXLlyGutYWlqyc+dOtWW//vortWrVIjIyEg8PD9VyU1NTnJycXrl/knkmxH/YggUL2Lp1a2l3QwghhBBCCCHE/wMZGRkkJiaq/WVkZLz2do8ePYqlpaUqcAZQp04dLC0tOXLkyAtvJyEhAR0dHaysrNSWL1myBDs7O8qXL8+nn35KUlLSS/VPgmeixHh5eTF9+vR/dXs6OjqsW7futZ5nwoQJVKlS5aXW2bdvHzo6OkWOxy5ua9as4YcffqBOnTqvtH7fvn15++23Vf8PCQlhxIgRRa5TXO/pnj17CAgIQKFQvPa2SsLjx4+xt7fn/v37pd0VIYQQQgghxP9HCuUb+fftt9+qapI9+/v2229fe3ejoqJwcHDQWO7g4EBUVNQLbSM9PZ0xY8bQo0cPLCwsVMt79uzJsmXL2LdvH+PGjWP16tV07NjxpfonwzaFhrZt25KWlsauXbs0Hjt69Cj16tXj9OnTVKtW7V/t18mTJzEzM/tXn/NNdevWLb788ku2bt2KtbV1sWxzzZo1GBgYFMu2nmfUqFF88cUX6Ormxu8XLFjAiBEj1IKPYWFhNGvWjFq1arFs2TKMjIzYu3cvP/74I8ePHyctLQ0vLy9atmzJyJEjcXV1VXuOcuXKERERQUREhMZjt27d4osvvmD//v3ExsZiZ2dH9erV+fHHH/H398fBwYHevXszfvx4/vrrrxJ9LfZt2smONZtIiI3HxcOVru/3wa9CgNa2Zw6f4MCWXdy9dYfsrGycPV1p26MT5atXVmuXmpzCukUrOHvkJKnJKdg52tN5QE8q1qxaLH1WKpX8uXAhazdtIikpifKBgYwePpyy3t5Frrd7/35mzZ/PvQcPcHNxYVD//jRu2FD1eNvu3Xn46JHGel3at2f008DungMHWLNxI2HXr5OQmMiSOXMo5+tbLPt1auchjm3ZS3J8IvauTjTr9TYeAWWfu97d67dYPPl37N2cGDjlM9Xys3uPcvHgSZ7cyz3ZO3m7EdK1Na5lPYulv//Ldq7fwqaV64iPicPVy50+g/oTULG81rZxMbEsmTWfiBvhRN1/SGiH1vQZNECj3dbVG9i1cRvRj6MxtzSndsN6dBvQG0NDwxLbj8v7TnBh+xFSE5KwdnGgbrcWOPtpf/8fXItg07SFGsu7ThyMlbO9xvKbJy6y56/VeFYuR+jgd4q97/9rlEolf/6zjLU7dpCUkkx5P39Gf/AhZfMN5ygoPDKSWUuXcDU8nIdPHjOyX396tGuv0e5xTAy/LlrAkTNnSM/IwNPFlXFDhhJYTN9Nz1zZd5LzO46S9vR4qtO1eRHH0202/7RIY3mXiYOwcrLTWB5+8hJ7/lqDZ+VyNB/UrVj7/aoqO/vSo2pzAhw8sDOzYsyWPzgYcb60u/VS/ov7cHLHQY5s2k1SfCIObk6E9umE5wucCyOv3WLB1zNwcHfmw+9G/ws9/d9Syz2IBt6VKGNkyuPkOLZePcqduMKDBXo6ujT2rU5lF1/KGJmSmJ7C/vCznLl/DYAgRy+CfapiY2qBno4uMakJHL59kfMPbpTofhzeuod967eTGBePk7sr7ft1xyfIX2vbW2E32LxoFY/vPyQzMxNre1vqNm9Eo7bNVW2O7dzPqX1HiYrMvaHtVtaTVj074uHnU6L7IYr2+eefM3LkSLVlRkZGhbafMGECEydOLHKbJ0+eBHKTYQpSKpValxeUlZVF9+7dUSgUzJw5U+2xgQMHqv5doUIF/Pz8qFGjBmfOnHnhuIYEz4SG/v3707FjR+7cuYOnp/pF2bx586hSpcq/HjgDsLfX/PHw/5WPjw9Xrlx5obZZWVkvFBSzsbF53W69kCNHjnDjxg26dOlSaJuTJ0/SsmVL2rdvz59//omenh6zZ89m0KBBvPvuu6xevRovLy8iIyNZtGgR06ZN46efflKtf+jQIdLT0+nSpQsLFizgiy++UD2WmZlJs2bNCAgIYM2aNTg7O3Pv3j22bNlCQkKCqt17771HrVq1+PHHH4stQKmxnweOsmLOInoM6kfZQH8ObNvNr+O/Z8IfP2LjoPnj5sblqwRWrcjb73bDxMyUI7v28/vXUxnz0yQ8ynoBkJ2VzfQvv8Xc0oIPxg7H2s6GuCcxGJmYFFu/F/7zD0tXrmT86NF4uLszd/FiBn/2GasXLcLM1FTrOhcuX2bs11/zYb9+NG7YkL0HDzJm4kTmzphBhaAgABbNmkVOvmzE8IgIBn/6KW+FhKiWpaWnU7lCBZqGhDB56tRi26crx86y8+91tOjbGXd/b87sOcI/P/7JB9+PwdKu8Pc/PTWNDbOW4l3ej+QE9dTvO2E3CapbDTd/b/QN9Dm6aQ/Lvp/F+9+NxsLGqtj6/r/m6N5DLPpjHv2GfYB/+QB2b97O959P4se5v2LnqHkeyM7KwtzKkvY9urB19Qat2zy0ez///LWY9z8dgn/5AB7ee8CsH2cA0HtQ/xLZj/CTlzi6fBsNerTG0deDsAOn2Drjb7pOGEwZW6tC1+s6aQiGxnkXoMbmmjeNkmLiOb5qB05+hQd+hLqFa9ewdMN6xg8bjoeLK3NXrmDw+K9YPXMmZibav7fSMzJwc3Kiaf36/DRvrtY2icnJ9B8zmhoVK/LLuPHYWFpyLyoK82K+2Rd+8jJHV2ynfo9WOJZ15+qBM2z7dSldJgyijI1loet1+XpwgeNJc19zj6edOPm+WceTiYERN2PuseXqEaa0/LC0u/NK/mv7cOnoGbYtWkPrfl1wL+fD6V2HWfLdHwyeOhZLu8KvE9NT01g3czE+Ffw1zoXi+So4+dAysC6brhwiMu4RNdwD6V29Jb8eWkFCeorWdbpVaUoZIxPWXjpAbGoCZoYm6OrkDSpLzcpgf/hZolPiyVbkUM7Bkw4VGpGSmcbN6Hslsh9nD51g/fx/6DiwF96Bvhzdvp85k6cz6pdJWNvbarQ3NDKkfqsmuHi6YWhsRETYDVbNWoShkRF1mzcC4Oala1RtUAuvAF/0DQzYu24rsyf+xKhfJmFpWzLX5+L5jIyMigyWFTRkyJDnzmzp5eXFhQsXeKTlRvqTJ09wdHQscv2srCy6du1KREQEe/bsUcs606ZatWoYGBhw48aNF45tyLBNoaFNmzY4ODiwYMECteWpqaksX76c/v1zf2gcOXKE4OBgTExMcHd3Z9iwYaSkaP+CB4iMjKR9+/aUKVMGCwsLunbtqvHh2LBhAzVq1MDY2Bg7Ozu1VMqCQwZv3LhBcHAwxsbGBAUFaRQKBBg9ejT+/v6Ympri4+PDuHHjyMrKUmvz3Xff4ejoiLm5Of379yc9Pf25r9GWLVvw9/fHxMSExo0bc/v2bY02L/v6PBsuOnv2bNzd3TE1NaVLly4aQ0Hnz59PYGAgxsbGBAQEqEXVb9++jY6ODitWrCAkJARjY2P+/vtvcnJyGDlyJFZWVtja2jJq1CiUBWZKKThs8/Hjx7Rt2xYTExO8vb1ZsmSJRp9/+ukn1bTA7u7uDBo0iOTk5CJfu3/++YfmzZtjbGys9fE9e/bQpEkT3nvvPebOnYuenh737t1j2LBhDBs2jHnz5hESEoKXlxfBwcH89ddffPXVV2rbmDt3Lj169KB3797MmzdPbV+vXLnCrVu3mDlzJnXq1MHT05P69evzzTffULNmTVW7ihUr4uTkxNq1a4vcn9exa+0W6jcPoUFoY5w9XOn2fh+s7WzZv0Uz6xOg2/t9CO3cFi//sji6OtPh3e44uDhx4fgZVZvDO/eRkpTMoHEj8Q0qh62DPb7lA3D3KZ5sJ6VSybJVq3ivVy+aBAfj6+3NxDFjSE9PZ5uWbNVnlq1aRe0aNXivZ0+8PDx4r2dPalWrxtLVq1VtrK2ssLOxUf0dOnoUNxcXqlfOy6xr3bw5A999l1rVqxfL/jxzfOs+qoTUpmrjOti5OtK8dwcsbK04s/twkettnbeS8nWr4errpfHY24N6U6NZA5w8XbFzcaT1gG4oFUpuXy7Zu77/dVtWryekRVMat2qGq6c7fQYNwNbBjl0bt2ltb+/kyLuDBxDcvDGmZtqDIDeuXMO/QgD132qEvZMjlWpUpV7jhty6frPE9uPCzqOUa1CNgIbVsXa2p163lpSxtuTK/lNFrmdiboappbnq71mG7jMKhYI9f62mervGWBQR2BV5lEolyzZu4L0uXWlStx6+np5MHD6C9IwMth04UOh65f38GN73PUIbBmOor/0m1MI1q3G0s2P8sOFU8PfHxdGRWpUr4+bsXKz7cHHXUcrVr0pAg2pYO9tTt1voSxxPZVR/2o6nvXPXUq1tCOb2b9bxdCzyMnOOb2D/rXOl3ZVX9l/bh2Ob91K1cR2qNamHvasTLd7thKWtNSd3HipyvU1/LadC/Rq4+Xn9Ox39H1PPqxJn7l3j9L1rPEmJZ+vVoySmJ1PLI0hre187N7xsnFl8ehu3Yu4Tn5bM/YQn3I3P+111O/YhYY9v8yQlnri0JI7ducSjpFg8rV69WPrzHNi4g1pvNaROs2Ac3Vx4u/87WNnacGT7Pq3t3Xw8qdawNk4ertg42FG9UV3KValARNh1VZteH79P/ZZNcPX2wNHNma4f9UWpVHLjQliJ7ccbRal4M/9ekp2dHQEBAUX+GRsbU7duXRISEjhx4oRq3ePHj5OQkEC9evUK3f6zwNmNGzfYtWsXtraawdqCLl++TFZWFs4vcb6W4JnQoK+vT58+fViwYIFa0GHlypVkZmbSs2dPLl68SGhoKB07duTChQssX76cQ4cOMWTIEK3bVCqVvP3228TGxrJ//3527txJeHg43brlDQ3YvHkzHTt2pHXr1pw9e5bdu3dTo0YNrdtTKBR07NgRPT09jh07xqxZsxg9WjNF3NzcnAULFnDlyhV++eUX5syZw88//6x6fMWKFYwfP55vvvmGU6dO4ezsrJHiWdDdu3fp2LEjrVq14ty5cwwYMIAxY8aotXnZ1+eZmzdvsmLFCjZu3Kiamnfw4MGqx+fMmcMXX3zBN998Q1hYGFOmTGHcuHEsXKg+1Gf06NEMGzaMsLAwQkNDmTZtGvPmzWPu3LkcOnSI2NjY5waF+vbty+3bt9mzZw+rVq1i5syZPH78WK2Nrq4uM2bM4NKlSyxcuJA9e/YwatSoIrd74MCBQt/XtWvX0rp1a7744gt+/PFH1fJnx15h285fDDIpKYmVK1fSq1cvmjVrRkpKCvv27VM9bm9vj66uLqtWrSInJ6fIvtaqVYuDBw8W2eZVZWdlE3kzgqCqldSWB1WrSHi+i4aiKBQK0tPSMcuXmXLh+Gl8AvxYOnM+n/b8kImDRrFl+ToUOcVTX+7+w4fExMZSJ997aGhoSLXKlblw+XKh6124coXaBd73OjVrFrpOVlYWW3bupF3Lli+Upv06crKzeRhxD+8K6jP4+FQox70btwtd7/z+48Q9iia4Y+gLPU9WRiaKHAUmZbQHeERuFlnE9XAq1aiitrxi9Spcv3L1lbdbrkIgEdfDuXk197P16EEU506coWpt7d9FrysnO5voyAe4BakPdXILKsuj8LtFrrtm0mwWfzqVTT8t5MHVCI3Hz2zaj4m5GQEN/v0M8P+q+48eERMXR5189UwNDQyoVqE8F66+3g+wAydOEOjry+gfvqPZu73p8fFw1u7Y/po9VpeTnUN05ENcCxxPrkE+zz+eJv/J35/9xOafFvHgmubxdHbTAYzNTQloUDzD+sV/V052Ng8i7lK2knrpCJ9KAdy7rnnsPHN23zHiHkUT0qlFSXfxf5Keji4uFnYa2WA3o+/hbqU90ybAwZMHCU9o4F2Zz0J6MrxhV0LL1UZfV6/Q5/GxccHOzJLbcQ+Ltf/PZGdlcy/8DuUqq5dYKFcliNtXX+xG1b1bd7h97SY+QZozKj6TmZlBTk4OplqyssV/X2BgIC1atGDgwIEcO3aMY8eOMXDgQNq0aaM202ZAQIDqt2x2djadO3fm1KlTLFmyhJycHKKiooiKiiIzMxOA8PBwvv76a06dOsXt27fZsmULXbp0oWrVqtSvX/+F+yfDNoVW/fr148cff2Tfvn00btwYyB2y2bFjR6ytrRk+fDg9evRQZSr5+fkxY8YMGjVqxB9//KGRVbRr1y4uXLhAREQE7u7uACxevJjy5ctz8uRJatasyTfffEP37t3VxkNXrqxeyyn/9sLCwrh9+zZubm4ATJkyhZYtW6q1+/LLL1X/9vLy4pNPPmH58uWqIMz06dPp168fAwbk1seZPHkyu3btKjL77I8//sDHx4eff/4ZHR0dypUrx8WLF/n+++9VbX788ceXen2eSU9PZ+HChap9+vXXX2ndujXTpk3DycmJSZMmMW3aNFVGnre3N1euXGH27Nm8++67qu2MGDFCLWtv+vTpfP7553Tq1AmAWbNmsX174Rf3169fZ+vWrWrTBM+dO5fAwEC1dvkz1by9vZk0aRIfffRRkQHI27dv4+LiorE8OTmZLl26MHbsWI1g5I0bN7CwsHihOwP//PMPfn5+lC+fe/Lu3r07c+fOVR3Hrq6uzJgxg1GjRjFx4kRq1KhB48aN6dmzJz4+6vUTXF1dOXv2rNbnycjI0JhV5mXSl5MTk1AoFFhYqQ+3MbeyJDEuoZC11O1cu5nM9AyqN8ybNOJJ1GNiHl2hdkh9hk4YxeMHUSz7YwGKHAVterxcUUxtYmJjAbAtMJTV1tpaa72y/OtpW+fZ9grad+gQycnJtG1R8hfjqUkpKBUKyliaqy03szQnOT5R6zqxUU/Yu3wTvccNRVev8IvV/PYu34S5tSXe5bXX/hCQlJD7ubC0tlJbbmltSUJs3Ctvt17jhiTFJzBxxFhQKsnJyaFp2xa0e6fTa/ZYu/TkVJQKJSYW6hf3JhZmpCZqz841tTSnYe+22Hs4k5Odw41j59n080LaftIXZ38vAKJuRnLt0Bk6jXvzh3+9SWLic48d2wKzbtlaWvHwyZPX2vb9R1Gs3raVnu3a817nLly+cYOpf83BwMCANo2bvNa2n3l2PJkWPJ7MzUhL1J7RbmpZhoa92mDn6UxOVjY3jl9k88+LaTPyXZz9czORo25Gcu3wWTqO+6BY+in+21ITtZ8Ly1iaE17IUMyYh4/ZvWwj700Y/sLnQqHO1NAYPV1dkjPT1JYnZ6ZhbqT9ZpuNiQUe1k5kK3JYenYHpgbGtC3fABMDY9Zd2q9qZ6RvwGchvdDX1UOhVLDpymHCY0pmMqyUpNzzdxkr9aFyZSwtSYq/VOS6Xw/49Ol1cQ6hXdtTp1lwoW03L16NpY01fpW0Z+WJ/74lS5YwbNgwmjfPrX3Xrl07fvvtN7U2165dU5XbuXfvHhs25JbtKDjp3969ewkJCcHQ0JDduxkM0W0AAQAASURBVHfzyy+/kJycjLu7O61bt2b8+PHovcR3lwTPhFYBAQHUq1ePefPm0bhxY8LDwzl48CA7duwA4PTp09y8eVNtKJ9SqUShUBAREaERZAkLC8Pd3V0VOAMICgrCysqKsLAwatasyblz59QK+RUlLCwMDw8PVZAJoG7duhrtVq1axfTp07l58ybJyclkZ2erjX8OCwvjww/Vf4TUrVuXvXv3FvncderUUcuGKfjcL/v6PKNtnxQKBdeuXUNPT4+7d+/Sv39/tdcpOzsbS0v1AEz+zK6EhAQePnyo1kd9fX1q1KihMXQz/z4+a/NMQECAxnS/e/fuZcqUKVy5coXExESys7NJT08nJSWl0Mkd0tLStAYPTUxMaNCgAXPmzOGdd95Re41etEgk5Ab5evXqpfp/r169CA4OJj4+XtX/wYMH06dPH/bu3cvx48dZuXIlU6ZMYcOGDTRr1kytT6mpqVqf59tvv9UofDl+/HhCerV9oX6qFNwtpZZlWpzYd4RNS9YwaNxItQCcUqHE3MqCXkMHoKuni6efD/GxcexYvfmVgmdbd+5kSr56ctOfzqRT8P1QalmmoeA6SmWhu7p+yxbq1a6NvZ1m7bcS84L7pFAoWPf7Yhp2aoGts+aMQNoc3bSby0fP0uuLwegb/jsTc/ynaf1cvHoG4pVzF1m3dBX9hn1A2QA/Hj2IYtHvf7HGdjkde5VccXQdCh7zhbe1crJTK+TuWNad5LhEzu84grO/F5npGeydu4aGvdtprYMm8mzdv48pf+TdxJn+Ze7Qfo33g9c6rABQKJUElfVlcO8+AAT4lOVWZCSrt20ttuDZq9B2PKXEJnBh51Gc/T1zj6d562jYuw3Gkg0r1Gieq7WdrBUKBWt+W0RI55YvfC4URVE/QeigU+g549m1ycoLe8jIzi1Hs+3qUbpVacamK4fIVuSOrMjMzmLmkdUY6hngY+tCi4A6xKYlcju2ZLLPcvtWcInyuV+0g78ZTWZ6Bneuh7N58WpsnR2o1rC2Rrs9a7dy9tBxBn09CoP/L9dSRV04/I+ysbHh77//LrJN/t+wXl5ehf6mfcbd3Z39+/cX2eZFSPBMFKp///4MGTKE33//nfnz5+Pp6clbb70F5J4wP/jgA4YNG6axnoeWmasKC37kX27yEgXNtX1ACm7/2LFjqky20NBQLC0t+eeff5g2bdoLP8+LPndBL/v6FObZPuno6KB4Wkh9zpw5qmywZwpGzF93VtJn+1hUMOTOnTu0atWKDz/8kEmTJmFjY8OhQ4fo37+/Rl25/Ozs7IiL08wg0dPTY926dXTq1InGjRuzZ88egp4Wkvf391cFAYvKPrty5QrHjx/n5MmTasN4c3JyWLZsGR999JFqmbm5Oe3ataNdu3ZMnjyZ0NBQJk+erBY8i42NLXSiisJmmTl6t+i7a8+UscitZVQwyywpIUEjG62gkweOsmjGn3wwZjiBVSuqPWZpY4Wenh66enmj8p3dXUmMiyc7Kxt9g5f72g+uX19V0B9QpT9Hx8Zil6+eQGxcHDZFTKxga2OjkWUWGx+vdaKKh1FRnDhzhh+eMytPcTE1N0NHV1cjyyw1IQmzAnfgATLTMngYcZeoO/fZvnAN8PQzo1Qypc8n9Bj9IV7l/VTtj23ey+ENu+gx5iMcPTSzLkUe86c1vhJi49WWJ8QnaGSjvYyVC5bSoGkIjVvlfr49fLzISE/nr59n8naPLhp1oF6XcRlTdHR1NLLM0pNSMLUo88LbcfB24+bxCwAkPoklKSae7b8vVT3+7Lt6zocT6fb1UCwc/p2JX950wbVqUcE/L8MzMysbgOj4OOzyfefEJsRjU+Cm0Muys7bGO9+NQQBvNzf2HD3yWtvNL+94Us8yS0tK0chuLIqDjxs3j18EIOlJHMkx8Wz//R/V48+Op78+mkTXrwdjYS/H0/8nphZPz4UJ6ufClMRkylhoOxem8+BWJA9v32PLglVA3rnw654j6P35ILwrSKb186RmppOjUFDGUD2IbWZoTHKm9hu4SRmpJKanqAJnAE+S49HV0cHC2IzY1Nz3UAmqf0clxWBvZk2wT5USCZ6Zmeeev5Pi1I+f5IREzC2LLtxu+3QyIGdPN5LiE9mxfL1G8Gzvum3sXr2ZDyd8iouXu7bNCFHiJHgmCtW1a1eGDx/O0qVLWbhwIQMHDlQFU6pVq8bly5fxfcFp2IOCgoiMjOTu3buq7LMrV66QkJCgyjCqVKkSu3fv5r333nvh7T148EA1BPDo0aNqbQ4fPoynp6faTIt37txRaxMYGMixY8fo06ePatmxY8ee+9zr1q1TW1ZwnZd9fZ7Rtk+6urr4+/vj6OiIq6srt27domfPni+8TUtLS5ydnTl27BjBwblp0NnZ2Zw+fbrQmUUCAwPJzs7m1KlT1KpVC8hNj80/ecGpU6fIzs5m2rRpqh+eK1aseG5/qlatWuhMoUZGRqxZs4bOnTvTuHFjdu/eTYUKFejcuTNjxozhhx9+UKtZ98yzrLK5c+cSHBzM77//rvb44sWLmTt3rlrwLD8dHR0CAgI4ckT9x86lS5cIyTfTY8G+vswwzYL0DfTx8PUm7OxFqtbLm6gg7OwlKtcpvBj+iX1HWPTLbAaMGkLFWpo1asoG+XNy3xEUCoXqfXl0/yGWNlYvHTgDMDM1VZtBU6lUYmtjw/FTpwjwyw0QZWVlceb8eYa+/36h26kUFMTx06fpmW+W1eOnTlGpfHmNthu2bcPayooGWrJJS4Kevj7O3m5EXLpOQM28GnQRl67jX72CRnsjEyMGfqtef+/0rsPcuXKDjsP6YpXvB+fRTXs4vH4n74z+ABefN2smuzeRvoEB3v5luXj6HDUb5A1HvnT6HNXrad6FflEZGRno6qrfDNDV1c29oVsCd3X19PWx83Dh/pVwvKvmZdHeCwvHq3JAEWuqi7n7EFPL3GCblZMdncerf4edXLeHrIxM6nVrgZlN0T9O/j8xMzFVm0FTqVRia23N8XPnCPDJrRuWlZXFmUuXGZqv5MGrqBwQyJ376sOg7jx4gLN98WXi6OnrYefhzP2wW3hXzTt+7ofdwrNy4bWBCoq5G4XJ0+PJ0smOTl+pZ96fWr+XrPQM6nZrgZl10TdxxP8ePX19XLzduXXhGoE188qm3Lp4lXLVK2q0NzIx5qMf1MtsnNxxiIgr1+k6oh9WWmZXFJpylAoeJEZT1s6VsMe3VcvL2rlxNd//84uMi6K8kw+Gevpk5uTeHLA1s0ShVJBYyOyckJsAVlRdtNehb6CPW1lPrp+/TMU6eb8vrp+/Qnkt16uFUubWT8tv77pt7Fq1iffHfYy7lgmahPi3SPBMFKpMmTJ069aNsWPHkpCQQN++fVWPjR49mjp16jB48GAGDhyImZkZYWFh7Ny5k19//VVjW02bNqVSpUr07NmT6dOnk52dzaBBg2jUqJFqaOD48eN56623KFu2LN27dyc7O5utW7dqLRLftGlTypUrR58+fZg2bRqJiYlqQTIAX19fIiMj+eeff6hZsyabN2/WKJI/fPhw3n33XWrUqEGDBg1YsmQJly9f1qh9ld+HH37ItGnTGDlyJB988AGnT5/WmJn0ZV+fZ4yNjXn33XeZOnUqiYmJDBs2jK5du+LklDszzoQJExg2bBgWFha0bNmSjIwMTp06RVxcnEYWVMH9/O677/Dz8yMwMJCffvpJYxbP/MqVK6cq1vjnn3+ir6/PiBEj1LIDy5YtS3Z2Nr/++itt27bl8OHDzJo1q9BtPhMaGqoxwUF+hoaGrF69mq5du9KkSRN2795NxYoV+fnnnxkyZAiJiYn06dMHLy8v7t27x6JFiyhTpgzfffcdixcv5uuvv6ZCBfWAx4ABA/jhhx84f/48SqWS8ePH07t3b4KCgjA0NGT//v3MmzdPLVstNTWV06dPM2XKlOfu06tq2qEV86fNxNPPB58APw5u20Psk2iCW+VmeK5d8A/xMbG898kgIDdwNv+nP+j2fh+8y/mpsnMMjQwxeTrLYKNWzdi7cQfLZy+iSbtQHt+PYuuK9TRpWzy1w3R0dHinc2fmL1mCh5sb7m5uzP/7b4yNjWnRtKmq3VdTpuBgb8+Qp0OMu3fqxPvDh7Ng2TJC6tdn3+HDHD99mrkzZqhtX6FQsHHbNtqEhqKvpQZBQmIiUY8f8yQ6GoA7kZFAbmabnZYsthdVu2UI6/9YgrOPO26+Xpzde4SEmDiqvZU7s8/e5ZtIikug3Yc90dHVxcFdPQPSzKIMegb6asuPbtrN/lVbeXtQbyztbFSZbYbGRhgav3rg9X9dq07tmfn9dHz8ffELKseezTuIfhzNW21zJ2b456/FxEbHMGjMCNU6t2/eAnLrRibGJ3L75i30DQxw88y9WVOtTk22rt6Ap68PvgH+PHrwkJULllK9bs0Sq9NTqVld9s5bg52nC45l3Qk7cJrk2AQCG+We806s2UVKfCKN++UOp7646yjmtlZYuziQk5PDzWMXiDgTRrMPuwK5gUUbV/Xi0UamuUPgCy4X6nR0dHinbTvmr1qFh4sL7s4uzF+1EmMjI1oE59XW+Wr6zzjY2jCkd25ALSsri1t3cwvyZ2Vn8yQ2lmu3bmFqYoy7c+5Nrh7t2tNvzCjmrVxBswYNuHz9Bmt3bOeLQYM1O/IaKjaty775a7H3dMbBx42rB8/kHk/BuTdbTqzdTUp8Eo3fexuAi7uOYW5nhbWzfe7xdPwiEWfCaPpB7g0MfQN9bFzVA3yGquPpzRiCZ2JghJtlXva3i4UdfnZuJKan8Cj51Wsg/pv+a/tQp3Vj1v6+GBcfd9z8vTm9+wgJ0XHUaNoAgF3LNpAUl0CHQb2fngvVs6nNLMugb2CgsVwU7cjtC3Sq1JgHCdHcjX9EDfdALI3LcCIyd0KTZv41sTAyY/XFfQBceHiTkLLV6FAxhD03TmFqaExoudqcuXdNNWQz2KcK9xOeEJuaiJ6uLv72HlRx8WfjlZKZCAsguG1zls34CzdfL7zKleXYjgPERcdSt3kjADb/vZqEmDh6DM+tNX1o6x6s7WxwcM29dooIu8G+Ddtp0CpvyPuetVvZtmwdvT4eiLWDnWrEhpGxEUYm2mtI/09R/P8btvkmk+CZKFL//v2ZO3cuzZs3VxtuWKlSJfbv388XX3xBw4YNUSqVlC1bVm32zPx0dHRYt24dQ4cOJTg4GF1dXVq0aKEWSAoJCWHlypVMmjSJ7777DgsLC1WmVEG6urqsXbuW/v37U6tWLby8vJgxYwYt8hUXb9++PR9//DFDhgwhIyOD1q1bM27cOCZMmKBq061bN8LDwxk9ejTp6el06tSJjz76qMhi+h4eHqxevZqPP/6YmTNnUqtWLaZMmUK/fv1e+fV5xtfXVzWTZ2xsLK1atVIrvj9gwABMTU358ccfGTVqFGZmZlSsWFGtcL82n3zyCQ8fPqRv377o6urSr18/OnTooCq0qM38+fMZMGAAjRo1wtHRkcmTJzNu3DjV41WqVOGnn37i+++/5/PPPyc4OJhvv/1WLYtPm169ejF69GiuXbumNmtKfgYGBqxYsYJ33nlHFUAbNGgQ/v7+TJ06lQ4dOpCWloaXlxdt2rRh5MiRbNiwgZiYGDp06KCxPT8/PypWrMjcuXP56quv8PLyYuLEidy+fRsdHR3V/z/++GPVOuvXr8fDw4OGDRsWuT+vo2ZwXVISk9m8bA0JsfG4eLoxZOIobB1yL7QTYuOJfRKjan9w224UOTks+2M+y/6Yr1pe961g+o7MzSCwsbdl+KQxrJzzN18PHoOVrTVN2rWgRed2xdbvd7t3JyMjg++mTycpKYkKgYH89uOPahlqUY8fqw2Fq1yhAt989RV/zJ3LrHnzcHNx4duvvlIbEgpw4vRpoh49ol2ByT+eOXDkCBPzTc4xdtIkAAa++y4f5Avwv6ygOlVJTUrh0NrtJMcnYu/mTPfP3sfSLjcglxyfSEL0y/3QOb3rMDnZOayesUBtecMOoQTLrGSFqtu4AcmJiaz5eznxsXG4eXkwaso47B1zf9DHx8YS81i9yPvYD/NuHkRcD+fIngPYOdozY8kcADr06oqOjg4r5y8hNjoWC0sLqtWtSdd+L57F+7LK1qxAekoqZzbvJzUhGRsXB1oO7Ym5rRWQOyw4OTbvOzgnO4djq3aQEp+EvoE+1i4OtBjaA4+KMuypOLzboWPu99bsWSQlJ1PB35/fJkxUy1CLevIE3XzlCp7ExtJz5AjV/xevW8vidWupVr4Cf36Te2OlvJ8fU8eM5bfFi/hrxXJcHB35pP8AWjYKKdb+l61ZnoyUVM5sPqA6nloM6ZHveEomJd/xpMjJ4fiqnarjycrFntAh7+BR0a+QZ3jzBNh78luHvM/2sAa5gb8tYUf5Zk/hN+HeJP+1fahQtxppSSnsX7Od5PgEHNyd6Tn6Q1VG9aucC8XzXYq6hamBMSG+1TA3MuVRUiyLT28lIT136H8ZI1MsTfKG/GfmZLPg1GZaB9bnw3odSctM51LULXbdOKlqY6CnT9ugBlgYm5GVk010SjyrLuzhUtStEtuPqg1qkZqUzM4VG0mMS8DZw5UBXwzHxiG3/mJiXDzx0XklPJQKJVv+Xk3s42h09fSwdbSnda9O1HkabAM4sm0vOdnZLPzxD7Xnat61HaHd25fYvgihjY7yRQo4CSFK3IQJE1i3bh3nzp0r7a6UuFGjRpGQkMDs2bNLuyuFqlWrFiNGjKBHjx4vtd6+m6dLqEf/nhDf6iQ9eFDa3Xht5i4uLDq5pbS78Vr61GxV2l0oNqfvhpV2F15LdfdApu1fVtrdeG2fNHqntLtQbJLCrpV2F16LeWA5pu5b8vyGb7hPQ3pS//f/9gywhwfP+s/vA+Tux9Izhd8A/q/oUS20tLtQLMZt+7O0u/DaJrV4n02XD5V2N15Lm/INSrsLryzxQPHVzyxOFsH1SrsLpaJ4K+QKIcQL+OKLL/D09CQnJ6e0u6LV48eP6dy5M++887/zI1MIIYQQQgjxH6JUvJl//0/JsE0hxL/O0tKSsWPHlnY3CuXg4KC11p4QQgghhBBCiP9/JPNMiDfEhAkT/l8M2RRCCCGEEEIIIf5LJPNMCCGEEEIIIYQQ4k0i5enfKJJ5JoQQQgghhBBCCCFEISR4JoQQQgghhBBCCCFEIWTYphBCCCGEEEIIIcSbRCHDNt8kknkmhBBCCCGEEEIIIUQhJHgmhBBCCCGEEEIIIUQhZNimEEIIIYQQQgghxJtEZtt8o0jmmRBCCCGEEEIIIYQQhZDgmRBCCCGEEEIIIYQQhZBhm0IIIYQQQgghhBBvEqWitHsg8pHMMyGEEEIIIYQQQgghCiHBMyGEEEIIIYQQQgghCiHDNoUQQgghhBBCCCHeJAqZbfNNIplnQgghhBBCCCGEEEIU4v/Yu+vwps63gePfVKi7u1Da4g7FKVbch8M2mLDBGGPC9DdhMGHIxjbGGD7ch7s7xWkpTgvUqLvm/aOQkiZB1nbt9t6f68p1tSfPc3I/yUnOyZ1HJHkmhBBCCCGEEEIIIYQOMmxTCCGEEEIIIYQQojJRyrDNykR6ngkhhBBCCCGEEEIIoYNCqZR0phBCCCGEEEIIIURlkbpjT0WHoJVlSPuKDqFCyLBNIYQoQ+ExNys6hFKr7uxLytxFFR1GqVm9+iLX46MqOoxS8XPwqOgQysy+a6crOoRSCa7WiB/2L63oMErtvbZDKzqEMrPszI6KDqFUhjQIYd6JTRUdRqmNatqDFr+MrugwSuXImN/+9W2AonbMOry6osMotbdavlDRIZSJaQeWV3QIpfZum8FEp8RXdBil4mLlUNEh/H3Sz6lSkWGbQgghhBBCCCGEEELoIMkzIYQQQgghhBBCCCF0kGGbQgghhBBCCCGEEJVJYWFFRyAeIz3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISoTWW2zUpGeZ0IIIYQQQgghhBBC6CDJMyGEEEIIIYQQQgghdJBhm0IIIYQQQgghhBCViQzbrFSk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEZVIowzYrE+l5JoQQQgghhBBCCCGEDpI8E0IIIYQQQgghhBBCBxm2KYQQQgghhBBCCFGZKAsrOgLxGOl5JoQQQgghhBBCCCGEDpI8E0IIIYQQQgghhBBCBxm2Kf7fW7hwIU5OTnTp0qWiQxFCCCGEEEIIIWS1zUpGkmeVnLe3N+PHj2f8+PH/2P4UCgXr16+nd+/ef/txvvjiCzZs2MC5c+eeuc7+/fsJDg4mKSkJa2vrv/3Yz2PdunV8//33HDly5G/Vf+mll0hOTmbDhg0AtG3blnr16jFz5kyddcriNX38Nbp9+zY+Pj6cPXuWevXq/e19PouyOh737t3Lm2++SVhYGHp6la8DbFxcHDVr1uTcuXO4ubmV62NtXb+ZDSvWkJSYiIe3F6PGvk7NurW0lk1MSGTBL3O5cfUa0Xfv061fT155a7RamWMHj7Dmz5VE37tPQX4+Lu5u9BrQl+CQ9uXajpKUSiVzjx5iw4VzpOVkU9PZlfc7hFDV3kFnnc2XLvDV9s0a2w+N/wAjg7I9XW1et5F1y1eTmJCAp7c3r739JrXq1tZZ/uLZ88yd9RuRt29ja2dH/6ED6dq7h+r+/Px8Vi1Zzp5tO0l48AB3Dw9eeuMVGgU1UZV5uf9Q4mJiNfbdrU9P3nx3XJm2799u/5Zd7Fq3hZTEZFw93Xjh1eFUqxWotezZo6c4sHU3d2/eIT8vDxdPd7oP6UfNhnXUymWmZ7BxySrOHj1NZnoG9k4O9Bs1lNqN65VbO8L2n+L8zmNkpaRh4+pI0IBOuFTz0lr2fsRttkxfrLH9hS/fxNrZHoCrR89xYNFfGmVe/vljDAzlku55nNp5iKOb95CWnIqjuzMhI/rhFVj1qfUiI26y8KufcPRwYfS3E/+BSIud3X2Ek1v3k56Shr2bE+2G9sIjwPep9e5evcXyKbNxcHfmpa8nqLZfPHSKbXNXapSf8Mc3GFQxLNPY/466Ln4Mqd+JQEdP7M2s+XDrbA7dOl/RYT2Xyt6Gi3tPcGbHITKT07F1c6TVoK64+ntrLXv3yk02TJ2vsX3o129j41J0bk+4F8uJDXuIv3OftIRkWg7qSr2OzcuzCf8Zl/ef5MKOo2Q+PF80G9j5CeeLW2yetkhj+4Avx2Dtonmddf3kRfb+sRavugGEjBlcZjFvWLOOFUuWk5CQgI+vN2PfeZs69evqLH/uzFl+nTmLWzdvY29vx6DhQ+nVr7fq/oP7DvDngsXcu3uPgvx83DzcGTh0EJ26dlaVyc/PZ+Hc+ezevovExATs7Ozo3L0rw0e+WCm/U4j/FrnSKic9evQgKyuL3bt3a9x37NgxmjdvTmhoKA0aNPhH4zp16hRmZmb/6GNWVjdv3uTTTz9l27Zt2NjYlMk+161bh6HhP3vB6eHhQXR0NPb29uX+WGV1/HzwwQd88sknqpPcwoULGT9+PMnJyaoy4eHhdOzYkSZNmrB8+XKMjIzYt28fU6dO5cSJE2RlZeHt7U2XLl2YMGGCRpIrICCAW7ducevWLY37bt68ySeffMKBAwdITEzE3t6ehg0bMnXqVPz9/XF0dGT48OF8/vnn/PHHH6Vury6H9x5g/s9zeP2dMQTWqsGOTVuZNPEzZi2ag4OTo0b5vNw8rKyteGHYIP5avV7rPs0tLHhh2EDcPD0wMDTg9LGTzPpuOtY21tRv0rDc2lLS4pPHWR56kv917o6njS3zjx/hrdXLWT3qdcyqGOmsZ1bFiNWjXlfbVtaJs4N79jH3p9m8+e44qteuyfaNW/j8vY+YvWQejs5OGuVj7kfz+fuf0LlHV97734eEX7zMr9N+wsraihZtWxe19/cF7N+5m7cmTsDd04MzJ08z+eMv+OG3H6nqXw2AmXN/oaCweOLXOzdv8ek7E2kZ3LpM2/dvd/rgMVbPXcLgN16mag1/Dm3by89ffM/nv36PraPm59y1S1eoXq8WvUcMwMTMjGO7D/DrpB+YOO0rPKt6A5Cfl8+Pn32LhZUlr300Dht7W5LiEzE2MS63dtw4dZljq3bQYkhXnKp6cOXgGbbPWsYLX7yJua2VznovfDWGKsbF7xFjC1O1+w2NjRjw1Ri1bZI4ez6Xjp1h++J1dBv5Ah4BvoTuPsLSb2cz5oePsbK31VkvOzOLDb8uwbeWP+kpaf9gxBB+/Bx7lv5Fxxf74l7Nm3P7jrPmhz8Y9c37WNrrvobJycxi6+8r8KrhR2Zqusb9VUyMeeW7D9S2VYbEGYCJoRHXE+6y9cpRpnQZ/fQKlVBlbsO1kxc5tGIrbYb1wMXPk8sHTrFp5mKGTBqHhZ21znpDJ4+niknxZ5SJRfF1YX5uHlYOtvg1qsXhlVvLM/z/lBunLnFs5XZaDumGk58n4QdPs+2nPxnwxRjMn/BaDJg0tsT5QvMaPS0hmRNrduJczbNMY967aw8/T/+J8R+8S+26tflr/UY+GP8ei1YuwcnZWaN89L37fDj+fbr17sEnX/6Pi+cvMvP7aVjbWNOmXVsALCwtGP7yCDy9vTAwNOTY4SN8O+kbrG1saNKsKQDLFy/lr3Ub+ejzT/D29SEi/ArfTZqCmbkZ/QcNKNM2ClGSpGfLyahRo9i7dy937tzRuG/+/PnUq1fvH0+cATg4OGBqavr0gv8P+Pr6EhYWhpeX9l91HpeXl/dM+7S1tcXCwqK0oT0XfX19nJ2dMSjjBIM2ZXH8HD16lGvXrvHCCy/oLHPq1ClatWpFSEgIq1evxsjIiDlz5tChQwecnZ1Zu3YtYWFh/Pbbb6SkpDBt2jS1+ocPHyY7O5sXXniBhQsXqt2Xm5tLx44dSU1NZd26dURERLBy5Upq1apFSkqKqtzLL7/M0qVLSUpKKlV7n2TjqvV06NqJjt074+HtyStvjcbewYHtG7doLe/k4sQr40YT3LkDpubak5i169chqHULPLw9cXFzpUf/3nj7+hB28XK5taMkpVLJijMnealpC4L9A6nq4MjnXXqQnZ/HjvAnx6FQgL2ZudqtrK1fsZZO3TsT0qMrnt5evPb2m9g7OrJ1wyat5bdu2IyDkyOvvf0mnt5ehPToSsdunVm3fLWqzL4duxkwfAiNmzXFxc2Vbn160qBpI9atWKMqY2Vjja2drep26ugJXNxcqf2EX2n/P9q9YRstOralZUgwLh5uDHhtODb2dhzYqvljFMCA14YT0r8H3v5VcXJzpveLA3F0debiyTOqMkd37ScjLZ03Pn0HvxoB2Dk64FczAHffp3/+/10Xdx8joEV9Als2wMbFgWYDQzC3sSLswOkn1jOxMMPUylx1K/lLukKB2v2mVmX/HvmvO75lH/WDg2jQrjkObs50frEfVnY2nNp1+In1Nv+xklotGuFezfufCfQxp7cfoE6bJtRt2xQ7NyfaD+uFha01Z/cee2K9HQvWUj2oPq5+2o91hQLMrS3VbpXF8cjLzD3xFwdunqvoUP62ytyGczuPUKNVQ2q2boStqyOtBnfD3NaKi/tPPrGeqaUZZlYWqtvjn1FOPu60GNAZ/6Z10P8Hrkv/Ky7sOkZAywYEtmqIjYsDzQd2eY7zhYXqVvJ8UVhYyN4/1tKwZ/ATk+x/x+plK+jaszvde/fAy8ebtya8jaOTIxvXbtBa/q91G3B0duKtCW/j5eNN99496NKjGyv/XK4qU79hA1oFt8HLxxs3dzf6DxpAVb+qXDx/QVXm8sXLtGzdkmYtm+Pi6kLb9sE0btqEiPCIMm1fpaFUVs7b/1OSPCsn3bt3x9HRUeOLe2ZmJitXrmTUqFFAUSKhdevWmJiY4OHhwbhx48jIyNC538jISHr16oW5uTmWlpYMGDCA2Fj1YUB//fUXjRo1wtjYGHt7e/r27au6z9vbW21I4bVr12jdujXGxsbUqFGDXbt2aTzmxIkT8ff3x9TUFF9fXz777DONZNK3336Lk5MTFhYWjBo1iuzs7Kc+R1u3bsXf3x8TExOCg4O5ffu2RpnnfX6++OIL6tWrx5w5c/Dw8MDU1JQXXnhBrUcTwIIFC6hevTrGxsYEBgby66+/qu67ffs2CoWCVatW0bZtW4yNjfnzzz8pKChgwoQJWFtbY2dnxwcffICyxIdH27Zt1YY0xsXF0aNHD0xMTPDx8WHp0qUaMU+fPp3atWtjZmaGh4cHb775Junpmr8O6/Io3kdDZPfv349CoWDHjh3Ur18fExMT2rVrR1xcHNu2baN69epYWloyePBgMjMz1WIfO3YsY8eOVbXx008/VWtjyePn78S+YsUKOnXqhLGx9h4fe/fupV27drz88svMmzcPfX197t69y7hx4xg3bhzz58+nbdu2eHt707p1a/744w/+97//qe1j3rx5DBkyhOHDhzN//ny1NoSFhXHz5k1+/fVXgoKC8PLyokWLFkyePJnGjRurytWuXRtnZ2fWr9few6u08vLyuHH1GvUaqyfR6zVuwJVLYWXyGEqlkvOhZ7kXdZeadbQPBS0P91OSScjIIMjbR7WtioEBDdw9uXDv3hPrZuXm0nPOz3T/bRbvrFtFRGxMmcaWl5fH9atXqd+4kdr2Bo0bEq7jeb9yOYwGjdV77TVo0ohrV66Sn5//cL+5GBpVUStTpYoRYRcu6Yxj387ddOzWGYVC8Xeb85+Tn5dP5PVbVK+vPoS2ev3a3Lxy7Zn2UVhYSHZWNqbmxUml8yfO4BtYjeWzF/L+sDf46s2JbFu1kcKC8lkCviC/gAeR0bjVUB8G6FbDl9gbUU+su+7r3/nz/elsmb6Y+xG3NO7Py8ll+Uc/smziDLb/vJwHkdFlGvt/XUF+PvdvRVG1jvowYN86gdy9qvl8P3J2/3GSYh/Qtl9nnWXKS0F+PjG37+Fdy19tu09tf+5du62z3sWDJ0mOe0CLPh11lsnNzuW3d77m17cnsWbaPGJvP/kzWvw3FOTnE3fnPh41/dS2e9TwI+Z65BPrrvjyF+ZP+JYNU+dz98rN8gzz/4WC/HweRN7HvcT5wr1G1aefLybNYcl7P7B5+iLuX9H8/Dqz+QAmFmYEtizbDht5eXlEXLlK46aN1bY3btqYyzquey5fvKxRvklQEyLCr6iupR6nVCoJPXmaqDuR1K1fT7W9dr3ahJ4OJepO0XF6/eo1Lp6/QFDzoFK2Soink+RZOTEwMGDEiBEsXLhQ7Yv76tWryc3NZejQoVy8eJGQkBD69u3LhQsXWLlyJYcPH2bs2LFa96lUKunduzeJiYkcOHCAXbt2cePGDQYOHKgqs2XLFvr27Uu3bt04e/Yse/bsoVGjRlr3V1hYSN++fdHX1+f48eP89ttvTJyoOX+HhYUFCxcuJCwsjB9//JG5c+cyY8YM1f2rVq3i888/Z/LkyZw+fRoXFxe1ZJQ2UVFR9O3bl65du3Lu3DleeeUVPvzwQ7Uyz/v8PHL9+nVWrVrFpk2b2L59O+fOnWPMmOIhLnPnzuWTTz5h8uTJhIeHM2XKFD777DMWLVKfO2DixImMGzeO8PBwQkJCmDZtGvPnz2fevHkcPnyYxMTEpyZWXnrpJW7fvs3evXtZs2YNv/76K3FxcWpl9PT0+Omnn7h06RKLFi1i7969fPDBBzr2+Oy++OILfv75Z44ePUpUVBQDBgxg5syZLFu2jC1btrBr1y5mzZqlVmfRokUYGBhw4sQJfvrpJ2bMmPHEYYt/J/aDBw/qPCbXr19Pt27d+OSTT5g6dapq+6P3ja59Pz5HXlpaGqtXr2bYsGF07NiRjIwM9u/fr7rfwcEBPT091qxZQ0FBwRNjbdKkCYcOHXpimb8rLSWVwoJCrG3Vfwm0srEmKbF0vd0y0jMY1LkP/dv34OsPP+fVcW9oJOnKU8LDBLdtiSG+tmZmJGTqTq562drxvy49+KHPC0zq3gsjfX1eWb6YyKTEMostNSVF6/NubWtDUoL2x0lKSNRavqCggNTkot6KDZo0YsOKNdyLukthYSFnT4Vy4vBREnXs8/jBI6Snp9Oha6cyaNV/R3pqGoWFhVjaqA9rtLSxIjUpRUctdbvXbyU3O4eGrZqqtj2IjePMkZMUFhYy9osP6DKwN7vXb2Xbqg1lGb5KdnomykIlppbq7wETCzOyUrX/AGRqZU6rYd3pOPoFOo5+AStne7bMWEL01eIe7FbO9rR5sRed3hxI8Ct9MTA04K/vF5ASm1Au7fgvykzNQFlYiLmVei9xcysLnUMxE6Lj2LN8E33HjkBPX/+fCFNNZlpRzGYlYja1tCBDR8yJMfEcWLWV7qOH6ozZzsWRrq8OpO87I+nx5lAMqhiw9OufSYyJL/M2iMolKy0TZWEhppbqPVdNrczITNF+njaztiB4RC+6vDmELm8OwdrZng0/LOCeliS/eHaPzhcmJc8XlmZah1oDmFpZ0Gp4DzqOHkCnNwZi7WTH5hmLiL56W1Um5nokEYfP0Hp4D637KI2U5BQKCwqwsVMf5m5ja0tigvbzUWJCAja2Jcrb2VJQUEDKY50c0tPT6dymIx2at+XDCR8w7r3xNHos6TZkxDDad+rAiAFDad+sDa8OH0n/QQNoH6L7RwIhyor0py1HI0eOZOrUqaqJ8KFoyGbfvn2xsbHh7bffZsiQIaqeStWqVeOnn36iTZs2zJ49W6Nnzu7du7lw4QK3bt3Cw8MDgCVLllCzZk1OnTpF48aNmTx5MoMGDeLLL79U1atbV/uQoN27dxMeHs7t27dxd3cHYMqUKRqrTn766aeqv729vXn33XdZuXKlKpExc+ZMRo4cySuvvALA119/ze7du5/Y+2z27Nn4+voyY8YMFAoFAQEBXLx4ke+++05VZurUqc/1/DySnZ3NokWLVG2aNWsW3bp1Y9q0aTg7OzNp0iSmTZum6pHn4+NDWFgYc+bM4cUXX1TtZ/z48Wq99mbOnMlHH31Ev379APjtt9/YsWOHzjZevXqVbdu2cfz4cZo2LfoSN2/ePKpXr65W7vGeaj4+PkyaNIk33njjqQnIp/n6669p0aIFUDSM+KOPPuLGjRv4+hZNLty/f3/27dunljD18PDQeE1mzJjBq6++qvUx/k7st2/fxtXVVWN7eno6L7zwAh9//LFGIvXatWtYWlri4uLy1HavWLGCatWqUbNmTQAGDRrEvHnzVO9BNzc3fvrpJz744AO+/PJLGjVqRHBwMEOHDlU9N4+4ublx9uxZrY+Tk5NDTk6O2jYjI91zeelWsteRstQ9kUxMTZjxxy9kZWVx4cw55v86FydXF2rXr/P0yn/D9rBLfLNrm+r/GX2L5pxQlGibUqm57XG1Xd2o7Vo8P11dNw+GL57HqjOnea992SaZSj7HSuWTn3eNux79KPLwjtffHsNP309n9NCRoAAXV1c6dA1h91btnxE7t2yjUdMm2P0DcxX+G2keO0rNt4oWpw4cZfOydbzx2QQsrYsTcMpCJRbWlgwb+wp6+np4+fmQkpjEznVb6Da47xP2+M+xdrZXLQwA4FTVg4zEFC7sOoaLf9GQOydfd5x83VVlnKt6sm7y71zed4rmg/75HlH/bs92jBUWFrLu58W07d8FOxfNuSgrllLzs4mimDfPXkqLvp2w1TJ5+COufl5qwzndq3mz6H8zObPrCB2G9y6HeEWlp0TnZ62NswM2zsXHk4ufJ+lJKZzdcQS3AB/tlcQz03bNpIu280V6Uirndx7Fxd+b3Owc9s1bR6vhPbXOg1ZWtJ+rn3QtpaX8wz09Ympqyh9/LiArK4szp07zy8yfcXFzpX7Doh+B9+7aw65tO/l00uf4+Ppw/eo1fp7+E3b29nTurv4d9j/h//EQycpIkmflKDAwkObNmzN//nyCg4O5ceMGhw4dYufOnQCEhoZy/fp1taF8SqWSwsJCbt26pZFkCQ8Px8PDQ5U4A6hRowbW1taEh4fTuHFjzp07pzPRUVJ4eDienp6qJBNAs2bNNMqtWbOGmTNncv36ddLT08nPz8fS0lJtP6NHq0+C2qxZM/bt2/fExw4KClL7EC352M/7/DyirU2FhYVERESgr69PVFQUo0aNUnue8vPzsbJS7+nweO+olJQUoqOj1WI0MDCgUaNGGkM3H2/jozKPBAYGaqwkum/fPqZMmUJYWBipqank5+eTnZ1NRkZGqSbnr1OnOFHi5OSkGnb7+LaTJ9XntdD2mkybNo2CggL0tfxy/Xdiz8rK0pr4NDExoWXLlsydO5fBgwervb5PS2w8bt68eQwbNkz1/7Bhw2jdujXJycmq537MmDGMGDGCffv2ceLECVavXs2UKVP466+/6Nix+JcrExMTtaGtj/vmm2/UktQAn3/+OQNHj3imOC2sLNHT1yM5Ub1nUkpSCtY21s+0D1309PRwcS9KUPpWq8rdO1GsXbqy3JJnrfyqUdOlOCGa+7BHX0JGOvaPDZ1LyszA1vTZj2k9hYIazq5ElWHPM0srK/T09TR6maUkJWv0LnvExs6WpAT13oDJScno6+tjaVX0WWhlY81n33xFbk4uqamp2NnbsWD2Hzi5aE6aGxcTy7nTZ/l48udl1Kr/DnPLojlbUpKS1banJaeqJcO0OX3wGIt/mstrH46jej31YcpWttbo6+ujp1/c4d7Zw5XUpGTy8/LLfMJ9Y3NTFHoKMkv0MstKy9DoXfAkjr7uXD9xUef9Cj0FDt6upMRJz7NnZWpphkJPj/SUVLXtGanpmFtqzlmam5XN/ZuRRN++y9aFRXMYKh/O+fLV0PEM/+hNfEoMpyzzmC2KYi7ZyywzNR1TrTHnEHPrLrF37rN78Qa1mKe+9AEDPngVrxrVNOop9PRw9vEgKVZ6nv3XmViYotDT0+jZlJmaodEb7UmcfT2IOF55Vg/9Nyo+X6i/Ftlpz/daOPq4c/1E0dxgqfGJpCUks+OXZar7H31fmTv6SwZ+9RaWjroXR3kaK2sr9PT1NXqZJSclYWurfb+2dnaa5ROT0NfXx+qx87uenh7uHkXf46r5V+POrTssW/inKnn220+/MuTFobTv1AEAX7+qxETHsHTRkv9m8kxUKpI8K2ejRo1i7Nix/PLLLyxYsAAvLy/at28PFP0y+PrrrzNu3DiNep6emiui6EogPL7dxMTkmWPTlvQpuf/jx4+rerKFhIRgZWXFihUrNCZof166Ek6Pe97nR5dHbVIoFBQ+XOlu7ty5qt5gj5RMDpV2VclHbXxS0ufOnTt07dqV0aNHM2nSJGxtbTl8+DCjRo165kUKdHl81U+FQqGxCujjz8ff8Xdjt7e31zoJv76+Phs2bKBfv34EBwezd+9eatSoAYC/v78qgfmk3mdhYWGcOHGCU6dOqfWoKygoYPny5bzxxhuqbRYWFvTs2ZOePXvy9ddfExISwtdff62WPEtMTMTBQfuv9h999BETJkxQ22ZkZMTNpGebL8bQ0JCq/tU4d/osQa1bqLafO32Gpi01k9iloVQqS308PYlZFSO1FTSVSiV2ZmacuHOLAKei5FFeQQFn7kYytnXwM+9XqVRyNS4WPx2vwd9haGiIn78/Z0+F0rxNS9X2s6dDCWrZXGudwJo1OHlUfVLus6dOUy3QX2OhjipGVbB3sCc/P5+jBw7Rql0bjf3t2rIdKxtrmjST+TlKMjA0wNPPh/Bzl6jfvHiYRvi5i9Rtqnu12FMHjrL4x98Z9f5Yajeur3F/1er+nDxwlMLCQtWEyrH3YrCytS6XlSr1DfSx93ThXvhNfOoXz611L/wmXnUDnnk/CVExmDxhQQClUklCVCy2bpWtR1TlpW9ggKuPBzcvRFC9cXHP/JsXrxDQsLZGeSMTY974Xr039Kmdh7kVdpUB40di7WD3j8Ts7O3G7UtX8W9UHOPtS1fxa6A5n6WRiREvT3lXbdvZ3UeJDL9Or7dGYOWg/cutUqkkLvIeDu5P7+Ut/t30DQxw9HIl6vJ1qjaoodoeFXYdn/raf5zWJj4yWhYtKSV9AwPsPV25F3ZD7bm/G34D77qBT6ipLiGq+LWwdran/+dvqN1/asNe8nJyaT6wM2a2pVsYxNDQkIBAf06fPEWr4OLrnNMnT9OidUutdWrWrsnRw0fVYzpxioDqgU9e9EypJDcvV/VvTnY2egr1maf09fVRluI7jRDPSpJn5WzAgAG8/fbbLFu2jEWLFvHqq6+qkikNGjTg8uXL+Pn5PWUvRWrUqEFkZCRRUVGq3mdhYWGkpKSoeunUqVOHPXv28PLLLz/z/u7fv68aRnfsmPoXxCNHjuDl5cUnn3yi2lZyBdHq1atz/PhxRowo7nFz/Pjxpz72hg0b1LaVrPO8z88j2tqkp6eHv78/Tk5OuLm5cfPmTYYOHfrM+7SyssLFxYXjx4/TunVroKi3WmhoqM5VU6tXr05+fj6nT5+mSZMmAERERKgtXnD69Gny8/OZNm2a6gvdqlWrnqu9Zanka3D8+HGqVaumtdfZ3429fv36hIVpn5jdyMiIdevW0b9/f4KDg9mzZw+1atWif//+fPjhh3z//fdq8+098qhX2bx582jdujW//PKL2v1Llixh3rx5asmzxykUCgIDAzl6VP2kfunSJdq2basz1r83TLNYrwF9mDn5B/wCqhFQszo7N2/jQVw8IT27FsX9+wIS4hMY/8l7qjo3r90AIDsrm9TkFG5eu4GhoQEe3kVDb9b8uRK/gGo4u7mQn5dP6PFT7N+xh9ETnjxXYFlSKBQMatCEhSeO4mFji6e1DQtOHMXYwJCQ6jVV5T7f+heO5haMeZhQm3v0ELVc3PC0sSEjN5eVZ05xNT6WDzqElGl8fQb1Y9qk76gW6E9grRps/2sL8bFxdO1dNC/Iwt/+ICH+Ae9+VvSFuWvv7mxet5G5s2YT0qMrVy6FsXPzdj744mPVPq9cDifhwQN8/aqS8CCBZfMXU1hYSL8hA9Ueu7CwkF1bd9C+c0f0Df75uZP+DTr07sKC6bPx8vPBt3o1Dm3fS1J8Aq27Fv3wtH7hCpITknj53aL386kDR1kw/TcGvDYcn0A/Va+1KlWqYGJWtDpw664d2Ld5J6t+X0Jwj07E3Y9h++qNBPco22PrcbU7NGP/gvU4eLng6OvOlUNnSE9MoXrroiTgyfV7yEhOI/jl3gBc3H0cC3trbFwcKCgo4PqJi9w6E06H14tXJg7ddABHXzesHO3Iy87h0t6TJETF0GKw/Nr+PIK6BbP+lyW4+nrg7u9D6J6jpDxIolGHoi99u5f/RVpSCn3eHI5CTw9HD/WpBsyszDEwNNTYXp4adW7DljnLcfbxwM3Pi3P7j5OakEy9dkVJ+AOrtpKelEK31wej0NPTSICZWhbF/Pj2I+t34lrVCxtne3Kysjmz8zBxkffpOKJyDGU2MTTC3ar4xxNXS3uq2buTmp1BbHr5rYRdlipzG+p1asGuP9bg6O2Gc1UPLh88TXpiCrXaFP1wcXTtTjKSUun4Sn8Azu06iqWdNbZujhTkFxBx/Dw3Qi/T5c3Bqn0W5OeTeD/+4d8FZCSlEh8ZjaFRFaydyj/R/G9Vp2Mz9s1fh72XK05VPQg/GFp0vmhTNHrl5LrdZCSnEjyy6L15cfcxLOyssXF1LDpfHL/ArTPhdBxdNG2GgaEhtm5Oao9hZFo06qPk9r/rhSGDmPL5JAKqB1Kzdi02rf+L2JhYevbtDcDvv/zGg7h4Pv7yMwB69u3N+tXr+GXGLLr37sHli5fY+tdmPvv6C9U+ly5cQkD1QFzdXcnLy+fEkWPs2LqddyYWXwc3a9WCJQsX4+jshLevD9cjrrJq2Uq69uhaJu2qdCQpWKlI8qycmZubM3DgQD7++GNSUlJ46aWXVPdNnDiRoKAgxowZw6uvvoqZmRnh4eFaJ3IH6NChA3Xq1GHo0KHMnDmT/Px83nzzTdq0aaMaGvj555/Tvn17qlatyqBBg8jPz2fbtm1aJ1rv0KEDAQEBjBgxgmnTppGamqqWJAPw8/MjMjKSFStW0LhxY7Zs2aIxSf7bb7/Niy++SKNGjWjZsiVLly7l8uXLGvNHPW706NFMmzaNCRMm8PrrrxMaGqqxMunzPj+PGBsb8+KLL/LDDz+QmprKuHHjGDBgAM7ORT1gvvjiC8aNG4elpSVdunQhJyeH06dPk5SUpNGTqGQ7v/32W6pVq0b16tWZPn26xiqejwsICKBz5868+uqr/P777xgYGDB+/Hi13oFVq1YlPz+fWbNm0aNHD44cOcJvv/2mc5/lLSoqSvWanDlzhlmzZunsZfh3Yw8JCdFYnOFxVapUYe3atQwYMIB27dqxZ88eateuzYwZMxg7diypqamMGDECb29v7t69y+LFizE3N+fbb79lyZIlfPXVV9Sqpf5L/CuvvML333/P+fPnUSqVfP755wwfPpwaNWpQpUoVDhw4wPz589V6q2VmZhIaGsqUKVOe8dl7fi3btSE1JY2Vi5eRlJCIp483n333FY7ORRc2iQmJxJdYYGLCK8VJsBsR1zi4ez8Ozo7MXVn0nOZkZzNnxi8kxD+gilEV3Dw9eOfT92mppQdUeRrRJIic/Dy+372dtOxsarq4Mqv/ILUearGpqeg91jMzLSebb3ZuJSEzA/MqRvg7OTFn0DC1IaFloXX7YFJTUlm+8E8SExLx8vHmy6lT1J/32OLn3dnVhS+nTmburNlsXvcXdvZ2vD5+DC3atlaVycvNZcncBcTcj8bExIRGQU1497OJmFuo/yJ/7vQZ4mPj6NRNkh26NGrdjPS0dLasWE9qYjKuXu6M/eJ97ByLvoCmJCWTGF889OPgtr0UFhSwYvZCVsxeqNoe1L4VL71TNKWArYMdb3/1Iav/WMKksR9hbWdDu56dCelX9hMpP1K1cU1yMjI5s+UgmSnp2Lo60nnsECzsrAHITEknI7F4EYTCggJOrNlFRnIaBoYGWLs6EDJ2MJ61i4fX5WZlc/jPLWSmplPFxAg7D2d6vPcijj5uJR9ePEGtZg3ISsvgwLodpCen4OjhwtCJo7F+2CMrPTmVlAeVKzlTPage2ekZHN24i4zkVOzdnen/7iis7ItizkhOJTXh+WLOzsxix4LVZKSkYWRijKOXG4M/fhOXqs/eu788BTp48XOf4uuycS2LEslbw48xea/u64jKpDK3oVqT2mSnZ3Jq0z4yUtKwc3Oi+9vDsbQvmsIgMzmNtMRkVfnC/AKOrN5OelLqw+SMI93fHo53neLetBnJaaz8svgHzLM7DnN2x2FcA7zp+8Er/1jb/m2qNq5FdkYmZ7YcUJ0vurw19LHzRRrpj50vCvILOL5mp+p8YePqSOe3huBZu3yHkD+uXcf2pKaksGjeQhIfJOBT1YfvZkzF+eF0FQkPEoiNjVWVd3Fz5duZU/llxiw2rFmHnb09b707njbt2qrKZGVlMeP7acTHxWFkZISnlxeffPU/2nVsryrz9nvvMG/OXGZ+P42kpCTs7e3p0acnL77y9I4jQpSWQvks4+dEqRw7dozmzZvTqVMnjQnmT506xSeffMKxY8dQKpVUrVpVlWyDogn6x48fr5qYPTIykrfeeos9e/agp6dH586dmTVrFk5Oxb8irFu3jkmTJhEWFoalpSWtW7dm7dq1Wvd39epVRo0axcmTJ/H29uann36ic+fOrF+/nt69ewPwwQcfMH/+fHJycujWrRtBQUF88cUXaomjKVOmMGPGDLKzs+nXrx9OTk7s2LGDc+fO6XxeNm/ezDvvvENUVBRNmjTh5ZdfZuTIkSQlJanmpnra81PSF198wYYNG3j99df5+uuvSUxMpGvXrvzxxx/Y2BTPZ7Rs2TKmTp1KWFgYZmZm1K5dm/Hjx9OnTx9u376Nj48PZ8+epV69eqo6+fn5vPfeeyxYsAA9PT1GjhzJgwcPSElJUfWia9u2LfXq1WPmzJkAxMTE8Morr7B7926cnJz4+uuv+eyzz9RegxkzZjB16lSSk5Np3bo1Q4cOZcSIEWrPQ0kKhUL1GpWM99ECFY/XX7hwIePHj1d7zR49V49eo7Zt21KzZk0KCwtZtmwZ+vr6vP7660yZMkXVW7Lk8fN3Yk9KSlJNxB8QEKAzvry8PAYPHsyBAwfYs2cPderUYffu3fzwww+cPHmSrKwsvL296d69OxMmTODo0aMMGDCA+/fvq70fHqlTpw5t27blf//7H5MmTWLv3r3cvn0bhUKBt7c3L774Iu+8846qF93y5cv58ssvuXLlitZ26BIe8+9ftr26sy8pc/8dX0yexOrVF7ke/+Rl3is7PwePpxf6l9h37XRFh1AqwdUa8cP+pU8vWMm91/bZe11XdsvO6F60599gSIMQ5p3YVNFhlNqopj1o8cvopxesxI6M+e1f3wYoasesw6srOoxSe6vlC08v9C8w7cDyig6h1N5tM5jolH/3PIguVmU3/cc/LXX1hooOQSvLF3pXdAgVQpJn4j+lZEJIPLuSib/y9MEHH5CSksKcOXPK/bH+riZNmjB+/HiGDBnyXPUkeVZ5SPKscpHkWeUgybPKQ5JnlYckzyoXSZ5VHpI8q1ipq9Y/vVAFsBzQp6JDqBB6Ty8ihBBl65NPPsHLy4uCh6syVjZxcXH079+fwYMHP72wEEIIIYQQQoj/NJnzTAjxj7OystI59LYycHR01DpPoBBCCCGEEEKI/38keSb+U7744gu++OKLig7jX2n//v0VHYIQQgghhBBCCACZYatSkWGbQgghhBBCCCGEEELoIMkzIYQQQgghhBBCCCF0kGGbQgghhBBCCCGEEJVJoQzbrEyk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEJaJUFlZ0COIx0vNMCCGEEEIIIYQQQggdJHkmhBBCCCGEEEIIIYQOMmxTCCGEEEIIIYQQojJRymqblYn0PBNCCCGEEEIIIYQQQgdJngkhhBBCCCGEEEIIoYMM2xRCCCGEEEIIIYSoTApl2GZlIj3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISoTWW2zUpGeZ0IIIYQQQgghhBBC6KBQKiWdKYQQQgghhBBCCFFZpCxeUdEhaGU1YlBFh1AhZNimEEKUoTnHNlR0CKX2erPeRCXFVHQYpeZh48zAPz+r6DBKZeWwSaRu3VnRYZSaZddOvPPXjxUdRqnM6Pk2L66YVNFhlNqiQZ+Rlpxc0WGUmoW1NdMOLK/oMErl3TaDWXZmR0WHUWpDGoT869sxpEEIsw6vrugwSu2tli/Q4pfRFR1GqR0Z8xu9Fkys6DBKZePL3/HG2qkVHUapze73Pp3nvlPRYZTK9ldnVHQIf5+ysKIjEI+RYZtCCCGEEEIIIYQQQuggyTMhhBBCCCGEEEIIIXSQYZtCCCGEEEIIIYQQlUmhTE9fmUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRCnDNisT6XkmhBBCCCGEEEIIIYQOkjwTQgghhBBCCCGEEBUqKSmJ4cOHY2VlhZWVFcOHDyc5OfmJdV566SUUCoXaLSgoSK1MTk4Ob731Fvb29piZmdGzZ0/u3r37XLFJ8kwIIYQQQgghhBCiMilUVs5bORoyZAjnzp1j+/btbN++nXPnzjF8+PCn1uvcuTPR0dGq29atW9XuHz9+POvXr2fFihUcPnyY9PR0unfvTkFBwTPHJnOeCSGEEEIIIYQQQogKEx4ezvbt2zl+/DhNmzYFYO7cuTRr1oyIiAgCAgJ01jUyMsLZ2VnrfSkpKcybN48lS5bQoUMHAP788088PDzYvXs3ISEhzxSf9DwTQgghhBBCCCGEEE+Vk5NDamqq2i0nJ6fU+z127BhWVlaqxBlAUFAQVlZWHD169Il19+/fj6OjI/7+/rz66qvExcWp7gsNDSUvL49OnTqptrm6ulKrVq2n7vdxkjwTQgghhBBCCCGEqEyUhZXy9s0336jmJHt0++abb0rd3JiYGBwdHTW2Ozo6EhMTo7Nely5dWLp0KXv37mXatGmcOnWKdu3aqRJ6MTExVKlSBRsbG7V6Tk5OT9xvSTJsUwghhBBCCCGEEEI81UcffcSECRPUthkZGeks/8UXX/Dll18+cZ+nTp0CQKFQaNynVCq1bn9k4MCBqr9r1apFo0aN8PLyYsuWLfTt21dnvafttyRJngkhhBBCCCGEEEKIpzIyMnpisqyksWPHMmjQoCeW8fb25sKFC8TGxmrcFx8fj5OT0zM/nouLC15eXly7dg0AZ2dncnNzSUpKUut9FhcXR/PmzZ95v5I8E0IIIYQQQgghhKhMCgsrOoIyYW9vj729/VPLNWvWjJSUFE6ePEmTJk0AOHHiBCkpKc+V5EpISCAqKgoXFxcAGjZsiKGhIbt27WLAgAEAREdHc+nSJb7//vtn3q/MeSaEEEIIIYQQQgghKkz16tXp3Lkzr776KsePH+f48eO8+uqrdO/eXW2lzcDAQNavXw9Aeno67733HseOHeP27dvs37+fHj16YG9vT58+fQCwsrJi1KhRvPvuu+zZs4ezZ88ybNgwateurVp981lIzzMhhBBCCCGEEEIIUaGWLl3KuHHjVCtj9uzZk59//lmtTEREBCkpKQDo6+tz8eJFFi9eTHJyMi4uLgQHB7Ny5UosLCxUdWbMmIGBgQEDBgwgKyuL9u3bs3DhQvT19Z85NkmeCSGEEEIIIYQQQlQmSmVFR/CPs7W15c8//3xiGeVjz4uJiQk7dux46n6NjY2ZNWsWs2bN+tuxybBNIcS/Vtu2bRk/fnxFhyGEEEIIIYQQ4j9Mep4JIUQFOrfnGKe3HSAjOQ07NyfaDumBe4DPU+vdu3abVd/Mwd7NieGTxqu2r/pmDncjbmqU96kTSJ8JL5dJzBvXrGf10hUkJCTi7ePNm++MpXa9ujrLnz9zjt9+/IXbt25jZ2/HwGGD6dG3l+r+HZu3MfXrbzXqbT2wkyoPV/IZ2nsgsTExGmV69uvNuPffKYNWQSf/JvSo0RJrE3PuJsex6PQ2rsTf0Vm+pXcdetZshbOFLZl5OZy/f40lodtJz83SKNvcqzZvtxrAqahwfjiwrEzi1UWpVDJ3xzbWHztCWlYWNT29+KDfAKo+nDRVm70XzrFw106iHjwgv7AAD3sHhrVtR9fGTVRlft++lbk7tqnVs7WwYMdXU8q8DS286xBctQGWxmbEpCWw4dJBbibe11leX0+fEP8mNHQPxNLIlOTsdHZdPcXJqDAA9BR6dKjWiMYe1bEyNicuPYnNYUee+PqWhXZ+Deka2AwrEwvup8Sz9OwOrsZHaS37StOetPLRfB/dS4nn422/AaCv0KN7jRa09KmDtYklMakJrDq/h4sxN8qtDUqlkt//+IP1GzaQlpZGzZo1mfj++1T19X1ivT179/LbnDncvXcPdzc33nzjDYLbtlXdf+bsWZb8+SfhV67w4MEDfvj+e9q2aVNu7bi8/yQXdhwlMyUNG1dHmg3sjEs1L61l70fcYvO0RRrbB3w5BmsXBwBunQnj7LZDpMYlUlhQiJWjLbU7Nse/me7PwvJwauchjm7eQ1pyKo7uzoSM6IdXYNWn1ouMuMnCr37C0cOF0d9O/Aci1e3f2oaLe09wZschMpPTsXVzpNWgrrj6e2ste/fKTTZMna+xfejXb2Pz8JhKuBfLiQ17iL9zn7SEZFoO6kq9js8+QXZ5quvix5D6nQh09MTezJoPt87m0K3zFR2WSpfAIPrUaoONiQWRybHMO7mJsNjbOsu38a1Hn9ptcLW0JyM3m7P3rrLg1BbScjKBos/a/nWCCfZriJ2pJfdS41l0ehtn710ttza09q1HR//GWBmbE536gNXn93I94Z7WsiMadqGZdy2N7fdTHzBp1wIA6rlWo3NgEA5m1ujr6RGXnszua6c4GRlWbm0A6F69Bf3rBmNrYsmdpBh+O76ByzGa16WP9KjRgh41WuFkYUN8ejLLz+1iz7XTqvs7BwTRwb8xXjbOAFx/cJcFp7ZwNT6yXNshhDaSPBNClJvc3FyqVKlS0WE8UV5eHoaGhhXy2BEnzrN/2Sbaj+iNazUvLuw7wfrp83lxygQs7Wx01svJzGL77yvxrFGVzJR0tft6vDWcwvwC1f9ZGRks+exH/BvXLpOY9+3ay+yZPzPu/XeoWacWWzZs4qN3JjJv+SKcnDWXkI6+H80nEybStVd3PvziEy5fuMRPU2dgZW1N63bFX5RNzcxYuGqJWt0qjy2B/cuCORQWFrfr1o1bTBz3Lq3btS2TdjXzqsWLDbsw79RmIuIi6VCtER+1G86ETbNIyEzRKB/g4MmY5v1YFLqN0LtXsDW15NWmPXk9qDfTDi5XK2tvZsWwBiGEP+FCviwt3rubZfv38b8hQ/F0cGT+rh2M/e1n1nz0GWbGxlrrWJma8XLHELydnDDU1+fQ5ct8tWIpNhYWNAusrirn6+zCL2+MVf2vr6co8/jruVajd63WrLmwj1uJ92nuVZvXgnrx7b4/Sc5K01rnxYZdsDAyZeW53cRnJGNhZIqeorhzfdfAZjR0D2TV+T3EpScS4OjFy02689OhVdxLjS/zNgA08ajB0PohLA7dytUHdwmu2oB3Ww/ho22zScxM1Si/9MwOVp/fo/pfT6HH151fUyUAAfrVCaa5Vy3mn9pCdOoDartUZVzLF5i0eyGRyZrJ5bKwaMkSli1bxuf/+x+enp7Mmz+fMW+9xdpVqzAzM9Na58LFi3z86aeMfu01gtu2Zd/+/Xz48cfM+/13atUq+sKXlZVFtWrV6NG9Ox98+GG5xP7IjVOXOLZyOy2HdMPJz5Pwg6fZ9tOfDPhiDOZ21jrrDZg0lirGxZ9DxhbF7TUyM6F+19ZYO9ujr6/PnYtXObBoAyaWZnjU9CvP5qhcOnaG7YvX0W3kC3gE+BK6+whLv53NmB8+xsreVme97MwsNvy6BN9a/qSnaH9P/VP+rW24dvIih1Zspc2wHrj4eXL5wCk2zVzMkEnjsHjCMTV08niqmBQfUyaPHVP5uXlYOdji16gWh1duLc/wn5uJoRHXE+6y9cpRpnQZXdHhqGnpU4dRTXow59gGwuPuEBLQlP91HMnY9dN5kJGsUb66ozdvtxrI/JObOBkVjp2pFW8078PYFv34Zm/RdcjQhiG09a3PL0fXcjc5nvpu/nzUbgQTt/zKrSf8kPN3NXQP4IW67Vhxdhc3Eu7RyqcuY1r256ud80nSct5bdX4PGy4dVP2vp6fgk/YvceZuhGpbRm42264cJzYtgfzCQmq7+DKiYRfScjLL7XqktW89Xm/Wm1+OrOFy7C26Bjbn686v8drqb4nX8lp0q96clxp358dDK7kaH0WAgydvtxpAek4WJyIvA1DH1Y/9188QFnuL3IJ8XqjbjildRvP6mu+0Xp/95xT+/xu2WZnJsE0h/iOUSiXff/89vr6+mJiYULduXdasWQPA/v37USgU7Nmzh0aNGmFqakrz5s2JiCg6yUZERKBQKLhy5YraPqdPn463t7dqXHlYWBhdu3bF3NwcJycnhg8fzoMHD1Tl27Zty9ixY5kwYQL29vZ07NgRgL/++otq1aphYmJCcHAwixYtQqFQkJycDBQtJzx48GDc3d0xNTWldu3aLF+unoDIyMhgxIgRmJub4+LiwrRp0zSeA4VCwYYNG9S2WVtbs3DhQgBu376NQqFg1apVtG3bFmNjY/78889nevzyELrjELVaN6Z2mybYuToRPLQnFrZWnN97/In1di9cR2BQPVyqavaaMDE3xczaQnWLvHQNwyqG+DepUyYxr12+is49utK1V3e8fLx58523cHR0YNO6jVrLb163EUcnR9585y28fLzp2qs7nXt0ZfWyFWrlFAoFtnZ2arfHWdtYq9134sgxXN3dqNugXpm0q1v15uy9cYa910OLfmEO3UZCZiqd/JtoLV/N3oO4jGS2RxwnPiOZiPhIdl87ha+dm0a73mrxAqsv7CU2PbFMYn0SpVLJ8gP7ebljJ9rVqYefiytfDBlGdm4eO86c1lmvoV81guvUxcfJGXd7Bwa3aYufiyvnbqr3aNLX08Pe0lJ1szG30LHHv69t1QaciLzMicjLxKUnseHyQZKz0mnhrT0BHOjghZ+9O3NPbOTqgyiSstKITI7ldlK0qkwjj0B2XztFeNxtEjJTOXr7IhFxd2jr16DM43+kc2AQB2+e5cDNc0SnPmDZ2Z0kZqbS3q+R1vJZeTmkZGeobj62rphWMeHQzeLeHc29a7Mp7AgXoq8Tn5HM3uuhXIy5SZfAoHJpg1KpZPmKFbz88su0Cw7Gr2pVvvz8c7Kzs9n+hPlFlq9YQdMmTXj5pZfw9vbm5ZdeoknjxixbUfy+b9G8OW+OHk274OByif1xF3YdI6BlAwJbNcTGxYHmA7tgbmNF2AHd7wkoSmyYWlmobnp6xZfNrgE++NSvjo2LA5aOttRuH4StmxMx1/+53hDHt+yjfnAQDdo1x8HNmc4v9sPKzoZTuw4/sd7mP1ZSq0Uj3Kt5/zOBPsG/tQ3ndh6hRquG1GzdCFtXR1oN7oa5rRUX9598Yj1TSzPMrCxUt8ePKScfd1oM6Ix/0zroG1Su/g3HIy8z98RfHLh5rqJD0dCrZit2XzvFrmunuJsSx7yTm3iQkaLzczHA0bOo93H4UeLSkwiPu82OiBP42burygRXbcCaC/sIvRtBbHoi2yOOc/beVXrXalUubWhfrRFHb1/kyO2LxKQlsvrCPpIy02jtW09r+ez8XFJzMlQ3LxtnTKsYc+zOJVWZaw+iOH//GjFpiTzISGbf9TPcS4nHr8R1SlnqW7stOyJOsD3iBFHJccw5voH49GS612ihtXz7ao3YFn6UgzfPEZOWwIGbZ9kRcYIBddupyny/7082hx/hZuJ97qbE8eOhlSgUCuq5VSu3dgihiyTPhPiP+PTTT1mwYAGzZ8/m8uXLvPPOOwwbNowDBw6oynzyySdMmzaN06dPY2BgwMiRIwEICAigYcOGLF26VG2fy5YtY8iQISgUCqKjo2nTpg316tXj9OnTbN++ndjYWAYMGKBWZ9GiRRgYGHDkyBHmzJnD7du36d+/P7179+bcuXO8/vrrfPLJJ2p1srOzadiwIZs3b+bSpUu89tprDB8+nBMnTqjKvP/+++zbt4/169ezc+dO9u/fT2ho6N96riZOnMi4ceMIDw8nJCTkmR6/rBXk5xN7+x5etdRP/l61/Ll/XfdQskuHTpEcn0iz3s+2rPLFQ6cJaFoXQ6PS9wDMy8vjasRVGjVtrLa9YdPGhF28pLVO2KXLNCxRvlHTxlwNjyA/P1+1LSsriyG9BzCoR38+efdDrkXoHhqRl5fH7u276Ny9CwpF6Xs+6evp42vryoXo62rbz0dfx9/BQ2udq/GR2JlaUs+16PWzMjajqWdNzt6LUCvXv3YwqdkZ7LtxptRxPot7CQkkpKUSFBCo2lbFwJAGfn5cuHXrmfahVCo5eTWCO/FxNKiq3oMm6kE8XT7/hF6TPufjxQu4+1jyvCzoK/Rwt3IkIk49ARERfwdvG+3DTms6+xKVHEs7v0Z83nEUH7UbQc8aLTHUK149yUBPn/zHei4C5BXk42vrWqbxP6Kvp4e3jQuXSgxVuRRzQ+0L2pO09q1HWOxNtV/WDfX0ySvMVyuXV5BHNR3HaWndu3+fhIQEgpo2VW2rUqUKDerX58LFizrrXbh4kaaP1QEICgp6Yp3yUpCfz4PI+7jXUB8G6F6jKrE3tA+hfWTdpDksee8HNk9fxP0rut8/SqWSe+E3SYlN0DkUtKwV5Odz/1YUVesEqm33rRPI3au6Yz27/zhJsQ9o269zeYf4VP/WNhTk5xN3575GD0OPGn5PTZ6u+PIX5k/4lg1T53P3iu6hbOLZGOjpU9XOjXP3rqltP3f/KoGO2t+LV+LuYG9mRUP3AACsjM1p7l2b01HFPyAb6OmTW6D+WZtbkEd1R++ybQBF5z1Pa2eNYabhcbc1fpDTpbl3ba7E3dHaq/mRAAdPnCxsuPbgbmnC1clAT59q9u6cKXEddOZeBNWdvLXWMdQz0Po8+zt4oq/QnqYwMqiCgZ6eaoitEP+kyvWzhhDib8nIyGD69Ons3buXZs2aAeDr68vhw4eZM2cOr732GgCTJ0+mzcM5ZT788EO6detGdnY2xsbGDB06lJ9//plJkyYBcPXqVUJDQ1m8eDEAs2fPpkGDBkyZUjy/0fz58/Hw8ODq1av4+/sD4Ofnx/fff68q8+GHHxIQEMDUqVOBokTdpUuXmDx5sqqMm5sb7733nur/t956i+3bt7N69WqaNm1Keno68+bNY/HixarebIsWLcLd/dm+hJY0fvx4+vbtq7btSY+vTU5ODjk5OWrbjB4bZvg0WWmZKAsLMbM0V9tuamlOpo4hKEkxDzi8ejsDPx6N3jMsqxx9M4qEuzF0Gtn/meN6kpTkFAoLCrCxVR9KY2NrQ2KC9l5ViQmJ2NjalChvS0FBASnJKdjZ2+Hh7ckHn36Ij58vmRkZrFu5lvGvjWXOkvm4e2q+xkcOHCI9PZ1O3bqUSbssjUzR19MnJUt9CGxKVjrWrtp7Vl19EMWsI2sY32oghvoGGOjpcyoqnAWntqjKBDh4Ely1ARO3/lomcT6LhLSiC2dbC0u17bbmFsQkPbnnW3pWFl2/+JTc/Hz09fSY2H8ATR9LwtX08uLLIcPxdHAkIS2V+bt2MOqn6ayc+AnWOobvPS+zKiboa7koTsvJwtJY+2PYmVniY+tKXkEBC05txqyKCf3rBGNaxZgV53YDcCUukra+9bmRcI+EjGSqOXhSy9kXvTJIvmpjUcUUfT09UrIz1Lan5GRgZWyuo1YxK2Nz6rj48dux9WrbL8bcpHNAEBFxkcSlJ1LDyYf6bgHl1o6EhAQA7Eq85+1sbYnWMgfh4/W01Xm0v39SdnomykIlJpbqx4+JpRmZqela65haWdBqeA8cPF0oyC/g2vHzbJ6xiB7vvoTLY3Na5WZm8+fEaRTkFaCnp6DFkG4aSbrykpmagbKwEHMr9c8ocysLbug4hyREx7Fn+SZe/uLtZzqHlLd/axsenb9NS56/rczIvKT9mDKztiB4RC8cvN0oyMsn4tg5NvywgD7vj8TtGeY5Fdo9On8nZ6s/78lZ6diYaD9/X4m7w/QDK3i/7VDV+ftE5GV+P17cg/7svav0qtmKy7E3iUlNpI6rH009a6hNB1BWzI0envdKnC/SsjOwcnr6udXS2IyaTr7MP7lZ4z5jgyp80+0NDPX0KVQqWX52F1fiymeuT0tjM/T19EnKVH/vJmWlYWtiqbVO6N0rdA4M4uidi1x/cJdq9h508m+Kob4BVsbmJGZpJgNHNu5OQkZKuc4/V6n8P1xtszKT5JkQ/wFhYWFkZ2erEkuP5ObmUr9+fdX/deoUD91zeTh5eFxcHJ6engwaNIj333+f48ePExQUxNKlS6lXrx41atQAIDQ0lH379mFurvnF78aNG6rkWaNG6kOSIiIiaNxYvedRkybqQ+EKCgr49ttvWblyJffu3VMlph7Np3Pjxg1yc3NViUEoWsY4ICDg2Z6gEkrG+LTH1+abb77hyy+/VNv2+eef4xJS7/mCKfmlVwmg+UW4sLCQrXOW06x3R2ycHZ5p15cOnsTO3RkX37LtlaIRspIn9wArcd+jYcCPNteoVZMatWqq7q9ZpzZvvPgqG1avZey7b2vsbtumrTQJaoK9g/3fa4AOJS9PFAqF2lLYj3OzcuClRl1Ze3Ef5+9fx8bEgqENQnilaU/mHN+AsUEVxrboz+8nNpbrr6PbQk/xzarioXAzXi2ai6bkq6FEqfnClWBqZMTS9z4kMzeHU1cjmLFhPW529jT0K+pd16J68Wvkhyt1vH3oPflLtpw6wdC27XTt9m9Rarwa6Hwt9FCgBP48s53s/FwANlw+yEuNurH2wj7yCgtYf+kAA+u256N2w1EqISEzhZNRYTTxqFGmcWvEXKIdChRa21ZSK5+6ZOZlE3pPfSj90jM7eLlxd77t+gZKIC49iUO3ztHKp16ZxLtt+3amfFu8eMfM6dOL4i75Htay7WmUSmWZ9BT9uxSU/BzSXdba2R5r5+LPF6eqHqQnpXJ+51G15JmhcRX6fTaavJxc7off4vjqHVg62OD6jyZDtHy+anmaCwsLWffzYtr274Kdi+M/FNuz+i+0gYdvDO132Tg7qJ27Xfw8SU9K4eyOI5I8KwMlzw8KLdse8bBy5NWgnqw8t5sz965ia2LJS4278kbzvvx8pGi6kz9ObGJMi3780uc9QElMWiJ7rp2mfTXtw+7LpA0aW57tfNHMqxZZedmcv39N476c/Fym7F6EkUEVAhw96V8nmAcZKVx78ORet6Wj5bXQ0Y5lZ3dhY2rJzF7jUVCUaNt17SQD6ranQFmoUb5/nXa0rVqfD7b8Ql6JHmtC/BMkeSbEf0BhYdEJZsuWLbi5qXfxNjIy4saNonmLHp8Y/9GXmEd1XVxcCA4OZtmyZQQFBbF8+XJef/11tcfo0aMH3333ncbjuzy2il/JhJO2L0wlL2imTZvGjBkzmDlzJrVr18bMzIzx48eTm5urtbwu2pIdeXl5GuVKxvi0x9fmo48+YsKECWrbjIyMWHhmm44a6kwsTFHo6ZFR4tf1zLR0TK00E5S5WTnE3rpL3J377P2z6NdRpVIJSiUzRn5Ev/dG4VmjeAhJXk4uESfO07xPp2eK51lYWVuhp6+v0cssOSlJo3fZI7Z2tiRpKa+vr4+llZXWOnp6evhXD+BelObQgtjoGM6eCuXzbyf9zVZoSs3JpKCwAGsT9efd0tiMlGztvQh612zN1fhINoUdASAyOZbsk7l8FfIqK8/vxsrYHEdzGz5oO1RV59H7YNmQL3jnrx+JTU8qdeyta9am1nveqv9zHw6FTUhLxf6x5zcpPR27p8xPpqenh4dD0Ze7ADd3bsfGsnD3TlXyrCQTIyP8XFyJii+7CfczcrMoKCzE0kj9PWphZKIzCZmak0FKdroqcQYQm5aInkKBlYkFDzKSycjNYv6pzRjo6WNWxZiU7Ay6V2/xxCEupZGWm0lBYSHWJXqZWRqZklqid4E2rXzrcvT2BQoK1b88pOVk8tPhVRjq6WNuZEpSVhoD6rbXOin239G6VStq1SxOkuY+/Px8kJCAvX1xMikxMRFbW92TudvZ2ZGQqP6+T0xKemKd8mJsbopCT6HRyyw7LUOj59CTOPq4c/3EBbVtCj09rByL5me093AhKSaec9sO/yPJM1NLMxR6eqSnqB/DGanpmFtqvtdzs7K5fzOS6Nt32bqwKEHw6Bzy1dDxDP/oTXxq+Zd73I/7t7bh0fm75DGVmfp8x5SzrwcRxyvPipX/Ro/O3yV7mVmZmGv0RnukX51gwmNvs/7hhPt3kmLIPpbLt93eYOmZHSRlpZGak8E3exdjqG+AhZEpiZmpjGjUhdi00p+3S0rPeXjeK9G72sLYlNTsp//41ty7Niciw7Qmm5Sgmqj/bkocLhZ2dA5syrXDZZ88S83OKHotTNV7mVmbWGhd9ACKhmjOOLiCnw6twsbUgsTMVLoENiMjN1vjXNmvdlsG1evAR1tncysxWuv+hChvkjwT4j+gRo0aGBkZERkZqRqW+bhHybOnGTp0KBMnTmTw4MHcuHGDQYMGqe5r0KABa9euxdvbG4PnmMg2MDCQrVvVV406fVp9kuZDhw7Rq1cvhg0bBhQl6q5du0b16kWr/Pn5+WFoaMjx48fx9PQEICkpiatXr6q118HBgejo4hPqtWvXyMx8+oXH0x5fGyMjo+caplmSvoEBTt5uRF6+RrWGxcuN37l8jar1NXvDGJkYMeLrd9S2nd97jMiwG/QYOwwrB/UvpVdPXqAgr4DqzetTVgwNDfEP8Cf05Glatm2t2h568jTNW7fUWqdGrZocO3xUbdvpE6fwrx6g8zhSKpXcuHYdn6q+Gvdt37wNaxtrgpqX3QTpBYUF3Ey8Tx3nqpyKCldtr+NcldN3r2itY2RgqJHYKHzUow4F91Me8N6mWWr3D6zXAWODKiw6vZUHZZS0MTM2VltBU6lUYmdhyYmICALci3oc5uXnc+b6dd7q0fO59q1EqUrGaZObn8ft2Fjq+ZbdMLUCZSF3U+Lwd/DkYkzx55a/g6fG/GGP3EqMpq5LNaroG5JbUJTscTS3oVBZSEqJC/b8wgJSsjPQU+hRx9VPY56cMmtHYSG3k6Kp6exL6GPzv9R09n3qUJNARy+cLez46eZqnWXyCgtIykpDX6FHI/dAtRU5S8PMzEztxwWlUomdnR0nTp4k8GFP37y8PM6cPctbY8bo3E+d2rU5ceIEQwcPVm07ceIEdWqXzaq/z0PfwAB7T1fuhd3Ap37xZ/rd8Bt41w18Qk11CVHRWn/YUKMsmg/rn6BvYICrjwc3L0RQvXFd1fabF68Q0FDzeTYyMeaN79VXNT218zC3wq4yYPxIrB3sNOqUt39rG/QNDHD0ciXq8nWqNig+X0eFXVc7xp4mPvIZjinxRPmFBdxIuEdd12ocf7g6IxSt2nwiUvvnopGBIYXKkufvov9LdhzMK8gnMTMVfYUezb1qcfjWBcpagbKQyOQYqjt6qfUeK/r/+hNqFi1e5Ghuw9Hbzz6fpIFe+Qx3zi8s4NqDu9R381eLp76bP8fvaJ8X95ECZSEPMorm92xTtT4nIy+r9VbrXyeYwfU78sm2OeXca64S0pIUFRVHkmdC/AdYWFjw3nvv8c4771BYWEjLli1JTU3l6NGjmJub4+X1bBMY9+3blzfeeIM33niD4OBgtV5sY8aMYe7cuQwePJj3338fe3t7rl+/zooVK5g7dy76OuYeef3115k+fToTJ05k1KhRnDt3TrX65aOeOH5+fqxdu5ajR49iY2PD9OnTiYmJUSWvzM3NGTVqFO+//z52dnY4OTnxySefqK1SBdCuXTt+/vlngoKCKCwsZOLEiWq97XR52uOXl4Yhrdj2+0qcvN1x8fPk4v6TpCUkUze4KDF0aPU20pNS6fLaQBR6eti7O6vVN7Ewx8DQQGM7FC0s4NegBibmZTMX1SP9Bg/guy8n4189gBq1arJl42biYuPo0acoMfPHr7/zID6eDz8vWhSie99ebFyzntkzf6Zrr+6EXbrM9k1b+fir/6n2ufiPhVSvVQM3D3cyMzJYv2otN65eZ9x76snCwsJCdmzZRseunct8JbIt4UcZ27wfNxLvcy0+ivbVGmFvZsWua0Urpw2u1xFbU0t+OboWgNC7EbwW1IuO1RpzPrpo2OaLjbpw7eFqjwBRKXFqj5GRm6V1e1lSKBQMbtOWBbt34uHggIeDAwt378S4iiEhDYqHm3y+dDEOVtaM7V70ui3YvZMaHp642dmTX5DPkfAwtpw6yYcvDFTVmblxPa1q1sLZxoak9HTm7dxBRnY23Rtrnxfw79p/4wxDG4QQ9XDFzOZetbExsVBdjHer3hwrY3OWnd0JFL0WHf2bMLh+R7ZfOY5ZFWN61GjJicgw8h4uEuBp7YSViTn3U+KxMjYnJCAIPRTsvf7k1RZLY/uV47we1Jtbife5nnCP4Kr1sTO1Yu/1ooVOXqjTDhsTC34/ob5SbWvfelx/cJd7KZo9+nxtXbExtSQyKQYbUwt612qDQqFga/hRjbJlQaFQMHjQIBYsXIinhwceHh4sWLgQY2NjOoeEqMr974svcHRwYOzDhNqggQN5bfRoFi5eTNvWrdl/8CAnTp5k3u+/q+pkZmYSdbe4d+m9+/eJuHoVK0tLnJ01P9NKo07HZuybvw57L1ecqnoQfjCU9MQUqrcpek+cXLebjORUgkcWzYV5cfcxLOyssXF1pKCggOvHL3DrTDgdRxcvkHN22yEcvFyxdLChML+AyEvXuHrsPK2GdivT2J8kqFsw639ZgquvB+7+PoTuOUrKgyQadSj6MWP38r9IS0qhz5vDUejp4eihvkCGmZU5BoaGGtv/Sf/WNtTr1IJdf6zB0dsN56oeXD54mvTEFGq1KZqm4ujanWQkpdLxlaI5R8/tOoqlnTW2bo4U5BcQcfw8N0Iv0+XN4gRzQX4+iffjH/5dQEZSKvGR0RgaVcHa6Z9Pbj7OxNAId6viYaeulvZUs3cnNTujTHpRl8bGy4cY32og1xPuEhEXSUhAE+zNrNl+pWjl8uENO2NnasnMQ6sAOBUVzpgW/egcEMTZe1exMbXglSY9uBofSeLD87e/vQe2ZpbcSojGzsySQfU6olAoWH/pgM44SmPPtdO81Lgbd5JiuJV4n5Y+dbExteTQraKeib1qtsLaxIJFp9V/jG7hXZtbCfe5n6q5eE9IQFPuJMXwICMZfT19ajn7EuRVk+Vnd5VLGwDWXdzP+22Hci0+ivC423QJbI6juQ1bHp6jXm7cDTszK37YvwwomgIjwMGTK3F3MDcypW/tNnjbuDDt4f1QNFRzRKMufLd3CbFpiapehll5OWo9zoX4J0jyTIj/iEmTJuHo6Mg333zDzZs3sba2pkGDBnz88ceqoZlPY2lpSY8ePVi9ejXz589Xu8/V1ZUjR44wceJEQkJCyMnJwcvLi86dO2sksR7n4+PDmjVrePfdd/nxxx9p1qwZn3zyCW+88Yaq59Znn33GrVu3CAkJwdTUlNdee43evXuTklK8ytzUqVNJT0+nZ8+eWFhY8O6776rdD0XDL19++WVat26Nq6srP/744zOtyPksj18eAprWJSs9k+Mb95CRkoqdmzN9JryMpX3REMiM5DTSEpKfe79JMfHcu3qbfu+NKuOIIbhjO1JTUvhz3mISExLw9vVhyvTvcHIp+rKb+CCBuJji5JCLqwuTp3/H7Jk/89faDdjZ2zFmwjhatyvuMZiens6Mb38gKSERM3MzqvpXY8ZvPxFYUz15eeZUKHExsXTp0bXM23XsziUsjEzpV7stNiYWRCXH8u2+JapfQq1NzLEzKx4GeeDmWUwMqxASEMTwhp3JyM3mcuwtlp7ZUeaxPa8R7TqQk5fHd2tWkZaVSU0vb2aNHqPWQy0mKUltOHV2bi7frVlFXEoyRoaGeDk68dWwEXSq31BVJi4lmU+XLCQ5IwMbc3NqeXkzf/wEXMp4KN65+9cwq2JCSEBTLI1MiU5L4PfjG1VJSUsjM7UhOrkFefx2bD19a7dlQutBZORlc+7+NbY9llAy1Dega2Az7EytyMnPIzzuNkvP7CjXC++TUWGYG5nQq1ZrrI3NuZcSz/SDy1WrZ1qZmGNrpj68xcTQiEbu1XUeR4b6BvSr3RYHcxty8nO5cP86vx/bQGZejtbyZeHF4cPJycnh2++/Jy0tjVo1a/LzTz+p9VCLiY1VOw/UrVOHyZMmMXvOHH6bMwd3d3e+mTyZWrWKe9mGhYcz+s03Vf/PmDkTgO7duvHF/4qT62WhauNaZGdkcmbLATJT0rF1daTLW0OxsLMGIDMljfTE4s/7gvwCjq/ZSUZyGgaGBti4OtL5rSF41i4eEpifk8vhZVvISErFwNAAa2d72o3qS9XGtUo+fLmp1awBWWkZHFi3g/TkFBw9XBg6cTTWD3sipyenkvKgYhMbT/NvbUO1JrXJTs/k1KZ9ZKSkYefmRPe3h6vO35nJaaQlJqvKF+YXcGT1dtKTUjEwNMTWzZHubw/Hu07x3K0ZyWms/PIX1f9ndxzm7I7DuAZ40/eDV/6xtmkT6ODFz32Kp6oY1/IFALaGH2Py3kUVFRYAh29dwMLIlIF122NrasmdpBi+2rVANVzRxsQCezNrVfm910MxMTSiW/XmjGzSjYzcbC5EX2fR6eJpNwz1DRjWIAQnc1uy83MJvXuFmQdXkJGbXS5tCL0bgVkVE7pVb46lsRnRqQ/45cha1dQCVsbm2JqqD001NqhCfTd/Vp3fq3WfRvqGDK7fEWsTc/IK8olJS2TBqS2E3o3QWr4sHLx5DksjM4Y2CMHG1JI7idF8tv134h4mWG1NLXE0K57mQ0+hoG/ttrhbO1JQWMD5+9eZUGJaix41WlBF34DPOr6s9lh/hm7nz0pwzSX+f1Eon3UyISGEKCOTJ0/mt99+Iyrqv9f1es6xDRUdQqm93qw3UUm6V9L7t/CwcWbgn59VdBilsnLYJFK37qzoMErNsmsn3vnrx4oOo1Rm9HybF1eU3Vx7FWXRoM9IS06u6DBKzcLammkHlld0GKXybpvBLPsPfPkb0iDkX9+OIQ1CmHVY91Dpf4u3Wr5Ai19GV3QYpXZkzG/0WjCxosMolY0vf8cba6dWdBilNrvf+3Se+87TC1Zi21+dUdEh/G0pP82p6BC0shr3+tML/QdJzzMhRLn79ddfady4MXZ2dhw5coSpU6cyduzYig5LCCGEEEIIIYR4KkmeCSHK3bVr1/j6669JTEzE09OTd999l48++qiiwxJCCCGEEEIIIZ5KkmdCiHI3Y8YMZsz493aZFkIIIYQQQoh/lMywVanonuVbCCGEEEIIIYQQQoj/5yR5JoQQQgghhBBCCCGEDjJsUwghhBBCCCGEEKIykWGblYr0PBNCCCGEEEIIIYQQQgdJngkhhBBCCCGEEEIIoYMM2xRCCCGEEEIIIYSoTAoLKzoC8RjpeSaEEEIIIYQQQgghhA6SPBNCCCGEEEIIIYQQQgcZtimEEEIIIYQQQghRmchqm5WK9DwTQgghhBBCCCGEEEIHSZ4JIYQQQgghhBBCCKGDDNsUQgghhBBCCCGEqExk2GalIj3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIMM2hRBCCCGEEEIIISqTQhm2WZlIzzMhhBBCCCGEEEIIIXSQ5JkQQgghhBBCCCGEEDoolEpZwkEIIYQQQgghhBCiskj5bmZFh6CV1cTxFR1ChZA5z4QQogwNWPJpRYdQaquGf01cakJFh1FqjpZ2tP71zYoOo1QOvvkrye98XNFhlJr1jCm0+GV0RYdRKkfG/Eb/xZ9UdBiltmbEZJLf/rCiwyg16x+/Je3chYoOo1Qs6tXhp0OrKjqMUhvXakBFhyAe02vBxIoOodQ2vvzdf+KcMXLVlIoOo9TmD/iYNrPHVHQYpXLgjV8qOgTxHyHDNoUQQgghhBBCCCGE0EF6ngkhhBBCCCGEEEJUJjLDVqUiPc+EEEIIIYQQQgghhNBBkmdCCCGEEEIIIYQQQuggwzaFEEIIIYQQQgghKpNCGbZZmUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRFbbrFSk55kQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB1k2KYQQgghhBBCCCFEZVJYWNERiMdIzzMhhBBCCCGEEEIIIXSQ5JkQQgghhBBCCCGEEDrIsE0hhBBCCCGEEEKIykRW26xUpOeZEEIIIYQQQgghhBA6SPJMCCGEEEIIIYQQQggdZNimEEIIIYQQQgghRGUiwzYrFel5JoT4f2f//v0oFAqSk5MrOhQhhBBCCCGEEJWc9DwTQvwjYmJimDx5Mlu2bOHevXs4OjpSr149xo8fT/v27Ss6vArTyb8JPWu2wtrEnLvJcSw8vZUrcXd0lm/pU5eeNVriYmlHZm4O5+5fY0noNtJzswBo41ufMS36adQbuvQL8grzyyTm9avXsvzPZSQ8SMDb14dxE96mbv16OsufDT3LzzN/4vbNW9jZ2zNkxFB69+ujuv/WjZvMm/MHEVeuEBMdw1vvvM2AIQPV9vFCz77ERMdo7LtP/75MmPhembSrd83WDK7fAVtTK24nRjPryGouRN/QWb5Prdb0rd0WZwtbYtOSWHJmOzsiTqjHXSeYXjVb42RhQ0p2BvtvnOH34xvJLSib10IX45D2VGnWGIWJCQWRUWSu/YvCmDid5c3HvIKBn6/G9rywK2TMXayx3ah9G0y6h5Bz4AhZG7aUaewAfWq1YUj9jtiZWnEr8T4/HV7N+ejrOsv3rdWGfrXb4mJpR2xaIotCt7H9sddCX0+PEQ060yWwGfZm1kQmxzL72DpORIaVeeyPCwloSs8aLbExtSAqOY6Fp7YQ/oT3dyufuvSq2Ur1/j57/yqLQ7eRnpOlKmNqaMyQ+h1p6lkTMyNj4tKSWBS6jbP3rpZbO4w7d6BK8yZFx9OdKDLXbHjy8TT2NQyqaTmeLl8h4/eFqn0ad+mgdn9hahqpn00u09h1USqV/L5mNev37CYtPZ2a1aoxceQrVPXw0Fln/Z7dbDl4gBtRUQBU9/HlzcGDqeVX7R+J+eK+E5zdcZjM5HRsXR1pOagLrv7eWsveu3KLDT/M19g+ZNI4bFwcAEi4F8vJjXuJv3OftIRkWg7sQt2OzcuzCaKS6RIYRJ9abbAxsSAyOZZ5JzcRFntbZ/k2vvXoU7sNrpb2ZORmc/beVRac2kJaTiYA+go9+tcJJtivIXamltxLjWfR6fL9fHpWdV38GFK/E4GOntibWfPh1tkcunW+osNSCa7agM4BQVibmHMvJZ7l53Zz7UGU1rIjG3enpU8dje33UuL5bMdc1f8dqzUmuGoDbE0tSc/N4vTdK6y5sI/8woJya0fvmq0YVO/htVRSND8fWfPEa6neNVvTt3abomup9CT+DN3OjqsnVffP7Pk29d38Neodu3OJD7fOLpc2CKGLJM+EEOXu9u3btGjRAmtra77//nvq1KlDXl4eO3bsYMyYMVy5cqVcHjc3N5cqVaqUy77LQjOvWrzUqCt/nNxERFwkHfwb83G7Ebzz108kZKZolA9w8GJs834sCt3K6bsR2JpY8mpQT0Y368MPB5apymXmZvP2xplqdcsqcbZn525+mv4jEya+R+26dfhr3Qbef/tdlqxaipOzs0b5+/fu88H4d+nRuyefffU5F89fYPp3P2BtY03bdsEAZGdn4+LmStsOwcya/pPWx/190TwKCwpV/9+6cZN3xr5NcId2ZdKudn4Neatlf6YfXMGlmJv0rNGS77uPYcTyScSlJ2mU71WzFa8F9WLq/mWEx92muqM3H7QdSlp2JkfvXASKLlpfC+rNd/uWcCnmJh7WTnzUbjgAPx9ZWyZxa2PUrjVGbVuQuWwtBfEPMO4YjPnokaR+Mx1ycrXWyViwFPT1Vf8rzEyxeO8t8s5d0iir7+FGlWaNKbgXXS7xt/dryNstX2DageVciLlB75qt+KHHWIYt+5JYLa9F75qtGd2sN9/t+5PwuDtUd/Tmw+BhpOVkcuR20WvxWtNehPg35bv9f3InKYYmHjX4pstoXl87VeeXk9Jq7l276P19YhNX4u/QsVpjPm7/Iu/89SMPMjTf34GOXoxt0Z9Fp7dy+u4VbE0tea1pL95o1pep+5cCYKCnz/86vkxKdgY/HFhGQmYq9mZWZOXllEsboChRahTcksylq4uOp07tMH/zFVIn/6D7eJq/RPN4+uBt8s5dVCtXEB1D+i9/FG8o/OeGpyz6ayPLtmzm8zfG4Oniwrx1axkzeRJrZ/yImYmJ1jqhly8T0rwldQL8MTKswqK/NjJ28tesmjYdR1u7co332smLHF6xjTZDu+Ps58nlg6fZ9OMShnz1FhZ21jrrDf36bQxNjFT/m1iYqf7Oz83D0sEGv0Y1ObxyW3mGLyqhlj51GNWkB3OObSA87g4hAU35X8eRjF0/nQcZyRrlqzt683argcw/uYmTUeHYmVrxRvM+jG3Rj2/2LgFgaMMQ2vrW55eja7mbHE99N38+ajeCiVt+5Vbi/X+4hepMDI24nnCXrVeOMqXL6AqNpaTGHtUZXK8jS85s5/qDu7StWp93Wg3k0x2/k5iZqlF++bldrLm4T/W/vkKPLzuN4vTd4uvpIM+a9K8TzPxTm7n+4B7OFraMatIdgBXndpdLO4KrNmBsi/7MOLSSS9E36FGzJd91G8OLK550LdWTqfuXcSXuDtWdvHm/zRDScjI5eqfo+uOzHXMx1CtOWVgamzFvwEfsv3G2XNpQ6RQWPr2M+MfIsE0hRLl78803USgUnDx5kv79++Pv70/NmjWZMGECx48f5/bt2ygUCs6dO6eqk5ycjEKhYP/+/aptYWFhdO3aFXNzc5ycnBg+fDgPHjxQ3d+2bVvGjh3LhAkTsLe3p2PHjgBs3boVf39/TExMCA4O5vbt22rxJSQkMHjwYNzd3TE1NaV27dosX768PJ8SALrXaMHe66HsvR768NfZrTzITKFTQBOt5f0d3InLSGbblePEpycREX+H3VdP4WvnplZOiZKU7HS1W1lZuWwF3Xr1oEfvnnj7eDPu3fE4Ojmyfs16reU3rluPk7MT494dj7ePNz1696Rbz+6s+LM42Ve9Zg3GvD2WDp06UqWKodb92NjYYGdvp7odPXwEN3c36jWoXybtGlC3HVvCj7Il/Ch3kmKYdWQN8enJ9K7VWmv5kICm/HX5MHuvhxKdmsDe66FsCT/KkAYdVWVqOvtwKeYGu6+dJiYtkVNR4ey5dpoAB68yiVkXozbNyd61n7yLlymMiSVz2WoUVQyp0qCezjrKzCyUaemqm6G/H+TlkXtePdlBlSqYDhtI1qr1KLOytO+slAbW68Dm8CNsCj/CnaQYfjy8mri0JPrUaqO1fOeApmy8fIg910O5n/qAPddPszn8CEPrh6iVWRy6jWN3LnE/9QEbLh/kRGQYg+t10LrPstCjetH7e8/109xLiWfh6a0kZKTQyb+p1vL+9h7EZySx9cox4tKTuBJ3h13XTlLVzlVVpp1fQ8yNTPh+359ExEfyICOZK3F3uJOk2SuzrBi1aUH2zn3kXbhMYXQsmX+uQmFoSJWG9XTW0TieAqoVHU/nLqgXLChUK6fMyCi3dqjFp1SyfOsWXu7Tl3ZNm+Ln6cmXY8aSnZPD9sOHddb7etzbvBASQoC3D95ubnz6+usolUpOXtRMMpe1c7uOUr1lA2q0boStqyOtBnXFwsaSS/tPPrGeiaUZZlYWqpueXvGlv5OPOy1e6Ey1JnXQN5Df0/+/6VWzFbuvnWLXtVPcTYlj3slNPMhIoUtgkNbyAY6exKUnsTn8KHHpSYTH3WZHxAn87N1VZYKrNmDNhX2E3o0gNj2R7RHHOXvvKr1rtfqnmqXT8cjLzD3xFwdunqvoUDSE+Dfh0K3zHLp1nui0BJaf201iVirBVRtoLZ+Vl0Nqdobq5m3jgmkVEw4/1pOuqp0b1x7c5URkGAmZKVyOvcWJyDC8bVzKrR0D6rZn65VjRddSybH8fGQt8elJ9Kqp/fXv5N+Ev8KOsO/GGaLTHl5LXTnK4PqdVGXScjJJzEpV3Rp5BJKTn8v+G2fKrR1C6CLJMyFEuUpMTGT79u2MGTMGMzMzjfutra2faT/R0dG0adOGevXqcfr0abZv305sbCwDBgxQK7do0SIMDAw4cuQIc+bMISoqir59+9K1a1fOnTvHK6+8wocffqhWJzs7m4YNG7J582YuXbrEa6+9xvDhwzlxQn0IXlnS19PH19ZVYyjahfvXCXDw1FonIj4SO1NL6rsWdV+3MjYjyKsmZ+9FqJUzNqjCL33eY3bf95kYPKzMLpTy8vK4eiWCJk3Vk3uNmzbh0oWLWutcvniJxiXKNwlqypWwK+Tn/73ecHl5eezctoOuPbujUCj+1j4eZ6Cnj7+DJ6eiwtW2n4oKp5aT5tAzAEM9A3IL8tS25RTkUd3RG/2HX04vRN/A38GT6o5FyTIXSzuCvGpx/E75fdHWs7NBz9KS/IhrxRsLCsi/fgsDH+3HlTZVmjYi9+wFyFVvo2n/nuSFXyH/qu4hGKVhoKdPgIMnJyPVX4uTUeHUctbxWugbkJtf4rXIz6OGU/FrYaiv5fXKz6OOi18ZRl/MQE8fXztXzt9Xf3+fj37a+9tKNTzFytiMIM9anLlbPNypkXsgV+OjeKVpT/544SOm9xhH31pt0CuD94E2ena26FlZkn+lxPF04xYGPs+eBK4S1JjcM+c1jic9B3ssv/oYi/99gOmLg9Gzsy2r0J/oXlwcCcnJBNWpWxyjoSENatTgwtWIJ9RUl52TS35+Plbm5uURpkpBfj7xd+7jWVP9ePWo6UfMjSf3nFz51a8sePc7NvywgLtXbpZnmOJfxEBPn6p2bpy7d01t+7n7Vwl01P7evhJ3B3szKxq6BwBgZWxOc+/anI4q7u1koKevMS1B7sNzo9BOX08PLxsXLseqvz8vx9zCz85dRy11rXzrEhZ7i4THeqlde3AXbxtnfGyLrgEdzKyp7VKVC0+YAqE0iq6lPLRfSz3n+bu6o5fq/F1St8Bm7L0eSna+9p7PQpQn+ZlJCFGurl+/jlKpJDAwsFT7mT17Ng0aNGDKlCmqbfPnz8fDw4OrV6/i71/0hdPPz4/vv/9eVebjjz/G19eXGTNmoFAoCAgI4OLFi3z33XeqMm5ubrz3XvG8WW+99Rbbt29n9erVNG2qvZdITk4OOTnqQ6WMjIy0ltXG0sgUfT19jV5hKdkZWBtr/yJ2NT6Knw6vZnzrgRjqG2Cgp8+pqHDmn9ysKnM/NZ5fj64jMjkWE0MjugY2Y1LnV3l/8y/EpCU8c3zapCQnU1BQgI2t+hdcGztbEhMStdZJSEikSYkvxDa2thQUFJCcnIy9vf1zx3Fo/0HS09Pp2r3rc9fVxsrYHAM9fZKy0tS2J2amYuthqbXOyagwuldvwaFb57kaH0WAgyddA5thqG+AtbE5CZmp7L0eirWJBT/3eRcFCgz09Vl/6SBLz+4sk7i1UVhYAFCYpn5cFaano2dj/Uz70Pd0R9/VmcyV69S2G9avg76bK5kzfi2TWLWxfvhaJGapD1NJykrFzvQJr0WNlhy8dZ6I+EgCHTzpVr252mtxIjKMQfU6cO7+de6lxNPIPZBWPnXR0yufpJOFrvd3VjrWrtrf3xHxkfx4aBUTWg9Se3/PO7lJVcbJwpZa5tYcunmeKXsW4WJpxytNe6Knp8eaC/u07rc0FBZFsRamqb83CtPS0LOxeaZ9qI6n5WvUtuffiaRg6SoK4uLRs7AoGg46/g3SvpmBMjOzbBqgQ8LDxWLsrKzUtttZWREd/0BLDe1+XrYUB1tbmtSuXZbhachOz0RZWIiJpfqxY2JpTmZKmtY6ptbmtB3RC0cvVwry84k4dp6N0xbS5/2ROudJE/9/PLoGSS7xGZWclY6NiYXWOlfi7jD9wArebztU9Rl1IvIyvx/fqCpz9t5VetVsxeXYm8SkJlLH1Y+mnjXQU0h/DV0sqpiir6dHSrZ6z9vUnAysjDV/dC7JytiM2s5V1V4HKDo3WhiZ8lHwCFAUJbf2Xg9l65VjZRp/cRwPz9+ZJc/fadjqOH+figqne/XmHL51nqsP1K+lrIzNNfYV6OiFr50b3z2cyuD/A6WstlmpSPJMCFGuHn3ol7aHUGhoKPv27cNcyy/8N27cUCXPGjVqpHZfeHg4QUFBao/frFkztTIFBQV8++23rFy5knv37qkSY9p6yj3yzTff8OWXX6pt+/zzz6Hq87VL2zlR12nSzcqBlxt3Y82FfZy/fw0bEwuGNezMq0G9+O1Y0bDJaw/ucu3BXVWdiLhIvuv2Jl0Cg1hwqmwmdtd4KZVKzW2Pl0f9TuXDFpbc/qw2/7WJps2CsHdw+Fv1dSl5gaJQKFSxlrTo9DZsTS35re8HoICkzDS2XznOkAadKFAWzU9Rz7UawxuGMP3gCsJjb+Nm5cC4li+Q0LALi0PLZn4hwwZ1MR3QW/V/upbJ/R+2RveBVUKVpo0ouB9DQWTxcaSwtsKkT3fSf5sPf7PH4PPQvFhU6Ax/wamt2Jpa8nu/iarXYuuVYwxrEELBw/38eGgVE4OHsWzIFyhRcj8lni1XjtItsHwnR9doxxPeKO5WDoxs0p3VF/Zy/t41rE0tGNGwC68F9WL2w/e3QqEgJTuDOcc3UKhUcjPxPjYmlvSq2apMkmeGDethOrB4MY/0OQt1lFTwrAdUlaDGGscTQH54cY+6wuhY0m/fwfKzD6jSpAE5+3UPnfw7th06xJS5c1T/z/zwI0DzvKRUPvElUrNo40Z2HDnMnM+/xOgfmltT22evroBtnB2wcS7+jHSu6kl6YgpndxyW5JlQ0Tjvadn2iIeVI68G9WTlud2cuXcVWxNLXmrclTea9+XnI0XJ8T9ObGJMi3780uc9QElMWiJ7rp2mfbVGWvcpdHvWT9kW3nXIzMvmzH31XrMBDp50r96cJWe2czPxPk7mNgyu15GUGulsCjtSLjHrouuYWnR6G7Ymlszu+37xtVTEcYbU70ShUnOur26BzbmZcO+JC2sJUZ4keSaEKFfVqlVDoVAQHh5O7969tZZ5NAfL4yfXvDz1btyFhYX06NFDrcfYIy4uxcMSSya8nuUXm2nTpjFjxgxmzpxJ7dq1MTMzY/z48eTm6u4S/tFHHzFhwgS1bUZGRgxfNempjweQmpNJQWEB1ibqyUArYzOdc5T1qdWGiPhINoUVfbGMTI4l+8QmJnV+lRXndpGcpVlPiZIbCfdwtij9ZNZW1tbo6+tr9DJLSkzS6I32iJ2dLYkJ6j3ekhOT0NfXx8raSmudJ4mJjib05Gm+/n7K0ws/o5TsdPILCzR+GbUxsSApU3uvjtyCPL7b9yc/HFiGrYklCZkp9KjRkozcLFKyin49HtWkBzsjTrIl/CgANxPvY2xoxPtthrAkdLvOxNzzyLscTtoPjw3bejhvkZ6FOQWpxbHrmZuhTH+Gue8MDalSvw5Z29UnEzZwd0XPwhyLCWNU2xT6+uj7elOlZRAp7/9Peyb4OSU/fC3sTNWPDRsTC62TJkPRa/HN3iV8v3+p6rXoWaPVw9ciXbXfj7b9RhV9AyyNzXmQkcwbzfoQnfbsvYyeR5rq/a3eg8PK2Ezr+xQevr/j7vDX5aL3953kWObm/8XXnV9j+bndJGelkZSZRoGygMLHnut7KfHYmFpgoKdf6hXU8i6FkXbn8eOpaNJ/PQsL9ePJwhxl2jMeTw3qkrVt19PL5uZREB2DnsPz90Z9mtaNGlGrWvGQx9y8ogTwg+Rk7B/rQZeYmoKtlfVT97dk018s2LCOXz/9H9W8yncOQwBjc1MUenpkpqg/51lpGZhaPvuQUSdfd64erzyrC4qK8+gapGQvMysTc43eaI/0qxNMeOxt1l86CMCdpBiyj+Xybbc3WHpmB0lZaaTmZPDN3sUY6htgYWRKYmYqIxp1ITZNc7J4USQtN5OCwkKNXmYWRmakZj99HshWPnU5ducSBSUmlu9Tqw1H71xSrSh6LyWeKvqGvNioK5vDjpTBFYi6J15LZT3hWmr/n/xwUPe11CNGBoa082vI/FObte5LiH+C9KEVQpQrW1tbQkJC+OWXX8jQMhl0cnIyDg97EEVHF6/e9/jiAQANGjTg8uXLeHt74+fnp3Z7Ug+xGjVqcPz4cbVtJf8/dOgQvXr1YtiwYdStWxdfX1+uXVOfB6QkIyMjLC0t1W7PM2yzoLCAm4n3NeZcquPiR0R8pPbH1DfUSAY++mXuSb24vGycSdZx4fI8DA0N8Q8M4NQJ9QmqT508Ra062oct1axdi1MnT6ltO3niJIE1AjH4GxNUb920BWsbG5q1KLseQ/mFBVyNj6SRR3W17Y3cA7kU++Q5ggoKC4nPSKZQqaS9XyOO3r6kSooZG1TRfL0KC1Eonr13y1Pl5FL4ILH4FhNHYWoqBgGPHVf6+hj4+ZB/S/tx9bgq9WqDgT55p9VXscq7doPU734k7YefVbf8yLvknTlP2g8/l0niDIpei4j4SBqXeC0ae1TnUsyzvxYdqjXiyO2LGgnK3IJ8HmQko6+nR9uq9VVfKspafmEBNxPuU8f1Od7fBoYUonm8AKp3d0T8HZwt7NTe7y6WdiRmppY6cQY8PJ4Sim8xcRSmaDmeqvqQf+vpv/xXqV+n6Hg69Qyrounro+/kSGFq6T+rSjIzMcHD2UV183V3x87amhMXihcwyMvP40xYGHX8A564r8V/beSPtWuY9dEn1Kj6nF2N/yZ9AwMcvFyJClOfazAq7AbOVT2eeT8PoqIxtdY+JE/8/5JfWMCNhHvUda2mtr2eazWdvXqMDAw1PlOLr0HU5RXkk5iZir5Cj+ZetTgRebnMYv+vKSgs5E5SNDWcfNS213Ty4XrCXR21igQ4eOJkYcuhm5rnsir6Bhqvl1KpLHqtymGezKJrqSgauatP09LIPfC5zt/t/Bpy7M4ljdiDqzbEUN+AXVdP6djLf5RSWTlv/09J8kwIUe5+/fVXCgoKaNKkCWvXruXatWuEh4fz008/0axZM0xMTAgKCuLbb78lLCyMgwcP8umnn6rtY8yYMSQmJjJ48GBOnjzJzZs32blzJyNHjqSgQPeXxtGjR3Pjxg0mTJhAREQEy5YtY+HChWpl/Pz82LVrF0ePHiU8PJzXX3+dmJjyW73ukc1hR2jv15Dgqg1ws3TgxUZdsDezUl0YDK7fkTHN+6nKn757hSaeNejo3wRHcxsCHDx5uXE3rj2IUv2q179OMHVd/HA0t8HLxpk3mvXB29aFnVefvCLbsxo4ZBCbN25iy1+buX3rNj9N/5G4mFh69+sNwG8/z+brz79Sle/Vtw+x0THMmvEjt2/dZstfm9mycRODhg1RlcnLy+NaxFWuRVwlLy+f+Ph4rkVc5W6U+kVjYWEhWzdtoUu3Ln8r8fYkq87vpXv15nQNbIaXjTNjW/TD0cKGjZcOAfBaUC8+bv+iqry7lSMd/ZvgbuVAdUcvPu84Eh87F+aeKJ5z5Oidi/Sq1Yp2fg1xsbCjkXsgo5p258jti2o9h8pazoGjGHdoi2HtGug5O2E6uD/K3Dxyz5xTlTEd0h/jbp006lYJakTexXCUmSVW0szJpTAmVu1Gbi7KjMyiv8vQynO76VGjBd2qN8fLxplxLV7AycKG9ZeLejuMDurNp+1fUpX3sHKkk38T3K0cqe7ozZedRuFr58qcx+Z/qeHkTRvferha2lPXxY/pPcahQMHSM+U3/9ym8KL3dzu/hrhZOfBSo67Ym1mp3otD6nfirRb9VeVP371CU8+adHrs/T2ySXeuxRe/v3dEnMTCyJSXm3TDxcKOBm4B9K3dlu0R5be4Sc6BIxh3DMawTk30XJwwHfoCyrw8ckPPqcqYDh2AcfcQjbpFx1OY1jnMjHt1Rb+qD3q2Nuh7eWA2chgKYyNyT4aWW1seUSgUDO7ajQUb1rHv5AmuR0byxa+/YGxkROeWLVXl/vfzLH5eVjy3zqKNG5m9cgX/e+NNXBwdeJCcxIPkJDKzy2fl2cfV69icsEOhhB0OJfF+HIdXbCUtMYWabYsWZDm2die75xXPK3d+11Fung0jOTaBhHuxHFu7kxuhYdQOLp7HsyA/n/jIaOIjoynILyA9OZX4yGiSY0s3P6b4d9h4+RAd/RvTvloj3K0cGdWkO/Zm1my/UvQD4/CGnRnfqnhRplNR4QR51aJzQBBO5rYEOnrxatOeXI2PJPHhZ5S/vQdBXjVxMrelhpM3n3cahUKhYP2lAxXSxseZGBpRzd6dag9XB3W1tKeavTtO5s82f2N52nH1JK196tHSpw4uFnYMqtcBW1NL1YqS/Wq35ZUmPTTqtfKpy42Ee9xLjde473z0dYKrNqCJRw3szayo4eRN71qtOXf/WrnNo7Xq/B66PbqWsnZiTPN+OFrYqnpUv9q0Jx+3G6Eq727lSMdqjXGzciDQ0Yv/dXgZH1sX5p74S2Pf3ao34/Ct86Tm/DOrMguhjQzbFEKUOx8fH86cOcPkyZN59913iY6OxsHBgYYNGzJ79mygaPL/kSNH0qhRIwICAvj+++/p1Kn4y72rqytHjhxh4sSJhISEkJOTg5eXF507d1YN+9TG09OTtWvX8s477/Drr7/SpEkTpkyZwsiRI1VlPvvsM27dukVISAimpqa89tpr9O7dm5SUlPJ7UoBjdy5hYWRKvzrB2JhYEJUcyzd7l/AgIxko6upub2atKn/g5llMDI3oHNCUEQ07k5GbzeWYm/x5ZoeqjFkVY14L6o21iTmZedncSozm8x1/cCPhXpnE3L5TB1JTUlj4x3wSHiTgU9WX72f+gPPDobMJDxKIfSyZ4urmyvczpzFrxo+sX70Oewd73n7vHdq2C1aVeRD/gJHDXlL9v+LPZaz4cxn1GtRn1pxfVNtPnzxFbEwsXXt2L5O2PG7v9VAsjcx4sVFX7MwsuZUQzcTNvxKbXjRE1c7UUu0CW19Pj4F12+Np7UR+YQFn713lzXU/EJNWPKR18eltKJVKXmnaAwcza5Kz0jl6+6LWi8KylLP3IApDQ0z690RhYkLBnbuk/7YAcoqHIevZWGv8cqjnYIeBrzfps+eXa3xPs+d6KJbG5rzcqBt2ZpbcTLjPe5t+Jjbt0WthhZNF8TBhPT09BtfrgKe1M/mFBZy5F8HotVPVFsioom/Iq0174WppT1ZeDsfuXGLSrgWk55Zf0uPo7YtYGJnS/+H7OzI5lil7Fpd4fxcPT91/o+j93SUwiBcbdSEjN5tLMTf5M7T4/Z2QmcKkXQt4qXFXpvV8i8TMVLaGH2XDw8RiecjZc+Dh8dQLhakJBXeiSJ897xmOJ3sMqvqQ/usfWverZ22F2YuDUZiZokzPIP9OFGnTf0WZlFxubXnciz17kZOby7fz/iAtI4Nafn78/PGnmJmYqMrEJDxQW1Riza4d5OXnM3H6NLV9vdr/BV5/QX3l57JWrUltsjMyOb1pPxkpadi5OtHj7eFY2lkDkJmSTlpC8TmrIL+AI6t2kJGcioGhIbZujnQbNxzvOv6qMhnJaaz6qngBkHM7jnBuxxFc/b3p88Gocm2PqHiHb13AwsiUgXXbY2tqyZ2kGL7atYB4Hdcge6+HYmJoRLfqzRnZpBsZudlciL7OotPFc3ga6hswrEEITua2ZOfnEnr3CjMPriAjN/sfbp2mQAcvfu5TPN3GuJYvALA1/BiT9y6qqLCAosSkeRUTetZoiZWxOfdS4pl5aKVq9UwrY3ON4ZAmhkY0dA9k+Tntw+I3hR1GqVTSp1ZrbEwsSMvJ5Hz0ddZe3F9u7dh34wxWxmaMaNil6FoqMZqJWx6/lrLC8fFrKYWCgXXb4/HoWur+Vcasn6Z2LQVFSbY6Ln68u2lWucUuxLNQKGUJByGEKDMDlnz69EKV3KrhXxOX+u/veeBoaUfrX9+s6DBK5eCbv5L8zscVHUapWc+YQotfRld0GKVyZMxv9F/8SUWHUWprRkwm+e0PKzqMUrP+8VvSzl14esFKzKJeHX46tKqiwyi1ca3KN3Eonk+vBRMrOoRS2/jyd/+Jc8bIVWU3P2tFmT/gY9rMHvP0gpXYgTd+eXqhSir5k68rOgStrCf/+7/v/B0ybFMIIYQQQgghhBBCCB0keSaEEEIIIYQQQgghhA4y55kQQgghhBBCCCFEZfJwRVtROUjPMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOsiwTSGEEEIIIYQQQojKRKms6AjEY6TnmRBCCCGEEEIIIYQQOkjyTAghhBBCCCGEEEIIHWTYphBCCCGEEEIIIURlUijDNisT6XkmhBBCCCGEEEIIIYQOkjwTQgghhBBCCCGEEEIHGbYphBBCCCGEEEIIUZnIapuVivQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihgwzbFEIIIYQQQgghhKhMlIUVHYF4jPQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihgwzbFEIIIYQQQgghhKhMCmW1zcpEep4JIYQQQgghhBBCCKGDJM+EEEIIIYQQQgghhNBBoVQqpS+gEEIIIYQQQgghRCWRPOGTig5BK+vpkys6hAohc54JIUQZGr9xZkWHUGoze43n5oO7FR1Gqfnau9N9/vsVHUapbB45leRBoyo6jFKzXjGPr3bNr+gwSuV/HUfSe+GHFR1GqW146VtGLP+qosMotcWD/8fc4xsrOoxSeTWoF2+tn17RYZTarD4T+Gz77xUdRqlM6vwa0w4sr+gwSu3dNoN5Y+3Uig6j1Gb3e5+Rq6ZUdBilMn/Ax7T4ZXRFh1FqR8b89p94LYQoCzJsUwghhBBCCCGEEEIIHSR5JoQQQgghhBBCCFGZKJWV81aOkpKSGD58OFZWVlhZWTF8+HCSk5OfWEehUGi9TZ1a3BO3bdu2GvcPGjTouWKTYZtCCCGEEEIIIYQQokINGTKEu3fvsn37dgBee+01hg8fzqZNm3TWiY6OVvt/27ZtjBo1in79+qltf/XVV/nqq+KpK0xMTJ4rNkmeCSGEEEIIIYQQQoinysnJIScnR22bkZERRkZGpdpveHg427dv5/jx4zRt2hSAuXPn0qxZMyIiIggICNBaz9nZWe3/jRs3EhwcjK+vr9p2U1NTjbLPQ4ZtCiGEEEIIIYQQQlQmhYWV8vbNN9+ohlU+un3zzTelbu6xY8ewsrJSJc4AgoKCsLKy4ujRo8+0j9jYWLZs2cKoUZoLbi1duhR7e3tq1qzJe++9R1pa2nPFJz3PhBBCCCGEEEIIIcRTffTRR0yYMEFtW2l7nQHExMTg6Oiosd3x/9i777CmzjYOwL8kQCDsPWSDLEEBBbeACuLeWve2Wvfo8Gsdra2djrqqtu699x6AoqIoS5A9ZO+9R873BzUSCIgCBuhzX1cuzTnvSZ6HnJzx5h0aGkhNTW3Uaxw+fBjy8vIYM2aM0PIpU6bAyMgIWlpaCA4Oxpo1axAYGIi7d+82Oj6qPCOEEEIIIYQQQggh7/WhXTQ3bNiA77//vsEyvr6+AKoH/6+NYRiRy0U5cOAApkyZAmlpaaHl8+bNE/zf2toaHTt2RLdu3eDn5wd7e/tGvTZVnhFCCCGEEEIIIYS0Ji08s+Wnsnjx4vfObGloaIigoCCkpaXVWZeRkQFNTc33vs+jR48QHh6O06dPv7esvb09JCUlERkZSZVnhBBCCCGEEEIIIUR81NTUoKam9t5yPXv2RF5eHp4/fw5HR0cAwLNnz5CXl4devXq9d/v9+/eja9eu6NKly3vLhoSEoKKiAtra2u9P4F80YQAhhBBCCCGEEEIIERtLS0u4u7tj3rx58PHxgY+PD+bNm4dhw4YJzbRpYWGBixcvCm2bn5+Ps2fPYu7cuXVeNzo6Gj/88ANevHiBuLg43LhxA+PHj4ednR169+7d6Pio8owQQgghhBBCCCGkNeEzrfPRgo4fPw4bGxu4ubnBzc0NnTt3xtGjR4XKhIeHIy8vT2jZqVOnwDAMJk2aVOc1paSkcP/+fQwaNAjm5uZYunQp3NzccO/ePXA4nEbHRt02CSGEEEIIIYQQQohYqaio4NixYw2WYUSMBTd//nzMnz9fZHk9PT14eXk1OTZqeUYIIYQQQgghhBBCSD2o5RkhhBBCCCGEEEJIa9JOZttsL6jlGSGEEEIIIYQQQggh9aDKM0IIIYQQQgghhBBC6kHdNgkhhBBCCCGEEEJaE4Yv7ghIDdTyjBDSprBYLFy6dKndvA8hhBBCCCGEkNaNWp4RQkgr0tuwM/qbdoWCtCxSC7Jw8ZUXYrKTRZadbOcGR32rOstT8rPwq8fRFovx2oXLOHfiDLKzsmBgZIjPl34Ba9vO9ZYP8g/E3zv+wpvYOKiqqWHc5IkYOnq4UJmLp8/j+sUryEhLh4KSIvo498OsBXMhxZUCAMwYOxnpqWl1XnvYmBFYtGpZ8yb4ryEWPTHGxhkqMvKIz03D38+uICQttt7yQy17YZhlL2jIqSCjKAdnAh/gQdTLFontfaTHjYBUfyew5HioiopB8YHj4CeK3o/e4g4eCClXF7DVVMAUFKL82QuUnjwPVFT++6LSkJkwCpIO9mApyqMqLh4lh06iKiauxfOJeOiH1/efoySvEEraaug6dgA0TPXqLV9VUYlXN58g1jcEpQVF4CnJw3pQT5j0rH8/bQmDzXtglHU/KPPkkZCThv3Pr+F1ely95fsZ22K0tRN0FFRRVF4K/6QIHHpxAwVlxYIyw616w928B9RklVBQVoQnccE46ncLFVWVnyCjagNMu2GIZU8oysgjKS8dx/3uICIjvt7yPQ2sMdSyFzTlVVFSUYqglGic8r+LwvKSTxaz//0n8L3hhaK8AqjpaMJlygjomhu9d7ukiDic+nkP1HQ1MWPjCqF1pUUl8D5/C5EvglFaXAJFNRU4TxoK4y6WLZJDX6MuGNCxGxSkZZGSn4ULrzwRnZUksuxU+0HobtCpzvKU/Exsun8EAKAlr4qhlr2gp6QBVVlFnA/ygGe0f4vEXpOjnhX6GHWGHJeH9MIc3Ax7ijc5qfWW57DYcDHtii46ppDj8pBfWgSvaH/4JYUDAKw0DdHP2A4qPAVwWGxkFefhcdwrBCZHtmgeIZ7PEXT7CYrzCqCso4GeE92h3dFAZNnk8Fhc23y4zvIJ3y+CkrZ6neVRz1/hwT/nYdDFHIMWTWr22N/qZ2wLVzMHKErLISU/E2cDHyCqnn1qetfB6GloXWd5cn4mNt49CACw1ekId4seUJdVAofNRnphLu5F+uJ5/OsWywEAXEzs4W7eA0oyckjKy8DJgHuIzEwQWXa2wzD0Map7LkjKy8Da238Lnrt2dICLiT1UeAooLC/Bi8QwnAvyQCW/qsXyaIwu2qaYbOcGCw19qMkq4Zsbf+FRbKBYY6rpv/RZkP8eqjwjhJBWwk7HDKNtnHAu8AFis5PRy7AzPu85Cj8/OIrckoI65S+88sTV196C52wWG1+5TGnRGwavex7Y++duLFq1FFadrXHj0jWsXb0Ge48dgIaWZp3yqckpWLf6f3AfPgRfrluD10HB2LV5OxSVFNHHpR8A4MHtezi452+sWPMlrGw6ITE+EVt++g0A8PmyLwAAf/6zG3z+u6brb2Ji8b/lX6Gvi1OL5NnXqAvmdR+Bv55exOu0OAy26IENbnPwxYU/kFGUW6f8YIuemNF1MHY8PoeIzASYq+lhcZ9xKCwrxvOE0BaJsT7cEYPBHeKG4r8OoColDdJjhkHuf6uQv/JboLRU5DaSvbtDetI4FO89iKqIKLC1tcBbMBsAUHrkNACA9/kMcHQ7oGjXP2ByciHVtwfkvluF/FVrweTktlg+cS9D8fL8fThMdIO6cQdEegfAY/dZDPtuLmRVFERu433gMkoKitBjymDIqyujtKAIDP/Tdn3obdgZsx2HYa/PZYSlx2GQeXesdZ2FJZe2ILMor055Sw0DLOszAQd8r8E3IRSqPAUs6Dkai3qNxS//Vob3M7bFtK7u2Ol9DmEZ8dBRUMPSPuMBAAd8r32SvLrrW2GK/SAcfnEDkZkJcDG1x2qnyVhzYzeyivPrlDdT08PnPUbhuP8d+CdFQEVGHjMdhmK243Bs9z7zSWIOexYAj+NXMXD6KHQwM0SgxzOc37wfs35eBQVV5Xq3KysuwY19p2BgZYqifOFjcFVlJc7+/jd4CnIYsXga5FQUUZCdCylpbovkYN/BDGM6O+NMwH3EZCejt2FnLOw1Gj/dO4wcEeeHc0EeuBzySPCcw2LjmwHT4J/07vwgxZFAZnEe/JMiMKZzyxxLa7PWMsZgy5649tob8Tlp6KZniWldB2OH9xnklRaJ3Gai7UDIcWVwMfghsovzICslAzbrXeeZ4ooyeEX7I7MoF5X8KphrGGC0tROKyksQlZnYInlE+wbj6elb6DN5KDRN9RH68AVubj+GCRsWQU5Vqd7tJmxcLLSPSMvL1ilTkJWLZ+fuQKujfkuELtBV1xzju/THKf+7iM5KQl+jLljUZxx+uHNA5D51JvA+LgU/FDxns1n4dsBM+CWGC5YVlZfiZpgP0gqyUMnnw0bbGNO7DkZBWTFC0+JaJA8HPUtMsnXFUb9biMpMhLOJHVb0nYjvbu9Dtohj0smAuzj3ykPwnMNi43u3OXiRGCZY1kO/E8Z1dsEB32uIykyClrwK5jgOAwCcCrjXInk0lowkF1FZibgR9gSbBi8Qayy1/dc+i0+CT7NttibUbZMQ0mycnZ2xePFiLF68GEpKSlBVVcV3330H5t9plo8dO4Zu3bpBXl4eWlpamDx5MtLT0wEADMPA1NQUf/zxh9BrBgcHg81mIzo6WuR7vnr1Cv3794eMjAxUVVUxf/58FBYWCtb7+vrC1dUVampqUFRUhJOTE/z8/IReIzIyEv369YO0tDSsrKxw9+7d5vyzNJqzqT2evQmBT3wI0gpzcDHYC7klhehjKLq1TGllOQrKigUPfSVNyEhK41l8SIvFePH0ObgNGwz3EUOhb2iABcsXQV1DA9cvXhVZ/vqlq9DQ1MCC5Yugb2gA9xFD4TbUHedPvrtpDgt+DSsba7i4DYCmtha6du8GZ1cXRIa9uyBXUlaCiqqK4PHssQ+0O+jAxq5Li+Q5yrof7kb44k7EcyTmpePvZ1eQWZSLIRY9RZbvb2KPm+E+eBQbiLSCbDyMDcTdCF+M7ezSIvE1hDt4IEovXUeFrx/4iUko3r0fLK4UpHp3r3cbCTMTVEZEoeLxM/AzslAZFILyJ88gYWxYXUBSEpKOXVFy4hyqwiLAT0tH6bkr4KdnguvasjmGPfCFSc/OMO3VBYpaaug2biB4yvKIeCS6hUzy6xikRSXAZeF4aFsYQk5VEWqGOlA31m3ROGsb2akP7kW+wL1IXyTmZWD/82vILMqDu3kPkeXN1PWRUZiD66FPkF6Yg9D0N7gT/hymah0EZczV9RGW9gYPYwORXpiDgORIPIoJFCrT0tzNe8Irxh9eMf5Izs/Ecb87yC7OQ/+O3USWN1HTRUZRLu5GPEdmUS4iMhPgEfUSRiranyzmF7cewaafAzo7d4eqjib6TxkBeRUlBNz3aXC7O4cuwLKnHbRN61ZivHroi9LCYoxaOgMdzAyhqKYMXTMjaOjrtEgOLqZd8TQuGE/fBCOtIBsXXnkip6QAfYxEHwPrnB+Uq88PPm+CBWXic9NwOfgh/JLCUVn1aVpw9DLsDL/EcLxMDEdGUS5uhj1FfmmhyFbUAGCqpgtDFW0cfXkLMVlJyC0pRFJeBhJy37VEjstOQWh6HDKKcpFTUgCff/9GBkpaLZZH0N2nMO9jD4u+XaGsrY5eEwdDTlkRr71eNLidjLwseIryggebLXwrxufz8eCf8+g6wgUKavVX7DaHAR274UncKzyOe4XUgmycDfJATnEB+hnbiixfWlmO/LIiwcNAWQs8KWk8rbFPRWYmIDA5EqkF2cgsyoVHlB+S8jJgqtpyx6hBZo54FBuIR7GBSCnIwsmAe8guyYeLib3I8iUVZcgvLRI8DJW1wZOSgXeN1lsmqh0QmZmIZ/GvkVWch5C0WDyLfw1D5U933KqPT3wI/n52BV4xAeIOpY7/2mdB/nuo8owQ0qwOHz4MCQkJPHv2DNu3b8fWrVvxzz//AADKy8uxceNGBAYG4tKlS4iNjcXMmTMBVI8xNnv2bBw8eFDo9Q4cOIC+ffvCxMSkznsVFxfD3d0dysrK8PX1xdmzZ3Hv3j0sXrxYUKagoAAzZszAo0eP4OPjg44dO2LIkCEoKKj+VZXP52PMmDHgcDjw8fHBnj178PXXX7fQX6d+HBYbuooaCMt4I7Q8LP0NDBt5k9ndoBMiMuJF/mLcHCoqKhAZHgF7R+GbZHvHrngdLLrCLiz4NewduwqX7+6AyLAIVFZWdzOz6mKNqPAIhL+u/qUxJSkZvk+fw7GX6EqGiooKeNy5B7eh7mCxWE1Nqw4JNgemqh3gnxwhtNw/KQIWGqK75EhyJOp0myuvrICZmh44rE93qmVrqIGtrITKoBqfR2UlKkPDIWFW9zskKBIWBQkjA3BMjASvI2lngwq/oOoCHA5YHA5QUSG0HVNeAQkL02bP462qyipkJ6RC21K4e522pREyY0V3LUp8FQVVfS28vvcMF77dhSvf74PfhQeoLK8QWb4lSLA5MFHtgIBarUADkiPr3YfC0t9AVVYRXTuYAwAUpeXQ09Ba6Bf40PQ4mKh1QEe16opATTkV2OuaC5VpSRw2G4Yq2ghOFf4x41VqDDqqie5GG5mZABWeAjprV+8nCtKycNC3avEudW9VVVYiLS4JhtZmQssNrTsiOSqu3u1ePfRFbnoWeo0aKHJ9tP9r6Jga4P6Ri9i95Acc/N9m+Fx9INRCtrlwWGzoKWkiLL3W+SHtDYxUG1dZ18PAGuHpb1rs/NAYHBYbOgpqdVqDRWUmQk+pbstlALDQMEByXgb6GHXBl85TsKzvBAwy7w4JNqfe9zFW0YGarCLiclKaNf63qiorkRmfDF0r4WOqrpUJ0qJFd09768LGvTi6+g9c23IYyWF1hwHwu+YFGXlZWPQRXdnQXDgsNvSVtPC6Vmuw0PQ4GDeyoquXoQ3C0t+IbFH0lrm6PjTllRHZQi0AOWw2DJS1EZIWI7Q8JDUWpqqN+8Gkr3EXvE6LFWo5G5mZCENlLUElv7qsEmy0TRCUEtV8wbcz9FmQ/wLqtkkIaVZ6enrYunUrWCwWzM3N8erVK2zduhXz5s3D7NmzBeWMjY2xfft2ODo6orCwEHJycpg1axbWrVuH58+fw9HRERUVFTh27Bh+//13ke91/PhxlJSU4MiRI5CVre76sHPnTgwfPhy//vorNDU10b9/f6Ft9u7dC2VlZXh5eWHYsGG4d+8eQkNDERcXB13d6pP7pk2bMHjw4Bb6C4kmy5UBh81GQWmx0PKCsmIoSPPeu70ClwdLDUMcfXmzpUJEfm4e+FV8KKsI/xqupKyMnKxskdvkZGdDSVm4vLKKMqqqqpCfmwcVNVU4D+yPvJw8rF64DAzDoKqqCkNHj8CEaaLHeXn68DEKCwvhOmRQ8yRWiwJXFhw2p85NZk5JIex58iK38UsKh5uZI56+CUZ0VhJMVXUx0MwBkhwJKEjLfrIbVpaSIgCAnyd8M8PPywdbTbXe7SqePkeJghzkvv+m+nUkJFB2xwNlV/7dn0pLURkRBekxw1CUlAImNw+SvbuDY2oEfmp6yyQDoKywGAyfgbS88HdAWl4WJfmiu3gVZuYiPToRbAkJ9Js3GmVFJfA9fQdlxaXoOXVIi8VakzyXBw6bU6e7dV5JAZRlzERuE54Rjy0PT2G182RIciQgwebgWfxr/O1zRVDGOzYIilw5bBq8ACwWCxJsDm6GPcWFV14tms9b1Xmx63Svyy8tgqJ03e5nQHXFyJ6nF7Go91hBXn6J4Tj68tanCBkl/3bZ5SnKCS3nKcqjKE/09zInNQOPzt7EZ98uBJsjupImLyMb8aHRsOxphzErZyM3LRP3jlwCv6oKvUa5NmsOgvNDmfDfvaCsGArcxpwfZGGlaYTDL240a1wfiiclDQ6bXWesu8LyEsjXk4eKjAL0lbVQya/CCf874ElKY3inPpCRlMal4Hf7PVdCEl86T4UEmwM+w8e114/rHQ+uqUr/PS7JKAjv8zIKsijOLxS5DU9RHn2nDYe6vjaqKqsQ6ROIa1sPY/iqmdA2MwQApEbFI9zbD2PXtnxXPDnBNUetfaq0CIqaor/LNSlIy6KTpjEOPK/bXVxaQgo/D10ISTYHfIbBSf+7dSp+m4u8VD3HpLL6j0k1KUrLwkbLBPt8Lgstf57wGvJcHta4TAdY1T+IPIh6iRthT5s1/vaEPosWwlC3zdaEKs8IIc2qR48eQq2Bevbsic2bN6OqqgpBQUHYsGEDAgICkJ2dLfiFPj4+HlZWVtDW1sbQoUNx4MABODo64tq1aygtLcX48eNFvldoaCi6dOkiqDgDgN69e4PP5yM8PByamppIT0/HunXr8ODBA6SlpaGqqgrFxcWIj48XvIa+vr6g4uxtzO9TVlaGsrIyoWVcbvOPdcNiNe686ajfCSUVZXiVIrp7a3PHVBMDNNgCrPa6t914375QkF8ATh85jkWrlsK8kyWSE5Ox989dOHFQBZNnTavzerev3US3Ho5QVVdrUh7vVevv3tBncSrgHpRl5LF5+BKwAOSWFOJ+5AuM6+wCfgtOMy7Zuzt486YLnhf++mf1f+oE2vCOJGFlDunRw1Cy/xgqo2LA0dKAzIxJ4OcOQ9mF6puj4l3/gPf5LCj+tRlMVRWqYt+g4vEzcIxEt6RqXrV3OqbOfvhuFQMWi4XeM4dDSqb6O1k1pj8e7b8EhwmukJCSbOFYG8Bigam9Y/1LV1ED87qPwOmA+/BPjoCyjDxmdhuChT1HY+eT8wCqx4sa18UFe30uIzIjHloKapjrOBw5nQtwJujBp8tDRAr17V06CmqYau+Oy8EP8So1GkrS8phoNxAzHYZi/3PR3b1bQp1j1L/7SW18Ph/X9pxEr9GuUNGqO5C7YHM+A568HNxmjQWbzYaWkS4Kc/Phe8Or2SvPBO/5kdt1N7BCSUUZgpJbS0sN4UxYYNV7eHr7GZ0NeoCyyurWo7fCnmKirSuuvfYWDBheXlmB3U/OQ4ojCWNVHbhb9EB2ST7islum9dnbuGtq6FytpKUGJa135yxNEz0U5uQj8M4TaJsZory0DB77L6DvtBEix0FrKXVDrv8YVVNPA2uUVJSKbEFaVlmOTfcOgyshBXMNfYzr7ILMorx6B41vCSw07vvS27AziitK4ZccLrTcXF0fwyx74ajfLcRkJ0NTThmTbF2RZ1WIq68ft0jM7RV9FqQ9ocozQsgnUVpaCjc3N7i5ueHYsWNQV1dHfHw8Bg0ahPLyckG5uXPnYtq0adi6dSsOHjyIiRMngscT/Ys0U8/ND/DugnvmzJnIyMjAtm3bYGBgAC6Xi549ewrekxFxtduYroA///wzvv/+e6Fl69evB+yU3rutKEVlJaji8yFfq5WZnBRPaKa9+nTXt8KLxFBUtWBFjYKSItgcNrKzcoSW5+XkQKlWa7S3lFVUkJMt3CotNycXHA4HCorVg70f+fsg+g9yhfuIoQAAIxNjlJWWYPuvW/HZjClCY8KkpaYh4IUfvtu0oRkzE5ZfVoQqfhWUa7UyU5KWEzlxAwCUV1XiT++z2Pn4PJRk5JFTko9B5j1QXF6K/NL3f34fq+JlIAqiauyHktWndbaSIqpy3w1Kz1aUB5NXf9ca6QmjUP7oKco9qgcY5yckAVwuePOmo+zidYBhwE/LQOEPvwFcKbBkZMDk5oG37HPw0zNbJjkAXDkeWGwWSguEf8kuLSyu9wZTRkEOMopygoozAFDUUgUYoDi3AAoaKi0W71sFZcWo4ldBSUZ4H1KUlkNuieiWKeM6OyM0PQ6XQqoH5H6Tk4q9Ppfw85CFOO5/BzklBZhs5wrPaD/ci/StLpObBmkJSXzRawzOBnk06qa36XnxoSgj/LdXkJZFfj2DvQ+36oPIzARBK4EEpKPMtxzfuc7CuSAP5JWK/ns0Fxl5WbDYbBTlCn93i/MLwVOQq1O+vKQMabGJSH+TjPtHq1tAMAwDMAw2z/oG47+cC30rU8gqyYPN4Qgdn1S0NVCUV4CqykpwJJrvEvvt+UGBK/x3l+fykN+I80MPA2v4Jrxu0fNDYxSXl6KKz4eclPB5TlZKGoXlovMoKCtGfmmRoOIMADIKc8FmsaAgLSvoMsgAgv+nFmRBXVYZ/YxtW6TyTPrf41LtVmalBUUi96n6aBjpIupZddf4/IxsFGTl4vauE4L1b69P/l7wPSb+sKRZj12Fb/epWi2C5KV5jTpn9TK0wbN40fsUAwgm1knMS4e2vCrcLboj0rv5K88Kyv89JtXOg1v/MammvkZd8PRNMKpqdbcebe2EJ2+CBbNYJuVlQIojiRndhuDa68ctfKRtm+izIP8FNOYZIaRZ+fj41HnesWNHhIWFITMzE7/88gv69u0LCwsLwWQBNQ0ZMgSysrL466+/cPPmTaGunrVZWVkhICAARUXvTsqPHz8Gm82GmVl116hHjx5h6dKlGDJkCDp16gQul4vMzEyh14iPj0dycrJg2dOn728KvmbNGuTl5Qk91qxZ897t6lPF8JGYlw5zdeGBqc019N978W+qqgt1OWX4vGm5iQIAQFJSEh3NzeDv+1JouZ/vS1hZdxK5jYW1Ffxql3/+Ah0tzCDx781lWVkZWGzhCks2mwOGYepUbt69fguKykpw7Cl6PLTmUMmvQlRWEmx1Ogott9Uxe2/XkyqGj6ziPPAZBv2MuuB5QmjLVmiUloKflv7ukZgMfk4uJGxqDL7N4UDC0hyVEQ20SpSSqttsgs+v28wQAMrKweTmgSXLg2Rna1S8FD1wf3PgSHCgoqeFlLA4oeUpYXFQMxI9Lo+6cQeU5BWiouxdpXx+eg5YLBZ4SqK73Ta3Sn4VorOSYKsjPB6crY5pvfsQlyNVZ3/n13rO5UjWU4ZVb0u85lTF5yMuOwXWWsZCy621jOttVSIlUV/Monev5saRkICmYQfEhQi3kIkLiYSOqWGd8lwZLmb8tBLTNy4XPLq49ICKtjqmb1wOLZPqY3SHjobITc8SmsU1Jy0TskryzVpxBlQfVxJy02ChUfv8YIDYrOR6tqpmqqYLDTllPI0LbrDcp1DF8JGcnwmTWhNcmKjpCk0AUFN8TirkpWUhxXn3N1WVVQSf4Td4Q876t3tXS+BISEBNXwdJr4WPqYmh0dA0ET32nyhZCSmC7sRKWmoYt34hxq5dIHgYdDaHjrkRxq5dUO/Mwh+riuEjPjcVlrXGYLTUMEDMe7q7dlTTg4acMp7EvWr0+7XUZ1HF5+NNTgqsNIXHxeykaYSorIbHWasej00Fj2IC66yT4kjUOXczDFPd1vBTHLjaIPosWsi/P960usd/FFWeEUKaVUJCAlauXInw8HCcPHkSO3bswLJly6Cvrw8pKSns2LEDMTExuHLlCjZu3Fhnew6Hg5kzZ2LNmjUwNTVtsAvllClTIC0tjRkzZiA4OBgeHh5YsmQJpk2bBk3N6sGHTU1NcfToUYSGhuLZs2eYMmUKZGRkBK8xcOBAmJubY/r06QgMDMSjR4/w7bffvjdPLpcLBQUFoUdTu216Rvmhh4E1uutbQVNOGaOs+0FZRh6P46p/mR5m2RtT7N3qbNfdoBPislOQWpDVpPdvjNETx+H21Ru4fe0m4uPeYO+fu5GRlo4ho4cDAA7+9Q/+2PiLoPzQUcORnpqOfdt3Iz7uDW5fu4k7125i7KQJ7+Lv3RPXL16F570HSE1Ogd/zFzjy90H06NMLnBrjDfH5fNy9fgsDB7uBI9EyF+JvXQp+CDczR7h2dICuogbmOg6HupySoPXMjK6DsbLfZ4LyOgpqcDaxh46CGszU9PCV8xQYKGvhSAuOQVefspv3ID1qKCQd7MDW7QDeF7PBlJWj/PEzQRneF3Mg/dkYwfNKv0BwBzpDsqcj2OpqkLCxgvSEUah4GSC4SJLo3AkSXawF6+XWfomqlFSUe7ZstwmL/g6IfhKI6KdByEvNxMvz91GcnY+OfW0BAP6XvfDkyLtxdwwdrMCVlYHPsRvIS8lEWlQC/C96wLinzSftsnk5xBsDOzpggGk36CqqY7bDMKjJKuF2ePXnMNV+EJb1efc98E0MRQ8Da7ibd4emnAosNAwwt/twoUlAfBPD4G7eA32MOkNDThldtE0x2c4Vvgmv61S0tZRb4U/hZGyPfsa20FFQw2Q7N6jyFPEgsrqSfHyX/pjfY6SgvH9SBLrqWaC/aVeoyyqho5oepnYdhOjMpHpb4TW3bu598crrOV499EVWcho8jl9BQVYuuvSvroR/eOYmbuw9BQBgsdlQ19USevAUZMGRlIC6rhakuFIAgC79e6KksAgPjl9BdmoGogNC8ezqA9gN6NUiOXhEvURPQxv0MOgETXkVjLFxggpPXjAr3XCrPpjW1b3Odj0NrBGbnYIUEecHDouNDorq6KCoDgk2B4oy8uigqA41WaUWyQEAnsQFoauuBew7mENdVgmDLXpCUVoOz+NDAQCuZg4Ya+MsKB+UEoWS8lKMtnGGuqwSDJS1MMi8O/wSwwVdNvsZ28JEtQOUZeShJquIXoY2sNUxa9FJKTq79kSYtx/CvP2Qk5KBJ6dvoTA7D5ZO1RPqPL9wDx4HLgjKv7r3FHH+ochLy0J2cjqeX7iHWL9QdHJxBABISEpCpYOm0IPLk4YkVwoqHTSbvUIWAO5HvkBvo87oaWANLXkVjOvsAmWegqCFz8hOfTGjW91xInsb2iA2KxnJ+XVbHQ8y7w4LDQOoySpCU14FAzp2Qw+DTnge/7rZ43/rdsRz9DOyRR+jztCWV8VntgOhwlOAZ3T1zOpjbZwx13F4ne36GnVBdFYSkvIz6qwLTImCi4k9HPWsoCarCCtNQ4yy7oeA5EiRPRY+JRlJLjqq6QomjtFRUENHNV1oyrXs7KyN8V/7LMh/D3XbJIQ0q+nTp6OkpASOjo7gcDhYsmQJ5s+fDxaLhUOHDuF///sftm/fDnt7e/zxxx8YMWJEndeYM2cONm3a1GCrMwDg8Xi4ffs2li1bBgcHB/B4PIwdOxZbtmwRlDlw4ADmz58POzs76OvrY9OmTVi9erVgPZvNxsWLFzFnzhw4OjrC0NAQ27dvh7t73ZuQluafHAGelDQGmfeAApeHlIIs7PW5LLhxVpCWhbKM8K/P0hJS6KJtigs1Bk5uSU4DXVCQn48TB48iOysbhsaG+OGPn6GpVV1ZmZ2VhfS0dy0KtXS08cMfm7Bv+25cvXAFqmqqWLB8Mfq49BOUmTRjKlgsFo7sO4isjEwoKiuhe+8emDF/jtB7+/v6IT0tHW5DW/6zeRQbCHkuT3Dh9yYnFRvu7Bd0RVHmKUC9xg0mm8XGaOt+6KCojip+FYJSovHltV1IL8wR/QYtqOzKTbCkJCEzeypYsrKoiopB4aYtQGnpu3jVVIR+OSy9cA0MA0hPHAW2ijKY/AJUvAxE6el3N38sngykJ42tXl9YhIrnL1Fy6iJQVdWi+Rh2tUR5UQle3XyMkvwiKGmrwfmL8ZBTqZ4coTS/EEXZ77qkSnKl0H/xRLw4exc3fzsMrqwM9O0t0GVY3xaNs7bHcUFQ4PIw0XYAlGXkEZ+Tio33Dgn2IRWeAtTllATlH0S9hIwEF0MsemGWw1AUlZciKCVaqAL2TOADMAyDKXZuUOEpIr+0CL4JoTjuf/uT5fUs/jXkpHgY2akflGTkkJiXjs1eJ5BVXN1NWElaDqo8RUF579hAyEhIYaCZAybZuaG4vBSv02NxJuD+J4vZorstSgqL8fTyPRTl5kOtgxbGrJwNRbXqm82ivHzkZ+d+0GsqqCph/Jfz4HHiKg5/txVySgqwd+sDx6HOzZ8AAL+kCMhKycDdvAcUpGWRkp+Fv55cFJwfFKVloVyrm7C0hBRsdTri/CtPka+pKCOHb/q/G1dyYMduGNixGyIzErDd+2yL5BGcGgOepDScTe0hz+UhrSAbR1/eFHTflePyoCjzrutjeVUlDr24jqGWvbGg1xiUlJciODVG0HUZqJ7teLhVHyhIy6KiqhKZRbk4F/QAwakxdd6/uZg4WKO0qBh+171QnFcIFR0NDF4yBfKqSgCA4rwCFGa/6zpfVVkFn3N3UJRbAAlJCSjraMB9yWTo24ieQORTeJkYDlkpGQy17PXvPpWJXY/PC7q/KkrLQYVXd5+y62CGM4Gix1jkciQxyc4VSjJyqKiqRGpBNg76XsfLxHCR5ZuDb0Io5KRkMMKqDxSl5ZCUl4Ftj04LZmyszkP42klGkouuuhY4GXBX5Gtefe0NhmEw+t8fMQvKihGYElXvd+lTslA3wM7RKwXPl/apHhf4RuhT/PTgsLjCAvDf+yzIfw+LoSpbQkgzcXZ2hq2tLbZt29ak13n8+DGcnZ2RmJgoaEHWViy/vE3cITTZtpHLEdNC08p/SsZquhh24Etxh9Ek12b/jtzP5ry/YCundGo/frh7QNxhNMk619kYdegbcYfRZJdm/oLpJ38QdxhNdmTSOvxda1a2tmZej5FYcnHL+wu2cjtGr8TaW/vEHUaTbHSfj81eJ8UdRpOtcpqEhedFz1Delvw19kvMPrNJ3GE0yYEJ/0PvXS0/c2pLe7xoT7v4LNqq3LlLxR2CSEr/bBd3CGJBLc8IIa1GWVkZEhISsHbtWkyYMKHNVZwRQgghhBBCCGl/aMwzQkircfLkSZibmyMvLw+//fabuMMhhBBCCCGEEEKo5RkhpPl4eno2afuZM2di5syZzRILIYQQQgghhLRZNMJWq0ItzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmlC3zVaFWp4RQgghhBBCCCGEEFIPqjwjhBBCCCGEEEIIIaQe1G2TEEIIIYQQQgghpDXhU7fN1oRanhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB7UbZMQQgghhBBCCCGkNWH44o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB405hkhhBBCCCGEEEJIa8Iw4o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmvCp22ZrQi3PCCGEEEIIIYQQQgipB4thaBQ6QgghhBBCCCGEkNYid+rn4g5BJKVje8UdglhQt01CCGlGR3xviDuEJpvuMAQFkVHiDqPJ5DuawnXfMnGH0SR35/+Jdbf+FncYTfaD+zyMOvSNuMNokkszf8GAvUvFHUaT3f98OwpS08QdRpPJa2m2+ePtdIch2PbwtLjDaLLl/SbiWoi3uMNokmGd+iAlL0PcYTSZtqI63P9eIe4wmuzWvK1w+muRuMNoEq+FuzD7zCZxh9FkByb8D713LRB3GE3yeNEecYfw8aidU6tC3TYJIYQQQgghhBBCCKkHVZ4RQgghhBBCCCGEEFIP6rZJCCGEEEIIIYQQ0prw+eKOgNRALc8IIYQQQgghhBBCCKkHVZ4RQgghhBBCCCGEEFIP6rZJCCGEEEIIIYQQ0prQbJutCrU8I4QQQgghhBBCCCGkHlR5RgghhBBCCCGEEEJIPajbJiGEEEIIIYQQQkhrQt02WxVqeUYIIYQQQgghhBBCSD2o8owQQgghhBBCCCGEkHpQt01CCCGEEEIIIYSQVoThU7fN1oRanhFCCCGEEEIIIYQQUg+qPCOEEEIIIYQQQgghpB7UbZMQQgghhBBCCCGkNWH44o6A1EAtzwghhBBCCCGEEEIIqQdVnhFCCCGEEEIIIYQQUg/qtkkIIYQQQgghhBDSmjA022ZrQi3PCCFt2syZMzFq1KgP2sbQ0BDbtm1rkXgIIYQQQgghhLQv1PKMkDZk5syZOHz4cJ3lgwYNwq1bt1r8vXNzc3Hp0qUWfZ8P9eeff4Jp5l9l4uLiYGRkBH9/f9ja2jbra9f24q43fG54oDA3H+odtOA6dRT0LUzeu11CRAyO/rgL6rpamLfpS8HyMN8gPL5yFzlpmeBX8aGsqYYeQ5xh08ehxXJgGAb7TpzAxdu3UFBYiE5m5vh64UKYGBjUu030mzfYc/wYwqKikJKejpXz5mHyyFH1lj945gx2HTmMSSNGYtX8+S2QBTDcqg/Gd+4PVZ4C4nJS8dfTCwhOjam3/AirPhjZqS805VWQXpiDE/53cS/SV2RZZxM7fDtgJh7HBWHDnf0tEj8AOOhZoo9RF8hxZZBRmIObYT54k5Nab3kOiw1nU3t00TGFHJeH/NIieEX7wz8pAgDQVdcctjpm0JBXBgAk52XiXqQvkvIyWiwHABhs3gOjrPtBmSePhJw07H9+Da/T4+ot38/YFqOtnaCjoIqi8lL4J0Xg0IsbKCgrFpQZbtUb7uY9oCarhIKyIjyJC8ZRv1uoqKpssTxGWPXBhC4DBPvU7ifn8aqBfWpkp74Y2akvtP7dp4773cHdGvvUIDNHfOUytc527v+sbLY8GIbBvkMHcfHqVRQUFKCTlRW+Xr4CJkZGDW5338sTe/bvR2JyMnR1dPDF3Hlw6ddPsH7vwQP4+9AhoW1UVVRw++IlwfOs7Gzs2LsHPr6+KCgshH2XLvhy2TLo6+o1Oa/2cKwN9niOgNveKM4rhLKOOnpPHAwdM0ORZZPCY3Hlj4N1ln/2wxIoa6sDAF4/fIHwpwHITk4HAKgb6KD76IHQNNJtsRwA4PHNB/C8fBv5ObnQ0uuAkbM/g7GVmciyMaGRuH7kHNKTUlBeXg5ldVX0dHOC03A3QRmfu1544fkUqfFJAABdEwMMmTIG+h2Nmy3mS+cu4NTRk8jKyoKRsSEWr1iGznZd6i0f4OeP3dt2IDYmDmpqqvhs2hSMHDtKsP6hhxeOHTyCpMQkVFVWooOeLiZO+QxuQ9wFZSorK3Ho7wO4d+susrOzoKqqCvdhQzBt9gyw2c3T/mGYZW+M6+ICFRkFvMlJxR6fSwhp4Bg13Ko3hlv1haa8MjIKc3Ey4C7uR74QrHc374GBZg4wUNYCAERlJuKg73VEZMQ3S7z1GdWpLz6zHQgVniLiclKw8/E5BKVEN1C+H8bYOEFLXgVphTk49vIWbkc8F6zfNmIZ7DrU3SefvgnGNzf+apEcXEzs4W7eA0oyckjKy8DJgHuIzEwQWXa2wzD0MepcZ3lSXgbW3v5b8Ny1owNcTOyhwlNAYXkJXiSG4VyQByr5VS2Sw4foom2KyXZusNDQh5qsEr658RcexQaKOyxCGkSVZ4S0Me7u7jh4UPiCmMvliika8VNUVBR3CB/ttY8/7h67BPeZ46BnZgS/B09w6vd9+PzXb6CoplzvdqXFJbiy5wSMOnVEYV6B0DoZWR56j3CFmo4mOBIcRPqH4Oq+U+ApyMOks0WL5HH4/DmcuHQR61esgL5OB+w/fRqL1n6H83v2QpbHE51DWRl0tbQwsHcfbPnnb5Fl3gqJiMDF27fQ0bDhm/emcDK2w8Keo7HD+yxC0mIx1LIXNg1egDlnfkZGUU6d8sMse2O243BsfXgK4RnxsNDQx4q+n6GwrBg+8SFCZTXklDG/+ygEpUS1WPwAYK1ljMGWPXHt9WPE56TBQc8CU7u6Y6f3WeSVFoncZoLtAMhxZXAp+CGyi/MhKyUDNoslWG+oooOglCgkhKahkl+FPkZdML3bYOz0PidUMdWceht2xmzHYdjrcxlh6XEYZN4da11nYcmlLcgsyqtT3lLDAMv6TMAB32vwTQiFKk8BC3qOxqJeY/GLx1EA1ZVr07q6Y6f3OYRlxENHQQ1L+4wHABzwvdYieTib2OGLXmOw3fssglNjMMyqN34eshCzz2xCemHdfWq4VR/McRyOLQ9PIjw9HhYaBljZ7zMUlpfg6ZtgQbnCshLMPP2j0LbNWQF4+OQJnDhzBuvXrIG+rh72Hz2CRatW4vyx4/V+n4OCg/G/77/Hgtlz4NK3LzwePcI3G9Zj/85dsLayEpQzNjLC7s1bBM85HI7g/wzDYPW330JCgoPNP22CrKwsjp85jS9WrsTZw0cgIyPz0Tm1h2NtlO8rPD59E32nDIO2qT5CvHxxffsxfPb9YsirKtW73aSNSyEl8+4aQVpeVvD/5PA4dHTsDC0TPXAkJRBw2xvXth7BxO8XQ05ZodlzAAB/7+e4fPAUxsybCiNLUzy97YW/f9yGr/7cCGV11TrlpbhS6D2kP3QMdCElzUVsaCTO7TkCKS4XPd2cAABRweGw6+MIQwtTSEhKwuPSTez9fgu++nMjFFXr/3wb68Hd+9i5ZTuWf7UKNl1scOXiZXy1fDUOnz4KTS2tOuVTkpLxzfIvMXTUcHz7/Tq8CnyFbb9thpKyEpz6OwMA5BXkMW3WdOgbGkBCUhJPvR/jl40/Q0lZGY49uwMATh45jisXLmPN+m9haGyE8NAw/LpxE2TlZDHuswlNzqufsS0+7zkKux6fQ0haLIZY9MKP7vMx/+wvyCjKrVN+qGUvzHQYhj8fnUZERgLM1fWxrO8EFJaV4Nm/573OOqbwjPLD67RYlFdVYnyX/tg0eAE+P/crsorrHr+bg4uJPRb3Hoetj04jOCUawzv1wa9DF2HGqY0ij7UjO/XF/B4j8LvnCYSlv4GlpiG+dJqMgrJiPPn3WLv29t+QZL+7TVaQlsX+CWvgGe3fIjk46Flikq0rjvrdQlRmIpxN7LCi70R8d3sfsovz65Q/GXAX5155CJ5zWGx87zYHLxLDBMt66HfCuM4uOOB7DVGZSdCSV8Ecx2EAgFMB91okjw8hI8lFVFYiboQ9wabBC8QdTuvFp26brQl12ySkjeFyudDS0hJ6KCu/uzhksVjYu3cvhg0bBh6PB0tLSzx9+hRRUVFwdnaGrKwsevbsiejod7/IbdiwAba2tti7dy/09PTA4/Ewfvx45ObmCtYfPnwYly9fBovFAovFgqenJ/r374/FixcLxZeVlQUul4sHDx7UiT0vLw8cDgcvX74EUH2zpKKiAgeHd7/Unzx5Etra2oLnSUlJmDhxIpSVlaGqqoqRI0ciLi5OsL52t82CggJMmTIFsrKy0NbWxtatW+Hs7Izly5cLxVJcXIzZs2dDXl4e+vr62Ldvn2Cd0b8tLOzs7MBiseDs7Nzwh/KRnt30hK1zd9i59IBaB024TRsNBVUl+N1/3OB2Nw+cRaee9uhgalhnnYGVKSwcOkOtgyaUNdXg6O4EDT1tJITX/0tyUzAMg5OXL2PWxIno36s3TA0N8f3KlSgtK8MtL696t+tkZoZls+dgkJMTpCQl6y1XXFKCtX/8jm+XLIG8nFxLpAAAGNvZGbfCfXAz3AfxuWn46+lFZBTmYLhVb5HlB3Z0wPXQx/CK8UdqQRY8o/1xK9wHE20HCpVjs1hY0386jry8idT8rBaLHwB6GdrALzEcfonhyCzKxc0wH+SXFsJB30pkeVM1XRiqaOPYy9uIyUpGbkkhkvIykJCbLihzPsgDvgmhSC3IRmZRHi4HPwKLxYKxaocWy2Nkpz64F/kC9yJ9kZiXgf3PryGzKA/u5j1EljdT10dGYQ6uhz5BemEOQtPf4E74c5iqvYvRXF0fYWlv8DA2EOmFOQhIjsSjmEChMs1tnI0Lbob54EbYU8TnpmH3kwtIL8zBcKs+Isu7dnTAtdDH8Iz2R0pBFjyi/XAz3AcTuwyoVZJBTkmB0KO5MAyDk2fPYta0aejfzwmmxsb4fs3/qr/P9+7Wu93Jc2fRvWs3zJo6FYYGBpg1dSocu3bFibNnhcpJcDhQU1UVPJSVlATr4hMT8ep1CL5ZuQqdLC1hqK+Pb1asRElJCW7fv9+kvNrDsTbw7hNY9LGHVd+uUNZWR5/PhkBOWQEhXqJbu74loyALnqK84FGzxdLAeeNg7eIINX1tKGurw2n6SDAMg6TQlskBAB5evQPHAX3Rw7UfNHV1MGrOJCipquDJbU+R5XWNDWDftzu09DtARUMNXZ16wtzWGrGhEYIyU1fMR+/B/dHBSB+autqYsHAmGIZBZFBos8R89sQpDBkxDMNGDYeBkSGWrFwGDU0NXD5/SWT5KxcuQUNLE0tWLoOBkSGGjRqOwcOH4vSxk4Iydl3t0dfFCQZGhuig2wHjPpsAE1MTvAoMEpQJeRWCPv36oGefXtDW0YbzABc4dHdEeGh4s+Q1xsYZt8Of4Vb4MyTkpmOvzyVkFOZiWD3nvQEdu+Fm6BM8jAlAakEWvGL8cTv8GSZ06S8o85vHMVwLfYyY7GQk5qXjz0enwWKxYNuhY7PELMqELgNwI+wproc+wZvcNOx8fB4ZhTkY2amvyPJuZo648voxPKL9kFKQhQdRL3E97Akm2b1rzVhQVozsknzBo5ueBcoqy+EZ7dciOQwyc8Sj2EA8ig1ESkEWTgbcQ3ZJPlxM7EWWL6koQ35pkeBhqKwNnpQMvGu03DJR7YDIzEQ8i3+NrOI8hKTF4ln8axgqa4t8zU/NJz4Efz+7Aq+YAHGHQkijUeUZIe3Qxo0bMX36dAQEBMDCwgKTJ0/G559/jjVr1uDFi+rm9bUrvaKionDmzBlcvXoVt27dQkBAABYtWgQAWL16NSZMmAB3d3ekpKQgJSUFvXr1wty5c3HixAmUlZUJXuf48ePQ0dGBi4tLnbgUFRVha2sLT09PAEBQUJDg3/z86l/WPD094eRU/WtycXExXFxcICcnh4cPH8Lb2xtycnJwd3dHeXm5yNxXrlyJx48f48qVK7h79y4ePXoEP7+6FzubN29Gt27d4O/vjy+++AILFy5EWFj1L3bPn1c33b937x5SUlJw4cKFxv3hP0BVZSVSYhNhZG0utNzY2hyJkXH1bhfo9Qw5aZnoN2bQe9+DYRjEBkcgOzWjUd2TPkZSWiqycnLQw+7dBZ6UpCTsra0RFNr0G5df//oLvR0c0N3WrsmvVR8JNgdmanp4mSh8Q/IyMRydNEW3dpPkSKC8VmufssoKmKvrg8N6d2qdau+O3JJC3Ar3af7Aa+Cw2NBWUEN0ZpLQ8qjMJOgraYrcxkLDAMl5mehj1BmrnSdjad8JGGTeHRJsjsjyQHXeHBYbJRVl9ZZpCgk2ByaqHRCQHCm0PCA5EhYaorsBh6W/gaqsIrp2qP4uKUrLoaehtdAv8KHpcTBR64COatXd0TTlVGCvay5UprnzMFPXq/P6LxPDGt6nKiuElpVVVsBCwwCcGhUeMpJcnJi8Aaem/ICf3OfDVLX5utglpaQgKzsbPbq9+0FDSkoK9l26ICg4uN7tgkJC0N1BuLtiDwdHBIUIbxOfmAj3MaMxYuIErPl+AxKTkwXrKv49pnOlpATLOBwOJCQkEPAqCB+rPRxrqyorkfEmBXpWwq+t18kUqdENd4c7+8NfOLz6N1zZfBBJYQ1XilWWV4BfVQWu7Me38mvw9SsqkRj9BuZdOgktN7e1QlxY41rmJsa8QVx4FIytzOstU15ehqqqKvBqtLL7WBUVFQgPi4BDd+H926G7A0KCRH8nQl6F1Cnv2MMR4aFhqKys20qUYRi8fP4CCW/i0cXOVrDcxtYGL1+8RMKb6s84KiISrwKD0KOX6B8SPoQEm4OOarrwSxI+7/klhcNS01DkNpLsuue98qoKmNU679XElZCCBJvdYi2V3x5rfROErzd8E0JhrSW62259x1rLWsfamoZa9MSDqJcorRR97dkUHDYbBsraCEkT/n6GpMY2+vje17gLXqfFIqtGK7XIzEQYKmvBSKW6skxdVgk22iYt3gqekPaMum0S0sZcu3YNcrVa4Hz99ddYu3at4PmsWbMwYcIEwbqePXti7dq1GDSo+iZg2bJlmDVrltBrlJaW4vDhw9DVrT5R79ixA0OHDsXmzZuhpaUFGRkZlJWVQatGF4WxY8diyZIluHz5suD9Dh48iJkzZ4JVo+tXTc7OzvD09MSqVavg6emJAQMGICYmBt7e3hgyZAg8PT2xYsUKAMCpU6fAZrPxzz//CF7v4MGDUFJSgqenJ9zc3IReu6CgAIcPH8aJEycwYMAAQXkdHZ06cQwZMgRffPGF4G+0detWeHp6wsLCAurq1ePBqKqqCuVbU1lZmVClIfBh3WeLC4rA8PmQU5QXWi6rKI/C3LpN9AEgOzUDHqevYdraJWBz6q/gKC0uwfYlG1BVWQkWmw33meNgbFP/jUZTZOVUd4lQrdGC5O3zlPSmjYt128sLYdFROLJ1W5Ne530UpWXBYXOQUyL8d88pKYAyT17kNi8TwzDYogeexAUhMjMRZmp6cDfvAUmOBBSl5ZBdko9OmkZwN++BBed/a9H4AYAnJQ0Om43CcuEblKLyEshxRd8IK8vIQ19ZE5X8Kpz0vwuepDSGdeoNGUkuLgU/FLmNq5kD8kuLEJOVJHJ9U8lzeeCwOcit1Zoqr6QAyjKix0QKz4jHloensNp5MiQ5EpBgc/As/jX+9rkiKOMdGwRFrhw2DV4AFosFCTYHN8Oe4sKr+ltHNsW7fUo4j5ySAqjUs0+9SAzFEIueeBz3CpGZCTBT08Ng8+7v9qnifMTnpuM3z+OIyUqGrJQ0xtg448+RyzH/3K9Iym/6OHRZ2dWtI1VVVISWqyqrICWt/rHzsrKzoaos3D1OVVkZWdnZgufWllb4/n//g4GuHrJycrD/6BHMWfQFTh86DCVFRRgaGEBbSws79+3D/1avhoy0NI6fOY2s7GxkZn18q832cKwtLSwGw+eDpyB87peRl0VxXqHIbXiK8nCaNgLqBjqoqqxEhE8grmw5jJGrZ9U7TprP+buQVVKArlXzjRVWU1FBAfh8PuSUhLuEyikqoiC3/spZAPhh7moU5heAz6/CoAkj0cO1X71lrx89D0UVZXTsLLrV7YfIy80Dv6oKyqrC3wllFRVk17NfZmdlQVmlu3B5VRVUVVUhLzcXqmpqAIDCwkKMGzoaFeXlYHM4WPHVSnSrUek2efpUFBUWYfqEKWCz2eDz+Zi7cD4GDHJtcl4Kb49RxSKOUTKiu+y+TAyDu0UPPHnzClGZieiopgc3s+5C573aZjsMQ1ZRnmAczeamKC0HCTanTtfG6mOt6Dx8E0IxzLIXvGMDEZFZ3f10iEVPoWNtTRYaBjBW7YBfPY+3SA7yUjxw2Ow6wyvklxVBUfr9FcCK0rKw0TLBPp/LQsufJ7yGPJeHNS7TAVZ1ReODqJe4Efa0WeMnLYzhizsCUgNVnhHSxri4uOCvv4QHK1WpdaPTufO7QUQ1NatbndjY2AgtKy0tRX5+PhQUqi8u9PX1BRVnANCzZ0/w+XyEh4fXW4HE5XIxdepUHDhwABMmTEBAQAACAwMbnFTA2dkZ+/fvB5/Ph5eXFwYMGAB9fX14eXnB3t4eERERgpZnL1++RFRUFOTlhW96SktLhbqdvhUTE4OKigo4OjoKlikqKsLcvO7NTM2/EYvFgpaWFtLT0+uUq8/PP/+M77//XmjZ+vXrYTzUsZ4t6lGrkpH5N57a+Hw+Lu06ir5j3aGqrdHgS3KluZj702qUl5UjLiQC945fgrK6KgysTD8sNhFuenhg066dgufb1m/4N41aeTB1UvsgqRkZ2Pz3Puz8YaNQS5SWVHveCRar+vMQ5ZjfbSjz5LF91EqwUH2hfifiGSbaDgSf4UNGkouvXaZh66NTyC8TPd7Yp1LffBpvP7NzQQ9Q9u+v8LfCqrueXnv9uM6Awn2MOsNG2wQHn1//9IMNs1hg6vk0dBU1MK/7CJwOuA//5Agoy8hjZrchWNhzNHY+OQ+gejy4cV1csNfnMiIz4qGloIa5jsOR07kAZ4LqdjFvPrVjZtX7eRx9eRvKMgrYOWolWKzqfep2xHN8ZjsQfH71xXNoehxCa0ycEJwaiz1jv8Qo637Y9W+uH+Lm3TvYtHmz4Pm2X36tjrLWd5dhmHp/EHmXWu1jmfA2vXu8ay1jCqBzp04YNXkSrt26hakTJ0JCQgK//bARG3/7Ff2HDQWHw4Fj167o1V24EuKjtbFjrUgiPoL6PhdlLTUoa6kJnmuZ6KMwOw8Bdx6LrDzzv/UIUc9fYeSXsyDRQFf65lA35PefMBb99DXKS8vwJiIa14+eh6q2Buz71t03Hly8CX/vZ/jih68gKdV8ebBQ+xzXcMx1z4lvv/jvlvN4PPxz7CBKSkrg5/sCu7bthHYHHdh1rW7J/eDufdy9eQffbVwPI2MjREVEYueW7VBVU4P7sMHNk1itYxQLqPdYe8L/LpR5Ctg2crngvHc38jkmdBmAKhE3+OM694eziR2+ur6rRSdmqU99k0kdfnETKjIK+GvMlwALyCkuwK1wH0y2cwNfRB5DLXohJisJYelvWjpkIdWfxfv1NuyM4opS+CULtyI0V9fHMMteOOp3CzHZydCUU8YkW1fkWRXi6uuGu6wTQkSjyjNC2hhZWVmYmjZ8YS5Z48L37QWcqGVvb8hEeVvmfTdMc+fOha2tLRITE3HgwAEMGDAABg3MstivXz8UFBTAz88Pjx49wsaNG6Gnp4dNmzbB1tYWGhoasLS0FMTXtWtXHD9e99e+t63Danp7oVT/Res7krVuDlgsVoN/j9rWrFmDlStXCi3jcrk4HdS4sXl48rJgsdl1Wj4U5xVAVrFuy5TykjKkxCYg9U0Sbh+u7kbKMAzAMNg0fRUmf70Ahp2qxxRhsdlQ0ar++2gZdEBmUhqeXL3XLDd0/bp3h3WNysjyiupKl8ycHKjVqMTNzsuFitLHD9QcFhWF7NxcTFu+TLCsis+Hf0gwzly7iicXLwkNNt4UeaVFqOJX1fmVWklaHrnFoseTKq+qwGavk9j28DSUefLILs7HEIteKCovRV5pEYxVdaCtoIqNg+YJtnm7X96auwWzTv+ElILmGwOtuLwUVXw+5KSEB3SXlZJBUXmJyG0KyoqRX1okqDgDgIzCXLBZLChIywr9+t7b0AZ9jW1x2PcG0gqzRb1csygoK0YVvwpKMsLfAUVpOeSWiG5hM66zM0LT43AppLq13JucVOz1uYSfhyzEcf87yCkpwGQ7V3hG+wlmQ32TmwZpCUl80WsMzgZ51Huz+LHe7lPKtVpwKMvI1TtGWXlVBf7wOoGtj05BWUYB2cV5GGrZW7BPicKAQXhGPHQV6x4PG6Nf7z6wtnzXOkfwfc7Khprqu4qX7NwcqCjX/31WVVERamUGANk5uQ1uIyMjAxMjYyQkJgqWWZqb48T+AygsLERFZSWUlZQwY8HnsBLxA0hjtdVjbU3Scjyw2Ow6rcxKCoogo9D4romaxnqI8Kk7m13AbW/43XiE4StnQFVX9I9lzUFWvnrMtYIc4c+iMC8f8ooNT1Cgqln9d9Y20EVBbj7unL5cp/LM49It3D9/HQs2rIaOYdNnaAUARSVFsDmcOq3McnNy6vxw+ZaKqmrd8tk54HA4UFR6N8kRm82Grl71j5YdzTriTewbnDh0TFB5tmf7bkyeMQUD3KrH0jQ2NUFqSiqOHz7a5Mqz/LfHqNrnPRn5Bo9RWx+ewvZHZwTnvcEWPVFUXor8WseosTbO+Mx2INbc+Aux2SlNirUheaWFqBRx/lZ+Tx6/eh7DHw9PQEVGAVnFeRhu1QdF5SXIKxHOgyshif6mXVtsYhkAKCgvRhWfX6eVmTxXts7fVZS+Rl3w9E0wqmpdw462dsKTN8GCGSyT8jIgxZHEjG5DcO3142Y+6xHy30CVZ4QQAEB8fDySk5MFXRyfPn0KNpsNM7PqrlJSUlKoqqrb2sTGxgbdunXD33//jRMnTmDHjh0Nvs/bcc927twJFosFKysr6OjowN/fH9euXRO0OgMAe3t7nD59GhoaGoIWcg0xMTGBpKQknj9/Dj296gvn/Px8REZGCr3u+0j929JJVL5vcbncJs1yypGQgLaRLmKDI2Dh8K4VXGxwBMy6Wtd9Pxku5v38ldCyl/ce483rSIxZOhNK6qIv4t+qrGieX31leTyhGfcYhoGqsjKe+fvDwqR6PJ6Kigr4BQdjycxZ9b3Mezl06YJTO3cJLfvhz20w0NXFjLHjmq3iDAAq+VWIyEyAfQdzPI57N7aSva45nsS9anDbKoYvmAHSxcQez+JDwIBBfG4a5p39RajsTIch4ElKY/eTCyJnMmuKKoaPlPxMmKh1EGqZZKLWod5fy+Nz0tBJyxhSNcZvU5NVBJ/hC12w9zbsDCcTOxx5cRPJ+ZnNGndtlfwqRGclwVbHVDB7G4B/n78WuQ2XI4UqRvi7yq9VYc7lSNapRK8uw6puYdjMdxGV/CpEZCSgq67wPtVV1wKP37dP8fnI/Hf/cDGxh8+b4AYr90xUO3z0zanI77OKCp69eAGLf4/9FRUV8AsMxJLPP6/3dTp36oRnL3wxZcK7GQCf+fqic6e6x7K3ysvLERf/BnY1WgG/9XZogvjEBISGh2PhnDkfnNtbbfVYWxNHQgLqBtpIDI2Gsf27ys7E19EwtG38zJ6Z8Sng1aow9L/tDb/rXhi6bDo0DFtuAg0AkJCUgK6JASICQ2DT4904mRGBr9HJ8QPGtWTq/p09Lt3CvXPXMH/tCuiJmODhY0lKSsLcwgwvnvuir8u764gXz1+gdz/Rk390sumEJ95PhJb5PvOFuaUFJCQauPViGJRXvBtTq6y0FOxaY4lxOBwwH/BDX30q+VWIzEyEXQczofOcXQcz+LxpuAttzfOek4kdnv973ntrXGcXTLJzxbc39yIyM6HJsTbk7bG2m66FoJIIALrpWsC7xrFXlCo+X3Au7m/aFU9FHGtdTLpCkiOBuxENT8zRFFV8Pt7kpMBK0wh+Nbq3dtI0gn9yw91dzdX1oSmvgkeP61aKS3Ek6uTDMEx128eWOPGRlkGfU6tClWeEtDFlZWVITRUee0ZCQgJqamr1bNE40tLSmDFjBv744w/k5+dj6dKlmDBhgqDLpqGhIW7fvo3w8HCoqqpCUVFR0Hpr7ty5WLx4MXg8HkaPHv3e93J2dsaff/6J0aNHg8ViQVlZGVZWVjh9+jS2b98uKDdlyhT8/vvvGDlyJH744Qfo6uoiPj4eFy5cwJdffinUzRQA5OXlMWPGDHz55ZdQUVGBhoYG1q9fDzab/f4uRzVoaGhARkYGt27dgq6uLqSlpaGoqPj+DT9Q98HOuPzXcWgb60HX1BD+Hk+Ql5UD+wG9AAAep6+hICcPIxZMAYvNhoae8AxJsgpy4EhKCC1/fOUetI30oKypiqrKKkQHhOKVty/cZ45v9viB6tZUk0aOxMGzZ6CvowM9HR0cPHsG0lwu3GtUWK7bvBkaqqpYPHMmgOob8piE6kGQKyorkZGVhfCYaPCkZaCnowNZHg+mhoZC7yXNlYaSvEKd5c3hfJAnvnaZiojMeISmxWGIZS9oyCnjWmh114bZDsOgJquI3/4d86SDojos1A0Qlv4GclwZjO3sAkMVbcH6iqpKxOUIV2gUlVW3AKu9vLk8iXuFMZ2dBTNmdtOzgKK0HHzjqwdSHmjmAAWuLC688gQAvEqJgrOJHUbZOMEj8iV4UtJwM+8Ov8QIQbfMPkad0b9jN5wLfIDckgLISVWPn1ZeVVFn4OjmcjnEG8v7TkBUZhLCM97Azaw71GSVcDv8GQBgqv0gqPIU8af3GQCAb2Iovug1Bu7m3eGfFAllnjzmOA5DREa8oOWBb2IYRlj1QUx2MiIyEqAtr4rJdq7wTXhdp6KtuZx75YFvXKYhIiMBr9NiMfTfferqa28AwBzH4VCTVcSvHscAALqK6rDQMEBoWvU+Nb6zC4xUtAXrAWBaV3eEpsUhKS8DPClpjLZ2gqmqLrZ7nxUZw4disViYNH48Dh4/Bn1dXejp6uLgsWPV3+eB78ZZWvfTT9BQV8Pi+dUVap+NG4f5S5fi0InjcO7dB56PvfHs5Qvsr1EBvm33LvTt1RtamhrIycnF/iNHUFRUhGHu7oIy9zw8oKSkBC1NTUTFRGPzjh1w6tMHPRw+sDt8Le3hWNvFtRfu778AdYMO0DLRw+uHL1CQnYdOTtVjZPlcuIuinHwMmDMWABB47wkUVJWhrKMBfmUVIp4FIsbvNQYt/Ezwmv63HuH55QcYOHccFNSUUJxX/X2R5EpBUvrjfxxqSL/hbji5/R/omhrC0NwEPnceIiczGz3dqs8X14+dR15WDiYvmwsA8L75AMpqKtDoUP23jw2NhOeV2+gz5N0Mjw8u3sStk5cwdcU8KGuoIT+numKHK80FV0a6yTGPn/wZNq3fCHNLC3SyscbVi1eQlpqGEWNGAQD27dqDzPQM/O/76rFnR4wZhYtnL2DX1h0YNmo4Ql4F48aVa1j74wbBax4/dBTmlhbQ0dVBRUUlnj1+its3bmHF16sFZXr27Y2jh45AQ0sThsZGiAqPwJkTpzFk+JAm5wQAF1554kvnKYjMSEBoehwGW1Qfo66HVlf8zXIYClVZRfzheQJA9XnPXF3/3/MeD2NsnGCorI3N/64HqrtqTu82GL8+OIq0gmwo/9uKuKSirEUG2weAM4H38e2AGQjPiEdIagyGWfWBhrwKroRUH2vndR8BdVklbHpwBEB1V39LDQO8To+DPJeHCZ37w0hFGz//u76moZY94R0b2OLDL9yOeI55jiMQl5OC6MwkOJnYQYWnIJjdc6yNM5Rl5PHP86tC2/U16oLorCSRY14GpkTBzcwR8TlpiMlOgoacMkZZ90NAcmS9XVo/JRlJrlCraR0FNXRU00V+aRHSCnPEGBkh9aPKM0LamFu3bkFbW/jC3tzcXDBT5McyNTXFmDFjMGTIEGRnZ2PIkCHYvXu3YP28efPg6emJbt26obCwEB4eHnB2dgYATJo0CcuXL8fkyZMhLf3+C1UXFxds2bJFsD0AODk5ISAgQKiFGI/Hw8OHD/H1119jzJgxKCgoQIcOHTBgwIB6W6Jt2bIFCxYswLBhw6CgoICvvvoKCQkJjYrrLQkJCWzfvh0//PAD1q1bh759+wpmCG1OVj3sUFxQBO+Lt1GYmw91XW189uV8KKpVt2wozM1HXuaHXUBUlJXj1qFzKMjOg4SUJFR1NDBy4VRY9Wi52SpnjB2HsrJy/PLXbhQUFsLa3Bw7f9go1KIlNSMDbPa7CsyM7GxMWbpU8PzohQs4euEC7K1tsO8X4RZbn4JXjD8UpGUx1X4QVHiKiMtOwbc39yL93ws4VZ4CNOTedUHjsNgY19kFukoaqOJXISA5Essub2vRLo3vE5waAxlJLpxN7SHP5SG9IBvHXt5CXml1Vy95Lg+KMu+6hZRXVeLwixsYatkLn/cajZLyUgSnxuB+5AtBGQd9K0iwOfjMTniAao+ol/CIqjuLbXN4HBcEBS4PE20HQFlGHvE5qdh475CghYAKTwHqckqC8g+iXkJGgoshFr0wy2EoispLEZQSjSMvbwrKnAl8AIZhMMXODSo8ReSXFsE3IRTH/W+3SA4A4BntDwWuLKZ1fbdPrbm5p959is1iY1zn/tBT1EAlvwqByZFYcmmr0D4lJyWDlf0+gzJPAUXlJYjKTMSKq38iPKPhGRc/xIxJk1FWVoZftm6p/j5bWmLnH5uFv8/paULf5y7WNvhp3Xr8tf8f7Nm/H7o6Ovh5wwZYW71rJZWWkYFvf/geuXl5UFZSgrWVFQ7+tQfaNcbUzMzKwtZdO5GVkwM1VVUMHTQIc6fPaHJO7eFYa+pgg9LCEry85omivAKo6Ghg6NKpkFdVAgAU5xagMDtPUJ5fWYUnZ2+jKDcfEpKSUNZRx5ClU2Fg827ijRBPX/Arq3Bnz2mh9+o23BkOI/qjJdj1cURxQSHunrmK/Jw8aOt3wNxvl0FFo/oHwPycXORmvtvnGT6DG8fOIzs9E2wOB6qa6hg6dSx6uL27VnhyywNVlZU4/LvweLBuE0Zg0Gcjmxxzf9cByM/Lw+H9h5CdmQUjEyP8uvV3aGlX77tZmVlIS0sTlNfuoINftv2OXVt34NK5C1BVU8OSVcvh1N9ZUKakpARbf9uMjPR0cLlc6BsY4Nsf1qG/6wBBmWWrV2D/3r+x7bfNyMnJgZqaGoaPHoEZcz++VXdND2MCoMCVxRT7QVDmKeBNdgrW3tonOEap8BSgIVvzGMXCGBtnwXkvMDkKK6/8KVTRMdyqN6Q4EljrKhzjsZe3cMyvZY63HtF+UJSWxfSug6Eqq4DY7BR8fX234NipylOsdf5mYWKXAdBTqp4wxz85AosubkZqgfD5W1dRA521TbHqasM9KpqDb0Io5KRkMMKqDxSl5ZCUl4Ftj04LZs9UlJar0zVVRpKLrroWOBlwV+RrXn3tDYZhMNq6H5Rl5FFQVozAlCicf+XZwtk0joW6AXaOfjf8ydI+1T883Ah9ip8eHBZXWIQ0iMW0hqpnQohYbdiwAZcuXUJAQMBHbZ+QkABDQ0P4+vrC3t7+/Rt8QkVFRejQoQM2b96MOU3o+tNYR3xvtPh7tLTpDkNQENn2pzKX72gK133L3l+wFbs7/0+su/W3uMNosh/c52HUoW/EHUaTXJr5CwbsXfr+gq3c/c+3oyA17f0FWzl5Lc02f7yd7jAE2x6efn/BVm55v4m49m8rn7ZqWKc+SMlr+oy14qatqA73v1eIO4wmuzVvK5z+WiTuMJrEa+EuzD6zSdxhNNmBCf9D710LxB1GkzxetEfcIXy0nOGTxB2CSMpXT4o7BLGglmeEkI9WUVGBlJQUfPPNN+jRo0erqDjz9/dHWFgYHB0dkZeXhx9++AEAMHJk0399JoQQQgghhBDy30OVZ4SQj/b48WO4uLjAzMwM586dE3c4An/88QfCw8MhJSWFrl274tGjR00eE44QQgghhBBCyH8TVZ4RQrBhwwZs2LDhg7dzdnZuFYOO1mRnZ4eXL1+KOwxCCCGEEEII+Xit7D7rv479/iKEEEIIIYQQQgghhPw3UeUZIYQQQgghhBBCCCH1oG6bhBBCCCGEEEIIIa0Jwxd3BKQGanlGCCGEEEIIIYQQQkg9qPKMEEIIIYQQQgghhJB6ULdNQgghhBBCCCGEkNaET7NttibU8owQQgghhBBCCCGEkHpQ5RkhhBBCCCGEEEIIIfWgbpuEEEIIIYQQQgghrQlD3TZbE2p5RgghhBBCCCGEEEJIPajyjBBCCCGEEEIIIYSQelC3TUIIIYQQQgghhJDWhLpttirU8owQQgghhBBCCCGEkHpQ5RkhhBBCCCGEEEIIEauffvoJvXr1Ao/Hg5KSUqO2YRgGGzZsgI6ODmRkZODs7IyQkBChMmVlZViyZAnU1NQgKyuLESNGIDEx8YNio8ozQgghhBBCCCGEkNaEz2+djxZUXl6O8ePHY+HChY3e5rfffsOWLVuwc+dO+Pr6QktLC66urigoKBCUWb58OS5evIhTp07B29sbhYWFGDZsGKqqqhr9PjTmGSGEEEIIIYQQQggRq++//x4AcOjQoUaVZxgG27Ztw7fffosxY8YAAA4fPgxNTU2cOHECn3/+OfLy8rB//34cPXoUAwcOBAAcO3YMenp6uHfvHgYNGtSo96KWZ4QQQgghhBBCCCHkvcrKypCfny/0KCsrE0sssbGxSE1NhZubm2AZl8uFk5MTnjx5AgB4+fIlKioqhMro6OjA2tpaUKZRGEIIIW1CaWkps379eqa0tFTcoTRJe8ijPeTAMJRHa9IecmCY9pFHe8iBYSiP1qQ95MAw7SOP9pADw1AeRLzWr1/PABB6rF+/vlnf4+DBg4yiouJ7yz1+/JgBwCQlJQktnzdvHuPm5sYwDMMcP36ckZKSqrOtq6srM3/+/EbHxGIYmv+UEELagvz8fCgqKiIvLw8KCgriDuejtYc82kMOAOXRmrSHHID2kUd7yAGgPFqT9pAD0D7yaA85AJQHEa+ysrI6Lc24XC64XK7I8hs2bBB0x6yPr68vunXrJnh+6NAhLF++HLm5uQ1u9+TJE/Tu3RvJycnQ1tYWLJ83bx4SEhJw69YtnDhxArNmzaoTs6urK0xMTLBnz54G3+MtGvOMEEIIIYQQQgghhLxXQxVloixevBifffZZg2UMDQ0/KhYtLS0AQGpqqlDlWXp6OjQ1NQVlysvLkZOTA2VlZaEyvXr1avR7UeUZIYQQQgghhBBCCGl2ampqUFNTa5HXNjIygpaWFu7evQs7OzsA1TN2enl54ddffwUAdO3aFZKSkrh79y4mTJgAAEhJSUFwcDB+++23Rr8XVZ4RQgghhBBCCCGEELGKj49HdnY24uPjUVVVhYCAAACAqakp5OTkAAAWFhb4+eefMXr0aLBYLCxfvhybNm1Cx44d0bFjR2zatAk8Hg+TJ08GACgqKmLOnDlYtWoVVFVVoaKigtWrV8PGxkYw+2ZjUOUZIYS0EVwuF+vXr/+gZtKtUXvIoz3kAFAerUl7yAFoH3m0hxwAyqM1aQ85AO0jj/aQA0B5kPZr3bp1OHz4sOD529ZkHh4ecHZ2BgCEh4cjLy9PUOarr75CSUkJvvjiC+Tk5KB79+64c+cO5OXlBWW2bt0KCQkJTJgwASUlJRgwYAAOHToEDofT6NhowgBCCCGEEEIIIYQQQurBFncAhBBCCCGEEEIIIYS0VlR5RgghhBBCCCGEEEJIPajyjBBCCCGEEEIIIYSQelDlGSGEEEIIIYQQQggh9aDKM0IIIZ8MwzCgeWpIc4mKisLt27dRUlICALRviVlpaam4Q2iy9pADIYS0Vv3790dubm6d5fn5+ejfv/+nD4iQD0CzbRJCSCtVVlaG58+fIy4uDsXFxVBXV4ednR2MjIzEHdoHO3LkCH7//XdERkYCAMzMzPDll19i2rRpYo6scaqqqrB161acOXMG8fHxKC8vF1qfnZ0tpsg+XGJiIq5cuSIyjy1btogpqg+TlZWFiRMn4sGDB2CxWIiMjISxsTHmzJkDJSUlbN68WdwhNkpCQoLQ97tTp07gcrniDuuD8Pl8/PTTT9izZw/S0tIQEREBY2NjrF27FoaGhpgzZ464Q3yv9pAD0D72p7y8PFy8eBGPHj2qc+4bNGgQevXqJe4Q36s95EBIS2Gz2UhNTYWGhobQ8vT0dHTo0AEVFRViioyQ95MQdwCEEEKEPXnyBDt27MClS5dQXl4OJSUlyMjIIDs7G2VlZTA2Nsb8+fOxYMECyMvLizvc99qyZQvWrl2LxYsXo3fv3mAYBo8fP8aCBQuQmZmJFStWiDvE9/r+++/xzz//YOXKlVi7di2+/fZbxMXF4dKlS1i3bp24w2u0+/fvY8SIETAyMkJ4eDisra0RFxcHhmFgb28v7vAabcWKFZCQkEB8fDwsLS0FyydOnIgVK1a06sqzN2/eYM+ePTh58iQSEhKEWstJSUmhb9++mD9/PsaOHQs2u/V3EPjxxx9x+PBh/Pbbb5g3b55guY2NDbZu3domKp7acg7tZX9KSUnBunXrcPz4cWhpacHR0RG2traCc5+Hhwf++OMPGBgYYP369Zg4caK4Q66jPeQgiq+vL86ePSvyB5cLFy6IKaoP117yaKuCgoIE/3/9+jVSU1MFz6uqqnDr1i106NBBHKER0ngMIYSQVmPEiBGMtrY2s2rVKsbLy4spKioSWh8dHc0cOnSIGTRoEKOlpcXcuXNHTJE2nqGhIXP48OE6yw8dOsQYGhqKIaIPZ2xszFy7do1hGIaRk5NjoqKiGIZhmD///JOZNGmSOEP7IA4ODszatWsZhqnOIzo6mikoKGBGjBjB7N69W8zRNZ6mpiYTEBDAMMy7PBiGYWJiYhhZWVlxhtagpUuXMvLy8szYsWOZw4cPM6GhoUx+fj5TUVHBpKWlMffv32c2bNjAmJubM506dWKeP38u7pDfy8TEhLl37x7DMMKfRWhoKKOkpCTO0BqtrebQnvYndXV1ZtWqVcyrV6/qLVNcXMycOHGCcXR0ZH7//fdPGF3jtIccajt58iQjKSnJDB06lJGSkmKGDRvGmJubM4qKiszMmTPFHV6jteU8Ll++3OhHa8ZisRg2m82w2WyGxWLVefB4PGb//v3iDpOQBlHlGSGEtCI7d+5kysrKGlU2ODi4TVSecblcJjIyss7yiIgIhsvliiGiD8fj8Zg3b94wDMMwWlpazMuXLxmGqa7MVFBQEGdoH6RmxZ+SkhITHBzMMAzDBAQEMAYGBmKM7MPIyckxERERgv+/rex4/vw5o6KiIs7QGrR69WomPT29UWWvX7/OnD17toUjajppaWkmLi6OYRjhzyIkJKRVV2TW1FZzaE/7U2Pz+Njyn0J7yKE2GxsbZufOnQzDvPtu8Pl8Zt68ecy6devEHF3jteU8alcy1a58elshxWazxR1qg+Li4pjY2FiGxWIxvr6+TFxcnOCRnJzMVFZWijtEQt6r9bbfJoSQ/6BFixZBSkqqUWU7deoEV1fXFo6o6UxNTXHmzJk6y0+fPo2OHTuKIaIPp6uri5SUFADV+dy5cwdAdTeQtjSmkKysLMrKygAAOjo6iI6OFqzLzMwUV1gfrF+/fjhy5IjgOYvFAp/Px++//w4XFxcxRtaw33//Herq6o0qO2TIEIwbN66FI2q6Tp064dGjR3WWnz17FnZ2dmKI6MO11Rza0/7U2Dw+tvyn0B5yqC06OhpDhw4FAHC5XBQVFYHFYmHFihXYt2+fmKNrvLacB5/PFzzu3LkDW1tb3Lx5E7m5ucjLy8ONGzdgb2+PW7duiTvUBhkYGMDQ0BB8Ph/dunWDgYGB4KGtrQ0OhyPuEAl5LxrzjBBC2oDS0lKcPn0aRUVFcHV1bTOVTkD1eGETJ07Ew4cP0bt3b7BYLHh7e+P+/fsiK9Vao9GjR+P+/fvo3r07li1bhkmTJmH//v2Ij49vE2O2vdWjRw88fvwYVlZWGDp0KFatWoVXr17hwoUL6NGjh7jDa7Tff/8dzs7OePHiBcrLy/HVV18hJCQE2dnZePz4sbjDa9B3332H/v37o1evXpCWlhZ3OE22fv16TJs2DUlJSeDz+bhw4QLCw8Nx5MgRXLt2TdzhNUp7yKE2Ly8vFBUVoWfPnlBWVhZ3OI0SFRWFvLw8dO3aVbDs/v37+PHHH1FUVIRRo0bhf//7nxgjfL/2kENNKioqKCgoAAB06NABwcHBsLGxQW5uLoqLi8UcXeO1lzyWL1+OPXv2oE+fPoJlgwYNAo/Hw/z58xEaGirG6BovIiICnp6eSE9PB5/PF1rXlsaRJf9B4m76RgghRNjq1auZpUuXCp6XlZUxtra2jKSkJKOoqMjIysoyT548EWOEH+7FixfMlClTGHt7e8bOzo6ZMmUK4+fnJ+6wPtrTp0+ZzZs3t/oxRmqLjo5mAgMDGYZhmKKiImbhwoWMjY0NM3r0aEG3tbYiJSWFWbduHTN06FBm8ODBzLfffsskJyeLO6z3MjY2ZlgsFsPlcpl+/fox69evZ7y8vBrdXbs1unXrFtOvXz9GVlaWkZGRYXr37s3cvn1b3GF9kLaaw2+//SbU7YzP5zODBg0SdOnS1NQUdM9u7UaNGsV89913gucxMTGMjIwM4+bmxixdupSRk5Njtm7dKr4AG6E95FDTpEmTmM2bNzMMwzA//vgjo66uzsydO5cxMDBgRo8eLeboGq+95CEtLc0EBQXVWR4YGMhIS0uLIaIPt2/fPobD4TCamppMly5dGFtbW8HDzs5O3OER0iAWw9SYlocQQojYWVtbY9OmTRgxYgQA4ODBg1i1ahX8/f2hr6+P2bNnIz09HdevXxdzpISQj5GUlIQHDx7A09MTnp6eiI2NhYyMDHr27AkXFxe4uLigV69e4g6TtAH29vb4+uuvBTM3nj17FjNmzMDdu3dhaWmJ6dOng8fjtYlWvnp6ejhz5gx69uwJoHoW1HPnziEgIAAAsH//fuzYsUPwvDVqDznUlJ2djdLSUujo6IDP5+OPP/6At7c3TE1NsXbt2jbTqrHwzt2fAACyX0lEQVS95NGvXz9ISkri2LFj0NbWBgCkpqZi2rRpKC8vh5eXl5gjfD8DAwN88cUX+Prrr8UdCiEfjCrPCCGklVFQUICfnx9MTU0BAJMmTYK8vLxgXI6AgAAMGTIEycnJ4gzzg6Wnp4tsot+5c2cxRdSwK1euNLrs24pO0nKCgoJgbW0NNpstNOW9KHJyctDT04OkpOQniq5pEhIS4OHhAU9PT5w/fx5FRUWorKwUd1iNMmvWLEydOhX9+/cHi8USdzgfpS3noKysjCdPnsDS0hJAdS6VlZU4evQoAMDHxwfjx49HQkKCOMNsFBkZGUREREBPTw8AMGDAAPTq1QsbN24EUD1uVdeuXZGbmyvGKBvWHnJ4q7KyEsePH8egQYOgpaUl7nAIqrsFjx49GuHh4dDX1wcAxMfHw8zMDJcuXRJcN7ZmCgoKCAgIgLGxsbhDIeSD0ZhnhBDSyrDZbNT8XcPHxwdr164VPFdSUkJOTo44QvsoL1++xIwZMxAaGorav9ewWCxUVVWJKbKGjRo1qlHlWnMOQPXNdWMrBLKzs1s4mo9na2uL1NRUaGhowNbWFiwWq87+VJOioiL27NkjaJHTWkVHR8PT01PQEq2qqqpVT3pQW1ZWFoYOHQpVVVV89tlnmDp1aqseZF+UtpxDRUWF0KQlT58+xbJlywTPdXR02sxkICoqKkhJSYGenh74fD5evHghNKZkeXl5g9/51qA95PCWhIQEFi5c2GbG0aotPz+/0WUVFBRaMJLmY2pqiqCgINy9exdhYWFgGAZWVlYYOHBgm6n4Hz9+PO7cuYMFCxaIOxRCPhhVnhFCSCtjYWGBq1evYuXKlQgJCUF8fLzQzfSbN2+gqakpxgg/zKxZs2BmZob9+/dDU1OzzVzg1W4h11Zt27ZN3CE0i9jYWMHsdLGxsQ2WLSsrw9mzZ4W6s7UWsbGx8PDwELQ0y8vLQ+/eveHk5ITFixfDwcEBEhJt5/LsypUryM3NxZkzZ3DixAls27YN5ubmmDp1KiZPngxDQ0Nxh/hebTkHU1NTPHz4EMbGxoiPj0dERAScnJwE6xMTE6GqqirGCBvPyckJGzduxO7du3H27Fnw+Xyhc9/r169b9WcBtI8caurevTv8/f1hYGAg7lA+mJKSUqOvN1rzD2C1sVgsuLm5wc3NTdyhNNr27dsF/3/bVdbHxwc2NjZ1WogvXbr0U4dHSKNRt01CCGllzp8/j0mTJqFv374ICQmBg4MDrl69Klj/9ddfIzY2tk2MYQMA8vLy8Pf3bxPdCUj7kZOTgzlz5uDChQviDkUIm82Gvr4+vvjiC7i4uMDe3h4cDkfcYTWbxMREnDx5EgcOHEBkZGSb6X5aU1vKYe/evVi1ahUmTpwIHx8fKCkpCc04++OPP+LZs2dC55DWKjY2Fq6uroiNjQWbzcb27duxcOFCwfpRo0bByMgIW7duFWOUDWsPOdR09uxZfPPNN1ixYgW6du0KWVlZofWtddgFAELjf8XFxeGbb77BzJkzBePRPX36FIcPH8bPP/+MGTNmiCvMD1ZUVAQvLy/Ex8ejvLxcaF1rrXgyMjJqVDkWi4WYmJgWjoaQj0eVZ4QQ0grdu3cP169fh5aWFpYsWQIejydY9/3338PZ2VmodUFrNmrUKEybNg1jx44VdyhN0hYvWBtSUlKCiooKoWVtpevKW8XFxSI/j9Z8Qzdx4kQ8fPgQpaWl6Nu3L5ycnODi4gI7O7s20yqzPhUVFbh+/TqOHTuG69evQ0VFBUlJSeIO64O0xRz279+Pa9euQUtLC+vXrxcan+qLL77AwIEDMWbMGDFG2HgVFRV4/fo11NXVoaOjI7QuMDAQenp6UFFREVN0jdMecniLzWbXWfa2y3xrH7KgpgEDBmDu3LmYNGmS0PITJ05g37598PT0FE9gH8jf3x9DhgxBcXExioqKoKKigszMTPB4PGhoaFDFEyEtjCrPCCGkDQoICICtra24w2iUzMxMzJgxA46OjrC2tq7TRL8tDLbfXi5Yi4qK8PXXX+PMmTPIysqqs76t3AhlZGRg1qxZuHnzpsj1bSGPsLAwQddNLy8vlJaWok+fPnBycoKzszMcHBzEHWKjeXh44MSJEzh//jyqqqowZswYTJkyBf379xd5890atYcc6pORkSHo8tyWvXr1Cvv372/TXdHbWg5v3rxpcH1b6c7J4/EQGBiIjh07Ci2PiIiAra0tiouLxRTZh3F2doaZmRn++usvKCkpITAwEJKSkpg6dSqWLVvWZirJCWmrqPKMEELaiLy8PBw/fhz79+9HQEBAm6ggAKrHE5o2bRoKCgrqrGsrv1y3lwvWRYsWwcPDAz/88AOmT5+OXbt2ISkpCXv37sUvv/yCKVOmiDvERpkyZQri4uKwbds2uLi44OLFi0hLS8OPP/6IzZs3Y+jQoeIO8YO9fv0aJ06cwI4dO9rUbJu6urrIysrCoEGDMGXKFAwfPhzS0tLiDuuDtIccamMYBjdv3hS0SisrKxN3SB8lPz8fJ0+exP79+/HixQt07twZAQEB4g7rg7SHHNo6c3NzDBs2DJs3bxZavmrVKly7dg3h4eFiiuzDKCkp4dmzZzA3N4eSkhKePn0KS0tLPHv2DDNmzEBYWJi4Q3yvlStXilzOYrEgLS0NU1NTjBw5ss20ziT/LW1nRFpCCPmPevDgAQ4cOIALFy7AwMAAY8eOxT///CPusBpt6dKlmDZtGtauXdumJjqoKSAgAHv37gWHwwGHw0FZWRmMjY3x22+/YcaMGW2m8uzq1as4cuQInJ2dMXv2bPTt2xempqYwMDDA8ePH20zl2YMHD3D58mU4ODiAzWbDwMAArq6uUFBQwM8//9xmKs/S0tLg6ekJT09PeHh4ICIiAlwuF3379hV3aI22bt06jB8/HsrKyuIO5aO1hxzeiomJwYEDB3D48GEUFhZi6NChOHXqlLjD+mBeXl7Yv38/zp8/j9LSUnz55Zc4ceJEmxo7sz3kcOTIkQbXT58+/RNF0jRbt27F2LFjcfv2bfTo0QNA9Uzm0dHROH/+vJijazxJSUlB935NTU3Ex8fD0tISioqKiI+PF3N0jePv7w8/Pz9UVVXB3NwcDMMgMjISHA4HFhYW2L17N1atWgVvb29YWVmJO1xChFDlGSGEtEKJiYk4dOgQDhw4gKKiIkyYMAEVFRU4f/58m7uYyMrKwooVK9psxRnQPi5YASA7O1swcK+CggKys7MBAH369BEa1Lq1KyoqgoaGBgBARUUFGRkZMDMzg42NDfz8/MQcXcPOnj0r6K4ZHh4OCQkJODo6YsKECXBxcUGvXr3A5XLFHWajzZ8/X9whNFlbz6G0tBTnzp3DP//8Ax8fH7i6uiIlJQUBAQGwtrYWd3iNlpKSgoMHDwrOe5MmTYKXlxd69uyJ6dOnt4lKp/aQQ03Lli0Tel5RUYHi4mJISUmBx+O1mcqzIUOGIDIyEn/99RdCQ0PBMAxGjhyJBQsWQE9PT9zhNZqdnR1evHgBMzMzuLi4YN26dcjMzMTRo0dhY2Mj7vAa5W2rsoMHDwrGWc3Pz8ecOXPQp08fzJs3D5MnT8aKFStw+/ZtMUdLiDCqPCOEkFZmyJAh8Pb2xrBhw7Bjxw64u7uDw+Fgz5494g7to4wZMwYeHh4wMTERdygfrT1csAKAsbEx4uLiYGBgACsrK5w5cwaOjo64evUqlJSUxB1eo5mbmyM8PByGhoawtbXF3r17YWhoiD179kBbW1vc4TVoypQp6NatG0aPHg0XFxf07t0bMjIy4g6rSXx9fXH27FmRkze0ttlO69NWc/jiiy9w6tQpmJubY+rUqTh//jxUVVUhKSnZ5sZqMzIywvjx47Fr1y64urq2ufiB9pFDTTk5OXWWRUZGYuHChfjyyy/FENGHq6iogJubG/bu3YuffvpJ3OE0yaZNmwRDYGzcuBEzZszAwoULYWpqioMHD4o5usb5/fffcffuXaEJihQUFLBhwwa4ublh2bJlWLduHdzc3MQYJSGiUeUZIYS0Mnfu3MHSpUuxcOHCOoPbtkVmZmZYs2YNvL29YWNjU2fCgLYwU2V7uGAFgFmzZiEwMBBOTk5Ys2YNhg4dih07dqCyshJbtmwRd3iNtnz5cqSkpAAA1q9fj0GDBuH48eOQkpLCoUOHxBvce+Tk5EBWVlbcYTSbU6dOYfr06XBzc8Pdu3fh5uaGyMhIpKamYvTo0eIOr1Hacg779u3D119/jW+++Qby8vLiDqdJDAwM4O3tDX19fRgYGMDCwkLcIX2w9pDD+3Ts2BG//PILpk6d2ibG2JKUlERwcHCbn80YALp16yb4v7q6Om7cuCHGaD5OXl4e0tPT6/SiyMjIQH5+PoDqsd1q/4hBSGtAlWeEENLKPHr0CAcOHEC3bt1gYWGBadOmYeLEieIO66P9888/kJOTg5eXF7y8vITWsVisNlF51h4uWAFgxYoVgv+7uLggLCwML168gImJCbp06SLGyD5MzbHZ7OzsEBcXh7CwMOjr60NNTU2Mkb3f24qzpKQknD9/HhEREWCxWOjYsSPGjh2LDh06iDnCD7Np0yZs3boVixYtgry8PP78808YGRnh888/b/WtAN9qyzkcOXIEBw8ehLa2NoYOHYpp06bB3d1d3GF9lPDwcDx+/Bj79++Hg4MDzMzMMHXqVABoMxUf7SGHxuBwOEhOThZ3GI02ffp07N+/H7/88ou4Q2kWGRkZCA8PB4vFgrm5eas/79U0cuRIzJ49G5s3b4aDgwNYLBaeP3+O1atXY9SoUQCA58+fw8zMTLyBEiICzbZJCCGtVHFxMU6dOoUDBw7g+fPnqKqqwpYtWzB79uw238KAkP+y3bt3Y+XKlSgvL4eioiIYhkF+fj6kpKSwZcsWfPHFF+IOsdFkZWUREhICQ0NDqKmpwcPDAzY2NggNDUX//v0FLQRbs/aQQ1xcHA4ePIhDhw6huLgY2dnZOH36NMaNGyfu0D5KYWEhTp48iQMHDuDZs2dwcnLC5MmTMWrUKKirq4s7vEZpDzlcuXJF6DnDMEhJScHOnTuhp6eHmzdviimyD7NkyRIcOXIEpqam6NatW53Wv22l5XVRURGWLFmCo0ePCmYq53A4mD59Onbs2AEejyfmCN+vsLAQK1aswJEjRwSzSktISGDGjBnYunUrZGVlBbPR2traii9QQkSgyjNCCGll4uPjoaenJ/QrdXh4OPbv34+jR48iNzcXrq6udS5qCWnP6pveXpTWfCN0/fp1jBw5EsuXL8eqVasELZtSUlLw+++/Y8eOHbh8+TKGDBki5kgbR09PDzdu3ICNjQ26dOmCb775BpMmTcLTp0/h7u6OvLw8cYf4Xu0hh7cYhsHt27dx4MABXLlyBWpqahgzZgy2b98u7tA+WmhoqOD8l52djYqKCnGH9MHaag61x2xjsVhQV1dH//79sXnz5lbfMvMtFxeXetexWCw8ePDgE0bz8T7//HPcu3cPO3fuRO/evQEA3t7eWLp0KVxdXfHXX3+JOcLGKywsRExMDBiGgYmJCeTk5MQdEiHvRZVnhBDSynA4HKSkpAhmE6ypqqoKV69eFdwYtVYrV67Exo0bISsr+95Kj9Zc0UFaj4Zufmpq7TdCTk5O6Nu3L3788UeR67/77js8evSoThfn1mry5Mno1q0bVq5ciZ9++gl//vknRo4cibt378Le3r5VD7b/VnvIQZTs7GxBt87AwEBxh9NklZWVuHLlCsaMGSPuUD5ae8iBiI+amhrOnTsHZ2dnoeUeHh6YMGECMjIyxBMYIf8RVHlGCCGtDJvNRmpqqsjKs7bCxcUFFy9ehJKSUrv5xZeQ5qCgoABfX1+Ym5uLXB8eHo5u3boJJqho7bKzs1FaWgodHR3w+Xz88ccf8Pb2hqmpKdauXQtlZWVxh/he7SGH9iA5ORlbtmzBunXrhGbiA6oHGf/xxx+xevVqaGpqiinC92sPObRnUVFRiI6ORr9+/SAjIwOGYdrUWHQ8Hg8vX76EpaWl0PKQkBA4OjqiqKhITJE1bMyYMTh06BAUFBTeW3HcVn+sIP8NVHlGCCGtTHuoPCPkU2iLN0JycnIICgqCsbGxyPUxMTHo3LkzCgsLP3FkpC1qTHdmFouFzZs3f4Jommb16tXIz8/Hvn37RK5fsGABFBUV8euvv37iyBqvPeTQXrrI15SVlYUJEybAw8MDLBYLkZGRMDY2xpw5c6CkpNQmvh8AMGDAAKiqquLIkSOQlpYGAJSUlGDGjBnIzs7GvXv3xByhaLNmzcL27dshLy+PWbNmNVi2Lc1gTv57aLZNQghphd7OUNmQtjBLJQCkpaXV+yt7UFAQOnfu/IkjapwPGSOoNX8Wb6d+b4zaLSVaq/puhObOndvqb4Q6deqEy5cvC818WtOlS5fQqVOnTxxV0/D5fERFRSE9PR18Pl9oXb9+/cQU1Ydpqzn4+/uLO4Rmc+vWLezZs6fe9dOnT8e8efNadcVTe8ih9j718uVLVFVVCVrLRkREgMPhoGvXruII76OsWLECkpKSiI+PF2q1NXHiRKxYsaJVnzNq+vPPP+Hu7g5dXV106dIFLBYLAQEBkJaWxu3bt8UdXr1qVohR5Rhpy6jlGSGEtDJsNhu6urrgcDj1lmGxWIiJifmEUX08DQ0N/PPPPxgxYoTQ8j/++ANr165FSUmJmCJrmJGRUaPKtfbPgs1mv7c11tsWW29n72rtpk+fjvT0dPzzzz+wtLREYGAgjI2NcefOHaxYsQIhISHiDrFehw8fxsKFC/HHH39g/vz5kJCo/h2zsrISe/fuxZdffondu3dj5syZ4g20kXx8fDB58mS8efMGtS8p28o+1R5yaA9kZWURGhoKfX19kevfVny01q5pQPvIoaYtW7bA09MThw8fFnRfzsnJwaxZs9C3b1+sWrVKzBE2jpaWFm7fvo0uXbpAXl5ecM6IjY2FjY1Nm2rpW1JSgmPHjiEsLAwMw8DKygpTpkyBjIyMuENrtMrKSnh6eiI6OhqTJ0+GvLw8kpOToaCgQBMHkFaNWp4RQkgr9OLFi3bTbfPrr7/GxIkTBdOQZ2dnY9q0aQgJCcHp06fFHV69YmNjxR1Cs/Dw8BB3CM3uzp07uH37NnR1dYWWd+zYEW/evBFTVI0zY8YMvHr1CosXL8aaNWtgYmICAIiOjkZhYSGWLl3aZirOgOpuaN26dcP169ehra3d6rvNitKWc/D09KwzeHhtX3zxBXbv3v1pAmoCGRkZxMXF1VvxFBcX1+orCNpDDjVt3rwZd+7cERr3T1lZGT/++CPc3NzaTOVZUVEReDxeneWZmZngcrliiOjjycjIYN68eeIO46O9efMG7u7uiI+PR1lZGVxdXSEvL4/ffvsNpaWlDbbcJETcqPKMEEJIi1q1ahUGDhyIqVOnonPnzsjOzkaPHj0QFBTU5gZNLi8vR2xsLExMTAQthlo7JycncYfQ7Nr6jdAff/yBcePG4eTJk4iMjARQ3TXws88+Q48ePcQc3YeJjIzEuXPnYGpqKu5QPlpbzmHkyJHw8PCAvb29yPWLFi3C8ePH20TlWffu3XH06NF6u8keOXIEjo6OnziqD9MecqgpPz8faWlpdbqSp6ent5lJTYDq4+uRI0ewceNGANUtSvl8Pn7//fdGz+QsLh8ys3rtFv6t0bJly9CtWzcEBgZCVVVVsHz06NGYO3euGCMjpBEYQgghrQqLxWLS0tIaLHPs2LFPFE3zyM/PZyZOnMhISEgwEhISzKFDh8Qd0gcpKipiZs+ezXA4HIbD4TDR0dEMwzDMkiVLmJ9//lnM0X2Yhw8fMlOmTGF69uzJJCYmMgzDMEeOHGEePXok5sgab8iQIcx3333HMAzDyMnJMTExMUxVVRUzfvx4ZuzYsWKOrmHff/89U1RUJO4wmo2Liwtz8+ZNcYfRJG05h5UrVzIaGhpMeHh4nXWLFi1i5OTkmIcPH4ohsg/34MEDhsPhMKtWrWJSU1MFy1NTU5mVK1cyHA6HuX//vhgjfL/2kENN06ZNY/T19ZmzZ88yCQkJTEJCAnP27FnG0NCQmT59urjDa7SQkBBGXV2dcXd3Z6SkpJhx48YxlpaWjKamJhMVFSXu8BrEYrEa9WCz2eIOtVFUVVWZsLAwhmGqz99vr6diY2MZGRkZcYZGyHtR5RkhhLQyFhYWTHJycr3rjx8/zkhKSn7CiJrG29ubMTQ0ZLp27cq8fv2a+fvvvxl5eXlm/PjxTHZ2trjDa5SlS5cyXbt2ZR49esTIysoKLvYuX77M2Nraijm6xjt37hwjIyPDzJ07l+FyuYI8du3axQwePFjM0TVeW74RYrPZ760cb0suXLjAWFlZMQcPHmRevHjBBAYGCj3agraew6xZsxh9fX1BZTjDVFfsy8rKMp6enmKM7MPt2bOH4XK5DJvNZpSUlBhlZWWGzWYzXC6X2b17t7jDa5T2kMNbRUVFzMKFCwX5sNlsRkpKilm4cCFTWFgo7vA+SEpKCrNu3Tpm6NChzODBg5lvv/22wWst0jKUlZWZkJAQhmGEK88ePXrEaGhoiDM0Qt6LJgwghJBWxtnZGSUlJXjw4AFkZWWF1p06dQrTp0/Hr7/+Wu9sfa0Nl8vFihUrsHHjRkhKSgKoHt9p2rRpiI+PR2JiopgjfD8DAwOcPn0aPXr0EBpsOCoqCvb29h80o6U42dnZYcWKFZg+fbpQHgEBAXB3d0dqaqq4Q2y01NRU/PXXX3j58iX4fD7s7e2xaNEiaGtrizu0BrHZbKSmprabMQ3ZbHadZSwWq01NQtHWc+Dz+Rg3bhxCQ0Px6NEj/PTTT9i3bx+uXbvW6ruk1VRRUQFJSUkkJSXhzJkziIqKAsMwMDMzw7hx46Crq4vg4GBYW1uLO9R6tYccRCkqKkJ0dDQYhoGpqWmdaxPyacTGxjZ6MqPWauLEiVBUVMS+ffsgLy+PoKAgqKurY+TIkdDX16fZOEmrRpVnhBDSyhQWFsLZ2RlKSkq4efOmoMLpzJkzmDp1KjZt2oTVq1eLOcrG8/LyEjnuFp/Px08//YS1a9eKIaoPw+PxEBwcDGNjY6FKp8DAQPTr1w95eXniDrFReDweXr9+DUNDQ6E8YmJiYGVlhdLSUnGH2O6x2WykpaVBXV1d3KE0i/dN0GBgYPCJIvl47SGH8vJyDB06FIGBgSgqKsKVK1cwYMAAcYf1QcaNG4ezZ8/WO2FDcHAwBgwYgLS0tE8cWeO1hxzao4cPHza4vr4x6lobDoeDfv36Yc6cORg3bhykpaXFHdIHS05OhouLCzgcDiIjI9GtWzdERkZCTU0NDx8+bDc/LJH2iSrPCCGkFcrIyEC/fv1gZWWFc+fO4dy5c5gyZQo2btyIr7/+Wtzh/ec4OTlh3LhxWLJkieCXUiMjIyxevBhRUVG4deuWuENsFBMTE+zduxcDBw4Uqjw7cuQIfvnlF7x+/VrcITbKrVu3ICcnhz59+gAAdu3ahb///htWVlbYtWuX0MxwrQ2bzYa1tfV7J5zw8/P7RBGRtmz79u2C/xcUFGDjxo0YNGhQnYqzpUuXfurQPpienh4GDx6Mffv21VkXEhKC/v37o1+/fjh79qwYomuc9pBDbb6+vjh79izi4+NRXl4utO7ChQtiiurD1Ne69K3W3rr0reDgYBw4cADHjx9HWVkZJk6ciDlz5rSpSSgAoKSkBCdPnoSfn5+g5fiUKVPa1Ey05L+JKs8IIaSVSkhIQJ8+fWBqagpvb2+sW7cO3377rbjD+ihFRUXw8vISefHdFm7qnjx5And3d0yZMgWHDh3C559/jpCQEDx9+hReXl7o2rWruENslN9++w2HDx/GgQMH4Orqihs3buDNmzdYsWIF1q1bh8WLF4s7xEaxsbHBr7/+iiFDhuDVq1fo1q0bVq1ahQcPHsDS0rJVd/tgs9lYtWoV5OTkGiy3fv36TxRR00VHR2Pbtm0IDQ0Fi8WCpaUlli1bBhMTE3GH1mhtNYfGdOFisViIiYn5BNE0TWhoqKBVzS+//CK03MXFBb169cLZs2fB4XDEGGXD2kMONb0dKsLNzQ13796Fm5sbIiMjkZqaitGjR7fqY21NtVuHV1RUwN/fH2vXrsVPP/3U5lppVlZW4urVqzh06BBu3ryJjh07Ys6cOZg2bVq7adVMSKsklpHWCCGE1KvmQNWnT59muFwuM3HixDYziHV8fLzQcz8/P0ZLS4uRl5dnJCQkGHV1dYbFYjGysrKMkZGRmKL8cEFBQcz06dOZTp06MZaWlsyUKVOYoKAgcYf1wf73v/8xMjIyghm6pKWlBTNXthWysrJMbGwswzAMs379esEMmy9fvmQ0NTXFGNn7NWY23bbk1q1bjJSUFOPo6MisWLGCWb58OePo6MhwuVzmzp074g6vUdpDDu3F8+fPGXl5eea3335jGIZhQkNDGS0tLWbEiBFMZWWlmKNrnPaQw1s2NjbMzp07GYZ5N7g7n89n5s2bx6xbt07M0TWdl5cXY29vL+4wPlppaSmzZcsWhsvlMiwWi5GSkmKmTZvWqidC0NbWZiZNmsTs3btX5CzBhLRm1PKMEEJaGTabLTRY9dvDdO3/t9ZuBj/++CNSUlKwc+dOsFgsODs7w8TEBPv27YOuri4CAwNRUlKCqVOnYsWKFRgzZoy4Q/7PKS4uxuvXr8Hn82FlZfXeVlCtjYqKCry9vWFlZYU+ffpg+vTpmD9/PuLi4mBlZYXi4mJxh1gvDoeDlJSUdjOui52dHQYNGiTUygYAvvnmG9y5c6dNdD9tDzm0Jw8ePMCwYcPw1Vdf4e+//4a9vT0uXLggGP+zLWgPOQCArKwsQkJCYGhoCDU1NXh4eMDGxgahoaHo378/UlJSxB1ik4SGhsLBwQGFhYXiDuWDvHjxAgcOHMCpU6cgKyuLGTNmYM6cOUhOTsa6detQUFCA58+fiztMkU6ePAkvLy94enoiIiICmpqacHJygrOzM5ycnGBpaSnuEAmpF1WeEUJIK/O+wavfaq2DWJeUlGDx4sXIyMjAlStXoKSkBB8fH1hYWEBXVxdPnz7F/9m787ia0/d/4K9TokUrRdKeEKGUfQsRxm6aIUoJg5TsM0Mxtj5jS4yypWyRLJOxLxVRg1YplVNkKcIUWqjO+f3h53wdhVPoPu+6no9Hj0/nPu8/Xu/P1NG5zn1fl66uLmJjYzF58mTcuXOHdeQqVWeCpoqKyndMQj42YsQIvH37Fj179sSKFSuQnZ0NHR0dnDt3Dm5ubsjIyGAd8ZPq2rRNeXl53Lp1C61atRJbz8jIQIcOHTgxhIKr93Dw4EH8/PPPEl374MED5OTkoGfPnt851bdx/Phx/Pjjjxg0aBCOHz/OuaITUDfuQVdXF6dOnYK5uTk6duyIxYsXY/z48YiJiYGdnR1nhuUkJyeLPRYKhcjNzYWPjw/Kyspw9epVRsmqZ8OGDdi9ezfS09MxdOhQuLq6YujQoWI93e7evYs2bdqgvLycYVLJPHnyBBEREfjnn39w6NAhCAQCqf1gmBAA+Hy3WkIIIbVOWotiklJQUMCuXbtw8OBBAICcnJzoDzstLS3cv38furq6UFNTQ05ODsuon6WmpvbJiWkfk+Y/9qqzs48rzZ+3bNmCmTNnIiwsDP7+/tDR0QEAnD59GnZ2dozTfV52dnad6kmjqamJxMTESoWnxMREzhQIuXoP/v7+WLZsGZydnTFixIhKOzYKCwtx9epV7Nu3DxcuXMCuXbsYJZWMurp6pdfcK1euoFmzZmJrL168qM1Y1VIX7uFDvXv3xvnz52Fubg57e3t4eHjg0qVLOH/+PKf6hHXq1Els9/573bp1Q2BgIKNU1efv7w8XFxc4OzujefPmVV6jp6cn9b/rr1+/RnR0tGgHWkJCAszNzauczE6INKHiGSGESJGcnBzo6elJfP2jR49EhQNp835HhIWFBW7cuAFTU1P07dsXv/76K2bMmIHg4GCYm5szTvlpERERou/v3buHxYsXY/LkyejevTsAICYmBsHBwVizZg2riBJRVVUVfS8UCnHs2DGoqqrCysoKABAXF4eCggJOHZ/V09PDP//8U2l948aNDNJUT3BwsETXeXl5feck38bUqVMxbdo0ZGVloUePHuDxeIiOjsb//vc/zJs3j3U8iXD1HqKiovDPP/9g8+bN+O2336CkpIRmzZpBXl4e//33H/Ly8qCpqQlnZ2ekpKRIdSEQAHx9fVlH+Gp14R4+tGXLFtHOy19//RVycnKIjo7GmDFjsHTpUsbpJJednS32WEZGBpqampCXl2eUqGYyMzO/eE3Dhg3h5ORUC2lqpmvXrkhOTkb79u3Rr18//Pbbb+jduzfU1NRYRyPki+jYJiGESJFmzZphxIgRmDp16idHjxcWFiI0NBSbNm3C9OnTMXv27FpOWT03b97Ey5cv0b9/f7x48QKTJ09GZGQkjI2NERQUhI4dO7KO+EUDBgyAq6srxo8fL7Z+4MABbN++HZGRkWyCVdOiRYvw4sULBAQEiKa9VVRUYObMmVBRUcHatWsZJ5TMl3YsVqcAXdtkZGTQokULaGlpVdoF8R6Px+NMny2hUAhfX1+sX78ejx8/BgC0aNECCxYsgLu7u8S7N1mqC/fw/PlzREdH4969eygpKUHTpk1hYWEBCwsLsSNdhNQnly5dgpubG2JjYyu1VygsLESPHj0QEBCA3r17M0pYM8XFxVVOL+/QoQOjRJLT0NAAj8fDwIED0a9fP/Tr14/6nBHOoOIZIYRIkRcvXmD16tUIDAyEnJwcrKys0KJFC9FOgtTUVNy+fRtWVlZYsmQJhgwZwjpyvaCoqIikpKQqeyJ16tRJqhvUf0hTUxPR0dFo3bq12Hp6ejp69OiB58+fM0pWPe+HanyKNB+jHTp0KCIiIjB48GC4uLhg2LBhokIm15SXl2P//v0YPHgwmjdvjlevXgEAlJWVGSeTXF24h/ro/UAdLuPCPXyq9yePx0OjRo3QsGHDWk5UPSNGjICNjQ08PT2rfN7Pzw8RERE4duxYLSermfz8fEyePBlnzpyp8nlp/rfvQ8nJyYiMjERUVBSuXLkCGRkZ9O3bFzY2Nvjll19YxyPkk+ijKEIIkSIaGhpYt24dHj9+DH9/f5iamuLZs2eirfoODg6Ii4vD1atXqXBWi3R1dREQEFBpfdu2bdDV1WWQqGbKy8uRlpZWaT0tLQ0CgYBBoppJSEhAfHy86Ovff/9FQEAATE1NcfjwYdbxPuvUqVPIyspC165dsWDBArRs2RKLFi1Ceno662jV1qBBA8yYMQNv3rwB8K7gxLWiU124h7qgbdu2OHDgQKWdNB/LzMzEjBkz8L///a+WkkmuLtzDx9TU1KCurl7pS01NDQoKCtDX14e3t7fU/vuRlJT02T6YgwYNQlxcXC0m+jpz5sxBQUEBYmNjoaCggDNnziA4OBitWrVCeHg463gS69ChA9zd3XHkyBGcPn0aQ4YMwdGjRzFr1izW0Qj5LOp5RgghUkheXh5jxozhVB+qT3n+/Dm8vLwQERGBp0+fVvojmwuNkzdu3IixY8fi7Nmz6NatGwAgNjYWfD4fR44cYZxOcs7OznBxccHdu3fF7sPHxwfOzs6M00muqqO+73dprl27Vup/b7S1tfHrr7/i119/xeXLl7F7925YW1vD3NwcFy5cgIKCAuuIEuvatSsSEhI4PeikLtwD1/31119YtGgRZs2ahUGDBlW56zo6Ohqpqalwc3PDzJkzWUeupC7cw8eCgoLw+++/Y/LkyejSpQuEQiFu3LiB4OBgLFmyBPn5+Vi3bh0aNWqE3377jXXcSp48efLZKacNGjRAfn5+LSb6OpcuXcLff/8Na2tryMjIQF9fH7a2tlBRUcGaNWswbNgw1hG/KCEhAZGRkYiMjMSVK1fw6tUrdOzYER4eHrCxsWEdj5DPouIZIYSQ72rixIng8/mYMmUKmjVrJvXHVKoydOhQZGZmwt/fH2lpaRAKhRg5ciR++eUXTu08W7duHZo3b46NGzciNzcXwLtCzsKFC6W6MbqkTE1NcePGDdYxqsXa2hr37t1DamoqEhISUFZWxqni2cyZMzFv3jw8fPgQnTt3hpKSktjzXOjBUxfugev69++PGzdu4Nq1azh06BAOHDhQqX+bo6MjJk6cKLWNxevCPXwsODgY69evh729vWhtxIgRMDc3x7Zt23Dx4kXo6elh1apVUlk809HRwa1bt2BiYlLl88nJydDW1q7lVDVXVFQkGvyhoaGB/Px8mJqawtzcnDN9Mq2trWFhYYG+ffti6tSp6NOnT6V+dIRIK+p5Rggh5LtSVlZGdHQ0JwYD1Cfve9lw8Y/Wj/vwCIVC5ObmYtmyZbhz5w4SExPZBKuGmJgYBAYGIjQ0FKampnB2dsaECRM486b6vaqa0fN4PFE/Jy704KkL90DI9/Cpfp+ZmZno2LEjiouLkZ2djXbt2kll78/Zs2cjMjISN27cqDRZs6SkBF26dIGNjQ38/PwYJawea2trrFy5EoMHD8aoUaNEO878/PwQFhYGPp/POuIXvXz5kpN/dxAC0M4zQggh31mbNm1QUlLCOgb5CJf/eFVTU6u0g1EoFEJXVxcHDx5klEoyf/75J3bv3o3nz5/DwcEB0dHRMDc3Zx2rxrKzs1lH+Gp14R4I+R5atmyJXbt2wcfHR2x9165dol3Xz58/h7q6Oot4X7RkyRIcPXoUpqamcHNzQ+vWrcHj8ZCWloa//voLFRUV+P3331nHlNicOXNEu8a9vb0xePBg7Nu3Dw0bNkRwcDDjdJLh8t8ehNDOM0IIId/VjRs3sHjxYnh5eaF9+/aV+o/QH1KkuqKiosQey8jIQFNTEyYmJmjQQLo/F5SRkYGenh5++OGHz06q27BhQy2mInXBw4cPER4ejpycnEpN6+nnidREeHg4fvzxR7Rp0wbW1tbg8Xi4ceMG7ty5g7CwMPzwww/w9/dHZmam1P6M3b9/HzNmzMDZs2fx/m0vj8fD4MGDsXXrVhgYGLANWENCoRAlJSW4c+cO9PT00LRpU9aRCKnzqHhGCCHku8rMzMT48eORkJAgtk5Hokh1WFpa4uLFi1BXV8cff/yB+fPnQ1FRkXWsauvXr98X+/7xeDxcunSplhJ9vb179yIgIADZ2dmIiYmBvr4+fH19YWhoiJEjR7KOJxGu38PFixcxYsQIGBoaIj09He3bt8e9e/cgFAphaWnJqZ8nIl3u37+PgIAApKenQygUok2bNpg+fTrnik7//fcf7t69C6FQiFatWkntbrkv2bVrFzZu3Ciawt6qVSvMmTMHrq6ujJMRUvdR8YwQQqQYn8+Hr68v0tLSwOPx0LZtW3h4eMDY2Jh1NIl16dIFDRo0gIeHR5UDA/r27csoGeESBQUFZGZmomXLlpCVlUVeXh40NTVZx6r3/P394eXlhTlz5mDVqlVISUmBkZERgoKCEBwcjIiICNYRv6gu3EOXLl1gZ2eHP/74A8rKykhKSoKWlhYcHBxgZ2eHGTNmsI5IOKasrAyDBg3Ctm3bYGpqyjoOAbB06VJs3LgRs2fPRvfu3QG865+5ZcsWeHh4YOXKlYwTElK3UfGMEEKk1NmzZzFixAh06tQJPXv2hFAoxLVr15CUlIQTJ07A1taWdUSJKCoqIiEhAa1bt2YdhXBY9+7d0bhxY/Tq1QvLly/H/Pnz0bhx4yqv9fLyquV09ZeZmRlWr16NUaNGiYo2RkZGSElJQb9+/fDs2TPWEb+oLtyDsrIyEhMTYWxsDHV1dURHR6Ndu3ZISkrCyJEjce/ePdYRCQdpamri2rVrlQYGEDaaNm2KzZs3Y/z48WLrISEhmD17NideqyIjI9GvXz/WMQipEeluDEIIIfXY4sWL4enpWalR7+LFi7Fo0SLOFM+srKzw4MEDzhfPwsLCEBoaWmU/Ia6MiAfe9Qtbt26d2G7GBQsWoHfv3qyjfVZQUBC8vb3xzz//gMfj4fTp01X2N+PxeFJbPPPx8cHs2bOhpKT0xWv//fdfPHv2DMOGDauFZDWXnZ0NCwuLSuuNGjVCUVERg0TVVxfuQUlJCW/evAEAtGjRAnw+H+3atQMATryh/pSSkhKUlZWJrXGtTyaX78HR0bHKgQGEjYqKClhZWVVa79y5M8rLyxkkqj47Ozvo6OjA2dkZTk5OosEThHABFc8IIURKpaWlITQ0tNK6i4sLfH19az9QDc2ePRseHh5YsGABzM3NKw0M6NChA6NkkvPz88Pvv/8OJycn/P3333B2dgafz8eNGzcwa9Ys1vEktm/fPjg7O2PMmDFwd3cX7WYcMGAAgoKCMGHCBNYRP6l169aiSZoyMjK4ePEitLS0GKeqntTUVOjr6+PHH3/EiBEjYGVlJTp6Wl5ejtTUVERHR2Pfvn3Izc3Fnj17GCf+MkNDQyQmJkJfX19s/fTp0zAzM2OUqnrqwj1069YNV69ehZmZGYYNG4Z58+bh1q1bOHr0KLp168Y6XrUUFxdj4cKFCA0NxfPnzys9z4U+mXXhHgDg7du32LlzJ86fPw8rK6tKhX9pHRJQV02cOBH+/v6V/n/fvn07HBwcGKWqnsePH2Pfvn0ICgrCsmXLMGDAAEyZMgWjRo367BAdQqSCkBBCiFRq2bKlMDQ0tNL6oUOHhLq6ugwS1QyPx6v0JSMjI/pfLmjdurXwwIEDQqFQKGzcuLGQz+cLhUKhcOnSpcJZs2axjFYtbdq0EW7YsKHS+vr164Vt2rRhkKj+SUpKEk6bNk2orq4ulJGREcrJyQkbN24slJGREcrIyAg7d+4s3LZtm7C0tJR1VIkEBgYKdXR0hAcPHhQqKSkJQ0JChCtXrhR9zwV14R74fL4wKSlJKBQKhUVFRcIZM2YIzc3NhaNHjxbeu3ePcbrqmTlzprBt27bCw4cPCxUUFISBgYHCFStWCFu2bCnct28f63gSqQv3IBQKhf369fvkl42NDet49Y6bm5tQRUVF2K5dO+GUKVOEU6ZMEbZr106ooqIidHNzE3p6eoq+uCAhIUE4e/ZsYdOmTYUaGhrC2bNnCxMTE1nHIuSTqOcZIYRIqT/++AMbN27E4sWL0aNHD/B4PERHR+N///sf5s2bhyVLlrCOKJH79+9/9vmPd3tII0VFRaSlpUFfXx9aWlo4f/48OnbsiMzMTHTr1q3KnQXSqFGjRrh9+zZMTEzE1u/evYv27dujtLSUUbL6RygUIjk5Gffu3UNJSQmaNm2KTp06oWnTpqyjVduOHTuwcuVKPHjwAACgo6ODZcuWYcqUKYyTSa4u3ENdoaenhz179qBfv35QUVFBfHw8TExMsHfvXoSEhODUqVOsI35RXbgHIn1sbGwkuo5LE5sfP36M7du3w8fHBw0aNEBpaSm6d++OgIAA0dFzQqQFHdskhBAptXTpUigrK2P9+vX49ddfAbzrZbNs2TK4u7szTic5LhTHvqR58+Z4/vw59PX1oa+vj9jYWHTs2BHZ2dng0mdQurq6uHjxYqXi2cWLF6nvSC3j8Xjo2LEjOnbsyDrKV5s6dSqmTp2KZ8+eQSAQcO44LVA37uG9169fQyAQiK1xpccWALx48QKGhoYA3uV+8eIFAKBXr16cmRpaF+7hQ3fv3gWfz0efPn2goKAAoVBYaXI2+f64MPlXEmVlZfj7778RGBgoOhK8ZcsWjB8/Hi9evMCiRYvw448/IjU1lXVUQsRQ8YwQQqRQeXk59u/fj/Hjx8PT0xOvXr0C8G6iGql9/fv3x4kTJ2BpaYkpU6bA09MTYWFhuHnzJsaMGcM6nsTmzZsHd3d3JCYmiu1mDAoKwqZNm1jHIxzHxV1zH+PqPWRnZ8PNzQ2RkZFiO0jfFzm40mMLAIyMjHDv3j3o6+vDzMwMoaGh6NKlC06cOAE1NTXW8SRSF+4BAJ4/fw57e3tERESAx+MhMzMTRkZGcHV1hZqaGtavX886IuGY2bNnIyQkBMC7Hm5//vkn2rdvL3peSUkJPj4+MDAwYJSQkE+jY5uEECKlPjwqSNgSCAQQCASi6Y6hoaGIjo6GiYkJfvnlF041uT127BjWr1+PtLQ0ABBN2xw5ciTjZISr6sIkWq7fQ48ePQAAHh4eaNasWaVdQX379mURq0Y2btwIWVlZuLu7IyIiAsOGDUNFRQXKy8uxYcMGeHh4sI74RXXhHoB30zafPn2KnTt3om3btkhKSoKRkRHOnTsHT09P3L59m3VEwjEDBgyAq6srxo4d+8m/ncrLy3H16lVOvW6R+oGKZ4QQIqVsbGzg4eGBUaNGsY5CCCFV+nAS7Y4dOypNol21ahXriF9UF+6hcePGiIuLQ+vWrVlH+eZycnJw8+ZNGBsbc/aYM1fvoXnz5jh79iw6duwIZWVlUfEsOzsb5ubmeP36NeuIhGMuX76MHj16iD6MfK+8vBzXrl1Dnz59GCUj5Mvo2CYhhEipmTNnYt68eXj48CE6d+5caUR8hw4dGCWrn65cuYJt27aBz+cjLCwMOjo62Lt3LwwNDdGrVy/W8SRiZGSEGzduoEmTJmLrBQUFsLS0RFZWFqNkX6auri5xj533/YXI97d161Zs374d48ePR3BwMBYuXAgjIyN4eXlx5r9DXbgHa2trPHjwoE4Wz/T09KCnp8c6xlfh6j0UFRVBUVGx0vqzZ8/QqFEjBokI19nY2CA3N7dSX8nCwkLY2Nhw6og5qX+oeEYIIVLqp59+AgCx4QA8Ho+TPWwAIC4uDmlpaeDxeGjbti0sLS1ZR5LYkSNHMGnSJDg4OCAhIQFv3rwBALx69QqrV6/mzOS0e/fuVflz8+bNGzx69IhBIsn5+vqyjvBdcL0Rd05OjujIoIKCgqg/46RJk9CtWzds2bKFZTyJ1IV72LlzJ3755Rc8evQI7du3h5ycnNjz0v5hi5+fn8TXSuvAHD8/P0ybNg3y8vJfvB9pvYeP9enTB3v27MGKFSsAvPsbRCAQYO3atRJPfiTkQ5/6N+758+eVPiQmRNpQ8YwQQqRUdnY26wjfxNOnT/Hzzz8jMjISampqEAqFok8YDx48CE1NTdYRv2jlypUICAiAo6MjDh48KFrv0aMH/vjjD4bJJBMeHi76/uzZs1BVVRU9rqiowMWLF6W+Oa+TkxPrCN/U8+fP8dNPP+HSpUucbsRdFybR1oV7yM/PB5/Ph7Ozs2iNSx+2bNy4Uexxfn4+iouLRc31CwoKoKioCC0tLaktPG3cuBEODg6Ql5evdD8f4vF4UnsPH1u7di369euHmzdv4u3bt1i4cCFu376NFy9e4OrVq6zjEQ55P1yJx+Nh8uTJYjsXKyoqkJycLPoQgxBpRcUzQgiRUnVlUMDs2bPx8uVL3L59G23btgUApKamwsnJCe7u7qKpS9IsPT29yj4cKioqKCgoqP1A1fS+bx6Px6tUhJKTk4OBgQFnijXv8fl87N69G3w+H5s2bYKWlhbOnDkDXV1dtGvXjnW8L/L09ESDBg2Qk5Mj+r0A3u049fT05Mx/j7owibYu3IOLiwssLCwQEhJS5cAAaffhh0UHDhzA1q1bsWvXLtEx1PT0dEydOhXTp09nFfGLPryHuvLhl5mZGZKTk+Hv7w9ZWVkUFRVhzJgxmDVrFrS1tVnHIxzy/kM7oVAIZWVlKCgoiJ5r2LAhunXrhqlTp7KKR4hEaGAAIYRIsb179yIgIADZ2dmIiYmBvr4+fH19YWhoyJnpiKqqqrhw4QKsra3F1q9fv45BgwZxovhkbGyMbdu2YeDAgWJNk/fs2QMfHx+kpqayjigRQ0ND3LhxA02bNmUd5atERUVhyJAh6NmzJy5fvoy0tDQYGRnhzz//xPXr1xEWFsY64hfVlUbcdWESbV24ByUlJSQlJcHExIR1lK9mbGyMsLAwWFhYiK3HxcVh3LhxnCtMvX+rxbWCJiHfw/LlyzF//nw6okk4SYZ1AEIIIVXz9/fH3LlzMXToUBQUFIiO3aipqXGq/5NAIKjUfwd4t+NJIBAwSFR906dPh4eHB/7991/weDw8fvwY+/fvx/z58zFz5kzW8SSWnZ3N+cIZACxevBgrV67E+fPnxQobNjY2iImJYZhMcnWlEbeMjIzY1DR7e3v4+fnB3d2dE0UnoG7cQ//+/ZGUlMQ6xjeRm5uLsrKySusVFRV48uQJg0Q1s2vXLrRv3x7y8vKQl5dH+/btsXPnTtaxqsXQ0BBLly5Feno66yikjvD29oaSkhKePn2KK1euIDo6Gk+fPmUdixCJUPGMEEKk1ObNm7Fjxw78/vvvkJWVFa1bWVnh1q1bDJNVT//+/eHh4YHHjx+L1h49egRPT08MGDCAYTLJLVy4EKNGjYKNjQ1ev36NPn36wNXVFdOnT4ebmxvreBJzd3evspH1li1bMGfOnNoPVEO3bt3C6NGjK61ramri+fPnDBJV3/tG3O9RI27yNYYPHw5PT08sW7YMR44cQXh4uNgXlwwYMABTp07FzZs3Rbu2bt68ienTp2PgwIGM00lm6dKl8PDwwPDhw3H48GEcPnxY9N9oyZIlrONJbPbs2Thz5gzatm2Lzp07w9fXF7m5uaxjEQ57+fIlJk2aBB0dHfTt2xd9+vSBjo4OJk6ciMLCQtbxCPksOrZJCCFSSkFBAXfu3IG+vr7Ysa7MzEx06NABJSUlrCNK5MGDBxg5ciRSUlKgq6sLHo+HnJwcmJub4++//0bLli1ZR/ysiooKREdHw9zcHPLy8khNTYVAIICZmRkaN27MOl616OjoIDw8HJ07dxZbj4+Px4gRI/Dw4UNGyaqnZcuWCA0NRY8ePcR+N44dO4b58+eDz+ezjvhFqamp6NevHzp37oxLly5hxIgRYo24jY2NWUckHCIj8+nPw7kwMOBD+fn5cHJywpkzZ0S7lsvLyzF48GAEBQVBS0uLccIva9q0KTZv3ozx48eLrYeEhGD27Nl49uwZo2Q1k5GRgf379+PgwYPIysqCjY0NJk6cCEdHR9bRCMfY29sjMTERmzdvRvfu3cHj8XDt2jV4eHigQ4cOCA0NZR2RkE+i4hkhhEgpMzMzrFmzBiNHjhQrEPj5+SE4OBhxcXGsI1bL+fPncefOHQiFQpiZmXFmBwEAyMvLIy0tDYaGhqyjfBV5eXmkpKRU6ot09+5dtG/fHqWlpYySVc/ChQsRExODw4cPw9TUFPHx8Xjy5AkcHR3h6OgIb29v1hElkpeXB39/f8TFxUEgEMDS0pIacRPy/2VkZIj+zWjbti1MTU1ZR5KYuro6rl+/jlatWomtZ2RkoEuXLpzo9fkpsbGxmDFjBpKTkzlVlCXSQUlJCWfPnkWvXr3E1q9cuQI7OzsUFRUxSkbIl9G0TUIIkVILFizArFmzUFpaCqFQiOvXryMkJARr1qzhXN8UALC1tYWtrS3rGDVibm6OrKwszhfPTExMcObMmUpHTU+fPg0jIyNGqapv1apVmDx5MnR0dETF2IqKCkyYMIFTR6KaN2+O5cuXs45BiFQyNTXlVMHsQxMnToS/vz82bNggtr59+3Y4ODgwSvV1rl+/jgMHDuDQoUMoLCzEuHHjWEciHNSkSRPR5M0PqaqqQl1dnUEiQiRHO88IIUSK7dixAytXrsSDBw8AvDt2t2zZMkyZMoVxss/z8/PDtGnTIC8vX2WPrQ+5u7vXUqqaO3fuHBYtWoQVK1agc+fOlaZEqaioMEpWPYGBgXBzc8OCBQvQv39/AMDFixexfv16+Pr6cm5MPJ/PR0JCAgQCASwsLCrt8pBmly9f/uzzffr0qaUkhKvq0uvs3LlzsWLFCigpKWHu3LmfvfbjgpQ0mj17Nvbs2QNdXV1069YNwLsdWw8ePICjo6PYEB1pvp/3xzUPHDiAe/fuwcbGBg4ODhgzZgyUlZVZxyMctH37dhw+fBh79uwR7bLOy8uDk5MTxowZg+nTpzNOSMinUfGMEEI44NmzZxAIBJzo9QK8m9B18+ZNNGnS5LO7tXg8HrKysmoxWc182E+Ix+OJvhcKhZzrJ+Tv749Vq1aJBjgYGBhg2bJl1LumllXVo+rDny0u/UyFhYUhNDQUOTk5ePv2rdhz8fHxjFJVDxfvoS69ztrY2ODYsWNQU1P77MAMHo+HS5cu1WKympF06Ie034+MjAysrKwwYcIE/Pzzz2jevDnrSITjLCwscPfuXbx58wZ6enoAgJycHDRq1KjSB2DS+tpL6i86tkkIIVIqOzsb5eXlaNWqFZo2bSpaz8zMhJycHAwMDNiF+4Ls7Owqv+eqiIgI1hG+mRkzZmDGjBnIz8+HgoICZ4YefGk3yoekeSfHe//995/Y47KyMiQkJGDp0qVYtWoVo1TV5+fnh99//x1OTk74+++/4ezsDD6fjxs3bmDWrFms40mEq/dQl15nP3yNrQuvt3XhHgDgzp07nD06S6TTqFGjWEcgpMZo5xkhhEipvn37wsXFBU5OTmLr+/btw86dOxEZGckmGBGTmJiITp06sY4hsfLyckRGRoLP52PChAlQVlbG48ePoaKiItWFtI93csTFxaGiogKtW7cG8O54kaysrGh6JVddvnwZnp6enBkI0qZNG3h7e2P8+PFig028vLzw4sULbNmyhXXEL6oL91BSUgIFBYUqn8vNzaUhFOSrvH37Fk+fPoVAIBBbf79ziBBC6gMqnhFCiJRSUVFBfHx8lZMRraysODOta9y4cbCyssLixYvF1teuXYvr16/j8OHDjJLVXGFhIfbv34+dO3ciKSmJM0fs7t+/Dzs7O+Tk5ODNmzfIyMiAkZER5syZg9LSUgQEBLCOKJENGzYgMjISwcHBogbD//33H5ydndG7d2/MmzePccKaS0tLg7W1NV6/fs06ikQUFRWRlpYGfX19aGlp4fz58+jYsSMyMzPRrVs3PH/+nHXEL6oL99CmTRscOHAAlpaWYuthYWGinabSbMyYMRJfe/To0e+Y5NsoLS3F5s2bERERUWXRiSvH0TIzM+Hi4oJr166JrXOxZQGRPq9fv670u8GVHrKkfqJjm4QQIqV4PB5evXpVab2wsJBTf7BGRUXB29u70rqdnR3WrVvHIFHNXbp0CYGBgTh69Cj09fUxduxY7Nq1i3UsiXl4eMDKygpJSUlo0qSJaH306NFwdXVlmKx61q9fj3PnzolN5lJXV8fKlSsxaNAgThTPkpOTxR4LhULk5ubCx8cHHTt2ZJSq+po3b47nz59DX18f+vr6iI2NRceOHZGdnQ2ufD5bF+7B1tYWPXr0wLJly7Bo0SIUFRXBzc0Nhw8fho+PD+t4X/Th9D2hUIhjx45BVVUVVlZWAN7tNC0oKKhWkY0lFxcXnD9/HuPGjUOXLl3E+hlyyeTJk9GgQQP8888/0NbW5ux9EOmRnZ0NNzc3REZGorS0VLROBVnCBVQ8I4QQKdW7d2+sWbMGISEhkJWVBfCuifiaNWvQq1cvxukk9/r1azRs2LDSupycHF6+fMkg0afl5+dDU1NTbO3hw4cICgpCYGAgioqKYG9vj7KyMhw5cgRmZmaMktZMdHQ0rl69Wum/h76+Ph49esQoVfW9fPkST548Qbt27cTWnz59WmXBWRp16tQJPB6vUnGmW7duCAwMZJSq+vr3748TJ07A0tISU6ZMgaenJ8LCwnDz5k3OFDrqwj1s3rwZw4YNg7OzM06ePCk6in3jxg1OvE7t3r1b9P2iRYtgb2+PgIAAsX/7Zs6cyZldKSdPnsSpU6fQs2dP1lG+SmJiIuLi4tCmTRvWUUgd4eDgAODd9O9mzZpRQZZwChXPCCFESv3555/o06cPWrdujd69ewMArly5gpcvX3Kqp1P79u1x6NAheHl5ia0fPHhQ6t7Ubd++HQ8fPoSfnx/k5OQwdOhQREdH44cffsDmzZthZ2cHWVlZzhxv/JhAIKjyU92HDx9CWVmZQaKaGT16NJydnbF+/Xp069YNABAbG4sFCxZwptjxcYN3GRkZaGpqQl5enlGimtm+fbvo2M0vv/wCDQ0NREdHY/jw4fjll18Yp5NMXbgHABg0aBDGjBkDf39/NGjQACdOnJC611hJBAYGIjo6WlQ4AwBZWVnMnTsXPXr0wNq1axmmk4yOjg6nXlM/xczMDM+ePWMdg9QhycnJiIuLE/UrJYRLqOcZIYRIscePH2PLli1ISkqCgoICOnToADc3N2hoaLCOJrHw8HCMHTsWEyZMQP/+/QEAFy9eREhICA4fPixVk5fevHmDpUuXomnTpli4cCEaNGgAd3d3zJgxQ2yEupycHJKSkjj3xvSnn36Cqqoqtm/fDmVlZSQnJ0NTUxMjR46Enp6e2O4PaVZcXIz58+cjMDAQZWVlAIAGDRpgypQpWLt2LZSUlBgnJKR2vR8AkpeXh507dyIqKgrr1q2Du7s7Vq1aBTk5OdYRJaauro7du3dX+rfh+PHjcHZ2rjSpVhqdPn0afn5+CAgIgL6+Pus4NXbp0iUsWbIEq1evhrm5eaWfI67sBCTSw8bGBr///jsGDhzIOgoh1UbFM0IIId/dyZMnsXr1aiQmJoqKgN7e3ujbty/raFV6+/YtGjZsiJiYGAQGBiI0NBRt2rTBpEmT8NNPP6FFixacLJ49fvwYNjY2kJWVRWZmJqysrJCZmYmmTZvi8uXL0NLSYh2xWoqKisDn8yEUCmFiYsKpopmfn1+V6zweD/Ly8jAxMUGfPn3Edt9Ii4/7tX1Ohw4dvmOSmqsL9/AhZWVlDBs2DAEBAVBTUwMAXLt2DY6OjlBWVkZCQgLbgNUwd+5cBAUF4bfffhPbWerj4wNHR0ds2LCBccIvy8/Ph729PS5fvgxFRcVKRacXL14wSlY9MjIyou8/PF5H/alITfH5fPzyyy+YOHEi2rdvX+l3gwuvt6T+ouIZIYRIqcuXL3/2+T59+tRSElJcXIyDBw8iMDAQ169fR0VFBTZs2AAXFxfOHc0pKSlBSEgI4uPjIRAIYGlpCQcHBygoKLCOVq8YGhoiPz8fxcXFUFdXh1AoREFBARQVFdG4cWM8ffoURkZGiIiIgK6uLuu4YmRkZKrs1/YxaX5zXRfu4UN79+7FpEmTKq2/evUKc+bM4dRgE4FAgHXr1mHTpk3Izc0FAGhra8PDwwPz5s2TyoLyxwYOHIicnBxMmTKlyr5OTk5OjJJVT1RU1Gefl9YPwIj0io2NxYQJE3Dv3j3R2vvXYq683pL6i4pnhBAipT78xPe9D/8Apz8w2EhPT8euXbuwd+9eFBQUwNbWFuHh4axjEY4JCQnB9u3bsXPnThgbGwMA7t69i+nTp2PatGno2bMnfv75ZzRv3hxhYWGM04q7f/++xNdK65G1unAPdVF5eTn279+PwYMHo3nz5qKhMlw7HqioqIiYmBhOTc79lCtXrmDbtm3g8/kICwuDjo4O9u7dC0NDQ04NLyLSwczMDG3btsXChQurLCzT6y2RZlQ8I4QQKVVYWCj2uKysDAkJCVi6dClWrVqFAQMGMEr2ZRoaGsjIyEDTpk2hrq7+2WlKXDm+8rGKigqcOHECgYGBnCqepaenY/PmzUhLSwOPx0ObNm3g5uZG09RqmbGxMY4cOYJOnTqJrSckJGDs2LHIysrCtWvXMHbsWNHuG0K+JDU1FTk5OXj79q1ojcfjYfjw4QxTVY+ioiLS0tI4/Sba0tISW7duFR075aojR45g0qRJcHBwwN69e5GamgojIyNs3boV//zzD06dOsU6IuEYJSUlJCUlwcTEhHUUQqqNpm0SQoiUUlVVrbRma2uLRo0awdPTE3FxcQxSSWbjxo2i44wbN26sk6PIZWVlMWrUKKkaePAlYWFhGD9+PKysrNC9e3cA745QmJub48CBA/jxxx8ZJ6w/cnNzUV5eXmm9vLwceXl5AIAWLVrg1atXtR2NcEBhYaHYvxFZWVkYM2YMkpOTxY6jvn/t5dJO5a5duyIhIYHTxTMfHx/MmzcPq1at4nSj/ZUrVyIgIACOjo44ePCgaL1Hjx74448/GCYjXNW/f38qnhHOop1nhBDCMWlpabC2tsbr169ZRyEcY2RkhIkTJ1Z60+Pt7Y29e/ciKyuLUbL6Z9iwYaLJiBYWFgDe7TqbOnUqmjdvjn/++QcnTpzAb7/9hlu3bjFOS6TNihUrIC8vjwULFgCAaGfZzp070alTJ/z777/Izs7G/PnzsWHDBvTu3Ztl3Go5fPgwFi9eDE9PT3Tu3LnSIBAuNBR/33bh4w+OuNbXSVFREampqTAwMICysjKSkpJgZGSErKwsmJmZobS0lHVEwjHbt2/HypUr4eLiUmVhecSIEYySEfJlVDwjhBAp9fE0OKFQiNzcXPj4+KCsrAxXr15llKx6bGxsMHHiRIwbN67K3XSk9igqKiI5ObnSJ76ZmZno2LEjiouLGSX7suocjeXCH995eXmYNGkSLl68KHrzUF5ejgEDBmDv3r1o1qwZIiIiUFZWhkGDBjFOS6TN06dPMWnSJJiYmOCvv/5C06ZNcfHiRXTs2BE6Ojq4fv06dHR0cPHiRcyfP59T0zY/1e+TS4WnutJo39jYGNu2bcPAgQPFimd79uyBj48PUlNTWUckHFPV7/d7XPn9JvUXHdskhBAp1alTpyqnwXXr1g2BgYGMUlWfubk5lixZAjc3NwwdOhSTJk3C0KFD0bBhQ9bR6p1+/frhypUrlYpn0dHRUr8z5ePjsR//bnBtmEbz5s1x/vx53LlzBxkZGRAKhWjTpg1at24tusbGxoZhQiLNtLS0cPbsWaxZswbAu5/590flmzZtisePH0NHRwcGBgZIT09nGbXasrOzWUf4alwpjn3J9OnT4eHhgcDAQPB4PDx+/BgxMTGYP38+vLy8WMcjHCQQCFhHIKTGaOcZIYRIqY+nwcnIyEBTUxPy8vKMEtWcQCDAhQsXcODAARw7dgyysrIYN24cHBwc6sybDC4ICAiAl5cX7O3tRY2sY2NjcfjwYSxfvhwtWrQQXSvNu7cuXLiARYsWYfXq1ejevTt4PB6uXbuGJUuWYPXq1bC1tWUdUWJv375FdnY2jI2N0aABNz/TLCgoQFhYGPh8PhYsWAANDQ3Ex8ejWbNm0NHRYR1PIly/h969e2Pu3LkYPXo0pk2bhvz8fCxYsAABAQGIj49HSkoK64h1XnJyMtq3bw8ZGZlKO8c/xoWjp+/9/vvv2Lhxo+iIZqNGjTB//nysWLGCcTJCCKldVDwjhBAp9P6o1rZt22Bqaso6zjdVWlqKEydOYNWqVbh16xYndgnVFZ87LvEhaT860b59ewQEBKBXr15i61euXMG0adOQlpbGKJnkiouLMXv2bAQHBwMAMjIyYGRkBHd3d7Ro0QKLFy9mnFAyycnJGDhwIFRVVXHv3j2kp6fDyMgIS5cuxf3797Fnzx7WEb+oLtzD2bNn8erVK4wbNw4PHjzAsGHDkJKSAg0NDYSGhqJ///6sI1bL3r17ERAQgOzsbMTExEBfXx++vr4wNDTEyJEjWcerkoyMDPLy8qClpQUZGZkqd44D0v/6WpXi4mKkpqZCIBDAzMwMjRs3Zh2JcMzQoUMREhIiat+xatUqzJo1C2pqagCA58+fo3fv3nQUmEg1yf6KJoQQUqvk5OSQkpJS56ZU5uXlISAgAP/73/+QnJwMKysr1pHqFYFAINGXtL+x4/P5VfbPe1/84IJff/0VSUlJiIyMFNtNOnDgQBw6dIhhsuqZO3cuJk+ejMzMTLH7GDJkCC5fvswwmeTqwj0MHjwY48aNAwDo6uoiOTkZz549w9OnT6W+cHb27FkUFhaKHvv7+2Pu3LkYOnQoCgoKRK9Hampq8PX1ZZTyy7Kzs6GpqSn6PisrC9nZ2ZW+uDiYRVFREVZWVujSpQsVzkiNnD17Fm/evBE9/t///ocXL16IHpeXl3PuiDmpf6h4RgghUsrR0RG7du1iHeOrvXz5Ert374atrS10dXXh7++P4cOHIyMjA//++y/rePVeQUEB6wjVZm1tjTlz5iA3N1e0lpeXh3nz5qFLly4Mk0nu+PHj2LJlC3r16iVWJDczMwOfz2eYrHpu3LiB6dOnV1rX0dFBXl4eg0TVVxfuoSoaGhoS7zZlKS8vDz179sTDhw8BAJs3b8aOHTvw+++/Q1ZWVnSdlZWVVE+e1dfXF/0u6+vrf/aLkPrm412YdPiNcBE3m2sQQkg98PbtW+zcuRPnz5+HlZUVlJSUxJ7fsGEDo2TV06xZM6irq8Pe3h6rV6+GtbU160j11v/+9z8YGBjgp59+AgD8+OOPOHLkCLS1tXHq1Cl07NiRcULJBAYGYvTo0dDX14eenh4AICcnB6ampjh+/DjbcBLKz8+HlpZWpfWioiJO7TiVl5fHy5cvK62np6eLduFIu7pwD6Wlpdi8eTMiIiLw9OnTSk254+PjGSX7MicnJygrK8POzg4pKSnIzs6GhYVFpesaNWqEoqIiBgklU9cmAhNCCBFHxTNCCJFSKSkpsLS0BPCuH9KHuPLmWigUYtOmTZg4cSIUFRVZx6n3tm3bhn379gEAzp8/jwsXLuDMmTMIDQ3FggULcO7cOcYJJWNiYoLk5GTRtEqhUAgzMzMMHDiQM78b1tbWOHnyJGbPng3g/36nd+zYge7du7OMVi0jR47EH3/8gdDQUADv7iMnJweLFy/G2LFjGaeTTF24BxcXF5w/fx7jxo1Dly5dOPN78N6YMWNEBTNDQ0MkJiZW2qF1+vRpmJmZsYgnkY8nAn8KF3ueEfK1eDxepdclrr1OEUIDAwghhHw3AoEA8vLyuH37Nlq1asU6Tr2noKCAjIwM6OrqwsPDA6Wlpdi2bRsyMjLQtWtX/Pfff6wj1hvXrl2DnZ0dHBwcEBQUhOnTp+P27duIiYlBVFQUOnfuzDqiRF6+fImhQ4fi9u3bePXqFVq0aIG8vDx0794dp06dqrRjVhrVhXtQVVXFqVOn0LNnT9ZRvtru3buxdOlSrF+/HlOmTMHOnTvB5/OxZs0a7Ny5Ez///DPriISQapKRkcGQIUPQqFEjAMCJEyfQv39/0evrmzdvcObMGSosE6lGO88IIURKFRYWoqKiAhoaGmLrL168QIMGDaCiosIomeRkZGTQqlUrPH/+nIpnUkBdXR0PHjyArq4uzpw5g5UrVwJ4t0OQS3+w/vHHH5993svLq5aS1FyPHj1w9epVrFu3DsbGxjh37hwsLS0RExMDc3Nz1vEkpqKigujoaFy6dAnx8fEQCASwtLTEwIEDWUeTWF24Bx0dHSgrK7OO8U04OzujvLwcCxcuRHFxMSZMmAAdHR1s2rSJCmeEcJSTk5PY44kTJ1a6xtHRsbbiEFIjtPOMEEKk1JAhQzB8+HDMnDlTbD0gIADh4eE4deoUo2TVc/LkSfj4+MDf3x/t27dnHadec3Nzwz///INWrVohISEB9+7dQ+PGjXHo0CH873//k+q+SB/6uB9SWVkZsrOz0aBBAxgbG3PmPgj5Vk6fPg0/Pz8EBATUqYb0z549g0AgqLI/ICGEEFKbqHhGCCFSSkNDA1evXkXbtm3F1u/cuYOePXvi+fPnjJJVj7q6OoqLi1FeXo6GDRtCQUFB7PkPR5WT76usrAybNm3CgwcPMHnyZFERytfXF40bN4arqyvjhDX38uVLTJ48GaNHj8akSZNYx5FIRUUFjh07hrS0NPB4PLRt2xYjR45EgwbSfTDAz89P4mvd3d2/Y5Kaqwv38KH8/HzY29vj8uXLUFRUhJycnNjzXHydffr0KdLT08Hj8dC6dWvODG8ghBBSN1HxjBBCpJSSkhJiY2MrHeG6desWunbtiuLiYkbJqic4OPizz3+8lZ+QmkpJScEPP/yAe/fusY7yRSkpKRg5ciTy8vLQunVrAO8Gg2hqaiI8PFyqj24aGhqKPc7Pz0dxcTHU1NQAAAUFBVBUVISWlhaysrIYJPyyunAPHxo4cCBycnIwZcoUNGvWrFIjbi69zr58+RKzZs1CSEiIaGqorKwsfvrpJ/z1119QVVVlnJAQQkh9RMUzQgiRUv369YO5uTk2b94stj5r1iwkJyfjypUrjJIRrktNTUVOTg7evn0rtj5ixAhGib6N6OhoDB8+nBODD7p16wYtLS0EBwdDXV0dAPDff/9h8uTJePr0KWJiYhgnlMyBAwewdetW7Nq1S1QETE9Px9SpUzF9+nQ4ODgwTvhldeEeFBUVERMTg44dO7KO8tXs7e2RmJiIzZs3o3v37uDxeLh27Ro8PDzQoUMH0VRUQgghpDZR8YwQQqTU1atXMXDgQFhbW2PAgAEAgIsXL+LGjRs4d+4cevfuzTih5Ph8Pnbv3g0+n49NmzZBS0sLZ86cga6uLtq1a8c6Xr2RlZWF0aNH49atW+DxeHj/J8D7XSpcGRrw8ZE7oVCI3Nxc7N27F3369EFISAijZJJTUFDAzZs3K/38p6SkwNraGiUlJYySVY+xsTHCwsIq9aGLi4vDuHHjkJ2dzSiZ5OrCPVhaWmLr1q3o1q0b6yhfTUlJCWfPnkWvXr3E1q9cuQI7OzsUFRUxSlYzJSUlKCsrE1vjwsAfQggh4mRYByCEEFK1nj17IiYmBrq6uggNDcWJEydgYmKC5ORkThXOoqKiYG5ujn///RdHjx7F69evAQDJycnw9vZmnK5+8fDwgKGhIZ48eQJFRUXcvn0bly9fhpWVFSIjI1nHk9jGjRvFvvz8/BAZGQknJyds376ddTyJtG7dGk+ePKm0/vTpU5iYmDBIVDO5ubmVCgPAu0JsVfcnjerCPfj4+GDevHmIjIzE8+fP8fLlS7EvLmnSpEmVRzNVVVVFuzSlXXFxMdzc3KClpYXGjRtDXV1d7IsQQgj30M4zQggh31X37t3x448/Yu7cuVBWVkZSUhKMjIxw48YNjBo1Co8ePWIdsd5o2rQpLl26hA4dOkBVVRXXr19H69atcenSJcybNw8JCQmsI9Ybp06dwsKFC7Fs2TLRbqHY2Fj88ccf8PHxEdt1I827VIYPH46cnBzs2rULnTt3Bo/Hw82bNzF16lTo6uoiPDycdcQvqgv3ICPz7vPwj3udCYVC8Hg8zuwqBYDt27fj8OHD2LNnD7S1tQEAeXl5cHJywpgxYzB9+nTGCb9s1qxZiIiIwB9//AFHR0f89ddfePToEbZt2wYfHx9OHAUmhBAijopnhBBCvqvGjRvj1q1bMDQ0FCue3bt3D23atEFpaSnriPWGuro64uLiYGRkBGNjY+zcuRM2Njbg8/kwNzfnzBAKFxcXbNq0CcrKymLrRUVFmD17NgIDAxklk9z7YgfwfwWPj4/RcqHwkZ+fDycnJ5w5c0Y04bG8vByDBw9GUFAQtLS0GCf8srpwD1FRUZ99vm/fvrWU5OtZWFjg7t27ePPmDfT09AAAOTk5aNSoEVq1aiV2bXx8PIuIX6Snp4c9e/agX79+UFFRQXx8PExMTLB3716EhITg1KlTrCMSQgipJumehU4IIYTz1NTUkJubW2m6XUJCAnR0dBilqp/at2+P5ORkGBkZoWvXrvjzzz/RsGFDbN++HUZGRqzjSSw4OBg+Pj6VimclJSXYs2cPJ4pnERERrCN8E5qamjh16hQyMzORlpYGoVCItm3bwtTUlHU0idWFe+BScexLRo0axTrCV3vx4oXo3zwVFRW8ePECANCrVy/MmDGDZTRCCCE1RMUzQggh39WECROwaNEiHD58GDweDwKBAFevXsX8+fPh6OjIOl69smTJElGz7ZUrV+KHH35A79690aRJExw6dIhxui97+fIlhEIhhEIhXr16BXl5edFzFRUVOHXqFCd2CQF1q9gBAK1ataq0K4hr6sI91AV1oRfm+93V+vr6MDMzQ2hoKLp06YITJ05ATU2NdTxCCCE1QMc2CSGEfFdlZWWYPHkyDh48CKFQiAYNGqCiogITJkxAUFAQZGVlWUes1168eAF1dfVKvZKkkYyMzGdz8ng8LF++HL///nstpqqZM2fOoHHjxqLeZn/99Rd27NgBMzMz/PXXX9RUnBAO27hxI2RlZeHu7o6IiAgMGzYMFRUVKC8vx4YNG+Dh4cE6IiGEkGqi4hkhhJBakZWVhfj4eAgEAlhYWNAOD1JtUVFREAqF6N+/P44cOQINDQ3Rcw0bNoS+vj5atGjBMKHkzM3N8b///Q9Dhw7FrVu3YGVlhXnz5uHSpUto27Ytdu/ezToiIeQbycnJwc2bN2FsbIyOHTuyjkMIIaQGqHhGCCFSZMyYMRJfe/To0e+Y5PupqKjArVu3oK+vT7trSI3cv38fenp6nNgt9ymNGzdGSkoKDAwMsGzZMqSkpCAsLAzx8fEYOnQo8vLyWEckhBBCCCH/H/U8I4QQKaKqqso6wjc3Z84cmJubY8qUKaioqEDfvn1x7do1KCoq4p9//kG/fv1YRyQckJycjPbt20NGRgaFhYW4devWJ6/t0KFDLSarmYYNG4qmm164cEHU/09DQwMvX75kGY0QUgN+fn4SX+vu7v4dkxBCCPkeaOcZIYSQ76ply5Y4fvw4rKyscPz4ccycORORkZHYs2cPIiIicPXqVdYRCQfIyMggLy8PWlpaot5nVf0Jw+PxUFFRwSBh9YwYMQJv375Fz549sWLFCmRnZ0NHRwfnzp2Dm5sbMjIyWEeU2JUrV7Bt2zbw+XyEhYVBR0cHe/fuhaGhoainGxcUFxcjJycHb9++FVuX1mKshYWFxLsv4+Pjv3Oab+/t27fIzs6GsbExGjSQ/s/7P54onZ+fj+LiYtGAgIKCAigqKkJLSwtZWVkMEhJCCPkaMqwDEEII+bTy8nJcuHAB27Ztw6tXrwAAjx8/xuvXrxknk9yzZ8/QvHlzAMCpU6dgb28PU1NTTJky5bO7hwj5UHZ2NjQ1NUXfZ2VlITs7u9IXV96UbtmyBQ0aNEBYWBj8/f2ho6MDADh9+jTs7OwYp5PckSNHMHjwYCgoKCAhIQFv3rwBALx69QqrV69mnE4y+fn5+OGHH6CsrIx27drBwsJC7EtajRo1CiNHjsTIkSMxePBg8Pl8NGrUCP369UO/fv0gLy8PPp+PwYMHs45aLcXFxZgyZQoUFRXRrl075OTkAHi3W8vHx4dxuk/78HVo1apV6NSpE9LS0vDixQu8ePECaWlpsLS0xIoVK1hHJYQQUgO084wQQqTU/fv3YWdnh5ycHLx58wYZGRkwMjLCnDlzUFpaioCAANYRJaKvr48dO3ZgwIABMDQ0xNatW/HDDz/g9u3b6NWrF/777z/WEeuVvXv3IiAgANnZ2YiJiYG+vj58fX1haGiIkSNHso5HOMbCwgKenp5wdHSEsrIykpKSYGRkhMTERNjZ2XGid5uDgwPu3bsHX19f2NjY4NixY3jy5AlWrlyJ9evXY9iwYawjfpGrqyu0tbUrFWa8vb3x4MEDBAYGMkpWfR4eHrh69Sp8fX1hZ2eH5ORkGBkZITw8HN7e3khISGAd8YuMjY0RFhZWqfgaFxeHcePGITs7m1EyQgghNSX9e6AJIaSe8vDwgJWVFZKSktCkSRPR+ujRo+Hq6sowWfU4OzvD3t4e2tra4PF4sLW1BQD8+++/aNOmDeN09Yu/vz+8vLwwZ84crFq1SnS8UU1NDb6+vpwpnoWHh1e5zuPxIC8vDxMTk0pHqKQRn8/H7t27wefzsWnTJmhpaeHMmTPQ1dVFu3btWMeTSHp6Ovr06VNpXUVFBQUFBbUfqAYuXbqEv//+G9bW1pCRkYG+vj5sbW2hoqKCNWvWcKJ4dvjwYdy8ebPS+sSJE2FlZcWp4tnx48dx6NAhdOvWTexYqpmZGfh8PsNkksvNzUVZWVml9YqKCjx58oRBIkIIIV+LimeEECKloqOjcfXqVTRs2FBsXV9fH48ePWKUqvqWLVuG9u3b48GDB/jxxx/RqFEjAICsrCwWL17MOF39snnzZuzYsQOjRo0SO/5kZWWF+fPnM0xWPaNGjaqy59n7NR6Ph169euH48eNSO9E1KioKQ4YMQc+ePXH58mWsWrUKWlpaSE5Oxs6dOxEWFsY6okS0tbVx9+5dGBgYiK1HR0fDyMiITahqKioqgpaWFoB3Axvy8/NhamoKc3NzzvQKU1BQQHR0NFq1aiW2Hh0dDXl5eUapaiY/P1/03+NDRUVFnJmwO2DAAEydOhW7du1C586dwePxcPPmTUyfPh0DBw5kHY8QQkgNUM8zQgiRUgKBoMrG5w8fPoSysjKDRDU3btw4eHp6omXLlqI1Jycnzux0qiuys7Or7OHUqFEjFBUVMUhUM+fPn4e1tTXOnz+PwsJCFBYW4vz58+jSpQv++ecfXL58Gc+fP5fqguDixYuxcuVKnD9/XqxAbmNjg5iYGIbJqmf69Onw8PDAv//+Cx6Ph8ePH2P//v2YP38+Zs6cyTqeRFq3bo309HQAQKdOnbBt2zY8evQIAQEB0NbWZpxOMnPmzMGMGTPg5uaGffv2Yd++fXBzc8OsWbPg6enJOl61WFtb4+TJk6LH7wtmO3bsQPfu3VnFqpbAwEDo6OigS5cukJeXR6NGjdC1a1doa2tj586drOMRQgipAdp5RgghUsrW1ha+vr7Yvn07gHdvIF6/fg1vb28MHTqUcTrCRYaGhkhMTIS+vr7Y+unTp2FmZsYoVfV5eHhg+/bt6NGjh2htwIABkJeXx7Rp03D79m34+vrCxcWFYcrPu3XrFg4cOFBpXVNTE8+fP2eQqGYWLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY4nkTlz5iA3NxfAux5hgwcPxv79+9GwYUMEBQWxDSehxYsXw8jICJs2bRL9XLVt2xZBQUGwt7dnnK561qxZAzs7O6SmpqK8vBybNm3C7du3ERMTg6ioKNbxJKKpqYlTp04hIyMDd+7cgVAoRNu2bWFqaso6GiGEkBqigQGEECKlHj9+DBsbG8jKyiIzMxNWVlbIzMxE06ZNcfny5SqPtRDyObt378bSpUuxfv16TJkyBTt37gSfz8eaNWuwc+dO/Pzzz6wjSkRBQQE3btxA+/btxdZv3bqFLl26oKSkBPfv30fbtm1RXFzMKOXntWzZEqGhoejRo4dYo/1jx45h/vz5nOnt9F5xcTFSU1MhEAhgZmaGxo0bs470SWVlZZCTk/vk88XFxbhz5w709PTQtGnTWkxG3rt16xbWrVuHuLg4CAQCWFpaYtGiRTA3N2cdjRBCSD1FxTNCCJFiJSUlOHjwoNgbCAcHBygoKLCORjhqx44dWLlyJR48eAAA0NHRwbJlyzBlyhTGySTXq1cvKCsrY8+ePdDU1ATwrk+So6MjioqKcPnyZVy4cAEzZ85ERkYG47RVW7hwIWJiYnD48GGYmpoiPj4eT548gaOjIxwdHeHt7c06okQKCwtRUVEBDQ0NsfUXL16gQYMGUFFRYZTs03x8fGBkZMS5HVlEus2dOxcrVqyAkpIS5s6d+9lrN2zYUEupCCGEfCtUPCOEEELqoWfPnkEgEHByB2N6ejpGjhyJ7Oxs6OrqgsfjIScnB0ZGRvj7779hamqK48eP49WrV5g0aRLruFUqKyvD5MmTcfDgQQiFQjRo0AAVFRWYMGECgoKCICsryzqiRIYMGYLhw4dX6m8WEBCA8PBwnDp1ilGyT8vIyMDo0aMxbdo0eHh41IlCR0VFBTZu3IjQ0FDk5OTg7du3Ys+/ePGCUTLJvHz5UuJrpbEgC7zrV3js2DGoqanBxsbmk9fxeDxcunSpFpMRQgj5Fqh4Rggh5Lvj8/nYvXs3+Hw+Nm3aBC0tLZw5cwa6urpo164d63iEg4RCIc6ePYuMjAwIhUK0adMGtra2kJHh1iwkPp+PhIQECAQCWFhYVJqWKO00NDRw9epVtG3bVmz9zp076Nmzp9T2b3v16hUmT56MI0eO1IlCh5eXF3bu3Im5c+di6dKl+P3333Hv3j0cP34cXl5ecHd3Zx3xs2RkZCSepFnVIB1CCCHke6PiGSGEkO8qKioKQ4YMQc+ePXH58mWkpaXByMgIf/75J65fv46wsDDWEes0CwsLid+UxsfHf+c0pK5RUlJCbGxspV5Ut27dQteuXaW251xdY2xsDD8/PwwbNgzKyspITEwUrcXGxlY5nEKafDgI4N69e1i8eDEmT54smq4ZExOD4OBgrFmzBk5OTqxiEkIIqceoeEYIIeS76t69O3788UfMnTtXrDH6jRs3MGrUKDx69Ih1xDpt+fLlou9LS0uxdetWmJmZid6UxsbG4vbt25g5cybWrFnDKma1Xbx4ERcvXsTTp08hEAjEngsMDGSU6vO+dDzwQ1w4KggA/fr1g7m5OTZv3iy2PmvWLCQnJ+PKlSuMktUvSkpKSEtLg56eHrS1tXHy5ElYWloiKysLFhYWKCwsZB1RYgMGDICrqyvGjx8vtn7gwAFs374dkZGRbIJ9wZgxYyS+9ujRo98xCSGEkO+hAesAhBBC6rZbt25VuetBU1NTao901SUfNp53dXWFu7s7VqxYUema9wMEuGD58uX4448/YGVlBW1tbYl31rGWkJAg9jguLg4VFRVo3bo1gHe9uGRlZdG5c2cW8Wpk1apVGDhwIJKSkjBgwAAA7wqbN27cwLlz5xink0xpaSk2b96MiIiIKouxXNiR2bJlS+Tm5kJPTw8mJiY4d+4cLC0tcePGDTRq1Ih1vGqJiYlBQEBApXUrKyu4uroySCQZVVVV0fdCoRDHjh2DqqoqrKysALz7fS8oKKhWkY0QQoj0oOIZIYSQ70pNTQ25ubkwNDQUW09ISICOjg6jVPXT4cOHcfPmzUrrEydOhJWVldTu2PpYQEAAgoKCpHYYwKdERESIvt+wYQOUlZURHBwMdXV1AMB///0HZ2dn9O7dm1XEauvZsydiYmKwdu1ahIaGQkFBAR06dMCuXbs407/NxcUF58+fx7hx49ClSxfOFGM/NHr0aFy8eBFdu3aFh4cHxo8fj127diEnJweenp6s41WLrq4uAgICsH79erH1bdu2QVdXl1GqL9u9e7fo+0WLFsHe3h4BAQGi4R8VFRWYOXOm1A48IIQQ8nl0bJMQQqQU16envbdw4ULExMTg8OHDMDU1RXx8PJ48eQJHR0c4OjqK7Ywi31fz5s2xZs0aODs7i63v3r0bixcvxpMnTxglq54mTZrg+vXrMDY2Zh2lxnR0dHDu3LlKAzNSUlIwaNAgPH78mFGy+kdVVRWnTp1Cz549WUf5ZmJjY3Ht2jWYmJhgxIgRrONUy6lTpzB27FgYGxujW7duAN7dD5/Px5EjRzB06FDGCb9MU1MT0dHRol2l76Wnp6NHjx6065oQQjiIdp4RQoiUWr58+Wenp3HFqlWrMHnyZOjo6EAoFMLMzAwVFRWYMGEClixZwjpevTJnzhzMmDEDcXFxYm9KAwMDOfUz5erqigMHDmDp0qWso9TYy5cv8eTJk0rFs6dPn+LVq1eMUtWMQCDA3bt3qzzy2KdPH0apJKejowNlZWXWMb6pbt26iX7HuWbo0KHIzMyEv78/0tLSIBQKMXLkSPzyyy9SvfPsQ+Xl5UhLS6tUPEtLS6v0O0IIIYQbaOcZIYRIKa5PT/sYn89HQkICBAIBLCwsOHOkq64JDQ3Fpk2bkJaWBgBo27YtPDw8YG9vzziZ5Dw8PLBnzx506NABHTp0gJycnNjzXGi27+joiKioKKxfv16skLlgwQL06dMHwcHBjBNKJjY2FhMmTMD9+/fx8Z+UPB4PFRUVjJJJ7vTp0/Dz80NAQAD09fVZx5FYeHi4xNdybfcZ182dOxdBQUH47bffxH6/fXx84OjoyInXKEIIIeKoeEYIIVKqLk1PI+RbsrGx+eRzPB4Ply5dqsU0NVNcXIz58+cjMDAQZWVlAIAGDRpgypQpWLt2LZSUlBgnlEynTp1gamqK5cuXVzm84cMm6tIqPz8f9vb2uHz5MhQVFSsVY6X1iLyMjIzYYx6PV2UBEwAniph1iUAgwLp167Bp0ybk5uYCALS1teHh4YF58+aJ+qARQgjhDjq2SQghUorL09Pmzp0r8bX0CTyprg8b73OVoqIitm7dirVr14LP50MoFMLExIQzRbP3MjMzERYWBhMTE9ZRamz8+PF49OgRVq9ejWbNmnFmYMCHx/8uXLiARYsWYfXq1ejevTt4PB6uXbuGJUuWYPXq1QxT1j/l5eXYv38/HB0dsXDhQrx8+RIAaFAAIYRwHBXPCCFESnF5elpCQoLY47i4OFRUVIj6v2RkZEBWVhadO3dmEY/UIQ8fPgSPx+Ps5FYlJSV06NCBdYwa69q1K+7evcvp4tm1a9cQExODjh07so5SY3PmzEFAQAB69eolWhs8eDAUFRUxbdo00TFt8v01aNAAM2bMEP1/TkUzQgipG6h4RgghUsrHx0f0/bhx46Crq4urV69yYnrahzuDNmzYAGVlZQQHB0NdXR0A8N9//8HZ2Rm9e/dmFZFwmEAgwMqVK7F+/Xq8fv0aAKCsrIx58+bh999/r3ScjXw/s2fPxrx585CXlwdzc/NKRx65UBhs06YNSkpKWMf4Knw+v8ojsqqqqrh3717tB6rnunbtioSEBE710COEEPJ51POMEELId6Wjo4Nz585VmiqYkpKCQYMG4fHjx4ySEa769ddfsWvXLixfvhw9e/aEUCjE1atXsWzZMkydOhWrVq1iHbHeqKpQ+b73FlcGBpw7dw7Lly/HqlWrqiwAcmHnUJ8+fSAnJ4d9+/ZBW1sbAJCXl4dJkybh7du3iIqKYpywfjl8+DAWL14MT09PdO7cudJxbC4UlQkhhIij4hkhhEgpWVlZ9OnTB0eOHIGGhoZo/cmTJ2jRogUn3pQC73YE/f333+jfv7/Y+qVLlzBy5Ei8evWKUTLCVS1atEBAQEClHZh///03Zs6ciUePHjFKVv/cv3//s89zYefN+wLgx73OuFQAvHv3LkaPHo309HTo6ekBAHJycmBqaorjx49L/bFaCwsLiXvNxcfHf+c0X68uFJUJIYSIo2ObhBAipYRCId68eQMrKyuEh4ejffv2Ys9xxejRo+Hs7Iz169ejW7duAIDY2FgsWLAAY8aMYZyufqmoqEBQUBAuXryIp0+fijUcB8CJKZXAu+mHbdq0qbTepk0bqZ2MWFdxoTj2JXVhAIWJiQmSk5Nx/vx53LlzB0KhEGZmZhg4cCAnBiCMGjVK9H1paSm2bt0KMzMzdO/eHcC7fzNu376NmTNnMkpYPdnZ2awjEEII+cZo5xkhhEgpWVlZPHz4ED4+Pti9ezf27t2LkSNHcm7nWXFxMebPn4/AwECUlZUBeNdQecqUKVi7di3npgtymZubG4KCgjBs2DBoa2tXelO9ceNGRsmqp2vXrujatSv8/PzE1mfPno0bN24gNjaWUbLPCw8Pl/haae9r+LHU1FTk5OTg7du3Yutcuw/CnqurK7S1tbFixQqxdW9vbzx48ACBgYGMkhFCCKnPqHhGCCFSSkZGBnl5edDS0sL27dvh7u6OJUuWwNXVFTo6Opwpnr1XVFQEPp8PoVAIExMTKpox0LRpU+zZswdDhw5lHeWrREVFYdiwYdDT00P37t3B4/Fw7do1PHjwAKdOnZLaQRSSDjLg0rGurKwsjB49Grdu3RIdSwP+7wgkV+6joKAAu3btQlpaGng8HszMzODi4lJlE35p4efnh2nTpkFeXr5SIflj7u7utZTq66mqquLmzZto1aqV2HpmZiasrKxQWFjIKFn17N27FwEBAcjOzkZMTAz09fXh6+sLQ0NDjBw5knU8Qggh1UTFM0IIkVIfFs8AIDIyEuPGjYOFhQUuXbrEmTelRHq0aNECkZGRMDU1ZR3lqz1+/Bh//fWX2BG1mTNnokWLFqyj1SvDhw+HrKwsduzYASMjI1y/fh3Pnz/HvHnzsG7dOqktZH7o5s2bGDx4MBQUFNClSxcIhULcvHkTJSUlOHfuHCwtLVlHrJKhoSFu3ryJJk2awNDQ8JPX8Xg8ZGVl1WKyr9O8eXOsWbMGzs7OYuu7d+/G4sWL8eTJE0bJPu3s2bPo1q2bqNjq7+8PLy8vzJkzB6tWrUJKSgqMjIwQFBSE4ODgOnFUmBBC6hsqnhFCiJT68I3Re3fv3sXw4cORkZFBxTNSbevXr0dWVha2bNnCiT5I1fXgwQN4e3vTsa5a1LRpU1y6dAkdOnSAqqoqrl+/jtatW+PSpUuYN28eEhISWEf8ot69e8PExAQ7duxAgwbv2gGXl5fD1dUVWVlZuHz5MuOE9YuPjw+WLVsGV1dXsT6ZgYGB8PLywuLFixknrCw4OBhr167FmTNn0LJlS5iZmWH16tUYNWoUlJWVkZSUBCMjI6SkpKBfv3549uwZ68iEEEKqiYpnhBDCMaWlpXjy5EmdaNRNatfo0aMREREBDQ0NtGvXDnJycmLPHz16lFGybyMpKQmWlpacKSwXFRUhKiqqyl5hXDlmp66ujri4OBgZGcHY2Bg7d+6EjY0N+Hw+zM3NUVxczDriFykoKCAhIaHSEIrU1FRYWVlx4h7qmtDQUGzatAlpaWkAgLZt28LDwwP29vaMk33a0aNH4eXlhZSUFCgoKODOnTvQ19cXK55lZmaiQ4cOKCkpYR2XEEJINdG0TUII4Rh5eXkqnJEaUVNTw+jRo1nHIAASEhIwdOhQFBcXo6ioCBoaGnj27BkUFRWhpaXFmeJZ+/btkZycDCMjI3Tt2hV//vknGjZsiO3bt8PIyIh1PImoqKggJyenUvHswYMHUFZWZpSqesaNGwcrK6tKu7LWrl2L69ev4/Dhw4yS1Yy9vb1UF8qqMmbMGFhYWAB4t3M8MTGx0r/Vp0+fhpmZGYt4hBBCvhIVzwghRIpoaGggIyMDTZs2hbq6+meP1r148aIWk5G6YPfu3awjkP/P09MTw4cPh7+/P9TU1BAbGws5OTlMnDgRHh4erONJbMmSJSgqKgIArFy5Ej/88AN69+6NJk2a4NChQ4zTSeann37ClClTsG7dOvTo0QM8Hg/R0dFYsGABxo8fzzqeRKKiouDt7V1p3c7ODuvWrWOQqH5633tuwYIFmDVrFkpLSyEUCnH9+nWEhIRgzZo12LlzJ+OUhBBCaoKKZ4QQIkU2btwo2ung6+vLNsw3xOfz4evrK5pk9/4IjrGxMeto9VJ+fj7S09PB4/FgamoKTU1N1pHqncTERGzbtg2ysrKQlZXFmzdvYGRkhD///BNOTk4YM2YM64gSGTx4sOh7IyMjpKam4sWLF18s/kuTdevWgcfjwdHREeXl5QAAOTk5zJgxAz4+PozTSeb169do2LBhpXU5OTm8fPmSQaKaq6iowMaNGxEaGlrlkWYufHDk7OyM8vJyLFy4EMXFxZgwYQJ0dHSwadMm/Pzzz6zjEUIIqQHqeUYIIeS7Onv2LEaMGIFOnTqhZ8+eEAqFuHbtGpKSknDixAnY2tqyjlhvFBUVYfbs2dizZw8EAgEAQFZWFo6Ojti8eTMUFRUZJ/y8LxWUCgoKEBUVxYmeZ5qamrh69SpMTU3RunVr+Pn5YfDgwbhz5w4sLS0502ersLAQFRUV0NDQEFt/8eIFGjRoABUVFUbJqq+4uBh8Ph9CoRAmJiZS//vwIWtrawwfPhxeXl5i68uWLcOJEycQFxfHKFn1eXl5YefOnZg7dy6WLl2K33//Hffu3cPx48fh5eXFmSPN7z179gwCgUA0OZsQQgg3UfGMEEKkSHV2CHDlTamFhQUGDx5caQfH4sWLce7cOcTHxzNKVvf5+vrC3NwcAwYMAABMnz4dFy5cwJYtW9CzZ08AQHR0NNzd3WFrawt/f3+Wcb/I2dlZouu4cDx10KBBmDx5MiZMmIBffvkFCQkJcHd3x969e/Hff//h33//ZR1RIkOGDMHw4cMxc+ZMsfWAgACEh4fj1KlTjJLVL+Hh4Rg7diwmTJiA/v37AwAuXryIkJAQHD58GKNGjWIbsBqMjY3h5+eHYcOGQVlZGYmJiaK12NhYHDhwgHVEiT19+lS0y7d169a0y5cQQjiMimeEECJFZGRkvnjUSSgUgsfjcWJ3DfBuwMGtW7fQqlUrsfWMjAx06NABpaWljJLVfXFxcbC3t8eyZcswadIkNG3aFGFhYejXr5/YdREREbC3t0d+fj6boPXQzZs38erVK9jY2CA/Px9OTk6Ijo6GiYkJdu/ejY4dO7KOKBENDQ1cvXoVbdu2FVu/c+cOevbsiefPnzNKJrmioiL4+Pjg4sWLePr0qWhX5ntZWVmMklXPyZMnsXr1aiQmJkJBQQEdOnSAt7c3+vbtyzpatSgpKSEtLQ16enrQ1tbGyZMnYWlpiaysLFhYWKCwsJB1xC96+fIlZs2ahZCQELFdvj/99BP++usvqKqqMk5ICCGkuqjnGSGESJGIiAjWEb45TU1NJCYmViqeJSYm0jGW76xz5874999/4eTkhEmTJqG4uBjNmjWrdJ2WlhZnjgnWFVZWVqLvNTU1ObtD682bN6I+YR8qKytDSUkJg0TV5+rqiqioKEyaNAna2tqc6dX2sWHDhmHYsGGsY3y1li1bIjc3F3p6ejAxMcG5c+dgaWmJGzduoFGjRqzjScTV1RWJiYk4efIkunfvDh6Ph2vXrsHDwwNTp05FaGgo64iEEEKqiXaeEUII+a7++OMPbNy4EYsXLxabZPe///0P8+bNw5IlS1hHrDcGDBiAJk2aYM+ePZCXlwcAlJSUwMnJCS9evMCFCxcYJyRc069fP5ibm2Pz5s1i67NmzUJycjKuXLnCKJnk1NTUcPLkSdFRZi6Li4sTDWYxMzODhYUF60jVtnjxYqioqOC3335DWFgYxo8fDwMDA+Tk5MDT05MTQxyUlJRw9uxZ9OrVS2z9ypUrsLOzE02oJYQQwh1UPCOEEClXXFxc5cSxDh06MEpUPUKhEL6+vli/fj0eP34MAGjRogUWLFgAd3d3zu7y4KKUlBTY2dmhtLQUHTt2BI/HQ2JiIuTl5XH27Fm0a9eOdUTCMVevXsXAgQNhbW0t6q138eJF3LhxA+fOnUPv3r0ZJ/wyQ0NDnDp1qtLRUy55+vQpfv75Z0RGRkJNTQ1CoRCFhYWwsbHBwYMHOd1rKzY2FteuXYOJiQlGjBjBOo5E9PT0cPLkSZibm4utJycnY+jQoXj48CGjZIQQQmqKimeEECKl8vPz4ezsjNOnT1f5PFd6nn3o1atXAABlZWXGSeqvkpIS7Nu3D3fu3IFQKISZmRkcHBygoKDAOhrhqMTERKxdu1as19avv/5a6ai2tNq3bx/+/vtvBAcHc2rC5od++ukn8Pl87N27V1QETE1NhZOTE0xMTBASEsI4Yf2yfft2HD58GHv27IG2tjYAIC8vD05OThgzZgymT5/OOCEhhJDqouIZIYRIKQcHB9y7dw++vr6wsbHBsWPH8OTJE6xcuRLr16+vE71tCCGENQsLC/D5fAiFQhgYGEBOTk7seS5MBFZVVcWFCxdgbW0ttn79+nUMGjQIBQUFbIJJKDw8XOJrubD7zMLCAnfv3sWbN2+gp6cHAMjJyUGjRo0qFZW58PNFCCGEBgYQQojUunTpEv7++29YW1tDRkYG+vr6sLW1hYqKCtasWcOZ4tmTJ08wf/580SS7jz+z4eIOOi4JDw/HkCFDICcn98U3qFx4U0rYe/nypcTXqqiofMck38aoUaNYR/hqAoGgUtEPAOTk5CpND5VGH/834PF4lf6teH/Enwv/ZtSFnylCCCHiaOcZIYRIKRUVFSQnJ8PAwAAGBgbYv38/evbsiezsbLRr144z0xGHDBmCnJwcuLm5VTnJbuTIkYyS1Q8yMjLIy8uDlpYWZGRkPnkdj8fjxJvSuiQqKgrr1q0TNXhv27YtFixYIPV9wmRkZL7Yq1AoFNLPVC0aOXIkCgoKEBISghYtWgAAHj16BAcHB6irq+PYsWOME0ruwoULWLRoEVavXi02qXLJkiVYvXo1bG1tWUckhBBSD9HOM0IIkVKtW7dGeno6DAwM0KlTJ2zbtg0GBgYICAgQ9VDhgujoaFy5cgWdOnViHaVe+nDXCRd2oNQX+/btg7OzM8aMGQN3d3cIhUJcu3YNAwYMQFBQECZMmMA64idFRESwjvBdcHlS5ZYtWzBy5EgYGBhAV1cXPB4POTk5MDc3x759+1jHq5Y5c+YgICBAbFLl4MGDoaioiGnTpiEtLY1hOkIIIfUV7TwjhBAptX//fpSVlWHy5MlISEjA4MGD8fz5czRs2BBBQUH46aefWEeUiJmZGfbv38+pN6KEfG9t27bFtGnT4OnpKba+YcMG7Nixo04UCBITEzlRNK9LkyrPnz8vNgxk4MCBrCNVm4KCAq5fv17lpMquXbuipKSEUTJCCCH1GRXPCCGEI4qLi3Hnzh3o6emhadOmrONI7Ny5c1i/fr1o5xxhx93dHSYmJnB3dxdb37JlC+7evQtfX182weqhRo0a4fbt2zAxMRFbv3v3Ltq3b4/S0lJGyb5OYWEh9u/fj507dyIpKYkTxzZpUqV06dOnD+Tk5LBv3z6xSZWTJk3C27dvERUVxTghIYSQ+oiKZ4QQIuXevn2L7OxsGBsbo0EDbpy2V1dXF+uJVFRUhPLycigqKlZqav3ixYvajldv6ejoIDw8HJ07dxZbj4+Px4gRI/Dw4UNGyeofExMTLFiwANOnTxdb37ZtG9atW4fMzExGyWrm0qVLCAwMxNGjR6Gvr4+xY8di7NixnNhxytVJlX5+fhJf+3HBXJrdvXsXo0ePRnp6utikSlNTUxw/frxSwZkQQgipDdx4F0YIIfVQcXExZs+ejeDgYABARkYGjIyM4O7ujhYtWmDx4sWME34a7WCSTs+fP4eqqmqldRUVFTx79oxBovpr3rx5cHd3R2JiInr06AEej4fo6GgEBQVh06ZNrONJ5OHDhwgKCkJgYCCKiopgb2+PsrIyHDlyBGZmZqzjSYyrkyo3btwo0XU8Ho9TxTMTExMkJydXeQT1S4MqpA0XP/wihBBSNdp5RgghUsrDwwNXr16Fr68v7OzskJycDCMjI4SHh8Pb2xsJCQmsIxKOad++PX755Re4ubmJrW/evBn+/v5ITU1llKx+OnbsGNavXy/qb/Z+2iYXJtAOHToU0dHR+OGHH+Dg4AA7OzvIyspCTk4OSUlJnCqe1aVJlUQ6cPnDL0IIIVWjj0AIIURKHT9+HIcOHUK3bt3EPm03MzMDn89nmKx6Tp06BVlZWQwePFhs/dy5c6ioqMCQIUMYJat/5s6dCzc3N+Tn56N///4AgIsXL2L9+vW0W5CB0aNHY/To0axj1Mi5c+fg7u6OGTNmoFWrVqzjfJW6NKmSqzud/Pz8MG3aNMjLy3/xOCoXdtH9+uuvSEpKQmRkJOzs7ETrAwcOhLe3NxXPCCGEg7jzryohhNQz+fn50NLSqrReVFTEqaMrixcvho+PT6V1gUCAxYsXU/GsFrm4uODNmzdYtWoVVqxYAQAwMDCAv78/HB0dGaerv16/fl3peKCKigqjNJK5cuUKAgMDYWVlhTZt2mDSpEmcmQD8MV1dXcTHx3N6UiXXdzpt3LgRDg4OkJeX/+xxVK4cQa0rH34RQgj5PzKsAxBCCKmatbU1Tp48KXr8/g/wHTt2oHv37qxiVVtmZmaVR7jatGmDu3fvMkhUv82YMQMPHz7EkydP8PLlS2RlZVHhjIHs7GwMGzYMSkpKUFVVhbq6OtTV1aGmpgZ1dXXW8b6oe/fu2LFjB3JzczF9+nQcPHgQOjo6EAgEOH/+PF69esU6osT27NmDN2/ewNbWFrNnz4a7uzsGDhyIt2/fYs+ePazjSeTDnU7y8vKi9YEDB+LQoUMMk0kmOzsbTZo0EX3/qa+srCzGSSVTVz78IoQQ8n+o5xkhhEipa9euwc7ODg4ODggKCsL06dNx+/ZtxMTEICoqqtLERGnVvHlzHDhwQHRM8L0LFy5gwoQJePr0KaNkhLDTo0cPAO96GzZr1qzSG+q+ffuyiPVV0tPTsWvXLuzduxcFBQWwtbVFeHg461hfJCsri9zc3ErFjufPn0NLSwsVFRWMkklOX19ftNNJWVkZSUlJMDIywt27d2FpaYmXL1+yjliv9O3bF+PGjcPs2bOhrKyM5ORkGBoaws3NDXfv3sWZM2dYRySEEFJNdGyTEEKkVI8ePXDt2jWsXbsWxsbGOHfuHCwtLRETEwNzc3PW8SQ2YsQIzJkzB8eOHYOxsTEA4O7du5g3bx5GjBjBOF39ExYWhtDQUOTk5ODt27diz8XHxzNKVf8kJycjLi4OrVu3Zh3lm2ndujX+/PNPrFmzBidOnEBgYCDrSBIRCoVV7gZ6+PBhldNppVFd2uk0btw4WFlZVTpqunbtWly/fh2HDx9mlExya9asgZ2dHVJTU1FeXo5NmzaJffhFCCGEe+jYJiGESKGysjI4OztDUVERwcHBSElJQWpqKvbt28epwhnw7g2PkpIS2rRpA0NDQxgaGqJt27Zo0qQJ1q1bxzpeveLn5wdnZ2doaWkhISEBXbp0QZMmTZCVlUW952qZtbU1Hjx4wDrGdyErK4tRo0ZJ/a4zCwsLWFpagsfjYcCAAbC0tBR9dezYEb179+ZM37O6cswfAKKiojBs2LBK63Z2drh8+TKDRNXXo0cPXL16FcXFxaIPv5o1a4aYmBjO7BonhBAijnaeEUKIFJKTk8OxY8ewdOlS1lG+mqqqKq5du4bz588jKSkJCgoK6NChA/r06cM6Wr2zdetWbN++HePHj0dwcDAWLlwIIyMjeHl54cWLF6zj1Ss7d+7EL7/8gkePHqF9+/aQk5MTe75Dhw6MktUfo0aNAgAkJiZi8ODBaNy4sei5hg0bwsDAAGPHjmWUrnrq0k6n169fo2HDhpXW5eTkOHX81NzcXDTAgRBCCPdRzzNCCJFSzs7OMDc3x9y5c1lH+WZKS0vRqFEjzh0jqisUFRWRlpYGfX19aGlp4fz58+jYsSMyMzPRrVs3PH/+nHXEeiM2NhYTJkzAvXv3RGs8Hk90hJALfbbqiuDgYPz0009ijfa5IjExEZ06dQIA3Lp1C+vWrUNcXBwEAgEsLS2xaNEizu1Wtra2xvDhw+Hl5SW2vmzZMpw4cQJxcXGMkn1edQp70j5NlxBCSGW084wQQqSUiYkJVqxYgWvXrqFz585QUlISe97d3Z1RsuoRCARYtWoVAgIC8OTJE2RkZMDIyAhLly6FgYEBpkyZwjpivdG8eXM8f/4c+vr60NfXR2xsLDp27Ijs7GzQZ2m1y8XFBRYWFggJCalyYACpPU5OTqwj1JilpSUsLCzg6uqKCRMm1ImdTkuXLsXYsWPB5/NFg2YuXryIkJAQqe53pqamJvHvMRXHCSGEe2jnGSGESClDQ8NPPsfj8ZCVlVWLaWrujz/+QHBwMP744w9MnToVKSkpMDIyQmhoKDZu3IiYmBjWEesNV1dX6OrqwtvbGwEBAZg7dy569uyJmzdvYsyYMdi1axfriPWGkpISkpKSYGJiwjpKvScjI/PZooc0FzpiYmIQGBiI0NBQlJWVYezYsXBxcYGNjQ3raF/l5MmTWL16NRITE0VH/b29vaV6Cu2Hx2Pv3buHxYsXY/LkyaKeczExMQgODsaaNWs4XbAlhJD6iopnhBBCvisTExNs27YNAwYMgLKyMpKSkmBkZIQ7d+6ge/fu+O+//1hHrDcEAgEEAgEaNHi38Tw0NBTR0dEwMTHBL7/8UmWfIfJ9DB8+HJMnT+ZMT6267Pjx42LFs7KyMiQkJCA4OBjLly/nxO7YkpIShIaGYvfu3bhy5QoMDAzg4uICJycntGzZknW8emfAgAFwdXXF+PHjxdYPHDiA7du3IzIykk0wQgghNUbFM0IIId+VgoIC7ty5A319fbHiWWpqKrp06YLXr1+zjkhIrdu+fTtWrlwJFxcXmJubVxoYMGLECEbJyHsHDhzAoUOH8Pfff7OOUi18Ph+7d+/Gnj17kJubC1tbW5w6dYp1rGqLi4tDWloaeDwezMzMYGFhwTqSxBQVFZGUlIRWrVqJrWdkZKBTp04oLi5mlIwQQkhNUfGMEELId2VlZYU5c+Zg4sSJYsWz5cuX48KFC7hy5QrriHVacnKyxNfShMfaIyMj88nnaGCAdODz+ejQoQOKiopYR6m2169fY//+/fjtt99QUFDAqZ+np0+f4ueff0ZkZCTU1NQgFApRWFgIGxsbHDx4EJqamqwjflHr1q3xww8/YP369WLr8+bNwz///IP09HRGyQghhNQUDQwghBDyXbi4uGDTpk3w9vbGpEmT8OjRIwgEAhw9ehTp6enYs2cP/vnnH9Yx67xOnTqJpjh+DhVsapdAIGAdgXxGSUkJNm/ezLkjj1FRUQgMDMSRI0cgKysLe3t7Thw7/dDs2bPx8uVL3L59G23btgUApKamwsnJCe7u7ggJCWGc8Ms2btyIsWPH4uzZs+jWrRuAdxN2+Xw+jhw5wjgdIYSQmqCdZ4QQQr4LWVlZ5ObmQktLC2fPnsXq1asRFxcHgUAAS0tLeHl5YdCgQaxj1nn379+X+Fp9ff3vmIQQ6aSuri7W80woFOLVq1dQVFTEvn37pP4I7YMHDxAUFISgoCBkZ2ejR48emDJlCuzt7StNaeYCVVVVXLhwAdbW1mLr169fx6BBg1BQUMAmWDU9fPgQ/v7+SEtLg1AohJmZGX755Rfo6uqyjkYIIaQGqHhGCCHku5CRkUFeXh60tLRYRyFEKvj5+WHatGmQl5eHn5/fZ691d3evpVQkODhY7LGMjAw0NTXRtWtXqKurM0olGVtbW0REREBTUxOOjo5wcXFB69atWcf6KsrKyrhy5Qo6deoktp6QkIC+ffvi5cuXbIIRQgip16h4RgghUuzKlSvYtm0b+Hw+wsLCoKOjg71798LQ0BC9evViHe+zZGRk8OTJE070p6lP9u7di4CAAGRnZyMmJgb6+vrw9fWFoaEhRo4cyTpenWZoaIibN2+iSZMmMDQ0/OR1PB4PWVlZtZiMfEpiYmKlIo40GTFiBKZMmYIffvgBsrKyrON8EyNHjkRBQQFCQkLQokULAMCjR4/g4OAAdXV1HDt2jHFCQggh9dGnu9USQghh6siRIxg8eDAUFBSQkJCAN2/eAABevXqF1atXM04nGVNTU2hoaHz2i9Qef39/zJ07F0OHDhVrIq6mpgZfX1+24eqB7OxsNGnSRPT9p76ocMZWYWEhtm7dCktLS3Tu3Jl1nM8KDw/HyJEj60zhDAC2bNmCV69ewcDAAMbGxjAxMYGhoSFevXqFzZs3s45HCCGknqKdZ4QQIqUsLCzg6ekJR0dHsSmViYmJsLOzQ15eHuuInyUjIwNfX1+oqqp+9jonJ6daSkTMzMywevVqjBo1SuxnKiUlBf369cOzZ89YR6w3SkpKoKCgUOVzubm50NbWruVE5NKlSwgMDMTRo0ehr6+PsWPHYuzYsbCwsGAdrV46f/487ty5I+oXNnDgQNaRCCGE1GM0bZMQQqRUeno6+vTpU2ldRUWFMw2Tf/75Z+p5JkWys7OrLAQ0atQIRUVFDBLVXxYWFjhw4AAsLS3F1sPCwjBjxgzk5+czSla/PHz4EEFBQQgMDERRURHs7e1RVlaGI0eOwMzMjHW8es3W1ha2trasYxBCCCEAqHhGCCFSS1tbG3fv3oWBgYHYenR0NIyMjNiEqoYPp9cR6WBoaIjExMRKUzVPnz5NhYJaZmtrix49emDZsmVYtGgRioqK4ObmhsOHD8PHx4d1vHph6NChiI6Oxg8//IDNmzfDzs4OsrKyCAgIYB2t3vnSAI0P0TANQgghLFDxjBBCpNT06dPh4eGBwMBA8Hg8PH78GDExMZg/fz68vLxYx/si6gogfRYsWIBZs2ahtLQUQqEQ169fR0hICNasWYOdO3eyjlevbN68GcOGDYOzszNOnjyJx48fQ0VFBTdu3KBCZi05d+4c3N3dMWPGDLRq1Yp1nHpt48aNEl3H4/GktnhmYWEh8YdG8fHx3zkNIYSQb42KZ4QQIqUWLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY73RQKBgHUE8hFnZ2eUl5dj4cKFKC4uxoQJE6Cjo4NNmzbh559/Zh2v3hk0aBDGjBkDf39/NGjQACdOnKDCWS26cuUKAgMDYWVlhTZt2mDSpEn46aefWMeql7Kzs1lH+GqjRo0SfV9aWoqtW7fCzMwM3bt3BwDExsbi9u3bmDlzJqOEhBBCvgYNDCCEEClXXFyM1NRUCAQCmJmZoXHjxqwjkTrg2bNnEAgEop50jx49go6ODuNU9Qefz8eECROQl5eHnTt3IioqCuvWrYO7uztWrVoFOTk51hHrjeLiYhw8eBCBgYG4fv06KioqsGHDBri4uEBZWZl1vHrr7du3yM7OhrGxMRo04Nbn/a6urtDW1saKFSvE1r29vfHgwQMEBgYySkYIIaSmqHhGCCEc8fLlS1y6dAmtW7dG27ZtWcchdUReXh5WrVqFnTt3oqSkhHWcekNZWRnDhg1DQEAA1NTUAADXrl0TTddNSEhgG7CeSk9Px65du7B3714UFBTA1tYW4eHhrGPVK8XFxZg9ezaCg4MBABkZGTAyMoK7uztatGiBxYsXM074Zaqqqrh582al48CZmZmwsrJCYWEho2SEEEJqSoZ1AEIIIVWzt7fHli1bAAAlJSWwtraGvb09OnTogCNHjjBOR7ikoKAADg4O0NTURIsWLeDn5weBQAAvLy8YGRkhNjaWdkLUsq1bt+LgwYOiwhkA9OjRAwkJCZUmcJLa07p1a/z55594+PAhQkJCWMepl3799VckJSUhMjIS8vLyovWBAwfi0KFDDJNJTkFBAdHR0ZXWo6Ojxe6JEEIId9DOM0IIkVLNmzfH2bNn0bFjRxw4cADe3t5ISkpCcHAwtm/fTjtTiMRmzpyJEydO4KeffsKZM2eQlpaGwYMHo7S0FN7e3ujbty/riIQQAgDQ19fHoUOH0K1bNygrKyMpKQlGRka4e/cuLC0t8fLlS9YRv8jHxwfLli2Dq6srunXrBgCiDym8vLw4sXuOEEKIOG41ECCEkHqksLAQGhoaAIAzZ85g7NixUFRUxLBhw7BgwQLG6QiXnDx5Ert378bAgQMxc+ZMmJiYwNTUFL6+vqyj1XupqanIycnB27dvRWs8Hg/Dhw9nmIoQdvLz80W9GD9UVFQk8TRL1hYvXgwjIyNs2rQJBw4cAAC0bdsWQUFBsLe3Z5yOEEJITVDxjBBCpJSuri5iYmKgoaGBM2fO4ODBgwCA//77j459kGp5/PixaIqjkZER5OXl4erqyjhV/VJYWAhVVVXR46ysLIwZMwbJycng8Xh4fxDgfXGgoqKCSU5CWLO2tsbJkycxe/ZsAP/3O7Fjxw7R5EousLe3p0IZIYTUIVQ8I4QQKTVnzhw4ODigcePG0NfXR79+/QAAly9fhrm5OdtwhFMEAoHY9EZZWVkoKSkxTFT/+Pn5QV5eXrRr1MPDA7q6ujh79iw6deqEf//9F9nZ2Zg/fz42bNjAOC0h7KxZswZ2dnZITU1FeXk5Nm3ahNu3byMmJgZRUVGs4xFCCKmnqOcZIYRIsbi4OOTk5MDW1haNGzcG8O4InpqaGnr27Mk4HeEKGRkZDBkyBI0aNQIAnDhxAv37969UQDt69CiLePXC06dPMWnSJJiYmOCvv/5C06ZNcfHiRXTs2BE6Ojq4fv06dHR0cPHiRcyfP596GpJ6JzExEZ06dQIA3Lp1C+vWrUNcXBwEAgEsLS2xaNEiznxwVFFRgY0bNyI0NLTSsWwAePHiBaNkhBBCaop2nhFCiBTr3LkzOnfuLLY2bNgwRmkIVzk5OYk9njhxIqMk9ZeWlhbOnj2LNWvWAHj35lpZWRkA0LRpUzx+/Bg6OjowMDBAeno6y6iEMGFpaQkLCwu4urpiwoQJCA4OZh2pxpYvX46dO3di7ty5WLp0KX7//Xfcu3cPx48fh5eXF+t4hBBCaoB2nhFCCCGE1LLevXtj7ty5GD16NKZNm4b8/HwsWLAAAQEBiI+PR0pKCuuIhNSqmJgYBAYGIjQ0FGVlZRg7dixcXFxgY2PDOlq1GRsbw8/PD8OGDYOysjISExNFa7GxsaIhAoQQQriDimeEEEIIIbXs7NmzePXqFcaNG4cHDx5g2LBhSElJgYaGBkJDQ9G/f3/WEQlhoqSkBKGhodi9ezeuXLkCAwMDuLi4wMnJCS1btmQdTyJKSkpIS0uDnp4etLW1cfLkSVhaWiIrKwsWFhYoLCxkHZEQQkg1ybAOQAghhBBS3wwePBjjxo0D8G6ybnJyMp49e4anT59S4YzUawoKCnByckJkZCQyMjIwfvx4bNu2DYaGhhg6dCjreBJp2bIlcnNzAQAmJiY4d+4cAODGjRui3pOEEEK4hXaeEUIIIYQQQqTS69evsX//fvz2228oKChARUUF60hftHjxYqioqOC3335DWFgYxo8fDwMDA+Tk5MDT0xM+Pj6sIxJCCKkmKp4RQogUu3LlCrZt2wY+n4+wsDDo6Ohg7969MDQ0RK9evVjHI4TUUGlpKTZv3oyIiAg8ffoUAoFA7Pn4+HhGyQiRDlFRUQgMDMSRI0cgKysLe3t7TJkyBd26dWMdrdpiY2Nx7do1mJiYYMSIEazjEEIIqQGatkkIIVLqyJEjmDRpEhwcHJCQkIA3b94AAF69eoXVq1fj1KlTjBMSQmrKxcUF58+fx7hx49ClSxfweDzWkQhh7sGDBwgKCkJQUBCys7PRo0cPbN68Gfb29lBSUmIdr8a6devGyaIfIYSQ/0M7zwghREpZWFjA09MTjo6OUFZWRlJSEoyMjJCYmAg7Ozvk5eWxjkgIqSFVVVWcOnUKPXv2ZB2FEKlga2uLiIgIaGpqwtHRES4uLmjdujXrWBILDw+X+FrafUYIIdxDO88IIURKpaeno0+fPpXWVVRUUFBQUPuBCCHfjI6ODpSVlVnHIERqKCgo4MiRI/jhhx8gKyvLOk61jRo1Suwxj8fDx3sU3u8w5ULfNkIIIeJo2iYhhEgpbW1t3L17t9J6dHQ0jIyMGCQihHwr69evx6JFi3D//n3WUQiRCuHh4Rg5ciQnC2cAIBAIRF/nzp1Dp06dcPr0aRQUFKCwsBCnT5+GpaUlzpw5wzoqIYSQGqCdZ4QQIqWmT58ODw8PBAYGgsfj4fHjx4iJicH8+fPh5eXFOh4h5CtYWVmhtLQURkZGUFRUhJycnNjzL168YJSMEPK15syZg4CAALHBPoMHD4aioiKmTZuGtLQ0hukIIYTUBBXPCCFESi1cuBCFhYWwsbFBaWkp+vTpg0aNGmH+/Plwc3NjHY8Q8hXGjx+PR48eYfXq1WjWrBkNDCCkDuHz+VBVVa20rqqqinv37tV+IEIIIV+NBgYQQoiUKy4uRmpqKgQCAczMzNC4cWPWkQghX0lRURExMTHo2LEj6yiEkG+sT58+kJOTw759+6CtrQ0AyMvLw6RJk/D27VtERUUxTkgIIaS6aOcZIYRIOUVFRVhZWbGOQQj5htq0aYOSkhLWMQgh30FgYCBGjx4NfX196OnpAQBycnJgamqK48ePsw1HCCGkRmjnGSGESCkbG5vPHuW6dOlSLaYhhHxL586dw/Lly7Fq1SqYm5tX6nmmoqLCKBkh5FsQCoU4f/487ty5A6FQCDMzMwwcOJCOaBNCCEdR8YwQQqSUp6en2OOysjIkJiYiJSUFTk5O2LRpE6NkhJCvJSPzbuD5x2+khUIheDweKioqWMQihBBCCCFVoGObhBAipTZu3Fjl+rJly/D69etaTkMI+ZYiIiJYRyCEfEN+fn6YNm0a5OXl4efn99lr3d3daykVIYSQb4V2nhFCCMfcvXsXXbp0wYsXL1hHIYQQQggAQ0ND3Lx5E02aNIGhoeEnr+PxeMjKyqrFZIQQQr4F2nlGCCEcExMTA3l5edYxCCGEEPL/ZWdnV/k9IYSQuoGKZ4QQIqXGjBkj9lgoFCI3Nxc3b97E0qVLGaUihBBCCCGEkPpFhnUAQgghVVNVVRX70tDQQL9+/XDq1Cl4e3uzjkcIIYSQKowbNw4+Pj6V1teuXYsff/yRQSJCCCFfi3qeEUIIIYQQQsg3oqmpiUuXLsHc3Fxs/datWxg4cCCePHnCKBkhhJCaomObhBBCCCGM5OfnIz09HTweD6amptDU1GQdiRDylV6/fo2GDRtWWpeTk8PLly8ZJCKEEPK16NgmIYRIKXV1dWhoaEj0RQjhlqKiIri4uKBFixbo06cPevfujRYtWmDKlCkoLi5mHY8Q8hXat2+PQ4cOVVo/ePAgzMzMGCQihBDytWjnGSGESKmlS5di5cqVGDx4MLp37w7g3aTNs2fPYunSpVQ0I4TD5s6di6ioKISHh6Nnz54AgOjoaLi7u2PevHnw9/dnnJAQUlNLly7F2LFjwefz0b9/fwDAxYsXERISgsOHDzNORwghpCao5xkhhEipsWPHwsbGBm5ubmLrW7ZswYULF3D8+HE2wQghX61p06YICwtDv379xNYjIiJgb2+P/Px8NsEIId/EyZMnsXr1aiQmJkJBQQEdOnSAt7c3+vbtyzoaIYSQGqDiGSGESKnGjRsjMTERJiYmYuuZmZmwsLDA69evGSUjhHwtRUVFxMXFoW3btmLrt2/fRpcuXVBUVMQoGSGEEEII+Rj1PCOEECnVpEkTHDt2rNL68ePH0aRJEwaJCCHfSvfu3eHt7Y3S0lLRWklJCZYvXy46pk0I4ba4uDjs27cP+/fvR0JCAus4hBBCvgL1PCOEECm1fPlyTJkyBZGRkaI307GxsThz5gx27tzJOB0h5Gts2rQJdnZ2aNmyJTp27Agej4fExETIy8vj7NmzrOMRQr7C06dP8fPPPyMyMhJqamoQCoUoLCyEjY0NDh48SFN1CSGEg+jYJiGESLF///0Xfn5+SEtLg1AohJmZGdzd3dG1a1fW0QghX6mkpAT79u3DnTt3RL/fDg4OUFBQYB2NEPIVfvrpJ/D5fOzdu1d0NDs1NRVOTk4wMTFBSEgI44SEEEKqi4pnhBBCCCGEEPKNqKqq4sKFC7C2thZbv379OgYNGoSCggI2wQghhNQY9TwjhBBCCKllwcHBOHnypOjxwoULoaamhh49euD+/fsMkxFCvpZAIICcnFyldTk5OQgEAgaJCCGEfC0qnhFCCCGE1LLVq1eLjmfGxMRgy5Yt+PPPP9G0aVN4enoyTkcI+Rr9+/eHh4cHHj9+LFp79OgRPD09MWDAAIbJCCGE1BQd2ySEEEIIqWWKioq4c+cO9PT0sGjRIuTm5mLPnj24ffs2+vXrh/z8fNYRCSE19ODBA4wcORIpKSnQ1dUFj8dDTk4OzM3N8ffff6Nly5asIxJCCKkmmrZJCCGEEFLLGjdujOfPn0NPTw/nzp0T7TaTl5dHSUkJ43SEkK+hq6uL+Ph4nD9/XmwgyMCBA1lHI4QQUkNUPCOEEEIIqWW2trZwdXWFhYUFMjIyMGzYMADA7du3YWBgwDYcIeSbsLW1ha2tLesYhBBCvgEqnhFCiBS7ceMGDh8+jJycHLx9+1bsuaNHjzJKRQj5Wn/99ReWLFmCBw8e4MiRI2jSpAkAIC4uDuPHj2ecjhBSXX5+fhJf6+7u/h2TEEII+R6o5xkhhEipgwcPwtHREYMGDcL58+cxaNAgZGZmIi8vD6NHj8bu3btZRySEEEIIAENDQ4mu4/F4yMrK+s5pCCGEfGtUPCOEECnVoUMHTJ8+HbNmzYKysjKSkpJgaGiI6dOnQ1tbG8uXL2cdkRDyFa5cuYJt27YhKysLhw8fho6ODvbu3QtDQ0P06tWLdTxCCCGEEPL/ybAOQAghpGp8Pl/UB6lRo0YoKioCj8eDp6cntm/fzjgdIeRrHDlyBIMHD4aCggLi4+Px5s0bAMCrV6+wevVqxukIId/C27dvkZ6ejvLyctZRCCGEfCUqnhFCiJTS0NDAq1evAAA6OjpISUkBABQUFKC4uJhlNELIV1q5ciUCAgKwY8cOyMnJidZ79OiB+Ph4hskIIV+ruLgYU6ZMgaKiItq1a4ecnBwA73qd+fj4ME5HCCGkJqh4RgghUqp37944f/48AMDe3h4eHh6YOnUqxo8fjwEDBjBORwj5Gunp6ejTp0+ldRUVFRQUFNR+IELIN/Prr78iKSkJkZGRkJeXF60PHDgQhw4dYpiMEEJITdG0TUIIkVJbtmxBaWkpgHd/iMvJySE6OhpjxozB0qVLGacjhHwNbW1t3L17FwYGBmLr0dHRMDIyYhOKEPJNHD9+HIcOHUK3bt3A4/FE62ZmZuDz+QyTEUIIqSkqnhFCiJTS0NAQfS8jI4OFCxdi4cKFDBMRQr6V6dOnw8PDA4GBgeDxeHj8+DFiYmIwf/58eHl5sY5HCPkK+fn50NLSqrT+vncpIYQQ7qHiGSGESJGXL19KfK2Kisp3TEII+Z4WLlyIwsJC2NjYoLS0FH369EGjRo0wf/58uLm5sY5HCPkK1tbWOHnyJGbPng0AooLZjh070L17d5bRCCGE1BBPKBQKWYcghBDyjoyMzBc/lRYKheDxeKioqKilVISQ76W4uBipqakQCAQwMzND48aNWUcihHyla9euwc7ODg4ODggKCsL06dNx+/ZtxMTEICoqCp07d2YdkRBCSDXRzjNCCJEiERERrCMQQr6j4uJiLFiwAMePH0dZWRkGDhwIPz8/NG3alHU0QshXSkxMRKdOndCjRw9cvXoV69atg7GxMc6dOwdLS0vExMTA3NycdUxCCCE1QDvPCCGEEEJqyYIFC7B161Y4ODhAXl4eISEh6NevHw4fPsw6GiHkK8nIyMDCwgKurq6YMGECVFVVWUcihBDyjVDxjBBCCCGklhgbG2PVqlX4+eefAQDXr19Hz549UVpaCllZWcbpCCFfIyYmBoGBgQgNDUVZWRnGjh0LFxcX2NjYsI5GCCHkK1HxjBBCCCGkljRs2BDZ2dnQ0dERrSkoKCAjIwO6uroMkxFCvpWSkhKEhoZi9+7duHLlCgwMDODi4gInJye0bNmSdTxCCCE1IMM6ACGEEEJIfVFRUYGGDRuKrTVo0ADl5eWMEhFCvjUFBQU4OTkhMjISGRkZGD9+PLZt2wZDQ0MMHTqUdTxCCCE1QDvPCCGEEEJqiYyMDIYMGYJGjRqJ1k6cOIH+/ftDSUlJtHb06FEW8Qgh38Hr16+xf/9+/PbbbygoKKBp2YQQwkE0bZMQQgghpJY4OTlVWps4cSKDJISQ7y0qKgqBgYE4cuQIZGVlYW9vjylTprCORQghpAZo5xkhhEixsLAwhIaGIicnB2/fvv1/7d1diFZl2wbg8/EvtWIC0RIsM7Vo0krLUIki0yiSyrLpBzR0RCpIs42oQC2CEoLC2ZAoUIv+NAQrzNBMRU0pNSNtFFNDKa3IHDEL0ZlvIz57/Xwn2vhsrXyOAwZmrmdtnFvPxjnXfa8TPtu4cWNBqQCA/2bPnj2ZO3du5s6dm127dmXo0KGpr69PXV3dCdulAPy7uPMMoKQaGhoybty4dOvWLV988UWuueaadOnSJTt37swtt9xSdDwA4D+MGDEivXr1yqxZszJ69Og0NjZm9erVGTdunOIM4F/OsU2Akpo1a1ZeeeWV3HfffXnttdfy+OOP56KLLsq0adOyf//+ouMBAP+hU6dOWbBgQUaOHJm2bdsWHQeA/0eObQKUVOfOndPY2JiePXumW7duWbp0aa644ops3749gwcPzs8//1x0RAAAgNOeY5sAJXXeeecdL8h69uyZdevWJUl27doV//cAAAD4ZyjPAEpq2LBh+eCDD5Ik9fX1mTJlSkaMGJF77rkno0aNKjgdAABAdXBsE6Ckmpub09zcnHbt/riecv78+Vm9enX69OmTBx98MB06dCg4IQAAwOlPeQYAAAAArXBsEwAAAABaoTwDAAAAgFYozwAAAACgFcozAAAAAGiF8gwAAAAAWtGu6AAA/GnAgAGpVCp/69mNGzee4jQAAAAozwBK5I477jj++++//55Zs2altrY2Q4YMSZKsW7cuW7ZsycMPP1xQQgAAgOpSaWlpaSk6BAAnmzBhQrp3755nn332hPn06dOzZ8+ezJ49u6BkAAAA1UN5BlBSNTU1Wb9+ffr27XvCfPv27bn66qvT1NRUUDIAAIDq4YUBACXVqVOnrF69+qT56tWr07FjxwISAQAAVB93ngGU1KOPPpqHHnooGzZsyODBg5P8cefZ7NmzM23atILTAQAAVAfHNgFKbP78+Zk5c2YaGxuTJJdeemkmT56curq6gpMBAABUB+UZAAAAALTCnWcAAAAA0Ap3ngGU1LFjx/LSSy9l/vz52b17d44cOXLC5/v37y8oGQAAQPWweQZQUs8880xefPHF1NXVpampKY899ljuvPPOtGnTJk8//XTR8QAAAKqCO88ASqp3795paGjIrbfemrPPPjubNm06Plu3bl3eeuutoiMCAACc9myeAZTUvn370r9//yTJWWedlaampiTJyJEjs2jRoiKjAQAAVA3lGUBJ9ejRI3v37k2S9OnTJ0uWLEmSfP755znjjDOKjAYAAFA1lGcAJTVq1KgsW7YsSTJ58uRMnTo1ffv2zdixYzN+/PiC0wEAAFQHd54B/EusW7cun376afr06ZPbbrut6DgAAABVQXkGAAAAAK1oV3QAAP70/vvv/+1nbZ8BAACcejbPAEqkTZsTr6KsVCr5v1/TlUolSXLs2LF/LBcAAEC18sIAgBJpbm4+/rNkyZJceeWVWbx4cQ4cOJCmpqYsXrw4AwcOzEcffVR0VAAAgKpg8wygpPr165eXX34511577QnzVatWZeLEiWlsbCwoGQAAQPWweQZQUjt27EhNTc1J85qamnz77bf/fCAAAIAqZPMMoKSuu+66tG/fPm+88Ua6d++eJNm3b1/GjBmTI0eOZOXKlQUnBAAAOP0pzwBK6ptvvsmoUaOybdu2XHDBBUmS3bt35+KLL87ChQvTp0+fghMCAACc/pRnACXW0tKSpUuXZuvWrWlpaUltbW2GDx9+/I2bAAAAnFrKMwAAAABoRbuiAwDwp4aGhkycODEdO3ZMQ0PDXz47adKkfygVAABA9bJ5BlAivXr1yvr169OlS5f06tWr1ecqlUp27tz5DyYDAACoTsozAAAAAGhFm6IDAAAAAEBZKc8ASmr06NGZMWPGSfMXXnghd999dwGJAAAAqo9jmwAl1bVr13zyySfp37//CfOvvvoqw4cPzw8//FBQMgAAgOph8wygpA4dOpQOHTqcNG/fvn0OHjxYQCIAAIDqozwDKKl+/fpl3rx5J83feeed1NbWFpAIAACg+rQrOgAA/93UqVNz1113ZceOHRk2bFiSZNmyZXn77bfz7rvvFpwOAACgOrjzDKDEFi1alOeeey6bNm1Kp06dcvnll2f69Om5/vrri44GAABQFZRnAAAAANAKxzYBSm7Dhg1pbGxMpVJJbW1tBgwYUHQkAACAqqE8AyipH3/8Mffee29WrFiRc845Jy0tLWlqasoNN9yQd955J127di06IgAAwGnP2zYBSuqRRx7JwYMHs2XLluzfvz+//PJLNm/enIMHD2bSpElFxwMAAKgK7jwDKKmampp8/PHHGTRo0Anzzz77LDfddFMOHDhQTDAAAIAqYvMMoKSam5vTvn37k+bt27dPc3NzAYkAAACqj/IMoKSGDRuWyZMn5/vvvz8+++677zJlypTceOONBSYDAACoHo5tApTUnj17cvvtt2fz5s05//zzU6lUsnv37vTv3z/vvfdeevToUXREAACA057yDKDkli5dmq1bt6alpSW1tbUZPnx40ZEAAACqhvIMAAAAAFrRrugAAPypoaHhbz87adKkU5gEAACAxOYZQKn06tXrbz1XqVSyc+fOU5wGAAAA5RkAAAAAtKJN0QEA+GtHjhzJtm3bcvTo0aKjAAAAVB3lGUBJHT58OPX19encuXMuu+yy7N69O8kfd53NmDGj4HQAAADVQXkGUFJPPvlkvvzyy6xYsSIdO3Y8Ph8+fHjmzZtXYDIAAIDq4W2bACW1cOHCzJs3L4MHD06lUjk+r62tzY4dOwpMBgAAUD1sngGU1E8//ZRu3bqdNP/1119PKNMAAAA4dZRnACU1aNCgLFq06Pjf/1uYvfrqqxkyZEhRsQAAAKqKY5sAJfX888/n5ptvztdff52jR49m5syZ2bJlS9auXZuVK1cWHQ8AAKAq2DwDKJlNmzYlSYYOHZo1a9bk8OHD6d27d5YsWZJzzz03a9euzVVXXVVsSAAAgCpRaWlpaSk6BAB/atOmTQYMGJAJEybk/vvvT01NTdGRAAAAqpbNM4CSWbNmTQYOHJgnnngi3bt3z5gxY7J8+fKiYwEAAFQlm2cAJfXbb79l/vz5mTNnTlatWpULL7ww48ePzwMPPJAePXoUHQ8AAKAqKM8A/gV27NiROXPm5PXXX8/evXszYsSIfPjhh0XHAgAAOO0pzwD+JQ4dOpQ333wzTz31VA4cOJBjx44VHQkAAOC0167oAAD8tZUrV2b27NlZsGBB2rZtm7q6utTX1xcdCwAAoCrYPAMooT179mTu3LmZO3dudu3alaFDh6a+vj51dXU588wzi44HAABQNWyeAZTMiBEjsnz58nTt2jVjx47N+PHjc8kllxQdCwAAoCopzwBKplOnTlmwYEFGjhyZtm3bFh0HAACgqjm2CQAAAACtaFN0AAAAAAAoK+UZAAAAALRCeQYAAAAArVCeAQAAAEArlGcAAAAA0ArlGQAAAAC0QnkGAAAAAK34H5+ldikalQeIAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -23095,1196 +19776,377 @@ "

    Tabla de correlaciones con filtro de umbral de correlación

    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alapayloadEmpty weight
    Modelo
    \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", + "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Velocidad a la que se realiza el crucero (KTAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Techo de servicio máximo: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Área del ala: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Relación de aspecto del ala: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Longitud del fuselaje: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Peso máximo al despegue (MTOW): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Alcance de la aeronave: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Autonomía de la aeronave: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad máxima (KIAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad de pérdida (KCAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad de pérdida limpia (KCAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== envergadura: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Cuerda: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== payload: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Empty weight: Sin correlaciones significativas (|r| < 0.7) ===\n", + "La columna 'Nivel de Confianza' no está presente en df_reporte.\n", + "\u001b[1mNo se realizaron imputaciones por correlación en esta iteración.\u001b[0m\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 30.228668858925072 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - AAI Aerosonde = 36.09414654431562 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 4 = 30.466419244333917 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 3 = 27.426371766294327 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator Extended Range = 31.89437620999355 (Similitud)\n", + "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 5000 VTOL octo = 30.290908946357952 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 4 = 9403.635180379342 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Orbiter 3 = 6839.1446057940275 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2600 = 14972.955913461341 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 2930 VTOL = 15999.999999999998 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 VTOL = 16959.091874090493 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL = 16009.435943246384 (Similitud)\n", + "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL octo = 16009.476366047784 (Similitud)\n", + "Imputación final aplicada: Área del ala - Aerosonde Mk. 4.8 VTOL FTUAS = 2.615 (Similitud)\n", + "Imputación final aplicada: Área del ala - Fulmar X = 1.1582832 (Similitud)\n", + "Imputación final aplicada: Área del ala - Orbiter 4 = 1.55 (Similitud)\n", + "Imputación final aplicada: Área del ala - ScanEagle 3 = 1.5499999999999998 (Similitud)\n", + "Imputación final aplicada: Área del ala - RQ Nan 21A Blackjack = 1.55 (Similitud)\n", + "Imputación final aplicada: Área del ala - V32 = 1.0 (Similitud)\n", + "Imputación final aplicada: Área del ala - V35 = 1.0 (Similitud)\n", + "Imputación final aplicada: Área del ala - V39 = 1.0 (Similitud)\n", + "Imputación final aplicada: Área del ala - Volitation VT370 = 1.32 (Similitud)\n", + "Imputación final aplicada: Área del ala - Volitation VT510 = 2.615 (Similitud)\n", + "Imputación final aplicada: Área del ala - Ascend = 0.8200000000000001 (Similitud)\n", + "Imputación final aplicada: Área del ala - Transition = 0.8800000000000001 (Similitud)\n", + "Imputación final aplicada: Área del ala - Reach = 2.615 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Fulmar X = 15.326448834651856 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Orbiter 4 = 12.500000000000002 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - ScanEagle 3 = 12.500000000000002 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - RQ Nan 21A Blackjack = 12.500000000000002 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - V25 = 14.754385964912283 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2600 = 14.75438596491228 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL = 12.5 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL octo = 12.500000000000002 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Volitation VT510 = 12.5 (Similitud)\n", + "Imputación final aplicada: Relación de aspecto del ala - Reach = 12.500000000000002 (Similitud)\n", + "Imputación final aplicada: Longitud del fuselaje - Aerosonde Mk. 4.8 VTOL FTUAS = 3.7167351527516352 (Similitud)\n", + "Imputación final aplicada: Longitud del fuselaje - V39 = 1.4093116957279586 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.8 VTOL FTUAS = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Integrator = 499.99999999999994 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - ScanEagle 3 = 50.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V21 = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - V25 = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT370 = 300.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 2600 = 3270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 VTOL octo = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Volitation VT510 = 800.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Ascend = 270.0 (Similitud)\n", + "Imputación final aplicada: Alcance de la aeronave - Reach = 800.0 (Similitud)\n", + "Imputación final aplicada: Autonomía de la aeronave - Skyeye 5000 VTOL octo = 11.672906868436865 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 42.25267526977939 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Evo = 33.0 (Similitud)\n", + "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 2600 = 30.8342888378733 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 18.90746548752 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V35 = 18.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - V39 = 17.397389995852386 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida (KCAS) - Skyeye 5000 VTOL = 19.109224697504906 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V35 = 18.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V39 = 17.397389995852386 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL octo = 25.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Ascend = 14.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Transition = 10.0 (Similitud)\n", + "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Reach = 25.0 (Similitud)\n", + "Imputación final aplicada: envergadura - Aerosonde Mk. 4.8 VTOL FTUAS = 5.373632590337233 (Similitud)\n", + "Imputación final aplicada: Cuerda - Fulmar X = 0.31819504 (Similitud)\n", + "Imputación final aplicada: Cuerda - Orbiter 4 = 0.352 (Similitud)\n", + "Imputación final aplicada: Cuerda - ScanEagle 3 = 0.3519999999999999 (Similitud)\n", + "Imputación final aplicada: Cuerda - RQ Nan 21A Blackjack = 0.352 (Similitud)\n", + "Imputación final aplicada: Cuerda - V25 = 0.196551724137931 (Similitud)\n", + "Imputación final aplicada: Cuerda - Skyeye 2600 = 0.196551724137931 (Similitud)\n", + "Imputación final aplicada: payload - AAI Aerosonde = 4.0 (Similitud)\n", + "Imputación final aplicada: payload - Fulmar X = 2.4947559999999998 (Similitud)\n", + "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.8 VTOL FTUAS = 31.0 (Similitud)\n", + "Imputación final aplicada: Empty weight - Fulmar X = 17.463292 (Similitud)\n", + "Imputación final aplicada: Empty weight - V35 = 7.1 (Similitud)\n", + "Imputación final aplicada: Empty weight - V39 = 6.708303497304052 (Similitud)\n", + "Imputación final aplicada: Empty weight - Volitation VT370 = 10.999999999999998 (Similitud)\n", + "Imputación final aplicada: Empty weight - Skyeye 5000 VTOL = 31.0 (Similitud)\n", + "Imputación final aplicada: Empty weight - Volitation VT510 = 30.999999999999996 (Similitud)\n", + "\n", + "=== Iteración 1: Resumen después de imputaciones ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de Valores Faltantes Después de Iteración 1

    \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    FilaValores Faltantes
    Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan0.735nannannannannan0Stalker XE2.000
    Altitud a la que se realiza el cruceronannannannannannannannannannan-0.955nannannannan0.761nannannannannannannannannannannannannannannannan1Stalker VXE302.000
    Velocidad a la que se realiza el crucero (KTAS)nannannannannannan-0.999nan0.936nannannan0.815nannan0.846nannan1.0000.723nan-0.855nannannannannannannannannannan2Aerosonde Mk. 4.7 Fixed Wing4.000
    Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nannannannannannannannannannan3Aerosonde Mk. 4.7 VTOL4.000
    Velocidad de pérdida limpia (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan4Aerosonde Mk. 4.8 Fixed wing4.000
    Área del alanannannannannannan-0.8310.8670.9840.977nannan0.737nan0.8410.9840.899nannan0.9230.941nannan5Aerosonde Mk. 4.8 VTOL FTUAS1.000nan0.899nannannannannannan
    Relación de aspecto del alanannan-0.999nannan-0.831nan-0.790-0.996-0.823-0.998nan-0.859nannan-0.744-0.888nan-0.999nannannannannannannannannannannannannan6AAI Aerosonde0.000
    Longitud del fuselajenannannannannan0.867-0.790nan0.9380.786nannannannannan0.995nannannan0.9400.880-0.718nan0.929nannannannannannannannan7Fulmar X2.000
    Ancho del fuselajenannan0.936nannan0.984-0.9960.938nan0.9860.982nan0.940nannan0.7600.868nan0.944nan0.955nannannannannan0.794nannannannannan8Orbiter 44.000
    Peso máximo al despegue (MTOW)nannannannannan0.977-0.8230.7860.986nannannannannan0.7910.8580.875nan0.7080.9790.947nannan0.9760.758nannannannannannannan9Orbiter 36.000
    Alcance de la aeronavenan-0.955nannannannan-0.998nan0.982nannan0.843nannannan-0.7550.804nannannannannannannannannannannannannannannan10Mantis8.000
    Autonomía de la aeronavenannannannannannannannannannan0.843nannannannannannannannannannan-0.7150.802nan-0.732nannannannannannannan11ScanEagle7.000
    Velocidad máxima (KIAS)nannan0.815nannan0.737-0.859nan0.940nannannannannannannan0.715-0.9270.7750.857nannannan0.7050.910nannannannannannannan12Integrator6.000
    Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan13Integrator VTOL12.000
    envergaduranannannannannan0.841nannannan0.791nannannannannan0.8850.734nannan0.9360.924nannannannannannannannannannannan14Integrator Extended Range6.000
    Cuerdanan0.7610.846nannan0.984-0.7440.9950.7600.858-0.755nannannan0.885nan0.776nan0.846nan0.971nannannannannannannannannannannan15ScanEagle 33.000
    payloadnannannannannan0.899-0.888nan0.8680.8750.804nan0.715nan0.7340.776nannannannan0.778nannan0.7110.846nannannannannannannan16RQ Nan 21A Blackjack4.000
    duracion en VTOLnannannan-0.875nannannannannannannannan-0.927nannannannannannannannannannannannannannan-0.904nannannannan17DeltaQuad Evo2.000
    Crucero KIASnannan1.000nannannan-0.999nan0.9440.708nannan0.775nannan0.846nannannan0.723nan-0.855nannannannannannannannannannan18DeltaQuad Pro #MAP7.000
    RTF (Including fuel & Batteries)nannan0.723nannan0.923nan0.940nan0.979nannan0.857nan0.936nannannan0.723nan0.996nannannannannannannannannannannan19DeltaQuad Pro #CARGO7.000
    Empty weightnannannannannan0.941nan0.8800.9550.947nannannannan0.9240.9710.778nannan0.996nannan0.8320.995nannannannannannannannan20V212.000
    Maximum Crosswindnannan-0.855-0.961nannannan-0.718nannannan-0.715nannannannannannan-0.855nannannannannannannannan-0.943nannannannan21V250.000
    Rango de comunicaciónnannannannannannannannannannannan0.802nannannannannannannannan0.832nannannannannannannannannannannan22V323.000
    Capacidad combustiblenannannannannan1.000nan0.929nan0.976nannan0.705nannannan0.711nannannan0.995nannannannan0.817nannannannannannan23V353.000
    Consumonannannannannannannannannan0.758nan-0.7320.910nannannan0.846nannannannannannannannan0.998nannannannannannan24V393.000
    Precionannannannannan0.899nannannannannannannannannannannannannannannannannan0.8170.998nannannannannannannan25Volitation VT3702.000
    Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan26Skyeye 26000.000
    Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan27Skyeye 2930 VTOL3.000
    Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan28Skyeye 36006.000
    Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan29Skyeye 3600 VTOL2.000
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan30Skyeye 50004.000
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan31Skyeye 5000 VTOL1.000
    32Skyeye 5000 VTOL octo1.000
    33Volitation VT5101.000
    34Ascend2.000
    35Transition3.000
    36Reach1.000
    " @@ -24296,132 +20158,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", - "Ecuación de regresión: y = -3.588x + 72.195\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 27.34\n", - "\tR²: 0.9951683800002252, Desviación Estándar: 0.3316703651380593, Varianza: 0.1100052311108136, Incertidumbre: 0.19148997459468003\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.723) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [27.344, 27.344, 27.344, 18.091, 21.875, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.104x + 21.164\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 28.443\n", - "\tR²: 0.5234387684031696, Desviación Estándar: 2.436503148855875, Varianza: 5.936547594384592, Incertidumbre: 0.9209116286426334\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Relación de aspecto del ala: 27.34', 'RTF (Including fuel & Batteries): 28.443']\n", - "**Mediana calculada:** 27.892\n", - "\n", - "--- Imputación para aeronave: **AAI Aerosonde** ---\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892]\n", - "Ecuación de regresión: y = -3.686x + 73.696\n", - "Valor del parámetro correlacionado para la aeronave: 14.754\n", - "Predicción obtenida: 19.306\n", - "\tR²: 0.9955392528843181, Desviación Estándar: 0.3471824284258566, Varianza: 0.12053563860767504, Incertidumbre: 0.1735912142129283\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.607x + 4.971\n", - "Valor del parámetro correlacionado para la aeronave: 30.846\n", - "Predicción obtenida: 23.695\n", - "\tR²: 0.6883167394784258, Desviación Estándar: 3.20056844074234, Varianza: 10.243638343875855, Incertidumbre: 0.7342607576358634\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344]\n", - "Ecuación de regresión: y = 77.731x + -2.949\n", - "Valor del parámetro correlacionado para la aeronave: 0.197\n", - "Predicción obtenida: 12.33\n", - "\tR²: 0.5951449532870101, Desviación Estándar: 3.036057989288316, Varianza: 9.217648114321413, Incertidumbre: 1.7528688973909234\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Relación de aspecto del ala: 19.306', 'Velocidad máxima (KIAS): 23.695', 'Cuerda: 12.33']\n", - "**Mediana calculada:** 19.306\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.625x + 4.123\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 26.611\n", - "\tR²: 0.6860861539695317, Desviación Estándar: 3.2600537047404123, Varianza: 10.627950157791688, Incertidumbre: 0.728970169409959\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad máxima (KIAS): 26.611']\n", - "**Mediana calculada:** 26.611\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.625x + 4.123\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 26.611\n", - "\tR²: 0.6861096464084044, Desviación Estándar: 3.181486648407253, Varianza: 10.121857293993614, Incertidumbre: 0.6942573042294092\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad máxima (KIAS): 26.611']\n", - "**Mediana calculada:** 26.611\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Maximum Crosswind (r = -0.855) ---\n", - "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Reach']\n", - "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [18.091, 17.5, 21.875, 27.344]\n", - "Ecuación de regresión: y = -0.209x + 27.721\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 21.463\n", - "\tR²: 0.755405189129301, Desviación Estándar: 1.9401971688154946, Varianza: 3.764365053879661, Incertidumbre: 0.9700985844077473\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Maximum Crosswind: 21.463']\n", - "**Mediana calculada:** 21.463\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.625x + 4.123\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 33.045\n", - "\tR²: 0.6861096464084044, Desviación Estándar: 3.181486648407253, Varianza: 10.121857293993614, Incertidumbre: 0.6942573042294092\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad máxima (KIAS): 33.045']\n", - "**Mediana calculada:** 33.045\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n" - ] - }, { "data": { "text/html": [ @@ -24430,8 +20166,8 @@ " .scroll-table {\n", " overflow-x: auto;\n", " overflow-y: auto;\n", - " max-height: 400px;\n", - " max-width: 100%;\n", + " max-height: 100px;\n", + " max-width: 50%;\n", " display: block;\n", " border: 1px solid #ccc;\n", " margin-bottom: 20px;\n", @@ -24457,17 +20193,19 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Imputación no Exitosa

    \n", + "

    Sumatoria Total de Valores Faltantes

    \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", "
    MensajeResumenCantidad
    0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.Total de Valores Faltantes128.000
    " @@ -24484,43 +20222,15 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 36.094, 30.625]\n", - "Ecuación de regresión: y = 93.547x + -1.195\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 33.885\n", - "\tR²: 0.9095474448825779, Desviación Estándar: 2.2440186570446126, Varianza: 5.035619733164306, Incertidumbre: 1.0035556519859081\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 50.0, 30.0, 35.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 32.813, 21.875, 27.344]\n", - "Ecuación de regresión: y = 0.625x + 4.123\n", - "Valor del parámetro correlacionado para la aeronave: 38.0\n", - "Predicción obtenida: 27.86\n", - "\tR²: 0.7045474134573646, Desviación Estándar: 3.108339246562038, Varianza: 9.661772871717856, Incertidumbre: 0.6627001540432849\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 1.0) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 33.0, 24.0, 30.0]\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 30.407, 18.266, 30.625, 30.953, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 36.094, 26.25, 32.813]\n", - "Ecuación de regresión: y = 1.094x + 0.0\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 38.282\n", - "\tR²: 1.0, Desviación Estándar: 3.3158330576972436e-15, Varianza: 1.0994748866517852e-29, Incertidumbre: 8.289582644243109e-16\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "Valores imputados: ['Ancho del fuselaje: 33.885', 'Velocidad máxima (KIAS): 27.86', 'Crucero KIAS: 38.282']\n", - "**Mediana calculada:** 33.885\n", + "================================================================================\n", + "\u001b[1m=== FIN DE ITERACIÓN 1 ===\u001b[0m\n", + "================================================================================\n", "\n", - "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", + "================================================================================\n", + "\u001b[1m=== INICIO DE ITERACIÓN 2 ===\u001b[0m\n", + "================================================================================\n", "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n" + "=== Iteración 2: Resumen antes de imputaciones ===\n" ] }, { @@ -24531,8 +20241,8 @@ " .scroll-table {\n", " overflow-x: auto;\n", " overflow-y: auto;\n", - " max-height: 400px;\n", - " max-width: 100%;\n", + " max-height: 300px;\n", + " max-width: 50%;\n", " display: block;\n", " border: 1px solid #ccc;\n", " margin-bottom: 20px;\n", @@ -24558,551 +20268,199 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Imputación no Exitosa

    \n", + "

    Resumen de Valores Faltantes Antes de Iteración 2

    \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
    MensajeFilaValores Faltantes
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Orbiter 4'.Stalker XE17.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    1Stalker VXE3018.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Orbiter 3'.2Aerosonde Mk. 4.7 Fixed Wing17.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    3Aerosonde Mk. 4.7 VTOL16.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.4Aerosonde Mk. 4.8 Fixed wing20.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Maximum Crosswind (r = -0.961) ---\n", - "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0, 15.0]\n", - "Valores para Techo de servicio máximo: [13.0, 13.123, 10000.0, 13000.0, 16000.0]\n", - "Ecuación de regresión: y = -395.696x + 18884.7\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 7013.834\n", - "\tR²: 0.9093584510325812, Desviación Estándar: 1998.8363831923273, Varianza: 3995346.886773384, Incertidumbre: 893.9068057435724\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Maximum Crosswind: 7013.834']\n", - "**Mediana calculada:** 7013.834\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    5Aerosonde Mk. 4.8 VTOL FTUAS19.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 2600'.6AAI Aerosonde15.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    7Fulmar X21.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 2930 VTOL'.8Orbiter 423.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    9Orbiter 325.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 3600'.10Mantis26.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    11ScanEagle25.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 3600 VTOL'.12Integrator24.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - "
    Mensaje
    13Integrator VTOL29.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000'.14Integrator Extended Range26.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    Mensaje
    15ScanEagle 321.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000 VTOL'.16RQ Nan 21A Blackjack21.000
    17DeltaQuad Evo15.000
    18DeltaQuad Pro #MAP22.000
    19DeltaQuad Pro #CARGO22.000
    20V2115.000
    21V2513.000
    22V3216.000
    23V3519.000
    24V3919.000
    25Volitation VT37017.000
    26Skyeye 260018.000
    27Skyeye 2930 VTOL20.000
    28Skyeye 360023.000
    29Skyeye 3600 VTOL18.000
    30Skyeye 500018.000
    31Skyeye 5000 VTOL16.000
    32Skyeye 5000 VTOL octo16.000
    33Volitation VT51016.000
    34Ascend16.000
    35Transition17.000
    36Reach15.000
    " @@ -25114,14 +20472,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" - ] - }, { "data": { "text/html": [ @@ -25130,8 +20480,8 @@ " .scroll-table {\n", " overflow-x: auto;\n", " overflow-y: auto;\n", - " max-height: 400px;\n", - " max-width: 100%;\n", + " max-height: 100px;\n", + " max-width: 50%;\n", " display: block;\n", " border: 1px solid #ccc;\n", " margin-bottom: 20px;\n", @@ -25157,17 +20507,19 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Imputación no Exitosa

    \n", + "

    Sumatoria Total de Valores Faltantes

    \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", "
    MensajeResumenCantidad
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Skyeye 5000 VTOL octo'.Total de Valores Faltantes714.000
    " @@ -25184,33213 +20536,1712 @@ "output_type": "stream", "text": [ "\n", - "=== Imputación para el parámetro: **Área del ala** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", - "Ecuación de regresión: y = -0.219x + 4.203\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 1.468\n", - "\tR²: 0.4921072065029338, Desviación Estándar: 0.2579064700616838, Varianza: 0.06651574729967821, Incertidumbre: 0.1289532350308419\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.022x + 0.512\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 2.528\n", - "\tR²: 0.9424993971942859, Desviación Estándar: 0.1480022127547218, Varianza: 0.02190465498029394, Incertidumbre: 0.038214007013392295\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.084x + 0.605\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 2.503\n", - "\tR²: 0.8079809975569326, Desviación Estándar: 0.2933466953816814, Varianza: 0.08605228369135297, Incertidumbre: 0.07574179105854881\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Relación de aspecto del ala: 1.468', 'Peso máximo al despegue (MTOW): 2.528', 'payload: 2.503']\n", - "**Mediana calculada:** 2.503\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.546x + 0.007\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.662\n", - "\tR²: 0.6801892039390519, Desviación Estándar: 0.30468415865316995, Varianza: 0.09283243653419003, Incertidumbre: 0.08795474050811117\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.022x + 0.514\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.945\n", - "\tR²: 0.9537986325795035, Desviación Estándar: 0.14339927817107342, Varianza: 0.020563352979984892, Incertidumbre: 0.035849819542768356\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.082x + -1.305\n", - "Valor del parámetro correlacionado para la aeronave: 41.7\n", - "Predicción obtenida: 2.11\n", - "\tR²: 0.4361157359439931, Desviación Estándar: 0.5418933308069339, Varianza: 0.29364838197303306, Incertidumbre: 0.17136171742050005\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.46x + -0.446\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.935\n", - "\tR²: 0.606437991532139, Desviación Estándar: 0.33799470646338436, Varianza: 0.11424042159726937, Incertidumbre: 0.09757066738065176\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Longitud del fuselaje: 0.662', 'Peso máximo al despegue (MTOW): 0.945', 'Velocidad máxima (KIAS): 2.11', 'envergadura: 0.935']\n", - "**Mediana calculada:** 0.94\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.521x + 0.078\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.703\n", - "\tR²: 0.6641973297028555, Desviación Estándar: 0.30126149307901384, Varianza: 0.09075848721219672, Incertidumbre: 0.08355490466301725\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.022x + 0.513\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 1.701\n", - "\tR²: 0.9548206367081808, Desviación Estándar: 0.1391232519560287, Varianza: 0.01935527923482064, Incertidumbre: 0.033742344870242656\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.057x + -0.607\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 1.456\n", - "\tR²: 0.2635152280829376, Desviación Estándar: 0.5971883487670894, Varianza: 0.3566339239031628, Incertidumbre: 0.18005906200293956\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.46x + -0.445\n", - "Valor del parámetro correlacionado para la aeronave: 5.2\n", - "Predicción obtenida: 1.948\n", - "\tR²: 0.6098226097328528, Desviación Estándar: 0.32473761841891496, Varianza: 0.10545452081638883, Incertidumbre: 0.09006601032934286\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.084x + 0.605\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 1.608\n", - "\tR²: 0.8352230239464027, Desviación Estándar: 0.2840317214888726, Varianza: 0.08067401881193251, Incertidumbre: 0.07100793037221816\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 0.703', 'Peso máximo al despegue (MTOW): 1.701', 'Velocidad máxima (KIAS): 1.456', 'envergadura: 1.948', 'payload: 1.608']\n", - "**Mediana calculada:** 1.608\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.45x + 0.279\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.819\n", - "\tR²: 0.49444751735768744, Desviación Estándar: 0.36781526151231503, Varianza: 0.1352880666013727, Incertidumbre: 0.09830276358612447\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.512\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 1.2\n", - "\tR²: 0.9541873450036837, Desviación Estándar: 0.1368279656080401, Varianza: 0.018721892172435, Incertidumbre: 0.03225066077913495\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.058x + -0.629\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 1.472\n", - "\tR²: 0.2740142010052371, Desviación Estándar: 0.5732623728312028, Varianza: 0.328629748104061, Incertidumbre: 0.1654865926351893\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.417x + -0.317\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 1.516\n", - "\tR²: 0.6121745707536088, Desviación Estándar: 0.3221549155644233, Varianza: 0.10378378962232071, Incertidumbre: 0.08609952282194\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.084x + 0.605\n", - "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 1.065\n", - "\tR²: 0.8355353911029019, Desviación Estándar: 0.27555125326306473, Varianza: 0.07592849317484565, Incertidumbre: 0.06683099543970229\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 0.819', 'Peso máximo al despegue (MTOW): 1.2', 'Velocidad máxima (KIAS): 1.472', 'envergadura: 1.516', 'payload: 1.065']\n", - "**Mediana calculada:** 1.2\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.423x + 0.354\n", - "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 0.981\n", - "\tR²: 0.46052122430771714, Desviación Estándar: 0.36722158071804406, Varianza: 0.13485168934505895, Incertidumbre: 0.09481620443259649\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.512\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.651\n", - "\tR²: 0.9543119129686386, Desviación Estándar: 0.13317860331268058, Varianza: 0.017736540380316333, Incertidumbre: 0.03055326701483504\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.057x + -0.594\n", - "Valor del parámetro correlacionado para la aeronave: 25.6\n", - "Predicción obtenida: 0.857\n", - "\tR²: 0.26284243485241887, Desviación Estándar: 0.5554395050127472, Varianza: 0.30851304372880556, Incertidumbre: 0.1540512012109075\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.398x + -0.27\n", - "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.565\n", - "\tR²: 0.5889263637114722, Desviación Estándar: 0.32055372387545367, Varianza: 0.10275468989042061, Incertidumbre: 0.08276661560896019\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Longitud del fuselaje: 0.981', 'Peso máximo al despegue (MTOW): 0.651', 'Velocidad máxima (KIAS): 0.857', 'envergadura: 0.565']\n", - "**Mediana calculada:** 0.754\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.432x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 1.063\n", - "\tR²: 0.46837090280435856, Desviación Estándar: 0.35970679644924114, Varianza: 0.1293889794117758, Incertidumbre: 0.08992669911231028\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.524\n", - "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 1.088\n", - "\tR²: 0.9550142996680715, Desviación Estándar: 0.1316020238299309, Varianza: 0.0173190926761337, Incertidumbre: 0.029427107126027266\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.058x + -0.649\n", - "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 1.746\n", - "\tR²: 0.29571820868524923, Desviación Estándar: 0.5358228587115724, Varianza: 0.2871061359178417, Incertidumbre: 0.14320468266432035\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.381x + -0.202\n", - "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 0.98\n", - "\tR²: 0.5966556307390867, Desviación Estándar: 0.31331578218830264, Varianza: 0.0981667793682679, Incertidumbre: 0.07832894554707566\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.083x + 0.619\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 1.034\n", - "\tR²: 0.8350524298607005, Desviación Estándar: 0.2695310649903611, Varianza: 0.07264699499483826, Incertidumbre: 0.0635290812650388\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.063', 'Peso máximo al despegue (MTOW): 1.088', 'Velocidad máxima (KIAS): 1.746', 'envergadura: 0.98', 'payload: 1.034']\n", - "**Mediana calculada:** 1.063\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.432x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 1.404\n", - "\tR²: 0.4688208790784759, Desviación Estándar: 0.34896686225957346, Varianza: 0.1217778709552921, Incertidumbre: 0.08463689605509357\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.522\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 2.117\n", - "\tR²: 0.9552685671013039, Desviación Estándar: 0.1285440575853638, Varianza: 0.016523574740509323, Incertidumbre: 0.028050613048652005\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.049x + -0.376\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 1.872\n", - "\tR²: 0.23291649773094203, Desviación Estándar: 0.5418077102312508, Varianza: 0.29355559486603106, Incertidumbre: 0.13989414923816057\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.38x + -0.191\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 1.631\n", - "\tR²: 0.5953583197437493, Desviación Estándar: 0.30457832800349305, Varianza: 0.09276795788940341, Incertidumbre: 0.07387109515484842\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.083x + 0.622\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 2.113\n", - "\tR²: 0.8382132873731523, Desviación Estándar: 0.26242037008429453, Varianza: 0.06886445063517811, Incertidumbre: 0.060203361785472836\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.404', 'Peso máximo al despegue (MTOW): 2.117', 'Velocidad máxima (KIAS): 1.872', 'envergadura: 1.631', 'payload: 2.113']\n", - "**Mediana calculada:** 1.872\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.53\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 2.091\n", - "\tR²: 0.9505024269111185, Desviación Estándar: 0.13477094387403904, Varianza: 0.018163207312699377, Incertidumbre: 0.02873326177786689\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.081x + 0.628\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 2.088\n", - "\tR²: 0.8352123461571666, Desviación Estándar: 0.2607982244843819, Varianza: 0.06801571389420606, Incertidumbre: 0.05831625583583279\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Peso máximo al despegue (MTOW): 2.091', 'payload: 2.088']\n", - "**Mediana calculada:** 2.09\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.46x + 0.297\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 1.447\n", - "\tR²: 0.48817664948956896, Desviación Estándar: 0.3550488365774619, Varianza: 0.12605967635500923, Incertidumbre: 0.08368581333210588\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.53\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 2.087\n", - "\tR²: 0.9537268168880683, Desviación Estándar: 0.13180876658609073, Varianza: 0.017373550948946544, Incertidumbre: 0.027484027732284446\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.049x + -0.376\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 1.872\n", - "\tR²: 0.2800468648798645, Desviación Estándar: 0.5246030655173786, Varianza: 0.27520837635023104, Incertidumbre: 0.13115076637934464\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.397x + -0.238\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 1.666\n", - "\tR²: 0.6331001883328717, Desviación Estándar: 0.30060886965213346, Varianza: 0.09036569251353338, Incertidumbre: 0.07085419007194885\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.081x + 0.628\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 2.088\n", - "\tR²: 0.8421455166049525, Desviación Estándar: 0.2545135233705542, Varianza: 0.06477713357849366, Incertidumbre: 0.055539404106451286\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.447', 'Peso máximo al despegue (MTOW): 2.087', 'Velocidad máxima (KIAS): 1.872', 'envergadura: 1.666', 'payload: 2.088']\n", - "**Mediana calculada:** 1.872\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.46x + 0.297\n", - "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 1.401\n", - "\tR²: 0.48817664948956896, Desviación Estándar: 0.3550488365774619, Varianza: 0.12605967635500923, Incertidumbre: 0.08368581333210588\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.53\n", - "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 1.286\n", - "\tR²: 0.9537268168880683, Desviación Estándar: 0.13180876658609073, Varianza: 0.017373550948946544, Incertidumbre: 0.027484027732284446\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.049x + -0.376\n", - "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 1.625\n", - "\tR²: 0.2800468648798645, Desviación Estándar: 0.5246030655173786, Varianza: 0.27520837635023104, Incertidumbre: 0.13115076637934464\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.397x + -0.238\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 1.349\n", - "\tR²: 0.6331001883328717, Desviación Estándar: 0.30060886965213346, Varianza: 0.09036569251353338, Incertidumbre: 0.07085419007194885\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.081x + 0.628\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 1.326\n", - "\tR²: 0.8421455166049525, Desviación Estándar: 0.2545135233705542, Varianza: 0.06477713357849366, Incertidumbre: 0.055539404106451286\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.401', 'Peso máximo al despegue (MTOW): 1.286', 'Velocidad máxima (KIAS): 1.625', 'envergadura: 1.349', 'payload: 1.326']\n", - "**Mediana calculada:** 1.349\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.458x + 0.299\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 1.443\n", - "\tR²: 0.49146211696239317, Desviación Estándar: 0.3457725283158643, Varianza: 0.11955864133794519, Incertidumbre: 0.0793256583358636\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.533\n", - "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 1.802\n", - "\tR²: 0.9532832420705458, Desviación Estándar: 0.12965091612376284, Varianza: 0.016809360051730986, Incertidumbre: 0.026464882432299938\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.31\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 1.828\n", - "\tR²: 0.2696364235152151, Desviación Estándar: 0.5128023719074978, Varianza: 0.2629662726339556, Incertidumbre: 0.12437284379069904\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.397x + -0.238\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 1.666\n", - "\tR²: 0.6358629871775192, Desviación Estándar: 0.2925911882905274, Varianza: 0.08560960346526285, Incertidumbre: 0.06712502218573105\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.081x + 0.63\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 2.064\n", - "\tR²: 0.8424950545541062, Desviación Estándar: 0.24870967530649968, Varianza: 0.0618565025910645, Incertidumbre: 0.05302508093991701\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.443', 'Peso máximo al despegue (MTOW): 1.802', 'Velocidad máxima (KIAS): 1.828', 'envergadura: 1.666', 'payload: 2.064']\n", - "**Mediana calculada:** 1.802\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.476x + 0.281\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.709\n", - "\tR²: 0.5067722199589602, Desviación Estándar: 0.34569438035947625, Varianza: 0.11950460461212224, Incertidumbre: 0.0772996133923457\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.533\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.662\n", - "\tR²: 0.9542933408598602, Desviación Estándar: 0.12703143691612878, Varianza: 0.016136985964976404, Incertidumbre: 0.025406287383225756\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.405x + -0.261\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.691\n", - "\tR²: 0.6610034143057635, Desviación Estándar: 0.2865934213089743, Varianza: 0.08213578913758324, Incertidumbre: 0.06408423719511033\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.08x + 0.635\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.73\n", - "\tR²: 0.8368924216256921, Desviación Estándar: 0.24881616391859884, Varianza: 0.061909483427167046, Incertidumbre: 0.05188175662741571\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 0.709', 'Peso máximo al despegue (MTOW): 0.662', 'envergadura: 0.691', 'payload: 0.73']\n", - "**Mediana calculada:** 0.7\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.477x + 0.279\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.708\n", - "\tR²: 0.530038527273323, Desviación Estándar: 0.3373686112553851, Varianza: 0.11381757986038715, Incertidumbre: 0.0736198665799968\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.537\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.666\n", - "\tR²: 0.9563099090104202, Desviación Estándar: 0.12476254599075952, Varianza: 0.015565692882096385, Incertidumbre: 0.024467948329707695\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.405x + -0.259\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.692\n", - "\tR²: 0.676989457910925, Desviación Estándar: 0.2796931909209141, Varianza: 0.0782282810475229, Incertidumbre: 0.0610340580361345\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.08x + 0.631\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.727\n", - "\tR²: 0.8477300129544219, Desviación Estándar: 0.24364789703392117, Varianza: 0.05936429772905225, Incertidumbre: 0.04973441871960682\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 0.708', 'Peso máximo al despegue (MTOW): 0.666', 'envergadura: 0.692', 'payload: 0.727']\n", - "**Mediana calculada:** 0.7\n", - "\n", - "--- Imputación para aeronave: **V32** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.477x + 0.279\n", - "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 0.756\n", - "\tR²: 0.530038527273323, Desviación Estándar: 0.3373686112553851, Varianza: 0.11381757986038715, Incertidumbre: 0.0736198665799968\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.537\n", - "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 1.025\n", - "\tR²: 0.9563099090104202, Desviación Estándar: 0.12476254599075952, Varianza: 0.015565692882096385, Incertidumbre: 0.024467948329707695\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.3\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 1.213\n", - "\tR²: 0.2987388890678494, Desviación Estándar: 0.49838437168601263, Varianza: 0.24838698194086156, Incertidumbre: 0.1174703229521921\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.405x + -0.259\n", - "Valor del parámetro correlacionado para la aeronave: 3.2\n", - "Predicción obtenida: 1.036\n", - "\tR²: 0.676989457910925, Desviación Estándar: 0.2796931909209141, Varianza: 0.0782282810475229, Incertidumbre: 0.0610340580361345\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.08x + 0.631\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 1.03\n", - "\tR²: 0.8477300129544219, Desviación Estándar: 0.24364789703392117, Varianza: 0.05936429772905225, Incertidumbre: 0.04973441871960682\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", - "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.063x + 0.414\n", - "Valor del parámetro correlacionado para la aeronave: 6.45\n", - "Predicción obtenida: 0.818\n", - "\tR²: 0.8862827411226012, Desviación Estándar: 0.22697772477286166, Varianza: 0.05151888754306494, Incertidumbre: 0.06552282524883024\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Precio (r = 0.899) ---\n", - "Aeronaves utilizadas: ['V21', 'V25', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Precio: [3999.0, 4679.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", - "Valores para Área del ala: [0.8, 0.52, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.0x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 69999.0\n", - "Predicción obtenida: 11.824\n", - "\tR²: 0.8076686704270842, Desviación Estándar: 0.35422576262319455, Varianza: 0.12547589090598377, Incertidumbre: 0.11807525420773152\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 0.756', 'Peso máximo al despegue (MTOW): 1.025', 'Velocidad máxima (KIAS): 1.213', 'envergadura: 1.036', 'payload: 1.03', 'Empty weight: 0.818', 'Precio: 11.824']\n", - "**Mediana calculada:** 1.03\n", - "\n", - "--- Imputación para aeronave: **V35** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.459x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 1.188\n", - "\tR²: 0.5187592344985992, Desviación Estándar: 0.33423029414950794, Varianza: 0.11170988952726661, Incertidumbre: 0.07125813814042148\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.538\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 1.201\n", - "\tR²: 0.9567615844762626, Desviación Estándar: 0.12243454518963205, Varianza: 0.014990217855792052, Incertidumbre: 0.023562539207781154\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.324\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 1.203\n", - "\tR²: 0.3019978039605754, Desviación Estándar: 0.4868033988346396, Varianza: 0.23697754911695715, Incertidumbre: 0.1116803589943326\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.405x + -0.26\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 1.157\n", - "\tR²: 0.678309022659344, Desviación Estándar: 0.27326502283958154, Varianza: 0.07467377270751702, Incertidumbre: 0.058260298624331026\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.08x + 0.631\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 1.429\n", - "\tR²: 0.850762300542554, Desviación Estándar: 0.23872521083313977, Varianza: 0.05698972628732704, Incertidumbre: 0.047745042166627956\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Precio (r = 0.899) ---\n", - "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Precio: [3999.0, 4679.0, 69999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", - "Valores para Área del ala: [0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.0x + 1.468\n", - "Valor del parámetro correlacionado para la aeronave: 7999.0\n", - "Predicción obtenida: 1.471\n", - "\tR²: 5.510644397854758e-05, Desviación Estándar: 0.7803061547023157, Varianza: 0.6088776950663142, Incertidumbre: 0.24675447211070242\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Longitud del fuselaje: 1.188', 'Peso máximo al despegue (MTOW): 1.201', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 1.157', 'payload: 1.429', 'Precio: 1.471']\n", - "**Mediana calculada:** 1.202\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.538\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 1.035\n", - "\tR²: 0.9568416510162402, Desviación Estándar: 0.12022845817986676, Varianza: 0.014454882156307969, Incertidumbre: 0.022721042918332626\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.324\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 1.203\n", - "\tR²: 0.30291737528467566, Desviación Estándar: 0.474477281198844, Varianza: 0.2251286903738469, Incertidumbre: 0.10609634545398981\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.405x + -0.257\n", - "Valor del parámetro correlacionado para la aeronave: 3.9\n", - "Predicción obtenida: 1.32\n", - "\tR²: 0.6779800432691134, Desviación Estándar: 0.26741850007254947, Varianza: 0.07151265418105215, Incertidumbre: 0.05576061185064946\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.08x + 0.622\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 1.021\n", - "\tR²: 0.8465859657242829, Desviación Estándar: 0.23811937696573565, Varianza: 0.05670083768655011, Incertidumbre: 0.0466990519120324\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Precio (r = 0.899) ---\n", - "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", - "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.0x + 1.439\n", - "Valor del parámetro correlacionado para la aeronave: 8999.0\n", - "Predicción obtenida: 1.445\n", - "\tR²: 0.00029183893894446644, Desviación Estándar: 0.7479568811282364, Varianza: 0.5594394960270789, Incertidumbre: 0.22551748491516507\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Peso máximo al despegue (MTOW): 1.035', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 1.32', 'payload: 1.021', 'Precio: 1.445']\n", - "**Mediana calculada:** 1.203\n", - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.459x + 0.326\n", - "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 1.253\n", - "\tR²: 0.5188052941313532, Desviación Estándar: 0.3268966538966882, Varianza: 0.10686142232885117, Incertidumbre: 0.06816266424448632\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.548\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 1.373\n", - "\tR²: 0.9540497205736983, Desviación Estándar: 0.12200219933246954, Varianza: 0.014884536641959632, Incertidumbre: 0.022655239663387023\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.324\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 1.203\n", - "\tR²: 0.3037289741090303, Desviación Estándar: 0.46304242133609924, Varianza: 0.21440828395679767, Incertidumbre: 0.10104414027372904\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.403x + -0.255\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 2.362\n", - "\tR²: 0.6754640443421005, Desviación Estándar: 0.262831271883581, Varianza: 0.06908027747994087, Incertidumbre: 0.053650208713457374\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.079x + 0.636\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 2.06\n", - "\tR²: 0.8442705988266823, Desviación Estándar: 0.23612835689484077, Varianza: 0.05575660092985729, Incertidumbre: 0.04544292347218011\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Capacidad combustible (r = 1.0) ---\n", - "Aeronaves utilizadas: ['Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Capacidad combustible: [11.5, 11.5, 28.0]\n", - "Valores para Área del ala: [1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.078x + 0.426\n", - "Valor del parámetro correlacionado para la aeronave: 13.0\n", - "Predicción obtenida: 1.442\n", - "\tR²: 0.9999549326242733, Desviación Estándar: 0.004082482904638634, Varianza: 1.6666666666666698e-05, Incertidumbre: 0.002357022603955161\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Precio (r = 0.899) ---\n", - "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 8999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", - "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.0x + 1.415\n", - "Valor del parámetro correlacionado para la aeronave: 8999.0\n", - "Predicción obtenida: 1.424\n", - "\tR²: 0.0005527163843784821, Desviación Estándar: 0.7192113906007205, Varianza: 0.5172650243698221, Incertidumbre: 0.20761844498378554\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Longitud del fuselaje: 1.253', 'Peso máximo al despegue (MTOW): 1.373', 'Velocidad máxima (KIAS): 1.203', 'envergadura: 2.362', 'payload: 2.06', 'Capacidad combustible: 1.442', 'Precio: 1.424']\n", - "**Mediana calculada:** 1.424\n", - "\n", - "--- Imputación para aeronave: **Volitation VT510** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.461x + 0.329\n", - "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 1.668\n", - "\tR²: 0.5190019194394964, Desviación Estándar: 0.32183760586109134, Varianza: 0.10357944454639917, Incertidumbre: 0.06569482619988655\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.021x + 0.549\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 2.612\n", - "\tR²: 0.9538216857828705, Desviación Estándar: 0.12030701287802409, Varianza: 0.014473777347633054, Incertidumbre: 0.02196495492645277\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.046x + -0.299\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 1.993\n", - "\tR²: 0.2984442398036834, Desviación Estándar: 0.45473235019931246, Varianza: 0.20678151031779013, Incertidumbre: 0.09694926281256372\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.313x + 0.036\n", - "Valor del parámetro correlacionado para la aeronave: 5.1\n", - "Predicción obtenida: 1.632\n", - "\tR²: 0.5619559117531061, Desviación Estándar: 0.30093688814319053, Varianza: 0.09056301064530718, Incertidumbre: 0.06018737762863811\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.076x + 0.65\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 2.539\n", - "\tR²: 0.8057229726084794, Desviación Estándar: 0.25898874198312066, Varianza: 0.06707516847399946, Incertidumbre: 0.04894427168948646\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Capacidad combustible (r = 1.0) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0]\n", - "Valores para Área del ala: [1.424, 1.33, 1.32, 2.615]\n", - "Ecuación de regresión: y = 0.078x + 0.417\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 2.378\n", - "\tR²: 0.9997609226468374, Desviación Estándar: 0.008439335502332609, Varianza: 7.122238372093159e-05, Incertidumbre: 0.004219667751166304\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Precio (r = 0.899) ---\n", - "Aeronaves utilizadas: ['V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Precio: [3999.0, 4679.0, 69999.0, 7999.0, 8999.0, 8999.0, 2299.0, 6799.0, 4999.0, 6999.0, 9999.0, 13900.0, 15999.0]\n", - "Valores para Área del ala: [0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.0x + 1.415\n", - "Valor del parámetro correlacionado para la aeronave: 16599.0\n", - "Predicción obtenida: 1.431\n", - "\tR²: 0.0005545122547352399, Desviación Estándar: 0.69099596127085, Varianza: 0.4774754184926259, Incertidumbre: 0.19164779765389064\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Longitud del fuselaje: 1.668', 'Peso máximo al despegue (MTOW): 2.612', 'Velocidad máxima (KIAS): 1.993', 'envergadura: 1.632', 'payload: 2.539', 'Capacidad combustible: 2.378', 'Precio: 1.431']\n", - "**Mediana calculada:** 1.993\n", - "\n", - "--- Imputación para aeronave: **Ascend** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", - "Ecuación de regresión: y = 0.485x + 0.296\n", - "Valor del parámetro correlacionado para la aeronave: 1.562\n", - "Predicción obtenida: 1.054\n", - "\tR²: 0.5551210410771654, Desviación Estándar: 0.32120350506612844, Varianza: 0.10317169166676639, Incertidumbre: 0.06424070101322568\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993]\n", - "Ecuación de regresión: y = 0.019x + 0.589\n", - "Valor del parámetro correlacionado para la aeronave: 9.5\n", - "Predicción obtenida: 0.771\n", - "\tR²: 0.9237785089671043, Desviación Estándar: 0.15544994346429547, Varianza: 0.02416468492305266, Incertidumbre: 0.027919634045949875\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993]\n", - "Ecuación de regresión: y = 0.046x + -0.299\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 1.076\n", - "\tR²: 0.3456241929431657, Desviación Estándar: 0.44473701805432836, Varianza: 0.197791015227856, Incertidumbre: 0.09273407872908897\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993]\n", - "Ecuación de regresión: y = 0.329x + -0.009\n", - "Valor del parámetro correlacionado para la aeronave: 2.0\n", - "Predicción obtenida: 0.649\n", - "\tR²: 0.58926011492781, Desviación Estándar: 0.3026438405729111, Varianza: 0.09159329423672163, Incertidumbre: 0.05935334033653606\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", - "Ecuación de regresión: y = 0.071x + 0.685\n", - "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 0.727\n", - "\tR²: 0.7863972465064352, Desviación Estándar: 0.27091760618201804, Varianza: 0.07339634933939503, Incertidumbre: 0.0503081364980872\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8]\n", - "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84]\n", - "Ecuación de regresión: y = 0.025x + 0.682\n", - "Valor del parámetro correlacionado para la aeronave: 8.9\n", - "Predicción obtenida: 0.904\n", - "\tR²: 0.9483245120012642, Desviación Estándar: 0.12030916806448211, Varianza: 0.014474295920367803, Incertidumbre: 0.05380389562172576\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", - "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Ecuación de regresión: y = 0.062x + 0.442\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.627\n", - "\tR²: 0.8795539331981305, Desviación Estándar: 0.22504777591475647, Varianza: 0.05064650144417845, Incertidumbre: 0.0624170227299834\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.054', 'Peso máximo al despegue (MTOW): 0.771', 'Velocidad máxima (KIAS): 1.076', 'envergadura: 0.649', 'payload: 0.727', 'RTF (Including fuel & Batteries): 0.904', 'Empty weight: 0.627']\n", - "**Mediana calculada:** 0.771\n", - "\n", - "--- Imputación para aeronave: **Transition** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", - "Ecuación de regresión: y = 0.492x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 2.3\n", - "Predicción obtenida: 1.404\n", - "\tR²: 0.5564924093650789, Desviación Estándar: 0.31959359329400444, Varianza: 0.10214006487457353, Incertidumbre: 0.0626774603317448\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771]\n", - "Ecuación de regresión: y = 0.019x + 0.589\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.933\n", - "\tR²: 0.9262301602367577, Desviación Estándar: 0.15300176981950134, Varianza: 0.023409541567899674, Incertidumbre: 0.02704714724322816\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771]\n", - "Ecuación de regresión: y = 0.047x + -0.36\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 1.056\n", - "\tR²: 0.36011776983130794, Desviación Estándar: 0.43951432810167035, Varianza: 0.19317284460666273, Incertidumbre: 0.08971548654094016\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771]\n", - "Ecuación de regresión: y = 0.323x + 0.017\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.986\n", - "\tR²: 0.600080995980541, Desviación Estándar: 0.29780984654529935, Varianza: 0.08869070469933475, Incertidumbre: 0.05731353169008324\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", - "Ecuación de regresión: y = 0.07x + 0.689\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 0.795\n", - "\tR²: 0.7955552594057932, Desviación Estándar: 0.26647289638938826, Varianza: 0.07100780451014965, Incertidumbre: 0.04865107210540163\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9]\n", - "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771]\n", - "Ecuación de regresión: y = 0.026x + 0.624\n", - "Valor del parámetro correlacionado para la aeronave: 16.5\n", - "Predicción obtenida: 1.054\n", - "\tR²: 0.9575373795814451, Desviación Estándar: 0.11811377037897985, Varianza: 0.01395086275313838, Incertidumbre: 0.04821974483745979\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0]\n", - "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771]\n", - "Ecuación de regresión: y = 0.061x + 0.463\n", - "Valor del parámetro correlacionado para la aeronave: 5.8\n", - "Predicción obtenida: 0.816\n", - "\tR²: 0.8799346208461828, Desviación Estándar: 0.21981540136860422, Varianza: 0.04831881067884058, Incertidumbre: 0.0587481371612512\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 1.404', 'Peso máximo al despegue (MTOW): 0.933', 'Velocidad máxima (KIAS): 1.056', 'envergadura: 0.986', 'payload: 0.795', 'RTF (Including fuel & Batteries): 1.054', 'Empty weight: 0.816']\n", - "**Mediana calculada:** 0.986\n", - "\n", - "--- Imputación para aeronave: **Reach** ---\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.48x + 0.28\n", - "Valor del parámetro correlacionado para la aeronave: 4.712\n", - "Predicción obtenida: 2.54\n", - "\tR²: 0.5321565310192382, Desviación Estándar: 0.3232764059484733, Varianza: 0.1045076346429621, Incertidumbre: 0.06221457333233526\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.977) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.019x + 0.592\n", - "Valor del parámetro correlacionado para la aeronave: 91.0\n", - "Predicción obtenida: 2.329\n", - "\tR²: 0.9268130919795654, Desviación Estándar: 0.15093208149961143, Varianza: 0.02278049322580535, Incertidumbre: 0.026273902955966707\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.047x + -0.373\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 1.289\n", - "\tR²: 0.36780246644034287, Desviación Estándar: 0.4308491629268742, Varianza: 0.18563100119478818, Incertidumbre: 0.08616983258537483\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.323x + 0.017\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 1.954\n", - "\tR²: 0.6029729846601317, Desviación Estándar: 0.2924434664063362, Varianza: 0.0855231810437539, Incertidumbre: 0.05526662033263126\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.069x + 0.705\n", - "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 1.191\n", - "\tR²: 0.7961115317688139, Desviación Estándar: 0.26421267929509595, Varianza: 0.06980833990029324, Incertidumbre: 0.047453998064099126\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.923) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 6.8, 8.9, 16.5]\n", - "Valores para Área del ala: [1.55, 1.55, 1.55, 2.503, 0.84, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.026x + 0.605\n", - "Valor del parámetro correlacionado para la aeronave: 84.0\n", - "Predicción obtenida: 2.82\n", - "\tR²: 0.9596137014057883, Desviación Estándar: 0.11174694285275365, Varianza: 0.01248737923693659, Incertidumbre: 0.04223637436573326\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8]\n", - "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986]\n", - "Ecuación de regresión: y = 0.06x + 0.482\n", - "Valor del parámetro correlacionado para la aeronave: 31.0\n", - "Predicción obtenida: 2.346\n", - "\tR²: 0.8758975698949775, Desviación Estándar: 0.21647900912469786, Varianza: 0.046863161391611015, Incertidumbre: 0.05589463980956255\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Longitud del fuselaje: 2.54', 'Peso máximo al despegue (MTOW): 2.329', 'Velocidad máxima (KIAS): 1.289', 'envergadura: 1.954', 'payload: 1.191', 'RTF (Including fuel & Batteries): 2.82', 'Empty weight: 2.346']\n", - "**Mediana calculada:** 2.329\n", - "\n", - "=== Imputación para el parámetro: **Relación de aspecto del ala** ===\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", - "Ecuación de regresión: y = -0.27x + 19.967\n", - "Valor del parámetro correlacionado para la aeronave: 30.407\n", - "Predicción obtenida: 11.753\n", - "\tR²: 0.9958397104049683, Desviación Estándar: 0.08406165080066717, Varianza: 0.007066361135333309, Incertidumbre: 0.03759351309822828\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", - "Ecuación de regresión: y = -1.556x + 16.146\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 14.684\n", - "\tR²: 0.6391425255554871, Desviación Estándar: 0.7828958406065879, Varianza: 0.6129258972390959, Incertidumbre: 0.3501216637796341\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", - "Ecuación de regresión: y = -1.519x + 18.038\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 16.214\n", - "\tR²: 0.4138028760447283, Desviación Estándar: 0.8884554790463566, Varianza: 0.789353138247491, Incertidumbre: 0.4442277395231783\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754]\n", - "Ecuación de regresión: y = -0.04x + 15.296\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.489\n", - "\tR²: 0.6775655448926923, Desviación Estándar: 0.7447916715878835, Varianza: 0.5547146340666738, Incertidumbre: 0.28150479165337583\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", - "Ecuación de regresión: y = -0.176x + 19.272\n", - "Valor del parámetro correlacionado para la aeronave: 41.7\n", - "Predicción obtenida: 11.946\n", - "\tR²: 0.6228198639466289, Desviación Estándar: 0.7126696016612697, Varianza: 0.5078979611320329, Incertidumbre: 0.35633480083063485\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", - "Ecuación de regresión: y = -0.303x + 20.091\n", - "Valor del parámetro correlacionado para la aeronave: 27.8\n", - "Predicción obtenida: 11.659\n", - "\tR²: 0.9951683800002252, Desviación Estándar: 0.0922049930648979, Varianza: 0.00850176074609787, Incertidumbre: 0.05323457756664639\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 11.753', 'Área del ala: 14.684', 'Longitud del fuselaje: 16.214', 'Peso máximo al despegue (MTOW): 14.489', 'Velocidad máxima (KIAS): 11.946', 'Crucero KIAS: 11.659']\n", - "**Mediana calculada:** 13.218\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", - "Ecuación de regresión: y = -0.211x + 18.836\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 13.222\n", - "\tR²: 0.86788574295378, Desviación Estándar: 0.44779548895963533, Varianza: 0.2005207999325989, Incertidumbre: 0.1828117428452008\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", - "Ecuación de regresión: y = -1.355x + 15.647\n", - "Valor del parámetro correlacionado para la aeronave: 1.608\n", - "Predicción obtenida: 13.469\n", - "\tR²: 0.4774673753859955, Desviación Estándar: 0.8905567020216546, Varianza: 0.793091239515686, Incertidumbre: 0.3635682511614764\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", - "Ecuación de regresión: y = -0.157x + 14.552\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.364\n", - "\tR²: 0.0074891649212437406, Desviación Estándar: 1.1481791111587527, Varianza: 1.3183152713013033, Incertidumbre: 0.5134813085792517\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218]\n", - "Ecuación de regresión: y = -0.036x + 14.967\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 12.99\n", - "\tR²: 0.5739892405979949, Desviación Estándar: 0.8056365874036895, Varianza: 0.6490503109634626, Incertidumbre: 0.28483554706256875\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218]\n", - "Ecuación de regresión: y = -0.122x + 17.914\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 13.511\n", - "\tR²: 0.6167320222408146, Desviación Estándar: 0.7134988554846888, Varianza: 0.5090806167779609, Incertidumbre: 0.3190863885464126\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5]\n", - "Ecuación de regresión: y = -0.158x + 15.309\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 13.417\n", - "\tR²: 0.7878676953385522, Desviación Estándar: 0.6109489630792406, Varianza: 0.3732586354875993, Incertidumbre: 0.24941886973776978\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.222', 'Área del ala: 13.469', 'Longitud del fuselaje: 14.364', 'Peso máximo al despegue (MTOW): 12.99', 'Velocidad máxima (KIAS): 13.511', 'payload: 13.417']\n", - "**Mediana calculada:** 13.443\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = -0.208x + 18.787\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 13.263\n", - "\tR²: 0.866540858244522, Desviación Estándar: 0.42137143710599334, Varianza: 0.17755388800877012, Incertidumbre: 0.1592634331669075\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = -1.358x + 15.647\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.018\n", - "\tR²: 0.48897119697787084, Desviación Estándar: 0.8245435883924694, Varianza: 0.67987212915913, Incertidumbre: 0.31164818285989687\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = 0.102x + 13.89\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.012\n", - "\tR²: 0.003963308805261412, Desviación Estándar: 1.089046175187781, Varianza: 1.1860215716911349, Incertidumbre: 0.44460123925662026\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = -0.035x + 14.97\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 13.857\n", - "\tR²: 0.5601880164889009, Desviación Estándar: 0.7722572050409231, Varianza: 0.5963811907376184, Incertidumbre: 0.25741906834697437\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443]\n", - "Ecuación de regresión: y = -0.123x + 17.936\n", - "Valor del parámetro correlacionado para la aeronave: 36.0\n", - "Predicción obtenida: 13.495\n", - "\tR²: 0.6432306766680158, Desviación Estándar: 0.6517820231226291, Varianza: 0.4248198056658274, Incertidumbre: 0.2660888966948914\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443]\n", - "Ecuación de regresión: y = -0.158x + 15.313\n", - "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 14.446\n", - "\tR²: 0.787811738102038, Desviación Estándar: 0.565704012619775, Varianza: 0.3200210298941146, Incertidumbre: 0.21381601900903846\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.263', 'Área del ala: 14.018', 'Longitud del fuselaje: 14.012', 'Peso máximo al despegue (MTOW): 13.857', 'Velocidad máxima (KIAS): 13.495', 'payload: 14.446']\n", - "**Mediana calculada:** 13.934\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Ecuación de regresión: y = -0.199x + 18.661\n", - "Valor del parámetro correlacionado para la aeronave: 18.266\n", - "Predicción obtenida: 15.029\n", - "\tR²: 0.8259424603654436, Desviación Estándar: 0.45023923501123037, Varianza: 0.2027153687434979, Incertidumbre: 0.1591836081163423\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Ecuación de regresión: y = -1.354x + 15.633\n", - "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 14.611\n", - "\tR²: 0.48854653028077, Desviación Estándar: 0.7717914841458512, Varianza: 0.5956620950000557, Incertidumbre: 0.27286949605078054\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Ecuación de regresión: y = 0.118x + 13.849\n", - "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 14.024\n", - "\tR²: 0.006260092700906439, Desviación Estándar: 1.0085765160538325, Varianza: 1.0172265887352867, Incertidumbre: 0.3812060913797692\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Ecuación de regresión: y = -0.035x + 14.982\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 14.755\n", - "\tR²: 0.5642432263469788, Desviación Estándar: 0.732986855728399, Varianza: 0.5372697306706048, Incertidumbre: 0.23179079590669788\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934]\n", - "Ecuación de regresión: y = 0.0x + 14.449\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 14.451\n", - "\tR²: 0.00695796488843492, Desviación Estándar: 0.8160949284662801, Varianza: 0.6660109322683828, Incertidumbre: 0.36496874722868605\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Ecuación de regresión: y = -0.118x + 17.819\n", - "Valor del parámetro correlacionado para la aeronave: 25.6\n", - "Predicción obtenida: 14.805\n", - "\tR²: 0.6226111062384435, Desviación Estándar: 0.6215370810067415, Varianza: 0.38630834306638073, Incertidumbre: 0.23491893527840643\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218]\n", - "Ecuación de regresión: y = -0.214x + 18.598\n", - "Valor del parámetro correlacionado para la aeronave: 16.7\n", - "Predicción obtenida: 15.024\n", - "\tR²: 0.8546770471425846, Desviación Estándar: 0.4778243263623709, Varianza: 0.2283160868636535, Incertidumbre: 0.23891216318118544\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 15.029', 'Área del ala: 14.611', 'Longitud del fuselaje: 14.024', 'Peso máximo al despegue (MTOW): 14.755', 'Alcance de la aeronave: 14.451', 'Velocidad máxima (KIAS): 14.805', 'Crucero KIAS: 15.024']\n", - "**Mediana calculada:** 14.755\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Ecuación de regresión: y = -0.193x + 18.483\n", - "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 12.586\n", - "\tR²: 0.8322301664609455, Desviación Estándar: 0.43196932859791437, Varianza: 0.18659750084933294, Incertidumbre: 0.14398977619930478\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Ecuación de regresión: y = -1.38x + 15.68\n", - "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 14.213\n", - "\tR²: 0.5222926726573038, Desviación Estándar: 0.7289150646703415, Varianza: 0.5313171715033681, Incertidumbre: 0.24297168822344717\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Ecuación de regresión: y = 0.046x + 14.071\n", - "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 14.149\n", - "\tR²: 0.0009397134116212458, Desviación Estándar: 0.9728249313313656, Varianza: 0.9463883470198762, Incertidumbre: 0.34394555292587303\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Ecuación de regresión: y = -0.035x + 14.982\n", - "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 14.057\n", - "\tR²: 0.6034073830513715, Desviación Estándar: 0.698875551331174, Varianza: 0.48842703624845235, Incertidumbre: 0.21071890717438813\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Ecuación de regresión: y = -0.117x + 17.789\n", - "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 12.97\n", - "\tR²: 0.6429053256386628, Desviación Estándar: 0.5816082132170911, Varianza: 0.3382681136815773, Incertidumbre: 0.20562955577979825\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934]\n", - "Ecuación de regresión: y = -0.15x + 15.164\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.414\n", - "\tR²: 0.7728271432710303, Desviación Estándar: 0.5530726265073179, Varianza: 0.30588933019170317, Incertidumbre: 0.19554070234598958\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755]\n", - "Ecuación de regresión: y = -0.207x + 18.401\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 12.607\n", - "\tR²: 0.8547867905694756, Desviación Estándar: 0.43920425690338755, Varianza: 0.19290037928205683, Incertidumbre: 0.19641811488865116\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.586', 'Área del ala: 14.213', 'Longitud del fuselaje: 14.149', 'Peso máximo al despegue (MTOW): 14.057', 'Velocidad máxima (KIAS): 12.97', 'payload: 14.414', 'Crucero KIAS: 12.607']\n", - "**Mediana calculada:** 14.057\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Ecuación de regresión: y = -0.157x + 17.782\n", - "Valor del parámetro correlacionado para la aeronave: 30.953\n", - "Predicción obtenida: 12.908\n", - "\tR²: 0.6712253814763909, Desviación Estándar: 0.5738697173551367, Varianza: 0.32932645249726444, Incertidumbre: 0.18147353870392907\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Ecuación de regresión: y = -1.371x + 15.653\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 13.087\n", - "\tR²: 0.5204404709133397, Desviación Estándar: 0.6930832915381803, Varianza: 0.4803644490093982, Incertidumbre: 0.21917218094671553\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Ecuación de regresión: y = 0.049x + 14.056\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 14.177\n", - "\tR²: 0.001042484555474843, Desviación Estándar: 0.917647035048045, Varianza: 0.8420760809324679, Incertidumbre: 0.305882345016015\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Ecuación de regresión: y = -0.035x + 14.982\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 12.372\n", - "\tR²: 0.6067435478664236, Desviación Estándar: 0.669122407636399, Varianza: 0.4477247964011312, Incertidumbre: 0.19315900108484274\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Ecuación de regresión: y = -0.095x + 17.205\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.803\n", - "\tR²: 0.5330694834785845, Desviación Estándar: 0.6273765557788624, Varianza: 0.39360134274094805, Incertidumbre: 0.20912551859295414\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057]\n", - "Ecuación de regresión: y = -0.145x + 15.074\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.46\n", - "\tR²: 0.7690943364673855, Desviación Estándar: 0.53238130110139, Varianza: 0.28342984976240887, Incertidumbre: 0.17746043370046335\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057]\n", - "Ecuación de regresión: y = -0.156x + 17.537\n", - "Valor del parámetro correlacionado para la aeronave: 28.3\n", - "Predicción obtenida: 13.136\n", - "\tR²: 0.6651166916698918, Desviación Estándar: 0.6098787538174729, Varianza: 0.3719520943579537, Incertidumbre: 0.2489819586362145\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.908', 'Área del ala: 13.087', 'Longitud del fuselaje: 14.177', 'Peso máximo al despegue (MTOW): 12.372', 'Velocidad máxima (KIAS): 12.803', 'payload: 12.46', 'Crucero KIAS: 13.136']\n", - "**Mediana calculada:** 12.908\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.157x + 17.782\n", - "Valor del parámetro correlacionado para la aeronave: 21.463\n", - "Predicción obtenida: 14.403\n", - "\tR²: 0.7022195601444223, Desviación Estándar: 0.5471633158350149, Varianza: 0.2993876941955682, Incertidumbre: 0.16497594706104288\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -1.404x + 15.68\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 12.745\n", - "\tR²: 0.5633237239923707, Desviación Estándar: 0.6625958144708088, Varianza: 0.43903321335423456, Incertidumbre: 0.199780154932692\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.033x + 14.932\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 12.491\n", - "\tR²: 0.6086276801287058, Desviación Estándar: 0.6558904966751431, Varianza: 0.4301923436287659, Incertidumbre: 0.18191129360398245\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.138x + 15.044\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.551\n", - "\tR²: 0.7628945280960475, Desviación Estándar: 0.5206483180033946, Varianza: 0.2710746710397639, Incertidumbre: 0.1646434544826377\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.403', 'Área del ala: 12.745', 'Peso máximo al despegue (MTOW): 12.491', 'payload: 12.551']\n", - "**Mediana calculada:** 12.648\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", - "Ecuación de regresión: y = -0.141x + 17.233\n", - "Valor del parámetro correlacionado para la aeronave: 33.045\n", - "Predicción obtenida: 12.574\n", - "\tR²: 0.5159927919290995, Desviación Estándar: 0.7087508493711017, Varianza: 0.502327766484258, Incertidumbre: 0.20459874683639073\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", - "Ecuación de regresión: y = -1.423x + 15.698\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 13.033\n", - "\tR²: 0.6116464984342147, Desviación Estándar: 0.6348648613448064, Varianza: 0.4030533921703601, Incertidumbre: 0.1832696992982292\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.163x + 14.323\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 13.917\n", - "\tR²: 0.011206334911924909, Desviación Estándar: 0.9412441639775184, Varianza: 0.8859405762217376, Incertidumbre: 0.2976475392509969\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", - "Ecuación de regresión: y = -0.032x + 14.92\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 12.528\n", - "\tR²: 0.6321568018371059, Desviación Estándar: 0.6331526544068619, Varianza: 0.4008822837824551, Incertidumbre: 0.16921716473692594\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755]\n", - "Ecuación de regresión: y = 0.0x + 14.526\n", - "Valor del parámetro correlacionado para la aeronave: 500.0\n", - "Predicción obtenida: 14.54\n", - "\tR²: 0.0015535116931560955, Desviación Estándar: 0.752709188227462, Varianza: 0.5665711220420449, Incertidumbre: 0.30729223931030347\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.093x + 17.144\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.84\n", - "\tR²: 0.6038367583191466, Desviación Estándar: 0.5957808601774445, Varianza: 0.35495483335377565, Incertidumbre: 0.18840245044950332\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648]\n", - "Ecuación de regresión: y = -0.137x + 15.038\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.567\n", - "\tR²: 0.7750989860654982, Desviación Estándar: 0.4971353116989971, Varianza: 0.24714351813805902, Incertidumbre: 0.14989193626745023\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.574', 'Área del ala: 13.033', 'Longitud del fuselaje: 13.917', 'Peso máximo al despegue (MTOW): 12.528', 'Alcance de la aeronave: 14.54', 'Velocidad máxima (KIAS): 12.84', 'payload: 12.567']\n", - "**Mediana calculada:** 12.84\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", - "Ecuación de regresión: y = -0.136x + 17.118\n", - "Valor del parámetro correlacionado para la aeronave: 25.703\n", - "Predicción obtenida: 13.632\n", - "\tR²: 0.5415803492274942, Desviación Estándar: 0.6840025560016795, Varianza: 0.4678594966168307, Incertidumbre: 0.18970817601634496\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", - "Ecuación de regresión: y = -1.447x + 15.715\n", - "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 13.764\n", - "\tR²: 0.6330253270433377, Desviación Estándar: 0.6119897631287073, Varianza: 0.37453147017433136, Incertidumbre: 0.16973542084766274\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84]\n", - "Ecuación de regresión: y = -0.311x + 14.512\n", - "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 13.765\n", - "\tR²: 0.039424169255703134, Desviación Estándar: 0.9449335704173759, Varianza: 0.8928994525017299, Incertidumbre: 0.2849081913532099\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", - "Ecuación de regresión: y = -0.031x + 14.9\n", - "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 13.773\n", - "\tR²: 0.6393936966590913, Desviación Estándar: 0.6161349689692996, Varianza: 0.3796222999867998, Incertidumbre: 0.15908536492227474\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84]\n", - "Ecuación de regresión: y = -0.093x + 17.144\n", - "Valor del parámetro correlacionado para la aeronave: 41.2\n", - "Predicción obtenida: 13.314\n", - "\tR²: 0.6528561194484994, Desviación Estándar: 0.5680547657716968, Varianza: 0.32268621691593735, Incertidumbre: 0.1712749562216309\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84]\n", - "Ecuación de regresión: y = -0.134x + 15.025\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 13.87\n", - "\tR²: 0.7755555066361247, Desviación Estándar: 0.4815099276447935, Varianza: 0.2318518104204943, Incertidumbre: 0.1389999431715994\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908]\n", - "Ecuación de regresión: y = -0.161x + 17.639\n", - "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 13.844\n", - "\tR²: 0.7192364194160978, Desviación Estándar: 0.5692595198003065, Varianza: 0.32405640088327564, Incertidumbre: 0.2151598744068086\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.632', 'Área del ala: 13.764', 'Longitud del fuselaje: 13.765', 'Peso máximo al despegue (MTOW): 13.773', 'Velocidad máxima (KIAS): 13.314', 'payload: 13.87', 'Crucero KIAS: 13.844']\n", - "**Mediana calculada:** 13.765\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", - "Ecuación de regresión: y = -0.135x + 17.123\n", - "Valor del parámetro correlacionado para la aeronave: 33.797\n", - "Predicción obtenida: 12.545\n", - "\tR²: 0.5404546291978183, Desviación Estándar: 0.6600090502158572, Varianza: 0.43561194636683787, Incertidumbre: 0.17639483843412967\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", - "Ecuación de regresión: y = -1.447x + 15.715\n", - "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 13.108\n", - "\tR²: 0.6331129407716816, Desviación Estándar: 0.5897281920140293, Varianza: 0.3477793404561358, Incertidumbre: 0.15761148898843813\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765]\n", - "Ecuación de regresión: y = -0.311x + 14.512\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 13.734\n", - "\tR²: 0.04129311851250839, Desviación Estándar: 0.9047050168185119, Varianza: 0.8184911674565839, Incertidumbre: 0.2611658424986864\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", - "Ecuación de regresión: y = -0.031x + 14.9\n", - "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 13.006\n", - "\tR²: 0.6404167494362927, Desviación Estándar: 0.5965733368182722, Varianza: 0.35589974620248765, Incertidumbre: 0.14914333420456805\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765]\n", - "Ecuación de regresión: y = -0.09x + 17.066\n", - "Valor del parámetro correlacionado para la aeronave: 46.3\n", - "Predicción obtenida: 12.914\n", - "\tR²: 0.6362072062495043, Desviación Estándar: 0.5573026681001448, Varianza: 0.31058626387154015, Incertidumbre: 0.16087942272385766\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765]\n", - "Ecuación de regresión: y = -0.134x + 15.009\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 12.643\n", - "\tR²: 0.7773273437346053, Desviación Estándar: 0.46343938731299195, Varianza: 0.21477606571304134, Incertidumbre: 0.1285349595405083\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765]\n", - "Ecuación de regresión: y = -0.162x + 17.636\n", - "Valor del parámetro correlacionado para la aeronave: 30.9\n", - "Predicción obtenida: 12.636\n", - "\tR²: 0.7203735267257434, Desviación Estándar: 0.533129992286115, Varianza: 0.2842275886749931, Incertidumbre: 0.18848991639972185\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.545', 'Área del ala: 13.108', 'Longitud del fuselaje: 13.734', 'Peso máximo al despegue (MTOW): 13.006', 'Velocidad máxima (KIAS): 12.914', 'payload: 12.643', 'Crucero KIAS: 12.636']\n", - "**Mediana calculada:** 12.914\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.129x + 16.982\n", - "Valor del parámetro correlacionado para la aeronave: 18.091\n", - "Predicción obtenida: 14.648\n", - "\tR²: 0.5523215209559584, Desviación Estándar: 0.6432370596243068, Varianza: 0.41375391487412394, Incertidumbre: 0.1660830946392245\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -1.465x + 15.728\n", - "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 14.498\n", - "\tR²: 0.6463458428923345, Desviación Estándar: 0.5717120330519926, Varianza: 0.3268546487364427, Incertidumbre: 0.14761541218911678\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.399x + 14.624\n", - "Valor del parámetro correlacionado para la aeronave: 0.75\n", - "Predicción obtenida: 14.325\n", - "\tR²: 0.06604254768080076, Desviación Estándar: 0.8947186094782155, Varianza: 0.8005213901466314, Incertidumbre: 0.24815029412196515\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.031x + 14.901\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 14.589\n", - "\tR²: 0.64862940600494, Desviación Estándar: 0.5791516164367155, Varianza: 0.33541659482126046, Incertidumbre: 0.14046489928328137\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84]\n", - "Ecuación de regresión: y = 0.0x + 14.236\n", - "Valor del parámetro correlacionado para la aeronave: 270.0\n", - "Predicción obtenida: 14.259\n", - "\tR²: 0.010075858581318875, Desviación Estándar: 0.9138813895344626, Varianza: 0.8351791941374402, Incertidumbre: 0.34541469778833345\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.131x + 14.998\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 14.604\n", - "\tR²: 0.7761013348288335, Desviación Estándar: 0.45173648062543886, Varianza: 0.2040658479278575, Incertidumbre: 0.12073165282910263\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.155x + 17.498\n", - "Valor del parámetro correlacionado para la aeronave: 16.54\n", - "Predicción obtenida: 14.941\n", - "\tR²: 0.7453275443355423, Desviación Estándar: 0.5085476473721651, Varianza: 0.25862070964776396, Incertidumbre: 0.16951588245738836\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.648', 'Área del ala: 14.498', 'Longitud del fuselaje: 14.325', 'Peso máximo al despegue (MTOW): 14.589', 'Alcance de la aeronave: 14.259', 'payload: 14.604', 'Crucero KIAS: 14.941']\n", - "**Mediana calculada:** 14.589\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -0.128x + 16.957\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 14.714\n", - "\tR²: 0.5769309788482372, Desviación Estándar: 0.6229572635807227, Varianza: 0.38807575224798196, Incertidumbre: 0.15573931589518067\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -1.476x + 15.749\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 14.716\n", - "\tR²: 0.6654453208012552, Desviación Estándar: 0.5539699350076821, Varianza: 0.3068826888924155, Incertidumbre: 0.13849248375192053\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -0.449x + 14.74\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 14.335\n", - "\tR²: 0.10523063156350132, Desviación Estándar: 0.8642071856334788, Varianza: 0.746854059700538, Incertidumbre: 0.2309690857020446\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -0.031x + 14.901\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 14.707\n", - "\tR²: 0.6704861354330247, Desviación Estándar: 0.5628342077229468, Varianza: 0.3167823453831172, Incertidumbre: 0.13266129498821788\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589]\n", - "Ecuación de regresión: y = 0.0x + 14.29\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 14.297\n", - "\tR²: 0.006384217652188662, Desviación Estándar: 0.861582649338378, Varianza: 0.7423246616409385, Incertidumbre: 0.30461546694991914\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -0.131x + 14.994\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.837\n", - "\tR²: 0.7981390800156483, Desviación Estándar: 0.43643291254269034, Varianza: 0.19047368715049562, Incertidumbre: 0.11268649346764252\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589]\n", - "Ecuación de regresión: y = -0.148x + 17.309\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 14.943\n", - "\tR²: 0.7479549673253836, Desviación Estándar: 0.49233652426651103, Varianza: 0.24239525312682883, Incertidumbre: 0.15569047919729348\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.714', 'Área del ala: 14.716', 'Longitud del fuselaje: 14.335', 'Peso máximo al despegue (MTOW): 14.707', 'Alcance de la aeronave: 14.297', 'payload: 14.837', 'Crucero KIAS: 14.943']\n", - "**Mediana calculada:** 14.714\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.128x + 16.957\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 14.714\n", - "\tR²: 0.6023394020952446, Desviación Estándar: 0.60435731717502, Varianza: 0.3652477668229877, Incertidumbre: 0.1465781796663248\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -1.476x + 15.748\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 14.716\n", - "\tR²: 0.6855376342976433, Desviación Estándar: 0.5374299221408195, Varianza: 0.2888309212122873, Incertidumbre: 0.13034590207965144\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.5x + 14.859\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 14.409\n", - "\tR²: 0.14307201753173704, Desviación Estándar: 0.8395031403094158, Varianza: 0.7047655225893706, Incertidumbre: 0.21675877876714636\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.031x + 14.902\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 14.708\n", - "\tR²: 0.692130699174681, Desviación Estándar: 0.54782447874912, Varianza: 0.300111659516745, Incertidumbre: 0.1256795548244873\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714]\n", - "Ecuación de regresión: y = 0.0x + 14.354\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 14.358\n", - "\tR²: 0.002361606473490707, Desviación Estándar: 0.8223839641550523, Varianza: 0.6763153844993783, Incertidumbre: 0.2741279880516841\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.129x + 14.969\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.813\n", - "\tR²: 0.81671987260067, Desviación Estándar: 0.4234784703530429, Varianza: 0.17933401485255304, Incertidumbre: 0.10586961758826073\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.144x + 17.203\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 14.898\n", - "\tR²: 0.7575308845016266, Desviación Estándar: 0.4734960530805051, Varianza: 0.22419851228281648, Incertidumbre: 0.1427644316165672\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.714', 'Área del ala: 14.716', 'Longitud del fuselaje: 14.409', 'Peso máximo al despegue (MTOW): 14.708', 'Alcance de la aeronave: 14.358', 'payload: 14.813', 'Crucero KIAS: 14.898']\n", - "**Mediana calculada:** 14.714\n", - "\n", - "--- Imputación para aeronave: **V21** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.128x + 16.957\n", - "Valor del parámetro correlacionado para la aeronave: 19.688\n", - "Predicción obtenida: 14.434\n", - "\tR²: 0.6023394020952446, Desviación Estándar: 0.60435731717502, Varianza: 0.3652477668229877, Incertidumbre: 0.1465781796663248\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -1.476x + 15.748\n", - "Valor del parámetro correlacionado para la aeronave: 0.8\n", - "Predicción obtenida: 14.568\n", - "\tR²: 0.6855376342976433, Desviación Estándar: 0.5374299221408195, Varianza: 0.2888309212122873, Incertidumbre: 0.13034590207965144\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.5x + 14.859\n", - "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 14.394\n", - "\tR²: 0.14307201753173704, Desviación Estándar: 0.8395031403094158, Varianza: 0.7047655225893706, Incertidumbre: 0.21675877876714636\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.031x + 14.902\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 14.59\n", - "\tR²: 0.692130699174681, Desviación Estándar: 0.54782447874912, Varianza: 0.300111659516745, Incertidumbre: 0.1256795548244873\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914]\n", - "Ecuación de regresión: y = -0.09x + 17.066\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.107\n", - "\tR²: 0.6655168135921319, Desviación Estándar: 0.535439085733295, Varianza: 0.28669501453090684, Incertidumbre: 0.148504082961458\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.129x + 14.969\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 14.775\n", - "\tR²: 0.81671987260067, Desviación Estándar: 0.4234784703530429, Varianza: 0.17933401485255304, Incertidumbre: 0.10586961758826073\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714]\n", - "Ecuación de regresión: y = -0.144x + 17.203\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 14.61\n", - "\tR²: 0.7575308845016266, Desviación Estándar: 0.4734960530805051, Varianza: 0.22419851228281648, Incertidumbre: 0.1427644316165672\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.434', 'Área del ala: 14.568', 'Longitud del fuselaje: 14.394', 'Peso máximo al despegue (MTOW): 14.59', 'Velocidad máxima (KIAS): 14.107', 'payload: 14.775', 'Crucero KIAS: 14.61']\n", - "**Mediana calculada:** 14.568\n", - "\n", - "--- Imputación para aeronave: **V25** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -0.129x + 16.992\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.164\n", - "\tR²: 0.6159186819254363, Desviación Estándar: 0.5881023640765761, Varianza: 0.34586439063245766, Incertidumbre: 0.13861705655679563\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -1.476x + 15.748\n", - "Valor del parámetro correlacionado para la aeronave: 0.52\n", - "Predicción obtenida: 14.981\n", - "\tR²: 0.6970733829876015, Desviación Estándar: 0.5222880039127576, Varianza: 0.2727847590311727, Incertidumbre: 0.12310446309969901\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -0.519x + 14.904\n", - "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 14.421\n", - "\tR²: 0.16641438018273524, Desviación Estándar: 0.8138274929561254, Varianza: 0.6623151882912524, Incertidumbre: 0.20345687323903136\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -0.031x + 14.899\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 14.509\n", - "\tR²: 0.7051231818210476, Desviación Estándar: 0.5339726907463312, Varianza: 0.2851268344628771, Incertidumbre: 0.11939992346372695\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568]\n", - "Ecuación de regresión: y = -0.091x + 17.151\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.144\n", - "\tR²: 0.6634608751199247, Desviación Estándar: 0.5293377198828594, Varianza: 0.2801984216907845, Incertidumbre: 0.14147145640698403\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -0.127x + 14.933\n", - "Valor del parámetro correlacionado para la aeronave: 2.2\n", - "Predicción obtenida: 14.653\n", - "\tR²: 0.8257579107606323, Desviación Estándar: 0.41340767338372525, Varianza: 0.17090590441254486, Incertidumbre: 0.100266088458938\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Ecuación de regresión: y = -0.144x + 17.191\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.318\n", - "\tR²: 0.7641303564183091, Desviación Estándar: 0.45348228917663347, Varianza: 0.20564618659687983, Incertidumbre: 0.13090906086442852\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.164', 'Área del ala: 14.981', 'Longitud del fuselaje: 14.421', 'Peso máximo al despegue (MTOW): 14.509', 'Velocidad máxima (KIAS): 14.144', 'payload: 14.653', 'Crucero KIAS: 14.318']\n", - "**Mediana calculada:** 14.421\n", - "\n", - "--- Imputación para aeronave: **V32** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.13x + 17.031\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.18\n", - "\tR²: 0.6201449706987955, Desviación Estándar: 0.5752636617985344, Varianza: 0.3309282805858586, Incertidumbre: 0.13197453514057741\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -1.403x + 15.627\n", - "Valor del parámetro correlacionado para la aeronave: 1.03\n", - "Predicción obtenida: 14.182\n", - "\tR²: 0.6872369206933386, Desviación Estándar: 0.5219942765247394, Varianza: 0.27247802472458604, Incertidumbre: 0.11975370002515603\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.519x + 14.904\n", - "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 14.385\n", - "\tR²: 0.17855538005879423, Desviación Estándar: 0.7895286400719489, Varianza: 0.623355473493861, Incertidumbre: 0.1914888222039361\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.031x + 14.889\n", - "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 14.16\n", - "\tR²: 0.7123924260887753, Desviación Estándar: 0.5214279546204159, Varianza: 0.2718871118596305, Incertidumbre: 0.11378490816733594\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.092x + 17.198\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.164\n", - "\tR²: 0.6652782895416913, Desviación Estándar: 0.5160037700308047, Varianza: 0.2662598906860036, Incertidumbre: 0.1332316005273032\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.125x + 14.9\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.274\n", - "\tR²: 0.8296041524851132, Desviación Estándar: 0.4050204961761552, Varianza: 0.16404160232277895, Incertidumbre: 0.09546424645523317\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Ecuación de regresión: y = -0.144x + 17.209\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.327\n", - "\tR²: 0.7660206652821594, Desviación Estándar: 0.43655078246489853, Varianza: 0.19057658567071517, Incertidumbre: 0.12107740234777827\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.18', 'Área del ala: 14.182', 'Longitud del fuselaje: 14.385', 'Peso máximo al despegue (MTOW): 14.16', 'Velocidad máxima (KIAS): 14.164', 'payload: 14.274', 'Crucero KIAS: 14.327']\n", - "**Mediana calculada:** 14.182\n", - "\n", - "--- Imputación para aeronave: **V35** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.13x + 17.032\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.467\n", - "\tR²: 0.6225279923162458, Desviación Estándar: 0.5606978547880688, Varianza: 0.31438208436394227, Incertidumbre: 0.12537585181444277\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -1.403x + 15.627\n", - "Valor del parámetro correlacionado para la aeronave: 1.202\n", - "Predicción obtenida: 13.941\n", - "\tR²: 0.6891992560944142, Desviación Estándar: 0.5087770862467862, Varianza: 0.25885412348976977, Incertidumbre: 0.11376601502420872\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.503x + 14.866\n", - "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 13.92\n", - "\tR²: 0.17769866949605284, Desviación Estándar: 0.768609327920775, Varianza: 0.5907602989668254, Incertidumbre: 0.18116295595200493\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.031x + 14.891\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 13.898\n", - "\tR²: 0.7152702339309572, Desviación Estándar: 0.5094595753554049, Varianza: 0.2595490589213094, Incertidumbre: 0.10861714641999741\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.092x + 17.201\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.166\n", - "\tR²: 0.6671372923996113, Desviación Estándar: 0.4996364202272749, Varianza: 0.24963655241752605, Incertidumbre: 0.12490910505681872\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.125x + 14.891\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.643\n", - "\tR²: 0.8319028879241045, Desviación Estándar: 0.3947401644934259, Varianza: 0.15581979746429697, Incertidumbre: 0.09055960452544556\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Ecuación de regresión: y = -0.144x + 17.186\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.598\n", - "\tR²: 0.7644167301146686, Desviación Estándar: 0.42230373151011547, Varianza: 0.1783404416473677, Incertidumbre: 0.11286541974764448\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.467', 'Área del ala: 13.941', 'Longitud del fuselaje: 13.92', 'Peso máximo al despegue (MTOW): 13.898', 'Velocidad máxima (KIAS): 14.166', 'payload: 13.643', 'Crucero KIAS: 13.598']\n", - "**Mediana calculada:** 13.898\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.128x + 17.003\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.494\n", - "\tR²: 0.6120846873528347, Desviación Estándar: 0.5547180985616944, Varianza: 0.30771216887190167, Incertidumbre: 0.12104941314385424\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -1.403x + 15.625\n", - "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 13.937\n", - "\tR²: 0.6891124350538647, Desviación Estándar: 0.49659866715385637, Varianza: 0.24661023621898662, Incertidumbre: 0.10836671344032035\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.031x + 14.891\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 14.146\n", - "\tR²: 0.7155976388717264, Desviación Estándar: 0.4982613003458266, Varianza: 0.24826432342231405, Incertidumbre: 0.10389466308892618\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.091x + 17.161\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.148\n", - "\tR²: 0.6615818300119434, Desviación Estándar: 0.488766926306414, Varianza: 0.2388931082510195, Incertidumbre: 0.11854339196881342\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.125x + 14.903\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 14.28\n", - "\tR²: 0.8289103542494105, Desviación Estándar: 0.38872886000472096, Varianza: 0.15111012660056994, Incertidumbre: 0.08692241557865553\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.141x + 17.154\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.625\n", - "\tR²: 0.7574536879812513, Desviación Estándar: 0.4146205350250817, Varianza: 0.17191018806448502, Incertidumbre: 0.10705456180985003\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.494', 'Área del ala: 13.937', 'Peso máximo al despegue (MTOW): 14.146', 'Velocidad máxima (KIAS): 14.148', 'payload: 14.28', 'Crucero KIAS: 13.625']\n", - "**Mediana calculada:** 14.042\n", - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -0.126x + 16.968\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.525\n", - "\tR²: 0.5957680406681929, Desviación Estándar: 0.5537225849540539, Varianza: 0.3066087010881995, Incertidumbre: 0.11805405177448465\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -1.404x + 15.631\n", - "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 13.632\n", - "\tR²: 0.6890205544749124, Desviación Estándar: 0.48567165393621425, Varianza: 0.23587695543713788, Incertidumbre: 0.103545544532815\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Ecuación de regresión: y = -0.504x + 14.866\n", - "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 13.848\n", - "\tR²: 0.17842685862395946, Desviación Estándar: 0.7481250281419246, Varianza: 0.5596910577323555, Incertidumbre: 0.17163165235811428\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -0.031x + 14.883\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 13.645\n", - "\tR²: 0.7162472212244984, Desviación Estándar: 0.48820758180424606, Varianza: 0.2383466429311496, Incertidumbre: 0.09965495533154001\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -0.091x + 17.146\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.142\n", - "\tR²: 0.6610410820046247, Desviación Estándar: 0.47561618075428896, Varianza: 0.22621075139529648, Incertidumbre: 0.11210380888446815\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -0.124x + 14.881\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 12.657\n", - "\tR²: 0.8271914508346105, Desviación Estándar: 0.3826399844398456, Varianza: 0.1464133576921253, Incertidumbre: 0.08349889012439606\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Ecuación de regresión: y = -0.138x + 17.114\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.66\n", - "\tR²: 0.7425159710448364, Desviación Estándar: 0.41365132002637955, Varianza: 0.17110741455956627, Incertidumbre: 0.10341283000659489\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.525', 'Área del ala: 13.632', 'Longitud del fuselaje: 13.848', 'Peso máximo al despegue (MTOW): 13.645', 'Velocidad máxima (KIAS): 14.142', 'payload: 12.657', 'Crucero KIAS: 13.66']\n", - "**Mediana calculada:** 13.645\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -0.125x + 16.96\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 12.435\n", - "\tR²: 0.5961936628210269, Desviación Estándar: 0.5420953383497691, Varianza: 0.2938673558605506, Incertidumbre: 0.1130346918390738\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -1.403x + 15.631\n", - "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 14.396\n", - "\tR²: 0.6899612272653157, Desviación Estándar: 0.4750038307207795, Varianza: 0.22562863919941495, Incertidumbre: 0.09904514543760928\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645]\n", - "Ecuación de regresión: y = -0.51x + 14.867\n", - "Valor del parámetro correlacionado para la aeronave: 2.05\n", - "Predicción obtenida: 13.821\n", - "\tR²: 0.18318737073904479, Desviación Estándar: 0.7305092307354947, Varianza: 0.5336437361897641, Incertidumbre: 0.16334682981156448\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -0.031x + 14.883\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 14.419\n", - "\tR²: 0.7164307643262642, Desviación Estándar: 0.4783437902243881, Varianza: 0.2288127816462334, Incertidumbre: 0.09566875804487762\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -0.116x + 14.849\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 14.385\n", - "\tR²: 0.7782311439723943, Desviación Estándar: 0.42352889042939196, Varianza: 0.17937672102835192, Incertidumbre: 0.0902966628368432\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -0.138x + 17.115\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 12.553\n", - "\tR²: 0.7465935530165513, Desviación Estándar: 0.4013165330809285, Varianza: 0.16105495972409598, Incertidumbre: 0.0973335561881972\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.435', 'Área del ala: 14.396', 'Longitud del fuselaje: 13.821', 'Peso máximo al despegue (MTOW): 14.419', 'payload: 14.385', 'Crucero KIAS: 12.553']\n", - "**Mediana calculada:** 14.103\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Ecuación de regresión: y = -0.101x + 16.425\n", - "Valor del parámetro correlacionado para la aeronave: 26.25\n", - "Predicción obtenida: 13.765\n", - "\tR²: 0.4647548108442666, Desviación Estándar: 0.6119553027249928, Varianza: 0.37448929253323754, Incertidumbre: 0.12491485308888704\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Ecuación de regresión: y = -1.386x + 15.597\n", - "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 14.211\n", - "\tR²: 0.6861710827108773, Desviación Estándar: 0.4685865248148631, Varianza: 0.21957333123807035, Incertidumbre: 0.0956498238450352\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103]\n", - "Ecuación de regresión: y = -0.501x + 14.864\n", - "Valor del parámetro correlacionado para la aeronave: 2.03\n", - "Predicción obtenida: 13.847\n", - "\tR²: 0.17824780030191256, Desviación Estándar: 0.7154090188937324, Varianza: 0.5118100643144928, Incertidumbre: 0.1561150467587915\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Ecuación de regresión: y = -0.031x + 14.856\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 14.001\n", - "\tR²: 0.7134393100886465, Desviación Estándar: 0.4728662953123409, Varianza: 0.22360253324241802, Incertidumbre: 0.0927367102737675\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Ecuación de regresión: y = -0.09x + 17.081\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.383\n", - "\tR²: 0.6440323429773995, Desviación Estándar: 0.4759723084801662, Varianza: 0.2265496384399385, Incertidumbre: 0.10919553645204273\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Ecuación de regresión: y = -0.114x + 14.822\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 14.136\n", - "\tR²: 0.7761269966964691, Desviación Estándar: 0.4180768449775009, Varianza: 0.17478824830634132, Incertidumbre: 0.0871750483613141\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Ecuación de regresión: y = -0.109x + 16.524\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 13.919\n", - "\tR²: 0.5802472498582693, Desviación Estándar: 0.5020212903739392, Varianza: 0.25202537598871494, Incertidumbre: 0.11832755290781109\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.765', 'Área del ala: 14.211', 'Longitud del fuselaje: 13.847', 'Peso máximo al despegue (MTOW): 14.001', 'Velocidad máxima (KIAS): 14.383', 'payload: 14.136', 'Crucero KIAS: 13.919']\n", - "**Mediana calculada:** 14.001\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -1.378x + 15.578\n", - "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 13.746\n", - "\tR²: 0.6839560448092026, Desviación Estándar: 0.46094201511946703, Varianza: 0.21246754130239498, Incertidumbre: 0.0921884030238934\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -0.496x + 14.863\n", - "Valor del parámetro correlacionado para la aeronave: 2.488\n", - "Predicción obtenida: 13.628\n", - "\tR²: 0.17653575217536233, Desviación Estándar: 0.6996903479356846, Varianza: 0.48956658299435946, Incertidumbre: 0.14917448340699427\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -0.031x + 14.856\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 14.001\n", - "\tR²: 0.7141618045464115, Desviación Estándar: 0.46402689980399064, Varianza: 0.21532096374170276, Incertidumbre: 0.08930201850435383\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -0.114x + 14.812\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.673\n", - "\tR²: 0.7761914041781102, Desviación Estándar: 0.41014763806155546, Varianza: 0.16822108500747268, Incertidumbre: 0.08372103603821063\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 13.746', 'Longitud del fuselaje: 13.628', 'Peso máximo al despegue (MTOW): 14.001', 'payload: 13.673']\n", - "**Mediana calculada:** 13.71\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -0.101x + 16.427\n", - "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 13.112\n", - "\tR²: 0.46205070143923843, Desviación Estándar: 0.6013720296168469, Varianza: 0.36164831800548575, Incertidumbre: 0.12027440592336938\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", - "Ecuación de regresión: y = -1.378x + 15.578\n", - "Valor del parámetro correlacionado para la aeronave: 1.32\n", - "Predicción obtenida: 13.758\n", - "\tR²: 0.6844100847233376, Desviación Estándar: 0.4520440536186202, Varianza: 0.20434382641195398, Incertidumbre: 0.08865313270788183\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71]\n", - "Ecuación de regresión: y = -0.49x + 14.856\n", - "Valor del parámetro correlacionado para la aeronave: 2.42\n", - "Predicción obtenida: 13.669\n", - "\tR²: 0.18085287153910534, Desviación Estándar: 0.6845046469228117, Varianza: 0.4685466116589231, Incertidumbre: 0.14272908537245493\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", - "Ecuación de regresión: y = -0.03x + 14.841\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 13.625\n", - "\tR²: 0.7102145115795546, Desviación Estándar: 0.45885229575829384, Varianza: 0.21054542932265677, Incertidumbre: 0.0867149330776788\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714]\n", - "Ecuación de regresión: y = 0.0x + 14.354\n", - "Valor del parámetro correlacionado para la aeronave: 300.0\n", - "Predicción obtenida: 14.367\n", - "\tR²: 0.002361606473490707, Desviación Estándar: 0.8223839641550523, Varianza: 0.6763153844993783, Incertidumbre: 0.2741279880516841\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001]\n", - "Ecuación de regresión: y = -0.088x + 16.996\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 14.091\n", - "\tR²: 0.6330464973659589, Desviación Estándar: 0.4711473913359555, Varianza: 0.22197986436267603, Incertidumbre: 0.1053517594448892\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", - "Ecuación de regresión: y = -0.114x + 14.813\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.674\n", - "\tR²: 0.7761192880267639, Desviación Estándar: 0.4019269643743591, Varianza: 0.16154528469118734, Incertidumbre: 0.08038539287487181\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Ecuación de regresión: y = -0.108x + 16.524\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 13.274\n", - "\tR²: 0.579753910323783, Desviación Estándar: 0.488970938859074, Varianza: 0.2390925790487243, Incertidumbre: 0.11217762677973205\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.112', 'Área del ala: 13.758', 'Longitud del fuselaje: 13.669', 'Peso máximo al despegue (MTOW): 13.625', 'Alcance de la aeronave: 14.367', 'Velocidad máxima (KIAS): 14.091', 'payload: 13.674', 'Crucero KIAS: 13.274']\n", - "**Mediana calculada:** 13.672\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672]\n", - "Ecuación de regresión: y = -0.096x + 16.32\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 12.855\n", - "\tR²: 0.44669483333289495, Desviación Estándar: 0.5987984426089217, Varianza: 0.35855957487087003, Incertidumbre: 0.11743403629122542\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", - "Ecuación de regresión: y = -1.379x + 15.576\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 11.969\n", - "\tR²: 0.6847227318034814, Desviación Estándar: 0.4438937988851134, Varianza: 0.19704170468865748, Incertidumbre: 0.08542740142597527\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672]\n", - "Ecuación de regresión: y = -0.49x + 14.856\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.14\n", - "\tR²: 0.18648513764579755, Desviación Estándar: 0.6700926766915704, Varianza: 0.4490241953556735, Incertidumbre: 0.13678209485584383\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5]\n", - "Ecuación de regresión: y = -38.708x + 23.253\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 8.737\n", - "\tR²: 0.9845301318279952, Desviación Estándar: 0.16498762115286075, Varianza: 0.02722091513367991, Incertidumbre: 0.09525564748556016\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", - "Ecuación de regresión: y = -0.03x + 14.842\n", - "Valor del parámetro correlacionado para la aeronave: 90.0\n", - "Predicción obtenida: 12.108\n", - "\tR²: 0.710260620996489, Desviación Estándar: 0.45095219827945476, Varianza: 0.20335788513307268, Incertidumbre: 0.0837397209611883\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672]\n", - "Ecuación de regresión: y = -0.087x + 16.95\n", - "Valor del parámetro correlacionado para la aeronave: 42.0\n", - "Predicción obtenida: 13.284\n", - "\tR²: 0.6211901244543757, Desviación Estándar: 0.4683247546231655, Varianza: 0.21932807579284816, Incertidumbre: 0.102196839899156\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", - "Ecuación de regresión: y = -0.114x + 14.813\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 12.535\n", - "\tR²: 0.7761469380573378, Desviación Estándar: 0.39412206749545337, Varianza: 0.15533220408689072, Incertidumbre: 0.07729369664987883\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672]\n", - "Ecuación de regresión: y = -0.104x + 16.437\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 13.014\n", - "\tR²: 0.5722804312940908, Desviación Estándar: 0.4837831260054291, Varianza: 0.23404611300758488, Incertidumbre: 0.10817719561154858\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 12.855', 'Área del ala: 11.969', 'Longitud del fuselaje: 13.14', 'Ancho del fuselaje: 8.737', 'Peso máximo al despegue (MTOW): 12.108', 'Velocidad máxima (KIAS): 13.284', 'payload: 12.535', 'Crucero KIAS: 13.014']\n", - "**Mediana calculada:** 12.695\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.098x + 16.36\n", - "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 13.366\n", - "\tR²: 0.4861597087141194, Desviación Estándar: 0.5882900301706695, Varianza: 0.3460851595982073, Incertidumbre: 0.11321646909353636\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", - "Ecuación de regresión: y = -1.257x + 15.445\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 12.157\n", - "\tR²: 0.6861946820655023, Desviación Estándar: 0.4516214364570259, Varianza: 0.2039619218675075, Incertidumbre: 0.085348429115075\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.546x + 14.942\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.032\n", - "\tR²: 0.2617903079866821, Desviación Estándar: 0.6611047129721297, Varianza: 0.437059441513962, Incertidumbre: 0.13222094259442593\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.695]\n", - "Ecuación de regresión: y = -16.401x + 18.314\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 12.164\n", - "\tR²: 0.7048037347079352, Desviación Estándar: 0.7388896951434575, Varianza: 0.5459579815891915, Incertidumbre: 0.36944484757172874\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.029x + 14.8\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 11.929\n", - "\tR²: 0.7123076858370674, Desviación Estándar: 0.45382550140258615, Varianza: 0.20595758572330874, Incertidumbre: 0.08285682142976294\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672]\n", - "Ecuación de regresión: y = 0.0x + 14.269\n", - "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 14.323\n", - "\tR²: 0.005851871754970817, Desviación Estándar: 0.8072016250304093, Varianza: 0.6515744634517334, Incertidumbre: 0.2552595666085276\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.091x + 17.059\n", - "Valor del parámetro correlacionado para la aeronave: 42.0\n", - "Predicción obtenida: 13.23\n", - "\tR²: 0.6374089155434113, Desviación Estándar: 0.4729515606700395, Varianza: 0.22368317874022606, Incertidumbre: 0.10083361153635637\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.113x + 14.806\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 11.992\n", - "\tR²: 0.7868234537491392, Desviación Estándar: 0.3878273476620516, Varianza: 0.15041005159458187, Incertidumbre: 0.07463740785726136\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695]\n", - "Ecuación de regresión: y = -0.108x + 16.526\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 13.498\n", - "\tR²: 0.6230065242149951, Desviación Estándar: 0.47633025955044683, Varianza: 0.22689051616339603, Incertidumbre: 0.10394378429466117\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.366', 'Área del ala: 12.157', 'Longitud del fuselaje: 13.032', 'Ancho del fuselaje: 12.164', 'Peso máximo al despegue (MTOW): 11.929', 'Alcance de la aeronave: 14.323', 'Velocidad máxima (KIAS): 13.23', 'payload: 11.992', 'Crucero KIAS: 13.498']\n", - "**Mediana calculada:** 13.032\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.099x + 16.39\n", - "Valor del parámetro correlacionado para la aeronave: 33.885\n", - "Predicción obtenida: 13.022\n", - "\tR²: 0.49733952651439894, Desviación Estándar: 0.5809229222603671, Varianza: 0.33747144160752457, Incertidumbre: 0.10978411308555996\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -1.141x + 15.319\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 12.337\n", - "\tR²: 0.6639636558875286, Desviación Estándar: 0.4668168117669745, Varianza: 0.21791793574828286, Incertidumbre: 0.0866857057278015\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.546x + 14.942\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 13.032\n", - "\tR²: 0.2974987662982014, Desviación Estándar: 0.6482665064635713, Varianza: 0.4202494634024835, Incertidumbre: 0.12713552178716822\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = -0.996) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.695, 13.032]\n", - "Ecuación de regresión: y = -13.779x + 17.734\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 12.567\n", - "\tR²: 0.6797443662647868, Desviación Estándar: 0.7194173301196193, Varianza: 0.5175612948764412, Incertidumbre: 0.3217332108677751\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.026x + 14.718\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 12.147\n", - "\tR²: 0.6741658765761376, Desviación Estándar: 0.48040741723701913, Varianza: 0.2307912865363434, Incertidumbre: 0.08628371926875769\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.092x + 17.093\n", - "Valor del parámetro correlacionado para la aeronave: 38.0\n", - "Predicción obtenida: 13.583\n", - "\tR²: 0.6514471014044674, Desviación Estándar: 0.4642468173732389, Varianza: 0.21552510744118147, Incertidumbre: 0.09680215310244272\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.102x + 14.73\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 13.203\n", - "\tR²: 0.74595960714623, Desviación Estándar: 0.42014445536437306, Varianza: 0.17652136337342567, Incertidumbre: 0.07939983882977203\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032]\n", - "Ecuación de regresión: y = -0.111x + 16.571\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 12.689\n", - "\tR²: 0.6312746472246312, Desviación Estándar: 0.47515011887040703, Varianza: 0.22576763546256193, Incertidumbre: 0.10130234571962422\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.022', 'Área del ala: 12.337', 'Longitud del fuselaje: 13.032', 'Ancho del fuselaje: 12.567', 'Peso máximo al despegue (MTOW): 12.147', 'Velocidad máxima (KIAS): 13.583', 'payload: 13.203', 'Crucero KIAS: 12.689']\n", - "**Mediana calculada:** 12.856\n", - "\n", - "--- Imputación para aeronave: **Volitation VT510** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.101x + 16.417\n", - "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 13.115\n", - "\tR²: 0.5181009063264552, Desviación Estándar: 0.5715788333906897, Varianza: 0.3267023627802618, Incertidumbre: 0.10613952476132892\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -1.083x + 15.257\n", - "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 13.099\n", - "\tR²: 0.6672340951247093, Desviación Estándar: 0.4670272390002237, Varianza: 0.21811444196817206, Incertidumbre: 0.08526711792325965\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.56x + 14.965\n", - "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 13.337\n", - "\tR²: 0.3389580451352642, Desviación Estándar: 0.6369033781917752, Varianza: 0.40564591315209547, Incertidumbre: 0.12257211228226782\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.024x + 14.674\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 12.265\n", - "\tR²: 0.6659304816788436, Desviación Estándar: 0.4864938763937024, Varianza: 0.236676291768571, Incertidumbre: 0.08600077975092925\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.094x + 17.121\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 12.421\n", - "\tR²: 0.6386649948497098, Desviación Estándar: 0.4770137198562853, Varianza: 0.22754208893113068, Incertidumbre: 0.09737001782956828\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.103x + 14.729\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 12.157\n", - "\tR²: 0.7481095898704668, Desviación Estándar: 0.41758688156853935, Varianza: 0.1743788036581373, Incertidumbre: 0.07754393719117042\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856]\n", - "Ecuación de regresión: y = -0.109x + 16.525\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 13.263\n", - "\tR²: 0.6572957320511896, Desviación Estándar: 0.4657670897559235, Varianza: 0.2169389818997025, Incertidumbre: 0.09711915180752535\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.115', 'Área del ala: 13.099', 'Longitud del fuselaje: 13.337', 'Peso máximo al despegue (MTOW): 12.265', 'Velocidad máxima (KIAS): 12.421', 'payload: 12.157', 'Crucero KIAS: 13.263']\n", - "**Mediana calculada:** 13.099\n", - "\n", - "--- Imputación para aeronave: **Ascend** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.101x + 16.419\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.216\n", - "\tR²: 0.5284756398961317, Desviación Estándar: 0.5619789405509674, Varianza: 0.3158203296227878, Incertidumbre: 0.10260284752753986\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -1.083x + 15.257\n", - "Valor del parámetro correlacionado para la aeronave: 0.771\n", - "Predicción obtenida: 14.422\n", - "\tR²: 0.6743723185855064, Desviación Estándar: 0.4594327962255891, Varianza: 0.21107849424766364, Incertidumbre: 0.08251656612710266\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.572x + 14.979\n", - "Valor del parámetro correlacionado para la aeronave: 1.562\n", - "Predicción obtenida: 14.086\n", - "\tR²: 0.3566167414715793, Desviación Estándar: 0.6269166459626101, Varianza: 0.39302448098500864, Incertidumbre: 0.1184761098559851\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.022x + 14.63\n", - "Valor del parámetro correlacionado para la aeronave: 9.5\n", - "Predicción obtenida: 14.417\n", - "\tR²: 0.6448304134719163, Desviación Estándar: 0.49760568948205036, Varianza: 0.24761142220490673, Incertidumbre: 0.08662203201525417\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.087x + 16.885\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.284\n", - "\tR²: 0.6250452670025234, Desviación Estándar: 0.4830714233111504, Varianza: 0.23335800001986062, Incertidumbre: 0.09661428466223007\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.095x + 14.67\n", - "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 14.614\n", - "\tR²: 0.7145248980811096, Desviación Estándar: 0.44003758459985504, Varianza: 0.19363307586047457, Incertidumbre: 0.08033950374514283\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Ecuación de regresión: y = -0.11x + 16.544\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.349\n", - "\tR²: 0.6687656157013713, Desviación Estándar: 0.45709955119724055, Varianza: 0.20893999970471874, Incertidumbre: 0.09330505517403626\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.216', 'Área del ala: 14.422', 'Longitud del fuselaje: 14.086', 'Peso máximo al despegue (MTOW): 14.417', 'Velocidad máxima (KIAS): 14.284', 'payload: 14.614', 'Crucero KIAS: 14.349']\n", - "**Mediana calculada:** 14.349\n", - "\n", - "--- Imputación para aeronave: **Transition** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.101x + 16.438\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 14.223\n", - "\tR²: 0.5357657902510582, Desviación Estándar: 0.5533318320555499, Varianza: 0.30617611636595127, Incertidumbre: 0.09938133081736573\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -1.079x + 15.25\n", - "Valor del parámetro correlacionado para la aeronave: 0.986\n", - "Predicción obtenida: 14.186\n", - "\tR²: 0.6797569865020562, Desviación Estándar: 0.4523706806342405, Varianza: 0.20463923269748602, Incertidumbre: 0.07996859397161137\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.578x + 15.001\n", - "Valor del parámetro correlacionado para la aeronave: 2.3\n", - "Predicción obtenida: 13.672\n", - "\tR²: 0.36290901642874207, Desviación Estándar: 0.6178541362486212, Varianza: 0.3817437336795298, Incertidumbre: 0.11473263277477799\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.022x + 14.625\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 14.222\n", - "\tR²: 0.6514348621062943, Desviación Estándar: 0.4903621688911602, Varianza: 0.2404550566796427, Incertidumbre: 0.08409641817224593\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.087x + 16.898\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 14.288\n", - "\tR²: 0.6328453004599623, Desviación Estándar: 0.47385313335474916, Varianza: 0.22453679199011367, Incertidumbre: 0.09293024513665193\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.093x + 14.645\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 14.505\n", - "\tR²: 0.7186695306905169, Desviación Estándar: 0.43524135975547956, Varianza: 0.18943504124179877, Incertidumbre: 0.0781716558734271\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Ecuación de regresión: y = -0.11x + 16.544\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.349\n", - "\tR²: 0.6740321107300629, Desviación Estándar: 0.4478642716421813, Varianza: 0.20058240581358153, Incertidumbre: 0.08957285432843626\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 14.223', 'Área del ala: 14.186', 'Longitud del fuselaje: 13.672', 'Peso máximo al despegue (MTOW): 14.222', 'Velocidad máxima (KIAS): 14.288', 'payload: 14.505', 'Crucero KIAS: 14.349']\n", - "**Mediana calculada:** 14.223\n", - "\n", - "--- Imputación para aeronave: **Reach** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.101x + 16.438\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 13.669\n", - "\tR²: 0.5403248300026882, Desviación Estándar: 0.544617405388324, Varianza: 0.29660811825191014, Incertidumbre: 0.09627566512557671\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = -0.831) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -1.08x + 15.252\n", - "Valor del parámetro correlacionado para la aeronave: 2.329\n", - "Predicción obtenida: 12.736\n", - "\tR²: 0.6828633114546836, Desviación Estándar: 0.44550944206432913, Varianza: 0.19847866296846983, Incertidumbre: 0.07755323938068918\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.57x + 15.003\n", - "Valor del parámetro correlacionado para la aeronave: 4.712\n", - "Predicción obtenida: 12.318\n", - "\tR²: 0.35147007195166013, Desviación Estándar: 0.615443744042397, Varianza: 0.3787710020809235, Incertidumbre: 0.11236414049581885\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = -0.823) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.022x + 14.625\n", - "Valor del parámetro correlacionado para la aeronave: 91.0\n", - "Predicción obtenida: 12.587\n", - "\tR²: 0.6554972240005492, Desviación Estándar: 0.4833062580516597, Varianza: 0.23358493907189748, Incertidumbre: 0.08169366806585572\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.087x + 16.886\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 13.85\n", - "\tR²: 0.6369900213647028, Desviación Estándar: 0.46515224472263894, Varianza: 0.2163666107705098, Incertidumbre: 0.08951859123492475\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.092x + 14.621\n", - "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 13.978\n", - "\tR²: 0.7196334122958243, Desviación Estándar: 0.4310592638988115, Varianza: 0.1858120889929852, Incertidumbre: 0.07620123214903278\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = -0.999) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 13.218, 14.755, 14.057, 12.908, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Ecuación de regresión: y = -0.109x + 16.525\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 13.795\n", - "\tR²: 0.67567314504279, Desviación Estándar: 0.43981688532599306, Varianza: 0.1934388926178577, Incertidumbre: 0.08625518771864765\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 13.669', 'Área del ala: 12.736', 'Longitud del fuselaje: 12.318', 'Peso máximo al despegue (MTOW): 12.587', 'Velocidad máxima (KIAS): 13.85', 'payload: 13.978', 'Crucero KIAS: 13.795']\n", - "**Mediana calculada:** 13.669\n", - "\n", - "=== Imputación para el parámetro: **Longitud del fuselaje** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 1.343x + 0.345\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 3.707\n", - "\tR²: 0.6086218910264541, Desviación Estándar: 0.5492734618495684, Varianza: 0.3017013358922092, Incertidumbre: 0.10380292727296299\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.642x + 11.003\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 2.974\n", - "\tR²: 0.27906683530984955, Desviación Estándar: 0.7768274399509152, Varianza: 0.6034608714606927, Incertidumbre: 0.13952232697507047\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 0.025x + 1.186\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 3.482\n", - "\tR²: 0.5830919989131762, Desviación Estándar: 0.5850219632837886, Varianza: 0.3422506975244185, Incertidumbre: 0.10507304640788168\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.94) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Longitud del fuselaje: [3.0, 3.0, 3.0, 0.75, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 0.044x + 1.202\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 4.329\n", - "\tR²: 0.8836944979649586, Desviación Estándar: 0.39788597040864104, Varianza: 0.15831324544802597, Incertidumbre: 0.150386761123267\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 3.707', 'Relación de aspecto del ala: 2.974', 'Peso máximo al despegue (MTOW): 3.482', 'RTF (Including fuel & Batteries): 4.329']\n", - "**Mediana calculada:** 3.594\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 1.328x + 0.361\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 3.135\n", - "\tR²: 0.6482130318947588, Desviación Estándar: 0.5400425508620562, Varianza: 0.29164595674159655, Incertidumbre: 0.10028338411232726\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.684x + 11.599\n", - "Valor del parámetro correlacionado para la aeronave: 12.648\n", - "Predicción obtenida: 2.947\n", - "\tR²: 0.3216836388295986, Desviación Estándar: 0.7714753386968983, Varianza: 0.595174198217494, Incertidumbre: 0.13637886087769133\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 0.025x + 1.181\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 3.049\n", - "\tR²: 0.6148826876335616, Desviación Estándar: 0.5761037227120962, Varianza: 0.3318954993227359, Incertidumbre: 0.10184171224913441\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Maximum Crosswind (r = -0.718) ---\n", - "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Maximum Crosswind: [45.0, 50.0, 15.0, 15.0, 15.0]\n", - "Valores para Longitud del fuselaje: [0.75, 0.9, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.062x + 3.771\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 1.922\n", - "\tR²: 0.46781484146630226, Desviación Estándar: 1.0520768032800647, Varianza: 1.1068656, Incertidumbre: 0.47050304993697967\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 3.135', 'Relación de aspecto del ala: 2.947', 'Peso máximo al despegue (MTOW): 3.049', 'Maximum Crosswind: 1.922']\n", - "**Mediana calculada:** 2.998\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.867) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 1.316x + 0.371\n", - "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 1.954\n", - "\tR²: 0.6597115958770696, Desviación Estándar: 0.5314985507982902, Varianza: 0.28249070950068267, Incertidumbre: 0.09703791518450966\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.79) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = -0.687x + 11.639\n", - "Valor del parámetro correlacionado para la aeronave: 14.042\n", - "Predicción obtenida: 1.994\n", - "\tR²: 0.3377422956329197, Desviación Estándar: 0.759743862528399, Varianza: 0.5772107366495708, Incertidumbre: 0.13225443071567164\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.786) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 2.905, 1.562, 2.3, 4.712]\n", - "Ecuación de regresión: y = 0.025x + 1.181\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 1.778\n", - "\tR²: 0.6241247541602877, Desviación Estándar: 0.5673714496579856, Varianza: 0.32191036188700406, Incertidumbre: 0.09876669201264836\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Área del ala: 1.954', 'Relación de aspecto del ala: 1.994', 'Peso máximo al despegue (MTOW): 1.778']\n", - "**Mediana calculada:** 1.954\n", - "\n", - "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Imputación para el parámetro: **Alcance de la aeronave** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.907x + 35759.111\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 316.444\n", - "\tR²: 0.941347558801303, Desviación Estándar: 221.17418977408332, Varianza: 48918.02222222222, Incertidumbre: 69.94141993284252\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 43.142x + 16.54\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 555.818\n", - "\tR²: 0.0017873010996798389, Desviación Estándar: 871.652385533205, Varianza: 759777.8812057271, Incertidumbre: 262.81308276653186\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 106.024x + -335.63\n", - "Valor del parámetro correlacionado para la aeronave: 19.8\n", - "Predicción obtenida: 1763.644\n", - "\tR²: 0.7148030071984908, Desviación Estándar: 487.71248080374903, Varianza: 237863.46393174725, Incertidumbre: 154.2282282630995\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 21.387x + 171.916\n", - "Valor del parámetro correlacionado para la aeronave: 14.5\n", - "Predicción obtenida: 482.027\n", - "\tR²: 0.6151852469174406, Desviación Estándar: 137.60082187743836, Varianza: 18933.986181346518, Incertidumbre: 48.64923712318945\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 316.444', 'Relación de aspecto del ala: 555.818', 'Autonomía de la aeronave: 1763.644', 'payload: 482.027']\n", - "**Mediana calculada:** 518.922\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.867x + 35536.386\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 336.692\n", - "\tR²: 0.9369828282191571, Desviación Estándar: 218.68983155385746, Varianza: 47825.242425054545, Incertidumbre: 65.9374651572882\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 48.512x + -61.995\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 544.404\n", - "\tR²: 0.002995498991272716, Desviación Estándar: 834.5905621601189, Varianza: 696541.4064467433, Incertidumbre: 240.92554286313288\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 86.745x + -257.466\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 783.47\n", - "\tR²: 0.5747433288658067, Desviación Estándar: 568.0998879939582, Varianza: 322737.4827387478, Incertidumbre: 171.28856108353526\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 21.739x + 172.796\n", - "Valor del parámetro correlacionado para la aeronave: 11.3\n", - "Predicción obtenida: 418.452\n", - "\tR²: 0.6350137109462142, Desviación Estándar: 130.21864982605558, Varianza: 16956.896762520882, Incertidumbre: 43.40621660868519\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 336.692', 'Relación de aspecto del ala: 544.404', 'Autonomía de la aeronave: 783.47', 'payload: 418.452']\n", - "**Mediana calculada:** 481.428\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.84x + 35391.65\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 349.85\n", - "\tR²: 0.934808022871879, Desviación Estándar: 213.13565980536123, Varianza: 45426.80948066667, Incertidumbre: 61.526965281266904\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 55.512x + -164.373\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 529.525\n", - "\tR²: 0.004730674917466038, Desviación Estándar: 801.9939500096699, Varianza: 643194.2958521128, Incertidumbre: 222.43310072090526\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 800.0]\n", - "Ecuación de regresión: y = 2261.812x + -85.496\n", - "Valor del parámetro correlacionado para la aeronave: 0.277\n", - "Predicción obtenida: 541.026\n", - "\tR²: 0.9065116987148334, Desviación Estándar: 45.342194867988525, Varianza: 2055.914635446645, Incertidumbre: 20.27764599477289\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 85.849x + -273.589\n", - "Valor del parámetro correlacionado para la aeronave: 19.8\n", - "Predicción obtenida: 1426.214\n", - "\tR²: 0.56549691959356, Desviación Estándar: 550.2441974157556, Varianza: 302768.67678970896, Incertidumbre: 158.84181774900804\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 3270.0]\n", - "Ecuación de regresión: y = -13031.161x + 4813.896\n", - "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 226.928\n", - "\tR²: 0.5279015132670961, Desviación Estándar: 775.5687627719914, Varianza: 601506.9057876774, Incertidumbre: 346.8448949567162\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 21.957x + 177.064\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 565.695\n", - "\tR²: 0.6360380648248155, Desviación Estándar: 124.96189515821898, Varianza: 15615.475241533713, Incertidumbre: 39.5164209431139\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 349.85', 'Relación de aspecto del ala: 529.525', 'Ancho del fuselaje: 541.026', 'Autonomía de la aeronave: 1426.214', 'Cuerda: 226.928', 'payload: 565.695']\n", - "**Mediana calculada:** 535.276\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.809x + 35221.676\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 365.302\n", - "\tR²: 0.9310643157348193, Desviación Estándar: 210.61070207807703, Varianza: 44356.86782982052, Incertidumbre: 58.412898884921304\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 54.995x + -156.81\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 530.624\n", - "\tR²: 0.005326717468706943, Desviación Estándar: 772.8219439192726, Varianza: 597253.7570031633, Incertidumbre: 206.5453525090388\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 74.895x + -223.348\n", - "Valor del parámetro correlacionado para la aeronave: 14.0\n", - "Predicción obtenida: 825.177\n", - "\tR²: 0.48851416333887676, Desviación Estándar: 573.687248269721, Varianza: 329117.05882728443, Incertidumbre: 159.11221459356298\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 21.59x + 178.007\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 668.093\n", - "\tR²: 0.6515452684663989, Desviación Estándar: 119.43474251813149, Varianza: 14264.657720372366, Incertidumbre: 36.01092980594082\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 365.302', 'Relación de aspecto del ala: 530.624', 'Autonomía de la aeronave: 825.177', 'payload: 668.093']\n", - "**Mediana calculada:** 599.358\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.773x + 35023.629\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 383.306\n", - "\tR²: 0.9250199701732349, Desviación Estándar: 211.66135430129737, Varianza: 44800.52890465933, Incertidumbre: 56.5688764154304\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 49.807x + -80.929\n", - "Valor del parámetro correlacionado para la aeronave: 13.443\n", - "Predicción obtenida: 588.62\n", - "\tR²: 0.004857101152760834, Desviación Estándar: 746.7939888417249, Varianza: 557701.2617701343, Incertidumbre: 192.82137878878717\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 73.997x + -229.547\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 1546.391\n", - "\tR²: 0.48293085237829836, Desviación Estándar: 555.8314018926295, Varianza: 308948.5473299259, Incertidumbre: 148.55219076374803\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 20.566x + 183.705\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 430.493\n", - "\tR²: 0.6713351729638166, Desviación Estándar: 115.62496967809123, Varianza: 13369.133613059515, Incertidumbre: 33.378053684344145\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 383.306', 'Relación de aspecto del ala: 588.62', 'Autonomía de la aeronave: 1546.391', 'payload: 430.493']\n", - "**Mediana calculada:** 509.556\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.755x + 34924.433\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 392.324\n", - "\tR²: 0.9233053265797887, Desviación Estándar: 206.88287418840918, Varianza: 42800.523632457145, Incertidumbre: 53.41692842314887\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 51.148x + -104.281\n", - "Valor del parámetro correlacionado para la aeronave: 14.057\n", - "Predicción obtenida: 614.707\n", - "\tR²: 0.0051433547185812944, Desviación Estándar: 723.3321143254109, Varianza: 523209.34761446924, Incertidumbre: 180.83302858135272\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 59.997x + -131.637\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 948.312\n", - "\tR²: 0.38436660533416545, Desviación Estándar: 586.1422469494127, Varianza: 343562.73365890625, Incertidumbre: 151.3412773962447\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 20.645x + 188.896\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 292.121\n", - "\tR²: 0.6654030506878479, Desviación Estándar: 113.06733122345928, Varianza: 12784.22138999545, Incertidumbre: 31.359235408157918\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 392.324', 'Relación de aspecto del ala: 614.707', 'Autonomía de la aeronave: 948.312', 'payload: 292.121']\n", - "**Mediana calculada:** 503.516\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.741x + 34842.892\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 399.737\n", - "\tR²: 0.9219836638407033, Desviación Estándar: 202.10566728677685, Varianza: 40846.70074943334, Incertidumbre: 50.52641682169421\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 49.053x + -82.026\n", - "Valor del parámetro correlacionado para la aeronave: 12.908\n", - "Predicción obtenida: 551.147\n", - "\tR²: 0.004755791997559489, Desviación Estándar: 702.2196991834805, Varianza: 493112.5059213379, Incertidumbre: 170.31329365429116\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 57.271x + -125.878\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 1248.627\n", - "\tR²: 0.3634971486006614, Desviación Estándar: 577.2791780254325, Varianza: 333251.2493817191, Incertidumbre: 144.31979450635814\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 19.14x + 220.22\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 564.734\n", - "\tR²: 0.5908236954277724, Desviación Estándar: 121.25887543058778, Varianza: 14703.714870690805, Incertidumbre: 32.407797640482855\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 399.737', 'Relación de aspecto del ala: 551.147', 'Autonomía de la aeronave: 1248.627', 'payload: 564.734']\n", - "**Mediana calculada:** 557.94\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -5.721x + 34734.128\n", - "Valor del parámetro correlacionado para la aeronave: 5000.0\n", - "Predicción obtenida: 6130.375\n", - "\tR²: 0.9191867670939571, Desviación Estándar: 199.55997470891685, Varianza: 39824.18350582354, Incertidumbre: 48.40040319826195\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 48.743x + -77.408\n", - "Valor del parámetro correlacionado para la aeronave: 12.648\n", - "Predicción obtenida: 539.096\n", - "\tR²: 0.004881178077821846, Desviación Estándar: 682.436587225711, Varianza: 465719.69558427547, Incertidumbre: 160.8518461857017\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 50.082x + -73.061\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 728.245\n", - "\tR²: 0.31645626386358894, Desviación Estándar: 580.3838962714162, Varianza: 336845.4670511901, Incertidumbre: 140.76377104321017\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 19.086x + 220.367\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 563.922\n", - "\tR²: 0.6034520565797792, Desviación Estándar: 117.1587675681931, Varianza: 13726.176818097896, Incertidumbre: 30.250263710253165\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 6130.375', 'Relación de aspecto del ala: 539.096', 'Autonomía de la aeronave: 728.245', 'payload: 563.922']\n", - "**Mediana calculada:** 646.084\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -1.252x + 7989.744\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 477.332\n", - "\tR²: 0.21041072214297474, Desviación Estándar: 606.3660387299609, Varianza: 367679.7729250645, Incertidumbre: 142.9218459557267\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 42.949x + 7.261\n", - "Valor del parámetro correlacionado para la aeronave: 13.765\n", - "Predicción obtenida: 598.458\n", - "\tR²: 0.004016554225731106, Desviación Estándar: 664.640093521826, Varianza: 441746.45391670155, Incertidumbre: 152.4788948151085\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 49.863x + -74.747\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 822.786\n", - "\tR²: 0.31605998443356176, Desviación Estándar: 564.3431464817085, Varianza: 318483.18698087503, Incertidumbre: 133.01695526445639\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 19.662x + 218.783\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 387.873\n", - "\tR²: 0.6221596490324965, Desviación Estándar: 115.08764274935331, Varianza: 13245.165513602775, Incertidumbre: 28.771910687338327\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 477.332', 'Relación de aspecto del ala: 598.458', 'Autonomía de la aeronave: 822.786', 'payload: 387.873']\n", - "**Mediana calculada:** 537.895\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -1.248x + 7967.914\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 480.853\n", - "\tR²: 0.21016964286508355, Desviación Estándar: 590.3473792395638, Varianza: 348510.02817502135, Incertidumbre: 135.43497724680736\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 42.563x + 9.506\n", - "Valor del parámetro correlacionado para la aeronave: 12.914\n", - "Predicción obtenida: 559.164\n", - "\tR²: 0.003946364727999141, Desviación Estándar: 647.945383208715, Varianza: 419833.21962148865, Incertidumbre: 144.88499225618375\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 48.663x + -73.639\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 704.969\n", - "\tR²: 0.30722335636758213, Desviación Estándar: 552.8882334214711, Varianza: 305685.3986559151, Incertidumbre: 126.84125981878523\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 19.184x + 233.095\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 572.66\n", - "\tR²: 0.5902643693999969, Desviación Estándar: 117.04644073196869, Varianza: 13699.869288022259, Incertidumbre: 28.387931661206128\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 480.853', 'Relación de aspecto del ala: 559.164', 'Autonomía de la aeronave: 704.969', 'payload: 572.66']\n", - "**Mediana calculada:** 565.912\n", - "\n", - "--- Imputación para aeronave: **V21** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = -1.242x + 7938.938\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 485.527\n", - "\tR²: 0.20937029275663177, Desviación Estándar: 575.6964484514262, Varianza: 331426.4007595857, Incertidumbre: 128.72963931425926\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 42.313x + 13.229\n", - "Valor del parámetro correlacionado para la aeronave: 14.568\n", - "Predicción obtenida: 629.646\n", - "\tR²: 0.004008828742622317, Desviación Estándar: 632.3315354155332, Varianza: 399843.1706809657, Incertidumbre: 137.98605358806336\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0]\n", - "Ecuación de regresión: y = 48.351x + -76.37\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 68.684\n", - "\tR²: 0.3050591302831972, Desviación Estándar: 539.7354115699455, Varianza: 291314.3145025785, Incertidumbre: 120.68850701342247\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 300.0, 800.0]\n", - "Ecuación de regresión: y = 19.143x + 233.214\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 261.928\n", - "\tR²: 0.5985890782746399, Desviación Estándar: 113.75879351787289, Varianza: 12941.063102642038, Incertidumbre: 26.813204772029398\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 485.527', 'Relación de aspecto del ala: 629.646', 'Autonomía de la aeronave: 68.684', 'payload: 261.928']\n", - "**Mediana calculada:** 373.727\n", - "\n", - "--- Imputación para aeronave: **V25** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0]\n", - "Ecuación de regresión: y = -1.249x + 7975.04\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 479.704\n", - "\tR²: 0.21171906549957753, Desviación Estándar: 562.3240970485209, Varianza: 316208.3901214344, Incertidumbre: 122.70917808678767\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0, 800.0]\n", - "Ecuación de regresión: y = 30.498x + 162.947\n", - "Valor del parámetro correlacionado para la aeronave: 14.421\n", - "Predicción obtenida: 602.758\n", - "\tR²: 0.0021672955940218452, Desviación Estándar: 619.98780177568, Varianza: 384384.87435064, Incertidumbre: 132.1818434703152\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0]\n", - "Ecuación de regresión: y = 45.798x + -28.528\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 154.662\n", - "\tR²: 0.2987687873424638, Desviación Estándar: 530.3673768842218, Varianza: 281289.5544630502, Incertidumbre: 115.73565003367233\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 300.0, 800.0]\n", - "Ecuación de regresión: y = 18.099x + 250.896\n", - "Valor del parámetro correlacionado para la aeronave: 2.2\n", - "Predicción obtenida: 290.713\n", - "\tR²: 0.5851882087506547, Desviación Estándar: 113.23855604202713, Varianza: 12822.970574483317, Incertidumbre: 25.978706436824385\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 479.704', 'Relación de aspecto del ala: 602.758', 'Autonomía de la aeronave: 154.662', 'payload: 290.713']\n", - "**Mediana calculada:** 385.208\n", - "\n", - "--- Imputación para aeronave: **V32** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0]\n", - "Ecuación de regresión: y = -1.255x + 8004.043\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 475.026\n", - "\tR²: 0.21371901155960438, Desviación Estándar: 549.7463712197905, Varianza: 302221.07266932767, Incertidumbre: 117.20632015795667\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0, 800.0]\n", - "Ecuación de regresión: y = 22.662x + 260.76\n", - "Valor del parámetro correlacionado para la aeronave: 14.182\n", - "Predicción obtenida: 582.152\n", - "\tR²: 0.0012253357519550478, Desviación Estándar: 607.9363047663803, Varianza: 369586.55065300124, Incertidumbre: 126.76348237238503\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0]\n", - "Ecuación de regresión: y = 44.24x + 1.63\n", - "Valor del parámetro correlacionado para la aeronave: 4.5\n", - "Predicción obtenida: 200.71\n", - "\tR²: 0.2958075456148329, Desviación Estándar: 520.2584796289456, Varianza: 270668.88562582195, Incertidumbre: 110.91948054697195\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 300.0, 800.0]\n", - "Ecuación de regresión: y = 17.374x + 263.474\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 350.346\n", - "\tR²: 0.5751384226627532, Desviación Estándar: 112.14449166524236, Varianza: 12576.387010855611, Incertidumbre: 25.07627066656405\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 475.026', 'Relación de aspecto del ala: 582.152', 'Autonomía de la aeronave: 200.71', 'payload: 350.346']\n", - "**Mediana calculada:** 412.686\n", - "\n", - "--- Imputación para aeronave: **V35** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0]\n", - "Ecuación de regresión: y = -1.258x + 8022.275\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 472.085\n", - "\tR²: 0.21522284145385784, Desviación Estándar: 537.8122565548367, Varianza: 289242.0233006055, Incertidumbre: 112.14160754824495\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0, 800.0]\n", - "Ecuación de regresión: y = 18.768x + 307.082\n", - "Valor del parámetro correlacionado para la aeronave: 13.898\n", - "Predicción obtenida: 567.923\n", - "\tR²: 0.0008476663567767995, Desviación Estándar: 596.0879860214709, Varianza: 355320.88707913324, Incertidumbre: 121.6759506296563\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0]\n", - "Ecuación de regresión: y = 43.01x + 25.948\n", - "Valor del parámetro correlacionado para la aeronave: 2.8\n", - "Predicción obtenida: 146.377\n", - "\tR²: 0.29271465280738995, Desviación Estándar: 510.56947779344574, Varianza: 260681.19165427188, Incertidumbre: 106.461095497527\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 300.0, 800.0]\n", - "Ecuación de regresión: y = 17.075x + 269.602\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 440.357\n", - "\tR²: 0.5701248711886335, Desviación Estándar: 110.22167028805497, Varianza: 12148.8166010887, Incertidumbre: 24.052340348546522\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 472.085', 'Relación de aspecto del ala: 567.923', 'Autonomía de la aeronave: 146.377', 'payload: 440.357']\n", - "**Mediana calculada:** 456.221\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0]\n", - "Ecuación de regresión: y = -1.259x + 8026.705\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 471.371\n", - "\tR²: 0.21604447260306026, Desviación Estándar: 526.4981352259283, Varianza: 277200.2863963799, Incertidumbre: 107.47098181919851\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0, 800.0]\n", - "Ecuación de regresión: y = 17.789x + 316.05\n", - "Valor del parámetro correlacionado para la aeronave: 14.042\n", - "Predicción obtenida: 565.84\n", - "\tR²: 0.0007617532043836528, Desviación Estándar: 584.4539259103746, Varianza: 341586.3915120496, Incertidumbre: 116.89078518207491\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0]\n", - "Ecuación de regresión: y = 41.038x + 62.298\n", - "Valor del parámetro correlacionado para la aeronave: 4.5\n", - "Predicción obtenida: 246.97\n", - "\tR²: 0.28329338577170626, Desviación Estándar: 503.409990644059, Varianza: 253421.61868025156, Incertidumbre: 102.7581340414332\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 300.0, 800.0]\n", - "Ecuación de regresión: y = 17.068x + 270.401\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 355.741\n", - "\tR²: 0.5697467595123673, Desviación Estándar: 107.73817669253191, Varianza: 11607.514717031225, Incertidumbre: 22.969856449695133\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 471.371', 'Relación de aspecto del ala: 565.84', 'Autonomía de la aeronave: 246.97', 'payload: 355.741']\n", - "**Mediana calculada:** 413.556\n", - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0]\n", - "Ecuación de regresión: y = -1.262x + 8042.156\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 468.879\n", - "\tR²: 0.21731767317513662, Desviación Estándar: 515.9847025403219, Varianza: 266240.21325562446, Incertidumbre: 103.19694050806439\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0, 800.0]\n", - "Ecuación de regresión: y = 15.491x + 341.739\n", - "Valor del parámetro correlacionado para la aeronave: 13.645\n", - "Predicción obtenida: 553.116\n", - "\tR²: 0.0005791285523265577, Desviación Estándar: 573.8483135876736, Varianza: 329301.8870074169, Incertidumbre: 112.54091341637921\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0]\n", - "Ecuación de regresión: y = 40.24x + 78.213\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 681.814\n", - "\tR²: 0.2817793757671705, Desviación Estándar: 494.2799550877504, Varianza: 244312.67400154856, Incertidumbre: 98.85599101755008\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 300.0, 800.0]\n", - "Ecuación de regresión: y = 16.811x + 275.566\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 578.158\n", - "\tR²: 0.5654386769863811, Desviación Estándar: 106.0114127800309, Varianza: 11238.419639618098, Incertidumbre: 22.104907619190833\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 468.879', 'Relación de aspecto del ala: 553.116', 'Autonomía de la aeronave: 681.814', 'payload: 578.158']\n", - "**Mediana calculada:** 565.637\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0]\n", - "Ecuación de regresión: y = -1.257x + 8017.366\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 472.877\n", - "\tR²: 0.2163014350450687, Desviación Estándar: 506.30564828630486, Varianza: 256345.40948661542, Incertidumbre: 99.29470694054284\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0, 800.0]\n", - "Ecuación de regresión: y = 15.442x + 342.884\n", - "Valor del parámetro correlacionado para la aeronave: 14.103\n", - "Predicción obtenida: 560.656\n", - "\tR²: 0.0005756116510963194, Desviación Estándar: 563.1261939754822, Varianza: 317111.1103413124, Incertidumbre: 108.37368655982469\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0]\n", - "Ecuación de regresión: y = 39.985x + 76.738\n", - "Valor del parámetro correlacionado para la aeronave: 2.0\n", - "Predicción obtenida: 156.708\n", - "\tR²: 0.28030070432195453, Desviación Estándar: 485.1921720016292, Varianza: 235411.44377165852, Incertidumbre: 95.15401357226055\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 300.0, 800.0]\n", - "Ecuación de regresión: y = 16.737x + 275.831\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 342.778\n", - "\tR²: 0.5745690871363021, Desviación Estándar: 103.8081239768202, Varianza: 10776.126603586874, Incertidumbre: 21.1897445748988\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 472.877', 'Relación de aspecto del ala: 560.656', 'Autonomía de la aeronave: 156.708', 'payload: 342.778']\n", - "**Mediana calculada:** 407.828\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0]\n", - "Ecuación de regresión: y = -1.261x + 8033.37\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 470.296\n", - "\tR²: 0.21750101210992656, Desviación Estándar: 496.99258866565987, Varianza: 247001.63318859378, Incertidumbre: 95.64626828378923\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0, 800.0]\n", - "Ecuación de regresión: y = 12.779x + 374.006\n", - "Valor del parámetro correlacionado para la aeronave: 14.001\n", - "Predicción obtenida: 552.929\n", - "\tR²: 0.0003958766704269534, Desviación Estándar: 553.7010119743468, Varianza: 306584.8106614157, Incertidumbre: 104.63965559777989\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0]\n", - "Ecuación de regresión: y = 38.499x + 102.922\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 218.418\n", - "\tR²: 0.2751249042805085, Desviación Estándar: 478.34320573310276, Varianza: 228812.2224710215, Incertidumbre: 92.0571928650118\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 300.0, 800.0]\n", - "Ecuación de regresión: y = 16.416x + 281.755\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 380.25\n", - "\tR²: 0.5695278609951793, Desviación Estándar: 102.48058029141457, Varianza: 10502.269336865067, Incertidumbre: 20.496116058282915\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 470.296', 'Relación de aspecto del ala: 552.929', 'Autonomía de la aeronave: 218.418', 'payload: 380.25']\n", - "**Mediana calculada:** 425.273\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0]\n", - "Ecuación de regresión: y = -1.263x + 8044.025\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 468.577\n", - "\tR²: 0.218442742826649, Desviación Estándar: 488.10836630332125, Varianza: 238249.77725529726, Incertidumbre: 92.24381072061483\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0, 800.0]\n", - "Ecuación de regresión: y = 11.241x + 390.755\n", - "Valor del parámetro correlacionado para la aeronave: 13.71\n", - "Predicción obtenida: 544.869\n", - "\tR²: 0.0003067365701517888, Desviación Estándar: 544.5675096094902, Varianza: 296553.7725222822, Incertidumbre: 101.12364785716923\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0]\n", - "Ecuación de regresión: y = 37.488x + 121.496\n", - "Valor del parámetro correlacionado para la aeronave: 4.5\n", - "Predicción obtenida: 290.19\n", - "\tR²: 0.2715724467015357, Desviación Estándar: 471.2257714097305, Varianza: 222053.72764069558, Incertidumbre: 89.05330017962268\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 300.0, 800.0]\n", - "Ecuación de regresión: y = 16.272x + 284.956\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 447.672\n", - "\tR²: 0.5668554579176148, Desviación Estándar: 100.85760609280737, Varianza: 10172.256706771894, Incertidumbre: 19.779803906210745\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 468.577', 'Relación de aspecto del ala: 544.869', 'Autonomía de la aeronave: 290.19', 'payload: 447.672']\n", - "**Mediana calculada:** 458.124\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", - "Ecuación de regresión: y = -1.263x + 8046.407\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 468.193\n", - "\tR²: 0.21896917958386974, Desviación Estándar: 479.6226611274876, Varianza: 230037.89706701285, Incertidumbre: 89.06369225544637\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 800.0]\n", - "Ecuación de regresión: y = 11.399x + 385.692\n", - "Valor del parámetro correlacionado para la aeronave: 12.695\n", - "Predicción obtenida: 530.401\n", - "\tR²: 0.00031517259985813784, Desviación Estándar: 535.6408225987375, Varianza: 286911.0908342521, Incertidumbre: 97.79418708598382\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 800.0]\n", - "Ecuación de regresión: y = 2259.606x + -85.86\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 761.493\n", - "\tR²: 0.9064132760257113, Desviación Estándar: 41.446819545787584, Varianza: 1717.8388504610796, Incertidumbre: 16.920593224732006\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", - "Ecuación de regresión: y = 36.858x + 134.106\n", - "Valor del parámetro correlacionado para la aeronave: 8.0\n", - "Predicción obtenida: 428.972\n", - "\tR²: 0.2689650439391573, Desviación Estándar: 464.0178425419368, Varianza: 215312.5581972736, Incertidumbre: 86.16595019101095\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 800.0]\n", - "Ecuación de regresión: y = 16.27x + 285.358\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 610.76\n", - "\tR²: 0.5667205055911326, Desviación Estándar: 98.99193323862133, Varianza: 9799.402846319661, Incertidumbre: 19.051006434306494\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 468.193', 'Relación de aspecto del ala: 530.401', 'Ancho del fuselaje: 761.493', 'Autonomía de la aeronave: 428.972', 'payload: 610.76']\n", - "**Mediana calculada:** 530.401\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", - "Ecuación de regresión: y = -1.26x + 8032.73\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 470.399\n", - "\tR²: 0.21853303784795208, Desviación Estándar: 471.6931077514649, Varianza: 222494.38790023504, Incertidumbre: 86.11898511173075\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", - "Ecuación de regresión: y = 11.399x + 385.691\n", - "Valor del parámetro correlacionado para la aeronave: 12.856\n", - "Predicción obtenida: 532.237\n", - "\tR²: 0.0003313628990518902, Desviación Estándar: 526.9306352412358, Varianza: 277655.89435573225, Incertidumbre: 94.63953588966253\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.982) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.277, 0.375, 0.375]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 530.401, 800.0]\n", - "Ecuación de regresión: y = 1541.282x + 85.542\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 663.523\n", - "\tR²: 0.6272402531593875, Desviación Estándar: 76.59759898413333, Varianza: 5867.192170134103, Incertidumbre: 28.95117113381007\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", - "Ecuación de regresión: y = 15.727x + 288.21\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 524.112\n", - "\tR²: 0.5615645241082226, Desviación Estándar: 98.27029747742641, Varianza: 9657.05136630188, Incertidumbre: 18.57134059925773\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 470.399', 'Relación de aspecto del ala: 532.237', 'Ancho del fuselaje: 663.523', 'payload: 524.112']\n", - "**Mediana calculada:** 528.174\n", - "\n", - "--- Imputación para aeronave: **Volitation VT510** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174]\n", - "Ecuación de regresión: y = -1.258x + 8020.463\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 472.377\n", - "\tR²: 0.21815805928069354, Desviación Estándar: 464.1348278963494, Varianza: 215421.1384663739, Incertidumbre: 83.36107594546903\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", - "Ecuación de regresión: y = 11.548x + 383.526\n", - "Valor del parámetro correlacionado para la aeronave: 13.099\n", - "Predicción obtenida: 534.792\n", - "\tR²: 0.0003511194348928548, Desviación Estándar: 518.6324629138196, Varianza: 268979.63158805453, Incertidumbre: 91.68213286746061\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", - "Ecuación de regresión: y = 36.695x + 139.245\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 322.718\n", - "\tR²: 0.2678068616286219, Desviación Estándar: 456.58017132018756, Varianza: 208465.45284277183, Incertidumbre: 83.35975304721335\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", - "Ecuación de regresión: y = 15.739x + 288.219\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 681.696\n", - "\tR²: 0.5652992923691292, Desviación Estándar: 96.5639245470936, Varianza: 9324.591523936788, Incertidumbre: 17.931470624475867\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 472.377', 'Relación de aspecto del ala: 534.792', 'Autonomía de la aeronave: 322.718', 'payload: 681.696']\n", - "**Mediana calculada:** 503.585\n", - "\n", - "--- Imputación para aeronave: **Ascend** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585]\n", - "Ecuación de regresión: y = -1.257x + 8014.056\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 473.411\n", - "\tR²: 0.21812584611652552, Desviación Estándar: 456.8573681831264, Varianza: 208718.65486321275, Incertidumbre: 80.76173576933198\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", - "Ecuación de regresión: y = 12.322x + 372.003\n", - "Valor del parámetro correlacionado para la aeronave: 14.349\n", - "Predicción obtenida: 548.807\n", - "\tR²: 0.00040559910055537607, Desviación Estándar: 510.74155237825306, Varianza: 260856.9333257478, Incertidumbre: 88.90869223718056\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585]\n", - "Ecuación de regresión: y = 36.114x + 151.21\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 367.893\n", - "\tR²: 0.2642430210503296, Desviación Estándar: 450.27008149115517, Varianza: 202743.14628605152, Incertidumbre: 80.87089397983948\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", - "Ecuación de regresión: y = 14.216x + 299.289\n", - "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 307.818\n", - "\tR²: 0.5236857913768209, Desviación Estándar: 99.5530852483226, Varianza: 9910.816782459788, Incertidumbre: 18.17582348658036\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 473.411', 'Relación de aspecto del ala: 548.807', 'Autonomía de la aeronave: 367.893', 'payload: 307.818']\n", - "**Mediana calculada:** 420.652\n", - "\n", - "--- Imputación para aeronave: **Transition** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585, 420.652]\n", - "Ecuación de regresión: y = -1.259x + 8024.54\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 471.72\n", - "\tR²: 0.21891613091083528, Desviación Estándar: 449.9727679396905, Varianza: 202475.4918873066, Incertidumbre: 78.33020468683851\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", - "Ecuación de regresión: y = 8.718x + 417.57\n", - "Valor del parámetro correlacionado para la aeronave: 14.223\n", - "Predicción obtenida: 541.562\n", - "\tR²: 0.00020665375027828503, Desviación Estándar: 503.6313668149641, Varianza: 253644.55363990893, Incertidumbre: 86.37206684215421\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652]\n", - "Ecuación de regresión: y = 35.981x + 154.244\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 586.014\n", - "\tR²: 0.2649729523763782, Desviación Estándar: 443.27273842243636, Varianza: 196490.7206285257, Incertidumbre: 78.36028981340885\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", - "Ecuación de regresión: y = 13.547x + 310.162\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 330.483\n", - "\tR²: 0.5062493497217644, Desviación Estándar: 99.81827758318798, Varianza: 9963.688539674367, Incertidumbre: 17.927891893120933\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 471.72', 'Relación de aspecto del ala: 541.562', 'Autonomía de la aeronave: 586.014', 'payload: 330.483']\n", - "**Mediana calculada:** 506.641\n", - "\n", - "--- Imputación para aeronave: **Reach** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = -0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 528.174, 503.585, 420.652, 506.641]\n", - "Ecuación de regresión: y = -1.258x + 8017.816\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 472.804\n", - "\tR²: 0.2188220660556668, Desviación Estándar: 443.34533244312075, Varianza: 196555.08379910127, Incertidumbre: 76.03309724353042\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.998) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", - "Ecuación de regresión: y = 7.955x + 427.025\n", - "Valor del parámetro correlacionado para la aeronave: 13.669\n", - "Predicción obtenida: 535.762\n", - "\tR²: 0.0001740848142732787, Desviación Estándar: 496.4181896725954, Varianza: 246431.01903781694, Incertidumbre: 83.90998902528435\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Autonomía de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0, 12.0]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652, 506.641]\n", - "Ecuación de regresión: y = 35.911x + 152.567\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 870.792\n", - "\tR²: 0.2643013375727117, Desviación Estándar: 436.7165278868632, Varianza: 190721.3257295574, Incertidumbre: 76.02258949165629\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", - "Ecuación de regresión: y = 12.668x + 324.924\n", - "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 413.601\n", - "\tR²: 0.46249934976527396, Desviación Estándar: 102.70373401095995, Varianza: 10548.056979794012, Incertidumbre: 18.155626693082308\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 472.804', 'Relación de aspecto del ala: 535.762', 'Autonomía de la aeronave: 870.792', 'payload: 413.601']\n", - "**Mediana calculada:** 504.283\n", - "\n", - "=== Imputación para el parámetro: **Autonomía de la aeronave** ===\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = 0.843) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 503.585, 420.652, 506.641, 504.283]\n", - "Valores para Autonomía de la aeronave: [8.0, 8.0, 19.8, 12.0, 19.8, 14.0, 26.0, 8.0, 24.0, 6.0, 2.0, 18.0, 24.0, 16.0, 19.0, 18.0, 16.0, 4.53, 1.83, 3.0, 4.0, 4.5, 2.8, 4.5, 15.0, 2.0, 3.0, 4.5, 6.0, 8.0, 5.0, 6.0, 12.0, 20.0]\n", - "Ecuación de regresión: y = 0.007x + 6.874\n", - "Valor del parámetro correlacionado para la aeronave: 528.174\n", - "Predicción obtenida: 10.747\n", - "\tR²: 0.2498408369463081, Desviación Estándar: 6.374288748814379, Varianza: 40.63155705326158, Incertidumbre: 1.093181501711479\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Alcance de la aeronave: 10.747']\n", - "**Mediana calculada:** 10.747\n", - "\n", - "=== Imputación para el parámetro: **Velocidad máxima (KIAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.072x + 7.262\n", - "Valor del parámetro correlacionado para la aeronave: 27.892\n", - "Predicción obtenida: 37.163\n", - "\tR²: 0.6785150773380106, Desviación Estándar: 4.266538520956066, Varianza: 18.20335095080197, Incertidumbre: 0.8896347797490924\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.786x + 25.969\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 42.955\n", - "\tR²: 0.32230308247682127, Desviación Estándar: 5.586912076398391, Varianza: 31.213586549406177, Incertidumbre: 1.0956836037800992\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -7.332x + 136.73\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 45.084\n", - "\tR²: 0.6353583924337338, Desviación Estándar: 4.212708115387483, Varianza: 17.746909665451557, Incertidumbre: 0.7961270013870624\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.629x + 28.996\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 43.264\n", - "\tR²: 0.4900615381264627, Desviación Estándar: 4.799869922083653, Varianza: 23.03875126892334, Incertidumbre: 0.9797693450697835\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.067x + 30.152\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 34.84\n", - "\tR²: 0.733701886636262, Desviación Estándar: 0.9740665033476542, Varianza: 0.9488055529439255, Incertidumbre: 0.39766098478979256\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 37.163', 'Área del ala: 42.955', 'Relación de aspecto del ala: 45.084', 'payload: 43.264', 'RTF (Including fuel & Batteries): 34.84']\n", - "**Mediana calculada:** 42.955\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.078x + 7.331\n", - "Valor del parámetro correlacionado para la aeronave: 21.463\n", - "Predicción obtenida: 30.477\n", - "\tR²: 0.6650554114482713, Desviación Estándar: 4.333938589551439, Varianza: 18.78302369800311, Incertidumbre: 0.8846615100798704\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.786x + 25.969\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 40.152\n", - "\tR²: 0.3552344429430916, Desviación Estándar: 5.48247460485476, Varianza: 30.057527792877355, Incertidumbre: 1.0551027296460609\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -7.182x + 134.601\n", - "Valor del parámetro correlacionado para la aeronave: 12.648\n", - "Predicción obtenida: 43.762\n", - "\tR²: 0.6458631582625831, Desviación Estándar: 4.155986642108519, Varianza: 17.272224969384443, Incertidumbre: 0.7717473449656517\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.626x + 29.01\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 40.28\n", - "\tR²: 0.5133079427191782, Desviación Estándar: 4.703245083983008, Varianza: 22.12051432001033, Incertidumbre: 0.9406490167966016\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 30.477', 'Área del ala: 40.152', 'Relación de aspecto del ala: 43.762', 'payload: 40.28']\n", - "**Mediana calculada:** 40.216\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.013x + 9.471\n", - "Valor del parámetro correlacionado para la aeronave: 18.091\n", - "Predicción obtenida: 27.799\n", - "\tR²: 0.6038420321629009, Desviación Estándar: 4.640881006314369, Varianza: 21.537776514769465, Incertidumbre: 0.9281762012628738\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.79x + 25.965\n", - "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 31.669\n", - "\tR²: 0.3670434992715419, Desviación Estándar: 5.3836956297320535, Varianza: 28.98417863359601, Incertidumbre: 1.0174228407668775\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.983x + 131.755\n", - "Valor del parámetro correlacionado para la aeronave: 14.589\n", - "Predicción obtenida: 29.879\n", - "\tR²: 0.6423683336309061, Desviación Estándar: 4.132395523343531, Varianza: 17.076692761349655, Incertidumbre: 0.7544687482228727\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.626x + 29.011\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 30.888\n", - "\tR²: 0.5208842290733458, Desviación Estándar: 4.611927331533329, Varianza: 21.26987371134414, Incertidumbre: 0.904473363798475\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.065x + 9.368\n", - "Valor del parámetro correlacionado para la aeronave: 16.54\n", - "Predicción obtenida: 26.99\n", - "\tR²: 0.6084339451187571, Desviación Estándar: 4.787548453222305, Varianza: 22.920620191951283, Incertidumbre: 1.0705283786979045\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.857) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 70.3, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad máxima (KIAS): [33.439, 33.439, 33.439, 42.955, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.119x + 29.159\n", - "Valor del parámetro correlacionado para la aeronave: 6.8\n", - "Predicción obtenida: 29.971\n", - "\tR²: 0.5655356424763149, Desviación Estándar: 2.661463952850547, Varianza: 7.0833903723228575, Incertidumbre: 1.0059388203722117\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.799', 'Área del ala: 31.669', 'Relación de aspecto del ala: 29.879', 'payload: 30.888', 'Crucero KIAS: 26.99', 'RTF (Including fuel & Batteries): 29.971']\n", - "**Mediana calculada:** 29.925\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.993x + 10.094\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 27.466\n", - "\tR²: 0.6132641570429134, Desviación Estándar: 4.567543566658289, Varianza: 20.862454233321525, Incertidumbre: 0.8957689913683001\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.88x + 25.782\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 30.598\n", - "\tR²: 0.3791246211706657, Desviación Estándar: 5.299352481306049, Varianza: 28.083136721124575, Incertidumbre: 0.9840650511355258\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.981x + 131.729\n", - "Valor del parámetro correlacionado para la aeronave: 14.714\n", - "Predicción obtenida: 29.009\n", - "\tR²: 0.6511684506287918, Desviación Estándar: 4.065205545483665, Varianza: 16.525896127031146, Incertidumbre: 0.7301324697975139\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.631x + 28.923\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 29.68\n", - "\tR²: 0.5347441062393511, Desviación Estándar: 4.529221125565367, Varianza: 20.51384400426761, Incertidumbre: 0.8716490120215014\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.031x + 10.342\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 26.846\n", - "\tR²: 0.6136657296272687, Desviación Estándar: 4.709745503173601, Varianza: 22.181702704663962, Incertidumbre: 1.0277507272509956\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.466', 'Área del ala: 30.598', 'Relación de aspecto del ala: 29.009', 'payload: 29.68', 'Crucero KIAS: 26.846']\n", - "**Mediana calculada:** 29.009\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.979x + 10.518\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 27.645\n", - "\tR²: 0.6257444320590095, Desviación Estándar: 4.490845524887884, Varianza: 20.167693528405533, Incertidumbre: 0.8642636242276819\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.975x + 25.6\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 30.483\n", - "\tR²: 0.3948008000513574, Desviación Estándar: 5.217765466886563, Varianza: 27.225076467433954, Incertidumbre: 0.9526292819950818\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.981x + 131.729\n", - "Valor del parámetro correlacionado para la aeronave: 14.714\n", - "Predicción obtenida: 29.009\n", - "\tR²: 0.6615824796144654, Desviación Estándar: 4.001182559565268, Varianza: 16.00946187496927, Incertidumbre: 0.707315830158487\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.634x + 28.859\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 29.621\n", - "\tR²: 0.5513156760951279, Desviación Estándar: 4.4492527659965795, Varianza: 19.795850175728216, Incertidumbre: 0.8408297384923719\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.008x + 11.001\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 27.134\n", - "\tR²: 0.6236400148434393, Desviación Estándar: 4.621454678981261, Varianza: 21.35784334987779, Incertidumbre: 0.9852974481637925\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 27.645', 'Área del ala: 30.483', 'Relación de aspecto del ala: 29.009', 'payload: 29.621', 'Crucero KIAS: 27.134']\n", - "**Mediana calculada:** 29.009\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.815) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 27.344, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 27.344]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.979x + 10.518\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 45.843\n", - "\tR²: 0.6257444320590095, Desviación Estándar: 4.490845524887884, Varianza: 20.167693528405533, Incertidumbre: 0.8642636242276819\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.975x + 25.6\n", - "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 31.738\n", - "\tR²: 0.3948008000513574, Desviación Estándar: 5.217765466886563, Varianza: 27.225076467433954, Incertidumbre: 0.9526292819950818\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.981x + 131.729\n", - "Valor del parámetro correlacionado para la aeronave: 14.103\n", - "Predicción obtenida: 33.275\n", - "\tR²: 0.6615824796144654, Desviación Estándar: 4.001182559565268, Varianza: 16.00946187496927, Incertidumbre: 0.707315830158487\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.634x + 28.859\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 31.397\n", - "\tR²: 0.5513156760951279, Desviación Estándar: 4.4492527659965795, Varianza: 19.795850175728216, Incertidumbre: 0.8408297384923719\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.775) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V35', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Reach']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 25.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 41.7, 25.6, 41.2, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 1.008x + 11.001\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 44.275\n", - "\tR²: 0.6236400148434393, Desviación Estándar: 4.621454678981261, Varianza: 21.35784334987779, Incertidumbre: 0.9852974481637925\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Velocidad a la que se realiza el crucero (KTAS): 45.843', 'Área del ala: 31.738', 'Relación de aspecto del ala: 33.275', 'payload: 31.397', 'Crucero KIAS: 44.275']\n", - "**Mediana calculada:** 33.275\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.737) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 33.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 6.912x + 25.735\n", - "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 34.927\n", - "\tR²: 0.394519537415028, Desviación Estándar: 5.139955848128364, Varianza: 26.419146120708966, Incertidumbre: 0.9231633225073828\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.859) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 25.6, 41.2, 46.3, 40.216, 46.3, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 33.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = -6.981x + 131.729\n", - "Valor del parámetro correlacionado para la aeronave: 13.71\n", - "Predicción obtenida: 36.018\n", - "\tR²: 0.6627761679084383, Desviación Estándar: 3.9400922159021547, Varianza: 15.524326669812753, Incertidumbre: 0.6858820171935385\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Ecuación de regresión: y = 0.627x + 28.996\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 35.27\n", - "\tR²: 0.550504283331907, Desviación Estándar: 4.3849564059962995, Varianza: 19.227842682487985, Incertidumbre: 0.8142659627031128\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Capacidad combustible (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", - "Valores para Velocidad máxima (KIAS): [33.0, 33.0, 42.0, 38.0, 50.0]\n", - "Ecuación de regresión: y = 0.607x + 26.384\n", - "Valor del parámetro correlacionado para la aeronave: 11.5\n", - "Predicción obtenida: 33.369\n", - "\tR²: 0.487882729041738, Desviación Estándar: 4.5575735331497516, Varianza: 20.77147651006711, Incertidumbre: 2.038208846515347\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 34.927', 'Relación de aspecto del ala: 36.018', 'payload: 35.27', 'Capacidad combustible: 33.369']\n", - "**Mediana calculada:** 35.098\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Stalker XE** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker XE'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Stalker VXE30** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Stalker VXE30'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 Fixed Wing'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 Fixed wing'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 VTOL FTUAS'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **AAI Aerosonde** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'AAI Aerosonde'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 4'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Orbiter 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Mantis'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'RQ Nan 21A Blackjack'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Evo'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **V35** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V35'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **V39** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'V39'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Volitation VT370'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida limpia (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Stalker XE** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Stalker XE'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Stalker VXE30** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Stalker VXE30'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 Fixed Wing'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.7 VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 Fixed wing'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Aerosonde Mk. 4.8 VTOL FTUAS'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **AAI Aerosonde** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'AAI Aerosonde'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Fulmar X'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Orbiter 4'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Orbiter 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Mantis'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'ScanEagle'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'ScanEagle 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'RQ Nan 21A Blackjack'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Evo'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Pro #MAP'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'DeltaQuad Pro #CARGO'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **V35** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'V35'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **V39** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'V39'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Volitation VT370'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Skyeye 5000 VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Skyeye 5000 VTOL octo'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Ascend** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Ascend'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Transition** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Transition'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Reach** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida limpia (KCAS)' para la aeronave 'Reach'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Imputación para el parámetro: **envergadura** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 1.904x + 1.375\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 6.14\n", - "\tR²: 0.6550202920419386, Desviación Estándar: 0.6922900390325586, Varianza: 0.47926549814370145, Incertidumbre: 0.1285550329147554\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.032x + 2.598\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 5.614\n", - "\tR²: 0.6048248274212248, Desviación Estándar: 0.7257069176330723, Varianza: 0.5266505303004948, Incertidumbre: 0.12828807065308317\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.114x + 2.88\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 5.476\n", - "\tR²: 0.5142554083484681, Desviación Estándar: 0.8073085344120734, Varianza: 0.6517470697345699, Incertidumbre: 0.1499134313108701\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para envergadura: [4.4, 4.4, 4.4, 2.69, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.048x + 2.326\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 5.674\n", - "\tR²: 0.8762967968830506, Desviación Estándar: 0.44130001156979004, Varianza: 0.1947457002114968, Incertidumbre: 0.16679572631194156\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Área del ala: 6.14', 'Peso máximo al despegue (MTOW): 5.614', 'payload: 5.476', 'RTF (Including fuel & Batteries): 5.674']\n", - "**Mediana calculada:** 5.644\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.841) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 1.835x + 1.446\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 5.281\n", - "\tR²: 0.6787677993689816, Desviación Estándar: 0.6854337532513997, Varianza: 0.46981943009630067, Incertidumbre: 0.12514250944374053\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.791) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.032x + 2.596\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 5.033\n", - "\tR²: 0.6331651979245666, Desviación Estándar: 0.7146435397246005, Varianza: 0.5107153888701067, Incertidumbre: 0.12440347223914108\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: payload (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Ecuación de regresión: y = 0.116x + 2.873\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 4.954\n", - "\tR²: 0.5454308932616603, Desviación Estándar: 0.794258196699784, Varianza: 0.6308460830247928, Incertidumbre: 0.14501104360528233\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 5.281', 'Peso máximo al despegue (MTOW): 5.033', 'payload: 4.954']\n", - "**Mediana calculada:** 5.033\n", - "\n", - "=== Imputación para el parámetro: **Cuerda** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 5500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.0x + -0.975\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.5584422980021864, Desviación Estándar: 0.04101181707874288, Varianza: 0.0016819691401002662, Incertidumbre: 0.02050590853937144\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 19.306]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.009x + 0.094\n", - "Valor del parámetro correlacionado para la aeronave: 27.892\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.37089288437785595, Desviación Estándar: 0.04895280456579205, Varianza: 0.0023963770748566308, Incertidumbre: 0.024476402282896024\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.167x + 0.103\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 0.521\n", - "\tR²: 0.9567278474032922, Desviación Estándar: 0.012838655021740699, Varianza: 0.00016483106276726767, Incertidumbre: 0.006419327510870349\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 14.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = -0.031x + 0.725\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 0.338\n", - "\tR²: 0.33955370790059436, Desviación Estándar: 0.050157286426532284, Varianza: 0.0025157533816731995, Incertidumbre: 0.025078643213266142\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.125x + -0.016\n", - "Valor del parámetro correlacionado para la aeronave: 3.594\n", - "Predicción obtenida: 0.432\n", - "\tR²: 0.9863480800941506, Desviación Estándar: 0.007211276455846646, Varianza: 5.2002508122648166e-05, Incertidumbre: 0.003605638227923323\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.003x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 0.481\n", - "\tR²: 0.736966419457739, Desviación Estándar: 0.03164979554992154, Varianza: 0.0010017095583518332, Incertidumbre: 0.012920974926786248\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 3270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.197]\n", - "Ecuación de regresión: y = -0.0x + 0.342\n", - "Valor del parámetro correlacionado para la aeronave: 599.358\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.5312147113857546, Desviación Estándar: 0.04225248902560736, Varianza: 0.0017852728288590702, Incertidumbre: 0.01724950641254734\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197]\n", - "Ecuación de regresión: y = 0.074x + -0.018\n", - "Valor del parámetro correlacionado para la aeronave: 5.644\n", - "Predicción obtenida: 0.402\n", - "\tR²: 0.8190779024483189, Desviación Estándar: 0.026251920869893277, Varianza: 0.0006891633493591382, Incertidumbre: 0.013125960434946638\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 0.394\n", - "\tR²: 0.6020929401336428, Desviación Estándar: 0.027642283534153083, Varianza: 0.0007640958389825106, Incertidumbre: 0.012362005007137885\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.303', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.521', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.481', 'Alcance de la aeronave: 0.316', 'envergadura: 0.402', 'payload: 0.394']\n", - "**Mediana calculada:** 0.394\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.0x + -1.225\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.326\n", - "\tR²: 0.5082545132230825, Desviación Estándar: 0.05085224756183586, Varianza: 0.002585951082090241, Incertidumbre: 0.022741816471382584\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.012x + 0.047\n", - "Valor del parámetro correlacionado para la aeronave: 30.407\n", - "Predicción obtenida: 0.4\n", - "\tR²: 0.5916034080971878, Desviación Estándar: 0.0463426661702313, Varianza: 0.0021476427077655007, Incertidumbre: 0.020725070363043403\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.1x + 0.166\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.8603589273995997, Desviación Estándar: 0.027098580959037145, Varianza: 0.0007343330899934905, Incertidumbre: 0.0121188538236377\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = -0.041x + 0.884\n", - "Valor del parámetro correlacionado para la aeronave: 13.218\n", - "Predicción obtenida: 0.336\n", - "\tR²: 0.5556998392410524, Desviación Estándar: 0.048336833461136076, Varianza: 0.0023364494690496043, Incertidumbre: 0.02161688908723734\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.108x + 0.02\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.15\n", - "\tR²: 0.9729483577129217, Desviación Estándar: 0.011927152694253538, Varianza: 0.00014225697139203943, Incertidumbre: 0.005333984840474135\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.002x + 0.229\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.7196970118630204, Desviación Estándar: 0.034754348458380345, Varianza: 0.0012078647367665242, Incertidumbre: 0.013135908999850775\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = -0.0x + 0.356\n", - "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.4747254035414423, Desviación Estándar: 0.04757606143631944, Varianza: 0.002263481621792442, Incertidumbre: 0.017982060988633097\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197]\n", - "Ecuación de regresión: y = 0.072x + -0.01\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.207\n", - "\tR²: 0.8941942208767555, Desviación Estándar: 0.023588192102840765, Varianza: 0.0005564028066805194, Incertidumbre: 0.010548960201655131\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352]\n", - "Ecuación de regresión: y = 0.008x + 0.145\n", - "Valor del parámetro correlacionado para la aeronave: 27.8\n", - "Predicción obtenida: 0.378\n", - "\tR²: 0.5951449532870101, Desviación Estándar: 0.03013201386753742, Varianza: 0.0009079382597134674, Incertidumbre: 0.017396726317648267\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.4', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.336', 'Longitud del fuselaje: 0.15', 'Peso máximo al despegue (MTOW): 0.27', 'Alcance de la aeronave: 0.319', 'envergadura: 0.207', 'Crucero KIAS: 0.378']\n", - "**Mediana calculada:** 0.319\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.0x + -1.21\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.5124560667085087, Desviación Estándar: 0.04648787282808511, Varianza: 0.0021611223200802133, Incertidumbre: 0.018978594609367214\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.008x + 0.11\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 0.331\n", - "\tR²: 0.46337237262389996, Desviación Estándar: 0.048771859040965634, Varianza: 0.0023786942343118215, Incertidumbre: 0.019911028076218723\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.092x + 0.186\n", - "Valor del parámetro correlacionado para la aeronave: 1.608\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.7613504476982165, Desviación Estándar: 0.032524685665416886, Varianza: 0.0010578551776341746, Incertidumbre: 0.013278147320780956\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = -0.04x + 0.863\n", - "Valor del parámetro correlacionado para la aeronave: 13.443\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.5527436088338049, Desviación Estándar: 0.044525732581881805, Varianza: 0.001982540861953251, Incertidumbre: 0.018177554208204372\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.056x + 0.17\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.238\n", - "\tR²: 0.45536965068723667, Desviación Estándar: 0.04913418031682804, Varianza: 0.0024141676754065723, Incertidumbre: 0.020058945117688236\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.002x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.6561535955657221, Desviación Estándar: 0.03601567329003582, Varianza: 0.0012971287225345997, Incertidumbre: 0.01273346340619177\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = -0.0x + 0.356\n", - "Valor del parámetro correlacionado para la aeronave: 509.556\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.4749907143714427, Desviación Estándar: 0.044503358493513535, Varianza: 0.0019805489172021835, Incertidumbre: 0.01573431328816968\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319]\n", - "Ecuación de regresión: y = 0.052x + 0.093\n", - "Valor del parámetro correlacionado para la aeronave: 5.2\n", - "Predicción obtenida: 0.361\n", - "\tR²: 0.5927043159163219, Desviación Estándar: 0.04249009480284112, Varianza: 0.0018054081563544256, Incertidumbre: 0.01734650856490736\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.7240526671985225, Desviación Estándar: 0.02523396237425335, Varianza: 0.0006367528571052337, Incertidumbre: 0.010301722000918372\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.324', 'Velocidad a la que se realiza el crucero (KTAS): 0.331', 'Área del ala: 0.335', 'Relación de aspecto del ala: 0.323', 'Longitud del fuselaje: 0.238', 'Peso máximo al despegue (MTOW): 0.346', 'Alcance de la aeronave: 0.332', 'envergadura: 0.361', 'payload: 0.335']\n", - "**Mediana calculada:** 0.332\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.0x + -1.224\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.326\n", - "\tR²: 0.5234700162931528, Desviación Estándar: 0.043118399156113214, Varianza: 0.001859196345785905, Incertidumbre: 0.016297223014041837\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.008x + 0.109\n", - "Valor del parámetro correlacionado para la aeronave: 26.611\n", - "Predicción obtenida: 0.331\n", - "\tR²: 0.4773971261284471, Desviación Estándar: 0.0451547465914678, Varianza: 0.0020389511397396727, Incertidumbre: 0.017066889999309325\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.092x + 0.186\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.297\n", - "\tR²: 0.7673579176782551, Desviación Estándar: 0.030127399803337826, Varianza: 0.0009076602189101601, Incertidumbre: 0.011387086789806877\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = -0.041x + 0.87\n", - "Valor del parámetro correlacionado para la aeronave: 13.934\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.5618645680480575, Desviación Estándar: 0.0413448766429335, Varianza: 0.001709398824619388, Incertidumbre: 0.01562689451197787\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.037x + 0.225\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.25541759559597876, Desviación Estándar: 0.053898154753589445, Varianza: 0.0029050110858418765, Incertidumbre: 0.02037158765761021\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.002x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.6530681193804526, Desviación Estándar: 0.034246989275220595, Varianza: 0.0011728562744170745, Incertidumbre: 0.011415663091740198\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = -0.0x + 0.356\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 0.354\n", - "\tR²: 0.47924291008106135, Desviación Estándar: 0.04195830043487889, Varianza: 0.0017604989753835579, Incertidumbre: 0.013986100144959629\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332]\n", - "Ecuación de regresión: y = 0.048x + 0.105\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.5811309424136593, Desviación Estándar: 0.04042561655887864, Varianza: 0.0016342304741654829, Incertidumbre: 0.015279446858749655\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332]\n", - "Ecuación de regresión: y = 0.005x + 0.269\n", - "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.7234996015016496, Desviación Estándar: 0.02339015181341113, Varianza: 0.0005470992018544201, Incertidumbre: 0.008840646403761759\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.326', 'Velocidad a la que se realiza el crucero (KTAS): 0.331', 'Área del ala: 0.297', 'Relación de aspecto del ala: 0.304', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.301', 'Alcance de la aeronave: 0.354', 'envergadura: 0.315', 'payload: 0.299']\n", - "**Mediana calculada:** 0.304\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.0x + -1.19\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.323\n", - "\tR²: 0.5088584866234673, Desviación Estándar: 0.04095418731504614, Varianza: 0.0016772454586358862, Incertidumbre: 0.014479491784226604\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.008x + 0.114\n", - "Valor del parámetro correlacionado para la aeronave: 18.266\n", - "Predicción obtenida: 0.26\n", - "\tR²: 0.4544871001518501, Desviación Estándar: 0.043161596731449474, Varianza: 0.00186292343240827, Incertidumbre: 0.015259928867823522\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.092x + 0.188\n", - "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 0.257\n", - "\tR²: 0.7657531148702028, Desviación Estándar: 0.0282834186887527, Varianza: 0.0007999517727232854, Incertidumbre: 0.009999698574977681\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = -0.041x + 0.87\n", - "Valor del parámetro correlacionado para la aeronave: 14.755\n", - "Predicción obtenida: 0.271\n", - "\tR²: 0.5620081314167932, Desviación Estándar: 0.038674794449433975, Varianza: 0.0014957397257059691, Incertidumbre: 0.013673604708095305\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.032x + 0.24\n", - "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.22407617799783763, Desviación Estándar: 0.051475969281914856, Varianza: 0.002649775413512642, Incertidumbre: 0.018199503473696203\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.002x + 0.242\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.254\n", - "\tR²: 0.654616976883781, Desviación Estándar: 0.0325002987324586, Varianza: 0.00105626941769905, Incertidumbre: 0.01027749686304525\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = -0.0x + 0.347\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.414987640780789, Desviación Estándar: 0.042297955918060494, Varianza: 0.0017891170748461885, Incertidumbre: 0.013375788107046958\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.047x + 0.105\n", - "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.204\n", - "\tR²: 0.5774901913231636, Desviación Estándar: 0.037985109973381545, Varianza: 0.0014428685796898902, Incertidumbre: 0.013429764423147424\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319]\n", - "Ecuación de regresión: y = 0.005x + 0.202\n", - "Valor del parámetro correlacionado para la aeronave: 16.7\n", - "Predicción obtenida: 0.285\n", - "\tR²: 0.42206898443002183, Desviación Estándar: 0.031616100972920246, Varianza: 0.0009995778407298887, Incertidumbre: 0.015808050486460123\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.323', 'Velocidad a la que se realiza el crucero (KTAS): 0.26', 'Área del ala: 0.257', 'Relación de aspecto del ala: 0.271', 'Longitud del fuselaje: 0.288', 'Peso máximo al despegue (MTOW): 0.254', 'Alcance de la aeronave: 0.346', 'envergadura: 0.204', 'Crucero KIAS: 0.285']\n", - "**Mediana calculada:** 0.271\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.0x + -1.119\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.4467125550050872, Desviación Estándar: 0.041829866636606275, Varianza: 0.0017497377428362668, Incertidumbre: 0.013943288878868759\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.008x + 0.121\n", - "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 0.359\n", - "\tR²: 0.4733288036155826, Desviación Estándar: 0.040811340123434084, Varianza: 0.0016655654826706208, Incertidumbre: 0.013603780041144695\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.089x + 0.192\n", - "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 0.287\n", - "\tR²: 0.7694013001888904, Desviación Estándar: 0.027004708852321632, Varianza: 0.0007292543001986583, Incertidumbre: 0.009001569617440544\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = -0.041x + 0.87\n", - "Valor del parámetro correlacionado para la aeronave: 14.057\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.5795819419058201, Desviación Estándar: 0.0364629459060155, Varianza: 0.0013295464241450125, Incertidumbre: 0.012154315302005168\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.034x + 0.235\n", - "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.24695440685743675, Desviación Estándar: 0.04880021191080425, Varianza: 0.0023814606825394006, Incertidumbre: 0.016266737303601415\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.002x + 0.246\n", - "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 0.294\n", - "\tR²: 0.6670417777815097, Desviación Estándar: 0.03132273145396624, Varianza: 0.000981113505737286, Incertidumbre: 0.009444158876533569\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = -0.0x + 0.336\n", - "Valor del parámetro correlacionado para la aeronave: 503.516\n", - "Predicción obtenida: 0.318\n", - "\tR²: 0.2988770873999306, Desviación Estándar: 0.04545292487076436, Varianza: 0.0020659683793073495, Incertidumbre: 0.013704572492776236\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271]\n", - "Ecuación de regresión: y = 0.036x + 0.158\n", - "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.5074952168946643, Desviación Estándar: 0.03946538087998614, Varianza: 0.0015575162880023757, Incertidumbre: 0.01315512695999538\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.7373011137977019, Desviación Estándar: 0.021931062094591367, Varianza: 0.0004809714845968222, Incertidumbre: 0.007753801362854401\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271]\n", - "Ecuación de regresión: y = 0.005x + 0.191\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.342\n", - "\tR²: 0.4796840662294731, Desviación Estándar: 0.028777205287537983, Varianza: 0.0008281275441611041, Incertidumbre: 0.012869557445080261\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.316', 'Velocidad a la que se realiza el crucero (KTAS): 0.359', 'Área del ala: 0.287', 'Relación de aspecto del ala: 0.299', 'Longitud del fuselaje: 0.293', 'Peso máximo al despegue (MTOW): 0.294', 'Alcance de la aeronave: 0.318', 'envergadura: 0.27', 'payload: 0.298', 'Crucero KIAS: 0.342']\n", - "**Mediana calculada:** 0.298\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.0x + -1.097\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.4368458746527305, Desviación Estándar: 0.04005051770019304, Varianza: 0.001604043968053476, Incertidumbre: 0.012665085740149871\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.006x + 0.15\n", - "Valor del parámetro correlacionado para la aeronave: 30.953\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.37779542591176063, Desviación Estándar: 0.04209796464341744, Varianza: 0.0017722386271184249, Incertidumbre: 0.013312545313043725\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.089x + 0.194\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 0.36\n", - "\tR²: 0.765873381903867, Desviación Estándar: 0.025823784879448163, Varianza: 0.0006668678655000155, Incertidumbre: 0.008166197802527291\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = -0.041x + 0.87\n", - "Valor del parámetro correlacionado para la aeronave: 12.908\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.5798392420052842, Desviación Estándar: 0.034594116470138235, Varianza: 0.0011967528943494896, Incertidumbre: 0.010939620168678112\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.034x + 0.236\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.24668522140873417, Desviación Estándar: 0.04632151372017501, Varianza: 0.002145682633328362, Incertidumbre: 0.014648148802249251\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.002x + 0.247\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 0.38\n", - "\tR²: 0.6682782058720445, Desviación Estándar: 0.030013941218469384, Varianza: 0.0009008366674657355, Incertidumbre: 0.008664278520962451\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = -0.0x + 0.334\n", - "Valor del parámetro correlacionado para la aeronave: 557.94\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.29101241634623853, Desviación Estándar: 0.0438788603845218, Varianza: 0.0019253543886443567, Incertidumbre: 0.012666735927368835\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.034x + 0.169\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.4843054651463291, Desviación Estándar: 0.03832575894901321, Varianza: 0.0014688637990178664, Incertidumbre: 0.012119669133346282\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.368\n", - "\tR²: 0.7530217831084923, Desviación Estándar: 0.020677312991762044, Varianza: 0.00042755127255929146, Incertidumbre: 0.006892437663920681\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298]\n", - "Ecuación de regresión: y = 0.004x + 0.217\n", - "Valor del parámetro correlacionado para la aeronave: 28.3\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.33548537835814285, Desviación Estándar: 0.02969296652169765, Varianza: 0.0008816722608586575, Incertidumbre: 0.012122102821283785\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.345', 'Área del ala: 0.36', 'Relación de aspecto del ala: 0.346', 'Longitud del fuselaje: 0.32', 'Peso máximo al despegue (MTOW): 0.38', 'Alcance de la aeronave: 0.315', 'envergadura: 0.332', 'payload: 0.368', 'Crucero KIAS: 0.325']\n", - "**Mediana calculada:** 0.338\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.0x + -1.123\n", - "Valor del parámetro correlacionado para la aeronave: 5000.0\n", - "Predicción obtenida: 0.077\n", - "\tR²: 0.44147114715305336, Desviación Estándar: 0.03879212590736499, Varianza: 0.0015048290324128585, Incertidumbre: 0.011696266041359519\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.006x + 0.153\n", - "Valor del parámetro correlacionado para la aeronave: 21.463\n", - "Predicción obtenida: 0.285\n", - "\tR²: 0.40064049329349527, Desviación Estándar: 0.040185046321322214, Varianza: 0.0016148379478468121, Incertidumbre: 0.012116247348261574\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.085x + 0.197\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 0.374\n", - "\tR²: 0.7619020614155911, Desviación Estándar: 0.025327865532937314, Varianza: 0.0006415007724545539, Incertidumbre: 0.007636638792120725\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = -0.04x + 0.86\n", - "Valor del parámetro correlacionado para la aeronave: 12.648\n", - "Predicción obtenida: 0.355\n", - "\tR²: 0.5944802102759923, Desviación Estándar: 0.03305421142567004, Varianza: 0.001092580892972896, Incertidumbre: 0.009966219730911451\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.035x + 0.235\n", - "Valor del parámetro correlacionado para la aeronave: 2.998\n", - "Predicción obtenida: 0.34\n", - "\tR²: 0.2663264749195765, Desviación Estándar: 0.044460280463140905, Varianza: 0.001976716538861149, Incertidumbre: 0.01340527894274609\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.002x + 0.251\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 0.371\n", - "\tR²: 0.6338748805446468, Desviación Estándar: 0.030614286662563286, Varianza: 0.0009372345478576003, Incertidumbre: 0.008490875409509635\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = -0.0x + 0.336\n", - "Valor del parámetro correlacionado para la aeronave: 646.084\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.2906940367251767, Desviación Estándar: 0.04261143763873455, Varianza: 0.0018157346176397638, Incertidumbre: 0.011818286409822586\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.034x + 0.168\n", - "Valor del parámetro correlacionado para la aeronave: 5.033\n", - "Predicción obtenida: 0.341\n", - "\tR²: 0.5033510515754096, Desviación Estándar: 0.036580154402799485, Varianza: 0.0013381076961326505, Incertidumbre: 0.011029331538850273\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.005x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.362\n", - "\tR²: 0.7098078178906966, Desviación Estándar: 0.021340119345216565, Varianza: 0.00045540069366808625, Incertidumbre: 0.006748338267070541\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.077', 'Velocidad a la que se realiza el crucero (KTAS): 0.285', 'Área del ala: 0.374', 'Relación de aspecto del ala: 0.355', 'Longitud del fuselaje: 0.34', 'Peso máximo al despegue (MTOW): 0.371', 'Alcance de la aeronave: 0.313', 'envergadura: 0.341', 'payload: 0.362']\n", - "**Mediana calculada:** 0.341\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.0x + 0.178\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.01698088208648929, Desviación Estándar: 0.05021794969223678, Varianza: 0.002521842471292024, Incertidumbre: 0.014496673386481996\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.006x + 0.171\n", - "Valor del parámetro correlacionado para la aeronave: 33.045\n", - "Predicción obtenida: 0.357\n", - "\tR²: 0.333272374733811, Desviación Estándar: 0.04135730400423518, Varianza: 0.001710426594498727, Incertidumbre: 0.011938825299901186\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.078x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 0.349\n", - "\tR²: 0.7434863405092712, Desviación Estándar: 0.025652709521725176, Varianza: 0.0006580615058060095, Incertidumbre: 0.007405299373905654\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = -0.039x + 0.841\n", - "Valor del parámetro correlacionado para la aeronave: 12.84\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.60452940995621, Desviación Estándar: 0.03185188148615243, Varianza: 0.0010145423542079, Incertidumbre: 0.009194846175113082\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.035x + 0.235\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 0.322\n", - "\tR²: 0.2936236395084689, Desviación Estándar: 0.04256925734185804, Varianza: 0.0018121416706373347, Incertidumbre: 0.012288686092762097\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.001x + 0.253\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 0.365\n", - "\tR²: 0.6208094760432097, Desviación Estándar: 0.030354867452664958, Varianza: 0.0009214179780688584, Incertidumbre: 0.008112679573486267\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = -0.0x + 0.338\n", - "Valor del parámetro correlacionado para la aeronave: 500.0\n", - "Predicción obtenida: 0.321\n", - "\tR²: 0.285409813514665, Desviación Estándar: 0.04167044389712285, Varianza: 0.0017364258945832627, Incertidumbre: 0.01113689458698706\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.034x + 0.168\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.5218690773685137, Desviación Estándar: 0.03502284412908208, Varianza: 0.001226599610889979, Incertidumbre: 0.010110224242855922\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341]\n", - "Ecuación de regresión: y = 0.005x + 0.274\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.358\n", - "\tR²: 0.6901146819400841, Desviación Estándar: 0.02113001704290527, Varianza: 0.0004464776202334672, Incertidumbre: 0.006370939849557429\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.357', 'Área del ala: 0.349', 'Relación de aspecto del ala: 0.345', 'Longitud del fuselaje: 0.322', 'Peso máximo al despegue (MTOW): 0.365', 'Alcance de la aeronave: 0.321', 'envergadura: 0.333', 'payload: 0.358']\n", - "**Mediana calculada:** 0.345\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.0x + 0.16\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.022373451375729103, Desviación Estándar: 0.049063741225926084, Varianza: 0.002407250703084639, Incertidumbre: 0.013607833442782533\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.005x + 0.176\n", - "Valor del parámetro correlacionado para la aeronave: 25.703\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.3555220685191681, Desviación Estándar: 0.0398362264992534, Varianza: 0.0015869249416998186, Incertidumbre: 0.011048581328004266\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.077x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.7527768409004458, Desviación Estándar: 0.024672817339078838, Varianza: 0.0006087479154475493, Incertidumbre: 0.0068430083097081335\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = -0.039x + 0.841\n", - "Valor del parámetro correlacionado para la aeronave: 13.765\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.6196701372371902, Desviación Estándar: 0.03060232203692826, Varianza: 0.000936502114051865, Incertidumbre: 0.00848755701941588\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.036x + 0.234\n", - "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 0.321\n", - "\tR²: 0.30616062286953594, Desviación Estándar: 0.04133363874625755, Varianza: 0.0017084696920061232, Incertidumbre: 0.011463888761625898\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.001x + 0.254\n", - "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.6206727625327728, Desviación Estándar: 0.029696344075245393, Varianza: 0.0008818728514353621, Incertidumbre: 0.007667563069778047\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = -0.0x + 0.34\n", - "Valor del parámetro correlacionado para la aeronave: 537.895\n", - "Predicción obtenida: 0.321\n", - "\tR²: 0.2869258951677305, Desviación Estándar: 0.04071583119142121, Varianza: 0.0016577789096083083, Incertidumbre: 0.01051278240875779\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.035x + 0.166\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.5360863917912162, Desviación Estándar: 0.033798134019578256, Varianza: 0.001142313863205373, Incertidumbre: 0.009373915786353326\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345]\n", - "Ecuación de regresión: y = 0.005x + 0.274\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.6852525799649505, Desviación Estándar: 0.020536902802633098, Varianza: 0.0004217643767247992, Incertidumbre: 0.0059284931807107\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.212\n", - "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.4148261927182897, Desviación Estándar: 0.027776222407102834, Varianza: 0.0007715185312088415, Incertidumbre: 0.01049842526428771\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.314', 'Área del ala: 0.308', 'Relación de aspecto del ala: 0.309', 'Longitud del fuselaje: 0.321', 'Peso máximo al despegue (MTOW): 0.306', 'Alcance de la aeronave: 0.321', 'envergadura: 0.306', 'payload: 0.314', 'Crucero KIAS: 0.309']\n", - "**Mediana calculada:** 0.312\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.0x + 0.161\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.022227755119382575, Desviación Estándar: 0.04728280334178578, Varianza: 0.002235663491857988, Incertidumbre: 0.012636860742226598\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.005x + 0.176\n", - "Valor del parámetro correlacionado para la aeronave: 33.797\n", - "Predicción obtenida: 0.358\n", - "\tR²: 0.3553724238219026, Desviación Estándar: 0.03839182920470344, Varianza: 0.0014739325496831198, Incertidumbre: 0.010260647952538724\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.077x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.7523839535914149, Desviación Estándar: 0.02379434517349416, Varianza: 0.0005661708622353848, Incertidumbre: 0.00635930624156095\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = -0.039x + 0.841\n", - "Valor del parámetro correlacionado para la aeronave: 12.914\n", - "Predicción obtenida: 0.342\n", - "\tR²: 0.6194315138686619, Desviación Estándar: 0.02949855729552859, Varianza: 0.000870164882517583, Incertidumbre: 0.007883821057427777\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.036x + 0.234\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.303899170137669, Desviación Estándar: 0.03989518107787113, Varianza: 0.0015916254732361262, Incertidumbre: 0.010662435641192892\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.001x + 0.255\n", - "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 0.342\n", - "\tR²: 0.6200226373551951, Desviación Estándar: 0.0287868395998115, Varianza: 0.0008286821341452756, Incertidumbre: 0.007196709899952875\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = -0.0x + 0.339\n", - "Valor del parámetro correlacionado para la aeronave: 565.912\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.28524296729075405, Desviación Estándar: 0.0394815636598884, Varianza: 0.00155879386902982, Incertidumbre: 0.0098703909149721\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.035x + 0.167\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.5351265760294277, Desviación Estándar: 0.032602561615663286, Varianza: 0.001062927023903121, Incertidumbre: 0.008713401106928507\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312]\n", - "Ecuación de regresión: y = 0.005x + 0.274\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 0.355\n", - "\tR²: 0.6911388597155106, Desviación Estándar: 0.01973554103206761, Varianza: 0.00038949157982842426, Incertidumbre: 0.005473654241549482\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312]\n", - "Ecuación de regresión: y = 0.004x + 0.212\n", - "Valor del parámetro correlacionado para la aeronave: 30.9\n", - "Predicción obtenida: 0.34\n", - "\tR²: 0.41681296972136983, Desviación Estándar: 0.025997834126762907, Varianza: 0.000675887379282678, Incertidumbre: 0.009191622403598547\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.314', 'Velocidad a la que se realiza el crucero (KTAS): 0.358', 'Área del ala: 0.344', 'Relación de aspecto del ala: 0.342', 'Longitud del fuselaje: 0.324', 'Peso máximo al despegue (MTOW): 0.342', 'Alcance de la aeronave: 0.319', 'envergadura: 0.335', 'payload: 0.355', 'Crucero KIAS: 0.34']\n", - "**Mediana calculada:** 0.341\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Evo** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.0x + 0.148\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.026268244411726593, Desviación Estándar: 0.04616322786282365, Varianza: 0.0021310436067149777, Incertidumbre: 0.011919294181326279\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.005x + 0.182\n", - "Valor del parámetro correlacionado para la aeronave: 18.091\n", - "Predicción obtenida: 0.274\n", - "\tR²: 0.3645845882344463, Desviación Estándar: 0.03729111540765529, Varianza: 0.0013906272883470658, Incertidumbre: 0.00962852459568985\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.077x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 0.84\n", - "Predicción obtenida: 0.269\n", - "\tR²: 0.7583546241989619, Desviación Estándar: 0.02299671197634162, Varianza: 0.0005288487617228141, Incertidumbre: 0.00593772550012665\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 14.589\n", - "Predicción obtenida: 0.277\n", - "\tR²: 0.6288651605214148, Desviación Estándar: 0.028499836195337802, Varianza: 0.0008122406631610867, Incertidumbre: 0.007358626063612177\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.037x + 0.234\n", - "Valor del parámetro correlacionado para la aeronave: 0.75\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.31289865533826733, Desviación Estándar: 0.038778133438712926, Varianza: 0.0015037436329906255, Incertidumbre: 0.010012471000342941\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.001x + 0.255\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.269\n", - "\tR²: 0.626055259624176, Desviación Estándar: 0.027928418897225495, Varianza: 0.0007799965820989021, Incertidumbre: 0.006773636533515119\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = -0.0x + 0.341\n", - "Valor del parámetro correlacionado para la aeronave: 270.0\n", - "Predicción obtenida: 0.331\n", - "\tR²: 0.2841904292217742, Desviación Estándar: 0.03864037972786521, Varianza: 0.0014930789455136165, Incertidumbre: 0.009371668648939038\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.035x + 0.166\n", - "Valor del parámetro correlacionado para la aeronave: 2.69\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.5455548123174172, Desviación Estándar: 0.03153677328028606, Varianza: 0.000994568068932165, Incertidumbre: 0.008142759847177798\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.004x + 0.275\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.6833444264392312, Desviación Estándar: 0.019334288653334628, Varianza: 0.00037381471773046413, Incertidumbre: 0.0051673059969835075\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341]\n", - "Ecuación de regresión: y = 0.004x + 0.212\n", - "Valor del parámetro correlacionado para la aeronave: 16.54\n", - "Predicción obtenida: 0.281\n", - "\tR²: 0.47839540504657707, Desviación Estándar: 0.02451160448637781, Varianza: 0.0006008187544966167, Incertidumbre: 0.008170534828792602\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.316', 'Velocidad a la que se realiza el crucero (KTAS): 0.274', 'Área del ala: 0.269', 'Relación de aspecto del ala: 0.277', 'Longitud del fuselaje: 0.261', 'Peso máximo al despegue (MTOW): 0.269', 'Alcance de la aeronave: 0.331', 'envergadura: 0.261', 'payload: 0.288', 'Crucero KIAS: 0.281']\n", - "**Mediana calculada:** 0.276\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.0x + 0.166\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.01967074482098219, Desviación Estándar: 0.04573470982394311, Varianza: 0.0020916636826802783, Incertidumbre: 0.011433677455985777\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.3888938502611704, Desviación Estándar: 0.03610923381670675, Varianza: 0.0013038767668295981, Incertidumbre: 0.009027308454176687\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.076x + 0.206\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 0.259\n", - "\tR²: 0.7664145517248199, Desviación Estándar: 0.02232455641736923, Varianza: 0.0004983858192323016, Incertidumbre: 0.005581139104342307\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.714\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.6430546942477204, Desviación Estándar: 0.027596930750302347, Varianza: 0.0007615905868369832, Incertidumbre: 0.006899232687575587\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.034x + 0.239\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.33445042360589083, Desviación Estándar: 0.037683406226531636, Varianza: 0.0014200391048338034, Incertidumbre: 0.009420851556632909\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.001x + 0.256\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.265\n", - "\tR²: 0.6416207643515126, Desviación Estándar: 0.027185535937675302, Varianza: 0.0007390533642186353, Incertidumbre: 0.006407692270573599\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = -0.0x + 0.336\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.23999230022385276, Desviación Estándar: 0.03958908605237062, Varianza: 0.0015672957344620058, Incertidumbre: 0.009331237069536345\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.034x + 0.172\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.252\n", - "\tR²: 0.5575576859088149, Desviación Estándar: 0.030724744065250335, Varianza: 0.0009440098978751357, Incertidumbre: 0.007681186016312584\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.005x + 0.272\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.721730846976111, Desviación Estándar: 0.018890410688664185, Varianza: 0.00035684761598639805, Incertidumbre: 0.004877483066680998\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276]\n", - "Ecuación de regresión: y = 0.004x + 0.209\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 0.277\n", - "\tR²: 0.5239745729502132, Desviación Estándar: 0.023290105844576407, Varianza: 0.0005424290302515721, Incertidumbre: 0.007364978141526098\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.313', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.259', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.265', 'Alcance de la aeronave: 0.333', 'envergadura: 0.252', 'payload: 0.278', 'Crucero KIAS: 0.277']\n", - "**Mediana calculada:** 0.272\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.0x + 0.183\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.014305682652152818, Desviación Estándar: 0.04541585750246479, Varianza: 0.002062600112684187, Incertidumbre: 0.01101496338592133\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", - "Valor del parámetro correlacionado para la aeronave: 17.5\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.41353937190981327, Desviación Estándar: 0.03503126520298072, Varianza: 0.001227189541721568, Incertidumbre: 0.008496329801818471\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.075x + 0.209\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 0.261\n", - "\tR²: 0.771939412802745, Desviación Estándar: 0.021845475954437206, Varianza: 0.0004772248196758942, Incertidumbre: 0.005298306164825611\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.714\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.6574483990804236, Desviación Estándar: 0.0267731451760295, Varianza: 0.0007168013026167517, Incertidumbre: 0.006493441499456798\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.034x + 0.24\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.3612099344091373, Desviación Estándar: 0.03656078137464094, Varianza: 0.0013366907347242916, Incertidumbre: 0.008867291962515261\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.001x + 0.257\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 0.266\n", - "\tR²: 0.6569798349980132, Desviación Estándar: 0.026507694611626824, Varianza: 0.0007026578736232697, Incertidumbre: 0.006081282212543103\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.0x + 0.331\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.328\n", - "\tR²: 0.18759571893960836, Desviación Estándar: 0.0407941824996777, Varianza: 0.0016641653258170103, Incertidumbre: 0.009358827315813186\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.032x + 0.18\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 0.256\n", - "\tR²: 0.5664966665882962, Desviación Estándar: 0.030118449655234383, Varianza: 0.000907121009634888, Incertidumbre: 0.007304797012257599\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 0.277\n", - "\tR²: 0.7555202520970645, Desviación Estándar: 0.01833377542330803, Varianza: 0.0003361273212722936, Incertidumbre: 0.004583443855827008\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", - "Valor del parámetro correlacionado para la aeronave: 16.0\n", - "Predicción obtenida: 0.276\n", - "\tR²: 0.5632456052929734, Desviación Estándar: 0.022253056728350776, Varianza: 0.0004951985337551978, Incertidumbre: 0.006709549055130292\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.272', 'Área del ala: 0.261', 'Relación de aspecto del ala: 0.272', 'Longitud del fuselaje: 0.27', 'Peso máximo al despegue (MTOW): 0.266', 'Alcance de la aeronave: 0.328', 'envergadura: 0.256', 'payload: 0.277', 'Crucero KIAS: 0.276']\n", - "**Mediana calculada:** 0.272\n", - "\n", - "--- Imputación para aeronave: **V21** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.0x + 0.183\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.014305682652152818, Desviación Estándar: 0.04541585750246479, Varianza: 0.002062600112684187, Incertidumbre: 0.01101496338592133\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.183\n", - "Valor del parámetro correlacionado para la aeronave: 19.688\n", - "Predicción obtenida: 0.283\n", - "\tR²: 0.41353937190981327, Desviación Estándar: 0.03503126520298072, Varianza: 0.001227189541721568, Incertidumbre: 0.008496329801818471\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.075x + 0.209\n", - "Valor del parámetro correlacionado para la aeronave: 0.8\n", - "Predicción obtenida: 0.269\n", - "\tR²: 0.771939412802745, Desviación Estándar: 0.021845475954437206, Varianza: 0.0004772248196758942, Incertidumbre: 0.005298306164825611\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.568\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.6574483990804236, Desviación Estándar: 0.0267731451760295, Varianza: 0.0007168013026167517, Incertidumbre: 0.006493441499456798\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.034x + 0.24\n", - "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 0.271\n", - "\tR²: 0.3612099344091373, Desviación Estándar: 0.03656078137464094, Varianza: 0.0013366907347242916, Incertidumbre: 0.008867291962515261\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.001x + 0.257\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.271\n", - "\tR²: 0.6569798349980132, Desviación Estándar: 0.026507694611626824, Varianza: 0.0007026578736232697, Incertidumbre: 0.006081282212543103\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = -0.0x + 0.331\n", - "Valor del parámetro correlacionado para la aeronave: 373.727\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.18759571893960836, Desviación Estándar: 0.0407941824996777, Varianza: 0.0016641653258170103, Incertidumbre: 0.009358827315813186\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.032x + 0.18\n", - "Valor del parámetro correlacionado para la aeronave: 2.15\n", - "Predicción obtenida: 0.25\n", - "\tR²: 0.5664966665882962, Desviación Estándar: 0.030118449655234383, Varianza: 0.000907121009634888, Incertidumbre: 0.007304797012257599\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 0.278\n", - "\tR²: 0.7555202520970645, Desviación Estándar: 0.01833377542330803, Varianza: 0.0003361273212722936, Incertidumbre: 0.004583443855827008\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.285\n", - "\tR²: 0.5632456052929734, Desviación Estándar: 0.022253056728350776, Varianza: 0.0004951985337551978, Incertidumbre: 0.006709549055130292\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.311', 'Velocidad a la que se realiza el crucero (KTAS): 0.283', 'Área del ala: 0.269', 'Relación de aspecto del ala: 0.278', 'Longitud del fuselaje: 0.271', 'Peso máximo al despegue (MTOW): 0.271', 'Alcance de la aeronave: 0.32', 'envergadura: 0.25', 'payload: 0.278', 'Crucero KIAS: 0.285']\n", - "**Mediana calculada:** 0.278\n", - "\n", - "--- Imputación para aeronave: **V25** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.0x + 0.195\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.011044881710893129, Desviación Estándar: 0.044760694317023265, Varianza: 0.0020035197557419985, Incertidumbre: 0.010550196827395105\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.005x + 0.182\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.42735666066806766, Desviación Estándar: 0.034060469502456774, Varianza: 0.0011601155827277879, Incertidumbre: 0.008028129651861593\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.074x + 0.211\n", - "Valor del parámetro correlacionado para la aeronave: 0.52\n", - "Predicción obtenida: 0.249\n", - "\tR²: 0.7753395291556694, Desviación Estándar: 0.021333978629353077, Varianza: 0.0004551386441576937, Incertidumbre: 0.005028466986168149\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.421\n", - "Predicción obtenida: 0.284\n", - "\tR²: 0.6658371155959888, Desviación Estándar: 0.02601882192873693, Varianza: 0.0006769790945593217, Incertidumbre: 0.00613269514143171\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.034x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 0.93\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.3758370724436967, Desviación Estándar: 0.035559652505826406, Varianza: 0.0012644888863351262, Incertidumbre: 0.008381490474502354\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.001x + 0.258\n", - "Valor del parámetro correlacionado para la aeronave: 12.5\n", - "Predicción obtenida: 0.275\n", - "\tR²: 0.6659897422136262, Desviación Estándar: 0.0258798006020757, Varianza: 0.0006697640792031978, Incertidumbre: 0.005786899339038125\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = -0.0x + 0.328\n", - "Valor del parámetro correlacionado para la aeronave: 385.208\n", - "Predicción obtenida: 0.317\n", - "\tR²: 0.17038629659156324, Desviación Estándar: 0.040786738838416804, Varianza: 0.0016635580650732177, Incertidumbre: 0.009120192062323078\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.03x + 0.19\n", - "Valor del parámetro correlacionado para la aeronave: 2.45\n", - "Predicción obtenida: 0.264\n", - "\tR²: 0.5591647654062968, Desviación Estándar: 0.029884546712702416, Varianza: 0.0008930861322236928, Incertidumbre: 0.007043855211079342\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 2.2\n", - "Predicción obtenida: 0.281\n", - "\tR²: 0.7749229114992245, Desviación Estándar: 0.017786382883709647, Varianza: 0.00031635541608591945, Incertidumbre: 0.004313831489836053\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.5795655402783035, Desviación Estándar: 0.02138953366069156, Varianza: 0.00045751215022185723, Incertidumbre: 0.006174626508420417\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278]\n", - "Ecuación de regresión: y = 0.002x + 0.247\n", - "Valor del parámetro correlacionado para la aeronave: 3.45\n", - "Predicción obtenida: 0.253\n", - "\tR²: 0.037864541216720005, Desviación Estándar: 0.04025536882356717, Varianza: 0.001620494719121424, Incertidumbre: 0.018002748229764387\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.249', 'Relación de aspecto del ala: 0.284', 'Longitud del fuselaje: 0.272', 'Peso máximo al despegue (MTOW): 0.275', 'Alcance de la aeronave: 0.317', 'envergadura: 0.264', 'payload: 0.281', 'Crucero KIAS: 0.293', 'Empty weight: 0.253']\n", - "**Mediana calculada:** 0.281\n", - "\n", - "--- Imputación para aeronave: **V32** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.0x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.008806840766555024, Desviación Estándar: 0.0439986702137573, Varianza: 0.0019358829805789736, Incertidumbre: 0.010093987216417957\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.005x + 0.18\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.4333816032073342, Desviación Estándar: 0.03326639487281157, Varianza: 0.001106653027833824, Incertidumbre: 0.007631834392973959\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.07x + 0.217\n", - "Valor del parámetro correlacionado para la aeronave: 1.03\n", - "Predicción obtenida: 0.289\n", - "\tR²: 0.7555854161374564, Desviación Estándar: 0.021848617461412912, Varianza: 0.00047736208497515723, Incertidumbre: 0.005012416608967213\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = -0.039x + 0.843\n", - "Valor del parámetro correlacionado para la aeronave: 14.182\n", - "Predicción obtenida: 0.293\n", - "\tR²: 0.6714366085489721, Desviación Estándar: 0.025332029736691172, Varianza: 0.0006417117305806058, Incertidumbre: 0.005811566192473899\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.033x + 0.243\n", - "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 0.276\n", - "\tR²: 0.3848860095207083, Desviación Estándar: 0.0346607699064813, Varianza: 0.00120136897051004, Incertidumbre: 0.00795172596461409\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", - "Valor del parámetro correlacionado para la aeronave: 23.5\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.6724626600573362, Desviación Estándar: 0.025285590185798745, Varianza: 0.0006393610710441618, Incertidumbre: 0.005517768143716917\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = -0.0x + 0.326\n", - "Valor del parámetro correlacionado para la aeronave: 412.686\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.15808515960741942, Desviación Estándar: 0.04053934883017473, Varianza: 0.0016434388035745891, Incertidumbre: 0.008846411173261676\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.029x + 0.195\n", - "Valor del parámetro correlacionado para la aeronave: 3.2\n", - "Predicción obtenida: 0.288\n", - "\tR²: 0.5599804935133099, Desviación Estándar: 0.029315436669585263, Varianza: 0.0008593948271284642, Incertidumbre: 0.00672542241728888\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.294\n", - "\tR²: 0.7878383281156356, Desviación Estándar: 0.01728531402736029, Varianza: 0.0002987820810244584, Incertidumbre: 0.004074187587895138\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.004x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.5815487606672278, Desviación Estándar: 0.020794956088832327, Varianza: 0.0004324301987364647, Incertidumbre: 0.005767483111485157\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", - "Valor del parámetro correlacionado para la aeronave: 6.45\n", - "Predicción obtenida: 0.264\n", - "\tR²: 0.009256571042910555, Desviación Estándar: 0.03798189451706237, Varianza: 0.0014426243111052524, Incertidumbre: 0.015506043505169485\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.293', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.293', 'Longitud del fuselaje: 0.276', 'Peso máximo al despegue (MTOW): 0.291', 'Alcance de la aeronave: 0.315', 'envergadura: 0.288', 'payload: 0.294', 'Crucero KIAS: 0.292', 'Empty weight: 0.264']\n", - "**Mediana calculada:** 0.292\n", - "\n", - "--- Imputación para aeronave: **V35** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.0x + 0.21\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.00781429009993051, Desviación Estándar: 0.0430085862012688, Varianza: 0.001849738487031969, Incertidumbre: 0.00961701223621965\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.005x + 0.18\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.321\n", - "\tR²: 0.4360697755321421, Desviación Estándar: 0.03242435670008977, Varianza: 0.0010513389074146564, Incertidumbre: 0.007250306570810149\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.07x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 1.202\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.7565518672120739, Desviación Estándar: 0.021304036943021673, Varianza: 0.0004538619900696323, Incertidumbre: 0.0047637274799763275\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = -0.039x + 0.843\n", - "Valor del parámetro correlacionado para la aeronave: 13.898\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.6729848491652715, Desviación Estándar: 0.024691224016505753, Varianza: 0.0006096565434332705, Incertidumbre: 0.005521125534858225\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.38147480268763256, Desviación Estándar: 0.03395763069177028, Varianza: 0.001153120682198659, Incertidumbre: 0.007593157058163155\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 0.302\n", - "\tR²: 0.6749008669048356, Desviación Estándar: 0.024705639698818668, Varianza: 0.0006103686329278449, Incertidumbre: 0.005267260081811748\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = -0.0x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 456.221\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.15274102701798387, Desviación Estándar: 0.03988377763537778, Varianza: 0.0015907157184682607, Incertidumbre: 0.008503249962830417\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.029x + 0.195\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.297\n", - "\tR²: 0.5616690703122301, Desviación Estándar: 0.028586418069702225, Varianza: 0.0008171832980557979, Incertidumbre: 0.006392117403708249\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.317\n", - "\tR²: 0.7929138648348985, Desviación Estándar: 0.016831546785257487, Varianza: 0.0002833009671843116, Incertidumbre: 0.0038614216579165406\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.004x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.5832259382889582, Desviación Estándar: 0.020038522534308566, Varianza: 0.00040154238535799216, Incertidumbre: 0.005355520418609409\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.321', 'Área del ala: 0.301', 'Relación de aspecto del ala: 0.304', 'Longitud del fuselaje: 0.306', 'Peso máximo al despegue (MTOW): 0.302', 'Alcance de la aeronave: 0.312', 'envergadura: 0.297', 'payload: 0.317', 'Crucero KIAS: 0.314']\n", - "**Mediana calculada:** 0.306\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.0x + 0.21\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.007839382716985033, Desviación Estándar: 0.04197210135142703, Varianza: 0.001761657291854463, Incertidumbre: 0.009159063405679652\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.005x + 0.181\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.32\n", - "\tR²: 0.4305554307690891, Desviación Estándar: 0.031797681030392426, Varianza: 0.0010110925189105782, Incertidumbre: 0.006938822868849272\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.07x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 0.302\n", - "\tR²: 0.7560017518320579, Desviación Estándar: 0.02081436063167048, Varianza: 0.000433237608505234, Incertidumbre: 0.00454206586365423\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = -0.039x + 0.843\n", - "Valor del parámetro correlacionado para la aeronave: 14.042\n", - "Predicción obtenida: 0.298\n", - "\tR²: 0.6728675905615071, Desviación Estándar: 0.024100802676844793, Varianza: 0.0005808486896682092, Incertidumbre: 0.005259226313135029\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 1.954\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.381487984139919, Desviación Estándar: 0.033139335158115936, Varianza: 0.0010982155347219389, Incertidumbre: 0.007231595802027506\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.001x + 0.259\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.6746862184494904, Desviación Estándar: 0.02417354407482776, Varianza: 0.0005843602331376403, Incertidumbre: 0.0050405323784455825\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = -0.0x + 0.324\n", - "Valor del parámetro correlacionado para la aeronave: 413.556\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.1520436185450239, Desviación Estándar: 0.03902796009378789, Varianza: 0.0015231816690822997, Incertidumbre: 0.008137892230799079\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.029x + 0.196\n", - "Valor del parámetro correlacionado para la aeronave: 3.9\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.5595879139438245, Desviación Estándar: 0.027964002682235915, Varianza: 0.0007819854460120975, Incertidumbre: 0.006102245667871153\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.005x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.294\n", - "\tR²: 0.7889957205554606, Desviación Estándar: 0.016594408157668158, Varianza: 0.00027537438210328347, Incertidumbre: 0.003710622468692305\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306]\n", - "Ecuación de regresión: y = 0.004x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.5799398889644451, Desviación Estándar: 0.01946734334447621, Varianza: 0.0003789774568917221, Incertidumbre: 0.005026446437870543\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.32', 'Área del ala: 0.302', 'Relación de aspecto del ala: 0.298', 'Longitud del fuselaje: 0.308', 'Peso máximo al despegue (MTOW): 0.292', 'Alcance de la aeronave: 0.313', 'envergadura: 0.309', 'payload: 0.294', 'Crucero KIAS: 0.314']\n", - "**Mediana calculada:** 0.307\n", - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.0x + 0.21\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.007920162700700728, Desviación Estándar: 0.04100745249090813, Varianza: 0.0016816111597940874, Incertidumbre: 0.008742818246980276\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.005x + 0.181\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.319\n", - "\tR²: 0.4264004008303849, Desviación Estándar: 0.031181277073957195, Varianza: 0.0009722720399628886, Incertidumbre: 0.0066478706090504465\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.069x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 0.317\n", - "\tR²: 0.7552866449539557, Desviación Estándar: 0.020366589706083574, Varianza: 0.00041479797625594946, Incertidumbre: 0.004342171515057819\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 13.645\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.6709647919313728, Desviación Estándar: 0.023616235156659383, Varianza: 0.0005577265629746346, Incertidumbre: 0.005034998253022332\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.3815211319149636, Desviación Estándar: 0.03237814111230407, Varianza: 0.0010483440218882747, Incertidumbre: 0.006903042879406268\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.001x + 0.26\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 0.314\n", - "\tR²: 0.6693148854310667, Desviación Estándar: 0.023860379147788803, Varianza: 0.0005693176930762347, Incertidumbre: 0.004870479498452192\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = -0.0x + 0.324\n", - "Valor del parámetro correlacionado para la aeronave: 565.637\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.15125833221890828, Desviación Estándar: 0.038225905277819265, Varianza: 0.001461219834308811, Incertidumbre: 0.007802830240551638\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.029x + 0.196\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.384\n", - "\tR²: 0.5595332664978436, Desviación Estándar: 0.027324110665788853, Varianza: 0.0007466070236762762, Incertidumbre: 0.005825519967726159\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.005x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.354\n", - "\tR²: 0.7831688836414169, Desviación Estándar: 0.01644167434806251, Varianza: 0.00027032865536773677, Incertidumbre: 0.0035878674881814365\n", - "\tNivel de confianza: Confianza Muy Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307]\n", - "Ecuación de regresión: y = 0.004x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.578641185644784, Desviación Estándar: 0.018914583583003738, Varianza: 0.0003577614721184345, Incertidumbre: 0.0047286458957509344\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.319', 'Área del ala: 0.317', 'Relación de aspecto del ala: 0.314', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.314', 'Alcance de la aeronave: 0.309', 'envergadura: 0.384', 'payload: 0.354', 'Crucero KIAS: 0.313']\n", - "**Mediana calculada:** 0.314\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2600** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.0x + 0.208\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.307\n", - "\tR²: 0.008376532013914084, Desviación Estándar: 0.04013734006562043, Varianza: 0.001611006067543259, Incertidumbre: 0.008369213945592396\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.005x + 0.182\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 0.363\n", - "\tR²: 0.4268824074716687, Desviación Estándar: 0.03051385371109099, Varianza: 0.0009310952683018614, Incertidumbre: 0.006362578327191434\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.069x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 0.88\n", - "Predicción obtenida: 0.279\n", - "\tR²: 0.7555152040915233, Desviación Estándar: 0.019929716367540293, Varianza: 0.0003971935944906035, Incertidumbre: 0.0041556331307013574\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.103\n", - "Predicción obtenida: 0.296\n", - "\tR²: 0.6716280796932008, Desviación Estándar: 0.02309713944013369, Varianza: 0.0005334778503169791, Incertidumbre: 0.004816086496754028\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.05\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.38238206414682874, Desviación Estándar: 0.03167635049099469, Varianza: 0.0010033911804283393, Incertidumbre: 0.006604975662096291\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.001x + 0.26\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 0.28\n", - "\tR²: 0.6695041439455878, Desviación Estándar: 0.02337831313115393, Varianza: 0.0005465455248582842, Incertidumbre: 0.004675662626230786\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = -0.0x + 0.324\n", - "Valor del parámetro correlacionado para la aeronave: 407.828\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.15110158401290597, Desviación Estándar: 0.03746778536542462, Varianza: 0.0014038349401895272, Incertidumbre: 0.007493557073084923\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.023x + 0.215\n", - "Valor del parámetro correlacionado para la aeronave: 2.6\n", - "Predicción obtenida: 0.276\n", - "\tR²: 0.4627661042213257, Desviación Estándar: 0.029543156346368924, Varianza: 0.0008727980869059985, Incertidumbre: 0.006160173934959667\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.7275683615430203, Desviación Estándar: 0.018006770737420567, Varianza: 0.0003242437923900256, Incertidumbre: 0.0038390564204693082\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314]\n", - "Ecuación de regresión: y = 0.004x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 0.348\n", - "\tR²: 0.5842116709677524, Desviación Estándar: 0.018351270832188404, Varianza: 0.0003367691411563289, Incertidumbre: 0.004450836941495841\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292]\n", - "Ecuación de regresión: y = 0.0x + 0.265\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 0.268\n", - "\tR²: 0.003486790166087661, Desviación Estándar: 0.03652495038432548, Varianza: 0.001334072000577438, Incertidumbre: 0.013805133623699752\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.307', 'Velocidad a la que se realiza el crucero (KTAS): 0.363', 'Área del ala: 0.279', 'Relación de aspecto del ala: 0.296', 'Longitud del fuselaje: 0.311', 'Peso máximo al despegue (MTOW): 0.28', 'Alcance de la aeronave: 0.313', 'envergadura: 0.276', 'payload: 0.29', 'Crucero KIAS: 0.348', 'Empty weight: 0.268']\n", - "**Mediana calculada:** 0.296\n", - "\n", - "--- Imputación para aeronave: **Skyeye 2930 VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.0x + 0.211\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.007814506493702633, Desviación Estándar: 0.03934894530801304, Varianza: 0.0015483394968530018, Incertidumbre: 0.008032069826776185\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.004x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 26.25\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.3329612516575994, Desviación Estándar: 0.03226355293122838, Varianza: 0.0010409368477461755, Incertidumbre: 0.006585770164232172\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.068x + 0.22\n", - "Valor del parámetro correlacionado para la aeronave: 1.0\n", - "Predicción obtenida: 0.289\n", - "\tR²: 0.7491292552639982, Desviación Estándar: 0.019786166950727165, Varianza: 0.00039149240260204785, Incertidumbre: 0.0040388344162334755\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 14.001\n", - "Predicción obtenida: 0.3\n", - "\tR²: 0.6723851116250787, Desviación Estándar: 0.022610932560392084, Varianza: 0.000511254271250599, Incertidumbre: 0.004615437281786883\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.03\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.3778731110352854, Desviación Estándar: 0.031158471570466775, Varianza: 0.0009708503506075861, Incertidumbre: 0.0063601963760549695\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.001x + 0.261\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.66526195767342, Desviación Estándar: 0.023117889975755625, Varianza: 0.0005344368369311424, Incertidumbre: 0.00453379123459496\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = -0.0x + 0.324\n", - "Valor del parámetro correlacionado para la aeronave: 425.273\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.14767582813821534, Desviación Estándar: 0.036889099953161315, Varianza: 0.0013608056953543263, Incertidumbre: 0.007234547711540164\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.022x + 0.219\n", - "Valor del parámetro correlacionado para la aeronave: 2.93\n", - "Predicción obtenida: 0.285\n", - "\tR²: 0.4538529022461858, Desviación Estándar: 0.029193856890482952, Varianza: 0.0008522812801419989, Incertidumbre: 0.005959171083793167\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.7300492378182392, Desviación Estándar: 0.0176537442574639, Varianza: 0.0003116546863079396, Incertidumbre: 0.0036810601397585336\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296]\n", - "Ecuación de regresión: y = 0.003x + 0.224\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 0.305\n", - "\tR²: 0.4379735968192333, Desviación Estándar: 0.020751260149570606, Varianza: 0.0004306147977951571, Incertidumbre: 0.0048911189233091824\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296]\n", - "Ecuación de regresión: y = 0.0x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 7.1\n", - "Predicción obtenida: 0.272\n", - "\tR²: 0.0008846968281794876, Desviación Estándar: 0.03538270380705628, Varianza: 0.0012519357286978749, Incertidumbre: 0.012509674899342281\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.31', 'Área del ala: 0.289', 'Relación de aspecto del ala: 0.3', 'Longitud del fuselaje: 0.31', 'Peso máximo al despegue (MTOW): 0.299', 'Alcance de la aeronave: 0.312', 'envergadura: 0.285', 'payload: 0.299', 'Crucero KIAS: 0.305', 'Empty weight: 0.272']\n", - "**Mediana calculada:** 0.3\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.0x + 0.212\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.007526495051969895, Desviación Estándar: 0.03857245496275595, Varianza: 0.001487834281853836, Incertidumbre: 0.00771449099255119\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.068x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 1.33\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.745993216225064, Desviación Estándar: 0.019513738354102667, Varianza: 0.0003807859845523774, Incertidumbre: 0.0039027476708205335\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 13.71\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.6726026581884519, Desviación Estándar: 0.02215416542630856, Varianza: 0.0004908070457362455, Incertidumbre: 0.004430833085261712\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.032x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.488\n", - "Predicción obtenida: 0.324\n", - "\tR²: 0.37576047664868784, Desviación Estándar: 0.030590984286507895, Varianza: 0.000935808319617373, Incertidumbre: 0.006118196857301579\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.001x + 0.261\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.299\n", - "\tR²: 0.6658077862482688, Desviación Estándar: 0.02268722584632889, Varianza: 0.0005147102166023337, Incertidumbre: 0.0043661586498479395\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = -0.0x + 0.323\n", - "Valor del parámetro correlacionado para la aeronave: 458.124\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.1458113421289795, Desviación Estándar: 0.03627105024977506, Varianza: 0.0013155890862217073, Incertidumbre: 0.006980366875166025\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.022x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 3.6\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.4484176985315972, Desviación Estándar: 0.028755636237230698, Varianza: 0.0008268866154079353, Incertidumbre: 0.00575112724744614\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.7321183484558058, Desviación Estándar: 0.017283518765307298, Varianza: 0.00029872002091072946, Incertidumbre: 0.0035279834945684007\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.0x + 0.274\n", - "Valor del parámetro correlacionado para la aeronave: 11.5\n", - "Predicción obtenida: 0.276\n", - "\tR²: 0.0002618966283592927, Desviación Estándar: 0.03450249234670619, Varianza: 0.0011904219781345188, Incertidumbre: 0.011500830782235396\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Área del ala: 0.312', 'Relación de aspecto del ala: 0.312', 'Longitud del fuselaje: 0.324', 'Peso máximo al despegue (MTOW): 0.299', 'Alcance de la aeronave: 0.311', 'envergadura: 0.301', 'payload: 0.316', 'Empty weight: 0.276']\n", - "**Mediana calculada:** 0.311\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600 VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.0x + 0.211\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.0077910339066047385, Desviación Estándar: 0.037836352063430036, Varianza: 0.0014315895374678261, Incertidumbre: 0.0074203191344075535\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.004x + 0.203\n", - "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 0.336\n", - "\tR²: 0.33106974113438137, Desviación Estándar: 0.03166709614118016, Varianza: 0.001002804978014747, Incertidumbre: 0.0063334192282360315\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.068x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 1.32\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.7462264643720709, Desviación Estándar: 0.019135104991392145, Varianza: 0.0003661522430316006, Incertidumbre: 0.003752702836375202\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = -0.039x + 0.842\n", - "Valor del parámetro correlacionado para la aeronave: 13.672\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.6729065655813421, Desviación Estándar: 0.021724190260569178, Varianza: 0.0004719404424774087, Incertidumbre: 0.0042604642329094064\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.031x + 0.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.42\n", - "Predicción obtenida: 0.321\n", - "\tR²: 0.37206338538349726, Desviación Estándar: 0.030099937089659884, Varianza: 0.0009060062128014827, Incertidumbre: 0.005903083329926576\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.001x + 0.262\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.6623522424362198, Desviación Estándar: 0.02239505431218533, Varianza: 0.0005015384576457308, Incertidumbre: 0.004232267450559075\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = -0.0x + 0.323\n", - "Valor del parámetro correlacionado para la aeronave: 300.0\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.1459436125708079, Desviación Estándar: 0.03561750202712675, Varianza: 0.0012686064506523779, Incertidumbre: 0.006731075191794021\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.022x + 0.222\n", - "Valor del parámetro correlacionado para la aeronave: 3.6\n", - "Predicción obtenida: 0.301\n", - "\tR²: 0.4461253083393548, Desviación Estándar: 0.028269195215371138, Varianza: 0.0007991473981247625, Incertidumbre: 0.005544045309105432\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.7313295857648042, Desviación Estándar: 0.016962299070521318, Varianza: 0.00028771958975780837, Incertidumbre: 0.0033924598141042636\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3]\n", - "Ecuación de regresión: y = 0.003x + 0.224\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.4365151702095247, Desviación Estándar: 0.02022420538915309, Varianza: 0.00040901848362264885, Incertidumbre: 0.004639750921301526\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311]\n", - "Ecuación de regresión: y = 0.001x + 0.272\n", - "Valor del parámetro correlacionado para la aeronave: 11.0\n", - "Predicción obtenida: 0.281\n", - "\tR²: 0.009760346923073815, Desviación Estándar: 0.03428498479253269, Varianza: 0.0011754601822241977, Incertidumbre: 0.010841864148863874\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.336', 'Área del ala: 0.311', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.321', 'Peso máximo al despegue (MTOW): 0.315', 'Alcance de la aeronave: 0.315', 'envergadura: 0.301', 'payload: 0.316', 'Crucero KIAS: 0.325', 'Empty weight: 0.281']\n", - "**Mediana calculada:** 0.315\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.0x + 0.209\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.306\n", - "\tR²: 0.008217398892604644, Desviación Estándar: 0.03716734216604148, Varianza: 0.001381411323687605, Incertidumbre: 0.007152858334875658\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", - "Valor del parámetro correlacionado para la aeronave: 36.094\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.32262835377535615, Desviación Estándar: 0.031288239037149196, Varianza: 0.0009789539020457867, Incertidumbre: 0.006136128515245357\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.068x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.399\n", - "\tR²: 0.7464203816084714, Desviación Estándar: 0.01879361973555014, Varianza: 0.00035320014276445967, Incertidumbre: 0.0036168338044557788\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = -0.039x + 0.843\n", - "Valor del parámetro correlacionado para la aeronave: 12.695\n", - "Predicción obtenida: 0.351\n", - "\tR²: 0.6736164896021335, Desviación Estándar: 0.02132148100602976, Varianza: 0.0004546055522904879, Incertidumbre: 0.004103320932784258\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.031x + 0.246\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.354\n", - "\tR²: 0.3726704559110734, Desviación Estándar: 0.02955977566670113, Varianza: 0.0008737803374656961, Incertidumbre: 0.005688781479451615\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352]\n", - "Ecuación de regresión: y = 0.883x + 0.101\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 0.432\n", - "\tR²: 0.40209852192250706, Desviación Estándar: 0.03661787969369935, Varianza: 0.001340869113262239, Incertidumbre: 0.02114134269831065\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.001x + 0.262\n", - "Valor del parámetro correlacionado para la aeronave: 90.0\n", - "Predicción obtenida: 0.381\n", - "\tR²: 0.6626838320176878, Desviación Estándar: 0.022005551176023402, Varianza: 0.000484244282560585, Incertidumbre: 0.004086328267404087\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = -0.0x + 0.323\n", - "Valor del parámetro correlacionado para la aeronave: 530.401\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.14678275665337615, Desviación Estándar: 0.034998020711235714, Varianza: 0.0012248614537040841, Incertidumbre: 0.006498969291500381\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.022x + 0.222\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.332\n", - "\tR²: 0.4424360357921081, Desviación Estándar: 0.02786766696740896, Varianza: 0.0007766068622064165, Incertidumbre: 0.005363135008440135\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.004x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.358\n", - "\tR²: 0.731317018691535, Desviación Estándar: 0.016633562499201185, Varianza: 0.0002766754014148319, Incertidumbre: 0.00326210999092277\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315]\n", - "Ecuación de regresión: y = 0.003x + 0.226\n", - "Valor del parámetro correlacionado para la aeronave: 33.0\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.43886786937390043, Desviación Estándar: 0.019812140290383477, Varianza: 0.00039252090288583623, Incertidumbre: 0.0044301292469059875\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315]\n", - "Ecuación de regresión: y = 0.001x + 0.271\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.023639785146452374, Desviación Estándar: 0.0340515934789817, Varianza: 0.001159511018457829, Incertidumbre: 0.01026694173486318\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.306', 'Velocidad a la que se realiza el crucero (KTAS): 0.346', 'Área del ala: 0.399', 'Relación de aspecto del ala: 0.351', 'Longitud del fuselaje: 0.354', 'Ancho del fuselaje: 0.432', 'Peso máximo al despegue (MTOW): 0.381', 'Alcance de la aeronave: 0.309', 'envergadura: 0.332', 'payload: 0.358', 'Crucero KIAS: 0.333', 'Empty weight: 0.312']\n", - "**Mediana calculada:** 0.348\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.0x + 0.199\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.009824679618514076, Desviación Estándar: 0.03730259846752296, Varianza: 0.0013914838524292463, Incertidumbre: 0.00704952848582606\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.004x + 0.207\n", - "Valor del parámetro correlacionado para la aeronave: 30.625\n", - "Predicción obtenida: 0.325\n", - "\tR²: 0.35279566671506324, Desviación Estándar: 0.03070509946045511, Varianza: 0.0009428031328764408, Incertidumbre: 0.00590919914632933\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.059x + 0.231\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.386\n", - "\tR²: 0.7085123361490802, Desviación Estándar: 0.020239189952971352, Varianza: 0.00040962480995245654, Incertidumbre: 0.0038248473823542318\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 13.032\n", - "Predicción obtenida: 0.338\n", - "\tR²: 0.6878639211364455, Desviación Estándar: 0.02094377780954981, Varianza: 0.0004386418289357911, Incertidumbre: 0.003958001971304421\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.03x + 0.247\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.353\n", - "\tR²: 0.39957074018891947, Desviación Estándar: 0.029047847816911346, Varianza: 0.0008437774627944413, Incertidumbre: 0.0054895272460855635\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.348]\n", - "Ecuación de regresión: y = 0.411x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 0.359\n", - "\tR²: 0.3978508461679193, Desviación Estándar: 0.03522448950237247, Varianza: 0.001240764660702748, Incertidumbre: 0.017612244751186234\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.001x + 0.264\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.388\n", - "\tR²: 0.6531876768371664, Desviación Estándar: 0.02232772097728044, Varianza: 0.000498527124039289, Incertidumbre: 0.004076465478979263\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = -0.0x + 0.324\n", - "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 0.303\n", - "\tR²: 0.14185181764220745, Desviación Estándar: 0.035121922429990356, Varianza: 0.0012335494351782598, Incertidumbre: 0.006412356392617459\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.022x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.4612182728347505, Desviación Estándar: 0.027516263885293008, Varianza: 0.0007571447782050803, Incertidumbre: 0.005200085089293802\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.004x + 0.274\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.378\n", - "\tR²: 0.7386270567836593, Desviación Estándar: 0.01642870017516188, Varianza: 0.00026990218944536394, Incertidumbre: 0.003161704822855121\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.003x + 0.222\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 0.318\n", - "\tR²: 0.5000484040159869, Desviación Estándar: 0.019560275570138758, Varianza: 0.0003826043803797671, Incertidumbre: 0.0042684020673503026\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.325', 'Área del ala: 0.386', 'Relación de aspecto del ala: 0.338', 'Longitud del fuselaje: 0.353', 'Ancho del fuselaje: 0.359', 'Peso máximo al despegue (MTOW): 0.388', 'Alcance de la aeronave: 0.303', 'envergadura: 0.333', 'payload: 0.378', 'Crucero KIAS: 0.318']\n", - "**Mediana calculada:** 0.338\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL octo** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.0x + 0.199\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.308\n", - "\tR²: 0.009824679618514076, Desviación Estándar: 0.03730259846752296, Varianza: 0.0013914838524292463, Incertidumbre: 0.00704952848582606\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 33.885\n", - "Predicción obtenida: 0.339\n", - "\tR²: 0.364003579646475, Desviación Estándar: 0.030242361656466255, Varianza: 0.0009146004385605004, Incertidumbre: 0.005715269143020364\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.053x + 0.237\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 0.376\n", - "\tR²: 0.6700337636483493, Desviación Estándar: 0.021406727235210983, Varianza: 0.0004582479709227237, Incertidumbre: 0.00397512945320641\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 12.856\n", - "Predicción obtenida: 0.344\n", - "\tR²: 0.6950392482679, Desviación Estándar: 0.020579626973971723, Varianza: 0.0004235210463878245, Incertidumbre: 0.003821540790489258\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.029x + 0.248\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 0.351\n", - "\tR²: 0.40843076343231066, Desviación Estándar: 0.028662780269184288, Varianza: 0.0008215549727595402, Incertidumbre: 0.005322544675180707\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.76) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.347x + 0.219\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 0.349\n", - "\tR²: 0.401178655632655, Desviación Estándar: 0.03226372501937835, Varianza: 0.001040947952126061, Incertidumbre: 0.014428776470138143\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.001x + 0.268\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.378\n", - "\tR²: 0.6142108778582203, Desviación Estándar: 0.02336858751606866, Varianza: 0.0005460908824961601, Incertidumbre: 0.004197122218762633\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = -0.0x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 528.174\n", - "Predicción obtenida: 0.311\n", - "\tR²: 0.12969533614523188, Desviación Estándar: 0.03509886956318445, Varianza: 0.0012319306446134358, Incertidumbre: 0.00630394306869412\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.023x + 0.221\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 0.334\n", - "\tR²: 0.47311026916495147, Desviación Estándar: 0.027050505844431656, Varianza: 0.0007317298664396311, Incertidumbre: 0.005023152830642055\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.277\n", - "Valor del parámetro correlacionado para la aeronave: 15.0\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.6973906199473292, Desviación Estándar: 0.017512139839937605, Varianza: 0.00030667504177352985, Incertidumbre: 0.0033094833529329548\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338]\n", - "Ecuación de regresión: y = 0.004x + 0.22\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 0.345\n", - "\tR²: 0.5123468231062337, Desviación Estándar: 0.019530346323899706, Varianza: 0.00038143442753146275, Incertidumbre: 0.0041638838269285805\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348]\n", - "Ecuación de regresión: y = 0.002x + 0.263\n", - "Valor del parámetro correlacionado para la aeronave: 35.0\n", - "Predicción obtenida: 0.346\n", - "\tR²: 0.23373450804691387, Desviación Estándar: 0.032994278206234205, Varianza: 0.0010886223943503814, Incertidumbre: 0.009524627702043362\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.308', 'Velocidad a la que se realiza el crucero (KTAS): 0.339', 'Área del ala: 0.376', 'Relación de aspecto del ala: 0.344', 'Longitud del fuselaje: 0.351', 'Ancho del fuselaje: 0.349', 'Peso máximo al despegue (MTOW): 0.378', 'Alcance de la aeronave: 0.311', 'envergadura: 0.334', 'payload: 0.333', 'Crucero KIAS: 0.345', 'Empty weight: 0.346']\n", - "**Mediana calculada:** 0.344\n", - "\n", - "--- Imputación para aeronave: **Volitation VT510** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344]\n", - "Ecuación de regresión: y = 0.0x + 0.191\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.011265848190217476, Desviación Estándar: 0.037236364860275865, Varianza: 0.0013865468680075873, Incertidumbre: 0.006914619365213018\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 32.813\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.38259337108241265, Desviación Estándar: 0.029730535611440134, Varianza: 0.00088390474774311, Incertidumbre: 0.005520821864551259\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.049x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 0.34\n", - "\tR²: 0.6594487293179985, Desviación Estándar: 0.021710134055956, Varianza: 0.00047132992072758054, Incertidumbre: 0.003963710049636075\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 13.099\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.704188353912186, Desviación Estándar: 0.020233866799229377, Varianza: 0.00040940936564895687, Incertidumbre: 0.0036941817571642614\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.029x + 0.249\n", - "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 0.333\n", - "\tR²: 0.42514465313889094, Desviación Estándar: 0.028206587035388978, Varianza: 0.0007956115521849735, Incertidumbre: 0.005149794663171771\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.001x + 0.27\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 0.372\n", - "\tR²: 0.6021174048921634, Desviación Estándar: 0.023638617780023557, Varianza: 0.0005587842505500459, Incertidumbre: 0.004178756732532887\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = -0.0x + 0.326\n", - "Valor del parámetro correlacionado para la aeronave: 503.585\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.12714259346444579, Desviación Estándar: 0.035011946666754785, Varianza: 0.0012258364093956815, Incertidumbre: 0.006189296227651011\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.023x + 0.22\n", - "Valor del parámetro correlacionado para la aeronave: 5.1\n", - "Predicción obtenida: 0.337\n", - "\tR²: 0.4865211118670584, Desviación Estándar: 0.026658305995461602, Varianza: 0.0007106652785476641, Incertidumbre: 0.004867118512863177\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.004x + 0.277\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.371\n", - "\tR²: 0.7011767124714305, Desviación Estándar: 0.01732374391424772, Varianza: 0.00030011210320643483, Incertidumbre: 0.0032169384846488743\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344]\n", - "Ecuación de regresión: y = 0.004x + 0.22\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 0.327\n", - "\tR²: 0.5502375625525282, Desviación Estándar: 0.019101623043785508, Varianza: 0.00036487200290687756, Incertidumbre: 0.003982963736514053\n", - "\tNivel de confianza: Confianza Alta\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.335', 'Área del ala: 0.34', 'Relación de aspecto del ala: 0.335', 'Longitud del fuselaje: 0.333', 'Peso máximo al despegue (MTOW): 0.372', 'Alcance de la aeronave: 0.313', 'envergadura: 0.337', 'payload: 0.371', 'Crucero KIAS: 0.327']\n", - "**Mediana calculada:** 0.335\n", - "\n", - "--- Imputación para aeronave: **Ascend** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.0x + 0.185\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.31\n", - "\tR²: 0.012363783169715314, Desviación Estándar: 0.0368988404995783, Varianza: 0.0013615244302133194, Incertidumbre: 0.006736775762468075\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.004x + 0.205\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.3919925997911332, Desviación Estándar: 0.029230827578736365, Varianza: 0.0008544412809378144, Incertidumbre: 0.005336794546472675\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.049x + 0.241\n", - "Valor del parámetro correlacionado para la aeronave: 0.771\n", - "Predicción obtenida: 0.279\n", - "\tR²: 0.6641048421071282, Desviación Estándar: 0.021373342448267822, Varianza: 0.0004568197674109272, Incertidumbre: 0.003838765625742831\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 14.349\n", - "Predicción obtenida: 0.287\n", - "\tR²: 0.7086760340890808, Desviación Estándar: 0.019904839465063797, Varianza: 0.0003962026341299613, Incertidumbre: 0.0035750147039172522\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.029x + 0.249\n", - "Valor del parámetro correlacionado para la aeronave: 1.562\n", - "Predicción obtenida: 0.294\n", - "\tR²: 0.43377431731307325, Desviación Estándar: 0.027750151250249728, Varianza: 0.0007700708944117365, Incertidumbre: 0.004984074296589788\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.001x + 0.272\n", - "Valor del parámetro correlacionado para la aeronave: 9.5\n", - "Predicción obtenida: 0.281\n", - "\tR²: 0.5805077444550542, Desviación Estándar: 0.024037954911906977, Varianza: 0.0005778232763468728, Incertidumbre: 0.00418447084503352\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = -0.0x + 0.327\n", - "Valor del parámetro correlacionado para la aeronave: 420.652\n", - "Predicción obtenida: 0.316\n", - "\tR²: 0.1266463739361714, Desviación Estándar: 0.03468411410732085, Varianza: 0.001202987771409653, Incertidumbre: 0.0060377292827023645\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.023x + 0.22\n", - "Valor del parámetro correlacionado para la aeronave: 2.0\n", - "Predicción obtenida: 0.266\n", - "\tR²: 0.494252346723298, Desviación Estándar: 0.026226329343117413, Varianza: 0.0006878203508136613, Incertidumbre: 0.004710387802724272\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.003x + 0.279\n", - "Valor del parámetro correlacionado para la aeronave: 0.6\n", - "Predicción obtenida: 0.281\n", - "\tR²: 0.6661275841307379, Desviación Estándar: 0.01809912723389064, Varianza: 0.00032757840662856185, Incertidumbre: 0.0033044334190526613\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335]\n", - "Ecuación de regresión: y = 0.004x + 0.219\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.5647788073941997, Desviación Estándar: 0.018767936696439058, Varianza: 0.00035223544784154386, Incertidumbre: 0.0038309890359276236\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344]\n", - "Ecuación de regresión: y = 0.002x + 0.263\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.27\n", - "\tR²: 0.3462930840767372, Desviación Estándar: 0.031703647782123416, Varianza: 0.0010051212826929388, Incertidumbre: 0.008793009822899704\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.31', 'Velocidad a la que se realiza el crucero (KTAS): 0.292', 'Área del ala: 0.279', 'Relación de aspecto del ala: 0.287', 'Longitud del fuselaje: 0.294', 'Peso máximo al despegue (MTOW): 0.281', 'Alcance de la aeronave: 0.316', 'envergadura: 0.266', 'payload: 0.281', 'Crucero KIAS: 0.291', 'Empty weight: 0.27']\n", - "**Mediana calculada:** 0.287\n", - "\n", - "--- Imputación para aeronave: **Transition** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.0x + 0.19\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.011152514691267879, Desviación Estándar: 0.03652974557296492, Varianza: 0.0013344223116255503, Incertidumbre: 0.006560935986593608\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.004x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 21.875\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.39888174922260133, Desviación Estándar: 0.028766571435852473, Varianza: 0.0008275156321740035, Incertidumbre: 0.005166628751011079\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.049x + 0.242\n", - "Valor del parámetro correlacionado para la aeronave: 0.986\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.6668892763992251, Desviación Estándar: 0.021077630404536665, Varianza: 0.00044426650347024837, Incertidumbre: 0.003726033847597907\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 14.223\n", - "Predicción obtenida: 0.292\n", - "\tR²: 0.7122103721028534, Desviación Estándar: 0.01959138083026252, Varianza: 0.0003838222028363777, Incertidumbre: 0.0034632995594716903\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.029x + 0.248\n", - "Valor del parámetro correlacionado para la aeronave: 2.3\n", - "Predicción obtenida: 0.315\n", - "\tR²: 0.43946734247407293, Desviación Estándar: 0.027341852629340847, Varianza: 0.000747576905204593, Incertidumbre: 0.0048334023511025365\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.001x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.585626194228399, Desviación Estándar: 0.023701762283004735, Varianza: 0.0005617735353200658, Incertidumbre: 0.004064818696919392\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = -0.0x + 0.326\n", - "Valor del parámetro correlacionado para la aeronave: 506.641\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.12137030661842563, Desviación Estándar: 0.03451337490962147, Varianza: 0.0011911730476520889, Incertidumbre: 0.005918994965493045\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.022x + 0.224\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 0.29\n", - "\tR²: 0.49095069370026423, Desviación Estándar: 0.02605597944515681, Varianza: 0.0006789140648464343, Incertidumbre: 0.004606089939031919\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.003x + 0.279\n", - "Valor del parámetro correlacionado para la aeronave: 1.5\n", - "Predicción obtenida: 0.285\n", - "\tR²: 0.6750655648466569, Desviación Estándar: 0.017835052168221725, Varianza: 0.0003180890858431905, Incertidumbre: 0.00320326993133675\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287]\n", - "Ecuación de regresión: y = 0.004x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 0.291\n", - "\tR²: 0.5731148377392137, Desviación Estándar: 0.018407788893284933, Varianza: 0.0003388466919397441, Incertidumbre: 0.0036815577786569868\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287]\n", - "Ecuación de regresión: y = 0.002x + 0.266\n", - "Valor del parámetro correlacionado para la aeronave: 5.8\n", - "Predicción obtenida: 0.279\n", - "\tR²: 0.3348753843733273, Desviación Estándar: 0.030833248903070595, Varianza: 0.000950689237918704, Incertidumbre: 0.008240532394029543\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.291', 'Área del ala: 0.29', 'Relación de aspecto del ala: 0.292', 'Longitud del fuselaje: 0.315', 'Peso máximo al despegue (MTOW): 0.29', 'Alcance de la aeronave: 0.313', 'envergadura: 0.29', 'payload: 0.285', 'Crucero KIAS: 0.291', 'Empty weight: 0.279']\n", - "**Mediana calculada:** 0.291\n", - "\n", - "--- Imputación para aeronave: **Reach** ---\n", - "\n", - "--- Correlación: Altitud a la que se realiza el crucero (r = 0.761) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Altitud a la que se realiza el crucero: [6000.0, 6000.0, 6000.0, 6000.0, 5500.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 5000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0, 6000.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.0x + 0.194\n", - "Valor del parámetro correlacionado para la aeronave: 6000.0\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.010293782952762509, Desviación Estándar: 0.036097016178001054, Varianza: 0.00130299457695487, Incertidumbre: 0.006381111230016264\n", - "\tNivel de confianza: Confianza Baja\n", - "\n", - "--- Correlación: Velocidad a la que se realiza el crucero (KTAS) (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Velocidad a la que se realiza el crucero (KTAS): [16.88, 17.602, 27.344, 27.892, 19.306, 30.407, 26.611, 26.611, 18.266, 30.625, 30.953, 21.463, 33.045, 25.703, 33.797, 18.091, 17.5, 19.688, 21.875, 21.875, 27.344, 27.344, 27.344, 36.094, 26.25, 32.813, 36.094, 30.625, 33.885, 32.813, 21.875, 21.875]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.004x + 0.204\n", - "Valor del parámetro correlacionado para la aeronave: 27.344\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.4034376616845361, Desviación Estándar: 0.02831358276093245, Varianza: 0.0008016589687601712, Incertidumbre: 0.005005181592485466\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Área del ala (r = 0.984) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.049x + 0.242\n", - "Valor del parámetro correlacionado para la aeronave: 2.329\n", - "Predicción obtenida: 0.356\n", - "\tR²: 0.6694211053194665, Desviación Estándar: 0.02075614850551406, Varianza: 0.0004308177007829536, Incertidumbre: 0.0036131816785082483\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.744) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.755, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = -0.039x + 0.84\n", - "Valor del parámetro correlacionado para la aeronave: 13.669\n", - "Predicción obtenida: 0.313\n", - "\tR²: 0.7143961990441017, Desviación Estándar: 0.019292619508205277, Varianza: 0.00037220516748838283, Incertidumbre: 0.0033584139812335425\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 2.905, 1.562, 2.3]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.029x + 0.248\n", - "Valor del parámetro correlacionado para la aeronave: 4.712\n", - "Predicción obtenida: 0.384\n", - "\tR²: 0.43033811917703635, Desviación Estándar: 0.027246943263226592, Varianza: 0.000742395917189489, Incertidumbre: 0.004743084015220378\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.858) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 100.0, 9.5, 18.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.001x + 0.273\n", - "Valor del parámetro correlacionado para la aeronave: 91.0\n", - "Predicción obtenida: 0.358\n", - "\tR²: 0.5893624930927692, Desviación Estándar: 0.023361993268515235, Varianza: 0.0005457827294781511, Incertidumbre: 0.003948897601964923\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = -0.755) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 25.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = -0.0x + 0.325\n", - "Valor del parámetro correlacionado para la aeronave: 504.283\n", - "Predicción obtenida: 0.312\n", - "\tR²: 0.11957831865127477, Desviación Estándar: 0.03420786358834695, Varianza: 0.0011701779312789532, Incertidumbre: 0.005782184291372825\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: envergadura (r = 0.885) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.022x + 0.224\n", - "Valor del parámetro correlacionado para la aeronave: 6.0\n", - "Predicción obtenida: 0.356\n", - "\tR²: 0.4948146918700289, Desviación Estándar: 0.025658694953824956, Varianza: 0.0006583686267334423, Incertidumbre: 0.004466605472444141\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: payload (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.003x + 0.28\n", - "Valor del parámetro correlacionado para la aeronave: 7.0\n", - "Predicción obtenida: 0.304\n", - "\tR²: 0.6805607454161662, Desviación Estándar: 0.017587857145488283, Varianza: 0.00030933271897010323, Incertidumbre: 0.0031091232635287597\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Crucero KIAS (r = 0.846) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Fulmar X', 'Mantis', 'ScanEagle', 'Integrator', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition']\n", - "Valores para Crucero KIAS: [15.433, 16.093, 25.0, 27.8, 16.7, 28.0, 28.3, 23.5, 30.9, 16.54, 16.0, 18.0, 20.0, 20.0, 25.0, 25.0, 25.0, 33.0, 24.0, 30.0, 33.0, 28.0, 35.0, 30.0, 20.0, 20.0]\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.319, 0.271, 0.298, 0.338, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.004x + 0.218\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 0.309\n", - "\tR²: 0.5784019179791874, Desviación Estándar: 0.018050324796678542, Varianza: 0.0003258142252655882, Incertidumbre: 0.0035399599371135236\n", - "\tNivel de confianza: Confianza Alta\n", - "\n", - "--- Correlación: Empty weight (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition']\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8]\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291]\n", - "Ecuación de regresión: y = 0.002x + 0.267\n", - "Valor del parámetro correlacionado para la aeronave: 31.0\n", - "Predicción obtenida: 0.335\n", - "\tR²: 0.3279695994564351, Desviación Estándar: 0.02994220141823091, Varianza: 0.0008965354257699091, Incertidumbre: 0.0077310431627730936\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Altitud a la que se realiza el crucero: 0.309', 'Velocidad a la que se realiza el crucero (KTAS): 0.313', 'Área del ala: 0.356', 'Relación de aspecto del ala: 0.313', 'Longitud del fuselaje: 0.384', 'Peso máximo al despegue (MTOW): 0.358', 'Alcance de la aeronave: 0.312', 'envergadura: 0.356', 'payload: 0.304', 'Crucero KIAS: 0.309', 'Empty weight: 0.335']\n", - "**Mediana calculada:** 0.313\n", - "\n", - "=== Imputación para el parámetro: **payload** ===\n", - "\n", - "--- Imputación para aeronave: **AAI Aerosonde** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 10.406x + -4.881\n", - "Valor del parámetro correlacionado para la aeronave: 0.57\n", - "Predicción obtenida: 1.05\n", - "\tR²: 0.7012035885121172, Desviación Estándar: 4.05696673307922, Varianza: 16.458979073311475, Incertidumbre: 0.7171771720021375\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.839x + 117.46\n", - "Valor del parámetro correlacionado para la aeronave: 14.754\n", - "Predicción obtenida: 1.804\n", - "\tR²: 0.7152857656186882, Desviación Estándar: 3.964681680105561, Varianza: 15.718700824564651, Incertidumbre: 0.6901624934832739\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.204x + 1.036\n", - "Valor del parámetro correlacionado para la aeronave: 13.1\n", - "Predicción obtenida: 3.714\n", - "\tR²: 0.7186101745846443, Desviación Estándar: 3.7341950529878645, Varianza: 13.944212693759042, Incertidumbre: 0.6706812303187741\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.036x + -6.191\n", - "Valor del parámetro correlacionado para la aeronave: 3270.0\n", - "Predicción obtenida: 111.989\n", - "\tR²: 0.4516735209888093, Desviación Estándar: 5.50203492994826, Varianza: 30.272388370370752, Incertidumbre: 0.9577813435917653\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.877x + -20.776\n", - "Valor del parámetro correlacionado para la aeronave: 30.846\n", - "Predicción obtenida: 6.288\n", - "\tR²: 0.5505400445815896, Desviación Estándar: 5.098102304668767, Varianza: 25.99064710886899, Incertidumbre: 0.9307818775787194\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 4.794x + -9.245\n", - "Valor del parámetro correlacionado para la aeronave: 2.9\n", - "Predicción obtenida: 4.659\n", - "\tR²: 0.5558518681245512, Desviación Estándar: 5.025362155962813, Varianza: 25.25426479858321, Incertidumbre: 0.9025816878156258\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 199.636x + -52.626\n", - "Valor del parámetro correlacionado para la aeronave: 0.197\n", - "Predicción obtenida: -13.387\n", - "\tR²: 0.6780488774864877, Desviación Estándar: 4.21598158894776, Varianza: 17.77450075834648, Incertidumbre: 0.7339081925564045\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Empty weight (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Empty weight: [10.886, 17.463, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Valores para payload: [2.495, 2.495, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.388x + 1.17\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 5.053\n", - "\tR²: 0.6045881019855628, Desviación Estándar: 3.3770579595870056, Varianza: 11.404520462409948, Incertidumbre: 0.8719526157771782\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 1.05', 'Relación de aspecto del ala: 1.804', 'Peso máximo al despegue (MTOW): 3.714', 'Alcance de la aeronave: 111.989', 'Velocidad máxima (KIAS): 6.288', 'envergadura: 4.659', 'Cuerda: -13.387', 'Empty weight: 5.053']\n", - "**Mediana calculada:** 4.186\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 10.186x + -4.474\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 5.101\n", - "\tR²: 0.702030027451888, Desviación Estándar: 4.0288222779643945, Varianza: 16.231408947422214, Incertidumbre: 0.7013279384101367\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.725x + 115.975\n", - "Valor del parámetro correlacionado para la aeronave: 13.218\n", - "Predicción obtenida: 13.864\n", - "\tR²: 0.7182610183328181, Desviación Estándar: 3.9255462621148403, Varianza: 15.409913456003792, Incertidumbre: 0.6732256298641592\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.204x + 1.071\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 5.151\n", - "\tR²: 0.7237880605522922, Desviación Estándar: 3.67627307760161, Varianza: 13.514983741098414, Incertidumbre: 0.6498794056664093\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.001x + 9.864\n", - "Valor del parámetro correlacionado para la aeronave: 800.0\n", - "Predicción obtenida: 10.419\n", - "\tR²: 0.002146729462209951, Desviación Estándar: 7.387712262058516, Varianza: 54.578292466969756, Incertidumbre: 1.266982200382999\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.885x + -21.108\n", - "Valor del parámetro correlacionado para la aeronave: 41.7\n", - "Predicción obtenida: 15.791\n", - "\tR²: 0.5575443463725547, Desviación Estándar: 5.028702836489781, Varianza: 25.287852217720367, Incertidumbre: 0.9031816917506468\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 4.807x + -9.308\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 5.112\n", - "\tR²: 0.5643721514307216, Desviación Estándar: 4.946883176427056, Varianza: 24.471653161217034, Incertidumbre: 0.8744936599473048\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 154.23x + -37.928\n", - "Valor del parámetro correlacionado para la aeronave: 0.319\n", - "Predicción obtenida: 11.271\n", - "\tR²: 0.573081677467914, Desviación Estándar: 4.832245905238442, Varianza: 23.350600488693686, Incertidumbre: 0.8287233358090745\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 5.101', 'Relación de aspecto del ala: 13.864', 'Peso máximo al despegue (MTOW): 5.151', 'Alcance de la aeronave: 10.419', 'Velocidad máxima (KIAS): 15.791', 'envergadura: 5.112', 'Cuerda: 11.271']\n", - "**Mediana calculada:** 10.419\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.899) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 1.063, 1.872, 2.09, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 9.986x + -4.035\n", - "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 3.494\n", - "\tR²: 0.687066646727224, Desviación Estándar: 4.067760372560328, Varianza: 16.546674448572137, Incertidumbre: 0.6976151485928609\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Relación de aspecto del ala (r = -0.888) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Relación de aspecto del ala: [15.301, 15.326, 12.5, 12.5, 12.5, 12.5, 14.754, 13.218, 13.443, 13.934, 14.057, 12.908, 12.648, 12.84, 13.765, 12.914, 14.589, 14.714, 14.568, 14.421, 14.182, 13.898, 14.042, 13.645, 14.103, 14.001, 13.71, 13.672, 12.695, 13.032, 12.856, 13.099, 14.349, 14.223, 13.669]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = -7.656x + 114.927\n", - "Valor del parámetro correlacionado para la aeronave: 14.755\n", - "Predicción obtenida: 1.967\n", - "\tR²: 0.712125594047297, Desviación Estándar: 3.9109945361870477, Varianza: 15.29587826208494, Incertidumbre: 0.6610787344956929\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.875) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 26.5, 74.8, 75.0, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.2x + 1.393\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 2.693\n", - "\tR²: 0.7070179545639659, Desviación Estándar: 3.729320581026571, Varianza: 13.90783199606836, Incertidumbre: 0.6491913850524466\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Alcance de la aeronave (r = 0.804) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Alcance de la aeronave: [370.0, 433.0, 518.922, 481.428, 535.276, 599.358, 3270.0, 800.0, 509.556, 50.0, 503.516, 557.94, 646.084, 500.0, 537.895, 565.912, 270.0, 100.0, 373.727, 385.208, 412.686, 456.221, 413.556, 565.637, 407.828, 425.273, 458.124, 300.0, 530.401, 800.0, 528.174, 503.585, 420.652, 506.641, 504.283]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.001x + 9.864\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 9.882\n", - "\tR²: 0.002163345486388857, Desviación Estándar: 7.281408701826373, Varianza: 53.01891268303283, Incertidumbre: 1.2307827089531607\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad máxima (KIAS) (r = 0.715) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad máxima (KIAS): [20.0, 25.034, 33.439, 33.439, 33.439, 42.955, 30.846, 41.7, 36.0, 36.0, 41.2, 46.3, 40.216, 41.2, 46.3, 29.925, 29.009, 33.0, 33.0, 33.0, 33.0, 33.0, 33.275, 30.0, 35.098, 42.0, 42.0, 38.0, 50.0, 30.0, 30.0, 35.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 0.859x + -20.372\n", - "Valor del parámetro correlacionado para la aeronave: 25.6\n", - "Predicción obtenida: 1.629\n", - "\tR²: 0.5422563989605891, Desviación Estándar: 5.034375894779248, Varianza: 25.34494064993435, Incertidumbre: 0.8899603335601247\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.734) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 3.1, 4.8, 5.033, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 5.0, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 4.69x + -8.682\n", - "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 1.167\n", - "\tR²: 0.5495595055917364, Desviación Estándar: 4.953710222200966, Varianza: 24.539244965538344, Incertidumbre: 0.8623302637645233\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.776) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.335, 0.287, 0.291, 0.313]\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 25.0, 0.6, 1.5, 7.0]\n", - "Ecuación de regresión: y = 154.107x + -37.914\n", - "Valor del parámetro correlacionado para la aeronave: 0.271\n", - "Predicción obtenida: 3.849\n", - "\tR²: 0.5727096856576819, Desviación Estándar: 4.764827757793928, Varianza: 22.703583561443512, Incertidumbre: 0.8054028905096152\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 3.494', 'Relación de aspecto del ala: 1.967', 'Peso máximo al despegue (MTOW): 2.693', 'Alcance de la aeronave: 9.882', 'Velocidad máxima (KIAS): 1.629', 'envergadura: 1.167', 'Cuerda: 3.849']\n", - "**Mediana calculada:** 2.693\n", - "\n", - "=== Imputación para el parámetro: **Empty weight** ===\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.994x + -5.988\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 17.253\n", - "\tR²: 0.8989608005826268, Desviación Estándar: 3.3152777023765134, Varianza: 10.991066243874894, Incertidumbre: 0.8288194255941284\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.792x + -6.58\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 19.796\n", - "\tR²: 0.77484990052306, Desviación Estándar: 4.948926867225632, Varianza: 24.491877137147704, Incertidumbre: 1.237231716806408\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.325x + 1.819\n", - "Valor del parámetro correlacionado para la aeronave: 42.2\n", - "Predicción obtenida: 15.517\n", - "\tR²: 0.8966456395362715, Desviación Estándar: 3.3530448803440964, Varianza: 11.242909969601754, Incertidumbre: 0.8382612200860241\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.55x + -17.327\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 20.292\n", - "\tR²: 0.854653857560669, Desviación Estándar: 3.9762778085330774, Varianza: 15.810785210632615, Incertidumbre: 0.9940694521332694\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 166.311x + -36.293\n", - "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 22.248\n", - "\tR²: 0.32488694567254894, Desviación Estándar: 8.569652613963415, Varianza: 73.43894592400999, Incertidumbre: 2.1424131534908537\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.555x + 3.179\n", - "Valor del parámetro correlacionado para la aeronave: 14.5\n", - "Predicción obtenida: 25.733\n", - "\tR²: 0.6059393093606185, Desviación Estándar: 6.547213776970333, Varianza: 42.86600824135013, Incertidumbre: 1.6368034442425832\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 10.0, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.074x + 2.821\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 13.161\n", - "\tR²: 0.6929626692113744, Desviación Estándar: 2.790886287308021, Varianza: 7.78904626868395, Incertidumbre: 1.1393745556725372\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.253', 'Longitud del fuselaje: 19.796', 'Peso máximo al despegue (MTOW): 15.517', 'envergadura: 20.292', 'Cuerda: 22.248', 'payload: 25.733', 'Rango de comunicación: 13.161']\n", - "**Mediana calculada:** 19.796\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.104x + -5.974\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 17.436\n", - "\tR²: 0.8985057224718374, Desviación Estándar: 3.270696585516228, Varianza: 10.697456154507513, Incertidumbre: 0.7932604406723784\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.792x + -6.58\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 19.796\n", - "\tR²: 0.7812972847516897, Desviación Estándar: 4.801164285068728, Varianza: 23.051178492219506, Incertidumbre: 1.1644533807812627\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", - "Ecuación de regresión: y = 113.452x + -9.6\n", - "Valor del parámetro correlacionado para la aeronave: 0.277\n", - "Predicción obtenida: 21.827\n", - "\tR²: 0.9023931014122297, Desviación Estándar: 2.838256825639311, Varianza: 8.055701808288138, Incertidumbre: 1.2693070399464534\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.327x + 1.985\n", - "Valor del parámetro correlacionado para la aeronave: 53.5\n", - "Predicción obtenida: 19.49\n", - "\tR²: 0.8900447434647047, Desviación Estándar: 3.404297276853743, Varianza: 11.58923994919381, Incertidumbre: 0.8256633678512089\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.53x + -17.284\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 20.246\n", - "\tR²: 0.8586914485406882, Desviación Estándar: 3.859257009089604, Varianza: 14.893864662207235, Incertidumbre: 0.9360073108753961\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 160.56x + -34.733\n", - "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 21.784\n", - "\tR²: 0.34149882368086004, Desviación Estándar: 8.331011939712234, Varianza: 69.4057599396278, Incertidumbre: 2.0205671879832594\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.461x + 3.44\n", - "Valor del parámetro correlacionado para la aeronave: 11.3\n", - "Predicción obtenida: 19.946\n", - "\tR²: 0.6012377913575799, Desviación Estándar: 6.483006778963267, Varianza: 42.029376896083676, Incertidumbre: 1.5723601012506396\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Empty weight: [19.796, 4.8, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.356x + 2.621\n", - "Valor del parámetro correlacionado para la aeronave: 42.2\n", - "Predicción obtenida: 17.662\n", - "\tR²: 0.8796352899520189, Desviación Estándar: 3.766112128353929, Varianza: 14.18360056333456, Incertidumbre: 1.6842565459771597\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.09x + 2.413\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 14.967\n", - "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.49', 'envergadura: 20.246', 'Cuerda: 21.784', 'payload: 19.946', 'RTF (Including fuel & Batteries): 17.662', 'Rango de comunicación: 14.967']\n", - "**Mediana calculada:** 19.796\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.104x + -5.974\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 17.436\n", - "\tR²: 0.8985057224718374, Desviación Estándar: 3.270696585516228, Varianza: 10.697456154507513, Incertidumbre: 0.7932604406723784\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.792x + -6.58\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 19.796\n", - "\tR²: 0.7812972847516897, Desviación Estándar: 4.801164285068728, Varianza: 23.051178492219506, Incertidumbre: 1.1644533807812627\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.375, 0.375]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 32.0, 35.0]\n", - "Ecuación de regresión: y = 113.452x + -9.6\n", - "Valor del parámetro correlacionado para la aeronave: 0.277\n", - "Predicción obtenida: 21.827\n", - "\tR²: 0.9023931014122297, Desviación Estándar: 2.838256825639311, Varianza: 8.055701808288138, Incertidumbre: 1.2693070399464534\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.328x + 1.989\n", - "Valor del parámetro correlacionado para la aeronave: 54.4\n", - "Predicción obtenida: 19.809\n", - "\tR²: 0.8927270391262186, Desviación Estándar: 3.309108053534251, Varianza: 10.95019610996524, Incertidumbre: 0.7799642481110287\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.53x + -17.284\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 20.246\n", - "\tR²: 0.8586914485406882, Desviación Estándar: 3.859257009089604, Varianza: 14.893864662207235, Incertidumbre: 0.9360073108753961\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 160.56x + -34.733\n", - "Valor del parámetro correlacionado para la aeronave: 0.352\n", - "Predicción obtenida: 21.784\n", - "\tR²: 0.34149882368086004, Desviación Estándar: 8.331011939712234, Varianza: 69.4057599396278, Incertidumbre: 2.0205671879832594\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.459x + 3.441\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 29.272\n", - "\tR²: 0.6111249176575178, Desviación Estándar: 6.300439892571702, Varianza: 39.69554283990892, Incertidumbre: 1.4850279241652313\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Empty weight: [19.796, 19.796, 4.8, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.362x + 2.802\n", - "Valor del parámetro correlacionado para la aeronave: 36.7\n", - "Predicción obtenida: 16.09\n", - "\tR²: 0.8814477024665971, Desviación Estándar: 3.525541028723161, Varianza: 12.429439545210364, Incertidumbre: 1.4392960979364398\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 10.0, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.09x + 2.413\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 14.967\n", - "\tR²: 0.6992353116426389, Desviación Estándar: 3.354572744999882, Varianza: 11.253158301496043, Incertidumbre: 1.267909319734997\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.436', 'Longitud del fuselaje: 19.796', 'Ancho del fuselaje: 21.827', 'Peso máximo al despegue (MTOW): 19.809', 'envergadura: 20.246', 'Cuerda: 21.784', 'payload: 29.272', 'RTF (Including fuel & Batteries): 16.09', 'Rango de comunicación: 14.967']\n", - "**Mediana calculada:** 19.809\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 VTOL FTUAS** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.199x + -5.963\n", - "Valor del parámetro correlacionado para la aeronave: 2.503\n", - "Predicción obtenida: 32.08\n", - "\tR²: 0.8981760566509686, Desviación Estándar: 3.2241182006984137, Varianza: 10.394938172074777, Incertidumbre: 0.7599319476869396\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.793x + -6.581\n", - "Valor del parámetro correlacionado para la aeronave: 3.594\n", - "Predicción obtenida: 25.02\n", - "\tR²: 0.7867457415163526, Desviación Estándar: 4.665893862545674, Varianza: 21.770565536541387, Incertidumbre: 1.0997617301675797\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.328x + 1.989\n", - "Valor del parámetro correlacionado para la aeronave: 93.0\n", - "Predicción obtenida: 32.453\n", - "\tR²: 0.8950667903037404, Desviación Estándar: 3.220849267243446, Varianza: 10.373870002302642, Incertidumbre: 0.7389134983311162\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.513x + -17.25\n", - "Valor del parámetro correlacionado para la aeronave: 5.644\n", - "Predicción obtenida: 30.798\n", - "\tR²: 0.8621171121245332, Desviación Estándar: 3.751813006995635, Varianza: 14.076100839461628, Incertidumbre: 0.8843108063301686\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 156.666x + -33.677\n", - "Valor del parámetro correlacionado para la aeronave: 0.394\n", - "Predicción obtenida: 28.049\n", - "\tR²: 0.35611948927363, Desviación Estándar: 8.10753139727324, Varianza: 65.73206535777136, Incertidumbre: 1.9109634765649177\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.306x + 4.062\n", - "Valor del parámetro correlacionado para la aeronave: 22.7\n", - "Predicción obtenida: 33.704\n", - "\tR²: 0.5824993045960247, Desviación Estándar: 6.424547193133453, Varianza: 41.27480663679893, Incertidumbre: 1.4738922090987687\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.996) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 36.7, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Empty weight: [19.796, 19.796, 19.809, 4.8, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.366x + 3.198\n", - "Valor del parámetro correlacionado para la aeronave: 70.3\n", - "Predicción obtenida: 28.95\n", - "\tR²: 0.8686932854431193, Desviación Estándar: 3.5123478434354816, Varianza: 12.336587373285877, Incertidumbre: 1.3275427016691874\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 32.08', 'Longitud del fuselaje: 25.02', 'Peso máximo al despegue (MTOW): 32.453', 'envergadura: 30.798', 'Cuerda: 28.049', 'payload: 33.704', 'RTF (Including fuel & Batteries): 28.95']\n", - "**Mediana calculada:** 30.798\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.024x + -5.798\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 8.325\n", - "\tR²: 0.9115417035933906, Desviación Estándar: 3.1489544926591027, Varianza: 9.915914396837946, Incertidumbre: 0.7224197058583904\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 9.152x + -7.113\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 3.87\n", - "\tR²: 0.8024007898945031, Desviación Estándar: 4.706409380156019, Varianza: 22.15028925362057, Incertidumbre: 1.0797243618437888\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.323x + 2.09\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 8.545\n", - "\tR²: 0.9077472362486133, Desviación Estándar: 3.1564995773900493, Varianza: 9.963489582063561, Incertidumbre: 0.7058147625993508\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.513x + -17.25\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 8.289\n", - "\tR²: 0.8810383235111052, Desviación Estándar: 3.6517466273004446, Varianza: 13.335253430000172, Incertidumbre: 0.8377681324114802\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 163.675x + -35.666\n", - "Valor del parámetro correlacionado para la aeronave: 0.319\n", - "Predicción obtenida: 16.546\n", - "\tR²: 0.44192713119646354, Desviación Estándar: 7.9093820433108375, Varianza: 62.558324307047926, Incertidumbre: 1.814536685928799\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.257x + 4.312\n", - "Valor del parámetro correlacionado para la aeronave: 10.419\n", - "Predicción obtenida: 17.406\n", - "\tR²: 0.6341935967623096, Desviación Estándar: 6.28552697067258, Varianza: 39.50784929905242, Incertidumbre: 1.4054865580832214\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 8.325', 'Longitud del fuselaje: 3.87', 'Peso máximo al despegue (MTOW): 8.545', 'envergadura: 8.289', 'Cuerda: 16.546', 'payload: 17.406']\n", - "**Mediana calculada:** 8.435\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.019x + -5.786\n", - "Valor del parámetro correlacionado para la aeronave: 1.608\n", - "Predicción obtenida: 18.365\n", - "\tR²: 0.9128101315191424, Desviación Estándar: 3.069313976161959, Varianza: 9.420688284263136, Incertidumbre: 0.6863194694988309\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.927x + -6.373\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 4.34\n", - "\tR²: 0.7965950223618128, Desviación Estándar: 4.688016094166544, Varianza: 21.977494899164537, Incertidumbre: 1.0482722666169448\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.323x + 2.081\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 19.838\n", - "\tR²: 0.909185787337549, Desviación Estándar: 3.080516387452075, Varianza: 9.489581213360784, Incertidumbre: 0.6722237869071928\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.51x + -17.23\n", - "Valor del parámetro correlacionado para la aeronave: 5.2\n", - "Predicción obtenida: 27.02\n", - "\tR²: 0.882742078622475, Desviación Estándar: 3.5594213516060673, Varianza: 12.669480358269164, Incertidumbre: 0.7959108102755347\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 160.493x + -35.101\n", - "Valor del parámetro correlacionado para la aeronave: 0.332\n", - "Predicción obtenida: 18.183\n", - "\tR²: 0.42120352079680623, Desviación Estándar: 7.908083494559376, Varianza: 62.53778455692244, Incertidumbre: 1.7683012265578852\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.234x + 4.074\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 18.877\n", - "\tR²: 0.6052009839355558, Desviación Estándar: 6.422951508721367, Varianza: 41.25430608338608, Incertidumbre: 1.401602927321261\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.099x + 2.179\n", - "Valor del parámetro correlacionado para la aeronave: 150.0\n", - "Predicción obtenida: 16.991\n", - "\tR²: 0.7177783310839329, Desviación Estándar: 3.4856268169459126, Varianza: 12.149594307012496, Incertidumbre: 1.2323551794740677\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.365', 'Longitud del fuselaje: 4.34', 'Peso máximo al despegue (MTOW): 19.838', 'envergadura: 27.02', 'Cuerda: 18.183', 'payload: 18.877', 'Rango de comunicación: 16.991']\n", - "**Mediana calculada:** 18.365\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.019x + -5.786\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 12.237\n", - "\tR²: 0.9135790496566742, Desviación Estándar: 2.995343734099099, Varianza: 8.972084085406735, Incertidumbre: 0.6536375901867048\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.298x + -4.311\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.647\n", - "\tR²: 0.7165705648434354, Desviación Estándar: 5.424498885276192, Varianza: 29.42518815636265, Incertidumbre: 1.183722702332463\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.322x + 2.063\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 12.354\n", - "\tR²: 0.9089579741392599, Desviación Estándar: 3.0250631475449667, Varianza: 9.15100704663466, Incertidumbre: 0.6449456300775446\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.064x + -15.982\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 19.501\n", - "\tR²: 0.8536528012452334, Desviación Estándar: 3.8978879953283716, Varianza: 15.193530824125032, Incertidumbre: 0.850588894716759\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 160.622x + -35.131\n", - "Valor del parámetro correlacionado para la aeronave: 0.304\n", - "Predicción obtenida: 13.698\n", - "\tR²: 0.4262936940175942, Desviación Estándar: 7.717594578111506, Varianza: 59.56126607209612, Incertidumbre: 1.6841172065322267\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.232x + 4.068\n", - "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 10.841\n", - "\tR²: 0.6081114488646513, Desviación Estándar: 6.2761711228549695, Varianza: 39.39032396335861, Incertidumbre: 1.3380841793630753\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.101x + 2.086\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 7.148\n", - "\tR²: 0.7460116085943318, Desviación Estándar: 3.3116063271343945, Varianza: 10.966736465916554, Incertidumbre: 1.103868775711465\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.237', 'Longitud del fuselaje: 5.647', 'Peso máximo al despegue (MTOW): 12.354', 'envergadura: 19.501', 'Cuerda: 13.698', 'payload: 10.841', 'Rango de comunicación: 7.148']\n", - "**Mediana calculada:** 12.237\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.019x + -5.786\n", - "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 5.538\n", - "\tR²: 0.913708191825763, Desviación Estándar: 2.9264760519606896, Varianza: 8.564262082699425, Incertidumbre: 0.6239267906755577\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.028x + -3.425\n", - "Valor del parámetro correlacionado para la aeronave: 1.48\n", - "Predicción obtenida: 8.456\n", - "\tR²: 0.6987989734892859, Desviación Estándar: 5.467495240618404, Varianza: 29.893504206184897, Incertidumbre: 1.1656739019707343\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.322x + 2.056\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 4.147\n", - "\tR²: 0.9091268370272325, Desviación Estándar: 2.9586655428005026, Varianza: 8.753701794154992, Incertidumbre: 0.6169244120479039\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.904x + -15.71\n", - "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 0.889\n", - "\tR²: 0.8311430591942646, Desviación Estándar: 4.0937342671353925, Varianza: 16.758660249918545, Incertidumbre: 0.8727870783227756\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 160.716x + -35.226\n", - "Valor del parámetro correlacionado para la aeronave: 0.271\n", - "Predicción obtenida: 8.327\n", - "\tR²: 0.42621839297901487, Desviación Estándar: 7.54629017734252, Varianza: 56.94649544065621, Incertidumbre: 1.6088744716367318\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.227x + 4.163\n", - "Valor del parámetro correlacionado para la aeronave: 2.693\n", - "Predicción obtenida: 7.469\n", - "\tR²: 0.6080299406703621, Desviación Estándar: 6.144753971108537, Varianza: 37.758001365454135, Incertidumbre: 1.28126977381058\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.094x + 3.287\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 5.633\n", - "\tR²: 0.6902774142105856, Desviación Estándar: 3.4693600600060193, Varianza: 12.03645922596497, Incertidumbre: 1.0971079812837463\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 5.538', 'Longitud del fuselaje: 8.456', 'Peso máximo al despegue (MTOW): 4.147', 'envergadura: 0.889', 'Cuerda: 8.327', 'payload: 7.469', 'Rango de comunicación: 5.633']\n", - "**Mediana calculada:** 5.633\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.014x + -5.775\n", - "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 10.185\n", - "\tR²: 0.916273259509183, Desviación Estándar: 2.8622130745125545, Varianza: 8.19226368391061, Incertidumbre: 0.5968126821384838\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.105x + -3.713\n", - "Valor del parámetro correlacionado para la aeronave: 1.71\n", - "Predicción obtenida: 10.147\n", - "\tR²: 0.7044409378663876, Desviación Estándar: 5.377643509962671, Varianza: 28.919049720243635, Incertidumbre: 1.1213161854876974\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.319x + 2.199\n", - "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 10.664\n", - "\tR²: 0.9110745074819713, Desviación Estándar: 2.910850755492127, Varianza: 8.473052120749086, Incertidumbre: 0.5941749223625525\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.667x + -14.628\n", - "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 9.139\n", - "\tR²: 0.827398243173229, Desviación Estándar: 4.1095330263226915, Varianza: 16.888261694436938, Incertidumbre: 0.8568968710318733\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 163.16x + -36.089\n", - "Valor del parámetro correlacionado para la aeronave: 0.298\n", - "Predicción obtenida: 12.533\n", - "\tR²: 0.44031188669232135, Desviación Estándar: 7.400190688413107, Varianza: 54.76282222487606, Incertidumbre: 1.54304642530508\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.238x + 4.003\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 10.192\n", - "\tR²: 0.618870296719052, Desviación Estándar: 6.026195235106751, Varianza: 36.31502901162332, Incertidumbre: 1.2300919513669042\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.094x + 3.287\n", - "Valor del parámetro correlacionado para la aeronave: 101.86\n", - "Predicción obtenida: 12.848\n", - "\tR²: 0.7179611867018045, Desviación Estándar: 3.307905028059083, Varianza: 10.942235674658562, Incertidumbre: 0.9973708927456391\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 10.185', 'Longitud del fuselaje: 10.147', 'Peso máximo al despegue (MTOW): 10.664', 'envergadura: 9.139', 'Cuerda: 12.533', 'payload: 10.192', 'Rango de comunicación: 12.848']\n", - "**Mediana calculada:** 10.192\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.013x + -5.774\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 22.331\n", - "\tR²: 0.9166944834584114, Desviación Estándar: 2.801949594727719, Varianza: 7.850921531394829, Incertidumbre: 0.5719455660067526\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.104x + -3.71\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 16.551\n", - "\tR²: 0.7059270986898859, Desviación Estándar: 5.264424973725865, Varianza: 27.714170303988578, Incertidumbre: 1.0745962478994258\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.32x + 2.172\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 26.082\n", - "\tR²: 0.9114909858720777, Desviación Estándar: 2.8535287759093366, Varianza: 8.142626474942638, Incertidumbre: 0.5707057551818673\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.648x + -14.516\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.195\n", - "\tR²: 0.8278014537455741, Desviación Estándar: 4.028451857224602, Varianza: 16.22842436597635, Incertidumbre: 0.8223042919639589\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 163.568x + -36.31\n", - "Valor del parámetro correlacionado para la aeronave: 0.338\n", - "Predicción obtenida: 18.976\n", - "\tR²: 0.4408083829979076, Desviación Estándar: 7.259450756578375, Varianza: 52.69962528718634, Incertidumbre: 1.4818291805398596\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.238x + 4.003\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 26.284\n", - "\tR²: 0.6210511278262185, Desviación Estándar: 5.904441366561173, Varianza: 34.86242785115877, Incertidumbre: 1.1808882733122346\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.093x + 3.153\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 11.754\n", - "\tR²: 0.7040073224712778, Desviación Estándar: 3.250633447126605, Varianza: 10.566617807578197, Incertidumbre: 0.9383770478676734\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 22.331', 'Longitud del fuselaje: 16.551', 'Peso máximo al despegue (MTOW): 26.082', 'envergadura: 22.195', 'Cuerda: 18.976', 'payload: 26.284', 'Rango de comunicación: 11.754']\n", - "**Mediana calculada:** 22.195\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 15.005x + -5.769\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 25.592\n", - "\tR²: 0.9192804737551298, Desviación Estándar: 2.745463286837539, Varianza: 7.537568659372784, Incertidumbre: 0.5490926573675078\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.188x + -3.662\n", - "Valor del parámetro correlacionado para la aeronave: 2.998\n", - "Predicción obtenida: 20.885\n", - "\tR²: 0.7020575415560586, Desviación Estándar: 5.274636514397158, Varianza: 27.821790359011803, Incertidumbre: 1.0549273028794315\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.313x + 2.27\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 25.751\n", - "\tR²: 0.9083231176697067, Desviación Estándar: 2.889927154659528, Varianza: 8.351678959238516, Incertidumbre: 0.5667613444027156\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.648x + -14.516\n", - "Valor del parámetro correlacionado para la aeronave: 5.033\n", - "Predicción obtenida: 23.977\n", - "\tR²: 0.833162024179038, Desviación Estándar: 3.947060601866186, Varianza: 15.579287394804256, Incertidumbre: 0.7894121203732372\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 166.269x + -37.008\n", - "Valor del parámetro correlacionado para la aeronave: 0.341\n", - "Predicción obtenida: 19.69\n", - "\tR²: 0.45407381641801514, Desviación Estándar: 7.1399192582523305, Varianza: 50.97844701436251, Incertidumbre: 1.4279838516504662\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.199x + 4.165\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 25.75\n", - "\tR²: 0.6258944719318421, Desviación Estándar: 5.837864906102878, Varianza: 34.08066666190756, Incertidumbre: 1.144899502843734\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 25.592', 'Longitud del fuselaje: 20.885', 'Peso máximo al despegue (MTOW): 25.751', 'envergadura: 23.977', 'Cuerda: 19.69', 'payload: 25.75']\n", - "**Mediana calculada:** 24.784\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.945x + -5.72\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 22.258\n", - "\tR²: 0.9228323594939006, Desviación Estándar: 2.6963684551592366, Varianza: 7.2704028459778085, Incertidumbre: 0.5288013603343454\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.316x + -3.791\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 17.0\n", - "\tR²: 0.7102604918578905, Desviación Estándar: 5.224749658509504, Varianza: 27.298008994095174, Incertidumbre: 1.024657710091431\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.312x + 2.292\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 25.599\n", - "\tR²: 0.9120674450382346, Desviación Estándar: 2.8414417914279144, Varianza: 8.073791454073076, Incertidumbre: 0.5468357277225196\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.677x + -14.595\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.256\n", - "\tR²: 0.8407587886499855, Desviación Estándar: 3.873373378087582, Varianza: 15.003021326077608, Incertidumbre: 0.7596310168576687\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 170.626x + -38.15\n", - "Valor del parámetro correlacionado para la aeronave: 0.345\n", - "Predicción obtenida: 20.716\n", - "\tR²: 0.4698496594948569, Desviación Estándar: 7.067424038440677, Varianza: 49.94848253912913, Incertidumbre: 1.3860358878016823\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.191x + 4.199\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 25.639\n", - "\tR²: 0.6422377954896081, Desviación Estándar: 5.73140563845551, Varianza: 32.84901059251961, Incertidumbre: 1.1030095293990758\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 22.258', 'Longitud del fuselaje: 17.0', 'Peso máximo al despegue (MTOW): 25.599', 'envergadura: 22.256', 'Cuerda: 20.716', 'payload: 25.639']\n", - "**Mediana calculada:** 22.257\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.945x + -5.72\n", - "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 14.441\n", - "\tR²: 0.9247233040619992, Desviación Estándar: 2.645964603028454, Varianza: 7.001128680479524, Incertidumbre: 0.5092161252748997\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.382x + -3.74\n", - "Valor del parámetro correlacionado para la aeronave: 2.4\n", - "Predicción obtenida: 16.377\n", - "\tR²: 0.7068047947675931, Desviación Estándar: 5.221943728574231, Varianza: 27.268696304395736, Incertidumbre: 1.00496353912847\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.362\n", - "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 13.503\n", - "\tR²: 0.9100626005198136, Desviación Estándar: 2.854969820151899, Varianza: 8.150852673978166, Incertidumbre: 0.5395385817654803\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.677x + -14.596\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 16.114\n", - "\tR²: 0.8446608947110245, Desviación Estándar: 3.800967492809924, Varianza: 14.447353881397758, Incertidumbre: 0.7314965350516088\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 171.998x + -38.517\n", - "Valor del parámetro correlacionado para la aeronave: 0.312\n", - "Predicción obtenida: 15.147\n", - "\tR²: 0.4819605292975089, Desviación Estándar: 6.941209958097174, Varianza: 48.18039568238737, Incertidumbre: 1.3358364792697046\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.166x + 4.305\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 14.33\n", - "\tR²: 0.6464449368019647, Desviación Estándar: 5.6605664016485475, Varianza: 32.042011987472385, Incertidumbre: 1.0697464984664153\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 14.441', 'Longitud del fuselaje: 16.377', 'Peso máximo al despegue (MTOW): 13.503', 'envergadura: 16.114', 'Cuerda: 15.147', 'payload: 14.33']\n", - "**Mediana calculada:** 14.794\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.945x + -5.707\n", - "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 21.224\n", - "\tR²: 0.9246771071689462, Desviación Estándar: 2.599110307951027, Varianza: 6.7553743928972825, Incertidumbre: 0.49118567891878007\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.369x + -3.768\n", - "Valor del parámetro correlacionado para la aeronave: 2.5\n", - "Predicción obtenida: 17.155\n", - "\tR²: 0.7058504559348706, Desviación Estándar: 5.136239966459277, Varianza: 26.380960993053595, Incertidumbre: 0.9706581160858557\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.415\n", - "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 21.123\n", - "\tR²: 0.9094286866168957, Desviación Estándar: 2.8151847172798137, Varianza: 7.925264992405825, Incertidumbre: 0.5227666781061432\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.67x + -14.615\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 22.202\n", - "\tR²: 0.8439953830988041, Desviación Estándar: 3.740502434777401, Varianza: 13.991358464575665, Incertidumbre: 0.7068885157751859\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 171.97x + -38.52\n", - "Valor del parámetro correlacionado para la aeronave: 0.341\n", - "Predicción obtenida: 20.121\n", - "\tR²: 0.481923663962755, Desviación Estándar: 6.816447496640321, Varianza: 46.46395647445409, Incertidumbre: 1.2881874929313626\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.166x + 4.322\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 24.954\n", - "\tR²: 0.6463635003419814, Desviación Estándar: 5.562757206524997, Varianza: 30.944267738745786, Incertidumbre: 1.0329780806624915\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.094x + 3.865\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 12.561\n", - "\tR²: 0.5755594637290282, Desviación Estándar: 4.182273841525787, Varianza: 17.491414485510862, Incertidumbre: 1.1599540602809986\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 21.224', 'Longitud del fuselaje: 17.155', 'Peso máximo al despegue (MTOW): 21.123', 'envergadura: 22.202', 'Cuerda: 20.121', 'payload: 24.954', 'Rango de comunicación: 12.561']\n", - "**Mediana calculada:** 21.123\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.941x + -5.705\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 4.754\n", - "\tR²: 0.9258976032052461, Desviación Estándar: 2.5539701136688935, Varianza: 6.522763341513901, Incertidumbre: 0.4742603439518288\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.416x + -3.734\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 3.84\n", - "\tR²: 0.704696721359465, Desviación Estándar: 5.098398969474347, Varianza: 25.993672051937075, Incertidumbre: 0.9467489207980716\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.307x + 2.415\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 4.317\n", - "\tR²: 0.9108095208047919, Desviación Estándar: 2.7678673189624066, Varianza: 7.661089495380141, Incertidumbre: 0.5053411222590188\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.642x + -14.545\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 3.414\n", - "\tR²: 0.846101938815913, Desviación Estándar: 3.680579963754588, Varianza: 13.546668869591723, Incertidumbre: 0.6834665410570895\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 172.715x + -38.717\n", - "Valor del parámetro correlacionado para la aeronave: 0.272\n", - "Predicción obtenida: 8.262\n", - "\tR²: 0.4899739920102165, Desviación Estándar: 6.700324629668004, Varianza: 44.89435014293567, Incertidumbre: 1.24421904800223\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.14x + 4.428\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.796\n", - "\tR²: 0.6465679119191974, Desviación Estándar: 5.509840252613488, Varianza: 30.358339609319863, Incertidumbre: 1.0059545982021234\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.095x + 4.407\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 9.141\n", - "\tR²: 0.5148731942546723, Desviación Estándar: 4.5938015964161, Varianza: 21.103013107235103, Incertidumbre: 1.2277451197574445\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 4.754', 'Longitud del fuselaje: 3.84', 'Peso máximo al despegue (MTOW): 4.317', 'envergadura: 3.414', 'Cuerda: 8.262', 'payload: 5.796', 'Rango de comunicación: 9.141']\n", - "**Mediana calculada:** 4.754\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.941x + -5.705\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 4.754\n", - "\tR²: 0.9286220934085586, Desviación Estándar: 2.511043189243422, Varianza: 6.305337898245776, Incertidumbre: 0.4584516658727787\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.373x + -3.612\n", - "Valor del parámetro correlacionado para la aeronave: 0.9\n", - "Predicción obtenida: 3.924\n", - "\tR²: 0.7152679648938791, Desviación Estándar: 5.015225272771336, Varianza: 25.15248453664432, Incertidumbre: 0.9156506709556202\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.452\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 4.35\n", - "\tR²: 0.9141014032234078, Desviación Estándar: 2.7239052914347277, Varianza: 7.419660036706109, Incertidumbre: 0.4892278325604646\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.593x + -14.314\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 3.53\n", - "\tR²: 0.851141505775779, Desviación Estándar: 3.626261257188199, Varianza: 13.149770705384139, Incertidumbre: 0.6620616966563397\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 175.676x + -39.747\n", - "Valor del parámetro correlacionado para la aeronave: 0.272\n", - "Predicción obtenida: 8.037\n", - "\tR²: 0.5043808003522512, Desviación Estándar: 6.616774593333738, Varianza: 43.78170601898685, Incertidumbre: 1.2080522342319868\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.146x + 4.34\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 5.716\n", - "\tR²: 0.6594997555877751, Desviación Estándar: 5.423225746126612, Varianza: 29.411377493450544, Incertidumbre: 0.9740400980924518\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.099x + 3.73\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 6.703\n", - "\tR²: 0.5336804190590896, Desviación Estándar: 4.565757595526708, Varianza: 20.846142421109825, Incertidumbre: 1.1788735420196639\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 4.754', 'Longitud del fuselaje: 3.924', 'Peso máximo al despegue (MTOW): 4.35', 'envergadura: 3.53', 'Cuerda: 8.037', 'payload: 5.716', 'Rango de comunicación: 6.703']\n", - "**Mediana calculada:** 4.754\n", - "\n", - "--- Imputación para aeronave: **V35** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.941x + -5.705\n", - "Valor del parámetro correlacionado para la aeronave: 1.202\n", - "Predicción obtenida: 12.254\n", - "\tR²: 0.9286220934085586, Desviación Estándar: 2.511043189243422, Varianza: 6.305337898245776, Incertidumbre: 0.4584516658727787\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.373x + -3.612\n", - "Valor del parámetro correlacionado para la aeronave: 1.88\n", - "Predicción obtenida: 12.13\n", - "\tR²: 0.7152679648938791, Desviación Estándar: 5.015225272771336, Varianza: 25.15248453664432, Incertidumbre: 0.9156506709556202\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.452\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 12.248\n", - "\tR²: 0.9141014032234078, Desviación Estándar: 2.7239052914347277, Varianza: 7.419660036706109, Incertidumbre: 0.4892278325604646\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.593x + -14.314\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 12.262\n", - "\tR²: 0.851141505775779, Desviación Estándar: 3.626261257188199, Varianza: 13.149770705384139, Incertidumbre: 0.6620616966563397\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 175.676x + -39.747\n", - "Valor del parámetro correlacionado para la aeronave: 0.306\n", - "Predicción obtenida: 14.01\n", - "\tR²: 0.5043808003522512, Desviación Estándar: 6.616774593333738, Varianza: 43.78170601898685, Incertidumbre: 1.2080522342319868\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.146x + 4.34\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 15.804\n", - "\tR²: 0.6594997555877751, Desviación Estándar: 5.423225746126612, Varianza: 29.411377493450544, Incertidumbre: 0.9740400980924518\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 4.754, 2.65, 3.45, 6.45]\n", - "Ecuación de regresión: y = 0.102x + 3.389\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 6.441\n", - "\tR²: 0.5638096764017799, Desviación Estándar: 4.443968751728997, Varianza: 19.74885826634378, Incertidumbre: 1.1109921879322493\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.254', 'Longitud del fuselaje: 12.13', 'Peso máximo al despegue (MTOW): 12.248', 'envergadura: 12.262', 'Cuerda: 14.01', 'payload: 15.804', 'Rango de comunicación: 6.441']\n", - "**Mediana calculada:** 12.254\n", - "\n", - "--- Imputación para aeronave: **V39** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.941x + -5.705\n", - "Valor del parámetro correlacionado para la aeronave: 1.203\n", - "Predicción obtenida: 12.269\n", - "\tR²: 0.9287486031571285, Desviación Estándar: 2.4702104975198655, Varianza: 6.101939902057342, Incertidumbre: 0.4436629024767654\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.372x + -3.605\n", - "Valor del parámetro correlacionado para la aeronave: 1.954\n", - "Predicción obtenida: 12.754\n", - "\tR²: 0.7157670307935512, Desviación Estándar: 4.933719987077154, Varianza: 24.341592910884593, Incertidumbre: 0.8861222683945283\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.306x + 2.452\n", - "Valor del parámetro correlacionado para la aeronave: 24.0\n", - "Predicción obtenida: 9.799\n", - "\tR²: 0.9142766506576697, Desviación Estándar: 2.6810066815314575, Varianza: 7.187796826416317, Incertidumbre: 0.47393950122933404\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.593x + -14.314\n", - "Valor del parámetro correlacionado para la aeronave: 3.9\n", - "Predicción obtenida: 15.299\n", - "\tR²: 0.8514053187249602, Desviación Estándar: 3.567294004696238, Varianza: 12.725586515941725, Incertidumbre: 0.6407049171317712\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 175.776x + -39.835\n", - "Valor del parámetro correlacionado para la aeronave: 0.307\n", - "Predicción obtenida: 14.129\n", - "\tR²: 0.5041358522783776, Desviación Estándar: 6.516563415932599, Varianza: 42.46559875387115, Incertidumbre: 1.1704093404952065\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.144x + 4.253\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 9.972\n", - "\tR²: 0.6556479703357065, Desviación Estándar: 5.373405979420902, Varianza: 28.8734918196763, Incertidumbre: 0.9498929515292154\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = 0.832) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'V21', 'V25', 'V32', 'V35']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 10.0, 18.365, 12.237, 5.633, 10.192, 22.195, 21.123, 4.754, 4.754, 2.65, 3.45, 6.45, 12.254]\n", - "Ecuación de regresión: y = 0.095x + 4.285\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 7.13\n", - "\tR²: 0.5227923448909729, Desviación Estándar: 4.50989094884209, Varianza: 20.339116370447805, Incertidumbre: 1.093809220123117\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 12.269', 'Longitud del fuselaje: 12.754', 'Peso máximo al despegue (MTOW): 9.799', 'envergadura: 15.299', 'Cuerda: 14.129', 'payload: 9.972', 'Rango de comunicación: 7.13']\n", - "**Mediana calculada:** 12.269\n", - "\n", - "--- Imputación para aeronave: **Volitation VT370** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.941x + -5.705\n", - "Valor del parámetro correlacionado para la aeronave: 1.424\n", - "Predicción obtenida: 15.571\n", - "\tR²: 0.9288651463121561, Desviación Estándar: 2.4313071135199693, Varianza: 5.911254280252805, Incertidumbre: 0.4297984367792653\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.375x + -3.627\n", - "Valor del parámetro correlacionado para la aeronave: 2.02\n", - "Predicción obtenida: 13.291\n", - "\tR²: 0.7161464221538233, Desviación Estándar: 4.856750413201213, Varianza: 23.58802457613015, Incertidumbre: 0.858560287926286\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.305x + 2.582\n", - "Valor del parámetro correlacionado para la aeronave: 40.0\n", - "Predicción obtenida: 14.771\n", - "\tR²: 0.9122573197462216, Desviación Estándar: 2.6735124201413973, Varianza: 7.147668660650313, Incertidumbre: 0.46539877526665924\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 7.584x + -14.375\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 34.922\n", - "\tR²: 0.8483051549539458, Desviación Estándar: 3.5504549853464953, Varianza: 12.605730602971782, Incertidumbre: 0.6276376991090227\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 175.837x + -39.912\n", - "Valor del parámetro correlacionado para la aeronave: 0.314\n", - "Predicción obtenida: 15.301\n", - "\tR²: 0.503687273356439, Desviación Estándar: 6.42208878399288, Varianza: 41.24322434948715, Incertidumbre: 1.1352756321358586\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.137x + 4.381\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 24.85\n", - "\tR²: 0.6544160881835673, Desviación Estándar: 5.30583225901069, Varianza: 28.151855960758482, Incertidumbre: 0.923626842542706\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 15.571', 'Longitud del fuselaje: 13.291', 'Peso máximo al despegue (MTOW): 14.771', 'envergadura: 34.922', 'Cuerda: 15.301', 'payload: 24.85']\n", - "**Mediana calculada:** 15.436\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000 VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.94x + -5.708\n", - "Valor del parámetro correlacionado para la aeronave: 2.615\n", - "Predicción obtenida: 33.36\n", - "\tR²: 0.9288907011950363, Desviación Estándar: 2.394297517401611, Varianza: 5.7326606018355175, Incertidumbre: 0.41679369948981904\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.366x + -3.542\n", - "Valor del parámetro correlacionado para la aeronave: 3.5\n", - "Predicción obtenida: 25.738\n", - "\tR²: 0.714598445858678, Desviación Estándar: 4.796705817916089, Varianza: 23.008386703630055, Incertidumbre: 0.8349993050918911\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Ancho del fuselaje (r = 0.955) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Ancho del fuselaje: [0.211, 0.2, 0.277, 0.277, 0.375, 0.375]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 32.0, 35.0]\n", - "Ecuación de regresión: y = 114.066x + -10.111\n", - "Valor del parámetro correlacionado para la aeronave: 0.375\n", - "Predicción obtenida: 32.663\n", - "\tR²: 0.8963698345140692, Desviación Estándar: 2.697515152995758, Varianza: 7.276588000641728, Incertidumbre: 1.1012559497108843\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.305x + 2.601\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 33.074\n", - "\tR²: 0.9121259725181001, Desviación Estándar: 2.6363012992791948, Varianza: 6.950084540581171, Incertidumbre: 0.45212194283573964\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 6.477x + -10.686\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 21.7\n", - "\tR²: 0.7313279100692804, Desviación Estándar: 4.653998017305745, Varianza: 21.659697545085802, Incertidumbre: 0.8101570656750493\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 175.854x + -39.913\n", - "Valor del parámetro correlacionado para la aeronave: 0.338\n", - "Predicción obtenida: 19.526\n", - "\tR²: 0.5039052742482211, Desviación Estándar: 6.324078061960279, Varianza: 39.993963333767276, Incertidumbre: 1.1008806851068977\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.079x + 4.633\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 31.618\n", - "\tR²: 0.624328313685615, Desviación Estándar: 5.450909982107748, Varianza: 29.712419633041897, Incertidumbre: 0.934823349670657\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Capacidad combustible (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL octo']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0]\n", - "Valores para Empty weight: [15.436, 11.5, 11.0, 32.0, 35.0]\n", - "Ecuación de regresión: y = 1.311x + -3.129\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 33.569\n", - "\tR²: 0.9852719437774983, Desviación Estándar: 1.259106590568882, Varianza: 1.5853494064139946, Incertidumbre: 0.5630895854860032\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 33.36', 'Longitud del fuselaje: 25.738', 'Ancho del fuselaje: 32.663', 'Peso máximo al despegue (MTOW): 33.074', 'envergadura: 21.7', 'Cuerda: 19.526', 'payload: 31.618', 'Capacidad combustible: 33.569']\n", - "**Mediana calculada:** 32.14\n", - "\n", - "--- Imputación para aeronave: **Volitation VT510** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.941) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 2.615, 0.771, 0.986, 2.329]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 14.821x + -5.579\n", - "Valor del parámetro correlacionado para la aeronave: 1.993\n", - "Predicción obtenida: 23.959\n", - "\tR²: 0.9358207202237538, Desviación Estándar: 2.3667022774990354, Varianza: 5.601279670319122, Incertidumbre: 0.4058860920446379\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Longitud del fuselaje (r = 0.88) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Longitud del fuselaje: [2.1, 2.591, 3.0, 3.0, 3.594, 1.7, 1.2, 1.2, 1.2, 1.48, 1.71, 2.5, 2.998, 2.5, 2.4, 2.5, 0.75, 0.9, 0.93, 0.93, 1.0, 1.88, 1.954, 2.02, 2.05, 2.03, 2.488, 2.42, 3.5, 3.5, 3.5, 1.562, 2.3, 4.712]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 8.658x + -3.99\n", - "Valor del parámetro correlacionado para la aeronave: 2.905\n", - "Predicción obtenida: 21.161\n", - "\tR²: 0.7315519871473125, Desviación Estándar: 4.840344870982094, Varianza: 23.42893847004267, Incertidumbre: 0.8301122969752286\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.947) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 40.0, 90.0, 100.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 0.303x + 2.649\n", - "Valor del parámetro correlacionado para la aeronave: 100.0\n", - "Predicción obtenida: 32.939\n", - "\tR²: 0.920742065863033, Desviación Estándar: 2.6024670945613564, Varianza: 6.772834978274627, Incertidumbre: 0.4398972275518982\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.924) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.0, 2.0, 3.0, 6.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 6.719x + -11.32\n", - "Valor del parámetro correlacionado para la aeronave: 5.1\n", - "Predicción obtenida: 22.945\n", - "\tR²: 0.7244083786781033, Desviación Estándar: 4.904324680873634, Varianza: 24.052400575426272, Incertidumbre: 0.8410847438493143\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Cuerda (r = 0.971) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Cuerda: [0.239, 0.318, 0.352, 0.352, 0.394, 0.197, 0.319, 0.332, 0.304, 0.271, 0.298, 0.338, 0.341, 0.345, 0.312, 0.341, 0.276, 0.272, 0.278, 0.281, 0.292, 0.306, 0.307, 0.314, 0.296, 0.3, 0.311, 0.315, 0.348, 0.338, 0.344, 0.287, 0.291, 0.313]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 184.0x + -42.063\n", - "Valor del parámetro correlacionado para la aeronave: 0.335\n", - "Predicción obtenida: 19.577\n", - "\tR²: 0.5041716405668544, Desviación Estándar: 6.578272967275993, Varianza: 43.27367523199409, Incertidumbre: 1.128164506569046\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.778) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.186, 10.419, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 4.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Empty weight: [10.886, 17.463, 19.796, 19.796, 19.809, 30.798, 10.0, 8.435, 18.365, 12.237, 5.633, 10.192, 22.195, 24.784, 22.257, 14.794, 21.123, 4.8, 4.754, 2.65, 3.45, 6.45, 12.254, 12.269, 15.436, 6.5, 7.1, 11.5, 11.0, 32.0, 32.14, 35.0, 3.0, 5.8, 31.0]\n", - "Ecuación de regresión: y = 1.084x + 4.602\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 31.707\n", - "\tR²: 0.6621543183227474, Desviación Estándar: 5.373076933587957, Varianza: 28.869955734254965, Incertidumbre: 0.9082157662811027\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Capacidad combustible (r = 0.995) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 28.0]\n", - "Valores para Empty weight: [15.436, 11.5, 11.0, 32.0, 32.14, 35.0]\n", - "Ecuación de regresión: y = 1.281x + -2.774\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 29.251\n", - "\tR²: 0.9855262376673756, Desviación Estándar: 1.244330432674912, Varianza: 1.5483582256809336, Incertidumbre: 0.5079957719116919\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Área del ala: 23.959', 'Longitud del fuselaje: 21.161', 'Peso máximo al despegue (MTOW): 32.939', 'envergadura: 22.945', 'Cuerda: 19.577', 'payload: 31.707', 'Capacidad combustible: 29.251']\n", - "**Mediana calculada:** 23.959\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Reporte Final de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveParámetroValor ImputadoNivel de Confianza
    8Aerosonde Mk. 4.8 VTOL FTUASÁrea del ala2.5030.804
    9Fulmar XÁrea del ala0.9400.804
    10Orbiter 4Área del ala1.6080.804
    11Orbiter 3Área del ala1.2000.804
    12MantisÁrea del ala0.7540.804
    13ScanEagleÁrea del ala1.0630.804
    14IntegratorÁrea del ala1.8720.804
    15Integrator VTOLÁrea del ala2.0900.804
    16Integrator Extended Range (ER)Área del ala1.8720.804
    17ScanEagle 3Área del ala1.3490.804
    18RQ Nan 21A BlackjackÁrea del ala1.8020.804
    19DeltaQuad Pro #MAPÁrea del ala0.7000.804
    20DeltaQuad Pro #CARGOÁrea del ala0.7000.804
    21V32Área del ala1.0300.804
    29Fulmar XRelación de aspecto del ala13.2180.963
    30Orbiter 4Relación de aspecto del ala13.4430.752
    31Orbiter 3Relación de aspecto del ala13.9340.752
    32MantisRelación de aspecto del ala14.7550.752
    33ScanEagleRelación de aspecto del ala14.0570.776
    34IntegratorRelación de aspecto del ala12.9080.632
    35Integrator VTOLRelación de aspecto del ala12.6480.677
    36Integrator Extended Range (ER)Relación de aspecto del ala12.8400.677
    37ScanEagle 3Relación de aspecto del ala13.7650.677
    38RQ Nan 21A BlackjackRelación de aspecto del ala12.9140.697
    39DeltaQuad EvoRelación de aspecto del ala14.5890.720
    40DeltaQuad Pro #MAPRelación de aspecto del ala14.7140.730
    41DeltaQuad Pro #CARGORelación de aspecto del ala14.7140.743
    42V21Relación de aspecto del ala14.5680.743
    43V25Relación de aspecto del ala14.4210.755
    44V32Relación de aspecto del ala14.1820.764
    45V35Relación de aspecto del ala13.8980.770
    46V39Relación de aspecto del ala14.0410.771
    47Volitation VT370Relación de aspecto del ala13.6450.766
    48Skyeye 2600Relación de aspecto del ala14.1030.773
    49Skyeye 2930 VTOLRelación de aspecto del ala14.0010.671
    50Skyeye 3600Relación de aspecto del ala13.7100.677
    51Skyeye 3600 VTOLRelación de aspecto del ala13.6710.677
    52Skyeye 5000Relación de aspecto del ala12.6950.676
    53Skyeye 5000 VTOLRelación de aspecto del ala13.0320.700
    54Skyeye 5000 VTOL octoRelación de aspecto del ala12.8550.705
    55Volitation VT510Relación de aspecto del ala13.0990.719
    56AscendRelación de aspecto del ala14.3490.727
    57TransitionRelación de aspecto del ala14.2230.733
    58ReachRelación de aspecto del ala13.6690.737
    59Aerosonde Mk. 4.8 VTOL FTUASLongitud del fuselaje3.5950.831
    60Integrator VTOLLongitud del fuselaje2.9980.831
    61V39Longitud del fuselaje1.9540.831
    95Aerosonde Mk. 4.8 VTOL FTUASenvergadura5.6440.805
    96Integrator VTOLenvergadura5.0330.805
    97Aerosonde Mk. 4.8 VTOL FTUASCuerda0.3940.827
    98Fulmar XCuerda0.3190.827
    99Orbiter 4Cuerda0.3320.758
    100Orbiter 3Cuerda0.3040.758
    101MantisCuerda0.2710.758
    102ScanEagleCuerda0.2980.782
    103IntegratorCuerda0.3390.725
    104Integrator VTOLCuerda0.3410.757
    105Integrator Extended Range (ER)Cuerda0.3450.757
    106ScanEagle 3Cuerda0.3110.757
    107RQ Nan 21A BlackjackCuerda0.3410.759
    108DeltaQuad EvoCuerda0.2760.784
    109DeltaQuad Pro #MAPCuerda0.2720.803
    110DeltaQuad Pro #CARGOCuerda0.2720.819
    111V21Cuerda0.2780.819
    112V25Cuerda0.2810.602
    113V32Cuerda0.2920.591
    114V35Cuerda0.3060.590
    115V39Cuerda0.3070.590
    116Volitation VT370Cuerda0.3140.590
    117Skyeye 2600Cuerda0.2960.590
    118Skyeye 2930 VTOLCuerda0.3000.589
    119Skyeye 3600Cuerda0.3110.590
    120Skyeye 3600 VTOLCuerda0.3150.594
    121Skyeye 5000Cuerda0.3480.599
    122Skyeye 5000 VTOLCuerda0.3380.684
    123Skyeye 5000 VTOL octoCuerda0.3440.684
    124Volitation VT510Cuerda0.3350.729
    125AscendCuerda0.2870.729
    126TransitionCuerda0.2910.725
    127ReachCuerda0.3130.723
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveCantidad de Valores Imputados
    0Aerosonde Mk. 4.8 VTOL FTUAS4.000
    1Ascend2.000
    2DeltaQuad Evo2.000
    3DeltaQuad Pro #CARGO3.000
    4DeltaQuad Pro #MAP3.000
    5Fulmar X3.000
    6Integrator3.000
    7Integrator Extended Range (ER)3.000
    8Integrator VTOL5.000
    9Mantis3.000
    10Orbiter 33.000
    11Orbiter 43.000
    12RQ Nan 21A Blackjack3.000
    13Reach2.000
    14ScanEagle3.000
    15ScanEagle 33.000
    16Skyeye 26002.000
    17Skyeye 2930 VTOL2.000
    18Skyeye 36002.000
    19Skyeye 3600 VTOL2.000
    20Skyeye 50002.000
    21Skyeye 5000 VTOL2.000
    22Skyeye 5000 VTOL octo2.000
    23Transition2.000
    24V212.000
    25V252.000
    26V323.000
    27V352.000
    28V393.000
    29Volitation VT3702.000
    30Volitation VT5102.000
    TotalTotal80.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 30.228668858925072 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - AAI Aerosonde = 36.09414654431562 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 4 = 30.466419244333917 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Orbiter 3 = 27.426371766294327 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator Extended Range (ER) = 31.89437620999355 (Similitud)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Skyeye 5000 VTOL octo = 30.290908946357952 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Orbiter 4 = 9403.635180379342 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Orbiter 3 = 6839.1446057940275 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 2600 = 14972.955913461341 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 2930 VTOL = 15999.999999999998 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 VTOL = 16959.091874090493 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL = 16009.435943246384 (Similitud)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 VTOL octo = 16009.476366047784 (Similitud)\n", - "Imputación final aplicada: Área del ala - Aerosonde Mk. 4.8 VTOL FTUAS = 2.503 (Correlación)\n", - "Imputación final aplicada: Área del ala - Fulmar X = 0.94 (Correlación)\n", - "Imputación final aplicada: Área del ala - Orbiter 4 = 1.608 (Correlación)\n", - "Imputación final aplicada: Área del ala - ScanEagle 3 = 1.349 (Correlación)\n", - "Imputación final aplicada: Área del ala - RQ Nan 21A Blackjack = 1.802 (Correlación)\n", - "Imputación final aplicada: Área del ala - V32 = 1.03 (Correlación)\n", - "Imputación final aplicada: Área del ala - V35 = 1.202 (Correlación)\n", - "Imputación final aplicada: Área del ala - V39 = 1.203 (Correlación)\n", - "Imputación final aplicada: Área del ala - Volitation VT370 = 1.424 (Correlación)\n", - "Imputación final aplicada: Área del ala - Volitation VT510 = 1.993 (Correlación)\n", - "Imputación final aplicada: Área del ala - Ascend = 0.771 (Correlación)\n", - "Imputación final aplicada: Área del ala - Transition = 0.986 (Correlación)\n", - "Imputación final aplicada: Área del ala - Reach = 2.329 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Fulmar X = 13.217500000000001 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Orbiter 4 = 13.443 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - ScanEagle 3 = 13.765 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - RQ Nan 21A Blackjack = 12.914 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V25 = 14.421 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2600 = 14.103 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL = 13.032 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 VTOL octo = 12.8555 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Volitation VT510 = 13.099 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Reach = 13.669 (Correlación)\n", - "Imputación final aplicada: Longitud del fuselaje - Aerosonde Mk. 4.8 VTOL FTUAS = 3.5945 (Correlación)\n", - "Imputación final aplicada: Longitud del fuselaje - V39 = 1.954 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.8 VTOL FTUAS = 800.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Integrator = 499.99999999999994 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - ScanEagle 3 = 50.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V21 = 270.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - V25 = 270.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Volitation VT370 = 300.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 2600 = 3270.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 VTOL octo = 800.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Volitation VT510 = 800.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Ascend = 270.0 (Similitud)\n", - "Imputación final aplicada: Alcance de la aeronave - Reach = 800.0 (Similitud)\n", - "Imputación final aplicada: Autonomía de la aeronave - Skyeye 5000 VTOL octo = 11.672906868436865 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 42.25267526977939 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Evo = 33.0 (Similitud)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 2600 = 30.8342888378733 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 18.90746548752 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - V35 = 18.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - V39 = 17.397389995852386 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Skyeye 5000 VTOL = 19.109224697504906 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.8 VTOL FTUAS = 25.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - AAI Aerosonde = 10.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Evo = 14.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V35 = 18.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - V39 = 17.397389995852386 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Volitation VT370 = 24.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL = 25.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Skyeye 5000 VTOL octo = 25.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Ascend = 14.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Transition = 10.0 (Similitud)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Reach = 25.0 (Similitud)\n", - "Imputación final aplicada: envergadura - Aerosonde Mk. 4.8 VTOL FTUAS = 5.644 (Correlación)\n", - "Imputación final aplicada: Cuerda - Fulmar X = 0.319 (Correlación)\n", - "Imputación final aplicada: Cuerda - Orbiter 4 = 0.332 (Correlación)\n", - "Imputación final aplicada: Cuerda - ScanEagle 3 = 0.3115 (Correlación)\n", - "Imputación final aplicada: Cuerda - RQ Nan 21A Blackjack = 0.341 (Correlación)\n", - "Imputación final aplicada: Cuerda - V25 = 0.281 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 2600 = 0.296 (Correlación)\n", - "Imputación final aplicada: payload - AAI Aerosonde = 4.0 (Similitud)\n", - "Imputación final aplicada: payload - Fulmar X = 2.4947559999999998 (Similitud)\n", - "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.8 VTOL FTUAS = 31.0 (Similitud)\n", - "Imputación final aplicada: Empty weight - Fulmar X = 17.463292 (Similitud)\n", - "Imputación final aplicada: Empty weight - V35 = 7.1 (Similitud)\n", - "Imputación final aplicada: Empty weight - V39 = 6.708303497304052 (Similitud)\n", - "Imputación final aplicada: Empty weight - Volitation VT370 = 10.999999999999998 (Similitud)\n", - "Imputación final aplicada: Empty weight - Skyeye 5000 VTOL = 32.140499999999996 (Correlación)\n", - "Imputación final aplicada: Empty weight - Volitation VT510 = 23.959 (Correlación)\n", - "Imputación final aplicada: Velocidad a la que se realiza el crucero (KTAS) - Integrator VTOL = 21.463 (Correlación)\n", - "Imputación final aplicada: Techo de servicio máximo - Integrator VTOL = 7013.834 (Correlación)\n", - "Imputación final aplicada: Área del ala - Orbiter 3 = 1.2 (Correlación)\n", - "Imputación final aplicada: Área del ala - Mantis = 0.754 (Correlación)\n", - "Imputación final aplicada: Área del ala - ScanEagle = 1.063 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator = 1.872 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator VTOL = 2.0895 (Correlación)\n", - "Imputación final aplicada: Área del ala - Integrator Extended Range (ER) = 1.872 (Correlación)\n", - "Imputación final aplicada: Área del ala - DeltaQuad Pro #MAP = 0.7 (Correlación)\n", - "Imputación final aplicada: Área del ala - DeltaQuad Pro #CARGO = 0.7 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Orbiter 3 = 13.9345 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Mantis = 14.755 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - ScanEagle = 14.057 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator = 12.908 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator VTOL = 12.648 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Integrator Extended Range (ER) = 12.84 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Evo = 14.589 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #MAP = 14.714 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - DeltaQuad Pro #CARGO = 14.714 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V21 = 14.568 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V32 = 14.182 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V35 = 13.898 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - V39 = 14.0415 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Volitation VT370 = 13.645 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 2930 VTOL = 14.001 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 = 13.7095 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 3600 VTOL = 13.6715 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Skyeye 5000 = 12.695 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Ascend = 14.349 (Correlación)\n", - "Imputación final aplicada: Relación de aspecto del ala - Transition = 14.223 (Correlación)\n", - "Imputación final aplicada: Longitud del fuselaje - Integrator VTOL = 2.998 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.7 Fixed Wing = 518.9225 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.7 VTOL = 481.428 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Aerosonde Mk. 4.8 Fixed wing = 535.2755 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Orbiter 4 = 509.5565 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - ScanEagle = 503.5155 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Integrator VTOL = 646.0835 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - RQ Nan 21A Blackjack = 565.912 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - V32 = 412.68600000000004 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - V35 = 456.221 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - V39 = 413.556 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 2930 VTOL = 425.273 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 3600 = 458.1245 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Skyeye 5000 = 530.401 (Correlación)\n", - "Imputación final aplicada: Alcance de la aeronave - Transition = 506.641 (Correlación)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Integrator VTOL = 40.216 (Correlación)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #MAP = 29.009 (Correlación)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - DeltaQuad Pro #CARGO = 29.009 (Correlación)\n", - "Imputación final aplicada: Velocidad máxima (KIAS) - Skyeye 3600 = 35.0985 (Correlación)\n", - "Imputación final aplicada: envergadura - Integrator VTOL = 5.033 (Correlación)\n", - "Imputación final aplicada: Cuerda - Aerosonde Mk. 4.8 VTOL FTUAS = 0.394 (Correlación)\n", - "Imputación final aplicada: Cuerda - Orbiter 3 = 0.304 (Correlación)\n", - "Imputación final aplicada: Cuerda - Mantis = 0.271 (Correlación)\n", - "Imputación final aplicada: Cuerda - ScanEagle = 0.2985 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator = 0.3385 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator VTOL = 0.341 (Correlación)\n", - "Imputación final aplicada: Cuerda - Integrator Extended Range (ER) = 0.345 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Evo = 0.2755 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Pro #MAP = 0.272 (Correlación)\n", - "Imputación final aplicada: Cuerda - DeltaQuad Pro #CARGO = 0.272 (Correlación)\n", - "Imputación final aplicada: Cuerda - V21 = 0.278 (Correlación)\n", - "Imputación final aplicada: Cuerda - V32 = 0.292 (Correlación)\n", - "Imputación final aplicada: Cuerda - V35 = 0.306 (Correlación)\n", - "Imputación final aplicada: Cuerda - V39 = 0.307 (Correlación)\n", - "Imputación final aplicada: Cuerda - Volitation VT370 = 0.314 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 2930 VTOL = 0.3 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 3600 = 0.311 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 3600 VTOL = 0.315 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 = 0.3485 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL = 0.338 (Correlación)\n", - "Imputación final aplicada: Cuerda - Skyeye 5000 VTOL octo = 0.3445 (Correlación)\n", - "Imputación final aplicada: Cuerda - Volitation VT510 = 0.335 (Correlación)\n", - "Imputación final aplicada: Cuerda - Ascend = 0.287 (Correlación)\n", - "Imputación final aplicada: Cuerda - Transition = 0.291 (Correlación)\n", - "Imputación final aplicada: Cuerda - Reach = 0.313 (Correlación)\n", - "Imputación final aplicada: payload - Mantis = 2.693 (Correlación)\n", - "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.7 Fixed Wing = 19.796 (Correlación)\n", - "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.7 VTOL = 19.796 (Correlación)\n", - "Imputación final aplicada: Empty weight - Aerosonde Mk. 4.8 Fixed wing = 19.809 (Correlación)\n", - "Imputación final aplicada: Empty weight - Orbiter 4 = 18.365 (Correlación)\n", - "Imputación final aplicada: Empty weight - Orbiter 3 = 12.237 (Correlación)\n", - "Imputación final aplicada: Empty weight - Mantis = 5.633 (Correlación)\n", - "Imputación final aplicada: Empty weight - ScanEagle = 10.192 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator = 22.195 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator VTOL = 24.7845 (Correlación)\n", - "Imputación final aplicada: Empty weight - Integrator Extended Range (ER) = 22.256999999999998 (Correlación)\n", - "Imputación final aplicada: Empty weight - ScanEagle 3 = 14.794 (Correlación)\n", - "Imputación final aplicada: Empty weight - RQ Nan 21A Blackjack = 21.123 (Correlación)\n", - "Imputación final aplicada: Empty weight - DeltaQuad Pro #MAP = 4.754 (Correlación)\n", - "Imputación final aplicada: Empty weight - DeltaQuad Pro #CARGO = 4.754 (Correlación)\n", - "\n", - "=== Iteración 1: Resumen después de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Después de Iteración 1

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE2.000
    1Stalker VXE302.000
    2Aerosonde Mk. 4.7 Fixed Wing2.000
    3Aerosonde Mk. 4.7 VTOL2.000
    4Aerosonde Mk. 4.8 Fixed wing2.000
    5Aerosonde Mk. 4.8 VTOL FTUAS0.000
    6AAI Aerosonde0.000
    7Fulmar X2.000
    8Orbiter 42.000
    9Orbiter 32.000
    10Mantis3.000
    11ScanEagle2.000
    12Integrator2.000
    13Integrator VTOL2.000
    14Integrator Extended Range (ER)2.000
    15ScanEagle 32.000
    16RQ Nan 21A Blackjack2.000
    17DeltaQuad Evo0.000
    18DeltaQuad Pro #MAP2.000
    19DeltaQuad Pro #CARGO2.000
    20V210.000
    21V250.000
    22V320.000
    23V350.000
    24V390.000
    25Volitation VT3700.000
    26Skyeye 26000.000
    27Skyeye 2930 VTOL0.000
    28Skyeye 36002.000
    29Skyeye 3600 VTOL0.000
    30Skyeye 50001.000
    31Skyeye 5000 VTOL0.000
    32Skyeye 5000 VTOL octo0.000
    33Volitation VT5100.000
    34Ascend0.000
    35Transition0.000
    36Reach0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes38.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "================================================================================\n", - "\u001b[1m=== FIN DE ITERACIÓN 1 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 2 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "=== Iteración 2: Resumen antes de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Antes de Iteración 2

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE32.000
    1Stalker VXE3033.000
    2Aerosonde Mk. 4.7 Fixed Wing30.000
    3Aerosonde Mk. 4.7 VTOL29.000
    4Aerosonde Mk. 4.8 Fixed wing33.000
    5Aerosonde Mk. 4.8 VTOL FTUAS33.000
    6AAI Aerosonde30.000
    7Fulmar X36.000
    8Orbiter 436.000
    9Orbiter 336.000
    10Mantis36.000
    11ScanEagle35.000
    12Integrator35.000
    13Integrator VTOL34.000
    14Integrator Extended Range (ER)37.000
    15ScanEagle 335.000
    16RQ Nan 21A Blackjack34.000
    17DeltaQuad Evo28.000
    18DeltaQuad Pro #MAP32.000
    19DeltaQuad Pro #CARGO32.000
    20V2128.000
    21V2528.000
    22V3228.000
    23V3531.000
    24V3931.000
    25Volitation VT37030.000
    26Skyeye 260033.000
    27Skyeye 2930 VTOL32.000
    28Skyeye 360034.000
    29Skyeye 3600 VTOL31.000
    30Skyeye 500030.000
    31Skyeye 5000 VTOL30.000
    32Skyeye 5000 VTOL octo30.000
    33Volitation VT51030.000
    34Ascend29.000
    35Transition29.000
    36Reach29.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes1179.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 2 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m\n", - "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Skyeye 3600 - Techo de servicio máximo ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Skyeye 5000 - Techo de servicio máximo ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Stalker XE - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Mantis - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Stalker XE - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Fulmar X - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Mantis - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 2 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\n", - "=== DataFrame inicial ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
    Modelo
    Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
    Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440530.22866936.09414730.40658430.46641927.42637218.26582630.62533630.95346521.46331.89437625.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.62533630.29090932.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429403.635186839.144606NaN19500.019500.07013.83419500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.014972.95591316000.0NaN16959.091874NaN16009.43594316009.47636617000.010000.013000.016000.0
    Velocidad de pérdida limpia (KCAS)NaNNaNNaNNaNNaN25.010.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.0NaNNaN14.015.517.018.017.3973924.010.018.012.524.015.025.025.025.014.010.025.0
    Área del ala0.871.1582831.551.551.552.5030.570.941.6081.20.7541.0631.8722.08951.8721.3491.8020.840.70.70.80.521.031.2021.2031.4240.881.01.331.322.6152.6152.6151.9930.7710.9862.329
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44313.934514.75514.05712.90812.64812.8413.76512.91414.58914.71414.71414.56814.42114.18213.89814.041513.64514.10314.00113.709513.671512.69513.03212.855513.09914.34914.22313.669
    Longitud del fuselaje2.12.59083.03.03.03.59451.71.21.21.21.481.712.52.9982.52.42.50.750.90.90.930.931.01.881.9542.022.052.032.4882.423.53.53.52.9051.5622.34.712
    Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0518.9225481.428535.2755800.03270.0800.0509.556550.025.0503.5155500.0646.0835500.050.0565.912270.0100.0100.0270.0270.0412.686456.221413.556300.03270.0425.273458.1245300.0530.401800.0800.0800.0270.0506.641800.0
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.011.6729075.06.012.020.0
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388642.25267530.84572541.736.036.025.641.246.340.21646.341.246.333.029.00929.00933.033.033.033.033.033.030.83428930.035.098533.042.042.038.050.030.030.035.0
    Velocidad de pérdida (KCAS)NaNNaNNaNNaNNaN18.90746510.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.0NaNNaN14.015.517.018.017.3973924.010.018.012.524.015.019.10922524.025.013.013.013.0
    Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    envergadura3.6574.87684.44.44.45.6442.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3190.3320.3040.2710.29850.33850.3410.3450.31150.3410.27550.2720.2720.2780.2810.2920.3060.3070.3140.2960.30.3110.3150.34850.3380.34450.3350.2870.2910.313
    payload2.4947562.49475614.511.317.722.74.02.49475612.05.52.6935.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
    Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
    RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
    RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
    Empty weight10.88620817.46329219.79619.79619.80931.010.017.46329218.36512.2375.63310.19222.19524.784522.25714.79421.1234.84.7544.7542.653.456.457.16.70830311.06.57.111.511.032.032.140535.023.9593.05.831.0
    Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
    Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
    ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
    Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
    Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Convertir todo a numérico ===\n", - "\n", - "\n", - "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", - "\n", - "Umbral seleccionado para correlaciones significativas: 0.7\n", - "\n", - "=== Cálculo de tabla completa ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despegue1.0000.0630.427nan-0.3420.269-0.2500.2220.4250.1680.054-0.0780.241-0.3110.1050.2000.229nan0.389nan0.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
    Altitud a la que se realiza el crucero0.0631.0000.0110.0900.331-0.0750.105-0.092nan-0.095-0.309-0.278-0.0640.343-0.0800.109-0.114nannannan-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
    Velocidad a la que se realiza el crucero (KTAS)0.4270.0111.0000.1220.2080.497-0.6070.4280.9170.5530.5450.4230.6340.1610.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.2900.0630.5630.120-0.076nannan
    Techo de servicio máximonan0.0900.1221.0000.0070.083-0.0170.1210.5460.1170.1010.0160.0050.0260.0170.0180.107-0.8750.0990.579-0.018-0.961-0.118-0.7570.515-0.1710.1740.058-0.1740.176nannan
    Velocidad de pérdida limpia (KCAS)-0.3420.3310.2080.0071.0000.711-0.6890.595nan0.768-0.3430.1600.5870.8170.7740.6700.705-0.1810.4280.9360.662-0.181-0.8740.2240.5320.118-0.2530.261-0.2530.365nannan
    Área del ala0.269-0.0750.4970.0830.7111.000-0.7780.8350.9840.970-0.0230.3830.6480.4570.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
    Relación de aspecto del ala-0.2500.105-0.607-0.017-0.689-0.7781.000-0.624-0.681-0.790-0.003-0.456-0.730-0.567-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.2960.024-0.001-0.471-0.1410.075nannan
    Longitud del fuselaje0.222-0.0920.4280.1210.5950.835-0.6241.0000.9380.8060.1400.4030.3630.2450.7190.6230.660-0.6170.5740.9260.834-0.6960.6460.9290.036-0.2030.1380.6120.0340.040nannan
    Ancho del fuselaje0.425nan0.9170.546nan0.984-0.6810.9381.0000.9860.833-0.0890.940nan0.6710.5570.868nan0.944nan0.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
    Peso máximo al despegue (MTOW)0.168-0.0950.5530.1170.7680.970-0.7900.8060.9861.0000.0300.4200.7170.5230.8110.7510.882-0.4010.7080.9790.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
    Alcance de la aeronave0.054-0.3090.5450.101-0.343-0.023-0.0030.1400.8330.0301.0000.2240.013-0.429-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
    Autonomía de la aeronave-0.078-0.2780.4230.0160.1600.383-0.4560.403-0.0890.4200.2241.0000.378-0.0980.5410.2690.400-0.5940.3370.6340.486-0.7150.8020.056-0.7320.033-0.4200.4780.353-0.314nannan
    Velocidad máxima (KIAS)0.241-0.0640.6340.0050.5870.648-0.7300.3630.9400.7170.0130.3781.0000.5000.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.067-0.0570.3000.178-0.141nannan
    Velocidad de pérdida (KCAS)-0.3110.3430.1610.0260.8170.457-0.5670.245nan0.523-0.429-0.0980.5001.0000.5570.5570.6401.0000.4140.4340.3701.000-0.8740.0360.5320.121-0.2220.211-0.2220.381nannan
    envergadura0.105-0.0800.4210.0170.7740.825-0.6300.7190.6710.811-0.0430.5410.4910.5571.0000.6860.775-0.2580.5010.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
    Cuerda0.2000.1090.3960.0180.6700.787-0.8620.6230.5570.751-0.2240.2690.6270.5570.6861.0000.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
    payload0.229-0.1140.5670.1070.7050.854-0.8260.6600.8680.8820.0190.4000.7180.6400.7750.7581.000-0.0240.6700.5590.784-0.1420.4890.7110.846-0.0080.0530.4620.100-0.055nannan
    duracion en VTOLnannan-0.694-0.875-0.181-0.3830.519-0.617nan-0.401-0.525-0.594-0.0771.000-0.258-0.499-0.0241.000-0.694-0.402-0.3151.000nannannannan-0.188-0.9040.188-0.188nannan
    Crucero KIAS0.389nan0.9730.0990.4280.692-0.7690.5740.9440.7080.5240.3370.7000.4140.5010.7300.670-0.6941.0000.7230.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
    RTF (Including fuel & Batteries)nannan0.7900.5790.9360.965-0.4970.926nan0.9790.9360.6340.7260.4340.9500.5950.559-0.4020.7231.0000.948-0.402nannannannan0.0970.428-0.0970.097nannan
    Empty weight0.225-0.1210.503-0.0180.6620.944-0.7460.8340.9540.9330.0810.4860.6130.3700.8060.7240.784-0.3150.6360.9481.000-0.3860.7850.9800.2510.023-0.0290.4800.195-0.070nannan
    Maximum Crosswindnan0.038-0.854-0.961-0.181-0.4660.432-0.696nan-0.464-0.711-0.715-0.2231.000-0.414-0.498-0.1421.000-0.855-0.402-0.3861.000nannannannannan-0.943nannannannan
    Rango de comunicaciónnan-0.3250.480-0.118-0.8740.491-0.4090.6460.3230.5140.4670.8020.151-0.8740.6480.3550.489nan0.359nan0.785nan1.000nannannan-0.4300.6040.430-0.430nannan
    Capacidad combustible-0.018nan0.365-0.7570.2240.974-0.9700.929nan0.9760.8480.0560.7270.0360.2970.9750.711nan0.581nan0.980nannan1.0000.3770.817-0.080nan-0.0800.270nannan
    Consumo-0.240nan0.4610.5150.5320.2880.2960.0361.0000.7580.837-0.7320.9100.5320.085-0.2280.846nan0.461nan0.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
    Precio-0.156nan-0.290-0.1710.1180.0360.024-0.203nan0.052-0.1480.0330.0670.1210.032-0.041-0.008nan-0.243nan0.023nannan0.8170.9981.000-0.1380.217-0.1380.134nannan
    Despegue0.735-0.1190.0630.174-0.2530.125-0.0010.1380.7940.0900.157-0.420-0.057-0.222-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
    Propulsión horizontal0.154-0.1090.5630.0580.2610.476-0.4710.612nan0.4670.3170.4780.3000.2110.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
    Propulsión vertical0.6710.1870.120-0.174-0.2530.072-0.1410.034-0.5350.023-0.2130.3530.178-0.2220.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
    Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1760.3650.0370.0750.0400.5740.0750.210-0.314-0.1410.381-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores1024.000
    1Valores numéricos820.000
    2Valores NaN204.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Filtrando datos seleccionados ===\n", - "\n", - "=== Cálculo de correlaciones filtradas ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)1.0000.1220.497-0.6070.4280.5530.5450.4230.6340.1610.2080.4210.3960.5670.503
    Techo de servicio máximo0.1221.0000.083-0.0170.1210.1170.1010.0160.0050.0260.0070.0170.0180.107-0.018
    Área del ala0.4970.0831.000-0.7780.8350.970-0.0230.3830.6480.4570.7110.8250.7870.8540.944
    Relación de aspecto del ala-0.607-0.017-0.7781.000-0.624-0.790-0.003-0.456-0.730-0.567-0.689-0.630-0.862-0.826-0.746
    Longitud del fuselaje0.4280.1210.835-0.6241.0000.8060.1400.4030.3630.2450.5950.7190.6230.6600.834
    Peso máximo al despegue (MTOW)0.5530.1170.970-0.7900.8061.0000.0300.4200.7170.5230.7680.8110.7510.8820.933
    Alcance de la aeronave0.5450.101-0.023-0.0030.1400.0301.0000.2240.013-0.429-0.343-0.043-0.2240.0190.081
    Autonomía de la aeronave0.4230.0160.383-0.4560.4030.4200.2241.0000.378-0.0980.1600.5410.2690.4000.486
    Velocidad máxima (KIAS)0.6340.0050.648-0.7300.3630.7170.0130.3781.0000.5000.5870.4910.6270.7180.613
    Velocidad de pérdida (KCAS)0.1610.0260.457-0.5670.2450.523-0.429-0.0980.5001.0000.8170.5570.5570.6400.370
    Velocidad de pérdida limpia (KCAS)0.2080.0070.711-0.6890.5950.768-0.3430.1600.5870.8171.0000.7740.6700.7050.662
    envergadura0.4210.0170.825-0.6300.7190.811-0.0430.5410.4910.5570.7741.0000.6860.7750.806
    Cuerda0.3960.0180.787-0.8620.6230.751-0.2240.2690.6270.5570.6700.6861.0000.7580.724
    payload0.5670.1070.854-0.8260.6600.8820.0190.4000.7180.6400.7050.7750.7581.0000.784
    Empty weight0.503-0.0180.944-0.7460.8340.9330.0810.4860.6130.3700.6620.8060.7240.7841.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos225.000
    2Valores NaN0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannannannannannannannannan
    Techo de servicio máximonannannannannannannannannannannannannannannan
    Área del alanannannan-0.7780.8350.970nannannannan0.7110.8250.7870.8540.944
    Relación de aspecto del alanannan-0.778nannan-0.790nannan-0.730nannannan-0.862-0.826-0.746
    Longitud del fuselajenannan0.835nannan0.806nannannannannan0.719nannan0.834
    Peso máximo al despegue (MTOW)nannan0.970-0.7900.806nannannan0.717nan0.7680.8110.7510.8820.933
    Alcance de la aeronavenannannannannannannannannannannannannannannan
    Autonomía de la aeronavenannannannannannannannannannannannannannannan
    Velocidad máxima (KIAS)nannannan-0.730nan0.717nannannannannannannan0.718nan
    Velocidad de pérdida (KCAS)nannannannannannannannannannan0.817nannannannan
    Velocidad de pérdida limpia (KCAS)nannan0.711nannan0.768nannannan0.817nan0.774nan0.705nan
    envergaduranannan0.825nan0.7190.811nannannannan0.774nannan0.7750.806
    Cuerdanannan0.787-0.862nan0.751nannannannannannannan0.7580.724
    payloadnannan0.854-0.826nan0.882nannan0.718nan0.7050.7750.758nan0.784
    Empty weightnannan0.944-0.7460.8340.933nannannannannan0.8060.7240.784nan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos62.000
    2Valores NaN163.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Preparando datos para el heatmap ===\n", - "\n", - "=== Generando heatmap ===\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwUzR8H8M/R3Q3SLaCo2IGBKHYnKHY9to/d3diJIAY2BiKKKCYqKAaKigiiEiodkre/P5CT4+4Iycff9+3rXi/Zm52d2dnZ25ubYDEMw4AQQgghhBBCCCGEEFLjhOo6AYQQQgghhBBCCCGE/L+gxjhCCCGEEEIIIYQQQmoJNcYRQgghhBBCCCGEEFJLqDGOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEmqMI4QQQgghhBBCCCGkllBjHCGEEEIIIYQQQgghtYQa4wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hxjhCCCH/aZ6enmCxWAgNDeX7fs+ePaGvr1+jaXj48CFWrFiB1NTUGj1OXVixYgVYLFa1x/vy5Uu4urrCwMAAEhISkJGRQZMmTbBp0yYkJydX+/GqIigoCCwWC0FBQTUSf0xMDFgsFjw9PWsk/ro2evToaquDtra20NbWRmFhocAwbdq0gYqKCvLy8qp8vKqUfXn3ppKq8xxVFMMwOHXqFNq1awc1NTVISEhAR0cHjo6OOHz48B/FaW9vD3t7++pNaCXV1D2rurFYLKxYsaLWj3vv3j2Ii4vj06dPnG36+vro2bMn3/ChoaHVfn+qTN2oDv+Va6JYZmYmZs6cCS0tLUhISKBx48Y4depUhfa1t7cHi8US+EpISAAA5Ofnw8jICG5ubjWYE0JIWagxjhBCCKmihw8fYuXKlX9lY1xNOHToEJo2bYqQkBDMmzcP/v7+8PHxwaBBg7B//36MHTu2rpNYqzQ1NREcHIwePXrUdVLqvbFjxyIuLg7Xr1/n+/779+/x8OFDODs7Q0xMrMrHa9KkCYKDg9GkSZMqx1XfLFy4EMOGDYOFhQUOHz6Ma9euYc2aNVBXV8elS5fqOnl/bNy4cQgODq7rZNRLDMNg5syZGD9+PPT09Oo6OUSA/v374+jRo1i+fDmuXbsGOzs7DBs2DCdPnix337179yI4OJjrFRgYCFFRUbRs2RIaGhoAAFFRUSxbtgyrVq1CUlJSTWeJEMKHSF0ngBBCCCH/P4KDgzF58mQ4ODjg4sWLEBcX57zn4OCAOXPmwN/fv1qOlZ2dDSkpKZ7thYWFKCgo4Dp2XRIXF0fLli3rOhn/CSNGjMC8efNw5MgRODk58bx/5MgRAMCYMWOqdJz8/HywWCzIycn9lWXz8+dPuLm5wcXFBQcPHuR6b/To0WCz2XWUsqrT0dGBjo5OXSejXvL398ezZ88q1KhTnwm6t1dVfHw8pKWlIScnV+1xV5Sfnx8CAgJw8uRJDBs2DADQsWNHfPr0CfPmzcOQIUMgLCwscH9LS0uebUePHkV+fj7GjRvHtX3YsGGYPXs2Dhw4gEWLFlVvRggh5aKecYQQQv7vMAyDvXv3onHjxpCUlISioiIGDhyIjx8/coULCAhAnz59oKOjAwkJCRgbG2PixIn48eMHJ8yKFSswb948AICBgQFnKEjxsLbi4T++vr6wtbWFpKQkLCws4OvrC6BouI6FhQWkpaXRvHlznmE7oaGhGDp0KPT19SEpKQl9fX0MGzaMa4hRcTwsFgsBAQFwdXWFkpISpKWl0atXL558CXL16lU0btwY4uLiMDAwwJYtW6p0/vhZt24dWCwWDh48yLcxTExMDL179+b8zWazsWnTJpibm0NcXBxqampwcXHBly9fuPazt7eHlZUV7t69i9atW0NKSgpjxozhDAHdtGkT1qxZAwMDA4iLi+P27dsAis5v7969oaSkBAkJCdja2uLMmTPl5qOi5QIAX79+xYQJE9CgQQOIiYlBS0sLAwcORGJiIgDBw1Tv37+Pzp07Q1ZWFlJSUmjdujWuXr3KFaa43G/fvo3JkydDRUUFysrK6N+/P+Li4njScvr0abRq1QrS0tKQkZGBo6MjwsLCuMJ8/PgRQ4cOhZaWFsTFxaGuro7OnTvj+fPn5Z4XT09PmJmZQVxcHBYWFvDy8uIbLi8vD2vWrOGUq6qqKlxdXfH9+/cy41dUVES/fv1w5coVnt4chYWFOHbsGOzs7GBtbY0PHz7A1dUVJiYmkJKSgra2Nnr16oVXr15x7Vc8FPXYsWOYM2cOtLW1IS4ujg8fPvAdplqZsgeAlJSUP6qTFa1nYWFh6NmzJ9TU1CAuLg4tLS306NGDp46UlJWVhdzcXGhqavJ9X0iI+yvCn5ZXZfc9efIkWrVqBRkZGcjIyKBx48Zwd3fnCuPv74/OnTtDXl4eUlJSsLCwwPr16znv8xuSWNn7SEhICNq1awcpKSkYGhpiw4YNXA2UOTk5mDNnDho3bgx5eXkoKSmhVatWfHsUpqenY/z48VBWVoaMjAy6deuG9+/f84Sr6PXKZrOxZs0amJmZQVJSEgoKCrCxscGOHTvKKIUi+/btg52dHczMzMoNW5bRo0dDRkYGb9++haOjI6SlpaGpqYkNGzYAAB49eoS2bdtCWloapqamOHr0KN94KlI3BN3bgaL7WdeuXaGpqcn5bF2wYAGysrL+KF/Xr1+Huro6Bg4ciAsXLiAnJ+eP4qkKHx8fyMjIYNCgQVzbXV1dERcXh8ePH1c6Tnd3d8jIyGDIkCFc28XExDBkyBAcPHgQDMNUKd2EkMqjxjhCCCF/heLeTqVf/B4wJ06ciJkzZ6JLly64ePEi9u7di9evX6N169acBhIAiIqKQqtWrbBv3z7cuHEDy5Ytw+PHj9G2bVvk5+cDKBoS9c8//wAALly4wBkWUnJY24sXL7Bw4ULMnz8fFy5cgLy8PPr374/ly5fj8OHDWLduHU6cOIG0tDT07NkTP3/+5OwbExMDMzMzuLm54fr169i4cSPi4+NhZ2fH1ShYbOzYsRASEsLJkyfh5uaGJ0+ewN7evtwhtIGBgejTpw9kZWVx6tQpbN68GWfOnIGHh8cfnz9+ZXTr1i00bdoUDRo0KDM9xSZPnoz58+fDwcEBly9fxurVq+Hv74/WrVvz5D8+Ph4jR47E8OHD4efnhylTpnDe27lzJ27duoUtW7bg2rVrMDc3x+3bt9GmTRukpqZi//79uHTpEho3bowhQ4aUOz9SRcvl69evsLOzg4+PD2bPno1r167Bzc0N8vLySElJERj/nTt30KlTJ6SlpcHd3R3e3t6QlZVFr169cPr0aZ7w48aNg6ioKE6ePIlNmzYhKCgII0eO5Aqzbt06DBs2DJaWljhz5gyOHTuGjIwMtGvXDm/evOGEc3JywtOnT7Fp0yYEBARg3759sLW1Lfca8vT0hKurKywsLHD+/HksWbIEq1evxq1bt7jCsdls9OnTBxs2bMDw4cNx9epVbNiwAQEBAbC3t+e6/vkZO3Ys8vLycPz4ca7t169fR1xcHGeYc1xcHJSVlbFhwwb4+/tjz549EBERQYsWLfDu3TueeBcuXIjY2Fjs378fV65cgZqaGt/j11adrEg9y8rKgoODAxITE7Fnzx4EBATAzc0Nurq6yMjIEBi3iooKjI2NsXfvXmzbtg1v374V+GW8KuVVmX2XLVuGESNGQEtLC56envDx8cGoUaO4Gjnd3d3h5OQENpvNKafp06eX2fAIVO4+kpCQgBEjRmDkyJG4fPkyunfvjoULF3Jdb7m5uUhOTsbcuXNx8eJFeHt7o23btujfvz9XAzTDMOjbty+nodfHxwctW7ZE9+7dedJY0et106ZNWLFiBYYNG4arV6/i9OnTGDt2bLnXU15eHm7evImOHTuWGa6i8vPz0b9/f/To0QOXLl3inKdFixZh1KhRGDNmDHx8fGBmZobRo0fj6dOnPHFUtG4IurdHRkbCyckJ7u7u8Pf3x8yZM3HmzBn06tXrj/LUr18/7Ny5EykpKRg8eDDU1dUxevRoXL9+vcx5KhmG4fv8we9VnvDwcFhYWEBEhHsAm42NDef9yoiMjMS9e/cwdOhQyMjI8Lxvb2+PT58+VTpeQkg1YAghhJD/MA8PDwZAmS89PT1O+ODgYAYAs3XrVq54Pn/+zEhKSjL//vsv3+Ow2WwmPz+f+fTpEwOAuXTpEue9zZs3MwCY6Ohonv309PQYSUlJ5suXL5xtz58/ZwAwmpqaTFZWFmf7xYsXGQDM5cuXBea3oKCAyczMZKSlpZkdO3bwnId+/fpxhX/w4AEDgFmzZo3AOBmGYVq0aMFoaWkxP3/+5GxLT09nlJSUmJKPC396/hiGYRISEhgAzNChQ8tMS7GIiAgGADNlyhSu7Y8fP2YAMIsWLeJs69ChAwOACQwM5AobHR3NAGCMjIyYvLw8rvfMzc0ZW1tbJj8/n2t7z549GU1NTaawsJBhGIa5ffs2A4C5ffu2wLQKKpcxY8YwoqKizJs3bwTuW5xGDw8PzraWLVsyampqTEZGBtcxrKysGB0dHYbNZjMM87vcS5+jTZs2MQCY+Ph4hmEYJjY2lhEREWH++ecfrnAZGRmMhoYGM3jwYIZhGObHjx8MAMbNzU1gevkpLCxktLS0mCZNmnDSxjAMExMTw4iKinLVQW9vbwYAc/78ea44QkJCGADM3r17yzwWm81mDAwMGBsbG67tAwYMYKSkpJi0tDS++xUUFDB5eXmMiYkJM2vWLM724vJt3749zz5VKfvK1MlRo0b90X0qNDSUAcBcvHhRYPoEefLkCaOrq8u5T8rKyjI9e/ZkvLy8uMqwMuXVoUMHpkOHDpXe9+PHj4ywsDAzYsQIgenNyMhg5OTkmLZt23Klr7Tly5dz3bP+5D7y+PFjrrCWlpaMo6OjwGMWFBQw+fn5zNixYxlbW1vO9mvXrjEAuK4LhmGYtWvXMgCY5cuXlxknv+u1Z8+eTOPGjQXuJ0hxfk+dOsXznp6eHtOjRw+++xWXVcn706hRo3jKNT8/n1FVVWUAMM+ePeNsT0pKYoSFhZnZs2dztlWmbgi6t5dW/Bl9584dBgDz4sULznulr4mKSEhIYHbt2sW0adOGYbFYjJqaGjN16lTm/v37PNdfRZ5Dil/lMTEx4XutxcXFMQCYdevWVSof8+fPZwAwwcHBfN+PjIxkADD79u2rVLyEkKqjnnGEEEL+Cl5eXggJCeF5tW3bliucr68vWCwWRo4cyfVrtYaGBho1asQ1HO3bt2+YNGkSGjRoABEREYiKinImvY6IiKhw2ho3bgxtbW3O3xYWFgCKfpEuOe9N8faSPUEyMzMxf/58GBsbQ0REBCIiIpCRkUFWVhbfNIwYMYLr79atW0NPT48zLJOfrKwshISEoH///pCQkOBsL+6JVVJlzl9VFad59OjRXNubN28OCwsLBAYGcm1XVFREp06d+MbVu3dviIqKcv7+8OED3r59yzlfJfPi5OSE+Ph4vr2nilW0XK5du4aOHTtyyrYisrKy8PjxYwwcOJCrJ4OwsDCcnZ3x5csXnrSVHNoL/O5FUXwtXb9+HQUFBXBxceHKq4SEBDp06MApNyUlJRgZGWHz5s3Ytm0bwsLCKjR/2Lt37xAXF4fhw4dzDRHU09ND69atucL6+vpCQUEBvXr14kpL48aNoaGhUe41xGKx4OrqipcvX3J62yQlJeHKlSsYMGAAZ76ngoICrFu3DpaWlhATE4OIiAjExMQQGRnJt+4MGDCg3HwCtVMnK1rPjI2NoaioiPnz52P//v1cPRzLY2dnhw8fPsDf3x+LFi1Cq1atEBgYCBcXF/Tu3ZvTU64q5VXRfQMCAlBYWIipU6cKjOvhw4dIT0/HlClTKrUyZmXvIxoaGmjevDnXNhsbG55hyGfPnkWbNm0gIyPD+Xxwd3fnugaKj136Ghg+fDhPOit6vTZv3hwvXrzAlClTcP36daSnp1foPBQPWxfU47OyWCwW17yNIiIiMDY2hqamJmxtbTnblZSUoKamxncYd0XrhqB7+8ePHzF8+HBoaGhAWFgYoqKi6NChA4DKfUbzo66ujmnTpuH+/fv49OkT/v33X07PeAMDA66hsL169eL7/MHvVRFlXd+VufYLCgpw9OhRNGzYUODcl8XXw9evXyscLyGketACDoQQQv4KFhYWaNasGc92eXl5fP78mfN3YmIiGIaBuro633gMDQ0BFA2v6tq1K+Li4rB06VJYW1tDWloabDYbLVu2LHcoXUlKSkpcfxev8ihoe8l5aoYPH47AwEAsXboUdnZ2kJOT43wJ4peG4pXSSm8ra7W0lJQUsNlsgfuWVNHzx4+KigqkpKQQHR0tMExJxWnmN6+VlpYWz5c7QfNf8XuveJjf3LlzMXfuXL778BtyWKyi5fL9+/dKTyafkpIChmEE5hsAT3kqKytz/V08H19xWorza2dnx/eYxXOEsVgsBAYGYtWqVdi0aRPmzJkDJSUljBgxAmvXroWsrCzf/YvTI+gaiomJ4fydmJiI1NRUgaudlnXei7m6umLFihXw8PBA06ZNceLECeTl5XGtxDt79mzs2bMH8+fPR4cOHaCoqAghISGMGzeOb90p6/opqTbqZEXrmby8PO7cuYO1a9di0aJFSElJgaamJsaPH48lS5ZwNUDzIyoqCkdHRzg6OgIoKseBAwfC19cX165dg5OTU5XKq6L7Fs8fV1ZdqUgYfip7Hyldl4Ci+lSybC9cuIDBgwdj0KBBmDdvHjQ0NCAiIoJ9+/ZxFhEpPraIiAhPnPyuiYperwsXLoS0tDSOHz+O/fv3Q1hYGO3bt8fGjRv5fgYWK46j5A8uxURERAQOwyweWln6WpKSkuKJS0xMjOdzrXg7v/nXKlo3+JVdZmYm2rVrBwkJCaxZswampqaQkpLC58+f0b9//0p9RpcnLS0NqampSEtLAwBO2RRTUlKCvLx8tRxLWVmZ770hOTmZc6yK8vPzQ0JCAubPny8wTHEZVuf5IoRUDDXGEUII+b+ioqICFouFe/fu8V1AoHhbeHg4Xrx4AU9PT4waNYrz/ocPH2otrWlpafD19cXy5cuxYMECzvbi+Yr4SUhI4LvN2NhY4HEUFRXBYrEE7ltSRc8fP8LCwujcuTOuXbuGL1++lPuluvgLbHx8PE/YuLg4qKiocG2rTG+C4n0XLlyI/v37891H0CTnlSkXVVXVcuezKq34i158fDzPe8W9W0rnvTzF4c+dO8fp3SmInp4eZ9L89+/f48yZM1ixYgXy8vKwf/9+vvsUl1VFryFlZWWBq+YKavArSUdHB127dsXJkyexdetWeHh4wNjYGO3bt+eEOX78OFxcXLBu3TqufX/8+AEFBQWeOCvS46S26mRl6pm1tTVOnToFhmHw8uVLeHp6YtWqVZCUlORKY0UoKytj5syZCAoKQnh4OJycnKpUXhXdV1VVFQDw5csXgfNJlgxTGZW9j1TE8ePHYWBggNOnT3NdN7m5uTzHLigoQFJSEleDHL9roqLXq4iICGbPno3Zs2cjNTUVN2/exKJFi+Do6IjPnz8LXGW0OJ/8rlN1dXWBPaOKtwtqGK6KitYNfnXz1q1biIuLQ1BQEKc3HIBy586rqPfv3+P06dM4deoU3rx5A2NjYwwbNgzDhw+Hubk5V9ijR4/C1dW1QvEy5SyUYG1tDW9vbxQUFHDNG1e8kIeVlVWF8+Du7g4xMTE4OzsLDFN8PfxJPSCEVA0NUyWEEPJ/pWfPnmAYBl+/fkWzZs14XtbW1gB+P/yX/iJ84MABnjhL90KqLiwWCwzD8KTh8OHDAnsxnDhxguvvhw8f4tOnT7C3txd4nOKVXEuvHpeRkYErV65wha3o+RNk4cKFYBgG48ePR15eHs/7+fn5nGMWD0sqPVF/SEgIIiIi0Llz5zKPVRYzMzOYmJjgxYsXfPPRrFkzgY0MlSmX7t274/bt22UOeS1NWloaLVq0wIULF7iuKTabjePHj0NHRwempqaVyC3g6OgIERERREVFCcwvP6ampliyZAmsra3x7NkzgfGbmZlBU1MT3t7eXF82P336hIcPH3KF7dmzJ5KSklBYWMg3HRVd6XHs2LFISUnBsmXL8Pz5c7i6unJ9aWexWDxldPXq1SoNx6qtOvkn9YzFYqFRo0bYvn07FBQUyiyv/Px8gT3ziof3FffCrEp5VXTfrl27QlhYGPv27RMYV+vWrSEvL4/9+/dXauXHmriPsFgsiImJcV1vCQkJPKupFi+WUPoaOHnyJN84K3u9KigoYODAgZg6dSqSk5O5eqCWVjxUPioqiue9Ll26IDw8nO8w5zNnzkBGRgYtWrQQGPef+pO6Uawyn9EV9e3bN2zcuBG2trYwMzPD/v370bVrVzx58gSRkZFYtWoVT0McUL3DVPv164fMzEycP3+ea/vRo0ehpaVV4XJISEiAn58f+vbty7e3Z7Hi1WstLS0rFC8hpPpQzzhCCCH/V9q0aYMJEybA1dUVoaGhaN++PaSlpREfH4/79+/D2toakydPhrm5OYyMjLBgwQIwDAMlJSVcuXIFAQEBPHEWfzHesWMHRo0aBVFRUZiZmVWoh09Z5OTk0L59e2zevBkqKirQ19fHnTt34O7uzrdnDwCEhoZi3LhxGDRoED5//ozFixdDW1uba2VRflavXo1u3brBwcEBc+bMQWFhITZu3AhpaWmunhQVPX+CFK9OO2XKFDRt2hSTJ09Gw4YNkZ+fj7CwMBw8eBBWVlbo1asXzMzMMGHCBOzatQtCQkLo3r07YmJisHTpUjRo0ACzZs36o/Na7MCBA+jevTscHR0xevRoaGtrIzk5GREREXj27BnOnj3Ld7/KlMuqVatw7do1tG/fHosWLYK1tTVSU1Ph7++P2bNn8/1iBwDr16+Hg4MDOnbsiLlz50JMTAx79+5FeHg4vL29KzVvEADo6+tj1apVWLx4MT5+/Ihu3bpBUVERiYmJePLkCaSlpbFy5Uq8fPkS06ZNw6BBg2BiYgIxMTHcunULL1++LLOXlZCQEFavXo1x48ahX79+GD9+PFJTU7FixQqeoWhDhw7FiRMn4OTkhBkzZqB58+YQFRXFly9fcPv2bfTp0wf9+vUrN0+9e/eGiooKNm/eDGFhYa4erEBRQ5CnpyfMzc1hY2ODp0+fYvPmzZUe5lhSbdXJitYzX19f7N27F3379oWhoSEYhsGFCxeQmpoKBwcHgfGnpaVBX18fgwYNQpcuXdCgQQNkZmYiKCgIO3bsgIWFBafHaFXKq6L76uvrY9GiRVi9ejV+/vyJYcOGQV5eHm/evMGPHz+wcuVKyMjIYOvWrRg3bhy6dOmC8ePHQ11dHR8+fMCLFy+we/duvmmoiftIz549ceHCBUyZMgUDBw7E58+fsXr1amhqaiIyMpITrmvXrmjfvj3+/fdfZGVloVmzZnjw4AGOHTvGN86KXK+9evWClZUVmjVrBlVVVXz69Alubm7Q09ODiYmJwDTr6OjA0NAQjx49wvTp07nemzFjBry8vGBvb8+5T6WkpOD06dM4d+4ctm3bVuXPM37+9PMKKGqcVVRUxKRJk7B8+XKIiorixIkTePHixR+nx8/PDxs2bMCAAQOwZcsWdOzYkWs4qiDKysplNnhVRvfu3eHg4IDJkycjPT0dxsbG8Pb2hr+/P44fPw5hYWFO2LFjx+Lo0aOIiori6fF89OhRFBQUYNy4cWUe79GjR5yhzoSQWlbbK0YQQggh1al4FbOQkBC+7/fo0YNrlcJiR44cYVq0aMFIS0szkpKSjJGREePi4sKEhoZywrx584ZxcHBgZGVlGUVFRWbQoEFMbGws31XwFi5cyGhpaTFCQkJcqy8KWqUOADN16lSubcWram7evJmz7cuXL8yAAQMYRUVFRlZWlunWrRsTHh7O6OnpMaNGjeI5Dzdu3GCcnZ0ZBQUFRlJSknFycmIiIyPLOYtFLl++zNjY2DBiYmKMrq4us2HDBoGr0FXk/JXl+fPnzKhRoxhdXV1GTEyMkZaWZmxtbZlly5Yx375944QrLCxkNm7cyJiamjKioqKMiooKM3LkSObz589c8XXo0IFp2LAhz3H4ndOSXrx4wQwePJhRU1NjREVFGQ0NDaZTp07M/v37OWH4rahZ0XJhmKIVMMeMGcNoaGgwoqKijJaWFjN48GAmMTGRK40lVytkGIa5d+8e06lTJ845btmyJXPlyhWuMIKuf0GrgF68eJHp2LEjIycnx4iLizN6enrMwIEDmZs3bzIMwzCJiYnM6NGjGXNzc0ZaWpqRkZFhbGxsmO3btzMFBQV8z2FJhw8fZkxMTBgxMTHG1NSUOXLkCM9KoQxTtPLili1bmEaNGjESEhKMjIwMY25uzkycOLHC1yvDMMysWbMYAIyTkxPPeykpKczYsWMZNTU1RkpKimnbti1z7949nhU/i8/V2bNneeKoStlXpk7yO0cMU349e/v2LTNs2DDGyMiIkZSUZOTl5ZnmzZsznp6eZZ633NxcZsuWLUz37t0ZXV1dRlxcnJGQkGAsLCyYf//9l0lKSuIKX9HyKn1uK7MvwzCMl5cXY2dnxwlna2vLUy/8/PyYDh06MNLS0oyUlBRjaWnJbNy4kfM+v3tWVe8j/Mpnw4YNjL6+PiMuLs5YWFgwhw4d4nvs1NRUZsyYMYyCggIjJSXFODg4MG/fvuX5HKno9bp161amdevWjIqKCudePXbsWCYmJoYn3aUtXbqUUVRUZHJycnjeS0hIYCZPnszo6uoyIiIijKysLNO2bVu+9WLUqFGMtLQ0z3ZB56/052Bl6oagOBmGYR4+fMi0atWKkZKSYlRVVZlx48Yxz54947mfVnQ11R8/fjC5ubnlhqtpGRkZzPTp0xkNDQ1GTEyMsbGxYby9vXnCFa9qy28ld1NTU0ZfX7/MlYcZhmHatWvH9OrVq7qSTgipBBbDVKKfNyGEEELqJU9PT7i6uiIkJKTMSbwJIYT8f4qLi4OBgQG8vLwwZMiQuk4OqWNRUVEwMTHB9evXy+xJSwipGTRnHCGEEEIIIYT85bS0tDBz5kysXbsWbDa7rpND6tiaNWvQuXNnaogjpI7QnHGEEEIIIYQQ8n9gyZIlkJKSwtevXwWuXEv+fgUFBTAyMsLChQvrOimE/N+iYaqEEEIIIYQQQgghhNQSGqZKCCGEEEIIIYQQQuq1u3fvolevXtDS0gKLxcLFixfL3efOnTto2rQpJCQkYGhoiP379/OEOX/+PCwtLSEuLg5LS0v4+PjUQOq5UWMcIYQQQgghhBBCCKnXsrKy0KhRI+zevbtC4aOjo+Hk5IR27dohLCwMixYtwvTp03H+/HlOmODgYAwZMgTOzs548eIFnJ2dMXjwYDx+/LimsgGAhqkSQgghhBBCCCGEkP8QFosFHx8f9O3bV2CY+fPn4/Lly4iIiOBsmzRpEl68eIHg4GAAwJAhQ5Ceno5r165xwnTr1g2Kiorw9vausfRTzzhCCCGEEEIIIYQQUutyc3ORnp7O9crNza2WuIODg9G1a1eubY6OjggNDUV+fn6ZYR4+fFgtaRCEVlMlhBBCCCGEEEII+Uu12TOprpMgkMN3DaxcuZJr2/Lly7FixYoqx52QkAB1dXWuberq6igoKMCPHz+gqakpMExCQkKVj18WaowjhJB6rD5/cFbUg6n78TYxuq6TUSXm6gbY8+BcXSejyqa2GYi0jW51nYwqkZ8/E14hfnWdjCpzsXPC5tvH6zoZVTav40hsCTpR18mokrn2I/6aa2rxtQN1nYwqWdt9Il58fV/XyaiyRtqmeBwTXtfJqLIW+lY4Fnqt/ID1mHOz7vB+dqOuk1Flw5p0xYZbXnWdjCpZ0MkFu+6fretkVNk/bQfVdRL+OgsXLsTs2bO5tomLi1db/CwWi+vv4pnaSm7nF6b0tupGjXGEEEIIIYQQQgghpNaJi4tXa+NbSRoaGjw93L59+wYREREoKyuXGaZ0b7nqRnPGEUIIIYQQQgghhPylWPX4X01q1aoVAgICuLbduHEDzZo1g6ioaJlhWrduXaNpo55xhBBCCCGEEEIIIaRey8zMxIcPHzh/R0dH4/nz51BSUoKuri4WLlyIr1+/wsuraFj3pEmTsHv3bsyePRvjx49HcHAw3N3duVZJnTFjBtq3b4+NGzeiT58+uHTpEm7evIn79+/XaF6oZxwhhBBCCCGEEEIIqddCQ0Nha2sLW1tbAMDs2bNha2uLZcuWAQDi4+MRGxvLCW9gYAA/Pz8EBQWhcePGWL16NXbu3IkBAwZwwrRu3RqnTp2Ch4cHbGxs4OnpidOnT6NFixY1mhfqGUcIIYQQQgghhBDylxKq4cUIaou9vT1nAQZ+PD09ebZ16NABz549KzPegQMHYuDAgVVNXqVQzzhCCCGEEEIIIYQQQmoJNcYRQgghhBBCCCGEEFJLaJgqIYQQQgghhBBCyF+K9ZcMU/2bUM84QgghhBBCCCGEEEJqCTXGEUIIIYQQQgghhBBSS2iYKiGEEEIIIYQQQshf6m9ZTfVvQj3jCCGEEEIIIYQQQgipJdQYRwghhBBCCCGEEEJILaFhqoQQQgghhBBCCCF/KRZomGp9Qz3jCCGEEEIIIYQQQgipJdQYRwghhBBCCCGEEEJILaFhqoQQQgghhBBCCCF/KRatplrv/Od7xunr68PNza1W42OxWLh48WKVjrNixQo0bty4SnGUFhQUBBaLhdTU1GqNl3ArfZ49PT2hoKBQp2kaPXo0+vbtW6dpqA+SkpKgpqaGmJiYuk4Kl927d6N37951nQxCCCGEEEIIIfVAnfWM69WrF37+/ImbN2/yvBccHIzWrVvj6dOnaNKkSa2mKyQkBNLS0rV6TPLfNmTIEDg5OdV1MgiA9evXo1evXtDX1wcAxMTEwMDAAGFhYZzG74yMDPTq1QsJCQl49+5dmfFFR0dDX18fDx8+RLt27eDg4AB/f3+ecOfPn8emTZvw9u1bsNls6Orqolu3bti6dSsAYPz48Vi7di3u37+Ptm3bVmue/0QjTWMMt+0KczVdqEgrYIHfPtyLflHXyeLw87kCH+9zSElOhq6+Hsb+MwkNG1nxDZv8Iwkeew/hw7tIxH+JQ88BfTBu+iSuMDeuXMPt6zfx6eMnAICRmTGcx7vC1NKsxvNS0stbj/DM/z6yUjOgpK2G9sN6QNtUn2/YL28/4sImd57tI9fOhJKmag2nlJt4m5YQa2QFloQECuMT8DPgFtg/ksvZSRwS7VtD1NQYLAlxsNPSkXPrLgo+xgAAhHW0Id6iKYTV1SAkK4OsC1dQEBlVI+kPDbiPR363kZmaDlVtDTiM7Atdc6Ny9/v8/iOOrdkDVR0NjF83j7P9bchLPLgcgJTEH2AXsqGoroKWTvawbmtXI+kv9iYoFC8DgvEzLQMKWqpoNcgRGia6fMPGvYuB3/ZjPNsHrpgMBQ0VAMD7hy9w1+syT5jRuxZCRLTmHg/fBIXgxY2ifChqqaHl4K7QNNHjGzbuXQyubvPi2T5o5RROPkqKCgnHrcMXoNfIDF2nDKn2tBer7msq7HYwXt0LwfcvCQAADQMd2A/uAW0j/uelurTQtURbg0aQFZfCt8wUXI14iE8pCQLDCwsJoZNRUzTSNoGsuBTScjJxJyoMT78UfZZaqhvA3sgWSlJyEGYJISk7DfejX+J5XGSN5eH6pau4fPoCUpNSoKOvi9FTx8PCpiHfsClJyfDa546P76OQ8DUO3fv1wuhp43nCZWVmwtv9GJ7cC0ZWRibUNNXhPGksmrRsVmP5uHnFH35nLyEtOQXaeg0wYpIrzKwt+YYNuf8It3yvI/ZjDPLz86Gt1wD9Rg6GTTNbTpgvMbG44HUKMR8+4kfidwyf6Ipu/XvWWPqLhQbcR/DVW5y60dW5X8XqxruP8FqzG2o6Ghi//l/O9me3gvHqfgi+f44HAGgYNEDHITVfN0p7cuMuHvoGIiM1HWo6mujm0h965sbl7hf77iM8Vu2AWgNNTN6woBZS+lvEnVCEBzzCz7RMKGiqovkgB4GfGfHvP8F/+3Ge7f2WT+Tca69tO4aEyFieMDpWRnCYOrR6E1+GV7ce49n1e8hOzYSSthraDXWCVhnPUhc3H+HZPmLNDCjW8rMUIfzUWWPc2LFj0b9/f3z69Al6etw31CNHjqBx48a13hAHAKqqVDH/Vnl5eRATE6v2eCUlJSEpKVnt8dalmjpXFZGfnw9RUdFK7/fz50+4u7vDz89PYJjv37+je/fuAICbN29CROT3LdDOzg4TJkzA+PG/H8yL7wdHjhzBP//8g8OHDyM2Nha6ur8fZm7evImhQ4di3bp16N27N1gsFt68eYPAwEBOGHFxcQwfPhy7du2qF41xkqLi+JD0BX5vH2Jd90nl71CL7gXegfuuA5g4eyosrBri+mU/rPp3CXZ7HYSquhpP+Pz8fMjJy2OQ8zBcPuvDN85XYS/RrrM9xs+whJiYGC54n8WKuYuw6+gBKKvyfqGvCe+fvMRdbz/YO/eClrEewoNCcHn7UYxcMwOyygoC93NeNwtikuKcvyVla/fHIrEWzSBuZ4tsvxtgJ6dCvHVzSA/uj4zDR4G8fP47CQlBekg/MNk/kX3RF+yMTAjJyoLJy+MEYYmJovDbd+S9eg3pfr1qLP1vHoUh4PhFdBs9EA1MDfDs1kOc2nwQEzcugLyKosD9crJ/4vL+kzBoaILMtAyu9ySlpdCmtwNUtNQhLCKMyLDXuHLwFKTkZGFkY14j+YgKfY1HZ6+j9TAnqBvp4O29Z/DffRIDl0+GjJK8wP0GrZwCUYnf14+ErBTX+6IS4hi0cgrXtppsiIsKeY3gM9fRZrgT1I0a4O3dZ/DfdRKDVkwpOx+rpkKsjHwAQEZSKh6fC4CGMf8vm9WlJq6pTxEfYNmqCXRMDSAiKoJg31vw3rgfEzbMh5ySQo3kw1rDCE4WrXHl9X18SkmAna4lRjVzwo57Z5CWk8l3n2GNHSAtLgmfV3eQlJ0GGTFJCLF+D7L5mZ+DoKhn+J6ZikKGDTNVXfS3tkdm3k98+PGl2vPw8PY9eO45jHEzJsHMyhI3r/hj3YIV2O6xByqCPi8U5NF/5GBcPXeJb5wF+flYM28p5BQUMHvFAiirqCDp+3dISPFec9XlUdADnNjvgVHTxsOkoTluX72BLUvWYv0hN6io8X4veffqDayaNMIg1xGQkpHCveu3sX35BizfsR76xoYAgLzcPKhqqqN5+9Y4ccCjxtJe0uvgZ7hxzAfdXX/XDe9NBzBp08Jy68al/Sdg0NAEWXzqRsNWTaDjog8RMVEE+wbi5IZ9mLhxQY3VjdLCg5/C3+sCeowZDF0zQ4TefIDjG/Zh6pbFUFBRErhfTvZP+Ow9BkMrU546X9M+hr7Bk7MBaDW0G9SMGuDdvWcI2HMK/ZZNLPNe23/FJIGfGZ0mDkRhQSHn79ysn7i09hD0m1jUTCb4iHzyCvdO+aHDyF7QNNbF6zshuOLmheGrp5f5LDVi7cw6fZaqL4RomGq9U2fDVHv27Ak1NTV4enpybc/Ozsbp06cxduxYAMDDhw/Rvn17SEpKokGDBpg+fTqysrIExhsbG4s+ffpARkYGcnJyGDx4MBITE7nCXL58Gc2aNYOEhARUVFTQv39/znulh6lGRkaiffv2kJCQgKWlJQICAniOOX/+fJiamkJKSgqGhoZYunQp8vO5v6Rs2LAB6urqkJWVxdixY5GTk1Pm+SksLMTYsWNhYGAASUlJmJmZYceOHWXuU1pSUhKGDRsGHR0dSElJwdraGt7e3uXu5+npCV1dXUhJSaFfv37YunUr1zBMfkMiZ86cCXt7e87fDMNg06ZNMDQ0hKSkJBo1aoRz586Vedy9e/fCxMQEEhISUFdXx8CBA6sUn76+PtasWYPRo0dDXl6e08hS3jV1/PhxNGvWDLKystDQ0MDw4cPx7du3Ms9XyfOjr68PFovF8ypWkeultK9fv2LIkCFQVFSEsrIy+vTpU+mhmA8ePECHDh0gJSUFRUVFODo6IiUlBQBgb2+PadOmYfbs2VBRUYGDgwNiYmLAYrHw/PlzThypqalgsVgICgribHv9+jV69OgBOTk5yMrKol27doiK+t3DxcPDAxYWFpCQkIC5uTn27t3Lea/4GGfOnIG9vT0kJCRw/PhxsNlsrFq1Cjo6OhAXF0fjxo359kgr6dq1axAREUGrVq34vv/582e0a9cOsrKyuH37NnR0dKChocF5CQsLc8q85LasrCycOXMGkydPRs+ePXnuWb6+vmjbti3mzZsHMzMzmJqaom/fvti1axdXuN69e+PixYv4+fNnmfmoDY9iX+PQ48u48/F5XSeFx6UzF9ClhyO69uyOBvq6GDd9ElRUVXHtoi/f8OqaGhg/YzI6desCaWn+X5bmLJsPp369YGhiBB29Bpg6bwbYbAYvnj6vwZxwC7v+AA3bNYVVezsoaamh/fAekFGSx8vbj8vcT0pOGtLyspyXkFDtfmyLN7NFTnAICt5Hgf0jCT+v3gBLVBRiFoIbncRsGoIlIYHsC1dQ+DUeTHoGCr/Ggf39BydMwccY5N4LRsH7mukNV+zxtSA0tm8B244toaKtjq7O/SCnrIBngQ/K3O/akbNo2KoJtI31ed7TszSGuZ0NVLTVoaiugubdOkCtgSY+v/tYQ7kAwm8+gmkbW5i3tYWipipaDXaEtKIcIu6ElrmfhKw0pORlOK/S1w+LBa73peRlaiwPAPDqZjDM2tjCvG2TonwMcYSMojzelJMPyXLywWazcdvdB0162UNWVfCX/upQE9dU3ynOaObQFhp62lDRUkePcUPAsBnEvK65HmVtDKzx9MtbhH55i+9ZqfCLeIi0nEy00OXfG8tEpQH0lTThFXoNUUlfkfozE1/SviM29fczdnRyPN4kxuB7ViqSs9MR/CkciRlJ0FfUqJE8+J69iE7dHdC5hyN09Bpg9LTxUFFTwY3L1/iGV9NQh+u0CejQtROkBHxe3Lp2E5npmZi3ejHMrSyhqqEGc+uG0DcyqJE8AID/hSvo4NgJ9t27QFtXByMnj4GSqjJu+V7nG37k5DHoMbgvDM2MoaGthUFjRkBDSwPPH/2uR4Zmxhg2fhRa2rf9ox84/8TvutEKKtoa6OrcH3LKCnh6836Z+/m5n4FV66bQNtHnea/f1F91Q1/nV90Y+qtuvK+hXPAKvnobTTq2QtNOraGqrYHuowZAXlkRoQFl5+vK4VOwbtMUOiY1d+0I8jrwMUxaN4ZpW1soaKqgxeCukFaUw9u7z8rcr6zPDHFpSa734iKiISImWquNcc9vPIBlu6Zo2L4ZlLTU0G5Y0bPUq6AnZe5X189ShAhSZ1eiiIgIXFxc4OnpCYZhONvPnj2LvLw8jBgxAq9evYKjoyP69++Ply9f4vTp07h//z6mTZvGN06GYdC3b18kJyfjzp07CAgIQFRUFIYM+T1U4erVq+jfvz969OiBsLAwBAYGolkz/t3O2Ww2+vfvD2FhYTx69Aj79+/H/PnzecLJysrC09MTb968wY4dO3Do0CFs376d8/6ZM2ewfPlyrF27FqGhodDU1ORqkBB0bB0dHZw5cwZv3rzBsmXLsGjRIpw5c6bM/UrKyclB06ZN4evri/DwcEyYMAHOzs54/Fjwl7/Hjx9jzJgxmDJlCp4/f46OHTtizZo1FT5msSVLlsDDwwP79u3D69evMWvWLIwcORJ37tzhGz40NBTTp0/HqlWr8O7dO/j7+6N9+/Z/HF+xzZs3w8rKCk+fPsXSpUsrdE3l5eVh9erVePHiBS5evIjo6GiMHj26wnkPCQlBfHw84uPj8eXLF7Rs2RLt2rXjvF/e9VJadnY2OnbsCBkZGdy9exf379+HjIwMunXrhrwSPU3K8vz5c3Tu3BkNGzZEcHAw7t+/j169eqGw8PcvXEePHoWIiAgePHiAAwcOVCjer1+/chqrb926hadPn2LMmDEoKCgAABw6dAiLFy/G2rVrERERgXXr1mHp0qU4evQoVzzz58/H9OnTERERAUdHR+zYsQNbt27Fli1b8PLlSzg6OqJ3796IjBT8xeTu3bsC6/K7d+/Qpk0bmJubw9/fH7KyshXKHwCcPn0aZmZmMDMzw8iRI+Hh4cF1z9LQ0MDr168RHh5eZjzNmjVDfn4+njwp+4Hh/1l+fj6i3keisR13r+jGdk3wNjyi2o6Tm5uLwoICyMpV/DqoisKCAnz7FAfdhtxDWnQbGiP+A++Qj5K8V+zB4VnrcWGzOz5H1FxjDz8seTkIyUijIPrT742FhSj4/AXC2poC9xMxNkRhXDwkHTpCdtp4yIwZCfGWdkUtP7WosKAA8dFfYGDFPRzZ0MoMXyJjBO734s5jpCT+QPv+juUeg2EYRIe/R3LC9woNxfoThQWF+BEbDx0LQ67tOhZGSPxYdm8jn7WHcOLf7fDbfgxx72J43s/PzcOpRTtxcoEbru85hR+x8dWZdC7F+dC25D5P2paGSIz6XOa+F9YcxPF523B1mxfi3kXzvB/mexcSslIwb2vLZ+/qUxvXFFBULuxCNiRlaqY3ljBLCFpyqjy91T78+AJdRXW++1io6eFr2ne0M2iE+R1HYlb7Iehm1hIiQsICj2OorA0VaQVEJ1f/dVWQn4+P7z+gUTPuMrdpZot3r//88+Lpw8cwaWgO9x37MX6AM+aMmYoLJ86AXeJ5qToV5OcjJjIKVk0bc223btoIkW/KnkqjGJvNxs+fOZCWrdnG9LIU1w1Da+4fagytzcusG8/vPEbKtz+oG7U0pVBBQQHioj/z9Ho2sjHH5/e896JiYUGPkJL4Ax0GdK/pJPIoLChEUmw8tC25GwG1LAzxrZzPjMvrDuPUfDf4u51APJ/PjJLeP3wOg2aWEBWvnZE0xc9SDUo9SzWwNEZCOc9Sp1buwZHZG3Bx8xF8eVu7z1KElKVOV1MdM2YMNm/ejKCgIHTs2BFA0XCw/v37Q1FRETNmzMDw4cMxc+ZMAICJiQl27tyJDh06YN++fZCQkOCK7+bNm3j58iWio6PRoEEDAMCxY8fQsGFDhISEwM7ODmvXrsXQoUOxcuVKzn6NGjXim76bN28iIiICMTEx0NHRAQCsW7eOM8yt2JIlSzj/19fXx5w5c3D69Gn8+2/RnAdubm4YM2YMxo0bBwBYs2YNbt68WWbvOFFRUa40GhgY4OHDhzhz5gwGDx4s+KSWoK2tjblz53L+/ueff+Dv74+zZ8+iRYsWfPfZsWMHHB0dsWBB0bwGpqamePjwYbm9kkrKysrCtm3bcOvWLU4vJUNDQ9y/fx8HDhxAhw4dePaJjY2FtLQ0evbsCVlZWejp6cHW1vaP4yvWqVMnrnPg4uJS7jU1ZswYTnhDQ0Ps3LkTzZs3R2ZmJmRkyn/QKTnUecaMGYiPj0dISAhnW3nXS2mnTp2CkJAQDh8+zOlh5+HhAQUFBQQFBaFr167lpmnTpk1o1qwZVyNww4bcc6oYGxtj06ZNnL8r0vNuz549kJeXx6lTpzi/vJqamnLeX716NbZu3crpfWpgYIA3b97gwIEDGDVqFCfczJkzuXqobtmyBfPnz8fQoUVzUGzcuBG3b9+Gm5sb9uzZwzctMTEx0NLS4vuei4sLWrdujfPnz0NYWPAXB37c3d0xcuRIAEC3bt2QmZmJwMBAdOnSBUBRvbp37x6sra2hp6eHli1bomvXrhgxYgTExX93iZeWloaCggJiYmLKvGb/n6WnpYNdyIaCInfPFgUlRaQklzNHWSV47T8CJVVlNGpas1/ci/3MyAbDZvP0OpKSk0F2Gv/hYNLysug0qi/U9LVQmF+It8Fh8NlyBAP+HQtts9r5lV1IpujLDpOdzbWdycoGS15O8H4K8hCSb4D8N2+RdfYShJUUIOHQERASQu7DsnsCVqfsjCwwbDZk5LkbXaXlZZGZms53n+SE77h92hfOS/+BUBn3ipzsn9j5zwoUFhSAJSSEbqMHwtC6ZuYgzMnMBsNmICnH/eVTUk4aP9P5Xz9S8jJoO6IHVPQ0UVhQiA+PXsLP7Rh6zHbhzM+moKGM9qN6Q0lbDfk/8xB+6zGubPZE/yUTIK+uXGP5kCqdD1lp/EznP+JBSl4G7Ub2LMpHfgEiH7/C1e3H0HP2KGiaFuUj4UMs3j0IQ/+lE6s9zaXV5DVV0u3TvpBVlIdBQ9PyA/8BKTEJCAsJITOXu6d2Zu5PyIjxbwBUlJKDnqIGCtiFOPHsOqTEJNDbsh2kxMRx4dXvH0bFRcQwv+NIiAgJgc0wuPLmPqKSvlZ7HtLT0sFmsyGvqMC1XV5RAanJqX8cb2J8Ar6HvUTbLvZYuH454r/EwX3nfrALCzHQZVjVEs1HRnpGUT4UuIcOyikoIC0ltUJxXDt/Gbk5OWjRoU21p6+iiuuGNL+6kVZG3Th1BS7Lple4btw65QtZJXkYWNVM3SgtO73y+UqK/4ab3pfhumJmpZ85q0Pur3utRKnGWUlZafwU8MwhJSeD1iOcoKyrAXZBIaIev4L/jhPoPsuZ7zxz32O+IjXuO9o696iRPPDDeZaSK/UsJS+N7HABz1IKsujo0geq+toozC/Au+DnuLjFA/3mjam1Z6n6hFZTrX/qtDHO3NwcrVu3xpEjR9CxY0dERUXh3r17uHHjBgDg6dOn+PDhA06cOMHZh2EYsNlsREdHw8KCu1tsREQEGjRowGmIAwBLS0soKCggIiICdnZ2eP78OdecUGWJiIiArq4upyEOAN8hcOfOnYObmxs+fPiAzMxMFBQUQE5OjiueSZO452Vq1aoVbt++Xebx9+/fj8OHD+PTp0/4+fMn8vLyKrUCa2FhITZs2IDTp0/j69evyM3NRW5ubpkLVERERKBfv348aa1MY9ybN2+Qk5MDBwcHru15eXmcBrbSHBwcoKenB0NDQ3Tr1g3dunVDv379ICUl9UfxFSvdU6oi11RYWBhWrFiB58+fIzk5GWw2G0BRg6GlJf/hG/wcPHgQ7u7uePDgAVcDXXnXS2nFaS7dmysnJ4drOGhZnj9/jkGDBpUZRlCvsvLibdeuHd8hEN+/f8fnz58xduxYrjpXUFAAeXnuh86Sx05PT0dcXBzatOF+qGzTpg1evBC8yMDPnz95GuiL9enTBz4+Pjh//nyFG7OBoh51T548wYULFwAU9egdMmQIjhw5wmmMk5aWxtWrVxEVFYXbt2/j0aNHmDNnDnbs2IHg4GBIlZhnRlJSEtmlGjaKFdfPkko25v0/Kf2swDBMtT1AXDh5FvcCg7B25yaI1dKvub/xZExgZzFFTVWuyYU1jXWRkZyGZ9fv19gDpKilGSQdO3P+ziqeU6lET1AARdkovY3rfRaY7Gz89A8EGAbsxG9gyUhDvHmzWm2MK5mekhjwfyBls9m4uOcY2g3oBmVN3vmmShKXEMe4tXORl5uHmNfvcfPERSiqKkPPsvwJvf9Y6XwwDHiuqV8UNFS4FjhQN9RBZko6XgUEcxrj1Ax1oGb4+/lG3agBfNYdwuugELQe0q360/8HePJh1ABZyWl4GRAMTVM95OXk4vaRi2jn3BMSNdSLjK8auKaKBfsG4nVwGEYungoRsZodXli6FhdlgX/dLs7emRe3kFtQ1Cvf720whtk64PLr+yhgF/UcyyvIw+4H5yAuLApDZW10N2+F5Oz0GukdV5Suit9XK4JhGMgpymPi7KkQEhaGoakxUpKScfn0hRppjOPgl48K7BZ8+x58jp3BzBXzIacgeC6w2sJz7hkGLD45YbPZ8NnjhfYDule4bjy8EojXwc/gvGRajdeN0njyIOD2y2azcX73UdgPdIJKBfNVU3jrgeBnKXkNZchr/P4RRs1QB1kp6QgPeMS3Me79gxdQ0FKFqr52Nab4Dwn+KISihioUNbifpTJT0hB2/cH/ZWMcqX/qtDEOKFrIYdq0adizZw88PDygp6eHzp2Lvgyw2WxMnDgR06dP59mv5ATqxQR9YSu5vTIT7TN8vmyUjv/Ro0ecnnaOjo6cXkLFqyj+qTNnzmDWrFnYunUrWrVqBVlZWWzevLnMIaalbd26Fdu3b4ebmxusra0hLS2NmTNnljm0kV+eSxMSEuIJV3LOs+LGq6tXr0Jbm/smLahxQVZWFs+ePUNQUBBu3LiBZcuWYcWKFQgJCfmj+IqVbngs75rKyspC165d0bVrVxw/fhyqqqqIjY2Fo6NjhYeEAkBQUBD++ecfeHt7c/W8/JPrhc1mo2nTplwNiMUquuBIRa770ueqeD6FkmVdem67suItLrdDhw7x9MQs/Ushvwbi0nWtvAYZFRUVzhx4pS1atAg2NjYYMWIEGIbhGrpeFnd3dxQUFHBddwzDQFRUFCkpKVAs0YPLyMgIRkZGGDduHBYvXgxTU1OcPn0arq6unDDJyckCy2z9+vVcvWEBYPny5cD/0ZoycvJyEBIWQkoydzmmpaTy9Jb7Ez7e53Du+Cms3LYe+kaG5e9QTSRlpcASEkJ2qQmcszOyIClX8WFFmoYN8PZRza16m//hIwrjSqykKFJUT1nS0mCyfjcis6SkuP4ujcks6klQssGOnZRS1NNOSAj4dW+oaVKy0mAJCfH0WMpOy+Dp5QAAeT9zER/9GQmfvuL60aIGeIZhAIbBOpc5GD5/EvQbmgAAWEJCUPr1gK+hp40fXxPx8MrNGmmMk5CRAkuIxdOjIScjm6e3XFnUDLTx4ckrge+zhFhQ1dNC+rfq64VaUnE+skv1gvuZkVW5fBjq4MPjonxkfE9BZlIqru85xXm/+DPr8OTVGLxqKuRUBU+wXlk1eU0BwKOrt/Hg8k0MXzAZ6rr8e3pXh+y8HBSy2ZAV5/4MlxaTRGYe/3lNM3KykZ6TxWmIA4DvmSkQYrEgLyGNpOyic8IASP71//iMJKjJKKCDoW21N8bJyctBSEgIqaU/L1LTeHrLVYaCkiJERES4empp6+ogNTkFBfn5EKnm+ddk5YrmryrdCy49LQ1y5eTjUdADuG/fi2mL58KqCf9RPrXld93g/pzLSs8UUDdyEP/xMxJivsL/6HkAv+vGWufZGL5gElfP0OCrt/DgcgBGLJxSo3WjNCm5X/kq1QsuKz0DMnx+SM/9mYO4j7GIj/kCP8+zAH7na+WIGXBeOAWGVjXTi7qYePFnRqme0z8zsiFRiXutqoE2op7wTsFSkJeP6NA3sO3Vns9eNYfzLFUqX9npWTy95cqiYdgA72rwWYqQyqjzxrjBgwdjxowZOHnyJI4ePYrx48dzvnA3adIEr1+/hrFxxR5uLS0tERsbi8+fP3N6x7158wZpaWmcXnQ2NjYIDAzk+oJcXnxxcXGc4W/BwcFcYR48eAA9PT0sXryYs+3Tp09cYSwsLPDo0SO4uLhwtj169KjMY9+7dw+tW7fGlCm/VzmraC+oknH06dOHM8SOzWYjMjKSp0dhSZaWljxpK/23qqoqz/xYz58/5/SOsrS0hLi4OGJjYys1HE9ERARdunRBly5dsHz5cigoKODWrVtwcHD4o/j4Ke+aevXqFX78+IENGzZwrqHQ0LInli7tw4cPGDBgABYtWsQ19BKo2PXCL82nT5+GmppamT3oylJ83Zdu7ClLcaNRfHw8pwdiycUciuM9evQo3xVQ1dXVoa2tjY8fP2LEiBEVPq6cnBy0tLRw//59rnkDHz58iObNmwvcz9bWFseP8y7LXmzJkiUQERHBiBEjwGazMWxY2b9wFxQUwMvLC1u3buUZCjxgwACcOHFC4PyV+vr6kJKS4loYJCoqCjk5OQJ7cy5cuBCzZ8/m2iYuLo6AwzPKTOffRFRUFEamJngRGoZW7X/3jHweGoYWbVtWKe4L3mdx1ssbK7ashYl57QxvKSYsIgI1PS3EvvkAo6a/h4fHvv4AQ9uKT3z8LTae75eaapOXD3ZeGtcmdmYWRPR1kffte9EGISGINNBBTpDgiasLvsZBzJJ7fh0hRQWwMzJrrSEOKDrvmgY6iA5/D3M7G8726PD3MG1qxRNeXFIc49dzTxfw9OYDfHoTif7TR0OhnEadgvyC6kl4KcIiwlDR1cTXiI/Qt/19Xr9GfIReo4pfy0mfEyBVxvXDMAySviRASbtmenOUzIcBTz4q/uU06XMCJH8N+ZbXUMGAZdwjD0Iv3UZ+Ti5aDekGacXq7SlUk9dUsO8tPLgUgGHzJ0LLsGZXhC1k2IhL/w5jZR28SYzhbDdW0UFEib9Lik1NhJWmIcSERZBXWHStq0jLg82wkZYjeGE1gAXhMuaV+1MioqIwNDXGy6dhaN7u96iVl0+fw641/6lYKsLMyhIPAu+AzWZzfpSM/xIHRWWlam+IA4ryoW9ihPBnL9Csze90hz97iSat7ATuF3z7Hg5v24spC2eicYum1Z6uyvpdN95x141X7wTUDQlM2MA9D/fTm/cR8zoSA2a48tSN+xdvYNj8STVeN0oTERGBlkEDRL18Cwu73w2eUa/ewbypNU94cUkJTN60kGtbyI17iH7zHoNnjoWiavVPAVCasIgwlHU1ERcRDb3Gv++1cRHR0K3UZ0Yi3x8Mo5++AbugAEbNecu1JhU/S31+/QFGTX6PVPr85gMMKvEs9T02vsYXK6qvhCrU35bUpjpvjJORkcGQIUOwaNEipKWlcU2UP3/+fLRs2RJTp07F+PHjIS0tjYiICAQEBPCsVAgAXbp04fR+cXNzQ0FBAaZMmYIOHTpwhsEtX74cnTt3hpGREYYOHYqCggJcu3aN73xdXbp0gZmZGVxcXLB161akp6dzNaIARfNsxcbG4tSpU7Czs8PVq1fh4+PDFWbGjBkYNWoUmjVrhrZt2+LEiRN4/fo1DA0F98wwNjaGl5cXrl+/DgMDAxw7dgwhISEwMKh4l1pjY2OcP38eDx8+hKKiIrZt24aEhIQyG+OmT5+O1q1bY9OmTejbty9u3LjBM0S1U6dO2Lx5M7y8vNCqVSscP34c4eHhnEYGWVlZzJ07F7NmzQKbzUbbtm2Rnp6Ohw8fQkZGhmuusGK+vr74+PEj2rdvD0VFRfj5+YHNZsPMzOyP4hOkvGtKV1cXYmJi2LVrFyZNmoTw8HCsXr26wvH//PkTvXr1QuPGjTFhwgQkJPzuZaKhoVGh66W0ESNGYPPmzejTpw9nhdHY2FhcuHAB8+bN4xpGLcjChQthbW2NKVOmYNKkSRATE8Pt27cxaNAgqKio8N1HUlISLVu2xIYNG6Cvr48fP35wzXcHANOmTcOuXbswdOhQLFy4EPLy8nj06BGaN28OMzMzrFixAtOnT4ecnBy6d++O3NxchIaGIiUlhafhqaR58+Zh+fLlMDIyQuPGjeHh4YHnz5/z7R1YzNHREQsXLuTpsVbSggULICwsDGdnZ7DZ7DIbCX19fZGSkoKxY8fyDKsdOHAg3N3dMW3aNKxYsQLZ2dlwcnKCnp4eUlNTsXPnTuTn53MNrb537x4MDQ1hZMR/kndxcfFaG5YqKSoOHfnfXe605FRgoqKD9JwsJGby711YW/oM7g+3tZthbGYCs4YWuH7lGn58+4ZufYrmJfE6cARJP5Iwa/E8zj4fI4t+qPj5MwdpqWn4GBkFEVER6OoXDce7cPIsTrh7Yc7S+VDTUEdKUlHPHwlJSUhKVby3dFXYOrbBjUPnoKavDU0jXYTfCUFmchqs7YsamB+cu46slHR0HV80nDzsxgPIqShCWVsNhQWFeBv8HFFPX8Np6vBaSW+x3NAwSLRqDnZKKtgpqRBvZQcmPx95EW85YSR7dAU7Iwu5d4tWk8wLewnxJo0h0cUeeU+fQ0hRAeKt7JBXcvVaUVEIlej1ISQvByE1VTA/c8BkcPesqIoW3e1xad8JaBo2gI6xPsJuP0RaUgqadG4NoGhuroyUNPSeNAIsISGoNeBemEJaTgbCoiJc2x9cvglNgwZQVFdGYUEhop5H4NX9EHQbXfZUAFVh1aUl7nhchIqeFtQMtfHuXhgyU9Jg3r7oS3iITyCyUjNg79oXABAe+BgyyvJQ1FQFu7AQHx6/QkzYW3Se+HuV8me+d6BmoAM5NSXk5+Ti9e0nSPqciNZDa27CcesurRDk4QNVPU2oGerg7b1nyExOg8WvfDz5lY+Ov/Lx6uYjyKooQFFTFYW/8hH9LAJdJhadaxFREZ7GQzGpoukKaqpRsSauqWDfQNw5dw19pzhDXkWJ0/NOTEIcYhI187nwIPoVBjbqiK/p3xGbkgi7BhaQl5DBk9g3AICups0hJyGNcy+LplR5ERcJe6Mm6G9tj8APoZAWlUQ385Z4+uUdZ4hqe8PG+Jr2HcnZ6RAWEoaZagPYapvg8uuyV538Uz0H9cWu9dtgaGYCU0tz3PT1x4/E73DoVXQNnzx0FMk/kjBt4e/njZgPRZO35/zMQXpaGmI+fISIiAh09Isaebr27g5/H1947j6Ebv16IuFrHHxOnkX3fj1rJA8A0K1/LxzYvBMGpkYwtjBDkF8Akr79QKceRT8EnjlyHCk/kjHx36JRHcG37+Hg5l0YMXkMjMxNOb0DxcTFIPVrpEFBfj6+xn759f8CpCQl4VNUNCQkJKBexgI8VcGpGwYNoGOij2e3gn/VjaIf126duoKMlDT0mTySb92QkpOBSKm68fBKIO6c80PfqS5QUK2dulFaqx4dcWHPMWgZ6qKBqQGeBj5A2o9kNOvSFgBw0/sy0lNS0X+KC4SEhKDegLvnnrS8LERERXm216SGnVvgnuclKOtpQs1AB+/uhyErJQ3m7YoWyAq9eBvZqRloP7o3AOB14BPIKMtDQUu1aM64J+H4FPYWHScM4Ik78sEL6DYyq92pAX5p3LUNAg4XPUtpGDXA67uhyExOg1WHoobrh+dvICslHQ7jij7rngc8hJyyApR+PUu9e/QCUU9fo/uUGhxyTkgl1HljHFA0VNXd3R1du3blGn5qY2ODO3fuYPHixWjXrh0YhoGRkZHAIWYsFgsXL17EP//8g/bt20NISAjdunXjarizt7fH2bNnsXr1amzYsAFycnJcvW9KEhISgo+PD8aOHYvmzZtDX18fO3fuRLduv+dS6dOnD2bNmoVp06YhNzcXPXr0wNKlS7FixQpOmCFDhiAqKgrz589HTk4OBgwYgMmTJ+P6df5LlgPApEmT8Pz5cwwZMgQsFgvDhg3DlClTcO0a/+Xa+Vm6dCmio6Ph6OgIKSkpTJgwAX379kVaWprAfVq2bInDhw9j+fLlWLFiBbp06YIlS5ZwNUg5Ojpi6dKl+Pfff5GTk4MxY8bAxcUFr179Hv6yevVqqKmpYf369fj48SMUFBTQpEkTLFq0iO9xFRQUcOHCBaxYsQI5OTkwMTGBt7c3Z5GBysYnSHnXlKqqKjw9PbFo0SLs3LkTTZo0wZYtW9C7d+8KxZ+YmIi3b9/i7du3PIsJMAxToeulNCkpKdy9exfz589H//79kZGRAW1tbXTu3LnCPeVMTU1x48YNLFq0CM2bN4ekpCRatGhRbu+wI0eOYMyYMWjWrBnMzMywadMmrl5iysrKuHXrFubNm4cOHTpAWFgYjRs35sz3Nm7cOEhJSWHz5s34999/IS0tDWtra84CGoJMnz4d6enpmDNnDr59+wZLS0tcvnwZJiYmAvextrZGs2bNcObMGUycKHgi73nz5kFYWBijRo0Cm82Gs7Mz33Du7u7o0qULT0McUNQzbt26dXj27Bk6dOiAPXv2wMXFBYmJiVBUVIStrS1u3LgBM7PfvT28vb0rPF9lTTNX1cPufr+/nExvW/TF1i8iGGtvHRW0W61o17kDMtLTcfroCSQnpUDPQA/LNq6GmkbRCn8pScn4kfiNa59ZY6dy/h/1LhJ3b96GmoYaDp3xAgBcu3gFBfn52LiMe2XooaNHYNgY/uVf3Uyb2yAnMxtPLt9GVloGlLXV0XumC+RUihqOs9MykJH8+97MLizE/TPXkJmSDhExUShrqaH3TBfo29Ts8JbS8h6HgiUiAsmuncCSEEdhXAKyzvgAeb+HrAvJyXFNM8VkZCLrjA8kOreHzJiRYGdkIi/0OXIf/+5lLKyhDpnhvxuGJDsX9XrOe/UGP/1uVFv6LVvaIjsjC/d9riMzNR2qOpoYOm8C5FWKel1kpqYj7UflGqDzc/Pg73kOGclpnLLpM3kkLFvW3IIgRs0aIjfzJ8Ku3kV2eiYUtVThOG0YZJUVAADZaZnITP49jKqwoBBPzt9EVmoGRERFoKClCsepQ9HA+vc9NC87F/dPXEV2eibEJMWh3EADPeeOgppBzc0BZGTXELlZ2Xh29S6y0zKhpKWGbtOGc+Ujq1Q9eHwugDsf04ZB11rwZ0FNq4lr6unNBygsKMT5nZ5c29v1c0T7ATUzf9+rhChIiYmjo1FTyEpIITEjGV6h15CaUzQETFZcCvISv3uP5BUWwCPkKnpZtsGU1v2RnZeL8IQoBLz/vUCVmLAoejdsB3kJaeQXFuB7VirOvriNVwmVG9lRUa07tkNGejrOe51CSnIyGujrYeH65VDVKGqITUlOxo/iXr2//Dvhd2/zj+8/4H7gHaiqq2GPtzsAQEVNFUs2rcLRvYcxb9w/UFJRRvf+vdB3KG+jRHVpad8GmRkZuHTiLFKTU6Cjp4s5axZBRb0oH6nJKUj6/oMT/rZfAAoLC+G1+xC8dh/ibG/rYI8Jc/8pyntSCpZO+b2A2bVzl3Ht3GWY2zTEos2raiQfDVs1wc/MbNzjqhsTOb3cMlPTkZZU2bpxv6hu7PDg2t6uv2OtrVRq1aopsjOycOeCPzJT06HWQBMj5k/m5CsjNa3Sdb6mGTazRG5WNl5cvV/0maGpCoepQyGjXPRM+5PPvTbkQiCyUzMgLCoCRU1VdJk6BA2suEcSpSUmITHqM7pOr5vGLJPm1sjJzEbIld/PUj1nOP9+lkrNQEaJBVzYBYV4cNa/6FlKVBRK2mroOcO51p+lCBGExVRkkjDyf83T0xMzZ85EampqXSeFkDL5+flh7ty5CA8P5wwvqQ/Cw8PRuXNnvH//nm/jXlna7JlUfqB67sHU/XibGF3XyagSc3UD7Hlwrq6TUWVT2wxE2ka3uk5GlcjPnwmvEL+6TkaVudg5YfNtwUPr/yvmdRyJLUGCey3/F8y1H/HXXFOLrx2o62RUydruE/Hi6/u6TkaVNdI2xeMY3vm2/mta6FvhWGjFOwLUR87NusP7WfX9yFNXhjXpig23vOo6GVWyoJMLdt0/W9fJqLJ/2tZcT/ia1P2w4FFJde3auG11nYQ6US96xhFCSHVwcnJCZGQkvn79yrWqcl2Li4uDl5dXpRviCCGEEEIIIYT8fagxjhDyV5kxo/4teFB6AQhCCCGEEEIIIf+/6s84LlJvjR49moaoEkIIIYQQQggh/0EsllC9ff2/+v/NOSGEEEIIIYQQQgghtYwa4wghhBBCCCGEEEIIqSU0ZxwhhBBCCCGEEELIX0qIxarrJJBSqGccIYQQQgghhBBCCCG1hBrjCCGEEEIIIYQQQgipJTRMlRBCCCGEEEIIIeQvxQINU61vqGccIYQQQgghhBBCCCG1hBrjCCGEEEIIIYQQQgipJTRMlRBCCCGEEEIIIeQvRaup1j/UM44QQgghhBBCCCGEkFpCjXGEEEIIIYQQQgghhNQSGqZKCCGEEEIIIYQQ8pdi0TDVeod6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lI0TLX+oZ5xhBBCCCGEEEIIIYTUEmqMI4QQQgghhBBCCCGklrAYhmHqOhGEEEIIIYQQQgghpPoNOLqorpMg0PlR6+o6CXWC5owjhJB67G1idF0nocrM1Q3QZs+kuk5GlTyYuh/RP77WdTKqzEBFGxkpKXWdjCqRVVT8a+rFu8SYuk5GlZmp6+PD9891nYwqMVZtgG/pSXWdjCpTk1NGakZaXSejShRk5ZGY/qOuk1Fl6nIq//myAIrK479eN9TklP/zeQCK8hH5Lbauk1ElJmq6//lnEKDoOYSQ6kDDVAkhhBBCCCGEEEIIqSXUM44QQgghhBBCCCHkL0WrqdY/1DOOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEhqmSgghhBBCCCGEEPKXEqJhqvUO9YwjhBBCCCGEEEIIIaSWUGMcIYQQQgghhBBCCCG1hIapEkIIIYQQQgghhPylaDXV+od6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lIs0DDV+oZ6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lJCtJpqvUM94wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hxjhCyF8pOzsbq1evxqdPn+o6KYQQQgghhBBSZ1gsVr19/b+ixjjyf8/T0xMKCgq1cix7e3vMnDmzVo5VnSp7jvT19eHm5lZj6amIf/75B3FxcdDT06vUfv/VMiKEEEIIIYQQ8t9ACziQ/4TyWsxHjRoFT0/P2knM/6EhQ4bAycmpwuFDQkIgLS1dgykqm7e3NxITE3Hp0qVK73vhwgWIiorWQKpqnp/PFfh4n0NKcjJ09fUw9p9JaNjIim/Y5B9J8Nh7CB/eRSL+Sxx6DuiDcdMncYW5ceUabl+/iU8fi3oXGpkZw3m8K0wtzWo8L+VppGmM4bZdYa6mCxVpBSzw24d70S/qLD1XLlzCuZOnkZyUBD0DfUyaPhVWjW0Ehn8Z9gIHd+3Fp+gYKKuoYNDwIejRrzdXGJ/T5+DrcxnfE79BTkEe7ezbw3XSeIiJiwEAfH0uwdfnCr7FJwAAdA30McLVGXatWvxxPhiGwcHDh+Fz6RIyMjLQ0NIS8+fNg5GhYZn7Bd66hf0HD+LL16/Q0dbGlEmT0NHenvP+s7AwHDt+HBHv3uHHjx/YsnEj7Dt04IqjWcuWfOOePm0aXEaO/OM8/S31ws/nCi54n+XkY9w/k9CwkbXAfBzZexBR7z4g7stX9BzQB+OnT+YKc/2KH1c+jDn5MK/RfJTme+ESLnifRXJSEnT19TFhxhRYlZGvw7v348O7SMR9+YreA/thwowpNZ5Gn7Pn4X38JJJ+JEHf0ADTZ89AI9vGAsOHPQ3DbrediPkYDWUVFQx3GYG+A/px3o+O+gj3A4fx7u1bJMQn4J9ZMzB4+BCeeL5/+459u/bgcfAj5ObkooGuLhYsXQgzi/LL6NzZczh+7BiSfiTBwNAQs+bMgq2trcDwz54+g9t2N0R//AgVVRU4Ozuj/8ABXGFuBd7Cgf0H8PXLF2jr6GDylEmw79iRb3yeHp7Yt2cvhgwbitlzZnO2r1qxEld9r3KFbWhlhSOeR8rNEwD4nL0A7+MnkfyrLP6ZPb3Msnj+NAy73XaVKIvh6FOiLK74XMZ1v2v4GBUNADAzN8P4qRNh2dCSK57v375j/669JcqiAebX87L49u0b9uzajYcPHyI3Jxe6erpYvHQJLCwsAAAtmjXne/xp0/+Bs4tzufmqi3oxqHd/JPz6zCup38D+mD1/brlpri/5KCgogMchdwT430BSUhKUlVXQvacTRo0dDSGh6ukrc9XnMte9dfz0yWXeW933HODcW3sN7IsJ07nvrZ+iY3DC/Sg+vIvEt4REjP9nMvoM7l8taS1Wl88g2dnZ2LV3L+7cuYO09HRoamhg6ODBGDhgAAipKdQzjvwnxMfHc15ubm6Qk5Pj2rZjx466TuJ/UmFhIdhsdrnhJCUloaamVuF4VVVVISUlVZWkVcmwYcPg6+sLYWHhSu+rpKQEWVnZGkhVzboXeAfuuw5gkMtQbD+8B5Y2Vlj17xJ8T/zGN3x+fj7k5OUxyHkY9I35P+S8CnuJdp3tsWbHRmzatx2q6mpYMXcRkr7/qMmsVIikqDg+JH3Btrun6jopuHPzNg7s2IOhLiOwx+MgrGyssWTuAnxLSOQbPiEuHkvnLoSVjTX2eBzEEOfh2Oe2G/dv3+WEuXX9Jo7sP4SRY0bh4ElPzFowF3cCg+Cx/xAnjIqqKsZMGoed7vuw030fGje1xcoFSxHzMfqP83L02DGc9PbGv3Pm4OiRI1BWVsbU6dORlZUlcJ+Xr15h0dKlcOreHd7HjsGpe3csWLwY4eHhnDA/f/6EiYkJ/p0zR2A8/levcr2WLVkCFouFTgK+7FfE31Iv7gUG4fCu/RjsMgxuh/fC0sYKK8vJh7y8AgY5DxWYj/Cwl2jfuSPW7tiEzfu2Q0VdDctruX7fDbyNQzv3YYjLcOw8sh9WjayxfO5CgXUnPz8f8goKGOIyHAYC8lXdAm/cxM5tO+DsOgruxz3RqHEjzJsxB4kJvA0CABD3NQ7/zpyDRo0bwf24J5xdXbBjy3YE3brNCZOTkwNNbS1MnDYZSsrKfOPJSE/HlHETISIigs07tuHYmZOYOvMfyMjKlJvmgBsB2L51G1zHuMLrxDE0tm2MWdNnIkFgmr9i1oyZaGzbGF4njmG062hs3bIVtwJvccK8evkSSxYtRnen7jjufQLdnbpj0YJFXPW82JvXb3DRxwfGJsZ8j9eqdSv4+ftxXtt3bC83T0BRWezatgMuri44fNwDNo1t8O+MueWUxVzYNLbB4eMecHZ1xo4tblxlEfb0GTp3dcCOfTux78gBqGuoY+60Wfj+7TsnTEZ6OqaOmwQRERFs2rEVXmdO1PuySE9Px4Sx4yEsIgK3HTtw6uxpzJg5g+v5pmQZ+Pn7YcmypUX33E6dys1XXdWLg0fdcfHaFc5r++6i5/+OXcpPc33Kx0mv47h0/iJmzpuN42e8MXn6FHgfP4nzp8/+UT5KuxsYhEM792Gw8zDsdN+Hho2ssGLeInwr67NPQR6Dy7i35ubkQkNTE6MmjoWiklK1pLO0unwG2ebmhuBHj7BqxQqc9fbG8GHDsHnbNgTdvStwn/8aIRar3r7+X1FjHPlP0NDQ4Lzk5eXBYrG4tt29exdNmzaFhIQEDA0NsXLlShQUFHD2T01NxYQJE6Curg4JCQlYWVnB19eX6xjXr1+HhYUFZGRk0K1bN8THx3PeY7PZWLVqFXR0dCAuLo7GjRvD39+/zDRnZWXBxcUFMjIy0NTUxNatW3nC5OXl4d9//4W2tjakpaXRokULBAUFlRnvihUroKurC3FxcWhpaWH69OkVjq94uKmvry8sLS0hLi6OQ4cOQUJCAqmpqVzHmT59Ojr8+tWI3zDVy5cvo1mzZpCQkICKigr69//961jpYaqxsbHo06cPZGRkICcnh8GDByMxkf+XLQCIiYkBi8XCmTNn0K5dO0hKSsLOzg7v379HSEgImjVrximn799/PzCHhITAwcEBKioqkJeXR4cOHfDs2TPO+0FBQRATE8O9e/c427Zu3QoVFRVOeZcepqqvr481a9ZwylJPTw+XLl3C9+/fOXmytrZGaGgoVx7Onz+Phg0bQlxcHPr6+nzLvzpdOnMBXXo4omvP7migr4tx0ydBRVUV1y768g2vrqmB8TMmo1O3LpCW5t9wOmfZfDj16wVDEyPo6DXA1HkzwGYzePH0eQ3mpGIexb7GoceXcedj3aflwumzcOzZHd1794Cuvh4mzZwGVTU1+Ppc5hv+6sUrUFNXw6SZ06Crr4fuvXuga4/uOOd9hhMmIvw1GlpboWPXztDQ1EDTFnawd+iE92/fc8K0bNsazVu3hI5uA+joNsDoiWMhISmJt68j/igfDMPA+/RpuI4ejU4dO8LYyAgrly1DTk4O/G/cELif96lTaGFnB9dRo6Cvrw/XUaPQ3M4OJ0+f5oRp07o1pkyaVGbDmoqyMtfrzt27aNa0KXS0tf8oP8DfUy9K52P89MlQUVWFX7n5cBDYS3nOsgUl8qGLafNm/spHWI3lozSfU+fRtWc3OPZygq6+HibMmAIVNTX4XbzCN7y6pgYmzpyKzt271lrv69MnT6FHn17o1bc39A30MX3OTKipq8HnnA/f8Jcu+EBdQx3T58yEvoE+evXtjR69e+LU8ZOcMBYNLTF1xjR06eoAMTH+PbFPHD0ONXV1LFq+BJYNLaGppYlmzZtBW0en3DR7nziJ3n16o0/fvjAwMMDsObOhrq6O8+fO8w1/4fwFaGhoYPac2TAwMECfvn3Rq3cvnDh+nBPmlPcpNG/RHKNdR0NfXx+jXUfDrrkdTp3k/kEkOzsby5YuxaLFiyEnK8f3eKKiolBWUeG85OXly80TAJw5eRo9+vREzxJloaquhosCy+Ii1EqURc++veHUuwdOH/fmhFm2ZgX6DeoPEzNT6OnrYd7i+WAzbDwN+f2ZfuLoCaipq2Hh8sWcsmhaz8vi2FEvqKmrYdnyZWho1RBaWlqwa94cOiXSXLIMlFVUcPfOHTRt1hTaOuXfc+uqXigqKkJZRZnzenj/AbR1tNG4ieCehvUxH+GvwtG2Qzu0btsGmlqa6Ni5E5q3aI63EW//KB+lXTx9Hg49iu6tDfT1MGH6FKioqcLPp4x764yp6NzNAVIC7q2mFmYYM3UCOnTpCFEB+aqKun4GeRkejp5OTmjWtCm0tLTQv29fmBgbIyLiz56pCKkIaowj/3nXr1/HyJEjMX36dLx58wYHDhyAp6cn1q5dC6CoIa179+54+PAhjh8/jjdv3mDDhg1cvaays7OxZcsWHDt2DHfv3kVsbCzmzv3d3X3Hjh3YunUrtmzZgpcvX8LR0RG9e/dGZGSkwHTNmzcPt2/fho+PD27cuIGgoCA8ffqUK4yrqysePHiAU6dO4eXLlxg0aBC6desmMN5z585h+/btOHDgACIjI3Hx4kVYW1tXKr7s7GysX78ehw8fxuvXrzFy5EgoKCjg/PnfD4aFhYU4c+YMRowYwTcdV69eRf/+/dGjRw+EhYUhMDAQzZo14xuWYRj07dsXycnJuHPnDgICAhAVFYUhQ3iH5JS2fPlyLFmyBM+ePYOIiAiGDRuGf//9Fzt27MC9e/cQFRWFZcuWccKnp6fDxcUF9+7dQ3BwMAwNDeHk5ISMjAwAvxvanJ2dkZaWhhcvXmDx4sU4dOgQNDU1BaZj+/btaNOmDcLCwtCjRw84OzvDxcUFI0eOxLNnz2BsbAwXFxcwDAMAePr0KQYPHoyhQ4fi1atXWLFiBZYuXVpjQ6nz8/MR9T4Sje2acG1vbNcEb8Or7yEiNzcXhQUFkJX77/UcrCn5+fmIfPceTZpzX/9NmjdDRPhrvvtEhL/mCd+0RTNEvn3H+RGhYSNrRL57j3dvisov/mscQoIfo3lr/kNQCwsLEXTzFnJzcmBhZck3THm+xsUhKSkJLVv8PoaYmBia2Nri5atXAvd7GR6OFi2409WyRYsy9ylPUlIS7j94gD69ev1xHH9LvcjPz8eH95GwtWvKtd3Wrinehr+ptuPUdv0uytd72NqVqjt2TRFRjfmqivz8fLx/+w7NW3AP57Nr0RzhL/lf369fhcOuVPjmLVvg7Zu3XD8Sluf+vfswszDH0gWL0aurE8aMGIXLPuVPvZCfn4+3b9+iRUvuOtm8ZQu8evmS7z6vXr1C81LhW7ZqiYg3EZw0v3r5ireet2zJE+fmjZvQpk0bnnNW0rOnz9DNwRED+w/AujVrkZycXKF8vX/7jufcFpUFb+884M/KIjcnBwUFBZCT+92Q+OBXWSxbsAS9u/bA2BGjcUXAjy2l01xXZXH37j1YWFhg4fwF6ObgCOfhI3HR56LAtCYlJeHB/Qfo3ae3wDAl81VX9aJ0Om5cuw6n3j3/aAL4usyHTSMbPA0JReynWADAh/eRePniBVq1aVXJXPDi3Fub8/vM4P9cUh/U9TNI40aNcPfePXz79g0MwyD06VPEfv6MVi3+fOoPQspDc8aR/7y1a9diwYIFGDVqFADA0NAQq1evxr///ovly5fj5s2bePLkCSIiImBqasoJU1J+fj72798PIyMjAMC0adOwatUqzvtbtmzB/PnzMXToUADAxo0bcfv2bbi5uWHPnj08acrMzIS7uzu8vLzg4OAAADh69CjXL5JRUVHw9vbGly9foKWlBQCYO3cu/P394eHhgXXr1vHEGxsbCw0NDXTp0gWioqLQ1dVF8+bNKxVffn4+9u7di0aNGnHiHTJkCE6ePImxY8cCAAIDA5GSkoJBgwYJPOdDhw7FypUrOdtKxlfSzZs38fLlS0RHR6NBgwYAgGPHjqFhw4YICQmBnZ0d3/2K0+/o6AgAmDFjBoYNG4bAwEC0adMGADB27FiuBq7OnTtz7X/48GEoKCjgzp076NmzJwBgzZo1uHnzJiZMmIDXr1/D2dkZ/fr1Q1mcnJwwceJEAMCyZcuwb98+2NnZcc7P/Pnz0apVKyQmJkJDQwPbtm1D586dsXTpUgCAqakp3rx5g82bN2P06NFlHutPpKelg13IhoKiItd2BSVFpFTgS05Fee0/AiVVZTRq+me/QP+N0lPTwC5kQ1GJ+9wrKioiOYn/uU9JToFiqbJSVFJEYWEh0lLToKyiDPsunZCWkoo5k2eAYRgUFhaiZ7/eGOI8nGu/6KiPmDVxGvLy8iApKYml61ZCz0D/j/KSlJQEAFAuNfxEWUkJ8QKG7BTvx2+f4vj+hK+fH6SlpbnmfKmsv6Ve/M6HAtd2eSUFpCanVNtxfuejSfmBq0F6WlHdUVDiUz4C6k5tS0tNRWFhIc+QLEVlJYH1OykpGc2VS4VXUkJhYSFSU1OhoqJSoWPHf43DpfM+GDx8KJxdXRDxOgI7tm6HmJgYuvXoLnC/1F9pVlLiHh6nrKSERz/410l+dVhJSZkrzUlJSVAqlS8lZe56fuP6Dbx7+w4eXp4C09eqdWt06tIZmhqaiIuLw4H9+zF10hQcPe4FMTExgfsJKgslZUUkC7jXJCclQ0m59L227LLYv3s/VFVV0bTEDyZFZXERg4cPwUhXF0S8foMdW7dDVEy03pZF3NevuHD+AoaNGI7Rrq54/fo1tm3ZCjFRUTj17MFzXD/fq5CWlhY4B2BJdVkvSroXdBeZmZlw6lnxOY1Lqst8jBjljMzMLIwcNAxCQkJgs9kYP3kiujh2/aO8lFR8b+V5zlBUxLNq/MyobnX9DDJv9mysWb8eTr17Q1hYGEJCQliyaBEaN25cqXjqMxb+f4eD1lfUGEf+854+fYqQkBBOTzigqJdITk4OsrOz8fz5c+jo6HAa4viRkpLiNMQBgKamJr59K5pXIT09HXFxcZwGoGJt2rTBixf8J4yPiopCXl4eWrX6/QuXkpISzMx+T/D97NkzMAzDk67c3FwoC5hjYtCgQXBzc4OhoSG6desGJycn9OrVCyIiIhWOT0xMDDY23BPLjxgxAq1atUJcXBy0tLRw4sQJODk58XyQF3v+/DnGjx/P973SIiIi0KBBA05DHABYWlpCQUEBERERZTbGlUynuro6AHD1BFRXV+eUE1D0gbxmzRoEBQXh27dvKCwsRHZ2NmJjY7nyf/z4cdjY2EBPT69Cq75WJB1A0WTJGhoaiIiIQJ8+fbjiaNOmDdzc3FBYWMh3Lrvc3Fzk5uZybRMXFy83bSWV/mGYYZhqWy78wsmzuBcYhLU7N3EWECAllDrPDMo596XDM8Wbi7a/ePYcp7xOYOqcGTBvaIG4L1+xf8ceKHocwwjX3xNr6+g2wF7PQ8jMyMT9oLvYunYjNu3eXqEGuWv+/li3cSPnb7dfQ6lLp7tC19Gf7FOGy76+6Na1a6XrAD9/S73gSTPDoLqeq8+fPIO7gbexdufmWq/ff3S91TKe5DAM77aS4cF7P+C3vSxsNhvmFuaYOLVoARFTMzNEf/yIi+cvlNkAJCjN5Z5XPuVQlGauQKXC/C6/xIREbNu6DTt37yyz3jp0deD838jYCBaWFujTszce3H+Ajp3KbwjivV7KXuSL95wLLouTXicQeCMAO/fv5soDm82GmYU5JnDKwhQxH6Nx6bxPvSyL4jRbWFpgytSiSfjNzIuun/Pnz/NtjLty+QocuzlW6p5bF/WiJN/LV9CiVUuoqKr+0f6cdNVBPgIDbiLg2nUsW7MCBoaGiHz/Hru27YCKatFCDtWiss8ltay+PYOcOnMGr8LDsW3zZmhqaODZ8+fYuHkzVJSV0aK54J6+hFQFNcaR/zw2m42VK1dyzVlWTEJCApKSkuXGUXr1TBaLxXn4KbmtpLJu9KX35YfNZkNYWBhPnz7laZyRkeE/KXCDBg3w7t07BAQE4ObNm5gyZQo2b96MO3fuVDg+SUlJnnQ3b94cRkZGOHXqFCZPngwfHx94eHgITHtFzmkxQeepIh+UJculOGzpbSUXoHB1dUVSUhJ27NgBPT09iIuLw9raGnl5eVzxPnz4EACQnJyM5OTkcuceqkg6AHDSwi9v5V0T69ev5+ppCBQN0x06eVSZ+wGAnLwchISFkFLqF8+0lFSeXkF/wsf7HM4dP4WV29ZD36h2Jk3/r5BTkC8696V+RU9NSeXpLVdMkU/PrNSUFAgLC0NOvmholNchD3RydED33kVfmgyMDJGTk4OdG7dh2KgRnNXWREVFofVrfh9TCzO8f/sOF89ewIx/Z6M87du1g1XDhpy/8/LzAQA/kpK4ft1PTkmBUhmTNSsrK/P8Al3ePmUJe/4cnz59wvo1a/5o/2J/S70QnI+0asrHWZw7fgqrtm2AQS3Wbzl5/nUnLSWVp7dcXZFXUICwsDBPL5mU5BSBE5grKyvx9NRKTS6q3/IKFZsbDQCUVZShZ2jAtU1PXx93bgWVuZ/CrzTzrZPKgtLMW4dTUpJ/pVmBE6Z0vlKSkzn1/O3bCKQkJ2O08+/PrMLCQoSFheHcmbO49/A+3x+iVFRUoKGpic8lfjTj53dZlE6D4LIo6i3GW3b8ysL72Ekc9/DCtj1uMCq18ISyijL0DfW5ttXnsgCKzquBAff1o2+gj9slFhooFhYWhk+fPmHN+rU87/FTl/WiWEJ8PJ4+CcWaTbyjSCqqLvOxb8cejBjljC6/GqeNjI2QGJ+A455eVW6M49xbeZ4zUnl6WNel+vQMkpOTgz379mHLxo1o+6vzhYmJCd6/f4/jJ09SYxypMTRnHPnPa9KkCd69ewdjY2Oel5CQEGxsbPDlyxe8f/++/Mj4kJOTg5aWFu7fv8+1/eHDh5zl4UszNjaGqKgoHj16xNmWkpLClQZbW1sUFhbi27dvPOnW0NAQmB5JSUn07t0bO3fuRFBQEIKDg/Hq1as/jq/Y8OHDceLECVy5cgVCQkLo0YP3l9NiNjY2CAwMLDdOoKgXXGxsLD5//szZ9ubNG6SlpQk8f3/q9u3bmDx5Mtq3bw89PT3k5ubixw/ulQGjoqIwa9YsHDp0CC1btoSLi0uFVpStDEtLS77Xi6mpqcAVXhcuXIi0tDSu18KFCyt0PFFRURiZmuBFKPfE689Dw2BuVbVzfMH7LM54ncTyzWtgYi64d+n/K1FRUZiYmSIshHs+yLCQp7Cwash3Hwurhjzhnz0JhYm5GUREin4jy83N4TS4FRMSEgLDMGU37DIM8vPyK5R2aWlpTq/VBg0awNDAAMrKynj85AknTH5+Pp6FhcGmRE/Q0mysrLj2AYDHjx+XuU9ZLl2+DAtzc5iamPzR/sX+lnohKioKY1MTPA99xrX9eegzmP/h/IDFLnifxWmvk1i+eW2t1++ifPGpO6FP/3jew+omKioKU3MzhDzmvr5DnoTAyob/9d3Q2gohT0K4tj15/ATmluac+l0R1o1s8PkTdwPV59jP5X6ei4qKwtzcHE9KpfnJ4yewLtUrnnMsa2ue8I8fPYaFpQUnzdY21nhcOszjx5w4m9nZ4eQpbxw7cZzzsrC0gGO3bjh24rjAz7601FR8S0wsd3hfcVmEPuY+t6FPQmBlY8V3n4bWVggtVRYhfMrC+9gJeLl7YvPOrTC35L038C+LWKjX07IAiuYk+/TpE1eY2E+x0NDkTfOVS5dhbmFe5giS0vmqq3pRzO/KVSgoKqJVm9aV3rdYXeYjJzcHLCHuH22FhITBrsCP+eUpvrc+Dyn1mRHyDOYCnkvqQn16BikoLERBQQHPD+lCwsLV/h2hLrFYrHr7+n9FjXHkP2/ZsmXw8vLCihUr8Pr1a0REROD06dNYsmQJAKBDhw5o3749BgwYgICAAERHR+PatWvlroZa0rx587Bx40acPn0a7969w4IFC/D8+XPMmDGDb3gZGRmMHTsW8+bNQ2BgIMLDwzF69GiuL9empqYYMWIEXFxccOHCBURHRyMkJAQbN26En58f33g9PT3h7u6O8PBwfPz4EceOHYOkpCT09PT+KL6SRowYgWfPnmHt2rUYOHAgJCQkBIZdvnw5vL29sXz5ckRERODVq1fYtGkT37BdunSBjY0NJ/4nT57AxcUFHTp0ELjow58yMjLC0aNHERERgUePHmHEiBFcvfgKCwvh7OyMrl27wtXVFR4eHggPD6/2lU7nzJmDwMBArF69Gu/fv8fRo0exe/durkVBShMXF4ecnBzXqzLDRfoM7o8AX3/cvHodn2NicXjXAfz49g3d+hQ1qnodOILtazdz7fMxMgofI6Pw82cO0lLT8DEyCrExvx/eL5w8ixOHvfDP/NlQ01BHSlIyUpKS8TP7ZyXPSPWTFBWHiYoOTFSK5mHUklOBiYoO1GVqv0dN/yGD4H/FD9d9ryE25hMO7NiDb4mJ6NGvaPGBI/sOYfPq9ZzwPfr2QmJCIg7s3IvYmE+47nsN132vYeCwwZwwLdq0wlWfywi6eQsJcfF49iQUXoc80LJta86XWo/9hxH+/CUS4hMQHfURngfc8TLsBTp15Z47saJYLBaGDRkCj6NHcTsoCB+iorBi9WpISEigW9ff89gsW7kSu/fu5fw9dMgQPH7yBJ5eXoiJiYGnlxceh4RgeIlFWrKzs/Hu/Xu8+/WDxNe4OLx7/x4JpeaByczKws1bt9Cnd/mTiFfE31IvivMRwMnHfnz/9g3df+Xj6IEj2L6W+x5cnI+cnz+Rzicf50+ewfHDRzF9/myo11H97jd0AG74XsONX3Xn4M69+J74DU59i+qO5/7D2Lp6A9c+UZEfEBX54Vf5pCIq8gNioz/xi75aDBk+FL6XruDqZV/ERMdg57Yd+JaQiL4D+gIA9u/ehzXLf88x26d/PyTGJ2DX9h2IiY7B1cu+uHrpCoaO/D3fY/HCL5Hv3iM/vwDfv39H5Lv3+PL5CyfM4GFD8PpVOLw8juLL5y8I8L+BKz6X0G/QgHLTPGzEcFy6eAmXL11GdHQ0tm/dhsSEBPQfUDSCYM/uPVixbDknfP8B/ZEQHw+3bdsRHR2Ny5cu4/KlyxgxcuTv8zB0KJ48fgwvz6OIiYmBl+dRPHn8BEOHF82lKy0tDSNjI66XpIQk5BXkYWRcNA1IdnY2drjtwKuXLxEXF4enoU8xZ/YcyCsooENH+3LzNXj4EK6y2PWrLPoMKJr39cDufVi7fHWJsuiLxPgE7N6+s0RZ+GLIyGGcMCe9TuDwvkOYv2whNDQ1kfQjCUk/kpCdnc0JM2jYELx+9RrHuMriMvoN4h2RUR/KAgCGDR+O8Ffh8Dzigc+fP+O6vz8u+lzEwFJzAWdmZiLwZiDP1Brlqat6ARSNQvC7chXde3T/o4a8+pCP1m3b4pjHUTy8/wDxcfG4e/sOTp88hfb27auUn2J9h/y6t171x+eYTzi0cx++f/sGp75F8yd77nfH1jUbufb5GPkBHyM/IOfnz1+ffdz31vz8fE6Ygvx8JH3/gY+RHxD35Wu1pLkun0FkpKXRxNYWO3bvRujTp/gaF4crvr7wu3YNHTt0qJb8EcIPDVMl/3mOjo7w9fXFqlWrsGnTJs4vkePGjeOEOX/+PObOnYthw4YhKysLxsbG2LBhQxmxcps+fTrS09MxZ84cfPv2DZaWlrh8+TJMyui5sXnzZmRmZqJ3796QlZXFnDlzkJaWxhXGw8MDa9aswZw5c/D161coKyujVatWcHLi30VdQUEBGzZswOzZs1FYWAhra2tcuXKFMydcZeMrycTEBHZ2dggJCSl3HjV7e3ucPXsWq1evxoYNGyAnJ4f27fk/QLBYLFy8eBH//PMP2rdvDyEhIXTr1g27du0qN02V5eHhgQkTJsDW1ha6urpYt24dVwPY2rVrERMTgytXipZ219DQwOHDhzF48GA4ODhU2yStTZo0wZkzZ7Bs2TKsXr0ampqaWLVqVY0s3lCsXecOyEhPx+mjJ5CclAI9Az0s27gaahpF89mlJCXjR+I3rn1mjZ3K+X/Uu0jcvXkbahpqOHTGCwBw7eIVFOTnY+My7uGCQ0ePwLAxzqhL5qp62N3v91DM6W2LvmD4RQRj7a2jtZqWDl06Ij09HSc8vJCSlAw9Q32s3rKe02siOSkZ30qcew0tTazesh4Hdu6B74VLUFJRxuSZ09C24+86NHyUM1gsFo4ePIKk7z8gr6iAFm1aYfSEsZwwKSkp2LR6PVKSkiElLQ0DY0Os2bqBZ6XWyhjl7Izc3Fxs2LwZGRkZsGrYELt37OAayp2QkAChEr9iNrKxwdrVq7HvwAHsP3gQOtraWL9mDaysfvdWeRMRgUlTf19v23fsAAD0dHLCihIrIt8ICADDMFwP3lXxt9SLdp3tkZGe8Ssfyb/ysYYrH98Tv3PtM3PsFM7/P7yLxJ2bt6GmoY7DnHz4oiA/Hxt48jESw2upfrfv3BHpaenw9jz+K1/6WLl5HSdfyUnJ+F6qfKa7TuL8/8O79wgKuAU1DXV4nDtRI2ns3LUL0tPS4Hn4CJJ+JMHAyBCb3LZA49cK3Ek/kpCYkMgJr6WthU1uW7Fr+w74nL0AFVUVzJg7C/Yl5kP78f0Hxowczfn71PGTOHX8JBo3scWuA0WLQlk0tMTazRtwcM8+HD3sAU0tTfwzewa6dncsN80OXR2QlpaGI4fd8ePHDxgaGWH7ju2cVcOTfvwolWZtbN/hBrdt23Hu7DmoqKpgztw56NS5EyeMTSMbrF67Bgf27ceB/Qego6ODtevXcdXz8ggJCSHqwwdcu+qHjIwMqKiooGmzpli7bl2500UAxWWRjqOHPThlsdFtC6e3F/+y2IJd23fC5+wFKKuqYMbcmVxlcfHcBeTn52PZ/CVcxxo9fgzG/LrfWjS0wNrN63Fgz34cPewJjf9AWVg2tMSmLZuwd/deuB92h5aWFmbNmY1u3btxpS/gRtE9t2u38vNSUl3VC6CoN2RiQiKcevesVJrrUz5mzZuFw/sPYdvGLUhJSYGKigr69O+D0ePGVDlPANC+sz0y0tNxqsS9dcWmtSU+M5J4761jJnP+/+FdJO78urceOXscAJD8I4krzIVTZ3Hh1FlYNbbBhl3V86N2XT6DrFuzBnv27sXSFSuQnp4ODQ0NTJ44EQP4TINESHVhMRWZ3IoQQkideJsYXddJqDJzdQO02TOp/ID12IOp+xH9o3p+/a1LBirayEipv6upVYSsouJfUy/eJcbUdTKqzExdHx++fy4/YD1mrNoA39L/fPXf+kJNThmpGWnlB6zHFGTlkZj+o/yA9Zy6nMp/viyAovL4r9cNNTnl/3wegKJ8RH4re27F+s5ETfc//wwCFD2H/Be5nq7YvJB1wWPI4rpOQp2gYaqEEEIIIYQQQgghhNQSaowjhBBCCCGEEEIIIaSW0JxxhBBCCCGEEEIIIX+p/+dVS+sr6hlHCCGEEEIIIYQQQkgtocY4QgghhBBCCCGEEEJqCQ1TJYQQQgghhBBCCPlLCYGGqdY31DOOEEIIIYQQQgghhJBaQo1xhBBCCCGEEEIIIYTUEhqmSgghhBBCCCGEEPKXotVU6x/qGUcIIYQQQgghhBBCSC2hxjhCCCGEEEIIIYQQ8p+wd+9eGBgYQEJCAk2bNsW9e/cEhh09ejRYLBbPq2HDhpwwnp6efMPk5OTUWB6oMY4QQgghhBBCCCHkL8Wvoam+vCrr9OnTmDlzJhYvXoywsDC0a9cO3bt3R2xsLN/wO3bsQHx8POf1+fNnKCkpYdCgQVzh5OTkuMLFx8dDQkLij853RVBjHCGEEEIIIYQQQgip97Zt24axY8di3LhxsLCwgJubGxo0aIB9+/bxDS8vLw8NDQ3OKzQ0FCkpKXB1deUKx2KxuMJpaGjUaD6oMY4QQgghhBBCCCGE1Lrc3Fykp6dzvXJzc/mGzcvLw9OnT9G1a1eu7V27dsXDhw8rdDx3d3d06dIFenp6XNszMzOhp6cHHR0d9OzZE2FhYX+WoQqixjhCCCGEEEIIIYSQv5QQWPX2tX79esjLy3O91q9fzzcfP378QGFhIdTV1bm2q6urIyEhodzzEB8fj2vXrmHcuHFc283NzeHp6YnLly/D29sbEhISaNOmDSIjI//8pJdDpMZiJoQQQgghhBBCCCFEgIULF2L27Nlc28TFxcvcp/RccwzDVGj+OU9PTygoKKBv375c21u2bImWLVty/m7Tpg2aNGmCXbt2YefOneXG+yeoMY4QQgghhBBCCCGE1DpxcfFyG9+KqaioQFhYmKcX3Ldv33h6y5XGMAyOHDkCZ2dniImJlRlWSEgIdnZ2NdozjoapEkIIIYQQQgghhPyl6nrF1OpaTVVMTAxNmzZFQEAA1/aAgAC0bt26zH3v3LmDDx8+YOzYseUeh2EYPH/+HJqampVKX2VQzzhCCCGEEEIIIYQQUu/Nnj0bzs7OaNasGVq1aoWDBw8iNjYWkyZNAlA07PXr16/w8vLi2s/d3R0tWrSAlZUVT5wrV65Ey5YtYWJigvT0dOzcuRPPnz/Hnj17aiwf1BhHCCGEEEIIIYQQQuq9IUOGICkpCatWrUJ8fDysrKzg5+fHWR01Pj4esbGxXPukpaXh/Pnz2LFjB984U1NTMWHCBCQkJEBeXh62tra4e/cumjdvXmP5oMY4QgghhBBCCCGEkL+UUCWHg9Z3U6ZMwZQpU/i+5+npybNNXl4e2dnZAuPbvn07tm/fXl3JqxAWwzBMrR6REEIIIYQQQgghhNSKqRe21HUSBNrTf25dJ6FOUM84Qgipx/Y8OFfXSaiyqW0GIvrH17pORpUYqGijzZ5JdZ2MKnswdT9Sp86r62RUicKezRh6fFldJ6PKTo1chQ77ptZ1MqrszuQ9yEhJqetkVImsoiJOhwWUH7CeG2LrgEV+++s6GVWyzmkSDj+6XNfJqLJxLXtjxsXa7WFRE3b0nYXhJ5bXdTKq5OSIlXA9vbauk1FlHkMWY6DX4rpORpWcc1kLh4Mz6joZVRYwgf8wR0IqixrjCCGEEEIIIYQQQv5SlV21lNQ8obpOACGEEEIIIYQQQggh/y+oMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lIs0DDV+oZ6xhFCCCGEEEIIIYQQUkuoMY4QQgghhBBCCCGEkFpCw1QJIYQQQgghhBBC/lJCtJpqvUM94wghhBBCCCGEEEIIqSXUGEcIIYQQQgghhBBCSC2hYaqEEEIIIYQQQgghfykWDVOtd6hnHCGEEEIIIYQQQgghtYQa4wghhBBCCCGEEEIIqSU0TJUQQgghhBBCCCHkL0XDVOsf6hlHCCGEEEIIIYQQQkgtocY4QsgfycnJwZo1a5CYmFjXSSGEEEIIIYQQQv4zaJgqIeSPLF26FOnp6VBXV6/rpBBCCCGEEEIIEUAINEy1vqGecYSQSsvNzYWysjJ27txZ10khhBBCCCGEEEL+U6gxjhBSaeLi4liwYAHExcXrOik8goKCwGKxkJqaWuF99PX14ebmVqXjslgsXLx4sUpxEEIIIYQQQgj5+9EwVUJIpT18+BDt2rWDg4MD/P396zo5pAwvbz3CM//7yErNgJK2GtoP6wFtU32+Yb+8/YgLm9x5to9cOxNKmqo1kr4rFy7h3MnTSE5Kgp6BPiZNnwqrxjYCw78Me4GDu/biU3QMlFVUMGj4EPTo15srjM/pc/D1uYzvid8gpyCPdvbt4TppPMTExQAAvj6X4OtzBd/iEwAAugb6GOHqDLtWLWokj2VppGmM4bZdYa6mCxVpBSzw24d70S9qPR1lkXBygFibFmBJSaEwJhbZZ3zAjhc8V6TMjEkQMTXi2Z4fHoGsfUeK/hASgoSTA0TtmkBIThbs9HTkPQpFrn8gwDDVmn4HUzv0smwLBUkZfEn9Dq/Qa3j7/ZPA8G30bdC7YVtoyCohOz8XL+IicfzpdWTm/eQJ20rPCjPaDUbI5whsveNdrekurW/DdhjauAuUpOQRkxKP3Q/O4WV8VBnh26O/dQdoyCohMTMFx5/64/r7J5z33XrPgK22Kc9+wZ/CscBvX7Wlm2EYHDx8GD6XLiEjIwMNLS0xf948GBkalrlf4K1b2H/wIL58/QodbW1MmTQJHe3tOe97HD2K20FBiPn0CeLi4rCxtsY/U6dCX0+PE+bAoUO4cfMmEhMTISoqCgszM0yZNAlWVlZVytOTG3dx/0ogMlPToKqjie4uA6BvYcw37Ke3Ubhx8hJ+xCUgPzcfCqpKaNa5DVr36MQV7qHfbYQE3EPajxRIyUqjYQtbdBnWG6JiolVKa1la6DZEO8NGkBWXwrfMFFx98wAxKQkCwwsLCaGTcTM01jaBrJgU0nIyERT1DE+/vAMANNE2w8BGHXn2W+Z/CAXswhrJQ1jgQ4T4BSEzLQMqWuroNKI3dMzKvrYA4Mv7aJxavx8qOuoYvXo213s5WT9x7/w1RIaGIyf75//Yu+voqI63gePf3chuXAmEuEAgBAvu7tYWWipQqNPSlpa6QZWWtlRpseJQXEpxd3cLFiSBhLj7yvvHhk022QRJAvz6Pp9z9pzk7szdmd175+7OfWYGJ3dXOj3Vl8CGdaukDgBtAxrQObgpjmo7bmYksfzUDi4n3TCb9unw7rTwrVdqe2x6Et9tnQNADQc3etdthbezB262Tiw/tZ0dkceqrPy3dK3VjL6hbXC2sedGagJzjqzjfEJUmenb+Nenb2hRe3sy5hLzjxa1t52CmtAusCE+Th4AXEmOYdGJLUSW8d5Uhk7BTegV0tJQh7QE/j62iYuJ0WbTvtC8L20DGpbafiMtgU/XTwXAQqGkT93WtAlogIuNA7EZSSw5sZXTNy9XWR0AeoS0oH9oW1xsHYhOjWfWoTVExJd97WsX0JAB9drh6ehGdn4ex2IuMOfIOjLzDJ9Fx6DGvN5mUKl8T80bS4FOUyV16BfalscbdMbN1pGrKTeZtG95ue9b/9C2DKjXjuoOrsRnpvD3sU1svnjIbNqOQY35pMtw9lw9yecbS3/3/S+S1VQfPtIZJ4S4azNmzOCNN97gr7/+IioqCl9f3zLT6vV6tFotlpbS3NxvFw6eZOeCtXQc2o+awX6c3n6IVT/PZsjXo3Bwcy4z39Bxb2NtUxT1aONgVyXl27F5G1N+/YOR74yiXoMw1q78l0/f/ZCp82biUaP0XIQ3Y2L57N2P6NWvN++P+ZgzJ0/zx4RfcXJ2pm2n9gBs3bCZGZOnMfqj96lbvx43oqKZ8M33ALwyaiQA7tWq8fyIF6np7QXA5nUb+eLDz5g4cwr+gQFVUtey2FipuJR0nbXn9jKu14j7+tp3QtWtI6rO7cmeuwhtfALqnl2xf/0l0r/8AfLyzObJmjYbip3vCjtbHD56m4JjJ032a92uFdlzFqKLjcPCzxvbIU+gz8klf/vuSit/K78whjXpxfRDqzkfH0XXWs34sPMQ3vl3IknZaaXSh1TzZWTrx5hzZB1Hrp/H1daRF1v04+WWA/hp50KTtO52TgwJ70FE3NVKK29ZOgWF83qbQfy8axGnYyPpV68t4/uMZNjCr4jPTCmVfkC9drzcsj8/bP+bc/HXqFvdn/c6PE1GXjZ7r50G4LMN07BSFn1Ojmo7pj/xEdsr+Qf77Llz+XvBAsZ+9hm+vr5MnzmTkW++ybJFi7CzM9+2nDx1io8/+4wRL79Mpw4d2LZjBx9+8gnTp0wxdqQdPXaMxwcOJDQ0FK1Wy5+TJ/P6qFEsWbAAGxsbAPx8fXn/nXfw8vIiLy+PvxcsYOSoUaxcuhQXF5d7qs+pvUdYN3sZfV8YjG9IIIc272bed3/y+oRPcXZ3LZXeWmVNix7tqeHrhZXKmqjzkaz6ayHWKmuadm0LwIndh9i84B8eeeUZfGoHkhQbz4rJcwHoNWzgPZXzdup7BtEntDWrTu/iWspNmvuGMqxZH37ZuYi03EyzeZ5q3A17a1uWn9xOUnY69tY2KEv8uMstyOOnHabnSlV1xJ07cJyt81fR7dlH8artz4lt+1k6YTrPf/sujm5lf7552TmsnboQv9BgstIzTJ7TajQs+WEqto729H99KA6uzmQkp2KtrrqRAI29avNo/Y4sObGVK0kxtA6oz4hWj/Dtljmk5GSUSr/85Hb+PVPUTioVSj7oPITjMReM26wtLEnMSuPYjQs8Wr9jlZW9uJZ+9Xi2SU9mHFrDhYQoutRqygedhvDe6j/KbG9fbfUYc4+u52hhe/t887681HIAPxe2t6HV/dl79RQXE6Mp0GroG9qGDzsP5f3Vf5h9byqquU9dnm7UjblH13MxIZqOweGMbv8kn6yfQnJ2eqn0fx/bxJKT24z/WyiUfNnjRQ5FRxi3PVa/A6386jPr8Bpi05MIqxHIG20G8c2W2USlVs0iaK396zO8aW/+OvAv5xKu0a1WMz7uMoy3V/1KYlbpz6KOhx+vtxnE7MNrOXz9HK62jrzcYgCvtnqMH7bPN6bLys9l1MqfTfJWVUdch8DGvNrqUX7fvYQzcVfoU7c143qN4IXF35KQVfq617duG55v3o+fdy7kfEIUdTx8ebvdk2TmZbM/6oxJWg97F15u8QgnYy9VSdmFuFMyTFUIcVeysrJYvHgxr776Kn379mXWrFkmz98aJrphwwaaNm2KSqVi165d6PV6vv/+ewIDA7GxsaFhw4YsXbrUmE+r1fLCCy8QEBCAjY0NISEh/Prrr7ctz9q1a6lduzY2NjZ06tSJq1evlkqzd+9e2rdvj42NDT4+Prz55ptkZWXdcZ0PHTpEt27dcHd3x8nJiQ4dOnD06NFy83zwwQfUrl0bW1tbAgMD+eyzzygoKLjj16wMxzbsoV67JoS1b4ZrTQ/aP90He1cnTm47UG4+W0c77JwcjA+lsmouFcsXLaFH31706t8HX38/Rrz1OtU8PFi9YpXZ9GtW/otHdQ9GvPU6vv5+9Orfh+59erF0wWJjmojTZ6hXP4xO3btQw7MGTVo0o2O3zlw4V/QjpWXb1jRv3RJvXx+8fX0Y/soLqG1sOHcmwtzLVqn9UWeYdmAVOy4fv++vfSdUndqRu2ELBSdOo4uNI3vuQhTW1lg3a1xmHn12Dvr0DOPDqk4tyC8g/2hRxJ9lgB8FJ8+gOXMOXXIKBcdOURBxEUs/70otf5+6rdkWeZRtl44Sk57InCPrSMpOp1vtZmbT13L3ISErlfXnD5CQlcr5hCg2XzxMkJuXSTqFQsHrbQax9OQ2s51hle2Jhl1Ye24fayL2ci01jol7lpGQmcKAeu3Mpu9euzmrzu5hW+RRYjOS2HrpCGvO7eWpxt2NaTLysknOSTc+mvrUIU+Tz/bI8tu2u6HX61mwaBHPDR9O506dCA4K4osxY8jNzWX9xo1l5luwcCEtmjXjuWHD8Pf357lhw2jerBl/L1pkTPP7L7/Qr29fggIDqV2rFmM//ZSbN28Sce6cMU3PHj1o0bw53l5eBAUG8vZbb5GVlcXFS/f+A2zvmq2Ed2pFk86tqeZVg97DBuHo5sKhTbvMpvcM8KFBm6Z4+Hji4uFGw3bNCW5Ql2vniqIaoy9cwad2IA3aNsPFw43ghnWp37opNy6XHVFUUW0DGnAk+hyHr58jISuVNRF7ScvNpIVfqNn0tdx9CHCtyezDa4lMukFqTgbX0+JLdSbogcz8HJNHVTm8fif12zejQccWuNWsTudnBuDg6szxLfvKzbdx1jJCWzWmZrBfqedO7TxETmY2j7w5HO/aATi5u+BdOwAP35pVVQ06BoWz/9pp9l87TVxmMitO7SAlJ4M2AeajxHM1+WTkZRsfvi7VsbFSc+BaUYdDVGocq87s4tiNC2iqqLOkpN51WrM98hjbIw3t7dwj60nKTqdrGe1tsLs3CVmpbCjW3m65eIRA16L3+o+9y9h88RDXUm4Sk57ItAOrUCgUhNW4ffTjvege0oKdV46z8/JxYjOSWHBsE8k56XQOCjebPqcgj/TcLOPD39UTW2sbdheLcG/lX5/VEXs4GRtJQlYq2yKPcvrmZXqGVF00fr+6bdh66QhbLh3mRloCsw6vJSkrje61zb9mbXcfErJSWHtuH/GZKZyLv8amiwcJcit53OtJzc00eVSVgQ06sv78ftad309UahyT9q0gITOFfqFtzKbvWqsZayL2sOPyMW5mJLE98hjrz+9ncKOuJumUCgUfdX6WOUfWcTM9qcrKL8SdkM44IcRdWbRoESEhIYSEhDBkyBBmzpyJ3sywsvfff59vv/2WiIgIGjRowKeffsrMmTOZNGkSZ86c4e2332bIkCHs2LEDAJ1Oh7e3N4sXL+bs2bOMGTOGjz/+mMWLF5fa9y3R0dE89thj9O7dm+PHj/Piiy/y4YcfmqQ5deoUPXr04LHHHuPkyZMsWrSI3bt38/rrr99xnTMyMhg2bBi7du1i//791KpVi969e5ORUfZdWQcHB2bNmsXZs2f59ddfmTZtGj///HOZ6SubVqMh/loMvvVMh0751gsm9lL5P/AWfP4Hf739Lct/mE50RNUMoygoKODi+QuEN29qsj28eVMiTp8xmyfi9JlS6Zu0aMrFc+fRaAw/Nuo1rM/F8xc4f9bQsRZ7I4ZD+w7QvLX5L6BarZbtm7eSl5tL3TDzP0L/v1K6uaJ0ckQTUdSRiUaL5tJlLANK/4gti3Wr5uQfOQ75RZ3RmsirWIUEo/RwN7yWlyeWQf4UnD5Xxl7unoXSggBXz1JDOU/GXqJ2NfPRvBcSonC1daRRzVoAOKntaOFbj6M3LpikG1i/I+m5WWyrxI6rslgqLahdzcck0gLgUHREmT9IrSwsydeYdv7naQqo6+GHRRmd633qtGLrpSPkavIrp+DAjZgYkpKSaNmi6PyztrYmvHFjTp46VWa+k6dP06KF6TnbskWLcvNkZhp+FDo6Opp9vqCggBUrV2Jvb0/tWrXuphpGGo2G2CvRBDUwHa4Y3KAuUReu3NE+Yq9EE33hMv6hRWXwqxNI7JVorl+6CkByXCIXjp2hdnjpoYiVwUKhpKZjtVJD7y4lXMfPuYbZPHWr+3MjLYH2gY34oPNQRnd4kl51WmKptDBJZ21hxXudnuGDTkN4tmkvPB3dqqQOWo2Gm1dv4B9mOtTaP6w2Ny6VPRTv1M5DpMYn0fqRbmafv3TsLDWD/dg8ZwV/vPEFMz/+kf3/bkGn01Vq+W+xUCjxca7O+RLDB8/HRxHgemcdgC39wriQEFUlkWJ3qqi9Ne3oPhUbSW13H7N5LiREm7S3jmo7WviGcizmgtn0ACoLKywVFlXSyWuhVOLv4smZm6bn8pmblwlyv7MbRe0DGnE27gpJxaLorJQWFGhNO0TztRpqVTP/vlSUpdKCQLeanIgx/SxOxF4ipIxr3/mEKNxsnYxTFzip7WjpG8bR66afhdrSmkmPvcuUge/zUeehBLh6Vlkdarv7GIfA33Lk+nnqVTc/gsHKwpL8Eu9znqaAkGq+WCiKrntDwnuSmpPJ+vP7K7/gDzmlQvHQPv6/knFjQoi7Mn36dIYMGQJAz549yczMZMuWLXTtanrn6csvv6RbN8OX3aysLH766Se2bt1Kq1atAAgMDGT37t1MmTKFDh06YGVlxRdffGHMHxAQwN69e1m8eDFPPPGE2bJMmjSJwMBAfv75ZxQKBSEhIZw6dYrx48cb0/zwww88/fTTvPXWWwDUqlWL3377jQ4dOjBp0iTUavVt69y5s+ncPlOmTMHFxYUdO3bQt29fs3k+/fRT49/+/v688847LFq0iPfff99s+ry8PPJKDPuryAIZORnZ6HU6bJ3sTbbbOtqTnWb+TqadkwOdhz2Ch39NtAVazu07xoofZzDw/RfwCqnc4ZvpqWnotDpcXE2HErm4uJCclGw2T0pySqmhZS6uLmi1WtJS03Bzd6Nj186kpaTyzqujjEOk+z7an8FDnzbJdyXyMm+/8jr5+fnY2Njw2bgv8Avwr9Q6/q9TODoAoMswPV506RkoXe9siJ+Fnw8WXp5kz19isj1v0zYUNmocPnvPMEecQkHuv+spOHK8UsoO4KiyxUJpQVqOafnTcrJwrmlvNs+FxGgm7lnKqHZPYGVhiaXSgsPREcw6tMaYpnY1XzoFhVfqvGrlcVLbY6m0KDVEKiUnA1db8x1Ph6Ij6Fu3NbuvnOBCYjQh1XzpXacVVhaWOKntS+2rjocfgW5ejC82HKkyJCUZog7cXE2Hb7q5uhJ7s+y5yZKSkszmubW/kvR6PT/9+iuNGjYkOMh0vsJdu3fz8WefkZubi7u7O3/89hvOzs73UBvITs9Ep9Nh7+Rgst3OyYHM1NJD2Ir78bVPyUrPRKfV0mlQb5p0bm18rn7rpmSlZzJ97M/o0aPT6mjWrR3tB3QvZ4/3ztZajYVSaZwL6paM/Gxqqcx3ELjaOuDnUgONTsv8IxuwtVYzoF47bKzULD+1HYCErBSWndzGzYxk1JZWtPavzyutHuH3XUvNDlOsiJyMLPQ6HXalPgt7stLMd0ql3Exg55K1PPXJaygtLMymSUtIIioihdBWjRk4+gVS4hLZPGcFOq2uzA68irBT2WChVJKel22yPSMvCwfV7W96OKrsqOvhz5zD6yq9bHfD4VZ7m2s66iAtNxMnG/Pt7cXEaP7Ys4w32j5erL09x+xDa8t8nScbdyM5J53TsZV/o9DB2tbwWZSI9krLzSJMbb4OxTmp7anvGcSU/StNtp++eZkeIS24kBBFfGYKdasH0NirdpV1QBR9FiWvfZllXvvOJ0Tx667FjG7/pPGzOBQdwfSD/xrT3EhLZOKeZUSlxmFrpaJ33dZ83fNl3vl3IjczKjfCzElth4XSgpSc0tc9F1sHs3mOXD9Hrzot2Xv1JBcTr1Pb3YeeIS2Lrns56dSrHkDPkJaMWPZ9pZZXiHslnXFCiDt2/vx5Dh48yPLlywGwtLRk8ODBzJgxo1RnXNOmRRFMZ8+eJTc319g5d0t+fj6NGxcNd5s8eTJ//fUX165dIycnh/z8fBo1alRmeSIiImjZsqXJhKS3OvtuOXLkCJcuXWL+/KIfmXq9Hp1Ox5UrV6hb9/YTMsfHxzNmzBi2bt1KXFwcWq2W7OxsoqLKjjBbunQpv/zyC5cuXSIzMxONRlNmxAbAt99+a9IZCTB27FiqdavYRONQ4sueXk9Z3/9cPKvhUmyhBs9gXzKS0zi6YXeld8YVFc+0MHr05U8wWzK9/tZmw/YTR4+zcM58Rr4zijr16hJz/QaTf/0Dl5lzeea5ocZ83r4+/DlrGpkZmezevpMJ34zn+4k//7/ukLNq1hjbp4rmp8r8s3CxhZKRr3fxA8K6dXO0N2LRXjONwLFq0hDr5uFkz/obbWwcFt41sRnYH11aOgUHjtxzHcwpFberwGw0L4CXUzWGNe3NslPbORlzCWcbB54J786LLfoxZf8/qC2teb3NQKYdWEVGiR/PD0JZ9Zh9eB2uNo5Meuw9UEBKdgbrz+/n6cbd0elLR/j0qdOay0k3OFfO5N53Yt369YwrdjPklwkTgNKTRuv1tznPDZnuOM/3P/7IpUuX+Gvq1FLPNW3ShL/nzCE1LY0V//zDR598wqzp03F1LT2/2x0rVYzb1+eFz98iPzeP6ItX2bTgH1xrVKNBG8N18sqZC+xcsYG+LwzGO9iPpJuJrJu9lO3OjnQc2Ovey3kbJY8eBQozW4s/B4uObyGvMHpybcRengrvzqozu9DotESnxhOdGm/Mcy3lJiPbDqKVfxirz+6piiqYu8SZbaJ0Oh2rJ/9Nm0e741qj7AWJ9Do9tg72dH9uEEqlkhoB3mSmpnFo7Y4q6YwreuGSG+6snW3uG0pOQR6nHpq5r0ofVWUtyuPlWI1hTXux4tQOTsRewsXGnqcbd+f55v2YduCfUun7hrahtV8YX22eVWXzlMHdnRfFtQ1oQHZBLkdvmEZz/X1sE8Ob9mZcrxHogfjMFHZfOWF24YfKVOr6UE4b5e1Ujeeb92XJya2cuHERZ1sHnm3Si5dbDmDSvhWAofO0eDTtufgovu87kt51WjKj2A2ryq1D6SqU9UnMO7oBF1sHfntkNAoMHXcbLxxgcKOu6PQ6bKxUfNBpKD/vWkh63p1PVSNEVZLOOCHEHZs+fToajQYvr6L5k/R6PVZWVqSkmEYtFZ+Y+9bwjjVr1pjkhaLor8WLF/P2228zYcIEWrVqhYODAz/88AMHDpQ9v1lZP0SL0+l0vPLKK7z55pulnitv4Ynihg8fTkJCAr/88gt+fn6oVCpatWpFfr754Vz79+/nySef5IsvvqBHjx44OTmxcOFCJhT+MDXno48+YvRo0xXdVCoVfx3+t4wc5bNxsEWhVJJdIkIgOyMLG8fb3+G9xTPQh3P7K391T0dnJ5QWSlJKRMGlpqSWipa7xcXVhZTkkulTsLCwwNHJ0NE5Z9pMOvfoRq/+fQAICAokNzeX38b/xFPDnjHOf2dlZWVcwKF23RAunDvPyiXLGfW+6Wfw/0nBybNkXC3WwVy4CIPS0QFtsUnOlQ726NPvYDiUlRXWTRqSs7r03GA2j/Yld+M2Co4Yji1dzE2Uri6ou3eutM649LxstDotziWiMpzUdqWiN255pF47LiREGTsOolLjyDuYzxc9XmTRiS04qe3xsHfhvY5FkZa3OmHmPz2W0at+I66S55BLy81Eo9OWioJzsXEoc1havraA8dvn8ePOv3G1cSQpO41+oW3Jys8hLce07ipLKzoHN2HGodUVLmv7du0Iq1c0tDK/cJ7MxKQk3N3djduTU1LK7Qxzc3MrFQVXVp7vf/yRnbt2MXXyZKp7eJR6/tZcoT4+PtQPC+PRQYP4599/eW7YsLuun62jPUqlksxU0/c9Ky2zVIRWSS6FQ7Kr+3qRmZbBtqVrjZ1xWxavoWG75sZoueq+XhTk5bFq2gLaP9qj0uftzM7PRavT4aCyMdlub21TKlruloy8bNJzs4wdcWDoVFAqFDip7c1GvumBG6kJuNk6VWr5wbCwkEKpJKvEZ5GdnomtY+nPIj8nj5tXrhN3LYbNc1cayqfXg17Pj899wOPvvYRfaDB2zo4oLZQm77mbZ3Wy0jLQajRYVPJiVFl5OWh1OhzVtibbHVS2d9Th39KvHoejI9Ca6WS/nzIK21sn9Z23t/3D2nEhIZrVEYb2Njo1jjzNGsZ2f4ElJ7aYzEfWp25rBtRrx7gtc4iuokUPMvKz0ep0pergqLYtsw7FtQtoyN6rp9CWGNKckZfN73uWYqm0wF5lS2pOBo836ERiVmplFt/k9QzXPtPzwEltR2qO+ZERj4Z14Hz8NVYVLgxyLTWOaZpVfN3zZRYc30yqmWuNHj2RSdfxdHQv9VxFpeVmoTVz3XNWO5CaXfZ1b8KOBfyycxEutg4kZ6fTu05rsvJzScvNItCtJp6ObnzV4yVjnlvX7/Uv/sRzi74htpIj/B42CoXMUPawkc44IcQd0Wg0zJkzhwkTJtC9u+nQmYEDBzJ//vwy52ELDQ1FpVIRFRVFhw4dzKbZtWsXrVu35rXXXjNui4yMNJu2+H5Xrlxpsm3/ftM5IMLDwzlz5gzBwaZzp92NXbt28eeff9K7d2/AMFddYmJimen37NmDn58fn3zyiXHbtWvlR5yoVKoKDUstycLSEg+/mkSdvURQk6Ifx1FnLhHY+PbRgLfER8Xe9kfmvbCysqJWSG2OHTpCmw5Fk9AfO3SElm1bm81TN6weB/aYTsx99OBhatUJMa7Wm5eXW+qHq1KpRK/Xl995q9dTkH9/F9h46OTloUswHSqtS0vHsk5ttNdjDBssLLAMDiTnn7KHEd1i3aQhWFpScMjMvGpWVqVveet0dxV1dztanZYrybHUrxFkMt9a/RpBHL5ufm46a0urUnND6QrLqUBBTFoi7/470eT5wY26YGOpYtbhtSSaWW2vojQ6LRcSomnqXYddxSYFb+pdh91XT5aTE7Q6HQmFP/g6Bzdh37XT6EvEFXQKaoKVhSWbLhyqcFnt7OxMbsTo9Xrc3Nw4cPAgdUJCAMPcbUePHeONkSPL3E+DsDAOHDzIM089Zdx24MABGtSvb7Lv7ydMYPuOHUz54w+8at7Z/Fp6KPNGyu1YWlriGeBD5KlzhDYvimqJPHWOOk3rl5OzZCH0aAuKInsK8vNLRdYplMqyAooqTKvXEZOeQLC7D2eLrQYc7O7F2firZvNcS7lJmGcg1sXmZXK3c0an15W5+iqAp6MbNzPMTz1QERaWltTw9+LamYvULvbeXztzgeDGpefaU9moGP7NOybbjm/ZS1TEJfq//ixO1QwdvV61/InYfwy9Toei8FqSEpeAnbNjpXfEgeGziE6NI6San8n8liHVfDl1s/zvQMHu3lSzd2H/tXu7aVeZjO2tp2n7GuYZWGrer1tUFlalOhGNkbvFzoe+ddvwSFh7vts6lyvJMZVf+EJanY6rKbHUqxFgEt0WWj2A4zfKnscODJ9XdQdXkza6JI1OS2pOBhYKJU2865SaB7SyaHRaLifF0KBmMAejzxq3N/AMLvM1VZZmPovCa2F5V2V/F88qWRFWo9NyITGacK8Q9hS7zoV7h7D3atlzh4LhnLq1YmynoHAORJ1Bj56o1DheWvKdSdrhzXpja6Xmz73LjddKIe4n6YwTQtyR1atXk5KSwgsvvICTk+ld7kGDBjF9+vQyO+McHBx49913efvtt9HpdLRt25b09HT27t2Lvb09w4YNIzg4mDlz5rBhwwYCAgKYO3cuhw4dIiCg7OGRI0aMYMKECYwePZpXXnmFI0eOlFrd9YMPPqBly5aMHDmSl156CTs7OyIiIti0aRO///77HdU9ODiYuXPn0rRpU9LT03nvvfewsbEpN31UVBQLFy6kWbNmrFmzhhUrVtzRa1Wmxj3asHHaUjz8vfAM8uX0jkNkJqdRv2NzAPYs3UBWSjrdX3ocgGMb9+Do7oKblwdajZZz+44TeeQMvUc+Xd7L3LPHBj/OD199S606IdQNC2XdP6uJj4ujz6P9AJgxaRpJiYm899lHAPR5pB+rlq1kym9/0qt/HyJOn2XD6nV8+HnR/Hwt2rRixcKlBNUOpk6oYZjqnGkzadm2NRaFcwTNnPwXzVo2x726BznZ2ezYvI2Tx07w9YTvSheyitlYqfB2KhoyVdPRnVru3qTnZlV6hNW9yNu2C3WPzugSEtHGJ6Du0QV9fj75h44Z09g++yS61DRyV5nOWWTdqhkFJ86gzyod3aE5HWHYb3IKutg4LHy8UHVuT/6+incIFbcmYi8jWz/G5eQbXEiIpmutprjbObH5ouF1nmzUFVdbR/7caxh6f/T6eV5qOYButZpxItYwTHVY015cSrxujEK7nhZv8hrZ+blmt1emxSe28EmXYZxPiOLMzcv0DW2Lh4OrMYrhpRb9qWbnzLitcwDwdvKgrocfZ+Ov4qCy5YkGnQlw9eTbwueL61O3FbuvnKiSYTsKhYKnBg9m5uzZ+BZGp82cPRu1Wk3PYjd1xnzxBR7VqvF64c2YJwcP5uVXX2XWnDl0bN+e7Tt3cuDQIaZPmWLMM/6HH1i/cSMTvv8eWzs7Egsj6ezt7FCr1eTk5DBj1izat2uHu5sbaWlpLFm2jPj4eLp26XLPdWrdpzPL/5iDV6AvPrUDOLx5D2mJyTTraripsGnBP6QnpzFw5LMAHNiwAyd3V6rVrA7AtfOR7Fm9hRY9i25MhYSHsW/tNjwDvPEO9ifpZgJbF6+mTpP6Vbaa9e4rJ3m8YWdupMUTlRJHM99QnGwcOHjN8OO9e0hzHFV2LD25DYATMRfpFNyEgQ06seXiYWyt1PSq25Ij0efR6LSAocM3OjWOxKw01JbWtPKvj6ejm/E4rWxNe7ZnzZSF1AjwpmawHye2HSA9KZWGnQ3TVexcvJaMlDT6vPIUCqWSat6mi1PYOtpjYWVpsr1R51Yc3byHLfNXEd6tDSk3E9n/71bCu7WtkjoAbI88ypAmPYlKjeNqciyt/evjYuvAniuGToi+oW1wUtsz/+gGk3wt/cK4mhxrNprHQqGkRuHiGZYKC5zU9ng5VSNPk2/sqKhsa8/t5bVWj3E5KYaLidF0Dm6Ku60TWwrb28GNuuJq42Ac9nj0xnlebNGfrrWacTL2Es429gxtYmhvb0Vi9Q1tw+MNOjNxz1ISslKNUWu5mnyTKM3KsvH8AV5qMYCrybFcSrxOh6DGuNk6GRfrGVS/I862Dvx1wLQDtH1gIyKTbnAjLaHUPgNda+Ji40BUahzONg48EtYOhULB2nPlr/pbEf9G7OGNNoO4nHSD8wlRdKvVDHc7JzZeOAjA042742bryO97lgJw+Po5RrR6lO61m3M85iIuNg4816wPFxOijde+xxt05kJiFLHpSdhaqeldtxX+rp6l3ovKsuzkdj7oNIQLiVFExF2ld93WeNi7GCMpn2/WF3c7J74vnOvUy6kadar5cS7+GvYqGwY26IS/q6fx+QKthqspsSavkVUYCVxyuxD3i3TGCSHuyPTp0+natWupjjgwRMaNGzeOo0fLXlnwq6++wsPDg2+//ZbLly/j7OxMeHg4H3/8MWDoWDt+/DiDBw82/IB76ilee+011q0re1JiX19fli1bxttvv82ff/5J8+bNGTduHM8//7wxTYMGDdixYweffPIJ7dq1Q6/XExQUxODBg++47jNmzODll1+mcePG+Pr6Mm7cON59990y0w8YMIC3336b119/nby8PPr06cNnn33G559/fsevWRlqN29AbmY2B1dtIystAzev6vR/61kc3Q3DQLPTMshILvpSrtNq2b14HZkp6VhaW+FW04P+bz2Lf4OQKilfh66dSE9PZ/7MOaQkJeMX6M9XP35L9RqGH0bJScnExxV1cNSo6clXP37LlN/+YPXyf3B1d+PVt16nbaf2xjRPDxuKQqFg9tQZJCUk4uTiTIs2rRj+8gvGNCkpKXz/1bekJCVja2dHQHAgX0/4rtRKrfdDnWp+THy0aGjsm20NHaNrI/bxzdbZ9708JeVt2o7CygqbwY+isLVBezWKzInToNhiI0oX51JRbkoPdyyDA8n8vfQcXgDZi1di07cHtk8+hsLeHl1aOvm795O7bnOlln/ftdOGL+X1O+Js40B0ajzfbZtn/DHqYuOAu11Rm7bj8nHUViq6h7RgSJMeZOXncibuCn8fLT3U9n7aFnkUJ7UdzzbphZudI1eSY/lgzZ/EZRoijtxsnfCwLxrebaFQMLhhF3ycq6PRaTkWc4GRKyaUilDydvKggWcw7/x7Zzcm7sWwoUPJy8vjux9+ICMjg7B69Zj4668mEXQ3b940mcy8YYMGfPPVV0yaMoXJU6fi7eXFt19/TVhY0RyaSwvnLn2lWDQ1wNhPP6Vf374olUquXr3K6rVrSU1NxcnJidC6dZk2eTJBgeZXob0T9Vs3ISczi+3L1pGRmo6HjydDPnwN58LIqoyUdNISi95nvV7P5gWrSElIQqlU4lrdnW5PDaBp1zbGNB0e64lCoWDLotWkJ6dh52hPSJMwugzud8/lvJ1TsZHYWqnpHNwUB5UtcZnJzD601jg00EFlZzLMLV+rYebB1fSt15bX2jxGdn4ep2Ij2VT44x5AbaXikfodcLC2JVeTT0x6IlP3r6qyjuo6LRqRk5nN3n82k5WajrtXDQaOfgGnwmtcZlo6Gcmpd7VPRzdnHn/vRbb9/S+zPv0Je2dHmnRvS/M+naqgBgbHblzAzlpNjzotcFLZEZuRxJR9K42dII5qu1KT1qstrWnoGWxcPKMkJxt73u80xPh/l1pN6VKrKRcTo5m4e2mV1GP/tTPYW9vyWP0OONs4cD01nu+3zze2t85qe9yKtbc7Lx9Hbamie+3mPBPenezC9nbBsU3GNN1qNcPKwpK32z9p8lrLTm5j2antlV6Hg9ER2Kls6V+vLU5qe26kJfDzroXG1VGdbOxLDbu2sVLRxLsOfx8zf52wsrDk0fod8LB3IVeTz8nYS0zbv4qcgjyz6SvD3quncFDZMqhBJ2NH4Lgtc4xDY0te+7ZHHsPGSkWvOi0Z1rQXWfm5nL55mXlHijqA7azVjGj5CM42DmTn53IlJZYx66dxKel6ldRhx+VjOKrtGBLeA1dbJ64mx/LJuinEF96odLN1LHHdUzKoQSe8nT3Q6rQcj7nIqH9+MV4nRdHcn+LhodDfyaRLQgghHog/9lTNl+b7aWSbQVxJvPGgi1EhAe5etPljxIMuRoXtGTmZ1JHvPehiVIjzHz/w5LwxD7oYFbZwyJd0mFT2UM3/FTte/YOMlAcfxVkRDi4uLCrWAfC/anDjbny8dvKDLkaFjOs9gr/2r3rQxaiwF1v2Z9TKnx90MSrs10fe5un5Yx90MSrk72e+4LlF3zzoYlTYzMGfMGjOJ7dP+BBb+uw3dJs66kEXo8I2vfzrgy7CPflwzf1ZBf5efNfn1QddhAdCZvETQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9RykpcJEtUDomME0IIIYQQQgghhBDiPpHOOCGEEEIIIYQQQggh7hMZpiqEEEIIIYQQQgjxH6WQYaoPHYmME0IIIYQQQgghhBDiPpHOOCGEEEIIIYQQQggh7hMZpiqEEEIIIYQQQgjxHyWrqT58JDJOCCGEEEIIIYQQQoj7RDrjhBBCCCGEEEIIIYS4T2SYqhBCCCGEEEIIIcR/lAIZpvqwkcg4IYQQQgghhBBCCCHuE+mME0IIIYQQQgghhBDiPpFhqkIIIYQQQgghhBD/UQpZTfWhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSLDVIUQQgghhBBCCCH+o5QyTPWhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSLDVIUQQgghhBBCCCH+o2Q11YePQq/X6x90IYQQQgghhBBCCCFE5fty04wHXYQyjen2/IMuwgMhkXFCCPEQSxv/y4MuQoU5ffAWGSkpD7oYFeLg4kLqyPcedDEqzPmPH2jzx4gHXYwK2TNyMmnjfnrQxagwp49Hkzpi9IMuRoU5T/6JjPT0B12MCnFwdCRt7qIHXYwKcxo6mNR3Pn3QxagQ5wlfk/bLpAddjApzeutVUj/+8kEXo8Kcx40h7ZsJD7oYFeL0yTukDnnlQRejwpznTSH1hTcedDEqxHn676S+/fGDLkaFOf887kEXQfxHyJxxQgghhBBCCCGEEELcJxIZJ4QQQgghhBBCCPEfpUTmjHvYSGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KIVChqk+bCQyTgghhBBCCCGEEEKI+0Q644QQQgghhBBCCCGEuE9kmKoQQgghhBBCCCHEf5QMU334SGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KKUMU33oSGScEEIIIYQQQgghhBD3iXTGCSGEEEIIIYQQQghxn8gwVSGEEEIIIYQQQoj/KAUyTPVhI5FxQgghhBBCCCGEEELcJ9IZJ4QQQgghhBBCCCHEfSKdcULcpcOHD/Pzzz+j0+kedFGEEEIIIYQQQohyKRWKh/bx/5V0xon/eVevXkWhUHD8+PFK26dCoWDlypWlticmJvLEE08QFhaGUln5p8/nn39Oo0aNKn2//58MHz6cRx555I7Tb9++HYVCQWpq6j2/5qxZs3B2dr7n/EIIIYQQQggh/v+QBRzEAzV8+HBmz54NgIWFBTVr1qRPnz6MGzcOFxeXB1au2NjYUq+v1+t59tlnGTNmDN26dXtAJftvUCgUrFix4q46zcSdUbVpiXXDMBRqNdrYm+Rs2oouMfk2mVSo27fGqnYwCrUKXVo6uVt3orl8FQALby9ULZpgUd0DpYM9Wcv/RXMxstLKrNfrmfrXX6z45x8yMjKoFxrKB++9R1BgYLn5tmzdyuSpU7l+4wbeXl68NmIEnTp2ND5/9Ngx5s6bR8T58yQmJvLj+PF07NDBZB9NW7Y0u+83X3+dZ4cMqXDd1L27Yd2mBQpbW7RXo8hevAJdbFyZ6e1HjcCydlCp7QWnI8iaNMPwj1KJunc3rJqFo3R0QJeeTv7+w+St3wJ6fYXLfC8aegbzdOPu1PHwxd3OmQ/XTmLXlRMPpCxlUbVrhXWj+oZzIyaWnA1b0SUm3SaTCnXHNliFBKNQq9GlppG7ZSeayCuGp1s1wzKkFhZurug1GrTXY8jdtgtdckqV1EHdtwfWbVsWHk/XyF6wrPzjafRrWNYOLrW94NRZsv74y1hHm/69sGoUhsLBAW30dXIWr0R7Lfquy6fX65k6bRorVqwwnMv16vHB++8TFFT6mC5uy9atTJ48mevXr+Pt7c1rr75Kp06dTNIsWbKEufPmkZiYSGBgIO+MHk3jxo2Nz0+ZOpWNGzcSFxeHlZUVdevU4bXXXiMsLMxsOUeNGsXeffv48Ycf6Ne//z3VddrObaw8doSM3Bzq1fTmvV59CarmcUf5N545xacrltC+dh1+fOJpk+fi09OZuHUjeyMvklegwdfNjU/7PkJdz5p3Xc7bUXfvjHXLpihsbdBeu0728n/RxcWXmd7+1RewDA4otb3g7Hmyps8FwLpVc1Stm6N0dQZAezOe3E3b0Jy7WOnlv0XVsinWYaEo1Cq0N+PI2Vr+eWgVGoJt986ltqf9PhW0WgAcnn8GpaNjqTR5J06Tu21X5RW+kLpLB6ybhaOwUaONvkH2qnXo4hPKzaNQq1B374xVaB0UNjboUlLIWbsJzYVLhgTW1th062h43t4ObcxNclZvQHsjptLLf4uqXSusGzcwfBYxN8lZv+UO29q2WNUp1tZu3mFsa63DG2Id3hCls+Hz0CYkkbd7H5rIq1VWD/VjfbHu1A6FnS3ayCtkz1qA7kZs+dXo0QXrru1Rurmiz8gk/+BRchevgAKNMY3CxRmbJx/DskE9FNbW6G7GkT1tDtqrUZVfh/69sO7QxnB+X75G9vzF6GJull+Hrh2x7tQWpasL+sws8g8fJ3fZKtAY6mDdsS2qjm1RursCoI25Se6q9WhOn6308hvr0aML1q2aobCxQRsVTfayVehultNOjXwRy+DS3yELzp4ja9oc4z7VPbuYPK9LzyB97LeVW3ghyiGdceKB69mzJzNnzkSj0XD27Fmef/55UlNTWbBgwQMrU40aNUptUygUrF279gGURog7Y92iKapmjcleuxFdciqq1s2xe+IxMv6aDfkF5jMpldgNfhR9dg7ZK1ejy8hE6eCAPj/fmERhbYU2PoH8U2ewe7RfpZd79ty5/L1gAWM/+wxfX1+mz5zJyDffZNmiRdjZ2ZnNc/LUKT7+7DNGvPwynTp0YNuOHXz4ySdMnzLF+OM7JyeHWrVq0a9vX97/6COz+1m/Zo3J/3v37eOrb76hc4mOgHuh6tYRVef2ZM9dhDY+AXXPrti//hLpX/4AeXlm82RNmw2WRZdmhZ0tDh+9TcGxkyb7tW7Xiuw5C9HFxmHh543tkCfQ5+SSv313hct9L2ysVFxKus7ac3sZ12vEAylDeaxbNkPVPJzs1RvQJaegatMCu6cGkjFlZvnnxlMD0Wdnk718Nbr0DJSOpueGha8P+UeOo42NA6UCdYe2hv1OnWXy46syqLp3RtWlA9mzFxiOp17dsB81gvSx35V9PE2eBZYWxv8VdrY4fPouBUeLOkpthz6BRU1Psmb+jT4tHesWTbB/awTpX3yPPjXtrso4e84c/v77b8aOGWM4l2fMYOTrr7Ns6dKyz+WTJ/n4448Z8cordOrUiW3btvHhRx8x/a+/jOfyxo0bmfDTT3z4wQc0bNiQ5cuX8+aoUSxZvNh4vfbz9eX9997Dy8uLvLw8/l6wgJGvv87KFStK3Vz7e8ECqOCwmDn7drPgwD7G9H8UX1c3ZuzewRvzZ7Pk1TexU6nKzRubmspvmzfQyMev1HPpOTm8NPsvmvgF8OuTQ3Gxs+N6SjIOKnWFymuOqlM7VB1ak71wOdqERNRdO2L/ynDSx/8Ceflm82TN+tv0mLK1xeGdkRScPG3cpktLI2fNRmMHjHWzxtg99wwZP/1ZbkffvbJu2ghV44Zkb9yKLjUNVfNw7B7rR8bsBVBQxvkN6PPyDGmKK+yIA8hcsMzkOFG6uWI/sD8FlXgz6hZV+9ao2rQke9k/aBOTUHdqh/3zQ0j/6Q/IN/9ZYKHE7vkh6DOzyfp7Kbr0dJROjuiLfXa2j/XDono1spasRJ+egXXjBti/MIT0XyahT8+o9HpYt2qGqkUTsv9dX9jWtsTu6UFkTJ5Rflv79CBDW7vs38K21tGkrdVlZBhudKSkAmDVIBTbxx8h86+5t+/ouweqvj1Q9epK9pTZaG/GoR7QG/sP3yL9vTGQa769tWrdHPXgR8meNhvtxcsoa3hg+8pwAHLnLwEKz5cx71EQcYGsH35Hn56Bsno19NnZlV+HXl1Rde9E9oz5aOPiUfftgf07r5P+yVdl16FFU9SD+pM9cz7aS1cMdXjecGMyd9FyAHQpqeQsW2XsKLZu3QK7N14i44vxt+3ou6d6dG6PqmMbsv9eZminunXCfsTzpH/7U9nt1Mz5YFHi2vfuGxQcP22SThsbR+ak6UUbdA/mhub9ovh/PBz0YSXDVMUDp1KpqFGjBt7e3nTv3p3BgwezceNGkzQzZ86kbt26qNVq6tSpw59//lnm/rRaLS+88AIBAQHY2NgQEhLCr7/+WirdjBkzqFevHiqVCk9PT15//XXjcyWHqZ46dYrOnTtjY2ODm5sbL7/8MpmZmcbnbw2N/PHHH/H09MTNzY2RI0dSUM6XQIDvvvuO6tWr4+DgwAsvvEBubm6pNHdTd4D169fTtm1bnJ2dcXNzo2/fvkRGFn1xzM/P5/XXX8fT0xO1Wo2/vz/fflt0F0ihUDBp0iR69eqFjY0NAQEBLFmyxOQ1bty4weDBg3FxccHNzY0BAwZw9erVO3p//f39AXj00UdRKBTG/wEmTZpEUFAQ1tbWhISEMHfu3HLrqtVqGT16tLGu77//PvoSkUF6vZ7vv/+ewMBAbGxsaNiwIUuXLi13vyX99NNP1K9fHzs7O3x8fHjttddMPv+SIiMjGTBgANWrV8fe3p5mzZqxefPmu3rNe6Fq2pjcfYfQXIhEl5hEzpqNKKyssK5bp8w81g3qoVCryV7+L9obsejTM9DeiEGXkGhMo7l8lbxd+9BcqPwfIHq9ngWLFvHc8OF07tSJ4KAgvhgzhtzcXNaXaAeKW7BwIS2aNeO5YcPw9/fnuWHDaN6sGX8vWmRM06Z1a14bMaLcjjV3NzeTx46dO2napAneXl4VrpuqUztyN2yh4MRpdLFxZM9diMLaGutmjcvMo8/OQZ+eYXxY1akF+QXkF+s8sQzwo+DkGTRnzqFLTqHg2CkKIi5i6edd4TLfq/1RZ5h2YBU7Lh9/YGUoj6p5Y3L3HERz/hK6hCRy/t2AwsoS63rlnBsNw1DYqMleugrt9RjDuXE9Bl180bmRvWg5BafOoktMQhefSM6aDSidHLGoUb3y69ClPbnrNlNw/BS6mJtkz/7bcDw1Dy8zjz472/R4qhtiOJ6OFB5PVlZYNW5AzvJ/0V66jC4hkdzVG9AlJqNq3/quyqfX61mwYAHPPfccnTt3Jjg4mC8+/9xwLm/YUGa+BQsW0KJ5c5577jnDufzcc4ZzudgNufl//82AAQN45JFHCAgI4J133qF69eombXnPnj1p0aIF3t7eBAUF8fZbb5GVlcXFi6bRWBcuXODv+fMZ89lnd1W/knVdeHAfw9u2p1OdUII8qjO2/2PkFhSw4fTJcvNqdTrGrFzKS+074WVmBMCcfbvwcHRkTP9HqeflTU1nF5oHBOHt6nrP5S2Lqn1rcjfvMBzDN+PJXrAMhbUV1o0blplHn5ODPiPT+LCqHQQFBeSfKPqRqzl7Hs25C4bzIjGJ3HWb0efnY+nnU+l1AFA1bkDuoSNoIq+gS0omZ+NWw/ldp9Zt8+qzc0weJs/l5Jo8ZxXojzY1De31yo8qU7VuQe72XRScOYcuLoHsJf8Yrt+NSkd23mLdpDEKGxuy5i1CGxWNPjUN7bVodDcLo2UtLbGqV5ec9VvQXo1Cl5xC7pYdhpt1LZpWeh0AVM3Dyd1zoFhbu76wra1bdj0aFba1S/4p1tbeMIkK1Fy8bPh8k1PQJaeQt30P+vx8LLw8q6YePbuQ+886Cg4fQ3c9huwpswztbevmZeaxDA5EczGSgn2H0CUmoTkdQf6+Q1gGFnW6q/r1QJecQs7U2WgvXzWkO3PO5LpSaXXo2pHcNRspOHoC3Y1YsqfPM5zf5Xz2lkEBaC5dpuDAEXRJyWjOnCP/wBEs/X2NaTQnTqM5dRZdXAK6uARyV6xGn5eHZaB/pdcBQNWhNbmbtlNw6owhivDvJYZ6hDcqM48+u2Q7FVzYTp0yTajTmqTTZ2VVSR2EKIt0xomHyuXLl1m/fj1WVlbGbdOmTeOTTz7hm2++ISIignHjxvHZZ58Zh7eWpNPp8Pb2ZvHixZw9e5YxY8bw8ccfs3jxYmOaSZMmMXLkSF5++WVOnTrFqlWrCA4uPZQHIDs7m549e+Li4sKhQ4dYsmQJmzdvNum8A9i2bRuRkZFs27aN2bNnM2vWLGbNmlVmXRcvXszYsWP55ptvOHz4MJ6enqU62u627gBZWVmMHj2aQ4cOsWXLFpRKJY8++qhxwYnffvuNVatWsXjxYs6fP8+8efNMOsQAPvvsMwYOHMiJEycYMmQITz31FBEREcb3o1OnTtjb27Nz5052796Nvb09PXv2JL/wLmZ57++hQ4cAQydjbGys8f8VK1YwatQo3nnnHU6fPs0rr7zCc889x7Zt28qs64QJE5gxYwbTp09n9+7dJCcns2LFCpM0n376KTNnzmTSpEmcOXOGt99+myFDhrBjx44y91uSUqnkt99+4/Tp08yePZutW7fy/vvvl5k+MzOT3r17s3nzZo4dO0aPHj3o168fUVGVPwThFoWTI0p7OzRXrhVt1GrRRF8v98uqZXAg2phYbLp1wuH1l7B/fgiqls0qHDVyp27ExJCUlETLFi2M26ytrQlv3JiTp06Vme/k6dO0KJYHoGWLFuXmuZ2kpCR279nDgH4Vj/5TurmidHJEE3GhaKNGi+bSZSwDSkfDlMW6VXPyjxw3iSjQRF7FKiQYpYe74bW8PLEM8qfg9LkKl/u/SOHshNLeHs2Vq0UbtVo0Udex8Cp72J9lrSC0N2Kx6dEZh1GvYP/Ss6haNy/33FAURkTpzdxYqQil+63j6XzRRo0WzcXIu/oBZN2mBfmHjxVF2iiVKCwsSkXx6QsKzA5FLM+NGzcM53Kxod/W1taEh4dz8mTZHVQnT52iRYnh4i1btTLmKSgo4Ny5cyZtBBSe72Xst6CggBUrVmBvb0/t2rWN23Nzc/nk00957/33cXd3v6v6FReTmkJSZiYtA4u+N1hbWhLu58/J6+UP752+azvOdnYMaNzE7PO7LpynrqcXHy5bRI+fxjNk2p+sPHr4nstaFqWrC0pHh6LhjGA4LyKvmvzwvh3rFk3IP3aq7KgnhQKrRvVRWFujuVb510CFowNKOzs0164XbdTq0FyPwcKz9CgHE1ZWODw/BIcXhmLbvxfKauUcE0olVnVqUXCm8ttZpYuz4bO4eLloo1aL5so1LH3L7sC0qlsbbdR1bPr3wvHj0TiMGoGqQ9uiNkqpRGGhNA4vvEWv0VRJx6ixrb1c4ntI1HUsvG/T1l6PwaZnFxxGjcD+pWHlt7UKBVahISisrKpkuK2ymjtKZyc0p4oNu9Ro0Jy7gGWtsofcay5cwtLfF4vCNllZzR2rhmEUHC/6XmIV3gDN5WvYvvEyjn/8gP3Xn2DdsW3l18HdzVCH4serRoPm/CUsg8pu2zWXIrH088Gi8HuK0t0Nq/qhFJw8Yz6DQoFV83DD+V0FQ4aVbi4oHR3RnC92U0WrRXPpCpYBd9NONSX/2MlS7ZTS3R3Hzz/E4dN3sR36JEq3BzdFkvj/SYapigdu9erV2Nvbo9VqjZFhP/30k/H5r776igkTJvDYY48BEBAQwNmzZ5kyZQrDhg0rtT8rKyu++OIL4/8BAQHs3buXxYsX88QTTwDw9ddf88477zBq1ChjumbNmpkt3/z588nJyWHOnDnGYTYTJ06kX79+jB8/nurVDREQLi4uTJw4EQsLC+rUqUOfPn3YsmULL730ktn9/vLLLzz//PO8+OKLxjJt3rzZJDrubusOMHDgQJP/p0+fjoeHB2fPniUsLIyoqChq1apF27ZtUSgU+PmV7hh4/PHHjeX66quv2LRpE7///jt//vknCxcuRKlU8tdffxnDnWfOnImzszPbt2+ne/fu5b6/1apVA8DZ2dlkOPCPP/7I8OHDee211wAYPXo0+/fv58cffyw1d1Dx9/Cjjz4y1nny5MlsKBaBkZWVxU8//cTWrVtp1aoVAIGBgezevZspU6bQocT8YWV56623jH8HBATw1Vdf8eqrr5YZpdiwYUMaNiyKLPj6669ZsWIFq1atKtWJW1mU9oZjs+RQB31WNgqn0nPeGPM5O6F08jHMo7HkHyxcnVF36wRKJXl7D1RJWYtLSjIML3ErEfXh5upK7M2yhzskJSWZzXNrf/di9dq12NnZmcw7d68Ujg4A6DJMIyh16RkoXe/sy56Fnw8WXp5kzzeNTM3btA2FjRqHz94zzBGnUJD773oKjhyvcLn/i5R2toDhXCjutueGS+G5cfocWYtWYOHqgrp7Z8O5sXu/2TzqLh3QRF9Hl1C5w6YUhfNW6UoMK7ur48nf13A8zS2KHiUvD03kFdR9upF1M84QPdcsHAt/37uO1Kiqczk1NRWtVotriTSubm4kljjfd+3axceffEJubi7u7u78MXGiyeI6E376iQYNGpSaO/JuJRVGRruWGHrramdHbFpqmflORF9j1fGjzHvp1TLT3EhJYfmRQzzdohXPtWnPmRvXmbBxLVaWlvRp0KhC5S5O4WgPmGmjMjKNc73djoWPFxaeNchetKLUc8oa1XF482XDsPv8fLJm/o0urvz5z+6F8fwuee3LzjHW0Rxdcio5G7eiTUxGYW2NqnF97J94hMz5S9CZGZ5tFRSAQqUi/2zld8YpHAo/ixIR97rMTJTlLA6ldHVBGRhA/olTZM1agNLdFZv+vcBCSd7WnZCfj+ZaNOpO7ciKT0CfmYVVwzAsvL3QVeBaWWZ5Cs+HktFF+qxsYxtmNp+zM0p/R8PcqIuWG9raHl1KtbXKau7YD3/KeExlL111+zlx74GicF46XVq6yXZdWoZxnjRzCvYfJsfBAfsx7wEKFJYW5G3eTt6/Rd9LldWqoerSgbz1m8latQ6LIH9snh2MXqOhoIzryj3VwenWNaNEHdIzULqVU4eDR8mxt8f+w7eK6rBtF3nrNpmkU3p54vDxO2BlCXl5ZP3xF7rYyh+iqnAo47tUZiZKF+c72oeFrzcWNWuQXTjM9hbNtWi0fy9Bm5CI0sHeMPz1zRFkjP+lVJTsf4VCIXFYDxvpjBMPXKdOnZg0aRLZ2dn89ddfXLhwgTfeeAOAhIQEoqOjeeGFF0w6tTQaDU5OTmXuc/Lkyfz1119cu3aNnJwc8vPzjauUxsfHExMTQ5cuXcrMX1xERAQNGzY0me+mTZs26HQ6zp8/b+yMq1evHhbF5ifw9PTkVDlROhEREYwYYTq3UqtWrYyRYPda98jISD777DP2799PYmKiMSIuKiqKsLAwhg8fTrdu3QgJCaFnz5707duX7t27lypHyf9vrVZ75MgRLl26hEPhBfKW3NxcIiMj7/r9Lf5+vPzyyybb2rRpY3aIMUBaWhqxsbEmZbW0tKRp06bGoapnz54lNze31IIb+fn5JhN/3862bdsYN24cZ8+eJT09HY1GQ25uLllZWWbnQcrKyuKLL75g9erVxMTEoNFoyMnJKTcyLi8vj7wS8z6pypl3yCo0BJseRe9x1tJ/DH+UnMBfYWabyfMK9NnZ5BRO/q+Li0dhb4eqedMq6Yxbt34948aPN/7/y4QJhcUwvQOu1+tvP7fFveQpx6rVq+nZvXu573tZrJo1xvapoo7wzD9n3CqUacK7KJ916+Zob8SWmkjfqklDrJuHkz3rb7SxcVh418RmYH90aekUHDhy12X/r7GqVwebXl2N/2ctXmn4o9RpoDCzzfR5fVY2Oes2Gc6Nm4XnRsumZjvj1D06Y+HhTmbxzq57ZNU8HNunHzf+n3lrsYUKHU8tDMdTiUnCs2f+je2zT+I0/nP0Wi3a6BsUHDqGhW/5Q7XX37zBdxdOoWi8Db1ezy8//1xYJDPn5e0Kdwfn8p20EU2bNuXv+fNJTU1lxcqVfPTxx8yaORNXV1d27NjB4cOHmT9v3u1KU8r6Uyf4du2/xv9/fvIZQ5koWabS227JystjzMplfNynP8625ufPA9Dp9dStWZPXOhuuWyE1PLmcGM+yIwcr1BlnFd4Q20FFC1Vk/jW3qNDFKRR3vBCMdYumaGNvoo2+Ueo5XUIiGRP+QGGjxqpBPWyfGkjmn39VuEPOKqQWNl2KOlOz/imc99NckcuphvZmHNqbRYufZMfEYv/M41g3DCN3x57SrxtWB83VqFKd+vfCqmEYto/0Nf6fOaeMOZIVCsqthEKBPiuLnBWrQa9HGxOL0sEBVbtWhs44IHvJSmwH9sfpo9HotTq0MbEUnDhVKcM7rerVwaZ30ferLDOdskXKq4ehwy5nbfG21h5VK9O2VpeUTOZfc1GoVViG1MKmX0+y5i2qcIecVevm2D7/jPH/zB8nmi/zbRoyy7q1UQ/oRc6sv9FcuoJFDQ9shgxG90gaeSsL55xWKtBevkZu4XVJey0aC6+aqLp0qFBnnFWLptg++2RRHX6dbLYKtzu/LUOCUfftQc68xWguX8XCoxo2Tw1E17cHeauLOhV1N+PJ+OI7FDY2WDVphO0LQ8gc/1uFO+Sswhti+8QjRfUoXGyhtNtdv4tYt2iKNuYm2qjrJts154pGLuhi48i8GoXjJ+9i3SycPDNtgBBVQTrjxANnZ2dnHML422+/0alTJ7744gu++uorY0fStGnTSg1JK97xVdzixYt5++23mTBhAq1atcLBwYEffviBAwcMHQs2NjZ3Vb7yfuAX3158aO2t526V/17cS90B+vXrh4+PD9OmTaNmzZrodDrCwsKMQ0jDw8O5cuUK69atY/PmzTzxxBN07dr1tvOo3aqrTqejSZMmzJ8/v1SaatWqoVTe+12Xe+qQKcet93DNmjV4lZgD7E47XK5du0bv3r0ZMWIEX331Fa6uruzevZsXXnihzDkB33vvPTZs2MCPP/5IcHAwNjY2DBo0yPgZmPPtt9+aRHQCjB07lrdtnM2mL7h0GW3xiXILJ9RW2NmZ/FhQ2NqW++NBn5mFXqcz+XKmS0oxRNoplVCBY9ic9u3aEVavnvH//ML3MDEpyWTYWHJKSqlImOLc3NxKRcHdLk95jh0/zrVr1/j266/vKX/BybNkFO/kKFyEQenogLZYNJPSwf7OJs22ssK6SUNyVpeeN8/m0b7kbtxGQeG8X7qYmygLo7akMw4KLkaanhuF7aXC3tYkYkNhZ1Pu/DD6rCz0Wq3puZGYjNLevtS5oe7eCataQWTOXYS+xB38e6rDiTNkXCl+PBnqoHRyvPfjqVkjcv5dX+opXWISmT/9AdbWKNQq9OkZ2L449LY/cNu5V6eeozOOX31MVmamsX0zey67uZW5n9udy87OzlhYWJRKk5KcXCqizsbGBh8fH3x8fKhfvz6PPvYY//zzD8899xyHDx/m+vXrdOpsuoLm+x98wOIlS5jYvS9laVe7DvW8iuZkzC+c5D8pKxP3YjemUrKzcLUzH411IyWZ2LRU3ln0t3GbrvDYavXN5yx59U28XV1xt7cnwL2aSV5/92psO1exlQoLzkSQUbxjv3gbVeyYVdrboc+4g3mTrKywblSfnA1bzD+v1aJLMhxD2usxWPh4o2rXmpxbN47uUcHlqyadaMbz287WJDpOYWtz19Et2pvxZqNtFA72WPp4k7267LkP70ZBxAUyoqcUbbj1Wdjbm34WdnboM8tpozIy0ZVoo7QJiSgdHcBCCVoduuQUMqfNBisrw/mdkYntkwPRJadWvB4XI9H+ZaatLVFuhd29fA9JKt3W6nTGBRy0sXFY1qyBdbNwctdVbE7egqMnyChctRUo+jycnNCmFkWWKR0d0JeIlitOPag/+XsOkL/d0JGjux4DKhW2zw8h7591oNcb5vWLMV2RVRsTi1U5c8neUR1OnCLji6tm6uCItliZb3fNUD/Sl/x9B8nftc9QhxuxoLLG9tmnyFuzsegz0mqN0dPaa9FYBPih6tqBnArejCo4E0HGj2baKQd702ufvR36cuZuNrKywrpxA3LW38Exkl+ANvZm+cPVhahk0hknHjpjx46lV69evPrqq9SsWRMvLy8uX77MM888c/vMGIaptG7d2jjcETBZwMDBwQF/f3+2bNlS5vDH4kJDQ5k9e7ZJFNSePXtQKpUmc9Hcrbp167J//36effZZ47b9+4vuilWvXv2u656UlERERARTpkyhXbt2AOzeXXp1RUdHRwYPHszgwYMZNGgQPXv2JDk52fjjx1y5bkWShYeHs2jRIjw8PHAsY9jB7d5fKysrtMVWLAPD+7F7926T1927dy9165qf9NfJyQlPT0/2799P+/btAUPU4JEjRwgPN0xoHhoaikqlIioq6o6HpJZ0+PBhNBoNEyZMMHY0Fp9/0Jxdu3YxfPhwHn30UcAwh1zJBS5K+uijjxg9erTJNpVKRe4vk8xnyC9Al286lEaXmYWlvy/5tyY9Viqx9PEmt5wVNjU3YrAONZ3EXunibBgSUMkdcWDofC8eTajX63Fzc+PAwYPUCQkBDPM9HT12jDdGjixzPw3Cwjhw8CDPPPWUcduBAwdoUL/+PZXrn1WrqFunDrVr3X7Cb7Py8tAlmEY26tLSsaxTu2iybwsLLIMDyfnn9qsyWzdpCJaWFBw6WvpJK6vSd7Z1uvs2z99DL78AXX6qySZdZiaWAX7kxxU7N3y9yd22q8zdaKJvlFrgQenmUurcUHfvjFVIMFnzFpf7Q+2ulHU81a1dFIVkYYFlrSBDVMxtWDdtZDieyuuszc9Hn5+PwtYGq9A65Cz/t+y0gJ2lJXaWljj7+ZGRnl50Lh84YHouHz1qjHY3p0H9+hw4cIBnnn7auO3A/v00aNAAMFwv6tSpw4EDB0yuKQcOHqRDYdtfFr1eb+zwHzZsGAMGDDB5/smnnmL022/Ts1cv2L637LqqVCYrpOr1etzs7Tlw+RIhNQwRRgVaDUevXeX1zt3M7sPP3Z0FL5u2aZO2byE7P493uvemeuGwsgY+vlxLMh0iHJWURA0n53Lrelt5+ejyTDtYdekZWNY2zI0IGI6pIH+zNwFKsm4UBpYWdz48XgEKy7JvJN6xggJ0aaY3wnRZWVj6epN/a+EhpRJL75rk3mWkkbKau9nhm9b16qDPyTGdk7Ui8vPRJZvenNOlZxjmcL0VWWShxDLAj5wNZXciaK5FY90wrDACvrAO7q6G4ezaEtfvggL0BQUo1GqsagXdWefEbetRXltbuGrurbZ2azlt7fWY0m2ta+m21hxFOTen71huHrpc04hNXWoalmF1iyLTLSywrFObnBJDHU1YW5dejVOnM4mo01yIxMLTdIEfZY3qFR9um5uHrsQKqbrUNCxDQ4oiwiwssAwJJmfpqrL3Y23u+4X+tlGBKEBRIijhnphtp9KxDAk2baeCA8j59/ad49aN6hvaqcPHbv/aFhZYVPcwnfPwP0Z5+zh1cZ9JZ5x46HTs2JF69eoxbtw4Jk6cyOeff86bb76Jo6MjvXr1Ii8vj8OHD5OSklKq8wIgODiYOXPmsGHDBgICApg7dy6HDh0iIKBowtLPP/+cESNG4OHhQa9evcjIyGDPnj1mfzA888wzjB07lmHDhvH555+TkJDAG2+8wdChQ41DVO/FqFGjGDZsGE2bNqVt27bMnz+fM2fOEBgYaFLOu6n7rdVNp06diqenJ1FRUXz44YcmaX7++Wc8PT1p1KgRSqWSJUuWUKNGDZN5dZYsWWJSroMHDzJ9+nTj+/HDDz8wYMAAvvzyS7y9vYmKimL58uW89957eHt73/b9vdVZ16ZNG1QqFS4uLrz33ns88cQThIeH06VLF/7991+WL19e7iqko0aN4rvvvqNWrVrUrVuXn376idTUVOPzDg4OvPvuu7z99tvodDratm1Leno6e/fuxd7evsx594oLCgpCo9Hw+++/069fP/bs2cPkyZPLzRMcHMzy5cvp168fCoWCzz777LZRkiqVymy03t1MA593+BjqVs3RpaSiS0lF1aoZ+oIC8iOK5rix6dMdXUYWeTsNd27zj51EFd4IddeO5B85jtLFGVWrZoZFA26xsjKJFlA6OaL0qGZYaS7jDqJyyqFQKHhq8GBmzp6Nb2FEy8zZs1Gr1fQsNnx6zBdf4FGtGq8XdrI/OXgwL7/6KrPmzKFj+/Zs37mTA4cOMX1KUbRBdnY20deLhiXciInh/IULODk6msxXmJmVxeatW3nrzTcrVJeS8rbtQt2jM7qERLTxCah7dEGfn0/+oaIvhbbPPokuNY3cVetM8lq3akbBiTNmowk0pyMM+01OQRcbh4WPF6rO7cnfd6hSy383bKxUeDsVRfPUdHSnlrs36blZxGWmPLBy3ZJ38Bjq1s3RJaeiS0lB1boF+gIN+cUmt7bp1xNdRiZ5hZ3X+UdPoGraGHX3TuQfPobSxQVV6+Ymn5+6R2es69Uha+kqQ0fWrfmr8vJLTZpe4Tps2Ym6Z1d08YXHU8+uhuPpYFGHre3wp9ClppO7co1JXuvWLSg4ftrs8WQZGgIo0MXFo/Rwx+axfmjj4snfe/CuyqdQKHjqqaeYOXNm0bk8a5bhXO7Rw5huzNixhnO5cP7MJ598kpdfeYVZs2fTsUMHtu/YwYGDB5n+11/GPM88/TRjxo6lbmgoDerXZ/mKFdy8edM4X2hOTg4zZsygffv2uLu7k5aWxpKlS4mPj6dr4ZQJ7u7uZhdtqFGjBj4+PpSeJaz8uj7ZvBWz9uzCx9UNX1c3Zu7ZidrKih5hDYzpxv6zDA8HR0Z27obK0oogD9PvDA5qNYDJ9qdbtOaFWdOYuXsHXUPDOBNzg5XHDvNx7/5Utryde1F36YAuIQltYhLqLh3Q5xeQf6xo9WbbpwaiS0snd63pnFHWzZtQcDrCbPSZulc3Cs5dQJ+aBioV1o3rYxkUQNa0shefqlA9jp1E3TwcXWoautQ0VM3CDef3uaJJ3226d0aXlUXeHsMoCVWLpoahqimpKFTWqBrVx6Kam9kOeuvQOuSfPX/Hw3fvqQ57D6Du2BZdUhLapGTUHdsart/Hi1aptR00AF16BrkbtxryHDiMqlUzbPr2JG/vQZTubqg7tiWv2Ll7a8EBXWISSjdXbHp2RZuYZHqNr8x6HDyKuk1zdCmGVU+L2toIY5pSbe2RW21tZ0Nb6+qMqnXhYjOFVB3bGlZTTc9AYW2NVb0QLPx8yFtYTudYReqxfgvq/r3QxcWjvRmPun8vQ3tb7L21fWU4upRU45BTzbGTqHp1RXstCm3kFZTVPVAP6k/B0ZPGYydv/Wbsx3yAqn8vCg4cxiLQH1WndmTPuPvh87etw+btqPt0RxeXYLhm9O5uOL8PFC0IY/vCUEMdCm++aE6cRtW9E9qo62gvX0Pp4Y76kT4UHD9trIP6sX4UnDqLPjkF1CqsmzfBMqQWWT+bn0e5wvXYsRd1146GdiohCXXXjoZ6HD1eVI+nBxnaqTWmNxKsWzal4FQZ7VT/XhScOYc+JRWFvR3q7p1QqFXkm7sJKkQVkc448VAaPXo0zz33HB988AEvvvgitra2/PDDD7z//vvY2dlRv359k0n1ixsxYgTHjx9n8ODBxh8Hr732GuvWFf3YHTZsGLm5ufz888+8++67uLu7M2jQILP7s7W1ZcOGDYwaNYpmzZpha2vLwIEDTRaZuBeDBw8mMjKSDz74gNzcXAYOHMirr75qsgDB3dZdqVSycOFC3nzzTcLCwggJCeG3336jY7EJ6e3t7Rk/fjwXL17EwsKCZs2asXbtWpPhpV988QULFy7ktddeo0aNGsyfP5/Q0FDj+7Fz504++OADHnvsMTIyMvDy8qJLly7GSLnbvb8TJkxg9OjRTJs2DS8vL65evcojjzzCr7/+yg8//MCbb75JQEAAM2fONCl7Se+88w6xsbEMHz4cpVLJ888/z6OPPkpaWtHPqq+++goPDw++/fZbLl++jLOzM+Hh4Xz88cd39Dk1atSIn376ifHjx/PRRx/Rvn17vv32W5MIvpJ+/vlnnn/+eVq3bo27uzsffPAB6emVFDFTjvwDh1FYWmLTvTMKtQptzE2yFq8wWT1K6ehoMs+GPiOTrMUrUHdpj/3zQ9BlZJJ/+Dh5xb6sWdSojv3TRZ/frfl68k+dJWft7SMobmfY0KHk5eXx3Q8/kJGRQVi9ekz89VeTCLqbN2+iLBb51bBBA7756ismTZnC5KlT8fby4tuvvyYsLMyY5mxEBCOKRdf9XDj/YN/evfl8zBjj9o2bNqHX6006/ypD3qbtKKyssBn8KApbG7RXo8icOA2KzQ2odHEu9QNP6eGOZXAgmb9PNbvf7MUrsenbA9snH0Nhb48uLZ383fsrPFSnIupU82Pio0U3CN5sa5jvbG3EPr7ZWjU/wO9G/v5DKKwssenZGYVabTg3Fi4rcW44mHwW+oxMshYuQ921I/YvPms4Nw4dI69Yp6eqSSMA7Ic8YfJ62f+up+BUxYYVlpS3cSsKaytsnhpoOJ6uRJH52xTT48nVxczxVA3LWoFFcwiVoLBRo36kD0pnZ/TZ2RQcO0nOyrX3FBk77NlnDefy+PFF5/Lvv5d/LjdsyDfffMOkSZOYPHky3t7efDtunMm53L17d9LS0vjrr79ITEwkKCiIX3/5BU9PQ1SaUqnk6tWrrF6zhtTUVJycnAgNDWXa1KkEBZW9+mFFPNuqLXkFBXy/fjUZObnU8/Li96efNYmgi0tLM6nrnQit6cX3jz/Fn1s3MX3XDmo6OzO6Wy961m94+8x3KW/bLkMbNbA/Chs12qjrZE6dBXlFUVtKZ+fSx5S7G5aB/mROmWl2vwoHe+yeHoTC0QF9Ti7a2Diyps1GcyHSbPqKyj983HDt69wOhUqF9mY8WStWQ0Hx89ue4hc/hcoamy4dDFM55OejTUgga+k/aG9FdBWy9PVG6ehQJauoFpe3c6/hs+jfG4WNDdrrN8icOa9o5WMMCy6ZtFFp6WTOmI9Nn+44vDkCXXo6eXsOGm+2ASjUKtTdO6N0ckSfnUPBmQhyNm6rksh3gPx9hwyfRc8uhrb2RixZC5aatrVOjiXa2gyyFixF3a0j9i/damuPmrS1SjtbbPv3QmFvhz4vH118AtkLl1detGIJeas3GNrb4U+jsLVFG3mFzPG/QrHoM6W7q0k9cleuRa8H9eMDULo4o0/PpODYSXKXrDSm0V6+RtYvk7AZ/CjqR/qgS0gkZ95iCu7y5scd1WHdZsMxNeQJFHa2aC9fNUxJkFv2NSN39Qb0GIarKl2c0GdkUnDiNLnLiyKwFY4O2L04FIWTo+H8vh5D1s9/ojl7nqqQt3WnoR6D+hvOjWvXyZw807SdMvddqlphOzVphtn9Kp2csBs62DCMOjMLzbVoMn6ZjL5wKLQQ94NCr6/C2zxCiP85CoWCFStW8MgjjzzoogggbfwvD7oIFeb0wVtkpDz46KiKcHBxIXXkew+6GBXm/McPtPljxO0TPsT2jJxM2riK3Qx5GDh9PJrUEaUjnP/XOE/+iYz7cLOhKjk4OpJWCQtvPGhOQweT+s6nD7oYFeI84WvSypqe4X+I01uvkvrxlw+6GBXmPG4Mad9MeNDFqBCnT94hdcgrD7oYFeY8bwqpL5Q95P9/gfP030l9+85uhj/MnH8e96CLcE9+2fnwXufeaj/4QRfhgZD1bYUQQgghhBBCCCGEuE+kM04IIYQQQgghhBBCiPtE5owTQpiQketCCCGEEEII8d9xt3OYiqonkXFCCCGEEEIIIYQQ4n/Cn3/+SUBAAGq1miZNmrBrV+nVsG/Zvn07CoWi1OPcOdPFeZYtW0ZoaCgqlYrQ0FBWrFhRpXWQzjghhBBCCCGEEEII8dBbtGgRb731Fp988gnHjh2jXbt29OrVi6ioqHLznT9/ntjYWOOjVq1axuf27dvH4MGDGTp0KCdOnGDo0KE88cQTHDhwoMrqIZ1xQgghhBBCCCGEEP9R5iLDHpbH3frpp5944YUXePHFF6lbty6//PILPj4+TJpU/mrcHh4e1KhRw/iwsLAwPvfLL7/QrVs3PvroI+rUqcNHH31Ely5d+OWXX+66fHdKOuOEEEIIIYQQQgghxEMtPz+fI0eO0L17d5Pt3bt3Z+/eveXmbdy4MZ6ennTp0oVt27aZPLdv375S++zRo8dt91kRsoCDEEIIIYQQQgghhLjv8vLyyMvLM9mmUqlQqVSl0iYmJqLVaqlevbrJ9urVq3Pz5k2z+/f09GTq1Kk0adKEvLw85s6dS5cuXdi+fTvt27cH4ObNm3e1z8ognXFCCCGEEEIIIYQQ/1EP82qq3377LV988YXJtrFjx/L555+Xmafk8Fa9Xl/mkNeQkBBCQkKM/7dq1Yro6Gh+/PFHY2fc3e6zMkhnnBBCCCGEEEIIIYS47z766CNGjx5tss1cVByAu7s7FhYWpSLW4uPjS0W2ladly5bMmzfP+H+NGjUqvM+7JXPGCSGEEEIIIYQQQoj7TqVS4ejoaPIoqzPO2tqaJk2asGnTJpPtmzZtonXr1nf8mseOHcPT09P4f6tWrUrtc+PGjXe1z7slkXFCCCGEEEIIIYQQ/1FVOdzyfhs9ejRDhw6ladOmtGrViqlTpxIVFcWIESMAQ6TdjRs3mDNnDmBYKdXf35969eqRn5/PvHnzWLZsGcuWLTPuc9SoUbRv357x48czYMAA/vnnHzZv3szu3burrB7SGSeEEEIIIYQQQgghHnqDBw8mKSmJL7/8ktjYWMLCwli7di1+fn4AxMbGEhUVZUyfn5/Pu+++y40bN7CxsaFevXqsWbOG3r17G9O0bt2ahQsX8umnn/LZZ58RFBTEokWLaNGiRZXVQzrjhBBCCCGEEEIIIcT/hNdee43XXnvN7HOzZs0y+f/999/n/fffv+0+Bw0axKBBgyqjeHdEOuOEEEIIIYQQQggh/qOUslzAQ0c+ESGEEEIIIYQQQggh7hPpjBNCCCGEEEIIIYQQ4j6RYapCCCGEEEIIIYQQ/1H/pdVU/yskMk4IIYQQQgghhBBCiPtEOuOEEEIIIYQQQgghhLhPFHq9Xv+gCyGEEEIIIYQQQgghKt+0/f886CKU6aWWAx50ER4ImTNOCCEeYnMOrX3QRaiwZ5v15lzclQddjAqpUz2AJ+eNedDFqLCFQ74kbdxPD7oYFeL08Wja/DHiQRejwvaMnMzQBV886GJU2NynxnImNvJBF6NC6nkG8ffRDQ+6GBX2dHgPlp3Y+qCLUSEDG3ZmZ+TRB12MCmsfFM6Xm2Y86GJU2Jhuz/P6igkPuhgVMvHRdxizftqDLkaFfdnzJT5Y8+eDLkaFjO/z2n/mu5QQlUGGqQohhBBCCCGEEEIIcZ9IZJwQQgghhBBCCCHEf5QCWU31YSORcUIIIYQQQgghhBBC3CfSGSeEEEIIIYQQQgghxH0iw1SFEEIIIYQQQggh/qMUChmm+rCRyDghhBBCCCGEEEIIIe4T6YwTQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9RShmm+tCRyDghhBBCCCGEEEIIIe4T6YwTQgghhBBCCCGEEOI+kWGqQgghhBBCCCGEEP9Rsprqw0ci44QQQgghhBBCCCGEuE+kM04IIYQQQgghhBBCiPtEhqkKIYQQQgghhBBC/EcpkWGqDxuJjBNCCCGEEEIIIYQQ4j6RzjghhBBCCCGEEEIIIe4TGaYqhBBCCCGEEEII8R8lq6k+fCQyToj/UVevXkWhUHD8+PEq2b9CoWDlypV3ladjx4689dZbd5x+1qxZODs7l5vm3LlztGzZErVaTaNGje6qPPfqbutR1Z+FEEIIIYQQQoj/DomME+IeDB8+nNTU1LvurKpMPj4+xMbG4u7uDsD27dvp1KkTKSkpt+3g+l8yduxY7OzsOH/+PPb29g+6OGaV/CwelMObdrN/7TYyU9Op5lWDbkMewbdO0G3zRV+4zNyv/6Cadw1eGveecfu5QyfZs2oTKXGJ6LQ6XKq707J3R+q3bVaV1WDtin9ZsWApKcnJ+Pr78cIbI6jXMMxs2uTEJGb+OY1L5y8Sez2GvgMH8OKbI0zSbPx3Hds2bOba5WsABIUEM/Sl56gdGlJldehWuxn9QtvibGPP9dQE5hxex7mEa2Wmb+PfgP712lLDwZXsgjxOxFxk3pENZObnlErbyi+MUe2e4FB0BBN2LKiyOtyiatcK60b1UajVaGNiydmwFV1i0m0yqVB3bINVSDAKtRpdahq5W3aiibxieLpVMyxDamHh5opeo0F7PYbcbbvQJadUeX3K0tAzmKcbd6eOhy/uds58uHYSu66ceGDlKalLcFP61G2Nk40DN9LimXd0AxcSospM39qvPn3qtqa6gxs5BbmcjL3EgmObjMeUl2M1BjboiL9LTarZOzPv6Ho2nD9Q5fVYt3I1/yxcRkpSMj4Bfjz/+suENijj/E5KZvaf04i8cInY6zH0fqw/L7zxSpn73r1lBz99NZ7mbVry4TdjqqoKZh3auIu9q7eQkZqOh3cNejw7EL87aH+jzl9m1pe/4eHjyYjvPrgPJS2yf8MOdq3aREZqGh7envQZ/jgBdWuZTXv13CXWz19Bwo04CvLyca7mSvOu7Wjbt4tJupysbDYu+IezB4+Tk5WNi4c7vYcOJCTc/GdcUdtWb2TDstWkJadS08+bwS8/S+2wOmbTHt1zkO1rNhF9+RqaAg01/bzp98xAwpo0NKbZs2kHs36eXCrvnytnY2VtXSV1ALiw8yhntxwkJy0TZ093mgzsgkewj9m0cRei2Pxb6ba/76cv4lTDDQCdVsuZjfu5fOA02akZOFZ3pfGAjtQMDayyOgC0C2hIl1rNcFLbEZuexLJT24hMumE27ZDwHrT0K31cxKYn8s2W2QC09q9Pc59Qajoavl9Fpcbx79ndXEu5WWV1aOZTl7YBDbFX2ZCQmcK6c/vLfT0LhZKOweE0rBmMvcqW9NwsdkQe49iNCwA08Q6hUc3aeDi4ABCTlsjmi4e4kZZQZXUAaOlXjw6BjXFQ2RKXmcy/Z/ZwNSW27HoolXSt1YzGNWvjoLIlLTeTrZeOcPj6OWMataU1PUJaEFYjEBsrFSk5Gaw+u4fz5VyLKqKyv0s186nLI2HtqeHgioXSgpvpSayJ2PtQXevF/y/SGSfE/ygLCwtq1KjxoItR5SIjI+nTpw9+fn4Puihlehg+i7P7j7Fp3kp6Dh+ET+0Ajm7dy8IfpvLK+A9xcncpM19udg6rJv9NQL1aZKZlmDxnY2dLm/7dcK9ZHQtLCy4eO8O/Uxdi6+hAUAPzP3YqateWHUz/fQqvjB5J3bB6bFi1li/f/5SJc6ZSrbpHqfQFBQU4Ojnx+NCnWLVkhdl9njp2knZdOvLSqFCsra1ZvmAJn7/7Mb/PnoJbtcrvQG3lF8awJr2Yfmg15+Oj6FqrGR92HsI7/04kKTutVPqQar6MbP0Yc46s48j187jaOvJii3683HIAP+1caJLW3c6JIeE9iIi7WunlNse6ZTNUzcPJXr0BXXIKqjYtsHtqIBlTZkJ+gflMSiV2Tw1En51N9vLV6NIzUDo6oM/PNyax8PUh/8hxtLFxoFSg7tDWsN+ps6BAc1/qVpKNlYpLSddZe24v43qNuH2G+6iFbz2GhPdk1uE1XEyMplNwE97r8Awfrv2DpOz0Uulru/vwSstHmH9sA8duXMDFxoHnmvXlheb9+HX3YgCsLa2Iz0zlYNRZngnvcV/qsXvrDmZOnMpLb71G3fqhbFi1jq/fH8OvsyebPb81+QU4OjsxcMiTrC7j/L4l/mYcsyb9RWiDelVV/DKd3neU9XOW0+f5x/EJCeTI5j3M/24SI3/8GCd31zLz5WbnsPLPuQSG1S7V/la1k3sPs2bWEvq/+CR+IUEc3LyL2eP+4K2fx+BspszWKhWtenSkhp8X1ioVV89dYuW0v7FWW9O8azsANBoNM77+DXtHB54e/TKObs6kJaWgUqurpA6Hduxj0dQ5PPPa8wSHhrBj3WZ+G/MdX0z+ETeP0m37hdMRhDauz6PDn8TWzpY9m3Yw8Ysf+Pjnr/ANCjCms7G14aupP5nkrcqOuKtHIjiybAvNBnenWqAXF3cfZ9ufS+j76YvYuTqWma/fZy9hZVNULpW9rfHvE//u4sqhM7R4uieO1d2IjbjCzmkr6D56CK4+1aukHuFeIQxs0IlFx7dwOfkGbf0b8Frrx/h68yxSckof30tPbuOfM7uM/1solHzU5VljJxZALXcfjlw/x5LkGDRaLV1rN2Nk64F8s2U2abmZlV6HsBqB9KrbitVn9xCVEkcznzoMadKTibuXkJabZTbPE426YK+yYeXpnSRnp2NnbYOy2HBAf9eanIy9RHREHBqdlrYBDXm2aS8m7l5KRl52pdcBoIFnMP1C27Ly9E6updykhW8ozzfvy087FpBaxvv2TOMeOKhsWHpyG0nZadhZ22ChLBpEZ6FQ8mKL/mTm5zDv6AbScjNxVtuTpynju0AFVcV3qaz8HFae3smNtAS0Oi3hXiGMaPUIablZnIy9VCX1eJjIMNWHjwxTFaIK7Nixg+bNm6NSqfD09OTDDz9Eoyn6gdmxY0fefPNN3n//fVxdXalRowaff/65yT7OnTtH27ZtUavVhIaGsnnzZpOho8WHRl69epVOnToB4OLigkKhYPjw4QD4+/vzyy+/mOy7UaNGJq938eJF2rdvb3ytTZs23baOWVlZPPvss9jb2+Pp6cmECRNKpcnPz+f999/Hy8sLOzs7WrRowfbt22+771sUCgVHjhzhyy+/RKFQ8Pnnn7N9+3YUCgWpqanGdMePH0ehUHD16lUArl27Rr9+/XBxccHOzo569eqxdu1aY/qzZ8/Su3dv7O3tqV69OkOHDiUxMbHMcsybN4+mTZvi4OBAjRo1ePrpp4mPjzc+b26Y6t2+RkUdWLedRh1b0LhTS9y9qtN96KM4ujlzdMuecvOtm7GEeq3C8Qr2L/WcX2gwdZo1wN2rOi7V3WneswMePp5En79cRbWAfxYvp2ufHnTv2wsff19efHME7tWqsW7larPpq3vW4KVRr9K5Z1fs7GzNpnlnzAf0frQfgbWC8PbzYeR7o9Dp9Jw4crxK6tCnbmu2RR5l26WjxKQnMufIOpKy0+lW23xEYS13HxKyUll//gAJWamcT4hi88XDBLl5maRTKBS83mYQS09uIz7z/kSQqZo3JnfPQTTnL6FLSCLn3w0orCyxrld2Z6x1wzAUNmqyl65Cez0GfXoG2usx6OKLjv/sRcspOHUWXWISuvhEctZsQOnkiEWNqvmReCf2R51h2oFV7Lh8/IGVoSy9Qlqy4/Ixdlw+Rkx6IvOPbiApO40utcwfU8Hu3iRkpbLxwkESslK5kBjN1ktHCHCtaUxzJTmGhcc3sT/qDAVa7X2px79LVtCld3e69e2Jt58vL7zxCm4e1djwzxqz6T08q/PCGyPo1KMLtnZ2Ze5Xq9Xyy9c/8ORzQ6ju6VlVxS/T/jXbaNypJeGdW1PNqwY9hw3Eyc2FQ5t2l5tv9V+LCGvTFO9a/venoMXsXr2FJp1b06xLWzy8Pek7/Amc3F04sHGn2fQ1A3xo2LYZ1X1q4uLhRuP2LajVMJSrEUU/YI9s3UtOZhZD3huBX50gXKq54V8nGE9/7yqpw6YVa2jbvRPtenbG09eLJ18Zhks1N3asMf8d5slXhtHz8f4E1A6iupcnjw1/Eo+aNThx4KhpQoUCJ1dnk0dVOrf1EEGtGhDcuiFONdxpOqgrti4OXNh1rNx8agdbbBztjQ9lsY6TKwfPUK97K7zqBeHg7kztdo3xrBtAxNaDVVaPzsFN2Hf1FPuunSIuI5llp7aTkpNBu4CGZtPnavLJyMs2PnxdamBjpWbftdPGNLMPr2XXlRPcSEsgLjOZv49uRKFQEFLNt0rq0Nq/Pkevn+fo9fMkZqWy7tx+0nMzaeYbajZ9sLs3/q6ezDuygctJMaTmZHIjLYHo1KLviMtObuNQdAQ3M5JJzErjn9O7UCgUBJa4xlemdgENORQdwaHoCOIzU/j37B7ScjPNRiIC1K7mQ6BbTWYcWsOlpOuk5GRwPS3eJCKwqU9dbK1UzDm8jmspN0nNyeRqyk1iM24TKX+PquK71Nm4qxyKjiAmPZG4zBTWnd9PVGocdTyq5ngS4nakM06ISnbjxg169+5Ns2bNOHHiBJMmTWL69Ol8/fXXJulmz56NnZ0dBw4c4Pvvv+fLL780doLpdDoeeeQRbG1tOXDgAFOnTuWTTz4p8zV9fHxYtmwZAOfPnyc2NpZff/31jsqr0+l47LHHsLCwYP/+/UyePJkPPrj9UJn33nuPbdu2sWLFCjZu3Mj27ds5cuSISZrnnnuOPXv2sHDhQk6ePMnjjz9Oz549uXjx4h2VLTY2lnr16vHOO+8QGxvLu+++e0f5Ro4cSV5eHjt37uTUqVOMHz/eOMQ1NjaWDh060KhRIw4fPsz69euJi4vjiSeeKHN/+fn5fPXVV5w4cYKVK1dy5coVY2dnWeW+29eoCK1GQ+yV6wSEmQ67DAwL4frFq2XmO7HjAClxibR/7PZRMXq9niunL5B8M+GOhr7ei4KCAiIvXKRRs3CT7Y2ahXPudESlvU5eXh5ajQYHR4dK2+ctFkoLAlw9ORkbabL9ZOwlapfx4+FCQhSuto40qmkYHuaktqOFbz2OFosOABhYvyPpuVlsizxqbjeVTuHshNLeHs2Vq0UbtVo0Udex8KpZZj7LWkFob8Ri06MzDqNewf6lZ1G1bg7l3JFVqFQA6HNzK6v4/xkWSiX+rjU5ddP0mDp98zK13M13clxMjMbV1pGGnsEAOKrtaO5bl+Mxd9b2VoWCggIiz1+iYanzuzHnzlTs/F4yZwGOzk507XN/IvyK02o0xFyJLhUtHNigDtcvXCkz37Ht+0mJS6TjwJ5VXcRSNBoNMZejqNXQtIMhuEFdrt3hzZaYK9FEnb9MQGjRsNaIIyfxrRXIqukL+eal9/nlnS/ZvnwdOp2uUssPoCnQcO3SFULDG5hsr9e4AZERF8rIZUqn05GXk4udg+kUGHk5uXww7A3eGzqS38Z+T1Rk2Z9jRWk1WpKjb+JZN8Bku2fdABKvmB/eecva8bNY9vFENv+2kJsXTIfuaTUaLKwsTLZZWFmSEHm9cgpegoVCiY9zdSLiTcsREXeNALeyrxfFtfIL43z8NbNRdLdYW1pioVSSXVD51woLhRJPR3ciE03f90uJN/B1Nn+jqI6HHzFpibQNaMC7HZ/mzXZP0COkBZZKC7PpAawsLLFQKMkpyKvU8t9ioVDi5VSNiwnRJtsvJETj52K+HqHVA7ieFk+HwMZ83OVZ3u3wNH3qtjapR2h1f66lxvFIWDs+7Tqct9sPplNQOAoqP9qqKr9LFRdWIxBPR3ci4soe+ipEVZJhqkJUsj///BMfHx8mTpyIQqGgTp06xMTE8MEHHzBmzBjjncsGDRowduxYAGrVqsXEiRPZsmUL3bp1Y+PGjURGRrJ9+3bj8MdvvvmGbt26mX1NCwsLXF0Nw0o8PDzuas64zZs3ExERwdWrV/H2NvywGzduHL169SozT2ZmJtOnT2fOnDnGMs2ePduYHwzDSxcsWMD169epWdPwRezdd99l/fr1zJw5k3Hjxt22bDVq1MDS0hJ7e/u7GgYaFRXFwIEDqV+/PgCBgUVzpEyaNInw8HCT158xYwY+Pj5cuHCB2rVrl9rf888/b/w7MDCQ3377jebNm5OZmWl2Hrt7eY2KyM7IQq/TYe9k2rlk5+RAZmrpIWwAyTcT2LZoNUM/ewOlRdlfGnOzc/jtjc/RajQolEp6Dh9EYP2qmWstPS0dnVaHs4vpsFpnVxdSkpMr7XXmTJ6BazU3GjZpXGn7vMVRZYuF0oK0HNNhIGk5WTjXND/n4YXEaCbuWcqodk9gZWGJpdKCw9ERzDpUFC1Uu5ovnYLC+XDtpEovc1mUhZGG+izTYTT6rGwUTmUPnVK6OKF08qHg9DmyFq3AwtUFdffOoFSSt3u/2TzqLh3QRF9Hl1A1d9j/lzmobLFQKkkvMbQoLTcTJ7X5jvGLideZtG85I9sMMh5TR66fY+6RdfejyGZlpKWj0+lwdnE22e7k4kJqBeYKjDh1hs1rNvDTXxMrWMJ7k51uvv21d3Igsoyhp0mx8WxZ8C/PfT6q3Pa3qmSnZ6IzU2YHJwcuppYe/lXcdyM+Iis9E51WS5fH+9KsS1vjc8lxiVxOOE/Dts0Z/tFIEmPjWTV9EVqdji6D+lRqHTLTDceTo7OTaR1cnEhLKb8Ot2xavoa83Dyatmtp3FbDpybPjR6Bl78vOdk5bPlnHePf/ZwxE7+julflR13mZWaj1+lRO5hGdqsd7MhJNz8s0sbJjhZP9cDVtwbaAi1XDp1hy+8L6TrqaaoXzjPnWTeAc1sP4RHsg4O7CzfPX+X6yYvo9fpKrwOAvcowpLHksMuMvCwcVf63ze+osiO0egCzDpuPkr1lQL32pOVkci6+8jtPbK3VWCiVZOab1iErPwd7lY3ZPC42Dvi6VEej07Lg2CZsrdT0rdcGGysVK0+bjzLtVrsZ6blZXC5jLr2KKqqH6ZyzmXnZOKjMz0PoauOIv4snGq2WOYfXY2et5pGw9thYqVh6cpshja0jQTYOHI+5yMyDa3C3c2JAWHuUCiVbLh2u1DpU1XcpMExJMemxd7G0sESn1zHj4OpSN7v+q5QykO6AwAABAABJREFUTPWhI51xQlSyiIgIWrVqZTIuv02bNmRmZnL9+nV8fQ13dBo0ML2b6+npaRz6eP78eXx8fEw6oJo3b15l5fX19TXpSGvVqlW5eSIjI8nPzzdJ5+rqSkhIUSfN0aNH0ev1pTqe8vLycHNzq6TSm/fmm2/y6quvsnHjRrp27crAgQON7/eRI0fYtm2b2U60yMhIsx1lx44d4/PPP+f48eMkJycb7/JHRUURGlp66MK9vEZeXh55eaZ3SVWF0UJ3rMRFVo/5+SF0Oh0r/5hLu4E9cfMsPU+TSRnUKl785l3y8/K5euYCm+evxKWaG36hwXdXtrtQssh6vb7S5rlY/vcSdm3Zzje/fY+1qurmACr1c0dBmT+CvJyqMaxpb5ad2s7JmEs42zjwTHh3XmzRjyn7/0Ftac3rbQYy7cCqKptfBsCqXh1senU1/p+1eKXhD7OVKW9PCvRZ2eSs2wR6Pbqb8Sjs7VC1bGq2M07dozMWHu5kzl1UwRr8t5U8fBQoyvwYajq6MzS8FytP7+TUzUs4qx14snE3nmvWl78Orqryspan1Lms199zZEVOdja/fvMjr733ZqlOmfuvRPur15fcBBja3+UT59BxUK/btr9VreRnoTdsLDfPy1++Q35uHtEXrrD+75W41ahGw8JFffR6PXaODjz6yjMolUq8Av3ISElj16pNld4ZV1SHEhvu8HpxYPseVs1fxsgx75gcO0F1ahFUpyjaLzi0Nl+9+TFb/93AUyOGV1KpzTFzXpRRDcfqbjhWL/oeVS3Qi+yUdCI2HzR2xjUd1JUDC9az+qu/QAH27i4EtqzP5f2nqqoCtwpu8l957VRxLf3qkVOQx8mYsuft6lqrGU28Q/h112I0uvsztP6Wsvowbx1rS09uNc6dtv7cfgY36srqs3tKlbNtQAPqewYx8+CaKq9Dqe8cirI/i1v1WHh8M7kaw/yuqyP2MiS8BytP70Sj06JAQVZ+DstObkePnhvpCTiq7Wgf2KjSO+OMdShV0Hv/LnVLbkE+H6yZhNrKmrAagQxt0pP4zBTO3qe5eIUoTjrjhKhk5joObl04im+3srIySaNQKIydPJXZ+aBUKktduAoKiiZbNXdRu91r38mdVZ1Oh4WFBUeOHMGixJ3/iqyKeiuysHgZitcH4MUXX6RHjx6sWbOGjRs38u233zJhwgTeeOMNdDod/fr1Y/z48aX27WlmrqGsrCy6d+9O9+7dmTdvHtWqVSMqKooePXqQX2xC+uLu9jUAvv32W7744guTbWPHjiWwz+07YW0d7FAolaWi4LLTMrBzKj0UMz8nj9gr0dy8doMNs5cDhe+nXs+4Z9/h6Q9G4F/P8GNEoVTiWqMaADX8vEi8EcfefzdXSWeco5MjSgslKSWiZNJSUktFy92LFQuWsnTeQr746Vv8g6pmRbn0vGy0Oi3ONqbHuJParszJnx+p144LCVGsPmuY3y8qNY68g/l80eNFFp3YgpPaHg97F97r+LQxz61zdP7TYxm96jfiKmEOuYKLkWhjiq0YV3jeKuxt0WcVlV1hZ2Pyf0n6rCz0Wq3JrxddYjJKe3tQKqHYkDV1905Y1Qoic+4i9BmVPxn3f0FGXjZanQ6nEseUo9quVLTcLf1C23IxMYq15/YCEE08eYfy+azb8yw5ubVKJj6/HQcnR5RKM+d3auo9z8l180Ys8TfjGPdRUdt569owqHNfJs6dRo0qiGYqztaxsP1NM21/s9IzsTczFD4/J5eYy1HEXr3O2llLi8qs1/PlM28x9KPXCAir3Ojp0mU2zC+WUeKakZmWgX05Ua8AroULI9Tw9SIjLZ0tS1YbO+McnJ2wsFSazF1WzasGGanpaDQaLC0r72eHvaPheCoZBZeRmo6jc/l1OLRjH3N+ncorH40itHH9ctMqlUoCagUSf6NqVu9U2duiUCrIzTBtU3Mzs1E7lD1PYknu/jW5cuiM8X+1gy0dXn4MbYGGvKwcbJzsOf7PDuzdqqbTOjMvB61Oh4PKtMz2Klsy8sq+XtzS0i+Mg9Fn0erND2nuEtyU7rWbM3HPUmLSq2b+3ez8XLQ6HfbWplGKdtY2ZJlZ2RwM7XN6bpbJIgYJmakoFQoc1XYkF1tgp41/fdoFNmL2obXEZVZetH9Jt+rhoDKth721DZll3NDLyMsiLTfL2BEHkJCZglKhwEltT1J2Ghl5WWj1OvTFusjiM1NwVNthoVCW+dndi6r4LpVaGGWnR298/6+l3MTLqRoD6rWXzjjxQEhnnBCVLDQ0lGXLlpl0qO3duxcHBwe8vO5sstY6deoQFRVFXFwc1asb5nc4dOhQuXmsC1f60paYiLtatWrExhYtZZ6ens6VK0Xzn4SGhhIVFUVMTIxxOOm+ffvKfa3g4GCsrKzYv3+/MdIvJSWFCxcu0KFDBwAaN26MVqslPj6edu3a3Um170i1aoaOodjYWFwKO2iKL5xwi4+PDyNGjGDEiBF89NFHTJs2jTfeeIPw8HCWLVuGv7//Hf0wOHfuHImJiXz33Xf4+BjuOB8+XP4dwLt9DYCPPvqI0aNHm2xTqVQsOrnltnktLC3xDPDmyukL1GlWFHF55fQFajcpPVmvykbFS9++b7LtyOY9XDt7kcfeHI5ztbJX/wPDXD1VwcrKiqDatThx+Bit2rcxbj9++Bgt2rYsJ+ftLV+whCVzFvD5j99Qq07V/dDV6rRcSY6lfo0gDkUXzYNVv0YQh6+fM5vH2tKq1JxKulsd+CiISUvk3X9Nh+ANbtQFG0sVsw6vJdHMapr3JL8AXX6qaTkyM7EM8CM/LsGwQanE0teb3G27SucvpIm+UWqBB6WbC7qMzBIdcZ2xCgkma95i9GmVVIf/IK1Ox9XkGMJqBHKk2DEUViOQozfOm82jsrRCW9Yx9YBGqVhZWREUEsyJw8do2a61cfuJw8do3ubezm8vXx9+nvGnybYF0+eQk5PD86+/YnZFzcpmYWlJzQAfLp88T91mRRPVXz51jpAmpTt6VDZqXv3+Q5Nthzbu5srZCzzx1vM4V6vayHEAS0tLagb6culkBPWaNzJuv3QygtBidbgtPSaLU/mFBHJizyF0Op2xQy4xNh4HF6dK7YgDsLSyxC84gIhjJwlvXTSh+9ljp2jUskmZ+Q5s38PsX6bw0vtv0KB5eJnpbtHr9URdvoa3v/nhfRVlYWmBq08NYs9dxadh0bUp9txVvOvXKienqeTrcdg4lb7RaWFlia2zAzqtlqjj5/ELr5qV0LV6HdGpcdTx8DNZlbKOhx+nbrNKZS13bzzsXdh31XzUXpdaTekZ0pI/9iwjKjWuUstdnFavIzY9kSB3LyLirxq3B7l7lTksNioljno1ArG2sCRfazgX3O2c0Ol1pBfrNGrj34AOQY2Zc3hdlXUmFq/HjbQEalXz4Uxc0ff9Wu7eZXY4XU2+SX3PILP1uHXz5mrKTRrVrIWCoog1dztn0nOzKrUjDqrmu1RZFIDVA5gu4EGoivn9RMXIAg5C3KO0tDSOHz9u8oiKiuK1114jOjqaN954g3PnzvHPP/8wduxYRo8ebXK3uDzdunUjKCiIYcOGcfLkSfbs2WNcwKGsqDU/Pz8UCgWrV68mISGBzEzDxbNz587MnTuXXbt2cfr0aYYNG2YSqda1a1dCQkJ49tlnOXHiBLt27Sp3sQgwRLa98MILvPfee2zZsoXTp08zfPhwk/rVrl2bZ555hmeffZbly5dz5coVDh06xPjx401WNr1bwcHB+Pj48Pnnn3PhwgXWrFlTaiXXt956iw0bNnDlyhWOHj3K1q1bqVu3LmBY3CE5OZmnnnqKgwcPcvnyZTZu3Mjzzz9fqiMTwNfXF2tra37//XcuX77MqlWr+Oqrr8ot492+Bhg63hwdHU0edzNMtUWvjhzfvp/jOw6QeCOOTfNWkJaUQngXw4/ebYtWs2ryfMAQ7ebh42nysHO0x8LKEg8fT6zVhtfds2ozl0+dJyU+kcSYOA6s3c6p3YcIa9P0jst1twY88RibVq9n85oNRF+N4q/fp5AYH0/PAYYhTnOmzODnb34wyXP5YiSXL0aSk5NLWmoaly9GEnW16Ivz8r+XMP+vObzxwWg8alQnJSmZlKRkcrLN3+muqDURe+kcHE7HoMbUdHTn2SY9cbdzYvNFQ4f6k4268lrrx4zpj14/TzPfULrVaoaHvQu1q/kyvFlvLiUaVjQr0Gm4nhZv8sjOzyVHk8f1tHi0VTjUJe/gMdStm2NZOxhlNTds+vVEX6Ah/0zRl2Gbfj1RdSyaNyr/6AkUNjaou3dC6eqMZVAAqtbNyS+2eq26R2esw+qQ/c9a9Pn5KOxsUdjZQiX/YL8bNlYqarl7GxdFqOnoTi13b6rbVzwqs6LWnd9Px8Bw2gc2oqajO8807oGbrRNbLhpuDDzRsAuvtHzEmP7YjQs09alLl+CmVLNzppa7D0Ob9CQy8boxOsBCqcTXuTq+ztWxVFrgYuOIr3N1PKqwvv0ef5QtazawZe1Grl+LYsbEqSTGJdC9f28A5k2dya/jfjTJc+ViJFcuRpKbk0N6WhpXLkYSfTUKAGuVNX6B/iYPO3t7bGxs8Av0LxWBXlVa9unE0W37OLZtHwk3brJ+znLSElNo2tVwXmxesIoVf84FbrW/NU0edk72WFpZ4eFT09j+VrW2fbtweMseDm/dS/z1WNbMWkJaYgrNuxlunm34eyVLJs4ypt+3fjsRh0+SGBtPYmw8R7btZde/m2jUrih6u0X39mRnZLF61hISY+I4d/QU21esp2WPDlVSh26P9mHXhm3s3riN2KgbLJo6h+SERDr0Ngy3Xz5zwf+xd5fRUV1dAIbfuLsbUUhC0ODu7qW4ldJSihcttIVCWyjFrUCRBHd3D8UJ7u4a4u7z/QhMGCYJlhDKt58u1mrunHNn35lrs+8R5k/ITNYeDzpMwMRZtPqmIx4+BYkKjyQqPJL4V8bF3LR0DRdPneP5k2fcv3WXhVPm8PD2PeU684JPzTLcOnKOW0fPE/U0lFNr9xIfHk3BKiUAOLPxAEcWZc4ofnV/MA/OXSc6JJzIJ885s/EAD85ep1DVzORi6N3H3D97jZjQSEJuPmDfzNWgUFC4drk82459N09R0a0o5V2LYGdiyRdFq2NpaMLBO+cAaFq4Mp1KqU9YUsG1KHfCH2c5K2ftgmVo7FtJOYO0iZ4hJnqG6GrlzbF95O4F/J29KelUCGsjc+r7lMdM35jg+xkJodqFyvBF0erK8hee3CQhOZHmRathY2SOq4U9db3LcfrhdWU31MruxahVqDQbLh4gMiEGY10DjHUN0NXKu+vdwTvnKOPiS2lnH2yNLWjsWwlzAxOO3c+Yqba+d3laF6+lLH/28XXik5NoVbwmtsYWuFs60NCnIicfXFVux7F7lzDS1aeJX2WsjczwsXWlhpc/R16Z/TY35fa9FEAzvyoUtffE1tgCR1NrGvpWpIpHCeU+KsTHJi3jhHhPQUFBlCypOgB8ly5dCAwMZNu2bQwePJjixYtjaWlJt27d+Pnnn9963VpaWmzYsIFvvvmGMmXK4OHhwfjx42nSpAn6+vpZ1nFycmLUqFH8+OOPdO3alc6dOxMYGMiwYcO4ffs2jRs3xszMjN9++02lZZympibr16+nW7dulC1bFjc3N6ZNm0b9+jnP8DZ+/HhiY2Np2rQpJiYmDBw4kKgo1e4iAQEB/P777wwcOJBHjx5hZWVFhQoVaNiw4Vt/Fq/T0dFh+fLlfP/99xQvXpwyZcrw+++/06pVK2WZtLQ0evXqxcOHDzE1NaV+/fpMnjwZAEdHRw4fPszQoUOpV68eSUlJuLq6Ur9+/SyTpTY2NgQGBjJ8+HCmTZuGv78/EyZMoGnTptnG+K7vkRsKly9JfEwch9bvJDYyGhtnB9oO7o6ZdUYrt9jIaKJC360rY0pSMjsC1xATHoW2rg5WjrY0+74jhcvn/sQHL1WpVY2Y6GhWLlxKeFgEru6ujBj3G7b2GS1EI8LCCX0WolLnh269lP9/69oN/t2zH1t7W+auWgTA9g2bSU1JYdwI1RmN237VgXZfd8r1bTh67yLGega0LFodcwMTHkSG8Of+JYTGZRwfFgYmWBtldhU6cPss+jp61PUuR8dS9YhLTuTSszssO70r12N7V8nHgtHQ0cagfk009PVJe/yUuBVrITmzS46mqYlKl1RFTCxxK9aiX7s6xt90Jj0mluTgMyQdzWzdq1eqBADGHVVnGI7fvIOUC5fzdqOy4WPjyowWma1T+1bOOKdsu3KUP/YtzJeYXjp+/xLGugY096uGuYExD6NCmHBgKWHxGfuUub4xVoaZ+9TBO+fQ19ajdqEytCtZl/jkRC6H3GHl2T3KMhYGJvzRoIfy70a+FWnkW5Erz+4yJo+2t3LNasREx7Bq4TIiwsMp4O7GT+NGvXJ8RxD6shXmCwO/7aP8/1vXb3JwTxA2drbMWRmYJzG+jyIV/EmIiePAup3ERkZh6+JAh6E9lK2M3+f8m9eKVSxNfEwc+9ZuJSYiGjsXB7oM64XFi5Z5MRFRRIZmdqVTKBTsXL6BiJAwNDU1sbK3oV6H5pStndny3dzakq9/7svWhauZNvh3TC3NqdSgBlWb580st2WqVSA2JoYty9YRFR6Jo5sLfUcNxcouowV9ZEQk4c8zWyH9u30vaWlpLPs7gGV/ByiXV6hdla8HfA9AQlw8i6fNIzoiEgMjQ1w83Rj81wjcvfNunFS3Ur4kxyVwYfthEqLjMHewpnrPVhhbZhzTidGxxIVnth5OS03n9Pr9JETFoqWjjZmDNdW//xInv8wJXdJSUjm35SCxoZHo6Oni6OdBxc6N0DXM+h4yN5x+dA0jXX0aeJfHVN+IJ9Fh/H1knTIRYqpvhKWBahdifW1dSjgWZM2F/Vmus4p7cXS0tPmmnOo917YrR9h2NedeHO/j4tPbGOjoUd3LHxM9Q0JiwllyaoeydZiJniFmBpldcZPTUll4chuNfCvyXcUWJCQncvHpbeWDEoAyBQqjralF25Kqk7Dtv3mK/TfzZnb0809uYqirR62CpTHVM+JpbBgBwVuUD2NM9AxVuoAmp6Uy7/gmmvlVoU/lL4lPTuL8k5vsvHZcWSYqMZZ5xzfTpHAl+ldpQ3RiHIfvnCfo1pk82Ya8uJfS09bl67KNsTI0JTkthcfRocw8vJajeZRQFOJNNBR5Na2OECJXHT58mMqVK3Pz5k08PbOeQU/kj2vXruHj48ONGzfw8srdG/ZFwe/fivBT0blMQ66+0lXiv8jHzp22S0bkdxgfbEXH0USNmZTfYXwQs+EDqDSzx5sLfuIO95pNp+Wj3lzwE7e43UguPflvz0Tn5+DJstM78zuMD9bevx5rz+3L7zA+SMviNfn3Vt4kKD6mqp7+jN69IL/D+GAj6nxN7/UT31zwEzajxUBG7Jib32F8sNH1v2Xo1r/fXPATNq5Rz8/mXuq/aOWZ3fkdQrbavJas/n8hLeOE+EStX78eY2NjChYsyM2bN+nXrx+VKlWSRNwnJjw8nDVr1mBqaqocU04IIYQQQgghhMiOJOOE+ETFxMQwZMgQHjx4gLW1NbVr11YbG03kv27dunHq1ClmzZr1TmO8CSGEEEIIIYT4/yTJOCE+UZ07d6Zz5875HYZ4g/Xr1+d3CEIIIYQQQgiRrewmART5R2ZTFUIIIYQQQgghhBDiI5FknBBCCCGEEEIIIYQQH4l0UxVCCCGEEEIIIYT4TEk31U+PtIwTQgghhBBCCCGEEOIjkWScEEIIIYQQQgghhBAfiXRTFUIIIYQQQgghhPhMaSLdVD810jJOCCGEEEIIIYQQQoiPRJJxQgghhBBCCCGEEEJ8JNJNVQghhBBCCCGEEOIzpaEh7bA+NfKNCCGEEEIIIYQQQgjxkUgyTgghhBBCCCGEEEKIj0S6qQohhBBCCCGEEEJ8pjQ1ZDbVT420jBNCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpSDfVT460jBNCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpIN1UPzUaCoVCkd9BCCGEEEIIIYQQQojct+niwfwOIVtNi1TJ7xDyhbSME0KIT9j4/UvyO4QPNrhGR649u5vfYXwQbzs3qs3qld9hfLAD388ksseA/A7jg5jPnkSn5aPyO4wPtrjdSCrN7JHfYXyww71m8yw6NL/D+CB2ptYsPrk9v8P4YJ1KN6DP+kn5HcYHmd5iAFP+XZnfYXyw/lXb8M2qsfkdxgeb13rYf/58u7jdSLqvGZffYXywf74cSvPAH/M7jA+y4as/qTu3f36H8cF2fTslv0MQnwlJxgkhhBBCCCGEEEJ8pjRlNtVPjkzgIIQQQgghhBBCCCHERyLJOCGEEEIIIYQQQgghPhLppiqEEEIIIYQQQgjxmdKQbqqfHGkZJ4QQQgghhBBCCCHERyLJOCGEEEIIIYQQQgghPhLppiqEEEIIIYQQQgjxmZJuqp8eaRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0kS6qX5qpGWcEEIIIYQQQgghhBAfiSTjhBBCCCGEEEIIIYT4SKSbqhBCCCGEEEIIIcRnSmZT/fRIyzghhBBCCCGEEEIIIT4SScYJIYQQQgghhBBCCPGRSDdVIYQQQgghhBBCiM+UpnRT/eRIyzjxSXj27BmjR48mIiIiv0MRQgghhBBCCCGEyDOSjBP5TqFQ0KlTJ/T09LCwsHinum5ubkyZMiVvAvtAGhoabNiw4Z3qVK9enf79++dJPP9VnTp1YsyYMfkdxgcZNGgQffv2ze8whBBCCCGEEEJ8AqSb6n/QV199xcKFCwHQ1tbGxcWFL774glGjRmFkZJTP0b27sWPH4uHhwdChQ9+5bnBw8H9ym8XbOX/+PFu3buXvv/9WLqtevToHDhxg7Nix/PjjjyrlGzZsyPbt2xk5ciRfffUV7u7uOa5/5MiR/PrrrwAsXLiQmTNncunSJTQ1NSlZsiRDhgyhcePGAMTGxmJhYcGSJUto06aNch1t2rRh1apV3Lx5E09PT+VyT09P2rRpw5gxYxgyZAienp788MMPb4zpQ1wOOsn53UdJiIrB3NGGCq3qYV+wQJZlH1+7y7bJi9WWf/nr95jbWwNw/cg5/l20Sa3MV9OHoa2Td5ePbes3s275aiLCwyng5so3fXrgV7xolmXDQ8NY8Pc/3Lp2k8cPH9G4ZTO+7fu9Spmdm7exf+ce7t2+B4CXtxedvu1KocI+ebYNzf2q0LZEbSwNzbgb8YQZh9dw/smtHMpX5Yui1bA3seRZbARLTu1g5/UTytenNO1HSadCavWO3rvIj9tm5ck2vKTfuB66lcujYWhI2t17xC9fS/qTZ9mWNx7QE+1CXmrLUy5cJm7mvIw/9PQwaNoAnRJF0DAxIe3BQxJWbSDt3oNcj7+WV2ka+VbEzMCER1EhLDm9k+vP72dbvqJrURr5VsTOxIqElETOP7nJ8jO7iU1OAMDJ1IaWxarjZuGIjbE5S07vYOe147ke9/sq7uBF+5J18bEtgLWROT9um8XBO+fyOyyl9avXsXzJMsJDw3DzcKfPgL4UL1ki2/JnT51hxpTp3L19Bytra9p3bk+zli2Urx/YF8SSwEU8evCI1NRUnF2cadOxHfUa1s+zbTi5+xBHt+4jNjIaGyd76nZqQQEfzzfWe3DtNot+n4Gtsz3fjh2iXH5631EuHArm+YMnANi7u1CjTSOcPF3zbBsAqrgXp1bB0pjqG/EkOox1F4K4FfYoy7Id/etRztVPbfmT6FDG7F0EQEW3opR18cXBNOMa8iDyGZsvH+ZexNM824aL+09wduch4qNisXC0oVKbBjgWcsuy7KNrd9g0IUBtedvRfbBwsAHg8r8nuXb0LOGPQwCwcXWkXIva2Lk759k2AFT39KeedznMDYx5HPWcFWf3cCP0YZZlu5ZpRCX3YmrLH0U9Z+TOjHPs4Ort8bZV33/OP77JtEOrczf4V3wO59tqHiWp510WM31jHkeHsvLcXm5m8118VbohFd3U708eR4Xy6+75AFRwLULXMo3UyvRcN4HU9LTcDf4VDbzL07xIVSwMTXgQ8Yz5J7ZwOeRutuWrepSgRZFqOJpaEZecyJlH1wk8uY2YpHhlmSaFK1HfuzzWRubEJMVx5O5FFp/eQUpaap5sQxPfSrQqXhNLA1PuRTxl1rH1XHx6O/vyhSvTrHAV7EwsCImNZPnZ3ey5Eax8vZJbMdqVqI2jqQ3ampo8ig5lzfn97L15Mk/i/9TIbKqfHknG/UfVr1+fgIAAUlJSOHjwIN988w1xcXHMmpW3P8rywvDhw9+7ro2NTS5GIj41M2bMoFWrVpiYmKgsd3FxISAgQCUZ9/jxY/bt24eDg4OyzJMnT5SvT5gwgR07drBnzx7lMmNjYyCj5dqMGTP4/fffad68OSkpKSxZsoRmzZoxdepUevfujbGxMaVLl2b//v0qybgDBw7g4uLC/v37lcm4hw8fcvv2bWrUqAGAra0tdevWZfbs2YwbNy6XP6UMt05e4tjqnVRs1xA7T2euHjzNjhnL+HLk9xhbmmVbr9Wonujo6yn/1jcxVHldR1+PVqN6qizLy0Tcwb1BzJs+mx4DeuNbxI8dm7YyasjPzFw0Fxs7W7XyKSkpmJmZ06pTWzauXp/lOi+eOU/VWjXw6VcYXV0d1i5fzchBw5mx8B+sbKxzfRtqePrTu9KXTD64kotPbtHErzLjGvWiy4rfCIlV74rfzK8K3cs3ZXzQMq6G3MPXzo3B1doTkxTPkXsXAfhl51x0NDM/d1N9I+a3HkbQrTO5Hv+r9OrWRK9WNeIXLict5Dn6Depg3K8H0SP/hKSkLOvEzQ4EbS3l3xpGhpj8PIiU05kJIcNOrdFydCAuYBmKqGh0y5XCuH8Pokf9hSIyKtfiL1fAj47+9Qk8uZUboQ+o4VWKwdU68OO2mYTFR6uVL2Ttwnflm7P0zE7OPLqOhYEJXcs0plvZJkw9tAoAXW0dQmIjOXH/Mh386+VarLnFQEePm2EP2Xb1CGMa9MjvcFTs3bWH6ZOmMmDoQIoUL8amdRsY0m8Qi1Ytwc7eXq3840ePGdJ/EI2bN+Hn0SO4eO48k8ZNxMzCnOo1M86vpmamdOrahQJurujoaHPk4BH+HD0GCwsLylYol+vbcOnoaXYtXk+Drl/iUsid0/uOsPyvOfT4axhm1tm37k+MT2Dj7KW4+xUkLipG5bV7V27iV8Ef585uaOvqcHTLXpb9OYvvxv2IqaV5rm8DgL9TIb4oVp1VZ/dyO/wxldyK8X3FFvyxZyERCTFq5dec38/GSweVf2tpaPJjrU6ceXRDuczL2plTD69xO3w/qWmp1CpUhp4Vv2DM3kVEJcbm+jbcDL7A4ZXbqdKhMQ5eBbh0IJit05bQdlRvTKzMs63X7re+6Bq8et3LfKj7+NpdCpYthr2nC1o62pzdeYgtkxfRZlRvjC1Mc30bAMq4+NK2RG2Wnt7JzdCHVPUsSb8qbRixcy7hWZynVpzdw9oLQcq/tTQ0GVm3G6ceXlUu+/vIOrQ0M8/DxroGjKzbjZOvlMltn8P5trSzD21K1GLZ6V3cDHtEVY8S9K3cil93ziM8i+Ni5dk9rLtwQPm3pqYmI2p35dQj1c85ISWJX3bMVVmWl4m4Sm7F+LpsY+Yc28jVkLvU8y7HL3W60mfDJELj1K+xvrau9KvcmgXBWwh+cAUrQ1N6VGhBr4ot+XN/xoPbqh4l6FSqPjMOreHq8/s4mlrTt3IrABYEb8n1bajmUZIeFVow/fAaLj27QyOfivxR/zu+WT2W53GRauUb+1bi6zKNmXJwJdee38fHpgD9q7QhNimeY/cvARCTFM/ys7u5HxlCaloq5Qr4MahaOyITY1WOHyE+Fumm+h+lp6eHvb09Li4utG/fng4dOii7RCoUCv766y88PDwwMDCgePHirFmzRlk3IiKCDh06YGNjg4GBAQULFiQgIPNJ4YULF6hZsyYGBgZYWVnRvXt3YmOzv4kKCgpCQ0ODnTt3UrJkSQwMDKhZsyYhISFs374dX19fTE1NadeuHfHxmU9XduzYQeXKlTE3N8fKyorGjRtz61Zmy5FFixZhbGzMjRuZN3p9+vShUKFCxMXFAerdVDU0NJgzZw6NGzfG0NAQX19fjh49ys2bN6levTpGRkZUqFBB5X0AZs2ahaenJ7q6unh7e7N4sXqLoVcFBwdTp04drK2tMTMzo1q1apw+fTrHOq+Li4ujc+fOGBsb4+DgwMSJE9XKJCcnM2TIEJycnDAyMqJcuXIEBQUpX7937x5NmjTBwsICIyMj/Pz82LZtG5D5vWzdupXixYujr69PuXLluHDhgsp7HDlyhKpVq2JgYICLiwt9+/ZVfr4AT548oVGjRhgYGODu7s6yZctUPve7d++ioaHB2bNnlXUiIyPR0NBQifXy5cs0bNgQY2Nj7Ozs6NSpE6Ghodl+Punp6axevZqmTZuqvda4cWPCwsI4fPiwcllgYCB169bF1jYjYaOlpYW9vb3yn7GxMdra2mrLjh07xsSJExk/fjyDBg3Cy8sLX19f/vjjD/r378+AAQN48CCjtU6NGjVUtunKlSskJCTQs2dPleX79+9HR0eHSpUqKZc1bdqU5cuXZ7u9H+rinmMUqlQSn8olsXCwoULrehhZmHLlQM5P+/RNjDA0M1b+09RUvSxoaKDyuqGZcZ5tA8DGVeuo3agedRs3wMWtAN/2/R5rGxu2bcj6Rs/OwZ5v+31Pzfp1sm0lO3DEjzRs0QSPgp44uxag9+D+pKcrOHcqbxJZrYvXYtvVo2y9coR7kc+YcXgtz2MjaOZXJcvydQuVZdPlw+y/dZonMWHsu3mKrVeP0K5kXWWZmKR4whOilf9Ku/iQlJpM0K13O++8K71aVUncvoeUsxdIf/yU+IXL0NDVRbesf7Z1FPHxKKJjlP90fL0hOYXkUy+ScTo66JQsRsK6zaTdvE3681ASt+wkPTQcvaoVczX+Bt7lOXD7DAdun+FxdChLT+8kLD6KWgXLZFney9qZ53GR7Lp+gudxkVwPfcC+m6dwt3RUlrkT/pgVZ3dz7P4lUtLy7sfU+zp2/xJzj2/iwO2z+R2KmlXLVtKoWWMaN2+Km7sbfQf2x8bOlg1rsk6kb1y3AVt7O/oO7I+buxuNmzelYdNGrFySeS4tWcqfqjWq4ebuhpOzM63atcbDy5PzZ/OmNeDx7UGUqF6OkjUqYO1kT91OX2BqZc6pPYdyrLdt/iqKVCyFU0E3tdda9OpE6TqVsXdzxtrRjkbftEWRruDupet5sg0ANbxKcfTuRY7eu8izmHDWXQgiIiGGyu7FsyyfmJpMTFK88l8BCzsMdPQ59uKBAcCik9s5eOccj6Ke8yw2guWnd6OhoYG3jUuebMO53UfwqexP4SqlsHCwoXLbhhhbmHLpQHCO9QxMjTA0M1H+e/W6V/vbLylSoyzWBRywcLChWudmKBQKHl3JvjXOh6pTqCyH7pzj4J1zPIkJY+XZPUQkRFPds2SW5RNSkohOjFP+c7Wwx1BXn0N3zivLxCUnqpQpbOdOcloKJx/kXcLhczjf1ilUhkN3znPo7nmexoSx6txeIuJjqJbdd5GaTHRSnPKf24vv4vBd1XtthUKhUi46KS7L9eWWZn6V2XPjJHtuBPMw6jnzT2whNC6K+t7lsyxfyKYAz2Mj2HrlCCGxEVwJuceuayfwsnZSlvG2KcDVZ/f49845QmIjOPv4Bgdvn1Mpk5taFq3OjmvH2XHtGA8inzH72Hqex0bSpHDlLMvXKliabVeOcOD2GZ7GhBF0+ww7rh2ndfFayjLnn9zk8N0LPIh8xpOYMDZc+pfb4Y8pYpd3vVaEyIkk4z4TBgYGpKSkAPDzzz8TEBDArFmzuHTpEj/88AMdO3bkwIGMJze//PILly9fZvv27Vy5coVZs2ZhbZ3ROiQ+Pp769etjYWFBcHAwq1evZs+ePfTu3fuNMfz666/MmDGDI0eO8ODBA1q3bs2UKVNYtmwZW7duZffu3UyfPl1ZPiYmhh9++IHg4GD27NmDQqGgRYsWpKenA9C5c2caNmxIhw4dSE1NZceOHcyZM4elS5fm2DX1t99+o3Pnzpw9exYfHx/at2/Pd999x7Bhwzh5MiMx8er2rF+/nn79+jFw4EAuXrzId999R9euXdm/f3+27xETE0OXLl04ePAgx44do2DBgjRs2JCYGPWnZtkZPHgw+/fvZ/369ezatYugoCBOnTqlUqZr164cPnyYFStWcP78eVq1akX9+vWVCcpevXqRlJTEv//+y4ULFxg3bpyytder7zNhwgSCg4OxtbWladOmyn3lwoUL1KtXjy+++ILz58+zcuVKDh06pPL5dO7cmcePHxMUFMTatWv5559/CAkJeevthIyEXrVq1ShRogQnT55kx44dPHv2jNatW2db5/z580RGRlK6dGm113R1denQoYNKEjkwMJCvv/76neICWL58OcbGxnz33Xdqrw0cOJCUlBTWrl0LZCTjrl27pmxxt3//fqpUqULNmjXVknHlypXD0DCzlVnZsmV58OAB9+7de+cY3yQtNY3Q+09w9vVQWe7s68mz21l3rXhp/R9zWTpkMtsmL+bxtbtqr6ckJbNi+DSW/TiFnTNXEHr/ifpKcklKSgo3r9+gZJlSKstLlinF1YuXc+19kpKSSEtNxcTU5M2F35G2phaFbFwIfnBFZXnwgysUsffIso6OljbJqSmqMaam4GvripZm1pfpRj4V2HfzFImpybkTeBY0rS3RNDMl9cq1zIWpaaTeuIW2h9tbr0e3UjmST56B5BexamqioaUFKardWhQpKWh75d4NsZamJm6Wjlx4qvrw5eLT2xS0zrrL2Y3QB1gamlLcIaObram+EWUL+HL28Y0sy4u3l5KSwvWr1yhTrqzK8jLlynLx/MUs61y6cFGtfNny5bh6+SqpqerdohQKBadOnOTBvfsU9y+Ra7G/lJaaypM7D/EoqtrF3aOoDw9v3M223tkDx4kICaXqF2/XsiclKZn0tHQM8mgYDi0NTVzM7bgaono9uvrsHu5WjtnUUlXetQjXQu5l2YruJV1tbbQ0tYhLSfygeLOSlprK83tPcCms2j3Yxc+Lp7ey7xYJsHr0LBYO+otNEwN4dDXnJFtqcgrpaWnoGRl8cMxZ0dLUxNXCnkvP7qgsv/T0Dp5Wb9c1topHca48u5tlK7qXKrsX48T9yySnpWRb5kN8DudbLQ1NCpjbc/m17+Lyszt4Wr1dwqmSWzGuhqh/F3rauoxt0INxDXvSu1JLXMzVW/rnFm1NLTytnNQ+x7OPb+CTRddlgKsh97AyMqOUkzcAZvrGVHArotKS8krIXTytnZTfp52xJf7O3nnS2lJbU4uC1s6cfq2F4alHVyls55ZlHV1NbbX9OzktBW+bAmhpZH0vVcKxIC5mtmr77edK4xP+7/+VdFP9DJw4cYJly5ZRq1Yt4uLimDRpEvv27aNChQoAeHh4cOjQIebMmUO1atW4f/8+JUuWVCY53NzclOtaunQpCQkJLFq0SJnwmjFjBk2aNGHcuHHY2dllG8fvv/+ubAnUrVs3hg0bxq1bt/DwyPgB+uWXX7J//37l2HCtWrVSqb9gwQLs7e25fPkyRYoUAWDOnDkUK1aMvn37sm7dOkaOHEmZMlk/YXupa9euyiTP0KFDqVChAr/88gv16mXcBPfr14+uXbsqy0+YMIGvvvqKnj0zuuINGDCAY8eOMWHCBGU3w9fVrFlT5e85c+ZgYWHBgQMHlGOM5SQ2Npb58+ezaNEi6tSpA2SMWebsnHnDcuvWLZYvX87Dhw9xdMy4OR40aBA7duwgICCAMWPGcP/+fVq2bEnRohnjVbz8rF81cuRItfdYv349rVu3Zvz48bRv3145aUTBggWZNm0a1apVY9asWdy9e5c9e/YQHBys3F/mzZtHwYIF37iNr5o1axb+/v4qEzEsWLAAFxcXrl+/TqFC6mNh3b17Fy0tLWVLt9d169aNypUrM3XqVE6dOkVUVBSNGjVSjgH3tq5fv65sFfk6R0dHzMzMuH49o3VCpUqV0NHRISgoiHbt2hEUFES1atXw9/cnKiqKGzduULBgQYKCgujYsaPKupycnJTb5eqqfjOUlJRE0mvd/vT09NTKZSUxNh5FugIDU9UfbgamRiREZ92q1dDMmModGmHt6kBaaho3j51n25TFNBrQGYeCGfGZ21tRtUtTLJ1sSUlI5uK+42weH8gXP3fHzM7qrWJ7F9FR0aSnpWNuYa6y3MzSnMjw3JtpedHsBVjaWFG8VPatu96Xmb4x2ppaajfiEQkxWBpm3cUp+MEVGvtW5NCdc1wPfYC3TQEa+lRAR0sbM31jtXX52LriYeXEuKCluR7/qzRMM+JNj1b9sZ0eHYOm5dtNtqPlVgAtJwfiF6/MXJiUROqtO+g3qkPc02cZrefK+KPlVoD0kOxby74rEz1DtDQ1iX6te1xUYixm+lmP73Uj9CGzjq6jV6Uv0dHSRltTi1MPr7L41PZci+v/VVRkJGlpaVhYWqost7SyIDwsLMs64WHhWFqp7msWlpakpaURGRmpfJAYGxtLy4bNSU5ORktLix+GDlRL4uWG+Jg4FOnpGJmpJvKNzEyIjco6ERL+9Dn7V2ym84i+aGppZVnmdftWbMHE0gz3IurXxtxgpGeAlqYmMa+1zolJisdUzzCbWplM9YwobOfOwpPbcizX1K8KUQmxXAvJOTn2PjKue+kYmqo+gDQwMSI+KrvrngnVOjXFxtWRtNRUrh87x6ZJC2k2qGu248wdW7sbI3NTnAtn/TDlQxnrvjxPqX4X0UlxmOm/ORlrpm9EEXtP5h7bmG0Zd0sHnM1t3/h9fYjP4Xxr/HIbXhkjDTK+C9O3/i48mHdis8rypzHhBJ7cyqOo5+jr6FHLqzRDq3dk9J6ALIeu+FAZ34UWka8lyqMSYrAwyPqccu35fSb9u4JB1dsrv4vj9y8z91jmuMGH7pzHTM+YMQ16oKGhgbamFtuvHlXppptbTPWN0NLUIiJedRsiEmKwMMj6Xurkw6vU9ynPkXsXuBH6kILWLtQrVC7zXioh4xxtqKPP8g6j0NHSJj09nemH13D6Ud61QhYiJ5KM+4/asmULxsbGpKamkpKSQrNmzZg+fTqXL18mMTFRmXx5KTk5mZIlM5pYf//997Rs2ZLTp09Tt25dmjdvTsWKGV2Drly5QvHixVVanlWqVIn09HSuXbuWYzKuWLHMwWTt7OwwNDRUSQ7Z2dlx4kTmgOT379/nt99+4/jx44SGhipbxN2/f1+ZjLOwsGD+/PnUq1ePihUrqg3Y/zZxAMpk1ctliYmJREdHY2pqypUrV+jevbvKOipVqsTUqVOzfY+QkBBGjBjBvn37ePbsGWlpacTHx3P//tvdcN66dYvk5GRlwhTA0tISb29v5d+nT59GoVCoJaqSkpKwsspIhPTt25fvv/+eXbt2Ubt2bVq2bKmy/UCW73HlSkarnVOnTnHz5k2WLs38Ua9QKEhPT+fOnTtcv34dbW1t/P0zkxZeXl7vPOvtqVOn2L9/v1qrvZefRVbJuISEBPT09LIdbLRYsWIULFiQNWvWsH//fjp16oSOjs47xfU2FAqFMgZDQ0PKli2rTMYdOHCAwYMHo62tTaVKlQgKCkJPT487d+6oJWwNDDKeqr/aVftVY8eOZdSoUSrLRo4ciVE19YHws/XaZ6VQKCCbp03m9tbKiRoA7DyciY2I5sLuo8pknK2HM7YemQliO08X1o+Zy6WgYCq2ybvB0dW+c4Uiu814Z2uXreLfvfv5Y9p4dPXUE7B5KeP7ULfw5HYsDUyZ9cVg0ICI+Bh2XDtG+5J1SVekq5Vv5FOR22GP1Fq1fCidsv4Yts98SBL7crKF1+N+hwGAdSuWI+3RE9Luqp4b4wOWYdi5LWbjfkWRlkbag0ekBJ9Bq0Dud3dRCx8Nsv4mwNHUmk7+Ddhw8V8uPL2Jub4JbUvWoWuZxsw7oT6ZiXh3rx/fCkXOg0qrPzFXqC03NDRk/tJAEuLjORV8ipmTp+Po5EjJPEi4QxaHgEKR5ZP99PR01s9cRNWWDbByeLuWMEc27+XS0dN0+rk32rq5f017VXbHwZuUcy1MQkoS5x/fzLZMrYKlKeXsw7SDq/J0bKysrg3Z7U8W9tZYvHLds/csQGx4FGd3Hc4yGXdmx0FunrhAs8Fd0c6D+4tXvf5d5HSeelVFt2LEpyRy5nH2yYTK7sV5GBnCnfC8a9n+0mdxvn1tIzTQeKuDpYJrURJSEjn7WmLnTvhj7oQ/Vv59K/QhP9f+ihqe/qw8tzdXQn4rGhoostkQZzNbvi3XlJVn93Lmccb4fV+Vbsj3FVow40hG75Ai9h58WbwGc45t5Mbz+9ibWvNN2SZEFIth1fl9eRJyVsdFdl/G0jO7sDA0ZWqzH9AgI3G368YJ2hSvpXIvlZCSxPfrxqOvrUdJp4J8V745T2LCOP8k+/OZEHlFknH/UTVq1GDWrFno6Ojg6OioTELcuZPRtHrr1q3KljgvvWxl06BBA+7du8fWrVvZs2cPtWrVolevXkyYMEEl8fC6N83A8moiRENDQy0xoqGhoUy4Qca4X+7u7sydOxdHR0fS09Nxc3MjOVm129W///6LlpYWjx8/Ji4uDlPTnAfQfT2O7Ja9Gov6j4PsPwfImNH2+fPnTJkyBVdXV/T09KhQoYJa7NnJ7kf5q9LT09HS0uLUqVNovfY0/WVS65tvvqFevXps3bqVXbt2MXbsWCZOnEifPn1yXPern8F3331H37591coUKFCAa9euqS1/Pf6XY628uuxlN9hXt+Vl68rXvZxw4XXW1tbEx8eTnJycZas1gK+//pqZM2dy+fJllUTvuyhUqBCHDh3K8n0eP35MdHS0SkvAGjVqsHLlSi5dukRCQoIyUVmtWjX279+Prq4u+vr6lC+vOi5HeHg4kP2kI8OGDWPAgAEqy/T09Jh25M2znukbG6KhqUHCa60BEmPi1VrL5cTW3YmbJy5k+7qGpgY2ro5Eh4S/9TrfhamZKZpamkS81gouKiIK83dMAGdl/fLVrFmygtGT/sTdM29aOUQlxpKanqbWCs7CwCTb7lzJaSmMC1rChH+XYWlgSlh8FE0KVyYuOYGoBNXWEnraOtT0KpUngyWnnLtEzJ1XkmYvJmHQNDMl7ZXWcZomxiii36JLvo4OumVKkLB5h9pL6aFhxE6aCbq6aOjroYiOwfCbTqSH5t6+FZMUT1p6OmYGqg8BTPWN1FpvvNSkcGVuhN5n29UjADwghKTgZH6p8zWrz+/Lk0Ho/1+YmZujpaWl1gouIjxCrbXcS5ZWloSFhauV19LSwsw8c2IaTU1NnF0yHhwU9C7Evbt3WRK4ONeTcYYmRmhoahIbqbr/x0XHqrWWA0hOSOTJ7Qc8vfuIHQszftAqFApQKPij0wDa/9gDd7/Mh1FHt+7j8KbddBjWE7sCb9dd9H3EJSWQlp6OqZ7q9cFEz1CtVVBWyrsWIfjBZdKyeFgAUNOrFHULlWXG4bU8js691q6vyrjuaaq1gkuIiXun656dhwvXj6mPL3h25yFObztIkwFdsHJWn1wkt8QmvzhP6WfxXSS+eVyxyu7FOHbvImnpWX8XulralHHxVZl8Iy98Dufb2Bfb8HoruIzj4s3fRSW3ohy7fynb4+IlBXA3/Cl2Jlmf9z5UxneRhrmB6jnJTN+YyISsP9Mvi1XnSshdNlz6F4B7EU+Zc2wDYxt+z9Izu4hIiKF9yToE3TqtnJ30XuQz9LV16FnxC1af359tou99RCfGkZaehqWh6jaYGxjneC816d/lTD24EgtDE8Ljo2noU5G45ESiXjmWFCiU56Xb4Y8oYG5H2xK1/y+ScZoym+onR8aM+48yMjLCy8sLV1dXlURT4cKF0dPT4/79+3h5ean8c3HJHEDXxsaGr776iiVLljBlyhT++ecfZf2zZ8+qDOB/+PBhNDU1s2y99L7CwsK4cOECgwcPply5cri4uHD37l21ckeOHOGvv/5i8+bNmJqavjHJ9D58fX05dEh14OUjR47g6+ubbZ2DBw/St29fGjZsiJ+fH3p6ejlORvA6Ly8vdHR0OHbsmHJZRESEsjskQMmSJUlLSyMkJETtu7R/ZdY5FxcXevTowbp16xg4cCBz56rO1pTVe/j4ZIx34+/vz6VLl9TW7+Xlha6uLj4+PqSmpnLmTOZA9zdv3iQyMlL598vk0qszl746mcOr7+Pm5qb2PtmN/1eiRAkgY+KH7LRv354LFy5QpEgRChcunG25nLRt25bY2FjmzJmj9tqECRPQ0dGhZcuWymU1atTgxo0bLFu2jMqVKysTpdWqVSMoKIigoCAqVKiAvr6+yrouXryIjo4Ofn5+Wcahp6eHqampyr+37aaqpa2FdQEHtQGmH125jZ3H2405AxD24CmGWfygfEmhUBD28GmeTeKgo6ODV6GCnD2pOinB2ZOn8Snyft/vS+uWr2blomWMHP8HBX3ypusXZMyOdv35A0o7q44pVdrZh4tPcx6bKC09nedxkaQrFNT0KsXRexfVbm5reJZCR0ub3ddzHqD8vSQlkf48NPPfk2ekR0Wj7fvK56WlhXZBT1Jv333j6nRLlwBtbVKOn8q+UHIyiugYNAwN0CnsQ8q5rMcOex9p6encDX+sNlZfEXsPboRmPZainrYO6a89LHn5t9zDfhgdHR0K+Xhz8rjqvnvyRDBFihXJso5f0SKcPKFaPvj4CXwK+6Ctnf3zZIUCUpJzf2wsLW1tHNyduXNR9UHVnQvXcM5iYgY9A326/zmUb8cMVv4rVasiVg62fDtmME6emUMWHN2yj0Prd9FuSA8cPQrkeuyvSlOk8yDyGT62qu/jbevKnbDH2dTK4GXtjK2xBUfvZn2s1ipYmvo+5Zl1ZD0PIp/lWsyv09LWxsbVgYdXVMd6enj5Fvaeb//5hd5/onbdO7PzEKe2HqBRv07YuuXN4PQvpaWncy/iKYVfG0C+sJ07t8JyHvPV26YAdiaWHLyd/WQlpV180dHS5ti9S7kSb3Y+h/NtmiKd+5FP1cYk87Vz41bYoxzrFrJxwc7EUmUSjZy4mNsSlU1i7EOlpqdxK+wRJRxVe1aUcPTKtkW9npauWkOB178bPS2dbMpo5Pr3lZqexo3Qh/g7eass93fy5vKzuznWTVOkExoXRbpCQXXPkhy/fynHRKGGhobKbPVCfEySjPvMmJiYMGjQIH744QcWLlzIrVu3OHPmDDNnzmThwoUAjBgxgo0bN3Lz5k0uXbrEli1blImnDh06oK+vT5cuXbh48SL79++nT58+dOrUKccuqu/K3NwcS0tLZs+ezc2bN9m7dy8DBw5UKRMTE0OnTp3o06cPDRo0YNmyZaxatYrVq9/cUuhdDB48mMDAQGbPns2NGzeYNGkS69atY9CgQdnW8fLyYvHixVy5coXjx4/ToUMHZTfEt2FsbEy3bt0YPHgwe/fu5eLFi3z11VcqM3oVKlSIDh060LlzZ9atW8edO3cIDg5m3LhxyhlT+/fvz86dO7lz5w6nT59m3759aknE0aNHq7yHtbU1zZs3BzLG1Dt69Ci9evXi7Nmz3Lhxg02bNimTnj4+PtSuXZvu3btz4sQJzpw5Q/fu3TEwMFC2rjMwMKB8+fL8+eefXL58mX///Zeff/5ZJYZevXoRHh5Ou3btOHHiBLdv32bXrl18/fXXpGUzO5aNjQ3+/v5qidJXWVhY8OTJE/buff9m/hUqVKBfv34MHjyYiRMncuvWLa5evcrPP//M1KlTmThxokoiu2LFiujp6TF9+nSqVaumXF6mTBmioqJYu3ZtlmMNHjx4kCpVqrzTfvIuitQuz7XDZ7h2+CwRT55zbNUuYiOi8KmaMRlC8Pq9BAVsUJa/uPc4d89eJepZGBGPQwhev5e7Z65SuHrmhBmntxzg4aVbRD+PIOzBUw4u3kzYg2f4VCn1+tvnmmatv2D3lh3s3rqTB3fvM2/6bJ6HhNCgWSMAFs5ZwOQ//lKpc/vGLW7fuEViQgLRkVHcvnGL+3czbzjXLlvFknkL6Tt0AHb2dkSEhRMRFk5CfEKebMOqc3tp5FuRhj4VcDW3o1fFltiaWLLpUsa+/G25pgyv2VlZ3tnMljoFy+BkZoOPrSsjanfF3dKBucfVu+k08q3AoTvn8nwmtpeS9v6Lfv3a6JQoiqajPYZd2qFITib5RGbC1PCrdug3b6RWV7diOVLOXkQRp97SRruwN9qFfdC0skTbtxDGP/Qk7VkIyUfer4VrdrZfO0Z1D3+qepTA0dSaDiXrYWVoxt4bGZP5tC5ei+/KN1eWP/PoOqVdfKnlVRobI3MKWrvQqVR9boU+VLYo0NLUpIC5HQXM7dDW1MLCwJQC5nbYGn94683cYKCjR0FrZ+Ug246m1hS0dsbuE4ivdfs2bNm4ma2btnD3zl2mT5pKyNNnNGvZAoA5M2bxx8jflOWbfdGcZ0+eMmPyNO7eucvWTVvYunELbTq2U5ZZErCI4OMnePzwEffu3mPl0hXs3Lqdug3qqr1/bijXoDpn9h/jbNAxQh89Zdfi9USFReBfK2PM3H0rNrNx1hIANDQ1sXVxUPlnaGqMto42ti4O6OpnPHA5snkvQau30rh7O8xtLImNjCY2MprkxKRs4/hQ+2+eooJbUcq7+mFnYskXRathaWjCoTsZiZ0mhSvTqZT6cAQVXItwJ/wJT2LUx/mrVbA0jXwrsvT0LsLiozDRM8REzxBdrbzp4lm8TkWuHDzNlUOniXjynMMrtxMTHoVftYyxhY+t283e+WuV5c/tOcKdM1eIfBZG+KMQjq3bze3Tlylas5yyzJkdBzmxYS/VuzTH1Nqc+KgY4qNiSMnD72L39RNUcS9OJfdiOJhY0aZELSwNTQm6lfEg9Iui1fi6rPp4xJXdi3Mr7FGOrQ8ruxfnzKPrxCXnzfXuVZ/D+Xb39WAquxenkltR7E2saF28JpaGpsrZqVsUqUrXMurXu8puxbgd9jjL76KxbyUK27ljbWSGs5ktXUo1wMXcNk9nvN546RC1C5ahlldpnM1s+LpMY6yNzNl57TgAHf3r0a9y5iRqwQ+vUN61CPW9y2FnbImPrSvflGvC9ef3lS3Rgh9epb53eSq7F8PW2ILiDl60L1mH4AeX1RJ3uWHthSDqe5enXqFyuJjb0aN8c2yNLdhy5TAAX5dpzODqHZTlncxsqOVVCkdTa7xtCjC8ZmfcLBwICN6qLNO2eG38nQphb2KFi5ktLYtWp3bBMuy9eTLX4xd57++//8bd3R19fX1KlSrFwYPZtwBet24dderUwcbGBlNTUypUqMDOnTtVygQGBqKhoaH2LzEx9ycheknSwJ+h3377DVtbW8aOHcvt27cxNzfH39+f4cOHAxkzUQ4bNoy7d+9iYGBAlSpVWLFiBZAx7srOnTvp168fZcqUwdDQkJYtWzJp0qRcjVFLS4uVK1fSt29fihQpgre3N9OmTaN69erKMv369cPIyEg56L+fnx/jxo2jR48eVKxYUa0b7vtq3rw5U6dOZfz48fTt2xd3d3cCAgJUYnndggUL6N69OyVLlqRAgQKMGTMmx+RdVsaPH09sbCxNmzbFxMSEgQMHEhUVpVImICCA33//nYEDB/Lo0SOsrKyoUKECDRs2BCAtLY1evXrx8OFDTE1NqV+/PpMnT1ZZx59//km/fv24ceMGxYsXZ9OmTcrumMWKFePAgQP89NNPVKlSBYVCgaenJ23atFHWX7RoEd26daNq1arY29szduxYLl26pNLya8GCBXz99deULl0ab29v/vrrL+rWzfwh5OjoyOHDhxk6dCj16tUjKSkJV1dX6tevr5KAfF337t0JDAzMcTZfc3PzN3/YbzBlyhSKFSvGrFmz+OWXX9DQ0MDf358NGzbQpEkTlbIvu6AeOHBAZR/R0dGhQoUK7N27N8tk3PLly9XGhMtNnqX9SIpN4MzWf4mPjsXC0YZ6vdthYmUOQHxULLHhmQOMp6WmcWLtHuIiY9DW0cbc0YZ6vdriUjSzS25yfBKHlm4lPjoWXQM9rFzsaTyoC7bueddSoEqt6sREx7By4VLCw8JxdXdlxLjfsbXPeBgQERbO82fPVer079ZT+f83r93gwJ792NrbMW/VIgC2b9hCakoKf474XaVe26860v7rTrm+DftvncZM34jOpRpgZWTKnfAnDN36N89iM7rbWRmaqfyQ0NLQoE3xWriY25GansaZx9fptX4iT2NUu+c5m9lSzMGLgZun87Ek7dqHhq4OBu1aomFoQNqd+8ROmwOvTDaiaWmhNsaOpq0N2gU9iJ06O8v1ahjoo9+8EZrm5iji40k5c56EDdsgm65W7+v4/UsY6xrQ3K8a5gbGPIwKYcKBpYTFZ5xrzfWNsTLM7O548M459LX1qF2oDO1K1iU+OZHLIXdYeXaPsoyFgQl/NOih/LuRb0Ua+VbkyrO7jNm3MFfjfx8+Nq7MaJHZ5b1v5YxxALddOcof+Rxfrbq1iY6KZuG8AMJCw3D39GDclAnYO2S09g4LDePZ08zWVI5Ojvw1ZQLTJ09j/ep1WNlY029Qf6rXzDzHJiQmMmncRJ6HhKCnp0cBV1d+Hj2CWnVr58k2+FXwJyE2noPrdxIbGY2NswNtB3+HuU1Gl7PYyGiiwt5tUPZTew6RlprG2qkBKsurfFGPai0b5Frsrzr96DpGugbU9y6Pqb4RT6LDmHVkvfKHt5m+ERavdXPT19alhGNB1l4IynKdVdyLo6OlzTflVK+b264cZfvVo7m+DV5lipIYm8CpLUHERcVg6WhLo74dM697kTHEhmfeV6WnpnFk9U7iIqPR1tHBwtGGhn074lo0s/XvpaBg0lPT2DV7pcp7lW5SnTJNVceCzS3BD65gpGtAk8KVMNM35nHUc6YeXKWcvMdM3xir14Y+MNDRw9/ZmxVnd2e7XjtjSwrZuDDpwPI8ift1n8P59uTDqxjpGtDItxJm+kY8jg5l+qHVKt/F68NQGGjr4u/kzYpsxn8z1NWjk389TPWNSEhJ4kFkCOODlnE3Iu/G8Dt89zymeoa0KVELCwMT7kc85bc9gTyPiwTA0tAUG2NzZfl9N09hoK1HQ5+KdC3TiLjkRM4/ucWiVybTWHVuHwqFgg4l62JpaEZ0YhzBD66w9MxO8sKB22cw1TOkg389LA1NuRf+hJ93zFFOemFpaIqtUea9lKaGJi2L1sDZ3Ja09DTOPb5J/01TlfdeAPo6uvSp1AprIzOSUlN4EBXCuP1LOHD7jNr7f47eNOTUf8nKlSvp378/f//9N5UqVWLOnDk0aNCAy5cvU6CAeuvof//9lzp16jBmzBjMzc0JCAigSZMmHD9+XDmuPoCpqanaME2v93bKTRqKtxm8SgjxnxMUFESNGjWIiIjIlYTVSw8fPsTFxUU53mBeSkxMxNvbmxUrVqhMRPFfs3XrVgYPHsz58+dz7FqVlfH7l+RRVB/P4BodufaGbgWfOm87N6rN6pXfYXywA9/PJLLHgDcX/ISZz55Ep+V5l9j+WBa3G0mlmT3eXPATd7jXbJ7l0bhgH4udqTWLT/73Z8ztVLoBfdbn7sPTj216iwFM+Xflmwt+4vpXbcM3q8bmdxgfbF7rYf/58+3idiPpvkZ9zOL/mn++HErzwDdPZPcp2/DVn9Sd2z+/w/hgu76dkt8hvJegmzkMG5LPqnu9W6+bcuXK4e/vz6xZs5TLfH19ad68OWPHvt2518/PjzZt2jBixAggo2Vc//79VYZjymvSTVUIkaN9+/axadMm7ty5w5EjR2jbti1ubm5UrVo1z99bX1+fRYsWvdN4fJ+iuLg4AgIC3jkRJ4QQQgghhBCfs6SkJKKjo1X+JSVlPTxAcnIyp06dUumFBVC3bl2OHDnyVu+Xnp5OTEwMlq9NIBUbG4urqyvOzs40btxYZdz0vCDJOCFEjlJSUhg+fDh+fn60aNECGxsbgoKC1GbLzSvVqlVT6yr6X9O6dWvKlSv35oJCCCGEEEIIkcs0NTQ+2X9jx47FzMxM5V92LdxCQ0NJS0tTG8/ezs6Op0+fvtVnMXHiROLi4mjdOnPsRB8fHwIDA9m0aRPLly9HX1+fSpUqcePGjff/0N9AmmkI8ZmqXr262qxH76NevXrUq1cvFyISQgghhBBCCCEyDRs2jAEDVIdR0dPTy7HO62PgKRSKtxoXb/ny5fz6669s3LgRW1tb5fLy5ctTvnx55d+VKlXC39+f6dOnM23atLfZjHcmyTghhBBCCCGEEEII8dHp6em9Mfn2krW1NVpaWmqt4EJCQtRay71u5cqVdOvWjdWrV1O7ds4TPWlqalKmTJk8bRkn3VSFEEIIIYQQQgghPlMan/B/70JXV5dSpUqxe7fqbNK7d++mYsWK2dZbvnw5X331FcuWLaNRo0ZvfB+FQsHZs2dxcHB4p/jehbSME0IIIYQQQgghhBCfvAEDBtCpUydKly5NhQoV+Oeff7h//z49emTMUj9s2DAePXrEokWLgIxEXOfOnZk6dSrly5dXtqozMDDAzMwMgFGjRlG+fHkKFixIdHQ006ZN4+zZs8ycOTPPtkOScUIIIYQQQgghhBDik9emTRvCwsIYPXo0T548oUiRImzbtg1XV1cAnjx5wv3795Xl58yZQ2pqKr169aJXr17K5V26dCEwMBCAyMhIunfvztOnTzEzM6NkyZL8+++/lC1bNs+2Q5JxQgghhBBCCCGEEJ8pDY3Pa4Synj170rNnzyxfe5lgeykoKOiN65s8eTKTJ0/Ohcje3uf1jQghhBBCCCGEEEII8QmTZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExparzbrKUi70nLOCGEEEIIIYQQQgghPhJJxgkhhBBCCCGEEEII8ZFIN1UhhBBCCCGEEEKIz5SGdFP95EjLOCGEEEIIIYQQQgghPhJJxgkhhBBCCCGEEEII8ZFIN1UhhBBCCCGEEEKIz5Qm0k31UyMt44QQQgghhBBCCCGE+EgkGSeEEEIIIYQQQgghxEci3VSFEEIIIYQQQgghPlMym+qnR0OhUCjyOwghhBBCCCGEEEIIkftO3LuU3yFkq6yrX36HkC+kZZwQQnzCJgQtze8QPtig6h24+fxBfofxQbxsXIiJiMjvMD6YiYUFMdHR+R3GBzExNeXSk1v5HcYH83Pw5Fl0aH6H8cHsTK2pNLNHfofxQQ73ms2RO+fzO4wPVtG9GM9jwvM7jA9iY2JJ9Mp1+R3GBzNt8wXRO/bkdxgfzLR+bWKeP8/vMD6IiY0N0SfP5HcYH8y0dElCosPyO4wPYmtqxZ3QR/kdxgdzt3bK7xDEZ0KScUIIIYQQQgghhBCfKemm+umRCRyEEEIIIYQQQgghhPhIJBknhBBCCCGEEEIIIcRHIt1UhRBCCCGEEEIIIT5TmtJN9ZMjLeOEEEIIIYQQQgghhPhIJBknhBBCCCGEEEIIIcRHIt1UhRBCCCGEEEIIIT5TGkg31U+NtIwTQgghhBBCCCGEEOIjkWScEEIIIYQQQgghhBAfiXRTFUIIIYQQQgghhPhMyWyqnx5pGSeEEEIIIYQQQgghxEciyTghhBBCCCGEEEIIIT4S6aYqhBBCCCGEEEII8ZnSkG6qnxxpGSeEEEIIIYQQQgghxEciyTghhBBCCCGEEEIIIT4S6aYqhBBCCCGEEEII8ZmSbqqfHmkZJ4QQQgghhBBCCCHERyLJOCFeExQUhIaGBpGRkfkdSq5zc3NjypQp713/7t27aGhocPbs2VyLSQghhBBCCCGE+H8i3VTF/6UjR45QpUoV6tSpw44dO/I7HCFyxeWgYM7tOkpCVAwWjraUb10Xh4KuWZZ9fO0uWyctUlvealRPzO2t1ZbfCr7IvnnrcC3uTd2ebXI99pxsWbeRdctXEx4WRgE3N7r360mR4kWzLBseGsa8GbO5ee0Gjx8+oumXLejer2eex6hQKPhn3jzWb9xITEwMfoULM3TwYDw9PHKst3ffPmb/8w8PHz3C2cmJnj16UKN6deXrAQsXsj8oiLv37qGnp0exokXp06sXbq6Z3+ucuXPZtWcPz549Q0dHB19vb3r26EGRIkXeHPPcuaxfvz4jZj8/hg4Zgqen55tjnj2bhw8f4uzsTM/vv6dGjRoqZVavXs3iJUsIDQ3Fw8ODgQMGULJkycyY//mHXbt2Zcbs40PPnj2zjFmhUNCvXz+OHD3KhPHjadK0aY7xvW77hi1sXLGWiLBwXNxd+bp3dwoXy/qzCQ8LZ+Hfc7l1/SZPHj6m4RdN6dbnu2zXfWjvASb9No6ylcrz4x8j3imud7V+9TqWL1lGeGgYbh7u9BnQl+IlS2Rb/uypM8yYMp27t+9gZW1N+87tadayhfL1A/uCWBK4iEcPHpGamoqzizNtOrajXsP6ebodb6O4gxftS9bFx7YA1kbm/LhtFgfvnMvvsJT2bd7J9jUbiQyPxMnVmfY9ulKoiG+WZU8eOs7+rTu5f/suqSmpOBVwplnH1hQtXUJZ5sD2PRzec4BH9x4A4OblQcuu7fDwLphrMa9bvZbli5cS9mL/6Tewf477z5lTp5k+eVrG/mNjTYdOHWj+5RfK12/fus382XO5dvUqT588pe+AfrRu31ZlHevXrGPDmnU8efIEAHcPD7765msqVKqQa9sFGeeIufv3sv7UCWISEvBzdmFI42Z42tq9Vf1dF87x0+oVVPMpzIT2nZTL15w4xtrg4zyJjADAw8aWbtVrUamQd67Gr9yGHdtYf+QwMQnx+Lm6MeTL1ng6OGZbZ9+5swTu3smD0OekpqXhYmNDxxq1aFimXJblA3bv5O8tm2hbrQYDv/gy1+L+Z8EC1m/alHntGzDgzde+oCBmz5uXee379ltqVKuWddyLFzNzzhzatWrFwH79lMvnzJ/Prr17eRYSgo62dsa1r3t3ivj55cp2zV23hvX79hETF4uflxdDvvoaT2eXbOus37eXbYf+5daDhwD4uLvTq01b/Dy9Mrdl4wb2nzzBvceP0dPVpVjBQvRu2x43x+y/57exfvVali9Zpjy++w7o94bj+wwzpkx75frQgeavXB/u3LrN/DnzlMd3nx/60bq96r1ffFwc82bP5d+gA0RERFCoUCH6DuyPr1/h996Ozes2smbZSsLDwnB1d6NH314UKVEs2/Lnz5zjn+l/c+/OXaysrWnVvg2NWqjeI6xfuYYt6zfx/FkIpuZmVKlela49vkVXTxeAC2fPsWbZSm5cvUF4WBgjxo6mYtXK770NnzJNpJvqp0Zaxon/SwsWLKBPnz4cOnSI+/fv53c4IhekpKTkdwj56lbwJY6u2knJhpVp8XN37L0KsGP6MmLDo3Ks12p0Lzr8NUD5z9TWUq1MTFgkx9fsxt6rQF6Fn61/9+5n7rRZtOncnmkLZlOkeFFGDhpGyNNnWZZPSUnBzNycNp3b4+6V84+B3LRw8WKWLV/OkIEDWbhgAVZWVvTq25e4uLhs65y/cIHhv/xCwwYNWL54MQ0bNODHn37i4sWLyjKnz5yhVcuWBMybx8xp00hLS6N3v34kJCQoy7gWKMCQgQNZsXQp8+bMwcHBgV79+hEREZFzzIsWsWzZMoYMHszCwMCMmHv3zjnm8+cZPnx4RszLlmXEPGyYSsy7du1i4qRJfN21K0uXLKFkiRL07dePp0+fqsY8eDArli9n3ty5ODg60qt37yxjXrZ8ObznOCeH9h0gYMY/tOzYhonzpuNb1I/fh4zg+bOQLMunJqdgam5Gy45tcfN0z3HdIU+fEThrHoWLffgPvzfZu2sP0ydNpXPXzsxbEkCxEsUY0m8Qz175TF/1+NFjhvQfRLESxZi3JIBOXTsxdcIUgvbtV5YxNTOlU9cu/L1gDgHLF9KgSSP+HD2GE0eP5/n2vImBjh43wx4y6d8V+R2KmuMHDrNsTgCN27Zk1My/KFTEl0k//0FYyPMsy1+/eBk//+L8MHo4I6ePw6d4Eab++if3bt5Rlrl6/hLlq1dm6LiR/Dz5DyxtrZkw/HciQsNyJea9u/YwbeIUOn/9FQuWLqR4yeIM6jtA5Zh81eNHjxncbyDFSxZnwdKFdO7ahSkTJhO0N3P/SUpMxNHZkR69e2JlZZXlemxsbejRuyfzFgUwb1EA/qVLMWzgEG7fup0r2/XSokP/suzoIQY3akrgd72wMjah98L5xCUlvbHuk8gIpu7cRklXN7XXbE3N6F2nHgu/68XC73pR2sOTQcsXcysk6+vPB23D3t0s27+PwV+2JnDAEKxMTOn99wziEhOzrWNmaEjXOvVY0H8Qy4cOp0nZCoxetoSjVy6rlb107x4bjhymoKNTrsa9cOlSlq1cyZABA1g4b17GdeSHH4iLj8+2zvmLFxk+ciQN69VjeWAgDevV48cRI7h46ZJ63FeusH7TJgpm8ZDI1cWFIT/8wIqFC5n3998Z174BA9547Xsbi7ZsYtm2bQz+qiuBv43Bysyc3mPHEPfKtfd1p65cpm6FSsz66RcWjBqNvbU1vf8cQ0h4uLLM6atXaFW7LgtG/caMH38iLS2NPn+OISGH7/lN9u7aw7RJU+nUtQvzlwRSvERxBvcb+Ibrw0CKlyjO/CWBdOramakTJqtcHxITE3FwcuS73t9jmc3xPe73Pwk+HszPo0awcPkSypQvyw+9+vE8m3PhmxzYs585U2fStnMHZgb8Q5FiRfl50I/Z3u89ffyEXwYNo0ixoswM+Ic2ndoza8oMDu3/V1lm3849LJg9l45fd+GfZYH88OMgDuwNImD23MxtTUjE3cuTngP6vFfcQnwIScaJ/ztxcXGsWrWK77//nsaNGxMYGPjGOocPH6ZatWoYGhpiYWFBvXr1lBf7HTt2ULlyZczNzbGysqJx48bcunVLWfdl185169ZRo0YNDA0NKV68OEePHn3r91AoFPz11194eHhgYGBA8eLFWbNmTY4xh4SE0KRJEwwMDHB3d2fp0qVqZaKioujevTu2traYmppSs2ZNzp17+9YHaWlpdOvWDXd3dwwMDPD29mbq1Km5UicgIABfX1/09fXx8fHh77//Vr728jNdtWoV1atXR19fnyVLlpCens7o0aNxdnZGT0+PEiVKqLR8fJvvIiwsjHbt2uHs7IyhoSFFixZl+fLlytfnzJmDk5MT6enpKvE2bdqULl26KP/evHkzpUqVQl9fHw8PD0aNGkVqaupbf7bv6sKeo3hXKolPZX8sHGyo0KYexhZmXD5wMsd6BiZGGJoZK/9paqpeFtLT09k/fz3+TapjYmORZ/FnZ/2KtdRtXJ96TRpSwM2V7v16Ym1ry7YNm7Msb+dgz3f9e1GrQV2MjIw+SowKhYLlK1fS9auvqFmjBl6enowaMYLExER27NqVbb3lK1ZQrkwZunbpgpubG127dKFsmTIsW7lSWWb6lCk0adwYTw8PChUsyMiff+bp06dcuXpVWaZ+vXqUK1sWZycnPD08+KF/f+Li4rhx82bOMS9fTteuXalZsyZeXl6M+vXXjJh37sw+5uXLKVe2LF27ds2IuWvXjJhfOUaWLltGs2bNaN68Oe7u7gwcOBA7OzuVc1b9+vUpV64czs7OeHp6ZsZ844bK+12/fp1lS5cy4pdfso0pJ5tXr6dWw7rUaVwfZ9cCdOvzHVa2NuzcuDXL8rYOdnTr04Ma9WphmMP+k5aWxpTfx9O2a0fsHBzeK7Z3sWrZSho1a0zj5k1xc3ej78D+2NjZsmHN+izLb1y3AVt7O/oO7I+buxuNmzelYdNGrFyS+T2VLOVP1RrVcHN3w8nZmVbtWuPh5cn5s/nfAu3Y/UvMPb6JA7fP5ncoanat20LVejWp1qAWjgUyWsVZ2lizb0vWx3r7Hl1p2KoZHt5e2Ds58GXX9tg5OnD2eOa5+buh/ajZpB4FPN1xcHGia7/vUCgUXD57Mct1vqsVS5fTuFkTmrzYf/oN/AFbO1s2rFmXZfkNa9djZ29Hv4E/4ObuRpPmTWnUtDHLlyxTlvH1K0yvfn2oXa8OOro6Wa6nctUqVKhckQKuBSjgWoDvevXAwNCAyxdyZ7vgxbns6GG6Vq1BzcJF8LKz59cvWpGYksLO82dzrJuWns4va1bSvUZtHC3UH0RV9fGlUiEfXK1tcLW2oWftehjq6nLxQe4+xFUoFCw/sJ+udetRs3gJvBwd+bVjJxJTktl5KjjbeqUKFqJG8RK429vjbG1Du+o18HJ04uztWyrl4pMSGbE4kOFt22NiaJi7ca9eTdfOnalZrRpeHh6M+uknEpOScr72rVpFudKl6dqpE26urnTt1ImypUqxbNUq1bjj4/ll1Ch+GjIEExMTtfXUr1uXcmXKZF77+vTJuI7cuqVW9p23a8d2ujZvTs0yZfFyceHXHj1JTE5i55HD2db7vVcfWtWpi7ebG26OTvz0TXcU6QqCL2Xu79OHDqNJtep4OrtQyNWVEd99z9OwUK7cuZPtet9k5bIVNHrl+O47sD+2drasz/b6kHF8v7w+vDy+V6gd372pXbcOulkc30mJSRzYH8T3fXtSwr8kzi7OfN39GxwcHdmwNuvzypusW7maeo0b0KBpIwq4udKjf29sbG3Zsn5TluW3btiMrZ0tPfr3poCbKw2aNqJuowasWZ65H125eAm/okWoUbcW9g72lCpXhup1anL96nVlmTIVyvFV925Url71veIW4kNIMk7831m5ciXe3t54e3vTsWNHAgICUCgU2ZY/e/YstWrVws/Pj6NHj3Lo0CGaNGlCWloakJHcGzBgAMHBwezduxdNTU1atGihlqz56aefGDRoEGfPnqVQoUK0a9dOmZx503v8/PPPBAQEMGvWLC5dusQPP/xAx44dOXDgQLZxf/XVV9y9e5d9+/axZs0a/v77b0JCMluDKBQKGjVqxNOnT9m2bRunTp3C39+fWrVqEf7KU7ycpKen4+zszKpVq7h8+TIjRoxg+PDhrHrthupd68ydO5effvqJP/74gytXrjBmzBh++eUXFi5cqLKuoUOH0rdvX65cuUK9evWYOnUqEydOZMKECZw/f5569erRtGlTtR/4OX0XiYmJlCpVii1btnDx4kW6d+9Op06dOH48o7VIq1atCA0NZf/+zCeIERER7Ny5kw4dOgCwc+dOOnbsSN++fbl8+TJz5swhMDCQP/74460+13eVlppG6P0nOBVWfXLsVNiDZ7ce5Fh33e//sGTwJLZOWsTja+o3g2e2/Iu+iSE+lUtmUTtvpaSkcPP6dUqWKa2y3L9MKa5cVH/yn18ePX5MWFgY5ctldg3S1dXFv2RJzl+4kG298xcvUq6canei8uXK5VgnNjYWAFNT0yxfT0lJYf2GDRgbG1OoYPZd3B49epQRc/nyqjH7+3P+/PnsY75wgXKv1AEoX6GCsk5KSgpXr15V+SyU25XNelNSUli/fn1GzIUKKZcnJiby088/M3jIEKyt1btOv0lKSgq3rt2keBl/leUlypTk6qUr77y+V61etBxTczNqN6r3Qet5GykpKVy/eo0y5cqqLC9TriwXz2ed1Lh04aJa+bLly3H18tUsHwooFApOnTjJg3v3Ke5fItdi/9ykpqRw98Zt/PyLqyz38y/GrSvX3mod6enpJCYkYGRinG2ZpKRk0lJTcyzztpT7T/nX9p/y5bh4PutzzaULFylTXvUYLluhHFcvX3nvh0ppaWns2bmbxIRE/IplPczA+3gUEUFYbAzlvTLPd7ra2vi7uXP+wb0c684L2ouFkRHNSpV54/ukpaez68I5EpKTKeqSu63EH4WFERYdTXmfzK7Outo6+Ht6cf4tkzQKhYIT165yL+QZ/q90iwT4a/UqKhX2o5y3T+7G/fLaVzZz39LV1cW/RAnOX8w+4Xr+4kXKlVXdH8uXK6dWZ9ykSVSqWJFyZd78/aSkpLB+48aM64iX1xvL5+TR8xDCIiMpXzSze6Sujg7+Pr6cv3E9h5qqEpOSSE1LxTSHBzuxL1oQmhq/37H+8vgum+X1IYfj+x2uD1lJS0slLS0NXV09leV6+rqcP5v9PUR2UlJSuHHtOv5lX7vfK1uaKxfVW0xCRqLt9fKlypXmxtVryu3wK16UG9euc+1yxjX/yaPHBB89TtmKWXfl/txpaGh8sv/+X8mYceL/zvz58+nYsSOQ0TojNjaWvXv3Urt27SzL//XXX5QuXVqlZZbfK+NRtGzZUm39tra2XL58WWX8o0GDBtGoUSMARo0ahZ+fHzdv3sTHxyfH94iLi2PSpEns27ePChUyxlnx8PDg0KFDzJkzh2pZjLFx/fp1tm/fzrFjx5Q/9ufPn4+vb+aN3v79+7lw4QIhISHo6WVcTCdMmMCGDRtYs2YN3bt3f9NHiY6ODqNGjVL+7e7uzpEjR1i1ahWtW7d+7zq//fYbEydO5IsvvlCWeZnUerX1Wf/+/ZVlXsY/dOhQ2rbNGLdm3Lhx7N+/nylTpjBz5kxluZy+CycnJwYNGqQs26dPH3bs2MHq1aspV64clpaW1K9fn2XLllGrVi0gY3wsS0tL5d9//PEHP/74ozJWDw8PfvvtN4YMGcLIkSPf+Lm+q8TYeBTpCgxNVW/4DEyMSIjOusuhoZkxVTo2xtrVgbSUVG4cv8DWyYtpPKALDoUyxiN7evM+1w6f4Ytfsh8zKy9FR0WRnpaOuaVqizxzSwsiwt4uYfwxhIVldCWzslRtWWFlacmTbLqJvKyXVZ2X63udQqFg0tSplCheHK/XuuwcPHSI4b/8QmJiItbW1sycNg1zc/OPHnNkZCRpaWlYvlbG0sqK0Ne26+DBgwz/6afMmGfMUIl54qRJFCtWjOrZjCP0JjFR0aSnp2NuYa6y3MzCgsjw9+/GdOXCJfZs3cmkeTPeex3vIurFZ2qh9plaEJ7NvhIeFo6llepxY2FpSVpaGpGRkcrkZmxsLC0bNic5ORktLS1+GDpQ7UeayBQTHUN6ejqmavuUORfDI99qHTvXbiYpMYmyVStmW2bNgqVYWFniV/LDk1ZR2R2TlhaEhWZ9Hg0LC6Pca+ddyyz2n7dx6+ZNenTtTnJyMgYGBowZ/yfuHjl3AX8XYbExGfEZqSYzLI2MeZrDRFzn7t1l0+mTLP2+b47rv/nsKV/PnUVyaioGurqMb9cRj7cci+5thcVEA2D5WusvSxNTnkbkfK2LTUig4YjhJKemoqWpydBWbSj3SlJv1+mTXH34gIUDh+RqzABhLx7cql0TLCx48iz7rrxh4eFYWajuX1YWFsr1Aezcs4er16+zaO7c16urOHj4MMNftOq2trJi5uTJOV773kbYi/3G0sxMZbmlmRlPQ0Pfej0zVizHxtKSskWyPo4VCgWTly6mhLc3Xi7Zj0WXk+yuDxZWloRnc58UFhZOWavXyr/j8W1oZESRokVYOD8AN3dXLCwt2bNzN5cvXsb5PbYlOjLjfs/itfOOhYVFttsRER6BhcXr1zkL0tLSiIqMwsraiuq1axIVEcnA7/uhUChIS0ujcYumtOnU/p1jFCIvSDJO/F+5du0aJ06cYN26jCbU2tratGnThgULFmSbjDt79iytWrXKdp23bt3il19+4dixY4SGhipbxN2/f18lGVesWOYTNocX3ZpCQkLw8fHJ8T0uX75MYmIiderUUVmenJysMiD6q65cuYK2tjalS2c+MfLx8VG5QTl16hSxsbFqY70kJCSodLN9k9mzZzNv3jzu3btHQkICycnJlChR4r3rPH/+nAcPHtCtWze+/fZbZZ3U1FTMXrsxenX7oqOjefz4MZUqVVIpU6lSJbWutzl9F2lpafz555+sXLmSR48ekZSURFJSkkqXxw4dOtC9e3f+/vtv9PT0WLp0KW3btkVLSwvI+GyDg4NVWsKlpaWRmJhIfHw8hll0E3n5Pq96mSTNC+b21ioTNdh5uhAXHsX53UdxKORKcmIS+xdsoEqnxugb5163lvfx+hMzhUKRr0/Rtu/YwZhx45R/T5k4EXjPON+hzl8TJnDz5k3m/fOP2mulS5Vi2aJFREZFsX7jRob99BOB8+crf4C/jFlDQwOFQsGUyZOzjznniN8q5rf5LEqXLs2ypUuJjIxk/YYNDBs+nMCAACwtLTlw4AAnT55k6ZIlb4rmjdQ+T4UCjfccxDghPp6pf0yg5+C+mJqbvblCLlL/TLPYtlfLq22jQm25oaEh85cGkhAfz6ngU8ycPB1HJ0dKlvJHZE/tk834Mt5Y79j+Q2xYspq+I4dku/9sW72R40GHGPrXKHR0dXMh2gxZ7z/vUl59/3kbBVxdCVi2kNiYWIL27eePX39j+j9/v3dCbvu5M4zdvEH59+QOXV7Eq1pOkRFsluKSkhixdhXDm36B+RuGM3C1smbp932ISUxk3+WL/LpuDXO+/vaDEnLbT55g7MrMLuOTv8uYZOj1z1ZB9r02XjLU02PpkGHEJyURfP0akzesw8nKmlIFC/E0IoKJa9cwvWdv9HSy7kr8TnHv2sWY8eOVf0/5668XcatSZLFMzev7F5n73NNnz5g4dSozJk16431QaX9/lgUEZFxHNm9m2IgRBP7zD5avJWlysv3wIcbOz0z6TR48NCPE178PhXrc2Vm0eRO7jh5m9s8j0MvmOP4rMICb9+8xd8SoLF9/F2phKRQ5H9/Z7Gvvcnz/PHoEY0ePoUXDZmhpaVHIuxC169Xh+rW3bz2oHph6XDneR2VxXstYnLH83OmzrFi0lF4D++Hj58vjh4+YPXUmFgGL6dC10+trE+Kjk2Sc+L8yf/58UlNTcXLKHMBWoVCgo6NDRIT6ExYAAwODHNfZpEkTXFxcmDt3Lo6OjqSnp1OkSBGSk5NVyum8ciP08iLxMnGX03u8LLN161aVuCH7ZI3ypjmHC1h6ejoODg4EBQWpvfa2TxVXrVrFDz/8wMSJE6lQoQImJiaMHz9e2aXzfeq83N65c+eqdeF7mex6Kasxwd4mCZDTdzFx4kQmT57MlClTKFq0KEZGRvTv31/l+2zSpAnp6els3bqVMmXKcPDgQSZNmqR8PT09nVGjRqm02ntJX18/y89l7NixKi0GAUaOHIlx9TfPpqdvbIiGpgbxr7WCS4iJw8D07cdNs/Vw5ubxjG4NMc8jiA2LZOfMzAHUX+5X877/jdaje2Fqoz7GTm4yNTNDU0tTrRVcVESkWmu5j6lqlSoqs7Ulv5g8JDQsTOWJcnhEhFprlFdZWVmptYLLrs5fEybw78GD/DN7Nna2tmqvGxgY4OLigouLC0WLFKHFl1+ycfNmur5onfkyZiMzM+JiY5X7c5YxZzNY89vEbG5ujpaWllqZiPBwtdYTKjEXLUqLL75g48aNdO3alZMnT/Lw4UNq1KypUmfI0KGsWr2aH//6NdsYXzIxM0VTU5OI11rBRUVGYmZp/sb6WXn66AkhT58xZljmsfryuPiyZmNmLJ6LvVPujiFn9uIzfb0VXER4hFpriJcsrSwJe+24iQiPQEtLC7NXkkCampo4uzgDUNC7EPfu3mVJ4GJJxmXDxNQETU1NoiIiVZZHR0ZhZpFzcvb4gcMETJlFz+ED8PPPenbA7Ws2sWXFOgaPHYGLR9YzYb8rs+yOyYgILK2y3n8yjvNwtfKv7z9vQ0dHR9lSxqewL1cuX2H18pUM+enHd1rPS1V9ClPklRktk18M5xEWG4u1SWb3/Yi4WKyy6fr3MDyMx5ERDFyWOaN4+ovjuPyvP7Gm7wCcLTPOgzra2rhYZZwjCzs5c/nRQ1YcO8Lwpi3UV/y221CkGEVemTAi+UWXurCYaKxfeegYERODlUnWQxK8pKmpiYtNxjXB29mFu8+eEbhnF6UKFuLqg/uEx8bQeULmw6O09HTO3LrJ6oMHODxxKlqvjRObY9yVK1OkcOZMmcrrSHj4u137LC1VWsEp67y4B7967RrhERF0+uabzLjT0jhz7hyr1q3jyL59yvtBAwMDXJydcXF2zrj2tW3Lxi1b6Nrp7RMtVf1LUeSVrr3JqRnX9LCoSKxf+V0QER2Fldmb9//FWzcTsGkDM4f9RMECWR/H4xcG8O/pk/zzy6/Y5XDNfZPM64P6+T6764OVlaXa9SQyi+vDmzg5OzPjn79JSEggLi4Oa2trRg77BQfHd78Gmppnfb8XGRGp1lruJQtLCyLCXy+fsR2mZhnHzaK5AdSsV4cGTTN6w7h7epCYmMi0cZNo16WD2jjJnzvN/+PuoJ8qScaJ/xupqaksWrSIiRMnUrduXZXXWrZsydKlS+ndu7davWLFirF37161RAlkdOW4cuUKc+bMoUqVKgAcOnTonWPL6T0KFy6Mnp4e9+/fz7JLalZ8fX1JTU3l5MmTlH0xLse1a9eIfKXLhr+/P0+fPkVbWxs3N7d3jhkyuplVrFiRnj17Kpe9qVXdm+rY2dnh5OTE7du3lWOwvQ1TU1McHR05dOgQVatmDsJ65MgR5WfwNg4ePEizZs2UXZnT09O5ceOGShdfAwMDvvjiC5YuXcrNmzcpVKgQpUqVUr7u7+/PtWvX8HqHcUuGDRvGgAEDVJbp6ekx/WjOE3UAaGlrYV3AgUdXbuNeMnNMmEdXbuNa3PutYwh78BQDs4wfL2b21rQc0UPl9ZMb95OSmESFNvUxesMPz9ygo6ODV6FCnAk+RcVqmdPMnzl5ivKVs+/ildeMjIxUEsEKhQIrKyuOnziBj3fG552SksLpM2fo06tXtuspVqQIx0+coEO7dsplx48fp1jRzC4tCoWCvyZOJOjAAebMnImTo+NbxagAlQTyy5hNLCyIiY7OjPn4cdWYT5+mT5/sZxQrVrQox48fp0P7zC4ex48dU7Y21dHRwcfHh+PHj1OjRo3MMidOUO2V4zLLmBUKZWKzS5cuNGvWTOX1tu3aMeCHH6jfoAHRJGe1ChU6Ojp4entx7uQZylfJ3F/OnTxD2Urlc6iZPacCLkxe8LfKsuXzF5GQkMDXvb/Dyvbdx7Z7Ex0dHQr5eHPyeDBVa2ReA06eCKZy1cpZ1vErWoQjB1UHGg8+fgKfwj5oa2d/66dQQEry//fM1DnR1tHBraAHl86cp1SlzIdFl8+cp0T57Me1Orb/EAsm/02PH/tTvFypLMtsX72RzcvXMvCPn3EvpD5z5Pt6uf8EHw+mWo3qyuUnj5+gcrUqWdbJ2H9U72WCj53Ap7BvjvvPW1EoPmj2cyM9PYxeeRCpUCiwMjbh+M0beDtknB9TUlM5ffcOferUz3IdbtY2LO/VT2XZ7L27iUtKYmDDxtiZZn99Uygyk2fvvQ36+hi98mBOoVBgZWrK8WtX8X6RaExJTeX0rZv0adIsu9VkE59CGV+ZQt4sH/qTyuujly3Gzc6OzrXqvlMiDsDI0BCjV1r2K68jwcH4vBjvMyUlhdNnz9KnR4/sVpNx7QsOpkObNsplx0+coNiL3iRlSpdmxaJFKnVGjxmDq6srXTp0UHsw+yqFQqH2MPyN22VggNErD8UVCgVW5uYcv3ABb7eMFpwpqamcvnqFPm1z7t64eMtm5m9Yx/ShwynsoX4cKxQKxi8MIOhkMLN/HoFTFg/X3kXm8X1C5foQfCKYylWzP74Pv3Z9OPEW14fsGBgYYGBgQEx0NCeOHef7Pj3fXOk1Ojo6FPTOuN+r9Mp56Uxw9vd7vkX8OH5YdTK80ydOUtDHW7kdSUmJagk3TU1NFApFjuOFC/GxSDJO/N/YsmULERERdOvWTa2745dffsn8+fOzTMYNGzaMokWL0rNnT3r06IGuri779++nVatWWFpaYmVlxT///IODgwP379/nxx/f/WlvTu9hbW3NoEGD+OGHH0hPT6dy5cpER0dz5MgRjI2NVcZQe8nb25v69evz7bff8s8//6CtrU3//v1VWuDVrl2bChUq0Lx5c8aNG4e3tzePHz9m27ZtNG/eXKULaHa8vLxYtGgRO3fuxN3dncWLFxMcHIy7e/bdT96mzq+//krfvn0xNTWlQYMGJCUlcfLkSSIiItQSVq8aPHgwI0eOxNPTkxIlShAQEMDZs2eznEk2p/jWrl3LkSNHsLCwYNKkSTx9+lQlGQcZXVWbNGnCpUuXlIm7l0aMGEHjxo1xcXGhVatWaGpqcv78eS5cuMDvv/+e5fvq6el9ULfUorUrEBSwHhtXB2w9nLl68DSx4VH4Vs344Xdi/V7iImOo0bU5ABf2HMPE2hwLBxvS0tK4efwCd05fofZ3Gd2ltXW0sXRSvUnUNcz48fD68rzUom1LJv42joI+hfApUpgdm7by/FkIDZs3ASBw9jzCnocy8JfM4+7WjYxZRBMSEomKjOTWjZvoaOtQwD13Wpq8TkNDg3Zt2hCwcCEFXrT0Cli4EH19feq/kvgfMWoUtjY29H6RiG7bpg3dv/+ewEWLqF61KkH//svx4GDmz5mjrDNu/Hh27NrFxL/+wtDISDnumrGREfr6+iQkJLAgMJCqVapgbWVFVFQUq9euJSQkhNovxjDMNuZ27QgICMiMOTAwI+Z6mZMSjBg5MiPmF+fGtm3b0v277whcuJDq1aoRdOAAx0+cYP68eco6Hdq3Z8TIkfgWLkyxokVZt349T58+VY6vmZCQwIIFC6hatSrW1tYZMa9ZoxKztbV1luPW2Nvb4+LiwqUnb9eVvkmrFkwbMxEv74J4+/mwa/MOQp89p27ThgAs+SeAsNAw+g3PHCfyzo2MdScmJBAdFcWdG7fQ1tHBxa0Aunq6uHq4qbyH0YvWN68vz02t27fhj5G/4V3YB7+iRdi8fiMhT5/RrGVG65w5M2YR+jyUn0ZlzDrb7IvmrF+1lhmTp9G4eVMuXbjI1o1bGPHHr8p1LglYhHfhjHEyU1JTOXb4KDu3bmfgj4OyCuGjMtDRw9nMRvm3o6k1Ba2diU6M41ns+4/3lxvqftGYueOn41bQEy/fQhzYvoewkFBqNMo41lcvWEpkWDjfDs5Iah/bf4h5E2bQvkdXPH0KEvWipaaOnq5yxt5tqzeyftEKvhvaD2s7G2UZPQN99N/QOv9ttO3Qjt9GjMLH14cixYqyad0Gnj19RvMX+8/sGX/zPOQ5v4zOGNO0ecsWrFu1humTptKkRTMunr/Alo2b+fWP0cp1pqSkcPf2nRf/n8rz58+5ce06BoYGypZwc2bOonzFCtja2REfH8eenXs4c+oME6dN/uBteklDQ4N2FSoRcDAIFytrXKysCPw3CH0dHeoVK6EsN3LtKmxMTeldpz56Ojp42dmrrMf4RXLs1eUzd++kYsFC2JmZE5+cxK4L5zh99zbTOnXNtfiV21CtBgG7d+JibYOLjS2Bu3eir6NLvVcmlxi5ZCE2Zub0fpGgC9i9k8IuBXCytiE1LZXDly+xNfg4P7bOGDfXSF8fr9ce4Bjo6WFmZKy2/L3jbtWKgMWLKeDsnHEdWbQIfT091Wvfb79lXEdeJOjatmpF9969CVyyhOpVqhB08CDHT55k/otxk40MDfHy8FB5L319fcxNTZXLExISWLBoEVUrVcq8jqxfT8jz59R+5UHQe29X/QYEbNqAi709LvYOBG5cj76uHvUqZg6FMnLWTGwsLOndNuOB2qLNm5i9ZhW/9+qDg40NoS8egBvq62P4Yv8aF7iAnUcOM2HAIAz1DZRljA0N0X/Pbult2rfl95Gj8Snsi1/RImx6cX1o3rI5ALNnzCL0+XN+HjUCgGZftGDdqrVMnzyVJs2bvbg+bGbkH5kNArI/vg2VramPHz0GCnBxLcCjhw/5e+pMXFwL0LBp4/faji/atGL8b2Mp6OONb5HCbN+4hZBnz2jUIuN+b8GsuYSFhjL4l2EANGrehE1rNzBn2t80aNqIKxcvs3PLdn789WflOstVqsD6FWvwLOSFT+GMbqqL5gZQvnJFZVI3IT6Bxw8fKes8ffyEW9dvYmJqgq197o4PKcTrJBkn/m/Mnz+f2rVrqyXiIKNl3JgxYzh9+rTaa4UKFWLXrl0MHz6csmXLYmBgQLly5WjXrh2ampqsWLGCvn37UqRIEby9vZk2bRrVq1d/p9hyeg/ImNDA1taWsWPHcvv2bczNzfH392f48OHZrjMgIIBvvvmGatWqYWdnx++//84vv/yifF1DQ4Nt27bx008/8fXXX/P8+XPs7e2pWrUqdnZvd/Hp0aMHZ8+epU2bNsof9z179mT79u0fVOebb77B0NCQ8ePHM2TIEIyMjChatCj9+/fPMZ6+ffsSHR3NwIEDCQkJoXDhwmzatImCOcwq+bpffvmFO3fuUK9ePQwNDenevTvNmzcnKipKpVzNmjWxtLTk2rVrtG+v+qS0Xr16bNmyhdGjR/PXX38pWwt980qXi9zmWcaPpLh4Tm/9l/ioWCwdbanfuz0mVuYAxEfFEheeuQ3paWkcX7ObuMgYtHW0MXe0oV7vdhQo+vaf1cdQtVYNoqOiWR64hPCwcFzd3Rg1fozyBik8LJznz0JU6vTtmvlE/ua16wTt3oetvR0Ba94+KfuuunTqRFJSEn+OH09MTAxF/PyYMXWqSgu6p0+fqnQRKF6sGH/89huz5sxh9j//4OzkxNjff1cZa3LNi/Etv+up+qR55M8/06RxYzQ1Nbl79y5btm0jMjISMzMzCvv6Mnf2bDxf+zGjFnPnzhkxjxuXGfP06TnHXLw4f/zxB7NmzWL27Nk4OzszdswYlZjr1q1LVFQU8+bNIzQ0FE9PT6ZOmaIcn1EZ89atmTEXLszcf/7B0zP3WgQBVK5ZjZjoGFYtXEZEeDgF3N34adwo5f4TERZB6LPnKnUGfpvZMvDW9Zsc3BOEjZ0tc1YG5mps76JW3dpER0WzcF5G8tDd04NxUyZg75CROAgLDePZ08wB0x2dHPlrygSmT57G+tXrsLKxpt+g/lSvmfkjNSExkUnjJvL8xSQ+BVxd+Xn0CGrVzXr81I/Jx8aVGS0yH7z0rZzxkGDblaP8sW9hdtU+inLVKhEXHcumpWuIiojAydWFH34bjrVdRvIwKjyCsJDMQd6Dtu0mLS2NxTPnsXhmZtK6Uu1qfDMoI8m9b/NOUlNSmfn7RJX3atahFc07ZT0Z0ruoVbc2UVFRBM5boNx/xk+diP2LYzKr/Wf81IlMnzSVdavXYm1jTf9BP1C9Vub+E/o8lK4dMh8GLl+8jOWLl1HCvyQz/slIqoSHhfPbiFGEhYZhZGyMZ0FPJk6brDaz64fqXLkqSSkpjNuykZjEBPycXJje+WuVFnRPoyLfeazR8LhYRq5bRWhMDMb6+njZ2TOtU1fKeeX+dbJzrToZ27BmJTHx8fi5ujH9+94qLeieRkSobENicjLjVq8kJCoSPR0dXG3tGN3pK+r6Z936Mi906dAh4zoyaVLGdaRwYWZMnqzSgu7ps2cqrZOKFy3KH7/+yqy5c5k9b17GtW/0aJXhH95EU1OTu/fusWX7diKjojAzNc249s2c+cZr39vo3LgpScnJjAtcQExcHH6eXkz/cbhKC7qnYaEq38eaPbtISU1l6FTVZPO3X7Ske8uMc9jaPbsB6PH7aJUyI7r3oEm16u8Va8b1QfX4/mvKhByP77+mTGT65KmsX70Oaxtr+g36QeX6EPo8lK87fqX8e8WSZaxYknF8T5+TMSFaXGwcc2bO4nnIc0xMTaleszrf9vzuvVvPVqtdg+joaJYGLCIiLBxXDzd+mzAWO/uM61x4WDghr9zv2Ts68NuEscyZNpMt6zZiaW3F9/17U7lGZiv89l06oaGhwcJ/FhD2PBQzC3PKVarAV927Kctcv3qNoX0yrzf/TJ8FQO0G9Rj089D32pZP1f/zrKWfKg2FtNEUQohP1oSgvEsgfSyDqnfg5vMH+R3GB/GycSEmIn9b5OSGl91U/8tMTE3fumXcp8zPwZNn0W8/M9+nys7Umkozs++S9l9wuNdsjtw5n99hfLCK7sV4HvPpzDT9PmxMLIleuS6/w/hgpm2+IHrHnvwO44OZ1q9NzPPnby74CTOxsSH65Jn8DuODmZYuSUh01jNo/1fYmlpxJ/TRmwt+4tytnd5c6BN09dmd/A4hWz52uTfL9n/J/9eohUIIIYQQQgghhBBC5CPppiqEEEIIIYQQQgjxmdJAuql+aqRlnBBCCCGEEEIIIYQQH4kk44QQQgghhBBCCCGE+Eikm6oQQgghhBBCCCHEZ0pTQ9phfWrkGxFCCCGEEEIIIYQQ4iORZJwQQgghhBBCCCGEEB+JdFMVQgghhBBCCCGE+ExpaMhsqp8aaRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0pRuqp8caRknhBBCCCGEEEIIIcRHIsk4IYQQQgghhBBCCCE+EummKoQQQgghhBBCCPGZ0kC6qX5qpGWcEEIIIYQQQgghhBAfiSTjhBBCCCGEEEIIIYT4SKSbqhBCCCGEEEIIIcRnSkNmU/3kSMs4IYQQQgghhBBCCCE+EknGCSGEEEIIIYQQQgjxkUg3VSGEEEIIIYQQQojPlKZ0U/3kaCgUCkV+ByGEEEIIIYQQQgghct/98Cf5HUK2Clg65HcI+UJaxgkhxCdsUfC2/A7hg3Uu05CQ6LD8DuOD2JpasfLM7vwO44O1KVmHqMUr8zuMD2LWqQ3LTu/M7zA+WHv/eiw+uT2/w/hgnUo34Mid8/kdxgep6F6MSjN75HcYH+xwr9msOrsnv8P4IK1L1Cbm/oP8DuODmRRw4dyj6/kdxgcr7lSICUFL8zuMDzKoegf2Xg/O7zA+WK1CZf7z1772/vX4+8ja/A7jg/Ws2DK/QxCfCUnGCSGEEEIIIYQQQnymZDbVT49M4CCEEEIIIYQQQgghxEfyQS3jTp06xZUrV9DQ0MDX1xd/f//ciksIIYQQQgghhBBCiM/OeyXjQkJCaNu2LUFBQZibm6NQKIiKiqJGjRqsWLECGxub3I5TCCGEEEIIIYQQQrwjDaSb6qfmvbqp9unTh+joaC5dukR4eDgRERFcvHiR6Oho+vbtm9sxCiGEEEIIIYQQQgjxWXivlnE7duxgz549+Pr6KpcVLlyYmTNnUrdu3VwLTgghhBBCCCGEEEKIz8l7JePS09PR0dFRW66jo0N6evoHByWEEEIIIYQQQgghPpymzKb6yXmvbqo1a9akX79+PH78WLns0aNH/PDDD9SqVSvXghNCCCGEEEIIIYQQ4nPyXsm4GTNmEBMTg5ubG56ennh5eeHu7k5MTAzTp0/P7RiFEEIIIYQQQgghhPgsvFc3VRcXF06fPs3u3bu5evUqCoWCwoULU7t27dyOTwghhBBCCCGEEEK8Jw3ppvrJea9k3Et16tShTp06uRWLEEIIIYQQQgghhBCftbdOxk2bNu2tV9q3b9/3CkYIIYQQQgghhBBCiM/ZWyfjJk+e/FblNDQ0JBknhBBCCCGEEEII8QmQ2VQ/PW+djLtz505exiGEEEIIIYQQQgghxGfvvWZTfSk5OZlr166RmpqaW/EIIYQQQgghhBBCCPHZeq9kXHx8PN26dcPQ0BA/Pz/u378PZIwV9+eff+ZqgEIIIYQQQgghhBDi/Wh8wv/9v3qvZNywYcM4d+4cQUFB6OvrK5fXrl2blStX5lpwQvw/u3btGmPHjiUpKSm/QxFCCCGEEEIIIUQuea9k3IYNG5gxYwaVK1dG45WBAAsXLsytW7dyLTgh/l/FxMTQokUL3N3d0dPTy7X1urm5MWXKlPeuf/fuXTQ0NDh79myuxSSEEEIIIYQQQvw/eesJHF71/PlzbG1t1ZbHxcWpJOeEyA1HjhyhSpUq1KlThx07drxz/V9//ZUNGzb8pxJIXbp04ZtvvqFt27b5HYr4Dzm5+xDHtu0nNjIaGyd76nRsTgEfzzfWe3D9Not/n4mNsz3fjhmsXH5m/1EuHAzm+cOnANi7O1O9dSOcPF1zLeb1q9eyfMkywkLDcPNwp++AfhQvWSLb8mdOnWHGlGncvX0HK2tr2nfuQPOWLZSv37l1m/lz5nHt6lWePnlKnx/60bp9G7X1PA95zqzpMzl+9BhJiUm4FCjAj78Mw9vXJ1e268Sufzm0eS+xkVHYODvQoHNL3Hy9six77+otdi3bSOjjp6QkpWBuY0npWpWo2KimSrkj2/YTvPsgUaERGJoY4VeuJLXbNUVHVydXYs6KQqFg7r/72XDmFDGJCfg5OjO4QWM8bdTvAbKy69IFfl6/mqqFfJjQur3KayHR0czYt4sjt26QlJJKASsrfm7cHF8Hx7zYFBXBuw5yZMteYiKjsXW2p17nlri+xbFy/9ptAkdPw9bFgR5/Ds3zOF91cvchjm7dpzy+63Zq8XbH97XbLPp9BrbO9nw7dohy+el9R7lwKJjnD54AYO/uQo02uXt8Z2Xf5p1sX7ORyPBInFydad+jK4WK+GZZ9uSh4+zfupP7t++SmpKKUwFnmnVsTdHSJZRlDmzfw+E9B3h07wEAbl4etOzaDg/vgnm6HW+juIMX7UvWxce2ANZG5vy4bRYH75zL77CUju/8l0Ob9xAbGYWtswMNunyZw3nqJruWbuT542ekJCVjbmNJmdqV1c9TW/dx4uV5yjTjPFWnXbNcO08pFAr+WbyI9Vu3ERMbg5+PD0P79MXTzS3HensP/svswEAePnmCs4MDPbt+TY3KlZWvx8XHMzswkP2HDxERGYm3lxcDe/bEzzvzmhCfkMD0efM4cOQwUdHRONjZ07ZFc75s0vSDt2vnxq1sWrmOyLAInN0K8FWvb/Et5pdl2YiwcBbNms/t67d4+ugxDVo04ave36qVi4uNZfn8xZw4eJS4mFhsHezo1KMb/uVLf3C82bkcFMy5XUdJiIrBwtGW8q3r4lAw63PK42t32TppkdryVqN6Ym5vrbb8VvBF9s1bh2txb+r2VL+u55YDW3ezZ902oiIicSjgRKtvO+Lll/W9wZkjwRzcvpeHt++RmpKCQwFnGrX/gsL+xZRlJg/7nRsXr6rV9StdnF4jB6stzyv/xeveuX3HOL39IHGRMVg52VK1fSOcCrm/sd7jG/dY8+dcrJzs6DC6j3J5WmoaJ7cGceXwGWIjorFwsKZSq/q4FS2Ul5vxyZA8zafnvZJxZcqUYevWrfTpk7Fzv/xi586dS4UKFXIvOiGABQsW0KdPH+bNm8f9+/cpUKBAfoeU59atW5ffIfznpKSkoKOTd0mJT93lY2fYvWQD9b/6EpdC7pzed4QV4//hu3E/YmZtkW29xPgENs1ehrtfQWKjYlReu3flJoUr+ONcyB1tHW2ObtnH8nGz6f7nUEwtzT845r279jBt0lQGDB1E0eLF2LRuA4P7DWTxqqXY2durlX/86DFD+g+kSfOm/DJ6JBfOnWfSuAmYW5hTvWaNjO1JTMTByZHqtWswfdK0LN83Jjqant98R8lS/oyfOgkLCwsePXyEsYnxB28TwIUjp9i+cC2Nu7WhgLcHwXsOseTPv+k98WfMrS3Vyuvq6VKuXlXsCziho6fL/Wu32DRvBbp6upSunfFj8dyhYPYs30jz7zrgUsiDsCchrJ+9GIAGXVrmStxZWXT0EMuPH2VE0xYUsLRiwaED9Fm6kNXf98XoDa12n0RGMm3PTkq4qP8Qi05I4NuF8yjl6s7Utp2wMDLiYUQ4Jnr6Wawpd108epodi9bR6OtWuHh7cGrPYZb+OYteE4ZjlsX381JifAIb/l6MR5FCasdKXrt09DS7Fq+nQdfM43v5X3Po8dewNx7fG2cvxd2vIHFZHN9+Ffxx7uyGtq4OR7fsZdmfs/hu3I+5cnxn5fiBwyybE0CnXt9S0M+boG27mfTzH/zxz2SsbG3Uyl+/eBk//+K0/Ko9hsZGHNq1n6m//skvU8bi6pXxg+zq+UuUr14Zr8KF0NHVZdvqjUwY/jt/zJmEhbVVnmzH2zLQ0eNm2EO2XT3CmAY98jWW12Wcp9a8OE95cnLPIRaPnUmfSb9keZ7S0dOjXP1q2BVwRFdPj3vXbrFp7nJ09HQp8/I8dfAEu5dvpHmPjhR4cZ5aNyvjPNWwy5e5EvfClStZtnYtIwcNpoCzM/OXLaXX0KGsDQjAyNAwyzrnL19m+O+/0+Orr6hRqTL7Dx/ix99/Y/7kKRTxzUgE/z5pIrfu3mX00B+xsbJi29499BwyhNXzF2BrnZEYmjTrb06eO8foH3/E0c6eY6dOMm7aNKytrKhesdJ7b9OR/QcJnDmPb/r1wLtIYfZs3sGYH39lcsBMrO3UH3ykpKRgam7GFx1bs3XNxizXmZqSwu+Df8HU3JwBv/6IlbU1Yc+fo5/NZ5QbbgVf4uiqnVRq3xA7Txeu/nuaHdOX0erXnhhbmmVbr9XoXujqZ15P9E3UY4wJi+T4mt3Ye+Xtb4CTB4+xZt4S2vb4Co/ChTi0Yx8zfx3PLzPHYWmrniC8eekqPiWK0LRTKwyNjTi65wCzfpvIkAmjcPF0A6D78P4qkx3GRccypu9w/CuVy9NtedV/8bp3/fh5/l22lRqdmuJY0JULQSfYOGkhHf/oj6mVebb1kuIT2TV3NS6+nsRHx6q8dnTdbq4ePUutr1pg6WDDvYvX2TJ9Ca1/6oGta94/CBTide/VTXXs2LH89NNPfP/996SmpjJ16lTq1KlDYGAgf/zxR27HKP6PxcXFsWrVKr7//nsaN25MYGCgyuuBgYGYm5urLNuwYYMyQRwYGMioUaM4d+4cGhoaaGhoKNdx//59mjVrhrGxMaamprRu3Zpnz54p1/Prr79SokQJFi9ejJubG2ZmZrRt25aYmMyLUVJSEn379sXW1hZ9fX0qV65McHCw8vWgoCA0NDTYuXMnJUuWxMDAgJo1axISEsL27dvx9fXF1NSUdu3aER8fr6xXvXp1+vfvr/x7yZIllC5dGhMTE+zt7Wnfvj0hISE5fnYhISE0adIEAwMD3N3dWbp0qVqZqKgounfvjq2tLaamptSsWZNz597+qX1aWhrdunXD3d0dAwMDvL29mTp1aq7UCQgIwNfXF319fXx8fPj777+Vr73sLrtq1SqqV6+Ovr4+S5YsIT09ndGjR+Ps7Iyenh4lSpRQaU35st66deuoUaMGhoaGFC9enKNHjyrLhIWF0a5dO5ydnTE0NKRo0aIsX75c+fqcOXNwcnIiPT1dJd6mTZvSpUsX5d+bN2+mVKlS6Ovr4+HhwahRo/J05unj24MoUb0cJWuUx9rJjrqdWmBqZc7pvYdzrLd9wWr8Kvjj5OWm9lrznp0oXacy9q5OWDva0eibNijSFdy9dCNXYl65bAWNmjWhSfOmuLm70Xdgf2ztbFm/Zn2W5TeuW4+dvR19B/bHzd2NJs2b0qhpY1YsWaYs4+tXmF79elO7bh10s2mJsXThEmzt7Bg+8mcK+xXGwdGB0mVL4+TsnCvbdWTrPvxrVKBUzYrYONnTsMuXmFpZELz7YJblHdxdKFapNLYuDljYWlG8Slm8ivly72rmsA8Prt/BpZAHxSqXwcLWCq/ivhStWJpHt+/nSsxZUSgUrDhxlK8qV6WGT2E8be0Y2fQLElNS2HnxfI5109LTGbFhDd9WrYGThXqyaNHRg9iamjKiaQv8nJxxNLegrLsnzpbZ/yjILce27qdkjfL4v/h+6ndpiZmVBcG7D+VYb8u8lRSpVBrngm55HuPrMo/vClg72VO30xeYWplzak/OMW+bv4oiFUvhlEXMLXq9OL7dnF8c321fHN/X82grYNe6LVStV5NqDWrhWCCjVZyljTX7tuzKsnz7Hl1p2KoZHt5e2Ds58GXX9tg5OnD2+Ellme+G9qNmk3oU8HTHwcWJrv2+Q6FQcPnsxTzbjrd17P4l5h7fxIHbZ/M7FDVHtu7Fv2YFSteqhK2zPQ2/yjhPndiV9XnK8cV5ys7FEQtbK0ooz1M3lWUe3LhDAW8Piqucp0rxOJfOUwqFguXr19G1XXtqVqmCl7s7owYPITEpkR379mVbb/m6tZQrVYqu7drjVqAAXdu1p2zJkix78eAzMSmJfQcP0vfbb/EvVgwXJye+69wFJ3sH1mzepFzP+StXaFynLqWLl8DR3p4vGjWmoKcnV65/2DGzZfUGajaoQ61G9XB2deGr3t9ibWvNrk3bsyxva29H197d/8fefUdFdbwNHP/Se+8gVaQKNuy99941GktMjBpjNNGoMZpYkl8SSzTFxNhj772jRAULNlSwgCCooNJ7WXbfP9CFZRdEwZK88zlnz4G7c+/O3Vv3uc/M0LJDG/QNVAfXAg8dJzM9ky/mzsSrpg9WttZ4+fniUv3FWUWv6vrxEDyb1sGrWV3M7KxoPLAjhmYmhAeFljufnpEB+iaG8pe6uuLPU6lUysmVu6jbvRVGVmU/fKgKgbsP0aR9K5p2bI2dowP9xwzD1NKCfw6dUFm+/5hhdOjbDReP6ljb29Jz+ECs7Wy5fuGKvIyBkSEmZqby162rN9DW0aZuswavdV1K+jde9y4fPYNvi3rUbFkfc3trWg7phqG5CdcDz5c7X+DaXXg2qoWdu6PSe7dCrlC/W0tca3liYm2Of5tGONesweXD5X8Pwrvpt99+w9XVFV1dXerVq8fp06qvX88FBQUp/DZbvny5UpkdO3bg4+ODjo4OPj4+7Nql+jdJVXmlYFyTJk04e/Ys2dnZVK9enaNHj2JjY0NISAj16tWr6joK/49t2bIFT09PPD09ee+991i9ejUymazC8w8cOJApU6bg6+tLfHw88fHxDBw4EJlMRq9evUhOTiYoKIhjx44RFRXFwIGKae9RUVHs3r2b/fv3s3//foKCghRGDJ46dSo7duxg7dq1XL58GXd3dzp27EhycrLCcubMmcMvv/xCcHAwcXFxDBgwgCVLlrBx40YOHDjAsWPHWLZsWZnrkZ+fz9y5c7l27Rq7d+8mOjqaESNGlLvuI0aMICYmhsDAQLZv385vv/2mEMCTyWR07dqVhIQEDh48yKVLl6hbty5t27ZVqn9ZpFIp1apVY+vWrYSHh/P1118zY8YMtm7dWql5VqxYwcyZM5k/fz4REREsWLCAWbNmsXbtWoVlTZs2jYkTJxIREUHHjh35+eefWbhwIT/99BNhYWF07NiRHj16cPeuYvBo5syZfP7551y9ehUPDw8GDx4sD5Tl5uZSr1499u/fz40bN/jwww8ZNmwY588XXfz79+9PYmIiJ0+elC8vJSWFI0eOMHToUACOHDnCe++9x8SJEwkPD+ePP/54rQ8rCiUS4qMf4FrTU2G6W01PHtyNKXO+a0HnSXmcSIs+HSv0OQV5+UgLpegZVv7JekFBAXdu3aZBQ8Wb0foNG3Aj7LrKeW5ev0H9UuUbNGrIrfBbLxXoPHP6DJ7eXsz6cibdO3Rh1ND32btLdXbBy5JIJMRHx1HdX7HZnbu/N7F3oiu0jPjoOOLu3MPFp7iZnbOXG/HRcTyIjAEg+XEid67cxKOu6mZMVeFRagpJmZk0citutqatqUldZxfCHsSVO+/K06cwNTCgZx3V9wSn79zG286BL3dsoeOi//Heit/Yfbn8H2xVoVAi4VF0HNX9FZscufl78aCc7XPl1DlSHifSqm+n111FJc+Pbze/UnX28yr3+L4adJ6UJ69wfBsYVKa6ZZIUFBBz9x6+dWspTPet609UxO0KLUMqlZKbk4NBOVmseXn5FEok5Zb5/04ikfDoXhzupc9TtbyJu3OvQst49Pw85V18nnLyrM6jeyrOU3VqVkm9HybEk5ScTKOA4vOKtrY2df39CQu/WeZ8YeHhNCz1+6RRQIB8nsLCQgqlUrS1tBXK6Ohoc/VGcVC3tm9N/gkJ5kliIjKZjNCrV4l98IDGAa/e7FNSUMC9O5HUCqijMN0/oA63b0a88nIvBZ+nhq8XK39ezpi+w5gyajw7N2xFWlj4ysssT6GkkMTYeBx8FJs9Ovi48Tiq/OvFznl/8vcXiziwaB2Pbiufh6/s/wddI328mtVRMXfVkRRIiI2MxrvU/updpyb3Iir2ELLoHJWLvlHZ59HgY6eo16IxOrqvPxMc/r3XvScxj3DyVexuwNnXnfio+2XOd/P0JVKfJNOwZxuV7xcWSNAo1YpGU1uLR+VcS/9LtNB4Z18va8uWLUyaNImZM2dy5coVmjdvTufOnYmNVf3wJzo6mi5dutC8eXOuXLnCjBkzmDhxIjt27JCXCQkJYeDAgQwbNoxr164xbNgwBgwYIP8N+Dq8UjNVAD8/P6UfxoJQ1VauXMl7770HQKdOncjMzOTEiRO0a9euQvPr6elhaGiIpqYmtiWavR07doywsDCio6NxdCx6crJ+/Xp8fX25ePEi9evXB4ouqmvWrMHIyAiAYcOGceLECebPn09WVha///47a9asoXPnzkBREOnYsWOsXLmSL74o7gdi3rx5NG1a1IRh9OjRTJ8+naioKNzc3ADo168fJ0+eZNo01X0xjBo1Sv63m5sbS5cupUGDBmRmZmJoqPyD486dOxw6dIhz587RsGFD+Xfp7V18433y5EmuX7/OkydP5INE/PTTT+zevZvt27fz4YcfvvD71dLS4ptvvpH/7+rqSnBwMFu3bmXAgAGvPM/cuXNZuHAhffr0kZd5HtQqmX02adIkeZnn9Z82bZq8r73//e9/nDx5kiVLlvDrr7/Ky33++ed07doVgG+++QZfX18iIyPx8vLCwcGBzz//XF72k08+4fDhw2zbto2GDRtibm5Op06d2LhxI23btgVg27ZtmJuby/+fP38+X375pbyubm5uzJ07l6lTpzJ79uwXfq8vKzsjC5lUiqGJkcJ0AxMjMlPTVc6TnPCUk1v2M2zWJ6hrVOwieHLLfozMTHD1rXzfGmmpqRQWFmJWKhPKzMKc5CTVweCkpGQaWJQqb25OYWEhqampWFoqNyFRJf7hI/bs2MWAIYMYNnI4ETcj+HnhYrS1tenUtfOrrdAz2emZSF9yWzz307ivyErPRFpYSOt+XajXpon8Pb8mAWSlZ7Jy9mJkyJAWSqnfvjktenaoVH3Lk5RZ1LzDvFRwxtzAgPi01DLnuxZ3n71XL/P3mI/LLPMwJYWdly4ypGFjRjZtwc2HD1h49CBampp09a9dFdVXKTtd9bFiaGJEVBlNcJLin3Bi0z5Gzvm0wsdKVXp+fBuo2qfSyjm+N+9j+NcTK1znwM37MTI3wbXm6+k7JyM9A6lUirGZqcJ0EzNTbiSnVmgZR3bsIy83jwYtmpRZZvuqDZhZmONbx68Stf1vKz5PGStMNzQxIuMF56kfP55ZfJ7q35WAtsXNM/2bBpCdnslfXy+Sn6catG9Oi15Vc55KSk4BwMJUMTvKwsyM+BItG5TmS0nBwkx5nqSUouUZ6Ovj7+PDXxv+xtXJCXMzM46cPMmNW7dwdHCQz/PF+PHMW7yILoMHoaGhgbq6Ol99NpnaNV99X0tPS0cqlWKi4rhIreBxocrj+ASeXgmjWbtWTP9uNvEPHrFy6XKkhYX0Gz74lZdbltzMbGRSGfrGitcLPSMDctKzVM6jb2JI8/e6YelsR2GBhLvnr3Ng8Xq6TX4fO4+i7g0SImO5ffYKfWZ9VOV1Li3z2TnKyFSxSa2xqQnpqakVWsaJ3QfJz8ujXjPVTVBj7kTx6P4D3puo3Mff6/JvvO7lZGQjk0rRN1b8jaNnYkTWDdWB0ZSERM5uP0z/6R+VWWenmjW4cuQMDh4umFqbExsRxb0rEchKtXYR3n2LFi1i9OjRfPDBBwAsWbKEI0eO8Pvvv/Pdd98plV++fDlOTk7ygQy9vb0JDQ3lp59+om/fvvJltG/fnunTpwMwffp0goKCWLJkiUIrqapU4WBcenr5F+eSjI2NX1xIEF7g9u3bXLhwQd5/mqamJgMHDmTVqlUVDsaVJSIiAkdHR3kgDopGAzY1NSUiIkIejHNxcZEH4gDs7Ozk2WVRUVEUFBTIg2xQFGhq0KABERGKTzP9/Ys7crWxsUFfX18eiHs+7cKFC2XW98qVK8yZM4erV6+SnJwsbyIZGxuLj4+PyvXT1NQkoMTTWi8vL4UmvZcuXSIzMxMLC8U+dXJycl5qVOTly5fz119/cf/+fXJycsjPz6d27dqvPM/Tp0+Ji4tj9OjRjBlTfLMikUgwMVG8QSq5funp6Tx69EhhewA0bdpUqeltye1hZ2cHFDXr9fLyorCwkO+//54tW7bw8OFD8vLyyMvLw6BEQGLo0KF8+OGH/Pbbb+jo6LBhwwYGDSq6OYei7/bixYsKmXCFhYXk5uaSnZ2Nvoo+W55/TkkvPZJuqY5ZZajurFUqlbL71/U079sJC7uKdcQfsv8EN0Ou8N7M8WhW4YABStWTyZSnlSxP6XWUqZxeHqlUipe3Fx+NL+rDycPTk+h799i9Y2elg3ElKlqK7IUd546eM4n83Dzi7sZwbNMezG2t8G9atI9H37zDP7uO0G30QKq5O5OUkMihtds5ZWpMq75VU+fD16/x3cF98v8XDxr6bFVKfeeysr/vrLw8vt69gxlde2CqX3ZmgFQmw9vennFt2gPgaWvHvcQn7Lh04bUG44qVXieZim1WtK/s/GUdrfp1rvCx8rqoPFZUVFoqlbLr13W06FvxOgfvO8HNkMsM+2pClR7fqiivhkzFyik7d/IMu//exsTZUzE2Vd3/1MFtezh/6gzTfvgGLW1tlWWEEkp97UWbovxt8cE3n5GXm8eDuzEc3bgHi1LnqaBdh4vOUzVcSE54ysE12zHccYjWr3CeOnTiBAuWLJb/v2Re0TW1dB1lshefX5WPecUp3077km9/+onOgwehoa6OZ40adGrThlslMus3797F9YgIFn07FzsbGy6HhfG/ZUuxtDCnYd3KtQxSqv8LroUvIpPJMDYz4aPJ41HX0MDNw52UpGT2btn5WoJxr8LU1lJhoAab6o5kJacRdiwEOw9n8nPzOLlqN82HdUO3CjLyK0p5/6rYPcbFoGAObNzF2K8+UwroPRd89BT2ztVw8XjxwAlV79943VNxXKgoJ5VKOfzHFhr1aoeZisE/nms5pBsn1uxi/YzFoKaGibU5Ps3qEn7mctVWXHhpZf0OUvVbKD8/n0uXLvHll18qTO/QoQPBwcEqlx8SEkKHDooPhjp27MjKlSvl/Y6HhITw2WefKZV5HsB7HSocjDM1Na3wCByFrykFWvj/ZeXKlUgkEhxKPJWUyWRoaWmRkpKCmZkZ6urqSs1WCwoKXrjssm7cSk8vPSCAmpqaPBD2/HMrclNYcjlqamrlLre0rKwsOnToQIcOHfj777+xsrIiNjaWjh07kp+fX+b6qapbSVKpFDs7O06dOqX0Xul++MqydetWPvvsMxYuXEjjxo0xMjLixx9/LDed90XzPP8eVqxYIc/qe06j1JMuAxXNqV5le5T83IULF7J48WKWLFmCn58fBgYGTJo0SeG77t69O1KplAMHDlC/fn1Onz7NokWL5O9LpVK++eYbhay953TLaJbw3XffKWQMAsyePRu3ri/uU0TfyAA1dXWlzKvstAylbBqA/Jw84qPjSLj/kCNri4LdMpkMZDIWDJ/CkGljcSnRNODcgZOc3XucIV9+jI1T1XRwa2JqioaGhlIWXEpyilK23HMWFuYkJyUpTEtNTkFDQwOTMm58VS7H0gJnN8V+c5xdXAgKPFXhZZRF37iov5vMVMWnzVlpmSq3RUlmzzqHtnFyIDMtg5PbD8p/5J7YeoBazRvIs+VsnBwoyMtj74pNtOjdUamPnVfR3MMLX4fifvPyn13Lk7IysSzxUCIlOwtzA9VNAB+mJBOflsqULcX9+EmfnY8az5/Dto8nUs3cHEtDQ1wtFTvsd7G04uSt8EqvR3n0jZ8dK6UyyrLSMzE0VnWs5PLoXizxMQ84uGY7UHysfDt0EsOmj3ttmWTyOsuP71L7VLrqfSo/J5f4e3EkxDzk8NodCnWeP2wyQ74cq5DdGnIgkLN7jzF0+rgqO75VMTI2Ql1dnbSUVIXp6alpmJiVf/yeDzrL6iW/M27GZHxLjFJY0qHte9m/eSdffPc1jm6vd0TYf7vi81Tp4yBDKXumtOfnKVsnBzJT0wncdqDEeWo/tVo0kGfL2To5kJ+Xz94/N9LyFc5TLRo3pqZXcdO6/Gf3d4kpyViWeJCYnJqKuYq+KZ8ryoJTvNYkp6YozFPN3p4/Fy0iJyeHrOxsLC0smD5vLvbPWlXk5uXx66pV/DRnDs0aNgKghpsbd6Ki+HvbtlcOxhmbGKOurk7qs6y/59JS05Sy5V6GqbkZmpqaChlCDk7VSE1OQVJQgGYVD3ila6iPmroa2aWy4HIystAzrnjTd2u3akSeL+qqIuNpCplJqRz5dbP8/ef3t399PJcB347H2Krq+hk1fHaOSi91jspISyszuPZc6Olz/L30Lz748hO8aqtulp2fm0fo6XN0G/r6Bl1S5d943dMz0kdNXV1p4KGc9Ez0TZTvPwpy83gS85CnsfGc+nufQp2Xjv6K3lNG4uhTHX1jQ7pPHIakoIDczGwMTI05u+0IxuUMhPRfoiF7d0dTLet30Jw5c5TKJiYmUlhYiI2NjcJ0GxsbEhISVC4/ISFBZXmJREJiYiJ2dnZllilrmVWhwsG4kv0jxcTE8OWXXzJixAj56KkhISGsXbtWZVqgILwsiUTCunXrWLhwoVIUu2/fvmzYsIEJEyZgZWVFRkYGWVlZ8sDM1atXFcpra2srBYh9fHyIjY0lLi5Onh0XHh5OWlqaQlPO8ri7u6Otrc2ZM2cYMmQIUBQIDA0NVRh8obJu3bpFYmIi33//vbyuoaHl963k7e2NRCIhNDSUBg2Kgjm3b98mtUSafd26dUlISEBTUxMXF5dXqtvp06dp0qQJ48aNk097UVbdi+axsbHBwcGBe/fuyftgqwhjY2Ps7e05c+YMLVq0kE8PDg6WfwcVcfr0aXr27ClvHi2VSrl7967CfqGnp0efPn3YsGEDkZGReHh4KPSXWbduXW7fvo27u7vS8ssyffp0Jk+erDBNR0eHLWGqOw0uSUNTEzvXakTfuINX/eIfqtE37uBRT/mmUEdPhzHfTVWYdun4We6H36XPxBGYlri5DdkfyNk9xxg87SPs3apuFDMtLS08vDy5eP4CLVq3lE+/eOEizVo0VzmPr19Nzp5WHJDiwvkLePl4oalZ8V4X/Gr5E3dfsU+JuNg4habsr0pTUxM7V0eirt/Cp0Fx31hR12/hFfASTZlkMgoLivvBK8jPVwoqq6mr8xJdaL6QgY6OwgipMpkMC0NDzt+LxNO2KIO0oFDC5fsxTHiW0Vaas6Ulmz4crzDt91MnyM7PY0qHLtg8axbn7+jE/aREhXKxSUnYmphW3QqpoKGpib2rI/fCbuNdv3j73Lt+C896yttHR0+Xj39QfPJ68egZosPvMGDSKEytXv9oncXH923F4/v67TKOb10+/F6xy4NLx88Qc/MufT8dqXR8n9l9lMHTxlbp8a2KppYWLjXcuHkljHolRhEMvxJG7Ub1y5zv3MkzrFr8G2O/nESthqoDHoe27WHfph1Mmf8Vrm8l4+TfRVNTE3s3R6LCbuHToLZ8elTYLbwCVAc7VZFR1LfTcwV5+aipKQbc1CtxnjLQ11cYIVUmk2Fhbs75S5fxci96YFRQUMDlsDA++aDsZn/+Pj6cv3SZoX2LR3Q9f+kS/j7KfW7q6emhp6dHekYGIaGhTHyWoS+RSJBIJMrrp6GOVPrqJ2JNLS3cPNwJu3SFBs0by6eHXbpK/SavPtqmZ00fzp4IQiqVyoOg8Q8eYWZhXuWBOAANTQ0snex4GHEP1zrFAdSHEfdwruVZzpyKkuIS0HsWbDGxtaTv14qjEIfuOUlBbh6NB3bC4AVB/JelqaWJk7srEVduULtx8Tnp1tUb+Jdx7oGijLi/l65g5Ofj8atfdr92l86cR1IgoUGrVx9591X8W6971i72xN6MxL1e8XEaGx6JW23lFkHaujoMnTtRYVpY4HkeRETRZfwQTEoFbTW1tDA0M6FQUkjkpRvUqC+6NXjbyvodVJ6XzZJWVb709FfLvH51Ff710rJl8Y+lb7/9lkWLFjF4cHGac48ePfDz8+PPP/9U6NNJEF7F/v37SUlJYfTo0UpNE/v168fKlSuZMGECDRs2RF9fnxkzZvDJJ59w4cIFpRFXXVxciI6O5urVq1SrVg0jIyPatWuHv78/Q4cOZcmSJUgkEsaNG0fLli0Vmj6Wx8DAgI8//pgvvvgCc3NznJyc+OGHH8jOzmb06NFV9VXg5OSEtrY2y5YtY+zYsdy4cYO5c+eWO4+npyedOnVizJgx/Pnnn2hqajJp0iT09PTkZdq1a0fjxo3p1asX//vf//D09OTRo0ccPHiQXr16Veh7cHd3Z926dRw5cgRXV1fWr1/PxYsXcXUte7SuiswzZ84cJk6ciLGxMZ07dyYvL4/Q0FBSUlKUTtQlffHFF8yePZvq1atTu3ZtVq9ezdWrV1WOJFte/Xbs2EFwcDBmZmYsWrSIhIQEpSDt0KFD6d69Ozdv3pQH7p77+uuv6datG46OjvTv3x91dXXCwsK4fv068+bNU/m5ZaViV1TDzq3Y8/sG7NwcqebuwpWTwaQlpVC3bVEm1ckt+8lISaPH2KGoqatj7WinML+BsSEaWpoK00P2nyBo+yF6jRuGiaW5PItCW1cHbd1Xr+tzA4cMYt7sb/Hy8cbXryZ7d+3hScJjevXtBcDyX34n8elTvvrmawB69unNzq07WLb4Z7r36snN6zc4sGcfs+cXP0krKCgg5l70s78lPH36lLu376Cnr081x6KsrwGDB/Lx6I9Yt3otbdq1JeJmOPt27eGLGar7bHxZTbq2Yeev63Bwc8LRw5XQ42dJS0ymfruiIOOxTXtIT06j7/jhAJw/EoSJpTlW9kVP4+7fjuLs/hM07FR83fWsW5OQgyexc61GNXcXkhKeErh1P171/KokK04VNTU1BjVozJqzp3E0t8DJ3ILVZ/9BV0uLjjWLf7DP3rMDayNjxrdpj46mFtWtFZ8qGj3LBi05fUjDJoxes4LVZ4Jo51OTm48esvtKKDO69Hgt61JSo66t2fXreuzdHKnm4cqlE8GkJaYQ0K4ZAMc37SUjJY3e44Y9O1YUs8UMTAzR1NJSmv46yY9vV0eq1XDhcmDIs+O76Edd4OZ9ZKSk0fPj91Qe3/rGhmiWOr6D950gaPtBeo0fjqlV1R/fqnTo040VPy7DpUZ13L09CDp0nKQnibTuWvTQbduqDaQmJTPmi0+AokDcXz/9wpCxI6nuVYO0Z9lDWjra6D97AHdw2x52rdvMR9M+xdLGSl5GR08X3RLXvLdBT0uHaibFGaD2xpbUsKxGem4WjzNTypnz9WvStS07flmLfXUnHGu4EXriDGmJyTRoX3QcHN24h/TkVPpNKLqnVzpP3Yri7L7jNOrUSr5Mz3p+BB8IxM6lGo41is5TJ7bswyugas5TampqDO7dh9WbNuLk4ICjgwOrN21EV0eXTm2KO2z/+n/fY21pyYTRRX0JDerdhw8nf8aazZtp1aQJp4KDOX/5MisXL5HPE3LxIjJkOFdzJO7RI5b++SfOjo706FjUeb2hgQF1/f35ecWf6OhoY2dd1Ez14LFjfDZWMWD0srr178Wy7xbh5lkDDx8vju8/TOLjp7TvXtS0d+OKtSQnJjFhevH9T0xk0UAbuTm5pKelERN5D01NTaq5FAXVO/TozOFd+1nzywo69e5GwsNH7Nq4jc69u1WqruXxa9eYU6t3YeVsh7VbNW6dvkxmchreLYoCWRd2nSArNYPWI3sBcP34OYwsTTGzs6KwsJDI89eJvhxBu4/6A0XBMXMHxWaS2vpF15PS06tKm16dWbvod5xruOHq5c7ZwydJeZpE885FfQLvXruF1KQURkwu2uYXg4JZu/gP+o95D1cvd3nmr7a2NnqlRroNPnaKWo3qqcxGe93+jde9uh2acWTFNmxcHLBzd+J60EUyktLwa130gP3stiNkpqbTcUx/1NTVsaym+EBV39gADS0thekJUXFkpqRh5WRPZmoa53afQCaTEdClBcLb9TK/gywtLdHQ0FDKWHvy5IlSZttztra2KstramrKu2wqq0xZy6wKrzSAQ0hIiMqhYAMCAuSd6AlCZaxcuZJ27dopBeKgKDNuwYIFXL58mbp16/L333/zxRdf8Oeff9KuXTvmzJmjMPhA37592blzJ61btyY1NZXVq1czYsQIdu/ezSeffEKLFi1QV1enU6dO5Y5oqsr333+PVCpl2LBhZGRkEBAQwJEjRzArp7nEy7KysmLNmjXMmDGDpUuXUrduXX766Sd69Cj/R+vq1av54IMPaNmyJTY2NsybN49Zs2bJ31dTU+PgwYPMnDmTUaNG8fTpU2xtbWnRokWFTzpjx47l6tWrDBw4sOgmefBgxo0bx6FDhyo1zwcffIC+vj4//vgjU6dOxcDAAD8/vxdmHE6cOJH09HSmTJnCkydP8PHxYe/evdSoUaPc+UqaNWsW0dHRdOzYEX19fT788EN69epFWlqaQrk2bdpgbm7O7du35ZmRz3Xs2JH9+/fz7bff8sMPP6ClpYWXl9drPT/6NKpDdkYWZ3YV3ZxYVbNj0BcfYmJZ9DQwMzWdtMSX+/F36fhZCiWF7Fi6RmF6894daVEFo2u17dCO9LQ01vy1iqTEJFyru/HDkp+wfdaPX1JiEo8Tijvltnew54clC1m2+Gd2bduJpZUln37+Ga3atJaXSXyayKj3Rsj/3/z3Rjb/vZHadeuw7I+iQTy8fX2Y/+P3/Pnr76z9azV29nZ8MvlTOnSu2KiTL+LXpB45mVmc2nGIjNR0rB3teO/LcfKMpIyUdNISi5tMyWQyjm/aS8rTJNTV1TG3saT94J4EtCt+et6yTyfU1NQ4sWU/6clpGBgb4lmvJm0Hdq+SOpdleONm5BUU8MPh/WTk5OLr4MCyIcMVMugep6Wh/pJPDX3sHfih/2B+CzzGytNB2JuaMrl9Zzr51XrxzJVUs3FdcjKyCNp5hMzUNKwd7Rg6bax8+7zKsfK6+TauS05mNqcVju+PFOuc9LLH95mi4/vn1QrTm/fpSMsq6oewtIYtm5KVnsneDdtJS0nBwdmRz+bOwNKmKGCVlpxC0pPijMlTB49RWFjI+l//Yv2vf8mnN23Xkg8+nwBA4L4jSAok/DpvocJn9Rzan17DVA8k9KZ4WTnzS+/iAMrEZkVBhoMRIcwPfLuDoPk1qUd2xrPzVEo6No52DPtynDzrJTM1TWGfkkllHNu4p8R5yooOQ3rKf8xD0XkK4MSWfSXOU360G1R156n3Bw4kLz+P75ctJSMjg5pe3vzy/fcKGXQJT56gXiKDrZavL/NnfsXva1azfO0aqtnZ893Mr6hZ4iFbZnYWv6xcyZPERIyNjGjTrDnjR41UyLpeMPMrfl25klnffUd6Rga2NjZ8PHIUfbtVbv2atG5ORno6O9ZtJiU5GUcXZ6Z/Nxsr26KAU0pyMolPnirMM/XDT+V/37sTyZkTQVjZWPPrppUAWFpb8dUP37L2t7/44oNPMLe0oHOf7vQa9PqaSFav70teVjaXD/xDdlom5vbWdJowBCMLUwCy0zLJSi6+l5IWFnJ++zGyUjPQ1NLE1N6KjhMG4+RX8Xu2qhbQvBFZ6Rkc3LyL9ORU7JyrMW72F1g8a56dnpxKytPic9SZw4FICwvZsnwtW5YXH9ON2jRn+GfFg048fhhPVPgdPvm2ah76vax/43XPo6E/OVnZnN8bSHZaBhYONvT87H15k9KstAwyklJfapmSggJCdh0j7UkKWrrauPh70nHMAHT03+6DmzfmPzJQhba2NvXq1ePYsWP07t1bPv3YsWP07NlT5TyNGzdm3759CtOOHj1KQECAvPuixo0bc+zYMYV+444ePUqTJmUPGlVZarLSHW5VgKenJ926dWPhQsUbnylTprB//35u367YEPWCIAhC+dZdPPi2q1Bpw+t34Ul60osLvsOsjS3YcuXY265GpQ2s05609VvedjUqxWTYQDZePvK2q1FpQ+p2ZH1o2Q8u/i2GBXQmODrsbVejUpq4+tP018plN70Lzo5fztarx992NSplQO12ZMTGve1qVJqRkyPXHt5529WotFoOHvx0quKtC95Fn7cayok7F992NSqtrUf9f/21b0jdjvwWvONtV6PSxjV5s/3+VZWMCo4K/DYYVbC/8ue2bNnCsGHDWL58OY0bN+bPP/9kxYoV3Lx5E2dnZ6ZPn87Dhw9Zt24dANHR0dSsWZOPPvqIMWPGEBISwtixY9m0aZN8NNXg4GBatGjB/Pnz6dmzJ3v27OGrr77izJkzSv2YV5VXyoxbvHgxffv25ciRIzRqVNSJ6blz54iKimLHjn//ASYIgiAIgiAIgiAIgiC8WwYOHEhSUhLffvst8fHx1KxZk4MHD+LsXDSAU3x8PLGxxf1Du7q6cvDgQT777DN+/fVX7O3tWbp0qTwQB9CkSRM2b97MV199xaxZs6hevTpbtmx5bYE4eMVgXJcuXbh79y6//fYbt27dQiaT0bNnT8aOHSvvYF4QBEEQBEEQBEEQBEF4y6py1K93wLhx4xQGBCypdB/yUDQGwuXLl8tdZr9+/ejXr1+5ZarSKwXjAKpVq8aCBQuqsi6CIAiCIAiCIAiCIAiC8J/2ysG41NRUVq5cSUREBGpqavj4+DBq1CiVHe4LgiAIgiAIgiAIgiAIggCvNM54aGgo1atXZ/HixSQnJ5OYmMiiRYuoXr36C1P/BEEQBEEQBEEQBEEQhDdEJnt3X/9PvVJm3GeffUaPHj1YsWKFfMhviUTCBx98wKRJk/jnn3+qtJKCIAiCIAiCIAiCIAiC8F/wSsG40NBQhUAcgKamJlOnTiUgIKDKKicIgiAIgiAIgiAIgiAI/yWv1EzV2NhYYajY5+Li4jAyMqp0pQRBEARBEARBEARBEIQqIJW9u6//p14pGDdw4EBGjx7Nli1biIuL48GDB2zevJkPPviAwYMHV3UdBUEQBEEQBEEQBEEQBOE/4ZWaqf7000+oqakxfPhwJBIJMpkMbW1tPv74Y77//vuqrqMgCIIgCIIgCIIgCIIg/Ce8UjBOW1ubn3/+me+++46oqChkMhnu7u7o6+tXdf0EQRAEQRAEQRAEQRCEVyWTvu0aCKW8VDBu1KhRFSq3atWqV6qMIAiCIAiCIAiCIAiCIPyXvVQwbs2aNTg7O1OnTh1ksv+/He0JgiAIgiAIgiAIgiAIwqt4qWDc2LFj2bx5M/fu3WPUqFG89957mJubv666CYIgCIIgCIIgCIIgCJUhkqneOS81mupvv/1GfHw806ZNY9++fTg6OjJgwACOHDkiMuUEQRAEQRAEQRAEQRAE4QVeKhgHoKOjw+DBgzl27Bjh4eH4+voybtw4nJ2dyczMfB11FARBEARBEARBEARBEIT/hFcaTfU5NTU11NTUkMlkSKVidA5BEARBEARBEARBEIR3ilS0ZHzXvHRmXF5eHps2baJ9+/Z4enpy/fp1fvnlF2JjYzE0NHwddRQEQRAEQRAEQRAEQRCE/4SXyowbN24cmzdvxsnJiZEjR7J582YsLCxeV90EQRAEQRAEQRAEQRAE4T/lpYJxy5cvx8nJCVdXV4KCgggKClJZbufOnVVSOUEQBEEQBEEQBEEQBKESxICb75yXCsYNHz4cNTW111UXQRAEQRAEQRAEQRAEQfhPU5PJRIhUEARBEARBEARBEAThvygjPuFtV6FMRna2b7sKb0WlRlMVBEEQXq+Zh/5421WotPmdPyI1I+1tV6NSTI1MmHFw+duuRqUt6DKW1Clfve1qVIrpwnnsuBb4tqtRaX1rteGTXYvedjUqbVnvyTzNSH7b1agUKyNztl49/rarUWkDarej6a9j33Y1KuXs+OUsO7PtbVej0j5p1p95x1a/7WpU2lftR/Jb8I63XY1KGdekL7MO//m2q1Fpczt9+K+/ZizrPZnZR/5629WotG86fvC2q/BqZNK3XQOhlJceTVUQBEEQBEEQBEEQBEEQhFcjgnGCIAiCIAiCIAiCIAiC8IaIZqqCIAiCIAiCIAiCIAj/VVIxVMC7RmTGCYIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1Uy0Uz1XSMy4wRBEARBEARBEARBEAThDRHBOEEQBEEQBEEQBEEQBEF4Q0QzVUEQBEEQBEEQBEEQhP8q0Uz1nSMy4wRBEARBEARBEARBEAThDRHBOEEQBEEQBEEQBEEQBEF4Q0QzVUEQBEEQBEEQBEEQhP8qqfRt10AoRWTGCYIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1ViNNV3jsiMEwShXI8fP+bbb78lJSXlbVdFEARBEARBEARBEP71RDBOEAAXFxeWLFnyRpenpqbG7t27K/U5c+bMoXbt2pVaRnlkMhnDhg1DR0cHMzOzl5q3qr/Tl9WiRQs2btz41j6/pM8//5yJEye+7WoIgiAIgiAIgiAI7wARjBP+1bp37067du1UvhcSEoKamhqXL19+w7WCixcv8uGHH77xz61q3333HW5ubkybNu2l532b38H+/ftJSEhg0KBB8mmlg4MymYwpU6ZgZGREYGAgAK1atWLSpElKy9u4cSMaGhqMHTtW5ef98ccf1KpVCwMDA0xNTalTpw7/+9//5O9PnTqV1atXEx0dXTUrKAiCIAiCIAiCUFFS2bv7+n9K9Bkn/KuNHj2aPn36cP/+fZydnRXeW7VqFbVr16Zu3bpvvF5WVlZv/DNfhxkzZrzyvG/zO1i6dCkjR45EXV3184bCwkLGjBnDvn37CAwMpH79+uUub9WqVUydOpXff/+dRYsWoa+vL39v5cqVTJ48maVLl9KyZUvy8vIICwsjPDxcXsba2poOHTqwfPlyhSBdVWvo5EMz11oY6ejzJDOFAxHB3E9JKLO8hro6barXo5ZDDYx09EnLzSQo6gqXHtwGwMfGlVbV62Cub4yGmjpJ2WmciQ7j6qO7r1zH7du28/f69SQlJuHq5sZnUz6jTp06ZZa/fOkySxYvIfrePSytLBk2bBh9+vVVKBN4IpA/lv/BwwcPcKhWjY/HjaVV69Yql7dm9Rp+//U3Bg4exOQpk+XTv53zDQf2H1Ao61uzJqvWrHql9Wzo5EtztxLbIvwsMS/aFu4B1HaogZF20bY4FXVZvi3qOnjSr5byOn19eAUSaeEr1bGidDu0QbtRAGr6ehTef0D2zn1IHz8ps7zhx6PRdHdVml4QfpuslesB0G7cAJ0mDVA3NwWgMOEJucdOIrn16vtWWc4dCeL03mNkpKZhXc2OriP64+pdQ2XZmFuRHN6wi6cPH1OQl4+plTkN2jWnWbe2CuVysrI5umkP4ReukpOVjZm1JV2G9cWzbs0qr/9zzV1r0bZGAMa6BsSnJ7Hz+imikh6qLPte3Y40dPZVmh6fnsiCE+sAaOLiRwNHb+yMLQGIS33MvvCz5Z4zXtbObTvYtH4DSYlJuLi58umUSdSqU7vM8lcuXWbZ4qXE3IvGwsqSocOG0qtfH/n796LusXL5Cm7fukVCfAITJ3/KgCGDFJaxa/tOdm/fSXx8PACubm6M+GAUjZs2rrL1On/kH87sO07ms32q8/v9cPF2V1n2/q1Ijm7Yw9NHxftU/XbNaNK1jUK54AOBXDh2mrTEFPSNDfBtWIf2g3uipa1VZfV+VbXs3BlSpwNe1k5YGpjy5cHfOR197W1Xq0zXA89z+chpslMzMXewpvmgLth7uKgs++DWPXb/qHyeHzrvU8zs3tx9zO1/LnPzxHly0jIxtbMkoG87bNwdVZZNuHOfY0s3KU3v8dUYTGwtAJAWFnLjaAhR52+QnZqBiY05dXq2xsHH7bWux7XAc1w+dJqs1AwsHKxpMaQrDh7K14PSHt29z/bvV2DhYMPQbz+RTy+UFBJ64BQRZ6+QmZKOmZ0lTft3wsXP47WtQwNHH5q5+mP47Pp96FZI+fdSauq0dq9HLXt3DHX0Sc/NIijqCpcfPr+XcqGFm+K91NmY61yrxL1URfwbrxml3T19hVsnLpKTnomJrSV1+rbBunq1MssXFki4eSSEmIvh5KZnoWdqiG+Hxrg19gMgLT6R6wfPkBz3mOzkdOr0bo1n64DXVn9BeBGRGSf8q3Xr1g1ra2vWrFmjMD07O5stW7YwevRoAIKDg2nRogV6eno4OjoyceJEsrKyylxubGwsPXv2xNDQEGNjYwYMGMDjx48Vyuzdu5eAgAB0dXWxtLSkT5/iHwyls7Du3r1LixYt0NXVxcfHh2PHjil95rRp0/Dw8EBfXx83NzdmzZpFQUGBQpnvv/8eGxsbjIyMGD16NLm5ueV+P6dOnUJNTY0jR45Qp04d9PT0aNOmDU+ePOHQoUN4e3tjbGzM4MGDyc7Ols93+PBhmjVrhqmpKRYWFnTr1o2oqCj5++vWrcPQ0JC7d4tvJD755BM8PDzk32vp70BNTY0//viDbt26oa+vj7e3NyEhIURGRtKqVSsMDAxo3LixwudERUXRs2dPbGxsMDQ0pH79+hw/frzcdU5MTOT48eP06NFD5ft5eXn079+fY8eO8c8//7wwEBcTE0NwcDBffvklXl5ebN++XeH9ffv2MWDAAEaPHo27uzu+vr4MHjyYuXPnKpTr0aMHmzYp3zxXFT/b6nTxbkJQ1BV+PbuDmJQE3g/ogomuYZnzDK7dHjdLB3ZdD2LxP5vZevUETzNT5e/nFORyKuoyf4TsZtnZ7Vx6cJs+fq1wtyz7Rqg8x44eY/HCRYwcNZJ1G9ZTu05tPps4iYQE1Tdyjx4+5LNPJ1G7Tm3WbVjPiJEjWPjTQgJPBMrLXA8L46sZM+ncpTN/b9pA5y6dmfHlDG7cuKG0vPCb4ezetQv3Gqp/NDdu0piDhw/KX4t/XvxK6+lnV52uPk04FXmZX85sJyY5nvfrdy1/W9RpT3ULB3aGnWLRP5vZUmpbAOQW5LHg+FqF1+sOxOm0bo5Oyybk7NpPxpLfkWZkYPjRCNDRLnOerDUbSZvzvfyV/sNSZIWFFIQVbxNpWho5B46Ssfh3Mhb/jiTyHgYjh6JuY12l9Q8LDuXAmm206tOJCf+bgYu3O2sX/EpqYrLK8to6OjTu2IoPv5nMZ4tn07pPZ45t2cuF46flZSQSCavmLSX1aTJDJn/IZ0vm0PujoRg/Cyy+DnUdPOjj34ojt8/zv5N/E5X0kI+b9MZMz0hl+e1hJ5lxcLn8NevQn2Tl53DlYfE5292yGpce3GbpmW0sCtpEck4G45r0KXc/fRknjh5n6cIlDB81glUb1lKrTi0+nzi5nOP9EV98OoVadWqxasNaho98nyU/LebUiZPyMnm5udhXs2fshHFYWFioXI6VtRVjJ4zjr3Wr+WvdauoG1GP6lKnci7pXJet1PfgSh9Zup2Xvjnz8/XScvdxZ/13Z+5SWjg4NO7Vk9JxJTFw0i5Z9OnF8yz4uHj8jL3Pt9AWObdpD635dmLhoFr0/eo8bIZc5tmlPldS5svS0dIhMesCifza/7aq80N0L1zm9+SABXVsxcPY47Gs4s2/JOjKSUsudb+j8SYxcNE3+MrFRvX+9DjGXIgjdcRy/jk3o9uVIrKs7EvjbVrKS08qdr+esD+m3YIL8ZWRd3J3I1X3/cOfMVRr0b0+Pr8ZQo1kdglbsJDnu9QVO7pwP45+NB6jfrRVDvpmAvYcLexatJf0F331edi5HV2zD0bu60nshO49x/dRFWg7tzrD5k/Br1YD9y/7myf1Hr2Udatq60dm7MUH3rvB78E7upyQwrF5nTHQNypxnYO12uFnYs+vGP/x8egtbr53gaVaq/P3sgjyCoq6w4twefjm7ncsP79C7ZstXvpeqiH/jNaO02Mu3uLIzEJ8Ojeg49X2sqlfjn9+3k5WcXuY8wav38fj2fRoM6UiXr0bTZER3jG3M5e9L8gswtDClVvcW6BqXvU0F4U0RwTjhX01TU5Phw4ezZs0aZCVGiNm2bRv5+fkMHTqU69ev07FjR/r06UNYWBhbtmzhzJkzTJgwQeUyZTIZvXr1Ijk5maCgII4dO0ZUVBQDBw6Ulzlw4AB9+vSha9euXLlyhRMnThAQoPrJilQqpU+fPmhoaHDu3DmWL1+ustmnkZERa9asITw8nJ9//pkVK1aweHFxMGDr1q3Mnj2b+fPnExoaip2dHb/99luFvqc5c+bwyy+/EBwcTFxcHAMGDGDJkiVs3LiRAwcOcOzYMZYtWyYvn5GRwWeffcbFixc5fvw4MpmM3r17I5VKARg+fDhdunRh6NChSCQSDh8+zB9//MGGDRswMCj74jZ37lyGDx/O1atX8fLyYsiQIXz00UdMnz6d0NBQAIXtkpmZSZcuXTh+/DhXrlyhY8eOdO/endjY2DI/48yZM/JgX2mZmZl07dqVmzdvcvbsWZVlSlu1ahVdu3bFxMSE9957j5UrVyq8b2try7lz57h//365y2nQoAFxcXEvLPeqmrr6cenBLUIf3OJpVioHI4JJy82koZOPyvI1LB1xMbdjXeghopIekpqTyYO0p8SmFgedo5PjCX8cw9OsVJKz0wm5f4PHGUm4mNm+Uh03bdhIj5496NmrF66urkyeMhkbGxt2bN+hsvzOHTuxtbVl8pTJuLq60rNXL7r36M6Gv/+Wl9m8aTMNGjZgxMgRuLi4MGLkCOo3qM/mjYo/GrOzs/l61ixmzJyJsZGxys/T0tLCwtJS/jIxMXml9Wzm6s+luOJtceD5tnAue1u4mtuzNvTgs22RwYO0JwrbAkAGZObnKLxeN50WTcg9HkTB9XCkCU/I3rQDNW0ttOvUKnMeWU4OsoxM+UvLozoUFJB/rTgYJwm/jeTWHaSJSUgTk8g9dBxZfj6azqozQV7Vmf0nqNemCfXbNsO6mh3dRgzAxNKM80f/UVne3tWRWs3qY+Noj5m1BXVaNKRGLR9iIiLlZS4FBpOTmcV7X4zF2as6ZlYWuHi5Y+fy+n5YtXavR0jMjWfHYDI7r58iJSeDZq6qt0OuJJ+MvGz5y8nMBj0tXc7dL94G60IPcTr6Gg/TnvI4M4VNl4+hpqaGp1XVbIPNGzbRrWd3uvfqgYurC59O+QxrG2t2b9+psvzuHbuwsbXh0ymf4eLqQvdePejaoxub/i7u+9Pb14fxn35Cu47ty8wYa9aiOY2bNcHJ2QknZyc+Gj8WPX09wq8rB+hfRfCBE9Rt05iAtk2xrmZLlxH9MLYw48LR0yrL27s64t80QL5P1W7eAHd/b+7fKt6n4u5G4+TpRq1m9TGztsC9ljd+Terx6F7Z17o36VzsTVac30vQvatvuyovdPXoWXya18O3RQDm9tY0H9wVQ3MTrp+6UO58+sYGGJgYyV9lZda/DuGBF3BvXIsaTWphYmtJ/X7t0Dcz5vbpK+XOp2ukj56xofxVss73LtzEr0NjHHyrY2Rpimfzuth5uxIeePG1rcflo2fwbVGPmi3rY25vTcsh3Yq++8Dz5c4XuHYXno1qYaciE/BWyBXqd2uJay1PTKzN8W/TCOeaNbh8+IyKJVVeExd/Lj+4zaUHt3malcqhWyGk52bSoIx7KXfLariY27H+0mHuPbuXepj2lLgS1++Y5HginhTdS6XkZHDu2Xnc2fTV7qUq4t94zSjt1slQ3Br5Ub2JPya2FtTt2wZ9MyMiz1xVWT4+PJonUXG0GNsXW08XDC1MsHC2w9LNQV7GwtmO2r1a4VzPG3VNjddS73eaTPbuvv6fEs1UhX+9UaNG8eOPP3Lq1ClaP2uatmrVKvr06YOZmRmffvopQ4YMkfcFVqNGDXmTwt9//x1dXV2F5R0/fpywsDCio6NxdCy6wKxfvx5fX18uXrxI/fr1mT9/PoMGDeKbb76Rz1erluoL3PHjx4mIiCAmJoZq1Yp+rC1YsIDOnTsrlPvqq6/kf7u4uDBlyhS2bNnC1KlTAViyZAmjRo3igw8+AGDevHkcP378hdlxz8s2bdoUKGraO336dKKionBzK2qu0K9fP06ePCkPEvbv319h/lWrVmFra0t4eDg1axY1w/rjjz/w9/dn4sSJ7Ny5k9mzZ78wy2zkyJEMGDAAKMoEbNy4MbNmzaJjx44AfPrpp4wcOVJevlatWgrf67x589i1axd79+4tM5gaExODjY2NyhvpuXPnYmRkRHh4ONbWL87AkUqlrFmzRh6oHDRoEJMnTyYyMhJ396LsqtmzZ9OnTx9cXFzw8PCgcePGdOnShX79+inUwcHBQV6/0k2qK0tDTR17Yyv+KfVDKTLxAU5mNirn8bZ25mHaU5q71qKOgwf5hQVEPL7P8bsXy8y2crNwwNLAlMO3y7+xVqWgoIBbt24xfMRwhekNGjXkeliYynmuX79Og0YNFaY1atyIvXv2IpFI0NTU5HrYdQYPGaxYplEjNm9SDMb9+L8faNq0KQ0aNmD1StVNTy9fukyn9h0xNDKkbt26jB33Mebm5irLluX5tgiKUvwRFfn0QZk33t42LjxMe0oLt9rUdvCgoLCAiMcxHLujuC20NbT4ovVQ1FEjPiOJY3cuEJ+e9FL1exnq5maoGxshuVMcNKCwEElUDJouTuSfq9iPOu2G9ci/ch3yC1QXUFNDq1ZN1LS1kdyvuuCDRCLh0b1YWvbqqDDd3d+b+7crliX1KDqO2Nv3aD+ou3xaxKUwnGq4sXflZsJDr2FgbEjtpvVp0avja/kBr6GmjqOpDcfuKH7ftx7fx9XCvkLLaORck9tP7pOSk1FmGW1NTTTUNcgqePE15UUKCgq4c+s2740YpjC9fqOG3Ai7rnKem9dvUL/U8d6gcUP279knP95fVmFhISePB5Kbk4uvv99Lz19a0T4VR/OeHRSmu9fyJu5OxfepuDv3aDuweJ9y8qzOtdMXeRAZQzV3F5IfJ3Lnyk3qtGxU6Tr/f1IokfDk/iPqdmmhMN3Rx52EyPLPLZu/+ZXCAgnmdtYEdG9FNa/X25zzuUJJIclxCdTsoLit7b1deBqtuknhc/v/txppgQQTW0v8OjXB1qP43qJQIkFdS/GY0dTS5ElUXNVVvoRCiYQnMY8I6NJSYbqzrzvxUWU/hLx5+hKpT5Lp+OEALuw7qfR+YYEEDS3FwLumthaP7sZUSb1LKrp+W3Jaxb2Uo6nqeykva2cepT2lmWstatvXIL+wgFtP7nPibmjZ91Lm9lgamHD0TnxVrwLw77xmlFYoKSQlLgGfdg0Uptt6uZBYxnHx8EYk5o423DpxgZiL4Whqa2HvVx2/Ls3QfAea+wuCKiIYJ/zreXl50aRJE1atWkXr1q2Jiori9OnTHD16FIBLly4RGRnJhg0b5PPIZDKkUinR0dFK2VERERE4OjrKA3EAPj4+mJqaEhERQf369bl69SpjxoypUP0iIiJwcnKSB+IAGjdW7rtm+/btLFmyhMjISDIzM5FIJBgbGyssp/QAAo0bN+bkSeWbl9L8/f3lf9vY2MibwpacduFC8VPj2NhY5s6dy/nz50lMTJRnxMXGxsqDcWZmZqxcuZKOHTvSpEkTvvzyy5euB4Cfn5/CtNzcXNLT0zE2NiYrK4tvvvmG/fv38+jRIyQSCTk5OeVmxuXk5CgFWJ/r0KEDx48fZ8GCBRUa6fXo0aNkZWXJA6eWlpZ06NCBVatWsWDBAgDs7OwICQnhxo0bBAUFERwczPvvv89ff/3F4cOH5T/O9fT0ABSaA5eUl5dHXl6ewjQdHZ0X1hFAX1sXDXV1MvMUM6Uy83Iw1NZXOY+ZvjHOZrZIpIVsuHwEfW1devg0R19bh53Xg4rroKnNtNbvoamujlQmY1/4mTL7HClPamoqhYWFmJsrNv2xMDfnXKLqgFJSUhIWpYJh5uYWFBYWkpqaiqWlJUlJSZhblCpjYU5SUvEyjx45yu1bt1m9bk2Z9WvcpAlt2rXFztaOR48e8cfy5YwfO461f69DW7vsJpmllbUtMvKzqaGj+umxub5R8ba4VLQtevo2R09Ll53XTwHwNCuFHWEnSchIRldTiyYufnzUuBfLTm8nKbv8pkyvSs24qOmJNCNTYbo0I1Pe19uLaDg6oGFnS/aWXUrvqdvaYDTxQ9DUhPx8slZvRPr4aaXr/Vx2eiZSqRRDE8VmOUYmRtxNLf87+37sdLLSM5EWFtK2fzfqt20mfy/5cSL3nt6mVrMGjJg+nsT4J+xduYVCqZS2/bpWWf2fM9DRQ0NdnYw8xa4VMvKyMdZRfXyXZKxjgI+NK2tDD5Zbrodvc9JyMrn9pPIB0TT58V76+DUjqYzmnElJSTQ0NytV3lzheK+oqMhIxo78kPz8fPT09Fjw4/e4ur2436oXKd6nFLNrDU2MyEgtu+kUwI8fz5TvU637dyWgbVP5e/5NA8hOz+SvrxchQ4a0UEqD9s1p0atDOUsUSsvJyEYmlaJvrNhsTt/EgOwbmSrnMTA1ovXwnli5OFBYIOF2yFV2/7Sa3l+MwsGz8vvMi+RlZiOTytA1UmxVoGtkQG666u5U9EwMaTS4E+ZOtkgLCrl38QbHlm2iw6dDsHF3AsDe242IwIvYuDtiZGlG/O0Y4sLuKrQiqUplffd6JkZk3VDdN1pKQiJntx+m//SPUNdQnaXkVLMGV46cwcHDBVNrc2Ijorh3JQLZs/vSqiS/fpfKOs/Mz8GojHOtuZ4xTs+u3xuvHEVfS5fuvs3Q09Jl942S91JafNHqPTTVNZDKpOwPP/tK91IV8W+8ZpSWn5Wj8rjQMTIgN0P1cZGZmMrTew/R0NKk2Qe9yMvMIXTbMfKzcmk4tLPKeQThbRPBOOE/YfTo0UyYMIFff/2V1atX4+zsTNu2RR1uS6VSPvroIyZOnKg0n5OTk9I0mUyGmppaudOfB1YqQtWNT+nlnzt3Tp5p17FjR0xMTNi8eTMLFy6s8OeUR6vEU0U1NTWF/59Pk5a4senWrRuurq6sWLECe3t7pFIpLi4u5OfnK8z3zz//oKGhwaNHj8jKylIIHlakHmVNe16XL774giNHjvDTTz/h7u6Onp4e/fr1U6pHSZaWlqSkpKh8r23btkycOJGePXtSWFio0DRXlVWrVpGcnKwwYINUKuXKlSvMnTsXjRI3jzVr1qRmzZqMHz+eM2fO0Lx5c4KCguTZmsnJRT9AyxrY4rvvvlPItISirDsa2pVbx5JK72lFX6fqG+/nu+DWa4HkSYq+z4O3Qhhcpz17b56RP9HNl+Tzy9nt6Gho4WbhQGevxiRnpxOd/GpPdEsfWmUdb2XN8Px4UpxaukzxvvQ44TGLFi5i6S9Lyw1utu/QXv53dffqePt407NbD86eOUvrNqoHgyiP0rZATcXUku/BlqsnirdFRDCD63Zg783TSKSFxKU+IS61eNCE+ykJjG/Wj8YuNdkffval66eKVt1a6Pcr7msx86/1z1amVL3V1CrcpEC7YQCF8QkUxin/6JA+TSRj4a+o6emi5e+L/uC+ZP72V5UG5IqqW2r/KJpY7jwffjuF/Nw84u5Ec3jjbixsrajVrCjzVyaTYWBsRO+PhqKuro6DmzMZKWmc3nvstQTjFOr9Cho6+5BTkEfYo8gyy7StEUC9al4sPb21SvshVPruZeV/9crlnx/v5W+v0pycnVm9cS2ZGZmcCjzJ/DlzWfbnb1USkHtWoVL1VK57aR988xl5uXk8uBvD0Y17sLC1wr9pUfcW0TfvELTrMN1GD6RaDReSE55ycM12DHcconVf8SOy0mQobbPnzGytMLMtvi7buTuRmZLGlSNn30gw7jmlfbycOpvYWCj0aWfl5kBWSjrhxy/Ig3H1+7UjZNMh9s5dAWpgZGlG9Ub+RJ1TnYleVZSOA5lM5WpIpVIO/7GFRr3aYWZbdqC95ZBunFizi/UzFoOaGibW5vg0q0v4mctVW3EFimdbNdTKvOQ9X99tYYHkSYqyvw/fCmFg7fbsDy95L1XAb8E70NbQws3Cnk5ejUjOSSfmFe+lXn4tKu5tXjOUlN55ZGUfGM/vJxsN74a2XtH9Xh1Ja86u2kO9/u1EdhyArOqD2ELliGCc8J8wYMAAPv30UzZu3MjatWsZM2aM/AJZt25dbt68KW9W+CI+Pj7ExsYSFxcnz44LDw8nLS1NnkXn7+/PiRMnFJpUvmh5jx49wt6+KD08JCREoczZs2dxdnZm5syZ8mml+xbz9vbm3LlzDB9e3Mzv3LlzFVqnl5GUlMT169f57bffaNiwqMlQUFCQUrng4GB++OEH9u3bx5dffsknn3zC2rVrq7Qup0+fZsSIEfTu3Rso6vMtJiam3Hnq1KlDQkICKSkpmJmZKb3fvn179u/fT/fu3ZFKpfzyyy8qf0QlJSWxZ88eNm/ejK9v8QhTUqmU5s2bc+jQIbp166ayDj4+RX2LlBwk5MaNG2hpaSksq6Tp06czefJkhWk6Ojp8G7im3PUFyM7PpVAqxUhHMUhsoK1XZr9iGbnZpOdmyYM/AE8zU1BXU8NE14Ck7KIsDxmQ/Ozv+IwkrA1NaelW56WDcaampmhoaChkrAEkp6QoZbY9Z2FhoVQ+JSUZDQ0NTExN5WWSS5dJTpZn5Ny6FUFKcjIjhr0vf7+wsJArV66wfes2TgefUQiqPmdpaYmtnR1x5WRhqlLWtjDU1lPKlnsuI095WzyRbwtDlZlvMuBh6lMs9F+tXztVCm5GkHG/RBOmZ80C1Y2NKCyRHaduaICsjCfTCrS00K7tR86RE6rfLyxEmlQUpC588AgNx2roNG9Czvaq6bRe/1kfSqUzljLTMpQym0ozty76cWjr5EBGWjontu2XB+OMTE3Q0FRXaJJq5WBLRmr6KzenLE9WXg6FUinGOooZAkY6+qTnqc60LamRc00uxoVTWMZNeBv3enTwaMAvZ3fwKD2xSupsUsbxnvLC4z1ZqXzR8f5y+7mWlhbVnl2/vXy8iQiPYNumLUyd+eIM7vI836cyS+1TWekZShmYpZmV2KcyU9MJ3HZAHow7sXU/tVo0kGfL2To5kJ+Xz94/N9Ky9+tp/vxfpGekj5q6Otnpillw2elZShlb5bF1c+T2uTczWqyOoT5q6mrklMpAzs3MUsoKKo+ViwP3Lt6U/69rpE/rD/tSWCAhLysHPRNDruw5haGFaVVVXcHz7z4rTbFZY056Jvomyt99QW4eT2Ie8jQ2nlN/7wOeBd9lMpaO/oreU0bi6FMdfWNDuk8chqSggNzMbAxMjTm77QjGlsr3d5X1/PpdukWBgbYumfmqz7XF1+/ibhieZqairqaGsa6B/P6p5L1UQkYSVgZmtHCr/VqCcf/Ga0Zp2gZ6qKmrKWWH5mVmo2ukOrtPz8QQPRNDeSAOwNjGAmSQk5qpMMCJILwrxNVd+E8wNDRk4MCBzJgxg0ePHjFixAj5e9OmTSMkJITx48dz9epV7t69y969e/nkk09ULqtdu3b4+/szdOhQLl++zIULFxg+fDgtW7aUD9Iwe/ZsNm3axOzZs4mIiOD69ev88MMPZS7P09OT4cOHc+3aNU6fPq0QdANwd3cnNjaWzZs3ExUVxdKlS9m1S7FZ16effsqqVatYtWoVd+7cYfbs2dy8eZOqZmpqirm5OcuXLycyMpITJ04wZcoUhTIZGRkMGzaMTz75hM6dO7Nx40a2bt3Ktm3bqrQu7u7u7Ny5k6tXr3Lt2jWGDBmikMGnSp06dbCysuLs2bKzhdq0acOBAwdYu3Yt48ePV5m9uH79eiwsLOjfv788661mzZr4+/vTrVs3+UAOH3/8MXPnzuXs2bPcv39fHjC1srJSaI58+vRpmjdvXmZWpY6ODsbGxgqvijZTLZRJeZT+FHcLxQ7k3S2rEZvyWOU8samPMdLVR1ujOHBgaWCCVCYlLbe8QIsaGuov3+mtlpYWXl5eXDiv2In2hfMX8CvRfLkkPz8/pfLnz53H28dbHvDw8/fjfOky58/LlxlQvz4bN29i/Ya/5S9vH286durE+g1/qwzEQVEzuyePH79U0zgosS0sFZukuls6cD9V9Sh291MSVGwL02fbQnXTKgA7YwsyKnBjXWF5+UiTkotfj58gTc9A06PECHcaGmhWd0ES8+IgpXbtmqCpQcGlqxX7fDVQq8IOlTU1NbF3cyIyLEJhemRYBM6eL9EflKyor7DnnD3dSEp4qnAuSox/gpGZSZUH4qBon4pLfYyXtWImt6e1M9FJ5Y8o6G5ZDWtDM0JiVA9e0LZGAJ28GvF78C6FDscrS0tLCw8vTy6eV+yzKPT8BWqW0Xebr19NQksdyxfPXcCrxPH+ymQypdHJX0XRPuVIVNgthelRYbdw9Kj4PiWjqI+t5wry8lFTU7wlV1dX///cp/Ur0dDUxNrZnribihk9ceGR2Lort4Qoy9PYeJUBpNdBQ1MDc0db4m/FKEyPvxWDlauD6plUSH7wGD0T5eCdhpYm+qZGyKRSYq/extG/RmWrrJKGpibWLvbElvruY8Mjsauu3E+utq4OQ+dOZMg3E+Qvv1YNMLO1ZMg3E7CtrngN1dTSwtDMBGmhlMhLN3Cr8+IBuF5W0fU7keqWit97dctqZZ4fY1MSMNI1ULh+Wzy7l0ov515KTQ00X+FeqiL+jdeM0jQ0NTBztCXhtmJiQsKt+1iWcVxYujqQk5ZJQV7xg82MJ8moqamhZ/pmjmdBeFkiGCf8Z4wePZqUlBTatWun0PzU39+foKAg7t69S/PmzalTpw6zZs3Czk518z81NTV2796NmZkZLVq0oF27dri5ubFlyxZ5mVatWrFt2zb27t1L7dq1adOmDefPq+7UXl1dnV27dpGXl0eDBg344IMPmD9/vkKZnj178tlnnzFhwgRq165NcHAws2bNUigzcOBAvv76a6ZNm0a9evW4f/8+H3/88at+XWXS0NBgy5YtXL58mZo1azJ58mSl5rKffvopBgYG8n7TfH19+d///sfYsWN5+LDq+sBYvHgxZmZmNGnShO7du9OxY0fq1q37wvqPGjVKoY9AVVq1asXBgwdZv349H3/8sVJAbtWqVfTu3VtlRkLfvn3Zv38/jx8/pl27dpw7d47+/fvj4eFB37590dXV5cSJE1hYFDcj2bRpU4X7GXwVZ6OvU8/Ri3rVPLEyMKWLV2NMdA25EBsOQAePBvTzL25uee3RXbLz8+jj1worQ1NczOzo5NWISw9uy5sctHCrTXULB8z0jLA0MKWpix91HGpw7ZHq/l9eZPDQIezZvYe9e/YSHR3N4oWLeJyQQJ++fQD49ZdfmfP1bHn5Pn37kBAfz5JFi4mOjmbvnr3s3bOXoe+9Jy8zcNAgLpw/z7o1a4mJiWHdmrVcOH+BQUMGAWBgYEB19+oKLz1dPUxMTajuXhRkys7O5uclP3M9LIxHjx5xKfQSUyZPwcTUlJatW730ep6JDiOg5LbwboKJnhEX7j/bFp6qt0Vf/9ZYG5rhYmZHZ+9GXIor3hZt3OtRw7IaZnpG2BlZ0MevFXbGFvLt+7rk/ROMbtuWaNX0Rt3WGv1BfZDlF5B/pThrRH9wX3S7tFeaV7tBPQpuRCDLVs4I1O3cHg1XZ9TNTFG3tUG3czs0q7uSf7lqs1GadWtL6ImzhAYG8+RBPAfWbCMtMYUG7ZsDcGTjbrb9skZePuTwKSJCw0iMf0Ji/BMunQzm9L5j1G5e3Il0ww4tyM7IYv+abSQ+esyty9c5teswjTq2LP3xVeZk5CUau/jRyNkXGyNz+vi1xFzfiDPRRd9Xd59mDKvXSWm+xs41iU6OJz5DuV/GtjUC6OrdhA2Xj5KUnYaRjj5GOvpoa1RNU55BQwezf/de9u/ZR0x0DEsXLuFxwmN69S3KdF7+y2/M/bq4aX6vvr1JiE9g2aKfiYmOYf+efezfs4/B7w2RlykoKODu7TvcvX2HggIJT58+5e7tOzyIK87o/OPX37l25Srxj+KJiozkj1+Xc+XSFTp0UhzI41U16dqWS4HBXDoZzJMHCRxcu520xGQatC/qV/Doxj1s/6U4S/z8kSBuXbpOUvwTkuKfcPlkCGf3HadWs+J9yrOeHxePnSbsbCgpTxKJDIvgxJZ9eAX4vRNZcXpaOtSwrEYNy6IHPvbGltSwrIaN4buXaVK7Q1PCT18i/PQlkh894fTmg2Qmp1GzZVFma/COoxz7a7u8/NVjwdy7HE7q40SSHj4meMdRoi7dxL/Nmxs8w6dNAyKDrxEZco20hEQu7jhOVnI6Hs3rAHB5zynOrtsnLx9x8iKx1+6Q/iSZ1PinXN5zitirt/FqUU9e5mnMI2Kv3iYjMZXHkXGc+HUrMpkM33YNlT6/qtTt0Iyb/4Ry859Qkh89IWjTATKS0vBrXbSvn912hCMrih7aqqmrY1nNVuGlb2yAhpYWltVs0dIp6qs1ISqOyNAbpD1J5uGdaHYvWo1MJiOg1CAdVSU4Jox61byo61B0/e4sv5cqeqjT3qM+ff1aycuHxUeSk59Lb79WWBmY4mxmS0fPhlwu817KhCYuftS293jle6mK+DdeM0rzah3AvZAw7oVcJy0hics7A8lOSce9WdHAbtf2/sO59Qfk5Z0DvNE20OPChkOkxSfyJDKOa3uCcG3kJ2+iWigpJOXBY1IePEYqKSQnLZOUB4/JeKq6e5v/HKns3X39PyWaqQr/GY0bNy6zY9r69evLB3RQpXTTRycnJ/bsKb+pVJ8+fejTp0+Flufh4cHp06cVppWu6w8//KCUXfd8BNjnZsyYwYwZMxSm/e9//yuzjq1atVL6nBEjRihkDgLMmTOHOXPmyP9v164d4eGKP/JLLmfVKuXRKCdOnKjQL1/p76B0PVxcXJSmla6vi4sLgYGBCmXGjx+v9NmlTZo0CV9fX+7fvy8fuVRV89YWLVqQkVHcpOLUqVPyv8PKGOETirb98yyLvn370rdv33Lrc+DAATQ0NOjXr98L6/6qridEoa+tQ+vq9TDS1edxRjLrQg+R+iyzykhHHxPd4ieD+YUSVl88QHefpoxr0ofs/DxuJEQpjL6lraFFD9/mmOgaUFAo4WlWKtuuneR6QtQr1bF9h/akpaWx6q+VJCYm4la9Oot/XiwPjCclJvI4ofhJq72DA4t/XsKSRYvZvm07llaWTPl8Cm3atpGX8a/lz9z58/jj9+X8sfwPqlWrxvzvFsgHGqkIdXV1oiIjOXTgIBkZGVhaWlIvoB7zFyzAwKDizYSeux4fhb6WLm3cAzDS0edxZjJrLx4ssS0MMNUrbtKWXyhh9YX9dPNtxrimRdvienwUx+4UZwnpaunQy68lRtr65EryeZSeyJ/n9vIg7YnS51elvJOnUdPSQq9vD9T0dCmMfUDmn2ugxJNndVNTpT7k1C0t0HRzIfOP1SqXq2ZkiMGQfqgZGyHLyaUw/jFZK9YiufNq+1ZZ/JsEkJ2RReCOA2SkpGPjaMf708djZlUUKM9ISSO1xIACMpmMI5t2k/IkCXV1dSxsreg4tBcN2jWXlzG1NGfUVxM5sHYbS7+Yh7G5KU07t6ZFr6oJ9qhy+eEdDLT16OTZCGNdA+LTk/g9eJd8pDsTXQPM9BSbSepqalPbvgY7rp9SuczmrrXQ0tDkg4bdFaYfjAjh0K0QlfO8jLYd2pGWlsaav1aRlJiEa3U3fvx5Ibby4z2p1PFuz48/L2TZop/ZuW0HllaWTPr8M1q1LQ5cJz5NZOTQ4ibnm9ZvZNP6jdSuW4df/vwNgOSkZOZ+/Q1JiUkYGBpSvUZ1Fi5dTP1GiqPyvSq/JvXIzsji1I5D8n1q2JfjMH22T2WmppGWVPzDTiaVcWzjHlKeFu1T5jZWdBjSk4B2xYOCtOxT9KP4xJZ9pCenYWBsiGc9P9oNUtw2b4uXlTO/9C7uRmFis6IR1w9GhDA/sGq7p6isGg38yM3M5uK+k2SlZWDhYEO3T4fJmzVmp2aQkZwqLy+VFHJ222EyU9LR1NLC3MGabp8Ow8Xf843V2aWeN3lZOYQdOktOehamdpa0GdcfQ/Oi5tk56ZlkJRc3jZZKCrm8K5DstEw0tDSLyn/cHwff4ixmaYGEq/v/ISMxFS0dbRx83Wg6vBva+qoHuKoKHg39ycnK5vzeQLKfffc9P3tf/t1npWWQkZT6UsuUFBQQsusYaU9S0NLVxsXfk45jBqCjX/G+m1/GjYR76Gvp0sq9btH1OyOZ9ZcOybPUDXX0MdFTvJdaE3qArt5NGdukDzn5udxIuMfxu8X3UloamnT3aYbxs3upxKxUtocFciOhYiMwv4p/4zWjNKe6XuRl5XDjSDC5aVmY2FnSYmxfDEoeFynF9/BaOtq0Ht+fS9tPcPSn9Wgb6OFUxxO/rsXn2py0TI78sE7+/63Ai9wKvIiVuyNtJw6q8nUQhBdRk72uYXUEQRDeoj179mBubk7z5s1fXPg127p1K87OzvI++F7GzEN/vIYavVnzO39EasbrGfHzTTE1MmHGweVvuxqVtqDLWFKnfPW2q1EppgvnseNa4IsLvuP61mrDJ7sWve1qVNqy3pN5mqF6hNR/Cysjc7ZePf62q1FpA2q3o+mvY19c8B12dvxylp2p2i4v3oZPmvVn3jHVDyP+Tb5qP5Lfgne87WpUyrgmfZl1+M+3XY1Km9vpw3/9NWNZ78nMPvLX265GpX3T8YO3XYVXknH79WVjVpaR5+tpQv+uE5lxgiD8J/Xs2fNtV0FuwIABb7sKgiAIgiAIgiD8fyVysN45b78jCkEQBEEQBEEQBEEQBEH4f0IE4wRBEARBEARBEARBEAThDRHNVAVBEARBEARBEARBEP6rRDPVd47IjBMEQRAEQRAEQRAEQRCEN0QE4wRBEARBEARBEARBEAThDRHNVAVBEARBEARBEARBEP6rpNK3XQOhFJEZJwiCIAiCIAiCIAiCIAhviAjGCYIgCIIgCIIgCIIgCMIbIpqpCoIgCIIgCIIgCIIg/FeJ0VTfOSIzThAEQRAEQRAEQRAEQRDeEBGMEwRBEARBEARBEARBEIQ3RDRTFQRBEARBEARBEARB+K8SzVTfOSIzThAEQRAEQRAEQRAEQRDeEBGMEwRBEARBEARBEARBEIQ3RDRTFQRBEARBEARBEARB+K+Simaq7xqRGScIgiAIgiAIgiAIgiAIb4gIxgmCIAiCIAiCIAiCIAjCGyKaqQqCIAiCIAiCIAiCIPxXyaRvuwZCKSIzThAEQRAEQRAEQRAEQRDeEDWZTCZ68hMEQRAEQRAEQRAEQfgPyrga9rarUCaj2v5vuwpvhWimKgiC8A679vDO265CpdVy8OBxeuLbrkal2Bhb8te5vW+7GpX2QaMepC35/W1Xo1JMJn3MP1GX33Y1Kq1F9bos+WfL265GpU1qMZD0LTvfdjUqxXhgHzJi4952NSrNyMmRZWe2ve1qVMonzfrT9Nexb7salXZ2/HKGbpzztqtRaRuGzOF/gevfdjUqZVqbYf/6dYCi9Zh56I+3XY1Kmd/5I7ZdO/G2q1Fp/Wu1fdtVeDUiB+udI5qpCoIgCIIgCIIgCIIgCMIbIoJxgiAIgiAIgiAIgiAIgvCGiGaqgiAIgiAIgiAIgiAI/1EyqWim+q4RmXGCIAiCIAiCIAiCIAiC8IaIYJwgCIIgCIIgCIIgCIIgvCGimaogCIIgCIIgCIIgCMJ/lRhN9Z0jMuMEQRAEQRAEQRAEQRAE4Q0RwThBEARBEARBEARBEARBeENEM1VBEARBEARBEARBEIT/Kpn0bddAKEVkxgmCIAiCIAiCIAiCIAjCGyKCcYIgCIIgCIIgCIIgCILwhohmqoIgCIIgCIIgCIIgCP9VUjGa6rtGZMYJgiAIgiAIgiAIgiAIwhsignGCIAiCIAiCIAiCIAjCf0ZKSgrDhg3DxMQEExMThg0bRmpqapnlCwoKmDZtGn5+fhgYGGBvb8/w4cN59OiRQrlWrVqhpqam8Bo0aNBL108E4wRBEARBEARBEARBEP6rZLJ39/WaDBkyhKtXr3L48GEOHz7M1atXGTZsWJnls7OzuXz5MrNmzeLy5cvs3LmTO3fu0KNHD6WyY8aMIT4+Xv76448/Xrp+os84QRAEQRAEQRAEQRAE4T8hIiKCw4cPc+7cORo2bAjAihUraNy4Mbdv38bT01NpHhMTE44dO6YwbdmyZTRo0IDY2FicnJzk0/X19bG1ta1UHUVmnCAIAKxZs4ZDhw697WoIgiAIgiAIgiAI/0/k5eWRnp6u8MrLy6vUMkNCQjAxMZEH4gAaNWqEiYkJwcHBFV5OWloaampqmJqaKkzfsGEDlpaW+Pr68vnnn5ORkfHSdRTBOOFfwcXFhSVLlrzR5ampqbF79+5Kfc6cOXOoXbv2S81z6tQp1NTUym3PXtV27tzJDz/8QKNGjV5p/hEjRtCrVy/5/61atWLSpEnlzlNV2zQwMBAvLy+kUmmll/U6PHnyBCsrKx4+fPi2qyIIgiAIgiAIwv9HUtk7+/ruu+/k/bo9f3333XeVWt2EhASsra2VpltbW5OQkFChZeTm5vLll18yZMgQjI2N5dOHDh3Kpk2bOHXqFLNmzWLHjh306dPnpesomqkKr1X37t3Jycnh+PHjSu+FhITQpEkTLl26RN26dd9ovS5evIiBgcEb/cx31b179/jqq684dOgQZmZmVbLMnTt3oqWlVSXLepGpU6cyc+ZM1NWLni2sWbOGSZMmKQQzIyIiaN++PQ0aNGDTpk3o6Ohw8uRJfvzxR86fP09OTg4uLi507tyZyZMn4+DgoPAZnp6eREdHEx0drfTevXv3mDlzJkFBQSQnJ2NpaUm9evX48ccf8fDwwNrammHDhjF79mz++uuv1/pdHNlzgL1bdpKalEI1FydGjB+Dt7+vyrIpScms+30l9+5EkfDwEZ17d2fEhDFK5bIyM9m0cj0XToeQlZGJtZ0Nw8aOpm6jgCqp865tO9n090aSE5NwcXPlk8kTqVWndpnlr166wi9LlhFzLxoLS0uGDB9Cz7695e/v27WXIwcPcS8qGgBPL0/GjP8IH18fheU8ffKU5ct+43zIOfJy83B0cmTarOl4entVyXpdORHMxYOnyEzLwNLehjZDe1DN0+2F8z24E83m75ZjWc2GEXMnK7yXm5XD6R2HuBt6g9zsHEwszWk9uBtutbyrpM5l0WkUgHZNH9R0dShMeExO4GmkySllltfy8US/Qxul6WnL/oTCQgCMRg1FvcRNzXN5126Qe/J01VUeOLn/KEd27CctORV752oM/HA4HjVVb+fLZy9w6sAx4u7dR1Igwd65Gt2H9qVmvVryMmePBbFm8XKleX/bvRYtbe0qrXtJN05e4OqRM2SnZWJmb0XTgZ2x93BRWfbh7Wj2/rRaafqgbz/BzM4KgPB/QrkdcpXkR08AsHK2p2Hvdti4Vntt6wAgk8lYcfIEuy5dICMnB99qjkzt1pPq1jYVmv/o9WvM3LaZll4+/DSkuN+X7RfOsePieeJTi/ZNNytrRrdqS1MP5WYor1LnP9evY9eBg2RkZuDr5cW0TyZS3cWl3PlOnP6H5WvW8CA+nmp2dowbOYrWzZrJ38/Kzmb5mjWcPHuGlNRUPN3dmTJuHL6exftndk4Oy/76i6Dgs6Slp2NnY8ug3r3o1125/5rKuh54nstHTpOdmom5gzXNB3Upcx97cOseu39cpTR96LxP5fvYu6SWnTtD6nTAy9oJSwNTvjz4O6ejr73tasm1q1Gfrt5NMNUz4mHaE9ZfOsztp7Fllm/i4kc376bYGlmQXZBL2KNINl45SmZ+DgCtq9elmWstHE2LfohGJ8ez5doJ7iW93geDEUGhXD8WQk5aJqZ2VjTs3wHbGk4qy8bfieHQ4r+VpveZPRZTW0v5/3nZuVzac5L7V2+Tn52DoaUpDfq2x7Gmu1iHcjR08qGZay2MdPR5kpnCgYhg7qeUHYDQUFenTfV61HKogZGOPmm5mQRFXeHSg9tKZf3sqjOodjvCH0ez4fLR17YO548EcXrvcTJT07CuZkeXEf1x8Vb9ncXciuToht08ffiYgrx8TK3Mqd+uGU27tZWX+WvOYmLC7yrN61HHl+HTx7+29RBebPr06UyerHjfq6Ojo7LsnDlz+Oabb8pd3sWLF4Gi5JrSZDKZyumlFRQUMGjQIKRSKb/99pvCe2PGFP9mqlmzJjVq1CAgIIDLly+/VFxDBOOE12r06NH06dOH+/fv4+zsrPDeqlWrqF279hsPxAFYWb17N4pvi5ubG+Hh4RUqW1BQUKEgm7m5eWWrVSHBwcHcvXuX/v37l1nm4sWLdO7cmZ49e/Lnn3+ioaHBH3/8wbhx43j//ffZsWMHLi4uxMbGsm7dOhYuXMiiRYvk8585c4bc3Fz69+/PmjVrmDlzpvy9/Px82rdvj5eXFzt37sTOzo4HDx5w8OBB0tLS5OVGjhxJgwYN+PHHH6ss4Kn0XZw8zZpf/+KDT8fiWdOH4/sOs+DLOSxe/SuWNspPhQoKCjA2NaHPewM4sH2PymVKCgqY98UsjE1NmTznSywsLUl6+hRdff0qqfOJo8dZtuhnJk+bQs1a/uzduZupn37Ouq1/Y6OiD4ZHDx8xddLndOvVna++/Zob18JY9L+FmJiZ0qpNawCuXLpM2w7t+dS/Jto6Omxat4HPJ3zG2i1/Y2VddNxnpKcz/oOx1KlXlx9+XoiZmRmPHjzE0MiwStbr1vmrBG7YS/vhvXHwcOHayXNsX7iSUd99jrFF2ds/LzuHg39uxtnHnax0xVT3QomEbT/+ib6xIT0mDMPI3JSM5FS0dVXfqFQV7YDa6NSpRfbRQKSpaeg0qItBn+5krN0EBQVlzifLyysqo7AShfI/MzftgBI3QuoW5hj27UHB3agqrf/FoBC2/LmOoeNG4e7jSdCh4yz9+nu+Wf4TFtaWSuXv3IjAp44fvUcMQt9An7PHgvjlmx+ZsXguTtVd5eX09PWY++cihXlfZyAu8uJ1zm45RPOh3bBzd+Jm0EUOLP2bQd9MwMjCtMz5Bs+diLZe8T6ia1T8EOrR7RhqNPDHtrojGlqaXD1yhv2L1zHwmwkYmikHSqvKujP/sDHkDF/37oeThSWrgk4yYe1Ktk+cgkEZN97Pxaem8PORg9RxdlF6z9rYhAntO1LN3AKAA1cv8/mm9fz98ScVDvSVZe2WLWzcsYPZn3+BU7VqrNy4gfHTprFj9WoMyjgfhoWHM2PePMaOGEHrps04efYMX86by8rFS6jpXRRAn7doIVExMXw77UusLCw4eOI446ZOZdvKVVhbFu2fi37/jdBr1/j2yy+xt7Hl3KVQ/rd0KZYWFrRq0rRS61XS3QvXOb35IC3f6y7fx/YtWceQuRPL3ceGzp+ksI/pGb2bDzr1tHSITHrAwVvBLOg89m1XR0EjJ1+G1e3E6tAD3HkaSxv3AKa2eo+pB34lKTtNqbyHlRMfN+rN35ePcPnhbcz0jRlVvxsfNOzBktNbAPC2cSHk/g3WhcaRL5XQzbspX7YexrQDv5KS8/JNqSriXuhNzm87SuNBnbGp7sit05c5+usm+nw9FkNzkzLn6zvnY7R0S56nio+pQkkhR5ZuQNfIgDYf9sXA1IjMlHSF8mIdlPnZVqeLdxP23TzD/ZQE6jv58H5AF34+vZW03EyV8wyu3R4DHT12XQ8iKTsNQ2091NWUG9GZ6hrS2asR0cnxr63+ANeDQzm4ZjvdPxiEk6cbF4+fYd2CX5m4eBamlsq/M7R1dGjYsSW2zg5o6+hw/1Yke1ZsQltXh/rtih6CDPn8QwolEvk82RlZ/PrFAmo2fvO/RQVFOjo6ZQbfSpswYcILRy51cXEhLCyMx48fK7339OlTbGzKvy8oKChgwIABREdHExgYqJAVp0rdunXR0tLi7t27LxXbEM1UhdeqW7duWFtbs2bNGoXp2dnZbNmyhdGjRwNFQZUWLVqgp6eHo6MjEydOJCsrq8zlxsbG0rNnTwwNDTE2NmbAgAFKB9vevXsJCAhAV1cXS0tLhdTR0k0k7969S4sWLdDV1cXHx0ep40aAadOm4eHhgb6+Pm5ubsyaNYuCUj9Gv//+e2xsbDAyMmL06NHk5ua+8Ds6ePAgHh4e6Onp0bp1a2JiYpTKvOz387x57B9//IGjoyP6+vr0799fqenr6tWr8fb2RldXFy8vL4Wof0xMDGpqamzdupVWrVqhq6vL33//TWFhIZMnT8bU1BQLCwumTp2KrNQoOKWbqT558oTu3bujp6eHq6srGzZsUKrzokWL5MNIOzo6Mm7cODIzVd8wPLd582Y6dOiArq6uyvcDAwNp06YNI0eOZOXKlWhoaPDgwQMmTpzIxIkTWbVqFa1atcLFxYUWLVrw119/8fXXXyssY+XKlQwZMoRhw4axatUqhXUNDw/n3r17/PbbbzRq1AhnZ2eaNm3K/PnzqV+/vrycn58ftra27Nq1q9z1qYz923bTpnN72nbtSDVnR0ZMGIOltSVH96ruB9Da1oaREz6kZYc26Buo/jEZeOg4memZfDF3Jl41fbCytcbLzxeXEkGJyti6cQtde3ajW68euLi6MHHKJKxsrNm9XfX3tGfnbqxtbZg4ZRIuri5069WDLj26suXv4qDP1/Pm0Lt/H2p4euDs4swXM6chlUm5dDFUXmbD2g1Y21gzffZMfHx9sLO3o16DAByqVU1GUOjhf/BrUR//Vg2xsLehzdCeGJmbcvVESLnzHV2zA5/GdbB3d1Z67/o/F8nJzKbXxBFU83DFxNKMah6uWDvZV0mdy6JTx5/ci5eQREUjTUom52ggalqaaHvVeOG8suwchZfCezm5Cu9publQmJpG4YNHZSzt1RzbdYBmHVrTvFMb7JwcGPTR+5hZWRB0QPkcDzDoo/fp1L8Hrh7VsXGwo8+IQVjb23Lt/GXFgmpqmJibKrxep2vHgvFqVhef5vUws7Oi2aAuGJoZczPoYrnz6RkboG9iJH89zyAGaDemHzVbN8DSyQ4zOytaDu+JTCbjYcS917YeMpmMTSFnGdmiNW18auJuY8ucPv3JLSjgSNjVcuctlEqZtX0LH7Zuh72Z8g+xFl7eNPXwwtnSCmdLK8a164i+tjY34srOLqpwnek0VbEAAQAASURBVHftZOTgIbRp3hx3V1e++WIquXm5HA4MLHO+TTt30LBePUYOHoKLkxMjBw+hQZ06bNy5E4DcvDwCT59m4pgx1PX3x9HBgY+Gv4+DrR3b9+2VLycsIoJu7TsQUKs29ra29OnajRrVqxNx506l1qu0q0fP4tO8Hr4tAjC3t6b54K4Ymptw/dSFcufTNzbAwMRI/iq5j71LzsXeZMX5vQTdu/q2q6Kks1djTt27zKmoyzxKT+Tvy4dJyk6jXQ3VGejuFtV4mpXKkTvneZqVyp2nsQRGhuJmXnw9+C14J8fvXuR+agLx6Yn8dWEv6mpq+Nq+OEP7Vd04cR6PJrXxbFYHUztLGg3ogIGZMbf+uVTufLpGBuibGMpfJfehu8FXycvKod3Y/thUd8TQwhRbdycsqlUuwP5fXgeApq5+XHpwi9AHt3ialcrBiGDScjNp6OSjsnwNS0dczO1YF3qIqKSHpOZk8iDtKbGpir+t1FCjf602nLgbSkp2+murP8DZ/YHUa9OEgLZNsa5mR9cR/TGxNOXC0X9Ulrd3daRWs/rYONpjZm1B7RYNqVHLm5iISHkZfUMDjExN5K+osFto6WhTs9H/k2CcTPruvl6CpaUlXl5e5b50dXVp3LgxaWlpXLhQfB07f/48aWlpNGnSpMzlPw/E3b17l+PHj2NhYfHCOt28eZOCggLs7Oxeal3ezSum8J+hqanJ8OHDWbNmjUIQY9u2beTn5zN06FCuX79Ox44d6dOnD2FhYWzZsoUzZ84wYcIElcuUyWT06tWL5ORkgoKCOHbsGFFRUQwcOFBe5sCBA/Tp04euXbty5coVTpw4QUCA6psaqVRKnz590NDQ4Ny5cyxfvpxp06YplTMyMmLNmjWEh4fz888/s2LFChYvXix/f+vWrcyePZv58+cTGhqKnZ2dUkpraXFxcfTp04cuXbpw9epVPvjgA7788kuFMi/7/TwXGRnJ1q1b2bdvn3wo5/Hji1OwV6xYwcyZM5k/fz4REREsWLCAWbNmsXbtWoXlTJs2jYkTJxIREUHHjh1ZuHAhq1atYuXKlZw5c4bk5OQXBplGjBhBTEwMgYGBbN++nd9++40nT54olFFXV2fp0qXcuHGDtWvXEhgYyNSpU8td7j///FPmdt21axddu3Zl5syZ/Pjjj/Lpz/e9spZdsnPOjIwMtm3bxnvvvUf79u3Jysri1KlT8vetrKxQV1dn+/btFJbI+lGlQYMGnD5dtc3vnpMUFHDvTiS1AuooTPcPqMPtmxGvvNxLweep4evFyp+XM6bvMKaMGs/ODVuRvmBdK6KgoIA7t25Tv2EDhen1GzbgRtgNlfPcvH5DqXyDRg25FX4LSYknnSXl5eYikUgUnmidPX0GT28vvv7yK3p06MrooSPYt2uvyvlfVqFEQkLMQ1xqeihMd6npwcPI+2XOd/2fi6Q+SaJJr/Yq34+8Eo69uzPH1+3i10++YfWMnzi378Rr7StRzdgIdQMDJPcfFE8slCJ58AgNuxeMHqWlhdGo9zAaPQz9Hp1Rt1LOQpNTV0fLqwYFN29VTcWfkRRIuB8ZjU9df4XpvnX8iYqoWCBDKpWSl5OLQamsybycXKa9/wlfDBvP0tk/EPusWfTrUCiR8PR+PI4+1RWmO/q6kxBVfqBp27e/s/bzH9i7cDUPb5UfZJPkFyAtLETHQK/SdS7Lw5QUkjIzaOReHMzV1tSkrosrYXFlHx8Af506gZmBAT3r1S+3HBQF7o5ev0ZOfj5+jqqbl1W4zgnxJCUn0yigXnGdtbWp6+9PWPjNMucLCw+nYb16CtMaBQTI5yksLKRQKkVbSzGjUkdHm6s3is+BtX1r8k9IME8SE5HJZIRevUrsgwc0LuPa9yoKJRKe3H+Eo69i8y9HH3cSIsvfxzZ/8yurJn/P7h9X8eAF+5igTENdA1dze67HK2YFX0+Iooalo8p57ibGYa5vTC37ouPIWNeABo4+XH2k3PzuOR0NLTTU1MnKyymzTGUUSgpJio3H3kcx2Ofg7caTew/KmKvIngUr2DRtCYeW/E387RiF92LD7mDtVo3gzYfZOHUxO7/9g2uHzryWa99/YR0ANNTUsTe2IjJRsc6RiQ9wMlMdAPS2duZh2lOau9ZiWuv3+KzFQDp5NkJTXUOhXBv3emTn56psulqVJBIJj+7F4l6qGw53f29ib1fsPPMoOo7Y29G4+pT98PBSYDB+Teq99lYGwtvh7e1Np06dGDNmDOfOnePcuXOMGTOGbt26KYyk6uXlJf8tK5FI6NevH6GhoWzYsIHCwkISEhJISEggPz8fgKioKL799ltCQ0OJiYnh4MGD9O/fnzp16tC06ctlrItmqsJrN2rUKH788UdOnTpF69ZFTclWrVpFnz59MDMz49NPP2XIkCHyTKoaNWqwdOlSWrZsye+//66U9XT8+HHCwsKIjo7G0bHoRmX9+vX4+vpy8eJF6tevz/z58xk0aJBCe/JatWqhyvHjx4mIiCAmJoZqzzJjFixYQOfOnRXKffXVV/K/XVxcmDJlClu2bJEHdZYsWcKoUaP44IMPAJg3bx7Hjx8vNzvu999/x83NjcWLF6OmpoanpyfXr1/nf//7n7zMjz/++FLfz3O5ubmsXbtWvk7Lli2ja9euLFy4EFtbW+bOncvChQvlGYOurq6Eh4fzxx9/8P7778uXM2nSJIWswiVLljB9+nT69u0LwPLlyzly5EiZ63jnzh0OHTqkMKz0ypUr8fZWvMCWzKRzdXVl7ty5fPzxx+UGNGNiYrC3V84MyszMpH///syYMUMpuHn37l2MjY0r9ORi8+bN1KhRA1/fon7XBg0axMqVK+X7sYODA0uXLmXq1Kl88803BAQE0Lp1a4YOHYqbW6mbOQcHrly58sLPfBXpaelIpVJMzEwVppuYmZKanPrKy30cn8DTK2E0a9eK6d/NJv7BI1YuXY60sJB+wwdXqs5pqakUFhZiVqpJs7mFGclJSSrnSU5KxrxUM08zc3MKCwtJTU3F0lI54LP8l+VYWVlRr0HxD9f4h4/Ys2M3A4YM5L2Rw4m4Gc7PCxejpa1Fp66dlZbxMnIyspBJpRiYGClMNzAxJCtNddOglISn/LPtIINnjkNdQ0NlmbSnScRGpODTuA59J48m5XEix9ftQlooLTOAV1nqzzImZdnZCtNl2TmoGZfdpFeanErO0UAKE5NR09ZGp44fhgN6kblhG9JU5SZXWtVdUdPRIT+8aoNxmelFx4WxqWLTIiMzE9JSlOuhyrGdB8jLzSOgefHgNraO9oycPBYHFydysnM4secQ//t8Dl//8j02Di/3RLQicjOzkUml6Jf6zvWMDMhOU509rG9iRMthPbBytqdQIuHOuWvsXbSWnp+PLLMPsHM7jmFgakw1n9eXOZOUWXQMmBsorou5gSEJ5QxadO1+DHsvh7Lh44nlLj/ycQKjVvxOvkSCnrY2Pw5+D7dKNlFNetY/ooWp4rnHwsyMeBXNX+TzpaRgYaY8T1JK0fIM9PXx9/Hhrw1/4+rkhLmZGUdOnuTGrVs4luib9Ivx45m3eBFdBg9CQ0MDdXV1vvpsMrVr+lVqvUrKyVC9j+mbGJB9Q/U+ZmBqROvhPbFycaCwQMLtkKvs/mk1vb8YhYNn1WRP/39gpKOPhro6abmKrR3ScrIwsVN9nr2bGMdvwTv5pGk/tDQ00VTX4NKDW6wNPVjm5wyq3Y7knAxuJLyegGleZjYyqUypmXK55yljI5oO7YKFkx1SSSGR569z6Oe/6fLZMGxrFGWIZySmEn87BrcGNekwfhDpT5IJ2XIYqVRKna4txDqoqpO2Lhrq6mSWCrxm5uVgqK26JYSZvjHOZrZIpIVsuHwEfW1devg0R19bh53XgwBwMrWhnqMnv5zZUeV1Li07PROpVIqh0r2UMZmp5Wfk/TB2BlnpmUgLC2nTvysBbVUHRx5ExvA47hG9P36vyuotvHs2bNjAxIkT6dChAwA9evTgl19+UShz+/ZtefdCDx48YO/eogf0pQdhPHnyJK1atUJbW5sTJ07w888/k5mZiaOjI127dmX27NlolHEfXxYRjBNeOy8vL5o0acKqVato3bo1UVFRnD59mqNHizr8vHTpEpGRkQpNF2UyGVKplOjoaKWgTUREBI6OjvJAHICPjw+mpqZERERQv359rl69qtCxYnkiIiJwcnKSB60AGjdurFRu+/btLFmyhMjISDIzM5WybSIiIhg7VrEfksaNG3Py5MlyP7tRo0YKnUiW/uyX/X6eU7VOUqmU27dvo6GhQVxcHKNHj1b4niQSCSYmij9cS2aepaWlER8fr1BHTU1NAgIClJqqllzH52We8/LyUhoe+uTJkyxYsIDw8HDS09ORSCTk5uaSlZVV5mAbOTk5KoORenp6NGvWjBUrVjB48GCF76iinXZCUdDwvfeKL9LvvfceLVq0IDU1VV7/8ePHM3z4cE6ePMn58+fZtm0bCxYsYO/evbRvXxwk0dPTI7tUUKOkvLw8pSG8K9p3wnNK6yWTUcFVVUkmk2FsZsJHk8ejrqGBm4c7KUnJ7N2ys9LBuOdK11kmU93Zqrw8pd+TlTEdNq7bwImjx1i6/BeF71IqleLp7cWH44uOVw9PD2LuRbNnx65KB+NKVFSxljJUbgupVMr+5Rtp2rsD5rZl92Upk8rQNzKkw8h+qKurY+tajczUNC4eDKqyYJyWZw302raU/5+158CzD1dVobKXU5jwmMKE4iBF9qN4DIf2R7tWTXKDzip/bk0vJDGxyLLKPj4qQ+l7r+A54Pyps+zdsIPxX09RCOhV96pB9RLNdN19PJg7cQaB+44weOyIKqq1CiqqXNZ6mNlaYlai83Db6k5kJqdx9ehZlcG4K4dPE3nhOj2/GIlmFQ6+c+jaFb7bt1v+/+Kh7z+rt2I5GahcP4CsvDy+3rGVGT36YPqCgZecLSzZ8PEnZOTmEhh+gzk7t/PHqDEvFZA7dOIEC5YUZ70vmTf/WZ1Ln6sqsh+pOL+V+P/baV/y7U8/0XnwIDTU1fGsUYNObdpw625xhtPm3bu4HhHBom/nYmdjw+WwMP63bCmWFuY0rKuYeVflZEqrIGdma4VZiXOWnbsTmSlpXDlyVgTjXoGs1ElVTY0yz7MOxlYMr9eZXTeCCIuPwlTPkCG1OzCqQTdWnFfO8u7m3ZTGzn7MO7GGAqnqLPKqonScqJj2nImtBSa2xc2/rN2qkZWSzvVj5+SBLJlMhq6RAU2HdkVdXR1LZzuy0zK4fuzcawlk/VfW4Xm9SypaBdU71fPV23otkDxJUfbPwVshDK7Tnr03z6Cupk7/Wm3Yff0fsgte3AVPlVG+gKu+mSrhg28nk5+bR9ydaI5u3IO5rRW1milnVIcGBmPjaE81d5eqq++7rozfav9l5ubm/P238iArJZX8Devi4lLmb9rnHB0dCQoKqpL6iWCc8EaMHj2aCRMm8Ouvv7J69WqcnZ1p27ZodBupVMpHH33ExInKT7ydnJSbl5R1A1xyup5exZvZqDrgSi//3Llz8ky7jh07YmJiwubNm1m4cGGFP6ein13ay34/ZXm+TmpqavLU+BUrVsiz1Z4rHdGv7Kizz9exvB8t9+/fp0uXLowdO5a5c+dibm7OmTNnGD16tFK/fCVZWlqSkqI8qqOGhga7d++mb9++tG7dmsDAQHx8ivrJ8PDwkAcVy8uOCw8P5/z581y8eFGh2XJhYSGbNm3i448/lk8zMjKiR48e9OjRg3nz5tGxY0fmzZunEIxLTk4ud+CQ7777TmlkoNmzZ9N7zJAy53nO2MQYdXV1UkuNcJmWmqaULfcyTM3N0NTUVMjWcnCqRmpyCpKCgkr9aDcxNUVDQ0MpCy4lOUUpW+45cwtzkpKSlcpraGhgUir7adP6jfy9eh2Lfl1C9RqKTa8sLC1wcXNRmObs4kJQ4KlXW5kS9IwMUFNXJytVMQsuOz0TfWMjpfL5OXkkRD/g8f1HHF+/G3h2zMhk/DRyGv2/GIOzjzsGpsaoa6gr9ENjYWdDVloGhRIJGpqVv5wX3ItRCKLxbLurGegrZMep6esp9QH3IoUJT1BXsS+qGRmi6ViN7P1lZ9e+KkPjouOidBZcRmo6xqbld8R7MSiEdT//yUfTP8WnTvkZSOrq6rjWcOPJw7JHqasMXUN91NTVlTIzcjKy0DOu+PnZxs2RO+eUR4+8euQMlw+epvvk97Go9oLmxy+phZcPNasVPzjLf9bEPSkzE0uj4m2QkpWJhaHqLKAHyUk8Sk1hysZ18mnSZ9eVRnNmsn3iZPmgDVqamjhaFAUhfRyqEf7wAZvPBTOjR2/lBZdV58aNqelVPJpp/rNrUGJKMpYl+o1JTk3FvJwBeYqy4BTPV8mpKQrzVLO3589Fi8jJySErOxtLCwumz5uL/bMBbHLz8vh11Sp+mjOHZg2LsjNruLlxJyqKv7dtq7JgnJ7Rs30sXXEfy07PUsqWK4+tmyO3VexjQtky8rIplEox1VX8no11DcrsaL+HbzPuJMZyICIYgLjUx6yWHGB2+1FsuxZIaon5ung1oYdvc74LXEdcatmZnJWlY6iPmrqa0j6U+5LnKStXB6IuXJf/r29iiJq64rXPxNaSnPRMCiWFaGi+XBZKef4L6wCQnZ9LoVSKkY7ibyEDbT35aLulZeRmk56bJQ/EATzNTEFdTQ0TXQO0NbQw1zfmvXqd5O8/v6//tuMYlpzeQnIV9iGnb1zU717pLListAylbLnSzJ8NzmTr5EBmWgYntx1QCsbl5+Vz/WwobQd2q7I6C8KrEH3GCW/EgAED0NDQYOPGjaxdu5aRI0fKT+J169bl5s2buLu7K720VYxO5+PjQ2xsLHFxcfJp4eHhpKWlyTOg/P39OXHiRIXq9nx5jx4VdxweEqLY0frZs2dxdnZm5syZBAQEUKNGDe7fV+zfxtvbm3PnzilMK/2/qs9+0Twv+/08p2qd1NXV8fDwwMbGBgcHB+7du6e0TFfXsp9om5iYYGdnp1BHiUTCpUtld2zr7e2NRCIhNLS4A/3bt28rDCYRGhqKRCJh4cKFNGrUCA8PD4W6l6VOnTpljgSro6PDzp07adCgAa1bt+bGsz54+vXrh7a2Nj/88IPK+Z7Xa+XKlbRo0YJr165x9epV+Wvq1KmsXLmyzDqpqanh5eWlNMDGjRs3qFOnThlzFQ3pnZaWpvCaPn16easvp6mlhZuHO2GXFJvBhl26iqev6szJivCs6UPCw3iFfk3iHzzCzMK80tkzWlpaeHh5EnpesQP60AsXqelfU+U8vn41Cb2gWP7i+Qt4+XihWSIYtWn9BtatXMOPSxfi5aO8/n61/Im7r9gPUlxsrMoRXF+WhqYmti4O3L+p2HfP/Zt3cFAxMIOOng4j5k/h/bmfyV+1WzfC3M6K9+d+hl31ooC7Qw0XUp8kISuxLVIeP8XA1LhKAnEAFBQgTUsvfiWnIM3KQtOpxMAW6upoVrOnMP7lAk/qVpbIVAw6o+3rhSwnB0l0+f2FvQpNLU2c3V2JuBKmMD38ynWqe3uUMVdRRtzqxb/zwRcT8G/w4k6dZTIZsffuv7ZBHDQ0NbFytuNBhGKfUg/Co7CtXvEHMomx8eiX+hFz5cgZLh0Iouunw7B2cShjzldnoKODo4Wl/OVmZY2FoRHnI4uPjwKJhMsx0fg7Kh8fAC6WVmwa/yl/f/yJ/NXC05t6Lm78/fEn2BiXPcKhTAb5ZfQnWWad9fVxdHCQv9ycnbEwN+f8peJBPAoKCrgcFoa/j2+Zy/H38VGYB+D8pUsq59HT08PSwoL0jAxCQkNp+axjaYlEgkQiQa3UiIbqGupIpVWX4aChqYm1sz1xNyMVpseFR2LrXvF97GlsPPomVTMq9f8XhdJCopMfUdNWsU9IP9vq3E2MUzmPtoaW0sNc6fMO0Es8+Ozq3YTeNVvww8m/iU6u2sFxStPQ1MDCyY5HEYr9Zz6KiMbareKDIyXHJSgEgK3dqpHxNAVZif09/UkyeiaGVR7E+i+sA0ChTMqj9Ke4WyjW2d2yGrEpqgOysamPMdLVR1uj+H7C0sAEqUxKWm4WT7NS+fn0Vn45u13+uvUkhuikR/xydjtpOeUPuPayNDU1sXdzIjJMsd/jyLBbOHm+RFcKMpnKPoVvhFyiUCKhdvMGKmYShDdHZMYJb4ShoSEDBw5kxowZpKWlMWLECPl706ZNo1GjRowfP54xY8ZgYGBAREQEx44dY9myZUrLateuHf7+/gwdOpQlS5YgkUgYN24cLVu2lDeFnD17Nm3btqV69eoMGjQIiUTCoUOHVHba365dOzw9PRk+fDgLFy4kPT2dmTNnKpRxd3cnNjaWzZs3U79+fQ4cOKA0aMGnn37K+++/T0BAAM2aNWPDhg3cvHlTqe+wksaOHcvChQuZPHkyH330EZcuXVIaefZlv5/ndHV1ef/99/npp59IT09n4sSJDBgwANtnAYc5c+YwceJEjI2N6dy5M3l5eYSGhpKSksLkyZPLXO6nn37K999/T40aNfD29mbRokVKo7SW5OnpKe88888//0RTU5NJkyYpZC9Wr14diUTCsmXL6N69O2fPnmX58uVlLvO5jh07Kg04UZK2tjY7duxgwIABtGnThhMnTuDn58fixYuZMGEC6enpDB8+HBcXFx48eMC6deswNDTk+++/Z/369Xz77bfUrKkYGPrggw/44YcfuHbtGjKZjNmzZzNs2DB8fHzQ1tYmKCiIVatWKWTTZWdnc+nSJRYsWFBmXV9mSG9VuvXvxbLvFuHmWQMPHy+O7z9M4uOntO9e1Oxy44q1JCcmMWF68baNiSzqOyY3J5f0tDRiIu+hqalJNZeiH18denTm8K79rPllBZ16dyPh4SN2bdxG595V8yRxwJCBzJ89F08fL3z9arJv1x6eJDymZ9+iLJY/fvmdxKeJzPxmFgA9+/Ri19Yd/LJ4Kd169eDm9Rsc2LOfr+fPkS9z47oNrFy+glnzZmNrZ0dSYlHmnZ6+Hvr6RX2l9B88kHGjP2L96rW0bteWiJvh7Nu1l89nlD9gSEUFdGrBgT82Y+v6f+zddXQU59fA8e9u3N0IIR5ICBYgOASHIkUKxdsCVSiltIW2VKhAlVJv+VG0uENxCO4aLMETCBAh7rr7/hHYsMkGS0KA937O2XOS2eeZvbOzM7N755HqVPNx5+SOQ6QlplCvXVH37t1LN5CenEq31weiUCpxKNEaydTSHD0Dfa3l9ds14/i2fYQuWEtQxxYkxyZw8L/tBHVsWSExlyX3xCmMg4NQpaSiSknFqHEQ6vwC8s4VJ1NMOrVDlZlJ7r5DABg1aVTUVTU5BYWRIUb166DnYEfOjtITmBgG1CIv/HyldZ3o2LsbM6f+gbuvF961/Ni9KZSkWwm0ea4DACtnLyI5MZkR778F3E7ETf2LF18fhlctX1Jvj7loYGSomXV47YLleNXyxamaM9lZ2Wxfu4nrV64y+K1XKmUbAOp1bE7ozJU4uLvi7O1G+O6jpCelUrtN0d3+gyu3kpmcRvsRRWN5nty2H0s7G2yqOaIqKOTCoZNcOR5O5zcHaNZ5YtMeDq/ZToeRL2Bpb03W7TENDYwMMaikwawVCgUDm7Vg9p6dtxN0dszZvRNjAwM6162vKff5iqU4WFoyumMXjAwM8HHSPkbMbw9PcPfyP7ZuprmvH05W1mTl5bLl9EmOR13h16Hl2y8KhYKBvfswe9FCatxO0M1etBBjI2O6tGunKffZd9/iaG/P6BFF48YO6N2H18a9y5zFiwlp3pyd+/dz6PhxZk77WVPnwJEjqFHjXt2N6Js3+fV//8PdzY2enYtan5ibmRFUty6/zPgfRkaGuDgWdVPdsHUr75YYFqO86ndqwdZ/luPoUfQZO7v7KBlJqQTe/oztX7GFzOQ0Oo58AYCwrfuxtLPG1tWRwoJCzh88yeVjZ+n6VsUMYVDRTAyMqG5V3Dq9mqU9vvbVScvJJC6jdAv7x2njuQO82awPkUk3uZgQTTufhtiZWhF6segm5ov12mNjasnfB4q+d564cYERTXrQ3qcRp2IuY2NizpCGXbiUcJ2U7KLjuLt/C16o25Y/9q/gVmYKVrdb3uUU5Gm1fqpIge2bsHvOGuzdXXD0rM75vcfJSE6lVquimxpHV28nMyWdNi8/D8DZ0EOY21ljXc0BVUEhlw+fJurEOdq99oJmnbVaNyR851EOLttMQEhj0uKTOLlpHwFt7z+Ry//XbQDYF3maF+q15UbaLa4lx9HYzR8rY3MOXyu6gd3JLxhLYzOWnyoaSufkzYuEeAfRp04IoZeOYmZgQpdaTTl2/TwFqqIWzfEljpOc/DydyytKi+7tWP7bXFy93HHz8+Totn2kJiTTuGMrALYsXE1aUgovjH4ZgIObdmFtb4O9a9F14eq5y+z9bxtNu4aUWvex7fvxb1wPU4v/ZzcPKvAmjqgYkowTj82IESOYOXMmnTp10upeWbduXXbt2sXEiRNp1aoVarUab29vrdlR76ZQKFi9ejVvv/02rVu3RqlU0qVLF63EVEhICMuWLeOrr77i22+/xdLSktatdY/LoFQqWbVqFSNGjCA4OBgPDw9+/fVXunQpbor9/PPP8+677zJ69Ghyc3Pp1q0bn376KZMmTdKUefHFF7l8+TITJkwgJyeHvn378uabb95zcoMaNWqwYsUK3n33Xf7880+Cg4OZMmUKw4cPf+T35w4fHx/NTK1JSUk899xzWpMhjBw5ElNTU3744QfGjx+PmZkZderU0ZpIQZf33nuPmJgYXn75ZZRKJcOHD6d3796agS91mT17NiNHjqRNmzY4OTnx9ddf8+mnn2qer1+/Pj/99BPfffcdH330Ea1bt+abb75h2LBh94xlyJAhTJgwgfPnz2vNinM3AwMDli5dysCBAzUJubfeegs/Pz9+/PFHevfuTXZ2Nh4eHnTv3p1x48axdu1aEhMT6d27dNcmX19f6tSpw8yZM/nss8/w8PDgiy++ICoqCoVCofn/3Xff1dRZs2YNNWrUoFWrVvfcnvJo3rYV6WlprJi3mOSkJNw83Pnom89xcHYEIDkpiYT4W1p1xr/2jubvKxcusTd0Fw5OjvyxqKjln72jA598/yVz//yHD0a+ja29HV379KDXgL4VEnP7Th1IS01j7j+zSUxIxNPbi+9+/hHn2zN1JiYkEndXt8lqrtX4/ucf+W3ar6xathI7B3veeX8sIe3aasqsXr6S/Px8PpvwidZrvfzqcIa/NgIA/9r+TP7hG6b/8Tdz/5mDczUX3h73Dp26dq6Q7arVpD7ZGVnsX7ONzJQ07F2d6TtuBFb2Rd3TMlLTSH/IiTUs7azp98FIdiz8jzmf/IS5tSUNO7UkuFvb+1cuh7yjYSj09TFp1wqFkRGFsfFkrloHd3UfV1qac/c4NAojQ0zat0Fhaoo6L4/CW7fIXL6GwjjtGZT1a1RHaWlR4bOo3q1xm2ZkpKezbuFKUpNSqObhxpgvJmDnVPSjPCU5haRbCZryuzeGUlhYyMI/Z7Pwz9ma5c06tGb4uKKu6dmZWfz76z+kJadgYmaKm7cHH3z/GZ41tbtDVySfxnXIycjm2LqdZKamY1vNkW5jhmBhZw1AVko6GUnF52BVQSH7l20mMyUNfQMDbKo58NyYIbjXKW4ReHbnEVQFhWz5e4nWazXqEULjnu2oLMNatiY3P5/v1q0hPSeb2q5u/DZsOGZ33YyITU154LE970jKzODzlUtJSE/H3NgYHydnfh36Ck18yp5J70G99OKL5Obl8u1vv5Kenk5gLX9+//ZbzEyLB0OPjY9HeVcLtnq1azN54if8NWc2f8+dQ3WXanwz8RMC7xrDNCMrk99nziQ+IQFLCwvatWzFqOGvaLX0nTLxE/6YOZNPv/mGtPR0nJ2cePOV4fTt3qPc23U33+A65GRkceS/HWSmpmPn6kT3d4Ziefu8lZWSrnXeUhUUsm/ZJjKSiz5jtq6OdH9nKB51dV+Lq1otB3d+7118M2pMy34AbIg4wOTtZd/UexwOXjuLuZEpvQPbYG1izvXUeH7YuYCErKJj2trEAjvT4haguyPDMDYwpJNfMIODOpOVl8PZuEgWh23VlOng2xgDPX3GttL+rrji9E5Wnt5ZKdvh1ag2uZnZhK3fQ1ZaBjYuDnQaNQDzO+ep1Awy7zpPFRYWcnjlNrJS0tEz0MfGxYGOowbgFlh8LjW3taLLmEEcWraV1V//D1NrC2q3bUydzs1lG+7hdOxlTA2NaOvdEAtjU+LSk5h3dKOmC7OFkakmQQuQV1jA7CPr6RHQgrea9yErL5czsZfZeuFIWS9R6eo0b0RWeiY7VmwgPTkNJzcXhn70FjYORcMFpCenkZJQnAhUq1VsWbSG5PhElEolts4OdBrci8YdtG9aJtyM4+q5y7z8yduPdXuE0EWhfpBBq4QQT5VJkyaxevVqwsLCqjqUSjd+/HhSU1OZPn16VYdSpuDgYMaOHcugQfcf/62kkzcuVEJEj1c9Vz/i0hLuX/AJ5mRpzz8HSw+M/bQZ2bQnqT//VdVhlIvV2DfZffn4/Qs+4Vp7B/Hz7iX3L/iEG9v6RdKWrKzqMMrF8sU+pF/T3SXwaWJRw43f9i6r6jDK5e2W/WjxR8W2+qsK+0b9zeCFk6o6jHJbMGgS323/t6rDKJcJ7YY+9dsARdsxceOT+133QUzu+jrLTj7YMEJPsn712ld1CI8kbff+qg6hTJatKy85/SSTMeOEEE+1iRMn4u7uTuHtgcGfNPHx8bzwwgsMHPhkdt0RQgghhBBCPOPUqif38f+UdFMVQjzVrKys+Pjjj6s6jDI5OjrqHKtQCCGEEEIIIcT/T9IyTohn0KRJk/5fdFEVQgghhBBCCCGeNtIyTgghhBBCCCGEEOJZJVMFPHGkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKJd1UnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lkls6k+caRlnBBCCCGEEEIIIYQQj4kk44QQQgghhBBCCCGEeEykm6oQQgghhBBCCCHEs0qtquoIRAnSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lmlktlUnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lmllm6qTxppGSeEEEIIIYQQQgghxGOiUKslRSqEEEIIIYQQQgjxLErbHFrVIZTJsnP7qg6hSkg3VSGEeIIdijpT1SGUWxOPQFLSU6s6jHKxtrDindXTqjqMcvul17ukfPxlVYdRLtZTPuPLrbOqOoxy+6zjcEYu/aaqwyi3f/p/RNqmbVUdRrlYdunAyRsXqjqMcqvn6sfXW2dXdRjl8knHVxi8cFJVh1FuCwZNosUfb1R1GOW2b9TfDF86parDKJdZ/T9m/LrfqzqMcvu+++in/nvIL73eZcL6P6s6jHL7rttbVR3Co5E2WE8c6aYqhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGsUqmqOgJRgrSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGskm6qTxxpGSeEEEIIIYQQQgghxGMiyTghhBBCCCGEEEIIIR4T6aYqhBBCCCGEEEII8axSSTfVJ420jBNCCCGEEEIIIYQQ4jGRZJwQQgghhBBCCCGEEI+JdFMVQgghhBBCCCGEeFapVVUdgShBWsYJIYQQQgghhBBCCPGYSDJOCCGEEEIIIYQQQojHRLqpClGB5syZg5OTE127dq3qUIQQQgghhBBCCJlN9Qkkybj/Rzw8PBg7dixjx459bOtTKBSsWrWKXr16PfLrTJo0idWrVxMWFvbAdXbu3Enbtm1JTk7G2tr6kV/7YaxcuZLvv/+effv2PVL9l19+mZSUFFavXg1ASEgI9evX5+effy6zTkXs07v3UVRUFJ6enpw4cYL69es/8jofREV9Hrdv385bb71FeHg4SuWT19g3Pj6e2rVrExYWhqura6W+1rb/NrFh2RpSk5JxdXdj8BuvULNOgM6yR/YeZPu6zVy7EkV+fj6u7m70HtKfuo0aaMpcj7rGynmLibp0hYS4Wwx6/RW69OlerhiXL1vO/H//JTEhEU8vL959710aNGhQZvnjx47z87SfibxyBXsHe4YOHUqfF/pqldkeup3pf0/nxvXruFavzptvvUFI27ZaZeLj4/njt9/Zv38/uTm51HCvwcRPP8Hf3x+AJo2Cdb7+6DFvM3TY0IfezpaedWnn0whLYzNi0xNZeXoXVxJv6Cw7KKgTTWrULrU8Ji2Rb7fPA8DZwo7n/JtR3doRO1MrVp7eya7LJx46rkdh3L4Nho2DUJgYUxh9g6y1G1HF37pnHYWxEcad2mEQUAuFiQmq5GSyN2yl4MKlogKGhph0DCl63tyMwpuxZK/bTOGNmxUe/4XdxwkPPUx2agbWLvY07NseRx83nWXjLlxj26+LSi3v/slIrJztAFAVFnJ2y0GuHDpDVko6lk62NHg+hGoBXhUe+91CvIPoXLMJ1ibm3Ey9xeKwbVxMuK6z7CuNu9HCs26p5TdSb/H55n8A+CBkEDUd3UuVOXXzEr/uXVaxwd9FrVYzY9MGVu3fR3p2FrXdPRj/Qn+8XaqVWWf7yTDmbN1MdMItCgoLcXNwYEjb9jzXuInO8rO3bubPdWsZ0KYt7/V5ocK3YfOa9axdspKUxGSqe9Tg5VGv4l+39DEMkJyYxLy/ZnLlwmVib9yka+8evDz61VLlMjMyWDTzXw7vOUBmegaOLk4MfWMEQU0bVXj8d5zffZyzoYc0x0ajvh1wKuPYiL1wla06jo2en7yqdWyc2XKAy7ePDSsnWxo83xbXSjw2Ovg2ppt/c6xNLLiRGs+/xzZx/ta1Mss396hDd/8WOFvYkZWfw6mbl1h4YgsZedkAtPUOoqVnPdysHQGITIphycnQMs/fj1s9Fx8GNehELcca2JtZ8+GGv9gTebKqw9Jo6x1El5pNsTYx50bqLRaFbeNiQrTOssMbd6dlGeepTzfPAGB8yGBq6ThPnbx5iV/2Lq3Y4G9r5h5IG+8gLIxMiUtPYm34HqKSYsosr6dU0sE3mCBXPyyMzEjNySD00lGORkcA8Hqz3njblf7+FxEXxewj6yplG3Sp6O8lj0NT99q08WpQtC8ykvjv7D6iku+3LxrToJofFkampOZksP3SMY5eP6cpY6xvSOeaTQh09sLEwIjk7HTWhe+753lDiMoiybinQI8ePcjOzmbbtm2lnjtw4ADNmzfn2LFjBAUFPda4jhw5gpmZ2WN9zSfVlStX+OSTT9i4cSM2NjYVss6VK1diYGBQIet6UG5ubsTExGBvb1/pr1VRn5/x48czceJETSJuzpw5jB07lpSUFE2ZiIgIOnbsSHBwMIsWLcLIyIgdO3bwww8/cOjQIbKzs/Hw8KBr166MGzeuVNKsZs2aREZGEhkZWeq5K1euMHHiRHbt2kVSUhL29vY0bNiQH374AT8/PxwdHRk6dCiff/45//zzT7m3tywHd+5jwd+zeWn0q/jWrsWO9Vv48ZPJfDPjZ+wdHUqVP386nMCgevR7ZTCm5qbs2byDaZ9/y+e/fIOHT9EPp7zcPBxcnAhu3ZwF02eXO8atW7YybepPjP9wPHXr1WPVylW8O2Ysi5ctwdnZuVT5mzdu8O47Y3m+dy+++OoLTp08yffffo+1jQ3t2rcD4PSpU3zy8URee+N1QtqGsHPHTj7+8GP+N3MGgYGBAKSlpfHaiFcJatSQn3/5BRtbG25cv46FhYXmtTZs2qD12vv3H2DyV1/Trl27h97OBq5+9K4TwrKT24lMvElzzzq80awX34TOIzk7vVT5lad28t/ZvZr/lQolE9oNIezmBc0yQz19EjJTOXHjAr3rhDx0TI/KqHVzjFo0JWvFGgoTEjFu2wrz4UNI++kPyMvTXUlPidnwIagzsshcuBxVWhpKK0vUucXlTfv0QM/Jgcxlq1GnpWPYoC7mI4aQ9vNfqNNKv0ePKupYBMdWhNL4xU44eLlycW8YO/5cRvdPRmJma1lmvR6fvoqBiWHx+2Buqvn75H97iDxyliaDumDpZEdMRCS7Z6yi07gh2Lo5VVjsd2vs5s+A+h1YcHwzlxKu09q7Ae+0epHPNs8gKSutVPnFYdtYcXqn5n89hZLPO43g2F0/SP7cvxI9pZ7mf3NDEz7vNELrR0tlmBe6lYU7tvPZ4KHUcHBk1pZNjP7zd5ZP/AwzY2OddaxMTXmlY2c8nJwx0Ndjz5kzfLlwPjbmFjTz177hcPbqVVbv34dvtcq5+bF/xx7m/PEPI995g5qBAWz7bxNTPpzEtNl/YO/kWKp8fn4+ltZW9BnSn/XL1+hcZ0F+Pl9/8CmW1taMm/Qhdvb2JN66hbGpqc7yFSHqWARHV2wj+MXOOHq5cmFvGNv/XErPT0ZiZmtVZr3nP32tzGMj7L/dXDlylmaDumLpZMfNiCvsmrGSLuOGYOtW+hxfXk1r1GZoUBdmH13PhVvXaOfTiPEhQxi//g8Ss1JLlfdzqMGbTXsz//hmjt84j42pJcMbd2dkk578vGcJAP5OHhy4eoZ5R6PJUxXQ3b8FH7YdyoT1f+g8fz9uJgZGXEq8zoZz+5nS9Y2qDkdLYzd/BtbvyL/HN3Ep4Toh3g14t9WLfLL5fzrPU4vCtrL89A7N/3oKJV+UOAf9sX9FqfPUF51GcvR6RKVsQz0XH3rUbsXq07uISo6hSY3ajAjuwdSdC0nJydBZZ0hQF8yNTFl2ajuJmamYG5mgVBTfHJ53dIPWNpgZGDO29QBOxVyqlG3QpTK+l1S2ui4+9Ahoyeozu7maHEuTGgEMD+7OT7sWlbkvBjfojIWRCctP7SAxKxUzQxP07rpRr6dQMrJJTzLyspl/fDOpORlYG5uTW5D/uDZLCC1PXjMSUcqIESPYvn07V69eLfXcrFmzqF+//mNPxAE4ODhgWolfFJ8mXl5ehIeH4+5e+u5dSfn5D3bCt7W11UoWPA56eno4Ozujr1/5efqK+Pzs37+fixcv0q9fvzLLHDlyhFatWtG5c2eWLVuGkZER06dPp0OHDjg7O7NixQrCw8P5+++/SU1NZerUqVr19+7dS05ODv369WPOnDlaz+Xl5dGxY0fS0tJYuXIl58+fZ8mSJQQGBpKaWvxD4JVXXmHBggUkJyeXa3vvZdPK/2jTuR0hXTvgWqM6Q94cjq2DHdvXbdZZfsibw+nWvxdeNX1wdq1Gv+GDca7mTNjBo5oyXjV9GPjqSzQNaVkhieFFCxbS8/mePN+rF56enox7bxxOTk6sWL5CZ/mVK1bi7OzMuPfG4enpyfO9etGjZw8WzJ+vKbN40WKCmwTz8isv4+HhwcuvvEzj4MYsXrhYU+bfufNwdHLks88/o3ZgbapVq0bj4GCqV6+uKWNnb6/12L1rFw0bNcS1+sP/oA/xDuLg1TMcvHqGuIwkVp3eRXJ2us6WSgA5BXmk52ZpHjVsnDAxMObQ1bOaMtdS4lh7dg8nblygQFXw0DE9KqPmTcjZuYf8s+dQxd0ia9kaFAYGGNYPLLOOYcMGKExMyJy/hMJr0ahTUim8Go0qNq6ogL4+BrX9yd4USmHUNVRJyeSE7kKVlIJRk4ptBXRu+xG8m9XFp3k9rJztafRCB0xtLLiw596tCo0tTDGxNNc87m51G3n4LLU7NcO1tjcW9tb4tWqAi78nEdsPV2jsd+voF8zeyJPsiTxJTHoiS8K2kZydRoi37lal2fm5pOVkah7uNs6YGhqzN/KUpkxmXo5WmQAnT/IK8zkaXXnJOLVazaJdO3ilU2fa1auPT7VqTBoylJz8PDYfO1JmvYa+frStVx9PZ2eq2zswMKQtPtVcCbtyWatcVm4On/07h48HDMKikr6frFu2mnZdO9K+W2equ7vx8uhXsXe0Z8vajTrLOzo78cro12jTqR2mZrpj2r5xGxlpGXzw1URqBQbg4OxIrTq18fD2rJRtAAjffhifZvXwvX1sNH6hA6Y2lpwvx7Fx5fBZ6tx1bNRsFYSLvyfh28vet+XRtVYzdl45zs7Lx7mZlsD845tIzEqlg6/u84iPXXVuZaaw+cIhbmWmcOHWNbZfOoqXbXGrzD/3r2TbxSNcTYklJi2Bfw6vRalQUNu5clu+PqiD184y49Badl0Jq+pQSunsF8yeu85Ti8K2kZSdRltv3b9RSp6nPGxcMDU0Ye9dLf1Knqdq3z5PHamk81Qrr/ocuRbO4ehw4jOS+S98LynZGTT1qKOzvJ9DDbzsXJl1+D8uJVwnOTud6JR4ribHam1nRm6W5uHr4EZ+YcFjTcZVxveSytbKsx5HoiM4Eh1xe1/sIzUng6buur9/+Dm44WVXjVlH1nMpsWhfXE/V3heN3PwxNTBi3tGNXE2OJSU7g6jkWGLSEx/XZlUttfrJffw/Jcm4p0D37t1xdHQslQjIyspiyZIljBgxAihKTLRu3RoTExPc3NwYM2YMmZmZZa732rVrPP/885ibm2NpaUn//v2Ji4vTKrN27VoaNWqEsbEx9vb29OnTR/Och4eHVhfKixcv0rp1a4yNjQkICGDr1q2lXnPChAn4+flhamqKl5cXn376aank1LfffouTkxMWFhaMGDGCnJyc+75HGzZswM/PDxMTE9q2bUtUVFSpMg/7/kyaNIn69eszffp03NzcMDU1pV+/flotrgBmz56Nv78/xsbG1KpViz///FPzXFRUFAqFgqVLlxISEoKxsTHz58+nsLCQcePGYW1tjZ2dHePHj0dd4kQUEhKi1YUzPj6eHj16YGJigqenJwsWLCgV808//USdOnUwMzPDzc2Nt956i4wM3XePdLkT750uwTt37kShULB582YaNGiAiYkJ7dq1Iz4+no0bN+Lv74+lpSUDBw4kKytLK/bRo0czevRozTZ+8sknWttY8vPzKLEvXryYTp06YVxGa4rt27fTrl07XnnlFWbOnImenh7Xr19nzJgxjBkzhlmzZhESEoKHhwetW7fmn3/+4bPPPtNax8yZMxk0aBBDhw5l1qxZWtsQHh7OlStX+PPPP2natCnu7u60aNGCyZMn07hxY025OnXq4OzszKpVq+67Dx5FQX4+URcvE9iwvtbyOg3rcTH8/AOtQ6VSkZ2dg5mFeSVEWJSEPnfuHE2aancrC27ahNOnTumsc/r0aYJLlG/arCkR4REUFBQlpE6fOk2TJiXKNG2qtc7du/fg7+/PRxM+pEvHzgwdNITVq1aXGWtiYiL79u6j5/M9H2YTgaK7rm7WTpyP1755cj7+Gp62ZXfD04rfPZALt65VeSsMpY01SksLCi5eKV5YWEhB5FX0a+juygZg4O9H4bXrmPTsiuXH47B45w2M2rQEheL2ipUo9JRQoJ1UVBcUoO9e9nofVmFBIUnRsbj4ayc0XPw9SYi8d5ezDd/NYcXHv7Pt18XEXtDel4UFBegZ6Gkt0zPQ59Zl3V1Gy0tPqcTdxpmzcZFay8/GRuJtV72MWtpaedUjIi5KZ+uUO1p61uXwtXDyCiuvhcCNxEQS09JoWstfs8xQ34Agbx9ORUbeo2YxtVrN4fPnuBofR5C3j9Zz3y9bSouA2jSpWatC476jID+fKxcuUa+RdhK0bqMGnD/76C11ju0/hG/tWsz85W9e7TuU94aPYuWCpagKC8sbsk7Fx4aH1vJq/h7cus+xse672Sz/+De2/rpI57GhNNC+madvoE/8Zd3dFMtDT6mHp201TsdoJ2RPx17G1173eeRiQjS2ppbUq+YLgKWxGcFuAYTdvFjm6xjpGaCnUJKZm11xwT+Dis5TLpyNu6K1/GxsJD4PcZ4Kj4sk8R7nqVae9SrtPKWnUOJq5ciFEt1qLyZE42Gju2VngJMn11PiCfEOYmKHl/kgZAjd/Fugr9TTWR6gsVsAJ29eJL/w8dxYexq/lxTtCwcu3tLeFxduReNuo7sFeoCTJ9dT42nj1YCP2w/j/TaD6ObfXGtfBDh5cDUljl6Brfikw8u82/pF2noHoUBRqdsjRFkkGfcU0NfXZ9iwYcyZM0crEbBs2TLy8vIYPHgwp0+fpnPnzvTp04dTp06xZMkS9u7dy+jRo3WuU61W06tXL5KSkti1axdbt27l8uXLvPjii5oy69evp0+fPnTr1o0TJ04QGhpKo0a67zaqVCr69OmDnp4eBw8e5O+//2bChAmlyllYWDBnzhzCw8P55ZdfmDFjBtOmTdM8v3TpUj7//HMmT57M0aNHcXFx0Upu6RIdHU2fPn147rnnCAsLY+TIkXz44YdaZR72/bnj0qVLLF26lP/++49NmzYRFhbGqFGjNM/PmDGDiRMnMnnyZCIiIpgyZQqffvopc+fO1VrPhAkTGDNmDBEREXTu3JmpU6cya9YsZs6cyd69e0lKSrpvoubll18mKiqK7du3s3z5cv7880/i4+O1yiiVSn799VfOnDnD3Llz2b59O+PHj7/neh/EpEmT+P33ovG2oqOj6d+/Pz///DMLFy5k/fr1bN26ld9++02rzty5c9HX1+fQoUP8+uuvTJs27Z7dNB8l9t27d5f5mVy1ahXdunVj4sSJ/PDDD5rld46bstZ99xiD6enpLFu2jCFDhtCxY0cyMzPZuXOn5nkHBweUSiXLly+n8D4/moKDg9mzZ889yzyq9LR0VCoVVtbaXYssra1JTU55oHVsXLGW3JwcmrRpUQkRQkpKCoWFhdja2mktt7O1JTFB9x3JxMRE7GxttZbZ2tpRWFioSYonJiZia1eijJ0tiYnF67x54wYrV6zErUYNfvntV3r37cNPP05lw7r1Ol93w7r1mJmZlRp37kGYGRV1iUjLzdJanp6biYXR/VvqWBqZ4e/owYGoMw/92hVNcTsxqyqRFFdlZKAwLztpq7S1wSAwAJRKMucsImfHHoxaNcWobauiAnl5FFyNxrhtq6LXUCgwqF8HvequmtesCLkZWahVaowttN93YwszstN034gxsTKjycDOtB7Zi9Yje2PpZEvob4uJu1T8g8DF35Nz24+QFp+EWqUmJiKS66culrnO8jI3NC36TOVorz8tNxMr4/t39bcyNiPQ2Zs992hJ42nrQnVrR60WKZUhMb3oR7ZtiVbfthaWmufKkpGdTesP3qXZuDG8+7+/+KBvP5rcldTbcvwo565HM6rH8xUf+G1pqWlF51oba63lVjbWpCSlPPJ642JiObRrHyqVio+++Zw+Q15k3bLVrFxQOWNiFR8b2p8fYwszcso8NsxpOrALbUb2ps3IPlg62bL1t0XEXSoeZ6mavxcRdx0bNyMiia6kY8PCqOi4SC1xXKRmZ2Jlovs8cjEhmj/3r+TtFi8wd8Cn/NXnA7Lyc5h7dIPO8gAD6ncgKTudM7FXyiwjwMJQ9/54mPNUHWdv9lwp+xx05zy1OzKsvOHqdKdLY0ap63dWmddvO1NLPGxdcLawY97RDfwXvoc6Lt70Dmyjs7ybtSMulnYcjn58Lcyexu8lpobGRfsiTzsJnnGPfWFrYomHjQvOFrbMO7qJ/8L3EujsRa/A1sVlTC2p4+yFUqFk9uH1bL94jFZe9Wnn07BSt0eIssiYcU+J4cOH88MPP2gmJoCiLqp9+vTBxsaGd955h0GDBmlaUvn6+vLrr7/Spk0b/vrrr1Ith7Zt28apU6eIjIzEza3oDuK///5L7dq1OXLkCI0bN2by5MkMGDCAL774QlOvXr16OuPbtm0bERERREVFabp+TZkypdSsop988onmbw8PD9577z2WLFmiSYz8/PPPDB8+nJEjRwLw9ddfs23btnu2jvvrr7/w8vJi2rRpKBQKatasyenTp/nuu+80ZX744YeHen/uyMnJYe7cuZpt+u233+jWrRtTp07F2dmZr776iqlTp2paDHp6ehIeHs706dN56aWXNOsZO3asVqvCn3/+mY8++oi+fYsGov/777/ZvFl3d0KACxcusHHjRg4ePKhpBTRz5kzN4PN3v84dnp6efPXVV7z55pv3TWjez9dff02LFkVJmhEjRvDRRx9x+fJlvLyKum288MIL7NixQysB6+bmVmqfTJs2jVdfLT1w9aPGHhUVRbVqpe/qZWRk0K9fPz7++ONSidmLFy9iaWmJi4vLfbd78eLF+Pr6Urt20SC2AwYMYObMmZpj0NXVlV9//ZXx48fzxRdf0KhRI9q2bcvgwYM1780drq6unDhRdvef3NxccnNztZYZGRndN0YtihJ39tTqB7rXd2DHHlb9u5SxkyZgWSKhV9FKh6hGUXLhPSrcuSGhvbRkGbTWqVKp8A/w561RbwFQs1ZNIq9cYcWKFTzXvVupl/xv7X907tL54d9/rSBKLniwu67BNQLIzs/l9GPsvnKHQb1ATHsVT9CRMa/0YO3A7X1yjy4FCgXqzEyyV60DtZrCmzEoLSwwatWM3O27AchathrTvj2x+mgc6kIVhTdjyD95Gj3X+x+XD0/HcVHG7rB0ssPSqThh7ODlSlZyGhHbDmsGtm/0QgcOLdrEuq/+AQWY29vg1bQOVw6eroTY7wq7xP8KFPfaCxrNPeqSlZ/DiXuM9dPSsx7XU+KJvMcg5Y9i49HDfLOk+HM07fWiY7BkKwT1A2yJqZERC8Z/RFZuLkcunGfa6pW42tnT0NeP2ORkpq5Yzm9vjcboMYy1WuqcdY/P1INQq9VY2ljx+rhRKPX08PLzITkxibVLVvLCsIHlC/YeSrUGUVPmqcrKyQ6rEsdGZnIa4dsO4+RTA4DGL3TgwKKNrP1qBijAwt4G76Z1uXxQd+vnilDys3Ov05OrpQPDGnZl1ZldnIq5jLWJOYPqd2J4cHdmHFpbqnx3/xY0c6/D16FzyH+MwwM8S+5ztdBocfs8dfxm2a35W3nWr5TzVEkle8zdaxvunAsWndhCTkHRuKjrwvcy5PbnrEClfaO2sVsAMWmJRKfEl1pXpXsKv5eU7DWEouzr3p19sThsW/G+iNjPkKDOrD6zmwJVIQoUZOZls+LUTtSouZF2C0tjM1p71Sf00tEy1vwM+X/cHfRJJcm4p0StWrVo3rw5s2bNom3btly+fJk9e/awZcsWAI4dO8alS5e0ui6q1WpUKhWRkZGlkjYRERG4ublpEnEAAQEBWFtbExERQePGjQkLCyszcVJSREQENWrU0BqDqVmzZqXKLV++nJ9//plLly6RkZFBQUEBlpaWWut54w3tAWmbNWvGjh07Sq5Kq07Tpk21vhyXfO2HfX/u0LVNKpWK8+fPo6enR3R0NCNGjNB6nwoKCrCy0k5o3N16KzU1lZiYGK0Y9fX1adSoUemLzl3beKfMHbVq1So1U+yOHTuYMmUK4eHhpKWlUVBQQE5ODpmZmeWaLKFu3eIxJZycnDTdjO9edviw9nhJuvbJ1KlTKSwsRE+vdPP9R4k9OztbZyLVxMSEli1bMmPGDAYOHKi1f++b/LnLzJkzGTJkiOb/IUOG0Lp1a1JSUjTv/ahRoxg2bBg7duzg0KFDLFu2jClTprB27Vo6duyoFdPdXXlL+uabb7QS3wCff/45XV++/0yAFpYWKJXKUq3g0lJTsSzRgqOkgzv3MXPan4ye+D6BQbqT7RXB2toaPT09rRZrAEnJyaVatt1hZ2dXqnxychJ6enpY3X7/7ezsSCpZJikJ27ta1Nnb2+Ppqd1V0cPTgx3bS59XTpw4wdWrV/n6m8kPvG13y8zNplClwtJY+86thZEp6bll7/87mrrX5mh0BIVq1SO9fnnkR1wgPXp68YLbY0cqzc0pTC9uHac0M0OdUXZLF3V6RlH3urvOZ4W3ElBaWoCeEgpVqJKSyZgxFwwMUBgboU7PwHRAX1TlaF1UkpG5KQqlgpx07VhzMrJKtQi6F3uPakQeKW7FYGxhSpvX+lCYX0BuZjYmVuaErdmFuV3lJLIz8rIoVKlKtS6xMDIt1VpOl5aedTl49QyFKt2fKUM9fRq7+bPmbMW33G0dWJdAdw/N/3m3uyYnpqdhf9d1Mjk9HTuLsifUgKLW024ORRMk1KzuRlRcHHO2baGhrx/noq+RlJHOsB+Lb8IVqlScuHyJZXt2sW/qL1qDeD8qSytLlEolKUna43+mpqSWai33MKxtbdDX10d517XRtUZ1UpKSKcjPR7+CE4x3jo3sdO1WrzkZmQ91bDh4uHKlxLHR9rW+WsfGiTU7MbezrqjQNdJzi44La2PtVnCWxkWzWerSs3ZLLiRcY33EfgCiU+KYXbCezzsOZ9nJ7VqDwj9Xqzk9a7fim+3ziE6J07k+USy9zPOU2QOdp1p51uPAfc5TwW7+rK6E89QdmXlF12+LEtdvcyPTUq3l7kjLySI1J0OT/AGIz0hGqVBgbWJOQmbx+MEGSn3qVfNly4VDlbMBZXgav5dk5eUU7YsSreDMDU3K3BfpuZmk5mRq7Ytbt/eFlbE5iVmppOdmUqhWaSXx4zOSsTQ2Q0+hrJLvXuL/N+mm+hQZMWIEK1asIC0tjdmzZ+Pu7k779u2BopYfr7/+OmFhYZrHyZMnuXjxIt7e3qXWVVZC4u7lJiYmDxybriRSyfUfPHiQAQMG0LVrV9atW8eJEyeYOHEieWXNyFeO1y7pYd+fstzZJoVCger2F4YZM2ZorffMmTMcPHhQq155Zw3VtAa6RxLp6tWrPPfccwQGBrJixQqOHTvGH3/8ATz4pBFluXvwfoVCUWow/7vfj0fxqLHb29vrnBRBT0+P1atX07BhQ9q2bUt4eLjmOT8/P01C9F7Cw8M5dOgQ48ePR19fH319fZo2bUp2djaLFmm3GLKwsKBnz55MnjyZkydP0qpVK77++mutMklJSTg4lJ7V9I6PPvqI1NRUrcdHH310zxjv0DcwwMPXmzPHtbt3nDl+Ct+AmmXWO7BjDzOm/s6bH46lfpPKbaJvYGBArVq1OHxIO2l7+NBh6tTVPYBwnTp1SpU/dPAQ/gH+mklG6tStw6GSZQ4d0lpn3Xp1S02Ac+3qNZxdSo8B89+atdTyr4Wfn9+Db9xdCtUqolPiqOmgPZlLTYcaRCbdvGddH/vqOJjbcPBqFXVRzctDlZRc/Ii/hSotHX2fu1p56inR93Sn4FrZY0AVXI1Gz85W66a70t4WVVo6FJY4T+Tno07PQGFsjIGvN/kRDzbG4YPQ09fD1s2ZmHNRWstjzkVh7/ngE3MkXY/DxKp0tzc9A31MrS1Qq1RcCztP9bq+5Q1Zp0KViqvJsQQ4aSeUA5w8uZx473HqajrUwMnC9p5dvxq5+WOgp8/BShiY28zYGDcHR83Dy9kFO0tLDp0vHnw9v6CA45cvUbdEwvx+1Gq1JrnX2K8miyZMZP4HH2ke/m416NKwEfM/+KhCEnFQdK718vPh1DHtVs6njoVRs7bum3oPomZgALE3YrSuozHXb2JjZ1vhiTi497Hh8NDHRunvNyWPDbdKODYKVYVEJt0k0Fn7O1wdZ28uJug+PxnqGZT6zqi68+P7ru9X3fyb0zuwNd/vmH/f87YoUnSeiil1nqrt5MmlCjhPNb59njpQidfHQrWKG6nxpcYc9LV3I+quSQDudjU5BktjMwz1io9TezNrVGoVKdnaSeG61XzQV+px4vrjm5EUns7vJUX74ha+DiX3RXWuJutOjkclxWJpbIqhXnFbI3szK1RqlSZBH5Uci52plVabQHsza9JyMiURJ6qEJOOeIv3790dPT4+FCxcyd+5cXnnlFU1yJigoiLNnz+Lj41PqYWhoWGpdAQEBXLt2jejo4i8s4eHhpKamaloR1a1bl9DQ0AeK7c76bt4sPqkfOHBAq8y+fftwd3dn4sSJNGrUCF9f31I/kP39/Uslskr+r+u171fnYd+fO3Rtk1KpxM/PDycnJ1xdXbly5UqpdZZshXM3KysrXFxctGIsKCjg2LFjZdbx9/enoKCAo0eLm1CfP39eazKJo0ePUlBQwNSpU2natCl+fn5asT9uuvaJr6+vzlZxjxp7gwYNtBJtdzMyMmLlypUEBwfTtm1bzpwp+iLxwgsvYGhoyPfff6+z3p33dObMmbRu3ZqTJ09qJVvHjx/PzJkzy4xJoVBQq1atUpODnDlzhgYNdM98eCdeS0tLrcfDdJPs0qcHuzaFsmtzKDeuXWfB37NJjE+gXbdOACydNZ/p3/+qKX9gxx7+98NvDHztJbxr+ZGSlExKUjJZd8VdkJ/P1cuRXL0cSUF+AcmJiVy9HEncjUfrIjJw8CDWrF7D2jVriYyMZNrUn4iLjaVP36Iu3H/8/geTPvtcU75P3z7ExsTw80/TiIyMZO2ataxds5bBd7VWfHHAAA4fOsS8OXOJiopi3py5HD50mAGDBhS/7qBBnDl9hjmzZhMdHc3mTZtYvWo1L5SYhTcjI4PQbaE8/3z5xpzaefk4TT0CaVKjNk7mtvQObIONqQX7bs9k2T2gBYODOpeq19Q9kKikGJ2zet0ZzNjVygF9hR5Wxua4Wjlgb1a53Ypz9x/COKQlBgE1UTo5YPrC86jz88kLK/5ibvrC8xh3aldc59BRFKYmmHTvgtLOFv2avhiHtCT3YPGMivq+3uj7eqO0sUbfxwvzkcMoTEgk71hYhcZfq11jLu8/yeUDp0iNTeDYilCyktLwbVUfgBNrdrF/3jpN+XM7jhB98gJp8UmkxNzixJpdRIddwK918WyACVE3uRZ2nvSEFOIvRbP9j2WgVhPQoUnJl68wWy8cppVnPVp41sXFwo4X67fH1tSSnZeLkkJ96rRheHD3UvVaetbjcuINbqYllLnulp71OHHjApl5lT9AvUKhYGCbtszeupkdJ8O4dPMmXyz4F2MDQzo3LJ705vP5c/n9vzWa/2dv3cyhcxFcT0ggKi6WBTtCWX/kEF0bFdUxMzbGp1o1rYeJkRFWZub46BjKoDy69+tF6IatbN+4letXo5nzxwwS4m7RsUfRsBwLZ8zl929+0qoTdekKUZeukJOdQ1pqKlGXrnA9qnistU49u5Kels6c32dwM/oGxw8eYdXCZXR+/rkKjf1uAe2CubT/JJcOnCQ1NoEjK7aRmZSGX6ui69TxNTvZN+8/TfmIHUe4dtexcXzNTq6FnadW6+IbObfuOjbiLkUT+sdS1Go1tSvp2Nh47gBtvYNo49WAapb2DAnqjJ2pFaEXi74rvVivPW80660pf+LGBRq5+dPepxEOZjb42bsxrGFXLiVcJ+X2wPTd/VvQr247/ndoDbcyU7AyNsfK2Bwj/bK/Kz5OJgZG+NpXx9e+qNdGNUt7fO2r42RuU8WRweYLh2ntWZ+Wt89TA+p3uH2eOg5A3zohjAzuUapeq9vnqRtpt8pcdyvP+hx/DOepPVfCCK4RQCM3fxzNbegR0BJrE3NNMqpLrWa8WL+DpvyJGxfIysuhf732OJrb4GlbjW7+LTgSHVGqi2qwWwBnY6+QlX//iekqWmV8L6lseyJP0tjNn0bVa+FobkN3/xZYm1hw8NrtfVGzKf3rtdeUD7t5gay8XPrVa3d7X7jwXK3mHI0+p9kXB6+exczQmB61W2JvZkUtR3fa+gSxv6pugor/96Sb6lPE3NycF198kY8//pjU1FRefvllzXMTJkygadOmjBo1ildffRUzMzMiIiJ0DqwP0KFDB+rWrcvgwYP5+eefKSgo4K233qJNmzaarpCff/457du3x9vbmwEDBlBQUMDGjRt1DnzfoUMHatasybBhw5g6dSppaWlMnDhRq4yPjw/Xrl1j8eLFNG7cmPXr15eatOCdd97hpZdeolGjRrRs2ZIFCxZw9uzZUuNv3e2NN95g6tSpjBs3jtdff51jx46Vmnn2Yd+fO4yNjXnppZf48ccfSUtLY8yYMfTv3x9n56IWNZMmTWLMmDFYWlrStWtXcnNzOXr0KMnJyYwbN67M9b7zzjt8++23+Pr64u/vz08//VRqlta71axZky5duvDqq6/yv//9D319fcaOHavVetHb25uCggJ+++03evTowb59+/j777/LXGdli46O1uyT48eP89tvvzF16lSdZR819s6dO5eaLONuhoaGrFixgv79+9OuXTtCQ0OpU6cO06ZNY/To0aSlpTFs2DA8PDy4fv068+bNw9zcnG+//ZZ///2XL7/8ksBA7SnUR44cyffff8/JkydRq9V8/vnnDB06lICAAAwNDdm1axezZs3SGj8vKyuLY8eOMWXKlAd89x5e05AWZKSns2bBMlKSkqnuXoP3vv4Ye6eibl0pSckk3ir+Qb5jw1YKCwuZ9/sM5v0+Q7O8ZccQXnv/bQCSE5P59K33Nc9tXL6WjcvXUqtubT7+4cuHjrFjp46kpqYy65+ZJCQk4OXtzbRfpmnG70tMSCAutviOZzVXV6b98jM//zSN5cuWY+9gz3vvv0e79sWJn7r16vLV5K+Z/tffTP97OtWrV2fyN1O09ltA7QC+//F7/vz9T2b+M5Nq1arx7nvj6NK1i1Z8W7dsRa1W06lL6S+kD+PEjQuYGRrTuVYTrIzMiElPZPqB1ZpZyCyNzbAx1R7A3ljfkHouPqw8vVPnOq1MzBnftjgJ2d63Ee19G3ExIZrf9y4vV7z3krt7PwoDA0x6PofCxITC6zfImD0f7mrRrLS20uqSqk5NI2PWAky6dcJizBuo0tLI3XeY3N37NGUUxkYYd2qH0soSdVY2+WcjyN6yA8rRwlYXj4b+5GVmc3rjPrLTMrF2sSfkrX6Y2xYlMXPSMshMKp44oLBAxfFVO8hOzUDPQB8rF3tC3nwB19rFrW8K8ws4uW4PGQkpGBgZUq22F82HdcPQVPfYoxXhSHQEZoYm9AhogZWxOTdTb/HLnqWa2VGtjM2xM9Xu5mliYERQ9ZosDis9s/kdTua2+Dm48dOuMsYHrATD2nckNz+f75YvIT0ri9ruHvz25mjM7hpyIDY5WasleE5eHt8tW0J8agpGBga4Ozrx5dCX6RT0+Afdbt62FelpaayYt5jkpCTcPNz56JvPcXAuOtcmJyWREK+dVBj/2juav69cuMTe0F04ODnyx6KiGzv2jg588v2XzP3zHz4Y+Ta29nZ07dODXgP6Vtp2eDT0Jzczm1N3HRvt7jo2skscG6qCQo6v2k7W7WPD2sWedm/20zo2VPkFhK3bTfrtY8O1thcthnWvtGPj4LWzmBuZ0juwDdYm5lxPjeeHnQtIyCrqGmhtYoGdafENi92RYRgbGNLJL5jBQZ3JysvhbFyk1jHSwbcxBnr6jG31otZrrTi9s8zz8+NUy8Gd33sXf78c07LoptKGiANM3l7296HH4Uh0BOaGJvQMaImVsTk3Um/x854lmtlRrYzNsdVxnmpYvRaLHuA89eOuhZUaP8DJmEuYGhrTwbcxlkZmxKYnMuvwOk2y1tLIFGuT4ut3XmE+Mw6u4fnA1oxp1Z+svBxO3bzEpvPaN6TtzazxtKvGjINrqAqV8b2ksp2KuYSpoRHtfRsV7YuMRGYfWadpcWhhZIr1XZO15BUW8M+htTxfuxVvt3yBrLxcTsVcYvP54m7BqTkZ/HPoP3oEtGBsqxdJy8lkX+QpzY2tZ14Ff8cS5adQP0gfP/HEOHDgAM2bN6dTp06lBvw/cuQIEydO5MCBA6jVary9vTXJOyiaMGHs2LGagfKvXbvG22+/TWhoKEqlki5duvDbb7/h5FQ8ZfTKlSv56quvCA8Px9LSktatW7NixQqd67tw4QIjRozg8OHDeHh48Ouvv9KlSxdWrVpFr169ABg/fjyzZs0iNzeXbt260bRpUyZNmqSViJoyZQrTpk0jJyeHvn374uTkxObNmwkLCyvzfVm3bh3vvvsu0dHRBAcH88orrzB8+HCSk5M1Y3vd7/0padKkSaxevZrXX3+dr7/+mqSkJJ577jn++ecfbGyK70AuXLiQH374gfDwcMzMzKhTpw5jx46ld+/eREVF4enpyYkTJ6hfv76mTkFBAe+//z6zZ89GqVQyfPhwEhISSE1NZfXq1QCEhIRQv359fv75ZwBiY2MZOXIk27Ztw8nJia+//ppPP/1Uax9MmzaNH374gZSUFFq3bs3gwYMZNmyY1vtQkkKh0OyjkvHemTDk7vpz5sxh7NixWvvsznt1Zx+FhIRQu3ZtVCoVCxcuRE9Pj9dff50pU6ZofmCV/Pw8SuzJycmaiRFq1qxZZnz5+fkMHDiQXbt2ERoaSt26ddm2bRs//vgjhw8fJjs7Gw8PD7p37864cePYv38//fv35+bNm1rHwx1169YlJCSEzz77jK+++ort27cTFRWFQqHAw8ODl156iXfffRfl7a5RixYt4osvvuDcuXOl1nU/h56AWTXLq4lHICnpqfcv+ASztrDindXT7l/wCfdLr3dJ+fjhE6lPEuspn/Hl1llVHUa5fdZxOCOXflPVYZTbP/0/Im3TtqoOo1wsu3Tg5I3H23WsMtRz9ePrrbOrOoxy+aTjKwxeOKmqwyi3BYMm0eKPN+5f8Am3b9TfDF9aeTcSH4dZ/T9m/LrfqzqMcvu+++in/nvIL73eZcL68k0q9yT4rttbVR3CI0lbtrqqQyiTZb9eVR1ClZBknBBlKJlgEg+uZCKxMo0fP57U1FSmT59+/8JVJDg4mLFjxzJo0KCHrivJuCeDJOOeHJKMe7JIMu7JIcm4J4ck454ckox7ckgyrmpJMu7JI2PGCSGeahMnTsTd3Z3CwsL7F64C8fHxvPDCCwwcOLCqQxFCCCGEEEL8f6RWP7mP/6dkzDghxFPNysqqzK7GTwJHR0ed4ywKIYQQQgghhPj/SZJxQpRh0qRJTJo0qarDeCrt3LmzqkMQQgghhBBCCCGeSJKME0IIIYQQQgghhHhW/T/uDvqkkjHjhBBCCCGEEEIIIYR4TCQZJ4QQQgghhBBCCCHEYyLdVIUQQgghhBBCCCGeVSrppvqkkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKLVaVdUhiBKkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKLbOpPmmkZZwQQgghhBBCCCGEEI+JJOOEEEIIIYQQQgghhHhMpJuqEEIIIYQQQgghxLNKJd1UnzTSMk4IIYQQQgghhBBCiMdEknFCCCGEEEIIIYQQQjwm0k1VCCGEEEIIIYQQ4lkls6k+caRlnBBCCCGEEEIIIYQQj4lCrZYUqRBCCCGEEEIIIcSzKHXe4qoOoUxWwwZUdQhVQrqpCiHEE+zfoxurOoRyG9qoK/FpiVUdRrk4WtoxaMHnVR1GuS0c/AWpk6dWdRjlYjXxPUaverq3AeD33u8xdNEXVR1Guf078HPSb92q6jDKxcLBgR93LqjqMMrt/ZDB/Ll/RVWHUS5vNe/Ld9v/reowym1Cu6EMXzqlqsMot1n9P6bFH29UdRjlsm/U37y39teqDqPcpvYc89R/pmb1//iZue49ldSqqo5AlCDdVIUQQgghhBBCCCGEeEwkGSeEEEIIIYQQQgghxGMi3VSFEEIIIYQQQgghnlUqmSrgSSMt44QQQgghhBBCCCGEeEwkGSeEEEIIIYQQQgghxGMi3VSFEEIIIYQQQgghnlVq6ab6pJGWcUIIIYQQQgghhBDimZGcnMzQoUOxsrLCysqKoUOHkpKScs86L7/8MgqFQuvRtGlTrTK5ubm8/fbb2NvbY2ZmRs+ePbl+/fpDxyfJOCGEEEIIIYQQQgjxzBg0aBBhYWFs2rSJTZs2ERYWxtChQ+9br0uXLsTExGgeGzZs0Hp+7NixrFq1isWLF7N3714yMjLo3r07hYWFDxWfdFMVQgghhBBCCCGEeFb9P5tNNSIigk2bNnHw4EGaNGkCwIwZM2jWrBnnz5+nZs2aZdY1MjLC2dlZ53OpqanMnDmTf//9lw4dOgAwf/583Nzc2LZtG507d37gGKVlnBBCCCGEEEIIIYR4Jhw4cAArKytNIg6gadOmWFlZsX///nvW3blzJ46Ojvj5+fHqq68SHx+vee7YsWPk5+fTqVMnzbJq1aoRGBh43/WWJC3jhBBCCCGEEEIIIcRjl5ubS25urtYyIyMjjIyMHnmdsbGxODo6llru6OhIbGxsmfW6du1Kv379cHd3JzIykk8//ZR27dpx7NgxjIyMiI2NxdDQEBsbG616Tk5O91yvLtIyTgghhBBCCCGEEOJZpVY9sY9vvvlGM8nCncc333yjczMmTZpUaoKFko+jR48CoFAoSr8NarXO5Xe8+OKLdOvWjcDAQHr06MHGjRu5cOEC69evv/fbe5/16iIt44QQQgghhBBCCCHEY/fRRx8xbtw4rWVltYobPXo0AwYMuOf6PDw8OHXqFHFxcaWeu3XrFk5OTg8cm4uLC+7u7ly8eBEAZ2dn8vLySE5O1modFx8fT/PmzR94vSDJOCGEEEIIIYQQQghRBR6mS6q9vT329vb3LdesWTNSU1M5fPgwwcHBABw6dIjU1NSHSpolJiYSHR2Ni4sLAA0bNsTAwICtW7fSv39/AGJiYjhz5gzff//9A68XpJuqEEIIIYQQQgghxLNLpXpyH5XA39+fLl268Oqrr3Lw4EEOHjzIq6++Svfu3bVmUq1VqxarVq0CICMjg/fff58DBw4QFRXFzp076dGjB/b29vTu3RsAKysrRowYwXvvvUdoaCgnTpxgyJAh1KlTRzO76oOSlnFCCCGEEEIIIYQQ4pmxYMECxowZo5n5tGfPnvz+++9aZc6fP09qaioAenp6nD59mnnz5pGSkoKLiwtt27ZlyZIlWFhYaOpMmzYNfX19+vfvT3Z2Nu3bt2fOnDno6ek9VHySjBNCCCGEEEIIIYQQzwxbW1vmz59/zzJqtVrzt4mJCZs3b77veo2Njfntt9/47bffyhWfdFMVQojbQkJCGDt2bFWHIYQQQgghhBAVR61+ch//T0nLOCGEeEYc3bqXA+u3k5GShoOrM52G9qZGLe/71os+f4V5X/+OY3VnXv1mvGb58e0HOL33CLeiYwBw9nSj7YvdcPV2r7CYVy1bwaL5C0lMSMTDy5Mx496hXoP6ZZY/cewEv//8K1FXIrGzt2fQsMH06ttb83zk5SvMnP4P58+dIzYmlrfffYf+g17UWke/nn2IjYktte7eL/Rh3IT3K2S7Ovg2pntAC6xNzLmRcot5xzZy/ta1Msu38KhD94CWOFvYkpWfy6mbl1hwfDMZedkAtPVuSCuverhZORZtZ9JNlpwM5XLijQqJ916MWjXDsEFdFMZGFN6MJXtTKKqExPtUMsI4pCUGtXxQGBujSkklZ9suCi5HAmAYVA/DoHoorS0BKLyVSO7eAxRcjqrw+Ft51qO9b2OsjM2ISUtkxekdZb5vQ4I609Q9sNTymLQEJofOBaC5Rx2C3QKoZlk0ePC1lDj+C9/L1eTSn6mK1N6nEd38m2NlYsGN1HjmH9/MhXt8ppq716Gbf3OcLOzIzs/hVMwlFp3YqvlMuVo60LduCB421XAwt2b+8U1sPn+owuNWq9X8b9YsVq1dS3p6OrUDApgwbhzeXl73rBe6cyd///MP12/coLqrK2+9+ipt27TRWXb2v//yx/TpDOzXj/feeUezfPrMmWwJDSUuPh4DfX38a9bkrddeI7B27XJtU/jOI5zccoDs1HRsqjnStH8nXHx1nxdvno9i/U/zSi3v98VbWDuXHoD68pEzbP9nJe71atLprRdLPV+RTm4/yPGNe8hMScfO1ZHWg7rh6ud533o3L15l+bczsHN1YvCXb2uWFxYUcnT9TiL2nSAjOQ0bF3ta9OuCRx2/StuGiF1HOb31ANmpGVi7ONCkXyecfWvoLBtzIYqN00q3kOjz+Rta+yI3K4dja3ZwNew8eVnZmNtbE9y3I26BPpW2HW29g+hSs2nRNSP1FovCtnExIVpn2eGNu9PSs26p5TdSb/Hp5hkAjA8ZTC3H0p/Jkzcv8cvepRUb/EOq5+LDoAadqOVYA3szaz7c8Bd7Ik9WaUx3a+5RhxDvICyNzYhNT2LNmd1EJt0ss7yeUo9OfsEEVa+JpZEZKTkZhF44wuHocACUCiXtfRvRyM0fK2MzbmUksy58P+dvXa3U7ajozxRAR9/GtPUOwtbUkoy8bI5eP8fyUzsoUBVWyjY8rdc9IR6UJOOEEE+NvLw8DA0NqzqMe8rPz8fAwOCxv+7ZA8fZ8u8qur7yAm5+nhzfvp9F30/nje8/wsrepsx6OVnZrPl7AZ61fclMTdd67mrEJWo3C6L6MA/0DQ04sC6Uhd/+xevffYilrXW5Yw7dso1ff/qFcRPep069uqxduZoP3nmPf5cuwMnZuVT5mzduMn7se/To1ZNPv/yc0ydP8dN3P2JtY01Iu7ZF25OTg4trNUI6tOW3n37V+br/mzsTVWHxYLGRl6/w7uh3aNuhXbm3CaCpe22GNezCrCPruXDrGu19GzGh7RA+WPcHiVmppcrXdKjBm8368O/xTRy/fh5bU0uGB3fn1abPM233YgACnDzYH3WaiwnR5BcW0D2gBR+2G8r4dX+QnJ1eap0VxbBZY4yaNCTrv02okpIxatEUs0EvkP73LMjL111JqcRs0Auos7LIWvEfqrR0lJaWqPPyNEVU6enk7NiDKjkFAIO6AZj260XGP//eP9H3EIJca9K3bluWhIVyJekGLT3q8lbzPny9bY7O9235qR2sObtH87+eQslH7Ydx4sYFzTJfezeOXT/HsqSbFBQW0sGvMaOa92Vy6FxSczIqLPa7NalRmyFBXZhzdD0XE6Jp69OQD9oM5sMNf5CYlVaqvJ+9G6837cWCE5s5ceMCNiYWvNK4OyOCe2h+iBvqGxCfkcLha+EMDupcKXEDzF2wgIVLlvD5xInUcHNj5ty5jHr3XVYsWoSZqanOOqfOnOHjzz/njZEjadu6NTt27+bDzz5j5p9/lkqknY2IYNXatfh6l77x4O7mxvh338W1WjVyc3NZuHQpo8aNY/XixdjYlH1evJfLR85yYOlmWgx6DidvN87tPs6m3xbSb9JbmNtalVmv35ejMDQuninO2KL0tqcnpnBo+VacfXQnkyrShUOn2L1wPW2H9qSarzundx5mzU9zGTJ5LJZ21mXWy83KYcuMZbj5e5OVpv15P7ByK+cOhNH+5d7Yujhw9cwF1v02n/4T38DRvVqFb8OVo2c5tGwLzQZ0LdoXe46z5Y9F9PnsjXvui76T3sSgjH1RWFDI5l8XYGxhRrvX+mJmbUFGcppW+YrW2M2fgfU78u/xTVxKuE6IdwPebfUin2z+H0k6ju9FYVtZfnqH5n89hZIvOo3g6PVzmmV/7F+BnrJ47CJzQxO+6DSSo9cjKm07HpSJgRGXEq+z4dx+pnR9o6rD0VK/mi/PB7Zm5amdRCbdpJl7IK827cn3O+aTkq37/D6sYVcsjExZGhZKQmYK5kam6CkUmue71mpKw+q1WHoylPiMZGo6uvNKcDd+27OMG2m3KmU7KuMz1bRGbV6o25ZZR9ZxKeEGzha2jAjuDsDisG0Vvg1P83VPiAcl3VSFEDqp1Wq+//57vLy8MDExoV69eixfvhyAnTt3olAoCA0NpVGjRpiamtK8eXPOnz8PFA2EqVAoOHfunNY6f/rpJzw8PDR988PDw3nuuecwNzfHycmJoUOHkpCQoCkfEhLC6NGjGTduHPb29nTs2BGAtWvX4uvri4mJCW3btmXu3LkoFApSUlKAoimoBw4cSPXq1TE1NaVOnTosWrRIK5bMzEyGDRuGubk5Li4uTJ06tdR7oFAoWL16tdYya2tr5syZA0BUVBQKhYKlS5cSEhKCsbEx8+fPf6DXr2iHNu6kfkgTGrRthr2rM52G9sHSzppj2/bes96GmUsJbN4QV1+PUs/1HjWURh1b4uxRHftqTnQbOQC1Sk3U2QulV/QIlixcTLfne9CjV088PD0Y895YHJ0cWbV8lc7ya1auwsnZiTHvjcXD04MevXrSrWd3Fs9fqCnjXzuAUe+MpkOnjhga6k6K2tjYYGdvp3ns37sP1+qu1A9qUCHb9Vyt5uy8fIKdl49zMy2Bf49tIjErjQ5+jXWW97Gvzq3MFDafP8StzBTO37pG6MVjeNkW/3j9Y/8Ktl08wtXkWG6mJTDj0FoUCgWBzvduXVReRsFB5Ow7RMH5S6huJZL93yYUBvoY1vYvs45h/UAUJsZkLVtD4fWbqNPSKbx+A1V88Y+OgotXKLgciSopGVVSMrk796HOy0PP1aVC42/n05ADUac5cPU0celJrDi9k+TsdFp51tNZPqcgj/TcLM2jho0zJgbGHLh6RlNm7tEN7Ik8yY3UW8RlJLHw+BYUCgU1HSovgdK1ZlN2XTnBrisnuJmWwILjm0nMSqW9770/U1suHOZWZgoXEqLZfukYnnd9piKTbrI4bCsHr50lv7ByWjWo1WoWLVvGK8OG0a5NG3y8vPhi4kRycnPZtGVLmfUWLV1Kk0aNeGXoUDzc3Xll6FCCGzZk4VLtFj1ZWVl8+sUXTBw/Xmtg5Tu6dOpEk8aNqe7qireXF+++/TaZmZlcvHz5kbfp9LYD1GzRgFotg7BxcaDZi50xt7EifNfRe9YzsTDD1Mpc81Aqtb+Cq1QqdsxcRVCPECwcHi1R+DCOb9lL7dYNCWzTGNtqjrQZ1B1zWytOb793K5Htc1dRs2k9XHzcSj137sAJGndvg2e9mlg52lK3XVPcA305vune16FHdSb0EH7N61OzZQOsXexp2r8TZjaWnNt97J71jO+xLy7uDyM3M5sOb/TDydsNcztrnH1qYFfdqVK2AaCzXzB7Ik+yJ/IkMemJLArbRlJ2Gm29g3SWz87PJS0nU/PwsHHB1NCEvXe1LsvMy9EqU9vJk7zCfI5En9O5zsfp4LWzzDi0ll1Xwqo6lFJaezfg8LWzHLp2lviMZNac3UNKdgbNPUq3GgOo6eCOt70rMw6t4WJCNMnZ6USnxBF1V0vphm61CL14lHPxV0nKSuNA1GnOx1+ljU/FfOfQpTI+U952rlxMuM6ha+EkZqVyNi6SQ9fC8bCp2Ov2HU/rde+JplI/uY//pyQZJ4TQ6ZNPPmH27Nn89ddfnD17lnfffZchQ4awa9cuTZmJEycydepUjh49ir6+PsOHDwegZs2aNGzYkAULFmitc+HChQwaNAiFQkFMTAxt2rShfv36HD16lE2bNhEXF0f//v216sydOxd9fX327dvH9OnTiYqK4oUXXqBXr16EhYXx+uuvM3HiRK06OTk5NGzYkHXr1nHmzBlee+01hg4dyqFDxT8yPvjgA3bs2MGqVavYsmULO3fu5Nixe3+BL8uECRMYM2YMERERdO7c+YFevyIVFhQQE3kdrzq1tJZ71anF9YtRZdYL23WI5PgEWvd5sLuD+bl5qApVmJiZlSfconXl53Ph3HmCmwRrLW/cJJgzp07rrHP29Bkalygf3LQJ58LPUVBQ8MhxbNm4med6dkdx153sR6Wn1MPT1oVTMZe0lp+OuYyffekfrwAXbkVja2pJ/Wq+AFgam9GkRgAnbpad9DTSM0BfoafpelEZFNZWKM3NKbhyV1eawkIKrl1Hr3rZrVz0fb0pvH4Tky7tsXjnDcxffQmj5sFQ1vurUGAQUBOFgQGFN8ruCvSw9BRK3KydiIjX7goUEXcVT7sHa6XTzD2Q8/FX79n60FBfHz2lkqz8nHLFWxY9pRIP22qcjtVOIJ2JvYKvfXWddS4mFH2m6rkUdauzNDYjuIY/YTcvVkqMZblx8yaJiYk0DS4+bg0NDQmqX59TZ86UWe/UmTM0CdY+1ps2aVKqznc//USL5s1p0lj3j7O75efns2rNGszNzfHzebTuhoUFhSRci8E1QLsVnmuAF3GXdXf/umPl1/9j/gc/sf6nedw8H1nq+RPrdmNsYUqtlpX3A/2OwoIC4qNuUqO2r9Zy99o+xFwuu+vc2T3HSIlPosnzulsRF+YXoFeiZbi+oQE373EdelSFBYUkXouhWoD2DQlXfy/ir1y/Z901U2awaMLPbPx5PjHntWO7duoCjl7V2b94EwvHT2Pll9M5uXEvKpVK98rKSU+pxN3GhbNxV7SWn42NxMdO9/FdUiuveoTHRepsLaQp41mPw9fCySsso0WzQE+hpLqVI+fjtbtBnr91rcyEU21nT6JT4mjn05DPOg7nw3ZD6RHQEv27WiXqK/XIV2l/R8kvLNBKElWkyvpMXUy4joeNM562Re+Fg5k1dVy8S33fqQhP83VPiIch3VSFEKVkZmby008/sX37dpo1awaAl5cXe/fuZfr06bz22msATJ48mTa3x/D58MMP6datGzk5ORgbGzN48GB+//13vvrqKwAuXLjAsWPHmDevaOycv/76i6CgIKZMmaJ53VmzZuHm5saFCxfw8ysaY8bHx4fvv/9eU+bDDz+kZs2a/PDDD0BR4u/MmTNMnjxZU8bV1ZX33y8e++vtt99m06ZNLFu2jCZNmpCRkcHMmTOZN2+eprXd3LlzqV79wb6klDR27Fj69Omjtexer69Lbm4uubm5WsuMjB6sW0xWeiZqlQozK+2WIWZWFmSk6v5ynhR7ix2L/2PYZ2NQPuA03NsXr8PC1grPwPKP/5OakkJhYSE2trZay23sbElKTNJZJzExiWC7EuVtbSksLCQlJQV7+9LjL93Pnp27ycjI4Lnuzz10XV0sjEzRU+qRmpOptTw1JwMrE3OddS4mRPPHvhW83bIfBnr66Cv1OBp9jrlHNpT5OgMadCQpO40zMVfKLFNeyttJV3Wm9raoM7NQWFqWXc/aGqWHJflnIshcshI9WxuMO7cHpZLcvQeLyznYY/7yQNDXh7w8spavRZWge98/CnMjE/SUStJzs7SWp+dmYmnkcd/6lkZmBDh5Mufo+nuWe752a1KzMzgXXznj/xR9ppSklegCm5qTgZWx7jEhLyZc568DKxnV4gXNZ+rY9XP8e2xjpcRYlsSkov1pV+I4t7OxISYu7p717Ep0I7WzsdGsD2Dztm2cu3CBeTNmlKyuZc++fXw8aRI5OTnY29nxx7RpWFtbP+SWFMnJyEKtUmNqqX1DwsTCjOy0TJ11TK3MaTWkO/buLhTmF3Dx0GnWT/uX7uNewsWvaEyv2EvXOL/vBH0+ff2R4npY2elZqFUqTC21z0kmVhZkntH9wzU5NoF9yzfR76PXy7xm1Aj05cTmvbj6eWDtaMu1iMtcORGBuhISWbm394WJRel9kZWquzuhqaUFLQY/h10NF1QFhVw6dJqNv8znuXeH4nx7zL/0hBRizkfhFRxIp1EDSItP4sCSTahUKhp0a13h22FhWHR8l7xmpOVmYmV8/xtfVsZm1HH25n8H15RZxtPWherWjsy+z7ns/zszw6JrRkaJa0ZGbhYWxrq71NuZWeFpW42CwkJmH1mPmaExfeu2xdTQiCVhoQCcj79GG68GXEm8QWJmKr4ObtR29kKpqJw2MZX1mTocHY6FkSkftR0GiqIk4/ZLx9hw7kCFxg9P93VPiIchyTghRCnh4eHk5ORoElV35OXl0aBB8V37unWLm+27uBTdKYuPj6dGjRoMGDCADz74gIMHD9K0aVMWLFhA/fr1CQgIAODYsWPs2LEDc/PSCYrLly9rknGNGjXSeu78+fM0LtEKIrhEC4rCwkK+/fZblixZwo0bNzSJLrPbyYXLly+Tl5enSTRC0dTXNWvWfLA3qISSMd7v9XX55ptv+OKLL7SWff7553h3152806VUwyO1GgWlWyOpVCpW/TGP1n27Yufi+EDr3v9fKGcPHGfoJ6PRL6P756PQGfM9GqiV3B41ap3LH9S6tf/RpFlT7B0cHql+2Uo2uVeUOVuUq6UDLzXqyqrTuzgZcwkbE3MGNejE8OAezDhU+gdW94AWNHcP5Kttc0rdbS8Pg9q1MHmu+JjPXKK7u3CRe3QpUBQl7LI3bAW1GlVsPApzc4yaNdJKxqkSk8j4518Uxkbo1/TFpEcXMucvqdCEnK5YFSjuFb1GU/faZN+eTKMsHXwb07B6TX7Zs7TSBrC+o+TH517bUc3SnqFBXVl9ZjenYy9hbWzBgAYdeaVxd/45vLbSYty4ZQtTbt8oAfj59o2UUoe5jmWlKEoe62har8bGxTH1l1/4/aef7nvTolFQEAtnzyYlJYVV//3HR599xpz//Q/bRxwz7mFZO9trTQ7g5O1GZlIqp7YewMXPnbycXHbMWk2rod0xNtf9g7+ylGoNrFbr3C8qlYpN05fQtFcHbHRMOnFHm0HdCZ2zin8/ngYKBVaOtgS0DCJ87/GKDfwuJbdBrWPZHVbOdlg522n+d/SqTmZyGqe3HtQk49RqNcYWZrQY3A2lUom9uwtZqemc3nqwUpJxZVFwz7OsRguPumTl53D85vkyy7TyrM/1lHgik2IqLL5nmc73vYzr953vHguObyanoGhc1LVn9zCs0XOsOLWTAlUhq8/spn+9dkxoNxS1GhKzUjkSHUFjt7KHe6gM5f1M1XSoQXf/5vx7fBNXkm7iZG7DwPodSQ3I4L/wfZUS89Nw3Xuq/D+etfRJJck4IUQpd7pjrF+/HldXV63njIyMuHx7vJ27Jyq48+X3Tl0XFxfatm3LwoULadq0KYsWLeL114vv+qtUKnr06MF3331X6vXvJPaAUgkstVpd+st3iYvL1KlTmTZtGj///DN16tTBzMyMsWPHknd7APmS5cuiUChKlc3PL93Fo2SM93t9XT766CPGjRuntczIyIilp7ffN05TCzMUSiUZKdpd6TLTMkq1lgPIy84h5ko0sVE32DR3BXD7PVGrmTx0HIM+fAPP2sWt3w6s386+tVsZ/NFbONWomG4VVtbW6OnplWoFl5yUXKq13B12drYkJWoP7p+SlIyenh5W1mUP1l2W2JgYjh0+ytffT7l/4QeUnptFoaoQK2PtJLOVsVmpu9R39AxsxYVb0ayLKPoyG50SR27Bej7vNIJlJ0NJuevOcDf/5jxfuxVTQucRnVJ2y6JHkX/xMoX/3DUj6O3WLwozM9QZxbErzExRZ2aVrK6hzihqqXn3lz5VYiJKc3NQKuFOKxmVSjOBQ2FMHPrVnDFsHETOxooZCDojN5tClQoLI+3j09zIlPRc3fvibk3dAzkcHU6hWnernvY+jejkF8zv+5ZzMy1BZ5mKUPSZUpVqWWlpbFaq1cAdPQJacjHhGhvO7Qcgmnhyj+TxacfhLDu1vdImmmjdsiWBt2+4AJpzXkJSklbL1aTkZGzLOM6hqCXd3a3gNHVuJ9DOnT9PUnIyQ0eO1DxfWFjIiZMnWbpyJfu3b0fv9ufXxMQEt+rVcatenTqBgfQeMIA169bxytChD719xuamKJQKskq0gstOz8TE8sG77zt6VefSoaLu+Om3kslITGHzH4s1z9+57vzz5lf0/3IUlg5lv1ePwsTCFIVSWWrSnuy0DEytSt8gy8/JJT7qBreuxbBz/n/FMarV/DriE3q/9wpuAd6YWprTY8xQCvLzycnIwszakn3LNmN5j0mEHpWRZl9of5ZzHnJfOHi6cvlw8dAIplbmKJRKrXHkrJztyU7LoLCgED39B2tJ/qDS824f3yVaLFkYmZFWxjXjbq0863Hg6hkKy2h9aKinT7CbP6vvmphG6JaZd+eaoZ0UL7pm6B4SIi03k9ScDE0iDiAuPQmlQoG1iTkJmalk5mUz+8h69JV6mBoak5aTSTf/5jonUqgIlfWZ6h3Yhv1Xz2hmvr2RegtDPQNeavQc68L3PVCi70E9Tdc9IcpDknFCiFICAgIwMjLi2rVrmm6od7v8gINfDx48mAkTJjBw4EAuX77MgAEDNM8FBQWxYsUKPDw80Nd/8FNRrVq12LBBu/ve0aPaA2fv2bOH559/niFDhgBFib+LFy/i7190F9LHxwcDAwMOHjxIjRpFg64nJydz4cIFre11cHAgJqb4TvLFixfJyio7CfGgr6+LkZHRA3dLLUlPXx8Xz+pEnjlPrcbFrRUjT5/Hr2Fg6dcyMea1bydoLTu2bS9RZy/S951XsL7rh9+BddvZu3oLAye8QTWvihug3sDAAL9aNTly6DCt2xa/50cOH6Fl61Y669SuE8i+Pdp3Xw8fOkytgFoP9Rm6Y8N/67G2saFZi+YPXbcshapCIpNiqOPirTULWaCLF8eu6265YKRnUCrho7rz/12J5+7+LegV2Jpvt/9LZFLFja2mkZePKi9FO46MDPQ93cmLiy9aoFSiX6M6OdvL/mFXcP0mhrW1xy9U2tqgSs8oTsSVQfGAXaYfRKFaRXRKHLUc3bXGtKnl6M7p+4xx42tfHUdzGw5E6R6/sL1vI7rUbMof+1ZwrYKToiUVqlREJd0k0NmLY3d/ppy9OH6jjM+UvkGpH1Kq2wmeChgasUxmpqZaM6Sq1Wrs7Ow4dOQItW63ds7Pz+d4WBhvv1H2LIp1AwM5dOQIg198UbPs0OHD1A0sOp81btSIxbeHPLjjyylTcHd356XBgzWJOF3UavU9b4zci56+HvY1XLgRcQXPBsWf8RsRV3Cv9+AtqxOjYzG5nfSycran72fa78XRNTvIz8ml2YtdMLN5+BsN96Onr4+jRzWunb2ET8Pi2WmvhV/Cq35AqfKGxkYM/mqM1rJT2w9xPeIyz40ahFWJZKG+gQHmNlYUFhRy6dgZfBvXqYRt0MOuhgs3IyLxqF+8L25GRFKj3oMPpZAUHavVXdfRqzpXjpxFrVKjUBYdLGnxSZhYmVd4Ig6Kju+ryTEEOHly/K5Zm2s7ed5z3FAoaqnkZGHLnn0nyyzT2M0fAz19rUlohG6FahXXU+Pxc6jBmdjiISD8HGpwNlb3kBBRSTep5+KDoZ6BZjw+B3MbVGpVqdlXC1SFpOVkolQoqVvNh7AblTOWWWV9pgz19DW9Ee5Q32lNqyi79f+jeJque0KUhyTjhBClWFhY8P777/Puu++iUqlo2bIlaWlp7N+/H3Nzc9zd3R9oPX369OHNN9/kzTffpG3btlqt7EaNGsWMGTMYOHAgH3zwAfb29ly6dInFixczY8aMMn9Mvf766/z0009MmDCBESNGEBYWppnd9E6LOR8fH1asWMH+/fuxsbHhp59+IjY2VpMMMzc3Z8SIEXzwwQfY2dnh5OTExIkTS81u165dO37//XeaNm2KSqViwoQJWq0By3K/168MTbqGsOavBbh4ulHd14Pj2w+QmphMUPsWAGxf/B/pyak8/+YQFEoljm7agxGbWpqjb6CvtXz/f6HsWr6BXqOGYe1gS0ZK0V1cQ2MjDI0fLXF4txcHDeDrz7+kVoA/tesEsnbVGuJj4+jVtxcAf//+Fwm3bvHJF58B8Hyf3qxcuoLfpv1Cj17Pc/b0Gdav+Y/PJxd3783PzyfqSuTtvwu4desWF89fwMTUlOpuxWMCqlQqNvy3nq7duj5SIu9eNpzbz1vN+nAl8SYXE6Jp59MIe1MrQi8eKdru+h2wNbHgrwNF3UCP3zjPyCY96eDbmFMxl7A2MWdow65cSrhOyu2JA7oHtKBf3Xb8vm85tzJTNC3vcgryyC14tMTCg8g9fBzjFsGokotmPTVq3gR1fgF5ZyM0ZUx6dEGVnkHuzqIZE/OOncSoUQOMO7Uj7+gJlLbWGDVvQt7RE5o6RiEti2ZTTUtHYWiIQe2a6Lm7kbt4ZYXGv/3SMYY16sq1lDgik27SwqMutqYWmjv7PQNaYmVizr/HNmnVa+Zeh8ikm8SkJ5ZaZwffxnTzb87coxtIzErVtKLILcivtMHRN54/yBtNexOZdJNLCddp690QO1MrQi8W3YjoX689NiYWTD+4GoATNy4wPLgH7X0a3f5MWTAkqDOXE65rfiDqKZW4WhZ1z9ZX6mFjYkkNaydyCvKIz0iukLgVCgUD+/Vj9r//UqN6ddzc3Jg9bx7GRkZ06dRJU+6zr77C0cGB0bcTdAP69eO10aOZM38+Ia1asXPPHg4dPcrMP/8EipJ+Pl7aA/cbGxtjbWmpWZ6dnc2sefNo3aIF9vb2pKamsmzVKuJv3aJD27aPvE11OjRj5+xVOLi74OhVnXN7jpORlIp/64YAHF4VSmZKOm1f6QXA6W0HsbC3xsbFgcLConHKIo9H0OH1fgDoG+hj66o9XIChqTFAqeUVKahTSzbPWIaThysuPjU4vesI6Ymp1GlbNOzDvmWbyUhJo/Or/VAoldhXd9aqb2pphp6Bgdby2MvRZCSn4lCjGhkpqRxcHYparabRc5XTvTOwfRN2z1mDvbsLjp7VOb/3OBnJqdRqVTRj5NHV28lMSafNy88DcDb0EOZ21lhXc0BVUMjlw6eJOnGOdq+9oFlnrdYNCd95lIPLNhMQ0pi0+CRObtpHQNv7TxLyqDZfOMyrwT2JSo7hcsIN2ng3wNbUkp2Xi7r39q0Tgo2JBf8c/k+rXivPelxOvMGNtFu6Vnu7TH2O37hAZiVO9vOwTAyMqG5VPDRENUt7fO2rk5aTSVwFnXse1e7LJxgY1InrKfFEJcfQ1D0QGxNzzY2Z5/ybY2VsxqITWwE4fv0CHf2CGdCgA5vPHcLM0JgeAS04fC1cM3RBDWsnrEzMuZF6CytjczrXbIICBTsuPdqkYQ+iMj5TJ2Mu0ckvmGvJcVxJuoGjuQ29AlsTdvPiA/c4eRhP63XviVZGS39RdSQZJ4TQ6auvvsLR0ZFvvvmGK1euYG1tTVBQEB9//PEDzypmaWlJjx49WLZsGbNmzdJ6rlq1auzbt48JEybQuXNncnNzcXd3p0uXLqWSYnfz9PRk+fLlvPfee/zyyy80a9aMiRMn8uabb2paln366adERkbSuXNnTE1Nee211+jVqxepqama9fzwww9kZGTQs2dPLCwseO+997Seh6Lupq+88gqtW7emWrVq/PLLLw804+qDvH5Fq90siOyMLPasKvoB5VDdhQEfvK5p5ZaRkkZq4sN90Ti2bS+FBYWs+GW21vJWfTrTpm/XcsfcvlMH0lJTmfPPLBITEvH09uL7n3/E+XY35cSEROJii1sdVXOtxvc/T+W3ab+watlK7B3seef9dwlpV/zDOuFWAsOHvKz5f/H8hSyev5D6QQ34bfofmuVHDx8hLjaO53p2L/d2lHTw6lnMDU3pU6cN1iYWXE+J5/udC0jILNr/1sbm2JkVt3bZfSUMY30jOvkFMzioE1l5OZyNi9R82Qfo6NsYAz193m09QOu1VpzawYrTOyt8G+7IO3AEhb4+Jl3aozA2pvBGDJmLlkNecdJJaWWpdUdcnZ5O5qLlGHcMwfzVYajSM8g7cpzcA0eK65iZYtqzKwpzM9S5eajib5G1eCUFkRU7CcLxG+cxMzSma82mWBqbEZOWyJ/7V2pmR7U0NsPWRHsyCmN9Q+pX82X56R0619nKsx4GevqMbNJTa/mGiP2VMpA1wKFrZzE3NKFX7TZYm5hzPTWeH3ctIDHrrs+UafFnak/kSYz1jejg15iBDYo+U+HxkSwJK+4CbGNiweSuxS2yuvk3p5t/cyLiopiyfW6Fxf7S4MHk5uby7U8/kZ6eTmBAAL9Pm6bVgi42Lk7rvF+vTh0mT5rEXzNm8Pc//1Dd1ZVvvvySwNq1db2ETkqlkqirV1m3cSMpqalYWVoS4O/PjD/+wLtEIu9heDeuTW5mFsfX7yYrNQPbao50GT0ICztrALJSM8hMKj7XqwoLObR8K5kp6egb6GNdzYHOowdSo45vGa/wePg1qUt2ZhaH1m4nKzUdO1cnnn/3JU2X0szUdNITUx5qnQX5+RxYtZXU+GQMjA3xqFuTzq/2x8jUpBK2ALwa1SY3M5uw9XvISsvAxsWBTqMGYF7GvigsLOTwym1kpaSjZ6CPjYsDHUcNwC2weHZdc1sruowZxKFlW1n99f8wtbagdtvG1OlccS2oSzoSHYG5oUnRzQHjoqTNz3uWaGaytDI2x9ZU+zxlYmBEw+q1WBS2VdcqAXAyt8XPwY0fdy2stNgfRS0Hd37vXTwsx5iWRYnpDREHmFyB555HEXbzIqaGxnSsGYylkRkx6Yn8c3Bt8TXDyBRrk+LhP/IK85l+YDW967RhbOsXycrPIezmRTZGFF8L9PX06VKrGXamluQV5BMRH8XC41u0urZWtMr4TP0Xvhe1Wk3vwNbYmFiQnpvFyZhLlfYd5Gm+7gnxoBTqykhlCyHEYzR58mT+/vtvoqOjqzqUCvfv0ad/FqihjboSn1a6hdHTxNHSjkELPq/qMMpt4eAvSJ08tarDKBerie8xetXTvQ0Av/d+j6GLvrh/wSfcvwM/J/1W2S1zngYWDg78uHNBVYdRbu+HDObP/SuqOoxyeat5X77b/m9Vh1FuE9oNZfjSihuPtKrM6v8xLf4ou0v502DfqL95b+2vVR1GuU3tOeap/0zN6v/xM3Pdexql/v6/qg6hTFajX6vqEKqEtIwTQjx1/vzzTxo3boydnR379u3jhx9+YPTo0VUdlhBCCCGEEEI8eVTSButJI8k4IcRT5+LFi3z99dckJSVRo0YN3nvvPT766KOqDksIIYQQQgghhLgvScYJIZ4606ZNY9q0aVUdhhBCCCGEEEII8dAkGSeEEEIIIYQQQgjxrJKpAp44ZU9ZKIQQQgghhBBCCCGEqFCSjBNCCCGEEEIIIYQQ4jGRbqpCCCGEEEIIIYQQzyrppvrEkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKpWqqiMQJUjLOCGEEEIIIYQQQgghHhNJxgkhhBBCCCGEEEII8ZhIN1UhhBBCCCGEEEKIZ5XMpvrEkZZxQgghhBBCCCGEEEI8JpKME0IIIYQQQgghhBDiMZFuqkIIIYQQQgghhBDPKumm+sSRlnFCCCGEEEIIIYQQQjwmkowTQgghhBBCCCGEEOIxkW6qQgghhBBCCCGEEM8qlXRTfdJIyzghhBBCCCGEEEIIIR4ThVotI/kJIYQQQgghhBBCPItSv/+1qkMok9X4MVUdQpWQbqpCCPEEW3R8S1WHUG4DgzoRn5ZY1WGUi6OlHa8smVzVYZTb7BcnkjLk9aoOo1ys50/ns00zqjqMcvuyy6u8tvy7qg6j3P73wgTSjp6o6jDKxbJRA0IvHKnqMMqtvV9jPt30v6oOo1y+6vIa323/t6rDKLcJ7YYyft3vVR1GuX3ffTTvrX1yf8A/iKk9x9DijzeqOoxy2zfqb15d9m1Vh1EuM/p9yOhVU6s6jHL7vfd7VR3Co1GrqjoCUYJ0UxVCCCGEEEIIIYQQ4jGRZJwQQgghhBBCCCGEEI+JdFMVQgghhBBCCCGEeFbJVAFPHGkZJ4QQQgghhBBCCCHEYyLJOCGEEEIIIYQQQgghHhPppiqEEEIIIYQQQgjxrFJJN9UnjbSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE+mmKoQQQgghhBBCCPGsUqmqOgJRgrSME0IIIYQQQgghhBDiMZFknBBCCCGEEEIIIYQQj4l0UxVCCCGEEEIIIYR4Vslsqk8caRknhBBCCCGEEEIIIcRjIsk4IYQQQgghhBBCCCEeE0nGCSFEOe3cuROFQkFKSkpVhyKEEEIIIYQQ2tTqJ/fx/5SMGSeEeCrFxsYyefJk1q9fz40bN3B0dKR+/fqMHTuW9u3bV3V4T4zDW3azf10o6SlpOFZ3ocuwPrjX8rlvvWvnrzD7y19wdHPhzW8/rLT4Vi1bwaL5C0lMSMTDy5Mx496hXoP6ZZY/cewEv//8K1FXIrGzt2fQsMH06ttb83zk5SvMnP4P58+dIzYmlrfffYf+g17UWkdBQQGzZ8xk66YtJCYmYmdnT9fuz/HSiJdRKivmHlVbn4Z0rdkUaxNzbqTeYuGJrVxMiNZZdkRwd1p61iu1/EbqLT7Z9D8A9BRKuvk3p4VnXWxMLIhJT2TZye2cib1SIfHei3Gf7hi2bYXCzJTCy5FkzVmE6kbMPesYdW6PYYfWKO1sUadnkHf4ODlLV0F+gaaMwsYakwF90K9bG4WhIarYOLJmzKMw6lqFxt/YzZ+WnvUwNzLhVkYyG88d5GpybJnl9RRKQnyCqFfNB3MjU9JyMtl1+QQnblwAoGH1mtSv5oejhQ0AN1MT2HbxCDdSb1Vo3CW18WpA55rBWBmbczMtgSUnQ7mUcF1n2ZcbPUdzjzqllt9MTWDS1pkANHMP5JXG3UqVeWvljxSoCis2+Luo1WpmrFzOqu3bSc/MoLaPD+NfHo53dbcy66zaHsqGvbu5HF20vbU8PRn14gBqexefy2avWc2Oo4e5evMmRoaG1PX1Y/SAQXhUq1bh27Br/Va2rdxAanIKLjVc6ffqEHxq19JZ9sT+I+zZGMr1K1cpyM/HpUZ1ug3qQ0BQXU2ZaR99zcUz50rVrd2oHqM+/6DC478j2C2Alp51MTcyJT4jmY3nDtz32Gjr07DUsXH8xnkAApw8aO3VAFtTS/QUShKzUtkXdZqTNy9W2jZE7DrK6a0HyE7NwNrFgSb9OuHsW0Nn2ZgLUWycNr/U8j6fv4G1s73m/9ysHI6t2cHVsPPkZWVjbm9NcN+OuAXe/9r5qJq5B9LGOwgLI1Pi0pNYG76HqKSyz7N6SiUdfIMJcvXDwsiM1JwMQi8d5Wh0BACvN+uNt51rqXoRcVHMPrKu0rajuUcdQryDsDQ2IzY9iTVndhOZdPMe26FHJ79ggqrXxNLIjJScDEIvHOFwdDgASoWS9r6NaOTmj5WxGbcyklkXvp/zt65W2jY8qHouPgxq0IlajjWwN7Pmww1/sSfyZFWHpRHi3YDONZsUXzPCtnGxjGvGK427lXHNuMXnW2Zq/jcxMKJ3YGsauNbEzNCYhMwUllbid5FWnvVo79sYK2MzYtISWXF6B5cTb+gsOySoM03dA0stj0lLYHLoXKDo8xnsFkA1y6Lj/VpKHP+F773neU+IyiTJOCHEUycqKooWLVpgbW3N999/T926dcnPz2fz5s2MGjWKc+dK/6ipCHl5eRgaGlbKuivDmQPH2DRvJd2G96dGTS+ObtvH/G//YtSPE7G2ty2zXk5WNqv+/BevQD8yUtMrLb7QLdv49adfGDfhferUq8valav54J33+HfpApycnUuVv3njJuPHvkePXj359MvPOX3yFD999yPWNtaEtGtbFHtODi6u1Qjp0JbffvpV5+sunDefNStW8/GkT/D08uJcRATffDkFc3Mz+g18UWedhxHs5s+g+h359/gmLt6KJsQniHGtBzBx03SSstJKx3NiK8tO7dD8r6dQ8mXnkRy5/aMKoE+dNjRzr8Oco+uJSUsk0NmLt1u8wOTQuVxLiSt3zGUx6t4Zo64dyJo+l8LYOIyffw7zD8eS9sFnkJOrs45B82CMX+xN1oy5FF68gtLZEdPXXwYgZ8EyABSmplh89gH5ERfI/OE31GnpKJ0cUGdlVWj8gc5edPVvxrrwfVxLjqOxWy2GNOzC73uXkZqTqbNO//rtMTcyYfWZ3SRlpWFmaIJSodA872FbjVMxl4iOiKNAVUhLz3oMa9SV3/cuJz23YuO/o1H1WrxYvz0Lj2/hUuINWnvVZ0zLfkza/A9J2aWP0SVh21h5epfmf6VSyWcdXuHYDe1zY3Z+Lp9umqG1rDITcQDz1q1l4YYNfPbGm9RwdmHW6pWM/mYKy3/8CTMTE511jkWE06lZC+oO88PI0IB56/5j9LdTWPLdjzjaFp3Ljp+LoF+HTgR4e1NYqOKvpYt5+9spLP3+R0yMjSss/qN7DrL8n/kMeONlvAL82LtpO39M+oFP//gOW0f7UuUvnT1HrfqB9BzaD1NzMw5s28VfX01l/I9f4ObtAcBrH4+loKA4UZ2ZlsGUMR8T1KJJhcVdUvGxsZdryXE0cvNnaMOu/LZ3aZnHxov1O2BuZMKqM7tJykq9fWwU38DIys9l1+UTJGSmUKAqpKajO70D25CZl11m4rg8rhw9y6FlW2g2oCtO3m6c23OcLX8sos9nb2Bua1Vmvb6T3sTA2Ejzv7GFqebvwoJCNv+6AGMLM9q91hczawsyktO0yle0ei4+9KjditWndxGVHEOTGrUZEdyDqTsXkpKTobPOkKAumBuZsuzUdhIzUzE30t4X845uQE+pp/nfzMCYsa0HcCrmUqVtR/1qvjwf2JqVp3YSmXSTZu6BvNq0J9/vmE9Ktu7tGNawKxZGpiwNCyUhMwVzI1P07jrfdq3VlIbVa7H0ZCjxGcnUdHTnleBu/LZnGTfSKvcGyP2YGBhxKfE6G87tZ0rXN6o0lpKKrhkdWHB8M5cSbtDGqz5jWvXn803/kJRd+nvI4hPbWHFqp+Z/PaWSzzoO5+j188XLFErGtR5AWm4mfx9YRXJ2OrYmluQU5FXKNgS51qRv3bYsCQvlStINWnrU5a3mffh62xySdVz3lp/awZqze7Ti/aj9MM2NNABfezeOXT/HsqSbFBQW0sGvMaOa92Vy6FxSyzjWhKhM0k1VCPHUeeutt1AoFBw+fJgXXngBPz8/ateuzbhx4zh48CBRUVEoFArCwsI0dVJSUlAoFOzcuVOzLDw8nOeeew5zc3OcnJwYOnQoCQkJmudDQkIYPXo048aNw97eno4dOwKwYcMG/Pz8MDExoW3btkRFRWnFl5iYyMCBA6levTqmpqbUqVOHRYsWVeZbotOB9TsIatuMhu2a4+DqTNeX+mJlZ8PRrXvvWe+/fxZTp0VDqvt6Vmp8SxYuptvzPejRqycenh6MeW8sjk6OrFq+Smf5NStX4eTsxJj3xuLh6UGPXj3p1rM7i+cv1JTxrx3AqHdG06FTRwwNDXSu58zpM7Rs04rmLVvgUs2Ftu3bEdwkmHMRFZPE7VSzCbsjw9h9JYyY9EQWndhKUnYa7byDdJbPzs8lLSdT8/CwdcHU0IS9d91hb+ZRh3UR+zgVc5lbmSnsuHycM7FX6FKz8n6sAxh1aU/Omo3kHz2B6vpNsqbPQWFoiGHz4DLr6Pt4UXDxMvkHjqBKSKTgTAR5B46g7+VevN4enVElJZP9v7kUXokqKnf2HKr4hDLX+yiae9Th+PXzHL9+noTMFDaeO0haTgaNawToLO9jXx0PWxfmH9vMlcSbpGRncCP1FtEp8ZoyK07t4Eh0BLHpSSRkprLmzB4UCgVeOlqhVJSOfo3ZG3mKvVGniE1PZOnJUJKz0mnj3UBn+eyCPNJyMzUPDxtnTA2N2Rd1WqucWq3WKpeWqzsJU1HUajWLNm3klV69aNc4GB83Nya98RY5ebls3r+vzHpfj3qbfh07UdPDA49qrkwc+RpqlZojZ89oyvw24SN6tAnBu7obfu7ufPb6m8QmJhARGVmh27B99UaadwyhRee2uLi50u/VoVjb27F7Y6jO8v1eHUqnvt3x8PPGsZozzw97EUcXZ04fPqEpY2ZhjpWNteZxLuwMhkaGBLUs+zgrr+YedTl+/TzHrp/nVmYKG88dIC0ng+D7HBv/HtvElcQbdx0bxTcDopJiiIiP4lZmCsnZ6Ry8eoa49CTcrUvfXKkIZ0IP4de8PjVbNsDaxZ6m/TthZmPJud3H7lnP2MIMUytzzePuFtEX94eRm5lNhzf64eTthrmdNc4+NbCr7lQp2wDQyqs+R66Fczg6nPiMZP4L30tKdgZNdbRUAvBzqIGXnSuzDv/HpYTrJGenE50Sr9W6Jzs/l4zcLM3D18GN/MKCSk3GtfZuwOFrZzl07SzxGcmsObuHlOwMmnvU1Vm+poM73vauzDi0hosJ0be3I46ou7ajoVstQi8e5Vz8VZKy0jgQdZrz8Vdp46P73Pc4Hbx2lhmH1rLrSlhVh1JKR79g9kaeZG9k0TVjyclQkrPS7nHNyNW6DrhrrhmnNGVaetbF1NCYP/et5HLiDZKy0riUeJ3rqfE611le7XwaciDqNAeuniYuPYkVp3eSnJ1OKx09CQByCvJIz83SPGrYOGNiYMyBq8XXiblHN7An8iQ3Um8Rl5HEwuNbUCgU1HTQ3Zr2maNSPbmP/6ckGSeEeKokJSWxadMmRo0ahZmZWannra2tH2g9MTExtGnThvr163P06FE2bdpEXFwc/fv31yo3d+5c9PX12bdvH9OnTyc6Opo+ffrw3HPPERYWxsiRI/nwQ+1unDk5OTRs2JB169Zx5swZXnvtNYYOHcqhQ4ceebsfVkFBATcjo/Guq911yrtuLaIvlP3j9MTOgyTHJdCmb9dKjS8/P58L584T3ET7x2bjJsGcOXVaZ52zp8/QuET54KZNOBd+TqtVyf3UrVeXY0eOcu1qUXfISxcucurkSZq1aPaQW1GanlKJh40LZ2O13+OzsVfwtq/+QOto7Vmf8LhIEu9qRWeg1CO/UHsb8woL8HUou2tfeSkd7FFaW1FwOrx4YUEBBecuoO/rXWa9gguX0PeogZ6Xh2Y9BvUCyQ8r3q8GQXUpuHIV07dfw/KPHzD/eiKGIS0rNH49hRIXS3suJ2h3abmUcIMa1rp/WNdydOdmagItPevyfsggxrTqT+eaTdC/q4VJSQZ6+ugplGTn624pWF56CiU1rJ0Jj9P+TIXHRershqZLC4+6nIuPKtUy00jfkG+6vsF3z73F6BZ9cbN2rLC4dblxK57ElBSa1in+cW5oYEBQLX9OXbxwj5racnJzKSgswFLHNeCOjNutLC3NzR894BIK8gu4dikS/wbaXaH8GwRyJeLBumKqVCpysnMwtSg79v1bd9KwdTOMKrBF3930FEqqWdqXaq12KeE6bvc8Nm7R0rMeH4QM5p0HODa8bKthb2ZFVPK9u7U/isKCQhKvxVAtwEtruau/F/FX7t0Kb82UGSya8DMbf55PzPkoreeunbqAo1d19i/exMLx01j55XRObtyLqpJ+LOoplLhaOXKhxDAGFxOi8bDRncQMcPLkeko8Id5BTOzwMh+EDKGbf4t77ovGbgGcvHmx1HWkougplFS3cuR8vPYwA+dvXcPDxkVnndrOnkSnxNHOpyGfdRzOh+2G0iOgpdZ26Cv1yFdpx5xfWICnbcV3P39W6CmUuNs4Ex4bpbX8bFwU3vYPds1o6VmPiDjta0a9ar5cSbzBoKBOTO3xNpM6jeC5Ws1QoLjHmh6NnkKJm7UTEfHa3ZEj4q7iafdg+76ZeyDn46/qbEV3h6G+PnpKJVn5OeWKV4hHJd1UhRBPlUuXLqFWq6lVS/f4PA/qr7/+IigoiClTpmiWzZo1Czc3Ny5cuICfnx8APj4+fP/995oyH3/8MV5eXkybNq3oblrNmpw+fZrvvvtOU8bV1ZX3339f8//bb7/Npk2bWLZsGU2aVG5Lpjuy0jJRq1SYWVloLTezsiAjtXQXBYDEmHi2LVrLK5PGoqdX9pf6ipCakkJhYSE2ttrdZW3sbElKTNIdX2ISwXYlytvaUlhYSEpKCvb2pbuI6TL4paFkZGQypN9AlEolKpWKV998nQ6dOz3axtzFwtAUPaWStBLdHVJzMgk0vn9SwMrYnDou3kw/uFpr+ZnYK3Su2YQLt64Rn5GMv5MnDVz9tLpPVjSFtSUAqhKfF1VqOsp7dHPOP3iUbAsLzD/7AFCg0Ncjd9tOcv/brCmjdHDAqH0bcjdtI3PtRvS8PTAZ9iLqggLy9x6skPhNDY3RUyrJyNPuOpqZl425ke7ukDYmFtSwcaJAVciiE1sxNTCme+0WmBgYsfrMbp11Ovo1Ji0nkytljGNTXuZGtz9TJbrApuVmYmlcdkLnDitjMwKdvfjn8H9ay2PTk5jzf+zdd1iTV/vA8W/CCIS9hzIFUQRF3Bv3ttrW2mptrW2t3fP99e3ee9i9W0cdtbbWOuree+NEBAXZe29I8vsDDQaCooBY3vtzXbk0T87z5D7kPBnnuc85h9aQnJ+JhZmKoQHdeT7ibt7cNJeMotwmrcMl2RcXuXG0MxxC6GhnR1pWw7Miv/ptCS6OjvQMMZ45pNPpmLPoV8KCggjwaroO66KCQrRaLTb2hvHb2ttR0MAFfDav+IeK8nK69Tf+WRB/9hwpF5K4+4kHGxtuvWrOjVKD7UUVpdio1Eb3cbS0xdvBnSqthsVHN6A2s2B8p/5Ymlmw4mTNkGiVqRn/ibgbU6UJWp2W1ad31zvHU2OUF5Wg0+qwrNWpaWljRUm+8eFmalsb+k0bg5O3B9oqDbH7T7D284WMeXo67oHVmbuFWXmkRsfj3zOEEY/eSUFGDnuXrkOr1dJ17MAmr4eVuWX1a1Hr/C4sL6n3tXBS2+Lr6EGVVsOCQ/9gZW7JxJBBqM1ULDu+pU55L3tXPGyd+OO48ezNplBfPYrKS7CxqKceVnb4OXpSpdEw9+AarMwtuK3zYNTmKpZGVscanZHAIP+unM9OJrs4n0AXLzq5+xsMyRWGaj4zDDOdC8uKsbuWz4z9Kw22O1vZ08HVh/0Jp/h85++42TgytesIlAolq6Pqz2y+vjpUt6faUz8Ulhdjq/K96v62KiuC3fyYd2jNFcvd0mkg+aVFnMlo+TkIxf8m6YwTQvyr6C6uuKNoZCfE4cOH2bp1K9ZGsibOnTun74zr3r27wWNRUVH07t3b4Pn79DHMqNJoNLz//vssXbqU5ORkysvLKS8vN5rJd8mlMpdTqRo/R02dK5Y6MHYRU6vV8udX84m4fQzOHs2bHXO5Oi+jTld32+XlawWvQ2d0+5Vs3riJjWvX8+rbr+Pn70/M2bN8+ennOLtUL+TQFGqvC1Ud39VXi+rv15mSyjL9hOiXLD66kRndx/Du6NnogIyiXHbFHTO68MP1MuvbE/XMafr7RR9/dfF/teK+yp/atGN7LG4ZTem8xVTFxmHi7orl3VPQTsynfMU/1YWUCjTnL1D2+woANBcSMWnjiWrooCbrjLuS+hbuunRe/3F8C+VVlQCsO7OPKWHDWH16d5351Pr7dSbUox1zD6xp9rnWagetQNGQJkUfn1BKK8uITDbMPIvLSTGYWP1cVhIvD5vB4HbhLD3WND/a1+7exXs/18xJN+c/z9fEfhmdDiNvBsYtWLWSDXt3893Lr6KqZw7PD+fNJTbhAj+++sb1BX4VtT9/dLqGvQcd3L6HNYv/YvbLT9fp0Ltkz4ZtePq0xbd9/dmnTadum7raubHM4NzYy5Sw4aw+vUvf/iuqKvlmz5+Ym5jh7+TJqA69ySktuOJiBI1R57Uwsu0SO3cn7Nyd9Pdd/dtSnFvAiY379J1xOp0OCxsr+k0bi1KpxNnHg5L8Qk5s3NcsnXH6uI28zdZ3el+q35KjG/Tzda0+vYu7u43mr5Pb67wX9fAKJrUg22C4fXMxGnM9jerSObPoyHp9PVae2sk93cfw5/FtVGk1rDi5gzu6DOH5IdPR6SC7JJ+DiVH08OrYTDVoPXRG/u4NWbSyr28oJZVlBnOtASgVCgrKi1lwaB06dCTkpWNvYc2IoF5N3hl3WcQG9xQoGvKxR2+fTpRWlnM8pf5h2cMCe9CtbRCf7/y9+T+/bxLG2oRoWdIZJ4T4VwkMDEShUBAVFcXEiRONlrk0/8vlHzqVlZUGZbRaLePHjzfIaLvEw6NmSEXtDrSGfJB98sknzJkzh88++4zQ0FCsrKx46qmnqKiof5Lb9957jzfeMPzh+NprrxE0oe9Vn88Yta0VCqWyThZccUEh1ra2dcqXl5aRcj6B1Pgk/plXPcm+7uJy429Me5LpLzyCf0jQdcVijJ29PSYmJnWy4HJzcutky13i5ORITna2wba8nFxMTEywq+eHrTHffv410+6dzrAR1XMAtgtoR3pqGgvnLWh0Z1xhRQkarRa7WllwthbqeidFv9wAvy7siT+BptaQqMLyEr7c/QemShOsVWrySguZ3HkwWcV5jYr3cpVHjlF47rKhkKbVXxGUdnZo8mrakdLWBl092ZUAFrdPoGL3fiq2VX851yalgEqFeubdlP+9FnQ6dHn5aFIMf5xrUlIx69F08wCVVJSh0WqxNjfMyrAyt6S4VkbQJYXlJRSUFes7GwAyi/JQKhTYWlgZDNnp5xvKAP8w5h/8h/Qi49mcTaGovLpN1c6Cs1GpGzTHWz/fUPYlnEKju/IwOx0Qn5OGm039WY/XamB4N0IuW/G04uLfNTs/D2cHB/323IJ8nOyufg7/umYVc1eu4OsXXiLQ28domY/mz2XHkUP88MrruDk5GS1zvaxtbVAqlRTk5hlsL8zPr7dz7ZJDO/ex8IufeOC/j9MhrO6KfwAVZeUc2rmPcdNua6qQjar/3LCok0l6SUPPDR3o/59WmI2LlQMD/cOavDNOZa1GoVRQUmCYBVdWWIyl7dWzfy5x8WvDuQM1Q+jVdtYolEqDeeTs3J0pLShCU6XBxLRps8aLK0rRaLV1ssesVeo6WWaXFJSVkF9WZDBxfkZRLkqFAntLa7KK8/XbzZSmdPEMZMPZ5p0mQ18PVd16FJYbf78tKC+uU4/0whyDehRXlDL34BpMlSaozS0oKCtmbMe+RhdDEtUufWbU/h5iY2HVwM+Mzuy7UPczI6+sCI1Wq78ICpBamI29pTUmCuVVP2OuRVH5pfZkeC5Xt6er16G3TwgHEk/XG9PQgO6MaN+Tr3b/QUpB085VK8S1kBxfIcS/iqOjIyNHjuTrr7+muLjuB3JeXh4uLi5A9bxwl1y+mANAeHg4p06dwtfXl4CAAIPblTLYgoOD2bfPMHOn9v2dO3dyyy23cPfdd9OlSxf8/f2JibnyfEIvvPAC+fn5BrcXXnjhivtciampKZ5+Xpw7brgowbkT0Xi1r7swg8rSgoc/fIHZ7z+vv3Uf2g8nT1dmv/88bQN8rzsWY8zMzGjfIYiD+w8YbD944CAhnY0PPesUGsLBAwcNth3Yf4AOwR0wNW34taWy8jIUSsPMCaXSBG0TXDHUaLXE56bSyd3wbxzs5se5q6wmGOTijZuNIzsvW7ihtiqthrzSQkwUSrq17VDnynWjlJWjTc+suSWnos3LxzTksgwEExNMO7SnKuZc/ccxNwdtrb+lVmuQUVd19hwmHoZzUynd3dBmNV2nlkanJbUgq84cOe2c29S7Am1Cbjo2FlaYm9S0J2crO7Q6LQWXdab28+3MoHbh/HpoXbN/kdfotCTkpRHs5muwvaOb71WH/7V38cLNxpFdccevWO4SL3tX8utZ9fB6WFla4uXurr/5t2mLk709+0/UdH5UVlVx5EwUnQPbX/FYv65exc9/LeeL/3uBYP+6WWM6nY4P5/3C1oMH+PalV2jj2vQZvqZmpngH+BF19KTB9jORJ/HvGFjvfge37+HXz77nvuceIfQKHc6Hd+2nqrKKnhH9mixmYzQ6LSlGz422BgsyXC4hN63OueFk5NyoTaHginOZXS8TUxOcvD1IiTKcSzElKg5X/4bNzwmQk5iG2ram08LVvy2FmbnoLnsPK8jIwdLOusk74qD6tUjOzyDQ2XA4daCzl8FCBpe7kJuKrYUV5iY1ixQ5W9mj1WnrrFra2TMAU6UJR5Oa8LPCCI1OS1J+Bu1rTYTf3sW73jkD43NSsFUZ1sPF2sFoPaq0GgrKilEqlHT2DOBk2vmmr0QrodFpuZCbRsdanxnBbr515lCtrf3F7yG7jHwPOZeVhKu1g0EOsJu1I3mlhU3aEQfVdUjMS6eDq+FFlw6uPsRlp9SzV7VA57a4WjuwN974/MNDA7szqkNvvtmzvFlXoxeiIaQzTgjxr/PNN9+g0Wjo2bMnf/75JzExMURFRfHFF1/Qp08fLC0t6d27N++//z6nT59mx44dvPzyywbHePTRR8nJyeGuu+7iwIEDnD9/ng0bNjBz5kw0mvrT1WfPns25c+d45plniI6OZvHixcybN8+gTEBAABs3bmTPnj1ERUXx0EMPkZZm/Ev1JSqVCltbW4NbY4ep9hk7mCNb93Jk614yk9NYt+BP8rNy6D6seqL8TUtWsvybBUB1NqGbl6fBzcrOBlMzM9y8PDG3aPyQ2dqmTL2T1X+vYs3K1cTHxfPFp5+TkZbOxNsmAvDdV9/y9mtv6svfcusk0lPT+HLO58THxbNm5WrW/L2KO++eqi9TWVlJTPRZYqLPUllZRWZmJjHRZ0lKrOkI69u/P7/Onc+eXbtJTUllx9btLF38GwMjmmYI0obo/Qz0C2OAXxc8bJy4M2wYTmo7tp47AsDtoRE80Gt8nf0G+odxLjuZ5PzMOo/5O3rSrU0QLlb2BDp78cygO1EoFPxzZm+TxFyf8nWbsZgwGrPuYSjbeqJ+aAa6igoq9tR0oqofmoHFHRP196uOHkc1bCBmvbujdHHCNKQjFrdPoPLIcf0YmfJ1mzBp549qwmiUbi6Y9emBavAAyjdta9L498SfILxtEF3btMfZyp5RHXpjZ2HNwYQoAIa178GtoRH68idSYymtKGNi6CBcrOzxcXBnRFAvjiSd1Q9j6e/XmaHtu7Pi5HbySguxNrfE2tzSoJOiqW08e5D+fl3o5xuKu40Td3QZgqPaVr+K36SQgdzXY2yd/fr7duZ8dorRDsNxHfsR7OaHs5Udbe1cubfbaLzsXZt1ZUCFQsFdo0Yzd+UKth48QGxiIm989w0W5ipG9q3pgHrt26/56reaFagXrFrJt8uW8uqs2Xi4uJCVl0dWXh4lZTWTbn8w7xfW7t7FW48+jtrCUl+m7AoZyddjyMTR7Nm4jT0bt5OamMwfPy4kNzObAaOHArBi/lLmffqdvvzB7XuYP+d7bp05Fb8OAeTn5pGfm0dpcd2spz0bt9GldzesbW3qPNbU9sQfp1vbDoRffF8Z3aEPdhbWHLh4bgxv34PbLjs3jl88NyaFRujPjZFBvTiSFK0/Nwb6h9HOqQ0OljY4W9nR1zeUMM/2HEtp2OIW1ypkaC/O7j7K2T2R5KVmsX/ZBopy8+kwoHrl6kMrtrB93t/68qc27+dCZDT5GTnkpmRyaMUW4o+eoWNED32ZDgO7UVZcyr5l68lPzybxRAzH1u2m46DudZ6/qew8H0lP72C6e3XE1dqB8cH9sbe0Zt/FVSBHdejDlLBh+vJHk89SUlHGHV2G4mrtgJ+jJ2M79uNgYlSd4XY9vYI5lXb+hkxQv+PcUXr5dKKnVzCu1g5M6DQAB0trfafImI59uavrcH35I0lnKaks486uw3CzdsTf0ZPxwf04kHBaXw9vezdCPdrhqLbFz9GTWb1vQYGCrbFXXjH3RrA0UxHo3JbAi4szedo6E+jcFjdrh6vs2fw2nj3AAP8u9PPtfPEzY+jFz4zqVZwnhQxiZo9xdfbr79eZ89nJRj8ztp07irW5BXeGDcfN2oFQ93aM6diHrbFHmqUOW2IP09c3lN4+IbjZOHJraASOahv9BcsJwf2Z3m1Unf36+IQSl5NCamF2nceGBfZgXMd+LDqynuySfGxUamxUaoMO4Vbt4oiXm/L2P0qGqQoh/nX8/Pw4cuQI77zzDs8++yypqam4uLjQrVs3vv32W6B6MYaZM2fSvXt3goKC+PDDDxkxomaCfk9PT3bv3s3zzz/PyJEjKS8vx8fHh1GjRhkMT6nN29ubP//8k6effppvvvmGnj178u677zJz5kx9mVdeeYW4uDhGjhyJWq1m1qxZTJw4kfz8/HqP2xxC+nSjpLCY7cvXUZRXgKuXB9Oefxh7l+phaIV5+eRnNc9E7Q0xdMQwCvLzmffTL2RnZePXzp8PP/sY94vDhLOzsklPq7lq6dnGkw8/+4Qv53zOX8uW4+zizJPPPU3EkMH6MlmZWcy8e4b+/m8LF/PbwsWEhXfly++/BuDp/zzNT9/9yKcffExubi7Ozs7ccustzHig5jVsjAOJUVip1Ezo1B87C2uS8zOZs/M3/eqodpbWOKkNh7RZmqno1rYDi49uMHpMMxNTJoUOwtXagbKqCo6nxvLjvpXNtoLnJeWr16MwN8NyxlQUajWac3EUffA5lNU8r9LZ0eCLVNmKf9DpwGLyLSgd7NEVFFF59Dhly1boy2jOX6D4s2+xnDIJi4lj0WZmUbrwdyr3GGZKNtbJtPNYmqmICAjHRqUmozCHhYfXkX9xgQ0blRo7y5pM2ApNFfMP/cPYjn15qO8kSivKOJl2ns0xh/RlengHY6o04c7LflQCbI093Gw/Sg4lncHK3JKxHfthZ2FFSkEWX+5aph+qZWdhjaPacPi5pak54W2C+K2e+d/U5iqmh4/E1sKK0spyEvMy+Gjb4mZZ+fJy94ybQHlFBR/M+4XC4mI6tQvgy/++iJVlzaIaadlZBvN+/bFpA5VVVTz/+RyDYz14623Mum0yAH9u2gjA7LffNCjz6qzZjB8U0WTxdx/Qm+KCQv757S8KcvLw8GnLI6/9ByfX6gVkCnLyyM2s+SG7a90WtBoNS7+bz9Lv5uu39x4ygHuefkh/Pz05lXOnz/L4m883WaxXcjLtPGozC/25kV6Yw6+H1+rPDWuVGjvLmoyxCk0V8w6tYWzHfszue6v+3NgUU5OtbGZiyvjg/thaWFGpqSKrOI8/jm9ptiwm/+6dKC8uJXLNTkoKinDwcGHEo3di7WQPQEl+EcU5NZ+7Go2GA8s3UZJXiImZKQ4eLgx/9E68QmqGUls72jHqiansX7aRFW//gNrehk6DexA68vqmjGiIY6mxqM0tGBbYA1uVFWmF2fxyYDV5F1eBtFWpsbes6aCt0FTy476/uSVkIE8MuIOSijKOp8SyLtowS9/Zyh4/J09+3Pc3N0JkSgxqcwuGB/XEVmVFamE2P+1bqV/N0lg9vt+7gkmhg3hq4BRKKsuITIlhbVTNRSZTE1NGdeiDk9qWiqpKojLiWXxkg8HQ1pbSwcWHryY9o7//RP/q96J/ovbyzpb59e12QxxKOoO1ypJxwTWfGV/srPnMsLc09pmhIrxNEEsjNxk9Zm5pIXN2LGVK2FBeG3E/uaWFbI45xNozzTPP65HkaKzMLRgd1BtbCytSC7L5Zs/ymvZkYYWjpWEdLEzNCfMM5I8TW40ec4BfF8xMTHmg1wSD7f9E7Wn2i5tCGKPQyUx+Qghx01pyxHjnzL/JXeEjyCioe4Xy38TV1on7lr7T0mE02twpL5F390NXL3gTs1/4Pa+u+/HqBW9yb456kFl/1J2z8t/mh9ufp+DQ0ZYOo1Fsu3dl89mDVy94kxvavgevrPuhpcNolLdGzeKDLb+2dBiN9vyQ6fzf6q+uXvAm9+G4x3h25RctHUajfDLhCfp9Pbulw2i03Y9+x4PL3m/pMBrlx8n/5bG/PmnpMBrtq0nPtnQI1yXvlZv3e6z9Wy+1dAgtQjLjhBBCCCGEEEIIIVqr2vP5ihYnc8YJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGitdNqWjkDUIplxQgghhBBCCCGEEELcINIZJ4QQQgghhBBCCCHEDSLDVIUQQgghhBBCCCFaK52spnqzkcw4IYQQQgghhBBCCCFuEOmME0IIIYQQQgghhBDiBpFhqkIIIYQQQgghhBCtlVaGqd5sJDNOCCGEEEIIIYQQQogbRDrjhBBCCCGEEEIIIYS4QWSYqhBCCCGEEEIIIURrJaup3nQkM04IIYQQQgghhBBCiBtEOuOEEEIIIYQQQgghhLhBZJiqEEIIIYQQQgghRGul07Z0BKIWyYwTQgghhBBCCCGEEOIGkc44IYQQQgghhBBCCCFuEBmmKoQQQgghhBBCCNFaaWU11ZuNZMYJIYQQQgghhBBCCHGDKHQ6nXSRCiGEEEIIIYQQQrRCec++3NIh1Mv+k7dbOoQWIcNUhRDiJvb+lgUtHUKj/XfIPcRkJLR0GI0S6OrN7QteaukwGu2Pe94h7/7HWzqMRrH/+UueX/NNS4fRaB+MfYSJ8/7b0mE02ooZ75NRkN3SYTSKq60Ti4+sb+kwGm1q+Ege/+vTlg6jUb6c9Awvrf2+pcNotHdGP8STK+a0dBiN9vnEp5n5+7stHUaj/HLHizy47P2WDqPRfpz8X/p9Pbulw2iU3Y9+x31L32npMBpt7pR/6fdBycG66cgwVSGEEEIIIYQQQgghbhDpjBNCCCGEEEIIIYQQrUZubi7Tp0/Hzs4OOzs7pk+fTl5e3hX3USgURm8fffSRvkxERESdx++8885rjk+GqQohhBBCCCGEEEK0Vv+Dw1SnTp1KUlIS69atA2DWrFlMnz6dVatW1btPamqqwf21a9dy//33c9tttxlsf/DBB3nzzTf19y0tLa85PumME0IIIYQQQgghhBCtQlRUFOvWrWPfvn306tULgB9//JE+ffoQHR1NUFCQ0f3c3d0N7v/9998MHjwYf39/g+1qtbpO2Wslw1SFEEIIIYQQQgghxA1XXl5OQUGBwa28vLxRx9y7dy92dnb6jjiA3r17Y2dnx549exp0jPT0dNasWcP9999f57FFixbh7OxMp06deO655ygsLLzmGKUzTgghhBBCCCGEEKK10mpv2tt7772nn9ft0u29995rVHXT0tJwdXWts93V1ZW0tLQGHWP+/PnY2Nhw6623GmyfNm0aS5YsYdu2bbzyyiv8+eefdco0hAxTFUIIIYQQQgghhBA33AsvvMAzzzxjsE2lUhkt+/rrr/PGG29c8XgHDx4EqhdjqE2n0xndbswvv/zCtGnTsLCwMNj+4IMP6v8fEhJCYGAg3bt358iRI4SHhzfo2CCdcUIIIYQQQgghhBCiBahUqno732p77LHHrrpyqa+vL8ePHyc9Pb3OY5mZmbi5uV31eXbu3El0dDRLly69atnw8HDMzMyIiYmRzjghhBBCCCGEEEIIQatZTdXZ2RlnZ+erluvTpw/5+fkcOHCAnj17ArB//37y8/Pp27fvVff/+eef6datG126dLlq2VOnTlFZWYmHh8fVK3AZmTNOCCGEEEIIIYQQQrQKHTt2ZNSoUTz44IPs27ePffv28eCDDzJu3DiDlVQ7dOjAX3/9ZbBvQUEBy5Yt44EHHqhz3HPnzvHmm29y6NAh4uPj+eeff5g8eTJdu3alX79+1xSjdMYJIYQQQgghhBBCiFZj0aJFhIaGMmLECEaMGEHnzp359ddfDcpER0eTn59vsO23335Dp9Nx11131Tmmubk5mzdvZuTIkQQFBfHEE08wYsQINm3ahImJyTXFJ8NUhRBCCCGEEEIIIVorbesYpnotHB0dWbhw4RXL6IwM3501axazZs0yWt7Ly4vt27c3SXySGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorVqJauptiaSGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwg0hknhPifplAoWLFiRat5HiGEEEIIIYQwoNPevLf/UTJnnBBCtBJR2w9xcuM+SvOLsPdwoefk4bgHehstm3r2Auvm1F3qe9JrD2Hv7gzA2k9/JS0moU6ZtiHtGP7onU0b/GXW/LWS5UuWkZOdjbevLw8+8TAhXUKNls3Jyubnr78nNjqGlKRkxt8+kVlPPGJQ5kJcPIt+nk9sdAwZaek8+PjD3HLHrc0WP8DIoF5MCO6Pg9qGxLwM5h1cQ1TGhXrLD/Drwi2dBuBh60RJRTlHU86y4PBaispLAYho15XH+t1eZ7+7Fr5Gpbaq2eoBYDFhNOaD+qFQW6I5f4GSRb+jTUm74j6qYRGYD+6P0tEBXVExFYciKftzJVRVx2oe0R9VRH+Uzo4AaFLSKFu5jqqTp5s8/t4+nRjk3xUblZr0ohxWndpNfG5qveVNlEqGBfagq2d7bFRq8suK2BJ7mENJZ/RlLEzNGRnUixB3fyzNVOSWFrL69G6iM+ueL01ldFBvJoYMrG5Tuen8fGA1pzPi6y0/0D+MSSGD8LR1oriijKPJZ5l36B8Ky0v0ZcYH92NUUG+crewpLC9mT/xJfj2yjkpN07Spv5b9yZKFi8nOysbX348nnnmSLl3D6i1/9PBRvvrsC+LPx+Hk7MzUe6Yx8bZJ+sfjzp3n5+9/IvrMGdJS03j86Se5Y+oUg2OUFBfz03c/smPbdnJzc2nfvj1PPPsUHTsFN0md6nNww072rN5MYV4Brm3dGXnPbfh0aHfV/RKizzPvzS9w9fJg9vvPN2uMtQ3w68LQwO7YWliRWpDN8hPbOJedbLTs3eEj6eXTqc721IIs3t28AIC+vqH09OqIh231Z0hiXjqrTu/mQu6V3y8ao5d3MP39umCjUpNRlMuaqD1XfD4TpZIh7brRpU2g/vzefu4oh5Oi65QN9WjHnWHDOJ0ex6IjG5qtDvXp79eZIQHVr09aYTbLT2znfD2vz9TwEfTyNvb6ZPP+lgXNHare4HbhjArqjb2lNcn5mSyJ3ERMVqLRsjN7jKO/X+c625PzM3ll/Y/6+8MDezC4XTiOaluKKko5lHSGP45vpUqraZY6RLTrysigXthZWJNSkMXSyE3EZCUZLXtfj7H09a37/SQlP5PXNvysv29ppmJSyEC6tgnCytyCrOI8fj+2hZNp55ulDteii0cAU7uOoIOrN85W9vz3n2/ZGXespcMCYHBAN0Zf1p4WH91Yb3u6v+c4+vt1qbM9OT+Tl9f9oL8/vH0PBrfrhtPF9nQwMapZ25MQVyKdcUII0QqcP3SaA8s20ufOUbi28yJ65xE2fv0bk159CGtHu3r3u/X12ZhZqPT3LWzU+v8Peeh2NFU1X07Ki0v5+50f8Q3v2DyVAHZs3saPX3zLw888TnBoJ9auXMPr/3mRb379GVc31zrlKysrsbW34457pvL3738aPWZ5WTnuHh70ixjIT19+12yxX9LXN5QZ3cfw0/5VnMm8wPDAHrw49F6eXvk5WcX5dcp3cPXhsX63M//QPxxKOoOj2pZZvW7h4T638tG2RfpyxRVlPLlijsG+zd0Rpxo9DNWIwZT8sghNegYW40Zi/exjFLz0FpSVG93HrFd3LG6fQMncRWhi41C6u6KeeTcAZUuXA6DNzaP0z5VoMzIBMO/bC6vHH6TwjQ+u2tF3LTp7BDA+uD8rTu7gQm4avbyDmdlzHJ9uX0JeWZHRfaZ1HYmNypI/jm8luyQfK3NLTJQ1AwlMFEoe6DWBoopSFh5ZT35ZEfYW1pRXVTZZ3LX18+3MzJ7j+H7f35zJiGdkUC9eGX4fj6/41Gib6ujqw5P97+CXg6s5mBiFk9qW2X0m8Wjf23h/669AdWfd9G6j+GrXH5zJTMDT1pkn+k8G4JeDqxsd8+YNm/ji08955vnnCO3SmZXLV/CfJ5/l198X4ebuXqd8SnIK//fUs4yfOIFX3nyNE8eO8+kHH2PvYE/EkMEAlJWV4dHGk4hhg/ny0y+MPu8Hb7/P+XPnefmNV3F2cWHD2nU8/eiT/Pr7YlxcXRpdL2NO7j3CugXLGTtzMl5B/hzetJtF73/Lox+/iN3FDmdjykpKWfHNr/iHtKcov7BZYqtPeJv23No5gt8jN3M+J4V+vp15uO8k3tk0n9zSurH8cXwrf5/aqb9volDy36HTOZoco98W4NyWw0nRnM/ZSpWmiqHte/BI31t5d/MC8us53xoj1L0dYzr2ZdWpXVzITaOHdzD3dh/D5zt/r/f57gobjpXKkr9ObCe7JB9rc0uUiroDhewtrBndoTdxOfV33Denrm3aMyk0gmXHthCXnUJfv1Bm95nIe5sXGH19lh/fxqpTu/T3lQolzw+5m8iUszcs5h5eHbkrbDi/HllHbFYSEe268vSAKby8/gdySgrqlF8SuZE/TmzV3zdRKHljxP0GFz56e3fi9s6D+eXgamKzknG3ceT+nuMA+C1yU5PXoXvbDkwJG8aiI+uJzUpmkH8YTwy4g9fW/UROad06/HZ0E38e31ZTB6WSV4fP5NBlnbsmCiXPDLyTgvJivtv7F7mlhTha2lJWVdHk8V8PSzMVsdlJ/HNmD++Ont3S4ej19OrI1IvtKSYzkYiAcJ4ZeCcvrfveaHtafHQjy44btqc3Rz7AwcQo/bbePp2Y3HkIvxxYTUxWUnV76jUeaJ72JMTVyDBVIcRNKyIigscee4zHHnsMe3t7nJycePnll9FdXA1o4cKFdO/eHRsbG9zd3Zk6dSoZGRkA6HQ6AgIC+Pjjjw2OefLkSZRKJefOnTP6nCdOnGDIkCFYWlri5OTErFmzKCqq+VJ/8OBBhg8fjrOzM3Z2dgwaNIgjR44YHCMmJoaBAwdiYWFBcHAwGzdubMo/i1GnNu8nsG8Y7ft3xd7DmV53jMDKwZYzO45ccT8LGyvUdtb6m/KyTgeVlaXBYylRcZiamzVrZ9yKpX8yfOwoRo4fg5evD7OeeARnVxf++WuV0fJuHu489OSjDB01HLWVldEy7TsGMfPRWQwaNhgzc7Nmi/2S8R37sSX2MJtjD5Gcn8m8Q/+QXZzPiPa9jMfn7EVmcS7/nNlLRlEuZzIusDHmAO2cPGuV1JFXVmRwa26qYRGUrdlA5ZFjaJNTKfl5IQpzM8x7da93H9N2flTFnqdy/2G02TlUnTpDxf7DmPrWZGlWHTtJ1YnTaNMz0aZnUvbXanTl5Zj6+zZp/AP8unAwMYqDiVFkFOWy6vRu8suK6O0TYrR8excv/J08+eXgGmKzk8gtLSQpP8Mg06a7V0fUZioWHFrLhdw08kqLiM9NI7Uwu0ljv9wtnfqzKeYQm2IOkpSfyc8HVpNVnM+ooN711MObzItZQhlFuURlXGBD9AECnNvoywS5eHMm/QI74o6RUZRLZEoMO88fMyjTGEsX/8bYW8YzfuIEfP18eeLZp3B1c+WvP/4yWv7v5X/h5u7GE88+ha+fL+MnTmDshHH8tnCxvkzHTsE8+uRjDBsxHHMj53J5WTnbt27j4SceISy8K2292jJz1gN4eHqy4s/lTVIvY/at2UrXwb0JH9IXlzbujLr3NuycHDi4cdcV91v901JC+nWnbaBvs8VWn8EB3dgbf5K9F06SXpjD8hPbyC0tNJpZAlBWVUFheYn+5u3ghqWZBfsunNSXWXBoLTvjjpGcn0l6US5LjmxEoVAQ5OLVLHXo5xfK4aQzHEo6Q2ZxHv9E7SG/rIhe3sazIAOdvfB19GDBobWcy04mr7SIpPxMEvLSDcopUDC5yxA2xxwi18iP/hshol04+y6cZN+Fk6QX5fDXie3klhbSz0gmGdT/+uy/cOqGxTyyfU92xh1jZ9wxUguzWRK5iZzSAga3CzdavrSynIKyYv3N18EDtbkluy7Lymrn1IaYrCT2J5wmuySfU+lx7E84ja+DR7PUYXj7nuyKO8auuOOkFWaz9NhmcksKGNSuq/E6VJVTUF6sv/k4uKM2t2B3/HF9mf5+nVGbW/DN7uWcy04mp6SA2OwkkvIzmqUO12pfwil+3L+S7ecjWzoUAyOCerEjLpId5yOr29PRjeSUFjCkoe3JsW57CnBqS0xWIvsSTl3Wnk7h59g87emmo9XdvLf/UdIZJ4S4qc2fPx9TU1P279/PF198wZw5c/jpp58AqKio4K233uLYsWOsWLGCuLg4ZsyYAVTP0TZz5kzmzp1rcLxffvmFAQMG0K5d3eFDJSUljBo1CgcHBw4ePMiyZcvYtGkTjz32mL5MYWEh9957Lzt37mTfvn0EBgYyZswYCgurr1RrtVpuvfVWTExM2LdvH9999x3PP9+8Q480VRqyE1JpE+xnsN2zoz8Z540Prbhk5bs/8dvzn7Hus0WkRsdfsezZPZH4dQ/GTGXe2JCNqqysJPbsWbr27GawvWuPbpw5eeN+UDSGqdIEfydPjqXEGmw/lhpLkIvxIcPRmQk4qe3o2qY9AHYWVvT2DuFIkmFGg4WpOd/e+hzf3/Z/vDBkerN/eVQ6O6G0t6PqVE2WAlVVVEXHYtrOr979qmLPYerjhYmfj/44ZqHBVB6v5zVUKDDrGY7C3Jyqc/FNFr+JQkkbOxdiMg2HtJzNTMTHwc3oPsFufiTlZzDIvysvDr2H5wZNZWzHvpgqTS4r48uFvHQmhgzg5WEzeHrgFAa3C0eBosliv5yp0oR2Tm2ITIkx2B6ZEkMHVx+j+5zJuICTlR3d2gQBYGdhTR/fEIOMk6iMeNo5tyHQuS0AbtaOhLcNMihzvSorKzl7JpqevXoabO/Rqycnj58wus+pEyfpUat8z969OHP6DFVVDcsA1Wiq0Gg0mJurDLarLMw5Hnm8nr0aR1NVRUpcIu06dzDY7t+5A0ln4+rd7+i2feSmZxFx26hmietKTBRKvOzdOFNr6PyZ9Av41bkIYFxvnxCiMy4YzdK6xNzUFBOlCcWVZY2K1xgThRJPWxdiaw0fjM1Kwrue87ujqw/J+ZkM8OvC84Pv5umBUxgV1Nvg/AYYEtCNkooyo0NXb4RLr090rdcnOiMBP8eGvz5nMxOu+Po0JROlEh8HD06lGw67PJUWR4BT2wYdY4B/F06nx5F9WQdoTFYSvg7u+s87Fyt7Qj3acTw1tr7DXDcThRIfB3dOp8UbbD+VXv1e2RD9/boQlR5vkLnVxTOQ89nJTA0fwSfjH+f1EfczpkOfZvvMaA1MlEp8HTw4lWb4Hnoq7TztnBvWngb6hdVpT2czE/F18NCfRy5W9nT2CKjznU2IG0WGqQohbmpeXl7MmTOn+up6UBAnTpxgzpw5PPjgg8ycOVNfzt/fny+++IKePXtSVFSEtbU19913H6+++ioHDhygZ8+eVFZWsnDhQj766COjz7Vo0SJKS0tZsGABVhezrL766ivGjx/PBx98gJubG0OGDDHY5/vvv8fBwYHt27czbtw4Nm3aRFRUFPHx8bRtW/2F4d1332X06NHN9BeC8qISdFodFjbWBtstbawozTeePaW2tabvtDE4ebujrdJwbv8J1n2+iNFPTzc6z1xmfDJ5KZn0nz62WeoAUJCfj1ajxcHBwWC7g4MDR3Jym+15m5KNSo2J0qTOEKn80iLsPa2N7hOdmcDnO3/nmYF3YmZiiqnShIOJUfx8oCYbMDk/i692/0lCXjpqMxVjOvbl7VGzeHbVV6Q1U0aWws4WAG2BYWaItqAQpVP9Q+8qDxyh1Noa6/8+BShQmJpQvnUn5WsNM0SVbTywefFZMDOF8nKKv/4JbWrTDVFVm1tgolRSVFFqsL2ovAQblfFMHUdLW3wdPKjSaFhwaB1W5hZMDBmIpZmKPy4Of3FU29LO0obIlBjmHliDs5Udt4QMRKlQsjn2UJPFf8mlNpVX60d1fmkhDpbtje4TnZnApzt+47mIqfo2tT/hND/uW6kvsyvuOHYqa94dPRuFQoGp0oS1Z/ay/MT2Rsecn5eHRqPBwdGwnTg4OZKTnWN0n+zsHHrWalcOjo5oNBry8vJwdna+6vOqrawICQ1h/s9z8fXzwcHRkU3rN3L65GnaejVPdlZJQTE6rRZrOxuD7dZ2NpyrZ+hpdmoGm5es4r7Xn0RpYmK0THOyUlUPvS4sLzbYXlhegq1KXc9eNWxVVgS7+TH/0D9XLDeh0wDyS4uIzmj6uRT153d57fO7FGtz43VwUNvi4+BOlVbDoiPrUZtbMCF4AGpzlb7de9u70c0riK92GZ/24Ea49PoUXDa/I0BheTE2KuMd8JezVVnR0dWXBYfWNleIddiYqzFRKskvM2xTBeXF2FkYz1q/nJ2FFaHu7fhh398G2w8knsZGpeaFwfeAovrixJbYw/xzZm+Txg9grVJf/LvXOi/KGl6HEHd/ftq/0mC7s5U9HVx92J9wis93/o6bjSNTu45AqVCyOmp3k9ahtbjUngpqf5cqKybEwvh3qcvZWVgT6tGO7/etMNh+IPE0NhZqXhzS/O1JiIaQzjghxE2td+/eKBQ1Vw/79OnDJ598gkaj4fjx47z++utERkaSk5ODVlu9Gk9CQgLBwcF4eHgwduxYfvnlF3r27Mnq1aspKytj8uTJRp8rKiqKLl266DviAPr164dWqyU6Oho3NzcyMjJ49dVX2bJlC+np6Wg0GkpKSkhISNAfw9vbW98RdynmqykvL6e83HAOLpVKVU9p4xR1LrLqDP52l7Nzd8LO3Ul/39W/LcW5BZzcuM9oZ9zZ3cew93TBxbdphrBdUa2YdVeox83q0lBqvSvE39bOhZk9x7Hs+BaOJcdgr7bhnm6jmdX7Fr7dWz2kLyYr0WDS4jMZCXw47lHGdOjNLwfXNEnMZr26o76nZmGOos8vzq9Xe/SAQgG163cZ06AALMaNpHTh71Sdj8fE1QXLu25DO24k5avX68tp0zIofON9FJaWmHULQ33/3RR98EWTdsiB8deivugvtbPfIjfp5/NZHbWHu8NHsuLkDqq0GhQoKK4o5c/j29ChI7kgE1sLKwb6hzVLZ1y9FAp09dSkrZ0rD/aawNLIzRxNOYuDpQ0zuo/h4T6T+GpPdSdDiLs/t3cZzPf7/iYmMwF3W2ce6Dme3M6F/H58S1OFaEinu9KpUCdT5FL9riWD5OU3X+W9N99l0phbMDExoX1Qe4aNHM7Z6OaeO6tW7Dpd7U1Adfb08q8WEHH7aJw86s6DeSNd78CgXj7BlFaWc/wK2SRDA7vTrW0Hvtj5e7NOjG7s7am+ml1qe78f20L5xfP7nzN7uavrcFae2oVSoWRylyGsOLGDkmbI5rtmdarRsPOgp3f163OiGbLHrpWChrWzfr6dKaks40iKYTZikIs34zr25dcj6zifk4KbtQN3hQ0nP7iIVaebpyOrzmcGV/zI0+vrG0pJZfViOZdTKhQUlBez4NA6dOhIyEvH3sKaEUG9pDPuKuqc3w1sUf39Lran5LrtaXzHftXtKTsZV2tHpnYdTl5wf1advvK0Aq1CQxqyuKGkM04I8a9UVlbGiBEjGDFiBAsXLsTFxYWEhARGjhxJRUXNpLgPPPAA06dPZ86cOcydO5cpU6agVhu/aq7T1d/pc2n7jBkzyMzM5LPPPsPHxweVSkWfPn30z2nsS1xDOpLee+893njjDYNtr732GhYD/a+6r8pajUKpoLTA8ApiaWEJFrZXv5p7iYtfG84dOFlne1VFJXGHTtN1/MAGH+t62NrZoTRRkptjmDmTl5uHvYN9sz53UyksL0Gj1WBvaZglY2dhRV6p8SzFSSGDiM64wMqLk29fyEvnx6qVvD1qFksiN9XJiILqTopz2Un6VQubQuWxExS+EV+zwbT6K4LSzhZNfk12nNLGGl1B/UOfLCaOo2LvASp2Vl9p1iangsoc9T13Ub5mQ82XQY0GbUZW9X8vJGLi54Nq2CBKf13aJPUpqShDo9ViUyvTx9rckqJaGSeXFJYXk19WbDCxdmZRLkqFAjsLa7JL8iksL0aj0xp0hGUU5WJrYYWJQolGp22S+Gtiqq9NWdfbpm7vHEFURjwrTu0A4EJuGt/vW8F7Yx5m0dEN5JYWMrXrcLadO8KmmIPVZfLSsTA145G+t7Ls+NZ6O/oaws7eHhMTkzpZcLk5uXWy5S5xcnIkJ9swyzMvJxcTExPs7OtfhKa2Nm3b8tUP31BaWkpxcTHOzs689sIreHg2z7Buta0VCqWSonzDDNLigiKsbW3qlK8oLSPlfAKp8Un8M+8P4OLnhk7Hm9OeYvoLj+AXYjzjsakUl5ei0WqxVRl+Ptio1HWysYzp7RPCwcTT9bb1IQHdGNG+J1/t/pOUgqwmibm2mvPb0mC7lbllnWzYSwrLSigoK9Z3xMHl57cV5iZmOKptubtbzdDhS5/fb458kM92LjU6cXxT078+FobvXTYqtcFqyPXp7dOJQ4lRTf5edCWFFSVotNo6GWQ2KisKamXLGTPArwt7L5xEozWMeVLIIPZcOKlf3TM5PxNzEzPu7T6G1ad3N+Jdqq6i8kt1MMy8srGwqpMtZ0w/387su3Cqzt89r6wIjdbwMyO1MBt7S+tm+cxoDWrak+FrYWuhrpN9acwAvy7siT9Rpz3dGjqIPRdOsOPi/HhJ+ZmoTC+1p11N2p6EaAiZM04IcVPbt29fnfuBgYGcOXOGrKws3n//fQYMGECHDh30izdcbsyYMVhZWfHtt9+ydu1ag6GttQUHBxMZGUlxcc0H/e7du1EqlbRvX/3jaOfOnTzxxBOMGTOGTp06oVKpyMrKMjhGQkICKSkp+m179149/f2FF14gPz/f4PbCCy9cdT8AE1MTnLw9SIkynFsjJSoOV/+Gza0BkJ2YjqVt3fT/uMOn0VZV0a6n8Unvm4qZmRkB7dsTedBw0YnIg0foENKpWZ+7qVRpNZzPTqGzZ4DB9s4eAURnGh+qpTI1Q1vrK+ClLM8rdeP6Ong07XxAZeVoM7JqbilpaPPyMQ0OqiljYoJpUABV5+qfCwtzs7pXX7XGs4QMKEBh1nQLbGh0WpLzMwmsNXl8oHNbLuSmG90nPicNWws15iY11yqdrezQ6rT6ocfxuWk4qe0MquNsZU9BWXGz/Kiq0mo4l51MWK02FeYZUGfOr0tUJuZ1Lgxoa91XmZjVU0Zxxey1hjAzM6N9hyAO7j9gsP3ggYOEdA41uk+n0BAOHjhosO3A/gN0CO6Aqem1Xzu2tLTE2dmZwoICDuzbz4CBA675GA1hYmqKp58X548bZmCcP3GGtu3rzq2osrTg4Q//y+z3/09/6z60H06ersx+//9oE3D1YYiNpdFpScxLp4OrYRZ0kKsPcdkp9exVLcC5La7WDuyNr3vhBqoz4kZ16M23e/4iMc/4edYUNDotKQWZdeYjC3BuS0I953dCXjo29Z7fxWQW5/H5zt/5avcf+tuZjHjislP4avcf5NfT+d3ULr0+QS6GbSHIxZu4nKu/Pi7WDgYLa9wIGq2WC7mpBLsZtvlObn7EZl957togF2/cbBzZef5YncfMTUzrXBjQ6XTV779NnDGv0Wm5kJtGRzdfg+3Bbr6cy0q+4r7tL9bh8sUCLjmXlYSrtYPBZ4abtSN5pYXSEVcPjVZLfG4qndwN21Owmx/nshrYnoy8FuZGP/e0zdKehGgI6YwTQtzUEhMTeeaZZ4iOjmbJkiV8+eWXPPnkk3h7e2Nubs6XX37J+fPnWblyJW+99Vad/U1MTJgxYwYvvPACAQEBVxwyOm3aNCwsLLj33ns5efIkW7du5fHHH2f69Om4uVVPCB0QEMCvv/5KVFQU+/fvZ9q0aVha1lyZHzZsGEFBQdxzzz0cO3aMnTt38tJLL121niqVCltbW4PbtQxT7TS0F2d3R3J2TyR5qVnsX7aR4tx8OgyoXnXq0Iqt7JhXM4/Jqc0HuBAZTX5GDrkpmRxasZULR8/QMaLuKpkxu4/h3SUIC+urzyXUWBOn3MaG1WvZsGYdifEX+PGLb8nMyGDMxHEAzPvuZz55+wODfc7HxHI+Jpay0lLy8/I5HxNLQlxNJ0VlZaW+TFVlJdmZWZyPiSUl6cpfrq/XqqjdDA3oxpCAbrSxc2FG9zE4W9mx4Wx1x8TUriN4vN/t+vKHks7Qy7sTI9r3xNXagSAXb2b2HEdMZqK+s21y5yF08QzA1doBXwcPHul7K76OHmyIPmA0hqZSvmkbFmNHYNa1M8o2Hqhn3o2uopKK/TXDMdX3T8fi1vH6+1XHTqKK6I9Zz3CUzk6YBgdhMXEslZEn9Z10FreOxySwHUonR5RtPLCYNA7ToEAq9h2sE0Nj7Iw7Rg+vjnRv2wFXawfGdeyHvaUN+xKqf6iOCurNHV2G6stHppylpKKcyV2G4GrtgJ+jB2M69OVQ4hn9ULt9F05hZW7B+E79cbayo4OrD4MDwtnTjD9+/z61i2GBPRga0L16WHOPcThb2bM+ej8Ad4eP5Mn+d+jLH0yKordPCKOCeuFm7UgHVx8e6DXeYEL3g0lnGBXUm/5+nXG1dqCLRwBTuw7nYOLpOh1312PK1DtZ/fcq1qxcTXxcPF98+jkZaelMvG0iAN999S1vv/amvvwtt04iPTWNL+d8TnxcPGtWrmbN36u48+6p+jKVlZXERJ8lJvoslZVVZGZmEhN9lqTEmh9n+/fuY/+efaQkp3Bw/wGemP04Xj7ejJkwrtF1qk/vsYM5snUvR7fuJTM5jXULlpOflUv3Yf0B2LRkJX998ysACqUSVy9Pg5uVnTWmZma4enlibnFt0xNcr62xh+njG0pvn0642Thya+ggHNU2+s6E8cH9md6t7uISfXxCiMtJNbp68NDA7ozt2JdFRzaQXZKPjUqNjUqNuUnzrGK9O+4E3bw60K1tEC5W9ozp0Ac7C2sOJJwGYET7ntzeebC+/LGUGEoqyrk1NAIXa3t8HTwY1aE3h5OiqdJqqNJqyCjKNbiVVVZQrqkgoyj3hnacbDt3hN6+IfTy7oSbtSOTQgbhoLZhd1z1QiTjgvsxLXxknf16+4QQX8/r09zWnz3AQL8w+vt1xsPGiTvDhuGotmXbueoLbLeFRvBAz/F19hvg14Vz2ckkF2TWeexYaiyD24XT0ysYZys7gt18mRgykMiUGKMjERpr49kDDPDvQj/fzrjbOHFHl6E4qm3Zfv4oUJ2pN7NH3feS/n6dOZ+dbDQTdNu5o1ibW3Bn2HDcrB0IdW/HmI592Bp75dXubxRLMxWBzm31i/l42joT6NwWN2uHq+zZvDZE72egXxgD/Lro25OT2o6tF9vT7aERPNCrbnsa6B9W3Z7y67anyJQYBgd0u6w9+TEpZFCztaebzsUs7Jvy9j9KhqkKIW5q99xzD6WlpfTs2RMTExMef/xxZs2ahUKhYN68ebz44ot88cUXhIeH8/HHHzNhwoQ6x7j//vt59913r5gVB6BWq1m/fj1PPvkkPXr0QK1Wc9ttt/Hpp5/qy/zyyy/MmjWLrl274u3tzbvvvstzzz2nf1ypVPLXX39x//3307NnT3x9ffniiy8YNap5V8zz7x5MeXEJx9bsoqSgCAcPF4Y/eifWTtXDu0rziyjOydeX12o0HFy+mZK8QkzMTHHwcGHYo1PwCjHMvslPzyb9XCIjnrirWeO/ZODQCAoLCvht3kJysnPw8fPl9Q/fwdW9ujM0NzubzHTDDMgnZj6s/39sdAzbN27B1d2NX5YtBCAnK9ugzPLflrH8t2WEhHXm/S8/afI67Ik/gY1Kze2dB+NgaUNCXjrvbl5AVnEeAA6WNjhb1Qy723buKJZmKkZ36M293UdTXFHGybTzLDxcM7+albkFs3tPxN7ShpKKMuJyU3l13Y9XzThorPK1m1CYmWF59x0orNRozsdT9OnXUFYzv6HS0cHgi1TZ6vXoqB6uqnSwQ1dYROWxk5QtX60vo7C1weqB6SjsbNGVlqFJSqF4zjdUnW7a1QuPp8aiNlcxNLA7tior0oqymXtwtX54p41Kjb1lTTZohaaKn/av5JZOA3i8/+2UVJRzPDVW3+kFkF9WxE/7VzE+uB9PDZhCQVkxu+OOs+3c0SaN/XK7449jq1IzJWxodZvKTeOtTfPIvNimHNW2uFjb68tviT2MpamKMR36cl+PsRRXlHE89RwLDtdM6P77sS3odDqmdR2Bo9qOgrJiDiZGsejoeprC0BHDKMjPZ95Pv5CdlY1fO38+/Oxj3D2qh4tmZ2WTnlaTweTZxpMPP/uEL+d8zl/LluPs4syTzz1NxJCazpSszCxm3j1Df/+3hYv5beFiwsK78uX3XwNQXFTM919/S2ZGJja2tkQMieDBRx66ruy6hgrpE05pYTHbl6+nKC8fVy8Ppj0/G3uX6iG5RXkF5GfdXIvQHEk+i5W5JaOCemNrYUVqQTbf7vlL31lrZ2GFQ62h0Ram5oR5BvLniW1GjznArwtmJqZ1fiD/E7WXtc0wQfqJtHOozVUMbtcNGws16YU5LDi0lryymvP78mFuFZoq5h5cw/jgfjzS91ZKKso5mXaOjWeb9iJAUziafBYrcwtGduiFncqK1MJsvt+7Qv/62FpY4aCu+/p08Qhg+YltNz5g4GBiFNbmlkwI7o+dhTXJ+Zl8tnOpfjVLOwtrHNW2BvtYmqno1rYDSyI3Gjskq07vQqfTMSlkIA6WNhSWl3AsNbbeNthYh5LOYK2yZFxwP+wsrEgpyOKLncv0w5PtLY3UwVRFeJsglkZuMnrM3NJC5uxYypSwobw24n5ySwvZHHOItWf2GS1/o3Vw8eGrSc/o7z/Rv3pe5X+i9vLOlvktFRYHEqOwUqmZ0KmmPc3Z+VtNe7K0xkltOIXBpfa0+OgGo8e8NC/craGD9O0pMiWm2dqTEFej0P1PdAMLIf6NIiIiCAsL47PPPmvUcXbv3k1ERARJSUn6DLd/i/e3LGjpEBrtv0PuIaYZVtO7kQJdvbl9wdUzHG92f9zzDnn3P97SYTSK/c9f8vyab1o6jEb7YOwjTJz335YOo9FWzHifjIIbn4XTlFxtnVh8pGk6IVvS1PCRPP7Xp1cveBP7ctIzvLT2+5YOo9HeGf0QT66Y09JhNNrnE59m5u/vtnQYjfLLHS/y4LL3WzqMRvtx8n/p9/Xslg6jUXY/+h33LX2npcNotLlT/p3fB/NmPdXSIdTL/ofPWjqEFiGZcUKIVqu8vJzExEReeeUV7rjjjn9dR5wQQgghhBBCNJpW5ii82ciccUKIVmvJkiUEBQWRn5/Phx9+2NLhCCGEEEIIIYQQkhknhLh5bdu2rVH7z5gxgxkzZjRJLEIIIYQQQgghRFOQzjghhBBCCCGEEEKI1kqWCrjpyDBVIYQQQgghhBBCCCFuEOmME0IIIYQQQgghhBDiBpFhqkIIIYQQQgghhBCtlQxTvelIZpwQQgghhBBCCCGEEDeIdMYJIYQQQgghhBBCCHGDyDBVIYQQQgghhBBCiNZKK8NUbzaSGSeEEEIIIYQQQgghxA0inXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorXSaVs6AlGLZMYJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGitdLKa6s1GMuOEEEIIIYQQQgghhLhBpDNOCCGEEEIIIYQQQogbRIapCiGEEEIIIYQQQrRWWhmmerORzDghhBBCCCGEEEIIIW4Q6YwTQgghhBBCCCGEEOIGUeh0sqyGEEIIIYQQQgghRGuUN21WS4dQL/tFP7R0CC1C5owTQoib2Je7lrV0CI32eP/JFObmtnQYjWLj4MDwH55s6TAabeOsz8l7+sWWDqNR7Oe8y50LX23pMBrtt7vfZMSPT7V0GI224cHPiMtKbukwGsXPuQ3f7PmzpcNotEf63sZr639q6TAa5Y2RD7Ds2OaWDqPRJncZyvNrvmnpMBrtg7GPMH3JGy0dRqP8etdrPPbXJy0dRqN9NelZ7lv6TkuH0Shzp7xEv69nt3QYjbb70e9aOgTRSsgwVSGEEEIIIYQQQgghbhDJjBNCCCGEEEIIIYRorbTalo5A1CKZcUIIIYQQQgghhBBC3CDSGSeEEEIIIYQQQgghxA0iw1SFEEIIIYQQQgghWiudrqUjELVIZpwQQgghhBBCCCGEEDeIdMYJIYQQQgghhBBCCHGDyDBVIYQQQgghhBBCiNZKhqnedCQzTgghhBBCCCGEEEKIG0Q644QQQgghhBBCCCGEuEFkmKoQQgghhBBCCCFEK6XTyjDVm41kxgkhhBBCCCGEEEIIcYNIZ5wQQgghhBBCCCGEEDeIDFMVQgghhBBCCCGEaK102paOQNQimXFCCCGEEEIIIYQQQtwg0hknhBBCCCGEEEIIIcQNIsNUhRBCCCGEEEIIIVornaymerORzDghhLhoxowZTJw48Zr28fX15bPPPmuWeIQQQgghhBBCtD6SGSfE/6gZM2Ywf/78OttHjhzJunXrmv258/LyWLFiRbM+z7X6/PPP0TXxVaP4+Hj8/Pw4evQoYWFhTXrshjixZT9H1u+kJK8IxzauDLhzDJ7tfY2WTTpznhUf/VJn+7S3n8TBw6XZYtTpdPzw00/89fffFBYW0ik4mOf/8x/a+ftfcb/NW7bw3Q8/kJScTNs2bXhk9mwGR0ToHz9y9Ci/LlxIVHQ0WVlZfPzBB0QMGmRwjJKSEr785hu2b99OfkEBHu7u3HnHHdx+222NqtP44P5M7jwEJ7Ut8blpfLt3OSfTztdbfkJwf27pNAA3G0cyinJZfHQjm2IOGi0b0a4rLw2dwe7447y+4edGxdkQFiOHYt6nBwpLSzQJiZT8uRJtWka95a0ffQDTgLqvXeXpMxT/uEB/TItRQw0e1xYUUvDae00bPDC8fQ/GB/fH3tKapLxMFhxay5nMC/WW7+fbmQmd+uNu40hJZTnHUmJYeHg9RRWlAPTw6sjEkIG42zhiojQhrSCbNVF72Bl3rMljv9z4jv2Y3GUIjpa2XMhN49t9f12xTY0P7s8twQNws3EgoyiPJZGGbaqfb2fuChuGp60LpkolyQVZ/HF8K5tjDzVZzKuW/80fi5eSk52Nj58vs594lJCwzvWWP370GD98+Q0X4uJxcnZm8tQpjJ00waDMX0v/YPVfK8lMz8DW3o4BEQO5b/aDmKvMATgReYw/Fi8l5kwMOdnZvPrem/Qd2L/J6gRwbMs+jqzdSXFeIU5tXBk4dSxt2vtddb+UmAv88f6POLVxY9qbj+u3a6o0HFqzjajdRynKLcDBw5l+k0fhG9q+SeOuLWbnUc5sPkhpQRF27s50vW0Iru3a1lteU1nFqfV7iT94mrKCYiztrek0og/+fUIByE/N4sQ/u8hJTKckp4CukwYTNLh7s9Zh//rt7Fy5iaK8fFzbejBmxmR8OwYYLRt/JpYNi1aQmZxOZXkF9i6O9BjWn37jat6Lfnp9DvGnY+rs275rJ+554dFmq0dvn04M8u+KjUpNelEOq07tJj43td7yJkolwwJ70NWzPTYqNfllRWyJPcyhpDP6Mham5owM6kWIuz+WZipySwtZfXo30ZkJzVaPoQHdGduxL3aWNiTnZ7DwyHrOXuH5+vqEMrZjX9xsnCitLON4aixLjm7Uv9+2sXXhts4R+Dp44mJtz8Ij61gfvb/Z4gcY4NeFoYE9sLOwIrUgmz9PbOVcdrLRsneHj6S3T0id7akFWbyzufo7dl/fUHp6BeNp6wxAQl46q07v4kJuWvNVAhgc0I3RQb2xt7QmOT+TxUc3EpOVaLTs/T3H0d+vS53tyfmZvLzuB/394e17MLhdN5zUthRVlHIwMYo/jm+lSqtptno0RBePAKZ2HUEHV2+crez57z/fNvtnshBNQTrjhPgfNmrUKObOnWuwTaVStVA0Lc/Ozq6lQ2hSMQdOsPO3fxh093g8Arw5tf0gqz5bwNS3nsDGyb7e/aa98xTmljXtwNLGqlnjnP/rryxesoTXXnkFb29vfp47l0efeII/ly7Fysr4cx8/cYIXX3mF2bNmMXjQILZu385/X3qJn7//npCQ6i/GpaWlBAYGMn7cOP7vhReMHufTzz7j0JEjvPn663h6eLDvwAE++OgjnF1ciBg48LrqM8i/Kw/3mcSXu5ZxKj2OsR378u7o2dz/+3tkFufWKT+uYz9m9hzPnB2/EZ2ZQAdXb54ecCdF5SXsSzhlUNbV2oFZvSZyPDX2umK7VqohA1FF9KNk8Z9oMrOwGD4Y69kzKXjvUyivMLpP8dxFYGKiv6+wUmPz3ONURp40KKdJTafo28s6E7VNP3yij08I93Ybzc8HVxOdkcCwwB78d8jdPLvqK7JL8uuUD3Lx5tG+t7Lg8FoOJ0XjqLblgV7jmdX7Fj7d8Vt1/SpKWXFyB8n5mWi0GsLbBDG7z0Tyy4qb7XUZ5N+V2X0m8eXuP6rbVIe+vDPqIR5Y9h6ZxXl1yo/r2I+ZPcbx2c6l1W3KxZunBkwxaFOF5SUsidxIQl4GVZoqenl34rlBd5FXVsThy37QX6/tm7by/edf8+izT9Kpcwj/rFjFy8/9lx8WzsXV3a1O+bSUVF557gVGjx/D/736IqeOn+TrTz7Hzt6e/oOrz8Ut6zfxy3c/8swL/0fH0E4kJyTyyTsfAvDQk9UdJWWlZfgFtGP4mFG8/dLrja5HbWf3H2fH4jUMnj4Bz0AfTmw7wN+fzufud57C9grvq+UlZWz4cRleHdtRUlBk8Nje5Rs5szeSoTMm4ejhwoWTZ1n95ULueGk2rj6eTV4HgIQjZzi6fAvdJg/H2b8N53YfY8e3fzD6xZlYOdoa3WfP3FWUFRbTc+pIrJ0dKC8qQaepWZ2vqqISayd7vMKCOPrX1maJ+3In9hzin3l/MP6BO/EO8ufgpl0sePdrnpjzCvbOjnXKm6tU9Bo5CHefNpirVFw4E8vfPy7B3EJFj2HVHbZTn5uFpqpKv09JYTFf/+ddQvqEN1s9OnsEMD64PytO7uBCbhq9vIOZ2XMcn25fQl5ZkdF9pnUdiY3Kkj+ObyW7JB8rc0tMlDUDnkwUSh7oNYGiilIWHllPflkR9hbWlFdVNls9enl34u7wUcw7tIaYrEQGB3TjP4Om8d9/via7pKBO+fbOXjzUeyKLjq7naPJZHCxtuK/HOO7vOZ7Pd/0OgLmpGRlFeRxIOM208JHNFvsl4W2CuK3zYJZGbuZ8TjL9fTvzSN9beXvTPHJLC+uU/+P4Vv4+tVN/30Sh5IWh93A0+ax+W6CzF4eTzrAsJ4UqjYZh7XvwaN/beGfzfPLreX0bq6dXR6aGDefXI+uIyUwkIiCcZwbeyUvrvifHyGux+OhGlh2vOWdNFEreHPkABxOj9Nt6+3Ricuch/HJgNTFZSbjbOHJ/r/EA/Ba5qVnq0VCWZipis5P458we3h09u0Vjuak1w/cs0TgyTFWI/2EqlQp3d3eDm4ODg/5xhULB999/z7hx41Cr1XTs2JG9e/cSGxtLREQEVlZW9OnTh3Pnzun3ef311wkLC+P777/Hy8sLtVrN5MmTycvL0z8+f/58/v77bxQKBQqFgm3btjFkyBAee+wxg/iys7NRqVRs2bKlTuz5+fmYmJhw+PBhoDq7ytHRkR49eujLLFmyBA8PD/395ORkpkyZgoODA05OTtxyyy3Ex8frH689TLWwsJBp06ZhZWWFh4cHc+bMISIigqeeesoglpKSEmbOnImNjQ3e3t788EPNVUQ/v+psia5du6JQKIi4LHOruUVu2E3wgG50GtgdR09XBtw1FmtHO05sO3DF/dS2VljZ2ehvSmXzfVTodDqWLF3KfTNmMGTwYALateONV1+lrKyMdRs21Lvfkt9+o1ePHtx37734+vpy37330rNHDxYvXaov069vXx6ZPZshgwfXe5zjJ08ybswYunfrhqenJ7dOnEhgQABRUVH17nM1t3WOYF30PtZG7yMhL51v9/5FZlEu44P7GS0/LLAHa6J2s/38UdIKs9l27ijrovcxJWyYQTmlQsELQ+5hweG1pBVkX3d810I1qC9lG7dReeIU2rR0ShYvQ2Fuhnl4WL376EpK0RUW6W9m7QOgspKKYycMC2o1BuV0xcVNHv/Yjn3Zeu4IW2OPkFKQxYLDa8kuKWB4+x5Gywc6e5FZnMe66P1kFucRnZnApphDtHNqoy9zOj2eg4lRpBRkkV6Uq3+dO7h6N3n8l9wWGsG66P2si95HYl463+37i8yiPMYHG8/4GhrYnX+i9tS0qfNHWRe9nzu61GQAHU+NZXf8CRLz0kktzGbFqR2cz0khxO3qGV4NsXzpMkaOG83oCWPx9vVh9lOP4eLqyuq/Vhotv2bFKlzdXJn91GN4+/owesJYRowdzR9LfteXiTp5ik6hIQweMRR3D3e69epBxPAhnD1T88O3R59ezJh1P/0jrq8z/WqObNhFp4HdCBnUA0dPVwZNHVf9vrrlytk6W+b/RVDvLngEeNV57Mzeo/QYNwi/LkHYuTrSeUhvfEICObJuV7PUAeDM1kP49w6lXd/O2Lk7EX7bENQONsTuijRaPvV0HBnnEhk4+zbcg3yxdrLDyccDZ/+ac8PJx4OwiRH4dOuI0tTE6HGa0u7VW+g2pC/dh/bDta0HY2dMxs7ZngMbdhgt7+nnRZf+PXDz8sTB1Ymwgb0I7NKR+KiaTnS1tRU29nb627njZzBTmRPSu/k64wb4deFgYhQHE6PIKMpl1end5JcVGc24Amjv4oW/kye/HFxDbHYSuaWFJOVnGGRadffqiNpMxYJDa7mQm0ZeaRHxuWmkFjbfZ8fooN5sP3+U7eePklKQxaIj68kuyWdooPH32wDntmQW57Hh7AEyi/M4m5XIltjD+DnWdEDH5aTwW+RG9iWcolLT/NlXQwK6sTf+BHsvnCC9MIc/T2wjt7SQAUayxgDKqiooLC/R37wd3LE0s2DvhZqLT/MP/cPOuGMk52eSXpTD4iMbUCgUBLk032fGiKBe7IiLZMf5SFILs1lydCM5pQUMaWe8HZdWllNQVqy/+Tp6oDa3ZNdl2WUBTm2JyUpkX8IpskvyOZUex/6EU/g5ehg95o20L+EUP+5fyfbzkS0dihDXRDrjhBBX9NZbb3HPPfcQGRlJhw4dmDp1Kg899BAvvPAChw5VD2eq3YkWGxvL77//zqpVq1i3bh2RkZE8+mh11sJzzz3HHXfcwahRo0hNTSU1NZW+ffvywAMPsHjxYsrLy/XHWbRoEZ6engw20pliZ2dHWFgY27ZtA+D48eP6fwsKqq/6bdu2jUEXhyWWlJQwePBgrK2t2bFjB7t27cLa2ppRo0ZRUWE8w+eZZ55h9+7drFy5ko0bN7Jz506OHDlSp9wnn3xC9+7dOXr0KI888ggPP/wwZ85UZ5YcOFDd8bVp0yZSU1NZvnx5w/7wjaSpqiLjQgpenQyH63gFB5AWe+UhKr+98TW/PPM+Kz76haQz9Q+DawrJKSlkZ2fTu1cv/TZzc3PCu3bl+IkT9e53/ORJel22D0DvXr2uuI8xYV26sGPnTjIyMtDpdBw6fJiExET61Dp2Q5kqTWjv7MXhpGiD7YeToulUTyeHmYkpFZoqg23lVZUEuXhjoqj5mL47fBR5pUWsi953XbFdK6WTA0pbW6qiLxuypdFQFRuHqV/Df0SY9+pOxdHjUGGYkaF0dsb29f9i8/JzqKffidLJoZ4jXB8TpQl+jh4cTz1nsP14aizt6/kRdDYzAUe1LWGegQDYWVjRy7sTRy7LcqgtxN0fD1tnotLrH/raGKZKEwKd23Ik2TBb7XDyGYLdfI3uY640pUJj+Peu0NRtU5cL8wzEy86VE2nnjD5+LSorK4mJPkt4T8MhiuE9uxN18pTRfaJOnqpTvluv7sSciabqYqZSpy6hxESfJfp0dWd5anIKB/fup2ff6ztfr5WmqoqM+BS8OwUabPfpFEDqufpf/1M7D5OXkUOvW4YYP25lFSZmZgbbTM3NSImJb3TMRp+vSkNuYhruHXwNtrt38CUrzvhwvOSTsTh6uXFm8wH+fuVb1rz1E0dXbKWqovkyra6kqqqKlPMJBHTpaLA9oHNHEqIb9rmVEpdIQnQcfsGB9ZY5vGUPoX27YW7RPKMGTBRK2ti5EJNpOHzwbGYiPg51M0gBgt38SMrPYJB/V14ceg/PDZrK2I59MVWaXFbGlwt56UwMGcDLw2bw9MApDG4XjgJF89RDqcTX0bPO+8fJtPMEOhsf+hyTlYij2pYuHtXfU2wtrOjp3ZHIlLrDhG8EE4USL3s3ojIMz+Wo9Av4OTUsQ7WPTwjRGReMZtFdYm5qiolSSUllWaPirY+JUomvgwen0uIMtp9KO0+7el6L2gb6hXE6Pc4go/FsZiK+Dh76zlIXK3s6ewRwLOXGZOoL0RrJMFUh/oetXr0aa2trg23PP/88r7zyiv7+fffdxx133KF/rE+fPrzyyiuMHFk9XODJJ5/kvvvuMzhGWVkZ8+fPp23b6g/9L7/8krFjx/LJJ5/g7u6OpaUl5eXluLu76/e57bbbePzxx/n777/1zzd37lxmzJiBQmH8y2NERATbtm3j2WefZdu2bQwdOpTz58+za9cuxowZw7Zt23j66acB+O2331Aqlfz000/6482dOxd7e3u2bdvGiBEjDI5dWFjI/PnzWbx4MUOHDtWX9/Ss+4VszJgxPPLII/q/0Zw5c9i2bRsdOnTAxaV6rjUnJyeD+tZWXl5u0BEJjRsyXFpYgk6rRW1r+Pqq7awoOWl8WISVvQ2D77kFF982aCqriN4byYqP5zLpPzNpE9Q02TK1ZWdXX6V3cjQcUuTk6EhqWv3zqWRnZxvd59LxGuo/zzzD2++9x5gJEzAxMUGpVPLyiy9e9/x+dhZWmChNyC01HAaSW1qIg9rG6D6Hk84wukNv9sQfJyYrifbOXowK6o2ZiSl2FtbklBbQyc2PUUG9mf3nh9cV1/VQ2FTHqy00bC/aoiKUDvYNOoaJd1tMPN0pWWrYCV11IRHN4mVoMrNQ2lhXD399YjaFH3yGrqS0SeK3VakxUZqQX2oYf35pMfae1kb3OZuVyFe7/+DJAXdgZmKKqdKEQ4lRzDu4xqCcpZmKb299DlMTU7Q6Lb8cWN0knVhG63GpTZUY/rjLLS3EwdL4cMJDSWcY1aE3ey6cICYriUBnL0a272XQpgDUZhYsmfYGZiamaLVavtz9xxU7HhuqIC8frUaLg6NhB6uDgwM52TlG98nNyTXIzAZwcHRAo9GQn5ePk7MTEcOGkJ+bx7MPP4lOp0Oj0TBu0gSmTJ/a6Jgbor73VUs7G4pPGu9AyE3LYvcf65j8wkMoTYxni3mHBHJ0/S7atPfF3tWRhKhznD8ahU6rNVq+sSqKS9FpdVjUmoJAZWNFWaHxDNWirDwyzydjYmZK/wcmUl5UyqFlG6koLqPXtNHNEueVlBQUodVqsbYzfF+1srOlKK/uMLzLfTj7RYoLitBqNAyZPJbuQ41nLSfFxpOemMKkh+9usrhrU5tbYKJU6udIu6SovAQbVd0sSgBHS1t8HTyo0mhYcGgdVuYWTAwZiKWZij8uDjV0VNvSztKGyJQY5h5Yg7OVHbeEDESpUDbpvJCX2KjUmCiVFNQadplfVoSdRTuj+8RkJfHt3uU82u92/fvt4aQz/Hp4bZPH1xDWquqhvoXlJQbbC8uLsVX5XnV/W5UVwW5+zDu05orlbuk0kPzSIs5kNM8FHBvz+l6LYkIsjH/2Xc7OwppQj3Z8v2+FwfYDiaexsVDz4pB7QFF9oWhL7GH+ObO3KcMXzUnXPJ8p4vpJZ5wQ/8MGDx7Mt99+a7DNsVYHR+fONZNtu7lVX6UNDQ012FZWVkZBQQG2ttU/DL29vfUdcQB9+vRBq9USHR1db4eUSqXi7rvv5pdffuGOO+4gMjKSY8eOXXGRh4iICH7++We0Wi3bt29n6NCheHt7s337dsLDwzl79qw+M+7w4cPExsZiY2P4xb2srMxgmO0l58+fp7Kykp49e+q32dnZERQUVKfs5X8jhUKBu7s7GRn1T3BvzHvvvccbb7xhsO21117DaVinazrOVemgvgvjDu4uOLjXLNTgEeBNUW4+R9fvbrLOuLXr1vHuBx/o73/2yScAdTpcdTpdvZ2wetezTy2//f47J06e5NOPPsLD3Z0jkZHVc8Y5OdHrstf+WtVeB0ShqP7TG7PwyHoc1DZ8MfEZFFR3smw4u58pYcPQ6rRYmql4fvB05uz8jYLyph/KeYlZeBfUd0zU3y+6uNhCXVeoTC3mvbqjSUlDk5BksL3qsmGF2tR0iuITsH3pOcx7hFO+ffc1Rn5ldUJVUO9CLW3sXLi3+xj+PLGN4ymx2FvaMC18BA/0Gs/3+/7WlyurrOD5Nd9iYWZOiLs/07uNIqMol9Pp8U0a++VqR1yd4WK8HouObsBBbcvntzxd06ZiDjCly1C0l30ZL60s5+HlH2FhqqJrm0Ae6j2R1MLsppv7rvY5ylXO0Trn9KXN1duPHYnktwWLePTZJ+nQqSMpScl89/nXOMz9lWn3TW+amBugTh10OqNvq1qtlnXfL6X3xGE4uDvXe7xBU8exed5f/PriHFAosHN1JLh/OKd31c3EblK1g9bV/wFx6f219z3j9HOKdq0azO5f/qbb5GGYmpsZ3a/Z1WlPOiPbDD3w5jNUlJWTeDaODYv/xtHdhS796w6lPLRlD25enrQN8G26eOtR5z1Joaj3bfZS+/stchNlVdWZ/auj9nB3+EhWnNxBlVaDAgXFFaX8eXwbOnQkF2Ria2HFQP+wZumMq6lHrVipvx6ets5MDx/NipM7OJEWi72FDXd2Hc59Pcbx0wHjw9lvDMOIr1SHy/X26URpZTnHr5ApNiywB93aBvH5zt+bfdGDa/nMuFx/v86UVJZxJNkwwz/IxZvxHfvx65F1nM9OxtXakaldh5MX3J9Vp5tvSL0QrZl0xgnxP8zKyoqAAOOrjl1idtnQmUtfAI1t017hCv6lMlfrKHnggQcICwsjKSmJX375haFDh+Lj41Nv+YEDB1JYWMiRI0fYuXMnb731Fl5eXrz77ruEhYXh6upKx44d9fF169aNRYsW1TnOpey1y136Ymysk6g2s1rDixQKxRX/Hsa88MILPPPMMwbbVCoVPxy8vi+kljZqFEplnYnCSwqK62R1XIm7vxfR+5puRaqBAwYQ0qmmg7GisnqIU1Z2Ns7ONT9Wc3Jz63QMX87JyalOFtzV9qmtrKyMr7/9lo8/+ID+/aozIwIDAzl79iwLFy++rs64/LJiNFoNjmrDjCV7CxvySowPW6nQVPLJ9iV8tmMpDmobckoKGNOhL8UVZeSXFePv5ImHrRNvjXxQv8+ldrnugU+5b+k7TTIPUOWpKAo/vmyolGn1VwSljTWagprYldZW6IoaMOm0mRnmXTtTuq4BEztXVKJJTUPpUn+HxbUqKC9Bo9Vgb2nY3u0srMgvM96pObHTAM5mJrD6dHWHYEJeOuUHKnhj5AMsPbaZvItZdjp0pBdVZ3hdyE2jjZ0Lt3Qa2CydcQX6NmV4IcHe0rreoVAVmko+3bGEz3cab1OX6NCRUpAFwPmcZLzt3bgzbFijO+Ns7e1QmijJrZUFl5ebVydb7hIHRwdyc2qXz8XExARbu+rzacGPcxkycjijJ4wFwK+dP2VlZXzxwafcde+0Zp3fEmreV4vzDf/upQVFqO3qvq9WlpWTEZ9MZkIq2xauAi5+huh0fHH/y0wzDSsQAADWRklEQVR69j68gtuhtrVm/BPTqaqspKyoBCt7W3YvW4+tc9MO3b7E3MoShVJBWYHheVBeVIKFjdroPpZ21ljaWRss7mPr5gQ6KM0rwsa1eWKtj9rWGqVSWScLrji/sE62XG2OrtXvM+7ebSjKL2TrsjV1OuMqyis4sfsQQ6eMa9rAaympKEOj1WKjMvy7W5tbUlQrQ+uSwvJi8suK9R1xAJlFuSgVCuwsrMkuyaewvBiNTovuss6XjKLc6kxbhRJNE2fIFJaXoNFqsav1fmtrYVUnQ+uS8cH9iclK4J8zewBIJIPygxW8Mnwmy45vabbFDepTVF568bUwzBi1VqkpbMCFsN4+IRxIPF3v33ZoQHdGtO/JV7v/0L/vNofCiouvhUXt10Jd72ff5Qb4dWFP/Ak0tb7H3ho6iD0XTrDj4rxsSfmZqEzNuLf7GFaf3tXQa3RCiMvInHFCiCaXkJBASkqK/v7evXtRKpW0b98eqJ4TTGNkIt7Q0FC6d+/Ojz/+yOLFi5k5c+YVn+fSvHFfffUVCoWC4OBgBgwYwNGjR1m9erU+Kw4gPDycmJgYXF1dCQgIMLgZW0W1Xbt2mJmZ6ed8AygoKCAm5trmMjE3NwcwWt/LqVQqbG1tDW6NGaZqYmqKq48niacMf1Qnno7FPaDh831lJqQa/ZF5vaysrPDy8tLf/P38cHJyYv9lf+fKykqOHD1K58syMGvrHBJisA/A/v37r7hPbVUaDVVVVXU6XJUmJtfcmao/plbD2axEwtsYZlCGtw3iVHpcPXtV0+i0ZBXno9XpGNwunP0Jp9ChIyEvnQeXvc/sPz/S3/ZeOMmxlFhm//mR0dU0r0t5BdqsnJpbWgbaggJMgy7rsDcxwTTAj6q4K887CGAeFgqmJlQeOnr15zYxwcTNFW1B/fPsXCuNVkNcTiqh7oZDpELd23E203j85qZmdTrctZc65q8w15ICMKtnCGJjVWk1xGQl1W1TbYKu2vl3eZuKaNdV36bqo1AoMFM2/jqtmZkZgUHtOXrwsMH2owcP0zHEeLZvx5BOdcofOXCIwA5BmF7sGC4vL6vT4aZUKtHpdPVmOzYlE1NTXH09Saj1vppwOhaPdnUvHJlbqJj21hNMfeMx/S00oicO7s5MfeMx3NsZDkM0NTPD2sEOrUZL7OGT+HftWOeYTVMPExy83EmLNhwml3bmAs5+bYzu4+zXhtL8IiovW0W5MCMHhUKBpX3TfUY0lKmpKZ7+3sQeN1xsJ/b4GbyD/Bt+IJ1OPyfh5U7uPYymqoqwAdefId0QGp2W5PxMAl0M20Kgc1su5KYb3Sc+Jw1bCzXmJjXnqrOVHVqdVt+BFZ+bhpPazuBdy9nKvrpzvxmGqmm0WuJzUghxN/zbh7j7E5OVZHQflamZ/v31Ev37bfNMbXdFGp2WxLx0OrganssdXH2Iy06pZ69qgc5tcbV2YG+88XlrhwZ2Z1SH3nyzZzkJecZf16ai0WqJz02lk7vhiIZgNz/O1fNaXBLk4o2bjSM74+pehDU3Mfb5qK1uYy3xgolrd/Fi0E15+x8lnXFC/A8rLy8nLS3N4JaV1firdRYWFtx7770cO3aMnTt38sQTT3DHHXfoh6j6+vpy/PhxoqOjycrKorKyZgLoBx54gPfffx+NRsOkSZOu+lwREREsXLiQQYMGoVAocHBwIDg4mKVLlxqsXDpt2jScnZ255ZZb2LlzJ3FxcWzfvp0nn3ySpKS6X05sbGy49957+c9//sPWrVs5deoUM2fORKlUXtNQSFdXVywtLVm3bh3p6enk5+c3eN/GChvRj9M7D3N652FyUjLY+ds/FOXkEzKoOgNgz58b2PjTH/rykRv3cP7IafLSs8hOTmfPnxs4d/gUnYf0brYYFQoFd02Zwtz589m6bRux587x+ltvYWFhwajL5vF79Y03+Oqbb/T375wyhf0HDjBvwQLi4+OZt2AB+w8eZOqUKfoyJSUlRJ89S/TZ6iGRySkpRJ89S9rFueisrawI79qVz7/6ikOHD5OcksKq1av5Z+1aBl/WkXut/jy+jdEdejMyqBfe9m7M7jMJV2sHVkdVZ1vN7DGO/4uYpi/fxs6FoQHdaWPrQpCLNy8OvRdfRw9+ObAagEpNFfG5qQa34vJSSirLiM9NbdahLuXb92AxLAKz0GCU7m6o77odXUUlFUci9WXUU2/HYuyIOvua9+5O5Ykoo3PAWUwYjUk7P5SODph4t8XqvqkoLFRUHGzaYXlrovYwJCCciHZd8bR15p5uo3C2smNTzEEA7gwbxiN9b9WXP5IUTQ/vYIYH9sDV2oH2Lt7M6DGG2KwkfRbaLZ0GEOreDldrBzxtnRnTsS8D/MOM/nhpKn+e2MaooN6MbN8LL3s3ZveeWKdN/adOm+qGp61zdZsacg++Dh7MvWzuuzu7DCO8TXvcbZzwsnPlttAIhgX2aLIhbLdOmcy6Vf+wfvVaEuIv8P3nX5ORns7YSeMB+OXbH/norff05cdOHE96Wjrff/ENCfEXWL96LetXr+X2u+7Ql+nVrw9r/lrJtk1bSEtJ5ciBQyz4cS69+/fF5GJnaGlJKefOxnLubHWHWVpKKufOxpKR1jQ/gMNH9OfUjkOc2nGInJQMti9ZQ2F2PqGDqzttdi9bz/oflwGgUCpxbutucFPbWmFiZoZzW3fMVNUXa9LOJRJ76CT5GTkkn41jxadz0el0dB/TPCvCAnQY3J3ze49zfu8J8tOyObJ8CyW5BQT0r1418tjKHez7taa9+HTviLmVJQcWrSU/NYuM2ESO/b0dv96h+iGqmioNuUnp5Calo63SUJpfRG5SOoWZuc1Sh37jhnB48x4Ob9lDRlIq/8z7g/ysXHoMHwDAhsUr+OOrefry+9Zt58yh42SlZpCVmsHhrXvZtWoTXYx0uB3esoeOPbqgtmn+jsadccfo4dWR7m074GrtwLiO/bC3tGFfQvWKnKOCehushByZcpaSinImdxmCq7UDfo4ejOnQl0OJZ/SfB/sunMLK3ILxnfrjbGVHB1cfBgeEs+eyVT6b2trofUT4hzPQPwxPW2emdR2Jk9qOzTHV7yl3dBnKQ70n6ssfTT5Ld6+ODA3ojouVPYHOXkzvNopzWUn6LGQTpRJveze87d0wVZrgYGmLt70brtbNk4m5JfYwfX1D6e0TgpuNI7eGRuCottG/v08I7s/0bqPq7NfHJ5S4nBSjWerDAnswrmM//eqyNio1Nio15ibNN7R7Q/R+BvqFMcCvCx42TtwZNgwntR1bz1V/xt4eGsEDvcbX2W+gfxjnspNJzs+s81hkSgyDA7rR0ysYZys7gt38mBQyiMiUmBtyMeRKLM1UBDq31S8W4mnrTKBzW9yaqZ0I0VRkmKoQ/8PWrVuHh4fhkuRBQUH6lUCvV0BAALfeeitjxowhJyeHMWPG8M1lHSkPPvgg27Zto3v37hQVFbF161Z9x9ldd93FU089xdSpU7GwsLjqcw0ePJhPP/3UoONt0KBBREZGGmTGqdVqduzYwfPPP8+tt95KYWEhbdq0YejQofq57mr79NNPmT17NuPGjcPW1pb/+7//IzExsUFxXWJqasoXX3zBm2++yauvvsqAAQP0K8A2t8CeoZQVlXBw1VaK8wtxauPGuCen64c+leQVUpiTpy+vrdKwe9k6inILMDUzw7GNK+OenI5v57rz5DWle6dPp7y8nPc/+ojCwkJCOnXiq88/x8qqZqhIWloayss6Qbt07sw7b73Ft99/z3c//EDbNm147+23CQkJ0Zc5HRXF7Iur+ALM+fxzAMaNGcPrr74KwLtvv83X33zDK6+/TkFBAe7u7jz80EPcdmtNB8212n7+KLYWVtwdPhJHtR3xOam8tPZ7Moqqf5A6qW0NfkiYKJTc3nkwbe1d0Wg1RKbE8OTfn+mHQbak8i07UJiZYXn7BBSWlmguJFH03Vy4LDtG6WBf56qm0sUJU39fir79xehxlXZ2WE2fgsJKja6omKoLiRR+9h263LwmjX/vhZNYqyy5LTQCe0sbEvMyeH/rQrKKqzvFHSxtcLaqyYzdfj4SCzMVI4J6cXe3kRRXlHEqPY7FRzboy6hMzZnZcxxOalsqNJWkFGTx9e4/2duMP3K3nz+KrUrNtPCROKptuZCTysvratqUo9oWV6uaNqVUKLkttKZNHUuJ5amVnxu0KQszcx7vNxlnKzvKqypJzM/gg60L2X6+AZmMDTBo2GAKCgpYNHcBudk5+Pj78tbH7+F28aJMTnYOGek1c2u6e3rw1sfv8f0XX7N6+d84Ojvx8FOP0X9wTYfU1Huno1AomP/DL2RnZmHnYE+vfn2YMet+fZmzZ6J5/vGaIf8/fFk9L+qw0SN57uXnG12v9r06U1pcwv6VWyi5+L56y9P36t9Xi/MLKczOu6ZjVlVWsvevjeRn5GJmYY5v5yBGPngHKrVlo+Otj3d4B8qLSzm5fg9l+cXYeTgzcPZtWDlWnw+lBUUU59ZkqpqpzBn86GQO/7GZDR//irmVJd5dgwgd219fpjS/iPUf1sw1eWbLQc5sOYhLgBdDn7izyesQ2rc7JYXFbP3zHwpzC3Dz8mD6C4/g4OIEQGFuAXlZNR2BOp2WDUv+JjcjG6VSiaO7CyOmTaTHsP4Gx81KSefCmXPMePnxJo/ZmOOpsajNVQwN7I6tyoq0omzmHlyt75CyUakNhttXaKr4af9Kbuk0gMf7305JRTnHU2NZH71fXya/rIif9q9ifHA/nhowhYKyYnbHHWfbuaY5v43Zn3AKa3NLJnYahL2lNUn5GXy8fRHZJdXvt/YW1jipa95vd8Ydw8JUxbD2Pbir6whKKso4nRHH0siaqQ0cLG14Z/Rs/f2xHfsytmNfotLjeXfL/Cavw5HkaKzMLRgd1BtbCytSC7L5Zs9y/cUYWwsrHGstnGNhak6YZyB/nNhq9JgD/LpgZmLKA70mGGz/J2pPsy1+cCAxCiuVmgmd+mNnYU1yfiZzdv6mXx3VztLwtYDqDq1ubTuw+OgGY4fUzwt3a+ggHCxtKCwvITIlhj9PbGuWOlyLDi4+fDWp5n3/if6TAfgnai/vNEM7EaKpKHQt3ZUthGhVXn/9dVasWEFkZOR17Z+YmIivry8HDx4kPDy8aYNrpOLiYtq0acMnn3zC/ffff/UdmsCXu5bdkOdpTo/3n0xhbvNkRtwoNg4ODP/hyZYOo9E2zvqcvKdfbOkwGsV+zrvcufDVlg6j0X67+01G/PhUS4fRaBse/Iy4rOSWDqNR/Jzb8M2eP1s6jEZ7pO9tvLb+p5YOo1HeGPkAy45tbukwGm1yl6E8v+abqxe8yX0w9hGmL3nj6gVvYr/e9RqP/fVJS4fRaF9Nepb7lr7T0mE0ytwpL9Hv69lXL3iT2/3ody0dwnXJHX9XS4dQL4dVS1o6hBYhmXFCiJtCZWUlqamp/Pe//6V37943RUfc0aNHOXPmDD179iQ/P58333wTgFtuuaWFIxNCCCGEEEII8W8lnXFCiJvC7t27GTx4MO3bt+ePP/64+g43yMcff0x0dDTm5uZ069aNnTt3Gqz6KYQQQgghhBBCXAvpjBNCNKnXX3+d119//Zr3i4iIaPEJYGvr2rUrhw8fvnpBIYQQQgghhLhZ3WS/s4SspiqEEEIIIYQQQgghxA0jnXFCCCGEEEIIIYQQQtwgMkxVCCGEEEIIIYQQorXSaVs6AlGLZMYJIYQQQgghhBBCCHGDSGecEEIIIYQQQgghhBA3iAxTFUIIIYQQQgghhGittLKa6s1GMuOEEEIIIYQQQgghhLhBpDNOCCGEEEIIIYQQQogbRIapCiGEEEIIIYQQQrRWOhmmerORzDghhBBCCCGEEEIIIW4Q6YwTQgghhBBCCCGEEOIGkWGqQgghhBBCCCGEEK2VDFO96UhmnBBCCCGEEEIIIYQQN4h0xgkhhBBCCCGEEEKIVuOdd96hb9++qNVq7O3tG7SPTqfj9ddfx9PTE0tLSyIiIjh16pRBmfLych5//HGcnZ2xsrJiwoQJJCUlXXN80hknhBBCCCGEEEII0VpptTfvrZlUVFQwefJkHn744Qbv8+GHH/Lpp5/y1VdfcfDgQdzd3Rk+fDiFhYX6Mk899RR//fUXv/32G7t27aKoqIhx48ah0WiuKT6ZM04IIYQQQgghhBBCtBpvvPEGAPPmzWtQeZ1Ox2effcZLL73ErbfeCsD8+fNxc3Nj8eLFPPTQQ+Tn5/Pzzz/z66+/MmzYMAAWLlyIl5cXmzZtYuTIkQ2OTzLjhBBCCCGEEEIIIcQNV15eTkFBgcGtvLz8hscRFxdHWloaI0aM0G9TqVQMGjSIPXv2AHD48GEqKysNynh6ehISEqIv02A6IYQQ/5PKysp0r732mq6srKylQ7luraEOOp3U42bSGuqg07WOerSGOuh0Uo+bSWuog07XOurRGuqg00k9biatoQ7/q1577TUdYHB77bXXmuz4c+fO1dnZ2V213O7du3WALjk52WD7gw8+qBsxYoROp9PpFi1apDM3N6+z7/Dhw3WzZs26prgUOp2scSuEEP+LCgoKsLOzIz8/H1tb25YO57q0hjqA1ONm0hrqAK2jHq2hDiD1uJm0hjpA66hHa6gDSD1uJq2hDv+rysvL62TCqVQqVCpVnbKvv/66fvhpfQ4ePEj37t319+fNm8dTTz1FXl7eFffbs2cP/fr1IyUlBQ8PD/32Bx98kMTERNatW8fixYu577776sQ7fPhw2rVrx3fffXfF57iczBknhBBCCCGEEEIIIW64+jrejHnssce48847r1jG19f3uuJwd3cHIC0tzaAzLiMjAzc3N32ZiooKcnNzcXBwMCjTt2/fa3o+6YwTQgghhBBCCCGEEDc1Z2dnnJ2dm+XYfn5+uLu7s3HjRrp27QpUr8i6fft2PvjgAwC6deuGmZkZGzdu5I477gAgNTWVkydP8uGHH17T80lnnBBCCCGEEEIIIYRoNRISEsjJySEhIQGNRkNkZCQAAQEBWFtbA9ChQwfee+89Jk2ahEKh4KmnnuLdd98lMDCQwMBA3n33XdRqNVOnTgXAzs6O+++/n2effRYnJyccHR157rnnCA0N1a+u2lDSGSeEEP+jVCoVr732WoPTwm9GraEOIPW4mbSGOkDrqEdrqANIPW4mraEO0Drq0RrqAFKPm0lrqINoWq+++irz58/X37+U7bZ161YiIiIAiI6OJj8/X1/m//7v/ygtLeWRRx4hNzeXXr16sWHDBmxsbPRl5syZg6mpKXfccQelpaUMHTqUefPmYWJick3xyQIOQgghhBBCCCGEEELcIMqWDkAIIYQQQgghhBBCiP8V0hknhBBCCCGEEEIIIcQNIp1xQgghhBBCCCGEEELcINIZJ4QQQgghhBBCCCHEDSKdcUIIIf6VdDodsgaRaCqxsbGsX7+e0tJSAGlbLaysrKylQ2gSraUeQghxsxkyZAh5eXl1thcUFDBkyJAbH5AQ10hWUxVCiP8R5eXlHDhwgPj4eEpKSnBxcaFr1674+fm1dGjXZMGCBXz00UfExMQA0L59e/7zn/8wffr0Fo6s4TQaDXPmzOH3338nISGBiooKg8dzcnJaKLJrl5SUxMqVK43W49NPP22hqBouOzubKVOmsGXLFhQKBTExMfj7+3P//fdjb2/PJ5980tIhNlhiYqLB+d2pUydUKlVLh9VgWq2Wd955h++++4709HTOnj2Lv78/r7zyCr6+vtx///0tHWKDtJZ6/NvbU35+Pn/99Rc7d+6s87k3cuRI+vbt29IhNkhrqYcQTU2pVJKWloarq6vB9oyMDNq0aUNlZWULRSZEw5i2dABCCCGa1549e/jyyy9ZsWIFFRUV2NvbY2lpSU5ODuXl5fj7+zNr1ixmz56NjY1NS4d7RZ9++imvvPIKjz32GP369UOn07F7925mz55NVlYWTz/9dEuH2CBvvPEGP/30E8888wyvvPIKL730EvHx8axYsYJXX321pcNrsM2bNzNhwgT8/PyIjo4mJCSE+Ph4dDod4eHhLR1egzz99NOYmpqSkJBAx44d9dunTJnC008/fdN3xl24cIHvvvuOJUuWkJiYaJDRZ25uzoABA5g1axa33XYbSuXNPSDi7bffZv78+Xz44Yc8+OCD+u2hoaHMmTPnX9OJ9W+uR2toT6mpqbz66qssWrQId3d3evbsSVhYmP5zb+vWrXz88cf4+Pjw2muvMWXKlJYO2ajWUo/aDh48yLJly4xewFm+fHkLRXXtWks9/o2OHz+u///p06dJS0vT39doNKxbt442bdq0RGhCXBudEEKIVmvChAk6Dw8P3bPPPqvbvn27rri42ODxc+fO6ebNm6cbOXKkzt3dXbdhw4YWirRhfH19dfPnz6+zfd68eTpfX98WiOj6+Pv761avXq3T6XQ6a2trXWxsrE6n0+k+//xz3V133dWSoV2THj166F555RWdTlddj3PnzukKCwt1EyZM0H3zzTctHF3DuLm56SIjI3U6XU0ddDqd7vz58zorK6uWDO2qnnjiCZ2NjY3utttu082fP18XFRWlKygo0FVWVurS09N1mzdv1r3++uu6oKAgXadOnXQHDhxo6ZCvqF27drpNmzbpdDrD1yIqKkpnb2/fkqFdk39rPVpLe3JxcdE9++yzuhMnTtRbpqSkRLd48WJdz549dR999NENjK7hWks9LrdkyRKdmZmZbuzYsTpzc3PduHHjdEFBQTo7OzvdjBkzWjq8Bvs31+Pvv/9u8O1mpVAodEqlUqdUKnUKhaLOTa1W637++eeWDlOIq5LOOCGEaMW++uorXXl5eYPKnjx58qbvjFOpVLqYmJg628+ePatTqVQtENH1UavVugsXLuh0Op3O3d1dd/jwYZ1OV905amtr25KhXZPLOxLt7e11J0+e1Ol0Ol1kZKTOx8enBSNrOGtra93Zs2f1/7/UcXLgwAGdo6NjS4Z2Vc8995wuIyOjQWXXrFmjW7ZsWTNH1DgWFha6+Ph4nU5n+FqcOnXqpu8Yvdy/tR6tpT01tA7XW/5GaS31uFxoaKjuq6++0ul0NeeGVqvVPfjgg7pXX321haNruH9zPWp3XNXu0LrUyaVUKls61HrFx8fr4uLidAqFQnfw4EFdfHy8/paSkqKrqqpq6RCFaJCbM79cCCFEk3j00UcxNzdvUNlOnToxfPjwZo6ocQICAvj999/rbF+6dCmBgYEtENH1adu2LampqUB1nTZs2ABUD3v5N83JZGVlRXl5OQCenp6cO3dO/1hWVlZLhXVNBg4cyIIFC/T3FQoFWq2Wjz76iMGDB7dgZFf30Ucf4eLi0qCyY8aM4fbbb2/miBqnU6dO7Ny5s872ZcuW0bVr1xaI6Pr8W+vRWtpTQ+twveVvlNZSj8udO3eOsWPHAqBSqSguLkahUPD000/zww8/tHB0DfdvrodWq9XfNmzYQFhYGGvXriUvL4/8/Hz++ecfwsPDWbduXUuHWi8fHx98fX3RarV0794dHx8f/c3DwwMTE5OWDlGIBpE544QQ4n9QWVkZS5cupbi4mOHDh/9rOrLeeOMNpkyZwo4dO+jXrx8KhYJdu3axefNmo510N6tJkyaxefNmevXqxZNPPsldd93Fzz//TEJCwr9m3juA3r17s3v3boKDgxk7dizPPvssJ06cYPny5fTu3bulw2uQjz76iIiICA4dOkRFRQX/93//x6lTp8jJyWH37t0tHd5VvfzyywwZMoS+fftiYWHR0uE0ymuvvcb06dNJTk5Gq9WyfPlyoqOjWbBgAatXr27p8BqstdTjctu3b6e4uJg+ffrg4ODQ0uFcVWxsLPn5+XTr1k2/bfPmzbz99tsUFxczceJEXnzxxRaMsGFaSz0ucXR0pLCwEIA2bdpw8uRJQkNDycvLo6SkpIWja7jWUo+nnnqK7777jv79++u3jRw5ErVazaxZs4iKimrB6Brm7NmzbNu2jYyMDLRarcFj/6Y5eMX/qJZOzRNCCNG8nnvuOd0TTzyhv19eXq4LCwvTmZmZ6ezs7HRWVla6PXv2tGCE1+bQoUO6adOm6cLDw3Vdu3bVTZs2TXfkyJGWDqtR9u7dq/vkk09u6jlajDl37pzu2LFjOp1OpysuLtY9/PDDutDQUN2kSZP0w/T+DVJTU3WvvvqqbuzYsbrRo0frXnrpJV1KSkpLh9Ug/v7+OoVCoVOpVLqBAwfqXnvtNd327dsbPDz9ZrNu3TrdwIEDdVZWVjpLS0tdv379dOvXr2/psK7Zv7UeH374ocEwO61Wqxs5cqR+CJubm5t+OPrNbOLEibqXX35Zf//8+fM6S0tL3YgRI3RPPPGEztraWjdnzpyWC7CBWks9Lrnrrrt0n3zyiU6n0+nefvttnYuLi+6BBx7Q+fj46CZNmtTC0TVca6mHhYWF7vjx43W2Hzt2TGdhYdECEV2bH374QWdiYqJzc3PTdenSRRcWFqa/de3ataXDE+KqFDrdZcskCSGEaHVCQkJ49913mTBhAgBz587l2Wef5ejRo3h7ezNz5kwyMjJYs2ZNC0cqhLgeycnJbNmyhW3btrFt2zbi4uKwtLSkT58+DB48mMGDB9O3b9+WDlP8C4SHh/P888/rV+ZctmwZ9957Lxs3bqRjx47cc889qNXqmz4T2cvLi99//50+ffoA1Svc/vHHH0RGRgLw888/8+WXX+rv36xaSz0uycnJoaysDE9PT7RaLR9//DG7du0iICCAV1555V+RdQmtpx4DBw7EzMyMhQsX4uHhAUBaWhrTp0+noqKC7du3t3CEV+bj48MjjzzC888/39KhCHFdpDNOCCFaOVtbW44cOUJAQAAAd911FzY2Nvp5TSIjIxkzZgwpKSktGeY1ycjIMDokoXPnzi0U0dWtXLmywWUvdZyK5nH8+HFCQkJQKpUcP378imWtra3x8vLCzMzsBkXXeImJiWzdupVt27bx559/UlxcTFVVVUuHdVX33Xcfd999N0OGDEGhULR0ONft31wPBwcH9uzZQ8eOHYHqulRVVfHrr78CsG/fPiZPnkxiYmJLhnlVlpaWnD17Fi8vLwCGDh1K3759eeutt4DqOb+6detGXl5eC0Z5da2lHgBVVVUsWrSIkSNH4u7u3tLhCKqHQU+aNIno6Gi8vb0BSEhIoH379qxYsUL/vfFmZWtrS2RkJP7+/i0dihDXReaME0KIVk6pVHL5dZd9+/bxyiuv6O/b29uTm5vbEqFds8OHD3PvvfcSFRVF7WtJCoUCjUbTQpFd3cSJExtU7mavh4ODQ4M7GHJycpo5musTFhZGWloarq6uhIWFoVAo6rSny9nZ2fHdd9/ps4VuZufOnWPbtm36TDmNRnPTL0RxSXZ2NmPHjsXJyYk777yTu++++6Ze8KA+/+Z6VFZWGiwis3fvXp588kn9fU9Pz3/F4iyOjo6kpqbi5eWFVqvl0KFDBvNxVlRUXPGcv1m0lnoAmJqa8vDDD/8r5iEzpqCgoMFlbW1tmzGSphMQEMDx48fZuHEjZ86cQafTERwczLBhw/4VFxImT57Mhg0bmD17dkuHIsR1kc44IYRo5Tp06MCqVat45plnOHXqFAkJCQY/zi9cuICbm1sLRthw9913H+3bt+fnn3/Gzc3tX/Fl8ZLaWXz/Vp999llLh9BocXFx+pUH4+Lirli2vLycZcuWGQzdu5nExcWxdetWfSZcfn4+/fr1Y9CgQTz22GP06NEDU9N/x9e9lStXkpeXx++//87ixYv57LPPCAoK4u6772bq1Kn4+vq2dIgN8m+uR0BAADt27MDf35+EhATOnj3LoEGD9I8nJSXh5OTUghE2zKBBg3jrrbf45ptvWLZsGVqt1uBz7/Tp0zf163BJa6nHJb169eLo0aP4+Pi0dCjXzN7evsHfOW7mC2q1KRQKRowYwYgRI1o6lAb54osv9P+/NCx43759hIaG1slgf+KJJ250eEJcExmmKoQQrdyff/7JXXfdxYABAzh16hQ9evRg1apV+seff/554uLibvo5gABsbGw4evToTT90QrQuubm53H///SxfvrylQ6lDqVTi7e3NI488wuDBgwkPD8fExKSlw2oSSUlJLFmyhF9++YWYmJh/xVBbY/5N9fj++/9n787jakz//4G/TkmbVChLKi2iCKXsW9YwdsMQJevYSrI0nyE7zdizJUllr2wZ+1IRGbSiJC2yFKkhWmi5f3/4db6OolNmXOc+5/18PHo86rrvP14XndM573Nd13s3XF1dMXbsWNy6dQsaGhoiXYVXr16Nv//+W+RviCRKS0tDv379kJaWBjk5OXh6emLmzJnC68OHD4eBgQE2b97MMGXVpGUe5YKCguDm5gYXFxe0b98eqqqqItcl+aiJz89PS09Ph5ubGyZNmiQ8zy8yMhL+/v5Yt24dHBwcWMWstvz8fISHhyMjIwMfP34UuSaJxSwDAwOx7hMIBEhNTf2P0xDyfagYRwghMuDy5cs4c+YMGjVqhLlz50JFRUV4bcWKFejVq5fI6gdJNXz4cEycOBGjRo1iHeW78e0FcFUKCwtRXFwsMsaXrToAUFBQUOn/hSS/OQSAsWPH4tq1aygqKkL37t3Rs2dP2NjYwMLCglcrR79UXFyMM2fO4MCBAzhz5gzq1auH58+fs45VbXycx969e/HXX3+hUaNGWLZsmcj5XrNmzULfvn0xcuRIhgnFU1xcjISEBGhpaaFJkyYi1+Li4qCrq4t69eoxSic+aZkH8OnDgy+VHxMg6Uc0fK5Pnz6YOnUqxo0bJzJ+6NAheHt7IywsjE2waoqJicGgQYNQUFCA/Px81KtXD69fv4aKigq0tbWpmEXIf4yKcYQQQhAbG4t27dqxjlGl169fw8HBAR06dEDr1q0rbEngS+MDaXkBnJ+fj8WLFyMwMBA5OTkVrvPhjVV2djYcHR1x7ty5Sq/zYQ4A8PDhQ+FW1fDwcBQVFaFbt27o2bMnevXqBWtra9YRxRIaGopDhw7h2LFjKC0txciRI2FnZ4fevXtX+kZeUknLPCqTnZ0t3ObNV/fu3cPevXt5v+2eb/N48uTJN6/zZfuqiooK4uLi0Lx5c5HxR48eoV27digoKGCUrHp69eoFExMT7Nq1CxoaGoiLi4OCggImTJgAZ2dnXhTdCeEzKsYRQoiMevv2LQ4ePIi9e/ciNjaWF0WHkJAQTJw4Ee/evatwjU+fqkvLC+DZs2cjNDQUK1euhL29PXbs2IHnz59j9+7d8PDwgJ2dHeuIVbKzs0N6ejq2bNkCGxsbnDhxAi9fvsTq1auxceNGDB48mHXEGklISMChQ4ewbds23nRTbdq0KXJycjBgwADY2dlhyJAhUFJSYh2r2qRlHp/jOA7nzp0Trpr78OED60jVlpeXh8OHD2Pv3r24e/cu2rRpg9jYWNaxqk1a5sFnLVq0wE8//YSNGzeKjLu6uuKvv/5CUlISo2TVo6Ghgb///hstWrSAhoYGIiMjYWpqir///hsODg54+PAh64jfNH/+/ErHBQIBlJSUYGxsjGHDhvFm5SiRPfw40ZcQQsi/5urVq/D19cXx48ehr6+PUaNGwcfHh3UssTg5OWHixIlYunQpb5pOVCY2Nha7d++GvLw85OXl8eHDBxgaGuLPP/+Eg4MDb4pxp0+fRkBAAHr16oXJkyeje/fuMDY2hr6+Pg4ePMiLYtzVq1dx6tQpWFtbQ05ODvr6+ujXrx/q1q2LdevW8aoY9/LlS4SFhSEsLAyhoaF49OgRFBUV0b17d9bRxOLu7o6ff/4ZmpqarKN8F2mZBwCkpqbC19cX/v7+eP/+PQYPHowjR46wjlUt4eHh2Lt3L44dO4aioiIsXLgQhw4d4t3Zo9Iwj4CAgG9et7e3/0FJvs/mzZsxatQoXLhwAZ06dQLwqVN9SkoKjh07xjid+BQUFITHGTRs2BAZGRkwNTWFuro6MjIyGKerWkxMDKKjo1FaWooWLVqA4zgkJydDXl4eLVu2xM6dO+Hq6oqIiAiYmZmxjktIBVSMI4QQGfDs2TP4+fnB19cX+fn5GDNmDIqLi3Hs2DFevUDJycmBi4sLrwtxAP9fAJfLzc0VHqZct25d5ObmAgC6desmcsi4JMvPz4e2tjYAoF69esjOzoaJiQnMzc0RHR3NOF3VgoKChNtTk5KSUKtWLXTo0AFjxoyBjY0NunTpAkVFRdYxxTJ9+nTWEf4VfJ9HUVERgoOD4ePjg1u3bqFfv37IzMxEbGwsWrduzTqeWDIzM7Fv3z7h37xx48YhPDwcnTt3hr29PW8KWNIyj3LOzs4iPxcXF6OgoAC1a9eGiooKb4pxgwYNQnJyMnbt2oXExERwHIdhw4bh119/ha6uLut4YrOwsMDdu3dhYmICGxsbuLu74/Xr19i/fz/Mzc1Zx6tS+aq3ffv2Cc+ozcvLw5QpU9CtWzdMmzYN48ePh4uLCy5cuMA4LSEVUTGOEEKk3KBBgxAREYGffvoJ27Ztg62tLeTl5eHl5cU6WrWNHDkSoaGhMDIyYh3lu/D9BXA5Q0NDpKenQ19fH2ZmZggMDESHDh1w+vRpaGhosI4nlhYtWiApKQnNmjVDu3btsHv3bjRr1gxeXl5o3Lgx63hVsrOzg5WVFUaMGAEbGxt07doVysrKrGPV2J07dxAUFFRpMw1J7Gb7NXydx6xZs3DkyBG0aNECEyZMwLFjx1C/fn0oKCjw6qw7AwMD/Pzzz9ixYwf69evHq+yfk5Z5lPvnn38qjCUnJ2PmzJlYuHAhg0TVV1xcjP79+2P37t1Ys2YN6zjfZe3atcJjP1atWgUHBwfMnDkTxsbG2LdvH+N0VVu/fj0uXbok0iyqbt26WL58Ofr37w9nZ2e4u7ujf//+DFMS8nVUjCOEECl38eJFODk5YebMmRUOG+YbExMT/Pbbb4iIiIC5uXmFBg586ULK9xfA5RwdHREXF4eePXvit99+w+DBg7Ft2zaUlJRg06ZNrOOJZd68ecjMzAQALFu2DAMGDMDBgwdRu3Zt+Pn5sQ0nhn/++QeqqqqsY/wrjhw5Ant7e/Tv3x+XLl1C//79kZycjKysLIwYMYJ1PLHxeR7e3t5YvHgx3NzcoKamxjpOjenr6yMiIgJ6enrQ19dHy5YtWUeqEWmZx7c0b94cHh4emDBhgsSfUQZ8Wtl+//59XnerLmdlZSX8XktLC2fPnmWYpvrevn2LV69eVdjhkZ2djby8PACfzsX78gMRQiQFFeMIIUTKXb9+Hb6+vrCyskLLli0xceJEjB07lnWsGvHx8UGdOnUQHh6O8PBwkWsCgYA3xTi+vwAu5+LiIvzexsYGDx8+xN27d2FkZIS2bdsyTCa+z8+1s7CwQHp6Oh4+fAg9PT00aNCAYTLxlBfinj9/jmPHjuHRo0cQCARo3rw5Ro0aBR0dHcYJxbd27Vps3rwZs2fPhpqaGrZu3QoDAwPMmDGDF6sUy/F5HgEBAdi3bx8aN26MwYMHY+LEibC1tWUdq9qSkpJw48YN7N27F9bW1jAxMcGECRMAgFdFFGmZR1Xk5eXx4sUL1jHEZm9vj71798LDw4N1lH9FdnY2kpKSIBAI0KJFC1787QM+bVOdPHkyNm7cCGtrawgEAty+fRsLFizA8OHDAQC3b9+GiYkJ26CEfAV1UyWEEBlRUFCAI0eOwNfXF7dv30ZpaSk2bdqEyZMn83oFBCGybufOnZg/fz4+fvwIdXV1cByHvLw81K5dG5s2bcKsWbNYRxSLqqoqHjx4gGbNmqFBgwYIDQ2Fubk5EhMT0bt3b+EKRkknDfNIT0/Hvn374Ofnh4KCAuTm5uLo0aMYPXo062jV9v79exw+fBi+vr74+++/0bNnT4wfPx7Dhw+HlpYW63hik4Z5hISEiPzMcRwyMzOxfft26Orq4ty5c4ySVc/cuXMREBAAY2NjWFlZVVidzJeV4fn5+Zg7dy72798v7EYvLy8Pe3t7bNu2DSoqKowTftv79+/h4uKCgIAAYcfwWrVqwcHBAZs3b4aqqqqw03C7du3YBSXkK6gYRwghUi4jIwO6uroin6InJSVh79692L9/P968eYN+/fpVeJFMiLSaP3++2PdK+puqM2fOYNiwYZg3bx5cXV2FK68yMzOxfv16bNu2DadOncKgQYMYJ62arq4uzp49C3Nzc7Rt2xZubm4YN24cIiMjYWtri7dv37KOKBZpmQfwqVhy4cIF+Pr6IiQkBA0aNMDIkSPh6enJOlqNJCYmCv/25ebmori4mHWkGuHrPL48804gEEBLSwu9e/fGxo0bJX7laDkbG5uvXhMIBLh69eoPTFNzM2bMwOXLl7F9+3Z07doVABAREQEnJyf069cPu3btYpxQPO/fv0dqaio4joORkRHq1KnDOhIhYqFiHCGESDl5eXlkZmYKO0Z+rrS0FKdPnxa+0ZJE8+fPx6pVq6CqqlplEUXSCydEMnzrjdTn+PCmqmfPnujevTtWr15d6fUlS5bg+vXrFbZ1S6Lx48fDysoK8+fPx5o1a7B161YMGzYMly5dgqWlpUQ3PvictMzjS7m5ucJtrHFxcazjfJeSkhKEhIRg5MiRrKN8F2mZB2GjQYMGCA4ORq9evUTGQ0NDMWbMGGRnZ7MJRoiMoGIcIYRIOTk5OWRlZVVajOMDGxsbnDhxAhoaGlLzaTQh/5a6devizp07aNGiRaXXk5KSYGVlJWwYIslyc3NRVFSEJk2aoKysDBs2bEBERASMjY2xdOlSaGpqso4oFmmZB5+9ePECmzZtgru7u0inReDToe+rV6/GggUL0LBhQ0YJxSMt85BWjx8/RkpKCnr06AFlZWVwHMers/xUVFQQFRUFU1NTkfEHDx6gQ4cOyM/PZ5Ts60aOHAk/Pz/UrVu3yiI0Xz/4ILKDinGEECLl+F6MI+RH4Oubqjp16iA+Ph6GhoaVXk9NTUWbNm3w/v37H5yM8JE4W7gFAgE2btz4A9LU3IIFC5CXlwdvb+9Kr//6669QV1fHH3/88YOTVY80zEOajgUol5OTgzFjxiA0NBQCgQDJyckwNDTElClToKGhIfGPj3J9+vRB/fr1ERAQACUlJQBAYWEhHBwckJubi8uXLzNOWJGjoyM8PT2hpqYGR0fHb97Lp+70RDZRN1VCCJEB5V1Iv4UPnUhfvnz51RUA8fHxaNOmzQ9OJL7qnLEkyf8XeXl5Yt/75UoOSfS1N1VTp07lxZuqVq1a4dSpUyKdbT938uRJtGrV6genqrmysjI8fvwYr169QllZmci1Hj16MEpVfXydR0xMDOsI/4rz58/Dy8vrq9ft7e0xbdo0iS5iAdIxjy9/p6KiolBaWipczfvo0SPIy8ujffv2LOLViIuLCxQUFJCRkSGyqmzs2LFwcXGR+L8b5bZu3QpbW1s0bdoUbdu2hUAgQGxsLJSUlHDhwgXW8Sr1eYGNim2E72hlHCGESDk5OTk0bdoU8vLyX71HIBAgNTX1B6aqGW1tbfj4+GDo0KEi4xs2bMDSpUtRWFjIKFnVDAwMxLpP0v8v5OTkqlwxVr6qrLw7mySzt7fHq1ev4OPjA1NTU8TFxcHQ0BAXL16Ei4sLHjx4wDriN/n7+2PmzJnYsGEDpk+fjlq1Pn3OWlJSgt27d2PhwoXYuXMnJk2axDaoGG7duoXx48fjyZMn+PLlKV9+nwDpmQefqaqqIjExEXp6epVeLy+iSOI2vM9JyzzKbdq0CWFhYfD39xdu1/7nn3/g6OiI7t27w9XVlXFC8TRq1AgXLlxA27ZtoaamJvy7kZaWBnNzc16tRC4sLMSBAwfw8OFDcBwHMzMz2NnZQVlZmXU0sZSUlCAsLAwpKSkYP3481NTU8OLFC9StW5caORCJRyvjCCFEBty9e1cqtqkuXrwYY8eOFbatz83NxcSJE/HgwQMcPXqUdbxvSktLYx3hXxEaGso6wr/q4sWLuHDhApo2bSoy3rx5czx58oRRKvE5ODjg3r17mDNnDn777TcYGRkBAFJSUvD+/Xs4OTnxohAHfNpyZ2VlhTNnzqBx48a82CZcGT7PIywsrMJh7l+aNWsWdu7c+WMC1ZCysjLS09O/WsRKT0/nRbFBWuZRbuPGjbh48aLIuYmamppYvXo1+vfvz5tiXH5+PlRUVCqMv379GoqKigwS1ZyysjKmTZvGOkaNPHnyBLa2tsjIyMCHDx/Qr18/qKmp4c8//0RRUdE3V5USIgmoGEcIIYQ3XF1d0bdvX0yYMAFt2rRBbm4uOnXqhPj4eF4eYP3x40ekpaXByMhIuKJJ0vXs2ZN1hH+VNLyp2rBhA0aPHo3Dhw8jOTkZwKetkL/88gs6derEOJ34kpOTERwcDGNjY9ZRvguf5zFs2DCEhobC0tKy0uuzZ8/GwYMHJb4Y17FjR+zfv/+rW4IDAgLQoUOHH5yq+qRlHuXy8vLw8uXLClvnX716xYsmM+V69OiBgIAArFq1CsCnFa9lZWVYv3692N26WQkJCRH73i93IUgaZ2dnWFlZIS4uDvXr1xeOjxgxAlOnTmWYjBAxcYQQQqSaQCDgXr58+c17Dhw48IPSfL+8vDxu7NixXK1atbhatWpxfn5+rCNVW35+Pjd58mROXl6ek5eX51JSUjiO47i5c+dy69atY5yueq5du8bZ2dlxnTt35p49e8ZxHMcFBARw169fZ5xMPIMGDeKWLFnCcRzH1alTh0tNTeVKS0u5n3/+mRs1ahTjdFVbsWIFl5+fzzrGv8LGxoY7d+4c6xjfjc/zmD9/Pqetrc0lJSVVuDZ79myuTp063LVr1xgkq56rV69y8vLynKurK5eVlSUcz8rK4ubPn8/Jy8tzV65cYZhQPNIyj3ITJ07k9PT0uKCgIO7p06fc06dPuaCgIK5Zs2acvb0963hie/DgAaelpcXZ2tpytWvX5kaPHs2ZmppyDRs25B4/fsw63jcJBAKxvuTk5FhHrVL9+vW5hw8fchz36e93+WuptLQ0TllZmWU0QsRCxThCCJFyLVu25F68ePHV6wcPHuQUFBR+YKKai4iI4Jo1a8a1b9+eS0hI4Pbs2cOpqalxP//8M5ebm8s6nticnJy49u3bc9evX+dUVVWFLyBPnTrFtWvXjnE68QUHB3PKysrc1KlTOUVFReE8duzYwQ0cOJBxOvHw+U0Vx3GcnJxclcV2vjh+/DhnZmbG7du3j7t79y4XFxcn8sUXfJ+Ho6Mjp6enJyyuc9ynDwpUVVW5sLAwhsmqx8vLi1NUVOTk5OQ4DQ0NTlNTk5OTk+MUFRW5nTt3so4nNmmZB8d9+iBq5syZwvnIyclxtWvX5mbOnMm9f/+edbxqyczM5Nzd3bnBgwdzAwcO5H7//fdvvtYi/z5NTU3uwYMHHMeJFuOuX7/OaWtrs4xGiFiogQMhhEi5Xr16obCwEFevXoWqqqrItSNHjsDe3h5//PHHV7sxShJFRUW4uLhg1apVUFBQAPDpbKyJEyciIyMDz549Y5xQPPr6+jh69Cg6deokcvjz48ePYWlpWa2OpSxZWFjAxcUF9vb2IvOIjY2Fra0tsrKyWEcUS1ZWFnbt2oWoqCiUlZXB0tISs2fPRuPGjVlHq5KcnByysrKk4kxIOTm5CmMCgYBXDUEA/s+jrKwMo0ePRmJiIq5fv441a9bA29sbf/31l8RvwStXXFwMBQUFPH/+HIGBgXj8+DE4joOJiQlGjx6Npk2b4v79+2jdujXrqN8kLfP4Un5+PlJSUsBxHIyNjSu8NiE/RlpamtjNpSTR2LFjoa6uDm9vb6ipqSE+Ph5aWloYNmwY9PT0qNsqkXhUjCOEECn3/v179OrVCxoaGjh37pywiBUYGIgJEyZg7dq1WLBgAeOU4gkPD6/0zLKysjKsWbMGS5cuZZCq+lRUVHD//n0YGhqKFLHi4uLQo0cPvH37lnVEsaioqCAhIQHNmjUTmUdqairMzMxQVFTEOqLUk5OTw8uXL6GlpcU6ynerqmGGvr7+D0ryfaRhHh8/fsTgwYMRFxeH/Px8hISEoE+fPqxjiW306NEICgr6avOM+/fvo0+fPnj58uUPTlY90jIPaXPt2rVvXv/aGX+SRl5eHj169MCUKVMwevRoKCkpsY5ULS9evICNjQ3k5eWRnJwMKysrJCcno0GDBrh27ZpUfEhFpBsV4wghRAZkZ2ejR48eMDMzQ3BwMIKDg2FnZ4dVq1Zh8eLFrOPJnJ49e2L06NGYO3eu8NNcAwMDzJkzB48fP8b58+dZRxSLkZERdu/ejb59+4oU4wICAuDh4YGEhATWEat0/vx51KlTB926dQMA7NixA3v27IGZmRl27Ngh0vVPEsnJyaF169ZVNgCJjo7+QYkIn3l6egq/f/fuHVatWoUBAwZUKMQ5OTn96GjVoquri4EDB8Lb27vCtQcPHqB3797o0aMHgoKCGKQTn7TM43N37txBUFAQMjIy8PHjR5Frx48fZ5Sqer62+rWcpK9+LXf//n34+vri4MGD+PDhA8aOHYspU6bwqilIYWEhDh8+jOjoaOHKdjs7O151GSayi4pxhBAiI54+fYpu3brB2NgYERERcHd3x++//846VrXl5+cjPDy80hfykv4GsdzNmzdha2sLOzs7+Pn5YcaMGXjw4AEiIyMRHh6O9u3bs44olj///BP+/v7w9fVFv379cPbsWTx58gQuLi5wd3fHnDlzWEeskrm5Of744w8MGjQI9+7dg5WVFVxdXXH16lWYmppK/DYXOTk5uLq6ok6dOt+8b9myZT8o0fdJSUnBli1bkJiYCIFAAFNTUzg7O8PIyIh1tGrh6zzE2bImEAiQmpr6A9LUXGJionDFj4eHh8i4jY0NunTpgqCgIMjLyzNMWTVpmUe58qMx+vfvj0uXLqF///5ITk5GVlYWRowYIfHPt+W+XL1eXFyMmJgYLF26FGvWrOHVKlIAKCkpwenTp+Hn54dz586hefPmmDJlCiZOnCgVq64JkVhMTqojhBDyw3x+cPjRo0c5RUVFbuzYsbw4VDwjI0Pk5+joaK5Ro0acmpoaV6tWLU5LS4sTCAScqqoqZ2BgwChlzcTHx3P29vZcq1atOFNTU87Ozo6Lj49nHava/ve//3HKysrCDmxKSkrC7qR8oKqqyqWlpXEcx3HLli0TdlCNioriGjZsyDCZeMTplswX58+f52rXrs116NCBc3Fx4ebNm8d16NCBU1RU5C5evMg6ntikZR58d/v2bU5NTY37888/OY7juMTERK5Ro0bc0KFDuZKSEsbpxCct8+A4jjM3N+e2b9/Ocdz/HbhfVlbGTZs2jXN3d2ec7vuFh4dzlpaWrGPUWFFREbdp0yZOUVGREwgEXO3atbmJEydKbGOKxo0bc+PGjeN2795daQdoQiQdrYwjhBApJycnJ3J4ePnT/pffS+K2itWrVyMzMxPbt2+HQCBAr169YGRkBG9vbzRt2hRxcXEoLCzEhAkT4OLigpEjR7KOLJMKCgqQkJCAsrIymJmZVblKS5LUq1cPERERMDMzQ7du3WBvb4/p06cjPT0dZmZmKCgoYB3xm+Tl5ZGZmSkVZ+NYWFhgwIABIiuAAMDNzQ0XL17kzVZbaZmHNLh69Sp++uknLFq0CHv27IGlpSWOHz8uPDuVL6RlHqqqqnjw4AGaNWuGBg0aIDQ0FObm5khMTETv3r2RmZnJOuJ3SUxMhLW1Nd6/f886SrXcvXsXvr6+OHLkCFRVVeHg4IApU6bgxYsXcHd3x7t373D79m3WMSs4fPgwwsPDERYWhkePHqFhw4bo2bMnevXqhZ49e8LU1JR1REK+iYpxhBAi5ao6TLycJB4qXlhYiDlz5iA7OxshISHQ0NDArVu30LJlSzRt2hSRkZHQ1dXFrVu3MGnSJDx8+JB15K+qTofUunXr/odJyOeGDh2Kjx8/omvXrli1ahXS0tKgo6ODixcvYs6cOXj06BHriN8kTd1UlZSUcO/ePTRv3lxk/NGjR2jTpg1vGoLwdR5HjhzBL7/8Ita9T58+RUZGBrp27fofp/p+J0+exM8//4z+/fvj5MmTvCtglZOGeejq6uLs2bMwNzdH27Zt4ebmhnHjxiEyMhK2tra8aV4UHx8v8jPHccjMzISHhweKi4tx48YNRsmqZ9OmTdi3bx+SkpIwaNAgTJ06FYMGDRI5E+/x48do2bIlSkpKGCat2suXLxEaGoq//voLR48eRVlZmUR+yEzI57592i8hhBDek8Qim7iUlZWxd+9eHDlyBACgoKAgfJGora2NJ0+eQFdXFxoaGsjIyGAZtUoaGhpf7Yj3JUl+AVmd1Yd8OIx7+/btmDVrFoKDg7Fr1y7o6OgAAM6dOwdbW1vG6aqWlpYmNWf6aGlpITY2tkIRKzY2llfFRr7OY9euXVi+fDkcHR0xdOjQCqtK3r59ixs3buDAgQO4fPky9u7dyyhp1TQ1NSs8316/fh0NGzYUGcvNzf2RsapNWuZRrnv37rh06RLMzc0xZswYODs74+rVq7h06RKvzllr166dyO6Ccp06dYKvry+jVNW3a9cuTJ48GY6OjmjUqFGl9+jp6Un0Y/39+/eIiIgQrpCLiYmBubk5evbsyToaIVWiYhwhhEixjIwM6OnpiX3/8+fPhcUISVK+WsPCwgJ37tyBiYkJevbsid9++w0zZ86Ev78/zM3NGaf8ttDQUOH36enpcHNzw6RJk9C5c2cAQGRkJPz9/bFu3TpWEcWirq4u/J7jOJw4cQLq6uqwsrICAERFReHNmze82TKsp6eHv/76q8L45s2bGaSpPn9/f7Huc3d3/4+TfL9p06Zh+vTpSE1NRZcuXSAQCBAREYE//vgDrq6urOOJja/zCA8Px19//YVt27bhf//7H1RVVdGwYUMoKSnhn3/+QVZWFrS0tODo6Ij79+9LdGFxy5YtrCP8K6RlHuW2b98uXBn622+/QUFBARERERg5ciSWLl3KOJ340tLSRH6Wk5ODlpYWlJSUGCWqmeTk5CrvqV27NhwcHH5Amurr2LEj4uPj0bp1a/Tq1Qv/+9//0L17d2hoaLCORohYaJsqIYRIsYYNG2Lo0KGYNm3aV1vVv337FoGBgdi6dStmzJiBuXPn/uCU4rt79y7y8vLQu3dv5ObmYtKkSQgLC4ORkRH8/PzQtm1b1hHF0qdPH0ydOhXjxo0TGT906BC8vb0RFhbGJlg1LV68GLm5ufDy8hJ28ystLcWsWbNQt25drF+/nnHCqlW1orI6xWwW5OTk0KRJE2hra1dYpVFOIBDw4pwyjuOwZcsWbNy4ES9evAAANGnSBAsXLoSTk5PYK0tZk4Z55OTkICIiAunp6SgsLESDBg1gYWEBCwsLkS1shMiSq1evYs6cObh161aF4yTevn2LLl26wMvLC927d2eUsGYKCgoq7VDfpk0bRonEU69ePQgEAvTt2xe9evVCr1696Jw4witUjCOEECmWm5uLtWvXwtfXFwoKCrCyskKTJk2EKx0SEhLw4MEDWFlZYcmSJRg4cCDryDJBRUUFcXFxlZ4p1a5dO4lvGlBOS0sLERERaNGihch4UlISunTpgpycHEbJxFfe4ORrJHnLMAAMGjQIoaGhGDBgACZPnozBgwcLC6N8UlJSgoMHD2LAgAFo1KgR3r17BwBQU1NjnKx6pGUesqS8uRHf8WEeXzs7VSAQQFFREbVr1/7Biapn6NChsLGxgYuLS6XXPT09ERoaihMnTvzgZDWTnZ2NSZMm4fz585Vel/S/f8Cn8/vCwsIQHh6O69evQ05ODj179oSNjQ1+/fVX1vEI+Sb6aIsQQqRYvXr1sGHDBrx48QK7du2CiYkJXr9+LdyaYGdnh6ioKNy4cYMKcT+Qrq4uvLy8Kozv3r0burq6DBLVTElJCRITEyuMJyYmoqysjEGi6ouJiUF0dLTw6++//4aXlxdMTEwQFBTEOl6Vzp49i9TUVHTs2BELFy5E06ZNsXjxYiQlJbGOVi21atXCzJkz8eHDBwCfild8LGBJyzz4zNTUFIcOHaqwyudLycnJmDlzJv74448flKx6pGUen9PQ0ICmpmaFLw0NDSgrK0NfXx/Lli2T2L8fcXFx3zxLtH///oiKivqBib7PvHnz8ObNG9y6dQvKyso4f/48/P390bx5c4SEhLCOJ5Y2bdrAyckJx44dw7lz5zBw4EAcP34cs2fPZh2NkCrRmXGEECIDlJSUMHLkSN6c4/U1OTk5cHd3R2hoKF69elXhBTtfDrHevHkzRo0ahQsXLqBTp04AgFu3biElJQXHjh1jnE58jo6OmDx5Mh4/fiwyDw8PDzg6OjJOJ57KtjaXryBdv349Lx4zjRs3xm+//YbffvsN165dw759+2BtbQ1zc3NcvnwZysrKrCOKpWPHjoiJieF10xlAeubBVzt27MDixYsxe/Zs9O/fv9IV4REREUhISMCcOXMwa9Ys1pErJS3z+Jyfnx9+//13TJo0CR06dADHcbhz5w78/f2xZMkSZGdnY8OGDVBUVMT//vc/1nErePny5Te72NaqVQvZ2dk/MNH3uXr1Kk6dOgVra2vIyclBX18f/fr1Q926dbFu3ToMHjyYdcRviomJQVhYGMLCwnD9+nW8e/cObdu2hbOzM2xsbFjHI6RKVIwjhBDCGxMmTEBKSgqmTJmChg0bSvyWnK8ZNGgQkpOTsWvXLiQmJoLjOAwbNgy//vorr1bGbdiwAY0aNcLmzZuRmZkJ4FNhaNGiRRJ9UL04TExMcOfOHdYxqs3a2hrp6elISEhATEwMiouLeVOMmzVrFlxdXfHs2TO0b98eqqqqItcl/fyictIyD77q3bs37ty5g5s3b+Lo0aM4dOhQhbPv7O3tMWHCBIk+6F1a5vE5f39/bNy4EWPGjBGODR06FObm5ti9ezeuXLkCPT09rFmzRiKLcTo6Orh37x6MjY0rvR4fH4/GjRv/4FQ1l5+fL2zEUq9ePWRnZ8PExATm5ua8OGfU2toaFhYW6NmzJ6ZNm4YePXpUOMuPEElGZ8YRQgjhDTU1NURERPCmUYMsKT8LiG8vhL88w4jjOGRmZmL58uV4+PAhYmNj2QSrpsjISPj6+iIwMBAmJiZwdHTE+PHjefMmHUCljQEEAoHwLCw+nF8ESM88CPm3fe281OTkZLRt2xYFBQVIS0tDq1atJPLs1Llz5yIsLAx37typ0Dm1sLAQHTp0gI2NDTw9PRklrB5ra2usXr0aAwYMwPDhw4Ur4jw9PREcHIyUlBTWEb8pLy+Pd685CPkcrYwjhBDCGy1btkRhYSHrGKQSfH1BrKGhUWGFJcdx0NXVxZEjRxilEt+ff/6Jffv2IScnB3Z2doiIiIC5uTnrWDWSlpbGOsK/QlrmQci/rWnTpti7dy88PDxExvfu3StcFZ6TkwNNTU0W8aq0ZMkSHD9+HCYmJpgzZw5atGgBgUCAxMRE7NixA6Wlpfj9999ZxxTbvHnzhKvaly1bhgEDBuDAgQOoXbs2/P39GaerGl9fdxBSjlbGEUII4Y07d+7Azc0N7u7uaN26dYWzW+iFGamu8PBwkZ/l5OSgpaUFY2Nj1Kol+Z9ZysnJQU9PDz/99NM3OxFu2rTpB6Yi0uDZs2cICQlBRkZGhSYC9PtEaiIkJAQ///wzWrZsCWtrawgEAty5cwcPHz5EcHAwfvrpJ+zatQvJyckS+zv25MkTzJw5ExcuXED522iBQIABAwZg586daNasGduANcRxHAoLC/Hw4UPo6emhQYMGrCMRIvWoGEcIIYQ3kpOTMW7cOMTExIiM0/YvUh2Wlpa4cuUKNDU1sXLlSixYsAAqKiqsY9VIr169qjw7USAQ4OrVqz8o0ffZv38/vLy8kJaWhsjISOjr62PLli0wMDDAsGHDWMcTG9/nceXKFQwdOhQGBgZISkpC69atkZ6eDo7jYGlpyZvfJyJ5njx5Ai8vLyQlJYHjOLRs2RIzZszgXRHrn3/+wePHj8FxHJo3by6xq/mqsnfvXmzevBnJyckAgObNm2PevHmYOnUq42SESD8qxhFCiAxJSUnBli1bkJiYCIFAAFNTUzg7O8PIyIh1NLF06NABtWrVgrOzc6UNHHr27MkoGeETZWVlJCcno2nTppCXl0dWVha0tLRYx5J5u3btgru7O+bNm4c1a9bg/v37MDQ0hJ+fH/z9/REaGso6olikYR4dOnSAra0tVq5cCTU1NcTFxUFbWxt2dnawtbXFzJkzWUckPFNcXIz+/ftj9+7dMDExYR2HAFi6dCk2b96MuXPnonPnzgA+nT+6fft2ODs7Y/Xq1YwTEiLdqBhHCCEy4sKFCxg6dCjatWuHrl27guM43Lx5E3FxcTh9+jT69evHOmKVVFRUEBMTgxYtWrCOQnisc+fOqFOnDrp164YVK1ZgwYIFqFOnTqX3uru7/+B0ssvMzAxr167F8OHDhQUgQ0ND3L9/H7169cLr169ZRxSLNMxDTU0NsbGxMDIygqamJiIiItCqVSvExcVh2LBhSE9PZx2R8JCWlhZu3rxZoYEDYaNBgwbYtm0bxo0bJzJ++PBhzJ07V+Kfq8LCwtCrVy/WMQipMck/DIUQQsi/ws3NDS4uLhUOTnZzc8PixYt5UYyzsrLC06dPpaIYFxwcjMDAwErPY4qOjmaUqvrCw8OxYcMGkdWWCxcuRPfu3VlH+yo/Pz8sW7YMf/31FwQCAc6dO1fp+XACgUCii3EeHh6YO3cuVFVVq7z377//xuvXrzF48OAfkKxm0tLSYGFhUWFcUVER+fn5DBLVjDTMQ1VVFR8+fAAANGnSBCkpKWjVqhUASPwb9K8pLCxEcXGxyBgfzxnl8zzs7e0rbeBA2CgtLYWVlVWF8fbt26OkpIRBouqxtbWFjo4OHB0d4eDgIGwCQghfUDGOEEJkRGJiIgIDAyuMT548GVu2bPnxgWpg7ty5cHZ2xsKFC2Fubl6hgUObNm0YJaseT09P/P7773BwcMCpU6fg6OiIlJQU3LlzB7Nnz2YdT2wHDhyAo6MjRo4cCScnJ+Fqyz59+sDPzw/jx49nHbFSLVq0EHZKlZOTw5UrV6Ctrc04VfUlJCRAX18fP//8M4YOHQorKyvhdtuSkhIkJCQgIiICBw4cQGZmJgICAhgn/jYDAwPExsZCX19fZPzcuXMwMzNjlKr6pGEenTp1wo0bN2BmZobBgwfD1dUV9+7dw/Hjx9GpUyfW8cRWUFCARYsWITAwEDk5ORWu8+WcUWmZx8ePH+Hj44NLly7BysqqwgcJktq0QVpNmDABu3btqvDv7u3tDTs7O0apxPfixQscOHAAfn5+WL58Ofr06YMpU6Zg+PDh32xoRIikoG2qhBAiI3R1dbFp0yb8/PPPIuOBgYFYsGABMjIyGCUTn5ycXIUxgUDAuwYOLVu2xLJlyzBu3DiRbWzu7u7Izc3F9u3bWUcUi6mpKaZPnw4XFxeR8U2bNmHPnj1ITExklEx2xMfHY8eOHQgKCsLbt28hLy8PRUVFFBQUAAAsLCwwffp0ODg4QFFRkXHab9u3bx+WLl2KjRs3YsqUKfDx8UFKSgrWrVsHHx8f/PLLL6wjikUa5pGamor379+jTZs2KCgowIIFCxAREQFjY2Ns3ry5QqFRUs2ePRuhoaFYuXIl7O3tsWPHDjx//hy7d++Gh4cHLwoOgPTMw8bG5qvX+NRoRlrMnTsXAQEB0NXVFRbZb926hadPn8Le3l7kA09JL5TGxsbC19cXhw8fRllZGezs7DBlyhS0bduWdTRCvoqKcYQQIiNWrlyJzZs3w83NDV26dIFAIEBERAT++OMPuLq6YsmSJawjVunJkyffvM6XN4gqKipITEyEvr4+tLW1cenSJbRt2xbJycno1KlTpSsfJJGioiIePHgAY2NjkfHHjx+jdevWKCoqYpRM9nAch/j4eKSnp6OwsBANGjRAu3bt0KBBA9bRqmXPnj1YvXo1nj59CgDQ0dHB8uXLMWXKFMbJqkda5sF3enp6CAgIQK9evVC3bl1ER0fD2NgY+/fvx+HDh3H27FnWEcUiLfMgkuVbxdHP8aVQ+uLFC3h7e8PDwwO1atVCUVEROnfuDC8vL+E2e0IkCW1TJYQQGbF06VKoqalh48aN+O233wB8Ogto+fLlcHJyYpxOPHwptlWlUaNGyMnJgb6+PvT19XHr1i20bdsWaWlp4NNnZLq6urhy5UqFYtyVK1fo7JYfTCAQoG3btrxfBTBt2jRMmzYNr1+/RllZGS+3DwPSMw8AeP/+PcrKykTG+HJGWW5uLgwMDAB8ypybmwsA6NatG686wkrLPMo9fvwYKSkp6NGjB5SVlYWr28mPxYfOzlUpLi7GqVOn4OvrK9z+vH37dowbNw65ublYvHgxfv75ZyQkJLCOSkgFVIwjhBAZUFJSgoMHD2LcuHFwcXHBu3fvAHzqmEd+vN69e+P06dOwtLTElClT4OLiguDgYNy9excjR45kHU9srq6ucHJyQmxsrMhqSz8/P2zdupV1PMJjfFvR9zV8nUdaWhrmzJmDsLAwkRWufDsSwNDQEOnp6dDX14eZmRkCAwPRoUMHnD59GhoaGqzjiU1a5pGTk4MxY8YgNDQUAoEAycnJMDQ0xNSpU6GhoYGNGzeyjkh4ZO7cuTh8+DCAT+ff/fnnn2jdurXwuqqqKjw8PNCsWTNGCQn5NtqmSgghMuLzrZGErbKyMpSVlQk7eAYGBgrPY/r11195dfDwiRMnsHHjRuH5cOXdVIcNG8Y4GeEjaekyzPd5dOnSBQDg7OyMhg0bVli11LNnTxaxqm3z5s2Ql5eHk5MTQkNDMXjwYJSWlqKkpASbNm2Cs7Mz64hikZZ52Nvb49WrV/Dx8YGpqanwvNSLFy/CxcUFDx48YB2R8EifPn0wdepUjBo16quvm0pKSnDjxg3ePGcR2ULFOEIIkRE2NjZwdnbG8OHDWUchhJAKPu8yvGfPngpdhtesWcM6olikYR516tRBVFQUWrRowTrKvyojIwN3796FkZERr7d083UejRo1woULF9C2bVuR5kVpaWkwNzfH+/fvWUckPHLt2jV06dJF+MFmuZKSEty8eRM9evRglIwQ8dA2VUIIkRGzZs2Cq6srnj17hvbt20NVVVXkeps2bRglk03Xr1/H7t27kZKSguDgYOjo6GD//v0wMDBAt27dWMcTi6GhIe7cuYP69euLjL958waWlpZITU1llOzbNDU1xT6fqPxsJvLf27lzJ7y9vTFu3Dj4+/tj0aJFIl2G+UIa5mFtbY2nT59KXTFOT08Penp6rGN8N77OIz8/HyoqKhXGX79+LfHdnonksbGxQWZmZoUzOd++fQsbGxvebKcnsouKcYQQIiPGjh0LACLNGgQCAe/OAAKAqKgoJCYmQiAQwNTUFJaWlqwjVcuxY8cwceJE2NnZISYmBh8+fAAAvHv3DmvXruVNZ7z09PRKf28+fPiA58+fM0gkni1btrCO8J/h88HoGRkZwu2RysrKwrMtJ06ciE6dOmH79u0s44lNGubh4+ODX3/9Fc+fP0fr1q2hoKAgcl2SP7zx9PQU+15Jbl7k6emJ6dOnQ0lJqco5SfI8PtejRw8EBARg1apVAD69BikrK8P69evF7uxJSLmv/X3Lycmp8IEzIZKIinGEECIj0tLSWEf4bq9evcIvv/yCsLAwaGhogOM44SegR44cgZaWFuuIYlm9ejW8vLxgb2+PI0eOCMe7dOmClStXMkwmnpCQEOH3Fy5cgLq6uvDn0tJSXLlyRaIPTHZwcGAd4V+Xk5ODsWPH4urVq7w9GF1augxLwzyys7ORkpICR0dH4RhfPrzZvHmzyM/Z2dkoKCgQNjp48+YNVFRUoK2tLdFFrM2bN8POzg5KSkoV5vQ5gUAg0fP43Pr169GrVy/cvXsXHz9+xKJFi/DgwQPk5ubixo0brOMRnihvdCUQCDBp0iSRVZWlpaWIj48XfiBCiCSjYhwhhMgIaWjcMHfuXOTl5eHBgwcwNTUFACQkJMDBwQFOTk7CrlqSLikpqdKzTOrWrYs3b978+EDVVH7uoEAgqFDYUlBQQLNmzXhR/CmXkpKCffv2ISUlBVu3boW2tjbOnz8PXV1dtGrVinU8sbi4uKBWrVrIyMgQPjaATytiXVxcePH/IS1dhqVhHpMnT4aFhQUOHz5caQMHSfb5B0+HDh3Czp07sXfvXuGW26SkJEybNg0zZsxgFVEsn89DGj5MAwAzMzPEx8dj165dkJeXR35+PkaOHInZs2ejcePGrOMRnij/AJDjOKipqUFZWVl4rXbt2ujUqROmTZvGKh4hYqMGDoQQIkP2798PLy8vpKWlITIyEvr6+tiyZQsMDAx40f1SXV0dly9fhrW1tcj47du30b9/f14UsgDAyMgIu3fvRt++fUUOsQ4ICICHhwcSEhJYRxSLgYEB7ty5gwYNGrCOUmPh4eEYOHAgunbtimvXriExMRGGhob4888/cfv2bQQHB7OOKBZpOBhdWroMS8M8VFVVERcXB2NjY9ZRvouRkRGCg4NhYWEhMh4VFYXRo0fzsshV/taNTwVSQv4LK1aswIIFC2hLKuEtOdYBCCGE/Bi7du3C/PnzMWjQILx580a4zUhDQ4M3Z2iVlZVVOLsI+LQaq6ysjEGimpkxYwacnZ3x999/QyAQ4MWLFzh48CAWLFiAWbNmsY4ntrS0NF4X4gDAzc0Nq1evxqVLl0SKJDY2NoiMjGSYrHqk4WB0OTk5ka54Y8aMgaenJ5ycnHhRwConDfPo3bs34uLiWMf4bpmZmSguLq4wXlpaipcvXzJIVHN79+5F69atoaSkBCUlJbRu3Ro+Pj6sY1WLgYEBli5diqSkJNZRiBRYtmwZVFVV8erVK1y/fh0RERF49eoV61iEiI2KcYQQIiO2bduGPXv24Pfff4e8vLxw3MrKCvfu3WOYTHy9e/eGs7MzXrx4IRx7/vw5XFxc0KdPH4bJqmfRokUYPnw4bGxs8P79e/To0QNTp07FjBkzMGfOHNbxxObk5FTpweLbt2/HvHnzfnygGrh37x5GjBhRYVxLSws5OTkMEtVM+cHo5ehgdPI9hgwZAhcXFyxfvhzHjh1DSEiIyBdf9OnTB9OmTcPdu3eFK8ru3r2LGTNmoG/fvozTiW/p0qVwdnbGkCFDEBQUhKCgIOH/0ZIlS1jHE9vcuXNx/vx5mJqaon379tiyZQsyMzNZxyI8lZeXh4kTJ0JHRwc9e/ZEjx49oKOjgwkTJuDt27es4xFSJdqmSgghMkJZWRkPHz6Evr6+yDa25ORktGnTBoWFhawjVunp06cYNmwY7t+/D11dXQgEAmRkZMDc3BynTp1C06ZNWUesUmlpKSIiImBubg4lJSUkJCSgrKwMZmZmqFOnDut41aKjo4OQkBC0b99eZDw6OhpDhw7Fs2fPGCUTX9OmTREYGIguXbqIPC5OnDiBBQsWICUlhXVEsSQkJKBXr15o3749rl69iqFDh4ocjG5kZMQ6IuERObmvf14v6Q0cPpednQ0HBwecP39euKq6pKQEAwYMgJ+fH7S1tRknFE+DBg2wbds2jBs3TmT88OHDmDt3Ll6/fs0oWc08evQIBw8exJEjR5CamgobGxtMmDAB9vb2rKMRHhkzZgxiY2Oxbds2dO7cGQKBADdv3oSzszPatGmDwMBA1hEJ+SYqxhFCiIwwMzPDunXrMGzYMJGig6enJ/z9/REVFcU6otguXbqEhw8fguM4mJmZ8WqFAwAoKSkhMTERBgYGrKN8FyUlJdy/f7/CuVKPHz9G69atUVRUxCiZ+BYtWoTIyEgEBQXBxMQE0dHRePnyJezt7WFvb49ly5axjii2rKws7Nq1C1FRUSgrK4OlpSUdjE4IPhV/yv9mmJqawsTEhHWkatHU1MTt27fRvHlzkfFHjx6hQ4cOvDkvtTK3bt3CzJkzER8fz5siL5EMqqqquHDhArp16yYyfv36ddja2iI/P59RMkLEQ91UCSFERixcuBCzZ89GUVEROI7D7du3cfjwYaxbt453587069cP/fr1Yx2jxszNzZGamsr7YpyxsTHOnz9fYWvtuXPnYGhoyChV9axZswaTJk2Cjo6OsLhbWlqK8ePH82r7F/CpicOKFStYxyBE4piYmPCuAPe5CRMmYNeuXdi0aZPIuLe3N+zs7Bil+j63b9/GoUOHcPToUbx9+xajR49mHYnwTP369YWdVT+nrq4OTU1NBokIqR5aGUcIITJkz549WL16NZ4+fQrg0zbD5cuXY8qUKYyTfZ2npyemT58OJSWlSs8n+5yTk9MPSvV9Ll68iMWLF2PVqlVo3759hU5gdevWZZSsenx9fTFnzhwsXLgQvXv3BgBcuXIFGzduxJYtWzBt2jTGCcWXkpKCmJgYlJWVwcLCosIKFEl37dq1b17v0aPHD0pC+Epanmvnz5+PVatWQVVVFfPnz//mvV8WtyTV3LlzERAQAF1dXXTq1AnApxVlT58+hb29vUhjI0meU/n21EOHDiE9PR02Njaws7PDyJEjoaamxjoe4Rlvb28EBQUhICBAuAI8KysLDg4OGDlyJGbMmME4ISHfRsU4QgiRQa9fv0ZZWRkvzssxMDDA3bt3Ub9+/W+uJBMIBEhNTf2ByWru8/OYBAKB8HuO43h1HhPwqUvvmjVrhE01mjVrhuXLl9PZPz9YZWd8ff67xZffqeDgYAQGBiIjIwMfP34UuRYdHc0oVfXxcR7S8lxrY2ODEydOQEND45vNSwQCAa5evfoDk9WcuE1YJH1OcnJysLKywvjx4/HLL7+gUaNGrCMRHrOwsMDjx4/x4cMH6OnpAQAyMjKgqKhY4QM1SX3eJbKNtqkSQoiMSEtLQ0lJCZo3b44GDRoIx5OTk6GgoIBmzZqxC/cNaWlplX7PZ6Ghoawj/GtmzpyJmTNnIjs7G8rKyrxoQlHVapnPSfIqk8/9888/Ij8XFxcjJiYGS5cuxZo1axilqh5PT0/8/vvvcHBwwKlTp+Do6IiUlBTcuXMHs2fPZh1PbHydh7Q8137+/Cotz7XSMo+HDx/yerswkSzDhw9nHYGQ70Ir4wghREb07NkTkydPhoODg8j4gQMH4OPjg7CwMDbBiIjY2Fi0a9eOdQyxlZSUICwsDCkpKRg/fjzU1NTw4sUL1K1bV2ILc1+uMomKikJpaSlatGgB4NNWKnl5eWFnUj67du0aXFxceNGgpWXLlli2bBnGjRsn0mTG3d0dubm52L59O+uIYpGGeRQWFkJZWbnSa5mZmdQUhHyXjx8/4tWrVygrKxMZL1/dRAghsoCKcYQQIiPq1q2L6OjoSjtfWllZ8aIb2+jRo2FlZQU3NzeR8fXr1+P27dsICgpilOz7vH37FgcPHoSPjw/i4uJ4s6XwyZMnsLW1RUZGBj58+IBHjx7B0NAQ8+bNQ1FREby8vFhHrNKmTZsQFhYGf39/4YHP//zzDxwdHdG9e3e4uroyTvh9EhMTYW1tjffv37OOUiUVFRUkJiZCX18f2trauHTpEtq2bYvk5GR06tQJOTk5rCOKRRrm0bJlSxw6dAiWlpYi48HBwcKVsJJq5MiRYt97/Pjx/zDJv6eoqAjbtm1DaGhopUUsvmzBS05OxuTJk3Hz5k2RcT4e0UAky/v37ys8Lvhy/i6RXbRNlRBCZIRAIMC7d+8qjL99+5Y3L4DDw8OxbNmyCuO2trbYsGEDg0Tf5+rVq/D19cXx48ehr6+PUaNGYe/evaxjic3Z2RlWVlaIi4tD/fr1heMjRozA1KlTGSYT38aNG3Hx4kWRzmuamppYvXo1+vfvz5tiXHx8vMjPHMchMzMTHh4eaNu2LaNU1dOoUSPk5ORAX18f+vr6uHXrFtq2bYu0tDTw6bNjaZhHv3790KVLFyxfvhyLFy9Gfn4+5syZg6CgIHh4eLCO902fd1fkOA4nTpyAuro6rKysAHxaCfvmzZtqFe1Ymzx5Mi5duoTRo0ejQ4cOIudB8smkSZNQq1Yt/PXXX2jcuDFv50EkQ1paGubMmYOwsDAUFRUJx6m4S/iCinGEECIjunfvjnXr1uHw4cOQl5cH8OlQ93Xr1qFbt26M04nn/fv3qF27doVxBQUF5OXlMUj0bdnZ2dDS0hIZe/bsGfz8/ODr64v8/HyMGTMGxcXFOHbsGMzMzBglrZmIiAjcuHGjwv+Jvr4+nj9/zihV9eTl5eHly5do1aqVyPirV68qLV5Lqnbt2kEgEFQo9nTq1Am+vr6MUlVP7969cfr0aVhaWmLKlClwcXFBcHAw7t69y6vCiTTMY9u2bRg8eDAcHR1x5swZ4dbzO3fuSPzz1L59+4TfL168GGPGjIGXl5fI371Zs2bxatXMmTNncPbsWXTt2pV1lO8SGxuLqKgotGzZknUUIgXs7OwAfOrs3rBhQyruEt6hYhwhhMiIP//8Ez169ECLFi3QvXt3AMD169eRl5fHm3OxWrdujaNHj8Ld3V1k/MiRIxL5BtHb2xvPnj2Dp6cnFBQUMGjQIEREROCnn37Ctm3bYGtrC3l5eV5s56xMWVlZpZ88P3v2DGpqagwSVd+IESPg6OiIjRs3olOnTgCAW7duYeHChbwpnAAVD9yXk5ODlpYWlJSUGCWqPm9vb+E2o19//RX16tVDREQEhgwZgl9//ZVxOvFJyzz69++PkSNHYteuXahVqxZOnz4tkc+z3+Lr64uIiAhhIQ4A5OXlMX/+fHTp0gXr169nmE58Ojo6vHlO/RYzMzO8fv2adQwiJeLj4xEVFSU875UQvqEz4wghRIa8ePEC27dvR1xcHJSVldGmTRvMmTMH9erVYx1NLCEhIRg1ahTGjx+P3r17AwCuXLmCw4cPIygoSOI6a3348AFLly5FgwYNsGjRItSqVQtOTk6YOXMmmjdvLrxPQUEBcXFxvHujO3bsWKirq8Pb2xtqamqIj4+HlpYWhg0bBj09PZEVKpKqoKAACxYsgK+vL4qLiwEAtWrVwpQpU7B+/XqoqqoyTkjIj1fekCUrKws+Pj4IDw/Hhg0b4OTkhDVr1kBBQYF1RLFoampi3759Ff42nDx5Eo6OjhW6EEuqc+fOwdPTE15eXtDX12cdp8auXr2KJUuWYO3atTA3N6/we8Sn1YqEPRsbG/z+++/o27cv6yiE1AgV4wghhPDKmTNnsHbtWsTGxgoLisuWLUPPnj1ZR/uqjx8/onbt2oiMjISvry8CAwPRsmVLTJw4EWPHjkWTJk14WYx78eIFbGxsIC8vj+TkZFhZWSE5ORkNGjTAtWvXoK2tzTqi2PLz85GSkgKO42BsbMy7Ipynp2el4wKBAEpKSjA2NkaPHj1EVghJgi/PuvuWNm3a/IdJvo+0zKOcmpoaBg8eDC8vL2hoaAAAbt68CXt7e6ipqSEmJoZtQDHNnz8ffn5++N///iey8tXDwwP29vbYtGkT44Tiyc7OxpgxY3Dt2jWoqKhUKGLl5uYySlY9cnJywu8/31JIZ3yRmkhJScGvv/6KCRMmoHXr1hUeF3x4riWyjYpxhBAiI65du/bN6z169PhBSUhBQQGOHDkCX19f3L59G6Wlpdi0aRMmT57Mu61IhYWFOHz4MKKjo1FWVgZLS0vY2dlBWVmZdTSZYmBggOzsbBQUFEBTUxMcx+HNmzdQUVFBnTp18OrVKxgaGiI0NBS6urqs4wrJyclVetbdlyT9jbq0zKPc/v37MXHixArj7969w7x583jTaKasrAwbNmzA1q1bkZmZCQBo3LgxnJ2d4erqKnHF6a/p27cvMjIyMGXKlErPxnJwcGCUrHrCw8O/eV2SP1QjkufWrVsYP3480tPThWPlz8N8ea4lso2KcYQQIiM+/0S63Ocv6OlFCxtJSUnYu3cv9u/fjzdv3qBfv34ICQlhHYvwzOHDh+Ht7Q0fHx8YGRkBAB4/fowZM2Zg+vTp6Nq1K3755Rc0atQIwcHBjNP+nydPnoh9ryRvz5OWeUiTkpISHDx4EAMGDECjRo2ETX74uBVSRUUFkZGRvOmM/C3Xr1/H7t27kZKSguDgYOjo6GD//v0wMDDgTTMpIhnMzMxgamqKRYsWVVqkpudaIumoGEcIITLi7du3Ij8XFxcjJiYGS5cuxZo1a9CnTx9Gyb6tXr16ePToERo0aABNTc1vdsviy1adypSWluL06dPw9fXlVTEuKSkJ27ZtQ2JiIgQCAVq2bIk5c+ZQt7wfzMjICMeOHUO7du1ExmNiYjBq1Cikpqbi5s2bGDVqlHCFECFVSUhIQEZGBj5+/CgcEwgEGDJkCMNU4lNRUUFiYiLv35RbWlpi586dwq22fHXs2DFMnDgRdnZ22L9/PxISEmBoaIidO3fir7/+wtmzZ1lHJDyiqqqKuLg4GBsbs45CSI1QN1VCCJER6urqFcb69esHRUVFuLi4ICoqikGqqm3evFm4dXPz5s1S27peXl4ew4cPl7gmFN8SHByMcePGwcrKCp07dwbwaduIubk5Dh06hJ9//plxQtmRmZmJkpKSCuMlJSXIysoCADRp0gTv3r370dEID7x9+1bkb0RqaipGjhyJ+Ph4ke235c+/fFlJ3bFjR8TExPC+GOfh4QFXV1esWbOG140PVq9eDS8vL9jb2+PIkSPC8S5dumDlypUMkxE+6t27NxXjCK/RyjhCCJFxiYmJsLa2xvv371lHITxjaGiICRMmVHgTtWzZMuzfvx+pqamMksmewYMHCztfWlhYAPi0Km7atGlo1KgR/vrrL5w+fRr/+9//cO/ePcZpiaRZtWoVlJSUsHDhQgAQrnzz8fFBu3bt8PfffyMtLQ0LFizApk2b0L17d5ZxxRYUFAQ3Nze4uLigffv2FRqz8OWA9/JjJr78MIpvZ2OpqKggISEBzZo1g5qaGuLi4mBoaIjU1FSYmZmhqKiIdUTCI97e3li9ejUmT55caZF66NChjJIRIh4qxhFCiIz4stsfx3HIzMyEh4cHiouLcePGDUbJxGdjY4MJEyZg9OjRla70Iz+WiooK4uPjK3wqnZycjLZt26KgoIBRsm+rzjZgvryYz8rKwsSJE3HlyhXhG5KSkhL06dMH+/fvR8OGDREaGori4mL079+fcVoiaV69eoWJEyfC2NgYO3bsQIMGDXDlyhW0bdsWOjo6uH37NnR0dHDlyhUsWLCAN91Uv3ZWKt+KWNLS+MDIyAi7d+9G3759RYpxAQEB8PDwQEJCAuuIhEcqe3yX49Pjm8gu2qZKCCEyol27dpV2++vUqRN8fX0Zpaoec3NzLFmyBHPmzMGgQYMwceJEDBo0CLVr12YdTSb16tUL169fr1CMi4iIkOiVM19uBf7yccHHxiaNGjXCpUuX8PDhQzx69Agcx6Fly5Zo0aKF8B4bGxuGCYkk09bWxoULF7Bu3ToAn37vy48HaNCgAV68eAEdHR00a9YMSUlJLKNWS1paGusI/wq+FNuqMmPGDDg7O8PX1xcCgQAvXrxAZGQkFixYAHd3d9bxCM+UlZWxjkDId6GVcYQQIiO+7PYnJycHLS0tKCkpMUpUM2VlZbh8+TIOHTqEEydOQF5eHqNHj4adnZ3UvGHhCy8vL7i7u2PMmDHCg8Vv3bqFoKAgrFixAk2aNBHeK6krzC5fvozFixdj7dq16Ny5MwQCAW7evIklS5Zg7dq16NevH+uI1fLx40ekpaXByMgItWrx7zPXN2/eIDg4GCkpKVi4cCHq1auH6OhoNGzYEDo6OqzjiY3v8+jevTvmz5+PESNGYPr06cjOzsbChQvh5eWF6Oho3L9/n3VEqRcfH4/WrVtDTk6uwsr2L/Fluy0A/P7779i8ebNwS6qioiIWLFiAVatWMU5GCCE/FhXjCCFEBpRvTdu9ezdMTExYx/nXFBUV4fTp01izZg3u3bvHm1VM0uJbW0Q+J8nbRVq3bg0vLy9069ZNZPz69euYPn06EhMTGSWrnoKCAsydOxf+/v4AgEePHsHQ0BBOTk5o0qQJ3NzcGCesWnx8PPr27Qt1dXWkp6cjKSkJhoaGWLp0KZ48eYKAgADWEcUiDfO4cOEC3r17h9GjR+Pp06cYPHgw7t+/j3r16iEwMBC9e/dmHVFs+/fvh5eXF9LS0hAZGQl9fX1s2bIFBgYGGDZsGOt4XyUnJ4esrCxoa2tDTk6u0pXtgGQ/v35NQUEBEhISUFZWBjMzM9SpU4d1JMIjgwYNwuHDh4XHlaxZswazZ8+GhoYGACAnJwfdu3enbc9E4on3KpoQQgivKSgo4P79+1LViTQrKwteXl74448/EB8fDysrK9aRZE5ZWZlYX5L8RjElJaXS8wfLCyl88dtvvyEuLg5hYWEiq1379u2Lo0ePMkwmvvnz52PSpElITk4WmcPAgQNx7do1hsmqRxrmMWDAAIwePRoAoKuri/j4eLx+/RqvXr2S6ELchQsX8PbtW+HPu3btwvz58zFo0CC8efNG+FykoaGBLVu2MEopnrS0NGhpaQm/T01NRVpaWoUvPjbKUVFRgZWVFTp06ECFOFJtFy5cwIcPH4Q///HHH8jNzRX+XFJSwqvt9ER2UTGOEEJkhL29Pfbu3cs6xnfJy8vDvn370K9fP+jq6mLXrl0YMmQIHj16hL///pt1PIJP2/P4xNraGvPmzUNmZqZwLCsrC66urujQoQPDZNVz8uRJbN++Hd26dRMpupuZmSElJYVhMvHduXMHM2bMqDCuo6ODrKwsBolqRlrm8aV69eqJvRqWlaysLHTt2hXPnj0DAGzbtg179uzB77//Dnl5eeF9VlZWEt9VWF9fX/hY1tfX/+YXIbLkyxWitNGP8BX/DhMhhBBSIx8/foSPjw8uXboEKysrqKqqilzftGkTo2Tia9iwITQ1NTFmzBisXbsW1tbWrCPJtD/++APNmjXD2LFjAQA///wzjh07hsaNG+Ps2bNo27Yt44RV8/X1xYgRI6Cvrw89PT0AQEZGBkxMTHDy5Em24aohOzsb2traFcbz8/N5syJWSUkJeXl5FcaTkpKEK4T4QBrmUVRUhG3btiE0NBSvXr2qcFB6dHQ0o2Tf5uDgADU1Ndja2uL+/ftIS0uDhYVFhfsUFRWRn5/PIKH4pLHrMyGEkP9DxThCCJER9+/fh6WlJYBP50l9jg9v1jmOw9atWzFhwgSoqKiwjkMA7N69GwcOHAAAXLp0CZcvX8b58+cRGBiIhQsX4uLFi4wTVs3Y2Bjx8fHCTqQcx8HMzAx9+/blxeOinLW1Nc6cOYO5c+cC+L/H9J49e9C5c2eW0cQ2bNgwrFy5EoGBgQA+zSEjIwNubm4YNWoU43Tik4Z5TJ48GZcuXcLo0aPRoUMHXj0WRo4cKSzAGRgYIDY2tsLqsXPnzsHMzIxFPLF92fX5a/h4Zhwh30MgEFR4TuLTcxQh5aiBAyGEEF4oKyuDkpISHjx4gObNm7OOQwAoKyvj0aNH0NXVhbOzM4qKirB79248evQIHTt2xD///MM6osy4efMmbG1tYWdnBz8/P8yYMQMPHjxAZGQkwsPD0b59e9YRq5SXl4dBgwbhwYMHePfuHZo0aYKsrCx07twZZ8+erbCaV1JJwzzU1dVx9uxZdO3alXWU77Jv3z4sXboUGzduxJQpU+Dj44OUlBSsW7cOPj4++OWXX1hHJIRUk5ycHAYOHAhFRUUAwOnTp9G7d2/hc+uHDx9w/vx5KlITiUcr4wghREa8ffsWpaWlqFevnsh4bm4uatWqhbp16zJKJh45OTk0b94cOTk5VIyTEJqamnj69Cl0dXVx/vx5rF69GsCnVYx8eRG8cuXKb153d3f/QUm+T5cuXXDjxg1s2LABRkZGuHjxIiwtLREZGQlzc3PW8cRSt25dRERE4OrVq4iOjkZZWRksLS3Rt29f1tGqRRrmoaOjAzU1NdYxvpujoyNKSkqwaNEiFBQUYPz48dDR0cHWrVupEEcITzk4OIj8PGHChAr32Nvb/6g4hNQYrYwjhBAZMXDgQAwZMgSzZs0SGffy8kJISAjOnj3LKJn4zpw5Aw8PD+zatQutW7dmHUfmzZkzB3/99ReaN2+OmJgYpKeno06dOjh69Cj++OMPiT1X6nNfnidVXFyMtLQ01KpVC0ZGRryYAyH/tnPnzsHT0xNeXl5S0yDg9evXKCsrq/RsRUIIIeRHo2IcIYTIiHr16uHGjRswNTUVGX/48CG6du2KnJwcRsnEp6mpiYKCApSUlKB27dpQVlYWuf55a3vy3ysuLsbWrVvx9OlTTJo0SVjY2rJlC+rUqYOpU6cyTlgzeXl5mDRpEkaMGIGJEyeyjiO20tJSnDhxAomJiRAIBDA1NcWwYcNQq5bkboTw9PQU+14nJ6f/MMn3kZZ5lMvOzsaYMWNw7do1qKioQEFBQeQ6355rX716haSkJAgEArRo0YI3jTQIIYRILyrGEUKIjFBVVcWtW7cqbFm7d+8eOnbsiIKCAkbJxOfv7//N619uXSCkpu7fv4+ffvoJ6enprKOI5f79+xg2bBiysrLQokULAJ8atWhpaSEkJERit6oaGBiI/JydnY2CggJoaGgAAN68eQMVFRVoa2sjNTWVQULxSMs8yvXt2xcZGRmYMmUKGjZsWOFwdL481+bl5WH27Nk4fPiwsCOsvLw8xo4dix07dkBdXZ1xQkIIIbKKinGEECIjevXqBXNzc2zbtk1kfPbs2YiPj8f169cZJSN8l5CQgIyMDHz8+FFkfOjQoYwSfb+IiAgMGTKEN00oOnXqBG1tbfj7+0NTUxMA8M8//2DSpEl49eoVIiMjGSes2qFDh7Bz507s3btXWFBMSkrCtGnTMGPGDNjZ2TFOKB5pmIeKigoiIyPRtm1b1lG+y5gxYxAbG4tt27ahc+fOEAgEuHnzJpydndGmTRthx1tCCCHkR6NiHCGEyIgbN26gb9++sLa2Rp8+fQAAV65cwZ07d3Dx4kV0796dcULxpKSkYN++fUhJScHWrVuhra2N8+fPQ1dXF61atWIdT6akpqZixIgRuHfvHgQCAcpfUpSvouFDE4cvtxdyHIfMzEzs378fPXr0wOHDhxklqx5lZWXcvXu3wmPg/v37sLa2RmFhIaNk4jMyMkJwcHCFc/yioqIwevRopKWlMUpWPdIwD0tLS+zcuROdOnViHeW7qKqq4sKFC+jWrZvI+PXr12Fra4v8/HxGyWqusLAQxcXFImOS3oCJEEJIRXKsAxBCCPkxunbtisjISOjq6iIwMBCnT5+GsbEx4uPjeVOICw8Ph7m5Of7++28cP34c79+/BwDEx8dj2bJljNPJHmdnZxgYGODly5dQUVHBgwcPcO3aNVhZWSEsLIx1PLFs3rxZ5MvT0xNhYWFwcHCAt7c363hia9GiBV6+fFlh/NWrVzA2NmaQqPoyMzMrFBmAT0XdyuYmqaRhHh4eHnB1dUVYWBhycnKQl5cn8sUX9evXr3Qrqrq6unAFKR8UFBRgzpw50NbWRp06daCpqSnyRQghhH9oZRwhhBDe6Ny5M37++WfMnz8fampqiIuLg6GhIe7cuYPhw4fj+fPnrCPKlAYNGuDq1ato06YN1NXVcfv2bbRo0QJXr16Fq6srYmJiWEeUGWfPnsWiRYuwfPly4WqmW7duYeXKlfDw8BBZGSSpq2iGDBmCjIwM7N27F+3bt4dAIMDdu3cxbdo06OrqIiQkhHVEsUjDPOTkPn1e/+VZcRzHQSAQ8GLVKwB4e3sjKCgIAQEBaNy4MQAgKysLDg4OGDlyJGbMmME4oXhmz56N0NBQrFy5Evb29tixYweeP3+O3bt3w8PDgxdbnwkhhIiiYhwhhBDeqFOnDu7duwcDAwORYlx6ejpatmyJoqIi1hFliqamJqKiomBoaAgjIyP4+PjAxsYGKSkpMDc350VTkMmTJ2Pr1q1QU1MTGc/Pz8fcuXPh6+vLKFn1lBdPgP8roHy5bVjSCynZ2dlwcHDA+fPnhd07S0pKMGDAAPj5+UFbW5txQvFIwzzCw8O/eb1nz54/KMn3sbCwwOPHj/Hhwwfo6ekBADIyMqCoqIjmzZuL3BsdHc0iolj09PQQEBCAXr16oW7duoiOjoaxsTH279+Pw4cP4+zZs6wjEkIIqSbJ7XVPCCGEfEFDQwOZmZkVOhfGxMRAR0eHUSrZ1bp1a8THx8PQ0BAdO3bEn3/+idq1a8Pb2xuGhoas44nF398fHh4eFYpxhYWFCAgI4E0xLjQ0lHWE76alpYWzZ88iOTkZiYmJ4DgOpqamMDExYR2tWqRhHnwptlVl+PDhrCP8K3Jzc4V/9+rWrYvc3FwAQLdu3TBz5kyW0QghhNQQFeMIIYTwxvjx47F48WIEBQVBIBCgrKwMN27cwIIFC2Bvb886nsxZsmSJ8AD01atX46effkL37t1Rv359HD16lHG6b8vLywPHceA4Du/evYOSkpLwWmlpKc6ePcuLFUzlpKV4AgDNmzevsGqJj6RlHnwmLWeJlq8A19fXh5mZGQIDA9GhQwecPn0aGhoarOMRQgipAdqmSgghhDeKi4sxadIkHDlyBBzHoVatWigtLcX48ePh5+cHeXl51hFlXm5uLjQ1NSucNSVp5OTkvplRIBBgxYoV+P33339gqpo7f/486tSpIzwbbseOHdizZw/MzMywY8cOOuSdEB7bvHkz5OXl4eTkhNDQUAwePBilpaUoKSnBpk2b4OzszDoiIYSQaqJiHCGEEN5JTU1FdHQ0ysrKYGFhQatPSLWFh4eD4zj07t0bx44dQ7169YTXateuDX19fTRp0oRhwuoxNzfHH3/8gUGDBuHevXuwsrKCq6srrl69ClNTU+zbt491RELIvyQjIwN3796FkZER2rZtyzoOIYSQGqBiHCGESLGRI0eKfe/x48f/wyT/jdLSUty7dw/6+vq08ofUyJMnT6CnpyfxK/mqUqdOHdy/fx/NmjXD8uXLcf/+fQQHByM6OhqDBg1CVlYW64iEEEIIIeT/ozPjCCFEiqmrq7OO8K+aN28ezM3NMWXKFJSWlqJnz564efMmVFRU8Ndff6FXr16sIxIeiI+PR+vWrSEnJ4e3b9/i3r17X723TZs2PzBZzdWuXVvYvfby5cvCMxTr1auHvLw8ltEIITXg6ekp9r1OTk7/YRJCCCH/BVoZRwghhDeaNm2KkydPwsrKCidPnsSsWbMQFhaGgIAAhIaG4saNG6wjEh6Qk5NDVlYWtLW1hWfHVfZySCAQoLS0lEHC6hs6dCg+fvyIrl27YtWqVUhLS4OOjg4uXryIOXPm4NGjR6wjiuX69evYvXs3UlJSEBwcDB0dHezfvx8GBgbC8/D4oqCgABkZGfj48aPIuKQWeC0sLMReIRodHf0fp/l3ffz4EWlpaTAyMkKtWvxYi/Bl1/Ds7GwUFBQIGza8efMGKioq0NbWRmpqKoOEhBBCvocc6wCEEEJ+nJKSEly+fBm7d+/Gu3fvAAAvXrzA+/fvGScTz+vXr9GoUSMAwNmzZzFmzBiYmJhgypQp31zdRMjn0tLSoKWlJfw+NTUVaWlpFb749AZ3+/btqFWrFoKDg7Fr1y7o6OgAAM6dOwdbW1vG6cRz7NgxDBgwAMrKyoiJicGHDx8AAO/evcPatWsZpxNfdnY2fvrpJ6ipqaFVq1awsLAQ+ZJUw4cPx7BhwzBs2DAMGDAAKSkpUFRURK9evdCrVy8oKSkhJSUFAwYMYB1VbAUFBZgyZQpUVFTQqlUrZGRkAPi0kszDw4Nxum/7/LlozZo1aNeuHRITE5Gbm4vc3FwkJibC0tISq1atYh2VEEJIDdDKOEIIkRFPnjyBra0tMjIy8OHDBzx69AiGhoaYN28eioqK4OXlxTpilfT19bFnzx706dMHBgYG2LlzJ3766Sc8ePAA3bp1wz///MM6oszZv38/vLy8kJaWhsjISOjr62PLli0wMDDAsGHDWMcjPGJhYQEXFxfY29tDTU0NcXFxMDQ0RGxsLGxtbXlz7p2dnR3S09OxZcsW2NjY4MSJE3j58iVWr16NjRs3YvDgwawjVmnq1Klo3LhxhULPsmXL8PTpU/j6+jJKVj3Ozs64ceMGtmzZAltbW8THx8PQ0BAhISFYtmwZYmJiWEcUi5GREYKDgysUc6OiojB69GikpaUxSkYIIaSm+LFOmxBCyHdzdnaGlZUV4uLiUL9+feH4iBEjMHXqVIbJxOfo6IgxY8agcePGEAgE6NevHwDg77//RsuWLRmnkz27du2Cu7s75s2bhzVr1gi3dGpoaGDLli28KMaFhIRUOi4QCKCkpARjY+MK28UkVUpKCvbt24eUlBRs3boV2traOH/+PHR1ddGqVSvW8aqUlJSEHj16VBivW7cu3rx58+MD1dDVq1dx6tQpWFtbQ05ODvr6+ujXrx/q1q2LdevW8aIYFxQUhLt371YYnzBhAqysrHhTjDt58iSOHj2KTp06iWzBNTMzQ0pKCsNk1ZOZmYni4uIK46WlpXj58iWDRIQQQr4XFeMIIURGRERE4MaNG6hdu7bIuL6+Pp4/f84oVfUsX74crVu3xtOnT/Hzzz9DUVERACAvLw83NzfG6WTPtm3bsGfPHgwfPlxky5eVlRUWLFjAMJn4hg8fXumZceVjAoEA3bp1w8mTJyW6Y294eDgGDhyIrl274tq1a1izZg20tbURHx8PHx8fBAcHs45YpcaNG+Px48do1qyZyHhERAQMDQ3ZhKqB/Px8aGtrA/jUQCM7OxsmJiYwNzfnzVlrysrKiIiIQPPmzUXGIyIioKSkxChV9WVnZwv/Lz6Xn5/Pqw7Kffr0wbRp07B37160b98eAoEAd+/exYwZM9C3b1/W8QghhNQAnRlHCCEyoqysrNLD6J89ewY1NTUGiWpm9OjRcHFxQdOmTYVjDg4OvFiFJW3S0tIqPQNLUVER+fn5DBJV36VLl2BtbY1Lly7h7du3ePv2LS5duoQOHTrgr7/+wrVr15CTkyPxxUU3NzesXr0aly5dEim429jYIDIykmEy8c2YMQPOzs74+++/IRAI8OLFCxw8eBALFizArFmzWMcTW4sWLZCUlAQAaNeuHXbv3o3nz5/Dy8sLjRs3ZpxOPPPmzcPMmTMxZ84cHDhwAAcOHMCcOXMwe/ZsuLi4sI4nNmtra5w5c0b4c3kBbs+ePejcuTOrWNXm6+sLHR0ddOjQAUpKSlBUVETHjh3RuHFj+Pj4sI5HCCGkBmhlHCGEyIh+/fphy5Yt8Pb2BvDpTcn79++xbNkyDBo0iHE6wkcGBgaIjY2Fvr6+yPi5c+dgZmbGKFX1ODs7w9vbG126dBGO9enTB0pKSpg+fToePHiALVu2YPLkyQxTVu3evXs4dOhQhXEtLS3k5OQwSFR9ixYtwtu3b2FjY4OioiL06NEDioqKWLBgAebMmcM6ntjmzZuHzMxMAJ/OWBswYAAOHjyI2rVrw8/Pj204Mbm5ucHQ0BBbt24V/l6ZmprCz88PY8aMYZxOfOvWrYOtrS0SEhJQUlKCrVu34sGDB4iMjER4eDjreGLT0tLC2bNn8ejRIzx8+BAcx8HU1BQmJiasoxFCCKkhauBACCEy4sWLF7CxsYG8vDySk5NhZWWF5ORkNGjQANeuXat0Kw8h37Jv3z4sXboUGzduxJQpU+Dj44OUlBSsW7cOPj4++OWXX1hHrJKysjLu3LmD1q1bi4zfu3cPHTp0QGFhIZ48eQJTU1MUFBQwSlm1pk2bIjAwEF26dBFpfnDixAksWLCAV+djFRQUICEhAWVlZTAzM0OdOnVYR/qm4uJiKCgofPV6QUEBHj58CD09PTRo0OAHJiPAp8fyhg0bEBUVhbKyMlhaWmLx4sUwNzdnHY0QQogMo2IcIYTIkMLCQhw5ckTkTYmdnR2UlZVZRyM8tWfPHqxevRpPnz4FAOjo6GD58uWYMmUK42Ti6datG9TU1BAQEAAtLS0An86Zsre3R35+Pq5du4bLly9j1qxZePToEeO0X7do0SJERkYiKCgIJiYmiI6OxsuXL2Fvbw97e3ssW7aMdcQqvX37FqWlpahXr57IeG5uLmrVqoW6desySvZtHh4eMDQ05NWKMSL55s+fj1WrVkFVVRXz58//5r2bNm36QakIIYT8W6gYRwghhJDv9vr1a5SVlfFuhWVSUhKGDRuGtLQ06OrqQiAQICMjA4aGhjh16hRMTExw8uRJvHv3DhMnTmQd96uKi4sxadIkHDlyBBzHoVatWigtLcX48ePh5+cHeXl51hGrNHDgQAwZMqTC+XBeXl4ICQnB2bNnGSX7tkePHmHEiBGYPn06nJ2dpaJwUlpais2bNyMwMBAZGRn4+PGjyPXc3FxGyaqWl5cn9r2SWuAFPp33eOLECWhoaMDGxuar9wkEAly9evUHJiOEEPJvoGIcIYQQXklJScG+ffuQkpKCrVu3QltbG+fPn4euri5atWrFOh7hIY7jcOHCBTx69Agcx6Fly5bo168f5OT41+cqJSUFMTExKCsrg4WFRYVumJKsXr16uHHjBkxNTUXGHz58iK5du0r02Xfv3r3DpEmTcOzYMakonLi7u8PHxwfz58/H0qVL8fvvvyM9PR0nT56Eu7s7nJycWEf8Kjk5ObE7pVbW1IgQQgj5EagYRwghhDfCw8MxcOBAdO3aFdeuXUNiYiIMDQ3x559/4vbt2wgODmYdUepZWFiI/UY3Ojr6P05DpImqqipu3bpV4Syve/fuoWPHjhJ9Zp+0MTIygqenJwYPHgw1NTXExsYKx27dulVpsxBJ8XljhvT0dLi5uWHSpEnC7qmRkZHw9/fHunXr4ODgwComIYQQGUfFOEIIIbzRuXNn/Pzzz5g/f77IIfV37tzB8OHD8fz5c9YRpd6KFSuE3xcVFWHnzp0wMzMTvtG9desWHjx4gFmzZmHdunWsYlbLlStXcOXKFbx69QplZWUi13x9fRmlqlpV2yE/x4etkb169YK5uTm2bdsmMj579mzEx8fj+vXrjJLJHlVVVSQmJkJPTw+NGzfGmTNnYGlpidTUVFhYWODt27esI4qlT58+mDp1KsaNGycyfujQIXh7eyMsLIxNMDGMHDlS7HuPHz/+HyYhhBDyX6jFOgAhhBAirnv37lW6IkNLS0uit7BJk88bAUydOhVOTk5YtWpVhXvKGzpIuhUrVmDlypWwsrJC48aNxV71JwliYmJEfo6KikJpaSlatGgB4NNZZvLy8mjfvj2LeNW2Zs0a9O3bF3FxcejTpw+AT4XSO3fu4OLFi4zTia+oqAjbtm1DaGhopQVePqwYbdq0KTIzM6GnpwdjY2NcvHgRlpaWuHPnDhQVFVnHE1tkZCS8vLwqjFtZWWHq1KkMEolPXV1d+D3HcThx4gTU1dVhZWUF4NPj/c2bN9Uq2hFCCJEcVIwjhBDCGxoaGsjMzISBgYHIeExMDHR0dBilkl1BQUG4e/duhfEJEybAyspKoleVlfPy8oKfn59EN2f4mtDQUOH3mzZtgpqaGvz9/aGpqQkA+Oeff+Do6Iju3buzilgtXbt2RWRkJNavX4/AwEAoKyujTZs22Lt3L6/Ovps8eTIuXbqE0aNHo0OHDrwq8JYbMWIErly5go4dO8LZ2Rnjxo3D3r17kZGRARcXF9bxxKarqwsvLy9s3LhRZHz37t3Q1dVllEo8+/btE36/ePFijBkzBl5eXsJmLKWlpZg1a5ZEN6EghBDydbRNlRBCZASfu+OVW7RoESIjIxEUFAQTExNER0fj5cuXsLe3h729vciqLfLfa9SoEdatWwdHR0eR8X379sHNzQ0vX75klEx89evXx+3bt2FkZMQ6ynfR0dHBxYsXKzQxuX//Pvr3748XL14wSiZ71NXVcfbsWXTt2pV1lH/NrVu3cPPmTRgbG2Po0KGs44jt7NmzGDVqFIyMjNCpUycAn+aSkpKCY8eOYdCgQYwTikdLSwsRERHCVa/lkpKS0KVLF1oZTgghPEQr4wghREasWLHim93x+GDNmjWYNGkSdHR0wHEczMzMUFpaivHjx2PJkiWs48mcefPmYebMmYiKihJ5o+vr68ub36mpU6fi0KFDWLp0Keso3yUvLw8vX76sUIx79eoV3r17xyhV9ZWVleHx48eVbu/s0aMHo1TVo6OjAzU1NdYx/lWdOnUSPsb5ZNCgQUhOTsauXbuQmJgIjuMwbNgw/PrrrxK/Mu5zJSUlSExMrFCMS0xMrPA4IYQQwg+0Mo4QQmQEn7vjfSklJQUxMTEoKyuDhYUFr7awSZvAwEBs3boViYmJAABTU1M4OztjzJgxjJOJx9nZGQEBAWjTpg3atGkDBQUFket8aHwAAPb29ggPD8fGjRtFCqMLFy5Ejx494O/vzzhh1W7duoXx48fjyZMn+PLlqUAgQGlpKaNk1XPu3Dl4enrCy8sL+vr6rOOILSQkROx7+bQ6ThrMnz8ffn5++N///ify+Pbw8IC9vT1vnqcIIYT8HyrGEUKIjJCW7niE/JtsbGy+ek0gEODq1as/ME3NFRQUYMGCBfD19UVxcTEAoFatWpgyZQrWr18PVVVVxgmr1q5dO5iYmGDFihWVNtP4/EB7SZadnY0xY8bg2rVrUFFRqVDgldQjAeTk5ER+FggElRZFAfCmMCotysrKsGHDBmzduhWZmZkAgMaNG8PZ2Rmurq7Cc+QIIYTwB21TJYQQGcHX7njz588X+15aHUCq6/MmCHymoqKCnTt3Yv369UhJSQHHcTA2NuZFEa5ccnIygoODYWxszDrKdxk3bhyeP3+OtWvXomHDhrxp4PD5dsfLly9j8eLFWLt2LTp37gyBQICbN29iyZIlWLt2LcOUsqekpAQHDx6Evb09Fi1ahLy8PACgxg2EEMJzVIwjhBAZwdfueDExMSI/R0VFobS0VHh2zqNHjyAvL4/27duziEekyLNnzyAQCHjdmVdVVRVt2rRhHaNGOnbsiMePH/O+GHfz5k1ERkaibdu2rKPU2Lx58+Dl5YVu3boJxwYMGAAVFRVMnz5duC2d/Pdq1aqFmTNnCv/NqQhHCCHSgYpxhBAiIzw8PITfjx49Grq6urhx44bEd8f7fOXSpk2boKamBn9/f2hqagIA/vnnHzg6OqJ79+6sIhIeKysrw+rVq7Fx40a8f/8eAKCmpgZXV1f8/vvvFbbukf/O3Llz4erqiqysLJibm1fY3smXImPLli1RWFjIOsZ3SUlJqXRbsLq6OtLT0398IBnXsWNHxMTE8OoMQkIIId9GZ8YRQgjhDR0dHVy8eLFCx8j79++jf//+ePHiBaNkhK9+++037N27FytWrEDXrl3BcRxu3LiB5cuXY9q0aVizZg3riDKjssJn+bllfGrgcPHiRaxYsQJr1qyptKjIh5VNPXr0gIKCAg4cOIDGjRsDALKysjBx4kR8/PgR4eHhjBPKlqCgILi5ucHFxQXt27evsP2cL4VqQggh/4eKcYQQIiPk5eXRo0cPHDt2DPXq1ROOv3z5Ek2aNOHFG101NTWcOnUKvXv3Fhm/evUqhg0bhnfv3jFKRviqSZMm8PLyqrA69NSpU5g1axaeP3/OKJnsefLkyTev82VVUHlR8cuz4vhUVHz8+DFGjBiBpKQk6OnpAQAyMjJgYmKCkydPSvRWYgsLC7HP6YuOjv6P0/w7pKVQTQgh5P/QNlVCCJERHMfhw4cPsLKyQkhICFq3bi1yjQ9GjBgBR0dHbNy4EZ06dQIA3Lp1CwsXLsTIkSMZp5M9paWl8PPzw5UrV/Dq1SuRA+AB8KITaW5uLlq2bFlhvGXLlhLb9VJa8aXYVhVpaApibGyM+Ph4XLp0CQ8fPgTHcTAzM0Pfvn0lviHF8OHDhd8XFRVh586dMDMzQ+fOnQF8+pvx4MEDzJo1i1HC6ktLS2MdgRBCyL+MVsYRQoiMkJeXx7Nnz+Dh4YF9+/Zh//79GDZsGK9WxhUUFGDBggXw9fVFcXExgE+HW0+ZMgXr16/nVedIaTBnzhz4+flh8ODBaNy4cYU36Zs3b2aUTHwdO3ZEx44d4enpKTI+d+5c3LlzB7du3WKUrGohISFi3yvJ50J+KSEhARkZGfj48aPIOJ/mQCTD1KlT0bhxY6xatUpkfNmyZXj69Cl8fX0ZJSOEECLrqBhHCCEyQk5ODllZWdDW1oa3tzecnJywZMkSTJ06FTo6OrwoxpXLz89HSkoKOI6DsbExFeEYadCgAQICAjBo0CDWUWosPDwcgwcPhp6eHjp37gyBQICbN2/i6dOnOHv2rEQ3BhG3uQRftrGlpqZixIgRuHfvnnALHvB/2z35MIdyb968wd69e5GYmAiBQAAzMzNMnjy50qYIksLT0xPTp0+HkpJSheL0l5ycnH5Qqu+jrq6Ou3fvonnz5iLjycnJsLKywtu3bxklq779+/fDy8sLaWlpiIyMhL6+PrZs2QIDAwMMGzaMdTxCCCHVRMU4QgiREZ8X4wAgLCwMo0ePhoWFBa5evcqrN7pEMjRp0gRhYWEwMTFhHeW7vHjxAjt27BDZjjdr1iw0adKEdTSZMmTIEMjLy2PPnj0wNDTE7du3kZOTA1dXV2zYsEGiC6Ofu3v3LgYMGABlZWV06NABHMfh7t27KCwsxMWLF2Fpack6YqUMDAxw9+5d1K9fHwYGBl+9TyAQIDU19Qcmq7lGjRph3bp1cHR0FBnft28f3Nzc8PLlS0bJvu3ChQvo1KmTsHi7a9cuuLu7Y968eVizZg3u378PQ0ND+Pn5wd/fXyq2RhNCiKyhYhwhhMiIz99olXv8+DGGDBmCR48eUTGOVNvGjRuRmpqK7du3S/w5UtX19OlTLFu2jLax/UANGjTA1atX0aZNG6irq+P27dto0aIFrl69CldXV8TExLCOKJbu3bvD2NgYe/bsQa1an45nLikpwdSpU5Gamopr164xTig7PDw8sHz5ckydOlXknFFfX1+4u7vDzc2NccLK+fv7Y/369Th//jyaNm0KMzMzrF27FsOHD4eamhri4uJgaGiI+/fvo1evXnj9+jXryIQQQqqJinGEECLjioqK8PLlS6k5PJ38OCNGjEBoaCjq1auHVq1aQUFBQeT68ePHGSX7fnFxcbC0tORVkTo/Px/h4eGVnrfGh22FmpqaiIqKgqGhIYyMjODj4wMbGxukpKTA3NwcBQUFrCOKRVlZGTExMRUagyQkJMDKyoo385AWgYGB2Lp1KxITEwEApqamcHZ2xpgxYxgn+7bjx4/D3d0d9+/fh7KyMh4+fAh9fX2RYlxycjLatGmDwsJC1nEJIYRUE3VTJYQQGaekpESFOFIjGhoaGDFiBOsYBEBMTAwGDRqEgoIC5Ofno169enj9+jVUVFSgra3Ni2Jc69atER8fD0NDQ3Ts2BF//vknateuDW9vbxgaGrKOJ7a6desiIyOjQjHu6dOnUFNTY5SqekaPHg0rK6sKK8fWr1+P27dvIygoiFGy6hszZozEF94qM3LkSFhYWAD4tLI9Nja2wt/qc+fOwczMjEU8Qggh34mKcYQQIsXq1auHR48eoUGDBtDU1PzmVsLc3NwfmIxIg3379rGOQP4/FxcXDBkyBLt27YKGhgZu3boFBQUFTJgwAc7OzqzjiWXJkiXIz88HAKxevRo//fQTunfvjvr16+Po0aOM04lv7NixmDJlCjZs2IAuXbpAIBAgIiICCxcuxLhx41jHE0t4eDiWLVtWYdzW1hYbNmxgkEg2lZ/dt3DhQsyePRtFRUXgOA63b9/G4cOHsW7dOvj4+DBOSQghpCaoGEcIIVJs8+bNwpUYW7ZsYRvmX5KSkoItW7YIuxSWbzkyMjJiHU1mZWdnIykpCQKBACYmJtDS0mIdSebExsZi9+7dkJeXh7y8PD58+ABDQ0P8+eefcHBwwMiRI1lHrNKAAQOE3xsaGiIhIQG5ublVfpAgaTZs2ACBQAB7e3uUlJQAABQUFDBz5kx4eHgwTiee9+/fo3bt2hXGFRQUkJeXxyBRzZSWlmLz5s0IDAysdPs2Xz6EcnR0RElJCRYtWoSCggKMHz8eOjo62Lp1K3755RfW8QghhNQAnRlHCCGENy5cuIChQ4eiXbt26Nq1KziOw82bNxEXF4fTp0+jX79+rCPKlPz8fMydOxcBAQEoKysDAMjLy8Pe3h7btm2DiooK44RfV1Vx6s2bNwgPD+fNmXFaWlq4ceMGTExM0KJFC3h6emLAgAF4+PAhLC0teXFO2du3b1FaWop69eqJjOfm5qJWrVqoW7cuo2Q1U1BQgJSUFHAcB2NjY4l+PHzJ2toaQ4YMgbu7u8j48uXLcfr0aURFRTFKVj3u7u7w8fHB/PnzsXTpUvz+++9IT0/HyZMn4e7uzovt2196/fo1ysrKhJ3RCSGE8BMV4wghRIpVZwUDH97oWlhYYMCAARVWl7i5ueHixYuIjo5mlEw2bNmyBebm5ujTpw8AYMaMGbh8+TK2b9+Orl27AgAiIiLg5OSEfv36YdeuXSzjfpOjo6NY9/FlK27//v0xadIkjB8/Hr/++itiYmLg5OSE/fv3459//sHff//NOmKVBg4ciCFDhmDWrFki415eXggJCcHZs2cZJZM9ISEhGDVqFMaPH4/evXsDAK5cuYLDhw8jKCgIw4cPZxtQTEZGRvD09MTgwYOhpqaG2NhY4ditW7dw6NAh1hGr5dWrV8JVyC1atKBVyIQQwmNUjCOEECkmJydX5fYujuMgEAh4sQJISUkJ9+7dQ/PmzUXGHz16hDZt2qCoqIhRMtkQFRWFMWPGYPny5Zg4cSIaNGiA4OBg9OrVS+S+0NBQjBkzBtnZ2WyCyqC7d+/i3bt3sLGxQXZ2NhwcHBAREQFjY2Ps27cPbdu2ZR2xSvXq1cONGzdgamoqMv7w4UN07doVOTk5jJJVT35+Pjw8PHDlyhW8evVKuGq0XGpqKqNk1XPmzBmsXbsWsbGxUFZWRps2bbBs2TL07NmTdTSxqaqqIjExEXp6emjcuDHOnDkDS0tLpKamwsLCAm/fvmUdUSx5eXmYPXs2Dh8+LLIKeezYsdixYwfU1dUZJySEEFJddGYcIYRIsdDQUNYR/lVaWlqIjY2tUIyLjY2lLTs/QPv27fH333/DwcEBEydOREFBARo2bFjhPm1tbV5si5QmVlZWwu+1tLR4uYrsw4cPwjPWPldcXIzCwkIGiWpm6tSpCA8Px8SJE9G4cWNenXf3ucGDB2Pw4MGsY3yXpk2bIjMzE3p6ejA2NsbFixdhaWmJO3fuQFFRkXU8sU2dOhWxsbE4c+YMOnfuDIFAgJs3b8LZ2RnTpk1DYGAg64iEEEKqiVbGEUII4Y2VK1di8+bNcHNzE+lS+Mcff8DV1RVLlixhHVGm9OnTB/Xr10dAQACUlJQAAIWFhXBwcEBubi4uX77MOCHhk169esHc3Bzbtm0TGZ89ezbi4+Nx/fp1RsmqR0NDA2fOnBFu3eazqKgoYbMcMzMzWFhYsI5ULW5ubqhbty7+97//ITg4GOPGjUOzZs2QkZEBFxcX3jTUUFVVxYULF9CtWzeR8evXr8PW1lbYhZgQQgh/UDGOEEJkTEFBQaVd5dq0acMokfg4jsOWLVuwceNGvHjxAgDQpEkTLFy4EE5OTrxdgcJX9+/fh62tLYqKitC2bVsIBALExsZCSUkJFy5cQKtWrVhHJDxy48YN9O3bF9bW1sJzCa9cuYI7d+7g4sWL6N69O+OE4jEwMMDZs2crbLflk1evXuGXX35BWFgYNDQ0wHEc3r59CxsbGxw5coS3Z5XdunULN2/ehLGxMYYOHco6jtj09PRw5swZmJubi4zHx8dj0KBBePbsGaNkhBBCaoqKcYQQIiOys7Ph6OiIc+fOVXqdD2fGfe7du3cAADU1NcZJZFthYSEOHDiAhw8fguM4mJmZwc7ODsrKyqyjER6KjY3F+vXrRc4p++233ypsTZdkBw4cwKlTp+Dv78+rDqqfGzt2LFJSUrB//35hUTEhIQEODg4wNjbG4cOHGSeULd7e3ggKCkJAQAAaN24MAMjKyoKDgwNGjhyJGTNmME5ICCGkuqgYRwghMsLOzg7p6enYsmULbGxscOLECbx8+RKrV6/Gxo0beX82ECGESAILCwukpKSA4zg0a9YMCgoKItf50PVZXV0dly9fhrW1tcj47du30b9/f7x584ZNMDGEhISIfS9fVsdZWFjg8ePH+PDhA/T09AAAGRkZUFRUrFCo5sPvFyGEEGrgQAghMuPq1as4deoUrK2tIScnB319ffTr1w9169bFunXreFGMe/nyJRYsWCDsUvjl50l8W93HRyEhIRg4cCAUFBSqfNPLlze6hJ28vDyx761bt+5/mOTfM3z4cNYRvltZWVmFIiIAKCgoVOgOK2m+/PcXCAQV/laUH2nAl78Z0vA7RQghRBStjCOEEBlRt25dxMfHo1mzZmjWrBkOHjyIrl27Ii0tDa1ateJF98uBAwciIyMDc+bMqbRL4bBhwxglkx1ycnLIysqCtrY25OTkvnqfQCDgzRtdaREeHo4NGzYID9w3NTXFwoULJfqsNTk5uSrPeuQ4jn6ffrBhw4bhzZs3OHz4MJo0aQIAeP78Oezs7KCpqYkTJ04wTiiey5cvY/HixVi7dq1IF9IlS5Zg7dq16NevH+uIhBBCZBStjCOEEBnRokULJCUloVmzZmjXrh12796NZs2awcvLS3gGjaSLiIjA9evX0a5dO9ZRZNbnq2IkfYWMLDlw4AAcHR0xcuRIODk5geM43Lx5E3369IGfnx/Gjx/POmKlQkNDWUf4z/C5E+n27dsxbNgwNGvWDLq6uhAIBMjIyIC5uTkOHDjAOp7Y5s2bBy8vL5EupAMGDICKigqmT5+OxMREhukIIYTIMloZRwghMuLgwYMoLi7GpEmTEBMTgwEDBiAnJwe1a9eGn58fxo4dyzpilczMzHDw4EFevakl5EcwNTXF9OnT4eLiIjK+adMm7Nmzh/dFh9jYWN4U4aWpE+mlS5dEmrP07duXdaRqUVZWxu3btyvtQtqxY0cUFhYySkYIIUTWUTGOEEJkVEFBAR4+fAg9PT00aNCAdRyxXLx4ERs3bhSu6iNsOTk5wdjYGE5OTiLj27dvx+PHj7FlyxY2wWSQoqIiHjx4AGNjY5Hxx48fo3Xr1igqKmKUrObevn2LgwcPwsfHB3FxcbzZpkqdSCVHjx49oKCggAMHDoh0IZ04cSI+fvyI8PBwxgkJIYTIKirGEUKIjPn48SPS0tJgZGSEWrUk/7QCTU1NkTOl8vPzUVJSAhUVlQoHjOfm5v7oeDJNR0cHISEhaN++vch4dHQ0hg4dimfPnjFKJnuMjY2xcOFCzJgxQ2R89+7d2LBhA5KTkxklq76rV6/C19cXx48fh76+PkaNGoVRo0bxZkUsXzuRenp6in3vlwV4SfX48WOMGDECSUlJIl1ITUxMcPLkyQrFa0IIIeRHkfx3YYQQQv4VBQUFmDt3Lvz9/QEAjx49gqGhIZycnNCkSRO4ubkxTlg5Wl0luXJycqCurl5hvG7dunj9+jWDRLLL1dUVTk5OiI2NRZcuXSAQCBAREQE/Pz9s3bqVdbwqPXv2DH5+fvD19UV+fj7GjBmD4uJiHDt2DGZmZqzjVQtfO5Fu3rxZrPsEAgFvinHGxsaIj4+vdLttVY1DJBHfPkwjhBDydbQyjhBCZISzszNu3LiBLVu2wNbWFvHx8TA0NERISAiWLVuGmJgY1hEJz7Ru3Rq//vor5syZIzK+bds27Nq1CwkJCYySyaYTJ05g48aNwvPhyrupSnqX4UGDBiEiIgI//fQT7OzsYGtrC3l5eSgoKCAuLo53xThp6URKJAdfP0wjhBDydfSRCiGEyIiTJ0/i6NGj6NSpk8iKADMzM6SkpDBMJr6zZ89CXl4eAwYMEBm/ePEiSktLMXDgQEbJZNP8+fMxZ84cZGdno3fv3gCAK1euYOPGjbSikYERI0ZgxIgRrGNU28WLF+Hk5ISZM2eiefPmrON8N2npRArwcyWWp6cnpk+fDiUlpSq33vJlhd9vv/2GuLg4hIWFwdbWVjjet29fLFu2jIpxhBDCQ/z4q0oIIeS7ZWdnQ1tbu8J4fn4+b7bruLm5wcPDo8J4WVkZ3NzcqBj3g02ePBkfPnzAmjVrsGrVKgBAs2bNsGvXLtjb2zNOJ7vev39fYTtk3bp1GaWp2vXr1+Hr6wsrKyu0bNkSEydO5EV356/R1dVFdHQ0rzuR8nkl1ubNm2FnZwclJaVvbr3l03ZbafgwjRBCiCg51gEIIYT8GNbW1jhz5ozw5/IX9Hv27EHnzp1ZxaqW5OTkSrestWzZEo8fP2aQiMycORPPnj3Dy5cvkZeXh9TUVCrEMZCWlobBgwdDVVUV6urq0NTUhKamJjQ0NKCpqck63jd17twZe/bsQWZmJmbMmIEjR45AR0cHZWVluHTpEt69e8c6YrUEBATgw4cP6NevH+bOnQsnJyf07dsXHz9+REBAAOt4Yvl8JZaSkpJwvG/fvjh69CjDZFVLS0tD/fr1hd9/7Ss1NZVxUvFJw4dphBBCRNGZcYQQIiNu3rwJW1tb2NnZwc/PDzNmzMCDBw8QGRmJ8PDwCh0xJVGjRo1w6NAh4ZbIcpcvX8b48ePx6tUrRskIYatLly4APp0N2bBhwwpv0Hv27MkiVo0lJSVh79692L9/P968eYN+/fohJCSEdSyxyMvLIzMzs0LxJCcnB9ra2igtLWWUTHz6+vrClVhqamqIi4uDoaEhHj9+DEtLS+Tl5bGOKFN69uyJ0aNHY+7cuVBTU0N8fDwMDAwwZ84cPH78GOfPn2cdkRBCSDXRNlVCCJERXbp0wc2bN7F+/XoYGRnh4sWLsLS0RGRkJMzNzVnHE8vQoUMxb948nDhxAkZGRgCAx48fw9XVFUOHDmWcTjYFBwcjMDAQGRkZ+Pjxo8i16OhoRqlkT3x8PKKiotCiRQvWUf4VLVq0wJ9//ol169bh9OnT8PX1ZR1JbBzHVbpa6dmzZ5V2H5ZE0rISa/To0bCysqqwrXb9+vW4ffs2goKCGCWrnnXr1sHW1hYJCQkoKSnB1q1bRT5MI4QQwj+0TZUQQmRAcXExHB0doaKiAn9/f9y/fx8JCQk4cOAAbwpxwKc3UKqqqmjZsiUMDAxgYGAAU1NT1K9fHxs2bGAdT+Z4enrC0dER2traiImJQYcOHVC/fn2kpqbS+X0/mLW1NZ4+fco6xr9OXl4ew4cP58WqOAsLC1haWkIgEKBPnz6wtLQUfrVt2xbdu3fnzblx0nCsAQCEh4dj8ODBFcZtbW1x7do1BolqpkuXLrhx4wYKCgqEH6Y1bNgQkZGRvFjVTgghpCJaGUcIITJAQUEBJ06cwNKlS1lH+S7q6uq4efMmLl26hLi4OCgrK6NNmzbo0aMH62gyaefOnfD29sa4cePg7++PRYsWwdDQEO7u7sjNzWUdT6b4+Pjg119/xfPnz9G6dWsoKCiIXG/Tpg2jZLJj+PDhAIDY2FgMGDAAderUEV6rXbs2mjVrhlGjRjFKVz3SshLr/fv3qF27doVxBQUF3m21NTc3FzbUIIQQwn90ZhwhhMgIR0dHmJubY/78+ayj/CuKioqgqKjIqy1T0kZFRQWJiYnQ19eHtrY2Ll26hLZt2yI5ORmdOnVCTk4O64gy49atWxg/fjzS09OFYwKBQLhlkg/nlEkLf39/jB07VqTxAV/ExsaiXbt2AIB79+5hw4YNiIqKQllZGSwtLbF48WJeraa2trbGkCFD4O7uLjK+fPlynD59GlFRUYySVa06xUJJ7pZMCCGkcrQyjhBCZISxsTFWrVqFmzdvon379lBVVRW57uTkxCiZ+MrKyrBmzRp4eXnh5cuXePToEQwNDbF06VI0a9YMU6ZMYR1RpjRq1Ag5OTnQ19eHvr4+bt26hbZt2yItLQ30Wd+PNXnyZFhYWODw4cOVNnAgP46DgwPrCDVmaWkJCwsLTJ06FePHj+f9SqylS5di1KhRSElJETb+uXLlCg4fPizx58VpaGiI/TimYjshhPAPrYwjhBAZYWBg8NVrAoEAqampPzBNzaxcuRL+/v5YuXIlpk2bhvv378PQ0BCBgYHYvHkzIiMjWUeUKVOnToWuri6WLVsGLy8vzJ8/H127dsXdu3cxcuRI7N27l3VEmaGqqoq4uDgYGxuzjiLz5OTkvllEkeTCSWRkJHx9fREYGIji4mKMGjUKkydPho2NDetoNXbmzBmsXbsWsbGxwqMNli1bJvEdhj/fDpyeng43NzdMmjRJeGZfZGQk/P39sW7dOl4XgAkhRFZRMY4QQghvGBsbY/fu3ejTpw/U1NQQFxcHQ0NDPHz4EJ07d8Y///zDOqJMKSsrQ1lZGWrV+rTQPjAwEBERETA2Nsavv/5a6VlN5L8xZMgQTJo0iTdnkkmzkydPihTjiouLERMTA39/f6xYsYIXK3gLCwsRGBiIffv24fr162jWrBkmT54MBwcHNG3alHU8mdOnTx9MnToV48aNExk/dOgQvL29ERYWxiYYIYSQGqNiHCGEEN5QVlbGw4cPoa+vL1KMS0hIQIcOHfD+/XvWEQlhwtvbG6tXr8bkyZNhbm5eoYHD0KFDGSUj5Q4dOoSjR4/i1KlTrKNUS0pKCvbt24eAgABkZmaiX79+OHv2LOtY1RIVFYXExEQIBAKYmZnBwsKCdaRqUVFRQVxcHJo3by4y/ujRI7Rr1w4FBQWMkhFCCKkpKsYRQgjhDSsrK8ybNw8TJkwQKcatWLECly9fxvXr11lHlHrx8fFi30sdPH8cOTm5r16jBg6SISUlBW3atEF+fj7rKNX2/v17HDx4EP/73//w5s0b3vw+vXr1Cr/88gvCwsKgoaEBjuPw9u1b2NjY4MiRI9DS0mIdUSwtWrTATz/9hI0bN4qMu7q64q+//kJSUhKjZIQQQmqKGjgQQgiReJMnT8bWrVuxbNkyTJw4Ec+fP0dZWRmOHz+OpKQkBAQE4K+//mIdUya0a9dO2KXzW6gA9GOVlZWxjkC+obCwENu2bePdFs/w8HD4+vri2LFjkJeXx5gxY3ixzbbc3LlzkZeXhwcPHsDU1BQAkJCQAAcHBzg5OeHw4cOME4pn8+bNGDVqFC5cuIBOnToB+NRBOSUlBceOHWOcjhBCSE3QyjhCCCEST15eHpmZmdDW1saFCxewdu1aREVFoaysDJaWlnB3d0f//v1Zx5QJT548EftefX39/zAJIZJJU1NT5Mw4juPw7t07qKio4MCBAxK/Zfjp06fw8/ODn58f0tLS0KVLF0yZMgVjxoyp0IVb0qmrq+Py5cuwtrYWGb99+zb69++PN2/esAlWA8+ePcOuXbuQmJgIjuNgZvb/2rvz6J7vfI/jr18iJIjYZyJCEinjN7UkltoaSxMUt9aJrRiJoVWiXFt7L+rMVJ1pbxFqKRNUbSHGcOy15ErFWKNFbBFNxlI6JrEkaZDf/aPT3MlN26sJv4/k+3yck3Py+/y+4skpp975fD9fu1577TX5+vqaTgMAFAHDOADAM8/FxUU3btxQzZo1TacAz4zo6GiNHDlS7u7uio6O/slro6KinFSFlStXFnjt4uKiGjVq6IUXXlCVKlUMVT2esLAw7d+/XzVq1NDQoUMVERGhBg0amM4qMk9PTx08eFBNmzYtsH7y5Em1b99ed+7cMRMGALA8hnEAYCEHDx7UkiVLlJKSoo0bN8rHx0erVq2Sv7+/2rVrZzrvR7m4uOjrr78uMef7WMmqVau0ePFipaamKjExUXXr1tXcuXPl7++vnj17ms4r1fz9/XXs2DFVq1ZN/v7+P3qdzWbT5cuXnViGH5OUlFRoMPQseeWVVxQZGakePXrI1dXVdE6x9ezZUxkZGVq7dq1q1aolSbp69aoGDx6sKlWq6M9//rPhQgCAVf34ab8AgFIlLi5OXbp0kYeHh06ePKlvv/1WknT37l3NmjXLcN3/r379+qpatepPfsC5Fi1apAkTJqhbt24FDnWvXLmy5s6dazbOAlJTU1WtWrX8z3/sg0GcWZmZmVq4cKGCg4PVrFkz0zk/acuWLerZs2epGMRJ0oIFC3T37l35+fmpXr16CgwMlL+/v+7evav58+ebzgMAWBg74wDAIoKCgjR+/HgNHTq0wJNIk5KS1LVrV924ccN04o9ycXHR3Llz5eXl9ZPXDRs2zElFkCS73a5Zs2apV69eBf6bOn36tDp06KBvvvnGdKJlZGdny8PD4wffu379ury9vZ1chH379ikmJkabNm1S3bp11bdvX/Xt21dBQUGm0yxnz549OnfuXP5Za6GhoaaTAAAWx9NUAcAizp8/r5CQkELrlSpVKhGHWA8YMIAz454xqampPzhYKFeunO7fv2+gyLqCgoK0Zs0aBQcHF1jfuHGjXn/9dd26dctQmbX87W9/04oVKxQTE6P79+8rPDxcDx48UFxcnOx2u+k8ywoLC1NYWJjpDAAA8jGMAwCL8Pb21qVLl+Tn51dgPSEhQQEBAWaiHtO/PpkQzw5/f38lJSUVemrqjh07GDw4WVhYmNq0aaN33nlHU6ZM0f379zVmzBht2LBBs2fPNp1nCd26dVNCQoJ69Oih+fPnq2vXrnJ1ddXixYtNp1nK//cwk3/Fg00AAKYwjAMAixg1apTGjRunmJgY2Ww2Xbt2TYmJiZo4caKmT59uOu8ncaLCs2nSpEl64403lJOTI4fDoSNHjmjt2rV67733tGzZMtN5ljJ//nx1795dw4cP17Zt23Tt2jVVqlRJR48eZTDqJLt371ZUVJRef/11Pffcc6ZzLGvOnDmPdZ3NZnumh3FBQUGP/Y2oEydOPOUaAMCTxjAOACxi8uTJyszMVMeOHZWTk6OQkBCVK1dOEydO1JgxY0zn/aS8vDzTCfgBw4cP18OHDzV58mRlZWVp0KBB8vHx0bx58zRgwADTeZbTuXNn9enTR4sWLVKZMmW0detWBnFOdPDgQcXExKh58+b61a9+pSFDhqh///6msywnNTXVdMIT0atXr/zPc3JytHDhQtntdrVu3VqSdPjwYZ05c0ajR482VAgAKA4e4AAAFpOVlaWzZ88qLy9PdrtdFStWNJ2EUuCbb75RXl5e/rl+V69elY+Pj+Eq60hJSdGgQYN048YNLVu2TPHx8frggw8UFRWld999V25ubqYTLSMrK0vr1q1TTEyMjhw5okePHunDDz9URESEPD09TedZUm5urlJTU1WvXj2VKVPy9iKMGDFC3t7e+v3vf19gfcaMGUpPT1dMTIyhMgBAUTGMAwCLunPnjvbt26cGDRqoYcOGpnNQSty4cUPvvvuuli1bpuzsbNM5luHp6anu3btr8eLFqly5siTp0KFD+U9PPnnypNlAizp//rz+9Kc/adWqVcrIyFBYWJi2bNliOssysrKyNHbsWK1cuVKSdOHCBQUEBCgqKkq1atXS1KlTDRc+Hi8vLx07dqzQ7c8XL15U8+bNlZmZaagMAFBULqYDAADOER4ergULFkiSsrOz1aJFC4WHh6tx48aKi4szXIeSJCMjQ4MHD1aNGjVUq1YtRUdHKy8vT9OnT1dAQIAOHz7MTg0nW7hwodatW5c/iJOkNm3a6OTJk4WesArnadCggf74xz/qb3/7m9auXWs6x3LeeustnTp1SgcOHJC7u3v+emhoqNavX2+w7Ofx8PBQQkJCofWEhIQCvy4AQMnBzjgAsIhf/vKX2rVrl5o0aaI1a9ZoxowZOnXqlFauXKmPP/6YnTN4bKNHj9bWrVvVv39/7dy5U8nJyerSpYtycnI0Y8YMtW/f3nQiAKhu3bpav369WrVqJU9PT506dUoBAQG6dOmSgoODdefOHdOJj2X27Nl65513NGLECLVq1UqS8r/pMX369BKzww8A8L9K3qEJAIAiyczMVNWqVSVJO3fuVN++fVW+fHl1795dkyZNMlyHkmTbtm1avny5QkNDNXr0aAUGBqp+/fqaO3eu6TTLO3v2rNLS0pSbm5u/ZrPZ9G//9m8GqwAzbt26lX+O5b+6f//+Yz+p9FkwdepUBQQEaN68eVqzZo0kqWHDhlqxYoXCw8MN1wEAioJhHABYhK+vrxITE1W1alXt3LlT69atkyT94x//4DYX/CzXrl3Lf0pnQECA3N3dNWLECMNV1pKZmSkvL6/815cvX1afPn30xRdfyGaz6fsbH74fODx69MhIJ2BSixYttG3bNo0dO1bS//55WLp0af5TSUuK8PBwBm8AUIowjAMAi3jzzTc1ePBgVaxYUXXr1lWHDh0kSf/93/+tRo0amY1DiZKXl1fg6Zyurq6qUKGCwSLriY6Olru7e/6u1nHjxsnX11e7du1S06ZN9de//lWpqamaOHGiPvzwQ8O1gBnvvfeeunbtqrNnz+rhw4eaN2+ezpw5o8TERMXHx5vOAwBYGGfGAYCFHD9+XGlpaQoLC1PFihUlfXfLYeXKldW2bVvDdSgpXFxc9PLLL6tcuXKSpK1bt6pTp06FBnKbNm0ykWcJN2/e1JAhQxQYGKiPPvpI1atX1969e9WkSRP5+PjoyJEj8vHx0d69ezVx4kTOhISlJCUlqWnTppKkL7/8Uh988IGOHz+uvLw8BQcHa8qUKSXqm1CPHj3SnDlzFBsbW+g2dEm6ffu2oTIAQFGxMw4ALKRZs2Zq1qxZgbXu3bsbqkFJNWzYsAKvX331VUMl1lWzZk3t2rVL7733nqTv/rHu6ekpSapevbquXbsmHx8f+fn56fz58yZTAacLDg5WUFCQRowYoUGDBmnlypWmk4pl5syZWrZsmSZMmKBp06bpP/7jP3TlyhVt3rxZ06dPN50HACgCdsYBAACUcC+++KImTJig3r17a+TIkbp165YmTZqkxYsX68SJEzp9+rTpRMBpEhMTFRMTo9jYWD148EB9+/ZVRESEOnbsaDqtSOrVq6fo6Gh1795dnp6eSkpKyl87fPhw/kMdAAAlB8M4AACAEm7Xrl26e/eu+vXrp/T0dHXv3l2nT59W1apVFRsbq06dOplOBJwuOztbsbGxWr58uQ4ePCg/Pz9FRERo2LBhql27tum8x1ahQgUlJyerTp068vb21rZt2xQcHKzLly8rKChImZmZphMBAD+Ti+kAAAAAFE+XLl3Ur18/Sd89OfmLL77QN998o5s3bzKIg2V5eHho2LBhOnDggC5cuKCBAwdqyZIl8vf3V7du3UznPbbatWvr+vXrkqTAwEDt3r1bknT06NH8szsBACULO+MAAAAAlHr37t3T6tWr9fbbbysjI0OPHj0ynfRYpk6dqkqVKuntt9/Wxo0bNXDgQPn5+SktLU3jx4/X7NmzTScCAH4mhnEAYCEHDx7UkiVLlJKSoo0bN8rHx0erVq2Sv7+/2rVrZzoPQBHl5ORo/vz52r9/v27evKm8vLwC7584ccJQGWBefHy8YmJiFBcXJ1dXV4WHhysyMlKtWrUynVYkhw8f1qFDhxQYGKhXXnnFdA4AoAh4mioAWERcXJyGDBmiwYMH6+TJk/r2228lSXfv3tWsWbO0fft2w4UAiioiIkJ79uxRv3791LJlS9lsNtNJgFHp6elasWKFVqxYodTUVLVp00bz589XeHi4KlSoYDqvWFq1alViB4kAgO+wMw4ALCIoKEjjx4/X0KFD5enpqVOnTikgIEBJSUnq2rWrbty4YToRQBF5eXlp+/btatu2rekUwLiwsDDt379fNWrU0NChQxUREaEGDRqYzvpZtmzZ8tjXsjsOAEoedsYBgEWcP39eISEhhdYrVaqkjIwM5wcBeGJ8fHzk6elpOgN4Jnh4eCguLk49evSQq6ur6Zwi6dWrV4HXNptN/3cPxfc7YEvK2XcAgP/F01QBwCK8vb116dKlQusJCQkKCAgwUATgSfmv//ovTZkyRV999ZXpFMC4LVu2qGfPniV2ECdJeXl5+R+7d+9W06ZNtWPHDmVkZCgzM1M7duxQcHCwdu7caToVAFAE7IwDAIsYNWqUxo0bp5iYGNlsNl27dk2JiYmaOHGipk+fbjoPQDE0b95cOTk5CggIUPny5eXm5lbg/du3bxsqA1Bcb775phYvXlzgQUtdunRR+fLlNXLkSCUnJxusAwAUBcM4ALCIyZMnKzMzUx07dlROTo5CQkJUrlw5TZw4UWPGjDGdB6AYBg4cqKtXr2rWrFn6xS9+wQMcgFIkJSVFXl5ehda9vLx05coV5wcBAIqNBzgAgMVkZWXp7NmzysvLk91uV8WKFU0nASim8uXLKzExUU2aNDGdAuAJCwkJkZubmz799FN5e3tLkm7cuKEhQ4YoNzdX8fHxhgsBAD8XO+MAwGLKly+v5s2bm84A8AT96le/UnZ2tukMAE9BTEyMevfurbp166pOnTqSpLS0NNWvX1+bN282GwcAKBJ2xgGARXTs2PEnb13bt2+fE2sAPEm7d+/WzJkz9e6776pRo0aFzoyrVKmSoTIAT4LD4dCePXt07tw5ORwO2e12hYaGcks6AJRQDOMAwCLGjx9f4PWDBw+UlJSk06dPa9iwYZo3b56hMgDF5eLiIkmF/mHucDhks9n06NEjE1kAAAD4AdymCgAWMWfOnB9cf+edd3Tv3j0n1wB4kvbv3286AcATFB0drZEjR8rd3V3R0dE/eW1UVJSTqgAATwo74wDA4i5duqSWLVvq9u3bplMAAIAkf39/HTt2TNWqVZO/v/+PXmez2XT58mUnlgEAngR2xgGAxSUmJsrd3d10BgAA+KfU1NQf/BwAUDowjAMAi+jTp0+B1w6HQ9evX9exY8c0bdo0Q1UAAAAAYC0upgMAAM7h5eVV4KNq1arq0KGDtm/frhkzZpjOAwAAP6Bfv36aPXt2ofX3339fv/nNbwwUAQCKizPjAAAAAOAZVaNGDe3bt0+NGjUqsP7ll18qNDRUX3/9taEyAEBRcZsqAABAKXHr1i2dP39eNptN9evXV40aNUwnASime/fuqWzZsoXW3dzcdOfOHQNFAIDi4jZVALCIKlWqqGrVqo/1AaBkuX//viIiIlSrVi2FhIToxRdfVK1atRQZGamsrCzTeQCK4fnnn9f69esLra9bt052u91AEQCguNgZBwAWMW3aNP3hD39Qly5d1Lp1a0nfPUl1165dmjZtGkM4oASbMGGC4uPjtWXLFrVt21aSlJCQoKioKP37v/+7Fi1aZLgQQFFNmzZNffv2VUpKijp16iRJ2rt3r9auXasNGzYYrgMAFAVnxgGARfTt21cdO3bUmDFjCqwvWLBAn332mTZv3mwmDECxVa9eXRs3blSHDh0KrO/fv1/h4eG6deuWmTAAT8S2bds0a9YsJSUlycPDQ40bN9aMGTPUvn1702kAgCJgGAcAFlGxYkUlJSUpMDCwwPrFixcVFBSke/fuGSoDUFzly5fX8ePH1bBhwwLrZ86cUcuWLXX//n1DZQAAAPi/ODMOACyiWrVq+vOf/1xoffPmzapWrZqBIgBPSuvWrTVjxgzl5OTkr2VnZ2vmzJn5t6UDKNmOHz+uTz/9VKtXr9bJkydN5wAAioEz4wDAImbOnKnIyEgdOHAg/x/nhw8f1s6dO7Vs2TLDdQCKY968eeratatq166tJk2ayGazKSkpSe7u7tq1a5fpPADFcPPmTQ0YMEAHDhxQ5cqV5XA4lJmZqY4dO2rdunU8NRkASiBuUwUAC/nrX/+q6OhoJScny+FwyG63KyoqSi+88ILpNADFlJ2drU8//VTnzp3L//M9ePBgeXh4mE4DUAz9+/dXSkqKVq1alX8r+tmzZzVs2DAFBgZq7dq1hgsBAD8XwzgAAAAAeEZ5eXnps88+U4sWLQqsHzlyRJ07d1ZGRoaZMABAkXFmHAAAQAm3cuVKbdu2Lf/15MmTVblyZbVp00ZfffWVwTIAxZWXlyc3N7dC625ubsrLyzNQBAAoLoZxAAAAJdysWbPyb0dNTEzUggUL9Mc//lHVq1fX+PHjDdcBKI5OnTpp3LhxunbtWv7a1atXNX78eL300ksGywAARcVtqgAAACVc+fLlde7cOdWpU0dTpkzR9evX9cknn+jMmTPq0KGDbt26ZToRQBGlp6erZ8+eOn36tHx9fWWz2ZSWlqZGjRrpL3/5i2rXrm06EQDwM/E0VQAAgBKuYsWK+vvf/646depo9+7d+bvh3N3dlZ2dbbgOQHH4+vrqxIkT2rNnT4EHtISGhppOAwAUEcM4AACAEi4sLEwjRoxQUFCQLly4oO7du0uSzpw5Iz8/P7NxAJ6IsLAwhYWFmc4AADwBDOMAwEKOHj2qDRs2KC0tTbm5uQXe27Rpk6EqAMX10Ucf6T//8z+Vnp6uuLg4VatWTZJ0/PhxDRw40HAdgJ8rOjr6sa+Niop6iiUAgKeBM+MAwCLWrVunoUOHqnPnztqzZ486d+6sixcv6saNG+rdu7eWL19uOhEAAEjy9/d/rOtsNpsuX778lGsAAE8awzgAsIjGjRtr1KhReuONN+Tp6alTp07J399fo0aNkre3t2bOnGk6EUAxHDx4UEuWLNHly5e1YcMG+fj4aNWqVfL391e7du1M5wEAAOCfXEwHAACcIyUlJf8cqXLlyun+/fuy2WwaP368Pv74Y8N1AIojLi5OXbp0kYeHh06cOKFvv/1WknT37l3NmjXLcB2AJyE3N1fnz5/Xw4cPTacAAIqJYRwAWETVqlV19+5dSZKPj49Onz4tScrIyFBWVpbJNADF9Ic//EGLFy/W0qVL5ebmlr/epk0bnThxwmAZgOLKyspSZGSkypcvr1//+tdKS0uT9N1ZcbNnzzZcBwAoCoZxAGARL774ovbs2SNJCg8P17hx4/S73/1OAwcO1EsvvWS4DkBxnD9/XiEhIYXWK1WqpIyMDOcHAXhi3nrrLZ06dUoHDhyQu7t7/npoaKjWr19vsAwAUFQ8TRUALGLBggXKycmR9N3/2Lu5uSkhIUF9+vTRtGnTDNcBKA5vb29dunRJfn5+BdYTEhIUEBBgJgrAE7F582atX79erVq1ks1my1+32+1KSUkxWAYAKCqGcQBgEVWrVs3/3MXFRZMnT9bkyZMNFgF4UkaNGqVx48YpJiZGNptN165dU2JioiZOnKjp06ebzgNQDLdu3VLNmjULrX9/9isAoORhGAcApdidO3ce+9pKlSo9xRIAT9PkyZOVmZmpjh07KicnRyEhISpXrpwmTpyoMWPGmM4DUAwtWrTQtm3bNHbsWEnKH8AtXbpUrVu3NpkGACgim8PhcJiOAAA8HS4uLv/vd80dDodsNpsePXrkpCoAT0tWVpbOnj2rvLw82e12VaxY0XQSgGI6dOiQunbtqsGDB2vFihUaNWqUzpw5o8TERMXHx6tZs2amEwEAPxM74wCgFNu/f7/pBABPUVZWliZNmqTNmzfrwYMHCg0NVXR0tKpXr246DUAxJSUlqWnTpmrTpo0+//xzffDBB6pXr552796t4OBgJSYmqlGjRqYzAQBFwM44AACAEmrSpElauHChBg8eLHd3d61du1YdOnTQhg0bTKcBKCYXFxcFBQVpxIgRGjRokLy8vEwnAQCeEIZxAAAAJVS9evX07rvvasCAAZKkI0eOqG3btsrJyZGrq6vhOgDFkZiYqJiYGMXGxurBgwfq27evIiIi1LFjR9NpAIBiYhgHAABQQpUtW1apqany8fHJX/Pw8NCFCxfk6+trsAzAk5Kdna3Y2FgtX75cBw8elJ+fnyIiIjRs2DDVrl3bdB4AoAhcTAcAAACgaB49eqSyZcsWWCtTpowePnxoqAjAk+bh4aFhw4bpwIEDunDhggYOHKglS5bI399f3bp1M50HACgCdsYBAACUUC4uLnr55ZdVrly5/LWtW7eqU6dOqlChQv7apk2bTOQBeAru3bun1atX6+2331ZGRgZPQweAEoinqQIAAJRQw4YNK7T26quvGigB8LTFx8crJiZGcXFxcnV1VXh4uCIjI01nAQCKgJ1xAGAhGzduVGxsrNLS0pSbm1vgvRMnThiqAgAAPyQ9PV0rVqzQihUrlJqaqjZt2igyMlLh4eEFdr8CAEoWzowDAIuIjo7W8OHDVbNmTZ08eVItW7ZUtWrVdPnyZb388sum8wAAwL8ICwuTv7+/Fi5cqH79+ik5OVkJCQkaPnw4gzgAKOG4TRUALGLhwoX6+OOPNXDgQK1cuVKTJ09WQECApk+frtu3b5vOAwAA/8LDw0NxcXHq0aOHXF1dTecAAJ4gblMFAIsoX768kpOTVbduXdWsWVN79uxRkyZNdPHiRbVq1Up///vfTScCAAAAQKnHbaoAYBG//OUv8wdudevW1eHDhyVJqamp4vsyAAAAAOAcDOMAwCI6deqkrVu3SpIiIyM1fvx4hYWFqX///urdu7fhOgAAAACwBm5TBQCLyMvLU15ensqU+e640NjYWCUkJCgwMFCvvfaaypYta7gQAAAAAEo/hnEAAAAAAACAk3CbKgAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASRjGAQAAAAAAAE5SxnQAAODpCQoKks1me6xrT5w48ZRrAAAAAAAM4wCgFOvVq1f+5zk5OVq4cKHsdrtat24tSTp8+LDOnDmj0aNHGyoEAAAAAGuxORwOh+kIAMDTN2LECHl7e+v3v/99gfUZM2YoPT1dMTExhsoAAAAAwDoYxgGARXh5eenYsWN67rnnCqxfvHhRzZs3V2ZmpqEyAAAAALAOHuAAABbh4eGhhISEQusJCQlyd3c3UAQAAAAA1sOZcQBgEW+++aZef/11HT9+XK1atZL03ZlxMTExmj59uuE6AAAAALAGblMFAAuJjY3VvHnzlJycLElq2LChxo0bp/DwcMNlAAAAAGANDOMAAAAAAAAAJ+HMOAAAAAAAAMBJODMOACzi0aNHmjNnjmJjY5WWlqbc3NwC79++fdtQGQAAAABYBzvjAMAiZs6cqQ8//FDh4eHKzMzUhAkT1KdPH7m4uOidd94xnQcAAAAAlsCZcQBgEfXq1VN0dLS6d+8uT09PJSUl5a8dPnxYa9asMZ0IAAAAAKUeO+MAwCJu3LihRo0aSZIqVqyozMxMSVKPHj20bds2k2kAAAAAYBkM4wDAImrXrq3r169LkgIDA7V7925J0tGjR1WuXDmTaQAAAABgGQzjAMAievfurb1790qSxo0bp2nTpum5557T0KFDFRERYbgOAAAAAKyBM+MAwKIOHz6sQ4cOKTAwUK+88orpHAAAAACwBIZxAAAAAAAAgJOUMR0AAHh6tmzZ8tjXsjsOAAAAAJ4+dsYBQCnm4lLwaFCbzab/+9e+zWaTJD169MhpXQAAAABgVTzAAQBKsby8vPyP3bt3q2nTptqxY4cyMjKUmZmpHTt2KDg4WDt37jSdCgAAAACWwM44ALCI559/XosXL1a7du0KrB88eFAjR45UcnKyoTIAAAAAsA52xgGARaSkpMjLy6vQupeXl65cueL8IAAAAACwIHbGAYBFhISEyM3NTZ9++qm8vb0lSTdu3NCQIUOUm5ur+Ph4w4UAAAAAUPoxjAMAi7h06ZJ69+6t8+fPq06dOpKktLQ01a9fX5s3b1ZgYKDhQgAAAAAo/RjGAYCFOBwO7dmzR+fOnZPD4ZDdbldoaGj+E1UBAAAAAE8XwzgAAAAAAADAScqYDgAAPD3R0dEaOXKk3N3dFR0d/ZPXRkVFOakKAAAAAKyLnXEAUIr5+/vr2LFjqlatmvz9/X/0OpvNpsuXLzuxDAAAAACsiWEcAAAAAAAA4CQupgMAAAAAAAAAq2AYBwAW0a9fP82ePbvQ+vvvv6/f/OY3BooAAAAAwHq4TRUALKJGjRrat2+fGjVqVGD9yy+/VGhoqL7++mtDZQAAAABgHeyMAwCLuHfvnsqWLVto3c3NTXfu3DFQBAAAAADWwzAOACzi+eef1/r16wutr1u3Tna73UARAAAAAFhPGdMBAADnmDZtmvr27auUlBR16tRJkrR3716tXbtWGzZsMFwHAAAAANbAmXEAYCHbtm3TrFmzlJSUJA8PDzVu3FgzZsxQ+/btTacBAAAAgCUwjAMAAAAAAACchNtUAcBijh8/ruTkZNlsNtntdgUFBZlOAgAAAADLYBgHABZx8+ZNDRgwQAcOHFDlypXlcDiUmZmpjh07at26dapRo4bpRAAAAAAo9XiaKgBYxNixY3Xnzh2dOXNGt2/f1j/+8Q+dPn1ad+7cUVRUlOk8AAAAALAEzowDAIvw8vLSZ599phYtWhRYP3LkiDp37qyMjAwzYQAAAABgIeyMAwCLyMvLk5ubW6F1Nzc35eXlGSgCAAAAAOthGAcAFtGpUyeNGzdO165dy1+7evWqxo8fr5deeslgGQAAAABYB7epAoBFpKenq2fPnjp9+rR8fX1ls9mUlpamRo0a6S9/+Ytq165tOhEAAAAASj2GcQBgMXv27NG5c+fkcDhkt9sVGhpqOgkAAAAALINhHAAAAAAAAOAkZUwHAACenujo6Me+Nioq6imWAAAAAAAkdsYBQKnm7+//WNfZbDZdvnz5KdcAAAAAABjGAQAAAAAAAE7iYjoAAOBcubm5On/+vB4+fGg6BQAAAAAsh2EcAFhEVlaWIiMjVb58ef36179WWlqapO/Oips9e7bhOgAAAACwBoZxAGARb731lk6dOqUDBw7I3d09fz00NFTr1683WAYAAAAA1sHTVAHAIjZv3qz169erVatWstls+et2u10pKSkGywAAAADAOtgZBwAWcevWLdWsWbPQ+v379wsM5wAAAAAATw/DOACwiBYtWmjbtm35r78fwC1dulStW7c2lQUAAAAAlsJtqgBgEe+99566du2qs2fP6uHDh5o3b57OnDmjxMRExcfHm84DAAAAAEtgZxwAlHJJSUmSpDZt2ujzzz9XVlaW6tWrp927d+sXv/iFEhMT1axZM7ORAAAAAGARNofD4TAdAQB4elxcXBQUFKQRI0Zo0KBB8vLyMp0EAAAAAJbFzjgAKOU+//xzBQcHa+rUqfL29taQIUO0f/9+01kAAAAAYEnsjAMAi8jOzlZsbKyWL1+ugwcPys/PTxERERo2bJhq165tOg8AAAAALIFhHABYUEpKipYvX65PPvlE169fV1hYmLZv3246CwAAAABKPYZxAGBR9+7d0+rVq/X2228rIyNDjx49Mp0EAAAAAKVeGdMBAADnio+PV0xMjOLi4uTq6qrw8HBFRkaazgIAAAAAS2BnHABYQHp6ulasWKEVK1YoNTVVbdq0UWRkpMLDw1WhQgXTeQAAAABgGeyMA4BSLiwsTPv371eNGjU0dOhQRUREqEGDBqazAAAAAMCSGMYBQCnn4eGhuLg49ejRQ66urqZzAAAAAMDSuE0VAAAAAAAAcBIX0wEAAAAAAACAVTCMAwAAAAAAAJyEYRwAAAAAAADgJAzjAAAAgKfowIEDstlsysjIeOwf4+fnp7lz5z61JgAAYA7DOAAAAFjab3/7W9lsNr322muF3hs9erRsNpt++9vfOj8MAACUSgzjAAAAYHm+vr5at26dsrOz89dycnK0du1a1alTx2AZAAAobRjGAQAAwPKCg4NVp04dbdq0KX9t06ZN8vX1VVBQUP7at99+q6ioKNWsWVPu7u5q166djh49WuBrbd++XfXr15eHh4c6duyoK1euFPr5Dh06pJCQEHl4eMjX11dRUVG6f//+j/alpaWpZ8+eqlixoipVqqTw8HB9/fXXxf+FAwAAp2MYBwAAAEgaPny4li9fnv86JiZGERERBa6ZPHmy4uLitHLlSp04cUKBgYHq0qWLbt++LUlKT09Xnz591K1bNyUlJWnEiBGaOnVqga/x5ZdfqkuXLurTp4+++OILrV+/XgkJCRozZswPdjkcDvXq1Uu3b99WfHy89uzZo5SUFPXv3/8J/w4AAABnYBgHAAAASBoyZIgSEhJ05coVffXVV/r888/16quv5r9///59LVq0SO+//75efvll2e12LV26VB4eHvrTn/4kSVq0aJECAgI0Z84cNWjQQIMHDy503tz777+vQYMG6c0339Rzzz2nNm3aKDo6Wp988olycnIKdX322Wf64osvtGbNGjVr1kwvvPCCVq1apfj4+EK78gAAwLOvjOkAAAAA4FlQvXp1de/eXStXrpTD4VD37t1VvXr1/PdTUlL04MEDtW3bNn/Nzc1NLVu2VHJysiQpOTlZrVq1ks1my7+mdevWBX6e48eP69KlS1q9enX+msPhUF5enlJTU9WwYcMC1ycnJ8vX11e+vr75a3a7XZUrV1ZycrJatGjxZH4DAACAUzCMAwAAAP4pIiIi/3bRjz76qMB7DodDkgoM2r5f/37t+2t+Sl5enkaNGqWoqKhC7/3QwyL+9es/zjoAAHi2cZsqAAAA8E9du3ZVbm6ucnNz1aVLlwLvBQYGqmzZskpISMhfe/DggY4dO5a/m81ut+vw4cMFftz/fR0cHKwzZ84oMDCw0EfZsmULNdntdqWlpSk9PT1/7ezZs8rMzCy0iw4AADz7GMYBAAAA/+Tq6qrk5GQlJyfL1dW1wHsVKlTQ66+/rkmTJmnnzp06e/asfve73ykrK0uRkZGSpNdee00pKSmaMGGCzp8/rzVr1mjFihUFvs6UKVOUmJioN954Q0lJSbp48aK2bNmisWPH/mBTaGioGjdurMGDB+vEiRM6cuSIhg4dqvbt26t58+ZP5fcBAAA8PQzjAAAAgH9RqVIlVapU6Qffmz17tvr27ashQ4YoODhYly5d0q5du1SlShVJ391mGhcXp61bt6pJkyZavHixZs2aVeBrNG7cWPHx8bp48aJefPFFBQUFadq0afL29v7Bn9Nms2nz5s2qUqWKQkJCFBoaqoCAAK1fv/7J/sIBAIBT2ByPc7AFAAAAAAAAgGJjZxwAAAAAAADgJAzjAAAAAAAAACdhGAcAAAAAAAA4CcM4AAAAAAAAwEkYxgEAAAAAAABOwjAOAAAAAAAAcBKGcQAAAAAAAICTMIwDAAAAAAAAnIRhHAAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASf4HbjzXLfQkEFEAAAAASUVORK5CYII=", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de correlaciones con filtro de umbral de correlación

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan0.735nannannannannan
    Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannan0.917nannannannannannannannannan0.9730.790nan-0.854nannannannannannannannannannan
    Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nan-0.757nannannannannannannannan
    Velocidad de pérdida limpia (KCAS)nannannannannan0.711nannannan0.768nannannan0.8170.774nan0.705nannan0.936nannan-0.874nannannannannannannannannan
    Área del alanannannannan0.711nan-0.7780.8350.9840.970nannannannan0.8250.7870.854nannan0.9650.944nannan0.974nannannannannannannannan
    Relación de aspecto del alanannannannannan-0.778nannannan-0.790nannan-0.730nannan-0.862-0.826nan-0.769nan-0.746nannan-0.970nannannannannannannannan
    Longitud del fuselajenannannannannan0.835nannan0.9380.806nannannannan0.719nannannannan0.9260.834nannan0.929nannannannannannannannan
    Ancho del fuselajenannan0.917nannan0.984nan0.938nan0.9860.833nan0.940nannannan0.868nan0.944nan0.954nannannannannan0.794nannannannannan
    Peso máximo al despegue (MTOW)nannannannan0.7680.970-0.7900.8060.986nannannan0.717nan0.8110.7510.882nan0.7080.9790.933nannan0.9760.758nannannannannannannan
    Alcance de la aeronavenannannannannannannannan0.833nannannannannannannannannannan0.936nan-0.711nan0.8480.837nannannannannannannan
    Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nannannannannannannan
    Velocidad máxima (KIAS)nannannannannannan-0.730nan0.9400.717nannannannannannan0.718nannan0.726nannannan0.7270.910nannannannannannannan
    Velocidad de pérdida (KCAS)nannannannan0.817nannannannannannannannannannannannan1.000nannannan1.000-0.874nannannannannannannannannan
    envergaduranannannannan0.7740.825nan0.719nan0.811nannannannannannan0.775nannan0.9500.806nannannannannannannannannannannan
    Cuerdanannannannannan0.787-0.862nannan0.751nannannannannannan0.758nan0.730nan0.724nannan0.975nannannannannannannannan
    payloadnannannannan0.7050.854-0.826nan0.8680.882nannan0.718nan0.7750.758nannannannan0.784nannan0.7110.846nannannannannannannan
    duracion en VTOLnannannan-0.875nannannannannannannannannan1.000nannannannannannannannannannannannannan-0.904nannannannan
    Crucero KIASnannan0.973nannannan-0.769nan0.9440.708nannannannannan0.730nannannan0.723nan-0.855nannannannannannannannannannan
    RTF (Including fuel & Batteries)nannan0.790nan0.9360.965nan0.926nan0.9790.936nan0.726nan0.950nannannan0.723nan0.948nannannannannannannannannannannan
    Empty weightnannannannannan0.944-0.7460.8340.9540.933nannannannan0.8060.7240.784nannan0.948nannan0.7850.980nannannannannannannannan
    Maximum Crosswindnannan-0.854-0.961nannannannannannan-0.711-0.715nan1.000nannannannan-0.855nannannannannannannannan-0.943nannannannan
    Rango de comunicaciónnannannannan-0.874nannannannannannan0.802nan-0.874nannannannannannan0.785nannannannannannannannannannannan
    Capacidad combustiblenannannan-0.757nan0.974-0.9700.929nan0.9760.848nan0.727nannan0.9750.711nannannan0.980nannannannan0.817nannannannannannan
    Consumonannannannannannannannannan0.7580.837-0.7320.910nannannan0.846nannannannannannannannan0.998nannannannannannan
    Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998nannannannannannannan
    Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
    Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
    Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
    Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n", - "\n", - "--- Correlación: Capacidad combustible (r = -0.757) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 28.0, 28.0, 25.0]\n", - "Valores para Techo de servicio máximo: [17000.0, 16959.092, 16009.436, 16009.476, 17000.0]\n", - "Ecuación de regresión: y = -49.503x + 17640.121\n", - "Valor del parámetro correlacionado para la aeronave: 11.5\n", - "Predicción obtenida: 17070.833\n", - "\tR²: 0.5733448646440649, Desviación Estándar: 312.7585032074662, Varianza: 97817.88132857464, Incertidumbre: 139.8698547425961\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Capacidad combustible: 17070.833']\n", - "**Mediana calculada:** 17070.833\n", - "\n", - "--- Imputación para aeronave: **Skyeye 5000** ---\n", - "\n", - "--- Correlación: Capacidad combustible (r = -0.757) ---\n", - "Aeronaves utilizadas: ['Volitation VT370', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510']\n", - "Valores para Capacidad combustible: [13.0, 11.5, 11.5, 28.0, 28.0, 25.0]\n", - "Valores para Techo de servicio máximo: [17000.0, 17070.833, 16959.092, 16009.436, 16009.476, 17000.0]\n", - "Ecuación de regresión: y = -49.503x + 17640.121\n", - "Valor del parámetro correlacionado para la aeronave: 28.0\n", - "Predicción obtenida: 16254.028\n", - "\tR²: 0.6335143266174253, Desviación Estándar: 285.5081454305007, Varianza: 81514.90110716393, Incertidumbre: 116.5582122855099\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Capacidad combustible: 16254.028']\n", - "**Mediana calculada:** 16254.028\n", - "\n", - "=== Área del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Stalker XE** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 59.0\n", - "Predicción obtenida: 14.838\n", - "\tR²: 0.7638900941970123, Desviación Estándar: 1.321784213429975, Varianza: 1.747113506872698, Incertidumbre: 0.5396161454949092\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Rango de comunicación: 14.838']\n", - "**Mediana calculada:** 14.838\n", - "\n", - "--- Imputación para aeronave: **Stalker VXE30** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 161.0\n", - "Predicción obtenida: 9.415\n", - "\tR²: 0.7649280338966065, Desviación Estándar: 1.2237343949682917, Varianza: 1.4975258694284113, Incertidumbre: 0.4625281256974559\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Rango de comunicación: 9.415']\n", - "**Mediana calculada:** 9.415\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 10.532\n", - "\tR²: 0.8590346121694943, Desviación Estándar: 1.1446987113646354, Varianza: 1.3103351397998568, Incertidumbre: 0.40471211061071805\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 10.532']\n", - "**Mediana calculada:** 10.532\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 10.532\n", - "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 10.532']\n", - "**Mediana calculada:** 10.532\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 10.532\n", - "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 10.532']\n", - "**Mediana calculada:** 10.532\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 150.0\n", - "Predicción obtenida: 10.0\n", - "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 10.0']\n", - "**Mediana calculada:** 10.0\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 15.316\n", - "\tR²: 0.8815409323186313, Desviación Estándar: 1.0792323024785884, Varianza: 1.1647423627132352, Incertidumbre: 0.3597441008261961\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 15.316']\n", - "**Mediana calculada:** 15.316\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 16.645\n", - "\tR²: 0.8833653923911279, Desviación Estándar: 1.02384966328724, Varianza: 1.048268133013395, Incertidumbre: 0.32376969175841563\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 16.645']\n", - "**Mediana calculada:** 16.645\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 101.86\n", - "Predicción obtenida: 12.559\n", - "\tR²: 0.8900166558794294, Desviación Estándar: 0.9762023543141057, Varianza: 0.9529710365684029, Incertidumbre: 0.29433608442922443\n", - "\tNivel de confianza: Confianza Baja\n", - "Valores imputados: ['Rango de comunicación: 12.559']\n", - "**Mediana calculada:** 12.559\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 13.051\n", - "\tR²: 0.8935698204333948, Desviación Estándar: 0.934642599085376, Varianza: 0.8735567880250669, Incertidumbre: 0.26980807808901663\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Rango de comunicación: 13.051']\n", - "**Mediana calculada:** 13.051\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator VTOL'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 13.051\n", - "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Rango de comunicación: 13.051']\n", - "**Mediana calculada:** 13.051\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 15.316\n", - "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Rango de comunicación: 15.316']\n", - "**Mediana calculada:** 15.316\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Maximum Crosswind (r = 1.0) ---\n", - "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'Ascend']\n", - "Valores para Maximum Crosswind: [45.0, 50.0, 15.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.0, 15.316, 13.0]\n", - "Ecuación de regresión: y = 0.055x + 12.099\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 14.835\n", - "\tR²: 0.7950904219131606, Desviación Estándar: 0.42932620726909115, Varianza: 0.18432099224806262, Incertidumbre: 0.24787160133697086\n", - "\tNivel de confianza: Confianza Media\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 16.379\n", - "\tR²: 0.895024240813695, Desviación Estándar: 0.8979755727825594, Varianza: 0.8063601293141656, Incertidumbre: 0.2490536132139741\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Maximum Crosswind: 14.835', 'Rango de comunicación: 16.379']\n", - "**Mediana calculada:** 15.607\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida limpia (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Stalker XE** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.382x + 10.202\n", - "Valor del parámetro correlacionado para la aeronave: 0.87\n", - "Predicción obtenida: 14.884\n", - "\tR²: 0.4584975382227796, Desviación Estándar: 3.9626586397738124, Varianza: 15.70266349537404, Incertidumbre: 0.9090962399222311\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.118x + 12.28\n", - "Valor del parámetro correlacionado para la aeronave: 13.6\n", - "Predicción obtenida: 13.882\n", - "\tR²: 0.5362410361538301, Desviación Estándar: 3.548785552305845, Varianza: 12.5938788962547, Incertidumbre: 0.8871963880764613\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.983x + 1.727\n", - "Valor del parámetro correlacionado para la aeronave: 14.838\n", - "Predicción obtenida: 16.309\n", - "\tR²: 0.6019452091484776, Desviación Estándar: 3.479540061453548, Varianza: 12.107199039260163, Incertidumbre: 0.869885015363387\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 3.108x + 5.81\n", - "Valor del parámetro correlacionado para la aeronave: 3.657\n", - "Predicción obtenida: 17.174\n", - "\tR²: 0.5835699593207654, Desviación Estándar: 3.4750212924510513, Varianza: 12.075772982988175, Incertidumbre: 0.7972245600234859\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.46x + 13.713\n", - "Valor del parámetro correlacionado para la aeronave: 2.495\n", - "Predicción obtenida: 14.86\n", - "\tR²: 0.43900880754018157, Desviación Estándar: 3.9112272862931547, Varianza: 15.297698885044115, Incertidumbre: 0.921885112299916\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.974\n", - "Valor del parámetro correlacionado para la aeronave: 59.0\n", - "Predicción obtenida: 14.838\n", - "\tR²: 0.7638900941970123, Desviación Estándar: 1.321784213429975, Varianza: 1.747113506872698, Incertidumbre: 0.5396161454949092\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 14.884', 'Peso máximo al despegue (MTOW): 13.882', 'Velocidad de pérdida (KCAS): 16.309', 'envergadura: 17.174', 'payload: 14.86', 'Rango de comunicación: 14.838']\n", - "**Mediana calculada:** 14.872\n", - "\n", - "--- Imputación para aeronave: **Stalker VXE30** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.383x + 10.201\n", - "Valor del parámetro correlacionado para la aeronave: 1.158\n", - "Predicción obtenida: 16.435\n", - "\tR²: 0.4650980437290636, Desviación Estándar: 3.86232278712243, Varianza: 14.917537311925178, Incertidumbre: 0.8636416303052202\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.39\n", - "Valor del parámetro correlacionado para la aeronave: 19.958\n", - "Predicción obtenida: 14.713\n", - "\tR²: 0.5383061046948842, Desviación Estándar: 3.4504190564798676, Varianza: 11.905391665319419, Incertidumbre: 0.8368495425006189\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.992x + 1.495\n", - "Valor del parámetro correlacionado para la aeronave: 9.415\n", - "Predicción obtenida: 10.831\n", - "\tR²: 0.606805757387085, Desviación Estándar: 3.392334540315432, Varianza: 11.507933633417112, Incertidumbre: 0.8227619780677445\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 3.115x + 5.665\n", - "Valor del parámetro correlacionado para la aeronave: 4.877\n", - "Predicción obtenida: 20.858\n", - "\tR²: 0.5796228985588339, Desviación Estándar: 3.4239782633031473, Varianza: 11.723627147572437, Incertidumbre: 0.765624815022751\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.46x + 13.714\n", - "Valor del parámetro correlacionado para la aeronave: 2.495\n", - "Predicción obtenida: 14.861\n", - "\tR²: 0.44918896341251313, Desviación Estándar: 3.806910014724386, Varianza: 14.492563860208826, Incertidumbre: 0.8733650548071861\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.053x + 17.978\n", - "Valor del parámetro correlacionado para la aeronave: 161.0\n", - "Predicción obtenida: 9.423\n", - "\tR²: 0.7647638318484331, Desviación Estándar: 1.2237926717855518, Varianza: 1.4976685035160195, Incertidumbre: 0.4625501522639803\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 16.435', 'Peso máximo al despegue (MTOW): 14.713', 'Velocidad de pérdida (KCAS): 10.831', 'envergadura: 20.858', 'payload: 14.861', 'Rango de comunicación: 9.423']\n", - "**Mediana calculada:** 14.787\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 Fixed Wing** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.414x + 10.08\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 18.472\n", - "\tR²: 0.466757382312631, Desviación Estándar: 3.7854894974433573, Varianza: 14.32993073525396, Incertidumbre: 0.8260615316425965\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.397\n", - "Valor del parámetro correlacionado para la aeronave: 42.2\n", - "Predicción obtenida: 17.306\n", - "\tR²: 0.5422143559645116, Desviación Estándar: 3.3532462483094934, Varianza: 11.244260401801691, Incertidumbre: 0.7903677203893309\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.915x + 2.961\n", - "Valor del parámetro correlacionado para la aeronave: 10.532\n", - "Predicción obtenida: 12.6\n", - "\tR²: 0.5897032702850062, Desviación Estándar: 3.402063815159601, Varianza: 11.5740382024183, Incertidumbre: 0.8018741312429105\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.93x + 6.085\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 18.977\n", - "\tR²: 0.5244094532346639, Desviación Estándar: 3.5750014852544703, Varianza: 12.780635619571669, Incertidumbre: 0.7801292817027697\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.46x + 13.707\n", - "Valor del parámetro correlacionado para la aeronave: 14.5\n", - "Predicción obtenida: 20.38\n", - "\tR²: 0.4585425146715313, Desviación Estándar: 3.710550701599703, Varianza: 13.768186509142046, Incertidumbre: 0.8297043602736472\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [70.3, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [25.0, 14.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.176x + 11.018\n", - "Valor del parámetro correlacionado para la aeronave: 27.7\n", - "Predicción obtenida: 15.906\n", - "\tR²: 0.8767961918805747, Desviación Estándar: 2.18187881096421, Varianza: 4.760595145734596, Incertidumbre: 0.9757658679964775\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.03x + 17.168\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 12.918\n", - "\tR²: 0.46532681815645593, Desviación Estándar: 1.7295254821806558, Varianza: 2.99125839351223, Incertidumbre: 0.6114795983424375\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.472', 'Peso máximo al despegue (MTOW): 17.306', 'Velocidad de pérdida (KCAS): 12.6', 'envergadura: 18.977', 'payload: 20.38', 'RTF (Including fuel & Batteries): 15.906', 'Rango de comunicación: 12.918']\n", - "**Mediana calculada:** 17.306\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.7 VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.387x + 10.063\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 18.413\n", - "\tR²: 0.46446962919077694, Desviación Estándar: 3.7063812757992287, Varianza: 13.737262161595117, Incertidumbre: 0.7902031430874169\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.397\n", - "Valor del parámetro correlacionado para la aeronave: 53.5\n", - "Predicción obtenida: 18.62\n", - "\tR²: 0.5426110461297494, Desviación Estándar: 3.2638102308142223, Varianza: 10.652457222767586, Incertidumbre: 0.7487694193164923\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.849x + 4.269\n", - "Valor del parámetro correlacionado para la aeronave: 10.532\n", - "Predicción obtenida: 13.21\n", - "\tR²: 0.5520283845821775, Desviación Estándar: 3.4611244919244952, Varianza: 11.979382748599594, Incertidumbre: 0.7940364153322332\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.904x + 6.111\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 18.886\n", - "\tR²: 0.5197301153510105, Desviación Estándar: 3.5099482875201593, Varianza: 12.319736981065699, Incertidumbre: 0.748323489270446\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.445x + 13.696\n", - "Valor del parámetro correlacionado para la aeronave: 11.3\n", - "Predicción obtenida: 18.723\n", - "\tR²: 0.4414953610991542, Desviación Estándar: 3.6781026044838465, Varianza: 13.528438769110855, Incertidumbre: 0.8026277904219737\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 70.3, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [17.306, 25.0, 14.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.174x + 11.323\n", - "Valor del parámetro correlacionado para la aeronave: 42.2\n", - "Predicción obtenida: 18.685\n", - "\tR²: 0.8685070668946828, Desviación Estándar: 2.0580697312416656, Varianza: 4.235651018653141, Incertidumbre: 0.840203449434832\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.02x + 16.878\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 14.112\n", - "\tR²: 0.22114113946870317, Desviación Estándar: 2.053329630048995, Varianza: 4.2161625696371425, Incertidumbre: 0.6844432100163317\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.413', 'Peso máximo al despegue (MTOW): 18.62', 'Velocidad de pérdida (KCAS): 13.21', 'envergadura: 18.886', 'payload: 18.723', 'RTF (Including fuel & Batteries): 18.685', 'Rango de comunicación: 14.112']\n", - "**Mediana calculada:** 18.62\n", - "\n", - "--- Imputación para aeronave: **Aerosonde Mk. 4.8 Fixed wing** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.392x + 10.066\n", - "Valor del parámetro correlacionado para la aeronave: 1.55\n", - "Predicción obtenida: 18.423\n", - "\tR²: 0.4660005657286891, Desviación Estándar: 3.6251561480011025, Varianza: 13.141757097390192, Incertidumbre: 0.7558973100658521\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.397\n", - "Valor del parámetro correlacionado para la aeronave: 54.4\n", - "Predicción obtenida: 18.725\n", - "\tR²: 0.5461903226551696, Desviación Estándar: 3.181168711678456, Varianza: 10.119834372161968, Incertidumbre: 0.7113309487208457\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.782x + 5.601\n", - "Valor del parámetro correlacionado para la aeronave: 10.532\n", - "Predicción obtenida: 13.832\n", - "\tR²: 0.5015824133754161, Desviación Estándar: 3.5602796721277223, Varianza: 12.675591343765882, Incertidumbre: 0.796102736578825\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.9x + 6.115\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 18.873\n", - "\tR²: 0.5210484825351553, Desviación Estándar: 3.4332236552626645, Varianza: 11.78702466705513, Incertidumbre: 0.715876618803983\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.445x + 13.693\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 21.564\n", - "\tR²: 0.44248774210834096, Desviación Estándar: 3.5936014722335075, Varianza: 12.913971541238833, Incertidumbre: 0.7661584081767601\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: RTF (Including fuel & Batteries) (r = 0.936) ---\n", - "Aeronaves utilizadas: ['Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'DeltaQuad Evo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para RTF (Including fuel & Batteries): [27.7, 42.2, 70.3, 6.8, 8.9, 16.5, 84.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [17.306, 18.62, 25.0, 14.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.174x + 11.317\n", - "Valor del parámetro correlacionado para la aeronave: 36.7\n", - "Predicción obtenida: 17.716\n", - "\tR²: 0.8691516645551287, Desviación Estándar: 1.9055366919971601, Varianza: 3.63107008454748, Incertidumbre: 0.7202251715904527\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.011x + 16.644\n", - "Valor del parámetro correlacionado para la aeronave: 140.0\n", - "Predicción obtenida: 15.076\n", - "\tR²: 0.0684597878447748, Desviación Estándar: 2.3220684254768322, Varianza: 5.392001772596454, Incertidumbre: 0.7343025107267749\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.423', 'Peso máximo al despegue (MTOW): 18.725', 'Velocidad de pérdida (KCAS): 13.832', 'envergadura: 18.873', 'payload: 21.564', 'RTF (Including fuel & Batteries): 17.716', 'Rango de comunicación: 15.076']\n", - "**Mediana calculada:** 18.423\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.392x + 10.066\n", - "Valor del parámetro correlacionado para la aeronave: 0.94\n", - "Predicción obtenida: 15.134\n", - "\tR²: 0.4670451470194883, Desviación Estándar: 3.5488285233364496, Varianza: 12.594183888046365, Incertidumbre: 0.7244015889007506\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.393\n", - "Valor del parámetro correlacionado para la aeronave: 20.0\n", - "Predicción obtenida: 14.714\n", - "\tR²: 0.5485403649598684, Desviación Estándar: 3.1051599496166142, Varianza: 9.642018312703055, Incertidumbre: 0.677601453050638\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.893x + 6.121\n", - "Valor del parámetro correlacionado para la aeronave: 3.0\n", - "Predicción obtenida: 14.8\n", - "\tR²: 0.5216461178243376, Desviación Estándar: 3.362129644762508, Varianza: 11.30391574819087, Incertidumbre: 0.6862918398960846\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.423x + 13.759\n", - "Valor del parámetro correlacionado para la aeronave: 2.495\n", - "Predicción obtenida: 14.814\n", - "\tR²: 0.42567155526653766, Desviación Estándar: 3.5690658775926396, Varianza: 12.738231238596118, Incertidumbre: 0.7442016801973287\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 15.134', 'Peso máximo al despegue (MTOW): 14.714', 'envergadura: 14.8', 'payload: 14.814']\n", - "**Mediana calculada:** 14.807\n", - "\n", - "--- Imputación para aeronave: **Orbiter 4** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.406x + 10.034\n", - "Valor del parámetro correlacionado para la aeronave: 1.608\n", - "Predicción obtenida: 18.727\n", - "\tR²: 0.4728295759055522, Desviación Estándar: 3.477707911789329, Varianza: 12.094452319722095, Incertidumbre: 0.6955415823578658\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.4\n", - "Valor del parámetro correlacionado para la aeronave: 55.0\n", - "Predicción obtenida: 18.779\n", - "\tR²: 0.552600150975832, Desviación Estándar: 3.033828161728033, Varianza: 9.204113314894094, Incertidumbre: 0.6468143373802413\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.73x + 6.614\n", - "Valor del parámetro correlacionado para la aeronave: 10.0\n", - "Predicción obtenida: 13.916\n", - "\tR²: 0.46468134584634513, Desviación Estándar: 3.601724880792143, Varianza: 12.972422116917178, Incertidumbre: 0.7859608046969426\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.893x + 6.122\n", - "Valor del parámetro correlacionado para la aeronave: 5.2\n", - "Predicción obtenida: 21.165\n", - "\tR²: 0.5269957515236472, Desviación Estándar: 3.2942010830487516, Varianza: 10.851760775559567, Incertidumbre: 0.6588402166097503\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.423x + 13.758\n", - "Valor del parámetro correlacionado para la aeronave: 12.0\n", - "Predicción obtenida: 18.835\n", - "\tR²: 0.43464239567025376, Desviación Estándar: 3.4939195040094204, Varianza: 12.207473500497436, Incertidumbre: 0.7131933322650971\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.006x + 16.501\n", - "Valor del parámetro correlacionado para la aeronave: 150.0\n", - "Predicción obtenida: 15.606\n", - "\tR²: 0.019263283730102443, Desviación Estándar: 2.3959493405082912, Varianza: 5.7405732422821165, Incertidumbre: 0.7224059071968609\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 18.727', 'Peso máximo al despegue (MTOW): 18.779', 'Velocidad de pérdida (KCAS): 13.916', 'envergadura: 21.165', 'payload: 18.835', 'Rango de comunicación: 15.606']\n", - "**Mediana calculada:** 18.753\n", - "\n", - "--- Imputación para aeronave: **Orbiter 3** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.407x + 10.034\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 16.522\n", - "\tR²: 0.47471713659572623, Desviación Estándar: 3.4101769025502042, Varianza: 11.629306506686904, Incertidumbre: 0.6687907142656497\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.4\n", - "Valor del parámetro correlacionado para la aeronave: 32.0\n", - "Predicción obtenida: 16.111\n", - "\tR²: 0.5562407359989936, Desviación Estándar: 2.9671471323451786, Varianza: 8.803962104984215, Incertidumbre: 0.6186929457220847\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.677x + 7.652\n", - "Valor del parámetro correlacionado para la aeronave: 15.316\n", - "Predicción obtenida: 18.014\n", - "\tR²: 0.42421279321722494, Desviación Estándar: 3.651853558055984, Varianza: 13.33603440948615, Incertidumbre: 0.7785777946033205\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.811x + 6.35\n", - "Valor del parámetro correlacionado para la aeronave: 4.4\n", - "Predicción obtenida: 18.718\n", - "\tR²: 0.5194126656316639, Desviación Estándar: 3.261868529196971, Varianza: 10.639786301765609, Incertidumbre: 0.6397050492749827\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.423x + 13.756\n", - "Valor del parámetro correlacionado para la aeronave: 5.5\n", - "Predicción obtenida: 16.082\n", - "\tR²: 0.4360376843534042, Desviación Estándar: 3.4233658161858984, Varianza: 11.719433511430143, Incertidumbre: 0.6846731632371796\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.001x + 16.326\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 16.269\n", - "\tR²: 0.0007196998998141302, Desviación Estándar: 2.438000130498692, Varianza: 5.943844636311639, Incertidumbre: 0.7037900158138813\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 16.522', 'Peso máximo al despegue (MTOW): 16.111', 'Velocidad de pérdida (KCAS): 18.014', 'envergadura: 18.718', 'payload: 16.082', 'Rango de comunicación: 16.269']\n", - "**Mediana calculada:** 16.396\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.409x + 10.026\n", - "Valor del parámetro correlacionado para la aeronave: 0.754\n", - "Predicción obtenida: 14.105\n", - "\tR²: 0.47548065381933924, Desviación Estándar: 3.346513898608693, Varianza: 11.199155273581153, Incertidumbre: 0.6440369000695176\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.116x + 12.416\n", - "Valor del parámetro correlacionado para la aeronave: 6.5\n", - "Predicción obtenida: 13.169\n", - "\tR²: 0.5562776352004176, Desviación Estándar: 2.9052327113675602, Varianza: 8.440377107200106, Incertidumbre: 0.59302814390775\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.676x + 7.585\n", - "Valor del parámetro correlacionado para la aeronave: 16.645\n", - "Predicción obtenida: 18.842\n", - "\tR²: 0.4219605998717829, Desviación Estándar: 3.586786423534771, Varianza: 12.865036848053354, Incertidumbre: 0.7478966694512236\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.782x + 6.377\n", - "Valor del parámetro correlacionado para la aeronave: 2.1\n", - "Predicción obtenida: 12.22\n", - "\tR²: 0.5111829799239707, Desviación Estándar: 3.230613748948095, Varianza: 10.436865194892464, Incertidumbre: 0.6217319058676296\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.422x + 13.776\n", - "Valor del parámetro correlacionado para la aeronave: 2.693\n", - "Predicción obtenida: 14.913\n", - "\tR²: 0.4374652379037306, Desviación Estándar: 3.357422336000781, Varianza: 11.272284742276943, Incertidumbre: 0.6584446925630868\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = -0.001x + 16.346\n", - "Valor del parámetro correlacionado para la aeronave: 25.0\n", - "Predicción obtenida: 16.315\n", - "\tR²: 0.0009110570695874953, Desviación Estándar: 2.342591413436464, Varianza: 5.48773453030625, Incertidumbre: 0.6497179583543717\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 14.105', 'Peso máximo al despegue (MTOW): 13.169', 'Velocidad de pérdida (KCAS): 18.842', 'envergadura: 12.22', 'payload: 14.913', 'Rango de comunicación: 16.315']\n", - "**Mediana calculada:** 14.509\n", - "\n", - "--- Imputación para aeronave: **ScanEagle** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.385x + 10.072\n", - "Valor del parámetro correlacionado para la aeronave: 1.063\n", - "Predicción obtenida: 15.797\n", - "\tR²: 0.4820128146718825, Desviación Estándar: 3.2870383565993335, Varianza: 10.804621157755248, Incertidumbre: 0.6211918601065917\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.114x + 12.545\n", - "Valor del parámetro correlacionado para la aeronave: 26.5\n", - "Predicción obtenida: 15.561\n", - "\tR²: 0.5577729360322713, Desviación Estándar: 2.858039912868348, Varianza: 8.168392143548514, Incertidumbre: 0.5716079825736695\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.664x + 7.593\n", - "Valor del parámetro correlacionado para la aeronave: 12.559\n", - "Predicción obtenida: 15.932\n", - "\tR²: 0.3998213157109771, Desviación Estándar: 3.6160406734700388, Varianza: 13.07575015218965, Incertidumbre: 0.7381212115959697\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.684x + 6.837\n", - "Valor del parámetro correlacionado para la aeronave: 3.1\n", - "Predicción obtenida: 15.158\n", - "\tR²: 0.5095357739591448, Desviación Estándar: 3.198518978768509, Varianza: 10.230523657542346, Incertidumbre: 0.6044632701101256\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.424x + 13.745\n", - "Valor del parámetro correlacionado para la aeronave: 5.0\n", - "Predicción obtenida: 15.864\n", - "\tR²: 0.44688240705153315, Desviación Estándar: 3.295517822105962, Varianza: 10.860437715818021, Incertidumbre: 0.6342227005706954\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = 0.001x + 16.018\n", - "Valor del parámetro correlacionado para la aeronave: 101.86\n", - "Predicción obtenida: 16.133\n", - "\tR²: 0.0007471972665133997, Desviación Estándar: 2.300874321451344, Varianza: 5.294022643114182, Incertidumbre: 0.614934528635493\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 15.797', 'Peso máximo al despegue (MTOW): 15.561', 'Velocidad de pérdida (KCAS): 15.932', 'envergadura: 15.158', 'payload: 15.864', 'Rango de comunicación: 16.133']\n", - "**Mediana calculada:** 15.83\n", - "\n", - "--- Imputación para aeronave: **Integrator** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.384x + 10.075\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 20.154\n", - "\tR²: 0.4836358210043519, Desviación Estándar: 3.2298738173488455, Varianza: 10.432084875995603, Incertidumbre: 0.5997725107817994\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.114x + 12.56\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 21.063\n", - "\tR²: 0.5584094722839654, Desviación Estándar: 2.803013662480037, Varianza: 7.856885592049752, Incertidumbre: 0.5497162062251112\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.665x + 7.58\n", - "Valor del parámetro correlacionado para la aeronave: 13.051\n", - "Predicción obtenida: 16.253\n", - "\tR²: 0.40384854496261013, Desviación Estándar: 3.543037251696186, Varianza: 12.553112966906864, Incertidumbre: 0.7086074503392372\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.673x + 6.905\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 19.733\n", - "\tR²: 0.51034062753414, Desviación Estándar: 3.145245417564829, Varianza: 9.892568736712557, Incertidumbre: 0.5840574114645236\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.424x + 13.743\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 21.375\n", - "\tR²: 0.44959491624800174, Desviación Estándar: 3.2361405160283896, Varianza: 10.47260543948049, Incertidumbre: 0.6115730723622395\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = 0.001x + 16.008\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 16.101\n", - "\tR²: 0.0006009919023085564, Desviación Estándar: 2.2241277836738833, Varianza: 4.946744398110101, Incertidumbre: 0.5742673244004108\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 20.154', 'Peso máximo al despegue (MTOW): 21.063', 'Velocidad de pérdida (KCAS): 16.253', 'envergadura: 19.733', 'payload: 21.375', 'Rango de comunicación: 16.101']\n", - "**Mediana calculada:** 19.944\n", - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.373x + 10.083\n", - "Valor del parámetro correlacionado para la aeronave: 2.09\n", - "Predicción obtenida: 21.309\n", - "\tR²: 0.49007651885627856, Desviación Estándar: 3.1758029669681096, Varianza: 10.085724485003448, Incertidumbre: 0.5798196410667559\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.112x + 12.592\n", - "Valor del parámetro correlacionado para la aeronave: 75.0\n", - "Predicción obtenida: 20.973\n", - "\tR²: 0.5653829737578795, Desviación Estándar: 2.7581885003227513, Varianza: 7.607603803312669, Incertidumbre: 0.5308136243790236\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.677x + 6.895\n", - "Valor del parámetro correlacionado para la aeronave: 5.033\n", - "Predicción obtenida: 20.368\n", - "\tR²: 0.5164434789260648, Desviación Estándar: 3.092606517663101, Varianza: 9.56421507309229, Incertidumbre: 0.5646301170705265\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.415x + 13.775\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 21.244\n", - "\tR²: 0.45243459789702367, Desviación Estándar: 3.1899291559574228, Varianza: 10.175648020027236, Incertidumbre: 0.5923549733763512\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 21.309', 'Peso máximo al despegue (MTOW): 20.973', 'envergadura: 20.368', 'payload: 21.244']\n", - "**Mediana calculada:** 21.108\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.359x + 10.095\n", - "Valor del parámetro correlacionado para la aeronave: 1.872\n", - "Predicción obtenida: 20.127\n", - "\tR²: 0.5020709354180335, Desviación Estándar: 3.1243525541900556, Varianza: 9.761578882873925, Incertidumbre: 0.5611502841334306\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.112x + 12.589\n", - "Valor del parámetro correlacionado para la aeronave: 74.8\n", - "Predicción obtenida: 20.963\n", - "\tR²: 0.5809327536697524, Desviación Estándar: 2.7085965129650105, Varianza: 7.336495070046214, Incertidumbre: 0.5118766268087254\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.696x + 6.845\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 19.785\n", - "\tR²: 0.5270307946868045, Desviación Estándar: 3.045038079257076, Varianza: 9.272256904125623, Incertidumbre: 0.5469049839079977\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.414x + 13.778\n", - "Valor del parámetro correlacionado para la aeronave: 18.0\n", - "Predicción obtenida: 21.233\n", - "\tR²: 0.46486409456400923, Desviación Estándar: 3.1364030940850203, Varianza: 9.837024368586087, Incertidumbre: 0.5726262413531211\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 20.127', 'Peso máximo al despegue (MTOW): 20.963', 'envergadura: 19.785', 'payload: 21.233']\n", - "**Mediana calculada:** 20.545\n", - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.378x + 10.082\n", - "Valor del parámetro correlacionado para la aeronave: 1.349\n", - "Predicción obtenida: 17.337\n", - "\tR²: 0.509633634350891, Desviación Estándar: 3.0759861908690347, Varianza: 9.461691046416995, Incertidumbre: 0.543762673599918\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.111x + 12.598\n", - "Valor del parámetro correlacionado para la aeronave: 36.3\n", - "Predicción obtenida: 16.641\n", - "\tR²: 0.5907860344296275, Desviación Estándar: 2.6625239079484526, Varianza: 7.089033560397101, Incertidumbre: 0.49441827749097367\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.711x + 6.811\n", - "Valor del parámetro correlacionado para la aeronave: 4.0\n", - "Predicción obtenida: 17.653\n", - "\tR²: 0.5335788768451615, Desviación Estándar: 2.9999440120772443, Varianza: 8.999664075598112, Incertidumbre: 0.5303201885299493\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.41x + 13.791\n", - "Valor del parámetro correlacionado para la aeronave: 8.6\n", - "Predicción obtenida: 17.321\n", - "\tR²: 0.4719735374132813, Desviación Estándar: 3.0876799487134994, Varianza: 9.533767465687397, Incertidumbre: 0.5545636897507049\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 17.337', 'Peso máximo al despegue (MTOW): 16.641', 'envergadura: 17.653', 'payload: 17.321']\n", - "**Mediana calculada:** 17.329\n", - "\n", - "--- Imputación para aeronave: **RQ Nan 21A Blackjack** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.378x + 10.081\n", - "Valor del parámetro correlacionado para la aeronave: 1.802\n", - "Predicción obtenida: 19.773\n", - "\tR²: 0.5096506431121606, Desviación Estándar: 3.0290221145859624, Varianza: 9.174974970650814, Incertidumbre: 0.5272850695450955\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.111x + 12.626\n", - "Valor del parámetro correlacionado para la aeronave: 61.0\n", - "Predicción obtenida: 19.412\n", - "\tR²: 0.5899119116525353, Desviación Estándar: 2.6206837047329836, Varianza: 6.867983080252995, Incertidumbre: 0.47846919372282115\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.649x + 7.958\n", - "Valor del parámetro correlacionado para la aeronave: 13.051\n", - "Predicción obtenida: 16.427\n", - "\tR²: 0.38497447747770597, Desviación Estándar: 3.545344634636701, Varianza: 12.569468578347243, Incertidumbre: 0.695299287477847\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.71x + 6.803\n", - "Valor del parámetro correlacionado para la aeronave: 4.8\n", - "Predicción obtenida: 19.812\n", - "\tR²: 0.53342997768055, Desviación Estándar: 2.954663687517189, Varianza: 8.730037506332673, Incertidumbre: 0.5143409288604107\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.41x + 13.792\n", - "Valor del parámetro correlacionado para la aeronave: 17.7\n", - "Predicción obtenida: 21.056\n", - "\tR²: 0.4721125878507184, Desviación Estándar: 3.039052343695801, Varianza: 9.235839147722942, Incertidumbre: 0.5372336301520427\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = 0.002x + 16.192\n", - "Valor del parámetro correlacionado para la aeronave: 92.6\n", - "Predicción obtenida: 16.346\n", - "\tR²: 0.0013961471345631526, Desviación Estándar: 2.3455650352893986, Varianza: 5.501675334772157, Incertidumbre: 0.5863912588223497\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 19.773', 'Peso máximo al despegue (MTOW): 19.412', 'Velocidad de pérdida (KCAS): 16.427', 'envergadura: 19.812', 'payload: 21.056', 'Rango de comunicación: 16.346']\n", - "**Mediana calculada:** 19.592\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #MAP** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.371x + 10.086\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 13.846\n", - "\tR²: 0.5130352786837467, Desviación Estándar: 2.984299405987304, Varianza: 8.906042944576173, Incertidumbre: 0.5118031257684521\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.111x + 12.626\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 13.317\n", - "\tR²: 0.5946184657373111, Desviación Estándar: 2.5782613181332947, Varianza: 6.647431424582433, Incertidumbre: 0.4630694027472812\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 13.051, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.636x + 8.268\n", - "Valor del parámetro correlacionado para la aeronave: 15.316\n", - "Predicción obtenida: 18.011\n", - "\tR²: 0.3707919802946765, Desviación Estándar: 3.529606447333878, Varianza: 12.458121673060882, Incertidumbre: 0.6792730775005511\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.706x + 6.812\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 13.172\n", - "\tR²: 0.5366242582049442, Desviación Estándar: 2.9111212195272542, Varianza: 8.474626754781848, Incertidumbre: 0.49925317032725897\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.403x + 13.817\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.301\n", - "\tR²: 0.4717960925463479, Desviación Estándar: 3.002745499394878, Varianza: 9.016480534136194, Incertidumbre: 0.5227108979661816\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = 0.002x + 16.338\n", - "Valor del parámetro correlacionado para la aeronave: 50.0\n", - "Predicción obtenida: 16.448\n", - "\tR²: 0.0021729000438440726, Desviación Estándar: 2.4001143739811432, Varianza: 5.760549008190895, Incertidumbre: 0.5821132398522036\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 13.846', 'Peso máximo al despegue (MTOW): 13.317', 'Velocidad de pérdida (KCAS): 18.011', 'envergadura: 13.172', 'payload: 14.301', 'Rango de comunicación: 16.448']\n", - "**Mediana calculada:** 14.074\n", - "\n", - "--- Imputación para aeronave: **DeltaQuad Pro #CARGO** ---\n", - "\n", - "--- Correlación: Área del ala (r = 0.711) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Área del ala: [0.87, 1.158, 1.55, 1.55, 1.55, 2.503, 0.57, 0.94, 1.608, 1.2, 0.754, 1.063, 1.872, 2.09, 1.872, 1.349, 1.802, 0.84, 0.7, 0.8, 0.52, 1.03, 1.202, 1.203, 1.424, 0.88, 1.0, 1.33, 1.32, 2.615, 2.615, 1.993, 0.771, 0.986, 2.329]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 5.358x + 10.11\n", - "Valor del parámetro correlacionado para la aeronave: 0.7\n", - "Predicción obtenida: 13.861\n", - "\tR²: 0.5219079320200679, Desviación Estándar: 2.941594049068034, Varianza: 8.65297554951247, Incertidumbre: 0.4972201452507867\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Peso máximo al despegue (MTOW) (r = 0.768) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Peso máximo al despegue (MTOW): [13.6, 19.958, 42.2, 53.5, 54.4, 93.0, 13.1, 20.0, 55.0, 32.0, 6.5, 26.5, 74.8, 75.0, 74.8, 36.3, 61.0, 10.0, 6.2, 12.5, 23.5, 32.0, 24.0, 40.0, 15.0, 28.0, 28.0, 90.0, 100.0, 9.5, 18.0, 91.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 15.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.11x + 12.69\n", - "Valor del parámetro correlacionado para la aeronave: 6.2\n", - "Predicción obtenida: 13.374\n", - "\tR²: 0.6010085744446478, Desviación Estándar: 2.5409184754535725, Varianza: 6.456266698901308, Incertidumbre: 0.4491751711088513\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Velocidad de pérdida (KCAS) (r = 0.817) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 3600', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para Velocidad de pérdida (KCAS): [14.838, 9.415, 10.532, 10.532, 10.532, 18.907, 10.0, 10.0, 15.316, 16.645, 12.559, 13.051, 13.051, 14.0, 15.316, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 19.109, 24.0, 25.0, 13.0, 13.0, 13.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.0, 14.074, 15.5, 17.0, 18.0, 17.397, 24.0, 12.5, 15.0, 25.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.634x + 8.16\n", - "Valor del parámetro correlacionado para la aeronave: 15.607\n", - "Predicción obtenida: 18.054\n", - "\tR²: 0.3591533059239339, Desviación Estándar: 3.5421565229641567, Varianza: 12.546872833177526, Incertidumbre: 0.669404661759172\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: envergadura (r = 0.774) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2600', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Volitation VT510', 'Ascend', 'Transition', 'Reach']\n", - "Valores para envergadura: [3.657, 4.877, 4.4, 4.4, 4.4, 5.644, 2.9, 3.0, 5.2, 4.4, 2.1, 3.1, 4.8, 5.033, 4.8, 4.0, 4.8, 2.69, 2.35, 2.15, 2.45, 3.2, 3.5, 3.9, 6.5, 2.6, 2.93, 3.6, 3.6, 5.0, 5.0, 5.1, 2.0, 3.0, 6.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 10.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 2.677x + 6.953\n", - "Valor del parámetro correlacionado para la aeronave: 2.35\n", - "Predicción obtenida: 13.244\n", - "\tR²: 0.5439573083064899, Desviación Estándar: 2.87296092523383, Varianza: 8.253904477920424, Incertidumbre: 0.4856190299260294\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: payload (r = 0.705) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'Aerosonde Mk. 4.8 VTOL FTUAS', 'AAI Aerosonde', 'Fulmar X', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'Integrator VTOL', 'Integrator Extended Range (ER)', 'ScanEagle 3', 'RQ Nan 21A Blackjack', 'DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39', 'Volitation VT370', 'Skyeye 2930 VTOL', 'Skyeye 3600', 'Skyeye 3600 VTOL', 'Skyeye 5000', 'Skyeye 5000 VTOL', 'Skyeye 5000 VTOL octo', 'Ascend', 'Transition', 'Reach']\n", - "Valores para payload: [2.495, 2.495, 14.5, 11.3, 17.7, 22.7, 4.0, 2.495, 12.0, 5.5, 2.693, 5.0, 18.0, 18.0, 18.0, 8.6, 17.7, 3.0, 1.2, 1.5, 2.2, 5.0, 10.0, 5.0, 18.0, 6.0, 10.0, 10.0, 20.0, 25.0, 15.0, 0.6, 1.5, 7.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 25.0, 10.0, 14.807, 18.753, 16.396, 14.509, 15.83, 19.944, 21.108, 20.545, 17.329, 19.592, 14.0, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397, 24.0, 18.0, 12.5, 24.0, 15.0, 25.0, 25.0, 14.0, 10.0, 25.0]\n", - "Ecuación de regresión: y = 0.404x + 13.799\n", - "Valor del parámetro correlacionado para la aeronave: 1.2\n", - "Predicción obtenida: 14.285\n", - "\tR²: 0.48382243545428616, Desviación Estándar: 2.95849521726017, Varianza: 8.7526939505513, Incertidumbre: 0.5073777439109984\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "\n", - "--- Correlación: Rango de comunicación (r = -0.874) ---\n", - "Aeronaves utilizadas: ['Stalker XE', 'Stalker VXE30', 'Aerosonde Mk. 4.7 Fixed Wing', 'Aerosonde Mk. 4.7 VTOL', 'Aerosonde Mk. 4.8 Fixed wing', 'AAI Aerosonde', 'Orbiter 4', 'Orbiter 3', 'Mantis', 'ScanEagle', 'Integrator', 'RQ Nan 21A Blackjack', 'DeltaQuad Pro #MAP', 'V21', 'V25', 'V32', 'V35', 'V39']\n", - "Valores para Rango de comunicación: [59.0, 161.0, 140.0, 140.0, 140.0, 150.0, 150.0, 50.0, 25.0, 101.86, 92.6, 92.6, 50.0, 30.0, 30.0, 30.0, 30.0, 30.0]\n", - "Valores para Velocidad de pérdida limpia (KCAS): [14.872, 14.787, 17.306, 18.62, 18.423, 10.0, 18.753, 16.396, 14.509, 15.83, 19.944, 19.592, 14.074, 14.0, 15.5, 17.0, 18.0, 17.397]\n", - "Ecuación de regresión: y = 0.004x + 16.06\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 16.179\n", - "\tR²: 0.006797842032161827, Desviación Estándar: 2.3934134703855308, Varianza: 5.72842804022291, Incertidumbre: 0.5641329650309457\n", - "\tNivel de confianza: Confianza Muy Baja\n", - "Valores imputados: ['Área del ala: 13.861', 'Peso máximo al despegue (MTOW): 13.374', 'Velocidad de pérdida (KCAS): 18.054', 'envergadura: 13.244', 'payload: 14.285', 'Rango de comunicación: 16.179']\n", - "**Mediana calculada:** 14.073\n", - "\n", - "=== envergadura: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Cuerda: No hay valores faltantes para imputar. ===\n", - "\n", - "=== payload: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Empty weight: No hay valores faltantes para imputar. ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Reporte Final de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveParámetroValor ImputadoNivel de Confianza
    5Aerosonde Mk. 4.7 VTOLVelocidad de pérdida (KCAS)10.5320.512
    6Aerosonde Mk. 4.8 Fixed wingVelocidad de pérdida (KCAS)10.5320.512
    7Orbiter 4Velocidad de pérdida (KCAS)10.0000.512
    8Orbiter 3Velocidad de pérdida (KCAS)15.3160.512
    9MantisVelocidad de pérdida (KCAS)16.6450.547
    10ScanEagleVelocidad de pérdida (KCAS)12.5590.577
    11IntegratorVelocidad de pérdida (KCAS)13.0510.602
    12RQ Nan 21A BlackjackVelocidad de pérdida (KCAS)13.0510.623
    13DeltaQuad Pro #MAPVelocidad de pérdida (KCAS)15.3160.623
    14DeltaQuad Pro #CARGOVelocidad de pérdida (KCAS)15.6070.623
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveCantidad de Valores Imputados
    0Aerosonde Mk. 4.7 VTOL1.000
    1Aerosonde Mk. 4.8 Fixed wing1.000
    2DeltaQuad Pro #CARGO1.000
    3DeltaQuad Pro #MAP1.000
    4Integrator1.000
    5Mantis1.000
    6Orbiter 31.000
    7Orbiter 41.000
    8RQ Nan 21A Blackjack1.000
    9ScanEagle1.000
    TotalTotal10.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 3600 = 17070.833 (Correlación)\n", - "Imputación final aplicada: Techo de servicio máximo - Skyeye 5000 = 16254.028 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker XE = 14.838 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Stalker VXE30 = 9.415 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.7 Fixed Wing = 10.532 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.7 VTOL = 10.532 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Aerosonde Mk. 4.8 Fixed wing = 10.532 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 4 = 10.0 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Orbiter 3 = 15.316 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Mantis = 16.645 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - ScanEagle = 12.559 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Integrator = 13.051 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - RQ Nan 21A Blackjack = 13.051 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Pro #MAP = 15.316 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - DeltaQuad Pro #CARGO = 15.607000000000001 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Stalker XE = 14.872 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Stalker VXE30 = 14.786999999999999 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.7 Fixed Wing = 17.306 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.7 VTOL = 18.62 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Aerosonde Mk. 4.8 Fixed wing = 18.423 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Fulmar X = 14.807 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Orbiter 4 = 18.753 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Orbiter 3 = 16.3955 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Mantis = 14.509 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - ScanEagle = 15.8305 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator = 19.9435 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator VTOL = 21.1085 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - Integrator Extended Range (ER) = 20.545 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - ScanEagle 3 = 17.329 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - RQ Nan 21A Blackjack = 19.5925 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Pro #MAP = 14.0735 (Correlación)\n", - "Imputación final aplicada: Velocidad de pérdida limpia (KCAS) - DeltaQuad Pro #CARGO = 14.073 (Correlación)\n", - "\n", - "=== Iteración 2: Resumen después de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Después de Iteración 2

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE0.000
    1Stalker VXE300.000
    2Aerosonde Mk. 4.7 Fixed Wing0.000
    3Aerosonde Mk. 4.7 VTOL0.000
    4Aerosonde Mk. 4.8 Fixed wing0.000
    5Aerosonde Mk. 4.8 VTOL FTUAS0.000
    6AAI Aerosonde0.000
    7Fulmar X1.000
    8Orbiter 40.000
    9Orbiter 30.000
    10Mantis1.000
    11ScanEagle0.000
    12Integrator0.000
    13Integrator VTOL1.000
    14Integrator Extended Range (ER)1.000
    15ScanEagle 31.000
    16RQ Nan 21A Blackjack0.000
    17DeltaQuad Evo0.000
    18DeltaQuad Pro #MAP0.000
    19DeltaQuad Pro #CARGO0.000
    20V210.000
    21V250.000
    22V320.000
    23V350.000
    24V390.000
    25Volitation VT3700.000
    26Skyeye 26000.000
    27Skyeye 2930 VTOL0.000
    28Skyeye 36001.000
    29Skyeye 3600 VTOL0.000
    30Skyeye 50000.000
    31Skyeye 5000 VTOL0.000
    32Skyeye 5000 VTOL octo0.000
    33Volitation VT5100.000
    34Ascend0.000
    35Transition0.000
    36Reach0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes6.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "================================================================================\n", - "\u001b[1m=== FIN DE ITERACIÓN 2 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 3 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "=== Iteración 3: Resumen antes de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Antes de Iteración 3

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE30.000
    1Stalker VXE3031.000
    2Aerosonde Mk. 4.7 Fixed Wing28.000
    3Aerosonde Mk. 4.7 VTOL27.000
    4Aerosonde Mk. 4.8 Fixed wing31.000
    5Aerosonde Mk. 4.8 VTOL FTUAS33.000
    6AAI Aerosonde30.000
    7Fulmar X35.000
    8Orbiter 434.000
    9Orbiter 334.000
    10Mantis34.000
    11ScanEagle33.000
    12Integrator33.000
    13Integrator VTOL33.000
    14Integrator Extended Range (ER)36.000
    15ScanEagle 334.000
    16RQ Nan 21A Blackjack32.000
    17DeltaQuad Evo28.000
    18DeltaQuad Pro #MAP30.000
    19DeltaQuad Pro #CARGO30.000
    20V2128.000
    21V2528.000
    22V3228.000
    23V3531.000
    24V3931.000
    25Volitation VT37030.000
    26Skyeye 260033.000
    27Skyeye 2930 VTOL32.000
    28Skyeye 360033.000
    29Skyeye 3600 VTOL31.000
    30Skyeye 500029.000
    31Skyeye 5000 VTOL30.000
    32Skyeye 5000 VTOL octo30.000
    33Volitation VT51030.000
    34Ascend29.000
    35Transition29.000
    36Reach29.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes1147.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 3 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m\n", - "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 3 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\n", - "=== DataFrame inicial ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
    Modelo
    Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
    Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440530.22866936.09414730.40658430.46641927.42637218.26582630.62533630.95346521.46331.89437625.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.62533630.29090932.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429403.635186839.144606NaN19500.019500.07013.83419500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.014972.95591316000.017070.83316959.09187416254.02816009.43594316009.47636617000.010000.013000.016000.0
    Velocidad de pérdida limpia (KCAS)14.87214.78717.30618.6218.42325.010.014.80718.75316.395514.50915.830519.943521.108520.54517.32919.592514.014.073514.07314.015.517.018.017.3973924.010.018.012.524.015.025.025.025.014.010.025.0
    Área del ala0.871.1582831.551.551.552.5030.570.941.6081.20.7541.0631.8722.08951.8721.3491.8020.840.70.70.80.521.031.2021.2031.4240.881.01.331.322.6152.6152.6151.9930.7710.9862.329
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44313.934514.75514.05712.90812.64812.8413.76512.91414.58914.71414.71414.56814.42114.18213.89814.041513.64514.10314.00113.709513.671512.69513.03212.855513.09914.34914.22313.669
    Longitud del fuselaje2.12.59083.03.03.03.59451.71.21.21.21.481.712.52.9982.52.42.50.750.90.90.930.931.01.881.9542.022.052.032.4882.423.53.53.52.9051.5622.34.712
    Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0518.9225481.428535.2755800.03270.0800.0509.556550.025.0503.5155500.0646.0835500.050.0565.912270.0100.0100.0270.0270.0412.686456.221413.556300.03270.0425.273458.1245300.0530.401800.0800.0800.0270.0506.641800.0
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.011.6729075.06.012.020.0
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388642.25267530.84572541.736.036.025.641.246.340.21646.341.246.333.029.00929.00933.033.033.033.033.033.030.83428930.035.098533.042.042.038.050.030.030.035.0
    Velocidad de pérdida (KCAS)14.8389.41510.53210.53210.53218.90746510.0NaN10.015.31616.64512.55913.051NaNNaNNaN13.05114.015.31615.60714.015.517.018.017.3973924.010.018.012.524.015.019.10922524.025.013.013.013.0
    Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    envergadura3.6574.87684.44.44.45.6442.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3190.3320.3040.2710.29850.33850.3410.3450.31150.3410.27550.2720.2720.2780.2810.2920.3060.3070.3140.2960.30.3110.3150.34850.3380.34450.3350.2870.2910.313
    payload2.4947562.49475614.511.317.722.74.02.49475612.05.52.6935.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
    Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
    RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
    RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
    Empty weight10.88620817.46329219.79619.79619.80931.010.017.46329218.36512.2375.63310.19222.19524.784522.25714.79421.1234.84.7544.7542.653.456.457.16.70830311.06.57.111.511.032.032.140535.023.9593.05.831.0
    Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
    Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
    ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
    Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
    Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Características adicionalesNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    indice_desconocidoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Convertir todo a numérico ===\n", - "\n", - "\n", - "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", - "\n", - "Umbral seleccionado para correlaciones significativas: 0.7\n", - "\n", - "=== Cálculo de tabla completa ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despegue1.0000.0630.4270.082-0.2730.269-0.2500.2220.4250.1680.054-0.0780.241-0.1950.1050.2000.229nan0.389nan0.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
    Altitud a la que se realiza el crucero0.0631.0000.0110.0950.008-0.0750.105-0.092nan-0.095-0.309-0.278-0.0640.216-0.0800.109-0.114nannannan-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
    Velocidad a la que se realiza el crucero (KTAS)0.4270.0111.0000.1340.3160.497-0.6070.4280.9170.5530.5450.4230.6340.1060.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.2900.0630.5630.120-0.076nannan
    Techo de servicio máximo0.0820.0950.1341.0000.1030.096-0.0290.1350.5900.1220.0970.0010.0140.1050.0220.0280.118-0.8750.1120.579-0.004-0.961-0.118-0.8190.461-0.1560.1960.068-0.1360.140nannan
    Velocidad de pérdida limpia (KCAS)-0.2730.0080.3160.1031.0000.753-0.5980.5940.6750.798-0.2300.2600.5160.6440.7470.6430.731-0.1900.4930.9310.678-0.2370.1290.2240.6300.118-0.0280.322-0.1600.232nannan
    Área del ala0.269-0.0750.4970.0960.7531.000-0.7780.8350.9840.970-0.0230.3830.6480.3050.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
    Relación de aspecto del ala-0.2500.105-0.607-0.029-0.598-0.7781.000-0.624-0.681-0.790-0.003-0.456-0.730-0.149-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.2960.024-0.001-0.471-0.1410.075nannan
    Longitud del fuselaje0.222-0.0920.4280.1350.5940.835-0.6241.0000.9380.8060.1400.4030.3630.1170.7190.6230.660-0.6170.5740.9260.834-0.6960.6460.9290.036-0.2030.1380.6120.0340.040nannan
    Ancho del fuselaje0.425nan0.9170.5900.6750.984-0.6810.9381.0000.9860.833-0.0890.9400.7110.6710.5570.868nan0.944nan0.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
    Peso máximo al despegue (MTOW)0.168-0.0950.5530.1220.7980.970-0.7900.8060.9861.0000.0300.4200.7170.3510.8110.7510.882-0.4010.7080.9790.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
    Alcance de la aeronave0.054-0.3090.5450.097-0.230-0.023-0.0030.1400.8330.0301.0000.2240.013-0.258-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
    Autonomía de la aeronave-0.078-0.2780.4230.0010.2600.383-0.4560.403-0.0890.4200.2241.0000.378-0.3430.5410.2690.400-0.5940.3370.6340.486-0.7150.8020.056-0.7320.033-0.4200.4780.353-0.314nannan
    Velocidad máxima (KIAS)0.241-0.0640.6340.0140.5160.648-0.7300.3630.9400.7170.0130.3781.0000.2610.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.067-0.0570.3000.178-0.141nannan
    Velocidad de pérdida (KCAS)-0.1950.2160.1060.1050.6440.305-0.1490.1170.7110.351-0.258-0.3430.2611.0000.2340.1680.3740.6720.2840.3230.1620.934-0.9610.0360.6850.1210.3010.005-0.4330.508nannan
    envergadura0.105-0.0800.4210.0220.7470.825-0.6300.7190.6710.811-0.0430.5410.4910.2341.0000.6860.775-0.2580.5010.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
    Cuerda0.2000.1090.3960.0280.6430.787-0.8620.6230.5570.751-0.2240.2690.6270.1680.6861.0000.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
    payload0.229-0.1140.5670.1180.7310.854-0.8260.6600.8680.8820.0190.4000.7180.3740.7750.7581.000-0.0240.6700.5590.784-0.1420.4890.7110.846-0.0080.0530.4620.100-0.055nannan
    duracion en VTOLnannan-0.694-0.875-0.190-0.3830.519-0.617nan-0.401-0.525-0.594-0.0770.672-0.258-0.499-0.0241.000-0.694-0.402-0.3151.000nannannannan-0.188-0.9040.188-0.188nannan
    Crucero KIAS0.389nan0.9730.1120.4930.692-0.7690.5740.9440.7080.5240.3370.7000.2840.5010.7300.670-0.6941.0000.7230.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
    RTF (Including fuel & Batteries)nannan0.7900.5790.9310.965-0.4970.926nan0.9790.9360.6340.7260.3230.9500.5950.559-0.4020.7231.0000.948-0.402nannannannan0.0970.428-0.0970.097nannan
    Empty weight0.225-0.1210.503-0.0040.6780.944-0.7460.8340.9540.9330.0810.4860.6130.1620.8060.7240.784-0.3150.6360.9481.000-0.3860.7850.9800.2510.023-0.0290.4800.195-0.070nannan
    Maximum Crosswindnan0.038-0.854-0.961-0.237-0.4660.432-0.696nan-0.464-0.711-0.715-0.2230.934-0.414-0.498-0.1421.000-0.855-0.402-0.3861.000nannannannannan-0.943nannannannan
    Rango de comunicaciónnan-0.3250.480-0.1180.1290.491-0.4090.6460.3230.5140.4670.8020.151-0.9610.6480.3550.489nan0.359nan0.785nan1.000nannannan-0.4300.6040.430-0.430nannan
    Capacidad combustible-0.018nan0.365-0.8190.2240.974-0.9700.929nan0.9760.8480.0560.7270.0360.2970.9750.711nan0.581nan0.980nannan1.0000.3770.817-0.080nan-0.0800.270nannan
    Consumo-0.240nan0.4610.4610.6300.2880.2960.0361.0000.7580.837-0.7320.9100.6850.085-0.2280.846nan0.461nan0.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
    Precio-0.156nan-0.290-0.1560.1180.0360.024-0.203nan0.052-0.1480.0330.0670.1210.032-0.041-0.008nan-0.243nan0.023nannan0.8170.9981.000-0.1380.217-0.1380.134nannan
    Despegue0.735-0.1190.0630.196-0.0280.125-0.0010.1380.7940.0900.157-0.420-0.0570.301-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
    Propulsión horizontal0.154-0.1090.5630.0680.3220.476-0.4710.612nan0.4670.3170.4780.3000.0050.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.0101.0000.118-0.083nannan
    Propulsión vertical0.6710.1870.120-0.136-0.1600.072-0.1410.034-0.5350.023-0.2130.3530.178-0.4330.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.1181.000-0.954nannan
    Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1400.2320.0370.0750.0400.5740.0750.210-0.314-0.1410.508-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.9541.000nannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores1024.000
    1Valores numéricos826.000
    2Valores NaN198.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Filtrando datos seleccionados ===\n", - "\n", - "=== Cálculo de correlaciones filtradas ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)1.0000.1340.497-0.6070.4280.5530.5450.4230.6340.1060.3160.4210.3960.5670.503
    Techo de servicio máximo0.1341.0000.096-0.0290.1350.1220.0970.0010.0140.1050.1030.0220.0280.118-0.004
    Área del ala0.4970.0961.000-0.7780.8350.970-0.0230.3830.6480.3050.7530.8250.7870.8540.944
    Relación de aspecto del ala-0.607-0.029-0.7781.000-0.624-0.790-0.003-0.456-0.730-0.149-0.598-0.630-0.862-0.826-0.746
    Longitud del fuselaje0.4280.1350.835-0.6241.0000.8060.1400.4030.3630.1170.5940.7190.6230.6600.834
    Peso máximo al despegue (MTOW)0.5530.1220.970-0.7900.8061.0000.0300.4200.7170.3510.7980.8110.7510.8820.933
    Alcance de la aeronave0.5450.097-0.023-0.0030.1400.0301.0000.2240.013-0.258-0.230-0.043-0.2240.0190.081
    Autonomía de la aeronave0.4230.0010.383-0.4560.4030.4200.2241.0000.378-0.3430.2600.5410.2690.4000.486
    Velocidad máxima (KIAS)0.6340.0140.648-0.7300.3630.7170.0130.3781.0000.2610.5160.4910.6270.7180.613
    Velocidad de pérdida (KCAS)0.1060.1050.305-0.1490.1170.351-0.258-0.3430.2611.0000.6440.2340.1680.3740.162
    Velocidad de pérdida limpia (KCAS)0.3160.1030.753-0.5980.5940.798-0.2300.2600.5160.6441.0000.7470.6430.7310.678
    envergadura0.4210.0220.825-0.6300.7190.811-0.0430.5410.4910.2340.7471.0000.6860.7750.806
    Cuerda0.3960.0280.787-0.8620.6230.751-0.2240.2690.6270.1680.6430.6861.0000.7580.724
    payload0.5670.1180.854-0.8260.6600.8820.0190.4000.7180.3740.7310.7750.7581.0000.784
    Empty weight0.503-0.0040.944-0.7460.8340.9330.0810.4860.6130.1620.6780.8060.7240.7841.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos225.000
    2Valores NaN0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Modelo
    Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannannannannannannannannan
    Techo de servicio máximonannannannannannannannannannannannannannannan
    Área del alanannannan-0.7780.8350.970nannannannan0.7530.8250.7870.8540.944
    Relación de aspecto del alanannan-0.778nannan-0.790nannan-0.730nannannan-0.862-0.826-0.746
    Longitud del fuselajenannan0.835nannan0.806nannannannannan0.719nannan0.834
    Peso máximo al despegue (MTOW)nannan0.970-0.7900.806nannannan0.717nan0.7980.8110.7510.8820.933
    Alcance de la aeronavenannannannannannannannannannannannannannannan
    Autonomía de la aeronavenannannannannannannannannannannannannannannan
    Velocidad máxima (KIAS)nannannan-0.730nan0.717nannannannannannannan0.718nan
    Velocidad de pérdida (KCAS)nannannannannannannannannannannannannannannan
    Velocidad de pérdida limpia (KCAS)nannan0.753nannan0.798nannannannannan0.747nan0.731nan
    envergaduranannan0.825nan0.7190.811nannannannan0.747nannan0.7750.806
    Cuerdanannan0.787-0.862nan0.751nannannannannannannan0.7580.724
    payloadnannan0.854-0.826nan0.882nannan0.718nan0.7310.7750.758nan0.784
    Empty weightnannan0.944-0.7460.8340.933nannannannannan0.8060.7240.784nan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos60.000
    2Valores NaN165.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Preparando datos para el heatmap ===\n", - "\n", - "=== Generando heatmap ===\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwUzR8H8M/R3d1dCoKCYmMQYicWKGJ3+9jtY4udCCY2diGKiYqBiQEGKqF0Sd7+/kAOjrsjpHz8fd++7vWSvdnZmduZ3b25CRbDMAwIIYQQQgghhBBCCCG1Tqi+E0AIIYQQQgghhBBCyP8LaowjhBBCCCGEEEIIIaSOUGMcIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipI9QYRwghhBBCCCGEEEJIHaHGOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkeoMY4QQgghhBBCCCGEkDpCjXGEEEIIIYQQQgghhNQRaowjhBDynxYQEAAWi4VHjx7xfb9Lly4wMDCo1TTcu3cPixYtQmpqaq0epz4sWrQILBarxuN9/vw5vL29YWhoCAkJCcjIyKBx48ZYvXo1kpOTa/x41REaGgoWi4XQ0NBaif/Tp09gsVgICAiolfjr29ChQ2usDtrZ2UFbWxuFhYUCw7Rs2RIqKirIy8ur9vGqc+4rujaVVpOfUWUxDIMjR46gdevWUFNTg4SEBHR0dODq6oo9e/b8VpxOTk5wcnKq2YRWUW1ds2oai8XCokWL6vy4t2/fhri4OD5//szZZmBggC5duvAN/+jRoxq/PlWlbtSE/0qZKJaZmYnJkydDS0sLEhISsLW1xZEjRyq1r5OTE1gslsBXfHw8ACA/Px/Gxsbw9fWtxZwQQspDjXGEEEJINd27dw+LFy/+KxvjasPu3bvRpEkThIeHY8aMGbh8+TKCgoLQt29f7NixAz4+PvWdxDqlqamJsLAwdO7cub6T8sfz8fFBbGwsrly5wvf9d+/e4d69e/D09ISYmFi1j9e4cWOEhYWhcePG1Y7rTzN79mwMGDAAlpaW2LNnDy5duoRly5ZBXV0dZ86cqe/k/bbhw4cjLCysvpPxR2IYBpMnT8aIESOgr69f38khAvTq1Qv79u3DwoULcenSJTg4OGDAgAE4fPhwhftu27YNYWFhXK+QkBCIiorC0dERGhoaAABRUVEsWLAAS5YsQVJSUm1niRDCh0h9J4AQQggh/z/CwsIwZswYODs74/Tp0xAXF+e85+zsjGnTpuHy5cs1cqzs7GxISUnxbC8sLERBQQHXseuTuLg4HB0d6zsZ/wmDBg3CjBkzsHfvXri7u/O8v3fvXgDAsGHDqnWc/Px8sFgsyMnJ/ZXn5ufPn/D19YWXlxd27drF9d7QoUPBZrPrKWXVp6OjAx0dnfpOxh/p8uXLePLkSaUadf5kgq7t1RUXFwdpaWnIycnVeNyVdfHiRQQHB+Pw4cMYMGAAAKBdu3b4/PkzZsyYAQ8PDwgLCwvc38rKimfbvn37kJ+fj+HDh3NtHzBgAKZOnYqdO3dizpw5NZsRQkiFqGccIYSQ/zsMw2Dbtm2wtbWFpKQkFBUV0adPH3z48IErXHBwMLp37w4dHR1ISEjAxMQEo0aNQmJiIifMokWLMGPGDACAoaEhZyhI8bC24uE/58+fh52dHSQlJWFpaYnz588DKBquY2lpCWlpaTRt2pRn2M6jR4/Qv39/GBgYQFJSEgYGBhgwYADXEKPieFgsFoKDg+Ht7Q0lJSVIS0uja9euPPkS5MKFC7C1tYW4uDgMDQ2xdu3aan1+/KxYsQIsFgu7du3i2xgmJiaGbt26cf5ms9lYvXo1LCwsIC4uDjU1NXh5eeHr169c+zk5OaFhw4a4desWWrRoASkpKQwbNowzBHT16tVYtmwZDA0NIS4ujhs3bgAo+ny7desGJSUlSEhIwM7ODseOHaswH5U9LwDw7ds3jBw5Erq6uhATE4OWlhb69OmDhIQEAIKHqd65cwcdOnSArKwspKSk0KJFC1y4cIErTPF5v3HjBsaMGQMVFRUoKyujV69eiI2N5UnL0aNH0bx5c0hLS0NGRgaurq54+vQpV5gPHz6gf//+0NLSgri4ONTV1dGhQwdERERU+LkEBATA3Nwc4uLisLS0xP79+/mGy8vLw7JlyzjnVVVVFd7e3vjx40e58SsqKqJnz544d+4cT2+OwsJCHDhwAA4ODrC2tkZUVBS8vb1hamoKKSkpaGtro2vXrnjx4gXXfsVDUQ8cOIBp06ZBW1sb4uLiiIqK4jtMtSrnHgBSUlJ+q05Wtp49ffoUXbp0gZqaGsTFxaGlpYXOnTvz1JHSsrKykJubC01NTb7vCwlxf0X43fNV1X0PHz6M5s2bQ0ZGBjIyMrC1tYWfnx9XmMuXL6NDhw6Ql5eHlJQULC0t8e+//3Le5zcksarXkfDwcLRu3RpSUlIwMjLCypUruRooc3JyMG3aNNja2kJeXh5KSkpo3rw53x6F6enpGDFiBJSVlSEjIwM3Nze8e/eOJ1xlyyubzcayZctgbm4OSUlJKCgowMbGBhs3biznLBTZvn07HBwcYG5uXmHY8gwdOhQyMjJ48+YNXF1dIS0tDU1NTaxcuRIAcP/+fbRq1QrS0tIwMzPDvn37+MZTmboh6NoOFF3PXFxcoKmpybm3/vPPP8jKyvqtfF25cgXq6uro06cPTp06hZycnN+KpzqCgoIgIyODvn37cm339vZGbGwsHjx4UOU4/fz8ICMjAw8PD67tYmJi8PDwwK5du8AwTLXSTQipOmqMI4QQ8lco7u1U9sXvAXPUqFGYPHkyOnbsiNOnT2Pbtm149eoVWrRowWkgAYDo6Gg0b94c27dvx9WrV7FgwQI8ePAArVq1Qn5+PoCiIVETJkwAAJw6dYozLKT0sLZnz55h9uzZmDVrFk6dOgV5eXn06tULCxcuxJ49e7BixQocOnQIaWlp6NKlC37+/MnZ99OnTzA3N4evry+uXLmCVatWIS4uDg4ODlyNgsV8fHwgJCSEw4cPw9fXFw8fPoSTk1OFQ2hDQkLQvXt3yMrK4siRI1izZg2OHTsGf3//3/78+J2j69evo0mTJtDV1S03PcXGjBmDWbNmwdnZGWfPnsXSpUtx+fJltGjRgif/cXFxGDx4MAYOHIiLFy9i7NixnPc2bdqE69evY+3atbh06RIsLCxw48YNtGzZEqmpqdixYwfOnDkDW1tbeHh4VDg/UmXPy7dv3+Dg4ICgoCBMnToVly5dgq+vL+Tl5ZGSkiIw/ps3b6J9+/ZIS0uDn58fAgMDISsri65du+Lo0aM84YcPHw5RUVEcPnwYq1evRmhoKAYPHswVZsWKFRgwYACsrKxw7NgxHDhwABkZGWjdujVev37NCefu7o7Hjx9j9erVCA4Oxvbt22FnZ1dhGQoICIC3tzcsLS1x8uRJzJs3D0uXLsX169e5wrHZbHTv3h0rV67EwIEDceHCBaxcuRLBwcFwcnLiKv/8+Pj4IC8vDwcPHuTafuXKFcTGxnKGOcfGxkJZWRkrV67E5cuXsXXrVoiIiKBZs2Z4+/YtT7yzZ89GTEwMduzYgXPnzkFNTY3v8euqTlamnmVlZcHZ2RkJCQnYunUrgoOD4evrCz09PWRkZAiMW0VFBSYmJti2bRvWr1+PN2/eCPwyXp3zVZV9FyxYgEGDBkFLSwsBAQEICgrCkCFDuBo5/fz84O7uDjabzTlPEydOLLfhEajadSQ+Ph6DBg3C4MGDcfbsWXTq1AmzZ8/mKm+5ublITk7G9OnTcfr0aQQGBqJVq1bo1asXVwM0wzDo0aMHp6E3KCgIjo6O6NSpE08aK1teV69ejUWLFmHAgAG4cOECjh49Ch8fnwrLU15eHq5du4Z27dqVG66y8vPz0atXL3Tu3BlnzpzhfE5z5szBkCFDMGzYMAQFBcHc3BxDhw7F48ePeeKobN0QdG1///493N3d4efnh8uXL2Py5Mk4duwYunbt+lt56tmzJzZt2oSUlBT069cP6urqGDp0KK5cuVLuPJUMw/B9/uD3qsjLly9haWkJERHuAWw2Njac96vi/fv3uH37Nvr37w8ZGRme952cnPD58+cqx0sIqQEMIYQQ8h/m7+/PACj3pa+vzwkfFhbGAGDWrVvHFc+XL18YSUlJZubMmXyPw2azmfz8fObz588MAObMmTOc99asWcMAYD5+/Mizn76+PiMpKcl8/fqVsy0iIoIBwGhqajJZWVmc7adPn2YAMGfPnhWY34KCAiYzM5ORlpZmNm7cyPM59OzZkyv83bt3GQDMsmXLBMbJMAzTrFkzRktLi/n58ydnW3p6OqOkpMSUflz43c+PYRgmPj6eAcD079+/3LQUi4yMZAAwY8eO5dr+4MEDBgAzZ84czra2bdsyAJiQkBCusB8/fmQAMMbGxkxeXh7XexYWFoydnR2Tn5/Ptb1Lly6MpqYmU1hYyDAMw9y4cYMBwNy4cUNgWgWdl2HDhjGioqLM69evBe5bnEZ/f3/ONkdHR0ZNTY3JyMjgOkbDhg0ZHR0dhs1mMwxTct7LfkarV69mADBxcXEMwzBMTEwMIyIiwkyYMIErXEZGBqOhocH069ePYRiGSUxMZAAwvr6+AtPLT2FhIaOlpcU0btyYkzaGYZhPnz4xoqKiXHUwMDCQAcCcPHmSK47w8HAGALNt27Zyj8VmsxlDQ0PGxsaGa3vv3r0ZKSkpJi0tje9+BQUFTF5eHmNqaspMmTKFs734/LZp04Znn+qc+6rUySFDhvzWderRo0cMAOb06dMC0yfIw4cPGT09Pc51UlZWlunSpQuzf/9+rnNYlfPVtm1bpm3btlXe98OHD4ywsDAzaNAggenNyMhg5OTkmFatWnGlr6yFCxdyXbN+5zry4MEDrrBWVlaMq6urwGMWFBQw+fn5jI+PD2NnZ8fZfunSJQYAV7lgGIZZvnw5A4BZuHBhuXHyK69dunRhbG1tBe4nSHF+jxw5wvOevr4+07lzZ777FZ+r0tenIUOG8JzX/Px8RlVVlQHAPHnyhLM9KSmJERYWZqZOncrZVpW6IejaXlbxPfrmzZsMAObZs2ec98qWicqIj49nNm/ezLRs2ZJhsViMmpoaM27cOObOnTs85a8yzyHFr4qYmpryLWuxsbEMAGbFihVVysesWbMYAExYWBjf99+/f88AYLZv316leAkh1Uc94wghhPwV9u/fj/DwcJ5Xq1atuMKdP38eLBYLgwcP5vq1WkNDA40aNeIajvb9+3eMHj0aurq6EBERgaioKGfS68jIyEqnzdbWFtra2py/LS0tART9Il163pvi7aV7gmRmZmLWrFkwMTGBiIgIREREICMjg6ysLL5pGDRoENffLVq0gL6+PmdYJj9ZWVkIDw9Hr169ICEhwdle3BOrtKp8ftVVnOahQ4dybW/atCksLS0REhLCtV1RURHt27fnG1e3bt0gKirK+TsqKgpv3rzhfF6l8+Lu7o64uDi+vaeKVfa8XLp0Ce3ateOc28rIysrCgwcP0KdPH66eDMLCwvD09MTXr1950lZ6aC9Q0ouiuCxduXIFBQUF8PLy4sqrhIQE2rZtyzlvSkpKMDY2xpo1a7B+/Xo8ffq0UvOHvX37FrGxsRg4cCDXEEF9fX20aNGCK+z58+ehoKCArl27cqXF1tYWGhoaFZYhFosFb29vPH/+nNPbJikpCefOnUPv3r058z0VFBRgxYoVsLKygpiYGERERCAmJob379/zrTu9e/euMJ9A3dTJytYzExMTKCoqYtasWdixYwdXD8eKODg4ICoqCpcvX8acOXPQvHlzhISEwMvLC926deP0lKvO+arsvsHBwSgsLMS4ceMExnXv3j2kp6dj7NixVVoZs6rXEQ0NDTRt2pRrm42NDc8w5OPHj6Nly5aQkZHh3B/8/Py4ykDxscuWgYEDB/Kks7LltWnTpnj27BnGjh2LK1euID09vVKfQ/GwdUE9PquKxWJxzdsoIiICExMTaGpqws7OjrNdSUkJampqfIdxV7ZuCLq2f/jwAQMHDoSGhgaEhYUhKiqKtm3bAqjaPZofdXV1jB8/Hnfu3MHnz58xc+ZMTs94Q0NDrqGwXbt25fv8we9VGeWV76qU/YKCAuzbtw8NGjQQOPdlcXn49u1bpeMlhNQMWsCBEELIX8HS0hL29vY82+Xl5fHlyxfO3wkJCWAYBurq6nzjMTIyAlA0vMrFxQWxsbGYP38+rK2tIS0tDTabDUdHxwqH0pWmpKTE9XfxKo+Ctpeep2bgwIEICQnB/Pnz4eDgADk5Oc6XIH5pKF4prey28lZLS0lJAZvNFrhvaZX9/PhRUVGBlJQUPn78KDBMacVp5jevlZaWFs+XO0HzX/F7r3iY3/Tp0zF9+nS++/Abclissuflx48fVZ5MPiUlBQzDCMw3AJ7zqayszPV38Xx8xWkpzq+DgwPfYxbPEcZisRASEoIlS5Zg9erVmDZtGpSUlDBo0CAsX74csrKyfPcvTo+gMvTp0yfO3wkJCUhNTRW42ml5n3sxb29vLFq0CP7+/mjSpAkOHTqEvLw8rpV4p06diq1bt2LWrFlo27YtFBUVISQkhOHDh/OtO+WVn9Lqok5Wtp7Jy8vj5s2bWL58OebMmYOUlBRoampixIgRmDdvHlcDND+ioqJwdXWFq6srgKLz2KdPH5w/fx6XLl2Cu7t7tc5XZfctnj+uvLpSmTD8VPU6UrYuAUX1qfS5PXXqFPr164e+fftixowZ0NDQgIiICLZv385ZRKT42CIiIjxx8isTlS2vs2fPhrS0NA4ePIgdO3ZAWFgYbdq0wapVq/jeA4sVx1H6B5diIiIiAodhFg+tLFuWpKSkeOISExPjua8Vb+c3/1pl6wa/c5eZmYnWrVtDQkICy5Ytg5mZGaSkpPDlyxf06tWrSvfoiqSlpSE1NRVpaWkAwDk3xZSUlCAvL18jx1JWVuZ7bUhOTuYcq7IuXryI+Ph4zJo1S2CY4nNYk58XIaRyqDGOEELI/xUVFRWwWCzcvn2b7wICxdtevnyJZ8+eISAgAEOGDOG8HxUVVWdpTUtLw/nz57Fw4UL8888/nO3F8xXxEx8fz3ebiYmJwOMoKiqCxWIJ3Le0yn5+/AgLC6NDhw64dOkSvn79WuGX6uIvsHFxcTxhY2NjoaKiwrWtKr0JivedPXs2evXqxXcfQZOcV+W8qKqqVjifVVnFX/Ti4uJ43ivu3VI27xUpDn/ixAlO705B9PX1OZPmv3v3DseOHcOiRYuQl5eHHTt28N2n+FxVtgwpKysLXDVXUINfaTo6OnBxccHhw4exbt06+Pv7w8TEBG3atOGEOXjwILy8vLBixQqufRMTE6GgoMATZ2V6nNRVnaxKPbO2tsaRI0fAMAyeP3+OgIAALFmyBJKSklxprAxlZWVMnjwZoaGhePnyJdzd3at1viq7r6qqKgDg69evAueTLB2mKqp6HamMgwcPwtDQEEePHuUqN7m5uTzHLigoQFJSEleDHL8yUdnyKiIigqlTp2Lq1KlITU3FtWvXMGfOHLi6uuLLly8CVxktzie/cqquri6wZ1TxdkENw9VR2brBr25ev34dsbGxCA0N5fSGA1Dh3HmV9e7dOxw9ehRHjhzB69evYWJiggEDBmDgwIGwsLDgCrtv3z54e3tXKl6mgoUSrK2tERgYiIKCAq5544oX8mjYsGGl8+Dn5wcxMTF4enoKDFNcHn6nHhBCqoeGqRJCCPm/0qVLFzAMg2/fvsHe3p7nZW1tDaDk4b/sF+GdO3fyxFm2F1JNYbFYYBiGJw179uwR2Ivh0KFDXH/fu3cPnz9/hpOTk8DjFK/kWnb1uIyMDJw7d44rbGU/P0Fmz54NhmEwYsQI5OXl8byfn5/POWbxsKSyE/WHh4cjMjISHTp0KPdY5TE3N4epqSmePXvGNx/29vYCGxmqcl46deqEGzdulDvktSxpaWk0a9YMp06d4ipTbDYbBw8ehI6ODszMzKqQW8DV1RUiIiKIjo4WmF9+zMzMMG/ePFhbW+PJkycC4zc3N4empiYCAwO5vmx+/vwZ9+7d4wrbpUsXJCUlobCwkG86KrvSo4+PD1JSUrBgwQJERETA29ub60s7i8XiOUcXLlyo1nCsuqqTv1PPWCwWGjVqhA0bNkBBQaHc85Wfny+wZ17x8L7iXpjVOV+V3dfFxQXCwsLYvn27wLhatGgBeXl57Nixo0orP9bGdYTFYkFMTIyrvMXHx/Osplq8WELZMnD48GG+cVa1vCooKKBPnz4YN24ckpOTuXqgllU8VD46OprnvY4dO+Lly5d8hzkfO3YMMjIyaNasmcC4f9fv1I1iVblHV9b379+xatUq2NnZwdzcHDt27ICLiwsePnyI9+/fY8mSJTwNcUDNDlPt2bMnMjMzcfLkSa7t+/btg5aWVqXPQ3x8PC5evIgePXrw7e1ZrHj1Wisrq0rFSwipOdQzjhBCyP+Vli1bYuTIkfD29sajR4/Qpk0bSEtLIy4uDnfu3IG1tTXGjBkDCwsLGBsb459//gHDMFBSUsK5c+cQHBzME2fxF+ONGzdiyJAhEBUVhbm5eaV6+JRHTk4Obdq0wZo1a6CiogIDAwPcvHkTfn5+fHv2AMCjR48wfPhw9O3bF1++fMHcuXOhra3NtbIoP0uXLoWbmxucnZ0xbdo0FBYWYtWqVZCWlubqSVHZz0+Q4tVpx44diyZNmmDMmDFo0KAB8vPz8fTpU+zatQsNGzZE165dYW5ujpEjR2Lz5s0QEhJCp06d8OnTJ8yfPx+6urqYMmXKb32uxXbu3IlOnTrB1dUVQ4cOhba2NpKTkxEZGYknT57g+PHjfPerynlZsmQJLl26hDZt2mDOnDmwtrZGamoqLl++jKlTp/L9YgcA//77L5ydndGuXTtMnz4dYmJi2LZtG16+fInAwMAqzRsEAAYGBliyZAnmzp2LDx8+wM3NDYqKikhISMDDhw8hLS2NxYsX4/nz5xg/fjz69u0LU1NTiImJ4fr163j+/Hm5vayEhISwdOlSDB8+HD179sSIESOQmpqKRYsW8QxF69+/Pw4dOgR3d3dMmjQJTZs2haioKL5+/YobN26ge/fu6NmzZ4V56tatG1RUVLBmzRoICwtz9WAFihqCAgICYGFhARsbGzx+/Bhr1qyp8jDH0uqqTla2np0/fx7btm1Djx49YGRkBIZhcOrUKaSmpsLZ2Vlg/GlpaTAwMEDfvn3RsWNH6OrqIjMzE6Ghodi4cSMsLS05PUarc74qu6+BgQHmzJmDpUuX4ufPnxgwYADk5eXx+vVrJCYmYvHixZCRkcG6deswfPhwdOzYESNGjIC6ujqioqLw7NkzbNmyhW8aauM60qVLF5w6dQpjx45Fnz598OXLFyxduhSampp4//49J5yLiwvatGmDmTNnIisrC/b29rh79y4OHDjAN87KlNeuXbuiYcOGsLe3h6qqKj5//gxfX1/o6+vD1NRUYJp1dHRgZGSE+/fvY+LEiVzvTZo0Cfv374eTkxPnOpWSkoKjR4/ixIkTWL9+fbXvZ/z87v0KKGqcVVRUxOjRo7Fw4UKIiori0KFDePbs2W+n5+LFi1i5ciV69+6NtWvXol27dlzDUQVRVlYut8GrKjp16gRnZ2eMGTMG6enpMDExQWBgIC5fvoyDBw9CWFiYE9bHxwf79u1DdHQ0T4/nffv2oaCgAMOHDy/3ePfv3+cMdSaE1LG6XjGCEEIIqUnFq5iFh4fzfb9z585cqxQW27t3L9OsWTNGWlqakZSUZIyNjRkvLy/m0aNHnDCvX79mnJ2dGVlZWUZRUZHp27cvExMTw3cVvNmzZzNaWlqMkJAQ1+qLglapA8CMGzeOa1vxqppr1qzhbPv69SvTu3dvRlFRkZGVlWXc3NyYly9fMvr6+syQIUN4PoerV68ynp6ejIKCAiMpKcm4u7sz79+/r+BTLHL27FnGxsaGERMTY/T09JiVK1cKXIWuMp9feSIiIpghQ4Ywenp6jJiYGCMtLc3Y2dkxCxYsYL5//84JV1hYyKxatYoxMzNjREVFGRUVFWbw4MHMly9fuOJr27Yt06BBA57j8PtMS3v27BnTr18/Rk1NjREVFWU0NDSY9u3bMzt27OCE4beiZmXPC8MUrYA5bNgwRkNDgxEVFWW0tLSYfv36MQkJCVxpLL1aIcMwzO3bt5n27dtzPmNHR0fm3LlzXGEElX9Bq4CePn2aadeuHSMnJ8eIi4sz+vr6TJ8+fZhr164xDMMwCQkJzNChQxkLCwtGWlqakZGRYWxsbJgNGzYwBQUFfD/D0vbs2cOYmpoyYmJijJmZGbN3716elUIZpmjlxbVr1zKNGjViJCQkGBkZGcbCwoIZNWpUpcsrwzDMlClTGACMu7s7z3spKSmMj48Po6amxkhJSTGtWrVibt++zbPiZ/Fndfz4cZ44qnPuq1In+X1GDFNxPXvz5g0zYMAAxtjYmJGUlGTk5eWZpk2bMgEBAeV+brm5uczatWuZTp06MXp6eoy4uDgjISHBWFpaMjNnzmSSkpK4wlf2fJX9bKuyL8MwzP79+xkHBwdOODs7O556cfHiRaZt27aMtLQ0IyUlxVhZWTGrVq3ivM/vmlXd6wi/87Ny5UrGwMCAERcXZywtLZndu3fzPXZqaiozbNgwRkFBgZGSkmKcnZ2ZN2/e8NxHKlte161bx7Ro0YJRUVHhXKt9fHyYT58+8aS7rPnz5zOKiopMTk4Oz3vx8fHMmDFjGD09PUZERISRlZVlWrVqxbdeDBkyhJGWlubZLujzK3sfrErdEBQnwzDMvXv3mObNmzNSUlKMqqoqM3z4cObJkyc819PKrqaamJjI5ObmVhiutmVkZDATJ05kNDQ0GDExMcbGxoYJDAzkCVe8qi2/ldzNzMwYAwODclceZhiGad26NdO1a9eaSjohpApYDFOFft6EEEII+SMFBATA29sb4eHh5U7iTQgh5P9TbGwsDA0NsX//fnh4eNR3ckg9i46OhqmpKa5cuVJuT1pCSO2gOeMIIYQQQggh5C+npaWFyZMnY/ny5WCz2fWdHFLPli1bhg4dOlBDHCH1hOaMI4QQQgghhJD/A/PmzYOUlBS+ffsmcOVa8vcrKCiAsbExZs+eXd9JIeT/Fg1TJYQQQgghhBBCCCGkjtAwVUIIIYQQQgghhBDyR7t16xa6du0KLS0tsFgsnD59usJ9bt68iSZNmkBCQgJGRkbYsWMHT5iTJ0/CysoK4uLisLKyQlBQUC2knhs1xhFCCCGEEEIIIYSQP1pWVhYaNWqELVu2VCr8x48f4e7ujtatW+Pp06eYM2cOJk6ciJMnT3LChIWFwcPDA56ennj27Bk8PT3Rr18/PHjwoLayAYCGqRJCCCGEEEIIIYSQ/xAWi4WgoCD06NFDYJhZs2bh7NmziIyM5GwbPXo0nj17hrCwMACAh4cH0tPTcenSJU4YNzc3KCoqIjAwsNbSTz3jCCGEEEIIIYQQQkidy83NRXp6OtcrNze3RuIOCwuDi4sL1zZXV1c8evQI+fn55Ya5d+9ejaRBEFpNlRBCCCGEEEIIIeQv1XLr6PpOgkDOPzSwePFirm0LFy7EokWLqh13fHw81NXVubapq6ujoKAAiYmJ0NTUFBgmPj6+2scvDzXGEULIH+xPvnFW1t1xO/AqLrq+k1EtDTSNsfXuifpORrWNa9kHaat86zsZ1SI/azL2h1+s72RUm5eDO9bcOFjfyai2Ge0GY23oofpORrVMdxr015SpuZd21ncyqmV5p1F4/z2mvpNRbaZqerjw+m59J6PaOlu1xIFHlyoO+AfztO+EwCdX6zsZ1TagsQtWXt9f38moln/ae2HzneP1nYxqm9Cqb30n4a8ze/ZsTJ06lWubuLh4jcXPYrG4/i6eqa30dn5hym6radQYRwghhBBCCCGEEELqnLi4eI02vpWmoaHB08Pt+/fvEBERgbKycrlhyvaWq2k0ZxwhhBBCCCGEEELIX4r1B/+rTc2bN0dwcDDXtqtXr8Le3h6ioqLlhmnRokWtpo16xhFCCCGEEEIIIYSQP1pmZiaioqI4f3/8+BERERFQUlKCnp4eZs+ejW/fvmH//qJh3aNHj8aWLVswdepUjBgxAmFhYfDz8+NaJXXSpElo06YNVq1ahe7du+PMmTO4du0a7ty5U6t5oZ5xhBBCCCGEEEIIIeSP9ujRI9jZ2cHOzg4AMHXqVNjZ2WHBggUAgLi4OMTElMw9amhoiIsXLyI0NBS2trZYunQpNm3ahN69e3PCtGjRAkeOHIG/vz9sbGwQEBCAo0ePolmzZrWaF+oZRwghhBBCCCGEEPKXEqrlxQjqipOTE2cBBn4CAgJ4trVt2xZPnjwpN94+ffqgT58+1U1elVDPOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkdomCohhBBCCCGEEELIX4r1lwxT/ZtQzzhCCCGEEEIIIYQQQuoINcYRQgghhBBCCCGEEFJHaJgqIYQQQgghhBBCyF/qb1lN9W9CPeMIIYQQQgghhBBCCKkj1BhHCCGEEEIIIYQQQkgdoWGqhBBCCCGEEEIIIX8pFmiY6p+GesYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6QsNUCSGEEEIIIYQQQv5SLFpN9Y/zn+8ZZ2BgAF9f3zqNj8Vi4fTp09U6zqJFi2Bra1utOMoKDQ0Fi8VCampqjcZLuJX9nAMCAqCgoFCvaRo6dCh69OhRr2n4EyQlJUFNTQ2fPn2q76Rw2bJlC7p161bfySCEEEIIIYQQ8geot55xXbt2xc+fP3Ht2jWe98LCwtCiRQs8fvwYjRs3rtN0hYeHQ1pauk6PSf7bPDw84O7uXt/JIAD+/fdfdO3aFQYGBgCAT58+wdDQEE+fPuU0fmdkZKBr166Ij4/H27dvy43v48ePMDAwwL1799C6dWs4Ozvj8uXLPOFOnjyJ1atX482bN2Cz2dDT04ObmxvWrVsHABgxYgSWL1+OO3fuoFWrVjWa59/RSNMEA+1cYKGmBxVpBfxzcTtuf3xW38niuHT6PM4cOYmUpGToGupj2PiRsLJpyDdsclIy9m3bjeh3UYj7Ggv3Xt3gM2EUV5j7t+7i5MGjiPsWh8LCAmhqa6ObR084uXSoi+xwPL9+H08u30FWagaUtNXQZkBnaJsZ8A379c0HnFrtx7N98PLJUNJUreWUchNv6QixRg3BkpBAYVw8fgZfBzsxuYKdxCHRpgVEzUzAkhAHOy0dOddvoeDDJwCAsI42xJs1gbC6GoRkZZB16hwK3kfXSvofBd/B/Ys3kJmaDlVtDTgP7gE9C+MK9/vy7gMOLNsKVR0NjFgxg7P9Tfhz3D0bjJSERLAL2VBUV4GjuxOsWznUSvqLvQ59hOfBYfiZlgEFLVU07+sKDVM9vmFj337CxQ0HeLb3WTQGChoqAIB3957h1v6zPGGGbp4NEdHaezx8HRqOZ1eL8qGopQbHfi7QNNXnGzb27SdcWL+fZ3vfxWM5+SgtOvwlru85Bf1G5nAZ61HjaS9W02Xq6Y0wvLgdjh9f4wEAGoY6cOrXGdrG/D+XmtJMzwqtDBtBVlwK3zNTcCHyHj6nxAsMLywkhPbGTdBI2xSy4lJIy8nEzeinePy16F5qpW4IJ2M7KEnJQZglhKTsNNz5+BwRse9rLQ8Xgs7iVOBxJCclQc/AACMmjkHDRtZ8wyYnJsFv605EvX2P2K/f0LVPD4ycOJYrzOePn3DIbx+i3r7H9/gEjJgwBt379aq19Be7e+k6bpy+jPSUVGjoaqOHzwAYWZnxDfvh9TucP3AC37/GIS8vD0qqymju4oS23Vw4YcKu3sSj0HuIj/kGANAx1of7oN7QNzOq1Xw8Cr6DsAvXOXXDxbNn5erG2w/Yv2wL1HQ0MOLfmZztT66H4cWdcPz4EgcA0DDURTuP2q8bZT28egv3zocgIzUdajqacPPqBX0Lkwr3i3n7Af5LNkJNVxNjVv5TByktEXnzEV4G38fPtEwoaKqiaV9ngfeMuHefcXnDQZ7tPReO4lxrL60/gPj3MTxhdBoaw3lc/5pNfDleXH+AJ1duIzs1E0raamjd3x1a5TxLnV6zl2f7oGWToFjHz1KE8FNvjXE+Pj7o1asXPn/+DH197gvq3r17YWtrW+cNcQCgqkoV82+Vl5cHMTGxGo9XUlISkpKSNR5vfaqtz6oy8vPzISoqWuX9fv78CT8/P1y8eFFgmB8/fqBTp04AgGvXrkFEpOQS6ODggJEjR2LEiBGcbcXXg71792LChAnYs2cPYmJioKdX8jBz7do19O/fHytWrEC3bt3AYrHw+vVrhISEcMKIi4tj4MCB2Lx58x/RGCcpKo6opK+4+OYeVnQaXd/J4XLn+k34b9mFEZPHwtLaClfOXsKymQuwcd8OqKqr8YQvyMuHnII8eg/uj/PHg/jGKSMri96e/aGjpwMREVE8CnuALSs3QF5BAXZNm9R2lgAA7x4+x63Ai3Dy7AotE328DA3H2Q37MHjZJMgqKwjcz3PFFIhJinP+lpSt2x+LxJrZQ9zBDtkXr4KdnArxFk0h3a8XMvbsA/Ly+e8kJARpj55gsn8i+/R5sDMyISQrCyYvjxOEJSaKwu8/kPfiFaR7dq219L++/xTBB0/DbWgf6JoZ4sn1eziyZhdGrfoH8iqKAvfLyf6JszsOw7CBKTLTMrjek5SWQstuzlDRUoewiDDeP32Fc7uOQEpOFsY2FrWSj+hHr3D/+BW0GOAOdWMdvLn9BJe3HEafhWMgoyQvcL++i8dCVKKk/EjISnG9Lyohjr6LuRsjarMhLjr8FcKOXUHLge5QN9bFm1tPcHnzYfRdNLb8fCwZB7Fy8gEAGUmpeHAiGBom/L9s1pTaKFOfI6Ng1bwxdMwMISIqgrDz1xG4agdGrpwFOSWFWsmHtYYx3C1b4NyrO/icEg8HPSsMsXfHxtvHkJaTyXefAbbOkBaXRNCLm0jKToOMmCSEWCWDbH7m5yA0+gl+ZKaikGHDXFUPvaydkJn3E1GJX2s8D7dCQrF703aMmToBVtYNcOnsBSyaMQfbDvhBjc/9Ij+/6H7Rz2sgzhw7yTfO3JxcaGhqoqVTG+zZvKPG08zP0zsPcXpvIHqP9IShhQnuXQ3FrqUbMGvTMiiqKvOEF5MQRyv39tDS14WYhDg+vH6PEzv2QUxCDM1dnAAA0a/eonHrZjCwMIGIqChuBF3CzsXrMHPTMigoCy6n1fEq7AmuHghCJ++SuhG4eidGr55dYd04s+MQDBuYIotP3WjQvDF0vAwgIiaKsPMhOLxyO0at+qfW6kZZL8Me4/L+U+g8rB/0zI3w6NpdHFy5HePWzoWCipLA/XKyfyJo2wEYNTTjqfO17cOj13h4PBjN+7tBzVgXb28/QfDWI+i5YFS519pei0YLvGe0H9UHhQWFnL9zs37izPLdMGhsWTuZ4OP9wxe4feQi2g7uCk0TPby6GY5zvvsxcOnEcp+lBi2fXK/PUn8KIRqm+sept2GqXbp0gZqaGgICAri2Z2dn4+jRo/Dx8QEA3Lt3D23atIGkpCR0dXUxceJEZGVlCYw3JiYG3bt3h4yMDOTk5NCvXz8kJCRwhTl79izs7e0hISEBFRUV9OpV8otX2WGq79+/R5s2bSAhIQErKysEBwfzHHPWrFkwMzODlJQUjIyMMH/+fOTnc39JWblyJdTV1SErKwsfHx/k5OSU+/kUFhbCx8cHhoaGkJSUhLm5OTZu3FjuPmUlJSVhwIAB0NHRgZSUFKytrREYGFjhfgEBAdDT04OUlBR69uyJdevWcQ3D5DckcvLkyXBycuL8zTAMVq9eDSMjI0hKSqJRo0Y4ceJEucfdtm0bTE1NISEhAXV1dfTp06da8RkYGGDZsmUYOnQo5OXlOY0sFZWpgwcPwt7eHrKystDQ0MDAgQPx/fv3cj+v0p+PgYEBWCwWz6tYZcpLWd++fYOHhwcUFRWhrKyM7t27V3ko5t27d9G2bVtISUlBUVERrq6uSElJAQA4OTlh/PjxmDp1KlRUVODs7IxPnz6BxWIhIiKCE0dqaipYLBZCQ0M52169eoXOnTtDTk4OsrKyaN26NaKjS3q4+Pv7w9LSEhISErCwsMC2bds47xUf49ixY3BycoKEhAQOHjwINpuNJUuWQEdHB+Li4rC1teXbI620S5cuQUREBM2bN+f7/pcvX9C6dWvIysrixo0b0NHRgYaGBuclLCzMOeelt2VlZeHYsWMYM2YMunTpwnPNOn/+PFq1aoUZM2bA3NwcZmZm6NGjBzZv3swVrlu3bjh9+jR+/vxZbj7qwv2YV9j94Cxufoio76TwOHc8CB3cXeDcxQ06+nrwmTAKymqquHLmAt/waprq8JkwGu1cO0BKQK/mhnY2cGzdAjr6etDQ1kSXPj2gb2yIyBevajMrXJ5euYsGrZugYRsHKGmpoc3AzpBRksfzGw/K3U9KThrS8rKcl5BQ3d62xe3tkBMWjoJ30WAnJuHnhatgiYpCzFJwo5OYTQOwJCSQfeocCr/FgUnPQOG3WLB/JHLCFHz4hNzbYSh4Vzu94Yo9uBQKW6dmsGvnCBVtdbh49oScsgKehNwtd79Le4+jQfPG0DYx4HlP38oEFg42UNFWh6K6Cpq6tYWaria+vP1QS7kAXl67D7OWdrBoZQdFTVU07+cKaUU5RN58VO5+ErLSkJKX4bzKlh8WC1zvS8nL1FoeAODFtTCYt7SDRavGRfnwcIWMojxeV5APyQrywWazccMvCI27OkFWtXYaGorVRpnqMdYT9s6toKGvDRUtdXQe7gGGzeDTq9rrUdbS0BqPv77Bo69v8CMrFRcj7yEtJxPN9Kz4hjdV0YWBkib2P7qE6KRvSP2Zia9pPxCTWvKM/TE5Dq8TPuFHViqSs9MR9vklEjKSYKCoUSt5OH30JJw7u8G1qzt0DfQxcuJYqKip4mLQOb7h1TU1MGrSOHRwcxZ4vzCzNMewcSPRtmM7iIpV/YfB33Hz7BU069Aajs5toK6rhZ4+A6GgrIS7l2/wDa9jpI/GrR2hoacNJTUV2Ds1h7ltQ3x4XVJeBk8ZiZad2kPbUA/qOproN3YoGIbB++evay0fJXWjOVS0NeDi2Qtyygp4fO1Ouftd9DuGhi2aQNvUgOe9nuN+1Q0DnV91o/+vuvGulnLBK+zCDTRu1xxN2reAqrYGOg3pDXllRTwKLj9f5/YcgXXLJtAxNayjlJZ4FfIApi1sYdbKDgqaKmjWzwXSinJ4c+tJufuVd88Ql5bkei828iNExETrtDEu4updWLVuggZt7KGkpYbWA4qepV6EPix3v/p+liJEkHoriSIiIvDy8kJAQAAYhuFsP378OPLy8jBo0CC8ePECrq6u6NWrF54/f46jR4/izp07GD9+PN84GYZBjx49kJycjJs3byI4OBjR0dHw8CgZqnDhwgX06tULnTt3xtOnTxESEgJ7e3u+8bHZbPTq1QvCwsK4f/8+duzYgVmzZvGEk5WVRUBAAF6/fo2NGzdi9+7d2LBhA+f9Y8eOYeHChVi+fDkePXoETU1NrgYJQcfW0dHBsWPH8Pr1ayxYsABz5szBsWPHyt2vtJycHDRp0gTnz5/Hy5cvMXLkSHh6euLBA8Ff/h48eIBhw4Zh7NixiIiIQLt27bBs2bJKH7PYvHnz4O/vj+3bt+PVq1eYMmUKBg8ejJs3b/IN/+jRI0ycOBFLlizB27dvcfnyZbRp0+a34yu2Zs0aNGzYEI8fP8b8+fMrVaby8vKwdOlSPHv2DKdPn8bHjx8xdOjQSuc9PDwccXFxiIuLw9evX+Ho6IjWrVtz3q+ovJSVnZ2Ndu3aQUZGBrdu3cKdO3cgIyMDNzc35JXqaVKeiIgIdOjQAQ0aNEBYWBju3LmDrl27orCw5Beuffv2QUREBHfv3sXOnTsrFe+3b984jdXXr1/H48ePMWzYMBQUFAAAdu/ejblz52L58uWIjIzEihUrMH/+fOzbt48rnlmzZmHixImIjIyEq6srNm7ciHXr1mHt2rV4/vw5XF1d0a1bN7x/L/iLya1btwTW5bdv36Jly5awsLDA5cuXISsrW6n8AcDRo0dhbm4Oc3NzDB48GP7+/lzXLA0NDbx69QovX74sNx57e3vk5+fj4cPyHxj+n+Xn5yP6bRQaOXD3irZ1sMObV5E1cgyGYfD8cQRiv3yFVSP+Q19rWmFBAb5/joVeA+4hLXoNTBAXxTvko7TARVuxZ8q/OLXGD18ia6+xhx+WvByEZKRR8PFzycbCQhR8+QphbU2B+4mYGKEwNg6Szu0gO34EZIYNhrijQ1HLTx0qLChA3MevMGxozrXdqKE5vr7/JHC/ZzcfICUhEW16uVZ4DIZh8PHlOyTH/6jUUKzfUVhQiMSYOOhYcg8v07E0RsKH8nsbBS3fjUMzN+DihgOIffuJ5/383DwcmbMJh//xxZWtR5AYE1eTSedSnA9tK+7PSdvKCAnRX8rd99SyXTg4Yz0urN+P2Lcfed5/ev4WJGSlYNHKrkbTXFZdlCmg6LywC9mQlOHtAVgThFlC0JJT5emtFpX4FXqK6nz3sVTTx7e0H2ht2Aiz2g3GlDYecDN3hIiQsMDjGClrQ0VaAR+Ta75c5efnI+rdO57ezXYOTfDmZd390FJdBfkF+Br9GWa2Dbi2m9s2wKc3UZWK4+uHz/j0NgrGDcwFhsnLy0VhYSGkZGqnR1Bx3TCy5v6hxsjaoty6EXHzAVK+/0bdqKMphQoKChD78QtPr2djGwt8ecd7LSr2NPQ+UhIS0bZ3p9pOIo/CgkIkxcRB24q7EVDL0gjfK7hnnF2xB0dm+eKy7yHE8blnlPbuXgQM7a0gKl43I2mKn6V0yzxL6VqZIL6CZ6kji7di79SVOL1mL76+qdtnKULKU6+rqQ4bNgxr1qxBaGgo2rVrB6BoOFivXr2gqKiISZMmYeDAgZg8eTIAwNTUFJs2bULbtm2xfft2SEhIcMV37do1PH/+HB8/foSuri4A4MCBA2jQoAHCw8Ph4OCA5cuXo3///li8eDFnv0aNGvFN37Vr1xAZGYlPnz5BR0cHALBixQrOMLdi8+bN4/zfwMAA06ZNw9GjRzFzZtGcB76+vhg2bBiGDx8OAFi2bBmuXbtWbu84UVFRrjQaGhri3r17OHbsGPr16yf4Qy1FW1sb06dP5/w9YcIEXL58GcePH0ezZs347rNx40a4urrin3+K5jUwMzPDvXv3KuyVVFpWVhbWr1+P69evc3opGRkZ4c6dO9i5cyfatm3Ls09MTAykpaXRpUsXyMrKQl9fH3Z2dr8dX7H27dtzfQZeXl4Vlqlhw4ZxwhsZGWHTpk1o2rQpMjMzISNTca+B0kOdJ02ahLi4OISHh3O2VVReyjpy5AiEhISwZ88eTg87f39/KCgoIDQ0FC4uLnz3K2316tWwt7fnagRu0ID7wc/ExASrV6/m/F2Znndbt26FvLw8jhw5whlaamZWMsfJ0qVLsW7dOk7vU0NDQ7x+/Ro7d+7EkCFDOOEmT57M1UN17dq1mDVrFvr3L5qDYtWqVbhx4wZ8fX2xdetWvmn59OkTtLS0+L7n5eWFFi1a4OTJkxAWFvzFgR8/Pz8MHjwYAODm5obMzEyEhISgY8eOAIrq1e3bt2FtbQ19fX04OjrCxcUFgwYNgrh4SZd4aWlpKCgo4NOnT+WW2f9nGWnpYLPZUFBU4Nour6iI1OSUasWdlZmFEX08kZ+fDyEhIYycMg629nUzFcLPjGwwbDZPryMpORlkp/EfDiYtL4v2Q3pAzUALhfmFeBP2FEFr96L3TB9om9fNr+xCv760MdnZXNuZrGyw5OUE76cgDyF5XeS/foOs42cgrKQACed2gJAQcu+V3xOwJmVnZIFhsyEjz934Li0vi8zUdL77JMf/wI2j5+E5fwKEyrlW5GT/xKYJi1BYUACWkBDchvaBkbXgL8LVkZOZDYbNQFKO+8unpJw0fqbzLz9S8jJoNagzVPQ1UVhQiKj7z3HR9wA6T/XizM+moKGMNkO6QUlbDfk/8/Dy+gOcWxOAXvNGQl6dd2hcTeVDqmw+ZKXxM53/iAcpeRm0HtylKB/5BXj/4AUubDiALlOHQNOsKB/xUTF4e/cpes0fxTeOmlSbZaq0G0fPQ1ZRHoYN+M8ZVl1SYhIQFhJCZi53T+3M3J+QEePfAKgoJQd9RQ0UsAtx6MkVSIlJoJtVa0iJiePUi5IfRsVFxDCr3WCICAmBzTA49/oOopO+1Xge0tPSiuZsVOTuCamoqIgn1bxf1KWsjAyw2WzIKnAPHZRVkENGalq5+y4ePg2ZaRlgswvh6tEdjs5tBIa9sP8E5JUUYdaogcAw1VFcN6T51Y20curGkXPwWjCx0nXj+pHzkFWSh2HD2qkbZWWnVz1fSXHfcS3wLLwXTa7yM2dNyP11rZWQ5X7mkJSVxk8BzxxScjJoMcgdynoaYBcUIvrBC1zeeAidpnjynWfux6dvSI39gVaenWslD/xwnqXkyjxLyUsj+6WAZykFWbTz6g5VA20U5hfgbVgETq/1R88Zw+rsWepPQqup/nnqtTHOwsICLVq0wN69e9GuXTtER0fj9u3buHr1KgDg8ePHiIqKwqFDhzj7MAwDNpuNjx8/wtKSu1tsZGQkdHV1OQ1xAGBlZQUFBQVERkbCwcEBERERXHNClScyMhJ6enqchjgAfIfAnThxAr6+voiKikJmZiYKCgogJyfHFc/o0dzzMjVv3hw3bvDvfl5sx44d2LNnDz5//oyfP38iLy+vSiuwFhYWYuXKlTh69Ci+ffuG3Nxc5ObmlrtARWRkJHr27MmT1qo0xr1+/Ro5OTlwdnbm2p6Xl8dpYCvL2dkZ+vr6MDIygpubG9zc3NCzZ09ISUn9VnzFyvaUqkyZevr0KRYtWoSIiAgkJyeDzWYDKGowtLLiP3yDn127dsHPzw93797laqCrqLyUVZzmsr25cnJyuIaDliciIgJ9+/YtN4ygXmUVxdu6dWu+c7z9+PEDX758gY+PD1edKygogLw890Nn6WOnp6cjNjYWLVu25ArTsmVLPHsmeJGBnz9/8jTQF+vevTuCgoJw8uTJSjdmA0U96h4+fIhTp04BKOrR6+Hhgb1793Ia46SlpXHhwgVER0fjxo0buH//PqZNm4aNGzciLCwMUlIlX2wkJSWRXaZho1hx/SytdGPe/xOehwWGAQvVe4CQlJLEuj1bkPPzJ54/eQb/rbuhrqmBhnY21Yq3avjkS0C2FDVVuSYX1jTRQ0ZyGp5cuVNrD5CiVuaQdC1Z1CLrxBlOOrmw+Gzjep8FJjsbPy+HAAwDdsJ3sGSkId7Uvk4b40qnpzQG/B9I2Ww2Tm89gNa93aCsyTvfVGniEuIYvnw68nLz8OnVO1w7dBqKqsrQt6p4Qu/fVjYfDAOeMvWLgoYK1wIH6kY6yExJx4vgME5jnJqRDtSMSp5v1I11EbRiN16FhqOFh1vNp/838OTDWBdZyWl4HhwGTTN95OXk4sbe02jt2QUStdSLjK9aKFPFws6H4FXYUwyeOw4itTxMsmwtLsoC/7pdnL1jz64jt6CoV/7FN2EYYOeMs6/uoIBd1NM+ryAPW+6egLiwKIyUtdHJojmSs9NrpXccV8J+YcD8J79wlk0xw1Scj/HL/0FuTi4+v43GhQMnoKKphsatHXnCXQ+6hCd3HmLc0pm1PvSWJ8kC7t9sNhtBW/ejTe9Ola4b986F4FXYE3jOG1/rdaMsnjwIuPyy2Wyc3LIPTn3coVLJfNUW3uIjuEzJayhDXqPkRxg1Ix1kpaTjZfB9vo1x7+4+g4KWKlQNtGswxb9J8K0QihqqUNTgfpbKTEnD0yt3/y8b48ifp14b44CihRzGjx+PrVu3wt/fH/r6+ujQoejLAJvNxqhRozBx4kSe/UpPoF5M0I2r9PaqTLTP8PmyUTb++/fvc3raubq6cnoJFa+i+LuOHTuGKVOmYN26dWjevDlkZWWxZs2acoeYlrVu3Tps2LABvr6+sLa2hrS0NCZPnlzu0EZ+eS5LSEiIJ1zpOc+KG68uXLgAbW3ui7SgxgVZWVk8efIEoaGhuHr1KhYsWIBFixYhPDz8t+IrVrbhsaIylZWVBRcXF7i4uODgwYNQVVVFTEwMXF1dKz0kFABCQ0MxYcIEBAYGcvW8/J3ywmaz0aRJE64GxGKVXXCkMuW+7GdVPJ9C6XNddm678uItPm+7d+/m6YlZ9pdCfg3EZetaRQ+mKioqnDnwypozZw5sbGwwaNAgMAzDNXS9PH5+figoKOAqdwzDQFRUFCkpKVy/yBsbG8PY2BjDhw/H3LlzYWZmhqNHj8Lb25sTJjk5WeA5+/fff7l6wwLAwoULgf+jNWVk5eUgJCSElDK9GtJSUyFfzYmahYSEoKlT1HPS0NQYXz/H4NThY3XSGCcpKwWWkBCyy0zgnJ2RBUm5ys/RpWmkizf3a2/V2/yoDyiMLbWSokhRPWVJS4PJKmlEZklJcf1dFpNZ1JOgdIMdOymlqKedkBDw69pQ26RkpcESEuLpsZSdlsHTywEA8n7mIu7jF8R//oYr+4oa4BmGARgGK7ymYeCs0TBoYAoAYAkJQenXA76GvjYSvyXg3rlrtdIYJyEjBZYQi6dHQ05GNk9vufKoGWoj6uELge+zhFhQ1ddC+vcKVsr9TcX5yC7TC+5nRlbV8mGkg6gHRfnI+JGCzKRUXNl6hPN+8T1rz5il6LdkHORUBU+wXlW1WaYA4P6FG7h79hoG/jMG6nr8e3rXhOy8HBSy2ZAV576HS4tJIjOP/7ymGTnZSM/J4jTEAcCPzBQIsViQl5BGUnbRZ8IASP71/7iMJKjJKKCtkV2NN8bJyctDSFgIKcnc5TU1JZWnd/WfTFq2aP6q9DK94DLTMiBTTg9kAFBWL7oGaenrIDMtHVeOnOFpjLtx+jKunTiPMYunQ8tAl180NaKkbnDf57LSMwXUjRzEffiC+E/fcHlf0WIaxXVjuedUDPxnNFfP0LAL13H3bDAGzR5bq3WjLCm5X/kq0wsuKz0DMnx+SM/9mYPYDzGI+/QVFwOOAyjJ1+JBk+A5eyyMGtZOL+pi4sX3jDI9p39mZEOiCtdaVUNtRD/knYKlIC8fHx+9hl1XwT0xawPnWapMvrLTs3h6y5VHw0gXb2vxWYqQqqj3xrh+/fph0qRJOHz4MPbt24cRI0ZwvnA3btwYr169golJ5R5uraysEBMTgy9fvnB6x71+/RppaWmcXnQ2NjYICQnh+oJcUXyxsbGc4W9hYWFcYe7evQt9fX3MnTuXs+3z589cYSwtLXH//n14eXlxtt2/f7/cY9++fRstWrTA2LElq5xVthdU6Ti6d+/OGWLHZrPx/v17nh6FpVlZWfGkrezfqqqqPPNjRUREcHpHWVlZQVxcHDExMVUajiciIoKOHTuiY8eOWLhwIRQUFHD9+nU4Ozv/Vnz8VFSmXrx4gcTERKxcuZJThh49Kn9i6bKioqLQu3dvzJkzh2voJVC58sIvzUePHoWamlq5PejKU1zuyzb2lKe40SguLo7TA7H0Yg7F8e7bt4/vCqjq6urQ1tbGhw8fMGjQoEofV05ODlpaWrhz5w7XvIH37t1D06ZNBe5nZ2eHgwd5l2UvNm/ePIiIiGDQoEFgs9kYMGBAuekoKCjA/v37sW7dOp6hwL1798ahQ4cEzl9pYGAAKSkproVBoqOjkZOTI7A35+zZszF16lSubeLi4gjeM6ncdP5NREVFYWxugmePnsKxdQvO9mePnqJpS95f+6srX9BqoDVMWEQEavpaiHkdBeMmJUOEYl5Fwciu8hMff4+J4/ulpsbk5YOdx/2FkJ2ZBREDPeR9/1G0QUgIIro6yAkVPHF1wbdYiFlxz68jpKgAdkZmnTXEAUWfu6ahDj6+fAcLh5JG148v38GsCe98geKS4hjxL/d0AY+v3cXn1+/Ra+JQKFTQqFOQX1AzCS9DWEQYKnqa+Bb5AQZ2JZ/rt8gP0G9U+aFaSV/iIVVO+WEYBklf46GkXTu9OUrnw5AnH5X/cpr0JR6Sv4Z8y2uooPcC7pEHj87cQH5OLpp7uEFaUfCqgb+jNstU2PnruHsmGANmjYKWUe2uCFvIsBGb/gMmyjp4nfCJs91ERQeRpf4uLSY1AQ01jSAmLIK8wqKyriItDzbDRlqO4IXVABaEy5lX7neJiorCxMwMEeFP0KJNySrlEeFP0KxVi3L2/LOIiIpAx1gf7569ho1jyfx37569QoOmlZ8DkWEYnmvQ9aBLuHbiPEYumApdk9rtBVRSN95y140XbwXUDQmMXMk9D/fja3fw6dV79J7kzVM37py+igGzRtd63ShLREQEWoa6iH7+BpYOJT+uR794C4sm1jzhxSUlMGb1bK5t4Vdv4+Prd+g32Yfv6rg1TVhEGMp6moiN/Ah925JrbWzkR+hV6Z6RwPcHw4+PX4NdUADjpnUz726x4mepL6+iYNy4ZKTSl9dRMKzCs9SPmLhaX6zoTyVUzVEmpObVe2OcjIwMPDw8MGfOHKSlpXFNlD9r1iw4Ojpi3LhxGDFiBKSlpREZGYng4GCelQoBoGPHjpzeL76+vigoKMDYsWPRtm1bzjC4hQsXokOHDjA2Nkb//v1RUFCAS5cu8Z2vq2PHjjA3N4eXlxfWrVuH9PR0rkYUoGierZiYGBw5cgQODg64cOECgoKCuMJMmjQJQ4YMgb29PVq1aoVDhw7h1atXMDLinoy5bLz79+/HlStXYGhoiAMHDiA8PByGhpW/mZqYmODkyZO4d+8eFBUVsX79esTHx5fbGDdx4kS0aNECq1evRo8ePXD16lWeIart27fHmjVrsH//fjRv3hwHDx7Ey5cvOY0MsrKymD59OqZMmQI2m41WrVohPT0d9+7dg4yMDNdcYcXOnz+PDx8+oE2bNlBUVMTFixfBZrNhbm7+W/EJUlGZ0tPTg5iYGDZv3ozRo0fj5cuXWLp0aaXj//nzJ7p27QpbW1uMHDkS8fElvUw0NDQqVV7KGjRoENasWYPu3btzVhiNiYnBqVOnMGPGDK5h1ILMnj0b1tbWGDt2LEaPHg0xMTHcuHEDffv2hYqKCt99JCUl4ejoiJUrV8LAwACJiYlc890BwPjx47F582b0798fs2fPhry8PO7fv4+mTZvC3NwcixYtwsSJEyEnJ4dOnTohNzcXjx49QkpKCk/DU2kzZszAwoULYWxsDFtbW/j7+yMiIoJv78Birq6umD17Nk+PtdL++ecfCAsLw9PTE2w2u9xGwvPnzyMlJQU+Pj48w2r79OkDPz8/jB8/HosWLUJ2djbc3d2hr6+P1NRUbNq0Cfn5+VxDq2/fvg0jIyMYG/Of5F1cXLzOhqVKiopDR76ky52WnApMVXSQnpOFhMz6nWuna9+e2LRiHUzMTWHewAJXz11GYsIPuHRzBwAc3OWPpMQkTJpTMhfkx/dFP1Tk/PyJ9LQ0fHwfDRFRUegaFD20nzx0FMbmptDQ0kRBfgGePAhH6JUQjJwyrs7yZefaEld3n4CagTY0jfXw8mY4MpPTYO1U1MB898QVZKWkw2VE0XDyp1fvQk5FEcraaigsKMSbsAhEP34F93ED6yzNAJD76CkkmjcFOyUV7JRUiDd3AJOfj7zIN5wwkp1dwM7IQu6totUk854+h3hjW0h0dELe4wgIKSpAvLkD8h5HlEQsKgqhUr1XhOTlIKSmCuZnDpgM7p4V1dGskxPObD8ETSNd6JgY4OmNe0hLSkHjDkVf1m8cPY+MlDR0Gz0ILCEhqOlyL0whLScDYVERru13z16DpqEuFNWVUVhQiOiISLy4Ew63oeVPBVAdDTs64qb/aajoa0HNSBtvbz9FZkoaLNoUfXkPDwpBVmoGnLx7AABehjyAjLI8FDVVwS4sRNSDF/j09A06jCpZpfzJ+ZtQM9SBnJoS8nNy8erGQyR9SUCL/rU34bh1x+YI9Q+Cqr4m1Ix08Ob2E2Qmp8HyVz4e/spHu1/5eHHtPmRVFKCoqYrCX/n4+CQSHUcVfdYioiI8jYdiUkXTFdRWo2JtlKmw8yG4eeISeoz1hLyKEqfnnZiEOMQkaue+cPfjC/Rp1A7f0n8gJiUBDrqWkJeQwcOYotU2XcyaQk5CGieeF02p8iz2PZyMG6OXtRNCoh5BWlQSbhaOePz1LWeIahsjW3xL+4Hk7HQICwnDXFUXdtqmOPuq/FUnf1cPj95Yv2wVTCzMYNnAEpfPXsSP79/h3qMLACBghx+SEhMxbV5Jo8+H90WLIuT8/Im01DR8eB8FERFR6BkWDd/Oz8/Hl09FP5IW5Ocj6UciPryPgoSkJLR0amdIXtturji8cTd0jQ1gYG6MsOCbSElMRgtXJwDA+QMnkJ6cgoGTiqb8uHMxBIqqylD7tZDOx8h3CD1zBa3cS6YZuB50CZcOB2Hw1JFQUlNBekrRDy3iEuIQl+Q/pUd1ceqGoS50TA3w5HrYr7pRNO3I9SPnkJGShu5jBvOtG1JyMhApUzfunQvBzRMX0WOcFxRU66ZulNW8czuc2noAWkZ60DUzxOOQu0hLTIZ9x6JG4GuBZ5GekopeY70gJCQEdV3unnvS8rIQERXl2V6bGnRohtsBZ6Csrwk1Qx28vfMUWSlpsGhdNFfuo9M3kJ2agTZDuwEAXoU8hIyyPBS0VIvmjHv4Ep+fvkG7kb154n5/9xn0GpnX7dQAv9i6tETwnqJnKQ1jXby69QiZyWlo2NYBAHDv5FVkpaTDeXjRvS4i+B7klBWg9OtZ6u39Z4h+/Aqdxpb/gzwhdaXeG+OAoqGqfn5+cHFx4Rp+amNjg5s3b2Lu3Llo3bo1GIaBsbGxwCFmLBYLp0+fxoQJE9CmTRsICQnBzc2Nq+HOyckJx48fx9KlS7Fy5UrIyclx9b4pTUhICEFBQfDx8UHTpk1hYGCATZs2wc2tZC6V7t27Y8qUKRg/fjxyc3PRuXNnzJ8/H4sWLeKE8fDwQHR0NGbNmoWcnBz07t0bY8aMwZUrVwR+JqNHj0ZERAQ8PDzAYrEwYMAAjB07FpcuXarsx4r58+fj48ePcHV1hZSUFEaOHIkePXogLU3whLCOjo7Ys2cPFi5ciEWLFqFjx46YN28eV4OUq6sr5s+fj5kzZyInJwfDhg2Dl5cXXrwoGf6ydOlSqKmp4d9//8WHDx+goKCAxo0bY86cOXyPq6CggFOnTmHRokXIycmBqakpAgMDOYsMVDU+QSoqU6qqqggICMCcOXOwadMmNG7cGGvXrkW3bt0qFX9CQgLevHmDN2/e8CwmwDBMpcpLWVJSUrh16xZmzZqFXr16ISMjA9ra2ujQoUOle8qZmZnh6tWrmDNnDpo2bQpJSUk0a9aswt5he/fuxbBhw2Bvbw9zc3OsXr2aq5eYsrIyrl+/jhkzZqBt27YQFhaGra0tZ7634cOHQ0pKCmvWrMHMmTMhLS0Na2trzgIagkycOBHp6emYNm0avn//DisrK5w9exampqYC97G2toa9vT2OHTuGUaMET+Q9Y8YMCAsLY8iQIWCz2fD09OQbzs/PDx07duRpiAOKesatWLECT548Qdu2bbF161Z4eXkhISEBioqKsLOzw9WrV2FuXtLbIzAwsNLzVdY2C1V9bOlZ0hg6sVXRF9uLkWFYfn2foN3qRKv2bZGRnoFj+w4jJTkZeoYGmLtqMdQ0ilb4S0lKQWLCD659po2YwPl/9Lso3L4WClV1New8GgCgaNjI7g3bkPQjEWLiYtDW08WkudPRqn3dLaRh1tQGOZnZeHj2BrLSMqCsrY5uk70gp1LUcJydloGM5JJrM7uwEHeOXUJmSjpExEShrKWGbpO9YGBTu8Nbysp78AgsERFIurQHS0IchbHxyDoWBJTqVSgkJ8c1zRSTkYmsY0GQ6NAGMsMGg52RibxHEch9UNLLWFhDHTIDSxqGJDsUnYu8F6/x8+LVGku/laMdsjOycCfoCjJT06Gqo4n+M0ZCXqWo10VmajrSEqvWAJ2fm4fLASeQkZzGOTfdxwyGlWPtreRpbN8AuZk/8fTCLWSnZ0JRSxWu4wdAVlkBAJCdlonM5JJhVIUFhXh48hqyUjMgIioCBS1VuI7rD13rkmtoXnYu7hy6gOz0TIhJikNZVwNdpg+BmmHtzQFk7NAAuVnZeHLhFrLTMqGkpQa38QO58pFVph48OBHMnY/xA6BnLfheUNtqo0w9vnYXhQWFOLkpgGt7656uaNO7dubvexEfDSkxcbQzbgJZCSkkZCRj/6NLSM0pGgImKy4FeYmS3iN5hQXwD7+ArlYtMbZFL2Tn5eJlfDSC35UsUCUmLIpuDVpDXkIa+YUF+JGViuPPbuBFfNVGdlRWmw5OyEhPx5GAg0hOSoa+oQEWrV5e6n6RhB8J37n2mThsDOf/UW/f42bwdahpqGPv8aKe9cmJSVxhTh05jlNHjqOhrQ1Wbq7eFDSC2LVqiuyMTFw9dhbpKWnQ1NPGiHmToaRW9GNpRkoaUn6UDMdlGAYXDpxE8vcfEBIWhrKGKjp79kFzl5J72t1L11FYUIB9q7dxHcvFoxvc+veolXw0aN4YPzOzcZurbozi9HLLTE1HWlJV68adorqx0Z9re+ternW2UmnD5k2QnZGFm6cuIzM1HWq6mhg0awwnXxmpaVWu87XNyN4KuVnZeHbhTtE9Q1MVzuP6Q0a56Jn2J59rbfipEGSnZkBYVASKmqroOM4Dug25RxKlJSQhIfoLXCbWT2OWaVNr5GRmI/xcybNUl0meJc9SqRnISE7lhGcXFOLu8ctFz1KiolDSVkOXSZ51/ixFiCAspjKThJH/awEBAZg8eTJSU1PrOymElOvixYuYPn06Xr58yZnz7k/w8uVLdOjQAe/evePbuFeelltHVxzoD3d33A68iqudL2N1pYGmMbbePVHfyai2cS37IG2Vb30no1rkZ03G/vCL9Z2MavNycMeaG4KH1v9XzGg3GGtDBfda/i+Y7jTorylTcy/trO9kVMvyTqPw/ntMfSej2kzV9HDh9d36Tka1dbZqiQOPKt8R4E/kad8JgU9q7kee+jKgsQtWXt9f38moln/ae2HzneP1nYxqm9Cq9nrC16ZOewSPSqpvl4avr+8k1Is/omccIYTUBHd3d7x//x7fvn3jWlW5vsXGxmL//v1VbogjhBBCCCGEEPL3ocY4QshfZdKkP2/Bg7ILQBBCCCGEEEII+f/154zjIn+soUOH0hBVQgghhBBCCCHkP4jFEvpjX/+v/n9zTgghhBBCCCGEEEJIHaPGOEIIIYQQQgghhBBC6gjNGUcIIYQQQgghhBDylxJiseo7CaQM6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlLsUDDVP801DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKXotVU/zzUM44QQgghhBBCCCGEkDpCjXGEEEIIIYQQQgghhNQRGqZKCCGEEEIIIYQQ8pdi0TDVPw71jCOEEEIIIYQQQgghpI5QYxwhhBBCCCGEEEIIIXWEhqkSQgghhBBCCCGE/KVomOqfh3rGEUIIIYQQQgghhBBSR6gxjhBCCCGEEEIIIYSQOsJiGIap70QQQgghhBBCCCGEkJrXe9+c+k6CQCeHrKjvJNQLmjOOEEL+YK/ious7CdXWQNMYLbeOru9kVMvdcTsQ9eNLfSej2kxUdZGRnFzfyagWWSWlv6ZevEn4WN/JqDYLdcP/fN0wUdVFakZafSej2hRk5fEj479dv1VllfD+e0x9J6PaTNX0/pp8fE9Pqu9kVIuanDIS0hPrOxnVpi6n8p+/Z1ioGyIjPb2+k1FtsnJy9Z0E8pegYaqEEEIIIYQQQgghhNQR6hlHCCGEEEIIIYQQ8pei1VT/PNQzjhBCCCGEEEIIIYSQOkKNcYQQQgghhBBCCCGE1BEapkoIIYQQQgghhBDylxKiYap/HOoZRwghhBBCCCGEEEJIHaHGOEIIIYQQQgghhBBC6ggNUyWEEEIIIYQQQgj5S9Fqqn8e6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlLsUDDVP801DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKXEqLVVP841DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUEWqMI4T8lbKzs7F06VJ8/vy5vpNCCCGEEEIIIfWGxWL9sa//V9QYR/7vBQQEQEFBoU6O5eTkhMmTJ9fJsWpSVT8jAwMD+Pr61lp6KmPChAmIjY2Fvr5+lfb7r54jQgghhBBCCCH/DbSAA/lPqKjFfMiQIQgICKibxPwf8vDwgLu7e6XDh4eHQ1pauhZTVL7AwEAkJCTgzJkzVd731KlTEBUVrYVU1b5Lp8/jzJGTSElKhq6hPoaNHwkrm4Z8wyYnJWPftt2IfheFuK+xcO/VDT4TRnGFuX/rLk4ePIq4b3EoLCyAprY2unn0hJNLh7rITrkaaZpgoJ0LLNT0oCKtgH8ubsftj8/qLT3nT53BqcDjSE5Kgp6BAUZOGouGjawFhn/x9Bl2b96BmE+foKSsjD6DPODeoyvn/YKCAhw7EIiQS1eRlJgIHV1dDB0zHPaOTbniSfyRCP/tu/H4/kPk5eZBS1cHk/6ZBlMLs9/KB8Mw2OXnh6AzZ5CRno4GDRpg1vTpMDYyKne/kBs3sGPXLnz99g062toYO2oU2jk5cd7337cPN27exKfPnyEuLg4ba2tMGDsWBqUay5OSk7F561bcf/gQGRkZaGxrixnTpkFPV/e38lKsputFaXdCbmL90lVo2tIR/yxfUK10VuRi0DkEBZ5ASnIy9Az04TNhNBo0EpCPxCT4b9uNqLfvEfc1Fl16d8fwiaO5wlw9dwk3rlzD5w9FvYeNzU3gOcIbZlbmNZbm+qgX3n0G4Xt8Ak/cnXt2w9hpE/mm8ezRU/jx4wcMjYwwZdoU2NnZCUzjk8dP4LvBFx8/fICKqgo8PT3Rq09vrjDXQ65j546d+Pb1K7R1dDBm7Gg4tWvHFebE8RM4eOAAkhKT+B43KSkJWzdvwYP7D5CRkQG7xnaYNmM69PT0uD+z58+xfdt2vHr5CqKiojA2NcG6TeshLiHBFe7U8ZMIPHAISYlJMDAyxKRpk9HIzlZgPp8+foLNGzbh04ePUFZVwSDPQejRpxfn/Q/RH+C3YzfevnmD+Lh4TJw6Cf0G9hcY3wH/fdi5dQf6DuiHSdOmCAxXEy4EneUqdyMmjhFY7pITk+C3dSei3r5H7Ndv6NqnB0ZOHFur6ausPz0fQcdPIvDgYU6Zmjh1UgVl6im2+P4qUyoqGOg1CD169+S8fzboDK5cvIwP0R8AAOYW5hg5bjSsGlhxwhzw349bN0Lx+XMMxMXF0NDGGmPGj4WeQdV+eOXOxykEHjyM5F/5mDB1Yrn5iHj8FFt8N5fKx0B0L5WPc0FnceXiJXyI/sjJx4hxo7jyUVBQAP/dexF8+SqSk5KgrKyCTl06wctnKISEaqavzH/hnsEwDHbt3o2goCBkZGQUPXPMnAljY+Ny9wu5fh07duzA169foaOjg7FjxqBdmWvs8ePHceDgQSQmJsLIyAjTpk7lusbu3LULV69eRUJCAkRFRWFpYYGxY8eiYcOSz+jr16/w3bgRERERyM/PR/PmzTFj+nTIysn9dp4JKY16xpH/hLi4OM7L19cXcnJyXNs2btxY30n8TyosLASbza4wnKSkJNTU1Codr6qqKqSkpKqTtGoZMGAAzp8/D2Fh4Srvq6SkBFlZ2VpIVe26c/0m/LfsQu/BHli3ZzMsrRtg2cwF+JHwnW/4grx8yCnIo/fg/jAwNuQbRkZWFr09+2PltnXY4LcN7Tt1xJaVG/D04ePazEqlSIqKIyrpK9bfOlLfScGtkBvYvWk7PLwGYtPeHWjYyBoLp8/m2yAAAPGxcVg4Yy4aNrLGpr074OE1EDt9t+Ju6C1OmP27/HH5zHmMnjIe2w/4oVOPLlg+ZxGi373nhMlIz8CMMZMgIiKCxWv/xfaDfhg+fhRkZGV+Oy/7Dh7E4cBAzJw2Dfv27oWysjLGTZqErKwsgfs8f/ECc+bPh7ubGwL374e7mxv+mTcPL1+94oR58vQp+vbuDf/du7F140YUFhRg/OTJ+PnzJ4CiB/Lps2bhW2ws1q1ahUP79kFDQwNjJ07khPkdtVEvin2PT0DA9j2wsmnw2+mrrNshN+G3eSf6evXHhj1bYWXTEEtmzhOYj/z8fMjJy6Ov5wAYmPBvSH3x9Dlad3DCso2rsHr7Bqiqq2HR9DlI+pFYI2mur3rhu3srDpw5xnkt27AKANCqXRuBaRwzZgz2HzoAWztbTJk4GfHx8XzTGPvtG6ZMmgxbO1vsP3QAQ72HYt3adbgecp0T5sXz55g3Zy46uXfCwcBD6OTeCXP+mYOXL19ywgRfDcaGdevhPcyb73EZhsHM6TPw7ds3rFm3FgcOHYSGhiYmjB3PVR9ePH+OSRMmoZmjI/z3+ePEiRPo3a8PWGW+zIdcvYZN63zhNWwo9h7ah0Z2jTB94tRy8hmLGZOmoZFdI+w9tA9e3kPgu3YDQkNucMLk5uRAS0cLo8ePhbKyMt94ikW+eo2zQWdgbGpSbriacCskFLs3bUc/zwHY5LcdDRo1xKIZc/C9vLqiII9+XgNhKKCu1Ic/PR8hV69h0/qN8PQeAr+DAWhk2wgzJk1DQjllaubkaWhk2wh+BwPg6e2FjWs3IPR6SZmKePwUHV06YtP2zdixdyfUNdQxbfxk/Pj+oyTMk6fo2bc3du7dhQ1bNqKwsBBTJ0z+7ftEyNVr2Lx+I7y8vbDnoD9sbG0wc9L0CvIxHTa2Nthz0B+e3p7YuNaXKx9PHz9BBxdnbNy+Cdt/5WP6+Clc+Ti8/xDOnjyNKTOm4sCxwxgzcSwCDx7GyaMnfisfZf1X7hn79u/H4cOHMXPGDOwLCCh65hg/vvxnjufPMWfOHLh36oTAw4fh3qkT/pk9m+sae/XqVaxbvx7DvL1x6OBB2NnaYuKkSVzXPH09PcycMQNHAgOxZ/duaGppYdz48UhJSQEA/Pz5E+PGjwcLwI7t2+G3Zw/y8/MxZerUSn13+hMJsVh/7Ov/FTXGkf8EDQ0NzkteXh4sFotr261bt9CkSRNISEjAyMgIixcvRkFBAWf/1NRUjBw5Eurq6pCQkEDDhg1x/vx5rmNcuXIFlpaWkJGRgZubG+Li4jjvsdlsLFmyBDo6OhAXF4etrS0uX75cbpqzsrLg5eUFGRkZaGpqYt26dTxh8vLyMHPmTGhra0NaWhrNmjVDaGhoufEuWrQIenp6EBcXh5aWFiZOLPmlv6L4ioebnj9/HlZWVhAXF8fu3bshISGB1NRUruNMnDgRbdu25dqvtLNnz8Le3h4SEhJQUVFBr14lv5iXHaYaExOD7t27Q0ZGBnJycujXrx8SEvh/IQOAT58+gcVi4dixY2jdujUkJSXh4OCAd+/eITw8HPb29pzz9ONHycNNeHg4nJ2doaKiAnl5ebRt2xZPnjzhvB8aGgoxMTHcvn2bs23dunVQUVHhnO+yw1QNDAywbNkyzrnU19fHmTNn8OPHD06erK2t8ejRI648nDx5Eg0aNIC4uDgMDAz4nv+adO54EDq4u8C5ixt09PXgM2EUlNVUceXMBb7h1TTV4TNhNNq5doCUgF6MDe1s4Ni6BXT09aChrYkufXpA39gQkS9e8Q1fl+7HvMLuB2dx80NEfScFQUdOwqWLG1y7ukPPQB8jJ42FipoaLp4+xzf8xdPnoaquhpGTin7Nd+3qDufObjgVeJwT5saVa+jnORAOzZtBU1sLnXt2Q+Nm9jh1pORB/cShI1BVU8WUOTNgbmUBdU0N2No3hqa21m/lg2EYBB49Cu+hQ9HeyQkmxsZYPH8+cnJycPnqVYH7BR49imYODvAeMgQGBgbwHjIETe3tcfjoUU6Yzb6+6Nq5M4yNjGBmaoqF8+YhPj4ekW/eAABivnzBi5cv8c+MGWhgZQUDfX38M2MGfmZn40pw8G/lB6idegEU/ZDhu2wN+nsPhrqm5m+nr7LOHDuFjp1d4dKlE3QN9DB84mioqKri0unzfMOra2pgxKQxaO/WEdLS/H8YmbZgFtx7doWRqTF09HUxbsYksNkMnj2OqJE011e9kFdUgJKyEucVfu8BNLW1YG3XSGAa+/btC0NDQ0ydNhXq6uo4eeIk3zSeOnkKGhoamDptKgwNDdG9Rw907dYVhw4e5IQ5EngETZs1xVDvoTAwMMBQ76FwaOqAI4dLfjgIPHQY3bp3Q/cePfge90tMDF6+eIlZ/8yCVQMr6BvoY+Y/M5H9MxtXr1zhxLNhvS/69ffAkKFDYGRsDAMDA7Tr2B5iYmJc6T5yKBBdundF1x7dYGBogEnTpkBNXQ2nT5zim8/TJ4OgrqGOSdOmwMDQAF17dEPnbl0QePAwJ4xlAyuMmzQBHV2dISomuDd5dnY2Fs9fhJlz/6mTH7pOHz0J585F5U7XQB8jJ46FipoqLgbxL3fqmhoYNWkcOrg5l1vn69qfno+jh4+gc6kyNXHaZKipqyHoRBDf8GdOFZWpidMmc5WpI6XK1IJli9Czb2+YmptB38AAM+f+AzbDxuPwkuerdZs3wL1rZxgaG8HEzBSzF8xFQnwC3ka++a18HDt8FJ27d0GXUvlQVVfDaYH5OA21Uvno0qMb3Lt1xtGDgWXy0etXPvQxY+4snny8evESLdu2RvNWLaCppQmnDu3g0Kzpb+eDJ53/gXsGwzAIDAyEt7c32rdvDxMTEyxetKjomaPUda6swMBANGvaFN7e3kXPHN7eaOrggMOBJefg0OHD6N69O3r8usZOmzYN6urqOHGi5F7h5uaGZs2aQUdHB8bGxpgyeTKysrLw/n3RjzvPnj1DXFwcFi5cCBMTE5iYmGDhggV4/fo17t+//1t5JqQsaowj/3lXrlzB4MGDMXHiRLx+/Ro7d+5EQEAAli9fDqCoIa1Tp064d+8eDh48iNevX2PlypVcvaays7Oxdu1aHDhwALdu3UJMTAymT5/OeX/jxo1Yt24d1q5di+fPn8PV1RXdunXjXLD5mTFjBm7cuIGgoCBcvXoVoaGhePyYu0eRt7c37t69iyNHjuD58+fo27cv3NzcBMZ74sQJbNiwATt37sT79+9x+vRpWFtbVym+7Oxs/Pvvv9izZw9evXqFwYMHQ0FBASdPlnz5KCwsxLFjxzBo0CC+6bhw4QJ69eqFzp074+nTpwgJCYG9vT3fsAzDoEePHkhOTsbNmzcRHByM6OhoeHh4CPzsii1cuBDz5s3DkydPICIiggEDBmDmzJnYuHEjbt++jejoaCxYUDI0LD09HV5eXrh9+zbCwsJgZGQEd3d3ZGRkAChpaPP09ERaWhqePXuGuXPnYvfu3dAs5wv1hg0b0LJlSzx9+hSdO3eGp6cnvLy8MHjwYDx58gQmJibw8vICwzAAgMePH6Nfv37o378/Xrx4gUWLFmH+/Pm1NpQ6Pz8f0W+j0MihMdd2Wwc7vHkVWSPHYBgGzx9HIPbLV1gJGObw/yg/Px9R797BzoG7/Dd2aILIl6/57vPm1Ws0dmjCHb6pPd6/ecf5ESE/Pw+i4txfqMXExPH6eckvvw/uhsHEwgwr5i3BwC59MMF7FC6f5d/IVBnfYmORlJQEx6YlQ/7ExMTQ2M4Oz1+8ELjf85cv0awp9/BZx2bNyt0nMzMTACD3a6hHfl4eAEC8VCOCsLAwRERFEfHs94Yf12a9OL4/EHIK8ujY2bVa8VRGfn4+ot+9hy1PPhrjzcuaqd8AkJubi8KCAsjKVb/BpD7rRdl03Lh6Dc6d3XimuxCUxqaOzfDi+XO+8b148QJNHZtxbXNs7ojI15GcNL54/gLNmpUJ4+jIiTM/Px9v3rxBszLxlD5uXn5+Ud7ExTnvCwsLQ1REFM8iiupDcnIyXr18CSVFRQwf5gM3FzcMHjyY837pfL578xYOZYa4Ozg2w8vn/Ovoqxcv4VA2fc2b4U2pfFbW+lVr0aJlCzg0a1px4GrinNOm3OXIzqEJ3rys/x+RKutPz0dxmWpa5pw6NGtafpkqE76pYzO8ef1GYJnKzclBQUFBuUMCszKLelDJ/cawQU7d4JsP/teU6uSjdBqtG9ngSfgjfPkcAwCIevceL549h2PL5lXOR1n/lXvGt2/fip45HB0528TExNC4cWM8F3ANBop64zcrtQ8AODZvztmn+BrrWPY63KyZwHjz8/MRFBQEGRkZmJkVTfORl5cHFovF9eOGmJgYhISEeL7PEfK7aM448p+3fPly/PPPPxgyZAgAwMjICEuXLsXMmTOxcOFCXLt2DQ8fPkRkZCTnAmtUZv6j/Px87NixgzNHwfjx47FkyRLO+2vXrsWsWbPQv3/RfCirVq3CjRs34Ovri61bt/KkKTMzE35+fti/fz+cnZ0BAPv27YOOjg4nTHR0NAIDA/H161doaRX1ZJk+fTouX74Mf39/rFixgifemJgYaGhooGPHjhAVFYWenh6a/voSXNn48vPzsW3bNjRqVNJLwMPDA4cPH4aPjw8AICQkBCkpKejbt6/Az7x///5YvHgxZ1vp+Eq7du0anj9/jo8fP0L319xPBw4cQIMGDRAeHg4HBwe++xWn39W16MvupEmTMGDAAISEhKBly5YAAB8fH64Grg4duOcy27NnDxQUFHDz5k106dIFALBs2TJcu3YNI0eOxKtXr+Dp6YmePXuiPO7u7hg1qmjeqAULFmD79u1wcHDgfD6zZs1C8+bNkZCQAA0NDaxfvx4dOnTA/PnzAQBmZmZ4/fo11qxZg6FDh5Z7rN+RkZYONpsNBUUFru3yiopITU6pVtxZmVkY0ccT+fn5EBISwsgp42Br37jiHf9PpKelgV3IhoKSItd2BSVFpCQl890nJSkZCs14wxcWFiI9NQ1KKspo3NQep4+cQMNG1tDU1sKzx0/x4M49FJYaGhEfG4eLp8+hp0cfeHgNwLvXb7HTdytERUXRoZNLlfOSlJQEAFBWUuLarqykhDgBQ3aK9+O3T3F8ZTEMg/WbNsG2USOY/LrmGhgYQFNDA1u2b8ecWbMgKSmJQ4GBSEpKQqKAeCpSW/Ui8sUrXLtwBev3bPntOKoiPS29qIwp8iljyfzL2O/Yv2MvlFSV0aiJ4PnSKqs+60Vp92/dRWZmJjq689YHQWlUVlLC/UT+ZY5fWVdSUkZhYSFSU1OhoqKCpKQkKCmXCaNcUh9SU1NRWFgIJSXuoZ2lj2tgYABNTU1s27IV/8yZDUlJSRw+dLioPiQWDQn79u0bAGD37t2YOGkSzMzMEBJ8DZPHTMD+o4egq1d0v03jHK9suhWRlMj/XCQlJaFZmc9FSUmJK5+Vce1KMN69eYvd+/dWKnx1FZ9TxTJ1RVFREU+qeS+sS396PorLlGKZMqWorIRkAfU7KSkZTcvUC8UKytSOLduhqqoK+6aCf+zdsmETbGwbwcik/DnGqpIPJWVFJAu47yQnJUNJucx5qTAfO6CqqoompfIxaMhgZGVmYnDfgRASEgKbzcaIMSPR0dW5yvko679yz6itZ45UQdc8ZWWe54nbt29jzty5yMnJgYqKCrZu2cIZCWRtbQ0JCQls3rwZ48aNA8Mw2LR5M9hsNteonP8SFv5/h4P+qagxjvznPX78GOHh4ZyecEBRz66cnBxkZ2cjIiICOjo6nIY4fqSkpLgmC9XU1MT370XzKqSnpyM2NpbTAFSsZcuWeCagx0Z0dDTy8vLQvHnJL1xKSkowNy+Z5PTJkydgGIYnXbm5uQLnX+nbty98fX1hZGQENzc3uLu7o2vXrhAREal0fGJiYrCxseEKM2jQIDRv3hyxsbHQ0tLCoUOH4O7uzvMgWCwiIgIjRozg+15ZkZGR0NXV5TTEAYCVlRUUFBQQGRlZbmNc6XSqq6sDAFdPQHV1dc55Aopu0MuWLUNoaCi+f/+OwsJCZGdnIyYmhiv/Bw8ehI2NDfT19Su16mtl0gEA379/h4aGBiIjI9G9e3euOFq2bAlfX18UFhbyncsuNzcXubm5XNvES/WKqAyehU4Ypto3XkkpSazbswU5P3/i+ZNn8N+6G+qaGmhoZ1Pxzv9Hyn72DMOUu/AMz1u/elUWvzFq0jhsWr0eowcNA1iAppYWOrq74trFkqEbDJuBiYUZhowqakQ3NjPF50+fcPH0uUo1xl26cgUrVq3i/O27dq3gvFQUWdl9+MRTbPXatYiKisKenTs520RERLD633+xdMUKtHd1hbCwMJra26NF8+r3EqjJevEzOxsbl6/F2BkTIacgX+20VQVvNsovY1Vx6vBx3A4JxfJNqyFWpudZddRHvSjt6oVLsG/WFMrlNB5VNY08Zf1XGrm3lg3De5zyzqeIiAj+Xb0Sy5cug3P7jhAWFoZDUwc0b9GiJDy76Lg9e/VC125Fi1w0c2iKO3fv4MLZcxg9nnvyft588vm8yw1fnM/KlbmE+ARsXLcB67dsrPK9rNp4rkc1V1fq1B+eD371tdwyVbZeQHCZOrT/IK5dDcamHVsFlp8Nq9chOioKW3fvqFK6edLFt26Uc53iSa/gfBzefwghV4OxaccWrnxcDw7B1UtXsWDZIhgYGSLq3XtsXr8Ryqoq6NSl8gumledPu2eEXr2OAeu3cK4lvhs2/EpnDTxz8MlbZa7t9vb2OHzoEFJTUxF0+jRmz5mDAH9/KCkpQVFREatWrsS/K1fiyNGjEBISgouLCywsLGpskQ1CqDGO/Oex2WwsXryYa86yYhISEpCUlKwwjrKrZ7JYLM7NovS20sq7qZXdlx82mw1hYWE8fvyYp3FGRob/BOy6urp4+/YtgoODce3aNYwdOxZr1qzBzZs3Kx2fpKQkT7qbNm0KY2NjHDlyBGPGjEFQUBD8/f0Fpr0yn2kxQZ9TZR4KSp+X4rBlt5WeRNXb2xtJSUnYuHEj9PX1IS4uDmtra+T9GgJX7N69ewCKhvkkJydXuPJrZdIBgJMWfnmrqEz8+++/XD0NgaJhun1HeZa7HwDIystBSEgIKWV+MU9LTYW8kkKF+5dHSEgImjpFPS0NTY3x9XMMTh0+Ro1xv8jJy0NIWIint09aSipPj5tiispKSEniPlepKakQFhaGnHzRMBZ5RQXM/3cJ8nLzkJ6eDmUVZfhv3wN1TQ2ueMquIKerr4d7obdRGW1atUJDq5LV3YqHxiUmJXH9up+cksLzC3NpysrKPL3gkpOT+e6zet063LpzB7u2b4d6mUVhLC0scHj/fmRmZiI/Px+KiooY4uMDKwuLSuWnrNqoF/Hf4vA9PgErZpfU1eK63ad9F2w5sBsa2jU7h5ycvFxRGSubj5RUnp4PvyMo8AROHDyCxev/hYFxzUz8Xp/1otj3+AREPHqKOcsXVimNySkpPD3bivEr6ykpyRAWFob8r94UysrKPL1qUkrVBwUFBQgLC/PWmTLHtbS0xMHDh7jqw7Ah3rCwsgQAqKgU/chmaMi90Ii+oQESSi2SIS/geCkV5jOZJ3xRPivXCP32zRukJKdguKc3Z1thYSGePY3AqWMncf3ezd9aZKk8nHNapvdPakoqTw/ZP9mfno/iMlW2F1xKcgpPL7NiyspKPPUiNZl/mQo8cBgH/fdjw9aNMBGw6MeGNetx99YdbN61DWrqlV9gjH8+ytZXwfko6uXKm+/y8rF+qy/P4iXbNm7FoCGD0cGlIwDA2MQY8XHxOBRwoNqNcX/qPaNpK0d0atMRWb+mqSh+Nuf7zFHOojB8nzlKPacIusamJCfz9KiTlJTkdBiwtrZGz169cObMGXh7F123HB0dceb0aaSmFt2LZGVl4erqyjXSiZDqoGZd8p/XuHFjvH37ljO5ZumXkJAQbGxs8PXrV7x79+634peTk4OWlhbu3LnDtf3evXuwtLTku4+JiQlERUW5JvhMSUnhSoOdnR0KCwvx/ft3nnRraPB+sSgmKSmJbt26YdOmTQgNDUVYWBhevHjx2/EVGzhwIA4dOoRz585BSEgInTt3FhjWxsYGISEhFcYJFPWCi4mJwZcvXzjbXr9+jbS0NIGf3++6ceMGxowZgzZt2kBfXx+5ubmcIT3FoqOjMWXKFOzevRuOjo7w8vKq8VWRrKys+JYXMzMzgV8+Zs+ejbS0NK7X7NmzK3U8UVFRGJub4Nmjp1zbnz16CosGNfsZA0B+Xn6Nx/lfJSoqChMzMzwN554/5Omjx7BsaMV3H4sGVnj6qEz48EcwtTCDiAj3b2Ri4mJQUVVBYWEh7t28DcfWJT1jrKwb4FvMF67w3758haqGeqXSLi0tzXkI1dXVhZGhIZSVlfEgPJwTJj8/H0+ePoVNqZ6gZdk0bMi1DwA8ePiQax+GYbBq7VrcCA3F9i1boK0leJEJGRkZKCoqIubLF0S+eYO2bXhXwayM2qgX2nq62LB3G9bt2cJ5ObRohoZ2Nli3ZwuU1So3fK8qREVFYWxmypOPiEdPYdGwevX7VOBxHNt/GAvXLIOpheDe41VVn/WiWPCFy5BXVEDT5o4875WXxocPHsLahv+PDdbW1nj44CHXtgf3H8DSypKTRmsbazwoG+bBA06coqKisLCw4IlH0HE59SEmBpGRkWjTtqg+aGppQVVVFZ8/f+YK/+VzDDRKNU6KiorCzMIc4Q+46+ijBw/R0IZ/vW5g3RCPyqQv/P5DWJTKZ0XsHeyx/8hB+B/ax3lZWFnCxc0V/of21XhDHFByTiPCn3Btjwh/AouGtb/qcU350/NRUqbKlJGH4eWWqfCH3GXw4YOHsLCy4CpThw8cwj4/f6zdtJ7T8FwawzDYsHodbt0Ihe/2zdD6zQWLSufjUdm68TAcDW34z43bwLohHpXJRziffAQeOIT9fgFYs2kd33zk5ubw9K4SFhICuxI/5lfkT71nSElJQV9fv+SZw8io6JnjwQNOmPz8fDx58oRnBE9pNtbWXPsAwIP79zn7FF9jecI8fFhuvEBR+Sr+YbI0BQUFyMrKIjw8HMkpKWjfvn2F+f0TsVisP/b1/4p6xpH/vAULFqBLly7Q1dVF3759ISQkhOfPn+PFixdYtmwZ2rZtizZt2qB3795Yv349TExM8ObNG7BYLLi5uVXqGDNmzMDChQthbGwMW1tb+Pv7IyIiAocOHeIbXkZGBj4+PpgxYwaUlZWhrq6OuXPnct14zczMMGjQIHh5eWHdunWws7NDYmIirl+/Dmtra7i78/4yFhAQgMLCQjRr1gxSUlI4cOAAJCUloa+vD2Vl5SrHV9qgQYOwePFiLF++HH369IGEhITAsAsXLkSHDh1gbGyM/v37o6CgAJcuXcLMmTN5wnbs2BE2NjYYNGgQfH19UVBQgLFjx6Jt27YCF334XcbGxti3bx+aNGmCtLQ0TJ8+nasXX2FhITw9PeHi4gJvb2906tQJ1tbWWLduHWbMmFFj6Zg2bRocHBywdOlSeHh4ICwsDFu2bMG2bdsE7iMuLl6toTxd+/bEphXrYGJuCvMGFrh67jISE37ApVvReT+4yx9JiUmYNKdkYZKP76MBADk/fyI9LQ0f30dDRFQUugZ6AICTh47C2NwUGlqaKMgvwJMH4Qi9EoKRU8b9djpriqSoOHTkVTl/a8mpwFRFB+k5WUjIrNs5dXr27411S1fB1MIMFg2tcPnsBfxI+A73HkVDxwJ27EHSj0RMm/8PAMC9RxecP3UGuzdvh2tXd7x5+RpXz1/GzEVzOHG+eRWJpMREGJkYIykxCYf37gebzUbvgSULn/Tw6I3poyfh6P7DaN2+Ld69foPLZy9iwswpv5UPFouFAR4e8N+3D3o6OtDV1YX/vn2QkJCAm0vJsNcFixdDTVUV48cWDYPr368fRo4di4ADB+DUujVCb9/Gg/Bw+JUahrpq7VpcvnoV61atgpSUFGfeFhlpac615lpICBQUFaGhro6o6Gis27ABbdu04ZmEuSpqul6IiYtB38iA6xjSv3oel91ek7r36wXf5Wt+5cMSV85dQuL373DrXvSjyf6de5GUmIQpc0uuYx9+5ePnzxykpabhw/toiIiKcHpTnjp8HIf89mPa/FlQ01Dn9BCTkJSEpFTlez8LUl/1AijqpRx88Qo6uDlDWERwo09xGk84OMLYzASnTwUhIT4evXoX9bTfumUrfnz/jkVLinpC9urdC8ePHYfv+g3o3rMHXjx/gbNnzmLp8mWcOD3698fokaOwP2Af2ji1xa3Qm3j44CF2+e3mhBkwaCAWLVgIC0tLWNtY8xwXAEKuXYOCgiI0NDQQFRWFDevWo03btpzJzlksFgZ5DsbunbtgamoKM3MzBFz1x+fPn7FsNfecs/0HDcDSBYthYWmBhjbWOHvqNBLiE9Cjd9F8qTu2bMOP7z8wf0lRL8IevXvi1LET2Lx+I7r27I6Xz1/g/JlzWLS8ZC7d/Px8fPrw8df/C/Djxw+8f/sOklKS0NHVhZS0NM88XhISEpBTkPut+b0qq4dHb6xftgomFmawbGCJy2cv4sf373DvUTRvbMAOPyQlJmLavFmcfT68jwJQVOeL6koUREREoWeoz/cYdeFPz4fHwP5YtnAJLKws0cC6Ic4GncH3+AT06N0DQNF8b4k/fmDe4qJFtrr36olTx05i84aN6NqjO169eIkLZ85h4fKSXsaH9h+E347dWLBsETQ0NZH0aw5FSSlJSEkVrfC5ftVaXLsSjBVri+4lxWFkZGQgLlH1Z6h+Az2wfOFSmFtZoIF1Q5z7lY/uv+rGzi3bkfgjEXMXz/+Vjx4IOnYSWzZsQpce3X7l4zwWLF/EifPw/kPw27Eb85ctFJiPFq1a4oD/PqhrqMPAyBDv377D0cNH4d5N8A/hVfFfuGewWCwMGDAA/v7+0PvVQOcfEFD0zOFasjjSgoULi545xo8HAPTv3x8jR41CwL59cGrbFqE3b+LBw4fw27OHs8+ggQOxYOFCWFpZwcbaGqeCghAfH4/evXv/yuNP7N27F23atIGKigrS0tJw/MQJfP/+HR1LzT999uxZGBoaQlFREc+fP8e69esxcMAAnrnHCfld1BhH/vNcXV1x/vx5LFmyBKtXr+b8IjJ8+HBOmJMnT2L69OkYMGAAsrKyYGJigpUrV1b6GBMnTkR6ejqmTZuG79+/w8rKCmfPnoWpqanAfdasWYPMzEx069YNsrKymDZtGtLS0rjC+Pv7Y9myZZg2bRq+ffsGZWVlNG/eXGDDmYKCAlauXImpU6eisLAQ1tbWOHfuHGdOuKrGV5qpqSkcHBwQHh5e4TxqTk5OOH78OJYuXYqVK1dCTk4ObQT0XmGxWDh9+jQmTJiANm3aQEhICG5ubti8eXOFaaoqf39/jBw5EnZ2dtDT08OKFSu4VsVdvnw5Pn36hHPnzgEANDQ0sGfPHvTr1w/Ozs6wtbWtkXQ0btwYx44dw4IFC7B06VJoampiyZIltbJ4Q7FW7dsiIz0Dx/YdRkpyMvQMDTB31WKo/eollZKUgsQE7glnp42YwPl/9Lso3L4WClV1New8GgAAyP2Zg90btiHpRyLExMWgraeLSXOno1X7trWWj8qyUNXHlp5TOX9PbFW0mMbFyDAsv76vTtPSpkM7pKelIzDgIJKTkqFvaIDFa1ZwPvvkpGT8SCiZ21BDSxOL1yzH7s3bcf7UWSirKGPU5HFo6VRSh/Lz8nBgtz/iY+MgKSkJe8emmDZ/FmRkS4acm1laYN6KxQjYuQeBAQegrqmJkRPHoJ0L90ImVTFk8GDk5uZi5dq1yMjIQEMrK2zx9eUayh2fkMD1w0IjGxssX7IE23fuxI5du6CjrY1/ly1DwwYlPThOnDoFABg1jrshd+G8eej6qxduYlISNmzahKTkZKioqKCzmxuGDxv223kBaqde1IfWHdoiIz0dR/cdQnJSCvQN9bFg1dJS+UhGYqkyBgBTfEo+6+i373Hr2g2oaahh97H9AIBLp8+hID8fqxYs49qv/9BBGDCs4uHxFamvegEAEY+e4EfCd7h07lSpNG7btg3fv3+HkbExNmzcwFldOykxkWvIp5a2NjZs9IXv+g04cfwEVFRVMG36NLTvUNJLwqaRDZYuX4ad23dg546d0NHRwfJ/V6Bhw5KeNs4uzkhLS8PePX5ITEzkOS4AJCYmwXeDL5KTiupDp87u8Bnuw5X+AQMHIC8vD74bNiA9LR2WlpbYsHUTtMsMoerg0hFpaWkI2FP0BdzQ2AhrNq6DBiefSWXyqYU1G9dh8/qNOHX8JFRUVTB5+hQ4dWhXkr4fifAeNITzd+CBwwg8cBi2je2wZZfgH55qW5sOTshIT8eRUuVu0erlpepKEle5A4CJw8Zw/h/19j1uBl+HmoY69h4/WKdpL+1Pz0cHl45IL1OmVvuuLbdMrfZdh80bNiLo+CmoqKpg0vQpcGpfUqZOnziF/Px8zJ81l+tY3iOGYdjIomf60yeDivI6mvteMnvBXLh3rXpDVlE+0rFvjz8nH6t813J6l/LPx1ps3rAJQcdPQVlVBZOmT+abjwWz5nEda+iIYRg2sqgOT54xBXt27Mb6VWuRkpICFRUVdOvVHUOHe6Mm/FfuGUO8vIqeOVatKnrmaNAAWzZv5n7miI+HUKmeU40aNcLy5cuxfft27NixAzo6Ovh3Bfc11sXFBWlpadizZw8SExNhbGyMjb6+nGuskJAQPn36hPMXLiA1NRXy8vKwsrLC7l27uOYQ//z5M7Zu3Yq09HRoaWnB29sbgwYO/K28EsIPi6nM5FaEEELqxau46PpOQrU10DRGy62j6zsZ1XJ33A5E/fhSccA/nImqLjJqcDW1+iCrpPTX1Is3CR/rOxnVZqFu+J+vGyaqukjNSKs44B9OQVYePzL+2/VbVVYJ77/HVBzwD2eqpvfX5ON7+u+taP2nUJNTRkJ6YsUB/3Dqcir/+XuGhbohMtLT6zsZ1SYrJ1ffSfgt3keXVxyonvh7zK040F+I5owjhBBCCCGEEEIIIaSOUGMcIYQQQgghhBBCCCF1hOaMI4QQQgghhBBCCPlL/T+vWvqnop5xhBBCCCGEEEIIIYTUEWqMI4QQQgghhBBCCCGkjtAwVUIIIYQQQgghhJC/lBBomOqfhnrGEUIIIYQQQgghhBBSR6gxjhBCCCGEEEIIIYSQOkLDVAkhhBBCCCGEEEL+UrSa6p+HesYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhPwnbNu2DYaGhpCQkECTJk1w+/ZtgWGHDh0KFovF82rQoAEnTEBAAN8wOTk5tZYHaowjhBBCCCGEEEII+Uvxa2j6U15VdfToUUyePBlz587F06dP0bp1a3Tq1AkxMTF8w2/cuBFxcXGc15cvX6CkpIS+fftyhZOTk+MKFxcXBwkJid/6vCuDGuMIIYQQQgghhBBCyB9v/fr18PHxwfDhw2FpaQlfX1/o6upi+/btfMPLy8tDQ0OD83r06BFSUlLg7e3NFY7FYnGF09DQqNV8UGMcIYQQQgghhBBCCKlzubm5SE9P53rl5ubyDZuXl4fHjx/DxcWFa7uLiwvu3btXqeP5+fmhY8eO0NfX59qemZkJfX196OjooEuXLnj69OnvZaiSqDGOEEIIIYQQQggh5C8lBNYf+/r3338hLy/P9fr333/55iMxMRGFhYVQV1fn2q6uro74+PgKP4e4uDhcunQJw4cP59puYWGBgIAAnD17FoGBgZCQkEDLli3x/v373//QKyBSazETQgghhBBCCCGEECLA7NmzMXXqVK5t4uLi5e5Tdq45hmEqNf9cQEAAFBQU0KNHD67tjo6OcHR05PzdsmVLNG7cGJs3b8amTZsqjPd3UGMcIYQQQgghhBBCCKlz4uLiFTa+FVNRUYGwsDBPL7jv37/z9JYri2EY7N27F56enhATEys3rJCQEBwcHGq1ZxwNUyWEEEIIIYQQQgj5S9X3iqk1tZqqmJgYmjRpguDgYK7twcHBaNGiRbn73rx5E1FRUfDx8anwOAzDICIiApqamlVKX1VQzzhCCCGEEEIIIYQQ8sebOnUqPD09YW9vj+bNm2PXrl2IiYnB6NGjARQNe/327Rv279/PtZ+fnx+aNWuGhg0b8sS5ePFiODo6wtTUFOnp6di0aRMiIiKwdevWWssHNcYRQgghhBBCCCGEkD+eh4cHkpKSsGTJEsTFxaFhw4a4ePEiZ3XUuLg4xMTEcO2TlpaGkydPYuPGjXzjTE1NxciRIxEfHw95eXnY2dnh1q1baNq0aa3lgxrjCCGEEEIIIYQQQv5SQlUcDvqnGzt2LMaOHcv3vYCAAJ5t8vLyyM7OFhjfhg0bsGHDhppKXqWwGIZh6vSIhBBCCCGEEEIIIaROjDu1tr6TINDWXtPrOwn1gnrGEULIH2zr3RP1nYRqG9eyD6J+fKnvZFSLiaouWm4dXd/JqLa743YgddyM+k5GtShsXYP+BxfUdzKq7cjgJWi7fVx9J6Pabo7ZioyUlPpORrXIKiri6NPgigP+4TzsnDHn4o76Tka1rHAfjYuR9+o7GdXmbtkCI0+squ9kVNuuPrMw8NDC+k5GtRwetBjeR5fXdzKqzd9jLvrsn1vfyaiWE17L4bxrUn0no9qCR/If5khIVVFjHCGEEEIIIYQQQshfqqqrlpLaJ1TfCSCEEEIIIYSQ/7F33+FNVf8Dx99JR9I9KZTSXSi0ZRXK3nsqCooDBTeCiqKIGyeKiqKiIEOm7C17I0P2HmUUSgst3Xs3ye+PlLRp0zLaAl9+n9fz9Hmam3NuzknuPTc593POEUIIIf6/kM44IYQQQgghhBBCCCHuERmmKoQQQgghhBBCCPGQUiDDVB80EhknhBBCCCGEEEIIIcQ9Ip1xQgghhBBCCCGEEELcIzJMVQghhBBCCCGEEOIhpZTVVB84EhknhBBCCCGEEEIIIcQ9Ip1xQgghhBBCCCGEEELcIzJMVQghhBBCCCGEEOIhpZBhqg8ciYwTQgghhBBCCCGEEOIekc44IYQQQgghhBBCCCHuERmmKoQQQgghhBBCCPGQkmGqDx6JjBNCCCGEEEIIIYQQ4h6RzjghxF3Jzc3l66+/Ji4u7n4XRQghhBBCCCGE+J8hw1SFEHfl008/JT09nZo1a97vogghhBBCCCGEKIcSGab6oJHIOCHEHcvLy8PFxYVff/31fhdFCCGEEEIIIYT4nyKdcUKIO6ZSqfjggw9QqVT3uyhl7Ny5E4VCQWpq6m3n8fHxYdKkSZV6XYVCwapVqyq1DyGEEEIIIYQQDz8ZpiqEuGP79u2jffv2dO/enY0bN97v4ogKnNy+n6Mb95CVmoGzhxsdnu6LRz0fk2mvhV9mxfczy2wf8s3bOLvXqJbyrV2xmhULl5KclISXjw+vjhpBSOOG5aY/dewE03+bSlRkJM4uLgx6djB9BvQ3PF9YWMiSeQvZtmEzSYmJ1PH0ZNjrL9O8VQuj/SQmJDJrynSO7D9Ifl4+tT3rMOqDd6lbv1611LM8jd0DeKZpD+q7eeFq48gH66ew+8qJe1qGW1H36Y5l25YorK3RREaRvWQl2tjy54q0HTUc83r+ZbYXnD5H1pS/9A+UStR9umMRForS3g5tejr5+w+Tt3Eb6HRVWv7u9cLoH9QORytbrqUmMPfwBsITrpabvq1PIx4JbkctO2eyC/I4EXOR+Uc2kZmfUyZta+8QRrV/kkPR55i4a2GVlru0AcHteapJN5ytHYhMiWXy3mWcjI2oIH0HHm/YkVp2zsRlpjD/yEY2XThoeH7SI6No6lH2eP/v6mk+WD+lysqt0+mYNmMGK1evJiMjg+CgIMaOGYO/n1+F+bZt387UadO4dv06dTw8GDF8OJ07dTI8P2vOHHbs3Enk1auoVCoaNWzImyNH4uPtbUjz5/TpbN66lbi4OCwsLGgQGMiI4cMJCQmpVJ0Obv6XPf9sIzM1jRp13On9/EB8GgSYTHs1PILNC1aTGHODgrwCHGs407xrW9r07WKUbt/6HRzaspu0xBSs7WwIbtmUbk8/goWlRaXKWpGWXsG092uMncqa+MwU1p3dS2TKjXLTmymVdAloThOPuthZWpOWm8nOiKMcuXYegFCPQAY17lwm32cbp1Oo1VRbPUrbs347O1ZtID0llVqeHgx46Rn8g0237ZfPXuCfuUuJvx5LQV4+TjVcaN2zE50e6XnPygvQ0a8pPQNb4KC2JSY9kcUntnEp8ZrJtMOa96GNT9nrZExaIp9v0V/DW3uH8EJY3zJpRqz4sVo/i251w+gX1BZHK1uupyYw98gGzidElZu+rU9D+gUVt7cnYy7x99Hi9razfzPa+zXG08ENgCvJMSw+sY2IpOvVVofOAc3oHdhKX4e0BBYc28LFxGiTaV9q0Y92vo3LbL+elsAnG6cBYKZQ0rdBG9r6NsLJyo7YjCSWntjO6RuXq60OAD0DW/JIUDucrO2ITo1n9qF1nIsv/9rX3rcxjwa3x93ehez8PI7FXGDukQ1k5uk/i07+TXmj7aAy+Z6eP44CbWG11KF/UDueaNQFF2t7IlNuMOW/FRW+b48EtePR4PbUtHMmPjOFBce2sPXiIZNpO/k35eOuw9gbeZLPN5f97vswktVUHzzSGSeEuGN//fUXb775JjNmzCAqKgovL69y0+p0OjQaDebm0tzcaxcOnuTfhevp9Fx/agd4c3rnIdb8PIchX4/CzsWx3HzPjX8HS6viqEcrO5tqKd+/23Yw/dcpjHj3LRo0DGbj6nWMe+9DpsybiVutsnMR3oiJZdyYj+nVvw/vffYB506d4Y+Jv+Lg6EDbTh0AmDttFjs3b+XNsaOp4+XJ0YOH+eajz/lx6i/416sLQEZ6BmNeH0Wj0CZ88eO3ODo5Ens9Bls722qpZ0WsLFRcSrrG+vB9jO89/J6//q2oundC1aUD2fMWo4lPQN2rG7ZvvEL6lz9AXp7JPFnT50CJ811hY43dh+9QcOyk0X4t27cme+4itLFxmHnXwXrIk+hycsnfuafKyt/aO4ShzXoz89BazsdH0a1uGB90GcK7/0wmKTutTPrAGl6MbPM4c49s4Mi18zhb2/Nyy/682upRfvp3kVFaVxsHhoT25FxcZJWVtzyd/UN5o+0gft69mNOxEfQPbseEviMZuugr4jNTyqR/NLg9r7Z6hB92LiA8/ioNavowpuMzZORls+/qaQA+3TQdC2Xx52SvtmHmkx+yM+JYlZZ9zrx5LFi4kHGffoqXlxczZ81i5FtvsXzxYmxsTLctJ0+d4qNPP2X4q6/SuWNHduzaxQcff8zMP/80dKQdPXaMJwYOJCgoCI1Gwx9Tp/LGqFEsXbgQKysrALy9vHj/3Xfx8PAgLy+PBQsXMnLUKFYtW4aTk9Nd1efUviNsmLOcfi8NxivQj0Nb9zD/uz94Y+InOLo6l0lvqbKkZc8O1PLywEJlSdT5CNbMWISlypLm3doBcGLPIbYuXM2A157Fs54fSbHxrJw6D4DeQwfeVTlvpaG7P32D2rDm9G6uptyghVcQQ8P6MunfxaTlZprM83TT7thaWrPi5E6SstOxtbRCWerHXW5BHj/tMj5X7mVH3LE9B1j11wIGvfYcvvXrsm/TTqZ99RMf/PYNTjVcyqS3VKto36cr7j6eqFQqLp+7wNIpc7BUqWjTs9M9KXPzOvUZ3KQrC45u5lLSdTr4NeGtdk/w+aYZJOdklEm/+PhWVpzaZXisVCr5rNsLHLkebpQupyCPTzdON9pWnZ9FK+9gnm/Wi78OreNCQhRd6zZnbOchjFn7e7nt7eutH2fe0Y0cLWpvX2zRj1daPcrPRe1tUE0f9kWe4mJiNAWaQvoFteWDLs/x/trfSTHx3lRWC88GPNOkO/OObuRiQjSdAkIZ3eEpPt74J8nZ6WXSLzi2haUndxgemymUfNnzZQ5FnzNse7xhR1p7N2T24XXEpicRUsuPN9sO4pttc4hKrZ5F0Nr4NGRY8z7MOPAP4QlX6V43jI+6DuWdNb+QmFX2s6jv5s0bbQcx5/B6Dl8Lx9nanldbPsrrrR/nh51/G9Jl5ecyatXPRnmrqyOuo19TXm/9GL/tWcqZuCv0bdCG8b2H89KSb0nIKnvd69egLS+26M/P/y7ifEIU9d28eKf9U2TmZbM/6oxRWjdbJ15tOYCTsZeqpexC3C4ZpiqEuCNZWVksWbKE119/nX79+jF79myj528OE920aRPNmzdHpVKxe/dudDod33//PX5+flhZWdG4cWOWLVtmyKfRaHjppZfw9fXFysqKwMBAfvnll1uWZ/369dSrVw8rKys6d+5MZGRkmTT79u2jQ4cOWFlZ4enpyVtvvUVWVtZt1/nQoUN0794dV1dXHBwc6NixI0ePHq0wz9ixY6lXrx7W1tb4+fnx6aefUlBQcNuvWRWObdpLcPtmhHQIw7m2Gx2e6YutswMndxyoMJ+1vQ02DnaGP6Wyei4VKxctp0e/XvTs3wcvH29eHTUCVzc31q/6x2T69avWUqOmG6+OGoGXjzc9+/ehe99erFi41JBmx6atPPncM4S1bom7R236PvYIoS2bs2JR8bG27O9F1HCrwTsfjSEwqD413WvRpHko7h61q6WeFdkfdYbpB9aw6/Lxe/7at0PVuT25m7ZRcOI02tg4suctQmFpiWVY03Lz6LJz0KVnGP4s6teF/ALyjxZH/Jn7elNw8gyFZ8LRJqdQcOwUBecuYu5dp0rL37dBG3ZEHGXHpaPEpCcy98gGkrLT6V4vzGT6uq6eJGSlsvH8ARKyUjmfEMXWi4fxd/EwSqdQKHij7SCWndxhsjOsqj3ZuCvrw/9j3bl9XE2NY/Le5SRkpvBocHuT6XvUa8Gas3vZEXGU2Iwktl86wrrwfTzdtIchTUZeNsk56Ya/5p71ySvMZ2dExW3bndDpdCxcvJgXhg2jS+fOBPj788Vnn5Gbm8vGzZvLzbdw0SJahoXxwtCh+Pj48MLQobQIC2PB4sWGNL9NmkT/fv3w9/OjXt26jPvkE27cuMG58OIOiV49e9KyRQvqeHjg7+fHO2+/TVZWFhcv3f0PsH3rthPauTXNurShhkct+gwdhL2LE4e27DaZ3t3Xk0Ztm+Pm6Y6TmwuN27cgoFEDroYXRzVGX7iCZz0/GrULw8nNhYDGDWjYpjnXL5cfUVRZ7XwbcSQ6nMPXwknISmXduX2k5WbS0jvIZPq6rp74OtdmzuH1RCRdJzUng2tp8WU6E3RAZn6O0d+9tHP1Zlp260Cr7h2p6Vmbx15+BkdXZ/Zu3G4yfR0/b0I7tMLdywPnmq4079SGwKYhXD574Z6VuXu9MPZcOcmeyJPcyEhiyYltpGRn0NHfdDubU5hPel6W4c/HqRbWlmr2Rp4ySqfT6YzSpefd/veeu9Gnfht2RhxjZ4S+vZ13ZCNJ2el0K6e9DXCtQ0JWKptKtLfbLh7Bz7n4Wvz7vuVsvXiIqyk3iElPZPqBNSgUCkJqVRxZe7d6BLbk3yvH+ffycWIzklh4bAvJOel08Q81mT6nII/03CzDn4+zO9aWVuwpEeHe2qcha8/t5WRsBAlZqeyIOMrpG5fpFdiyWuoA0L9BW7ZfOsK2S4e5npbA7MPrScpKo0c9069Zz9WThKwU1of/R3xmCuHxV9ly8SD+LqW/F+lIzc00+qsuAxt1YuP5/Ww4v5+o1Dim/LeShMwU+ge1NZm+W90w1p3by67Lx7iRkcTOiGNsPL+fwU26GaVTKhR82OV55h7ZwI30pGorvxC3QzrjhBB3ZPHixQQGBhIYGMiQIUOYNWsWOhPDyt5//32+/fZbzp07R6NGjfjkk0+YNWsWU6ZM4cyZM7zzzjsMGTKEXbv0d3e1Wi116tRhyZIlnD17ls8++4yPPvqIJUuWlFuW6OhoHn/8cfr06cPx48d5+eWX+eCDD4zSnDp1ip49e/L4449z8uRJFi9ezJ49e3jjjTduu84ZGRkMHTqU3bt3s3//furWrUufPn3IyCj/rqydnR2zZ8/m7Nmz/PLLL0yfPp2ff/653PRVTVNYSPzVGLyCjYdOeQUHEHup4h94Cz//nRnvfMuKH2YSfa56hlEUFBRw6cIFmoY1N9oeGtaMc6fPmswTfuYsoWHNjNO3aM7F8AsUFhYW7TcfC5WlURpLSxVnT542PD6w9z8C6tdj/Cdf8ky/Qbz5wmtsXLOuKqr1UFG6OKN0sKfwXIkfpYUaCi9dxtzXu/yMpVi2bkH+keOQX9wZXRgRiUVgAEo3V/1rebhj7u9DwenwcvZy58yUZvg6u5cZynky9hL1apiO5r2QEIWztT1NauujKB3UNrT0CubodeMf5gMbdiI9N4sdVdhxVR5zpRn1angaRVoAHIo+V+4PUgszc/ILjTv/8woLaODmjVk5net967dm+6Uj5BbmV03BgesxMSQlJdGqZfEPQEtLS0KbNuXkqVPl5jt5+jQtWxr/aGzVsmWFeTIz9T8K7e3tTT5fUFDAylWrsLW1pV7dundSDYPCwkJir0Tj36iB0faARg2IunDltvYReyWa6AuX8QkqLoN3fT9ir0Rz7VIkAMlxiVw4doZ6ocF3Vc5bMVMoqW1fo8zQu0sJ1/B2rGUyT4OaPlxPS6CDXxPGdnmO0R2fonf9VpgrzYzSWZpZMKbzs4ztPITnm/fG3b5sNFp1KSwo5FpEJIFNjN+3wCbBRIaXP6S7pGuXrxIZfomAkMDqKGIZZgolXo61OBtnfPycjbtS5iZAedr6NCI8PrJM5JbK3JJvew9nQp8RvNF2IJ6OblVW7tKK21vjju5TsRHUc/U0medCQrRRe2uvtqGlVxDHYsrvCFWZWWCuMKuWTl4zpRIfJ3fO3DD+LM7cuIy/6+3dKOrg24SzcVdIKvFZWCjNKNAYR4/lawqpW8P0+1JZ5koz/FxqcyLG+LM4EXuJwHKufecTonCxdjBMXeCgtqGVVwhHrxl/FmpzS6Y8/h5/DnyfD7s8h6+ze7XVoZ6rp2EI/E1Hrp0nuKavyTwWZubkl3qf8woLCKzhhZmi+Lo3JLQXqTmZbDy/v+oL/oBTKhQP7N//VzJuTAhxR2bOnMmQIUMA6NWrF5mZmWzbto1u3YzvPH355Zd0794d0EfT/fTTT2zfvp3WrVsD4Ofnx549e/jzzz/p2LEjFhYWfPHFF4b8vr6+7Nu3jyVLlvDkk0+aLMuUKVPw8/Pj559/RqFQEBgYyKlTp5gwYYIhzQ8//MAzzzzD22+/DUDdunX59ddf6dixI1OmTEGtVt+yzl26GM/t8+eff+Lk5MSuXbvo16+fyTyffPKJ4X8fHx/effddFi9ezPvvv28yfV5eHnmlhv1VZoGMnIxsdFot1g7GQy+t7W3JTjN9J9PGwY4uQwfg5lMbTYGG8P+OsfLHvxj4/kt4BJr+8nO30tPS0Gq0ODobDxVzdHYiJSnZZJ6UpGQcW5ZNr9FoSE9Nw9nVhdAWzVm1aBkhjRvi7lGbE0eOcWDPPjRarSHPjZhY1q/6h8cGD2Lw809z4ex5/pz0OxYWFnTt3aP0y/6/pbC3A0CbYXy8aNMzUDrf3hA/M29PzDzcyf57qdH2vC07UFipsft0jH6OOIWC3H82UnDkeJWUHcBeZY2Z0oy0HOPyp+Vk4Vjb9JDkC4nRTN67jFHtn8TCzBxzpRmHo88x+1BxZ229Gl509g+t0nnVKuKgtsVcaVbmh3ZKTgbO1qY7ng5Fn6NfgzbsuXKCC4nRBNbwok/91liYmeOgti2zr/pu3vi5eDChxHCkqpCUpI86cHE2Hr7p4uxM7I3y5yZLSkoymefm/krT6XT89MsvNGncmAB/4/kKd+/Zw0effkpubi6urq78/uuvODo63kVtIDs9E61Wi62DndF2Gwc7MlPLDmEr6ccRn5CVnolWo6HzoD4069LG8FzDNs3JSs9k5rif0aFDq9ES1r09HR6tnvbI2lKNmVJpmAvqpoz8bOqqTHcQOFvb4e1Ui0Kthr+PbMLaUs2jwe2xslCz4tROABKyUlh+cgc3MpJRm1vQxqchr7UewG+7l5kcpljVsjIy0Gq12Dkanxd2Dg6kp5wuJ5fe5y+NJjMtA61WQ6/BA2jVvWN1FtXAVmWNmVJJel620fb0vCzs1beeIsJBbUNILT9mHDSOKL+Rkczsw+u4npaA2kJF14DmjO00hC+3zqqWaF67m+1trnH0XVpuJg5Wptvbi4nR/L53OW+2e6JEexvOnEPry32dp5p2JzknndOxVX+j0M6y6LMoFe2VlptFiPrW01g4qG1p6O7Pn/tXGW0/feMyPQNbciEhivjMFBrU9KWpR71q64Ao/ixKX/syy732nU+I4pfdSxjd4SnDZ3Eo+hwzSxxX19MSmbx3OVGpcVhbqOjToA1f93qVd/+ZzI2Mqo0wc1DbYKY0IyWn7HXPydrOZJ4j18LpXb8V+yJPcjHxGvVcPekV2Kr4upeTTnBNX3oFtmL48u+rtLxC3C3pjBNC3Lbz589z8OBBVqxYAYC5uTmDBw/mr7/+KtMZ17x5ccTT2bNnyc3NNXTO3ZSfn0/TpsXDMKZOncqMGTO4evUqOTk55Ofn06RJk3LLc+7cOVq1amU0IenNzr6bjhw5wqVLl/j77+IfmTqdDq1Wy5UrV2jQwDjCwZT4+Hg+++wztm/fTlxcHBqNhuzsbKKiyo8wW7ZsGZMmTeLSpUtkZmZSWFhYbsQGwLfffmvUGQkwbtw4anSv3ETjUOrLnk5Hed//nNxr4FRioQb3AC8yktM4umlPlXfGGUpXqjA6na7CCWbLPHUzKrPoiddGjeTX739i+LMvggLca9emW5+ebF2/qTiLVkdA/XoMfe0lAPzr1eVqZCTrV/3z/7ozziKsKdZPF89PlflH0WILpSNf7+AHhGWbFmiux6K5ahyBY9GsMZYtQsmevQBNbBxmdWpjNfARtGnpFBw4ctd1MKVM3K4Ck9G8AB4ONRjavA/LT+3kZMwlHK3seDa0By+37M+f+1ejNrfkjbYDmX5gDRmlfjzfD+XVY87hDThb2TPl8TGggJTsDDae388zTXug1WnLpO9bvw2Xk64TXsHk3rdjw8aNjC9xM2TSxInAnZ/nRZluO8/3P/7IpUuXmDFtWpnnmjdrxoK5c0lNS2Pl6tV8+PHHzJ45E2fnsvO73bYyxbh1fV76/G3yc/OIvhjJloWrca5Vg0Zt9dfJK2cu8O/KTfR7aTB1ArxJupHIhjnL2OloT6eBve++nLdQ+uhRoDCxteRzsPj4NvKKoifXn9vH06E9WHNmN4VaDdGp8USnxhvyXE25wch2g2jtE8Las3urowoVlrVY+de9m94c/yF5OblcvXCZtfOW4uruRmiHVtVWxjJKncsKFOV9FEZaezckpyCX46Wid68kx3AlOcbwOCLxGp90G0Zn/1AWn9hWJUU2rexRVd6iPB72NRjavDcrT+3iROwlnKxseaZpD15s0Z/pB1aXSd8vqC1tvEP4auvsapunDO7svCipnW8jsgtyOXrdOJprwbEtDGveh/G9h6MD4jNT2HPlhMmFH6pSmetDBSdBHYcavNiiH0tPbufE9Ys4WtvxfLPevNrqUab8txLQd56WjKYNj4/i+34j6VO/FX8dqp7RBaaqUN4nMf/oJpys7fh1wGgU6DvuNl84wOAm3dDqtFhZqBjb+Tl+3r2o2odsC3G7pDNOCHHbZs6cSWFhIR4exUMndDodFhYWpKSkGE2IXXJibm1RVNK6deuM8kJx9NeSJUt45513mDhxIq1bt8bOzo4ffviBAwfKn9+svB+iJWm1Wl577TXeeuutMs9VtPBEScOGDSMhIYFJkybh7e2NSqWidevW5OebHs61f/9+nnrqKb744gt69uyJg4MDixYtYmLRD1NTPvzwQ0aPHm20TaVSMeOw6fnTbsXKzhqFUkl2mvFQ2uyMLKzsb3+hAnc/T8L3V/3qnvYODijNlGWi4NJSUstEy93k5OJMSpLxHf3UlFTMzMywd9B3dDo4OfLpt1+Sn5dPeno6Lq4uzJoyg5rutYz24+VjPMzS09uLfTtNz/n0/0XBybNkRJboYC5ahEFpb4cmvfg4UtrZoku/jYmzLSywbNaYnLVl5wazeqwfuZt3UHBEf2xpY26gdHZC3aNLlXXGpedlo9FqcCwVleGgtikTvXHTgOD2XEiIMnQcRKXGkXcwny96vsziE9twUNviZuvEmE7PGPLc7IT5+5lxjF7zK3FVHHWSlptJoVZTJgrOycqu3AnM8zUFTNg5nx//XYCzlT1J2Wn0D2pHVn4OaTnGdVeZW9AloBl/HVpb6bJ2aN+ekODiIYL5RfNkJiYl4erqatienJJSYWeYi4tLmSi48vJ8/+OP/Lt7N9OmTqWmW9lheDfnCvX09KRhSAiPDRrE6n/+4YWhQ++4ftb2tiiVSjJTjd/3rLRMbBxMR2vc5FQ0JLumlweZaRnsWLbe0Bm3bck6GrdvYYiWq+nlQUFeHmumL6TDYz2rfN7O7PxcNFotdioro+22llZlouVuysjLJj03y9ARB/pOBaVCgYPa1mTkmw64npqAi7VDlZa/PDZ2+jlO01ONy5KRlo6dY8VlcKmpvxFV28eTjNQ0Ni5afU864zLzstFotWWi4OxU1rfVYdDWpyH7o86gMdHJXpIOiEy+QU27SnRCVyCjqL11UN9+e/tISHsuJESz9py+vY1OjSOvcB3jerzE0hPbjOYj69ugDY8Gt2f8trlEV9OiBxn5+s+idB3s1dbl1qGk9r6N2Rd5yigSH/TvzW97l2GuNMNWZU1qTgZPNOpMYlZqVRbf6PX01z7jNslBbUNqjumREY+FdOR8/FXWnNEvoHQ1NY7phWv4uterLDy+lVQT1xodOiKSruFu71rmucpKy81CY+K656i2IzW7/OvexF0LmfTvYpys7UjOTqdP/TZk5eeSlpuFn0tt3O1d+KrnK4Y8N6/fG1/+iRcWf0NsFUf4PWgUCpmh7EEjnXFCiNtSWFjI3LlzmThxIj16GEcPDRw4kL///rvcediCgoJQqVRERUXRsaPpoR+7d++mTZs2jBgxwrAtIqLiOV6CgoJYtWqV0bb9+43ngAgNDeXMmTMEBBjPnXYndu/ezR9//EGfPn0A/Vx1iYmJ5abfu3cv3t7efPzxx4ZtV69WHHGiUqkqNSy1NDNzc9y8axN19hL+zYp/HEeduYRf01tHA94UHxV7yx+Zd8PCwoKAevU4dugIbTq2M2w/dvgIrdq1MZmnfnAQB/f9Z7Tt2KHD1K1fr8xqvZYqS1xruFJYWMi+Xbtp36X4uAtqGMz1KONIrevR16hhYgXX/1fy8tAmGA+V1qalY16/HpprRREWZmaYB/iRs7r8YUQ3WTZrDObmFBwyMa+ahUXZW95a7R1F3d2KRqvhSnIsDWv5G8231rCWP4evmZ6bztLcwnDzwFCsonIqUBCTlsh7/0w2en5wk65YmauYfXg9iSZW26usQq2GCwnRNK9Tn90lJgVvXqc+eyJPVpATNFotCUU/+LoENOO/q6fRlYor6OzfDAszc7ZcOFTpstrY2BjdiNHpdLi4uHDg4EHqB+rn4CooKODosWO8OXJkuftpFBLCgYMHefbppw3bDhw4QKOGDY32/f3EiezctYs/f/8dj9q3twCLDsq9kXIr5ubmuPt6EnEqnKAWxVEtEafCqd+8YQU5SxdCh6agOLKnID+/TGSdQqksL6Co0jQ6LTHpCQS4enK2xGrAAa4enI2PNJnnasoNQtz9sCwxL5OrjSNanbbc1VcB3O1duJFheuqBqmZuYU4dfx8uHD9Do1bF84teOH6WkJZNbn9HOii8RwsuaXRaolJvEFTTh+MxFw3bG9T04USJx6bUq+FJTTtnQ+TSrXg6unE9LaFS5S2Pob11N25fQ9z9ysz7dZPKzKJMJ6IhcrfE+dCvQVsGhHTgu+3zjKL9qppGqyUyJZbgWr5G0W1BNX3LRB6WFljDi5p2zkZtdGmFWg2pORmYKZQ0q1O/zDygVaVQq+FyUgyNagdwMLp4Dt5G7gHlvqbK3MRnUXQtrOiq7OPkXi0rwhZqNVxIjCbUI5C9Ja5zoXUC2RdZ/tyhoD+nbq4Y29k/lANRZ9ChIyo1jleWfmeUdlhYH6wt1Pyxb4XhWinEvSSdcUKI27J27VpSUlJ46aWXcHAwvsM8aNAgZs6cWW5nnJ2dHe+99x7vvPMOWq2Wdu3akZ6ezr59+7C1tWXo0KEEBAQwd+5cNm3ahK+vL/PmzePQoUP4+pY/PHL48OFMnDiR0aNH89prr3HkyJEyq7uOHTuWVq1aMXLkSF555RVsbGw4d+4cW7Zs4bfffrutugcEBDBv3jyaN29Oeno6Y8aMwcrKqsL0UVFRLFq0iLCwMNatW8fKlbf3ZbkqNe3Zls3Tl+Hm44G7vxendx0iMzmNhp1aALB32SayUtLp8coTABzbvBd7VydcPNzQFGoI/+84EUfO0GfkMxW9zF177KmBTPxqAnXr16N+SBAb16wjIS6ePgP6AzB76gySEhJ591P9ohx9BvRj7YrVTP9tCj379yH89Fk2r93I+59/ZNhn+JlzJCUm4hfgT1JiEgv+motWq2XgM4MNaQYMHsh7w0exeO4C2nfpyIWz4Wxcs54333+nWupZESsLFXUciocG17Z3pa5rHdJzs6o8wupu5O3YjbpnF7QJiWjiE1D37IouP5/8Q8cMaayffwptahq5azYY5bVsHUbBiTPossoO5yw8fU6/3+QUtLFxmHl6oOrSgfz/Kt8hVNK6c/sY2eZxLidf50JCNN3qNsfVxoGtF/Wv81STbjhb2/PHPv3Q+6PXzvNKq0fpXjeME7H6YapDm/fmUuI1QxTatbR4o9fIzs81ub0qLTmxjY+7DuV8QhRnblymX1A73OycDVEMr7R8hBo2jozfPheAOg5uNHDz5mx8JHYqa55s1AVfZ3e+LXq+pL4NWrPnyolqGbajUCh4evBgZs2Zg1dRdNqsOXNQq9X0KnFT57MvvsCtRg3eKLoZ89Tgwbz6+uvMnjuXTh06sPPffzlw6BAz//zTkGfCDz+wcfNmJn7/PdY2NiQWRdLZ2tigVqvJycnhr9mz6dC+Pa4uLqSlpbF0+XLi4+Pp1rXrXdepTd8urPh9Lh5+XnjW8+Xw1r2kJSYT1k2/su2WhatJT05j4MjnATiwaRcOrs7UqK3v7L96PoK9a7fRslfxDYLA0BD+W78Dd9861AnwIelGAtuXrKV+s4bVtpr1nisneaJxF66nxROVEkeYVxAOVnYcvKr/8d4jsAX2KhuWndwBwImYi3QOaMbARp3ZdvEw1hZqejdoxZHo8xRqNYC+wzc6NY7ErDTU5pa09mmIu72L4Ti9Fzo92oO/J03HM8AHn8AA9m3eRUpiEm16dgZg7bylpCWl8uzb+uiYPeu34ejqQs06+ujpy+cusmP1Rtr3vftj5E5tuXCIF1v042rKDSKSYujg1xhna3vDKtuPhXTA0cqOWaWGArbzacTlpBhi0sveHOzXoC2Xk2OIz0xGba6ia0AzPB3dWHBsS7XVY334Pka0fpzLSTFcTIymS0BzXK0d2FbU3g5u0g1nKztD5+HR6+d5ueUjdKsbxsnYSzha2fJcM317ezMSq19QW55o1IXJe5eRkJVqiFrLLcw3itKsKpvPH+CVlo8SmRzLpcRrdPRviou1g2GxnkENO+FobceMA8ajFjr4NSEi6brJzk4/59o4WdkRlRqHo5UdA0Lao1AoWB/+X5m0VeWfc3t5s+0gLidd53xCFN3rhuFq48DmCwcBeKZpD1ys7fltr36l+cPXwhne+jF61GvB8ZiLOFnZ8UJYXy4mRBuufU806sKFxChi05OwtlDTp0FrfJzdy7wXVWX5yZ2M7TyEC4lRnIuLpE+DNrjZOhkiKV8M64erjQPfF8116uFQg/o1vAmPv4qtyoqBjTrj4+xueL5AU0hkSqzRa2QVRQKX3i7EvSKdcUKI2zJz5ky6detWpiMO9JFx48eP5+jR8lcW/Oqrr3Bzc+Pbb7/l8uXLODo6Ehoaykcf6TtShg8fzvHjxxk8eLD+B9zTTzNixAg2bNhQ7j69vLxYvnw577zzDn/88QctWrRg/PjxvPjii4Y0jRo1YteuXXz88ce0b98enU6Hv78/gwcPLne/pf3111+8+uqrNG3aFC8vL8aPH897771XbvpHH32Ud955hzfeeIO8vDz69u3Lp59+yueff37br1kV6rVoRG5mNgfX7CArLQMXj5o88vbz2Lvqh4Fmp2WQkVw8nEer0bBnyQYyU9Ixt7TApbYbj7z9PD6NqmdVuQ5dO5Oels7C2fNJTkrG29eHL34Yj1tRhFpyUjIJccUdHLVqu/PFD98w/bcprF2xBhdXF157eyRtO3UwpCnIz2fe9FnciInFysqK5q1a8O6nY7G1Kx52Uq9BfT4Z/wWz/5zBwtnzqOnuzqtvvU7nHvfux9dN9Wt4M/mx4uHJb7XTd4yuP/cf32yfc8/LU1relp0oLCywGvwYCmsrNJFRZE6eDiUWG1E6OZaJclO6uWIe4Efmb2Xn8ALIXrIKq349sX7qcRS2tmjT0snfs5/cDVurtPz/XT2t/1LesBOOVnZEp8bz3Y75hrvmTlZ2uNoUt2m7Lh9HbaGiR2BLhjTrSVZ+LmfirrDgaNmhtvfSjoijOKhteL5Zb1xs7LmSHMvYdX8Ql6mPOHKxdsDNtnh4t5lCweDGXfF0rEmhVsOxmAuMXDmxTIRSHQc3GrkH8O4/t3dj4m4Mfe458vLy+O6HH8jIyCAkOJjJv/xiFEF348YNo8nMGzdqxDdffcWUP/9k6rRp1PHw4NuvvyYkpHgOzWVFc5e+ViKaGmDcJ5/Qv18/lEolkZGRrF2/ntTUVBwcHAhq0IDpU6fi72d6Fdrb0bBNM3Iys9i5fAMZqem4eboz5IMRONbQD//LSEknLbH4fdbpdGxduIaUhCSUSiXONV3p/vSjNO/W1pCm4+O9UCgUbFu8lvTkNGzsbQlsFkLXwf3vupy3cio2AmsLNV0CmmOnsiYuM5k5h9YbhgbaqWyMhrnlawqZdXAt/YLbMaLt42Tn53EqNoItRT/uAdQWKgY07IidpTW5hfnEpCcybf+aau2oLq1pu5ZkpWexafEa0lPScPfy4NVP38G5aJhwenIaKQnFQ9G0Wh3r5i8jOS4BpZkZLrVq0O+5QbTu2emelfnwtXBsLK3o26AtDmobYtIT+W3PUsNCKw5q2zLD9azMLQn1CGRROfO/WVuqeC60J/ZqG3IK8ohOjeeHnQuqtdNh/9Uz2Fpa83jDjjha2XEtNZ7vd/5taG8d1ba4lGhv/718HLW5ih71WvBsaA+yi9rbhSU6DLvXDcPCzJx3Ojxl9FrLT+5g+amdVV6Hg9HnsFFZ80hwOxzUtlxPS+Dn3YsMq6M6WNmWGXZtZaGiWZ36LDhm+jphYWbOYw074mbrRG5hPidjLzF9/xpyCvJMpq8K+yJPYaeyZlCjzoaOwPHb5hqGxpa+9u2MOIaVhYre9VsxtHlvsvJzOX3jMvOPFM+3a2OpZnirATha2ZGdn8uVlFg+2zidS0nXqqUOuy4fw15tw5DQnjhbOxCZHMvHG/40LEDiYm1f6rqnZFCjztRxdEOj1XA85iKjVk8yXCeFqfk0xf2m0N3OpEtCCCHui9+L7lr+LxvZdhCXEqJvnfABFlDDk7a/D7/fxai0vSOnkjpyzP0uRqU4/v4DT83/7H4Xo9IWDfmSjlPKH6r5v2LX67+TkXL/ozgrw87JicXVGDF0rwxu2p2P1k+938WolPF9hrP+3L77XYxK69OgDa8um3DrhA+4aYPG8szf4+53MSplwbNf8MLib+53MSpt1uCPGTT341snfIAte/4buk8bdb+LUWlbXv3lfhfhrnyw7t6sAn83vuv7+v0uwn0hs/gJIYQQQgghhBBCCHGPyDBVIYQQQgghhBBCiIeUsgoXyRJVQyLjhBBCCCGEEEIIIYS4R6QzTgghhBBCCCGEEEKIe0SGqQohhBBCCCGEEEI8pBQyTPWBI5FxQgghhBBCCCGEEELcI9IZJ4QQQgghhBBCCCHEPSLDVIUQQgghhBBCCCEeUrKa6oNHIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykFMgw1QeNRMYJIYQQQgghhBBCCHGPSGecEEIIIYQQQgghhBD3iAxTFUIIIYQQQgghhHhIKWQ11QeORMYJIYQQQgghhBBCCHGPSGecEEIIIYQQQgghhBD3iAxTFUIIIYQQQgghhHhIKWWY6gNHIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykZDXVB49Cp9Pp7nchhBBCCCGEEEIIIUTV+3LLX/e7COX6rPuL97sI94VExgkhxAMsbcKk+12ESnMY+zYZycn3uxiVYufsTOrIMfe7GJXm+PsPtP19+P0uRqXsHTmVtPE/3e9iVJrDR6NJHT76fhej0hyn/kRGevr9Lkal2NnbkzZv8f0uRqU5PDeY1Hc/ud/FqBTHiV+TEX7hfhej0uzq1yPt+1/vdzEqzeH9t0j7ZuL9LkalOHz8LqlDXrvfxag0x/l/kvrSm/e7GJXiOPM3Ut/56H4Xo9Icfx5/v4sgHhIyZ5wQQgghhBBCCCGEEPeIRMYJIYQQQgghhBBCPKSUyJxxDxqJjBNCCCGEEEIIIYQQ4h6RzjghhBBCCCGEEEIIIe4RGaYqhBBCCCGEEEII8ZBSKGSY6oNGIuOEEEIIIYQQQgghhLhHpDNOCCGEEEIIIYQQQoh7RIapCiGEEEIIIYQQQjykZJjqg0ci44QQQgghhBBCCCGEuEekM04IIYQQQgghhBBCiHtEhqkKIYQQQgghhBBCPKSUMkz1gSORcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD0iw1SFEEIIIYQQQgghHlIKZJjqg0Yi44QQQgghhBBCCCGEuEekM04IIYQQQgghhBBCiHtEOuOEuEOHDx/m559/RqvV3u+iCCGEEEIIIYQQFVIqFA/s3/9X0hkn/udFRkaiUCg4fvx4le1ToVCwatWqMtsTExN58sknCQkJQams+tPn888/p0mTJlW+3/9Phg0bxoABA247/c6dO1EoFKSmpt71a86ePRtHR8e7zi+EEEIIIYQQ4v8PWcBB3FfDhg1jzpw5AJiZmVG7dm369u3L+PHjcXJyum/lio2NLfP6Op2O559/ns8++4zu3bvfp5I9HBQKBStXrryjTjNxe1RtW2HZOASFWo0m9gY5W7ajTUy+RSYV6g5tsKgXgEKtQpuWTu72fym8HAmAWR0PVC2bYVbTDaWdLVkr/qHwYkSVlVmn0zFt5kxWrl5NRno6wcHBjH3vPfz9/CrMt23HDqZOm8a169ep4+HBiNdeo3OnTobnZ82Zw45du4i8ehWVSkWjhg15c8QIfLy9DWmSkpP57fff2X/wIBkZGYQ2acKYd9/Fy9OzSuqm7tMdy7YtUVhbo4mMInvJSrSxceWmtx01HPN6/mW2F5w+R9aUv/QPlErUfbpjERaK0t4ObXo6+fsPk7dxG+h0VVLuO9XYPYBnmvagvpsXrjaOfLB+CruvnLgvZSmPqn1rLJs01J8bMbHkbNqONjHpFplUqDu1xSIwAIVajTY1jdxt/1IYcUX/dOswzAPrYubijK6wEM21GHJ37EabnFItdVD364llu1ZFx9NVshcur/h4Gj0C83oBZbYXnDpL1u8zDHW0eqQ3Fk1CUNjZoYm+Rs6SVWiuRt9x+XQ6HdOmT2flypVkZGToz+X338ffv+wxXdK27duZOnUq165do06dOox4/XU6d+5slGbp0qXMmz+fxMRE/Pz8eHf0aJo2bWp4/s9p09i8eTNxcXFYWFjQoH59RowYQUhIiMlyjho1in3//cePP/xA/0ceuau6Tv93B6uOHSEjN4fg2nUY07sf/jXcbiv/5jOn+GTlUjrUq8+PTz5j9Fx8ejqTt29mX8RF8goK8XJx4ZN+A2jgXvuOy3kr6h5dsGzVHIW1FZqr18he8Q/auPhy09u+/hLmAb5lthecPU/WzHkAWLZugapNC5TOjgBobsSTu2UHheEXq7z8UHTcLVrIyk2byMjKJLhePca+Nhx/L+9y80REXWXqgr8Jj4ggNj6e0S+9zDOPPGqU5s+FC5i+aKHRNhdHRzbNmVct9TBF1bYllo2DUahuXtN3ok261TXdEnX7NljU8y++pu/YTeHlq/emzO1bY9m0EQq1Ck3MDXI2brvNtrYdFvVLtLVbdxnaWsvQxliGNkbpaA+AJiGJvD3/URgRWW31UD/eD8vO7VHYWKOJuEL27IVor8dWXI2eXbHs1gGlizO6jEzyDx4ld8lKKCg0pFE4OWL11OOYNwpGYWmJ9kYc2dPnoomMqvo6PNIby45t9ef35atk/70EbcyNiuvQrROWnduhdHZCl5lF/uHj5C5fA4X6Olh2aoeqUzuUrs4AaGJukLtmI4Wnz1Z5+Q316NkVy9ZhKKys0ERFk718DdobFbRTI1/GPKDsd8iCs+FkTZ9r2Ke6V1ej57XpGaSP+7ZqCy9EBaQzTtx3vXr1YtasWRQWFnL27FlefPFFUlNTWbhw4a0zV5NatWqV2aZQKFi/fv19KI0Qt8eyZXNUYU3JXr8ZbXIqqjYtsHnycTJmzIH8AtOZlEpsBj+GLjuH7FVr0WZkorSzQ5efb0iisLRAE59A/qkz2DzWv8rLPWf+fBYsXMi4Tz/Fy9OTmbNnM3LUKJYvWoSNjY3JPCdPneKjTz9l+Cuv0LljR3bs2sUHn3zCzD//JCQ4GICjx47xxMCBBDVogEaj4Y+pU3nj7bdZumABVlZW6HQ63hs7FnNzcyZOmICNjQ1/L1zIiLfeMqSpDFX3Tqi6dCB73mI08Qmoe3XD9o1XSP/yB8jLM5kna/ocMC++NCtsrLH78B0Kjp002q9l+9Zkz12ENjYOM+86WA95El1OLvk791SqzHfLykLFpaRrrA/fx/jew+9LGSpi2SoMVYtQstduQpucgqptS2yeHkjGn7MqPjeeHoguO5vsFWvRpmegtDc+N8y8PMk/chxNbBwoFag7ttPvd9psox9fVUHVowuqrh3JnrNQfzz17o7tqOGkj/uu/ONp6mwwNzM8VthYY/fJexQcLe4otX7uScxqu5M1awG6tHQsWzbD9u3hpH/xPbrUtDsq45y5c1mwYAHjPvsMLy8vZv71FyPfeIPly5aVfy6fPMlHH33E8Ndeo3PnzuzYsYMPPvyQmTNmGDrSNm/ezMSffuKDsWNp3LgxK1as4K1Ro1i6ZInheu3t5cX7Y8bg4eFBXl4eCxYuZOQbb7Bq5coyN9cWLFwIlRwWM/e/PSw88B+fPfIYXs4u/LVnF2/+PYelr7+FjUpVYd7Y1FR+3bqJJp5lO4vSc3J4Zc4Mmnn78stTz+FkY8O1lGTsVOpKldcUVef2qDq2IXvRCjQJiai7dcL2tWGkT5gEefkm82TNXmB8TFlbY/fuSApOnjZs06alkbNus6EDxjKsKTYvPEvGT39U2NF3t+asWM6C1asYN+ptvGp7MHPJYkZ+9hnL/5iCjbW1yTy5eXnUqVmLbm3a8dNfM8rdt5+XF398+bXhsVk1jIooj2WLZqiaNyV7/Ra0KSmoWrfAZvAAMmbMq7jdevIxfbu1en3RNd0WXXnpq7rMrcNQtWxG9j8bi9raVtg8M4iMqX9VXOZnBunLvPyforbW3qit1WZk6G90pKQCYNEoCOsnBpA5Y96tO/rugqpfT1S9u5H95xw0N+JQP9oH2w/eJn3MZ5Brur21aNMC9eDHyJ4+B83FyyhruWH92jAAcv9eChSdL5+NoeDcBbJ++A1degbKmjXQZWdXfR16d0PVozPZf/2NJi4edb+e2L77Bukff1V+HVo2Rz3oEbJn/Y3m0hV9HV4coq/D4hUAaFNSyVm+Bm18AgCWbVpi8+YrZHwx4ZYdfXdVjy4dUHVqS/aC5fp2qntnbIe/SPq3P5XfTs36G8xKXfvee5OC46eN0mli48icMrN4g/b+3NC8VxT/j4eDPqhkmKq471QqFbVq1aJOnTr06NGDwYMHs3nzZqM0s2bNokGDBqjVaurXr88ff/xR7v40Gg0vvfQSvr6+WFlZERgYyC+//FIm3V9//UVwcDAqlQp3d3feeOMNw3Olh6meOnWKLl26YGVlhYuLC6+++iqZmZmG528Ojfzxxx9xd3fHxcWFkSNHUlBQ8Zef7777jpo1a2JnZ8dLL71Ebm5umTR3UneAjRs30q5dOxwdHXFxcaFfv35ERBRHMeXn5/PGG2/g7u6OWq3Gx8eHb78tvgukUCiYMmUKvXv3xsrKCl9fX5YuXWr0GtevX2fw4ME4OTnh4uLCo48+SmRk5G29vz4+PgA89thjKBQKw2OAKVOm4O/vj6WlJYGBgcybV/HdZ41Gw+jRow11ff/999GVigzS6XR8//33+Pn5YWVlRePGjVm2bFmF+y3tp59+omHDhtjY2ODp6cmIESOMPv/SIiIiePTRR6lZsya2traEhYWxdevWO3rNu6Fq3pTc/w5ReCECbWISOes2o7CwwLJB/XLzWDYKRqFWk73iHzTXY9GlZ6C5HoM2IdGQpvByJHm7/6PwQtVFw92k0+lYuHgxLwwbRpdOnQjw9+eLTz8lNzeXjaXagZIWLl5My7AwXhg6FB8fH14YOpQWzZuzYPFiQ5rfJk2if9+++Pv5Ua9uXcZ98gk3btzgXHg4AFHR0Zw6fZoPxowhOCgIH29vPhgzhpzsbDZt2VLpuqk6tyd30zYKTpxGGxtH9rxFKCwtsQxrWm4eXXYOuvQMw59F/bqQX0B+ic4Tc19vCk6eofBMONrkFAqOnaLg3EXMvetUusx3a3/UGaYfWMOuy8fvWxkqomrRlNy9Byk8fwltQhI5/2xCYWGOZXAF50bjEBRWarKXrUFzLUZ/blyLQRtffG5kL15BwamzaBOT0MYnkrNuE0oHe8xq1az6OnTtQO6GrRQcP4U25gbZcxboj6cWoeXm0WVnGx9PDQL1x9ORouPJwgKLpo3IWfEPmkuX0SYkkrt2E9rEZFQd2txR+XQ6HQsXLuSFF16gS5cuBAQE8MXnn+vP5U2bys23cOFCWrZowQsvvKA/l194gRZhYfoOsyJ/L1jAo48+yoABA/D19eXdd9+lZs2aRm15r169aNmyJXXq1MHf35933n6brKwsLl40jsa6cOECC/7+m88+/fSO6le6rosO/sewdh3oXD8If7eajHvkcXILCth0+mSFeTVaLZ+tWsYrHTrjYWIEwNz/duNmb89njzxGsEcdajs60cLXnzrOzndd3vKoOrQhd+su/TF8I57shctRWFpg2bRxuXl0OTnoMjINfxb1/KGggPwTxT9yC8+epzD8gv68SEwid8NWdPn5mHtXTcSxUXl0Ohb+s4YXnniSLq3bEODtzRdvv0Nufh4b/91Vbr7guvUY9cKL9OzQAUsLi3LTmZuZ4erkZPhzcnCo8jqUR9W8if6afjECbWIyOeu3oDC3wLJBYLl5LBsF6a/pK9eVuKbHGl3Tq7XMLULJ3XugRFu7saitbVB+mZsUtbVLV5doa68bOnsACi9epjDiCtrkFLTJKeTt3IsuPx8zD/fqqUevruSu3kDB4WNor8WQ/edsfXvbpkW5ecwD/Ci8GEHBf4fQJiZRePoc+f8dwtyvuNNd1b8n2uQUcqbNQXM5Up/uTLjRdaXK6tCtE7nrNlNw9ATa67Fkz5yvP79bNi+/Dv6+FF66TMGBI2iTkik8E07+gSOY+3gZ0hSeOE3hqbNo4xLQxiWQu3Iturw8zP18qrwOAKqObcjdspOCU2f0UYQLlurrEdqk3Dy67NLtVEBRO3XKOKFWY5ROl5VVLXUQojzSGSceKJcvX2bjxo1YlPhiNH36dD7++GO++eYbzp07x/jx4/n0008Nw1tL02q11KlThyVLlnD27Fk+++wzPvroI5YsWWJIM2XKFEaOHMmrr77KqVOnWLNmDQEBZYfyAGRnZ9OrVy+cnJw4dOgQS5cuZevWrUaddwA7duwgIiKCHTt2MGfOHGbPns3s2bPLreuSJUsYN24c33zzDYcPH8bd3b1MR9ud1h0gKyuL0aNHc+jQIbZt24ZSqeSxxx4zLDjx66+/smbNGpYsWcL58+eZP3++UYcYwKeffsrAgQM5ceIEQ4YM4emnn+bcuXOG96Nz587Y2try77//smfPHmxtbenVqxf5RXcxK3p/Dx06BOg7GWNjYw2PV65cyahRo3j33Xc5ffo0r732Gi+88AI7duwot64TJ07kr7/+YubMmezZs4fk5GRWrlxplOaTTz5h1qxZTJkyhTNnzvDOO+8wZMgQdu0q/0t6aUqlkl9//ZXTp08zZ84ctm/fzvvvv19u+szMTPr06cPWrVs5duwYPXv2pH///kRFVf0QhJsUDvYobW0ovFJiGIpGQ2H0tQq/rJoH+KGJicWqe2fs3ngF2xeHoGoVVumokdt1PSaGpKQkWrUo/oJraWlJaNOmnDx1qtx8J0+fpmUL4y/FrVq2rDDPzQ5Ue3v9MJeCouNVZWlpSGNmZoa5hQXHT1RuiKXSxRmlgz2F5y4UbyzUUHjpMua+5Q+dKs2ydQvyjxw3iigojIjEIjAApZur/rU83DH396HgdHilyvywUjg6oLS1pfBKZPFGjYbCqGuYeZQ/7M+8rj+a67FY9eyC3ajXsH3leVRtWlR4biiKIqJ0Jm6sVIbS9ebxdL54Y6GGwosRd/QDyLJtS/IPH4ObESdKJQozszJRfLqCApNDESty/fp1/bncqlXx61laEhoaysmT5XdQnTx1ipYl8gC0at3akKegoIDw8HBatWxpnKZly3L3W1BQwMqVK7G1taVevXqG7bm5uXz8ySeMef99XF1d76h+JcWkppCUmUkrv+LvDZbm5oR6+3DyWsXDe2fu3omjjQ2PNm1m8vndF87TwN2DD5YvpudPExgy/Q9WHT1812Utj9LZCaW9HYUXLhVv1GgojIg0+uF9K5Ytm5F/7FT5UU8KBRZNGqKwtKTwatVfA6/HxZGUkkKrEkOWLS0sCA0O4WR45dvEqJgYeg0byiOvvMSHP3zPtRtVH/ljiuGaXnLookZDYfT1iq/p/jev6Z2wG/kyti88i6pV83tyTTe0tZdLfQ+JuoZZnVu0tddisOrVFbtRw7F9ZWjFba1CgUVQIAoLCzTXY6q4FqCs4YrS0YHCUyWGXRYWUhh+AfO65Q+5L7xwCXMfL8yK2mRlDVcsGodQcLz4e4lFaCMKL1/F+s1Xsf/9B2y//hjLTu2qvg6uLvo6nClxDhQWUnj+Eub+5bfthZciMPf2xKzoe4rS1QWLhkEUnDxjOoNCgUWLUP35XQ1DhpUuTijt7Sk8X+KmikZD4aUrmPveSTvVnPxjJ8u0U0pXV+w//wC7T97D+rmnULrcvymSxP9PMkxV3Hdr167F1tYWjUZjiAz76aefDM9/9dVXTJw4kccffxwAX19fzp49y59//snQoUPL7M/CwoIvvvjC8NjX15d9+/axZMkSnnzySQC+/vpr3n33XUaNGmVIFxYWZrJ8f//9Nzk5OcydO9cwzGby5Mn079+fCRMmULOmPgLCycmJyZMnY2ZmRv369enbty/btm3jlVdeMbnfSZMm8eKLL/Lyyy8byrR161aj6Lg7rTvAwIEDjR7PnDkTNzc3zp49S0hICFFRUdStW5d27dqhUCjw9i7bMfDEE08YyvXVV1+xZcsWfvvtN/744w8WLVqEUqlkxowZhnDnWbNm4ejoyM6dO+nRo0eF72+NGjUAcHR0NBoO/OOPPzJs2DBGjBgBwOjRo9m/fz8//vhjmbmDSr6HH374oaHOU6dOZVOJCIysrCx++ukntm/fTuvWrQHw8/Njz549/Pnnn3Ts2NHkfkt7++23Df/7+vry1Vdf8frrr5cbpdi4cWMaNy6OLPj6669ZuXIla9asKdOJW1WUtvpjs/RQB11WNgoH+/LzOTqgdPDUz6OxdDVmzo6ou3cGpZK8fQeqpawlJSXph5e4lIr6cHF2JraCHz1JSUkm89zcX2k6nY6ffv2VJo0bE1A0f5WPjw/utWoxecoUPho7FisrK/5euJCkpCQSy9nP7VLY2wGgzTCOoNSmZ6B0vr0ve2benph5uJP9t3Fkat6WHSis1Nh9OkY/R5xCQe4/Gyk4crxSZX5YKW30w9R0WXd4bjgVnRunw8lavBIzZyfUPbroz409+03mUXftSGH0NbQJVTtsSlHUgaxNzzDafkfHk4+X/niaVxw9Sl4ehRFXUPftTtaNOH30XFgoZj5edxypUV3ncmpqKhqNBudSaZxdXMqcp7t37+ajjz8mNzcXV1dXfp882WhxnYk//USjRo3odJttf7llLurYdy419NbZxobYtNRy852Ivsqa40eZ/8rr5aa5npLCiiOHeKZla15o24Ez168xcfN6LMzN6duoSaXKXZLC3hYw0UZlZBrmersVM08PzNxrkb14ZZnnlLVqYvfWq/ph9/n5ZM1agDYuwcReKicpRT8/o4uDo9F2F0dHYuMrNyQ2pF49vnj7Hbxre5CUmsrMpYt5aewYFv/2O4725bcdVcHQbpW+pmdnG64vJvM52qN0qKOfw2/ZasycHFF371R0TT9YnUVGWXQ+lI4u0mVlG9owk/kcHVH62OvnRl28Qt/W9uxapq1V1nDFdtjThmMqe9maW8+JexcURfPSadPSjbZr0zIM86SZUrD/MDl2dth+NgZQoDA3I2/rTvL+Kf5eqqxRA1XXjuRt3ErWmg2Y+ftg9fxgdIWFFJRzXbmrOjjcvGaUqkN6BkqXCupw8Cg5trbYfvB2cR127CZvg/FoAaWHO3YfvQsW5pCXR9bvM9DGVn1HtcKunO9SmZkonRxvax9mXnUwq12L7KJhtjcVXo1Gs2ApmoRElHa2+uGvbw0nY8IkdNk5VVL+B41CIXFYDxrpjBP3XefOnZkyZQrZ2dnMmDGDCxcu8OabbwKQkJBAdHQ0L730klGnVmFhIQ4VDBWYOnUqM2bM4OrVq+Tk5JCfn29YpTQ+Pp6YmBi6du1abv6Szp07R+PGjY3mu2nbti1arZbz588bOuOCg4MxKzE/gbu7O6cqiNI5d+4cw4cbz63UunVrQyTY3dY9IiKCTz/9lP3795OYmGiIiIuKiiIkJIRhw4bRvXt3AgMD6dWrF/369aNHjx5lylH68c3Vao8cOcKlS5ewszP+Mpibm0tERMQdv78l349XX33VaFvbtm1NDjEGSEtLIzY21qis5ubmNG/e3DBU9ezZs+Tm5pZZcCM/P99o4u9b2bFjB+PHj+fs2bOkp6dTWFhIbm4uWVlZJudBysrK4osvvmDt2rXExMRQWFhITk5OhZFxeXl55JWa90lVwbxDFkGBWPUsfo+zlq3W/1N6An+FiW1GzyvQZWeTUzT5vzYuHoWtDaoWzaulM27Dpk2MnzDB8HjSjz8WFcP4DrhOp+OW9/FL5zGxn5u+//FHLl26xIw//zRsMzc35/tvv+Wr8ePp0rMnZmZmtGjenDaljv/bYRHWFOunizvCM//462ZFKixzRSzbtEBzPbbMRPoWzRpj2SKU7NkL0MTGYVanNlYDH0Gblk7BgSN3XPaHjUVwfax6dzM8zlqySv9PmdNAYWKb8fO6rGxyNmzRnxs3is6NVs1Ndsape3bBzM2VzJKdXXfJokUo1s88YXiceXOxhUodTy31x1OpScKzZy3A+vmncJjwOTqNBk30dQoOHcPMy6PC/W28cZ3vLpxC0XQHOp2OST//XFSkKjiXdboy+zG531LbmjdvzoK//yY1NZWVq1bx4UcfMXvWLJydndm1axeHDx/m7/nzb1WaMjaeOsG36/8xPP75qWf1ZaJ0mcpuuykrL4/PVi3no76P4Ghtev48AK1OR4PatRnRRX/dCqzlzuXEeJYfOVipzjiL0MZYDypeqCJzxrziQpekUNz2QjCWLZujib2BJvp6mee0CYlkTPwdhZUai0bBWD89kMw/ZlS6Q27Dzp2Mn/K74fGkTz8rKvatj4871bZZ8XC+AKBR/foMeO0V1u7YzpBHB1Rq36VZBAVi1aP4xmPW8qLjzdRnUdHHo1Cgy84hZ9P2omt6AgpbW1QtQqu8M84iuD5WfYq/X2WZ6JQtVtH3EH2HXc76km2tLarWxm2tNimZzBnzUKhVmAfWxap/L7LmL650h5xFmxZYv/is4XHmj5NNl/kWh5N5g3qoH+1NzuwFFF66glktN6yGDEY7II28VUVzTisVaC5fJbfouqS5Go2ZR21UXTtWqjPOomVzrJ9/qrgOv0w1WYVbnd/mgQGo+/UkZ/4SCi9HYuZWA6unB6Lt15O8tcWditob8WR88R0KKyssmjXB+qUhZE74tdIdchahjbF+ckBxPYoWWyjrVtfvYpYtm6OJuYEm6prR9sLw4pEL2tg4MiOjsP/4PSzDQsnbtfcOSy7E3ZHOOHHf2djYGIYw/vrrr3Tu3JkvvviCr776ytCRNH36dFqWGqJSsuOrpCVLlvDOO+8wceJEWrdujZ2dHT/88AMHDug7Fu50UvaKvtCV3G5Ras4RhUJhKP/duJu6A/Tv3x9PT0+mT59O7dq10Wq1hISEGIaQhoaGcuXKFTZs2MDWrVt58skn6dat2y3nUbtZV61WS7Nmzfj777/LpKlRowbKSkxuXNVfpm++h+vWrcPDw/iHZUUdXSVdvXqVPn36MHz4cL766iucnZ3Zs2cPL730UrlzAo4ZM4ZNmzbx448/EhAQgJWVFYMGDTJ8BqZ8++23RhGdAOPGjeMdK0eT6QsuXUZTcqLcogm1FTY2RhFACmvrMhFBJekys9BptUZfzrRJKfpIO6USKnEMm9KhXTtCgoIMj/OL3sPEpCSjYWPJKSllImFKcnFxKRMFl5ycbDLP9xMn8u+ePUybMoWabsYrHTaoX58Fc+eSmZlJQUEBTk5ODH3pJYLqlz+XmCkFJ8+SUbKTo2gRBqW9HZoS0UxKO1t0paKbTLKwwLJZY3LWlp03z+qxfuRu3kFB0bxf2pgbKIuitqQzDgouRhifG0XtpcLW2ihiQ2FjVeH8MLqsLHQajfG5kZiM0ta2zLmh7tEZi7r+ZM5bjK7UHfy7qsOJM2RcKXk86eugdLC/++MprAk5/2ws85Q2MYnMn34HS0sUahW69AysX37ulj9w27vWJNjeEfuvPiIrM9PQvpk8l11cyt2PyXO5xPnv6OiImZlZmTQpycllIuqsrKzw9PTE09OThg0b8tjjj7N69WpeeOEFDh8+zLVr1+jcpYtRnvfHjmXJ0qVM7tGv/LrWq0+wR/GcjPkaDQBJWZm4lrgxlZKdhbONrcl9XE9JJjYtlXcXLzBs0xYdW62/+Zylr79FHWdnXG1t8XWtYZTXx7UGO8Irt1JhwZlzZJTs2C/ZRpU4ZpW2NugybmPeJAsLLJs0JGfTNtPPazSGVT8112Iw86yDqn0bcm7eOLpLHVq0ICSweOix4RqSmoJrieMhOS0N5xJRkVXBSq3G39uH6JiqHxpZ5ppuVsE1vYLJ/nVZ2WXbraTkarmmF1yMQDOjnDJnlmxr7+Z7SFLZtlarNSzgoImNw7x2LSzDQsndULk5eQuOniCjaNVWoPjccHBAk1ocWaa0t0NXKlquJPWgR8jfe4D8nfqOHO21GFCpsH5xCHmrN4BOhy41DU2M8YqsmphYLCqYS/a26nDiFBlfRJqogz2aEmW+1TVDPaAf+f8dJH/3f/o6XI8FlSXWzz9N3rrNxZ+RRmOIntZcjcbM1xtVt47kVPJmVMGZc2T8aKKdsrM1vvbZ2qCrYO5mAwsLLJs2ImfjbRwj+QVoYm+grHH3UxgIcaekM048cMaNG0fv3r15/fXXqV27Nh4eHly+fJlnn3321pnRD1Np06aNYbgjYLSAgZ2dHT4+Pmzbtq3c4Y8lBQUFMWfOHKMoqL1796JUKo3morlTDRo0YP/+/Tz//POGbfv3F98Vq1mz5h3XPSkpiXPnzvHnn3/Svn17APbsKbu6or29PYMHD2bw4MEMGjSIXr16GXVkmCrXzUiy0NBQFi9ejJubm2HurdJu9f5aWFigKfoxc1ODBg3Ys2eP0evu27ePBg1MT/rr4OCAu7s7+/fvp0OHDoA+avDIkSOEhuonNA8KCkKlUhEVFXXbQ1JLO3z4MIWFhUycONHQ0Vhy/kFTdu/ezbBhw3jssccA/VxlpRe4KO3DDz9k9OjRRttUKhW5k6aYzpBfgDbfeKVDbWYW5j5e5N+c9FipxNyzDrkVrLBZeD0GyyDjjielk6N+SEAVd8SBvvO9ZDShTqfDxcWFA4cOUT9QPyl1QUEBR48d480S53BpjUJCOHDoEM8+/bRh24GDB2nUsKHRvr+fOJGdu3bx5x9/4FG7/DlrbG31P6CjoqM5Fx7O66WiNG8pLw9tgnFkozYtHfP69dBcK/rhZmaGeYAfOatvvSqzZbPGYG5OwaGjZZ+0sCh7Z1urvWfz/D3w8gvQ5qcabdJmZmLu601+XIlzw6sOuTt2l7ubwujrZRZ4ULo4lTk31D26YBEYQNb8JRX+ULsj5R1PDeoVRyGZmWFe15+clWtvuTvL5k30x1NFnbX5+ejy81FYW2ERVJ+cFf+UnxawMTfHxtwcR29vMtLTi8/lAweMz+WjRw3R7qY0atiQAwcO8Owzzxi2Hdi/n0aNGgH660X9+vU5cOCA0TXlwMGDdCxq+8uj0+kMnTVDhw7l0UcfNXr+qaefZvQ779Crd2/Yua/8uqpURiuk6nQ6XGxtOXD5EoG19PN3FWgKOXo1kje6dDe5D29XVxa+OtJo25Sd28jOz+PdHn2oWTSsrJGnF1eTjIcIRyUlUavUMMw7lpePNs+4g1WbnoF5Pf3ciID+mPL3MXkToDTLJiFgbnb7w+MVoDAv/0bi7bKxtjZaIVWn0+Hi5MSB48ep76efgqCgoICjZ07z5vOmp/O4W/kFBURei6ZpiRtKVbjzcq7pnqWu6R7kVhC1U3gtBssg4wUelM6OaDOr4ZpeYVsbX1xmrzrkbq+grb0WU7atdS7b1pqiqODm9G3LzUObaxyxqU1NwzykQXFkupkZ5vXrkVNqqKMRS8uyq3FqtUYRdYUXIjBzN17gR1mrZuWH2+bmoS21Qqo2NQ3zoMDiiDAzM8wDA8hZtqb8/Via+n6hu2VUIApQVLAQym0z2U6lYx4YYNxOBfiS80/5CwPdZNmkob6dOnzs1q9tZoZZTTfjOQ8fMspbx6mLe0w648QDp1OnTgQHBzN+/HgmT57M559/zltvvYW9vT29e/cmLy+Pw4cPk5KSUqbzAiAgIIC5c+eyadMmfH19mTdvHocOHcLXt3jC0s8//5zhw4fj5uZG7969ycjIYO/evSZ/MDz77LOMGzeOoUOH8vnnn5OQkMCbb77Jc889ZxiiejdGjRrF0KFDad68Oe3atePvv//mzJkz+Pn5GZXzTup+c3XTadOm4e7uTlRUFB988IFRmp9//hl3d3eaNGmCUqlk6dKl1KpVy2henaVLlxqV6+DBg8ycOdPwfvzwww88+uijfPnll9SpU4eoqChWrFjBmDFjqFOnzi3f35uddW3btkWlUuHk5MSYMWN48sknCQ0NpWvXrvzzzz+sWLGiwlVIR40axXfffUfdunVp0KABP/30E6mpqYbn7ezseO+993jnnXfQarW0a9eO9PR09u3bh62tbbnz7pXk7+9PYWEhv/32G/3792fv3r1MnTq1wjwBAQGsWLGC/v37o1Ao+PTTT28ZJalSqUxG693JNPB5h4+hbt0CbUoq2pRUVK3D0BUUkH+ueAJfq7490GZkkfev/st8/rGTqEKboO7Wifwjx1E6OaJqHaZfNOAmCwujuTmUDvYo3Wqgy8lFl3EbUTkVUCgUPD14MLPmzMGrTh08PT2ZNWcOarWaXiWGT3/2xRe41ajBG0UddE89+SSvjhjB7Hnz6NS+PTt37+bAoUPMLDEMdcKPP7Jx82YmTpiAtbW1YX4pWxsb1Go1AFu3bcPRyYlaNWtyKSKCiT//TMcOHcpMFn838nbsRt2zC9qERDTxCah7dkWXn0/+oeIvhdbPP4U2NY3cNRuM8lq2DqPgxBmT0QSFp8/p95ucgjY2DjNPD1RdOpD/36FKl/luWVmoqONQHM1T296Vuq51SM/NIi4z5b6V66a8g8dQt2mBNjkVbUoKqjYt0RUUkl9icmur/r3QZmSSV9R5nX/0BKrmTVH36Ez+4WMonZxQtWlh9Pmpe3bBMrg+WcvW6Duybs7zlJcPhcaLIlS6Dtv+Rd2rG9r4ouOpVzf98XSwuMPWetjTaFPTyV21ziivZZuWFBw/bfJ4Mg8KBBRo4+JRurli9Xh/NHHx5N/hkDaFQsHTTz/NrFmz8CqKTps1e7b+XO7Z05Dus3Hj9Ody0fyZTz31FK++9hqz58yhU8eO7Ny1iwMHDzJzxgxDnmefeYbPxo2jQVAQjRo2ZMXKldy4ccMwX2hOTg5//fUXHTp0wNXVlbS0NJYuW0Z8fDzdiqZMcHV1NbloQ61atfD09CStzDMV1/WpFq2ZvXc3ns4ueDm7MGvvv6gtLOgZ0siQbtzq5bjZ2TOyS3dU5hb4uxl/Z7AraodKbn+mZRtemj2dWXt20S0ohDMx11l17DAf9XmEqpb37z7UXTuiTUhCk5iEumtHdPkF5B8rXsDG+umBaNPSyV1vPGeUZYtmFJw+Z3JuJXXv7hSEX0CXmgYqFZZNG2Lu70vW9PIXn7pbCoWCp/s/wqxlS/Fyr41n7drMWrYEtaWKXh2Kb8J99vNPuLm48EZRB11BQQGXo6OL/i8kISmJ85cvY22lxtNdf+Nm0qyZtA9rQa0aNUhJTWPm0sVkZWfTr8udTcNxt/IOH0fdKqz4mt4qDF1hAfklFnKx6tMdbWYWef/qO5Pzj59C1awx6q4dyT96Qn9Nb1Xqml6dZT54FHXbFmhT9KueFre154rLXLqtPXKzre2ib2udHVG1KVpspoiqUzv9aqrpGSgsLbEIDsTM25O8RRV0jlWmHhu3oX6kN9q4eDQ34lE/0lvf3pZoF61fG4Y2JdUw5LTw2ElUvbuhuRqFJuIKyppuqAc9QsHRk4YOrryNW7H9bCyqR3pTcOAwZn4+qDq3J/uvOx8+f8s6bN2Jum8PtHEJ+mtGnx768/tA8YIw1i89p69D0c2XwhOnUfXojCbqGprLV1G6uaIe0JeC46cNdVA/3p+CU2fRJaeAWoVli2aYB9Yl62fT8yhXuh679qHu1knfTiUkoe7WSV+Po8eL6/HMIH07tc74RoJlq+YUnCqnnXqkNwVnwtGlpKKwtUHdozMKtYp8UzdBhagm0hknHkijR4/mhRdeYOzYsbz88stYW1vzww8/8P7772NjY0PDhg2NJtUvafjw4Rw/fpzBgwcbfhyMGDGCDRuKf+wOHTqU3Nxcfv75Z9577z1cXV0ZNGiQyf1ZW1uzadMmRo0aRVhYGNbW1gwcONBokYm7MXjwYCIiIhg7diy5ubkMHDiQ119/3WgBgjutu1KpZNGiRbz11luEhIQQGBjIr7/+SqdOnQxpbG1tmTBhAhcvXsTMzIywsDDWr19vNLz0iy++YNGiRYwYMYJatWrx999/E1R0J9ja2pp///2XsWPH8vjjj5ORkYGHhwddu3Y1RMrd6v2dOHEio0ePZvr06Xh4eBAZGcmAAQP45Zdf+OGHH3jrrbfw9fVl1qxZRmUv7d133yU2NpZhw4ahVCp58cUXeeyxx0hLK/5Z9dVXX+Hm5sa3337L5cuXcXR0JDQ0lI8++ui2PqcmTZrw008/MWHCBD788EM6dOjAt99+axTBV9rPP//Miy++SJs2bXB1dWXs2LGkp1dRxEwF8g8cRmFujlWPLijUKjQxN8hastJo9Silvb3RPBu6jEyylqxE3bUDti8OQZuRSf7h4+SV+LJmVqsmts8Uf35WXfU/cPJPnSVn/a0jKG5l6JAh5OXl8d2PP5KRkUFIUBCTJ00yiqC7ERdndIw2btSIb778kil//snUadOo4+HBt19/TUhwsCHNshX6L+mvjTSORhn3ySf079sX0A+p+/nXX0lKTsbV1ZW+vXrx8osvVrpOAHlbdqKwsMBq8GMorK3QREaROXk6lJgbUOnkWOYutNLNFfMAPzJ/m2Zyv9lLVmHVryfWTz2OwtYWbVo6+Xv2V3qoTmXUr+HN5MeKbxC81U4/39n6c//xzfaq/wF+p/L3H0JhYY5Vry4o1Gr9ubFoealzw87os9BlZJK1aDnqbp2wffl5/blx6Bh5JTo9Vc2aAGA75Emj18v+ZyMFpyo3rLC0vM3bUVhaYPX0QP3xdCWKzF//ND6enJ1MHE81MK/rVzyHUCkKKzXqAX1ROjqiy86m4NhJclatv6somqHPP68/lydM0J/LwcFM/u0343P5xg2UJaI4GzduzDfffMOUKVOYOnUqderU4dvx4wkJCTGk6dGjB2lpacyYMYPExET8/f35ZdIk3N31UWlKpZLIyEjWrltHamoqDg4OBAUFMX3aNPz9y1/9sDKeb92OvIICvt+4loycXII9PPjtmeeNIuji0tKM6no7gmp78P0TT/PH9i3M3L2L2o6OjO7em14NG9868x3K27Fb30YNfASFlRpN1DUyp82GvOIpFZSOjmWPKVcXzP18yPxzlsn9KuxssXlmEAp7O3Q5uWhi48iaPofCCxEm01fW0McHkpefz3d/TiEjM5OQevWY/MWXRhF0NxITUCqLP4uE5GSefad4kal5q1Yyb9VKQkNCmPbNtwDEJSbx8Y8/kpqRjpO9PSGBgcz6/kfcS013UF3yDx7Rt1vd9Z0Emtg4/RyYt2q3lqxC3aUDti88gzYji/wjx8m7R1MY5P93SP89pFdXfVt7PZashcuMy+xgX6rMGWQtXIa6eydsX7nZ1h41amuVNtZYP9Ibha0Nurx8tPEJZC9aYbyCfBXKW7tJ394OewaFtTWaiCtkTvgFSkSfKV2djeqRu2o9Oh2on3gUpZMjuvRMCo6dJHfpKkMazeWrZE2agtXgx1AP6Is2IZGc+UsoqIbFNfI2bNWf30OeRGFjjeZypH5Kgtzyrxm5azehQz9cVenkgC4jk4ITp8ldURyBrbC3w+bl51A42OvP72sxZP38B4Vnz1Md8rb/q6/HoEdQWFmhuXqNzKmzjNspU9+lahS1U1P+MrlfpYMDNs8N1g+jzsyi8Go0GZOmoisaCi3EvaDQ6SqYxVEI8f+OQqFg5cqVDBgw4H4XRQBpEybd7yJUmsPYt8lIrvoVz+4lO2dnUkeOud/FqDTH33+g7e/Db53wAbZ35FTSxlfuZsiDwOGj0aQOLxvh/L/GcepPZNyDmw3Vyc7enrQqWHjjfnN4bjCp735yv4tRKY4TvyajxMTq/6vs6tcj7ftf73cxKs3h/bdI+2bi/S5GpTh8/C6pQ16738WoNMf5f5L6UvlD/v8XOM78jdR3bu9m+IPM8efx97sId2XSvw/ude7tDoPvdxHuC1nfVgghhBBCCCGEEEKIe0Q644QQQgghhBBCCCGEuEdkzjghhBEZuS6EEEIIIYQQD487ncNUVD+JjBNCCCGEEEIIIYQQ/xP++OMPfH19UavVNGvWjN27d5ebdufOnSgUijJ/4eHhRumWL19OUFAQKpWKoKAgVq5cWa11kM44IYQQQgghhBBCCPHAW7x4MW+//TYff/wxx44do3379vTu3ZuoqKgK850/f57Y2FjDX926dQ3P/ffffwwePJjnnnuOEydO8Nxzz/Hkk09y4MCBaquHdMYJIYQQQgghhBBCPKRMRYY9KH936qeffuKll17i5ZdfpkGDBkyaNAlPT0+mTJlSYT43Nzdq1apl+DMzMzM8N2nSJLp3786HH35I/fr1+fDDD+natSuTJk264/LdLumME0IIIYQQQgghhBAPtPz8fI4cOUKPHj2Mtvfo0YN9+/ZVmLdp06a4u7vTtWtXduzYYfTcf//9V2afPXv2vOU+K0MWcBBCCCGEEEIIIYQQ91xeXh55eXlG21QqFSqVqkzaxMRENBoNNWvWNNpes2ZNbty4YXL/7u7uTJs2jWbNmpGXl8e8efPo2rUrO3fupEOHDgDcuHHjjvZZFaQzTgghhBBCCCGEEOIh9SCvpvrtt9/yxRdfGG0bN24cn3/+ebl5Sg9v1el05Q55DQwMJDAw0PC4devWREdH8+OPPxo64+50n1VBOuOEEEIIIYQQQgghxD334YcfMnr0aKNtpqLiAFxdXTEzMysTsRYfH18msq0irVq1Yv78+YbHtWrVqvQ+75TMGSeEEEIIIYQQQggh7jmVSoW9vb3RX3mdcZaWljRr1owtW7YYbd+yZQtt2rS57dc8duwY7u7uhsetW7cus8/Nmzff0T7vlETGCSGEEEIIIYQQQjykqnO45b02evRonnvuOZo3b07r1q2ZNm0aUVFRDB8+HNBH2l2/fp25c+cC+pVSfXx8CA4OJj8/n/nz57N8+XKWL19u2OeoUaPo0KEDEyZM4NFHH2X16tVs3bqVPXv2VFs9pDNOCCGEEEIIIYQQQjzwBg8eTFJSEl9++SWxsbGEhISwfv16vL29AYiNjSUqKsqQPj8/n/fee4/r169jZWVFcHAw69ato0+fPoY0bdq0YdGiRXzyySd8+umn+Pv7s3jxYlq2bFlt9ZDOOCGEEEIIIYQQQgjxP2HEiBGMGDHC5HOzZ882evz+++/z/vvv33KfgwYNYtCgQVVRvNsinXFCCCGEEEIIIYQQDymlLBfwwJFPRAghhBBCCCGEEEKIe0Q644QQQgghhBBCCCGEuEdkmKoQQgghhBBCCCHEQ+phWk31YSGRcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD2i0Ol0uvtdCCGEEEIIIYQQQghR9abvX32/i1CuV1o9er+LcF/InHFCCPEAm3to/f0uQqU9H9aHM7ER97sYlRLs7s9T8z+738WotEVDviRt/E/3uxiV4vDRaNr+Pvx+F6PS9o6cynMLv7jfxai0eU+PeyjO7wVHN93vYlTaM6E9WX5i+/0uRqUMbNyF83GR97sYlRZY04cvt/x1v4tRaZ91f5E3Vk6838WolMmPvctnG6ff72JU2pe9XmHsuj/udzEqZULfEQ/NdykhqoIMUxVCCCGEEEIIIYQQ4h6RyDghhBBCCCGEEEKIh5QCWU31QSORcUIIIYQQQgghhBBC3CPSGSeEEEIIIYQQQgghxD0iw1SFEEIIIYQQQgghHlIKhQxTfdBIZJwQQgghhBBCCCGEEPeIdMYJIYQQQgghhBBCCHGPyDBVIYQQQgghhBBCiIeUUoapPnAkMk4IIYQQQgghhBBCiHtEOuOEEEIIIYQQQgghhLhHZJiqEEIIIYQQQgghxENKVlN98EhknBBCCCGEEEIIIYQQ94h0xgkhhBBCCCGEEEIIcY/IMFUhhBBCCCGEEEKIh5QSGab6oJHIOCGEEEIIIYQQQggh7hHpjBNCCCGEEEIIIYQQ4h6RYapCCCGEEEIIIYQQDylZTfXBI5FxQvyPioyMRKFQcPz48WrZv0KhYNWqVXeUp1OnTrz99tu3nX727Nk4OjpWmCY8PJxWrVqhVqtp0qTJHZXnbt1pPar7sxBCCCGEEEII8fCQyDgh7sKwYcNITU29486qquTp6UlsbCyurq4A7Ny5k86dO5OSknLLDq7/JePGjcPGxobz589ja2t7v4tjUunP4n45vGUP+9fvIDM1nRoeteg+ZABe9f1vmS/6wmXmff07NerU4pXxYwzbww+dZO+aLaTEJaLVaHGq6UqrPp1o2C6sOqvBhlVrWb1oOSlJyXj6evPiG68S1CjEZNrkpGTm/DGdiAuXiL0WQ5/HH+GlN18rd997tu3ip68m0KJtKz745rPqqgLd64XRP6gdjla2XEtNYO7hDYQnXC03fVufRjwS3I5ads5kF+RxIuYi849sIjM/p0za1t4hjGr/JIeizzFx18Jqq8NNqvatsWzSEIVajSYmlpxN29EmJt0ikwp1p7ZYBAagUKvRpqaRu+1fCiOu6J9uHYZ5YF3MXJzRFRaiuRZD7o7daJNTqr0+5WnsHsAzTXtQ380LVxtHPlg/hd1XTty38pTWNaA5fRu0wcHKjutp8cw/uokLCVHlpm/j3ZC+DdpQ086FnIJcTsZeYuGxLYZjysO+BgMbdcLHqTY1bB2Zf3Qjm84fqPZ6PAzntymHNu9m39ptZKSm41anFj2fH4j3bbS/UecvM/vLX3HzdGf4d2PvQUmL7d+0i91rtpCRmoZbHXf6DnsC3wZ1TaaNDL/Exr9XknA9joK8fBxrONOiW3va9etqlC4nK5vNC1dz9uBxcrKycXJzpc9zAwkMNf0ZV9b6lf+wYuFSUpKT8fLx5uU3hxPcuKHJtMmJSfz1xzQizl8i5tp1+g18lFfeet0ozaZ/1rNj01auXta31wGBATz3ygvUC6pfLeW/6cK/Rzm77SA5aZk4urvSbGBX3AI8TaaNuxDF1l/Ltv39PnkZh1ouAGg1Gs5s3s/lA6fJTs3AvqYzTR/tRO0gv2qtR3vfxnStG4aD2obY9CSWn9pBRNJ1k2mHhPaklXfZ4yI2PZFvts0BoI1PQ1p4BlHbXv/9Kio1jn/O7uFqyo1qq0OYZwPa+TbGVmVFQmYKG8L3V/h6ZgolnQJCaVw7AFuVNem5WeyKOMax6xcAaFYnkCa16+Fm5wRATFoiWy8e4npaQrXVAaCVdzAd/Zpip7ImLjOZf87sJTIltvx6KJV0qxtG09r1sFNZk5abyfZLRzh8LdyQRm1uSc/AloTU8sPKQkVKTgZrz+7lfAXXosqo6u9SYZ4NGBDSgVp2zpgpzbiRnsS6c/seqGu9+P9FOuOE+B9lZmZGrVq17ncxql1ERAR9+/bF29v7fhelXA/CZ3F2/zG2zF9Fr2GD8Kzny9Ht+1j0wzRem/ABDq5O5ebLzc5hzdQF+AbXJTMtw+g5Kxtr2j7SHdfaNTEzN+PisTP8M20R1vZ2+Deqnh8me7bvYtbkabzy9ggaNAxi05oNfP3+Z/wyZyo1arqVSV+YX4C9owMDhzzF2qUrK9x3/I04Zk+ZQVCj4Gop+02tvUMY2qw3Mw+t5Xx8FN3qhvFBlyG8+89kkrLTyqQPrOHFyDaPM/fIBo5cO4+ztT0vt+zPq60e5ad/FxmldbVxYEhoT87FRVZrHW6ybBWGqkUo2Ws3oU1OQdW2JTZPDyTjz1mQX2A6k1KJzdMD0WVnk71iLdr0DJT2dujy8w1JzLw8yT9yHE1sHCgVqDu20+932mwoKLwndSvNykLFpaRrrA/fx/jew+9LGcrT0iuYIaG9mH14HRcTo+kc0IwxHZ/lg/W/k5SdXiZ9PVdPXms1gL+PbeLY9Qs4WdnxQlg/XmrRn1/2LAHA0tyC+MxUDkad5dnQnvekHg/D+W3K6f+OsnHuCvq++ASegX4c2bqXv7+bwsgfP8LB1bncfLnZOaz6Yx5+IfXKtL/V7eS+w6ybvZRHXn4K70B/Dm7dzZzxv/P2z5/haKLMlioVrXt2opa3B5YqFZHhl1g1fQGWaktadGsPQGFhIX99/Su29nY8M/pV7F0cSUtKQaVWV0sddm/byYzfpjJ89Bs0CAlm45p1fPH+J/w+d7rJ46mgoAAHB0eeeO4pVpdzPJ0+dpIOXTtTf1QQlpYWLF+4lHHvfcTkOdNwqVE9N9wij5zjyPJthA3uQQ0/Dy7uOc6OP5bS75OXsXG2Lzdf/09fwcLK0vBYZWtt+P/EP7u5cugMLZ/phX1NF2LPXeHf6SvpMXoIzp41q6UeoR6BDGzUmcXHt3E5+TrtfBoxos3jfL11Nik5ZY/vZSd3sPrMbsNjM4WSD7s+b+jEAqjr6smRa+EsTY6hUKOhW70wRrYZyDfb5pCWm1nldQip5UfvBq1Ze3YvUSlxhHnWZ0izXkzes5S03CyTeZ5s0hVblRWrTv9LcnY6NpZWKEsMB/Rxrs3J2EtEn4ujUKuhnW9jnm/em8l7lpGRl13ldQBo5B5A/6B2rDr9L1dTbtDSK4gXW/Tjp10LSS3nfXu2aU/sVFYsO7mDpOw0bCytMFMWD6IzUyh5ueUjZObnMP/oJtJyM3FU25JXWM53gUqqju9SWfk5rDr9L9fTEtBoNYR6BDK89QDScrM4GXupWurxIJFhqg8eGaYqRDXYtWsXLVq0QKVS4e7uzgcffEBhYfEPzE6dOvHWW2/x/vvv4+zsTK1atfj888+N9hEeHk67du1Qq9UEBQWxdetWo6GjJYdGRkZG0rlzZwCcnJxQKBQMGzYMAB8fHyZNmmS07yZNmhi93sWLF+nQoYPhtbZs2XLLOmZlZfH8889ja2uLu7s7EydOLJMmPz+f999/Hw8PD2xsbGjZsiU7d+685b5vUigUHDlyhC+//BKFQsHnn3/Ozp07USgUpKamGtIdP34chUJBZGQkAFevXqV///44OTlhY2NDcHAw69evN6Q/e/Ysffr0wdbWlpo1a/Lcc8+RmJhYbjnmz59P8+bNsbOzo1atWjzzzDPEx8cbnjc1TPVOX6OyDmzYSZNOLWnauRWuHjXp8dxj2Ls4cnTb3grzbfhrKcGtQ/EI8CnznHdQAPXDGuHqUROnmq606NURN093os9frqZawD9LV9K1Tw+69+tFHW8vXnrzNVzcarBp9TqT6d3ca/LSm8Pp3LMr1jY25e5Xo9Ew6esfeOqFIdR0d6+u4gPQt0EbdkQcZcelo8SkJzL3yAaSstPpXs90RGFdV08SslLZeP4ACVmpnE+IYuvFw/i7eBilUygUvNF2EMtO7iA+895EkKlaNCV370EKz19Cm5BEzj+bUFiYYxlcfmesZeMQFFZqspetQXMtBl16BpprMWjji4//7MUrKDh1Fm1iEtr4RHLWbULpYI9Zrer5kXg79kedYfqBNey6fPy+laE8vQNbsevyMXZdPkZMeiJ/H91EUnYaXeuaPqYCXOuQkJXK5gsHSchK5UJiNNsvHcHXubYhzZXkGBYd38L+qDMUaDT3pB4Pw/ltyv51O2jauRWhXdpQw6MWvYYOxMHFiUNb9lSYb+2MxYS0bU6duj73pqAl7Fm7jWZd2hDWtR1uddzpN+xJHFydOLD5X5Ppa/t60rhdGDU9a+Pk5kLTDi2p2ziIyHPFP2CPbN9HTmYWQ8YMx7u+P041XPCpH4C7T51qqcPqJSvo1rcnPfr1xtPHi1feeh3XGjVYv2qtyfQ13WvxyqjX6dKrOzblHE/vfvYBfR7rj19df+p4e/HGmLfRanWcOHKsWuoAEL79EP6tGxHQpjEOtVxpPqgb1k52XNhd8Wuq7ayxsrc1/ClLdJxcOXiG4B6t8Qj2x87VkXrtm+LewJdz2w9WWz26BDTjv8hT/Hf1FHEZySw/tZOUnAza+zY2mT63MJ+MvGzDn5dTLaws1Px39bQhzZzD69l95QTX0xKIy0xmwdHNKBQKAmt4VUsd2vg05Oi18xy9dp7ErFQ2hO8nPTeTMK8gk+kDXOvg4+zO/CObuJwUQ2pOJtfTEohOLf6OuPzkDg5Fn+NGRjKJWWmsPr0bhUKBX6lrfFVq79uYQ9HnOBR9jvjMFP45u5e03EyTkYgA9Wp44udSm78OreNS0jVScjK4lhZvFBHY3LMB1hYq5h7ewNWUG6TmZBKZcoPYjFtEyt+l6vgudTYukkPR54hJTyQuM4UN5/cTlRpHfbfqOZ6EuBXpjBOiil2/fp0+ffoQFhbGiRMnmDJlCjNnzuTrr782SjdnzhxsbGw4cOAA33//PV9++aWhE0yr1TJgwACsra05cOAA06ZN4+OPPy73NT09PVm+fDkA58+fJzY2ll9++eW2yqvVann88ccxMzNj//79TJ06lbFjbz1UZsyYMezYsYOVK1eyefNmdu7cyZEjR4zSvPDCC+zdu5dFixZx8uRJnnjiCXr16sXFixdvq2yxsbEEBwfz7rvvEhsby3vvvXdb+UaOHEleXh7//vsvp06dYsKECYYhrrGxsXTs2JEmTZpw+PBhNm7cSFxcHE8++WS5+8vPz+err77ixIkTrFq1iitXrhg6O8sr952+RmVoCguJvXIN35BAo+1+IYFcuxhZbr4Tuw6QEpdIh8dvHRWj0+m4cvoCyTcSbmvo690oKCgg4vwlGoeFGm1vEtaU8DPnKrXvpXMXYu/oQLe+1RsBZKY0w9fZnZOxEUbbT8Zeol45Px4uJEThbG1Pk9r64WEOahtaegVztER0AMDAhp1Iz81iR8TR6il8KQpHB5S2thReiSzeqNFQGHUNM4/a5eYzr+uP5nosVj27YDfqNWxfeR5VmxZQwR1ZhUoFgC43t6qK/9AwUyrxca7NqRvGx9TpG5ep62q6k+NiYjTO1vY0dg8AwF5tQwuvBhyPub22tzo8DOe3KZrCQmKuRJeJFvZrVJ9rF66Um+/Yzv2kxCXSaWCv6i5iGYWFhcRcjqJuY+MOhoBGDbh6mzdbYq5EE3X+Mr5BxcNazx05iVddP9bMXMQ3r7zPpHe/ZOeKDWi12iotP+iPp0sXLtI0rJnR9qZhzQg/fbbKXicvLw9NYSF29nZVts+SNIUakqNv4N7A12i7ewNfEq+YHt550/oJs1n+0WS2/rqIGxeMh+5pCgsxszAz2mZmYU5CxLWqKXgpZgolno41ORdvXI5zcVfxdSn/elFSa+8QzsdfNRlFd5OluTlmSiXZBVV/rTBTKHG3dyUi0fh9v5R4HS9H0zeK6rt5E5OWSDvfRrzX6Rneav8kPQNbYq40M5kewMLMHDOFkpyCvCot/01mCiUeDjW4mBBttP1CQjTeTqbrEVTTl2tp8XT0a8pHXZ/nvY7P0LdBG6N6BNX04WpqHANC2vNJt2G802Ewnf1DUVD10VbV+V2qpJBafrjbu3Iurvyhr0JUJxmmKkQV++OPP/D09GTy5MkoFArq169PTEwMY8eO5bPPPjPcuWzUqBHjxo0DoG7dukyePJlt27bRvXt3Nm/eTEREBDt37jQMf/zmm2/o3r27ydc0MzPD2Vk/rMTNze2O5ozbunUr586dIzIykjp19D/sxo8fT+/evcvNk5mZycyZM5k7d66hTHPmzDHkB/3w0oULF3Lt2jVq19Z/EXvvvffYuHEjs2bNYvz48bcs7n3EQAABAABJREFUW61atTA3N8fW1vaOhoFGRUUxcOBAGjbUzxvj51c8R8qUKVMIDQ01ev2//voLT09PLly4QL169crs78UXXzT87+fnx6+//kqLFi3IzMw0OY/d3bxGZWRnZKHTarF1MP6xYONgR2Zq2SFsAMk3EtixeC3PffomSrPyvzTmZufw65ufoyksRKFU0mvYIPwaBpabvjIy0tLRarU4OjkabXdwciK1EnOJnTt1hq3rNvHTjMmVLOGt2ausMVOakZZjPAwkLScLx9qm5zy8kBjN5L3LGNX+SSzMzDFXmnE4+hyzDxVHC9Wr4UVn/1A+WD+lWstfktJGP+RJl2U8jEaXlY3CofyhU0onB5QOnhScDidr8UrMnJ1Q9+gCSiV5e/abzKPu2pHC6GtoE6rnDvv/MjuVNWZKJemlhhal5WbioDbdMX4x8RpT/lvByLaDDMfUkWvhzDuy4V4U2aSH4fw2JTvddPtr62BHRDlDT5Ni49m28B9e+HxUhe1vdclOz0Rrosx2DnZcTC07/Kuk74Z/SFZ6JlqNhq5P9COsazvDc8lxiVxOOE/jdi0Y9uFIEmPjWTNzMRqtlq6D+lZpHdLT0tFqTBxPzo6VOp5Kmzv1L5xruNC4WeitE9+FvMxsdFodajtro+1qOxty0k0Pi7RysKHl0z1x9qqFpkDDlUNn2PbbIrqNeoaaRfPMuTfwJXz7IdwCPLFzdeLG+UiunbyITqerlnrYqvRDGksPu8zIy8Je5XPL/PYqG4Jq+jL7sOko2ZseDe5AWk4m4fFV33libanGTKkkM9+4Dln5OdiqrEzmcbKyw8upJoVaDQuPbcHaQk2/4LZYWahYddp0lGn3emGk52ZxuZy59CqruB7Gc85m5mVjpzI9D6GzlT0+Tu4UajTMPbwRG0s1A0I6YGWhYtnJHfo01vb4W9lxPOYisw6uw9XGgUdDOqBUKNl26XCV1qG6vkuBfkqKKY+/h7mZOVqdlr8Ori1zs+thpZRhqg8c6YwTooqdO3eO1q1bG43Lb9u2LZmZmVy7dg0vL/0dnUaNGhnlc3d3Nwx9PH/+PJ6enkYdUC1atKi28np5eRl1pLVu3brCPBEREeTn5xulc3Z2JjCwuJPm6NGj6HS6Mh1PeXl5uLi4VFHpTXvrrbd4/fXX2bx5M926dWPgwIGG9/vIkSPs2LHDZCdaRESEyY6yY8eO8fnnn3P8+HGSk5MNd/mjoqIICio7dOFuXiMvL4+8POO7pKqiaKHbVuoiq8P0/BBarZZVv8+j/cBeuLiXnVfHqAxqFS9/8x75eflEnrnA1r9X4VTDBe+ggDsr2x0oU2ad7q7vvOZkZ/PLNz8yYsxb2Ds6VEHpbk+ZnzsKyv0R5OFQg6HN+7D81E5OxlzC0cqOZ0N78HLL/vy5fzVqc0veaDuQ6QfWVNv8MgAWwfWx6t3N8DhrySr9PyYrU9GeFOiyssnZsAV0OrQ34lHY2qBq1dxkZ5y6ZxfM3FzJnLe4kjV4uJU+fBQoyv0Yatu78lxob1ad/pdTNy7hqLbjqabdeSGsHzMOrqn2slbkYTi/TSvV/up0pTcB+vZ3xeS5dBrU+5btb3Ur/Vno9BsrzPPql++Sn5tH9IUrbFywCpdaNWhctKiPTqfDxt6Ox157FqVSiYefNxkpaexes6XKO+PKqwPlvO93Y/mCJfy7bQff/PoDlirLW2eoFBPnRTn1sK/pgn3N4u9RNfw8yE5J59zWg4bOuOaDunFg4UbWfjUDFGDr6oRfq4Zc3n+quipws+BGjypqp0pq5R1MTkEeJ2PKn7erW90wmtUJ5JfdSyjU3puh9TeV14d58/hbdnK7Ye60jeH7GdykG2vP7i1Tzna+jWjo7s+sg+uqvQ5lvnMoyv8sbtZj0fGt5Bbq53dde24fQ0J7sur0vxRqNShQkJWfw/KTO9Gh43p6AvZqGzr4NanyzjhDHcoU9O6/S92UW5DP2HVTUFtYElLLj+ea9SI+M4Wz92guXiFKks44IaqYTqcr+wW36MJRcruFhYVRGoVCYejkMbWPu6VUKstcuAoKiidbNXVRu9Vr386dVa1Wi5mZGUeOHMGs1J3/yqyKejOysGQZStYH4OWXX6Znz56sW7eOzZs38+233zJx4kTefPNNtFot/fv3Z8KECWX27W5irqGsrCx69OhBjx49mD9/PjVq1CAqKoqePXuSX2JC+pLu9DUAvv32W7744gujbePGjcOv7607Ya3tbFAolWWi4LLTMrBxKDu0Jj8nj9gr0dy4ep1Nc1YARe+nTsf459/lmbHD8QnWh/krlEqca9UAoJa3B4nX49j3z9Zq6Yyzc7BHqVSSUiqqIS01FQdnx7va543rscTfiGP8h8Xv7c1jZ1CXfkyeN51aHlU3x1R6XjYarQZHK+Nj3EFtU+7kzwOC23MhIYq1Z/Xz+0WlxpF3MJ8ver7M4hPbcFDb4mbrxJhOzxjy3DxH/35mHKPX/EpcFcwhV3AxAk1MiRXjis5bha01uqzisitsrIwel6bLykKn0Rj9etEmJqO0tQWlEkoMWVP36IxFXX8y5y1Gl1H1k3E/DDLystFotTiUOqbs1TZlouVu6h/UjouJUawP3wdANPHkHcrn0+4vsvTk9mqZ+PxWHobz2xRr+6L2N824/c1Kz8TWxNDG/JxcYi5HERt5jfWzlxWXWafjy2ff5rkPR+AbUrXR02XLrJ9fLKPUNSMzLQPbCqJeAZzd9IsY1PLyICMtnW1L1xo64+wcHTAzVxrNXVbDoxYZqekUFhZibl51PzvsHexRmpk4nlLScHQqf9Gi27Vy4VKWzV/Elz99h69/9a1AqrK1RqFUkJth3KbmZmajtit/nsTSXH1qc+XQGcNjtZ01HV99HE1BIXlZOVg52HJ89S5sXaqn0zozLweNVoudyrjMtiprMvLKv17c1Mo7hIPRZ9HoTA9p7hrQnB71WjB57zJi0qtn/t3s/Fw0Wi22lsZRijaWVmSZWNkc9O1zem6W0SIGCZmpKBUK7NU2JJdYYKetT0Pa+zVhzqH1xGUmV0sdoLgedirjethaWpFZzg29jLws0nKzDB1xAAmZKSgVChzUtiRlp5GRl4VGp0VXoossPjMFe7UNZgpluZ/d3aiO71KpRVF2OnSG9/9qyg08HGrwaHAH6YwT94V0xglRxYKCgli+fLlRh9q+ffuws7PDw+P2JmutX78+UVFRxMXFUbOmfn6HQ4cOVZjH0lJ/11ZTaiLuGjVqEBtbvJR5eno6V64Uz2MTFBREVFQUMTExhuGk//33X4WvFRAQgIWFBfv37zdE+qWkpHDhwgU6duwIQNOmTdFoNMTHx9O+ffvbqfZtqVFD3zEUGxuLU9EX7pILJ9zk6enJ8OHDGT58OB9++CHTp0/nzTffJDQ0lOXLl+Pj43NbPwzCw8NJTEzku+++w9NTf8f58OGK7wDe6WsAfPjhh4wePdpom0qlYvHJbbfMa2ZujrtvHa6cvkD9sOKIyyunL1CvWdnJelVWKl759n2jbUe27uXq2Ys8/tYwHGuUv/ofQGE1rXZpYWGBf2AAJw4fo1X7NobtJw4fo0XbVne1Tw8vT37+6w+jbQtnziUnJ4cX33gNF7eqXR1Po9VwJTmWhrX8ORRdPA9Ww1r+HL4WbjKPpblFmTmVtDc78FEQk5bIe/8YD8Eb3KQrVuYqZh9eT6KJ1TTvSn4B2vxU43JkZmLu601+XIJ+g1KJuVcdcnfsLpu/SGH09TILPChdnNBmZJbqiOuCRWAAWfOXoEurojo8hDRaLZHJMYTU8uNIiWMopJYfR6+fN5lHZW6Bprxj6j6NUnkYzm9TzMzNqe3ryeWT52kQVjxR/eVT4QQ2a1gmvcpKzevff2C07dDmPVw5e4En334RxxrVGzkOYG5uTm0/Ly6dPEdwiyaG7ZdOniOoRB1uSYfR4lTegX6c2HsIrVZr6JBLjI3HzsmhSjviQH88BdSry/HDR2ndoa1h+/HDR2nRruLo/ltZsXApS+Yu4PMfx1O3fvV2jJqZm+HsWYvY8Eg8Gxe/Vmx4JHUa1q0gp7Hka3FYOZS90WlmYY61ox1ajYao4+fxDq2eldA1Oi3RqXHUd/M2WpWyvps3p26xSmVd1zq42TrxX6TpqL2udZvTK7AVv+9dTlRqXJWWuySNTktseiL+rh6ci480bPd39Sh3WGxUShzBtfywNDMnX6M/F1xtHNDqtKSX6DRq69OIjv5NmXt4Q7V1Jpasx/W0BOrW8ORMXPH3/bqudcrtcIpMvkFDd3+T9bh58yYy5QZNatdFQXHEmquNI+m5WVXaEQfV812qPArA4j5MF3A/VMf8fqJyZAEHIe5SWloax48fN/qLiopixIgRREdH8+abbxIeHs7q1asZN24co0ePNrpbXJHu3bvj7+/P0KFDOXnyJHv37jUs4FBe1Jq3tzcKhYK1a9eSkJBAZqb+4tmlSxfmzZvH7t27OX36NEOHDjWKVOvWrRuBgYE8//zznDhxgt27d1e4WAToI9teeuklxowZw7Zt2zh9+jTDhg0zql+9evV49tlnef7551mxYgVXrlzh0KFDTJgwwWhl0zsVEBCAp6cnn3/+ORcuXGDdunVlVnJ9++232bRpE1euXOHo0aNs376dBg0aAPrFHZKTk3n66ac5ePAgly9fZvPmzbz44otlOjIBvLy8sLS05LfffuPy5cusWbOGr776qsIy3ulrgL7jzd7e3ujvToaptuzdieM793N81wESr8exZf5K0pJSCO2q/9G7Y/Fa1kz9G9BHu7l5uhv92djbYmZhjpunO5Zq/evuXbOVy6fOkxKfSGJMHAfW7+TUnkOEtG1+2+W6U/2feIxt6zaxbf1mrl2N4q/J00iMS6DHI30AmD9tFr+M/9Eoz5WLEVy5GEFuTg7paWn8H3t3HR3V0QZw+BdX4i5EIYGgwd3dS/FipaUUdwqlUChSijsUSXAt7pZQnODuriHuvt8fgQ3LJsECoXzvw9lzyN2Zu+/s1Z07cvfmbR7eewCArp4uLu6uKi8jY2MMDAxwcXdVa6GaE7ZfPUp1T1+qehTHwcSKDiXqYmVkyr6b6RXqrYvVpHv5b5Tpzzy6Tqm8BamVrxQ2xubkt85Lp1L1uRWSPqNZcloKjyKDVV5xSQnEpyTyKDKY1E/Y1SXx5Fn0y5dGO78nmtaWGDSqiyI5haTLGTfDBo3qolc1Y9yopDPn0TAwQL92NTQtzND2cEOvfGmSTp9TptGvUx3dQt7Ebd6BIikJDSNDNIwMIYd/sL8PAx098lk5KSdFcDCxIp+VE7bGH9/K5mPtvH6cqu6+VHYvhoOJFe2K18HS0JT9N9MfDLQsWoOfyjZVpj/7+AYlnQtQw7Mk1kZm5LNypn2JutwOeaRsHaClqUleM1vymtmiramFuYEJec1ssfmE5f0aju/MlG1QjTMBxzgbcIwXj5+xa+kGIkPCKVkz/bjYt2oLG+csA16dfx1UXkamxmjr6GDj7KA8/35qFRvW4NT+I5w6cJTgR0/Z7r+OyJBwStdKf3i2e+Um1s3yV6Y/tiuQq6cuEPI0mJCnwZwOOMqhrXspVimj9XaZ2pWJi45lm/86Qp4859qZiwRu3EXZOlU+SRmatPyGvdt2sXf7bh7ee8DCmfN4ERxMvSbpXWKXzF/M1LF/qeS5c/M2d17tTxGR3Ll5mwf3Mipa/lm5luULl9B7SH9s7WwJDw0jPDSM+LjMW0blBO/qpbh99Dy3j10g8lkIp//ZT1xYFPkqFQPg7OaDHF2aMUPstYAgHp6/QVRwGBFPX3B280EenrtB/soZ49qF3HvCg3PXiQ6JIPjWQw7MXgcKBQVrlvlk5Thw6zTlXQtT1qUQtnks+KZwVSwM83Do7nkAGhesSPsS6hOWlHMpzN2wJ5nOylkzXykaFqignEE6j54hefQM0dX6NMf20XsX8XXyorhjfqyMzKjrXRZTfWOCHqRXCNXMX4pvCldVpr/49BbxSQk0LVwFayMzXMztqO1VhjOPbii7oVZ0K0KN/CXZdOkgEfHRGOsaYKxrgK7Wp7veHbp7nlLOBSjp5I2NsTkNC1TAzCAPxx+kz1Rb16ssLYvWUKY/9+QGcUmJtChaHRtjc9ws7KnvXZ5TD68py3H8/mWMdPVp5FMRKyNTvG1cqObpy9HXZr/NSTl9LwXQxKcShe08sDE2x8HEivoFylPJvZhyHxXic5OWcUJ8oMDAQIoXL66yrGPHjvj7+7Njxw4GDRpE0aJFsbCwoEuXLgwfPvyd162lpcWmTZv44YcfKFWqFO7u7kycOJFGjRqhr6+faR5HR0dGjRrFL7/8QufOnenQoQP+/v4MHTqUO3fu0LBhQ0xNTfnjjz9UWsZpamqyceNGunTpQunSpXF1dWXGjBnUrZv9DG8TJ04kJiaGxo0bkydPHgYMGEBkpOrAz35+fowZM4YBAwbw+PFjLC0tKVeuHPXr13/n7+JNOjo6rFq1ip9//pmiRYtSqlQpxowZQ4sWLZRpUlNT6dGjB48ePcLExIS6desydepUABwcHDhy5AhDhgyhTp06JCYm4uLiQt26dTOtLLW2tsbf359hw4YxY8YMfH19mTRpEo0bN84yxvf9jJxQsGxx4qJjObxxNzERUVg72dN6UFdMrdJbucVERBEZ8n5dGZMTk9jlv57osEi0dXWwdLChyc/fUbBs8bdn/kAVq1chOiqatUtWEh4WRl43V36dMAobu/QWouGh4YS8aqX10oAfeyn/f/vGLQ7tC8Ta1ob5a/w/WZzZOXb/EsZ6BjQvXBUzgzw8jAjmz4DlhMSmHx/mBnmwMsroKnTwzjn0dfSo7VWG70rUITYpgcvP77LyzJ5cif91SceD0NDRxqBudTT09Ul98ozY1f9AUkaXHE2TPCpdUhXRMcSu/gf9mlUx/qEDadExJAWdJfFYRutevRLFADD+TnWG4bitu0i+mHMzIb4Pb2sXZjXLaJ3au2L6OWXH1WOMPbAkV2J65cSDyxjrGtDUpwpmBsY8igxm0sEVhMal71Nm+sZYGmbsU4funkdfW4+a+UvRpnht4pISuBJ8lzXn9inTmBvkYWy9bsq/GxQoT4MC5bn6/B7jPlF5v4bjOzOFyvkSHx3LwQ27iYmIxMbZnnZDuilbGX/I+fdTK1K+JHHRsRz4ZzvR4VHYOtvTcWgPzF+2zIsOjyQiJKMrnUKhYPeqTYQHh6KpqYmlnTV12jWldM2Mlu9mVhZ8P7w325esY8agMZhYmFGhXjUqN/00s9xWqlGV6Kho1ixZQVhoGC5uLoyYMOa1/SmMF2/sT327dFf+/9b1mxzcF4CNnS0L1y4FYOembaQkJ/PniDEq+Vp3+o6237f/JOVwLVGApNh4Lu48QnxULGb2VlTt3gJji/RjOiEqhtiwjNbDqSlpnNkYQHxkDFo62pjaW1H1529x9MmY0CU1OYXz2w4RExKBjp4uDj7ulO/QAF3DzO8hc8KZx9cx0tWnnldZTPSNeBoVypyjG5QVISb6RlgYqHaD1tfWpZhDPtZfDMh0nZXciqKjpc0PZVTvuXZcPcqOa9n34vgQl57dwUBHj6qevuTRMyQ4Oozlp3cpW4fl0TPE1CCjK25SagpLTu2gQYHy/FS+GfFJCVx6dkf5oASgVN6CaGtq0bq46iRsAbdOE3Dr08yOfuHpLQx19aiRryQmekY8iwnFL2ib8mFMHj1DlS6gSakpLDyxhSY+lehV8VvikhK58PQWu6+fUKaJTIhh4YmtNCpYgb6VWhGVEMuRuxcIvH32k5ThU9xL6Wnr8n3phlgampCUmsyTqBBmH/mHY5+oQlGIt9FQfKppdYQQOerIkSNUrFiRW7du4eGR+Qx6Indcv34db29vbt68iadnzo6ltjTow1sRfik6lKrP5af/7ZmqfOw9aL18RG6H8dFWfzeayHFTcjuMj2I6rD8VZnd7e8Iv3JEe82i/atTbE37hlrUZ+VUc3yvP7M7tMD5aW986/HP+QG6H8VGaF63O9a9g7CYvW1dG712c22F8tBG1vqfnxslvT/gFm9VsACN2LcjtMD7a6Lo/MmT7nLcn/IJNaND9q7mX+i9ac3ZvboeQpVZvVFb/v5CWcUJ8oTZu3IixsTH58uXj1q1b9OnThwoVKkhF3BcmLCyM9evXY2JiohxTTgghhBBCCCGEyIpUxgnxhYqOjmbw4ME8fPgQKysratasqTY2msh9Xbp04fTp08ydO/e9xngTQgghhBBCCPH/SSrjhPhCdejQgQ4dOuR2GOItNm7cmNshCCGEEEIIIUSWspoEUOQemU1VCCGEEEIIIYQQQojPRCrjhBBCCCGEEEIIIYT4TKSbqhBCCCGEEEIIIcRXSrqpfnmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UJtJN9UsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnylNDSkHdaXRraIEEIIIYQQQgghhBCfiVTGCSGEEEIIIYQQQgjxmUg3VSGEEEIIIYQQQoivlKaGzKb6pZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlIa0k31iyMt44QQQgghhBBCCCGE+EykMk4IIYQQQgghhBBCiM9EuqkKIYQQQgghhBBCfKU0kG6qXxoNhUKhyO0ghBBCCCGEEEIIIUTO23LpUG6HkKXGhSrldgi5QlrGCSHEF2xiwPLcDuGjDar2Hdee383tMD6Kt60bVeb2yO0wPtrBn2cT0a1/bofxUczmTaH9qlG5HcZHW9ZmJBVmd8vtMD7akR7zeB4VktthfBRbEyuWndqZ22F8tPYl69Fr45TcDuOjzGzWn00XD+Z2GB+taeEqdFg1OrfD+GhL24z4z59vl7UZSdf1E3I7jI/297dDaOr/S26H8VE2dfqT2gv65nYYH23Pj9NyOwTxlZDKOCGEEEIIIYQQQoivlKbMpvrFkQkchBBCCCGEEEIIIYT4TKQyTgghhBBCCCGEEEKIz0S6qQohhBBCCCGEEEJ8pTSkm+oXR1rGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4Skk31S+PtIwTQgghhBBCCCGEEOIzkco4IYQQQgghhBBCCCE+E+mmKoQQQgghhBBCCPGV0kS6qX5ppGWcEEIIIYQQQgghhBCfiVTGCSGEEEIIIYQQQgjxmUg3VSGEEEIIIYQQQoivlMym+uWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5SmtJN9YsjLePEF+H58+eMHj2a8PDw3A5FCCGEEEIIIYQQ4pORyjiR6xQKBe3bt0dPTw9zc/P3yuvq6sq0adM+TWAfSUNDg02bNr1XnqpVq9K3b99PEs9/Vfv27Rk3blxuh/FRBg4cSO/evXM7DCGEEEIIIYQQXwDppvof1KlTJ5YsWQKAtrY2zs7OfPPNN4waNQojI6Ncju79jR8/Hnd3d4YMGfLeeYOCgv6TZRbv5sKFC2zfvp05c+Yol1WtWpWDBw8yfvx4fvnlF5X09evXZ+fOnYwcOZJOnTrh5uaW7fpHjhzJ77//DsCSJUuYPXs2ly9fRlNTk+LFizN48GAaNmwIQExMDObm5ixfvpxWrVop19GqVSvWrl3LrVu38PDwUC738PCgVatWjBs3jsGDB+Ph4UG/fv3eGtPHuBJ4igt7jxEfGY2ZgzXlWtTBLl/eTNM+uX6PHVOXqS3/9vefMbOzAuDG0fP8u3SLWppOM4eirfPpLh87Nm5l46r1hIeFkdfVhS69uuFTtFCmacNCQvGbs4Bb12/y9NETGjZvwg+9u6mk2bN1JwG793H/zn0APLw8af9jZ/IX9PpkZWjqU4nWxWpiYWjKvfCnzDqyngtPb2eTvjLfFK6CXR4LnseEs/z0LnbfOKl8f1rjPhR3zK+W79j9S/yyY+4nKcMr+g3roFuxLBqGhqTeu0/cqn9Ie/o8y/TG/bujnd9TbXnyxSvEzl6Y/oeeHgaN66FTrBAaefKQ+vAR8Ws3kXr/YY7HX8OzJA0KlMfUIA+PI4NZfmY3N148yDJ9eZfCNChQHts8lsQnJ3Dh6S1Wnd1LTFI8AI4m1jQvUhVXcwesjc1YfmYXu6+fyPG4P1RRe0/aFq+Nt01erIzM+GXHXA7dPZ/bYSltXLeBVctXEhYSiqu7G73696Zo8WJZpj93+iyzps3k3p27WFpZ0bZDW5o0b6Z8/+CBQJb7L+Xxw8ekpKTg5OxEq+/aUKd+3U9WhlN7D3Ns+wFiIqKwdrSjdvtm5PX2eGu+h9fvsHTMLGyc7Phx/GDl8jMHjnHxcBAvHj4FwM7NmWqtGuDo4fLJygBQya0oNfKVxETfiKdRoWy4GMjt0MeZpv3Otw5lXHzUlj+NCmHc/qUAlHctTGnnAtibpF9DHkY8Z+uVI9wPf/bJynBsVyAHt+wmOjwSW2cHGnVqhVvBfJmmvXv1JjuXb+DF42ckJSVhbmVBmVqVqdSoljLNqYCjrJvtr5Z3zMrZ6OjqfKpiZKqGZ0nqFyinPHetOLMn23NXOZdCb5y7brP6tXPX54r5v36+reJenDpepTHVN+ZJVAhrzu/nVsijTNN2Klmf8q6F1ZY/iQzh972LgPTt0rlUA7U03TdMIiUtNWeDf009r7I0LVQZc8M8PAx/zqKT27gSfC/L9JXdi9GsUBUcTCyJTUrg7OMb+J/aQXRinDJNo4IVqOtVFisjM6ITYzl67xLLzuwiOTXlk5ShUYEKtChaHQsDE+6HP2Pu8Y1cenYn6/QFK9KkYCVs85gTHBPBqnN72XczSPl+BdcitClWEwcTa7Q1NXkcFcL6CwHsv3Xqk8T/pZHZVL88Uhn3H1W3bl38/PxITk7m0KFD/PDDD8TGxjJ37qf9UfYpDBs27IPzWltb52Ak4ksza9YsWrRoQZ48eVSWOzs74+fnp1IZ9+TJEw4cOIC9vb0yzdOnT5XvT5o0iV27drFv3z7lMmNjYyC95dqsWbMYM2YMTZs2JTk5meXLl9OkSROmT59Oz549MTY2pmTJkgQEBKhUxh08eBBnZ2cCAgKUlXGPHj3izp07VKtWDQAbGxtq167NvHnzmDBhQg5/S+lun7rM8XW7Kd+mPrYeTlw7dIZds1by7cifMbYwzTJfi1Hd0dHXU/6tn8dQ5X0dfT1ajOqusuxTVsQd2n+QRTPn81P/HhQo5MPuLTsYPXg4s5b+jbWtjVr65ORkTExNadG+DVvWbcx0nRfPXqBSjar82Kcgurq6bFi1jt8HDmPmkvlYWlvleBmqefjSs8K3TD20hktPb9PIpyITGvSg4+o/CI5R74rfxKcSXcs2ZmLgSq4F36eArSuDqrQlOjGOo/cvAfDb7gXoaGZ87yb6RixqOZTA22dzPP7X6dWujl6NKsQtWUVq8Av069XCuE83okb+CYmJmeaJnecP2lrKvzWMDMkzfCDJZzIqhAzbt0TLwZ5Yv5UoIqPQLVMC477diBr1F4qIyByLv0xeH77zrYv/qe3cDHlINc8SDKrSjl92zCY0LkotfX4rZ34q25QVZ3dz9vENzA3y0LlUQ7qUbsT0w2sB0NXWITgmgpMPrtDOt06OxZpTDHT0uBX6iB3XjjKuXre3Z/iM9u/Zx8wp0+k/ZACFihZhy4ZNDO4zkKVrl2NrZ6eW/snjJwzuO5CGTRsxfPQILp2/wJQJkzE1N6Nq9fTzq4mpCe07dySvqws6OtocPXSUP0ePw9zcnNLlyuR4GS4fO8OeZRup1/lbnPO7cebAUVb9NZ9ufw3F1Crr1v0JcfFsnrcCN598xEZGq7x3/+otfMr54tTBFW1dHY5t28/KP+fy04RfMLEwy/EyAPg65uebIlVZe24/d8KeUMG1CD+Xb8bYfUsIj49WS7/+QgCbLx9S/q2lockvNdpz9vFN5TJPKydOP7rOnbAAUlJTqJG/FN3Lf8O4/UuJTIjJ8TKcPxLEVv81NP2hLS7enpzY+y+Lx82g/9TfMbe2VEuvq6dH+XrVsHNxQldPl3vXbrFh/nJ09fUoU6uyMp2eoT6Dpv+hkvdzV8SVyVuQdr51WHJqx8tzly8Dq7Rl6I45bzl37eHs4xtYGOShU6kGfF+6ETNenrs+fcz//fNtSSdvWhWrwcoze7gV+pjK7sXoXbEFv+9eSFgmx8Wac/vYcPGg8m9NTU1G1OzM6cfXVNLFJyfy264FKss+ZUVcBdcifF+6IfOPb+Za8D3qeJXht1qd6bVpCiGx6tfYAjYu9KnYksVB2wh6eBVLQxO6lWtGj/LN+TMg/cFtZfditC9Rl1mH13PtxQMcTKzoXbEFAIuDtuV4Gaq4F6dbuWbMPLKey8/v0sC7PGPr/sQP68bzIjZCLX3DAhX4vlRDph1aw/UXD/C2zkvfSq2ISYzj+IPLAEQnxrHq3F4eRASTkppCmbw+DKzShoiEGE4/uqa2TiE+Nemm+h+lp6eHnZ0dzs7OtG3blnbt2im7RCoUCv766y/c3d0xMDCgaNGirF+/Xpk3PDycdu3aYW1tjYGBAfny5cPPz0/5/sWLF6levToGBgZYWlrStWtXYmKyvokKDAxEQ0OD3bt3U7x4cQwMDKhevTrBwcHs3LmTAgUKYGJiQps2bYiLy3i6smvXLipWrIiZmRmWlpY0bNiQ27czWo4sXboUY2Njbt7MuNHr1asX+fPnJzY2FlDvpqqhocH8+fNp2LAhhoaGFChQgGPHjnHr1i2qVq2KkZER5cqVU/kcgLlz5+Lh4YGuri5eXl4sW6beYuh1QUFB1KpVCysrK0xNTalSpQpnzpzJNs+bYmNj6dChA8bGxtjb2zN58mS1NElJSQwePBhHR0eMjIwoU6YMgYGByvfv379Po0aNMDc3x8jICB8fH3bs2AFkbJft27dTtGhR9PX1KVOmDBcvXlT5jKNHj1K5cmUMDAxwdnamd+/eyu8X4OnTpzRo0AADAwPc3NxYuXKlyvd+7949NDQ0OHfunDJPREQEGhoaKrFeuXKF+vXrY2xsjK2tLe3btyckJCTL7yctLY1169bRuHFjtfcaNmxIaGgoR44cUS7z9/endu3a2NikV9hoaWlhZ2enfBkbG6Otra227Pjx40yePJmJEycycOBAPD09KVCgAGPHjqVv377079+fhw/TW+tUq1ZNpUxXr14lPj6e7t27qywPCAhAR0eHChUqKJc1btyYVatWZVnej3Vp33HyVyiOd8XimNtbU65lHYzMTbh6MPunffp5jDA0NVa+NDVVLwsaGqi8b2hq/MnKALB57QZqNqhD7Yb1cHbNyw+9u2Flbc3OTZnf6Nna2/Fjn5+pXrcmRkaGmaYZMGII9Zs1wj2fB04uzvQY1Ie0NAXnT5/7JGVoWbQGO64dY/vVo9yPeM6sI//wIiacJj6VMk1fO39ptlw5QsDtMzyNDuXArdNsv3aUNsVrK9NEJ8YRFh+lfJV09iYxJYnA2+933nlfejUqk7BzH8nnLpL25BlxS1aioauLbmnfLPMo4uJQREUrXzoFvCApmaTTLyvjdHTQKV6E+A1bSb11h7QXISRs201aSBh6lcvnaPz1vMpy8M5ZDt45y5OoEFac2U1oXCQ18pXKNL2nlRMvYiPYc+MkL2IjuBHykAO3TuNm4aBMczfsCavP7eX4g8skp366H1Mf6viDyyw4sYWDd87ldihq1q5cQ4MmDWnYtDGubq70HtAXa1sbNq3PvCJ984ZN2NjZ0ntAX1zdXGnYtDH1GzdgzfKMc2nxEr5UrlYFVzdXHJ2caNGmJe6eHlw492laA57YGUixqmUoXq0cVo521G7/DSaWZpzedzjbfDsWraVQ+RI45nNVe69Zj/aUrFURO1cnrBxsafBDaxRpCu5dvvFJygBQzbMEx+5d4tj9SzyPDmPDxUDC46Op6FY00/QJKUlEJ8YpX3nNbTHQ0ef4ywcGAEtP7eTQ3fM8jnzB85hwVp3Zi4aGBl7Wzp+kDIe27qVU9YqUrlkJWyd7GnduhamlOcf3HMw0vaN7XopVLI2dswMWNlb4Vi5L/qI+3L16UyWdBhrkMTdVeX1udb3KvXHu2kNYXCTV85XMNL3Hy3PX3hsnCXl57gq4dRo3C/vPFvPXcL6tlb8Uh+9e4PC9CzyLDmXt+f2Ex0VTxaN4punjU5KISoxVvlzN7TDU1efIPdV7bYVCoZIuKjE20/XllCY+Fdl38xT7bgbxKPIFi05uIyQ2krpeZTNNn986Ly9iwtl+9SjBMeFcDb7Pnusn8bRyVKbxss7Ltef3+ffueYJjwjn35CaH7pxXSZOTmheuyq7rJ9h1/TgPI54z7/hGXsRE0KhgxUzT18hXkh1Xj3LwzlmeRYcSeOcsu66foGXRGso0F57e4si9izyMeM7T6FA2Xf6XO2FPKGT76XqtCJEdqYz7ShgYGJCcnAzA8OHD8fPzY+7cuVy+fJl+/frx3XffcfBg+s3Jb7/9xpUrV9i5cydXr15l7ty5WFmltw6Ji4ujbt26mJubExQUxLp169i3bx89e/Z8awy///47s2bN4ujRozx8+JCWLVsybdo0Vq5cyfbt29m7dy8zZ85Upo+OjqZfv34EBQWxb98+FAoFzZo1Iy0tDYAOHTpQv3592rVrR0pKCrt27WL+/PmsWLEi266pf/zxBx06dODcuXN4e3vTtm1bfvrpJ4YOHcqpU+kVE6+XZ+PGjfTp04cBAwZw6dIlfvrpJzp37kxAQECWnxEdHU3Hjh05dOgQx48fJ1++fNSvX5/oaPWnZlkZNGgQAQEBbNy4kT179hAYGMjp06dV0nTu3JkjR46wevVqLly4QIsWLahbt66ygrJHjx4kJiby77//cvHiRSZMmKBs7fX650yaNImgoCBsbGxo3Lixcl+5ePEiderU4ZtvvuHChQusWbOGw4cPq3w/HTp04MmTJwQGBvLPP//w999/Exwc/M7lhPQKvSpVqlCsWDFOnTrFrl27eP78OS1btswyz4ULF4iIiKBkSfUbT11dXdq1a6dSiezv78/333//XnEBrFq1CmNjY3766Se19wYMGEBycjL//PMPkF4Zd/36dWWLu4CAACpVqkT16tXVKuPKlCmDoWFG5VDp0qV5+PAh9+/ff+8Y3yY1JZWQB09xKuCustypgAfP72TeteKVjWMXsGLwVHZMXcaT6/fU3k9OTGL1sBms/GUau2evJuTBU/WV5JDk5GRu37hJsVKqFT3FSvly7dLVHPucxMREUlNSyGOS5+2J35O2phb5rZ0Jeqgab9DDqxSyc880j46WNkkpyaoxpiRTwMYFLc3ML9MNvMtx4NZpElKScibwTGhaWaBpakLK1esZC1NSSbl5G21313dej26FMiSdOgtJL2PV1ERDSwuSVbu1KJKT0fbMuRtiLU1NXC0cuPhM9eHLpWd3yGfllGmemyEPsTA0oah9ejdbE30jSuctwLknNzNNL95dcnIyN65dp1SZ0irLS5UpzaULlzLNc/niJbX0pcuW4dqVa6SkqHeLUigUnD55iof3H1DUt1iOxf5KakoKT+8+wr2wt8py98LePLp5L8t85w6eIDw4hMrfvFvLnuTEJNJS0zD4RMNwaGlo4mxmy7Vg1evRtef3cbN0yCKXqrIuhbgefD/TVnSv6Gpro6WpRWxywkfFm5mU5BQe33lAvqIFVZbnL1qQ+9ezHhLgdY/vPOD+jdu4F1QdAiApIZHx3X5hbNfB+I2byeM7WXez/BTSz132XHrj3HXx2R3yWWVesfnq3FXktXNXqbwFOf+Zzl1fw/lWS0OTvGZ2XHl+V2X5led38bB8twqnCq5FuBZ8j7A3WgLqaesyvl43JtTvTs8KzXE2U2/pn1O0NbXwsHRU+x7PPbmJt03mXd+vBd/H0siUEo7pw3eY6htTzrUQp15rLXY1+B4eVo7K7WlrbIGvk5dKmpwsQz4rJ8680cLw9ONrFLR1zTSPrqY2Samq91JJqcl4WedFSyPze6liDvlwNrVR22+/Vhpf8L//V9JN9Stw8uRJVq5cSY0aNYiNjWXKlCkcOHCAcuXKAeDu7s7hw4eZP38+VapU4cGDBxQvXlxZyeHq6qpc14oVK4iPj2fp0qXKCq9Zs2bRqFEjJkyYgK2tbZZxjBkzRtkSqEuXLgwdOpTbt2/j7p7+A/Tbb78lICBAOTZcixYtVPIvXrwYOzs7rly5QqFC6eNDzZ8/nyJFitC7d282bNjAyJEjKVUq8ydsr3Tu3FlZyTNkyBDKlSvHb7/9Rp066TfBffr0oXPnzsr0kyZNolOnTnTvnt4Vr3///hw/fpxJkyYpuxm+qXr16ip/z58/H3Nzcw4ePKgcYyw7MTExLFq0iKVLl1KrVvpYJUuWLMHJKeOG5fbt26xatYpHjx7h4JB+czxw4EB27dqFn58f48aN48GDBzRv3pzChdPHq3j1Xb9u5MiRap+xceNGWrZsycSJE2nbtq1y0oh8+fIxY8YMqlSpwty5c7l37x779u0jKChIub8sXLiQfPkyH48lK3PnzsXX11dlIobFixfj7OzMjRs3yJ9ffSyse/fuoaWlpWzp9qYuXbpQsWJFpk+fzunTp4mMjKRBgwbKMeDe1Y0bN5StIt/k4OCAqakpN26kt06oUKECOjo6BAYG0qZNGwIDA6lSpQq+vr5ERkZy8+ZN8uXLR2BgIN99953KuhwdHZXlcnFRvxlKTEwk8Y1uf3p6emrpMpMQE4ciTYGBieoPNwMTI+KjMm/VamhqTMV2DbBysSc1JZVbxy+wY9oyGvTvgH2+9PjM7Cyp3LExFo42JMcncenACbZO9Oeb4V0xtVXvAvSxoiKjSEtNw+yNiVzMLMwJDwvLsc9ZOm8xFtaWFC2R+ZPuj2Gqb4y2ppbajXh4fDQWhiaZ5gl6eJWGBcpz+O55boQ8xMs6L/W9y6GjpY2pvrHaurxtXHC3dGRC4Iocj/91Gibp8aZFqf7YTouKRtPi3Sbb0XLNi5ajPXHL1mQsTEwk5fZd9BvUIvbZ8/TWc6V80XLNS1pw1q1l31cePUO0NDWJeqN7XGRCDKb6mY/vdTPkEXOPbaBHhW/R0dJGW1OL04+usez0zhyL6/9VZEQEqampmFtYqCy3sDQnLDQ00zxhoWFYWKrua+YWFqSmphIREaF8kBgTE0Pz+k1JSkpCS0uLfkMGqFXi5YS46FgUaWkYmapW5BuZ5iEmUr0bHkDYsxcErN5KhxG90dTSyjTNmw6s3kYeC1PcCqlfG3OCkZ4BWpqaRL/ROic6MQ4TvcxbGL/ORM+IgrZuLDm1I9t0jX0qERkfw/XgnK/MiouOIS0tDWNT1fOqsakJ0RGZb4tXxnYdTGxUDGlpqdRs0YjSNTNaLVs72tGiZyfs8jqSGJfA4R37mTt8An0nj8DKPut74Jz06twVmaC6faISYjHVz7yC9lbII+Yd20iPCs2V564zj66z7PSuzxHyV3G+NX5VhtfGSAOISozFJIvv/XWm+kYUsnNn4cmtKsufRYfhf2o7jyNfoK+jRw3Pkgyp+h2j9/llOnTFx0rfFlpEvFFRHhkfjblB5ueU6y8eMOXf1Qys2la5LU48uMKC4xnjBh++ewFTPWPG1euGhoYG2ppa7Lx2TKWbbk4x0TdCS1OL8DjVMoTHR2NukPm91KlH16jrXZaj9y9yM+QR+aycqZO/TMa9VHz6ecFQR59V7Uaho6VNWloaM4+s58zjT9cKWYjsSGXcf9S2bdswNjYmJSWF5ORkmjRpwsyZM7ly5QoJCQnKypdXkpKSKF48/Yfnzz//TPPmzTlz5gy1a9emadOmlC+f3jXo6tWrFC1aVKXlWYUKFUhLS+P69evZVsYVKVJE+X9bW1sMDQ1VKodsbW05eTJjQPIHDx7wxx9/cOLECUJCQpQt4h48eKCsjDM3N2fRokXUqVOH8uXLqw3Y/y5xAMrKqlfLEhISiIqKwsTEhKtXr9K1a1eVdVSoUIHp06dn+RnBwcGMGDGCAwcO8Pz5c1JTU4mLi+PBg3e74bx9+zZJSUnKClMACwsLvLwyBpQ/c+YMCoVCraIqMTERS8v0ipDevXvz888/s2fPHmrWrEnz5s1Vyg9k+hlXr6a32jl9+jS3bt1ixYqMH/UKhYK0tDTu3r3LjRs30NbWxtc3o6WSp6fne896e/r0aQICAtRa7b36LjKrjIuPj0dPTy/LwUaLFClCvnz5WL9+PQEBAbRv3x4dnZwf00WhUChjMDQ0pHTp0srKuIMHDzJo0CC0tbWpUKECgYGB6OnpcffuXbUKWwMDAwCVrtqvGz9+PKNGjVJZNnLkSIyqqA+En6U3viuFQgFZPG0ys7NSTtQAYOvuREx4FBf3HlNWxtm4O2HjnlFBbOvhzMZxC7gcGET5Vp9ucPQ3N/nr2+BjbVi5jkP7Axk74y909dQrYD+l9O2hbsmpnVgYmDD3m0GgAeFx0ey6fpy2xWuTpkhTS9/Auzx3Qh+rtWr5WDqlfTFsm/GQJObVZAtvxv0e20K3fBlSHz8l9Z7quTHObyWGHVpjOuF3FKmppD58THLQWbTy5nx3F7Xw0SDzLQEOJla0963Hpkv/cvHZLcz089C6eC06l2rIwpPqk5mI9/fmsaxQZD+otPoTc4XackNDQxat8Cc+Lo7TQaeZPXUmDo4OFC+RdXfqj6EWrkKR6ZP9tLQ0Ns5eSuXm9bC0f7eWMEe37ufysTO0H94T7U88TllWx8HblHEpSHxyIhee3MoyTY18JSnh5M2MQ2s/6dhY6ruO4q1tLH7+YzCJCQk8uHGXXSs2YGVvQ7GK6ZW3Lvndccmfce/q4u3BjMFjOLIjgCZdWudo7G+VyQbK7tz1nW9dNl/6l4vPbmOmn4dWxWvSqVQDFr1ROfQpfRXn2zcKoYHGOx0s5VwKE5+cwLk3Knbuhj3hbtgT5d+3Qx4xvGYnqnn4sub8/hwJ+Z1oaKDIoiBOpjb8WKYxa87t5+yT9PH7OpWsz8/lmjHraHrvkEJ27nxbtBrzj2/m5osH2JlY8UPpRoQXiWbthQOfJOQ3o00/z2ZehhVn92BuaML0Jv3QIL3ibs/Nk7QqWkPlXio+OZGfN0xEX1uP4o75+KlsU55Gh3LhadbnMyE+FamM+4+qVq0ac+fORUdHBwcHB2UlxN276U2rt2/frmyJ88qrVjb16tXj/v37bN++nX379lGjRg169OjBpEmTsv3R+7Yfw69XhGhoaKhVjGhoaCgr3CB93C83NzcWLFiAg4MDaWlpuLq6kpSk2u3q33//RUtLiydPnhAbG4uJSeZPRLKKI6tlr8ei/uMg+x//nTp14sWLF0ybNg0XFxf09PQoV66cWuxZyepH+evS0tLQ0tLi9OnTaL3xNP1VpdYPP/xAnTp12L59O3v27GH8+PFMnjyZXr16Zbvu17+Dn376id69e6ulyZs3L9evX1db/mb8r8YYe33Zq26wr5flVevKN72acOFNVlZWxMXFkZSUlGmrNYDvv/+e2bNnc+XKFZWK3veRP39+Dh8+nOnnPHnyhKioKJWWgNWqVWPNmjVcvnyZ+Ph4ZUVllSpVCAgIQFdXF319fcqWVR2XI+xly66sJh0ZOnQo/fv3V1mmp6fHjKPr3loGfWNDNDQ1iI9UfSKdEB2n1louOzZujtw6eTHL9zU0NbB2cSAqOOdaqb3OxNQETS1NwsNUnxRHhkeotZb7EBtXrWf98tWMmjIeV4/Mu4x+rMiEGFLSUtVawZkb5MmyO1dSajITApcz6d+VWBiYEBoXSaOCFYlNiicyXrVlhJ62DtU9S3ySwZKTz18m+u5rlWYvJ2HQNDUh9bXWcZp5jFFEvUOXfB0ddEsVI36resuMtJBQYqbMBl1dNPT1UERFY/hDe9JCcm7fik6MIzUtDVMD1YcAJvpGaq03XmlUsCI3Qx6w49pRAB4STGJQEr/V+p51Fw58kkHo/1+YmpmhpaWl1gouPCxcrbXcKxaWFoSGhqml19LSwtQsYxwvTU1NnJzTHxzk88rP/Xv3WO6/LMcr4wzzGKGhqUlMhOr+HxsVo9ZaDiApPoGndx7y7N5jdi1J/0GrUChAoWBs+/60/aUbbj4ZD6OObT/AkS17aTe0O7Z536276IeITYwnNS0NEz3V60MePUO1VkGZKetSiKCHV0jN5GEBQHXPEtTOX5pZR/7hSVTOtXZ9nWGe9DFO32wFFxMZjbFZ9veJFrbpD6LsXZyIiYxi79qtysq4N2lqauLk4UpINjNI57SMc5fq9kk/d2U+1lj6ueshO64dAzLOXcNrdWb9hYBPfu76Gs63MS/L8GYruPTj4u1jvFVwLczxB5ezPC5eUQD3wp5hmyfz897HSt8WqZgZqJ6TTPWNiYjP/Dv9tkhVrgbfY9PlfwG4H/6M+cc3Mb7+z6w4u4fw+GjaFq9F4O0zytlJ70c8R19bh+7lv2HdhYAsK/o+RFRCLKlpqVgYqpbBzMA423upKf+uYvqhNZgb5iEsLor63uWJTUpQaWWqQKE8L90Je0xeM1taF6v5f1EZpymzqX5xZMy4/ygjIyM8PT1xcXFRqWgqWLAgenp6PHjwAE9PT5WXs3PGOBPW1tZ06tSJ5cuXM23aNP7++29l/nPnzqkM4H/kyBE0NTUzbb30oUJDQ7l48SKDBg2iTJkyODs7c+/ePbV0R48e5a+//mLr1q2YmJi8tZLpQxQoUIDDh1UHXj569CgFChTIMs+hQ4fo3bs39evXx8fHBz09vWwnI3iTp6cnOjo6HD9+XLksPDxc2R0SoHjx4qSmphIcHKy2Le1em3XO2dmZbt26sWHDBgYMGMCCBaqzNWX2Gd7e6ePd+Pr6cvnyZbX1e3p6oquri7e3NykpKZw9mzFj461bt4iIiFD+/apy6fWZS1+fzOH1z3F1dVX7nKzG/ytWrBiQPvFDVtq2bcvFixcpVKgQBQsWzDJddlq3bk1MTAzz589Xe2/SpEno6OjQvHlz5bJq1apx8+ZNVq5cScWKFZUVpVWqVCEwMJDAwEDKlSuHvr6+yrouXbqEjo4OPj4+mcahp6eHiYmJyutdu6lqaWthldeex1dVp3t/fPUOtu6Zj9WSmdCHzzDM5AflKwqFgtBHzz7ZJA46Ojp45M/H+VOqM4SeO3UW70JZH4/vYsOqdaxdupKRE8eQz/vTdP2C9NnRbrx4SEkn1TGlSjp5c+nZnSxypUtNS+NFbARpCgXVPUtw7P4ltZvbah4l0NHSZu+NoByPncRE0l6EZLyePictMgrtAq99X1paaOfzIOXOvbeuTrdkMdDWJvnE6awTJSWhiIpGw9AAnYLeJJ/PfOywD5Galsa9sCdqY/UVsnPnZkjmYynqaeuQ9sbDkld/yz3sx9HR0SG/txenTqjuu6dOBlGoSKFM8/gULsSpk6rpg06cxLugN9raWT9PViggOSk5y/c/lJa2NvZuTty9pPqg6u7F6zhlMjGDnoE+Xf8cwo/jBilfJWqUx9Lehh/HDcLRI2PIgmPbDnB44x7aDO6Gg3veHI/9damKNB5GPMfbRvVzvGxcuBv6JItc6TytnLAxNufYvcyP1Rr5SlLXuyxzj27kYcSnq8DS1tHG0T0vNy+o3iPcvHAVF6/Mu0VmRqFQkJqsPv7g6+8/vfcQk884iUP6uetpFueuh5nm0dXWUXvQ+znPXV/D+TZVkcaDiGdqY5IVsHXldujjbPPmt3bGNo8Fh+9eeKfPcjazITKLirGPlZKWyu3QxxRzUO1ZUczBM8sW9XpaulnuPxlpstrHNHJ8e6WkpXIz5BG+jl4qy30dvbjy/F62eVMVaYTERpKmUFDVozgnHlzOtqJQQ0NDZbZ6IT4nqYz7yuTJk4eBAwfSr18/lixZwu3btzl79iyzZ89myZIlAIwYMYLNmzdz69YtLl++zLZt25QVT+3atUNfX5+OHTty6dIlAgIC6NWrF+3bt8+2i+r7MjMzw8LCgnnz5nHr1i3279/PgAEDVNJER0fTvn17evXqRb169Vi5ciVr165l3bq3txR6H4MGDcLf35958+Zx8+ZNpkyZwoYNGxg4cGCWeTw9PVm2bBlXr17lxIkTtGvXTtkN8V0YGxvTpUsXBg0axP79+7l06RKdOnVSmckyf/78tGvXjg4dOrBhwwbu3r1LUFAQEyZMUM6Y2rdvX3bv3s3du3c5c+YMBw4cUKtEHD16tMpnWFlZ0bRpUyB9TL1jx47Ro0cPzp07x82bN9myZYuy0tPb25uaNWvStWtXTp48ydmzZ+natSsGBgbK1nUGBgaULVuWP//8kytXrvDvv/8yfPhwlRh69OhBWFgYbdq04eTJk9y5c4c9e/bw/fffk5rF7FjW1tb4+vqqVZS+ztzcnKdPn7J//4c38y9Xrhx9+vRh0KBBTJ48mdu3b3Pt2jWGDx/O9OnTmTx5skpFdvny5dHT02PmzJlUqVJFubxUqVJERkbyzz//ZDrW4KFDh6hUqdJ77Sfvo1DNslw/cpbrR84R/vQFx9fuISY8Eu/KJQAI2rifQL9NyvSX9p/g3rlrRD4PJfxJMEEb93Pv7DUKVs2YMOPMtoM8unybqBfhhD58xqFlWwl9+BzvSiU+SRkAmrT8hr3bdrFv+24e3nvAwpnzCQkOpm6TBgAsnb+YqWMnquS5c/M2d27eJj4+gciISO7cvM2Dexk3nBtWrmPFwqX0GtIfGztbwkPDCA8NIz4u/pOUYe35/TQoUJ763uVwMbOlR/nm2OSxYMvl9H35xzKNGVa9gzK9k6kNtfKVwtHUGm8bF0bU7IybhT0LTqh302lQoByH757/5DOxvZK4/1/069ZEp1hhNB3sMOzYBkVSEkknM2ZxNezUBv2mDdTy6pYvQ/K5Syhi1VvaaBf0QrugN5qWFmgXyI9xv+6kPg8m6eiHtXDNys7rx6nq7ktl92I4mFjRrngdLA1N2X8zfTKflkVr8FPZpsr0Zx/foKRzAWp4lsTayIx8Vs60L1GX2yGPlC0KtDQ1yWtmS14zW7Q1tTA3MCGvmS02xh/fejMnGOjokc/KSTnItoOJFfmsnLD9AuJr2bYV2zZvZfuWbdy7e4+ZU6YT/Ow5TZo3A2D+rLmMHfmHMn2Tb5ry/OkzZk2dwb2799i+ZRvbN2+j1XdtlGmW+y0l6MRJnjx6zP1791mzYjW7t++kdr3aap+fE8rUq8rZgOOcCzxOyONn7Fm2kcjQcHxrpI+Ze2D1VjbPXQ6AhqYmNs72Ki9DE2O0dbSxcbZHVz/9gcvRrfsJXLedhl3bYGZtQUxEFDERUSQlJGYZx8cKuHWacq6FKevig20eC74pXAULwzwcvps+C22jghVpX0J9OIJyLoW4G/aUp9Hq4/zVyFeSBgXKs+LMHkLjIsmjZ0gePUN0tT5Nd9tKjWoRtP8wQfsP8/zRU7b6rSEiJIyytdOvzTtXbGDNjMXK9Ed3BnDl1HlCnj4n5Olzgg4c4d+teyheuYwyzd61W7l+7jKhz1/w5O5D1s9ZwpN7D5Xr/Fx2XT9GldfOXW2L18bS0JQDN9MfbrQoWp2uZZso0599fIMSzt5U9yyhPHd9V6IOt0MeZ9kaKqd9DefbvTeCqOhWlAquhbHLY0nLotWxMDRRzk7drFBlOpdSv95VdC3CndAnmbYEbVigAgVt3bAyMsXJ1IaOJerhbGbzSWe83nz5MDXzlaKGZ0mcTK35vlRDrIzM2H39BADf+dahT8WMSdSCHl2lrEsh6nqVwdbYAm8bF34o04gbLx4oW6IFPbpGXa+yVHQrgo2xOUXtPWlbvBZBD6+oVdzlhH8uBlLXqyx18pfB2cyWbmWbYmNszrarRwD4vlRDBlVtp0zvaGpNDc8SOJhY4WWdl2HVO+Bqbo9f0HZlmtZFa+LrmB+7PJY4m9rQvHBVauYrxf5bp3I8fvHpzZkzBzc3N/T19SlRogSHDh3KMu2GDRuoVasW1tbWmJiYUK5cOXbv3q2Sxt/fHw0NDbVXQkLOT0L0ilQDf4X++OMPbGxsGD9+PHfu3MHMzAxfX1+GDRsGpM9EOXToUO7du4eBgQGVKlVi9erVQPq4K7t376ZPnz6UKlUKQ0NDmjdvzpQpU3I0Ri0tLdasWUPv3r0pVKgQXl5ezJgxg6pVqyrT9OnTByMjI+Wg/z4+PkyYMIFu3bpRvnx5tW64H6pp06ZMnz6diRMn0rt3b9zc3PDz81OJ5U2LFy+ma9euFC9enLx58zJu3LhsK+8yM3HiRGJiYmjcuDF58uRhwIABREZGqqTx8/NjzJgxDBgwgMePH2NpaUm5cuWoX78+AKmpqfTo0YNHjx5hYmJC3bp1mTp1qso6/vzzT/r06cPNmzcpWrQoW7ZsUXbHLFKkCAcPHuTXX3+lUqVKKBQKPDw8aNWqlTL/0qVL6dKlC5UrV8bOzo7x48dz+fJllZZfixcv5vvvv6dkyZJ4eXnx119/Ubt2xg8hBwcHjhw5wpAhQ6hTpw6JiYm4uLhQt25dlQrIN3Xt2hV/f/9sZ/M1MzN7+5f9FtOmTaNIkSLMnTuX3377DQ0NDXx9fdm0aRONGjVSSfuqC+rBgwdV9hEdHR3KlSvH/v37M62MW7VqldqYcDnJo6QPiTHxnN3+L3FRMZg7WFOnZxvyWJoBEBcZQ0xYRnee1JRUTv6zj9iIaLR1tDFzsKZOj9Y4F87okpsUl8jhFduJi4pB10APS2c7Gg7siI3bp5nGHqBSjSpER0WxZskKwkLDcXFzYcSEP7CxS38YEB4aRshz1dl8+3Xpofz/7es3+XdfADZ2NixYuxSAnZu2kpKczIQRY1Tyte7Ujjbft8/xMgTcPoOpvhEdStTD0siEu2FPGbJ9Ds9j0rvbWRqaqvyQ0NLQoFXRGjib2ZKSlsrZJzfosXEyz6JVu+c5mdpQxN6TAVtn8rkk7jmAhq4OBm2ao2FoQOrdB8TMmA+vTTaiaWGuNsaOpo012vnciZk+L9P1ahjoo9+0AZpmZiji4kg+e4H4TTsgLfvuPe/rxIPLGOsa0NSnCmYGxjyKDGbSwRWExqWfa830jbE0zGjxcujuefS19aiZvxRtitcmLimBK8F3WXNunzKNuUEextbrpvy7QYHyNChQnqvP7zHuwJIcjf9DeFu7MKtZRpf33hXTxwHccfUYY3M5vhq1axIVGcWShX6EhoTi5uHOhGmTsLNPb+0dGhLK82cZrakcHB34a9okZk6dwcZ1G7C0tqLPwL5UrZ5xjo1PSGDKhMm8CA5GT0+PvC4uDB89ghq1a36SMviU8yU+Jo5DG3cTExGFtZM9rQf9hJl1epezmIgoIkPfb1D20/sOk5qSyj/T/VSWV/qmDlWa18ux2F935vENjHQNqOtVFhN9I55GhTL36EblD29TfSPM3+jmpq+tSzGHfPxzMTDTdVZyK4qOljY/lFG9bu64eoydL7tP5qSiFUoRFx3L/vXbiQqPxC6vA52H9cLcOn1c3ejwSCJe6/quUCjYtWIjYcEhaGppYmlrTb1231CmVmVlmoTYODbMW0Z0RBT6hgY4uDnTbfQgnPPl3EzP7+LEgysY6xrSxKey8tw1+eDKLM9dh++ex0BbV+3ctfbc5xuT7Gs43556dA0jXQMaFKiAqb4RT6JCmHl4nXIiJVN9Y7VhKAy0dfF19GJ1FuO/Gerq0d63Dib6RsQnJ/IwIpiJgSu5F/7pZqc/cu8CJnqGtCpWA3ODPDwIf8Yf+/x5ERsBgIWhCdbGZsr0B26dxkBbj/re5elcqgGxSQlceHqbpa9NprH2/AEUCgXtitfGwtCUqIRYgh5eZcXZ3XwKB++cxUTPkHa+dbAwNOF+2FOG75qvnPTCwtAEG6OMeylNDU2aF66Gk5kNqWmpnH9yi75bpivvvQD0dXTpVaEFVkamJKYk8zAymAkByzl456za53+Ncmr85S/BmjVr6Nu3L3PmzKFChQrMnz+fevXqceXKFfLmVW9d/u+//1KrVi3GjRuHmZkZfn5+NGrUiBMnTijH1QcwMTFRG6bpzd5OOUlD8S6DVwkh/nMCAwOpVq0a4eHhOVJh9cqjR49wdnZWjjf4KSUkJODl5cXq1atVJqL4r9m+fTuDBg3iwoUL2XatyszEgOWfKKrPZ1C177j2/G5uh/FRvG3dqDK3x9sTfuEO/jybiG79357wC2Y2bwrtV326iu3PZVmbkVSY3e3tCb9wR3rM4/knGhfsc7E1sWLZqf/+jLntS9aj18acfXj6uc1s1p9Nn2B2xs+taeEqdFg1OrfD+GhL24z4z59vl7UZSdf16mMW/9f8/e0Qmvq/fSK7L9mmTn9Se0Hf3A7jo+35cVpuh/BBAm9lM2xILqvq+X69bsqUKYOvry9z585VLitQoABNmzZl/Pjx77QOHx8fWrVqxYgRI4D0lnF9+/ZVGY7pU5NuqkKIbB04cIAtW7Zw9+5djh49SuvWrXF1daVy5cpvz/yR9PX1Wbp06XuNx/clio2Nxc/P770r4oQQQgghhBDia5aYmEhUVJTKKzEx86EakpKSOH36tEovLIDatWtz9OjRd/q8tLQ0oqOjsXhjAqmYmBhcXFxwcnKiYcOGKuOmfwpSGSeEyFZycjLDhg3Dx8eHZs2aYW1tTWBgoNpsuZ9KlSpV1LqK/te0bNmSMmXKvD2hEEIIIYQQQuQwTQ2NL/Y1fvx4TE1NVV5ZtXALCQkhNTVVbTx7W1tbnj179k7fxeTJk4mNjaVly4yxE729vfH392fLli2sWrUKfX19KlSowM2bNz/8S38LaaYhxFeqatWqarMefYg6depQp06dHIhICCGEEEIIIYTIMHToUPr3Vx1GRU9PL9s8b46Bp1Ao3mlcvFWrVvH777+zefNmbGxslMvLli1L2bJllX9XqFABX19fZs6cyYwZM96lGO9NKuOEEEIIIYQQQgghxGenp6f31sq3V6ysrNDS0lJrBRccHKzWWu5Na9asoUuXLqxbt46aNbOf6ElTU5NSpUp90pZx0k1VCCGEEEIIIYQQ4iul8QX/ex+6urqUKFGCvXv3qizfu3cv5cuXzzLfqlWr6NSpEytXrqRBgwZv/RyFQsG5c+ewt7d/r/jeh7SME0IIIYQQQgghhBBfvP79+9O+fXtKlixJuXLl+Pvvv3nw4AHduqXPUj906FAeP37M0qVLgfSKuA4dOjB9+nTKli2rbFVnYGCAqakpAKNGjaJs2bLky5ePqKgoZsyYwblz55g9e/YnK4dUxgkhhBBCCCGEEEKIL16rVq0IDQ1l9OjRPH36lEKFCrFjxw5cXFwAePr0KQ8ePFCmnz9/PikpKfTo0YMePXool3fs2BF/f38AIiIi6Nq1K8+ePcPU1JTixYvz77//Urp06U9WDqmME0IIIYQQQgghhPhKaWh8XSOUde/ene7du2f63qsKtlcCAwPfur6pU6cyderUHIjs3X1dW0QIIYQQQgghhBBCiC+YVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+Upsb7zVoqPj1pGSeEEEIIIYQQQgghxGcilXFCCCGEEEIIIYQQQnwm0k1VCCGEEEIIIYQQ4iulId1UvzjSMk4IIYQQQgghhBBCiM9EKuOEEEIIIYQQQgghhPhMpJuqEEIIIYQQQgghxFdKE+mm+qWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5SMpvql0dDoVAocjsIIYQQQgghhBBCCJHzTt6/nNshZKm0i09uh5ArpGWcEEJ8wSYFrsjtED7awKrtuPXiYW6H8VE8rZ2JDg/P7TA+Wh5zc6KjonI7jI+Sx8SEy09v53YYH83H3oPnUSG5HcZHszWxosLsbrkdxkc50mMeR+9eyO0wPlp5tyK8iA7L7TA+inUeC6KOnsztMD6aSfnSRAWdzu0wPppJqRJEv3iR22F8lDzW1kSdOpvbYXw0k5LFCY4Kze0wPoqNiSV3Qx7ndhgfzc3KMbdDEF8JqYwTQgghhBBCCCGE+EpJN9Uvj0zgIIQQQgghhBBCCCHEZyKVcUIIIYQQQgghhBBCfCbSTVUIIYQQQgghhBDiK6Up3VS/ONIyTgghhBBCCCGEEEKIz0Qq44QQQgghhBBCCCGE+Eykm6oQQgghhBBCCCHEV0oD6ab6pZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlIym+qXR1rGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlIN9UvjrSME0IIIYQQQgghhBDiM5HKOCGEEEIIIYQQQgghPhPppiqEEEIIIYQQQgjxlZJuql8eaRknhBBCCCGEEEIIIcRnIpVxQrwhMDAQDQ0NIiIicjuUHOfq6sq0adM+OP+9e/fQ0NDg3LlzORaTEEIIIYQQQgjx/0S6qYr/S0ePHqVSpUrUqlWLXbt25XY4QuSIK4FBnN9zjPjIaMwdbCjbsjb2+VwyTfvk+j22T1mqtrzFqO6Y2VmpLb8ddIkDCzfgUtSL2t1b5VjM2zZsZsOqdYSFhpLX1ZWufbpTqGjhLNNfPHueBTPn8eDePSwsLfm2XSvqN22kfD8lJYW1y1axf+ceQkNCcHJ2ptPPP1CybGllms7ftiP42XO1dTdo1pjuA3p/UDkUCgV/L1zIxs2biY6OxqdgQYYMGoSHu3u2+fYfOMC8v//m0ePHODk60r1bN6pVrap832/JEgICA7l3/z56enoUKVyYXj164OqSsV3nL1jAnn37eP78OTo6OhTw8qJ7t24UKlTo7TEvWMDGjRvTY/bxYcjgwXh4eLw95nnzePToEU5OTnT/+WeqVaumkmbdunUsW76ckJAQ3N3dGdC/P8WLF8+I+e+/2bNnT0bM3t50794905gVCgV9+vTh6LFjTJo4kUaNG2cb35t2btrG5tX/EB4ahrObC9/37ErBIpl/N2GhYSyZs4DbN27x9NET6n/TmC69fspy3Yf3H2TKHxMoXaEsv4wd8V5xva+N6zawavlKwkJCcXV3o1f/3hQtXizL9OdOn2XWtJncu3MXSysr2nZoS5PmzZTvHzwQyHL/pTx++JiUlBScnJ1o9V0b6tSv+0nL8S6K2nvStnhtvG3yYmVkxi875nLo7vncDkvpwNbd7Fy/mYiwCBxdnGjbrTP5CxXINO2pwycI2L6bB3fukZKcgmNeJ5p815LCJYsp0xzcuY8j+w7y+P5DAFw93WneuQ3uXvlyLOYN6/5h1bIVhL7cf/oM6Jvt/nP29BlmTp2Rvv9YW9GufTuafvuN8v07t++waN4Crl+7xrOnz+jdvw8t27ZWWcfG9RvYtH4DT58+BcDN3Z1OP3xPuQrlcqxckH6OWLB5IxsPBhAdG4uPuweD23fEw9EpyzwbDwaw48hhbj9+BIC3qxs9mrfAx131/BccHsbMtWs4dvECCclJ5LW147fvf6CAq1vOl2HDP2wMOJBeBg9PBnfqjIdTNmUIOMCOQ4e4/Sh9v/F2c6NHy1b4eHgq06zft5d/9u/j6YsQANydHOnS7BsqFC2WY3H/vXgxG7dsybj29e//9mtfYCDzFi7MuPb9+CPVqlTJNK3fsmXMnj+fNi1aMKBPH+Xy+YsWsWf/fp4HB6OjrZ1+7evalUI+PjlSrgUb1rPxwAGiY2Pw8fRkcKfv8XByzjLPxgP72XH4X24/fLlPubnRo1Vrle3ht3kTAadOcv/JE/R0dSmSLz89W7fF1cHho+LduO4fVi1fqTy+e/fv85bj+yyzps147frQjqavXR/u3r7DovkLlcd3r359aNlW9d4vLjaWhfMW8G/gQcLDw8mfPz+9B/SlgE/BDy7H1g2bWb9yDWGhobi4udKtdw8KFSuSZfoLZ8/z98w53L97D0srK1q0bUWDZqr3CBvXrGfbxi28eB6MiZkplapWpnO3H9HV0wXg4rnzrF+5hpvXbhIWGsqI8aMpX7niB5fhS6aJdFP90kjLOPF/afHixfTq1YvDhw/z4MGD3A5H5IDk5OTcDiFX3Q66zLG1uylevyLNhnfFzjMvu2auJCYsMtt8LUb3oN1f/ZUvExsLtTTRoRGcWL8XO8+8ORrzv/sDWDBjLq06tGXG4nkUKlqYkQOHZlpRBvDsyVNGDvqVQkULM2PxPFp1aMv8abM5EvivMs3Sv/3YtXkb3fr1ZO6yRdRr2pCxw37n9o2byjTTFsxm2ea1yteYqRMAqFit8geXZcmyZaxctYrBAwawZPFiLC0t6dG7N7GxsVnmuXDxIsN++4369eqxatky6terxy+//sqlS5eUac6cPUuL5s3xW7iQ2TNmkJqaSs8+fYiPj1emccmbl8EDBrB6xQoWzp+Pvb09Pfr0ITw8PPuYly5l5cqVDB40iCX+/ukx9+yZfcwXLjBs2LD0mFeuTI956FCVmPfs2cPkKVP4vnNnVixfTvFixejdpw/Pnj1TjXnQIFavWsXCBQuwd3CgR8+emca8ctUq+MBxTg4fOIjfrL9p/l0rJi+cSYHCPowZPIIXz4MzTZ+SlIyJmSnNv2uNq0f2P7aDnz3Hf+5CChb5+B9+b7N/zz5mTplOh84dWLjcjyLFijC4z0Cev/advu7J4ycM7juQIsWKsHC5H+07t2f6pGkEHghQpjExNaF9547MWTwfv1VLqNeoAX+OHsfJYyc+eXnexkBHj1uhj5jy7+rcDkXNiYNHWDnfj4atmzNq9l/kL1SAKcPHEhr8ItP0Ny5dwce3KP1GD2PkzAl4Fy3E9N//5P6tu8o01y5cpmzVigyZMJLhU8diYWPFpGFjCA8JzZGY9+/Zx4zJ0+jwfScWr1hC0eJFGdi7v8ox+bonj58wqM8AihYvyuIVS+jQuSPTJk0lcH/G/pOYkICDkwPdenbH0tIy0/VY21jTrWd3Fi71Y+FSP3xLlmDogMHcuX0nR8r1ytId21m5eyeD2nXAf8QoLE1N6TlpArGvnSffdPraVWqXLcfcIcNYPHwkdhaW9Jz0F8HhYco0UbGx/DD2D7S1tZjefyBrx/5J39ZtyWNomKPxAyzdtpWVO3cyqGMn/EePwdLMlJ5/jsu+DFevULtceeb+OpzFv4/CztKKnhP+JDgsoww2Fhb0bNWaJX+MYckfYyhZ0IeBUyZz+9GjHIl7yYoVrFyzhsH9+7Nk4cL060i/fsTGxWWZ58KlSwwbOZL6deqwyt+f+nXq8MuIEVy6fFkt7eWrV9m4ZQv5MnlI5OLszOB+/Vi9ZAkL58xJv/b17//Wa9+7WLptCyt37GBQp874/zEOS1Mzeo5/l+1Rgbm//sbiUaOxs7Ki55/jVLbHmWtXaVGzNotH/cGsX34lNTWVXn+OIz4h4YNj3b9nHzOmTKd9544sWu5P0WJFGdRnwFuuDwMoWqwoi5b7075zB6ZPmqpyfUhISMDe0YGfev6MRRbH94QxfxJ0Iojho0awZNVySpUtTb8efXiRxbnwbQ7uC2D+9Nm07tCO2X5/U6hIYYYP/CXbe8LfBg6lUJHCzPb7m1bt2zJ32iwOB2TcEx7YvY/F8xbw3fcd+XulP/1+GcjB/YH4zVuQUdb4BNw8Pejev9cHxS3Ex5DKOPF/JzY2lrVr1/Lzzz/TsGFD/P3935rnyJEjVKlSBUNDQ8zNzalTp47yYr9r1y4qVqyImZkZlpaWNGzYkNu3byvzvurauWHDBqpVq4ahoSFFixbl2LFj7/wZCoWCv/76C3d3dwwMDChatCjr16/PNubg4GAaNWqEgYEBbm5urFixQi1NZGQkXbt2xcbGBhMTE6pXr8758+/e+iA1NZUuXbrg5uaGgYEBXl5eTJ8+PUfy+Pn5UaBAAfT19fH29mbOnDnK9159p2vXrqVq1aro6+uzfPly0tLSGD16NE5OTujp6VGsWDGVlo/vsi1CQ0Np06YNTk5OGBoaUrhwYVatWqV8f/78+Tg6OpKWlqYSb+PGjenYsaPy761bt1KiRAn09fVxd3dn1KhRpKSkvPN3+74u7juGV4XieFf0xdzemnKt6mBsbsqVg6eyzWeQxwhDU2PlS1NT9bKQlpZGwKKN+DaqSh5r8xyNeePqf6jdsC51GtUnr6sLXft0x8rGhh2btmaafsembVjb2tC1T3fyurpQp1F9ajWoy4ZV65RpAnbvo2X7tpQqVwZ7RwcaNGuMb5mSbFidcbyYmpthYWmhfAUdPYG9owOFixf9oHIoFApWrVlD506dqF6tGp4eHowaMYKEhAR27dmTZb5Vq1dTplQpOnfsiKurK507dqR0qVKsXLNGmWbmtGk0atgQD3d38ufLx8jhw3n27BlXr11Tpqlbpw5lSpfGydERD3d3+vXtS2xsLDdv3co+5lWr6Ny5M9WrV8fT05NRv/+eHvPu3VnHvGoVZUqXpnPnzukxd+6cHvNrx8iKlStp0qQJTZs2xc3NjQEDBmBra6tyzqpbty5lypTByckJDw+PjJhv3lT5vBs3brByxQpG/PZbljFlZ+u6jdSoX5taDevi5JKXLr1+wtLGmt2bt2ea3sbeli69ulGtTg0MjYyyXG9qairTxkykdefvsLW3/6DY3sfalWto0KQhDZs2xtXNld4D+mJta8Om9RszTb95wyZs7GzpPaAvrm6uNGzamPqNG7BmecZ2Kl7Cl8rVquDq5oqjkxMt2rTE3dODC+dyvwXa8QeXWXBiCwfvnMvtUNTs2bCNynWqU6VeDRzypreKs7C24sC2zI/1tt06U79FE9y9PLFztOfbzm2xdbDn3ImMc/NPQ/pQvVEd8nq4Ye/sSOc+P6FQKLhy7lKm63xfq1esomGTRjR6uf/0GdAPG1sbNq3fkGn6Tf9sxNbOlj4D+uHq5kqjpo1p0Lghq5avVKYp4FOQHn16UbNOLXR0dTJdT8XKlShXsTx5XfKS1yUvP/XohoGhAVcu5ky54OW5bO8uOjdsQvWSpfB0cub3H34iITGJ3cePZZlvzE/daVG9Jl55XXC1d+DXzl1QKNIIunJFmWbJjm3YWlgwsktXfNw9cLCypnRBH5xsbHMsfmUZdu2ic5MmVC9VGk9nZ37/6WcSkpLYffRo1mXo3pMWtWrh5eKKq4Mjv/7wI4o0BUGXM77fyr4lqFCsOC729rjY29O9ZSsM9fW5dOtmlut9r7jXraNzhw5Ur1IFT3d3Rv36KwmJidlf+9aupUzJknRu3x5XFxc6t29P6RIlWLl2rUq6uLg4fhs1il8HDyZPnjxq66lbuzZlSpXKuPb16pV+HXntHvyDy7VrJ52bNs3YHt26k5CUyO6jR7LMN6ZHL1rUqo2X66vt0VVte8wcMpRGVari4eRMfhcXRvz0M89CQ7h6926W632bNStX0+C147v3gL7Y2NqwMcvrQ/rx/er68Or4Xq12fPekZu1a6GZyfCcmJHIwIJCfe3enmG9xnJyd+L7rD9g7OLDpn8zPK2+zYc066jSsR73GDcjr6kK3vj2xtrFh28YtmabfvmkrNrY2dOvbk7yuLtRr3IDaDeqxflXGfnT10mV8CheiWu0a2NnbUaJMKarWqs6NazeUaUqVK0Onrl2oWPXDH8gK8aGkMk7831mzZg1eXl54eXnx3Xff4efnh0KhyDL9uXPnqFGjBj4+Phw7dozDhw/TqFEjUlNTgfTKvf79+xMUFMT+/fvR1NSkWbNmapU1v/76KwMHDuTcuXPkz5+fNm3aKCtn3vYZw4cPx8/Pj7lz53L58mX69evHd999x8GDB7OMu1OnTty7d48DBw6wfv165syZQ3BwRmsQhUJBgwYNePbsGTt27OD06dP4+vpSo0YNwl57ipedtLQ0nJycWLt2LVeuXGHEiBEMGzaMtW/cUL1vngULFvDrr78yduxYrl69yrhx4/jtt99YsmSJyrqGDBlC7969uXr1KnXq1GH69OlMnjyZSZMmceHCBerUqUPjxo3VfuBnty0SEhIoUaIE27Zt49KlS3Tt2pX27dtz4kR6a5EWLVoQEhJCQEDGE8Tw8HB2795Nu3btANi9ezffffcdvXv35sqVK8yfPx9/f3/Gjh37Tt/r+0pNSSXkwVMcC6o+OXYs6M7z2w+zzbthzN8sHzSF7VOW8uS6+s3g2W3/op/HEO+KxTPJ/eGSk5O5deMGxUuVVFnuW6oEVy9dyTTPtctX8C1VQjV96ZLcvHZDuf2Sk5PQedn14BVdXT2uXMj8x19ycjIBe/ZRq0HdD55l6vGTJ4SGhlK2TJnXPlMX3+LFuXDxYpb5Lly6RJnX8gCULVMm2zwxMTEAmJiYZPp+cnIyGzdtwtjYmPz5su7i9vjx4/SYy5ZVjdnXlwsXLmQd88WLlHktD0DZcuWUeZKTk7l27ZrKd6EsVxbrTU5OZuPGjekx58+vXJ6QkMCvw4czaPBgrKzUu06/TXJyMrev36JoKV+V5cVKFefa5avvvb7XrVu6ChMzU2o2qPNR63kXycnJ3Lh2nVJlSqssL1WmNJey2K8vX7yklr502TJcu3It04cCCoWC0ydP8fD+A4r6Fsux2L82KcnJ3Lt5Bx9f1Yp7H98i3L56/Z3WkZaWRkJ8PEZ5jLNMk5iYRGpKSrZp3pVy/yn7xv5TtgyXLmR+rrl88RKlyqoew6XLleHalasf/FApNTWVfbv3khCfgE+RrIcieF+PX7wgNDKSsq91cdfV0cHXy5sL71HhlJCYSEpqKiavVcIfOneGAm5u/DJ7BrV7d6fdyOFsPBiQzVo+zOMXwYRGRlC2cEZ3PF0dHXy9C3Dh5o1scqpKL0MKJsaZ7zepaWnsOXaU+MRECmdzfXjnuF9d+0pn7Fu6urr4FivGhUtZV7heuHSJMqVV98eyZcqo5ZkwZQoVypenTKlSb40lOTmZjZs3p19HPD3fmj47j18EExqRg9sjmwc7MS9bEGa1zd7m1fFdOtPrQzbH93tcHzKTmppCamoqurp6Ksv19HW5cC7re4isJCcnc/P6DXxLv3FPWLokVy+pt5iE9Iq2N9OXKFOSm9euK8vhU7QwN6/f4PqV9Gv+08dPCDp2gtLly6it7/+BhobGF/v6fyVjxon/O4sWLeK7774D0ltnxMTEsH//fmrWrJlp+r/++ouSJUuqtMzyeW08iubNm6ut38bGhitXrqiMfzRw4EAaNGgAwKhRo/Dx8eHWrVt4e3tn+xmxsbFMmTKFAwcOUK5c+jgr7u7uHD58mPnz51MlkzE2bty4wc6dOzl+/Ljyx/6iRYsoUCBjTJuAgAAuXrxIcHAwenrpF9NJkyaxadMm1q9fT9euXd/2VaKjo8OoUaOUf7u5uXH06FHWrl1Ly5YtPzjPH3/8weTJk/nmm2+UaV5Var3e+qxv377KNK/iHzJkCK1bp49bM2HCBAICApg2bRqzZ89WpstuWzg6OjJw4EBl2l69erFr1y7WrVtHmTJlsLCwoG7duqxcuZIaNWoA6eNjWVhYKP8eO3Ysv/zyizJWd3d3/vjjDwYPHszIkSPf+r2+r4SYOBRpCgxNVG/4DPIYER+VeZdDQ1NjKn3XECsXe1KTU7h54iLbpy6jYf+O2OdPH4/s2a0HXD9ylm9+y3rMrA8VFRlJWmoaZhaqre3MLMwJD828Mjg8NAyzMurpU1NTiYqIxMLKEt/SJdm0ej2FihbG3tGB86fPcuLwUVLfqBx/5fi/R4iJiaFm/dofXJbQ0PSuZJYWql18LS0seJpFN5FX+TLL82p9b1IoFEyZPp1iRYvi+UaXnUOHDzPst99ISEjAysqK2TNmYGZm9tljjoiIIDU1FYs30lhYWhLyRrkOHTrEsF9/zYh51iyVmCdPmUKRIkWomsU4Qm8THRlFWloaZuZmKstNzc2JCPvwbkxXL15m3/bdTFk464PX8T4iX36n5mrfqTlhWewrYaFhWFiqHivmFhakpqYSERGhrNyMiYmhef2mJCUloaWlRb8hA9R+pIkM0VHRpKWlYaK2T5lxKSzindax+5+tJCYkUrpy+SzTrF+8AnNLC3yKf3ylVWRWx6SFOaEhmZ9rQ0NDKfPGudkik/3nXdy+dYtunbuSlJSEgYEB4yb+iZt7zo23FhoZkR6fialqvKYmPHuPbr6z1q/B2tyc0q/d3z0OfsE/Bw7Qtk5dOjdszOU7d5i8Yhm62jo0qJBzY0qFRkS+jDmzMoS883pmrVmNtbkFpX1Ux8S89fAB3/8+kqTkZAz09ZnYtx/u2Yyn985xv3xwq3ZNMDfn6fPMuxa+ymdprrp/WZqbK9cHsHvfPq7duMHSBQvezK7i0JEjDHvZqtvK0pLZU6dme+17F6EvJ3BT3x6m77c9Vq/C2sKC0oUyP44VCgVTVyyjmJcXns5Zj0WXnayuD+aWFoRlcS8VGhpGacs30r/n8W1oZEShwoVYssgPVzcXzC0s2Ld7L1cuXcHpA8oSFZF+T2j+xnnH3Nw8y3KEh4Vjbv7mdS79njAyIhJLK0uq1qxOZHgEA37ug0KhIDU1lYbNGtOqfdv3jlGIT0Eq48T/levXr3Py5Ek2bEhvQq2trU2rVq1YvHhxlpVx586do0WLFlmu8/bt2/z2228cP36ckJAQZYu4Bw8eqFTGFSmS8YTN/mW3puDgYLy9vbP9jCtXrpCQkECtWrVUliclJakMiP66q1evoq2tTcmSGU+MvL29VW5QTp8+TUxMjNpYL/Hx8SrdbN9m3rx5LFy4kPv37xMfH09SUhLFihX74DwvXrzg4cOHdOnShR9//FGZJyUlBdM3boxeL19UVBRPnjyhQoUKKmkqVKig1vU2u22RmprKn3/+yZo1a3j8+DGJiYkkJiZi9NqTzXbt2tG1a1fmzJmDnp4eK1asoHXr1mhpaQHp321QUJBKS7jU1FQSEhKIi4vDMJPxZl59zuteVZJ+CmZ2VioTNdh6OBMbFsmFvcewz+9CUkIiAYs3Ual9Q/SNc358nFfefBqmUCiyfUKm9tarVq0v3/ipTw9m/DWFbu2+Bw2wd3CgZv067NuRedfLPdt3UrJMaSzf48flzl27GDdhgvLvaZMnf1BZMitQdnn+mjSJW7dusfDvv9XeK1miBCuXLiUiMpKNmzcz9Ndf8V+0SPkD/FXMGhoaKBQKpk2dmnXM2Uf8TjG/y3dRsmRJVq5YQUREBBs3bWLosGH4+/lhYWHBwYMHOXXqFCuWL39bNG+l9n0qFGh84CDG8XFxTB87ie6DemNiZvr2DDlI/TvNpGyvp1cro0JtuaGhIYtW+BMfF8fpoNPMnjoTB0cHipfwRWRN/TSkeKdxDY8HHGbT8nX0Hjk4y/1nx7rNnAg8zJC/RqGjq5tpmg+R+f7zPunV9593kdfFBb+VS4iJjiHwQABjf/+DmX/P+eAKuZ3HjjB+iZ/y76l9B2QRL+obKgtLd2xjz4njzBsyDD2djO88TZFGAVc3enyb/qDQy8WVO08e8U/A/o+qjNt55DDjFy/KKMPAwelleCNd+lf+boVYum0re44dZd6vv6H3xn7jYu/AirHjiY6L40DQSX6fP4/5w3977wq5nXv2MG7iROXf0/76K/O43yXqN7cXGdvw2fPnTJ4+nVlTprz1Pqikry8r/fzSryNbtzJ0xAj8//4bizcqabKz88hhxi/KqPSbOmhIeohktk+94/bYuoU9x44wb/gIte3xyl/+ftx6cJ8FI0Zl+v77yOzeKNvj+82yZXJ9eJvho0cwfvQ4mtVvgpaWFvm98lOzTi1uXH/31oPqganHle19VGbHPRn70vkz51i9dAU9BvTB26cATx49Zt702Zj7LaNd5/YfHqcQOUQq48T/lUWLFpGSkoKjo6NymUKhQEdHh/Bw9ScsAAYGBtmus1GjRjg7O7NgwQIcHBxIS0ujUKFCJCUlqaTT0ckYc+HVReJVxV12n/Eqzfbt21Xihqwra5Q3zdlcwNLS0rC3tycwMFDtvXd9qrh27Vr69evH5MmTKVeuHHny5GHixInKLp0fkudVeRcsWKDWhe9VZdcrRpk0/X+XSoDstsXkyZOZOnUq06ZNo3DhwhgZGdG3b1+V7dmoUSPS0tLYvn07pUqV4tChQ0yZMkX5flpaGqNGjVJptfeKvr5+pt/L+PHjVVoMAowcORLjqm/vSqJvbIiGpgZxb7SCi4+OxcAk6+4Rb7Jxd+LWifRuDdEvwokJjWD37IwB1F/tVwt//oOWo3tgYq0+2cO7MjE1RVNLU60VXGR4hFpruVfMLS0ID1Vt0RQRHoGWlhYmpundNk3Nzfht/GiSEpOIiorC0soSv7kLsbW3U1tf8LPnnDt1lmFj36+1YuVKlVRma0t6OXlISGioyhPlsPBwtdYor7O0tFRrBZdVnr8mTeLfQ4f4e948bG1s1N43MDDA2dkZZ2dnChcqRLNvv2Xz1q10ftk681XMRqamxMbEKPfnTGPOYrDmd4nZzMwMLS0ttTThYWFqrSdUYi5cmGbffMPmzZvp3Lkzp06d4tGjR1SrXl0lz+AhQ1i7bh2//PV7ljG+ksfUBE1NTcLfaAUXGRGBqYXZW/Nn5tnjpwQ/e864oRnH6qvj4tvqDZm1bAF2jjk7hpzpy+/0zVZw4WHhaq0hXrGwtCD0jWMrPCwcLS0tTF+rBNLU1MTJOf0HeT6v/Ny/d4/l/sukMi4LeUzyoKmpSWR4hMryqIhITM2zr5w9cfAIftPm0n1Yf3x8M58dcOf6LWxbvYFB40fg7J75TNjvyzSrYzI8HAvLzPef9OM8TC39m/vPu9DR0VG2lPEuWICrV66ybtUaBv/6y3ut55XKxXwp5J7RDTEpJf38GxoZgdVr9y7hUVFYmrw91mU7t+O3bSuzBw0hn7PqJEVWZma4O6jed7naO3DgVPZjsb5NZd8SFPJ4vQzpXepCIyOxeu0+NDwqCkvTdyjD9m34bdnM7F+GkS+v+kRLOtraONulXwMLurtz5c5tVu/axbAuP7xf3BUrUqhgxkyZyutIWNj7XfssLFRawSnzvCz7tevXCQsPp/0PGfGlpqZy9vx51m7YwNEDB5T3gwYGBjg7OeHs5JR+7Wvdms3bttG5/btXtKhvj9f2KZXtEfmO22Mrfls2MXvor+TLm/lxPHGJH/+eOcXfv/2ObTbX3LfJuD6on++zuj5YWlqoXU8iMrk+vI2jkxOz/p5DfHw8sbGxWFlZMXLob9g7vP810MQs83vCiPAItdZyr5hbmBMe9mb6cJV7wqUL/Khepxb1Gqf3hnHzcCchIYEZE6bQpmM7tXGSv3aa/8fdQb9UUhkn/m+kpKSwdOlSJk+eTO3aql3SmjdvzooVK+jZs6daviJFirB//361ihJI78px9epV5s+fT6VKlQA4fPjwe8eW3WcULFgQPT09Hjx4kGmX1MwUKFCAlJQUTp06RemX43Jcv36diJdN7wF8fX159uwZ2trauLq6vnfMkN7NrHz58nTv3l257G2t6t6Wx9bWFkdHR+7cuaMcg+1dmJiY4ODgwOHDh6lcOWMQ1qNHjyq/g3dx6NAhmjRpouzKnJaWxs2bN1W6+BoYGPDNN9+wYsUKbt26Rf78+SlRImMsM19fX65fv47ne4xbMnToUPr376+yTE9Pj5nHsp+oA0BLWwurvPY8vnoHt+LeyuWPr97BpajXO8cQ+vAZBqbp45aY2lnRfEQ3lfdPbQ4gOSGRcq3qYvSWH55vo6Ojg2f+/JwNOk35KhktDM6eOk3Zipl33/L2KcjJo6oDcp8NOkU+7/xoa6teznT1dLGytiIlJYWjBw9Rqbr6sbN3+y5Mzc0oXa6s2nvZMTIyUqkIVigUWFpacuLkSby90r/v5ORkzpw9S68ePbJcT5FChThx8iTt2rRRLjtx4gRFCmd0aVEoFPw1eTKBBw8yf/ZsHB0c3ilGBahUIL+KOY+5OdFRURkxnzihGvOZM/TqlfWMYkUKF+bEiRO0a5vRxePE8ePK1qY6Ojp4e3tz4sQJqlWrlpHm5EmqvHZcZhqzQqGs2OzYsSNNmjRReb91mzb079ePuvXqEUVSZqtQoaOjg4eXJ+dPnaVspYx96vyps5Su8H7b/BXHvM5MXTxHZdmqRUuJj4/n+54/YWnz/mPbvY2Ojg75vb04dSKIytUy9uNTJ4OoWDnz1jk+hQtx9JDqQONBJ07iXdBb7Vh5nUIByUn/3zNTZ0dbRwfXfO5cPnuBEhUyHhZdOXuBYmWzHtfqeMBhFk+dQ7df+lK0TIlM0+xct5mtq/5hwNjhuOVXnznyQ73af4JOBFGlWlXl8lMnTlKxSqVM86TvP6r3MkHHT+JdsEC2+887USg+avZzIwMDjF57gKlQKLA0NeXE5Ut4ubgCkJySwpnr1+jVolW261q2czuLtm5m5oDBFHRzV3u/qGd+7j97qrLswfNn2H1E5UnWZTDjxKWLeLm+VoZrV+nVqk0Wa3lZhm1bWbR5EzOH/EJBd/UyZEahyKgAfK+4DQ0xeq1lv/I6EhSE98vxPpOTkzlz7hy9unXLajXp176gINq1ytg+J06epMjL3iSlSpZk9dKlKnlGjxuHi4sLHdu1U3swq1o2hdrD8LeWK7PtYWbGiYsX8XJNb8Gp3B6ts+/euGzbVhZt2sDMIcMo6K5+HCsUCiYu8SPwVBDzho/AMZOHa+8j4/g+qXJ9CDoZRMXKWR/fR964Ppx8h+tDVgwMDDAwMCA6KoqTx0/wc6/ub8/0Bh0dHfJ5pd8TVnjtvHQ2KOt7wgKFfDhxRPWe8MzJU+Tz9lKWIzExQa3CTVNTE4VCke144UJ8LlIZJ/5vbNu2jfDwcLp06aLW3fHbb79l0aJFmVbGDR06lMKFC9O9e3e6deuGrq4uAQEBtGjRAgsLCywtLfn777+xt7fnwYMH/PLL+z/tze4zrKysGDhwIP369SMtLY2KFSsSFRXF0aNHMTY2VhlD7RUvLy/q1q3Ljz/+yN9//422tjZ9+/ZVaYFXs2ZNypUrR9OmTZkwYQJeXl48efKEHTt20LRpU5UuoFnx9PRk6dKl7N69Gzc3N5YtW0ZQUBBubll3P3mXPL///ju9e/fGxMSEevXqkZiYyKlTpwgPD1ersHrdoEGDGDlyJB4eHhQrVgw/Pz/OnTuX6Uyy2cX3zz//cPToUczNzZkyZQrPnj1TqYyD9K6qjRo14vLly8qKu1dGjBhBw4YNcXZ2pkWLFmhqanLhwgUuXrzImDFjMv1cPT29j+qWWrhmOQL9NmLtYo+NuxPXDp0hJiySApXTf/id3Lif2IhoqnVuCsDFfcfJY2WGub01qamp3DpxkbtnrlLzp/Tu0to62lg4qt4k6hqmt+p7c/mHata6OZP/mEA+7/x4FyrIri3befE8mPpNGwHgP28hoS9CGPBb+jFVv2lDtm3YzIKZc6nTqD7XLl1hz7ZdDP59mHKd1y5fJTQkBHdPD0JDQlm5eClpaWk0b6v6oywtLY29O3ZTo24ttLSzvrF/FxoaGrRp1Qq/JUvI+7Kll9+SJejr61P3tYr/EaNGYWNtTc+XFdGtW7Wi688/4790KVUrVybw3385ERTEovnzlXkmTJzIrj17mPzXXxgaGSnHXTM2MkJfX5/4+HgW+/tTuVIlrCwtiYyMZN0//xAcHEzNl2MYZhlzmzb4+fllxOzvnx5znYxJCUaMHJke88tzY+vWren600/4L1lC1SpVCDx4kBMnT7Jo4UJlnnZt2zJi5EgKFCxIkcKF2bBxI8+ePVOOrxkfH8/ixYupXLkyVlZW6TGvX68Ss5WVVabj1tjZ2eHs7Mzlp+/Wlb5Ri2bMGDcZT698ePl4s2frLkKev6B24/oALP/bj9CQUPoMyxgn8u7N9HUnxMcTFRnJ3Zu30dbRwdk1L7p6uri4u6p8htHLgbffXJ6TWrZtxdiRf+BV0BufwoXYunEzwc+e06R5MwDmz5pLyIsQfh2VPutsk2+asnHtP8yaOoOGTRtz+eIltm/exoixvyvXudxvKV4F08fJTE5J4fiRY+zevpMBvwzMLITPykBHDydTa+XfDiZW5LNyIiohlucxHz7eX06o/U1DFkyciWs+DzwL5Ofgzn2EBodQrUH6sb5u8QoiQsP4cVB6pfbxgMMsnDSLtt064+Gdj8iXLTV19HSVM/buWLeZjUtX89OQPljZWivT6Bnoo/+W1vnvonW7NvwxYhTeBbwpVKQwWzZs4vmz5zR9uf/MmzWHF8Ev+G10eivhps2bsWHtemZOmU6jZk24dOEi2zZv5fexo5XrTE5O5t6duy//n8KLFy+4ef0GBoYGypZw82fPpWz5ctjY2hIXF8u+3fs4e/osk2dM/egyvaKhoUGbWnXx27YVZ1s7nG1t8d+2FX09XeqULadMN3LBPKzNzOn5soJu6Y5tzNv4D2N+6o69lRUhL8eeM9TTx/BlC/Y2tevSZdxo/LZtoWapMly+c5uNgQEM6/R9jsWvLEPduvht2ZxeBjs7/LdsRl9XlzrlMyoiRs6bg7W5BT1bpY+Lu3TbVuatX8eY7j2xt7Im5OUDV0P9jDLMXrOa8kWLYWtpSVxCPHuOHePM1SvMGPxhLRPV4m7RAr9ly8jr5JR+HVm6FH09PdVr3x9/pF9HXlbQtW7Rgq49e+K/fDlVK1Ui8NAhTpw6xaKX4yYbGRri+UbFor6+PmYmJsrl8fHxLF66lMoVKmRcRzZuJPjFC2q+9iDog8tVtx5+WzbhbGeHs509/ps3oq+rR53yGUOhjJw7O317tE6vMF26dQvz1q9lTI9e2Ftnvj0m+C9m99EjTOo/EEN9A2UaY0ND9D+wW3qrtq0ZM3I03gUL4FO4EFteXh+aNm8KwLxZcwl58YLho0YA0OSbZmxY+w8zp06nUdMmL68PWxk5NqNBQNbHt6GyNfWJY8dBAc4ueXn86BFzps/G2SUv9Rs3/KByfNOqBRP/GE8+by8KFCrIzs3bCH7+nAbN0u8JF89dQGhICIN+GwpAg6aN2PLPJubPmEO9xg24eukKu7ft5JffhyvXWaZCOTauXo9Hfk+8C6Z3U126wI+yFcsrK3Xj4+J58uixMs+zJ0+5feMWeUzyYGOXszMnC/EmqYwT/zcWLVpEzZo11SriIL1l3Lhx4zhz5ozae/nz52fPnj0MGzaM0qVLY2BgQJkyZWjTpg2ampqsXr2a3r17U6hQIby8vJgxYwZVq1Z9r9iy+wxIn9DAxsaG8ePHc+fOHczMzPD19WXYsGFZrtPPz48ffviBKlWqYGtry5gxY/jtt9+U72toaLBjxw5+/fVXvv/+e168eIGdnR2VK1fG1vbdLj7dunXj3LlztGrVSvnjvnv37uzcufOj8vzwww8YGhoyceJEBg8ejJGREYULF6Zv377ZxtO7d2+ioqIYMGAAwcHBFCxYkC1btpDvPWYN++2337h79y516tTB0NCQrl270rRpUyIjI1XSVa9eHQsLC65fv07btqpPSuvUqcO2bdsYPXo0f/31l7K10A8/vF+XkPfhUcqHxNg4zmz/l7jIGCwcbKjbsy15LM0AiIuMITYsowxpqamcWL+X2IhotHW0MXOwpk7PNuQt/PEzrL2ryjWqERUZxSr/5YSFhuHi5sqoieOUNz9hoWG8eJ4xA7Cdgz2jJo5lwcy5bNuwBUsrS37q24MKr01Hn5yUxLIFfjx78hQDAwNKli3NgN+GYPzGrITnTp3hxfNgajeolyNl6di+PYmJifw5cSLR0dEU8vFh1vTpKi3onj17ptJFoGiRIoz94w/mzp/PvL//xsnRkfFjxqiMNbn+5fiWP3VXfdI8cvhwGjVsiKamJvfu3WPbjh1ERERgampKwQIFWDBvHh5vaSXRsUOH9JgnTMiIeebM7GMuWpSxY8cyd+5c5s2bh5OTE+PHjVOJuXbt2kRGRrJw4UJCQkLw8PBg+rRpyvEZlTFv354Rc8GCLPj7bzw8cq5FEEDF6lWIjopm7ZKVhIeFkdfNlV8njFLuY+Gh4YQ8f6GSZ8CPGS0Db9+4xaF9gVjb2jB/jX+OxvY+atSuSVRkFEsWplceunm4M2HaJOxedr8ODQnl+bOMAdMdHB34a9okZk6dwcZ1G7C0tqLPwL5UrZ7xIzU+IYEpEybz4uUkPnldXBg+egQ1amc+furn5G3twqxmGQ9eeldMf0iw4+oxxh5YklW2z6JMlQrERsWwZcV6IsPDcXRxpt8fw7CyTa88jAwLJzQ4Y5D3wB17SU1NZdnshSybnVFpXaFmFX4YmF7JfWDrblKSU5g9ZrLKZzVp14Km7TOfDOl91Khdk8jISPwXLlbuPxOnT8bu5TGZ2f4zcfpkZk6ZzoZ1/2BlbUXfgf2oWiNj/wl5EULndhkPA1ctW8mqZSsp5lucWX+nV6qEhYbxx4hRhIaEYmRsjEc+DybPmKo2s+vH6lC/AYnJSUxY5k90bBw+Hu7MHDBYpbXTs9BQlSEr1h/YT3JKCkNmz1BZ149NmtG1afoQEz7u7kzs2YfZ69eycPMmHKyt6d/2O+qVUx2bNkfK0LARiUlJTPD3IzouFh8PD2YOGapahpBQNDQyWvms37c3vQwzpqmWodk3dG3+LQBhUVGMnDeHkIgIjA0N8XR2ZsbgXyjzWgvsj9GxXbv068iUKenXkYIFmTV1qkoLumfPn6u0TipauDBjf/+duQsWMG/hwvRr3+jRKsM/vI2mpib37t9n286dRERGYmpikn7tmz37rde+d9GhYeOX22Mx0bGx+Hh4MvOXYW/sUyGq+9S+PenbY7pqZfOP3zSna/P0c9g/+/YC0G3MaJU0I7p2o1GVqh8Ua/r1QfX4/mvapGyP77+mTWbm1OlsXLcBK2sr+gzsp3J9CHkRwvffdVL+vXr5SlYvTz++Z85PnxAtNiaW+bPn8iL4BXlMTKhavSo/dv/pg1vPVqlZjaioKFb4LSU8NAwXd1f+mDQe25ddrMNCwwh+457wj0njmT9jNts2bMbCypKf+/akYrWMe8K2HdujoaHBkr8XE/oiBFNzM8pUKEenrl2UaW5cu86QXhnXm79nzgWgZr06DBw+5IPK8qX6f5619EuloZA2mkII8cWaFPjurfq+VAOrtuPWi4e5HcZH8bR2Jjo8d1vk5IRX3VT/y/KYmLxzy7gvmY+9B8+j3n1mvi+VrYkVFWZn3SXtv+BIj3kcvXsht8P4aOXdivAiOvOZB/8rrPNYEHX0ZG6H8dFMypcmKuh0bofx0UxKlSD6xYu3J/yC5bG2JurU2dwO46OZlCxOcNS7zxD8JbIxseRuyOO3J/zCuVk5vj3RF+ja87u5HUKWvG1zbpbt/5L/r1ELhRBCCCGEEEIIIYTIRdJNVQghhBBCCCGEEOIrpYF0U/3SSMs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKU0NaYf1pZEtIoQQQgghhBBCCCHEZyKVcUIIIYQQQgghhBBCfCbSTVUIIYQQQgghhBDiK6WhIbOpfmmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UpnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8pDaSb6pdGWsYJIYQQQgghhBBCCPGZSGWcEEIIIYQQQgghhBCfiXRTFUIIIYQQQgghhPhKachsql8caRknhBBCCCGEEEIIIcRnIpVxQgghhBBCCCGEEEJ8JtJNVQghhBBCCCGEEOIrpSndVL84GgqFQpHbQQghhBBCCCGEEEKInPcg7Gluh5ClvBb2uR1CrpCWcUII8QVbGrQjt0P4aB1K1SciOjK3w/goZnlMWXN2b26H8dFaFa9F5LI1uR3GRzFt34qVZ3bndhgfra1vHZad2pnbYXy09iXrcfTuhdwO46OUdytChdndcjuMj3akxzzWntuX22F8lJbFahK1679dBgCTujUJuHkqt8P4aNXylWRS4IrcDuOjDKzajv03gnI7jI9WI3+p//y1r61vHeYc/Se3w/ho3cs3z+0QxFdCKuOEEEIIIYQQQgghvlIym+qXRyZwEEIIIYQQQgghhBDiM/molnGnT5/m6tWraGhoUKBAAXx9fXMqLiGEEEIIIYQQQgghvjofVBkXHBxM69atCQwMxMzMDIVCQWRkJNWqVWP16tVYW1vndJxCCCGEEEIIIYQQ4j1pIN1UvzQf1E21V69eREVFcfnyZcLCwggPD+fSpUtERUXRu3fvnI5RCCGEEEIIIYQQQoivwge1jNu1axf79u2jQIECymUFCxZk9uzZ1K5dO8eCE0IIIYQQQgghhBDia/JBlXFpaWno6OioLdfR0SEtLe2jgxJCCCGEEEIIIYQQH09TZlP94nxQN9Xq1avTp08fnjx5olz2+PFj+vXrR40aNXIsOCGEEEIIIYQQQgghviYfVBk3a9YsoqOjcXV1xcPDA09PT9zc3IiOjmbmzJk5HaMQQgghhBBCCCGEEF+FD+qm6uzszJkzZ9i7dy/Xrl1DoVBQsGBBatasmdPxCSGEEEIIIYQQQogPpCHdVL84H1QZ90qtWrWoVatWTsUihBBCCCGEEEIIIcRX7Z0r42bMmPHOK+3du/cHBSOEEEIIIYQQQgghxNfsnSvjpk6d+k7pNDQ0pDJOCCGEEEIIIYQQ4gsgs6l+ed65Mu7u3bufMg4hhBBCCCGEEEIIIb56HzSb6itJSUlcv36dlJSUnIpHCCGEEEIIIYQQQoiv1gdVxsXFxdGlSxcMDQ3x8fHhwYMHQPpYcX/++WeOBiiEEEIIIYQQQgghPozGF/zv/9UHVcYNHTqU8+fPExgYiL6+vnJ5zZo1WbNmTY4FJ8T/s+vXrzN+/HgSExNzOxQhhBBCCCGEEELkkA+qjNu0aROzZs2iYsWKaLw2EGDBggW5fft2jgUnxP+r6OhomjVrhpubG3p6ejm2XldXV6ZNm/bB+e/du4eGhgbnzp3LsZiEEEIIIYQQQoj/J+88gcPrXrx4gY2Njdry2NhYlco5IXLC0aNHqVSpErVq1WLXrl3vnf/3339n06ZN/6kKpI4dO/LDDz/QunXr3A5F/Iec2nuY4zsCiImIwtrRjlrfNSWvt8db8z28cYdlY2Zj7WTHj+MGKZefDTjGxUNBvHj0DAA7NyeqtmyAo4fLe8UzMXIIbu7u9BvQj+LFi2eZ/szpM0ybOo27d+5gZW1F+/bt+ebb5ippDuw/wPx583n86BGOTk783L0bVatVU0mzft16li9bRmhIaKafGxoayuyZszhx/ATR0dEU9y3OgEEDyZs3r8p6Ll64wNw5c7l86TI6OjpYOtnSfmh3dHR131r2k3v+5fDW/cRERGLtZE+9Ds1xLeCZadr7126zZ+VmQp48IzkxGTNrC0rWqED5BtVV0h3dEUDQ3kNEhoRjmMcInzLFqdmmMTq6Om+N50MpFAoW/BvAprOniU6Ix8fBiUH1GuJhrX4PkJk9ly8yfOM6Kuf3ZlLLtirvBUdFMevAHo7evklicgp5LS0Z3rApBewdPkVRVATtOcTRbfuJjojCxsmOOh2a4/IOx8qD63fwHz0DG2d7uv055JPH+bpTew9zbPsB5fFdu32zdzu+r99h6ZhZ2DjZ8eP4wcrlZw4c4+LhIF48fAqAnZsz1Vq9+/H9oQ5s3c3O9ZuJCIvA0cWJtt06k79QgUzTnjp8goDtu3lw5x4pySk45nWiyXctKVyymDLNwZ37OLLvII/vPwTA1dOd5p3b4O6V75OW410UtfekbfHaeNvkxcrIjF92zOXQ3fO5HZbSid3/cnjrPmIiIrFxsqdex2+zOU/dYs+Kzbx48pzkxCTMrC0oVbOi+nlq+wFOvjpPmaSfp2q1afLpz1O7drDx6BGi4+PwcXFl8Lct8cjmXHLg/Dn89+7mYcgLUlJTcba25rtqNahfqkym6f327mbOti20rlKNAd98m+NlCNy+l70bthMZFoFDXkda/NiefIW8M0179mgQB3fs49Gd+6QkJ2Of14mGbZvjU6KISrq4mFg2L1vL2aOniIuJxcrWmuZd2lG4VLEcj/+VK4FBnN9zjPjIaMwdbCjbsjb2+TI/pzy5fo/tU5aqLW8xqjtmdlZqy28HXeLAwg24FPWidvdWOR77Kwe372Xfhh1Ehkdgn9eRFj9+h6dP1tvi0M79KtuiQdtvKOibsS2mDh3DzUvX1PL6lCxKj5GD1JZ/Kv/F6975A8c5s/MQsRHRWDraULltAxzzu70135Ob91n/5wIsHW1pN7qXcnlqSiqntgdy9chZYsKjMLe3okKLurgWzv8pi/HFkHqaL88HVcaVKlWK7du306tX+s79asMuWLCAcuXK5Vx0QgCLFy+mV69eLFy4kAcPHqj9YP4abdiwIbdD+M9JTk5GR+fT3ex/6a4cP8ve5Zuo2+lbnPO7cebAUVZP/JufJvyCqZV5lvkS4uLZMm8lbj75iImMVnnv/tVbFCzni1N+N7R1tDm27QCrJsyj659DMLEwe+d4ejbvyJJlS+nXuy+r163Bzs5OLf2Tx4/p16cvTZo1ZdQfo7hw/jx//fkXZubmVK+R/mPv4oULDB/2K127/UTValUJDAhk2C/D+HvRAgoVKgTA3j17mTp5CoN/GUyRokXZuGGjyucqFAoGDxyEtrY2EydPwsjIiJUrVtKre09Wr1uDgYGB8rP69OpDx86dGDhoIBZmFizeufadbmQuHj3NziX/0LBLK/J6uRO07zDL/5xDz8nDMbOyUEuvq6dLmTqVscvriI6eLg+u32bLwtXo6ulSsmZFAM4fDmLfqs00/akdzvndCX0azMZ5ywCo17G52jpzytJjh1l14hgjGjcjr4Uliw8fpNeKJaz7uTdGb2m1+zQighn7dlPMWf2HWFR8PD8uWUgJFzemt26PuZERj8LDyKOnn8mactalY2fYtXQDDb5vgbOXO6f3HWHFn3PpMWkYpplsn1cS4uLZNGcZ7oXyqx0rn9rlY2fYs2wj9TpnHN+r/ppPt7+GvvX43jxvBW4++YjN5Pj2KeeLUwdXtHV1OLZtPyv/nMtPE3556/H9oU4cPMLK+X607/Ej+Xy8CNyxlynDxzL276lY2lirpb9x6Qo+vkVp3qkthsZGHN4TwPTf/+S3aeNx8Uz/QXbtwmXKVq2IZ8H86OjqsmPdZiYNG8PY+VMwt7L8JOV4VwY6etwKfcSOa0cZV69brsbypvTz1PqX5ykPTu07zLLxs+k15bdMz1M6enqUqVsF27wO6Orpcf/6bbYsWIWOni6lXp2nDp1k76rNNO32HXlfnqc2zE0/T9XvmPMVWK8s3b+XlQEHGNGuPXmtbVi8Zxc958xi/a8jMNLP/JxiamhI51p1cLW1Q0dbi0OXLjF65XLMjfNQrkBBlbSX799n09Ej5HNw/CTxn/r3GOsWLKPNz53xKJifQzsPMOv3vxg55y8sbNQrpW5eukaBYoVo2qElBkZGHNt3kDl/TGLI5NHk9XAFICU5hem//UkeUxO6Du2NuZUF4S/C0Df4dOfY20GXObZ2NxXa1sfWw5lr/55h18yVtPi9O8YWplnmazG6B7r6GdcT/TyGammiQyM4sX4vdp6f9jfAqUPHWb9wOa27dcK9YH4O7zrA7N8n8tvsCZlui1uXr+FdrBCN27fA0Dh9W8z9YzKDJ43C+eW26Dqsr8pkh7FRMYzrPQzfCplX/H4K/8Xr3o0TF/h35XaqtW+MQz4XLgaeZPOUJXw3ti8mlmZZ5kuMS2DPgnU4F/AgLipG5b1jG/Zy7dg5anRqhoW9Nfcv3WDbzOW0/LUbNi6f/kGgEG/6oG6q48eP59dff+Xnn38mJSWF6dOnU6tWLfz9/Rk7dmxOxyj+j8XGxrJ27Vp+/vlnGjZsiL+/v8r7/v7+mJmZqSzbtGmT8gezv78/o0aN4vz582hoaKChoaFcx4MHD2jSpAnGxsaYmJjQsmVLnj9/rlzP77//TrFixVi2bBmurq6YmprSunVroqMzLkaJiYn07t0bGxsb9PX1qVixIkFBQcr3AwMD0dDQYPfu3RQvXhwDAwOqV69OcHAwO3fupECBApiYmNCmTRvi4uKU+apWrUrfvn2Vfy9fvpySJUuSJ08e7OzsaNu2LcHBwdl+d8HBwTRq1AgDAwPc3NxYsWKFWprIyEi6du2KjY0NJiYmVK9enfPn3/2pfWpqKl26dMHNzQ0DAwO8vLyYPn16juTx8/OjQIEC6Ovr4+3tzZw5c5Tvveouu3btWqpWrYq+vj7Lly8nLS2N0aNH4+TkhJ6eHsWKFVNpTfkq34YNG6hWrRqGhoYULVqUY8eOKdOEhobSpk0bnJycMDQ0pHDhwqxatUr5/vz583F0dCQtLU0l3saNG9OxY0fl31u3bqVEiRLo6+vj7u7OqFGjPunM0yd2BlKsahmKVyuLlaMttds3w8TSjDP7j2Sbb+fidfiU88XR01Xtvabd21OyVsX/sXfX0VEdbwPHv3F3d3fcNTjBobgXihQrpdCipdBSaH9tkdIWKcWLu0uwIMGCQ4KFQLAAcSOy2X3/WNhkk00IJCGUdz7n7DnJ3bl35+7Vfe4zM9i6OGBpb0PbwT2QSWXcv3Hnrerj4eHB2HFjsbGxYcvmLSrLb92yFVtbW8aOG4ubmxsdO3WifYf2rPn3X0WZ9evWU6t2LQYMHICrqysDBg6gZq2arF+7XlFm3Zq1dOjYgY6dOuHm5lbgcx9GR3P92nUmTJyAf4A/Lq4ujJ84nvSX6Rw8cECxnLlz5tG9Zw8+HfAp7h4euLq6ElCnKprFCPiG7jlCtSZ1qd60HlYOtrT5tCvGFmacDz6hsrydmxOV6tfA2skOM2sLKjeshWclPx7czO324eHtKJy83anUoCZm1hZ4VvajYr0aPL4X/cb6vCuZTMb6c6cZ0CCQJr7+eFjbMK1DZzKyszlw/WqR8+ZIpXy3fTNDApvgYFYwWLTq9AmsjY35rsMnBDg4Ym9qRi03DxzNC/9RUFrO7DlK1SZ1qPZq+7T6tAsmFmacDz5Z5Hy7/9lAhfo1cPRyLfM65pd7PNXF0sGWlv06Y2xhyoVDRdd579KNVKhXHQcVdf5k5Kvj29Xx1fHd89XxfbuM1gIObt1NYFBTGrVuhr2zPCvO3MqSI7sPqizfe9hA2nTriLuPJ7YOdnQd2Bsbezsunw1TlPl8wpc0bR+Es4cbdk4ODPzyc2QyGeGXr5fZehTXmegbLDm7k5B7l8u7KgWE7jlMtaZ1qdGsPtaOtrQZID9PnTuo+jxl/+o8ZeNkj5m1BVUU56m7ijIP70Th7ONOZaXzVHWelPF5al3IUQa2DKJp5Sp42tszvW8/MrKzOHDhfKHzVffypknlKrjZ2uJoaUWvxk3wtHfg8j3l7nbSMzP4bvUKJvfsjZF+wSBRaTi0fR/1WzSmQVAT7Jwc6D60H2aWFoTsPaSyfPeh/Qjq2h5Xbw9sHGzp9GkPrO1tuXbuoqJMaPAx0lJSGf7tV3j6+2BhbYVngA+O7mWX+Xrt0Gl86lfFt0E1zOysqNsjCEMzE8JDwoqcT8/IAH0TQ8VLXV3556lUKuXo0m1Ua98YI6vCHz6UhiPb91GvRWPqv9oW3Yb0w9TSguP7Dqss321IP1p2aYertwfW9rZ07N8Daztbrp27pChjYGSIiZmp4nXz8nW0dbSp1qBWma5LXv/F697FgycJCKxOhUY1Mbe3plHvdhiam3DtyNki5zuychs+dSpj5+lU4L2bpy9Rs10j3Cr7YGJtTqWmdXCp4MXF/UV/D8KHacGCBbi5uaGrq0v16tU5cUL19eu1kJAQpd9mixYtKlBmy5Yt+Pv7o6Ojg7+/P9u2bSur6gPvGIyrV68ep06dIj09HQ8PDw4ePIiNjQ2nT5+mevXqpV1H4f+xDRs24OPjg4+PD3379mX58uXIZLJiz9+jRw/GjRtHQEAAT58+5enTp/To0QOZTEanTp2Ij48nJCSE4OBgIiMj6dFDOe09MjKS7du3s3v3bnbv3k1ISIjSiMHjx49ny5YtrFy5kosXL+Lp6UlQUBDx8fFKy5k+fTp//vknoaGhPHz4kO7duzNv3jzWrl3Lnj17CA4O5o8//ih0PbKyspgxYwZXrlxh+/btREVFMWDAgCLXfcCAAdy/f58jR46wefNmFixYoBTAk8lktG3blpiYGPbu3cuFCxeoVq0azZo1K1D/wkilUhwdHdm4cSPh4eF89913TJ48mY0bN5ZoniVLljBlyhRmzpxJREQEs2bNYurUqaxcuVJpWRMmTGD06NFEREQQFBTE77//zuzZs/ntt9+4evUqQUFBdOjQgTt3lINHU6ZM4euvv+by5ct4e3vTq1cvRaAsIyOD6tWrs3v3bq5fv87QoUPp168fZ8/KL/7dunUjNjaWo0ePKpaXkJDAgQMH6NOnDwAHDhygb9++jB49mvDwcBYvXlymDytyJBKeRj3CrYKP0nT3Cj48unO/0PmuhJwl4VksgZ2DivU52ZlZSHOk6BkW/YOksPrUqlOba1dVB3GuXbtGrTrKT4nr1K1DRHiEYttcu3qN2rXzlalTR7HM7Oxsbt68Se18y8n7uVnZ2QBo58nq0tDQQEtTiyuX5YHo+Ph4bly/jrmZGYM/G0Srlq3o27evUnCsMBKJhKdRD/GopNzszrOSH9G3o944P8DTqIc8vH0PV//cZnYuvu48jXrIo7v35XV8FsvtSzfwrhZQrGW+iyeJCcSlplLHPbfZmramJtVcXLn66GGR8y49cQxTAwM6VlV9T3Di9i387ByYuGUDQXP+R98lC9h+segfbKUhRyLhSdRDPCopNzlyr+TLoyK2z6VjZ0h4FkvjLq3KuooFvD6e3Cvmq3NF3yKP78shZ0l4/g7Ht4FBSapbKEl2Nvfv3COgWmWl6QHVKhEZcatYy5BKpWS8fImBkWGhZTIzs8iRSIos8/+dRCLhyb2HeOY/T1X24+Hte8VaxpPX5ym/3POUs48HT+6pOE9VrVBqdc/vcVwcccnJ1PHNXRdtTS2qeXhyNap451yZTMa5Wzd58PwZ1TyUm+n+smkj9f0DqO2jupliSUmyJUTfjcKvakWl6X5VK3Lv5psffMHr4yIDfcPcff7K2Yu4+3qxbuEKvuk7nB9GTGDfxh1Ic6RFLOnd5UhyiI1+ioO/crNHB393nkUWfb3Y+uPf/PvNHPbMWcWTWwW32aXdx9E10se3QeHdXJSG3G2hvL/6Va3AvYi33BZGhZ9HQ4OPUT2wLjqFZG2Wtv/qde/5/Sc4Byh3N+AS4MnTyAeFznfjxAUSn8dTu2NTle/nZEvQyPdQVVNbiydFXEs/JlpofLCvt7VhwwbGjBnDlClTuHTpEg0bNqR169ZER6t++BMVFUWbNm1o2LAhly5dYvLkyYwePZotW3KTBE6fPk2PHj3o168fV65coV+/fnTv3l3xG7AsvFMzVYCKFSsW+GEsCKVt6dKl9O3bF4BWrVqRmprK4cOHad68ebHm19PTw9DQEE1NTaWmccHBwVy9epWoqCicnORPTlavXk1AQADnz5+nZs2agPyiumLFCoyMjADo168fhw8fZubMmaSlpbFw4UJWrFhB69atAXkQKTg4mKVLl/LNN7n9QPz444/Ur18fgEGDBjFp0iQiIyNxd3cHoGvXrhw9epQJE1T3xfDZZ58p/nZ3d2f+/PnUqlWL1NRUDA0L/uC4ffs2+/bt48yZM4rgxdKlS/Hzy71ZPXr0KNeuXeP58+eKQSJ+++03tm/fzubNmxk6dOgbv18tLS2+//57xf9ubm6EhoayceNGunfv/s7zzJgxg9mzZ9O5c2dFmddBrbzZZ2PGjFGUeV3/CRMmKPra+9///sfRo0eZN28ef/31l6Lc119/Tdu2bQH4/vvvCQgI4O7du/j6+uLg4MDXX3+tKPvFF1+wf/9+Nm3aRO3atTE3N6dVq1asXbuWZs2aAbBp0ybMzc0V/8+cOZOJEycq6uru7s6MGTMYP34806ZNe+P3+rbSU9KQSaUYmhgpTTcwMSI1MVnlPPExLzi6YTf9pn6BukbxLoJHN+zGyMwEt4Ci+9YorD4W5uaciY1TOU9cXBwW+bKizM0tyMnJITExEUtLS+Li4jC3yFfGwpy4OPkyExMTycnJwdxcuWla3s91dXXFzs6OBX/+xcTJk9DT02PtmrXExcURGxsLwOPHjwH58Tz6yy/x9vbmcPAhVvz4B6N+nYyFXeH9paUnpyJ9y23x2m8jviUtORVpTg5NurahetN6ivcq1qtBWnIqS6fNRYYMaY6Umi0aEtixZZHLLIm4VHnzDvN8wRlzAwOeJiUWOt+Vhw/Yefki/w4ZXmiZxwkJbL1wnt616zKwfiA3Hj9i9sG9aGlq0rZSldKovkrpyar3TUMTIyILaYIT9/Q5h9ftYuD0L4t9rJSm18eTgap9KqmI43v9Lvp/N7rYdT6yfjdG5ia4VSibvnNSklOQSqUYm5kqTTcxM+V6fGKxlnFgyy4yMzKpFViv0DKbl63BzMKcgHzBDSFX7nnKWGm6oYkRKW84T/06fErueapbW2o0q694r1L9GqQnp/LPd3MU56laLRoS2KkMz1Mp8vqaGykfH+ZGxsQkFP1gMfXlS9p8N5ksiQQNdXUmdOtB7TxBvYMXw7j56CErx40vYiklk6o4LpSbcRqbmZB8MalYyzi0bS9ZGZlUb5j7ICr22XNuXQ2nVuN6jJo+nuePY1i/aAXSnBza9upcxNLeTUZqOjKpDH1j5euFnpEBL5PTVM6jb2JIw77tsHSxIydbwp2z19gzdzXtxn6Knbc8gy/mbjS3Tl2i89TPS73O+b3eFkam+baFqQnJiYnFWsbh7XvJysykegPVTVDv347kyYNH9B09pKTVLbb/4nXvZUo6MqkUfWPl3zh6JkakXVcdGE2IieXU5v10m/R5oXV2ruDFpQMncfB2xdTanOiISO5dikAmLZsgtVB25syZw6BBgxg8eDAA8+bN48CBAyxcuJCffvqpQPlFixbh7OysGMjQz8+PsLAwfvvtN7p06aJYRosWLZg0aRIAkyZNIiQkhHnz5im1kipNxQ7GJScXfXHOy9jY+M2FBOENbt26xblz5xT9p2lqatKjRw+WLVtW7GBcYSIiInByclIE4kA+GrCpqSkRERGKYJyrq6siEAdgZ2enyC6LjIwkOztbEWQDeaCpVq1aREREKH1epUq5Hbna2Nigr6+vCMS9nnbu3LlC63vp0iWmT5/O5cuXiY+PVzSRjI6Oxt/fv0D5iIgINDU1qVGjhmKar6+vUpPeCxcukJqaioWFcuDi5cuXbzUq8qJFi/jnn3948OABL1++JCsriypVqrzzPC9evODhw4cMGjSIIUNyb1YkEgkmJso3SHnXLzk5mSdPnihtD4D69esXaHqbd3vY2dkB8ma9vr6+5OTk8PPPP7NhwwYeP35MZmYmmZmZGOQJSPTp04ehQ4eyYMECdHR0WLNmDT179kTj1cX/woULnD9/XikTLicnh4yMDNLT09FX0dTl9efk9dYj6ebrz0yG6s5apVIp2/9aTcMurYoMLOV1evdhbpy+RN8pI9Esbkfc+esjkxXd55qK8gDKU/OXKbiO+T8i7+dqamry0y8/M3PGj7Ro2hwNDQ1q1qpJ3Xq5P+5lUvnnftK5M+07tAegds1a7D8azMVjp2nRq2Ph66C6msAb1h0YNH0MWRmZPLxzn+B1OzC3taJSffk+HnXjNse3HaDdoB44eroQFxPLvpWbOWZqTOMurd9cn2LYf+0KP+3dpfh/bs8+r1ZFxXdecAUBSMvM5LvtW5jctgOm+oVnBkhlMvzs7RnRtAUAPrZ23It9zpYL58o0GJdLxb6mYpWkUilb/1xF466ti32slJUCu49MpnI7SKVStv21isAuxa9z6K7D3Dh9kX7fjir+8f2OCq6GTMXKFXTm6Em2/7uJ0dPGY2yquv+pvZt2cPbYSSb88n2xBlr5f6/AufLNHXwP/v4rMjMyeXTnPgfX7sAi33kqZNt++XnKy5X4mBfsXbEZwy37aFJK56l9Yef4aUPuj6K5n494tSr5r39vbkWhr6PDmvGTSM/M5PztW8zdvhUHC0uqe3kTk5DA7C2b+WPEKHTeQ3+0Bc+zqs9J+Z0PCWX32q0MnzpW6biQSWUYmRrTd9Rg1DXUcfF0Iyk+gYNb95RJMO5dmNpaKg3UYOPhRFp8EleDT2Pn7UJWRiZHl22nYb926L4hI7805T8Girrm5XU+JJQ9a7cx7NuvCgT0Xgs9eAx7F0dcvd88cELp+y9e9wqepFRtCalUyv7FG6jTqTlmKgb/eK1R73YcXrGN1ZPngpoaJtbm+DeoRvjJi4XOI7wfhf0OUvVbKCsriwsXLjBx4kSl6S1btiQ0NFTl8k+fPk3LlsoPhoKCgli6dKmi3/HTp0/z1VdfFSjzOoBXFoodjDM1NS32CBw5OTnvXCFBeG3p0qVIJBIcHHI7zJXJZGhpaZGQkICZmRnq6uoFmq1mv2qGVpTCggL5p+cfEEBNTU0RCFMECooRcMi7HDU1tSKXm19aWhotW7akZcuW/Pvvv1hZWREdHU1QUBBZWVmFrp+quuUllUqxs7Pj2LFjBd7L3w9fYTZu3MhXX33F7NmzqVu3LkZGRvz6669FpvO+aZ7X38OSJUsKNEnUyPeky0BFc6p32R55P3f27NnMnTuXefPmUbFiRQwMDBgzZozSd92+fXukUil79uyhZs2anDhxgjlz5ijel0qlfP/990pZe6/pFtIs4aefflLKGASYNm0a7m3f3KeIvpEBaurqBTKv0pNSCmTTAGS9zORp1ENiHjzmwEp5sFsmk4FMxqz+4+g9YRiueZoGnNlzlFM7D9F74nBsnN/cwW1h9YlPSCiQ2faahYWFIsPttYSEeDQ0NDB5tT9aWFgQn79MfDzmrzLqTE1N0dDQKLCc/J/r5+fHv2vXkJqaSnZ2NmZmZnz26UB8/eUZEZavOn13c1MescvK3pak2ISi191Y3t9NaqLy0+a0pFSV2yIvs1edQ9s4O5CalMLRzXsVP3IPb9xD5Ya1FNlyNs4OZGdmsnPJOgI/CSrQx867aOjtS4CDo+L/rFfX8ri0VCzzPJRISE/D3EB1E8DHCfE8TUpk3Ia1imnSV+ejujOns2n4aBzNzbE0NMTNUrnDfldLK47eDC/xehRF3/jVvpkvoywtORVDY1XHSgZP7kXz9P4j9q7YDOQeKz/0GUO/SSPKLJNMUWfF8ZRvn0pWvU9lvczg6b2HxNx/zP6VW5TqPLPfWHpPHKaU3Xp6zxFO7Qymz6QRxTq+35WRsRHq6uokJSQqTU9OTMLETPUP19fOhpxi+byFjJg8loBqlVSW2bd5J7vXb+Wbn77DqQz7xfoY5J6n8h8HKQWyZ/J7fZ6ydXYgNTGZI5v25DlP7aZyYC1FtpytswNZmVns/HstjUrpPBVYoRIVXFwV/2e96sYgLiUZyzwP7BJSUrAwKjo5QF1dHadXI0P7ODpx/9kzVhw6SHUvb24+jCY+NYX+v/1PUT5HKuVS5F02nQjh1Ozf0SiF9TEs5LhISUwuNOj8Wtjx06yav4ShE0fjV0W5aaWJufx6qK6RW0dbJ3uSExKRZEvQ1HrnxlEq6Rrqo6auRnq+LLiXKWnoGRe/6bu1uyN3z14DIOVFAqlxiRz4K7df2Nf3t/8Mn0H3H0ZibFV6/Yy+3hbJ+bdFUlKhwbXXwk6c4d/5/zB44hf4VlHdLDsrI5OwE2do16fsBl1S5b943dMz0kdNXb3AwEMvk1PRNyl4/5Gdkcnz+495Ef2UY//uUqrz/EHf8sm4gTj5e6BvbEj70f2QZGeTkZqOgakxpzYdwLiIgZA+JhqyD3c01cJ+B02fPr1A2djYWHJycrCxsVGabmNjQ0xMjMrlx8TEqCwvkUiIjY3Fzs6u0DKFLbM0FPtMnLd/pPv37zNx4kQGDBigGD319OnTrFy5UmVaoCC8LYlEwqpVq5g9e3aBKHaXLl1Ys2YNo0aNwsrKipSUFNLS0hSBmcuXLyuV19bWLhAg9vf3Jzo6mocPHyqy48LDw0lKSlJqylkUT09PtLW1OXnyJL179wbkgcCwsDClwRdK6ubNm8TGxvLzzz8r6hoWVnTfSn5+fkgkEsLCwqhVSx7MuXXrFol50uyrVatGTEwMmpqauLq6vlPdTpw4Qb169RgxYoRi2puy6t40j42NDQ4ODty7d0/RB1txGBsbY29vz8mTJwkMDFRMDw0NVXwHxXHixAk6duyoaB4tlUq5c+eO0n6hp6dH586dWbNmDXfv3sXb21upv8xq1apx69YtPD09Cyy/MJMmTWLs2LFK03R0dNhwVXWnwXlpaGpi5+ZI1PXb+NbM/aEadf023tUL3hTq6Okw5CflZjcXDp3iQfgdOo8egGmem9vTu49wakcwvSZ8jr178UYxK6w+586eI7BRoMp5KlasyIkTyh3onj1zFj9/PzQ15ZeqipUqcvbsOXr16Z1b5uxZKr7KdNTS0sLX15dzZ8/RuEmTN37u6ybe0dHRREREMHS4vBmMnb09VlZWPHig3C9JbMxzvCoXzETNS1NTEzs3JyKv3cS/Vm7fWJHXbuJb4y2azclk5GTnDviRnZVVMANQXZ236ELzjQx0dJRGSJXJZFgYGnL23l18bOUZpNk5Ei4+uM+oVxlt+blYWrJu6EilaQuPHSY9K5NxLdtg86pZXCUnZx7ExSqVi46Lw9bEtPRWSAUNTU3s3Zy4d/UWfjVzt8+9azfxqV5w++jo6TL8F+Unr+cPniQq/Dbdx3yGqVXZj9aZezzdUj6+r90q5PjWZejPyl0eXDh0kvs37tDly4EFju+T2w/Sa8KwYh/f70pTSwtXL3duXLpK9TyjCIZfukqVOjULne/M0ZMsm7uAYRPHULm26j4I923awa51Wxg381vcyiXj5L9FU1MTe3cnIq/exL9WFcX0yKs38a2hOtipigx5306vZWdmoaamHKBSL+3zlK6u0gipMpkMC2Njzt66iY+j/B4pWyLhYuRdvmhfjCzmPGQymSK4V9Pbh3UTpii9/8Pa1bja2NC/WctSCcQBaGpp4uzpRsTl61Stl3scRFy+Vuj+DvIsrFW//82gb0ZRsWbBvtQ8/Lw5FxKKVCpVBEGfPY7BxNy01ANxABqaGlg62/E44h5uVXP7JnsccQ+Xyj5FzKks7mEMeq+CLSa2lnT5TnkU4rAdR8nOyKRuj1YYvCGI/7YU2+LSdarUzd0WNy9fp9IbtsW/85cw8OuRKrfFaxdOnkWSLaFW4/qFlikL/9XrnrWrPdE37uJZPbdv3Ojwu7hXKXgfpq2rQ58Zo5WmXT1ylkcRkbQZ2RuTfEFbTS0tDM1MyJHkcPfCdbxqim4Nylthv4OKUpwEjDeVzz/9bZdZUsU+Gzdq1Ejx9w8//MCcOXPo1auXYlqHDh2oWLEif//9t1KfToLwLnbv3k1CQgKDBg0q0DSxa9euLF26lFGjRlG7dm309fWZPHkyX3zxBefOnSsw4qqrqytRUVFcvnwZR0dHjIyMaN68OZUqVaJPnz7MmzcPiUTCiBEjaNSokVLTx6IYGBgwfPhwvvnmG8zNzXF2duaXX34hPT2dQYMGldZXgbOzM9ra2vzxxx8MGzaM69evM2PGjCLn8fHxoVWrVgwZMoS///4bTU1NxowZg56enqJM8+bNqVu3Lp06deJ///sfPj4+PHnyhL1799KpU6difQ+enp6sWrWKAwcO4ObmxurVqzl//nyBjKK3nWf69OmMHj0aY2NjWrduTWZmJmFhYSQkJBQ4Uef1zTffMG3aNDw8PKhSpQrLly/n8uXLKkeSLap+W7ZsITQ0FDMzM+bMmUNMTEyBIG2fPn1o3749N27cUATuXvvuu+9o164dTk5OdOvWDXV1da5evcq1a9f48ccfVX5uYanYxVW7dWN2LFyDnbsTjp6uXDoaSlJcAtWayTOpjm7YTUpCEh2G9UFNXR1rJzul+Q2MDdHQ0lSafnr3YUI276PTiH6YWJorsii0dXXQ1i26rnnrU9/ch1WrV/EsJobOXeTZgn/9+Rcvnj9n+g/yp2Cdu3Rm08ZNzJszl46fdOLa1Wvs3LGTGTNzv68ePXsybOjnrFqxksDGjTh+LIRzZ8/x99IlijK9+vRm+nfT8PXzo2Klimzfuk3pcwEOHzqEqakZtra23L17l7mz5xDYqBF16tQB5BfiPv36smTx33h5eeHt482Kg8uJffyMnmPefGzXa9uUrX+twsHdGSdvN8IOnSIpNp6azRsCELxuB8nxSXQZ2R+AswdCMLE0x8pe/jTuwa1ITu0+TO1Wudddn2oVOL33KHZujjh6uhIX84IjG3fjW71iqWSbqKKmpkbPWnVZceoETuYWOJtbsPzUcXS1tAiqkPuDfdqOLVgbGTOyaQt0NLXwsFZ+qmj06odz3um9a9dj0IolLD8ZQnP/Ctx48pjtl8KY3KZDmaxLXnXaNmHbX6uxd3fC0duNC4dDSYpNoEbzBgAcWreTlIQkPhnR79WxopwtZmBiiKaWVoHpZUlxPLk54ejlysUjp18d3/IfdUfW7yIlIYmOw/uqPL71jQ3RzHd8h+46TMjmvXQa2R9Tq7c7vt9Vy87tWPLrH7h6eeDp503IvkPEPY+lSVv5Q7dNy9aQGBfPkG++AOSBuH9++5Pewwbi4etFUrw8M1VLRxv9Vw/g9m7awbZV6/l8wpdY2lgpyujo6aKb55pXHvS0dHA0yc0AtTe2xMvSkeSMNJ6lFp1lW9bqtW3Glj9XYu/hjJOXO2GHT5IUG0+tFvLj4ODaHSTHJ9J1lPyevsB56mYkp3Ydok6rxopl+lSvSOieI9i5OuLkJT9PHd6wC98aZXue6tWoCcuDD+BkaYWTlTUrgg+gq6VNUPXcgMq0f1diZWLKqFcBuuXBB/B3csbB0gpJjoRT4TfYc/4sE7vL+5w10NXF0175GNfT0cHEwLDA9JJq3qk1y+csxMXTDXc/L07sP0LCizgC28j7od22Yj2JcQkMHCfvh/N8SCjL5yyi+9B+uPl6KrLqtLW10TOQN+cMbNOco7sPsvHv1TRp35LnT2LYv2kHTdoXb0CXd1GxeV2OLd+GlYsd1u6O3DxxkdT4JPwC5YGsc9sOk5aYQpOBnQC4dugMRpammNlZkZOTw92z14i6GEHzz7sB8uCYuYNyM0ltffn1JP/00tK0U2tWzlmIi5c7br6enNp/lIQXcTRsLd8W21duIDEugQFj5UHC8yGhrJy7mG5D+ha6LV4LDT5G5TrVVWajlbX/4nWvWssGHFiyCRtXB+w8nbkWcp6UuCQqNpE/YD+16QCpickEDemGmro6lo62SvPrGxugoaWlND0m8iGpCUlYOduTmpjEme2Hkclk1Gij+kGx8P68ze8gS0tLNDQ0CmSsPX/+vEBm22u2trYqy2tqaiq6bCqsTGHLLA3v9Gjk9OnTKoeCrVGjhqITPUEoiaVLl9K8efMCgTiQZ8bNmjWLixcvUq1aNf7991+++eYb/v77b5o3b8706dOVBh/o0qULW7dupUmTJiQmJrJ8+XIGDBjA9u3b+eKLLwgMDERdXZ1WrVoVOaKpKj///DNSqZR+/fqRkpJCjRo1OHDgAGZmpZfubGVlxYoVK5g8eTLz58+nWrVq/Pbbb3ToUPSP1uXLlzN48GAaNWqEjY0NP/74I1OnTlW8r6amxt69e5kyZQqfffYZL168wNbWlsDAwGKfdIYNG8bly5fp0aOH/Ia4Vy9GjBjBvn37SjTP4MGD0dfX59dff2X8+PEYGBhQsWLFN2Ycjh49muTkZMaNG8fz58/x9/dn586deHl5FTlfXlOnTiUqKoqgoCD09fUZOnQonTp1IilJuSPlpk2bYm5uzq1btxSZka8FBQWxe/dufvjhB3755RdFxlZZnh/961QlPSWNk9vkNydWjnb0/GYoJpbyp4GpiclvbGKZ34VDp8iR5LBl/gql6Q0/CSLwDaNr5a3PwRVbcPfwYO7vcxV99MXFxvIs5pmivL2DA3N/n8e8OXPZvGkzllaWjPt6HE2b5Y6IValyJWbM/JHFCxexeNFiHB0dmfnTLCpUyM0OatGyBUlJSSz7ZymxsbEFPhcgNjaOeXPnER8Xj6WlJa3btmHQYOUgW6/evcjKymLe3LkkJyXj5+fHp1NGYW6r3LRSlYr1qvMyNY1jW/aRkpiMtZMdfSeOUGQkpSQkkxSb27G4TCbj0LqdJLyIQ11dHXMbS1r06kiN5rlPzxt1boWamhqHN+wmOT4JA2NDfKpXoFmP9m+sT0n0r9uAzOxsftm/m5SXGQQ4OPBH7/5KGXTPkpJQf8unhv72DvzSrRcLjgSz9EQI9qamjG3RmlYVK7955hKqULcaL1PSCNl6gNTEJKyd7OgzYZhi+7zLsVLWAupW42VqOieUju/Plesc97bH90n58f37cqXpDTsH0aiU+vfKr3aj+qQlp7JzzWaSEhJwcHHiqxmTsbSRH1dJ8QnEPc/NmDy2N5icnBxW//UPq//6RzG9fvNGDP56FABHdh1Aki3hrx9nK31Wxz7d6NRP9UBC74uvlQt/fpL7AGl0A3mQYW/EaWYeKd9B0CrWq056yqvzVEIyNk529Js4QpH1kpqYpLRPyaQygtfuyHOesqJl746KH/MgP08BHN6wK895qiLNe5bxeapZCzKzs/nf5g2kpKcT4OLKH8NHKWXQxSQkKGU3ZGRl8b9NG3ielIiOlhYu1jb80G8ALasVngFVVmoE1iU1JZU967eRHJ+IvYsjo6Z/g4X1q+MiIZH4F7ndLxzfdwRpTg7rF65g/cIViul1mjVkwFfyIJG5lQVf/jCRTf+sZsaoSZhamNG0QyuCupTdtvCoGUBmWjoX9xwnPSkVc3trWo3qjZGFKQDpSamkxefeS0lzcji7OZi0xBQ0tTQxtbciaFQvnCsW/56ttNVoWIe05BT2vtoWdi6OjJj2DRavmmcnxyeS8CL3HHVyv3xbbFi0kg2Lco/pOk0b0v+r3EEnnj1+SmT4bb74QfVAbWXtv3jd865diZdp6ZzdeYT0pBQsHGzo+NWniialaUkppMQlvtUyJdnZnN4WTNLzBLR0tXGt5EPQkO7o6Jfvg5v35iMZqEJbW5vq1asTHBzMJ598opgeHBxMx46qM6Lr1q3Lrl27lKYdPHiQGjVqKLovqlu3LsHBwUr9xh08eJB69QofNKqk1GT5O9wqBh8fH9q1a8fs2co3PuPGjWP37t3culW8IeoFQRCEoq06v7e8q1Bi/Wu2ITGleKPCfahMjUzYcCm4vKtRYj2qtiBp9YbyrkaJmPTrwdqLB8q7GiXWu1oQq8MKf3DxX9GvRmtCo66WdzVKpJ5bJer/NezNBT9wp0YuYuPlQ+VdjRLpXqU5yfv/2+sAYNyqOUfvFN2lyH9BE68a/Has+K0LPkRfN+7D4dvny7saJdbMu+Z//trXu1oQC0K3lHc1SmxEvffb719pSSnmqMDlwaiY/ZW/tmHDBvr168eiRYuoW7cuf//9N0uWLOHGjRu4uLgwadIkHj9+zKpVqwCIioqiQoUKfP755wwZMoTTp08zbNgw1q1bpxhNNTQ0lMDAQGbOnEnHjh3ZsWMH3377LSdPnizQj3lpeafMuLlz59KlSxcOHDigaNZz5swZIiMj2bLlv3+ACYIgCIIgCIIgCIIgCB+WHj16EBcXxw8//MDTp0+pUKECe/fuxcVFPoDT06dPiY6OVpR3c3Nj7969fPXVV/z111/Y29szf/58RSAOoF69eqxfv55vv/2WqVOn4uHhwYYNG8osEAfvGIxr06YNd+7cYcGCBdy8eROZTEbHjh0ZNmyYooN5QRAEQRAEQRAEQRAEoZyV5mg6H4ARI0YoDQiYV/4+5EE+BsLFixeLXGbXrl3p2rVraVSvWN55OB1HR0dmzZpVmnURBEEQBEEQBEEQBEEQhI/aOwfjEhMTWbp0KREREaipqeHv789nn32mssN9QRAEQRAEQRAEQRAEQRDgncYZDwsLw8PDg7lz5xIfH09sbCxz5szBw8Pjjal/giAIgiAIgiAIgiAIwnsik324r/+n3ikz7quvvqJDhw4sWbIETU35IiQSCYMHD2bMmDEcP368VCspCIIgCIIgCIIgCIIgCB+DdwrGhYWFKQXiADQ1NRk/fjw1atQotcoJgiAIgiAIgiAIgiAIwsfknZqpGhsbKw0V+9rDhw8xMjIqcaUEQRAEQRAEQRAEQRCEUiCVfbiv/6feKRjXo0cPBg0axIYNG3j48CGPHj1i/fr1DB48mF69epV2HQVBEARBEARBEARBEATho/BOzVR/++031NTU6N+/PxKJBJlMhra2NsOHD+fnn38u7ToKgiAIgiAIgiAIgiAIwkfhnYJx2tra/P777/z0009ERkYik8nw9PREX1+/tOsnCIIgCIIgCIIgCIIgvCuZtLxrIOTzVsG4zz77rFjlli1b9k6VEQRBEARBEARBEARBEISP2VsF41asWIGLiwtVq1ZFJvv/29GeIAiCIAiCIAiCIAiCILyLtwrGDRs2jPXr13Pv3j0+++wz+vbti7m5eVnVTRAEQRAEQRAEQRAEQSgJkUz1wXmr0VQXLFjA06dPmTBhArt27cLJyYnu3btz4MABkSknCIIgCIIgCIIgCIIgCG/wVsE4AB0dHXr16kVwcDDh4eEEBAQwYsQIXFxcSE1NLYs6CoIgCIIgCIIgCIIgCMJH4Z1GU31NTU0NNTU1ZDIZUqkYnUMQBEEQBEEQBEEQBOGDIhUtGT80b50Zl5mZybp162jRogU+Pj5cu3aNP//8k+joaAwNDcuijoIgCIIgCIIgCIIgCILwUXirzLgRI0awfv16nJ2dGThwIOvXr8fCwqKs6iYIgiAIgiAIgiAIgiAIH5W3CsYtWrQIZ2dn3NzcCAkJISQkRGW5rVu3lkrlBEEQBEEQBEEQBEEQhBIQA25+cN4qGNe/f3/U1NTKqi6CIAiCIAiCIAiCIAiC8FFTk8lEiFQQBEEQBEEQBEEQBOFjlPI0pryrUCgjO9vyrkK5KNFoqoIgCELZmrJvcXlXocRmtv6cFynx5V2NErEyMmfy3kXlXY0Sm9VmGInjvi3vapSI6ewf2XLlSHlXo8S6VG7KF9vmlHc1SuyPT8Z+FMf3xsuHyrsaJda9SnPq/zWsvKtRIqdGLuLonbDyrkaJNfGqwbzjG8q7GiU2JrAHC0K3lHc1SmREvS5M3f93eVejxGa0Gvqfv2b88clYph34p7yrUWLfBw0u7yq8G5m0vGsg5PPWo6kKgiAIgiAIgiAIgiAIgvBuRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyUVQwV8aERmnCAIgiAIgiAIgiAIgiC8JyIYJwiCIAiCIAiCIAiCIAjviWimKgiCIAiCIAiCIAiC8LGSiWaqHxqRGScIgiAIgiAIgiAIgiAI74kIxgmCIAiCIAiCIAiCIAjCeyKaqQqCIAiCIAiCIAiCIHysRDPVD47IjBMEQRAEQRAEQRAEQRCE90QE4wRBEARBEARBEARBEAThPRHNVAVBEARBEARBEARBED5WUml510DIR2TGCYIgCIIgCIIgCIIgCMJ7IoJxgiAIgiAIgiAIgiAIgvCeiGaqgiAIgiAIgiAIgiAIHysxmuoHR2TGCYJQpGfPnvHDDz+QkJBQ3lURBEEQBEEQBEEQhP88EYwTBMDV1ZV58+a91+Wpqamxffv2En3O9OnTqVKlSomWURSZTEa/fv3Q0dHBzMzsreYt7e/0bQUGBrJ27dpy+/y8vv76a0aPHl3e1RAEQRAEQRAEQRA+ACIYJ/yntW/fnubNm6t87/Tp06ipqXHx4sX3XCs4f/48Q4cOfe+fW9p++ukn3N3dmTBhwlvPW57fwe7du4mJiaFnz56KafmDgzKZjHHjxmFkZMSRI0cAaNy4MWPGjCmwvLVr16KhocGwYcNUft7ixYupXLkyBgYGmJqaUrVqVf73v/8p3h8/fjzLly8nKiqqdFZQEARBEARBEAShuKSyD/f1/5ToM074Txs0aBCdO3fmwYMHuLi4KL23bNkyqlSpQrVq1d57vaysrN77Z5aFyZMnv/O85fkdzJ8/n4EDB6Kurvp5Q05ODkOGDGHXrl0cOXKEmjVrFrm8ZcuWMX78eBYuXMicOXPQ19dXvLd06VLGjh3L/PnzadSoEZmZmVy9epXw8HBFGWtra1q2bMmiRYuUgnSlrbazPw3cKmOko8/z1AT2RITyICGm0PIa6uo09ahOZQcvjHT0ScpIJSTyEhce3QLA38aNxh5VMdc3RkNNnbj0JE5GXeXykzulVuetm7awbvUa4mLjcHV348txY6hctUqh5S9duMgfc+dz/14UFlaW9OnXh05dOyvevxd5j6WLlnDr5k1insYweuyXdO/ds9DlrV6+ksV/LaJbr+58Oe6rUluv2s4BNHTPsy3CT3H/TdvCswZVHLww0pZvi2ORFxXbopqDD10rNykw33f7lyCR5pRavVXRbdkU7To1UNPXI+fBI9K37kL67Hmh5Q2HD0LT063A9OzwW6QtXQ2Adt1a6NSrhbq5KQA5Mc/JCD6K5Gbp7VuvnTkQwomdwaQkJmHtaEfbAd1w8/NSWfb+zbvsX7ONF4+fkZ2ZhamVObWaN6RBu2ZK5V6mpXNw3Q7Cz13mZVo6ZtaWtOnXBZ9qFUq9/q81dKtMM68aGOsa8DQ5jq3XjhEZ91hl2b7VgqjtElBg+tPkWGYdXgVAPdeK1HLyw87YEoCHic/YFX6qyHPG2yqP43vb5q1s37yVp0+fAuDm7s6AwZ9Rt37dUluvsweOc3LXIVJf7VOtP+2Kq5+nyrIPbt7l4JodvHiSu0/VbN6Aem2bKpUL3XOEc8EnSIpNQN/YgIDaVWnRqyNa2lqlVu93VdnOk95VW+Jr7YylgSkT9y7kRNSV8q4WAMf2BBO8dQ9J8YnYOzvQbUg/vCr4qix7KfQ8IXsP8ejeAyTZ2dg5O9KudxcCqldSKpeemsaO1Ru5FBpGemoaljZWdBnUh4o1q5TZelw/eo7LB06SnpSKmb0V9Xu0xt7bVWXZx7ei2Pnb8gLTe/7wBWZ28nuv8ONh3Dp9mfgn8nO1lYs9tT9pjo2bY5mtA8CVI2e4uO8EaYkpWDhYE9i7LQ7eBa8H+T2584DNPy/BwsGGPj98oZieI8khbM8xIk5dIjUhGTM7S+p3a4VrRe8yW4daTv40cKuE4avr976bp4u+l1JTp4lndSrbe2Koo09yRhohkZe4+Pj1vZQrge7K91Kn7l/jSineS6nyX7xm5HfnxCVuHj7Py+RUTGwtqdqlKdYehe/DOdkSbhw4zf3z4WQkp6FnakhAy7q4160IQNLTWK7tPUn8w2ekxydT9ZMm+DSpUWb1F4Q3EZlxwn9au3btsLa2ZsWKFUrT09PT2bBhA4MGDQIgNDSUwMBA9PT0cHJyYvTo0aSlpRW63OjoaDp27IihoSHGxsZ0796dZ8+eKZXZuXMnNWrUQFdXF0tLSzp3zv3BkD8L686dOwQGBqKrq4u/vz/BwcEFPnPChAl4e3ujr6+Pu7s7U6dOJTs7W6nMzz//jI2NDUZGRgwaNIiMjIwiv59jx46hpqbGgQMHqFq1Knp6ejRt2pTnz5+zb98+/Pz8MDY2plevXqSnpyvm279/Pw0aNMDU1BQLCwvatWtHZGSk4v1Vq1ZhaGjInTu5NxJffPEF3t7eiu81/3egpqbG4sWLadeuHfr6+vj5+XH69Gnu3r1L48aNMTAwoG7dukqfExkZSceOHbGxscHQ0JCaNWty6NChItc5NjaWQ4cO0aFDB5XvZ2Zm0q1bN4KDgzl+/PgbA3H3798nNDSUiRMn4uvry+bNm5Xe37VrF927d2fQoEF4enoSEBBAr169mDFjhlK5Dh06sG7duiI/qyQq2nrQxq8eIZGX+OvUFu4nxPBpjTaY6BoWOk+vKi1wt3Rg27UQ5h5fz8bLh3mRmqh4/2V2BsciL7L49Hb+OLWZC49u0bliYzwtS+dm/vDBQ8yfPY/+nw1g2ZqVVK5ama9HjyUmRvWN3ZPHT/jmy3FUrlqZZWtW0n/gp8z7bS7HDh9VlMnMyMDe0Z5ho0ZgYWFR5OdH3Ahn57YdeHip/hH9riraedDWvx7H7l7kz5ObuR//lE9rti16W1RtgYeFA1uvHmPO8fVsyLctADKyM5l1aKXSq6wDcTpNGqLTqB4vt+0mZd5CpCkpGH4+AHS0C50nbcVakqb/rHgl/zIfWU4O2VevK8pIk5J4uecgKXMXkjJ3IZK79zAY2Ad1G+tSrf/V0DD2rNhE486tGPW/ybj6ebJy1l8kxsarLK+to0PdoMYM/X4sX82dRpPOrQnesJNzh04oykgkEpb9OJ/EF/H0HjuUr+ZN55PP+2D8KrBYFqo5eNO5UmMO3DrL/47+S2TcY4bX+wQzPSOV5TdfPcrkvYsUr6n7/iYt6yWXHueesz0tHbnw6BbzT25iTsg64l+mMKJe5yL307dRXse3lbUVw0aN4J9Vy/ln1XKq1ajOpHHjuRd5r1TW61roBfat3EyjT4IY/vMkXHw9Wf1T4fuUlo4OtVs1YtD0MYyeM5VGnVtxaMMuzh86qShz5cQ5gtftoEnXNoyeM5VPPu/L9dMXCV63o1TqXFJ6WjrcjXvEnOPry7sqSsKOn2bTktW07t6RKfNn4hngy5/TfyH+eazK8neu38SvSgVGTf+GSfNm4lPJnwUzfiM68r6ijCRbwu9TfybuWSxDJ43m+8W/0veLwZhZvF1XHW/j7vlrnNqwj2ptG9Htu+HYebmwZ/6/pMQlFjlfrxmj+fS3bxQvE5vcY+LJrft41apEx3ED6TxxCEbmJuyeu4rUhOQyW4/bZ69yfO0earZrTO/vR2Hv7cqOOStJfsN6ZKZncHDJJpz8PAq8d3prMNeOnadRn/b0mzmGio1rsfuPf3n+4EmZrEMFW3da+9Ul5N4lFoZu5UFCDP2qt8ZE16DQeXpUaY67hT3brh/n9xMb2HjlMC/SEhXvp2dnEhJ5iSVndvDnqc1cfHybTyo0KrV7KVX+i9eM/KIv3uTS1iP4t6xD0PhPsfJw5PjCzaTFF74Phy7fxbNbD6jVO4g23w6i3oD2GNuYK96XZGVjaGFK5faB6BoXvk0F4X0RwTjhP01TU5P+/fuzYsUKZHlGiNm0aRNZWVn06dOHa9euERQUROfOnbl69SobNmzg5MmTjBo1SuUyZTIZnTp1Ij4+npCQEIKDg4mMjKRHjx6KMnv27KFz5860bduWS5cucfjwYWrUUP1kRSqV0rlzZzQ0NDhz5gyLFi1S2ezTyMiIFStWEB4ezu+//86SJUuYO3eu4v2NGzcybdo0Zs6cSVhYGHZ2dixYsKBY39P06dP5888/CQ0N5eHDh3Tv3p158+axdu1a9uzZQ3BwMH/88YeifEpKCl999RXnz5/n0KFDyGQyPvnkE6RSKQD9+/enTZs29OnTB4lEwv79+1m8eDFr1qzBwKDwi9uMGTPo378/ly9fxtfXl969e/P5558zadIkwsLCAJS2S2pqKm3atOHQoUNcunSJoKAg2rdvT3R0dKGfcfLkSUWwL7/U1FTatm3LjRs3OHXqlMoy+S1btoy2bdtiYmJC3759Wbp0qdL7tra2nDlzhgcPHhS5nFq1avHw4cM3lntX9d0qcuHRTcIe3eRFWiJ7I0JJykiltrO/yvJelk64mtuxKmwfkXGPSXyZyqOkF0Qn5gado+KfEv7sPi/SEolPT+b0g+s8S4nD1cy2VOq8fs062nVsT/tOHXB1c+XLcV9hbWPN9s1bVZbfvmUbNrY2fDnuK1zdXGnfqQNtO7Rj3b+5fQP6Bfgz8ssvaB7UosiMkvT0dL6fOp3xUyZiZKT65vRdNXCrxIWHudtiz+tt4VL4tnAzt2dl2N5X2yKFR0nPlbYFgAxIzXqp9CprOoH1yDgUQva1cKQxz0lftwU1bS20q1YudB7Zy5fIUlIVLy1vD8jOJutKbjBOEn4Lyc3bSGPjkMbGkbHvELKsLDRdnEq1/id3H6Z603rUbNYAa0c72g3ojomlGWcPHldZ3t7NicoNamLjZI+ZtQVVA2vjVdmf+xF3FWUuHAnlZWoafb8ZhouvB2ZWFrj6emLnWnY/rJp4Vuf0/euvjsF4tl47RsLLFBq4qd4OGZIsUjLTFS9nMxv0tHQ58yB3G6wK28eJqCs8TnrBs9QE1l0MRk1NDR+r0tkG5XV8NwhsSN0G9XB2ccbZxZnPRw5DT1+P8GvXVZZ/W6F7DlOtaV1qNKuPtaMtbQZ0xdjCjHMHT6gsb+/mRKX6NRT7VJWGtfCs5MeDm7n71MM7UTj7uFO5QU3MrC3wrOxHxXrVeXKv8Gvd+3Qm+gZLzu4k5N7l8q6KkkPb91G/RWMaBDXBzsmB7kP7YWZpQche1Q/tug/tR1DX9rh6e2DjYEunT3tgbW/LtXO53ZmEBh8jLSWV4d9+hae/DxbWVngG+ODo7qJymaXhSnAovg2q4d+wOmZ2VjTo2QZDM2NuhJwvcj49YwP0TYwUr7ytAZoP6UqFJrWwdLbDzM6KRv07IpPJeBxROkFpVS4ePElAYHUqNKqJub01jXq3w9DchGtHzhY535GV2/CpUxk7z4LnnpunL1GzXSPcKvtgYm1OpaZ1cKngxcX9J1UsqeTquVbi4qNbXHh0ixdpiey7eZrkjFRqFXIv5WnpiKu5Hasv7Ofeq3upx0kveJjn+n0//ikRz+X3UgkvUzjz6jzuYlo691Kq/BevGfndPBqGe52KeNSrhImtBdW6NEXfzIi7Jy+rLP80PIrnkQ8JHNYFWx9XDC1MsHCxw9LdQVHGwsWOKp0a41LdD3VNjTKp9wdNJvtwX/9PiWaqwn/eZ599xq+//sqxY8do0kTejGvZsmV07twZMzMzvvzyS3r37q3oC8zLy0vRpHDhwoXo6uoqLe/QoUNcvXqVqKgonJzkF5jVq1cTEBDA+fPnqVmzJjNnzqRnz558//33ivkqV1Z9gTt06BARERHcv38fR0f5j7VZs2bRunVrpXLffvut4m9XV1fGjRvHhg0bGD9+PADz5s3js88+Y/DgwQD8+OOPHDp06I3Zca/L1q9fH5A37Z00aRKRkZG4u7sD0LVrV44ePaoIEnbr1k1p/mXLlmFra0t4eDgVKsibYS1evJhKlSoxevRotm7dyrRp096YZTZw4EC6d+8OyDMB69aty9SpUwkKCgLgyy+/ZODAgYrylStXVvpef/zxR7Zt28bOnTsLDabev38fGxsblU1UZ8yYgZGREeHh4VhbvzkDRyqVsmLFCkWgsmfPnowdO5a7d+/i6SnPppo2bRqdO3fG1dUVb29v6tatS5s2bejatatSHRwcHBT1y9+kuqQ01NSxN7bieL4fSndjH+FsZqNyHj9rFx4nvaChW2WqOniTlZNNxLMHHLpzvtBsK3cLBywNTNl/q+gb6+LIzs7m9s1b9B3QT2l6zTq1uX71msp5bly7Ts06tZWm1apbm907diGRSNDULP4lbc7/fqNe/XrUrF2LlUtXvHX9C/N6W4REXlKafvfFo0JvvP1sXHmc9IJA9ypUcfAmOyebiGf3Cb6tvC20NbT4pkkf1FHjaUocwbfP8TQ5rtTqnp+6uRnqxkZIbucGDcjJQRJ5H01XZ7LOFP1D8TXt2tXJunQNsrJVF1BTQ6tyBdS0tZE8KL3gg0Qi4cm9aBp1ClKa7lnJjwe3iveD9EnUQ6Jv3aNFz/aKaREXruLs5c7OpesJD7uCgbEhVerXJLBTUKFN40tCQ00dJ1Mbgm8rf983nz3AzcK+WMuo41KBW88fkPAypdAy2pqaaKhrkJb95mvKm5T38f1aTk4ORw8dIeNlBgGVKr71/PnJ96mHNOzYUmm6Z2U/Ht4u/j718PY9mvXI3aecfTy4cuI8j+7ex9HTlfhnsdy+dIOqjeqUuM4fK0m2hOi7UQR1ba803a9qRe4Vs7m7VCol42UG+oa5mT1Xzl7E3deLdQtXcOXsBYyMjanZuB5BXdqjrlH6x3eORMKLB0+p2qqh0nSnAE9iIos+H276YSE5EglmdlZUb9sIB1/3QstKsrKR5uSgY6BXKvXOL0ci4fn9J9Ro00hpukuAJ08jC38IeePEBRKfxxM0tDvndh0t8H5OtgQNLeXAu6a2Fk/u3C+Veuclv35bckLFvZSTqep7KV9rF54kvaCBW2Wq2HuRlZPNzecPOHwnrPB7KXN7LA1MOHj7aWmvAvDfvGbklyPJIeFhDP7NaylNt/V1JTZKdVPbx9fvYu5kw83D57h/PhxNbS3sK3pQsU0DND+A5v6CoIoIxgn/eb6+vtSrV49ly5bRpEkTIiMjOXHiBAcPHgTgwoUL3L17lzVr1ijmkclkSKVSoqKiCmRHRURE4OTkpAjEAfj7+2NqakpERAQ1a9bk8uXLDBkypFj1i4iIwNnZWRGIA6hbt2DfNZs3b2bevHncvXuX1NRUJBIJxsbGSsvJP4BA3bp1OXq04M1LfpUq5faHYmNjo2gKm3fauXPnFP9HR0czY8YMzp49S2xsrCIjLjo6WhGMMzMzY+nSpQQFBVGvXj0mTpz41vUAqFixotK0jIwMkpOTMTY2Ji0tje+//57du3fz5MkTJBIJL1++LDIz7uXLlwUCrK+1bNmSQ4cOMWvWrGKN9Hrw4EHS0tIUgVNLS0tatmzJsmXLmDVrFgB2dnacPn2a69evExISQmhoKJ9++in//PMP+/fvV/w419OT3wDnbQ6cV2ZmJpmZmUrTdHR03lhHAH1tXTTU1UnNVM6USs18iaG2vsp5zPSNcTGzRSLNYc3FA+hr69LBvyH62jpsvRaSWwdNbSY06YumujpSmYxd4ScL7XPkbSQlJpKTk4O5ubnSdHNzM+IKae4VFxdHbXOzfOXNycnJITExEUtLy2J99qEDwdy+eYslq5a9W+WLUNi2SMlKx0tH9dNjc32j3G1xQb4tOgY0RE9Ll63XjgHwIi2BLVePEpMSj66mFvVcK/J53U78cWIzcelJpb4eAGrG8h+o0pRUpenSlFRFX29vouHkgIadLekbthV4T93WBqPRQ0FTE7KySFu+FumzFyWu92vpyalIpVIMTZQzH41MjLiTWPR39vOwSaQlpyLNyaFZt3bUbNZA8V78s1juvbhF5Qa1GDBpJLFPn7Nz6QZypFKadW1bavV/zUBHDw11dVIylbtWSMlMx1hH9fGdl7GOAf42bqwM21tkuQ4BDUl6mcqt5yUPiJbn8Q0QefcuwwYOJSsrCz09PWb9+jNu7m/ut+pNcvcpY6XphiZGpCQW3fzv1+FTFPtUk25tqdGsvuK9SvVrkJ6cyj/fzUGGDGmOlFotGhLYqWURS/z/LTU5BalUirGZidJ0YzMTki8W75x4aNtesjIyqd4wNwgc++w5t66GU6txPUZNH8/zxzGsX7QCaU4ObXt1LmJp7yYjNR2ZVIq+sXJTPz0jA9KTUlXOo29iRKN+HbBysSdHIuH2mSvsnLOSjl8PLLSfuTNbgjEwNcbRv/CAXUm8TClkPUyMSLuuOjiaEBPLqc376Tbpc9Q1VGcpOVfw4tKBkzh4u2JqbU50RCT3LkUge3VfWpoU1+98WeepWS8xKuRca65njPOr6/faSwfR19KlfUAD9LR02X49772UFt807oumugZSmZTd4adK5V5Klf/iNSO/rLSXyKQydI2UW9voGBmQkaK6m6HU2ERe3HuMhpYmDQZ3IjP1JWGbgslKy6B2n9Yq5xGE8iaCccJHYdCgQYwaNYq//vqL5cuX4+LiQrNm8g63pVIpn3/+OaNHjy4wn7Ozc4FpMpkMNTW1Iqe/DqwUh0xF6m3+5Z85c0aRaRcUFISJiQnr169n9uzZxf6comjleaqopqam9P/radI8Nzbt2rXDzc2NJUuWYG9vj1QqxdXVlaysLKX5jh8/joaGBk+ePCEtLU0peFicehQ27XVdvvnmGw4cOMBvv/2Gp6cnenp6dO3atUA98rK0tCQhIUHle82aNWP06NF07NiRnJwcpaa5qixbtoz4+HilARukUimXLl1ixowZaOS5eaxQoQIVKlRg5MiRnDx5koYNGxISEqLI1oyPl/8ALWxgi59++kkp0xLkWXfUtiuyjnnl39PkX6fq1O/Xu+DGK0fIlMi/z703T9Oragt23jipeKKbJcniz1Ob0dHQwt3Cgda+dYlPTyYqvnSe6OY/FmSy3LoVr7x8/dQoYqY8nsU84/fZc5nz5+/FDna+iwLbAjUVU/O+BxsuH87dFhGh9KrWkp03TiCR5vAw8TkPE3MHTXiQEMPIBl2p61qB3eGnSqXOWtUqo981t6/F1H9Wv1qZfPVWUyt2kwLt2jXIeRpDzsOCPzqkL2JJmf0Xanq6aFUKQL9XF1IX/FOqATl5dfPtM/KJRc4z9IdxZGVk8vB2FPvXbsfC1orKDeSZvzKZDANjIz75vA/q6uo4uLuQkpDEiZ3BZRKMU6r3O6jt4s/L7EyuPrlbaJlmXjWo7ujL/BMbS7Ufwvd9fL/m7OLC8rUrSU1J5diRo8ycPoM//l5QKgG5VxXKV8+Cdc9v8PdfkZmRyaM79zm4dgcWtlZUqi/v3iLqxm1Ctu2n3aAeOHq5Eh/zgr0rNmO4ZR9NuogfkUXJv2/IZLIC20eV8yGh7F67leFTx2JsmhvQk0llGJka03fUYNQ11HHxdCMpPoGDW/eUSTBOQUWdC9unzGwtMbPNDU7bejiTGp/E5YOnVAbjLu0/wd1z1+j4zUA0tco2Q6hAnWUylZtDKpWyf/EG6nRqrrQu+TXq3Y7DK7axevJcUFPDxNoc/wbVCD95sdB5Sk75bKuGWqGXvNfru+nqETIl8uzv/TdP06NKC3aH572XymZB6Ba0NbRwt7CnlW8d4l8mc7+U7qXevBbFV57XjALy7zwymYqJr9+S/06r078d2nry+7uqkiacWraD6t2ai+w4AFnpB7GFkhHBOOGj0L17d7788kvWrl3LypUrGTJkiOICWa1aNW7cuKFoVvgm/v7+REdH8/DhQ0V2XHh4OElJSYosukqVKnH48GGlJpVvWt6TJ0+wt5enh58+fVqpzKlTp3BxcWHKlCmKafn7FvPz8+PMmTP0799fMe3MmTPFWqe3ERcXx7Vr11iwYAG1a8ufFoeEhBQoFxoayi+//MKuXbuYOHEiX3zxBStXrizVupw4cYIBAwbwySefAPI+3+7fv1/kPFWrViUmJoaEhATMzAp2uNyiRQt2795N+/btkUql/PnnnypveOPi4tixYwfr168nICB3hCmpVErDhg3Zt28f7dq1U1kHf3953yJ5Bwm5fv06WlpaSsvKa9KkSYwdO1Zpmo6ODj8cWVHk+gKkZ2WQI5VipKMcJDbQ1iu0X7GUjHSSM9IUwR+AF6kJqKupYaJrQFy6PMtDBsS/+vtpShzWhqY0cq9a4mCciakpGhoaxMUpN7NMSEjA3MJc5TwWFhbExcUXKK+hoYGJqYnKefK7dfMmCfEJDO6Xe+zm5ORw5dJltm7cwpHQEKUg69sqbFsYausVyJZ7LSWz4LZ4rtgWhioz32TA48QXWOgXb72LI/tGBCkPHuZOeNUsUN3YiJw82XHqhgbICnkyrURLC+0qFXl54LDq93NykL7anjmPnqDh5IhOw3q83Fw6ndbrGxuirq5eIGMpNSmlQGZTfubW8h+Hts4OpCQlc3jTbkUwzsjUBA1NdaUmqVYOtqQkJr9zc8qipGW+JEcqxVhHOUPASEef5EzVmbZ51XGpwPmH4eQUchPe1LM6Lb1r8eepLTxJVt3x/dsqr+P7NS0tLRxfXb99/f2ICI9g07oNjJ/y5gzuorzep1Lz7VNpySkFMjDzM8uzT6UmJnNk0x5FMO7wxt1UDqylyJazdXYgKzOLnX+vpdEnZdP8+b/O0FjeR1pSQqLS9JTEZKXgmiphx0+zav4Shk4cjV8V5RGQTczl+27eJqm2TvYkJyQiyZagqVW6x7euoT5q6uoFsuBepqSh9xYdzNu4O3H7TMERbi8fOMnFvSdoP/ZTLBzLro8yPSP5eqQlKTdrfJmcir5JwQ7+szMyeX7/MS+in3Ls313Aq0CqTMb8Qd/yybiBOPl7oG9sSPvR/ZBkZ5ORmo6BqTGnNh3A2LL0B9R4ff3O36LAQFuX1CzV59rc63duNwwvUhNRV1PDWNdAcf+U914qJiUOKwMzAt2rlEkw7r94zchP20APNXU1MpKV7zUyU9PRNVKd3adnYoieiaEiEAdgbGMBMniZmIqRddkNwiII70pc3YWPgqGhIT169GDy5Mk8efKEAQMGKN6bMGECp0+fZuTIkVy+fJk7d+6wc+dOvvjiC5XLat68OZUqVaJPnz5cvHiRc+fO0b9/fxo1aqQYpGHatGmsW7eOadOmERERwbVr1/jll18KXZ6Pjw/9+/fnypUrnDhxQinoBuDp6Ul0dDTr168nMjKS+fPns22bcrOuL7/8kmXLlrFs2TJu377NtGnTuHHjRgm+NdVMTU0xNzdn0aJF3L17l8OHDzNu3DilMikpKfTr148vvviC1q1bs3btWjZu3MimTZtKtS6enp5s3bqVy5cvc+XKFXr37q2UwadK1apVsbKy4tSpwrOFmjZtyp49e1i5ciUjR45Umb24evVqLCws6NatmyLrrUKFClSqVIl27dopBnIYPnw4M2bM4NSpUzx48EARMLWyslJqjnzixAkaNmxYaFaljo4OxsbGSq/iZm7lyKQ8SX6Bp4VyB/Kelo5EJzxTOU904jOMdPXR1sj9YWFpYIJUJiUpo6hAixoa6iXv9FZLSwtvXx/On1Xu0yTs7DkqFNK3U0DFCoSdPac07fyZc/j6+xU7AFKjZg1Wrf+X5WtWKl6+/n60bBXE8jUrSxSIgzzbwlK5SaqnpQMPElWPIvkgIUbFtjB9tS1UN1MCsDO2IKUYN9bFlpmFNC4+9/XsOdLkFDS984xwp6GBpocrkvtvbpaiXaUCaGqQfeFy8T5fDdRKsUNlTU1N7N2duXs1Qmn63asRuPi8RVMtmbyvsNdcfNyJi3mhdC6KffocIzOTUg/EgXyfepj4DF9r5UxuH2sXouKKHlHQ09IRa0MzTt9XPXhBM68atPKtw8LQbUodjpdUeR3fhZLJCoxO/i7k+5QTkVdvKk2PvHoTJ+/i71My5H1svZadmYWamvItubq6+v/nPq3fSFNLE2dPNyIuK+/bEZev4e7rVeh850NCWTlvMYO+HknFmlULvO/h583zp8+Uju9nj2MwMTct9UAcgIamJlYudjyKiFSa/ig8EluPgq03ChMb/RT9fAHhSwdOcmFPCG2/7Ie1q0Mhc5YODU1NrF3tib6hnE0VHX4XO4+C/eRq6+rQZ8Zoen8/SvGq2LgWZraW9P5+FLYeytdQTS0tDM1MkOZIuXvhOu5V3zwA19uSX79j8bBU/q48LB0LPT9GJ8RgpGugdP22eHUvlVzEvZSaGmiWwr2UKv/Fa0Z+GpoamDnZEnNLOTEh5uYDLN1U78uWbg68TEolOzP3wWbK83jU1NTQMy2bEV8FoaREME74aAwaNIiEhASaN2+u1Py0UqVKhISEcOfOHRo2bEjVqlWZOnUqdnaqm/+pqamxfft2zMzMCAwMpHnz5ri7u7NhwwZFmcaNG7Np0yZ27txJlSpVaNq0KWfPqu7UXl1dnW3btpGZmUmtWrUYPHgwM2fOVCrTsWNHvvrqK0aNGkWVKlUIDQ1l6tSpSmV69OjBd999x4QJE6hevToPHjxg+PDh7/p1FUpDQ4MNGzZw8eJFKlSowNixYws0l/3yyy8xMDBQ9JsWEBDA//73P4YNG8bjx6XXB8bcuXMxMzOjXr16tG/fnqCgIKpVq/bG+n/22WdKfQSq0rhxY/bu3cvq1asZPnx4gYDcsmXL+OSTT1RmJHTp0oXdu3fz7NkzmjdvzpkzZ+jWrRve3t506dIFXV1dDh8+jIWFhWKedevWFbufwXdxKuoa1Z18qe7og5WBKW1862Kia8i56HAAWnrXomulJoryV57cIT0rk84VG2NlaIqrmR2tfOtw4dEtRZODQPcqeFg4YKZnhKWBKfVdK1LVwYsrT4rXOfab9OzTi93bd7J7xy7uR91n/ux5PIt5Rqcu8kzIRX8uYMZ3uU13O3X5hJinMfwx53fuR91n945d7N6xi159eyvKZGdnc+fWbe7cuk12toQXL15w59ZtHj2UZ3zpGxjg7umh9NLV1cXY1Bh3Tw9Kw8moq9TIuy386mGiZ8S5B6+2hY/qbdGlUhOsDc1wNbOjtV8dLjzM3RZNPavjZemImZ4RdkYWdK7YGDtjC8X2LSuZx0PRbdYIrQp+qNtao9+zM7KsbLIu5WZg6Pfqgm6bFgXm1a5VnezrEcjSC2YE6rZugYabC+pmpqjb2qDbujmaHm5kXSyY2VESDdo1I+zwKcKOhPL80VP2rNhEUmwCtVrIO0s/sHY7m/5coSh/ev8xIsKuEvv0ObFPn3PhaCgndgVTpWFuJ9K1WwaSnpLG7hWbiH3yjJsXr3Fs237qBDXK//Gl5ujdC9R1rUgdlwBsjMzpXLER5vpGnIySf1/t/RvQr3qrAvPVdalAVPxTnqYUHOijmVcN2vrVY83Fg8SlJ2Gko4+Rjj7aGqXTlKc8jm+AxX8t5Mqlyzx98pTIu3dZ/NciLl24RMtWygN5vKt6bZtx4UgoF46G8vxRDHtXbiYpNp5aLeT9Ch5cu4PNf+ZmiZ89EMLNC9eIe/qcuKfPuXj0NKd2HaJyg9x9yqd6Rc4Hn+DqqTASnsdy92oEhzfswrdGxQ8iK05PSwcvS0e8LOUPfOyNLfGydMTGsHwzTZp3as2pg0c5dfAYTx8+ZuOS1SS8iCOwjbybkm0r1rN89kJF+fMhoSyfs4gug/rg5utJUkIiSQmJvEzLfagR2KY5aSmpbPx7Nc8eP+Xa+Uvs37SDRm0LnuNKS+UW9Yg4cZGIkxdJePqCUxv2kRKfREAjeTbuma3BHF66RVH+yqFQoi5FkPgsjvjHzzmzNZh7F8Op2DS377tL+09wbvthGn/aCWNLU9KTUkhPSiE7I7PA55eWai0bcON4GDeOhxH/5Dkh6/aQEpdExSbyff3UpgMcWCJ/aKumro6lo63SS9/YAA0tLSwdbdHS0QYgJvIhd8Ouk/Q8nse3o9g+ZzkymYwabQLLZB1C71+luqMv1Rzk1+/Winsp+UOdFt416VKxsaL81ad3eZmVwScVG2NlYIqLmS1BPrW5WOi9lAn1XCtSxd671O6lVPkvXjPy821Sg3unr3Lv9DWSYuK4uPUI6QnJeDaQD+x2ZedxzqzeoyjvUsMPbQM9zq3ZR9LTWJ7ffciVHSG41amoaKKaI8kh4dEzEh49QyrJ4WVSKgmPnpHyQnX3Nh8dqezDff0/JZqpCh+NunXrqsxwAqhZs6ZiQAdV8jd9dHZ2ZseOoptKde7cmc6dVfcfkn953t7enDhxQmla/rr+8ssvBbLrXo8A+9rkyZOZPHmy0rT//e9/hdaxcePGBT5nwIABSpmDANOnT2f69OmK/5s3b054uPKP/LzLWbasYMf3o0ePVuqXL/93kL8erq6uBablr6+rqytHjhxRKjNy5MgCn53fmDFjCAgI4MGDB4qRS1U1bw0MDCQlJbdJxbFjxxR/X716tdDld+7cWZFl0aVLF7p06VJkffbs2YOGhgZdu3Z9Y93f1bWYSPS1dWjiUR0jXX2epcSzKmwfia8yq4x09DHRzX0ymJUjYfn5PbT3r8+Iep1Jz8rkekyk0uhb2hpadAhoiImuAdk5El6kJbLpylGuxUQW+Px30axlc5KSkljxzzLiYuNw83Dn199nY/sqUB4XG8ezmNwnr/YO9vz6+2z+mPM7WzdtwdLKkjFff0XjZrmBrdgXsQzs86ni/3Wr17Ju9VqqVKvKn38vKJV6v8m1p5Hoa+nS1LMGRjr6PEuNZ+X5vXm2hQGmerkZDFk5Epaf2027gAaMqC/fFteeRhJ8OzdLSFdLh04VG2GkrU+GJIsnybH8fWYnj5KeF/j80pR59ARqWlrodemAmp4uOdGPSP17BeR58qxualqgDzl1Sws03V1JXbxc5XLVjAwx6N0VNWMjZC8zyHn6jLQlK5HcLp1967VK9WqQnpLGkS17SElIxsbJjk8njcTMSh4oT0lIIjHPgAIymYwD67aT8DwOdXV1LGytCOrTiVrNc0c6NLU057NvR7Nn5Sbmf/Mjxuam1G/dhMBOpRPsUeXi49sYaOvRyqcOxroGPE2OY2HoNsVIdya6BpjpKWfF6GpqU8Xeiy3XjqlcZkO3ymhpaDK4tvJolHsjTrPv5mmV87yN8jq+4+PimfHd98TFxmFgaIiHlwez58+lZh3lUfneVcV61UlPSePYln2KfarfxBGYvtqnUhOTSIrL/WEnk8oIXruDhBfyfcrcxoqWvTtSo3nuoCCNOst/FB/esIvk+CQMjA3xqV6R5j2Vt0158bVy4c9PcrtRGN1APuL63ojTzDxSut1TvI0agXVJTUllz/ptJMcnYu/iyKjp32BhLe+bNSkhkfgXuUGF4/uOIM3JYf3CFaxfuEIxvU6zhgz4Sj5AlrmVBV/+MJFN/6xmxqhJmFqY0bRDK4K6lN228KxZkYzUl1zYfYy0pBTM7a1pO7ovRhamAKQnppAan9tdgVSSQ+imA6QlJqOppYWZvRVtRvfFpaK3osyNY+eRSnI4uGiD0mfVaN+Ymh2alsl6eNeuxMu0dM7uPEJ6UgoWDjZ0/OpTRZPStKQUUuIS32qZkuxsTm8LJul5Alq62rhW8iFoSHd09MtmVNjrMffQ19KlsWc1+fU7JZ7VF/YpstQNdfQx0VO+l1oRtoe2fvUZVq8zL7MyuB5zj0N3cu+ltDQ0ae/fAONX91KxaYlsvnqE6zHFG4H5XfwXrxn5OVfzJTPtJdcPhJKRlIaJnSWBw7pgYC5vhv4yOZW0hNx7eC0dbZqM7MaFzYc5+NtqtA30cK7qQ8W2uefal0mpHPhlleL/m0fOc/PIeaw8nWg2umepr4MgvImarLDohSAIwn/Yjh07MDc3p2HDhm8uXMY2btyIi4uLog++tzFl3+IyqNH7NbP157xIUT2C4n+FlZE5k/cuKu9qlNisNsNIHPdteVejRExn/8iWK0feXPAD16VyU77YNqe8q1Fif3wy9qM4vjdePlTe1Six7lWaU/+vYW8u+AE7NXIRR++ElXc1SqyJVw3mHd/w5oIfuDGBPVgQuuXNBT9gI+p1Yer+v8u7GiU2o9XQ//w1449PxjLtwD/lXY0S+z5ocHlX4Z2k3Cq7bMySMvIpvHuBj5nIjBME4aPUsWPH8q6CQvfu3cu7CoIgCIIgCIIg/H8lcrA+OOXfEYUgCIIgCIIgCIIgCIIg/D8hgnGCIAiCIAiCIAiCIAiC8J6IZqqCIAiCIAiCIAiCIAgfK9FM9YMjMuMEQRAEQRAEQRAEQRAE4T0RwThBEARBEARBEARBEARBeE9EM1VBEARBEARBEARBEISPlVRa3jUQ8hGZcYIgCIIgCIIgCIIgCILwnohgnCAIgiAIgiAIgiAIgiC8J6KZqiAIgiAIgiAIgiAIwsdKjKb6wRGZcYIgCIIgCIIgCIIgCILwnohgnCAIgiAIgiAIgiAIgiC8J6KZqiAIgiAIgiAIgiAIwsdKNFP94IjMOEEQBEEQBEEQBEEQBEF4T0QwThAEQRAEQRAEQRAEQRDeE9FMVRAEQRAEQRAEQRAE4WMlFc1UPzQiM04QBEEQBEEQBEEQBEEQ3hMRjBMEQRAEQRAEQRAEQRCE90Q0UxUEQRAEQRAEQRAEQfhYyaTlXQMhH5EZJwiCIAiCIAiCIAiCIAjviZpMJhM9+QmCIAiCIAiCIAiCIHyEUi5fLe8qFMqoSqXyrkK5EM1UBUEQPmB3nkeXdxVKzMva+T+/Hl7WzuyNCC3vapRYG796pNy8Xd7VKBEjX29uPbtf3tUoMR8bV7ZfCynvapRYp4qNSA49V97VKBHjerVI3n+ovKtRYsatmnP0Tlh5V6NEmnjVoP5fw8q7GiV2auQiJu9dVN7VKLFZbYZx8t6V8q5GiTRwr8zlR7fKuxolVsXRh01XDpd3NUqkW+VmXHn8374HAajs4F3eVXg3IgfrgyOaqQqCIAiCIAiCIAiCIAjCeyKCcYIgCIIgCIIgCIIgCILwnohmqoIgCIIgCIIgCIIgCB8pmVQ0U/3QiMw4QRAEQRAEQRAEQRAEQXhPRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyVGU/3giMw4QRAEQRAEQRAEQRAEQXhPRDBOEARBEARBEARBEARBEN4T0UxVEARBEARBEARBEAThYyWTlncNhHxEZpwgCIIgCIIgCIIgCIIgvCciGCcIgiAIgiAIgiAIgiAI74lopioIgiAIgiAIgiAIgvCxkorRVD80IjNOEARBEARBEARBEARBEN4TEYwTBEEQBEEQBEEQBEEQPhoJCQn069cPExMTTExM6NevH4mJiYWWz87OZsKECVSsWBEDAwPs7e3p378/T548USrXuHFj1NTUlF49e/Z86/qJYJwgCIIgCIIgCIIgCMLHSib7cF9lpHfv3ly+fJn9+/ezf/9+Ll++TL9+/Qotn56ezsWLF5k6dSoXL15k69at3L59mw4dOhQoO2TIEJ4+fap4LV68+K3rJ/qMEwRBEARBEARBEARBED4KERER7N+/nzNnzlC7dm0AlixZQt26dbl16xY+Pj4F5jExMSE4OFhp2h9//EGtWrWIjo7G2dlZMV1fXx9bW9sS1VFkxgmCAMCKFSvYt29feVdDEARBEARBEARB+H8iMzOT5ORkpVdmZmaJlnn69GlMTEwUgTiAOnXqYGJiQmhoaLGXk5SUhJqaGqampkrT16xZg6WlJQEBAXz99dekpKS8dR1FME74T3B1dWXevHnvdXlqamps3769RJ8zffp0qlSp8lbzHDt2DDU1tSLbs5e2rVu38ssvv1CnTp13mn/AgAF06tRJ8X/jxo0ZM2ZMkfOU1jY9cuQIvr6+SKXSEi+rLDx//hwrKyseP35c3lURBEEQBEEQBOH/I6nsg3399NNPin7dXr9++umnEq1uTEwM1tbWBaZbW1sTExNTrGVkZGQwceJEevfujbGxsWJ6nz59WLduHceOHWPq1Kls2bKFzp07v3UdRTNVoUy1b9+ely9fcujQoQLvnT59mnr16nHhwgWqVav2Xut1/vx5DAwM3utnfqju3bvHt99+y759+zAzMyuVZW7duhUtLa1SWdabjB8/nilTpqCuLn+2sGLFCsaMGaMUzIyIiKBFixbUqlWLdevWoaOjw9GjR/n11185e/YsL1++xNXVldatWzN27FgcHByUPsPHx4eoqCiioqIKvHfv3j2mTJlCSEgI8fHxWFpaUr16dX799Ve8vb2xtramX79+TJs2jX/++adMv4s923aydd0m4uPicHZ1Zcjo4VSoXFFl2fjYOJb+tZi7t+7w5NFj2nftxNDRI5TKPIi6z5qlK7l76w7PY54x5IvhdOz+9heakirt9SovJ/ce4ej2fSQnJGLr5ECnQb3xCPBWWfZe+G12rdrE88dPyc7MwszKgrpBjWncIei91lkmk/H3+nVsO3CAlLRUAry9mfD5MDycXQqdJzL6AYvWruFmZCRPnz9n7KDB9O7QUanM4nVrWbJ+ndI0C1NTDqxcXerrsHfbLrau20RCfDzOri4M/mIYAUXsP8sW/E3krbs8efSYdl06MmT0cKUyB3bt5eiBQzy49wAATx9P+g0ZiLe/b6nXPa/T+48RsvMAKQlJ2DjZ035AD9z8vVSWjYq4w75/t/LicQxZWVmYWZpTu0UgDdu3UJQJOxrKpr9WFJj3x7V/oaVddudvmUzGkh3b2BZylJS0NALcPRjf71M8HBwLnWdbyFH2njpJ5ONHAPi6ujGySzcC3D2Uyj1PiOePjRs4fe0qGdlZONvYMvWzwfi5upXNeuzfy7bQU6S8TCfAxZXxXbvjYWdf6DxHrlxmRfABHsa+QJKTg5OVFX2bNKNNzdoqyy8PPsCC3Tvp2agJ4zp3LfV1OLYnmOCte0iKT8Te2YFuQ/rhVUH1fnwp9Dwhew/x6N4DJNnZ2Dk70q53FwKqV1Iql56axo7VG7kUGkZ6ahqWNlZ0GdSHijWrlHr930ZlO096V22Jr7UzlgamTNy7kBNRV8q1TnnVdg6goXtljHT0eZ6awJ7wU9xPKPzHooa6Ok09a1DFwQsjbX2SMlI5FnmRC49uFShbyc6DnlVbEB4Txb8XD5TlanBk9wEObN5JYnwiDi6O9Px8AN4V/FSWvXDqLMf2HCQ68j6SbAn2Lo507NuNCtWrKJXZs2Ebz5/EkCPJwcbBlpad21OvWWCZrcOBHXvZtXEriXEJOLo68+mIwfhVClBZNiEuntWLlnHvdiQxj5/Q6pN2DBg5RKnM92MnE37leoF5q9auwcRZ35XJOgCcPRDCiZ2HSE1MwtrRjjYDuuHq56my7P2bdzm4ZjsvHj8jOzMLUytzajZvQP12zRRl/pk+l/vhdwrM6101gP6TRpbJOhzYsYedG3K3xYCRQ4rcFqsWLlVsi9aftGfAqCEFyqWlprJu6WrOnThNWkoq1nY29Bs2iGp1apTJOgjFM2nSJMaOHas0TUdHR2XZ6dOn8/333xe5vPPnzwPy5Jr8ZDKZyun5ZWdn07NnT6RSKQsWLFB6b8iQ3H2rQoUKeHl5UaNGDS5evPhWcQ0RjBPK1KBBg+jcuTMPHjzAxUX5x9uyZcuoUqXKew/EAVhZWb33z/xQubu7Ex4eXqyy2dnZxQqymZubl7RaxRIaGsqdO3fo1q1boWXOnz9P69at6dixI3///TcaGhosXryYESNG8Omnn7JlyxZcXV2Jjo5m1apVzJ49mzlz5ijmP3nyJBkZGXTr1o0VK1YwZcoUxXtZWVm0aNECX19ftm7dip2dHY8ePWLv3r0kJSUpyg0cOJBatWrx66+/llrAM7/jh4+xZP5Cho/9Av+KAezbuYfp30xmweqlWNsUfCqUnZ2NsakJ3fv3ZsfGLSqXmZmRia2dHfUbB/LPH4vKpN5vUhbrVR4unTzL9mVr6fp5P9x8vQg9cIy/Z8xh4h8zMbOyKFBeW1eHhm2aYefqhI6ODvcibrNp4Uq0dXSoF9T4vdV75dYtrN2xnWlfjsHZ3oGlGzcw8rvv2LJgIQb6+irnycjMxNHGlub1GjBnWeEBaHdnZxb88KPifw310k/WP3H4GP/8sYhhY0fhVyGA/Tv38P34b/lr1RKsCtl/TExM6davJzs2bVO5zOuXrhLYrAm+X/qjra3FlnWbmPb1ZP5c+TcWVpalvg4AV06dZ9eKDXQa3BsXX0/OBh9n2az5jJ07XfX+o6NDvdZNsHVxRFtHm/s377J18b9o6+pQu0Xuj1gdfV2++X2G0rxlGYgDWLV3D2sP7OO7QUNxtrVl2a4djPrtf2ye9QsGenoq57lwM4KWdepSydMLHS0tVu3dw6jffmHDzJ+wNpNfb5LT0hg8cwbV/fz4fezXmBkb8+j5c4wK2U9LvB6Hg1l79Ajf9emHs5U1yw7uZ9SCP9k85TsMdHVVzmOir8/AFkG42tiipanBievX+WHtv5gZGlHXz1+p7I0HD9geegoveweVyyqpsOOn2bRkNb2GD8TD35sT+47w5/RfmLbgF8ytC+7Hd67fxK9KBTr1746egQGnD4WwYMZvTJj9A84ergBIsiX8PvVnjEyMGTppNGaW5iS8iEdXT/X38T7paelwN+4Re2+GMqv1sPKujpKKdh609a/HzusneJAQQy1nfz6t2ZZ5xzeQlJGqcp5eVVtgqK3P1qvHiEtPxlBbD3UVPy5NdQ1p7VuXqPgnKpZSus6FhLJ+8Qr6jhyMp78PIXsPMW/qLGYsnouFin3q9rUI/KtWovOnvdA3NOBk8FHmT/8fU+bOwsVTHkA3MDKkXY/O2DrZo6mpyZVzF1k+ZwHGpsZKQbvSEnr0BCsX/MOg0cPwqeDHod37+WnS98xZ9heWNgV/O2RnZ2NsYsInfbqxd8sOlcscN30SEolE8X9Kcgrjh4ymTmD9Uq//a9dCw9i7YjPtB/fE2ced84dOsmrWX4yeOxVTy4L36No6OtQOaoStiwPaOjo8uHmXHUvWoa2rQ83mDQDo/fVQcvKsR3pKGn99M4sKdcvmd1zo0ROs+OsfBn85DJ8K/hzatZ9ZE6czd/lfWBZx/9e5b3f2bFa9LSTZ2fz4zVSMTU0ZO30iFpaWxL14gW4ZXSeE4tPR0Sk0+JbfqFGj3jhyqaurK1evXuXZs2cF3nvx4gU2NjZFzp+dnU337t2JioriyJEjSllxqlSrVg0tLS3u3LnzVrEN0UxVKFPt2rXD2tqaFStWKE1PT09nw4YNDBo0CJAHVQIDA9HT08PJyYnRo0eTlpZW6HKjo6Pp2LEjhoaGGBsb07179wIH286dO6lRowa6urpYWloqpY7mbyJ5584dAgMD0dXVxd/fv0DHjQATJkzA29sbfX193N3dmTp1KtnZ2Uplfv75Z2xsbDAyMmLQoEFkZGS88Tvau3cv3t7e6Onp0aRJE+7fv1+gzNt+P6+bxy5evBgnJyf09fXp1q1bgaavy5cvx8/PD11dXXx9fZWi/vfv30dNTY2NGzfSuHFjdHV1+ffff8nJyWHs2LGYmppiYWHB+PHjkeUbBSd/M9Xnz5/Tvn179PT0cHNzY82aNQXqPGfOHMUw0k5OTowYMYLUVNU3oa+tX7+eli1bolvID58jR47QtGlTBg4cyNKlS9HQ0ODRo0eMHj2a0aNHs2zZMho3boyrqyuBgYH8888/fPed8lPKpUuX0rt3b/r168eyZcuU1jU8PJx79+6xYMEC6tSpg4uLC/Xr12fmzJnUrFlTUa5ixYrY2tqybZvqH/elYfuGLbRo24qg9m1wcnVh6OgRWFpbsXfbLpXlbexs+fzLkTRr1QL9QrJEvf18+GzkUBo1b1LmP9ALUxbrVR6O7ThI7eaB1GnRCBsnez4Z3BtTS3NO7T+isryjuwvVAutg5+yAuY0lNRrXw6dqBe6F335vdZbJZKzbtZOB3brTtG49PF1c+H7MV2RkZbL/eEih8wV4efPlwM8ICgxEu4jgvaaGBpZmZoqXmYlJqa/Djo1bad42iJbtWuPk6syQ0cOxtLJi7xlVEzgAAQAASURBVPbdKsvb2Nky5MvhNG3VotDs6XHfTaTNJ+1x9/LA0cWZUd+MQSqVceXCpVKv/2sndgVTs2kDajVviI2jHR0G9sDEwowzB1VvBwd3Z6o0qIWtkz3m1pZUC6yDd+UAoiKUsxrUUMPIzETpVZZkMhnrgvczsF1HmtaoiaejE9MHf05GZhYHzpwudL4fPx9Bt6bN8XF2wdXOnikDByGTSTmf50HSyr27sTE3Z9qgoQS4e2BvaUUt/wAcrYu+4X7n9Qg5ysCWQTStXAVPe3um9+1HRnYWBy6cL3S+6l7eNKlcBTdbWxwtrejVuAme9g5cvhepVC49M4PvVq9gcs/eZRZMPLR9H/VbNKZBUBPsnBzoPrQfZpYWhOwt2JIBoPvQfgR1bY+rtwc2DrZ0+rQH1va2XDt3UVEmNPgYaSmpDP/2Kzz9fbCwtsIzwAdH98Izad+XM9E3WHJ2JyH3Lpd3VQpo4FaJCw9vEvboJi/SEtkTEUpSRiq1XfxVlveydMLN3J6VYXuJjHtM4ssUHiU9JzpR+T5YDTW6V2nGoTthxKe/fV9Gb+vgtt00bNmUwFbNsHd2pNewAZhbWXJsz0GV5XsNG0Drbh1x8/HExsGOLgN6Y2Nvx5WzFxRlfCsFUK1+LeydHbG2t6VFpzY4urlw58bNMlmHPZt30LR1c5q1bYmjixMDRg7BwtqSg7v2qixvbWvDgFFDaNSyaaH3HIbGRpiamyleVy9cQkdXhzqNyi4Yd2r3Eao3rUeNZvWxdrSj7YBumFiacu7gcZXl7d2cqNygJjZO9phZW1AlsDZelf24H3FXUUbf0AAjUxPFK/LqTbR0tKlQp2yCcbs3badp6xY0axsk3xajhmBpbcnBnar7t7a2tWHgqKGvtoXq8+aRfYdITU7lmxlT8K3gj5WtNb4VA3D1KP3s6Q+STPrhvt6CpaUlvr6+Rb50dXWpW7cuSUlJnDt3TjHv2bNnSUpKol69eoUu/3Ug7s6dOxw6dAgLi4IPPfO7ceMG2dnZ2NnZvdW6iGCcUKY0NTXp378/K1asUApibNq0iaysLPr06cO1a9cICgqic+fOXL16lQ0bNnDy5ElGjRqlcpkymYxOnToRHx9PSEgIwcHBREZG0qNHD0WZPXv20LlzZ9q2bculS5c4fPgwNWqoTj+WSqV07twZDQ0Nzpw5w6JFi5gwYUKBckZGRqxYsYLw8HB+//13lixZwty5cxXvb9y4kWnTpjFz5kzCwsKws7MrkNKa38OHD+ncuTNt2rTh8uXLDB48mIkTJyqVedvv57W7d++yceNGdu3apRjKeeTI3DTyJUuWMGXKFGbOnElERASzZs1i6tSprFy5Umk5EyZMYPTo0URERBAUFMTs2bNZtmwZS5cu5eTJk8THx78xyDRgwADu37/PkSNH2Lx5MwsWLOD58+dKZdTV1Zk/fz7Xr19n5cqVHDlyhPHjxxe53OPHjxe6Xbdt20bbtm2ZMmUKv/76q2L6632vsGXn7ZwzJSWFTZs20bdvX1q0aEFaWhrHjh1TvG9lZYW6ujqbN28mJyenyLrWqlWLEydOFFnmXWVnZ3P39m2q1qquNL1qzercvH6jTD7zffhY1kuSLeFR5H18qig3rfCpEsD9m5GFzKXs0b0H3L95F88KBUd+KiuPnz0jLiGBOlWrKqZpa2lRLaACV2+W/IdQ9JMntBrwKR2GDGLSr7/wqJj9dxSXfP+5Q9Waqvaf4mUDF0dmZiY5EglGxkaltsy8JNkSHt+Lxquy8g9z78r+PLhVvP3n8b1oHtyOxN1fuVl0VkYmPw2byMyh41k+6w8e34sutXqrrMeLF8QlJVGnQgXFNG0tLar5+HL1bsHmT4XJyMxEkpODcZ4fvycuX8TPzY2Jf82n5egR9Jn2LdtCjpZq/V97HBdHXHIydXxzm99pa2pRzcOTq1FRxVqGTCbj3K2bPHj+jGoeyk3Hftm0kfr+AdT2KZumz5JsCdF3o/Crqtxc269qRe7dLN52kEqlZLzMQN/QUDHtytmLuPt6sW7hCr7pO5wfRkxg38YdSHM+zD5dPwQaaurYG1txJ/ah0vS7Lx7hYqp6lD4/G1ceJ70g0L0KE5r2Y2yjnrT2rYOmuoZSuaZe1UnLyuDCo7IJXOUlyZbw4M49AqpVVpruX60Sd8MLNp1VRb5PvcTAyFDl+zKZjPBL14h59ATvCqoDlSUhyc7m3u27VKpRVWl65epVuV2Kwb+j+w5Rr0nDMssYlUgkPLkXjWdl5ebBnpX8iL51r1jLeBL1kOhbUYV2hQBw4UgoFetVR1u3eNlMb+P1tqicb1tUqlGVWzci3nm5F0LP4hXgy9LfFzGkSz/GfTaSrWs2In3DPbzw3+Tn50erVq0YMmQIZ86c4cyZMwwZMoR27dopjaTq6+ur+C0rkUjo2rUrYWFhrFmzhpycHGJiYoiJkXf7ARAZGckPP/xAWFgY9+/fZ+/evXTr1o2qVatSv/7bBdlFM1WhzH322Wf8+uuvHDt2jCZNmgDyJqqdO3fGzMyML7/8kt69eysyqby8vJg/fz6NGjVi4cKFBbKeDh06xNWrV4mKisLJyQmA1atXExAQwPnz56lZsyYzZ86kZ8+eSu3JK1dWvkHIu7yIiAju37+Po6O8z5pZs2bRunVrpXLffvut4m9XV1fGjRvHhg0bFEGdefPm8dlnnzF48GAAfvzxRw4dOlRkdtzChQtxd3dn7ty5qKmp4ePjw7Vr1/jf//6nKPPrr7++1ffzWkZGBitXrlSs0x9//EHbtm2ZPXs2tra2zJgxg9mzZysyBt3c3AgPD2fx4sV8+umniuWMGTNGKatw3rx5TJo0iS5dugCwaNEiDhwovA+S27dvs2/fPqVhpZcuXYqfn/JNQt5MOjc3N2bMmMHw4cOLDGjev38fe/uC/fOkpqbSrVs3Jk+eXCC4eefOHYyNjYv15GL9+vV4eXkRECAPovTs2ZOlS5cq9mMHBwfmz5/P+PHj+f7776lRowZNmjShT58+uLu7Ky3LwcGBS5fKJnMmOSkJaY60QBNYMzMzLsYnlMlnvg8fy3qlpaQglUoxMlVOcTcyMSE5oWA/MnlNHzSW1KQUpNIcWvXoRJ0WjcqyqkriEuTfsYWJqdJ0C1NTnuYLpr+tCt7efD/mK1zsHYhLTGTppg0MmvANG/74C9M3NAUoruSkZKQ5UkzNTJWmm5ibkliK+8+qRcswt7KgcvWyyQ5IT0lFKpViaKL8vRiaGJOSmFzkvDOHjictORWpNIfm3dpTq3lDxXtWDrZ0GzUAW2cHMtMzOLn3MAu//R9jZn+HpV3pZ5MBxCUlAmBurJyBZ25iTExsXLGX8+fmDViZmVErIDfA/fj5C7YcOULvoFYMbNeBG/fuMXvNarQ1tWhbv0Gp1P+1uBT5925upByANTcyJiYhvsh5U1++pM13k8mSSNBQV2dCtx7UzhPUO3gxjJuPHrJyXNEPo0oiNVl+TjLOlwlpbGZC8sWkQuZSdmjbXrIyMqneMLe/u9hnz7l1NZxajesxavp4nj+OYf2iFUhzcmjb6/33N/pfoK+ti4a6OqmZL5Wmp2Sl46XjpHIec30jXMxskUhzWHPhAPraunQMaIieli5brx0DwNnMlhqOvvxxcnMZr8Gr+iYnq9ynTExNuJ6QWKxlHNy6m8yMTGoG1lWanp6Wztd9P0eSLUFNXZ2+IwcRUK1SIUt5d8lJ8nUwyX/NMDMhMT6xVD7j7s3bPIx6wLCvvyiV5amSnvz6mqF8fjIwMSb1DdeMX4ZNll8zcnJo2q0tNZqpDiw8unufZw+f8MnwvqVW77wK3xamJdoWz57G8OLSVRo0b8ykn6bx9NETls5fhDQnh679e5Ws0sIHac2aNYwePZqWLVsC0KFDB/7880+lMrdu3VJ0L/To0SN27twJUGAQxqNHj9K4cWO0tbU5fPgwv//+O6mpqTg5OdG2bVumTZuGhobyQ5E3EcE4ocz5+vpSr149li1bRpMmTYiMjOTEiRMcPChPW79w4QJ3795Varook8mQSqVERUUVCNpERETg5OSkCMQB+Pv7Y2pqSkREBDVr1uTy5ctKHSsWJSIiAmdnZ0XQCqBu3boFym3evJl58+Zx9+5dUlNTkUgkSu3HIyIiGDZMuR+SunXrcvRo4U/mIyIiqFOnjlInkvk/+22/n9dUrZNUKuXWrVtoaGjw8OFDBg0apPQ9SSQSTPI1FcubeZaUlMTTp0+V6qipqUmNGjUKNFXNu46vy7zm6+tbYHjoo0ePMmvWLMLDw0lOTkYikZCRkUFaWlqhzcVevnypMhipp6dHgwYNWLJkCb169VL6jorbaSfIg4Z9++beaPTt25fAwEASExMV9R85ciT9+/fn6NGjnD17lk2bNjFr1ix27txJixa5naXr6emRnp5e6GdlZmYWGMK7uH0nKORbLxnFX9cP2keyXmrkr7Ms/6oV8MWsSWS+zODB7XvsXr0JSztrqgW+26jHb7Lv2DFmLfxL8f+8qfIm2/m/67c5hgpTv3ru+cATqOTrS6fPh7D76BH6duxUomXnV6CuMhkFNsU72rJ2I8cPH2Xm/F/R1tEunYUWouBXLnvjagyfMZ7MjAyib0exf81WLO2sqdKgFgAu3u64eOc+NHDx9WD++B85tfcoHQcV3RdLce07fYqfVi5X/D93zDhA1T5FsbfJqr27OXj2DIsmTEZHK/c7l8qk+Lm6MbJrdwB8XFy59+QRW44eLnEwbl/YOX7akDvgyNzP5YPC5D+mZai+Dualr6PDmvGTSM/M5PztW8zdvhUHC0uqe3kTk5DA7C2b+WPEKHTewyBIBepfzGPjfEgou9duZfjUsRib5t4zyKQyjEyN6TtqMOoa6rh4upEUn8DBrXtEMO4N8u858m2jen96vd02XD5MpkSeqbE3IpRe1Vqy88YJ1NXU6V65Kduuh5Ce/ebuUkqVimO7ONeLs8dOsuPfTXwx7RulfQpAV0+XaX/9SubLDCIuX2PDklVY2dngW0hH/iVV8LhWdf59N0f2BuPk5oKnr+rBm0pVgUrL3rgig38YS1ZGJg9vR3Fw7Q7Mba2o3KBmgXJhR0KxcbLH0dO19Oqrgqrrd0m2hUwmw9jMhM/HjkRdQwN3b08S4uLZuWHr/49gXCG/1T5m5ubm/Pvvv0WWyfsb1tXVtdDftK85OTkRElJ4dy1vQwTjhPdi0KBBjBo1ir/++ovly5fj4uJCs2byEXqkUimff/45o0ePLjCfs7NzgWmF/RDMO12vkE6gVVF1wOVf/pkzZxSZdkFBQZiYmLB+/Xpmz55d7M8p7mfn97bfT2Fer5OamhpSqbzJyJIlSxTZaq/lj+iXdNTZ1+tY1M3YgwcPaNOmDcOGDWPGjBmYm5tz8uRJBg0aVKBfvrwsLS1JSCiY4aKhocH27dvp0qULTZo04ciRI/j7y5s0eHt7K4KKRWXHhYeHc/bsWc6fP6/UbDknJ4d169YxfHjuCItGRkZ06NCBDh068OOPPxIUFMSPP/6oFIyLj48vcuCQn376qcDIQNOmTaPPiM8Knec1YxMT1DXUSYhXzshITEgskBX0X/KxrJeBkRHq6uokJypnnKQkJWOU70dHfhavOoy2d3UiJTGJ/et3lFkwLrBWLSr45P5AyHp17MUmJmCZZ1CW+KQkzPMF00tKT1cXDxdXHj4pvU7GjU2MX+0/yueIpIQkTEthIJVt6zax+d/1/DDnZ9w83N88wzvSNzJEXV29QBZcalIKhqZFZxGa28g7TbdzcSQ1KZngjbsUwbj81NXVcfRwJfZpwc6O31VglWpUcM9tgpklke9TcUmJWObZhxKSk7EwLvpYAFi9bw/Ld+/ir28m4OWkfP2zNDXFPd9gB6529hwJCyvBGsgFVqhEBRdXxf9Zrzoxj0tJxjLPA6yElBQsjIreJurq6jhZyTsf93F04v6zZ6w4dJDqXt7cfBhNfGoK/X/LzY7PkUq5FHmXTSdCODX791IZ6MTQWH5OSsqXsZSSmFwgEJJf2PHTrJq/hKETR+NXpYLSeybmpmhoaKCukVtHWyd7khMSkWRL0NQSPzvyS8/KIEcqxUhH+b7VUFuvQLbcaymZ6SRnpCkCcQDPUxNQV1PDRNcQbQ1NzPWN6Vc9t4XH63uwGa2GMvf4euLTi86QeltGxsby61y+rKXkpKQ37lPnQkJZMW8RwyaPxb9qwYw3dXV1bOzlTXadPVx5+vAxezdsL/VgnLGJfB0S891XJickFcjQeheZGZmEHjtB9097l3hZRdE3ll8z8mfBpSWlFMiWy+/14C22zg6kJqVwdNOeAsG4rMwsrp0Ko1mPdqVb8TwU2yL/9TuxZNvC1NwMTU1N1PP81nFwdiQxPgFJdjaa7+EhiCDkJfqME96L7t27o6Ghwdq1a1m5ciUDBw5U3BhUq1aNGzdu4OnpWeClrV0w08Df35/o6GgePsztXyM8PJykpCRFBlSlSpU4fPhwser2enlP8vwIPH1auSPpU6dO4eLiwpQpU6hRowZeXl48ePBAqYyfnx9nzpxRmpb/f1Wf/aZ53vb7eU3VOqmrq+Pt7Y2NjQ0ODg7cu3evwDLd3ArvxNTExAQ7OzulOkokEi5cuFDoPH5+fkgkEsLy/CC6deuW0mASYWFhSCQSZs+eTZ06dfD29laqe2GqVq1a6EiwOjo6bN26lVq1atGkSROuX5c3B+zatSva2tr88ssvKud7Xa+lS5cSGBjIlStXuHz5suI1fvx4li5dWmid1NTU8PX1LTDAxvXr16map++t/CZNmkRSUpLSa9KkSUWtvoKWlhae3t5cPn9Rafrl8xfxrVA2T47fh49lvTS1NHH0cOX2ZeV+7m5fDsfV16P4C5LJ+1EpKwb6+jjZ2Ste7k7OWJiZcfbyZUWZ7OxsLt64TiXf0u3LKis7m/uPHmJZiqMNy/cfLy6H5dt/wi7iW8L+hrau28SGVWuZ9utMvMo4w0FTSxMHd2fuXFU+1925GoGLT/H3H5lMRk62pMj3n95/WKCZWUkY6OnhZGOjeLnbO2BhYsLZG7nNs7MlEi7eukklz8L7JgJ5IG7prh3MH/cN/m4Fg5+VPb15EPNUaVr0sxhsi9Hx8hvXQ1cXJytrxcvd1g4LY2PO3srtRypbIuFi5F0qFXENVUUmkymCezW9fVg3YQr/fjNJ8fJzcqZV9Rr8+82kUhtxWFNLE2dPNyIuKzeTj7h8DXffwrfD+ZBQVs5bzKCvR1KxZsHrmYefN8+fPlM88AN49jgGE3NTEYgrRI5MypPkF3haKjdJ9bR04EGi6n40HyTEYKSrj7ZG7ndqaWCKVCYlKSOVF2mJ/H58A3+e3KR43Xx2n6i4x/x5chNJL4seHOtdaGpp4uLlzo1LV5Wmh1+8iqd/4X2dnj12kmVz/mLI+NFUrlW8pv4ymaxMroWaWlq4e3ty9cJlpelXL1zGO6Dk17zTx04iycqmYfPGJV5WUTQ1NbF3d+buVeW+1e5evYmzz1s8OJLJlEaBfe366QvkSCRUaaj6wU5pyN0Wyt27XL1wGZ8A1S2CisOngj8xj58qnaOePnqCmYW5CMQJ5UJcGYX3wtDQkB49ejB58mSSkpIYMGCA4r0JEyZQp04dRo4cyZAhQzAwMCAiIoLg4GD++OOPAstq3rw5lSpVok+fPsybNw+JRMKIESNo1KiRoinktGnTaNasGR4eHvTs2ROJRMK+fftUdtrfvHlzfHx86N+/P7NnzyY5OZkpU6YolfH09CQ6Opr169dTs2ZN9uzZU2DQgi+//JJPP/2UGjVq0KBBA9asWcONGzcK9B2W17Bhw5g9ezZjx47l888/58KFCwVGnn3b7+c1XV1dPv30U3777TeSk5MZPXo03bt3x9ZW/nRx+vTpjB49GmNjY1q3bk1mZiZhYWEkJCQwduzYQpf75Zdf8vPPP+Pl5YWfnx9z5swpMEprXj4+PorOM//++280NTUZM2aMUvaih4cHEomEP/74g/bt23Pq1CkWLVpU6DJfCwoKKjDgRF7a2tps2bKF7t2707RpUw4fPkzFihWZO3cuo0aNIjk5mf79++Pq6sqjR49YtWoVhoaG/Pzzz6xevZoffviBChWUn/wPHjyYX375hStXriCTyZg2bRr9+vXD398fbW1tQkJCWLZsmVI2XXp6OhcuXGDWrFmF1vVthvRWpVOPLsz58X94+nrjF+DH/p17efH8OW06yZ9crli0lLjYWMZ9m1uve3fko2RlvHxJUmIS9+7cRVNTC2c3+ch32dnZPLwvDzpLsrOJexHLvTt30dXTw97RgfehLNarPDTu2JI185bg5OmKq48noQdDSIiNo16QvP/B3as3kRSXSJ8x8mbjJ/cextTSAhtH+fF6L+IOR3fsp2HbZu+tzmpqavRq34HlmzfhbGePk709yzdvRFdbh1aBuX3XfTd3DtYWFozqL+9rMjs7m3uvHpZkZ0t4ERfHrXv30NfTxclO3sfjvOVLaVizFrZWViQkJrF00wbS0tNp17R0169j987Mnfkrnj7e+Ab4cWCXfP9p3bEtACsXLyM+NpavpuReG+7dkQ+KkPHyJcmJSdy7EykPXrjK958tazeyZukqvp46ARtbGxLi5Jmbunp66OkXPyv7bTRs34INfyzD0d0FZx8PzgUfJzE2njot5dth35qtJMcl0mO0PJM2dN9RTK3MsXaQ7z9REXc5vusg9Vs3VSwzeOMunL3dsbSzJjM9g1N7D/Pk/kM6DS67rA01NTV6tWjF8t27cLKxxcnGhhW7d6Gro01QndzuD6YtWYSVqRmjuskHZlq1dzeLtm3hx89HYGdpSeyrvuf0dXTRf9VVQa+WrRg06weW795J85q1uXEvkm3HjjJ5wJuzi99pPRo1YXnwAZwsrXCysmZF8AF0tbQJqp6bRTLt35VYmZgyqn1HAJYHH8DfyRkHSyskORJOhd9gz/mzTOwubxZsoKuLZ75+UPV0dDAxMCwwvaSad2rN8jkLcfF0w93PixP7j5DwIo7ANvJjcNuK9STGJTBwnDwL/HxIKMvnLKL70H64+Xoqsuq0tbXRezVyYWCb5hzdfZCNf6+mSfuWPH8Sw/5NO2jSPqhU6/4u9LR0cDTJzU63N7bEy9KR5Iw0nqWWbx+kJ6Ou0q1yUx4nPSc64Rk1nf0x0TPi3AN5AL6lTy2MdQzYfFXe7cmVJ3do4lmdLpWacPhOGPpaurT2q8OFh7eQSOUd0edfp5evsujKcl1bftKOf377A1cvdzz8vDm+7xDxL2Jp1EbeSmDL8rX/x95dhzd1vg0c/yZ1F6qUUhegOBR3tw0ZLhtjzGCMsQ22MWECU8Z87MdgyHBnuLtLsRYopYVSoKXumrx/FFLSpFgNeO/PdeW62pPnnNwnOclJ7nM/z0NSQiKvvFc4AdmR3fuZ/cPvDHr9JXwC/Um5U1VnZGKsmQ1zw9LVePr54OTqTH5+PmeOneLQjr0MG/tKuexDjxee57dvZuDj74tfzUB2bNhCfNxtOvUqrDJc9Pc8EuMTGfvBO5p1oi4XToqQnZVNakoqUZevYGhoSDVP7erdXZu20ahFU6xsymZc1Ptp0bM9K36dh5u3B+7+XhzffoCU+CQadyocN3TrojWkJibzwtiXADi8eQ+2DnY43DlnXL0Qwf7/ttO0W1udbZ/YeZAajetiXsJEG2WlZ//e/Pr1j3gH+OFfM5Dt6zcTH3vPazFrHonxCYz9sOg3i/ZrkaLzWnR+rhubV69n7m+z6NqnJ7dibrB60XK69Sm/Kr8niur/XzfVJ50k40SFGTVqFLNnz6Zz585a3Svr1KnDnj17mDx5Mq1atUKtVuPj46M1O+q9FAoFa9as4a233qJ169YolUq6du2qlZhq27Yty5cv58svv+Sbb77B2tqa1q1b692eUqlk9erVjBo1iuDgYDw9Pfnll1/o2rWrps3zzz/PO++8w9ixY8nJyaFHjx588sknTJkyRdNm4MCBREREMGnSJLKzs+nXrx9vvPHGfSc3qF69OitXruSdd97hjz/+IDg4mGnTpvHyy0U/Hh71+bnL19dXM1NrYmIi3bt315oM4ZVXXsHc3Jzvv/+eiRMnYmFhQe3atbUmUtDn3Xff5ebNm7z00ksolUpefvll+vTpoxn4Up9//vmHV155hTZt2uDs7MxXX33FJ598orm/Xr16/Pjjj3z77bd8+OGHtG7dmq+//poRI0bcN5Zhw4YxadIkLl68qDUrzr2MjIxYtmwZgwcP1iTk3nzzTfz9/fnhhx/o06cPWVlZeHp60rNnTyZMmMC6detISEigT58+Otvz8/Ojdu3azJ49m08//RRPT08+//xzoqKiUCgUmv/feafoi9ratWupXr06rVq10tleWWndoS1pqaksmfsviQmJeHh5MuW7qTi5FA7EnpSQwO1Y7UH3x71c1NX28sVw9mzbiZOLM3OWF46tkBifoNVm1ZLlrFqynKB6dfjm19J10X5Y5bFflaF+yyZkpGawZek6UpNScK3uxqufvKPpEpKamELS7aIB7FUqNRv+XUFi7G2UBgZUcXGk5/AXaNalbYXG/WLffuTk5vLNX3+Slp5OkL8/v33+BRbm5po2t+Jvo1QWdUO/nZjI0Hfe1vy/YM1qFqxZTYOgIP439WsAYuMTmPzDDySnpWJnbU1QQAD/fPcDrk5OZRp/qw5tSUtNY+m8hXeOHw8+/fare46fRG7H3tZaZ/yoNzV/X74Yzp7tu3BycebvZfMB2LRmPfl5eXzz6Vda6w16aRhDXh5epvHfVbdFYzLTMtixYgOpSSm4VK/KyI/ews6xsOorLSmF5Pii7txqtZrNC1eTGBeP0kBJFWdHug3tS5NORefB7IxMVs1cQFpyKqbmZlT1cuf1L97H3e/RKrse1YjuPcjJy+XbBXNJy8iklo83v747EYt7LtDcSkjQGtpgxc4d5OXnM+n3X7S2Nfr5Przau3Asslre3nw/9m1+X7GMv9euoaqjIxOGDKNbs0eb2eyh96NDJ3Ly8vh2xVLSMjOp5eHJr2+MxeKecUxvJSVp7Ud2bi7fLl9KXEoyJkZGeDg588Xwl+jcoKG+hyhXjVo3Iz0tnQ1LVpOamExVj2qMnfI+VZwKE1YpSckk3vOZtHfTTlQFBSz5cy5L/pyrWd60QyteeqdwvFx7xyq8/cUHLP97AV+O/RDbKna0f64rXfr1qtB90yfQ0YPf+hT9aB/Xsj8AG8MOMXVnyRf1KsLZmxGYG5nS3rcRVibmxKYnMu/YRpKzCyvYrEwssDUr6l6YW5DPP0fX07NWS95s0ZfM3BzO3oxg26WjlbULAAS3aU56Whr/LVpJSmISbp7uvP3FhzjcGW4hOTGJxLh4Tfs9G7dTUFDAwt9ns/D3oh4HzTu2YdS7Y4DCrp3//v43SfEJGBkb4+ruxivvv0Vwm+blsg/N27UiLTWNlQuWkpSYiLunBx98/SmOzoXnpuSEJBLitM8Zk14br/n7yqXLHNixB0dnJ35b9Ldm+Y3oGC6cC2Xyt9rDkZSX2s0bkZmWwa6VG0lLSsXZ3ZXhH755zzkjleT4osSsWq1i6+K1JMUloFQqsXdxpPPQ3jTuqD3eZvyNWK5eiOClj8tvAoq7Cl+LVFbOX6J5LT78+jMcXQpfi6TEROKLvRYTXy367nHl0mX233ktfl9ceHw5ODny8XdfMO+Pv3n/lbewd6hCt7696D2oX7nvjxD6KNQPM2iVEOKpMmXKFNasWUPIPd3LnlUTJ04kJSWFv/76q7JDKVFwcDDjx49nyJBHrzgJj7tWDhFVLD+n6k/9fvg5VWdj2MHKDqPUutdoTtqFS5UdRqlYBfpzMTaqssMotQBnT9acLZsBgCtT79ptSD1YuUmA0rJuHkzq5u2VHUapWXftyK7w0o+RV5na+TWixe+vP7jhE+7AmJl8tPHBFf5PumndX2f/ldOVHUaptPSuS8j1i5UdRqnVqxbA8tMPNwTPk6p/3Q6cjnm6v4MA1HWrgAk4ykHq3if3e6x16/JJsD/pZMw4IcRTbfLkyXh4eFBQUFDZoegVFxfHCy+8wODB/w9maRJCCCGEEEI8edSqJ/f2/5R0UxVCPNVsbGz46KOPKjuMEjk5Oekdq1AIIYQQQgghxP9PUhknxDNoypQp/y+6qAohhBBCCCGEEE8bqYwTQgghhBBCCCGEeFbJVAFPHKmME0IIIYQQQgghhBCigkgyTgghhBBCCCGEEEKICiLdVIUQQgghhBBCCCGeVSrppvqkkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZJbOpPnGkMk4IIYQQQgghhBBCiAoiyTghhBBCCCGEEEIIISqIdFMVQgghhBBCCCGEeFapVZUdgShGKuOEEEIIIYQQQgghhKggkowTQgghhBBCCCGEEKKCSDdVIYQQQgghhBBCiGeVSmZTfdJIZZwQQgghhBBCCCGEEBVEknFCCCGEEEIIIYQQQlQQ6aYqhBBCCCGEEEII8axSSzfVJ41UxgkhhBBCCCGEEEIIUUEUarWkSIUQQgghhBBCCCGeRalbdlR2CCWy7tKhskOoFNJNVQghnmAbQg9Udgil1qNmC8LjrlV2GKXi51SdV1d8W9lhlNr/XphEyne/VHYYpWIzcRxfbJtT2WGU2qedXmbE4i8qO4xSmz/4U1KPnajsMErFunFDdoUfr+wwSq2dXyN+2ru0ssMolfGtB/LRxpmVHUapTev+Oi1+f72ywyi1A2Nm8vqK7yo7jFKZ+cLEZ+aYGrPqh8oOo1R+7/se7/33a2WHUWo/9HqrskN4PFKD9cSRbqpCCCGEEEIIIYQQQlQQScYJIYQQQgghhBBCCFFBpJuqEEIIIYQQQgghxLNKparsCEQxUhknhBBCCCGEEEIIIUQFkWScEEIIIYQQQgghhBAVRLqpCiGEEEIIIYQQQjyrZDbVJ45UxgkhhBBCCCGEEEIIUUEkGSeEEEIIIYQQQgghRAWRbqpCCCGEEEIIIYQQzyrppvrEkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZpZJuqk8aqYwTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5ValVlRyCKkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVYgyNHfuXJydnenWrVtlhyKEEEIIIYQQQshsqk8gScb9P+Lp6cn48eMZP358hW1PoVCwevVqevfu/diPM2XKFNasWUNISMhDr7N7927atWtHUlIStra2j/3Yj2LVqlV89913HDhw4LHWf+mll0hOTmbNmjUAtG3blnr16vHTTz+VuE5ZvKb3vkZRUVF4eXlx6tQp6tWr99jbfBhldTzu3LmTN998k9DQUJTKJ6/YNy4ujlq1ahESEoKbm1u5PtaBTTvZtWYzqUnJuLi70XvUYLxr+utteyX0EusXrCDu+k1yc3Oxd6xCs85tafNcZ02bQ1v3cHz3QW5diwGgmo8H3Yf2w8Pfu1z3o7gNq9exavFyEhMSqO7pyehxbxBUt7betonxCcz+/S8uXwznxvUYer3Qm1fHvVmh8QK08a5Pl4BgbEwtuZEaz9LTO7gcf11v25cadae5p+7+3EiJZ8q22QA08whiZOMeOm3eXPUD+aqCsg3+IZi0aIJx3VooTEwpuHmLrG27USUkPmAlY0xbNcfI3weFqQmqlFSyd+0j/8rVco310t6ThO44SlZKOrauDjTs1wEnX3e9bWMvXWP7L4t1lvf8+BVsXKoAoCoo4PzWw1w5co7M5DSsne2p/3xbqtas2PcFQAffRnSv0QwbMytiUuJYeHIrl25fK7F9M48getRojrNVFbLysjlzM4Ilp7aRnptVYTGr1WpmrVrJ6l07ScvIoJaPLxNfGolPtWolrrN610427ttHxPVoAAK9vBgzYCC1fHw1bVZs38bKHdu5eTseAO9qbozq05cWdeuV+T7s3rCNbas2kJKYTNXqbvQfPRy/oEC9bU8dPMaejdu5fuUq+Xl5uFavRs8h/ajVsI5Wu8z0DNYuWMapg8fJTM/AwdmRfqOGUrtx2cd/17ldRwnZsp/MlHTsqjrSYmA3qvp76m0bczGSdT/8o7N80BdvYefqCEDo3uNcPBRC4o04ABw9qtKkT0ecvUp+bUurSfVatPKui5WJOXHpSWwIPUBU0q0S2xsolbT3bUQ9Nz+sjM1JyU5nd8RJTly/qNO2jqsPg+p3IvRWJP+e3FJu+/Ao6rr6MqR+ZwKdquNgYcsHG/9kX+Tpyg5Lo413PTrdc+5bfnpniee+Fxt1o1kJ574vts0BCj+zXmzcXafN2FXTy+3c96wcU62869HRrzE2phbcTI1nxZldRCTE6G07vGFXmnoE6Sy/mRrPV9vnAlC3qh9dAprgaGGLgdKA2+lJ7Ag/ztHo0HLbh+YetWnrWx8rEwti0xJZe34fkYk3SmxvoFTSyT+Yhm4BWJlYkJydzo7wYxyLDtO0aeVVl2aetbEzsyIjN4szNy+zMexQpXyXEkKScU+BXr16kZWVxfbt23XuO3ToEM2bN+fEiRM0aNCgQuM6duwYFhYWFfqYT6orV67w8ccfs2nTJuzs7Mpkm6tWrcLIyKhMtvWw3N3duXnzJg4ODuX+WGV1/EycOJHJkydrEnFz585l/PjxJCcna9qEhYXRqVMngoODWbx4MSYmJuzatYvvv/+eI0eOkJWVhaenJ926dWPChAk6SbOAgAAiIyOJjIzUue/KlStMnjyZPXv2kJiYiIODAw0bNuT777/H398fJycnhg8fzmeffcbff/9d6v0tyan9R1kzZzH9Xh2OV6AvB7fu5n9fzmDSL19h51hFp72xqQktu7enqoc7xqYmXAkNZ8XMeRibGtOsc1sAIs5fpEGrJngG+mJoZMSu1Zv46/PpTPzlK2yrlM1x/iB7d+xm1i9/8saEt6hZuxab1m1gyvsf8ceC2Tg5O+m0z8vLw9rWhgEjhrB22coKibG4RtUCGVivA4tObuVyQgytvesxrmV/pmz5m8SsNJ32S0O2s+rsHs3/SqWSTzuO5ETMBa12WXk5fLJ5ltayyvjyaBzcEJNG9cncuA1VUhImzYKxGNibtL8XQG6e/pWUSiwG9EGdmUnm2o2o0tJRWlmiLql9GYk6EcaJlTtoPLAzjt5uhO8PYdcfy+n58StY2FuXuF6vT0ZjZGas+d/E0lzz9+n/9hF57DxNhnTF2rkKN8Mi2TtrNZ0nDMPe3blc9+deTarXZGiDLsw7vpHw+Gja+TbgvTZD+HDjHyRkpuq093dw57WmvVl4aiunYi5hb2bFS4178HJwL37Zv6zC4p6//j8WbdrEp6+9RnUXV+asXc3Yb6ax4vvpWJiZ6V3nRFgonZs1p46/HyZGRsxfv56x337D0m++w8neHgAne3vGDhxENWcXADbs28t7P07n36lf3zfR96iO7z3E8lkLGPzGSHxq+rNv005+m/Idn/3xHfZOuufO8HMXqFEviN4jBmBmYcGh7Xv448sfmDT9C6r7eAKQn5fPz598g5WNNa9+OA47B3uSbidiamZaZnEXd/nYWQ4s3USroT1x9a3O+T3H2PDLvwz6fCxWVWxLXG/wl+MwNjPR/G9qVXQev3ExCr/gOrj4uGNgZEjIlv2snzGfgZ+PxdKu5Pfb46rt6kOPms1Zd24fV5NuEVy9Ji827sFPe5eSkp2uP/76nbA0NmfVmd0kZKZiaWyGUqHQaWdrakm3wGb3/eFfGcyMTLiccJ2NFw4yrdvrlR2OlobVAulfrwOLT24jIuE6rbzrMbblC3y+ZTZJes99O1h9dq/mf6VSwccdR3IyRjuJlZWXw2ebtb8/lde571k5phq4BfBCnXYsDdlOREIMLb3qMqZFP77c9o/e12L56Z2sPXfva6Hkw/YvcjLmkmZZZm42Wy4e5lZaIgWqAoJcfBjWsCtpOZmExUWV+T7UrerHc0GtWHV2N1GJN2nqEcQrTXrx/e6FJGfpfy2GN+yGlYk5y07vJD4jGUsTc63Xor6bP91rNGfZ6R1EJd7E0dKWgfU6ArDu/P4y3wchHuTJKyMROkaNGsXOnTu5elW3emDOnDnUq1evwhNxAI6Ojpibmz+44f8D3t7ehIaG4uHh8cC2eXkP9+PT3t4eKyur0ob2SAwMDHBxccHQsPzz9GVx/Bw8eJDw8HD69+9fYptjx47RqlUrunTpwvLlyzExMeGvv/6iY8eOuLi4sHLlSkJDQ5k5cyYpKSlMnz5da/39+/eTnZ1N//79mTt3rtZ9ubm5dOrUidTUVFatWsXFixdZunQpQUFBpKSkaNqNHDmShQsXkpSUVKr9vZ8967bQpEMrmnZqjbN7VfqMGoJtFXsObN6lt301bw8atGqKS3U37J0caNS2GQH1grgSGq5pM+ydV2nRrT1uXtVxrubKgDdfQq1WE36m/K6CFrdm6Uo69ehKl17dcff04NVxb+Lg5MjG1f/pbe/s6sJrb4+hQ9dOmFfSxYJO/o3ZH3mG/VFnuJWWwLLTO0jKTKONT3297bPyc0nNydDcPO1cMDc25UDUWa12arVaq11qTkZF7I4Ok0b1yD50jPzwCFTxiWRt3IbC0AjjGgElrmNcpyYKU1MyV2+gIOYm6tQ0CmJuorpTxVReLuw8hk+zOvg2r4uNiwONXuiIuZ0Vl/aduu96plbmmFlbam73Vt1GHj1Prc7NcKvlg5WDLf6t6uNaw4uwnUfLdV+K6xrQjD1XTrHnyilupMaz8ORWEjNTaO/XSG97H4dq3M5IZtulo8RnJHMpPppdl0/gZe9aYTGr1WoWb97MyOefp33jYHzd3Zny2htk5+ay5eDBEtf76s2x9O/UiQAPTzyrujH5ldGoVWqOnT+nadO6QUNa1KuPh6srHq6uvDlgIOamppy7HF7idh/H9jWbaNGpLS27tMPV3Y0Brw7HzqEKezbqXjAFGPDqcLq80AtPfx+c3Vzo/eJAnKq6cPboSU2bg9t2k5GWzhsfv4NvzQCqODniWyuAat4P/k7xuE5vO0hgywbUbNUQO1dHWg7qjqWdNef3HLvvembWFpjbWGlu9743Oo5+gaB2wThUd8XO1ZE2I55HrVYTE3alXPahpVcdTkRf4Pj1C9zOSGZD2EFSstNp4lFTb3s/B3e87Ksy7/hGIhJiSM5K43pKHNeSY7XaKVAwoF4HtocfJzFTN3FRmQ5fO8+sI+vYcyWkskPR0dG/EQciz3Ag6gy30hJZfnrnfc992cXOfR53zn0HK/Hc96wcUx38GnEo6iwHo84Sm5bIyjO7SMpMo5V3Pb3tC1+LTM2tum3ha3E4qugzNjw+mtM3LhOblkh8Rgq7I04Sk3obH4fy6fXRxrseR6+FcvRaKHHpSaw7v4/krHSaeejvGRHgWB2fKm78fWQd4fHRJGWlEZ0cy9V7qho97VyJSrzJqZhLJGWlcel2NCEx4VSzqbgLaZVKrX5yb/9PSTLuKdCzZ0+cnJx0EgGZmZksXbqUUaNGAYWJidatW2NmZoa7uzvjxo0jI6PkE9a1a9d4/vnnsbS0xNramgEDBhAbq33yWLduHY0aNcLU1BQHBwf69u2ruc/T01OrC2V4eDitW7fG1NSUmjVrsm3bNp3HnDRpEv7+/pibm+Pt7c0nn3yik5z65ptvcHZ2xsrKilGjRpGdnf3A52jjxo34+/tjZmZGu3btiIqK0mnzqM/PlClTqFevHn/99Rfu7u6Ym5vTv39/rYorgH/++YcaNWpgampKYGAgf/zxh+a+qKgoFAoFy5Yto23btpiamvLvv/9SUFDAhAkTsLW1pUqVKkycOBF1sQ+itm3banXhjIuLo1evXpiZmeHl5cXChQt1Yv7xxx+pXbs2FhYWuLu78+abb5Kerv/qkT53473bJXj37t0oFAq2bNlC/fr1MTMzo3379sTFxbFp0yZq1KiBtbU1gwcPJjMzUyv2sWPHMnbsWM0+fvzxx1r7WPz4eZzYlyxZQufOnTE11V89sHPnTtq3b8/IkSOZPXs2BgYGXL9+nXHjxjFu3DjmzJlD27Zt8fT0pHXr1vz99998+umnWtuYPXs2Q4YMYfjw4cyZM0drH0JDQ7ly5Qp//PEHTZs2xcPDgxYtWjB16lQaN26saVe7dm1cXFxYvXr1A1+Dx5Gfl8/1iKv416ultTygXi2iLlx+qG1cv3KVqIuX8alVckIlNzeHgoICzC0rJsmVl5fH5UuXqB/cUGt5/cYNuXDufIXE8KgMFEqq27oQGhuptTw0NhKfKg/3hbWFZx0uxEWRWKy6ycTQmK+7vc633d9kbIt+uNvqVgaWN4WNNUpLC/Kj7ukKWVBAfnQMBm4lJ3UMfbwpuHETs05tsRrzCpYjh2LStBHoqR4oKwX5BSRG38K1hpfWctcaXsRH6u+qc9fGb+ey8qPf2P7LEm5d0r4QVpCfj4GRgdYyAyNDbkfo74pVHgyUSjztXTl3K0Jr+dlbV/Bz0N8FNzw+Gntza+q4FnbttDa1oHH1mpy+UbbJqvuJuR1HQkoyTWsXddE0NjKiQWANzoRfus+a2rJzcsgvyMfa0lLv/QUqFVsPHSQrJ4fafn6ljvuu/Lx8rl2OpEZ97R+DNerX5sqFh3seVSoV2VnZmN8T++kjJ/EO9GPxn3N5f9gbfPHmJDYtW4uqQFVmsd+rID+f21dv4l7TR2u5ey1fbkWU3M0ZYPkXfzLvve9YN/0fYi7cP8mWn5uHqqAAEwv9FY+lYaBQUtXakfD4aK3ll29fx8PWRe86NZw9iUm5TWvvekxqP5wJbQbRLbAphkrt93N7v4Zk5GZz4voFvdsRuu6e+8Jio7SWh8VG4l0G576p3V7j6+5v8GY5nvuelWPKQKHE3dZZp1otLC4Kb/uqD7WN5p61uRh3lcQs3SrruwIcq+NsaV9iN+TSMFAocbNx0hl24dLta3iWcAGplosX0clxtPNpyCcdRzKp3TB61myh9VpEJt6gmq0T7raFyTd7c2sCnTzKpbJPiIchybingKGhISNGjGDu3LlaiYDly5eTm5vL0KFDOXv2LF26dKFv376cOXOGpUuXsn//fsaOHat3m2q1mt69e5OYmMiePXvYtm0bERERDBw4UNNmw4YN9O3blx49enDq1Cl27NhBo0b6r7irVCr69u2LgYEBhw8fZubMmUyaNEmnnZWVFXPnziU0NJSff/6ZWbNmMWPGDM39y5Yt47PPPmPq1KkcP34cV1dXreSWPtHR0fTt25fu3bsTEhLCK6+8wgcffKDV5lGfn7suX77MsmXL+O+//9i8eTMhISGMGTNGc/+sWbOYPHkyU6dOJSwsjGnTpvHJJ58wb948re1MmjSJcePGERYWRpcuXZg+fTpz5sxh9uzZ7N+/n8TExAcmal566SWioqLYuXMnK1as4I8//iAuLk6rjVKp5JdffuHcuXPMmzePnTt3MnHixPtu92FMmTKF3377jYMHDxIdHc2AAQP46aefWLRoERs2bGDbtm38+uuvWuvMmzcPQ0NDjhw5wi+//MKMGTPu203zcWLfu3dvicfk6tWr6dGjB5MnT+b777/XLL/7vilp2/eOMZiWlsby5csZNmwYnTp1IiMjg927d2vud3R0RKlUsmLFCgoK7t9lIjg4mH379t23zePKSEtDpVJhZWujtdzK1pq05JQS1ir0+Svv8n7/V5nx/he06Naepp1al9h2w/wV2Njb4V+3VoltylJqSgqqApVO1287OzuSEsuvyrA0LE3MMVAqSc3J1FqempOBtemDk5g2phYEuXizL/KM1vJbaYnMPb6B3w+uZNbRdeQVFDCp7TCcLCumu/BdSovCalZ1pvb+qTMzUViUXOmqtLXGKMAXFAoyVqwl59BRjBvXx6RZ4xLXKa2c9EzUKjWmVtpxmVpZkJWq/0KMmY0FTQZ3ofUrvWn9Sh+sne3Z8esSYi8X/ThzreHFhZ3HSI1LRK1SczMskutnwkvcZnmwunOcpWRrP2ZqdgY2JRxnl+OvM/PQasa06MecgZP5rc+7ZOZms+DE5ooIGYCEO59H9jban1X2NtYkpCQ/9HZ+W7oERzt7gmtpj3F0OfoarUeNpMVLI/j6nzl8P/4dvN3KrotqemrhZ621nXb81nY2pCbd/7P2ru2rN5KbnUPDVk00y+Jj4zh54CgqlYqxUybSbWBvtq/eyKZla8os9ntlp2eiVqkwt9ZOZppZWZCZov8imLmNFW2GP0eXNwbR5Y1B2Lo4sO7Hedy4FFXi4xxeuQ0LW2uqlcN4iubGphgolaTnaI93mJabiaWJ/s8ie3MrPOxccLayZ+GJLawPPUiQiw/P1WqlaVPdzoVG1QJZfc/QAeLBis59xT6TcjIf6txnbWpBLRdvDuic+xKYd3wjfxxcxeyj/5FfkM/7bYeWy7nvWTmmLE3MCl+LbO3zdNojvBY1nb10KhQBTA2N+fG5cfzS+x3eaN6X5ad3cCGu7Md9tTAu3Ie0nOL7kIVVia+FDV72rrhY2zP3+EbWnt9HHVdf+tZuq2kTciOczRcOM6ZFP77t8SYfdXiRiITr7Lp8osz3QYiHIWPGPSVefvllvv/+e83EBFDYRbVv377Y2dnx9ttvM2TIEE0llZ+fH7/88gtt2rThzz//1Kkc2r59O2fOnCEyMhJ398Kr6AsWLKBWrVocO3aMxo0bM3XqVAYNGsTnn3+uWa9u3bp649u+fTthYWFERUVR7c7YLNOmTdOZVfTjjz/W/O3p6cm7777L0qVLNYmRn376iZdffplXXnkFgK+++ort27fftzruzz//xNvbmxkzZqBQKAgICODs2bN8++23mjbff//9Iz0/d2VnZzNv3jzNPv3666/06NGD6dOn4+Liwpdffsn06dM1FYNeXl6Ehoby119/8eKLL2q2M378eK2qwp9++okPP/yQfv36ATBz5ky2bCl5INdLly6xadMmDh8+TJMmhV/gZ8+eTY0aNbTa3VtJ5+XlxZdffskbb7zxwITmg3z11Ve0aNECKOw2/eGHHxIREYG3d+EX7BdeeIFdu3ZpJWDd3d11XpMZM2YwevRovY/xOLFHRUVRtaruVb709HT69+/PRx99pJOYDQ8Px9raGlfXB3fNWrJkCX5+ftSqVZh8GjRoELNnz9a8B93c3Pjll1+YOHEin3/+OY0aNaJdu3YMHTpU89zc5ebmxqlTJXeNy8nJIScnR2uZiYlJCa31K15jpFarUTyg8mjs1A/Iyc7h6sUINixYgYOrEw1aNdVpt3P1Jk7uP8qYLydiZFyxYxkWr55S8+D9qnTFKl0VKOAhqvCbedQmKy+bkBjtKqHIxBta48xExF/n444v0c6nAUtP7yiTkPUxqhmAWed2mv8zVt7pHqyvS8H99k+hQJ2ZRdaWnaBWo4q9jcLSEpPgBuQcLO/uncWOFbW6xII8a+cqWDsXjbHo6O1GZlIqYduP4nxn0odGL3TkyOLNrP/yb1CApYMd3k1rc+Ww7g+XcvcIL0NVaweGNejK2nN7OXsrAltTKwbW78hLjXsw+6j+bt+ltenAfr6eM1vz/4z3Cs/1up9V+pbqN3/9f2w9dJCZkz/BxNhY6z4P16osnPo1aZmZ7Dx2lCl/zeSvjz8p04RcYaTFPpPU6ocK/9ieg6xftIo3PpmA9T0XT9QqNVa21gwb+wpKAyUevl6kJCaxddUGegzue58tlpKemEv6bLVzccDOpWhMPBef6qQnphCy9YDeSR9Obd7H5aNnef79kRiW4/i3xY/3wtdG/7vg7uu2NGQHOfm5AGwMO8jgBp1Zd34fSoWSAXXbs/rcHjLzHtwrQ+gqfmpQ6FuoRzOPoDvnPu0K08jEm0Qm3tT8HxF/nY86vkhbnwYsK6dz37NzTOnGrH6ILyJNq9ciKy9bb9V0Tn4uX++Yj4mhEQGOHvSt3Zb4jBSdasLycr+vfnc/uxad3Er2nddi3fn9jGjUjVVnd5OvKsCnihsd/Bqx6uxuriXF4mBhw/NBremYncn28Pt30X8m/D/uDvqkkmTcUyIwMJDmzZszZ84c2rVrR0REBPv27WPr1q0AnDhxgsuXL2t1XVSr1ahUKiIjI3WSNmFhYbi7u2sScQA1a9bE1taWsLAwGjduTEhISImJk+LCwsKoXr26JmkF0KxZM512K1as4KeffuLy5cukp6eTn5+PtbW11nZef117QNpmzZqxa5f+ca/urtO0aVOtL5DFH/tRn5+79O2TSqXi4sWLGBgYEB0dzahRo7Sep/z8fGyKXfW/t3orJSWFmzdvasVoaGhIo0aNdLqq3ruPd9vcFRgYqDNT7K5du5g2bRqhoaGkpqaSn59PdnY2GRkZpZosoU6doi5Fzs7Omm7G9y47elT7B7W+12T69OkUFBRgYKBdvv+4sWdlZelNpJqZmdGyZUtmzZrF4MGDtV7fh0lQ3TV79myGDRum+X/YsGG0bt2a5ORkzXM/ZswYRowYwa5duzhy5AjLly9n2rRprFu3jk6dOmnFlFmsmuheX3/9tVbiG+Czzz6j8YBOJaxRxMKqcNye1GJVcOkpaVja3H/Q7CrOhbPgVfWoRnpKKluWrNVJxu1as5ntK9bzxufvUdVTfxe48mBtY4PSQElSovYsnclJydja2VZYHI8iPSeTApVK5+qzlYn5Q41z08KzNoevnadAff/uaWogKvEWzlb2pQn3gfIuX6Hgxj2zyN157yosLFBnFB3PCnNznWq5e6kzMlEXFGh9EVQlJKK0tAClElRl3x3PxNIchVJBdpr2856dnqk16PyDOHhWJfJYUbdoUytz2rzal4K8fHIysjCzsSRk7R4sq9jcZytlK+3OcWZjpr0f1qYWpGbrP8561WxJeHw0Gy8cAiCaOHKO5fJxp5GsOLOrxMHJS6N1g4YE3TPjaW5+PgAJKSk43FPxmpSaShWbBz9/Czas5591a/n9g4/wq15d534jQ0PcXQq7k9X09ib0SgRLNm/mo1GvlHZXALC0LvysTUlK1lqelpyqlVzT5/jeQ8z/ZRavfjCOGvW0K/ps7G0xMDBAaVDUYcXFvSqpScnk5+VjaFS2X9dNLc1RKJU6VXBZaRmYWT/8e8PZ251Lh3Vn8gzZsp+TG/fRa8KLVKmmv3tfaWXmZlOgUmFlot0F1tLYTKey6a60nExSszM0SROAuPQklAoFNqaWGBsYYm9uzfCGRReS735f+LLrq8zYu0SnC6UodPfcV7wyt/DcV/K54a4WnnU4ci30oc59VxNv4WRV9pVxz8oxlZ6TVeL3kLTsB78WzTxrc7SE10IN3M5IBuB6ym2cre3pHBBc5sm4jNysO6+FdhWcpbGZTrXcXWnZGaRkp2sScQBx6YkoFQpszSyJz0ihS0BTTl6/yNFrhWMf30pLwNjAiBfqtmNH+LGHuWYqRJmSbqpPkVGjRrFy5UpSU1P5559/8PDwoEOHDkBhN9HXXnuNkJAQze306dOEh4fj4+Ojs62SEhL3LjcrYVYzffQlkYpv//DhwwwaNIhu3bqxfv16Tp06xeTJk8nNzdVZ91GUlMC616M+PyW5u08KhQLVnR+Ps2bN0truuXPnOHz4sNZ6pZ019O4+3i+JdPXqVbp3705QUBArV67kxIkT/P7778DDTxpRkntndVUoFDqzvN77fDyOx43dwcFB76QIBgYGrFmzhoYNG9KuXTtCQ4smHPD399ckRO8nNDSUI0eOMHHiRAwNDTE0NKRp06ZkZWWxePFirbZWVlY899xzTJ06ldOnT9OqVSu++uorrTaJiYk4OjqW+HgffvghKSkpWrcPP/zwvjHeZWhkSDUfDy6d1p5Y4dLp83gG+pawli61Wk1+Xr7Wsp2rN7Ft+X+8+ukE3H29SlizfBgZGeHr70/IsZNay0OOnSQwqGK6yj6qArWKa8m3qOnsqbW8hrMnEQn3H6fM39EdZyt79hfrplMSd1snUkqYUazM5OahSk4puiUkokrPwPDepKxSiaG7GwUxJb+n8q/fQFksgaq0t0WVnl4uiTgAA0MD7N1duHkhSmv5zQtROHg9/IDTiddjMbPRHZvMwMgQc1sr1CoV10IuUq1O2Y1N9iAFKhVRiTcJctGuwA1y8S7xR5GxoZHO+VKlObeUT5wWZma4u7hobt5ublSxseXIuaIqwrz8fE5eCKOOn/99t7Vg/X/MXrOaXyZOoqb3w3V7VKuLEoBlwdDIkOq+XoSFnNNaHhZyFu/Akl//Y3sOMu+nvxj13hhqN9YdzN6nhj9xN2O1zqOxMbewsbct80QcgIGhIY4erlwP0x5z8HpoBC4+uknOksRfu4m5jfZEU6e27OfEhj30eHs4Tp7lM7A7FH7W3ki9jW+xMRJ9Hdy4mnxL7zpXk25hZWqOsUHRc+pgYYtKrSIlO53bGcn8vHcpv+1frrldiI0iMiGG3/YvL//P26fY3XNfDT3nvisPce5zsrLT6aJakmrldO57Vo6pArWK6ORYAp08tZYHOnly5QEzufo5uONkacfBq+fu2+4uBQoMlWX/GVWgVhGTEoe/o/Zr4e9YnahE/d81IhNvYm1qgbFB0W8Uxzuvxd3ZV40NDHWqA1Vq1Z0Kxye8x4V4Jkky7ikyYMAADAwMWLRoEfPmzWPkyJGa5EyDBg04f/48vr6+OjfjYt04oLAK7tq1a0RHF31pDw0NJSUlRVNFVKdOHXbseLgS8Lvbu3Gj6EP+0KFDWm0OHDiAh4cHkydPplGjRvj5+enMEFujRg2dRFbx//U99oPWedTn5y59+6RUKvH398fZ2Rk3NzeuXLmis00vr5KTFjY2Nri6umrFmJ+fz4kTJY9XUKNGDfLz8zl+/Lhm2cWLF7Umkzh+/Dj5+flMnz6dpk2b4u/vrxV7RdP3mvj5+emtinvc2OvXr6+VaLuXiYkJq1atIjg4mHbt2nHuXOEXixdeeAFjY2O+++47vevdfU5nz55N69atOX36tFaydeLEicyePVvvulCYmAwMDNSZHOTcuXPUr69/RrG78VpbW2vdHqWbapvnunBk+16ObN9HbPQN1sxZTFJ8Is27tAVg/YIVLPp5lqb9/o07OH8shNs3Yrl9I5ajO/axe+0WGrYpqtjcuXoTmxatZuDYkdg7OZCalEJqUgo5WRXX1aL3wH5sXb+JrRs2Ex11lVm//MntuDi69+4JwNyZs5n+1bda61wJv8yV8MtkZ2WRkpzClfDLXIss+zFNSrLt0jFaetWlhWdtXKyqMKBue+zNrTWz3/UJas3Ixj101mvpWYcrCTe4kao7w2jPGi2o6eyFg4UN1WyceLFhN9xtnSplRr2c4yGYNm2MoZ83Sgd7zLp3Qp2fR27YRU0bs+6dMGndXPN/bshZFGammHZog9LOFkNvT0yaNib35MP9+Hpcge0bE3HwNBGHzpByK54TK3eQmZiKX6t6AJxau4eD89dr2l/YdYzo05dIjUsk+eZtTq3dQ3TIJfxbF81YHh91g2shF0mLTybucjQ7f18OajU1OzYp/vDlavPFQ7TxbkBr73pUtXZgSP3OVDG3YWd44bmkf932vNr0eU37UzGXaOgeSHvfhjha2OLn4M6whl2IiI/R/FApbwqFgsFdu/LPurXsOnaMy9HRfP7XTEyNjenSvOh4+WzmH/y2dInm//nr/+PPFcv5dPRruDo4Ep+cTHxyMpn3DGHx+9IlnLpwgRu3b3M5+hp/LFvKybBQujVvUab70LF3Nw5s3cWBrbu5GR3DslkLSLqdQOvuhRdHV89dwj/T/9S0P7bnIP/8OJN+o4biFehLSlIyKUnJZN1TWdq6e0cy0tJZ9r8FxMbc5OyxU2xevpY2PR5cGf246nZqTti+k4TtP0nSzdscWLqJtMQUarUpHMfx8Kpt7Ji9UtP+9PaDRJ4KIzk2gcSYOA6v2saVk6HUbl903J/avI+ja3bQ9sXeWDvYkpmSRmZKGnnZOTqPXxb2R56hkXsgDasF4GhhS/cazbExs+Lo1cLvBZ0DgnmhTlE3+9M3wsnMzaFfnXY4WdrhaedKtxpNORF9kXxVAfmqAmLTk7RuWfm55OTnEZue9MCqrYpgZmSCn0M1/BwKe21UtXbAz6EazhU8fqg+2y8dp4VXHZp71sbFyp7+ddtjZ27N3jvnqd5BrXmpcXed9Zrf59zXo0Zzajp7as59wxt2xd3WiX3ldO57Vo6pHeHHae5Zm2YeQThb2dOvdlvsza3Yf6WwkvW5Wq0Y0bCbznrNPYOITLzBTT2vRWf/YAKdPKhiboOzpT3tfRvSpHpNjkXr/x5eWnuuhBBcvRaN3WvgZGnHc7VaYmtmyeE7icJugc0YVK/oM/JUzCUyc7MZWK8DzpZ2eNtXpWfNFhy9Fka+qnBc59DYSJp51KZeVT/szazxc3Cna2BTzt+KfKguvEKUNemm+hSxtLRk4MCBfPTRR6SkpPDSSy9p7ps0aRJNmzZlzJgxjB49GgsLC8LCwvQOrA/QsWNH6tSpw9ChQ/npp5/Iz8/nzTffpE2bNpqukJ999hkdOnTAx8eHQYMGkZ+fz6ZNm/QOfN+xY0cCAgIYMWIE06dPJzU1lcmTJ2u18fX15dq1ayxZsoTGjRuzYcMGnUkL3n77bV588UUaNWpEy5YtWbhwIefPn9cZf+ter7/+OtOnT2fChAm89tprnDhxQmfm2Ud9fu4yNTXlxRdf5IcffiA1NZVx48YxYMAAXO50g5kyZQrjxo3D2tqabt26kZOTw/Hjx0lKSmLChAklbvftt9/mm2++wc/Pjxo1avDjjz/qzNJ6r4CAALp27cro0aP53//+h6GhIePHj9eqXvTx8SE/P59ff/2VXr16ceDAAWbOnFniNstbdHS05jU5efIkv/76K9OnT9fb9nFj79Kli85kGfcyNjZm5cqVDBgwgPbt27Njxw5q167NjBkzGDt2LKmpqYwYMQJPT0+uX7/O/PnzsbS05JtvvmHBggV88cUXBAVpdyd65ZVX+O677zh9+jRqtZrPPvuM4cOHU7NmTYyNjdmzZw9z5szRGj8vMzOTEydOMG3atId89h5d/ZbBZKals3XZOlKTUnCt7sboj8dj71Q4xk9aUgpJt4u6e6rVajYsWEli3G2UBgZUcXGkx/AXaNa5jabNgU07KcjPZ9532uP2dR74HF0H9S63fblX6w5tSUtNZcncf0lMSMTDy5Mp303FyaVwJqykhARux2pPZDLu5Tc0f1++GM6ebTtxcnFmzvJ/KyTm49cvYGFsRo8aLbAxteBGajy/7l+u6YpiY2qJvbl292EzQ2MauAWwpIQxcMyNTRjeoAvWphZk5eUQnRzH97sXEZV0/wrP8pB79AQKI0PMOrVDYWpCwc1YMpatgdyiKlaltZVWl1R1WjoZy9Zg2r41liOHoErLIPdECDlHynfQZM+GNcjNyOLspgNkpWZg6+pA2zf7Y2lf2KUwOzWdjMSiLkIF+SpOrt5FVko6BkaG2Lg60PaNF3CrVVRBXZCXz+n1+0iPT8bIxJiqtbxpPqIHxub6xx4tL0euhWJpbM7ztVpja2bJ9ZQ4pu9ZREJmYXd1W1NLqpgXdZ3cH3kaM0NjOvo3ZnD9zmTmZhMaF8mykPIbc1CfET17kZOby7dz/yEtM4NaPj78OulDLO45n92KT0ChKLpevGL7NvLy85n0y09a2xrdpy+v9nsBgMTUVD6b+QfxyclYmpvj6+7OLxM/oElt7ZlPS6tR62akp6WzYclqUhOTqepRjbFT3qeKU2Hlc0pSMom3EzTt927aiaqggCV/zmXJn3M1y5t2aMVL7xQOy2HvWIW3v/iA5X8v4MuxH2JbxY72z3WlS79eZRr7vXwb1yY7PYsT63eTkZKGfVUneowbhlUVWwAyk9NITywa+kCVX8DB5VvISE7F0MgIu6qOdB83DI/aRRWN53cfQ5VfwNaZS7Ueq1GvtjR+rn2Z78PZmxGYG5nS3rcRVibmxKYnMu/YRpLvdLm2MrHA1qyoci+3IJ9/jq6nZ62WvNmiL5m5OZy9GcG2S+U9bmXZCXT04Lc+Rd8vx7XsD8DGsENM3Vny96GKcOL6BSyNTelRoznWd859v+1fcc+5z0Ln3GdqaEwDN/8Sx38zNzZlaLFz3w+7FxOVpL9SrbSelWPqZMxFLEzM6BbYDGtTC26mxvPHgVWa2VFtTC2w0/Na1Kvqz/IzO/Vu09jQiIH1OmJrZkleQT6xaYnMPbaRkzEX9bYvrdM3wrEwMqWTfzDWJhbcSktg9pH/SMpKAwqHZbAzK6pazy3I46/Da+kT1Jq3Ww8kMzeb0zcus+lCUXHI9jtdUbsGNsXG1JL03CxCb0VqtXmmlVNPBPH4FOqH6eMnnhiHDh2iefPmdO7cWWfA/2PHjjF58mQOHTqEWq3Gx8dHk7yDwgkTxo8frxko/9q1a7z11lvs2LEDpVJJ165d+fXXX3F2dtZsc9WqVXz55ZeEhoZibW1N69atWblypd7tXbp0iVGjRnH06FE8PT355Zdf6Nq1K6tXr6Z3794ATJw4kTlz5pCTk0OPHj1o2rQpU6ZM0UpETZs2jRkzZpCdnU2/fv1wdnZmy5YthISElPi8rF+/nnfeeYfo6GiCg4MZOXIkL7/8MklJSZqxvR70/BQ3ZcoU1qxZw2uvvcZXX31FYmIi3bt35++//9aa3XHRokV8//33hIaGYmFhQe3atRk/fjx9+vQhKioKLy8vTp06Rb169TTr5Ofn89577/HPP/+gVCp5+eWXiY+PJyUlhTVr1gDQtm1b6tWrx08//QTArVu3eOWVV9i+fTvOzs589dVXfPLJJ1qvwYwZM/j+++9JTk6mdevWDB06lBEjRmg9D8UpFArNa1Q83rsThty7/ty5cxk/frzWa3b3ubr7GrVt25ZatWqhUqlYtGgRBgYGvPbaa0ybNk1TzVn8+Hmc2JOSkjQTIwQEBJQYX15eHoMHD2bPnj3s2LGDOnXqsH37dn744QeOHj1KVlYWnp6e9OzZkwkTJnDw4EEGDBjAjRs3tN4Pd9WpU4e2bdvy6aef8uWXX7Jz506ioqJQKBR4enry4osv8s4776BUFv6YXLx4MZ9//jkXLjz6lPYbQg888jpPmh41WxAed+3BDZ9gfk7VeXXFtw9u+IT73wuTSPnul8oOo1RsJo7ji21zKjuMUvu008uMWPxFZYdRavMHf0rqsad7Jjrrxg3ZFX78wQ2fcO38GvHT3qUPbvgEG996IB9trLwLiWVlWvfXafH76w9u+IQ7MGYmr6/Q35PgaTHzhYnPzDE1ZtUPlR1Gqfze9z3e+6/kIoinxQ+93qrsEB5L6vI1lR1Ciaz7967sECqFJOOEKEHxBJN4eMUTieVp4sSJpKSk8Ndff5X7Yz2u4OBgxo8fz5AhQx55XUnGPRkkGffkkGTck0WScU8OScY9OSQZ9+SQZNyTQ5JxlUuScU8eGTNOCPFUmzx5Mh4eHhQUFFR2KHrFxcXxwgsvMHjw4MoORQghhBBCCPH/kVr95N7+n5Ix44QQTzUbG5sSuxo/CZycnPSOsyiEEEIIIYQQ4v8nScYJUYIpU6YwZcqUyg7jqbR79+7KDkEIIYQQQgghhHgiSTJOCCGEEEIIIYQQ4ln1/7g76JNKxowTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5VKumm+qSRyjghhBBCCCGEEEIIISqIJOOEEEIIIYQQQgghhKgg0k1VCCGEEEIIIYQQ4hmlVqsqOwRRjFTGCSGEEEIIIYQQQghRQSQZJ4QQQgghhBBCCCFEBZFuqkIIIYQQQgghhBDPKrXMpvqkkco4IYQQQgghhBBCCCEqiCTjhBBCCCGEEEIIIYSoINJNVQghhBBCCCGEEOJZpZJuqk8aqYwTQgghhBBCCCGEEKKCSDJOCCGEEEIIIYQQQogKIt1UhRBCCCGEEEIIIZ5VMpvqE0cq44QQQgghhBBCCCGEqCAKtVpSpEIIIYQQQgghhBDPopT5Syo7hBLZjBhU2SFUCummKoQQT7AFxzdVdgilNrxRN+JSEyo7jFJxsq7CkIWfVXYYpbZo6OekTJ1e2WGUis3kdxm7+uneB4Df+rzL8MWfV3YYpbZg8Gek3b5d2WGUipWjIz/sXljZYZTae22H8sfBlZUdRqm82bwf+6+cruwwSq2ld11eX/FdZYdRajNfmEiL31+v7DBK5cCYmby77pfKDqPUpj83jpeXTavsMEplzoCPnpnz3lNJrarsCEQx0k1VCCGEEEIIIYQQQogKIsk4IYQQQgghhBBCCCEqiHRTFUIIIYQQQgghhHhWqWSqgCeNVMYJIYQQQgghhBBCCFFBJBknhBBCCCGEEEIIIUQFkW6qQgghhBBCCCGEEM8qtXRTfdJIZZwQQgghhBBCCCGEeGYkJSUxfPhwbGxssLGxYfjw4SQnJ993nZdeegmFQqF1a9q0qVabnJwc3nrrLRwcHLCwsOC5557j+vXrjxyfJOOEEEIIIYQQQgghxDNjyJAhhISEsHnzZjZv3kxISAjDhw9/4Hpdu3bl5s2bmtvGjRu17h8/fjyrV69myZIl7N+/n/T0dHr27ElBQcEjxSfdVIUQQgghhBBCCCGeVf/PZlMNCwtj8+bNHD58mCZNmgAwa9YsmjVrxsWLFwkICChxXRMTE1xcXPTel5KSwuzZs1mwYAEdO3YE4N9//8Xd3Z3t27fTpUuXh45RKuOEEEIIIYQQQgghxDPh0KFD2NjYaBJxAE2bNsXGxoaDBw/ed93du3fj5OSEv78/o0ePJi4uTnPfiRMnyMvLo3PnzpplVatWJSgo6IHbLU4q44QQQgghhBBCCCFEhcvJySEnJ0drmYmJCSYmJo+9zVu3buHk5KSz3MnJiVu3bpW4Xrdu3ejfvz8eHh5ERkbyySef0L59e06cOIGJiQm3bt3C2NgYOzs7rfWcnZ3vu119pDJOCCGEEEIIIYQQ4lmlVj2xt6+//lozycLd29dff613N6ZMmaIzwULx2/HjxwFQKBS6T4NarXf5XQMHDqRHjx4EBQXRq1cvNm3axKVLl9iwYcP9n94HbFcfqYwTQgghhBBCCCGEEBXuww8/ZMKECVrLSqqKGzt2LIMGDbrv9jw9PTlz5gyxsbE6992+fRtnZ+eHjs3V1RUPDw/Cw8MBcHFxITc3l6SkJK3quLi4OJo3b/7Q2wVJxgkhhBBCCCGEEEKISvAoXVIdHBxwcHB4YLtmzZqRkpLC0aNHCQ4OBuDIkSOkpKQ8UtIsISGB6OhoXF1dAWjYsCFGRkZs27aNAQMGAHDz5k3OnTvHd99999DbBemmKoQQQgghhBBCCPHsUqme3Fs5qFGjBl27dmX06NEcPnyYw4cPM3r0aHr27Kk1k2pgYCCrV68GID09nffee49Dhw4RFRXF7t276dWrFw4ODvTp0wcAGxsbRo0axbvvvsuOHTs4deoUw4YNo3bt2prZVR+WVMYJIYQQQgghhBBCiGfGwoULGTdunGbm0+eee47ffvtNq83FixdJSUkBwMDAgLNnzzJ//nySk5NxdXWlXbt2LF26FCsrK806M2bMwNDQkAEDBpCVlUWHDh2YO3cuBgYGjxSfJOOEEEIIIYQQQgghxDPD3t6ef//9975t1Gq15m8zMzO2bNnywO2ampry66+/8uuvv5YqPummKoQQd7Rt25bx48dXdhhCCCGEEEIIUXbU6if39v+UVMYJIcQz4vi2/RzasJP05FQc3VzoPLwP1QN9Hrhe9MUrzP/qN5yquTD664ma5Sd3HuLs/mPcjr4JgIuXO+0G9sDNx6PMYl69fCWL/11EQnwCnt5ejJvwNnXr1yux/akTp/jtp1+IuhJJFQcHhowYSu9+fTT3r1u9li0bN3Ml4goAAYEBvDrmdWrWqqlps+Cf+ezdtZurV69hYmJMUJ3avDH2Tap7lt1+dfRrTM+aLbA1syQm+TbzT2zi4u1rJbZv4VmbnjVb4mJlT2ZeDmduXGbhyS2k52YB0M6nIa286+Ju4wRAZOINlp7eQURCTJnFXBKTVs0wrl8HhakJBTdukbV5B6r4hAesZIJp25YYBfqiMDVFlZxC9vY95EdEAmDcoC7GDeqitLUGoOB2Ajn7D5EfEVXm8bfyqksHv8bYmFpwMzWBlWd3lfi8DWvQhaYeQTrLb6bGM3XHPACae9Ym2L0mVa0LBw++lhzLf6H7uZp0q8xjv1cH30b0qNEcGzMrYlLi+PfkFi7d55hq7lGbHjWa42xVhay8bM7cvMziU9s0x5SbtSP96rTF064qjpa2/HtyM1suHinzuNVqNf+bM4fV69aRlpZGrZo1mTRhAj7e3vddb8fu3cz8+2+ux8RQzc2NN0ePpl2bNnrb/rNgAb//9ReD+/fn3bff1iz/a/Zstu7YQWxcHEaGhtQICODNV18lqFatUu1T6O5jnN56iKyUNOyqOtF0QGdc/fR/fty4GMWGH+frLO//+ZvYuugOQB1x7Bw7/16FR90AOr85sFRxPsjpnYc5uWkfGclpVHFzovWQHrj5ez1wvRvhV1nxzSyquDkz9Iu3NMsL8gs4vmE3YQdOkZ6Uip2rAy36d8Wztn+57cPO9VvYsmIdyYnJuHlUY9BrL+EfVENv2xMHjrB7w1auRUSRn5dPVY9qPD+sP0EN62m12bB0NXE3blGQX4Czmwud+/aieYfW5bYPAG2869EpIBgbU0tupMaz/PROLsdf19v2xUbdaOZZW2f5jZR4vtg2B4BmHkG82Li7Tpuxq6aTryoo2+AfUV1XX4bU70ygU3UcLGz5YOOf7Is8Xakx3au5Z23a+jTA2tSCW2mJrD23l8jEGyW2N1Aa0Nk/mAbVArA2sSA5O50dl45xNDoUAKVCSQe/RjRyr4GNqQW305NYH3qQi7evlut+tPNpQNeApoXfQ1JuszhkO+Hx0Xrbvty4Jy296ugsj0m5zSdbZmn+7+TXmHY+DbA3tyY9N4vj1y+w4syucjumntbznhAPS5JxQoinRm5uLsbGxpUdxn3l5eVhZGRU4Y97/tBJti5YTbeRL+Du78XJnQdZ/N1fvP7dh9g42JW4XnZmFmtnLsSrlh8ZKWla910Nu0ytZg2oNsITQ2MjDq3fwaJv/uS1bz/A2t621DHv2LqdX378mQmT3qN23TqsW7WG999+lwXLFuLs4qLT/kbMDSaOf5devZ/jky8+4+zpM/z47Q/Y2tnStn07AEJOnKJj544E1amNsYkxi+Yv5N2x45m/dCGOTo6FbU6eok//ftSoWYOCggL+9+dfTHhrPAuWLcLMzKzU+9XUoxYjGnZlzrENXLp9jQ5+jZjUbhjvr/+dhMwUnfYBjtV5o1lfFpzczMnrF7E3t+bl4J6Mbvo8M/YuAaCmsycHo84SHh9NXkE+PWu24IP2w5m4/neSstJ0tllWjJs1xqRJQzL/24wqMQmTFk2xGPICaTPnQG6e/pWUSiyGvIA6M5PMlf+hSk1DaW2NOjdX00SVlkb2rn2okpIBMKpTE/P+vUn/e8GDE32PoIFbAP3qtGNpyA6uJMbQ0rMObzbvy1fb5+p93lac2cXa8/s0/xsolHzYYQSnYi5plvk5uHPi+gWWJ94gv6CAjv6NGdO8H1N3zCMlO73MYr9Xk+q1GNagK3OPbyA8Ppp2vg15v81QPtj4OwmZqTrt/R3cea1pbxae2sKpmEvYmVkxsnFPRgX34uf9ywAwNjQiLj2Zo9dCGdqgS7nEDTBv4UIWLV3KZ5MnU93dndnz5jHmnXdYuXgxFubmetc5c+4cH332Ga+/8grtWrdm1969fPDpp8z+4w+dRNr5sDBWr1uHn4/uhQcPd3cmvvMOblWrkpOTw6JlyxgzYQJrlizBzq7kz8X7iTh2nkPLttBiSHecfdy5sPckm39dRP8pb2Jpb1Piev2/GIOxadFMcaZWuvuelpDMkRXbcPGt/lixPYpLR86wd9EG2g1/jqp+HpzdfZS1P85j2NTxWFexLXG9nMxsts5ajnsNHzJTtY/3Q6u2ceFQCB1e6oO9qyNXz11i/a//MmDy6zh5VC3zfTi65yBL/prLsDGv4FszgD0bt/PTJ9P48q8ZVHHSTXReOhtGzfp16PviYMwtLdi/bRe/TPmWyTOm4eFbmIS0sLKk58C+uLhXxdDQkNNHT/LPj39gbWutlbQrSw2rBdK/XgcWn9xGRMJ1WnnXY2zLF/h8y2y9n1NLQ3aw+uxezf9KpYKPO47kZMxFrXZZeTl8tvlvrWWVnYgDMDMy4XLCdTZeOMi0bq9Xdjha6lX14/mg1qw6s5vIxBs08whidNPn+G7XvyRn6f98H9GwG1Ym5iwL2UF8RjKWJuYYKBSa+7sFNqVhtUCWnd5BXHoSAU4ejAzuwa/7lhOTertc9qOxew0G1+vEgpObuRx/nbY+9Xmn1UA+3vI/EvWcMxaHbGPF2V2a/w0USj7vPIrj1y9oljWtXosX6rRjzrH1XI6PwcXKnlHBPQFYErK9zPfhaT7vCfGwpJuqEEIvtVrNd999h7e3N2ZmZtStW5cVK1YAsHv3bhQKBTt27KBRo0aYm5vTvHlzLl4s/CJ48eJFFAoFFy5c0Nrmjz/+iKenp6ZvfmhoKN27d8fS0hJnZ2eGDx9OfHy8pn3btm0ZO3YsEyZMwMHBgU6dOgGwbt06/Pz8MDMzo127dsybNw+FQkFycjJQOAX14MGDqVatGubm5tSuXZvFixdrxZKRkcGIESOwtLTE1dWV6dOn6zwHCoWCNWvWaC2ztbVl7ty5AERFRaFQKFi2bBlt27bF1NSUf//996Eev6wd2bSbem2bUL9dMxzcXOg8vC/WVWw5sX3/fdfbOHsZQc0b4ubnqXNfnzHDadSpJS6e1XCo6kyPVwahVqmJOn9Jd0OPYemiJfR4vhe9ej+Hp5cn494dj5OzE6tXrNbbfu2q1Ti7ODPu3fF4ennSq/dz9HiuJ0v+XaRp8+lXU+jTvx9+Af54eHoycfIHqNQqThw7rmkz/dcZdO/VAy8fb3z9/fjw08nE3orlYtgFfQ/7yLoHNmd3xCl2R5zkRmo8C05sJiEzlY7+jfW293Woxu2MZLZcPMLtjGQu3r7GjvATeNsX/Xj9/eBKtocf42rSLW6kxjPryDoUCgVBLvevLiotk+AGZB84Qv7Fy6huJ5D132YURoYY19JfeQJgXC8IhZkpmcvXUnD9BurUNAqux6CKK/rRkR9+hfyISFSJSagSk8jZfQB1bi4Gbq5lGn9734YcijrLoatniU1LZOXZ3SRlpdHKq67e9tn5uaTlZGpu1e1cMDMy5dDVc5o2845vZF/kaWJSbhObnsiik1tRKBQEOJZfAqVbQFP2XDnFniunuJEaz8KTW0jITKGD3/2Pqa2XjnI7I5lL8dHsvHwCr3uOqcjEGywJ2cbha+fJKyifH+hqtZrFy5czcsQI2rdpg6+3N59Pnkx2Tg6bt24tcb3Fy5bRpFEjRg4fjqeHByOHDye4YUMWLVum1S4zM5NPPv+cyRMnag2sfFfXzp1p0rgx1dzc8PH25p233iIjI4PwiIjH3qez2w8R0KI+gS0bYOfqSLOBXbC0syF0z/H7rmdmZYG5jaXmplRqfwVXqVTsmr2aBr3aYuX4eInCR3Fy635qtW5IUJvG2Fd1os2Qnlja23B25/2rRHbOW01A07q4+rrr3Hfh0Cka92yDV90AbJzsqdO+KR5BfpzcfP/z0OPauno9rTq3p3XXDlStXo3Br7+EvaMDuzfoP7YGv/4S3fo/j1eAL85urvR7aQjOVV05feSEpk1gnVo0aBFM1erVcKrqQqfe3anm5UH4+bI5P+jT0b8RByLPcCDqDLfSEll+eidJmWm08amvt312fi6pORmam4edC+bGphyMOqvVTq1Wa7VLzckot314FIevnWfWkXXsuRJS2aHoaO1Tn6PXznPk2nni0pNYe34fyVnpNPfUrRoDCHD0wMfBjVlH1hIeH01SVhrRybFE3VMp3dA9kB3hx7kQd5XEzFQORZ3lYtxV2vjqf33LQhf/YPZFnmZf5GlupiWwOGQ7iVmptPNpoLd9Vl4OqdkZmpunnSvmxmbsv6di0aeKG+Hx1zlyLZSEzBTOx0Zy5FoonnZle96+62k97z3RVOon9/b/lCTjhBB6ffzxx/zzzz/8+eefnD9/nnfeeYdhw4axZ88eTZvJkyczffp0jh8/jqGhIS+//DIAAQEBNGzYkIULF2ptc9GiRQwZMgSFQsHNmzdp06YN9erV4/jx42zevJnY2FgGDBigtc68efMwNDTkwIED/PXXX0RFRfHCCy/Qu3dvQkJCeO2115g8ebLWOtnZ2TRs2JD169dz7tw5Xn31VYYPH86RI0U/Mt5//3127drF6tWr2bp1K7t37+bEiRM8jkmTJjFu3DjCwsLo0qXLQz1+WSrIz+dm5HW8awdqLfeuHcj18KgS1wvZc4SkuHha9324q4N5ObmoClSYWViUJtzCbeXlcenCRYKbBGstb9wkmHNnzupd5/zZczQu1j64aRMuhF4gPz9f7zo52dnk5+djZW1dYiwZ6YU/UKzv0+ZhGSgN8LJ35czNy1rLz96MwN9B98crwKXb0dibW1Ovql9hHKYWNKlek1M3Sk56mhgYYagw0HS9KA8KWxuUlpbkX7mnK01BAfnXrmNQreQqF0M/Hwqu38Csawes3n4dy9EvYtI8GO6pFNB+IAVGNQNQGBlREFNyV6BHZaBQ4m7rTFicdlegsNireFV5uCqdZh5BXIy7et/qQ2NDQwyUSjLzsksVb0kMlEo87aty9pZ2AuncrSv4OVTTu054fOExVdfVFyg8poKr1yDkRni5xFiSmBs3SEhIoGlw0fvW2NiYBvXqcebcuRLXO3PuHE2Ctd/rTZs00Vnn2x9/pEXz5jRprP/H2b3y8vJYvXYtlpaW+Pv6PuKeFCrILyD+2k3campX4bnV9CY2Qn/3r7tWffU//n3/Rzb8OJ8bFyN17j+1fi+mVuYEtiy/H+h3FeTnExd1g+q1/LSWe9Ty5WZEyV3nzu87QXJcIk2eb69/u3n5GBSrDDc0NuLGfc5Djys/L5+r4Veo1UA7sV6zQR0uh14sYS1tKpWK7KwsLKws9d6vVqsJPXWWW9dv4B9UU2+b0jJQKKlu60JYbJTW8rDYSLyruD3UNlp41uFCXJROxZOJoTFTu73G193f4M0W/XC3dSqrsJ9JBgol1WycuBin3Q3y4u1rJSacarl4EZ0cS3vfhnza6WU+aD+cXjVbYqgsmlHRUGlAnkr7O0peQb5WkqgsGSiVeNi5cj72itby87ci8a2i/5xRXCvvuoTGRmpVoIXHX8fTzgUv+8LnwtHCltquPjrfd8rC03zeE+JRSDdVIYSOjIwMfvzxR3bu3EmzZs0A8Pb2Zv/+/fz111+8+uqrAEydOpU2d8bw+eCDD+jRowfZ2dmYmpoydOhQfvvtN7788ksALl26xIkTJ5g/v3DsnD///JMGDRowbdo0zePOmTMHd3d3Ll26hL9/4Rgzvr6+fPfdd5o2H3zwAQEBAXz//fdAYeLv3LlzTJ06VdPGzc2N9957T/P/W2+9xebNm1m+fDlNmjQhPT2d2bNnM3/+fE213bx586hW7eG+pBQ3fvx4+vbtq7Xsfo+vT05ODjk5OVrLTExM9LYtLjMtA7VKhYWNdmWIhY0V6Sm6pfwAibdus2vJf4z4dBzKh5yGe+eS9VjZ2+AVVPrxf1KSkykoKMDO3l5ruV0VexITEvWuk5CQSHCVYu3t7SkoKCA5ORkHB91uSTN/+xNHR0caBTfSu021Ws1vM36hTr26ePs+eHy9B7EyMcdAaUBKtnYFQkp2OjZm+n/whcdH8/uBlbzVsj9GBoYYKg04Hn2Becc2lvg4g+p3IjErlXM3r5TYprSUd5Ku6gztfVFnZKK4T+JSaWuL0tOavHNhZCxdhYG9HaZdOoBSSc7+w0XtHB2wfGkwGBpCbi6ZK9ahitf/2j8OSxMzDJRK0nIytZan5WRgbeL5wPWtTSyo6ezF3OMb7tvu+VqtSclK50Jc+Yz/U3hMKUkt1gU2JTsdG1P9x2x4/HX+PLSKMS1e0BxTJ65fYMGJTeUSY0kSEgtfzyrF3udV7Oy4GRt73/WqFOtGWsXOTrM9gC3bt3Ph0iXmz5pVfHUt+w4c4KMpU8jOzsahShV+nzEDW1vbR9yTQtnpmahVasyttS9ImFlZkJWqv+rI3MaSVsN64uDhSkFePuFHzrJhxgJ6TngRV//CceZuXb7GxQOn6PvJa48V16PKSstErVJhbq39mWRmY0XGOf0/XJNuxXNgxWb6f/haieeM6kF+nNqyHzd/T2yd7LkWFsGVU2GoVaoy34e01FRUKhXWdtpdg21sbTh3p/v7g2xdtZ6c7Bwat26mtTwzI5P3hr1Gfl4+CqWSYWNGUauB/sqo0rK8+/4uVrWWmpOJtemDL3xZm1pQy8WbOUf/01p+Ky2Becc3EpNyGzMjE9r7NuT9tkP5avtc4tKTynQfnhUWxoXnjPRi54z0nEysTPV3qa9iYYOXfVXyCwr459gGLIxN6VenHebGJiwN2QHAxbhrtPGuz5WEGBIyUvBzdKeWizdKRfnUxFgZFx5Txb+HpOZkYPMQx5SNqQW1XXz43+G1WsuPRodiZWLOh+1GgKIwybjz8gk2XjhUpvHD033eE+JRSDJOCKEjNDSU7OxsTaLqrtzcXOrXL7pqX6dO0ZdTV9fCK2VxcXFUr16dQYMG8f7773P48GGaNm3KwoULqVevHjVrFl5dPnHiBLt27cLSUjdBERERoUnGNWqknUS5ePEijYtVQQQXq6AoKCjgm2++YenSpcTExGgSXRZ3kgsRERHk5uZqEo1QOPV1QEDAwz1BxRSP8UGPr8/XX3/N559/rrXss88+w6en/uSdPjqFR2o1CnSrkVQqFat/n0/rft2o4vpwV8oP/reD84dOMvzjsRgal92YeHpjLqGACtDZHzVqvcsBFs7/l+1bt/HLzN9LTGzO+G46EZcv8/usmY8U94MVL7lXlDhblJu1Iy826sbqs3s4ffMydmaWDKnfmZeDezHryFqd9j1rtqC5RxBfbp+rc7W9NIxqBWLWveg9n7FUf3fhQvfpUqAoTNhlbdwGajWqW3EoLC0xadZIKxmnSkgk/e8FKExNMAzww6xXVzL+XVqmCTl9sSpQ3C96jaYetci6M5lGSTr6NaZhtQB+3res3MdiKn743G8/qlo7MLxBN9ac28vZW5exNbViUP1OjGzck7+Priu3GDdt3cq0OxdKAH66cyFF522uZ5kORfH3euHQAQC3YmOZ/vPP/Pbjjw+8aNGoQQMW/fMPycnJrP7vPz789FPm/u9/2D/mmHGPytbFQWuiBmcfdzISUziz7RCu/h7kZuewa84aWg3viaml/h/85UVR/MNWrdb7uqhUKjb/tZSmvTtip2fSibvaDOnJjrmrWfDRDFAosHGyp2bLBoTuP1m2gd+r+HGi1rNfehzZvZ+1/y7nrc/ex9pWO6FnambKZ79/T05WNmEhZ1k6az6Ors4E1indxB/3o/v+1rNQj2YeQWTlZRMSo51EjUy8SWTiTc3/EfHX+ajji7T1acCy0zvKIOJnl95nvYTX4u53j4Unt5CdXzgu6rrz+xjRqDsrz+wmX1XAmnN7GVC3PZPaD0ethoTMFI5Fh9HYveThHsqDgvueuTVaeNYhMy+bkze0K0wDHKvTs0ZzFpzczJXEGzhb2jG4XidSaqbzX+iBcon5aTjvPVX+H89a+qSSZJwQQofqzlXsDRs24Oam3U3CxMSEiDvj7dw7UcHdL79313V1daVdu3YsWrSIpk2bsnjxYl57reiqv0qlolevXnz77bc6j383sQfoJLDUarXOF211sZPL9OnTmTFjBj/99BO1a9fGwsKC8ePHk3tnAPni7UuiUCh02ubl6Q5aXzzGBz2+Ph9++CETJkzQWmZiYsKyszsfGKe5lQUKpZL0ZO2udBmp6TrVcgC5WdncvBLNragYNs9bCdx5TtRqpg6fwJAPXserVlH126ENOzmwbhtDP3wT5+pl063CxtYWAwMDnSq4pMQknWq5u6pUsScxQXtw/+TEJAwMDLAp9mNq8YJF/PvPfGb8/jO+fvq7pM34/kcO7N3Pr//7Ayfnsum+k5aTSYGqABtT7SSzjamFzlXqu54LasWl29GsDyv8MhudHEtO/gY+6zyK5ad3kHzPleEeNZrzfK1WTNsxn+jkkiuLHkdeeAQFf98zI+id6heFhQXq9KLYFRbmqDMyi6+uoU4vrNS890ufKiEBpaUlKJVwt0pGpdJM4FBwMxbDqi4YN25A9qayGQg6PSeLApUKKxPt96eliTlpDzF2UlOPII5Gh1Kg1l/V08G3EZ39g/ntwApupMbrbVMWCo8plU5lpbWphU7VwF29arYkPP4aGy8cBCCaOHKO5fJJp5dZfmZnuU000bplS4JqFnXnu/uZF5+YqFW5mpiUhH0J73MorKS7twpOs86dBNqFixdJTEpi+CuvaO4vKCjg1OnTLFu1ioM7d2Jw5/g1MzPDvVo13KtVo3ZQEH0GDWLt+vWMHD78kffP1NIchVJBZrEquKy0DMysH777vpN3NS4fKeyOn3Y7ifSEZLb8vkRz/93zzt9vfMmAL8Zg7Vjyc/U4zKzMUSiVOpP2ZKWmY26je4EsLzuHuKgYbl+7ye5//yuKUa3ml1Ef0+fdkbjX9MHc2pJe44aTn5dHdnomFrbWHFi+Bev7TCL0uKysrVEqlaQmJmstT01J0UmuFXd0z0Hm/jST1z+aQM36uhVvSqUS56qFkwhV9/HkZnQMG5euKZdkXPrd93exiiUrE3NSc0r+nL2rhWcdjlwr+XPqLjVwNfEWTlYVk4R+GmXk3j1naCfFC88Z+oeESM3JICU7XZOIA4hNS0SpUGBrZkl8RgoZuVn8c2wDhkoDzI1NSc3OoEeN5nonUigLabklHVMWpJbwPeRerbzqcujqOQqKVbT2CWrDwavnNDPfxqTcxtjAiBcbdWd96IGHSvQ9rKfpvCdEaUgyTgiho2bNmpiYmHDt2jVNN9R7RTzk4NdDhw5l0qRJDB48mIiICAYNGqS5r0GDBqxcuRJPT08MDR/+oygwMJCNG7W77x0/rj1w9r59+3j++ecZNmwYUJj4Cw8Pp0aNwquQvr6+GBkZcfjwYapXLxx0PSkpiUuXLmntr6OjIzdvFl1ZDg8PJzPzwV+OH/T4+piYmDx0t9TiDAwNcfWqRuS5iwQ2LvphEXn2Iv4Ng3Qfy8yUV7+ZpLXsxPb9RJ0Pp9/bI7G954ffofU72b9mK4MnvU5V77IboN7IyAj/wACOHTlK63ZFz/mxo8do2bqV3nVq1Q7iwD7tq69HjxwlsGag1jG0aMFC5s+ey/RfZxBYU/c5V6vV/PT9j+zdvYdfZv5OVbeyG7elQFVAZOJNarv6aM1CFuTqzYnr+scxMjEw0vkhpbr7/z2J5541WtA7qDXf7FxAZGLZja2mkZuHKjdZO470dAy9PMiNjStcoFRiWL0a2Tv36a5/R/71GxjX0h6/UGlvhyotvSgRVwLFQ3aZfhgFahXRybEEOnlojWkT6OTB2QeMcePnUA0nSzsORekfv7CDXyO6BjTl9wMruVbGSdHiClQqohJvEOTizYl7jykXb53ZE+8yMTTS+SGlupPgeYiiocdmYW6uNUOqWq2mSpUqHDl2jMA71c55eXmcDAnhrddLnkWxTlAQR44dY+jAgZplR44epU5Q4edZ40aNWHJnyIO7vpg2DQ8PD14cOlSTiNNHrVbf98LI/RgYGuBQ3ZWYsCt41S86xmPCruBR9+ErqxOib2F2J+ll4+JAv0+1n4vja3eRl51Ds4FdsbC7f2LpcRgYGuLkWZVr5y/j27AowXQt9DLe9XTHRjM2NWHol+O0lp3ZeYTrYRF0HzMEm2LJQkMjIyztbCjIL+DyiXP4Na5d5vtgaGSIh58350+doUGLour40JNnqN+s5DEEj+zezz8z/uTVSW9TN1j/YPbFqdVq8vVciCsLBWoV15JvUcPZU2tsqxrOnpy+T1UugL+jO05Wdhw4dOahHquarRMxKeUze+ezoECt4npKHP6O1Tl3q2gICH/H6py/pX9IiKjEG9R19cXYwIjcgsJjxNHSDpVapTP7ar6qgNTsDJQKJXWq+upUM5bZfqhUXE26SU1nL07eMxN4LWev+45FC4XVb85W9uw7cFrnPmMDQ01vhLvUd6tpFSVX/z+Op+m8J0RpSDJOCKHDysqK9957j3feeQeVSkXLli1JTU3l4MGDWFpa4uHh8VDb6du3L2+88QZvvPEG7dq106qyGzNmDLNmzWLw4MG8//77ODg4cPnyZZYsWcKsWbNK/DH12muv8eOPPzJp0iRGjRpFSEiIZnbTuxVzvr6+rFy5koMHD2JnZ8ePP/7IrVu3NMkwS0tLRo0axfvvv0+VKlVwdnZm8uTJOrPbtW/fnt9++42mTZuiUqmYNGmSVjVgSR70+OWhSbe2rP1zIa5e7lTz8+TkzkOkJCTRoEMLAHYu+Y+0pBSef2MYCqUSJ3ftwYjNrS0xNDLUWn7wvx3sWbGR3mNGYOtoT3py4VVcY1MTjE0fL3F4r4FDBvHVZ18QWLMGtWoHsW71WuJuxdK7X2+gcLy3+Nu3+fjzTwF4vm8fVi1bya8zfqZX7+c5f/YcG9b+x2dTi7r3Lpz/L7NnzuLTr6bg4upKQnxhJZ2ZuRnmd5IEP377A9u3bGPaD99ibm6uaWNpaYlJGezXxgsHebNZX64k3CA8Ppr2vo1wMLdhR/ixwv2u1xF7Myv+PFTYDfRkzEVeafIcHf0ac+bmZWzNLBnesBuX46+TfGfigJ41W9C/Tnt+O7CC2xnJmsq77PxccvIfL7HwMHKOnsS0RTCqpMJZT02aN0Gdl0/u+TBNG7NeXVGlpZOzu3DGxNwTpzFpVB/Tzu3JPX4Kpb0tJs2bkHv8lGYdk7YtC2dTTU1DYWyMUa0ADDzcyVmyqkzj33n5BCMadeNaciyRiTdo4VkHe3MrzZX952q2xMbMkgUnNmut18yjNpGJN7iZlqCzzY5+jelRoznzjm8kITNFU0WRk5+n+TFW1jZdPMzrTfsQmXiDy/HXaefTkCrmNuwIL7wQMaBuB+zMrPjr8BoATsVc4uXgXnTwbXTnmLJiWIMuRMRf1/xANFAqcbN2BArH/rEzs6a6rTPZ+bllNqaUQqFgcP/+/LNgAdWrVcPd3Z1/5s/H1MSErp07a9p9+uWXODk6MvZOgm5Q//68OnYsc//9l7atWrF73z6OHD/O7D/+AAqTfr7e2jMJm5qaYmttrVmelZXFnPnzad2iBQ4ODqSkpLB89Wribt+mY7t2j71PtTs2Y/c/q3H0cMXJuxoX9p0kPTGFGq0bAnB09Q4yktNoN7I3AGe3H8bKwRY7V0cKCgq4fOQskSfD6Phaf6AwqWTvpl2Za2xuCqCzvCw16NySLbOW4+zphqtvdc7uOUZaQgq12xUmtg4s30J6cipdRvdHoVTiUM1Fa31zawsMjIy0lt+KiCY9KQXH6lVJT07h8JodqNVqGnVvXS770LlPT/7+4Vc8/bzxqeHP3k3bSbwdT5s73e1X/rOIpIREXnlvLFCYiJv9w+8Mev0lfAL9SblTVWdkYoy5ReH7eMPS1Xj6+eDk6kx+fj5njp3i0I69DBv7it4YysL2S8cZGdyDq0m3uJIQQyvvetiZW7P3zmyjvYNaY2tmydxi44g296zDlYQbeitze9RoTmTiDeLSkzA1NKGdbwPcbZ1Ycmpbue3HwzIzMqGajaPm/6rWDvg5VCM1O4PYSh7Pbm/EKQY36Mz15Diikm7S1CMIOzNLzYWZ7jWaY2NqweI7z+PJ65fo5B/MoPod2XLhCBbGpvSq2YKj10I1QxdUt3XGxsySmJTb2Jha0iWgCQoU7Lr8eJOGPYwtl44yOvg5opJuEhEfQxuf+tibW7M7orDLeL/abbEzs+LvYmMNtvKqS0RCDDGpuknb0zcv09k/mGtJsVxJjMHJ0o7eQa0JuRH+0D1OHsXTet57oj2gglZUPEnGCSH0+vLLL3FycuLrr7/mypUr2Nra0qBBAz766CNNV9QHsba2plevXixfvpw5c+Zo3Ve1alUOHDjApEmT6NKlCzk5OXh4eNC1a1edpNi9vLy8WLFiBe+++y4///wzzZo1Y/LkybzxxhuayrJPPvmEyMhIunTpgrm5Oa+++iq9e/cmJSVFs53vv/+e9PR0nnvuOaysrHj33Xe17ofC7qYjR46kdevWVK1alZ9//vmhZlx9mMcva7WaNSArPZN9qwt/QDlWc2XQ+69pqtzSk1NJSXi0Lxontu+nIL+AlT//o7W8Vd8utOnXrdQxd+jckdSUFOb+PYeE+AS8fLz57qcfcLnTTTkhPoHYW0VVR1XdqvLdT9P5dcbPrF6+CgdHB95+7x3ati/6Yb1mxSry8vL4ZJL2DLsjR7/My68W/phas7IwCTbu9TFabT78dDLde/Uo9X4dvnoeS2Nz+tZug62ZFdeT4/hu90LiMwpff1tTS6pYFFW77L0SgqmhCZ39gxnaoDOZudmcj43UfNkH6OTXGCMDQ95pPUjrsVae2cXKs7tLHXNJcg8dQ2FoiFnXDihMTSmIuUnG4hWQW5R0UtpYa10RV6elkbF4Baad2mI5egSqtHRyj50k59CxonUszDF/rhsKSwvUObmo4m6TuWQV+ZFlOwnCyZiLWBib0i2gKdamFtxMTeCPg6s0s6Nam1pgb6Y9GYWpoTH1qvqx4uwuvdts5VUXIwNDXmnynNbyjWEHy2Uga4Aj185jaWxG71ptsDWz5HpKHD/sWUhC5j3HlHnRMbUv8jSmhiZ09G/M4PqFx1RoXCRLQ4q6ANuZWTG1W1FFVo8azelRozlhsVFM2zmvzGJ/cehQcnJy+ObHH0lLSyOoZk1+mzFDq4LuVmys1ud+3dq1mTplCn/OmsXMv/+mmpsbX3/xBUG1Hr6boFKpJOrqVdZv2kRySgo21tbUrFGDWb//jk+xRN6j8Glci5yMTE5u2EtmSjr2VZ3oOnYIVlVsAchMSScjseizXlVQwJEV28hITsPQyBDbqo50GTuY6rX9SniEiuHfpA5ZGZkcWbeTzJQ0qrg58/w7L2q6lGakpJGWkPxI28zPy+PQ6m2kxCVhZGqMZ50AuowegIm5WTnsAQS3aU56Whr/LVpJSmISbp7uvP3Fhzg4F/7YTk5MIjGuKFG1Z+N2CgoKWPj7bBb+PluzvHnHNox6t/B8kJOdw7+//01SfAJGxsa4urvxyvtvEdymebnsA8CJ6xewNDalR43mWJtacCM1nt/2r9B0Y7QxtcDeXPdzqoGbf4njv5kbmzK0QResTS3IysshOjmOH3YvJirplt72FSnQ0YPf+hQNyzGuZWFiemPYIaaW4WfP4wi5EY65sSmdAoKxNrHgZloCfx9eV3TOMDHH1qxo+I/cgjz+OrSGPrXbML71QDLzsgm5Ec6msKJzgaGBIV0Dm1HF3Jrc/DzC4qJYdHKrVtfWsnYsOgxLY7PCC06mhYnAn/Yt1cyOamNqqXNMmRmZ0LBaIItD9Cds/wvdj1qtpk9Qa+zMrEjLyeT0zcvl9h3kaT7vCfGwFOrySGULIUQFmjp1KjNnziQ6OrqyQylzC44//bNADW/UjbhU3Qqjp4mTdRWGLPysssMotUVDPydl6vTKDqNUbCa/y9jVT/c+APzW512GL/78wQ2fcAsGf0ba7ae765uVoyM/7F5Y2WGU2ntth/LHwZWVHUapvNm8H/uv6HaRe9q09K7L6yu+e3DDJ9zMFybS4veSu5Q/DQ6Mmcm7636p7DBKbfpz43h52bTKDqNU5gz46Jk57z2NUn77X2WHUCKbsa9WdgiVQirjhBBPnT/++IPGjRtTpUoVDhw4wPfff8/YsWMrOywhhBBCCCGEePKopAbrSSPJOCHEUyc8PJyvvvqKxMREqlevzrvvvsuHH35Y2WEJIYQQQgghhBAPJMk4IcRTZ8aMGcyYMaOywxBCCCGEEEIIIR6ZJOOEEEIIIYQQQgghnlUyVcATp+QpC4UQQgghhBBCCCGEEGVKknFCCCGEEEIIIYQQQlQQ6aYqhBBCCCGEEEII8aySbqpPHKmME0IIIYQQQgghhBCigkgyTgghhBBCCCGEEEKICiLdVIUQQgghhBBCCCGeVSpVZUcgipHKOCGEEEIIIYQQQgghKogk44QQQgghhBBCCCGEqCDSTVUIIYQQQgghhBDiWSWzqT5xpDJOCCGEEEIIIYQQQogKIsk4IYQQQgghhBBCCCEqiHRTFUIIIYQQQgghhHhWSTfVJ45UxgkhhBBCCCGEEEIIUUEkGSeEEEIIIYQQQgghRAWRbqpCCCGEEEIIIYQQzyqVdFN90khlnBBCCCGEEEIIIYQQFUShVstIfkIIIYQQQgghhBDPopTvfqnsEEpkM3FcZYdQKaSbqhBCPMEWn9xa2SGU2uAGnYlNja/sMErF2dqBkUunVnYYpfbPwMkkD3utssMoFdt//+LTzbMqO4xS+6LraF5d8W1lh1Fq/3thEqnHT1V2GKVi3ag+Oy4dq+wwSq2Df2M+2fy/yg6jVL7s+ioh1y9WdhilVq9aAB9tnFnZYZTatO6v8+66J/cH/MOY/tw4Wvz+emWHUWoHxsxk9PJvKjuMUpnV/wPGrp5e2WGU2m993q3sEB6PWlXZEYhipJuqEEIIIYQQQgghhBAVRJJxQgghhBBCCCGEEEJUEOmmKoQQQgghhBBCCPGskqkCnjhSGSeEEEIIIYQQQgghRAWRZJwQQgghhBBCCCGEEBVEuqkKIYQQQgghhBBCPKtU0k31SSOVcUIIIYQQQgghhBBCVBBJxgkhhBBCCCGEEEIIUUGkm6oQQgghhBBCCCHEs0pmU33iSGWcEEIIIYQQQgghhBAVRJJxQgghhBBCCCGEEEJUEOmmKoQQQgghhBBCCPGsUqkqOwJRjFTGCSGEEEIIIYQQQghRQSQZJ4QQQgghhBBCCCFEBZFuqkIIIYQQQgghhBDPKplN9YkjlXFCCCGEEEIIIYQQQlQQScYJIYQQQgghhBBCCFFBJBknhBCltHv3bhQKBcnJyZUdihBCCCGEEEJoU6uf3Nv/UzJmnBDiqXTr1i2mTp3Khg0biImJwcnJiXr16jF+/Hg6dOhQ2eE9MY5u3cvB9TtIS07FqZorXUf0xSPQ94HrXbt4hX+++Bknd1fe+OaDcotv9fJVLP53EYnxCXh6e/HWhHHUrV+vxPYhJ07x20+/EnUlkioODgwZMYTn+/XR3P/f6nVs2biJKxGRAAQEBjB6zGvUrFVT0yY/P59/Zs1h2+atJCYkUKWKA916dmPEqJdQKsvmGlU734Z0C2iKrZklMSm3WXRqG+Hx0XrbjgruSUuvujrLY1Ju8/Hm/wFgoFDSo0ZzWnjVwc7MiptpCSw/vZNzt66USbz3Y9q3J8btWqGwMKcgIpLMuYtRxdy87zomXTpg3LE1yir2qNPSyT16kuxlqyEvX9NGYWeL2aC+GNaphcLYGNWtWDJnzacg6lqZxt/YvQYtvepiaWLG7fQkNl04zNWkWyW2N1AoaevbgLpVfbE0MSc1O4M9Eac4FXMJgIbVAqhX1R8nKzsAbqTEsz38GDEpt8s07uLaeNenS0AwNqaW3EiNZ+npHVyOv6637UuNutPcs7bO8hsp8UzZNhuAZh5BjGzcQ6fNm6t+IF9VULbB30OtVjNr1QpW79xJWkY6tXx9mfjSy/hUcy9xndU7d7Bx/14iogv3N9DLizEDB1HLp+iz7J+1a9h1/ChXb9zAxNiYOn7+jB00BM+qVct8H/Zs2Mb2VRtJSUrGtbob/UcPw7dWoN62pw4eY9+mHVy/cpX8vDxcq1ejx5C+1GxQR9NmxodfEX7ugs66tRrVZcxn75d5/HcFu9ekpVcdLE3MiUtPYtOFQw98b7Tzbajz3jgZcxGAms6etPauj725NQYKJQmZKRyIOsvpG+Hltg9b1m7kv2WrSE5IoppndV588xVq1Kmlt21SQiILZs7hyqUIbsXcoGufnrw0ZrRWm88nfETo6XM669Zv0ogPpn1aLvsA0KR6LVp518XqzmuxIfQAUfd7LZRK2vs2op6bH1bG5qRkp7M74iQnrl/UaVvH1YdB9TsReiuSf09uKbd9AGjuWZu2Pg2wNrXgVloia8/tJTLxRontDZQGdPYPpkG1AKxNLEjOTmfHpWMcjQ4FQKlQ0sGvEY3ca2BjasHt9CTWhx7k4u2r5bofD6Ouqy9D6ncm0Kk6Dha2fLDxT/ZFnq7ssDTa+tSnS0CTonNGyHbCSzhnjGzco4Rzxm0+2zpb87+ZkQl9glpT3y0AC2NT4jOSWVaO30VaedWlg19jbEwtuJmawMqzu4hIiNHbdliDLjT1CNJZfjM1nqk75gGFx2ewe02qWjsAcC05lv9C99/3c0+I8iTJOCHEUycqKooWLVpga2vLd999R506dcjLy2PLli2MGTOGCxd0f9SUhdzcXIyNjctl2+Xh3KETbJ6/ih4vD6B6gDfHtx/g32/+ZMwPk7F1sC9xvezMLFb/sQDvIH/SU9LKLb4dW7fz648/M2HSuwTVrcO6VWuY+PZ7zF/2L84uLjrtb8TcYOL49+jZuxcff/Ep506f4cdvp2NjZ0vb9u0AOHXiJB06d+LtOkEYm5iweP5C3hv7DvOW/oujkyMAi+YvZN3KNXw05WM8vb24GHaBr7+YioWlJf0HDyj1fgW712BIvU4sOLmZ8NvRtPVtwITWg5i8+S8SM1N12i86tY3lZ3Zp/jdQKPmiyysciw7TLOtbuw3NPGoz9/gGbqYmEOTizVstXmDqjnlcS44tdcwlMenZBZNuHcn8ax4Ft2Ixfb47lh+MJ/X9TyE7R+86Rs2DMR3Yh8xZ8ygIv4LSxQnz114CIHvhcgAU5uZYffo+eWGXyPj+V9SpaSidHVFnZpZp/EEu3nSr0Yz1oQe4lhRLY/dAhjXsym/7l5OSnaF3nQH1OmBpYsaac3tJzEzFwtgMpUKhud/Tvipnbl4mOiyWfFUBLb3qMqJRN37bv4K0nLKN/65G1QIZWK8Di05u5XJCDK296zGuZX+mbPmbxCzd9+jSkO2sOrtH879SqeTTjiM5EaP92ZiVl8Mnm2dpLSvPRBzA/PXrWLRxI5++/gbVXVyZs2YVY7+exooffsTCzEzvOifCQuncrAV1RvhjYmzE/PX/MfabaSz99gec7As/y05eCKN/x87U9PGhoEDFn8uW8NY301j23Q+YmZqWWfzH9x1mxd//Muj1l/Cu6c/+zTv5fcr3fPL7t9g7Oei0v3z+AoH1gnhueH/MLS04tH0Pf345nYk/fI67jycAr340nvz8okR1Rmo608Z9RIMWTcos7uKK3hv7uZYUSyP3Ggxv2I1f9y8r8b0xsF5HLE3MWH1uL4mZKXfeG0UXMDLzctgTcYr4jGTyVQUEOHnQJ6gNGblZJSaOS+Pgrn3M++NvRo17nYCgGmxfv5mvP/ycH+f8joOzo077vLw8rG1s6DO0PxtXrtW7zXenfKj1WqSlpjFx9Diatm5R5vHfVdvVhx41m7Pu3D6uJt0iuHpNXmzcg5/2LiUlO13vOoPrd8LS2JxVZ3aTkJmKZbHPqbtsTS3pFtjsvgmxslKvqh/PB7Vm1ZndRCbeoJlHEKObPsd3u/4lOUv/foxo2A0rE3OWhewgPiMZSxNzDO7Zj26BTWlYLZBlp3cQl55EgJMHI4N78Ou+5cSklu8FkAcxMzLhcsJ1Nl44yLRur1dqLMUVnjM6svDkFi7Hx9DGux7jWg3gs81/k5il+z1kyantrDyzW/O/gVLJp51e5vg9yV0DhZIJrQeRmpPBzEOrScpKw97Mmuz83HLZhwZuAfSr046lITu4khhDS886vNm8L19tn0uSnvPeijO7WHt+n1a8H3YYobmQBuDn4M6J6xdYnniD/IICOvo3ZkzzfkzdMa/E95oQ5Um6qQohnjpvvvkmCoWCo0eP8sILL+Dv70+tWrWYMGEChw8fJioqCoVCQUhIiGad5ORkFAoFu3fv1iwLDQ2le/fuWFpa4uzszPDhw4mPj9fc37ZtW8aOHcuECRNwcHCgU6dOAGzcuBF/f3/MzMxo164dUVFRWvElJCQwePBgqlWrhrm5ObVr12bx4sXl+ZTodWjDLhq0a0bD9s1xdHOh24v9sKlix/Ft+++73n9/L6F2i4ZU8/Mq1/iWLVpKj+d70rP3c3h6eTLu3fE4OjuxZsVqve3XrlqDk4sz494dj6eXJz17P0f353qw9N+i5/bTr6bQp39f/AL88fD04P3Jk1CpVZw4dlzT5vzZc7Ro04pmLZvjWtWVth3a0bhJMBfDyiaJ2zmgCXsjQ9h7JYSbaQksPrWNxKxU2vs00Ns+Ky+H1OwMzc3T3hVzYzP233OFvZlnbdaHHeDMzQhuZySzK+Ik525doWtA+f1YBzDp2oHstZvIO34K1fUbZP41F4WxMcbNg0tcx9DXm/zwCPIOHUMVn0D+uTByDx3D0NujaLu9uqBKTCLrf/MouBJV2O78BVRx8SVu93E096zNyesXOXn9IvEZyWy6cJjU7HQaV6+pt72vQzU87V3598QWriTcIDkrnZiU20Qnx2narDyzi2PRYdxKSyQ+I4W15/ahUCjwruJWprHfq5N/Y/ZHnmF/1BlupSWw7PQOkjLTaONTX2/7rPxcUnMyNDdPOxfMjU05EHVWq51ardZql5qjPwlTVtRqNYs3b2Jk7960bxyMr7s7U15/k+zcHLYcPFDiel+NeYv+nToT4OmJZ1U3Jr/yKmqVmmPniyqYfp30Ib3atMWnmjv+Hh58+tob3EqIJywyskz3YeeaTTTv1JYWXdrh6u5G/9HDsXWowt5NO/S27z96OJ379cTT3wenqi48P2IgTq4unD16StPGwsoSGztbze1CyDmMTYxp0LLk91lpNfesw8nrFzlx/SK3M5LZdOEQqdnpBD/gvbHgxGauJMTc894ouhgQlXiTsLgobmckk5SVxuGr54hNS8TDVvfiSlnYsGIt7bt1pEOPzlTzcOelMaOp4uTA1v826m3v5OLMS2NH06Zze8wtLPS2sbS2wtbeTnM7c+IUJqYmNG1Tfsm4ll51OBF9gePXL3A7I5kNYQdJyU6niYf+18LPwR0v+6rMO76RiIQYkrPSuJ4Sp3NhRoGCAfU6sD38OImZ5Xdh7a7WPvU5eu08R66dJy49ibXn95GclU5zzzp62wc4euDj4MasI2sJj48mKSuN6ORYrYrAhu6B7Ag/zoW4qyRmpnIo6iwX467Sxlf/Z19FOnztPLOOrGPPlZDKDkVHJ/9g9keeZn9k4Tlj6ekdJGWm3ueckaN1HvDQnDPOaNq09KqDubEpfxxYRURCDImZqVxOuM71lDi92yyt9r4NORR1lkNXzxKblsjKs7tJykqjlZ6eBADZ+bmk5WRqbtXtXDAzMuXQ1aLzxLzjG9kXeZqYlNvEpiey6ORWFAoFAY7Vy2Ufnjgq1ZN7+39KknFCiKdKYmIimzdvZsyYMVjo+TJta2v7UNu5efMmbdq0oV69ehw/fpzNmzcTGxvLgAHalVHz5s3D0NCQAwcO8NdffxEdHU3fvn3p3r07ISEhvPLKK3zwgXY3zuzsbBo2bMj69es5d+4cr776KsOHD+fIkSOPvd+PKj8/nxuR0fjU0e465VMnkOhLJf84PbX7MEmx8bTp161c48vLy+PShYs0bqL9Y7Nxk2DOndHtIgSFSbTi7YObNuFC6AWtSoZ75WRnk5+fj7W1tWZZ7bp1OHnsONFXC7tDXr4UztnTZ2jaollpdgkovJrsaefK+Vvaz/H5W1fwcaj2UNto7VWP0NhIEu6pojNSGpBXoL2PuQX5+DmW3LWvtJSODihtbcg/G1q0MD+f/AuXMPTzKXG9/EuXMfSsjoG3p2Y7RnWDyAspSgQZNahD/pWrmL/1Kta/f4/lV5MxbtuyTOM3UChxtXYgIl67S8vl+Biq2zrrXSfQyYMbKfG09KrDe22HMK7VALoENMFQaVDi4xgZGGKgUJKVp79SsLQMFEqq27oQGqt9TIXGRuLzkAnAFp51uBAXpVOZaWJozNfdXufb7m8ytkU/3G2dyixufWJux5GQnEzT2kU/zo2NjGgQWIMz4Zfus6a27Jwc8gvysS4hoQKQfqfK0trS8vEDLiY/L59rlyOpUV+7K1SN+kFcCXu4rpgqlYrsrGzMrUqO/eC23TRs3QyTMqzou5eBQklVawedarXL8ddxv+974zYtveryftuhvP0Q7w1v+6o4WNgQlXT/bu2PIz8vjyuXLlOnkXZyoW7D+lw6X3bV8bs2bad5u1aYmpXna+GoM4zB5dvXS0xi1nD2JCblNq296zGp/XAmtBlEt8CmOq9Fe7+GZORmc+J6+fQWuJeBQkk1GycuxmkPM3Dx9jU87Vz1rlPLxYvo5Fja+zbk004v80H74fSq2VJrPwyVBuSptM99eQX5eNmXfffzZ4WBQomHnQuht6K0lp+PjcLH4eHOGS296hIWq33OqFvVjysJMQxp0Jnpvd5iSudRdA9shgLdiszSMlAocbd1JixOuztyWOxVvKo83GvfzCOIi3FX9VbR3WVsaIiBUklmXnap4hXicUk3VSHEU+Xy5cuo1WoCA/WPz/Ow/vzzTxo0aMC0adM0y+bMmYO7uzuXLl3C398fAF9fX7777jtNm48++ghvb29mzJhReDUtIICzZ8/y7bffatq4ubnx3nvvaf5/66232Lx5M8uXL6dJk/KtZLorMzUDtUqFhY2V1nILGyvSU3S7KAAk3Ixj++J1jJwyHgODkn9glYWU5GQKCgqws9fuLmtfxY7EhAS96yQmJGJfxU5rmZ29PQUFBSQnJ+PgoNtFbOZvM3F0dKRhcCPNsqEvDiMjPZ1h/YegVCpRqVSMfuNVOnbpVOr9sjI2x0CpJLVYd4eU7AyCTB+cFLAxtaS2qw9/HV6jtfzcrSt0CWjCpdvXiEtPooazF/Xd/PV2SyorCtvCBKaq2PGiSklDeZ9uznmHj5NlZYXlp+8DChSGBuRs303Of0VjFSkdHTHp0IaczdvJWLcJAx9PzEYMRJ2fT97+w2USv7mxKQZKJem52l1HM3KzsDTR3x3SzsyK6nbO5KsKWHxqG+ZGpvSs1QIzIxPWnNurd51O/o1Jzc7gSgnj2JSWpcmdY6pYF9jUnAysTUtO6NxlY2pBkIs3fx/9T2v5rbRE5h7fQEzKbUyNTOjg24hJbYfxxfZ/iEtPKtN9uCvhziQ39jY2WsvtbWy4Ff/wVZG/LVmMo709wUG6YxxBYQXejIULqBcQgK972SWs01PTUKlUWNlqx29ta0PqQ07gs2PNRnJzcmjYUv+5IOpSBDeuXmfYuNF67y8LRe+NLK3l6blZWJmY613H3sya6nYu5KsKWHRqK+ZGpvSq1RIzI1PWnCvqEm1iaMT7bYdhqDRApVaxPvRAiWM8lUZqSioqlQobO1ut5TZ2NiQnJpfJY1y+cInoyKu8/t5bZbI9fTSvRY72a5GWm4mfif5j197cCo87r8XCE1swNzbl+VqtMDMyZdXZ3QBUt3OhUbVAft2/otxiv5eFsdmd/dD+nErPycTKVP8xVcXCBi/7quQXFPDPsQ1YGJvSr047zI1NWBpSWGl6Me4abbzrcyUhhoSMFPwc3anl4q3VPVpoKzpnaFc6p2VnYPMo54wj67SWO1jYEujkwZFr5/l53zKcrewZUr8zSoWS9WElVzY/3j4UHk/Fh35Iy8nA2sTzgetbm1hQ09mLucc33Lfd87Vak5KVzoW4yh+DUPz/JMk4IcRTRX1nxh1FKZMQJ06cYNeuXVjqqZqIiIjQJOMaNWqkdV9YWBhNmzbVevxmzbQrqgoKCvjmm29YunQpMTEx5OTkkJOTo7eS7667be5lYmLyyPtVnM4VSzXou4ipUqlY+ds82r7QHQfX8q2OuVfx11Gtvv9rq3sFVl3C8sKx4XZs3cYvM3/Tei53btvB1k1b+fSrKXh6e3H5Uji//vgzVRwd6Naz++PvjE5UxeN+8GxRLb3qkJmXrRkQ/a5Fp7bxUqPuTPs/9u47rqnrfeD4J2HvPZUpCCoo4t64t3XUWrW2aqu1e/6+3bV7t3bY1i5XHbXOqrXuvSfiRFCQvfceye8PNBgIigJi6fN+vfLS3Jx78xxykpuc+5xzhs5CDaTkZbI/6rTOhR/ulEH3zphOn6y5n/fF3Gv/qxL3Ld56+q1aYnzfUAoXLqMsMgo9Z0dMHpqAanQ2xeuuDR9TKii/cpWiP9cBUH41Fr1mrhj171NvnXE3U9PCXdfb3qqwnRSXlQKw+eJhJgQNYOP5A9XmU+vp1ZZAlxYsOPp3g8+1VjVoBYraNCm6eQRSWFpEaLx25llURoLWPFKX0+J4c8BU+rYIZsVp3UMub9c/B/bz8W+Vc9LN+b9XKmO/gVoN1PIzffGG9Ww9dIB5b76NUQ1zeH62cAGRMVf55e137yzwW9D5uVWL7JBjew7y97K1zHrzhWodetcd3LobV4/meLasOfu0/lRvU7d6b6zUem8cYkLQQDae369p/yVlpfxwcDWGegZ427kyxL8rGYU5RGfUf3bc9ZhvdBtN6ZZ2btqGm5cHPv4t6+eAN3E754zrdV4RuoPia/N1bbpwkInBg1h/bh9KhZIH2vVj7dk9dz3jR2fENTSq6/VYenKLZt6x9ef28XDHYawO202Zqpx1Z/fyQLt+vNJvCmo1pBdkcyz2Ap3cWjVQDZoOtY6/e20WrezuGUhBaZHWXGsASoWCnOJ8Fh/fjBo1MVnJWBubM8ivS713xt0QsdY9BYranPbo6tGGwtJiwhIiaywzwLcTHZr78c2+Pxv+/H2P0NUmROOSzjghxL+Kr68vCoWCCxcuMHr0aJ1lrq+IeeNJp7S0VKuMSqVi5MiRWhlt17m4VA6pqNqBVpsT2ZdffsmcOXP4+uuvCQwMxMzMjOeff56Skponuf344495913tH46zZ8/Gb1T3Wz6fLqaWZiiUympZcPk5uZjfMGTzuuLCIhKuxJAYHcemhRWT7KuvLTf+7uTnmPLak3gH+N1RLLpYWVujp6dXLQsuMyOzWrbcdbZ2tqSnZ1Qrr6enh1WVH7bLf1/GkgWL+er7r2nhq7167A/ffM/kRx6i/6ABALTwaUFSYhJLF/5e58643JICylUqrKpkwVkam9Y4KfqNenm142D0GcqrzJ+RW1zAdwdWoa/Uw9zIlKzCXMa37Utaflad4r1R6cnT5F6+YSikfsVXBKWVFeVZle1IaWmBuobsSgDj+0dRcuAIJbsrvpyr4hLAyAjT6Q9R/Nc/oFajzsqmPEH7x3l5QiIGnepvHqCCkiLKVSrMDbWzMswMTcivkhF0XW5xATlF+ZrOBoDUvCyUCgWWxmZaQ3Z6eAbSyzuIRcc2kZyXoetw9SKvuKJNVc2CszAyrdUcbz08Azkcc45y9c3nZFED0RlJOFnUnPV4u3oHdyDghhVPS679XdOzs7C3qcxyzczJxs5Kd+fUjX7/ewML1q/j+9fewNfdQ2eZzxctYO/J4/z81js42dnVsQbazC0tUCqV5GRmaW3Pzc6usXPtuuP7DrPk21957NVn8A+qvuIfQElRMcf3HWbE5HH1FbJONb83jKtlkl5X2/eGGjT/T8pNx8HMht7eQfXeGWdpZYlSqSQrUzuLMyczu1q23J0oLirm4O59PPDIpDof62auvxYWVbJ1zQ1NqmXLXVf5WlR+p0jJy0SpUGBlbI6hnj62ppZM6VA53cT1ztT3h8xkzt4/dC4mVBf5JYXX6qHdpsyNTMmtoR45xflkF+VpLQCQnJuBUqHA2sSctPxs8ksKWXDsb/SVepgaGpNTlM/wVt3rPf6m5Po5o+r3EAtjs1qeM9py+Gr1c0ZWUR7lKhXqG7rDEnPTsTYxR0+hvOU55nbkFV9vT9rnvYr2dOs6dPUI4Gjs+Rpj6u/TkUEtOzP3wCoScup3rlohbofk+Aoh/lVsbW0ZPHgw33//Pfn51U/IWVlZODhUrKKWmFj55f/GxRwAgoODOXfuHJ6envj4+GjdbpbB1rp1aw4f1s7cqXp/37593HfffTz00EO0a9cOb29vIiJuPp/Qa6+9RnZ2ttbttddeu+k+N6Ovr4+rlxuXw7Tnirl8Jhy3ltUXZjAyMeaJz15j1ievaG4d+/fAztWRWZ+8QnMfzzuORRcDAwNa+vtx/Mgxre3Hjx4joK3uH6ptAgM4flS7/LEjR/Fv7Y++fuW1peW/L2Xxbwv5/Nsv8W9d/ep5cXGRpsP2Oj2lElU9XDEsV6mIzkykjbP237i1kxeXb7GaoJ+DO04Wtuy7YeGGqspU5WQV5qKnUNKhuX+1K9d1UlSMKjm18hafiCorG/2AG/6Genro+7ekLOJyzccxNARVlb+lSqWVUVd26TJ6LtpzUymdnVCl1V+nVrlaRWJOWrU5clrYN6txBdqYzGQsjM0w1KtsT/ZmVqjUKnJu6Ezt4dmWPi2C+f345gb/Il+uVhGTlURrJ0+t7a2cPG85/K+lgxtOFrbsjwq7abnr3Kwdya5h1cM7YWZigpuzs+bm3aw5dtbWHDlTOX9gaVkZJy9eoK3vzbOPft+4gd/WruHb/71Ga+/qWWNqtZrPFs5n17Gj/PjGWzRzrP8MX30Dfdx9vLhwSntey4uhZ/Fu5Vvjfsf2HOT3r39i2stPEniTDucT+49QVlpG55CGWywAKtpUgs73RnOtBRluFJOZVO29YafjvVGVQsFN55W7U/oGBni39CHsRKjW9rATobRsU7dpLAAO7d5PWUkpvQaE1PlYN1PxWqTiY689JNXHvhlXs5J07nM1MwkLY9Mqn1PWqNQqsovySM3P4pu9K5i7f6XmdjE5mqj0+IqVpOvxPX5jPeKyU2hZZSL8lg7uNc4ZGJ2RgKWRGYZ6BpptDuY2qNSqaquvlqnKySnKR6lQ0tbVh7NJV+q9Dk1FuVrF1cwkWlU5Z7R28qw2h2pVLa99D9mv43vI5bQ4HM1ttHJRncxtySrMrdeOOKioQ2xWMv6O2hdd/B09iEq/+crAvvbNcTS34VCVBYuu6+/bkSH+Xfnh4JoGXY1eiNqQzjghxL/ODz/8QHl5OZ07d2b16tVERERw4cIFvv32W7p164aJiQldu3blk08+4fz58+zdu5c333xT6xhPPfUUGRkZTJw4kaNHj3LlyhW2bt3K9OnTKS+vOV191qxZXL58mRdffJHw8HCWLVvGwoULtcr4+Piwbds2Dh48yIULF3j88cdJStL9pfo6IyMjLC0ttW51HababXhfTu46xMldh0iNT2Lz4tVkp2XQcUDFRPnbl69nzQ+LgYpsQic3V62bmZUF+gYGOLm5Ymhc9yGzVT0waQIb/9rA3+s3Eh0VzXdffUNKUjL3jRsDwE9zf+TD2e9ryt83djTJiUnMnfMt0VHR/L1+I3//tZEJD03UlFm2eCm//vgLr7z9Gs4uLqSnpZOelk5BQWW2R/eePfh9wSIO7T9IYkIie3ftYcWyFfQK6V0v9doafoTeXkH08mqHi4UdDwYNwM7Uil2XTwJwf2AIj3UZWW2/3t5BXE6PJz47tdpj3raudGjmh4OZNb72brzY50EUCgWbLh6ql5hrUrx5B8ajhmLQMQhlc1dMH5+KuqSEkoNHNWVMH5+K8QOjNffLToVhNKA3Bl07onSwQz+gFcb3j6L0ZJhmjEzx5u3otfDGaNRQlE4OGHTrhFHfXhRv312v8R+MPkNwcz/aN2uJvZk1Q/y7YmVszrGYCwAMaNmJsYEhmvJnEiMpLClidGAfHMys8bBxZpBfF07GXdIMY+np1Zb+LTuy7uwesgpzMTc0wdzQROuHcX3bdukYPb3a0cMzEGcLOx5o1w9bU0vNKn5jAnozrdPwavv19GzLlfQEnR2GI1r1oLWTF/ZmVjS3cuSRDkNxs3Zs0JUBFQoFE4cMZcH6dew6dpTI2FjenfcDxoZGDO5e2QE1+8fvmftH5SrJizes58eVK3h75ixcHBxIy8oiLSuLgqLKIXifLpzPPwf28/5Tz2BqbKIpU3STjOQ70W/0UA5u283BbXtIjI1n1S9LyExNp9fQ/gCsW7SChV/N05Q/tucgi+b8xNjpk/Dy9yE7M4vszCwK86tnoB3ctpt2XTtgbmlR7bH6djA6jA7N/Qm+9rky1L8bVsbmHL323hjYshPjbnhvhF17b4wJDNG8Nwb7deFkXLjmvdHbO4gWds2wMbHA3syK7p6BBLm25HRC7Ra3uF3D77+PnZu2seufbcRdjWXRD7+SlpLKwJEVGWHLfl3E3E/maO0THXmF6MgrFBUWkZOdQ3TkFeKiY6ode9c/2+jYoysWVtUzyevb/qgwOrr506F5xWsxrFV3rEwsOHq1YvGcQX6dub9tX0350wkRFJQUM65tXxzNbfC0cWFoq66ciK14LcpU5STnZWrdCstKKC4rJTkvs947Tq7be/kUXTza0NmtNY7mNoxq0wsbE3NNp8iwVt2Z2L5ybtaTcZcoKC3iwfYDcDK3xdvWlZGte3A05rymTblbOxHo0gJbU0u8bF2Z2fU+FCjYFXmiQepwO0wMjPC1b47vtcWZXC3t8bVvjpO5zS32bHjbLh2ll3c7eni2vXbO6H/tnFGxivOYgD5M7zSi2n49vdpyJT1e5zlj9+VTmBsa82DQQJzMbQh0bsGwVt3YFXmyQeqwM/IE3T0D6eoRgJOFLWMDQ7A1tdBcsBzVuidTOgyptl83j0CiMhJIzK0+//AA306MaNWDpSe3kF6QjYWRKRZGplodwk3atREv9+TtP0qGqQoh/nW8vLw4efIkH374IS+99BKJiYkVk/R36MCPP/4IVCzGMH36dDp27Iifnx+fffYZgwYN0hzD1dWVAwcO8MorrzB48GCKi4vx8PBgyJAh1bKmbuTu7s7q1at54YUX+OGHH+jcuTMfffQR06dP15R56623iIqKYvDgwZiamjJz5kxGjx5NdnZ2w/1RdAjo1oGC3Hz2rNlMXlYOjm4uTH7lCawdKoah5WZlk53WMBO110b/QQPIyc5h0a8LSE9Lx6uFN59+/QXOLhUryKWnpZOcVHnV0rWZK599/QXfzfmWtSvXYOdgz3MvP09Iv8ofKetWraG0tJS3X9HufJ06YzrTZz4KwPP/9wK/zvuFrz79gszMTOzt7Rk19j6mPjatXup1NPYCZkamjGrTEytjc+KzU5mz7w/N6qhWJubYmWoPaTMxMKJDc3+Wndqq85gGevqMCeyDo7kNRWUlhCVG8svh9Q22gud1xRu3oDA0wGTqJBSmppRfjiLv02+gqPJ5lfa2Wl+kitZtQq0G4/H3obSxRp2TR+mpMIpWrtOUKb9ylfyvf8RkwhiMRw9HlZpG4ZI/Kb2hk68+nE26gomBESE+wVgYmZKSm8GSE5vJvrbAhoWRKVYmlZmwJeVlLDq+ieGtuvN49zEUlhRxNukKOyKOa8p0cm+NvlKPB9trL/ixK/JEg/0oOR53ETNDE4a36oGVsRkJOWl8t3+lZqiWlbE5tqbanQYm+oYEN/PjjxrmfzM1NGJK8GAsjc0oLC0mNiuFz3cva5CVL2/08IhRFJeU8OnC+eTm59OmhQ/fvfo6ZiaVw/SS0tO05mVbtX0rpWVlvPKNdsfKjLHjmDluPACrt28DYNYH72mVeXvmLEb2Cam3+Dv26kp+Ti6b/lhLTkYWLh7NeXL2/2HnWLGATE5GFpmplT9k92/eiaq8nBXzFrFi3iLN9q79evHwC49r7ifHJ3L5/CWeee+Veov1Zs4mXcHUwFjz3kjOzeD3E/9o3hvmRqZYmVQOcyspL2Ph8b8Z3qoHs7qP1bw3tkdUZisb6OkzsnVPLI3NKC0vIy0/i1VhOxssi6l7317k5uSy+vcVZGZk4Obpwasfv42DU0VWZFZ6Jukp2hc3Xnn8ec3/r1yK5MCOPTg4OTJ32a+a7Qmx8Vw8e543Pm2YOQerOpN4GVMDY/r5dKx4LfIyWHRsE1mazykzrE0qO2hLystYcHQjI9r05MkeYykoKeZM4mW2Xarfz8/bFZoQgamhMQP9OmNpZEZibjq/Hl6vWc3S0si0Sj1K+enQOsYE9uH53hMoKC0iNCGCfy5UXmTS19NniH837EwtKSkr5UJKNMtObtUa2tpY/B08mDvmRc39Z3tWfBZtunCID3cuqmm3u+J43EXMjUwY0brynPHtvspzhrWJrnOGEcHN/FgRul3nMTMLc5mzdwUTgvoze9CjZBbmsiPiOP9cbJh5Xk/Gh2NmaMxQv65YGpuRmJPODwfXVLYnYzNsTbTrYKxvSJCrL6vO7NJ5zF5e7TDQ0+exLqO0tm+6cLDBL24KoYtCLTP5CSHEPWv5Sd2dM/8mE4MHkfwvn5PDydKeaSs+bOww6mzBhDfIeujxWxe8h1kv+Ym3N/9y64L3uPeGzGDmqupzVv7b/Hz/K+QcP9XYYdSJZcf27Lh07NYF73H9W3birc0/N3YYdfL+kJmExoXfuuA9Lqi5H69vmnfrgve4j4bN4qX13zZ2GHXy5ahn6fH9rMYOo84OPDWPGSs/aeww6uSX8a/y9NovGzuMOps75qXGDuGOZL11736PtX7/jcYOoVFIZpwQQgghhBBCCCFEU1V1Pl/R6GTOOCGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQ4i6RYapCCCGEEEIIIYQQTVUDraQs7pxkxgkhhBBCCCGEEEIIcZdIZ5wQQgghhBBCCCGEEHeJDFMVQgghhBBCCCGEaKrUsprqvUYy44QQQgghhBBCCCGEuEukM04IIYQQQgghhBBCiLtEhqkKIYQQQgghhBBCNFUqGaZ6r5HMOCGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQ4i6RYapCCCGEEEIIIYQQTZWspnrPkcw4IYQQQgghhBBCCCHuEumME0IIIYQQQgghhBDiLpFhqkIIIYQQQgghhBBNlVrV2BGIKiQzTgghhBBCCCGEEEKIu0Q644QQQgghhBBCCCGEuEtkmKoQQgghhBBCCCFEU6WS1VTvNZIZJ4QQQgghhBBCCCHEXaJQq9XSRSqEEEIIIYQQQgjRBGW99GZjh1Aj6y8/aOwQGoUMUxVCiHvYJzsXN3YIdfZqv4e5mBzV2GHUib+TF/cvfqOxw6izVQ9/SNajzzR2GHVi/dt3vPL3D40dRp19OvxJRi98tbHDqLN1Uz8hJSe9scOoE0dLO5ad3NLYYdTZpODBPLP2q8YOo06+G/MiK0/vaOww6mx8u/48teaLxg6jzr4f+zLT//yoscOok/kPvM6MlZ80dhh19sv4V+nx/azGDqNODjw1j2krPmzsMOpswYR/6fdBycG658gwVSGEEEIIIYQQQggh7hLpjBNCCCGEEEIIIYQQTUZmZiZTpkzBysoKKysrpkyZQlZW1k33USgUOm+ff/65pkxISEi1xx988MHbjk+GqQohhBBCCCGEEEI0Vf/BYaqTJk0iLi6OzZs3AzBz5kymTJnChg0batwnMTFR6/4///zDo48+yrhx47S2z5gxg/fee09z38TE5Lbjk844IYQQQgghhBBCCNEkXLhwgc2bN3P48GG6dOkCwC+//EK3bt0IDw/Hz89P537Ozs5a9//66y/69u2Lt7e31nZTU9NqZW+XDFMVQgghhBBCCCGEEHddcXExOTk5Wrfi4uI6HfPQoUNYWVlpOuIAunbtipWVFQcPHqzVMZKTk/n777959NFHqz22dOlS7O3tadOmDS+//DK5ubm3HaN0xgkhhBBCCCGEEEI0VSrVPXv7+OOPNfO6Xb99/PHHdapuUlISjo6O1bY7OjqSlJRUq2MsWrQICwsLxo4dq7V98uTJLF++nN27d/PWW2+xevXqamVqQ4apCiGEEEIIIYQQQoi77rXXXuPFF1/U2mZkZKSz7DvvvMO777570+MdO3YMqFiMoSq1Wq1zuy7z589n8uTJGBsba22fMWOG5v8BAQH4+vrSsWNHTp48SXBwcK2ODdIZJ4QQQgghhBBCCCEagZGRUY2db1U9/fTTt1y51NPTk7CwMJKTk6s9lpqaipOT0y2fZ9++fYSHh7NixYpblg0ODsbAwICIiAjpjBNCCCGEEEIIIYQQNJnVVO3t7bG3t79luW7dupGdnc3Ro0fp3LkzAEeOHCE7O5vu3bvfcv/ffvuNDh060K5du1uWPXfuHKWlpbi4uNy6AjeQOeOEEEIIIYQQQgghRJPQqlUrhgwZwowZMzh8+DCHDx9mxowZjBgxQmslVX9/f9auXau1b05ODitXruSxxx6rdtzLly/z3nvvcfz4caKjo9m0aRPjx4+nffv29OjR47ZilM44IYQQQgghhBBCCNFkLF26lMDAQAYNGsSgQYNo27Ytv//+u1aZ8PBwsrOztbb98ccfqNVqJk6cWO2YhoaG7Nixg8GDB+Pn58ezzz7LoEGD2L59O3p6ercVnwxTFUIIIYQQQgghhGiqVE1jmOrtsLW1ZcmSJTcto9YxfHfmzJnMnDlTZ3k3Nzf27NlTL/FJZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKaqiaym2pRIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXSGecEOI/TaFQsG7duibzPEIIIYQQQgihRa26d2//UTJnnBBCNBEX9hzn7LbDFGbnYe3iQOfxA3H2dddZNvHSVTbPqb7U95jZj2PtbA/AP1/9TlJETLUyzQNaMPCpB+s3+BtsWruBtctXkZmRgbunB48+M4s27QJ0ls1IS2fBD78QGR5BYlwCI8bdx2PPztIqs3XDP+zasp2rV64C0MLPhykzptGytV+D1WGwXxdGte6JjakFsVkpLDz2NxdSrtZYvpdXO+5r0wsXSzsKSoo5lXCJxSf+Ia+4EICQFu15usf91fabuGQ2paqyBqsHgPGooRj26YHC1ITyK1cpWPonqoSkm+5jNCAEw749UdraoM7Lp+R4KEWr10NZRayGIT0xCumJ0t4WgPKEJIrWb6bs7Pl6j7+rRxv6eLfHwsiU5LwMNpw7QHRmYo3l9ZRKBvh2or1rSyyMTMkuymNn5AmOx13UlDHWN2SwXxcCnL0xMTAiszCXjecPEJ5a/f1SX4b6dWV0QO+KNpWZzG9HN3I+JbrG8r29gxgT0AdXSzvyS4o4FX+Jhcc3kVtcoCkzsnUPhvh1xd7MmtzifA5Gn+X3k5spLa+fNrV25WqWL1lGelo6nt5ePPvic7RrH1Rj+VMnTjH362+JvhKFnb09kx6ezOhxYzSPR12+wm8//Ur4xYskJSbxzAvP8cCkCVrHKMjP59d5v7B39x4yMzNp2bIlz770PK3atK6XOtXk2NZ9HNy4g9ysHBybOzP44XF4+Le45X4x4VdY+N63OLq5MOuTVxo0xqp6ebWjv29HLI3NSMxJZ82Z3VxOj9dZ9qHgwXTxaFNte2JOGh/tWAxAd89AOru1wsWy4hwSm5XMhvMHuJp588+LujiyZQ/71m8nLysbx+YuDJs6Hs9WPjrLRl+MZOvSdaTGJ1NaXIK1gy2dBvSkx4j+mjK/vjOH6PMR1fZt2b4ND7/2VIPVo5d3EAN8O2FlbEZiThqrwnbV+FpM6TCErh7Vz4mJOWl8sH0hAO1cfRns1wUHM2v0lHqk5mWyI+I4R2Pr/zP2Rn1bBDPEryvWJubEZ6eyPHQ7EWmxOstO7zSCnl5tq22Pz07lrS2/aO4P9O1E3xbB2JpakldSyPG4i6wK20WZqrxB6hDSoj2D/bpgZWxOQk4aK0K3E5EWp7PstE7D6e4ZWG17QnYqs7f+prlvYmDEmIDetG/mh5mhMWn5Wfx5eidnk640SB1uRzsXHya1H4S/ozv2Zta8uulH9kWdbuywAOjr04GhN7SnZae21dieHu08gp5e7aptj89O5c3NP2vuD2zZib4tOmB3rT0di73QoO1JiJuRzjghhGgCrhw/z9GV2+j24BAcW7gRvu8k277/gzFvP465rVWN+419ZxYGxkaa+8YWppr/93v8fsrLKr+cFOcX8teHv+AZ3KphKgHs27GH3777icdffIpWAW3Ysn4T7/3vTeYu/hkHJ8dq5UtLS7G0smL8lImsX7lW5zHPnAqjV/8QZjzXGkNDQ9YsX8k7L7/Od4t+ws7Bvt7r0N0zkKkdh/HrkQ1cTL3KQN9OvN7/EV5Y/w1p+dnVyvs7evB0j/tZdHwTx+MuYmtqycwu9/FEt7F8vnupplx+SRHPrZujtW9Dd8QZDR2A0aC+FMxfSnlyCsYjBmP+0tPkvPE+FBXr3MegS0eM7x9FwYKllEdGoXR2xHT6QwAUrVgDgCozi8LV61GlpAJg2L0LZs/MIPfdT2/Z0Xc72rr4MLJ1T9ad3cvVzCS6uLdmeucRfLVnOVlFeTr3mdx+MBZGJqwK20V6QTZmhiboKSsHEugplDzWZRR5JYUsObmF7KI8rI3NKS4rrbe4q+rh2ZbpnUfw0+G/uJgSzWC/Lrw1cBrPrPtKZ5tq5ejBcz0fYP6xjRyLvYCdqSWzuo3hqe7j+GTX70BFZ92UDkOYu38VF1NjcLW059me4wGYf2xjnWPesXU73371DS++8jKB7dqyfs06/u+5l/j9z6U4OTtXK58Qn8D/nn+JkaNH8dZ7szlzOoyvPv0CaxtrQvr1BaCoqAiXZq6EDOjLd199q/N5P/3gE65cvsKb776NvYMDW//ZzAtPPcfvfy7DwdGhzvXS5eyhk2xevIbh08fj5ufNie0HWPrJjzz1xetYXetw1qWooJB1P/yOd0BL8rJzGyS2mgQ3a8nYtiH8GbqDKxkJ9PBsyxPdx/Dh9kVkFlaPZVXYLv46t09zX0+h5NX+UzgVX9lx5WPfnBNx4VzJ2EVZeRn9W3biye5j+WjHYrJreL/VxZmDx9m0cBUjH3sQdz9vjm3fz+KPvufZOW9hrePvbmhkRJfBfXD2aIahkRFXL0by1y/LMTQ2otOAngBMenkm5WWVn6sFufl8/38fEdAtuN7jvy64mR/3t+3LitDtXE6Pp6dXO57qMY73ty3Q+VqsPL2Tv87u1dxXKpW81u8RTsZfqoy7pIgt4YdJys2gXFVOgHMLHuowhNziAi7cpBO/Ljq5tWJi0EB+P7mZyLQ4Qlq054VeE3hzy89kFORUK788dBurzuzS3NdTKHl30KNaFz66urfh/rZ9mX9sI5Fp8Thb2PJo5xEA/BG6vd7r0LG5PxOCBrD05BYi0+Lp4x3Es70eYPbmX8korF6HP05tZ3XY7so6KJW8PXA6x+PCter1Yu8HySnOZ96htWQW5mJrYklRWUm9x38nTAyMiEyPY9PFg3w0dNatd7hLOru1YtK19hSRGkuITzAv9n6QNzb/pLM9LTu1jZVh2u3pvcGPcSz2gmZbV482jG/bj/lHNxKRFlfRnrqMBBqmPQlxKzJMVQhxzwoJCeHpp5/m6aefxtraGjs7O958803U11YDWrJkCR07dsTCwgJnZ2cmTZpESkoKAGq1Gh8fH7744gutY549exalUsnly5d1PueZM2fo168fJiYm2NnZMXPmTPLyKn9EHDt2jIEDB2Jvb4+VlRV9+vTh5MmTWseIiIigd+/eGBsb07p1a7Zt21affxadzu04gm/3IFr2bI+1iz1dHhiEmY0lF/eevOl+xhZmmFqZa27KGzodjMxMtB5LuBCFvqFBg3bG/fXnGgYMH8ygEUNx83TnsWdnYe/gwD/rdHcOOLk4M+O5J+g3ZABmZqY6y7z09isMGzMSb98WNPdw46n/ew6VSs3pE6ENUoeRrXqwM/IEOyKPE5+dysLjm0jPz2ZQyy46y7e0dyM1P5NNFw+RkpfJxZSrbIs4Sgs71yol1WQV5WndGprRgBCK/t5K6cnTqOITKfhtCQpDAwy7dKxxH/0WXpRFXqH0yAlU6RmUnbtIyZET6HtWZmmWnT5L2ZnzqJJTUSWnUrR2I+riYvS9Pes1/l5e7TgWe4FjsRdIyctkw/kDZBfl6cwqAWjp4Ia3nSvzj/1NZHocmYW5xGWnaGX2dHRrhamBEYuP/8PVzCSyCvOIzkwiMTe9XmO/0X1terI94jjbI44Rl53Kb0c3kpafzRC/rjXUw53UvEz+vnCQlLxMLqRcZWv4UXzsm2nK+Dm4czH5KnujTpOSl0loQgT7rpzWKlMXK5b9wfD7RjJy9Cg8vTx59qXncXRyZO0q3Z3mf61Zi5OzE8++9DyeXp6MHD2K4aNG8MeSZZoyrdq05qnnnmbAoIEYGhpUO0ZxUTF7du3miWefJCi4Pc3dmjN95mO4uLqybvWaeqmXLof/3kX7vl0J7tcdh2bODHlkHFZ2Nhzbtv+m+238dQUBPTrS3NezwWKrSV+fDhyKPsuhq2dJzs1gzZndZBbm6swsASgqKyG3uEBzc7dxwsTAmMNXz2rKLD7+D/uiThOfnUpyXibLT25DoVDg5+DWIHU4sHEnHfp1p2P/Hjg2d2H41PFY2VtzdOteneVdvdxo17MTTm6u2DjaEdS7C77tWhF9IVJTxtTcDAtrK83tcthFDIwMCejacJ1x/X07cij6DAejz5Ccm8HqsF1kFuTSyztIZ/mishJyigs0N3drZ0wNjTkcXflaRKTFcjohkuTcDNLys9l9+STxOam0qKf3ty6DW3ZmX9Rp9kWdJjE3neWh28kozKFvC91/u8LSYnKK8jU3TxsXTA1N2H9DVlYLu2ZEpMVxJOY86QXZnEuO4kjMeTxtXBqkDgNbdmZ/1Gn2R4WRlJvOitM7yCzIoU+L9rrrUFZMTnG+5uZhU/FaHIgO05Tp6dUWU0Njfjiwhsvp8WQU5BCZHkdcdkqD1OF2HY45xy9H1rPnSmhjh6JlkF8X9kaFsvdKaEV7OrWNjMIc+tW2PdlWb08+ds2JSIvlcMy5G9rTObxsG6Y93XNU6nv39h8lnXFCiHvaokWL0NfX58iRI3z77bfMmTOHX3/9FYCSkhLef/99Tp8+zbp164iKimLq1KlAxRxt06dPZ8GCBVrHmz9/Pr169aJFi+rDhwoKChgyZAg2NjYcO3aMlStXsn37dp5++mlNmdzcXB555BH27dvH4cOH8fX1ZdiwYeTmVly9VqlUjB07Fj09PQ4fPsy8efN45ZWGHXpUXlZOekwizVp7aW13beVNyhXdQyuuW//Rr/zxytds/nopieHRNy176WAoXh1bY2BkWNeQdSotLeXypQiCOml/0QrqFMzFsxdq2Ov2FRcXU15WhoWlRb0d8zp9pR7edq6cTojU2n46MRI/B91DhsNTY7AztaJ9s5YAWBmb0dU9gJNxl7TKGesb8uPYl/lp3P94rd+UBv/yqLS3Q2ltRdm5yiwFysooC49Ev4VXjfuVRV5G38MNPS8PzXEMAltTGnZO9w4KBQadg1EYGlJ2Obre4tdTKGlm5UBEqvaQlkupsXjYOOncp7WTF3HZKfTxbs/r/R/m5T6TGN6qO/pKvRvKeHI1K5nRAb14c8BUXug9gb4tglGgqLfYb6Sv1KOFXTNCE7SHzoUmRODv6KFzn4spV7Ezs6JDs4qh2FbG5nTzDNDKOLmQEk0L+2b42jcHwMncluDmflpl7lRpaSmXLobTuUtnre2dunTmbNgZnfucO3OWTlXKd+7ahYvnL1JWVrsM0PLyMsrLyzE0NNLabmRsSFhoWA171U15WRkJUbG0aOuvtd27rT9xl6Jq3O/U7sNkJqcRMm5Ig8R1M3oKJW7WTlysMnT+YvJVvKpdBNCtq0cA4SlXdWZuXWeor4+eUo/80qI6xatLWVkZCVdi8GmnfXHIp20rYsJrN/QvISqWmPAovFr71ljmxM6DBHbvgKGxUY1l6uL6a1E1W+1CSjTetrV7Lbp7BhKeclVn5tZ1fg7uOJnbElnDcMu60lMq8bBx4Vyy9t/+XFIUPnbNa3WMXt7tOJ8cRfoNWU8RaXF42jhrzncOZtYEurQgLDGypsPcMT2FEg8bZ84nRWttP5ccXetOzJ5e7biQHK2VudXO1Zcr6fFMCh7ElyOf4Z1BjzLMv1uDnTOaAj2lEk8bF84laX+Gnku6Qgv72rWn3l5B1drTpdRYPG1c8Lr23nIws6ati0+172xC3C0yTFUIcU9zc3Njzpw5FVfX/fw4c+YMc+bMYcaMGUyfPl1Tztvbm2+//ZbOnTuTl5eHubk506ZN4+233+bo0aN07tyZ0tJSlixZwueff67zuZYuXUphYSGLFy/GzMwMgLlz5zJy5Eg+/fRTnJyc6Nevn9Y+P/30EzY2NuzZs4cRI0awfft2Lly4QHR0NM2bV3xh+Oijjxg6dGgD/YWgOK8AtUqNsYW51nYTCzMKs3VnT5lamtN98jDs3J1RlZVz+cgZNn+zlKEvTNE5z1xqdDxZCan0nDK8QeoAkJOdg6pchbWNjdZ2a1sbMjMy6u15Fs+bj62DHe066L7SXRcWRqboKfWqDcnKLszD2tVc5z7hqTF8s+9PXuz9IAZ6+ugr9TgWe4Hfjm7QlInPTmPugdXEZCVjamDEsFbd+WDITF7aMJekBsrIUlhZAqDK0f6Bp8rJRWlX89C70qMnKTQ3x/zV5wEFCn09infto/gf7QxRZTMXLF5/CQz0obiY/O9/RZVYf0NUTQ2N0VMqySsp1NqeV1yAhZHuTB1bE0s8bVwoKy9n8fHNmBkaMzqgNyYGRqy6NvzF1tSSFiYWhCZEsODo39ibWXFfQG+UCiU7Io/XW/zXXW9TWVU6PbILc7Exaalzn/DUGL7a+wcvh0zStKkjMef55fB6TZn9UWFYGZnz0dBZKBQK9JV6/HPxEGvO7KlzzNlZWZSXl2Njq91ObOxsyUjX/V5OT8+gc5V2ZWNrS3l5OVlZWdjb33pIuamZGQGBASz6bQGeXh7Y2Nqyfcs2zp89T3O3hsnOKsjJR61SYW6l3blvbmXB5RqGnqYnprBj+QamvfMcSj09nWUakplRxdDr3OJ8re25xQVYGunOML6RpZEZrZ28WHR8003LjWrTi+zCPMJT6n8uxYKcPFQ6/u5mVpbkZdXcKQXw2azXyc/JQ1VeTr/xw+nYv4fOcnGR0STHJjDmiYfqLe6qzK+9FjlFBVrbc4sLsDQ2u+X+lsYVr8XCY39Xe8xY35CPhs1CX6mHSq1mRej2ah2w9cXC0BQ9pZLsIu02lVOcj1Ut6mFlbEagcwt+PvyX1vajseexMDLltb4Pg6Li4sTOyBNsunioXuMHMDeqqENO1fdFUe3rEODsza9H1mtttzezxt/RgyMx5/hm3584Wdgyqf0glAolGy8cqNc6NBXX21NO1e9SRfkEGOv+LnUjK2NzAl1a8NPhdVrbj8aex8LYlNf7NXx7EqI2pDNOCHFP69q1KwpF5dXDbt268eWXX1JeXk5YWBjvvPMOoaGhZGRkoFJVrMYTExND69atcXFxYfjw4cyfP5/OnTuzceNGioqKGD9+vM7nunDhAu3atdN0xAH06NEDlUpFeHg4Tk5OpKSk8Pbbb7Nz506Sk5MpLy+noKCAmJgYzTHc3d01HXHXY76V4uJiiou15+AyMrq9K/GKahdZ1Vp/uxtZOdth5Wynue/o3Zz8zBzObjusszPu0oHTWLs64ODZcENcrqsaslpdcz1u15plK9m3YzcffvsZhg2U4QdohlJr3CT+5lYOTO88gpVhOzkdH4G1qQUPdxjKzK738eOhiiF9EWmxWpMWX0yJ4bMRTzHMvyvzdfwIuxMGXTpi+nDlwhx538y7VpkqBRUKqFq/G+j7+WA8YjCFS/6k7Eo0eo4OmEwch2rEYIo3btGUUyWlkPvuJyhMTDDoEITpow+R9+m39dohB7pfi5qiv97O/gjdrpnPZ+OFgzwUPJh1Z/dSpipHgYL8kkJWh+1GjZr4nFQsjc3o7R3UIJ1xNVIoUNdQk+ZWjszoMooVoTs4lXAJGxMLpnYcxhPdxjD34GoAApy9ub9dX346/BcRqTE4W9rzWOeRZLbN5c+wnfUVoja1+mZvhWqZItfrdzsZJG++9zYfv/cRY4bdh56eHi39WjJg8EAuhV+69c51UiV2tbrqJqAie3rN3MWE3D8UO5fq82DeTXc6MKiLR2sKS4sJu0k2SX/fjnRo7s+3+/5s2InRqzeym37eAjz23ouUFBUTeymKrcv+wtbZgXY9O1Urd3znQZzcXGnu41l/8dao+qtR0/v7Rl3d21BYWsTphOqLThSXlfDxjsUY6Rvg5+DB2MAQ0vKza5wAvyEoqF076+HZloLSIk4mhGtt93NwZ0Sr7vx+cjNXMhJwMrdhYtBAslvnseF8w3RkVTtncNNTnkZ3z0AKSisWy7mRUqEgpzifxcc3o0ZNTFYy1sbmDPLrIp1xt1Dt60ctW1RPr2vtKb56exrZqkdFe0qPx9HclkntB5LVuicbzt98WoEmoTYNWdxV0hknhPhXKioqYtCgQQwaNIglS5bg4OBATEwMgwcPpqSkclLcxx57jClTpjBnzhwWLFjAhAkTMDXVfeX/Zp0+17dPnTqV1NRUvv76azw8PDAyMqJbt26a59T1Ja42HUkff/wx7777rta22bNnY9zb+5b7GpmbolAqKMzRvoJYmFuAseWtr+Ze5+DVjMtHz1bbXlZSStTx87Qf2bvWx7oTllaWKPWUZGZkam3Pzsyqli13J9YuX8WqJX/w7lcf49ni1n/XO5FbXEC5qhxrE+1sDStjM7IKdWcpjgnoQ3jKVdafq/gieDUrmV/K1vPBkJksD91eLSMKKn6kXU6P06xaWB9KT58h993oyg36FV8RlFaWlGdXZpooLcxR59Q8NM149AhKDh2lZF/FlWZVfCIYGWL68ESK/95a+WWwvBxVSlrFf6/GouflgdGAPhT+vqJe6lNQUkS5SoVFlUwfc0MT8ooLdO6TW5xPdlG+1sTaqXmZKBUKrIzNSS/IJrc4n3K1SuuHckpeJpbGZugplJSrVfUSf2VMNbUp8xrb1P1tQ7iQEs26cxVzZ13NTOKnw+v4eNgTLD21lczCXCa1H8juyyfZHnGsokxWMsb6BjzZfSwrw3bVqiOgJlbW1ujp6VXLgsvMyKyWLXednZ0tGenaWZ5ZGZno6elhZV3zIjRVNWvenLk//0BhYSH5+fnY29sz+7W3cHFtmGHdppZmKJRK8rK1s7Hyc/Iw1zEUvqSwiIQrMSRGx7Fp4Srg2nlDrea9yc8z5bUn8QrQnfFYX/KLCylXqbA00j4/WBiZklPDe+NGXT0COBZ7vsa23s+nA4NadmbugdUk5KTVS8xVmVpWzHFaNQsuPzu3WrZcVbaOFZ+bzu7NyMvOZdfKv6t1xpUUl3DmwHH6TxhRv4FXkXf9tTCu/lrkFt36tejmGcjRGN2vhRpIzc8CIC47FSdLWwb5dW6QzrjckgLKVapqGWQWRmbkVMmW06WXVzsOXT1LuUq7HmMC+nDw6lnN6p7x2akY6hnwSMdhbDx/oA6fUtXlFV+vg3bmlYWxWbVsOV16eLbl8NVz1V6LrKI8ylXa54zE3HSsTcwb5JzRFFS2J+3XwtLYtFr2pS69vNpxMPpMtfY0NrAPB6+eYe+1+fHislMx0r/envbXa3sSojZkzjghxD3t8OHD1e77+vpy8eJF0tLS+OSTT+jVqxf+/v6axRtuNGzYMMzMzPjxxx/5559/tIa2VtW6dWtCQ0PJz6880R84cAClUknLlhU/jvbt28ezzz7LsGHDaNOmDUZGRqSlpWkdIyYmhoSEBM22Q4dunf7+2muvkZ2drXV77bXXbrkfgJ6+HnbuLiRc0J5bI+FCFI7etZtbAyA9NhkTy+rp/1EnzqMqK6NFZ92T3tcXAwMDWrT05fTxU1rbQ4+fwj+gbotGrFm+kj8XL2P25x/g699wP3TLVOVcSU+grauP1va2Lj6Ep+oeqmWkb4CqylfA61meN+vG9bRxuel8TbetqBhVSlrlLSEJVVY2+q39Ksvo6aHv50PZ5ZrnwsLQoPrVV5XuLCEtClAYVJ+U/06Vq1XEZ6fiW2XyeF/75lzNTNa5T3RGEpbGphjqVV6rtDezQqVWaYYeR2cmYWdqpVUdezNrcoryG+RHVZmqnMvp8QRVaVNBrj41Djkz0jOsdmFAVeW+kZ5BDWUUt0osuiUDAwNa+vtx7MhRre3Hjh4joG2gzn3aBAZw7OgxrW1HjxzFv7U/+vq3f+3YxMQEe3t7cnNyOHr4CL1697rtY9SGnr4+rl5uXAnTzsC4cuYizVtWn1vRyMSYJz57lVmf/E9z69i/B3aujsz65H8089E9D2B9KleriM1Kxt9ROwvaz9GDqPSEGvaq4GPfHEdzGw5FV79wAxUZcUP8u/LjwbXEZul+n9UHfX19XL3diQzTnk80Muwi7n63cbFFrdY5J+HZQycoLysjqFdnHTvVn8rXwlNru7+jJ1cybv5a+Nq74Whuw8Grul+LqhQo0Fc2TB5GuUrF1cxEWjtpt/k2Tl5Ept98njo/B3ecLGzZd+V0tccM9fSrXRhQq9UVn7/1lDF/XblaxdXMJFo5eWptb+3kyeW0+Jvu2/JaHW5cLOC6y2lxOJrbaJ0znMxtySrMlY64GpSrVERnJtLGWbs9tXby4vIt5j3UtCcdr4WhzvOeqkHakxC1IZ1xQoh7WmxsLC+++CLh4eEsX76c7777jueeew53d3cMDQ357rvvuHLlCuvXr+f999+vtr+enh5Tp07ltddew8fH56ZDRidPnoyxsTGPPPIIZ8+eZdeuXTzzzDNMmTIFJ6eKCd99fHz4/fffuXDhAkeOHGHy5MmYmJhojjFgwAD8/Px4+OGHOX36NPv27eONN964ZT2NjIywtLTUut3OMNU2/btw6UAolw6GkpWYxpGV28jPzMa/V8ViCMfX7WLvwsp5TM7tOMrV0HCyUzLITEjl+LpdXD11kVYh1VfJjDhwGvd2fhib33ouobq674GxbNu4me1/byE2OoZfv/uJtJQUhtxXMVfd4p/mM+dD7Tn/rkRc5krEZQoLi8jOyuZKxGViois7KdYsW8nSXxfzzCsv4ujsRGZ6BpnpGRQWaM8lVl82XDhAf58O9PPpQDMrB6Z2HIa9mRVbL1V0TExqP4hnetyvKX887iJd3NswqGVnHM1t8HNwZ3rnEUSkxmo628a37Uc7Vx8czW3wtHHhye5j8bR1YWv4UZ0x1Jfi7bsxHj4Ig/ZtUTZzwXT6Q6hLSik5Ujkc0/TRKRiPHam5X3b6LEYhPTHoHIzS3g791n4Yjx5OaehZTSed8diR6Pm2QGlni7KZC8ZjRqDv50vJ4WPVYqiLfVGn6eTWio7N/XE0t2FEqx5Ym1hwOKbix+sQv6480K6/pnxowiUKSooZ364fjuY2eNm6MMy/O8djL2qG2h2+eg4zQ2NGtumJvZkV/o4e9PUJrvUP4jvx17n9DPDtRH+fjhXDmjuNwN7Mmi3hRwB4KHgwz/V8QFP+WNwFunoEMMSvC07mtvg7evBYl5FcSo3RtKljcRcZ4teVnl5tcTS3oZ2LD5PaD+RY7PlqHXd3YsKkB9n41wb+Xr+R6Khovv3qG1KSkhk9bjQA8+b+yAez39OUv2/sGJITk/huzjdER0Xz9/qN/P3XBh58aJKmTGlpKRHhl4gIv0RpaRmpqalEhF8iLrbyx9mRQ4c5cvAwCfEJHDtylGdnPYObhzvDRjVchlPX4X05uesQp3YdIjU+ic2L15CdlknHAT0B2L58PWt/+B0AhVKJo5ur1s3Myhx9AwMc3VwbbKGAqnZFnqCbZyBdPdrgZGHL2MA+2JpaaDoTRrbuyZQO1ReX6OYRQFRGos7Vg/v7dmR4q+4sPbmV9IJsLIxMsTAyxVCv/jrZb9RjRD9O7DjIiZ0HSYlLZNPCVWSnZdJpYEXH69Zl61g1d6Gm/OHNe7h4PIy0xBTSElM4sesQ+zdsp52ODrcTOw/SqlM7TC1uPT9VXe2IOE53z0C6eQTgZGHLuMCQitfiWufUqDa9eLhD9Xlnu3sGEJWRQKKO7MNBLTvj7+iBnakVTua29PPpQBf31hyLPd9g9dhy6Si9vYLo6dUWFws7HgwagK2pJbsvV6zqPi4whMc6j6y2Xy+vdlxOjyc+J7XaY6cTI+nbIpjObq2xN7OitZMnowN6E5oQoXMkQl1tu3SUXt7t6OHZFmcLOx5o1x9bU0v2XKm4SDgmoA/TO1X/LOnp1ZYr6fE6M0F3Xz6FuaExDwYNxMnchkDnFgxr1Y1dkTdf7f5uMTEwwte+uWYxH1dLe3ztm+NkXvcRCXWxNfwIvb2C6OXVTtOe7Eyt2HWtPd0fGMJjXaq3p97eQRXtKbt6ewpNiKCvT4cb2pMXYwL6NFh7uudcy8K+J2//UTJMVQhxT3v44YcpLCykc+fO6Onp8cwzzzBz5kwUCgULFy7k9ddf59tvvyU4OJgvvviCUaNGVTvGo48+ykcffXTTrDgAU1NTtmzZwnPPPUenTp0wNTVl3LhxfPXVV5oy8+fPZ+bMmbRv3x53d3c++ugjXn75Zc3jSqWStWvX8uijj9K5c2c8PT359ttvGTKkYVfM8+7YmuL8Ak7/vZ+CnDxsXBwY+NSDmNtVDO8qzM4jPyNbU15VXs6xNTsoyMpFz0AfGxcHBjw1AbcA7eyb7OR0ki/HMujZiQ0a/3W9+vchNyeHFYuWkpGeiYeXB29/+j6OzhWdoZnpGaQla2dAvvDoU5r/Xw6PYO/2XTg6O/LLn4sB+GfdBspKS/n07Q+09ntw6mQmTp9S73U4GH0GCyNT7m/bFxsTC2Kykvlox2LSrg0XsjGxwN6sctjd7sunMDEwYqh/Vx7pOJT8kiLOJl1hyYnK+dXMDI2Z1XU01iYWFJQUEZWZyNubf7llxkFdFf+zHYWBASYPPYDCzJTyK9HkffU9FFXOb6i0tdH6IlW0cQtqKoarKm2sUOfmUXr6LEVrNmrKKCwtMHtsCgorS9SFRZTHJZA/5wfKzmtnF9VVWGIkpoZG9PftiKWRGUl56Sw4tlEzvNPCyBRrk8of2yXlZfx6ZD33tenFMz3vp6CkmLDESE2nF0B2UR6/HtnAyNY9eL7XBHKK8jkQFcbuy6eqPX99ORAdhqWRKROC+le0qcwk3t++UDMEzdbUEgdza035nZEnMNE3Yph/d6Z1Gk5+SRFhiZdZfOIfTZk/T+9ErVYzuf0gbE2tyCnK51jsBZae2kJ96D9oADnZ2Sz8dT7pael4tfDms6+/wNmlYrhoelo6yUmVmVOuzVz57Osv+W7ON6xduQZ7B3uee/kFQvr11ZRJS01j+kNTNff/WLKMP5YsIyi4Pd/99D0A+Xn5/PT9j6SmpGJhaUlIvxBmPPn4HWXX1VZAt2AKc/PZs2YLeVnZOLq5MPmVWVg7VAzJzcvKITst8xZHubtOxl/CzNCEIX5dsTQ2IzEnnR8PrtV01loZm2FTZWi0sb4hQa6+rD6zW+cxe3m1w0BPv9oP5E0XDvFPA0yQHti9IwW5+exavYnczByc3FyY8tqT2DhUzIeam5lD1g1/d7Vaxdblf5GZko5SqcTW2YFBk0fT6Vqn6XVpCclcvXiZqW8+U+8x63IyPhwzIxOG+ne79lqk8cOBNZrVUa2MzbAxtdTap+K1aMnKGuZ3NNQ3YELQAKxNzCktLyM5N4OFxzZVm0OrPh2LvYC5oQmjWvfEytic+OxUvt63QrOapZWxObZV6mFiYESH5v4sD92m65BsOL8ftVrNmIDe2JhYkFtcwOnEyBrbYF0dj7uIuZEJI1r3wMrYjIScNL7dt1KzOqq1iY466BsR3MyPFaHbdR4zszCXOXtXMCGoP7MHPUpmYS47Io7zz8XDOsvfbf4OHswd86Lm/rM9K+ZV3nThEB/uXNRYYXE09gJmRqaMalPZnubs+6OyPZmYY2eqPYXB9fa07NRWnce8Pi/c2MA+mvYUmhDRYO1JiFtRqP8T3cBCiH+jkJAQgoKC+Prrr+t0nAMHDhASEkJcXJwmw+3f4pOdixs7hDp7td/DXEy+ybDGfwF/Jy/uX3zrDMd73aqHPyTr0bvzA7OhWP/2Ha/8/UNjh1Fnnw5/ktELX23sMOps3dRPSMlpmBV97xZHSzuWnayfTsjGNCl4MM+s/erWBe9h3415kZWndzR2GHU2vl1/nlrzRWOHUWffj32Z6X9+1Nhh1Mn8B15nxspPGjuMOvtl/Kv0+H5WY4dRJweemse0FR82dhh1tmDCv/P7YNbM5xs7hBpZ//x1Y4fQKCQzTgjRZBUXFxMbG8tbb73FAw888K/riBNCCCGEEEKIOlPJHIX3GpkzTgjRZC1fvhw/Pz+ys7P57LPPGjscIYQQQgghhBBCMuOEEPeu3bt312n/qVOnMnXq1HqJRQghhBBCCCGEqA/SGSeEEEIIIYQQQgjRVMlSAfccGaYqhBBCCCGEEEIIIcRdIp1xQgghhBBCCCGEEELcJTJMVQghhBBCCCGEEKKpkmGq9xzJjBNCCCGEEEIIIYQQ4i6RzjghhBBCCCGEEEIIIe4SGaYqhBBCCCGEEEII0VSpZJjqvUYy44QQQgghhBBCCCGEuEukM04IIYQQQgghhBBCiLtEhqkKIYQQQgghhBBCNFVqVWNHIKqQzDghhBBCCCGEEEIIIe4S6YwTQgghhBBCCCGEEOIukWGqQgghhBBCCCGEEE2VWlZTvddIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKZKJcNU7zWSGSeEEEIIIYQQQgghxF0inXFCCCGEEEIIIYQQQtwlCrValtUQQgghhBBCCCGEaIqyJs9s7BBqZL3058YOoVHInHFCCHEP+27/ysYOoc6e6Tme3Jycxg6jTiwsLRn483ONHUadbZv5DVkvvN7YYdSJ9ZyPeHDJ240dRp398dB7DPrl+cYOo862zviaqLT4xg6jTrzsm/HDwdWNHUadPdl9HLO3/NrYYdTJu4Mf43T8pcYOo87aNWvJyxu+a+ww6uyLkc8wZfm7jR1Gnfw+cTZPr/2yscOos7ljXmLaig8bO4w6WTDhDXp8P6uxw6izA0/Na+wQRBMhw1SFEEIIIYQQQgghhLhLJDNOCCGEEEIIIYQQoqlSqRo7AlGFZMYJIYQQQgghhBBCCHGXSGecEEIIIYQQQgghhBB3iQxTFUIIIYQQQgghhGiq1OrGjkBUIZlxQgghhBBCCCGEEELcJdIZJ4QQQgghhBBCCCHEXSLDVIUQQgghhBBCCCGaKhmmes+RzDghhBBCCCGEEEIIIe4S6YwTQgghhBBCCCGEEOIukWGqQgghhBBCCCGEEE2UWiXDVO81khknhBBCCCGEEEIIIcRdIp1xQgghhBBCCCGEEELcJTJMVQghhBBCCCGEEKKpUqsaOwJRhWTGCSGEEEIIIYQQQghxl0hnnBBCCCGEEEIIIYQQd4kMUxVCCCGEEEIIIYRoqtSymuq9RjLjhBDimqlTpzJ69Ojb2sfT05Ovv/66QeIRQgghhBBCCNH0SGacEP9RU6dOZdGiRdW2Dx48mM2bNzf4c2dlZbFu3boGfZ7b9c0336Cu56tG0dHReHl5cerUKYKCgur12LVxZucRTm7ZR0FWHrbNHOn14DBcW3rqLBt38QrrPp9fbfvkD57DxsWhXuJRq9X8/MsvrF27ltzcXNq0acMr//sfLVq0uOl+O3buZN68ecTFxdG8eXOefOIJ+vbtq1Vm5cqV/L5kCWlpaXh7e/PSiy/Svn17zeM//fwzW7duJTk5GQMDA1r5+/Pkk08SEBCgKRMXF8fX33xDaGgopaWldOvWjf97+WUsLC1vq54jW/dkfNt+2JlaEp2ZxI+H1nA26UqN5Ue17sl9bXrhZGFLSl4my05tY3vEMZ1lQ1q0543+UzkQHcY7W3+7rbjuhPHg/hh264TCxITymFgKVq9HlZRSY3nzpx5D38e72vbS8xfJ/2Wx5pjGQ/prPa7KySVn9sf1GzwwsGUnRrbuibWJOXFZqSw+/g8XU6/WWL6HZ1tGtemJs4UtBaXFnE6IYMmJLeSVFALQya0VowN642xhi55Sj6ScdP6+cJB9UafrPfYbjWzVg/Ht+mFrYsnVzCR+PLz2pm1qZOue3Ne6F04WNqTkZbE8VLtN9fBsy8SgAbhaOqCvVBKfk8aqsF3siDxebzFvWPMXq5atICM9HQ8vT2Y9+xQBQW1rLB926jQ/f/cDV6OisbO3Z/ykCQwfM0qrzNoVq9i4dj2pySlYWlvRK6Q302bNwNDIEIAzoadZtWwFERcjyEhP5+2P36N77571VieA0zsPc/KffeRn5WLXzJHek4bTrKXXLfdLiLjKqk9+wa6ZE5Pfe0azvbysnON/7+bCgVPkZeZg42JPj/FD8AxsWa9xVxWx7xQXdxyjMCcPK2d72o/rh2OL5jWWLy8t49yWQ0QfO09RTj4m1ua0GdQN726BAGQnpnFm034yYpMpyMih/Zi++PXt2KB12PLX36xfsYas9Eyae7oz9akZtGrbRmfZzPQMFv/4G1cuXSYpPoGhY0Yy9ekZ1crl5+Wx/LffObrvEPm5eTi6ODFl1qMEd224unT3CCTEpz0WRmYk52bw17l9RGUk1FheT6lkYMvOdGjmh4WRGVlFeeyIOMax2AuaMr282tHNMxAbEwvySwoJS4xk04VDlKnKG6we/X06MrxVd6xMLIjPTmHJyS1cSo2psXx3j0CGt+qOk4UdhaVFhCVGsvzUNs3nbTNLB8a1DcHTxhUHc2uWnNzMlvAjDRY/VPzd+vt2wsrYjMScdFaf2cXl9HidZR8KHkxXj4Bq2xNz0vhwR8V37O6egXR2a42rpT0AMVnJbDi/n6uZSQ1XCaCvTweG+nXF2sSc+OxUlp3aRkRarM6yj3YeQU+vdtW2x2en8ubmnzX3B7bsRN8WHbAztSSvpJBjsRdYFbarQdtUbbRz8WFS+0H4O7pjb2bNq5t+bPBzshD1QTrjhPgPGzJkCAsWLNDaZmRk1EjRND4rK6vGDqFeRRw9w74/NtHnoZG4+Lhzbs8xNny9mEnvP4uFnXWN+03+8HkMTSrbgYmFWb3FtGjxYpYtW8bst9/G3d2d3+bP56mnn2b1qlWYmel+nrCwMF5//XVmPf44ffv2ZdeuXbz62mv89uuvmo60rVu38uVXX/HqK6/Qrl071qxZw7PPPcfKP//E2dkZAA93d/73f/9Hs2bNKC4uZtny5Tz19NOsW7sWGxsbCgsLeerpp2np68u8H38E4Md583jhxRdZvXp1revYx7s9T3Qbw3f7V3IuOYrhrbrz0dBZPPrnx6TmZ1YrP6JVD6Z3HsmcvX8QnhqDv6M7L/R6kLziAg7HnNMq62huw8wuowlLjKx1PHVh1K83RiE9KFi2mvLUNIwH9sV81nRyPv4Kikt07pO/YCno6WnuK8xMsXj5GUpDz2qVK09MJu/HGzoTVfU/fKKbRwCPdBjKb8c2Ep4SwwDfTrza7yFe2jCX9ILsauX9HNx5qvtYFp/4hxNx4diaWvJYl5HM7HofX+39o6J+JYWsO7uX+OxUylXlBDfzY1a30WQX5TfY69LHuz2zuo3huwOrKtqUf3c+HPI4j638mNT8rGrlR7TqwfROI/h634qKNuXgzvO9Jmi1qdziApaHbiMmK4Wy8jK6uLfh5T4TySrK40TcxTrHvGf7Ln765nueeuk52rQNYNO6Dbz58qv8vGQBjs5O1conJSTy1suvMXTkMP739uucCzvL919+g5W1NT379gZg55btzJ/3Cy++9j9aBbYhPiaWLz/8DIDHn3sKgKLCIrx8WjBw2BA+eOOdOtejqktHwti77G/6ThmFq68HZ3Yf5a+vFvHQh89jeZPP1eKCIrb+shK3Vi0oyMnTeuzQmm1cPBRK/6ljsHVx4OrZS2z8bgkPvDELRw/Xeq8DQMzJi5xas5MO4wdi792MywdOs/fHVQx9fTpmtrovPhxcsIGi3Hw6TxqMub0NxXkFqMsrV+crKynF3M4atyA/Tq3d1SBxa8Wzax8Lv/+Vx56bhV9Aa7Zv2MxHr77DnAXfY+/kWK18aWkpltZWjH3oAf5e9ZfOY5aVlvLB/72FpbU1L77zKnb29qSnpmJsatpg9Wjn6suogF6sObOb6IxEunoE8FiXkXy+eylZhXk695nSYSgWRqb8eXonaflZmBuZolQoNI+3b9aSYa268+fpHURnJOJgbs2EoAEArD+3v0Hq0cW9DQ8FD2Hh8b+JSIulr08H/q/PZF7d9D3pBTnVyre0d+PxrqNZemoLp+IvYWNiwbROI3i080i+2f8nAIb6BqTkZXE05jyTgwc3SNw3Cm7mx7i2fVkRuoMrGfH09GzLk93H8sH2hWQW5lYrvypsF3+d26e5r6dQ8lr/hzkVf0mzzdfejRNxF1mZkUBZeTkDWnbiqe7j+HDHIrKLdL++ddXZrRWTggby+8nNRKTGEuITzIu9H+SNzT+RoeO1WHZqGyvDKt+zegol7w1+TKtzt6tHG8a37cf8oxuJSIvD2cKWR7uMBOCP0O0NUo/aMjEwIjI9jk0XD/LR0FmNGss9rQG+Z4m6kWGqQvyHGRkZ4ezsrHWzsbHRPK5QKPjpp58YMWIEpqamtGrVikOHDhEZGUlISAhmZmZ069aNy5cva/Z55513CAoK4qeffsLNzQ1TU1PGjx9PVlaW5vFFixbx119/oVAoUCgU7N69m379+vH0009rxZeeno6RkRE7d+6sFnt2djZ6enqcOHECqMi4srW1pVOnTpoyy5cvx8XFRXM/Pj6eCRMmYGNjg52dHffddx/R0dGax6sOU83NzWXy5MmYmZnh4uLCnDlzCAkJ4fnnn9eKpaCggOnTp2NhYYG7uzs//1x5FdHLqyJbon379igUCkJCQm7+otSj0K0HaN2rA216d8TW1ZFeE4djbmvFmd1Hb7qfqaUZZlYWmptSWT+nCrVazfLly5k2bRr9+vXDx8eHd995h6KiIjZv2VLjfsuXL6dL585MmzYNT09Ppk2bRudOnVi2fLmmzNJly7jvvvsYPXo0Xl5evPTSSzg5ObFq1SpNmSFDhtClSxeaN29OixYteOH558nPzyciIgKA06dPk5iYyOzZs/Hx8cHHx4fZb7/N+fPnOXz4cK3rOa5tCJvDD/NP+GFispL58dBaUvMyGdm6h87yA3w78feFA+y5coqk3HR2Xz7F5vDDmh9O1ykVCl7r9zCLT/xDUk56reOpC6M+3SnatpvSM+dQJSVTsGwlCkMDDIODatxHXVCIOjdPczNo6QOlpZScPqNdUFWuVU6dn1/v8Q9v1Z1dl0+yK/IkCTlpLD7xD+kFOQxs2UlneV97N1Lzs9gcfoTU/CzCU2PYHnGcFnbNNGXOJ0dzLPYCCTlpJOdlal5nf0f3eo//unGBIWwOP8Lm8MPEZiUz7/BaUvOyGNlad8ZXf9+ObLpwsLJNXTnF5vAjPNCuMhsxLDGSA9FniM1KJjE3nXXn9nIlI4EAp1tneNXGmhUrGTxiKENHDcfd04NZzz+Ng6MjG9eu11n+73UbcHRyZNbzT+Pu6cHQUcMZNHwoq5b/qSlz4ew52gQG0HdQf5xdnOnQpRMhA/tx6WLlD99O3bowdeaj9AzpXS/1qOrk1v206d2BgD6dsHV1pM+kERWfqztvnq2zc9Fa/Lq2w8XHrdpjFw+dotOIPni188PK0Za2/briEeDLyc0N02kCcHHXcby7BtKie1usnO0IHtcPUxsLIveH6iyfeD6KlMux9J41Dmc/T8ztrLDzcMHeu/K9YefhQtDoEDw6tEKpr6fzOPVp48p19Bs6kP7DB9Pcw42pT8/A3tGerev/0Vne0dmJaU/PpM+gfpia6e5c2/nPdvJy8vi/99/AP6A1Ds6O+Ae2wbNF/bwvdOnjHcTRmPMcjTlPSl4m68/tI6swj24egTrL+zm408KuGb8eWU9EWiyZhbnEZiVrZVp52rgQnZHIqfhLZBbmcik1ltD4CJpbVe8Iry9D/bqy58op9lw5RUJOGktPbiG9IJv+vro/b33sm5Oan8XWS0dJzc/iUlosOyNP4GVb2QEdlZHAH6HbOBxzjtLyhs++6ufTgUPRZzh09QzJuRmsPrObzMJceunIGgMoKisht7hAc3O3ccbEwJhDVysvPi06vol9UaeJz04lOS+DZSe3olAo8HNouHPGIL8u7I0KZe+VUBJz01l+ahsZhTn0axGss3xhaTE5Rfmam6etC6aGJuy/IbvMx645EWmxHI45R3pBNueSozgScw4vWxedx7ybDsec45cj69lzJbSxQxHitkhnnBDipt5//30efvhhQkND8ff3Z9KkSTz++OO89tprHD9eMZypaidaZGQkf/75Jxs2bGDz5s2Ehoby1FMVWQsvv/wyDzzwAEOGDCExMZHExES6d+/OY489xrJlyyguLtYcZ+nSpbi6ulYbjggVWWxBQUHs3r0bqMieuv5vTk7FVb/du3fTp08foKLDrG/fvpibm7N3717279+Pubk5Q4YMoaREd4bPiy++yIEDB1i/fj3btm1j3759nDx5slq5L7/8ko4dO3Lq1CmefPJJnnjiCS5erMgsOXq0ouNr+/btJCYmsmbNmtr94euovKyMlKsJuLXx0dru1tqHpMiah4wA/PHu98x/8RPWfT6fuIs1D4O7XfHx8aSnp9O1a1fNNkNDQ4KDgzWvny5hZ87Q5YZ9ALp266bZp7S0lIsXL9K1SxftMl261Hjc0tJS1q5di7m5OS1bVgwFKykpQaFQYGhoqBWfUqnUdPreir5Sj5b2bpyIC9fafiIunDY1dHIY6OlTUl6mta24rBQ/B3f0FJWn6YeCh5BVmMfm8Np3DNaF0s4GpaUlZeERlRvLyymLjELfq/Y/Igy7dKTkVBiUlGof394ey3dexeLNlzGd8iBKO5sajnBn9JR6eNm6EJZ4WWt7WGIkLWv4EXQpNQZbU0uCXH0BsDI2o4t7G07ekOVQVYCzNy6W9lxIrnnoa13oK/XwtW/OyXjtbLUT8Rdp7eSpcx9DpT4l5dp/75Ly6m3qRkGuvrhZOXIm6bLOx29HaWkpEeGXCO6sPawvuHNHLpw9p3OfC2fPVSvfoUtHIi6GU1ZW8f5o0y6QiPBLhJ+vyNZIjE/g2KEjdO7epdrxGkJ5WRkp0Qm4t/HV2u7RxofEyzW//uf2nSArJYMu9/XTfdzSMvQMDLS26RsakBARXeeYdT5fWTmZsUk4+3tqbXf29yQtSvdwvPizkdi6OXFxx1H+eutH/n7/V06t20VZlff13VJWWsqVS5G069hea3vbju0JP3ehhr1u7cTBI/i28ee3b+YxY9wUXpr+FGuW/omqgTqC9BRKmlk5VhvKeSk1Bs8aOjnaOHsRm5VC3xYdeGvANF7p+xAjWvdAX1nZARqVkUBza0fcrCs632xNLfF39OBCSnTD1EOpxNPWtdrnx9mkK/ja6x76HJEWi62pJe1cKr6nWBqb0dm9FaEJETrLNzQ9hRI3aycupGi/ly8kX8XLrnYZqt08AghPuaozi+46Q3199JRKCkqL6hRvTfSUSjxtXDiXFKW1/VzSFVrU8FpU1dsriPPJUVoZjZdSY/G0cdF0ljqYWdPWxYfTCXcnU1+IpkiGqQrxH7Zx40bMzc21tr3yyiu89dZbmvvTpk3jgQce0DzWrVs33nrrLQYPrhgu8NxzzzFt2jStYxQVFbFo0SKaN6846X/33XcMHz6cL7/8EmdnZ0xMTCguLtYMHwQYN24czzzzDH/99Zfm+RYsWMDUqVNR3DD04kYhISHs3r2bl156id27d9O/f3+uXLnC/v37GTZsGLt37+aFF14A4I8//kCpVPLrr79qjrdgwQKsra3ZvXs3gwYN0jp2bm4uixYtYtmyZfTv319T3tW1+heyYcOG8eSTT2r+RnPmzGH37t34+/vj4FAx15qdnZ1WfasqLi7W6oiEug0ZLswtQK1SYWqp/fqaWplRcFb3sAgzawv6PnwfDp7NKC8tI/xQKOu+WMCY/5tOM7+6ZwWkp1dkc9nZ2mptt7O1JTGp5rlT0tPTde5z/XhZWVmUl5djW6WMrZ0daenaGWT79u3j9TfeoKioCHt7e76fOxdra2sAAgMDMTY25rvvvuOpp55CrVbz7XffoVKpSE1NhVp8h7UyNkNPqUdmofYwkMzCXGxMLXTucyLuIkP9u3IwOoyItDha2rsxxK8rBnr6WBmbk1GYQxsnL4b4dWXW6s9uHUQ9UVhUxKvK1W4vqrw8lDbWtTqGnntz9FydKVih3QlddjWW8mUrKU9NQ2lhXjH89dlZ5H76NeqCwnqJ39LIFD2lHtlVhnllF+Zj7Wquc59LabHMPbCK53o9gIGePvpKPY7HXmDhsb+1ypkYGPHj2JfR19NHpVYx/+jGeunE0lmP622qQPvHXWZhLjYmuocTHo+7yBD/rhy8eoaItDh87d0Y3LKLVpsCMDUwZvnkdzHQ00elUvHdgVU37XisrZysbFTlKmxstTtYbWxsyEjP0LlPZkamVmY2gI2tDeXl5WRnZWNnb0fIgH5kZ2bx0hPPoVarKS8vZ8SYUUyYMqnOMddGTZ+rJlYW5J/V3YGQmZTGgVWbGf/a4yj1dGeLuQf4cmrLfpq19MTa0ZaYC5e5cuoCapVKZ/m6KskvRK1SY1xlCgIjCzOKcnVnqOalZZF6JR49A316Pjaa4rxCjq/cRkl+EV0mD22QOG8mJzsHlUqFVZXPIisba7Iysu74uMmJSaSeCqPngBBe+3g2iXEJ/PbtPFTl5dz/8MS6Ba2DmaEJekolucUFWttziwuxMNKdvWdraoWXrQtlqjIWHt+EmaExYwNDMDUw5s/TOwAITYjAzNCEp3qMQ0HFxYmD0WHsiqzdhaXbZWFkip5SSU6VYZfZRXlYGeueEzYiLY4fD63hqR73az5vT8Rd5PcTujMbG5q5UU2vRT6WRp633N/SyIzWTl4sPP73Tcvd16Y32YV5XExpmAs4FoY1vRb5BBjrPvfdyMrYnECXFvx0eJ3W9qOx57EwNuX1fg+DouJC0c7IE2y6eKg+wxcNSd0w5xRx56QzToj/sL59+/LjtbmxrqvaodG2beVk205OFVdYAwMDtbYVFRWRk5OD5bVJ7t3d3TUdcQDdunVDpVIRHh5eY4eUkZERDz30EPPnz+eBBx4gNDSU06dP33SRh5CQEH777TdUKhV79uyhf//+uLu7s2fPHoKDg7l06ZImM+7EiRNERkZiYaHdIVJUVKQ1zPa6K1euUFpaSufOnTXbrKys8PPzq1b2xr+RQqHA2dmZlJSaJ7jX5eOPP+bdd9/V2jZ79mzsBuieiPqOqQHdfZvYODtg41y5UIOLjzt5mdmc2nLgjjrjwg+HsnvxeubrfYRarebrOXMAqnWuqtXqmkKqpGufKtt0HrfKto4dO7Js6VKysrJYu24dr73+OgsXLMDW1hYbGxs+/eQTPv7kE/5YsQKlUsmgQYPw9/e/7aG6VdcBUSgq/vS6LDm5BRtTC74d/SIKKjpZtl46woSgAajUKkwMjHil7xTm7PuDnOL6H8p5nUFwO0wfGK25n3dtsYXqblKZKgy7dKQ8IYnymDit7WU3DCtUJSaTFx2D5RsvY9gpmOI9B24z8purFqqCGhdqaWblwCMdh7H6zG7CEiKxNrFgcvAgHusykp8OV84xVVRawit//4ixgSEBzt5M6TCElLxMzidH12vsN6oasQKFjq0Vlp7aio2pJd/c90Jlm4o4yoR2/VHd8GW8sLSYJ9Z8jrG+Ee2b+fJ419Ek5qbX39x3Vd+TVH9P3rS8+vrmiu2nT4byx+KlPPXSc/i3aUVCXDzzvvkemwW/M3nalPqJuRaq1aGGzzCVSsXmn1bQdfQAbJztazxen0kj2LFwLb+/PgcUCqwcbWndM5jz+6tnYterqkGraz5BXP887frwCM2cou3L+nJg/l90GD8AfUMDnfs1NJ2vxS1PKDVTq9VY2ljx+ItPodTTw7ulD5npGaxfsaZBOuNqcvO3ScWDy05upaisIrN//bn9PNxxKGvO7KZMVU4Lu2b09+3ImjO7iclMxt7MivsCejOgqKDGxYHqQ7VzH4oaTxeulvZMCR7KurN7OZMUibWxBQ+2H8i0TiP49aju4ex3h3bEN6vDjbp6tKGwtJiwm2SKDfDtRIfmfnyz788GX/Tgds4ZN+rp1ZaC0iJOxmtn+Ps5uDOyVQ9+P7mZK+nxOJrbMqn9QLJa92TD+YYbUi9EUyadcUL8h5mZmeHj43PTMgY3DJ25/gVQ1zbVTa7gXy9z0x9hwGOPPUZQUBBxcXHMnz+f/v374+HhUWP53r17k5uby8mTJ9m3bx/vv/8+bm5ufPTRRwQFBeHo6EirVq008XXo0IGlS5dWO8717LUbXf+xrquDpyqDKsOLFArFTf8eurz22mu8+OKLWtuMjIz4+didfSE1sTBFoVRWmyi8ICe/WlbHzTh7uxF++M5WpPJq1wqn2W483HEo+Xl5muHAaenp2NtX/jDNyMzE1s6uxuPY2dlpsuC09rnWcWxtbY2enl61MpkZGdUy6kxMTHBzc8PNzY3AwEDGjB3LX3/9pcnu7Nq1K3+tW0dWVhZ6enpYWFgwePDgis5lVfXFF6rKLsqnXFWOral2xpK1sQVZBbqHrZSUl/LlnuV8vXcFNqYWZBTkMMy/O/klRWQX5eNt54qLpR3vD65c9e96u9z82FdMW/Ehibl1n0Ou9NwFcr+4YaU1/YqvCEoLc8pzKmNXmpuhzqvFpNMGBhi2b0vh5lpM7FxSSnliEkqHmjssbldOcQHlqnKsTbTbu5WxGdlFujs1R7fpxaXUGDaer+gQjMlKpvhoCe8OfowVp3doJlNXoyY5ryLD62pmEs2sHLivTe8G6YzL0bQp7QsJ1ibmNQ6FKikv5au9y/lmn+42dZ0aNQk5aQBcyYjH3dqJB4MG1LkzztLaCqWekswqWXBZmVnVsuWus7G1ITOjavlM9PT0sLSqeD8t/mUB/QYPZOio4QB4tfCmqKiIbz/9iomPTK63+S1rcv1zNT9b++9emJOHqVX1z9XSomJSouNJjUlk95INwLVziFrNt4++yZiXpuHWugWmluaMfHYKZaWlFOUVYGZtyYGVW7C0r9+h29cuwOlsAADWfUlEQVQZmpmgUCooytF+HxTnFWBsoTsby8TKHBMrc63FfSyd7EANhVl5WDg2TKw1sbSyRKlUkpWh/bmcnZVdLVvudljb2qCvr6+VxdjMvTlZGZmUlZaib1C/nY75JYWUq1TVsuDMDU2qZWhdl1uUT3ZRnqYjDiAlLwOlQoG1iTlp+dkM9uvKybhwjsacByApNx1DPQPub9eXHRHHans9pdZyiwsoV6mwqvJ5a2lsVi1D67qRrXsSkRbDposHAYglheJjJbw1cDorw3Y22OIGNckrvv5aaGeMmhuZkluLC2FdPQI4Gnue8hqyj/r7dGRQy87MPbBK87nbEHJLrr0WxlVfC9Maz3036uXVjoPRZyiv8j12bGAfDl49w95r87LFZadipG/AIx2HsfH8/npvU0L8F8iccUKIehcTE0NCQoLm/qFDh1AqlZq5uQwNDSnXMf9KYGAgHTt25JdffmHZsmVMnz79ps9zfd64uXPnolAoaN26Nb169eLUqVNs3LhRkxUHEBwcTEREBI6OjprJ+a/fdK2i2qJFCwwMDDRzvgHk5ORoJvuvrevzj+mq742MjIywtLTUutVlmKqevj6OHq7EntP+UR17PhJnn9rP95Uak6jzR2ZtGJoYYe1kh4eHB25ubnh7e2NnZ8eRI5UTnZeWlnLy5Emt7MKq2gYGau0DcOTwYc0+BgYG+Pv7Vy9z9OhNjwsVP4xLSqvPeWRtbY2FhQXHjh0jIzOTfv10z/VUVZmqnEtpsQQ3086gDG7ux7nkqBr2qlCuVpGWn41KraZvi2COxJxDjZqYrGRmrPyEWas/19wOXT3L6YRIZq3+XOdqmnekuARVWkblLSkFVU4O+n43dNjr6aHv40VZ1M3nHQQwDAoEfT1Kj5+69XPr6aHn5Igqp+Z5dm5XuaqcqIxEAp21h0gFOreoNj/TdYb6BtU63FXXO+Zvkr+pAAxqGIJYV2WqciLS4qq3qWZ+t+z8u7FNhbRor2lTNVEoFBgo636d1sDAAF+/lpw6pj0k7tSxE7QK0J3t2yqgTbXyJ48ex9ffD/1rHcPFxUXVOtyUSiVqtbrGbMf6pKevj6OnKzFVPldjzkfi0qL6hSNDYyMmv/8sk959WnMLDOmMjbM9k959GucW2os56BsYYG5jhapcReSJs3i3b9VA9dDDxs2ZpHDtYXJJF69i79VM5z72Xs0ozM6j9IZVlHNTMlAoFJhY39k5oi70DQzwbulD2Antz5ewE6H4tbnzv5tfQGuS4hO1LqglxiVgY2db7x1xUPEejc9OoaWDdlto6eBOdEaizn2iMhKxNDbDUK8yHgcza1RqleaCgaGefrX3ukqtuvY5VofUwRqUq1REZyQQ4OyttT3A2ZuItDid+xjpG2g+XytjvH4htN5DvKVytYrYrGT8HbXfy/6OHkSlJ9SwVwVf++Y4mttwKPqMzsf7+3ZkiH9Xfji4hpis5HqLWZdylYrozETaOGuPaGjt5MXlGl6L6/wc3HGysGVfVPWLsIZ6us6PqorW1BgvmLh91y4G3ZO3/yjpjBPiP6y4uJikpCStW1pa3a/WGRsb88gjj3D69Gn27dvHs88+ywMPPKAZourp6UlYWBjh4eGkpaVRekNnyGOPPcYnn3xCeXk5Y8aMueVzhYSEsGTJEvr06YNCocDGxobWrVuzYsUKrZVLJ0+ejL29Pffddx/79u0jKiqKPXv28NxzzxEXV/3LiYWFBY888gj/93//x65duzh37hzTp09HqVTeMsPvRo6OjpiYmLB582aSk5PJzs6u9b51FTSoB+f3neD8vhNkJKSw749N5GVkE9CnYmWzg6u3su3XytVGQ7cd5MrJ82Qlp5Een8zB1Vu5fOIcbft1rekpbotCoWDixIksWLCAXbt2ERkZyTvvvouxsTFDrs1BCPD27NnMnTtXc//BBx/kyJEjLFy0iOjoaBYuWsSRo0eZNLFyyNDkSZNY99df/LV+PVFRUXz51VckJSUxbtw4AAoLC/n+++85c+YMiYmJXLx4kfc/+ICUlBQG9K9cYXL9+vWcOXOGuLg4Nm3axKuvvcakiRPx9tb+gXEzq8N2M9S/K4P9uuBu7cSsbmNwNLdh44WKbKvpnUbwv5DJmvLNrBzo79ORZpYO+Dm483r/R/C0dWH+0Y0AlJaXEZ2ZqHXLLy6koLSI6MzEBh3qUrznIMYDQjAIbI3S2QnTifejLiml5GSopozppPsxHj6o2r6GXTtSeuaCzjngjEcNRa+FF0pbG/Tcm2M2bRIKYyNKjtXvsLy/Lxykn08wIS3a42ppz8MdhmBvZqUZpvVg0ACe7D5WU/5kXDid3Fsz0LcTjuY2tHRwZ2qnYUSmxWmy0O5r04tA5xY4mtvgamnPsFbd6eUdpPPHS31ZfWY3Q/y6MrhlF9ysnZjVdXS1NvV/1dpUB1wt7SvaVL+H8bRxYcENc9892G4Awc1a4mxhh5uVI+MCQxjg24kdkcfrJeaxE8azecMmtmz8h5joq/z0zfekJCczfMxIAOb/+Aufv/+xpvzw0SNJTkrmp29/ICb6Kls2/sOWjf9w/8QHNGW69OjG32vXs3v7TpISEjl59DiLf1lA157d0bvWGVpYUMjlS5FcvlTRYZaUkMjlS5GkJNXPD+DgQT05t/c45/YeJyMhhT3L/yY3PZvAvhVTGhxYuYUtv6wEQKFUYt/cWetmammGnoEB9s2dMTCquFiTdDmWyONnyU7JIP5SFOu+WoBarabjsIZZERbAv29HrhwK48qhM2QnpXNyzU4KMnPw6VmxauTp9Xs5/Htle/Ho2ApDMxOOLv2H7MQ0UiJjOf3XHry6BmqGqJaXlZMZl0xmXDKqsnIKs/PIjEsmN/XWWcV3YsT40ezYtI2d/2wj7mosC7//hbTkVAaOrJjDbtkvi5j78Vda+0RHXiE68gpFhUXkZGcTHXmFuOjKzvlBo4aSm5PLwrm/kBAbz8nDx1i7bCWD7xvWIHUA2HMllM7ubejk1gpHcxtGtemJtYk5h6+tyDnUvxsPBg3UlD8Vf4mCkiImBPXHydwGb1tXRrTuwdGYC5rzwfnkKLp5BBLk6outiSW+9m4M8e/KuaSom3bI18U/4YcJ8Q6mt3cQrpb2TG4/GDtTK3ZEVHymPNCuP493Ha1Vj45urejv0xEHM2t87d2Y0mEIl9PiNJ2Kekol7tZOuFs7oa/Uw8bEEndrJxzNGyYTc2fkCbp7BtLVIwAnC1vGBoZga2qh+Xwf1bonUzoMqbZfN49AojISdGapD/DtxIhWPTSry1oYmWJhZKrVmVrftoYfobdXEL282uFiYceDQQOwM7Vi1+WKc+z9gSE81mVktf16ewdxOT2e+OzUao+FJkTQ16cDnd1aY29mRWsnL8YE9CE0IeKuXAy5GRMDI3ztm2sWC3G1tMfXvjlODdROhKgvMkxViP+wzZs34+KivVqXn5+fZiXQO+Xj48PYsWMZNmwYGRkZDBs2jB9++EHz+IwZM9i9ezcdO3YkLy+PXbt2aTrOJk6cyPPPP8+kSZMwNja+5XP17duXr776SqvjrU+fPoSGhmplxpmamrJ3715eeeUVxo4dS25uLs2aNaN///6aue6q+uqrr5g1axYjRozA0tKS//3vf8TGxtYqruv09fX59ttvee+993j77bfp1auXZgXYhubbOZCivAKObdhFfnYuds2cGPHcFM3Qp4KsXHJvmOhaVVbOgZWbycvMQd/AANtmjox4bgqebavPk3enHnn4YYqLi/nk00/Jzc0loE0b5n73HWZmlcNCkpKSUN7Q4dmuXTs+/PBDfvzxR+bNm0fz5s35+KOPCAgI0JQZNGgQ2dnZ/Prrr6SlpdGiRQu++fprTftWKpVER0ez8e+/ycrKwsrKitatW/PLzz/TokVl5tTVq1f5/vvvyc7JwdXVlWnTpjF50u1NDr/nyiksjc14KHgwtqZWRGck8sY/P5GSV/GD1M7UUuuHhJ5Cyf1t+9Lc2pFyVTmhCRE899fXmmGQjal4514UBgaY3D8KhYkJ5VfjyJu3AG7IjlHaWFe7qql0sEPf25O8H+frPK7SygqzKRNQmJmizsun7GosuV/PQ52ZVa/xH7p6FnMjE8YFhmBtYkFsVgqf7FpCWn5Fp7iNiQX2ZpWZsXuuhGJsYMQgvy481GEw+SVFnEuOYtnJrZoyRvqGTO88AjtTS0rKS0nISeP7A6s5dO2Hc0PYc+UUlkamTA4ejK2pJVczEnlzc2WbsjW1xNGssk0pFUrGBVa2qdMJkTy//hutNmVsYMgzPcZjb2ZFcVkpsdkpfLprCXuu1CKTsRb6DOhLTk4OSxcsJjM9Aw9vT97/4mOcrl2UyUjPICW5cm5NZ1cX3v/iY3769ns2rvkLW3s7nnj+aXr2reyQmvTIFBQKBYt+nk96ahpWNtZ06dGNqTMf1ZS5dDGcV56pHPL/83cV86IOGDqYl998pc71atmlLYX5BRxZv5OCa5+r973wiOZzNT87l9z0rNs6ZllpKYfWbiM7JRMDY0M82/oxeMYDGJma1DnemrgH+1OcX8jZLQcpys7HysWe3rPGYWZb8X4ozMkjP7MyU9XAyJC+T43nxKodbP3idwzNTHBv70fg8J6aMoXZeWz5rHKuyYs7j3Fx5zEcfNzo/+yD9V6H7n17kZuTw+rFf5CZkYGbpwevfTwbB2dHoGKqgrQU7U6F/818TvP/K5ci2b9jDw5Ojny//DcA7B0dePOz91j0w6/832PPYGtvx9CxIxn94Lh6j/+60wkRmBkYM7BlZyyNzEjKTee3Ixs0FwAsjc2wuWH4Z0l5KT8d/osxAb15rvcECkqKOJ0QyT83TKS//dpQ1CH+XbEyNievpJDzSVFaZerbkZhzmBuaMLpNH6xNzInLTuGLPUtJL6j4vLU2NsfOtPLzdl/UaYz1jRjQshMT2w+ioKSI8ylRrAitnNrAxsSCD4fO0twf3qo7w1t150JyNB/tXFTvdTgZH46ZoTFD/bpiaWxGYk46Pxxco/Va2FZZOMdY35AgV19Wndml85i9vNphoKfPY11GaW3fdOFggy1+cDT2AmZGpoxq0xMrY3Pis1OZs+8PzeqoVibarwVUdGh1aO7PslNbdR1SMy/c2MA+2JhYkFtcQGhCBKvP7G6QOtwOfwcP5o6p/Nx/tud4ADZdOMSHDdBOhKgvCnVjd2ULIZqUd955h3Xr1hEaGnpH+8fGxuLp6cmxY8cIDg6u3+DqKD8/n2bNmvHll1/y6KOP3nqHevDd/pV35Xka0jM9x5Obk3PrgvcwC0tLBv783K0L3uO2zfyGrBdeb+ww6sR6zkc8uOTtxg6jzv546D0G/fJ8Y4dRZ1tnfE1UWnxjh1EnXvbN+OHg6sYOo86e7D6O2Vt+beww6uTdwY9xuh5W9G1s7Zq15OUN3zV2GHX2xchnmLL83VsXvIf9PnE2T6/9srHDqLO5Y15i2ooPGzuMOlkw4Q16fD/r1gXvcQeemtfYIdyRzJF3bxGa22WzYXljh9AoJDNOCHFPKC0tJTExkVdffZWuXbveEx1xp06d4uLFi3Tu3Jns7Gzee+89AO67775GjkwIIYQQQgghxL+VdMYJIe4JBw4coG/fvrRs2ZJVq1bdeoe75IsvviA8PBxDQ0M6dOjAvn37tFYCFUIIIYQQQgghbod0xgkh6tU777zDO++8c9v7hYSENPoEsFW1b9+eEydO3LqgEEIIIYQQQtyr7rHfWUJWUxVCCCGEEEIIIYQQ4q6RzjghhBBCCCGEEEIIIe4SGaYqhBBCCCGEEEII0VSpVY0dgahCMuOEEEIIIYQQQgghhLhLpDNOCCGEEEIIIYQQQoi7RIapCiGEEEIIIYQQQjRVKllN9V4jmXFCCCGEEEIIIYQQQtwl0hknhBBCCCGEEEIIIcRdIsNUhRBCCCGEEEIIIZoqtQxTvddIZpwQQgghhBBCCCGEEHeJdMYJIYQQQgghhBBCCHGXyDBVIYQQQgghhBBCiKZKhqnecyQzTgghhBBCCCGEEEKIu0Q644QQQgghhBBCCCFEk/Hhhx/SvXt3TE1Nsba2rtU+arWad955B1dXV0xMTAgJCeHcuXNaZYqLi3nmmWewt7fHzMyMUaNGERcXd9vxSWecEEIIIYQQQgghRFOlUt27twZSUlLC+PHjeeKJJ2q9z2effcZXX33F3LlzOXbsGM7OzgwcOJDc3FxNmeeff561a9fyxx9/sH//fvLy8hgxYgTl5eW3FZ/MGSeEEEIIIYQQQgghmox3330XgIULF9aqvFqt5uuvv+aNN95g7NixACxatAgnJyeWLVvG448/TnZ2Nr/99hu///47AwYMAGDJkiW4ubmxfft2Bg8eXOv4JDNOCCGEEEIIIYQQQtx1xcXF5OTkaN2Ki4vvehxRUVEkJSUxaNAgzTYjIyP69OnDwYMHAThx4gSlpaVaZVxdXQkICNCUqTW1EEKI/6SioiL17Nmz1UVFRY0dyh1rCnVQq6Ue95KmUAe1umnUoynUQa2WetxLmkId1OqmUY+mUAe1WupxL2kKdfivmj17thrQus2ePbvejr9gwQK1lZXVLcsdOHBADajj4+O1ts+YMUM9aNAgtVqtVi9dulRtaGhYbd+BAweqZ86ceVtxKdRqWeNWCCH+i3JycrCysiI7OxtLS8vGDueONIU6gNTjXtIU6gBNox5NoQ4g9biXNIU6QNOoR1OoA0g97iVNoQ7/VcXFxdUy4YyMjDAyMqpW9p133tEMP63JsWPH6Nixo+b+woULef7558nKyrrpfgcPHqRHjx4kJCTg4uKi2T5jxgxiY2PZvHkzy5YtY9q0adXiHThwIC1atGDevHk3fY4byZxxQgghhBBCCCGEEOKuq6njTZenn36aBx988KZlPD097ygOZ2dnAJKSkrQ641JSUnByctKUKSkpITMzExsbG60y3bt3v63nk844IYQQQgghhBBCCHFPs7e3x97evkGO7eXlhbOzM9u2baN9+/ZAxYqse/bs4dNPPwWgQ4cOGBgYsG3bNh544AEAEhMTOXv2LJ999tltPZ90xgkhhBBCCCGEEEKIJiMmJoaMjAxiYmIoLy8nNDQUAB8fH8zNzQHw9/fn448/ZsyYMSgUCp5//nk++ugjfH198fX15aOPPsLU1JRJkyYBYGVlxaOPPspLL72EnZ0dtra2vPzyywQGBmpWV60t6YwTQoj/KCMjI2bPnl3rtPB7UVOoA0g97iVNoQ7QNOrRFOoAUo97SVOoAzSNejSFOoDU417SFOog6tfbb7/NokWLNPevZ7vt2rWLkJAQAMLDw8nOztaU+d///kdhYSFPPvkkmZmZdOnSha1bt2JhYaEpM2fOHPT19XnggQcoLCykf//+LFy4ED09vduKTxZwEEIIIYQQQgghhBDiLlE2dgBCCCGEEEIIIYQQQvxXSGecEEIIIYQQQgghhBB3iXTGCSGEEEIIIYQQQghxl0hnnBBCCCGEEEIIIYQQd4l0xgkhhPhXUqvVyBpEor5ERkayZcsWCgsLAaRtNbKioqLGDqFeNJV6CCHEvaZfv35kZWVV256Tk0O/fv3ufkBC3CZZTVUIIf4jiouLOXr0KNHR0RQUFODg4ED79u3x8vJq7NBuy+LFi/n888+JiIgAoGXLlvzf//0fU6ZMaeTIaq+8vJw5c+bw559/EhMTQ0lJidbjGRkZjRTZ7YuLi2P9+vU66/HVV181UlS1l56ezoQJE9i5cycKhYKIiAi8vb159NFHsba25ssvv2zsEGstNjZW6/3dpk0bjIyMGjusWlOpVHz44YfMmzeP5ORkLl26hLe3N2+99Raenp48+uijjR1irTSVevzb21N2djZr165l37591c57gwcPpnv37o0dYq00lXoIUd+USiVJSUk4OjpqbU9JSaFZs2aUlpY2UmRC1I5+YwcghBCiYR08eJDvvvuOdevWUVJSgrW1NSYmJmRkZFBcXIy3tzczZ85k1qxZWFhYNHa4N/XVV1/x1ltv8fTTT9OjRw/UajUHDhxg1qxZpKWl8cILLzR2iLXy7rvv8uuvv/Liiy/y1ltv8cYbbxAdHc26det4++23Gzu8WtuxYwejRo3Cy8uL8PBwAgICiI6ORq1WExwc3Njh1coLL7yAvr4+MTExtGrVSrN9woQJvPDCC/d8Z9zVq1eZN28ey5cvJzY2Viujz9DQkF69ejFz5kzGjRuHUnlvD4j44IMPWLRoEZ999hkzZszQbA8MDGTOnDn/mk6sf3M9mkJ7SkxM5O2332bp0qU4OzvTuXNngoKCNOe9Xbt28cUXX+Dh4cHs2bOZMGFCY4esU1OpR1XHjh1j5cqVOi/grFmzppGiun1NpR7/RmFhYZr/nz9/nqSkJM398vJyNm/eTLNmzRojNCFuj1oIIUSTNWrUKLWLi4v6pZdeUu/Zs0edn5+v9fjly5fVCxcuVA8ePFjt7Oys3rp1ayNFWjuenp7qRYsWVdu+cOFCtaenZyNEdGe8vb3VGzduVKvVarW5ubk6MjJSrVar1d9884164sSJjRnabenUqZP6rbfeUqvVFfW4fPmyOjc3Vz1q1Cj1Dz/80MjR1Y6Tk5M6NDRUrVZX1kGtVquvXLmiNjMza8zQbunZZ59VW1hYqMeNG6detGiR+sKFC+qcnBx1aWmpOjk5Wb1jxw71O++8o/bz81O3adNGffTo0cYO+aZatGih3r59u1qt1n4tLly4oLa2tm7M0G7Lv7UeTaU9OTg4qF966SX1mTNnaixTUFCgXrZsmbpz587qzz///C5GV3tNpR43Wr58udrAwEA9fPhwtaGhoXrEiBFqPz8/tZWVlXrq1KmNHV6t/Zvr8ddff9X6dq9SKBRqpVKpViqVaoVCUe1mamqq/u233xo7TCFuSTrjhBCiCZs7d666uLi4VmXPnj17z3fGGRkZqSMiIqptv3TpktrIyKgRIrozpqam6qtXr6rVarXa2dlZfeLECbVaXdE5amlp2Zih3ZYbOxKtra3VZ8+eVavVanVoaKjaw8OjESOrPXNzc/WlS5c0/7/ecXL06FG1ra1tY4Z2Sy+//LI6JSWlVmX//vtv9cqVKxs4oroxNjZWR0dHq9Vq7dfi3Llz93zH6I3+rfVoKu2ptnW40/J3S1Opx40CAwPVc+fOVavVle8NlUqlnjFjhvrtt99u5Ohq799cj6odV1U7tK53cimVysYOtUbR0dHqqKgotUKhUB87dkwdHR2tuSUkJKjLysoaO0QhauXezC8XQghRL5566ikMDQ1rVbZNmzYMHDiwgSOqGx8fH/78889q21esWIGvr28jRHRnmjdvTmJiIlBRp61btwIVw17+TXMymZmZUVxcDICrqyuXL1/WPJaWltZYYd2W3r17s3jxYs19hUKBSqXi888/p2/fvo0Y2a19/vnnODg41KrssGHDuP/++xs4orpp06YN+/btq7Z95cqVtG/fvhEiujP/1no0lfZU2zrcafm7panU40aXL19m+PDhABgZGZGfn49CoeCFF17g559/buToau/fXA+VSqW5bd26laCgIP755x+ysrLIzs5m06ZNBAcHs3nz5sYOtUYeHh54enqiUqno2LEjHh4empuLiwt6enqNHaIQtSJzxgkhxH9QUVERK1asID8/n4EDB/5rOrLeffddJkyYwN69e+nRowcKhYL9+/ezY8cOnZ1096oxY8awY8cOunTpwnPPPcfEiRP57bffiImJ+dfMewfQtWtXDhw4QOvWrRk+fDgvvfQSZ86cYc2aNXTt2rWxw6uVzz//nJCQEI4fP05JSQn/+9//OHfuHBkZGRw4cKCxw7ulN998k379+tG9e3eMjY0bO5w6mT17NlOmTCE+Ph6VSsWaNWsIDw9n8eLFbNy4sbHDq7WmUo8b7dmzh/z8fLp164aNjU1jh3NLkZGRZGdn06FDB822HTt28MEHH5Cfn8/o0aN5/fXXGzHC2mkq9bjO1taW3NxcAJo1a8bZs2cJDAwkKyuLgoKCRo6u9ppKPZ5//nnmzZtHz549NdsGDx6MqakpM2fO5MKFC40YXe1cunSJ3bt3k5KSgkql0nrs3zQHr/iPauzUPCGEEA3r5ZdfVj/77LOa+8XFxeqgoCC1gYGB2srKSm1mZqY+ePBgI0Z4e44fP66ePHmyOjg4WN2+fXv15MmT1SdPnmzssOrk0KFD6i+//PKenqNFl8uXL6tPnz6tVqvV6vz8fPUTTzyhDgwMVI8ZM0YzTO/fIDExUf3222+rhw8frh46dKj6jTfeUCckJDR2WLXi7e2tVigUaiMjI3Xv3r3Vs2fPVu/Zs6fWw9PvNZs3b1b37t1bbWZmpjYxMVH36NFDvWXLlsYO67b9W+vx2WefaQ2zU6lU6sGDB2uGsDk5OWmGo9/LRo8erX7zzTc1969cuaI2MTFRDxo0SP3ss8+qzc3N1XPmzGm8AGupqdTjuokTJ6q//PJLtVqtVn/wwQdqBwcH9WOPPab28PBQjxkzppGjq72mUg9jY2N1WFhYte2nT59WGxsbN0JEt+fnn39W6+npqZ2cnNTt2rVTBwUFaW7t27dv7PCEuCWFWn3DMklCCCGanICAAD766CNGjRoFwIIFC3jppZc4deoU7u7uTJ8+nZSUFP7+++9GjlQIcSfi4+PZuXMnu3fvZvfu3URFRWFiYkK3bt3o27cvffv2pXv37o0dpvgXCA4O5pVXXtGszLly5UoeeeQRtm3bRqtWrXj44YcxNTW95zOR3dzc+PPPP+nWrRtQscLtqlWrCA0NBeC3337ju+++09y/VzWVelyXkZFBUVERrq6uqFQqvvjiC/bv34+Pjw9vvfXWvyLrEppOPXr37o2BgQFLlizBxcUFgKSkJKZMmUJJSQl79uxp5AhvzsPDgyeffJJXXnmlsUMR4o5IZ5wQQjRxlpaWnDx5Eh8fHwAmTpyIhYWFZl6T0NBQhg0bRkJCQmOGeVtSUlJ0Dklo27ZtI0V0a+vXr6912esdp6JhhIWFERAQgFKpJCws7KZlzc3NcXNzw8DA4C5FV3exsbHs2rWL3bt3s3r1avLz8ykrK2vssG5p2rRpPPTQQ/Tr1w+FQtHY4dyxf3M9bGxsOHjwIK1atQIq6lJWVsbvv/8OwOHDhxk/fjyxsbGNGeYtmZiYcOnSJdzc3ADo378/3bt35/333wcq5vzq0KEDWVlZjRjlrTWVegCUlZWxdOlSBg8ejLOzc2OHI6gYBj1mzBjCw8Nxd3cHICYmhpYtW7Ju3TrN98Z7laWlJaGhoXh7ezd2KELcEZkzTgghmjilUsmN110OHz7MW2+9pblvbW1NZmZmY4R2206cOMEjjzzChQsXqHotSaFQUF5e3kiR3dro0aNrVe5er4eNjU2tOxgyMjIaOJo7ExQURFJSEo6OjgQFBaFQKKq1pxtZWVkxb948TbbQvezy5cvs3r1bkylXXl5+zy9EcV16ejrDhw/Hzs6OBx98kIceeuieXvCgJv/mepSWlmotInPo0CGee+45zX1XV9d/xeIstra2JCYm4ubmhkql4vjx41rzcZaUlNz0PX+vaCr1ANDX1+eJJ574V8xDpktOTk6ty1paWjZgJPXHx8eHsLAwtm3bxsWLF1Gr1bRu3ZoBAwb8Ky4kjB8/nq1btzJr1qzGDkWIOyKdcUII0cT5+/uzYcMGXnzxRc6dO0dMTIzWj/OrV6/i5OTUiBHW3rRp02jZsiW//fYbTk5O/4ovi9dVzeL7t/r6668bO4Q6i4qK0qw8GBUVddOyxcXFrFy5Umvo3r0kKiqKXbt2aTLhsrOz6dGjB3369OHpp5+mU6dO6Ov/O77urV+/nqysLP7880+WLVvG119/jZ+fHw899BCTJk3C09OzsUOslX9zPXx8fNi7dy/e3t7ExMRw6dIl+vTpo3k8Li4OOzu7Roywdvr06cP777/PDz/8wMqVK1GpVFrnvfPnz9/Tr8N1TaUe13Xp0oVTp07h4eHR2KHcNmtr61p/57iXL6hVpVAoGDRoEIMGDWrsUGrl22+/1fz/+rDgw4cPExgYWC2D/dlnn73b4QlxW2SYqhBCNHGrV69m4sSJ9OrVi3PnztGpUyc2bNigefyVV14hKirqnp8DCMDCwoJTp07d80MnRNOSmZnJo48+ypo1axo7lGqUSiXu7u48+eST9O3bl+DgYPT09Bo7rHoRFxfH8uXLmT9/PhER/8/encfVmP7/A3+dkjapUJZUWkQRStm3rGHshiFK1rGVZGk+Q3aasWdLkspe2TL2pSIyaEVJWmQpUkO00HL//vDrfB1Fp8y4zn3O+/l49HjUdd9/vC46p3Pe57qudzIvttpWhk/z2L17N1xdXTF27FjcunULGhoaIl2FV69ejb///lvkb4gkSktLQ79+/ZCWlgY5OTl4enpi5syZwuvDhw+HgYEBNm/ezDBl1aRlHuWCgoLg5uYGFxcXtG/fHqqqqiLXJfmoic/PT0tPT4ebmxsmTZokPM8vMjIS/v7+WLduHRwcHFjFrLb8/HyEh4cjIyMDHz9+FLkmicUsAwMDse4TCARITU39j9MQ8n2oGEcIITLg8uXLOHPmDBo1aoS5c+dCRUVFeG3FihXo1auXyOoHSTV8+HBMnDgRo0aNYh3lu/HtBXBVCgsLUVxcLDLGl606AFBQUFDp/4UkvzkEgLFjx+LatWsoKipC9+7d0bNnT9jY2MDCwoJXK0e/VFxcjDNnzuDAgQM4c+YM6tWrh+fPn7OOVW18nMfevXvx119/oVGjRli2bJnI+V6zZs1C3759MXLkSIYJxVNcXIyEhARoaWmhSZMmItfi4uKgq6uLevXqMUonPmmZB/Dpw4MvlR8TIOlHNHyuT58+mDp1KsaNGycyfujQIXh7eyMsLIxNsGqKiYnBoEGDUFBQgPz8fNSrVw+vX7+GiooKtLW1qZhFyH+MinGEEEIQGxuLdu3asY5RpdevX8PBwQEdOnRA69atK2xJ4EvjA2l5AZyfn4/FixcjMDAQOTk5Fa7z4Y1VdnY2HB0dce7cuUqv82EOAPDw4UPhVtXw8HAUFRWhW7du6NmzJ3r16gVra2vWEcUSGhqKQ4cO4dixYygtLcXIkSNhZ2eH3r17V/pGXlJJyzwqk52dLdzmzVf37t3D3r17eb/tnm/zePLkyTev82X7qoqKCuLi4tC8eXOR8UePHqFdu3YoKChglKx6evXqBRMTE+zatQsaGhqIi4uDgoICJkyYAGdnZ14U3QnhMyrGEUKIjHr79i0OHjyIvXv3IjY2lhdFh5CQEEycOBHv3r2rcI1Pn6pLywvg2bNnIzQ0FCtXroS9vT127NiB58+fY/fu3fDw8ICdnR3riFWys7NDeno6tmzZAhsbG5w4cQIvX77E6tWrsXHjRgwePJh1xBpJSEjAoUOHsG3bNt50U23atClycnIwYMAA2NnZYciQIVBSUmIdq9qkZR6f4zgO586dE66a+/DhA+tI1ZaXl4fDhw9j7969uHv3Ltq0aYPY2FjWsapNWubBZy1atMBPP/2EjRs3ioy7urrir7/+QlJSEqNk1aOhoYG///4bLVq0gIaGBiIjI2Fqaoq///4bDg4OePjwIeuI3zR//vxKxwUCAZSUlGBsbIxhw4bxZuUokT38ONGXEELIv+bq1avw9fXF8ePHoa+vj1GjRsHHx4d1LLE4OTlh4sSJWLp0KW+aTlQmNjYWu3fvhry8POTl5fHhwwcYGhrizz//hIODA2+KcadPn0ZAQAB69eqFyZMno3v37jA2Noa+vj4OHjzIi2Lc1atXcerUKVhbW0NOTg76+vro168f6tati3Xr1vGqGPfy5UuEhYUhLCwMoaGhePToERQVFdG9e3fW0cTi7u6On3/+GZqamqyjfBdpmQcApKamwtfXF/7+/nj//j0GDx6MI0eOsI5VLeHh4di7dy+OHTuGoqIiLFy4EIcOHeLd2aPSMI+AgIBvXre3t/9BSb7P5s2bMWrUKFy4cAGdOnUC8KlTfUpKCo4dO8Y4nfgUFBSExxk0bNgQGRkZMDU1hbq6OjIyMhinq1pMTAyio6NRWlqKFi1agOM4JCcnQ15eHi1btsTOnTvh6uqKiIgImJmZsY5LSAVUjCOEEBnw7Nkz+Pn5wdfXF/n5+RgzZgyKi4tx7NgxXr1AycnJgYuLC68LcQD/XwCXy83NFR6mXLduXeTm5gIAunXrJnLIuCTLz8+HtrY2AKBevXrIzs6GiYkJzM3NER0dzThd1YKCgoTbU5OSklCrVi106NABY8aMgY2NDbp06QJFRUXWMcUyffp01hH+FXyfR1FREYKDg+Hj44Nbt26hX79+yMzMRGxsLFq3bs06nlgyMzOxb98+4d+8cePGITw8HJ07d4a9vT1vCljSMo9yzs7OIj8XFxejoKAAtWvXhoqKCm+KcYMGDUJycjJ27dqFxMREcByHYcOG4ddff4Wuri7reGKzsLDA3bt3YWJiAhsbG7i7u+P169fYv38/zM3NWcerUvmqt3379gnPqM3Ly8OUKVPQrVs3TJs2DePHj4eLiwsuXLjAOC0hFVExjhBCpNygQYMQERGBn376Cdu2bYOtrS3k5eXh5eXFOlq1jRw5EqGhoTAyMmId5bvw/QVwOUNDQ6Snp0NfXx9mZmYIDAxEhw4dcPr0aWhoaLCOJ5YWLVogKSkJzZo1Q7t27bB79240a9YMXl5eaNy4Met4VbKzs4OVlRVGjBgBGxsbdO3aFcrKyqxj1didO3cQFBRUaTMNSexm+zV8ncesWbNw5MgRtGjRAhMmTMCxY8dQv359KCgo8OqsOwMDA/z888/YsWMH+vXrx6vsn5OWeZT7559/KowlJydj5syZWLhwIYNE1VdcXIz+/ftj9+7dWLNmDes432Xt2rXCYz9WrVoFBwcHzJw5E8bGxti3bx/jdFVbv349Ll26JNIsqm7duli+fDn69+8PZ2dnuLu7o3///gxTEvJ1VIwjhBApd/HiRTg5OWHmzJkVDhvmGxMTE/z222+IiIiAubl5hQYOfOlCyvcXwOUcHR0RFxeHnj174rfffsPgwYOxbds2lJSUYNOmTazjiWXevHnIzMwEACxbtgwDBgzAwYMHUbt2bfj5+bENJ4Z//vkHqqqqrGP8K44cOQJ7e3v0798fly5dQv/+/ZGcnIysrCyMGDGCdTyx8Xke3t7eWLx4Mdzc3KCmpsY6To3p6+sjIiICenp60NfXR8uWLVlHqhFpmce3NG/eHB4eHpgwYYLEn1EGfFrZfv/+fV53qy5nZWUl/F5LSwtnz55lmKb63r59i1evXlXY4ZGdnY28vDwAn87F+/IDEUIkBRXjCCFEyl2/fh2+vr6wsrJCy5YtMXHiRIwdO5Z1rBrx8fFBnTp1EB4ejvDwcJFrAoGAN8U4vr8ALufi4iL83sbGBg8fPsTdu3dhZGSEtm3bMkwmvs/PtbOwsEB6ejoePnwIPT09NGjQgGEy8ZQX4p4/f45jx47h0aNHEAgEaN68OUaNGgUdHR3GCcW3du1abN68GbNnz4aamhq2bt0KAwMDzJgxgxerFMvxeR4BAQHYt28fGjdujMGDB2PixImwtbVlHavakpKScOPGDezduxfW1tYwMTHBhAkTAIBXRRRpmUdV5OXl8eLFC9YxxGZvb4+9e/fCw8ODdZR/RXZ2NpKSkiAQCNCiRQte/O0DPm1TnTx5MjZu3Ahra2sIBALcvn0bCxYswPDhwwEAt2/fhomJCdughHwFdVMlhBAZUVBQgCNHjsDX1xe3b99GaWkpNm3ahMmTJ/N6BQQhsm7nzp2YP38+Pn78CHV1dXAch7y8PNSuXRubNm3CrFmzWEcUi6qqKh48eIBmzZqhQYMGCA0Nhbm5ORITE9G7d2/hCkZJJw3zSE9Px759++Dn54eCggLk5ubi6NGjGD16NOto1fb+/XscPnwYvr6++Pvvv9GzZ0+MHz8ew4cPh5aWFut4YpOGeYSEhIj8zHEcMjMzsX37dujq6uLcuXOMklXP3LlzERAQAGNjY1hZWVVYncyXleH5+fmYO3cu9u/fL+xGLy8vD3t7e2zbtg0qKiqME37b+/fv4eLigoCAAGHH8Fq1asHBwQGbN2+GqqqqsNNwu3bt2AUl5CuoGEcIIVIuIyMDurq6Ip+iJyUlYe/evdi/fz/evHmDfv36VXiRTIi0mj9/vtj3SvqbqjNnzmDYsGGYN28eXF1dhSuvMjMzsX79emzbtg2nTp3CoEGDGCetmq6uLs6ePQtzc3O0bdsWbm5uGDduHCIjI2Fra4u3b9+yjigWaZkH8KlYcuHCBfj6+iIkJAQNGjTAyJEj4enpyTpajSQmJgr/9uXm5qK4uJh1pBrh6zy+PPNOIBBAS0sLvXv3xsaNGyV+5Wg5Gxubr14TCAS4evXqD0xTczNmzMDly5exfft2dO3aFQAQEREBJycn9OvXD7t27WKcUDzv379HamoqOI6DkZER6tSpwzoSIWKhYhwhhEg5eXl5ZGZmCjtGfq60tBSnT58WvtGSRPPnz8eqVaugqqpaZRFF0gsnRDJ8643U5/jwpqpnz57o3r07Vq9eXen1JUuW4Pr16xW2dUui8ePHw8rKCvPnz8eaNWuwdetWDBs2DJcuXYKlpaVENz74nLTM40u5ubnCbaxxcXGs43yXkpIShISEYOTIkayjfBdpmQdho0GDBggODkavXr1ExkNDQzFmzBhkZ2ezCUaIjKBiHCGESDk5OTlkZWVVWozjAxsbG5w4cQIaGhpS82k0If+WunXr4s6dO2jRokWl15OSkmBlZSVsGCLJcnNzUVRUhCZNmqCsrAwbNmxAREQEjI2NsXTpUmhqarKOKBZpmQefvXjxAps2bYK7u7tIp0Xg06Hvq1evxoIFC9CwYUNGCcUjLfOQVo8fP0ZKSgp69OgBZWVlcBzHq7P8VFRUEBUVBVNTU5HxBw8eoEOHDsjPz2eU7OtGjhwJPz8/1K1bt8oiNF8/+CCyg4pxhBAi5fhejCPkR+Drm6o6deogPj4ehoaGlV5PTU1FmzZt8P79+x+cjPCROFu4BQIBNm7c+APS1NyCBQuQl5cHb2/vSq//+uuvUFdXxx9//PGDk1WPNMxDmo4FKJeTk4MxY8YgNDQUAoEAycnJMDQ0xJQpU6ChoSHxj49yffr0Qf369REQEAAlJSUAQGFhIRwcHJCbm4vLly8zTliRo6MjPD09oaamBkdHx2/ey6fu9EQ2UTdVQgiRAeVdSL+FD51IX758+dUVAPHx8WjTps0PTiS+6pyxJMn/F3l5eWLf++VKDkn0tTdVU6dO5cWbqlatWuHUqVMinW0/d/LkSbRq1eoHp6q5srIyPH78GK9evUJZWZnItR49ejBKVX18nUdMTAzrCP+K8+fPw8vL66vX7e3tMW3aNIkuYgHSMY8vf6eioqJQWloqXM376NEjyMvLo3379izi1YiLiwsUFBSQkZEhsqps7NixcHFxkfi/G+W2bt0KW1tbNG3aFG3btoVAIEBsbCyUlJRw4cIF1vEq9XmBjYpthO9oZRwhhEg5OTk5NG3aFPLy8l+9RyAQIDU19QemqhltbW34+Phg6NChIuMbNmzA0qVLUVhYyChZ1QwMDMS6T9L/L+Tk5KpcMVa+qqy8O5sks7e3x6tXr+Dj4wNTU1PExcXB0NAQFy9ehIuLCx48eMA64jf5+/tj5syZ2LBhA6ZPn45atT59zlpSUoLdu3dj4cKF2LlzJyZNmsQ2qBhu3bqF8ePH48mTJ/jy5Slffp8A6ZkHn6mqqiIxMRF6enqVXi8vokjiNrzPScs8ym3atAlhYWHw9/cXbtf+559/4OjoiO7du8PV1ZVxQvE0atQIFy5cQNu2baGmpib8u5GWlgZzc3NerUQuLCzEgQMH8PDhQ3AcBzMzM9jZ2UFZWZl1NLGUlJQgLCwMKSkpGD9+PNTU1PDixQvUrVuXGjkQiUcr4wghRAbcvXtXKrapLl68GGPHjhW2rc/NzcXEiRPx4MEDHD16lHW8b0pLS2Md4V8RGhrKOsK/6uLFi7hw4QKaNm0qMt68eXM8efKEUSrxOTg44N69e5gzZw5+++03GBkZAQBSUlLw/v17ODk58aIQB3zacmdlZYUzZ86gcePGvNgmXBk+zyMsLKzCYe5fmjVrFnbu3PljAtWQsrIy0tPTv1rESk9P50WxQVrmUW7jxo24ePGiyLmJmpqaWL16Nfr378+bYlx+fj5UVFQqjL9+/RqKiooMEtWcsrIypk2bxjpGjTx58gS2trbIyMjAhw8f0K9fP6ipqeHPP/9EUVHRN1eVEiIJqBhHCCGEN1xdXdG3b19MmDABbdq0QW5uLjp16oT4+HheHmD98eNHpKWlwcjISLiiSdL17NmTdYR/lTS8qdqwYQNGjx6Nw4cPIzk5GcCnrZC//PILOnXqxDid+JKTkxEcHAxjY2PWUb4Ln+cxbNgwhIaGwtLSstLrs2fPxsGDByW+GNexY0fs37//q1uCAwIC0KFDhx+cqvqkZR7l8vLy8PLlywpb51+9esWLJjPlevTogYCAAKxatQrApxWvZWVlWL9+vdjdulkJCQkR+94vdyFIGmdnZ1hZWSEuLg7169cXjo8YMQJTp05lmIwQMXGEEEKkmkAg4F6+fPnNew4cOPCD0ny/vLw8buzYsVytWrW4WrVqcX5+fqwjVVt+fj43efJkTl5enpOXl+dSUlI4juO4uXPncuvWrWOcrnquXbvG2dnZcZ07d+aePXvGcRzHBQQEcNevX2ecTDyDBg3ilixZwnEcx9WpU4dLTU3lSktLuZ9//pkbNWoU43RVW7FiBZefn886xr/CxsaGO3fuHOsY343P85g/fz6nra3NJSUlVbg2e/Zsrk6dOty1a9cYJKueq1evcvLy8pyrqyuXlZUlHM/KyuLmz5/PycvLc1euXGGYUDzSMo9yEydO5PT09LigoCDu6dOn3NOnT7mgoCCuWbNmnL29Pet4Ynvw4AGnpaXF2dracrVr1+ZGjx7NmZqacg0bNuQeP37MOt43CQQCsb7k5ORYR61S/fr1uYcPH3Ic9+nvd/lrqbS0NE5ZWZllNELEQsU4QgiRci1btuRevHjx1esHDx7kFBQUfmCimouIiOCaNWvGtW/fnktISOD27NnDqampcT///DOXm5vLOp7YnJycuPbt23PXr1/nVFVVhS8gT506xbVr145xOvEFBwdzysrK3NSpUzlFRUXhPHbs2MENHDiQcTrx8PlNFcdxnJycXJXFdr44fvw4Z2Zmxu3bt4+7e/cuFxcXJ/LFF3yfh6OjI6enpycsrnPcpw8KVFVVubCwMIbJqsfLy4tTVFTk5OTkOA0NDU5TU5OTk5PjFBUVuZ07d7KOJzZpmQfHffogaubMmcL5yMnJcbVr1+ZmzpzJvX//nnW8asnMzOTc3d25wYMHcwMHDuR+//33b77WIv8+TU1N7sGDBxzHiRbjrl+/zmlra7OMRohYqIEDIYRIuV69eqGwsBBXr16FqqqqyLUjR47A3t4ef/zxx1e7MUoSRUVFuLi4YNWqVVBQUADw6WysiRMnIiMjA8+ePWOcUDz6+vo4evQoOnXqJHL48+PHj2FpaVmtjqUsWVhYwMXFBfb29iLziI2Nha2tLbKyslhHFEtWVhZ27dqFqKgolJWVwdLSErNnz0bjxo1ZR6uSnJwcsrKypOJMSDk5uQpjAoGAVw1BAP7Po6ysDKNHj0ZiYiKuX7+ONWvWwNvbG3/99ZfEb8ErV1xcDAUFBTx//hyBgYF4/PgxOI6DiYkJRo8ejaZNm+L+/fto3bo166jfJC3z+FJ+fj5SUlLAcRyMjY0rvDYhP0ZaWprYzaUk0dixY6Gurg5vb2+oqakhPj4eWlpaGDZsGPT09KjbKpF4VIwjhBAp9/79e/Tq1QsaGho4d+6csIgVGBiICRMmYO3atViwYAHjlOIJDw+v9MyysrIyrFmzBkuXLmWQqvpUVFRw//59GBoaihSx4uLi0KNHD7x9+5Z1RLGoqKggISEBzZo1E5lHamoqzMzMUFRUxDqi1JOTk8PLly+hpaXFOsp3q6phhr6+/g9K8n2kYR4fP37E4MGDERcXh/z8fISEhKBPnz6sY4lt9OjRCAoK+mrzjPv376NPnz54+fLlD05WPdIyD2lz7dq1b17/2hl/kkZeXh49evTAlClTMHr0aCgpKbGOVC0vXryAjY0N5OXlkZycDCsrKyQnJ6NBgwa4du2aVHxIRaQbFeMIIUQGZGdno0ePHjAzM0NwcDCCg4NhZ2eHVatWYfHixazjyZyePXti9OjRmDt3rvDTXAMDA8yZMwePHz/G+fPnWUcUi5GREXbv3o2+ffuKFOMCAgLg4eGBhIQE1hGrdP78edSpUwfdunUDAOzYsQN79uyBmZkZduzYIdL1TxLJycmhdevWVTYAiY6O/kGJCJ95enoKv3/37h1WrVqFAQMGVCjEOTk5/eho1aKrq4uBAwfC29u7wrUHDx6gd+/e6NGjB4KCghikE5+0zONzd+7cQVBQEDIyMvDx40eRa8ePH2eUqnq+tvq1nKSvfi13//59+Pr64uDBg/jw4QPGjh2LKVOm8KopSGFhIQ4fPozo6GjhynY7OztedRkmsouKcYQQIiOePn2Kbt26wdjYGBEREXB3d8fvv//OOla15efnIzw8vNIX8pL+BrHczZs3YWtrCzs7O/j5+WHGjBl48OABIiMjER4ejvbt27OOKJY///wT/v7+8PX1Rb9+/XD27Fk8efIELi4ucHd3x5w5c1hHrJK5uTn++OMPDBo0CPfu3YOVlRVcXV1x9epVmJqaSvw2Fzk5Obi6uqJOnTrfvG/ZsmU/KNH3SUlJwZYtW5CYmAiBQABTU1M4OzvDyMiIdbRq4es8xNmyJhAIkJqa+gPS1FxiYqJwxY+Hh4fIuI2NDbp06YKgoCDIy8szTFk1aZlHufKjMfr3749Lly6hf//+SE5ORlZWFkaMGCHxz7flvly9XlxcjJiYGCxduhRr1qzh1SpSACgpKcHp06fh5+eHc+fOoXnz5pgyZQomTpwoFauuCZFYTE6qI4QQ8sN8fnD40aNHOUVFRW7s2LG8OFQ8IyND5Ofo6GiuUaNGnJqaGlerVi1OS0uLEwgEnKqqKmdgYMAoZc3Ex8dz9vb2XKtWrThTU1POzs6Oi4+PZx2r2v73v/9xysrKwg5sSkpKwu6kfKCqqsqlpaVxHMdxy5YtE3ZQjYqK4ho2bMgwmXjE6ZbMF+fPn+dq167NdejQgXNxceHmzZvHdejQgVNUVOQuXrzIOp7YpGUefHf79m1OTU2N+/PPPzmO47jExESuUaNG3NChQ7mSkhLG6cQnLfPgOI4zNzfntm/fznHc/x24X1ZWxk2bNo1zd3dnnO77hYeHc5aWlqxj1FhRURG3adMmTlFRkRMIBFzt2rW5iRMnSmxjisaNG3Pjxo3jdu/eXWkHaEIkHa2MI4QQKScnJydyeHj50/6X30vitorVq1cjMzMT27dvh0AgQK9evWBkZARvb280bdoUcXFxKCwsxIQJE+Di4oKRI0eyjiyTCgoKkJCQgLKyMpiZmVW5SkuS1KtXDxERETAzM0O3bt1gb2+P6dOnIz09HWZmZigoKGAd8Zvk5eWRmZkpFWfjWFhYYMCAASIrgADAzc0NFy9e5M1WW2mZhzS4evUqfvrpJyxatAh79uyBpaUljh8/Ljw7lS+kZR6qqqp48OABmjVrhgYNGiA0NBTm5uZITExE7969kZmZyTrid0lMTIS1tTXev3/POkq13L17F76+vjhy5AhUVVXh4OCAKVOm4MWLF3B3d8e7d+9w+/Zt1jErOHz4MMLDwxEWFoZHjx6hYcOG6NmzJ3r16oWePXvC1NSUdURCvomKcYQQIuWqOky8nCQeKl5YWIg5c+YgOzsbISEh0NDQwK1bt9CyZUs0bdoUkZGR0NXVxa1btzBp0iQ8fPiQdeSvqk6H1Lp16/6HScjnhg4dio8fP6Jr165YtWoV0tLSoKOjg4sXL2LOnDl49OgR64jfJE3dVJWUlHDv3j00b95cZPzRo0do06YNbxqC8HUeR44cwS+//CLWvU+fPkVGRga6du36H6f6fidPnsTPP/+M/v374+TJk7wrYJWThnno6uri7NmzMDc3R9u2beHm5oZx48YhMjIStra2vGleFB8fL/Izx3HIzMyEh4cHiouLcePGDUbJqmfTpk3Yt28fkpKSMGjQIEydOhWDBg0SORPv8ePHaNmyJUpKShgmrdrLly8RGhqKv/76C0ePHkVZWZlEfshMyOe+fdovIYQQ3pPEIpu4lJWVsXfvXhw5cgQAoKCgIHyRqK2tjSdPnkBXVxcaGhrIyMhgGbVKGhoaX+2I9yVJfgFZndWHfDiMe/v27Zg1axaCg4Oxa9cu6OjoAADOnTsHW1tbxumqlpaWJjVn+mhpaSE2NrZCESs2NpZXxUa+zmPXrl1Yvnw5HB0dMXTo0AqrSt6+fYsbN27gwIEDuHz5Mvbu3csoadU0NTUrPN9ev34dDRs2FBnLzc39kbGqTVrmUa579+64dOkSzM3NMWbMGDg7O+Pq1au4dOkSr85Za9euncjugnKdOnWCr68vo1TVt2vXLkyePBmOjo5o1KhRpffo6elJ9GP9/fv3iIiIEK6Qi4mJgbm5OXr27Mk6GiFVomIcIYRIsYyMDOjp6Yl9//Pnz4XFCElSvlrDwsICd+7cgYmJCXr27InffvsNM2fOhL+/P8zNzRmn/LbQ0FDh9+np6XBzc8OkSZPQuXNnAEBkZCT8/f2xbt06VhHFoq6uLvye4zicOHEC6urqsLKyAgBERUXhzZs3vNkyrKenh7/++qvC+ObNmxmkqT5/f3+x7nN3d/+Pk3y/adOmYfr06UhNTUWXLl0gEAgQERGBP/74A66urqzjiY2v8wgPD8dff/2Fbdu24X//+x9UVVXRsGFDKCkp4Z9//kFWVha0tLTg6OiI+/fvS3RhccuWLawj/CukZR7ltm/fLlwZ+ttvv0FBQQEREREYOXIkli5dyjid+NLS0kR+lpOTg5aWFpSUlBglqpnk5OQq76lduzYcHBx+QJrq69ixI+Lj49G6dWv06tUL//vf/9C9e3doaGiwjkaIWGibKiGESLGGDRti6NChmDZt2ldb1b99+xaBgYHYunUrZsyYgblz5/7glOK7e/cu8vLy0Lt3b+Tm5mLSpEkICwuDkZER/Pz80LZtW9YRxdKnTx9MnToV48aNExk/dOgQvL29ERYWxiZYNS1evBi5ubnw8vISdvMrLS3FrFmzULduXaxfv55xwqpVtaKyOsVsFuTk5NCkSRNoa2tXWKVRTiAQ8OKcMo7jsGXLFmzcuBEvXrwAADRp0gQLFy6Ek5OT2CtLWZOGeeTk5CAiIgLp6ekoLCxEgwYNYGFhAQsLC5EtbITIkqtXr2LOnDm4detWheMk3r59iy5dusDLywvdu3dnlLBmCgoKKu1Q36ZNG0aJxFOvXj0IBAL07dsXvXr1Qq9eveicOMIrVIwjhBAplpubi7Vr18LX1xcKCgqwsrJCkyZNhCsdEhIS8ODBA1hZWWHJkiUYOHAg68gyQUVFBXFxcZWeKdWuXTuJbxpQTktLCxEREWjRooXIeFJSErp06YKcnBxGycRX3uDkayR5yzAADBo0CKGhoRgwYAAmT56MwYMHCwujfFJSUoKDBw9iwIABaNSoEd69ewcAUFNTY5yseqRlHrKkvLkR3/FhHl87O1UgEEBRURG1a9f+wYmqZ+jQobCxsYGLi0ul1z09PREaGooTJ0784GQ1k52djUmTJuH8+fOVXpf0v3/Ap/P7wsLCEB4ejuvXr0NOTg49e/aEjY0Nfv31V9bxCPkm+miLEEKkWL169bBhwwa8ePECu3btgomJCV6/fi3cmmBnZ4eoqCjcuHGDCnE/kK6uLry8vCqM7969G7q6ugwS1UxJSQkSExMrjCcmJqKsrIxBouqLiYlBdHS08Ovvv/+Gl5cXTExMEBQUxDpelc6ePYvU1FR07NgRCxcuRNOmTbF48WIkJSWxjlYttWrVwsyZM/HhwwcAn4pXfCxgScs8+MzU1BSHDh2qsMrnS8nJyZg5cyb++OOPH5SseqRlHp/T0NCApqZmhS8NDQ0oKytDX18fy5Ytk9i/H3Fxcd88S7R///6Iior6gYm+z7x58/DmzRvcunULysrKOH/+PPz9/dG8eXOEhISwjieWNm3awMnJCceOHcO5c+cwcOBAHD9+HLNnz2YdjZAq0ZlxhBAiA5SUlDBy5EjenOP1NTk5OXB3d0doaChevXpV4QU7Xw6x3rx5M0aNGoULFy6gU6dOAIBbt24hJSUFx44dY5xOfI6Ojpg8eTIeP34sMg8PDw84OjoyTieeyrY2l68gXb9+PS8eM40bN8Zvv/2G3377DdeuXcO+fftgbW0Nc3NzXL58GcrKyqwjiqVjx46IiYnhddMZQHrmwVc7duzA4sWLMXv2bPTv37/SFeERERFISEjAnDlzMGvWLNaRKyUt8/icn58ffv/9d0yaNAkdOnQAx3G4c+cO/P39sWTJEmRnZ2PDhg1QVFTE//73P9ZxK3j58uU3u9jWqlUL2dnZPzDR97l69SpOnToFa2tryMnJQV9fH/369UPdunWxbt06DB48mHXEb4qJiUFYWBjCwsJw/fp1vHv3Dm3btoWzszNsbGxYxyOkSlSMI4QQwhsTJkxASkoKpkyZgoYNG0r8lpyvGTRoEJKTk7Fr1y4kJiaC4zgMGzYMv/76K69Wxm3YsAGNGjXC5s2bkZmZCeBTYWjRokUSfVC9OExMTHDnzh3WMarN2toa6enpSEhIQExMDIqLi3lTjJs1axZcXV3x7NkztG/fHqqqqiLXJf38onLSMg++6t27N+7cuYObN2/i6NGjOHToUIWz7+zt7TFhwgSJPuhdWubxOX9/f2zcuBFjxowRjg0dOhTm5ubYvXs3rly5Aj09PaxZs0Yii3E6Ojq4d+8ejI2NK70eHx+Pxo0b/+BUNZefny9sxFKvXj1kZ2fDxMQE5ubmvDhn1NraGhYWFujZsyemTZuGHj16VDjLjxBJRmfGEUII4Q01NTVERETwplGDLCk/C4hvL4S/PMOI4zhkZmZi+fLlePjwIWJjY9kEq6bIyEj4+voiMDAQJiYmcHR0xPjx43nzJh1ApY0BBAKB8CwsPpxfBEjPPAj5t33tvNTk5GS0bdsWBQUFSEtLQ6tWrSTy7NS5c+ciLCwMd+7cqdA5tbCwEB06dICNjQ08PT0ZJawea2trrF69GgMGDMDw4cOFK+I8PT0RHByMlJQU1hG/KS8vj3evOQj5HK2MI4QQwhstW7ZEYWEh6xikEnx9QayhoVFhhSXHcdDV1cWRI0cYpRLfn3/+iX379iEnJwd2dnaIiIiAubk561g1kpaWxjrCv0Ja5kHIv61p06bYu3cvPDw8RMb37t0rXBWek5MDTU1NFvGqtGTJEhw/fhwmJiaYM2cOWrRoAYFAgMTEROzYsQOlpaX4/fffWccU27x584Sr2pctW4YBAwbgwIEDqF27Nvz9/RmnqxpfX3cQUo5WxhFCCOGNO3fuwM3NDe7u7mjdunWFs1vohRmprvDwcJGf5eTkoKWlBWNjY9SqJfmfWcrJyUFPTw8//fTTNzsRbtq06QemItLg2bNnCAkJQUZGRoUmAvT7RGoiJCQEP//8M1q2bAlra2sIBALcuXMHDx8+RHBwMH766Sfs2rULycnJEvs79uTJE8ycORMXLlxA+dtogUCAAQMGYOfOnWjWrBnbgDXEcRwKCwvx8OFD6OnpoUGDBqwjESL1qBhHCCGEN5KTkzFu3DjExMSIjNP2L1IdlpaWuHLlCjQ1NbFy5UosWLAAKioqrGPVSK9evao8O1EgEODq1as/KNH32b9/P7y8vJCWlobIyEjo6+tjy5YtMDAwwLBhw1jHExvf53HlyhUMHToUBgYGSEpKQuvWrZGeng6O42Bpacmb3ycieZ48eQIvLy8kJSWB4zi0bNkSM2bM4F0R659//sHjx4/BcRyaN28usav5qrJ3715s3rwZycnJAIDmzZtj3rx5mDp1KuNkhEg/KsYRQogMSUlJwZYtW5CYmAiBQABTU1M4OzvDyMiIdTSxdOjQAbVq1YKzs3OlDRx69uzJKBnhE2VlZSQnJ6Np06aQl5dHVlYWtLS0WMeSebt27YK7uzvmzZuHNWvW4P79+zA0NISfnx/8/f0RGhrKOqJYpGEeHTp0gK2tLVauXAk1NTXExcVBW1sbdnZ2sLW1xcyZM1lHJDxTXFyM/v37Y/fu3TAxMWEdhwBYunQpNm/ejLlz56Jz584APp0/un37djg7O2P16tWMExIi3agYRwghMuLChQsYOnQo2rVrh65du4LjONy8eRNxcXE4ffo0+vXrxzpilVRUVBATE4MWLVqwjkJ4rHPnzqhTpw66deuGFStWYMGCBahTp06l97q7u//gdLLLzMwMa9euxfDhw4UFIENDQ9y/fx+9evXC69evWUcUizTMQ01NDbGxsTAyMoKmpiYiIiLQqlUrxMXFYdiwYUhPT2cdkfCQlpYWbt68WaGBA2GjQYMG2LZtG8aNGycyfvjwYcydO1fin6vCwsLQq1cv1jEIqTHJPwyFEELIv8LNzQ0uLi4VDk52c3PD4sWLeVGMs7KywtOnT6WiGBccHIzAwMBKz2OKjo5mlKr6wsPDsWHDBpHVlgsXLkT37t1ZR/sqPz8/LFu2DH/99RcEAgHOnTtX6flwAoFAootxHh4emDt3LlRVVau89++//8br168xePDgH5CsZtLS0mBhYVFhXFFREfn5+QwS1Yw0zENVVRUfPnwAADRp0gQpKSlo1aoVAEj8G/SvKSwsRHFxscgYH88Z5fM87O3tK23gQNgoLS2FlZVVhfH27dujpKSEQaLqsbW1hY6ODhwdHeHg4CBsAkIIX1AxjhBCZERiYiICAwMrjE+ePBlbtmz58YFqYO7cuXB2dsbChQthbm5eoYFDmzZtGCWrHk9PT/z+++9wcHDAqVOn4OjoiJSUFNy5cwezZ89mHU9sBw4cgKOjI0aOHAknJyfhass+ffrAz88P48ePZx2xUi1atBB2SpWTk8OVK1egra3NOFX1JSQkQF9fHz///DOGDh0KKysr4XbbkpISJCQkICIiAgcOHEBmZiYCAgIYJ/42AwMDxMbGQl9fX2T83LlzMDMzY5Sq+qRhHp06dcKNGzdgZmaGwYMHw9XVFffu3cPx48fRqVMn1vHEVlBQgEWLFiEwMBA5OTkVrvPlnFFpmcfHjx/h4+ODS5cuwcrKqsIHCZLatEFaTZgwAbt27arw7+7t7Q07OztGqcT34sULHDhwAH5+fli+fDn69OmDKVOmYPjw4d9saESIpKBtqoQQIiN0dXWxadMm/PzzzyLjgYGBWLBgATIyMhglE5+cnFyFMYFAwLsGDi1btsSyZcswbtw4kW1s7u7uyM3Nxfbt21lHFIupqSmmT58OFxcXkfFNmzZhz549SExMZJRMdsTHx2PHjh0ICgrC27dvIS8vD0VFRRQUFAAALCwsMH36dDg4OEBRUZFx2m/bt28fli5dio0bN2LKlCnw8fFBSkoK1q1bBx8fH/zyyy+sI4pFGuaRmpqK9+/fo02bNigoKMCCBQsQEREBY2NjbN68uUKhUVLNnj0boaGhWLlyJezt7bFjxw48f/4cu3fvhoeHBy8KDoD0zMPGxuar1/jUaEZazJ07FwEBAdDV1RUW2W/duoWnT5/C3t5e5ANPSS+UxsbGwtfXF4cPH0ZZWRns7OwwZcoUtG3blnU0Qr6KinGEECIjVq5cic2bN8PNzQ1dunSBQCBAREQE/vjjD7i6umLJkiWsI1bpyZMn37zOlzeIKioqSExMhL6+PrS1tXHp0iW0bdsWycnJ6NSpU6UrHySRoqIiHjx4AGNjY5Hxx48fo3Xr1igqKmKUTPZwHIf4+Hikp6ejsLAQDRo0QLt27dCgQQPW0aplz549WL16NZ4+fQoA0NHRwfLlyzFlyhTGyapHWubBd3p6eggICECvXr1Qt25dREdHw9jYGPv378fhw4dx9uxZ1hHFIi3zIJLlW8XRz/GlUPrixQt4e3vDw8MDtWrVQlFRETp37gwvLy/hNntCJAltUyWEEBmxdOlSqKmpYePGjfjtt98AfDoLaPny5XBycmKcTjx8KbZVpVGjRsjJyYG+vj709fVx69YttG3bFmlpaeDTZ2S6urq4cuVKhWLclStX6OyWH0wgEKBt27a8XwUwbdo0TJs2Da9fv0ZZWRkvtw8D0jMPAHj//j3KyspExvhyRllubi4MDAwAfMqcm5sLAOjWrRuvOsJKyzzKPX78GCkpKejRoweUlZWFq9vJj8WHzs5VKS4uxqlTp+Dr6yvc/rx9+3aMGzcOubm5WLx4MX7++WckJCSwjkpIBVSMI4QQGVBSUoKDBw9i3LhxcHFxwbt37wB86phHfrzevXvj9OnTsLS0xJQpU+Di4oLg4GDcvXsXI0eOZB1PbK6urnByckJsbKzIaks/Pz9s3bqVdTzCY3xb0fc1fJ1HWloa5syZg7CwMJEVrnw7EsDQ0BDp6enQ19eHmZkZAgMD0aFDB5w+fRoaGhqs44lNWuaRk5ODMWPGIDQ0FAKBAMnJyTA0NMTUqVOhoaGBjRs3so5IeGTu3Lk4fPgwgE/n3/35559o3bq18Lqqqio8PDzQrFkzRgkJ+TbapkoIITLi862RhK2ysjKUlZUJO3gGBgYKz2P69ddfeXXw8IkTJ7Bx40bh+XDl3VSHDRvGOBnhI2npMsz3eXTp0gUA4OzsjIYNG1ZYtdSzZ08Wsapt8+bNkJeXh5OTE0JDQzF48GCUlpaipKQEmzZtgrOzM+uIYpGWedjb2+PVq1fw8fGBqamp8LzUixcvwsXFBQ8ePGAdkfBInz59MHXqVIwaNeqrr5tKSkpw48YN3jxnEdlCxThCCJERNjY2cHZ2xvDhw1lHIYSQCj7vMrxnz54KXYbXrFnDOqJYpGEederUQVRUFFq0aME6yr8qIyMDd+/ehZGREa+3dPN1Ho0aNcKFCxfQtm1bkeZFaWlpMDc3x/v371lHJDxy7do1dOnSRfjBZrmSkhLcvHkTPXr0YJSMEPHQNlVCCJERs2bNgqurK549e4b27dtDVVVV5HqbNm0YJZNN169fx+7du5GSkoLg4GDo6Ohg//79MDAwQLdu3VjHE4uhoSHu3LmD+vXri4y/efMGlpaWSE1NZZTs2zQ1NcU+n6j8bCby39u5cye8vb0xbtw4+Pv7Y9GiRSJdhvlCGuZhbW2Np0+fSl0xTk9PD3p6eqxjfDe+ziM/Px8qKioVxl+/fi3x3Z6J5LGxsUFmZmaFMznfvn0LGxsb3mynJ7KLinGEECIjxo4dCwAizRoEAgHvzgACgKioKCQmJkIgEMDU1BSWlpasI1XLsWPHMHHiRNjZ2SEmJgYfPnwAALx79w5r167lTWe89PT0Sn9vPnz4gOfPnzNIJJ4tW7awjvCf4fPB6BkZGcLtkcrKysKzLSdOnIhOnTph+/btLOOJTRrm4ePjg19//RXPnz9H69atoaCgIHJdkj+88fT0FPteSW5e5OnpienTp0NJSanKOUnyPD7Xo0cPBAQEYNWqVQA+vQYpKyvD+vXrxe7sSUi5r/19y8nJqfCBMyGSiIpxhBAiI9LS0lhH+G6vXr3CL7/8grCwMGhoaIDjOOEnoEeOHIGWlhbriGJZvXo1vLy8YG9vjyNHjgjHu3TpgpUrVzJMJp6QkBDh9xcuXIC6urrw59LSUly5ckWiD0x2cHBgHeFfl5OTg7Fjx+Lq1au8PRhdWroMS8M8srOzkZKSAkdHR+EYXz682bx5s8jP2dnZKCgoEDY6ePPmDVRUVKCtrS3RRazNmzfDzs4OSkpKFeb0OYFAINHz+Nz69evRq1cv3L17Fx8/fsSiRYvw4MED5Obm4saNG6zjEZ4ob3QlEAgwadIkkVWVpaWliI+PF34gQogko2IcIYTICGlo3DB37lzk5eXhwYMHMDU1BQAkJCTAwcEBTk5Owq5aki4pKanSs0zq1q2LN2/e/PhA1VR+7qBAIKhQ2FJQUECzZs14Ufwpl5KSgn379iElJQVbt26FtrY2zp8/D11dXbRq1Yp1PLG4uLigVq1ayMjIED42gE8rYl1cXHjx/yEtXYalYR6TJ0+GhYUFDh8+XGkDB0n2+QdPhw4dws6dO7F3717hltukpCRMmzYNM2bMYBVRLJ/PQxo+TAMAMzMzxMfHY9euXZCXl0d+fj5GjhyJ2bNno3HjxqzjEZ4o/wCQ4zioqalBWVlZeK127dro1KkTpk2bxioeIWKjBg6EECJD9u/fDy8vL6SlpSEyMhL6+vrYsmULDAwMeNH9Ul1dHZcvX4a1tbXI+O3bt9G/f39eFLIAwMjICLt370bfvn1FDrEOCAiAh4cHEhISWEcUi4GBAe7cuYMGDRqwjlJj4eHhGDhwILp27Ypr164hMTERhoaG+PPPP3H79m0EBwezjigWaTgYXVq6DEvDPFRVVREXFwdjY2PWUb6LkZERgoODYWFhITIeFRWF0aNH87LIVf7WjU8FUkL+CytWrMCCBQtoSyrhLTnWAQghhPwYu3btwvz58zFo0CC8efNGuM1IQ0ODN2dolZWVVTi7CPi0GqusrIxBopqZMWMGnJ2d8ffff0MgEODFixc4ePAgFixYgFmzZrGOJ7a0tDReF+IAwM3NDatXr8alS5dEiiQ2NjaIjIxkmKx6pOFgdDk5OZGueGPGjIGnpyecnJx4UcAqJw3z6N27N+Li4ljH+G6ZmZkoLi6uMF5aWoqXL18ySFRze/fuRevWraGkpAQlJSW0bt0aPj4+rGNVi4GBAZYuXYqkpCTWUYgUWLZsGVRVVfHq1Stcv34dERERePXqFetYhIiNinGEECIjtm3bhj179uD333+HvLy8cNzKygr37t1jmEx8vXv3hrOzM168eCEce/78OVxcXNCnTx+Gyapn0aJFGD58OGxsbPD+/Xv06NEDU6dOxYwZMzBnzhzW8cTm5ORU6cHi27dvx7x58358oBq4d+8eRowYUWFcS0sLOTk5DBLVTPnB6OXoYHTyPYYMGQIXFxcsX74cx44dQ0hIiMgXX/Tp0wfTpk3D3bt3hSvK7t69ixkzZqBv376M04lv6dKlcHZ2xpAhQxAUFISgoCDh/9GSJUtYxxPb3Llzcf78eZiamqJ9+/bYsmULMjMzWcciPJWXl4eJEydCR0cHPXv2RI8ePaCjo4MJEybg7du3rOMRUiXapkoIITJCWVkZDx8+hL6+vsg2tuTkZLRp0waFhYWsI1bp6dOnGDZsGO7fvw9dXV0IBAJkZGTA3Nwcp06dQtOmTVlHrFJpaSkiIiJgbm4OJSUlJCQkoKysDGZmZqhTpw7reNWio6ODkJAQtG/fXmQ8OjoaQ4cOxbNnzxglE1/Tpk0RGBiILl26iDwuTpw4gQULFiAlJYV1RLEkJCSgV69eaN++Pa5evYqhQ4eKHIxuZGTEOiLhETm5r39eL+kNHD6XnZ0NBwcHnD9/XriquqSkBAMGDICfnx+0tbUZJxRPgwYNsG3bNowbN05k/PDhw5g7dy5ev37NKFnNPHr0CAcPHsSRI0eQmpoKGxsbTJgwAfb29qyjER4ZM2YMYmNjsW3bNnTu3BkCgQA3b96Es7Mz2rRpg8DAQNYRCfkmKsYRQoiMMDMzw7p16zBs2DCRooOnpyf8/f0RFRXFOqLYLl26hIcPH4LjOJiZmfFqhQMAKCkpITExEQYGBqyjfBclJSXcv3+/wrlSjx8/RuvWrVFUVMQomfgWLVqEyMhIBAUFwcTEBNHR0Xj58iXs7e1hb2+PZcuWsY4otqysLOzatQtRUVEoKyuDpaUlHYxOCD4Vf8r/ZpiamsLExIR1pGrR1NTE7du30bx5c5HxR48eoUOHDrw5L7Uyt27dwsyZMxEfH8+bIi+RDKqqqrhw4QK6desmMn79+nXY2toiPz+fUTJCxEPdVAkhREYsXLgQs2fPRlFRETiOw+3bt3H48GGsW7eOd+fO9OvXD/369WMdo8bMzc2RmprK+2KcsbExzp8/X2Fr7blz52BoaMgoVfWsWbMGkyZNgo6OjrC4W1paivHjx/Nq+xfwqYnDihUrWMcgROKYmJjwrgD3uQkTJmDXrl3YtGmTyLi3tzfs7OwYpfo+t2/fxqFDh3D06FG8ffsWo0ePZh2J8Ez9+vWFnVU/p66uDk1NTQaJCKkeWhlHCCEyZM+ePVi9ejWePn0K4NM2w+XLl2PKlCmMk32dp6cnpk+fDiUlpUrPJ/uck5PTD0r1fS5evIjFixdj1apVaN++fYVOYHXr1mWUrHp8fX0xZ84cLFy4EL179wYAXLlyBRs3bsSWLVswbdo0xgnFl5KSgpiYGJSVlcHCwqLCChRJd+3atW9e79Gjxw9KQvhKWp5r58+fj1WrVkFVVRXz58//5r1fFrck1dy5cxEQEABdXV106tQJwKcVZU+fPoW9vb1IYyNJnlP59tRDhw4hPT0dNjY2sLOzw8iRI6GmpsY6HuEZb29vBAUFISAgQLgCPCsrCw4ODhg5ciRmzJjBOCEh30bFOEIIkUGvX79GWVkZL87LMTAwwN27d1G/fv1vriQTCARITU39gclq7vPzmAQCgfB7juN4dR4T8KlL75o1a4RNNZo1a4bly5fT2T8/WGVnfH3+u8WX36ng4GAEBgYiIyMDHz9+FLkWHR3NKFX18XEe0vJca2NjgxMnTkBDQ+ObzUsEAgGuXr36A5PVnLhNWCR9TnJycrCyssL48ePxyy+/oFGjRqwjER6zsLDA48eP8eHDB+jp6QEAMjIyoKioWOEDNUl93iWyjbapEkKIjEhLS0NJSQmaN2+OBg0aCMeTk5OhoKCAZs2asQv3DWlpaZV+z2ehoaGsI/xrZs6ciZkzZyI7OxvKysq8aEJR1WqZz0nyKpPP/fPPPyI/FxcXIyYmBkuXLsWaNWsYpaoeT09P/P7773BwcMCpU6fg6OiIlJQU3LlzB7Nnz2YdT2x8nYe0PNd+/vwqLc+10jKPhw8f8nq7MJEsw4cPZx2BkO9CK+MIIURG9OzZE5MnT4aDg4PI+IEDB+Dj44OwsDA2wYiI2NhYtGvXjnUMsZWUlCAsLAwpKSkYP3481NTU8OLFC9StW1diC3NfrjKJiopCaWkpWrRoAeDTVip5eXlhZ1I+u3btGlxcXHjRoKVly5ZYtmwZxo0bJ9Jkxt3dHbm5udi+fTvriGKRhnkUFhZCWVm50muZmZnUFIR8l48fP+LVq1coKysTGS9f3UQIIbKAinGEECIj6tati+jo6Eo7X1pZWfGiG9vo0aNhZWUFNzc3kfH169fj9u3bCAoKYpTs+7x9+xYHDx6Ej48P4uLieLOl8MmTJ7C1tUVGRgY+fPiAR48ewdDQEPPmzUNRURG8vLxYR6zSpk2bEBYWBn9/f+GBz//88w8cHR3RvXt3uLq6Mk74fRITE2FtbY3379+zjlIlFRUVJCYmQl9fH9ra2rh06RLatm2L5ORkdOrUCTk5OawjikUa5tGyZUscOnQIlpaWIuPBwcHClbCSauTIkWLfe/z48f8wyb+nqKgI27ZtQ2hoaKVFLL5swUtOTsbkyZNx8+ZNkXE+HtFAJMv79+8rPC74cv4ukV20TZUQQmSEQCDAu3fvKoy/ffuWNy+Aw8PDsWzZsgrjtra22LBhA4NE3+fq1avw9fXF8ePHoa+vj1GjRmHv3r2sY4nN2dkZVlZWiIuLQ/369YXjI0aMwNSpUxkmE9/GjRtx8eJFkc5rmpqaWL16Nfr378+bYlx8fLzIzxzHITMzEx4eHmjbti2jVNXTqFEj5OTkQF9fH/r6+rh16xbatm2LtLQ08OmzY2mYR79+/dClSxcsX74cixcvRn5+PubMmYOgoCB4eHiwjvdNn3dX5DgOJ06cgLq6OqysrAB8Wgn75s2bahXtWJs8eTIuXbqE0aNHo0OHDiLnQfLJpEmTUKtWLfz1119o3Lgxb+dBJENaWhrmzJmDsLAwFBUVCcepuEv4gopxhBAiI7p3745169bh8OHDkJeXB/DpUPd169ahW7dujNOJ5/3796hdu3aFcQUFBeTl5TFI9G3Z2dnQ0tISGXv27Bn8/Pzg6+uL/Px8jBkzBsXFxTh27BjMzMwYJa2ZiIgI3Lhxo8L/ib6+Pp4/f84oVfXk5eXh5cuXaNWqlcj4q1evKi1eS6p27dpBIBBUKPZ06tQJvr6+jFJVT+/evXH69GlYWlpiypQpcHFxQXBwMO7evcurwok0zGPbtm0YPHgwHB0dcebMGeHW8zt37kj889S+ffuE3y9evBhjxoyBl5eXyN+9WbNm8WrVzJkzZ3D27Fl07dqVdZTvEhsbi6ioKLRs2ZJ1FCIF7OzsAHzq7N6wYUMq7hLeoWIcIYTIiD///BM9evRAixYt0L17dwDA9evXkZeXx5tzsVq3bo2jR4/C3d1dZPzIkSMS+QbR29sbz549g6enJxQUFDBo0CBERETgp59+wrZt22Brawt5eXlebOesTFlZWaWfPD979gxqamoMElXfiBEj4OjoiI0bN6JTp04AgFu3bmHhwoW8KZwAFQ/cl5OTg5aWFpSUlBglqj5vb2/hNqNff/0V9erVQ0REBIYMGYJff/2VcTrxScs8+vfvj5EjR2LXrl2oVasWTp8+LZHPs9/i6+uLiIgIYSEOAOTl5TF//nx06dIF69evZ5hOfDo6Orx5Tv0WMzMzvH79mnUMIiXi4+MRFRUlPO+VEL6hM+MIIUSGvHjxAtu3b0dcXByUlZXRpk0bzJkzB/Xq1WMdTSwhISEYNWoUxo8fj969ewMArly5gsOHDyMoKEjiOmt9+PABS5cuRYMGDbBo0SLUqlULTk5OmDlzJpo3by68T0FBAXFxcbx7ozt27Fioq6vD29sbampqiI+Ph5aWFoYNGwY9PT2RFSqSqqCgAAsWLICvry+Ki4sBALVq1cKUKVOwfv16qKqqMk5IyI9X3pAlKysLPj4+CA8Px4YNG+Dk5IQ1a9ZAQUGBdUSxaGpqYt++fRX+Npw8eRKOjo4VuhBLqnPnzsHT0xNeXl7Q19dnHafGrl69iiVLlmDt2rUwNzev8HvEp9WKhD0bGxv8/vvv6Nu3L+sohNQIFeMIIYTwypkzZ7B27VrExsYKC4rLli1Dz549WUf7qo8fP6J27dqIjIyEr68vAgMD0bJlS0ycOBFjx45FkyZNeFmMe/HiBWxsbCAvL4/k5GRYWVkhOTkZDRo0wLVr16Ctrc06otjy8/ORkpICjuNgbGzMuyKcp6dnpeMCgQBKSkowNjZGjx49RFYISYIvz7r7ljZt2vyHSb6PtMyjnJqaGgYPHgwvLy9oaGgAAG7evAl7e3uoqakhJiaGbUAxzZ8/H35+fvjf//4nsvLVw8MD9vb22LRpE+OE4snOzsaYMWNw7do1qKioVChi5ebmMkpWPXJycsLvP99SSGd8kZpISUnBr7/+igkTJqB169YVHhd8eK4lso2KcYQQIiOuXbv2zes9evT4QUlIQUEBjhw5Al9fX9y+fRulpaXYtGkTJk+ezLutSIWFhTh8+DCio6NRVlYGS0tL2NnZQVlZmXU0mWJgYIDs7GwUFBRAU1MTHMfhzZs3UFFRQZ06dfDq1SsYGhoiNDQUurq6rOMKycnJVXrW3Zck/Y26tMyj3P79+zFx4sQK4+/evcO8efN402imrKwMGzZswNatW5GZmQkAaNy4MZydneHq6ipxxemv6du3LzIyMjBlypRKz8ZycHBglKx6wsPDv3ldkj9UI5Ln1q1bGD9+PNLT04Vj5c/DfHmuJbKNinGEECIjPv9EutznL+jpRQsbSUlJ2Lt3L/bv3483b96gX79+CAkJYR2L8Mzhw4fh7e0NHx8fGBkZAQAeP36MGTNmYPr06ejatSt++eUXNGrUCMHBwYzT/p8nT56Ifa8kb8+TlnlIk5KSEhw8eBADBgxAo0aNhE1++LgVUkVFBZGRkbzpjPwt169fx+7du5GSkoLg4GDo6Ohg//79MDAw4E0zKSIZzMzMYGpqikWLFlVapKbnWiLpqBhHCCEy4u3btyI/FxcXIyYmBkuXLsWaNWvQp08fRsm+rV69enj06BEaNGgATU3Nb3bL4stWncqUlpbi9OnT8PX15VUxLikpCdu2bUNiYiIEAgFatmyJOXPmULe8H8zIyAjHjh1Du3btRMZjYmIwatQopKam4ubNmxg1apRwhRAhVUlISEBGRgY+fvwoHBMIBBgyZAjDVOJTUVFBYmIi79+UW1paYufOncKttnx17NgxTJw4EXZ2dti/fz8SEhJgaGiInTt34q+//sLZs2dZRyQ8oqqqiri4OBgbG7OOQkiNUDdVQgiREerq6hXG+vXrB0VFRbi4uCAqKopBqqpt3rxZuHVz8+bNUtu6Xl5eHsOHD5e4JhTfEhwcjHHjxsHKygqdO3cG8GnbiLm5OQ4dOoSff/6ZcULZkZmZiZKSkgrjJSUlyMrKAgA0adIE7969+9HRCA+8fftW5G9EamoqRo4cifj4eJHtt+XPv3xZSd2xY0fExMTwvhjn4eEBV1dXrFmzhteND1avXg0vLy/Y29vjyJEjwvEuXbpg5cqVDJMRPurduzcV4wiv0co4QgiRcYmJibC2tsb79+9ZRyE8Y2hoiAkTJlR4E7Vs2TLs378fqampjJLJnsGDBws7X1pYWAD4tCpu2rRpaNSoEf766y+cPn0a//vf/3Dv3j3GaYmkWbVqFZSUlLBw4UIAEK588/HxQbt27fD3338jLS0NCxYswKZNm9C9e3eWccUWFBQENzc3uLi4oH379hUas/DlgPfyYya+/DCKb2djqaioICEhAc2aNYOamhri4uJgaGiI1NRUmJmZoaioiHVEwiPe3t5YvXo1Jk+eXGmReujQoYySESIeKsYRQoiM+LLbH8dxyMzMhIeHB4qLi3Hjxg1GycRnY2ODCRMmYPTo0ZWu9CM/loqKCuLj4yt8Kp2cnIy2bduioKCAUbJvq842YL68mM/KysLEiRNx5coV4RuSkpIS9OnTB/v370fDhg0RGhqK4uJi9O/fn3FaImlevXqFiRMnwtjYGDt27ECDBg1w5coVtG3bFjo6Orh9+zZ0dHRw5coVLFiwgDfdVL92VirfiljS0vjAyMgIu3fvRt++fUWKcQEBAfDw8EBCQgLriIRHKnt8l+PT45vILtqmSgghMqJdu3aVdvvr1KkTfH19GaWqHnNzcyxZsgRz5szBoEGDMHHiRAwaNAi1a9dmHU0m9erVC9evX69QjIuIiJDolTNfbgX+8nHBx8YmjRo1wqVLl/Dw4UM8evQIHMehZcuWaNGihfAeGxsbhgmJJNPW1saFCxewbt06AJ9+78uPB2jQoAFevHgBHR0dNGvWDElJSSyjVktaWhrrCP8KvhTbqjJjxgw4OzvD19cXAoEAL168QGRkJBYsWAB3d3fW8QjPlJWVsY5AyHehlXGEECIjvuz2JycnBy0tLSgpKTFKVDNlZWW4fPkyDh06hBMnTkBeXh6jR4+GnZ2d1Lxh4QsvLy+4u7tjzJgxwoPFb926haCgIKxYsQJNmjQR3iupK8wuX76MxYsXY+3atejcuTMEAgFu3ryJJUuWYO3atejXrx/riNXy8eNHpKWlwcjICLVq8e8z1zdv3iA4OBgpKSlYuHAh6tWrh+joaDRs2BA6Ojqs44mN7/Po3r075s+fjxEjRmD69OnIzs7GwoUL4eXlhejoaNy/f591RKkXHx+P1q1bQ05OrsLK9i/xZbstAPz+++/YvHmzcEuqoqIiFixYgFWrVjFORgghPxYV4wghRAaUb03bvXs3TExMWMf51xQVFeH06dNYs2YN7t27x5tVTNLiW1tEPifJ20Vat24NLy8vdOvWTWT8+vXrmD59OhITExklq56CggLMnTsX/v7+AIBHjx7B0NAQTk5OaNKkCdzc3BgnrFp8fDz69u0LdXV1pKenIykpCYaGhli6dCmePHmCgIAA1hHFIg3zuHDhAt69e4fRo0fj6dOnGDx4MO7fv4969eohMDAQvXv3Zh1RbPv374eXlxfS0tIQGRkJfX19bNmyBQYGBhg2bBjreF8lJyeHrKwsaGtrQ05OrtKV7YBkP79+TUFBARISElBWVgYzMzPUqVOHdSTCI4MGDcLhw4eFx5WsWbMGs2fPhoaGBgAgJycH3bt3p23PROKJ9yqaEEIIrykoKOD+/ftS1Yk0KysLXl5e+OOPPxAfHw8rKyvWkWROWVmZWF+S/EYxJSWl0vMHywspfPHbb78hLi4OYWFhIqtd+/bti6NHjzJMJr758+dj0qRJSE5OFpnDwIEDce3aNYbJqkca5jFgwACMHj0aAKCrq4v4+Hi8fv0ar169kuhC3IULF/D27Vvhz7t27cL8+fMxaNAgvHnzRvhcpKGhgS1btjBKKZ60tDRoaWkJv09NTUVaWlqFLz42ylFRUYGVlRU6dOhAhThSbRcuXMCHDx+EP//xxx/Izc0V/lxSUsKr7fREdlExjhBCZIS9vT327t3LOsZ3ycvLw759+9CvXz/o6upi165dGDJkCB49eoS///6bdTyCT9vz+MTa2hrz5s1DZmamcCwrKwuurq7o0KEDw2TVc/LkSWzfvh3dunUTKbqbmZkhJSWFYTLx3blzBzNmzKgwrqOjg6ysLAaJakZa5vGlevXqib0alpWsrCx07doVz549AwBs27YNe/bswe+//w55eXnhfVZWVhLfVVhfX1/4WNbX1//mFyGy5MsVorTRj/AV/w4TIYQQUiMfP36Ej48PLl26BCsrK6iqqopc37RpE6Nk4mvYsCE0NTUxZswYrF27FtbW1qwjybQ//vgDzZo1w9ixYwEAP//8M44dO4bGjRvj7NmzaNu2LeOEVfP19cWIESOgr68PPT09AEBGRgZMTExw8uRJtuGqITs7G9ra2hXG8/PzebMiVklJCXl5eRXGk5KShCuE+EAa5lFUVIRt27YhNDQUr169qnBQenR0NKNk3+bg4AA1NTXY2tri/v37SEtLg4WFRYX7FBUVkZ+fzyCh+KSx6zMhhJD/Q8U4QgiREffv34elpSWAT+dJfY4Pb9Y5jsPWrVsxYcIEqKiosI5DAOzevRsHDhwAAFy6dAmXL1/G+fPnERgYiIULF+LixYuME1bN2NgY8fHxwk6kHMfBzMwMffv25cXjopy1tTXOnDmDuXPnAvi/x/SePXvQuXNnltHENmzYMKxcuRKBgYEAPs0hIyMDbm5uGDVqFON04pOGeUyePBmXLl3C6NGj0aFDB149FkaOHCkswBkYGCA2NrbC6rFz587BzMyMRTyxfdn1+Wv4eGYcId9DIBBUeE7i03MUIeWogQMhhBBeKCsrg5KSEh48eIDmzZuzjkMAKCsr49GjR9DV1YWzszOKioqwe/duPHr0CB07dsQ///zDOqLMuHnzJmxtbWFnZwc/Pz/MmDEDDx48QGRkJMLDw9G+fXvWEauUl5eHQYMG4cGDB3j37h2aNGmCrKwsdO7cGWfPnq2wmldSScM81NXVcfbsWXTt2pV1lO+yb98+LF26FBs3bsSUKVPg4+ODlJQUrFu3Dj4+Pvjll19YRySEVJOcnBwGDhwIRUVFAMDp06fRu3dv4XPrhw8fcP78eSpSE4lHK+MIIURGvH37FqWlpahXr57IeG5uLmrVqoW6desySiYeOTk5NG/eHDk5OVSMkxCampp4+vQpdHV1cf78eaxevRrAp1WMfHkRvHLlym9ed3d3/0FJvk+XLl1w48YNbNiwAUZGRrh48SIsLS0RGRkJc3Nz1vHEUrduXURERODq1auIjo5GWVkZLC0t0bdvX9bRqkUa5qGjowM1NTXWMb6bo6MjSkpKsGjRIhQUFGD8+PHQ0dHB1q1bqRBHCE85ODiI/DxhwoQK99jb2/+oOITUGK2MI4QQGTFw4EAMGTIEs2bNEhn38vJCSEgIzp49yyiZ+M6cOQMPDw/s2rULrVu3Zh1H5s2ZMwd//fUXmjdvjpiYGKSnp6NOnTo4evQo/vjjD4k9V+pzX54nVVxcjLS0NNSqVQtGRka8mAMh/7Zz587B09MTXl5eUtMg4PXr1ygrK6v0bEVCCCHkR6NiHCGEyIh69erhxo0bMDU1FRl/+PAhunbtipycHEbJxKepqYmCggKUlJSgdu3aUFZWFrn+eWt78t8rLi7G1q1b8fTpU0yaNElY2NqyZQvq1KmDqVOnMk5YM3l5eZg0aRJGjBiBiRMnso4jttLSUpw4cQKJiYkQCAQwNTXFsGHDUKuW5G6E8PT0FPteJyen/zDJ95GWeZTLzs7GmDFjcO3aNaioqEBBQUHkOt+ea1+9eoWkpCQIBAK0aNGCN400CCGESC8qxhFCiIxQVVXFrVu3KmxZu3fvHjp27IiCggJGycTn7+//zetfbl0gpKbu37+Pn376Cenp6ayjiOX+/fsYNmwYsrKy0KJFCwCfGrVoaWkhJCREYreqGhgYiPycnZ2NgoICaGhoAADevHkDFRUVaGtrIzU1lUFC8UjLPMr17dsXGRkZmDJlCho2bFjhcHS+PNfm5eVh9uzZOHz4sLAjrLy8PMaOHYsdO3ZAXV2dcUJCCCGyiopxhBAiI3r16gVzc3Ns27ZNZHz27NmIj4/H9evXGSUjfJeQkICMjAx8/PhRZHzo0KGMEn2/iIgIDBkyhDdNKDp16gRtbW34+/tDU1MTAPDPP/9g0qRJePXqFSIjIxknrNqhQ4ewc+dO7N27V1hQTEpKwrRp0zBjxgzY2dkxTigeaZiHiooKIiMj0bZtW9ZRvsuYMWMQGxuLbdu2oXPnzhAIBLh58yacnZ3Rpk0bYcdbQggh5EejYhwhhMiIGzduoG/fvrC2tkafPn0AAFeuXMGdO3dw8eJFdO/enXFC8aSkpGDfvn1ISUnB1q1boa2tjfPnz0NXVxetWrViHU+mpKamYsSIEbh37x4EAgHKX1KUr6LhQxOHL7cXchyHzMxM7N+/Hz169MDhw4cZJaseZWVl3L17t8Jj4P79+7C2tkZhYSGjZOIzMjJCcHBwhXP8oqKiMHr0aKSlpTFKVj3SMA9LS0vs3LkTnTp1Yh3lu6iqquLChQvo1q2byPj169dha2uL/Px8RslqrrCwEMXFxSJjkt6AiRBCSEVyrAMQQgj5Mbp27YrIyEjo6uoiMDAQp0+fhrGxMeLj43lTiAsPD4e5uTn+/vtvHD9+HO/fvwcAxMfHY9myZYzTyR5nZ2cYGBjg5cuXUFFRwYMHD3Dt2jVYWVkhLCyMdTyxbN68WeTL09MTYWFhcHBwgLe3N+t4YmvRogVevnxZYfzVq1cwNjZmkKj6MjMzKxQZgE9F3crmJqmkYR4eHh5wdXVFWFgYcnJykJeXJ/LFF/Xr1690K6q6urpwBSkfFBQUYM6cOdDW1kadOnWgqakp8kUIIYR/aGUcIYQQ3ujcuTN+/vlnzJ8/H2pqaoiLi4OhoSHu3LmD4cOH4/nz56wjypQGDRrg6tWraNOmDdTV1XH79m20aNECV69ehaurK2JiYlhHlBlnz57FokWLsHz5cuFqplu3bmHlypXw8PAQWRkkqatohgwZgoyMDOzduxft27eHQCDA3bt3MW3aNOjq6iIkJIR1RLFIwzzk5D59Xv/lWXEcx0EgEPBi1SsAeHt7IygoCAEBAWjcuDEAICsrCw4ODhg5ciRmzJjBOKF4Zs+ejdDQUKxcuRL29vbYsWMHnj9/jt27d8PDw4MXW58JIYSIomIcIYQQ3qhTpw7u3bsHAwMDkWJceno6WrZsiaKiItYRZYqmpiaioqJgaGgIIyMj+Pj4wMbGBikpKTA3N+dFU5DJkydj69atUFNTExnPz8/H3Llz4evryyhZ9ZQXT4D/K6B8uW1Y0gsp2dnZcHBwwPnz54XdO0tKSjBgwAD4+flBW1ubcULxSMM8wsPDv3m9Z8+ePyjJ97GwsMDjx4/x4cMH6OnpAQAyMjKgqKiI5s2bi9wbHR3NIqJY9PT0EBAQgF69eqFu3bqIjo6GsbEx9u/fj8OHD+Ps2bOsIxJCCKkmye11TwghhHxBQ0MDmZmZFToXxsTEQEdHh1Eq2dW6dWvEx8fD0NAQHTt2xJ9//onatWvD29sbhoaGrOOJxd/fHx4eHhWKcYWFhQgICOBNMS40NJR1hO+mpaWFs2fPIjk5GYmJieA4DqampjAxMWEdrVqkYR58KbZVZfjw4awj/Ctyc3OFf/fq1q2L3NxcAEC3bt0wc+ZMltEIIYTUEBXjCCGE8Mb48eOxePFiBAUFQSAQoKysDDdu3MCCBQtgb2/POp7MWbJkifAA9NWrV+Onn35C9+7dUb9+fRw9epRxum/Ly8sDx3HgOA7v3r2DkpKS8FppaSnOnj3LixVM5aSleAIAzZs3r7BqiY+kZR58Ji1niZavANfX14eZmRkCAwPRoUMHnD59GhoaGqzjEUIIqQHapkoIIYQ3iouLMWnSJBw5cgQcx6FWrVooLS3F+PHj4efnB3l5edYRZV5ubi40NTUrnDUlaeTk5L6ZUSAQYMWKFfj9999/YKqaO3/+POrUqSM8G27Hjh3Ys2cPzMzMsGPHDjrknRAe27x5M+Tl5eHk5ITQ0FAMHjwYpaWlKCkpwaZNm+Ds7Mw6IiGEkGqiYhwhhBDeSU1NRXR0NMrKymBhYUGrT0i1hYeHg+M49O7dG8eOHUO9evWE12rXrg19fX00adKEYcLqMTc3xx9//IFBgwbh3r17sLKygqurK65evQpTU1Ps27ePdURCyL8kIyMDd+/ehZGREdq2bcs6DiGEkBqgYhwhhEixkSNHin3v8ePH/8Mk/43S0lLcu3cP+vr6tPKH1MiTJ0+gp6cn8Sv5qlKnTh3cv38fzZo1w/Lly3H//n0EBwcjOjoagwYNQlZWFuuIhBBCCCHk/6Mz4wghRIqpq6uzjvCvmjdvHszNzTFlyhSUlpaiZ8+euHnzJlRUVPDXX3+hV69erCMSHoiPj0fr1q0hJyeHt2/f4t69e1+9t02bNj8wWc3Vrl1b2L328uXLwjMU69Wrh7y8PJbRCCE14OnpKfa9Tk5O/2ESQggh/wVaGUcIIYQ3mjZtipMnT8LKygonT57ErFmzEBYWhoCAAISGhuLGjRusIxIekJOTQ1ZWFrS1tYVnx1X2ckggEKC0tJRBwuobOnQoPn78iK5du2LVqlVIS0uDjo4OLl68iDlz5uDRo0esI4rl+vXr2L17N1JSUhAcHAwdHR3s378fBgYGwvPw+KKgoAAZGRn4+PGjyLikFngtLCzEXiEaHR39H6f5d338+BFpaWkwMjJCrVr8WIvwZdfw7OxsFBQUCBs2vHnzBioqKtDW1kZqaiqDhIQQQr6HHOsAhBBCfpySkhJcvnwZu3fvxrt37wAAL168wPv37xknE8/r16/RqFEjAMDZs2cxZswYmJiYYMqUKd9c3UTI59LS0qClpSX8PjU1FWlpaRW++PQGd/v27ahVqxaCg4Oxa9cu6OjoAADOnTsHW1tbxunEc+zYMQwYMADKysqIiYnBhw8fAADv3r3D2rVrGacTX3Z2Nn766SeoqamhVatWsLCwEPmSVMOHD8ewYcMwbNgwDBgwACkpKVBUVESvXr3Qq1cvKCkpISUlBQMGDGAdVWwFBQWYMmUKVFRU0KpVK2RkZAD4tJLMw8ODcbpv+/y5aM2aNWjXrh0SExORm5uL3NxcJCYmwtLSEqtWrWIdlRBCSA3QyjhCCJERT548ga2tLTIyMvDhwwc8evQIhoaGmDdvHoqKiuDl5cU6YpX09fWxZ88e9OnTBwYGBti5cyd++uknPHjwAN26dcM///zDOqLM2b9/P7y8vJCWlobIyEjo6+tjy5YtMDAwwLBhw1jHIzxiYWEBFxcX2NvbQ01NDXFxcTA0NERsbCxsbW15c+6dnZ0d0tPTsWXLFtjY2ODEiRN4+fIlVq9ejY0bN2Lw4MGsI1Zp6tSpaNy4cYVCz7Jly/D06VP4+voySlY9zs7OuHHjBrZs2QJbW1vEx8fD0NAQISEhWLZsGWJiYlhHFIuRkRGCg4MrFHOjoqIwevRopKWlMUpGCCGkpvixTpsQQsh3c3Z2hpWVFeLi4lC/fn3h+IgRIzB16lSGycTn6OiIMWPGoHHjxhAIBOjXrx8A4O+//0bLli0Zp5M9u3btgru7O+bNm4c1a9YIt3RqaGhgy5YtvCjGhYSEVDouEAigpKQEY2PjCtvFJFVKSgr27duHlJQUbN26Fdra2jh//jx0dXXRqlUr1vGqlJSUhB49elQYr1u3Lt68efPjA9XQ1atXcerUKVhbW0NOTg76+vro168f6tati3Xr1vGiGBcUFIS7d+9WGJ8wYQKsrKx4U4w7efIkjh49ik6dOolswTUzM0NKSgrDZNWTmZmJ4uLiCuOlpaV4+fIlg0SEEEK+FxXjCCFERkRERODGjRuoXbu2yLi+vj6eP3/OKFX1LF++HK1bt8bTp0/x888/Q1FREQAgLy8PNzc3xulkz7Zt27Bnzx4MHz5cZMuXlZUVFixYwDCZ+IYPH17pmXHlYwKBAN26dcPJkyclumNveHg4Bg4ciK5du+LatWtYs2YNtLW1ER8fDx8fHwQHB7OOWKXGjRvj8ePHaNasmch4REQEDA0N2YSqgfz8fGhrawP41EAjOzsbJiYmMDc3581Za8rKyoiIiEDz5s1FxiMiIqCkpMQoVfVlZ2cL/y8+l5+fz6sOyn369MG0adOwd+9etG/fHgKBAHfv3sWMGTPQt29f1vEIIYTUAJ0ZRwghMqKsrKzSw+ifPXsGNTU1BolqZvTo0XBxcUHTpk2FYw4ODrxYhSVt0tLSKj0DS1FREfn5+QwSVd+lS5dgbW2NS5cu4e3bt3j79i0uXbqEDh064K+//sK1a9eQk5Mj8cVFNzc3rF69GpcuXRIpuNvY2CAyMpJhMvHNmDEDzs7O+PvvvyEQCPDixQscPHgQCxYswKxZs1jHE1uLFi2QlJQEAGjXrh12796N58+fw8vLC40bN2acTjzz5s3DzJkzMWfOHBw4cAAHDhzAnDlzMHv2bLi4uLCOJzZra2ucOXNG+HN5AW7Pnj3o3Lkzq1jV5uvrCx0dHXTo0AFKSkpQVFREx44d0bhxY/j4+LCORwghpAZoZRwhhMiIfv36YcuWLfD29gbw6U3J+/fvsWzZMgwaNIhxOsJHBgYGiI2Nhb6+vsj4uXPnYGZmxihV9Tg7O8Pb2xtdunQRjvXp0wdKSkqYPn06Hjx4gC1btmDy5MkMU1bt3r17OHToUIVxLS0t5OTkMEhUfYsWLcLbt29hY2ODoqIi9OjRA4qKiliwYAHmzJnDOp7Y5s2bh8zMTACfzlgbMGAADh48iNq1a8PPz49tODG5ubnB0NAQW7duFf5emZqaws/PD2PGjGGcTnzr1q2Dra0tEhISUFJSgq1bt+LBgweIjIxEeHg463hi09LSwtmzZ/Ho0SM8fPgQHMfB1NQUJiYmrKMRQgipIWrgQAghMuLFixewsbGBvLw8kpOTYWVlheTkZDRo0ADXrl2rdCsPId+yb98+LF26FBs3bsSUKVPg4+ODlJQUrFu3Dj4+Pvjll19YR6ySsrIy7ty5g9atW4uM37t3Dx06dEBhYSGePHkCU1NTFBQUMEpZtaZNmyIwMBBdunQRaX5w4sQJLFiwgFfnYxUUFCAhIQFlZWUwMzNDnTp1WEf6puLiYigoKHz1ekFBAR4+fAg9PT00aNDgByYjwKfH8oYNGxAVFYWysjJYWlpi8eLFMDc3Zx2NEEKIDKNiHCGEyJDCwkIcOXJE5E2JnZ0dlJWVWUcjPLVnzx6sXr0aT58+BQDo6Ohg+fLlmDJlCuNk4unWrRvU1NQQEBAALS0tAJ/OmbK3t0d+fj6uXbuGy5cvY9asWXj06BHjtF+3aNEiREZGIigoCCYmJoiOjsbLly9hb28Pe3t7LFu2jHXEKr19+xalpaWoV6+eyHhubi5q1aqFunXrMkr2bR4eHjA0NOTVijEi+ebPn49Vq1ZBVVUV8+fP/+a9mzZt+kGpCCGE/FuoGEcIIYSQ7/b69WuUlZXxboVlUlIShg0bhrS0NOjq6kIgECAjIwOGhoY4deoUTExMcPLkSbx79w4TJ05kHferiouLMWnSJBw5cgQcx6FWrVooLS3F+PHj4efnB3l5edYRqzRw4EAMGTKkwvlwXl5eCAkJwdmzZxkl+7ZHjx5hxIgRmD59OpydnaWicFJaWorNmzcjMDAQGRkZ+Pjxo8j13NxcRsmqlpeXJ/a9klrgBT6d93jixAloaGjAxsbmq/cJBAJcvXr1ByYjhBDyb6BiHCGEEF5JSUnBvn37kJKSgq1bt0JbWxvnz5+Hrq4uWrVqxToe4SGO43DhwgU8evQIHMehZcuW6NevH+Tk+NfnKiUlBTExMSgrK4OFhUWFbpiSrF69erhx4wZMTU1Fxh8+fIiuXbtK9Nl37969w6RJk3Ds2DGpKJy4u7vDx8cH8+fPx9KlS/H7778jPT0dJ0+ehLu7O5ycnFhH/Co5OTmxO6VW1tSIEEII+RGoGEcIIYQ3wsPDMXDgQHTt2hXXrl1DYmIiDA0N8eeff+L27dsIDg5mHVHqWVhYiP1GNzo6+j9OQ6SJqqoqbt26VeEsr3v37qFjx44SfWaftDEyMoKnpycGDx4MNTU1xMbGCsdu3bpVabMQSfF5Y4b09HS4ublh0qRJwu6pkZGR8Pf3x7p16+Dg4MAqJiGEEBlHxThCCCG80blzZ/z888+YP3++yCH1d+7cwfDhw/H8+XPWEaXeihUrhN8XFRVh586dMDMzE77RvXXrFh48eIBZs2Zh3bp1rGJWy5UrV3DlyhW8evUKZWVlItd8fX0ZpapaVdshP8eHrZG9evWCubk5tm3bJjI+e/ZsxMfH4/r164ySyR5VVVUkJiZCT08PjRs3xpkzZ2BpaYnU1FRYWFjg7du3rCOKpU+fPpg6dSrGjRsnMn7o0CF4e3sjLCyMTTAxjBw5Uux7jx8//h8mIYQQ8l+oxToAIYQQIq579+5VuiJDS0tLorewSZPPGwFMnToVTk5OWLVqVYV7yhs6SLoVK1Zg5cqVsLKyQuPGjcVe9ScJYmJiRH6OiopCaWkpWrRoAeDTWWby8vJo3749i3jVtmbNGvTt2xdxcXHo06cPgE+F0jt37uDixYuM04mvqKgI27ZtQ2hoaKUFXj6sGG3atCkyMzOhp6cHY2NjXLx4EZaWlrhz5w4UFRVZxxNbZGQkvLy8KoxbWVlh6tSpDBKJT11dXfg9x3E4ceIE1NXVYWVlBeDT4/3NmzfVKtoRQgiRHFSMI4QQwhsaGhrIzMyEgYGByHhMTAx0dHQYpZJdQUFBuHv3boXxCRMmwMrKSqJXlZXz8vKCn5+fRDdn+JrQ0FDh95s2bYKamhr8/f2hqakJAPjnn3/g6OiI7t27s4pYLV27dkVkZCTWr1+PwMBAKCsro02bNti7dy+vzr6bPHkyLl26hNGjR6NDhw68KvCWGzFiBK5cuYKOHTvC2dkZ48aNw969e5GRkQEXFxfW8cSmq6sLLy8vbNy4UWR89+7d0NXVZZRKPPv27RN+v3jxYowZMwZeXl7CZiylpaWYNWuWRDehIIQQ8nW0TZUQQmQEn7vjlVu0aBEiIyMRFBQEExMTREdH4+XLl7C3t4e9vb3Iqi3y32vUqBHWrVsHR0dHkfF9+/bBzc0NL1++ZJRMfPXr18ft27dhZGTEOsp30dHRwcWLFys0Mbl//z769++PFy9eMEome9TV1XH27Fl07dqVdZR/za1bt3Dz5k0YGxtj6NChrOOI7ezZsxg1ahSMjIzQqVMnAJ/mkpKSgmPHjmHQoEGME4pHS0sLERERwlWv5ZKSktClSxdaGU4IITxEK+MIIURGrFix4pvd8fhgzZo1mDRpEnR0dMBxHMzMzFBaWorx48djyZIlrOPJnHnz5mHmzJmIiooSeaPr6+vLm9+pqVOn4tChQ1i6dCnrKN8lLy8PL1++rFCMe/XqFd69e8coVfWVlZXh8ePHlW7v7NGjB6NU1aOjowM1NTXWMf5VnTp1Ej7G+WTQoEFITk7Grl27kJiYCI7jMGzYMPz6668SvzLucyUlJUhMTKxQjEtMTKzwOCGEEMIPtDKOEEJkBJ+7430pJSUFMTExKCsrg4WFBa+2sEmbwMBAbN26FYmJiQAAU1NTODs7Y8yYMYyTicfZ2RkBAQFo06YN2rRpAwUFBZHrfGh8AAD29vYIDw/Hxo0bRQqjCxcuRI8ePeDv7884YdVu3bqF8ePH48mTJ/jy5alAIEBpaSmjZNVz7tw5eHp6wsvLC/r6+qzjiC0kJETse/m0Ok4azJ8/H35+fvjf//4n8vj28PCAvb09b56nCCGE/B8qxhFCiIyQlu54hPybbGxsvnpNIBDg6tWrPzBNzRUUFGDBggXw9fVFcXExAKBWrVqYMmUK1q9fD1VVVcYJq9auXTuYmJhgxYoVlTbT+PxAe0mWnZ2NMWPG4Nq1a1BRUalQ4JXUIwHk5OREfhYIBJUWRQHwpjAqLcrKyrBhwwZs3boVmZmZAIDGjRvD2dkZrq6uwnPkCCGE8AdtUyWEEBnB1+548+fPF/teWh1AquvzJgh8pqKigp07d2L9+vVISUkBx3EwNjbmRRGuXHJyMoKDg2FsbMw6yncZN24cnj9/jrVr16Jhw4a8aeDw+XbHy5cvY/HixVi7di06d+4MgUCAmzdvYsmSJVi7di3DlLKnpKQEBw8ehL29PRYtWoS8vDwAoMYNhBDCc1SMI4QQGcHX7ngxMTEiP0dFRaG0tFR4ds6jR48gLy+P9u3bs4hHpMizZ88gEAh43ZlXVVUVbdq0YR2jRjp27IjHjx/zvhh38+ZNREZGom3btqyj1Ni8efPg5eWFbt26CccGDBgAFRUVTJ8+Xbgtnfz3atWqhZkzZwr/zakIRwgh0oGKcYQQIiM8PDyE348ePRq6urq4ceOGxHfH+3zl0qZNm6CmpgZ/f39oamoCAP755x84Ojqie/furCISHisrK8Pq1auxceNGvH//HgCgpqYGV1dX/P777xW27pH/zty5c+Hq6oqsrCyYm5tX2N7JlyJjy5YtUVhYyDrGd0lJSal0W7C6ujrS09N/fCAZ17FjR8TExPDqDEJCCCHfRmfGEUII4Q0dHR1cvHixQsfI+/fvo3///njx4gWjZISvfvvtN+zduxcrVqxA165dwXEcbty4geXLl2PatGlYs2YN64gyo7LCZ/m5ZXxq4HDx4kWsWLECa9asqbSoyIeVTT169ICCggIOHDiAxo0bAwCysrIwceJEfPz4EeHh4YwTypagoCC4ubnBxcUF7du3r7D9nC+FakIIIf+HinGEECIj5OXl0aNHDxw7dgz16tUTjr98+RJNmjThxRtdNTU1nDp1Cr179xYZv3r1KoYNG4Z3794xSkb4qkmTJvDy8qqwOvTUqVOYNWsWnj9/ziiZ7Hny5Mk3r/NlVVB5UfHLs+L4VFR8/PgxRowYgaSkJOjp6QEAMjIyYGJigpMnT0r0VmILCwuxz+mLjo7+j9P8O6SlUE0IIeT/0DZVQgiRERzH4cOHD7CyskJISAhat24tco0PRowYAUdHR2zcuBGdOnUCANy6dQsLFy7EyJEjGaeTPaWlpfDz88OVK1fw6tUrkQPgAfCiE2lubi5atmxZYbxly5YS2/VSWvGl2FYVaWgKYmxsjPj4eFy6dAkPHz4Ex3EwMzND3759Jb4hxfDhw4XfFxUVYefOnTAzM0Pnzp0BfPqb8eDBA8yaNYtRwupLS0tjHYEQQsi/jFbGEUKIjJCXl8ezZ8/g4eGBffv2Yf/+/Rg2bBivVsYVFBRgwYIF8PX1RXFxMYBPh1tPmTIF69ev51XnSGkwZ84c+Pn5YfDgwWjcuHGFN+mbN29mlEx8HTt2RMeOHeHp6SkyPnfuXNy5cwe3bt1ilKxqISEhYt8ryedCfikhIQEZGRn4+PGjyDif5kAkw9SpU9G4cWOsWrVKZHzZsmV4+vQpfH19GSUjhBAi66gYRwghMkJOTg5ZWVnQ1taGt7c3nJycsGTJEkydOhU6Ojq8KMaVy8/PR0pKCjiOg7GxMRXhGGnQoAECAgIwaNAg1lFqLDw8HIMHD4aenh46d+4MgUCAmzdv4unTpzh79qxENwYRt7kEX7axpaamYsSIEbh3755wCx7wf9s9+TCHcm/evMHevXuRmJgIgUAAMzMzTJ48udKmCJLC09MT06dPh5KSUoXi9JecnJx+UKrvo66ujrt376J58+Yi48nJybCyssLbt28ZJau+/fv3w8vLC2lpaYiMjIS+vj62bNkCAwMDDBs2jHU8Qggh1UTFOEIIkRGfF+MAICwsDKNHj4aFhQWuXr3Kqze6RDI0adIEYWFhMDExYR3lu7x48QI7duwQ2Y43a9YsNGnShHU0mTJkyBDIy8tjz549MDQ0xO3bt5GTkwNXV1ds2LBBogujn7t79y4GDBgAZWVldOjQARzH4e7duygsLMTFixdhaWnJOmKlDAwMcPfuXdSvXx8GBgZfvU8gECA1NfUHJqu5Ro0aYd26dXB0dBQZ37dvH9zc3PDy5UtGyb7twoUL6NSpk7B4u2vXLri7u2PevHlYs2YN7t+/D0NDQ/j5+cHf318qtkYTQoisoWIcIYTIiM/faJV7/PgxhgwZgkePHlExjlTbxo0bkZqaiu3bt0v8OVLV9fTpUyxbtoy2sf1ADRo0wNWrV9GmTRuoq6vj9u3baNGiBa5evQpXV1fExMSwjiiW7t27w9jYGHv27EGtWp+OZy4pKcHUqVORmpqKa9euMU4oOzw8PLB8+XJMnTpV5JxRX19fuLu7w83NjXHCyvn7+2P9+vU4f/48mjZtCjMzM6xduxbDhw+Hmpoa4uLiYGhoiPv376NXr154/fo168iEEEKqiYpxhBAi44qKivDy5UupOTyd/DgjRoxAaGgo6tWrh1atWkFBQUHk+vHjxxkl+35xcXGwtLTkVZE6Pz8f4eHhlZ63xodthZqamoiKioKhoSGMjIzg4+MDGxsbpKSkwNzcHAUFBawjikVZWRkxMTEVGoMkJCTAysqKN/OQFoGBgdi6dSsSExMBAKampnB2dsaYMWMYJ/u248ePw93dHffv34eysjIePnwIfX19kWJccnIy2rRpg8LCQtZxCSGEVBN1UyWEEBmnpKREhThSIxoaGhgxYgTrGARATEwMBg0ahIKCAuTn56NevXp4/fo1VFRUoK2tzYtiXOvWrREfHw9DQ0N07NgRf/75J2rXrg1vb28YGhqyjie2unXrIiMjo0Ix7unTp1BTU2OUqnpGjx4NKyurCivH1q9fj9u3byMoKIhRsuobM2aMxBfeKjNy5EhYWFgA+LSyPTY2tsLf6nPnzsHMzIxFPEIIId+JinGEECLF6tWrh0ePHqFBgwbQ1NT85lbC3NzcH5iMSIN9+/axjkD+PxcXFwwZMgS7du2ChoYGbt26BQUFBUyYMAHOzs6s44llyZIlyM/PBwCsXr0aP/30E7p374769evj6NGjjNOJb+zYsZgyZQo2bNiALl26QCAQICIiAgsXLsS4ceNYxxNLeHg4li1bVmHc1tYWGzZsYJBINpWf3bdw4ULMnj0bRUVF4DgOt2/fxuHDh7Fu3Tr4+PgwTkkIIaQmqBhHCCFSbPPmzcKVGFu2bGEb5l+SkpKCLVu2CLsUlm85MjIyYh1NZmVnZyMpKQkCgQAmJibQ0tJiHUnmxMbGYvfu3ZCXl4e8vDw+fPgAQ0ND/Pnnn3BwcMDIkSNZR6zSgAEDhN8bGhoiISEBubm5VX6QIGk2bNgAgUAAe3t7lJSUAAAUFBQwc+ZMeHh4ME4nnvfv36N27doVxhUUFJCXl8cgUc2UlpZi8+bNCAwMrHT7Nl8+hHJ0dERJSQkWLVqEgoICjB8/Hjo6Oti6dSt++eUX1vEIIYTUAJ0ZRwghhDcuXLiAoUOHol27dujatSs4jsPNmzcRFxeH06dPo1+/fqwjypT8/HzMnTsXAQEBKCsrAwDIy8vD3t4e27Ztg4qKCuOEX1dVcerNmzcIDw/nzZlxWlpauHHjBkxMTNCiRQt4enpiwIABePjwISwtLXlxTtnbt29RWlqKevXqiYzn5uaiVq1aqFu3LqNkNVNQUICUlBRwHAdjY2OJfjx8ydraGkOGDIG7u7vI+PLly3H69GlERUUxSlY97u7u8PHxwfz587F06VL8/vvvSE9Px8mTJ+Hu7s6L7dtfev36NcrKyoSd0QkhhPATFeMIIUSKVWcFAx/e6FpYWGDAgAEVVpe4ubnh4sWLiI6OZpRMNmzZsgXm5ubo06cPAGDGjBm4fPkytm/fjq5duwIAIiIi4OTkhH79+mHXrl0s436To6OjWPfxZStu//79MWnSJIwfPx6//vorYmJi4OTkhP379+Off/7B33//zTpilQYOHIghQ4Zg1qxZIuNeXl4ICQnB2bNnGSWTPSEhIRg1ahTGjx+P3r17AwCuXLmCw4cPIygoCMOHD2cbUExGRkbw9PTE4MGDoaamhtjYWOHYrVu3cOjQIdYRq+XVq1fCVcgtWrSgVciEEMJjVIwjhBApJicnV+X2Lo7jIBAIeLECSElJCffu3UPz5s1Fxh89eoQ2bdqgqKiIUTLZEBUVhTFjxmD58uWYOHEiGjRogODgYPTq1UvkvtDQUIwZMwbZ2dlsgsqgu3fv4t27d7CxsUF2djYcHBwQEREBY2Nj7Nu3D23btmUdsUr16tXDjRs3YGpqKjL+8OFDdO3aFTk5OYySVU9+fj48PDxw5coVvHr1SrhqtFxqaiqjZNVz5swZrF27FrGxsVBWVkabNm2wbNky9OzZk3U0samqqiIxMRF6enpo3Lgxzpw5A0tLS6SmpsLCwgJv375lHVEseXl5mD17Ng4fPiyyCnns2LHYsWMH1NXVGSckhBBSXXRmHCGESLHQ0FDWEf5VWlpaiI2NrVCMi42NpS07P0D79u3x999/w8HBARMnTkRBQQEaNmxY4T5tbW1ebIuUJlZWVsLvtbS0eLmK7MOHD8Iz1j5XXFyMwsJCBolqZurUqQgPD8fEiRPRuHFjXp1397nBgwdj8ODBrGN8l6ZNmyIzMxN6enowNjbGxYsXYWlpiTt37kBRUZF1PLFNnToVsbGxOHPmDDp37gyBQICbN2/C2dkZ06ZNQ2BgIOuIhBBCqolWxhFCCOGNlStXYvPmzXBzcxPpUvjHH3/A1dUVS5YsYR1RpvTp0wf169dHQEAAlJSUAACFhYVwcHBAbm4uLl++zDgh4ZNevXrB3Nwc27ZtExmfPXs24uPjcf36dUbJqkdDQwNnzpwRbt3ms6ioKGGzHDMzM1hYWLCOVC1ubm6oW7cu/ve//yE4OBjjxo1Ds2bNkJGRARcXF9401FBVVcWFCxfQrVs3kfHr16/D1tZW2IWYEEIIf1AxjhBCZExBQUGlXeXatGnDKJH4OI7Dli1bsHHjRrx48QIA0KRJEyxcuBBOTk68XYHCV/fv34etrS2KiorQtm1bCAQCxMbGQklJCRcuXECrVq1YRyQ8cuPGDfTt2xfW1tbCcwmvXLmCO3fu4OLFi+jevTvjhOIxMDDA2bNnK2y35ZNXr17hl19+QVhYGDQ0NMBxHN6+fQsbGxscOXKEt2eV3bp1Czdv3oSxsTGGDh3KOo7Y9PT0cObMGZibm4uMx8fHY9CgQXj27BmjZIQQQmqKinGEECIjsrOz4ejoiHPnzlV6nQ9nxn3u3bt3AAA1NTXGSWRbYWEhDhw4gIcPH4LjOJiZmcHOzg7KysqsoxEeio2Nxfr160XOKfvtt98qbE2XZAcOHMCpU6fg7+/Pqw6qnxs7dixSUlKwf/9+YVExISEBDg4OMDY2xuHDhxknlC3e3t4ICgpCQEAAGjduDADIysqCg4MDRo4ciRkzZjBOSAghpLqoGEcIITLCzs4O6enp2LJlC2xsbHDixAm8fPkSq1evxsaNG3l/NhAhhEgCCwsLpKSkgOM4NGvWDAoKCiLX+dD1WV1dHZcvX4a1tbXI+O3bt9G/f3+8efOGTTAxhISEiH0vX1bHWVhY4PHjx/jw4QP09PQAABkZGVBUVKxQqObD7xchhBBq4EAIITLj6tWrOHXqFKytrSEnJwd9fX3069cPdevWxbp163hRjHv58iUWLFgg7FL45edJfFvdx0chISEYOHAgFBQUqnzTy5c3uoSdvLw8se+tW7fuf5jk3zN8+HDWEb5bWVlZhSIiACgoKFToDitpvvz3FwgEFf5WlB9pwJe/GdLwO0UIIUQUrYwjhBAZUbduXcTHx6NZs2Zo1qwZDh48iK5duyItLQ2tWrXiRffLgQMHIiMjA3PmzKm0S+GwYcMYJZMdcnJyyMrKgra2NuTk5L56n0Ag4M0bXWkRHh6ODRs2CA/cNzU1xcKFCyX6rDU5Obkqz3rkOI5+n36wYcOG4c2bNzh8+DCaNGkCAHj+/Dns7OygqamJEydOME4onsuXL2Px4sVYu3atSBfSJUuWYO3atejXrx/riIQQQmQUrYwjhBAZ0aJFCyQlJaFZs2Zo164ddu/ejWbNmsHLy0t4Bo2ki4iIwPXr19GuXTvWUWTW56tiJH2FjCw5cOAAHB0dMXLkSDg5OYHjONy8eRN9+vSBn58fxo8fzzpipUJDQ1lH+M/wuRPp9u3bMWzYMDRr1gy6uroQCATIyMiAubk5Dhw4wDqe2ObNmwcvLy+RLqQDBgyAiooKpk+fjsTERIbpCCGEyDJaGUcIITLi4MGDKC4uxqRJkxATE4MBAwYgJycHtWvXhp+fH8aOHcs6YpXMzMxw8OBBXr2pJeRHMDU1xfTp0+Hi4iIyvmnTJuzZs4f3RYfY2FjeFOGlqRPppUuXRJqz9O3bl3WkalFWVsbt27cr7ULasWNHFBYWMkpGCCFE1lExjhBCZFRBQQEePnwIPT09NGjQgHUcsVy8eBEbN24UruojbDk5OcHY2BhOTk4i49u3b8fjx4+xZcsWNsFkkKKiIh48eABjY2OR8cePH6N169YoKipilKzm3r59i4MHD8LHxwdxcXG82aZKnUglR48ePaCgoIADBw6IdCGdOHEiPn78iPDwcMYJCSGEyCoqxhFCiIz5+PEj0tLSYGRkhFq1JP+0Ak1NTZEzpfLz81FSUgIVFZUKB4zn5ub+6HgyTUdHByEhIWjfvr3IeHR0NIYOHYpnz54xSiZ7jI2NsXDhQsyYMUNkfPfu3diwYQOSk5MZJau+q1evwtfXF8ePH4e+vj5GjRqFUaNG8WZFLF87kXp6eop975cFeEn1+PFjjBgxAklJSSJdSE1MTHDy5MkKxWtCCCHkR5H8d2GEEEL+FQUFBZg7dy78/f0BAI8ePYKhoSGcnJzQpEkTuLm5MU5YOVpdJblycnKgrq5eYbxu3bp4/fo1g0Syy9XVFU5OToiNjUWXLl0gEAgQEREBPz8/bN26lXW8Kj179gx+fn7w9fVFfn4+xowZg+LiYhw7dgxmZmas41ULXzuRbt68Waz7BAIBb4pxxsbGiI+Pr3S7bVWNQyQR3z5MI4QQ8nW0Mo4QQmSEs7Mzbty4gS1btsDW1hbx8fEwNDRESEgIli1bhpiYGNYRCc+0bt0av/76K+bMmSMyvm3bNuzatQsJCQmMksmmEydOYOPGjcLz4cq7qUp6l+FBgwYhIiICP/30E+zs7GBrawt5eXkoKCggLi6Od8U4aelESiQHXz9MI4QQ8nX0kQohhMiIkydP4ujRo+jUqZPIigAzMzOkpKQwTCa+s2fPQl5eHgMGDBAZv3jxIkpLSzFw4EBGyWTT/PnzMWfOHGRnZ6N3794AgCtXrmDjxo20opGBESNGYMSIEaxjVNvFixfh5OSEmTNnonnz5qzjfDdp6UQK8HMllqenJ6ZPnw4lJaUqt97yZYXfb7/9hri4OISFhcHW1lY43rdvXyxbtoyKcYQQwkP8+KtKCCHku2VnZ0NbW7vCeH5+Pm+267i5ucHDw6PCeFlZGdzc3KgY94NNnjwZHz58wJo1a7Bq1SoAQLNmzbBr1y7Y29szTie73r9/X2E7ZN26dRmlqdr169fh6+sLKysrtGzZEhMnTuRFd+ev0dXVRXR0NK87kfJ5JdbmzZthZ2cHJSWlb2695dN2W2n4MI0QQogoOdYBCCGE/BjW1tY4c+aM8OfyF/R79uxB586dWcWqluTk5Eq3rLVs2RKPHz9mkIjMnDkTz549w8uXL5GXl4fU1FQqxDGQlpaGwYMHQ1VVFerq6tDU1ISmpiY0NDSgqanJOt43de7cGXv27EFmZiZmzJiBI0eOQEdHB2VlZbh06RLevXvHOmK1BAQE4MOHD+jXrx/mzp0LJycn9O3bFx8/fkRAQADreGL5fCWWkpKScLxv3744evQow2RVS0tLQ/369YXff+0rNTWVcVLxScOHaYQQQkTRmXGEECIjbt68CVtbW9jZ2cHPzw8zZszAgwcPEBkZifDw8AodMSVRo0aNcOjQIeGWyHKXL1/G+PHj8erVK0bJCGGrS5cuAD6dDdmwYcMKb9B79uzJIlaNJSUlYe/evdi/fz/evHmDfv36ISQkhHUsscjLyyMzM7NC8SQnJwfa2tooLS1llEx8+vr6wpVYampqiIuLg6GhIR4/fgxLS0vk5eWxjihTevbsidGjR2Pu3LlQU1NDfHw8DAwMMGfOHDx+/Bjnz59nHZEQQkg10TZVQgiREV26dMHNmzexfv16GBkZ4eLFi7C0tERkZCTMzc1ZxxPL0KFDMW/ePJw4cQJGRkYAgMePH8PV1RVDhw5lnE42BQcHIzAwEBkZGfj48aPItejoaEapZE98fDyioqLQokUL1lH+FS1atMCff/6JdevW4fTp0/D19WUdSWwcx1W6WunZs2eVdh+WRNKyEmv06NGwsrKqsK12/fr1uH37NoKCghglq55169bB1tYWCQkJKCkpwdatW0U+TCOEEMI/tE2VEEJkQHFxMRwdHaGiogJ/f3/cv38fCQkJOHDgAG8KccCnN1Cqqqpo2bIlDAwMYGBgAFNTU9SvXx8bNmxgHU/meHp6wtHREdra2oiJiUGHDh1Qv359pKam0vl9P5i1tTWePn3KOsa/Tl5eHsOHD+fFqjgLCwtYWlpCIBCgT58+sLS0FH61bdsW3bt35825cdJwrAEAhIeHY/DgwRXGbW1tce3aNQaJaqZLly64ceMGCgoKhB+mNWzYEJGRkbxY1U4IIaQiWhlHCCEyQEFBASdOnMDSpUtZR/ku6urquHnzJi5duoS4uDgoKyujTZs26NGjB+toMmnnzp3w9vbGuHHj4O/vj0WLFsHQ0BDu7u7Izc1lHU+m+Pj44Ndff8Xz58/RunVrKCgoiFxv06YNo2SyY/jw4QCA2NhYDBgwAHXq1BFeq127Npo1a4ZRo0YxSlc90rIS6/3796hdu3aFcQUFBd5ttTU3Nxc21CCEEMJ/dGYcIYTICEdHR5ibm2P+/Pmso/wrioqKoKioyKstU9JGRUUFiYmJ0NfXh7a2Ni5duoS2bdsiOTkZnTp1Qk5ODuuIMuPWrVsYP3480tPThWMCgUC4ZZIP55RJC39/f4wdO1ak8QFfxMbGol27dgCAe/fuYcOGDYiKikJZWRksLS2xePFiXq2mtra2xpAhQ+Du7i4yvnz5cpw+fRpRUVGMklWtOsVCSe6WTAghpHK0Mo4QQmSEsbExVq1ahZs3b6J9+/ZQVVUVue7k5MQomfjKysqwZs0aeHl54eXLl3j06BEMDQ2xdOlSNGvWDFOmTGEdUaY0atQIOTk50NfXh76+Pm7duoW2bdsiLS0N9FnfjzV58mRYWFjg8OHDlTZwID+Og4MD6wg1ZmlpCQsLC0ydOhXjx4/n/UqspUuXYtSoUUhJSRE2/rly5QoOHz4s8efFaWhoiP04pmI7IYTwD62MI4QQGWFgYPDVawKBAKmpqT8wTc2sXLkS/v7+WLlyJaZNm4b79+/D0NAQgYGB2Lx5MyIjI1lHlClTp06Frq4uli1bBi8vL8yfPx9du3bF3bt3MXLkSOzdu5d1RJmhqqqKuLg4GBsbs44i8+Tk5L5ZRJHkwklkZCR8fX0RGBiI4uJijBo1CpMnT4aNjQ3raDV25swZrF27FrGxscKjDZYtWybxHYY/3w6cnp4ONzc3TJo0SXhmX2RkJPz9/bFu3TpeF4AJIURWUTGOEEIIbxgbG2P37t3o06cP1NTUEBcXB0NDQzx8+BCdO3fGP//8wzqiTCkrK0NZWRlq1fq00D4wMBAREREwNjbGr7/+WulZTeS/MWTIEEyaNIk3Z5JJs5MnT4oU44qLixETEwN/f3+sWLGCFyt4CwsLERgYiH379uH69eto1qwZJk+eDAcHBzRt2pR1PJnTp08fTJ06FePGjRMZP3ToELy9vREWFsYmGCGEkBqjYhwhhBDeUFZWxsOHD6Gvry9SjEtISECHDh3w/v171hEJYcLb2xurV6/G5MmTYW5uXqGBw9ChQxklI+UOHTqEo0eP4tSpU6yjVEtKSgr27duHgIAAZGZmol+/fjh79izrWNUSFRWFxMRECAQCmJmZwcLCgnWkalFRUUFcXByaN28uMv7o0SO0a9cOBQUFjJIRQgipKSrGEUII4Q0rKyvMmzcPEyZMECnGrVixApcvX8b169dZR5R68fHxYt9LHTx/HDk5ua9eowYOkiElJQVt2rRBfn4+6yjV9v79exw8eBD/+9//8ObNG978Pr169Qq//PILwsLCoKGhAY7j8PbtW9jY2ODIkSPQ0tJiHVEsLVq0wE8//YSNGzeKjLu6uuKvv/5CUlISo2SEEEJqiho4EEIIkXiTJ0/G1q1bsWzZMkycOBHPnz9HWVkZjh8/jqSkJAQEBOCvv/5iHVMmtGvXTtil81uoAPRjlZWVsY5AvqGwsBDbtm3j3RbP8PBw+Pr64tixY5CXl8eYMWN4sc223Ny5c5GXl4cHDx7A1NQUAJCQkAAHBwc4OTnh8OHDjBOKZ/PmzRg1ahQuXLiATp06AfjUQTklJQXHjh1jnI4QQkhN0Mo4QgghEk9eXh6ZmZnQ1tbGhQsXsHbtWkRFRaGsrAyWlpZwd3dH//79WceUCU+ePBH7Xn19/f8wCSGSSVNTU+TMOI7j8O7dO6ioqODAgQMSv2X46dOn8PPzg5+fH9LS0tClSxdMmTIFY8aMqdCFW9Kpq6vj8uXLsLa2Fhm/ffs2+vfvjzdv3rAJVgPPnj3Drl27kJiYiP/X3p1H93znexx//RIhQcQ+ExGSSBm/qSWx1NZYmqC4tU5sxUgMrRLl2tp7UWem6kx7i1BLmaBqCzGGY68lVyrGGi1ii2gyltIxiSVJg/zuH53mTm7aXk34fSTf5+OcnJPf5/cVT0459c7n+/k6HA7Z7Xa99tpr8vX1NZ0GACgChnEAgGeei4uLbty4oZo1a5pOAZ4Z0dHRGjlypNzd3RUdHf2T10ZFRTmpCitXrizw2sXFRTVq1NALL7ygKlWqGKp6PGFhYdq/f79q1KihoUOHKiIiQg0aNDCdVWSenp46ePCgmjZtWmD95MmTat++ve7cuWMmDABgeQzjAMBCDh48qCVLliglJUUbN26Uj4+PVq1aJX9/f7Vr18503o9ycXHR119/XWLO97GSVatWafHixUpNTVViYqLq1q2ruXPnyt/fXz179jSdV6r5+/vr2LFjqlatmvz9/X/0OpvNpsuXLzuxDD8mKSmp0GDoWfLKK68oMjJSPXr0kKurq+mcYuvZs6cyMjK0du1a1apVS5J09epVDR48WFWqVNGf//xnw4UAAKv68dN+AQClSlxcnLp06SIPDw+dPHlS3377rSTp7t27mjVrluG6/1/9+vVVtWrVn/yAcy1atEgTJkxQt27dChzqXrlyZc2dO9dsnAWkpqaqWrVq+Z//2AeDOLMyMzO1cOFCBQcHq1mzZqZzftKWLVvUs2fPUjGIk6QFCxbo7t278vPzU7169RQYGCh/f3/dvXtX8+fPN50HALAwdsYBgEUEBQVp/PjxGjp0aIEnkSYlJalr1666ceOG6cQf5eLiorlz58rLy+snrxs2bJiTiiBJdrtds2bNUq9evQr8N3X69Gl16NBB33zzjelEy8jOzpaHh8cPvnf9+nV5e3s7uQj79u1TTEyMNm3apLp166pv377q27evgoKCTKdZzp49e3Tu3Ln8s9ZCQ0NNJwEALI6nqQKARZw/f14hISGF1itVqlQiDrEeMGAAZ8Y9Y1JTU39wsFCuXDndv3/fQJF1BQUFac2aNQoODi6wvnHjRr3++uu6deuWoTJr+dvf/qYVK1YoJiZG9+/fV3h4uB48eKC4uDjZ7XbTeZYVFhamsLAw0xkAAORjGAcAFuHt7a1Lly7Jz8+vwHpCQoICAgLMRD2mf30yIZ4d/v7+SkpKKvTU1B07djB4cLKwsDC1adNG77zzjqZMmaL79+9rzJgx2rBhg2bPnm06zxK6deumhIQE9ejRQ/Pnz1fXrl3l6uqqxYsXm06zlP/vYSb/igebAABMYRgHABYxatQojRs3TjExMbLZbLp27ZoSExM1ceJETZ8+3XTeT+JEhWfTpEmT9MYbbygnJ0cOh0NHjhzR2rVr9d5772nZsmWm8yxl/vz56t69u4YPH65t27bp2rVrqlSpko4ePcpg1El2796tqKgovf7663ruuedM51jWnDlzHus6m832TA/jgoKCHvsbUSdOnHjKNQCAJ41hHABYxOTJk5WZmamOHTsqJydHISEhKleunCZOnKgxY8aYzvtJeXl5phPwA4YPH66HDx9q8uTJysrK0qBBg+Tj46N58+ZpwIABpvMsp3PnzurTp48WLVqkMmXKaOvWrQzinOjgwYOKiYlR8+bN9atf/UpDhgxR//79TWdZTmpqqumEJ6JXr175n+fk5GjhwoWy2+1q3bq1JOnw4cM6c+aMRo8ebagQAFAcPMABACwmKytLZ8+eVV5enux2uypWrGg6CaXAN998o7y8vPxz/a5evSofHx/DVdaRkpKiQYMG6caNG1q2bJni4+P1wQcfKCoqSu+++67c3NxMJ1pGVlaW1q1bp5iYGB05ckSPHj3Shx9+qIiICHl6eprOs6Tc3FylpqaqXr16KlOm5O1FGDFihLy9vfX73/++wPqMGTOUnp6umJgYQ2UAgKJiGAcAFnXnzh3t27dPDRo0UMOGDU3noJS4ceOG3n33XS1btkzZ2dmmcyzD09NT3bt31+LFi1W5cmVJ0qFDh/Kfnnzy5EmzgRZ1/vx5/elPf9KqVauUkZGhsLAwbdmyxXSWZWRlZWns2LFauXKlJOnChQsKCAhQVFSUatWqpalTpxoufDxeXl46duxYodufL168qObNmyszM9NQGQCgqFxMBwAAnCM8PFwLFiyQJGVnZ6tFixYKDw9X48aNFRcXZ7gOJUlGRoYGDx6sGjVqqFatWoqOjlZeXp6mT5+ugIAAHT58mJ0aTrZw4UKtW7cufxAnSW3atNHJkycLPWEVztOgQQP98Y9/1N/+9jetXbvWdI7lvPXWWzp16pQOHDggd3f3/PXQ0FCtX7/eYNnP4+HhoYSEhELrCQkJBX5dAICSg51xAGARv/zlL7Vr1y41adJEa9as0YwZM3Tq1CmtXLlSH3/8MTtn8NhGjx6trVu3qn///tq5c6eSk5PVpUsX5eTkaMaMGWrfvr3pRABQ3bp1tX79erVq1Uqenp46deqUAgICdOnSJQUHB+vOnTumEx/L7Nmz9c4772jEiBFq1aqVJOV/02P69OklZocfAOB/lbxDEwAARZKZmamqVatKknbu3Km+ffuqfPny6t69uyZNmmS4DiXJtm3btHz5coWGhmr06NEKDAxU/fr1NXfuXNNplnf27FmlpaUpNzc3f81ms+nf/u3fDFYBZty6dSv/HMt/df/+/cd+UumzYOrUqQoICNC8efO0Zs0aSVLDhg21YsUKhYeHG64DABQFwzgAsAhfX18lJiaqatWq2rlzp9atWydJ+sc//sFtLvhZrl27lv+UzoCAALm7u2vEiBGGq6wlMzNTXl5e+a8vX76sPn366IsvvpDNZtP3Nz58P3B49OiRkU7ApBYtWmjbtm0aO3aspP/987B06dL8p5KWFOHh4QzeAKAUYRgHABbx5ptvavDgwapYsaLq1q2rDh06SJL++7//W40aNTIbhxIlLy+vwNM5XV1dVaFCBYNF1hMdHS13d/f8Xa3jxo2Tr6+vdu3apaZNm+qvf/2rUlNTNXHiRH344YeGawEz3nvvPXXt2lVnz57Vw4cPNW/ePJ05c0aJiYmKj483nQcAsDDOjAMACzl+/LjS0tIUFhamihUrSvrulsPKlSurbdu2hutQUri4uOjll19WuXLlJElbt25Vp06dCg3kNm3aZCLPEm7evKkhQ4YoMDBQH330kapXr669e/eqSZMm8vHx0ZEjR+Tj46O9e/dq4sSJnAkJS0lKSlLTpk0lSV9++aU++OADHT9+XHl5eQoODtaUKVNK1DehHj16pDlz5ig2NrbQbeiSdPv2bUNlAICiYmccAFhIs2bN1KxZswJr3bt3N1SDkmrYsGEFXr/66quGSqyrZs2a2rVrl9577z1J3/1j3dPTU5JUvXp1Xbt2TT4+PvLz89P58+dNpgJOFxwcrKCgII0YMUKDBg3SypUrTScVy8yZM7Vs2TJNmDBB06ZN03/8x3/oypUr2rx5s6ZPn246DwBQBOyMAwAAKOFefPFFTZgwQb1799bIkSN169YtTZo0SYsXL9aJEyd0+vRp04mA0yQmJiomJkaxsbF68OCB+vbtq4iICHXs2NF0WpHUq1dP0dHR6t69uzw9PZWUlJS/dvjw4fyHOgAASg6GcQAAACXcrl27dPfuXfXr10/p6enq3r27Tp8+rapVqyo2NladOnUynQg4XXZ2tmJjY7V8+XIdPHhQfn5+ioiI0LBhw1S7dm3TeY+tQoUKSk5OVp06deTt7a1t27YpODhYly9fVlBQkDIzM00nAgB+JhfTAQAAACieLl26qF+/fpK+e3LyF198oW+++UY3b95kEAfL8vDw0LBhw3TgwAFduHBBAwcO1JIlS+Tv769u3bqZzntstWvX1vXr1yVJgYGB2r17tyTp6NGj+Wd3AgBKFnbGAQAAACj17t27p9WrV+vtt99WRkaGHj16ZDrpsUydOlWVKlXS22+/rY0bN2rgwIHy8/NTWlqaxo8fr9mzZ5tOBAD8TAzjAMBCDh48qCVLliglJUUbN26Uj4+PVq1aJX9/f7Vr1850HoAiysnJ0fz587V//37dvHlTeXl5Bd4/ceKEoTLAvPj4eMXExCguLk6urq4KDw9XZGSkWrVqZTqtSA4fPqxDhw4pMDBQr7zyiukcAEAR8DRVALCIuLg4DRkyRIMHD9bJkyf17bffSpLu3r2rWbNmafv27YYLARRVRESE9uzZo379+qlly5ay2WymkwCj0tPTtWLFCq1YsUKpqalq06aN5s+fr/DwcFWoUMF0XrG0atWqxA4SAQDfYWccAFhEUFCQxo8fr6FDh8rT01OnTp1SQECAkpKS1LVrV924ccN0IoAi8vLy0vbt29W2bVvTKYBxYWFh2r9/v2rUqKGhQ4cqIiJCDRo0MJ31s2zZsuWxr2V3HACUPOyMAwCLOH/+vEJCQgqtV6pUSRkZGc4PAvDE+Pj4yNPT03QG8Ezw8PBQXFycevToIVdXV9M5RdKrV68Cr202m/7vHorvd8CWlLPvAAD/i6epAoBFeHt769KlS4XWExISFBAQYKAIwJPyX//1X5oyZYq++uor0ymAcVu2bFHPnj1L7CBOkvLy8vI/du/eraZNm2rHjh3KyMhQZmamduzYoeDgYO3cudN0KgCgCNgZBwAWMWrUKI0bN04xMTGy2Wy6du2aEhMTNXHiRE2fPt10HoBiaN68uXJychQQEKDy5cvLzc2twPu3b982VAaguN58800tXry4wIOWunTpovLly2vkyJFKTk42WAcAKAqGcQBgEZMnT1ZmZqY6duyonJwchYSEqFy5cpo4caLGjBljOg9AMQwcOFBXr17VrFmz9Itf/IIHOAClSEpKiry8vAqte3l56cqVK84PAgAUGw9wAACLycrK0tmzZ5WXlye73a6KFSuaTgJQTOXLl1diYqKaNGliOgXAExYSEiI3Nzd9+umn8vb2liTduHFDQ4YMUW5uruLj4w0XAgB+LnbGAYDFlC9fXs2bNzedAeAJ+tWvfqXs7GzTGQCegpiYGPXu3Vt169ZVnTp1JElpaWmqX7++Nm/ebDYOAFAk7IwDAIvo2LHjT966tm/fPifWAHiSdu/erZkzZ+rdd99Vo0aNCp0ZV6lSJUNlAJ4Eh8OhPXv26Ny5c3I4HLLb7QoNDeWWdAAooRjGAYBFjB8/vsDrBw8eKCkpSadPn9awYcM0b948Q2UAisvFxUWSCv3D3OFwyGaz6dGjRyayAAAA8AO4TRUALGLOnDk/uP7OO+/o3r17Tq4B8CTt37/fdAKAJyg6OlojR46Uu7u7oqOjf/LaqKgoJ1UBAJ4UdsYBgMVdunRJLVu21O3bt02nAAAASf7+/jp27JiqVasmf3//H73OZrPp8uXLTiwDADwJ7IwDAItLTEyUu7u76QwAAPBPqampP/g5AKB0YBgHABbRp0+fAq8dDoeuX7+uY8eOadq0aYaqAAAAAMBaXEwHAACcw8vLq8BH1apV1aFDB23fvl0zZswwnQcAAH5Av379NHv27ELr77//vn7zm98YKAIAFBdnxgEAAADAM6pGjRrat2+fGjVqVGD9yy+/VGhoqL7++mtDZQCAouI2VQAAgFLi1q1bOn/+vGw2m+rXr68aNWqYTgJQTPfu3VPZsmULrbu5uenOnTsGigAAxcVtqgBgEVWqVFHVqlUf6wNAyXL//n1FRESoVq1aCgkJ0YsvvqhatWopMjJSWVlZpvMAFMPzzz+v9evXF1pft26d7Ha7gSIAQHGxMw4ALGLatGn6wx/+oC5duqh169aSvnuS6q5duzRt2jSGcEAJNmHCBMXHx2vLli1q27atJCkhIUFRUVH693//dy1atMhwIYCimjZtmvr27auUlBR16tRJkrR3716tXbtWGzZsMFwHACgKzowDAIvo27evOnbsqDFjxhRYX7BggT777DNt3rzZTBiAYqtevbo2btyoDh06FFjfv3+/wsPDdevWLTNhAJ6Ibdu2adasWUpKSpKHh4caN26sGTNmqH379qbTAABFwDAOACyiYsWKSkpKUmBgYIH1ixcvKigoSPfu3TNUBqC4ypcvr+PHj6thw4YF1s+cOaOWLVvq/v37hsoAAADwf3FmHABYRLVq1fTnP/+50PrmzZtVrVo1A0UAnpTWrVtrxowZysnJyV/Lzs7WzJkz829LB1CyHT9+XJ9++qlWr16tkydPms4BABQDZ8YBgEXMnDlTkZGROnDgQP4/zg8fPqydO3dq2bJlhusAFMe8efPUtWtX1a5dW02aNJHNZlNSUpLc3d21a9cu03kAiuHmzZsaMGCADhw4oMqVK8vhcCgzM1MdO3bUunXreGoyAJRA3KYKABby17/+VdHR0UpOTpbD4ZDdbldUVJReeOEF02kAiik7O1uffvqpzp07l//ne/DgwfLw8DCdBqAY+vfvr5SUFK1atSr/VvSzZ89q2LBhCgwM1Nq1aw0XAgB+LoZxAAAAAPCM8vLy0meffaYWLVoUWD9y5Ig6d+6sjIwMM2EAgCLjzDgAAIASbuXKldq2bVv+68mTJ6ty5cpq06aNvvrqK4NlAIorLy9Pbm5uhdbd3NyUl5dnoAgAUFwM4wAAAEq4WbNm5d+OmpiYqAULFuiPf/yjqlevrvHjxxuuA1AcnTp10rhx43Tt2rX8tatXr2r8+PF66aWXDJYBAIqK21QBAABKuPLly+vcuXOqU6eOpkyZouvXr+uTTz7RmTNn1KFDB926dct0IoAiSk9PV8+ePXX69Gn5+vrKZrMpLS1NjRo10l/+8hfVrl3bdCIA4GfiaaoAAAAlXMWKFfX3v/9dderU0e7du/N3w7m7uys7O9twHYDi8PX11YkTJ7Rnz54CD2gJDQ01nQYAKCKGcQAAACVcWFiYRowYoaCgIF24cEHdu3eXJJ05c0Z+fn5m4wA8EWFhYQoLCzOdAQB4AhjGAYCFHD16VBs2bFBaWppyc3MLvLdp0yZDVQCK66OPPtJ//ud/Kj09XXFxcapWrZok6fjx4xo4cKDhOgA/V3R09GNfGxUV9RRLAABPA2fGAYBFrFu3TkOHDlXnzp21Z88ede7cWRcvXtSNGzfUu3dvLV++3HQiAACQ5O/v/1jX2Ww2Xb58+SnXAACeNIZxAGARjRs31qhRo/TGG2/I09NTp06dkr+/v0aNGiVvb2/NnDnTdCKAYjh48KCWLFmiy5cva8OGDfLx8dGqVavk7++vdu3amc4DAADAP7mYDgAAOEdKSkr+OVLlypXT/fv3ZbPZNH78eH388ceG6wAUR1xcnLp06SIPDw+dOHFC3377rSTp7t27mjVrluE6AE9Cbm6uzp8/r4cPH5pOAQAUE8M4ALCIqlWr6u7du5IkHx8fnT59WpKUkZGhrKwsk2kAiukPf/iDFi9erKVLl8rNzS1/vU2bNjpx4oTBMgDFlZWVpcjISJUvX16//vWvlZaWJum7s+Jmz55tuA4AUBQM4wDAIl588UXt2bNHkhQeHq5x48bpd7/7nQYOHKiXXnrJcB2A4jh//rxCQkIKrVeqVEkZGRnODwLwxLz11ls6deqUDhw4IHd39/z10NBQrV+/3mAZAKCoeJoqAFjEggULlJOTI+m7/7F3c3NTQkKC+vTpo2nTphmuA1Ac3t7eunTpkvz8/AqsJyQkKCAgwEwUgCdi8+bNWr9+vVq1aiWbzZa/brfblZKSYrAMAFBUDOMAwCKqVq2a/7mLi4smT56syZMnGywC8KSMGjVK48aNU0xMjGw2m65du6bExERNnDhR06dPN50HoBhu3bqlmjVrFlr//uxXAEDJwzAOAEqxO3fuPPa1lSpVeoolAJ6myZMnKzMzUx07dlROTo5CQkJUrlw5TZw4UWPGjDGdB6AYWrRooW3btmns2LGSlD+AW7p0qVq3bm0yDQBQRDaHw+EwHQEAeDpcXFz+3++aOxwO2Ww2PXr0yElVAJ6WrKwsnT17Vnl5ebLb7apYsaLpJADFdOjQIXXt2lWDBw/WihUrNGrUKJ05c0aJiYmKj49Xs2bNTCcCAH4mdsYBQCm2f/9+0wkAnqKsrCxNmjRJmzdv1oMHDxQaGqro6GhVr17ddBqAYkpKSlLTpk3Vpk0bff755/rggw9Ur1497d69W8HBwUpMTFSjRo1MZwIAioCdcQAAACXUpEmTtHDhQg0ePFju7u5au3atOnTooA0bNphOA1BMLi4uCgoK0ogRIzRo0CB5eXmZTgIAPCEM4wAAAEqoevXq6d1339WAAQMkSUeOHFHbtm2Vk5MjV1dXw3UAiiMxMVExMTGKjY3VgwcP1LdvX0VERKhjx46m0wAAxcQwDgAAoIQqW7asUlNT5ePjk7/m4eGhCxcuyNfX12AZgCclOztbsbGxWr58uQ4ePCg/Pz9FRERo2LBhql27tuk8AEARuJgOAAAAQNE8evRIZcuWLbBWpkwZPXz40FARgCfNw8NDw4YN04EDB3ThwgUNHDhQS5Yskb+/v7p162Y6DwBQBOyMAwAAKKFcXFz08ssvq1y5cvlrW7duVadOnVShQoX8tU2bNpnIA/AU3Lt3T6tXr9bbb7+tjIwMnoYOACUQT1MFAAAooYYNG1Zo7dVXXzVQAuBpi4+PV0xMjOLi4uTq6qrw8HBFRkaazgIAFAE74wDAQjZu3KjY2FilpaUpNze3wHsnTpwwVAUAAH5Ienq6VqxYoRUrVig1NVVt2rRRZGSkwsPDC+x+BQCULJwZBwAWER0dreHDh6tmzZo6efKkWrZsqWrVquny5ct6+eWXTecBAIB/ERYWJn9/fy1cuFD9+vVTcnKyEhISNHz4cAZxAFDCcZsqAFjEwoUL9fHHH2vgwIFauXKlJk+erICAAE2fPl23b982nQcAAP6Fh4eH4uLi1KNHD7m6uprOAQA8QdymCgAWUb58eSUnJ6tu3bqqWbOm9uzZoyZNmujixYtq1aqV/v73v5tOBAAAAIBSj9tUAcAifvnLX+YP3OrWravDhw9LklJTU8X3ZQAAAADAORjGAYBFdOrUSVu3bpUkRUZGavz48QoLC1P//v3Vu3dvw3UAAAAAYA3cpgoAFpGXl6e8vDyVKfPdcaGxsbFKSEhQYGCgXnvtNZUtW9ZwIQAAAACUfgzjAAAAAAAAACfhNlUAAAAAAADASRjGAQAAAAAAAE7CMA4AAAAAAABwEoZxAAAAAAAAgJMwjAMAAAAAAACcpIzpAADA0xMUFCSbzfZY1544ceIp1wAAAAAAGMYBQCnWq1ev/M9zcnK0cOFC2e12tW7dWpJ0+PBhnTlzRqNHjzZUCAAAAADWYnM4HA7TEQCAp2/EiBHy9vbW73//+wLrM2bMUHp6umJiYgyVAQAAAIB1MIwDAIvw8vLSsWPH9NxzzxVYv3jxopo3b67MzExDZQAAAABgHTzAAQAswsPDQwkJCYXWExIS5O7ubqAIAAAAAKyHM+MAwCLefPNNvf766zp+/LhatWol6bsz42JiYjR9+nTDdQAAAABgDdymCgAWEhsbq3nz5ik5OVmS1LBhQ40bN07h4eGGywAAAADAGhjGAQAAAAAAAE7CmXEAAAAAAACAk3BmHABYxKNHjzRnzhzFxsYqLS1Nubm5Bd6/ffu2oTIAAAAAsA52xgGARcycOVMffvihwsPDlZmZqQkTJqhPnz5ycXHRO++8YzoPAAAAACyBM+MAwCLq1aun6Ohode/eXZ6enkpKSspfO3z4sNasWWM6EQAAAABKPXbGAYBF3LhxQ40aNZIkVaxYUZmZmZKkHj16aNu2bSbTAAAAAMAyGMYBgEXUrl1b169flyQFBgZq9+7dkqSjR4+qXLlyJtMAAAAAwDIYxgGARfTu3Vt79+6VJI0bN07Tpk3Tc889p6FDhyoiIsJwHQAAAABYA2fGAYBFHT58WIcOHVJgYKBeeeUV0zkAAAAAYAkM4wAAAAAAAAAnKWM6AADw9GzZsuWxr2V3HAAAAAA8feyMA4BSzMWl4NGgNptN//evfZvNJkl69OiR07oAAAAAwKp4gAMAlGJ5eXn5H7t371bTpk21Y8cOZWRkKDMzUzt27FBwcLB27txpOhUAAAAALIGdcQBgEc8//7wWL16sdu3aFVg/ePCgRo4cqeTkZENlAAAAAGAd7IwDAItISUmRl5dXoXUvLy9duXLF+UEAAAAAYEHsjAMAiwgJCZGbm5s+/fRTeXt7S5Ju3LihIUOGKDc3V/Hx8YYLAQAAAKD0YxgHABZx6dIl9e7dW+fPn1edOnUkSWlpaapfv742b96swMBAw4UAAAAAUPoxjAMAC3E4HNqzZ4/OnTsnh8Mhu92u0NDQ/CeqAgAAAACeLoZxAAAAAAAAgJOUMR0AAHh6oqOjNXLkSLm7uys6Ovonr42KinJSFQAAAABYFzvjAKAU8/f317Fjx1StWjX5+/v/6HU2m02XL192YhkAAAAAWBPDOAAAAAAAAMBJXEwHAAAAAAAAAFbBMA4ALKJfv36aPXt2ofX3339fv/nNbwwUAQAAAID1cJsqAFhEjRo1tG/fPjVq1KjA+pdffqnQ0FB9/fXXhsoAAAAAwDrYGQcAFnHv3j2VLVu20Lqbm5vu3LljoAgAAAAArIdhHABYxPPPP6/169cXWl+3bp3sdruBIgAAAACwnjKmAwAAzjFt2jT17dtXKSkp6tSpkyRp7969Wrt2rTZs2GC4DgAAAACsgTPjAMBCtm3bplmzZikpKUkeHh5q3LixZsyYofbt25tOAwAAAABLYBgHAAAAAAAAOAm3qQKAxRw/flzJycmy2Wyy2+0KCgoynQQAAAAAlsEwDgAs4ubNmxowYIAOHDigypUry+FwKDMzUx07dtS6detUo0YN04kAAAAAUOrxNFUAsIixY8fqzp07OnPmjG7fvq1//OMfOn36tO7cuaOoqCjTeQAAAABgCZwZBwAW4eXlpc8++0wtWrQosH7kyBF17txZGRkZZsIAAAAAwELYGQcAFpGXlyc3N7dC625ubsrLyzNQBAAAAADWwzAOACyiU6dOGjdunK5du5a/dvXqVY0fP14vvfSSwTIAAAAAsA5uUwUAi0hPT1fPnj11+vRp+fr6ymazKS0tTY0aNdJf/vIX1a5d23QiAAAAAJR6DOMAwGL27Nmjc+fOyeFwyG63KzQ01HQSAAAAAFgGwzgAAAAAAADAScqYDgAAPD3R0dGPfW1UVNRTLAEAAAAASOyMA4BSzd/f/7Gus9lsunz58lOuAQAAAAAwjAMAAAAAAACcxMV0AADAuXJzc3X+/Hk9fPjQdAoAAAAAWA7DOACwiKysLEVGRqp8+fL69a9/rbS0NEnfnRU3e/Zsw3UAAAAAYA0M4wDAIt566y2dOnVKBw4ckLu7e/56aGio1q9fb7AMAAAAAKyDp6kCgEVs3rxZ69evV6tWrWSz2fLX7Xa7UlJSDJYBAAAAgHWwMw4ALOLWrVuqWbNmofX79+8XGM4BAAAAAJ4ehnEAYBEtWrTQtm3b8l9/P4BbunSpWrdubSoLAAAAACyF21QBwCLee+89de3aVWfPntXDhw81b948nTlzRomJiYqPjzedBwAAAACWwM44ACjlkpKSJElt2rTR559/rqysLNWrV0+7d+/WL37xCyUmJqpZs2ZmIwEAAADAImwOh8NhOgIA8PS4uLgoKChII0aM0KBBg+Tl5WU6CQAAAAAsi51xAFDKff755woODtbUqVPl7e2tIUOGaP/+/aazAAAAAMCS2BkHABaRnZ2t2NhYLV++XAcPHpSfn58iIiI0bNgw1a5d23QeAAAAAFgCwzgAsKCUlBQtX75cn3zyia5fv66wsDBt377ddBYAAAAAlHoM4wDAou7du6fVq1fr7bffVkZGhh49emQ6CQAAAABKvTKmAwAAzhUfH6+YmBjFxcXJ1dVV4eHhioyMNJ0FAAAAAJbAzjgAsID09HStWLFCK1asUGpqqtq0aaPIyEiFh4erQoUKpvMAAAAAwDLYGQcApVxYWJj279+vGjVqaOjQoYqIiFCDBg1MZwEAAACAJTGMA4BSzsPDQ3FxcerRo4dcXV1N5wAAAACApXGbKgAAAAAAAOAkLqYDAAAAAAAAAKtgGAcAAAAAAAA4CcM4AAAAAAAAwEkYxgEAAABP0YEDB2Sz2ZSRkfHYP8bPz09z5859ak0AAMAchnEAAACwtN/+9rey2Wx67bXXCr03evRo2Ww2/fa3v3V+GAAAKJUYxgEAAMDyfH19tW7dOmVnZ+ev5eTkaO3atapTp47BMgAAUNowjAMAAIDlBQcHq06dOtq0aVP+2qZNm+Tr66ugoKD8tW+//VZRUVGqWbOm3N3d1a5dOx09erTA19q+fbvq168vDw8PdezYUVeuXCn08x06dEghISHy8PCQr6+voqKidP/+/R/tS0tLU8+ePVWxYkVVqlRJ4eHh+vrrr4v/CwcAAE7HMA4AAACQNHz4cC1fvjz/dUxMjCIiIgpcM3nyZMXFxWnlypU6ceKEAgMD1aVLF92+fVuSlJ6erj59+qhbt25KSkrSiBEjNHXq1AJf48svv1SXLl3Up08fffHFF1q/fr0SEhI0ZsyYH+xyOBzq1auXbt++rfj4eO3Zs0cpKSnq37//E/4dAAAAzsAwDgAAAJA0ZMgQJSQk6MqVK/rqq6/0+eef69VXX81///79+1q0aJHef/99vfzyy7Lb7Vq6dKk8PDz0pz/9SZK0aNEiBQQEaM6cOWrQoIEGDx5c6Ly5999/X4MGDdKbb76p5557Tm3atFF0dLQ++eQT5eTkFOr67LPP9MUXX2jNmjVq1qyZXnjhBa1atUrx8fGFduUBAIBnXxnTAQAAAMCzoHr16urevbtWrlwph8Oh7t27q3r16vnvp6Sk6MGDB2rbtm3+mpubm1q2bKnk5GRJUnJyslq1aiWbzZZ/TevWrQv8PMePH9elS5e0evXq/DWHw6G8vDylpqaqYcOGBa5PTk6Wr6+vfH1989fsdrsqV66s5ORktWjR4sn8BgAAAKdgGAcAAAD8U0RERP7toh999FGB9xwOhyQVGLR9v/792vfX/JS8vDyNGjVKUVFRhd77oYdF/OvXf5x1AADwbOM2VQAAAOCfunbtqtzcXOXm5qpLly4F3gsMDFTZsmWVkJCQv/bgwQMdO3Ysfzeb3W7X4cOHC/y4//s6ODhYZ86cUWBgYKGPsmXLFmqy2+1KS0tTenp6/trZs2eVmZlZaBcdAAB49jGMAwAAAP7J1dVVycnJSk5Olqura4H3KlSooNdff12TJk3Szp07dfbsWf3ud79TVlaWIiMjJUmvvfaaUlJSNGHCBJ0/f15r1qzRihUrCnydKVOmKDExUW+88YaSkpJ08eJFbdmyRWPHjv3BptDQUDVu3FiDBw/WiRMndOTIEQ0dOlTt27dX8+bNn8rvAwAAeHoYxgEAAAD/olKlSqpUqdIPvjd79mz17dtXQ4YMUXBwsC5duqRdu3apSpUqkr67zTQuLk5bt25VkyZNtHjxYs2aNavA12jcuLHi4+N18eJFvfjiiwoKCtK0adPk7e39gz+nzWbT5s2bVaVKFYWEhCg0NFQBAQFav379k/2FAwAAp7A5HudgCwAAAAAAAADFxs44AAAAAAAAwEkYxgEAAAAAAABOwjAOAAAAAAAAcBKGcQAAAAAAAICTMIwDAAAAAAAAnIRhHAAAAAAAAOAkDOMAAAAAAAAAJ2EYBwAAAAAAADgJwzgAAAAAAADASRjGAQAAAAAAAE7CMA4AAAAAAABwEoZxAAAAAAAAgJP8D7BjM8cdKntCAAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de correlaciones con filtro de umbral de correlación

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despeguenannannannannannannannannannannannannannannannannannannannannannannannannannan0.735nannannannannan
    Altitud a la que se realiza el cruceronannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Velocidad a la que se realiza el crucero (KTAS)nannannannannannannannan0.917nannannannannannannannannan0.9730.790nan-0.854nannannannannannannannannannan
    Techo de servicio máximonannannannannannannannannannannannannannannannannan-0.875nannannan-0.961nan-0.819nannannannannannannannan
    Velocidad de pérdida limpia (KCAS)nannannannannan0.753nannannan0.798nannannannan0.747nan0.731nannan0.931nannannannannannannannannannannannan
    Área del alanannannannan0.753nan-0.7780.8350.9840.970nannannannan0.8250.7870.854nannan0.9650.944nannan0.974nannannannannannannannan
    Relación de aspecto del alanannannannannan-0.778nannannan-0.790nannan-0.730nannan-0.862-0.826nan-0.769nan-0.746nannan-0.970nannannannannannannannan
    Longitud del fuselajenannannannannan0.835nannan0.9380.806nannannannan0.719nannannannan0.9260.834nannan0.929nannannannannannannannan
    Ancho del fuselajenannan0.917nannan0.984nan0.938nan0.9860.833nan0.9400.711nannan0.868nan0.944nan0.954nannannannannan0.794nannannannannan
    Peso máximo al despegue (MTOW)nannannannan0.7980.970-0.7900.8060.986nannannan0.717nan0.8110.7510.882nan0.7080.9790.933nannan0.9760.758nannannannannannannan
    Alcance de la aeronavenannannannannannannannan0.833nannannannannannannannannannan0.936nan-0.711nan0.8480.837nannannannannannannan
    Autonomía de la aeronavenannannannannannannannannannannannannannannannannannannannannan-0.7150.802nan-0.732nannannannannannannan
    Velocidad máxima (KIAS)nannannannannannan-0.730nan0.9400.717nannannannannannan0.718nannan0.726nannannan0.7270.910nannannannannannannan
    Velocidad de pérdida (KCAS)nannannannannannannannan0.711nannannannannannannannannannannannan0.934-0.961nannannannannannannannannan
    envergaduranannannannan0.7470.825nan0.719nan0.811nannannannannannan0.775nannan0.9500.806nannannannannannannannannannannan
    Cuerdanannannannannan0.787-0.862nannan0.751nannannannannannan0.758nan0.730nan0.724nannan0.975nannannannannannannannan
    payloadnannannannan0.7310.854-0.826nan0.8680.882nannan0.718nan0.7750.758nannannannan0.784nannan0.7110.846nannannannannannannan
    duracion en VTOLnannannan-0.875nannannannannannannannannannannannannannannannannannannannannannannan-0.904nannannannan
    Crucero KIASnannan0.973nannannan-0.769nan0.9440.708nannannannannan0.730nannannan0.723nan-0.855nannannannannannannannannannan
    RTF (Including fuel & Batteries)nannan0.790nan0.9310.965nan0.926nan0.9790.936nan0.726nan0.950nannannan0.723nan0.948nannannannannannannannannannannan
    Empty weightnannannannannan0.944-0.7460.8340.9540.933nannannannan0.8060.7240.784nannan0.948nannan0.7850.980nannannannannannannannan
    Maximum Crosswindnannan-0.854-0.961nannannannannannan-0.711-0.715nan0.934nannannannan-0.855nannannannannannannannan-0.943nannannannan
    Rango de comunicaciónnannannannannannannannannannannan0.802nan-0.961nannannannannannan0.785nannannannannannannannannannannan
    Capacidad combustiblenannannan-0.819nan0.974-0.9700.929nan0.9760.848nan0.727nannan0.9750.711nannannan0.980nannannannan0.817nannannannannannan
    Consumonannannannannannannannannan0.7580.837-0.7320.910nannannan0.846nannannannannannannannan0.998nannannannannannan
    Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998nannannannannannannan
    Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannannannannannannannannan
    Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannannan-0.943nannannannannannannannannannan
    Propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannan
    Cantidad de motores propulsión verticalnannannannannannannannannannannannannannannannannannannannannannannannannannannannan-0.954nannannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Área del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator VTOL** ---\n", - "\n", - "--- Correlación: Maximum Crosswind (r = 0.934) ---\n", - "Aeronaves utilizadas: ['DeltaQuad Evo', 'DeltaQuad Pro #MAP', 'DeltaQuad Pro #CARGO', 'Ascend']\n", - "Valores para Maximum Crosswind: [45.0, 50.0, 50.0, 15.0]\n", - "Valores para Velocidad de pérdida (KCAS): [14.0, 15.316, 15.607, 13.0]\n", - "Ecuación de regresión: y = 0.064x + 11.929\n", - "Valor del parámetro correlacionado para la aeronave: 30.0\n", - "Predicción obtenida: 13.843\n", - "\tR²: 0.7881580184530225, Desviación Estándar: 0.48216925192301585, Varianza: 0.23248718750000075, Incertidumbre: 0.24108462596150793\n", - "\tNivel de confianza: Confianza Media\n", - "Valores imputados: ['Maximum Crosswind: 13.843']\n", - "**Mediana calculada:** 13.843\n", - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Velocidad de pérdida limpia (KCAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== envergadura: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Cuerda: No hay valores faltantes para imputar. ===\n", - "\n", - "=== payload: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Empty weight: No hay valores faltantes para imputar. ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Reporte Final de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveParámetroValor ImputadoNivel de Confianza
    0Integrator VTOLVelocidad de pérdida (KCAS)13.8430.630
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Imputaciones

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    AeronaveCantidad de Valores Imputados
    0Integrator VTOL1.000
    TotalTotal1.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m>>> RESULTADOS DE IMPUTACIÓN POR CORRELACIÓN\u001b[0m\n", - "Imputación final aplicada: Velocidad de pérdida (KCAS) - Integrator VTOL = 13.843 (Correlación)\n", - "\n", - "=== Iteración 3: Resumen después de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Después de Iteración 3

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE0.000
    1Stalker VXE300.000
    2Aerosonde Mk. 4.7 Fixed Wing0.000
    3Aerosonde Mk. 4.7 VTOL0.000
    4Aerosonde Mk. 4.8 Fixed wing0.000
    5Aerosonde Mk. 4.8 VTOL FTUAS0.000
    6AAI Aerosonde0.000
    7Fulmar X1.000
    8Orbiter 40.000
    9Orbiter 30.000
    10Mantis1.000
    11ScanEagle0.000
    12Integrator0.000
    13Integrator VTOL0.000
    14Integrator Extended Range (ER)1.000
    15ScanEagle 31.000
    16RQ Nan 21A Blackjack0.000
    17DeltaQuad Evo0.000
    18DeltaQuad Pro #MAP0.000
    19DeltaQuad Pro #CARGO0.000
    20V210.000
    21V250.000
    22V320.000
    23V350.000
    24V390.000
    25Volitation VT3700.000
    26Skyeye 26000.000
    27Skyeye 2930 VTOL0.000
    28Skyeye 36001.000
    29Skyeye 3600 VTOL0.000
    30Skyeye 50000.000
    31Skyeye 5000 VTOL0.000
    32Skyeye 5000 VTOL octo0.000
    33Volitation VT5100.000
    34Ascend0.000
    35Transition0.000
    36Reach0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes5.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "================================================================================\n", - "\u001b[1m=== FIN DE ITERACIÓN 3 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "================================================================================\n", - "\u001b[1m=== INICIO DE ITERACIÓN 4 ===\u001b[0m\n", - "================================================================================\n", - "\n", - "=== Iteración 4: Resumen antes de imputaciones ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de Valores Faltantes Antes de Iteración 4

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ColumnaValores Faltantes
    0Stalker XE30.000
    1Stalker VXE3031.000
    2Aerosonde Mk. 4.7 Fixed Wing28.000
    3Aerosonde Mk. 4.7 VTOL27.000
    4Aerosonde Mk. 4.8 Fixed wing31.000
    5Aerosonde Mk. 4.8 VTOL FTUAS33.000
    6AAI Aerosonde30.000
    7Fulmar X35.000
    8Orbiter 434.000
    9Orbiter 334.000
    10Mantis34.000
    11ScanEagle33.000
    12Integrator33.000
    13Integrator VTOL32.000
    14Integrator Extended Range (ER)36.000
    15ScanEagle 334.000
    16RQ Nan 21A Blackjack32.000
    17DeltaQuad Evo28.000
    18DeltaQuad Pro #MAP30.000
    19DeltaQuad Pro #CARGO30.000
    20V2128.000
    21V2528.000
    22V3228.000
    23V3531.000
    24V3931.000
    25Volitation VT37030.000
    26Skyeye 260033.000
    27Skyeye 2930 VTOL32.000
    28Skyeye 360033.000
    29Skyeye 3600 VTOL31.000
    30Skyeye 500029.000
    31Skyeye 5000 VTOL30.000
    32Skyeye 5000 VTOL octo30.000
    33Volitation VT51030.000
    34Ascend29.000
    35Transition29.000
    36Reach29.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Sumatoria Total de Valores Faltantes

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de Valores Faltantes1146.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 4 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m\n", - "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: Integrator Extended Range (ER) - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1m\n", - "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m\n", - "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", - "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", - "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", - "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 4 ***\u001b[0m\n", - "--------------------------------------------------------------------------------\n", - "\n", - "=== DataFrame inicial ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR SIMILITUD - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad a la que se realiza el crucero (KTAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Techo de servicio máximo ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Techo de servicio máximo'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Área del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Área del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V21 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 VTOL - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Relación de aspecto del ala'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Relación de aspecto del ala ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Longitud del fuselaje ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Alcance de la aeronave'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Alcance de la aeronave ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Velocidad máxima (KIAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker XE - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Stalker VXE30 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Fulmar X - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Velocidad de pérdida limpia (KCAS)'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Velocidad de pérdida limpia (KCAS) ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - envergadura ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 VTOL FTUAS - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Evo - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V21 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V32 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V35 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: V39 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT370 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 2930 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 3600 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F2 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Skyeye 5000 VTOL octo - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Cuerda'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Volitation VT510 - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Ascend - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Transition - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Reach - Cuerda ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - payload ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 Fixed Wing - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.7 VTOL - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Aerosonde Mk. 4.8 Fixed wing - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 4 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Orbiter 3 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Mantis - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F0 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Ningún dron en F1 tiene 'Empty weight'.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator VTOL - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: Integrator Extended Range - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: ScanEagle 3 - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: RQ Nan 21A Blackjack - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #MAP - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1m\n", + "=== Imputación por similitud: DeltaQuad Pro #CARGO - Empty weight ===\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F0: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal', 'Cantidad de motores propulsión vertical', 'Cantidad de motores propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F0.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F1: criterios ['Misión', 'Despegue', 'Propulsión vertical', 'Propulsión horizontal'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F1.\u001b[0m\n", + "\u001b[1m\n", + "--- Capa F2: criterios ['Misión', 'Despegue'] ---\u001b[0m\n", + "\u001b[1m❌ Sin vecinos ±20% MTOW en F2.\u001b[0m\n", + "\u001b[1m⚠️ No se pudo imputar en ninguna capa. Delegar a correlación...\u001b[0m\n", + "\u001b[1mNo se realizaron imputaciones por similitud en esta iteración.\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[1m*** IMPUTACIÓN POR CORRELACIÓN - ITERACIÓN 2 ***\u001b[0m\n", + "--------------------------------------------------------------------------------\n", + "\n", + "=== DataFrame inicial ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    DataFrame antes de realizar imputacion por correlacion (df_procesado.copy())

    Stalker XEStalker VXE30Aerosonde Mk. 4.7 Fixed WingAerosonde Mk. 4.7 VTOLAerosonde Mk. 4.8 Fixed wingAerosonde Mk. 4.8 VTOL FTUASAAI AerosondeFulmar XOrbiter 4Orbiter 3MantisScanEagleIntegratorIntegrator VTOLIntegrator Extended Range (ER)ScanEagle 3RQ Nan 21A BlackjackDeltaQuad EvoDeltaQuad Pro #MAPDeltaQuad Pro #CARGOV21V25V32V35V39Volitation VT370Skyeye 2600Skyeye 2930 VTOLSkyeye 3600Skyeye 3600 VTOLSkyeye 5000Skyeye 5000 VTOLSkyeye 5000 VTOL octoVolitation VT510AscendTransitionReach
    Modelo
    Distancia de carrera requerida para despegue0.00.0NaN0.0NaN0.0NaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.00.00.00.00.00.00.0NaN0.050.00.060.00.00.00.00.00.00.0
    Altitud a la que se realiza el crucero6000.06000.06000.06000.06000.06000.05500.06000.06000.06000.06000.06000.06000.05000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.06000.0
    Velocidad a la que se realiza el crucero (KTAS)16.88037917.60237327.3440527.3440527.3440530.22866936.09414730.40658430.46641927.42637218.26582630.62533630.95346521.46331.89437625.70340733.79724618.09082417.50019217.50019219.68771621.8752421.8752427.3440527.3440527.3440536.09414726.250288NaN32.8128636.09414730.62533630.29090932.8128621.8752421.8752427.34405
    Techo de servicio máximo12000.012000.014700.09700.018200.015000.015000.09.8429403.635186839.144606NaN19500.019500.07013.83419500.020.020.013.013.12313.12348800.016000.016000.016000.016000.017000.014972.95591316000.017070.83316959.09187416254.02816009.43594316009.47636617000.010000.013000.016000.0
    Velocidad de pérdida limpia (KCAS)14.87214.78717.30618.6218.42325.010.014.80718.75316.395514.50915.830519.943521.108520.54517.32919.592514.014.073514.07314.015.517.018.017.3973924.010.018.012.524.015.025.025.025.014.010.025.0
    Área del ala0.871.1582831.551.551.552.5030.570.941.6081.20.7541.0631.8722.08951.8721.3491.8020.840.70.70.80.521.031.2021.2031.4240.881.01.331.322.6152.6152.6151.9930.7710.9862.329
    Relación de aspecto del ala15.30125515.32644912.512.512.512.514.75438613.217513.44313.934514.75514.05712.90812.64812.8413.76512.91414.58914.71414.71414.56814.42114.18213.89814.041513.64514.10314.00113.709513.671512.69513.03212.855513.09914.34914.22313.669
    Longitud del fuselaje2.12.59083.03.03.03.59451.71.21.21.21.481.712.52.9982.52.42.50.750.90.90.930.931.01.881.9542.022.052.032.4882.423.53.53.52.9051.5622.34.712
    Profundidad del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Ancho del fuselaje0.2110.20.2770.2770.277NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.3750.3750.375NaNNaNNaNNaN
    Peso máximo al despegue (MTOW)13.619.95804842.253.554.493.013.120.055.032.06.526.574.875.074.836.361.010.06.26.210.012.523.532.024.040.015.028.028.040.090.0100.0100.0100.09.518.091.0
    Alcance de la aeronave370.0433.0518.9225481.428535.2755800.03270.0800.0509.556550.025.0503.5155500.0646.0835500.050.0565.912270.0100.0100.0270.0270.0412.686456.221413.556300.03270.0425.273458.1245300.0530.401800.0800.0800.0270.0506.641800.0
    Autonomía de la aeronave8.08.019.812.019.814.026.08.024.06.02.018.024.016.019.018.016.04.531.831.833.04.04.52.84.515.02.03.04.56.08.08.011.6729075.06.012.020.0
    Velocidad máxima (KIAS)20.025.03421133.4388633.4388633.4388642.25267530.84572541.736.036.025.641.246.340.21646.341.246.333.029.00929.00933.033.033.033.033.033.030.83428930.035.098533.042.042.038.050.030.030.035.0
    Velocidad de pérdida (KCAS)14.8389.41510.53210.53210.53218.90746510.0NaN10.015.31616.64512.55913.05113.843NaNNaN13.05114.015.31615.60714.015.517.018.017.3973924.010.018.012.524.015.019.10922524.025.013.013.013.0
    Tasa de ascensoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Radio de giroNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN100.0120.0150.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    envergadura3.6574.87684.44.44.45.6442.93.05.24.42.13.14.85.0334.84.04.82.692.352.352.152.453.23.53.96.52.62.933.63.65.05.05.05.12.03.06.0
    Cuerda0.2390.3181950.3520.3520.3520.3940.1965520.3190.3320.3040.2710.29850.33850.3410.3450.31150.3410.27550.2720.2720.2780.2810.2920.3060.3070.3140.2960.30.3110.3150.34850.3380.34450.3350.2870.2910.313
    payload2.4947562.49475614.511.317.722.74.02.49475612.05.52.6935.018.018.018.08.617.73.01.21.21.52.25.010.05.018.04.06.010.010.020.025.015.025.00.61.57.0
    duracion en VTOL2.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.53NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.050.050.05
    Crucero KIAS15.4333216.09342225.025.025.0NaNNaN27.8NaNNaN16.728.028.3NaNNaN23.530.916.5416.016.018.020.020.025.025.025.033.024.0NaN30.033.028.035.030.020.020.025.0
    RTF (dry weight)NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN4.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.011.854.0
    RTF (Including fuel & Batteries)NaNNaN27.742.236.770.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN6.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN8.916.584.0
    Empty weight10.88620817.46329219.79619.79619.80931.010.017.46329218.36512.2375.63310.19222.19524.784522.25714.79421.1234.84.7544.7542.653.456.457.16.70830311.06.57.111.511.032.032.140535.023.9593.05.831.0
    Maximum CrosswindNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN30.0NaNNaNNaN45.050.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN15.015.015.0
    Rango de comunicación59.0161.0140.0140.0140.0NaN150.0NaN150.050.025.0101.8692.6NaNNaNNaN92.6NaN50.030.030.030.030.030.030.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Wing LoadingNaNNaNNaNNaNNaNNaN23.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN12.524.025.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia específica (P/W)NaNNaNNaNNaNNaNNaN98.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Capacidad combustibleNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN13.0NaNNaN11.511.528.028.028.025.0NaNNaNNaN
    ConsumoNaNNaN0.60.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.96NaNNaNNaNNaN1.2NaNNaN5.0NaNNaNNaN
    Potencia WattsNaNNaN2980.02980.0NaNNaN1280.0NaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Potencia HPNaNNaN4.04.0NaNNaN1.74NaNNaNNaNNaNNaNNaNNaNNaNNaN8.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    PrecioNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN3999.04679.069999.07999.08999.08999.02299.06799.04999.06999.09999.013900.015999.016599.0NaNNaNNaN
    Tiempo de emergencia en vueloNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.1080.1080.108NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Distancia de aterrizajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN0.0NaNNaNNaN0.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Despegue1.01.01.02.01.02.02.01.01.01.01.01.01.02.01.01.01.02.02.02.02.02.02.02.02.02.02.02.03.02.03.02.02.02.02.02.02.0
    Propulsión horizontal2.02.02.02.02.02.02.02.02.01.01.02.02.02.02.02.02.01.01.01.01.01.02.02.02.02.02.02.02.02.02.02.02.02.02.02.02.0
    Propulsión vertical5.05.05.01.05.01.01.05.05.05.05.05.05.01.05.05.05.01.01.01.01.01.01.01.01.01.01.01.05.01.05.01.01.01.01.01.01.0
    Cantidad de motores propulsión vertical0.00.00.04.00.04.04.00.00.00.00.00.00.04.00.00.00.04.04.04.04.04.04.04.04.04.04.04.00.04.00.04.08.04.04.04.04.0
    Cantidad de motores propulsión horizontal1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Misión1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0
    Dimensiones de la bahía de carga útilNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Battery Power SupplyNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    Modelo Motor VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58400,37 +22251,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58440,117 +22296,132 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58560,35 +22431,40 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -58600,75 +22476,85 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58680,23 +22566,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58706,25 +22611,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58734,23 +22656,42 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -58760,1693 +22701,1181 @@ " \n", " \n", " \n", - " \n", - " \n", - "
    Distancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia específica (P/W)Capacidad combustibleConsumoPotencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    PortabilidadNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNModelo
    CámaraNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNStalker XE0.06000.00016.88037912000.0NaN0.8715.3012552.1NaN0.21113.600370.08.020.0NaNNaNNaN3.6570.2392.4947562.015.43332NaNNaN10.886208NaN59.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Despegue todos los tiposNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNStalker VXE300.06000.00017.60237312000.0NaN1.15828315.3264492.5908NaN0.219.958433.08.025.034211NaNNaNNaN4.87680.3181952.494756NaN16.093422NaNNaN17.463292NaN161.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Datalink banksNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAerosonde Mk. 4.7 Fixed WingNaN6000.00027.3440514700.0NaN1.5512.53.0NaN0.27742.200NaN19.833.43886NaNNaNNaN4.40.35214.5NaN25.0NaN27.7NaNNaN140.0NaNNaNNaN0.62980.04.0NaNNaNNaN1.0002.0005.0000.0001.0001.000
    Material del fuselajeNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAerosonde Mk. 4.7 VTOL0.06000.00027.344059700.0NaN1.5512.53.0NaN0.27753.500NaN12.033.43886NaNNaNNaN4.40.35211.3NaN25.0NaN42.2NaNNaN140.0NaNNaNNaN0.62980.04.0NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Motor recomendadoNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAerosonde Mk. 4.8 Fixed wingNaN6000.00027.3440518200.0NaN1.5512.53.0NaN0.27754.400NaN19.833.43886NaNNaNNaN4.40.35217.7NaN25.0NaN36.7NaNNaN140.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Hélice recomendada VTOLNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAerosonde Mk. 4.8 VTOL FTUAS0.06000.00030.22866915000.025.02.61512.53.716735NaNNaN93.000800.014.042.25267518.907465NaNNaN5.373633NaN22.7NaNNaNNaN70.331.0NaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.000
    Hélice recomendada Fixed WingNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNAAI AerosondeNaN5500.00036.09414715000.010.00.5714.7543861.7NaNNaN13.1003270.026.030.84572510.0NaNNaN2.90.1965524.0NaNNaNNaNNaN10.0NaN150.023.098.0NaNNaN1280.01.74NaNNaNNaN2.0002.0001.0004.0001.0001.000
    Sistema de controlNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNFulmar XNaN6000.00030.4065849.842NaN1.15828315.3264491.2NaNNaN20.000800.08.041.7NaNNaNNaN3.00.3181952.494756NaN27.8NaNNaN17.463292NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Características adicionalesOrbiter 4NaN6000.00030.4664199403.63518NaN1.5512.51.2NaNNaN55.000NaN24.036.0NaNNaNNaN5.20.35212.0NaNNaNNaNNaNNaNNaN150.0NaNNaNNaNNaNNaNNaN1.0002.0005.0000.0001.0001.000
    Orbiter 3NaN6000.00027.4263726839.144606NaNNaNNaN1.2NaNNaN32.00050.06.036.0NaNNaNNaN4.4NaN5.5NaNNaNNaNNaN
    indice_desconocidoNaNNaN50.0NaNNaNNaNNaNNaNNaN1.0001.0005.0000.0001.0001.000
    MantisNaN6000.00018.265826NaNNaNNaNNaN1.48NaNNaN6.50025.02.025.6NaNNaNNaN2.1NaNNaNNaN16.7NaNNaNNaNNaN25.0NaNNaNNaNNaNNaNNaN
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Convertir todo a numérico ===\n", - "\n", - "\n", - "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", - "\n", - "Umbral seleccionado para correlaciones significativas: 0.7\n", - "\n", - "=== Cálculo de tabla completa ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despegue1.0000.0630.4270.082-0.2730.269-0.2500.2220.4250.1680.054-0.0780.241-0.1850.1050.2000.229nan0.389nan0.225nannan-0.018-0.240-0.1560.7350.1540.671-0.598nannan
    Altitud a la que se realiza el crucero0.0631.0000.0110.0950.008-0.0750.105-0.092nan-0.095-0.309-0.278-0.0640.147-0.0800.109-0.114nannannan-0.1210.038-0.325nannannan-0.119-0.1090.187-0.159nannan
    Velocidad a la que se realiza el crucero (KTAS)0.4270.0111.0000.1340.3160.497-0.6070.4280.9170.5530.5450.4230.6340.1140.4210.3960.567-0.6940.9730.7900.503-0.8540.4800.3650.461-0.2900.0630.5630.120-0.076nannan
    Techo de servicio máximo0.0820.0950.1341.0000.1030.096-0.0290.1350.5900.1220.0970.0010.0140.1110.0220.0280.118-0.8750.1120.579-0.004-0.961-0.118-0.8190.461-0.1560.1960.068-0.1360.140nannan
    Velocidad de pérdida limpia (KCAS)-0.2730.0080.3160.1031.0000.753-0.5980.5940.6750.798-0.2300.2600.5160.6290.7470.6430.731-0.1900.4930.9310.678-0.2370.1290.2240.6300.118-0.0280.322-0.1600.232nannan
    Área del ala0.269-0.0750.4970.0960.7531.000-0.7780.8350.9840.970-0.0230.3830.6480.2870.8250.7870.854-0.3830.6920.9650.944-0.4660.4910.9740.2880.0360.1250.4760.0720.037nannan
    Relación de aspecto del ala-0.2500.105-0.607-0.029-0.598-0.7781.000-0.624-0.681-0.790-0.003-0.456-0.730-0.132-0.630-0.862-0.8260.519-0.769-0.497-0.7460.432-0.409-0.9700.2960.024-0.001-0.471-0.1410.075nannan
    Longitud del fuselaje0.222-0.0920.4280.1350.5940.835-0.6241.0000.9380.8060.1400.4030.3630.1070.7190.6230.660-0.6170.5740.9260.834-0.6960.6460.9290.036-0.2030.1380.6120.0340.040nannan
    Ancho del fuselaje0.425nan0.9170.5900.6750.984-0.6810.9381.0000.9860.833-0.0890.9400.7110.6710.5570.868nan0.944nan0.954nan0.323nan1.000nan0.794nan-0.5350.574nannan
    Peso máximo al despegue (MTOW)0.168-0.0950.5530.1220.7980.970-0.7900.8060.9861.0000.0300.4200.7170.3330.8110.7510.882-0.4010.7080.9790.933-0.4640.5140.9760.7580.0520.0900.4670.0230.075nannan
    Alcance de la aeronave0.054-0.3090.5450.097-0.230-0.023-0.0030.1400.8330.0301.0000.2240.013-0.258-0.043-0.2240.019-0.5250.5240.9360.081-0.7110.4670.8480.837-0.1480.1570.317-0.2130.210nannan
    Autonomía de la aeronave-0.078-0.2780.4230.0010.2600.383-0.4560.403-0.0890.4200.2241.0000.378-0.3470.5410.2690.400-0.5940.3370.6340.486-0.7150.8020.056-0.7320.033-0.4200.4780.353-0.314nannan
    Velocidad máxima (KIAS)0.241-0.0640.6340.0140.5160.648-0.7300.3630.9400.7170.0130.3781.0000.2490.4910.6270.718-0.0770.7000.7260.613-0.2230.1510.7270.9100.067-0.0570.3000.178-0.141nannan
    Velocidad de pérdida (KCAS)-0.1850.1470.1140.1110.6290.287-0.1320.1070.7110.333-0.258-0.3470.2491.0000.2210.1570.3560.6720.2840.3230.1480.934-0.9610.0360.6850.1210.295-0.000-0.4210.498nannan
    envergadura0.105-0.0800.4210.0220.7470.825-0.6300.7190.6710.811-0.0430.5410.4910.2215.0000.0001.0000.6860.775-0.2580.5010.9500.806-0.4140.6480.2970.0850.032-0.0810.5160.167-0.106nannan
    Cuerda0.2000.1090.3960.0280.6430.787-0.8620.6230.5570.751-0.2240.2690.6270.1570.6861.0000.758-0.4990.7300.5950.724-0.4980.3550.975-0.228-0.041-0.0650.4180.193-0.129nannan
    payload0.229-0.1140.5670.1180.7310.854-0.8260.6600.8680.8820.0190.4000.7180.3560.7750.758ScanEagleNaN6000.00030.62533619500.0NaNNaNNaN1.71NaNNaN26.500NaN18.041.2NaNNaNNaN3.1NaN5.0NaN28.0NaNNaNNaNNaN101.86NaNNaNNaNNaNNaNNaNNaNNaNNaN1.000-0.0240.6700.5590.784-0.1420.4890.7110.846-0.0080.0530.4620.100-0.055nannan
    duracion en VTOLnannan-0.694-0.875-0.190-0.3830.519-0.617nan-0.401-0.525-0.594-0.0770.672-0.258-0.499-0.0242.0005.0000.0001.000-0.694-0.402-0.3151.000nannannannan-0.188-0.9040.188-0.188nannan
    Crucero KIAS0.389nan0.9730.1120.4930.692-0.7690.5740.9440.7080.5240.3370.7000.2840.5010.7300.670-0.694IntegratorNaN6000.00030.95346519500.0NaNNaNNaN2.5NaNNaN74.800500.024.046.3NaNNaNNaN4.8NaN18.0NaN28.3NaNNaNNaNNaN92.6NaNNaNNaNNaNNaNNaNNaNNaNNaN1.0000.7230.636-0.8550.3590.5810.461-0.2430.1430.6080.0650.063nannan
    RTF (Including fuel & Batteries)nannan0.7900.5790.9310.965-0.4970.926nan0.9790.9360.6340.7260.3230.9500.5950.559-0.4020.7232.0005.0000.0001.0000.948-0.402nannannannan0.0970.428-0.0970.097nannan
    Empty weight0.225-0.1210.503-0.0040.6780.944-0.7460.8340.9540.9330.0810.4860.6130.1480.8060.7240.784-0.3150.6360.9481.000-0.3860.7850.9800.2510.023-0.0290.4800.195-0.070nannan
    Maximum Crosswindnan0.038-0.854-0.961-0.237-0.4660.432-0.696nan-0.464-0.711-0.715-0.2230.934-0.414-0.498-0.142Integrator VTOL0.05000.000NaNNaNNaNNaNNaNNaNNaNNaN75.000NaN16.0NaNNaNNaNNaNNaNNaN18.0NaNNaNNaNNaNNaN30.0NaNNaNNaNNaNNaNNaNNaNNaNNaN0.02.0002.0001.000-0.855-0.402-0.3864.0001.000nannannannannan-0.943nannannannan
    Rango de comunicaciónnan-0.3250.480-0.1180.1290.491-0.4090.6460.3230.5140.4670.8020.151-0.9610.6480.3550.489nan0.359nan0.785nan1.000nannannan-0.4300.6040.430-0.430nannan
    Capacidad combustible-0.018nan0.365-0.8190.2240.974-0.9700.929nan0.9760.8480.0560.7270.0360.2970.9750.711nan0.581nan0.980nannanIntegrator Extended RangeNaN6000.00031.89437619500.0NaNNaNNaN2.5NaNNaN74.800500.019.046.3NaNNaNNaN4.8NaN18.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN1.0000.3770.817-0.080nan-0.0800.270nannan
    Consumo-0.240nan0.4610.4610.6300.2880.2960.0362.0005.0000.0001.0000.7580.837-0.7320.9100.6850.085-0.2280.846nan0.461nan0.251nannan0.3771.0000.9980.113nan-0.3750.375nannan
    Precio-0.156nan-0.290-0.1560.1180.0360.024-0.203nan0.052-0.1480.0330.0670.1210.032-0.041-0.008nan-0.243nan0.023nannan0.8170.998ScanEagle 3NaN6000.00025.70340720.0NaN1.5512.52.4NaNNaN36.30050.018.041.2NaNNaNNaN4.00.3528.6NaN23.5NaNNaNNaNNaNNaNNaNNaNNaNNaN170.0NaNNaNNaNNaN1.0002.0005.0000.0001.000-0.1380.217-0.1380.134nannan
    Despegue0.735-0.1190.0630.196-0.0280.125-0.0010.1380.7940.0900.157-0.420-0.0570.295-0.081-0.0650.053-0.1880.1430.097-0.029nan-0.430-0.0800.113-0.1381.000-0.010-0.6390.610nannan
    Propulsión horizontal0.154-0.1090.5630.0680.3220.476-0.4710.612nan0.4670.3170.4780.300-0.0000.5160.4180.462-0.9040.6080.4280.480-0.9430.604nannan0.217-0.010RQ Nan 21A BlackjackNaN6000.00033.79724620.0NaN1.5512.52.5NaNNaN61.000NaN16.046.3NaNNaNNaN4.80.35217.7NaN30.9NaNNaNNaNNaN92.6NaNNaNNaNNaNNaN8.0NaNNaNNaN1.0002.0005.0000.0001.0001.0000.118-0.083nannan
    Propulsión vertical0.6710.1870.120-0.136-0.1600.072-0.1410.034-0.5350.023-0.2130.3530.178-0.4210.1670.1930.1000.1880.065-0.0970.195nan0.430-0.080-0.375-0.138-0.6390.118DeltaQuad Evo0.06000.00018.09082413.014.00.84NaN0.75NaNNaN10.000270.04.5333.014.0NaNNaN2.69NaN3.04.5316.544.86.84.845.0NaNNaNNaNNaNNaNNaNNaNNaNNaN0.02.0001.0001.0004.0001.0001.000-0.954nannan
    Cantidad de motores propulsión vertical-0.598-0.159-0.0760.1400.2320.0370.0750.0400.5740.0750.210-0.314-0.1410.498-0.106-0.129-0.055-0.1880.0630.097-0.070nan-0.4300.2700.3750.1340.610-0.083-0.954DeltaQuad Pro #MAP0.06000.00017.50019213.123NaNNaNNaN0.9NaNNaN6.200100.01.83NaNNaNNaNNaN2.35NaN1.2NaN16.0NaNNaNNaN50.050.0NaNNaNNaNNaNNaNNaNNaNNaN0.02.0001.0001.0004.0001.0001.000nannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannanDeltaQuad Pro #CARGO0.06000.00017.50019213.123NaNNaNNaN0.9NaNNaN6.200100.01.83NaNNaNNaNNaN2.35NaN1.2NaN16.0NaNNaNNaN50.030.0NaNNaNNaNNaNNaNNaNNaNNaN0.02.0001.0001.0004.0001.0001.000
    Misiónnannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidadV210.06000.00019.68771648800.014.00.8NaN0.93NaNNaN10.000270.03.033.014.0NaN100.02.15NaN1.5NaN18.0NaNNaN2.65NaN30.012.5NaNNaNNaNNaNNaN3999.00.108NaN2.0001.0001.0004.0001.0001.000
    0Total de valores1024.000V250.06000.00021.8752416000.015.50.5214.7543860.93NaNNaN12.500270.04.033.015.5NaN120.02.450.1965522.2NaN20.0NaNNaN3.45NaN30.024.0NaNNaNNaNNaNNaN4679.00.108NaN2.0001.0001.0004.0001.0001.000
    1Valores numéricos826.000V320.06000.00021.8752416000.017.01.0NaN1.0NaNNaN23.500NaN4.533.017.0NaN150.03.2NaN5.0NaN20.0NaNNaN6.45NaN30.025.0NaNNaNNaNNaNNaN69999.00.108NaN2.0002.0001.0004.0001.0001.000
    2Valores NaN198.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Filtrando datos seleccionados ===\n", - "\n", - "=== Cálculo de correlaciones filtradas ===\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de Correlaciones Filtradas por aeronaves seleccionadas (Para Heatmap)

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -60460,73 +23889,19 @@ "output_type": "display_data" }, { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    ModeloVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weightV350.06000.00027.3440516000.018.01.0NaN1.88NaNNaN32.000NaN2.833.018.0NaNNaN3.5NaN10.0NaN25.0NaNNaN7.1NaN30.0NaNNaNNaNNaNNaNNaN7999.0NaNNaN2.0002.0001.0004.0001.0001.000
    ModeloV390.06000.00027.3440516000.017.397391.0NaN1.409312NaNNaN24.000NaN4.533.017.39739NaNNaN3.9NaN5.0NaN25.0NaNNaN6.708303NaN30.0NaNNaNNaNNaNNaNNaN8999.0NaNNaN2.0002.0001.0004.0001.0001.000
    Velocidad a la que se realiza el crucero (KTAS)Volitation VT3700.06000.00027.3440517000.024.01.32NaN2.02NaNNaN40.000300.015.033.024.0NaNNaN6.5NaN18.0NaN25.0NaNNaN11.0NaNNaNNaNNaN13.00.96NaNNaN8999.0NaNNaN2.0002.0001.0004.0001.0001.0000.1340.497-0.6070.4280.5530.5450.4230.6340.1140.3160.4210.3960.5670.503
    Techo de servicio máximo0.134Skyeye 2600NaN6000.00036.09414714972.95591310.00.8814.7543862.05NaNNaN15.0003270.02.030.83428910.0NaNNaN2.60.1965524.0NaN33.0NaNNaN6.5NaNNaNNaNNaNNaNNaNNaNNaN2299.0NaNNaN2.0002.0001.0004.0001.0001.0000.096-0.0290.1350.1220.0970.0010.0140.1110.1030.0220.0280.118-0.004
    Área del ala0.4970.096Skyeye 2930 VTOL0.06000.00026.25028816000.018.01.0NaN2.03NaNNaN28.000NaN3.030.018.0NaNNaN2.93NaN6.0NaN24.0NaNNaN7.1NaNNaNNaNNaNNaNNaNNaNNaN6799.0NaNNaN2.0002.0001.0004.0001.0001.000-0.7780.8350.970-0.0230.3830.6480.2870.7530.8250.7870.8540.944
    Relación de aspecto del ala-0.607-0.029-0.778Skyeye 360050.06000.000NaNNaN12.51.33NaN2.488NaNNaN28.000NaN4.5NaN12.5NaNNaN3.6NaN10.0NaNNaNNaNNaN11.5NaNNaNNaNNaN11.5NaNNaNNaN4999.0NaNNaN3.0002.0005.0000.0001.0001.000-0.624-0.790-0.003-0.456-0.730-0.132-0.598-0.630-0.862-0.826-0.746
    Longitud del fuselaje0.4280.1350.835-0.624Skyeye 3600 VTOL0.06000.00032.8128616959.09187424.01.32NaN2.42NaNNaN40.000300.06.033.024.0NaNNaN3.6NaN10.0NaN30.0NaNNaN11.0NaNNaNNaNNaN11.5NaNNaNNaN6999.0NaNNaN2.0002.0001.0004.0001.0001.0000.8060.1400.4030.3630.1070.5940.7190.6230.6600.834
    Peso máximo al despegue (MTOW)0.5530.1220.970-0.7900.806Skyeye 500060.06000.00036.094147NaN15.02.615NaN3.5NaN0.37590.000NaN8.042.015.0NaNNaN5.0NaN20.0NaN33.0NaNNaN32.0NaNNaNNaNNaN28.01.2NaNNaN9999.0NaNNaN3.0002.0005.0000.0001.0001.0000.0300.4200.7170.3330.7980.8110.7510.8820.933
    Alcance de la aeronave0.5450.097-0.023-0.0030.1400.030Skyeye 5000 VTOL0.06000.00030.62533616009.43594325.02.61512.53.5NaN0.375100.000800.08.042.019.109225NaNNaN5.0NaN25.0NaN28.0NaNNaN31.0NaNNaNNaNNaN28.0NaNNaNNaN13900.0NaNNaN2.0002.0001.0004.0001.0001.0000.2240.013-0.258-0.230-0.043-0.2240.0190.081
    Autonomía de la aeronave0.4230.0010.383-0.4560.4030.4200.224Skyeye 5000 VTOL octo0.06000.00030.29090916009.47636625.02.61512.53.5NaN0.375100.000800.011.67290738.024.0NaNNaN5.0NaN15.0NaN35.0NaNNaN35.0NaNNaNNaNNaN28.0NaNNaNNaN15999.0NaNNaN2.0002.0001.0008.0001.0001.0000.378-0.3470.2600.5410.2690.4000.486
    Velocidad máxima (KIAS)0.6340.0140.648-0.7300.3630.7170.0130.378Volitation VT5100.06000.00032.8128617000.025.02.61512.52.905NaNNaN100.000800.05.050.025.0NaNNaN5.1NaN25.0NaN30.0NaNNaN31.0NaNNaNNaNNaN25.05.0NaNNaN16599.0NaNNaN2.0002.0001.0004.0001.0000.2490.5160.4910.6270.7180.613
    Velocidad de pérdida (KCAS)0.1140.1110.287-0.1320.1070.333-0.258-0.3470.2491.0000.6290.2210.1570.3560.148
    Velocidad de pérdida limpia (KCAS)0.3160.1030.753-0.5980.5940.798-0.2300.2600.5160.629Ascend0.06000.00021.8752410000.014.00.82NaN1.562NaNNaN9.500270.06.030.013.0NaNNaN2.0NaN0.60.0520.06.08.93.015.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0002.0001.0000.7470.6430.7310.678
    envergadura0.4210.0220.825-0.6300.7190.811-0.0430.5410.4910.2210.7474.0001.0000.6860.7750.806
    Cuerda0.3960.0280.787-0.8620.6230.751-0.2240.2690.6270.1570.6430.6861.0000.7580.724
    payload0.5670.1180.854-0.8260.6600.8820.0190.4000.7180.3560.7310.7750.758Transition0.06000.00021.8752413000.010.00.88NaN2.3NaNNaN18.000NaN12.030.013.0NaNNaN3.0NaN1.50.0520.011.816.55.815.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.0000.784
    Empty weight0.503-0.0040.944-0.7460.8340.9330.0810.4860.6130.1480.6780.8060.7240.784Reach0.06000.00027.3440516000.025.02.61512.54.712NaNNaN91.000800.020.035.013.0NaNNaN6.0NaN7.00.0525.054.084.031.015.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN2.0002.0001.0004.0001.0001.000
    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos225.000
    2Valores NaN0.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Convertir todo a numérico ===\n", + "\n", + "\n", + "=== PASO 1: CÁLCULO DE CORRELACIONES ENTRE PARÁMETROS ===\n", + "\n", + "Umbral seleccionado para correlaciones significativas: 0.7\n", + "\n", + "=== Cálculo de tabla completa ===\n" + ] }, { "data": { @@ -60563,66 +23938,417 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", + "

    Tabla de Correlaciones con todos los parametros(tabla_completa)

    \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -60638,195 +24364,334 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", @@ -60834,307 +24699,222 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeProfundidad del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)Tasa de ascensoRadio de giroenvergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (dry weight)RTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónWing LoadingPotencia específica (P/W)Capacidad combustibleConsumoPotencia WattsPotencia HPPrecioTiempo de emergencia en vueloDistancia de aterrizajeDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    ModeloDistancia de carrera requerida para despegue1.0000.0630.425nan-0.3420.237nan0.235nan0.4250.168nan-0.0780.287-0.311nannan0.123nan0.229nan0.389nannan0.221nannannannan-0.018-0.240nannan-0.156nannan0.7350.1540.671-0.598nannan
    Altitud a la que se realiza el crucero0.0631.000-0.278-0.0350.3310.242-0.2780.081nannan-0.095-0.656-0.2780.1240.343nannan0.1390.462-0.110nannannannan0.0880.038-0.325-0.215nannannan0.2770.690nannannan-0.119-0.1090.187-0.159nannan
    Velocidad a la que se realiza el crucero (KTAS)0.425-0.2781.0000.1050.2080.454-0.3280.455nan0.9170.5970.6330.4510.6450.161nan0.8030.456-0.0640.602-0.6940.9730.9150.7900.474-0.8550.4800.346nan0.3650.461-0.115-0.016-0.290nannan0.0810.5840.101-0.060nannan
    Techo de servicio máximonan-0.0350.1051.0000.007-0.030-0.0780.136nan0.5460.1430.1200.031-0.0780.026nan-0.8030.036-0.4620.135-0.8750.0990.6770.579-0.094-0.961-0.118-0.986nan-0.7570.5150.653-0.933-0.171nannan0.1920.068-0.1920.191nannan
    Velocidad de pérdida limpia (KCAS)-0.3420.3310.2080.0071.0000.727-0.9700.591nannan0.768-0.4980.1600.6040.817nan0.9930.771nan0.705-0.1810.4280.9100.9360.677-0.181-0.8740.161nan0.2240.532nannan0.118nannan-0.2530.261-0.2530.365nannan
    Área del ala0.2370.2420.454-0.0300.7271.000-0.7480.826nan0.9840.976-0.1350.2450.6660.460nan0.5160.7630.9610.804-0.3670.6280.9940.9780.959-0.3380.552-0.119nan0.9900.6750.2770.6900.049nannan0.1480.3590.0630.058nannan
    Velocidad a la que se realiza el crucero (KTAS)Relación de aspecto del alanan-0.278-0.328-0.078-0.970-0.7481.000-0.606nan-0.776-0.7950.257-0.418-0.596-0.726nannan-0.712-0.724-0.7901.000-0.475nannan-0.874nan-0.341nannan0.000-0.816-0.277-0.690-0.981nannan-0.125-0.2780.125-0.175nannan
    Longitud del fuselaje0.2350.0810.4550.1360.5910.826-0.6061.000nan0.9380.8050.1590.4010.3070.239nan0.9180.7030.5150.652-0.6170.5650.9660.9340.856-0.7180.6810.263nan0.9290.0360.6860.359-0.187nannan0.1180.5940.0650.014nannan
    Techo de servicio máximoProfundidad del fuselajenannannannannannan
    Área del alanannannan-0.7780.8350.970nannannannan0.7530.8250.7870.8540.944
    Relación de aspecto del alanannan-0.778nannan-0.790nannan-0.730nannannan-0.862-0.826-0.746
    Longitud del fuselajenannan0.835nannan0.806nannannannannan0.719nannan0.834
    Peso máximo al despegue (MTOW)Ancho del fuselaje0.425nan0.9170.546nan0.970-0.7900.8060.984-0.7760.938nan1.0000.9860.988-0.0890.940nannan0.717nan0.7980.8110.7510.8820.933
    Alcance de la aeronave0.6710.7600.868nan0.944nannan0.955nan0.323nannannan1.000nannannannannan0.794nan-0.5350.574nannan
    Autonomía de la aeronavePeso máximo al despegue (MTOW)0.168-0.0950.5970.1430.7680.976-0.7950.805nan0.9861.0000.0220.4200.6940.523nan0.9730.8020.8290.880-0.4010.7080.9990.9790.940-0.4640.5140.628nan0.9760.7580.5590.8550.052nannan0.0900.4670.0230.075nannan
    Alcance de la aeronavenan-0.6560.6330.120-0.498-0.1350.2570.159nan0.9880.0221.0000.279-0.048-0.509nannan-0.055-0.619-0.006-0.5080.5881.0000.990-0.030-0.7420.6580.430nan0.9871.0001.000nan-0.268nannan0.2730.392-0.2730.251nannan
    Velocidad máxima (KIAS)Autonomía de la aeronave-0.078-0.2780.4510.0310.1600.245-0.4180.401nan-0.0890.4200.2791.0000.327-0.098nan0.9540.5340.4170.382-0.5940.3370.9400.6340.368-0.7150.8020.268nan0.056-0.732-0.391-0.5770.033nannan-0.4200.4780.353-0.314nan-0.730nan0.717
    Velocidad máxima (KIAS)0.2870.1240.645-0.0780.6040.666-0.5960.307nan0.9400.694-0.0480.3271.0000.513nannan0.4400.4790.684-0.0770.6820.7620.7260.6610.2720.094-0.215nan0.7050.910-0.6240.9700.064nannan-0.0400.2150.165-0.128nan0.718nan
    Velocidad de pérdida (KCAS)-0.3110.3430.1610.0260.8170.460-0.7260.239nannan0.523-0.509-0.0980.5131.000nan0.9930.559nan0.6401.0000.414-0.4080.4340.4121.000-0.8740.161nan0.0360.532nannan0.121nannan-0.2220.211-0.2220.381nannan
    Tasa de ascensonannannannannan
    Velocidad de pérdida limpia (KCAS)nannan0.753nannan0.798nannannannannan0.747nan0.731nan
    envergaduranannan0.825nan0.7190.811nannannannan0.747nannan0.7750.806
    Cuerdanannan0.787-0.862nan0.751nannannannannannan0.7580.724
    payloadnannan0.854-0.826nan0.882nannan0.718nan0.7310.7750.758nan0.784
    Empty weightRadio de gironannan0.944-0.7460.8340.9330.803-0.8030.9930.516nan0.918nannan0.973nan0.954nan0.8060.7240.7840.993nan
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Resumen de la Tabla

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos60.000
    2Valores NaN165.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Preparando datos para el heatmap ===\n", - "\n", - "=== Generando heatmap ===\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAASICAYAAABRKwtEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgUzx8H8PfR3d1dCoKCYmMBYicWKGJ3d9fXFjuRMLCxC1FMVFAxsTBQCaVLen9/IAfH3RFS6u/z8rnnkb3Z2Znbmd29uQkWwzAMCCGEEEIIIYQQQgghtU6gvhNACCGEEEIIIYQQQsj/C2qMI4QQQgghhBBCCCGkjlBjHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSPUGEcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoINcYRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUEWqMI4QQ8lfz9fUFi8VCeHg4z/e7du0KPT29Wk3DvXv3sGTJEqSkpNTqcerDkiVLwGKxajzeZ8+ewcPDA/r6+hATE4OUlBQaN26MtWvXIikpqcaPVx0hISFgsVgICQmplfg/ffoEFosFX1/fWom/vg0bNqzG6qCNjQ00NTVRUFDAN0zLli2hpKSE3Nzcah+vOue+omtTaTX5GVUWwzA4cuQIWrduDRUVFYiJiUFLSwtOTk7Yt2/fb8Xp4OAABweHmk1oFdXWNaumsVgsLFmypM6Pe/v2bYiKiuLz58/sbXp6eujatSvP8OHh4TV+fapK3agJf0uZKJaRkYEpU6ZAQ0MDYmJisLa2xpEjRyq1r4ODA1gsFt9XXFwcACAvLw+Ghobw8vKqxZwQQspDjXGEEEJINd27dw9Lly79JxvjasPevXvRpEkThIWFYebMmbh8+TICAwPRr18/7Nq1C56envWdxDqlrq6O0NBQdOnSpb6T8sfz9PRETEwMrly5wvP9t2/f4t69e3Bzc4OIiEi1j9e4cWOEhoaicePG1Y7rTzN37lwMHDgQ5ubm2LdvHy5duoQVK1ZAVVUVZ86cqe/k/bYRI0YgNDS0vpPxR2IYBlOmTMHIkSOhq6tb38khfPTu3Rt+fn5YvHgxLl26BDs7OwwcOBCHDx+ucN8dO3YgNDSU4xUcHAxhYWHY29tDTU0NACAsLIxFixZh2bJlSExMrO0sEUJ4EKrvBBBCCCHk/0doaCjGjh2LTp064fTp0xAVFWW/16lTJ0yfPh2XL1+ukWNlZWVBQkKCa3tBQQHy8/M5jl2fREVFYW9vX9/J+CsMHjwYM2fOxP79++Hi4sL1/v79+wEAw4cPr9Zx8vLywGKxICMj80+em58/f8LLywvu7u7Ys2cPx3vDhg1DYWFhPaWs+rS0tKClpVXfyfgjXb58GY8fP65Uo86fjN+1vbpiY2MhKSkJGRmZGo+7si5evIigoCAcPnwYAwcOBAC0a9cOnz9/xsyZM+Hq6gpBQUG++1tYWHBt8/PzQ15eHkaMGMGxfeDAgZg2bRp2796NefPm1WxGCCEVop5xhBBC/u8wDIMdO3bA2toa4uLikJeXR9++ffHhwweOcEFBQejRowe0tLQgJiYGIyMjjB49GgkJCewwS5YswcyZMwEA+vr67KEgxcPaiof/nD9/HjY2NhAXF4e5uTnOnz8PoGi4jrm5OSQlJdG0aVOuYTvh4eEYMGAA9PT0IC4uDj09PQwcOJBjiFFxPCwWC0FBQfDw8ICCggIkJSXRrVs3rnzxc+HCBVhbW0NUVBT6+vpYv359tT4/XlatWgUWi4U9e/bwbAwTERFB9+7d2X8XFhZi7dq1MDMzg6ioKFRUVODu7o6vX79y7Ofg4ICGDRvi1q1baNGiBSQkJDB8+HD2ENC1a9dixYoV0NfXh6ioKG7cuAGg6PPt3r07FBQUICYmBhsbGxw7dqzCfFT2vADAt2/fMGrUKGhra0NERAQaGhro27cv4uPjAfAfpnrnzh106NAB0tLSkJCQQIsWLXDhwgWOMMXn/caNGxg7diyUlJSgqKiI3r17IyYmhistR48eRfPmzSEpKQkpKSk4OTnhyZMnHGE+fPiAAQMGQENDA6KiolBVVUWHDh0QERFR4efi6+sLU1NTiIqKwtzcHP7+/jzD5ebmYsWKFezzqqysDA8PD/z48aPc+OXl5dGrVy+cO3eOqzdHQUEBDhw4ADs7O1haWuL9+/fw8PCAsbExJCQkoKmpiW7duuH58+cc+xUPRT1w4ACmT58OTU1NiIqK4v379zyHqVbl3ANAcnLyb9XJytazJ0+eoGvXrlBRUYGoqCg0NDTQpUsXrjpSWmZmJnJycqCurs7zfQEBzq8Iv3u+qrrv4cOH0bx5c0hJSUFKSgrW1tbw9vbmCHP58mV06NABsrKykJCQgLm5Of777z/2+7yGJFb1OhIWFobWrVtDQkICBgYGWL16NUcDZXZ2NqZPnw5ra2vIyspCQUEBzZs359mjMC0tDSNHjoSioiKkpKTg7OyMt2/fcoWrbHktLCzEihUrYGpqCnFxccjJycHKygqbN28u5ywU2blzJ+zs7GBqalph2PIMGzYMUlJSeP36NZycnCApKQl1dXWsXr0aAHD//n20atUKkpKSMDExgZ+fH894KlM3+F3bgaLrmaOjI9TV1dn31jlz5iAzM/O38nXlyhWoqqqib9++OHXqFLKzs38rnuoIDAyElJQU+vXrx7Hdw8MDMTExePDgQZXj9Pb2hpSUFFxdXTm2i4iIwNXVFXv27AHDMNVKNyGk6qgxjhBCyD+huLdT2RevB8zRo0djypQp6NixI06fPo0dO3bg5cuXaNGiBbuBBACioqLQvHlz7Ny5E1evXsWiRYvw4MEDtGrVCnl5eQCKhkRNnDgRAHDq1Cn2sJDSw9qePn2KuXPnYvbs2Th16hRkZWXRu3dvLF68GPv27cOqVatw6NAhpKamomvXrvj58yd730+fPsHU1BReXl64cuUK1qxZg9jYWNjZ2XE0Chbz9PSEgIAADh8+DC8vLzx8+BAODg4VDqENDg5Gjx49IC0tjSNHjmDdunU4duwYfHx8fvvz43WOrl+/jiZNmkBbW7vc9BQbO3YsZs+ejU6dOuHs2bNYvnw5Ll++jBYtWnDlPzY2FkOGDMGgQYNw8eJFjBs3jv3eli1bcP36daxfvx6XLl2CmZkZbty4gZYtWyIlJQW7du3CmTNnYG1tDVdX1wrnR6rsefn27Rvs7OwQGBiIadOm4dKlS/Dy8oKsrCySk5P5xn/z5k20b98eqamp8Pb2RkBAAKSlpdGtWzccPXqUK/yIESMgLCyMw4cPY+3atQgJCcGQIUM4wqxatQoDBw6EhYUFjh07hgMHDiA9PR2tW7fGq1ev2OFcXFzw6NEjrF27FkFBQdi5cydsbGwqLEO+vr7w8PCAubk5Tp48iQULFmD58uW4fv06R7jCwkL06NEDq1evxqBBg3DhwgWsXr0aQUFBcHBw4Cj/vHh6eiI3NxcHDx7k2H7lyhXExMSwhznHxMRAUVERq1evxuXLl7F9+3YICQmhWbNmePPmDVe8c+fORXR0NHbt2oVz585BRUWF5/Hrqk5Wpp5lZmaiU6dOiI+Px/bt2xEUFAQvLy/o6OggPT2db9xKSkowMjLCjh07sHHjRrx+/Zrvl/HqnK+q7Lto0SIMHjwYGhoa8PX1RWBgIIYOHcrRyOnt7Q0XFxcUFhayz9OkSZPKbXgEqnYdiYuLw+DBgzFkyBCcPXsWnTt3xty5cznKW05ODpKSkjBjxgycPn0aAQEBaNWqFXr37s3RAM0wDHr27Mlu6A0MDIS9vT06d+7MlcbKlte1a9diyZIlGDhwIC5cuICjR4/C09OzwvKUm5uLa9euoV27duWGq6y8vDz07t0bXbp0wZkzZ9if07x58zB06FAMHz4cgYGBMDU1xbBhw/Do0SOuOCpbN/hd29+9ewcXFxd4e3vj8uXLmDJlCo4dO4Zu3br9Vp569eqFLVu2IDk5Gf3794eqqiqGDRuGK1eulDtPJcMwPJ8/eL0q8uLFC5ibm0NIiHMAm5WVFfv9qnj37h1u376NAQMGQEpKiut9BwcHfP78ucrxEkJqAEMIIYT8xXx8fBgA5b50dXXZ4UNDQxkAzIYNGzji+fLlCyMuLs7MmjWL53EKCwuZvLw85vPnzwwA5syZM+z31q1bxwBgPn78yLWfrq4uIy4uznz9+pW9LSIiggHAqKurM5mZmeztp0+fZgAwZ8+e5Zvf/Px8JiMjg5GUlGQ2b97M9Tn06tWLI/zdu3cZAMyKFSv4xskwDNOsWTNGQ0OD+fnzJ3tbWloao6CgwJR+XPjdz49hGCYuLo4BwAwYMKDctBSLjIxkADDjxo3j2P7gwQMGADNv3jz2trZt2zIAmODgYI6wHz9+ZAAwhoaGTG5uLsd7ZmZmjI2NDZOXl8exvWvXroy6ujpTUFDAMAzD3LhxgwHA3Lhxg29a+Z2X4cOHM8LCwsyrV6/47lucRh8fH/Y2e3t7RkVFhUlPT+c4RsOGDRktLS2msLCQYZiS8172M1q7di0DgImNjWUYhmGio6MZISEhZuLEiRzh0tPTGTU1NaZ///4MwzBMQkICA4Dx8vLim15eCgoKGA0NDaZx48bstDEMw3z69IkRFhbmqIMBAQEMAObkyZMccYSFhTEAmB07dpR7rMLCQkZfX5+xsrLi2N6nTx9GQkKCSU1N5blffn4+k5ubyxgbGzNTp05lby8+v23atOHapzrnvip1cujQob91nQoPD2cAMKdPn+abPn4ePnzI6OjosK+T0tLSTNeuXRl/f3+Oc1iV89W2bVumbdu2Vd73w4cPjKCgIDN48GC+6U1PT2dkZGSYVq1acaSvrMWLF3Ncs37nOvLgwQOOsBYWFoyTkxPfY+bn5zN5eXmMp6cnY2Njw95+6dIlBgBHuWAYhlm5ciUDgFm8eHG5cfIqr127dmWsra357sdPcX6PHDnC9Z6uri7TpUsXnvsVn6vS16ehQ4dynde8vDxGWVmZAcA8fvyYvT0xMZERFBRkpk2bxt5WlbrB79peVvE9+ubNmwwA5unTp+z3ypaJyoiLi2O2bt3KtGzZkmGxWIyKigozfvx45s6dO1zlrzLPIcWvihgbG/MsazExMQwAZtWqVVXKx+zZsxkATGhoKM/33717xwBgdu7cWaV4CSHVRz3jCCGE/BP8/f0RFhbG9WrVqhVHuPPnz4PFYmHIkCEcv1arqamhUaNGHMPRvn//jjFjxkBbWxtCQkIQFhZmT3odGRlZ6bRZW1tDU1OT/be5uTmAol+kS897U7y9dE+QjIwMzJ49G0ZGRhASEoKQkBCkpKSQmZnJMw2DBw/m+LtFixbQ1dVlD8vkJTMzE2FhYejduzfExMTY24t7YpVWlc+vuorTPGzYMI7tTZs2hbm5OYKDgzm2y8vLo3379jzj6t69O4SFhdl/v3//Hq9fv2Z/XqXz4uLigtjYWJ69p4pV9rxcunQJ7dq1Y5/bysjMzMSDBw/Qt29fjp4MgoKCcHNzw9evX7nSVnpoL1DSi6K4LF25cgX5+flwd3fnyKuYmBjatm3LPm8KCgowNDTEunXrsHHjRjx58qRS84e9efMGMTExGDRoEMcQQV1dXbRo0YIj7Pnz5yEnJ4du3bpxpMXa2hpqamoVliEWiwUPDw88e/aM3dsmMTER586dQ58+fdjzPeXn52PVqlWwsLCAiIgIhISEICIignfv3vGsO3369Kkwn0Dd1MnK1jMjIyPIy8tj9uzZ2LVrF0cPx4rY2dnh/fv3uHz5MubNm4fmzZsjODgY7u7u6N69O7unXHXOV2X3DQoKQkFBAcaPH883rnv37iEtLQ3jxo2r0sqYVb2OqKmpoWnTphzbrKysuIYhHz9+HC1btoSUlBT7/uDt7c1RBoqPXbYMDBo0iCudlS2vTZs2xdOnTzFu3DhcuXIFaWlplfocioet8+vxWVUsFotj3kYhISEYGRlBXV0dNjY27O0KCgpQUVHhOYy7snWD37X9w4cPGDRoENTU1CAoKAhhYWG0bdsWQNXu0byoqqpiwoQJuHPnDj5//oxZs2axe8br6+tzDIXt1q0bz+cPXq/KKK98V6Xs5+fnw8/PDw0aNOA792Vxefj27Vul4yWE1AxawIEQQsg/wdzcHLa2tlzbZWVl8eXLF/bf8fHxYBgGqqqqPOMxMDAAUDS8ytHRETExMVi4cCEsLS0hKSmJwsJC2NvbVziUrjQFBQWOv4tXeeS3vfQ8NYMGDUJwcDAWLlwIOzs7yMjIsL8E8UpD8UppZbeVt1pacnIyCgsL+e5bWmU/P16UlJQgISGBjx8/8g1TWnGaec1rpaGhwfXljt/8V7zeKx7mN2PGDMyYMYPnPryGHBar7Hn58eNHlSeTT05OBsMwfPMNgOt8KioqcvxdPB9fcVqK82tnZ8fzmMVzhLFYLAQHB2PZsmVYu3Ytpk+fDgUFBQwePBgrV66EtLQ0z/2L08OvDH369In9d3x8PFJSUviudlre517Mw8MDS5YsgY+PD5o0aYJDhw4hNzeXYyXeadOmYfv27Zg9ezbatm0LeXl5CAgIYMSIETzrTnnlp7S6qJOVrWeysrK4efMmVq5ciXnz5iE5ORnq6uoYOXIkFixYwNEAzYuwsDCcnJzg5OQEoOg89u3bF+fPn8elS5fg4uJSrfNV2X2L548rr65UJgwvVb2OlK1LQFF9Kn1uT506hf79+6Nfv36YOXMm1NTUICQkhJ07d7IXESk+tpCQEFecvMpEZcvr3LlzISkpiYMHD2LXrl0QFBREmzZtsGbNGp73wGLFcZT+waWYkJAQ32GYxUMry5YlCQkJrrhERES47mvF23nNv1bZusHr3GVkZKB169YQExPDihUrYGJiAgkJCXz58gW9e/eu0j26IqmpqUhJSUFqaioAsM9NMQUFBcjKytbIsRQVFXleG5KSktjHqqyLFy8iLi4Os2fP5hum+BzW5OdFCKkcaowjhBDyf0VJSQksFgu3b9/muYBA8bYXL17g6dOn8PX1xdChQ9nvv3//vs7SmpqaivPnz2Px4sWYM2cOe3vxfEW8xMXF8dxmZGTE9zjy8vJgsVh89y2tsp8fL4KCgujQoQMuXbqEr1+/VviluvgLbGxsLFfYmJgYKCkpcWyrSm+C4n3nzp2L3r1789yH3yTnVTkvysrKFc5nVVbxF73Y2Fiu94p7t5TNe0WKw584cYLdu5MfXV1d9qT5b9++xbFjx7BkyRLk5uZi165dPPcpPleVLUOKiop8V83l1+BXmpaWFhwdHXH48GFs2LABPj4+MDIyQps2bdhhDh48CHd3d6xatYpj34SEBMjJyXHFWZkeJ3VVJ6tSzywtLXHkyBEwDINnz57B19cXy5Ytg7i4OEcaK0NRURFTpkxBSEgIXrx4ARcXl2qdr8ruq6ysDAD4+vUr3/kkS4epiqpeRyrj4MGD0NfXx9GjRznKTU5ODtex8/PzkZiYyNEgx6tMVLa8CgkJYdq0aZg2bRpSUlJw7do1zJs3D05OTvjy5QvfVUaL88mrnKqqqvLtGVW8nV/DcHVUtm7wqpvXr19HTEwMQkJC2L3hAFQ4d15lvX37FkePHsWRI0fw6tUrGBkZYeDAgRg0aBDMzMw4wvr5+cHDw6NS8TIVLJRgaWmJgIAA5Ofnc8wbV7yQR8OGDSudB29vb4iIiMDNzY1vmOLy8Dv1gBBSPTRMlRBCyP+Vrl27gmEYfPv2Dba2tlwvS0tLACUP/2W/CO/evZsrzrK9kGoKi8UCwzBcadi3bx/fXgyHDh3i+PvevXv4/PkzHBwc+B6neCXXsqvHpaen49y5cxxhK/v58TN37lwwDIORI0ciNzeX6/28vDz2MYuHJZWdqD8sLAyRkZHo0KFDuccqj6mpKYyNjfH06VOe+bC1teXbyFCV89K5c2fcuHGj3CGvZUlKSqJZs2Y4deoUR5kqLCzEwYMHoaWlBRMTkyrkFnBycoKQkBCioqL45pcXExMTLFiwAJaWlnj8+DHf+E1NTaGuro6AgACOL5ufP3/GvXv3OMJ27doViYmJKCgo4JmOyq706OnpieTkZCxatAgRERHw8PDg+NLOYrG4ztGFCxeqNRyrrurk79QzFouFRo0aYdOmTZCTkyv3fOXl5fHtmVc8vK+4F2Z1zldl93V0dISgoCB27tzJN64WLVpAVlYWu3btqtLKj7VxHWGxWBAREeEob3FxcVyrqRYvllC2DBw+fJhnnFUtr3Jycujbty/Gjx+PpKQkjh6oZRUPlY+KiuJ6r2PHjnjx4gXPYc7Hjh2DlJQUmjVrxjfu3/U7daNYVe7RlfX9+3esWbMGNjY2MDU1xa5du+Do6IiHDx/i3bt3WLZsGVdDHFCzw1R79eqFjIwMnDx5kmO7n58fNDQ0Kn0e4uLicPHiRfTs2ZNnb89ixavXWlhYVCpeQkjNoZ5xhBBC/q+0bNkSo0aNgoeHB8LDw9GmTRtISkoiNjYWd+7cgaWlJcaOHQszMzMYGhpizpw5YBgGCgoKOHfuHIKCgrjiLP5ivHnzZgwdOhTCwsIwNTWtVA+f8sjIyKBNmzZYt24dlJSUoKenh5s3b8Lb25tnzx4ACA8Px4gRI9CvXz98+fIF8+fPh6amJsfKorwsX74czs7O6NSpE6ZPn46CggKsWbMGkpKSHD0pKvv58VO8Ou24cePQpEkTjB07Fg0aNEBeXh6ePHmCPXv2oGHDhujWrRtMTU0xatQobN26FQICAujcuTM+ffqEhQsXQltbG1OnTv2tz7XY7t270blzZzg5OWHYsGHQ1NREUlISIiMj8fjxYxw/fpznflU5L8uWLcOlS5fQpk0bzJs3D5aWlkhJScHly5cxbdo0nl/sAOC///5Dp06d0K5dO8yYMQMiIiLYsWMHXrx4gYCAgCrNGwQAenp6WLZsGebPn48PHz7A2dkZ8vLyiI+Px8OHDyEpKYmlS5fi2bNnmDBhAvr16wdjY2OIiIjg+vXrePbsWbm9rAQEBLB8+XKMGDECvXr1wsiRI5GSkoIlS5ZwDUUbMGAADh06BBcXF0yePBlNmzaFsLAwvn79ihs3bqBHjx7o1atXhXnq3r07lJSUsG7dOggKCnL0YAWKGoJ8fX1hZmYGKysrPHr0COvWravyMMfS6qpOVraenT9/Hjt27EDPnj1hYGAAhmFw6tQppKSkoFOnTnzjT01NhZ6eHvr164eOHTtCW1sbGRkZCAkJwebNm2Fubs7uMVqd81XZffX09DBv3jwsX74cP3/+xMCBAyErK4tXr14hISEBS5cuhZSUFDZs2IARI0agY8eOGDlyJFRVVfH+/Xs8ffoU27Zt45mG2riOdO3aFadOncK4cePQt29ffPnyBcuXL4e6ujrevXvHDufo6Ig2bdpg1qxZyMzMhK2tLe7evYsDBw7wjLMy5bVbt25o2LAhbG1toaysjM+fP8PLywu6urowNjbmm2YtLS0YGBjg/v37mDRpEsd7kydPhr+/PxwcHNjXqeTkZBw9ehQnTpzAxo0bq30/4+V371dAUeOsvLw8xowZg8WLF0NYWBiHDh3C06dPfzs9Fy9exOrVq9GnTx+sX78e7dq14xiOyo+iomK5DV5V0blzZ3Tq1Aljx45FWloajIyMEBAQgMuXL+PgwYMQFBRkh/X09ISfnx+ioqK4ejz7+fkhPz8fI0aMKPd49+/fZw91JoTUsbpeMYIQQgipScWrmIWFhfF8v0uXLhyrFBbbv38/06xZM0ZSUpIRFxdnDA0NGXd3dyY8PJwd5tWrV0ynTp0YaWlpRl5enunXrx8THR3NcxW8uXPnMhoaGoyAgADH6ov8VqkDwIwfP55jW/GqmuvWrWNv+/r1K9OnTx9GXl6ekZaWZpydnZkXL14wurq6zNChQ7k+h6tXrzJubm6MnJwcIy4uzri4uDDv3r2r4FMscvbsWcbKyooRERFhdHR0mNWrV/Ndha4yn195IiIimKFDhzI6OjqMiIgIIykpydjY2DCLFi1ivn//zg5XUFDArFmzhjExMWGEhYUZJSUlZsiQIcyXL1844mvbti3ToEEDruPw+kxLe/r0KdO/f39GRUWFERYWZtTU1Jj27dszu3btYofhtaJmZc8LwxStgDl8+HBGTU2NERYWZjQ0NJj+/fsz8fHxHGksvVohwzDM7du3mfbt27M/Y3t7e+bcuXMcYfiVf36rgJ4+fZpp164dIyMjw4iKijK6urpM3759mWvXrjEMwzDx8fHMsGHDGDMzM0ZSUpKRkpJirKysmE2bNjH5+fk8P8PS9u3bxxgbGzMiIiKMiYkJs3//fq6VQhmmaOXF9evXM40aNWLExMQYKSkpxszMjBk9enSlyyvDMMzUqVMZAIyLiwvXe8nJyYynpyejoqLCSEhIMK1atWJu377NteJn8Wd1/Phxrjiqc+6rUid5fUYMU3E9e/36NTNw4EDG0NCQERcXZ2RlZZmmTZsyvr6+5X5uOTk5zPr165nOnTszOjo6jKioKCMmJsaYm5szs2bNYhITEznCV/Z8lf1sq7IvwzCMv78/Y2dnxw5nY2PDVS8uXrzItG3blpGUlGQkJCQYCwsLZs2aNez3eV2zqnsd4XV+Vq9ezejp6TGioqKMubk5s3fvXp7HTklJYYYPH87IyckxEhISTKdOnZjXr19z3UcqW143bNjAtGjRglFSUmJfqz09PZlPnz5xpbushQsXMvLy8kx2djbXe3FxcczYsWMZHR0dRkhIiJGWlmZatWrFs14MHTqUkZSU5NrO7/Mrex+sSt3gFyfDMMy9e/eY5s2bMxISEoyysjIzYsQI5vHjx1zX08quppqQkMDk5ORUGK62paenM5MmTWLU1NQYERERxsrKigkICOAKV7yqLa+V3E1MTBg9Pb1yVx5mGIZp3bo1061bt5pKOiGkClgMU4V+3oQQQgj5I/n6+sLDwwNhYWHlTuJNCCHk/1NMTAz09fXh7+8PV1fX+k4OqWdRUVEwNjbGlStXyu1JSwipHTRnHCGEEEIIIYT84zQ0NDBlyhSsXLkShYWF9Z0cUs9WrFiBDh06UEMcIfWE5owjhBBCCCGEkP8DCxYsgISEBL59+8Z35Vry78vPz4ehoSHmzp1b30kh5P8WDVMlhBBCCCGEEEIIIaSO0DBVQgghhBBCCCGEEPJHu3XrFrp16wYNDQ2wWCycPn26wn1u3ryJJk2aQExMDAYGBti1axdXmJMnT8LCwgKioqKwsLBAYGBgLaSeEzXGEUIIIYQQQgghhJA/WmZmJho1aoRt27ZVKvzHjx/h4uKC1q1b48mTJ5g3bx4mTZqEkydPssOEhobC1dUVbm5uePr0Kdzc3NC/f388ePCgtrIBgIapEkIIIYQQQgghhJC/CIvFQmBgIHr27Mk3zOzZs3H27FlERkayt40ZMwZPnz5FaGgoAMDV1RVpaWm4dOkSO4yzszPk5eUREBBQa+mnnnGEEEIIIYQQQgghpM7l5OQgLS2N45WTk1MjcYeGhsLR0ZFjm5OTE8LDw5GXl1dumHv37tVIGvih1VQJIYQQQgghhBBC/lEtt4+p7yTw1emHGpYuXcqxbfHixViyZEm1446Li4OqqirHNlVVVeTn5yMhIQHq6up8w8TFxVX7+OWhxjhCCPmD/ck3zsq6O34XXsZG1XcyqqWBuiG23z1R38motvEt+yJ1jVd9J6NaZGdPgX/YxfpORrW527lg3Y2D9Z2MapvZbgjWhxyq72RUywyHwf9MmZp/aXd9J6NaVnYejTfxn+o7GdVmqqqHC6/u1ncyqq2LRUscCL9UccA/mJttZwQ8vlrfyai2gY0dsfq6f30no1rmtHfH1jvH6zsZ1TaxVb/6TsI/Z+7cuZg2bRrHNlFR0RqLn8VicfxdPFNb6e28wpTdVtOoMY4QQgghhBBCCCGE1DlRUdEabXwrTU1NjauH2/fv3yEkJARFRcVyw5TtLVfTaM44QgghhBBCCCGEkH8U6w/+V5uaN2+OoKAgjm1Xr16Fra0thIWFyw3TokWLWk0b9YwjhBBCCCGEEEIIIX+0jIwMvH//nv33x48fERERAQUFBejo6GDu3Ln49u0b/P2LhnWPGTMG27Ztw7Rp0zBy5EiEhobC29ubY5XUyZMno02bNlizZg169OiBM2fO4Nq1a7hz506t5oV6xhFCCCGEEEIIIYSQP1p4eDhsbGxgY2MDAJg2bRpsbGywaNEiAEBsbCyio6PZ4fX19XHx4kWEhITA2toay5cvx5YtW9CnTx92mBYtWuDIkSPw8fGBlZUVfH19cfToUTRr1qxW80I94wghhBBCCCGEEEL+UQK1vBhBXXFwcGAvwMCLr68v17a2bdvi8ePH5cbbt29f9O3bt7rJqxLqGUcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoIDVMlhBBCCCGEEEII+Uex/pFhqv8S6hlHCCGEEEIIIYQQQkgdocY4QgghhBBCCCGEEELqCA1TJYQQQgghhBBCCPlH/Surqf5LqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipIzRMlRBCCCGEEEIIIeQfxQINU/3TUM84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/ikWrqf5x/vqecXp6evDy8qrT+FgsFk6fPl2t4yxZsgTW1tbViqOskJAQsFgspKSk1Gi8hFPZz9nX1xdycnL1mqZhw4ahZ8+e9ZqGP0FiYiJUVFTw6dOn+k4Kh23btqF79+71nQxCCCGEEEIIIX+AeusZ161bN/z8+RPXrl3jei80NBQtWrTAo0eP0Lhx4zpNV1hYGCQlJev0mOTv5urqChcXl/pOBgHw33//oVu3btDT0wMAfPr0Cfr6+njy5Am78Ts9PR3dunVDXFwc3rx5U258Hz9+hJ6eHu7du4fWrVujU6dOuHz5Mle4kydPYu3atXj9+jUKCwuho6MDZ2dnbNiwAQAwcuRIrFy5Enfu3EGrVq1qNM+/o5G6EQbZOMJMRQdKknKYc3Enbn98Wt/JYrt0+jzOHDmJ5MQkaOvrYviEUbCwasgzbFJiEvx27EXU2/eI/RoDl97d4TlxNEeY+7fu4uTBo4j9FouCgnyoa2qiu2svODh2qIvssD27fh+PL99BZko6FDRV0GZgF2ia6PEM+/X1B5xa6821fcjKKVBQV67llHISbWkPkUYNwRITQ0FsHH4GXUdhQlIFO4lCrE0LCJsYgSUmisLUNGRfv4X8D58AAIJamhBt1gSCqioQkJZC5qlzyH8XVSvpDw+6g/sXbyAjJQ3KmmroNKQndMwMK9zvy9sPOLBiO5S11DBy1Uz29tdhz3D3bBCS4xNQWFAIeVUl2Ls4wLKVXa2kv9irkHA8CwrFz9R0yGkoo3k/J6gZ6/AMG/PmEy5uOsC1ve+SsZBTUwIAvL33FLf8z3KFGbZ1LoSEa+/x8FVIGJ5eLcqHvIYK7Ps7Qt1Yl2fYmDefcGGjP9f2fkvHsfNRWlTYC1zfdwq6jUzhOM61xtNerKbL1JMboXh+Oww/vsYBANT0teDQvws0DXl/LjWlmY4FWuk3grSoBL5nJONC5D18To7jG15QQADtDZugkaYxpEUlkJqdgZtRT/Doa9G91EJVHw6GNlCQkIEgSwCJWam48/EZImLe1VoeLgaew6mA40hOSoKOni5GTByDBo0seYZNSkjE/h17EPXmPWK+fkPXPj0wctJYjjDRHz/hkLc/ot6+x/e4eHhOGI0e/XvXWvqL3b10HTdOX0ZacgrUtDXR03MgDCxMeIb98Ootzh84ge9fY5GbmwsFZUU0d3RA2+6O7DChV28iPOQe4qK/AQC0DHXhMrgPdE0MajUf4UF3EHrhOrtuOLr1qlzdePMB/iu2QUVLDSP/m8Xe/vh6KJ7fCcOPL7EAADV9bbRzrf26UdbDq7dw73ww0lPSoKKlDmf33tA1M6pwv+g3H+CzbDNUtNUxdvWcOkhpicib4XgRdB8/UzMgp66Mpv068b1nxL79jMubDnJt77V4NPtae2njAcS9i+YKo9XQEJ3GD6jZxJfj+fUHeHzlNrJSMqCgqYLWA1ygUc6z1Ol1+7m2D14xGfJ1/CxFCC/11hjn6emJ3r174/Pnz9DV5byg7t+/H9bW1nXeEAcAyspUMf9Vubm5EBERqfF4xcXFIS4uXuPx1qfa+qwqIy8vD8LCwlXe7+fPn/D29sbFixf5hvnx4wc6d+4MALh27RqEhEougXZ2dhg1ahRGjhzJ3lZ8Pdi/fz8mTpyIffv2ITo6Gjo6JQ8z165dw4ABA7Bq1Sp0794dLBYLr169QnBwMDuMqKgoBg0ahK1bt/4RjXHiwqJ4n/gVF1/fw6rOY+o7ORzuXL8Jn217MHLKOJhbWuDK2UtYMWsRNvvtgrKqClf4/Nw8yMjJos+QATh/PJBnnFLS0ujjNgBaOloQEhJGeOgDbFu9CbJycrBp2qS2swQAePvwGW4FXISDWzdoGOniRUgYzm7yw5AVkyGtKMd3P7dVUyEiLsr+W1y6bn8sEmlmC1E7G2RdvIrCpBSItmgKyf69kb7PD8jN472TgAAkXXuByfqJrNPnUZieAQFpaTC5uewgLBFhFHz/gdznLyHZq1utpf/V/ScIOngazsP6QttEH4+v38ORdXswes0cyCrJ890vO+snzu46DP0GxshITed4T1xSAi27d4KShioEhQTx7slLnNtzBBIy0jC0MquVfESFv8T941fQYqALVA218Pr2Y1zedhh9F4+FlIIs3/36LR0HYbGS8iMmLcHxvrCYKPotHcexrTYb4qLCXiL02BW0HOQCVUNtvL71GJe3Hka/JePKz8ey8RApJx8AkJ6YggcngqBmxPvLZk2pjTL1OfI9LJo3hpaJPoSEhRB6/joC1uzCqNWzIaMgVyv5sFQzhIt5C5x7eQefk+Ngp2OBobYu2Hz7GFKzM3juM9C6EyRFxRH4/CYSs1IhJSIOAVbJIJufedkIiXqMHxkpKGAKYaqsg96WDsjI/Yn3CV9rPA+3g0Owb+sujJk2AeYNG+Dy2QtYOmsBtvvv5Xm/yMvLg6ysHPq5DcAZPveLnOwcqGmoo2W7NvDeurvG08zLkzsPcXp/APqMcoO+mRHuXQ3BnuWbMHvLCsgrK3KFFxETRSuX9tDQ1YaImCg+vHqHE7v8ICImguaODgCAqJdv0Lh1M+iZGUFIWBg3Ai9h99INmLVlBeQU+ZfT6ngZ+hhXDwSis0dJ3QhYuxtj1s6tsG6c2XUI+g2MkcmjbjRo3hha7noQEhFG6PlgHF69E6PXzKm1ulHWi9BHuOx/Cl2G94eOqQHCr93FwdU7MX79fMgpKfDdLzvrJwJ3HIBBQxOuOl/bPoS/wsPjQWg+wBkqhtp4c/sxgrYfQa9Fo8u91vZeMobvPaP96L4oyC9g/52T+RNnVu6FXmPz2skED+8ePsftIxfRdkg3qBvp4OXNMJzz8seg5ZPKfZYavHJKvT5L/SkEaJjqH6fehql27doVKioq8PX15dielZWFo0ePwtPTEwBw7949tGnTBuLi4tDW1sakSZOQmZnJN97o6Gj06NEDUlJSkJGRQf/+/REfH88R5uzZs7C1tYWYmBiUlJTQu3fJL15lh6m+e/cObdq0gZiYGCwsLBAUFMR1zNmzZ8PExAQSEhIwMDDAwoULkZfH+SVl9erVUFVVhbS0NDw9PZGdnV3u51NQUABPT0/o6+tDXFwcpqam2Lx5c7n7lJWYmIiBAwdCS0sLEhISsLS0REBAQIX7+fr6QkdHBxISEujVqxc2bNjAMQyT15DIKVOmwMHBgf03wzBYu3YtDAwMIC4ujkaNGuHEiRPlHnfHjh0wNjaGmJgYVFVV0bdv32rFp6enhxUrVmDYsGGQlZVlN7JUVKYOHjwIW1tbSEtLQ01NDYMGDcL379/L/bxKfz56enpgsVhcr2KVKS9lffv2Da6urpCXl4eioiJ69OhR5aGYd+/eRdu2bSEhIQF5eXk4OTkhOTkZAODg4IAJEyZg2rRpUFJSQqdOnfDp0yewWCxERESw40hJSQGLxUJISAh728uXL9GlSxfIyMhAWloarVu3RlRUSQ8XHx8fmJubQ0xMDGZmZtixYwf7veJjHDt2DA4ODhATE8PBgwdRWFiIZcuWQUtLC6KiorC2tubZI620S5cuQUhICM2bN+f5/pcvX9C6dWtIS0vjxo0b0NLSgpqaGvslKCjIPuelt2VmZuLYsWMYO3YsunbtynXNOn/+PFq1aoWZM2fC1NQUJiYm6NmzJ7Zu3coRrnv37jh9+jR+/vxZbj7qwv3ol9j74Cxufoio76RwOXc8EB1cHNGpqzO0dHXgOXE0FFWUceXMBZ7hVdRV4TlxDNo5dYAEn17NDW2sYN+6BbR0daCmqY6ufXtC11Afkc9f1mZWODy5chcNWjdBwzZ2UNBQQZtBXSClIItnNx6Uu5+EjCQkZaXZLwGBur1ti9raIDs0DPlvo1CYkIifF66CJSwMEXP+jU4iVg3AEhND1qlzKPgWCyYtHQXfYlD4I4EdJv/DJ+TcDkX+29rpDVfswaUQWDs0g007eyhpqsLRrRdkFOXwOPhuuftd2n8cDZo3hqaRHtd7uhZGMLOzgpKmKuRVldDUuS1UtNXx5c2HWsoF8OLafZi0tIFZKxvIqyujeX8nSMrLIPJmeLn7iUlLQkJWiv0qW35YLHC8LyErVWt5AIDn10Jh2tIGZq0aF+XD1QlS8rJ4VUE+xCvIR2FhIW54B6JxNwdIK9dOQ0Ox2ihTPce5wbZTK6jpakJJQxVdRriCKWTw6WXt9ShrqW+JR19fI/zra/zITMHFyHtIzc5AMx0LnuGNlbShp6AO//BLiEr8hpSfGfia+gPRKSXP2B+TYvEq/hN+ZKYgKSsNoZ9fID49EXryarWShzPHTqFjFyc4du0MbT0djJw0FkrKyrh4+jzP8Krqahg5eSzaO3fiOwrG2NwUHuNGok0HBwiLVP2Hwd9x8+wVNOvQGvad2kBVWwO9PAdBTlEBdy/f4Bley0AXjVvbQ01HEwoqSrB1aA5T64b48KqkvAyZOgotO7eHpr4OVLXU0X/cMDAMg3fPXtVaPkrqRnMoaarB0a03ZBTl8OjanXL3u+h9DA1bNIGmsR7Xe73G/6obelq/6saAX3XjbS3lglvohRto3K45mrRvAWVNNXQe2geyivIIDyo/X+f2HYFlyybQMtavo5SWeBn8AMYtrGHSygZy6kpo1t8RkvIyeH3rcbn7lXfPEJUU53gvJvIjhESE67QxLuLqXVi0boIGbWyhoKGC1gOLnqWehzwsd7/6fpYihJ96K4lCQkJwd3eHr68vGIZhbz9+/Dhyc3MxePBgPH/+HE5OTujduzeePXuGo0eP4s6dO5gwYQLPOBmGQc+ePZGUlISbN28iKCgIUVFRcHUtGapw4cIF9O7dG126dMGTJ08QHBwMW1tbnvEVFhaid+/eEBQUxP3797Fr1y7Mnj2bK5y0tDR8fX3x6tUrbN68GXv37sWmTZvY7x87dgyLFy/GypUrER4eDnV1dY4GCX7H1tLSwrFjx/Dq1SssWrQI8+bNw7Fjx8rdr7Ts7Gw0adIE58+fx4sXLzBq1Ci4ubnhwQP+X/4ePHiA4cOHY9y4cYiIiEC7du2wYsWKSh+z2IIFC+Dj44OdO3fi5cuXmDp1KoYMGYKbN2/yDB8eHo5JkyZh2bJlePPmDS5fvow2bdr8dnzF1q1bh4YNG+LRo0dYuHBhpcpUbm4uli9fjqdPn+L06dP4+PEjhg0bVum8h4WFITY2FrGxsfj69Svs7e3RunVr9vsVlZeysrKy0K5dO0hJSeHWrVu4c+cOpKSk4OzsjNxSPU3KExERgQ4dOqBBgwYIDQ3FnTt30K1bNxQUlPzC5efnByEhIdy9exe7d1fu1+Bv376xG6uvX7+OR48eYfjw4cjPzwcA7N27F/Pnz8fKlSsRGRmJVatWYeHChfDz8+OIZ/bs2Zg0aRIiIyPh5OSEzZs3Y8OGDVi/fj2ePXsGJycndO/eHe/e8f9icuvWLb51+c2bN2jZsiXMzMxw+fJlSEtLVyp/AHD06FGYmprC1NQUQ4YMgY+PD8c1S01NDS9fvsSLFy/KjcfW1hZ5eXl4+LD8B4b/Z3l5eYh68x6N7Dh7RVvb2eD1y8gaOQbDMHj2KAIxX77CohHvoa81rSA/H98/x0CnAeeQFp0GRoh9zz3ko7SAJduxb+p/OLXOG18ia6+xhxeWrAwEpCSR//FzycaCAuR/+QpBTXW++wkZGaAgJhbindpBesJISA0fAlF7u6KWnzpUkJ+P2I9fod/QlGO7QUNTfH33ie9+T28+QHJ8Atr0dqrwGAzD4OOLt0iK+1GpoVi/oyC/AAnRsdAy5xxepmVuiPgP5fc2Cly5F4dmbcLFTQcQ8+YT1/t5Obk4Mm8LDs/xwpXtR5AQHVuTSedQnA9NC87PSdPCAPFRX8rd99SKPTg4cyMubPRHzJuPXO8/OX8LYtISMGtlU6NpLqsuyhRQdF4KCwohLsXdA7AmCLIEoCGjzNVb7X3CV+jIq/Lcx1xFF99Sf6C1fiPMbjcEU9u4wtnUHkICgnyPY6CoCSVJOXxMqvlylZeXh/dv38HGjrN3s41dE7x+UXsNTjUtPy8fX6M+w8S6Acd2U+sG+PT6faXi+PrhMz69eQ/DBqZ8w+Tm5qCgoAASUrXTI6i4bhhYcv5QY2BpVm7diLj5AMnff6Nu1NGUQvn5+Yj5+IWr17OhlRm+vOW+FhV7EnIfyfEJaNunc20nkUtBfgESo2OhacHZCKhhboDvFdwzzq7ahyOzvXDZ6xBiedwzSnt7LwL6thYQFq2bkTTFz1LaZZ6ltC2MEFfBs9SRpduxf9pqnF63H19f1+2zFCHlqdfVVIcPH45169YhJCQE7dq1A1A0HKx3796Ql5fH5MmTMWjQIEyZMgUAYGxsjC1btqBt27bYuXMnxMTEOOK7du0anj17ho8fP0JbWxsAcODAATRo0ABhYWGws7PDypUrMWDAACxdupS9X6NGjXim79q1a4iMjMSnT5+gpaUFAFi1ahV7mFuxBQsWsP+vp6eH6dOn4+jRo5g1q2jOAy8vLwwfPhwjRowAAKxYsQLXrl0rt3ecsLAwRxr19fVx7949HDt2DP379+f/oZaiqamJGTNmsP+eOHEiLl++jOPHj6NZs2Y899m8eTOcnJwwZ07RvAYmJia4d+9ehb2SSsvMzMTGjRtx/fp1di8lAwMD3LlzB7t370bbtm259omOjoakpCS6du0KaWlp6OrqwsbG5rfjK9a+fXuOz8Dd3b3CMjV8+HB2eAMDA2zZsgVNmzZFRkYGpKQq7jVQeqjz5MmTERsbi7CwMPa2ispLWUeOHIGAgAD27dvH7mHn4+MDOTk5hISEwNHRked+pa1duxa2trYcjcANGnA++BkZGWHt2rXsvyvT82779u2QlZXFkSNH2ENLTUxK5jhZvnw5NmzYwO59qq+vj1evXmH37t0YOnQoO9yUKVM4eqiuX78es2fPxoABRXNQrFmzBjdu3ICXlxe2b9/OMy2fPn2ChoYGz/fc3d3RokULnDx5EoKC/L848OLt7Y0hQ4YAAJydnZGRkYHg4GB07NgRQFG9un37NiwtLaGrqwt7e3s4Ojpi8ODBEBUt6RIvKSkJOTk5fPr0qdwy+/8sPTUNhYWFkJOX49guKy+PlKTkasWdmZGJkX3dkJeXBwEBAYyaOh7WtnUzFcLP9CwwhYVcvY4kZKSQlcp7OJikrDTaD+0JFT0NFOQV4HXoEwSu348+szyhaVo3v7IL/PrSxmRlcWxnMrPAkpXhv5+cLARktZH36jUyj5+BoIIcxDq1AwQEkHOv/J6ANSkrPRNMYSGkZDkb3yVlpZGRksZzn6S4H7hx9DzcFk6EQDnXiuysn9gycQkK8vPBEhCA87C+MLDk/0W4OrIzssAUMhCX4fzyKS4jiZ9pvMuPhKwUWg3uAiVddRTkF+D9/We46HUAXaa5s+dnk1NTRJuh3aGgqYK8n7l4cf0Bzq3zRe8FoyCryj00rqbyIVE2H9KS+JnGe8SDhKwUWg/pWpSPvHy8e/AcFzYdQNdpQ6FuUpSPuPfReHP3CXovHM0zjppUm2WqtBtHz0NaXhb6DXjPGVZdEiJiEBQQQEYOZ0/tjJyfkBLh3QAoLyEDXXk15BcW4NDjK5AQEUN3i9aQEBHFqeclP4yKColgdrshEBIQQCHD4NyrO4hK/FbjeUhLTUNhAY/7hYJcte8XdSkzPR2FhYWQluMcOigtJ4P0lNRy9106YjoyUtNRWFgAJ9cesO/Uhm/YC/4nIKsgD5NGDfiGqY7iuiHJq26kllM3jpyD+6JJla4b14+ch7SCLPQb1k7dKCsrrer5Soz9jmsBZ+GxZEqVnzlrQs6va62YNOczh7i0JH7yeeaQkJFCi8EuUNRRQ2F+AaIePMflzYfQeaobz3nmfnz6hpSYH2jl1qVW8sAL+1lKpsyzlKwksl7weZaSk0Y79x5Q1tNEQV4+3oRG4PR6H/SaObzOnqX+JLSa6p+nXhvjzMzM0KJFC+zfvx/t2rVDVFQUbt++jatXrwIAHj16hPfv3+PQoUPsfRiGQWFhIT5+/Ahzc85usZGRkdDW1mY3xAGAhYUF5OTkEBkZCTs7O0RERHDMCVWeyMhI6OjosBviAPAcAnfixAl4eXnh/fv3yMjIQH5+PmRkZDjiGTOGc16m5s2b48YN3t3Pi+3atQv79u3D58+f8fPnT+Tm5lZpBdaCggKsXr0aR48exbdv35CTk4OcnJxyF6iIjIxEr169uNJalca4V69eITs7G506deLYnpuby25gK6tTp07Q1dWFgYEBnJ2d4ezsjF69ekFCQuK34itWtqdUZcrUkydPsGTJEkRERCApKQmFhYUAihoMLSx4D9/gZc+ePfD29sbdu3c5GugqKi9lFae5bG+u7OxsjuGg5YmIiEC/fv3KDcOvV1lF8bZu3ZrnHG8/fvzAly9f4OnpyVHn8vPzISvL+dBZ+thpaWmIiYlBy5YtOcK0bNkST5/yX2Tg58+fXA30xXr06IHAwECcPHmy0o3ZQFGPuocPH+LUqVMAinr0urq6Yv/+/ezGOElJSVy4cAFRUVG4ceMG7t+/j+nTp2Pz5s0IDQ2FhETJFxtxcXFklWnYKFZcP0sr3Zj3/4TrYYFhwEL1HiDEJcSxYd82ZP/8iWePn8Jn+16oqquhoY1VteKtGh754pMteXVljsmF1Y10kJ6UisdX7tTaA6SwhSnEnUoWtcg8cYadTg4sHts43meBycrCz8vBAMOgMP47WFKSEG1qW6eNcaXTUxoD3g+khYWFOL39AFr3cYaiOvd8U6WJiolixMoZyM3JxaeXb3Ht0GnIKytC16LiCb1/W9l8MAy4ytQvcmpKHAscqBpoISM5Dc+DQtmNcSoGWlAxKHm+UTXURuCqvXgZEoYWrs41n/7fwJUPQ21kJqXiWVAo1E10kZudgxv7T6O1W1eI1VIvMp5qoUwVCz0fjJehTzBk/ngI1fIwybK1uCgLvOt2cfaOPb2OnPyiXvkXX4dioE0nnH15B/mFRT3tc/Nzse3uCYgKCsNAUROdzZojKSutVnrHFaWL+7pazdtFvSibZIZhKvziPGHlHORk5+DzmyhcOHACSuoqaNzanivc9cBLeHznIcYvn1XrQ2+5kszn/l1YWIjA7f5o06dzpevGvXPBeBn6GG4LJtR63SiLKw98Lr+FhYU4uc0PDn1doFTJfNUW7uLDv0zJqilCVq3kRxgVAy1kJqfhRdB9no1xb+8+hZyGMpT1NGswxb+J/60Q8mrKkFfjfJbKSE7Fkyt3/y8b48ifp14b44CihRwmTJiA7du3w8fHB7q6uujQoejLQGFhIUaPHo1JkyZx7Vd6AvVi/G5cpbdXZaJ9hseXjbLx379/n93TzsnJid1LqHgVxd917NgxTJ06FRs2bEDz5s0hLS2NdevWlTvEtKwNGzZg06ZN8PLygqWlJSQlJTFlypRyhzbyynNZAgICXOFKz3lW3Hh14cIFaGpyXqT5NS5IS0vj8ePHCAkJwdWrV7Fo0SIsWbIEYWFhvxVfsbINjxWVqczMTDg6OsLR0REHDx6EsrIyoqOj4eTkVOkhoQAQEhKCiRMnIiAggKPn5e+Ul8LCQjRp0oSjAbFYZRccqUy5L/tZFc+nUPpcl53brrx4i8/b3r17uXpilv2lkFcDcdm6VtGDqZKSEnsOvLLmzZsHKysrDB48GAzDcAxdL4+3tzfy8/M5yh3DMBAWFkZycjLk5UvmJjI0NIShoSFGjBiB+fPnw8TEBEePHoWHhwc7TFJSEt9z9t9//3H0hgWAxYsXA/9Ha8pIy8pAQEAAyWV6NaSmpEC2mhM1CwgIQF2rqOekvrEhvn6OxqnDx+qkMU5cWgIsAQFklZnAOSs9E+IylZ+jS91AG6/v196qt3nvP6AgptRKikJF9ZQlKQkms6QRmSUhwfF3WUxGUU+C0g12hYnJRT3tBASAX9eG2iYhLQmWgABXj6Ws1HSuXg4AkPszB7EfvyDu8zdc8StqgGcYBmAYrHKfjkGzx0CvgTEAgCUgAIVfD/hquppI+BaPe+eu1UpjnJiUBFgCLK4eDdnpWVy95cqjoq+J9w+f832fJcCCsq4G0r5XsFLubyrOR1aZXnA/0zOrlg8DLbx/UJSP9B/JyEhMwZXtR9jvF9+z9o1djv7LxkNGmf8E61VVm2UKAO5fuIG7Z69h0JyxUNXh3dO7JmTlZqOgsBDSopz3cEkRcWTk8p7XND07C2nZmeyGOAD4kZEMARYLsmKSSMwq+kwYAEm//h+bnggVKTm0NbCp8cY4GVkZCAjyuF8kp0Ku1L35TycpXTR/VVqZXnAZqemQKqcHMgAoqhZdgzR0tZCRmoYrR85wNcbdOH0Z106cx9ilM6Chp80rmhpRUjc473OZaRl86kY2Yj98Qdynb7jsdxJASd1Y6TYNg+aM4egZGnrhOu6eDcLgueNqtW6UJSHzK19lesFlpqVDiscP6Tk/sxHzIRqxn77iou9xACX5Wjp4MtzmjoNBw9rpRV1MtPieUabn9M/0LIhV4VqrrK+JqIfcU7Dk5+bhY/gr2HTj3xOzNrCfpcrkKystk6u3XHnUDLTxphafpQipinpvjOvfvz8mT56Mw4cPw8/PDyNHjmR/4W7cuDFevnwJI6PKPdxaWFggOjoaX758YfeOe/XqFVJTU9m96KysrBAcHMzxBbmi+GJiYtjD30JDQznC3L17F7q6upg/fz572+fPnznCmJub4/79+3B3d2dvu3//frnHvn37Nlq0aIFx40pWOatsL6jScfTo0YM9xK6wsBDv3r3j6lFYmoWFBVfayv6trKzMNT9WREQEu3eUhYUFREVFER0dXaXheEJCQujYsSM6duyIxYsXQ05ODtevX0enTp1+Kz5eKipTz58/R0JCAlavXs0uQ+Hh5U8sXdb79+/Rp08fzJs3j2PoJVC58sIrzUePHoWKikq5PejKU1zuyzb2lKe40Sg2NpbdA7H0Yg7F8fr5+fFcAVVVVRWampr48OEDBg8eXOnjysjIQENDA3fu3OGYN/DevXto2rQp3/1sbGxw8CD3suzFFixYACEhIQwePBiFhYUYOHBguenIz8+Hv78/NmzYwDUUuE+fPjh06BDf+Sv19PQgISHBsTBIVFQUsrOz+fbmnDt3LqZNm8axTVRUFEH7Jpebzn+JsLAwDE2N8DT8Cexbt2Bvfxr+BE1bcv/aX115/FYDrWGCQkJQ0dVA9Kv3MGxSMkQo+uV7GNhUfuLj79GxPL/U1JjcPBTmcn4hLMzIhJCeDnK//yjaICAAIW0tZIfwn7g6/1sMRCw459cRkJdDYXpGnTXEAUWfu7q+Fj6+eAszu5JG148v3sKkCfd8gaLiohj5H+d0AY+u3cXnV+/Qe9IwyFXQqJOfl18zCS9DUEgQSjrq+Bb5AXo2JZ/rt8gP0G1U+aFaiV/iIFFO+WEYBolf46CgWTu9OUrnQ58rH5X/cpr4JQ7iv4Z8y6opoc8izpEH4WduIC87B81dnSEpz3/VwN9Rm2Uq9Px13D0ThIGzR0PDoHZXhC1gChGT9gNGilp4Ff+Jvd1ISQuRpf4uLTolHg3VDSAiKITcgqKyriQpi0KmEKnZ/BdWA1gQLGdeud8lLCwMIxNjRIQ/RvM2JT3pI8Ifo2kr3gs5/YmEhIWgZaiLt09fwcq+ZP67t09fokHTys+ByDAM1zXoeuAlXDtxHqMWTYO2Ue32AiqpG28468bzN3zqhhhGreach/vRtTv49PId+kz24Kobd05fxcDZY2q9bpQlJCQEDX1tRD17DXO7kh/Xo56/gVkTS67wouJiGLt2Lse2sKu38fHVW/Sf4slzddyaJigkCEUddcREfoSudcm1NibyI3SqdM+I5/mD4cdHr1CYnw/DpnUz726x4mepLy/fw7BxyUilL6/eQ78Kz1I/omNrfbGiP5XA39ht+B9X741xUlJScHV1xbx585CamsoxUf7s2bNhb2+P8ePHY+TIkZCUlERkZCSCgoK4VioEgI4dO7J7v3h5eSE/Px/jxo1D27Zt2cPgFi9ejA4dOsDQ0BADBgxAfn4+Ll26xHO+ro4dO8LU1BTu7u7YsGED0tLSOBpRgKJ5tqKjo3HkyBHY2dnhwoULCAzkXC598uTJGDp0KGxtbdGqVSscOnQIL1++hIEB52TMZeP19/fHlStXoK+vjwMHDiAsLAz6+pW/mRoZGeHkyZO4d+8e5OXlsXHjRsTFxZXbGDdp0iS0aNECa9euRc+ePXH16lWuIart27fHunXr4O/vj+bNm+PgwYN48eIFu5FBWloaM2bMwNSpU1FYWIhWrVohLS0N9+7dg5SUFMdcYcXOnz+PDx8+oE2bNpCXl8fFixdRWFgIU1PT34qPn4rKlI6ODkRERLB161aMGTMGL168wPLlyysd/8+fP9GtWzdYW1tj1KhRiIsr6WWipqZWqfJS1uDBg7Fu3Tr06NGDvcJodHQ0Tp06hZkzZ3IMo+Zn7ty5sLS0xLhx4zBmzBiIiIjgxo0b6NevH5SUlHjuIy4uDnt7e6xevRp6enpISEjgmO8OACZMmICtW7diwIABmDt3LmRlZXH//n00bdoUpqamWLJkCSZNmgQZGRl07twZOTk5CA8PR3JyMlfDU2kzZ87E4sWLYWhoCGtra/j4+CAiIoJn78BiTk5OmDt3LlePtdLmzJkDQUFBuLm5obCwsNxGwvPnzyM5ORmenp5cw2r79u0Lb29vTJgwAUuWLEFWVhZcXFygq6uLlJQUbNmyBXl5eRxDq2/fvg0DAwMYGvKe5F1UVLTOhqWKC4tCS7aky52GjBKMlbSQlp2J+Iz6nWunW79e2LJqA4xMjWHawAxXz11GQvwPOHZ3AQAc3OODxIRETJ5XMhfkx3dFP1Rk//yJtNRUfHwXBSFhYWjrFT20nzx0FIamxlDTUEd+Xj4ePwhDyJVgjJo6vs7yZePUElf3noCKnibUDXXw4mYYMpJSYelQ1MB898QVZCanwXFk0XDyJ1fvQkZJHoqaKijIL8Dr0AhEPXoJl/GD6izNAJAT/gRizZuiMDkFhckpEG1uByYvD7mRr9lhxLs4ojA9Ezm3ilaTzH3yDKKNrSHW0QG5jyIgIC8H0eZ2yH0UURKxsDAESs31JCArAwEVZTA/s8Gkc/asqI5mnR1wZuchqBtoQ8tID09u3ENqYjIadyhq7L1x9DzSk1PRfcxgsAQEoKLNuTCFpIwUBIWFOLbfPXsN6vrakFdVREF+AaIiIvH8Thich5U/FUB1NOxoj5s+p6GkqwEVA028uf0EGcmpMGtT9OU9LDAYmSnpcPDoCQB4EfwAUoqykFdXRmFBAd4/eI5PT16jw+iSVcofn78JFX0tyKgoIC87By9vPETil3i0GFB7E45bdmyOEJ9AKOuqQ8VAC69vP0ZGUirMf+Xj4a98tPuVj+fX7kNaSQ7y6soo+JWPj48j0XF00WctJCzE1XgoIlE0XUFtNSrWRpkKPR+Mmycuoec4N8gqKbB73omIiUJErHbuC3c/PkffRu3wLe0HopPjYadtDlkxKTyMLlr8wNGkKWTEJHHiWdGUKk9j3sHBsDF6Wzog+H04JIXF4Wxmj0df37CHqLYxsMa31B9IykqDoIAgTJW1YaNpjLMvy1918nf16N8bm1aug5GpCcwamOPKuYv48f07OvcomsfKb/d+JCUkYOr8kmf8D6XvFymp+PAuCkLCQtDRKxq+nZeXhy+fiiaDz8/LQ1JCIj68i4KYuBg0tGpnSF7b7k44vHkvtA31oGdqiNCgm0hOSEILJwcAwPkDJ5CWlIxBk4um/LhzMRjyyopQ+bWQzsfItwg5cwWtXEqmGbgeeAmXDgdiyLRRUFBRQlpy0Q8tomKiEBXnPaVHdbHrhr42tIz18Ph66K+6UdRYev3IOaQnp6LH2CE864aEjBSEytSNe+eCcfPERfQc7w455bqpG2U179IOp7YfgIaBDrRN9PEo+C5SE5Jg27EVAOBawFmkJaeg9zh3CAgIQFWbs+eepKw0hISFubbXpgYdmuG27xko6qpDRV8Lb+48QWZyKsxaF82VG376BrJS0tFmWHcAwMvgh5BSlIWchnLRnHEPX+Dzk9doN6oPV9zv7j6FTiPTup0a4Bdrx5YI2lf0LKVmqI2Xt8KRkZSKhm3tAAD3Tl5FZnIaOo0outdFBN2DjKIcFH49S725/xRRj16i87jyf5AnpK7Ue2McUDRU1dvbG46OjhzDT62srHDz5k3Mnz8frVu3BsMwMDQ05DvEjMVi4fTp05g4cSLatGkDAQEBODs7czTcOTg44Pjx41i+fDlWr14NGRkZjt43pQkICCAwMBCenp5o2rQp9PT0sGXLFjg7l8yl0qNHD0ydOhUTJkxATk4OunTpgoULF2LJkiXsMK6uroiKisLs2bORnZ2NPn36YOzYsbhy5Qrfz2TMmDGIiIiAq6srWCwWBg4ciHHjxuHSpUuV/VixcOFCfPz4EU5OTpCQkMCoUaPQs2dPpKbynxDW3t4e+/btw+LFi7FkyRJ07NgRCxYs4GiQcnJywsKFCzFr1ixkZ2dj+PDhcHd3x/PnJcNfli9fDhUVFfz333/48OED5OTk0LhxY8ybN4/nceXk5HDq1CksWbIE2dnZMDY2RkBAAHuRgarGx09FZUpZWRm+vr6YN28etmzZgsaNG2P9+vXo3r17peKPj4/H69ev8fr1a67FBBiGqVR5KUtCQgK3bt3C7Nmz0bt3b6Snp0NTUxMdOnSodE85ExMTXL16FfPmzUPTpk0hLi6OZs2aVdg7bP/+/Rg+fDhsbW1hamqKtWvXcvQSU1RUxPXr1zFz5ky0bdsWgoKCsLa2Zs/3NmLECEhISGDdunWYNWsWJCUlYWlpyV5Ag59JkyYhLS0N06dPx/fv32FhYYGzZ8/C2NiY7z6WlpawtbXFsWPHMHo0/4m8Z86cCUFBQQwdOhSFhYVwc3PjGc7b2xsdO3bkaogDinrGrVq1Co8fP0bbtm2xfft2uLu7Iz4+HvLy8rCxscHVq1dhalrS2yMgIKDS81XWNjNlXWzrVdIYOqlV0Rfbi5GhWHndj99udaJV+7ZIT0vHMb/DSE5Kgo6+HuavWQoVtaIV/pITk5EQ/4Njn+kjJ7L/H/X2PW5fC4Gyqgp2H/UFUDRsZO+mHUj8kQARURFo6mhj8vwZaNW+7hbSMGlqheyMLDw8ewOZqelQ1FRF9ynukFEqajjOSk1HelLJtbmwoAB3jl1CRnIahESEoaihgu5T3KFnVbvDW8rKfRAOlpAQxB3bgyUmioKYOGQeCwRK9SoUkJHhmGaKSc9A5rFAiHVoA6nhQ1CYnoHc8AjkPCjpZSyopgqpQSUNQ+Idis5F7vNX+Hnxao2l38LeBlnpmbgTeAUZKWlQ1lLHgJmjIKtU1OsiIyUNqQlVa4DOy8nFZd8TSE9KZZ+bHmOHwMK+9lbyNLRtgJyMn3hy4Ray0jIgr6EMpwkDIa0oBwDISs1ARlLJMKqC/AI8PHkNmSnpEBIWgpyGMpzGD4C2Zck1NDcrB3cOXUBWWgZExEWhqK2GrjOGQkW/9uYAMrRrgJzMLDy+cAtZqRlQ0FCB84RBHPnILFMPHpwI4szHhIHQseR/L6httVGmHl27i4L8Apzc4suxvXUvJ7TpUzvz9z2Pi4KEiCjaGTaBtJgE4tOT4B9+CSnZRUPApEUlICtW0nsktyAfPmEX0M2iJca16I2s3By8iItC0NuSBapEBIXRvUFryIpJIq8gHz8yU3D86Q08j6vayI7Kat3BAelp6TjqdwhJiUnQ1dfFojUrSt0vkvCjzP1iimfJiJP3b97h5rUbUFFTxb5j/gCApIREjjCBR04g8MgJNLS2wqot62olHzatmiIrPQNXj51FWnIq1HU0MXLBFCioFP1Ymp6ciuQfJcPHGYbBhQMnkfT9BwQEBaGopowubn3R3LHknnb30nUU5OfDb+0OjmM5unaH84CetZKPBs0b42dGFm5z1I3R7F5uGSlpSE2sat24U1Q3NvtwbG/d26nOVipt2LwJstIzcfPUZWSkpEFFWx2DZ49l5ys9JbXKdb62GdhaICczC08v3Cm6Z6gro9P4AZBSLHqm/cnjWht2KhhZKekQFBaCvLoyOo53hXZDzpFEqfGJiI/6AsdJ9dOYZdzUEtkZWQg7V/Is1XWyW8mzVEo60pNS2OEL8wtw9/jlomcpYWEoaKqg62S3On+WIoQfFlOZScLI/zVfX19MmTIFKSkp9Z0UQsp18eJFzJgxAy9evGDPefcnePHiBTp06IC3b9/ybNwrT8vtYyoO9Ie7O34XXsbWzpexutJA3RDb756o72RU2/iWfZG6xqu+k1EtsrOnwD/sYn0no9rc7Vyw7gb/ofV/i5nthmB9CP9ey3+DGQ6D/5kyNf/S7vpORrWs7Dwab/gMlf2bmKrq4cKru/WdjGrrYtESB8Ir3xHgT+Rm2xkBj2vuR576MrCxI1Zf96/vZFTLnPbu2HrneH0no9omtqq9nvC1qfM+/qOS6tulERvrOwn14o/oGUcIITXBxcUF7969w7dv3zhWVa5vMTEx8Pf3r3JDHCGEEEIIIYSQfw81xhFC/imTJ/95Cx6UXQCCEEIIIYQQQsj/rz9nHBf5Yw0bNoyGqBJCCCGEEEIIIX8hFkvgj339v/r/zTkhhBBCCCGEEEIIIXWMGuMIIYQQQgghhBBCCKkjNGccIYQQQgghhBBCyD9KgMWq7ySQMqhnHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSM0TJUQQgghhBBCCCHkH8UCDVP901DPOEIIIYQQQgghhBBC6gg1xhFCCCGEEEIIIYQQUkdomCohhBBCCCGEEELIP4pWU/3zUM84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/ikXDVP841DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKPomGqfx7qGUcIIYQQQgghhBBCSB2hxjhCCCGEEEIIIYQQQuoIi2EYpr4TQQghhBBCCCGEEEJqXh+/efWdBL5ODl1V30moFzRnHCGE/MFexkbVdxKqrYG6IVpuH1PfyaiWu+N34f2PL/WdjGozUtZGelJSfSejWqQVFP6ZevE6/mN9J6PazFT1//q6YaSsjZT01PpORrXJScviR/rfXb+VpRXwJv5TfSej2kxV9fDue3R9J6PajFV08D0tsb6TUS0qMoqIT0uo72RUm6qM0l9/zzBT1Ud6Wlp9J6PapGVk6jsJ5B9Bw1QJIYQQQgghhBBCCKkj1DOOEEIIIYQQQggh5B9Fq6n+eahnHCGEEEIIIYQQQgghdYQa4wghhBBCCCGEEEIIqSM0TJUQQgghhBBCCCHkHyVAw1T/ONQzjhBCCCGEEEIIIYSQOkKNcYQQQgghhBBCCCGE1BEapkoIIYQQQgghhBDyj6LVVP881DOOEEIIIYQQQgghhJA6Qo1xhBBCCCGEEEIIIYTUERqmSgghhBBCCCGEEPKPYoGGqf5pqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipIzRMlRBCCCGEEEIIIeQfJUCrqf5xqGccIYQQQgghhBBCCCF1hBrjCCGEEEIIIYQQQgipI9QYRwj5J2VlZWH58uX4/PlzfSeFEEIIIYQQQuoNi8X6Y1//r6gxjvzf8/X1hZycXJ0cy8HBAVOmTKmTY9Wkqn5Genp68PLyqrX0VMbEiRMRExMDXV3dKu33t54jQgghhBBCCCF/B1rAgfwVKmoxHzp0KHx9fesmMf+HXF1d4eLiUunwYWFhkJSUrMUUlS8gIADx8fE4c+ZMlfc9deoUhIWFayFVte/S6fM4c+QkkhOToK2vi+ETRsHCqiHPsEmJSfDbsRdRb98j9msMXHp3h+fE0Rxh7t+6i5MHjyL2WywKCvKhrqmJ7q694ODYoS6yU65G6kYYZOMIMxUdKEnKYc7Fnbj98Wm9pef8qTM4FXAcSYmJ0NHTw6jJ49CwkSXf8M+fPMXerbsQ/ekTFBQV0XewK1x6dmO/n5+fj2MHAhB86SoSExKgpa2NYWNHwNa+KUc8CT8S4LNzLx7df4jcnFxoaGth8pzpMDYz+a18MAyDPd7eCDxzBulpaWjQoAFmz5gBQwODcvcLvnEDu/bswddv36ClqYlxo0ejnYMD+30fPz/cuHkTnz5/hqioKKwsLTFx3DjolWosT0xKwtbt23H/4UOkp6ejsbU1Zk6fDh1t7d/KS7Garhel3Qm+iY3L16BpS3vMWbmoWumsyMXAcwgMOIHkpCTo6OnCc+IYNGjEJx8JifDZsRfv37xD7NcYdO3TAyMmjeEIc/XcJdy4cg2fPxT1HjY0NYLbSA+YWJjWWJrro1549B2M73HxXHF36dUd46ZP4pnGs0dP4cePH9A3MMDU6VNhY2PDN42PHz2G1yYvfPzwAUrKSnBzc0Pvvn04wlwPvo7du3bj29ev0NTSwthxY+DQrh1HmBPHT+DggQNITEjkedzExERs37oND+4/QHp6Omwa22D6zBnQ0dHh/MyePcPOHTvx8sVLCAsLw9DYCBu2bISomBhHuFPHTyLgwCEkJiRCz0Afk6dPQSMba775fPLoMbZu2oJPHz5CUVkJg90Go2ff3uz3P0R9gPeuvXjz+jXiYuMwadpk9B80gG98B3z8sHv7LvQb2B+Tp0/lG66qLgaew6mA4+x6MWLiGDTgU8aSEhKxf8ceRL15j5iv39C1Tw+MnDSWI0z0x0845O2PqLfv8T0uHp4TRqNH/94846ttFwLPctSfkZPG8q0/SQmJ8N6+G+/fvEPM12/o1rcnRk0aV6vpCzx+EgEHD7PL1KRpkysoU0+wzetXmVJSwiD3wejZpxf7/bOBZ3Dl4mV8iPoAADA1M8Wo8WNg0cCCHeaAjz9u3QjB58/REBUVQUMrS4ydMA46elX74ZUzH6cQcPAwkn7lY+K0SeXmI+LRE2zz2loqH4PQo1Q+zgWexZWLl/Ah6iM7HyPHj+bIR35+Pnz27kfQ5atISkyEoqISOnftDHfPYRAQqJm+Mn/DPYNhGOzZuxeBgYFIT08veuaYNQuGhobl7hd8/Tp27dqFr1+/QktLC+PGjkW7MtfY48eP48DBg0hISICBgQGmT5vGcY3dvWcPrl69ivj4eAgLC8PczAzjxo1Dw4Yln9HXr1/htXkzIiIikJeXh+bNm2PmjBmQlpH57TwTUhr1jCN/hdjYWPbLy8sLMjIyHNs2b95c30n8KxUUFKCwsLDCcOLi4lBRUal0vMrKypCQkKhO0qpl4MCBOH/+PAQFBau8r4KCAqSlpWshVbXrzvWb8Nm2B32GuGLDvq0wt2yAFbMW4Uf8d57h83PzICMniz5DBkDPUJ9nGClpafRxG4DVOzZgk/cOtO/cEdtWb8KTh49qMyuVIi4siveJX7Hx1pH6TgpuBd/A3i074eo+CFv270LDRpZYPGMuzwYBAIiLicXimfPRsJEltuzfBVf3QdjttR13Q26xw/jv8cHlM+cxZuoE7Dzgjc49u2LlvCWIevuOHSY9LR0zx06GkJAQlq7/DzsPemPEhNGQkpb67bz4HTyIwwEBmDV9Ovz274eioiLGT56MzMxMvvs8e/4c8xYuhIuzMwL8/eHi7Iw5CxbgxcuX7DCPnzxBvz594LN3L7Zv3oyC/HxMmDIFP3/+BFD0QD5j9mx8i4nBhjVrcMjPD2pqahg3aRI7zO+ojXpR7HtcPHx37oOFVYPfTl9l3Q6+Ce+tu9HPfQA27dsOC6uGWDZrAd985OXlQUZWFv3cBkLPiHdD6vMnz9C6gwNWbF6DtTs3QVlVBUtmzEPij4QaSXN91Quvvdtx4Mwx9mvFpjUAgFbt2vBN49ixY+F/6ACsbawxddIUxMXF8UxjzLdvmDp5CqxtrOF/6ACGeQzDhvUbcD34OjvM82fPsGDefHR26YyDAYfQ2aUz5s2ZhxcvXrDDBF0NwqYNG+Ex3IPncRmGwawZM/Ht2zes27AeBw4dhJqaOiaOm8BRH54/e4bJEyejmb09fPx8cOLECfTp3xesMl/mg69ew5YNXnAfPgz7D/mhkU0jzJg0rZx8xmDm5OloZNMI+w/5wd1jKLzWb0JI8A12mJzsbGhoaWDMhHFQVFTkGU+xyJevcDbwDAyNjcoNV1W3g0Owb+su9HcfCK99O2Bh1RBLK6gXsrJy6Oc2gG+9yMnOgZqGOtxHD4e8gkKNprcqbgWHYO+WnejvNhBbvHeiQaOGWDJzHr6XV+flZNHffRD0+eStJgVfvYYtGzfDzWMovA/6opF1I8ycPB3x5ZSpWVOmo5F1I3gf9IWbhzs2r9+EkOslZSri0RN0dOyILTu3Ytf+3VBVU8X0CVPw4/uPkjCPn6BXvz7YvX8PNm3bjIKCAkybOOW37xPBV69h68bNcPdwx76DPrCytsKsyTMqyMcMWFlbYd9BH7h5uGHzei+OfDx59BgdHDth884t2PkrHzMmTOXIx2H/Qzh78jSmzpyGA8cOY+ykcQg4eBgnj574rXyU9bfcM/z8/XH48GHMmjkTfr6+Rc8cEyaU/8zx7BnmzZsHl86dEXD4MFw6d8acuXM5rrFXr17Fho0bMdzDA4cOHoSNtTUmTZ7Mcc3T1dHBrJkzcSQgAPv27oW6hgbGT5iA5ORkAMDPnz8xfsIEsADs2rkT3vv2IS8vD1OnTavUd6c/kQCL9ce+/l9RYxz5K6ipqbFfsrKyYLFYHNtu3bqFJk2aQExMDAYGBli6dCny8/PZ+6ekpGDUqFFQVVWFmJgYGjZsiPPnz3Mc48qVKzA3N4eUlBScnZ0RGxvLfq+wsBDLli2DlpYWREVFYW1tjcuXL5eb5szMTLi7u0NKSgrq6urYsGEDV5jc3FzMmjULmpqakJSURLNmzRASElJuvEuWLIGOjg5ERUWhoaGBSZNKfumvKL7i4abnz5+HhYUFREVFsXfvXoiJiSElJYXjOJMmTULbtm059ivt7NmzsLW1hZiYGJSUlNC7d8kvx2WHqUZHR6NHjx6QkpKCjIwM+vfvj/h43l/IAODTp09gsVg4duwYWrduDXFxcdjZ2eHt27cICwuDra0t+zz9+FHycBMWFoZOnTpBSUkJsrKyaNu2LR4/fsx+PyQkBCIiIrh9+zZ724YNG6CkpMQ+32WHqerp6WHFihXsc6mrq4szZ87gx48f7DxZWloiPDycIw8nT55EgwYNICoqCj09PZ7nvyadOx6IDi6O6NTVGVq6OvCcOBqKKsq4cuYCz/Aq6qrwnDgG7Zw6QIJPL8aGNlawb90CWro6UNNUR9e+PaFrqI/I5y95hq9L96NfYu+Ds7j5IaK+k4LAIyfh2NUZTt1coKOni1GTx0FJRQUXT5/jGf7i6fNQVlXBqMlFv+Y7dXNBpy7OOBVwnB3mxpVr6O82CHbNm0FdUwNdenVH42a2OHWk5EH9xKEjUFZRxtR5M2FqYQZVdTVY2zaGuqbGb+WDYRgEHD0Kj2HD0N7BAUaGhli6cCGys7Nx+epVvvsFHD2KZnZ28Bg6FHp6evAYOhRNbW1x+OhRdpitXl7o1qULDA0MYGJsjMULFiAuLg6Rr18DAKK/fMHzFy8wZ+ZMNLCwgJ6uLubMnImfWVm4EhT0W/kBaqdeAEU/ZHitWIcBHkOgqq7+2+mrrDPHTqFjFyc4du0MbT0djJg0BkrKyrh0+jzP8Krqahg5eSzaO3eEpCTvH0amL5oNl17dYGBsCC1dbYyfORmFhQyePoqokTTXV72QlZeDgqIC+xV27wHUNTVgadOIbxr79esHfX19TJs+Daqqqjh54iTPNJ46eQpqamqYNn0a9PX10aNnT3Tr3g2HDh5khzkScARNmzXFMI9h0NPTwzCPYbBraocjh0t+OAg4dBjde3RHj549eR73S3Q0Xjx/gdlzZsOigQV09XQxa84sZP3MwtUrV9jxbNrohf4DXDF02FAYGBpCT08P7Tq2h4iICEe6jxwKQNce3dCtZ3fo6eth8vSpUFFVwekTp3jm8/TJQKiqqWLy9KnQ09dDt57d0aV7VwQcPMwOY97AAuMnT0RHp04QFuHfmzwrKwtLFy7BrPlzavyHrrL1YuSksVBSVsbFCutFJ769943NTeExbiTadHAoN1+17fTRk+jUpaj+aOvpYtSkcVBSUcbFQN71R1VdDaMnj0cH507lXrtqytHDR9ClVJmaNH0KVFRVEHgikGf4M6eKytSk6VM4ytSRUmVq0Yol6NWvD4xNTaCrp4dZ8+egkCnEo7CS56sNWzfBpVsX6BsawMjEGHMXzUd8XDzeRL7+rXwcO3wUXXp0RddS+VBWVcFpvvk4DZVS+ejasztcunfB0YMBZfLR+1c+dDFz/myufLx8/gIt27ZG81YtoK6hDocO7WDXrOlv54MrnX/BPYNhGAQEBMDDwwPt27eHkZERli5ZUvTMUeo6V1ZAQACaNW0KDw+PomcODw80tbPD4YCSc3Do8GH06NEDPX9dY6dPnw5VVVWcOFFyr3B2dkazZs2gpaUFQ0NDTJ0yBZmZmXj3rujHnadPnyI2NhaLFy+GkZERjIyMsHjRIrx69Qr379//rTwTUhY1xpG/3pUrVzBkyBBMmjQJr169wu7du+Hr64uVK1cCKGpI69y5M+7du4eDBw/i1atXWL16NUevqaysLKxfvx4HDhzArVu3EB0djRkzZrDf37x5MzZs2ID169fj2bNncHJyQvfu3dkXbF5mzpyJGzduIDAwEFevXkVISAgePeLsUeTh4YG7d+/iyJEjePbsGfr16wdnZ2e+8Z44cQKbNm3C7t278e7dO5w+fRqWlpZVii8rKwv//fcf9u3bh5cvX2LIkCGQk5PDyZMlXz4KCgpw7NgxDB48mGc6Lly4gN69e6NLly548uQJgoODYWtryzMswzDo2bMnkpKScPPmTQQFBSEqKgqurq58P7tiixcvxoIFC/D48WMICQlh4MCBmDVrFjZv3ozbt28jKioKixaVDA1LS0uDu7s7bt++jdDQUBgYGMDFxQXp6ekAShra3NzckJqaiqdPn2L+/PnYu3cv1Mv5Qr1p0ya0bNkST548QZcuXeDm5gZ3d3cMGTIEjx8/hpGREdzd3cEwDADg0aNH6N+/PwYMGIDnz59jyZIlWLhwYa0Npc7Ly0PUm/doZNeYY7u1nQ1ev4yskWMwDINnjyIQ8+UrLPgMc/h/lJeXh/dv38LGjrP8N7ZrgsgXr3ju8/rlKzS2a8IZvqkt3r1+y/4RIS8vF8KinF+oRURE8epZyS+/D+6GwsjMBKsWLMOgrn0x0WM0Lp/l3chUGd9iYpCYmAj7piVD/kRERNDYxgbPnj/nu9+zFy/QrCnn8Fn7Zs3K3ScjIwMAIPNrqEdebi4AQLRUI4KgoCCEhIUR8fT3hh/XZr047h8AGTlZdOziVK14KiMvLw9Rb9/BmisfjfH6Rc3UbwDIyclBQX4+pGWq32BSn/WibDpuXL2GTl2cuaa74JfGpvbN8PzZM57xPX/+HE3tm3Fss29uj8hXkew0Pn/2HM2alQljb8+OMy8vD69fv0azMvGUPm5uXl5R3kRF2e8LCgpCWEgYTyOK6kNSUhJevngBBXl5jBjuCWdHZwwZMoT9ful8vn39BnZlhrjb2TfDi2e86+jL5y9gVzZ9zZvhdal8VtbGNevRomUL2DVrWnHgKig6f+9gU6bM2Ng1wWs+ZexvwS6bTXnlrf5/DCsuU03LnFO7Zk3LL1Nlwje1b4bXr17zLVM52dnIz88vd0hgZkZRDyqZ3xg2yK4bPPPB+5pSnXyUTqNlIys8DgvHl8/RAID3b9/h+dNnsG/ZvMr5KOtvuWd8+/at6JnD3p69TUREBI0bN8YzPtdgoKg3frNS+wCAffPm7H2Kr7H2Za/DzZrxjTcvLw+BgYGQkpKCiUnRNB+5ublgsVgcP26IiIhAQECA6/scIb+L5owjf72VK1dizpw5GDp0KADAwMAAy5cvx6xZs7B48WJcu3YNDx8+RGRkJPsCa1Bm/qO8vDzs2rWLPUfBhAkTsGzZMvb769evx+zZszFgQNF8KGvWrMGNGzfg5eWF7du3c6UpIyMD3t7e8Pf3R6dOnQAAfn5+0NLSYoeJiopCQEAAvn79Cg2Nop4sM2bMwOXLl+Hj44NVq1ZxxRsdHQ01NTV07NgRwsLC0NHRQdNfX4IrG19eXh527NiBRo1Kegm4urri8OHD8PT0BAAEBwcjOTkZ/fr14/uZDxgwAEuXLmVvKx1fadeuXcOzZ8/w8eNHaP+a++nAgQNo0KABwsLCYGdnx3O/4vQ7ORV92Z08eTIGDhyI4OBgtGzZEgDg6enJ0cDVoQPnXGb79u2DnJwcbt68ia5duwIAVqxYgWvXrmHUqFF4+fIl3Nzc0KtXL5THxcUFo0cXzRu1aNEi7Ny5E3Z2duzPZ/bs2WjevDni4+OhpqaGjRs3okOHDli4cCEAwMTEBK9evcK6deswbNiwco/1O9JT01BYWAg5eTmO7bLy8khJSq5W3JkZmRjZ1w15eXkQEBDAqKnjYW3buOId/0+kpaaisKAQcgryHNvlFOSRnJjEc5/kxCTINeMOX1BQgLSUVCgoKaJxU1ucPnICDRtZQl1TA08fPcGDO/dQUGpoRFxMLC6ePodern3h6j4Qb1+9wW6v7RAWFkaHzo5VzktiYiIAQLHM0CxFBQXE8hmyU7wfr32K4yuLYRhs3LIF1o0awejXNVdPTw/qamrYtnMn5s2eDXFxcRwKCEBiYiIS+MRTkdqqF5HPX+LahSvYuG/bb8dRFWmpaUVlTJ5HGUviXcZ+h/+u/VBQVkSjJvznS6us+qwXpd2/dRcZGRno6MJdH/ilUVFBAfcTeJc5XmVdQUERBQUFSElJgZKSEhITE6GgWCaMYkl9SElJQUFBARQUOId2lj6unp4e1NXVsWPbdsyZNxfi4uI4fOhwUX1IKBoS9u3bNwDA3r17MWnyZJiYmCA46BqmjJ0I/6OHoK1TdL9NZR+vbLrlkZjA+1wkJiaiWZnPRUFBgSOflXHtShDevn6Dvf77KxW+KkrqhRzHdlkFuWrf9+pbcdmUL1Pn5eXl8fgPyFtxmSo7jFdeUQFJfOp3YmISmpapF/IVlKld23ZCWVkZtk35/9i7bdMWWFk3goFR+XOMVSUfCorySOJz30lKTIKCYpnzUmE+dkFZWRlNSuVj8NAhyMzIwJB+gyAgIIDCwkKMHDsKHZ06VTkfZf0t94zaeuZI4XfNU1Tkep64ffs25s2fj+zsbCgpKWH7tm3skUCWlpYQExPD1q1bMX78eDAMgy1bt6KwsJBjVM7fhIX/3+GgfypqjCN/vUePHiEsLIzdEw4o6tmVnZ2NrKwsREREQEtLi90Qx4uEhATHZKHq6ur4/r1oXoW0tDTExMSwG4CKtWzZEk/59NiIiopCbm4umjcv+YVLQUEBpqYlk5w+fvwYDMNwpSsnJ4fv/Cv9+vWDl5cXDAwM4OzsDBcXF3Tr1g1CQkKVjk9ERARWVlYcYQYPHozmzZsjJiYGGhoaOHToEFxcXLgeBItFRERg5MiRPN8rKzIyEtra2uyGOACwsLCAnJwcIiMjy22MK51OVVVVAODoCaiqqso+T0DRDXrFihUICQnB9+/fUVBQgKysLERHR3Pk/+DBg7CysoKurm6lVn2tTDoA4Pv371BTU0NkZCR69OjBEUfLli3h5eWFgoICnnPZ5eTkICcnh2ObaKleEZXBtdAJw1T7xisuIY4N+7Yh++dPPHv8FD7b90JVXQ0Nbawq3vn/SNnPnmGYchee4XrrV6/K4jdGTx6PLWs3Yszg4QALUNfQQEcXJ1y7WDJ0gylkYGRmgqGjixrRDU2M8fnTJ1w8fa5SjXGXrlzBqjVr2H97rV/PPy8VRVZ2Hx7xFFu7fj3ev3+Pfbt3s7cJCQlh7X//YfmqVWjv5ARBQUE0tbVFi+bV7yVQk/XiZ1YWNq9cj3EzJ0FGTrbaaasK7myUX8aq4tTh47gdHIKVW9ZCpEzPs+qoj3pR2tULl2DbrCkUy2k8qmoaucr6rzRybi0bhvs45Z1PISEh/Ld2NVYuX4FO7TtCUFAQdk3t0LxFi5LwhUXH7dW7N7p1L1rkopldU9y5ewcXzp7DmAmck/dz55PH511u+OJ8Vq7MxcfFY/OGTdi4bXOV72VVwat+/zPfN7muqzVX52sCr/pabpkqWy/Av0wd8j+Ia1eDsGXXdr7lZ9PaDYh6/x7b9+6qUrq50sWzbpRzneJKL/98HPY/hOCrQdiyaxtHPq4HBePqpatYtGIJ9Az08f7tO2zduBmKykro3LXyC6aV50+7Z4RcvY6BG7exryVemzb9SmcNPHPwyFtlru22trY4fOgQUlJSEHj6NObOmwdfHx8oKChAXl4ea1avxn+rV+PI0aMQEBCAo6MjzMzMamyRDUKoMY789QoLC7F06VKOOcuKiYmJQVxcvMI4yq6eyWKx2DeL0ttKK++mVnZfXgoLCyEoKIhHjx5xNc5ISfGegF1bWxtv3rxBUFAQrl27hnHjxmHdunW4efNmpeMTFxfnSnfTpk1haGiII0eOYOzYsQgMDISPjw/ftFfmMy3G73OqzENB6fNSHLbsttKTqHp4eCAxMRGbN2+Grq4uREVFYWlpidxfQ+CK3bt3D0DRMJ+kpKQKV36tTDoAsNPCK28VlYn//vuPo6chUDRMt99ot3L3AwBpWRkICAggucwv5qkpKZBVkKtw//IICAhAXauop6W+sSG+fo7GqcPHqDHuFxlZWQgICnD19klNTuHqcVNMXlEByYmc5yolOQWCgoKQkS0axiIrL4eF/y1Dbk4u0tLSoKikCJ+d+6CqrsYRT9kV5LR1dXAv5DYqo02rVmhoUbK6W/HQuITERI5f95OSk7l+YS5NUVGRqxdcUlISz33WbtiAW3fuYM/OnVAtsyiMuZkZDvv7IyMjA3l5eZCXl8dQT09YmJlVKj9l1Ua9iPsWi+9x8Vg1t6SuFtftvu27YtuBvVDTrNk55GRkZYrKWNl8JKdw9Xz4HYEBJ3Di4BEs3fgf9AxrZuL3+qwXxb7HxSMi/AnmrVxcpTQmJSdz9WwrxqusJycnQVBQELK/elMoKipy9apJLlUf5OTkICgoyF1nyhzX3NwcBw8f4qgPw4d6wMzCHACgpFT0I5u+PudCI7r6eogvtUiGLJ/jJVeYzySu8EX5rFwj9JvXr5GclIwRbh7sbQUFBXj6JAKnjp3E9Xs3f2uRpWL860VqjdSL+sQum2V6MaUkp3D1BKwPxWWqbC+45KRkvoteKCoqcNWLlCTeZSrgwGEc9PHHpu2bYcRn0Y9N6zbi7q072LpnB1RUK7/AGO98lK2v/PNR1MuVO9/l5WPjdi+uxUt2bN6OwUOHoINjRwCAoZEh4mLjcMj3QLUb4/7Ue0bTVvbo3KYjMn9NU1H8bM7zmaOcRWF4PnOUek7hd41NTkri6lEnLi7O7jBgaWmJXr1748yZM/DwKLpu2dvb48zp00hJKboXSUtLw8nJiWOkEyHVQc265K/XuHFjvHnzhj25ZumXgIAArKys8PXrV7x9+/a34peRkYGGhgbu3LnDsf3evXswNzfnuY+RkRGEhYU5JvhMTk7mSIONjQ0KCgrw/ft3rnSrqXF/sSgmLi6O7t27Y8uWLQgJCUFoaCieP3/+2/EVGzRoEA4dOoRz585BQEAAXbp04RvWysoKwcHBFcYJFPWCi46OxpcvX9jbXr16hdTUVL6f3++6ceMGxo4dizZt2kBXVxc5OTnsIT3FoqKiMHXqVOzduxf29vZwd3ev8VWRLCwseJYXExMTvl8+5s6di9TUVI7X3LlzK3U8YWFhGJoa4Wn4E47tT8OfwKxBzX7GAJCXm1fjcf6thIWFYWRigidhnPOHPAl/BPOGFjz3MWtggSfhZcKHhcPYzARCQpy/kYmIikBJWQkFBQW4d/M27FuX9IyxsGyAb9FfOMJ/+/IVymqqlUq7pKQk+yFUW1sbBvr6UFRUxIOwMHaYvLw8PH7yBFaleoKWZdWwIcc+APDg4UOOfRiGwZr163EjJAQ7t22Dpgb/RSakpKQgLy+P6C9fEPn6Ndq24V4FszJqo15o6mhj0/4d2LBvG/tl16IZGtpYYcO+bVBUqdzwvaoQFhaGoYkxVz4iwp/ArGH16vepgOM45n8Yi9etgLEZ/97jVVWf9aJY0IXLkJWXQ9Pm9lzvlZfGhw8ewtKK948NlpaWePjgIce2B/cfwNzCnJ1GSytLPCgb5sEDdpzCwsIwMzPjioffcdn1IToakZGRaNO2qD6oa2hAWVkZnz9/5gj/5XM01Eo1TgoLC8PEzBRhDzjraPiDh2hoxbteN7BsiPAy6Qu7/xBmpfJZEVs7W/gfOQifQ37sl5mFORydneBzyK9aDXFA8fkzRkT4Y47tEeGPYcanjP0tistmRFiZvIU9hlnD2l+9uSIlZapMGXkYVm6ZCnvIWQYfPngIMwszjjJ1+MAh+Hn7YP2WjeyG59IYhsGmtRtw60YIvHZuhcZvLlhUOh/hZevGwzA0tOI9N24Dy4YIL5OPMB75CDhwCP7evli3ZQPPfOTkZHP1rhIUEEBhJX7Mr8ifes+QkJCArq5uyTOHgUHRM8eDB+wweXl5ePz4MdcIntKsLC059gGAB/fvs/cpvsZyhXn4sNx4gaLyVfzDZGlycnKQlpZGWFgYkpKT0b59+wrz+ydisVh/7Ov/FfWMI3+9RYsWoWvXrtDW1ka/fv0gICCAZ8+e4fnz51ixYgXatm2LNm3aoE+fPti4cSOMjIzw+vVrsFgsODs7V+oYM2fOxOLFi2FoaAhra2v4+PggIiIChw4d4hleSkoKnp6emDlzJhQVFaGqqor58+dz3HhNTEwwePBguLu7Y8OGDbCxsUFCQgKuX78OS0tLuLhw/zLm6+uLgoICNGvWDBISEjhw4ADExcWhq6sLRUXFKsdX2uDBg7F06VKsXLkSffv2hZiYGN+wixcvRocOHWBoaIgBAwYgPz8fly5dwqxZs7jCduzYEVZWVhg8eDC8vLyQn5+PcePGoW3btnwXffhdhoaG8PPzQ5MmTZCamooZM2Zw9OIrKCiAm5sbHB0d4eHhgc6dO8PS0hIbNmzAzJkzaywd06dPh52dHZYvXw5XV1eEhoZi27Zt2LFjB999REVFqzWUp1u/XtiyagOMTI1h2sAMV89dRkL8Dzh2LzrvB/f4IDEhEZPnlSxM8vFdFAAg++dPpKWm4uO7KAgJC0NbTwcAcPLQURiaGkNNQx35efl4/CAMIVeCMWrq+N9OZ00RFxaFlqwy+28NGSUYK2khLTsT8Rl1O6dOrwF9sGH5GhibmcCsoQUun72AH/Hf4dKzaOiY7659SPyRgOkL5wAAXHp2xflTZ7B36044dXPB6xevcPX8ZcxaMo8d5+uXkUhMSICBkSESExJxeL8/CgsL0WdQycInPV37YMaYyTjqfxit27fF21evcfnsRUycNfW38sFisTDQ1RU+fn7Q0dKCtrY2fPz8ICYmBmfHkmGvi5YuhYqyMiaMKxoGN6B/f4waNw6+Bw7AoXVrhNy+jQdhYfAuNQx1zfr1uHz1KjasWQMJCQn2vC1SkpLsa8214GDIyctDTVUV76OisGHTJrRt04ZrEuaqqOl6ISIqAl0DPY5jSP7qeVx2e03q0b83vFau+5UPc1w5dwkJ37/DuUfRjyb+u/cjMSERU+eXXMc+/MrHz5/ZSE1JxYd3URASFmL3pjx1+DgOeftj+sLZUFFTZfcQExMXh7hE5Xs/81Nf9QIo6qUcdPEKOjh3gqAQ/0af4jSesLOHoYkRTp8KRHxcHHr3Keppv33bdvz4/h1LlhX1hOzdpzeOHzsOr42b0KNXTzx/9hxnz5zF8pUr2HG6DhiAMaNGw9/XD20c2uJWyE08fPAQe7z3ssMMHDwISxYthpm5OSytLLmOCwDB165BTk4eampqeP/+PTZt2Ig2bduyJztnsVgY7DYEe3fvgbGxMUxMTeB71QefP3/GirWcc84OGDwQyxcthZm5GRpaWeLsqdOIj4tHzz5F86Xu2rYDP77/wMJlRb0Ie/bphVPHTmDrxs3o1qsHXjx7jvNnzmHJypK5dPPy8vDpw8df/8/Hjx8/8O7NW4hLiENLWxsSkpJc83iJiYlBRk7mt+b34qVH/97YtHIdjExNYNbAHFfOXcSP79/R+Ve98Nu9H0kJCZg6v+TZ5EPp+s2jXuTl5eHLp6KpLfLz8pCUkIgP76IgJi4GDS3NGkl3ZfR07YONK9bAyMwE5g3McflsUd5cehbNf+u7yxuJCQmYvmB2qby9Z+etqM6/h5CQMHT0dXkeozpcBw3AisXLYGZhjgaWDXE28Ay+x8WjZ5+eAIrme0v48QMLlhYtstWjdy+cOnYSWzdtRreePfDy+QtcOHMOi1eW9DI+5H8Q3rv2YtGKJVBTV0firzkUxSXEISFRtMLnxjXrce1KEFatL7qXFIeRkpKCqFjVn6H6D3LFysXLYWphhgaWDXHuVz56/Kobu7ftRMKPBMxfuvBXPnoi8NhJbNu0BV17dv+Vj/NYtHIJO87D/ofgvWsvFq5YzDcfLVq1xAEfP6iqqULPQB/v3rzF0cNH4dKd/w/hVfE33DNYLBYGDhwIHx8f6PxqoPPx9S165nAqWRxp0eLFRc8cEyYAAAYMGIBRo0fD188PDm3bIuTmTTx4+BDe+/ax9xk8aBAWLV4McwsLWFla4lRgIOLi4tCnT59fefyJ/fv3o02bNlBSUkJqaiqOnziB79+/o2Op+afPnj0LfX19yMvL49mzZ9iwcSMGDRzINfc4Ib+LGuPIX8/JyQnnz5/HsmXLsHbtWvYvIiNGjGCHOXnyJGbMmIGBAwciMzMTRkZGWL16daWPMWnSJKSlpWH69On4/v07LCwscPbsWRgbG/PdZ926dcjIyED37t0hLS2N6dOnIzU1lSOMj48PVqxYgenTp+Pbt29QVFRE8+bN+TacycnJYfXq1Zg2bRoKCgpgaWmJc+fOseeEq2p8pRkbG8POzg5hYWEVzqPm4OCA48ePY/ny5Vi9ejVkZGTQhk/vFRaLhdOnT2PixIlo06YNBAQE4OzsjK1bt1aYpqry8fHBqFGjYGNjAx0dHaxatYpjVdyVK1fi06dPOHfuHABATU0N+/btQ//+/dGpUydYW1vXSDoaN26MY8eOYdGiRVi+fDnU1dWxbNmyWlm8oVir9m2RnpaOY36HkZyUBB19PcxfsxQqv3pJJScmIyGec8LZ6SMnsv8f9fY9bl8LgbKqCnYf9QUA5PzMxt5NO5D4IwEioiLQ1NHG5Pkz0Kp921rLR2WZKetiW69p7L8ntSpaTONiZChWXver07S06dAOaalpCPA9iKTEJOjq62HpulXszz4pMQk/4kvmNlTTUMfSdSuxd+tOnD91FopKihg9ZTxaOpTUobzcXBzY64O4mFiIi4vD1r4ppi+cDSnpkiHnJuZmWLBqKXx370OA7wGoqqtj1KSxaOfIuZBJVQwdMgQ5OTlYvX490tPT0dDCAtu8vDiGcsfFx3P8sNDIygorly3Dzt27sWvPHmhpauK/FSvQsEFJD44Tp04BAEaP52zIXbxgAbr96oWbkJiITVu2IDEpCUpKSuji7IwRw4f/dl6A2qkX9aF1h7ZIT0vDUb9DSEpMhq6+LhatWV4qH0lIKFXGAGCqZ8lnHfXmHW5duwEVNRXsPeYPALh0+hzy8/KwZtEKjv0GDBuMgcMrHh5fkfqqF0BR76gf8d/h2KVzpdK4Y8cOfP/+HQaGhti0eRN7de3EhASOIZ8amprYtNkLXhs34cTxE1BSVsL0GdPRvkNJLwmrRlZYvnIFdu/chd27dkNLSwsr/1uFhg1Letp0cuyE1NRU7N/njYSEBK7jAkBCQiK8NnkhKbGoPnTu4gLPEZ4c6R84aCByc3PhtWkT0lLTYG5ujk3bt0CzzBCqDo4dkZqaCt99RV/A9Q0NsG7zBqix85lYJp8aWLd5A7Zu3IxTx09CSVkJU2ZMhUOHdiXp+5EAj8FD2X8HHDiMgAOHYd3YBtv28P/hqSa17uCA9LT0X/Ui6Ve9WMFRL36Uqd9TPEvm0nv/5h1uXrsBFTVV7PtVL5ISEjnCBB45gcAjJ9DQ2gqrtqyrg1wVadPBAelpaThSqv4sWbuyVN4SOeoPAEwaPpb9//dv3uFm0HWoqKli//GDNZ6+Do4dkVamTK31Wl9umVrrtQFbN21G4PFTUFJWwuQZU+HQvqRMnT5xCnl5eVg4ez7HsTxGDsfwUUXP9KdPBhbldQznvWTuovlw6Vb1hqyifKTBb58POx9rvNaze5fyzsd6bN20BYHHT0FRWQmTZ0zhmY9FsxdwHGvYyOEYPqqoDk+ZORX7du3FxjXrkZycDCUlJXTv3QPDRnigJvwt94yh7u5Fzxxr1hQ9czRogG1bt3I+c8TFQaBUz6lGjRph5cqV2LlzJ3bt2gUtLS38t4rzGuvo6IjU1FTs27cPCQkJMDQ0xGYvL/Y1VkBAAJ8+fcL5CxeQkpICWVlZWFhYYO+ePRxziH/+/Bnbt29HaloaNDQ04OHhgcGDBv1WXgnhhcVUZnIrQggh9eJlbFR9J6HaGqgbouX2MfWdjGq5O34X3v/4UnHAP5yRsjbSa3A1tfograDwz9SL1/Ef6zsZ1Wamqv/X1w0jZW2kpKdWHPAPJyctix/pf3f9VpZWwJv4T/WdjGozVdXDu+/RFQf8wxmr6OB72u+taP2nUJFRRHxaQsUB/3CqMkp//T3DTFUf6Wlp9Z2MapOWkanvJPwWj6MrKw5UT3xc51cc6B9Ec8YRQgghhBBCCCGEEFJHqDGOEEIIIYQQQgghhJA6QnPGEUIIIYQQQgghhPyj/p9XLf1TUc84QgghhBBCCCGEEELqCDXGEUIIIYQQQgghhBBSR2iYKiGEEEIIIYQQQsg/SgA0TPVPQz3jCCGEEEIIIYQQQgipI9QYRwghhBBCCCGEEEJIHaFhqoQQQgghhBBCCCH/KFpN9c9DPeMIIYQQQgghhBBCCKkj1BhHCCGEEEIIIYQQQv4KO3bsgL6+PsTExNCkSRPcvn2bb9hhw4aBxWJxvRo0aMAO4+vryzNMdnZ2reWBGuMIIYQQQgghhBBC/lG8Gpr+lFdVHT16FFOmTMH8+fPx5MkTtG7dGp07d0Z0dDTP8Js3b0ZsbCz79eXLFygoKKBfv34c4WRkZDjCxcbGQkxM7Lc+78qgxjhCCCGEEEIIIYQQ8sfbuHEjPD09MWLECJibm8PLywva2trYuXMnz/CysrJQU1Njv8LDw5GcnAwPDw+OcCwWiyOcmppareaDGuMIIYQQQgghhBBCSJ3LyclBWloaxysnJ4dn2NzcXDx69AiOjo4c2x0dHXHv3r1KHc/b2xsdO3aErq4ux/aMjAzo6upCS0sLXbt2xZMnT34vQ5VEjXGEEEIIIYQQQggh/ygBsP7Y13///QdZWVmO13///cczHwkJCSgoKICqqirHdlVVVcTFxVX4OcTGxuLSpUsYMWIEx3YzMzP4+vri7NmzCAgIgJiYGFq2bIl37979/odeAaFai5kQQgghhBBCCCGEED7mzp2LadOmcWwTFRUtd5+yc80xDFOp+ed8fX0hJyeHnj17cmy3t7eHvb09+++WLVuicePG2Lp1K7Zs2VJhvL+DGuMIIYQQQgghhBBCSJ0TFRWtsPGtmJKSEgQFBbl6wX3//p2rt1xZDMNg//79cHNzg4iISLlhBQQEYGdnV6s942iYKiGEEEIIIYQQQsg/qr5XTK2p1VRFRETQpEkTBAUFcWwPCgpCixYtyt335s2beP/+PTw9PSs8DsMwiIiIgLq6epXSVxXUM44QQgghhBBCCCGE/PGmTZsGNzc32Nraonnz5tizZw+io6MxZswYAEXDXr99+wZ/f3+O/by9vdGsWTM0bNiQK86lS5fC3t4exsbGSEtLw5YtWxAREYHt27fXWj6oMY4QQgghhBBCCCGE/PFcXV2RmJiIZcuWITY2Fg0bNsTFixfZq6PGxsYiOjqaY5/U1FScPHkSmzdv5hlnSkoKRo0ahbi4OMjKysLGxga3/sfefUdFdbwNHP/uUnbpVQQRpCkK2FDsvdc0TUyMiaYbTWJiimnGVBOTmJjExB5778bejSX23hVFVJDeO7v7/rG4sLBgAcSf7/M5x3Pk7szdZ+CW3bnPzPz7L82aNau0dkhnnBBCCCGEEEIIIcQjSnmPw0EfdsOGDWPYsGEmX5s1a1aJbQ4ODmRmZpa6v19//ZVff/21osK7KwqdTqd7oO8ohBBCCCGEEEIIIR6I4St+ruoQSvXnUx9UdQhVQjLjhBDiIfbn3mVVHUK5DW/dn8tx16s6jHIJqOZF6z+HVnUY5bZ3+GSSh39Y1WGUi+OfP/HsvC+qOoxyWzToa9pPGl7VYZTbrjf/JC0pqarDKBc7JycWH9ty54IPuQGNu/Lp+slVHUa5jO01lC0XDlR1GOXWNbA5ry8bV9VhlNvU/qMYOH9MVYdRLgue/4qXFn9X1WGU28wBn9F/zmdVHUa5LHvxO7pOHVHVYZTbltdND3MU4l5JZ5wQQgghhBBCCCHEI+peVy0VlU9Z1QEIIYQQQgghhBBCCPH/hXTGCSGEEEIIIYQQQgjxgMgwVSGEEEIIIYQQQohHlAIZpvqwkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKKWspvrQkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKIUMU33oSGacEEIIIYQQQgghhBAPiHTGCSGEEEIIIYQQQgjxgMgwVSGEEEIIIYQQQohHlAxTffhIZpwQQgghhBBCCCGEEA+IdMYJIe5LdnY23377LTExMVUdihBCCCGEEEII8T9DhqkKIe7L6NGjSU1NpXr16lUdihBCCCGEEEKIUiiRYaoPG8mME0Lcs5ycHFxcXPj999+rOhQhhBBCCCGEEOJ/inTGCSHumUql4uOPP0alUlV1KCXs3LkThUJBcnLyXdfx8fFhwoQJ5XpfhULBqlWryrUPIYQQQgghhBCPPhmmKoS4Z/v27aNt27Z07dqVjRs3VnU4ogwnt+/n6MY9ZCSn4ezpRrvneuNZx8dk2Rvnr7Dixxkltg/67l2cPapVSnxrV6xmxcKlJCYk4O3jw+sjhhHSsH6p5U8dO8G0PyYTGRGBs4sL/Z8fQK8n+hpez8/PZ8nchWzbsJmE+Hhqenkx5M1XadqimdF+4uPimTlpGkf2HyQ3J5caXjUZ8fH71K5bp1LaWZqGHgEMbNyNum7euNo48vH6Sey+euKBxnAn6l5dsWzdHIW1NZqISDKXrEQbXfpckbYjhmJex7/E9rzT58iY9Lf+B6USda+uWISForS3Q5uaSu7+w+Rs3AY6XYXG37VOGH2D2uBoZcuN5DjmHN7A+bhrpZZv7dOAx4Lb4G7nTGZeDieiLjHvyCbSc7NKlG1ZK4QRbZ/h0PVzjN+1sELjLu6J4LY826gLztYORCRFM3HvMk5Gh5dRvh1P1W+Pu50zMelJzDuykU0XDxpen/DYCBp7ljze/7t2mo/XT6qwuHU6HVOnT2fl6tWkpaURHBTEqA8/xN/Pr8x627ZvZ/LUqdy4eZOanp4MGzqUjh06GF6fOXs2O3buJOLaNVQqFQ3q1+ft4cPxqVXLUGbKtGls3rqVmJgYLCwsqBcYyLChQwkJCSlXmw5u/pc9/2wjPTmFajU96PliP3zqBZgse+18OJsXrCY+6hZ5OXk4VnOmaefWtOrdyajcvvU7OLRlNynxSVjb2RDcvDFdnnsMC0uLcsValubewbT1a4idyprY9CTWnd1LRNKtUsubKZV0CmhKI8/a2Flak5Kdzs7woxy5cQGAUM9A+jfsWKLeFxunka/VVEob/l2/lW0r1pOSlIKHtyf9Xn2egOBAk2WP7zvE7g3buXk1kvy8PNy9Pen13JMEhTYwlNHk57N52VoObN9DckIS1T3deXzwAIKaNDC5z4rS3q8x3QOb4aC2JSo1nsUntnE5/obJskOa9qKVT8n7ZFRKPF9u0d/DW9YK4aWw3iXKDFvxc6X9LQC61A6jT1BrHK1suZkcx5wjG7gQF1lq+dY+9ekTVHi9PRl1mflHC6+3Hf2b0NavIV4ObgBcTYxi8YlthCfcrLQ2dAxoQs/AFvo2pMSx4NgWLsVfN1n2lWZ9aOPbsMT2mylxfL5xKgBmCiW967WitW8DnKzsiE5LYOmJ7Zy+daXS2gDQPbA5jwW1wcnajuvJscw6tI5zsaXf+9r6NuTx4LZ42LuQmZvDsaiLzDmygfQc/d+ig39j3mrdv0S95+aNIU+bXylt6BvUhqcbdMLF2p6IpFtM+m9Fmb+3x4La8HhwW6rbORObnsSCY1vYeumQybId/BvzWech7I04yZebS372fRTJaqoPH+mME0Lcs7///pu3336b6dOnExkZibe3d6lldTodGo0Gc3O53DxoFw+e5N+F6+nwQl9qBNTi9M5DrPl1NoO+HYGdi2Op9V4Y+x6WVoVZj1Z2NpUS37/bdjDt90kMe/8d6tUPZuPqdYz54BMmzZ2Bm3vJuQhvRUUz5sPP6NG3Fx988THnTp3hr/G/4+DoQOsO7QCYM3UmOzdv5e1RI6np7cXRg4f57tMv+Xnyb/jXqQ1AWmoaH745ggahjfjq5+9xdHIk+mYUtna2ldLOslhZqLiccIP15/cxtufQB/7+d6Lq2gFVp3Zkzl2MJjYOdY8u2L71Gqlf/wQ5OSbrZEybDUXOd4WNNXafvEfesZNG+7Vs25LMOYvQRsdgVqsm1oOeQZeVTe7OPRUWf8taIQxu0pMZh9ZyITaSLrXD+LjTIN7/ZyIJmSklygdW82Z4q6eYc2QDR25cwNnanleb9+X1Fo/zy7+LjMq62jgwKLQ752IiKize0nT0D+Wt1v35dfdiTkeH0ze4DeN6D2fwom+ITU8qUf7x4La83uIxftq5gPOx16hX3YcP2w8kLSeTfddOAzB60zQslIV/J3u1DTOe+YSd4ccqNPbZc+eyYOFCxowejbe3NzNmzmT4O++wfPFibGxMX1tOnjrFp6NHM/T11+nYvj07du3i488+Y8aUKYaOtKPHjvF0v34EBQWh0Wj4a/Jk3hoxgqULF2JlZQVALW9vPnr/fTw9PcnJyWHBwoUMHzGCVcuW4eTkdF/tObXvCBtmL6fPKwPwDvTj0NY9zPvhL94a/zmOrs4lyluqLGnevR3u3p5YqCyJvBDOmumLsFRZ0rRLGwBO7DnE1oWreeKN5/Gq40dCdCwrJ88FoOfgfvcV553U9/Cnd1Ar1pzezbWkWzTzDmJwWG8m/LuYlOx0k3Wea9wVW0trVpzcSUJmKraWViiLfbnLzsvhl13G50pldf4c2b2f5dPnM2DoYPzq1WbPxh389dXPfP7n9zhXcy1R/vKZC9RtFMJjLz6NlY01+7fuZsq3v/LBT2Pw8vcB4J95yzm0cx8D33qZ6jU9OHf0FNO+/42R40YbylS0pjXrMqBRZxYc3czlhJu082vEO22e5stN00nMSitRfvHxraw4tcvws1Kp5IsuL3Hk5nmjcll5OYzeOM1oW2V2xLWoFcyLTXrw96F1XIyLpHPtpozqOIgP1/5Z6vX2zZZPMffoRo4WXG9fbtaH11o8zq8F19ug6j7sizjFpfjr5Gny6RPUmo87vcBHa/8kycTvpryaedVjYKOuzD26kUtx1+kQEMrIds/y2cYpJGamlii/4NgWlp7cYfjZTKHk6+6vcuj6OcO2p+q3p2Wt+sw6vI7o1ARC3P14u3V/vts2m8jkylkErZVPfYY07cX0A/9wPu4aXWuH8Wnnwby35jfiM0r+Leq61eKt1v2ZfXg9h2+cx9nantebP86bLZ/ip53zDeUycrMZsepXo7qV1RHX3q8xb7Z8kj/2LOVMzFV612vF2J5DeWXJ98RllLzv9anXmpeb9eXXfxdxIS6Sum7evNf2WdJzMtkfecaorJutE683f4KT0ZcrJXYh7pYMUxVC3JOMjAyWLFnCm2++SZ8+fZg1a5bR67eHiW7atImmTZuiUqnYvXs3Op2OH3/8ET8/P6ysrGjYsCHLli0z1NNoNLzyyiv4+vpiZWVFYGAgv/322x3jWb9+PXXq1MHKyoqOHTsSERFRosy+ffto164dVlZWeHl58c4775CRkXHXbT506BBdu3bF1dUVBwcH2rdvz9GjR8usM2rUKOrUqYO1tTV+fn6MHj2avLy8u37PinBs016C2zYhpF0YzjXcaDewN7bODpzccaDMetb2Ntg42Bn+KZWVc6tYuWg53fr0oHvfXnj71OL1EcNwdXNj/ap/TJZfv2ot1aq78fqIYXj71KJ731507d2DFQuXGsrs2LSVZ14YSFjL5nh41qD3k48R2rwpKxYVHmvL5i+imls13vv0QwKD6lLdw51GTUPx8KxRKe0sy/7IM0w7sIZdV44/8Pe+G6qObcnetI28E6fRRseQOXcRCktLLMMal1pHl5mFLjXN8M+ibm3IzSP3aGHGn7lvLfJOniH/zHm0iUnkHTtF3rlLmNeqWaHx967Xih3hR9lx+ShRqfHMObKBhMxUutYJM1m+tqsXcRnJbLxwgLiMZC7ERbL10mH8XTyNyikUCt5q3Z9lJ3eY7AyraM807Mz68/+x7tw+riXHMHHvcuLSk3g8uK3J8t3qNGPN2b3sCD9KdFoC2y8fYd35fTzXuJuhTFpOJolZqYZ/Tb3qkpOfy87wsq9t90Kn07Fw8WJeGjKETh07EuDvz1dffEF2djYbN28utd7CRYtoHhbGS4MH4+Pjw0uDB9MsLIwFixcbyvwxYQJ9+/TB38+POrVrM+bzz7l16xbnzhd2SPTo3p3mzZpR09MTfz8/3nv3XTIyMrh0+f6/gO1bt53Qji1p0qkV1Tzd6TW4P/YuThzasttkeQ9fLxq0boqblwdObi40bNuMgAb1uHa+MKvx+sWreNXxo0GbMJzcXAhoWI/6rZpy80rpGUXl1ca3AUeun+fwjfPEZSSz7tw+UrLTaV4ryGT52q5e+DrXYPbh9YQn3CQ5K40bKbElOhN0QHpultG/yrJ99UZadmlPq24dcPfypP9rg3BydWb3+u0my/d/bRBd+/WmVm0/3Gq489iLT1PNw53Th44byhzcuZduT/cluGlDXN3daNurM/Ua12f7qsobBdC1Thh7rp5kT8RJbqUlsOTENpIy02jvb/o6m5WfS2pOhuGfj5M71pZq9kacMiqn0+mMyqXm3P3nnvvRq24rdoYfY2e4/no798hGEjJT6VLK9TbAtSZxGclsKnK93XbpCH7OhffiP/ctZ+ulQ1xLukVUajzTDqxBoVAQ4l52Zu396hbYnH+vHuffK8eJTktg4bEtJGal0sk/1GT5rLwcUrMzDP98nD2wtrRiT5EM95Y+9Vl7bi8no8OJy0hmR/hRTt+6Qo/A5pXSBoC+9Vqz/fIRtl0+zM2UOGYdXk9CRgrd6ph+zzquXsRlJLH+/H/EpidxPvYaWy4dxN+l+OciHcnZ6Ub/Kku/Bh3YeGE/Gy7sJzI5hkn/rSQuPYm+Qa1Nlu9SO4x15/ay68oxbqUlsDP8GBsv7GdAoy5G5ZQKBZ90epE5RzZwKzWh0uIX4m5IZ5wQ4p4sXryYwMBAAgMDGTRoEDNnzkRnYljZRx99xPfff8+5c+do0KABn3/+OTNnzmTSpEmcOXOG9957j0GDBrFrl/7prlarpWbNmixZsoSzZ8/yxRdf8Omnn7JkyZJSY7l+/TpPPfUUvXr14vjx47z66qt8/PHHRmVOnTpF9+7deeqppzh58iSLFy9mz549vPXWW3fd5rS0NAYPHszu3bvZv38/tWvXplevXqSllf5U1s7OjlmzZnH27Fl+++03pk2bxq+//lpq+Yqmyc8n9loU3sHGQ6e8gwOIvlz2F7yFX/7J9Pe+Z8VPM7h+rnKGUeTl5XH54kUahzU12h4a1oRzp8+arHP+zFlCw5oYl2/WlEvnL5Kfn1+w31wsVJZGZSwtVZw9edrw84G9/xFQtw5jP/+agX368/ZLb7BxzbqKaNYjRenijNLBnvxzFws35mvIv3wFc99apVcsxrJlM3KPHIfcws7o/PAILAIDULrps1eUnh6Y+/uQd/p8KXu5d2ZKM3ydPUoM5TwZfZk61Uxn816Mi8TZ2p5GNfRZlA5qG5p7B3P05kWjcv3qdyA1O4MdFdhxVRpzpRl1qnkZZVoAHLp+rtQvpBZm5uTmG3f+5+TnUc+tFmaldK73rtuS7ZePkJ2fWzGBAzejokhISKBF88IvgJaWloQ2bszJU6dKrXfy9GmaNzf+0tiiefMy66Sn678U2tvbm3w9Ly+PlatWYWtrS53ate+lGQb5+flEX72Of4N6RtsDGtQj8uLVu9pH9NXrXL94BZ+gwhhq1fUj+up1blyOACAxJp6Lx85QJzT4vuK8EzOFkhr21UoMvbscd4Naju4m69Sr7sPNlDja+TViVKcXGNn+WXrWbYG50syonKWZBR92fJ5RHQfxYtOeeNi7VEob8vPyuX45gnqNjYcc12tcn6vnL93VPrRaLTlZWVjbFmZo5uflYWFhPDTYwtKS8HMXi1evEGYKJd6O7pyNMT5+zsZcLfEQoDStfRpwPjaiROaWytyS73sOZVyvYbzVuh9ejm4VFndxhddb447uU9Hh1HH1MlnnYtx1o+utvdqG5t5BHIsq/XetMrPAXGFWKZ28ZkolPk4enLll/Lc4c+sK/q5396ConW8jzsZcJaHI38JCaUaexjh7LFeTT+1qpn8v5WWuNMPPpQYnooz/FieiLxNYyr3vQlwkLtYOhqkLHNQ2tPAO4egN47+F2tySSU99wJR+H/FJpxfwdfaotDbUcfUyDIG/7ciNCwRX9zVZx8LMnNxiv+ec/DwCq3ljpii87w0K7UFyVjobL+yv+MAfckqF4qH99/+VjBsTQtyTGTNmMGjQIAB69OhBeno627Zto0sX4ydPX3/9NV27dgX02XS//PIL27dvp2XLlgD4+fmxZ88epkyZQvv27bGwsOCrr74y1Pf19WXfvn0sWbKEZ555xmQskyZNws/Pj19//RWFQkFgYCCnTp1i3LhxhjI//fQTAwcO5N133wWgdu3a/P7777Rv355JkyahVqvv2OZOnYzn9pkyZQpOTk7s2rWLPn36mKzz+eefG/7v4+PD+++/z+LFi/noo49Mls/JySGn2LC/8iyQkZWWiU6rxdrBeOiltb0tmSmmn2TaONjRafATuPnUQJOn4fx/x1j589/0++gVPANNf/i5X6kpKWg1WhydjYeKOTo7kZSQaLJOUkIijs1LltdoNKQmp+Ds6kJos6asWrSMkIb18fCswYkjxziwZx8ardZQ51ZUNOtX/cOTA/oz4MXnuHj2AlMm/ImFhQWde3Yr/rb/byns7QDQphkfL9rUNJTOdzfEz6yWF2aeHmTOX2q0PWfLDhRWauxGf6ifI06hIPufjeQdOV4hsQPYq6wxU5qRkmUcf0pWBo41TA9Jvhh/nYl7lzGi7TNYmJljrjTj8PVzzDpU2Flbp5o3Hf1DK3RetbI4qG0xV5qV+KKdlJWGs7XpjqdD18/Rp14r9lw9wcX46wRW86ZX3ZZYmJnjoLYtsa+6brXwc/FkXJHhSBUhIUGfdeDibDx808XZmehbpc9NlpCQYLLO7f0Vp9Pp+OW332jUsCEB/sbzFe7es4dPR48mOzsbV1dX/vz9dxwdHe+jNZCZmo5Wq8XWwc5ou42DHenJJYewFfXzsM/JSE1Hq9HQsX8vmnRqZXitfqumZKSmM2PMr+jQodVoCevalnaPV871yNpSjZlSaZgL6ra03Exqq0x3EDhb21HLyZ18rYb5RzZhbanm8eC2WFmoWXFqJwBxGUksP7mDW2mJqM0taOVTnzdaPsEfu5eZHKZYHumpaWi1WuwcHYy22znYk5p8d++1fdUGcnJyCG1T2PFbr3F9tq/eSEBIIK7ublw4cZaTB46iK3IPqUi2KmvMlEpSczKNtqfmZGCvvvMUEQ5qG0Lc/Zh+0Dij/FZaIrMOr+NmShxqCxWdA5oyqsMgvt46s1Kyee1uX2+zjbPvUrLTcbAyfb29FH+dP/cu5+02Txe53p5n9qH1pb7Ps427kpiVyunoin9QaGdZ8Lcolu2Vkp1BiPrO01g4qG2p7+HPlP2rjLafvnWF7oHNuRgXSWx6EvWq+9LYs06ldUAU/i2K3/vSS733XYiL5LfdSxjZ7lnD3+LQ9XPMKHJc3UyJZ+Le5UQmx2BtoaJXvVZ82+N13v9nIrfSKjbDzEFtg5nSjKSskvc9J2s7k3WO3DhPz7ot2BdxkkvxN6jj6kWPwBaF972sVIKr+9IjsAVDl/9YofEKcb+kM04IcdcuXLjAwYMHWbFiBQDm5uYMGDCAv//+u0RnXNOmhRlPZ8+eJTs729A5d1tubi6NGxcOw5g8eTLTp0/n2rVrZGVlkZubS6NGjUqN59y5c7Ro0cJoQtLbnX23HTlyhMuXLzN/fuGXTJ1Oh1ar5erVq9SrZ5zhYEpsbCxffPEF27dvJyYmBo1GQ2ZmJpGRpWeYLVu2jAkTJnD58mXS09PJz88vNWMD4PvvvzfqjAQYM2YM1bqWb6JxKPZhT6ejtM9/Th7VcCqyUINHgDdpiSkc3bSnwjvjDNEVC0an05U5wWyJl25nZRa88MaI4fz+4y8Mff5lUIBHjRp06dWdres3FVbR6gioW4fBb7wCgH+d2lyLiGD9qn/+X3fGWYQ1xvq5wvmp0v8qWGyheObrPXyBsGzVDM3NaDTXjDNwLJo0xLJZKJmzFqCJjsGsZg2s+j2GNiWVvANH7rsNppTI21VgMpsXwNOhGoOb9mL5qZ2cjLqMo5Udz4d249XmfZmyfzVqc0veat2PaQfWkFbsy3NVKK0dsw9vwNnKnklPfQgKSMpMY+OF/Qxs3A2trmSnQu+6rbiScJPzZUzufTc2bNzI2CIPQyaMHw/c+3leUOmu6/z4889cvnyZ6VOnlnitaZMmLJgzh+SUFFauXs0nn33GrBkzcHYuOb/bXSsRxp3b88qX75KbncP1SxFsWbgaZ/dqNGitv09ePXORf1duos8rA6gZUIuEW/FsmL2MnY72dOjX8/7jvIPiR48ChYmtRV+Dxce3kVOQPbn+3D6eC+3GmjO7yddquJ4cy/XkWEOda0m3GN6mPy19Qlh7dm9lNKHkLa5IrGU5vOs/1i9cyeufvYudY+G9uf9rg1g48W++GTYKBQpcPdxo0aUt+7eaHoZcYYqdywoUpf0pjLSsVZ+svGyOF8vevZoYxdXEKMPP4fE3+LzLEDr6h7L4xLYKCdm0kkdVaYvyeNpXY3DTnqw8tYsT0ZdxsrJlYONuvNysL9MOrC5Rvk9Qa1rVCuGbrbMqbZ4yuLfzoqg2vg3IzMvm6E3jbK4Fx7YwpGkvxvYcig6ITU9iz9UTJhd+qEgl7g9lXKNqOlTj5WZ9WHpyOyduXsLR2o4Xm/Tk9RaPM+m/lYC+87RoNu352Eh+7DOcXnVb8PehyhldYKoJpf0l5h3dhJO1Hb8/MRIF+o67zRcPMKBRF7Q6LVYWKkZ1fIFfdy+q9CHbQtwt6YwTQty1GTNmkJ+fj6dn4dAJnU6HhYUFSUlJRhNiF52YW1vwRHndunVGdaEw+2vJkiW89957jB8/npYtW2JnZ8dPP/3EgQOlz29W2hfRorRaLW+88QbvvPNOidfKWniiqCFDhhAXF8eECROoVasWKpWKli1bkptrejjX/v37efbZZ/nqq6/o3r07Dg4OLFq0iPEFX0xN+eSTTxg5cqTRNpVKxfTDpudPuxMrO2sUSiWZKcZDaTPTMrCyv/uFCjz8vDi/v+JX97R3cEBppiyRBZeSlFwiW+42JxdnkhKMn+gnJyVjZmaGvYP+y5SDkyOjv/+a3JxcUlNTcXF1Yeak6VT3cDfaj7eP8TBLr1re7NtZyV+2HnJ5J8+SFlGkg7lgEQalvR2a1MLjSGlniy71LibOtrDAsklDstaWnBvM6sk+ZG/eQd4R/bGljbqF0tkJdbdOFdYZl5qTiUarwbFYVoaD2qZE9sZtTwS35WJcpKHjIDI5hpyDuXzV/VUWn9iGg9oWN1snPuww0FDndifM/IFjGLnmd2IqOOskJTudfK2mRBack5VdqROY52ryGLdzHj//uwBnK3sSMlPoG9SGjNwsUrKM264yt6BTQBP+PrS23LG2a9uWkODCoZW5BfNkxick4OpaOKF+YlJSmZ1hLi4uJbLgSqvz488/8+/u3UydPJnqbiWH4d2eK9TLy4v6ISE82b8/q//5h5cGD77n9lnb26JUKklPNv69Z6SkY+NgOlvjNqeCIdnVvT1JT0ljx7L1hs64bUvW0bBtM0O2XHVvT/JyclgzbSHtnuxe4fN2ZuZmo9FqsVNZGW23tbQqkS13W1pOJqnZGYaOONB3KigVChzUtiYz33TAzeQ4XKwdSrxWXrb2+vlM05KM3zc9JdWoc82UI7v3M/+PGbwy6i3qNjJ+4GXnYM/rn71LXm4uGWnpODg7sXr2ElyqV86K4uk5mWi02hJZcHYq67vqMGjtU5/9kWfQmOhkL0oHRCTeorpdOTqhy5BWcL11UN/99faxkLZcjLvO2nP66+315Bhy8tcxptsrLD2xzWg+st71WvF4cFvGbpvD9Upa9CAtV/+3KN4Ge7V1qW0oqq1vQ/ZFnDLKxAf97+aPvcswV5phq7ImOSuNpxt0JD4juSLDN3o//b3P+JrkoLYhOcv0yIgnQ9pzIfYaa87oF1C6lhzDtPw1fNvjdRYe30qyiXuNDh3hCTfwsC+5WEp5pWRnoDFx33NU25GcWfp9b/yuhUz4dzFO1nYkZqbSq24rMnKzScnOwM+lBh72LnzT/TVDndv3742v/sJLi78juoIz/B42CoXMUPawkc44IcRdyc/PZ86cOYwfP55u3Yyzh/r168f8+fNLnYctKCgIlUpFZGQk7du3N1lm9+7dtGrVimHDhhm2hYeHmyxbdL+rVq0y2rZ/v/EcEKGhoZw5c4aAAOO50+7F7t27+euvv+jVqxegn6suPj6+1PJ79+6lVq1afPbZZ4Zt166VnXGiUqnKNSy1ODNzc9xq1SDy7GX8mxR+OY48cxm/xnfOBrwtNjL6jl8y74eFhQUBdepw7NARWrVvY9h+7PARWrRpZbJO3eAgDu77z2jbsUOHqV23TonVei1VlrhWcyU/P599u3bTtlPhcRdUP5ibkcaZWjev36CaiRVc/1/JyUEbZzxUWpuSinndOmhuFGRYmJlhHuBH1urShxHdZtmkIZibk3fIxLxqFhYlH3lrtfeUdXcnGq2Gq4nR1Hf3N5pvrb67P4dvmJ6bztLcwvDwwBBWQZwKFESlxPPBPxONXh/QqDNW5ipmHV5PvInV9sorX6vhYtx1mtasy+4ik4I3rVmXPREny6gJGq2WuIIvfJ0CmvDftdPoiuUVdPRvgoWZOVsuHip3rDY2NkYPYnQ6HS4uLhw4eJC6gYGAfu62o8eO8fbw4aXup0FICAcOHuT5554zbDtw4AAN6tc32veP48ezc9cupvz5J5417m4BFh2U+iDlTszNzfHw9SL81HmCmhVmtYSfOk/dpvXLqFk8CB2avMLMnrzc3BKZdQqlsrSEonLT6LREpcYR4OrF2SKrAQe4enI2NsJknWtJtwjx8MOyyLxMrjaOaHXaUldfBfCwd+FWmumpB8rD3MIcrwAfzh8/TcOWhZn454+fpn4z05Ptgz4jbv4f0xnywTBCwhqVWs7C0hJHF2c0+fkc33fIaChrRdLotEQm3yKoug/HowrnuqtX3YcTUWXPfVenmhfV7ZwNmUt34uXoxs2UuHLFWxrD9dbD+Poa4uFXYt6v21RmFiU6EQ2Zu0XOhz71WvNESDt+2D7XKNuvomm0WiKSogl29zXKbguq7lsi87C4wGreVLdzNrpGF5ev1ZCclYaZQkmTmnVLzANaUfK1Gq4kRNGgRgAHrxfOwdvAI6DU91SZm/hbFNwLy7or+zh5VMqKsPlaDRfjrxPqGcjeIve50JqB7Isofe5Q0J9Tt1eM7egfyoHIM+jQEZkcw2tLfzAqOySsF9YWav7at8JwrxTiQZLOOCHEXVm7di1JSUm88sorODgYP+Xu378/M2bMKLUzzs7Ojg8++ID33nsPrVZLmzZtSE1NZd++fdja2jJ48GACAgKYM2cOmzZtwtfXl7lz53Lo0CF8fUsfHjl06FDGjx/PyJEjeeONNzhy5EiJ1V1HjRpFixYtGD58OK+99ho2NjacO3eOLVu28Mcff9xV2wMCApg7dy5NmzYlNTWVDz/8ECsrqzLLR0ZGsmjRIsLCwli3bh0rV97dh+WK1Lh7azZPW4abjyce/t6c3nWI9MQU6ndoBsDeZZvISEql22tPA3Bs817sXZ1w8XRDk6/h/H/HCT9yhl7DB5b1NvftyWf7Mf6bcdSuW4e6IUFsXLOOuJhYej3RF4BZk6eTEBfP+6P1i3L0eqIPa1esZtofk+jetxfnT59l89qNfPTlp4Z9nj9zjoT4ePwC/EmIT2DB33PQarX0GzjAUOaJAf34YOgIFs9ZQNtO7bl49jwb16zn7Y/eq5R2lsXKQkVNh8KMixr2rtR2rUlqdkaFZ1jdj5wdu1F374Q2Lh5NbBzq7p3R5eaSe+iYoYz1i8+iTU4he80Go7qWLcPIO3EGXUbJ4Zz5p8/p95uYhDY6BjMvT1Sd2pH7X/k7hIpad24fw1s9xZXEm1yMu06X2k1xtXFg6yX9+zzbqAvO1vb8tU8/9P7ojQu81uJxutYO40S0fpjq4KY9uRx/w5CFdiMl1ug9MnOzTW6vSEtObOOzzoO5EBfJmVtX6BPUBjc7Z0MWw2vNH6OajSNjt88BoKaDG/XcanE2NgI7lTXPNOiEr7MH3xe8XlTvei3Zc/VEpQzbUSgUPDdgADNnz8a7IDtt5uzZqNVqehR5qPPFV1/hVq0abxU8jHl2wABef/NNZs2ZQ4d27dj5778cOHSIGVOmGOqM++knNm7ezPgff8Taxob4gkw6Wxsb1Go1WVlZ/D1rFu3atsXVxYWUlBSWLl9ObGwsXTp3vu82terdiRV/zsHTzxuvOr4c3rqXlPhEwrroV7bdsnA1qYkp9Bv+IgAHNu3CwdWZajX0nf3XLoSzd+02mvcofEAQGBrCf+t34OFbk5oBPiTcimP7krXUbVK/0laz3nP1JE837MTNlFgik2II8w7CwcqOg9f0X967BTbDXmXDspM7ADgRdYmOAU3o16Aj2y4dxtpCTc96LThy/QL5Wg2g7/C9nhxDfEYKanNLWvrUx8PexXCcVrROj/dgzq9T8A7wxbduAHs37SQxLoG2PfXzvK6evYSUxCRefO8NQN8RN2fCVPq/9jy+gf6kJiUD+o43KxtrACIuhJOckEhNv1okJySxfuFKdDodXZ7qVSltANhy8RAvN+vDtaRbhCdE0c6vIc7W9oZVtp8MaYejlR0ziw0FbOPTgCsJUUSllnw42Kdea64kRhGbnojaXEXngCZ4Obqx4NiWSmvH+vP7GNbyKa4kRHEp/jqdApriau3AtoLr7YBGXXC2sjN0Hh69eYFXmz9Gl9phnIy+jKOVLS800V9vb2di9QlqzdMNOjFx7zLiMpINWWvZ+blGWZoVZfOFA7zW/HEiEqO5HH+D9v6NcbF2MCzW079+Bxyt7Zh+wHjUQju/RoQn3DTZ2ennXAMnKzsik2NwtLLjiZC2KBQK1p//r0TZivLPub283bo/VxJuciEukq61w3C1cWDzxYMADGzcDRdre/7Yq19p/vCN8wxt+STd6jTjeNQlnKzseCmsN5firhvufU836MTF+EiiUxOwtlDTq15LfJw9SvwuKsrykzsZ1XEQF+MjORcTQa96rXCzdTJkUr4c1gdXGwd+LJjr1NOhGnWr1eJ87DVsVVb0a9ARH2cPw+t5mnwikqKN3iOjIBO4+HYhHhTpjBNC3JUZM2bQpUuXEh1xoM+MGzt2LEePlr6y4DfffIObmxvff/89V65cwdHRkdDQUD79VN+RMnToUI4fP86AAQP0X+Cee45hw4axYcOGUvfp7e3N8uXLee+99/jrr79o1qwZY8eO5eWXXzaUadCgAbt27eKzzz6jbdu26HQ6/P39GTBgQKn7Le7vv//m9ddfp3Hjxnh7ezN27Fg++OCDUss//vjjvPfee7z11lvk5OTQu3dvRo8ezZdffnnX71kR6jRrQHZ6JgfX7CAjJQ0Xz+o89u6L2Lvqh4FmpqSRllg4xEer0bBnyQbSk1Ixt7TApYYbj737Ij4NAislvnadO5KaksrCWfNITEiklq8PX/00FreCDLXEhETiYgo7ONxrePDVT98x7Y9JrF2xBhdXF954dzitO7QzlMnLzWXutJnciorGysqKpi2a8f7oUdjaFQ47qVOvLp+P/YpZU6azcNZcqnt48Po7b9Kx2/1/Qb9fdavVYuKThcOT32mj7xhdf+4/vts++4HHU1zOlp0oLCywGvAkCmsrNBGRpE+cBkUWG1E6OZbIclO6uWIe4Ef6HyXn8ALIXLIKqz7dsX72KRS2tmhTUsnds5/sDVsrNP7/rp3Wfyiv3wFHKzuuJ8fyw455hqfmTlZ2uNoUXtN2XTmO2kJFt8DmDGrSnYzcbM7EXGXB0ZJDbR+kHeFHcVDb8GKTnrjY2HM1MZpR6/4iJl2fceRi7YCbbeHwbjOFggENO+PlWJ18rYZjURcZvnJ8iQylmg5uNPAI4P1/7u7BxP0Y/MIL5OTk8MNPP5GWlkZIcDATf/vNKIPu1q1bRpOZN2zQgO+++YZJU6YweepUanp68v233xISUjikcFnB3KVvFMmmBhjz+ef07dMHpVJJREQEa9evJzk5GQcHB4Lq1WPa5Mn4+5lehfZu1G/VhKz0DHYu30BacipuXh4M+ngYjtX0w//SklJJiS/8Pet0OrYuXENSXAJKpRLn6q50fe5xmnZpbSjT/qkeKBQKti1eS2piCjb2tgQ2CaHzgL73HeednIoOx9pCTaeAptiprIlJT2T2ofWGoYF2KhujYW65mnxmHlxLn+A2DGv9FJm5OZyKDmdLwZd7ALWFiifqt8fO0prs/FyiUuOZun9NpXVUN2nbgoy0dDYsXk1qYjIetWoy7Iv3cS4YEpyalExiXOGwsz2bdqDVaFgyeQ5LJhd2TDfv1IYX3n0d0Gdurp2/nPhbcajUKoKbNuTF994wWnG1oh2+cR4bSyt612uNg9qGqNR4/tiz1LDQioPatsRwPStzS0I9A1lUyvxv1pYqXgjtjr3ahqy8HK4nx/LTzgWV2umw/9oZbC2teap+exyt7LiRHMuPO+cbrreOaltcilxv/71yHLW5im51mvF8aDcyC663C4t0GHatHYaFmTnvtXvW6L2Wn9zB8lM7K7wNB6+fw0ZlzWPBbXBQ23IzJY5fdy8yrI7qYGVbYti1lYWKJjXrsuCY6fuEhZk5T9Zvj5utE9n5uZyMvsy0/WvIyssxWb4i7Is4hZ3Kmv4NOho6Asdum2MYGlv83rcz/BhWFip61m3B4KY9ycjN5vStK8w7Ujjfro2lmqEtnsDRyo7M3GyuJkXzxcZpXE64USlt2HXlGPZqGwaFdsfZ2oGIxGg+2zDFsACJi7V9sfuekv4NOlLT0Q2NVsPxqEuMWD3BcJ8UdzefpniwFLq7mXRJCCFElfiz4Knl/7LhrftzOe76nQs+xAKqedH6z6FVHUa57R0+meThH1Z1GOXi+OdPPDvvi6oOo9wWDfqa9pNKH6r5v2LXm3+SllT1WZzlYefkxOJKzBh6UAY07sqn6ydXdRjlMrbXULZcKH2u2P8VXQOb8/qycXcu+JCb2n8UA+ePqeowymXB81/x0uLvqjqMcps54DP6z/nszgUfYste/I6uU0dUdRjltuX136o6hPvy8boHswr8/fih95tVHUKVkFn8hBBCCCGEEEIIIYR4QGSYqhBCCCGEEEIIIcQjSlmBi2SJiiGZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEKGab60JHMOCGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGRYapCCCGEEEIIIYQQjyhZTfXhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUQpkmOrDRjLjhBBCCCGEEEIIIYR4QKQzTgghhBBCCCGEEEKIB0SGqQohhBBCCCGEEEI8ohSymupDRzLjhBBCCCGEEEIIIYR4QKQzTgghhBBCCCGEEEKIB0SGqQohhBBCCCGEEEI8opQyTPWhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUbKa6sNHodPpdFUdhBBCCCGEEEIIIYSoeF9v+buqQyjVF11fruoQqoRkxgkhxEMsZdyEqg6h3BxGvUtaYmJVh1Euds7OJA//sKrDKDfHP3+i9Z9DqzqMctk7fDIpY3+p6jDKzeHTkSQPHVnVYZSb4+RfSEtNreowysXO3p6UuYurOoxyc3hhAMnvf17VYZSL4/hvSbt8parDKDe7AD9Sfvy9qsMoN4eP3iHlu/FVHUa5OHz2PsmD3qjqMMrNcd4Ukl95u6rDKBfHGX+Q/N6nVR1GuTn+OraqQxCPCJkzTgghhBBCCCGEEEKIB0Qy44QQQgghhBBCCCEeUUpkzriHjWTGCSGEEEIIIYQQQgjxgEhnnBBCCCGEEEIIIYQQD4gMUxVCCCGEEEIIIYR4RCkUMkz1YSOZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEyTPXhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyLDVIUQQgghhBBCCCEeUUoZpvrQkcw4IYQQQgghhBBCCCEeEOmME0IIIYQQQgghhBDiAZFhqkIIIYQQQgghhBCPKAUyTPVhI5lxQgghhBBCCCGEEEI8INIZJ4QQQgghhBBCCCHEAyKdcULco8OHD/Prr7+i1WqrOhQhhBBCCCGEEKJMSoXiof33/5V0xon/eRERESgUCo4fP15h+1QoFKxatarE9vj4eJ555hlCQkJQKiv+9Pnyyy9p1KhRhe/3/5MhQ4bwxBNP3HX5nTt3olAoSE5Ovu/3nDVrFo6OjvddXwghhBBCCCHE/x+ygIOoUkOGDGH27NkAmJmZUaNGDXr37s3YsWNxcnKqsriio6NLvL9Op+PFF1/kiy++oGvXrlUU2aNBoVCwcuXKe+o0E3dH1boFlg1DUKjVaKJvkbVlO9r4xDtUUqFu1wqLOgEo1Cq0Kalkb/+X/CsRAJjV9ETVvAlm1d1Q2tmSseIf8i+FV1jMOp2OqTNmsHL1atJSUwkODmbUBx/g7+dXZr1tO3YweepUbty8SU1PT4a98QYdO3QwvD5z9mx27NpFxLVrqFQqGtSvz9vDhuFTq5ahTEJiIn/8+Sf7Dx4kLS2N0EaN+PD99/H28qqQtql7dcWydXMU1tZoIiLJXLISbXRMqeVtRwzFvI5/ie15p8+RMelv/Q9KJepeXbEIC0Vpb4c2NZXc/YfJ2bgNdLoKifteNfQIYGDjbtR188bVxpGP109i99UTVRJLaVRtW2LZqL7+3IiKJmvTdrTxCXeopELdoTUWgQEo1Gq0ySlkb/uX/PCr+pdbhmEeWBszF2d0+flobkSRvWM32sSkSmmDuk93LNu0KDierpG5cHnZx9PIYZjXCSixPe/UWTL+nG5oo9VjPbFoFILCzg7N9RtkLVmF5tr1e45Pp9Mxddo0Vq5cSVpamv5c/ugj/P1LHtNFbdu+ncmTJ3Pjxg1q1qzJsDffpGPHjkZlli5dytx584iPj8fPz4/3R46kcePGhtenTJ3K5s2biYmJwcLCgnp16zJs2DBCQkJMxjlixAj2/fcfP//0E30fe+y+2jrt3x2sOnaEtOwsgmvU5MOeffCv5nZX9TefOcXnK5fSrk5dfn5moNFrsampTNy+mX3hl8jJy8fbxYXP+zxBPY8a9xznnai7dcKyRVMU1lZort0gc8U/aGNiSy1v++YrmAf4ltied/YCGTPmAmDZshmqVs1QOjsCoLkVS/aWHeSfv1Th8UPBcbdgPis3biAtPZ3gwEBGvTkc/yLX+uLCr11j8ry5nL98iejYWEa+9joDn3jSqMyydWtZtn4d0TH6c8yvVi1efW4grZuGVUo7TFG1bo5lw2AUqtv39J1oE+50T7dE3bYVFnX8C+/pO3aTf+Xag4m5bUssGzdAoVahibpF1sZtd3mtbYNF3SLX2q27DNday9CGWIY2ROloD4AmLoGcPf+RHx5Rae1QP9UHy45tUdhYowm/SuashWhvRpfdjO6dsezSDqWLM7q0dHIPHiV7yUrIyzeUUTg5YvXsU5g3CEZhaYn2VgyZ0+agiYis+DY81hPL9q315/eVa2TOX4I26lbZbejSAcuObVA6O6FLzyD38HGyl6+BfH0bLDu0QdWhDUpXZwA0UbfIXrOR/NNnKzx+Qzu6d8ayZRgKKys0kdfJXL4G7a0yrlPDX8U8oORnyLyz58mYNsewT3WPzkava1PTSB3zfcUGL0QZpDNOVLkePXowc+ZM8vPzOXv2LC+//DLJycksXLiwymJyd3cvsU2hULB+/foqiEaIu2PZvCmqsMZkrt+MNjEZVatm2DzzFGnTZ0NunulKSiU2A55El5lF5qq1aNPSUdrZocvNNRRRWFqgiY0j99QZbJ7sW+Fxz543jwULFzJm9Gi8vbyYMWsWw0eMYPmiRdjY2Jisc/LUKT4dPZqhr71Gx/bt2bFrFx9//jkzpkwhJDgYgKPHjvF0v34E1auHRqPhr8mTeevdd1m6YAFWVlbodDo+GDUKc3Nzxo8bh42NDfMXLmTYO+8YypSHqmsHVJ3akTl3MZrYONQ9umD71mukfv0T5OSYrJMxbTaYF96aFTbW2H3yHnnHThrt17JtSzLnLEIbHYNZrZpYD3oGXVY2uTv3lCvm+2VloeJywg3Wn9/H2J5DqySGsli2CEPVLJTMtZvQJiahat0cm+f6kTZlZtnnxnP90GVmkrliLdrUNJT2xueGmbcXuUeOo4mOAaUCdfs2+v1OnWX05asiqLp1QtW5PZmzF+qPp55dsR0xlNQxP5R+PE2eBeZmhp8VNtbYff4BeUcLO0qtX3gGsxoeZMxcgC4lFcvmTbB9dyipX/2ILjnlnmKcPWcOCxYsYMwXX+Dt7c2Mv/9m+FtvsXzZstLP5ZMn+fTTTxn6xht07NiRHTt28PEnnzBj+nRDR9rmzZsZ/8svfDxqFA0bNmTFihW8M2IES5csMdyva3l789GHH+Lp6UlOTg4LFi5k+FtvsWrlyhIP1xYsXAjlHBYz5789LDzwH1889iTezi78vWcXb8+fzdI338FGpSqzbnRyMr9v3UQjr5KdRalZWbw2ezpNavny27Mv4GRjw42kROxU6nLFa4qqY1tU7VuRuWgFmrh41F06YPvGEFLHTYCcXJN1MmYtMD6mrK2xe384eSdPG7ZpU1LIWrfZ0AFjGdYYm5eeJ+2Xv8rs6Ltfs5ctZcHKFYx57328PT2ZsXghwz//lOVTpmFjbW2yTnZONjXd3enSpg2/TJtqsoybqytvDXkJrxr6TtC1W7fy/jdfM//3iWV29FUUy2ZNUDVtTOb6LWiTklC1bIbNgCdImz637OvWM0/qr1ur1xfc023RlVa+omNuGYaqeRMy/9lYcK1tgc3A/qRN/rvsmAf218e8/J+Ca6290bVWm5amf9CRlAyARYMgrJ9+gvTpc+/c0XcfVH26o+rZhcwps9HcikH9eC9sP36X1A+/gGzT11uLVs1QD3iSzGmz0Vy6gtLdDes3hgCQPX8pUHC+fPEheecukvHTH+hS01BWr4YuM7Pi29CzC6puHcn8ez6amFjUfbpj+/5bpH72TeltaN4Udf/HyJw5H83lq/o2vDxI34bFKwDQJiWTtXwN2tg4ACxbNcfm7ddI+2rcHTv67qsdndqh6tCazAXL9deprh2xHfoyqd//Uvp1auZ8MCt27/vgbfKOnzYqp4mOIX3SjMIN2qp5oPmgKP4fDwd9WMkwVVHlVCoV7u7u1KxZk27dujFgwAA2b95sVGbmzJnUq1cPtVpN3bp1+euvv0rdn0aj4ZVXXsHX1xcrKysCAwP57bffSpT7+++/CQ4ORqVS4eHhwVtvvWV4rfgw1VOnTtGpUyesrKxwcXHh9ddfJz093fD67aGRP//8Mx4eHri4uDB8+HDy8sr+8PPDDz9QvXp17OzseOWVV8jOzi5R5l7aDrBx40batGmDo6MjLi4u9OnTh/Dwwiym3Nxc3nrrLTw8PFCr1fj4+PD994VPgRQKBZMmTaJnz55YWVnh6+vL0qVLjd7j5s2bDBgwACcnJ1xcXHj88ceJiIi4q9+vj48PAE8++SQKhcLwM8CkSZPw9/fH0tKSwMBA5s6dW2ZbNRoNI0eONLT1o48+QlcsM0in0/Hjjz/i5+eHlZUVDRs2ZNmyZWXut7hffvmF+vXrY2Njg5eXF8OGDTP6+xcXHh7O448/TvXq1bG1tSUsLIytW7fe03veD1XTxmT/d4j8i+Fo4xPIWrcZhYUFlvXqllrHskEwCrWazBX/oLkZjS41Dc3NKLRx8YYy+VciyNn9H/kXKy4b7jadTsfCxYt5acgQOnXoQIC/P1+NHk12djYbi10Hilq4eDHNw8J4afBgfHx8eGnwYJo1bcqCxYsNZf6YMIG+vXvj7+dHndq1GfP559y6dYtz588DEHn9OqdOn+bjDz8kOCgIn1q1+PjDD8nKzGTTli3lbpuqY1uyN20j78RptNExZM5dhMLSEsuwxqXW0WVmoUtNM/yzqFsbcvPILdJ5Yu5bi7yTZ8g/cx5tYhJ5x06Rd+4S5rVqljvm+7U/8gzTDqxh15XjVRZDWVTNGpO99yD5Fy6jjUsg659NKCzMsQwu49xoGILCSk3msjVobkTpz40bUWhjC8+NzMUryDt1Fm18AtrYeLLWbULpYI+Ze/WKb0PndmRv2Ere8VNoo26ROXuB/nhqFlpqHV1mpvHxVC9QfzwdKTieLCywaNyArBX/oLl8BW1cPNlrN6GNT0TVrtU9xafT6Vi4cCEvvfQSnTp1IiAggK++/FJ/Lm/aVGq9hQsX0rxZM1566SX9ufzSSzQLC9N3mBWYv2ABjz/+OE888QS+vr68//77VK9e3eha3qNHD5o3b07NmjXx9/fnvXffJSMjg0uXjLOxLl68yIL58/li9Oh7al/xti46+B9D2rSjY90g/N2qM+axp8jOy2PT6ZNl1tVotXyxahmvteuIp4kRAHP+242bvT1fPPYkwZ41qeHoRDNff2o6O993vKVRtWtF9tZd+mP4ViyZC5ejsLTAsnHDUuvosrLQpaUb/lnU8Ye8PHJPFH7JzT97gfzzF/XnRXwC2Ru2osvNxbxWxWQcG8Wj07Fw9SpeGvAsnVq3JsDHh69Gvk92Tg4bd+0stV5wnUBGvPIq3dt3wNLCwmSZds1b0CasGbU8a1LLsybDBw/BWq3mVME9pLKpmjbS39MvhaONTyRr/RYU5hZY1gsstY5lgyD9PX3luiL39Gije3qlxtwslOy9B4pcazcWXGvrlR5zo4Jr7dLVRa61Nw2dPQD5l66QH34VbWIS2sQkcnbuRZebi5mnR+W0o0dnsldvIO/wMbQ3osicMkt/vW3VrNQ65gF+5F8KJ++/Q2jjE8g/fY7c/w5h7lfYcavq2x1tYhJZU2ejuRKhL3fmvNF9pcLa0KUD2es2k3f0BNqb0WTOmKc/v5s3Lb0N/r7kX75C3oEjaBMSyT9zntwDRzD38TaUyT9xmvxTZ9HGxKGNiSN75Vp0OTmY+/lUeBsAVO1bkb1lJ3mnzuizCBcs1bcjtFGpdXSZxa9TAQXXqVPGBbUao3K6jIxKaYMQpZHOOPFQuXLlChs3bsSiyAejadOm8dlnn/Hdd99x7tw5xo4dy+jRow3DW4vTarXUrFmTJUuWcPbsWb744gs+/fRTlixZYigzadIkhg8fzuuvv86pU6dYs2YNAQElh/IAZGZm0qNHD5ycnDh06BBLly5l69atRp13ADt27CA8PJwdO3Ywe/ZsZs2axaxZs0pt65IlSxgzZgzfffcdhw8fxsPDo0RH2722HSAjI4ORI0dy6NAhtm3bhlKp5MknnzQsOPH777+zZs0alixZwoULF5g3b55RhxjA6NGj6devHydOnGDQoEE899xznDt3zvD76NixI7a2tvz777/s2bMHW1tbevToQW7BU8yyfr+HDh0C9J2M0dHRhp9XrlzJiBEjeP/99zl9+jRvvPEGL730Ejt27Ci1rePHj+fvv/9mxowZ7Nmzh8TERFauXGlU5vPPP2fmzJlMmjSJM2fO8N577zFo0CB27dpV6n6LUyqV/P7775w+fZrZs2ezfft2Pvroo1LLp6en06tXL7Zu3cqxY8fo3r07ffv2JTKy4ocg3KZwsEdpa0P+1SLDUDQa8q/fKPPDqnmAH5qoaKy6dsTurdewfXkQqhZh5c4auVs3o6JISEigRbPCD7iWlpaENm7MyVOnSq138vRpmjcz/lDconnzMuvc7kC1t9cPc8krOF5VlpaGMmZmZphbWHD8RPmGWCpdnFE62JN/7mLhxnwN+ZevYO579xkVli2bkXvkuFFGQX54BBaBASjdXPXv5emBub8PeacfzBfE/zUKRweUtrbkX40o3KjRkB95AzPP0of9mdf2R3MzGqvunbAb8Qa2r72IqlWzMs8NRUFGlM7Eg5XyULrePp4uFG7M15B/KfyevgBZtm5O7uFjcDvjRKlEYWZWIotPl5dncihiWW7evKk/l1u0KHw/S0tCQ0M5ebL0DqqTp07RvEgdgBYtWxrq5OXlcf78eVo0b25cpnnzUvebl5fHypUrsbW1pU6dOobt2dnZfPb553z40Ue4urreU/uKikpOIiE9nRZ+hZ8bLM3NCa3lw8kbZQ/vnbF7J442NjzeuInJ13dfvEA9D08+Xr6Y7r+MY9C0v1h19PB9x1oapbMTSns78i9eLtyo0ZAfHmH0xftOLJs3IffYqdKznhQKLBrVR2FpSf61ir8H3rx1i4SkJFqEFnZKW1pYEhpSn5PnKm7YnEajYdOunWRlZ9OgjAdcFcVwTy86dFGjIf/6zbLv6f637+kdsBv+KrYvPY+qRdMHck83XGuvFPscEnkDs5p3uNbeiMKqR2fsRgzF9rXBZV9rFQosggJRWFiguRlVwa0AZTVXlI4O5J8qcvzk55N//iLmtUsfcp9/8TLmPt6YFVyTldVcsWgYQt7xws8lFqENyL9yDeu3X8f+z5+w/fYzLDu0qfg2uLro23CmyOeC/HzyL1zG3L/0a3v+5XDMa3lhVvA5RenqgkX9IPJOnjFdQaHAolmo/vyuhCHDShcnlPb25F8o8lBFoyH/8lXMfe/lOtWU3GMnS1ynlK6u2H/5MXaff4D1C8+idKm6KZLE/08yTFVUubVr12Jra4tGozFkhv3yyy+G17/55hvGjx/PU089BYCvry9nz55lypQpDB48uMT+LCws+Oqrrww/+/r6sm/fPpYsWcIzzzwDwLfffsv777/PiBEjDOXCwkzPATJ//nyysrKYM2eOYZjNxIkT6du3L+PGjaN6dX0GhJOTExMnTsTMzIy6devSu3dvtm3bxmuvvWZyvxMmTODll1/m1VdfNcS0detWo+y4e207QL9+/Yx+njFjBm5ubpw9e5aQkBAiIyOpXbs2bdq0QaFQUMvEUIunn37aENc333zDli1b+OOPP/jrr79YtGgRSqWS6dOnG9KdZ86ciaOjIzt37qRbt25l/n6rVasGgKOjo9Fw4J9//pkhQ4YwbNgwAEaOHMn+/fv5+eefS8wdVPR3+MknnxjaPHnyZDYVycDIyMjgl19+Yfv27bRs2RIAPz8/9uzZw5QpU2jfvr3J/Rb37rvvGv7v6+vLN998w5tvvllqlmLDhg1p2LAws+Dbb79l5cqVrFmzpkQnbkVR2uqPzeJDHXQZmSgc7Euv5+iA0sFLP4/G0tWYOTui7toRlEpy9h2olFiLSkjQDy9xKZb14eLsTPSt0oc7JCQkmKxze3/F6XQ6fvn9dxo1bEhAwfxVPj4+eLi7M3HSJD4dNQorKyvmL1xIQkIC8aXs524p7O0A0KYZZ1BqU9NQOt/dhz2zWl6YeXqQOd84MzVnyw4UVmrsRn+onyNOoSD7n43kHTlerpgfVUob/TA1XcY9nhtOBefG6fNkLF6JmbMT6m6d9OfGnv0m66g7tyf/+g20cRU7bEpR0IGsTU0z2n5Px5OPt/54mluYPUpODvnhV1H37krGrRh99lxYKGY+3vecqVFZ53JycjIajQbnYmWcXVxKnKe7d+/m088+Izs7G1dXV/6cONFocZ3xv/xCgwYN6HCX1/5SYy7o2HcuNvTW2caG6JTkUuuduH6NNcePMu+1N0stczMpiRVHDjGweUteat2OMzdvMH7zeizMzendoFG54i5KYW8LmLhGpaUb5nq7EzMvT8w83MlcvLLEa0r36ti987p+2H1uLhkzF6CNiTOxl/JJSNLPz+jiaHweuDg6Eh1X/iGxlyOu8tL7I8nNzcXKyoqfPh+Nn3flD1E1XLeK39MzMw33F5P1HO1ROtTUz+G3bDVmTo6ou3YouKcfrMyQURacD8Wzi3QZmYZrmMl6jo4ofez1c6MuXqG/1nbvXOJaq6zmiu2Q5wzHVOayNXeeE/c+KArmpdOmpBpt16akGeZJMyVv/2Gy7Oyw/eJDQIHC3IycrTvJ+afwc6myWjVUnduTs3ErGWs2YObvg9WLA9Dl55NXyn3lvtrgcPueUawNqWkoXcpow8GjZNnaYvvxu4Vt2LGbnA3GowWUnh7Yffo+WJhDTg4Zf05HG13xQ1QVdqV8lkpPR+nkeFf7MPOuiVkNdzILhtneln/tOpoFS9HExaO0s9UPf31nKGnjJqDLzKqQ+B82CoXkYT1spDNOVLmOHTsyadIkMjMzmT59OhcvXuTtt98GIC4ujuvXr/PKK68YdWrl5+fj4OBQ6j4nT57M9OnTuXbtGllZWeTm5hpWKY2NjSUqKorOnTuXWr+oc+fO0bBhQ6P5blq3bo1Wq+XChQuGzrjg4GDMisxP4OHhwakysnTOnTvH0KHGcyu1bNnSkAl2v20PDw9n9OjR7N+/n/j4eENGXGRkJCEhIQwZMoSuXbsSGBhIjx496NOnD926dSsRR/Gfb69We+TIES5fvoydnfGHwezsbMLDw+/591v09/H6668bbWvdurXJIcYAKSkpREdHG8Vqbm5O06ZNDUNVz549S3Z2dokFN3Jzc40m/r6THTt2MHbsWM6ePUtqair5+flkZ2eTkZFhch6kjIwMvvrqK9auXUtUVBT5+flkZWWVmRmXk5NDTrF5n1RlzDtkERSIVffC33HGstX6/xSfwF9hYpvR6wp0mZlkFUz+r42JRWFrg6pZ00rpjNuwaRNjx40z/Dzh558LwjB+Aq7T6bjjc/zidUzs57Yff/6Zy5cvM33KFMM2c3Nzfvz+e74ZO5ZO3btjZmZGs6ZNaVXs+L8bFmGNsX6usCM8/a+/bzekzJjLYtmqGZqb0SUm0rdo0hDLZqFkzlqAJjoGs5o1sOr3GNqUVPIOHLnn2B81FsF1serZxfBzxpJV+v+UOA0UJrYZv67LyCRrwxb9uXGr4Nxo0dRkZ5y6eyfM3FxJL9rZdZ8smoViPfBpw8/ptxdbKNfx1Fx/PBWbJDxz5gKsX3wWh3FfotNo0Fy/Sd6hY5h5e5a5v423bvLDxVMoGu9Ap9Mx4ddfC0KqgHNZpyuxH5P7LbatadOmLJg/n+TkZFauWsUnn37KrJkzcXZ2ZteuXRw+fJj58+bdKZoSNp46wffr/zH8/Ouzz+tjonhMJbfdlpGTwxerlvNp78dwtDY9fx6AVqejXo0aDOukv28FuntwJT6W5UcOlqszziK0Idb9CxeqSJ8+tzDoohSKu14IxrJ5UzTRt9Bcv1niNW1cPGnj/0RhpcaiQTDWz/Uj/a/p5e6Q27BjO2Mn/mH4ecKXXxWEbeJ+cOcj745qedZkwR9/kpaRzva9e/nyl/FMHfdjhXfIWQQFYtWt8MFjxvKC483U36KsP49CgS4zi6xN2wvu6XEobG1RNQut8M44i+C6WPUq/HyVYaJTtlBZn0P0HXZZ64tea21RtTS+1moTEkmfPheFWoV5YG2s+vYgY97icnfIWbRqhvXLzxt+Tv95oumY73A4mderg/rxnmTNWkD+5auYubthNWgA2idSyFlVMOe0UoHmyjWyC+5LmmvXMfOsgapz+3J1xlk0b4r1i88WtuG3ySabcKfz2zwwAHWf7mTNW0L+lQjM3Kph9Vw/tH26k7O2sFNReyuWtK9+QGFlhUWTRli/Moj0cb+Xu0POIrQh1s88UdiOgsUWSrrT/buQZfOmaKJuoYm8YbQ9/3zhyAVtdAzpEZHYf/YBlmGh5Ozae4+RC3F/pDNOVDkbGxvDEMbff/+djh078tVXX/HNN98YOpKmTZtG82JDVIp2fBW1ZMkS3nvvPcaPH0/Lli2xs7Pjp59+4sABfcfCvU7KbuoD/21Ft1sUm3NEoVAY4r8f99N2gL59++Ll5cW0adOoUaMGWq2WkJAQwxDS0NBQrl69yoYNG9i6dSvPPPMMXbp0ueM8arfbqtVqadKkCfPnzy9Rplq1aiiV9//U5W6+bN2L27/DdevW4elp/MWyrI6uoq5du0avXr0YOnQo33zzDc7OzuzZs4dXXnml1DkBP/zwQzZt2sTPP/9MQEAAVlZW9O/f3/A3MOX77783yugEGDNmDO9ZOZosn3f5CpqiE+UWTKitsLExygBSWFuXyAgqSpeegU6rNfpwpk1I0mfaKZVQjmPYlHZt2hASFGT4ObfgdxifkGA0bCwxKalEJkxRLi4uJbLgEhMTTdb5cfx4/t2zh6mTJlHdzXilw3p167JgzhzS09PJy8vDycmJwa+8QlDdexuGlHfyLGlFOzkKFmFQ2tuhKZLNpLSzRVcsu8kkCwssmzQka23JefOsnuxD9uYd5BXM+6WNuoWyIGtLOuMg71K48blRcL1U2FobZWwobKzKnB9Gl5GBTqMxPjfiE1Ha2pY4N9TdOmJR25/0uYvRpZU+n+Rdt+HEGdKuFj2e9G1QOtjf//EU1oisfzaWeEkbn0D6L3+CpSUKtQpdahrWr75wxy+4bV2rE2zviP03n5KRnm64vpk8l11cSt2PyXO5yPnv6OiImZlZiTJJiYklMuqsrKzw8vLCy8uL+vXr8+RTT7F69WpeeuklDh8+zI0bN+jYqZNRnY9GjWLJ0qVM7Nan9LbWqUuwZ+GcjLkaDQAJGem4FnkwlZSZgbONrcl93ExKJDolmfcXLzBs0xYcWy2/+5Klb75DTWdnXG1t8XWtZlTXx7UaO86Xb8hl3plzpBXt2C96jSpyzCptbdCl3cW8SRYWWDaqT9ambaZf12gMq35qbkRh5lUTVdtWZN1+cHSf2jVvQUhg4fXZcA9JSsS1yPGQmJyM811mzpTFwsLCsIBDUO06nL14kYWrV/PZ2++Ue99Flbinm5VxTy9jsn9dRmbJ61ZCYqXc0/MuhaOZXkrM6UWvtffzOSSh5LVWqzUs4KCJjsG8hjuWYaFkbyjfnLx5R0+QVrBqK1B4bjg4oEkuzCxT2tuhK5YtV5S6/2Pk7j1A7k59R472RhSoVFi/PIic1RtAp0OXnIImynhFVk1UNBZlzCV7V204cYq0ryJMtMEeTZGY73TPUD/Rh9z/DpK7+z99G25Gg8oS6xefI2fd5sK/kUZjyJ7WXLuOmW8tVF3ak1XOh1F5Z86R9rOJ65SdrfG9z9YGXRlzNxtYWGDZuAFZG+/iGMnNQxN9C2W1+5/CQIh7JZ1x4qEzZswYevbsyZtvvkmNGjXw9PTkypUrPP/883eujH6YSqtWrQzDHQGjBQzs7Ozw8fFh27ZtpQ5/LCooKIjZs2cbZUHt3bsXpVJpNBfNvapXrx779+/nxRdfNGzbv7/wqVj16tXvue0JCQmcO3eOKVOm0LZtWwD27Cm5uqK9vT0DBgxgwIAB9O/fnx49ehh1ZJiK63YmWWhoKIsXL8bNzc0w91Zxd/r9WlhYoCn4MnNbvXr12LNnj9H77tu3j3r1TE/66+DggIeHB/v376ddu3aAPmvwyJEjhBbMHRMUFIRKpSIyMvKuh6QWd/jwYfLz8xk/fryho7Ho/IOm7N69myFDhvDkk08C+rnKii9wUdwnn3zCyJEjjbapVCqyJ0wyXSE3D22u8UqH2vQMzH28yb096bFSiblXTbLLWGEz/2YUlkHGHU9KJ0f9kIAK7ogDfed70WxCnU6Hi4sLBw4dom6gflLqvLw8jh47xttFzuHiGoSEcODQIZ5/7jnDtgMHD9Kgfn2jff84fjw7d+1iyl9/4Vmj9DlrbG31X6Ajr1/n3PnzvFksS/OOcnLQxhlnNmpTUjGvWwfNjYI5bczMMA/wI2v1nVdltmzSEMzNyTt0tOSLFhYln2xrtQ9snr+HXm4e2txko03a9HTMfWuRG1Pk3PCuSfaO3aXuJv/6zRILPChdnEqcG+punbAIDCBj3pIyv6jdk9KOp3p1CrOQzMwwr+1P1sq1d9ydZdNG+uOprM7a3Fx0ubkorK2wCKpL1op/Si8L2JibY2NujmOtWqSlphaeywcOGJ/LR48ast1NaVC/PgcOHOD5gQMN2w7s30+DBg0A/f2ibt26HDhwwOiecuDgQdoXXPtLo9PpDJ01gwcP5vHHHzd6/dnnnmPke+/Ro2dP2Lmv9LaqVEYrpOp0OlxsbTlw5TKB7vr5u/I0+Ry9FsFbnbqa3EctV1cWvj7caNukndvIzM3h/W69qF4wrKyBlzfXEoyHCEcmJODu4FhmW+8oJxdtjnEHqzY1DfM6+rkRAf0x5e9j8iFAcZaNQsDc7O6HxytAYV76g8S7ZWNtbbRCqk6nw8XJiQPHjlHXX/9gNy8vj6OnT/H2Sy+X+/2K06G74+Jc96XUe7pXsXu6J9llZO3k34jCMsh4gQelsyPa9Eq4p5d5rY0tjNm7Jtnby7jW3ogqea11LnmtNUVRxsPpu5adgzbbOGNTm5yCeUi9wsx0MzPM69Yhq9hQRyOWliVX49RqjTLq8i+GY+ZhvMCP0r16+YfbZuegLbZCqjY5BfOgwMKMMDMzzAMDyFq2pvT9WJr6fKG7Y1YgClCUshDKPTF5nUrFPDDA+DoV4EvWP6UvDHSbZaP6+uvU4WN3fm8zM8yquxnPefiIUVZAtrCoWNIZJx46HTp0IDg4mLFjxzJx4kS+/PJL3nnnHezt7enZsyc5OTkcPnyYpKSkEp0XAAEBAcyZM4dNmzbh6+vL3LlzOXToEL6+hROWfvnllwwdOhQ3Nzd69uxJWloae/fuNfmF4fnnn2fMmDEMHjyYL7/8kri4ON5++21eeOEFwxDV+zFixAgGDx5M06ZNadOmDfPnz+fMmTP4+fkZxXkvbb+9uunUqVPx8PAgMjKSjz/+2KjMr7/+ioeHB40aNUKpVLJ06VLc3d2N5tVZunSpUVwHDx5kxowZht/HTz/9xOOPP87XX39NzZo1iYyMZMWKFXz44YfUrFnzjr/f2511rVu3RqVS4eTkxIcffsgzzzxDaGgonTt35p9//mHFihVlrkI6YsQIfvjhB2rXrk29evX45ZdfSE5ONrxuZ2fHBx98wHvvvYdWq6VNmzakpqayb98+bG1tS513ryh/f3/y8/P5448/6Nu3L3v37mXy5Mll1gkICGDFihX07dsXhULB6NGj75glqVKpTGbr3cs08DmHj6Fu2QxtUjLapGRULcPQ5eWRe65wAl+r3t3QpmWQ86/+w3zusZOoQhuh7tKB3CPHUTo5omoZpl804DYLC6O5OZQO9ijdqqHLykaXdhdZOWVQKBQ8N2AAM2fPxrtmTby8vJg5ezZqtZoeRYZPf/HVV7hVq8ZbBR10zz7zDK8PG8asuXPp0LYtO3fv5sChQ8woMgx13M8/s3HzZsaPG4e1tbVhfilbGxvUajUAW7dtw9HJCffq1bkcHs74X3+lfbt2JSaLvx85O3aj7t4JbVw8mtg41N07o8vNJfdQ4YdC6xefRZucQvaaDUZ1LVuGkXfijMlsgvzT5/T7TUxCGx2DmZcnqk7tyP3vULljvl9WFipqOhRm89Swd6W2a01SszOISU+qsrhuyzl4DHWrZmgTk9EmJaFq1RxdXj65RSa3turbA21aOjkFnde5R0+gatoYdbeO5B4+htLJCVWrZkZ/P3X3TlgG1yVj2Rp9R9bteZ5yciHfeFGEcrdh27+oe3RBG1twPPXooj+eDhZ22FoPeQ5tcirZq9YZ1bVs1Zy846dNHk/mQYGAAm1MLEo3V6ye6osmJpbcexzSplAoeO6555g5cybeBdlpM2fN0p/L3bsbyn0xZoz+XC6YP/PZZ5/l9TfeYNbs2XRo356du3Zx4OBBZkyfbqjz/MCBfDFmDPWCgmhQvz4rVq7k1q1bhvlCs7Ky+Pvvv2nXrh2urq6kpKSwdNkyYmNj6VIwZYKrq6vJRRvc3d3x8vIipcQrZbf12WYtmbV3N17OLng7uzBz77+oLSzoHtLAUG7M6uW42dkzvFNXVOYW+LsZf2awK7gOFd0+sHkrXpk1jZl7dtElKIQzUTdZdewwn/Z6jIqW8+8+1J3bo41LQBOfgLpze3S5eeQeK1zAxvq5fmhTUslebzxnlGWzJuSdPmdybiV1z67knb+ILjkFVCosG9fH3N+XjGmlLz51vxQKBc89/gQzlyzGu0YNvGp4MnPJYtQqFT3adzCU+2L8z7i5uPDWkJcAfYfdlYKpI/Ly84lLSOBCeDjWVlaGTLg/Z8+iVZOmVK9WjcysTDbt2sWRU6f4/etvKrwdpuQcPo66RVjhPb1FGLr8PHKLLORi1asr2vQMcv7VdybnHj+FqklD1J3bk3v0hP6e3qLYPb0yYz54FHXrZmiT9KueFl5rzxXGXPxae+T2tbaT/lrr7IiqVcFiMwVUHdroV1NNTUNhaYlFcCBmtbzIWVRG51h52rFxG+rHeqKNiUVzKxb1Yz3119si10XrN4agTUo2DDnNP3YSVc8uaK5Fogm/irK6G+r+j5F39KShgytn41ZsvxiF6rGe5B04jJmfD6qObcn8+96Hz9+xDVt3ou7dDW1MnP6e0aub/vw+ULggjPUrL+jbUPDwJf/EaVTdOqKJvIHmyjWUbq6on+hN3vHThjaon+pL3qmz6BKTQK3CslkTzANrk/Gr6XmUy92OXftQd+mgv07FJaDu0kHfjqPHC9sxsL/+OrXO+EGCZYum5J0q5Tr1WE/yzpxHl5SMwtYGdbeOKNQqck09BBWikkhnnHgojRw5kpdeeolRo0bx6quvYm1tzU8//cRHH32EjY0N9evXN5pUv6ihQ4dy/PhxBgwYYPhyMGzYMDZsKPyyO3jwYLKzs/n111/54IMPcHV1pX///ib3Z21tzaZNmxgxYgRhYWFYW1vTr18/o0Um7seAAQMIDw9n1KhRZGdn069fP958802jBQjute1KpZJFixbxzjvvEBISQmBgIL///jsdOnQwlLG1tWXcuHFcunQJMzMzwsLCWL9+vdHw0q+++opFixYxbNgw3N3dmT9/PkEFQwutra35999/GTVqFE899RRpaWl4enrSuXNnQ6bcnX6/48ePZ+TIkUybNg1PT08iIiJ44okn+O233/jpp59455138PX1ZebMmUaxF/f+++8THR3NkCFDUCqVvPzyyzz55JOkpBR+rfrmm29wc3Pj+++/58qVKzg6OhIaGsqnn356V3+nRo0a8csvvzBu3Dg++eQT2rVrx/fff2+UwVfcr7/+yssvv0yrVq1wdXVl1KhRpKZWUMZMGXIPHEZhbo5Vt04o1Co0UbfIWLLSaPUopb290TwburR0MpasRN25HbYvD0Kblk7u4ePkFPmwZuZeHduBhX8/q876LMPcU2fJWn/nDIo7GTxoEDk5Ofzw88+kpaUREhTExAkTjDLobsXEGB2jDRs04Luvv2bSlClMnjqVmp6efP/tt4QEBxvKLFuh/5D+xnDjbJQxn39O3969Af2Qul9//52ExERcXV3p3aMHr75cMdkUOVt2orCwwGrAkyisrdBERJI+cRoUmRtQ6eRY4im00s0V8wA/0v+YanK/mUtWYdWnO9bPPoXC1hZtSiq5e/aXe6hOedStVouJTxY+IHinjX6+s/Xn/uO77RX/Bfxe5e4/hMLCHKsenVCo1fpzY9HyYueGndHfQpeWTsai5ai7dMD21Rf158ahY+QU6fRUNWkEgO2gZ4zeL/OfjeSdKt+wwuJyNm9HYWmB1XP99MfT1UjSf59ifDw5O5k4nqphXtuvcA6hYhRWatRP9Ebp6IguM5O8YyfJWrX+vrJoBr/4ov5cHjdOfy4HBzPxjz+Mz+Vbt1AWyeJs2LAh3333HZMmTWLy5MnUrFmT78eOJSQkxFCmW7dupKSkMH36dOLj4/H39+e3CRPw8NBnpSmVSiIiIli7bh3Jyck4ODgQFBTEtKlT8fcvffXD8nixZRty8vL4ceNa0rKyCfb05I+BLxpl0MWkpBi19W4E1fDkx6ef46/tW5ixexc1HB0Z2bUnPeo3vHPle5SzY7f+GtXvMRRWajSRN0ifOgtyCqdUUDo6ljymXF0w9/MhfcpMk/tV2NliM7A/Cns7dFnZaKJjyJg2m/yL4SbLl9fg/k+Tk5vLD3/9SVp6OiGBgUz85jujDLpbcbFGf4u4xESef6dwQaW5K5Yzd8VyQuvXZ+oPPwL6xSG+GP8T8YmJ2NrYUNvHl9+//oYWjQtXbq1MuQeP6K9bXfWdBJroGP0cmHe6bi1ZhbpTO2xfGog2LYPcI8fJeUBTGOT+d0j/OaRHZ/219mY0GQuXGcfsYF8s5jQyFi5D3bUDtq/dvtYeNbrWKm2ssX6sJwpbG3Q5uWhj48hctMJ4BfkKlLN2k/56O2QgCmtrNOFXSR/3GxTJPlO6Ohu1I3vVenQ6UD/9OEonR3Sp6eQdO0n20lWGMpor18iYMAmrAU+ifqI32rh4suYtIa8SFtfI2bBVf34PegaFjTWaKxH6KQmyS79nZK/dhA79cFWlkwO6tHTyTpwme0VhBrbC3g6bV19A4WCvP79vRJHx61/kn71AZcjZ/q++Hf0fQ2FlhebaDdInzzS+Tpn6LFWt4Do16W+T+1U6OGDzwgD9MOr0DPKvXSdtwmR0BUOhhXgQFDpdGbM4CiH+31EoFKxcuZInnniiqkMRQMq4CVUdQrk5jHqXtMSKX/HsQbJzdiZ5+IdVHUa5Of75E63/HHrngg+xvcMnkzK2fA9DHgYOn44keWjJDOf/NY6TfyHtATxsqEx29vakVMDCG1XN4YUBJL//eVWHUS6O478l7fKVqg6j3OwC/Ej58feqDqPcHD56h5Tvxld1GOXi8Nn7JA96o6rDKDfHeVNIfqX0If//Cxxn/EHye3f3MPxh5vjr2KoO4b5M+Pfhvc+9225AVYdQJWR9WyGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGROeOEEEZk5LoQQgghhBBCPDrudQ5TUfkkM04IIYQQQgghhBBC/E/466+/8PX1Ra1W06RJE3bv3l1q2Z07d6JQKEr8O3/+vFG55cuXExQUhEqlIigoiJUrV1ZqG6QzTgghhBBCCCGEEEI89BYvXsy7777LZ599xrFjx2jbti09e/YkMjKyzHoXLlwgOjra8K927dqG1/777z8GDBjACy+8wIkTJ3jhhRd45plnOHDgQKW1QzrjhBBCCCGEEEIIIR5RpjLDHpZ/9+qXX37hlVde4dVXX6VevXpMmDABLy8vJk2aVGY9Nzc33N3dDf/MzMwMr02YMIGuXbvyySefULduXT755BM6d+7MhAkT7jm+uyWdcUIIIYQQQgghhBDioZabm8uRI0fo1q2b0fZu3bqxb9++Mus2btwYDw8POnfuzI4dO4xe+++//0rss3v37nfcZ3nIAg5CCCGEEEIIIYQQ4oHLyckhJyfHaJtKpUKlUpUoGx8fj0ajoXr16kbbq1evzq1bt0zu38PDg6lTp9KkSRNycnKYO3cunTt3ZufOnbRr1w6AW7du3dM+K4J0xgkhhBBCCCGEEEI8oh7m1VS///57vvrqK6NtY8aM4csvvyy1TvHhrTqdrtQhr4GBgQQGBhp+btmyJdevX+fnn382dMbd6z4rgnTGCSGEEEIIIYQQQogH7pNPPmHkyJFG20xlxQG4urpiZmZWImMtNja2RGZbWVq0aMG8efMMP7u7u5d7n/dK5owTQgghhBBCCCGEEA+cSqXC3t7e6F9pnXGWlpY0adKELVu2GG3fsmULrVq1uuv3PHbsGB4eHoafW7ZsWWKfmzdvvqd93ivJjBNCCCGEEEIIIYR4RFXmcMsHbeTIkbzwwgs0bdqUli1bMnXqVCIjIxk6dCigz7S7efMmc+bMAfQrpfr4+BAcHExubi7z5s1j+fLlLF++3LDPESNG0K5dO8aNG8fjjz/O6tWr2bp1K3v27Km0dkhnnBBCCCGEEEIIIYR46A0YMICEhAS+/vproqOjCQkJYf369dSqVQuA6OhoIiMjDeVzc3P54IMPuHnzJlZWVgQHB7Nu3Tp69eplKNOqVSsWLVrE559/zujRo/H392fx4sU0b9680tohnXFCCCGEEEIIIYQQ4n/CsGHDGDZsmMnXZs2aZfTzRx99xEcffXTHffbv35/+/ftXRHh3RTrjhBBCCCGEEEIIIR5RSlku4KEjfxEhhBBCCCGEEEIIIR4Q6YwTQgghhBBCCCGEEOIBkWGqQgghhBBCCCGEEI+oR2k11UeFZMYJIYQQQgghhBBCCPGASGecEEIIIYQQQgghhBAPiEKn0+mqOgghhBBCCCGEEEIIUfGm7V9d1SGU6rUWj1d1CFVC5owTQoiH2JxD66s6hHJ7MawXZ6LDqzqMcgn28OfZeV9UdRjltmjQ16SM/aWqwygXh09H0vrPoVUdRrntHT6ZFxZ+VdVhlNvc58Y8Euf3gqObqjqMchsY2p3lJ7ZXdRjl0q9hJy7FRlZ1GOVW282br7f8XdVhlNsXXV/mrZXjqzqMcpn45Pt8sXFaVYdRbl/3eI1R6/6q6jDKZVzvYY/MZykhKoIMUxVCCCGEEEIIIYQQ4gGRzDghhBBCCCGEEEKIR5QCWU31YSOZcUIIIYQQQgghhBBCPCDSGSeEEEIIIYQQQgghxAMiw1SFEEIIIYQQQgghHlEKhQxTfdhIZpwQQgghhBBCCCGEEA+IdMYJIYQQQgghhBBCCPGAyDBVIYQQQgghhBBCiEeUUoapPnQkM04IIYQQQgghhBBCiAdEOuOEEEIIIYQQQgghhHhAZJiqEEIIIYQQQgghxCNKVlN9+EhmnBBCCCGEEEIIIYQQD4h0xgkhhBBCCCGEEEII8YDIMFUhhBBCCCGEEEKIR5QSGab6sJHMOCGEEEIIIYQQQgghHhDpjBNCCCGEEEIIIYQQ4gGRYapCCCGEEEIIIYQQjyhZTfXhI5lxQvyPioiIQKFQcPz48UrZv0KhYNWqVfdUp0OHDrz77rt3XX7WrFk4OjqWWeb8+fO0aNECtVpNo0aN7ime+3Wv7ajsv4UQQgghhBBCiEeHZMYJcR+GDBlCcnLyPXdWVSQvLy+io6NxdXUFYOfOnXTs2JGkpKQ7dnD9LxkzZgw2NjZcuHABW1vbqg7HpOJ/i6pyeMse9q/fQXpyKtU83ek66Am86/rfsd71i1eY++2fVKvpzmtjPzRsP3/oJHvXbCEpJh6tRotTdVda9OpA/TZhldkMNqxay+pFy0lKSMTLtxYvv/U6QQ1CTJZNTEhk9l/TCL94megbUfR66jFeefuNUve9Z9sufvlmHM1at+Dj776orCbQtU4YfYPa4Ghly43kOOYc3sD5uGullm/t04DHgtvgbudMZl4OJ6IuMe/IJtJzs0qUbVkrhBFtn+HQ9XOM37Ww0tpwm6ptSywb1UehVqOJiiZr03a08Ql3qKRC3aE1FoEBKNRqtMkpZG/7l/zwq/qXW4ZhHlgbMxdndPn5aG5Ekb1jN9rEpEpvT2kaegQwsHE36rp542rjyMfrJ7H76okqi6e4zgFN6V2vFQ5WdtxMiWXe0U1cjIsstXyrWvXpXa8V1e1cyMrL5mT0ZRYe22I4pjztq9GvQQd8nGpQzdaReUc3sunCgUpvx6NwfptyaPNu9q3dRlpyKm413en+Yj9q3cX1N/LCFWZ9/TtuXh4M/WHUA4i00P5Nu9i9ZgtpySm41fSg95Cn8a1X22TZiPOX2Th/JXE3Y8jLycWxmjPNurSlTZ/ORuWyMjLZvHA1Zw8eJysjEyc3V3q90I/AUNN/4/Jat3INKxYuJTEhAW8fH157501CGtY3WTYxPoEZf07h8oVLRN24Sd/+T/D6O8OMyly7GsH8GbO5fOESsbdieO3tN3n8macqJfaiLv57lLPbDpKVko6jhytN+nXGLcDLZNmYi5Fs/b3ktb/P56/i4O4CgFaj4czm/Vw5cJrM5DTsqzvT+PEO1Ajyq9R2tPVtSOfaYTiobYhOTWD5qR2EJ9w0WXZQaHda1Cp5XESnxvPdttkAtPKpTzOvIGrY6z9fRSbH8M/ZPVxLulVpbQjzqkcb34bYqqyIS09iw/n9Zb6fmUJJh4BQGtYIwFZlTWp2BrvCj3Hs5kUAmtQMpFGNOrjZOQEQlRLP1kuHuJkSV2ltAGhRK5j2fo2xU1kTk57IP2f2EpEUXXo7lEq61A6jcY062KmsSclOZ/vlIxy+cd5QRm1uSffA5oS4+2FloSIpK421Z/dyoYx7UXlU9GepMK96PBHSDnc7Z8yUZtxKTWDduX0P1b1e/P8inXFC/I8yMzPD3d29qsOodOHh4fTu3ZtatWpVdSilehj+Fmf3H2PLvFX0GNIfrzq+HN2+j0U/TeWNcR/j4OpUar3szCzWTF6Ab3Bt0lPSjF6zsrGm9WNdca1RHTNzMy4dO8M/UxdhbW+Hf4O6ldKOPdt3MXPiVF57dxj16gexac0Gvv3oC36bPZlq1d1KlM/PzcPe0YF+g55l7dKVZe479lYMsyZNJ6hBcKXEflvLWiEMbtKTGYfWciE2ki61w/i40yDe/2ciCZkpJcoHVvNmeKunmHNkA0duXMDZ2p5Xm/fl9RaP88u/i4zKuto4MCi0O+diIiq1DbdZtghD1SyUzLWb0CYmoWrdHJvn+pE2ZSbk5pmupFRi81w/dJmZZK5YizY1DaW9HbrcXEMRM28vco8cRxMdA0oF6vZt9PudOgvy8h9I24qzslBxOeEG68/vY2zPoVUSQ2maewczKLQHsw6v41L8dToGNOHD9s/z8fo/SchMLVG+jqsXb7R4gvnHNnHs5kWcrOx4KawPrzTry297lgBgaW5BbHoyByPP8nxo9wfSjkfh/Dbl9H9H2ThnBb1ffhqvQD+ObN3L/B8mMfznT3FwdS61XnZmFqv+motfSJ0S19/KdnLfYdbNWspjrz5LrUB/Dm7dzeyxf/Lur1/gaCJmS5WKlt074F7LE0uViojzl1k1bQGWakuadWkLQH5+Pn9/+zu29nYMHPk69i6OpCQkoVKrK6UN/27bybTfJ/HmyLcJqh/MhjXr+PLDT/lr7gzcTBxPeXn64+mZFweyeslyk/vMyc7B3cOD1h3aMf2PyZUSd3ERR85xZPk2wgZ0o5qfJ5f2HGfHX0vp8/mr2Djbl1qv7+jXsLCyNPyssrU2/P/EP7u5eugMzQf2wL66C9HnrvLvtJV0GzkIZ6/qldKOUM9A+jXoyOLj27iSeJM2Pg0Y1uopvt06i6Ssksf3spM7WH1mt+FnM4WSTzq/aOjEAqjt6sWRG+dZmhhFvkZDlzphDG/Vj++2zSYlO73C2xDi7kfPei1Ze3YvkUkxhHnVZVCTHkzcs5SU7AyTdZ5p1BlblRWrTv9LYmYqNpZWKIsMB/RxrsHJ6MtcPxdDvlZDG9+GvNi0JxP3LCMtJ7PC2wDQwCOAvkFtWHX6X64l3aK5dxAvN+vDL7sWklzK7+35xt2xU1mx7OQOEjJTsLG0wkxZOIjOTKHk1eaPkZ6bxbyjm0jJTsdRbUtOfimfBcqpMj5LZeRmser0v9xMiUOj1RDqGcjQlk+Qkp3ByejLldKOh4kMU334yDBVISrBrl27aNasGSqVCg8PDz7++GPy8wu/YHbo0IF33nmHjz76CGdnZ9zd3fnyyy+N9nH+/HnatGmDWq0mKCiIrVu3Gg0dLTo0MiIigo4dOwLg5OSEQqFgyJAhAPj4+DBhwgSjfTdq1Mjo/S5dukS7du0M77Vly5Y7tjEjI4MXX3wRW1tbPDw8GD9+fIkyubm5fPTRR3h6emJjY0Pz5s3ZuXPnHfd9m0Kh4MiRI3z99dcoFAq+/PJLdu7ciUKhIDk52VDu+PHjKBQKIiIiALh27Rp9+/bFyckJGxsbgoODWb9+vaH82bNn6dWrF7a2tlSvXp0XXniB+Pj4UuOYN28eTZs2xc7ODnd3dwYOHEhsbKzhdVPDVO/1PcrrwIadNOrQnMYdW+DqWZ1uLzyJvYsjR7ftLbPehr+XEtwyFM8AnxKv1QoKoG5YA1w9q+NU3ZVmPdrj5uXB9QtXKqkV8M/SlXTu1Y2ufXpQs5Y3r7z9Bi5u1di0ep3J8m4e1Xnl7aF07N4ZaxubUver0WiY8O1PPPvSIKp7eFRW+AD0rteKHeFH2XH5KFGp8cw5soGEzFS61jGdUVjb1Yu4jGQ2XjhAXEYyF+Ii2XrpMP4unkblFAoFb7Xuz7KTO4hNfzAZZKpmjcnee5D8C5fRxiWQ9c8mFBbmWAaX3hlr2TAEhZWazGVr0NyIQpeahuZGFNrYwuM/c/EK8k6dRRufgDY2nqx1m1A62GPmXjlfEu/G/sgzTDuwhl1XjldZDKXpGdiCXVeOsevKMaJS45l/dBMJmSl0rm36mApwrUlcRjKbLx4kLiOZi/HX2X75CL7ONQxlriZGsej4FvZHniFPo3kg7XgUzm9T9q/bQeOOLQjt1Ipqnu70GNwPBxcnDm3ZU2a9tdMXE9K6KTVr+zyYQIvYs3YbTTq1IqxzG9xqetBnyDM4uDpxYPO/JsvX8PWiYZswqnvVwMnNhcbtmlO7YRAR5wq/wB7Zvo+s9AwGfTiUWnX9carmgk/dADx8alZKG1YtXk7X3j3o3rcXXj61eP2dYbi6VWP9yn9Mlq/u4c4bI4bTuUfXUo+nOvUCeXn467Tv0hELS4tKibu489sP4d+yAQGtGuLg7krT/l2wdrLj4u5jZdZT21ljZW9r+Kcs0nFy9eAZgru1xDPYHztXR+q0bYxHPV/ObT9Yae3oFNCE/yJO8d+1U8SkJbL81E6SstJo69vQZPns/FzScjIN/7yd3LGyUPPftdOGMrMPr2f31RPcTIkjJj2RBUc3o1AoCKzmXSltaOVTn6M3LnD0xgXiM5LZcH4/qdnphHkHmSwf4FoTH2cP5h3ZxJWEKJKz0rmZEsf15MLPiMtP7uDQ9XPcSkskPiOF1ad3o1Ao8Ct2j69IbX0bcuj6OQ5dP0dsehL/nN1LSna6yUxEgDrVvPBzqcHfh9ZxOeEGSVlp3EiJNcoIbOpVD2sLFXMOb+Ba0i2Ss9KJSLpFdNodMuXvU2V8ljobE8Gh6+eISo0nJj2JDRf2E5kcQ123yjmehLgT6YwTooLdvHmTXr16ERYWxokTJ5g0aRIzZszg22+/NSo3e/ZsbGxsOHDgAD/++CNff/21oRNMq9XyxBNPYG1tzYEDB5g6dSqfffZZqe/p5eXF8uX6p7wXLlwgOjqa33777a7i1Wq1PPXUU5iZmbF//34mT57MqFF3Hirz4YcfsmPHDlauXMnmzZvZuXMnR44cMSrz0ksvsXfvXhYtWsTJkyd5+umn6dGjB5cuXbqr2KKjowkODub9998nOjqaDz744K7qDR8+nJycHP79919OnTrFuHHjDENco6Ojad++PY0aNeLw4cNs3LiRmJgYnnnmmVL3l5ubyzfffMOJEydYtWoVV69eNXR2lhb3vb5HeWjy84m+egPfkECj7X4hgdy4FFFqvRO7DpAUE0+7p+6cFaPT6bh6+iKJt+Luaujr/cjLyyP8wmUahoUabW8U1pjzZ86Va99L5yzE3tGBLr0rNwPITGmGr7MHJ6PDjbafjL5MnVK+PFyMi8TZ2p5GNfTDwxzUNjT3DuZokewAgH71O5CancGO8KOVE3wxCkcHlLa25F+NKNyo0ZAfeQMzzxql1jOv7Y/mZjRW3TthN+INbF97EVWrZlDGE1mFSgWALju7osJ/ZJgplfg41+DULeNj6vStK9R2Nd3JcSn+Os7W9jT0CADAXm1DM+96HI+6u2tvZXgUzm9TNPn5RF29XiJb2K9BXW5cvFpqvWM795MUCUo5CAABAABJREFUE0+Hfj0qO8QS8vPziboSSe2Gxh0MAQ3qce0uH7ZEXb1O5IUr+AYVDms9d+Qk3rX9WDNjEd+99hET3v+anSs2oNVqKzR+0B9Ply9epHGzJkbbG4c14fzpMxX+fpVFk68h8fotPOr5Gm33qOdL/FXTwztvWz9uFss/ncjW3xdx66Lx0D1Nfj5mFmZG28wszIkLv1ExgRdjplDi5Vidc7HGcZyLuYavS+n3i6Ja1grhQuw1k1l0t1mam2OmVJKZV/H3CjOFEg97V8LjjX/vl+Nv4u1o+kFRXbdaRKXE08a3AR90GMg7bZ+he2BzzJVmJssDWJiZY6ZQkpWXU6Hx32amUOLpUI1LcdeNtl+Mu04tJ9PtCKruy42UWNr7NebTzi/yQfuB9K7XyqgdQdV9uJYcwxMhbfm8yxDeazeAjv6hKKj4bKvK/CxVVIi7Hx72rpyLKX3oqxCVSYapClHB/vrrL7y8vJg4cSIKhYK6desSFRXFqFGj+OKLLwxPLhs0aMCYMWMAqF27NhMnTmTbtm107dqVzZs3Ex4ezs6dOw3DH7/77ju6du1q8j3NzMxwdtYPK3Fzc7unOeO2bt3KuXPniIiIoGZN/Re7sWPH0rNnz1LrpKenM2PGDObMmWOIafbs2Yb6oB9eunDhQm7cuEGNGvoPYh988AEbN25k5syZjB079o6xubu7Y25ujq2t7T0NA42MjKRfv37Ur6+fN8bPr3COlEmTJhEaGmr0/n///TdeXl5cvHiROnXqlNjfyy+/bPi/n58fv//+O82aNSM9Pd3kPHb38x7lkZmWgU6rxdbBzmi7jYMd6cklh7ABJN6KY8fitbww+m2UZqV/aMzOzOL3t79Ek5+PQqmkx5D++NUPLLV8eaSlpKLVanF0cjTa7uDkRHI55hI7d+oMW9dt4pfpE8sZ4Z3Zq6wxU5qRkmU8DCQlKwPHGqbnPLwYf52Je5cxou0zWJiZY6404/D1c8w6VJgtVKeaNx39Q/l4/aRKjb8opY1+yJMuw3gYjS4jE4VD6UOnlE4OKB28yDt9nozFKzFzdkLdrRMoleTs2W+yjrpze/Kv30AbVzlP2P+X2amsMVMqSS02tCglOx0HtemO8UvxN5j03wqGt+5vOKaO3DjP3CMbHkTIJj0K57cpmammr7+2DnaElzL0NCE6lm0L/+GlL0eUef2tLJmp6WhNxGznYMel5JLDv4r6YegnZKSmo9Vo6Px0H8I6tzG8lhgTz5W4CzRs04whnwwnPjqWNTMWo9Fq6dy/d4W2ITUlRT+XqZPxNAxOTk4crcK5J+9VTnomOq0OtZ210Xa1nQ1ZqaaHRVo52ND8ue44e7ujydNw9dAZtv2xiC4jBlK9YJ45j3q+nN9+CLcAL+xcnbh1IYIbJy+h0+kqpR22Kv2QxuLDLtNyMrBX+dyxvr3KhqDqvsw6bDpL9rbHg9uRkpXO+diK7zyxtlRjplSSnmvchozcLGxVVibrOFnZ4e1UnXythoXHtmBtoaZPcGusLFSsOm06y7RrnTBSszO4UspceuVV2A7jOWfTczKxU5meh9DZyh4fJw/yNRrmHN6IjaWaJ0LaYWWhYtnJHfoy1vb4W9lxPOoSMw+uw9XGgcdD2qFUKNl2+XCFtqGyPkuBfkqKSU99gLmZOVqdlr8Pri3xsOtRpZRhqg8d6YwTooKdO3eOli1bGo3Lb926Nenp6dy4cQNvb/0TnQYNGhjV8/DwMAx9vHDhAl5eXkYdUM2aNau0eL29vY060lq2bFlmnfDwcHJzc43KOTs7ExhY2Elz9OhRdDpdiY6nnJwcXFxcKih609555x3efPNNNm/eTJcuXejXr5/h933kyBF27NhhshMtPDzcZEfZsWPH+PLLLzl+/DiJiYmGp/yRkZEEBZUcunA/75GTk0NOjvFTUlVBttBdK3aT1WF6fgitVsuqP+fStl8PXDxKzqtjFINaxavffUBuTi4RZy6ydf4qnKq5UCso4N5iuwclYtbp7vvJa1ZmJr999zPDPnwHe0eHCoju7pT4uqOg1C9Bng7VGNy0F8tP7eRk1GUcrex4PrQbrzbvy5T9q1GbW/JW635MO7Cm0uaXAbAIrotVzy6GnzOWrNL/x2RjytqTAl1GJlkbtoBOh/ZWLApbG1QtmprsjFN374SZmyvpcxeXswWPtuKHjwJFqX+GGvauvBDak1Wn/+XUrcs4qu14tnFXXgrrw/SDayo91rI8Cue3acWuvzpd8U2A/vq7YuIcOvTvecfrb2Ur/rfQ6TeWWef1r98nNzuH6xevsnHBKlzcq9GwYFEfnU6Hjb0dT77xPEqlEk+/WqQlpbB7zZYK74wr0ohibdD9j86LZOK8KKUZ9tVdsK9e+Dmqmp8nmUmpnNt60NAZ17R/Fw4s3Mjab6aDAmxdnfBrUZ8r+09VVgNuB270U1nXqaJa1AomKy+Hk1Glz9vVpXYYTWoG8tvuJeRrH8zQ+ttK68O8fawtO7ndMHfaxvP7GdCoC2vP7i0RZxvfBtT38GfmwXWV3oYSnzkUpf8tbrdj0fGtZOfr53dde24fg0K7s+r0v+RrNShQkJGbxfKTO9Gh42ZqHPZqG9r5NarwzjhDG0oEev+fpW7Lzstl1LpJqC0sCXH344UmPYhNT+LsA5qLV4iipDNOiAqm05X8IHj7xlF0u4WF8VwkCoXC0Mljah/3S6lUlrhx5eUVTrZq6qZ2p/e+myerWq0WMzMzjhw5glmxJ//lWRX1dmZh0RiKtgfg1VdfpXv37qxbt47Nmzfz/fffM378eN5++220Wi19+/Zl3LhxJfbtYWKuoYyMDLp160a3bt2YN28e1apVIzIyku7du5NbZEL6ou71PQC+//57vvrqK6NtY8aMwa/3nTthre1sUCiVJbLgMlPSsCmW+QCQm5VD9NXr3Lp2k02zVwAFv0+djrEvvs/AUUPxCdan+SuUSpzdqwHgXsuT+Jsx7Ptna6V0xtk52KNUKkkqltWQkpyMg7Pjfe3z1s1oYm/FMPaTwt/t7WOnf6c+TJw7DXfPiptjKjUnE41Wg6OV8THuoLYpdfLnJ4LbcjEukrVn9fP7RSbHkHMwl6+6v8riE9twUNviZuvEhx0GGurcPkfnDxzDyDW/E1MBc8jlXQpHE1VkxbiC81Zha40uozB2hY2V0c/F6TIy0Gk0Rt9etPGJKG1tQamEIkPW1N06YlHbn/S5i9GlVfxk3I+CtJxMNFotDsWOKXu1TYlsudv6BrXhUnwk68/vA+A6seQcymV015dZenJ7pUx8fiePwvltirV9wfU3xfj6m5Gajq29qetvNlFXIomOuMH6WcsKY9bp+Pr5d3nhk2H4hlRs9nTJmPXzi6UVu2ekp6RhW0bWK4Czm35VS3dvT9JSUtm2dK2hM87O0QEzc6XR3GXVPN1JS04lPz8fc/OK+9ph7+CA0kxJUmKi0fbkpOQS2ZcPM5WtNQqlguw042tqdnomarvS50ksztWnBlcPFQ7PVdtZ0/71p9Dk5ZOTkYWVgy3HV+/C1qVyOq3Tc7LQaLXYqYxjtlVZk5ZT+v3itha1Qjh4/SwanekhzZ0DmtKtTjMm7l1GVGrlzL+bmZuNRqvF1tI4S9HG0ooMEyubg/76nJqdYbSIQVx6MkqFAnu1DYlFFthp7VOftn6NmH1oPTHpiaZ2VyFut8NOZdwOW0sr0kt5oJeWk0FKdoahIw4gLj0JpUKBg9qWhMwU0nIy0Oi06Ip0kcWmJ2GvtsFMoSz1b3c/KuOzVHJBlp0OneH3fy3pFp4O1Xg8uJ10xokqIZ1xQlSwoKAgli9fbtShtm/fPuzs7PD0vLvJWuvWrUtkZCQxMTFUr66f3+HQoUNl1rG01K+opSk2EXe1atWIji5cyjw1NZWrVwvnsQkKCiIyMpKoqCjDcNL//vuvzPcKCAjAwsKC/fv3GzL9kpKSuHjxIu3btwegcePGaDQaYmNjadu27d00+65Uq6bvGIqOjjYMTym6cMJtXl5eDB06lKFDh/LJJ58wbdo03n77bUJDQ1m+fDk+Pj539cXg/PnzxMfH88MPP+DlpX/ifPhw2U8A7/U9AD755BNGjhxptE2lUrH45LY71jUzN8fDtyZXT1+kblhhxuXV0xep06TkZL0qKxWvff+R0bYjW/dy7ewlnnpnCI7VSl/9DyC/kla7tLCwwD8wgBOHj9GibSvD9hOHj9GsdYv72qentxe//v2X0baFM+aQlZXFy2+9gUvBF8uKotFquJoYTX13fw5dL5wHq767P4dvnDdZx9LcosScStrbHfgoiEqJ54N/jIfgDWjUGStzFbMOryfexGqa9yU3D21usnEc6emY+9YiNyZOv0GpxNy7Jtk7dpesXyD/+s0SCzwoXZzQpqUX64jrhEVgABnzlqBLqaA2PII0Wi0RiVGEuPtxpMgxFOLux9GbF0zWUZlboCntmKqipKFH4fw2xczcnBq+Xlw5eYF6YYUT1V85dZ7AJvVLlFdZqXnzx4+Nth3avIerZy/yzLsv41itcjPHAczNzanh583lk+cIbtbIsP3yyXMEFWnDHekwWpyqVqAfJ/YeQqvVGjrk4qNjsXNyqNCOONAfTwF16nD80FFatSscKnv80FGat2lVRs2Hi5m5Gc5e7kSfj8CrYWEnbPT5CGrWr11GTWOJN2Kwcij5oNPMwhxrRzu0Gg2Rxy9QK7RyVkLX6LRcT46hrlsto1Up67rV4tQdVqms7VoTN1sn/oswnbXXuXZTegS24M+9y4lMjqnQuIvS6LREp8bj7+rJudgIw3Z/V89Sh8VGJsUQ7O6HpZk5uRr9ueBq44BWpyW1SKdRa58GtPdvzJzDGyqtM7FoO26mxFG7mhdnYgo/79d2rVlqh1NE4i3qe/ibbMfthzcRSbdoVKM2Cgoz1lxtHEnNzqjQjjionM9SpVEAFlUwXUBVqIz5/UT5yAIOQtynlJT/Y++uo6M62gAO/+JKXEiIJ5BA0ODu7qUUK1ZaSnGnUAqFIqW4FSe4u3tCcYK7u4a4EM9+fyxsWDYJlhDK9z6cPYfcnbn7zl7duSORnDt3Tu314MEDunbtysOHD+nRowfXrl1j8+bNDB8+nL59+6o9Lc5MzZo18fT0pH379ly4cIEjR46oJnDIqNWaq6srWlpabNu2jRcvXhATo7x4VqtWjaVLl3Lo0CEuXbpE+/bt1Vqq1ahRA29vb9q1a8f58+c5dOhQppNFgLJlW6dOnRgwYAD79+/n0qVLdOjQQa18+fLlo02bNrRr144NGzZw9+5dgoKCGDdunNrMph/Ky8sLZ2dn/vjjD27cuMH27ds1ZnLt3bs3u3fv5u7du5w5c4YDBw6QP39+QDm5Q1hYGK1ateLkyZPcuXOHPXv28MMPP2hUZAK4uLigr6/P9OnTuXPnDlu2bOHPP//MNMYP/QxQVryZmZmpvT6km2rpulU4F3iccwdPEPL4OXuXbSQyNBy/6sofJQGrt7Fl9nJA2drNztlB7WViZoqOni52zg7oGyo/98iWfdy5eJ3w4BBCnjznxI5ALh4OomD5Eu8d14dq2Lwp+7fvZv+OPTy6/4CFM+YS8vwFtRrVA2DZXH+mjpmglufuzdvcvXmb+Lg4oiIjuXvzNg/vPQBA30AfVw83tZeJqSlGRka4erhptFDNCtuvHqWalx9VPIvhaGZDu+J1sDExZ99NZYV6y6I16FruG1X6M4+uU9KlADXzlsTO1JJ8ti50KFmPWyHKGc2SUpN5FBms9nqZGE9ccgKPIoNJycauLgknz2JYrhS6+bzQtrXGqGEdFEnJJF5Ouxk2algHgyppP4YTz5xHy8gIw1pV0bayQNfTHYNypUg8fU6VxrB2NfQL+vBy8w4UiYlomRijZWIMWfyD/UMY6RmQ18ZJNSmCo5kNeW2csDe1fEfO7Lfz+nGqePhRyaMojmY2tClWG2tjc/bfVD4Y+K5IdX4u00SV/uzjG5Rwzk91rxLYmliQ18aZtsXrcDvkkap1gI62Ni4W9rhY2KOrrYOlkRkuFvbYZWN5v4bjOz1l6lflTMAxzgYc48XjZ+xasoHIkHBK1FAeF/tWbmHjP0uB1+dfR7WXibkpunp62Dk7qs6/2a1Cg+qc2n+EUweOEvzoKdsXrSUyJJxSNZUPz3av2MTaGYtU6Y/tCuTqqQuEPA0m5GkwpwOOcmjrXopWTGu9XbpWJV5Gx7Jt0VpCnjzn2pmLBG7cRZnalbOlDE1aNGPPtp3s2b6Lh/fuM2/aLF4EB1OvSQMAFs1ewMRR6i3U79y8xZ2bt4iPiyMyIpI7N2/x4G5aRUtSUpIqTXJSEqEvQrhz8xZPHmXP+F4APtVKcvvoeW4fu0DksxBOr9/Py7Ao8lYsCsDZzQc5umSbKv21gCAenr9BVHAYEU9fcHbzQR6eu0G+SmmTo4Tce8KDc9eJDokg+NZDDsxcCwoFBWqUzrZyHLh1mnJuhSjjWhD7XFZ8U6gKVsa5OHT3PACNClSgbXHNCUvKuhbibtiTdGflrJG3JA3yl1fNIJ3LwJhcBsbo62TPsX303kX8nLwplicfNiYW1PEpg7mhKUEPlBVCNfKV5JtCVVTpLz69RVxiPE0KVcbWxAJXy9zU8i7NmUc3VN1QK7gXpnq+Emy6dJCIuGhM9Y0w1TdCXyf7rneH7p6npHN+Sjj5YGdqSYP85bEwysXxB8qZaut4l+G7ItVV6c89ucHLxASaF6mGnakl7lYO1PMpx6mH11TlOH7/Mib6hjT0rYCNiTk+dq5U9fLj6Buz32alrL6XAmjsW5FCuT2xM7XE0cyGevnLUdGjqGofFeJzk5ZxQnykwMBAihUrprasffv2LFq0iB07djBgwACKFCmClZUVnTp1YujQoe+9bh0dHTZt2sSPP/5IyZIl8fDwYPz48TRs2BBDQ8N08+TJk4cRI0bw66+/0rFjR9q1a8eiRYsYPHgwd+7coUGDBpibm/Pnn3+qtYzT1tZm48aNdOrUiVKlSuHm5sa0adOoUyfzGd7Gjx9PTEwMjRo1IleuXPTr14/ISPWBn/39/Rk1ahT9+vXj8ePHWFtbU7ZsWerVq/fe38Xb9PT0WLlyJb/88gtFihShZMmSjBo1iubNm6vSpKSk0K1bNx49eoSZmRl16tRh8uTJADg6OnLkyBEGDRpE7dq1SUhIwNXVlTp16qRbWWpra8uiRYsYMmQI06ZNw8/PjwkTJtCoUaMMY/zQz8gKBcoU42V0LIc37iYmIgpbJwdaDuiMuY2ylVtMRBSRIR/WlTEpIZFdi9YRHRaJrr4e1o52NP7lewqUKfbuzB+pQrXKREdFs2bxCsLDwnBxd+O3cSOwy61sIRoeGk7I61Zar/T7qYfq/7dv3OLQvkBs7e2Ys3pRtsWZmWP3L2FqYESzQlWwMMrFw4hg/gpYRkis8viwNMqFjUlaV6GDd85hqGdALe/SfF+8NrGJ8Vx+fpcVZ/bkSPxvSjwehJaeLkZ1qqFlaEjKk2fErloPiWldcrTNcql1SVVExxC7aj2GNapg+mM7UqNjSAw6S8KxtNa9BsWLAmD6vfoMwy+37iLp4pXsLVQGfGxdmdE0rXVqzwrKc8qOq8cYfWBxjsT02okHlzHVN6KJb2UsjEx5FBnMhIPLCX2p3KcsDE2xNk7bpw7dPY+hrgE18pWkVbFavEyM50rwXVaf26dKY2mUi9F1u6j+rp+/HPXzl+Pq83uMyabyfg3Hd3oKlvUjLjqWgxt2ExMRiZ2zA20GdVG1Mv6Y8292K1yuBC+jYzmwfjvR4VHYOzvQfnA3LF+1zIsOjyQiJK0rnUKhYPfKTYQHh6KtrY11bltqt2lCqRppLd8tbKz4YWhPti9ey7QBozCzsqB83apUapI9s9xWql6F6KgoVi1aRlhoGK7ubvzx9+g39qdQXjwPVsvT84dfVP+/df0mB/cewC63PQvXLgMgLCRULc2GVWvZsGotBYsW5q/p6g/+sopb8fwkxsZxcecR4qJisXCwoUrX5phaKY/p+KgYYsPSWg+nJKdyZmMAcZEx6OjpYu5gQ5VfviWPb9qELilJyZzfdoiYkAj0DPRx9PWgXLv66Bunfw+ZFc48vo6JviF1vctgZmjC06hQ/jm6QVURYmZogpWRejdoQ119ijrmZd3FgHTXWdG9CHo6uvxYWv2ea8fVo+y4lnkvjo9x6dkdjPQMqOLlRy4DY4Kjw1h2epeqdVguA2PMjdK64iamJLP41A7q5y/Hz+WaEpcYz6Vnd1QPSgBKuhRAV1uHlsXUJ2ELuHWagFvZMzv6hae3MNY3oHreEpgZmPAsJhT/oG2qhzG5DIzVuoAmpiQz/8QWGvtWpEeFb3mZmMCFp7fYff2EKk1kfAzzT2ylYYHy9K7Ygqj4WI7cvUDg7bPZUobsuJcy0NXnh1INsDY2IzEliSdRIcw8sp5j2VShKMS7aCmya1odIUSWOnLkCBUqVODWrVt4eqY/g57IGdevX8fHx4ebN2/i5ZW1Y6ktCfr4VoRfinYl63H56X97pipfB09aLhuW02F8slXfjyRyzKScDuOTmA/pS/mZXd6d8At3pNts2q4c8e6EX7ilrYZ/Fcf3ijO7czqMT9barzbrzx/I6TA+SbMi1bgZ/CCnw/hkee1cGLl3YU6H8cmG1fyB7huzpxLyc5nRtB/Dds3L6TA+2cg6PzFo+z/vTvgFG1e/61dzL/VftPrs3pwOIUMt3qqs/n8hLeOE+EJt3LgRU1NT8ubNy61bt+jVqxfly5eXirgvTFhYGOvWrcPMzEw1ppwQQgghhBBCCJERqYwT4gsVHR3NwIEDefjwITY2NtSoUUNjbDSR8zp16sTp06eZNWvWB43xJoQQQgghhBDi/5NUxgnxhWrXrh3t2rXL6TDEO2zcuDGnQxBCCCGEEEKIDGU0CaDIOTKbqhBCCCGEEEIIIYQQn4lUxgkhhBBCCCGEEEII8ZlIN1UhhBBCCCGEEEKIr5R0U/3ySMs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKW2km+qXRlrGCSGEEEIIIYQQQgjxmUhlnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlpSTusL41sESGEEEIIIYQQQgghPhOpjBNCCCGEEEIIIYQQ4jORbqpCCCGEEEIIIYQQXyltLZlN9UsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnyltKSb6hdHWsYJIYQQQgghhBBCCPGZSGWcEEIIIYQQQgghhBCfiXRTFUIIIYQQQgghhPhKaSHdVL80WgqFQpHTQQghhBBCCCGEEEKIrLfl0qGcDiFDjQpWzOkQcoS0jBNCiC/Y+IBlOR3CJxtQ9XuuPb+b02F8Eh97dyrP6pbTYXyyg7/MJKJL35wO45NYzJ5E25UjcjqMT7a01XDKz+yS02F8siPdZvM8KiSnw/gk9mY2LD21M6fD+GRtS9Slx8ZJOR3GJ5netO8X/YPxfTUqWJF2K0fmdBifbEmrYf/58+3SVsPpvG5cTofxyeZ+O4gmi37N6TA+yaYOf1FrXu+cDuOT7flpSk6HIL4SUhknhBBCCCGEEEII8ZXSltlUvzgygYMQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UlnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8p6ab65ZGWcUIIIYQQQgghhBBCfCZSGSeEEEIIIYQQQgghxGci3VSFEEIIIYQQQgghvlLaSDfVL420jBNCCCGEEEIIIYQQ4jORyjghhBBCCCGEEEIIIT4T6aYqhBBCCCGEEEII8ZWS2VS/PNIyTgghhBBCCCGEEEKIz0Qq44QQQgghhBBCCCGE+Eykm6oQQgghhBBCCCHEV0pbuql+caRlnPgiPH/+nJEjRxIeHp7ToQghhBBCCCGEEEJkG6mMEzlOoVDQtm1bDAwMsLS0/KC8bm5uTJkyJXsC+0RaWlps2rTpg/JUqVKF3r17Z0s8/1Vt27ZlzJgxOR3GJ+nfvz89e/bM6TCEEEIIIYQQQnwBpJvqf1CHDh1YvHgxALq6ujg7O/PNN98wYsQITExMcji6Dzd27Fg8PDwYNGjQB+cNCgr6T5ZZvJ8LFy6wfft2/vnnH9WyKlWqcPDgQcaOHcuvv/6qlr5evXrs3LmT4cOH06FDB9zd3TNd//Dhw/njjz8AWLx4MTNnzuTy5ctoa2tTrFgxBg4cSIMGDQCIiYnB0tKSZcuW0aJFC9U6WrRowZo1a7h16xaenp6q5Z6enrRo0YIxY8YwcOBAPD096dOnzztj+hRXAk9xYe8x4iKjsXC0pWzz2uTO65Ju2ifX77Fj8lKN5d/+8QsWuW0AuHH0PP8u2aKRpsP0wejqZd/lY8fGrWxcuY7wsDBc3Fzp1KMLvkUKpps2LCQU/3/mcev6TZ4+ekKDZo35sWcXtTR7tu4kYPc+7t+5D4Cntxdtf+pIvgLe2VaGJr4VaVm0BlbG5twLf8qMI+u48PR2Jukr8U2hyuTOZcXzmHCWnd7F7hsnVe9PadSLYnnyaeQ7dv8Sv+6YlS1leM2wQW30K5RBy9iYlHv3eblyPalPn2eY3rRvV3TzeWksT7p4hdiZ85V/GBhg1KguekULopUrFykPHxG3ZhMp9x9mefzVvUpQP385zI1y8TgymGVndnPjxYMM05dzLUT9/OWwz2VNXFI8F57eYuXZvcQkxgGQx8yWZoWr4GbpiK2pBcvO7GL39RNZHvfHKuLgRetitfCxc8HGxIJfd8zi0N3zOR2Wysa1G1i5bAVhIaG4ebjTo29PihQrmmH6c6fPMmPKdO7duYu1jQ2t27WmcbOmqvcPHghk2aIlPH74mOTkZJycnWjxfStq16uTbWU4tfcwx7YfICYiCts8uanVtikuPp7vzPfw+h2WjJqBnVNufho7ULX8zIFjXDwcxIuHTwHI7e5M1Rb1yePpmm1lAKjoXoTqeUtgZmjC06hQNlwM5Hbo43TTfu9Xm9KuvhrLn0aFMGb/EgDKuRWilHN+HMyU15CHEc/ZeuUI98OfZVsZju4KIHDzbqLDI7B3dqRRx5Z4FNA8VwLcvXqT7UvX8eLxMxITE7G0saZMrUpUalhLlebi8dMc2LCDkKfBpKSkYONgT+WGtShepWy2lSEj1b1KUC9/WdW5a/mZPZmeu8q6Fnzr3HWbVW+cuz5XzP/1821lj2LU9i6FuaEpT6JCWH1+P7dCHqWbtkOJepRzK6Sx/ElkCH/sXQAot0vHkvU10nTdMIHk1JSsDf4Ndb3L0KRgJSyNc/Ew/DkLTm7jSvC9DNNX8ihK04KVcTSzJjYxnrOPb7Do1A6iE16q0jQsUJ463mWwMbEgOiGWo/cusfTMLpJSkrOlDA3zl6d5kWpYGZlxP/wZs45v5NKzOxmnL1CBxgUqYp/LkuCYCFae28u+m0Gq98u7FaZV0Ro4mtmiq63N46gQ1l0IYP+tU9kS/5dGZlP98khl3H9UnTp18Pf3JykpiUOHDvHjjz8SGxvLrFnZ+6MsOwwZMuSj89ra2mZhJOJLM2PGDJo3b06uXLnUljs7O+Pv769WGffkyRMOHDiAg4ODKs3Tp09V70+YMIFdu3axb98+1TJTU1NA2XJtxowZjBo1iiZNmpCUlMSyZcto3LgxU6dOpXv37piamlKiRAkCAgLUKuMOHjyIs7MzAQEBqsq4R48ecefOHapWrQqAnZ0dtWrVYvbs2YwbNy6LvyWl26cuc3ztbsq1qoe9pxPXDp1h14wVfDv8F0ytzDPM13xEV/QMDVR/G+YyVntfz9CA5iO6qi3Lzoq4Q/sPsmD6HH7u2438BX3ZvWUHIwcOZcaSudja22mkT0pKwszcnOZtW7Fl7cZ013nx7AUqVq/CT70KoK+vz4aVa/mj/xCmL56Dta1Nlpehqqcf3ct/y+RDq7n09DYNfSswrn432q/6k+AYza74jX0r0rlMI8YHruBa8H3y27sxoHJrohNecvT+JQB+3z0PPe20793M0IQF3w0m8PbZLI//TQa1qmFQvTIvF68kJfgFhnVrYtqrC1HD/4KEhHTzxM5eBLo6qr+1TIzJNbQ/SWfSKoSM236HjqMDsf4rUERGoV+6OKa9uxA14m8UEZFZFn9pF1++96vDolPbuRnykKpexRlQuQ2/7phJ6MsojfT5bJz5uUwTlp/dzdnHN7A0ykXHkg3oVKohUw+vAUBfV4/gmAhOPrhCG7/aWRZrVjHSM+BW6CN2XDvKmLpd3p3hM9q/Zx/TJ02l76B+FCxSmC0bNjGwV3+WrFmGfe7cGumfPH7CwN79adCkIUNHDuPS+QtMGjcRc0sLqlRTnl/NzM1o27E9Lm6u6OnpcvTQUf4aOQZLS0tKlS2d5WW4fOwMe5ZupG7Hb3HO586ZA0dZ+fccuvw9GHObjFv3x7+MY/Ps5bj75iU2MlrtvftXb+Fb1g+ndm7o6utxbNt+Vvw1i5/H/YqZlUWWlwHAL08+vilchTXn9nMn7Anl3QrzS7mmjN63mPC4aI306y4EsPnyIdXfOlra/Fq9LWcf31Qt87Jx4vSj69wJCyA5JZnq+UrStdw3jNm/hMj4mCwvw7kjJ9niv4qmP7XBzceL43v+ZcHoqfSfMhJLW2uN9PoGBpSvWw0HVyf0DQ24e/Um6+csRd/AgDK1KgNgbGpCtWb1scuTGx1dXa6eusCamf6YmufCu1j6D4WyQ2mXArTxq83iUztenbv86F+5NYN3/POOc9cezj6+gZVRLjqUrM8PpRoy7dW5K/tj/u+fb0s4+dCiaHVWnNnDrdDHVPIoSs8Kzflj93zC0jkuVp/bx4aLB1V/a2trM6xGR04/vqaWLi4pgd93zVNblp0VceXdCvNDqQbMOb6Za8H3qO1dmt9rdqTHpkmExGpeY/PbudKrwncsDNpG0MOrWBub0aVsU7qVa8ZfAcoHt5U8itK2eB1mHF7HtRcPcDSzoWeF5gAsDNqW5WWo7FGMLmWbMv3IOi4/v0t9n3KMrvMzP64dy4vYCI30DfKX54eSDZhyaDXXXzzAx9aF3hVbEJPwkuMPLgMQnfCSlef28iAimOSUZEq7+NK/cisi4mM4/eiaxjqFyG7STfU/ysDAgNy5c+Ps7Ezr1q1p06aNqkukQqHg77//xsPDAyMjI4oUKcK6detUecPDw2nTpg22trYYGRmRN29e/P39Ve9fvHiRatWqYWRkhLW1NZ07dyYmJuObqMDAQLS0tNi9ezfFihXDyMiIatWqERwczM6dO8mfPz9mZma0atWKly/Tnq7s2rWLChUqYGFhgbW1NQ0aNOD27bSWI0uWLMHU1JSbN9Nu9Hr06EG+fPmIjY0FNLupamlpMWfOHBo0aICxsTH58+fn2LFj3Lp1iypVqmBiYkLZsmXVPgdg1qxZeHp6oq+vj7e3N0uXarYYelNQUBA1a9bExsYGc3NzKleuzJkzZzLN87bY2FjatWuHqakpDg4OTJw4USNNYmIiAwcOJE+ePJiYmFC6dGkCAwNV79+/f5+GDRtiaWmJiYkJvr6+7NixA0jbLtu3b6dIkSIYGhpSunRpLl68qPYZR48epVKlShgZGeHs7EzPnj1V3y/A06dPqV+/PkZGRri7u7NixQq17/3evXtoaWlx7tw5VZ6IiAi0tLTUYr1y5Qr16tXD1NQUe3t72rZtS0hISIbfT2pqKmvXrqVRo0Ya7zVo0IDQ0FCOHDmiWrZo0SJq1aqFnZ2ywkZHR4fcuXOrXqampujq6mosO378OBMnTmT8+PH0798fLy8v8ufPz+jRo+nduzd9+/bl4UNla52qVauqlenq1avExcXRtWtXteUBAQHo6elRvnx51bJGjRqxcuXKDMv7qS7tO06+8sXwqVAMSwdbyn5XGxNLM64ezPxpn2EuE4zNTVUvbW31y4KWFmrvG5ubZlsZADav2UCN+rWp1aAuzm4u/NizCza2tuzclP6Nnr1Dbn7q9QvV6tTAxMQ43TT9hg2iXtOGeOT1xMnVmW4DepGaquD86XPZUobvilRnx7VjbL96lPsRz5lxZD0vYsJp7Fsx3fS18pViy5UjBNw+w9PoUA7cOs32a0dpVSyttUZ0wkvC4qJUrxLOPiQkJxJ4+8POOx/KoHol4nfuI+ncRVKfPOPl4hVo6eujX8ovwzyKly9RREWrXnr5vSExicTTryrj9PTQK1aYuA1bSbl1h9QXIcRv201qSBgGlcplafx1vctw8M5ZDt45y5OoEJaf2U3oy0iq5y2ZbnovGydexEaw58ZJXsRGcCPkIQduncbdylGV5m7YE1ad28vxB5dJSsm+H1Mf6/iDy8w7sYWDd87ldCga1qxYTf3GDWjQpBFu7m707NcbW3s7Nq1LvyJ984ZN2OW2p2e/3ri5u9GgSSPqNarP6mVp59Jixf2oVLUybu5u5HFyonmr7/Dw8uTCuexpDXhiZyBFq5SmWNWy2OTJTa2232BmbcHpfYczzbdjwRoKlitOnrxuGu817daWEjUrkNvNCRtHe+r/2BJFqoJ7l29kSxkAqnoV59i9Sxy7f4nn0WFsuBhIeFw0FdyLpJs+PjmR6ISXqpeLpT1GeoYcf/XAAGDJqZ0cunuex5EveB4Tzsoze9HS0sLb1jlbyvDv1r2UrFaB0jUqYe/kSOMfWmJhbcmx3YHpps/j4UKxiqXJ7ZIHKzsbilcui3dRX+5eTbvP9CzoQ6HSftg7OWKT246KDWrg4OrE3Wu3sqUMGanjXfatc9cewl5GUi1viXTTe746d+29cZKQV+eugFuncbdy+Gwxfw3n25r5SnL47gUO37vAs+hQ1pzfT/jLaCp7Fks3fVxyIlEJsaqXm2VujPUNOXJP/V5boVCopYtKiE13fVmlsW8F9t08xb6bQTyKfMGCk9sIiY2kjneZdNPns3XhRUw4268eJTgmnKvB99lz/SReNnlUabxtXbj2/D7/3j1PcEw4557c5NCd82ppslKzQlXYdf0Eu64f52HEc2Yf38iLmAgaFqiQbvrqeUuw4+pRDt45y7PoUALvnGXX9RN8V6S6Ks2Fp7c4cu8iDyOe8zQ6lE2X/+VO2BMK2mdfrxUhMiOVcV8JIyMjkpKSABg6dCj+/v7MmjWLy5cv06dPH77//nsOHlQ+ufn999+5cuUKO3fu5OrVq8yaNQsbG2XrkJcvX1KnTh0sLS0JCgpi7dq17Nu3j+7du78zhj/++IMZM2Zw9OhRHj58yHfffceUKVNYsWIF27dvZ+/evUyfPl2VPjo6mj59+hAUFMS+fftQKBQ0bdqU1NRUANq1a0e9evVo06YNycnJ7Nq1izlz5rB8+fJMu6b++eeftGvXjnPnzuHj40Pr1q35+eefGTx4MKdOKSsm3izPxo0b6dWrF/369ePSpUv8/PPPdOzYkYCAgAw/Izo6mvbt23Po0CGOHz9O3rx5qVevHtHRmk/NMjJgwAACAgLYuHEje/bsITAwkNOnT6ul6dixI0eOHGHVqlVcuHCB5s2bU6dOHVUFZbdu3UhISODff//l4sWLjBs3TtXa683PmTBhAkFBQdjZ2dGoUSPVvnLx4kVq167NN998w4ULF1i9ejWHDx9W+37atWvHkydPCAwMZP369cydO5fg4OD3LicoK/QqV65M0aJFOXXqFLt27eL58+d89913Gea5cOECERERlCiheeOpr69PmzZt1CqRFy1axA8//PBBcQGsXLkSU1NTfv75Z433+vXrR1JSEuvXrweUlXHXr19XtbgLCAigYsWKVKtWTaMyrnTp0hgbp1UOlSpViocPH3L//v0PjvFdUpJTCHnwFKf8HmrLnfJ78vxO+l0rXts4eh7LB05mx+SlPLl+T+P9pIREVg2Zxopfp7B75ipCHjzVXEkWSUpK4vaNmxQtqV7RU7SkH9cuXc2yz0lISCAlOZlcZrnenfgD6WrrkM/WmaCH6vEGPbxKwdwe6ebR09ElMTlJPcbkJPLbuaKjnf5lur5PWQ7cOk18cmLWBJ4ObRsrtM3NSL56PW1hcgrJN2+j6+H23uvRL1+axFNnIfFVrNraaOnoQJJ6txZFUhK6Xll3Q6yjrY2blSMXn6k/fLn07A55bZzSzXMz5CFWxmYUcVB2szUzNKGUS37OPbmZbnrx/pKSkrhx7TolS5dSW16ydCkuXbiUbp7LFy9ppC9VpjTXrlwjOVmzW5RCoeD0yVM8vP+AIn5Fsyz211KSk3l69xEehXzUlnsU8uHRzXsZ5jt38AThwSFU+ub9WvYkJSSSmpKKUTYNw6GjpY2zhT3XgtWvR9ee38fd2jGDXOrKuBbkevD9dFvRvaavq4uOtg6xSfGfFG96kpOSeXz7PvmKqnedzVfEl/vXMx4S4E2P7zzg3vXbePim361VoVBw88JVgp88w6NA3k+O+X0pz10OXHrr3HXx2R3y2qRfsfn63FX4jXNXSZcCnP9M566v4Xyro6WNi0Vurjy/q7b8yvO7eFq/X4VTebfCXAu+R9hbLQENdPUZW7cL4+p1pXv5ZjhbaLb0zyq62jp4WufR+B7PPbmJj136Xd+vBd/H2sSc4nmUw3eYG5pS1q0gp95oLXY1+B6eNnlU29Pe1Ao/J2+1NFlZhrw2Tpx5q4Xh6cfXKGDvlm4efW1dElPU76USU5LwtnVBRyv9e6mijnlxNrfT2G+/Vlpf8L//V9JN9Stw8uRJVqxYQfXq1YmNjWXSpEkcOHCAsmWV41t4eHhw+PBh5syZQ+XKlXnw4AHFihVTVXK4ubmp1rV8+XLi4uJYsmSJqsJrxowZNGzYkHHjxmFvb59hHKNGjVK1BOrUqRODBw/m9u3beHgof4B+++23BAQEqMaGa968uVr+hQsXkjt3bq5cuULBgsquAHPmzKFw4cL07NmTDRs2MHz4cEqWTP8J22sdO3ZUVfIMGjSIsmXL8vvvv1O7tvImuFevXnTs2FGVfsKECXTo0IGuXZVd8fr27cvx48eZMGGCqpvh26pVq6b295w5c7C0tOTgwYOqMcYyExMTw4IFC1iyZAk1a9YElGOWOTml3bDcvn2blStX8ujRIxwdlTfH/fv3Z9euXfj7+zNmzBgePHhAs2bNKFRIOV7F6+/6TcOHD9f4jI0bN/Ldd98xfvx4WrdurZo0Im/evEybNo3KlSsza9Ys7t27x759+wgKClLtL/Pnzydv3g+7KZ01axZ+fn5qEzEsXLgQZ2dnbty4Qb58mjfC9+7dQ0dHR9XS7W2dOnWiQoUKTJ06ldOnTxMZGUn9+vVVY8C9rxs3bqhaRb7N0dERc3NzbtxQtk4oX748enp6BAYG0qpVKwIDA6lcuTJ+fn5ERkZy8+ZN8ubNS2BgIN9//73auvLkyaMql6ur5s1QQkICCW91+zMwMNBIl574mJcoUhUYman/cDMyMyEuKv1WrcbmplRoUx8bVwdSklO4dfwCO6YspX7fdjjkVcZnkduaSu0bYZXHjqS4RC4dOMHW8Yv4ZmhnzO01uwB9qqjIKFJTUrF4ayIXCytLwsPCsuxzlsxeiJWtNUWKp/+k+1OYG5qiq62jcSMeHheNlbFZunmCHl6lQf5yHL57nhshD/G2daGeT1n0dHQxNzTVWJePnSse1nkYF7g8y+N/k5aZMt7UKPUf26lR0Whbvd9kOzpuLujkceDl0tVpCxMSSL59F8P6NYl99lzZeq6kHzpuLqQGZ9xa9kPlMjBGR1ubqLe6x0XGx2BumP74XjdDHjHr2Aa6lf8WPR1ddLV1OP3oGktP78yyuP5fRUZEkJKSgqWVldpyK2tLwkJD080TFhqGlbX6vmZpZUVKSgoRERGqB4kxMTE0q9eExMREdHR06DOon0YlXlZ4GR2LIjUVE3P1inwT81zERGp2wwMIe/aCgFVbaTesJ9o6OummeduBVdvIZWWOe8H0K4k+lYmBETra2kS/1TonOuElZgbptzB+k5mBCQXs3Vl8akem6Rr5ViQyLobrwRmPGfaxYqNjSE1NJZe5+nnV1MKM6Hd0dR/10wBioqJJTU2h5neNKF2jktr7cbEvGdV5AMlJyWhra9H0p+/JV0RzvLzs8vrcFRmvvn2i4mMxN0y/gvZWyCNmH9tIt/LNVOeuM4+us/T0rs8R8ldxvjV9XYY3xkgDiEqIxSyD7/1N5oYmFMztwfyTW9WWP4sOY9Gp7TyOfIGhngHVvUowqMr3jNznn+7QFZ9KuS10iHirojwyLhpLo/TPKddfPGDSv6voX6W1aluceHCFecfTxg0+fPcC5gamjKnbBS0tLXS1ddh57ZhaN92sYmZogo62DuEv1csQHheNpVH691KnHl2jjk8Zjt6/yM2QR+S1caZ2vtJp91JxynO0sZ4hK9uMQE9Hl9TUVKYfWceZx9nXClmIzEhl3H/Utm3bMDU1JTk5maSkJBo3bsz06dO5cuUK8fHxqsqX1xITEylWTPnD85dffqFZs2acOXOGWrVq0aRJE8qVU3YNunr1KkWKFFFreVa+fHlSU1O5fv16ppVxhQsXVv3f3t4eY2Njtcohe3t7Tp5MG5D8wYMH/Pnnn5w4cYKQkBBVi7gHDx6oKuMsLS1ZsGABtWvXply5choD9r9PHICqsur1svj4eKKiojAzM+Pq1at07txZbR3ly5dn6tSpGX5GcHAww4YN48CBAzx//pyUlBRevnzJgwfvd8N5+/ZtEhMTVRWmAFZWVnh7pw0of+bMGRQKhUZFVUJCAtbWyoqQnj178ssvv7Bnzx5q1KhBs2bN1MoPpPsZV68qW+2cPn2aW7dusXx52o96hUJBamoqd+/e5caNG+jq6uLnl9ZSycvL64NnvT19+jQBAQEarfZefxfpVcbFxcVhYGCQ4WCjhQsXJm/evKxbt46AgADatm2Lnp7eB8X1PhQKhSoGY2NjSpUqpaqMO3jwIAMGDEBXV5fy5csTGBiIgYEBd+/e1aiwNTIyAlDrqv2msWPHMmLECLVlw4cPx6Sy5kD4GXrru1IoFJDB0yaL3DaqiRoA7D2ciAmP4uLeY6rKODsPJ+w80iqI7T2d2ThmHpcDgyjXIvsGR397k7+5DT7VhhVrObQ/kNHT/kbfQLMCNjspt4emxad2YmVkxqxvBoAWhL+MZtf147QuVotURapG+vo+5bgT+lijVcun0ivlh3HrtIckMa8nW3g77g/YFvrlSpPy+Ckp99TPjS/9V2DcriXm4/5AkZJCysPHJAWdRccl67u7aISPFulvCXA0s6GtX102XfqXi89uYWGYi5bFatKxZAPmn9SczER8uLePZYUi80GlNZ+YKzSWGxsbs2D5IuJevuR00GlmTp6OYx5HihXPuDv1p9AIV6FI98l+amoqG2cuoVKzulg7vF9LmKNb93P52BnaDu2Orn7WX9PelNFx8C6lXQsQl5TAhScZd92snrcExZ18mHZoTbaOjZXOBYOMrnuvdR01kIT4BB7cuMOOZeuxyW1HsYpp4wsaGBnSZ8IwEuITuHXxKlsXrcba3gbPgj6ZrDUbpLOBMjt3fe9Xh82X/uXis9tYGOaiRbEadChZnwVvVQ5lp6/ifPtWIbTQeq+DpaxrIeKS4jn3VsXO3bAn3A17ovr7dsgjhtboQFVPP1af358lIb8XLS0UGRTEydyOn0o3YvW5/Zx9ohy/r0OJevxStikzjip7hxTM7cG3Raoy5/hmbr54QG4zG34s1ZDwwtGsuXAgW0J+O1rleTb9Miw/uwdLYzOmNu6DFsqKuz03T9KiSHW1e6m4pAR+2TAeQ10DiuXJy89lmvA0OpQLTz9vV3QhQCrj/rOqVq3KrFmz0NPTw9HRUVUJcfeusmn19u3bVS1xXnvdyqZu3brcv3+f7du3s2/fPqpXr063bt2YMGFCpj963/Vj+M2KEC0tLY2KES0tLVWFGyjH/XJ3d2fevHk4OjqSmpqKm5sbiYnq3a7+/fdfdHR0ePLkCbGxsZiZpf9EJKM4Mlr2ZiyaPw4y//HfoUMHXrx4wZQpU3B1dcXAwICyZctqxJ6RjH6Uvyk1NRUdHR1Onz6NzltP019Xav3444/Url2b7du3s2fPHsaOHcvEiRPp0aNHput+8zv4+eef6dmzp0YaFxcXrl+/rrH87fhfjzH25rLX3WDfLMvr1pVvez3hwttsbGx4+fIliYmJ6bZaA/jhhx+YOXMmV65cUavo/RD58uXj8OHD6X7OkydPiIqKUmsJWLVqVVavXs3ly5eJi4tTVVRWrlyZgIAA9PX1MTQ0pEwZ9XE5wl617Mpo0pHBgwfTt29ftWUGBgZMO7r2nWUwNDVGS1uLuEj1J9Lx0S81Wstlxs49D7dOXszwfS1tLWxdHYkKzrpWam8yMzdDW0eb8DD1J8WR4REareU+xsaV61i3bBUjJo3FzTP9LqOfKjI+huTUFI1WcJZGuTLszpWYksS4wGVM+HcFVkZmhL6MpGGBCsQmxhEZp94ywkBXj2pexbNlsOSk85eJvvtGpdmrSRi0zc1IeaN1nHYuUxRR79ElX08P/ZJFiduq2TIjNSSUmEkzQV8fLUMDFFHRGP/YltSQrNu3ohNekpKairmR+kMAM0MTjdYbrzUsUIGbIQ/Yce0oAA8JJiEokd9r/sDaCweyZRD6/xfmFhbo6OhotIILDwvXaC33mpW1FaGhYRrpdXR0MLdIm5hGW1sbJ2flg4O83vm4f+8eyxYtzfLKOONcJmhpaxMTob7/x0bFaLSWA0iMi+fpnYc8u/eYXYuVP2gVCgUoFIxu25fWv3bB/Y0ukse2H+DIlr20GdwVe5f36y76MWIT4khJTcXMQP36kMvAWKNVUHrKuBYk6OEVUtJ5WABQzas4tfKVYsaR9TyJyrrWrm8yyaUc4/TtVnAxkdHkssj8PtHKXnkddnB1Ijoyir1rtqhVxmlra2PjoHyYm8fdheBHTzmwYednq4xLO3epbx/luSv9scaU566H7Lh2DEg7dw2t2ZF1FwKy/dz1NZxvY16V4e1WcMrj4t1jvJV3K8TxB5czPC5eUwD3wp5hnyv9896nUm6LFCyM1M9J5oamRMSl/51+W7gKV4PvsenyvwDcD3/GnOObGFvvF5af3UN4XDSti9Uk8PYZ1eyk9yOeY6irR9dy37D2QkCGFX0fIyo+lpTUFKyM1ctgYWSa6b3UpH9XMvXQaiyNcxH2Mop6PuWITYxXa2WqQKE6L90Je4yLhT0ti9b4v6iM05bZVL84Mmbcf5SJiQleXl64urqqVTQVKFAAAwMDHjx4gJeXl9rL2TltnAlbW1s6dOjAsmXLmDJlCnPnzlXlP3funNoA/keOHEFbWzvd1ksfKzQ0lIsXLzJgwABKly6Ns7Mz9+7d00h39OhR/v77b7Zu3YqZmdk7K5k+Rv78+Tl8WH3g5aNHj5I/f/4M8xw6dIiePXtSr149fH19MTAwyHQygrd5eXmhp6fH8ePHVcvCw8NV3SEBihUrRkpKCsHBwRrbMvcbs845OzvTpUsXNmzYQL9+/Zg3T322pvQ+w8dHeUPp5+fH5cuXNdbv5eWFvr4+Pj4+JCcnc/Zs2oyNt27dIiIiQvX368qlN2cufXMyhzc/x83NTeNzMhr/r2jRooBy4oeMtG7dmosXL1KwYEEKFCiQYbrMtGzZkpiYGObMmaPx3oQJE9DT06NZs2aqZVWrVuXmzZusWLGCChUqqCpKK1euTGBgIIGBgZQtWxZDQ0O1dV26dAk9PT18fdPv6mJgYICZmZna6327qero6mDj4sDjq+rTvT++egd7j/THaklP6MNnGKfzg/I1hUJB6KNn2TaJg56eHp758nL+lPoMoedOncWnYMbH4/vYsHIta5asYPj4UeT1yZ6uX6CcHe3Gi4eUcFL/0VbCyYdLz+5kkEspJTWVF7ERpCoUVPMqzrH7lzRubqt6FkdPR5e9N4KyPHYSEkh9EZL2evqc1MgodPO/8X3p6KCb15PkO/feuTr9EkVBV5ekE6czTpSYiCIqGi1jI/QK+JB0Pv2xwz5GSmoq98KeaIzVVzC3BzdD0h9L0UBXj9S3Hpa8/lvuYT+Nnp4e+Xy8OXVCfd89dTKIgoXTn6XSt1BBTp1UTx904iQ+BXzQ1c34ebJCAUmJSRm+/7F0dHVxcHfi7iX1B1V3L17HKZ2JGQyMDOn81yB+GjNA9SpevRzWDnb8NGYAeTzThiw4tu0AhzfuodXALjh6uGR57G9KUaTyMOI5Pnbqn+Nt58rd0CcZ5FLysnHCztSSY/fSP1ar5y1BHZ8yzDq6kYcRz7Ms5rfp6umSx9OVm+fV7xFuXLiCq3f63SLTo1AoSE7SHH9QPQ0kJ2f9/pQR5bnraQbnrofp5tHX1dN40Ps5z11fw/k2RZHKg4hnGmOS5bd343bo40zz5rN1xj6XFYfvXnivz3K2sCMyg4qxT5WcmsLt0McUdVTvWVHU0SvDFvUGOvoZ7j9paTLax7SyfHslp6ZwM+QRfnm81Zb75fHmyvN7meZNUaQSEhtJqkJBFc9inHhwOdOKQi0tLbXZ6oX4nKQy7iuTK1cu+vfvT58+fVi8eDG3b9/m7NmzzJw5k8WLFwMwbNgwNm/ezK1bt7h8+TLbtm1TVTy1adMGQ0ND2rdvz6VLlwgICKBHjx60bds20y6qH8rCwgIrKytmz57NrVu32L9/P/369VNLEx0dTdu2benRowd169ZlxYoVrFmzhrVr391S6EMMGDCARYsWMXv2bG7evMmkSZPYsGED/fv3zzCPl5cXS5cu5erVq5w4cYI2bdqouiG+D1NTUzp16sSAAQPYv38/ly5dokOHDmozWebLl482bdrQrl07NmzYwN27dwkKCmLcuHGqGVN79+7N7t27uXv3LmfOnOHAgQMalYgjR45U+wwbGxuaNGkCKMfUO3bsGN26dePcuXPcvHmTLVu2qCo9fXx8qFGjBp07d+bkyZOcPXuWzp07Y2RkpGpdZ2RkRJkyZfjrr7+4cuUK//77L0OHDlWLoVu3boSFhdGqVStOnjzJnTt32LNnDz/88AMpGcyOZWtri5+fn0ZF6ZssLS15+vQp+/d/fDP/smXL0qtXLwYMGMDEiRO5ffs2165dY+jQoUydOpWJEyeqVWSXK1cOAwMDpk+fTuXKlVXLS5YsSWRkJOvXr093rMFDhw5RsWLFD9pPPkTBGmW4fuQs14+cI/zpC46v2UNMeCQ+lYoDELRxP4H+m1TpL+0/wb1z14h8Hkr4k2CCNu7n3tlrFKiSNmHGmW0HeXT5NlEvwgl9+IxDS7cS+vA5PhWLZ0sZABp/9w17t+1i3/bdPLz3gPnT5xASHEydxvUBWDJnIZNHj1fLc+fmbe7cvE1cXDyREZHcuXmbB/fSbjg3rFjL8vlL6DGoL3a57QkPDSM8NIy4l3HZUoY15/dTP3856vmUxdXCnm7lmmGXy4otl5X78k+lGzGkWjtVeidzO2rmLUkec1t87FwZVqMj7lYOzDuh2U2nfv6yHL57PttnYnstYf+/GNapgV7RQmg75sa4fSsUiYkknkybxdW4QysMm9TXyKtfrjRJ5y6hiNVsaaNbwBvdAj5oW1uhmz8fpn26kvI8mMSjH9fCNSM7rx+niocflTyK4mhmQ5titbE2Nmf/TeVkPt8Vqc7PZZqo0p99fIMSzvmp7lUCWxML8to407Z4HW6HPFK1KNDR1sbFwh4XC3t0tXWwNDLDxcIeO9NPb72ZFYz0DMhr46QaZNvRzIa8Nk7YfwHxfde6Bds2b2X7lm3cu3uP6ZOmEvzsOY2bNQVgzoxZjB7+pyp942+a8PzpM2ZMnsa9u/fYvmUb2zdvo8X3rVRplvkvIejESZ48esz9e/dZvXwVu7fvpFbdWhqfnxVK163C2YDjnAs8TsjjZ+xZupHI0HD8qivHzD2waiubZy0DQEtbGztnB7WXsZkpunq62Dk7oG+ofOBydOt+Atdup0HnVljYWhETEUVMRBSJ8QkZxvGpAm6dpqxbIcq4+mKfy4pvClXGyjgXh+8qZ6FtWKACbYtrDkdQ1rUgd8Oe8jRac5y/6nlLUD9/OZaf2UPoy0hyGRiTy8AYfZ3s6W5bqWFNTu4/xMn9h3n+6Alb/FcRERJG2VpVANixbD0rpy1QpT+y8wBXgs7x4slzXjx5TtCBw/y7ZQ9+ldJash/YsIMb5y8T+uwFwY+ecnDLHk4fPKaW5nPYdf0Yld84d7UuVgtrY3MO3FQ+3GhepBqdyzRWpT/7+AbFnX2o5lVcde76vnhtboc8zrA1VFb7Gs63e28EUcG9COXdCpE7lzXfFamGlbGZanbqpgUr0bGk5vWuglth7oQ+SbclaIP85Slg746NiTlO5na0L14XZwu7bJ3xevPlw9TIW5LqXiVwMrflh5INsDGxYPf1EwB871ebXhXSJlELenSVMq4FqeNdGntTK3zsXPmxdENuvHigaokW9OgadbzLUMG9MHamlhRx8KJ1sZoEPbyiUXGXFdZfDKSOdxlq5yuNs4U9Xco0wc7Ukm1XjwDwQ8kGDKjSRpU+j7kt1b2K42hmg7etC0OqtcPN0gH/oO2qNC2L1MAvTz5y57LG2dyOZoWqUCNvSfbfOpXl8Yvs988//+Du7o6hoSHFixfn0KFDGabdsGEDNWvWxNbWFjMzM8qWLcvu3bvV0ixatAgtLS2NV3x81k9C9JpUA3+F/vzzT+zs7Bg7dix37tzBwsICPz8/hgwZAihnohw8eDD37t3DyMiIihUrsmrVKkA57sru3bvp1asXJUuWxNjYmGbNmjFp0qQsjVFHR4fVq1fTs2dPChYsiLe3N9OmTaNKlSqqNL169cLExEQ16L+vry/jxo2jS5culCtXTqMb7sdq0qQJU6dOZfz48fTs2RN3d3f8/f3VYnnbwoUL6dy5M8WKFcPFxYUxY8ZkWnmXnvHjxxMTE0OjRo3IlSsX/fr1IzJSvbuFv78/o0aNol+/fjx+/Bhra2vKli1LvXr1AEhJSaFbt248evQIMzMz6tSpw+TJk9XW8ddff9GrVy9u3rxJkSJF2LJli6o7ZuHChTl48CC//fYbFStWRKFQ4OnpSYsWLVT5lyxZQqdOnahUqRK5c+dm7NixXL58Wa3l18KFC/nhhx8oUaIE3t7e/P3339SqlfZDyNHRkSNHjjBo0CBq165NQkICrq6u1KlTR60C8m2dO3dm0aJFmc7ma2Fh8e4v+x2mTJlC4cKFmTVrFr///jtaWlr4+fmxadMmGjZsqJb2dRfUgwcPqu0jenp6lC1blv3796dbGbdy5UqNMeGykmcJXxJi4ji7/V9eRsVg6WhL7e6tyGVtAcDLyBhiwtIGGE9JTuHk+n3ERkSjq6eLhaMttbu1xLlQWpfcxJcJHF6+nZdRMegbGWDtnJsG/dtj554909gDVKxemeioKFYvXk5YaDiu7q4MG/cndrmVDwPCQ8MIea4+m2+fTt1U/799/Sb/7gvALrcd89YsAWDnpq0kJyUxbtgotXwtO7Sh1Q9ts7wMAbfPYG5oQrvidbE2MeNu2FMGbf+H5zHK7nbWxuZqPyR0tLRoUaQ6zhb2JKemcPbJDbptnMizaPXueU7mdhR28KLf1ul8Lgl7DqClr4dRq2ZoGRuRcvcBMdPmwBuTjWhbWWqMsaNtZ4tuXg9ips5Od71aRoYYNqmPtoUFipcvSTp7gbhNOyA18+49H+rEg8uY6hvRxLcyFkamPIoMZsLB5YS+VJ5rLQxNsTZO6+546O55DHUNqJGvJK2K1eJlYjxXgu+y+tw+VRpLo1yMrttF9Xf9/OWon78cV5/fY8yBxVka/8fwsXVlRtO0Lu89KyjHAdxx9Rijczi+6rVqEBUZxeL5/oSGhOLu6cG4KRPI7aBs7R0aEsrzZ2mtqRzzOPL3lAlMnzyNjWs3YG1rQ6/+valSLe0cGxcfz6RxE3kRHIyBgQEurq4MHTmM6rVqZEsZfMv6ERfzkkMbdxMTEYWtkwMtB/yMha2yy1lMRBSRoR82KPvpfYdJSU5h/VR/teUVv6lN5WZ1syz2N515fAMTfSPqeJfBzNCEp1GhzDq6UfXD29zQBMu3urkZ6upT1DEv6y8GprvOiu5F0NPR5cfS6tfNHVePsfNV98msVLR8KV5Gx7Jv7VaiwiPJ7eJIpyG9sLRTjqsbFR5JREhapaFCoWDH8g2EBYego6ODtb0tddt8Q5laaQ/WEuMT2Dh3ORFh4ejp62GXx4FWvTpRtHzWTwiSmRMPrmCqb0xj30qqc9fEgysyPHcdvnseI119jXPXmnOfb0yyr+F8e+rRNUz0jaifvzzmhiY8iQph+uG1qomUzA1NNYahMNLVxy+PN6syGP/NWN+Atn61MTM0IS4pgYcRwYwPXMG98Oybnf7IvQuYGRjTomh1LI1y8SD8GX/uW8SL2AgArIzNsDW1UKU/cOs0RroG1PMpR8eS9YlNjOfC09sseWMyjTXnD6BQKGhTrBZWxuZExccS9PAqy8/uJjscvHMWMwNj2vjVxsrYjPthTxm6a45q0gsrYzPsTNLupbS1tGlWqCpOFnakpKZw/sktem+Zqrr3AjDU06dH+ebYmJiTkJzEw8hgxgUs4+Cdsxqf/zXKqvGXvwSrV6+md+/e/PPPP5QvX545c+ZQt25drly5gouLZuvyf//9l5o1azJmzBgsLCzw9/enYcOGnDhxQjWuPoCZmZnGME1v93bKSlqK9xm8SgjxnxMYGEjVqlUJDw/Pkgqr1x49eoSzs7NqvMHsFB8fj7e3N6tWrVKbiOK/Zvv27QwYMIALFy5k2rUqPeMDlmVTVJ/PgKrfc+353ZwO45P42LtTeVa3dyf8wh38ZSYRXfq+O+EXzGL2JNquzL6K7c9laavhlJ/Z5d0Jv3BHus3meTaNC/a52JvZsPTUf3/G3LYl6tJjY9Y+PP3cpjfty5ZLGbdu+K9oVLAi7VaOzOkwPtmSVsP+8+fbpa2G03md5pjF/zVzvx1Ek0XvnsjuS7apw1/Umtc7p8P4ZHt+mpLTIXyUwFuZDBuSw6p4fVivm9KlS+Pn58esWbNUy/Lnz0+TJk0YO3bse63D19eXFi1aMGzYMEDZMq53795qwzFlN+mmKoTI1IEDB9iyZQt3797l6NGjtGzZEjc3NypVqpTtn21oaMiSJUs+aDy+L1FsbCz+/v4fXBEnhBBCCCGEEF+zhIQEoqKi1F4JCekP1ZCYmMjp06fVemEB1KpVi6NHj77X56WmphIdHY3VWxNIxcTE4OrqipOTEw0aNFAbNz07SGWcECJTSUlJDBkyBF9fX5o2bYqtrS2BgYEas+Vml8qVK2t0Ff2v+e677yhduvS7EwohhBBCCCFEFtPW0vpiX2PHjsXc3FztlVELt5CQEFJSUjTGs7e3t+fZs2fv9V1MnDiR2NhYvvsubexEHx8fFi1axJYtW1i5ciWGhoaUL1+emzdvfvyX/g7STEOIr1SVKlU0Zj36GLVr16Z27dpZEJEQQgghhBBCCJFm8ODB9O2rPoyKgYFBpnneHgNPoVC817h4K1eu5I8//mDz5s3Y2dmplpcpU4YyZdIm6ylfvjx+fn5Mnz6dadOmvU8xPphUxgkhhBBCCCGEEEKIz87AwOCdlW+v2djYoKOjo9EKLjg4WKO13NtWr15Np06dWLt2LTVqZD7Rk7a2NiVLlszWlnHSTVUIIYQQQgghhBDiK6X1Bf/7EPr6+hQvXpy9e/eqLd+7dy/lypXLMN/KlSvp0KEDK1asoH79+u/8HIVCwblz53BwcPig+D6EtIwTQgghhBBCCCGEEF+8vn370rZtW0qUKEHZsmWZO3cuDx48oEsX5Sz1gwcP5vHjxyxZsgRQVsS1a9eOqVOnUqZMGVWrOiMjI8zNzQEYMWIEZcqUIW/evERFRTFt2jTOnTvHzJkzs60cUhknhBBCCCGEEEIIIb54LVq0IDQ0lJEjR/L06VMKFizIjh07cHV1BeDp06c8ePBAlX7OnDkkJyfTrVs3unXrplrevn17Fi1aBEBERASdO3fm2bNnmJubU6xYMf79919KlSqVbeWQyjghhBBCCCGEEEKIr5SW1tc1QlnXrl3p2rVruu+9rmB7LTAw8J3rmzx5MpMnT86CyN7f17VFhBBCCCGEEEIIIYT4gkllnBBCCCGEEEIIIYQQn4l0UxVCCCGEEEIIIYT4SmlrfdispSL7Scs4IYQQQgghhBBCCCE+E6mME0IIIYQQQgghhBDiM5FuqkIIIYQQQgghhBBfKS3ppvrFkZZxQgghhBBCCCGEEEJ8JlIZJ4QQQgghhBBCCCHEZyLdVIUQQgghhBBCCCG+UtpIN9UvjbSME0IIIYQQQgghhBDiM5HKOCGEEEIIIYQQQgghPhPppiqEEEIIIYQQQgjxlZLZVL88WgqFQpHTQQghhBBCCCGEEEKIrHfy/uWcDiFDpVx9czqEHCEt44QQ4gs2IXB5TofwyfpXacOtFw9zOoxP4mXrTHR4eE6H8clyWVoSHRWV02F8klxmZlx+ejunw/hkvg6ePI8KyekwPpm9mQ3lZ3bJ6TA+yZFuszl690JOh/HJyrkX5kV0WE6H8Ulsc1kRdfRkTofxyczKlSIq6HROh/HJzEoWJ/rFi5wO45PksrUl6tTZnA7jk5mVKEZwVGhOh/FJ7MysuRvyOKfD+GTuNnlyOgTxlZDKOCGEEEIIIYQQQoivlHRT/fLIBA5CCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5S2tJN9YsjLeOEEEIIIYQQQgghhPhMpDJOCCGEEEIIIYQQQojPRLqpCiGEEEIIIYQQQnyltJBuql8aaRknhBBCCCGEEEIIIcRnIpVxQgghhBBCCCGEEEJ8JtJNVQghhBBCCCGEEOIrJbOpfnmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+UlnRT/eJIyzghhBBCCCGEEEIIIT4TqYwTQgghhBBCCCGEEOIzkW6qQgghhBBCCCGEEF8p6ab65ZGWcUIIIYQQQgghhBBCfCZSGSfEWwIDA9HS0iIiIiKnQ8lybm5uTJky5aPz37t3Dy0tLc6dO5dlMQkhhBBCCCGEEP9PpJuq+L909OhRKlasSM2aNdm1a1dOhyNElrgSGMT5PceIi4zG0tGOMt/VwiGva7ppn1y/x/ZJSzSWNx/RFYvcNhrLbwdd4sD8DbgW8aZW1xZZFvO2DZvZsHItYaGhuLi50blXVwoWKZRh+otnzzNv+mwe3LuHlbU137ZpQb0mDVXvJycns2bpSvbv3ENoSAhOzs50+OVHSpQppUrT8ds2BD97rrHu+k0b0bVfz48qh0KhYO78+WzcvJno6Gh8CxRg0IABeHp4ZJpv/4EDzJ47l0ePH+OUJw9du3ShapUqqvf9Fy8mIDCQe/fvY2BgQOFChejRrRturmnbdc68eezZt4/nz5+jp6dHfm9vunbpQsGCBd8d87x5bNy4URmzry+DBg7E09Pz3THPns2jR49wcnKi6y+/ULVqVbU0a9euZemyZYSEhODh4UG/vn0pVqxYWsxz57Jnz560mH186Nq1a7oxKxQKevXqxdFjx5gwfjwNGzXKNL637dy0jc2r1hMeGoazuys/dO9MgcLpfzdhoWEs/mcet2/c4umjJ9T7phGdevyc4boP7z/IpD/HUap8GX4dPeyD4vpQG9duYOWyFYSFhOLm4U6Pvj0pUqxohunPnT7LjCnTuXfnLtY2NrRu15rGzZqq3j94IJBli5bw+OFjkpOTcXJ2osX3rahdr062luN9FHHwonWxWvjYuWBjYsGvO2Zx6O75nA5L5cDW3exct5mIsAjyuDrRuktH8hXMn27aU4dPELB9Nw/u3CM5KZk8Lk40/v47CpUoqkpzcOc+juw7yOP7DwFw8/KgWcdWeHjnzbKYN6xdz8qlywl9tf/06tc70/3n7OkzTJ88Tbn/2NrQpm0bmnz7jer9O7fvsGD2PK5fu8azp8/o2bcX37VuqbaOjes2sGndBp4+fQqAu4cHHX78gbLly2ZZuUB5jpi3eSMbDwYQHRuLr4cnA9u2xzOPU4Z5Nh4MYMeRw9x+/AgAHzd3ujVrjq+H+vkvODyM6WtWc+ziBeKTEnGxz83vP/xIfjf3rC/DhvVsDDigLIOnFwM7dMTTKZMyBBxgx6FD3H6k3G983N3p9l0LfD29VGnW7dvL+v37ePoiBAAPpzx0avoN5YsUzbK45y5cyMYtW9KufX37vvvaFxjI7Pnz0659P/1E1cqV003rv3QpM+fMoVXz5vTr1Uu1fM6CBezZv5/nwcHo6eoqr32dO1PQ1zdLyjVvwzo2HjhAdGwMvl5eDOzwA55Ozhnm2XhgPzsO/8vth6/2KXd3urVoqbY9/DdvIuDUSe4/eYKBvj6F8+aje8vWuDk6flK8G9euZ+WyFarju2ffXu84vs8yY8q0N64PbWjyxvXh7u07LJgzX3V89+jTi+9aq9/7vYyNZf7sefwbeJDw8HDy5ctHz369ye9b4KPLsXXDZtatWE1YaCiu7m506dmNgkULZ5j+wtnzzJ3+D/fv3sPaxobmrVtQv6n6PcLG1evYtnELL54HY2ZhTsUqlejY5Sf0DfQBuHjuPOtWrObmtZuEhYYybOxIylWq8NFl+JJpI91UvzTSMk78X1q4cCE9evTg8OHDPHjwIKfDEVkgKSkpp0PIUbeDLnNszW6K1atA06Gdye3lwq7pK4gJi8w0X/OR3Wjzd1/Vy8zOSiNNdGgEJ9btJbeXS5bG/O/+AOZNm0WLdq2ZtnA2BYsUYnj/welWlAE8e/KU4QN+o2CRQkxbOJsW7VozZ8pMjgT+q0qzZK4/uzZvo0uf7sxauoC6TRowesgf3L5xU5VmyryZLN28RvUaNXkcABWqVvrosixeupQVK1cysF8/Fi9ciLW1Nd169iQ2NjbDPBcuXmTI779Tr25dVi5dSr26dfn1t9+4dOmSKs2Zs2dp3qwZ/vPnM3PaNFJSUujeqxdxcXGqNK4uLgzs149Vy5czf84cHBwc6NarF+Hh4ZnHvGQJK1asYOCAASxetEgZc/fumcd84QJDhgxRxrxihTLmwYPVYt6zZw8TJ03ih44dWb5sGcWKFqVnr148e/ZMPeYBA1i1ciXz583DwdGRbt27pxvzipUr4SPHOTl84CD+M+bS7PsWTJw/nfyFfBk1cBgvngenmz45MQkzC3Oafd8SN8/Mf2wHP3vOolnzKVD403/4vcv+PfuYPmkq7Tq2Y/4yfwoXLczAXv15/sZ3+qYnj58wsHd/ChctzPxl/rTt2JapE6YQeCBAlcbM3Iy2Hdvzz8I5+K9cTN2G9flr5BhOHjuR7eV5FyM9A26FPmLSv6tyOhQNJw4eYcUcfxq0bMaImX+Tr2B+Jg0dTWjwi3TT37h0BV+/IvQZOYTh08fhU6QgU//4i/u37qrSXLtwmTJVKjBo3HCGTh6NlZ0NE4aMIjwkNEti3r9nH9MmTqHdDx1YuHwxRYoVoX/PvmrH5JuePH7CgF79KFKsCAuXL6Zdx/ZMmTCZwP1p+09CfDyOTo506d4Va2vrdNdja2dLl+5dmb/En/lL/PErUZzB/QZy5/adLCnXa0t2bGfF7p0MaNOORcNGYG1uTvcJ44h94zz5ttPXrlKrTFlmDRrCwqHDyW1lTfcJfxMcHqZKExUby4+j/0RXV4epffuzZvRf9G7ZmlzGxlkaP8CSbVtZsXMnA9p3YNHIUVhbmNP9rzGZl+HqFWqVLces34ay8I8R5La2ofu4vwgOSyuDnZUV3Vu0ZPGfo1j85yhKFPCl/6SJ3H70KEviXrx8OStWr2Zg374snj9feR3p04fYly8zzHPh0iWGDB9Ovdq1WbloEfVq1+bXYcO4dPmyRtrLV6+yccsW8qbzkMjV2ZmBffqwavFi5v/zj/La17fvO69972PJti2s2LGDAR06sujPMVibW9B97Ptsj/LM+u13Fo4YSW4bG7r/NUZte5y5dpXmNWqxcMSfzPj1N1JSUujx1xji4uM/Otb9e/YxbdJU2nZsz4JliyhStAgDevV7x/WhH0WKFmHBskW07diOqRMmq10f4uPjccjjyM/df8Eqg+N73Ki/CDoRxNARw1i8chkly5SiT7devMjgXPguB/cFMGfqTFq2a8NM/7kULFyIof1/zfSe8Pf+gylYuBAz/efSom1rZk2ZweGAtHvCA7v3sXD2PL7/oT1zVyyiz6/9Obg/EP/Z89LKGhePu5cnXfv2+Ki4hfgUUhkn/u/ExsayZs0afvnlFxo0aMCiRYvemefIkSNUrlwZY2NjLC0tqV27tupiv2vXLipUqICFhQXW1tY0aNCA27dvq/K+7tq5YcMGqlatirGxMUWKFOHYsWPv/RkKhYK///4bDw8PjIyMKFKkCOvWrcs05uDgYBo2bIiRkRHu7u4sX75cI01kZCSdO3fGzs4OMzMzqlWrxvnz79/6ICUlhU6dOuHu7o6RkRHe3t5MnTo1S/L4+/uTP39+DA0N8fHx4Z9//lG99/o7XbNmDVWqVMHQ0JBly5aRmprKyJEjcXJywsDAgKJFi6q1fHyfbREaGkqrVq1wcnLC2NiYQoUKsXLlStX7c+bMIU+ePKSmpqrF26hRI9q3b6/6e+vWrRQvXhxDQ0M8PDwYMWIEycnJ7/3dfqiL+47hXb4YPhX8sHSwpWyL2phamnPl4KlM8xnlMsHY3FT10tZWvyykpqYSsGAjfg2rkMvWMktj3rhqPbUa1KF2w3q4uLnSuVdXbOzs2LFpa7rpd2zahq29HZ17dcXFzZXaDetRs34dNqxcq0oTsHsf37VtTcmypXHI40j9po3wK12CDavSjhdzSwusrK1Ur6CjJ3DI40ihYkU+qhwKhYKVq1fTsUMHqlWtipenJyOGDSM+Pp5de/ZkmG/lqlWULlmSju3b4+bmRsf27SlVsiQrVq9WpZk+ZQoNGzTA08ODfHnzMnzoUJ49e8bVa9dUaerUrk3pUqVwypMHTw8P+vTuTWxsLDdv3co85pUr6dixI9WqVcPLy4sRf/yhjHn37oxjXrmS0qVK0bFjR2XMHTsqY37jGFm+YgWNGzemSZMmuLu7069fP+zt7dXOWXXq1KF06dI4OTnh6emZFvPNm2qfd+PGDVYsX86w33/PMKbMbF27ker1alGzQR2cXF3o1ONnrO1s2b15e7rp7Rzs6dSjC1VrV8fYxCTD9aakpDBl1HhadvweeweHj4rtQ6xZsZr6jRvQoEkj3Nzd6NmvN7b2dmxatzHd9Js3bMIutz09+/XGzd2NBk0aUa9RfVYvS9tOxYr7UalqZdzc3cjj5ETzVt/h4eXJhXM53wLt+IPLzDuxhYN3zuV0KBr2bNhGpdrVqFy3Oo4uylZxVrY2HNiW/rHeuktH6jVvjIe3F7nzOPBtx9bYOzpw7kTaufnnQb2o1rA2Lp7uODjnoWOvn1EoFFw5dynddX6oVctX0qBxQxq+2n969euDnb0dm9ZtSDf9pvUbsc9tT69+fXBzd6Nhk0bUb9SAlctWqNLk9y1At149qFG7Jnr6eumup0KlipStUA4XVxdcXF34uVsXjIyNuHIxa8oFr85le3fRsUFjqpUoiZeTM3/8+DPxCYnsPn4sw3yjfu5K82o18HZxxc3Bkd86dkKhSCXoyhVVmsU7tmFvZcXwTp3x9fDE0caWUgV8cbKzz7L4VWXYtYuOjRtTrWQpvJyd+ePnX4hPTGT30aMZl6Frd5rXrIm3qxtujnn47cefUKQqCLqc9v1W8itO+aLFcHVwwNXBga7ftcDY0JBLt25muN4PinvtWjq2a0e1ypXx8vBgxG+/EZ+QkPm1b80aSpcoQce2bXFzdaVj27aUKl6cFWvWqKV7+fIlv48YwW8DB5IrVy6N9dSpVYvSJUumXft69FBeR964B//ocu3aSccmTdK2R5euxCcmsPvokQzzjerWg+Y1a+Ht9np7dNbYHtMHDaZh5Sp4OjmTz9WVYT//wrPQEK7evZvhet9l9YpV1H/j+O7Zrzd29nZszPD6oDy+X18fXh/fqzSO7+7UqFUT/XSO74T4BA4GBPJLz64U9SuGk7MTP3T+EQdHRzatT/+88i4bVq+ldoO61G1UHxc3V7r07o6tnR3bNm5JN/32TVuxs7ejS+/uuLi5UrdRfWrVr8u6lWn70dVLl/EtVJCqtaqT2yE3xUuXpErNaty4dkOVpmTZ0nTo3IkKVT7+gawQH0sq48T/ndWrV+Pt7Y23tzfff/89/v7+KBSKDNOfO3eO6tWr4+vry7Fjxzh8+DANGzYkJSUFUFbu9e3bl6CgIPbv34+2tjZNmzbVqKz57bff6N+/P+fOnSNfvny0atVKVTnzrs8YOnQo/v7+zJo1i8uXL9OnTx++//57Dh48mGHcHTp04N69exw4cIB169bxzz//EByc1hpEoVBQv359nj17xo4dOzh9+jR+fn5Ur16dsDee4mUmNTUVJycn1qxZw5UrVxg2bBhDhgxhzVs3VB+aZ968efz222+MHj2aq1evMmbMGH7//XcWL16stq5BgwbRs2dPrl69Su3atZk6dSoTJ05kwoQJXLhwgdq1a9OoUSONH/iZbYv4+HiKFy/Otm3buHTpEp07d6Zt27acOKFsLdK8eXNCQkIICEh7ghgeHs7u3btp06YNALt37+b777+nZ8+eXLlyhTlz5rBo0SJGjx79Xt/rh0pJTiHkwVPyFFB/cpyngAfPbz/MNO+GUXNZNmAS2yct4cl1zZvBs9v+xTCXMT4ViqWT++MlJSVx68YNipUsobbcr2Rxrl66km6ea5ev4FeyuHr6UiW4ee2GavslJSWi96rrwWv6+gZcuZD+j7+kpCQC9uyjZv06Hz3L1OMnTwgNDaVM6dJvfKY+fsWKceHixQzzXbh0idJv5AEoU7p0pnliYmIAMDMzS/f9pKQkNm7ahKmpKfnyZtzF7fHjx8qYy5RRj9nPjwsXLmQc88WLlH4jD0CZsmVVeZKSkrh27Zrad6EqVwbrTUpKYuPGjcqY8+VTLY+Pj+e3oUMZMHAgNjaaXaffJSkpidvXb1GkpJ/a8qIli3Ht8tUPXt+b1i5ZiZmFOTXq1/6k9byPpKQkbly7TsnSpdSWlyxdiksZ7NeXL17SSF+qTGmuXbmW7kMBhULB6ZOneHj/AUX8imZZ7F+b5KQk7t28g6+fesW9r19hbl+9/l7rSE1NJT4uDpNcphmmSUhIJCU5OdM070u1/5R5a/8pU5pLF9I/11y+eImSZdSP4VJlS3PtytWPfqiUkpLCvt17iY+Lx7dwxkMRfKjHL14QGhlJmTe6uOvr6eHn7cOFD6hwik9IIDklBbM3KuEPnTtDfnd3fp05jVo9u9Jm+FA2HgzIZC0f5/GLYEIjIyhTKK07nr6eHn4++blw80YmOdUpy5CMmWn6+01Kaip7jh0lLiGBQplcH9477tfXvlJp+5a+vj5+RYty4VLGFa4XLl2idCn1/bFM6dIaecZNmkT5cuUoXbLkO2NJSkpi4+bNyuuIl9c702fm8YtgQiOycHtk8mAn5lULwoy22bu8Pr5LpXt9yOT4/oDrQ3pSUpJJSUlBX99AbbmBoT4XzmV8D5GRpKQkbl6/gV+pt+4JS5Xg6iXNFpOgrGh7O33x0iW4ee26qhy+RQpx8/oNrl9RXvOfPn5C0LETlCpXWmN9/w+0tLS+2Nf/KxkzTvzfWbBgAd9//z2gbJ0RExPD/v37qVGjRrrp//77b0qUKKHWMsv3jfEomjVrprF+Ozs7rly5ojb+Uf/+/alfvz4AI0aMwNfXl1u3buHj45PpZ8TGxjJp0iQOHDhA2bLKcVY8PDw4fPgwc+bMoXI6Y2zcuHGDnTt3cvz4cdWP/QULFpA/f9qYNgEBAVy8eJHg4GAMDJQX0wkTJrBp0ybWrVtH586d3/VVoqenx4gRI1R/u7u7c/ToUdasWcN333330Xn+/PNPJk6cyDfffKNK87pS683WZ71791aleR3/oEGDaNlSOW7NuHHjCAgIYMqUKcycOVOVLrNtkSdPHvr3769K26NHD3bt2sXatWspXbo0VlZW1KlThxUrVlC9enVAOT6WlZWV6u/Ro0fz66+/qmL18PDgzz//ZODAgQwfPvyd3+uHio95iSJVgbGZ+g2fUS4T4qLS73JobG5Kxe8bYOPqQEpSMjdPXGT75KU06Nseh3zK8cie3XrA9SNn+eb3jMfM+lhRkZGkpqRiYaXe2s7CypLw0PQrg8NDw7AorZk+JSWFqIhIrGys8StVgk2r1lGwSCEc8jhy/vRZThw+SspbleOvHf/3CDExMdSoV+ujyxIaquxKZm2l3sXX2sqKpxl0E3mdL708r9f3NoVCwaSpUylapAheb3XZOXT4MEN+/534+HhsbGyYOW0aFhYWnz3miIgIUlJSsHorjZW1NSFvlevQoUMM+e23tJhnzFCLeeKkSRQuXJgqGYwj9C7RkVGkpqZiYWmhttzc0pKIsI/vxnT14mX2bd/NpPkzPnodHyLy1XdqqfGdWhKWwb4SFhqGlbX6sWJpZUVKSgoRERGqys2YmBia1WtCYmIiOjo69BnUT+NHmkgTHRVNamoqZhr7lAWXwiLeax27128lIT6BUpXKZZhm3cLlWFpb4Vvs0yutIjM6Jq0sCQ1J/1wbGhpK6bfOzVbp7D/v4/atW3Tp2JnExESMjIwYM/4v3D2ybry10MgIZXxm5urxmpvx7AO6+c5YtxpbS0tKvXF/9zj4BesPHKB17Tp0bNCIy3fuMHH5UvR19ahfPuvGlAqNiHwVc3plCHnv9cxYvQpbSytK+aqPiXnr4QN++GM4iUlJGBkaMr53HzwyGU/vveN+9eBW45pgacnT5+l3LXydz9pSff+ytrRUrQ9g9759XLtxgyXz5r2dXc2hI0cY8qpVt421NTMnT8702vc+Ql9N4Ka5Pcw/bHusWomtlRWlCqZ/HCsUCiYvX0pRb2+8nDMeiy4zGV0fLK2tCMvgXio0NIxS1m+l/8Dj29jEhIKFCrJ4gT9u7q5YWlmxb/derly6gtNHlCUqQnlPaPnWecfS0jLDcoSHhWNp+fZ1TnlPGBkRibWNNVVqVCMyPIJ+v/RCoVCQkpJCg6aNaNG29QfHKER2kMo48X/l+vXrnDx5kg0blE2odXV1adGiBQsXLsywMu7cuXM0b948w3Xevn2b33//nePHjxMSEqJqEffgwQO1yrjChdOesDm86tYUHByMj49Ppp9x5coV4uPjqVmzptryxMREtQHR33T16lV0dXUpUSLtiZGPj4/aDcrp06eJiYnRGOslLi5OrZvtu8yePZv58+dz//594uLiSExMpGjRoh+d58WLFzx8+JBOnTrx008/qfIkJydj/taN0Zvli4qK4smTJ5QvX14tTfny5TW63ma2LVJSUvjrr79YvXo1jx8/JiEhgYSEBEzeeLLZpk0bOnfuzD///IOBgQHLly+nZcuW6OjoAMrvNigoSK0lXEpKCvHx8bx8+RLjdMabef05b3pdSZodLHLbqE3UYO/pTGxYJBf2HsMhnyuJ8QkELNxExbYNMDTN+vFxXnv7aZhCocj0CZnGW69btb564+de3Zj29yS6tPkBtMDB0ZEa9Wqzb0f6XS/3bN9JidKlsP6AH5c7d+1izLhxqr+nTJz4UWVJr0CZ5fl7wgRu3brF/LlzNd4rUbw4K5YsISIyko2bNzP4t99YtGCB6gf465i1tLRQKBRMmTw545gzj/i9Yn6f76JEiRKsWL6ciIgINm7axOAhQ1jk74+VlRUHDx7k1KlTLF+27F3RvJPG96lQoPWRgxjHvXzJ1NET6DqgJ2YW5u/OkIU0v9N0yvZmeo0yKjSWGxsbs2D5IuJevuR00GlmTp6OYx5HihX3Q2RM8zSkeK9xDY8HHGbTsrX0HD4ww/1nx9rNnAg8zKC/R6Cnr59umo+R/v7zIek195/34eLqiv+KxcRExxB4IIDRf/zJ9Ln/fHSF3M5jRxi72F/19+Te/TKIF80NlYElO7ax58RxZg8agoFe2neeqkglv5s73b5VPij0dnXjzpNHrA/Y/0mVcTuPHGbswgVpZeg/UFmGt9Ipv/L3K8SSbVvZc+wos3/7HYO39htXB0eWjx5L9MuXHAg6yR9zZjNn6O8fXCG3c88exowfr/p7yt9/px/3+0T99vYibRs+e/6ciVOnMmPSpHfeB5Xw82OFv7/yOrJ1K4OHDWPR3LlYvVVJk5mdRw4zdkFapd/kAYOUIZLePvWe22PrFvYcO8LsocM0tsdrfy/y59aD+8wbNiLd9z9EevdGmR7fb5ctnevDuwwdOYyxI8fQtF5jdHR0yOedjxq1a3Lj+vu3HtQMTDOuTO+j0jvuSduXzp85x6oly+nWrxc+vvl58ugxs6fOxNJ/KW06tv34OIXIIlIZJ/6vLFiwgOTkZPLkyaNaplAo0NPTIzxc8wkLgJGRUabrbNiwIc7OzsybNw9HR0dSU1MpWLAgiYmJaun09NLGXHh9kXhdcZfZZ7xOs337drW4IePKGtVNcyYXsNTUVBwcHAgMDNR4732fKq5Zs4Y+ffowceJEypYtS65cuRg/fryqS+fH5Hld3nnz5ml04Xtd2fWaSTpN/9+nEiCzbTFx4kQmT57MlClTKFSoECYmJvTu3VttezZs2JDU1FS2b99OyZIlOXToEJMmTVK9n5qayogRI9Ra7b1maGiY7vcyduxYtRaDAMOHD8e0yru7khiaGqOlrcXLt1rBxUXHYmSWcfeIt9l5OHHrhLJbQ/SLcGJCI9g9M20A9df71fxf/uS7kd0ws9Wc7OF9mZmbo62jrdEKLjI8QqO13GuW1laEh6q3aIoIj0BHRwczc2W3TXNLC34fO5LEhESioqKwtrHGf9Z87B1ya6wv+Nlzzp06y5DRH9ZasVLFimqztSW+mjwkJDRU7YlyWHi4RmuUN1lbW2u0gssoz98TJvDvoUPMnT0bezs7jfeNjIxwdnbG2dmZQgUL0vTbb9m8dSsdX7XOfB2zibk5sTExqv053ZgzGKz5fWK2sLBAR0dHI014WJhG6wm1mAsVouk337B582Y6duzIqVOnePToEVWrVVPLM3DQINasXcuvf/+RYYyv5TI3Q1tbm/C3WsFFRkRgbmXxzvzpefb4KcHPnjNmcNqx+vq4+LZaA2YsnUfuPFk7hpz5q+/07VZw4WHhGq0hXrOytiL0rWMrPCwcHR0dzN+oBNLW1sbJWfmDPK93Pu7fu8eyRUulMi4Ducxyoa2tTWR4hNryqIhIzC0zr5w9cfAI/lNm0XVIX3z90p8dcOe6LWxbtYEBY4fh7JH+TNgfyjyjYzI8HCvr9Pcf5XEeppH+7f3nfejp6alayvgUyM/VK1dZu3I1A3/79YPW81qlon4U9EjrhpiYrDz/hkZGYPPGvUt4VBTWZu+OdenO7fhv28rMAYPI66w+SZGNhQUejur3XW4Ojhw4lflYrO9Sya84BT3fLIOyS11oZCQ2b9yHhkdFYW3+HmXYvg3/LZuZ+esQ8rpoTrSkp6uLc27lNbCAhwdX7txm1a5dDOn044fFXaECBQukzZSpuo6EhX3Ytc/KSq0VnCrPq7Jfu36dsPBw2v6YFl9KSgpnz59nzYYNHD1wQHU/aGRkhLOTE85OTsprX8uWbN62jY5t37+iRXN7vLFPqW2PyPfcHlvx37KJmYN/I69L+sfx+MX+/HvmFHN//wP7TK6575J2fdA832d0fbC2ttK4nkSkc314lzxOTsyY+w9xcXHExsZiY2PD8MG/4+D44ddAM4v07wkjwiM0Wsu9ZmllSXjY2+nD1e4Jl8zzp1rtmtRtpOwN4+7pQXx8PNPGTaJV+zYa4yR/7bT/j7uDfqmkMk7830hOTmbJkiVMnDiRWrXUu6Q1a9aM5cuX0717d418hQsXZv/+/RoVJaDsynH16lXmzJlDxYoVATh8+PAHx5bZZxQoUAADAwMePHiQbpfU9OTPn5/k5GROnTpFqVfjcly/fp2IV03vAfz8/Hj27Bm6urq4ubl9cMyg7GZWrlw5unbtqlr2rlZ178pjb29Pnjx5uHPnjmoMtvdhZmaGo6Mjhw8fplKltEFYjx49qvoO3sehQ4do3LixqitzamoqN2/eVOvia2RkxDfffMPy5cu5desW+fLlo3jxtLHM/Pz8uH79Ol4fMG7J4MGD6du3r9oyAwMDph/LfKIOAB1dHWxcHHh89Q7uxXxUyx9fvYNrEe/3jiH04TOMzJXjlpjntqHZsC5q75/aHEBSfAJlW9TB5B0/PN9FT08Pr3z5OBt0mnKV01oYnD11mjIV0u++5eNbgJNH1QfkPht0irw++dDVVb+c6RvoY2NrQ3JyMkcPHqJiNc1jZ+/2XZhbWlCqbBmN9zJjYmKiVhGsUCiwtrbmxMmT+Hgrv++kpCTOnD1Lj27dMlxP4YIFOXHyJG1atVItO3HiBIULpXVpUSgU/D1xIoEHDzJn5kzyODq+V4wKUKtAfh1zLktLoqOi0mI+cUI95jNn6NEj4xnFChcqxIkTJ2jTOq2Lx4njx1WtTfX09PDx8eHEiRNUrVo1Lc3Jk1R+47hMN2aFQlWx2b59exo3bqz2fstWrejbpw916tYlisT0VqFGT08PT28vzp86S5mKafvU+VNnKVX+w7b5a3lcnJm88B+1ZSsXLCEuLo4fuv+Mtd2Hj233Lnp6euTz8ebUiSAqVU3bj0+dDKJCpfRb5/gWKsjRQ+oDjQedOIlPAR+NY+VNCgUkJf5/z0ydGV09PdzyenD57AWKl097WHTl7AWKlsl4XKvjAYdZOPkfuvzamyKli6ebZufazWxduZ5+o4fink9z5siP9Xr/CToRROWqVVTLT504SYXKFdPNo9x/1O9lgo6fxKdA/kz3n/eiUHzS7OcmRkaYvPEAU6FQYG1uzonLl/B2dQMgKTmZM9ev0aN5i0zXtXTndhZs3cz0fgMp4O6h8X4Rr3zcf/ZUbdmD58/I/QmVJxmXwYITly7i7fZGGa5dpUeLVhms5VUZtm1lweZNTB/0KwU8NMuQHoUirQLwg+I2NsbkjZb9qutIUBA+r8b7TEpK4sy5c/To0iWj1SivfUFBtGmRtn1OnDxJ4Ve9SUqWKMGqJUvU8owcMwZXV1fat2mj8WBWvWwKjYfh7yxXetvDwoITFy/i7aZswanaHi0z7964dNtWFmzawPRBQyjgoXkcKxQKxi/2J/BUELOHDiNPOg/XPkTa8X1S7foQdDKICpUyPr6PvHV9OPke14eMGBkZYWRkRHRUFCePn+CXHl3fnektenp65PVW3hOWf+O8dDYo43vC/AV9OXFE/Z7wzMlT5PXxVpUjISFeo8JNW1sbhUKR6XjhQnwuUhkn/m9s27aN8PBwOnXqpNHd8dtvv2XBggXpVsYNHjyYQoUK0bVrV7p06YK+vj4BAQE0b94cKysrrK2tmTt3Lg4ODjx48IBff/3wp72ZfYaNjQ39+/enT58+pKamUqFCBaKiojh69CimpqZqY6i95u3tTZ06dfjpp5+YO3cuurq69O7dW60FXo0aNShbtixNmjRh3LhxeHt78+TJE3bs2EGTJk3UuoBmxMvLiyVLlrB7927c3d1ZunQpQUFBuLtn3P3kffL88ccf9OzZEzMzM+rWrUtCQgKnTp0iPDxco8LqTQMGDGD48OF4enpStGhR/P39OXfuXLozyWYW3/r16zl69CiWlpZMmjSJZ8+eqVXGgbKrasOGDbl8+bKq4u61YcOG0aBBA5ydnWnevDna2tpcuHCBixcvMmrUqHQ/18DA4JO6pRaqUZZA/43Yujpg5+HEtUNniAmLJH8l5Q+/kxv3ExsRTdWOTQC4uO84uWwssHSwJSUlhVsnLnL3zFVq/KzsLq2rp4tVHvWbRH1jZau+t5d/rKYtmzHxz3Hk9cmHT8EC7NqynRfPg6nXpCEAi2bPJ/RFCP1+Vx5T9Zo0YNuGzcybPovaDetx7dIV9mzbxcA/hqjWee3yVUJDQvDw8iQ0JJQVC5eQmppKs9bqP8pSU1PZu2M31evUREc34xv796GlpUWrFi3wX7wYl1ctvfwXL8bQ0JA6b1T8DxsxAjtbW7q/qohu2aIFnX/5hUVLllClUiUC//2XE0FBLJgzR5Vn3Pjx7Nqzh4l//42xiYlq3DVTExMMDQ2Ji4tj4aJFVKpYERtrayIjI1m7fj3BwcHUeDWGYYYxt2qFv79/WsyLFiljrp02KcGw4cOVMb86N7Zs2ZLOP//MosWLqVK5MoEHD3Li5EkWzJ+vytOmdWuGDR9O/gIFKFyoEBs2buTZs2eq8TXj4uJYuHAhlSpVwsbGRhnzunVqMdvY2KQ7bk3u3Llxdnbm8tP360rfsHlTpo2ZiJd3Xrx9fdizdRchz19Qq1E9AJbN9Sc0JJReQ9LGibx7U7nu+Lg4oiIjuXvzNrp6eji7uaBvoI+rh5vaZ5i8Gnj77eVZ6bvWLRg9/E+8C/jgW6ggWzduJvjZcxo3awrAnBmzCHkRwm8jlLPONv6mCRvXrGfG5Gk0aNKIyxcvsX3zNoaN/kO1zmX+S/AuoBwnMyk5meNHjrF7+076/do/vRA+KyM9A5zMbVV/O5rZkNfGiaj4WJ7HfPx4f1mh1jcNmDd+Om55PfHKn4+DO/cRGhxC1frKY33twuVEhIbx0wBlpfbxgMPMnzCD1l064umTl8hXLTX1DPRVM/buWLuZjUtW8fOgXtjY26rSGBgZYviO1vnvo2WbVvw5bAQ++X0oWLgQWzZs4vmz5zR5tf/MnvEPL4Jf8PtIZSvhJs2asmHNOqZPmkrDpo25dOEi2zZv5Y/RI1XrTEpK4t6du6/+n8yLFy+4ef0GRsZGqpZwc2bOoky5stjZ2/PyZSz7du/j7OmzTJw2+ZPL9JqWlhatatbBf9tWnO1z42xvz6JtWzE00Kd2mbKqdMPnzcbWwpLuryroluzYxuyN6xn1c1ccbGwIeTX2nLGBIcavWrC3qlWHTmNG4r9tCzVKlubyndtsDAxgSIcfsix+VRnq1MF/y2ZlGXLnZtGWzRjq61O7XFpFxPDZ/2BraUX3FspxcZds28rsdWsZ1bU7Dja2hLx64GpsmFaGmatXUa5IUeytrXkZH8eeY8c4c/UK0wZ+XMtEjbibN8d/6VJcnJyU15ElSzA0MFC/9v35p/I68qqCrmXz5nTu3p1Fy5ZRpWJFAg8d4sSpUyx4NW6yibExXm9VLBoaGmJhZqZaHhcXx8IlS6hUvnzadWTjRoJfvKDGGw+CPrpcderiv2UTzrlz45zbgUWbN2Kob0DtcmlDoQyfNVO5PVoqK0yXbN3C7HVrGNWtBw626W+PcYsWsvvoESb07Y+xoZEqjamxMYYf2S29ReuWjBo+Ep8C+fEtVJAtr64PTZo1AWD2jFmEvHjB0BHDAGj8TVM2rFnP9MlTadik8avrw1aGj05rEJDx8W2sak194thxUICzqwuPHz3in6kzcXZ1oV6jBh9Vjm9aNGf8n2PJ6+NN/oIF2Ll5G8HPn1O/qfKecOGseYSGhDDg98EA1G/SkC3rNzFn2j/UbVSfq5eusHvbTn79Y6hqnaXLl2XjqnV45vPCp4Cym+qSef6UqVBOVakb9zKOJ48eq/I8e/KU2zdukcssF3a5s3bmZCHeJpVx4v/GggULqFGjhkZFHChbxo0ZM4YzZ85ovJcvXz727NnDkCFDKFWqFEZGRpQuXZpWrVqhra3NqlWr6NmzJwULFsTb25tp06ZRpUqVD4ots88A5YQGdnZ2jB07ljt37mBhYYGfnx9DhgzJcJ3+/v78+OOPVK5cGXt7e0aNGsXvv/+uel9LS4sdO3bw22+/8cMPP/DixQty585NpUqVsLd/v4tPly5dOHfuHC1atFD9uO/atSs7d+78pDw//vgjxsbGjB8/noEDB2JiYkKhQoXo3bt3pvH07NmTqKgo+vXrR3BwMAUKFGDLli3k/YBZw37//Xfu3r1L7dq1MTY2pnPnzjRp0oTIyEi1dNWqVcPKyorr16/TurX6k9LatWuzbds2Ro4cyd9//61qLfTjjx/WJeRDeJb0JSH2JWe2/8vLyBisHO2o0701uawtAHgZGUNsWFoZUlNSOLFuL7ER0ejq6WLhaEvt7q1wKfTpM6y9r0rVqxIVGcXKRcsICw3D1d2NEePHqG5+wkLDePE8bQbg3I4OjBg/mnnTZ7Ftwxasbaz5uXc3yr8xHX1SYiJL5/nz7MlTjIyMKFGmFP1+H4TpW7MSnjt1hhfPg6lVv26WlKV927YkJCTw1/jxREdHU9DXlxlTp6q1oHv27JlaF4EihQsz+s8/mTVnDrPnzsUpTx7GjhqlNtbkulfjW/7cVf1J8/ChQ2nYoAHa2trcu3ePbTt2EBERgbm5OQXy52fe7Nl4vqOVRPt27ZQxjxuXFvP06ZnHXKQIo0ePZtasWcyePRsnJyfGjhmjFnOtWrWIjIxk/vz5hISE4OnpydQpU1TjM6pi3r49LeYCBZg3dy6enlnXIgigQrXKREdFs2bxCsLDwnBxd+O3cSNU+1h4aDghz1+o5en3U1rLwNs3bnFoXyC29nbMWb0oS2P7ENVr1SAqMorF85WVh+6eHoybMoHcr7pfh4aE8vxZ2oDpjnkc+XvKBKZPnsbGtRuwtrWhV//eVKmW9iM1Lj6eSeMm8uLVJD4urq4MHTmM6rXSHz/1c/KxdWVG07QHLz0rKB8S7Lh6jNEHFmeU7bMoXbk8sVExbFm+jsjwcPK4OtPnzyHY2CsrDyPDwgkNThvkPXDHXlJSUlg6cz5LZ6ZVWpevUZkf+ysruQ9s3U1yUjIzR01U+6zGbZrTpG36kyF9iOq1ahAZGcmi+QtV+8/4qRPJ/eqYTG//GT91ItMnTWXD2vXY2NrQu38fqlRP239CXoTQsU3aw8CVS1ewcukKivoVY8ZcZaVKWGgYfw4bQWhIKCampnjm9WTitMkaM7t+qnb16pOQlMi4pYuIjn2Jr6cH0/sNVGvt9Cw0VG3IinUH9pOUnMygmdPU1vVT46Z0bqIcYsLXw4Px3Xsxc90a5m/ehKOtLX1bf0/dsupj02ZJGRo0JCExkXGL/Il+GYuvpyfTBw1WL0NIKFpaaa181u3bqyzDtCnqZWj6DZ2bfQtAWFQUw2f/Q0hEBKbGxng5OzNt4K+UfqMF9qdo36aN8joyaZLyOlKgADMmT1ZrQffs+XO11klFChVi9B9/MGvePGbPn6+89o0cqTb8w7toa2tz7/59tu3cSURkJOZmZspr38yZ77z2vY92DRq92h4LiY6NxdfTi+m/DnlrnwpR36f27VFuj6nqlc0/fdOMzs2U57D1+/YC0GXUSLU0wzp3oWHlKh8Vq/L6oH58/z1lQqbH999TJjJ98lQ2rt2Aja0Nvfr3Ubs+hLwI4YfvO6j+XrVsBauWKY/v6XOUE6LFxsQyZ+YsXgS/IJeZGVWqVeGnrj9/dOvZyjWqEhUVxXL/JYSHhuHq4cafE8Zi/6qLdVhoGMFv3RP+OWEsc6bNZNuGzVjZWPNL7+5UqJp2T9i6fVu0tLRYPHchoS9CMLe0oHT5snTo3EmV5sa16wzqkXa9mTt9FgA16tam/9BBH1WWL9X/86ylXyothbTRFEKIL9aEwPdv1fel6l+lDbdePMzpMD6Jl60z0eE52yInK7zupvpflsvM7L1bxn3JfB08eR71/jPzfanszWwoPzPjLmn/BUe6zebo3Qs5HcYnK+demBfR6c88+F9hm8uKqKMnczqMT2ZWrhRRQadzOoxPZlayONEvXrw74Rcsl60tUafO5nQYn8ysRDGCo95/huAvkZ2ZNXdDHr874RfO3SbPuxN9ga49v5vTIWTIxz7rZtn+L/n/GrVQCCGEEEIIIYQQQogcJN1UhRBCCCGEEEIIIb5SWkg31S+NtIwTQgghhBBCCCGEEOIzkco4IYQQQgghhBBCCCE+E+mmKoQQQgghhBBCCPGV0taSdlhfGtkiQgghhBBCCCGEEEJ8JlIZJ4QQQgghhBBCCCHEZyLdVIUQQgghhBBCCCG+UlpaMpvql0ZaxgkhhBBCCCGEEEII8ZlIZZwQQgghhBBCCCGEEJ+JdFMVQgghhBBCCCGE+EppSzfVL460jBNCCCGEEEIIIYQQ4jORyjghhBBCCCGEEEIIIT4T6aYqhBBCCCGEEEII8ZXSQrqpfmmkZZwQQgghhBBCCCGEEJ+JVMYJIYQQQgghhBBCCPGZSDdVIYQQQgghhBBCiK+Ulsym+sWRlnFCCCGEEEIIIYQQQnwmUhknhBBCCCGEEEIIIcRnIt1UhRBCCCGEEEIIIb5S2tJN9YujpVAoFDkdhBBCCCGEEEIIIYTIeg/CnuZ0CBlysXLI6RByhLSME0KIL9iSoB05HcIna1eyHhHRkTkdxiexyGXO6rN7czqMT9aiWE0il67O6TA+iXnbFqw4szunw/hkrf1qs/TUzpwO45O1LVGXo3cv5HQYn6Sce2HKz+yS02F8siPdZrPm3L6cDuOTfFe0BlE79uR0GJ/MrF4tAm6eyukwPlnVvCWYELg8p8P4JP2rtGH/jaCcDuOTVc9X8j9/7WvtV5t/jq7P6TA+WddyzXI6BPGVkMo4IYQQQgghhBBCiK+UzKb65ZEJHIQQQgghhBBCCCGE+Ew+qWXc6dOnuXr1KlpaWuTPnx8/P7+siksIIYQQQgghhBBCiK/OR1XGBQcH07JlSwIDA7GwsEChUBAZGUnVqlVZtWoVtra2WR2nEEIIIYQQQgghhPhAWkg31S/NR3VT7dGjB1FRUVy+fJmwsDDCw8O5dOkSUVFR9OzZM6tjFEIIIYQQQgghhBDiq/BRLeN27drFvn37yJ8/v2pZgQIFmDlzJrVq1cqy4IQQQgghhBBCCCGE+Jp8VGVcamoqenp6Gsv19PRITU395KCEEEIIIYQQQgghxKfTltlUvzgf1U21WrVq9OrViydPnqiWPX78mD59+lC9evUsC04IIYQQQgghhBBCiK/JR1XGzZgxg+joaNzc3PD09MTLywt3d3eio6OZPn16VscohBBCCCGEEEIIIcRX4aO6qTo7O3PmzBn27t3LtWvXUCgUFChQgBo1amR1fEIIIYQQQgghhBDiI2lJN9UvzkdVxr1Ws2ZNatasmVWxCCGEEEIIIYQQQgjxVXvvyrhp06a990p79uz5UcEIIYQQQgghhBBCCPE1e+/KuMmTJ79XOi0tLamME0IIIYQQQgghhPgCyGyqX573roy7e/dudsYhhBBCCCGEEEIIIcRX76NmU30tMTGR69evk5ycnFXxCCGEEEIIIYQQQgjx1fqoyriXL1/SqVMnjI2N8fX15cGDB4ByrLi//vorSwMUQgghhBBCCCGEEB9H6wv+9//qoyrjBg8ezPnz5wkMDMTQ0FC1vEaNGqxevTrLghPi/9n169cZO3YsCQkJOR2KEEIIIYQQQgghsshHVcZt2rSJGTNmUKFCBbTeGAiwQIEC3L59O8uCE+L/VXR0NE2bNsXd3R0DA4MsW6+bmxtTpkz56Pz37t1DS0uLc+fOZVlMQgghhBBCCCHE/5P3nsDhTS9evMDOzk5jeWxsrFrlnBBZ4ejRo1SsWJGaNWuya9euD87/xx9/sGnTpv9UBVL79u358ccfadmyZU6HIv5DTu09zPEdAcRERGGbJzc1v2+Ci4/nO/M9vHGHpaNmYuuUm5/GDFAtPxtwjIuHgnjx6BkAud2dqPJdffJ4un5QPOMjB+Hu4UGffn0oVqxYhunPnD7DlMlTuHvnDja2NrRt25Zvvm2mlubA/gPMmT2Hx48ekcfJiV+6dqFK1apqadatXceypUsJDQlN93NDQ0OZOX0GJ46fIDo6mmJ+xeg3oD8uLi5q67l44QKz/pnF5UuX0dPTw9rJnraDu6Knr//Osp/c8y+Ht+4nJiISWycH6rZrhlt+r3TT3r92mz0rNhPy5BlJCUlY2FpRonp5ytWvppbu6I4AgvYeIjIkHONcJviWLkaNVo3Q09d7ZzwfS6FQMO/fADadPU10fBy+jk4MqNsAT1vNe4D07Ll8kaEb11Ipnw8Tvmut9l5wVBQzDuzh6O2bJCQl42JtzdAGTcjv4JgdRVETtOcQR7ftJzoiCjun3NRu1wzX9zhWHly/w6KR07BzdqDLX4OyPc43ndp7mGPbD6iO71ptm77f8X39DktGzcDOKTc/jR2oWn7mwDEuHg7ixcOnAOR2d6Zqi/c/vj/Wga272bluMxFhEeRxdaJ1l47kK5g/3bSnDp8gYPtuHty5R3JSMnlcnGj8/XcUKlFUlebgzn0c2XeQx/cfAuDm5UGzjq3w8M6breV4H0UcvGhdrBY+di7YmFjw645ZHLp7PqfDUjmx+18Ob91HTEQkdk4O1G3/bSbnqVvsWb6ZF0+ek5SQiIWtFSVrVNA8T20/wMnX5ykz5XmqZqvG2X+e2r2TjceOEB0Xh6+LKwObfYeng0OGeQ5cOMeivXt4GBJCcmoKzja2fF+lGvVKllKlmbtrB/N271TLZ5UrF7tHjsnyMgRu38veDduJDIvA0SUPzX9qS96CPummPXs0iIM79vHozn2Sk5JwcHGiQetm+BYvrJbuZUwsm5eu4ezRU7yMicXG3pZmndpQqGTRLI//tSuBQZzfc4y4yGgsHe0o810tHPKmf055cv0e2yct0VjefERXLHLbaCy/HXSJA/M34FrEm1pdW2R57K8d3L6XfRt2EBkegYNLHpr/9D1evhlvi0M796tti/qtv6GAX9q2mDx4FDcvXdPI61uiCN2GD9BYnl3+i9e98weOc2bnIWIjorHOY0el1vXJk8/9nfme3LzPur/mYZ3HnjYje6iWpySncGp7IFePnCUmPApLBxvKN6+DW6F82VmML4bU03x5PqoyrmTJkmzfvp0ePZQ79+sNO2/ePMqWLZt10QkBLFy4kB49ejB//nwePHig8YP5a7Rhw4acDuE/JykpCT297LvZ/9JdOX6Wvcs2UafDtzjnc+fMgaOsGj+Xn8f9irmNZYb54l/GsWX2Ctx98xITGa323v2rtyhQ1g+nfO7o6ulybNsBVo6bTee/BmFmZfHe8XRv1p7FS5fQp2dvVq1dTe7cuTXSP3n8mD69etO4aRNG/DmCC+fP8/dff2NhaUm16sofexcvXGDokN/o3OVnqlStQmBAIEN+HcLcBfMoWLAgAHv37GXyxEkM/HUghYsUYeOGjWqfq1AoGNh/ALq6uoyfOAETExNWLF9Bj67dWbV2NUZGRqrP6tWjF+07dqD/gP5YWVixcOea97qRuXj0NDsXr6dBpxa4eHsQtO8wy/76h+4Th2JhY6WRXt9An9K1K5HbJQ96Bvo8uH6bLfNXoW+gT4kaFQA4fziIfSs30+TnNjjn8yD0aTAbZy8FoG77ZhrrzCpLjh1m5YljDGvUFBcraxYePkiP5YtZ+0tPTN7RavdpRATT9u2mqLPmD7GouDh+Wjyf4q7uTG3ZFksTEx6Fh5HLwDCdNWWtS8fOsGvJBur/0Bxnbw9O7zvC8r9m0W3CEMzT2T6vxb+MY9M/S/EomE/jWMlul4+dYc/SjdTtmHZ8r/x7Dl3+HvzO43vz7OW4++YlNp3j27esH07t3NDV1+PYtv2s+GsWP4/79Z3H98c6cfAIK+b407bbT+T19SZwx14mDR3N6LmTsbaz1Uh/49IVfP2K0KxDa4xNTTi8J4Cpf/zF71PG4uql/EF27cJlylSpgFeBfOjp67Nj7WYmDBnF6DmTsLSxzpZyvC8jPQNuhT5ix7WjjKnbJUdjeZvyPLXu1XnKk1P7DrN07Ex6TPo93fOUnoEBpetUxt7FEX0DA+5fv82WeSvRM9Cn5Ovz1KGT7F25mSZdvsfl1Xlqwyzleape+2+zrSxLDuxjRWAAw1q3wcXWjoV7d9N99gzWDf4dE8P0zynmxiZ0rFkbN3t79HR0OHT5MiNXLccyVy7K+qRVDnvkdmDmL91Vf+toZ/2P2VP/HmPtvKW0+qUjngXycWjnAWb88TfD//kbKzvNSqmbl66Rv2hBmrT7DiMTE47tO8g/f05g0MSRuHi6AZCclMzU3/8il7kZnQf3xNLGivAXYRgaZd859nbQZY6t2U351vWw93Tm2r9n2DV9Bc3/6IqplXmG+ZqP7Ia+Ydr1xDCXsUaa6NAITqzbS26v7P0NcOrQcdbNX0bLLh3wKJCPw7sOMPOP8fw+c1y62+LW5Wv4FC1Io7bNMTZVbotZf05k4IQROL/aFp2H9Fab7DA2KoYxPYfgV750tpblTf/F696NExf4d8V2qrZthGNeVy4GnmTzpMV8P7o3ZtYWGeZLeBnPnnlrcc7vycuoGLX3jm3Yy7Vj56jeoSlWDrbcv3SDbdOX8d1vXbBzzf4HgUK87aO6qY4dO5bffvuN/7F331FRHW0Ah3/03nuvUgV7V+xi19h7NPYSNZpo1Bg1xnRLTGI0xh577yI2YsHeFQsIYkOk97Lsfn+giwsLooAav3nO2XPg7ty7c/fWfe87MyNHjkQikfDrr7/SsmVLVq5cyZw5c8q7jsL/sfT0dDZt2sTIkSNp3749K1euVHh/5cqVGBsbK0zbsWOH/AfzypUrmTVrFleuXEFFRQUVFRX5MqKjo+nUqRP6+voYGhrSo0cPnj59Kl/OzJkzqVq1KmvWrMHZ2RkjIyN69epFamrBxSg7O5uxY8diaWmJtrY2DRs25Ny5c/L3jx07hoqKCkFBQVSrVg0dHR2aNWtGbGws+/fvx9vbG0NDQ3r37k1GRoZ8viZNmjB+/Hj5///88w81a9bEwMAAa2tr+vTpQ2xsbInfXWxsLB06dEBHRwcXFxfWrl1bpExycjLDhg3D0tISQ0NDmjVrxpUrpX9qn5eXx+DBg3FxcUFHRwdPT09+/fXXcplnxYoVeHt7o62tjZeXF4sWLZK/96K57KZNm2jSpAna2tr8888/SKVSvvnmG+zt7dHS0qJq1aoK2ZQv5tu2bRtNmzZFV1eXKlWqEBoaKi8THx9P7969sbe3R1dXFz8/P9avXy9/f8mSJdjZ2SGVShXq27FjRz7++GP5/7t376ZGjRpoa2vj6urKrFmzKnTk6TP7j1G1SR2qNa2LuZ0Vrfp/hKGZMRcPnyxxvv3LN+Nbrzp27s5F3us8qj81WzbE2skOc1sr2g3piUwqI+rG3deqj5ubGxMmTsDKyoqtW7YqLb9t6zasra2ZMHECLi4udOrcmQ4dO7D2n3/kZTas30DtOrUZOGggzs7ODBw0kFq1a7Fh3QZ5mfVr19GxU0c6de6Mi4tLkc99EB3N9WvXmfzlZHx8fXBydmLSl5PIyMzgYFCQfDnz5y2gR6+efDzwY1zd3HB2dsa3bjXUSxHwPbX3CNWb1qNGs/pY2FnT9uNuGJqZcC74uNLyNi4O+DeoiaWDDSaWZlRpVBt3f2/u3yro9uHBnUgcPFzxb1gLE0sz3Kt441e/Jo/uRb+yPm9KJpOx4WwoAxsG0NTLBzdLK2Z07EJWbi5B16+WOG+eVMrXO7YwNKApdiZFg0WrQ49jaWjI1x0/wtfOHltjE2q7uGFvWvyPgvJyeu9RqjWtS/Xn26f1x10xMjPhXPCJEufb8/dGKjeoiX0l5wqvY2EFx1M9zO2sadW/C4Zmxlw4VHKd9y3bROX6NbBTUuePRj8/vp3tnx/fvZ4f33cqaC3g4LY9BAQ2o3Gb5tg65mfFmVqYc2TPQaXl+4wYRNvunXD1dMfazoZug/pgZWvD5TPn5WWGTx5Hsw6BOLq5YONgx6Bxw5HJZNy8fL3C1qO0TkffYOmZXYTcu/yuq1LEqb2Hqd6sHjWbN8DS3pq2A/PPU2cPKj9P2T4/T1k52GJiaUZV+XkqXF7mwd1IHD1dqaJwnqrB4wo+T60POcaglq1o5l8VdxtbZvbpR1ZOLkEXzxc7Xw33SjT1r4KLlTX25hb0btwEdxtbLt9T7G5HTVUVc0ND+ctE36Dc1+HQjv00aNmEhoFNsXGwo8ew/piYmxGy75DS8j2G9SewWwecPdywsrOm88c9sbS15trZi/Iyp4KPkZ6axsivPsPdxxMzSwvcfT2xd624zNdrh0LxbFANr4bVMbGxoF7PQPRNjLgZUvx2ANAx0EPXSF/+UlVV/HkqlUo5umw71Ts0wcCi+IcP5eHIjv3Ub9mEBs+3Rfeh/TE2N+Pf/YeVlu8+tD+turbH2cMNS1trOg3oiaWNNdfOXpKX0TPQx8jEWP66dfk6mlqaVG9YW+kyK8J/8bp38eAJfANqULlxLUxtLWncpz36pkZcO3KmxPmOrNqOZ90q2Lg7FHnvVuglarVvjEsVT4wsTfFvVhenypW4eKDk70F4Py1atAgXFxe0tbWpUaMGx48rv369EBISovDbbPHixUXKbN26FR8fH7S0tPDx8WH79u0VVX3gDYNx9evX5+TJk2RkZODm5sbBgwexsrIiNDSUGjVqlHcdhf9jGzduxNPTE09PT/r168eKFSuQyWSlnr9nz55MnDgRX19fnjx5wpMnT+jZsycymYzOnTuTkJBASEgIwcHBRERE0LOnYtp7REQEO3bsYM+ePezZs4eQkBCFEYMnTZrE1q1bWbVqFRcvXsTd3Z3AwEASEhIUljNz5kx+//13Tp06xYMHD+jRowcLFixg3bp17N27l+DgYH777bdi1yMnJ4fZs2dz5coVduzYQWRkJAMHDixx3QcOHEhUVBRHjhxhy5YtLFq0SCGAJ5PJaNeuHTExMezbt48LFy5QvXp1mjdvXqT+xZFKpdjb27Np0yZu3rzJ119/zdSpU9m0aVOZ5lm6dCnTpk1jzpw5hIWF8d133zF9+nRWrVqlsKzJkyczduxYwsLCCAwM5Ndff2Xu3Ln88ssvXL16lcDAQDp27Mjdu4rBo2nTpvH5559z+fJlPDw86N27tzxQlpWVRY0aNdizZw/Xr19n2LBh9O/fnzNn8i/+3bt3Jy4ujqNHj8qXl5iYSFBQEH379gUgKCiIfv36MXbsWG7evMmSJUsq9GFFnkTCk8iHuFT2VJjuWtmTh3ejip3vSsgZEp/GEdAlsFSfk5udgzRPio5+0afWpalP7bp1uHZVeRDn2rVr1K6r+JS4br26hN0Mk2+ba1evUadOoTJ168qXmZuby61bt6hTaDkvf25Obi4Ami9ldampqaGhrsGVy/mB6ISEBG5cv46piQlDPhlM61at6devn0JwrDgSiYQnkQ9w81dsdufu7030nchXzg/wJPIBD+7cw9mnoJmdk5crTyIf8DA8Kr+OT+O4c+kGHtV9S7XMN/E4KZH4tDTquhY0W9NUV6e6kzNXHz4ocd5lx49hrKdHp2rK7wmO37mNt40dX27dSOC8H+m3dBE7SvjhXF7yJBIeRz7AzV+xyZGrvxcPS9g+l46dJvFpHE26tq7oKhbx4nhy9StUZz+vEo/vyyFnSIx9g+NbT68s1S2WJDeXqLv38K1eRWG6b3V/IsJul2oZUqmUrMxM9Az0iy2TnZ1DnkRSYpn/dxKJhMf3HuBe+DxVxZsHd+6VahmPX5ynvAvOU46ebjy+p+Q8Va1yudW9sEfx8cSnplDXs+D40FTXoLq7O1cjS3fOlclknL1zm/vPYqnupthM90HcM9rMmEan2TOYunoFD+PiyrX+klwJ0eGReFfzU5juXc2Pe7de/eALXhwXWejqF+zzV85cxNWrEuv/XMkX/UbyzajJ7N+0E2metIQlvbk8SR5x0U+w81Fs9mjn48rTiJKvF9u+/Yt/vpjH3nmreXy76Da7tOdftA108WpYfDcX5aFgWyjur97VKnMv7DW3hUHx59FTwceoEVAPrWKyNsvbf/W6Fxv1GEdfxe4GnHzdeRJxv9j5bhy/QFJsAnU6NVP6fl6uBLVCD1XVNTV4XMK19EOigdp7+3pdGzduZPz48UybNo1Lly7RqFEj2rRpQ3S08oc/kZGRtG3blkaNGnHp0iWmTp3K2LFj2bq1IEkgNDSUnj170r9/f65cuUL//v3p0aOH/DdgRXijZqoAfn5+RX4YC0J5W7ZsGf369QOgdevWpKWlcfjwYVq0aFGq+XV0dNDX10ddXV2haVxwcDBXr14lMjISB4f8Jydr1qzB19eXc+fOUatWLSD/orpy5UoMDPKfhPbv35/Dhw8zZ84c0tPT+fPPP1m5ciVt2rQB8oNIwcHBLFu2jC++KOgH4ttvv6VBgwYADB48mClTphAREYGrqysA3bp14+jRo0yerLwvhk8++UT+t6urKwsXLqR27dqkpaWhr1/0B8edO3fYv38/p0+flgcvli1bhrd3wY330aNHuXbtGrGxsfJBIn755Rd27NjBli1bGDZs2Cu/Xw0NDWbNmiX/38XFhVOnTrFp0yZ69OjxxvPMnj2buXPn0qVLF3mZF0Gtl7PPxo8fLy/zov6TJ0+W97X3448/cvToURYsWMAff/whL/f555/Trl07AGbNmoWvry/h4eF4eXlhZ2fH559/Li/76aefcuDAATZv3kydOnUwNTWldevWrFu3jubNmwOwefNmTE1N5f/PmTOHL7/8Ul5XV1dXZs+ezaRJk5gxY8Yrv9fXlZGajkwqRd9I8Ym9npEBaUkpSudJiHnG0Y176D/9U1TVSncRPLpxDwYmRrj4lty3RnH1MTM15XRcvNJ54uPjMSuUFWVqakZeXh5JSUmYm5sTHx+PqVmhMmamxMfnLzMpKYm8vDxMTRWbpr38uc7OztjY2LDo9z/4cuoUdHR0WLd2HfHx8cQ9/5H16NEjIP94HjtuHB4eHhwOPsTKb39jzM9TMbMpvr+0jJQ0pK+5LV74ZdRXpKekIc3Lo2m3ttRoVl/+nl/9mqSnpLFsxnxkyJDmSanVshEBnVqVuMyyiE/Lb95hWig4Y6qnx5PkpGLnu/LgPrsuX+SfoSOLLfMoMZFtF87Rp049BjUI4Majh8w9uA8NdXXa+Vctj+orlZGifN/UNzIgopgmOPFPYjm8fjeDZo4r9bFSnl4cT3rK9qnkEo7vDbsZ8PXYUtf5yIY9GJga4VK5YvrOSU1JRSqVYmhirDDdyMSY6wlJpVpG0NbdZGdlUzugfrFltixfi4mZKb6FghtCgYLzlKHCdH0jA1JfcZ76eeS0gvNU93bUbN5A/p5/g5pkpKTx99fz5Oep2i0bEdC5As9Tqfn1NTVQXBdTfQNiEkt+sJiWmUnbmV+RI5GgpqrK5G49qPNSUM/XyYlZffrjaGFJfGoKy4ODGLxwHhsnT8O4nILWafLjQrEZp6GJESkXk0u1jEPb95GTlU2NRgUPouKexnL76k1qN6nPmJmTiH0Uw4bFK5Hm5dGud5cSlvZmstIykEll6Boqfi86BnpkpqQrnUfXSJ9G/dpj7mRDXq6Eu2eusXf+GtpP+Bgbj/wMvpjwaG6fvESX6cPLvc6FvdgWBsaFtoWxESlJSaVaxuEd+8jJzqZGQ+VNUKPuRPD4/kP6jR1a1uqW2n/xupeZmoFMKkXXUPE3jo6RAenXlQdGE2PiOLnlAN2nDC+2zo6VK3Ep6AR2Hs4YW5oSHRbBvUthyKQVE6QWKs68efMYPHgwQ4YMAWDBggUEBQXx559/8v333xcpv3jxYhwdHeUDGXp7e3P+/Hl++eUXunbtKl9Gy5YtmTJlCgBTpkwhJCSEBQsWKLSSKk+lDsalpJR8cX6ZoaHhqwsJwivcvn2bs2fPyvtPU1dXp2fPnixfvrzUwbjihIWF4eDgIA/EQf5owMbGxoSFhcmDcc7OzvJAHICNjY08uywiIoLc3Fx5kA3yA021a9cmLCxM4fP8/Qs6crWyskJXV1ceiHsx7ezZs8XW99KlS8ycOZPLly+TkJAgbyIZHR2Nj4+P0vVTV1enZs2a8mleXl4KTXovXLhAWloaZmaKgYvMzMzXGhV58eLF/P3339y/f5/MzExycnKoWrXqG8/z7NkzHjx4wODBgxk6tOBmRSKRYGSkeIP08vqlpKTw+PFjhe0B0KBBgyJNb1/eHjbPO3iOjY3Fy8uLvLw8fvjhBzZu3MijR4/Izs4mOzsbvZduvPv27cuwYcNYtGgRWlparF27ll69eqH2/OJ/4cIFzp07p5AJl5eXR1ZWFhkZGejqFs0se/E5L3vtkXQL9WcmQ3lnrVKplB1/rKFR19YlBpZeFrrnMDdCL9Fv2mjUS9sRd+H6yGQl97mmpDyA4tTCZYquY+GPePlz1dXV+f6nH5gz+1taNmuBmpoatWrXol79gh/3Mmn+537UpQsdOnYAoE6t2hw4GszFY6G07N2p+HVQXk3gFesODJ45npysbB7cjSJ4/U5MrS3wb5C/j0feuMO/24NoP7gn9u5OxMfEsX/VFo4ZG9Kka5tX16cUDly7wvf7dsv/n9+r7/NVUfKdF11BANKzs/l6x1amtuuIsW7xP1alMhnetraMatYSAE9rG+7FxbL1wtkKDcYVULKvKVklqVTKtt9X06Rbm1IfKxWlyO4jkyndDlKplO1/rCaga+nrfGr3YW6EXqT/V2NKf3y/oaKrIVOyckWdPnqCHf9sZuyMSRgaK+9/at/mnZw5doLJP80q1UAr//eKnCtf3cH3kFmfkZ2VzcO7URxctxOzQuepkO0H8s9TlZxJiHnGvpVb0N+6n6bldJ7af+Ec328q6Jpg/tARylYFGa/er3S1tFj7+Zdk5GRz7s5t5u/Yjp2ZOTXc87NxGngXZB67Y4u/swud58xi77kz9G2iPPPmTRU9zyo/JxV2LuQUe9ZtY+T0CQrHhUwqw8DYkH5jhqCqpoqTuwvJCYkc3La3QoJxb8LY2lxhoAYrNwfSE5K5GhyKjYcTOVnZHF2+g0b926P9ioz88lT4GCjpmveycyGn2LtuOyO++qxIQO+FUwePYetkj7PHqwdOKH//xete0ZOUsi0hlUo5sGQjdTu3wETJ4B8vNO7TnsMrt7Nm6nxQUcHI0hSfhtW5eeJisfMIb0dxv4OU/RbKycnhwoULfPnllwrTW7VqxalTp5QuPzQ0lFatFB8MBQYGsmzZMnm/46GhoXz22WdFyrwI4FWEUgfjjI2NSz0CR15e3htXSBBeWLZsGRKJBDs7O/k0mUyGhoYGiYmJmJiYoKqqWqTZau7zZmglKS4oUHh64QEBVFRU5IEweaCgFAGHl5ejoqJS4nILS09Pp1WrVrRq1Yp//vkHCwsLoqOjCQwMJCcnp9j1U1a3l0mlUmxsbDh27FiR9wr3w1ecTZs28dlnnzF37lzq1auHgYEBP//8c4npvK+a58X3sHTp0iJNEtUKPenSU/Jk+k22x8ufO3fuXObPn8+CBQvw8/NDT0+P8ePHK3zXHTp0QCqVsnfvXmrVqsXx48eZN2+e/H2pVMqsWbMUsvZe0C6mWcL333+vkDEIMGPGDFzbvbpPEV0DPVRUVYtkXmUkpxbJpgHIyczmSeQDYu4/ImhVfrBbJpOBTMZ3AybSZ/IInF9qGnB671FO7jpEny9HYuX46g5ui6tPQmJikcy2F8zMzOQZbi8kJiagpqaG0fP90czMjITCZRISMH2eUWdsbIyamlqR5RT+XG9vb/5Zt5a0tDRyc3MxMTHhk48H4eWTnzlq/rzTdxcXxRG7LGytSY5LLHndDfP7u0lLUnzanJ6cpnRbvMzkeefQVo52pCWncnTLPvmP3MOb9lKlUW15tpyVox252dnsWrqegI8Ci/Sx8yYaeXjha2cv/z/n+bU8Pj0N85ceSiRmpGOqp7wJ4KPEBJ4kJzFx4zr5NOnz81G9OTPZPHIs9qammOvr42Ku2GG/s7kFR2/dLPN6lETX8Pm+WSijLD0lDX1DZcdKFo/vRfMk6iH7Vm4BCo6Vb/qOp/+UURWWSSavs/x4KrRPpSjfp3Iys3hy7wExUY84sGqrQp3n9J9Any9HKGS3hu49wsldwfSdMqpUx/ebMjA0QFVVleTEJIXpKUnJGJko/+H6wpmQk6xY8Cejpk7At7q/0jL7t+xiz4ZtfPH91zhUYL9YH4KC81Th4yC1SPZMYS/OU9aOdqQlpXBk896XzlN7qBJQW54tZ+1oR052Drv+WkfjcjpPBfj6UflzZ/n/Oc+7MYhPTcH8pQd2iWlpmL2ifzdVVVUcLPLPQ5529kQ9fcrKQwflwbjCdLS0cLex5cGzZ2VciwL6xRwXqUkpxQadXzj/byirFy5l2Jdj8a6q2LTSyDT/eqiqVvCdWzvYkpKYhCRXgrrGGzeOUkpbXxcVVRUyCmXBZaamo2NY+ixCS1d7ws9cAyD1WSJp8UkE/VEQfH1xf/v3yNn0+GY0hhbl18/oi22RUnhbJCcXG1x74fzx0/yz8G+GfPkpXlWVN8vOycrm/PHTtO9bcYMuKfNfvO7pGOiioqpaZOChzJQ0dI2K3n/kZmUTG/WIZ9FPOPbPboU6Lxz8FR9NHISDjxu6hvp0GNsfSW4uWWkZ6BkbcnJzEIYlDIT0IVGTvb+jqRb3O2jmzJlFysbFxZGXl4eVlZXCdCsrK2JiYpQuPyYmRml5iURCXFwcNjY2xZYpbpnlodRn4pf7R4qKiuLLL79k4MCB8tFTQ0NDWbVqldK0QEF4XRKJhNWrVzN37twiUeyuXbuydu1axowZg4WFBampqaSnp8sDM5cvX1Yor6mpWSRA7OPjQ3R0NA8ePJBnx928eZPk5GSFppwlcXd3R1NTkxMnTtCnTx8gPxB4/vx5hcEXyurWrVvExcXxww8/yOt6/nzJfSt5e3sjkUg4f/48tWvnB3Nu375N0ktp9tWrVycmJgZ1dXWcnZ3fqG7Hjx+nfv36jBo1Sj7tVVl1r5rHysoKOzs77t27J++DrTQMDQ2xtbXlxIkTBAQEyKefOnVK/h2UxvHjx+nUqZO8ebRUKuXu3bsK+4WOjg5dunRh7dq1hIeH4+HhodBfZvXq1bl9+zbu7u5Fll+cKVOmMGHCBIVpWlpabLyqvNPgl6mpq2PjYk/k9Tt41Sr4oRp5/Q4eNYreFGrpaDH0+0kK0y4cOsn9m3fpMnYgxi/d3IbuOcLJncH0njwcW9fSjWJWXH3OnjlLQOMApfP4+flx/LhiB7pnTp/B28cbdfX8S5Wfvx9nzpyld98+BWXOnMHveaajhoYGXl5enD1zliZNm77yc1808Y6OjiYsLIxhI/ObwdjY2mJhYcH9+4r9ksTFxFKpStFM1Jepq6tj4+JAxLVb+NQu6Bsr4totvGq+RrM5mYy83IIBP3JzcopmAKqq8hpdaL6SnpaWwgipMpkMM319ztwLx9M6P4M0N0/CxftRjHme0VaYk7k564eNVpj257HDZORkM7FVW6yeN4vzd3Dkfrxi30vR8fFYGxmX3wopoaaujq2LA/eu3sa7VsH2uXftFp41im4fLR1tRv6k+OT13METRN68Q4/xn2BsUfGjdRYcT7cVj+9rt4s5vrUZ9oNilwcXDp0g6sZduo4bVOT4PrHjIL0njyj18f2m1DU0cK7kyo1LV6nx0iiCNy9dpWrdWsXOd/roCZbPX8SIL8dTpY7yPgj3b97J7vVbmTjnK1zeScbJf4u6ujq2rg5EXL2FT+2q8ukRV2/hVVN5sFMZGfl9O72Qm52DiopiwE21vM9T2toKI6TKZDLMDAw5c/s2nvb590i5EgkXw8P5tEPH11q2DJk8uKdMjiSXqKdPqepafvuYuoY6ju4uhF2+TrX6BcdB2OVrxe7vkJ+FtfrXvxj8xRj8ahXtS83N24OzIaeQSqXyIOjTRzEYmRqXeyAOQE1dDXNHGx6F3cOlWkFT30dh93Cq4lnCnIriH8Sg8zzYYmRtTtevFUchPr/zKLlZ2dTr2Rq9VwTxX5d8W1y6TtV6Bdvi1uXr+L9iW/yzcCmDPh+tdFu8cOHEGSS5Emo3aVBsmYrwX73uWTrbEn0jHPcaBRmq0TfDca1a9D5MU1uLvrPHKky7euQMD8MiaDu6D0aFgrbqGhromxiRJ8kj/MJ1KtUS3Rq8a8X9DipJaRIwXlW+8PTXXWZZlfps3LhxY/nf33zzDfPmzaN3797yaR07dsTPz4+//vpLoU8nQXgTe/bsITExkcGDBxdpmtitWzeWLVvGmDFjqFOnDrq6ukydOpVPP/2Us2fPFhlx1dnZmcjISC5fvoy9vT0GBga0aNECf39/+vbty4IFC5BIJIwaNYrGjRsrNH0siZ6eHiNHjuSLL77A1NQUR0dHfvrpJzIyMhg8eHB5fRU4OjqiqanJb7/9xogRI7h+/TqzZ88ucR5PT09at27N0KFD+euvv1BXV2f8+PHo6OjIy7Ro0YJ69erRuXNnfvzxRzw9PXn8+DH79u2jc+fOpfoe3N3dWb16NUFBQbi4uLBmzRrOnTtXJKPodeeZOXMmY8eOxdDQkDZt2pCdnc358+dJTEwscqJ+2RdffMGMGTNwc3OjatWqrFixgsuXLysdSbak+m3dupVTp05hYmLCvHnziImJKRKk7du3Lx06dODGjRvywN0LX3/9Ne3bt8fBwYHu3bujqqrK1atXuXbtGt9++63Szy0uFbu06rRpws4/12Lj6oC9uzOXjp4iOT6R6s3zM6mObtxDamIyHUf0RUVVFUsHG4X59Qz1UdNQV5geuucwIVv203lUf4zMTeVZFJraWmhql1zXl+vTwNST1WtW8zQmhi5d87MF//j9D57FxjLzm/ynYF26dmHzps0smDefTh915trVa+zauYvZcwq+r569ejFi2HBWr1xFQJPG/HsshLNnzvLXsqXyMr379mHm1zPw8vbGz9+PHdu2K3wuwOFDhzA2NsHa2prw8HDmz51HQOPG1K1bF8i/EPft34+lS/6iUqVKeHh6sPLgCuIePaXX+Fcf2/XbNWPbH6uxc3XEwcOF84dOkhyXQK0WjQAIXr+TlIRkuo4eAMCZoBCMzE2xsM1/Gnf/dgQn9xymTuuC665n9cqE7juKjYs99u7OxMc848imPXjV8CuXbBNlVFRU6FW7HitPHsfB1AxHUzNWnPwXbQ0NAisX/GCfsXMrlgaGjG7WEi11DdwsFZ8qGjz/4fzy9D516jN45VJWnAihhU9lbjx+xI5L55na9vV+PL+Juu2asv2PNdi6OmDv4cKFw6dIjkukZouGABxav4vUxGQ+GtX/+bGimC2mZ6SPuoZGkekVSX48uThgX8mZi0dCnx/f+T/qjmzYTWpiMp1G9lN6fOsa6qNe6Pg+tfswIVv20Xn0AIwtXu/4flOturRn6c+/4VzJDXdvD0L2HyI+No6m7fIfum1evpak+ASGfvEpkB+I+/uX3+kzYhBuXpVITsjPTNXQ0kT3+QO4fZt3sn31BoZPHoe5lYW8jJaONtovXfPeBR0NLeyNCjJAbQ3NqWRuT0pWOk/TSs6yrWj12zVn6++rsHVzxKGSK+cPnyA5LoHaLfOPg4PrdpKSkES3Mfn39EXOU7ciOLn7EHVbN5Ev07OGH6f2HsHG2R6HSvnnqcMbd+NVs2LPU70bN2HFoYM4WFjgYGHBykMH0dbUILB6wX3MjLWrsTAyZkz7/HPMikMH8XFwxM7MHEmehJNhN9l77ixfdi8YyGvBzu008q2MtYkJiWlpLDsYRHpWFu1rKe8P7E216NyGFfP+xMndBVfvShw/cITEZ/EEtM3vh3b7yg0kxScyaGJ+P5znQk6xYt5iegzrj4uXuzyrTlNTEx29/OacAW1bcHTPQTb9tYamHVoR+ziGA5t30rRD6QZ0eRN+LepxbMV2LJxssHS159bxi6QlJOMdkB/IOrv9MOlJqTQd1BmAa4dOY2BujImNBXl5eYSfuUbkxTBaDO8O5AfHTO0Um0lq6uZfTwpPLy/NOrdh1bw/carkiouXOycPHCXxWTyN2uRvix2rNpIUn8jACflBwnMhp1g1fwndh/Yrdlu8cCr4GFXq1lCajVbR/ovXveqtGhK0dDNWznbYuDtyLeQcqfHJ+DXNf8B+cnMQaUkpBA7tjoqqKub21grz6xrqoaahoTA9JuIBaYnJWDjakpaUzOkdh5HJZNRsq/xBsfD2vM7vIHNzc9TU1IpkrMXGxhbJbHvB2tpaaXl1dXV5l03FlSlumeXhjR6NhIaGKh0KtmbNmvJO9AShLJYtW0aLFi2KBOIgPzPuu+++4+LFi1SvXp1//vmHL774gr/++osWLVowc+ZMhcEHunbtyrZt22jatClJSUmsWLGCgQMHsmPHDj799FMCAgJQVVWldevWJY5oqswPP/yAVCqlf//+pKamUrNmTYKCgjAxKb90ZwsLC1auXMnUqVNZuHAh1atX55dffqFjx5J/tK5YsYIhQ4bQuHFjrKys+Pbbb5k+fbr8fRUVFfbt28e0adP45JNPePbsGdbW1gQEBJT6pDNixAguX75Mz54982+Ie/dm1KhR7N+/v0zzDBkyBF1dXX7++WcmTZqEnp4efn5+r8w4HDt2LCkpKUycOJHY2Fh8fHzYtWsXlSopb3KizPTp04mMjCQwMBBdXV2GDRtG586dSU5W7Ei5WbNmmJqacvv2bXlm5AuBgYHs2bOHb775hp9++kmesVWR50efutXISE3nxPb8mxMLext6fTEMI/P8p4FpSSmvbGJZ2IVDJ8mT5LF14UqF6Y0+CiTgFaNrvVyfgyu34urmxvxf58v76IuPi+NpzFN5eVs7O+b/uoAF8+azZfMWzC3Mmfj5RJo1L+iXx7+KP7PnfMuSPxezZPES7O3tmfP9d1SuXJAd1LJVS5KTk1n+9zLi4uKKfC5AXFw8C+YvICE+AXNzc9q0a8vgIYpBtt59epOTk8OC+fNJSU7B29ubj6eNwdRasWmlMn71a5CZls6xrftJTUrB0sGGfl+OkmckpSamkBxX0LG4TCbj0PpdJD6LR1VVFVMrc1r27kTNFgVPzxt3aY2KigqHN+4hJSEZPUN9PGtUpnnPDq+sT1kMqNeQ7Nxcfjqwh9TMLHzt7PitzwCFDLqnycmovuZTQx9bO37q3ptFR4JZdjwEW2NjJrRsQ2u/Kq+euYwq16tOZmo6IduCSEtKxtLBhr6TR8i3z5scKxXNt151MtMyOK5wfA9XrHP86x7fJ/KP719XKExv1CWQxuXUv1dhdRo3ID0ljV1rt5CcmIidkwOfzZ6KuVX+cZWckEh8bEHG5LF9weTl5bHmj79Z88ff8ukNWjRmyOdjADiyOwhJroQ/vp2r8Fmd+nanc3/lAwm9LV4WTvz+UcEDpLEN84MM+8JCmXPk3Q6C5le/Bhmpz89TiSlYOdjQ/8tR8qyXtKRkhX1KJpURvG7nS+cpC1r16ST/MQ/55ymAwxt3v3Se8qNFrwo+TzVrQXZuLj9u2URqZga+Ts78NmK0QgZdTGKiQnZDVk4OP27ZRGxyEloaGjhZWvFNvwG0emkE6NjkJL5as5Kk9HRM9PWp7OTM8vETsDEtv6aRADUD6pGWmsbeDdtJSUjC1smeMTO/wMzy+XGRmETCs4LuF/7dfwRpXh4b/lzJhj9XyqfXbd6IgZ/lB4lMLcwY982XbP57DbPHTMHYzIRmHVsT2LXitoVbLV+y0zO4uPdfMpLTMLW1pPWYPhiYGQOQkZxGekLBvZQ0L48zW4JJT0pFXUMdY1sLAsf0xtGv9Pds5a1mo7qkp6Sy7/m2sHGyZ9SMLzB73jw7JSGJxGcF56gTB/K3xcbFq9i4uOCYrtusEQM+Kxh04umjJ0TcvMOn3ygfqK2i/Revex51/MlMz+DMriNkJKdiZmdFp88+ljcpTU9OJTU+6bWWKcnNJXR7MMmxiWhoa+Ls70ng0B5o6b7bBzdvzQcyUIWmpiY1atQgODiYjz76SD49ODiYTp2U9+tcr149du/erTDt4MGD1KxZU959Ub169QgODlboN+7gwYPUr1/8oFFlpSIr3OFWKXh6etK+fXvmzlW88Zk4cSJ79uzh9u3SDVEvCIIglGz1uX3vugplNqBWW5JSSzcq3PvK2MCIjZeC33U1yqxntZYkr9n4rqtRJkb9e7LuYtC7rkaZ9akeyJrzxT+4+K/oX7MNpyKvvutqlEl9F38a/DHi1QXfcydHL2bT5UPvuhpl0qNqC1L2HXzX1Sgzw7atOHq35C5F/guaVqrJL8dK37rgffR5k74cvnPuXVejzJp71PrPX/v6VA9k0amt77oaZTaq/tvt96+8pJZyVOB3waCU/ZW/sHHjRvr378/ixYupV68ef/31F0uXLuXGjRs4OTkxZcoUHj16xOrVqwGIjIykcuXKDB8+nKFDhxIaGsqIESNYv369fDTVU6dOERAQwJw5c+jUqRM7d+7kq6++4sSJE0X6MS8vb5QZN3/+fLp27UpQUJC8Wc/p06eJiIhg69b//gEmCIIgCIIgCIIgCIIgvF969uxJfHw833zzDU+ePKFy5crs27cPJ6f8AZyePHlCdHS0vLyLiwv79u3js88+448//sDW1paFCxfKA3EA9evXZ8OGDXz11VdMnz4dNzc3Nm7cWGGBOHjDYFzbtm25e/cuixYt4tatW8hkMjp16sSIESPkHcwLgiAIgiAIgiAIgiAI71h5jqbzHhg1apTCgIAvK9yHPOSPgXDx4sUSl9mtWze6detWHtUrlTceTsfe3p7vvvuuPOsiCIIgCIIgCIIgCIIgCB+0Nw7GJSUlsWzZMsLCwlBRUcHHx4dPPvlEaYf7giAIgiAIgiAIgiAIgiDAG40zfv78edzc3Jg/fz4JCQnExcUxb9483NzcXpn6JwiCIAiCIAiCIAiCILwlMtn7+/o/9UaZcZ999hkdO3Zk6dKlqKvnL0IikTBkyBDGjx/Pv//+W66VFARBEARBEARBEARBEIQPwRsF486fP68QiANQV1dn0qRJ1KxZs9wqJwiCIAiCIAiCIAiCIAgfkjdqpmpoaKgwVOwLDx48wMDAoMyVEgRBEARBEARBEARBEMqBVPb+vv5PvVEwrmfPngwePJiNGzfy4MEDHj58yIYNGxgyZAi9e/cu7zoKgiAIgiAIgiAIgiAIwgfhjZqp/vLLL6ioqDBgwAAkEgkymQxNTU1GjhzJDz/8UN51FARBEARBEARBEARBEIQPwhsF4zQ1Nfn111/5/vvviYiIQCaT4e7ujq6ubnnXTxAEQRAEQRAEQRAEQXhTMum7roFQyGsF4z755JNSlVu+fPkbVUYQBEEQBEEQBEEQBEEQPmSvFYxbuXIlTk5OVKtWDZns/7ejPUEQBEEQBEEQBEEQBEF4E68VjBsxYgQbNmzg3r17fPLJJ/Tr1w9TU9OKqpsgCIIgCIIgCIIgCIJQFiKZ6r3zWqOpLlq0iCdPnjB58mR2796Ng4MDPXr0ICgoSGTKCYIgCIIgCIIgCIIgCMIrvFYwDkBLS4vevXsTHBzMzZs38fX1ZdSoUTg5OZGWllYRdRQEQRAEQRAEQRAEQRCED8Ibjab6goqKCioqKshkMqRSMTqHIAiCIAiCIAiCIAjCe0UqWjK+b147My47O5v169fTsmVLPD09uXbtGr///jvR0dHo6+tXRB0FQRAEQRAEQRAEQRAE4YPwWplxo0aNYsOGDTg6OjJo0CA2bNiAmZlZRdVNEARBEARBEARBEARBED4orxWMW7x4MY6Ojri4uBASEkJISIjSctu2bSuXygmCIAiCIAiCIAiCIAhlIAbcfO+8VjBuwIABqKioVFRdBEEQBEEQBEEQBEEQBOGDpiKTiRCpIAiCIAiCIAiCIAjChyj1Scy7rkKxDGys33UV3okyjaYqCIIgVKxp+5e86yqU2Zw2w3mWmvCuq1EmFgamTN23+F1Xo8y+azuCpIlfvetqlInx3G/ZeuXIu65GmXWt0oxPt89719Uos98+mvBBHN+bLh9619Uosx5VW9DgjxHvuhplcnL0Yv6NuPiuq1FmAW7VWfDvxnddjTIbH9CTRae2vutqlMmo+l2ZfuCvd12NMpvdeth//prx20cTmBH097uuRpnNChzyrqvwZmTSd10DoZDXHk1VEARBEARBEARBEARBEIQ3I4JxgiAIgiAIgiAIgiAIgvCWiGaqgiAIgiAIgiAIgiAIHyqpGCrgfSMy4wRBEARBEARBEARBEAThLRHBOEEQBEEQBEEQBEEQBEF4S0QzVUEQBEEQBEEQBEEQhA+VTDRTfd+IzDhBEARBEARBEARBEARBeEtEME4QBEEQBEEQBEEQBEEQ3hLRTFUQBEEQBEEQBEEQBOFDJZqpvndEZpwgCIIgCIIgCIIgCIIgvCUiGCcIgiAIgiAIgiAIgiAIb4lopioIgiAIgiAIgiAIgvChkkrfdQ2EQkRmnCAIgiAIgiAIgiAIgiC8JSIYJwiCIAiCIAiCIAiCIAhviWimKgiCIAiCIAiCIAiC8KESo6m+d0RmnCAIJXr69CnffPMNiYmJ77oqgiAIgiAIgiAIgvCfJ4JxggA4OzuzYMGCt7o8FRUVduzYUabPmTlzJlWrVi3TMkoik8no378/WlpamJiYvNa85f2dvq6AgADWrVv3zj7/ZZ9//jljx45919UQBEEQBEEQBEEQ3gMiGCf8p3Xo0IEWLVoofS80NBQVFRUuXrz4lmsF586dY9iwYW/9c8vb999/j6urK5MnT37ted/ld7Bnzx5iYmLo1auXfFrh4KBMJmPixIkYGBhw5MgRAJo0acL48eOLLG/dunWoqakxYsQIpZ+3ZMkSqlSpgp6eHsbGxlSrVo0ff/xR/v6kSZNYsWIFkZGR5bOCgiAIgiAIgiAIpSWVvb+v/1OizzjhP23w4MF06dKF+/fv4+TkpPDe8uXLqVq1KtWrV3/r9bKwsHjrn1kRpk6d+sbzvsvvYOHChQwaNAhVVeXPG/Ly8hg6dCi7d+/myJEj1KpVq8TlLV++nEmTJvHnn38yb948dHV15e8tW7aMCRMmsHDhQho3bkx2djZXr17l5s2b8jKWlpa0atWKxYsXKwTpylsdRx8aulTBQEuX2LRE9oad4n5iTLHl1VRVaeZWgyp2lTDQ0iU5K42QiEtceHgbAB8rF5q4VcNU1xA1FVXiM5I5EXmVy4/vlludt23eyvo1a4mPi8fZ1YVxE8dTpVrVYstfunCR3+YvJOpeJGYW5vTt35fO3brI378XcY9li5dy+9YtYp7EMHbCOHr06VXs8tasWMWSPxbTvXcPxk38rNzWq46jL41cX9oWN08S9apt4V6TqnaVMNDM3xbHIi7Kt0V1O0+6VWlaZL6vDyxFIs0rt3oro92qGZp1a6Kiq0Pe/YdkbNuN9GlsseX1Rw5G3d2lyPTcm7dJX7YGAM16tdGqXxtVU2MA8mJiyQo+iuRW+e1bL5wOCuH4rmBSk5KxtLeh3cDuuHhXUlo26lY4B9Zu59mjp+Rm52BsYUrtFo1o2L65QrnM9AwOrt/JzbOXyUzPwMTSnLb9u+JZvXK51/+FRi5VaF6pJobaejxJiWfbtWNExD9SWrZf9UDqOPkWmf4kJY7vDq8GoL6zH7UdvLExNAfgQdJTdt88WeI543W9i+N7+5Zt7NiyjSdPngDg4urKwCGfUK9BvXJbrzNB/3Ji9yHSnu9TbT7uhrO3u9Ky92+Fc3DtTp49LtinarVoSP12zRTKndp7hLPBx0mOS0TXUA/fOtVo2bsTGpoa5VbvN1XFxp0+1VrhZemIuZ4xX+77k+ORV951tQA4uucgQVv3kJyQhK2TPT2HDcCjspfSshdPnuXY3mAe3LuPJFeCrZM9Hfp2pXKNKvIyJ4NDWDl/cZF5F+1YhYamZoWtx/WjZ7kcdIKM5DRMbC1o0LMNth7OSss+uh3Jrl9WFJne65tPMbHJv/e6+e95bodeJuFx/rnawsmWOh+1wMrFvsLWAeDKkdNc3H+c9KRUzOwsCejTDjuPoteDwh7fvc+WH5ZiZmdF328+lU/Pk+Rxfu8xwk5eIi0xBRMbcxp0b42zn0eFrUNtBx8auvij//z6vf9WaMn3UiqqNHWvQRVbd/S1dEnJSick4hIXH724l3ImwFXxXupk1DWulOO9lDL/xWtGYXePX+LW4XNkpqRhZG1Ota7NsHQrfh/Oy5VwIyiUqHM3yUpJR8dYH99W9XCt5wdA8pM4ru07QcKDp2QkpFDto6Z4Nq1ZYfUXhFcRmXHCf1r79u2xtLRk5cqVCtMzMjLYuHEjgwcPBuDUqVMEBASgo6ODg4MDY8eOJT09vdjlRkdH06lTJ/T19TE0NKRHjx48ffpUocyuXbuoWbMm2tramJub06VLwQ+GwllYd+/eJSAgAG1tbXx8fAgODi7ymZMnT8bDwwNdXV1cXV2ZPn06ubm5CmV++OEHrKysMDAwYPDgwWRlZZX4/Rw7dgwVFRWCgoKoVq0aOjo6NGvWjNjYWPbv34+3tzeGhob07t2bjIwM+XwHDhygYcOGGBsbY2ZmRvv27YmIiJC/v3r1avT19bl7t+BG4tNPP8XDw0P+vRb+DlRUVFiyZAnt27dHV1cXb29vQkNDCQ8Pp0mTJujp6VGvXj2Fz4mIiKBTp05YWVmhr69PrVq1OHToUInrHBcXx6FDh+jYsaPS97Ozs+nevTvBwcH8+++/rwzERUVFcerUKb788ku8vLzYsmWLwvu7d++mR48eDB48GHd3d3x9fenduzezZ89WKNexY0fWr19f4meVhZ+1G2296xMScYk/Tm4lKjGGj2u2xUhbv9h5eldtiau5HduvhTD/3w1sunyYZ2lJ8vczc7M4FnGRJaE7+O3kFi48vE0Xvya4m5fPzfzhg4dYOHcBAz4ZyPK1q6hSrQqfj51ATIzyG7vHjx7zxbiJVKlWheVrVzFg0Mcs+GU+xw4flZfJzsrC1t6WEWNGYWZmVuLnh924ya7tO3GrpPxH9Jvys3GjnU99joVf5PcTW4hKeMLHtdqVvC2qtcTNzI5tV48x798NbCy0LQCycrP57tAqhVdFB+K0mjZCq3F9MrfvIXXBn0hTU9EfPhC0iv9Rmr5yHckzf5C/Un5aiCwvj9yr1+VlpMnJZO49SOr8P0md/yeS8HvoDeqLqpVludb/6qnz7F25mSZdWjPmx6k4e7uz6rs/SIpLUFpeU0uLeoFNGDZrAp/Nn0HTLm0I3riLs4eOy8tIJBKWf7uQpGcJ9JkwjM8WzOSj4X0xfB5YrAjV7Tzo4t+EoNtn+PHoP0TEP2Jk/Y8w0TFQWn7L1aNM3bdY/pq+/y/SczK59KjgnO1ubs+Fh7dZeGIz80LWk5CZyqj6XUrcT1/Huzq+LSwtGDFmFH+vXsHfq1dQvWYNpkycxL2Ie+WyXtdOXWD/qi00/iiQkT9MwcnLnTXfF79PaWhpUad1YwbPHM/YedNp3KU1hzbu5tyhE/IyV46fJXj9Tpp2a8vYedP5aHg/rodeJHj9znKpc1npaGgRHv+Qef9ueNdVUXAuJJSNf62mXc/OfP3b91Ty9WTh1z8QHxuntPyd62H4VPNj7DeT+WrhHDz9ffh91s9ERyhmrevo6vDLP38qvCoyEBd+7honN+6nervGdP96JDaVnNi78B9S45NKnK/37LF8/MsX8peRVcEx8fh2FJVq+9Np4iC6fDkUA1Mj9sxfTVpiSoWtx50zV/l33V5qtW9Cn1ljsPVwZue8VaS8Yj2yM7I4uHQzDt5uRd4L3RbMtWPnaNy3A/3njMevSW32/PYPsfcfV8g6VLZ2pY13PULuXeLPU9u4nxhD/xptMNLWK3aenlVb4Gpmy/br//Lr8Y1sunKYZ+lJ8vczcrMJibjE0tM7+f3kFi4+usNHlRuX272UMv/Fa0Zh0RdvcWnbEXxa1SVw0sdYuNnz759bSE8ofh8+tWI3T2/fp3afQNp+NZj6AztgaGUqf1+Sk4u+mTFVOgSgbVj8NhWEt0UE44T/NHV1dQYMGMDKlSuRvTRCzObNm8nJyaFv375cu3aNwMBAunTpwtWrV9m4cSMnTpxgzJgxSpcpk8no3LkzCQkJhISEEBwcTEREBD179pSX2bt3L126dKFdu3ZcunSJw4cPU7Om8icrUqmULl26oKamxunTp1m8eLHSZp8GBgasXLmSmzdv8uuvv7J06VLmz58vf3/Tpk3MmDGDOXPmcP78eWxsbFi0aFGpvqeZM2fy+++/c+rUKR48eECPHj1YsGAB69atY+/evQQHB/Pbb7/Jy6empvLZZ59x7tw5Dh06hEwm46OPPkIqlQIwYMAA2rZtS9++fZFIJBw4cIAlS5awdu1a9PSKv7jNnj2bAQMGcPnyZby8vOjTpw/Dhw9nypQpnD9/HkBhu6SlpdG2bVsOHTrEpUuXCAwMpEOHDkRHRxf7GSdOnJAH+wpLS0ujXbt23Lhxg5MnTyotU9jy5ctp164dRkZG9OvXj2XLlim8b21tzenTp7l//36Jy6lduzYPHjx4Zbk31cDFjwsPb3H+4S2epSexL+wUyVlp1HH0UVq+krkDzqY2rD6/n4j4RyRlpvEw+RnRSQVB58iEJ9x8GsWz9CQSMlIIvX+dp6nxOJtYl0udN6xdT/tOHejQuSPOLs6Mm/gZllaW7NiyTWn5HVu3Y2VtxbiJn+Hs4kyHzh1p17E96/8p6BvQ29eH0eM+pUVgyxIzSjIyMpg1fSaTpn2JgYHym9M31dDFnwsPCrbF3hfbwqn4beFiasuq8/ueb4tUHibHKmwLABmQlpOp8KpoWgH1yToUQu61m0hjYslYvxUVTQ00q1Updh5ZZiay1DT5S8PDDXJzyblSEIyT3LyN5NYdpHHxSOPiydp/CFlODupODuVa/xN7DlOjWX1qNW+Ipb0N7Qf2wMjchDMH/1Va3tbFgSoNa2HlYIuJpRnVAupQqYoPUWHh8jIXjpwiMy2dfl+MwMnLDRMLM5y93LFxrrgfVk3daxAadf35MZjAtmvHSMxMpaGL8u2QJckhNTtD/nI0sUJHQ5vT9wu2werz+zkeeYVHyc94mpbI+ovBqKio4GlRPtvgXR3fDQMaUa9hfRydHHF0cmT46BHo6Opw89p1peVf16m9h6nerB41mzfA0t6atgO7YWhmwtmDx5WWt3VxwL9BTfk+VbVRbdz9vbl/q2CfenA3EkdPV6o0rIWJpRnuVbzxq1+Dx/eKv9a9Taejb7D0zC5C7l1+11VRELx9Lw1bNaVR62bYONrRa/jHmFiYEbK36ANPgF7DP6Z19464eLhhZWdDl4G9sLS15sqZQt2ZqKhgZGqs8KpIV4JP4dWwOj6NamBiY0HDXm3RNzHkRsi5EufTMdRD18hA/nq5NUCLod2o3LQ25o42mNhY0HhAJ2QyGY/CyicorczFgyfwDahB5ca1MLW1pHGf9uibGnHtyJkS5zuyajuedatg41703HMr9BK12jfGpYonRpam+Deri1PlSlw8cELJksquvrM/Fx/e5sLD2zxLT2L/rVBSstKoXcy9lLu5Pc6mNqy5cIB7z++lHiU/48FL1++ohCeExebfSyVmpnL6+Xncybh87qWU+S9eMwq7dfQ8rnX9cKvvj5G1GdW7NkPXxIDwE5eVln9yM5LYiAcEjOiKtacz+mZGmDnZYO5qJy9j5mRD1c5NcKrhjaq6WoXU+70mk72/r/9Topmq8J/3ySef8PPPP3Ps2DGaNs1vxrV8+XK6dOmCiYkJ48aNo0+fPvK+wCpVqiRvUvjnn3+ira2tsLxDhw5x9epVIiMjcXDIv8CsWbMGX19fzp07R61atZgzZw69evVi1qxZ8vmqVFF+gTt06BBhYWFERUVhb5//Y+27776jTZs2CuW++uor+d/Ozs5MnDiRjRs3MmnSJAAWLFjAJ598wpAhQwD49ttvOXTo0Cuz416UbdCgAZDftHfKlClERETg6uoKQLdu3Th69Kg8SNi9e3eF+ZcvX461tTU3b96kcuX8ZlhLlizB39+fsWPHsm3bNmbMmPHKLLNBgwbRo0cPID8TsF69ekyfPp3AwEAAxo0bx6BBg+Tlq1SpovC9fvvtt2zfvp1du3YVG0yNiorCyspKaRPV2bNnY2BgwM2bN7G0fHUGjlQqZeXKlfJAZa9evZgwYQLh4eG4u+dnU82YMYMuXbrg7OyMh4cH9erVo23btnTr1k2hDnZ2dvL6FW5SXVZqKqrYGlrwb6EfSuFxD3E0sVI6j7elE4+Sn9HIpQrV7DzIycsl7Ol9Dt09V2y2lauZHeZ6xhy4XfKNdWnk5uZy59Zt+g3srzC9Vt06XL96Tek8N65dp1bdOgrTaterw56du5FIJKirl/6SNu/HX6jfoD616tRm1bKVr13/4rzYFiERlxSmhz97WOyNt7eVM4+SnxHgWpWqdh7k5uUS9jSK4DuK20JTTYMvmvZFFRWepMYTfOcsT1Liy63uhamamqBqaIDkTkHQgLw8JBFRqDs7knO65B+KL2jWqUHOpWuQk6u8gIoKGlUqo6KpieR++QUfJBIJj+9F07hzoMJ0d39v7t8u3Q/Sx5EPiL59j5a9OsinhV24imMlV3Yt28DN81fQM9SnaoNaBHQOLLZpfFmoqajiYGxF8B3F7/vW0/u4mNmWahl1nSpzO/Y+iZmpxZbRVFdHTVWN9NxXX1Ne5V0f3y/k5eVx9NARsjKz8PX3e+35C8vfpx7QqFMrhenuVbx5cKf0+9SDO/do3rNgn3L0dOPK8XM8DI/C3t2ZhKdx3Ll0g2qN65a5zh8qSa6E++GRtO7RSWG6bzV/IsLulGoZUqmU7Mws9AwUM3uyM7OY/PGnSKVSHFyd6DygO45ur25q+SbyJBKe3X9CtdaNFKY7+LoTE1Hy+XDzN3+SJ5FgYmNBjXaNsfNyLbasJCcXaV4eWno65VLvwvIkEmKjHlOzbWOF6U6+7jyJKP4h5I3jF0iKTSBwWA/O7j5a5P28XAlqGoqBd3VNDR7fjSqXer8s//ptznEl91IOxsrvpbwsnXic/IyGLlWoaluJnLxcbsXe5/Dd88XfS5naYq5nxME7T8p7FYD/5jWjsDxJHokPYvBpUVthurWXM3GRypvaProejqmDFbcOnyXq3E3UNTWw9XPDr21D1N+D5v6CoIwIxgn/eV5eXtSvX5/ly5fTtGlTIiIiOH78OAcPHgTgwoULhIeHs3btWvk8MpkMqVRKZGRkkeyosLAwHBwc5IE4AB8fH4yNjQkLC6NWrVpcvnyZoUOHlqp+YWFhODo6ygNxAPXqFe27ZsuWLSxYsIDw8HDS0tKQSCQYGhoqLKfwAAL16tXj6NGiNy+F+fv7y/+2srKSN4V9edrZs2fl/0dHRzN79mzOnDlDXFycPCMuOjpaHowzMTFh2bJlBAYGUr9+fb788svXrgeAn5+fwrSsrCxSUlIwNDQkPT2dWbNmsWfPHh4/foxEIiEzM7PEzLjMzMwiAdYXWrVqxaFDh/juu+9KNdLrwYMHSU9PlwdOzc3NadWqFcuXL+e7774DwMbGhtDQUK5fv05ISAinTp3i448/5u+//+bAgQPyH+c6Ovk3wC83B35ZdnY22dnZCtO0tLReWUcAXU1t1FRVSctWzJRKy85EX1NX6TwmuoY4mVgjkeax9mIQupradPRphK6mFtuuhRTUQV2TyU37oa6qilQmY/fNE8X2OfI6kpOSyMvLw9TUVGG6qakJ8cU094qPj6eOqUmh8qbk5eWRlJSEubl5qT77UFAwd27dZunq5W9W+RIUty1SczKopKX86bGprkHBtriQvy06+TZCR0ObbdeOAfAsPZGtV48Sk5qAtroG9Z39GF6vM78d30J8RnK5rweAimH+D1RpaprCdGlqmryvt1dRc7BDzcaajI3bi7ynam2FwdhhoK4OOTmkr1iH9OmzMtf7hYyUNKRSKfpGipmPBkYG3E0q+Tv7YcQU0lPSkObl0bx7e2o1byh/L+FpHPee3aZKw9oMnDKauCex7Fq2kTyplObd2pVb/V/Q09JBTVWV1GzFrhVSszMw1FJ+fL/MUEsPHysXVp3fV2K5jr6NSM5M43Zs2QOi7/L4BogID2fEoGHk5OSgo6PDdz//gItr2YMpBfuUocJ0fSMDUpNKbv7388hp8n2qafd21GzeQP6ef4OaZKSk8ffX85AhQ5onpXbLRgR0blXCEv+/paWkIJVKMTQ2UphuYGJEcmLpzonB2/aSnZVNzUYFQU9rB1sGTRiBnbMjmRmZHN65nx8/n8nXv/+AlZ1Nua4DQFZaBjKpFF1DxYCgjoEeGclpSufRNTKgcf+OWDjZkieRcOf0FXbNW0WnzwcV28/c6a3B6BkbYu9TfMCuLDJTi1kPIwPSryvvGy0xJo6TWw7QfcpwVNWUZyk5Vq7EpaAT2Hk4Y2xpSnRYBPcuhSF7fl9anuTX70JZ52k5mRgUc6411THE8fn1e92lg+hqaNPBtyE6GtrsuP7yvZQGXzTph7qqGlKZlD03T5bLvZQy/8VrRmE56ZnIpDK0DRRb22gZ6JGVqrybobS4JJ7de4SahjoNh3QmOy2T85uDyUnPok7fNkrnEYR3TQTjhA/C4MGDGTNmDH/88QcrVqzAycmJ5s3zO9yWSqUMHz6csWPHFpnP0dGxyDSZTIaKikqJ018EVkpDpiT1tvDyT58+Lc+0CwwMxMjIiA0bNjB37txSf05JNF56qqiioqLw/4tp0pdubNq3b4+LiwtLly7F1tYWqVSKs7MzOTk5CvP9+++/qKmp8fjxY9LT0xWCh6WpR3HTXtTliy++ICgoiF9++QV3d3d0dHTo1q1bkXq8zNzcnMTERKXvNW/enLFjx9KpUyfy8vIUmuYqs3z5chISEhQGbJBKpVy6dInZs2ej9tLNY+XKlalcuTKjR4/mxIkTNGrUiJCQEHm2ZkJC/g/Q4ga2+P777xUyLSE/6446pb/5L7yn5X+dylO/X+yCm64cIVuS/33uuxVK72ot2XXjhPyJbo4kh99PbkFLTQNXMzvaeNUjISOFyITyeaJb+FiQyQrqVrry+eunQgkzveRpzFN+nTufeb//Wupg55sosi1QUTL15fdg4+XDBdsi7BS9q7di143jSKR5PEiK5UFSwaAJ9xNjGN2wG/WcK7Pn5slyqbNG9SrodivoazHt7zXPV6ZQvVVUSt2kQLNOTfKexJD3oOiPDumzOFLn/oGKjjYa/r7o9u5K2qK/yzUgl1/dQvtM/sQS5xn2zURysrJ5cCeSA+t2YGZtQZWG+Zm/MpkMPUMDPhreF1VVVexcnUhNTOb4ruAKCcYp1PsN1HHyITM3m6uPw4st07xSTWrYe7Hw+KZy7YfwbR/fLzg6ObFi3SrSUtM4duQoc2bO5re/FpVLQO55hQrVs2jdCxsy6zOys7J5eDeKg+t2YmZtgX+D/O4tIm/cIWT7AdoP7ol9JWcSYp6xb+UW9Lfup2lX8SOyJEW+9mLu4Qo7c+wku9ZuZfTXExUCem5elXDzKhjgxd3Hg9ljp3JkdxC9Rwwsp1oroaTKxa2HibU5JtYFwWlrN0fSEpK5fPCk0mDcpQPHCT97jU5fDEJdo2IzhIrUWSZTevRKpVIOLNlI3c4tFNalsMZ92nN45XbWTJ2f33zY0hSfhtW5eeJisfOUneLZVgWVYi95L9Z389UjZEvys78P3AqlZ9WW7Ln58r1ULotObUVTTQNXM1tae9UlITOFqHK6l3r1WpTeu7xmFKHk+FZ6sFDwO63ugPZo6uTf31WTNOXk8p3U6N5CZMcByMo/iC2UjQjGCR+EHj16MG7cONatW8eqVasYOnSo/AJZvXp1bty4IW9W+Co+Pj5ER0fz4MEDeXbczZs3SU5OlmfR+fv7c/jwYYUmla9a3uPHj7G1zU8PDw0NVShz8uRJnJycmDZtmnxa4b7FvL29OX36NAMGDJBPO336dKnW6XXEx8dz7do1Fi1aRJ06+U2GQkJCipQ7deoUP/30E7t37+bLL7/k008/ZdWqVeVal+PHjzNw4EA++ugjIL/Pt6ioqBLnqVatGjExMSQmJmJiYlLk/ZYtW7Jnzx46dOiAVCrl999/V3rDGx8fz86dO9mwYQO+vgUjTEmlUho1asT+/ftp37690jr4+OT3LfLyICHXr19HQ0NDYVkvmzJlChMmTFCYpqWlxTdHVpa4vgAZOVnkSaUYaCkGifU0dYrtVyw1K4OUrHR58AfgWVoiqioqGGnrEZ+Rn+UhAxKe//0kNR5LfWMau1YrczDOyNgYNTU14uMVm1kmJiZiamaqdB4zMzPi4xOKlFdTU8OoUHZEcW7fukViQiJD+hccu3l5eVy5dJltm7Zy5FSIQpD1dRW3LfQ1dYpky72Qml10W8TKt4W+0sw3GfAo6RlmuqVb79LIvRFG6v0HBROeNwtUNTQg76XsOFV9PWTFPJlWoKGBZlU/MoMOK38/Lw/p8+2Z9/Axag72aDWqT+aW8um0XtdQH1VV1SIZS2nJqUUymwoztcz/cWjtaEdqcgqHN++RB+MMjI1QU1dVaJJqYWdNalLKGzenLEl6diZ5UimGWooZAgZauqRkK8+0fVldp8qce3CTvGJuwpu516CVR21+P7mVxynKO75/Xe/q+H5BQ0MD++fXby8fb8JuhrF5/UYmTXt1BndJXuxTaYX2qfSU1CIZmIWZvLRPpSWlcGTzXnkw7vCmPVQJqC3PlrN2tCMnO4ddf62j8UcV0/z5v07f0BBVVdUiWXCpSSkYGpd8fJ8LCWX1r38xfMo4fKqV3HxZVVUVl0quxD6qmBEjtfV1UVFVLZIFl5majs5rdDBv5erAndNFR7i9HHSCi/uO02HCx5jZV1wfZToG+euRnqzYrDEzJQ1do6Id/OdmZRMb9Yhn0U849s9u4HnwXSZj4eCv+GjiIBx83NA11KfD2P5IcnPJSstAz9iQk5uDMDQven9XVi+u34VbFOhpapOWo/xcW3D9LuiG4VlaEqoqKhhq68nvn16+l4pJjcdCz4QA16oVEoz7L14zCtPU00FFVYWsFMV7jey0DLQNlGf36Rjpo2OkLw/EARhamYEMMpPSMLAs/31GEMpKXN2FD4K+vj49e/Zk6tSpPH78mIEDB8rfmzx5MqGhoYwePZrLly9z9+5ddu3axaeffqp0WS1atMDf35++ffty8eJFzp49y4ABA2jcuLF8kIYZM2awfv16ZsyYQVhYGNeuXeOnn34qdnmenp4MGDCAK1eucPz4cYWgG4C7uzvR0dFs2LCBiIgIFi5cyPbtis26xo0bx/Lly1m+fDl37txhxowZ3LhxowzfmnLGxsaYmpqyePFiwsPDOXz4MBMnTlQok5qaSv/+/fn0009p06YN69atY9OmTWzevLlc6+Lu7s62bdu4fPkyV65coU+fPgoZfMpUq1YNCwsLTp4sPluoWbNm7N27l1WrVjF69Gil2Ytr1qzBzMyM7t27y7PeKleujL+/P+3bt5cP5DBy5Ehmz57NyZMnuX//vjxgamFhodAc+fjx4zRq1KjYrEotLS0MDQ0VXqXN3MqTSXmc8gx3M8UO5N3N7YlOfKp0nuikpxho66KpVhA4MNczQiqTkpxVUqBFBTXVsnd6q6GhgYeXJ+fOKPZpcv7MWSoX07eTr19lzp85qzDt3OmzePl4lzoAUrNWTVZv+IcVa1fJX14+3rRqHciKtavKFIiDl7aFuWKTVHdzO+4nKf8xdz8xRsm2MH6+LZQ3UwKwMTQjtRQ31qWWnYM0PqHg9TQWaUoq6h4vjXCnpoa6mzOSqFc3S9GsWhnU1ci9cLl0n68CKuXYobK6ujq2ro6EXw1TmB5+NQwnz9doqiXL7yvsBSdPV+Jjnimci+KexGJgYlTugTjI36ceJD3Fy1Ixk9vT0onI+JJHFHQ3t8dS34TQKOWDFzSvVJPWXnX589R2hQ7Hy+pdHd/FksmKjE7+JvL3KQcirt5SmB5x9RYOHqXfp2Tk97H1Qm52Dioqirfkqqqq/899Wr+SuoY6Tu4uhF26qjD95qVruHl7FDvfmWMnWTH/T4Z8MQb/2tVf+TkymYzoe/crbBAHNXV1LJxseBgWoTD94c0IrN2Ktt4oTlz0E3QLBYQvBZ3gwt4Q2o3rj6WzXTFzlg81dXUsnW2JvqGYTRV9Mxwbt6L95Gpqa9F39lj6zBojf/k1qY2JtTl9Zo3B2k3xGqquoYG+iRHSPCnhF67jWu3VA3C9rvzrdxxu5orflZu5fbHnx+jEGAy09RSu32bP76VSSriXUlEB9XK4l1Lmv3jNKExNXQ0TB2tibismJsTcuo+5i/J92dzFjszkNHKzCx5spsYmoKKigo5xxYz4KghlJYJxwgdj8ODBJCYm0qJFC4Xmp/7+/oSEhHD37l0aNWpEtWrVmD59OjY2ypv/qaiosGPHDkxMTAgICKBFixa4urqyceNGeZkmTZqwefNmdu3aRdWqVWnWrBlnzijv1F5VVZXt27eTnZ1N7dq1GTJkCHPmzFEo06lTJz777DPGjBlD1apVOXXqFNOnT1co07NnT77++msmT55MjRo1uH//PiNHjnzTr6tYampqbNy4kYsXL1K5cmUmTJhQpLnsuHHj0NPTk/eb5uvry48//siIESN49Kj8+sCYP38+JiYm1K9fnw4dOhAYGEj16iXfPKupqfHJJ58o9BGoTJMmTdi3bx9r1qxh5MiRRQJyy5cv56OPPlKakdC1a1f27NnD06dPadGiBadPn6Z79+54eHjQtWtXtLW1OXz4MGZmZvJ51q9fX+p+Bt/Eychr1HDwooa9JxZ6xrT1qoeRtj5no28C0MqjNt38m8rLX3l8l4ycbLr4NcFC3xhnExtae9XlwsPb8iYHAa5VcTOzw0THAHM9Yxo4+1HNrhJXHivv/+V19erbmz07drFn526iIqNYOHcBT2Oe0rlrfibk4t8XMfvrgqa7nbt+RMyTGH6b9ytRkVHs2bmbPTt307tfH3mZ3Nxc7t6+w93bd8jNlfDs2TPu3r7Dwwf5GV+6enq4urspvLS1tTE0NsTV3Y3ycCLyKjVf3hbe9THSMeDs/efbwlP5tujq3xRLfROcTWxo412XCw8KtkUz9xpUMrfHRMcAGwMzuvg1wcbQTL59K0r2v6fQbt4YjcreqFpboturC7KcXHIuFWRg6PbuinbblkXm1axdg9zrYcgyimYEardpiZqLE6omxqhaW6HdpgXqbi7kXCya2VEWDds35/zhk5w/corYh0/Yu3IzyXGJ1G6Z31l60LodbP59pbx86IFjhJ2/StyTWOKexHLh6CmO7w6maqOCTqTrtAogIzWdPSs3E/f4KbcuXuPY9gPUDWxc+OPLzdHwC9Rz9qOuky9WBqZ08WuMqa4BJyLzv68OPg3pX6N1kfnqOVUmMuEJT1KLDvTRvFJN2nnXZ+3Fg8RnJGOgpYuBli6aauXTlOddHN8AS/74kyuXLvPk8RMiwsNZ8sdiLl24RKvWigN5vKn67Zpz4cgpLhw9RezDGPat2kJyXAK1W+b3K3hw3U62/F6QJX4mKIRbF64R/ySW+CexXDwaysndh6jSsGCf8qzhx7ng41w9eZ7E2DjCr4ZxeONuvGr6vRdZcToaWlQyt6eSef4DH1tDcyqZ22Ol/24zTVp+1I7jQUc5cfAoT6IfsfGv1SQ8i6Nx2xYAbFuxnmW/FIw6f+bYSVbM/ZPuQ/rh6lWJ5IQkkhOSyEgveKixa+0Wrl+4wrMnT4mOiGLVgiU8vHdfvsyKUKVlfcKOXyTsxEUSnzzj5Mb9pCYk49s4Pxv39LZgDi/bKi9/5dApIi+FkfQ0noRHsZzeFsy9izfxa1YwAMqlA8c5u+MwTT7ujKG5MRnJqWQkp5KblV3k88tL9VYNufHveW78e56Ex7GErN9Lanwyfk3z9/WTm4MIWpr/0FZFVRVze2uFl66hHmoaGpjbW6OhpQlATMQDws9fJzk2gUd3ItkxbwUymYyabQMqZB1ORV2lhr0X1e3yr99t5PdS+Q91WnrUoqtfE3n5q0/CyczJ4iO/JljoGeNkYk2gZx0uFnsvZUR9Zz+q2nqU272UMv/Fa0ZhXk1rci/0KvdCr5EcE8/FbUfISEzBvWH+wG5Xdv3L6TV75eWdanqjqafD2bX7SX4SR2z4A67sDMGlrp+8iWqeJI/Eh09JfPgUqSSPzOQ0Eh8+JfWZ8u5tPjhS2fv7+j8lmqkKH4x69eopzXACqFWrlnxAB2UKN310dHRk586Sm0p16dKFLl26lGp5Hh4eHD9+XGFa4br+9NNPRbLrXowA+8LUqVOZOnWqwrQff/yx2Do2adKkyOcMHDhQIXMQYObMmcycOVP+f4sWLbh5U/FH/svLWb68aMf3Y8eOVeiXr/B3ULgezs7ORaYVrq+zszNHjhxRKDN69Ogin13Y+PHj8fX15f79+/KRS5U1bw0ICCA1taBJxbFjx+R/X716tUj5F7p06SLPsujatStdu3YtsT579+5FTU2Nbt26vbLub+paTAS6mlo0dauBgbYuT1MTWH1+P0nPM6sMtHQx0i54MpiTJ2HFub108GnAqPpdyMjJ5npMhMLoW5pqGnT0bYSRth65eRKepSex+cpRrsVEFPn8N9G8VQuSk5NZ+fdy4uPicXFz5edf52L9PFAeHxfP05iCJ6+2drb8/Otcfpv3K9s2b8Xcwpzxn39Gk+YFga24Z3EM6vux/P/1a9axfs06qlavxu9/Ffwoq0jXnkSgq6FNM/eaGGjp8jQtgVXn9r20LfQw1inIYMjJk7Di7B7a+zZkVIP8bXHtSQTBdwqyhLQ1tOjs1xgDTV2yJDk8Tonjr9O7eJgcW+Tzy1P20eOoaGig07UjKjra5EU/JO2vlfDSk2dVY+Mifcipmpuh7upM2pIVSperYqCPXp9uqBgaIMvMIu/JU9KXrkJyp3z2rRf869ckIzWdI1v3kpqYgpWDDR9PGY2JRX6gPDUxmaSXBhSQyWQErd9BYmw8qqqqmFlbENi3M7VbFIx0aGxuyidfjWXvqs0s/OJbDE2NadCmKQGdyyfYo8zFR3fQ09ShtWddDLX1eJISz5+ntstHujPS1sNERzErRltdk6q2ldh67ZjSZTZyqYKGmjpD6nRQmL4vLJT9t0KVzvM63tXxnRCfwOyvZxEfF4+evj5uldyYu3A+teoqjsr3pvzq1yAjNZ1jW/fL96n+X47C+Pk+lZaUTHJ8wQ87mVRG8LqdJD7L36dMrSxo1acTNVsUDArSuEv+j+LDG3eTkpCMnqE+njX8aNFLcdu8K14WTvz+UUE3CmMb5o+4vi8slDlHyrd7itdRq3E90lJT2bNuG8kJSdg6OzB21mTMrPL7Zk1KTCLhWUEzun/3HyYvL491i1awblHBualeiwA+mZD/cDMzPYM1C/8mJTEJHT1dHNyc+eKnr3HxLF1XJ2/CvZYfWWmZXNhzjPTkVExtLWk3th8GZsYAZCSlkpZQ0BxXKsnj1OYg0pNSUNfQwMTWgrZj++HkV5AReOPYOaSSPA4u3qjwWTU7NKFWx2YVsh4edfzJTM/gzK4jZCSnYmZnRafPPpY3KU1PTiU1Pum1linJzSV0ezDJsYloaGvi7O9J4NAeaOlWzKiw12PuoauhTRP36vnX79QE1lzYL89S19fSxUhH8V5q5fm9tPNuwIj6XcjMyeJ6zD0O3S24l9JQU6eDT0MMn99LxaUnseXqEa7HlG4E5jfxX7xmFOZY3Yvs9EyuB50iKzkdIxtzAkZ0Rc80v9uCzJQ00hML7uE1tDRpOro7F7Yc5uAva9DU08Gxmid+7QrOtZnJaQT9tFr+/60j57h15BwW7g40H9ur3NdBEF5FRVZc9EIQBOE/bOfOnZiamtKoUaNXF65gmzZtwsnJSd4H3+uYtn9JBdTo7ZrTZjjPUpWPoPhfYWFgytR9i991Ncrsu7YjSJr41buuRpkYz/2WrVeOvLrge65rlWZ8un3eu65Gmf320YQP4vjedPnQu65GmfWo2oIGf4x4dcH32MnRi/k3oiI75387Atyqs+Dfja8u+J4bH9CTRae2vrrge2xU/a5MP/DXu65Gmc1uPew/f8347aMJzAj6+11Xo8xmBQ5511V4I6m3Ky4bs6wMPCu9utAHSGTGCYLwQerUqdO7roJcjx493nUVBEEQBEEQBEH4fyVysN47774jCkEQBEEQBEEQBEEQBEH4PyGCcYIgCIIgCIIgCIIgCILwlohmqoIgCIIgCIIgCIIgCB8q0Uz1vSMy4wRBEARBEARBEARBEAThLRHBOEEQBEEQBEEQBEEQBEF4S0QzVUEQBEEQBEEQBEEQhA+VVPquayAUIjLjBEEQBEEQBEEQBEEQBOEtEcE4QRAEQRAEQRAEQRAEQXhLRDNVQRAEQRAEQRAEQRCED5UYTfW9IzLjBEEQBEEQBEEQBEEQBOEtEcE4QRAEQRAEQRAEQRAEQXhLRDNVQRAEQRAEQRAEQRCED5VopvreEZlxgiAIgiAIgiAIgiAIgvCWiGCcIAiCIAiCIAiCIAiCILwlopmqIAiCIAiCIAiCIAjCh0oqmqm+b0RmnCAIgiAIgiAIgiAIgiC8JSIYJwiCIAiCIAiCIAiCIAhviWimKgiCIAiCIAiCIAiC8KGSSd91DYRCRGacIAiCIAiCIAiCIAiCILwlKjKZTPTkJwiCIAiCIAiCIAiC8AFKvXz1XVehWAZV/d91Fd4J0UxVEAThPXb7adS7rkKZeVo5/+fXw9PKmeDbZ951NcqspWcdUsPvvetqlImBuyt3Y6PfdTXKrJKlI7uuH3/X1SizjpUbkXLq7LuuRpkY1q9Nyr6D77oaZWbYthX/Rlx819UokwC36jT4Y8S7rkaZnRy9mOkH/nrX1Siz2a2HcSry/f0BXxr1Xfy58ujOu65GmVWx82Db1WPvuhpl0sW/CVcf333X1Sgzf9tK77oKb0bkYL13RDNVQRAEQRAEQRAEQRAEQXhLRDBOEARBEARBEARBEARBEN4S0UxVEARBEARBEARBEAThAyWTimaq7xuRGScIgiAIgiAIgiAIgiAIb4kIxgmCIAiCIAiCIAiCIAjCWyKaqQqCIAiCIAiCIAiCIHyoxGiq7x2RGScIgiAIgiAIgiAIgiAIb4kIxgmCIAiCIAiCIAiCIAjCWyKaqQqCIAiCIAiCIAiCIHyoZNJ3XQOhEJEZJwiCIAiCIAiCIAiCIAhviQjGCYIgCIIgCIIgCIIgCMJbIpqpCoIgCIIgCIIgCIIgfKikYjTV943IjBMEQRAEQRAEQRAEQRCEt0QE4wRBEARBEARBEARBEIQPRmJiIv3798fIyAgjIyP69+9PUlJSseVzc3OZPHkyfn5+6OnpYWtry4ABA3j8+LFCuSZNmqCioqLw6tWr12vXTwTjBEEQBEEQBEEQBEEQPlQy2fv7qiB9+vTh8uXLHDhwgAMHDnD58mX69+9fbPmMjAwuXrzI9OnTuXjxItu2bePOnTt07NixSNmhQ4fy5MkT+WvJkiWvXT/RZ5wgCIIgCIIgCIIgCILwQQgLC+PAgQOcPn2aOnXqALB06VLq1avH7du38fT0LDKPkZERwcHBCtN+++03ateuTXR0NI6OjvLpurq6WFtbl6mOIjNOEAQAVq5cyf79+991NQRBEARBEARBEIT/E9nZ2aSkpCi8srOzy7TM0NBQjIyM5IE4gLp162JkZMSpU6dKvZzk5GRUVFQwNjZWmL527VrMzc3x9fXl888/JzU19bXrKIJxwn+Cs7MzCxYseKvLU1FRYceOHWX6nJkzZ1K1atXXmufYsWOoqKiU2J69vG3bto2ffvqJunXrvtH8AwcOpHPnzvL/mzRpwvjx40ucp7y26ZEjR/Dy8kIqlZZ5WRUhNjYWCwsLHj169K6rIgiCIAiCIAjC/yOp7L19ff/99/J+3V68vv/++zKtbkxMDJaWlkWmW1paEhMTU6plZGVl8eWXX9KnTx8MDQ3l0/v27cv69es5duwY06dPZ+vWrXTp0uW16yiaqQoVqkOHDmRmZnLo0KEi74WGhlK/fn0uXLhA9erV32q9zp07h56e3lv9zPfVvXv3+Oqrr9i/fz8mJiblssxt27ahoaFRLst6lUmTJjFt2jRUVfOfLaxcuZLx48crBDPDwsJo2bIltWvXZv369WhpaXH06FF+/vlnzpw5Q2ZmJs7OzrRp04YJEyZgZ2en8Bmenp5ERkYSGRlZ5L179+4xbdo0QkJCSEhIwNzcnBo1avDzzz/j4eGBpaUl/fv3Z8aMGfz9998V+l3s276bbes3k5iQgKOzE0M+HYFvFT+lZRPi4lm+6C8ibofz+OEj2nftxNCxIxXKREdGsXbZaiLuhBMb85TBY4bTqcfrX2j+H9fj332HOLxtH8mJydg42tF1SF/cfYumwwNcPnWO4/uP8CgyGkluLtaOdrTt/RE+1f3lZfIkEg5u2cOZIydIik/Eys6aTh/3xKeGv9JllheZTMZf69ay/cB+UtPS8PX0ZPLI0bg5ORU7T8T9+yz+Zw23wu/yJDaWCUOH0afzRwpltuzdw5Z9e3ny9CkArk5ODOndhwY1a5X7Ouzdvott6zeTEB+Po7MzQ8eOpHIJ+9OyP5YQfvsujx8+okO3zgwbO0qhzP3IKNYuW0X47bvExjxl6Kcj38pxcerAUY7tDCI1MQkrB1s6DuqFq4+H0rKRYXfZu2YLzx7FkJOTg4m5GXVbBRDQoZW8zLXTFziybR9xT2LJy8vD3MaKxh1aUaNJvQpdD5lMxtKd29kecpTU9HR8Xd2Y1P9j3Ozsi51ne8hR9p08QcSjhwB4Obswumt3fF3dFMrFJibw26aNhF67SlZuDo5W1kz/ZAjezi4Vsx5B+9keepLUzEx8HZ2Y1LUHbjY2xc5z5OplVgYf5EFcHBJpHg7mFvRr0oy2tWrLy/x1YB9LgxSz1E0NDAj65rtyX4ejew4StHUPyQlJ2DrZ03PYADwqeykte/HkWY7tDebBvftIciXYOtnToW9XKteoIi9zMjiElfMXF5l30Y5VaGhqlnv9X0cVG3f6VGuFl6Uj5nrGfLnvT45HXnmndXpZbQcfGrr4o6+lS2xaIvtvhXI/sfgfi2oqqjR1r0EVW3f0tXRJyUonJOISFx/dBsDHypkA12qY6hqipqJKfEYyJ6OuceXx3QpdjyO7g9i/ZSdJCUnYOdnTZ8QgPCp7Ky17/sQZju4NIvpeFJJcCXaO9nTq1wO/mlXlZUL2H+LkoRAe3X8AgLO7K10H9cbVs1KFrUPQzr3s2riNpPhE7J0dGTh6KN7+vkrLJsYnsPrPZdy7E0HMo8e0+agDA8cMLVIuPS2N9cvWcPZ4KOmpaVjaWNF/xGCq161ZYesRGnSM4zsPkpqUjKW9Le0H9cDFW/n3FhUWzoG124h9FENudg4mFqbUbhlAw/YtFMplpmdwcP0Obpy5RGZ6BiaW5rQd0A2v6sqvqWUVtGMvOzduIyk+AXtnRwaNGYq3f2WlZRPjE1i1aBn37oYT8/Axbbp0YNCYYQpljh44xKIfFxSZd23QNjTf8Tnq/92UKVOYMGGCwjQtLS2lZWfOnMmsWbNKXN65c+eA/OSawmQymdLpheXm5tKrVy+kUimLFi1SeG/o0ILjvHLlylSqVImaNWty8eLF14priGCcUKEGDx5Mly5duH//Pk6FfrwtX76cqlWrvvVAHICFhcVb/8z3laurKzdv3ixV2dzc3FIF2UxNTctarVI5deoUd+/epXv37sWWOXfuHG3atKFTp0789ddfqKmpsWTJEkaNGsXHH3/M1q1bcXZ2Jjo6mtWrVzN37lzmzZsnn//EiRNkZWXRvXt3Vq5cybRp0+Tv5eTk0LJlS7y8vNi2bRs2NjY8fPiQffv2kZycLC83aNAgateuzc8//1xuAc/Cjh8+xt+/LWbEhDF4V/blwK69zJr0FX+sXoqFVdGnQrm5uRgZGdO9fy92bt6udJnZWdlY29rQoGkAy357/U5J38SHsB4Xjp9m699r6TniY1y9K3HiwFEWzfqFr/74HlML8yLlw2/cxqtqZToO6I6Oni6nDx1nybfz+fznGTi4OQOw+5+tnDt2ij5jPsHK3oawi9dY+v2vTPhxurxMRVi1ZTPrtm9jxmcTcbSzY9nG9Yz+aipblyxFT1dX6TxZ2VnYW1vTomFD5i39S2kZS3NzxgwchIOtLQB7Dh1i4uxvWLvw9xIDfa/r38PHWLrwT0ZO+BQfP1/279rLzC+msmjNMiyL2Z8MjY3oMaAPOzdtVbrM7KxsrG1saNAkgL9/Kxp4qAiXT55l14oNfDS0L85e7pw++C/L5vzK5wu+wcTCrEh5TS0tGrRpho2TPZraWkSG3WXrkjVoamlRt1VjAHT19WjWtR2WdtaoqasTdv4qm/5Ygb6RAZ7VlP/YKQ+r9+1lXdB+vh48DEdra5bv3smYX35ky3c/oaejo3SeC7fCaFW3Hv7uldDS0GD1vr2M+eUnNs75HkuT/OtNSno6Q+bMpoa3N79O+BwTQ0MexsZiUMx+Wub1OHKIdceO8nWfvjhaWLI8OIgxi39ny5Tp6GlrK53HSFePQS0DcbayQkNNjeM3bvDNhrWYGBhQz6sgYOFqbcMfI8fI/1dTffWPhtd1LiSUjX+tpu+oT3D38SRk/yEWfv0Dsxb/gpll0fPUneth+FTz46OBvdDV0+VkcAi/z/qZqfNn4+hWEOzU0dVh9l/zFOZ914E4AB0NLcLjH7Lv1im+azPiXVdHQWVrV9p412PPzRNEJz6lpoM3/Wu04bcTm0jOSlc6T8+qLdDX0mH79X9JyEhGT1MHVZWCBk8ZudmERFwiLj0JiTQPT0snPqrcmPScTMLjHlbIepwJOcm6JSvoP3oolXw9ObYvmHlfzWHOX/Mxsyx6333n+k18q1eh68A+6OrrceLgUX6d+QPTF3yPk3v+PnXr6g3qNmmIu48HGpqa7Nu8k1+mfsucJfMwMS967iurU0ePs/KPvxkybgSelX04tPsA3305k/kr/sC8hGtGl3492Ltlp9JlSnJz+faL6RgaGzNh5peYmZsT/+wZ2hV0bgK4evIce1dsotPQPjh5unEm+F9WzvmNz+bPxNii6D26prYmdVs3yb9maGkSdSuc7X+tRVNLk9otA56vh4Rlsxegb2hAn4nDMTIzITkuES0d5QGTsjp55F9W/LGUoeNH4lnZh+Dd+5kzeSbzVy4q9n7Q0NiQrn17sKeYbQGgo6fLr6sV7wVFIO7d09LSKjb4VtiYMWNeOXKps7MzV69e5enzh74ve/bsGVZWViXOn5ubS48ePYiMjOTIkSMKWXHKVK9eHQ0NDe7evftasQ3RTFWoUO3bt8fS0pKVK1cqTM/IyGDjxo0MHjwYyA+qBAQEoKOjg4ODA2PHjiU9XfkNCEB0dDSdOplORM8AAQAASURBVHVCX18fQ0NDevToUeRg27VrFzVr1kRbWxtzc3OF1NHCTSTv3r1LQEAA2tra+Pj4FOm4EWDy5Ml4eHigq6uLq6sr06dPJzc3V6HMDz/8gJWVFQYGBgwePJisrKxXfkf79u3Dw8MDHR0dmjZtSlRUVJEyr/v9vGgeu2TJEhwcHNDV1aV79+5Fmr6uWLECb29vtLW18fLyUoj6R0VFoaKiwqZNm2jSpAna2tr8888/5OXlMWHCBIyNjTEzM2PSpEnICo2CU7iZamxsLB06dEBHRwcXFxfWrl1bpM7z5s2TDyPt4ODAqFGjSEtLK/G727BhA61atUK7mB8+R44coVmzZgwaNIhly5ahpqbGw4cPGTt2LGPHjmX58uU0adIEZ2dnAgIC+Pvvv/n6668VlrFs2TL69OlD//79Wb58ucK63rx5k3v37rFo0SLq1q2Lk5MTDRo0YM6cOdSqVZDh4+fnh7W1Ndu3Kw8WlYedm7bRol0grdq3wcHZkaFjR2JuYcG+HXuUlreysWbouJE0a92y2CzRSt6eDBo1lIDmTdDQfDuZjh/CehzZeYB6LRpTv1UTrB3s6Da0Hybmphzfd0Rp+W5D+9GyazucKrliaWtNxwHdsbCx5vq5y/IyZ4+dpFX3DvjWrIK5tSWN2jbHu5ofR3YcqLD1kMlkrN+5g0E9e9GsQQPcnZ2ZNWEiWdnZHAg5Vux8vh6ejBs8hMDGTdAsJngfUKcuDWvVxsnOHic7e0Z/PBBdbW2u3bpVruuwY+NWWrZrTWCHtjg4OzFs7CjMLS3Yt3230vJWNtYMHzea5q1bolvM/uTh7ckno4fRuEXTt3Zc/Ls7mFrNGlKnRQBW9rZ0+qQXxmYmhAYdU1reztWRao3qYO1oh6mlOTUa18Ozqi+RYQVZMW6VvfCrUx0re9v8fap9C2yc7Im8FV5h6yGTyVgffIBB7TvRrGYt3O0dmDlkOFnZOQSdDi12vm+Hj6J7sxZ4OjrhbGPLtEGDkcmknHvpQdKqfXuwMjVlxuBh+Lq6YWtuQW0fX+wtS77hfuP1CDnGoJataOZfFXcbW2b26UdWTi5BF88XO18N90o09a+Ci5U19uYW9G7cBHcbWy7fi1Aop6aqirmhofxlom9Q7usQvH0vDVs1pVHrZtg42tFr+MeYWJgRsrfo/Q9Ar+Ef07p7R1w83LCys6HLwF5Y2lpz5cxFxYIqKhiZGiu83geno2+w9MwuQu5dftdVKaK+sz8XH97mwsPbPEtPYv+tUFKy0qjt6KO0vLu5Pc6mNqy5cIB78Y9IykzjUfIzHiQV3AdHJTwhLDaKZ+lJJGamcvr+dZ6mJuBkXLbOxktycNseAgKb0bhNc2wd87PiTC3MObLnoNLyfUYMom33Trh6umNtZ0O3QX2wsrXh8pmCY2j45HE06xCIo5sLNg52DBo3HJlMxs3L1ytkHfZs3kGzNi1p3i4QeycHBo4ZirmlOQd3Ke9T2dLaikFjhtG4VTN09ZQH147sP0RaShpfzJ6GV2UfLKwt8fLzxdmt/DN2Xzi+5xA1mzWgVvOGWNrb0GFQT4zMTTh9MERpeVsXR6o2rI2Vgy0mluZUC6iLRxUfIsMKrgcXjp4kMy2d/pNG4ezljomFGc7e7tg4O1TIOuzZvINmbQu2xaAxw55vi31Ky1taW/HJp8NpHNi82G0BoIIKJqYmCq//GzLp+/t6Debm5nh5eZX40tbWpl69eiQnJ3P27Fn5vGfOnCE5OZn69esXu/wXgbi7d+9y6NAhzMxeHfi/ceMGubm52JSQHa+MCMYJFUpdXZ0BAwawcuVKhSDG5s2bycnJoW/fvly7do3AwEC6dOnC1atX2bhxIydOnGDMmDFKlymTyejcuTMJCQmEhIQQHBxMREQEPXv2lJfZu3cvXbp0oV27dly6dInDhw9Ts6byVHCpVEqXLl1QU1Pj9OnTLF68mMmTJxcpZ2BgwMqVK7l58ya//vorS5cuZf78+fL3N23axIwZM5gzZw7nz5/HxsamSEprYQ8ePKBLly60bduWy5cvM2TIEL788kuFMq/7/bwQHh7Opk2b2L17t3wo59GjR8vfX7p0KdOmTWPOnDmEhYXx3XffMX36dFatWqWwnMmTJzN27FjCwsIIDAxk7ty5LF++nGXLlnHixAkSEhJeGWQaOHAgUVFRHDlyhC1btrBo0SJiY2MVyqiqqrJw4UKuX7/OqlWrOHLkCJMmTSpxuf/++2+x23X79u20a9eOadOm8fPPP8unv9j3ilv2y51zpqamsnnzZvr160fLli1JT0/n2LFj8vctLCxQVVVly5Yt5OXllVjX2rVrc/z48RLLvKnc3FzC79ylWq0aCtOr1arBreuly3p8H3wI6yHJlfAgPArvQplF3tX8iLxVuuZBUqmU7MxMdPULgkESJVmpGpqaRITdKXuli/EoJob4xETqvvSET1NDk+qV/bgaVn7bIy8vj6CQY2RmZeHvrbyJ3JvI35/uUK22sv3pRrl9TkWT5Ep4FHEfj6qKzaQ8qvhy/3ZEMXMpenQvmqjbEbj6Km/WKpPJuHs1jNjHMbj6VFzzr0fPnhGfnEzdygXHh6aGBtU9vbgaXvrmc1nZ2Ujy8jB8KWB6/PJFvF1c+PKPhbQaO4q+M75ie8jRcq3/C4/i44lPTaGuZ8H+qqmuQXV3d65GRpZqGTKZjLN3bnP/WSzV3dwV3nsQ94w2M6bRafYMpq5ewcO4uHKtvyRXwv3wSIWm8AC+1fxLfU7JP09loWegrzA9OzOLyR9/yhf9R7Nwxk9ER5Tu+/h/paaiiq2heZFstfC4hzgYKw8ke1k68Tj5GQ1dqvBFk76Ma9SDQM86qKuqFfs5rqa2mOsZEZX4pFzr/4IkN5eou/fwrV5FYbpvdX8iwm6XahlSqZSszMwi+9TLsrNzyJNISizzpiS5udy7E06VmtUUpvvXrMbtG2FvvNwLp85QydeLZb8uZmjX/kz8ZDTb1m5C+or7xjclyZXw+F40laooBnMr+fsQXcprxuPIaO7fvqdwzbh5/iqOHq7s/Hsdc4Z8zoIJszi6bR/SvPLvszm3pG1xvWwP7bIyMxnZaxDDu3/M91NmEXm3dN+J8N/j7e1N69atGTp0KKdPn+b06dMMHTqU9u3bK4yk6uXlJf8tK5FI6NatG+fPn2ft2rXk5eURExNDTEx+tx8AERERfPPNN5w/f56oqCj27dtH9+7dqVatGg0aNHitOopmqkKF++STT/j55585duwYTZs2BfKbqHbp0gUTExPGjRtHnz595JlUlSpVYuHChTRu3Jg///yzSNbToUOHuHr1KpGRkTg45D+NWbNmDb6+vpw7d45atWoxZ84cevXqpdCevEoVxRuEl5cXFhZGVFQU9vb5fdZ89913tGnTRqHcV199Jf/b2dmZiRMnsnHjRnlQZ8GCBXzyyScMGTIEgG+//ZZDhw6VmB33559/4urqyvz581FRUcHT05Nr167x448/ysv8/PPPr/X9vJCVlcWqVavk6/Tbb7/Rrl075s6di7W1NbNnz2bu3LnyjEEXFxdu3rzJkiVL+Pjjj+XLGT9+vEJW4YIFC5gyZQpdu3YFYPHixQQFBRW7jnfu3GH//v0Kw0ovW7YMb2/FPkRezqRzcXFh9uzZjBw5ssSAZlRUFLbPm7m9LC0tje7duzN16tQiwc27d+9iaGhYqicXGzZsoFKlSvj65v8I7tWrF8uWLZPvx3Z2dixcuJBJkyYxa9YsatasSdOmTenbty+urq4Ky7Kzs+PSpUuv/Mw3kZKcgjRPirGJscJ0I1NjkhISK+QzK8KHsB5pKalIpVIMjI0UphsYGZKSlFzMXIqO7NhPdnY21RsWjP7kXc2PIzsP4F7ZE3NrS25fucnVMxeRVeDAJfGJ+d+5mbHiU2MzY2OePItVNstrCY+KZNDECeTk5KCjo8PPX03H1bH8mqimJCcjzZMWaRpuYmLCxf/I/gSQnpqWv08ZKTaR0Dc2JPUV+9S3Q794vk/m0bJHR+q0CFB4PzM9g2+HfYEkV4KqqgofDe2HRxXlfSOVh/jkJABMDRWPD1MjQ2Li4ku9nN+3bMTCxITavgV1fRT7jK1HjtAnsDWD2nfkxr17zF27Bk11Ddo1aFgu9X8hPjUlv94GitvEVN+AmMSEEudNy8yk7cyvyJFIUFNVZXK3HtR5Kajn6+TErD79cbSwJD41heXBQQxeOI+Nk6dhXE593aalpCCVSjEsfJ4yMSI5sXTnqeBte8nOyqZmo4KBn6wdbBk0YQR2zo5kZmRyeOd+fvx8Jl///gNWdq+XLfD/QldTGzVVVdJyMhWmp+VkYqClPLvHVMcQRxNrJNI81l06iK6GNh18G6Kjoc2O6wWZT1rqGnzRpB/qqmpIZVL23DxJRHzFDCaV+vzaZ1j4+m1izPWEpFItI2jrbrKzsqkdUHzGypblazExM8W3Wvn3UZaSnH9cGClZh6RSroMyT5/E8OzSVRq2aMKU72fw5OFjli1cjDQvj24Depet0kpkPL9m6BsXvmYYkJqUUuK83w+fTHpKGtK8PJr36ECt5gXnzsSnz7h3PZ6qDeswcMqnxMXEsvPv9UjzpDTv3r5c1yH1+bYwLnT9NjYxISnxYjFzvZqdoz2jv/wMRxcnMjMy2Lt1F199Oolf/l6Ijb3dqxcg/OesXbuWsWPH0qpVfp+5HTt25Pfff1coc/v2bXn3Qg8fPmTXrl0ARQZhPHr0KE2aNEFTU5PDhw/z66+/kpaWhoODA+3atWPGjBmoqRX/UEQZEYwTKpyXlxf169dn+fLlNG3alIiICI4fP87Bg/lp6xcuXCA8PFyh6aJMJkMqlRIZGVkkaBMWFoaDg4M8EAfg4+ODsbExYWFh1KpVi8uXLyt0rFiSsLAwHB0d5UErgHr1inZgvWXLFhYsWEB4eDhpaWlIJBKF9uNhYWGMGKHYD0m9evU4erT4J/NhYWHUrVtXoRPJwp/9ut/PC8rWSSqVcvv2bdTU1Hjw4AGDBw9W+J4kEglGRoo35y9nniUnJ/PkyROFOqqrq1OzZs0iTVVfXscXZV7w8vIqMjz00aNH+e6777h58yYpKSlIJBKysrJIT08vtvlhZmam0mCkjo4ODRs2ZOnSpfTu3VvhOyptp52QHzTs16+f/P9+/foREBBAUlKSvP6jR49mwIABHD16lDNnzrB582a+++47du3aRcuWLRXqlJGRUexnZWdnFxnCu7R9J7xQZL1kMij/roYq3AexHoVXgfymEa9yPiSUfeu3M2zaeAxeupHuNrQf639fzuxRk1FBBXMbS+q2aMTpQ+WXbbn/6BG++/03+f8LZuY/zCi8PUq7Lq/iZGfPut/+IDU9jSMnTzJz3lz++vGncg3IAVCk/qU/B7xXlB0Xr9gOo76dRHZWNtF37rHvn62YW1tSrVFBkFdLR5vPfvma7Kxswq+FsXvlRsyszHErphP/17U/9CTfr1oh/3/++InPV6XQNnn1qsit3reHg2dOs3jyVLQ0Cvr5kcqkeDu7MLpbDwA8nZy59/ghW48eLnMwbv+Fc3y/aUPBegzNv9YXrrIMWdHtVIiulhZrP/+SjJxszt25zfwd27EzM6eGe35GYgPvggCjO7b4O7vQec4s9p47Q98mzcq0HoUVqWopr49njp1k19qtjP56okJAz82rEm5eBZmV7j4ezB47lSO7g+g9YmA51fpDpXgPpYIKxdxWybfR5qtHyJbkd5dy4FYoPau2ZM/NE0ik+RlXOZJcFp3aiqaaBq5mtrT2qktCZgpRCRWTHZdfb0Uy2auPCYDTR0+w45/NjJ0xqUiQ+IV9m3dy5tgJJv80q0L7IVR2D1KWS4ZMJsPQxIjhE0ajqqaGq4c7ifEJ7Nq4rUKCccVX5NWbYvg3X5CTlU303XscWLsdM2sLqjbMH2BGKpOhZ2jAR8P7oaqmip2bEykJSRzfdbDcg3FyRe6lZGW6//Dw8cLDp+D65lnZh0nDxrF/2x4+GTv8jZf7n1HcSeUDZmpqyj///FNimZd/wzo7Oxf7m/YFBwcHQkKUN/l+XSIYJ7wVgwcPZsyYMfzxxx+sWLECJycnmjdvDuSnpQ8fPpyxY8cWmc/R0bHItOKCKS9P1ymmE2hllB1whZd/+vRpeaZdYGAgRkZGbNiwgblz55b6c0r72YW97vdTnBfrpKKigvR5Ns3SpUvl2WovFI7ol3XU2RfrWNIN/v3792nbti0jRoxg9uzZmJqacuLECQYPHlykX76XmZubk5hYNMNFTU2NHTt20LVrV5o2bcqRI0fw8clP1/fw8JAHFUvKjrt58yZnzpzh3LlzCs2W8/LyWL9+PSNHFozYaWBgQMeOHenYsSPffvstgYGBfPvttwrBuISEhBIHDvn++++LjAw0Y8YMeo8cWOw8LxgaGaKqpkpioWyf5MTkIk8V32cfwnroGxqgqqpKaqHskrTkFIXgmjIXjp9m7W/LGDx5DF5VFZu5GhgZMmzaeHJzckhPTcPI1ISdqzZhZlV+g9EE1KlL5ZcydHKeH3txiQmYvzQoS0JSEqaFMgfehIaGhnwAB59KHty8c4f1O3cy7dOi57o3YWhk9Hx/UsxUSkpMKpJ9+T7TM9DP36eSCu9Tqa/cp0yf7x82TvakJqcQvGmXQjBOVVUVc5v8pnB2Lo7EPnzCkW37yy0YF1C1OpVdC5pg5jwPHMQnJ2H+0gOZxJQUzAyV/wB/2Zr9e1mxZzd/fDGZSg6K1z9zY2NcbRUzG5xtbDlyvvg+3EorwNePyp87y//PkUiA/Aw585ceYCWmpWH2iv7dVFVVcXh+LfC0syfq6VNWHjooD8YVpqOlhbuNLQ+ePSvjWhTQNzREVVW1SBZcalIKhq/Yp86FhLL6178YPmUcPq/ITlJVVcWlkiuxj4ofFfT/XUZOFnlSKfqaillweprapOUof4CXmp1BSla6PBAH8CwtCVUVFQy19UjIyM9+koH875jUeCz0TAhwrVohwTiD59e+5MQkhekpSckYmZR8bJ8JOcmKBX8yauoEfAs1nX5h/5Zd7NmwjS++/xoH13J+YPOcoVH+cVE4Ez85KblIttzrMDY1QV1dHdWX7q/tHO1JSkhEkpuLeikGRnsdus+vGWmFsuDSklPRN3rVNSN/8BZrJzvSklM4vGmPPBhnaGyEqroaqmoFvVxZ2tuQmpSCJFeCukb5hRUMitsWiUll2haFqaqq4u5ViSePHpfbMgXhdYg+44S3okePHqipqbFu3TpWrVrFoEGD5MGZ6tWrc+PGDdzd3Yu8lI1u4+PjQ3R0NA8ePJBPu3nzJsnJyfIMKH9/fw4fPlyqur1Y3uPHBSfi0FDFjqRPnjyJk5MT06ZNo2bNmlSqVIn79+8rlPH29ub06dMK0wr/r+yzXzXP634/LyhbJ1VVVTw8PLCyssLOzo579+4VWaaLS/EdyhoZGWFjY6NQR4lEwoULF4qdx9vbG4lEwvmXfhDdvn1bYTCJ8+fPI5FImDt3LnXr1sXDw0Oh7sWpVq1asSPBamlpsW3bNmrXrk3Tpk25fj2/s99u3bqhqanJTz/9pHS+F/VatmwZAQEBXLlyhcuXL8tfkyZNYtmyZcXWSUVFBS8vryIDbFy/fp1q1aoVM1f+kN7JyckKrylTppS0+nIaGhq4e1Ti8nnF1P3L5y/iVVl5B9Dvow9hPdQ11HFwd+ZWoc6lb12+jotX8X1xnQ8J5Z9flzLw85FUrlW12HIampoYm5kizcvj8qlz+Ncpv9Go9XR1cbC1lb9cHR0xMzHhzEvNq3Nzc7l4/Rr+3uW/PWTISgy+v678/cmDy+cK7U/nLuJVueKaYpY3dQ117NycuHtF8Vx35+pNnDzdSr0cmUyGJFfyijIgkZTfNtDT0cHBykr+crW1w8zIiDM3Co6PXImEi7dv4V9MMOqFNfv3smz3ThZO/AIfF9ci71dx9+B+jGKQIfppDNal6Hj5leuhrY2DhYX85WptjZmBIWduF/SFlSuRcDE8HP8SrqHKyJDJg3vK5EhyiXr6FLNXjOT2OtQ11HFydyHs0lWF6TcvXcPNW3m/gpCfEbdi/p8M+WIM/rVffe6RyWRE37v/3gzi8D7Kk0l5nBKHm7liINnN3F5hQIaXRSfGYKCth6ZaQfDDTM8IqUxKSjGjr0J+VlRJ/cqVhbqGBs6VXLlRZJ+6ipu3ZzFz5WfELZv7B8Mnj6NKnRpKy+zfvJPd67Yw8dtpuHiU/pz3utQ1NHD1cOfqBcUuRa5euIynr/JWKKXhWdmHmEdP5A/CAZ48fIyJmWm5B+Ig//i2dXXk7lXFfu7Cr4bh+FrXjPx7/BecvNyIj3mmsB5xj59iYGJUroE4yL9+u3q4c/X8ZYXpVy9cxrOcHhZB/jkqKjzy/2sQB+G9IjLjhLdCX1+fnj17MnXqVJKTkxk4cKD8vcmTJ1O3bl1Gjx7N0KFD0dPTIywsjODgYH777bciy2rRogX+/v707duXBQsWIJFIGDVqFI0bN5Y3hZwxYwbNmzfHzc2NXr16IZFI2L9/v9JO+1u0aIGnpycDBgxg7ty5pKSkMG3aNIUy7u7uREdHs2HDBmrVqsXevXuLDFowbtw4Pv74Y2rWrEnDhg1Zu3YtN27cKNJ32MtGjBjB3LlzmTBhAsOHD+fChQtFRp593e/nBW1tbT7++GN++eUXUlJSGDt2LD169MDaOn8krZkzZzJ27FgMDQ1p06YN2dnZnD9/nsTERCZMmFDscseNG8cPP/xApUqV8Pb2Zt68eUVGaX2Zp6envPPMv/76C3V1dcaPH6+Qvejm5oZEIuG3336jQ4cOnDx5ksWLFxe7zBcCAwOLDDjxMk1NTbZu3UqPHj1o1qwZhw8fxs/Pj/nz5zNmzBhSUlIYMGAAzs7OPHz4kNWrV6Ovr88PP/zAmjVr+Oabb6hcWTFDaciQIfz0009cuXIFmUzGjBkz6N+/Pz4+PmhqahISEsLy5csVsukyMjK4cOEC3333XbF1fZ0hvZXp1KML8+f8jLunB16+3gTt3sez2FjadGoHwKoly0mIi+OzaQXHwL3nndZmZWaSkpTMvbsRqGuo4+ic/9Q5NzeXB1HRQH7Hxglx8dy7G4G2jja2FdS3xoewHs06tWb1/CU4urvg4uXOyaBjJDyLp1Gb/CZmO1dtIjkhkQGf5TeJOB8SyuoFf9FtaF9cPN1IeZ5ZoKGpic7zEcGibkeQFJ+AvasTSfGJ7Fu/HZlMRosubcu9/i+oqKjQu1NnVmzaiKOtLQ62dqzYtBFtLS1aN24iL/c/9u47vKnybeD4N9170Ukp3QMoUFbZZW9QhmxBEXEAIqKCigMHbsSfiqLIlr2RvfceZbVAgRZKobtN90zePwopoSmrC3nvz3XlutqT55zcJznJSe5zP8/z6bQfcaxWjbEvjwDuDLx8o+j5zi8oICEpiUtXr2JmaqqphJsxfx4tGjXGycGBrOwstu7dy8lz5/jliy/LdR96D+zHT199h0+AH7Xq1GLL+qLjqXvvoi4182bOJikxkXc/Ln6/Xosomj0uJzsbZaqSaxFXMDAwpKbnvcdT0cWYgvx8khISuRZxBRNT0wp7X4T06sTSX2ZTw9sDd38vjm7fR2piMs07twVg0z+rUCanMnhc0QzlBzfvwtbeDoc743RFXYxg3/pttOxW3M1x1+pN1PB2p5qTI4UFBYSfOsfJvYfp+9rQCtkHuHNMderK3A3/4ubkjJuTE/M2/IuJsRFdmhUPf/DZrJk42Ngytn/RxEwLNm1g5ppVfPX6aFzs7Um8M/acmbEJZneGKhjcuSsjv/6CuRvW07FJUy5cu8qaPbv56OVXKmY/2rRl7o5tmgTdvB3bMDEypEvD4iEZPlu0AAdrG8b2fA6AuTu2UdutJq7V7CkoLOBgeBgbjx/jg/7FE1D9vG4NresE4mxrS0pGBrO3bSUzJ4eeTZqWiKMsOvXpwexpM3D39cI7wI99W3aSnJBIm+4dAVg9dwkpSSmMfG80cCcRN+0PBr4+HK8AX5R3xtAyNDbSzFy4ftFKvAJ8caruTHZWNrvWb+HmtesMHT2iXGN/EqaGxtSwLq4krm5lj699DdJyMonLqNoxJA9FnaVfvXbcUiYSnRpHY7daWJtYcOxGUTKlk18TrIzNWXVuDwBnb1+hrXdD+tRty66IE5gZmdDFvymnbl7SdFEN8QoiRplAclYa+np6+DnUJKi6H/+GVcxEUgCd+/Zk1g+/4uHrjU8tP/Zu3kFSfCLtehSN1bRiziJSk5IZ9f5bQFEi7u8ff2PIGyPwDvBFeacKquiYKuqVsWnFOtYsWMrrk97G3slB08bY1ASTx+gF86h69u/Nr9/8hJe/L361A9ixYQuJcQl06lU0jvTiWfNJTkxi7IfF35OjrlwDICc7hzSlkqgr1zAwMKCGR1H1bufnurFlzQbm/TaLrn16EhtzizWLV9CtTwV17QRa9+zI8l/nUsPbnZp+XhzbsZ/UxGSadi4aN3TLojWkJacy4K2i9+bhLbuxsbfDwbXoN0LUxSvsX7+NFt3aabbZtHMbDm3ezYa5y2jerT1Jt+PZs2YzLbqVb/f5u+6+Ft7+PvjVqaV5LTr3Kvres2jWPJITknjro3c160Te+1qkKom881q43XktVsxfjG8tf1xquJKVlcXmVeuJunKNkW+/UTKAZ5Hq/1831aedJONEpRk5ciSzZ8+mc+fOWt0r69Wrx969e5k8eTKtW7dGrVbj7e2tNTvqvRQKBWvXruWtt94iJCQEPT09unbtqpWYatu2LStWrODLL7/k22+/xcrKipCQEJ3b09PTY82aNYwcOZLg4GA8PDz45Zdf6Nq1q6bN888/zzvvvMPYsWPJzc2lR48efPLJJ0yZMkXTZuDAgVy9epVJkyaRk5NDv379ePPNNx84uUHNmjVZtWoV77zzDr///jvBwcF8/fXXvPJK8Y+Hx31+7vLx8dHM1JqcnEz37t21JkN49dVXMTMz44cffmDixImYm5tTt25drYkUdHn33Xe5ffs2L7/8Mnp6erzyyiv06dNHM/ClLnPnzuXVV1+lTZs2ODk58dVXX/HJJ59o7g8KCuKnn37iu+++48MPPyQkJIRvvvmG4cOHPzCWF198kUmTJnHp0iWtWXHuZWhoyPLlyxk8eLAmITd69Gj8/Pz48ccf6dOnD9nZ2Xh4eNCzZ08mTJjA+vXrSUpKok+fPiW25+vrS926dZk9ezaffvopHh4efP7550RFRaFQKDT/v/POO5p11q1bR82aNWnduvUD96csWndoS3paOsvmLyI5KRl3T3c+/e4rHJ2LuqClJCWTEKfdzWn8yNGav69cimDvjt04Ojvx9/IFACQnJmm1WbN0JWuWriQwqB5f//IDFeFZ2I9GrZuRmZ7B5mXrSEtOxcW9BqM/fRc7x6LuH2kpqSQnFA9Wf2DrblSFhSyfuYDlMxdoljdt34ph418DihJAGxatIjE2AWMTY+o0rs/wd17XmnG1Irz0Qn9y8/L49vcZpGdkEOjvz29fTsXcrLhLVWxCPHr3dENPSE5m6Lji2Z4Xrl7FwtWraFi3Ln99W1SRmpSSwqfTfiAxORkLc3N8PTz55Ysvadag/Cr9AEI6tCU9LY2l8/65czx5MOX7qfccT0kkxGlPRjHuleIu6FcuRbB3+y4cnZ2Ys6JozJHkxCStNquXrmD10hUEBtXj21/LNnRBaYJaBpOVnsmOFf+SlqLEuWZ1Rn70NraORVVfaSlKUu+ZAEGtVrNp0WqS4xPR19enmpMD3Yb2pVnnNpo2eTm5rPlrEanJKRgaGeLo6sLgt0cS1DK4QvbhruHde5Cbn8d3C+eRnplFHW8vfn13Iub3/LCOTUrSGtpg5a6d5BcUMGnGL1rbGvV8H17rXTTBUB0vL34Y+zYzVi7n73Vrqe7gwIQhL9Kt+ePNbPbI+9G+I7n5+Xy3cjnp2VnUcffg1zfGYH7POKaxKSla+5GTl8d3K5cTr0zF2NAQd0cnvnhxOJ0bFFcExStT+XjhPFIzM7G1sCDQ3YM54yfgck9X8fLQpE1zMtLT2bB4NcrkVKp7uDHu80maru+pKakkJxTP4rpv804KCwtZ/PtcFv9ePA5g844hvDKh6P2QnZnFwl/+Ji0lFVNzM9y8PXj/+0/x9NeeLbYqBDi481uf4gTKuFb9AdgUfpipu0q/qFcZzsdew8zQhLY+DbE0NiMuPZmFJzejzMkAwMLYDGvT4tlD8woLmHdiIz1qteSNFn3JzsvhfOw1dkQc17Qx1DegV+1WWJmYk19YQGJmKivP7uJ87LUK24+mbVqSmZbB+kUrUaak4OruxjtffoT9nWNKmZxCUnzxMbVn03YKCwtZOONvFs74W7O8Zcc2vPpe0Tlk179bKcgvYMZX2p+tzw/tT+9hA8p9H1q0a016WhqrFiwlJTkZNw93PvzmMxycHQFISU4mMV77O8jE197W/H3t8hUO7NyLg5MjM5YU9aKwd3Tg4++/YP7vf/P+q29hZ1+Nbn170XtQv3KP/656LZuQmZHJzpUbSU9R4uRWnZc/GoutQ9E5Iz1FSWpi8RAOarWarYvXkhyfiJ6eHtWcHeg6tC/BnYq/t9rY2/HKx2+zcf4KfnnvC6zsbGjRvT1tnu9a4vHLQ8v2IWSkpbPyntfio2+nFL8WSSklX4tRxcNc3Pta/L50DgCZGZn8+dNvpCanYGZujqePF5//71t8H1C9KURFUqgfZdAqIcR/ypQpU1i7di2hoaFVHUqFmzhxIkqlkj///LOqQylVcHAw48ePZ8iQIY+97qW4qPIPqJL5O3n85/fD38mD7ZeOVnUYZdbJvynpVyrux1hlsPTxIiL+RlWHUWa+jjVZf77iqlQqy3OBrUk7dKyqwygTqxbBpG3aVtVhlJlV987su/rkMw0+DUK8G9Jyxn+/SuXgmJl8suWvqg6jzL7s+hqHIs8+vOFTrIVnPc7EXK7qMMqsvqsfq8/uqeowyqRvvbacvRVR1WGUWb3qDx5W4WmVtu9QVYdQKqsHzKL8LJMx44QQ/2mTJ0/G3d2dwsLCqg5Fp/j4eF544QUGD67EGbOEEEIIIYQQ4i616um9/T8l3VSFEP9p1tbWfPTRR1UdRqkcHR11jlUohBBCCCGEEOL/J6mME+IZNGXKlP8XXVSFEEIIIYQQQoj/GqmME0IIIYQQQgghhHhWyVQBTx2pjBNCCCGEEEIIIYQQopJIMk4IIYQQQgghhBBCiEoi3VSFEEIIIYQQQgghnlUq6ab6tJHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWSWzqT51pDJOCCGEEEIIIYQQQohKIsk4IYQQQgghhBBCCCEqiXRTFUIIIYQQQgghhHhWqVVVHYG4j1TGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkIIIYQQQgghhBDPKpXMpvq0kco4IYQQQgghhBBCCCEqiSTjhBBCCCGEEEIIIYSoJNJNVQghhBBCCCGEEOJZpZZuqk8bqYwTQgghhBBCCCGEEKKSKNRqSZEKIYQQQgghhBBCPIvStu6s6hBKZdWlQ1WHUCWkm6oQQjzFNoYdrOoQyqxH7ZZExN+o6jDKxNexJq+t/K6qwyizv16YhPL7X6o6jDKxnjiOL7bPqeowyuzTTq8wfMkXVR1GmS0Y/Clpx09WdRhlYtWkEbsjTlR1GGXWzrcxP+9bVtVhlMn4kIF8suWvqg6jzL7s+hotZ7xR1WGU2cExM3lj5fdVHUaZzHxhIh9tmlnVYZTZ193fYMzqH6s6jDKZ0fc93vv316oOo8x+7PVWVYfwZKQG66kj3VSFEEIIIYQQQgghhKgkkowTQgghhBBCCCGEEKKSSDdVIYQQQgghhBBCiGeVSlXVEYj7SGWcEEIIIYQQQgghhBCVRJJxQgghhBBCCCGEEEJUEummKoQQQgghhBBCCPGsktlUnzpSGSeEEEIIIYQQQgghRCWRZJwQQgghhBBCCCGEEJVEuqkKIYQQQgghhBBCPKukm+pTRyrjhBBCCCGEEEIIIYSoJJKME0IIIYQQQgghhBCikkg3VSGEEEIIIYQQQohnlUq6qT5tpDJOCCGEEEIIIYQQQohKIsk4IYQQQgghhBBCCCEqiXRTFUIIIYQQQgghhHhWqVVVHYG4j1TGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkKUo3nz5uHk5ES3bt2qOhQhhBBCCCGEEEJmU30KSTLu/xEPDw/Gjx/P+PHjK217CoWCNWvW0Lt37yd+nClTprB27VpCQ0MfeZ09e/bQrl07UlJSsLGxeeLHfhyrV6/m+++/5+DBg0+0/ssvv0xqaipr164FoG3btgQFBfHzzz+Xuk55vKb3vkZRUVF4enpy+vRpgoKCnnibj6K8jsddu3YxevRowsLC0NN7+op94+PjqVOnDqGhobi6ulboYx3cvIvda7eQlpKKs5srvUcOxqu2n86218Ius2HhSuJv3iYvLw87h2o079yWNs911rQ5vG0vJ/YcIvZGDAA1vN3pPrQf7n5eFbof99u4Zj2rl6wgOSmJmh4ejBr3JoH16+psm5yYxOwZf3LlUgS3bsbQ64XevDZudKXGC9DGqwFd/IOxNrHgVloiy87s5EriTZ1tX27cnRYeJffnljKRKdtnA9DcPZARTXqUaDN69Y8UqArLN/hHYNyyKUb166AwNqHwdizZ2/egSkp+yEpGmLRugaGfNwoTY1TKNHJ276fg2vUKjfXyvlOE7TxGtjIDGxd7GvXrgKOPm862cZdvsOOXJSWW9/z4VaydqwGgKizkwrYjXDt6nqzUdKyc7GjwfFuq167c9wVAB5/GdK/VHGtTS2KU8Sw6tY3LCTdKbd/cPZAetVrgZFmN7Pwczt6+ytLT28nIy660mNVqNbNWr2LN7l2kZ2ZSx9uHiS+PwLtGjVLXWbN7F5v27+fqzWgAAjw9GTNgIHW8fTRtVu7YzqqdO7idkAiAVw1XRvbpS8v6QeW+D3s2bmf76o0ok1OpXtOV/qOG4RsYoLPt6UPH2btpBzevXacgPx+XmjXoOaQfdRrV02qXlZHJuoXLOX3oBFkZmdg7OdBv5FDqNin/+O86v/sYoVsPkKXMwLa6Ay0HdqO6n4fOtjGXIln/49wSywd98Ra2Lg4AhO07waXDoSTfigfAwb06Tft0xMmz9Ne2rILdatPKsx4WxmbEZ6Sw+eJhrqfEltpeX6FHO59G1K/ug4WxGWk5mey9eppTMZcAqO3kQYhXA+zMrNBX6JGUpeRg1DnO3IqosH14HPVdfBjSoDMBjjWxN7fhg01/sD/yTFWHpdHGK4hO95z7VpzZVeq576XG3Wheyrnvi+1zgKLPrJeadC/RZuzqaRV27mtasw6tvepjeeeY2hh2kKgHHVN6erT3aUyQqy+WRmYoczLYc/UUJ29eKtG2nos3gxp0Iiw2kn9Oba2Q+O9q7RVER98mWJuYczstkZVnd3M1KUZn22GNutLMPbDE8ttpiXy1Yx4A9av70sW/KQ7mNujr6ZOQkcLOiBMciw6rsH1o4V6Xtj4NsDQ2Jy49mXUX9hOZfKvU9vp6enTyC6aRqz+Wxuak5mSwM+I4x6PDNW1ae9anuUddbE0tyczL5uztK2wKP1wl36WEkGTcf0CvXr3Izs5mx44dJe47fPgwLVq04OTJkzRs2LBS4zp+/Djm5uaV+phPq2vXrvHxxx+zefNmbG1ty2Wbq1evxtDQsFy29ajc3Ny4ffs29vb2Ff5Y5XX8TJw4kcmTJ2sScfPmzWP8+PGkpqZq2oSHh9OpUyeCg4NZsmQJxsbG7N69mx9++IGjR4+SnZ2Nh4cH3bp1Y8KECSWSZv7+/kRGRhIZGVnivmvXrjF58mT27t1LcnIy9vb2NGrUiB9++AE/Pz8cHR0ZNmwYn332GX///XeZ97c0pw8cY+2cJfR7bRieAT4c2raHv76czqRfvsLWoVqJ9kYmxrTq3p7q7m4YmRhzLSyClTPnY2RiRPPObQG4euESDVs3xSPABwNDQ3av2cyfn09j4i9fYVOtfI7zh9m3cw+zfvmDNye8Re26ddi8fiNT3v+I3xfOxtHJsUT7/Px8rGysGTB8COuWr6qUGO/XuEYAA4M6sPjUNq4kxRDiFcS4Vv2ZsvVvkrPTS7RfFrqD1ef2av7X09Pj044jOBlzUatddn4un2yZpbWsKr48GgU3wrhxA7I2bUeVkoJx82DMB/Ym/e+FkJeveyU9PcwH9EGdlUXWuk2o0jPQs7RAXVr7chJ1MpyTq3bSZGBnHLxciTgQyu7fV9Dz41cxt7Mqdb1en4zC0NRI87+xhZnm7zP/7ify+AWaDumKlVM1bodHsm/WGjpPeBE7N6cK3Z97Na1Zm6ENuzD/xCYiEqNp59OQ99oM4cNNv5OUlVaivZ+9G683682i09s4HXMZO1NLXm7Sg1eCe/HLgeWVFveCDf+yePNmPn39dWo6uzBn3RrGfvs1K3+Yhrmpqc51ToaH0bl5C+r5+WJsaMiCDRsY+923LPv2exzt7ABwtLNj7MBB1HByBmDj/n2899M0/pn6zQMTfY/rxL7DrJi1kMFvjsC7th/7N+/itynf89nv32PnWPLcGXH+IrWCAuk9fACm5uYc3rGX37/8kUnTvqCmtwcABfkF/O+Tb7G0tuK1D8dha29HSkIyJqYm5Rb3/a4cP8fBZZtpPbQnLj41ubD3OBt/+YdBn4/FsppNqesN/nIcRqbGmv9NLIvP47cuReEbXA9nbzf0DQ0I3XqADdMXMPDzsVjYlv5+e1KBzl50q9WcDWEHuJESR2O3Wgxr1I1fDyxHmZOpc52BQR2xMDZlzfl9JGcpMTcyRU9RfCEvKz+XvVdPk5iZSoGqEH9Hd/oEtiEzL7vUpFJlMjU05krSTTZdPMTX3d6o6nC0NKoRQP+gDiw5tZ2rSTdp7RXE2FYv8PnW2aToPPftZM25fZr/9fQUfNxxhCYxeld2fi6fbdH+/lRR5766Lt70qN2C9ef3cz0lluCatXmpSQ9+3rcMZU6GznUGN+iEhZEZq8/uISkrDQsjU/QUihLtbEws6BbQ/IHJpPLS0NWfF+q1Y1noDq4mxdDKsz5jWvbjy+1zdb4WK87sYt35e18LPT5s/xKnYi5rlmXl5bD10hFi05MpVBUS6OzNi426kp6bRXh8VLnvQ/3qvjwX2JrV5/YQlXybZu6BvNq0Fz/sWURqtu7XYlijblgam7H8zC4SM1OxMDbTei0auPrRvVYLlp/ZSVTybRwsbBgY1BGA9RcOlPs+CPEwT18ZiShh5MiR7Nq1i+vXS1YPzJkzh6CgoEpPxAE4ODhgZmb28Ib/D3h5eREWFoa7u/tD2+bnP9qPTzs7OywtLcsa2mPR19fH2dkZA4OKz9OXx/Fz6NAhIiIi6N+/f6ltjh8/TuvWrenSpQsrVqzA2NiYP//8k44dO+Ls7MyqVasICwtj5syZKJVKpk2bprX+gQMHyMnJoX///sybN0/rvry8PDp16kRaWhqrV6/m0qVLLFu2jMDAQJRKpabdiBEjWLRoESkpKWXa3wfZu34rTTu0plmnEJzcqtNn5BBsqtlxcMtune1reLnTsHUznGu6YudoT+O2zfEPCuRaWPHV/xffeY2W3drj6lkTpxouDBj9Mmq1moizFXcV9H5rl62iU4+udOnVHTcPd14bNxp7Rwc2rflXZ3snF2def3sMHbp2wqyKLhZ08mvCgcizHIg6S2x6EsvP7CQlK5023g10ts8uyCMtN1Nz87B1xszIhINR57TaqdVqrXZpubp/bFY048ZB5Bw+TkHEVVSJyWRv2o7CwBCjWv6lrmNUrzYKExOy1mykMOY26rR0CmNuo7pTxVRRLu46jnfzevi0qI+1sz2NX+iIma0ll/effuB6JpZmmFpZaG73Vt1GHrtAnc7Nca3jjaW9DX6tG+BSy5PwXccqdF/u19W/OXuvnWbvtdPcSktk0altJGcpae/bWGd7b/saJGSmsv3yMRIzU7mcGM3uKyfxtHOptJjVajVLtmxhxPPP075JMD5ubkx5/U1y8vLYeuhQqet9NXos/Tt1wt/dA4/qrkx+dRRqlZrjF85r2oQ0bETLoAa4u7jg7uLC6AEDMTMx4fyV8q1o2rF2My07taVVl3a4uLky4LVh2NpXY++mkhdMAQa8NowuL/TCw88bJ1dner80EMfqzpw7dkrT5tD2PWSmZ/Dmx+/gU9ufao4O+NTxp4bXw79TPKkz2w8R0KohtVs3wtbFgVaDumNha8WFvccfuJ6plTlm1paa273vjY6jXiCwXTD2NV2wdXGgzfDnUavVxIRfq5B9aOFRj1M3L3Hy5iUSMlPZfPEwaTkZBNesrbO9j30NPOxcWHhyC9eSYkjNziBGmUB0apymTVTybcLjo0jITCUlO50j188Tl56Mu41zhezD4zpy4wKzjq5n77XQqg6lhI5+jTkYeZaDUWeJTU9mxZldDzz35dx37nO/c+47VIXnvlae9TgZfZETNy+SkJnKxvBDKHMyaOqu+5jytXfD0646809s4mpSDKnZ6dxUxnPjnmMKQIGCAUEd2BFxguSsksmw8tbBtzGHo85xKOoccenJrDq7m5SsdFp7BelsX/RaZGluNW2KXosjUcWfsRGJ0Zy5dYW49GQSM5XsuXqKmLQEvO0rptdHG68gjt0I49iNMOIzUlh/YT+p2Rk0d9fdM8LfoSbe1Vz5++h6IhKjSclOJzo1TqtS1sPWhajk25yOuUxKdjqXE6IJjYmghnXlXUirUmr103v7f0qScf8BPXv2xNHRsUQiICsri2XLljFy5EigKDEREhKCqakpbm5ujBs3jszM0k9YN27c4Pnnn8fCwgIrKysGDBhAXJz2yWP9+vU0btwYExMT7O3t6du3r+Y+Dw8PrS6UERERhISEYGJiQu3atdm+fXuJx5w0aRJ+fn6YmZnh5eXFJ598UiI59e233+Lk5ISlpSUjR44kJyfnoc/Rpk2b8PPzw9TUlHbt2hEVFVWizeM+P1OmTCEoKIg///wTNzc3zMzM6N+/v1bFFcDcuXOpVasWJiYmBAQE8Pvvv2vui4qKQqFQsHz5ctq2bYuJiQn//PMPhYWFTJgwARsbG6pVq8bEiRNR3/dB1LZtW60unPHx8fTq1QtTU1M8PT1ZtGhRiZh/+ukn6tati7m5OW5ubowePZqMDN1Xj3S5G+/dLsF79uxBoVCwdetWGjRogKmpKe3btyc+Pp7NmzdTq1YtrKysGDx4MFlZWVqxjx07lrFjx2r28eOPP9bax/uPnyeJfenSpXTu3BkTE93VA7t27aJ9+/aMGDGC2bNno6+vz82bNxk3bhzjxo1jzpw5tG3bFg8PD0JCQvj777/59NNPtbYxe/ZshgwZwrBhw5gzZ47WPoSFhXHt2jV+//13mjVrhru7Oy1btmTq1Kk0adJE065u3bo4OzuzZs2ah74GT6Igv4CbV6/jF1RHa7l/UB2iLl55pG3cvHadqEtX8K5TekIlLy+XwsJCzCwqJ8mVn5/PlcuXaRDcSGt5gyaNuHj+QqXE8Lj0FXrUtHEmLC5Sa3lYXCTe1R7tC2tLj3pcjI8i+b7qJmMDI77p9gbfdR/N2Jb9cLMpWRlY0RTWVuhZmFMQdU9XyMJCCqJj0HctPalj4O1F4a3bmHZqi+WYV7EYMRTjZo1BR/VAeSksKCQ5OhaXWp5ay11qeZIYqburzl2bvpvHqo9+Y8cvS4m9rH0hrLCgAH1Dfa1l+oYGJFytvKoZfT09POxcOB97VWv5udhr+Nrr7oIbkRiNnZkV9VyKunZamZjTpGbtSu1+F5MQT5IylWZ1i7toGhka0jCgFmcjLj9gTW05ubkUFBZgZWGh8/5ClYpthw+RnZtLXV/fMsd9V0F+ATeuRFKrgfaPwVoN6nLt4qM9jyqVipzsHMzuif3M0VN4Bfiy5I95vP/im3wxehKbl69DVagqt9jvVVhQQML127jV9tZa7lbHh9irpXdzBljxxR/Mf+971k+bS8zFByfZCvLyURUWYmyuu+KxLPQVelS3si9RrXYl8SZuNrp/WAc4unNLmUArz/q833Yob7ceQBf/phjo6etsD+BlVx17c2uiUm6Xa/zPmrvnvvC4KK3l4XGReJXDuW9qt9f5pvubjK7Ac1/RMeVARGK01vIrCTdLTcbWcvIgRplAiFcQk9oPY0KbQXQLaFbimGrv24jMvBxO3ryoczvlSV+hh5uNU4lqtfD4KLzsqj/SNlp41OVS/HWSs0tWWd/l71ATJwu7CqkY1Vfo4WrtWGLYhcsJN/Ao5QJSHWdPolPjaefdiE86jmBSuxfpWbul1msRmXyLGjaOms8IOzMrAhzdK6SyT4hHIcm4/wADAwOGDx/OvHnztBIBK1asIC8vj6FDh3Lu3Dm6dOlC3759OXv2LMuWLePAgQOMHTtW5zbVajW9e/cmOTmZvXv3sn37dq5evcrAgQM1bTZu3Ejfvn3p0aMHp0+fZufOnTRurPuKu0qlom/fvujr63PkyBFmzpzJpEmTSrSztLRk3rx5hIWF8b///Y9Zs2Yxffp0zf3Lly/ns88+Y+rUqZw4cQIXFxet5JYu0dHR9O3bl+7duxMaGsqrr77KBx98oNXmcZ+fu65cucLy5cv5999/2bJlC6GhoYwZM0Zz/6xZs5g8eTJTp04lPDycr7/+mk8++YT58+drbWfSpEmMGzeO8PBwunTpwrRp05gzZw6zZ8/mwIEDJCcnPzRR8/LLLxMVFcWuXbtYuXIlv//+O/Hx8Vpt9PT0+OWXXzh//jzz589n165dTJw48YHbfRRTpkzht99+49ChQ0RHRzNgwAB+/vlnFi9ezMaNG9m+fTu//vqr1jrz58/HwMCAo0eP8ssvvzB9+vQHdtN8ktj37dtX6jG5Zs0aevToweTJk/nhhx80y+++b0rb9r1jDKanp7NixQpefPFFOnXqRGZmJnv27NHc7+DggJ6eHitXrqSw8MFdJoKDg9m/f/8D2zypzPR0VCoVljbWWsstbaxIT1WWslaRz199l/f7v8b097+gZbf2NOsUUmrbjQtWYm1ni1/9OqW2KU9pSiWqQlWJrt+2trakJFdclWFZWBiboa+nR1pultbytNxMrEwensS0NjEn0NmL/ZFntZbHpicz78RGZhxaxaxj68kvLGRS2xdxtKic7sJ36ZkXVbOqs7T3T52VhcK89EpXPRsrDP19QKEgc+U6cg8fw6hJA4ybNyl1nbLKzchCrVJjYqkdl4mlOdlpui/EmFqb03RwF0Je7U3Iq32wcrJj569LibtS/OPMpZYnF3cdJy0+GbVKze3wSG6ejSh1mxXB8s5xdn9XvLScTKxLOc6uJN5k5uE1jGnZjzkDJ/Nbn3fJysth4cktlREyAEl3Po/srLU/q+ysrUhSpj7ydn5bthQHWzuC62iPcXQl+gYhI0fQ8uXhfDN3Dj+Mfwcv1/LropqRVvRZa2WrHb+VrTVpKQ/+rL1rx5pN5OXk0qh1U82yxLh4Th08hkqlYuyUiXQb2Jsdazaxefnacov9XjkZWahVKsystJOZppbmZCl1XwQzs7akzbDn6PLmILq8OQgbZ3vW/zSfW5ejSn2cI6u2Y25jRY0KGE/RzMgEfT29EuMdZuRlY2ms+7PIztSKmrbOOFnYsvj0NjaFH6aOsxc9a7fSamdsYMjHHUcwpfOrvNioKxvDD5U61pYoUnzuu+8zKTfrkc59Vibm1HH24mCJc18S809s4vdDq5l97F8KCgt4v+3QCjn3aY6pXO1jKj0vC4vSjikzS9xtnXGytGPRya1sCDtEoLM3z9VprWlT09aZxjUCWHPPcBQVycLYtOi1yNE+T6c/xmtR28mzRIUigImBET89N45fer/Dmy36suLMTi7Gl/+4r+ZGRfuQnnv/Pjzg/W1mjaedC85Wdsw7sYl1F/ZTz8WHvnXbatqE3opgy8UjjGnZj+96jOajDi9xNekmu6+cLPd9EOJRyJhx/xGvvPIKP/zwg2ZiAijqotq3b19sbW15++23GTJkiKaSytfXl19++YU2bdrwxx9/lKgc2rFjB2fPniUyMhI3t6Kr6AsXLqROnTocP36cJk2aMHXqVAYNGsTnn3+uWa9+/fo649uxYwfh4eFERUVR487YLF9//XWJWUU//vhjzd8eHh68++67LFu2TJMY+fnnn3nllVd49dVXAfjqq6/YsWPHA6vj/vjjD7y8vJg+fToKhQJ/f3/OnTvHd999p2nzww8/PNbzc1dOTg7z58/X7NOvv/5Kjx49mDZtGs7Oznz55ZdMmzZNUzHo6elJWFgYf/75Jy+99JJmO+PHj9eqKvz555/58MMP6devHwAzZ85k69bSB3K9fPkymzdv5siRIzRtWvQFfvbs2dSqVUur3b2VdJ6ennz55Ze8+eabD01oPsxXX31Fy5YtgaJu0x9++CFXr17Fy6voC/YLL7zA7t27tRKwbm5uJV6T6dOnM2rUKJ2P8SSxR0VFUb16yat8GRkZ9O/fn48++qhEYjYiIgIrKytcXB7eNWvp0qX4+vpSp05R8mnQoEHMnj1b8x50dXXll19+YeLEiXz++ec0btyYdu3aMXToUM1zc5erqyunT5feNS43N5fc3FytZcbGxqW01u3+GiO1Wo3iIZVHY6d+QG5OLtcvXWXjwpXYuzjSsHWzEu12rdnMqQPHGPPlRAyNKncsw/urp9Q8fL+q3H2VrgoU8AhV+M3d65Kdn0NojHaVUGTyLa1xZq4m3uTjji/Tzrshy87sLJeQdTGs7Y9p53aa/zNX3ekerKtLwYP2T6FAnZVN9tZdoFajiktAYWGBcXBDcg9VdPfO+44VtbrUgjwrp2pYORWPsejg5UpWShrhO47hdGfSh8YvdOToki1s+PJvUICFvS1ezepy7UjJHy4V7jFehupW9rzYsCvrzu/jXOxVbEwsGdigIy836cHsY7q7fZfV5oMH+GbObM3/098rOteX/KzStVS3BRv+ZdvhQ8yc/AnGRkZa97m7VGfR1G9Iz8pi1/FjTPlzJn9+/Em5JuSKIr3vM0mtfqTwj+89xIbFq3nzkwlY3XPxRK1SY2ljxYtjX0VPXw93H0+UySlsW72RHoP7PmCLZaQj5tI+W22d7bF1Lh4Tz9m7JhnJSkK3HdQ56cPpLfu5cuwcz78/AoMKHf+25GdtaT2e7u7birO7yC0o6pWx5eJhBgZ1YkPYAc04ZHkF+fx+aBVG+oZ4VatO14BmJGenEZUs1XEPc/9zr9C1UIfm7oF3zn3aFaaRybeJvOd5v5p4k486vkRb74Ysr6Bz3/3RFr3fde/D3c+CZaE7yS3IA2BT+CEGN+zM+gv70VPoMaB+e9ac30tW/sN7+pSvkjGrH+GLSLOadcjOz9FZNZ1bkMc3OxdgbGCIv4M7feu2JTFTWaKasKI86Kvf3ff34lPbyLnzWqy/cIDhjbux+tweClSFeFdzpYNvY1af28ONlDjsza15PjCEjjlZ7Ih4cBf9Z8L/4+6gTytJxv1HBAQE0KJFC+bMmUO7du24evUq+/fvZ9u2bQCcPHmSK1euaHVdVKvVqFQqIiMjSyRtwsPDcXNz0yTiAGrXro2NjQ3h4eE0adKE0NDQUhMn9wsPD6dmzZqapBVA8+bNS7RbuXIlP//8M1euXCEjI4OCggKsrKy0tvPGG9oD0jZv3pzdu3WPe3V3nWbNmml9gbz/sR/3+blL1z6pVCouXbqEvr4+0dHRjBw5Uut5KigowPq+q/73Vm8plUpu376tFaOBgQGNGzcu0VX13n282+augICAEjPF7t69m6+//pqwsDDS0tIoKCggJyeHzMzMMk2WUK9ecZciJycnTTfje5cdO6b9g1rXazJt2jQKCwvR1y/ZJeRJYs/OztaZSDU1NaVVq1bMmjWLwYMHa72+j5Kgumv27Nm8+OKLmv9ffPFFQkJCSE1N1Tz3Y8aMYfjw4ezevZujR4+yYsUKvv76a9avX0+nTp20Ysq6r5roXt98841W4hvgs88+o8mATqWsUczcsmjcnrT7quAylOlYWD940OxqTkWz4FV3r0GGMo2tS9eVSMbtXruFHSs38Obn71HdQ3cXuIpgZW2Nnr4eKcnas3SmpqRiY2tTaXE8jozcLApVqhJXny2NzR5pnJuWHnU5cuMCheoHd09TA1HJsThZ2pUl3IfKv3KNwlv3zCJ3572rMDdHnVl8PCvMzEpUy91LnZmFurBQ64ugKikZPQtz0NMDVfl3xzO2MEOhpyAnXft5z8nI0hp0/mHsPaoTeby4W7SJpRltXutLYX4BuZnZmFpbELpuLxbVrB+wlfKVfuc4szbV3g8rE3PSShm4vlftVkQkRrPp4mEAookn93geH3cawcqzu0sdnLwsQho2IvCeGU/zCgoASFIqsb+n4jUlLY1q1g9//hZu3MDc9euY8cFH+NasWeJ+QwMD3JyLupPV9vIi7NpVlm7ZwkcjXy3rrgBgYVX0WatMSdVanp6appVc0+XEvsMs+GUWr30wjlpB2hV91nY26Ovro6df3GHF2a06aSmpFOQXYGBYvl/XTSzMUOjplaiCy07PxNTq0d8bTl5uXD5ScibP0K0HOLVpP70mvES1GhUz1lpWXg6FKhUWRtpVMuZGJmTk6f4sSs/NIi0nU5OIA0jISEVPocDKxFzTPVINmr9j05NwMLclxCtIknEPcPfcd39lbtG5r/Rzw10tPepx9EbYI537rifH4mhZ/pVxd48pS2PtbtUWRqYlquXuKj6m8jTL4jNS0FMosDaxwEjfADszK4Y1Ki5OuPsd9MuurzF939IS3XLLKiM3u9TvIek5D38tmnvU5Vgpr4UaSMhMBeCmMgEnKzs6+weXezIuMy/7zmuh/f62MDItUS13V3pOJsqcDE0iDiA+Ixk9hQIbUwsSM5V08W/GqZuXOHajaOzj2PQkjPQNeaF+O3ZGHH+Ua6ZClCvppvofMnLkSFatWkVaWhpz587F3d2dDh06AEXdRF9//XVCQ0M1tzNnzhAREYG3t3eJbZWWkLh3uWkps5rpoiuJdP/2jxw5wqBBg+jWrRsbNmzg9OnTTJ48mby8vBLrPo7SElj3etznpzR390mhUKC68+Nx1qxZWts9f/48R44c0VqvrLOG3t3HByWRrl+/Tvfu3QkMDGTVqlWcPHmSGTNmAI8+aURp7p3VVaFQlJjl9d7n40k8aez29vY6J0XQ19dn7dq1NGrUiHbt2hEWVjzhgJ+fnyYh+iBhYWEcPXqUiRMnYmBggIGBAc2aNSM7O5slS5ZotbW0tOS5555j6tSpnDlzhtatW/PVV19ptUlOTsbBwaHUx/vwww9RKpVatw8//PCBMd5lYGhADW93Lp/Rnljh8pkLeAT4lLJWSWq1moL8Aq1lu9ZsZvuKf3nt0wm4+XiWsmbFMDQ0xMfPj9Djp7SWhx4/RUBg5XSVfVyFahU3UmOp7eShtbyWk8dDuzn5ObjhZGnHgfu66ZTGzcYRZSkzipWbvHxUqcriW1IyqoxMDO5NyurpYeDmSmFM6e+pgpu30LsvgapnZ4MqI6NCEnEA+gb62Lk5c/tilNby2xejsPd89AGnk2/GYWpdcmwyfUMDzGwsUatU3Ai9RI165Tc22cMUqlREJd8m0Fm7AjfQ2avUH0VGBoYlzpcqzbmlYuI0NzXFzdlZc/NydaWatQ1HzxdXEeYXFHDqYjj1fP0euK2FG/5l9to1/DJxErW9Hq3bo1pdnAAsDwaGBtT08SQ89LzW8vDQc3gFlP76H997iPk//8nI98ZQt0nJwey9a/kRfztO6zwaFxOLtZ1NuSfiAPQNDHBwd+FmuPaYgzfDruLsXTLJWZrEG7cxs9aeaOr01gOc3LiXHm8Pw9GjYgZ2h6LP2ltpiSUGj/e2r6E1IcO9bqTEYmlijpF+8XNazdwalVpVahIbit4fDxpXThSf+2rpOPdde4Rzn6OlbYkuqqWpUUHnvqJjKgGf+8bd9LF35XpqrM51rqfEYmlipnVM2ZvboFKrUOZkkJCZyv/2LeO3Ays0t4txUUQmxfDbgRUVth/RqXEEOHpoLQ9w9ODaQ2Zy9bV3w9HClkPXzz+w3V0KFBjolf9nVKFaRYwyHj8H7dfCz6FmqUnxyOTbWJmYY6Rf/BvF4c5rcXf2VSN9gxLVgSq16k6F41Pe40I8kyQZ9x8yYMAA9PX1Wbx4MfPnz2fEiBGa5EzDhg25cOECPj4+JW5G93XjgKIquBs3bhAdXfylPSwsDKVSqakiqlevHjt3PloJ+N3t3bpV/CF/+PBhrTYHDx7E3d2dyZMn07hxY3x9fUvMEFurVq0Siaz7/9f12A9b53Gfn7t07ZOenh5+fn44OTnh6urKtWvXSmzT07P0pIW1tTUuLi5aMRYUFHDyZOnjFdSqVYuCggJOnDihWXbp0iWtySROnDhBQUEB06ZNo1mzZvj5+WnFXtl0vSa+vr46q+KeNPYGDRpoJdruZWxszOrVqwkODqZdu3acP1/0xeKFF17AyMiI77//Xud6d5/T2bNnExISwpkzZ7SSrRMnTmT27Nk614WixGRAQECJyUHOnz9Pgwa6ZxS7G6+VlZXW7XG6qbZ5rgtHd+zj6I79xEXfYu2cJaQkJtOiS1sANixcyeL/zdK0P7BpJxeOh5JwK46EW3Ec27mfPeu20qhNccXmrjWb2bx4DQPHjsDO0Z60FCVpKUpysyuvq0Xvgf3YtmEz2zZuITrqOrN++YOE+Hi69+4JwLyZs5n21Xda61yLuMK1iCvkZGejTFVyLeIKNyLLf0yT0my/fJxWnvVp6VEXZ8tqDKjfHjszK83sd30CQxjRpEeJ9Vp51ONa0i1upZWcYbRnrZbUdvLE3tyaGtaOvNSoG242jlUyo17uiVBMmjXBwNcLPXs7TLt3Ql2QT174JU0b0+6dMA5pofk/L/QcClMTTDq0Qc/WBgMvD4ybNSHv1KP9+HpSAe2bcPXQGa4ePosyNpGTq3aSlZyGb+sgAE6v28uhBRs07S/uPk70mcukxSeTejuB0+v2Eh16Gb+Q4hnLE6NucSP0EumJqcRfiWbXjBWgVlO7Y9P7H75Cbbl0mDZeDQnxCqK6lT1DGnSmmpk1uyKKziX967fntWbPa9qfjrlMI7cA2vs0wsHcBl97N15s1IWriTGaHyoVTaFQMLhrV+auX8fu48e5Eh3N53/OxMTIiC4tio+Xz2b+zm/Llmr+X7DhX/5YuYJPR72Oi70DiampJKamknXPEBYzli3l9MWL3EpI4Er0DX5fvoxT4WF0a9GyXPehY+9uHNy2m4Pb9nA7OoblsxaSkpBESPeii6Nr5i1l7rQ/NO2P7z3E3J9m0m/kUDwDfFCmpKJMSSX7nsrSkO4dyUzPYPlfC4mLuc2546fZsmIdbXo8vDL6SdXv1ILw/acIP3CKlNsJHFy2mfRkJXXaFI3jeGT1dnbOXqVpf2bHISJPh5Mal0RyTDxHVm/n2qkw6rYvPu5Pb9nPsbU7aftSb6zsbchSppOlTCc/J7fE45eHQ1FnaVQjgIau/jiY29AtoDnWJhYcuxEOFM1s3e+e8aLO3r5Cdl4Ofeq2xcHcBndbZ7r4N+XUzUuaLqohXkF4V3PF1tQSe3NrWnjUJai6X6VOdPIgpobG+NrXwNe+qNdGdSt7fO1r4FTJ44fqsuPyCVp61qOFR12cLe3oX789tmZW7LtznuodGMLLTbqXWK/FA859PWq1oLaTh+bcN6xRV9xsHNlfQee+A5FnaewWQKMaRcdU91otsDa15Nj1ou+anf2DeaFe8dANZ25FkJWXS7967XC0sMXD1oVutZpxMrromCpQFRKXkaJ1yy7II7cgn7iMlIdWAj6pnREnaOFRl+bugThZ2tGvblvszCw5cK2okvW5Oq0Z3qhbifVaeAQSmXyL2zpei85+wQQ4ulPNzBonCzva+zSiac3aHI/W/T28rPZeCyW4Zh2auNXC0cKW5+q0wsbUgiN3EoXdApozKKj4M/J0zGWy8nIYGNQBJwtbvOyq07N2S47dCNe8v8PiImnuXpeg6r7YmVrha+9G14BmXIiNfKQuvEKUN+mm+h9iYWHBwIED+eijj1Aqlbz88sua+yZNmkSzZs0YM2YMo0aNwtzcnPDwcJ0D6wN07NiRevXqMXToUH7++WcKCgoYPXo0bdq00XSF/Oyzz+jQoQPe3t4MGjSIgoICNm/erHPg+44dO+Lv78/w4cOZNm0aaWlpTJ48WauNj48PN27cYOnSpTRp0oSNGzeWmLTg7bff5qWXXqJx48a0atWKRYsWceHChRLjb93rjTfeYNq0aUyYMIHXX3+dkydPlph59nGfn7tMTEx46aWX+PHHH0lLS2PcuHEMGDAA5zvdYKZMmcK4ceOwsrKiW7du5ObmcuLECVJSUpgwYUKp23377bf59ttv8fX1pVatWvz0008lZmm9l7+/P127dmXUqFH89ddfGBgYMH78eK3qRW9vbwoKCvj111/p1asXBw8eZObMmaVus6JFR0drXpNTp07x66+/Mm3aNJ1tnzT2Ll26lJgs415GRkasWrWKAQMG0L59e3bu3EndunWZPn06Y8eOJS0tjeHDh+Ph4cHNmzdZsGABFhYWfPvttyxcuJAvvviCwEDt7kSvvvoq33//PWfOnEGtVvPZZ58xbNgwateujZGREXv37mXOnDla4+dlZWVx8uRJvv7660d89h5fg1bBZKVnsG35etJSlLjUdGXUx+Oxcywa4yc9RUlKQnF3T7VazcaFq0iOT0BPX59qzg70GPYCzTu30bQ5uHkXhQUFzP9ee9y+zgOfo+ug3hW2L/cK6dCW9LQ0ls77h+SkZNw9PZjy/VQcnYtmwkpJSiIhTnsik3GvvKn5+8qlCPZu34WjsxNzVvxTKTGfuHkRcyNTetRqibWJObfSEvn1wApNVxRrEwvszLS7D5saGNHQ1Z+lpYyBY2ZkzLCGXbAyMSc7P5fo1Hh+2LO4Smb4yzt2EoWhAaad2qEwMabwdhyZy9dCXnEVq56VpVaXVHV6BpnL12LSPgSLEUNQpWeSdzKU3KMVO2iyR6Na5GVmc27zQbLTMrFxsaft6P5Y2BV1KcxJyyAzubiLUGGBilNrdpOtzEDf0ABrF3vavvkCrnWKK6gL8ws4s2E/GYmpGBobUb2OFy2G98DITPfYoxXl6I0wLIzMeL5OCDamFtxUxjNt72KSsoq6q9uYWFDNrLjr5IHIM5gaGNHRrwmDG3QmKy+HsPhIlodW3JiDugzv2YvcvDy+mzeX9KxM6nh78+ukDzG/53wWm5iEQlF8vXjlju3kFxQw6ZeftbY1qk9fXuv3AgDJaWl8NvN3ElNTsTAzw8fNjV8mfkDTutozn5ZV45DmZKRnsHHpGtKSU6nuXoOxU96nmmNR5bMyJZXkhCRN+32bd6EqLGTpH/NY+sc8zfJmHVrz8jtFw3LYOVTj7S8+YMXfC/ly7IfYVLOl/XNd6dKvV7nGfi+fJnXJycjm5IY9ZCrTsavuSI9xL2JZzQaArNR0MpKLhz5QFRRyaMVWMlPTMDA0xLa6A93HvYh73eKKxgt7jqMqKGTbzGVaj9W4V1uaPNe+3PfhfOw1zAxNaOvTEEtjM+LSk1l4crOmy7WFsRnWpsVVrXmFBcw7sZEetVryRou+ZOflcD72mtZYUYb6BvSq3QorE3PyCwtIzExl5dldnI998MyxlSXAwZ3f+hR/vxzXqj8Am8IPM3VX6d+HKsPJmxexMDKhR60WWN059/12YOU95z7zEuc+EwMjGrr6lTr+m5mRCUPvO/f9uGcJUSm6K9XK6tztq5gZmtDep3HRMZWRzPzjm0i9c0xZGptjY1pcDZpXWMDcYxvoWacVo1v2JSsvl3O3r7L9ckWPhfpgp2IuYW5sSreA5liZmHM7LZHfD67WzI5qbWKOrY7XIqi6HyvO7tK5TSMDQwYGdcTG1IL8wgLi0pOZd3wTp2Iu6WxfVmduRWBuaEInv2CsjM2JTU9i9tF/SclOB4qGZbDVen/n8+eRdfQJDOHtkIFk5eVw5tYVNl8sLg7ZcacrateAZlibWJCRl01YbKRWm2daBfVEEE9OoX6UPn7iqXH48GFatGhB586dSwz4f/z4cSZPnszhw4dRq9V4e3trkndQNGHC+PHjNQPl37hxg7feeoudO3eip6dH165d+fXXX3FyKp4SfvXq1Xz55ZeEhYVhZWVFSEgIq1at0rm9y5cvM3LkSI4dO4aHhwe//PILXbt2Zc2aNfTu3RuAiRMnMmfOHHJzc+nRowfNmjVjypQpWomor7/+munTp5OTk0O/fv1wcnJi69athIaGlvq8bNiwgXfeeYfo6GiCg4MZMWIEr7zyCikpKZqxvR72/NxvypQprF27ltdff52vvvqK5ORkunfvzt9//601u+PixYv54YcfCAsLw9zcnLp16zJ+/Hj69OlDVFQUnp6enD59mqCgIM06BQUFvPfee8ydOxc9PT1eeeUVEhMTUSqVrF27FoC2bdsSFBTEzz//DEBsbCyvvvoqO3bswMnJia+++opPPvlE6zWYPn06P/zwA6mpqYSEhDB06FCGDx+u9TzcT6FQaF6j++O9O2HIvevPmzeP8ePHa71md5+ru69R27ZtqVOnDiqVisWLF6Ovr8/rr7/O119/ranmvP/4eZLYU1JSNBMj+Pv7lxpffn4+gwcPZu/evezcuZN69eqxY8cOfvzxR44dO0Z2djYeHh707NmTCRMmcOjQIQYMGMCtW7e03g931atXj7Zt2/Lpp5/y5ZdfsmvXLqKiolAoFHh4ePDSSy/xzjvvoKdX9GNyyZIlfP7551y8+PhT2m8MO/jY6zxtetRuSUT8jYc3fIr5OtbktZXfPbzhU+6vFyah/P6Xqg6jTKwnjuOL7XOqOowy+7TTKwxf8kVVh1FmCwZ/Strx//ZMdFZNGrE74sTDGz7l2vk25ud9yx7e8Ck2PmQgn2z5q6rDKLMvu75GyxlvPLzhU+7gmJm8sVJ3T4L/ipkvTOSjTVV3cbq8fN39Dcas/rGqwyiTGX3f471/Sy+C+K/4sddbVR3CE0lbsbaqQyiVVf/eVR1ClZBknBCluD/BJB7d/YnEijRx4kSUSiV//vlnhT/WkwoODmb8+PEMGTLksdeVZNzTQZJxTw9Jxj1dJBn39JBk3NNDknFPD0nGPT0kGVe1JBn39JEx44QQ/2mTJ0/G3d2dwsLCqg5Fp/j4eF544QUGDx5c1aEIIYQQQggh/j9Sq5/e2/9TMmacEOI/zdrautSuxk8DR0dHneMsCiGEEEIIIYT4/0mScUKUYsqUKUyZMqWqw/hP2rNnT1WHIIQQQgghhBBCPJUkGSeEEEIIIYQQQgjxrPp/3B30aSVjxgkhhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqVdFN92khlnBBCCCGEEEIIIYQQlUSScUIIIYQQQgghhBBCVBLppiqEEEIIIYQQQgjxjFKrVVUdgriPVMYJIYQQQgghhBBCCFFJJBknhBBCCCGEEEIIIUQlkW6qQgghhBBCCCGEEM8qtcym+rSRyjghhBBCCCGEEEIIISqJJOOEEEIIIYQQQgghhKgk0k1VCCGEEEIIIYQQ4lmlkm6qTxupjBNCCCGEEEIIIYQQopJIMk4IIYQQQgghhBBCiEoi3VSFEEIIIYQQQgghnlUym+pTRyrjhBBCCCGEEEIIIYSoJAq1WlKkQgghhBBCCCGEEM8i5YKlVR1CqayHD6rqEKqEdFMVQoin2MITm6s6hDIb1rgb8WlJVR1GmThaVWPIos+qOowyWzz0c5RTp1V1GGViPfldxq75b+8DwG993mXYks+rOowyWzj4M9ITEqo6jDKxdHDgxz2LqjqMMnuv7VB+P7SqqsMok9Et+nEo8mxVh1FmLTzr8cbK76s6jDKb+cJEWs54o6rDKJODY2by7vpfqjqMMpv23DheWf51VYdRJnMGfPTMnPf+k9Sqqo5A3Ee6qQohhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqVTBXwtJHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWaWWbqpPG6mME0IIIYQQQgghhBDPjJSUFIYNG4a1tTXW1tYMGzaM1NTUB67z8ssvo1AotG7NmjXTapObm8tbb72Fvb095ubmPPfcc9y8efOx45NknBBCCCGEEEIIIYR4ZgwZMoTQ0FC2bNnCli1bCA0NZdiwYQ9dr2vXrty+fVtz27Rpk9b948ePZ82aNSxdupQDBw6QkZFBz549KSwsfKz4pJuqEEIIIYQQQgghxLPq/9lsquHh4WzZsoUjR47QtGlTAGbNmkXz5s25dOkS/v7+pa5rbGyMs7OzzvuUSiWzZ89m4cKFdOzYEYB//vkHNzc3duzYQZcuXR45RqmME0IIIYQQQgghhBDPhMOHD2Ntba1JxAE0a9YMa2trDh069MB19+zZg6OjI35+fowaNYr4+HjNfSdPniQ/P5/OnTtrllWvXp3AwMCHbvd+UhknhBBCCCGEEEIIISpdbm4uubm5WsuMjY0xNjZ+4m3Gxsbi6OhYYrmjoyOxsbGlrtetWzf69++Pu7s7kZGRfPLJJ7Rv356TJ09ibGxMbGwsRkZG2Nraaq3n5OT0wO3qIpVxQgghhBBCCCGEEM8qteqpvX3zzTeaSRbu3r755huduzFlypQSEyzcfztx4gQACoWi5NOgVutcftfAgQPp0aMHgYGB9OrVi82bN3P58mU2btz44Kf3IdvVRSrjhBBCCCGEEEIIIUSl+/DDD5kwYYLWstKq4saOHcugQYMeuD0PDw/Onj1LXFxcifsSEhJwcnJ65NhcXFxwd3cnIiICAGdnZ/Ly8khJSdGqjouPj6dFixaPvF2QZJwQQgghhBBCCCGEqAKP0yXV3t4ee3v7h7Zr3rw5SqWSY8eOERwcDMDRo0dRKpWPlTRLSkoiOjoaFxcXABo1aoShoSHbt29nwIABANy+fZvz58/z/fffP/J2QbqpCiGEEEIIIYQQQjy7VKqn91YBatWqRdeuXRk1ahRHjhzhyJEjjBo1ip49e2rNpBoQEMCaNWsAyMjI4L333uPw4cNERUWxZ88eevXqhb29PX369AHA2tqakSNH8u6777Jz505Onz7Niy++SN26dTWzqz4qqYwTQgghhBBCCCGEEM+MRYsWMW7cOM3Mp8899xy//fabVptLly6hVCoB0NfX59y5cyxYsIDU1FRcXFxo164dy5Ytw9LSUrPO9OnTMTAwYMCAAWRnZ9OhQwfmzZuHvr7+Y8UnyTghhBBCCCGEEEII8cyws7Pjn3/+eWAbtVqt+dvU1JStW7c+dLsmJib8+uuv/Prrr2WKT7qpCiHEHW3btmX8+PFVHYYQQgghhBBClB+1+um9/T8llXFCCPGMOLH9AIc37iIjNQ0HV2c6D+tDzQDvh64XfekaC776Dccazoz6ZqJm+aldhzl34DgJ0bcBcPZ0o93AHrh6u5dbzGtWrGLJP4tJSkzCw8uTcRPepn6DoFLbnz55mt9+/oWoa5FUs7dnyPCh9O7XR3P/+jXr2LppC9euXgPAP8Cf18a8Qe06tTVtFs5dwL7de7h+/QbGxkYE1qvLm2NHU9Oj/Paro28TetZuiY2pBTGpCSw4uZlLCTdKbd/Soy49a7fC2dKOrPxczt66wqJTW8nIywagnXcjWnvVx83aEYDI5FssO7OTq0kx5RZzaYxbN8eoQT0UJsYU3oole8tOVIlJD1nJGJO2rTAM8EFhYoIqVUnOjr0UXI0EwKhhfYwa1kfPxgqAwoQkcg8cpuBqVLnH39qzPh18m2BtYs7ttCRWndtd6vP2YsMuNHMPLLH8dloiU3fOB6CFR12C3WpT3apo8OAbqXH8G3aA6ymx5R77vTr4NKZHrRZYm1oSo4znn1NbufyAY6qFe1161GqBk2U1svNzOHv7CktOb9ccU65WDvSr1xYP2+o4WNjwz6ktbL10tNzjVqvV/DVnDmvWryc9PZ06tWszacIEvL28Hrjezj17mPn339yMiaGGqyujR42iXZs2OtvOXbiQGX/+yeD+/Xn37bc1y/+cPZttO3cSFx+PoYEBtfz9Gf3aawTWqVOmfQrbc5wz2w6TrUzHtrojzQZ0xsVX9+fHrUtRbPxpQYnl/T8fjY1zyQGorx4/z66/V+Ne35/OoweWKc6HObPrCKc27yczNZ1qro6EDOmBq5/nQ9e7FXGdld/OopqrE0O/eEuzvLCgkBMb9xB+8DQZKWnYutjTsn9XPOr6Vdg+7Pp3K5tXriM1ORVX9xoMeWMEfoG1dLY9ceAouzdu5ca1KAryC3CtWYPnXxxA3cZBmjZ7N+/g4I69xFyPBsDDx4t+Iwbj5e9bYfsA0MYriE7+wVibWHArLZEVZ3ZxJfGmzrYvNe5Gc4+6JZbfUibyxfY5ADR3D+SlJt1LtBm7ehoFqsLyDf4x1XfxYUiDzgQ41sTe3IYPNv3B/sgzVRrTvVp41KWtd0OsTMyJTU9m3fl9RCbfKrW9vp4+nf2CaVjDHytjc1JzMth5+TjHosMA0FPo0cG3MY3damFtYk5CRgobwg5xKeF6he5HO++GdPVvVvQ9RJnAktAdRCRG62z7SpOetPKsV2J5jDKBT7bO0vzfybcJ7bwbYmdmRUZeNiduXmTl2d0Vdkz9V897QjwqScYJIf4z8vLyMDIyquowHig/Px9DQ8NKf9wLh0+xbeEauo14ATc/T07tOsSS7//kje8/xNrettT1crKyWTdzEZ51fMlUpmvddz38CnWaN6TGcA8MjAw5vGEni7/9g9e/+wArO5syx7xz2w5++el/TJj0HnXr12P96rW8//a7LFy+CCdn5xLtb8XcYuL4d+nV+zk++eIzzp05y0/f/YiNrQ1t27cDIPTkaTp27khgvboYGRuxeMEi3h07ngXLFuHg6FDU5tRp+vTvR63atSgsLOSvP/5kwlvjWbh8MaampmXer2budRjeqCtzjm/kcsINOvg2ZlK7F3l/wwySspQl2vs71OTN5n1ZeGoLp25ews7MileCezKq2fNM37cUgNpOHhyKOkdEYjT5hQX0rN2SD9oPY+KGGaRkp5fYZnkxat4E46aNyPp3C6rkFIxbNsN8yAukz5wDefm6V9LTw3zIC6izssha9S+qtHT0rKxQ5+VpmqjS08nZvR9VSioAhvVqY9a/Nxl/L3x4ou8xNHT1p1+9diwL3cm15BhaedRjdIu+fLVjns7nbeXZ3ay7sF/zv75Cjw87DOd0zGXNMl97N07evMiK5FsUFBbS0a8JY1r0Y+rO+ShzMsot9ns1rVmHFxt2Zd6JjUQkRtPOpxHvtxnKB5tmkJSVVqK9n70brzfrzaLTWzkdcxlbU0tGNOnJyOBe/O/AcgCMDAyJz0jl2I0whjbsUiFxA8xftIjFy5bx2eTJ1HRzY/b8+Yx55x1WLVmCuZmZznXOnj/PR599xhuvvkq7kBB279vHB59+yuzffy+RSLsQHs6a9evx9S554cHdzY2J77yDa/Xq5Obmsnj5csZMmMDapUuxtS39c/FBrh6/wOHlW2k5pDtO3m5c3HeKLb8upv+U0VjYWZe6Xv8vxmBkUjxTnIllyX1PT0rl6MrtOPvUfKLYHsflo2fZt3gj7YY9R3Vfd87tOca6n+bz4tTxWFWzKXW93Kwcts1agVstb7LStI/3w6u3c/FwKB1e7oOdiwPXz19mw6//MGDyGzi6Vy/3fTi69yCL/5zLsDGj8K3jz55N2/np46lM/Ws61e583t/r8vkw6jSsT7+Xh2BmYc6Bbbv535Rv+eTnb3D3KUpCXjx7gWZtW+FT2w9DIyM2rVjHjx99xdQ/f8LWvlq57wNAoxoB9A/qwJJT27madJPWXkGMbfUCn2+drfNzalnoTtac26f5X09PwccdR3Aq5pJWu+z8XD7b8rfWsqpOxAGYGhpzJekmmy4e4utub1R1OFqCqvvyfGAIq8/uITL5Fs3dAxnV7Dm+3/0Pqdm6P9+HN+qGpbEZy0N3kpiZioWxGfoKheb+bgHNaFQjgOVndhKfkYK/ozsjgnvw6/4VxKQlVMh+NHGrxeCgTiw8tYUriTdp692Ad1oP5OOtf5Gs45yxJHQ7K8/t1vyvr9Dj884jOXHzomZZs5p1eKFeO+Yc38CVxBicLe0YGdwTgKWhO8p9H/7L5z0hHpV0UxVC6KRWq/n+++/x8vLC1NSU+vXrs3LlSgD27NmDQqFg586dNG7cGDMzM1q0aMGlS0VfBC9duoRCoeDixYta2/zpp5/w8PDQ9M0PCwuje/fuWFhY4OTkxLBhw0hMTNS0b9u2LWPHjmXChAnY29vTqVMnANavX4+vry+mpqa0a9eO+fPno1AoSE1NBYqmoB48eDA1atTAzMyMunXrsmTJEq1YMjMzGT58OBYWFri4uDBt2rQSz4FCoWDt2rVay2xsbJg3bx4AUVFRKBQKli9fTtu2bTExMeGff/55pMcvb0c37yGobVMatGuOvasznYf1xaqaDSd3HHjgeptmLyewRSNcfT1K3NdnzDAad2qFs0cN7Ks70ePVQahVaqIuXC65oSewbPFSejzfi169n8PD04Nx747H0cmRNSvX6Gy/bvUanJydGPfueDw8PejV+zl6PNeTpf8s1rT59Ksp9OnfD19/P9w9PJg4+QNUahUnj5/QtJn263S69+qBp7cXPn6+fPjpZOJi47gUflHXwz627gEt2HP1NHuunuJWWiILT24hKSuNjn5NdLb3sa9BQmYqWy8dJSEzlUsJN9gZcRIvu+IfrzMOrWJHxHGup8RyKy2RWUfXo1AoCHR+cHVRWRkHNyTn4FEKLl1BlZBE9r9bUBgaYFRHd+UJgFFQIApTE7JWrKPw5i3UaekU3oxBFV/8o6Mg4hoFVyNRJaegSk4hd89B1Hl56Lu6lGv87X0acTjqHIevnyMuPZlV5/aQkp1Oa8/6OtvnFOSRnpuludW0dcbU0ITD189r2sw/sYn9kWeIUSYQl5HM4lPbUCgU+DtUXAKlm38z9l47zd5rp7mVlsiiU1tJylLSwffBx9S2y8dIyEzlcmI0u66cxPOeYyoy+RZLQ7dz5MYF8gsr5ge6Wq1myYoVjBg+nPZt2uDj5cXnkyeTk5vLlm3bSl1vyfLlNG3cmBHDhuHh7s6IYcMIbtSIxcuXa7XLysrik88/Z/LEiVoDK9/VtXNnmjZpQg1XV7y9vHjnrbfIzMwk4urVJ96nczsO49+yAQGtGmLr4kDzgV2wsLUmbO+JB65nammOmbWF5qanp/0VXKVSsXv2Ghr2aoulw5MlCh/HqW0HqBPSiMA2TbCr7kibIT2xsLPm3K4HV4nsmr8G/2b1cfFxK3HfxcOnadKzDZ71/bF2tKNe+2a4B/pyasuDz0NPatvqDYR0aU+bbh2oXrOoKs7OwZ5dG3QfW0PeGEH3/s/j5e+Ds6sLL4wYglN1F0KPFr92r096m/a9ulDT2xMXN1dGvP06arWasNDzOrdZHjr6NeZg5FkORp0lNj2ZFWd2kZKVThvvBjrb5xTkkZabqbm52zpjZmTCoahzWu3UarVWu7TczArbh8dx5MYFZh1dz95roVUdSgkh3g04duMCR29cID4jhXUX9pOanUELj5JVYwD+Du5427sy6+g6IhKjSclOJzo1jqh7KqUbuQWwM+IEF+Ovk5yVxuGoc1yKv04bH92vb3no4hfM/sgz7I88w+30JJaE7iA5O4123g11ts/OzyUtJ1Nz87B1wczIlAP3VCx6V3MlIvEmR2+EkZSl5EJcJEdvhOFhW77n7bv+q+e9p5pK/fTe/p+SZJwQQqePP/6YuXPn8scff3DhwgXeeecdXnzxRfbu3atpM3nyZKZNm8aJEycwMDDglVdeAcDf359GjRqxaNEirW0uXryYIUOGoFAouH37Nm3atCEoKIgTJ06wZcsW4uLiGDBggNY68+fPx8DAgIMHD/Lnn38SFRXFCy+8QO/evQkNDeX1119n8uTJWuvk5OTQqFEjNmzYwPnz53nttdcYNmwYR48W/8h4//332b17N2vWrGHbtm3s2bOHkydPPtFzNWnSJMaNG0d4eDhdunR5pMcvT4UFBdyOvIlX3QCt5V51A7gZEVXqeqF7j5ISn0hI30e7Opifm4eqUIWpuXlZwi3aVn4+ly9eIrhpsNbyJk2DOX/2nM51Lpw7T5P72gc3a8rFsIsUFBToXCc3J4eCggIsraxKjSUzo+gHitUD2jwqfT19PO1cOHv7itbyc7ev4mdf8scrwOWEaOzMrAiqXtQNysrEnKY1a3P6VulJT2N9QwwU+pquFxVBYWONnoUFBdfu6UpTWEjBjZvo1yi9ysXA15vCm7cw7doBy7ffwGLUSxi3CIZ7KgW0H0iBYW1/FIaGFMaU3hXocekr9HCzcSI8XrsrUHjcdTyrPVqVTnP3QC7FX39g9aGRgQH6enpk5eeUKd7S6Ovp4WFXnXOx2gmk87HX8LWvoXOdiMSiY6q+iw9QdEwF16xF6K2IComxNDG3bpGUlESz4OL3rZGREQ2Dgjh7vvTkxtnz52karP1eb9a0aYl1vvvpJ1q2aEHTJrp/nN0rPz+fNevWYWFhgZ+Pz2PuSZHCgkISb9zGtbZ2FZ5rbS/iruru/nXX6q/+4p/3f2LjTwu4dSmyxP2nN+zDxNKMgFYV9wP9rsKCAuKjblGzjnbXS/c6Pty+WnrXuQv7T5Ian0zT59vr3m5+Afr3VYYbGBly6wHnoSdVkJ9PVMQ16jTUTqzXaViPq+GXSllLm0qlIic7G3NLi1Lb5ObmUVhQ8MA2ZaGv0KOmjTPhcVFay8PjIvGq5vpI22jpUY+L8VElKp6MDYyY2u11vun+JqNb9sPNxrG8wn4m6Sv0qGHtyKV47W6QlxJulJpwquPsSXRqHO19GvFpp1f4oP0wetVuhYFe8YyKBnr65Ku0v6PkFxZoJYnKk76eHu62LlyIu6a1/EJsJD7VdJ8z7tfaqz5hcZFaFWgRiTfxsHXG067ouXAwt6Gui3eJ7zvl4b983hPicUg3VSFECZmZmfz000/s2rWL5s2bA+Dl5cWBAwf4888/ee211wCYOnUqbe6M4fPBBx/Qo0cPcnJyMDExYejQofz22298+eWXAFy+fJmTJ0+yYEHR2Dl//PEHDRs25Ouvv9Y87pw5c3Bzc+Py5cv4+RWNMePj48P333+vafPBBx/g7+/PDz/8ABQl/s6fP8/UqVM1bVxdXXnvvfc0/7/11lts2bKFFStW0LRpUzIyMpg9ezYLFizQVNvNnz+fGjUe7UvK/caPH0/fvn21lj3o8XXJzc0lNzdXa5mxsbHOtvfLSs9ErVJhbq1dGWJubUmGsmQpP0BybAK7l/7L8E/HofeI03DvWroBSztrPAPLPv6PMjWVwsJCbO3stJbbVrMjOSlZ5zpJSckEV7uvvZ0dhYWFpKamYm9fcvylmb/9gYODA42DG+vcplqt5rfpv1AvqD5ePg8fX+9hLI3N0NfTR5mjXYGgzMnA2lT3j7mIxGhmHFzFW636Y6hvgIGePieiLzL/+KZSH2dQg04kZ6dx/va1UtuUld6dpKs6U3tf1JlZKB6QuNSzsUHPw4r88+FkLluNvp0tJl06gJ4euQeOFLdzsMfi5cFgYAB5eWStXI8qUfdr/yQsjE3R19MjPTdLa3l6biZWxh4PXd/K2JzaTp7MO7Hxge2erxOCMjuDi/EVM/5P0TGlR9p9XWCVORlYm+g+ZiMSb/LH4dWMafmC5pg6efMiC09urpAYS5OUXPR6VrvvfV7N1pbbcXEPXK/afd1Iq9naarYHsHXHDi5evsyCWbPuX13L/oMH+WjKFHJycrCvVo0Z06djY2PzmHtSJCcjC7VKjZmV9gUJU0tzstN0Vx2ZWVvQ+sWe2Lu7UJhfQMTRc2ycvpCeE17Cxa9onLnYKze4dPA0fT95/YnielzZ6VmoVSrMrLQ/k0ytLck8r/uHa0psIgdXbqH/h6+Xes6oGejL6a0HcPXzwMbRjhvhV7l2Ohy1SlXu+5Celo5KpcLK1kZrubWtDeeTUx9pG1tX/UtuTi7BIS1KbbNyziJsq9lRp0HJMdrKg8Xd9/d9VWtpuVlYmTz8wpeViTl1nL2Yc+xfreWx6UnMP7GJGGUCpobGtPdpxPtth/LVjnnEZ6SU6z48K8yNis4ZGfedMzJys7A00d2lvpq5NZ521SkoLGTu8Y2YG5nQr147zIyMWRa6E4BL8Tdo49WAa0kxJGUq8XVwo46zF3qKiqmJsTQqOqbu/x6SlpuJ9SMcU9Ym5tR19uavI+u0lh+LDsPS2IwP2w0HRVGScdeVk2y6eLhc44f/9nlPiMchyTghRAlhYWHk5ORoElV35eXl0aBB8VX7evWKy/ZdXIqulMXHx1OzZk0GDRrE+++/z5EjR2jWrBmLFi0iKCiI2rWLBtI/efIku3fvxsKiZILi6tWrmmRc48baSZRLly7R5L4qiOD7KigKCwv59ttvWbZsGTExMZpEl/md5MLVq1fJy8vTJBqhaOprf3//R3uC7nN/jA97fF2++eYbPv/8c61ln332Gd49dSfvdClReKRWo6BkNZJKpWLNjAWE9OtGNZdHu1J+6N+dXDh8imEfj8XAqPzGxNMZcykFVECJ/VGj1rkcYNGCf9ixbTu/zJxRamJz+vfTuHrlCjNmzXysuB/u/pJ7RamzRblaOfBS426sObeXM7evYGtqwZAGnXkluBezjq4r0b5n7Za0cA/kyx3zSlxtLwvDOgGYdi9+z2cu091duMgDuhQoihJ22Zu2g1qNKjYehYUFxs0bayXjVEnJZPy9EIWJMQb+vpj26krmP8vKNSGnK1YFigdFr9HMvQ7ZdybTKE1H3yY0quHP//Yvr/CxmO4/fB60H9Wt7BnWsBtrz+/jXOwVbEwsGdSgEyOa9OTvY+srLMbN27bx9Z0LJQA/37mQUuJtrmNZCYr73+tFQwcAxMbFMe1//+O3n3566EWLxg0bsnjuXFJTU1nz7798+OmnzPvrL+yecMy4x2XjbK81UYOTtxuZyUrObj+Mi587eTm57J6zltbDemJiofsHf0VR3P9hq1brfF1UKhVb/lxGs94dsdUx6cRdbYb0ZOe8NSz8aDooFFg72lG7VUPCDpwq38DvUfIUoi69CvceR3YfYO0/Kxj32USsbHSP9bdpxTqO7jnApO8/x7CCx6st+f7WsVCH5u6BZOfnEBqjnUSNTL5NZPJtzf9XE2/yUceXaOvdkOVndpZDxM8unc96Ka/F3e8ei05tJaegaFzU9Rf2M7xxd1ad3UOBqpC15/cxoH57JrUfhloNSVlKjkeH08St9OEeKoKCB565NVp61CMrP4dTt7QrTP0datKzVgsWntrCteRbOFnYMjioE8raGfwbdrBCYv4vnPf+U/4fz1r6tJJknBCiBNWdq9gbN27E1VW7m4SxsTFX74y3c+9EBXe/1N9d18XFhXbt2rF48WKaNWvGkiVLeP314qv+KpWKXr168d1335V4/LuJPaBEAkutVpf4AaG+7+Qybdo0pk+fzs8//0zdunUxNzdn/Pjx5N0ZQP7+9qVRKBQl2ubnlxy0/v4YH/b4unz44YdMmDBBa5mxsTHLz+16aJxmluYo9PTISNXuSpeZllGiWg4gLzuH29eiiY2KYcv8VcCd50StZuqwCQz54A086xRXvx3euIuD67cz9MPRONUsn24V1jY26Ovrl6iCS0lOKVEtd1e1anYkJ2kP7p+anIK+vj7W9/2YWrJwMf/MXcD0Gf/Dx1d3l7TpP/zEwX0H+PWv33F0Kp/uO+m5WRSqCrE20U4yW5uYl7hKfddzga25nBDNhvCiL7PRqXHkFmzks84jWXFmJ6n3XBnuUasFz9dpzdc7FxCdWnpl0ZPIj7hK4d/3zAh6p/pFYW6OOqM4doW5GerMrPtX11BnFFVq3vulT5WUhJ6FBejpwd0qGZVKM4FD4e04DKo7Y9SkITmby2cg6IzcbApVKiyNtd+fFsZmpD/C2EnN3AM5Fh1GoVp3VU8Hn8Z09gvmt4MruZWWqLNNeSg6plQlKiutTMxLVA3c1at2KyISb7Dp4iEAookn93gen3R6hRVnd1XYRBMhrVoRWLt45uK7n3mJyclalavJKSnYlfI+h6JKunur4DTr3EmgXbx0ieSUFIa9+qrm/sLCQk6fOcPy1as5tGsX+neOX1NTU9xq1MCtRg3qBgbSZ9Ag1m3YwIhhwx57/0wszFDoKci6rwouOz0TU6tH777v6FWDK0eLuuOnJ6SQkZTK1hlLNfffPe/8/eaXDPhiDFYOpT9XT8LU0gyFnl6JSXuy0zIwsy55gSw/J5f4qBgSbtxmzz//FseoVvPLyI/p8+4I3Gp7Y2ZlQa9xwyjIzycnIwtzGysOrtiK1QMmEXpSllaW6OnpobzzGXJXWqoSa9vSJ9KAookf5v78B6M/mkCdhrrHAtu8cj0blq7m/W8+xc2r/Gbavl/G3ff3fRVLlsZmpOWW/jl7V0uPehy9Ufrn1F1q4HpyLI6WlZOE/i/KzLt7ztBOihedM3QPCZGWm4kyJ0OTiAOIS09GT6HAxtSCxEwlmXnZzD2+EQM9fcyMTEjLyaRHrRY6J1IoD+l5pR1T5qSV8j3kXq0963P4+nkK76to7RPYhkPXz2tmvo1RJmCkb8hLjbuzIezgIyX6HtV/6bwnRFlIMk4IUULt2rUxNjbmxo0bmm6o97r6iINfDx06lEmTJjF48GCuXr3KoEGDNPc1bNiQVatW4eHhgYHBo38UBQQEsGmTdve9Eye0B87ev38/zz//PC+++CJQlPiLiIigVq2iq5A+Pj4YGhpy5MgRatYsGnQ9JSWFy5cva+2vg4MDt28XX1mOiIggK+vhX44f9vi6GBsbP3K31PvpGxjg4lmDyPOXCGhS/MMi8twl/BoFlnwsUxNe+3aS1rKTOw4QdSGCfm+PwOaeH36HN+ziwNptDJ70BtW9ym+AekNDQ/wC/Dl+9Bgh7Yqf8+PHjtMqpLXOderUDeTgfu2rr8eOHiOgdoDWMbR44SIWzJ7HtF+nE1C75HOuVqv5+Yef2LdnL7/MnEF11/Ibt6VQVUhk8m3qunhrzUIW6OLFyZu6xzEy1jcs8UNKdff/exLPPWu1pHdgCN/uWkhkcvmNraaRl48qL1U7jowMDDzdyYuLL1qgp4dBzRrk7Npfcv07Cm7ewqiO9viFena2qNIzihNxpVA8YpfpR1GoVhGdGkeAo7vWmDYBju6ce8gYN772NXC0sOVwlO7xCzv4NqarfzNmHFzFjXJOit6vUKUiKvkWgc5enLz3mHL2KjF74l3GBoYlfkip7iR4HqFo6ImZm5lpzZCqVqupVq0aR48fJ+BOtXN+fj6nQkN5643SZ1GsFxjI0ePHGTpwoGbZ0WPHqBdY9HnWpHFjlt4Z8uCuL77+Gnd3d14aOlSTiNNFrVY/8MLIg+gb6GNf04WY8Gt4Nig+xmPCr+Fe/9Erq5OiYzG9k/Sydran36faz8WJdbvJz8ml+cCumD8ksfQk9A0McPSozo0LV/BpVDw77Y2wK3gF1S7R3sjEmKFfjtNadnbXUW6GX6X7mCFY35csNDA0xMLWmsKCQq6cPI9vk/Lv4mlgaIiHrxcXTp+lUcviCvKw02cJalb6GIJHdh9gzvTfeeOD8dRv2khnm80r1vHvklW8O/VjPP3KPnzBgxSqVdxIjaWWk4fW2Fa1nDw484CqXAA/BzccLW05ePjsIz1WDRtHYpQVM3vns6BQreKmMh4/h5qcjy0eAsLPoSYXYnUPCRGVfIv6Lj4Y6RuSV1h0sdbBwhaVWlVi9tUCVSFpOZnoKfSoV92nRDVjue2HSsX1lNvUdvLk1D0zgddx8nzgWLRQVP3mZGnH/oNnStxnpG+g6Y1wl/puNa2i9Or/J/FfOu8JURaSjBNClGBpacl7773HO++8g0qlolWrVqSlpXHo0CEsLCxwd3+0q8R9+/blzTff5M0336Rdu3ZaVXZjxoxh1qxZDB48mPfffx97e3uuXLnC0qVLmTVrVqk/pl5//XV++uknJk2axMiRIwkNDdXMbnq3Ys7Hx4dVq1Zx6NAhbG1t+emnn4iNjdUkwywsLBg5ciTvv/8+1apVw8nJicmTJ5eY3a59+/b89ttvNGvWDJVKxaRJk7SqAUvzsMevCE27tWXdH4tw8XSjhq8Hp3YdRpmUQsMOLQHYtfRf0lOUPP/miyj09HB00x6M2MzKAgNDA63lh/7dyd6Vm+g9Zjg2DnZkpBZdxTUyMcbI5MkSh/caOGQQX332BQG1a1GnbiDr16wjPjaO3v16A0XjvSUmJPDx558C8HzfPqxevopfp/+PXr2f58K582xc9y+fTS3u3rtowT/MnjmLT7+agrOLC0mJRZV0pmammN1JEvz03Y/s2Lqdr3/8DjMzM00bCwsLjMthvzZdPMTo5n25lnSLiMRo2vs0xt7Mmp0Rx4v2O6gjdqaW/HG4qBvoqZhLvNr0OTr6NuHs7SvYmFowrFE3riTeJPXOxAE9a7ekf732/HZwJQmZqZrKu5yCPHILniyx8Chyj53CpGUwqpSiWU+NWzRFnV9A3oVwTRvTXl1RpWeQu6doxsS8k2cwbtwAk87tyTtxGj07G4xbNCXvxGnNOsZtWxXNppqWjsLICMM6/ui7u5G7dHW5xr/rykmGN+7GjdQ4IpNv0dKjHnZmlpor+8/VboW1qQULT27RWq+5e10ik29xOz2pxDY7+jahR60WzD+xiaQspaaKIrcgX/NjrLxtvnSEN5r1ITL5FlcSb9LOuxHVzKzZGVF0IWJA/Q7Ymlry55G1AJyOucwrwb3o4NP4zjFlyYsNu3A18abmB6K+nh6uVg5A0dg/tqZW1LRxIqcgr9zGlFIoFAzu35+5CxdSs0YN3NzcmLtgASbGxnTt3FnT7tMvv8TRwYGxdxJ0g/r357WxY5n3zz+0bd2aPfv3c/TECWb//jtQlPTz8dKeSdjExAQbKyvN8uzsbOYsWEBIy5bY29ujVCpZsWYN8QkJdGzX7on3qW7H5uyZuwYHdxccvWpwcf8pMpKV1AopSuwcW7OTzNR02o3oDcC5HUewtLfB1sWBwsJCrhw9R+SpcDq+3h8AA0MD7Fy1K3ONzEwASiwvTw07t2LrrBU4ebji4lOTc3uPk56kpG67omEfDq7YSkZqGl1G9Uehp4d9DWet9c2szNE3NNRaHns1mowUJQ41q5ORquTI2p2o1Woadw+pkH3o3Lcns374FQ9fb3xq+bF38w6S4hNp16Po2FoxZxGpScmMev8toCgR9/ePvzHkjRF4B/iiTC46zg2NjTC7U+G+acU61ixYyuuT3sbeyUHTxtjUBBNT0wrZjx2XTzAiuAfXU2K5lhRDa68gbM2s2HdnttHegSHYmFow775xRFt41ONa0i2dlbk9arUgMvkW8RkpmBgY086nIW42jiw9vb1C9uFxmBoaU8PaQfN/dSt7fO1rkJaTSVwVj2e37+ppBjfszM3UeKJSbtPMPRBbUwvNhZnutVpgbWLOkjvP46mbl+nkF8ygBh3ZevEo5kYm9KrdkmM3wjRDF9S0ccLa1IIYZQLWJhZ08W+KAgW7rzzZpGGPYuvlY4wKfo6olNtcTYyhjXcD7Mys2HO1qMt4v7ptsTW15O/7xhps7Vmfq0kxxKSVTNqeuX2Fzn7B3EiJ41pyDI4WtvQODCH0VsQj9zh5HP/V895T7SEVtKLySTJOCKHTl19+iaOjI9988w3Xrl3DxsaGhg0b8tFHH2m6oj6MlZUVvXr1YsWKFcyZM0frvurVq3Pw4EEmTZpEly5dyM3Nxd3dna5du5ZIit3L09OTlStX8u677/K///2P5s2bM3nyZN58801NZdknn3xCZGQkXbp0wczMjNdee43evXujVCo12/nhhx/IyMjgueeew9LSknfffVfrfijqbjpixAhCQkKoXr06//vf/x5pxtVHefzyVqd5Q7Izsti/pugHlEMNFwa9/7qmyi0jNQ1l0uN90Ti54wCFBYWs+t9creWt+3ahTb9uZY65Q+eOpCmVzPt7DkmJSXh6e/H9zz/ifKebclJiEnGxxVVH1V2r8/3P0/h1+v9Ys2I19g72vP3eO7RtX/zDeu3K1eTn5/PJJO0ZdkeMeoVXXivq0rZ2VVESbNwbY7TafPjpZLr36lHm/Tpy/QIWRmb0rdsGG1NLbqbG8/2eRSRmFr3+NiYWVDMvrnbZdy0UEwNjOvsFM7RhZ7LycrgQF6n5sg/QybcJhvoGvBMySOuxVp3dzapze8occ2nyDh9HYWCAadcOKExMKIy5TeaSlZBXnHTSs7bSuiKuTk8nc8lKTDq1xWLUcFTpGeQdP0Xu4ePF65ibYfZcNxQW5qhz81DFJ5C1dDUFkeU7CcKpmEuYG5nQzb8ZVibm3E5L4vdDqzWzo1qZmGNnqj0ZhYmBEUHVfVl5brfObbb2rI+hvgGvNn1Oa/mm8EMVMpA1wNEbF7AwMqV3nTbYmFpwUxnPj3sXkZR1zzFlVnxM7Y88g4mBMR39mjC4QdExFRYfybLQ4i7AtqaWTO1WXJHVo1YLetRqQXhcFF/vml9usb80dCi5ubl8+9NPpKenE1i7Nr9Nn65VQRcbF6f1uV+/bl2mTpnCH7NmMfPvv6nh6so3X3xBYJ06uh5CJz09PaKuX2fD5s2kKpVYW1lRu1YtZs2Ygfd9ibzH4d2kDrmZWZzauI8sZQZ21R3pOnYIltVsAMhSZpCZXPxZryos5OjK7WSmpmNgaIBNdQe6jB1Mzbq+pTxC5fBrWo/szCyOrt9FljKdaq5OPP/OS5oupZnKdNKTUh9rmwX5+Rxesx1lfAqGJkZ41POny6gBGJtVTBKraZuWZKZlsH7RSpQpKbi6u/HOlx9h71T0Y1uZnEJSfHGias+m7RQWFrJwxt8snPG3ZnnLjm149b2xAOz6dysF+QXM+Gqa1mM9P7Q/vYdpz/ZeXk7evIiFkQk9arXAysScW2mJ/HZgpaYbo7WJOXZmJT+nGrr6lTr+m5mRCUMbdsHKxJzs/FyiU+P5cc8SolJidbavTAEO7vzWp3hYjnGtihLTm8IPM7UcP3ueROitCMyMTOjkH4yVsTm305P4+8j64nOGsRk2psXDf+QV5vPn4bX0qduG8SEDycrPIfRWBJvDi88FBvoGdA1oTjUzK/IK8gmPj2LxqW1aXVvL2/HocCyMTIsuOJkUJQJ/3r9MMzuqtYlFiWPK1NCYRjUCWBKqO2H7b9gB1Go1fQJDsDW1JD03izO3r1TYd5D/8nlPiEelUFdEKlsIISrR1KlTmTlzJtHR0VUdSrlbeOK/PwvUsMbdiE8rWWH0X+JoVY0hiz6r6jDKbPHQz1FOnfbwhk8x68nvMnbNf3sfAH7r8y7Dlnz+8IZPuYWDPyM94b/d9c3SwYEf9yyq6jDK7L22Q/n90KqqDqNMRrfox6HIR+t2+TRr4VmPN1Z+//CGT7mZL0yk5YzSu5T/FxwcM5N31/9S1WGU2bTnxvHK8q+rOowymTPgo2fmvPdfpPztr6oOoVTWY1+r6hCqhFTGCSH+c37//XeaNGlCtWrVOHjwID/88ANjx46t6rCEEEIIIYQQ4umjkhqsp40k44QQ/zkRERF89dVXJCcnU7NmTd59910+/PDDqg5LCCGEEEIIIYR4KEnGCSH+c6ZPn8706dOrOgwhhBBCCCGEEOKxSTJOCCGEEEIIIYQQ4lklUwU8dUqfslAIIYQQQgghhBBCCFGuJBknhBBCCCGEEEIIIUQlkW6qQgghhBBCCCGEEM8q6ab61JHKOCGEEEIIIYQQQgghKokk44QQQgghhBBCCCGEqCTSTVUIIYQQQgghhBDiWaVSVXUE4j5SGSeEEEIIIYQQQgghRCWRZJwQQgghhBBCCCGEEJVEuqkKIYQQQgghhBBCPKtkNtWnjlTGCSGEEEIIIYQQQghRSSQZJ4QQQgghhBBCCCFEJZFuqkIIIYQQQgghhBDPKumm+tSRyjghhBBCCCGEEEIIISqJJOOEEEIIIYQQQgghhKgk0k1VCCGEEEIIIYQQ4lmlkm6qTxupjBNCCCGEEEIIIYQQopIo1GoZyU8IIYQQQgghhBDiWaT8/peqDqFU1hPHVXUIVUK6qQohxFNsyaltVR1CmQ1u2Jm4tMSqDqNMnKzsGbFsalWHUWZzB04m9cXXqzqMMrH5508+3TKrqsMosy+6juK1ld9VdRhl9tcLk0g7cbqqwygTq8YN2Hn5eFWHUWYd/JrwyZa/qjqMMvmy62uciblc1WGUWX1XPz7aNLOqwyizr7u/wbvrn94f8I9i2nPjaDnjjaoOo8wOjpnJqBXfVnUYZTKr/weMXTOtqsMos9/6vFvVITwZtaqqIxD3kW6qQgghhBBCCCGEEEJUEknGCSGEEEIIIYQQQghRSaSbqhBCCCGEEEIIIcSzSqYKeOpIZZwQQgghhBBCCCGEEJVEknFCCCGEEEIIIYQQQlQS6aYqhBBCCCGEEEII8axSSTfVp41UxgkhhBBCCCGEEEIIUUkkGSeEEEIIIYQQQgghRCWRbqpCCCGEEEIIIYQQzyqZTfWpI5VxQgghhBBCCCGEEEJUEknGCSGEEEIIIYQQQghRSaSbqhBCCCGEEEIIIcSzSqWq6gjEfaQyTgghhBBCCCGEEEKISiLJOCGEEEIIIYQQQgghKol0UxVCCCGEEEIIIYR4Vslsqk8dqYwTQgghhBBCCCGEEKKSSDJOCCGEEEIIIYQQQohKIsk4IYQooz179qBQKEhNTa3qUIQQQgghhBBCm1r99N7+n5Ix44QQ/0mxsbFMnTqVjRs3EhMTg6OjI0FBQYwfP54OHTpUdXhPjWPb9nFow07SU9NwrOFC1+F9cQ/weeh6Ny5dY+4X/8PRzYU3v/2gwuJbs2I1S/5ZTHJiEh5enrw1YRz1GwSV2j705Gl++/lXoq5FUs3eniHDh/B8vz6a+/9ds56tmzZz7WokAP4B/owa8zq169TWtCkoKGDurDls37KN5KQkqlWzp1vPbgwf+TJ6euVzjaqdTyO6+TfDxtSCGGUCi09vJyIxWmfbkcE9aeVZv8TyGGUCH2/5CwB9hR49arWgpWc9bE0tuZ2exIozuzgfe61c4n0Qk749MWrXGoW5GYVXI8matwRVzO0HrmPcpQNGHUPQq2aHOj2DvGOnyFm+BvILNG0UtjaYDuqLQb06KIyMUMXGkTVrAYVRN8o1/iZutWjlWR8LY1MSMlLYfPEI11NiS22vr9CjrU9D6lf3wcLYjLScTPZePc3pmMsANKrhT1B1PxwtbQG4pUxkR8RxYpQJ5Rr3/dp4NaCLfzDWJhbcSktk2ZmdXEm8qbPty42708Kjbonlt5SJTNk+G4Dm7oGMaNKjRJvRq3+kQFVYvsHfQ61WM2v1Stbs2kV6ZgZ1fHyY+PIreNdwK3WdNbt2sunAPq5GF+1vgKcnYwYOoo538WfZ3HVr2X3iGNdv3cLYyIh6vn6MHTQEj+rVy30f9m7czo7Vm1CmpOJS05X+o17Ep06AzranDx1n/+ad3Lx2nYL8fFxq1qDHkL7UblhP02b6h18Rcf5iiXXrNK7PmM/eL/f47wp2q00rz3pYGJsRn5HC5ouHH/reaOfTqMR741TMJQBqO3kQ4tUAOzMr9BV6JGUpORh1jjO3IipsH7au28j6ZatJTUqhhkdNXh4zilr16uhsm5KUzII/ZnPt8lViY27RrU8vXh47qkS7zIwMlsxeyLH9h8lMz8DRxYlhb4ykYbPGFbYfTWvWobVXfSzvvBYbww4S9aDXQk+P9j6NCXL1xdLIDGVOBnuunuLkzUsl2tZz8WZQg06ExUbyz6mtFbYPAC086tLWuyFWJubEpiez7vw+IpNvldpeX0+fzn7BNKzhj5WxOak5Gey8fJxj0WEA6Cn06ODbmMZutbA2MSchI4UNYYe4lHC9QvfjUdR38WFIg84EONbE3tyGDzb9wf7IM1UdlkZb7wZ08W9afM4I3UFEKeeMEU16lHLOSOCzbbM1/5saGtMnMIQGrv6YG5mQmJnK8gr8LtLasz4dfJtgbWLO7bQkVp3bzdWkGJ1tX2zYhWbugSWW305LZOrO+UDR8RnsVpvqVvYA3EiN49+wAw/83BOiIkkyTgjxnxMVFUXLli2xsbHh+++/p169euTn57N161bGjBnDxYslf9SUh7y8PIyMjCpk2xXh/OGTbFmwmh6vDKCmvxcndhzkn2//YMyPk7Gxtyt1vZysbNb8vhCvQD8ylOkVFt/ObTv49af/MWHSuwTWr8f61WuZ+PZ7LFj+D07OziXa34q5xcTx79Gzdy8+/uJTzp85y0/fTcPa1oa27dsBcPrkKTp07sTb9QIxMjZmyYJFvDf2HeYv+wcHRwcAFi9YxPpVa/loysd4eHlyKfwi33wxFXMLC/oPHlDm/Qp2q8WQoE4sPLWFiIRo2vo0ZELIICZv+ZPkrLQS7Ref3s6Ks7s1/+sr9Piiy6scjw7XLOtbtw3N3esy78RGbqclEejsxVstX2DqzvncSI0rc8ylMe7ZBeNuHcn6cz6FsXGYPN8diw/Gk/b+p5CTq3MdwxbBmAzsQ9as+RRGXEPP2RGz118GIGfRCgAUZmZYfvo++eGXyfzhV9Rp6eg5OaDOyirX+AOdvehWqzkbwg5yIyWOJm4BvNioK78dWIEyJ1PnOgOCOmBhbMra8/tIzkrD3MgUPYVCc7+HXXXO3r5CdHgcBapCWnnWZ3jjbvx2YCXpueUb/12NawQwMKgDi09t40pSDCFeQYxr1Z8pW/8mObvke3RZ6A5Wn9ur+V9PT49PO47gZIz2Z2N2fi6fbJmltawiE3EACzasZ/GmTXz6xpvUdHZhztrVjP3ma1b++BPmpqY61zkZHkbn5i2pN9wPYyNDFmz4l7Hffs2y737E0a7os+zUxXD6d+xMbW9vCgtV/LF8KW99+zXLv/8RUxOTcov/xP4jrPz7Hwa98TJetf04sGUXM6b8wCczvsPO0b5E+ysXLhIQFMhzw/pjZmHO4R17+ePLaUz88XPcvD0AeO2j8RQUFCeqM9My+HrcRzRs2bTc4r5f8XvjADdS4mjsVothjbrx64Hlpb43BgZ1xMLYlDXn95Gcpbzz3ii+gJGVn8veq6dJzEylQFWIv6M7fQLbkJmXXWriuCwO7d7PvBl/8+rbb+AfWJsd/27h6w+mMH3uDOydHEu0z8/Px8rGmr4vDmDjynU6t1mQn89X73+ClY0NE6Z8QDV7e5ISEjAxMyv3+O+q6+JNj9otWH9+P9dTYgmuWZuXmvTg533LUOZk6FxncINOWBiZsfrsHpKy0rC473PqLhsTC7oFNH9gQqy8BFX35fnAEFaf3UNk8i2auwcyqtlzfL/7H1Kzde/H8EbdsDQ2Y3noThIzU7EwNkP/nv3oFtCMRjUCWH5mJ/EZKfg7ujMiuAe/7l9BTFrFXgB5GFNDY64k3WTTxUN83e2NKo3lfkXnjI4sOrWVK4kxtPEKYlzrAXy25W+Ss0t+D1l6egerzu7R/K+vp8ennV7hxD3JXX2FHhNCBpGWm8nMw2tIyU7HztSKnIK8CtmHhq7+9KvXjmWhO7mWHEMrj3qMbtGXr3bMI0XHeW/l2d2su7BfK94POwzXXEgD8LV34+TNi6xIvkVBYSEd/ZowpkU/pu6cX+p7TYiKJN1UhRD/OaNHj0ahUHDs2DFeeOEF/Pz8qFOnDhMmTODIkSNERUWhUCgIDQ3VrJOamopCoWDPnj2aZWFhYXTv3h0LCwucnJwYNmwYiYmJmvvbtm3L2LFjmTBhAvb29nTq1AmATZs24efnh6mpKe3atSMqKkorvqSkJAYPHkyNGjUwMzOjbt26LFmypCKfEp0Ob9xNw3bNadS+BQ6uznR7qR/W1Ww5sf3AA9f79++l1G3ZiBq+nhUa3/LFy+jxfE969n4OD08Pxr07HgcnR9auXKOz/brVa3F0dmLcu+Px8PSgZ+/n6P5cD5b9U/zcfvrVFPr074uvvx/uHu68P3kSKrWKk8dPaNpcOHeelm1a07xVC1yqu9C2QzuaNA3mUnj5JHE7+zdlX2Qo+66Fcjs9iSWnt5OcnUZ774Y622fn55KWk6m5edi5YGZkyoF7rrA396jLhvCDnL19lYTMVHZfPcX52Gt09a+4H+sAxl07kLNuM/knTqO6eYusP+ehMDLCqEVwqesY+HhREHGV/MPHUSUmUXA+nLzDxzHwci/ebq8uqJJTyP5rPoXXooraXbiIKj6x1O0+iRYedTl18xKnbl4iMTOVzRePkJaTQZOatXW297GvgYedC/+c3Mq1pFukZmcQo0wgOjVe02bV2d0cjw4nNj2ZxEwl687vR6FQ4FXNtVxjv1cnvyYciDzLgaizxKYnsfzMTlKy0mnj3UBn++yCPNJyMzU3D1tnzIxMOBh1TqudWq3WapeWqzsJU17UajVLtmxmRO/etG8SjI+bG1PeGE1OXi5bDx0sdb2vxrxF/06d8ffwwKO6K5NffQ21Ss3xC+c1bX6d9CG92rTFu4Ybfu7ufPr6m8QmJRIeGVmu+7Br7WZadGpLyy7tcHFzpf+oYdjYV2Pf5p062/cfNYzO/Xri4eeNY3Vnnh8+EEcXZ84dO61pY25pgbWtjeZ2MfQ8RsZGNGxV+vusrFp41OPUzUucvHmJhMxUNl88TFpOBsEPeW8sPLmFa0kx97w3ii8GRCXfJjw+ioTMVFKy0zly/Txx6cm425S8uFIeNqxYS/tunejQows13N14eewo7B3t2bZ+s872js5OjBj7Gm06t8fMXHdybdfmHWSkZfD+l5MJCKyNg7MjAXXr4OFdcefDVp71OBl9kRM3L5KQmcrG8EMoczJo6q77tfC1d8PTrjrzT2zialIMqdnp3FTGl7gwo0DBgKAO7Ig4QXJWxV1YuyvEuwHHblzg6I0LxGeksO7CflKzM2jhUU9ne38Hd7ztXZl1dB0RidGkZKcTnRqnVRHYyC2AnREnuBh/neSsNA5HneNS/HXa+Oj+7KtMR25cYNbR9ey9FlrVoZTQyS+YA5FnOBBZdM5YdmYnKVlpDzhn5GqdB9w154yzmjatPOthZmTC7wdXczUphuSsNK4k3eSmMl7nNsuqvU8jDked4/D1c8SlJ7Pq3B5SstNpraMnAUBOQR7puVmaW01bZ0wNTTh8vfg8Mf/EJvZHniFGmUBcRjKLT21DoVDg71CzQvbhqaNSPb23/6ckGSeE+E9JTk5my5YtjBkzBnNz8xL329jYPNJ2bt++TZs2bQgKCuLEiRNs2bKFuLg4BgzQroyaP38+BgYGHDx4kD///JPo6Gj69u1L9+7dCQ0N5dVXX+WDD7S7cebk5NCoUSM2bNjA+fPnee211xg2bBhHjx594v1+XAUFBdyKjMa7nnbXKe96AURfLv3H6ek9R0iJS6RNv24VGl9+fj6XL16iSVPtH5tNmgZz/ux5netcOHe+RPvgZk25GHZRq6rkXrk5ORQUFGBlZaVZVrd+PU4dP0H09aLukFcuR3DuzFmatWxell0Ciq4me9i6cCFW+zm+EHsNb/saj7SNEM8gwuIiSbqnis5QT5/8Qu19zCsswNeh9K59ZaXnYI+ejTUF58KKFxYUUHDxMga+3qWuV3D5CgYeNdH38tBsx7B+IPmhxYkgw4b1KLh2HbO3XsNqxg9YfDUZo7atyjV+fYUeLlb2XE3U7tJyJTGGmjZOOtcJcHTnljKRVp71eK/tEMa1HkAX/6YY6OmX+jiG+gboK/TIztddKVhW+go9ato4ExanfUyFxUXi/YgJwJYe9bgYH1WiMtPYwIhvur3Bd91HM7ZlP/6PvfuOb6p6Hzj+Sbr3XkDppqW07FF22RsEVBREBQX5uvdWHD/3QAW3shQQQUAEZMqeZZRZSksp3btN90ry+6OQkjaFQluK+Lxfr7wgt+fePqf3JDc59znneNrXziZqTMmZGWTn5REWWv3l3NTEhM5BbTkRc+4qe+orLSujUl2JrYFrwGWFl7Isba2tbzzgGiorKkmIvUDbTvpDodp2CiEuqn5DMTUaDaUlpVja1B37vi076NKvJ2aNmNF3JSOFkha2zrWy1WKzkvC86msjkz4+HXghfApP1eO14evYAmcrO+Jzrz6s/UZUVlQQdy6WDl31Oxfad+1E9OmoOva6tiP7DhLQLoifv/yOGROn8tz0x1i15Hc06qbJGK06Fy61pjGIzUyqsxOzrZs3yapM+vl25KWBU3m2/z2MCAqrdS4GBnShqLyUI0lNM1rgSkYKJa3sXInO0J9mIDozAW8HD4P7tHP3ITEvnYH+XXhzyHReHjiVMcF99OphrDSiQqN/7atQV+Lj2PjDz28XRgolXg7unEmL19t+Oj0eP+f6XTP6+HQgKl3/mtGhRQBx2clM7jyUz8Y8wVtDH2JkUE8U1M7IbCgjhRJPezeiMvSHI0elX8THqX7nvqdXCNEZFw1m0V1mamyMkVJJcUVpg+IV4kbJMFUhxL9KbGwsWq2WoCDD8/PU17fffkvnzp15//33ddvmz5+Pp6cn586do02bNgD4+/vz8ccf68q8+uqr+Pr6MmfOnKq7aYGBnDx5ko8++khXpmXLljz//PO650888QQbN25kxYoV9OjRtJlMlxXnF6HVaLCys9HbbmVnQ6Gq9hAFgOzUDLYuW8u0t57GyKjuL1iNQZWXh1qtxsFRf7iso5MDOdnZBvfJyc7B0clBb5uDoyNqtZq8vDycnWsPEftu3ne4uLjQpXv1XD9THriPosJC7rtrMkqlEo1Gw4z/zWTwsCENrpeNqSVGSiX5NYY7qEqLCDG/dqeAnbk1oR5+fH9gjd72U2lxDAvswbnMBDIKc2nr5kOnlm0MDktqLAr7qg5MTY32olEVoLzKMOeKA4cpsbHB+s0XAAUKYyPKtu6g7K/quYqULi6YDepP2catFK39GyM/byzun4S2spKKPQcaJX5LU3OMlEoKy/WHjhaVl2BtZng4pIOFDa0d3KjUqFl2bAuWJuaMbtcbCxMz1pzaZXCfIW26kV9aRFwd89g0lLXZpTZVYwhsflkRtuZ1d+hcZmduRYi7Lz8d+ktve1pBDgsPrydZlYm5iRmD/LvyUvh9vLN1ARmFuY1ah8uyLy1y42hnp7fd0c6OtKz6Z0XO+20ZLo6OdA+pPccRVGXgzVnyCx0DA/H3bLwO68L8AjQaDTb2+vHb2tuRX88FfLat2UB5WRld+hi+FsSfO0/KxSTue7L2XGaNpfq1UaK3vbC8BBszwxljjha2tHZwp1KjZumxzViamDOmXR8sTMxZc6p6SLSZsQkvhN+HsdIIjVbDujN765zjqSHyVfloNBrsHOz1tts52JOXk3fDx01PTSPz2An6DA7nlQ9mk5qUws9ffYdGrebO++9tWNAG6M5Fmf65KCgvJsDMcNt1tLTB69K5WHJkE5am5oxr1xcLE3NWndwBQGsHd7q2CmLunpWNHrMhVqYWl+qh/z5VWFaMjbnhNuVkZYePYwsq1WoWRKzHytScie0HYGlqxvLIqkzT6IwE+vt2Ii47mewiFQEunrRz99UbHi30VV8z9DOdC0qLsLuea8bBtXrbna3sCXL14mDCab7c/TtuNo5M7jQUpULJuqi6M5tvrA5V7anm1A8FZUXYmnlfc39bMyuC3XxYeHj9VcuNa9cPVUkhZzOafw5C8d8knXFCiH8V7aUVdxQN7IQ4cuQI27dvx9pA1sT58+d1nXFdu+pP2BwVFUVYWJje7+/ZUz+jSq1W8+GHH7J8+XKSk5MpKyujrKzMYCbfZZfLXMnMzOy661VTrTuWWjB0E1Oj0fDHvEWE3zkSZ4+mzY65Us3zqNVe/dzWvgOrrWN71dxw2zZv4avv5un9Lf/Zso3Nf2/mzf97C29fH2LPxTD38y9xcnFmxOiRN16ZWlHVjPvaq0X18WlPcUWpbkL0y5Ye28KDXUfy/ohZaIGMwlz2XDhucOGHG2XSqzuW06fonhd+Ou/S/2rEfY2XnnHbNpiPG0HJwqVUxl7AyN0Vi/smoblDRdmaDVWFlArUcRcp/X0NAOqLiRi1bIHZoP6N1hl3NXUt3HW57a088Q9llRUAbDx7gEkdB7PuzN5a86n18WlPqIcfCw6tb/K51moGrUBRnyZFT69QSipKiUzWzzy7kJOiN4/U+awkXh/8IAP8OrP8uOEhl9fr7717+ODn6jnp5rzwUnXsV9BqgXq+py/+ay2b9+/lu9ffxKyOOTw/XriA2ISL/Pjm2zcW+DUYfN+qR3ZIxM59rF+6mlmvP1OrQ++yfZt30MKrFd5t6s4+bTy129S1Xhsr9F4b+5nUcQjrzuzRtf/yygq+2fcHpkYm+Dq1YHhQGDkl+cTnNH523JVx6Wi19W1KBmm1Wmwd7Hjk2cdQGhnh28af3Owc1i5f1SSdcbrfW+P51a4Zl9va8shtlF2ar2tD1D7u7TyUtad3o1QoubvDQFaf2nnTM34MRlxHo7pcjyVHN+nmHVt7ejf3dx3JHyd2UKlRs+bULu7uMJCXBk5Fq4XsYhURiVF082zbRDW4fWgN/N3rs2hlL+9QiitK9eZaA1AqFOSXFbH48Ea0aEnIS8fe3JqhgT0avTPuioj1nilQ1OeyR5hXO0oqyjiREltnmcEB3ejSKpAvd//e9NfvW4ShNiGal3TGCSH+VQICAlAoFERFRXHHHXcYLHN5RcwrLzoVFRV6ZTQaDWPGjNHLaLvMw6N6SEXNDrT6XMg+++wz5syZwxdffEFoaChWVlY8/fTTlJfXPcntBx98wNtv639xnD17NoFje13z9xliaWuFQqmslQVXlF+A9RVDNi8rKyklJS6B1PgkNiysmmRfe2m58benPMXUVx7FNyTwhmIxxM7eHiMjo1pZcLk5ubWy5S5zdHIkOzunVnkjIyPsanyxXfbLUn5dsJjPv/4CvwD91WO/+fJrpjxwH4OGDgbAz9+PtNQ0liz8pcGdcQXlxag1GuxqZMHZmlvWOSn6lfr6dGBf/EnUNebPKCgrZu7elRgrjbA2sySvpIC72g8gqyivQfFeqeLocQrOXzEU0rjqI4LSzg51XnU7UtraoK0juxLA/M6xlO89SPmOqg/nmqQUMDPDcvp9lP35N2i1aPNUqFP0v5yrU1Ix6dZ48wAVl5ei1miwNtXPyrAytaCoRkbQZQVlxeSXFuk6GwAyC/NQKhTYmlvpDdnp7R1KX9+OLIrYQHphjqHDNYrCsqo2VTMLzsbMsl5zvPX2DuVAwmnU2qvPyaIF4nPScLOpO+vxevXr3IWQK1Y8Lb/0d81W5eHsUJ3lmpuvwsnOcOfUlX5Z/xcL1q7h61deI6C1l8EynyxawK6jh/nhjbdwc3JqYA30WdvaoFQqyc/N09teoFLV2bl22eHdB/j1q594+OUnCOpYe8U/gPLSMg7vPsDoKRMbK2SD6n5tmNfKJL2svq8NLej+n1aQjYuVA/18OzZ6Z5ytnS1KpZK8HP0sTlWeqla23PWwd3TA2NgY5RXZ4S1btyIvJ5fKigqMTUxu+NiGXD4XNjWyda1NLWply11WfS6qP1NkFOaiVCiwM7fG1MgYR0tbpnapnm7icqflu8NnMmfXbwYXE2qIovKSS/XQb1PWZpYU1FGP/LIiVKWFegsApBfkoFQosLewJqtIRVF5CQsi1mOsNMLS1Jz80iJGte3V6PHfTi5fM2p+DrExt6rnNaM9By7WvmbklRai1mjQXtEdllqQjb2FNUYK5TWvMdejsOxye9K/7lW1p2vXIcwrhEOJZ+qMaZB/V4a26c68vStJyW/cuWqFuB6S4yuE+FdxdHRk2LBhfP311xQV1b4g5+Xl4eJStWpmamr1h/8rF3MA6Ny5M6dPn8bb2xt/f3+9x9Uy2IKDgzlwQD9zp+bz3bt3M27cOO677z46dOiAr68vMTFXn0/olVdeQaVS6T1eeeWVq+5zNcbGxrTw8eT8Cf25Ys6fjMazTe2JqM0szPnfx68w68OXdI+ug3rj1MKVWR++RCt/7xuOxRATExPaBAVy+GCE3vbDhyIIaW/4i2q70BAOH9IvH3HwEEHBQRgbV99bWvbLEhb/vJBPvvqMoODad8/Lykp1HbaXGSmVaBrhjqFaoyE+N5V27vp/42A3H85fYzXBQJfWuNk4svuKhRtqqtSoySspwEihpEuroFp3rhuktAxNemb1IzkVTZ4K45Ar/oZGRhgHtaEy5nzdxzE1BU2Nv6VGo5dRV3nuPEYe+nNTKd3d0GQ1XqeWWqshNT+r1hw5fs4t61yBNiE3HRtzK0yNqtuTs5UdGq2G/Cs6U3t7t6e/X2d+ObyxyT/Iq7UaEvLSCHbz1tve1s37msP/2rh44mbjyJ4LJ65a7jJPe1dUdax6eCOsLCzwdHfXPXxbtsLJ3p6DJ6vnD6yorOTo2SjaB7S56rF+WfcXP69exVcvvkKwb+2sMa1Wy8cL57M94hDfvvYGLV0bP8PX2MSY1v4+RB3Tn9fybOQpfNsG1LlfxM59/PLF90x7/lFCr9LhfGTPQSorKuke3rvRYjZErdWQYvC10UpvQYYrJeSm1XptOBl4bdSkUHDVeeVulLGJCb5t/Dlx5Jje9hNHIglsd+NZU4EhwaQlp6K54oZIalIKDk6Ojd4RB5fPRSb+zvpDUv2dW3IxL83gPhdz07Axt6zxPmWPRqtBVVpIZlEeX+5azrw9K3SPs+nxXMhOrlpJuhFf41fWI0mVQZsaE+G3cWld55yB8Tkp2JpZYWpU/Xd1sXZAo9XUWn21UqMmv7QIpUJJ+xb+nEqLa/Q63C7UWg0Xc9NoW+OaEezmXWsO1ZraXPocssfA55DzWUm4Wjvo5QC7WTuSV1LQqB1xUFWHxLx0glz1b7oEuXpxIfvqKwMHOLfC1dqB/TUWLLpsUEBXhgeF8c2+VU26Gr0Q9SGdcUKIf51vvvkGtVpN9+7d+eOPP4iJiSEqKoqvvvqKnj17YmFhQVhYGB9++CFnzpxh165dvP7663rHeOyxx8jJyeHee+/l0KFDxMXFsXnzZqZPn476KhM1z5o1i/Pnz/Pss88SHR3N0qVLWbhwoV4Zf39/tmzZwr59+4iKiuKRRx4hLc3wh+rLzMzMsLW11Xs0dJhqz1EDOLp9P0e37yczOY2Ni/9AlZVD18FVE+VvXbaWVd8sBqqyCd08W+g9rOxsMDYxwc2zBabmDR8yW9Pdkyex7s+/WL92HfEX4pn7+ZdkpKUzbuJ4AL6f9y3vzX5XV37chDtIT01j3pyviL8Qz/q161j/5zom3Vc9dGjp4iX89O2PvPTmK7h7eJCdlU12VjbFxdXZHr369OaXBYvYv2cfqSmp7Nq+k+VLl9M3vF+j1Gtz9EH6+XSkr08HPGycuKfjYJws7dh+/igAd4aG83CPMbX26+fbkfPZySSrMmv9zNexBV1aBuJiZU+AsyfP9r8HhULBhrP7GyXmupRt3Ib52BGYdO2IslULLB95EG15OeX7DunKWD7yIOZ336F7XnnsBGaD+2ES1hWlixPGIW0xv3MsFUdP6MbIlG3cipGfL2ZjR6B0c8GkZzfMBvSlbOuORo1/X/xJOrcKpFPLNjhb2TM8KAw7c2siEqomeB/cphsTQsN15U+mxlJSXsodof1xsbLHy8GdoYE9OJp0TjeMpY9Pewa16cqaUzvJKynA2tQCa1MLvS/GjW3LuQj6+HSgt3co7jZO3N1hII6WtrpV/MaH9GNat1G19uvj3Z647BSDHYaj2/Ym2M0HZys7Wtm58kCXEXjauzbpyoAKhYJ7h49gwdo1bI84RGxiIm9/9w3mpmYM61XdATX726+Z91v1KsmL/1rLtyuW8+bMWXi4uJCVl0dWXh7FpdVD8D5aOJ+/9+7h3ceewNLcQlem9CoZyTdi4B0j2LdlB/u27CQ1MZmVP/5KbmY2fUcMAmDNouUs/Pw7XfmInftYNOd7JkyfjE+QP6rcPFS5eZQU1c5A27dlBx3CumBta1PrZ41tX/wJurQKovOl95URQT2xM7fm0KXXxpA23Zh4xWvjxKXXxvjQcN1rY1hgD44mReteG/18O+Ln1BIHCxucrezo5R1KxxZtOJ5Sv8Utrtfou+5g24Yt/PP3FpIuJrLw6x/JSs9kyJiqjLClPy5i3gef6+0THxtHfGwcpSWl5KtUxMfGkRRfvejA0LEjKMgvYOG8H0lJTObogQhWL13BsHGNM4WBIXsunKCrZxBdWlWdi5Fte2FnYcOhi1WL5wwN7M6d7Qfoyh9PiaG4vIyJ7Qfgau2At4MHI9qGcSSx6lxUatSkF+bqPUoqyymrrCC9MLfRO04u23X+GD282tHdMxhXawfGtuuLg4W1rlNkZNte3Nupem7Wo0nnKK4o5Z5Og3GzdsTXsQVjgntzKOGMrk21tncj1MMPR0tbfBxbMDNsHAoUbI890iR1uB4WJmYEOLci4NLiTC1snQlwboWbtcM19mx6W84doq9vB3p7t790zRh06ZpR1Xk9PqQ/07uNrrVfH5/2xGUnG7xm7Dh/DGtTc+7pOAQ3awdC3f0Y2bYn22OPNkkd/ok9Qi/vUMK8QnCzcWRCaDiOlja6G5Zjg/swtcvwWvv19ArlQk4KqQW15x8eHNCN0W17s+ToJrKLVdiYWWJjZqnXIXxbuzTi5ZZ8/EfJMFUhxL+Oj48PR48e5b333uO5554jNTW1apL+Ll349ttvgarFGKZPn07Xrl0JDAzk448/ZujQobpjtGjRgr179/LSSy8xbNgwysrK8PLyYvjw4bWypq7UunVr/vjjD5555hm++eYbunfvzvvvv8/06dN1Zd544w0uXLjAsGHDsLS0ZObMmdxxxx2oVKqm+6MYENKzC8UFRexctZHCvHxcPT2Y8tL/sHepGoZWkKdCldU0E7XXx6Chg8lX5bPopwVkZ2Xj4+fLR198irtH1Qpy2VnZpKdV37Vs0bIFH3/xKXPnfMXqFatwcnHmqeefJnxg9ZeUNStXUVFRwZsv6Xe+PjhjOtNnPgTA0y88w0/f/cjnH31Kbm4uzs7OjJ0wjgcfntYo9TqUGIWVmSVj2/XBztyaZFUmc3b/plsd1c7CGidL/SFtFiZmdGkVxNJjmw0e08TImPGh/XG1dqC0spwTqbH8eGBtk63geVnZuk0oTE2weHAyCktL1OcvUPjRl1Ba/XuVzo56H6RK12xAqwXzu8ahdLBHm19IxbETlK5YoyujjrtI0RffYjFpPOZ3jEKTmUXJr79TcUUnX2M4lRaHhYkZ4f6dsTGzJKMgh1+PbER1aYENGzNL7CyqM2HL1ZUsOryBUW178Uiv8ZSUl3IqLY5tMYd1Zbq1DsZYacQ9nfQX/Ngee6TJvpQcTjqLlakFo9r2xs7cipT8LObuWaEbqmVnbo2jpf7wcwtjUzq3DOS3OuZ/szQ1Y2rnYdiaW1FSUUZiXgaf7FjaJCtfXun+0WMpKy/no4XzKSgqop2fP3NffhUri+phemnZWXpzga3cupmKykpe+nKO3rFmTJjIzIl3AfDH1i0AzPq/d/TKvDlzFmP6hzda/F37hlGUX8CG31aTn5OHh1crHp39Ak6uVQvI5OfkkZtZ/UV2z8Z/0KjVLP9uEcu/W6TbHjawL/c/84jueXpyKufPnOOJd15qtFiv5lRaHJYm5rrXRnpBDr8c+Vv32rA2s8TOonqYW7m6koWH1zOqbW9m9Zqge21sjanOVjYxMmZMcB9sza2oUFeSVZTHyhP/NFkWU68BfSnIz+ePxb+Rm5ODp7cXr3wwGxf3qqzI3JwcsjL0b268OPMp3f/jzsWyZ9tOXNxc+XrZzwA4u7rw+sfvsOibn3jh4SdwdHZixIQx3HFP0w0dPpl6HksTcwb6d606F4U5LIrYQJ7ufcoKe4vqDtpydSULDq1jdLs+PNp7AsXlZZxMPc+Wc437/nm9IlNisDQ1Z0hgd2zNrEgtyOanA2t1q1namlnWqEcF3+9fw/jQ/jzdbxLFFaVEpsTwd1T1TSZjI2OGB/XEydKW8soKojLiWXp0s97Q1uYS5OLFvPHP6p4/2afqvWhD1H7e+2dRXbvdFIeTzmJtZsHo4Oprxle7q68Z9haGrhlmdG4ZyPLIrQaPmVtSwJxdy5nUcRCzhz5EbkkB22IO8/fZppnn9WhyNFam5owIDMPW3IrU/Gy+2bequj2ZW+FooV8Hc2NTOrYIYOXJ7QaP2denAyZGxjzcY6ze9g1R+5r85qYQhii0MpOfEELcspYdNdw5829yb+ehpP/L5+Rws3Vm2vL3mjuMBlsw6TXy7nvk2gVvYfa/fs+bG3+8dsFb3DvDZzBzZe05K/9tfrjzJfIPH7t2wVuYbddObDsXce2Ct7hBbbrxxsYfmjuMBnl3+EyON+bw+2bSoWUbXt3w3bUL3uLeHzmL59Z+1dxhNMhnY5+k99ezmjuMBtv72HfMWPFhc4fRID/e9TKPr/6sucNosHnjn2vuEG5I3hu37udY+3dfa+4QmoVkxgkhhBBCCCGEEELcrmrO5yuancwZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidtVEKymLGyeZcUIIIYQQQgghhBBC3CTSGSeEEEIIIYQQQgghxE0iw1SFEEIIIYQQQgghbldaWU31ViOZcUIIIYQQQgghhBBC3CTSGSeEEEIIIYQQQgghxE0iw1SFEEIIIYQQQgghblcaGaZ6q5HMOCGEEEIIIYQQQgghbhLpjBNCCCGEEEIIIYQQ4iaRYapCCCGEEEIIIYQQtytZTfWWI5lxQgghhBBCCCGEEELcJNIZJ4QQQgghhBBCCCHETSLDVIUQQgghhBBCCCFuV1pNc0cgapDMOCGEEEIIIYQQQgghbhLpjBNCCCGEEEIIIYQQ4iaRYapCCCGEEEIIIYQQtyuNrKZ6q5HMOCGEEEIIIYQQQgghbhKFVquVLlIhhBBCCCGEEEKI21Dec683dwh1sv/s/5o7hGYhw1SFEOIW9uE/i5s7hAZ7eeD9nE2/0NxhNEiQmw93Ln6tucNosJX3v0feQ080dxgNYv/zXF5a/01zh9FgH416lDsWvtzcYTTYmgc/JCM/u7nDaBBXWyeWHt3U3GE02OTOw3hi9efNHUaDzB3/LKtO7GjuMBpsQvtwHlv1aXOH0WBfT3ie6b+/39xhNMj8u19lxooPmzuMBvvxrpfp/fWs5g6jQfY+9h3Tlr/X3GE02IJJ/9LPg5KDdcuRYapCCCGEEEIIIYQQQtwk0hknhBBCCCGEEEIIIW4bubm5TJ06FTs7O+zs7Jg6dSp5eXlX3UehUBh8fPLJJ7oy4eHhtX5+zz33XHd8MkxVCCGEEEIIIYQQ4nb1HxymOnnyZJKSkti4cSMAM2fOZOrUqfz111917pOamqr3/O+//+ahhx5i4sSJettnzJjBO++8o3tuYWFx3fFJZ5wQQgghhBBCCCGEuC1ERUWxceNGDhw4QI8ePQD48ccf6dmzJ9HR0QQGBhrcz93dXe/5n3/+yYABA/D19dXbbmlpWavs9ZJhqkIIIYQQQgghhBDipisrKyM/P1/vUVZW1qBj7t+/Hzs7O11HHEBYWBh2dnbs27evXsdIT09n/fr1PPTQQ7V+tmTJEpydnWnXrh3PP/88BQUF1x2jdMYJIYQQQgghhBBC3K40mlv28cEHH+jmdbv8+OCDDxpU3bS0NFxdXWttd3V1JS0trV7HWLRoETY2NkyYMEFv+5QpU1i2bBk7duzgjTfe4I8//qhVpj5kmKoQQgghhBBCCCGEuOleeeUVnn32Wb1tZmZmBsu+9dZbvP3221c9XkREBFC1GENNWq3W4HZD5s+fz5QpUzA3N9fbPmPGDN3/Q0JCCAgIoGvXrhw9epTOnTvX69ggnXFCCCGEEEIIIYQQohmYmZnV2flW0+OPP37NlUu9vb05ceIE6enptX6WmZmJm5vbNX/P7t27iY6OZvny5dcs27lzZ0xMTIiJiZHOOCGEEEIIIYQQQgjBbbOaqrOzM87Oztcs17NnT1QqFYcOHaJ79+4AHDx4EJVKRa9eva65/88//0yXLl3o0KHDNcuePn2aiooKPDw8rl2BK8iccUIIIYQQQgghhBDittC2bVuGDx/OjBkzOHDgAAcOHGDGjBmMHj1abyXVoKAgVq9erbdvfn4+K1as4OGHH6513PPnz/POO+9w+PBh4uPj2bBhA3fddRedOnWid+/e1xWjdMYJIYQQQgghhBBCiNvGkiVLCA0NZejQoQwdOpT27dvzyy+/6JWJjo5GpVLpbfvtt9/QarXce++9tY5pamrKtm3bGDZsGIGBgTz55JMMHTqUrVu3YmRkdF3xyTBVIYQQQgghhBBCiNuV5vYYpno9HB0d+fXXX69aRmtg+O7MmTOZOXOmwfKenp7s3LmzUeKTzDghhBBCCCGEEEIIIW4S6YwTQgghhBBCCCGEEOImkWGqQgghhBBCCCGEELer22Q11duJZMYJIYQQQgghhBBCCHGTSGecEEIIIYQQQgghhBA3iXTGCSH+0xQKBWvWrLltfo8QQgghhBBC6NFqbt3Hf5TMGSeEELeJqJ2HObXlACWqQuw9XOh+1xDcA1obLJt67iIb59Re6nv87Eewd3cG4O/PfyEtJqFWmVYhfgx57J7GDf4KG1b/xeplK8nNyaG1txcPPTGLdh1CDJbNycpmwTc/EhsdQ2pSCqMnjuPhJ2fpldn8199s37SVi3EXAfAL9GfqjGm0CQ5ssjoMC+zB2OA+OFjakJiXwcKI9URlXKyzfF+fDoxr1xcPWyeKy8s4lnKOxUf+prCsBIBwv0483vvOWvvd++tsKjSVTVYPAPOxIzDt3xuFpQXquIsUL/kdTUraVfcxGxyO6YA+KB0d0BYWUX44ktI/1kJlVaym4X0wC++D0tkRAHVKGqVrN1J56kyjxx/m1Y7+vp2wMbMkvTCHv07vJT43tc7yRkolgwO60alFG2zMLFGVFvJP7BEOJ53VlTE3NmVYYA9C3H2xMDEjt6SAdWf2Ep1Z+/XSWEYEhnFHSL+qNpWbzs+H1nEmI77O8v18OzI+pD8tbJ0oKi/lWPI5Fh7eQEFZsa7MmODeDA8Mw9nKnoKyIvbFn+KXoxupUDdOm1q94g+W/bqU7KxsvH19ePLZp+jQqWOd5Y8dOca8L74iPu4CTs7OTL5/CndMHK/7+YXzcfz8/U9Enz1LWmoaTzzzFHdPnqR3jOKiIn767kd27dhJbm4ubdq04cnnnqZtu+BGqVNdIjbvZt+6bRTk5ePayp1h90/EK8jvmvslRMex8J2vcPX0YNaHLzVpjDX19enAoICu2JpbkZqfzaqTOzifnWyw7H2dh9HDq12t7an5Wby/bTEAvbxD6e7ZFg/bqmtIYl46f53Zy8Xcq79fNMT+TTvY/edmCvJUuLZqwehpd+PTNsBg2fioWDYuWUVGchoVZeU4uDjSfUg/+owerFeupKiYzcvWcPrgMUqKinFwdWbk/XcS1Dm0yerR17cjgwO6YWduRWp+FitPbK/zXEztMpwwr9rXxNT8LP5v60IAOrQIYFhgD1ys7DFSGpFZmMu2mMMcSmz899grDfDrzPDAMOwtrElWZbIscisxWYkGy07vNpo+Pu1rbU9WZfLGph91z4cEdGOAX2ccLW0pLC/hcNJZVp7YTqVG3SR1CPfrxLDAHtiZW5OSn8XyyK3EZCUZLDut2yh6edduFymqTGZv/ln33MLEjPEh/ejUMhArU3OyivL4/fg/nEqLa5I6XI8OHv5M7jSUINfWOFvZ8/KGb9l94XhzhwXAAP8ujLiiPS09tqXO9vRQ99H08elQa3uyKpPXN/6gez6kTTcG+HXB6VJ7ikiMatL2JMTVSGecEELcBuIOn+HQii30vGc4rn6eRO8+ypavf2P8m49g7WhX534T3pqFibmZ7rm5jaXu/wMfuRN1ZfWHk7KiEv5870e8O7dtmkoAu7ft5Oe53/PIs4/RNqQdm9Zu4J0XX2fe4h9wcXOtVb6iogJbOzvumnova1esNnjMk8dO0HdQODOeCsbU1JRVy1bw1vOvMnfR9zi5ODd6HXp5h/Jg15H8dPAvzmZeZEhAN14d9ADPrP2SrCJVrfJBrl483vtOFh3ewOGkszha2jKzxzj+13MCn+xYoitXVF7KU2vm6O3b1B1xZiMGYzZ0AMXzl6BOz8B89DCsn3uc/NfehdIyg/uY9OiK+Z1jKV6wBHXsBZTurlhOvw+A0uWrANDk5lHyx1o0GZkAmPbqgdUTMyh4+6NrdvRdj/Ye/owJ7sOaU7u4mJtGj9bBTO8+ms93LiOvtNDgPlM6DcPGzIKVJ7aTXazCytQCI2X1QAIjhZKHe4ylsLyEX49uQlVaiL25NWWVFY0Wd029vdszvftovj/wJ2cz4hkW2IM3hkzjiTWfG2xTbV29eKrP3cyPWEdEYhROlrbM6jmex3pN5MPtvwBVnXVTuwxn3p6VnM1MoIWtM0/2uQuA+RHrGhzzts1b+erzL3n2pecJ7dCetavW8MJTz/HL70twc3evVT4lOYUXn36OMXeM5Y13ZnPy+Ak+/+hT7B3sCR84AIDS0lI8WrYgfPAA5n7+lcHf+9H/fUjc+Thef/tNnF1c2Pz3Rp557Cl++X0pLq4uDa6XIaf2H2Xj4lWMmn4XnoG+HNm6lyUffstjn76K3aUOZ0NKi0tY880v+Ia0oVBV0CSx1aVzyzZMaB/O75HbiMtJobd3e/7XazzvbV1EbkntWFae2M6fp3frnhsplLw8aCrHkmN02/ydW3EkKZq4nO1UqisZ1KYbj/aawPvbFqOq4/XWECf2RrB+we+MmzEZr0A/Dm7ZxcL35vLMnLewd6n9dzc1NyVseDgeXq0wNTMl/mwsq39YgqmZKd2H9AOgsqKSn9/9AmtbGyY/9wh2Tg6osnIxszCrdbzG0rllIHe2H8DyyK2cz06mj08HHus9kXe3LDB4LlYc/4c/T+3SPVcqlbwy8AGOJp/TbSsuL2VT9AHSCnJQa9SEuPtxX5fhFJQVE3WVTvyG6ObZlns7DuGXoxuJzUoi3K8Tz/SdxOubfiCnOL9W+WWRW1h5crvuuZFCydtDH9K78RHWuh13th/A/Ih1xGYl427jyEPdRwPwW+TWRq9D11ZBTOo4mCVHNxGblUx/34482fduZm/8iZyS2nX47dhW/jixo7oOSiVvDpnO4aRovXo92+8e8suK+G7/anJLCnC0sKW0srzR478RFiZmxGYnseHsPt4fMevaO9wk3T3bMvlSe4rJTCTcvzPP9ruH1zZ+b7A9LT22hRUn9NvTO8MeJiIxSrctzKsdd7UfyPxD64jJSqpqTz3GAE3TnoS4FhmmKoS4ZYWHh/P444/z+OOPY29vj5OTE6+//jraS6sB/frrr3Tt2hUbGxvc3d2ZPHkyGRkZAGi1Wvz9/fn000/1jnnq1CmUSiXnz583+DtPnjzJwIEDsbCwwMnJiZkzZ1JYWP0lIiIigiFDhuDs7IydnR39+/fn6NGjeseIiYmhX79+mJubExwczJYtWxrzz2LQ6W0HCejVkTZ9OmHv4UyPu4di5WDL2V1Hr7qfuY0VlnbWuofyik4HMysLvZ+lRF3A2NSkSTvj/vx9FYNHDWPo6BF4erfm4Sdn4eziwt9rDHcOuHm4M+Op/zFw+GCsrCwNlnnuzZcYOX4MvgF+tPLy5LEXnkKj0XL8SGST1GFM2978E3uEbbGHSVZlsvDwBrKLVAxt08Ng+TbOnmQW5bLh7H4yCnM5m3GRLTGH8HNqUaOklrzSQr1HUzMbHE7p+s1UHD2OJjmV4p9/RWFqgmmPrnXuY+znQ2VsHBUHj6DJzqHy9FnKDx7B2Ls6S7Py+CkqT55Bk56JJj2T0tXr0JaVYezr3ajx9/XpQERiFBGJUWQU5vLXmb2oSgsNZpUAtHHxxNepBfMj1hObnURuSQFJqgy9zJ6unm2xNDFj8eG/uZibRl5JIfG5aaQWZDdq7Fca164PW2MOszUmgiRVJj8fWkdWkYrhgWF11KM1mYW5rI/aR0ZhLlEZF9kcfQh/55a6MoEurTmbfpFdF46TUZhLZEoMu+OO65VpiOVLf2PUuDGMuWMs3j7ePPnc07i6ubJ6peFO8z9XrcbN3Y0nn3sabx9vxtwxllFjR/Pbr0t1Zdq2C+axpx5n8NAhmJqa1DpGWWkZO7fv4H9PPkrHzp1o5dmK6TMfxqNFC9b8sapR6mXIgfXb6TQgjM4De+HS0p3hD0zEzsmBiC17rrrfup+WE9K7K60CvJsstroM8O/C/vhT7L94ivSCHFad3EFuSYHBzBKA0spyCsqKdY/WDm5YmJhz4OIpXZnFh/9m94XjJKsySS/MZdnRLSgUCgJdPJukDrvXbaXrwN50G9QH11YejJk2CTtnBw5s3mmwfAuf1nTs0x03zxY4uDrTqV8YbToEcyEqVlfmyPa9lBQWMfXFR/EO8sfBxQnvtv54eDdNHQAGBXRlf/xJ9sWfJL0ghz9ObCe3uIC+vh0Nli+tLCe/rFj3aG3vjqWpOQfiq89FTFYix1NiSS/IIatIxY7zR0nOz8SvkV7fhgxr053dF46z+8JxUguyWRa5lZySfAb4dTZYvqSijPzSIt3D28EDS1ML9lyRleXn1JKYrCQOJpwhu1jF6fQLHEw4g7eDR5PUYUib7uy5cJw9F06QVpDN8uPbyC3Op79fJ8N1qCwjv6xI9/ByqDoXe+NP6Mr08WmPpak53+xdxfnsZHKK84nNTiJJldEkdbheBxJO8+PBteyMi2zuUPQMDezBrguR7IqLrGpPx7aQU5LPwPq2J8fa7cnfqRUxWYkcSDh9RXs6jY9j07SnW45Ge+s+/qOkM04IcUtbtGgRxsbGHDx4kK+++oo5c+bw008/AVBeXs67777L8ePHWbNmDRcuXODBBx8EquZomz59OgsWLNA73vz58+nbty9+frWHDxUXFzN8+HAcHByIiIhgxYoVbN26lccff1xXpqCggAceeIDdu3dz4MABAgICGDlyJAUFVXevNRoNEyZMwMjIiAMHDvDdd9/x0ktNO/RIXakmOyGVlsE+ettbtPUlI87w0IrL1r7/E7+99AUbv1hCanT8Vcue2xeJT9dgTMxMGxqyQRUVFZw/F0PHbvoftDp268zZU1F17HX9ysrKUFdWYmNr02jHvMxYaYSvUwuOp8TqbT+eGkugi+Ehw9GZCThZ2tGpZRsA7MytCGsdwtGkc3rlzI1N+XbC83w/8UVeGTi1yT88Kp2dUNrbUXm6OkuBykoqo2Mx9vOpc7/K2PMYe3li5OOlO45JaDAVJ04b3kGhwKR7ZxSmplSej2+0+I0USlrauRCTqT+k5VxmIl4Obgb3CXbzIUmVQX/fTrw66H6e7z+ZUW17Yaw0uqKMNxfz0rkjpC+vD36QZ/pNYoBfZxQoGi32KxkrjfBzaklkSoze9siUGIJcvQzuczbjIk5WdnRpWTUU287cmp7eIXoZJ1EZ8fg5tyTAuRUAbtaOdG4VqFfmRlVUVHDubDTde3TX296tR3dOnThpcJ/TJ0/RrUb57mE9OHvmLJWV9csAVasrUavVmJrqZzGZmZtyIvJEHXs1jLqykpQLifi1D9Lb7ts+iKRzF+rc79iOA+SmZxE+cXiTxHU1RgolnvZunK0xdP5s+kV8at0EMCzMK4TojIsGM7cuMzU2xkhpRFFFaYPiNaSyopKUuAQCOugPPw5oH0xCtOGbbTWlXEjgYnQcvu3a6LadOXyC1m18+fOnpbz38PN88ezbbF+1AY26aeY0unwuamarRWXE4+tYv3PRyzuU6IyLBjO3Lgt0aY2btSOxdQy3bCgjpRIvBw9Op+sPuzyddgF/p1b1OkZf3w6cSb9A9hVZTzFZSXg7uOuudy5W9oR6+HEiNbauw9wwI4USLwd3zqTF620/nR5f707MPj4diEqP18vc6tAigLjsZCZ3HspnY57graEPMTKoZ5NdM24HRkol3g4enE7Tfw89nRaHn3P92lM/n4612tO5zES8HTzwufTacrGyp72Hf63PbELcLDJMVQhxS/P09GTOnDlVd9cDAzl58iRz5sxhxowZTJ8+XVfO19eXr776iu7du1NYWIi1tTXTpk3jzTff5NChQ3Tv3p2Kigp+/fVXPvnkE4O/a8mSJZSUlLB48WKsrKwAmDdvHmPGjOGjjz7Czc2NgQMH6u3z/fff4+DgwM6dOxk9ejRbt24lKiqK+Ph4WrWq+sDw/vvvM2LEiCb6C0FZYTFajRZzG2u97RY2VpSoDGdPWdpa02vKSJxau6OpVHP+4Ek2frmEEc9MNTjPXGZ8MnkpmfSZOqpJ6gCQr8pHo9Zg7+Cgt93e0YHcnJxG+z2Lv5uPo4sTHboYvtPdEDZmlhgpjWoNyVKVFGLfwtrgPtGZCXy5+3ee7XcPJkbGGCuNiEiM4udDf+nKJKuymLf3DxLy0rE0MWNk21783/CZPPfXPNKaKCNLYWcLgCZf/wueJr8ApVPdQ+8qDh2lxNoa65efBhQojI0o276bsr/1M0SVLT2wefU5MDGGsjKKvv4JTWrjDVG1NDXHSKmksLxEb3thWTE2ZoazXBwtbPF28KBSrWbx4Y1YmZpzR0g/LEzMWHlp+IujpS1+FjZEpsSw4NB6nK3sGBfSD6VCybbYw40W/2WX21RejU4PVUkBDhZtDO4TnZnA57t+4/nwybo2dTDhDD8eWKsrs+fCCezMrHl/xCwUCgXGSiP+PrufVScNZxVdD1VeHmq1GgdH/Xbi4ORITrbh13J2dg7da7QrB0dH1Go1eXl5ODtfe0i5pZUVIaEhLPp5Ad4+Xjg4OrJ10xbOnDpDK8+myWwqzi9Cq9FgbaffuW9tZ8P5OoaeZqdmsG3ZX0x76ymURkYGyzQlK7OqodcFZUV62wvKirE1M5xhfCVbMyuC3XxYdHjDVcuNbdcXVUkh0RmNP5dicUEhGo0Ga3tbve3W9jYU5NXdKQXwwSMvUZRfiEatZtDdY+g2qI/uZ7npmcSdyqZjnx48+MoTZKVl8OdPy9CoNQy6a3Sj18P60rnILy3W215QVoytudU197c1rzoXCyPW1/qZubEp74+chbHSCI1Wy/LIrbU6YBuLjaklRkolqlL9NpVfVoRdPephZ25FqLsfPxz4U2/7ocQz2JhZ8sqA+0FRdXPin9gjbDi7v1HjB7A2q6pDfs3XRWn96xDi7stPB9fqbXe2sifI1YuDCaf5cvfvuNk4MrnTUJQKJeui9jZqHW4Xl9tTfs3PUqVFhJgb/ix1JTtza0I9/Pj+wBq97YcSz2BjbsmrA5u+PQlRH9IZJ4S4pYWFhaFQVN897NmzJ5999hlqtZoTJ07w1ltvERkZSU5ODhpN1Z3rhIQEgoOD8fDwYNSoUcyfP5/u3buzbt06SktLueuuuwz+rqioKDp06KDriAPo3bs3Go2G6Oho3NzcyMjI4M033+Sff/4hPT0dtVpNcXExCQkJumO0bt1a1xF3OeZrKSsro6xMfw4uM7Prm6NGUesmq1bvb3clO3cn7NyddM9dfVtRlJvPqS0HDHbGndt7HPsWLrh4N90Ql8tqhqzV1l2P67Vq6Qp2b9vBe199jGkTZfgBuqHUOleJv5WdC9O7j2bFiX84nhyDvaUN93cZwcywcXy7v2pIX0xWot6kxWczEvh49GOMDApjvoEvYTfCpEdXLO+vXpij8MvvLlWmRkGFAmrW7wrGgf6Yjx5Gya+/UxkXj5GrCxb3TkQzehhl6zbpymnSMih4+0MUFhaYdOmI5UP3UfjRV43aIQeGz0Vd0V9uZ79FbtXN57Muah/3dR7GmlO7qNSoUaCgqLyEP07sQIuW5PxMbM2t6OfbsUk64+qkUKCtoyat7FyZ0WMsyyO3cSzlHA4WNjzYdST/6zmeefv+ACDE3Zc7Owzg+wN/EpOZgLutMw93H0Nu+wJ+P/FPY4WoT6u92kuhVqbI5fpdTwbJ6++8yQfvvM/4keMwMjKiTWAbBg8bwrnoc9feuUFqxK7V1twEVGVPr5q3mPA7R+DkUXsezJvpRgcG9fAKpqSijBNXySYZFNCVLq2C+Gr37zd3YnTtVd9uAXjknRcoLy0jISaOjUtW4+TuQsc+VVmZGq0WK1sbxj9yH0ojJS39vMjPyWP32s1N0hmnF3itLdc+Q2Gt21FSUcrxGpmzAGWV5XywbTFmxiYEungxITScrCJVnRPgNwUF9Wtnvb3bU1xRytGUaL3tgS6tGd22F78c3UhcTgpu1g7c23EIquBC/jrTNB1Zta4ZXPWSp9PLO5TiiqrFcq6kVCjILyti8eGNaNGSkJeOvbk1QwN7SGfcNdT6+FHPFtXH51J7Sq7dnsa07V3VnrKTcbV2ZHKnIeQF9+GvM1efVuC2UJ+GLG4q6YwTQvwrlZaWMnToUIYOHcqvv/6Ki4sLCQkJDBs2jPLy6klxH374YaZOncqcOXNYsGABkyZNwtLS8J3/q3X6XN7+4IMPkpmZyRdffIGXlxdmZmb07NlT9zsNfYirT0fSBx98wNtvv623bfbs2Zj3873mvmbWliiUCkry9e8glhQUY2577bu5l7n4tOT8oVO1tleWV3Dh8Bk6jelX72PdCFs7W5RGSnJzcvW2q3LzamXL3YjVy1ay8tffePvzD/D2u/bf9UYUlBWj1qixt9DPkrEztyKvxHCW4viQ/kRnXGTt6aoPghfz0vmxci3/N3wmyyK31sqIgqovaeezk3SrFjaGiuMnKXg7vnqDcdVHBKWdLWpVdaaJ0sYabX7dQ9PM7xhN+f5DlO+uutOsSU4FM1Ms77+XsvWbqz8MqtVoMrKq/nsxESMfL8wG96fkl+WNUp/i8lLUGg02NTJ9rE0tKCwrNrhPQVkRqtIivYm1MwtzUSoU2Jlbk12soqCsCLVWo/dFOaMwF1tzK4wUStTaxh3OVnebsq6zTd3ZPpyojHjWnK6a5P1ibhrfH1jDByP/x5Jjm8ktKWBypyHsOH+UrTERVWXy0jE3NuHRXhNYcWJ7vToC6mJnb4+RkVGtLLjcnNxa2XKXOTk5kpOtn+WZl5OLkZERdvZ1L0JTU8tWrZj3wzeUlJRQVFSEs7Mzs195A48WTTOs29LWCoVSSaFKPxurKL8QawND4ctLSkmJSyA1PokNC1cCl64bWi3vTHmaqa88ik+I4YzHxlJUVoJao8HWTP/6YGNmSX4dr40rhXmFEJF4ps62PtC/C0PbdGfe3j9Iyc9qlJhrsrSpmuO0sEYWXKGqAGs72zr2quLoVvW+6e7VkkJVPtt+X6frjLO1t0NpbITSqHomH9dWHhTk5VNZUYmxSeN+dSq8fC7Ma5+LgtJrn4ue3qEcSjB8LrRAZlEeAEmqTNxsHRka2L1JOuMKyotRazS1MshszKzIr5EtZ0hfnw7sv3gKtUa/HuND+rPv4ind6p7JqkxMjUx4oOtI1p3Z24B3qdoKyy7XQT/zysbcqla2nCG9vdtz4OLpWucir7QQtUb/mpFakI29hXWTXDNuB9XtSf9c2Jpb1sq+NKSvTwf2xZ+s1Z4mhPZn38WT7Lo0P16SKhMz48vtaU+jtich6kPmjBNC3NIOHDhQ63lAQABnz54lKyuLDz/8kL59+xIUFKRbvOFKI0eOxMrKim+//Za///5bb2hrTcHBwURGRlJUVH2h37t3L0qlkjZtqr4c7d69myeffJKRI0fSrl07zMzMyMrK0jtGQkICKSkpum379187/f2VV15BpVLpPV555ZVr7gdgZGyEU2sPUqL059ZIibqAq2/95tYAyE5Mx8K2dvr/hSNn0FRW4tfd8KT3jcXExAS/NgEcP3xMb3vk4WMEhTRs0YhVy1bw++KlzP7k/wgIarovupUaNXHZKbRv4a+3vb2HP9GZhodqmRmboKnxEfBylufVunG9HTyuOl/TdSstQ5ORVf1ISUOTp8I4OLC6jJERxoH+VJ6vey4sTE1q333VGM4S0qMAhUntSflvlFqrIVmVSUCNyeMDnFtxMTfd4D7xOWnYmltialT9hdvZyg6NVqMbehyfm4aTpZ1edZyt7MkvLWqSL1WVGjXns5PpWKNNdWzhX+eQMzMj01o3BjQ1npsZmdRRRnHNzKJrMTExoU1QIBEHD+ltjzgUQUj7UIP7tAsNIeJQhN62QwcPERQchLHx9XeAWFhY4OzsTEF+PocOHKRvv77XfYz6MDI2poWPJ3En9DMw4k6epVWb2nMrmlmY87+PX2bWhy/qHl0H9caphSuzPnyRlv6G5wFsTGqthsS8dIJc9bOgA129uJCdUsdeVfydW+Fq7cD++No3bqAqI254UBjf7ltNYp7h11ljMDYxpoVva2JO6M8nGnsiitaBteeErYtWi96chF5BfmSnZeregwGyUtKxcbBr9I44uPJceOttD3L1Ji7n6uciwNkTV2sH9l00fC5qUqDAWNk0eRhqjYaLuakEu+m3+XZuPsRmX32eukCX1rjZOLI77nitn5kaGde6MaDVaqvefxspY/4ytVbDxdw02rp5620PdvPmfFbyVfdtc6kOVy4WcNn5rCRcrR30rhlu1o7klRRIR1wd1BoN8bmptHPXb0/Bbj6cv8a8h7r2ZOBcmBq87mmapD0JUR/SGSeEuKUlJiby7LPPEh0dzbJly5g7dy5PPfUUrVu3xtTUlLlz5xIXF8fatWt59913a+1vZGTEgw8+yCuvvIK/v/9Vh4xOmTIFc3NzHnjgAU6dOsX27dt54oknmDp1Km5uVRO++/v788svvxAVFcXBgweZMmUKFhYWumMMHjyYwMBA7r//fo4fP87u3bt57bXXrllPMzMzbG1t9R7XM0y13aAenNsbybl9keSlZnFwxRaKclUE9a1aDOHwmu3sWlg9j8npbYe4GBmNKiOH3JRMDq/ZzsVjZ2kbXnuVzJi9x2ndIRBz62vPJdRQ4+6ewJZ1G9m6fhOJ8Qn8NPd7sjIyGD6uaq66xd/PZ857+nP+xcWcJy7mPCUlpajyVMTFnCchvrqTYtXSFSz5aTFPvPQsru5u5GbnkJudQ0mx/lxijeWvqL0M8u/CQP8utLRz4cGuI3G2smPzuaqOicmdhvJE7zt15Q8nnaVH63YMbdMdV2sHAl1aM737aGIyE3WdbXe1H0iHFv64Wjvg7eDBo70m4O3oweboQwZjaCxlW3dgPmooJp3ao2zpgeX0+9CWV1B+sHo4puVDUzGfMEb3vPL4KczC+2DSvTNKZyeMgwMxv2MUFZGndJ105hPGYBTgh9LJEWVLD8zHj8Y4MIDyAxG1YmiI3ReO082zLV1bBeFq7cDotr2xt7DhQELVl9fhgWHc3WGQrnxkyjmKy8u4q8NAXK0d8HH0YGRQLw4nntUNtTtw8TRWpuaMadcHZys7gly9GODfud5fiG/En6f3MDigG4P8u1YNa+42GmcrezZFHwTgvs7DeKrP3bryEUlRhHmFMDywB27WjgS5evFwjzGcy0zQtamIpLMMDwyjj097XK0d6ODhz+ROQ4hIPFOr4+5GTJp8D+v+/Iv1a9cRfyGerz7/koy0dO6YeAcA3837lv+b/Y6u/LgJ40lPTWPunC+JvxDP+rXrWP/nX9xz32RdmYqKCmKizxETfY6KikoyMzOJiT5HUmL1l7OD+w9wcN8BUpJTiDh4iCdnPYGnV2tGjm26IYZhowZwdPt+jm3fT2ZyGhsXr0KVlUvXwVVzkW1dtpbV3/wCgEKpxNWzhd7Dys4aYxMTXD1bYGp+fdMT3KjtsUfo6R1KmFc73GwcmRDaH0dLG11nwpjgPkztUntxiZ5eIVzISTW4evCggK6MatuLJUc3k12swsbMEhszS0yNGq+T/Up9Rw/m8LY9HP5nLxlJqaxb+Dt5WTn0GFqVxb1xyWp+n1u9iNP+jduJOnycrNR0slLTObx9L7vXbqZT3+qFQ3oM7U9xQSHrFiwnMyWds0dOsmP13/QcFt4kdQDYFnOYXt6h9PQKwc3GkYmh4VXn4lLn1Nh2fbm/S+15Z3t5h3AhJ4VUA9mHQ9t0J8jVCydLO9ysHRno34UerYOJSDzTZPXYdO4Q/Xw60senPR42TtzTcTCOlrbsOF+1qvvE0HAe7j6m1n59fTpwPjuZ5PzMWj87nhrLAL/OdPcMxtnKjmA3b+4I6UdkSozBkQgNteXcIfr6dqC3d3vcbZy4u8MgHC1t2RlXdZNwfEh/pner/V7Sx6c9cdnJBjNBd5w/hrWpOfd0HIKbtQOh7n6MbNuT7bFXX+3+ZrEwMSPAuZVuMZ8Wts4EOLfCzbrhIxIaYnP0Qfr5dKSvTwdde3KytGP7pfZ0Z2g4D/eo3Z76+Xasak+q2u0pMiWGAf5drmhPPowP6d9k7emWcykL+5Z8/EfJMFUhxC3t/vvvp6SkhO7du2NkZMQTTzzBzJkzUSgULFy4kFdffZWvvvqKzp078+mnnzJ27Nhax3jooYd4//33r5oVB2BpacmmTZt46qmn6NatG5aWlkycOJHPP/9cV2b+/PnMnDmTTp060bp1a95//32ef/553c+VSiWrV6/moYceonv37nh7e/PVV18xfHjTrpjn2zWYsqJijq/fQ3F+IQ4eLgx57B6snaqGd5WoCinKUenKa9RqIlZtozivACMTYxw8XBj82CQ8Q/Szb1Tp2aSfT2Tok/c2afyX9R3Un4L8fJYvWkJOdi5ePl68+dG7uLpXdYbmZueQla6fAfnMQ4/p/n8+OoZdW7fj6u7Kj78vBuDvNX9RWVHBR2/+n95+9zw4hXunT230OuyLP4mNmSV3th+Ag4UNCXnpvL9tMVmXhgs5WNjgbFU97G7H+WNYmJgxIiiMB7qOoKi8lFNpcfx6pHp+NStTc2aF3YG9hQ3F5aVcyE3lzY0/XjPjoKHK/t6KwsQEi/vuRmFliTounsLPv4bS6vkNlY4Oeh+kStdtQkvVcFWlgx3agkIqjp+idNU6XRmFrQ1WD09FYWeLtqQUdVIKRXO+ofKMfnZRQ51IjcXS1IxBAV2xNbMirTCbBRHrdMM7bcwssbeozgYtV1fy08G1jGvXlyf63ElxeRknUmN1nV4AqtJCfjr4F2OCe/N030nklxax98IJdpw/Vuv3N5a98SewNbNkUsdBVW0qN413ty7UDUFztLTFxdpeV/6f2CNYGJsxMqgX07qNoqi8lBOp51l85G9dmd+P/4NWq2VKp6E4WtqRX1pERGIUS45tojEMGjqYfJWKhT/NJzsrGx8/Xz7+4lPcPaqGi2ZnZZOeVp051aJlCz7+4jPmzvmS1StW4ezizFPPP0P4wAG6MlmZWUy/70Hd899+Xcpvvy6lY+dOzP3+awCKCov4/utvyczIxMbWlvCB4cx49JEbyq6rr5CenSkpKGLnqk0U5qlw9fRgykuzsHepGpJbmJePKiv3Gke5uY4mn8PK1ILhgWHYmluRmp/Nt/tW6zpr7cytcKgxNNrc2JSOLQL44+QOg8fs69MBEyPjWl+QN0Tt5+8mmCC9fe9uFBUWsW3legpyVbh5tuDBVx/HwaVqPtSCXBV5WdVDpbVaLZuWriEnIwulUomTuwvDp0yg+5DqrEl7Z0emv/4U6xet4Kvn38HW0Z5eIwfSf1zTXcOPJkdjZWbBiKCel85FFt/sXaVbHdXO3AoHS/2ht1Xnog0r6pjf0dTYhEkdB2NvYU2FupL0ghwWRmyoNYdWY4pIjMLa1IKxwX2wM7cmWZXJF7uX61aztDO3xrFGPSxMzOjSKohlkVsMHZK/zuxBq9UyPqQfDhY2FJQVczw1ts422FCHk85ibWbB6ODe2JlbkZKfxVe7V+hWR7W3MFAHYzM6twxkeeRWg8fMLSlgzq7lTOo4iNlDHyK3pIBtMYf5++wBg+VvtiAXL+aNf1b3/Mk+VfMqb4jaz3v/LGqusDiUGIWVmSVj21W3pzm7f6tuTxbWOFnqT2FwuT0tPbbZ4DEvzws3IbS/rj1FpsQ0WXsS4loU2v9EN7AQ4t8oPDycjh078sUXXzToOHv37iU8PJykpCRdhtu/xYf/LG7uEBrs5YH3czb9KsMa/wWC3Hy4c/G1MxxvdSvvf4+8h55o7jAaxP7nuby0/pvmDqPBPhr1KHcsfLm5w2iwNQ9+SEZ+06zoe7O42jqx9GjjdEI2p8mdh/HE6s+vXfAWNnf8s6w6saO5w2iwCe3DeWzVp80dRoN9PeF5pv/+fnOH0SDz736VGSs+bO4wGuzHu16m99ezmjuMBtn72HdMW/5ec4fRYAsm/Ts/D+bNfLq5Q6iT/Q9fNHcIzUIy44QQt62ysjISExN54403uPvuu/91HXFCCCGEEEII0WAamaPwViNzxgkhblvLli0jMDAQlUrFxx9/3NzhCCGEEEIIIYQQkhknhLh17dixo0H7P/jggzz44IONEosQQgghhBBCCNEYpDNOCCGEEEIIIYQQ4nYlSwXccmSYqhBCCCGEEEIIIYQQN4l0xgkhhBBCCCGEEEIIcZPIMFUhhBBCCCGEEEKI25UMU73lSGacEEIIIYQQQgghhBA3iXTGCSGEEEIIIYQQQghxk8gwVSGEEEIIIYQQQojblUaGqd5qJDNOCCGEEEIIIYQQQoibRDrjhBBCCCGEEEIIIYS4SWSYqhBCCCGEEEIIIcTtSqtp7ghEDZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWV1VRvNZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWRYaq3GsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhKFVivLagghhBBCCCGEEELcjvKmzGzuEOpkv+SH5g6hWciccUIIcQubu2dFc4fQYE/0uYuC/PzmDqNBbGxtGfLDU80dRoNtmfklec+82txhNIj9nPe559c3mzuMBvvtvncY+uPTzR1Gg22e8QUXspKbO4wG8XFuyTf7/mjuMBrs0V4Tmb3pp+YOo0HeHvYwJ1JimjuMBmvfIoDn/5rb3GE02KdjnmDqsrebO4wG+eXe2Ty++rPmDqPB5o1/jmnL32vuMBpkwaTX6P31rOYOo8H2PvZdc4cgbhMyTFUIIYQQQgghhBBCiJtEMuOEEEIIIYQQQgghblcaTXNHIGqQzDghhBBCCCGEEEIIIW4S6YwTQgghhBBCCCGEEOImkWGqQgghhBBCCCGEELcrrba5IxA1SGacEEIIIYQQQgghhBA3iXTGCSGEEEIIIYQQQghxk8gwVSGEEEIIIYQQQojblQxTveVIZpwQQgghhBBCCCGEEDeJdMYJIYQQQgghhBBCCHGTyDBVIYQQQgghhBBCiNuUViPDVG81khknhBBCCCGEEEIIIcRNIp1xQgghhBBCCCGEEELcJDJMVQghhBBCCCGEEOJ2pdU0dwSiBsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhIZpiqEEEIIIYQQQghxu9LKaqq3GsmME0KISx588EHuuOOO69rH29ubL774okniEUIIIYQQQghx+5HMOCH+ox588EEWLVpUa/uwYcPYuHFjk//uvLw81qxZ06S/53p9+eWXaBv5rlF8fDw+Pj4cO3aMjh07Nuqx6+PkPwc5umk3xXmFOLZ0pe89I2nRxttg2aSzcaz5ZH6t7VP+7ykcPFwaJR6tVssPP/7I6tWrKSgooF27drz04ov4+flddb9t//zDd999R1JSEq1ateLR//2PAQMG6JVZsWIFv/z6K1lZWfj6+vLcs8/SqVMn3c+//+EHNm/eTHp6OiYmJrQNCuLRRx8lJCREVyYpKYkvvvySyMhIKioq6NmzJy88/zw2trbXVc8xwX24q/1AnCxtic9N49v9qziVFldn+bHBfRjXri9uNo5kFOay9NgWtsZEGCwb7teJ1wY9yN74E7y1+efriutGmA8bhGnPbigsLFAnJFL8x1o0aRl1lrd+7GGM/X1rba84c5aiHxfrjmk+fJDezzX5BeTP/qBxgweGtOnGmOA+2FtYk5SXyeLDf3M282Kd5Xt7t2dsuz642zhSXFHG8ZQYfj2yicLyEgC6ebbljpB+uNs4YqQ0Ii0/m/VR+9h94Xijx36lMW17c1eHgTha2HIxN41vD6y+apsaE9yHccF9cbNxIKMwj2WR+m2qt3d77u04mBa2LhgrlSTnZ7HyxHa2xR5utJj/WvUnK5cuJyc7Gy8fb2Y9+RghHdvXWf7EseP8MPcbLl6Ix8nZmbsmT2LU+LF6ZVYvX8m61WvJTM/A1t6OvuH9mDZrBqZmpgCcjDzOyqXLiTkbQ052Nm9+8A69+vVptDoBHP/nAEf/3k1RXgFOLV3pN3kULdv4XHO/lJiLrPzwR5xaujHlnSd029WVag6v30HU3mMU5ubj4OFM77uG4x3aplHjrilm9zHObougJL8QO3dnOk0ciKtfqzrLqysqOb1pP/ERZyjNL8LC3pp2Q3vi2zMUAFVqFic37CEnMZ3inHw6jR9A4ICuTVqHTWvW8+fyVeRl59DKuzXTHp9B2/YhBsvmZuew6JufiYuJJS0phRETxjDt8Zl6ZbZv3Mo3H31Ra98lm1ZhamraFFUAoJdXKOH+nbAxsyK9IIc/T+/mQk5KneWNlEqGtOlOl5aB2JhZkVdayLaYCCISo3Rl+vp0oKd3KA4WNhSVl3AiNZYNUfup1KibrB6D/Lsyqm0v7CxsSFZl8OvRTZzLTKizfC+vUEa17YWbjRMlFaWcSI1l2bEtuvfblrYuTGwfjrdDC1ys7fn16EY2RR9ssvih6u82KKAbduZWpOZn88fJ7ZzPTjZY9r7Owwjzqt3eUvOzeG9b1WfsXt6hdPcMpoWtMwAJeen8dWYPF3PTmq4SwAD/LowIDMPewppkVSZLj20hJivRYNmHuo+mj0+HWtuTVZm8vvEH3fMhbboxwK8LTpa2FJaXEJEYxcoT25u0TdVHBw9/JncaSpBra5yt7Hl5w7dNfk0WojFIZ5wQ/2HDhw9nwYIFetvMzMyaKZrmZ2dn19whNKqYQyfZ/dsG+t83Bg//1pzeGcFfXyxm8rtPYuNkX+d+U957GlOL6nZgYWPVaDEtWryYpUuXMvvNN2ndujU/z5/PY48/zh8rV2JlZfj3nDhxgldffZVZjzzCgAED2L59Oy+/8go///STriNt8+bNfPb557z80kt06NCBVatW8eRTT7Hi999xd3cHwKt1a1584QVatmxJWVkZS5ct47HHH2fN6tU4ODhQUlLCY48/TpuAAL779lsAvv3uO5559ln++OOPetexv28n/tdzPHP3rOB0+gVGte3F+yNm8dDvH5BZlFur/Oi2vZnefQxzdv1GdGYCQa6teabvPRSWFXMg4bReWVdrB2b2uIMTqbH1jqchzAb2wyy8N8VL/0CdmYX5kAFYz5pO/gefQ1m5wX2KFiwBIyPdc4WVJTbPP0FF5Cm9curUdAq/vaIzUdP4wyd6eoXwQJcR/ByxjuiMBAYHdOPlgffx3F/zyC5W1Sof6NKax3pNYPGRvzmSFI2jpS0P9xjDzLBxfL7rt6r6lZew5tQuklWZqDVqOrcMZFbPO1CVFjXZeenv24lZPcczd+/KqjYV1Iv3hj/Cwys+ILMor1b50W17M73baL7YvbyqTbm05um+k/TaVEFZMcsit5CQl0GlupIerdvxfP97ySst5EjS2QbHvHPrdr7/8msee+4p2rUPYcOav3j9+Zf54dcFuLq71SqflpLKG8+/wogxI3nxzVc5feIUX3/2JXb29vQZ0A+AfzZtZf53P/LsKy/SNrQdyQmJfPbexwA88tRjAJSWlOLj78eQkcP5v9feanA9ajp38AS7lq5nwNSxtAjw4uSOQ/z5+SLue+9pbK/yvlpWXMrmH1fg2daP4vxCvZ/tX7WFs/sjGfTgeBw9XLh46hzr5v7K3a/NwtWrRaPXASDh6FmOrfqHLncNwdm3Jef3HmfXtysZ8ep0rBwN33zYt+AvSguK6D55GNbODpQVFqNVV6/OV1legbWTPZ4dAzm2enuTxH2lvf/sYsHXPzLj6f8RGBLMlr/+5r2X3mLOwm9wcXOtVb6iogJbe1smTrmbdSv/rPO4FlaWfLn4e71tTdkR16FFAGND+rLq5A7ic1IJ8wrh4R5j+GTHEvJKCg3uM7XLCGzMLPn9+D9kFeVhbWaJUqHQ/bxTyzaMbNuL349vIz4nFRdreyZ1HAzA2tN7mqQePVq3477Ow1l4eD0xWYkM8O/CC/2n8PKGr8kuzq9Vvo2zJ4+E3cGSY5s4lnwOBwsbpnUbzUPdx/Dlnt8BMDU2IaMwj0MJZ5jSeViTxH2lzi0Dmdh+AMsjtxGXk0wf7/Y82msC/7d1IbklBbXKrzyxnT9P79Y9N1IoeWXQ/RxLPqfbFuDsyZGks6zISaFSrWZwm2481msi721bhKrU8PltqO6ebZnccQi/HN1ITGYi4f6debbfPby28XtyDJyLpce2sOJE9WvWSKHknWEP63Xuhnm14672A5l/aB0xWUm42zjyUI8xAPwWubVJ6lFfFiZmxGYnseHsPt4fMatZY7mlNcHnLNEwMkxViP8wMzMz3N3d9R4ODg66nysUCr7//ntGjx6NpaUlbdu2Zf/+/cTGxhIeHo6VlRU9e/bk/Pnzun3eeustOnbsyPfff4+npyeWlpbcdddd5OXl6X6+aNEi/vzzTxQKBQqFgh07djBw4EAef/xxvfiys7MxMzPjn3/+qRW7SqXCyMiII0eOAFUZV46OjnTr1k1XZtmyZXh4eOieJycnM2nSJBwcHHBycmLcuHHEx8frfl5zmGpBQQFTpkzBysoKDw8P5syZQ3h4OE8//bReLMXFxUyfPh0bGxtat27NDz9U30X08anKlujUqRMKhYLw8PCrn5RGFLl5L8F9u9CuX1ccW7jS995RWDvacXLHoavuZ2lrhZWdje6hVDbOpUKr1bJs2TKmTZvGwIED8ff35+233qK0tJSNmzbVud+yZcvo0b0706ZNw9vbm2nTptG9WzeWLlumK7Nk6VLGjRvHHXfcgY+PD8899xxubm6sXLlSV2b48OH06NGDVq1a4efnxzNPP01RURExMTEAHD9+nNTUVGbPno2/vz/+/v7MfvNNzpw5w4EDB+pdz4ntw9kYfYC/ow+QkJfOt/tXk1mYy5jg3gbLDw7oxvqoveyMO0ZaQTY7zh9jY/QB3Reny5QKBa8MvJ/FR/4mLT+73vE0hFn/XpRu2UHFydNo0tIpXroChakJpp071rmPtrgEbUGh7mHSxh8qKig/flK/oEatV05bVNTo8Y9q24vt54+yPfYoKflZLD7yN9nF+Qxp081g+QBnTzKL8tgYfZDMojyiMxPYGnMYP6eWujJn0uOJSIwiJT+L9MJc3XkOcm3d6PFfNjE0nI3RB9kYfYDEvHS+O7CazMI8xgQbzvgaFNCVDVH7qttU3DE2Rh/k7g7V2YgnUmPZG3+SxLx0UguyWXN6F3E5KYS4XTvDqz5WLV/BsNEjGDF2FK29vZj19OO4uLqybvVag+XXr/kLVzdXZj39OK29vRgxdhRDR41g5bLfdWWiTp2mXWgIA4YOwt3DnS49uhE+ZCDnzlZ/8e3WswcPznyIPuH9GqUeNR3dvId2/boQ0r8bji1c6T95dNX76j9Xz9b5Z9FqAsM64OHvWetnZ/cfo9vo/vh0CMTO1ZH2A8PwCgng6Mam6TQBOLv9ML5hofj1ao+duxOdJw7E0sGG2D2RBsunnrlAxvlE+s2aiHugN9ZOdjh5eeDsW/3acPLyoOMd4Xh1aYvS2MjgcRrTuhVrGDhyCINGDaOVlyfTHp+Js6szm9duMFje1d2N6U88Qv9hg7C0sqzzuAoUODg66D2aUn/fjhxKOMOhhDNkFOay9vRu8koK6ekVarB8oEtr/Jxa8tPBtcRkJZJbUkBiXrpeppW3gwfxOakcSz5HbkkB5zITiUyOoZVd7Y7wxjIiMIydccfYGXeMlPwslhzdRHaxikEBht9v/Z1bkVmUx+Zzh8gsyuNcViL/xB7Bx7G6A/pCTgq/RW7hQMJpKtRNn3010L8L++NPsv/iSdILcvjj5A5ySwroayBrDKC0spyCsmLdo7WDOxYm5uy/WH3zadHhDey+cJxkVSbphTksPboZhUJBoEvTXTOGBvZg14VIdsVFklqQzbJjW8gpyWegX2eD5UsqysgvLdI9vB09sDS1YM8V2WX+Tq2IyUrkQMJpsotVnE6/wMGE0/g4ehg85s10IOE0Px5cy864yOYORYjrIp1xQoirevfdd7n//vuJjIwkKCiIyZMn88gjj/DKK69w+HDVcKaanWixsbH8/vvv/PXXX2zcuJHIyEgee6wqa+H555/n7rvvZvjw4aSmppKamkqvXr14+OGHWbp0KWVlZbrjLFmyhBYtWtQajghVWWwdO3Zkx44dQFX21OV/8/Or7vrt2LGD/v37A1UdZgMGDMDa2ppdu3axZ88erK2tGT58OOXlhjN8nn32Wfbu3cvatWvZsmULu3fv5ujRo7XKffbZZ3Tt2pVjx47x6KOP8r///Y+zZ6sySw4dqur42rp1K6mpqaxatap+f/gGUldWknExBc92/nrbPYP9SYute8gIwG9vf838Zz9kzSfzSTpb9zC465WcnEx2djZhYWG6baampnTu3Fl3/gw5cfIkPa7YByCsZ0/dPhUVFZw9e5awHj30y/ToUedxKyoqWL16NdbW1rRpUzUUrLy8HIVCoZcBYWpqilKp1HX6Xoux0og2zp4cSYrW234kKZp2dXRymBgZU66u1NtWVllBoEtrjBTVl+n7Og8nr6SQjdH17xhsCKWTA0pbWyqjY6o3qtVUxl7A2Kf+XyJMe3Sl/NgJKK/QP76zM7ZvvYzN689jOfUelE6N+4XXSGmEj6MHJ1LP620/kRpLmzq+BJ3LTMDR0paOLQIAsDO3okfrdhy9IsuhphB3XzxsnYlKr3voa0MYK40IcG7F0WT9bLUjyWcJdvM2uI+p0phytf7fu1xdu01dqWOLADztXDmZdt7gz69HRUUFMdHn6Nxdf4hi5+5diTp12uA+UadO1yrfpUdXYs5GU1lZ9fpo1yGUmOhzRJ+pytZITU4hYv9BuvfqUet4TUFdWUlGfAqt2wXobfdq50/q+brP/+ndR8jLyKHHuIGGj1tRiZGJid42Y1MTUmLiGxyzwd9XqSY3MQ33IG+97e5B3mRdMDwcL/lULI6ebpzddog/3/iW9e/+xLE126ms8bq+WSoqKog7F0uHrp30trfv2onoUw3L7CwtKeF/90zjkbse4INX3uZCTMNfE3UxUihpaedaayjnucwEvOvo5Gjn7kNiXgYD/LrwxuBpvDTgPkYH98ZYWd0BeiEnhVb2rnjaV3W+OVraEuTqRVRGfNPUQ6nE27FFrfePU2lxBDgbHvock5WIo6UtHTyqPqfYmlvRvXVbIlNiDJZvakYKJZ72bkRl6L+Wo9Iv4uNUvwzVnl4hRGdcNJhFd5mpsTFGSiXFFaUNircuRkol3g4enE67oLf9dFocfnWci5r6+XTkTPoFvYzGc5mJeDt46DpLXazsae/hz/GUm5OpL8TtSIapCvEftm7dOqytrfW2vfTSS7zxxhu659OmTePuu+/W/axnz5688cYbDBtWNVzgqaeeYtq0aXrHKC0tZdGiRbRqVXXRnzt3LqNGjeKzzz7D3d0dCwsLysrKdMMHASZOnMgTTzzBn3/+qft9CxYs4MEHH0RxxdCLK4WHh7Njxw6ee+45duzYwaBBg4iLi2PPnj2MHDmSHTt28MwzzwDw22+/oVQq+emnn3THW7BgAfb29uzYsYOhQ4fqHbugoIBFixaxdOlSBg0apCvfokXtD2QjR47k0Ucf1f2N5syZw44dOwgKCsLFpWquNScnJ7361lRWVqbXEQkNGzJcUlCMVqPB0lb//FraWVF8yvCwCCt7GwbcPw4X75aoKyqJ3h/Jmk8XMP6F6bQMbHi2THZ2VTaXk6Oj3nYnR0dS0+qeOyU7O9vgPpePl5eXh1qtxrFGGUcnJ7Ky9TPIdu/ezauvvUZpaSnOzs58PW8e9vb2AISGhmJubs7cuXN57LHH0Gq1fDV3LhqNhszMTKjHZ1g7cyuMlEbklugPA8ktKcDB0sbgPkeSzjIiKIx98SeIyUqijbMnwwPDMDEyxs7cmpySfNq5+TA8MIxZf3x87SAaicKmKl5NgX570RQWonSwr9cxjFq3wqiFO8XL9TuhKy8mol66AnVmFkob66rhr0/OouCjL9AWlzRK/LZmlhgpjVDVGOalKinCvoW1wX3OZSUyb+9Knup7NyZGxhgrjTicGMXCiPV65SxMzPh2wvMYGxmj0WqYf2hdo3RiGazH5TZVrP/lLrekAAcLw8MJDyedZXhQGPsuniQmK4kAZ0+Gtemh16YALE3MWTblbUyMjNFoNMzdu/KqHY/1lZ+nQqPW1MoocnBwICc7x+A+uTm5epnZAA6ODqjValR5KpycnQgfPBBVbh7P/e8ptFotarWa0ePHMmnq5AbHXB91va9a2NlQdMpwB0JuWhZ7V27krlceQWlkOFusdUgAxzbtoWUbb+xdHUmIOk/csSi0Go3B8g1VXlSCVqPFvMYUBGY2VpQWGM5QLczKIzMuGSMTY/o8fAdlhSUcXrGF8qJSekwZ0SRxXk2BKh+NRoN9jTZj7+BAXm7tm2b11bJ1Kx57+Rla+3hRUlzM+j/W8voTL/LpT1/h0arltQ9wnaxMLTBSKikoK9bbXlBWgo2Z4ew9R0s7fBw9qNRUsvDwBqxMzZkQGo6liTm/H98GQGRKDFamFjzWeyIKqm5O7Is/wfbY+t1Yul42ZpYYKZXk1xh2qSotxM7c8JywMVlJfLt/FY/1vlP3fnsk6Sy/HPm7SWK8Fmuzus5FEbZm3tfc39bMimA3HxYeXn/VcuPa9UNVUsjZjKa5gWNjWte5KCLE3PC170p25taEevjx/YE1etsPJZ7BxtySVwfeD4qqG0X/xB5hw9n9jRm+aEraprmmiBsnnXFC/IcNGDCAby/NjXVZzQ6N9u2rJ9t2c6u6wxoaGqq3rbRHRuDPAADce0lEQVS0lPz8fGwvTXLfunVrXUccQM+ePdFoNERHR9fZIWVmZsZ9993H/Pnzufvuu4mMjOT48eNXXeQhPDycn3/+GY1Gw86dOxk0aBCtW7dm586ddO7cmXPnzuky444cOUJsbCw2NvodIqWlpXrDbC+Li4ujoqKC7t2767bZ2dkRGBhYq+yVfyOFQoG7uzsZGXVPcG/IBx98wNtvv623bfbs2TgNbnddx7kmLWC4bxMHdxcc3KsXavDwb01hropjm/beUGdc9IFIdixey3yj99FqtXwxZw5Arc5VrVZbV0jVDO1TY5vB49bY1rVrV5YuWUJeXh6r16zhlVdfZeGCBTg6OuLg4MBHH37IBx9+yG/Ll6NUKhk6dChBQUHXPVS35jogCkXVn96QX49uwsHShq/ueBYFVZ0sm88dZFLHwWi0GixMzHhpwFTm7P6N/LLGH8p5mUnnDljefYfueeGlxRZqu0plajDt0RV1ShrqhCS97ZVXDCvUpKZTGJ+A7WvPY9qtM2U7915n5FdXK1QFdS7U0tLOhQe6juSPkzs4kRKLvYUNUzoP5eEeY/j+QPUcU6UV5by0/lvMTUwJcfdlapfhZBTmciY9vlFjv1LNiBUoDGytsuTYZhwsbfly3DPVbSrmEJM6DEJzxYfxkooy/rfqE8yNzejUMoBHwu4gtSC78ea+q/mapPZr8qrltZc3V20/fjSS3xYv4bHnniKoXVtSkpL57suvcVjwC1OmTW2cmOuhVh3qeA/TaDRs/H45YXcMxsHduc7j9Z88mm0LV/PLq3NAocDO1ZHgPp05s+fGO5XqpWbQ2rovEJffT8PuH62bU7RT5QD2zv+TLncNxtjUxOB+Ta7mqUB76bVxY9oEB9EmOEj3PDAkmBdnPsXfq9Yx/clHbvi41+vqL5OqHy49upnSyqrM/rWn93B/1xGsOrmDSo0aP6eWDAroyqqTO0jITcfZyo5xIf0YXFpc5+JAjaHWtQ9FnZeLFrbOTO08gjWndnEyLRZ7cxvu6TSEad1G89Mhw8PZbw79iK9WhyuFebWjpKKME1fJFBsc0I0urQL5cvfvTb7owfVcM67Ux6c9xRWlHE3Wz/APdGnNmLa9+eXoRuKyk3G1dmRypyHkBffhrzNNN6ReiNuZdMYJ8R9mZWWFv7//VcuYXDF05vIHQEPbNFe5g3+5zFW/hAEPP/wwHTt2JCkpifnz5zNo0CC8vLzqLN+vXz8KCgo4evQou3fv5t1338XT05P333+fjh074urqStu2bXXxdenShSVLltQ6zuXstStd/rJuqIOnJpMaw4sUCsVV/x6GvPLKKzz77LN628zMzPgh4sY+kFrYWKJQKmtNFF6cX1Qrq+Nq3H09iT5wYytS+XRoi9tsT+7vOoKiwkLdcOCs7Gycnau/mObk5uLo5FTncZycnHRZcHr7XOo4tre3x8jIqFaZ3JycWhl1FhYWeHp64unpSWhoKOMnTODPP//UZXeGhYXx55o15OXlYWRkhI2NDcOGDavqXNbUXnyhJlVpEWqNGkdL/Ywle3Mb8ooND1spV1fw2c5lfLFrOQ6WNuQU5zMyqBdF5aWoSovwdWqBh60T7w6bodvncrvc+PDnTFv+HqkFDZ9DruJ0FAWfXrHSmnHVRwSljTXq/OrYldZWaAvrMem0iQmmndpTsrEeEzuXV6BOTUPpUneHxfXKLytGrVFjb6Hf3u3MrVCVGu7UvKNdX85lJrDuTFWHYEJeOmWHynl72MMsP75NN5m6Fi3phVUZXhdz02hp58K4dv2apDMuX9em9G8k2FtY1zkUqlxdwee7lvHlbsNt6jItWlLyswCIy0mmtb0b93Qc3ODOOFt7O5RGSnJrZMHl5ebVOf+Wg6MDuTk1y+diZGSErV3V62nxjwsYOGwII8aOAsDHz5fS0lK++uhz7n1gSqPNb1mXy++rRSr9v3tJfiGWdrXfVytKy8iITyYzIZUdv/4FXLqGaLV89dDrjH9uGp7BfljaWjPmyalUVlRQWliMlb0te1dswta5aeYqM7WyQKFUUJqv/zooKyzG3MZwNpaFnTUWdtZ6i/vYujmBFkryCrFxbdp51WqysbNFqVSSl6P/vqzKzcOunpm79aFUKvEPCiA1ue6VTRuiqLwEtUZTKwvO2tSiVobWZQWlRahKC3UdcQAZhTkoFQrsLazJKlIxLDCMo0nRHEo4A0BaQTamRibc2WEA22Ii6ns/pd4KyopRazTY1Xi/tTW3qpWhddmY4D7EZCWw4ew+ABLJoCyinDeGTGfFiX+abHGDuhSWXT4X+hmj1maWFNTjRliYVwiHEs+griP7aJB/V4a26c68vSt177tNoaD80rkwr3kuLOu89l2pr08H9sWfRF3jc+yE0P7su3iSXZfmZUtSZWJmbMIDXUey7syeRm9TQvwXyJxxQohGl5CQQEpK9QfX/fv3o1QqdXNzmZqaojYwEW9oaChdu3blxx9/ZOnSpUyfPv2qv+fyvHHz5s1DoVAQHBxM3759OXbsGOvWrdNlxQF07tyZmJgYXF1ddZPzX34YWkXVz88PExMT3ZxvAPn5+brJ/uvr8vxjhup7JTMzM2xtbfUeDRmmamRsjKtXCxJP63+pTjwTi7t//ef7ykxINfglsz5MLcywd3PCy8sLT09PfH19cXJy4uDB6onOKyoqOHr0qF52YU3tQ0P19gE4eOCAbh8TExOCgoJqlzl06KrHhaovxuUVtec8sre3x8bGhoiICHJycxk40PBcTzVVatScy0qkc0v9DMrOrQI5nX6hjr2qqLUasopUaLRaBvh15mDCabRoSchLZ8aKD5n1xye6x/6LpzieEsusPz4xuJrmDSkrR5OVU/1Iy0CTn49x4BUd9kZGGPv7UHnh6vMOAph2DAVjIyoOH7v27zYywsjNFU1+3fPsXC+1Rs2FnFRC3fWHSIW6+9Wan+kyU2OTWh3umssd81fJtlEAJnUMQWyoSo2amKyk2m2qZeA1O/+ubFPhfp10baouCoUCE2XD79OamJgQENiGYxH6Q+KORRyhbYjhbN+2Ie1qlT966DABQYEYX+oYLisrrdXhplQq0Wq1dWY7NiYjY2NcvVuQUON9NeFMLB5+tW8cmZqbMeXdJ5n89uO6R2h4dxzcnZn89uO4++kv5mBsYoK1gx0atYbYI6fw7dS2iephhIOnO2nR+sPk0s5exNnH8FBMZ5+WlKgKqbhiFeWCjBwUCgUW9jd2jWgIExMTfNv4c+JwpN72E0ciCQwJMrzTDdBqtcTHXmiyRRzUWg3JqgzauOi3hTYurYnPSTW4z4WcVGzNrTA1qr4R6GJlj0ar0d0wMDUyrvVa12g1l97HbjxzsC5qjYb4nBRC3H31toe4+xKTlWRwHzNjE937a3WMl2+ENnqI16TWakjMSyfIVf+1HOTqxYXsq3fGBji3wtXagf3xJw3+fFBAV4YHhfHNvlUk5KU3WsyGqDUa4nNTaeeuP6Ih2M2H83Wci8sCXVrjZuPI7gu1b8KaGhm6PmqqWlNznDBx/S7dDLolH/9RkhknxH9YWVkZaTXm6jI2NtbLWroR5ubmPPDAA3z66afk5+fz5JNPcvfdd+uGqHp7e7Np0yaio6NxcnLCzs5Ol1328MMP8/jjj2Npacn48eOv+bvCw8P58ssvGT9+PAqFAgcHB4KDg1m+fDlfffWVrtyUKVP45JNPGDduHO+88w6tWrUiISGBVatW8cILL+gNqwWwsbHhgQce4IUXXsDR0RFXV1dmz56NUqm8ZobflVxdXbGwsGDjxo20atUKc3Nzg51/TaHj0N5s+Wklrt4tcffz5PSuwxTmqAjpX7Wy2b4/NlOUm8+Qh+8EIHLLPmyd7HFs6Yq6Uk30geOcP3KaEY/e2yjxKBQK7r33XhYsWEDrS9lpCxYuxNzcnOGX5iAEeHP2bFxdXHQLg9xzzz3MfOQRFi5aRHj//uzYuZODhw7x808/6faZMnkyb86eTdvgYNqHhrJq9WrS0tKYOHEiACUlJcyfP59+/frh7OyMSqVixcqVZGRkMHhQ9QqTa9euxcfHBwcHB06cOMFnn3/O5HvvxddX/wvG1fxxYgcvDbiPc1kJRKXHM7JtL1ytHVgXVZVtNb3baJyt7Ph4R1WWZks7F4JcvDibcRFrMwsmth+At6OH7ucV6kric/W/lBWVVc2rVnN7YyvbuQ/zweFoMrNRZ2ZjPjgcbXkF5UcjdWUsJ9+JRpVP6frNevuahnWl4mSUwTngzMeOoOL0WbS5eSisrTAfOgCFuRnlEY07LG991D4e6zWBuJxkzmUmMjigK85WdrphWvd0HIyjpS3f7Kua0+5oUjQzwsYxJKAbx1Orhqk+0HUEsVlJuiy0ce36EpedQnphDsZKIzq2bENf3478fOivRo39Sn+c3MGL4VM4l5nImYx4RgX1rNWmnKzs+ESvTbUmKuMiNmaWTAwNx9vBg092LNUd854OgzmXlUBKfjYmSiO6tw5mcEA3vtqzolFinjDpLj559wMCggJpGxLM33+uIyM9nVHjxwAw/9sfyc7K4oU3XgFg1B1jWPvHGr7/6htGjB1F1KkzbFr3Ny+/9brumD1692T1byvxa+NPUHDVMNXFPy4grE8vjC51hpYUl5CSVL0IQVpKKufPxWJja4Ore8NXkuw8tA+bflyBm3dLPPxbc3JnBAXZKkIHVE1psHfFJgrz8hk24y4USiXOrfSnZrC0tcLIxERve9r5RApzVbi0bkFhnooDa7ah1WrpOrJpVoQFCBrQlQO/rMfR0x0nnxac33ec4tx8/PtUrRp5fO0uSlQFhE2tykL06tqW05v2c2jJ34SM6E1ZUQnH/9yJT1ioboiqulJNflpVxo+mUk2JqpDcpHSMzUyxcWn8zqzRd93B3A8+xy/Qnzbt2rJ13Uay0jMZOmYkAEt+XEhOZjZPvPqcbp8LsVWLEpWWlJKfp+JCbBzGxsZ4elfdpFqxaCkBbQPxaNWS4uJi/v5jLfGxcTz01KxGj/+ynXGR3NtpCIl5GVzMTSPMqx32FtYcuLQi54igntiZW/Nb5BYAjiWfY0ibbkzqOIjN0QexMrVgdHBvDiVE6YY+nkm/QD/fTiSrMknITcfJyo7hQWGcTrtw1Q75hvg7+gCzwsZzISeF2KwkBvh1wcnSjm0xVYt93d1hEA4WNrq5yI4ln2N69zEM8u/KiUvvt/d1Hsb5rCRdp6KRUklL26rRC8ZKIxwsbGlt70ZpZTkZhdfOVr9e/8Qe4f6uI0jIS+dCTgq9vdvjaGmj65waG9wHOwtrfjmyUW+/nl6hXMhJMZilPjigG6Pa9mLR4Q1kF6t0WZBllRW1FtppLJujDzKjxzjic1KJzUqiv18nnCzt2H6+6hp7Z2g49pY2/HRQ/7rVz7cj57OTSVZl1jpmZEoMwwJ7cDE3nbicqmGq40P6E5kSc1NuhlyNhYkZreyqR7m0sHUmwLkV+aVFpDdBOxGisUhnnBD/YRs3bsTDQ3+1rsDAQN1KoDfK39+fCRMmMHLkSHJychg5ciTffPON7uczZsxgx44ddO3alcLCQrZv3054eDgA9957L08//TSTJ0/G3Nz8mr9rwIABfP7557r9Afr3709kZKReZpylpSW7du3ipZdeYsKECRQUFNCyZUsGDRqkm+uups8//5xZs2YxevRobG1tefHFF0lMTKxXXJcZGxvz1Vdf8c477/Dmm2/St29f3QqwTS2geyilhcVE/LWdIlUBTi3dGP3UVN3Qp+K8Agpy8nTlNZVq9q7YSGFuPsYmJji2dGX0U1Pxbl97nrwb9cD991NWVsaHH31EQUEBIe3aMW/uXKysqoeFpKWlobyiw7NDhw689957fPvtt3z33Xe0atWKD95/n5CQEF2ZoUOHolKp+Omnn8jKysLPz48vv/hC176VSiXx8fGsW7+evLw87OzsCA4O5scffsDPrzpz6uLFi3z99deo8vNp0aIF06ZNY8rk65scfmfcMWzNrbiv8zAcLe2Iz0nltb+/131xcLK0xdW6+oupkULJne0H0MreFbVGTWRKDE/9+YVuGGRzKvtnFwoTEyzuHIvCwgL1xSQKv1sAV2THKB3sa93VVLo4YezrTeG38w0eV2lnh9XUSSisLNEWFlF5MZGCL75Dm5vXqPHvv3iqqoMzNBx7CxsS8zL4cPuvZBWpAHCwsMHZqrpzfGdcJOYmZgwN7MF9XYZRVF7K6fQLLD1a3dFoZmzK9O6jcbK0pVxdQUp+Fl/v/YP9l744N4WdccewNbNkSudhOFracjEnldc3VrcpR0tbXK2q25RSoWRiaHWbOp4Sy9Nrv9RrU+YmpjzR+y6crewoq6wgUZXBR9t/ZWdcPTIZ66H/4AHk5+ezZMFicrNz8PL15t1PP8Dt0k2ZnOwcMtKr59Z0b+HBu59+wPdffc26VX/i6OzE/55+nD4DqjukJj8wFYVCwaIf5pOdmYWdgz09evfkwZkP6cqcOxvNS09UD/n/YW7VvKiDRwzj+ddfanC92vRoT0lRMQfX/kPxpffVcc88oHtfLVIVUJCdd13HrKyoYP/qLagycjExN8W7fSDDZtyNmaVFg+OtS+vOQZQVlXBq0z5KVUXYeTjTb9ZErByrXg8l+YUU5VZnqpqYmTLgsbs4snIbmz/9BVMrC1p3CiR0VB9dmRJVIZs+rp5r8uw/EZz9JwIXf08GPXlPo9eh98B+FOYXsHLxb+Tm5ODp7cWrH76Fi7srALnZuWRl6HcqvDjjSd3/487FsmfbTlzcXPnmt6r3qqLCIr7/fB55OblYWlnh4+/L219+SEDbxrsO1nQ8JQYrE3OGtOmOrZkVaQXZ/HzwL90NAFtzKxyuGP5Zrq7g+wN/Mj6kH0/1m0RxeSnHU2L5+4qJ9LdeGoo6PCgMO3NrCstLOJN2Qa9MYzuYcBprUwvuaNcfewtrklQZfLpzCdnFVe+39ubWOFlWv9/uvnAcc2MzBrfpxr2dhlJcXsqZjAssj6ye2sDBwob3RlR3hI5q24tRbXsRlR7P+/8savQ6HE2OxsrUnBGBYdiaW5Gan803+1bpnQvHGgvnmBub0rFFACtPbjd4zL4+HTAxMubhHmP1tm+I2tdkix8cSozCysySse36YGduTbIqkzm7f9OtjmpnoX8uoKpDq0urIJYe22zokLp54SaE9sfBwoaCsmIiU2L44+SOJqnD9Qhy8WLe+Or3/Sf73AXAhqj9vNcE7USIxqLQNndXthDitvLWW2+xZs0aIiMjb2j/xMREvL29iYiIoHPnzo0bXAMVFRXRsmVLPvvsMx566KFr79AI5jZSlkpzeqLPXRTk51+74C3MxtaWIT881dxhNNiWmV+S98yrzR1Gg9jPeZ97fn2zucNosN/ue4ehPz7d3GE02OYZX3AhK/naBW9hPs4t+WbfH80dRoM92msiszf9dO2Ct7C3hz3MiZTrmw7iVtS+RQDP/zW3ucNosE/HPMHUZW9fu+At7Jd7Z/P46s+aO4wGmzf+OaYtf6+5w2iQBZNeo/fXTZdlerPsfey75g7hhuSOaZyRLk3B4a9lzR1Cs5DMOCHELaGiooLU1FRefvllwsLCbomOuGPHjnH27Fm6d++OSqXinXfeAWDcuHHNHJkQQgghhBBCiH8r6YwTQtwS9u7dy4ABA2jTpg0rV65s7nB0Pv30U6KjozE1NaVLly7s3r27wXPqCSGEEEIIIYT475LOOCFEo3rrrbd46623rnu/8PDwZp8AtqZOnTpx5MiRaxcUQgghhBBCiFvVLfY9S4Dy2kWEEEIIIYQQQgghhBCNQTrjhBBCCCGEEEIIIYS4SWSYqhBCCCGEEEIIIcTtSqtp7ghEDZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWR1VRvNZIZJ4QQQgghhBBCCCHETSKdcUIIIYQQQgghhBBC3CQyTFUIIYQQQgghhBDidqWVYaq3GsmME0IIIYQQQgghhBDiJpHOOCGEEEIIIYQQQgghbhIZpiqEEEIIIYQQQghxu5JhqrccyYwTQgghhBBCCCGEEOImkc44IYQQQgghhBBCCHHbeO+99+jVqxeWlpbY29vXax+tVstbb71FixYtsLCwIDw8nNOnT+uVKSsr44knnsDZ2RkrKyvGjh1LUlLSdccnnXFCCCGEEEIIIYQQtyuN5tZ9NJHy8nLuuusu/ve//9V7n48//pjPP/+cefPmERERgbu7O0OGDKGgoEBX5umnn2b16tX89ttv7Nmzh8LCQkaPHo1arb6u+GTOOCGEEEIIIYQQQghx23j77bcBWLhwYb3Ka7VavvjiC1577TUmTJgAwKJFi3Bzc2Pp0qU88sgjqFQqfv75Z3755RcGDx4MwK+//oqnpydbt25l2LBh9Y5PMuOEEEIIIYQQQgghxE1XVlZGfn6+3qOsrOymx3HhwgXS0tIYOnSobpuZmRn9+/dn3759ABw5coSKigq9Mi1atCAkJERXpt60Qggh/pNKS0u1s2fP1paWljZ3KDfsdqiDViv1uJXcDnXQam+PetwOddBqpR63ktuhDlrt7VGP26EOWq3U41ZyO9Thv2r27NlaQO8xe/bsRjv+ggULtHZ2dtcst3fvXi2gTU5O1ts+Y8YM7dChQ7VarVa7ZMkSrampaa19hwwZop05c+Z1xaXQamWNWyGE+C/Kz8/Hzs4OlUqFra1tc4dzQ26HOoDU41ZyO9QBbo963A51AKnHreR2qAPcHvW4HeoAUo9bye1Qh/+qsrKyWplwZmZmmJmZ1Sr71ltv6Yaf1iUiIoKuXbvqni9cuJCnn36avLy8q+63b98+evfuTUpKCh4eHrrtM2bMIDExkY0bN7J06VKmTZtWK94hQ4bg5+fHd999d9XfcSWZM04IIYQQQgghhBBC3HR1dbwZ8vjjj3PPPfdctYy3t/cNxeHu7g5AWlqaXmdcRkYGbm5uujLl5eXk5ubi4OCgV6ZXr17X9fukM04IIYQQQgghhBBC3NKcnZ1xdnZukmP7+Pjg7u7Oli1b6NSpE1C1IuvOnTv56KOPAOjSpQsmJiZs2bKFu+++G4DU1FROnTrFxx9/fF2/TzrjhBBCCCGEEEIIIcRtIyEhgZycHBISElCr1URGRgLg7++PtbU1AEFBQXzwwQeMHz8ehULB008/zfvvv09AQAABAQG8//77WFpaMnnyZADs7Ox46KGHeO6553BycsLR0ZHnn3+e0NBQ3eqq9SWdcUII8R9lZmbG7Nmz650Wfiu6HeoAUo9bye1QB7g96nE71AGkHreS26EOcHvU43aoA0g9biW3Qx1E43rzzTdZtGiR7vnlbLft27cTHh4OQHR0NCqVSlfmxRdfpKSkhEcffZTc3Fx69OjB5s2bsbGx0ZWZM2cOxsbG3H333ZSUlDBo0CAWLlyIkZHRdcUnCzgIIYQQQgghhBBCCHGTKJs7ACGEEEIIIYQQQggh/iukM04IIYQQQgghhBBCiJtEOuOEEEIIIYQQQgghhLhJpDNOCCGEEEIIIYQQQoibRDrjhBBC/CtptVpkDSLRWGJjY9m0aRMlJSUA0raaWWlpaXOH0Chul3oIIcStZuDAgeTl5dXanp+fz8CBA29+QEJcJ1lNVQgh/iPKyso4dOgQ8fHxFBcX4+LiQqdOnfDx8Wnu0K7L4sWL+eSTT4iJiQGgTZs2vPDCC0ydOrWZI6s/tVrNnDlz+P3330lISKC8vFzv5zk5Oc0U2fVLSkpi7dq1Buvx+eefN1NU9Zednc2kSZP4559/UCgUxMTE4Ovry0MPPYS9vT2fffZZc4dYb4mJiXqv73bt2mFmZtbcYdWbRqPhvffe47vvviM9PZ1z587h6+vLG2+8gbe3Nw899FBzh1gvt0s9/u3tSaVSsXr1anbv3l3rujds2DB69erV3CHWy+1SDyEam1KpJC0tDVdXV73tGRkZtGzZkoqKimaKTIj6MW7uAIQQQjStffv2MXfuXNasWUN5eTn29vZYWFiQk5NDWVkZvr6+zJw5k1mzZmFjY9Pc4V7V559/zhtvvMHjjz9O79690Wq17N27l1mzZpGVlcUzzzzT3CHWy9tvv81PP/3Es88+yxtvvMFrr71GfHw8a9as4c0332zu8Opt27ZtjB07Fh8fH6KjowkJCSE+Ph6tVkvnzp2bO7x6eeaZZzA2NiYhIYG2bdvqtk+aNIlnnnnmlu+Mu3jxIt999x3Lli0jMTFRL6PP1NSUvn37MnPmTCZOnIhSeWsPiPi///s/Fi1axMcff8yMGTN020NDQ5kzZ86/phPr31yP26E9paam8uabb7JkyRLc3d3p3r07HTt21F33tm/fzqeffoqXlxezZ89m0qRJzR2yQbdLPWqKiIhgxYoVBm/grFq1qpmiun63Sz3+jU6cOKH7/5kzZ0hLS9M9V6vVbNy4kZYtWzZHaEJcH60QQojb1tixY7UeHh7a5557Trtz505tUVGR3s/Pnz+vXbhwoXbYsGFad3d37ebNm5sp0vrx9vbWLlq0qNb2hQsXar29vZshohvj6+urXbdunVar1Wqtra21sbGxWq1Wq/3yyy+19957b3OGdl26deumfeONN7RabVU9zp8/ry0oKNCOHTtW+8033zRzdPXj5uamjYyM1Gq11XXQarXauLg4rZWVVXOGdk1PPvmk1sbGRjtx4kTtokWLtFFRUdr8/HxtRUWFNj09Xbtt2zbtW2+9pQ0MDNS2a9dOe+jQoeYO+ar8/Py0W7du1Wq1+uciKipKa29v35yhXZd/az1ul/bk4uKife6557QnT56ss0xxcbF26dKl2u7du2s/+eSTmxhd/d0u9bjSsmXLtCYmJtpRo0ZpTU1NtaNHj9YGBgZq7ezstA8++GBzh1dv/+Z6/Pnnn/V+3KoUCoVWqVRqlUqlVqFQ1HpYWlpqf/755+YOU4hrks44IYS4jc2bN09bVlZWr7KnTp265TvjzMzMtDExMbW2nzt3TmtmZtYMEd0YS0tL7cWLF7VarVbr7u6uPXLkiFarreoctbW1bc7QrsuVHYn29vbaU6dOabVarTYyMlLr5eXVjJHVn7W1tfbcuXO6/1/uODl06JDW0dGxOUO7pueff16bkZFRr7Lr16/Xrlixookjahhzc3NtfHy8VqvVPxenT5++5TtGr/Rvrcft0p7qW4cbLX+z3C71uFJoaKh23rx5Wq22+rWh0Wi0M2bM0L755pvNHF39/ZvrUbPjqmaH1uVOLqVS2dyh1ik+Pl574cIFrUKh0EZERGjj4+N1j5SUFG1lZWVzhyhEvdya+eVCCCEaxWOPPYapqWm9yrZr144hQ4Y0cUQN4+/vz++//15r+/LlywkICGiGiG5Mq1atSE1NBarqtHnzZqBq2Mu/aU4mKysrysrKAGjRogXnz5/X/SwrK6u5wrou/fr1Y/HixbrnCoUCjUbDJ598woABA5oxsmv75JNPcHFxqVfZkSNHcueddzZxRA3Trl07du/eXWv7ihUr6NSpUzNEdGP+rfW4XdpTfetwo+VvltulHlc6f/48o0aNAsDMzIyioiIUCgXPPPMMP/zwQzNHV3//5npoNBrdY/PmzXTs2JG///6bvLw8VCoVGzZsoHPnzmzcuLG5Q62Tl5cX3t7eaDQaunbtipeXl+7h4eGBkZFRc4coRL3InHFCCPEfVFpayvLlyykqKmLIkCH/mo6st99+m0mTJrFr1y569+6NQqFgz549bNu2zWAn3a1q/PjxbNu2jR49evDUU09x77338vPPP5OQkPCvmfcOICwsjL179xIcHMyoUaN47rnnOHnyJKtWrSIsLKy5w6uXTz75hPDwcA4fPkx5eTkvvvgip0+fJicnh7179zZ3eNf0+uuvM3DgQHr16oW5uXlzh9Mgs2fPZurUqSQnJ6PRaFi1ahXR0dEsXryYdevWNXd4/8/encfVmP7/A3+dFm3aUJZUWkQRStm3rGHs2xAl69hKsjSfIWZszRDJli3JXtkydlqIGksbSqUiSxFRlGi5f3/4db6OohMzrnOf834+Hj0eneu+/3hd1Omc97mu6y02aZnHpyIjI1FYWIiOHTtCW1ubdZxq3b9/H/n5+Wjbtq1w7NKlS1ixYgUKCwsxdOhQ/O9//2OYUDzSMo8KderUwZs3bwAAenp6uHPnDiwtLfH69WsUFRUxTic+aZnH3Llz4efnhy5dugjH+vXrB1VVVUybNg3JyckM04knNTUVEREReP78OcrLy0Wu8ekMXiKjWC/NI4QQ8t+aP38+5+LiInz8/v17rk2bNpyioiKnqanJqampcdeuXWOYsGZu3rzJOTg4cNbW1pyVlRXn4ODAxcbGso71XaKjozlvb2+JPqOlKunp6VxCQgLHcRxXWFjIzZgxg7O0tOSGDRsm3KbHB9nZ2Zynpyc3cOBArn///txvv/3GPX36lHUssRgbG3MCgYBTUlLiunXrxi1dupSLjIwUe3u6pDl79izXrVs3Tk1NjVNRUeE6d+7MnTt3jnWsGuPrPP766y+RbXbl5eVcv379hFvY6tevL9yOLsmGDh3KLV68WPg4IyODU1FR4fr27cu5uLhwtWvX5tavX88uoJikZR4Vxo4dy3l7e3Mcx3ErVqzgdHR0uClTpnCGhobcsGHDGKcTn7TMQ1lZmUtMTKw0npCQwCkrKzNIVDPbt2/n5OXlufr163OtW7fm2rRpI/yysrJiHY+Qagk47pM2SYQQQqROy5YtsWrVKgwePBgAsHv3bri7uyMuLg4GBgaYNGkSnj9/jlOnTjFOSgj5Fk+ePEFYWBgiIiIQERGBzMxMqKiooGPHjrCzs4OdnR06derEOibhAWtrayxatEjYmTM4OBhOTk64cOECzM3N4ejoCFVVVYlfiayvr4+goCB07NgRwMcOtyEhIYiPjwcA7Nq1Cxs3bhQ+llTSMo8KeXl5KC4uRqNGjVBeXo61a9ciKioKpqamWLJkCS9WXQLSM49u3bpBUVER+/btQ8OGDQEAOTk5mDBhAj58+IDIyEjGCb/O0NAQM2fOxKJFi1hHIeSbUDGOEEKknIaGBmJjY2FqagoAGDt2LNTV1YXnmsTHx2PAgAF4+vQpy5g18vz58yq3JLRq1YpRouqFhoaKfW9F4ZT8NxITE9GyZUvIyckhMTHxq/fWrl0b+vr6UFRU/EHpvt+jR48QHh6OiIgIHDlyBIWFhSgtLWUdq1rOzs4YP348evbsCYFAwDrON+PzPLS1tXHt2jWYm5sD+DiX0tJS7N27FwAQExODUaNG4dGjRyxjVktFRQWpqanQ19cHAPTq1QudOnXC8uXLAXw886tt27Z4/fo1w5TVk5Z5AEBpaSn279+Pfv36oUGDBqzjEHzcBj1s2DCkpKTAwMAAAJCVlQUzMzMcP35c+LpRUmloaCA+Ph7GxsasoxDyTejMOEIIkXJycnL49HOXmJgYLFmyRPhYS0sLr169YhGtxm7dugUnJyckJyfj88+SBAIBysrKGCWr3tChQ8W6T9Lnoa2tLXaBIS8v7z9O823atGmDnJwc6Orqok2bNhAIBJV+nj6lqakJPz8/4WohSZaeno6IiAjhSrmysjKJb0RR4eXLlxg4cCDq1q2Ln3/+GePHj5fohgdfwud5lJSUiDSRiY6Ohqurq/Bxo0aNeNGcpU6dOsjOzoa+vj7Ky8tx8+ZNkfM4P3z48NXfeUkhLfMAAAUFBcyYMYMX55BVpaCgQOx7NTQ0/sMk/x5TU1MkJibiwoULuHfvHjiOg4WFBXr37s2LDxJGjRqF8+fP45dffmEdhZBvQsU4QgiRcs2bN8fJkycxb9483L17F1lZWSJvzh8+fIj69eszTCg+Z2dnmJmZYdeuXahfvz4vXixW+HwVH1/5+PiwjvDdMjMzhZ0HMzMzv3rv+/fvERwcLLJ1T5JkZmYiPDxcuBIuPz8fnTt3Rvfu3TF79mzY2tpCQYEfL/dCQ0Px+vVrBAUF4cCBA/Dx8UGzZs0wfvx4jBs3Dk2aNGEdUSx8noepqSkuX74MY2NjZGVlITU1Fd27dxdef/z4MerWrcswoXi6d++O5cuXY8uWLQgODkZ5ebnI372kpCSJ/n+oIC3zqNC+fXvExcXB0NCQdZQa09LSEvs1hyR/oPY5gUCAvn37om/fvqyjiMXX11f4fcW24JiYGFhaWlZawe7i4vKj4xFSI7RNlRBCpNyRI0cwduxYdO3aFXfv3oWtrS1OnjwpvL5o0SJkZmZK/BlAAKCuro64uDiJ3zpBpMurV68wefJkHD16lHWUSuTk5GBgYICZM2fCzs4O1tbWkJeXZx3rX/H48WMcPHgQ/v7+SEtL48VW26rwaR7btm2Du7s7xowZg5iYGGhpaYl0FV6xYgX++ecfkb8hkigzMxN9+vRBZmYm5OTk4OvrixkzZgivDx06FEZGRli/fj3DlNWTlnlUCA4OhoeHB9zc3NC2bVuoqamJXJfkoyY+PT/twYMH8PDwwMSJE4Xn+UVHR2PPnj1YvXo1nJycWMWsscLCQkRGRiIrKwsfPnwQuSaJxSwjIyOx7hMIBMjIyPiP0xDyfagYRwghMuDixYs4deoUGjRogDlz5kBVVVV47ffff0ePHj1EVj9IqqFDh2LChAkYMWIE6yjfjW8vgKvz7t07lJSUiIzxZasOABQVFVX5fyHJbw4BYMyYMbh8+TKKi4vRtWtXdO/eHXZ2drCysuLVytHPlZSU4NSpU9i3bx9OnTqFOnXq4MmTJ6xj1Rgf57Fr1y78/fffaNCgAZYuXSpyvtfMmTPRu3dvDB8+nGFC8ZSUlCApKQk6Ojpo1KiRyLWEhATo6+ujTp06jNKJT1rmAXz88OBzFccESPoRDZ/q1asXpkyZgrFjx4qMHzhwANu3b0dERASbYDUUFxeHAQMGoKioCIWFhahTpw5evHgBVVVV6OrqUjGLkP8YFeMIIYQgPj4ebdq0YR2jWi9evICTkxPatWuHli1bVtqSwJfGB9LyAriwsBCLFi1CUFAQXr58Wek6H95Y5ebmwtnZGWfOnKnyOh/mAAD37t0TblWNjIxEcXExunTpgu7du6NHjx6wtbVlHVEs4eHhOHDgAI4cOYKysjIMHz4cDg4O6NmzZ5Vv5CWVtMyjKrm5ucJt3nx1+/Zt7Nq1i/fb7vk2j4cPH371Ol+2r6qqqiIhIQFNmzYVGU9NTUWbNm1QVFTEKFnN9OjRA2ZmZti6dSu0tLSQkJAARUVFjB8/Hq6urrwouhPCZ1SMI4QQGZWfn4/9+/dj165diI+P50XRITQ0FBMmTMCbN28qXePTp+rS8gJ41qxZCA8Pxx9//AFHR0ds3rwZT548wbZt2+Dl5QUHBwfWEavl4OCABw8ewMfHB3Z2djh27BiePXuGFStWwNvbGwMHDmQd8ZskJSXhwIED2LhxI2+6qTZu3BgvX75Ev3794ODggEGDBkFZWZl1rBqTlnl8iuM4nDlzRrhq7v3796wj1VhBQQEOHjyIXbt24ebNm2jVqhXi4+NZx6oxaZkHnzVr1gw//fQTvL29Rcbd3d3x999/IyUlhVGymtHS0sI///yDZs2aQUtLC9HR0TA3N8c///wDJycn3Lt3j3XEr5o3b16V4wKBAMrKyjA1NcWQIUN4s3KUyB5+nOhLCCHkXxMWFgZ/f38cPXoUhoaGGDFiBHbu3Mk6llhcXFwwYcIELFmyhDdNJ6oSHx+Pbdu2QV5eHvLy8nj//j2MjY3x119/wcnJiTfFuJMnTyIwMBA9evTApEmT0LVrV5iamsLQ0BD79+/nRTEuLCwMJ06cgK2tLeTk5GBoaIg+ffpAQ0MDq1ev5lUx7tmzZ4iIiEBERATCw8ORmpoKJSUldO3alXU0sXh6emLUqFHQ1tZmHeW7SMs8ACAjIwP+/v7Ys2cP3r59i4EDB+LQoUOsY9VIZGQkdu3ahSNHjqC4uBgLFizAgQMHeHf2qDTMIzAw8KvXHR0df1CS77N+/XqMGDEC586dQ4cOHQB87FSfnp6OI0eOME4nPkVFReFxBvXr10dWVhbMzc2hqamJrKwsxumqFxcXh9jYWJSVlaFZs2bgOA5paWmQl5dH8+bNsWXLFri7uyMqKgoWFhas4xJSCRXjCCFEBjx+/BgBAQHw9/dHYWEhRo8ejZKSEhw5coRXL1BevnwJNzc3XhfiAP6/AK6Ql5cnPExZQ0MDeXl5AIAuXbqIHDIuyQoLC6GrqwsAqFOnDnJzc2FmZgZLS0vExsYyTle94OBg4fbUlJQUKCgooF27dhg9ejTs7OzQqVMnKCkpsY4plmnTprGO8K/g+zyKi4sREhKCnTt3IiYmBn369EF2djbi4+PRsmVL1vHEkp2djd27dwv/5o0dOxaRkZHo2LEjHB0deVPAkpZ5VHB1dRV5XFJSgqKiItSqVQuqqqq8KcYNGDAAaWlp2Lp1K5KTk8FxHIYMGYJffvkF+vr6rOOJzcrKCjdv3oSZmRns7Ozg6emJFy9eYO/evbC0tGQdr1oVq952794tPKO2oKAAkydPRpcuXTB16lSMGzcObm5uOHfuHOO0hFRGxThCCJFyAwYMQFRUFH766Sds3LgR9vb2kJeXh5+fH+toNTZ8+HCEh4fDxMSEdZTvwvcXwBWMjY3x4MEDGBoawsLCAkFBQWjXrh1OnjwJLS0t1vHE0qxZM6SkpKBJkyZo06YNtm3bhiZNmsDPzw8NGzZkHa9aDg4OsLGxwbBhw2BnZ4fOnTtDRUWFdaxvduPGDQQHB1fZTEMSu9l+CV/nMXPmTBw6dAjNmjXD+PHjceTIEdStWxeKioq8OuvOyMgIo0aNwubNm9GnTx9eZf+UtMyjwqtXryqNpaWlYcaMGViwYAGDRDVXUlKCvn37Ytu2bVi5ciXrON9l1apVwmM/li9fDicnJ8yYMQOmpqbYvXs343TVW7NmDS5cuCDSLEpDQwPLli1D37594erqCk9PT/Tt25dhSkK+jIpxhBAi5c6fPw8XFxfMmDGj0mHDfGNmZoZff/0VUVFRsLS0rNTAgS9dSPn+AriCs7MzEhIS0L17d/z6668YOHAgNm7ciNLSUqxbt451PLHMnTsX2dnZAIClS5eiX79+2L9/P2rVqoWAgAC24cTw6tUrqKmpsY7xrzh06BAcHR3Rt29fXLhwAX379kVaWhpycnIwbNgw1vHExud5bN++HYsWLYKHhwfU1dVZx/lmhoaGiIqKgoGBAQwNDdG8eXPWkb6JtMzja5o2bQovLy+MHz9e4s8oAz6ubL9z5w6vu1VXsLGxEX6vo6OD06dPM0xTc/n5+Xj+/HmlHR65ubkoKCgA8PFcvM8/ECFEUlAxjhBCpNyVK1fg7+8PGxsbNG/eHBMmTMCYMWNYx/omO3fuRO3atREZGYnIyEiRawKBgDfFOL6/AK7g5uYm/N7Ozg737t3DzZs3YWJigtatWzNMJr5Pz7WzsrLCgwcPcO/ePRgYGKBevXoMk4mnohD35MkTHDlyBKmpqRAIBGjatClGjBgBPT09xgnFt2rVKqxfvx6zZs2Curo6NmzYACMjI0yfPp0XqxQr8HkegYGB2L17Nxo2bIiBAwdiwoQJsLe3Zx2rxlJSUnD16lXs2rULtra2MDMzw/jx4wGAV0UUaZlHdeTl5fH06VPWMcTm6OiIXbt2wcvLi3WUf0Vubi5SUlIgEAjQrFkzXvztAz5uU500aRK8vb1ha2sLgUCA69evY/78+Rg6dCgA4Pr16zAzM2MblJAvoG6qhBAiI4qKinDo0CH4+/vj+vXrKCsrw7p16zBp0iRer4AgRNZt2bIF8+bNw4cPH6CpqQmO41BQUIBatWph3bp1mDlzJuuIYlFTU8Pdu3fRpEkT1KtXD+Hh4bC0tERycjJ69uwpXMEo6aRhHg8ePMDu3bsREBCAoqIi5OXl4fDhwxg5ciTraDX29u1bHDx4EP7+/vjnn3/QvXt3jBs3DkOHDoWOjg7reGKThnmEhoaKPOY4DtnZ2di0aRP09fVx5swZRslqZs6cOQgMDISpqSlsbGwqrU7my8rwwsJCzJkzB3v37hV2o5eXl4ejoyM2btwIVVVVxgm/7u3bt3Bzc0NgYKCwY7iCggKcnJywfv16qKmpCTsNt2nThl1QQr6AinGEECLlsrKyoK+vL/IpekpKCnbt2oW9e/fi9evX6NOnT6UXyYRIq3nz5ol9r6S/qTp16hSGDBmCuXPnwt3dXbjyKjs7G2vWrMHGjRtx4sQJDBgwgHHS6unr6+P06dOwtLRE69at4eHhgbFjxyI6Ohr29vbIz89nHVEs0jIP4GOx5Ny5c/D390doaCjq1auH4cOHw9fXl3W0b5KcnCz825eXl4eSkhLWkb4JX+fx+Zl3AoEAOjo66NmzJ7y9vSV+5WgFOzu7L14TCAQICwv7gWm+3fTp03Hx4kVs2rQJnTt3BgBERUXBxcUFffr0wdatWxknFM/bt2+RkZEBjuNgYmKC2rVrs45EiFioGEcIIVJOXl4e2dnZwo6RnyorK8PJkyeFb7Qk0bx587B8+XKoqalVW0SR9MIJkQxfeyP1KT68qerevTu6du2KFStWVHl98eLFuHLlSqVt3ZJo3LhxsLGxwbx587By5Ups2LABQ4YMwYULF2BtbS3RjQ8+JS3z+FxeXp5wG2tCQgLrON+ltLQUoaGhGD58OOso30Va5kHYqFevHkJCQtCjRw+R8fDwcIwePRq5ublsghEiI6gYRwghUk5OTg45OTlVFuP4wM7ODseOHYOWlpbUfBpNyL9FQ0MDN27cQLNmzaq8npKSAhsbG2HDEEmWl5eH4uJiNGrUCOXl5Vi7di2ioqJgamqKJUuWQFtbm3VEsUjLPPjs6dOnWLduHTw9PUU6LQIfD31fsWIF5s+fj/r16zNKKB5pmYe0un//PtLT09GtWzeoqKiA4zheneWnqqqKW7duwdzcXGT87t27aNeuHQoLCxkl+7Lhw4cjICAAGhoa1Rah+frBB5EdVIwjhBApx/diHCE/Al/fVNWuXRuJiYkwNjau8npGRgZatWqFt2/f/uBkhI/E2cItEAjg7e39A9J8u/nz56OgoADbt2+v8vovv/wCTU1N/Pnnnz84Wc1Iwzyk6ViACi9fvsTo0aMRHh4OgUCAtLQ0GBsbY/LkydDS0pL4348KvXr1Qt26dREYGAhlZWUAwLt37+Dk5IS8vDxcvHiRccLKnJ2d4evrC3V1dTg7O3/1Xj51pyeyibqpEkKIDKjoQvo1fOhE+uzZsy+uAEhMTESrVq1+cCLx1eSMJUn+vygoKBD73s9XckiiL72pmjJlCi/eVLVo0QInTpwQ6Wz7qePHj6NFixY/ONW3Ky8vx/379/H8+XOUl5eLXOvWrRujVDXH13nExcWxjvCvOHv2LPz8/L543dHREVOnTpXoIhYgHfP4/Gfq1q1bKCsrE67mTU1Nhby8PNq2bcsi3jdxc3ODoqIisrKyRFaVjRkzBm5ubhL/d6PChg0bYG9vj8aNG6N169YQCASIj4+HsrIyzp07xzpelT4tsFGxjfAdrYwjhBApJycnh8aNG0NeXv6L9wgEAmRkZPzAVN9GV1cXO3fuxODBg0XG165diyVLluDdu3eMklXPyMhIrPsk/f9CTk6u2hVjFavKKrqzSTJHR0c8f/4cO3fuhLm5ORISEmBsbIzz58/Dzc0Nd+/eZR3xq/bs2YMZM2Zg7dq1mDZtGhQUPn7OWlpaim3btmHBggXYsmULJk6cyDaoGGJiYjBu3Dg8fPgQn7885cvPEyA98+AzNTU1JCcnw8DAoMrrFUUUSdyG9ylpmUeFdevWISIiAnv27BFu13716hWcnZ3RtWtXuLu7M04ongYNGuDcuXNo3bo11NXVhX83MjMzYWlpyauVyO/evcO+fftw7949cBwHCwsLODg4QEVFhXU0sZSWliIiIgLp6ekYN24c1NXV8fTpU2hoaFAjByLxaGUcIYTIgJs3b0rFNtVFixZhzJgxwrb1eXl5mDBhAu7evYvDhw+zjvdVmZmZrCP8K8LDw1lH+FedP38e586dQ+PGjUXGmzZtiocPHzJKJT4nJyfcvn0bs2fPxq+//goTExMAQHp6Ot6+fQsXFxdeFOKAj1vubGxscOrUKTRs2JAX24Srwud5REREVDrM/XMzZ87Eli1bfkygb6SiooIHDx58sYj14MEDXhQbpGUeFby9vXH+/HmRcxO1tbWxYsUK9O3blzfFuMLCQqiqqlYaf/HiBZSUlBgk+nYqKiqYOnUq6xjf5OHDh7C3t0dWVhbev3+PPn36QF1dHX/99ReKi4u/uqqUEElAxThCCCG84e7ujt69e2P8+PFo1aoV8vLy0KFDByQmJvLyAOsPHz4gMzMTJiYmwhVNkq579+6sI/yrpOFN1dq1azFy5EgcPHgQaWlpAD5uhfz555/RoUMHxunEl5aWhpCQEJiamrKO8l34PI8hQ4YgPDwc1tbWVV6fNWsW9u/fL/HFuPbt22Pv3r1f3BIcGBiIdu3a/eBUNSct86hQUFCAZ8+eVdo6//z5c140manQrVs3BAYGYvny5QA+rngtLy/HmjVrxO7WzUpoaKjY936+C0HSuLq6wsbGBgkJCahbt65wfNiwYZgyZQrDZISIiSOEECLVBAIB9+zZs6/es2/fvh+U5vsVFBRwY8aM4RQUFDgFBQUuICCAdaQaKyws5CZNmsTJy8tz8vLyXHp6OsdxHDdnzhxu9erVjNPVzOXLlzkHBweuY8eO3OPHjzmO47jAwEDuypUrjJOJZ8CAAdzixYs5juO42rVrcxkZGVxZWRk3atQobsSIEYzTVe/333/nCgsLWcf4V9jZ2XFnzpxhHeO78Xke8+bN43R1dbmUlJRK12bNmsXVrl2bu3z5MoNkNRMWFsbJy8tz7u7uXE5OjnA8JyeHmzdvHicvL89dunSJYULxSMs8KkyYMIEzMDDggoODuUePHnGPHj3igoODuSZNmnCOjo6s44nt7t27nI6ODmdvb8/VqlWLGzlyJGdubs7Vr1+fu3//Put4XyUQCMT6kpOTYx21WnXr1uXu3bvHcdzHv98Vr6UyMzM5FRUVltEIEQsV4wghRMo1b96ce/r06Rev79+/n1NUVPyBib5dVFQU16RJE65t27ZcUlISt2PHDk5dXZ0bNWoUl5eXxzqe2FxcXLi2bdtyV65c4dTU1IQvIE+cOMG1adOGcTrxhYSEcCoqKtyUKVM4JSUl4Tw2b97M9e/fn3E68fD5TRXHcZycnFy1xXa+OHr0KGdhYcHt3r2bu3nzJpeQkCDyxRd8n4ezszNnYGAgLK5z3McPCtTU1LiIiAiGyWrGz8+PU1JS4uTk5DgtLS1OW1ubk5OT45SUlLgtW7awjic2aZkHx338IGrGjBnC+cjJyXG1atXiZsyYwb19+5Z1vBrJzs7mPD09uYEDB3L9+/fnfvvtt6++1iL/Pm1tbe7u3bscx4kW465cucLp6uqyjEaIWKiBAyGESLkePXrg3bt3CAsLg5qamsi1Q4cOwdHREX/++ecXuzFKEiUlJbi5uWH58uVQVFQE8PFsrAkTJiArKwuPHz9mnFA8hoaGOHz4MDp06CBy+PP9+/dhbW1do46lLFlZWcHNzQ2Ojo4i84iPj4e9vT1ycnJYRxRLTk4Otm7dilu3bqG8vBzW1taYNWsWGjZsyDpateTk5JCTkyMVZ0LKyclVGhMIBLxqCALwfx7l5eUYOXIkkpOTceXKFaxcuRLbt2/H33//LfFb8CqUlJRAUVERT548QVBQEO7fvw+O42BmZoaRI0eicePGuHPnDlq2bMk66ldJyzw+V1hYiPT0dHAcB1NT00qvTciPkZmZKXZzKUk0ZswYaGpqYvv27VBXV0diYiJ0dHQwZMgQGBgYULdVIvGoGEcIIVLu7du36NGjB7S0tHDmzBlhESsoKAjjx4/HqlWrMH/+fMYpxRMZGVnlmWXl5eVYuXIllixZwiBVzamqquLOnTswNjYWKWIlJCSgW7duyM/PZx1RLKqqqkhKSkKTJk1E5pGRkQELCwsUFxezjij15OTk8OzZM+jo6LCO8t2qa5hhaGj4g5J8H2mYx4cPHzBw4EAkJCSgsLAQoaGh6NWrF+tYYhs5ciSCg4O/2Dzjzp076NWrF549e/aDk9WMtMxD2ly+fPmr1790xp+kkZeXR7du3TB58mSMHDkSysrKrCPVyNOnT2FnZwd5eXmkpaXBxsYGaWlpqFevHi5fviwVH1IR6UbFOEIIkQG5ubno1q0bLCwsEBISgpCQEDg4OGD58uVYtGgR63gyp3v37hg5ciTmzJkj/DTXyMgIs2fPxv3793H27FnWEcViYmKCbdu2oXfv3iLFuMDAQHh5eSEpKYl1xGqdPXsWtWvXRpcuXQAAmzdvxo4dO2BhYYHNmzeLdP2TRHJycmjZsmW1DUBiY2N/UCLCZ76+vsLv37x5g+XLl6Nfv36VCnEuLi4/OlqN6Ovro3///ti+fXula3fv3kXPnj3RrVs3BAcHM0gnPmmZx6du3LiB4OBgZGVl4cOHDyLXjh49yihVzXxp9WsFSV/9WuHOnTvw9/fH/v378f79e4wZMwaTJ0/mVVOQd+/e4eDBg4iNjRWubHdwcOBVl2Eiu6gYRwghMuLRo0fo0qULTE1NERUVBU9PT/z222+sY9VYYWEhIiMjq3whL+lvECtcu3YN9vb2cHBwQEBAAKZPn467d+8iOjoakZGRaNu2LeuIYvnrr7+wZ88e+Pv7o0+fPjh9+jQePnwINzc3eHp6Yvbs2awjVsvS0hJ//vknBgwYgNu3b8PGxgbu7u4ICwuDubm5xG9zkZOTg7u7O2rXrv3V+5YuXfqDEn2f9PR0+Pj4IDk5GQKBAObm5nB1dYWJiQnraDXC13mIs2VNIBAgIyPjB6T5dsnJycIVP15eXiLjdnZ26NSpE4KDgyEvL88wZfWkZR4VKo7G6Nu3Ly5cuIC+ffsiLS0NOTk5GDZsmMQ/31b4fPV6SUkJ4uLisGTJEqxcuZJXq0gBoLS0FCdPnkRAQADOnDmDpk2bYvLkyZgwYYJUrLomRGIxOamOEELID/PpweGHDx/mlJSUuDFjxvDiUPGsrCyRx7GxsVyDBg04dXV1TkFBgdPR0eEEAgGnpqbGGRkZMUr5bRITEzlHR0euRYsWnLm5Oefg4MAlJiayjlVj//vf/zgVFRVhBzZlZWVhd1I+UFNT4zIzMzmO47ilS5cKO6jeunWLq1+/PsNk4hGnWzJfnD17lqtVqxbXrl07zs3NjZs7dy7Xrl07TklJiTt//jzreGKTlnnw3fXr1zl1dXXur7/+4jiO45KTk7kGDRpwgwcP5kpLSxmnE5+0zIPjOM7S0pLbtGkTx3H/d+B+eXk5N3XqVM7T05Nxuu8XGRnJWVtbs47xzYqLi7l169ZxSkpKnEAg4GrVqsVNmDBBYhtTNGzYkBs7diy3bdu2KjtAEyLpaGUcIYRIOTk5OZHDwyue9j//XhK3VaxYsQLZ2dnYtGkTBAIBevToARMTE2zfvh2NGzdGQkIC3r17h/Hjx8PNzQ3Dhw9nHVkmFRUVISkpCeXl5bCwsKh2lZYkqVOnDqKiomBhYYEuXbrA0dER06ZNw4MHD2BhYYGioiLWEb9KXl4e2dnZUnE2jpWVFfr16yeyAggAPDw8cP78ed5stZWWeUiDsLAw/PTTT1i4cCF27NgBa2trHD16VHh2Kl9IyzzU1NRw9+5dNGnSBPXq1UN4eDgsLS2RnJyMnj17Ijs7m3XE75KcnAxbW1u8ffuWdZQauXnzJvz9/XHo0CGoqanByckJkydPxtOnT+Hp6Yk3b97g+vXrrGNWcvDgQURGRiIiIgKpqamoX78+unfvjh49eqB79+4wNzdnHZGQr6JiHCGESLnqDhOvIImHir979w6zZ89Gbm4uQkNDoaWlhZiYGDRv3hyNGzdGdHQ09PX1ERMTg4kTJ+LevXusI39RTTqkamho/IdJyKcGDx6MDx8+oHPnzli+fDkyMzOhp6eH8+fPY/bs2UhNTWUd8aukqZuqsrIybt++jaZNm4qMp6amolWrVrxpCMLXeRw6dAg///yzWPc+evQIWVlZ6Ny583+c6vsdP34co0aNQt++fXH8+HHeFbAqSMM89PX1cfr0aVhaWqJ169bw8PDA2LFjER0dDXt7e940L0pMTBR5zHEcsrOz4eXlhZKSEly9epVRsppZt24ddu/ejZSUFAwYMABTpkzBgAEDRM7Eu3//Ppo3b47S0lKGSav37NkzhIeH4++//8bhw4dRXl4ukR8yE/Kpr5/2SwghhPckscgmLhUVFezatQuHDh0CACgqKgpfJOrq6uLhw4fQ19eHlpYWsrKyWEatlpaW1hc74n1Okl9A1mT1IR8O4960aRNmzpyJkJAQbN26FXp6egCAM2fOwN7ennG66mVmZkrNmT46OjqIj4+vVMSKj4/nVbGRr/PYunUrli1bBmdnZwwePLjSqpL8/HxcvXoV+/btw8WLF7Fr1y5GSaunra1d6fn2ypUrqF+/vshYXl7ej4xVY9Iyjwpdu3bFhQsXYGlpidGjR8PV1RVhYWG4cOECr85Za9OmjcjuggodOnSAv78/o1Q1t3XrVkyaNAnOzs5o0KBBlfcYGBhI9O/627dvERUVJVwhFxcXB0tLS3Tv3p11NEKqRcU4QgiRYllZWTAwMBD7/idPngiLEZKkYrWGlZUVbty4ATMzM3Tv3h2//vorZsyYgT179sDS0pJxyq8LDw8Xfv/gwQN4eHhg4sSJ6NixIwAgOjoae/bswerVq1lFFIumpqbwe47jcOzYMWhqasLGxgYAcOvWLbx+/Zo3W4YNDAzw999/Vxpfv349gzQ1t2fPHrHu8/T0/I+TfL+pU6di2rRpyMjIQKdOnSAQCBAVFYU///wT7u7urOOJja/ziIyMxN9//42NGzfif//7H9TU1FC/fn0oKyvj1atXyMnJgY6ODpydnXHnzh2JLiz6+PiwjvCvkJZ5VNi0aZNwZeivv/4KRUVFREVFYfjw4ViyZAnjdOLLzMwUeSwnJwcdHR0oKyszSvRt0tLSqr2nVq1acHJy+gFpaq59+/ZITExEy5Yt0aNHD/zvf/9D165doaWlxToaIWKhbaqEECLF6tevj8GDB2Pq1KlfbFWfn5+PoKAgbNiwAdOnT8ecOXN+cErx3bx5EwUFBejZsyfy8vIwceJEREREwMTEBAEBAWjdujXriGLp1asXpkyZgrFjx4qMHzhwANu3b0dERASbYDW0aNEi5OXlwc/PT9jNr6ysDDNnzoSGhgbWrFnDOGH1qltRWZNiNgtycnJo1KgRdHV1K63SqCAQCHhxThnHcfDx8YG3tzeePn0KAGjUqBEWLFgAFxcXsVeWsiYN83j58iWioqLw4MEDvHv3DvXq1YOVlRWsrKxEtrARIkvCwsIwe/ZsxMTEVDpOIj8/H506dYKfnx+6du3KKOG3KSoqqrJDfatWrRglEk+dOnUgEAjQu3dv9OjRAz169KBz4givUDGOEEKkWF5eHlatWgV/f38oKirCxsYGjRo1Eq50SEpKwt27d2FjY4PFixejf//+rCPLBFVVVSQkJFR5plSbNm0kvmlABR0dHURFRaFZs2Yi4ykpKejUqRNevnzJKJn4KhqcfIkkbxkGgAEDBiA8PBz9+vXDpEmTMHDgQGFhlE9KS0uxf/9+9OvXDw0aNMCbN28AAOrq6oyT1Yy0zEOWVDQ34js+zONLZ6cKBAIoKSmhVq1aPzhRzQwePBh2dnZwc3Or8rqvry/Cw8Nx7NixH5zs2+Tm5mLixIk4e/Zsldcl/e8f8PH8voiICERGRuLKlSuQk5ND9+7dYWdnh19++YV1PEK+ij7aIoQQKVanTh2sXbsWT58+xdatW2FmZoYXL14ItyY4ODjg1q1buHr1KhXifiB9fX34+flVGt+2bRv09fUZJPo2paWlSE5OrjSenJyM8vJyBolqLi4uDrGxscKvf/75B35+fjAzM0NwcDDreNU6ffo0MjIy0L59eyxYsACNGzfGokWLkJKSwjpajSgoKGDGjBl4//49gI/FKz4WsKRlHnxmbm6OAwcOVFrl87m0tDTMmDEDf/755w9KVjPSMo9PaWlpQVtbu9KXlpYWVFRUYGhoiKVLl0rs34+EhISvniXat29f3Lp16wcm+j5z587F69evERMTAxUVFZw9exZ79uxB06ZNERoayjqeWFq1agUXFxccOXIEZ86cQf/+/XH06FHMmjWLdTRCqkVnxhFCiAxQVlbG8OHDeXOO15e8fPkSnp6eCA8Px/Pnzyu9YOfLIdbr16/HiBEjcO7cOXTo0AEAEBMTg/T0dBw5coRxOvE5Oztj0qRJuH//vsg8vLy84OzszDideKra2lyxgnTNmjW8+J1p2LAhfv31V/z666+4fPkydu/eDVtbW1haWuLixYtQUVFhHVEs7du3R1xcHK+bzgDSMw++2rx5MxYtWoRZs2ahb9++Va4Ij4qKQlJSEmbPno2ZM2eyjlwlaZnHpwICAvDbb79h4sSJaNeuHTiOw40bN7Bnzx4sXrwYubm5WLt2LZSUlPC///2PddxKnj179tUutgoKCsjNzf2Bib5PWFgYTpw4AVtbW8jJycHQ0BB9+vSBhoYGVq9ejYEDB7KO+FVxcXGIiIhAREQErly5gjdv3qB169ZwdXWFnZ0d63iEVIuKcYQQQnhj/PjxSE9Px+TJk1G/fn2J35LzJQMGDEBaWhq2bt2K5ORkcByHIUOG4JdffuHVyri1a9eiQYMGWL9+PbKzswF8LAwtXLhQog+qF4eZmRlu3LjBOkaN2dra4sGDB0hKSkJcXBxKSkp4U4ybOXMm3N3d8fjxY7Rt2xZqamoi1yX9/KIK0jIPvurZsydu3LiBa9eu4fDhwzhw4ECls+8cHR0xfvx4iT7oXVrm8ak9e/bA29sbo0ePFo4NHjwYlpaW2LZtGy5dugQDAwOsXLlSIotxenp6uH37NkxNTau8npiYiIYNG/7gVN+usLBQ2IilTp06yM3NhZmZGSwtLXlxzqitrS2srKzQvXt3TJ06Fd26dat0lh8hkozOjCOEEMIb6urqiIqK4k2jBllScRYQ314If36GEcdxyM7OxrJly3Dv3j3Ex8ezCVZD0dHR8Pf3R1BQEMzMzODs7Ixx48bx5k06gCobAwgEAuFZWHw4vwiQnnkQ8m/70nmpaWlpaN26NYqKipCZmYkWLVpI5Nmpc+bMQUREBG7cuFGpc+q7d+/Qrl072NnZwdfXl1HCmrG1tcWKFSvQr18/DB06VLgiztfXFyEhIUhPT2cd8asKCgp495qDkE/RyjhCCCG80bx5c7x79451DFIFvr4g1tLSqrTCkuM46Ovr49ChQ4xSie+vv/7C7t278fLlSzg4OCAqKgqWlpasY32TzMxM1hH+FdIyD0L+bY0bN8auXbvg5eUlMr5r1y7hqvCXL19CW1ubRbxqLV68GEePHoWZmRlmz56NZs2aQSAQIDk5GZs3b0ZZWRl+++031jHFNnfuXOGq9qVLl6Jfv37Yt28fatWqhT179jBOVz2+vu4gpAKtjCOEEMIbN27cgIeHBzw9PdGyZctKZ7fQCzNSU5GRkSKP5eTkoKOjA1NTUygoSP5nlnJycjAwMMBPP/301U6E69at+4GpiDR4/PgxQkNDkZWVVamJAP08kW8RGhqKUaNGoXnz5rC1tYVAIMCNGzdw7949hISE4KeffsLWrVuRlpYmsT9jDx8+xIwZM3Du3DlUvI0WCATo168ftmzZgiZNmrAN+I04jsO7d+9w7949GBgYoF69eqwjESL1qBhHCCGEN9LS0jB27FjExcWJjNP2L1IT1tbWuHTpErS1tfHHH39g/vz5UFVVZR3rm/To0aPasxMFAgHCwsJ+UKLvs3fvXvj5+SEzMxPR0dEwNDSEj48PjIyMMGTIENbxxMb3eVy6dAmDBw+GkZERUlJS0LJlSzx48AAcx8Ha2po3P09E8jx8+BB+fn5ISUkBx3Fo3rw5pk+fzrsi1qtXr3D//n1wHIemTZtK7Gq+6uzatQvr169HWloaAKBp06aYO3cupkyZwjgZIdKPinGEECJD0tPT4ePjg+TkZAgEApibm8PV1RUmJiaso4mlXbt2UFBQgKura5UNHLp3784oGeETFRUVpKWloXHjxpCXl0dOTg50dHRYx5J5W7duhaenJ+bOnYuVK1fizp07MDY2RkBAAPbs2YPw8HDWEcUiDfNo164d7O3t8ccff0BdXR0JCQnQ1dWFg4MD7O3tMWPGDNYRCc+UlJSgb9++2LZtG8zMzFjHIQCWLFmC9evXY86cOejYsSOAj+ePbtq0Ca6urlixYgXjhIRINyrGEUKIjDh37hwGDx6MNm3aoHPnzuA4DteuXUNCQgJOnjyJPn36sI5YLVVVVcTFxaFZs2asoxAe69ixI2rXro0uXbrg999/x/z581G7du0q7/X09PzB6WSXhYUFVq1ahaFDhwoLQMbGxrhz5w569OiBFy9esI4oFmmYh7q6OuLj42FiYgJtbW1ERUWhRYsWSEhIwJAhQ/DgwQPWEQkP6ejo4Nq1a5UaOBA26tWrh40bN2Ls2LEi4wcPHsScOXMk/rkqIiICPXr0YB2DkG8m+YehEEII+Vd4eHjAzc2t0sHJHh4eWLRoES+KcTY2Nnj06JFUFONCQkIQFBRU5XlMsbGxjFLVXGRkJNauXSuy2nLBggXo2rUr62hfFBAQgKVLl+Lvv/+GQCDAmTNnqjwfTiAQSHQxzsvLC3PmzIGamlq19/7zzz948eIFBg4c+AOSfZvMzExYWVlVGldSUkJhYSGDRN9GGuahpqaG9+/fAwAaNWqE9PR0tGjRAgAk/g36l7x79w4lJSUiY3w8Z5TP83B0dKyygQNho6ysDDY2NpXG27Zti9LSUgaJasbe3h56enpwdnaGk5OTsAkIIXxBxThCCJERycnJCAoKqjQ+adIk+Pj4/PhA32DOnDlwdXXFggULYGlpWamBQ6tWrRglqxlfX1/89ttvcHJywokTJ+Ds7Iz09HTcuHEDs2bNYh1PbPv27YOzszOGDx8OFxcX4WrLXr16ISAgAOPGjWMdsUrNmjUTdkqVk5PDpUuXoKuryzhVzSUlJcHQ0BCjRo3C4MGDYWNjI9xuW1paiqSkJERFRWHfvn3Izs5GYGAg48RfZ2RkhPj4eBgaGoqMnzlzBhYWFoxS1Zw0zKNDhw64evUqLCwsMHDgQLi7u+P27ds4evQoOnTowDqe2IqKirBw4UIEBQXh5cuXla7z5ZxRaZnHhw8fsHPnTly4cAE2NjaVPkiQ1KYN0mr8+PHYunVrpX/37du3w8HBgVEq8T19+hT79u1DQEAAli1bhl69emHy5MkYOnToVxsaESIpaJsqIYTICH19faxbtw6jRo0SGQ8KCsL8+fORlZXFKJn45OTkKo0JBALeNXBo3rw5li5dirFjx4psY/P09EReXh42bdrEOqJYzM3NMW3aNLi5uYmMr1u3Djt27EBycjKjZLIjMTERmzdvRnBwMPLz8yEvLw8lJSUUFRUBAKysrDBt2jQ4OTlBSUmJcdqv2717N5YsWQJvb29MnjwZO3fuRHp6OlavXo2dO3fi559/Zh1RLNIwj4yMDLx9+xatWrVCUVER5s+fj6ioKJiammL9+vWVCo2SatasWQgPD8cff/wBR0dHbN68GU+ePMG2bdvg5eXFi4IDID3zsLOz++I1PjWakRZz5sxBYGAg9PX1hUX2mJgYPHr0CI6OjiIfeEp6oTQ+Ph7+/v44ePAgysvL4eDggMmTJ6N169asoxHyRVSMI4QQGfHHH39g/fr18PDwQKdOnSAQCBAVFYU///wT7u7uWLx4MeuI1Xr48OFXr/PlDaKqqiqSk5NhaGgIXV1dXLhwAa1bt0ZaWho6dOhQ5coHSaSkpIS7d+/C1NRUZPz+/fto2bIliouLGSWTPRzHITExEQ8ePMC7d+9Qr149tGnTBvXq1WMdrUZ27NiBFStW4NGjRwAAPT09LFu2DJMnT2acrGakZR58Z2BggMDAQPTo0QMaGhqIjY2Fqakp9u7di4MHD+L06dOsI4pFWuZBJMvXiqOf4kuh9OnTp9i+fTu8vLygoKCA4uJidOzYEX5+fsJt9oRIEtqmSgghMmLJkiVQV1eHt7c3fv31VwAfzwJatmwZXFxcGKcTD1+KbdVp0KABXr58CUNDQxgaGiImJgatW7dGZmYm+PQZmb6+Pi5dulSpGHfp0iU6u+UHEwgEaN26Ne9XAUydOhVTp07FixcvUF5ezsvtw4D0zAMA3r59i/LycpExvpxRlpeXByMjIwAfM+fl5QEAunTpwquOsNIyjwr3799Heno6unXrBhUVFeHqdvJj8aGzc3VKSkpw4sQJ+Pv7C7c/b9q0CWPHjkVeXh4WLVqEUaNGISkpiXVUQiqhYhwhhMiA0tJS7N+/H2PHjoWbmxvevHkD4GPHPPLj9ezZEydPnoS1tTUmT54MNzc3hISE4ObNmxg+fDjreGJzd3eHi4sL4uPjRVZbBgQEYMOGDazjER7j24q+L+HrPDIzMzF79mxERESIrHDl25EAxsbGePDgAQwNDWFhYYGgoCC0a9cOJ0+ehJaWFut4YpOWebx8+RKjR49GeHg4BAIB0tLSYGxsjClTpkBLSwve3t6sIxIemTNnDg4ePAjg4/l3f/31F1q2bCm8rqamBi8vLzRp0oRRQkK+jrapEkKIjPh0ayRhq7y8HOXl5cIOnkFBQcLzmH755RdeHTx87NgxeHt7C8+Hq+imOmTIEMbJCB9JS5dhvs+jU6dOAABXV1fUr1+/0qql7t27s4hVY+vXr4e8vDxcXFwQHh6OgQMHoqysDKWlpVi3bh1cXV1ZRxSLtMzD0dERz58/x86dO2Fubi48L/X8+fNwc3PD3bt3WUckPNKrVy9MmTIFI0aM+OLrptLSUly9epU3z1lEtlAxjhBCZISdnR1cXV0xdOhQ1lEIIaSST7sM79ixo1KX4ZUrV7KOKBZpmEft2rVx69YtNGvWjHWUf1VWVhZu3rwJExMTXm/p5us8GjRogHPnzqF169YizYsyMzNhaWmJt2/fso5IeOTy5cvo1KmT8IPNCqWlpbh27Rq6devGKBkh4qFtqoQQIiNmzpwJd3d3PH78GG3btoWamprI9VatWjFKJpuuXLmCbdu2IT09HSEhIdDT08PevXthZGSELl26sI4nFmNjY9y4cQN169YVGX/9+jWsra2RkZHBKNnXaWtri30+UcXZTOS/t2XLFmzfvh1jx47Fnj17sHDhQpEuw3whDfOwtbXFo0ePpK4YZ2BgAAMDA9Yxvhtf51FYWAhVVdVK4y9evJD4bs9E8tjZ2SE7O7vSmZz5+fmws7PjzXZ6IruoGEcIITJizJgxACDSrEEgEPDuDCAAuHXrFpKTkyEQCGBubg5ra2vWkWrkyJEjmDBhAhwcHBAXF4f3798DAN68eYNVq1bxpjPegwcPqvy5ef/+PZ48ecIgkXh8fHxYR/jP8Plg9KysLOH2SBUVFeHZlhMmTECHDh2wadMmlvHEJg3z2LlzJ3755Rc8efIELVu2hKKiosh1Sf7wxtfXV+x7Jbl5ka+vL6ZNmwZlZeVq5yTJ8/hUt27dEBgYiOXLlwP4+BqkvLwca9asEbuzJyEVvvT37eXLl5U+cCZEElExjhBCZERmZibrCN/t+fPn+PnnnxEREQEtLS1wHCf8BPTQoUPQ0dFhHVEsK1asgJ+fHxwdHXHo0CHheKdOnfDHH38wTCae0NBQ4ffnzp2Dpqam8HFZWRkuXbok0QcmOzk5sY7wr3v58iXGjBmDsLAw3h6MLi1dhqVhHrm5uUhPT4ezs7NwjC8f3qxfv17kcW5uLoqKioSNDl6/fg1VVVXo6upKdBFr/fr1cHBwgLKycqU5fUogEEj0PD61Zs0a9OjRAzdv3sSHDx+wcOFC3L17F3l5ebh69SrreIQnKhpdCQQCTJw4UWRVZVlZGRITE4UfiBAiyagYRwghMkIaGjfMmTMHBQUFuHv3LszNzQEASUlJcHJygouLi7CrlqRLSUmp8iwTDQ0NvH79+scHqqGKcwcFAkGlwpaioiKaNGnCi+JPhfT0dOzevRvp6enYsGEDdHV1cfbsWejr66NFixas44nFzc0NCgoKyMrKEv5uAB9XxLq5ufHi/0NaugxLwzwmTZoEKysrHDx4sMoGDpLs0w+eDhw4gC1btmDXrl3CLbcpKSmYOnUqpk+fziqiWD6dhzR8mAYAFhYWSExMxNatWyEvL4/CwkIMHz4cs2bNQsOGDVnHIzxR8QEgx3FQV1eHioqK8FqtWrXQoUMHTJ06lVU8QsRGDRwIIUSG7N27F35+fsjMzER0dDQMDQ3h4+MDIyMjXnS/1NTUxMWLF2Fraysyfv36dfTt25cXhSwAMDExwbZt29C7d2+RQ6wDAwPh5eWFpKQk1hHFYmRkhBs3bqBevXqso3yzyMhI9O/fH507d8bly5eRnJwMY2Nj/PXXX7h+/TpCQkJYRxSLNByMLi1dhqVhHmpqakhISICpqSnrKN/FxMQEISEhsLKyEhm/desWRo4cycsiV8VbNz4VSAn5L/z++++YP38+bUklvCXHOgAhhJAfY+vWrZg3bx4GDBiA169fC7cZaWlp8eYMrfLy8kpnFwEfV2OVl5czSPRtpk+fDldXV/zzzz8QCAR4+vQp9u/fj/nz52PmzJms44ktMzOT14U4APDw8MCKFStw4cIFkSKJnZ0doqOjGSarGWk4GF1OTk6kK97o0aPh6+sLFxcXXhSwKkjDPHr27ImEhATWMb5bdnY2SkpKKo2XlZXh2bNnDBJ9u127dqFly5ZQVlaGsrIyWrZsiZ07d7KOVSNGRkZYsmQJUlJSWEchUmDp0qVQU1PD8+fPceXKFURFReH58+esYxEiNirGEUKIjNi4cSN27NiB3377DfLy8sJxGxsb3L59m2Ey8fXs2ROurq54+vSpcOzJkydwc3NDr169GCarmYULF2Lo0KGws7PD27dv0a1bN0yZMgXTp0/H7NmzWccTm4uLS5UHi2/atAlz58798YG+we3btzFs2LBK4zo6Onj58iWDRN+m4mD0CnQwOvkegwYNgpubG5YtW4YjR44gNDRU5IsvevXqhalTp+LmzZvCFWU3b97E9OnT0bt3b8bpxLdkyRK4urpi0KBBCA4ORnBwsPD/aPHixazjiW3OnDk4e/YszM3N0bZtW/j4+CA7O5t1LMJTBQUFmDBhAvT09NC9e3d069YNenp6GD9+PPLz81nHI6RatE2VEEJkhIqKCu7duwdDQ0ORbWxpaWlo1aoV3r17xzpitR49eoQhQ4bgzp070NfXh0AgQFZWFiwtLXHixAk0btyYdcRqlZWVISoqCpaWllBWVkZSUhLKy8thYWGB2rVrs45XI3p6eggNDUXbtm1FxmNjYzF48GA8fvyYUTLxNW7cGEFBQejUqZPI78WxY8cwf/58pKens44olqSkJPTo0QNt27ZFWFgYBg8eLHIwuomJCeuIhEfk5L78eb2kN3D4VG5uLpycnHD27FnhqurS0lL069cPAQEB0NXVZZxQPPXq1cPGjRsxduxYkfGDBw9izpw5ePHiBaNk3yY1NRX79+/HoUOHkJGRATs7O4wfPx6Ojo6soxEeGT16NOLj47Fx40Z07NgRAoEA165dg6urK1q1aoWgoCDWEQn5KirGEUKIjLCwsMDq1asxZMgQkaKDr68v9uzZg1u3brGOKLYLFy7g3r174DgOFhYWvFrhAADKyspITk6GkZER6yjfRVlZGXfu3Kl0rtT9+/fRsmVLFBcXM0omvoULFyI6OhrBwcEwMzNDbGwsnj17BkdHRzg6OmLp0qWsI4otJycHW7duxa1bt1BeXg5ra2s6GJ0QfCz+VPzNMDc3h5mZGetINaKtrY3r16+jadOmIuOpqalo164db85LrUpMTAxmzJiBxMRE3hR5iWRQU1PDuXPn0KVLF5HxK1euwN7eHoWFhYySESIe6qZKCCEyYsGCBZg1axaKi4vBcRyuX7+OgwcPYvXq1bw7d6ZPnz7o06cP6xjfzNLSEhkZGbwvxpmamuLs2bOVttaeOXMGxsbGjFLVzMqVKzFx4kTo6ekJi7tlZWUYN24cr7Z/AR+bOPz++++sYxAicczMzHhXgPvU+PHjsXXrVqxbt05kfPv27XBwcGCU6vtcv34dBw4cwOHDh5Gfn4+RI0eyjkR4pm7dusLOqp/S1NSEtrY2g0SE1AytjCOEEBmyY8cOrFixAo8ePQLwcZvhsmXLMHnyZMbJvszX1xfTpk2DsrJyleeTfcrFxeUHpfo+58+fx6JFi7B8+XK0bdu2UicwDQ0NRslqxt/fH7Nnz8aCBQvQs2dPAMClS5fg7e0NHx8fTJ06lXFC8aWnpyMuLg7l5eWwsrKqtAJF0l2+fPmr17t16/aDkhC+kpbn2nnz5mH58uVQU1PDvHnzvnrv58UtSTVnzhwEBgZCX18fHTp0APBxRdmjR4/g6Ogo0thIkudUsT31wIEDePDgAezs7ODg4IDhw4dDXV2ddTzCM9u3b0dwcDACAwOFK8BzcnLg5OSE4cOHY/r06YwTEvJ1VIwjhBAZ9OLFC5SXl/PivBwjIyPcvHkTdevW/epKMoFAgIyMjB+Y7Nt9eh6TQCAQfs9xHK/OYwI+dulduXKlsKlGkyZNsGzZMjr75wer6oyvT3+2+PIzFRISgqCgIGRlZeHDhw8i12JjYxmlqjk+zkNanmvt7Oxw7NgxaGlpfbV5iUAgQFhY2A9M9u3EbcIi6XOSk5ODjY0Nxo0bh59//hkNGjRgHYnwmJWVFe7fv4/379/DwMAAAJCVlQUlJaVKH6hJ6vMukW20TZUQQmREZmYmSktL0bRpU9SrV084npaWBkVFRTRp0oRduK/IzMys8ns+Cw8PZx3hXzNjxgzMmDEDubm5UFFR4UUTiupWy3xKkleZfOrVq1cij0tKShAXF4clS5Zg5cqVjFLVjK+vL3777Tc4OTnhxIkTcHZ2Rnp6Om7cuIFZs2axjic2vs5DWp5rP31+lZbnWmmZx71793i9XZhIlqFDh7KOQMh3oZVxhBAiI7p3745JkybByclJZHzfvn3YuXMnIiIi2AQjIuLj49GmTRvWMcRWWlqKiIgIpKenY9y4cVBXV8fTp0+hoaEhsYW5z1eZ3Lp1C2VlZWjWrBmAj1up5OXlhZ1J+ezy5ctwc3PjRYOW5s2bY+nSpRg7dqxIkxlPT0/k5eVh06ZNrCOKRRrm8e7dO6ioqFR5LTs7m5qCkO/y4cMHPH/+HOXl5SLjFaubCCFEFlAxjhBCZISGhgZiY2Or7HxpY2PDi25sI0eOhI2NDTw8PETG16xZg+vXryM4OJhRsu+Tn5+P/fv3Y+fOnUhISODNlsKHDx/C3t4eWVlZeP/+PVJTU2FsbIy5c+eiuLgYfn5+rCNWa926dYiIiMCePXuEBz6/evUKzs7O6Nq1K9zd3Rkn/D7JycmwtbXF27dvWUeplqqqKpKTk2FoaAhdXV1cuHABrVu3RlpaGjp06ICXL1+yjigWaZhH8+bNceDAAVhbW4uMh4SECFfCSqrhw4eLfe/Ro0f/wyT/nuLiYmzcuBHh4eFVFrH4sgUvLS0NkyZNwrVr10TG+XhEA5Esb9++rfR7wZfzd4nsom2qhBAiIwQCAd68eVNpPD8/nzcvgCMjI7F06dJK4/b29li7di2DRN8nLCwM/v7+OHr0KAwNDTFixAjs2rWLdSyxubq6wsbGBgkJCahbt65wfNiwYZgyZQrDZOLz9vbG+fPnRTqvaWtrY8WKFejbty9vinGJiYkijzmOQ3Z2Nry8vNC6dWtGqWqmQYMGePnyJQwNDWFoaIiYmBi0bt0amZmZ4NNnx9Iwjz59+qBTp05YtmwZFi1ahMLCQsyePRvBwcHw8vJiHe+rPu2uyHEcjh07Bk1NTdjY2AD4uBL29evXNSrasTZp0iRcuHABI0eORLt27UTOg+STiRMnQkFBAX///TcaNmzI23kQyZCZmYnZs2cjIiICxcXFwnEq7hK+oGIcIYTIiK5du2L16tU4ePAg5OXlAXw81H316tXo0qUL43Tiefv2LWrVqlVpXFFREQUFBQwSfV1ubi50dHRExh4/foyAgAD4+/ujsLAQo0ePRklJCY4cOQILCwtGSb9NVFQUrl69Wun/xNDQEE+ePGGUqmYKCgrw7NkztGjRQmT8+fPnVRavJVWbNm0gEAgqFXs6dOgAf39/RqlqpmfPnjh58iSsra0xefJkuLm5ISQkBDdv3uRV4UQa5rFx40YMHDgQzs7OOHXqlHDr+Y0bNyT+eWr37t3C7xctWoTRo0fDz89P5O/ezJkzebVq5tSpUzh9+jQ6d+7MOsp3iY+Px61bt9C8eXPWUYgUcHBwAPCxs3v9+vWpuEt4h4pxhBAiI/766y9069YNzZo1Q9euXQEAV65cQUFBAW/OxWrZsiUOHz4MT09PkfFDhw5J5BvE7du34/Hjx/D19YWioiIGDBiAqKgo/PTTT9i4cSPs7e0hLy/Pi+2cVSkvL6/yk+fHjx9DXV2dQaKaGzZsGJydneHt7Y0OHToAAGJiYrBgwQLeFE6Aygfuy8nJQUdHB8rKyowS1dz27duF24x++eUX1KlTB1FRURg0aBB++eUXxunEJy3z6Nu3L4YPH46tW7dCQUEBJ0+elMjn2a/x9/dHVFSUsBAHAPLy8pg3bx46deqENWvWMEwnPj09Pd48p36NhYUFXrx4wToGkRKJiYm4deuW8LxXQviGzowjhBAZ8vTpU2zatAkJCQlQUVFBq1atMHv2bNSpU4d1NLGEhoZixIgRGDduHHr27AkAuHTpEg4ePIjg4GCJ66z1/v17LFmyBPXq1cPChQuhoKAAFxcXzJgxA02bNhXep6ioiISEBN690R0zZgw0NTWxfft2qKurIzExETo6OhgyZAgMDAxEVqhIqqKiIsyfPx/+/v4oKSkBACgoKGDy5MlYs2YN1NTUGCck5MeraMiSk5ODnTt3IjIyEmvXroWLiwtWrlwJRUVF1hHFoq2tjd27d1f623D8+HE4OztX6kIsqc6cOQNfX1/4+fnB0NCQdZxvFhYWhsWLF2PVqlWwtLSs9HPEp9WKhD07Ozv89ttv6N27N+sohHwTKsYRQgjhlVOnTmHVqlWIj48XFhSXLl2K7t27s472RR8+fECtWrUQHR0Nf39/BAUFoXnz5pgwYQLGjBmDRo0a8bIY9/TpU9jZ2UFeXh5paWmwsbFBWloa6tWrh8uXL0NXV5d1RLEVFhYiPT0dHMfB1NSUd0U4X1/fKscFAgGUlZVhamqKbt26iawQkgSfn3X3Na1atfoPk3wfaZlHBXV1dQwcOBB+fn7Q0tICAFy7dg2Ojo5QV1dHXFwc24BimjdvHgICAvC///1PZOWrl5cXHB0dsW7dOsYJxZObm4vRo0fj8uXLUFVVrVTEysvLY5SsZuTk5ITff7qlkM74It8iPT0dv/zyC8aPH4+WLVtW+r3gw3MtkW1UjCOEEBlx+fLlr17v1q3bD0pCioqKcOjQIfj7++P69esoKyvDunXrMGnSJN5tRXr37h0OHjyI2NhYlJeXw9raGg4ODlBRUWEdTaYYGRkhNzcXRUVF0NbWBsdxeP36NVRVVVG7dm08f/4cxsbGCA8Ph76+Puu4QnJyclWedfc5SX+jLi3zqLB3715MmDCh0vibN28wd+5c3jSaKS8vx9q1a7FhwwZkZ2cDABo2bAhXV1e4u7tLXHH6S3r37o2srCxMnjy5yrOxnJycGCWrmcjIyK9el+QP1YjkiYmJwbhx4/DgwQPhWMXzMF+ea4lso2IcIYTIiE8/ka7w6Qt6etHCRkpKCnbt2oW9e/fi9evX6NOnD0JDQ1nHIjxz8OBBbN++HTt37oSJiQkA4P79+5g+fTqmTZuGzp074+eff0aDBg0QEhLCOO3/efjwodj3SvL2PGmZhzQpLS3F/v370a9fPzRo0EDY5IePWyFVVVURHR3Nm87IX3PlyhVs27YN6enpCAkJgZ6eHvbu3QsjIyPeNJMiksHCwgLm5uZYuHBhlUVqeq4lko6KcYQQIiPy8/NFHpeUlCAuLg5LlizBypUr0atXL0bJvq5OnTpITU1FvXr1oK2t/dVuWXzZqlOVsrIynDx5Ev7+/rwqxqWkpGDjxo1ITk6GQCBA8+bNMXv2bOqW94OZmJjgyJEjaNOmjch4XFwcRowYgYyMDFy7dg0jRowQrhAipDpJSUnIysrChw8fhGMCgQCDBg1imEp8qqqqSE5O5v2bcmtra2zZskW41Zavjhw5ggkTJsDBwQF79+5FUlISjI2NsWXLFvz99984ffo064iER9TU1JCQkABTU1PWUQj5JtRNlRBCZISmpmalsT59+kBJSQlubm64desWg1TVW79+vXDr5vr166W2db28vDyGDh0qcU0oviYkJARjx46FjY0NOnbsCODjthFLS0scOHAAo0aNYpxQdmRnZ6O0tLTSeGlpKXJycgAAjRo1wps3b350NMID+fn5In8jMjIyMHz4cCQmJopsv614/uXLSur27dsjLi6O98U4Ly8vuLu7Y+XKlbxufLBixQr4+fnB0dERhw4dEo536tQJf/zxB8NkhI969uxJxTjCa7QyjhBCZFxycjJsbW3x9u1b1lEIzxgbG2P8+PGV3kQtXboUe/fuRUZGBqNksmfgwIHCzpdWVlYAPq6Kmzp1Kho0aIC///4bJ0+exP/+9z/cvn2bcVoiaZYvXw5lZWUsWLAAAIQr33bu3Ik2bdrgn3/+QWZmJubPn49169aha9euLOOKLTg4GB4eHnBzc0Pbtm0rNWbhywHvFcdMfP5hFN/OxlJVVUVSUhKaNGkCdXV1JCQkwNjYGBkZGbCwsEBxcTHriIRHtm/fjhUrVmDSpElVFqkHDx7MKBkh4qFiHCGEyIjPu/1xHIfs7Gx4eXmhpKQEV69eZZRMfHZ2dhg/fjxGjhxZ5Uo/8mOpqqoiMTGx0qfSaWlpaN26NYqKihgl+7qabAPmy4v5nJwcTJgwAZcuXRK+ISktLUWvXr2wd+9e1K9fH+Hh4SgpKUHfvn0ZpyWS5vnz55gwYQJMTU2xefNm1KtXD5cuXULr1q2hp6eH69evQ09PD5cuXcL8+fN50031S2el8q2IJS2ND0xMTLBt2zb07t1bpBgXGBgILy8vJCUlsY5IeKSq3+8KfPr9JrKLtqkSQoiMaNOmTZXd/jp06AB/f39GqWrG0tISixcvxuzZszFgwABMmDABAwYMQK1atVhHk0k9evTAlStXKhXjoqKiJHrlzOdbgT//veBjY5MGDRrgwoULuHfvHlJTU8FxHJo3b45mzZoJ77Gzs2OYkEgyXV1dnDt3DqtXrwbw8ee+4niAevXq4enTp9DT00OTJk2QkpLCMmqNZGZmso7wr+BLsa0606dPh6urK/z9/SEQCPD06VNER0dj/vz58PT0ZB2P8Ex5eTnrCIR8F1oZRwghMuLzbn9ycnLQ0dGBsrIyo0Tfpry8HBcvXsSBAwdw7NgxyMvLY+TIkXBwcJCaNyx84efnB09PT4wePVp4sHhMTAyCg4Px+++/o1GjRsJ7JXWF2cWLF7Fo0SKsWrUKHTt2hEAgwLVr17B48WKsWrUKffr0YR2xRj58+IDMzEyYmJhAQYF/n7m+fv0aISEhSE9Px4IFC1CnTh3Exsaifv360NPTYx1PbHyfR9euXTFv3jwMGzYM06ZNQ25uLhYsWAA/Pz/Exsbizp07rCNKvcTERLRs2RJycnKVVrZ/ji/bbQHgt99+w/r164VbUpWUlDB//nwsX76ccTJCCPmxqBhHCCEyoGJr2rZt22BmZsY6zr+muLgYJ0+exMqVK3H79m3erGKSFl/bIvIpSd4u0rJlS/j5+aFLly4i41euXMG0adOQnJzMKFnNFBUVYc6cOdizZw8AIDU1FcbGxnBxcUGjRo3g4eHBOGH1EhMT0bt3b2hqauLBgwdISUmBsbExlixZgocPHyIwMJB1RLFIwzzOnTuHN2/eYOTIkXj06BEGDhyIO3fuoE6dOggKCkLPnj1ZRxTb3r174efnh8zMTERHR8PQ0BA+Pj4wMjLCkCFDWMf7Ijk5OeTk5EBXVxdycnJVrmwHJPv59UuKioqQlJSE8vJyWFhYoHbt2qwjER4ZMGAADh48KDyuZOXKlZg1axa0tLQAAC9fvkTXrl1p2zOReOK9iiaEEMJrioqKuHPnjlR1Is3JyYGfnx/+/PNPJCYmwsbGhnUkmVNeXi7WlyS/UUxPT6/y/MGKQgpf/Prrr0hISEBERITIatfevXvj8OHDDJOJb968eZg4cSLS0tJE5tC/f39cvnyZYbKakYZ59OvXDyNHjgQA6OvrIzExES9evMDz588luhB37tw55OfnCx9v3boV8+bNw4ABA/D69Wvhc5GWlhZ8fHwYpRRPZmYmdHR0hN9nZGQgMzOz0hcfG+WoqqrCxsYG7dq1o0IcqbFz587h/fv3wsd//vkn8vLyhI9LS0t5tZ2eyC4qxhFCiIxwdHTErl27WMf4LgUFBdi9ezf69OkDfX19bN26FYMGDUJqair++ecf1vEIPm7P4xNbW1vMnTsX2dnZwrGcnBy4u7ujXbt2DJPVzPHjx7Fp0yZ06dJFpOhuYWGB9PR0hsnEd+PGDUyfPr3SuJ6eHnJychgk+jbSMo/P1alTR+zVsKzk5OSgc+fOePz4MQBg48aN2LFjB3777TfIy8sL77OxsZH4rsKGhobC32VDQ8OvfhEiSz5fIUob/Qhf8e8wEUIIId/kw4cP2LlzJy5cuAAbGxuoqamJXF+3bh2jZOKrX78+tLW1MXr0aKxatQq2trasI8m0P//8E02aNMGYMWMAAKNGjcKRI0fQsGFDnD59Gq1bt2acsHr+/v4YNmwYDA0NYWBgAADIysqCmZkZjh8/zjZcDeTm5kJXV7fSeGFhIW9WxCorK6OgoKDSeEpKinCFEB9IwzyKi4uxceNGhIeH4/nz55UOSo+NjWWU7OucnJygrq4Oe3t73LlzB5mZmbCysqp0n5KSEgoLCxkkFJ80dn0mhBDyf6gYRwghMuLOnTuwtrYG8PE8qU/x4c06x3HYsGEDxo8fD1VVVdZxCIBt27Zh3759AIALFy7g4sWLOHv2LIKCgrBgwQKcP3+eccLqmZqaIjExUdiJlOM4WFhYoHfv3rz4vahga2uLU6dOYc6cOQD+73d6x44d6NixI8toYhsyZAj++OMPBAUFAfg4h6ysLHh4eGDEiBGM04lPGuYxadIkXLhwASNHjkS7du149bswfPhwYQHOyMgI8fHxlVaPnTlzBhYWFiziie3zrs9fwscz4wj5HgKBoNJzEp+eowipQA0cCCGE8EJ5eTmUlZVx9+5dNG3alHUcAkBFRQWpqanQ19eHq6sriouLsW3bNqSmpqJ9+/Z49eoV64gy49q1a7C3t4eDgwMCAgIwffp03L17F9HR0YiMjETbtm1ZR6xWQUEBBgwYgLt37+LNmzdo1KgRcnJy0LFjR5w+fbrSal5JJQ3z0NTUxOnTp9G5c2fWUb7L7t27sWTJEnh7e2Py5MnYuXMn0tPTsXr1auzcuRM///wz64iEkBqSk5ND//79oaSkBAA4efIkevbsKXxuff/+Pc6ePUtFaiLxaGUcIYTIiPz8fJSVlaFOnToi43l5eVBQUICGhgajZOKRk5ND06ZN8fLlSyrGSQhtbW08evQI+vr6OHv2LFasWAHg4ypGvrwI/uOPP7563dPT8wcl+T6dOnXC1atXsXbtWpiYmOD8+fOwtrZGdHQ0LC0tWccTi4aGBqKiohAWFobY2FiUl5fD2toavXv3Zh2tRqRhHnp6elBXV2cd47s5OzujtLQUCxcuRFFREcaNGwc9PT1s2LCBCnGE8JSTk5PI4/Hjx1e6x9HR8UfFIeSb0co4QgiREf3798egQYMwc+ZMkXE/Pz+Ehobi9OnTjJKJ79SpU/Dy8sLWrVvRsmVL1nFk3uzZs/H333+jadOmiIuLw4MHD1C7dm0cPnwYf/75p8SeK/Wpz8+TKikpQWZmJhQUFGBiYsKLORDybztz5gx8fX3h5+cnNQ0CXrx4gfLy8irPViSEEEJ+NCrGEUKIjKhTpw6uXr0Kc3NzkfF79+6hc+fOePnyJaNk4tPW1kZRURFKS0tRq1YtqKioiFz/tLU9+e+VlJRgw4YNePToESZOnCgsbPn4+KB27dqYMmUK44TfpqCgABMnTsSwYcMwYcIE1nHEVlZWhmPHjiE5ORkCgQDm5uYYMmQIFBQkdyOEr6+v2Pe6uLj8h0m+j7TMo0Jubi5Gjx6Ny5cvQ1VVFYqKiiLX+fZc+/z5c6SkpEAgEKBZs2a8aaRBCCFEelExjhBCZISamhpiYmIqbVm7ffs22rdvj6KiIkbJxLdnz56vXv986wIh3+rOnTv46aef8ODBA9ZRxHLnzh0MGTIEOTk5aNasGYCPjVp0dHQQGhoqsVtVjYyMRB7n5uaiqKgIWlpaAIDXr19DVVUVurq6yMjIYJBQPNIyjwq9e/dGVlYWJk+ejPr161c6HJ0vz7UFBQWYNWsWDh48KOwIKy8vjzFjxmDz5s3Q1NRknJAQQoisomIcIYTIiB49esDS0hIbN24UGZ81axYSExNx5coVRskI3yUlJSErKwsfPnwQGR88eDCjRN8vKioKgwYN4k0Tig4dOkBXVxd79uyBtrY2AODVq1eYOHEinj9/jujoaMYJq3fgwAFs2bIFu3btEhYUU1JSMHXqVEyfPh0ODg6ME4pHGuahqqqK6OhotG7dmnWU7zJ69GjEx8dj48aN6NixIwQCAa5duwZXV1e0atVK2PGWEEII+dGoGEcIITLi6tWr6N27N2xtbdGrVy8AwKVLl3Djxg2cP38eXbt2ZZxQPOnp6di9ezfS09OxYcMG6Orq4uzZs9DX10eLFi1Yx5MpGRkZGDZsGG7fvg2BQICKlxQVq2j40MTh8+2FHMchOzsbe/fuRbdu3XDw4EFGyWpGRUUFN2/erPQ7cOfOHdja2uLdu3eMkonPxMQEISEhlc7xu3XrFkaOHInMzExGyWpGGuZhbW2NLVu2oEOHDqyjfBc1NTWcO3cOXbp0ERm/cuUK7O3tUVhYyCjZt3v37h1KSkpExiS9ARMhhJDK5FgHIIQQ8mN07twZ0dHR0NfXR1BQEE6ePAlTU1MkJibyphAXGRkJS0tL/PPPPzh69Cjevn0LAEhMTMTSpUsZp5M9rq6uMDIywrNnz6Cqqoq7d+/i8uXLsLGxQUREBOt4Ylm/fr3Il6+vLyIiIuDk5ITt27ezjie2Zs2a4dmzZ5XGnz9/DlNTUwaJai47O7tSkQH4WNStam6SShrm4eXlBXd3d0RERODly5coKCgQ+eKLunXrVrkVVVNTU7iClA+Kioowe/Zs6Orqonbt2tDW1hb5IoQQwj+0Mo4QQghvdOzYEaNGjcK8efOgrq6OhIQEGBsb48aNGxg6dCiePHnCOqJMqVevHsLCwtCqVStoamri+vXraNasGcLCwuDu7o64uDjWEWXG6dOnsXDhQixbtky4mikmJgZ//PEHvLy8RFYGSeoqmkGDBiErKwu7du1C27ZtIRAIcPPmTUydOhX6+voIDQ1lHVEs0jAPObmPn9d/flYcx3EQCAS8WPUKANu3b0dwcDACAwPRsGFDAEBOTg6cnJwwfPhwTJ8+nXFC8cyaNQvh4eH4448/4OjoiM2bN+PJkyfYtm0bvLy8eLH1mRBCiCgqxhFCCOGN2rVr4/bt2zAyMhIpxj148ADNmzdHcXEx64gyRVtbG7du3YKxsTFMTEywc+dO2NnZIT09HZaWlrxoCjJp0iRs2LAB6urqIuOFhYWYM2cO/P39GSWrmYriCfB/BZTPtw1LeiElNzcXTk5OOHv2rLB7Z2lpKfr164eAgADo6uoyTigeaZhHZGTkV6937979ByX5PlZWVrh//z7ev38PAwMDAEBWVhaUlJTQtGlTkXtjY2NZRBSLgYEBAgMD0aNHD2hoaCA2NhampqbYu3cvDh48iNOnT7OOSAghpIYkt9c9IYQQ8hktLS1kZ2dX6lwYFxcHPT09RqlkV8uWLZGYmAhjY2O0b98ef/31F2rVqoXt27fD2NiYdTyx7NmzB15eXpWKce/evUNgYCBvinHh4eGsI3w3HR0dnD59GmlpaUhOTgbHcTA3N4eZmRnraDUiDfPgS7GtOkOHDmUd4V+Rl5cn/LunoaGBvLw8AECXLl0wY8YMltEIIYR8IyrGEUII4Y1x48Zh0aJFCA4OhkAgQHl5Oa5evYr58+fD0dGRdTyZs3jxYuEB6CtWrMBPP/2Erl27om7dujh8+DDjdF9XUFAAjuPAcRzevHkDZWVl4bWysjKcPn2aFyuYKkhL8QQAmjZtWmnVEh9Jyzz4TFrOEq1YAW5oaAgLCwsEBQWhXbt2OHnyJLS0tFjHI4QQ8g1omyohhBDeKCkpwcSJE3Ho0CFwHAcFBQWUlZVh3LhxCAgIgLy8POuIMi8vLw/a2tqVzpqSNHJycl/NKBAI8Pvvv+O33377gam+3dmzZ1G7dm3h2XCbN2/Gjh07YGFhgc2bN9Mh74Tw2Pr16yEvLw8XFxeEh4dj4MCBKCsrQ2lpKdatWwdXV1fWEQkhhNQQFeMIIYTwTkZGBmJjY1FeXg4rKytafUJqLDIyEhzHoWfPnjhy5Ajq1KkjvFarVi0YGhqiUaNGDBPWjKWlJf78808MGDAAt2/fho2NDdzd3REWFgZzc3Ps3r2bdURCyL8kKysLN2/ehImJCVq3bs06DiGEkG9AxThCCJFiw4cPF/veo0eP/odJ/htlZWW4ffs2DA0NaeUP+SYPHz6EgYGBxK/kq07t2rVx584dNGnSBMuWLcOdO3cQEhKC2NhYDBgwADk5OawjEkIIIYSQ/4/OjCOEECmmqanJOsK/au7cubC0tMTkyZNRVlaG7t2749q1a1BVVcXff/+NHj16sI5IeCAxMREtW7aEnJwc8vPzcfv27S/e26pVqx+Y7NvVqlVL2L324sWLwjMU69Spg4KCApbRCCHfwNfXV+x7XVxc/sMkhBBC/gu0Mo4QQghvNG7cGMePH4eNjQ2OHz+OmTNnIiIiAoGBgQgPD8fVq1dZRyQ8ICcnh5ycHOjq6grPjqvq5ZBAIEBZWRmDhDU3ePBgfPjwAZ07d8by5cuRmZkJPT09nD9/HrNnz0ZqairriGK5cuUKtm3bhvT0dISEhEBPTw979+6FkZGR8Dw8vigqKkJWVhY+fPggMi6pBV4rKyuxV4jGxsb+x2n+XR8+fEBmZiZMTEygoMCPtQifdw3Pzc1FUVGRsGHD69evoaqqCl1dXWRkZDBISAgh5HvIsQ5ACCHkxyktLcXFixexbds2vHnzBgDw9OlTvH37lnEy8bx48QINGjQAAJw+fRqjR4+GmZkZJk+e/NXVTYR8KjMzEzo6OsLvMzIykJmZWemLT29wN23aBAUFBYSEhGDr1q3Q09MDAJw5cwb29vaM04nnyJEj6NevH1RUVBAXF4f3798DAN68eYNVq1YxTie+3Nxc/PTTT1BXV0eLFi1gZWUl8iWphg4diiFDhmDIkCHo168f0tPToaSkhB49eqBHjx5QVlZGeno6+vXrxzqq2IqKijB58mSoqqqiRYsWyMrKAvBxJZmXlxfjdF/36XPRypUr0aZNGyQnJyMvLw95eXlITk6GtbU1li9fzjoqIYSQb0Ar4wghREY8fPgQ9vb2yMrKwvv375GamgpjY2PMnTsXxcXF8PPzYx2xWoaGhtixYwd69eoFIyMjbNmyBT/99BPu3r2LLl264NWrV6wjypy9e/fCz88PmZmZiI6OhqGhIXx8fGBkZIQhQ4awjkd4xMrKCm5ubnB0dIS6ujoSEhJgbGyM+Ph42Nvb8+bcOwcHBzx48AA+Pj6ws7PDsWPH8OzZM6xYsQLe3t4YOHAg64jVmjJlCho2bFip0LN06VI8evQI/v7+jJLVjKurK65evQofHx/Y29sjMTERxsbGCA0NxdKlSxEXF8c6olhMTEwQEhJSqZh769YtjBw5EpmZmYySEUII+Vb8WKdNCCHku7m6usLGxgYJCQmoW7eucHzYsGGYMmUKw2Tic3Z2xujRo9GwYUMIBAL06dMHAPDPP/+gefPmjNPJnq1bt8LT0xNz587FypUrhVs6tbS04OPjw4tiXGhoaJXjAoEAysrKMDU1rbRdTFKlp6dj9+7dSE9Px4YNG6Crq4uzZ89CX18fLVq0YB2vWikpKejWrVulcQ0NDbx+/frHB/pGYWFhOHHiBGxtbSEnJwdDQ0P06dMHGhoaWL16NS+KccHBwbh582al8fHjx8PGxoY3xbjjx4/j8OHD6NChg8gWXAsLC6SnpzNMVjPZ2dkoKSmpNF5WVoZnz54xSEQIIeR7UTGOEEJkRFRUFK5evYpatWqJjBsaGuLJkyeMUtXMsmXL0LJlSzx69AijRo2CkpISAEBeXh4eHh6M08mejRs3YseOHRg6dKjIli8bGxvMnz+fYTLxDR06tMoz4yrGBAIBunTpguPHj0t0x97IyEj0798fnTt3xuXLl7Fy5Uro6uoiMTERO3fuREhICOuI1WrYsCHu37+PJk2aiIxHRUXB2NiYTahvUFhYCF1dXQAfG2jk5ubCzMwMlpaWvDlrTUVFBVFRUWjatKnIeFRUFJSVlRmlqrnc3Fzh/8WnCgsLedVBuVevXpg6dSp27dqFtm3bQiAQ4ObNm5g+fTp69+7NOh4hhJBvQGfGEUKIjCgvL6/yMPrHjx9DXV2dQaJvM3LkSLi5uaFx48bCMScnJ16swpI2mZmZVZ6BpaSkhMLCQgaJau7ChQuwtbXFhQsXkJ+fj/z8fFy4cAHt2rXD33//jcuXL+Ply5cSX1z08PDAihUrcOHCBZGCu52dHaKjoxkmE9/06dPh6uqKf/75BwKBAE+fPsX+/fsxf/58zJw5k3U8sTVr1gwpKSkAgDZt2mDbtm148uQJ/Pz80LBhQ8bpxDN37lzMmDEDs2fPxr59+7Bv3z7Mnj0bs2bNgpubG+t4YrO1tcWpU6eEjysKcDt27EDHjh1Zxaoxf39/6OnpoV27dlBWVoaSkhLat2+Phg0bYufOnazjEUII+Qa0Mo4QQmREnz594OPjg+3btwP4+Kbk7du3WLp0KQYMGMA4HeEjIyMjxMfHw9DQUGT8zJkzsLCwYJSqZlxdXbF9+3Z06tRJONarVy8oKytj2rRpuHv3Lnx8fDBp0iSGKat3+/ZtHDhwoNK4jo4OXr58ySBRzS1cuBD5+fmws7NDcXExunXrBiUlJcyfPx+zZ89mHU9sc+fORXZ2NoCPZ6z169cP+/fvR61atRAQEMA2nJg8PDxgbGyMDRs2CH+uzM3NERAQgNGjRzNOJ77Vq1fD3t4eSUlJKC0txYYNG3D37l1ER0cjMjKSdTyx6ejo4PTp00hNTcW9e/fAcRzMzc1hZmbGOhohhJBvRA0cCCFERjx9+hR2dnaQl5dHWloabGxskJaWhnr16uHy5ctVbuUh5Gt2796NJUuWwNvbG5MnT8bOnTuRnp6O1atXY+fOnfj5559ZR6yWiooKbty4gZYtW4qM3759G+3atcO7d+/w8OFDmJubo6ioiFHK6jVu3BhBQUHo1KmTSPODY8eOYf78+bw6H6uoqAhJSUkoLy+HhYUFateuzTrSV5WUlEBRUfGL14uKinDv3j0YGBigXr16PzAZAT7+Lq9duxa3bt1CeXk5rK2tsWjRIlhaWrKORgghRIZRMY4QQmTIu3fvcOjQIZE3JQ4ODlBRUWEdjfDUjh07sGLFCjx69AgAoKenh2XLlmHy5MmMk4mnS5cuUFdXR2BgIHR0dAB8PGfK0dERhYWFuHz5Mi5evIiZM2ciNTWVcdovW7hwIaKjoxEcHAwzMzPExsbi2bNncHR0hKOjI5YuXco6YrXy8/NRVlaGOnXqiIzn5eVBQUEBGhoajJJ9nZeXF4yNjXm1YoxIvnnz5mH58uVQU1PDvHnzvnrvunXrflAqQggh/xYqxhFCCCHku7148QLl5eW8W2GZkpKCIUOGIDMzE/r6+hAIBMjKyoKxsTFOnDgBMzMzHD9+HG/evMGECRNYx/2ikpISTJw4EYcOHQLHcVBQUEBZWRnGjRuHgIAAyMvLs45Yrf79+2PQoEGVzofz8/NDaGgoTp8+zSjZ16WmpmLYsGGYNm0aXF1dpaJwUlZWhvXr1yMoKAhZWVn48OGDyPW8vDxGyapXUFAg9r2SWuAFPp73eOzYMWhpacHOzu6L9wkEAoSFhf3AZIQQQv4NVIwjhBDCK+np6di9ezfS09OxYcMG6Orq4uzZs9DX10eLFi1YxyM8xHEczp07h9TUVHAch+bNm6NPnz6Qk+Nfn6v09HTExcWhvLwcVlZWlbphSrI6derg6tWrMDc3Fxm/d+8eOnfuLNFn37158wYTJ07EkSNHpKJw4unpiZ07d2LevHlYsmQJfvvtNzx48ADHjx+Hp6cnXFxcWEf8Ijk5ObE7pVbV1IgQQgj5EagYRwghhDciIyPRv39/dO7cGZcvX0ZycjKMjY3x119/4fr16wgJCWEdUepZWVmJ/UY3Njb2P05DpImamhpiYmIqneV1+/ZttG/fXqLP7JM2JiYm8PX1xcCBA6Guro74+HjhWExMTJXNQiTFp40ZHjx4AA8PD0ycOFHYPTU6Ohp79uzB6tWr4eTkxComIYQQGUfFOEIIIbzRsWNHjBo1CvPmzRM5pP7GjRsYOnQonjx5wjqi1Pv999+F3xcXF2PLli2wsLAQvtGNiYnB3bt3MXPmTKxevZpVzBq5dOkSLl26hOfPn6O8vFzkmr+/P6NU1atuO+Sn+LA1skePHrC0tMTGjRtFxmfNmoXExERcuXKFUTLZo6amhuTkZBgYGKBhw4Y4deoUrK2tkZGRASsrK+Tn57OOKJZevXphypQpGDt2rMj4gQMHsH37dkRERLAJJobhw4eLfe/Ro0f/wySEEEL+CwqsAxBCCCHiun37dpUrMnR0dCR6C5s0+bQRwJQpU+Di4oLly5dXuqeioYOk+/333/HHH3/AxsYGDRs2FHvVnySIi4sTeXzr1i2UlZWhWbNmAD6eZSYvL4+2bduyiFdjK1euRO/evZGQkIBevXoB+FgovXHjBs6fP884nfiKi4uxceNGhIeHV1ng5cOK0caNGyM7OxsGBgYwNTXF+fPnYW1tjRs3bkBJSYl1PLFFR0fDz8+v0riNjQ2mTJnCIJH4NDU1hd9zHIdjx45BU1MTNjY2AD7+vr9+/bpGRTtCCCGSg4pxhBBCeENLSwvZ2dkwMjISGY+Li4Oenh6jVLIrODgYN2/erDQ+fvx42NjYSPSqsgp+fn4ICAiQ6OYMXxIeHi78ft26dVBXV8eePXugra0NAHj16hWcnZ3RtWtXVhFrpHPnzoiOjsaaNWsQFBQEFRUVtGrVCrt27eLV2XeTJk3ChQsXMHLkSLRr145XBd4Kw4YNw6VLl9C+fXu4urpi7Nix2LVrF7KysuDm5sY6ntj09fXh5+cHb29vkfFt27ZBX1+fUSrx7N69W/j9okWLMHr0aPj5+QmbsZSVlWHmzJkS3YSCEELIl9E2VUIIkRF87o5XYeHChYiOjkZwcDDMzMwQGxuLZ8+ewdHREY6OjiKrtsh/r0GDBli9ejWcnZ1Fxnfv3g0PDw88e/aMUTLx1a1bF9evX4eJiQnrKN9FT08P58+fr9TE5M6dO+jbty+ePn3KKJns0dTUxOnTp9G5c2fWUf41MTExuHbtGkxNTTF48GDWccR2+vRpjBgxAiYmJujQoQOAj3NJT0/HkSNHMGDAAMYJxaOjo4OoqCjhqtcKKSkp6NSpE60MJ4QQHqKVcYQQIiN+//33r3bH44OVK1di4sSJ0NPTA8dxsLCwQFlZGcaNG4fFixezjidz5s6dixkzZuDWrVsib3T9/f158zM1ZcoUHDhwAEuWLGEd5bsUFBTg2bNnlYpxz58/x5s3bxilqrny8nLcv3+/yu2d3bp1Y5SqZvT09KCurs46xr+qQ4cOwt9xPhkwYADS0tKwdetWJCcng+M4DBkyBL/88ovEr4z7VGlpKZKTkysV45KTkyv9nhBCCOEHWhlHCCEygs/d8T6Xnp6OuLg4lJeXw8rKildb2KRNUFAQNmzYgOTkZACAubk5XF1dMXr0aMbJxOPq6orAwEC0atUKrVq1gqKiosh1PjQ+AABHR0dERkbC29tbpDC6YMECdOvWDXv27GGcsHoxMTEYN24cHj58iM9fngoEApSVlTFKVjNnzpyBr68v/Pz8YGhoyDqO2EJDQ8W+l0+r46TBvHnzEBAQgP/9738iv99eXl5wdHTkzfMUIYSQ/0PFOEIIkRHS0h2PkH+TnZ3dF68JBAKEhYX9wDTfrqioCPPnz4e/vz9KSkoAAAoKCpg8eTLWrFkDNTU1xgmr16ZNG5iZmeH333+vspnGpwfaS7Lc3FyMHj0aly9fhqqqaqUCr6QeCSAnJyfyWCAQVFkUBcCbwqi0KC8vx9q1a7FhwwZkZ2cDABo2bAhXV1e4u7sLz5EjhBDCH7RNlRBCZARfu+PNmzdP7HtpdQCpqU+bIPCZqqoqtmzZgjVr1iA9PR0cx8HU1JQXRbgKaWlpCAkJgampKeso32Xs2LF48uQJVq1ahfr16/OmgcOn2x0vXryIRYsWYdWqVejYsSMEAgGuXbuGxYsXY9WqVQxTyp7S0lLs378fjo6OWLhwIQoKCgCAGjcQQgjPUTGOEEJkBF+748XFxYk8vnXrFsrKyoRn56SmpkJeXh5t27ZlEY9IkcePH0MgEPC6M6+amhpatWrFOsY3ad++Pe7fv8/7Yty1a9cQHR2N1q1bs47yzebOnQs/Pz906dJFONavXz+oqqpi2rRpwm3p5L+noKCAGTNmCP/NqQhHCCHSgYpxhBAiI7y8vITfjxw5Evr6+rh69arEd8f7dOXSunXroK6ujj179kBbWxsA8OrVKzg7O6Nr166sIhIeKy8vx4oVK+Dt7Y23b98CANTV1eHu7o7ffvut0tY98t+ZM2cO3N3dkZOTA0tLy0rbO/lSZGzevDnevXvHOsZ3SU9Pr3JbsKamJh48ePDjA8m49u3bIy4ujldnEBJCCPk6OjOOEEIIb+jp6eH8+fOVOkbeuXMHffv2xdOnTxklI3z166+/YteuXfj999/RuXNncByHq1evYtmyZZg6dSpWrlzJOqLMqKrwWXFuGZ8aOJw/fx6///47Vq5cWWVRkQ8rm7p16wZFRUXs27cPDRs2BADk5ORgwoQJ+PDhAyIjIxknlC3BwcHw8PCAm5sb2rZtW2n7OV8K1YQQQv4PFeMIIURGyMvLo1u3bjhy5Ajq1KkjHH/27BkaNWrEize66urqOHHiBHr27CkyHhYWhiFDhuDNmzeMkhG+atSoEfz8/CqtDj1x4gRmzpyJJ0+eMEomex4+fPjV63xZFVRRVPz8rDg+FRXv37+PYcOGISUlBQYGBgCArKwsmJmZ4fjx4xK9ldjKykrsc/piY2P/4zT/DmkpVBNCCPk/tE2VEEJkBMdxeP/+PWxsbBAaGoqWLVuKXOODYcOGwdnZGd7e3ujQoQMAICYmBgsWLMDw4cMZp5M9ZWVlCAgIwKVLl/D8+XORA+AB8KITaV5eHpo3b15pvHnz5hLb9VJa8aXYVh1paApiamqKxMREXLhwAffu3QPHcbCwsEDv3r0lviHF0KFDhd8XFxdjy5YtsLCwQMeOHQF8/Jtx9+5dzJw5k1HCmsvMzGQdgRBCyL+MVsYRQoiMkJeXx+PHj+Hl5YXdu3dj7969GDJkCK9WxhUVFWH+/Pnw9/dHSUkJgI+HW0+ePBlr1qzhVedIaTB79mwEBARg4MCBaNiwYaU36evXr2eUTHzt27dH+/bt4evrKzI+Z84c3LhxAzExMYySVS80NFTseyX5XMjPJSUlISsrCx8+fBAZ59MciGSYMmUKGjZsiOXLl4uML126FI8ePYK/vz+jZIQQQmQdFeMIIURGyMnJIScnB7q6uti+fTtcXFywePFiTJkyBXp6erwoxlUoLCxEeno6OI6DqakpFeEYqVevHgIDAzFgwADWUb5ZZGQkBg4cCAMDA3Ts2BECgQDXrl3Do0ePcPr0aYluDCJucwm+bGPLyMjAsGHDcPv2beEWPOD/tnvyYQ4VXr9+jV27diE5ORkCgQAWFhaYNGlSlU0RJIWvry+mTZsGZWXlSsXpz7m4uPygVN9HU1MTN2/eRNOmTUXG09LSYGNjg/z8fEbJam7v3r3w8/NDZmYmoqOjYWhoCB8fHxgZGWHIkCGs4xFCCKkhKsYRQoiM+LQYBwAREREYOXIkrKysEBYWxqs3ukQyNGrUCBERETAzM2Md5bs8ffoUmzdvFtmON3PmTDRq1Ih1NJkyaNAgyMvLY8eOHTA2Nsb169fx8uVLuLu7Y+3atRJdGP3UzZs30a9fP6ioqKBdu3bgOA43b97Eu3fvcP78eVhbW7OOWCUjIyPcvHkTdevWhZGR0RfvEwgEyMjI+IHJvl2DBg2wevVqODs7i4zv3r0bHh4eePbsGaNkX3fu3Dl06NBBWLzdunUrPD09MXfuXKxcuRJ37tyBsbExAgICsGfPHqnYGk0IIbKGinGEECIjPn2jVeH+/fsYNGgQUlNTqRhHaszb2xsZGRnYtGmTxJ8jVVOPHj3C0qVLaRvbD1SvXj2EhYWhVatW0NTUxPXr19GsWTOEhYXB3d0dcXFxrCOKpWvXrjA1NcWOHTugoPDxeObS0lJMmTIFGRkZuHz5MuOEssPLywvLli3DlClTRM4Z9ff3h6enJzw8PBgnrNqePXuwZs0anD17Fo0bN4aFhQVWrVqFoUOHQl1dHQkJCTA2NsadO3fQo0cPvHjxgnVkQgghNUTFOEIIkXHFxcV49uyZ1ByeTn6cYcOGITw8HHXq1EGLFi2gqKgocv3o0aOMkn2/hIQEWFtb86pIXVhYiMjIyCrPW+PDtkJtbW3cunULxsbGMDExwc6dO2FnZ4f09HRYWlqiqKiIdUSxqKioIC4urlJjkKSkJNjY2PBmHtIiKCgIGzZsQHJyMgDA3Nwcrq6uGD16NONkX3f06FF4enrizp07UFFRwb1792BoaChSjEtLS0OrVq3w7t071nEJIYTUEHVTJYQQGaesrEyFOPJNtLS0MGzYMNYxCIC4uDgMGDAARUVFKCwsRJ06dfDixQuoqqpCV1eXF8W4li1bIjExEcbGxmjfvj3++usv1KpVC9u3b4exsTHreGLT0NBAVlZWpWLco0ePoK6uzihVzYwcORI2NjaVVo6tWbMG169fR3BwMKNkNTd69GiJL7xVZfjw4bCysgLwcWV7fHx8pb/VZ86cgYWFBYt4hBBCvhMV4wghRIrVqVMHqampqFevHrS1tb+6lTAvL+8HJiPSYPfu3awjkP/Pzc0NgwYNwtatW6GlpYWYmBgoKipi/PjxcHV1ZR1PLIsXL0ZhYSEAYMWKFfjpp5/QtWtX1K1bF4cPH2acTnxjxozB5MmTsXbtWnTq1AkCgQBRUVFYsGABxo4dyzqeWCIjI7F06dJK4/b29li7di2DRLKp4uy+BQsWYNasWSguLgbHcbh+/ToOHjyI1atXY+fOnYxTEkII+RZUjCOEECm2fv164UoMHx8ftmH+Jenp6fDx8RF2KazYcmRiYsI6mszKzc1FSkoKBAIBzMzMoKOjwzqSzImPj8e2bdsgLy8PeXl5vH//HsbGxvjrr7/g5OSE4cOHs45YrX79+gm/NzY2RlJSEvLy8qr9IEHSrF27FgKBAI6OjigtLQUAKCoqYsaMGfDy8mKcTjxv375FrVq1Ko0rKiqioKCAQaJvU1ZWhvXr1yMoKKjK7dt8+RDK2dkZpaWlWLhwIYqKijBu3Djo6elhw4YN+Pnnn1nHI4QQ8g3ozDhCCCG8ce7cOQwePBht2rRB586dwXEcrl27hoSEBJw8eRJ9+vRhHVGmFBYWYs6cOQgMDER5eTkAQF5eHo6Ojti4cSNUVVUZJ/yy6opTr1+/RmRkJG/OjNPR0cHVq1dhZmaGZs2awdfXF/369cO9e/dgbW3Ni3PK8vPzUVZWhjp16oiM5+XlQUFBARoaGoySfZuioiKkp6eD4ziYmppK9O/D52xtbTFo0CB4enqKjC9btgwnT57ErVu3GCWrGU9PT+zcuRPz5s3DkiVL8Ntvv+HBgwc4fvw4PD09ebF9+3MvXrxAeXm5sDM6IYQQfqJiHCGESLGarGDgwxtdKysr9OvXr9LqEg8PD5w/fx6xsbGMkskGHx8fWFpaolevXgCA6dOn4+LFi9i0aRM6d+4MAIiKioKLiwv69OmDrVu3soz7Vc7OzmLdx5etuH379sXEiRMxbtw4/PLLL4iLi4OLiwv27t2LV69e4Z9//mEdsVr9+/fHoEGDMHPmTJFxPz8/hIaG4vTp04ySyZ7Q0FCMGDEC48aNQ8+ePQEAly5dwsGDBxEcHIyhQ4eyDSgmExMT+Pr6YuDAgVBXV0d8fLxwLCYmBgcOHGAdsUaeP38uXIXcrFkzWoVMCCE8RsU4QgiRYnJyctVu7+I4DgKBgBcrgJSVlXH79m00bdpUZDw1NRWtWrVCcXExo2Sy4datWxg9ejSWLVuGCRMmoF69eggJCUGPHj1E7gsPD8fo0aORm5vLJqgMunnzJt68eQM7Ozvk5ubCyckJUVFRMDU1xe7du9G6dWvWEatVp04dXL16Febm5iLj9+7dQ+fOnfHy5UtGyWqmsLAQXl5euHTpEp4/fy5cNVohIyODUbKaOXXqFFatWoX4+HioqKigVatWWLp0Kbp37846mtjU1NSQnJwMAwMDNGzYEKdOnYK1tTUyMjJgZWWF/Px81hHFUlBQgFmzZuHgwYMiq5DHjBmDzZs3Q1NTk3FCQgghNUVnxhFCiBQLDw9nHeFfpaOjg/j4+ErFuPj4eNqy8wO0bdsW//zzD5ycnDBhwgQUFRWhfv36le7T1dXlxbZIaWJjYyP8XkdHh5eryN6/fy88Y+1TJSUlePfuHYNE32bKlCmIjIzEhAkT0LBhQ16dd/epgQMHYuDAgaxjfJfGjRsjOzsbBgYGMDU1xfnz52FtbY0bN25ASUmJdTyxTZkyBfHx8Th16hQ6duwIgUCAa9euwdXVFVOnTkVQUBDriIQQQmqIVsYRQgjhjT/++APr16+Hh4eHSJfCP//8E+7u7li8eDHriDKlV69eqFu3LgIDA6GsrAwAePfuHZycnJCXl4eLFy8yTkj4pEePHrC0tMTGjRtFxmfNmoXExERcuXKFUbKa0dLSwqlTp4Rbt/ns1q1bwmY5FhYWsLKyYh2pRjw8PKChoYH//e9/CAkJwdixY9GkSRNkZWXBzc2NNw011NTUcO7cOXTp0kVk/MqVK7C3txd2ISaEEMIfVIwjhBAZU1RUVGVXuVatWjFKJD6O4+Dj4wNvb288ffoUANCoUSMsWLAALi4uvF2Bwld37tyBvb09iouL0bp1awgEAsTHx0NZWRnnzp1DixYtWEckPHL16lX07t0btra2wnMJL126hBs3buD8+fPo2rUr44TiMTIywunTpyttt+WT58+f4+eff0ZERAS0tLTAcRzy8/NhZ2eHQ4cO8fasspiYGFy7dg2mpqYYPHgw6zhiMzAwwKlTp2BpaSkynpiYiAEDBuDx48eMkhFCCPlWVIwjhBAZkZubC2dnZ5w5c6bK63w4M+5Tb968AQCoq6szTiLb3r17h3379uHevXvgOA4WFhZwcHCAiooK62iEh+Lj47FmzRqRc8p+/fXXSlvTJdm+fftw4sQJ7Nmzh1cdVD81ZswYpKenY+/evcKiYlJSEpycnGBqaoqDBw8yTihbtm/fjuDgYAQGBqJhw4YAgJycHDg5OWH48OGYPn0644SEEEJqiopxhBAiIxwcHPDgwQP4+PjAzs4Ox44dw7Nnz7BixQp4e3vz/mwgQgiRBFZWVkhPTwfHcWjSpAkUFRVFrvOh67OmpiYuXrwIW1tbkfHr16+jb9++eP36NZtgYggNDRX7Xr6sjrOyssL9+/fx/v17GBgYAACysrKgpKRUqVDNh58vQggh1MCBEEJkRlhYGE6cOAFbW1vIycnB0NAQffr0gYaGBlavXs2LYtyzZ88wf/58YZfCzz9P4tvqPj4KDQ1F//79oaioWO2bXr680SXsFBQUiH2vhobGf5jk3zN06FDWEb5beXl5pSIiACgqKlbqDitpPv/3FwgElf5WVBxpwJe/GdLwM0UIIUQUrYwjhBAZoaGhgcTERDRp0gRNmjTB/v370blzZ2RmZqJFixa86H7Zv39/ZGVlYfbs2VV2KRwyZAijZLJDTk4OOTk50NXVhZyc3BfvEwgEvHmjKy0iIyOxdu1a4YH75ubmWLBggUSftSYnJ1ftWY8cx9HP0w82ZMgQvH79GgcPHkSjRo0AAE+ePIGDgwO0tbVx7NgxxgnFc/HiRSxatAirVq0S6UK6ePFirFq1Cn369GEdkRBCiIyilXGEECIjmjVrhpSUFDRp0gRt2rTBtm3b0KRJE/j5+QnPoJF0UVFRuHLlCtq0acM6isz6dFWMpK+QkSX79u2Ds7Mzhg8fDhcXF3Ach2vXrqFXr14ICAjAuHHjWEesUnh4OOsI/xk+dyLdtGkThgwZgiZNmkBfXx8CgQBZWVmwtLTEvn37WMcT29y5c+Hn5yfShbRfv35QVVXFtGnTkJyczDAdIYQQWUYr4wghREbs378fJSUlmDhxIuLi4tCvXz+8fPkStWrVQkBAAMaMGcM6YrUsLCywf/9+Xr2pJeRHMDc3x7Rp0+Dm5iYyvm7dOuzYsYP3RYf4+HjeFOGlqRPphQsXRJqz9O7dm3WkGlFRUcH169er7ELavn17vHv3jlEyQgghso6KcYQQIqOKiopw7949GBgYoF69eqzjiOX8+fPw9vYWruojbLm4uMDU1BQuLi4i45s2bcL9+/fh4+PDJpgMUlJSwt27d2Fqaioyfv/+fbRs2RLFxcWMkn27/Px87N+/Hzt37kRCQgJvtqlSJ1LJ0a1bNygqKmLfvn0iXUgnTJiADx8+IDIyknFCQgghsoqKcYQQImM+fPiAzMxMmJiYQEFB8k8r0NbWFjlTqrCwEKWlpVBVVa10wHheXt6PjifT9PT0EBoairZt24qMx8bGYvDgwXj8+DGjZLLH1NQUCxYswPTp00XGt23bhrVr1yItLY1RspoLCwuDv78/jh49CkNDQ4wYMQIjRozgzYpYvnYi9fX1Ffvezwvwkur+/fsYNmwYUlJSRLqQmpmZ4fjx45WK14QQQsiPIvnvwgghhPwrioqKMGfOHOzZswcAkJqaCmNjY7i4uKBRo0bw8PBgnLBqtLpKcr18+RKampqVxjU0NPDixQsGiWSXu7s7XFxcEB8fj06dOkEgECAqKgoBAQHYsGED63jVevz4MQICAuDv74/CwkKMHj0aJSUlOHLkCCwsLFjHqxG+diJdv369WPcJBALeFONMTU2RmJhY5Xbb6hqHSCK+fZhGCCHky2hlHCGEyAhXV1dcvXoVPj4+sLe3R2JiIoyNjREaGoqlS5ciLi6OdUTCMy1btsQvv/yC2bNni4xv3LgRW7duRVJSEqNksunYsWPw9vYWng9X0U1V0rsMDxgwAFFRUfjpp5/g4OAAe3t7yMvLQ1FREQkJCbwrxklLJ1IiOfj6YRohhJAvo49UCCFERhw/fhyHDx9Ghw4dRFYEWFhYID09nWEy8Z0+fRry8vLo16+fyPj58+dRVlaG/v37M0omm+bNm4fZs2cjNzcXPXv2BABcunQJ3t7etKKRgWHDhmHYsGGsY9TY+fPn4eLighkzZqBp06as43w3aelECvBzJZavry+mTZsGZWXlarfe8mWF36+//oqEhARERETA3t5eON67d28sXbqUinGEEMJD/PirSggh5Lvl5uZCV1e30nhhYSFvtut4eHjAy8ur0nh5eTk8PDyoGPeDTZo0Ce/fv8fKlSuxfPlyAECTJk2wdetWODo6Mk4nu96+fVtpO6SGhgajNNW7cuUK/P39YWNjg+bNm2PChAm86O78Jfr6+oiNjeV1J1I+r8Rav349HBwcoKys/NWtt3zabisNH6YRQggRJcc6ACGEkB/D1tYWp06dEj6ueEG/Y8cOdOzYkVWsGklLS6tyy1rz5s1x//59BonIjBkz8PjxYzx79gwFBQXIyMigQhwDmZmZGDhwINTU1KCpqQltbW1oa2tDS0sL2trarON9VceOHbFjxw5kZ2dj+vTpOHToEPT09FBeXo4LFy7gzZs3rCPWSGBgIN6/f48+ffpgzpw5cHFxQe/evfHhwwcEBgayjieWT1diKSsrC8d79+6Nw4cPM0xWvczMTNStW1f4/Ze+MjIyGCcVnzR8mEYIIUQUnRlHCCEy4tq1a7C3t4eDgwMCAgIwffp03L17F9HR0YiMjKzUEVMSNWjQAAcOHBBuiaxw8eJFjBs3Ds+fP2eUjBC2OnXqBODj2ZD169ev9Aa9e/fuLGJ9s5SUFOzatQt79+7F69ev0adPH4SGhrKOJRZ5eXlkZ2dXKp68fPkSurq6KCsrY5RMfIaGhsKVWOrq6khISICxsTHu378Pa2trFBQUsI4oU7p3746RI0dizpw5UFdXR2JiIoyMjDB79mzcv38fZ8+eZR2REEJIDdE2VUIIkRGdOnXCtWvXsGbNGpiYmOD8+fOwtrZGdHQ0LC0tWccTy+DBgzF37lwcO3YMJiYmAID79+/D3d0dgwcPZpxONoWEhCAoKAhZWVn48OGDyLXY2FhGqWRPYmIibt26hWbNmrGO8q9o1qwZ/vrrL6xevRonT56Ev78/60hi4ziuytVKjx8/rrL7sCSSlpVYI0eOhI2NTaVttWvWrMH169cRHBzMKFnNrF69Gvb29khKSkJpaSk2bNgg8mEaIYQQ/qFtqoQQIgNKSkrg7OwMVVVV7NmzB3fu3EFSUhL27dvHm0Ic8P/au/Oorut8j+OvH4gCLrgXKbJImkwu4JJLmSiopeWCg1tKgqmVYjpuda+aU5lnajKx3DKEzA3FTEdzTRlJHHPBUnFDDHJJy8AFyOXH/aOJO1yqa6B8hO/zcQ7nyOf3C596spNvPt/P5+e/QFWsWFEPPfSQvL295e3trUaNGqlGjRp6++23TedZTlRUlIYMGaLatWvrwIEDatWqlWrUqKFTp05xfl8Ja9mypTIyMkxn3HGOjo7q2bNnqdgV5+/vr4CAANlsNnXq1EkBAQH5H02bNtVjjz1Was6NKwvHGkhSQkKCunXrVmi9a9eu+uc//2mgqGjatm2rL774QtnZ2fnfTLvvvvuUlJRUKna1AwAKY2ccAFiAk5OTPvnkE02ePNl0SrG4ublp165d2rJliw4ePCgXFxc1adJE7du3N51mSXPmzNGCBQvUv39/xcbGasKECfLx8dGUKVN06dIl03mWsnDhQo0YMUJnzpzRww8/LCcnpwKvN2nSxFCZdfTs2VOSlJycrC5duqhSpUr5r5UvX15eXl4KCQkxVPfHlJWdWFevXlX58uULrTs5OZW6R20bN26cf6EGAKD048w4ALCIIUOGqHHjxho7dqzplDsiNzdXFSpUKFWPTJU1rq6uSklJkaenp2rXrq0tW7aoadOmOnHihFq3bq0ffvjBdKJl7N69WwMGDNDp06fz12w2W/4jk6XhnLKyIjY2Vn379i1w8UFpkZycrGbNmkmSvv76a7399tvat2+f7Ha7AgICNHHixFK1m7ply5Z66qmnNGXKlALrr776qtatW6d9+/YZKvv//ZFh4b18WzIA4NexMw4ALMLX11evvfaadu3apebNm6tixYoFXo+MjDRUdvvsdrveeOMNzZs3T999952OHz8uHx8fTZ48WV5eXoqIiDCdaCn333+/fvjhB3l6esrT01O7d+9W06ZNlZaWJr7XV7LCw8Pl7++vZcuW/eoFDig5YWFhphOKLCAgQP7+/ho6dKgGDBhQ6ndiTZ48WSEhIUpNTc2/+Gfbtm1atmzZPX9eXNWqVW/7zzHDdgAofdgZBwAW4e3t/Zuv2Ww2nTp1qgRriuavf/2rYmNj9de//lXPPfecDh06JB8fH8XFxWnmzJlKSkoynWgpQ4cOlYeHh6ZOnap58+Zp7Nixateunfbu3avevXvrww8/NJ1oGRUrVtTBgwfl6+trOsXyHBwcfneIci8PTpKSkhQdHa24uDjduHFDISEhCg8PV2BgoOm0Ilu/fr2mT5+u5OTk/KMNpk6des/fMPyfjwOfPn1akyZN0rPPPpt/Zl9SUpJiY2P15ptvluoBMABYFcM4AECp4evrq/nz56tTp06qXLmyDh48KB8fHx09elRt2rTRjz/+aDrRUux2u+x2u8qV+3mjfVxcnBITE+Xr66sRI0b86llNuDueeuopPfvss6XmTLKybM2aNQWGcTdu3NCBAwcUGxuradOmlYodvDk5OYqLi9OiRYu0c+dOeXl5KTw8XGFhYapbt67pPMvp1KmThg4dqv79+xdYX7p0qRYsWKAdO3aYCQMAFBnDOABAqeHi4qKjR4/K09OzwDDuyJEjatWqla5evWo6ETBiwYIFev311xUeHq7GjRsXusDh6aefNlSGXyxdulQrVqzQp59+ajrlD0lNTdWiRYv00Ucf6dy5cwoODtaGDRtMZ/0h+/btU0pKimw2m/z8/OTv72866Q9xdXXVwYMH9eCDDxZYP378uJo1a6bs7GxDZQCAomIYBwAoNVq0aKGXXnpJzzzzTIFh3LRp07R161bt3LnTdGKZ99VXX932e7nBs+Q4ODj85mtc4HBvSE1NVZMmTXTt2jXTKX/Y1atXtWTJEr3yyivKzMwsNf8+XbhwQf369dOOHTtUtWpV5eXlKSsrS4GBgVq+fLlq1aplOvG2NGzYUN27d9ff//73Aut/+ctf9I9//EPHjh0zVAYAKCoucAAA3PPCw8M1a9YsTZ06VYMGDdKZM2dkt9u1evVqHTt2TB999JH+8Y9/mM60hGbNmuXf0vl7GACVLLvdbjoBvyMnJ0ezZ88udY94JiQkKDo6WvHx8XJ0dFRoaGipeMz2F6NGjdLly5d1+PBhNWrUSJJ05MgRhYWFKTIyUsuWLTNceHtmzpypkJAQbdq0Sa1bt5b08w3Kqampio+PN1wHACgKdsYBAO55jo6OOnfunGrXrq1NmzZp+vTp2rdvn+x2uwICAjRlyhR17tzZdKYlfPPNN7f9Xk9Pz7tYAtybqlWrVuDMuLy8PF25ckWurq76+OOP7/lHhjMyMhQTE6OYmBilpaWpbdu2ioiIUGhoaKFbuO91bm5u2rp1q1q2bFlgfc+ePercubMyMzPNhBXBt99+q7lz5yolJUV5eXny8/PTiBEj5OHhYToNAFAEDOMAAPc8BwcHnT9/XrVr1zadAtwzoqKiNGzYMDk7OysqKup33xsZGVlCVYiNjS3wuYODg2rVqqVHHnlE1apVM1R1e4KDg7V9+3bVqlVLgwcPVnh4uBo2bGg6q8gqV66snTt3qlmzZgXWDxw4oMcff1yXL182EwYAsDyGcQBgITt37tT8+fOVmpqqVatWqU6dOlq8eLG8vb316KOPms77TQ4ODvruu+9Kzfk+VrJ48WLNmzdPaWlpSkpKkqenp9599115e3urR48epvPKNG9vb+3du1c1atSQt7f3b77PZrPp1KlTJViG35KcnFxoMHQvefrppxUREaHu3bvL0dHRdE6x9ejRQ5mZmVq2bJkeeOABSdKZM2c0cOBAVatWTZ988onhQgCAVf32ab8AgDIlPj5eXbp0kYuLiw4cOKCffvpJknTlyhVNnz7dcN3/r0GDBqpevfrvfqBkzZ07V2PHjtWTTz5Z4FD3qlWr6t133zUbZwFpaWmqUaNG/o9/64NBnFlZWVmaM2eOAgIC1Lx5c9M5v2vt2rXq0aNHmRjESdJ7772nK1euyMvLS/Xr15evr6+8vb115coVzZ4923QeAMDC2BkHABbh7++vMWPGaPDgwQVuIk1OTlbXrl11/vx504m/ycHBQe+++67c3Nx+931hYWElVARJ8vPz0/Tp09WzZ88C/04dOnRIHTp00Pfff2860TJycnLk4uLyq6+dO3dO7u7uJVyEzz//XNHR0Vq9erU8PT0VEhKikJAQ+fv7m06znC1btujo0aP5Z60FBQWZTgIAWBy3qQKARRw7dkzt27cvtF6lSpVScYh1v379ODPuHpOWlvarg4UKFSro2rVrBoqsy9/fX0uXLlVAQECB9VWrVun555/XxYsXDZVZy7fffquYmBhFR0fr2rVrCg0N1Y0bNxQfHy8/Pz/TeZYVHBys4OBg0xkAAORjGAcAFuHu7q6TJ0/Ky8urwHpiYqJ8fHzMRN2m/7yZEPcOb29vJScnF7o19bPPPmPwUMKCg4PVtm1bvfrqq5o4caKuXbumkSNHauXKlZoxY4bpPEt48sknlZiYqO7du2v27Nnq2rWrHB0dNW/ePNNplvL/XWbyn7jYBABgCsM4ALCI4cOHa/To0YqOjpbNZtPZs2eVlJSkcePGacqUKabzfhcnKtybxo8frxdffFG5ubnKy8vTnj17tGzZMr355ptauHCh6TxLmT17trp166YhQ4Zo/fr1Onv2rKpUqaIvv/ySwWgJ2bx5syIjI/X888/rwQcfNJ1jWTNnzryt99lstnt6GOfv73/b34jav3//Xa4BANxpDOMAwCImTJigrKwsBQYGKjc3V+3bt1eFChU0btw4jRw50nTe77Lb7aYT8CuGDBmimzdvasKECcrOztaAAQNUp04dzZo1S/369TOdZzmdO3dW7969NXfuXJUrV07r1q1jEFeCdu7cqejoaLVo0UIPPfSQBg0apL59+5rOspy0tDTTCXdEz54983+cm5urOXPmyM/PT23atJEk7d69W4cPH9YLL7xgqBAAUBxc4AAAFpOdna0jR47IbrfLz89PlSpVMp2EMuD777+X3W7PP9fvzJkzqlOnjuEq60hNTdWAAQN0/vx5LVy4UAkJCXr77bcVGRmpN954Q05OTqYTLSM7O1vLly9XdHS09uzZo1u3bumdd95ReHi4KleubDrPkq5fv660tDTVr19f5cqVvr0IQ4cOlbu7u1577bUC61OnTlVGRoaio6MNlQEAiophHABY1OXLl/X555+rYcOGatSokekclBHnz5/XG2+8oYULFyonJ8d0jmVUrlxZ3bp107x581S1alVJ0q5du/JvTz5w4IDZQIs6duyYPvzwQy1evFiZmZkKDg7W2rVrTWdZRnZ2tkaNGqXY2FhJ0vHjx+Xj46PIyEg98MADmjRpkuHC2+Pm5qa9e/cWevz5xIkTatGihbKysgyVAQCKysF0AACgZISGhuq9996TJOXk5Khly5YKDQ1VkyZNFB8fb7gOpUlmZqYGDhyoWrVq6YEHHlBUVJTsdrumTJkiHx8f7d69m50aJWzOnDlavnx5/iBOktq2basDBw4UumEVJadhw4b629/+pm+//VbLli0znWM5L7/8sg4ePKgdO3bI2dk5fz0oKEgrVqwwWPbHuLi4KDExsdB6YmJigV8XAKD0YGccAFjE/fffr02bNqlp06ZaunSppk6dqoMHDyo2NlYLFixg5wxu2wsvvKB169apb9++2rhxo1JSUtSlSxfl5uZq6tSpevzxx00nAoA8PT21YsUKtW7dWpUrV9bBgwfl4+OjkydPKiAgQJcvXzadeFtmzJihV199VUOHDlXr1q0lKf+bHlOmTCk1O/wAAP+r9B2aAAAokqysLFWvXl2StHHjRoWEhMjV1VXdunXT+PHjDdehNFm/fr0WLVqkoKAgvfDCC/L19VWDBg307rvvmk6zvCNHjig9PV3Xr1/PX7PZbHrqqacMVgFmXLx4Mf8cy/907dq1276p9F4wadIk+fj4aNasWVq6dKkkqVGjRoqJiVFoaKjhOgBAUTCMAwCL8PDwUFJSkqpXr66NGzdq+fLlkqQff/yRx1zwh5w9ezb/lk4fHx85Oztr6NChhqusJSsrS25ubvmfnzp1Sr1799ZXX30lm82mXx58+GXgcOvWLSOdgEktW7bU+vXrNWrUKEn/++fhgw8+yL+VtLQIDQ1l8AYAZQjDOACwiJdeekkDBw5UpUqV5OnpqQ4dOkiS/vnPf6px48Zm41Cq2O32ArdzOjo6qmLFigaLrCcqKkrOzs75u1pHjx4tDw8Pbdq0Sc2aNdO//vUvpaWlady4cXrnnXcM1wJmvPnmm+ratauOHDmimzdvatasWTp8+LCSkpKUkJBgOg8AYGGcGQcAFrJv3z6lp6crODhYlSpVkvTzI4dVq1ZVu3btDNehtHBwcNATTzyhChUqSJLWrVunjh07FhrIrV692kSeJVy4cEGDBg2Sr6+v3n//fdWsWVPbtm1T06ZNVadOHe3Zs0d16tTRtm3bNG7cOM6EhKUkJyerWbNmkqSvv/5ab7/9tvbt2ye73a6AgABNnDixVH0T6tatW5o5c6bi4uIKPYYuSZcuXTJUBgAoKnbGAYCFNG/eXM2bNy+w1q1bN0M1KK3CwsIKfP7MM88YKrGu2rVra9OmTXrzzTcl/fyX9cqVK0uSatasqbNnz6pOnTry8vLSsWPHTKYCJS4gIED+/v4aOnSoBgwYoNjYWNNJxTJt2jQtXLhQY8eO1eTJk/Vf//VfOn36tNasWaMpU6aYzgMAFAE74wAAAEq5xx57TGPHjlWvXr00bNgwXbx4UePHj9e8efO0f/9+HTp0yHQiUGKSkpIUHR2tuLg43bhxQyEhIQoPD1dgYKDptCKpX7++oqKi1K1bN1WuXFnJycn5a7t3786/1AEAUHowjAMAACjlNm3apCtXrqhPnz7KyMhQt27ddOjQIVWvXl1xcXHq2LGj6USgxOXk5CguLk6LFi3Szp075eXlpfDwcIWFhalu3bqm825bxYoVlZKSonr16snd3V3r169XQECATp06JX9/f2VlZZlOBAD8QQ6mAwAAAFA8Xbp0UZ8+fST9fHPyV199pe+//14XLlxgEAfLcnFxUVhYmHbs2KHjx4+rf//+mj9/vry9vfXkk0+azrttdevW1blz5yRJvr6+2rx5syTpyy+/zD+7EwBQurAzDgAAAECZd/XqVS1ZskSvvPKKMjMzdevWLdNJt2XSpEmqUqWKXnnlFa1atUr9+/eXl5eX0tPTNWbMGM2YMcN0IgDgD2IYBwAWsnPnTs2fP1+pqalatWqV6tSpo8WLF8vb21uPPvqo6TwARZSbm6vZs2dr+/btunDhgux2e4HX9+/fb6gMMC8hIUHR0dGKj4+Xo6OjQkNDFRERodatW5tOK5Ldu3dr165d8vX11dNPP206BwBQBNymCgAWER8fr0GDBmngwIE6cOCAfvrpJ0nSlStXNH36dG3YsMFwIYCiCg8P15YtW9SnTx+1atVKNpvNdBJgVEZGhmJiYhQTE6O0tDS1bdtWs2fPVmhoqCpWrGg6r1hat25dageJAICfsTMOACzC399fY8aM0eDBg1W5cmUdPHhQPj4+Sk5OVteuXXX+/HnTiQCKyM3NTRs2bFC7du1MpwDGBQcHa/v27apVq5YGDx6s8PBwNWzY0HTWH7J27drbfi+74wCg9GFnHABYxLFjx9S+fftC61WqVFFmZmbJBwG4Y+rUqaPKlSubzgDuCS4uLoqPj1f37t3l6OhoOqdIevbsWeBzm82m/7uH4pcdsKXl7DsAwP/iNlUAsAh3d3edPHmy0HpiYqJ8fHwMFAG4U/7+979r4sSJ+uabb0ynAMatXbtWPXr0KLWDOEmy2+35H5s3b1azZs302WefKTMzU1lZWfrss88UEBCgjRs3mk4FABQBO+MAwCKGDx+u0aNHKzo6WjabTWfPnlVSUpLGjRunKVOmmM4DUAwtWrRQbm6ufHx85OrqKicnpwKvX7p0yVAZgOJ66aWXNG/evAIXLXXp0kWurq4aNmyYUlJSDNYBAIqCYRwAWMSECROUlZWlwMBA5ebmqn379qpQoYLGjRunkSNHms4DUAz9+/fXmTNnNH36dN13331c4ACUIampqXJzcyu07ubmptOnT5d8EACg2LjAAQAsJjs7W0eOHJHdbpefn58qVapkOglAMbm6uiopKUlNmzY1nQLgDmvfvr2cnJz08ccfy93dXZJ0/vx5DRo0SNevX1dCQoLhQgDAH8XOOACwGFdXV7Vo0cJ0BoA76KGHHlJOTo7pDAB3QXR0tHr16iVPT0/Vq1dPkpSenq4GDRpozZo1ZuMAAEXCzjgAsIjAwMDffXTt888/L8EaAHfS5s2bNW3aNL3xxhtq3LhxoTPjqlSpYqgMwJ2Ql5enLVu26OjRo8rLy5Ofn5+CgoJ4JB0ASimGcQBgEWPGjCnw+Y0bN5ScnKxDhw4pLCxMs2bNMlQGoLgcHBwkqdBfzPPy8mSz2XTr1i0TWQAAAPgVPKYKABYxc+bMX11/9dVXdfXq1RKuAXAnbd++3XQCgDsoKipKw4YNk7Ozs6Kion73vZGRkSVUBQC4U9gZBwAWd/LkSbVq1UqXLl0ynQIAACR5e3tr7969qlGjhry9vX/zfTabTadOnSrBMgDAncDOOACwuKSkJDk7O5vOAAAA/5aWlvarPwYAlA0M4wDAInr37l3g87y8PJ07d0579+7V5MmTDVUBAAAAgLU4mA4AAJQMNze3Ah/Vq1dXhw4dtGHDBk2dOtV0HgAA+BV9+vTRjBkzCq2/9dZb+vOf/2ygCABQXJwZBwAAAAD3qFq1aunzzz9X48aNC6x//fXXCgoK0nfffWeoDABQVDymCgAAUEZcvHhRx44dk81mU4MGDVSrVi3TSQCK6erVqypfvnyhdScnJ12+fNlAEQCguHhMFQAsolq1aqpevfptfQAoXa5du6bw8HA98MADat++vR577DE98MADioiIUHZ2tuk8AMXw8MMPa8WKFYXWly9fLj8/PwNFAIDiYmccAFjE5MmT9frrr6tLly5q06aNpJ9vUt20aZMmT57MEA4oxcaOHauEhAStXbtW7dq1kyQlJiYqMjJSf/nLXzR37lzDhQCKavLkyQoJCVFqaqo6duwoSdq2bZuWLVumlStXGq4DABQFZ8YBgEWEhIQoMDBQI0eOLLD+3nvvaevWrVqzZo2ZMADFVrNmTa1atUodOnQosL59+3aFhobq4sWLZsIA3BHr16/X9OnTlZycLBcXFzVp0kRTp07V448/bjoNAFAEDOMAwCIqVaqk5ORk+fr6Flg/ceKE/P39dfXqVUNlAIrL1dVV+/btU6NGjQqsHz58WK1atdK1a9cMlQEAAOD/4sw4ALCIGjVq6JNPPim0vmbNGtWoUcNAEYA7pU2bNpo6dapyc3Pz13JycjRt2rT8x9IBlG779u3Txx9/rCVLlujAgQOmcwAAxcCZcQBgEdOmTVNERIR27NiR/5fz3bt3a+PGjVq4cKHhOgDFMWvWLHXt2lV169ZV06ZNZbPZlJycLGdnZ23atMl0HoBiuHDhgvr166cdO3aoatWqysvLU1ZWlgIDA7V8+XJuTQaAUojHVAHAQv71r38pKipKKSkpysvLk5+fnyIjI/XII4+YTgNQTDk5Ofr444919OjR/D/fAwcOlIuLi+k0AMXQt29fpaamavHixfmPoh85ckRhYWHy9fXVsmXLDBcCAP4ohnEAAAAAcI9yc3PT1q1b1bJlywLre/bsUefOnZWZmWkmDABQZJwZBwAAUMrFxsZq/fr1+Z9PmDBBVatWVdu2bfXNN98YLANQXHa7XU5OToXWnZycZLfbDRQBAIqLYRwAAEApN3369PzHUZOSkvTee+/pb3/7m2rWrKkxY8YYrgNQHB07dtTo0aN19uzZ/LUzZ85ozJgx6tSpk8EyAEBR8ZgqAABAKefq6qqjR4+qXr16mjhxos6dO6ePPvpIhw8fVocOHXTx4kXTiQCKKCMjQz169NChQ4fk4eEhm82m9PR0NW7cWJ9++qnq1q1rOhEA8AdxmyoAAEApV6lSJf3www+qV6+eNm/enL8bztnZWTk5OYbrABSHh4eH9u/fry1bthS4oCUoKMh0GgCgiBjGAQAAlHLBwcEaOnSo/P39dfz4cXXr1k2SdPjwYXl5eZmNA3BHBAcHKzg42HQGAOAOYBgHABby5ZdfauXKlUpPT9f169cLvLZ69WpDVQCK6/3339d///d/KyMjQ/Hx8apRo4Ykad++ferfv7/hOgB/VFRU1G2/NzIy8i6WAADuBs6MAwCLWL58uQYPHqzOnTtry5Yt6ty5s06cOKHz58+rV69eWrRokelEAAAgydvb+7beZ7PZdOrUqbtcAwC40xjGAYBFNGnSRMOHD9eLL76oypUr6+DBg/L29tbw4cPl7u6uadOmmU4EUAw7d+7U/PnzderUKa1cuVJ16tTR4sWL5e3trUcffdR0HgAAAP7NwXQAAKBkpKam5p8jVaFCBV27dk02m01jxozRggULDNcBKI74+Hh16dJFLi4u2r9/v3766SdJ0pUrVzR9+nTDdQDuhOvXr+vYsWO6efOm6RQAQDExjAMAi6hevbquXLkiSapTp44OHTokScrMzFR2drbJNADF9Prrr2vevHn64IMP5OTklL/etm1b7d+/32AZgOLKzs5WRESEXF1d9ac//Unp6emSfj4rbsaMGYbrAABFwTAOACziscce05YtWyRJoaGhGj16tJ577jn1799fnTp1MlwHoDiOHTum9u3bF1qvUqWKMjMzSz4IwB3z8ssv6+DBg9qxY4ecnZ3z14OCgrRixQqDZQCAouI2VQCwiPfee0+5ubmSfv4feycnJyUmJqp3796aPHmy4ToAxeHu7q6TJ0/Ky8urwHpiYqJ8fHzMRAG4I9asWaMVK1aodevWstls+et+fn5KTU01WAYAKCqGcQBgEdWrV8//sYODgyZMmKAJEyYYLAJwpwwfPlyjR49WdHS0bDabzp49q6SkJI0bN05TpkwxnQegGC5evKjatWsXWv/l7FcAQOnDMA4AyrDLly/f9nurVKlyF0sA3E0TJkxQVlaWAgMDlZubq/bt26tChQoaN26cRo4caToPQDG0bNlS69ev16hRoyQpfwD3wQcfqE2bNibTAABFZMvLy8szHQEAuDscHBz+3++a5+XlyWaz6datWyVUBeBuyc7O1pEjR2S32+Xn56dKlSqZTgJQTLt27VLXrl01cOBAxcTEaPjw4Tp8+LCSkpKUkJCg5s2bm04EAPxB7IwDgDJs+/btphMA3EXZ2dkaP3681qxZoxs3bigoKEhRUVGqWbOm6TQAxZScnKxmzZqpbdu2+uKLL/T222+rfv362rx5swICApSUlKTGjRubzgQAFAE74wAAAEqp8ePHa86cORo4cKCcnZ21bNkydejQQStXrjSdBqCYHBwc5O/vr6FDh2rAgAFyc3MznQQAuEMYxgEAAJRS9evX1xtvvKF+/fpJkvbs2aN27dopNzdXjo6OhusAFEdSUpKio6MVFxenGzduKCQkROHh4QoMDDSdBgAoJoZxAAAApVT58uWVlpamOnXq5K+5uLjo+PHj8vDwMFgG4E7JyclRXFycFi1apJ07d8rLy0vh4eEKCwtT3bp1TecBAIrAwXQAAAAAiubWrVsqX758gbVy5crp5s2bhooA3GkuLi4KCwvTjh07dPz4cfXv31/z58+Xt7e3nnzySdN5AIAiYGccAABAKeXg4KAnnnhCFSpUyF9bt26dOnbsqIoVK+avrV692kQegLvg6tWrWrJkiV555RVlZmZyGzoAlELcpgoAAFBKhYWFFVp75plnDJQAuNsSEhIUHR2t+Ph4OTo6KjQ0VBEREaazAABFwM44ALCQVatWKS4uTunp6bp+/XqB1/bv32+oCgAA/JqMjAzFxMQoJiZGaWlpatu2rSIiIhQaGlpg9ysAoHThzDgAsIioqCgNGTJEtWvX1oEDB9SqVSvVqFFDp06d0hNPPGE6DwAA/Ifg4GB5e3trzpw56tOnj1JSUpSYmKghQ4YwiAOAUo7HVAHAIubMmaMFCxaof//+io2N1YQJE+Tj46MpU6bo0qVLpvMAAMB/cHFxUXx8vLp37y5HR0fTOQCAO4jHVAHAIlxdXZWSkiJPT0/Vrl1bW7ZsUdOmTXXixAm1bt1aP/zwg+lEAAAAACjzeEwVACzi/vvvzx+4eXp6avfu3ZKktLQ08X0ZAAAAACgZDOMAwCI6duyodevWSZIiIiI0ZswYBQcHq2/fvurVq5fhOgAAAACwBh5TBQCLsNvtstvtKlfu5+NC4+LilJiYKF9fX40YMULly5c3XAgAAAAAZR/DOAAAAAAAAKCE8JgqAAAAAAAAUEIYxgEAAAAAAAAlhGEcAAAAAAAAUEIYxgEAAAAAAAAlhGEcAAAAAAAAUELKmQ4AANw9/v7+stlst/Xe/fv33+UaAAAAAADDOAAow3r27Jn/49zcXM2ZM0d+fn5q06aNJGn37t06fPiwXnjhBUOFAAAAAGAttry8vDzTEQCAu2/o0KFyd3fXa6+9VmB96tSpysjIUHR0tKEyAAAAALAOhnEAYBFubm7au3evHnzwwQLrJ06cUIsWLZSVlWWoDAAAAACsgwscAMAiXFxclJiYWGg9MTFRzs7OBooAAAAAwHo4Mw4ALOKll17S888/r3379ql169aSfj4zLjo6WlOmTDFcBwAAAADWwGOqAGAhcXFxmjVrllJSUiRJjRo10ujRoxUaGmq4DAAAAACsgWEcAAAAAAAAUEI4Mw4AAAAAAAAoIZwZBwAWcevWLc2cOVNxcXFKT0/X9evXC7x+6dIlQ2UAAAAAYB3sjAMAi5g2bZreeecdhYaGKisrS2PHjlXv3r3l4OCgV1991XQeAAAAAFgCZ8YBgEXUr19fUVFR6tatmypXrqzk5OT8td27d2vp0qWmEwEAAACgzGNnHABYxPnz59W4cWNJUqVKlZSVlSVJ6t69u9avX28yDQAAAAAsg2EcAFhE3bp1de7cOUmSr6+vNm/eLEn68ssvVaFCBZNpAAAAAGAZDOMAwCJ69eqlbdu2SZJGjx6tyZMn68EHH9TgwYMVHh5uuA4AAAAArIEz4wDAonbv3q1du3bJ19dXTz/9tOkcAAAAALAEhnEAAAAAAABACSlnOgAAcPesXbv2tt/L7jgAAAAAuPvYGQcAZZiDQ8GjQW02m/7vf/ZtNpsk6datWyXWBQAAAABWxQUOAFCG2e32/I/NmzerWbNm+uyzz5SZmamsrCx99tlnCggI0MaNG02nAgAAAIAlsDMOACzi4Ycf1rx58/Too48WWN+5c6eGDRumlJQUQ2UAAAAAYB3sjAMAi0hNTZWbm1uhdTc3N50+fbrkgwAAAADAgtgZBwAW0b59ezk5Oenjjz+Wu7u7JOn8+fMaNGiQrl+/roSEBMOFAAAAAFD2MYwDAIs4efKkevXqpWPHjqlevXqSpPT0dDVo0EBr1qyRr6+v4UIAAAAAKPsYxgGAheTl5WnLli06evSo8vLy5Ofnp6CgoPwbVQEAAAAAdxfDOAAAAAAAAKCElDMdAAC4e6KiojRs2DA5OzsrKirqd98bGRlZQlUAAAAAYF3sjAOAMszb21t79+5VjRo15O3t/Zvvs9lsOnXqVAmWAQAAAIA1MYwDAAAAAAAASoiD6QAAAAAAAADAKhjGAYBF9OnTRzNmzCi0/tZbb+nPf/6zgSIAAAAAsB4eUwUAi6hVq5Y+//xzNW7cuMD6119/raCgIH333XeGygAAAADAOtgZBwAWcfXqVZUvX77QupOTky5fvmygCAAAAACsh2EcAFjEww8/rBUrVhRaX758ufz8/AwUAQAAAID1lDMdAAAoGZMnT1ZISIhSU1PVsWNHSdK2bdu0bNkyrVy50nAdAAAAAFgDZ8YBgIWsX79e06dPV3JyslxcXNSkSRNNnTpVjz/+uOk0AAAAALAEhnEAAAAAAABACeExVQCwmH379iklJUU2m01+fn7y9/c3nQQAAAAAlsEwDgAs4sKFC+rXr5927NihqlWrKi8vT1lZWQoMDNTy5ctVq1Yt04kAAAAAUOZxmyoAWMSoUaN0+fJlHT58WJcuXdKPP/6oQ4cO6fLly4qMjDSdBwAAAACWwJlxAGARbm5u2rp1q1q2bFlgfc+ePercubMyMzPNhAEAAACAhbAzDgAswm63y8nJqdC6k5OT7Ha7gSIAAAAAsB6GcQBgER07dtTo0aN19uzZ/LUzZ85ozJgx6tSpk8EyAAAAALAOHlMFAIvIyMhQjx49dOjQIXl4eMhmsyk9PV2NGzfWp59+qrp165pOBAAAAIAyj2EcAFjMli1bdPToUeXl5cnPz09BQUGmkwAAAADAMhjGAQAAAAAAACWknOkAAMDdExUVddvvjYyMvIslAAAAAACJnXEAUKZ5e3vf1vtsNptOnTp1l2sAAAAAAAzjAAAAAAAAgBLiYDoAAFCyrl+/rmPHjunmzZumUwAAAADAchjGAYBFZGdnKyIiQq6urvrTn/6k9PR0ST+fFTdjxgzDdQAAAABgDQzjAMAiXn75ZR08eFA7duyQs7Nz/npQUJBWrFhhsAwAAAAArIPbVAHAItasWaMVK1aodevWstls+et+fn5KTU01WAYAAAAA1sHOOACwiIsXL6p27dqF1q9du1ZgOAcAAAAAuHsYxgGARbRs2VLr16/P//yXAdwHH3ygNm3amMoCAAAAAEvhMVUAsIg333xTXbt21ZEjR3Tz5k3NmjVLhw8fVlJSkhISEkznAQAAAIAlsDMOAMq45ORkSVLbtm31xRdfKDs7W/Xr19fmzZt13333KSkpSc2bNzcbCQAAAAAWYcvLy8szHQEAuHscHBzk7++voUOHasCAAXJzczOdBAAAAACWxc44ACjjvvjiCwUEBGjSpElyd3fXoEGDtH37dtNZAAAAAGBJ7IwDAIvIyclRXFycFi1apJ07d8rLy0vh4eEKCwtT3bp1TecBAAAAgCUwjAMAC0pNTdWiRYv00Ucf6dy5cwoODtaGDRtMZwEAAABAmccwDgAs6urVq1qyZIleeeUVZWZm6tatW6aTAAAAAKDMK2c6AABQshISEhQdHa34+Hg5OjoqNDRUERERprMAAAAAwBLYGQcAFpCRkaGYmBjFxMQoLS1Nbdu2VUREhEJDQ1WxYkXTeQAAAABgGeyMA4AyLjg4WNu3b1etWrU0ePBghYeHq2HDhqazAAAAAMCSGMYBQBnn4uKi+Ph4de/eXY6OjqZzAAAAAMDSeEwVAAAAAAAAKCEOpgMAAAAAAAAAq2AYBwAAAAAAAJQQhnEAAAAAAABACWEYBwAAANxFO3bskM1mU2Zm5m3/M15eXnr33XfvWhMAADCHYRwAAAAs7dlnn5XNZtOIESMKvfbCCy/IZrPp2WefLfkwAABQJjGMAwAAgOV5eHho+fLlysnJyV/Lzc3VsmXLVK9ePYNlAACgrGEYBwAAAMsLCAhQvXr1tHr16vy11atXy8PDQ/7+/vlrP/30kyIjI1W7dm05Ozvr0Ucf1Zdfflnga23YsEENGjSQi4uLAgMDdfr06UI/365du9S+fXu5uLjIw8NDkZGRunbt2m/2paenq0ePHqpUqZKqVKmi0NBQfffdd8X/hQMAgBLHMA4AAACQNGTIEC1atCj/8+joaIWHhxd4z4QJExQfH6/Y2Fjt379fvr6+6tKliy5duiRJysjIUO/evfXkk08qOTlZQ4cO1aRJkwp8ja+//lpdunRR79699dVXX2nFihVKTEzUyJEjf7UrLy9PPXv21KVLl5SQkKAtW7YoNTVVffv2vcO/AwAAoCQwjAMAAAAkDRo0SImJiTp9+rS++eYbffHFF3rmmWfyX7927Zrmzp2rt956S0888YT8/Pz0wQcfyMXFRR9++KEkae7cufLx8dHMmTPVsGFDDRw4sNB5c2+99ZYGDBigl156SQ8++KDatm2rqKgoffTRR8rNzS3UtXXrVn311VdaunSpmjdvrkceeUSLFy9WQkJCoV15AADg3lfOdAAAAABwL6hZs6a6deum2NhY5eXlqVu3bqpZs2b+66mpqbpx44batWuXv+bk5KRWrVopJSVFkpSSkqLWrVvLZrPlv6dNmzYFfp59+/bp5MmTWrJkSf5aXl6e7Ha70tLS1KhRowLvT0lJkYeHhzw8PPLX/Pz8VLVqVaWkpKhly5Z35jcAAACUCIZxAAAAwL+Fh4fnPy76/vvvF3gtLy9PkgoM2n5Z/2Xtl/f8HrvdruHDhysyMrLQa792WcR/fv3bWQcAAPc2HlMFAAAA/q1r1666fv26rl+/ri5duhR4zdfXV+XLl1diYmL+2o0bN7R379783Wx+fn7avXt3gX/u/34eEBCgw4cPy9fXt9BH+fLlCzX5+fkpPT1dGRkZ+WtHjhxRVlZWoV10AADg3scwDgAAAPg3R0dHpaSkKCUlRY6OjgVeq1ixop5//nmNHz9eGzdu1JEjR/Tcc88pOztbERERkqQRI0YoNTVVY8eO1bFjx7R06VLFxMQU+DoTJ05UUlKSXnzxRSUnJ+vEiRNau3atRo0a9atNQUFBatKkiQYOHKj9+/drz549Gjx4sB5//HG1aNHirvw+AACAu4dhHAAAAPAfqlSpoipVqvzqazNmzFBISIgGDRqkgIAAnTx5Ups2bVK1atUk/fyYaXx8vNatW6emTZtq3rx5mj59eoGv0aRJEyUkJOjEiRN67LHH5O/vr8mTJ8vd3f1Xf06bzaY1a9aoWrVqat++vYKCguTj46MVK1bc2V84AAAoEba82znYAgAAAAAAAECxsTMOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIASwjAOAAAAAAAAKCEM4wAAAAAAAIAS8j9EDsGihM7A8AAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Tabla de correlaciones con filtro de umbral de correlación

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -61145,57 +24925,131 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -61205,44 +25059,90 @@ " \n", " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61251,107 +25151,117 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", - " \n", " \n", + " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61360,36 +25270,22 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61397,170 +25293,236 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -61570,30 +25532,20 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -61605,33 +25557,26 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61640,34 +25585,20 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -61677,98 +25608,197 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", - " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61780,33 +25810,19 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -61817,26 +25833,12 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61845,14 +25847,10 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -61864,16 +25862,13 @@ " \n", " \n", " \n", - " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61881,39 +25876,570 @@ " \n", " \n", " \n", + " \n", + " \n", + "
    ModeloDistancia de carrera requerida para despegueAltitud a la que se realiza el cruceroVelocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoVelocidad de pérdida limpia (KCAS)Área del alaRelación de aspecto del alaLongitud del fuselajeAncho del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)envergaduraCuerdapayloadduracion en VTOLCrucero KIASRTF (Including fuel & Batteries)Empty weightMaximum CrosswindRango de comunicaciónCapacidad combustibleConsumoPrecioDespeguePropulsión horizontalPropulsión verticalCantidad de motores propulsión verticalCantidad de motores propulsión horizontalMisión
    Modelo
    Distancia de carrera requerida para despegue1.0000.992nan0.976nan0.803nannan0.979nannan0.844nannannannannan0.921nannannan0.918nannannannan
    envergadura0.1230.1390.4560.0360.7710.763-0.7120.703nan0.6710.802-0.0550.5340.4400.559nan0.9921.0000.8340.759-0.2580.5010.9830.9440.770-0.4520.6480.780nan0.2970.0850.5220.8350.032nannan-0.1010.5120.200-0.132nannan
    Cuerdanan0.462-0.064-0.462nan0.961-0.7240.515nan0.7600.829-0.6190.4170.479nannannan0.8341.0000.713nan0.121nannan0.931nan0.539nannannannan0.7350.2770.690nannannan-0.6690.4620.669-0.669nannan
    Altitud a la que se realiza el cruceronannannanpayload0.229-0.1100.6020.1350.7050.804-0.7900.652nan0.8680.880-0.0060.3820.6840.640nan0.9760.7590.7131.000-0.0240.6600.9150.5590.759-0.1420.4640.723nan0.7110.8460.6710.897-0.008nannan0.0210.4410.136-0.087nannan
    duracion en VTOLnannan-0.694-0.875-0.181-0.3671.000-0.617nannan-0.401-0.508-0.594-0.0771.000nannan-0.258nan-0.0241.000-0.694-0.408-0.402-0.3151.000nannannannannannan-0.188-0.9040.188-0.188nannan
    Crucero KIAS0.389nan0.9730.0990.4280.628-0.4750.565nan0.9440.7080.5880.3370.6820.414nan
    Velocidad a la que se realiza el crucero (KTAS)0.8030.5010.1210.660-0.6941.0000.9150.7230.600-0.8550.3590.997nan0.5810.4611.0001.000-0.243nannan0.1430.6080.0650.063nannan
    RTF (dry weight)nannan0.9150.6770.9100.994nan0.9170.966nannan0.9991.0000.9400.762-0.408nannan0.983nan0.915-0.4080.9151.0001.0000.995-0.408nannannannan0.9730.790nan-0.854nannannannannannan0.408nannannannan
    Techo de servicio máximoRTF (Including fuel & Batteries)nannan0.7900.5790.9360.978nan0.934nannan0.9790.9900.6340.7260.434nannan0.944nan0.559-0.4020.7231.0001.0000.988-0.402nannannannannannan-0.875nan0.0970.428-0.0970.097nannan-0.961
    Empty weight0.2210.0880.474-0.0940.6770.959-0.8740.856nan-0.8190.9550.940-0.0300.3680.6610.412nan0.9790.7700.9310.759-0.3150.6000.9950.9881.000-0.3190.8190.530nan0.9890.509nannan0.031nannan0.1040.3850.1610.031nannan
    Velocidad de pérdida limpia (KCAS)nannannannannan0.753Maximum Crosswindnan0.038-0.855-0.961-0.181-0.338nan-0.718nan0.798nan-0.464-0.742-0.7150.2721.000nannan-0.452nan0.747-0.1421.000-0.855-0.408-0.402-0.3191.000nan0.731nannan0.931nannannannannannan-0.943nannannannan
    Área del alanannannannan0.753nan-0.7780.8350.9840.970Rango de comunicaciónnan-0.3250.480-0.118-0.8740.552-0.3410.681nan0.3230.5140.6580.8020.094-0.874nannan0.8250.7870.8540.6480.5390.464nan0.359nan0.9650.944nan0.819nan0.9741.0000.215nannannan-1.000-0.972nannannan-0.4300.6040.430-0.430nannan
    Relación de aspecto del alanannanWing Loadingnan-0.2150.346-0.9860.161-0.119nan0.263nan-0.778nan0.6280.4300.268-0.2150.161nan0.8440.780nan-0.7900.723nan0.997nan-0.730nan0.530nan-0.862-0.8260.2151.000nan-0.769nan-0.746nannan-0.970nan0.568nannannan0.572nannannannan
    Longitud del fuselajenannannannanPotencia específica (P/W)nan0.835nannan0.9380.806nannannannan0.719nannannannan0.9260.834nannan0.929nannannannannannan
    Ancho del fuselajenannan0.917nannan0.984nan0.938nan0.9860.833nan0.9400.711nannan0.868nan0.944nan0.954nannannannannan0.794nannannannan
    Peso máximo al despegue (MTOW)nannannannan0.7980.970-0.7900.8060.986nannanCapacidad combustible-0.018nan0.7170.365-0.7570.2240.9900.0000.929nan0.8110.7510.882nan0.7080.9790.9330.9760.9870.0560.7050.036nannan0.9760.7580.297nan0.711nan0.581nannan0.989nannannan
    Alcance de la aeronavenan1.0000.377nannan0.817nannan-0.080nan-0.0800.270nannan0.833
    Consumo-0.240nan0.4610.5150.5320.675-0.8160.036nan1.0000.7581.000-0.7320.9100.532nannan0.085nan0.846nan0.461nannan0.509nannan0.936nan-0.711nan0.8480.8370.3771.000nannan0.998nannan0.113nan-0.3750.375nannan
    Autonomía de la aeronavenannannannannannannanPotencia Wattsnan0.277-0.1150.653nan0.277-0.2770.686nannan0.5591.000-0.391-0.624nannannan0.5220.2770.671nan1.000nannannannan-1.000nannan-0.7150.802nan-0.732nan1.0001.000nannannan0.232nan-0.2320.232nannan
    Velocidad máxima (KIAS)nannanPotencia HPnan0.690-0.016-0.933nan0.690-0.6900.359nannan-0.7300.855nan0.9400.717-0.5770.970nannannan0.8350.6900.897nan1.000nannan0.718nannan0.726-0.972nannannan0.7270.910nan1.0001.000nannannan-0.694nan0.694-0.694nannan
    Velocidad de pérdida (KCAS)Precio-0.156nan-0.290-0.1710.1180.049-0.981-0.187nannan0.052-0.2680.0330.0640.121nan0.9210.032nan-0.008nan-0.243nannan0.031nan0.711nan0.568nan0.8170.998nannan1.000nannan-0.1380.217-0.1380.134nannan
    Tiempo de emergencia en vuelonannannannan0.934-0.961nannannannannannan
    envergaduranannannannan0.7470.825nan0.719nan0.811nannannannannannan0.775nannan0.9500.806nannannannannannan
    Cuerdanannannannan
    Distancia de aterrizajenan0.787-0.862nannan0.751nannannannannannan0.758nan0.730nan0.724nannan0.975nannannannannannan
    payloadnannannannan0.7310.854-0.826nan0.8680.882nannan0.718nan0.7750.758nannannannan0.784nannan0.7110.846nannannannan
    duracion en VTOLnannannan-0.875nannannannanDespegue0.735-0.1190.0810.192-0.2530.148-0.1250.118nan0.7940.0900.273-0.420-0.040-0.222nannan-0.101-0.6690.021-0.1880.143nan0.0970.104nan-0.430nannan-0.0800.1130.232-0.694-0.138nannan1.000-0.010-0.6390.610nannan
    Propulsión horizontal0.154-0.1090.5840.0680.2610.359-0.2780.594nannan0.4670.3920.4780.2150.211nan0.9180.5120.4620.441-0.9040.6080.4080.4280.385-0.9430.6040.572nannannannannan-0.9040.217nannan-0.0101.0000.118-0.083nannan
    Crucero KIASnannan0.973nanPropulsión vertical0.6710.1870.101-0.192-0.2530.0630.1250.065nan-0.5350.023-0.2730.3530.165-0.222nan-0.769nan0.9440.7080.2000.6690.1360.1880.065nan-0.0970.161nan0.430nannan-0.080-0.375-0.2320.694-0.138nan0.730nan-0.6390.1181.000-0.954nannan0.723
    Cantidad de motores propulsión vertical-0.598-0.159-0.0600.1910.3650.058-0.1750.014nan-0.8550.5740.0750.251-0.314-0.1280.381nannan-0.132-0.669-0.087-0.1880.063nan0.0970.031nan-0.430nannan0.2700.3750.232-0.6940.134nannan0.610-0.083-0.9541.000nannan
    RTF (Including fuel & Batteries)nanCantidad de motores propulsión horizontalnan0.790nan0.9310.965nan0.926nan0.9790.936nan0.726nan0.950nannannan0.723nan0.948nannannannannannan
    Empty weightnannannannannan0.944-0.7460.8340.9540.933nannannannan0.8060.7240.784nannan0.948nannan0.7850.980nannannannan
    Maximum Crosswindnannan-0.854-0.961nannannannannannan-0.711-0.715Misiónnan0.934nannannannan-0.855nannannannannannan-0.943nannannannan
    Rango de comunicaciónnannannannannannan0.802nan-0.961nannannannannannan0.785nannannannannannan
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de la Tabla

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ResumenCantidad
    0Total de valores1764.000
    1Valores numéricos973.000
    2Valores NaN791.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== Filtrando datos seleccionados ===\n", + "\n", + "=== Cálculo de correlaciones filtradas ===\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Tabla de Correlaciones Filtradas por parametros seleccionados (Para Heatmap)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Velocidad a la que se realiza el crucero (KTAS)1.0000.1050.454-0.3280.4550.5970.6330.4510.6450.1610.2080.456-0.0640.6020.474
    Techo de servicio máximo0.1051.000-0.030-0.0780.1360.1430.1200.031-0.0780.0260.0070.036-0.4620.135-0.094
    Área del ala0.454-0.0301.000-0.7480.8260.976-0.1350.2450.6660.4600.7270.7630.9610.8040.959
    Relación de aspecto del ala-0.328-0.078-0.7481.000-0.606-0.7950.257-0.418-0.596-0.726-0.970-0.712-0.724-0.790-0.874
    Longitud del fuselaje0.4550.1360.826-0.6061.0000.8050.1590.4010.3070.2390.5910.7030.5150.6520.856
    Peso máximo al despegue (MTOW)0.5970.1430.976-0.7950.8051.0000.0220.4200.6940.5230.7680.8020.8290.8800.940
    Alcance de la aeronave0.6330.120-0.1350.2570.1590.0221.0000.279-0.048-0.509-0.498-0.055-0.619-0.006-0.030
    Autonomía de la aeronave0.4510.0310.245-0.4180.4010.4200.2791.0000.327-0.0980.1600.5340.4170.3820.368
    Velocidad máxima (KIAS)0.645-0.0780.666-0.5960.3070.694-0.0480.3271.0000.5130.6040.4400.4790.6840.661
    Velocidad de pérdida (KCAS)0.1610.0260.460-0.7260.2390.523-0.509-0.0980.5131.0000.8170.559nan0.6400.412
    Velocidad de pérdida limpia (KCAS)0.2080.0070.727-0.9700.5910.768-0.4980.1600.6040.8171.0000.771nan0.7050.677
    envergadura0.4560.0360.763-0.7120.7030.802-0.0550.5340.4400.5590.7711.0000.8340.7590.770
    Cuerda-0.064-0.4620.961-0.7240.5150.829-0.6190.4170.479nannan0.8341.0000.7130.931
    payload0.6020.1350.804-0.7900.6520.880-0.0060.3820.6840.6400.7050.7590.7131.0000.759
    Empty weight0.474-0.0940.959-0.8740.8560.940-0.0300.3680.6610.4120.6770.7700.9310.7591.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Resumen de la Tabla

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ResumenCantidad
    0Total de valores225.000
    1Valores numéricos221.000
    2Valores NaN4.000
    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "

    Tabla de parametros seleccionados, filtrada por Correlaciones Significativas (Umbral >= 0.7)

    \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61922,24 +26448,8 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61948,7 +26458,6 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", @@ -61957,128 +26466,79 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -62092,13 +26552,11 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -62114,6 +26572,9 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -62126,79 +26587,116 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -62211,18 +26709,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad a la que se realiza el crucero (KTAS)** ===\n", - "\n", - "--- Imputación para aeronave: **Skyeye 3600** ---\n" - ] - }, { "data": { "text/html": [ @@ -62258,84 +26744,29 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Imputación no Exitosa

    Velocidad a la que se realiza el crucero (KTAS)Techo de servicio máximoÁrea del alaRelación de aspecto del alaLongitud del fuselajePeso máximo al despegue (MTOW)Alcance de la aeronaveAutonomía de la aeronaveVelocidad máxima (KIAS)Velocidad de pérdida (KCAS)Velocidad de pérdida limpia (KCAS)envergaduraCuerdapayloadEmpty weight
    Capacidad combustiblenannannan-0.819nan0.974-0.9700.929nan0.9760.848nan0.727Velocidad a la que se realiza el crucero (KTAS)nannan0.9750.711nannannan0.980nannannannan0.817nannannannan
    Consumonannannannannannannannannan0.7580.837-0.7320.910nannanTecho de servicio máximonan0.846nannannannannannan0.998nannannannan
    Precionannannannannannannannannannannannannannannannannannannannannannannan0.8170.998Área del alanannannan-0.7480.8260.976nannannannan0.7270.7630.9610.8040.959
    Despegue0.735nannannannannannannan0.794nannannannannannannannannannannannannannannannanRelación de aspecto del alanannan-0.748nannan-0.795nannannan-0.726-0.970-0.712-0.724-0.790-0.874
    Propulsión horizontalnannannannannannannannannannannannannannannannannan-0.904nannanLongitud del fuselajenan-0.943nan0.826nannan0.805nannannannannan0.703nannan0.856
    Propulsión verticalnannannannannannannannannanPeso máximo al despegue (MTOW)nannan0.976-0.7950.805nannannannannan0.7680.8020.8290.8800.940
    Alcance de la aeronavenannannannannannan-0.954nannan
    Cantidad de motores propulsión verticalnanAutonomía de la aeronavenannannannannannan
    Velocidad máxima (KIAS)nannannannannannan-0.954nannannan
    Cantidad de motores propulsión horizontalnannannannannannannannannannanVelocidad de pérdida (KCAS)nannannan-0.726nannannannannannan0.817nannannannan
    Velocidad de pérdida limpia (KCAS)nannan0.727-0.970nan0.768nannannan0.817nan0.771nan0.705nan
    Misiónenvergaduranannan0.763-0.7120.7030.802nannannannan0.771nan0.8340.7590.770
    Cuerdanannan0.961-0.724nan0.829nannannannannan0.834nan0.7130.931
    payloadnannan0.804-0.790nan0.880nannannannan0.7050.7590.713nan0.759
    Empty weightnannan0.959-0.8740.8560.940nannannannannan0.7700.9310.759nan
    \n", + "

    Resumen de la Tabla

    \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
    MensajeResumenCantidad
    0No se pudo imputar el parámetro 'Velocidad a la que se realiza el crucero (KTAS)' para la aeronave 'Skyeye 3600'.Total de valores225.000
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "=== Imputación para el parámetro: **Techo de servicio máximo** ===\n", - "\n", - "--- Imputación para aeronave: **Mantis** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", "
    Mensaje
    1Valores numéricos64.000
    0No se pudo imputar el parámetro 'Techo de servicio máximo' para la aeronave 'Mantis'.2Valores NaN161.000
    " @@ -62352,90 +26783,21 @@ "output_type": "stream", "text": [ "\n", - "=== Área del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Relación de aspecto del ala: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Longitud del fuselaje: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Peso máximo al despegue (MTOW): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Alcance de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Autonomía de la aeronave: No hay valores faltantes para imputar. ===\n", - "\n", - "=== Velocidad máxima (KIAS): No hay valores faltantes para imputar. ===\n", - "\n", - "=== Imputación para el parámetro: **Velocidad de pérdida (KCAS)** ===\n", + "=== Preparando datos para el heatmap ===\n", "\n", - "--- Imputación para aeronave: **Fulmar X** ---\n" + "=== Generando heatmap ===\n" ] }, { "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Fulmar X'.
    " - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM8AAAR0CAYAAABmGjF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgU2/8H8PfS3d0lpSAo2CIGgih2YyHqvXYXdrdiYyBhYGOLgaIoBmIrdqBS0t3z+wNZWHYXFgHxe3+f1314nuvsmdnP2TNnZvfMCRbDMAwIIYQQQgghhBBCCCFchBo6AEIIIYQQQgghhBBC/lbUeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIYQQQgghhBBCCB/UeEYIIeSP8vf3B4vFwqNHj3i+3qNHDxgYGNRrDBEREVi6dCnS0tLq9X0awtKlS8Fiser8uM+fP4eHhwcMDQ0hISEBGRkZNGvWDOvXr0dKSkqdv19thIWFgcViISwsrF6O/+XLF7BYLPj7+9fL8RvaqFGj6qwO2traQltbG8XFxXzTtG3bFioqKigoKKj1+9Wm7Ku7NlVUl5+RoBiGwdGjR9G+fXuoqalBQkICOjo6cHZ2xv79+3/rmI6OjnB0dKzbQGuovq5ZdY3FYmHp0qV//H3Dw8MhLi6Or1+/srcZGBigR48ePNM/evSozq9PNakbdeF/5Zwok5WVhWnTpkFLSwsSEhKwsbHB0aNHBdrX0dERLBaL7198fDwAoLCwEMbGxvD29q7HnBBCqkKNZ4QQQv7fiYiIwLJly/6TjWf1Yd++fWjevDkiIyMxe/ZshISEIDg4GAMGDICPjw88PT0bOsQ/SlNTE/fu3UP37t0bOpS/nqenJ2JjY3HlyhWer7979w4REREYPnw4xMTEav1+zZo1w71799CsWbNaH+tvM3/+fAwZMgQWFhbYv38/Ll++jJUrV0JdXR1nz55t6PB+25gxY3Dv3r2GDuOvxDAMpk2bhrFjx0JfX7+hwyF89O3bFwEBAViyZAkuX74Me3t7DBkyBEeOHKl23127duHevXscf6GhoRAVFUWrVq2goaEBABAVFcXixYuxfPlyJCcn13eWCCE8iDR0AIQQQgj5e927dw/jx4+Hk5MTzpw5A3FxcfZrTk5OmDlzJkJCQurkvXJyciAlJcW1vbi4GEVFRRzv3ZDExcXRqlWrhg7jf4K7uztmz56NAwcOwNXVlev1AwcOAABGjx5dq/cpLCwEi8WCnJzcf7JscnNz4e3tjREjRmDv3r0cr40aNQolJSUNFFnt6ejoQEdHp6HD+CuFhITg8ePHAjXC/M34XdtrKy4uDtLS0pCTk6vzYwvq0qVLuHbtGo4cOYIhQ4YAADp27IivX79i9uzZGDRoEISFhfnub2lpybUtICAAhYWFGDNmDMf2IUOGYMaMGdizZw+8vLzqNiOEkGpRzzNCCCF/PYZhsGvXLtjY2EBSUhKKioro378/Pn36xJHu2rVr6NWrF3R0dCAhIQETExP8888/SEpKYqdZunQpZs+eDQAwNDRkD40oG+ZVNhzmwoULsLW1haSkJCwsLHDhwgUApcNXLCwsIC0tjRYtWnANY3n06BEGDx4MAwMDSEpKwsDAAEOGDOEYclN2HBaLhWvXrsHDwwNKSkqQlpaGm5sbV774uXjxImxsbCAuLg5DQ0Ns3LixVp8fL6tXrwaLxcLevXt5Nl6JiYmhZ8+e7H+XlJRg/fr1MDc3h7i4ONTU1DBixAh8//6dYz9HR0c0adIEt2/fRps2bSAlJYXRo0ezh0SuX78eK1euhKGhIcTFxXHz5k0ApZ9vz549oaSkBAkJCdja2uL48ePV5kPQcgGAHz9+YNy4cdDV1YWYmBi0tLTQv39/JCQkAOA/bPPOnTvo3LkzZGVlISUlhTZt2uDixYscacrK/ebNmxg/fjxUVFSgrKyMvn37IjY2liuWY8eOoXXr1pCWloaMjAycnZ3x5MkTjjSfPn3C4MGDoaWlBXFxcairq6Nz5854+vRptZ+Lv78/zMzMIC4uDgsLCwQGBvJMV1BQgJUrV7LLVVVVFR4eHvj582eVx1dUVESfPn1w/vx5rt4SxcXFOHjwIOzt7WFlZYUPHz7Aw8MDjRo1gpSUFLS1teHm5oYXL15w7Fc2NPPgwYOYOXMmtLW1IS4ujg8fPvActlmTsgeA1NTU36qTgtazJ0+eoEePHlBTU4O4uDi0tLTQvXt3rjpSUXZ2NvLz86GpqcnzdSEhzq/0v1teNd33yJEjaN26NWRkZCAjIwMbGxv4+vpypAkJCUHnzp0hLy8PKSkpWFhYYM2aNezXeQ3Rq+l1JDIyEu3bt4eUlBSMjIywdu1ajgbFvLw8zJw5EzY2NpCXl4eSkhJat27Ns8deRkYGxo4dC2VlZcjIyMDFxQXv3r3jSifo+VpSUoKVK1fCzMwMkpKSUFBQgLW1NbZu3VpFKZTavXs37O3tYWZmVm3aqowaNQoyMjJ48+YNnJ2dIS0tDU1NTaxduxYAcP/+fbRr1w7S0tIwNTVFQEAAz+MIUjf4XduB0utZ165doampyb63zps3D9nZ2b+VrytXrkBdXR39+/fH6dOnkZeX91vHqY3g4GDIyMhgwIABHNs9PDwQGxuLBw8e1PiYvr6+kJGRwaBBgzi2i4mJYdCgQdi7dy8YhqlV3ISQmqPGM0IIIQ2irDdR5T9eXwj/+ecfTJs2DV26dMGZM2ewa9cuvHr1Cm3atGE3aADAx48f0bp1a+zevRtXr17F4sWL8eDBA7Rr1w6FhYUASocITZ48GQBw+vRp9jCJisO8nj17hvnz52Pu3Lk4ffo05OXl0bdvXyxZsgT79+/H6tWrcfjwYaSnp6NHjx7Izc1l7/vlyxeYmZnB29sbV65cwbp16xAXFwd7e3uORrwynp6eEBISwpEjR+Dt7Y2HDx/C0dGx2iGloaGh6NWrF2RlZXH06FFs2LABx48fh5+f329/frzK6MaNG2jevDl0dXWrjKfM+PHjMXfuXDg5OeHcuXNYsWIFQkJC0KZNG678x8XFYdiwYRg6dCguXbqECRMmsF/btm0bbty4gY0bN+Ly5cswNzfHzZs30bZtW6SlpcHHxwdnz56FjY0NBg0aVO38PoKWy48fP2Bvb4/g4GDMmDEDly9fhre3N+Tl5ZGamsr3+Ldu3UKnTp2Qnp4OX19fBAUFQVZWFm5ubjh27BhX+jFjxkBUVBRHjhzB+vXrERYWhmHDhnGkWb16NYYMGQJLS0scP34cBw8eRGZmJtq3b4/Xr1+z07m6uiIqKgrr16/HtWvXsHv3btja2lZ7Dvn7+8PDwwMWFhY4deoUFi5ciBUrVuDGjRsc6UpKStCrVy+sXbsWQ4cOxcWLF7F27Vpcu3YNjo6OHOc/L56enigoKMChQ4c4tl+5cgWxsbHsYb+xsbFQVlbG2rVrERISgp07d0JERAQtW7bE27dvuY47f/58xMTEwMfHB+fPn4eamhrP9/9TdVKQepadnQ0nJyckJCRg586duHbtGry9vaGnp4fMzEy+x1ZRUYGJiQl27dqFzZs3482bN3x/PNemvGqy7+LFi+Hu7g4tLS34+/sjODgYI0eO5GiU9PX1haurK0pKStjlNGXKlCobCoGaXUfi4+Ph7u6OYcOG4dy5c+jWrRvmz5/Pcb7l5+cjJSUFs2bNwpkzZxAUFIR27dqhb9++HA3GDMOgd+/e7IbZ4OBgtGrVCt26deOKUdDzdf369Vi6dCmGDBmCixcv4tixY/D09Kz2fCooKMD169fRsWPHKtMJqrCwEH379kX37t1x9uxZ9ufk5eWFkSNHYvTo0QgODoaZmRlGjRqFqKgormMIWjf4Xdvfv38PV1dX+Pr6IiQkBNOmTcPx48fh5ub2W3nq06cPtm3bhtTUVAwcOBDq6uoYNWoUrly5UuU8iwzD8Pz+weuvOi9fvoSFhQVERDgHdFlbW7Nfr4n3798jPDwcgwcPhoyMDNfrjo6O+Pr1a42PSwipAwwhhBDyB/n5+TEAqvzT19dnp7937x4DgNm0aRPHcb59+8ZISkoyc+bM4fk+JSUlTGFhIfP161cGAHP27Fn2axs2bGAAMJ8/f+baT19fn5GUlGS+f//O3vb06VMGAKOpqclkZ2ezt585c4YBwJw7d45vfouKipisrCxGWlqa2bp1K9fn0KdPH470d+/eZQAwK1eu5HtMhmGYli1bMlpaWkxubi57W0ZGBqOkpMRUvL3/7ufHMAwTHx/PAGAGDx5cZSxloqOjGQDMhAkTOLY/ePCAAcB4eXmxt3Xo0IEBwISGhnKk/fz5MwOAMTY2ZgoKCjheMzc3Z2xtbZnCwkKO7T169GA0NTWZ4uJihmEY5ubNmwwA5ubNm3xj5Vcuo0ePZkRFRZnXr1/z3bcsRj8/P/a2Vq1aMWpqakxmZibHezRp0oTR0dFhSkpKGIYpL/fKn9H69esZAExcXBzDMAwTExPDiIiIMJMnT+ZIl5mZyWhoaDADBw5kGIZhkpKSGACMt7c333h5KS4uZrS0tJhmzZqxY2MYhvny5QsjKirKUQeDgoIYAMypU6c4jhEZGckAYHbt2lXle5WUlDCGhoaMtbU1x/Z+/foxUlJSTHp6Os/9ioqKmIKCAqZRo0bM9OnT2dvLytfBwYFrn9qUfU3q5MiRI3/rOvXo0SMGAHPmzBm+8fHz8OFDRk9Pj32dlJWVZXr06MEEBgZylGFNyqtDhw5Mhw4darzvp0+fGGFhYcbd3Z1vvJmZmYycnBzTrl07jvgqW7JkCcc163euIw8ePOBIa2lpyTg7O/N9z6KiIqawsJDx9PRkbG1t2dsvX77MAOA4LxiGYVatWsUAYJYsWVLlMXmdrz169GBsbGz47sdPWX6PHj3K9Zq+vj7TvXt3nvuVlVXF69PIkSO5yrWwsJBRVVVlADCPHz9mb09OTmaEhYWZGTNmsLfVpG7wu7ZXVnaPvnXrFgOAefbsGfu1yueEIOLj45nt27czbdu2ZVgsFqOmpsZMnDiRuXPnDtf5J8j3kLK/6jRq1IjnuRYbG8sAYFavXl2jfMydO5cBwNy7d4/n6+/fv2cAMLt3767RcQkhtUc9zwghhDSIwMBAREZGcv21a9eOI92FCxfAYrEwbNgwjqfBGhoaaNq0KcfwrMTERPz777/Q1dWFiIgIREVF2ZMsR0dHCxybjY0NtLW12f+2sLAAUPrEt+K8LWXbK/a0yMrKwty5c2FiYgIRERGIiIhARkYG2dnZPGNwd3fn+HebNm2gr6/PHqbIS3Z2NiIjI9G3b19ISEiwt5f1dKqoJp9fbZXFPGrUKI7tLVq0gIWFBUJDQzm2KyoqolOnTjyP1bNnT4iKirL//eHDB7x584b9eVXMi6urK+Li4nj2TiojaLlcvnwZHTt2ZJetILKzs/HgwQP079+fo6eAsLAwhg8fju/fv3PFVnGoK1DeS6HsXLpy5QqKioowYsQIjrxKSEigQ4cO7HJTUlKCsbExNmzYgM2bN+PJkycCzX/19u1bxMbGYujQoRxD5vT19dGmTRuOtBcuXICCggLc3Nw4YrGxsYGGhka15xCLxYKHhweeP3/O7s2SnJyM8+fPo1+/fuz5ioqKirB69WpYWlpCTEwMIiIiEBMTw/v373nWnX79+lWbT+DP1ElB65mJiQkUFRUxd+5c+Pj4cPQgrI69vT0+fPiAkJAQeHl5oXXr1ggNDcWIESPQs2dPdk+02pSXoPteu3YNxcXFmDhxIt9jRUREICMjAxMmTKjRyok1vY5oaGigRYsWHNusra25huWeOHECbdu2hYyMDPv+4Ovry3EOlL135XNg6NChXHEKer62aNECz549w4QJE3DlyhVkZGQI9DmUDePm16OyplgsFse8gyIiIjAxMYGmpiZsbW3Z25WUlKCmpsZzWLOgdYPftf3Tp08YOnQoNDQ0ICwsDFFRUXTo0AFAze7RvKirq2PSpEm4c+cOvn79ijlz5rB7nhsaGnIMDXVzc+P5/YPXnyCqOr9rcu4XFRUhICAAjRs35jt3Y9n58OPHD4GPSwipG7RgACGEkAZhYWEBOzs7ru3y8vL49u0b+98JCQlgGAbq6uo8j2NkZASgdLhR165dERsbi0WLFsHKygrS0tIoKSlBq1atqh1aVpGSkhLHv8tWAeS3veI8K0OHDkVoaCgWLVoEe3t7yMnJsX+08IqhbCWtytuqWk0rNTUVJSUlfPetSNDPjxcVFRVISUnh8+fPfNNUVBYzr3mZtLS0uH6M8Zu/iddrZcPeZs2ahVmzZvHch9cQvDKClsvPnz9rPHl5amoqGIbhm28AXOWprKzM8e+y+eTKYinLr729Pc/3LJvjisViITQ0FMuXL8f69esxc+ZMKCkpwd3dHatWrYKsrCzP/cvi4XcOffnyhf3vhIQEpKWl8V0Ns6rPvYyHhweWLl0KPz8/NG/eHIcPH0ZBQQHHSq0zZszAzp07MXfuXHTo0AGKiooQEhLCmDFjeNadqs6fiv5EnRS0nsnLy+PWrVtYtWoVvLy8kJqaCk1NTYwdOxYLFy7kaDDmRVRUFM7OznB2dgZQWo79+/fHhQsXcPnyZbi6utaqvATdt2z+s6rqiiBpeKnpdaRyXQJK61PFsj19+jQGDhyIAQMGYPbs2dDQ0ICIiAh2797NXrSi7L1FRES4jsnrnBD0fJ0/fz6kpaVx6NAh+Pj4QFhYGA4ODli3bh3Pe2CZsmNUfEBSRkREhO+wxLKhhpXPJSkpKa5jiYmJcd3Xyrbzmj9M0LrBq+yysrLQvn17SEhIYOXKlTA1NYWUlBS+ffuGvn371ugeXZ309HSkpaUhPT0dANhlU0ZJSQny8vJ18l7Kyso8rw0pKSns9xLUpUuXEB8fj7lz5/JNU1aGdfl5EUIEQ41nhBBC/moqKipgsVgIDw/nOWF92baXL1/i2bNn8Pf3x8iRI9mvf/jw4Y/Fmp6ejgsXLmDJkiWYN28ee3vZfDu8xMfH89xmYmLC930UFRXBYrH47luRoJ8fL8LCwujcuTMuX76M79+/V/sjuOwHZ1xcHFfa2NhYqKiocGyrydP6sn3nz5+Pvn378tyH36TaNSkXVVXVaudjqqzsh1lcXBzXa2W9RyrnvTpl6U+ePMnuPcmPvr4+e5L2d+/e4fjx41i6dCkKCgrg4+PDc5+yshL0HFJWVua7qiq/BrqKdHR00LVrVxw5cgSbNm2Cn58fTExM4ODgwE5z6NAhjBgxAqtXr+bYNykpCQoKClzHFKRHx5+qkzWpZ1ZWVjh69CgYhsHz58/h7++P5cuXQ1JSkiNGQSgrK2PatGkICwvDy5cv4erqWqvyEnRfVVVVAMD379/5zodYMU1N1PQ6IohDhw7B0NAQx44d4zhv8vPzud67qKgIycnJHA1ovM4JQc9XERERzJgxAzNmzEBaWhquX78OLy8vODs749u3b3xXoSzLJ6/zVF1dnW/Po7Lt/Bpya0PQusGrbt64cQOxsbEICwtj9zYDUO3cb4J69+4djh07hqNHj+L169cwMTHBkCFDMHToUJibm3OkDQgIgIeHh0DHZaqZmN/KygpBQUEoKirimPesbOGIJk2aCJwHX19fiImJYfjw4XzTlJ0Pv1MPCCG1Q8M2CSGE/NV69OgBhmHw48cP2NnZcf1ZWVkBKP+yXvmH6549e7iOWbmXT11hsVhgGIYrhv379/PtJXD48GGOf0dERODr169wdHTk+z5lK31WXl0sMzMT58+f50gr6OfHz/z588EwDMaOHYuCggKu1wsLC9nvWTZMp/LE8JGRkYiOjkbnzp2rfK+qmJmZoVGjRnj27BnPfNjZ2fFtFKhJuXTr1g03b96scghoZdLS0mjZsiVOnz7NcU6VlJTg0KFD0NHRgampaQ1yCzg7O0NERAQfP37km19eTE1NsXDhQlhZWeHx48d8j29mZgZNTU0EBQVx/Dj8+vUrIiIiONL26NEDycnJKC4u5hmHoCsBenp6IjU1FYsXL8bTp0/h4eHB8SObxWJxldHFixdrNTzpT9XJ36lnLBYLTZs2xZYtW6CgoFBleRUWFvLt+VY23K2sl2NtykvQfbt27QphYWHs3r2b77HatGkDeXl5+Pj41GhlwPq4jrBYLIiJiXGcb/Hx8VyrbZZNzl/5HDhy5AjPY9b0fFVQUED//v0xceJEpKSkcPTwrKxs6PjHjx+5XuvSpQtevnzJc9jv8ePHISMjg5YtW/I99u/6nbpRpib3aEElJiZi3bp1sLW1hZmZGXx8fNC1a1c8fPgQ79+/x/Lly7kazoC6HbbZp08fZGVl4dSpUxzbAwICoKWlJXA5xMfH49KlS+jduzfP3pRlylY3tbS0FOi4hJC6Qz3PCCGE/NXatm2LcePGwcPDA48ePYKDgwOkpaURFxeHO3fuwMrKCuPHj4e5uTmMjY0xb948MAwDJSUlnD9/HteuXeM6ZtkP2a1bt2LkyJEQFRWFmZmZQD1oqiInJwcHBwds2LABKioqMDAwwK1bt+Dr68uz5wwAPHr0CGPGjMGAAQPw7ds3LFiwANra2hwrT/KyYsUKuLi4wMnJCTNnzkRxcTHWrVsHaWlpjp4Kgn5+/JStXjphwgQ0b94c48ePR+PGjVFYWIgnT55g7969aNKkCdzc3GBmZoZx48Zh+/btEBISQrdu3fDlyxcsWrQIurq6mD59+m99rmX27NmDbt26wdnZGaNGjYK2tjZSUlIQHR2Nx48f48SJEzz3q0m5LF++HJcvX4aDgwO8vLxgZWWFtLQ0hISEYMaMGTx/iAHAmjVr4OTkhI4dO2LWrFkQExPDrl278PLlSwQFBdVo3hsAMDAwwPLly7FgwQJ8+vQJLi4uUFRUREJCAh4+fAhpaWksW7YMz58/x6RJkzBgwAA0atQIYmJiuHHjBp4/f15lLyYhISGsWLECY8aMQZ8+fTB27FikpaVh6dKlXEOzBg8ejMOHD8PV1RVTp05FixYtICoqiu/fv+PmzZvo1asX+vTpU22eevbsCRUVFWzYsAHCwsIcPUSB0oYbf39/mJubw9raGlFRUdiwYUONh/1V9KfqpKD17MKFC9i1axd69+4NIyMjMAyD06dPIy0tDU5OTnyPn56eDgMDAwwYMABdunSBrq4usrKyEBYWhq1bt8LCwoLdI7M25SXovgYGBvDy8sKKFSuQm5uLIUOGQF5eHq9fv0ZSUhKWLVsGGRkZbNq0CWPGjEGXLl0wduxYqKur48OHD3j27Bl27NjBM4b6uI706NEDp0+fxoQJE9C/f398+/YNK1asgKamJt6/f89O17VrVzg4OGDOnDnIzs6GnZ0d7t69i4MHD/I8piDnq5ubG5o0aQI7Ozuoqqri69ev8Pb2hr6+Pho1asQ3Zh0dHRgZGeH+/fuYMmUKx2tTp05FYGAgHB0d2dep1NRUHDt2DCdPnsTmzZtrfT/j5XfvV0BpY6qioiL+/fdfLFmyBKKiojh8+DCePXv22/FcunQJa9euRb9+/bBx40Z07NiRY3gmP8rKylU2UNVEt27d4OTkhPHjxyMjIwMmJiYICgpCSEgIDh06BGFhYXZaT09PBAQE4OPHj1w9igMCAlBUVIQxY8ZU+X73799nD/0lhPxhf3qFAkIIIf+/la1yFRkZyfP17t27c6xiV+bAgQNMy5YtGWlpaUZSUpIxNjZmRowYwTx69Iid5vXr14yTkxMjKyvLKCoqMgMGDGBiYmJ4rpI2f/58RktLixESEuJYnY/fKmYAmIkTJ3JsK1t1ccOGDext379/Z/r168coKioysrKyjIuLC/Py5UtGX1+fGTlyJNfncPXqVWb48OGMgoICIykpybi6ujLv37+v5lMsde7cOcba2poRExNj9PT0mLVr1/JdpUyQz68qT58+ZUaOHMno6ekxYmJijLS0NGNra8ssXryYSUxMZKcrLi5m1q1bx5iamjKioqKMiooKM2zYMObbt28cx+vQoQPTuHFjrvfh9ZlW9OzZM2bgwIGMmpoaIyoqymhoaDCdOnVifHx82Gl4rbgoaLkwTOkKiaNHj2Y0NDQYUVFRRktLixk4cCCTkJDAEWPF1ewYhmHCw8OZTp06sT/jVq1aMefPn+dIw+/857dK5JkzZ5iOHTsycnJyjLi4OKOvr8/079+fuX79OsMwDJOQkMCMGjWKMTc3Z6SlpRkZGRnG2tqa2bJlC1NUVMTzM6xo//79TKNGjRgxMTHG1NSUOXDgANdKkgxTujLfxo0bmaZNmzISEhKMjIwMY25uzvzzzz8Cn68MwzDTp09nADCurq5cr6WmpjKenp6MmpoaIyUlxbRr144JDw/nWhGy7LM6ceIE1zFqU/Y1qZO8PiOGqb6evXnzhhkyZAhjbGzMSEpKMvLy8kyLFi0Yf3//Kj+3/Px8ZuPGjUy3bt0YPT09RlxcnJGQkGAsLCyYOXPmMMnJyRzpBS2vyp9tTfZlGIYJDAxk7O3t2elsbW256sWlS5eYDh06MNLS0oyUlBRjaWnJrFu3jv06r2tWba8jvMpn7dq1jIGBASMuLs5YWFgw+/bt4/neaWlpzOjRoxkFBQVGSkqKcXJyYt68ecN1HxH0fN20aRPTpk0bRkVFhX2t9vT0ZL58+cIVd2WLFi1iFBUVmby8PK7X4uPjmfHjxzN6enqMiIgIIysry7Rr145nvRg5ciQjLS3NtZ3f51f5PliTusHvmAzDMBEREUzr1q0ZKSkpRlVVlRkzZgzz+PFjruupoKttJiUlMfn5+dWmq2+ZmZnMlClTGA0NDUZMTIyxtrZmgoKCuNKVrXrKa6VvU1NTxsDAoMqVaRmGYdq3b8+4ubnVVeiEkBpgMUwN+lETQgghpE74+/vDw8MDkZGRVU4aTQgh5P+n2NhYGBoaIjAwEIMGDWrocEgD+/jxIxo1aoQrV65U2VOVEFI/aM4zQgghhBBCCPnLaGlpYdq0aVi1ahVKSkoaOhzSwFauXInOnTtTwxkhDYTmPCOEEEIIIYSQv9DChQshJSWFHz9+8F3ZlPz3FRUVwdjYGPPnz2/oUAj5f4uGbRJCCCGEEEIIIYQQwgcN2ySEEEIIIYQQQgghde727dtwc3ODlpYWWCwWzpw5U+0+t27dQvPmzSEhIQEjIyP4+PhwpTl16hQsLS0hLi4OS0tLBAcH10P05ajxjBBCCCGEEEIIIYTUuezsbDRt2hQ7duwQKP3nz5/h6uqK9u3b48mTJ/Dy8sKUKVNw6tQpdpp79+5h0KBBGD58OJ49e4bhw4dj4MCBePDgQX1lg4ZtEkIIIYQQQgghhJD6xWKxEBwcjN69e/NNM3fuXJw7dw7R0dHsbf/++y+ePXuGe/fuAQAGDRqEjIwMXL58mZ3GxcUFioqKCAoKqpfYqecZIYQQQgghhBBCCKlWfn4+MjIyOP7y8/Pr7Pj37t1D165dObY5Ozvj0aNHKCwsrDJNREREncVRGa22SQghhBBCCCGEEPIXabvz34YOgSennxpYtmwZx7YlS5Zg6dKldXL8+Ph4qKurc2xTV1dHUVERkpKSoKmpyTdNfHx8ncTACzWeEUJIHfpbb3I1cXeiD94nxjR0GLXWSE0P+++fa+gwamVMq57IuHqjocOoNbmunf4TZbH82oGGDqPWFjuNxqKQvQ0dRq2tcBkH3wfnGzqMWvFs6QavS9wTIP+vWe36L579eNfQYdRKU21TPPjysqHDqLWWBk3+56+1QOn1NjOu/n4A/wmymhpYdtW3ocOotSVdPbHn3pmGDqNW/mndu6FD+M+ZP38+ZsyYwbFNXFy8Tt+DxWJx/LtstrGK23mlqbytLlHjGSGEEEIIIYQQQgiplri4eJ03llWkoaHB1YMsMTERIiIiUFZWrjJN5d5odYnmPCOEEEIIIYQQQgj5i7D+0v/qW+vWrXHt2jWObVevXoWdnR1ERUWrTNOmTZt6i4t6nhFCCCGEEEIIIYSQOpeVlYUPHz6w//3582c8ffoUSkpK0NPTw/z58/Hjxw8EBgYCKF1Zc8eOHZgxYwbGjh2Le/fuwdfXl2MVzalTp8LBwQHr1q1Dr169cPbsWVy/fh137typt3xQzzNCCCGEEEIIIYQQUucePXoEW1tb2NraAgBmzJgBW1tbLF68GAAQFxeHmJjy+ZYNDQ1x6dIlhIWFwcbGBitWrMC2bdvQr18/dpo2bdrg6NGj8PPzg7W1Nfz9/XHs2DG0bNmy3vJBPc8IIYQQQgghhBBC/iJC9Tj5/Z/k6OjInvCfF39/f65tHTp0wOPHj6s8bv/+/dG/f//ahicw6nlGCCGEEEIIIYQQQggf1HhGCCGEEEIIIYQQQggfNGyTEEIIIYQQQggh5C/C+o8M2/yvoJ5nhBBCCCGEEEIIIYTwQY1nhBBCCCGEEEIIIYTwQcM2CSGEEEIIIYQQQv4i/5XVNv8rqOcZIYQQQgghhBBCCCF8UOMZIYQQQgghhBBCCCF80LBNQgghhBBCCCGEkL8ICzRs829CPc8IIYQQQgghhBBCCOGDGs8IIYQQQgghhBBCCOGDhm0SQgghhBBCCCGE/EVYtNrmX+WP9zwzMDCAt7f3Hz0ei8XCmTNnavU+S5cuhY2NTa2OUVlYWBhYLBbS0tLq9LiEU+XP2d/fHwoKCg0a06hRo9C7d+8GjeFvkJycDDU1NXz58qWhQ+GwY8cO9OzZs6HDIIQQQgghhBDyFxC455mbmxtyc3Nx/fp1rtfu3buHNm3aICoqCs2aNavTAKsTGRkJaWnpP/qe5H/boEGD4Orq2tBhEABr1qyBm5sbDAwMAABfvnyBoaEhnjx5wm6szszMhJubG+Lj4/H27dsqj/f582cYGBggIiIC7du3h5OTE0JCQrjSnTp1CuvXr8ebN29QUlICPT09uLi4YNOmTQCAsWPHYtWqVbhz5w7atWtXp3n+HU01TTDUtivM1fSgIq2AeZd2I/zzs4YOq0oXg8/hdNAJpCQnQ8/AAGOnjEeTplY806YkJcN35x58ePsesd9/wK1/b4ybMuEPRww8CY1A5KUwZKVnQkVLHZ3ce0LHzKja/b6/+4yja3ygoqOOUStmsLe/DI/E5f3HudJP37caImKidRp7RQzDYN/liwi+eweZuTlorG+AOQMHw1hTi+8+N54+gf/VEHxL+omi4mLoqqphWKcucG3Rkp3mZPgtnLoTjriUZACAkYYmPF1c0bZxkzrPw3+lLCp7d/sxXoc+RG56FhQ0VdC8X2eomejyTV9cWIQXlyPwOfIV8jKzIaUgiybOrWHc2vqPxdxC1xLtDK0hIy6FxKxUXH5zD19T4/mmF2YJoaNJczTVMoGMuBQy8rJx6+MTPP5Rev22VDeAg5EtlKTkIMwSQnJOOu5+eYFnse/rNR9Prt/Fw7JzSlsdndx7QVfAcypo9W6o6mhg1Mryc+pFeCQu7zvGlX7G/jX1dk611GuM9kZNIfurLC6+vosvVZWFkBA6mdjBRrsRZMWkkJ6XhbCPjxH1vbQsmmmboX/Tjlz7LQ7Zh6KS4nrJAwBcOXsR546dRlpyKnQM9DBq4lhYWDfmmTY1OQWBu33x6d1HxP+IRbc+bhg1aSxXuuysLAT5HsTD8HvIzsyCmqY6hv/riWat7OotH9fPh+DSibNIT0mFtr4u3P/1gJmVJc+0kXfu48aFK4j59AWFhYXQ1tdFn2EDYW1ny07z/UsMTgcexZcPn5CU8BND//GAS98e9RY/UPfXWgDIy85F+KnLeP/oJfJyciGvooSOQ3rAqKlFncXNMAz2+vsj+MJ5ZGZmorGFJeZOmwZjQ8Mq9wu9dQs+B3zxPTYWOlpamDBmDDq2d+BIk/jzJ7bv2YOIhw+Ql58PfR1dLJozBxZmZlzHW7VpI4LPn8eMiZMwdMCAOstfmXe3nyA69CFyM7Igr6mC5n07VXvPeBkSgc+Rr9n3jMZdW/3Re8bT0Ht4dPkWstMyoaytDsehbtAxq7pcAODH+y84vmYPVLTVMXzFNPb242v24PvbT1zpDa3N0WeGR12GTki1BG488/T0RN++ffH161fo6+tzvHbgwAHY2Nj88YYzAFBVVf3j70n+jIKCAoiJidX5cSUlJSEpKVnnx21I9fVZCaKwsBCiojX/oZCbmwtfX19cunSJb5qfP3+iW7duAIDr169DRKT8kmVvb49x48Zh7NjyL9Fl14MDBw5g8uTJ2L9/P2JiYqCnp8dOc/36dQwePBirV69Gz549wWKx8Pr1a4SGhrLTiIuLY+jQodi+fftf0XgmKSqOD8nfcelNBFZ3+7ehw6nW7dAw7Nu2G+NnTIalVWNcPncRS2d7YddBX6ipq3GlLywshJyCPAaOGIqzx081QMTAmwdPcePwOTiN6ANtUwM8u3kfJzf5YvSaWZBTVuS7X35OLi7tPQp9SxNkZ2RyvS4mKQHPtbM5ttV3Y03g9as4cjMUi91HQE9NDQeuXMakHdtwctFSSEtI8NxHXloaHs7dYKCuDlFhEYS/eoHlhwOhKCuL1halPwbVFBQxqWdv6PyqZxcf3MesfT44NNeryoa5mvovlUVFX6KiEXUqFPaDukLVSBvv7zzFzV0n0GPhGEgryfHc586Bs8jNzEYr926QVVVEXmY2mJKSPxZzEw0jdLNojQuv7yAmNQF2uhYY3rwbtt85jvS8bJ77DLLpAhlxSQS/vI2UnHRIi0lCiFU+0CGnMB+3Pj5BUnYaikqKYaamjz5NOiC7IBcfkr7XSz6i7z9F6OFzcBrZFzqNDPD05n2c3LgfnmtmQ05FsHMqJyOL63UxSQmMWTeHY1t9nVNWmsbobtkG516G42tqPFroWWKkfXd43z6G9Dzu2ABgiK0TZMSkcPp5GJJzMiAjJgmhSkOA8grzsfnWUY5t9dlwFnEzHP4792PM1H9h1sQS18+HYPW8pdjitxMqVdwf+g4biIsnz/I8ZlFhIVbOXgQ5BQXMWDoPyioqSP75ExJSUvWWj/thd3HYxw8jJ41Fo8bmuHnxKjYuXIU1+7yhosb92+Tti9do0qwpBni4Q0pGCuFXbmLLkrVYsnUNDExKG6sK8gugqqmOFg5tcHiPX73FXqY+rrXFRUU4sWEvpORk0HPScMgqKSAzJQ1iEuJ1GntAUBCOnDiOJfPmQ09HB74HD2LirJk4dfAQpPmU+/NXL+G1bBn+9RyNju3a4+adcMxbuhS+23egiWXpfS4jMxOekybBztYGW9eth5KCAr7HxkJWRobreGHh4Xj1OhqqKip1mrcyX6Oi8fh0KOwGOkHVSAcf7j5F2O6T6L7Ak/89w+8c8jKz0WqoC2RUFZGXmfNH7xlvHzxD2JHz6DyiN7Qa6eP5zQcI3nwAI1fPqPacCtl7DHqWxshJ57yeuU0ejpKi8mtSbnY2Di7aClN73g9k/2sqX7NJwxJ42GaPHj2gpqYGf39/ju05OTk4duwYPD09AQARERFwcHCApKQkdHV1MWXKFGRn8/6CBQAxMTHo1asXZGRkICcnh4EDByIhIYEjzblz52BnZwcJCQmoqKigb9++7NcqD9t8//49HBwcICEhAUtLS1y7do3rPefOnQtTU1NISUnByMgIixYtQmFhIUeatWvXQl1dHbKysvD09EReXl6Vn09xcTE8PT1haGgISUlJmJmZYevWrVXuU1lycjKGDBkCHR0dSElJwcrKCkFBQdXu5+/vDz09PUhJSaFPnz7YtGkTx7BEXkMEp02bBkdHR/a/GYbB+vXrYWRkBElJSTRt2hQnT56s8n137dqFRo0aQUJCAurq6ujfv3+tjmdgYICVK1di1KhRkJeXZzeKVHdOHTp0CHZ2dpCVlYWGhgaGDh2KxMTEKj+vip+PgYEBWCwW118ZQc6Xyn78+IFBgwZBUVERysrK6NWrV42HJt69excdOnSAlJQUFBUV4ezsjNTUVACAo6MjJk2ahBkzZkBFRQVOTk748uULWCwWnj59yj5GWloaWCwWwsLC2NtevXqF7t27Q05ODrKysmjfvj0+fvzIft3Pzw8WFhaQkJCAubk5du3axX6t7D2OHz8OR0dHSEhI4NChQygpKcHy5cuho6MDcXFx2NjY8OzxVdHly5chIiKC1q1b83z927dvaN++PWRlZXHz5k3o6OhAQ0OD/ScsLMwu84rbsrOzcfz4cYwfPx49evTgumZduHAB7dq1w+zZs2FmZgZTU1P07t0b27dv50jXs2dPnDlzBrm5uVXm40+4H/MK+x6cw61PTxs6FIGcOXYKTt1d4OzmCl0DfYybMgEqaqq4FHyeZ3p1TQ38M3UiOrs4QaqBehI/CrkNKwd7WDu2hLJWaa8UWSUFPA29V+V+V/1PwbK1LbRM9Hm+zmIBMgpyHH/1iWEYBIXdgEdXF3SysYWJljaWDhuJvMICXHkUyXe/5o1M0bGpDQw1NKGjqoohjp1goqWNpx8/sNM4WFmjbeMm0FdTh76aOia49YKUuDhefvlcp3n4r5RFZW9uRMK4tTVM2jSFvIYK7Pp3gZSiLN6FP+GZPvb1JyR8+IaO4wdA09wAMsryUDHQgqqRzh+LuY2BNR5/f4uo72/xMzsNl9/cQ0ZeFlro8e5dY6KiAwMlTRyMCsGn5B9Iy83Cj/Sf+JZW/r3uS0ocohO/4Gd2GlJzM3H/60skZKZAX0Gj3vLxKOQWrDu0QFPHllDWVkfnYaXn1JMbVZ9TV/xOwaLV33FOtTO0RtS3N3j0/Q1+ZqfhYnQE0vOy0FKfd1k0UtGFoZIWAh5dwsfkH0jLzcT39ETEpHF+x2YAZBXkcvzVpwsnzqBTNyd07u4MHX1djJo0FipqKrh67jLP9Goa6vCYNA4dunaClDTvRpEbl68jKyMLs1csgHkTS6hqqMHcqjEMjKvv7fK7Qk6fRwfnTnDs1gXaejoYNn40lFSVcePCFZ7ph40fje4De8PIzAQa2loYMNodGloaeHr/ETuNkZkJhowdiVaO7X7roWRN1ce19sXtSORm5aD3lFHQMTWEvIoidEwNoaZXdw9YGIZB0MkT8Bg2HJ0cHGBiZIRl8+cjLy8fITxGSJUJOnkSLe2aw8N9GAz09eHhPgwtmjXHkZMn2GkCjhyBupoqlsybjyYWFtDS1ESL5s2ho63NcazEnz+xfutWrFi4ECLC9TOF+Jubj2DEvmcoo3m/zpBSlMX7O/zvGYkfvsHx3/7QYN8zNKFqpM0zfX2IuhKOJg72sOrQAspa6ujo3hOySvJ4duN+lftd9z8N81Y20DTmPqckZaQgrSDL/ot5+R6iYqIwbfHnetMRUkbgxjMRERGMGDEC/v7+YBiGvf3EiRMoKCiAu7s7Xrx4AWdnZ/Tt2xfPnz/HsWPHcOfOHUyaNInnMRmGQe/evZGSkoJbt27h2rVr+PjxIwYNGsROc/HiRfTt2xfdu3fHkydPEBoaCjs73l2wS0pK0LdvXwgLC+P+/fvw8fHB3LlzudLJysrC398fr1+/xtatW7Fv3z5s2bKF/frx48exZMkSrFq1Co8ePYKmpiZHAwK/99bR0cHx48fx+vVrLF68GF5eXjh+nHuYCD95eXlo3rw5Lly4gJcvX2LcuHEYPnw4Hjx4wHefBw8eYPTo0ZgwYQKePn2Kjh07YuXKlQK/Z5mFCxfCz88Pu3fvxqtXrzB9+nQMGzYMt27d4pn+0aNHmDJlCpYvX463b98iJCQEDg4Ov328Mhs2bECTJk0QFRWFRYsWCXROFRQUYMWKFXj27BnOnDmDz58/Y9SoUQLnPTIyEnFxcYiLi8P379/RqlUrtG/fnv16dedLZTk5OejYsSNkZGRw+/Zt3LlzBzIyMnBxcUFBQYFAMT19+hSdO3dG48aNce/ePdy5cwdubm4oLi5/8hIQEAARERHcvXsXe/bsEei4P378YDcu37hxA1FRURg9ejSKiooAAPv27cOCBQuwatUqREdHY/Xq1Vi0aBECAgI4jjN37lxMmTIF0dHRcHZ2xtatW7Fp0yZs3LgRz58/h7OzM3r27In37/kPw7l9+zbfuvz27Vu0bdsW5ubmCAkJgaysrED5A4Bjx47BzMwMZmZmGDZsGPz8/DiuWRoaGnj16hVevnxZ5XHs7OxQWFiIhw8fCvzepLSXwId372DbojnHdlv75njz8lUDRVW14qIixH/5AYMmphzbDZqY4seHr3z3e3E7EmmJyWjT24lvmoK8AuyZsQq7p63Eqc0HkPD1R53FzcuP5CQkZ2SglXn5D2oxUVE0M2mE558/VrFnOYZh8PDtG3xNTEAzk0Y80xSXlOBqVCRyCwpgZVD9EB9B/ZfKoqLiomKkfIuHpgXnj3lNC0MkfeYdx/cXH6Csp4HX1x/g9IKdOLdsLx6fvoGigqof3tQVYZYQtORUuHqDfUj6Dl0FdZ77mKvpIzb9J9oZNsVsR3dMbT8QzmYtISIkzPd9jJS0oCItjy+pcXUafxl+55ShlSl+vP/Cd78Xtx8iLTEJbftUfU75TF+JXVNX4OQmXyR8qZ9zqrQsVPE+6RvH9g8/v/NtdLRQN8CP9J9wMLLB3E7DMaPDYHQzb8VVFmLCopjd0R1zOw7DCLtu0JRTrpc8AKU9xD69+4CmFYYqAoC1nS3evor+7eNGRTxAo8bm8N3qg7H9hmPm6Ik4ffg4SorrpwddUWEhvrz/iCbNbTi2WzVvivevq55eokxJSQlyc/MgLcvdo+lPqK9r7Ycnr6Floo/rgcHYOXkZ/Lw24v75UJTUYe+nH3FxSE5JQSv78u+QYmJiaGbTFM9f8f9u9/zVK7S0t+fY1qqFPZ6/Kv9ucjviLizMzDF3yWI49e6FoWM8EXyB88FfSUkJFq9eheGDB1c7TPR3se8Z5gYc2zXM+d8zfrz4ACVdDURff4jghbtwfvk+PA6++cfuGcVFRUj48gP6TTi/N+g3MUVsFefUy/BIpP1MQeveXQR6nxfhj2DWsilExRtmxA35/61GTeWjR4/Ghg0bEBYWho4dS+dIOHDgAPr27QtFRUVMnToVQ4cOxbRp0wAAjRo1wrZt29ChQwfs3r0bEpWGi1y/fh3Pnz/H58+foatbOn774MGDaNy4MSIjI2Fvb49Vq1Zh8ODBWLZsGXu/pk2b8ozv+vXriI6OxpcvX6CjU/pkdvXq1exhX2UWLlzI/n8DAwPMnDkTx44dw5w5pV3vvb29MXr0aIwZMwYAsHLlSly/fr3K3meioqIcMRoaGiIiIgLHjx/HwIED+X+oFWhra2PWrFnsf0+ePBkhISE4ceIEWrZsyXOfrVu3wtnZGfPmzQMAmJqaIiIiotpePxVlZ2dj8+bNuHHjBrsXkJGREe7cuYM9e/agQ4cOXPvExMRAWloaPXr0gKysLPT19WFra/vbxyvTqVMnjs9gxIgR1Z5To0ePZqc3MjLCtm3b0KJFC2RlZUGGRzfryioO/Z06dSri4uIQGVneQ6O686Wyo0ePQkhICPv372f3YPPz84OCggLCwsLQtWvXamNav3497OzsOBptGzfmnA/ExMQE69evZ/9bkJ5tO3fuhLy8PI4ePcp+qmlqWv7FacWKFdi0aRO7d6ehoSFev36NPXv2YOTIkex006ZN4+gBunHjRsydOxeDBw8GAKxbtw43b96Et7c3du7cyTOWL1++QEuL95PIESNGoE2bNjh16hSEhfn/6OLF19cXw4YNAwC4uLggKysLoaGh6NKl9KY8efJkhIeHw8rKCvr6+mjVqhW6du0Kd3d3iIuXDyuQlpaGgoICvnz5wvOczc/PR35+Pse2ivv/f5WRno6S4hIoKnJ2z1dUVMTjlNQGiqpqub+GwknLczbSSsvLIDude/gfAKTG/8TtE5cwZMEECPE5R5U01dBtzECo6mqiIDcPUVfv4MjKnRi1YjoUNepnyoHkjIzS95bjzIuSrBzif81Vxk9Wbi5cF85HQVEhhIWEMHfgELQ055yj5kPsD4zetAEFRYWQFBfHhjH/wEhTs87i/y+VRUX5WTlgShhIyHL2nJGQlUZuBu/e+VlJaUj8+B1CIiJwGNsH+dm5iDx2Ffk5eWg9rP7n7ZQSk4CwkBBXT6SsglzIivPuAaQkKQc9RQ0UlRTjyJOrkBKVgFvjdpAUlcCZl+UPz8RFRDHbcRhEhIRRwpTgwuu7+JhcPw1POXzOKSk5Wb7nVEr8T9w6fglDF0zke04pa6rBdewgqOpqIj83D1FXw3F45Q6MWjkDSnV8TrHLIp+zLDILctBInPf8R0pSstD/VRaHo65ASkwCvRq3h6SoBE6/CAMA/MxOxannNxGfmQIJEVG0MbDCP617Y3v4SSTnpNdpHgAgIz0DJSUlkFdU4Ngur6iAtJS03z5uQlw8fj55jnZdHDF/zRLEfY+F7zYflBQXo/+IIbULmofMjMzSfCjIc2yXU1BAemqaQMe4fOoc8vPy0LJD2zqPTxD1da1N/5mMmOhUWLa2Rb8ZnkhNSML1wGCUFJdU+XCjJpJTUgAAyopKHNuVFRURV2n0UuX9lCt9N1FWVGQfDwB+xMbh1NmzcB84AB7DhuFV9Bts3LYNoqKi6OHsAgAICDoCYWFhDO7Xr07yw0t+dtk9g7M3vqSsFOL43TOS0/Hz03cIiwqj/Zg+yM/OwaPj11CQk4dW7t147lOXcn8NEZWW4/ztJSUngxy+51QS7pwIwSCvf/meUxXFffqG5O/x6Dq6f7Vp/ytotc2/S41W2zQ3N0ebNm1w4MABAMDHjx8RHh7ObryIioqCv78/ZGRk2H/Ozs4oKSnB58/cwzqio6Ohq6vLbjgDAEtLSygoKCA6uvQJVFkPHEFER0dDT0+P3XAGgOeQsJMnT6Jdu3bQ0NCAjIwMFi1ahJiYGI7jVN6P39Cyinx8fGBnZwdVVVXIyMhg3759HMetTnFxMVatWgVra2soKytDRkYGV69erfIYvxtrRa9fv0ZeXh6cnJw4yi4wMJBjOF9FTk5O0NfXh5GREYYPH47Dhw8jJyfnt49XpnJPJEHOqSdPnqBXr17Q19eHrKwsezhqTT57ANi7dy98fX1x9uxZjga16s6XyqKiovDhwwfIysqyY1ZSUkJeXl61+S8jyHnPr9dWdcdt3749z+EAP3/+xLdv3+Dp6cnxea9cuZIr7orvnZGRgdjYWLRty/kFsG3btux6zEtubi5Xg3qZXr164c6dOzh1qmbzX719+xYPHz5kN+KJiIhg0KBB7GsWUNoodvHiRXz48AELFy6EjIwMZs6ciRYtWrDP4TKSkpJc28qsWbMG8vLyHH9r1qypUbz/aZVu9gyYv/8LQKXwGIYrGwBKnzpf8DmCtn26VvkjWctEH43bNoeanhZ0zIzQc+IwKGqo4PH1u3UW8uXIh3CYOY39V/SrpwWrUmYYfpmpQEpcHIfneSFg9jyM79ELW4JPIur9O440+mrqODzPCwdmzkG/dg5YeigAn+LqocfQ/2BZCIY7Y/yKhWFK60zbUW5QMdCCdmNjNOvbCZ8evPhjPQl+RcLxLxZYYBjeKcvq+InnN/Aj/SfeJ31DyJt7sNU25ejxVFBUiF0Rp+BzLxjX30fCxbwVDJTqrhFWMLw/+5KSElzYfRht+3aFkqZg55SumRF6TRwOJQ1VPL5Wf+dU5Y+9tJ7zLoyya8Cxp6H4np6Idz9jcCk6As10zNhl8S0tEU9j3yM+MxlfUuMR9OQakrLT0dqg7hcB4Yit8gdfRT0QBMMwkFOUxz8zJsLI1ARtOzmgr/tAvkNB6wyvfAiw272b4Qg+eBwTvWZArlID3B9Xx9dapoSBlKwMunr0h4ahDixa2aBVz054Ws0Q6apcvnYN7V1c2H9loyUqn0cMw3Dd+7hw7cN5vyxhSmBu2ggTx46DeSNT9OvZE7179MCps6Xz7UW/fYujJ09h6bz5f+Y7TeXyAff9nf3ar3tGm5FuUDHQLL1n9GmAewZXvQC4MoLSc+rSniC07u0k8EOsl7cfQllHA5pG/BdNIKQ+1XiQtqenJyZNmoSdO3fCz88P+vr67B/5JSUl+OeffzBlyhSu/SpO2F2mrJJXtb0mE7szPL7NVT7+/fv32T3ZnJ2d2b1wylbZ+13Hjx/H9OnTsWnTJrRu3RqysrLYsGFDlUMuK9u0aRO2bNkCb29vWFlZQVpaGtOmTatyqB+vPFcmJCTEla7inF1lXakvXrwI7Upj+vn1pJGVlcXjx48RFhaGq1evYvHixVi6dCkiIyN/63hlKq+cWt05lZ2dja5du6Jr1644dOgQVFVVERMTA2dnZ4GHSAJAWFgYJk+ejKCgII6ejb9zvpSUlKB58+Y4fPgw12uCLnAhyHlf+bMSEiptC69Y1pXnZqvquGXltm/fPq6ejpV7f/Fa4Zbnl5gqvlioqKiw53CrzMvLC9bW1nB3dwfDMBxDuavi6+uLoqIijvOOYRiIiooiNTWVozeUsbExjI2NMWbMGCxYsACmpqY4duwYPDzKV+5JSUnhW2bz58/HjBmcK0yJi4vj2v6pAsX6XyUnLw8hYSGkVniSCwBpqWlQqNTb4G8hKSsNlpAQstM4n4zmZGRBSo57yHBBbj7iP39HwtdYXD94BsCvescw2OgxFwNmj4W+pQnXfiwhIWga6iI1PqnOYnewskaTX6vVAkDBrx8VyRkZUJEv/1GWmpUJ5WqGPwsJCUFXtXTCbjMdXXxJiIP/1RA0b1TeO1VURISdxlJPH6+/fsHRWzfgNdi9TvLzv1wWVRGXkQJLiIW8TM4eA3lZOVw9C8pIyslAUl4GYpLl9015DWWAAXLSMiGnpsRzv7qSU5CH4pISyIhx9jKTFpNAVgHvhwqZ+TnIyMtGflH5vednVhqEWCzISUgjJae0ZyQDsP8/PjMZqtKKcDCywZeUum+IlSo7p9J/45wKPFMa769zasOoORg4Zyz0LbmHM7OEhKBhqIvUhJ91noeyspAV57yHy4hJcvVGK1NeFuXfhRKzUiHEYkFeQoZnzzIGwI+0n1CWqp8GHTl5OQgJCSGtUi/k9LR0rt5oNaGgpAgRERGOnivaejpIS0lFUWEhROp4/jBZOVkICQlx9TLLSE+HXDX5uB92F75bdmHSgllo0oz3SJo/ob6utdIKchASFmJ/JwUAZU11ZKdnorioCMIiNZ8fzKFtWzSxKO8FXfDru21SSjJUlMuHGaekpUFJif+k9MpKShy9zEr3SeXYR0VZGYb6BhxpDPX1ceP2bQDAk+fPkZKWih4VRhUVlxTDe/cuBJ08ifPHuFfg/R3i0r/uGZV6meVl5kBCjnfPX0k5aa57htwfvGdIykrxvtZmZkFKnnskUEFuPhI+f0fi11jcOFTaOFl2Tm0ZPR/9ZnlCr8L9uzC/AG8fPEObPtWP4CGkvtT4CjZw4EBMnToVR44cQUBAAMaOHcv+gdysWTO8evUKJibcX1R5sbS0RExMDL59+8buffb69Wukp6fD4tdF0traGqGhoRw/aKs7XmxsLHs42L17nE867t69C319fSxYsIC97etXznHYFhYWuH//PkaMGMHedv9+1RMdhoeHo02bNpgwYQJ7m6C9jCoeo1evXuwhZyUlJXj//j37s+DF0tKSK7bK/1ZVVeWa3+np06fs3keWlpYQFxdHTExMlUMqKxMREUGXLl3QpUsXLFmyBAoKCrhx4wacnJx+63i8VHdOvXjxAklJSVi7di37HHr06BHPtPx8+PAB/fr1g5eXF8dQRECw84VXzMeOHYOamhrk5H5v8uCy877iUODqlDXyxMXFsYfQVlw8oOy4AQEBPFfIVFdXh7a2Nj59+gR3d8F/CMvJyUFLSwt37tzhmPcuIiICLVq04Lufra0tDh06xPf1hQsXQkREBO7u7igpKcGQIVUPvSgqKkJgYCA2bdrENTS2X79+OHz4MN/5Fw0MDCAlJcWxEMXHjx+Rl5fH/iwrExcXp2GaPIiKisLE1BRPIx+jjUP5SqVPIx+jZbs2DRgZf8IiItAw0MbXV+9hale+etPXV+9gYtuYK724pDhGrZrJse1paARioj+g56QRkFfl/QWVYRgkxsRCRafuethIS0hwrKDJMAyU5eTw4G00zH5dEwuLivD4w3tM7tmnRsdmmPLGOL5pABQUVp2mJv6Xy6IqwiLCUNLVQNybL9BtWt4YGffmC3SseM8rp2qkjZgnb1CYX8Ce2yUjMRUsFgtSCoLPA/m7ipkSxGYkwVhFG9GJX9jbjVV08KbCvyuKSY1HYw0jiAmLoKC49LxQlpZHCVOCDD6rcwKlHRWqmhetNsrOqS8v33GcU19evoNJM+4eVuKS4vBYzXlOPbleek71mlzdOfUDqvVwTpWWxU+YqOjidcIX9nYTFW285lMWX1Pj0USTsyxUpBVQwpTwXZ0TADTllBGfmcL39doQERWFkakJnkc9QYv25aMknkc9hX0b3tOTCMKsiSXuht5CSUkJu9Em7nssFJWV6rzhDCjNh0EjY7x8/Ax2bcvjfvn4OZq1tue7372b4di/eRcmzJ8Gm5bN+ab7E+rrWqvdyADR95+AKSkB61dZpCb8hLSC3G81nAGAtJQUxwqaDMNAWUkJDx49gvmvhzuFhYV4/PQZJv/zD9/jWDdujAePHsF9QHnD14PISFhXmBalaZMm+PqNc3TJ12/foaleOs+ja9euaNGcs+wmz5kNV6eucOtWd0Mjy+4Z8ZXuGfFvv0DHivdvotJ7xluOe0ZmYsofu2cIi4hA3UAbMa/eo1Hz8mvr11fvYWzLvbCJuKQ4RqyczrHt2Y17iHn9EW6ThnFda989fI7iwmJYtOH9vfy/Skig/qzkT6nxVUxGRgaDBg2Cl5cX0tPTOSZmnzt3Llq1aoWJEydi7NixkJaWRnR0NK5du8a1kh0AdOnShd27xNvbG0VFRZgwYQI6dOjAHha2ZMkSdO7cGcbGxhg8eDCKiopw+fJlnvNNdenSBWZmZhgxYgQ2bdqEjIwMjkYPoHSeqJiYGBw9ehT29va4ePEigoODOdJMnToVI0eOhJ2dHdq1a4fDhw/j1atXMDLiPymyiYkJAgMDceXKFRgaGuLgwYOIjIyEYQ0mkjQxMcGpU6cQEREBRUVFbN68GfHx8VU2nk2ZMgVt2rTB+vXr0bt3b1y9epVrvrNOnTphw4YNCAwMROvWrXHo0CG8fPmS3SggKyuLWbNmYfr06SgpKUG7du2QkZGBiIgIyMjIcMx1VebChQv49OkTHBwcoKioiEuXLqGkpARmZma/dTx+qjun9PT0ICYmhu3bt+Pff//Fy5cvsWLFCoGPn5ubCzc3N9jY2GDcuHGIj49nv6ahoSHQ+VKZu7s7NmzYgF69erFXoIyJicHp06cxe/ZsjmHF/MyfPx9WVlaYMGEC/v33X4iJieHmzZsYMGAAVPgsiS0pKYlWrVph7dq1MDAwQFJSEsd8bQAwadIkbN++HYMHD8b8+fMhLy+P+/fvo0WLFjAzM8PSpUsxZcoUyMnJoVu3bsjPz8ejR4+QmprK1cuqotmzZ2PJkiUwNjaGjY0N/Pz88PTpU56978o4Oztj/vz5XD3CKpo3bx6EhYUxfPhwlJSUVNmod+HCBaSmpsLT0xPy8pxPzfv37w9fX19MmjQJS5cuRU5ODlxdXaGvr4+0tDRs27YNhYWFcHIqn48jPDwcRkZGMDY25vuef4qkqDh05Mt7wGnJqaCRig4y8rKRkPX3zSPWe1A/bF65DibmprBobIGQc5fwMzERrr17AAD8fXyRnJSEmQvLF3T59L50Vce83Fykp6Xj0/sPEBERhZ4h71Xu6pqdiwMu7jkKDUMdaJno49nNB8hITkPTTqU/8G4fv4TM1HR0/2cIWEJCUNXhnKRbSk4GwqIiHNvvBl+Flok+FNVVkJ+bh8fX7iIxJhZdhtesEasmWCwWhjh2gt/VEOiqqkFXVRX+V0MgISoGZ7vyH3VLAv2hqqCAST17AwD8robAUk8f2ioqKCoqxt3XL3Hx4X3MG1TeaL3z3Bm0sWwMdUUl5OTn4WrUIzx+/w7bJkyu0zz8V8qiMvNO9rgXeAHKehpQMdTCh7vPkJOSgUbtbQAAT87eQm56JtqMKK0nBvaWeBkSgfuHLsHatR3ysnPxJPgmjFpbQUSs/lfiA4CIL8/Rz7ojYtOT8C0tAXa6FpCXkMHDmNIh+U6m9pATl8apF2EAgOdxH+Bo3Ax9rBxx4/0jSIlJwNmsJR5/f4uiktIhxQ5GNviR/hMpORkQFhKCqaoebLRMcf51eL3lw86lAy7uCYKGoS60TfTxNOw+MpLTYNOpFQDg1vFLyOI4pzgbwKTkZCAiKsqx/W7wVWgZ60NR49c5dfUOEmNi4TSC8yFcXbnz+TkGNO2EH+mJiElNgL2eJeQlZfHw62sAQFezFpATl8bJ5zcBAM9i36OjSXP0s+6I0PePICUqgW4WrRD1rbwsOpk0x7e0BCRlp0NCRAytDaygKaeMc6/u1EseAKDHgN7YvmYzjMwawdTSHNcvhCAp4Sec3EobHo7sC0BKUjImzS//zvHlwycAQF5uHjLS0/HlwyeIiIhAx6B0VEvXnt0QEnwB/jv2waVPD8T/iEXwkRPo1qdHveXDpa8b9mzYBkNTY5hYmCHs0jUkJyahU/fSh3fHDxxCalIK/plTOnLi3s1w7N2wHe7jR8PY3JTd+05MXIy9ynRRYSF+xHz/9f9FSE1OxtePn0tXtdeu+0bZ+rjW2nRqjcfX7yL08Dk0c2qL1Pgk3D9/A82c2qGusFgsDOk/AH6HDkNPRwe62jrwO3wIEhLicOlSPun84tWroKaiiknjxgEABvfrj3FTpsD/yBE4tm2LsLt38SAqCr7bd7D3GTpgAEZPnIgDhw7CybEjXr2JRvCF81gws3Q+ZgV5eShU+o4pIiwCZSUlGPAYZVUb5h3tcO/gRSjpaUDFUBsf7j4tvWe0swEAPD13CzlpWWgzojsAQN/OEi9D7uH+ocuwdm2L/OxcPDkTBqNWf+6e0dy5PS7vPQZ1Ax1omujhRdhDZCanoWnH0mtt+InLyErNQLdxg8ASEoJKpXNKUlYGIqIiXNuB0oUFTJpZQlKmYVZlJwT4jcYzoHTopq+vL7p27coxHNPa2hq3bt3CggUL0L59ezAMA2NjY75DrlgsFs6cOYPJkyfDwcEBQkJCcHFx4Whoc3R0xIkTJ7BixQqsXbsWcnJyHL1bKhISEkJwcDA8PT3RokULGBgYYNu2bXBxcWGn6dWrF6ZPn45JkyYhPz8f3bt3x6JFi7B06VJ2mkGDBuHjx4+YO3cu8vLy0K9fP4wfPx5XrvBefhoA/v33Xzx9+hSDBg0qvagPGYIJEybg8mXB51tYtGgRPn/+DGdnZ0hJSWHcuHHo3bs30tP5T9raqlUr7N+/H0uWLMHSpUvRpUsXLFy4kKMBydnZGYsWLcKcOXOQl5eH0aNHY8SIEXjx4gU7zYoVK6CmpoY1a9bg06dPUFBQQLNmzeDl5cXzfRUUFHD69GksXboUeXl5aNSoEYKCgtiT2tf0ePxUd06pqqrC398fXl5e2LZtG5o1a4aNGzeiZ8+eAh0/ISEBb968wZs3b7gmr2cYRqDzpTIpKSncvn0bc+fORd++fZGZmQltbW107txZ4J5opqamuHr1Kry8vNCiRQtISkqiZcuW1fa+OnDgAEaPHg07OzuYmZlh/fr1HL2wlJWVcePGDcyePRsdOnSAsLAwbGxs2POVjRkzBlJSUtiwYQPmzJkDaWlpWFlZsRds4GfKlCnIyMjAzJkzkZiYCEtLS5w7dw6NGvHuUQEAVlZWsLOzw/Hjx/FPFU8KZ8+eDWFhYYwcORIlJSUYPnw4z3S+vr7o0qULV8MZUNrzbPXq1Xj8+DE6dOiAnTt3YsSIEUhISICioiJsbW1x9epVmJmZsfcJCgrC2LFjq8z3n2Kuqo8dfcp/SExpNwAAcCn6HlbdCOC3W4Nx6OyIzIwMHPU/hJTkFOgbGmDp+lVQ0yh9cpuanIyfCYkc+0wZPZ79/x/evsetazegpqGOAyf4906sS+YtbZCblYOIs9eRnZYBFW0N9JvhCXmV0obdrPQMZNZwQuv8nDxc9TuJ7PRMiEtKQE1fG4O9xkPTuG6/YFc2oktX5BcWYt3xIGTm5KCxgSG2T5zM0UMtPjWFY1h1XkE+1h0PQmJaGsRFRaGvroHlIzzQtXn5/IYpmZlYctAfSRkZkJGQgImWNrZNmMy1qEBt/ZfKoiKD5hYoyM7Fi8t3kZuRDQVNFThOGAAZpdJrVl5GFrJTMtjpRcXF0GnSIDw6cQ2X1wdAXFoSes3M0bRHe35vUedexn+ClKgEHE2aQVZcCgmZKTgYdZndc0lGXArykuXDcQqKi+D/6CK6W7TFv236IrcgDy/jP+H6+/JFeESFReBm2Q5yEtIoLC5CUnYaTj6/gZfxn+otHxatbJCXlY2Is9dKzykdDfSf6Ql5ldKeDdlpGchIrtmDiLycXFzxO8FxTg3xmlBv59SLuI+QEpVAJxO70rLISkFA5CWk/SoLWXFpKEiW9y4pKC6C38ML6NG4HSa07Yucgny8iPuIa+/KV5CWEBVHb6sOkBWTQl5RAWIzkrD3/jl8T0/kev+60qZje2RmZOBU4FGkpqRA10Af89csgapG6XDw1JQUJCVyDn2dM658OoRP7z7gTugtqKqrYWeQLwBARU0VC9cvR8Cu/Zg9ZjKUVJTRra8beg+uvwndWzm2RVZmJs4ePoG0lFTo6Oth5kovqKiX5iMtJRXJP8uHhd+8dA3FxcUI3LEPgTv2sbe3c3LEuFmlDyBSk1OxaEL5olmXT57D5ZPnYG7dGF4bltd5HurjWiunrIABs8fg5pHz8F+4GTIKcmjetR1adO9Yp7GPHDIE+fn5WLtlCzIzs9DE0gI7Nmzk6KEWn5AIIVb58NGmTZpg1eLF2O3rC58DvtDR0sKaJUvRxLK8V1RjcwtsXLESO/btxf6AQGhpamDmpEnoVuHh6p+i39wC+dl5eBkSgdyMbMhrqsBxfH9I/7pn5KZnIyeV857RceJARJ28jpANgaX3DFszWP/Be4ZZy6bIzcrB/bOhyE7PgLK2BvrM8IDcr3MqOy0TmclpNT5uavxP/Hj3Bf1medZxxITUDIsRZNIs8j/F398f06ZNQ1paWkOHQkiVLl26hFmzZuHly5cc82M0tJcvX6Jz58549+4dz8a4qrTd+W89RfXn3J3og/eJNVtw42/USE0P+++fa+gwamVMq57IuHqjocOoNbmunf4TZbH82oHqE/7lFjuNxqKQvQ0dRq2tcBkH3wfnGzqMWvFs6QavSz4NHUatrXb9F89+vKs+4V+sqbYpHnx5WX3Cv1xLgyb/89daoPR6mxkXX33Cv5ispgaWXfVt6DBqbUlXT+y5d6ahw6iVf1r3bugQflu3/fxH/jSky2M2N3QIDeL3Bp8TQkgdcHV1xfv37/Hjxw+OVXcbWmxsLAIDA2vccEYIIYQQQggh5L+HGs8IIQ1q6tS/b3XKygsOEEIIIYQQQgj5/+vvGSdF6syoUaNoyCYhhBBCCCGEEPI/isUS+iv//r/6/5tzQgghhBBCCCGEEEKqQY1nhBBCCCGEEEIIIYTwQXOeEUIIIYQQQgghhPxFhFishg6BVEA9zwghhBBCCCGEEEII4YMazwghhBBCCCGEEEII4YOGbRJCCCGEEEIIIYT8RVigYZt/E+p5RgghhBBCCCGEEEIIH9R4RgghhBBCCCGEEEIIHzRskxBCCCGEEEIIIeQvQqtt/l2o5xkhhBBCCCGEEEIIIXxQ4xkhhBBCCCGEEEIIIXzQsE1CCCGEEEIIIYSQvwiLhm3+VajnGSGEEEIIIYQQQgghfFDjGSGEEEIIIYQQQgghfNCwTUIIIYQQQgghhJC/CA3b/LtQzzNCCCGEEEIIIYQQQvigxjNCCCGEEEIIIYQQQvhgMQzDNHQQhBBCCCGEEEIIIaRUvwCvhg6Bp1MjVzd0CA2C5jwjhJA69D4xpqFDqLVGanpou/Pfhg6j1u5O9EFmSkpDh1ErskpKyIyNbegwak1WSwuv4j42dBi10ljTGC9jPzR0GLXWRMsEbxI+N3QYtWauboiEjKSGDqNW1OVUkPn9R0OHUWuyOtr/ibJIy0xv6DBqTUFWHnHpPxs6jFrTlFdFeuDRhg6jVuRHDP6fv+8Bpfe+zG/fGzqMWpHV1WnoEMh/BA3bJIQQQgghhBBCCCGED+p5RgghhBBCCCGEEPIXodU2/y7U84wQQgghhBBCCCGEED6o8YwQQgghhBBCCCGEED5o2CYhhBBCCCGEEELIX0SIhm3+VajnGSGEEEIIIYQQQgghfFDjGSGEEEIIIYQQQgghfNCwTUIIIYQQQgghhJC/CK22+XehnmeEEEIIIYQQQgghhPBBjWeEEEIIIYQQQgghhPBBwzYJIYQQQgghhBBC/iIs0LDNvwn1PCOEEEIIIYQQQgghhA9qPCOEEEIIIYQQQgghhA8atkkIIYQQQgghhBDyFxGi1Tb/KtTzjBBCCCGEEEIIIYQQPqjxjBBCCCGEEEIIIYQQPqjxjBDy18jJycGKFSvw9evXhg6FEEIIIYQQQhoMi8X6K//+v6LGM/I/yd/fHwoKCn/kvRwdHTFt2rQ/8l51qaafkYGBAby9vestHkFMnjwZsbGx0NfXr9F+/6tlRAghhBBCCCHk70cLBpB6U12r9MiRI+Hv7/9ngvl/aNCgQXB1dRU4fWRkJKSlpesxoqoFBQUhISEBZ8+erfG+p0+fhqioaD1E9eddDD6H00EnkJKcDD0DA4ydMh5NmlrxTJuSlAzfnXvw4e17xH7/Abf+vTFuyoQ/HLHgmmqaYKhtV5ir6UFFWgHzLu1G+OdnDR0WG8Mw2Ovri+CzZ5GZkYHGjRtj7qxZMDYyqnK/0Js34bN3L77/+AEdbW1M+OcfdHR0ZL9+8vRpnDx9GnFxcQAAIyMjjBk9Gm1bt66bmAMCEHzhAjIzM9HYwgJzp06FsaFh1THfugUfPz98j42FjpYWJnh6omP79uzX3QYPRlxCAtd+A3r1wtxfDdU5ubnYvncvbt25g/SMDGhqaGBw377o36tXrfN1+cwFnD16CqnJKdA11MfoSeNgad2EZ9qU5BQE7NqHj+8+IO57LFz79oTn5H/4HvtO6C1sXrEOLdq2wrxVi2sda1VCzlzA2WOnS/NhoAePKvKRmpwC/1378el9eT5GTxrH99h3btzClhXrYd+2FeatXFRfWcCl4PMIDjqJ1JQU6Bnow3Pyv2jclE9ZJCXDb9c+fHj7HnHfY9GjXy+MmfIvR5qr5y/j5pXr+PqptIexsZkJho/1gKmlWZ3FHHziNIIOHUFKUjIMjAwxecYUNLW14Zv+adQT7PDeji+fPkNZRQVDRwxFr3592K/fuhGGQ/6B+PHtB4qKiqCjq4NBw4bA2dWl/BiPn+LowSN4++YNkpOSsWrDGrR3dKhVPhiGwd7AAARfvFhev6dMgbFBNfX79u3S+h0XCx1NLUzwHI2O7SrU76FDeNfvnr0wd+pUAL/q9769uHX3bnn97tMH/XvWrH7XdVmcDz6HK5cu49PHzwAAM3MzjJ34DywbW3Ic52fiT/hs34UH9+4jPy8funq6mLtoPswszAWK++SJkzh08CCSk5JhaGSE6TOnw9bWlm/6x1GP4b3FG58/fYKKqgqGDx+Ovv37caS5EXoDe3z24Mf379DW0cH4Cf/CsWNHjjSJiYnYuX0HIiIikJ+XDz19PSxYtBAWFhYAgJZ2LXi+/6QpkzF8xPBq83Xm5GkcPRiE5ORkGBoZYNL0qbC2bco3/dPHT7DLezs+f/oCFRVlDB7ujl79erNfv33zFg75BeLH9x8oLiqCtq4OBrkPRtcKdQMoLY89O3bjYcR95OfnQ0dPF3MWzhO4PKrDMAz2hYfhzJMoZOblorGWDma7dIexqppA+1999QILz5yEg6k5Ng4YwvFaYkYGdty8hoiP75FfWAQ9JWUs7NELFppadRJ7mbq+792/fRenDh1D3I84FBcXQVNbGz0H9YFj1851GnfpdSoQwZd+XafMy65TBlXuF3r7Nnz8/fA9Lg46mpqYMNoTHdu1Y7+enZMDH38/3LxzB6lpaTAzMcHMCRPR2Jz3ObNqy2YEX7yIGeMnYGi/fjzTEFJb1POM1Ju4uDj2n7e3N+Tk5Di2bd26taFD/J9UXFyMkpKSatNJSkpCTU2wLw0AoKqqCikpqdqEVitDhgzBhQsXICwsXON9lZSUICsrWw9R/Vm3Q8Owb9tuDBw+BNt8d6Nx0yZYOtsLiQmJPNMXFhZCTkEeA0cMhaFJ1Q08fwNJUXF8SP6OzbePNnQoPAUcOoQjQUGYM3MmAg4cgLKyMiZOnYrs7Gy++zx/8QJeixbB1cUFQYGBcHVxwbyFC/Hy1St2GjVVVUyaMAGBfn4I9PODXfPmmDlnDj5++lT7mI8exZETJzBnyhQE+PhAWUkJE2fPRnZODv+YX72C1/LlcHVyQtD+/XB1csK8Zcvw8vVrdppAHx+EnDrF/tu5cSMAoHOFRsHNO3fi3sOHWL5gAU4EBGBo//7YsG0bwu7cqVWe7ty4Bb8de9Fv2CBs2r8dFlaNsXLOYvzkUw+KCkrrQb9hg2FgXHWjQmJ8Avx374eldeNaxSiIuzduw2/nPvQbNggb922DhXUTrJq7hG8+yupzP/dBAuQjEQG7fWFRz/kID70F3+17MGDEYGzZvxOW1k2wfM7CqvMgL48Bw4fAgM816cWT52jf2RErt67D+t1boKquhqWzvJD8M6lOYg69eh3bN2/FCI8R2H/ID9Y21pgzdRYS4uN5po/9EYs502bB2sYa+w/5YbjHcGzd6I2wGzfZaeTk5TDcYyR2HdgDv6AAdHPrjrXLV+PhvQfsNHm5uTA2NcG02TPqJB/Ar/p98iTmTJ6MgF27oayohIlz5lRfv1f8qt9795XW7+XL8TI6mp0mcNduhJw4yf7buX4DAKBzhw7sNJt37cS9yEgsn++FE37+GNqvPzZs346wu3cFjr8+yuJJ1GN07uqErbu3YfeBPVDXUMesSdPxM/EnO01mRgYmjvkXIiIiWL91EwKPH8bEaZMhIysjUNzXrl7Dlk2b4THaA4GHD8LG1gbTp0xDPN+4f2D61GmwsbVB4OGDGOUxCps2bsKN0BvsNC+eP8dCrwXo5toNh4IOo5trN3jN88LLly/ZaTIyMjDOcyyERUTgvXUrjp44hqnTpnJ8v7kUconjb+HiRWCxWOjUqVO1+bpxLRQ7Nm/DMI8R2H/wAKxsmmLONP7lEfcjFvOmzYaVTVPsP3gA7qNGYPsmb9y6EcZOIysni+EeI7DL1we+RwLQzc0Va1es4agbmRkZmDR2PERERLBu60b4HzuECVMnQaYOv7cF3ruDoAf3MNvZFf4e46AsI4PJRwKRnZ9f7b5x6WnYFnoVNrrcox4ycnMxNtAXIkJC2DpoGI79MxFTuzhDVkKizmIH6ue+JyMri37DB2Ptrk3Y4rsLnbp1wY61W/DkYVSdxh5w7CiOnDqJOZMmI2DnLigrKWLi3GquU69fwWvlCrh2cULQnr1w7eKEeSs4r1MrN23Cg6goLJ83H0f37UfL5naYMGcOEpN+ch0v7O4dvHrzBqrKynWat7+BEIv1V/79f0WNZ6TeaGhosP/k5eXBYrE4tt2+fRvNmzeHhIQEjIyMsGzZMhQVFbH3T0tLw7hx46Curg4JCQk0adIEFy5c4HiPK1euwMLCAjIyMnBxcWH37ACAkpISLF++HDo6OhAXF4eNjQ1CQkKqjDk7OxsjRoyAjIwMNDU1sWnTJq40BQUFmDNnDrS1tSEtLY2WLVsiLCysyuMuXboUenp6EBcXh5aWFqZMmSLw8cqGX164cAGWlpYQFxfHvn37ICEhgbS0NI73mTJlCjr8+vLLa9jmuXPnYGdnBwkJCaioqKBv377s1yoP24yJiUGvXr0gIyMDOTk5DBw4EAk8nlSX+fLlC1gsFo4fP4727dtDUlIS9vb2ePfuHSIjI2FnZ8cup58/y298kZGRcHJygoqKCuTl5dGhQwc8fvyY/XpYWBjExMQQHh7O3rZp0yaoqKiwy7vysE0DAwOsXLmSXZb6+vo4e/Ysfv78yc6TlZUVHj16xJGHU6dOoXHjxhAXF4eBgQHP8q9PZ46dglN3Fzi7uULXQB/jpkyAipoqLgWf55leXVMD/0ydiM4uTpBqwF6Dgrof8wr7HpzDrU9PGzoULgzDIOjYMXiMGoVOjo4wMTbGskWLkJeXh5CrV/nuF3TsGFra28Nj5EgYGBjAY+RItLCzw5Fjx9hpHNq3R7s2baCvpwd9PT1M/PdfSElK4kWFH02/HfPJk/AYNgydHBxgYmiIZfPmlcZ8/Tr/mE+eREs7O3i4u8NATw8e7u5o0awZjpw6xU6jqKAAFSUl9t+de/ego6WF5k3Leyg8f/UKPZydYWdjAy0NDfR1c0MjY2NEv3tXq3ydPxGMzq5d4dTDBTr6evCc/A+U1VRx5exFnunVNNXhOflfdHTuXGU9KC4uhvfKDRjsMQzqmpq1ilEQ508Eo5NrV3Tp7gwdfT2MnjQOymoquHLuEs/0ahrq8Jz8DxwFyMfWVRswaJQ71DU16it8AMDZ46fRpbszuvboBl0DPYyZ8i9UVFVx+cwFnunVNTUwdup4dHLpAmlp3g9jZi6eC9c+bjBqZAwdfV1MnD0VJSUMnkU9rZOYjx85hu69eqBH754wMDTAlJnToKquhjMng3nn8fQZqGmoY8rMaTAwNECP3j3h2rM7jh0KYqexbd4MDh07wMDQANo6OhgwZCCMTIzx/Gl5z9lWbVtj7Phx6NDJsU7ywTAMgk6fgsdQd3Rq/6t+z51bWr9DQ/nuF3T6FFo2t4PH0KGl9Xvo0F/1+yQ7DVf9vs+jfr9+jR5dK9TvHj1+1e+3AuehPspi8cql6DOgLxqZmULfQB+zF8xFCVOCqMjy+/nhgMNQU1fD/CULYNnYEppammjewg7aOjoCxR10+Ah69uqJXr17w9DQEDNmzoC6ujpOnTzFM/3pU6ehoaGBGTNnwNDQEL1694ZbTzccPnSIneZo0FG0aNkCozxGwcDAAKM8RsG+hT2OHil/mHQwIBBq6mpYvGQxGjdpDC0tLdi3aAGdCnErq6hw/N2+dQvN7ZpDW0e72nydOHIUrj17oEdvN+gbGmDyjKlQU1fD2VNneKY/96s8Js+YCn1DA/To7YZubtx1o33HDtA3NIC2jjb6Dx4IYxNjvHj2nJ3mSOBhqKmpYd5iL1hwlEf1MQuCYRgcfXgfo9q2R0dzSxirqWOJWx/kFRbiyqvnVe5bXFKCxWdOYayDI7QVFbleD7x3B2pycljs1geNtXWgpaCIFoZG0FFUqpPYy9THfa+JrTVatW8DHX09aGhrokf/3tA3NkT0i1c80/+O0uvUaXgMHYpO7duXXqfm/LpO3ajiOnXqNFo2b855nbJthiOnS+tYXn4+boTfxpSx49DM2hq62tr4Z+RIaGtq4OQ5zu/EiUk/sX77dqyY7wURERpUR+oXNZ6RBnHlyhUMGzYMU6ZMwevXr7Fnzx74+/tj1apVAEobvrp164aIiAgcOnQIr1+/xtq1azl6JeXk5GDjxo04ePAgbt++jZiYGMyaNYv9+tatW7Fp0yZs3LgRz58/h7OzM3r27In379/zjWv27Nm4efMmgoODcfXqVYSFhSEqivMJjYeHB+7evYujR4/i+fPnGDBgAFxcXPge9+TJk9iyZQv27NmD9+/f48yZM7CysqrR8XJycrBmzRrs378fr169wrBhw6CgoIBTFX7sFhcX4/jx43B3d+cZx8WLF9G3b190794dT548QWhoKOzs7HimZRgGvXv3RkpKCm7duoVr167h48ePGDRoEN/PrsySJUuwcOFCPH78GCIiIhgyZAjmzJmDrVu3Ijw8HB8/fsTixeVDpTIyMjBixAiEh4fj3r17MDIygqurKzIzMwGUN4wNHz4c6enpePbsGRYsWIB9+/ZBs4ofwFu2bEHbtm3x5MkTdO/eHcOHD8eIESMwbNgwPH78GCYmJhgxYgQYhgEAREVFYeDAgRg8eDBevHiBpUuXYtGiRX9saHFhYSE+vHsH2xbNObbb2jfHm5d190WH8PYjNhbJyclo1aJ8SIyYmBia2dri+YsXfPd7/vIlWrbgHEbTqmVLvvsUFxfjyrVryM3Lg7UV7+G4AsccF4fklBS0qlCPxcTE0KxpUzx/xf+cef76NVpWqvut7O357lNYWIhL166hZ7duHMPxbayscDsiAok/f4JhGDx68gQx37+jtb39b+epsLAQH99+QFP7Zhzbbext8eZVNJ+9BHMiMAhyCvLo0t25VscRRGFhIT6++wAbO85hXk3tmuHty/+NfJTm4T1suMqiGd7UMg8V5efno7ioCLJyte+FUlhYiHdv3sK+JWedtG/ZAi+f826sfvXiJVf6Fq1a4s3rNxwP9MowDIOoh4/w7WsMmjazqXXM/NSufnPeR1rZ2VVdv69fR0+XSvW7iRVu3+NRv+0Eq99/oiwAID8vD0VFRZCTk2Nvuxt+B2YW5lg8byF6du0OT/dROB98TuC437x5g5atWnLF8eI574aYFy9eoEWl9K1at0L062h23C+ev0DLlpXStGrFcczbt8NhYWGB+XPnwcXJGcOHDsOZ4DN8Y01OTsbdO3fRs1dPgfL19s072LfkLD/7lvZ4xbc8XnGlb9GqBd5GC1A3KgzNjQi/CzMLcyyZtxC9nXtgzDAPXDgjWHkIIjYtFcnZWWhlZMLeJiYigmZ6+nj+/VuV+/qGh0FBSgq9bJrzfD38/VtYaGph3qljcN6yHsP278aZJ494pv1d9XnfK8MwDJ5HPUXst++w5DPs/newr1PNK12nrAW4TjWv9D2kwnWquLgYxSUlEBMT40gjLiaGpxUePJaUlGDx2rUYPnBgtcNECakL1DxLGsSqVaswb948jBw5EkDpHEArVqzAnDlzsGTJEly/fh0PHz5EdHQ0TE1N2WkqKiwshI+PD4yNjQEAkyZNwvLly9mvb9y4EXPnzsXgwYMBAOvWrcPNmzfh7e2NnTt3csWUlZUFX19fBAYGwsnJCQAQEBDA8cTv48ePCAoKwvfv36GlVTrXwaxZsxASEgI/Pz+sXr2a67gxMTHQ0NBAly5dICoqCj09PbT49WNb0OMVFhZi165daFrhqfCgQYNw5MgReHp6AgBCQ0ORmpqKAQMG8P3MBw8ejGXLlrG3VTxeRdevX8fz58/x+fNn6OrqAgAOHjyIxo0bIzIyEvZV/DieNWsWnJ1Lf9RNnToVQ4YMQWhoKNq2bQsA8PT05GiQ6tyZc+6F/fv3Q0FBAbdu3UKPHj0AACtXrsT169cxbtw4vHr1CsOHD0efPn1QFVdXV/zzT+n8D4sXL8bu3bthb2/P/nzmzp2L1q1bIyEhARoaGti8eTM6d+6MRYtK5w4yNTXF69evsWHDBowaNarK96oLGenpKCkugWKlJ5+Kiop4nJJa7+///11ycjIAQFmJ82myspIS4vgMaSnbj9c+Zccr8+HDB3iMG4eCggJISkpiw9q1MKpmXrJqY05JKX2/SueMsqIiz/mMKu7Ha5+y41UWducOsrKy4ObCOYfN7MmTsXLjRrgOHAhhYWEICQlh4axZsKlFo2BmegZKSkqgoKjAsV1eURFptagH0S9e4frFK9i8f8dvH6MmyvIhXykfCooKSEv9/Xy8efEaoZeuYtP+7bWMsHoZ6RkoKS6BQqVzRUFJEal8zpXfEehzAEqqymjanP98UoJKT0tDcXExFCvVSSVlRaRUqpNlUpJToKRc6bqrpITi4mKkpaVBRUUFQOl3hH6uvVFQUABhYWFMnzuTq6GnLiWn1qZ+V7omKSohmc95F3b3bmn9duZsjJ09aRJWbtoE18GDyuv3zJkC1+/6LIuKfHb4QFVVFc1blP8Qj/sRi7OnzmDg0EEY5jEC0a9eY+umLRAVE4VL925Vxp32K24lJc7hX8pKSrifxDtuXvcBJSVljriTk5OhpFz5s+C8V8T++IHTp05jiPtQjPLwwKtXr7B54yaIiYrCtUd3rve9dOEipKWlueZN4yU9LR0lxcVQrBSDopJSFeWRDEUlzgY/ReXS8khPS4NyhbrRv3sfFBYUQEhYGNPnzIBdhUa32B+xOHuaszy2bfKGqKgonKspD0EkZ2cBAJQq9cBSkpZBXEYa3/2efYvBuWdPcGjMv3zT/EhNxemoRxjasjU82jrgVex3bLp6GaLCIuhubVPr2IH6u+8BQHZWNsb2H47CwkIICQlh3PSJsLFrVv2OAiq7rtT4OpXK53vIr+NJS0nB2tIS+w8dgqGeHpQUFXHl5g28fPMGutrlPRYDjh6FsLAwBvfpi/8qFv7/DpH8G1HjGWkQUVFRiIyMZPc0A0qfMuTl5SEnJwdPnz6Fjo4Ou+GMFykpKXbDGQBoamoiMbF0boCMjAzExsayG2zKtG3bFs+e8Z6g/OPHjygoKEDrCpN4KykpwcysfBLjx48fg2EYrrjy8/OhzGec/YABA+Dt7Q0jIyO4uLjA1dUVbm5uEBEREfh4YmJisLa25kjj7u6O1q1bIzY2FlpaWjh8+DBcXV25Gl/KPH36FGPHjuX5WmXR0dHQ1dVlN5wBgKWlJRQUFBAdHV1l41nFONXV1QGAo6eduro6u5yA0i+dK1euRFhYGBITE1FcXIycnBzExMRw5P/QoUOwtraGvr6+QKuCChIHUDo5r4aGBqKjo9Gr0kTnbdu2hbe3N4qLi7nmYsvPz0d+pbk0xMXFq42rWpXmEWDA/L9eErq+XL5yBavXrWP/2/vXnF6VP2uGYar/2sJVZtzH0dfXx5GAAGRmZeHGzZtYumIF9u7aVaMGtMvXrmH15s3lMa9ZwztmHtuqjbmKfJ69dAltWraEaqUfrkdPn8aL6GhsXrUKmurqePz8OdZ5e0NFWRktm/N+ii8orvgZ5re/QObm5GDrqo2YMHsK5BTkaxVXTXGXDQPUJh+rN2L8rCmQk/9z+eAuirq7Jp0+cgLhoWFYtW09xMTFqt9BQNz1uOo6wX1uMVzbpaSk4HvYH7k5OYiKjMLOLduhpa0F2+Z180P08vXrWL2lQv1ezad+C/L58yozPknPXr6ENi1acNfv4NN4Ef0am1esLK3fL55j3datUFGqWf2uj7IocyTwMEKvXsM2nx0c99+SkhKYWZhj3MTSRhFTM1N8+fQZZ08FV9t4Vh53pSiq+9x5lFNp3ByJKqXh/CxKSkpgYWmBCRNLF/4xMzfD50+fcOrUKZ6NZ+fPnYezi3ONvntU/hyZ0iD4p+eTL1SqG/sP+SE3NxePIx9hp/cOaFaoG8yv8hg7ofSBZiMzU3z59AVnT535rcazkJfPseZS+dC9LYPceecN/O8b2fn5WHz2FLxce0JBiv8w+RKGgYWmFiZ07AIAMNPQxKefP3HqcWSdNZ6Vqcv7XhlJKUls2r8Debm5eP74Gfx27oO6pgaa2FpXvzMPl0OvY/WWLex/e68qfcj/e9cpXuVVbvm8+Vi+cQO6DR4EYSEhmDVqBJdOnfDm18ic6HfvcDT4NA7t9qHvyeSPocYz0iBKSkqwbNkyjjm3ykhISEBSUrLaY1ReXZHFYlW4qZdvq6iqi3nlfXkpKSmBsLAwoqKiuBpTZGR4T0Srq6uLt2/f4tq1a7h+/TomTJiADRs24NatWwIfT1JSkivuFi1awNjYGEePHsX48eMRHBwMPz8/vrEL8pmW4fc5CXIzrFguZWkrb6u44IGHhweSk5OxdetW6OvrQ1xcHFZWVigoKOA4bkREBAAgJSUFKSkp1a4MKkgcANix8MpbVefEmjVrOHrxAaVDVt0njK4yLn7k5OUhJCzE1aMjLTWN62kkqT2Hdu3QxLJ8dbaCwkIAQFJyMkfvhpTUVCgp8Z/bRFlZmauXWUpKCtc+oqKi7MZoSwsLvI6ORtCxY1gwb57gMbdtyxnzrzqSlJIClQqN7SmpqVDi04gO/OoZV+k8S0lL45nPuPh4PHz8GOsrnet5+fnYuX8/Ni5fjna/Hjg0MjbGuw8fcOjYsd9uPJOVl4OQkBBSKz1tT09Lg7ySwm8dM/5HHBLjE7B6fnkeyup2/049sOPgPmho1+0caGX5qNxrID01/bfrc3xsaT7WeHHnY0BnN2wP3Fun+ZCTl/t1TaqchzSu3mi/IzjoJE4eOoplm9fAwLhuFjyRV1CAsLAwV0+a1JRUrh5QZUp7/6RwpRcWFoZ8hcZWISEh6OiW9kRvZGaKr1++4JD/wTprPHNo0wZNfq2oCAAFhXzqd1oalBRqWr95XxPiEn7V76U86revLzYuW452rVoBKKvfH3HoxHGB6nd9lgUABB08gkN+gdi80xvGjUw4XlNWUYaBkQHHNn0DA46J7vlR+BU313U9NZWr5xj7/XjcB1JTU37FrcBOw/1ZcN4rVFRUYFjpgYqBoQFuVlgwocyTJ0/w9etXrFyzius1XuQV5CHEozzSqrjHKfGIOa26umHaCF8/f8UR/0PsuqGsogx9QwOO4+gb6OP2zTCBYq+sfSMzNB5T3vuooLgYQGkPNJUKixCkZmdz9UYr8yM1BXHpaZh5/Ah7W8mv62nr1ctwYvxk6CgqQUVGBoYqqhz7Gqio4Oab16gr9XHfKyMkJARNndKRLYaNjPH9awxOHzn+241nDq3boIl5xevUr+9OvK5TVdzrlBV5XKdS0ziuUzpaWti7eQtyc3ORnZMDFWVlzF+xAloapfe5Jy9eICUtDT2Glq+OWlxSAu89Pgg6fQrnDx8BIXWNGs9Ig2jWrBnevn0LExMTnq9bW1vj+/fvePfuXZW9z/iRk5ODlpYW7ty5AweH8qXiIyIi2EMmKzMxMYGoqCju378PPT09AEBqairevXvHnoTf1tYWxcXFSExMRPv27XkehxdJSUn07NkTPXv2xMSJE2Fubo4XL1789vHKDB06FIcPH4aOjg6EhITQvTv3k8ky1tbWCA0NhYeHR7XHtbS0RExMDL59+8b+wf/69Wukp6ezl0uvKzdv3sTu3bvZ5fT161ckJXGuuvbx40dMnz4d+/btw/HjxzFixAiEhoZCSKjupm20tLTEnUqrBEZERMDU1JTnCqDz58/HjBmcq6qJi4sjJp1/N/WqiIqKwsTUFE8jH6ONQ/lS3U8jH6Nluza/dUzCn7S0NEcDLMMwUFZWxoPISJj/6m1aWFiIx0+eYPKECXyPY92kCR5ERsJ9SPmXtwcPH1Y7nxnDMCj89aVT4JilpCBdYUVchmGgrKSEB48ewbxRo/KYnz3D5HHj+MdsaYkHUVFwrzDE+8GjR7BuzL1y47mQECgqKLAbyMoUFRWhqKgIrEp1UEhIiP0D5HeIiorC2MwEzx49Qav25ef9s0dP0KJtq986praeLrYc2MWxLcg3ELm5uRg96R8oq3EPBastUVFRGJuW5qNlhXw8j3oC+1rlg3PKgSO+B5GXk4vRk8fVeT5K89AIzx49QWuH8l7cTx89Qct2v5eHMqeDTuBEYBCWblyFRuY1v8fzIyoqClNzMzx6EAmHjuUrRz56GIl2Fa6rFTW2aoKIcM4VJCMfPIS5pXmVk08zDFBYULM6XBW+9Tsqirt+jxWgfvevWL+jqq7frTjLk12/Kz1QEhISEmi1b6B+yyLo4GEE+gZg4/bNMLfk/k5i1dQa377GcGz7FhMDdY3qF9gQFRWFubk5Hj54yDEc8uGDh3Do4MBzHysrK4SHc35/eHD/ASwsLdhxW1lb4cGDhxjiPrQ8zYMHsKrQS966qTW+fv3KcZyYrzHQ4LEwyPmz52BuYS7wd2RRUVGYmZvi0cNItOcoj0doy7c8GiPiTgTHtsgHkTCzqLpugGHYjb8A0MTaikd5fBOoPHiRFheHdIXedgzDQFlaBg8+f4TZr4aVwuIiPI75ikmduvA8hr6KCoLGct7bd9+6gZyCfMx06gb1X3PoWevq4WsK53fSmJRkaMgr/FbsvNTHfa8qtblu8b1OPa50nXr+DJOrGO1ibWmJB4+j4N6/P3vbgyje30MkJSUhKSmJjMxM3HsUiSm/rn+uXbqgRTPOhxeT582Faxcnrmkm/pdRr7q/CzWekQaxePFi9OjRA7q6uhgwYACEhITw/PlzvHjxAitXrkSHDh3g4OCAfv36YfPmzTAxMcGbN2/AYrHgIuAFcfbs2ViyZAmMjY1hY2MDPz8/PH36FIcPH+aZXkZGBp6enpg9ezaUlZWhrq6OBQsWcDTQmJqawt3dHSNGjMCmTZtga2uLpKQk3LhxA1ZWVnB1deU6rr+/P4qLi9GyZUtISUnh4MGDkJSUhL6+PpSVlWt8vIrc3d2xbNkyrFq1Cv3794dEFUtnL1myBJ07d4axsTEGDx6MoqIiXL58GXPmzOFK26VLF1hbW8Pd3R3e3t4oKirChAkT0KFDB76LDPwuY2NjBAQEoHnz5khPT8esWbM4eskVFxdj+PDh6Nq1Kzw8PNCtWzdYWVlh06ZNmD17dp3FMXPmTNjb22PFihUYNGgQ7t27hx07dmDXrl0804uLi9fNMM0Keg/qh80r18HE3BQWjS0Qcu4SfiYmwrV36dxv/j6+SE5KwsyFc9n7fHr/AQCQl5uL9LR0fHr/ASIiotAz5F5yvaFJiopDR778Ca6WnAoaqeggIy8bCVkNO68bi8XCkEGD4BcQAD0dHejq6sIvIAASEhJw6dqVnW7xsmVQU1XFpF8NaoMHDsS4CRPgf/AgHNu3R1h4OB5ERsJ3zx72Pjt370ab1q2hrq6OnOxsXLl+HVFPnmBbhaEPvx1z//7wO3y4NGYdHfgdOlQac5fyHwyLV68ujfnXF9nB/fph3NSp8A8KgmPbtgi7excPoqLgu20bx/FLSkpwPiQEPZydIVK5Z6y0NJo1bYqtPj4QFxcvHdb17BkuXb2K6VU0NgrCbUAfbFu9CSZmjWDW2BxXz4cgKeEnuvYsvR4e2uuH5KRkTPUqXyDm8/uPAErrQUZ6Oj6//wgRUVHoGuhBTFwM+pV6oUj/6tlbeXtdchvQB9vWbILxr3xcu/ArH26/8rHPHyk/kzHFa2Z5Pj5UyEdaOj5/+AgRkV/5EBODXqXeG9IypQ3AlbfXlV4D+8J71YZfZWGBK+cvIykxES69Sh/UBO45gOSkZExfUH4t/vSrLHJz835dkz5CRFQEegal16TTR07gsG8gZi6aCzUNdaT+6mkkISkJSSnBe0jzM3DoIKxasgJmluZobNUE54PPIjE+Ab36lc6TuWfHbiT9TMKCZaXzW/bq2xvBx09hx5Zt6NG7J169eImLZy9g8aql7GMe8guEmaU5tLW1UVhUhPt37+HKxcuYOa/8HMzJycGPb9/Z/46LjcX7t+8gJy/3W40ELBYLQ/r2g9+Rw9DT0Yautg78jhwurd8V5gpdvHYN1FRUMGnMr/rdty/GTZvGWb8fR8F3K5/63bUr//q9dw9n/b52FdPHjxc4D/VRFkcCD8PXZx8WrVwCDU1NJP+ah0xSShJSv37UDxgyCBM8/8FBvwB07NIZ0a9e43zwOczy4v6+w8sQ96FYungJzC0sYGVthTOng5EQH4++/UpHS+zcsRM/ExOxdHlpj72+/frixPET8N68Bb369MaL5y9w7uw5rFi1kn3MQYMH499x/yDQPwAOjh1wO+wWHj54iL2++8rfd+hQjBntCf8Dfujs1AWvX73CmeAzmL/AiyO+rKwshF4PxdRpUwUuCwAYMHQwVi9ZATOLsvI4h4T4BPTs2xsAsHenD5ISf8LrV3n07NsbwSdOY+eW7ejR2w2vXrzEpXMXsGjlUvYxD/sfhJmFObR0tFBYWIQHd+/hyqUQTJ87q8L7DsJEz39xyC8Qjl064c2r17hw5hxmClge1WGxWBjcohX874ZDV1EZekpK8IsIh4SoKJwblzdOLjl3GmqyspjY0QniIqIwVlPnOI7sr+/QFbcPbdEangH74Xf3NrpYNMar2B848yQKXq7VL9JQE3V93wOAU4ePwdisETS0NFFUWITHDyIRdiUU46ZPrLO4S69TfeF35Aj0tHWgq60NvyNHSq9TnSpep9b+uk6NAfDrOjV9GvyPBsGxTVuERdzFg8eP4eu9lb3PvchIMAwDfV1dfIv9gW1790JfVxc9f/0OVJCXh0KlKQxERESgrKQEgwrTzhBSl6jxjDQIZ2dnXLhwAcuXL8f69evZT/rG/LqoAsCpU6cwa9YsDBkyBNnZ2TAxMcHatWsFfo8pU6YgIyMDM2fORGJiIiwtLXHu3Dk0+vVkhJcNGzYgKysLPXv2hKysLGbOnIn09HSONH5+fli5ciVmzpyJHz9+QFlZGa1bt+bb0KWgoIC1a9dixowZKC4uhpWVFc6fP8+e06ymx6uoUaNGsLe3R2RkZLXzgDk6OuLEiRNYsWIF1q5dCzk5OY5eeRWxWCycOXMGkydPhoODA4SEhODi4oLt2+t+kmo/Pz+MGzcOtra20NPTw+rVqzlWTV21ahW+fPmC8+dL57fQ0NDA/v37MXDgQDg5OcHGxqZO4mjWrBmOHz+OxYsXY8WKFdDU1MTy5cv/yGIBZRw6OyIzIwNH/Q8hJTkF+oYGWLp+FdQ0Sr/IpSYn42dCIsc+U0aX/5D58PY9bl27ATUNdRw4ceiPxS0oc1V97OhT3ltvSrvSnhGXou9h1Y2AhgqLbeSwYcjPz8fajRuRmZmJJpaW2OHtzdFDLT4hgaNBvam1NVYtX47de/bAZ+9e6GhrY83KlWhS4elpckoKFi9bhqTkZMjIyKCRsTG2bdnCsbLnb8c8eHBpzN7epTFbWGDHhg0cT4bjExM5Y27SBKsWL8ZuX1/4HDgAHS0trFm8mGNIKAA8jIpCfEICenbjPSfN6sWLsXPfPixatQoZGRnQUFfHeE9P9OtZux8V7Tp1QGZGJo4HHEFqSgr0DA2wYN2yCvUgFUkJPzn2mTl2Mvv/P777gPDrYVBVV8OeY/61iqU22nZyQGZGBk4EBpXmw0AfXmuXQU1DDQCQmpyCpETOfMwaO4X9/x/ffUB4aGk+fI7yH5Jfn9p37oDMjAwcCziMlORU6BvqY/G6FRXKIgVJla5J0z3Lf5h9fPset6/fhJqGGvYdDwQAXD5zHkWFhVi3eCXHfoNHuWPI6OG1jrlz1y7ISM9AwP7SH5uGxkZY572R3XsnOSkZCfHlPYS1tLWw3nsjtm/ZhuATp6GsqoKps6bBsVN5r6PcvDxsXrcJPxMTIS4uDj19fSxcvhidu5Y3Ur+NfoOp/5afhzu2lN4vXbp3g9fShb+Vl5GDByO/IB9rt24tr9/r1nPXb1aF+t24CVYtXITdfgfg4+9XWr8XLeIYEgoADx9HIT4xET1d+NTvhYuwc/8+LFq9ChmZmaX1e7Qn+rkJXr/royzOnDyNwsJCLJ7L+ZmOGjsao8eVLqBk0dgCqzaswZ6dPgjY7w8NLU1MnjEVXbsJtkKtU1cnpKen48B+XyQlJcHI2Bhbtm5hr/CdnJRUKW5tbNnqDe/NW3DyxEmoqKpg5qyZ6NS5EzuNdVNrrFi1Ent2+2CPzx7o6Ohg1ZrVaNKkfOVDy8aWWL9xPXbt2AXf/b7Q0tLC9Jkz4NKN86HxtavXwDAMurrUbMXdTk6dkZGejgBff6QkJcPQ2BDrtmzgLI8Kk7xramthrfcG7NyyHWdOnoayigomz5yGDp0c2Wlyc3OxZT1n3ViwfDE6OZU3nJhbWmDF+tXYt2sPAnz9oamliUkzpsDJpfzBVG2NaN0O+UVFWB9yAZl5eWisrY3tQ4Zz9FBLSE+HUA178VhqaWN9/8HYdfM6fMNvQUtBATOcXODS5PeGPfJTH/e9/Nw87NuyC8k/kyAmLgZtPV1MXTAL7Tp1QF0aOWgw8vMLsHZbhevU2nU8voeUf/ZNGzfGqoULsdvPDz7+/qXXqYWc16ms7Gzs8N2PxKQkyMnKolP79pjoMbrqXo+E1DMWI8hET4QQQgTyPjGm+kR/uUZqemi7k//qU/8r7k70QWYdrgrYEGSVlJAZG9vQYdSarJYWXsV9bOgwaqWxpjFexn5o6DBqrYmWCd4kfG7oMGrNXN0QCRlJ1Sf8i6nLqSDz+4+GDqPWZHW0/xNlkZaZXn3Cv5yCrDzi0n9Wn/AvpymvivTAow0dRq3Ijxj8P3/fA0rvfZkVetX+L5L9NSff/yKPY4LNa/in+Q1a0NAhNIi6mzCIEEIIIYQQQgghhJD/GGo8I4QQQgghhBBCCCGEDxo0TAghhBBCCCGEEPIXodU2/y7U84wQQgghhBBCCCGEED6o8YwQQgghhBBCCCGEED5o2CYhhBBCCCGEEELIX0QINGzzb0I9zwghhBBCCCGEEEII4YMazwghhBBCCCGEEEII4YOGbRJCCCGEEEIIIYT8RWi1zb8L9TwjhBBCCCGEEEIIIYQPajwjhBBCCCGEEEIIIfVi165dMDQ0hISEBJo3b47w8HC+aUeNGgUWi8X117hxY3Yaf39/nmny8vLqLQ/UeEYIIYQQQgghhBDyF+HVOPQ3/NXUsWPHMG3aNCxYsABPnjxB+/bt0a1bN8TExPBMv3XrVsTFxbH/vn379n/s3Xd4U9X/wPF30pHuvekCWkZbVtl7T9kiqKggoCKKAycuRBRcKOIAQWSJLBkie+8NZe9ZoHvvleT3RyBt2qQU2lp+fj+v58nzNLfn3JyTu3I/9wxcXFx44oknDNI5ODgYpIuOjsbKyuqhvuuykOCZEEIIIYQQQgghhKhw3333HSNHjmTUqFHUrVuXadOm4efnx4wZM4ymd3R0xMvLS/86evQoycnJPP/88wbpFAqFQTovL69KrYcEz4QQQgghhBBCCCHEfeXm5pKWlmbwys3NNZo2Ly+PY8eO0a1bN4Pl3bp1Y//+/WX6vDlz5tClSxcCAgIMlmdkZBAQEICvry+9e/cmIiLi4SpURhI8E0IIIYQQQgghhHiEKFE8kq8pU6bg6Oho8JoyZYrROiQkJKBWq/H09DRY7unpSUxMzH2/g+joaDZs2MCoUaMMltepU4d58+axZs0aFi9ejJWVFa1bt+by5csP/4Xfh3mlrVkIIYQQQgghhBBC/GeMHz+ecePGGSxTqVSl5ik+VppWqy3T+Gnz5s3DycmJ/v37Gyxv0aIFLVq00L9v3bo14eHh/Pjjj0yfPv2+630YEjwTQgghhBBCCCGEEPelUqnuGyy7x83NDTMzsxKtzOLi4kq0RitOq9Xy+++/8+yzz2JpaVlqWqVSSdOmTSu15Zl02xRCCCGEEEIIIYR4hFT1rJoVMdumpaUljRs3ZsuWLQbLt2zZQqtWrUrNu2vXLq5cucLIkSPv+zlarZYTJ07g7e39QOV7ENLyTAghhBBCCCGEEEJUuHHjxvHss8/SpEkTWrZsyaxZs4iMjGT06NGArhvonTt3WLBggUG+OXPm0Lx5c8LCwkqsc+LEibRo0YLg4GDS0tKYPn06J06c4Oeff660ekjwTAghhBBCCCGEEEJUuCFDhpCYmMhnn31GdHQ0YWFhrF+/Xj97ZnR0NJGRkQZ5UlNTWbFiBT/88IPRdaakpPDiiy8SExODo6MjjRo1Yvfu3TRr1qzS6qHQarXaSlu7EEIIIYQQQgghhHggr6z8tqqLYNTPA9+u6iJUCWl5JoQQFei3g2uqugjlNqpFX9KTkqq6GOVm7+JC659HV3UxymXfKzNJefODqi5GuTl9P5mnF02o6mKUy59DJ9J+xitVXYxy2/Xyz6RfvlLVxSg3++Agdl89XtXFKJd2NcN5d+1PVV2Mcvu696v/7699o1r0fWRvUh/EzwPf5oXlX1Z1Mcpt9hPv02nm2KouRrlsH/0jzy3+rKqLUW4LnvrkP7EthKgIMmGAEEIIIYQQQgghhBAmSMszIYQQQgghhBBCiEfIg85sKSqXtDwTQgghhBBCCCGEEMIECZ4JIYQQQgghhBBCCGGCdNsUQgghhBBCCCGEeIQokG6bjxJpeSaEEEIIIYQQQgghhAkSPBNCCCGEEEIIIYQQwgTptimEEEIIIYQQQgjxCFHKbJuPFGl5JoQQQgghhBBCCCGECRI8E0IIIYQQQgghhBDCBOm2KYQQQgghhBBCCPEIUUi3zUeKtDwTQgghhBBCCCGEEMIECZ4JIYQQQgghhBBCCGGCdNsUQgghhBBCCCGEeIRIt81Hi7Q8E0IIIYQQQgghhBDCBAmeCfE/Iicnh88//5zY2NiqLooQQgghhBBCCPH/hnTbFOJ/xMcff0xaWhqenp5VXRQhhBBCCCGEEKVQIt02HyXS8kyI/wG5ubm4uroyffr0qi6KEEIIIYQQQgjx/4oEz4T4H6BSqXj//fdRqVRVXZQSdu7ciUKhICUlpcx5AgMDmTZtWrk+V6FQsHr16nKtQwghhBBCCCHEf5902xTif8D+/ftp27YtXbt2ZePGjVVdHFFExLb9HFm/k4zUdNx8POk0tC++tWvcN9/tS9dZMmUmbr6eDJ80Tr/8zJ4jbPhtWYn0b86ejLmlRYWW/R6tVsusOXNY9fffpKelERoayntvv03NGqXXY9uOHcycNYvbd+7gW60aY156iY4dOuj//9fKlfy1ciXR0dEA1KhRg1EjRtC6ZctKqUdZNPAO4ulG3ajj4Y+brRPvr5/Bnusnq6w8plh174xly6YorK1RR94ia8UaNDFxJtPbvTIK86CS2yv/3AUyZy/Qr9OqR2eD/2vS0kmbMKViCw90CW5K75DWOFnbcSclngXHNnAxPtJk+taB9egd0gYvexey8nM5FXWFRcc3kZGXDUBTv7r0C22Lp70LZkozYtISWX9hP3uvn6rwshfVP7QtTzbsgouNIzeSo/lp31+cir5aSvp2DKzXHi97F2Izkvnj2EY2XTpskGZQ/Y66utg5k5qTyc6rEcw+9Dd56oJKqYNWq2XWn3+yatNG0jMyCK1Vm/defpmaAQEm81y9eZOZi/7gwpUrRMfFMe6FF3i6X3+T6ecuW8bPC+bzVN9+vPXii5VQC9ixdjObVqwlNSkFnwBfhrz4HLXC6hhNe3zfYXau28KtazcpyC/AJ8CXPkMfJ6xxA32afVt2Me/7mSXy/rJ6PhaWlpVSh5YBYbSvGY69yobY9CTWnNvDjaRok+nNlEq6BDcjvFot7FW2pOZksO3KUY7eOg/ASy0HUNO1Wol852NvMPfI2kqpA1T8dQ8gJzObPSs2cPnoGXKysnF0c6HjU72p0aBuZVWDtjUa0iW4KY5WtkSnJfDXqR1cTbxjNO2zjXvQIiCsxPLotAQ+3zoPgAY+wXSv3Rx3WyfMlGbEZySz7fJRDt86V2l16FCzEd1rN8fRyo6otASWntjK5YTbRtM+3/QxWgXWK7E8KjWeCZvn6N9bW6gYENaORtVqY2tpRUJmCstObudMzLVKq0ff0LYMadAZVxsHbiRH8/O+lZyOMX2u7Rfalv5h7fCydyEuI5k/jm9mS7Fzra2lNSOb9aZt9QbYq2yITk9k5oFVHIqsvO1RXOegJvSq2xJHa3vupMax6PhmLpVyLWwZEMZjdVvhae9Kdn4Op6KvsiRii/5a+G/4r26LqiKzbT5aJHgmxP+A33//nbFjx/Lbb78RGRmJv7+/ybRarRa1Wo25uZweKtuFQyfYvmgNXZ8bQLVagZzccZC/ps5hxJS3cXB1NpkvNyub9bOWEBASRGZaeon/W1pbMfLLdwyWVVbgDGD+H3/w5+LFTPj4Y/z9/Jgzbx6vvP46K5YswdbW1mieU6dP88HHHzP6hRfo2L49O3bt4v2PPmLOr78SFhoKgIe7O6+OGYOfry8Aa9ev561332XR/Pn3DcxVFmsLFVcSb7P+wn4m9xxdJWW4H1Wndqg6tCbrzxWo4xOw6toRu9EjSJvyHeTmGc2TOXcRmJnp3ytsbbB/eyz5J84YpFNHx5Ixo/AmCY22wsvfIiCU5xr34Pcj67gUH0nn4Ca81/EZ3ln7M4lZqSXS13b35+WWA1l4fCPHb1/ExcaBEc1680KLfny/ewkAGbnZrD6zm6i0BAo0asKr1ealFv1Jy8ksNZhVHh1rhvNq60F8v2cpZ6Kv0ie0DV899grDlkwiLiO5RPp+oW15sUVfvtn5JxfiblLXM5B32j9Nem4W+2/qtkOX4Ka82LwfX+/8gzMx1/B19GB8p2cB+Hn/ikqpx/wVf/Hn6lVMePNN/H2qMWfpUl75+CNWzPwVWxsbo3lycnPx9fKiS+s2fPfb7FLXf/bSJVZt2khwYPXKKD4AR3YdYOmsBQwdM4KgkNrs2rCV6Z98ycSZ3+Lq4VYi/aUz5wlpVI8Bw5/ExtaGfVt28dPEb/jg+0n41ywsp7WNNZNmfWeQt7ICZw28g+gT2pbVp3dxIzma5v6hjGzWh6k7/yQlJ8NonmfCe2CnsmH5qe0kZqZip7JGqSjsdLLg6HrMlIXHva2FFW+0e5JT0VcqpQ5QOdc9dUEBy7+ZhY2DHX1ffRZ7FyfSk1KwtKq81vbh1WozqH5Hlp7YytXEO7Sp3oBXWj/OpC1zSc4ueV1efnI7f5/ZrX+vVCoZ32kYx+9c0i/Lysth08WDxKQnodaoCfOqyTONe5Cem8X5uBsVXocmvnUY0rALi45v4krCHdrXaMhrbQczYeNvJGWnlUi/JGIrK07t1L83Uyr5pOsIjt6+WLhMoWRcuydJy81k5oFVJGen42LtQE6B8WtPRehQM5xXWg3khz3LOBNzjT4hrfnysZd5fukXRs+1fUPaMKp5H6buWsLFuJvU8QjgrfZPkZGbxYG751pzpRnf9H6FlOwMPt0yh4SMFNztnMnKz620ehTX3D+EoeHdmX90PZcTbtExKJy32z/N+PW/kJhVcvvUcvPjpRb9WRSxmYg7l3Cxtmd408cY0awP0/eWfKhaGf6r20KIe6TbphD/cZmZmSxbtoyXX36Z3r17M2/ePIP/3+s2uWnTJpo0aYJKpWLPnj1otVq+/vpratSogbW1NQ0aNOCvv/7S51Or1YwcOZLq1atjbW1N7dq1+eGHH+5bnvXr11OrVi2sra3p2LEjN27cKJFm//79tGvXDmtra/z8/HjttdfIzMwsc52PHDlC165dcXNzw9HRkfbt23P8+PFS87z33nvUqlULGxsbatSowccff0x+fn6ZP/NhHN24m3rtmlK/Q3NcfTzpNLQf9i5OnNh2oNR8m+etIKRlI3yCjLf8UCjAzsnB4FVZtFoti5cu5fnhw+nUoQNBNWsy8eOPycnJYePmzSbzLV66lOZNm/L8sGEEBgby/LBhNGvShD+XLtWnade2LW1atSLA358Af39eGT0aG2trTp85Y3K9le1g5FlmH1rDrmsnqqwM96Nq34qcLTvJP30WTUwsWX8uR2FpgWV4Q5N5tFnZaNMz9C+LWkGQn0/eydOGCTVqg3TaBzguy6pXnVbsvBrBzqvHiUpLYOGxjSRmpdGlVlOj6YPcfInPTGHTxUPEZ6ZwMT6SbZePUcPFR5/mfNwNjt6+QFRaAnEZyWy8eJDIlFhqu5tuPVVegxt0Zv2FA6w7v5+bKbH8tG8F8RnJ9AttazR9t1rNWHNuHzuuHic6PZHtV46x7sJ+nmrUTZ8m1LM6Z2KusfXyUWLSkzh6+wLbLh+jjofpByLlodVqWfz33zw/ZAidWrUmKDCQiePGkZOby8Zdu0zmC61Vi9dHjKR7+/ZYWpgO3GdlZ/Pxt9/w4dix2NvZVUYVANiyah1tunWkbY9OePtX48mXhuHs7squdVuMpn/ypWH0eKIv1WvVxLOaNwOHP4mHjxcnDxW7jigUOLo4GbwqS9saDTkSeY7Dt84Rl5HMP+f2kpKdQQsjLYEAarn7U8O1Gr8f/ocrCbdJzk7nVkocN5Nj9Gmy83PJyM3Sv4Ld/chXF1Rq8Kwyrnundx8hOyOL/q8Nx7dWdRzdnPGtVR0Pfx8ja6oYnYObcODGafbfOE1sehIrTu0gOSudtjUaGk2fU5BHWm6W/uXv5IWNpRUHbxRezy4n3OJk1BVi05NIyExl59Xj3EmLp6ZbydaBFaFrrWbsvX6SvddPEZOeyNKT20jOSqN9zUZG02cX5JKWm6l/BTjr6rDvRmEL3jbV62NjacUv+1ZyNfEOSVlpXEm8ze1U0y2fy+uJ+h3ZcOEA6y8cIDIllp/3ryQuI5m+IW2Mpu9aqylrz+1j591z7Y6rx9lw4QBPNuyiT9OzTgscVDZ8vGkWZ2OuE5uRzJmYa1wz0bKwMvSo3ZJd1yLYdS2CqLQEFh3fTFJWKp2CmxhNX/PutXDLpcMkZKZwKeEWO64co7qL979W5v/qthDiHgmeCfEft3TpUmrXrk3t2rV55plnmDt3LlptydYi7777LlOmTOH8+fPUr1+fjz76iLlz5zJjxgzOnj3Lm2++yTPPPMOuuzdMGo0GX19fli1bxrlz5/jkk0/44IMPWLbM9NOtW7duMXDgQHr16sWJEycYNWoU77//vkGa06dP0717dwYOHMipU6dYunQpe/fu5dVXXy1zndPT0xk2bBh79uzh4MGDBAcH06tXL9LTSz4Nvsfe3p558+Zx7tw5fvjhB2bPns33339f5s98UOqCAmJu3CEwrJbB8sCwWty5ctNkvtO7j5ASl0ir/l1NpsnLyePXcV8w443PWfHd78TerLwfGHeiokhMTKRFs2b6ZZaWloQ3asSp06dN5jt15gzNi+QBaNG8uck8arWaTVu2kJ2TQ/16xm8WBShdnVE6OFBw8XLhQrWagivXMa9e9gCLZfMm5EWcgjzDALLSzQ2HT9/H/qO3sXn2SZSltBR5GGZKM6q7eJe4eT8dfZVabn5G81yKv4WLjQMNfYIBcLCypbl/CBFRl4ymB10QytvBrVJac4DuSXktdz+O3O0ed8+RW+cJ8zLeatLCzJy8AsPvO7cgn7oeAZgpdT/XTsdcpZa7H3U8dAEEb3tXWgSE6p/QV7Q7sTEkJifTolG4fpmlhQXhYWGcOn++lJxl89WMGbRu2pTmDY3frFeEgvwCbl65Tkh4fYPloY3qc/W86X2kKI1GQ252Drb2hgG+3Owc3hs2lneefYXpE74m8ur1Cit3UWYKJdUcPbiUcMtg+eWEWwQ6exnNE+JZndspcXSoGc6HXYbzTodneKxua8yLtDQrrqlfCCejLpNfSV2AK+u6dyXiHD5BAWxdsIqfx05k7gffcvCfbWg0mgot/z1mCiV+Tp4lzh/n424YBO1L0yqwHhfjbhpt4XVPbXd/PO1cuGKiG2V5mCmUBDh7cS7mhsHys7E3yhysa1O9Aedjb5BUpBVUA59griXe4enwbkztM5ZPu42kV52WKCppxsB759qjty4YLD96+wKhXsZbs1qYmZfo5p5bkE+dIufaVoH1OBt7g9fbDOav575gzuDxPN2oG8p/qQudmVJJoIs3Z4p1dzwdc41gE9fCywm6a2F97yBAdy1s6q87pv8N/9VtUdWUCsUj+fpfJf2yhPiPmzNnDs888wwAPXr0ICMjg23bttGlSxeDdJ999hldu+p+mGZmZvLdd9+xfft2Wt4dX6pGjRrs3buXX3/9lfbt22NhYcHEiRP1+atXr87+/ftZtmwZgwcPNlqWGTNmUKNGDb7//nsUCgW1a9fm9OnTfPXVV/o033zzDU8//TRvvPEGAMHBwUyfPp327dszY8YMrKys7lvnTp06Gbz/9ddfcXZ2ZteuXfTu3dtono8++kj/d2BgIG+99RZLly7l3XffNZo+NzeX3FzDJuMPMiFDdnomWo0GW0d7g+W2jnZkphoP8iXHxLN7+Xqe+nAMSjPjN0Au3h70HDUYdz9v8rJzOLZ5L39+/jPDJ72Js5d7mctXVomJiQC4urgYLHd1cSE6JsZYFn0+Y3nure+eK1eu8PyLL5KXl4e1tTXffPklNapXXveu/+8U9rr9SZNu2I1Lk5GB0tmpTOsw8/fFzMeLrKUrDZYX3LyF+s/lqOMTUNrb6bqDvjaa9K+moc2qmPFU7FU2mCnNSM0xbNGWmpOBo7XxlkmXE27x874VjG3zBBZm5pgrzTh66wLzj6w3SGdtoeLnAW9hbmaORqth7uF1lTYGj6OVHeZKM4ObSkDXhcnGeEvQI7fO07tuK/ZeP8mlhFvUdvenV52WWJiZ42hlR1JWGtuvHMPJyo6f+o9DgQJzMzNWn9nNnxHGW1CVV2KyrpuNq5OTwXJXJyei4+LLte5Nu3Zx4eoVFnw/rVzruZ+MtDQ0Gg0OTo4Gy+2dHUlNLtkN2JgtK9eRm5NLk7Yt9Mu8/Hx4ftxoqgX6k52Vzba/N/DV25/yyU9f4lmtYlt62FpaY6ZUkpGbZbA8PTcLe5XxrrOuNg4EunhToFGz4Oh6bC2t6R/WHhsLFctPbS+R3s/JA28HV/46ta1Cy15UZV33UuMTiTyfTEjLRjw+biTJsQlsXbAKjVpT6oOmh2Wn0m2PtJyS28PByvhQBUU5WNkS4lmdeUfWlfiflbklk3uNxlxphkarZemJrVyIMx1YfFh2KhtdHXINz7XpOZk4lqEOjla2hHnV4LdDawyWu9k6UccjgEORZ/lhzzI87V3uBjqUrD2/r0LrcK8cZkqzEl1lk7PScfEzda69QK86Ldl7/RSXE25Ry92PHnVaGJxrve3daOTjwtbLRxm/fia+ju681nYwZkolC49V/tjB9ne3T/FrYVop2+dKwm1mHljFK60f118Lj9+++K+UF/6720KIoiR4JsR/2MWLFzl8+DArV+pugs3NzRkyZAi///57ieBZkyaFzcDPnTtHTk6OPph2T15eHo0aFbYQmDlzJr/99hs3b94kOzubvLw8GjZsaLI858+fp0WLFgaDX7YsNvj7sWPHuHLlCosWLdIv02q1aDQarl+/Tt269x/8Ny4ujk8++YTt27cTGxuLWq0mKyuLyEjTg6z+9ddfTJs2jStXrpCRkUFBQQEODqa7O06ZMsUgeAgwYcIEfHuEm8hhQrGHN1qtrttlcRqNhrUz/6T1gG64lBIE8wkKMOjWUi04kPkTpnF86z46P9P/wcpmxIZNm5hcJNg57dtvgZIDmmq12vs/Zy6ex8h6AgIC+HP+fNIzMti+YwefTprErF9+kQDaXRbhDbAZ3F//PuPu4P4lKXRfcBlYNm+COioGdaRha4eCC4WtdDTRsWTciMThw7exbBpO7q6KvikqXliF7uAwopqDO8Oa9GTV6V2cjL6Cs7UdTzfqxohmfZh96G99upz8PMavn4mVhSWhnjV4pnF34jKSK631mSnGWv4CzD+6ARdrB2YMfAcUuhuOjRcP8nSjbmi0uhY0DX2CeaZxD77fs5TzsTeo5ujO2NaDSMxKZUEF3ERs2LGDyT//pH8/bcKngLHj2/h5qqxi4uOZOnsWP302CVUljRFWXInyarVlGoj50M59rFm0glc+ecsgAFezTjA16wTr3weF1GLSax+w/Z9NPDV6eAWV2lDxXUeB6cP6Xt0WR2zWjze19txenmnck1VndlGgURukb+oXQnRaIrdSKq97XWHhDN+W97qn1Wixsbej2/ODUCqVeFX3JSMllSPrd1VK8KzIJxtZcv8TbQv/ULLzc4y2CMotyGPKtgWozC2o7R7AwHodSMhM5XKxVocVxdj5yMQpykCrwHpk5ecQccew9aZSoSAtN5MFRzeiRUtkSixOVnZ0q928UoJn9xT/3hWmLxksPLYRFxt7fh7wFgqF7qHGpouHeKpRV31rRYVCQXJ2Ot/tXoxGq+Vywi1cbR0Z0qDzvxuwMVIHU5vHx8GNZ8J78PeZ3ZyOuYqTlT1DGnVheNPHmHP4n0otpmH5/qPbQggkeCbEf9qcOXMoKCigWrXCJvharRYLCwuSk5Nxdi7sclV0YPd7F6x169YZ5IXC1lXLli3jzTffZOrUqbRs2RJ7e3u++eYbDh06ZLI8pm4ai9JoNLz00ku89tprJf5X2kQHRQ0fPpz4+HimTZtGQEAAKpWKli1bkpdnfMDagwcP8uSTTzJx4kS6d++Oo6MjS5YsYerUqSY/Y/z48YwbZzjbl0qlYmHEpjKV0dreFoVSSWaK4RO6rLQMbBzsS6TPy84l5vptYm9GsXXhauDu96nV8u3z7/HEOy8QEBJUIp9CqcS7uh/JMQllKtf9tGvThrCQkMJy3R0XLiExETe3woG3k5KTcSnWsqwoV1fXEq3MkpKSSuSxsLDAz0/XRSGkbl3OnT/P4qVL+bBYd9//Vflnz5P+bZGbqrsTfSjt7VAXGVRbaWeLNsP4oOIGLCywbFSf7I1b7582Lx91dAxK95IDrj+s9Nws1Bo1jlaGrcwcrWxLPIG/p29YWy7F39LfmN1KiSW3YB0Tuo1k+clt+sHUtWiJzUgC4GZyDNUc3egX2rZSgmepORkUaNQlWpk5W9sbHUwcIE+dz1c7/+Db3X/iYu1AYlYqfULakJmXTWq2ru4jm/Vm86XDrDu/H4BrSVFYmVvydvunWXhsU5lu3EvTrnlzwmrXLizTveM7ORm3IsdmUmoKLk4P32X3wpUrJKWk8Owbr+uXqTUaIs6eYdnaf9i/ajVmJloZPSg7BweUSmWJVmbpKWk43Gc8yCO7DrDgh1m8NP51QhqV3l1cqVRSPbgGcXdMt7h9WJl52ag1GuytDFuZ2alsSrRGuyctJ4vUnAyDgdrjMpJRKhQ4WduRkFn4fVgozWngE8zmS6av3xWhsq57tk4OKM2UKJWFo9G4enuSmZqOuqAAswqeACkjV7c9ircys1fZkJ5jfHsU1TKwHocjz6HWluxWqgXiM1MAuJ0aj6eDC91qN6vw4FlGbhZqjabEudbeyrZEazRjWgfW5+DNsyXqkJKTgVqjMTgXRacn4mRth5lCabTO5ZGak4lao8bF2vBYdrK2J9lEl9g8dT7f7PyT73YvwdnagaSsVHrXba071969ziRlpVKg0aAp8rs1MjkWV1tHzJVmJYLPFS393vaxNtzHHKxsSTNxLewT0obLCbdYf0E3fuAt4sg9ksdHXZ/nr1M7SDUxsUhF+a9ui6qmUMgoW48SCZ4J8R9VUFDAggULmDp1Kt26dTP43+OPP86iRYtMjiMWEhKCSqUiMjKS9u3bG02zZ88eWrVqxZgxY/TLrl4tfda6kJAQVq9ebbDs4MGDBu/Dw8M5e/YsQUElA0FltWfPHn755Rd69eoF6MZaS0gwHTzat28fAQEBfPjhh/plN2+W3k1CpVI9UDfN4szMzfEKrMbNs5ep1aTwpuzm2UsENQot+XnWKoZ/8ZbBshPb9hN5/gp9X30OR3fjgSqtVktcZBRuvhXTjcjW1tYg0KrVanF1deXQkSPUuXvTnZ+fz/GICMYW2TeKqx8WxqEjRxj61FP6ZYcOH77veGZarbbSJ3L4fyU3D01uksEiTVoa5rWDUN+J1i0wM8M8qDrZ/9w/sGvZsB6Ym5F/NOL+n21mhpmnBwXXKq5LkVqj5npSNPW8a3L0duG4KWHeNThWZEa3olRmFiVuyO611Cq9eZSu22NlKNCouRR/iya+ddhz/aR+eRPfOuwtMri2MWqNRn/z3CmoMQduntHfiKrMLdEaqatCUfrT/bKytbExmEFTq9Xi6uzMoYgI6tSsCdw9vs+cYezw5x/6c5o2aMCSn342WPbZD9MI8PVl2OODKixwBmBuYU5AUHXOR5wivFXhpBPnIk7TsEVjk/kO7dzH/Gm/8sK7Y6nf7P4tirVaLZHXbuIbaHw8ovJQazXcSY0j2M2Ps0W6Gge7+XE21vg4azeTo6nvUxNLMwvy1LpzpputExqthpRsw5vo+j5BmCvNiLhdtjHgHlZlXfeqBQdy/mAEWo0Gxd0AWnJsPLZODhUeOAPd9riVEksdj0BORhWOz1jHI/C+ky0Eu/nhYeesn0H3fhQoMFdWTh1uJsdQ1zPQYHzIEM9ATtwpfYysWu7+eNq7sHf/yhL/u5pwm2b+oQatIj3tXEjJTq/wwBkUnmsb+xmeWxtXq83+G6bHXQXduTbh7rm2Y1A4B2+e1Z9rz8Rcp3NwYxQo9Mt8ndxJyEz9V4I1ao2GG0nRhHkZXvvCvGpw/I7xa6GluUWJcf7uBZz+jSGq/qvbQoiiJHgmxH/U2rVrSU5OZuTIkTg6Go71MmjQIObMmWMyeGZvb8/bb7/Nm2++iUajoU2bNqSlpbF//37s7OwYNmwYQUFBLFiwgE2bNlG9enUWLlzIkSNHqF5Kd7rRo0czdepUxo0bx0svvcSxY8dKzP753nvv0aJFC1555RVeeOEFbG1tOX/+PFu2bOHHH38sU92DgoJYuHAhTZo0IS0tjXfeeQdra+tS00dGRrJkyRKaNm3KunXrWLVqVZk+qzya9GjHul+X4FXdF5+gAE7uOERaYgoNOum6su5etp705FQee+kpFEol7r6GA0PbONhhZmFusHzfqs34BAXg7OlGbnYOx7fsIy4yii7PDqiUOigUCp4aMoS58+fj7+uLn58fc+fPx8rKih5FgrafTJyIh7s7r94NqD05eDAvjhnDvIUL6dC2LTv37OHQkSPM+fVXfZ6fZ8ygVcuWeHp6kpWZyaatWzkWEcH0SpzI4X6sLVT4OhZ2H/JxcCPYzZe0nExijUzDXhVyd+3HqksHNPGJqOMTserSAW1ePnnHT+jT2Dw9CE1qGjnrDGdEtWzRhPzT542OYWbVtyf5Zy+gTU5BYWeLVbeOKKxU5B0pfSbbB7X+wn7GtBzItcQoLifcolNQE9xsHNl2+QgAQxp2wcXanhkHdMfo8TsXGdW8L12Cm3Iq+gpO1nY827gnVxJuk3K3lVff0LZcS7xDXEYy5kozGvoE07ZGA34/vLZCy17UspPb+LDzMC7GR3I25hq9Q9rgYe/CmrN7AXiheV/cbZ2YvF3X1dbX0YO6HgGci7uBvcqGwfU7Ud3FmynbC7vi7r9xmsENOnE54TbnYm/g6+jOiGZ92HfjtMFT+YqiUCh4ql8/5i5fhr+PD34+PsxdvgwrlYoeRR6sfDJ1Kh6urrw6fDigC7Bdu6XrJp9fUEB8YiIXr13FxsoaPx8fbG1sCAoMNPgsK5UVTvYOJZZXhK4DHmPO1J8JCK5BzTq12L1xG0nxCbTvpRu+YOXcxSQnJjPybd356dDOfcydOoMhLz1HjTrBpCalAGChssTGVhdcXLPoL2rUCcbTx4vsrGy2r9nI7Ws3GTrm4YOKpdlz7QRDGnXldmockckxNPcPxcnajoN3gzA96rTE0cqWpSd0rUYj7lyic3ATBjfozOZLh7C1tOaxuq05cut8iRvOZn4hnI25RlZ+TqWUvajKuO417NSS41v3sW3RGsK7tiY5JoGD/2wnvKvxGf4qwrbLRxnWtBeRyTFcS4qiTWB9XGzs2XtNFyzvG9oWJys7FhzbYJCvVWAY15OiiE4r+UCvW61mRKbEEp+RgrnSjFCv6jT3D2HJiTK0BH4IWy4dZmTzPtxMjuFq4h3a1WiIi40Du67pHp4MCGuPs7U9vx8xPE+2qV6fa4l3iDJSh51XI+gU1JgnG3Zl+5WjeNi50KtuS7ZdPlopdQBYfmoH4zs9y8W4SM7FXqd3SGs87V3455zuXDuqWR/cbJ34csdCAHwd3anjEcD5uJvYq2wYVL8jgS4+fLnjD/0615zdw4Cwdrza+nFWndlFNUcPnm7UjVVnTM8yXNE2XjzASy0GcD0pmisJt+lQMxxXG0e2Xz4GwBMNOuFsbc+sg7rhCSLuXGJEs950CmrM6eirOFnbMzS8G1cT7pQImFeW/+q2EOIeCZ4J8R81Z84cunTpUiJwBrqWZ5MnT+b4cdM3vZMmTcLDw4MpU6Zw7do1nJycCA8P54MPPgB0gbATJ04wZMgQ3Q3WU08xZswYNmzYYHKd/v7+rFixgjfffJNffvmFZs2aMXnyZEaMGKFPU79+fXbt2sWHH35I27Zt0Wq11KxZkyFDhpS57r///jsvvvgijRo1wt/fn8mTJ/P222+bTN+vXz/efPNNXn31VXJzc3nsscf4+OOP+fTTT8v8mQ+jTvOGZGdksf/vrWSmpOFWzYvHx43E0U3XHSojNY30uzdtZZWblcPmuX+RmZqOytoKj4BqPPnBy3jXLPtMiw9q2DPPkJuby5fffkt6ejphISH8NG2aQQu1mNhYgy41DerX54vPPmPGr78yc9YsfKtVY8rnnxMWWtj6IDEpiU8mTiQhMRE7OzuCa9Zk+vffG8zs+W+r4x7ATwMKu+u+1uYJANafP8AX2+dXVbEM5G7fjcLCAutBfVFYW6O+eZuMmXMht7D7ltLZqUQzJaW7K+Y1AsmY8bvR9SodHbF9dggKWxu0GZkU3LxF+rSZaJNTKrT8B2+exc7ShoH12uNkbc/tlDi+3rlI383MycoOV9vC89ruayewMlfRrVYzhoZ3Iysvh7Ox11lcZBB9lbkFI5r2xsXGgTx1PlFpCfyyfwUHb56t0LIXtePqcRytbHmucU9cbR24nhTNe+t+0XcddbVxxMOusOujmULBkAad8XPypECjJiLqEq+smkpMemHLwoXHNqIFRjbrg7utIynZGey/eZrfDlXeeDbDHh9Ebm4eX874hfSMDMJq1+anzyYZtFCLiY9HqSxs2hCflMTQIl3vF65cycKVKwkPq8esL7+stLKa0rR9SzLS01n750pSk1LwCfTjtYnv4eqpC4SnJKeQFF8YCNi9YRtqtZo/f5nLn7/M1S9v2aUdI8a9DEB2ZhYLp/9GWnIK1rY2+NUM5J2vP6F67YdvNV2ak9FXsLG0oktwUxxUtsSkJ/L74bX6ALGDygYn68Kuj3nqfGYf/Jt+Ye14re1gsvJyOBV1hY0XDVt7u9k6Ud3Vh9kH/+bfUBnXPQdXJ554ZxQ7/vyHeR99h52TA427taHZYx0roQY6x+9cxFZlTc86LXGwsiU6LYFf9q3Uz57paGWLc7Fu21bmljT0qWV0wgbQtRwa0rALTtZ25KsLiE1PYt6R9SZbGpXX0dsXsFNZ0zukNY5WtkSlJTB9z3L9RCdO1nYlup5bm6sIr1ZbH6QtLjk7ne93L2VIw85M6DaS5Ox0tl0+yoYLB42mrwg7rx7HwcqW55r0wMXGgRtJ0YxfP0P/QMvF1hEP+8JzrVKh5IkGnfBz1J1rT0Rd5rVV3xFb5Fwbn5nCu+t+Zkyrgfz2xHgSMlNYeXoXS05UzuQsxhyKPIedpQ39QtvhZG3H7dQ4pu76k8SsItdCm8Jr4d7rJ7E2t6RLraY81Uh3LTwXd51lJypvEpDi/qvboipV1ky14uEotGUZhEgIIUSZ/HZwzf0TPeJGtehLelLS/RM+4uxdXGj98+iqLka57HtlJilvflDVxSg3p+8n8/SiCVVdjHL5c+hE2s94paqLUW67Xv6Z9Muldy37/8A+OIjdVyu21eO/rV3NcN5d+9P9Ez7ivu796v/7a9+oFn15ZeW3VV2Mcvt54Nu8sPzfD1BXtNlPvE+nmWOruhjlsn30jzy3+LOqLka5LXjqk//Etvj/6v11M6q6CEZ9+djLVV2EKiEj0AkhhBBCCCGEEEIIYYJ02xRCCCGEEEIIIYR4hCj/jdkeRJlJyzMhhBBCCCGEEEIIIUyQ4JkQQgghhBBCCCGEECZIt00hhBBCCCGEEEKIR4hCum0+UqTlmRBCCCGEEEIIIYQQJkjwTAghhBBCCCGEEEIIE6TbphBCCCGEEEIIIcQjRGbbfLRIyzMhhBBCCCGEEEIIIUyQ4JkQQgghhBBCCCGEECZIt00hhBBCCCGEEEKIR4gC6bb5KJGWZ0IIIYQQQgghhBBCmCDBMyGEEEIIIYQQQgghTJBum0IIIYQQQgghhBCPEIXMtvlIkZZnQgghhBBCCCGEEEKYIMEzIYQQQgghhBBCCCFMkG6bQgghhBBCCCGEEI8QpXTbfKRIyzMhhBBCCCGEEEIIIUyQ4JkQQgghhBBCCCGEECZIt00hhBBCCCGEEEKIR4jMtvloUWi1Wm1VF0IIIYQQQgghhBBC6Hy25feqLoJRn3QdUdVFqBLS8kwIISpQ2ubtVV2EcnPo1on0qKiqLka52fv4kPLmB1VdjHJx+n4yrX8eXdXFKLd9r8wk9atpVV2McnF87w1SRo+r6mKUm9PM79h55VhVF6PcOgQ1Jm3ZqqouRrk4DB5A6tfTq7oY5eb47mukvPNxVRejXJy+mURyzyequhjl5rxhOSnvTqjqYpSb09cT/xP71H/lmpEy9MWqLka5OC2aVdVFEP8REjwTQgghhBBCCCGEeIQokW6bjxKZMEAIIYQQQgghhBBCCBMkeCaEEEIIIYQQQgghhAnSbVMIIYQQQgghhBDiESKzbT5apOWZEEIIIYQQQgghhBAmSPBMCCGEEEIIIYQQQggTpNumEEIIIYQQQgghxCNEum0+WqTlmRBCCCGEEEIIIYQQJkjwTAghhBBCCCGEEEIIE6TbphBCCCGEEEIIIcQjRCndNh8p0vJMCCGEEEIIIYQQQggTJHgmhBBCCCGEEEIIIYQJ0m1TCCGEEEIIIYQQ4hGiQLptPkqk5ZkQQgghhBBCCCGEECZI8EwIIYQQQgghhBBCCBOk26YQQgghhBBCCCHEI0Rm23y0SMsz8T/h6NGjfP/992g0mqouihBCCCGEEEIIIf4fkeCZqBI3btxAoVBw4sSJClunQqFg9erVJZYnJCQwePBgwsLCUCorfpf/9NNPadiwYYWv93/J8OHD6d+/f5nT79y5E4VCQUpKykN/5rx583Bycnro/EIIIYQQQggh/jdIt03xwIYPH878+fMBMDMzw8fHh8cee4zJkyfj7OxcZeWKjo4u8flarZbnnnuOTz75hK5du1ZRyf4bFAoFq1ateqAgl7g/rVbL7A3rWLVvL+nZWYQGBPLu4Cep6e1jMs/2ExHM27yRWwnxFKjV+Ll78EynLvRq1lyf5q89u1ixdw/RSYkA1PDyZmSPXrQODauQMs+aP59Va9eSnp5OaN26vPf669SsXr3UfNt27WLm3LncjorC18eHMSNH0rFtW/3/+zz5JNGxsSXyPdGvH++98QYAWdnZ/DhrFrv27iU1LQ1vLy+eHDiQQf36lbteAFbdO2PZsikKa2vUkbfIWrEGTUycyfR2r4zCPKhGieX55y6QOXuBfp1WPTob/F+Tlk7ahCkVUuaH0cA7iKcbdaOOhz9utk68v34Ge66frLLyGKNq3QLLBmEorKxQR8eQvWU7moSk+2RSYdWuFRa1glBYqdCkppGzfTcF124AYOZbDVXzxph5eqC0tyNz5T8UXL5aqfWw6t0dyzYtUNjYoL5xk6zFK9BEl9zP77EbNwbzWkElluefPkfmz7/p3qhUWPftiUXDMBT29qhv3SZ72WrUN29VePl3rt3C5pVrSU1Kwce/GoNffI7gsDpG0x7fd5jd67dy69pNCvIL8A6oRp+nHye0cQODdFkZmaxesIyI/UfIysjEzdOdQaOGUq9powov/z1arZbZO7ay6uhh0rOzCfX1493e/anp6Vmm/JtPneTD5YtpXyeEb4c+p18+d9cOdpw/y834OFQWFtT3C+DVbj0JdHevrKqUoGrdHMsGoShU946VnWgS73esWGLVthUWtWoWHis79lBw7ea/Umarrh2xbN4EhY016sjbZK1aiya2lHPt6BGY1yx5jck/f5HM3/8AwLJlU1Qtm6F0dgJAHRtHzpadFFy8XCl1ALAa+gSqnl1Q2NlRcPEyWT//hibytukMZmZYDRmAZZf2KF1dUN+OIvv3RRQcO6FP4jDvZ8w8PUpkzflnI9m/zKn4OnTtgGXzxneve7fJWr0OTWy8yfR2Lw03sS0ukTl3EQBm1QOwat8aM19vlA4OZM5fTP7ZCxVe9qIqY59SdWyHRb26mLm7oy3IR33jFtnrN6OJT6i8evw/v2YAWA3sg2WntihsbVBfuU7WvD/R3IkuNY+qR2csO7dH6eaCNj2DvMPHyVm6EvILAHCYNhmlu1uJfLlbdpA9b3Gl1ONRoJBum48UCZ6Jh9KjRw/mzp1LQUEB586dY8SIEaSkpLB4cdWdvLy8vEosUygUrF+/vgpKI0TZLNi6mT93bOOToc/h7+HB75s28OpP0/nr40+xtbIymsfR1pbnu/ck0NMTCzNz9pw9zWeLFuBsb0/LuiEAeDg582rf/vjevYFbd+ggb8+eyR/vfVBqYK4s5i9Zwp/LlzPhvffw9/NjzsKFvPLOO6xYsABbGxujeU6dPcsHn33G6BEj6Ni2LTv27OH9iROZM306YSG6Mi+YORN1ka7VV69f55W336Zzhw76Zd/9/DNHIyL47MMP8fHy4uCRI3w1bRpurq50aNOmXPVSdWqHqkNrsv5cgTo+AauuHbEbPYK0Kd9Bbp7RPJlzF4GZmf69wtYG+7fHkn/ijEE6dXQsGTOK3PRotOUqa3lZW6i4knib9Rf2M7nn6CotizGWzZugatqIrPWb0SSloGrVDNvBA0n/bT7k5RvPpFRiO2QA2qxsslavRZOegdLeHm1e4bZTWFqgjosn7/RZbAf0qfR6qLp1QtW5PVnzF6OOi8eqZ1fsXh9N2oQvITfXaJ7MmfPAvNg+9dHb5B8vDG7aPDsYMx9vMuf+iTY1DcvmjbF7YzRpE79Gm5JaYeU/svsAy2Yv4OkxI6hZtxa7N27jxwlf8emMb3DxKHkTc/nsBeo2qkf/YUOwtrVh/9Zd/PzZt7z/3ST8awYCUJBfwLSPpmDv6MBLH7yOs5sLyfGJqKytK6zcxizYs4s/9+/lkwFP4O/mxu87t/Pq/N/46/W3sVWpSs0bnZLMD5vW0SggsMT/jt+4zhPNWhBSzQ+1Rs2MrZsZO38Oy14bh7WlZSXVppBls8aomjQia/0WNMnJqFo2w3ZIf9J/W1j6sTJ4ANqsLLL+Xn/3WLFDayp9BVN1aIuqXSuylq7SnWu7dMDuhWGkffOD6XPt/MWGx4WNDfZvjiH/1Fn9Mk1Kmi6wcTfIbtmkEbbDnyZ92oxSgygPXY8n+mE1sDeZU39GfSca66cex37yx6S+8Dpk5xjNYz3sSSw7tiNz+kw0t+5g3rghdh+/Q/pbH6K+egOA9NfHQ5GeEmYBfthP+YT8PQcqvg4d2qBq25KsZatRxydi1bkddi88R9o3P5reFguWFrvuWWP/xssG20JhaYE6Ooa8oxHYPvdkhZe7ZD0qZ58yrxlI3v7DFNy6A0ol1j263F3vdMiv+OPl//s1A0DVuzuqXl3ImjkPdUwsVv0fw278m6S9/THkGK+DRatmWA0ZSNbs+agvXUXp7YnNS8MByPljGQDpH082PC58q2H3wZvkHzpWoeUXojTSbVM8FJVKhZeXF76+vnTr1o0hQ4awefNmgzRz586lbt26WFlZUadOHX755ReT61Or1YwcOZLq1atjbW1N7dq1+eGHH0qk+/333wkNDUWlUuHt7c2rr76q/1/xbpunT5+mU6dOWFtb4+rqyosvvkhGRob+//e6Cn777bd4e3vj6urKK6+8Qv59LoZffvklnp6e2NvbM3LkSHJySv5AepC6A2zcuJE2bdrg5OSEq6srvXv35urVwtYQeXl5vPrqq3h7e2NlZUVgYCBTphS2WlEoFMyYMYOePXtibW1N9erVWb58ucFn3LlzhyFDhuDs7Iyrqyv9+vXjxo0bZfp+AwMDARgwYAAKhUL/HmDGjBnUrFkTS0tLateuzcKFC0utq1qtZty4cfq6vvvuu2i1hoEErVbL119/TY0aNbC2tqZBgwb89ddfpa63uO+++4569epha2uLn58fY8aMMdj+xV29epV+/frh6emJnZ0dTZs2ZevWrQ/0mQ9Kq9WyeOd2nu/Wg04NGxHkU41PnxlGTn4em44eMZmvcXAtOjZoSHUvb3zd3XmqQyeCfKpx4uoVfZp29erTOjSMAA9PAjw8GdOnHzYqFWduXC9/mf/6i+efeYZO7doRVL06E99/n5ycHDaW8n0t/usvmjdpwvNDhxLo78/zQ4fSLDycP1es0KdxdnLCzcVF/9p74AC+Pj40blDYauXU2bP07t6dJg0b4uPlxcA+fQiuWZPzly6Vq14AqvatyNmyk/zTZ9HExJL153IUlhZYhjc0/X1kZaNNz9C/LGoFQX4+eSdPGybUqA3SaTMzy13e8jgYeZbZh9aw69qJKi2HKaomjcg5cISCS1fRJCSSvW4zCgsLLOsab/EEYFk/FIWVFVkr/0F9JxptWjrqO1EGLQQKrt0gd88BCi5Vbmuze1Sd25GzYSv5J06jiYoha/6fKCwtsWwWbjKPNisLbVq6/mVRtzbk5ZN37O6NkIUFFo3qk73yH9RXrqGJTyBn7SY0CUmo2rWq0PJvXbWe1t060KZ7R7z9qzHkxedwdnNl13rjx/qQF5+j+6A+BNaqiWc1bwYMexIPHy9OHTquT7Nvy04y0zMY8/E4gkJq4+rhTlBoHfxqBFRo2YvSarUsPrCP59t1pFNoGEGeXnz6+GBy8vPZdOpEqXnVGg0fL1/Ci5264uPiUuL/Pw4bQZ/wJtT09KSWtw+fDBxETGoK56NKaX1UgVRNGuqOlctX0SQkkb1+CwpzCyzr1jaZx7J+iO5YWbWuyLESXamtaQzK3LYlOdt2k3/mHJrYOLKWrNCdaxvVN5lHm13sXBtc8+65tvBBRcH5ixRcuIwmIRFNQiI5G7eizcvD3N+3Uuph1f8xspesJH//YTQ3b5E59SdQqbDsYPpBjmWnduQsXUnBkQg0MXHkrdtM/rETqAYWBvO1qWlok1P0L4vmjVFHxVBw+lyF10HVpgU52/eQf+a8blssXaU71za8z7bIyNC/9NuiSNCp4OIVcjZtJ//M+QovszGVtU9l/raAvKMRaGLj0ETHkLVsJUpnJ8x8y/cQ0mQ9/p9fMwBUPbqQs3o9+Ucj0NyOImvmXF0dWjU3mcc8uCYFl67ojqWERApOnyPvwGHMqxdeF7TpGbpj4+7LolE91DFxFJwv/+8/IcpKgmei3K5du8bGjRuxsLDQL5s9ezYffvghX3zxBefPn2fy5Ml8/PHH+u6exWk0Gnx9fVm2bBnnzp3jk08+4YMPPmDZsmX6NDNmzOCVV17hxRdf5PTp06xZs4agoJLNlAGysrLo0aMHzs7OHDlyhOXLl7N161aDYBvAjh07uHr1Kjt27GD+/PnMmzePefPmmazrsmXLmDBhAl988QVHjx7F29u7RGDsQesOkJmZybhx4zhy5Ajbtm1DqVQyYMAA/QQH06dPZ82aNSxbtoyLFy/yxx9/GASwAD7++GMef/xxTp48yTPPPMNTTz3F+fPn9d9Hx44dsbOzY/fu3ezduxc7Ozt69OhB3t1WGaV9v0eO6AI5c+fOJTo6Wv9+1apVvP7667z11lucOXOGl156ieeff54dO3aYrOvUqVP5/fffmTNnDnv37iUpKYlVq1YZpPnoo4+YO3cuM2bM4OzZs7z55ps888wz7Nq1y+R6i1MqlUyfPp0zZ84wf/58tm/fzrvvvmsyfUZGBr169WLr1q1ERETQvXt3+vTpQ2RkZJk/80HdSUwgMS2NFnVC9MssLSwIDwrm1PWy3dxrtVoOX7zAzbhYwoOCjaZRazRsPnaE7Lw86gWW7GL4QGWOjiYxKYkWTZoUltnSkvAGDTh19qzJfKfOnaN5kTwALZo2NZknPz+f9Vu20LdnT4Mm6w3r1WP3/v3Excej1Wo5GhFB5O3btGzatFz1Uro6o3RwMOzeo1ZTcOU65tX9y7wey+ZNyIs4VaLFh9LNDYdP38f+o7exefZJlK5V18X9UadwdEBpZ0vB9SLdx9RqCm7dxqyat8l85kE1UEdFY921I/avvoDdiGdQtWgKVdTlQenmgtLRgYLzFwsXFqgpuHwV8xqBZV6PZevm5B2NgHst6JRKFGZm+q4s92jz8zEPKr3r9IMoyC8g8sp1QordfIaE1+NqGW9WNBoNOdk52Nrb6pedOnSMGnWC+fOXubw9dDQTx7zL+qWr0agrb0KfO8lJJGak06LIOdLS3JzwwOqciiy9m+JvO7bhbGtLv8ZlO8dk3H2g5mBtvBVuRdIfKzeKXKfUagpu3Sn9WKl571jpgP0ro7B7fiiqFk3+lWNF6eKM0sGegkuFD3tQqym4dgPzgAc41zZrTN6J06Zb/ygUWDSoh8LSkoJK6Jqm9PJA6eJMQZHWPeQXUHD6HOYhpgOXWFiUbOGXl4d5qIkHA+bmWHZsS97m7eUvdDGmt8VNzAP8yrwey6bhuoBTJbTEKot/bZ8CFHd7BGizsh+6vKb8f79mACjd3VA6OxoGegsKKLhwCfNg078/Cy5ewbx6AGZ366l0d8OiQT3yT5w2nsHMDIs2Lcjbta8CS/9oUiiUj+Trf5V02xQPZe3atdjZ2aFWq/Utr7777jv9/ydNmsTUqVMZOHAgANWrV+fcuXP8+uuvDBs2rMT6LCwsmDhxov599erV2b9/P8uWLWPw4MEAfP7557z11lu8/vrr+nRNTdwwL1q0iOzsbBYsWICtre5H+08//USfPn346quv8Lw7xomzszM//fQTZmZm1KlTh8cee4xt27bxwgsvGF3vtGnTGDFiBKNGjdKXaevWrQatzx607gCPP/64wfs5c+bg4eHBuXPnCAsLIzIykuDgYNq0aYNCoSAgoOQT+ieeeEJfrkmTJrFlyxZ+/PFHfvnlF5YsWYJSqeS3337TByLmzp2Lk5MTO3fupFu3bqV+v+53u/45OTkZdI/99ttvGT58OGPGjAFg3LhxHDx4kG+//ZaOHTua/A7Hjx+vr/PMmTPZtGmT/v+ZmZl89913bN++nZYtWwJQo0YN9u7dy6+//kr79u2Nrre4N+6OkQW6bTBp0iRefvllk60AGzRoQIMiLZw+//xzVq1axZo1a0oEXQFyc3PJLdaEXnWfrj/FJaalAeDiYG+w3MXegZi7Y5WZkpGdTa+PxpNXkI+ZUsl7g5+ieZ26BmmuRN1hxNRvyCvIx1ql4ptRL1HD2/QNVZnKnKTrDuNabHxBV2dno+OVFc1nLM+99RW3c+9eMjIy6NOjh8Hyd8aO5fNvv6XX4MGYmZmhVCr56O23aViv3sNUR09hr9sGmnTD1omajAz9+Dn3Y+bvi5mPF1lLVxosL7h5C/Wfy1HHJ6C0t9N1B31tNOlfTauUH+D/3yntdOdsbVaWwXJtZhYKRwfT+ZwcUTr66cabW/43Zi5OWHXtCEolufsPVWqZjVE46MqqSUs3WK5JS0fpUrbgqVmgP2bVvMlauLRwYW4uBVevY/VYVzJjYnUtDZqGYxbojyau4loOZaSlo9FocHByNFhu7+RIWnLZuvlsWbWOvJxcGrdtoV8WHxNHYuw5mndozdhP3yUuKobFM+ahUWvo/fTACit/UYl3Wx272BU719rZE5OSbDLfyZs3WHP8CIvGvG4yTVFarZbvN6yjYUAgQZ4lh5KoaEpbXYCuxLGSlYWi2HXFIJ+TA0pHX/LPXSTzr78xc3bCqmuHu8fK4cosMgp7O0B3bi1Kk/4A51q/aph5e5K1fFWJ/ym9PLF/9QUwN4e8PDLn/4kmzvT4XQ9LcbesmmLHgjYlFaWRLs33FBw7idXA3hScOYcmOhbzhvWwaNEUzIzfjFq0bIrCzpbcLTsrquh6hdvCsCW0JiMDZRknVNJvi7/+rujilVll71NFWffpScG1G5XSDfj/+zUDQOF0tw6paQbLNalpKN1cTebLP3iEbAc77Ca8CyhQmJuRu2Unuf9sNJreoklDFDbW5O3eX2FlF6IsJHgmHkrHjh2ZMWMGWVlZ/Pbbb1y6dImxY8cCEB8fz61btxg5cqRBEKqgoABHR0dTq2TmzJn89ttv3Lx5k+zsbPLy8vSzWMbFxREVFUXnzp1N5i/q/PnzNGjQQB84A2jdujUajYaLFy/qg2ehoaGYFRm3wdvbm9OnTTzluLve0aMNxwdq2bKlvqXVw9b96tWrfPzxxxw8eJCEhAR9i7PIyEjCwsIYPnw4Xbt2pXbt2vTo0YPevXvTrVu3EuUo/v7ebKbHjh3jypUr2Nsb/pjOycnh6tWrD/z9Fv0+XnzxRYNlrVu3NtrlFiA1NZXo6GiDspqbm9OkSRN9181z586Rk5NTYoKHvLw8GjUq+2DSO3bsYPLkyZw7d460tDQKCgrIyckhMzPTYL+4JzMzk4kTJ7J27VqioqIoKCggOzvbZMuzKVOmGAR8ASZMmMC4Vu1MlmnDkcNMWfKn/v33o3VBRwWGT/u1Wu19WwDYqFQsev8DsnJzOXLxIt+v+otqbm40Dq6lTxPg4cmi9z8gPTub7Sci+PSP+fz62rgHCqBt2LKFyUUC49PudhcuPoCp1siyEorn0WoxlePv9etp1bw57m6GNyFLVq7k9PnzfPfFF3h7enL81Cn9mGfNGzcuU50ALMIbYDO4v/59xt3B/Y0UWle5MrBs3gR1VAzqYoNFF1wobKWjiY4l40YkDh++jWXTcHL/B56a3o9FSG2suxeeezLv3YQV686Nwsgyg/8r0GZlkb1xG2i1aGLjUNjZomrW5F8Jnlk0C8fm6Sf07zPuDdRcoh5lb91j2ao56jvRqG8Ynoey5v6JzXNP4vjVp2jVatS37pB/JAIz/2oPXX6TihdXa2SZEYd37mftopWM+XicQQBOq9Fi7+TAM2NHoTRTEhBcg5SkZDavWFdhwbMNJyOYsqbwJvj7Z4YDJb963XXHeGUyc3P55K+lfNDvcZyMXDOM+Xrt31yJjWb2qJcfptj3ZRFSG+tuhQ+mMlf8o/vD2HFR2nlLoUCblU32pu13j5V4FHZ2qJqFV3jwzKJRfWwe76t/n3F3IPZyHRfNGqOOjkV9606J/2niE0j//hcU1lZY1AvFZsjjZMyYU+4AmmXHNtiMfUn/PuPehC8P+N1n/ToXm9dewmHWD4AWTXQsuVt2oOpq/IGjqnsn8o9GoE0yHeQtK4tG9bAp0j004+7g/iXroKCsFz7LpuEmt0Vl+bf3qXusB/TGzNuT9F9+e6DymvJfuGZYtGqGzchn9O8zvvnJeEKFotTrt3ndWlj160X23D8puHodM093rJ99Ek1KKrmr15VIb9mhDQUnz1T4eG1C3I8Ez8RDsbW11Xfpmz59Oh07dmTixIlMmjRJH/iZPXs2zZsb9m8vGqgqatmyZbz55ptMnTqVli1bYm9vzzfffMOhQ7obHusHHEhYq9WavJEvurxoV9N7/9NoHr7ryMPUHaBPnz74+fkxe/ZsfHx80Gg0hIWF6btUhoeHc/36dTZs2MDWrVsZPHgwXbp0ue84YPfqqtFoaNy4MYsWLSqRxt3dHaXy4ZvflgiilPLdl8W973DdunVUq2Z4US9ry66bN2/Sq1cvRo8ezaRJk3BxcWHv3r2MHDnS5Jh277zzDps2beLbb78lKCgIa2trBg0apN8GxY0fP55x48aVKF9pwZB29eoTVqS7bV6Brgl9YloabkWCq8kZ6bjam241ALpuqX7uutm4avv6cSM2mnmbNxoEzyzMzfVpQvwDOHfzBkt2beeDJ4eWum6DMrdurR/QH9B/HwlJSbi5Fj5FTEpOxqWU2XZdXVxKtDJLSknBxcgYQtExMRw+fpyviwUnc3Jz+fm33/j2s89oczcAG1yzJpeuXOGPpUsfKHiWf/Y86d8W6cpjrrscKu3tUBd56qu0s0Vbylh5eha6sVWyN5ZhnLy8fNTRMUZnjfpflH/lGuqomMIFdwc+Vtjaos0sbFGjsLExeF+cNiMTrUZj8ANdk5isa8mmVEI5zu1lkX/yLOnXi9yw3K2H0tHBcJ+yt0NbrGWBURYWWDZtSLaRJ++ahEQyvvsZLC1RWKnQpqVjM+rZ+89G+gDsHOxRKpUlWpmlp6aWaI1W3JHdB1gwfRYvvf86dRsZtgp1dHHStRot0tLG268aackpFOQXYG5R/p+m7eqEEOZb2O0sr0ANQGJ6Om72ha0XkzMzcLWzM7qO20mJRKUk89aiwiEXNHf3rRYTPuCv19/C16XwHPjN2r/ZfeE8s0a9hGcpD8vKo8SxYlbKsZJVyrGSmYVWrS52rCRVyrGSf+4C6UUfKOjPtfaoi7T0VdrZok0v47m2QT2yN28z/n+1Wj/TqPp2FGZ+1VC1bUn2ijUPXQeAvINHKbhQpFvg3f1U6eKEOjlFv1jh5IgmJQVTtKlpZE76BiwsUDjYo01MwnrEUKMtmZQebpg3rE/m59+Uq+z35J+7SHpkkeDQvXOUvZ2RbVGGcTktLLBsEEb2ZtNDdVSGf32fAqz7PYZFSB0yfvkNbbFWVQ/rv3DNyD9+kvSrRcbSvbctHB1QFwlsKR3sS/3erAb1I2/vQfJ27tWV99YdUKmwGfksuX+vNzhXKdxcMA+rS+a0GeUq+/8XyrI8rRL/GgmeiQoxYcIEevbsycsvv4yPjw/VqlXj2rVrDB1atpv0PXv20KpVK333P8BgwHx7e3sCAwPZtm2bye6ARYWEhDB//nyDVkb79u1DqVRSq1at++Q2rW7duhw8eJDnniucpv7gwYP6vz09PR+47omJiZw/f55ff/2Vtm3bArB3794S6RwcHBgyZAhDhgxh0KBB9OjRg6SkJH3wwVi57rXUCg8PZ+nSpXh4eODgYLzb0/2+XwsLC9RqtcGyunXrsnfvXoPP3b9/P3Xr1i2eHQBHR0e8vb05ePAg7drpWmgVFBRw7NgxwsN1g6GGhISgUqmIjIwscxfN4o4ePUpBQQFTp07VBwaLjp9nzJ49exg+fDgDBgwAdGOgFZ9QoSiVSmU0mGd8HiEdWysrgxk0tVotrg4OHLp4ntp+uhu9/IICjl+5zNi+A0otb3FabWEwzmQaIC+/9DQlymxjYzCDplarxdXFhUNHj1InWDd+UH5+PsdPnmRssVaIRdUPCeHQsWMMfaLwKeuho0epHxpaIu2ajRtxdnLSB8juKSgooKCgAEWxYK9SqdTf1JZZbh6aXMMfjZq0NMxrB6G+N526mRnmQdXJ/meTkRUYsmxYD8zNyD8acf/PNjPDzNODgmulj7X0PyMvH02eYYBGk5GJeaA/efdaiyiVmPv5krOz5LnxnoI7UViGGI4bpHR20nXFreTAGQC5uWjiDc8AmtQ0zOvWKmzNYGaGeXBNsletve/qLJs0BHPz0mcSy8tDm5eHwsYai5A6ZK/8pxwVMGRuYY5/UHXOR5ymUavCIRLOR5yhQQvTgerDO/ez4IdfGfXuq9RrVrK1cM2QWhzZuR+NRqM/P8feicbRxalCAmcAtiqVwQyaWq0WVzt7Dl29Qm0f3UOZ/IICjt+4zthuPY2uI9DNncWvvmGwbObWzWTm5fJWrz54Ojjq1/3NujXsPHeWmSNfpJpzyQcCFcbkseJX7FipRk4pD3IKbkdhWWxcLqWLk67bW0UfK0bPtemY16qJOqrIubZGINnrNxtZgSHLBmG6c23RscbuQ2Fu+uFlmWXnoMmOMVikSUrGvFF9/SyZmJtjXi+E7HstoUqTn482MUk3dlPrFka7n1l27Yg2NZX8w8eNrOAhmNoWwTULg7JmZpjXCCDbxKQgBuWrH6rbFhFl3xYV4l/ep6z7P4ZFWAgZM+egKRIoLbf/wjUjJxdNjmGrTk1yKub1QlDfG2vQzAzzOrXIXrLSyAruUlmWbJmm0RhtGKxq1xptajoFEaZ7CglRWSR4JipEhw4dCA0NZfLkyfz00098+umnvPbaazg4ONCzZ09yc3M5evQoycnJJVrrAAQFBbFgwQI2bdpE9erVWbhwIUeOHKF69cKBLD/99FNGjx6Nh4cHPXv2JD09nX379um7ixY1dOhQJkyYwLBhw/j000+Jj49n7NixPPvss/oumw/j9ddfZ9iwYTRp0oQ2bdqwaNEizp49S40ahYNgPmjd781+OWvWLLy9vYmMjOT99983SPP999/j7e1Nw4YNUSqVLF++HC8vL5yKjEmxfPlyg3IdPnyYOXPm6L+Pb775hn79+vHZZ5/h6+tLZGQkK1eu5J133sHX1/e+3++94Frr1q1RqVQ4OzvzzjvvMHjwYMLDw+ncuTP//PMPK1euLHWWytdff50vv/yS4OBg6taty3fffUdKkae09vb2vP3227z55ptoNBratGlDWloa+/fvx87OzuS4cUXVrFmTgoICfvzxR/r06cO+ffuYOXNmqXmCgoJYuXIlffr0QaFQ8PHHH5erFWJZKBQKnurQibmbN+Ln7oGfuzvzNm/EysKS7k0Kb1YnLJiHu5MTr/btD8DczRsJ8Q+gmpsbBQVq9p07w7rDB3l/yFP6PD+vWU2rkFA8nV3Iys1h87GjHL98ieljSh4vD1zmQYOYu2gR/r6++Pn6MvePP7CysqJHly76dJ9MnoyHuzuv3u2+/OTjj/Pi668zb/FiOrRuzc59+zh07Bhzpk83WL9Go+GfjRvp3b075sVaa9rZ2hLeoAE/zJypmxHW05PjJ0+yfvNm3iwSeH9Yubv2Y9WlA5r4RNTxiVh16YA2L5+84yf0aWyeHoQmNY2cdYY/yC1bNCH/9HmjY5hZ9e1J/tkLaJNTUNjZYtWtIworFXlHKuiG6CFYW6jwdXTXv/dxcCPYzZe0nExiM8rfPai8co9GYNWyGZrkFDTJKahaNkWbn0/e+Qv6NNaPdUOTnknubl2QIC/iFKrwhlh16UDesRMonZ1QtWxK3rEThSu2sDAYA0fp6IDSwx1tdg7a9DI82X/QemzbjVWPLmjiElDHxWPVowvavDzyitwM2wx/Ck1KGjnFuqZYtmpO/okzRlvb6QYkV6CJjUPp4Yb1wD6oY+PIq+Aud10G9GLu1F8ICK5BjTrB7Nm4naT4BNr10nWzXTVvCSmJSTz/lu74O7xzP3O/m8GQF5+jeu1gUpNSdHVRWWJ9d3yu9r26suOfzSz9dQGd+nYn7k4MG5b9Tac+PYyWoSIoFAqeatmaubt34Ofqip+rG/N27cDKwoLu9Rvq0034aynuDo682q0HKguLEuOW2VnrHn4UXf7V2r/ZdOoE3z79HDaWKhLu7kd2VlZYFWvdXhlyj57AqkXTwmOlRVO0BfnkFRl03LpXVzQZmeTeDdDknTiNqnEDrDq3J+/4Sd2x0qLYsVKZZd5zAKtO7dAk3D3Xdm6vO9dGnNKnsXnycd25dsMWg7yWTcN151Nj59oeXci/eFnXlUulwrJhPcxrVifzN1Pd8ssnZ/U6rIYMRBMVg/pONNZDBkJurr71DIDNW6+iSUwiZ55uyAaz2kEoXV1QX7uB0tUFq2cGg0JBbvExwxQKLLt2JG/rrkoN/ufuPYhVp7a6bZGQhFWntrpz7Yki22LIADSp6eQUa1lt2cz0tsDSEjPXwkCy0sUZM28vNNnZldLVrrL2KesBvbFsVJ+MeX+izc3Tj6+mzc6B+zywfKh6/D+/ZgDkbtyKVd+eaGJiUcfEYdWvp64ORYZPsBn9PJrkFHKW6rrXFxw/hapXF9Q3bqG+eg2lpwdWg/rpAppFg2oKBZbtW5G3Z/+/81BMiGIkeCYqzLhx43j++ed57733GDVqFDY2NnzzzTe8++672NraUq9ePYNB3IsaPXo0J06cYMiQIbofuU89xZgxY9iwYYM+zbBhw8jJyeH777/n7bffxs3NjUGDBhldn42NDZs2beL111+nadOm2NjY8PjjjxtMavAwhgwZwtWrV3nvvffIycnh8ccf5+WXXzYY8P5B665UKlmyZAmvvfYaYWFh1K5dm+nTp9OhQwd9Gjs7O7766isuX76MmZkZTZs2Zf369QbdLSdOnMiSJUsYM2YMXl5eLFq0iJC73e1sbGzYvXs37733HgMHDiQ9PZ1q1arRuXNnfUu0+32/U6dOZdy4ccyePZtq1apx48YN+vfvzw8//MA333zDa6+9RvXq1Zk7d65B2Yt76623iI6OZvjw4SiVSkaMGMGAAQNITS38MTVp0iQ8PDyYMmUK165dw8nJifDwcD744IMybaeGDRvy3Xff8dVXXzF+/HjatWvHlClTDFrIFff9998zYsQIWrVqhZubG++99x5paRXTNL80z3XpRm5+Pl8tW0x6VhahgdX58ZWxBi3UYpKTDLrC5uTl8tWyxcSlpKCysCDA04vPnnuebo0LZ7NMSk9nwsJ5JKSlYWdlRZBPNaaPGVtiUoGHMezJJ8nNzeXLadNIT08nrG5dfvrmG4MWajFxcQb7Z4OwML745BNmzJnDzN9/x9fHhymffGLQJRTg8LFjxMTG0ren8dYgkz/5hJ9nz+bjL74gLS0NL09PXh45ksf79jWa/kHkbt+NwsIC60F9UVhbo755m4yZcyG3sOuu0tmpxNNRpbsr5jUCyZjxu9H1Kh0dsX12CApbG7QZmRTcvEX6tJloK/IJ9gOq4x7ATwMKg/mvtdG1CFx//gBfbDc9M/C/Je/QURTm5lh364TCSoU6KobMZasMZjFVOjgYDMujTc8gc9kqrDq3w27EM2jSM8g7eoLcQ0f1acy8PLF7uvC8Zt1Z17o17/S5MrVQeFC5m7ejsLTA+qnHUdhYo74eScb0X6HIZCNKF+eS+5SHO+bBNcj4wXjQX2FthVX/x1A6OaHNyiI/4hTZq9dX+M1E03YtyUzLYN3ilaQmpeAT4MurE9/F1UMXeE1NSiEpvnBykz0bt6FRq1k8Yy6LZ8zVL2/ZuR3Dx+nGC3Vxd+X1Se+zfPYffPbK+zi5OtOpbw96DCr/MVya59q2J7cgn6/++Zv0nGxCff34cdhIgxZqMakpKJQP1kVmxWFd6/PRv88yWP7JgEH0CW9iLEuFyjt8DIWFOdZddUF5dXQsmctWFztW7A32Md2xshqrTu2we/5pNOmZ5B07QW5pLVYqUO7OPboyD+iDwtoKdeRtMmbPNzzXOjmC1nB/VrrdPdfOmmd0vQp7O2yffFzXHTInR/dd/LaAgstlm736geux/G8UlpbYvDIKhZ0tBRevkP7h55BdOImU0sPNsMuZpSXWw55C6eWBNjuH/CMRZH7zY4mAh3mjeph5upNRCbNsGtRh596726K3blvcukPG7IVGtkWxc5SbK+bVA3TbzQhzXx/sRj+vf299NziedzSCrGWrK6EelbNPqVrphmCxf3mkwfKspSt1M1pWsP/v1wyA3LWbdPv58KEobG1QX71OxpfTIKdIHVxdDOqQs3odWrRYPdEPpYsT2rQM8iNOklNsXzEPq4vSzfV/YpbNe8ozFI6oeAqt9kH7ugghHjUKhYJVq1bRv3//qi7K/7y0Sv6h+29w6NaJ9Kioqi5Gudn7+JDyZtkCro8qp+8n0/rn0fdP+Ijb98pMUr+aVtXFKBfH994gZXTJ1sP/3zjN/I6dV/6dIEll6hDUmLRlpc+M96hzGDyA1K+n3z/hI87x3ddIeefjqi5GuTh9M4nknk/cP+EjznnDclLenVDVxSg3p68n/if2qf/KNSNlqOlhOf4/cFo06/6JHlHTdi+9f6Iq8Ea7IVVdhCrx8KOECyGEEEIIIYQQQgjxHyfdNoUQQgghhBBCCCEeIUrptvlIkeCZEP8B0vtaCCGEEEIIIYSoHNJtUwghhBBCCCGEEEJUil9++YXq1atjZWVF48aN2bNnj8m0O3fuRKFQlHhduHDBIN2KFSsICQlBpVIREhLCqlWVOxaqBM+EEEIIIYQQQgghHiHGAkiPwutBLV26lDfeeIMPP/yQiIgI2rZtS8+ePYmMjCw138WLF4mOjta/goOD9f87cOAAQ4YM4dlnn+XkyZM8++yzDB48mEOHDj1w+cpKgmdCCCGEEEIIIYQQosJ99913jBw5klGjRlG3bl2mTZuGn58fM2bMKDWfh4cHXl5e+peZmZn+f9OmTaNr166MHz+eOnXqMH78eDp37sy0adMqrR4SPBNCCCGEEEIIIYQQ95Wbm0taWprBKzc312javLw8jh07Rrdu3QyWd+vWjf3795f6OY0aNcLb25vOnTuzY8cOg/8dOHCgxDq7d+9+33WWhwTPhBBCCCGEEEIIIR4hSoXikXxNmTIFR0dHg9eUKVOM1iEhIQG1Wo2np6fBck9PT2JiYozm8fb2ZtasWaxYsYKVK1dSu3ZtOnfuzO7du/VpYmJiHmidFUFm2xRCCCGEEEIIIYQQ9zV+/HjGjRtnsEylUpWap/hYaVqt1uT4abVr16Z27dr69y1btuTWrVt8++23tGvX7qHWWREkeCaEEEIIIYQQQggh7kulUt03WHaPm5sbZmZmJVqExcXFlWg5VpoWLVrwxx9/6N97eXmVe50PSrptCiGEEEIIIYQQQjxCqnpWzYqYbdPS0pLGjRuzZcsWg+VbtmyhVatWZV5PREQE3t7e+vctW7Yssc7Nmzc/0DoflLQ8E0IIIYQQQgghhBAVbty4cTz77LM0adKEli1bMmvWLCIjIxk9ejSg6wZ6584dFixYAOhm0gwMDCQ0NJS8vDz++OMPVqxYwYoVK/TrfP3112nXrh1fffUV/fr14++//2br1q3s3bu30uohwTMhhBBCCCGEEEIIUeGGDBlCYmIin332GdHR0YSFhbF+/XoCAgIAiI6OJjIyUp8+Ly+Pt99+mzt37mBtbU1oaCjr1q2jV69e+jStWrViyZIlfPTRR3z88cfUrFmTpUuX0rx580qrhwTPhBBCCCGEEEIIIR4hyv/QKFtjxoxhzJgxRv83b948g/fvvvsu77777n3XOWjQIAYNGlQRxSuT/87WEEIIIYQQQgghhBCigknwTAghhBBCCCGEEEIIE6TbphBCCCGEEEIIIcQj5EFnthSVS1qeCSGEEEIIIYQQQghhggTPhBBCCCGEEEIIIYQwQbptCiGEEEIIIYQQQjxClNJt85Gi0Gq12qouhBBCCCGEEEIIIYTQmX3w76ouglEvtOhX1UWoEtLyTAghKtBvB9dUdRHKbVSLvpyNvlrVxSi3UO+aPL1oQlUXo1z+HDqR1K+mVXUxys3xvTdo/fPoqi5Guex7ZSbPLp5Y1cUot4VPTeDknUtVXYxya1CtFn8e31TVxSiXp8O7s/78/qouRrn1qtuKPVcjqroY5dK2ZiM+3zK3qotRbh91fZ43/p5W1cUot2n93mD6nmVVXYxyea3tYN5fN6Oqi1FuXz72MoMWfFjVxSiXv577oqqLIP4jJHgmhBBCCCGEEEII8QhRIN02HyUyYYAQQgghhBBCCCGEECZI8EwIIYQQQgghhBBCCBOk26YQQgghhBBCCCHEI0Qhs20+UqTlmRBCCCGEEEIIIYQQJkjwTAghhBBCCCGEEEIIE6TbphBCCCGEEEIIIcQjRCndNh8p0vJMCCGEEEIIIYQQQggTJHgmhBBCCCGEEEIIIYQJ0m1TCCGEEEIIIYQQ4hEis20+WqTlmRBCCCGEEEIIIYQQJkjwTAghhBBCCCGEEEIIE6TbphBCCCGEEEIIIcQjRIl023yUSMszIYQQQgghhBBCCCFMkOCZEEIIIYQQQgghhBAmSLdNIYQQQgghhBBCiEeIzLb5aJGWZ0IIIYQQQgghhBBCmCDBMyH+RTdu3EChUHDixIlKWb9CoWD16tUPlKdDhw688cYbZU4/b948nJycSk1z4cIFWrRogZWVFQ0bNnyg8jysB61HZW8LIYQQQgghhBD/DdJtU/zPGD58OCkpKQ8cXKpIfn5+REdH4+bmBsDOnTvp2LEjycnJ9w1I/X8yYcIEbG1tuXjxInZ2dlVdHKOKb4uqErFtP0fW7yQjNR03H086De2Lb+0a9813+9J1lkyZiZuvJ8MnjdMvP7PnCBt+W1Yi/ZuzJ2NuaVGhZb9nw+q1/L1kBcmJSfhVD2DEqy8SUj/MaNqkxCTm/zKbq5euEH07il4D+zJy7Esm17132y6+m/QVzVq34P0vPqmU8t/TJbgpvUNa42Rtx52UeBYc28DF+EiT6VsH1qN3SBu87F3Iys/lVNQVFh3fREZeNgBN/erSL7QtnvYumCnNiElLZP2F/ey9fqpS6wGgat0CywZhKKysUEfHkL1lO5qEpPtkUmHVrhUWtYJQWKnQpKaRs303BdduAGDmWw1V88aYeXqgtLcjc+U/FFy+Wul1KU0D7yCebtSNOh7+uNk68f76Gey5frJKy1RU56AmPFa3FY7W9txJjeOP45u4VMo+1SqgHo/VbYWnvSvZ+Tmcir7C4ogt+n2qmoM7j9fvQKCzD+52TvxxfCObLh6q1Dps+nsda5auJCUxGd9Af4a/8gJ164caTZucmMSCGXO4dukqMXei6DmgD8NffaFEusyMDBbPWcjhPQfITM/Aw9uTZ0ePJLxFk0qtS1FHNu9h/9ptpKek4eHrRffnHiegTs375ou8eI15n03Hw8+b0V++9y+UtNDe9dvZsXoDackpePlVo//Ip6kZWsto2mvnLvHPguXE3YkmPzcPZ3dXWnbvQIe+3fVpoiPvsPHPVdy6eoPk+ET6j3iK9n27VXo9dqzdzKYV/5CSlIJPgC9PvvgctcLqGk17bN9hdq7bwq1rNyjIL8AnwJe+QwcR1riB0fSHd+1n1lfTadiiCa9+8nZlVoOLu49zdtshslMzcPJ2o8njXfAM8jOaNubSTbZMX1xied+PXsDRyxUAjVrNmc0HuHroDFkp6Th6utCoX0eqhdz/N0FFah1Yn05BjXGwsiUmPZFVp3dxLSnKaNqnG3WjmX9IieXRaYl8tWNhZRdV7/SOQ0Rs2ktWSgYuPh60ebInPrUCjaa9c+E6q7/9vcTypye9hrO3OwBndx/l4oETJN2JBcA9wIcWA7riWcO30urQIiCUdjUaYq+yITYjmbVn93EjOdpkejOlks7BTWjkUwt7lQ2pORnsuHKco7cvANDYtzZPNOhUIt9HG2ZRoFFXWj26125O35A2ONvYcysljnlH1nE+7qbJ9G2rN6BfaFu8HVzJysslIuoSC45tICM3W5/GxsKKpxt1pbl/KLYqK+LSk5l/bAMRdy5VWj0eFdJt89EiwTMh/kVmZmZ4eXlVdTEq3dWrV3nssccICAio6qKY9ChsiwuHTrB90Rq6PjeAarUCObnjIH9NncOIKW/j4OpsMl9uVjbrZy0hICSIzLT0Ev+3tLZi5JfvGCyrrMDZ3u27mPvTLF54Ywx164Wwac0GPn/3E36YPxN3T48S6Qvy8nFwcuTxZ55k7fJVpa47LiaWeTN+I8TEjXpFahEQynONe/D7kXVcio+kc3AT3uv4DO+s/ZnErNQS6Wu7+/Nyy4EsPL6R47cv4mLjwIhmvXmhRT++370EgIzcbFaf2U1UWgIFGjXh1WrzUov+pOVkciq68oJOls2boGraiKz1m9EkpaBq1QzbwQNJ/20+5OUbz6RUYjtkANqsbLJWr0WTnoHS3h5tXp4+icLSAnVcPHmnz2I7oE+llf9BWFuouJJ4m/UX9jO55+iqLo6B5v6hPBPeg3lH13E54RYdgxrzTvuhvL/+ZxKz0kqkr+Xmx0st+rMoYhMRdy7hbG3P8017M7JZH37YqwuIW5pbEJeRwuHIcwwN715iHRVt/449zPv5N0a9PpraYSFs/Wcjk9//lO/n/oybkeM7P193fA98ZjDr/vrb6DoL8vP5/J2PcXByYtyn7+Pq5kZifDxWNjaVXR29MweOs3HBSh4b8QR+tWtwbOs+Fn05g1e+/QBHNxeT+XKysln9y0JqhNUiI7XkubcyRew9xOrf/2TQS89SvU4w+zftZNak73j/xy9wdnctkd7SSkXbXp3xDvRDpVJx7fwlls+Yj6VKRavuHQDIz83F1cudBq2bsvr3koGdynB4136WzJrP0DEjCQqpze4NW/nhky/5bOZUXD1KPsy6fOY8IY3qMXD4k9jY2rBvy05+nPg1H37/Of41qxukTYyNZ/lvfxAcWqfS63Hj2HmOrthKsyHd8ahRjUt7T7D9l2X0/WgUti6OJvP1+/hFLKwt9e9VdoX7/Yl/dnPtyFlaPt0TB09Xos5fY9fslfQY9wwufv/O75VGPrUYUK89f53czvWkKFoF1uellv2Zsn0hKdkl9/mVp3fyz7m9+vdKhZJ3Ow7lZNTlf6W8AJcPn2bvkg20H9obryB/zu4+yj8/LOTpz8Zi7+pkMt/Qz1/Hwlqlf29tb6v/+87F6wQ3q4dXzccwtzDn+Ma9rPl+Pk99NhY7Z4cKr0N975r0DmnN32f2cCM5mub+oTzf7DG+27WE1JwM4+Vv1A07lQ0rTu0gMSsNW0trlErDQEtOfi7f7jI8tiszcNYqsB7Dm/Tit0P/cCH+Jl2Dm/JB52G8ueYHEjJL/paq4xHAq60HMf/oeo7evoCLjQMvNu/Hyy0H8s3ORQCYK834pOvzpOZk8u2uP0nMSsPN1pHs/NxKq4cQpki3TSHu2rVrF82aNUOlUuHt7c37779PQUGB/v8dOnTgtdde491338XFxQUvLy8+/fRTg3VcuHCBNm3aYGVlRUhICFu3bjXoSlm0q+CNGzfo2LEjAM7OzigUCoYPHw5AYGAg06ZNM1h3w4YNDT7v8uXLtGvXTv9ZW7ZsuW8dMzMzee6557Czs8Pb25upU6eWSJOXl8e7775LtWrVsLW1pXnz5uzcufO+675HoVBw7NgxPvvsMxQKBZ9++ik7d+5EoVCQkpKiT3fixAkUCgU3btwA4ObNm/Tp0wdnZ2dsbW0JDQ1l/fr1+vTnzp2jV69e2NnZ4enpybPPPktCQoLJcvzxxx80adIEe3t7vLy8ePrpp4mLi9P/31i3zQf9jPI6unE39do1pX6H5rj6eNJpaD/sXZw4se1Aqfk2z1tBSMtG+AQZD04qFGDn5GDwqiz/LF9F517d6Nq7B74B/owc+xKuHu5s+nud0fQe3p6MHDuajt07Y2NrazQNgFqtZtrn3/Dk88/g6e1dWcXX61WnFTuvRrDz6nGi0hJYeGwjiVlpdKnV1Gj6IDdf4jNT2HTxEPGZKVyMj2Tb5WPUcPHRpzkfd4Ojty8QlZZAXEYyGy8eJDIlltrulRtUVjVpRM6BIxRcuoomIZHsdZtRWFhgWdf0DaVl/VAUVlZkrfwH9Z1otGnpqO9EoYkv3P8Lrt0gd88BCi5VbWuzog5GnmX2oTXsunaiqotSQs/aLdh1LYJd1yKISktg0fFNJGal0jm49H1q86XDxGemcCnhFtuvHKN6kX3qelIUS05s4WDkWfLVlXcDdM/a5avp1LMrnR/rjm+AH8NffQE3Dzc2r9lgNL2HlyfPv/oi7bt1wsbWeDBs+4atZKRl8M6kD6kTFoK7lwd16oUSWCwQUpkOrttBo44tCO/UCvdqXvQY9jiOrs4c2bK31Hxrf1tKWOsm+AYH/jsFLWLn35tp3qUdLbq2x9PPhwGjnsbJzYV9G7cbTe9bI4Dwdi3w9q+Gi6cbTTq0onajMK6dK2yp4R9cg77DhxDetjnm5v/O8/Qtq9bRpltH2vXohI9/NZ58aRjO7q7sXGf8N8yTLw2j5xN9qV6rJp7VvBk4/Ck8fbw5eei4QTqNWsPsb36i7zODcPcuGditaOe2HyaoZQOCWzXA0cuNpoO6YOPswMU9EaXms7K3wdrBTv9SKgtvxa4dPku9bi2pFloTezcnarcNx7tudc5tP1LZ1dHrEBTOoZtnORh5ltiMZFad2UVKdgZtAusbTZ9TkEd6bpb+5e/kibWFFYciz/5rZT6xZT9124QT0q4JLj4etH2yF/bODpzZebjUfNYOttg62utfRbdFtxeeoF7H5rj7e+Ps7U7HYf3QarXcPl8517821Rtw9NYFjtw6T3xGCmvP7SM1J4MWAcYfHtZy96O6qw9zj6zjSuIdkrPTuZ0aR2RyrEE6LboHeUVflalP3dZsv3KMbVeOcic1nnlH15OYmUq3Ws2N18PNj/jMZNZfOEBcRjIX4m6y5fJharoWXvc6BTXGTmXN1zv+4GJ8JAmZKVyIu8nN5JhKrYsQxkjwTAjgzp079OrVi6ZNm3Ly5ElmzJjBnDlz+Pzzzw3SzZ8/H1tbWw4dOsTXX3/NZ599pg9aaTQa+vfvj42NDYcOHWLWrFl8+OGHJj/Tz8+PFStWAHDx4kWio6P54YcfylRejUbDwIEDMTMz4+DBg8ycOZP33rt/95F33nmHHTt2sGrVKjZv3szOnTs5duyYQZrnn3+effv2sWTJEk6dOsUTTzxBjx49uHy5bE8Ro6OjCQ0N5a233iI6Opq33y5bt4lXXnmF3Nxcdu/ezenTp/nqq6/0XT6jo6Np3749DRs25OjRo2zcuJHY2FgGDx5scn15eXlMmjSJkydPsnr1aq5fv64PTpoq94N+RnmoCwqIuXGHwDDDLjeBYbW4c8V08/bTu4+QEpdIq/5dTabJy8nj13FfMOONz1nx3e/E3rxTYeUuKj8/n6sXr9CgabjB8oZNG3Hh7PlyrXv5gsU4ODnS5bHKb11jpjSjuos3p6KvGCw/HX2VWm7Gu+Bcir+Fi40DDX2CAXCwsqW5fwgRUaa7EIR6VsfbwY3zcTcqrOzFKRwdUNrZUnC9yD6kVlNw6zZm1UwHIc2DaqCOisa6a0fsX30BuxHPoGrRVBeJFQ/MTKkk0MWH0zGGN1pnYq4R7Ga828/lBN0+1cA7CNDtU83863LiX2zBUVRBfj7XLl2hQZNGBsvrN2nExXIc38f2HyI4tA5zfpjJC48/y1sjXmHlomVo/oVgIOjOvVHXb1GzvmEwuUb9Oty+dN1kvoidB0mOTaDD4z0qu4glFOQXcPvqDWo3NLyRrt0wlBsXynYzf/vaTW5cuEJQWO3KKGKZFOQXcPPKdULDDQMxoY3qc/V82bpfaTQacrKzsbU3fPjyz+IV2Ds60LZ7yW5qFU1doCbpVgzedQMNlvvUDST+eunX27VfzeWvD35ky/TFxFwyvNarCwpQWhgGMc0tzIm7eqtCyn0/Zgolvo4eXIg3LNeFuJsEupTtIVbzgFAuxUeSbKSVWmVQFxQQfzMK/9Agg+V+oUHE3Od7W/rZL8x96ytWfzuX2xeulZq2IC8fjVqNlYmHAuVhplBSzdGdy/GG5b0cf4sAZ+MtDut6BnI7NZ72NRoyvvOzvNX+KXrVbYm50swgnaWZBe91fIbxnZ5lWJOe+DhU3lAl5kozarj6cDLK8LfUyegr1Hb3N5rnYnwkrjaONKqm+y3saGVLC/8wjt8uPB808a3DpfhbjGrel9+eGM93fV5jYFh7lP8jv0+UCsUj+fpfJd02hQB++eUX/Pz8+Omnn1AoFNSpU4eoqCjee+89PvnkE/3TqPr16zNhwgQAgoOD+emnn9i2bRtdu3Zl8+bNXL16lZ07d+q7A37xxRd07Wo8yGFmZoaLi657iIeHxwONebZ161bOnz/PjRs38PXV3YhNnjyZnj17msyTkZHBnDlzWLBggb5M8+fP1+cHXXfLxYsXc/v2bXx8dE993n77bTZu3MjcuXOZPHnyfcvm5eWFubk5dnZ2D9QtMjIykscff5x69eoBUKNG4RgfM2bMIDw83ODzf//9d/z8/Lh06RK1apUc82XEiBH6v2vUqMH06dNp1qwZGRkZRsdhe5jPKI/s9Ey0Gg22jvYGy20d7cg00R0oOSae3cvX89SHY1CamRlN4+LtQc9Rg3H38yYvO4djm/fy5+c/M3zSmzh7uVdoHdJT09BoNDg5Oxksd3R2JiUp+aHXe/70Wbau28R3v/1UzhKWjb3KBjOlGak5mQbLU3MycLQ2Pmbf5YRb/LxvBWPbPIGFmTnmSjOO3rrA/CPrDdJZW6j4ecBbmJuZo9FqmHt4HWdiSv+RXh5KO90NpTYry2C5NjMLhaPpFohKJ0eUjn7kn7tA5vK/MXNxwqprR1Aqyd1fuWNq/Rfp9iklacW626TmZOBoZXxcrcsJt5lxYCWvtB6k36eO3b7AwmPGW3lVtrS7x7djiePbiZSklIdeb2x0DPERp2jTpQPjp0wg+nYUc6bPRKNWM+i5p8pX6DLIStOde+2KnXvtHO25auLcmxgdx7bF//D8p6+bPPdWpsz0dDQaDfbFWhHbOzqSlnym1LyfjhxHRmo6Go2aHkP606Jr+8osaqky0nT7lIOTYbdGB2dHUpNTyrSOzSvXkZuTS5O2LfXLLp+9yN5NO/jkpy8rsrgm5WZkodVosSoWwLOytyUnLdNoHmtHO1o81QMXfy80+WquHTnDlh8X0+31p/EM0gUWfOrW4Pz2I3gG+WHv5kz0xRvcOnUZrVZb6XUCsFVZY6ZUkp5jeP1Iz83Cwer+QSMHlQ11PQL/1XNWTkYWWo0GawfDa7W1gx1ZJo5nGyc7OjzXD48AH9QFBVw8cJK/p85jwDsjTI6TdmDFZmydHPCthPHnbCytdN97XvHvPZtaKuPfu4u1A4HOXhSoC1h4dBO2llb0D2uLjYWKv07tBCAuI4Xlp7YTm5aEytyS1tXrMbpVf37YvdzocBTlVfhbqth1LzsDJx/jv6Uuxkfyw55ljGv3pP66d+TWeeYc/kefxtPehTA7J/ZcO8nkbfPxdnBlVPO+KJVK/jq1o8LrIURpJHgmBHD+/HlatmxpMChj69atycjI4Pbt2/j7637Y1K9v+LTU29tb3xXw4sWL+Pn5GQSMmjVrVmnl9ff3Nwh8tWzZspQcusBYXl6eQToXFxdq1y58Cn38+HG0Wm2JQFFubi6uriXHVKlIr732Gi+//DKbN2+mS5cuPP744/rv+9ixY+zYscNo0Ovq1atGA1sRERF8+umnnDhxgqSkJDQaDaAL0oWElBzc9kE/Izc3l9xcw/EWVCoVD6zYwxut1nhjH41Gw9qZf9J6QDdcSgmC+QQFGHTnrBYcyPwJ0zi+dR+dn+n/4OUrgxKDmWq1KIpXrIyys7L44YtvGfPOayVusCpf8RsUhW6DGFHNwZ1hTXqy6vQuTkZfwdnajqcbdWNEsz7MPlQ41lNOfh7j18/EysKSUM8aPNO4O3EZyRXW+swipDbW3Tvr32feG2eqeLkVRpYZ/F+BNiuL7I3bQKtFExuHws4WVbMmEjwrh5KbQVFiL7vHx8GNZ8N7svrMbk7HXMHJyp4nG3Xl+aa9+e3wmkovqylGj+9yPHTWarU4ODvy0rhXUJqZUaNWEMmJSaxZuvJfCZ4VMqyEVqstcT4G3bl35U8L6DCoJ67/QnfA0pQ8r95/W4ydPJ7c7BxuXrrG2oXLcfP2ILxdi0orY1kU36d0173771SHdu5jzaK/ePWTt/XXh5ysbOZ8+xPPvfYC9qU8IKgMJbaHFqP7EICjpyuOnoW/o9xrVCMzOY1zWw/rg2dNB3XhwOINrJk0GxRg7+ZMzRb1uXqw8ieZKY3C9KXQQDP/ULLzczldiWN6mlJi9zH1Ywpw9nI3eJjoVdOfjKRUIjbtNRo8O75hD5cPnab/OyMwt6ic8WOBEj9BFArQmrhi3DtelpzYRm6BbmzStef3MzS8O6vP7KFAo+ZWSiy3Ugq7cd5MjmZsmydoFRjGP+f2VU4d9DnauwABAABJREFUoGSwt5Rj29fRnRHNerP81HZO3rmMk409zzXuyYst+jHjwKq72RWk5mTy68HVaLRariVF4WztQL/QthI8E/86CZ4Jge5EX/LHnO7kX3S5RbGLpkKh0AdljK3jYSmVyhIXn/z8woG+jT2FvN9nl+XJpUajwczMjGPHjmFW7Ol6eWbNvNdyr2gZitYHYNSoUXTv3p1169axefNmpkyZwtSpUxk7diwajYY+ffrw1VdflVi3t5HxsDIzM+nWrRvdunXjjz/+wN3dncjISLp3705ekQHQi3rQz5gyZQoTJ040WDZhwgR8e4SXSGuMtb0tCqWSzBTDJ6NZaRnYONiXSJ+XnUvM9dvE3oxi68LVwN3vU6vl2+ff44l3XiAgJKhEPoVSiXd1P5JjKn7sNntHB5RKJcnFWpmlpqTg6OL0UOuMuRNNXEwsk8cXfrf39ptBnXrz08LZeJXS/fBhpOdmodaocbQy3McdrWxLtEa7p29YWy7F32Lted0P0FspseQWrGNCt5EsP7mNlLtPXrVoic3QzXJ5MzmGao5u9AttW2HBs/wr11BHFRn3w1x33CpsbdFmFj7FVtjYGLwvTpuha41T9A5Jk5isa8mmVMLd85woG90+pSnRctHByrZEa7R7+oS04XJCJOsv7AfgFnHkHsnj464jWH5qu8lBoyuLw93ju3gr0tSU1BKt0R6Ek4sz5ubmBi24qvn7kpKUTEF+fuXenAI2Drpzb0aq4aQNmWkZ2Bk99+YQdS2S6Bu3WT/vL6Dw3PvZ0Dd4dvwYqodVbMvk4mztdeMxpaUYthZJT03D/j4PGVw9dUECn0A/0lNS2bjk7yoLntk56Pap4q3M0lNS7/uw5PCu/cz/4VdGj3+DkEb19MvjomNJiI3nx4nf6Jfdu2a82PtpPp/9HR7eFTvYvsrOBoVSQXa64TGZk5FZojVaadwDq3HtSOHYYFb2NnR88XHU+QXkZmZj7WhHxN87sStl0PuKlJmbjVqjwb5YKzM7SxvSc01fP+5p7h/C0dvnUWv/veuFlZ0NCqWSrFTDbZGdnomNQ9l/t3rW8OXSwZIzNUds2sux9bvp99Zw3Cpp0oasvBzd964q/r1bmxyjLD03i9ScTH3gDCAuIxmlQoGjlZ3RlmVa4HZqHG62ThVZfIMyqTVqnKwNz6OOVrakZBu/fg0Ia8/FuJusOasbb/JmSiyzC9bweY8XWXxiKynZ6SRnpaPWqtEU+X1yJzUeZxt7zJVmlToBwqPgYR9Gi8ohwTMhgJCQEFasWGEQANu/fz/29vZUq1atTOuoU6cOkZGRxMbG4unpCcCRI6UP8mppqZtxSV1srBd3d3eiowunp05LS+P69cKxWEJCQoiMjCQqKkrfvfLAgdIHmQ8KCsLCwoKDBw/qW9IlJydz6dIl2rfXdeNo1KgRarWauLg42rZtW5Zql4m7u+7He3R0NM7Oulkkiw7Uf4+fnx+jR49m9OjRjB8/ntmzZzN27FjCw8NZsWIFgYGBZRrU+MKFCyQkJPDll1/i56cbs+ro0aOl5nnQzxg/fjzjxo0zWKZSqVgYsem+eQHMzM3xCqzGzbOXqdWk8Ebg5tlLBDUqOUCsylrF8C/eMlh2Ytt+Is9foe+rz+HobnyGOK1WS1xkFG6+FT/ovoWFBTVrB3HyaAQt2rbSLz95NIJmrR/u5qyavx/f//6LwbLFcxaQnZ3NiFdfMjobW3mpNWquJ0VTz7umfop3gDDvGhy7fdFoHpWZRYkbBM2996UGshWYV2S3r7x8NHmGP5I1GZmYB/qTFxevW6BUYu7nS85O04OhF9yJwjLEcAwopbMTmvQMCZw9BLVGw42kKMK8anCs6D7lVYPjd0zsU+YWqDXF96l7D3Eqr6ymmFtYUKNWEKeORdCsSBe5U8dO0LSV8cGfy6J2WAj7tu1Co9HoH6xE347C2dWl0gNnoDv3+lT349qpi9Rt2kC//NrpC9RuXK9EepW1FS9//b7BsiOb93L93CUGvzECJyMzXVY0cwtzfGsGcunEWeq3aKxffunEOcKaNyz7irS6seyqirmFOQFB1TkXcZrwVoUt889FnKZhiyYm8x3auY9502by4ruvUb+Z4QMqbz8fJv7yjcGyVQuWkpOdzVMvDcfFreKvGWbmZrj4eRF94Qb+DQpb70dfuIFvveAyryfpdizWjiWDbWYW5tg42aNRq4k8cZGA8LoVUu77UWs13E6No7a7v0Hrsdoe/pyJLn24gSBXX9ztnDl4eG1lF9OAmbk57gE+3Dp3lRrhhb0Kbp27SvWGZZ91NeFWNDZOhkGf4xv3cmzdTvq8MQyPwLLdCzwMtVbDndR4gtx9ORtb+Fs/yM2Xc7E3jOa5mRRNPe8aWJqZk6fWTW7mbuuERqsp9UGLt4MbsemJFVr+ewo0aq4lRlHfJ4jDt87pl9f3DuLILePjZKrMjfyWunsdvHfZuxh/kzbVG9xtua27Jno7uJKUlfafD5yJR49MGCD+p6SmpnLixAmDV2RkJGPGjOHWrVuMHTuWCxcu8PfffzNhwgTGjRtnMPtOabp27UrNmjUZNmwYp06dYt++ffoJA0y1CgsICEChULB27Vri4+PJyNBd8Dp16sTChQvZs2cPZ86cYdiwYQYtwbp06ULt2rV57rnnOHnyJHv27Cl1cgLQtRwbOXIk77zzDtu2bePMmTMMHz7coH61atVi6NChPPfcc6xcuZLr169z5MgRvvrqK4OZLx9UUFAQfn5+fPrpp1y6dIl169aVmOnzjTfeYNOmTVy/fp3jx4+zfft26tbV/WB85ZVXSEpK4qmnnuLw4cNcu3aNzZs3M2LEiBKBRwB/f38sLS358ccfuXbtGmvWrGHSpEmllvFBP0OlUuHg4GDwetBum016tOPUrsOc3n2YxKhYti9aQ1piCg066W5Udy9bz7pfdVOMK5RK3H29DF42DnaYWZjj7uuFpUoXiN23ajPXT18kJS6R2Jt32DhnOXGRUTTsWDktDfo8MYBt6zaxbf1mbt+M5PefZpEQG0+3vr0A+GPWXH6Y/K1BnuuXr3L98lVysrNJS03l+uWr3LoRCYClypKAGoEGL1s7O6ytrQmoEVii9WdFWX9hPx1rhtO+RiN8HNx4JrwHbjaObLusC4APadiFl1sO0Kc/fuciTf3q0iW4KR52ztRy9+O5Jr24knCblLsDJfcNbUuYVw087JzxcXCjV52WtK3RgL3XK7cLTu7RCKxaNsM8uCZKN1esH+uGNj+fvPOFQRzrx7qhatda/z4v4hQKKyusunRA6eyEeY1AVC2bkhdR5Em8hQVKD3eUHrpguNLRAaWHOwr7kq11/i3WFiqC3Xz1g/D7OLgR7OaLp51zlZXpng0XD9KhRjjtajTEx8GNoY2642rjyLbLukD+4AadealFf336iDuXaOJXl85BTXC3dSLYzY9nG/fgasJt/VN7M6USfydP/J08MVea4WztgL+TJx6VVN/eT/Rn2/otbN+whds3bzHv59kkxMbTtY9ufM0/Z8/npynfGeS5ceUaN65cIyc7h7TUVG5cucbtu8c3QLe+PUlPS2feT7OJunWH4wePsOrP5XTv16tS6mBMi8c6cnzHASJ2HCD+TgwbF6wkNSGZJl3aALB18RpW/bIQ0J17Pfx8DF62jnaYW1jg4eeDpdVDdNd/CB36dePg1t0c2rqb2FtRrJqzmOSERFp1183avXbhchZNm61Pv3f9Ns4cPkF8VAzxUTEc2raHHX9vpEmHwkBoQX4Bd65FcudaJOoCNalJydy5Fkl8dGyJz68oXQc8xp5N29m7eQdRkXdYMms+SfEJdOjVBYAVcxcz59uf9ekP7dzH71N/YfCoZ6lRJ5jUpBRSk1LIutuS1sLSkmqBfgYvGzsbrKytqRboh7lF5bQTCOnUjCv7T3LlwElSYxI4smIrmUlp1Gqrm2Dj+N872begcNym8zuOEHnyEmlxSaREx3P8751EnrhInXaFwdD4G1FEnrhIekIKsVduse3nZWi1WkK7PHyw+kHtvHKcFgFhNPcPwdPOmf5h7XC2tmffDd11q3fd1gwN71YiX/OAUG4kRRNTSYGZ0jTs2opze45xbu8xkqLi2LtkPelJqYR20AVoD6zYzNY5f+nTn9yyn2sR50iJTSTxTiwHVmzm6rFz1OtY+D0f37CHQ6u30mn4AOzdnMhMTSczNZ28nNwSn18R9l4/SVO/ujTxrYO7nRO967bCydpeP2tp99rNGdygcDKME1GXycrLZVCDTnjYOVPdxZuedVpy9NYFfUCpc3ATgt38cLG2x9vBlUH1O+Dj4MrBm+eMlqEi/HN+H52DGtMpqDHVHN0Z3qQXbraObL6km/n06UbdGNt6kD790dsXaO4fSrdazfCwc6a2uz8jmvXmcvwt/aQTmy4exl5lw/PNHsPb3pXwarUZWK8DGy/KkBLi3yctz8T/lJ07d9KokeHMYcOGDWPevHmsX7+ed955hwYNGuDi4sLIkSP56KOPyrxuMzMzVq9ezahRo2jatCk1atTgm2++oU+fPlhZWRnNU61aNSZOnMj777/P/7F319FRHW8Dx79xdw9JiJKEBAvu7l6KS6FQSqEFClRoi5ZCBW8p3uDuxd0tuEtwD3Ejvu8fgU022Q3QJE36/p4PZ89h787cfWZzd/beuSN9+vShV69eLFq0iJEjR3L37l1atWqFhYUFP/74o0rPM21tbTZu3Ejfvn2pUqUK7u7uzJw5k2bN8l4F7LfffiM+Pp42bdpgZmbG8OHDiYlR7bUSHBzMhAkTGD58OE+ePMHGxobq1avTosU/v7DR09Nj5cqVfPbZZ5QrV47KlSszYcIEOnbsqEyTnp7OoEGDePz4Mebm5jRr1oxp06YB4OzszLFjx/jmm29o2rQpycnJlCxZkmbNmqlt3LSzs2PRokV89913zJw5k6CgICZPnkybNm00xvi+71EQ/KqW51V8Isc37yUhOhbbEo50GNYXC9vMC+H4mFji3nNi7uTEJHYHryMhJg4DI0PsS5agy3ef4eSlfqWj/KrVoC5xsXGsWbyCqMhI3Dzc+f6Xcdg7Zva+jIqIIvzFS5U8wz/5Qvn/O7dCObL3IHYO9sxdvahQYnwXJx9cxVTfmA/K1MXSyIzH0WH8enA54QmZ3w9LQ1NsTLKGFR2+ewFDXQOalKpC96AmJKYkcfXFPVae36NMY6Crx8eVW2FtbE5KeipPY8P58/h6Tj64muv9C1LKqTNo6epi1KQBWoYGpD99TsKajZCS1eNE29xcZX4VRVw8CWs2YtiwDqYf9yAjLp6UMxdIPpXVY1PH0QHTblknvUYNM3usply+xqvtuwu1TJr42ZXkj/ZZPUAH18qsU7ZfP8FP+xcXSUxvnHp4FVN9I9oF1MXSyJTHMWFMPrRcOZzG0tAUG+OsY+rIvYsY6hrQqFRlulbIPKauhd1j9YW9yjRWRmb81HyA8nlL/xq09K/B9Rf3mVgI5a1RvzZxsbGsX7KKqMhIXN1LMnLSGOwcM+f+ioqMJDxM9fv9df8hyv/fvRXK0X2HsHOwZ9bKhQDY2tvxw6/jWfznAr7q9wXWtjY0/6A17bp0KPD4NQmsHsSruAQObdhFfHQM9q5OdP9mAJave/DGR8cSE/7PFz0pDBVqVSUhNoFdq7cQGxWDk1sJ+o/6EuvXvXFjI2OIepnVcJGRoWDbsnVEvniJto4ONo52tOr5IdWb1lOmiY2MZvKwMcrnBzbt5MCmnXgF+PL5T6q97QpKlbo1SIiL5+8V64mJjMbZ3ZUh475VDi+NiYoi4mXWNAOHduwlPT2d5X/+xfI//1Jur9GoDh8PG1goMb4L94r+JCe84tKOY7yKTcDSyZYGAztiap35nX4VG09CZNbQ4Iy0dM5t3E9iTDw6erqZ6T/rSImArAVEMlLTuLD1MHHh0egZ6FMiwJOavVqhb6z+HLIwnH96C2N9Q5r6VsPcwJhncRHMPblZ2ZBhbmiClZHq3HKGuvqUc/Jmw5VD/1qc2flUKUNSQiJn/j5IQkwcNs4OtB7SE/PXw10TY+KJi8g6101PS+fYml0kRMeiq6eHdQl7Wg7uiXvZrOHXVw6eJiMtnZ2zV6m8V+XW9anStuBXdL307A7G+oY09KmImYEJz+MjWRSyTXnjxNzAGMts0wCkpKex8NTftAmoxee1OpCYkszlZ6HsunlamcZIV58PytTFzMCYpLQUnsa+ZO6JzTyOCSvw+N84fv8yZgbGfFi2PlZGZjyMfsHEfUsIT4gGMn/DbLOdSx28cx4jPQOa+1Xjo0rNSUhJ4srzuyw7mzWKIyIxhh/3BNO7cgumtPmCyMRYtl8/zqarhwutHMXJ//LKlsWRluLfWsJFiP9Bx44do1atWoSGhuLlpX6FNVE0bt68iZ+fH7dv38bbO/dcYf/UgpNFN7F3QelXrQ1Xi2DC34IW4ORFt+Vj3p6wGFvRfRwxv0wv6jDyzeKbodScNeDtCYuxY4Pm0HPluLcnLOaWdh3DxSe3ijqMfCtXohQrzr3bMPniqltQU7ZfP17UYeRbC/8aHLlzvqjDyJfaXhWYsCe4qMPItx8a92Ho5ulFHUa+TW87lJlH1hR1GPkyuHYnvt02u6jDyLefW37Gh0vyHt1S3K3r9VNRh/CPrc52U7Y46VyhcVGHUCSk55kQBWjjxo2Ympri4+NDaGgoQ4YMoWbNmtJwVsxERkaybt06zM3NlXOiCSGEEEIIIYQQ6kjjmRAFKC4ujq+//ppHjx5ha2tLo0aNcs3tJYpe3759OXv2LLNnz37vecqEEEIIIYQQorBpmjdbFA1pPBOiAPXq1YtevXoVdRjiLTZu3FjUIQghhBBCCCGE+I+Q1TaFEEIIIYQQQgghhNBAep4JIYQQQgghhBBCFCMybLN4kZ5nQgghhBBCCCGEEEJoII1nQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIYoRbWTYZnEiPc+EEEIIIYQQQgghhNBAGs+EEEIIIYQQQgghhNBAhm0KIYQQQgghhBBCFCNaWtLXqTiRv4YQQgghhBBCCCGEEBpI45kQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIYkRbS1bbLE6k55kQQgghhBBCCCGEEBpI45kQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIYkRLhm0WK9LzTAghhBBCCCGEEEIIDaTxTAghhBBCCCGEEEIIDWTYphBCCCGEEEIIIUQxooUM2yxOtBQKhaKogxBCCCGEEEIIIYQQmbZcOVLUIajVJrB2UYdQJKTnmRBCFKDxe/4q6hDybXTjj7nyNLSow8i3QGdv6s4eVNRh5Muhz2YRPWBYUYeRb5ZzptJz5biiDiNflnYdQ81ZA4o6jHw7NmgOYbERRR1Gvtmb27D0zI6iDiNfelZqzpdbZhR1GPk2rc0Qph9eXdRh5MvQOp3pt2ZSUYeRbws6jaTXyvFFHUa+Lek6mi7LRhd1GPmyqsd42i36tqjDyLdNvX+m8bwhRR1Gvuzp/9+vZ0XxII1nQgghhBBCCCGEEMWItqy2WazIggFCCCGEEEIIIYQQQmggjWdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghihEtGbZZrEjPMyGEEEIIIYQQQgghNJDGMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBDFiAzbLF6k55kQQgghhBBCCCGEEBpI45kQQgghhBBCCCGEEBrIsE0hhBBCCCGEEEKIYkQbGbZZnEjPMyGEEEIIIYQQQgghNJDGMyGEEEIIIYQQQgghNJBhm0IIIYQQQgghhBDFiKy2WbxIzzMhhBBCCCGEEEIIITSQxjMhhBBCCCGEEEIIITSQYZtCCCGEEEIIIYQQxYi2DNssVqTnmRBCCCGEEEIIIYQQGkjjmfhHXrx4wfjx44mKiirqUIQQQgghhBBCCCEKjTSeifemUCjo2bMnBgYGWFlZvVded3d3pk+fXjiB5ZOWlhabNm16rzz16tVj6NChhRLPf1XPnj2ZOHFiUYeRLyNGjGDw4MFFHYYQQgghhBDif5SWllaxfPyvkjnP/gW9e/dm8eLFAOjq6uLq6soHH3zAuHHjMDExKeLo3t+kSZPw9PTkm2++ee+8ISEh/8kyi3dz6dIltm3bxp9//qncVq9ePQ4dOsSkSZP49ttvVdK3aNGCHTt2MGbMGHr37o2Hh0ee+x8zZgxjx44FYPHixcyaNYurV6+ira1NhQoV+Prrr2nVqhUA8fHxWFlZsWzZMjp37qzcR+fOnVmzZg2hoaF4eXkpt3t5edG5c2cmTpzI119/jZeXF19++eVbYypotw6f49q+07yKicfSyZaKHRpi7+2qMX16ahqXdxznXshVkuISMLY0I7Bpdbyql/3XYt65aSubV28gKiISV3c3+nzen9JlA9WmjYqIZNGfC7h7O5Rnj5/S4oM2fPx5f437Prr/ENN+/JXKNavx7YRRhVUEANoF1KZL+UZYG1twP+oZfxxbx6Vnd/JIX4cPytTF0cyaF/FRLDu7k123Tquk+bBsfdoG1MbB1IqYpAQO3jnP/FObSUlPK9SyGLZqin6tamgZG5N+/wGJK9eT8eyFxvSmwwaiW8o71/bUy9dImLUg84mBAUZtmqNXPhAtMzPSHz3m1ZpNpD94VODxN/SuREv/GlgYmfEkJoxl53Zx6+VDjelrlCxDS/8aOJjZ8Co1iUvPQll5fg/xKa8AKGFuR4ey9XC3csbO1JJl53ay6+apAo/7nyjn5E23Ck3ws3fD1sSSb7fP5si9i0UWz8a161m5bAUR4RG4e3oweNgQylUorzH9+bPn+WP6TO7fvYeNrS3denWnXYf2yte3bNzMru07uXvnLgC+fr70HzSA0gGllWmWBi/h8IGDPHjwEAMDfQLLluGzzwfi5l6ywMp1Zs9RTmzbT3x0LHYlHGnSsz1ufl5vzffo5l2WTPgDexdHPpn0tXL7uf0nuHw0hJePngHg6OFK/c4tKeFVcDHnVNO9LPW9gjA3NOF5XASbrhzmbuRTjel1tHVoWqoKFV38MDcwJjopnj23Qjj96BoA2lraNPKpRGVXfywMTQmLj2LrtWPcePmg0MoAcOXAaS7sOkpiTDxWznbU7Nwc51LuatM+uXmPLZODc23vMv4LrJzsALh2+Aw3T1wg8mkYAHYlnanavhEOHi6FVgaAel5BNPWtiqWRKU9jXrLqwl5uhz9Wm7ZP5ZbU9Mj9u/wk5iVjdmXWsV/V64avfe7j59LTUGYeXVuwweehoXclWvhXV9a/y8/tzrP+rV4yMEf9e4dV2erff0PjUpVpXboWlkamPI5+yZIzO/I8jmu6l6VNQC0czaxJTE3m4tPbLDu7SxlzZVd/2gXWwdHMGh1tHZ7HRrDt+vFCrZub+1ajXWAdrIzNeBT1goWnt3It7L7G9HU8y9M+sC7O5jYkpCRx/sktFp3ZTlxyojJN69I1aeZbDVsTS+KSEzh+/wpLz+0ktRDPQVqXrkXHsg2wMTbnftRzZp/YwJXndzWmb1O6VuZ5kpk1YfFRrDi/h723Q9SmredVge8b9ubY/UuM3b2wsIoghEbSePYvadasGcHBwaSmpnLkyBH69etHQkICs2fPLurQ3tt33333j/Pa2dkVYCSiuPnjjz/o2LEjZmZmKttdXV0JDg5WaTx7+vQp+/fvx8nJSZnm2bNnytcnT57Mzp072bt3r3KbqakpkNkz7I8//mDChAm0a9eO1NRUli1bRtu2bZkxYwaff/45pqamVKpUiQMHDqg0nh06dAhXV1cOHDigbDx7/Pgxd+/epX79+gDY29vTpEkT5syZwy+//FLAn5Jm989e5+z6fVTu3AQ7zxLcPnqBA3+updUP/TCxNleb5+hfm3kVl0C17s0xs7MiKS4BRUbGvxbzsf2HCZ41n0+GDsQv0J/df+/kp2/GMH3RbOwc7HOlT01NxdzSgg7dO7N13aY89x32PIzFsxfiXzagkKLPUt8riM9rfsi0I6u58uwOrQNq8UvLQXy06kfC4nMPT28bUJv+1drw28EV3Ah7gL+DO1/V7UZcciLHH1wBoJFPZfpXbcuvB5dx5fldXCzsGdmgJwCzjq8vtLIYNGmAQcO6JC5eSXrYSwybN8Z0yABix/wMyclq8yTMWQS6OsrnWibGmP0wgtRzWRcKxj07oePsRELwChQxsehXrYjp0AHEjvsVRXRMgcVf1S2AHkHNWHRmG7fDH1HfuyJf1e3Ot9tnEZEYmyt9KVtXPq3WjuXnd3H+yS2sjMzoU7kVfau0ZsbRNQDo6+oRFh/N6YfX6B7UtMBiLQhGegaERjxm+43jTGw+oEhj2bd7LzOnzmDYNyMoU64sWzZs4qshw1m6ZjkOjo650j998pSvhw6ndbs2jBo/hssXLzH1l8lYWllSr0FmfXrh7HkaNWlEYNky6Bvos2LJcoZ/PpQlq5djZ595TnDh3Hnad+yAf2l/0tPTmTd7LsO+GMrSNSswMjLKd7munjjH7qUbad7nQ1xLeXBu/3FW/jqXAb+OxMJWcw/6pMRXbJ6zHI8AHxJi4lRee3A9lIDqQbj0ckdXX48TW/ex4ufZfPrLt5hbW+Y75pzKO/vQLrAO6y4d4F7kU2qULEP/am35+cAyol/Fqc3zUcXmmBkYs/rCXl4mRGNmYIy2VtagkxZ+1ano4seai/sIi4/E174kfaq0YuaRNTyJfVngZQAIDbnMsdU7qN29FU7eblw9FMK2mcvoMu5zzGwsNebr+uNg9I0MlM8NzbJuxD69eR+fKmVx9HJFR0+XC7uOsnXaEjqP+xxTK/W/nflV2dWfLuUbsfzcLkLDH1PHqwJDandm9K75RKqpp1Zd2Mv6yweVz3W0tBnTpC9nH99Qbvvz+AZ0tLPqYVN9I8Y06cuZbGkKW1W30nQPasriM9tf179BjKjbjZHb/3xL/bub809uYW1kRu/KLfm4Smtmvq5/C1v1koF8VLE5C0O2cjPsIY18KvNtgx4M//sPIhJz/zb52rkxqMYHLDm7g7OPb2JtbE6/qq3pX60tUw+vAiAh5RWbrhzmScxL0jPSCSrhy4Dq7YhJSuDSs9ACL0NN97J8XKUVc09u5kbYfZr6VmVU4z58sWkq4Qm5y+BvX5IhtTrxV8hWQh5dx8bYnAHV2zOoRgd+PrAUyGxc61mxGX8cXceNlw9xNrdlcK2OAPwVsrXAywBQ17MCn1Vvz+9H13L1xT1a+tdgYvMB9F0ziZcJuc+lWvnX5OMqrZl2eBU3Xz7Ez96NL2t3IT45kZMPr6qktTe1on/VdoXy+QvxrmTY5r/EwMAAR0dHXF1d6datG927d1cOEVQoFPz66694enpiZGREuXLlWLdunTJvVFQU3bt3x87ODiMjI3x8fAgOzroLd/nyZRo0aICRkRE2Njb079+f+Ph4jbEcPHgQLS0tdu3aRYUKFTAyMqJBgwaEhYWxY8cO/P39MTc3p2vXriQmZt292LlzJ7Vq1cLS0hIbGxtatWrFnTtZvTKWLFmCqakpt2/fVm774osvKFWqFAkJCUDuYZtaWlrMnTuXVq1aYWxsjL+/PydOnCA0NJR69ephYmJC9erVVd4HYPbs2Xh5eaGvr4+vry9Lly7N8/MPCQmhcePG2NraYmFhQd26dTl37lyeeXJKSEigV69emJqa4uTkxJQpU3KlSUlJ4euvv6ZEiRKYmJhQtWpVDh48qHz9wYMHtG7dGisrK0xMTAgICGD79u1A1t9l27ZtlCtXDkNDQ6pWrcrly5dV3uP48ePUqVMHIyMjXF1dGTx4sPLzBXj27BktW7bEyMgIDw8PVqxYofK5379/Hy0tLS5cuKDMEx0djZaWlkqs165do0WLFpiamuLg4EDPnj0JDw/X+PlkZGSwdu1a2rRpk+u1Vq1aERERwbFjx5TbFi1aRJMmTbC3z2xg0dHRwdHRUfkwNTVFV1c317aTJ08yZcoUfvvtN0aMGIG3tzf+/v789NNPDB06lGHDhvHoUWZPmPr166uU6fr167x69YqBAweqbD9w4AB6enrUrFlTua1NmzasXLlSY3kLw439IXhVL4t3jXJYONpS6cNGGFuZcevIebXpn167y4vQR9T/rCNOfu6Y2lhg6+6MnWfh3m3P7u+1G2nQogmNWjbFpaQbH3/eHxt7W3Zt2a42vb2jA32/+JR6TRtinEcv1PT0dGb89Bude3fHwSn3RXtB61SuIdtvnGDb9eM8iH7BH8fW8zI+irYBtdWmb1KqCluuHePAnXM8i4tgf+hZtt04TtcKTZRpAhw8uPL8Lntvn+F5XCRnHt9g3+2z+Nm7FWpZDBrWIWnHXlIvXCbj6XMSF69AS18f/SpBGvMoEhNRxMYpH3r+vpCSSsrZ141nenroVSjLqw1/kx56l4yX4SRt3UVGeCQGdWoUaPzNfatx6O55Dt09z9PYcJaf20VEYgwNfSqrTe9t68LLhGh23zrNy4RoboU/Yn/oWTysnZVp7kU+ZdWFPZx8eJXU9PQCjTe/Tj68yvxTWzh090JRh8LqFato2bY1rdu1wd3DncHDh2LvYM/GdRvVpt+8YSMOjg4MHj4Udw93WrdrQ8s2rVi1bIUyzegJY2nfsQM+vqUo6e7O199/S4Yig7MhZ5Rppvw+jRatW+Lh5Yl3KR9Gjv6eF89fcPN6wTQanNpxkPL1qlKhfnVsSzjSpOcHmNtYcnbv0TzzbV+4hsAaFSnh457rtfaDelKpcS0c3V2wdXagZb8uKDIU3L96q0BizqmeVxCnHl7l1MOrhMVHsenqYaJfxVPTvYza9H52JfG2dWH+qc3cCn9E1Ks4Hka/4H5U1k2qSq5+7L0dwvWw+0QkxnL8/mVuhj2gnrfmuiK/Lu45jl+tIErXroiVkx21urTA1Mqcq4fU9zR5w8jcBGMLM+VDWzvrEqbRJx8SWL8Ktm5OWDnZUbdXWxQKBU+ua+7tkl+NS1Xh6L2LHLl3kWdxEay+sJeoV7HU86qgNv2r1GRikxKUj5JWjhjrG3L03iVlmoSUJJU0pR08SElP5cyjf6/xrJlv9Rz1724iE2No4FNJbXqv1/XvnlunCX9d/x4IPYuHtdO/FnNL/xocuHOOA6HneBobzpKzO4hIjKVxKfW/GT62rrxMiGbnzVO8TIjm5suH7L19Bi+bEso0117cJ+TRdZ7GhvMiPoodN0/yMPpFof1+tw2oxd7bZ9h7O4THMS9ZeHor4QkxNPOtpjZ9KTs3XsZHse36ccLio7ge9oDdN0/jbZtVBl87N268eMDhexcJi4/iwtPbHLl7USVNQetQth47b55Ufl6zT2zkZXwUrUvXVJu+kU9ltl0/xqG753keF8HBO+fZefMkncs3UkmnraXFyAa9WHJ2B89jIwot/uJIq5j++18ljWdFxMjIiNTUVAB++OEHgoODmT17NlevXuXLL7+kR48eHDp0CIBRo0Zx7do1duzYwfXr15k9eza2trYAJCYm0qxZM6ysrAgJCWHt2rXs3buXzz///K0xjB07lj/++IPjx4/z6NEjOnXqxPTp01mxYgXbtm1jz549/P7778r0cXFxfPnll4SEhLB3714UCgXt27cn43Uvl169etGiRQu6d+9OWloaO3fuZO7cuSxfvjzPoZo//vgjvXr14sKFC/j5+dGtWzc+/fRTRo4cyZkzmSfX2cuzceNGhgwZwvDhw7ly5Qqffvopffr04cCBAxrfIy4ujo8++ogjR45w8uRJfHx8aNGiBXFx6u/WqvPVV19x4MABNm7cyO7duzl48CBnz55VSdOnTx+OHTvGqlWruHTpEh07dqRZs2bKBsVBgwaRnJzM4cOHuXz5Mr/88ouyN1X295k8eTIhISHY29vTpk0b5bFy+fJlmjZtygcffMClS5dYvXo1R48eVfl8evXqxdOnTzl48CDr169n3rx5hIWFvXM5IbMBrm7dupQvX54zZ86wc+dOXrx4QadOnTTmuXTpEtHR0VSqlPsES19fn+7du6s0+i5atIiPP/74veICWLlyJaampnz66ae5Xhs+fDipqamsX5/Zq6d+/frcvHlT2aPtwIED1K5dmwYNGuRqPKtatSrGxsbKbVWqVOHRo0c8eFC4w1feSE9LJ/LRc5z8VYeJOvl7EH7vido8jy+HYuPmyLW9p9jw/Sy2jJvHuQ37SUtJ/TdCJjU1lTu3QilfSfVioVylIG5euZ6vfa9dshJzSwsatSz8XkK62jqUsnMl5JFqzCGPrhPo6Kk2j56OLilpqp9zcloq/vYl0Xl9UXf5+R1K2bni93oYjpOZDdVKBnDidc+0wqBta422hTlp129mbUxLJ+32HXQ93d95P/o1q5Jy5jykpLzesTZaOjqQqjrUQ5Gaiq53wQ1t1tHWxt3amcvPVW+YXHl+Fx9b9Y3Ct8MfYW1sTjmnzGGn5oYmVHHz58LT22rTC/VSU1O5deMmVapWUdleuWoVrly6rDbP1ctXqJwjfZVqVblx7QZpaeqHBSUnJZGWloaZueYeQQnxmTeEzPNI867S09J4du8xnmX8VLZ7lvHj8e37GvNdOHSKqLBw6nzwbnVQanIKGekZGBXC1BQ6Wtq4WNhzM0x16NzNlw9wt1LfSBHg6Mmj6Bc08K7EmMZ9GdmgF21K10IvW88mXW0d0jJUG5NT09PwzNbwXJDS09J4+eAZrqVVh8u6Bnjz/I7mYYEAa8fPZvGIX9kyJZgnN/JuFEtLSSUjPR0Dk/z3WlRHR1ubklaOXH1xT2X71ef38LJ5t5tXtT3Lcf3FfbW91N6o5VGW0w+vkZL+7/ymZ9a/TlzJUf9efn4XH1v100e8qX/LZqt/K7uV5uK/VP/qaOvgYe2Ua4qFS89CKWWnvqHr1suHWBubU97ZBwALQxOqugVw7onmhu9AR0+czG25/qLgzwl1tXXwsimR6zfrwtPbyvOHnG6EPcDGxIKKJXwBsDA0pbp7oEovxeth9/GyLaH87XQwtSbIxbfQejLqautQytaVs49vqmw/+/gmAQ7qzxP0dHRzTWORnJaKr50bOtl6yfYIakb0q3h23jxZ8IEL8R5k2GYROH36NCtWrKBhw4YkJCQwdepU9u/fT/Xq1QHw9PTk6NGjzJ07l7p16/Lw4UMqVKigbJRwd3dX7mv58uW8evWKJUuWKBuo/vjjD1q3bs0vv/yCg4ODxjgmTJig7GnTt29fRo4cyZ07d/D0zLxY/PDDDzlw4IBybrOOHTuq5P/rr79wdHTk2rVrBAZmzm80d+5cypYty+DBg9mwYQNjxoyhcmX1d37e6NOnj7JR5ptvvqF69eqMGjWKpk0zT1iHDBlCnz59lOknT55M7969GThwIADDhg3j5MmTTJ48WTnsLqcGDRqoPJ87dy5WVlYcOnRIOUdWXuLj41m4cCFLliyhcePGQOacWy4uWSdJd+7cYeXKlTx+/Bhn58wTzxEjRrBz506Cg4OZOHEiDx8+pEOHDpQpk3mn+M1nnd2YMWNyvcfGjRvp1KkTv/32G926dVMuUuDj48PMmTOpW7cus2fP5v79++zdu5eQkBDl8bJgwQJ8fHzeWsbsZs+eTVBQkMrE/3/99Reurq7cunWLUqVK5cpz//59dHR0lD3Jcurbty+1atVixowZnD17lpiYGFq2bKmcw+xd3bp1S9nrMCdnZ2csLCy4dSvzBKhmzZro6elx8OBBunbtysGDB6lbty5BQUHExMRw+/ZtfHx8OHjwID169FDZV4kSJZTlKlky98lLcnIyyTmGwBkYGORK966S4xNRZCgwNDNW2W5oZsKr2AS1eeLDowm78xhtXV3qfNKe5IRXhKzeTXJiEtV7tPjHsbyruJhYMjIysLCyVNluaWVJdD5W4r1x+Rr7tu9myoLf3564AFgYmqKrrZPrIibqVRzWxuov3kMeXaeVfw2O3rvIrfBH+Nq50cKvOno6ulgYmhKZGMv+0LNYGpryR7thaKGFro4Om64cZsX5PYVWFq3XjQ0Zsao3BjJi49C2frcFXnTc3dAp4UTi0tVZG5OTSbtzD8OWjUl4/iKzd1rlIHTc3cgI09wj9X2ZGRijo61NbJJq7+mYpHgsDNXPT3U7/DGzT2xgUM0P0dPRRVdbh7OPb7D07I4Ci+t/QUx0NOnp6VhZW6tst7KxJjIiUm2eiIhIqtjkSG9tTXp6OtHR0cobfdnN+WM2dnZ2VKqivieLQqHgj2kzKVu+HJ7eb5+T7G0SXw9lN7FQnU7AxMKM+Bj1DReRz19yYNXf9Bo9GG0dHbVpctq/aitm1hZ4BOb+fcwvE30jdLS1VeYyAohLfoW5ofrGOhsTczysnUlNTyc4ZCsm+kZ8WLY+xvqGrLqQOR3CjbCH1POswJ2IJ0QkRONj50agoyfahTQZdFJ8IoqMDIzNVW8aGpmZkBijfsSEsYUZdXu2wa6kM+lpadw6eZEtUxfTdkQfjfOknVy/BxNLc1xKq7/5kV+m+m/qKdXf5tjkBCw0/D2yszA0IdDRi/knN2tM42HthIulPYvPqO/FXRje1L8xOcuVpLlcoeGPmXNiI4NqdlDWv+ce32Tp2Z3/RsiYGxijo61DzKscvxmvErB0NlWb51b4I/44to4htTspYz7z6DqLQrappDPSM2D2ByPQ1dElQ5HBX6e35rqxUxDMXpch5/DrmFdxWBmpr09uvnzI1MOrGFGvm7IMpx5eY/7JLco0R+9dwsLAlInNB6ClpYWutg47bpxgw+VDBV4GyDyudbR1iHqV+1zKythMbZ6zj2/Q3K8ax+9f4nb4Y0rZutLMt1rWudSrWAIcPGjmW40B638tlLiFeB/SePYv2bp1K6ampqSlpZGamkrbtm35/fffuXbtGklJScrGkjdSUlKoUCGzN8dnn31Ghw4dOHfuHE2aNKFdu3bUqJE5TOb69euUK1dOpWdXzZo1ycjI4ObNm3k2npUtmzVxqYODA8bGxiqNOQ4ODpw+nTX59cOHD/nxxx85deoU4eHhyh5nDx8+VDaeWVlZsXDhQpo2bUqNGjVyTRD/LnEAysalN9uSkpKIjY3F3Nyc69ev07+/6gTjNWvWZMaMGRrfIywsjNGjR7N//35evHhBeno6iYmJPHyY953ON+7cuUNKSoqygRPA2toaX19f5fNz586hUChyNSwlJydjY2MDwODBg/nss8/YvXs3jRo1okOHDirlB9S+x/XrmT1izp49S2hoKMuXL1emUSgUZGRkcO/ePW7duoWuri5BQVlDLry9vd97VdSzZ89y4MCBXL3i3nwW6hrPXr16hYGBgcYVWMqWLYuPjw/r1q3jwIED9OzZEz09vfeK610oFAplDMbGxlSpUkXZeHbo0CG++uordHV1qVmzJgcPHsTAwIB79+7lamB9M89O9qHL2U2aNIlx48apbBszZgzaNfPbpT/H56dQoOk65k1Za/ZurZwLJv2DBhxZuInKnRqjq1/wn686Of/mChTkKsc7epWYyIyJk/lsxGDMLSwKILr8USgUarcvPrMDayNzZn/wFWhBVGIcO2+epFuFJmQoMuvG8s4+9KjYjGlHVnP9xX1KWNjxRc0PiUiMYUkBXVjoVQnCuFvWjY34N5P754z7PS6G9WtUJf3JM9Lvq9aPicErMO7VBYtfxqJITyf90RNSQ86j41bwQ0ByhY8W6v8S4GxuS8+g5my6cpjLz0OxNDSjS4XG9KncigWnt2jIJTTJdajkUQcBuYZvKF7/pdQN61i+ZBl7d+9h5pxZGm82TPt1CndCQ5k1f857xf02asulJsaMjAw2zlpCnQ7NsXFSfzMop+N/7+PqiXP0/OHzQq13FWq+BZrqKO3X35ll53aSlJbZg3TT1cP0rtSS9ZcOkJqRzsYrh+hcriEjG/REoYCIxBhOP7pGFdfSavdZYNQcT5rOHawcbbFyzGqEdfRyIz4yhgu7j6ltPDu/8wihpy/T9qs+6BbCOUZ2OT/5vOqp7Gq4lyUxNYnzTzX3dKrlUY7H0WHci3ymMU2hUVOIvOrfHkHN2HzlMJef38HS0IzOFRrRu3JLFp7+u1DDzDM+Lc3fjRIWdnxUqQXrLx/k0tNQLI3M6B7UhH5VWzM3W4NmUmoK32ybjaGePoGOnvSs2Iyw+CiuvbhfWMXIUQYttd95ABcLez6p2obVF/Zx/mnmXJ+9K7Xgs+rt+eP1nKqBjp58WK4+c09u5vbLhzia29KvSmuiysax5tL+Qgtb3emHpuNn2bldWBmbMbPdMLTIbGjbfesUncs3IkORgZGeAd/U78m0I6uITVZ/I/n/u8K6mSH+GWk8+5fUr1+f2bNno6enh7Ozs7LR4N69zC7f27ZtU/Z0eePNiWXz5s158OAB27ZtY+/evTRs2JBBgwYxefJklYaCnN62jGz2hgstLa1cDRlaWlrKBjLInLfKw8OD+fPn4+zsTEZGBu7u7qS8Gdbz2uHDh9HR0eHp06ckJCS8ddhFzjg0bcseS66L9Tw+B8hc8fTly5dMnz6dkiVLYmBgQPXq1XPFrommH+DsMjIy0NHR4ezZs+jkuFP9phGqX79+NG3alG3btrF7924mTZrElClT+OKLL/Lcd/bP4NNPP2Xw4MG50ri5uXHz5s1c23PG/2aekOzb3gwLzV6WN70Xc3ozwX9Otra2JCYmkpKSorZXGMDHH3/MrFmzuHbtmkrD7PsoVaoUR48eVfs+T58+JTY2VqWnXf369Vm9ejVXr17l1atXyobFunXrcuDAAfT19TE0NKRaNdV5JSIjM3taaFrkYuTIkQwbNkxlm4GBAb8cXq42/dsYmBqjpa1FUpzqyUFSfKLKxMjZGZmbYmRhqjKJsoWjDSggMToOc3trtfkKipmFOdra2kRHqvYyi4mKwTJHb7R39fzpM8Kev2DSd1kNk2+O1Y4NW/P7knk4lijYuVRikuJJy0jP1cvMysiMKA0Tcaekp/LLwWVMPrwCayNzIhJjaF26Fgkpr4h5lfk37FulFbtvnWbb9eMA3I18iqGuPiPqdmPp2V0aT4rfR+rFq8Tdy9bI9XrSf20Lc9Kz9T7TNjNFEfsOw9T19NCvXJ5Xf+du3MsIjyB+6izQ10fL0ABFbBzG/XqSEa6+V9I/EZecSHpGBhZGqg335oYmuXqjvdG6dC1uhz9k+43Mz/kRYSSHpDCq8cesvbSfGA35hCoLS0t0dHRy9TKLiozK1RvtDRsbayIjVOefiY6MQkdHBwtL1cbvlUtXsCx4CdNmzcDbJ/fKrgDTfpvKscNH+X3en9irWXDknzA2M0FLW5v4aNXjPyE2PldvNICUV0k8u/uI5/efsHNx5kWoQqEAhYKfeg6j27cD8AjIuoF0Ytt+jm3ZQ/eRA3FwK5zhjgkpr0jPyMDcQPW3wMzAKFdvtDdikxOISYpXNpwBvIiLRFtLCwsjM8IToklIecVfIVvR1dbBRN+QmKQEWvnXzHMoYX4Ymhqjpa2dq5fZq7gEjMzffbirg6crt07mXvXwwq6jnNt+hNbDPsLGpfDmyoxPeV1PGeb8exjn6o2mTi2Pspx8cIV0DYv76OvoUtnVn81XjxRIvO8qq/5VLVdm/au+XJn17yO23zgBZNW/PzTuw7pLBwq9/o1NTiQ9Ix3LHL8ZFoYmuXrQvdEuoDa3Xj5k67XMeXgfRr8g+XQK45r2Y/XFfUS/7sWmQMGL+Mz68EHUc0pY2NE2oE6BN57FKcugWh9ZGJoqY8npw7L1uB52n01XDyvjm3tyE5NafMby87uJehVHtwqNOXjnnHLlygfRLzDU1WNgjQ9Ye+lAgZyDZBeTlEC6mnMpS0MzohM1n0tNObSS6YdXY2VsRmRiLC38apCQkkRMUgKeNs44mdvwY9NPlHneXBPt7DeVPqt/4lnc/9YcaKJoyZxn/xITExO8vb0pWbKkSsNQ6dKlMTAw4OHDh3h7e6s8XF2z5hews7Ojd+/eLFu2jOnTpzNv3jxl/gsXLqhMGH/s2DG0tbXV9g76pyIiIrh8+TJfffUVVatWxdXVlfv37+dKd/z4cX799Vf+/vtvzM3N39oo9E/4+/tz9KjqJL/Hjx/H399fY54jR44wePBgWrRoQUBAAAYGBnlOfp+Tt7c3enp6nDyZNdY+KipKOTwQoEKFCqSnpxMWFpbrb+mYbZUyV1dXBgwYwIYNGxg+fDjz589XeS917+HnlzlXS1BQEFevXs21f29vb/T19fHz8yMtLY3z57MmmA8NDSU6Olr5/E1jUPaVLbMvHpD9fdzd3XO9j6b568qXLw9kLjSgSbdu3bh8+TKBgYGULv3P7mx36dKF+Ph45s6dm+u1yZMno6enR4cOHZTb6tevz+3bt1mxYgW1atVSNmzWrVuXgwcPcvDgQapXr46hoaHKvq5cuYKenh4BAepXejQwMMDc3FzlkZ9hmzq6Oli7OvLsxn2V7c9u3MfWQ33PHjvPEryKiSc1OeviKDYsCi0tLYwt1XeRL0h6enp4lfLm4hnVBQ0unT2Pb6Dm72NeSri5Mu2vWUxZ8LvyUalGVQLLl2XKgt+xsc89DCy/0jLSufXyEZVcVOdEquTil+fy6gDpGRm8TIgmQ6GggXdFTjy4ojwhNdDVR6FQvTjKUGSgpfVeHcHylpxMxsvwrMezF2TExKLrn63+19FB18eLtLv337o7/UrlQVeX1FNnNSdKSUERG4eWsRF6pf1IvVhwc7ilZ2RwP/JprrnmAh09uR3+WG0eA109MnLc4HjzXG7Yvjs9PT1K+fkSckr1xkbI6RACy6qflD6gTCAhp1Unej996jR+pf3Q1c26P7ti6XIWLwxm8syp+JXOXTcoFAqm/TqFwwcOMn327ziXKLhGKB1dXZw8XLh3RfXm0r3LN3FRsxCAgZEh/X/+hk8mfqV8VGxYAxsnez6Z+BUlvLKG8Z/Yup+jG3fT9esBOHsW3kIg6YoMHseE5ZrDqZSdm8oCANndi3yGhYEJ+jpZ55z2plZkKDKIyXFTIC0jnZikBLS1tCnr7M3lt9R7/5SOri52JZ14fF116Nvja3dw9Hr3zy/84TOMczR8nt91lLPbDtFySE/s3QtvQnTIrKceRD2ndI55nEo7eHAnQn099YavnRsOZtYcuZu78e+NSq7+6OnocvLBVY1pCkNm/ftMQ/37SG0efV29XDeY/836Nz0jnXuRzyjjqDrEu4yjF7deqh9dkmfMefSa1wL03nEY9/tIy0jnTsQTyjur3lQo7+zNjTD1c6wZ6OhrLENWGk3l1CqUv01aRjq3wh8RVMJXZXuQi2+u+QFzSldkEJ4QQ4ZCQf3Xi6MoUPAw+gWfrP2ZAet/Uz5OPLjCxaehDFj/Gy8Togu+IELkQRrPipiZmRkjRozgyy+/ZPHixdy5c4fz588za9YsFi9eDMDo0aPZvHkzoaGhXL16la1btyobirp3746hoSEfffQRV65c4cCBA3zxxRf07NkzzyGb78vS0hJra2vmzJlDaGgo+/btY/jw4Spp4uLi6NmzJ1988QXNmzdnxYoVrFmzhrVr1xZYHJA5of6iRYuYM2cOt2/fZurUqWzYsIERI0ZozOPt7c3SpUu5fv06p06donv37sphee/C1NSUvn378tVXX7Fv3z6uXLlC7969VVZ7KlWqFN27d6dXr15s2LCBe/fuERISwi+//KJcUXPo0KHs2rWLe/fuce7cOfbv35+r0W/8+PEq72Fra0u7du2AzDnhTpw4waBBg7hw4QK3b99my5YtykZKPz8/GjVqRP/+/Tl9+jTnz5+nf//+GBkZKe/UGBkZUa1aNX7++WeuXbvG4cOH+eGHH1RiGDRoEJGRkXTt2pXTp09z9+5ddu/ezccff0y6hpXq7OzsCAoKytWwmZ2VlRXPnj1j37597/zZ51S9enWGDBnCV199xZQpU7hz5w43btzghx9+YMaMGUyZMkWl4blGjRoYGBjw+++/U7duXeX2ypUrExMTw/r169XOlXfkyBFq1679XsdJfvk1qMyd4xe5c+ISMc/DObt+H4mRsfjULg/A+c2HOL4ka3lx98qlMTAx4uSy7cQ8C+dF6CPObzyAZ/Uy/9qQzdYd27Nv+272bd/N4wcPCZ41j/AXL2nSOnPOtWXzFzFzourKtPdC73Av9A5Jr14RGx3DvdA7PHo9RFBfXx83D3eVh4mpCYbGRrh5uBfKUF+ANRf30dK/Bi38qlPS0oFBNTpgb2bNlquZx/MnVdvwXYNeyvQuFvY09qlMCQs7/OxLMrpRHzysnZh/KmuY4PH7l2kbUJsG3hVxNLOhkosfH1dpzbH7l3Od5Bak5H2HMWzWCL3yZdB2dsT4o64oUlJIOZ21wrBx764YtmuZK69+jaqkXriCIiF3bxbd0r7olvZD28YaXf9SmH45kPQXYaQc/2e9SDXZcfMk9TyDqONZHmdzW7pXaIqNsQX7bmcuINOpXEM+rdZOmf78k1tUcvWnoXcl7Ews8bF1pWfFZtwJf6y8a6+jrY2bpQNulg7oautgZWSOm6UD9qbvN6S9MBjpGeBj66Kc1NnZ3BYfWxcciiC2zt26sHXz32zbspX79+4zc+oMwp6/oF2HdkDmfGUTxoxXpm/7QXtePHvO79NmcP/efbZt2cq2zX/TpUc3ZZrlS5axYPY8vh39HY5OTkSERxARHqEyJH7qL5PZvWMXo38ch7GxsTJNcpLqvJL/VNXm9Th/4CQXDp4k/Mlzdi/dSExEFEENM+d93b/qbzbPXgaAlrY29q5OKg9jc1N09XSxd3VC3zDzJsnxv/dxcO02WvXviqWdNfHRscRHx5JSQDHndPDOOaqVDKCKa2nsTa1oF1AHKyMzjt/PXMyhpX8NumVb7ffs45skpCbRtUJjHEyt8bR2pnXpWpx6eI3U14sEuFk6UMbJCxtjczytnfm0Wju00WJ/6Bm1MRSEco1rcP3IOa4fPUfUs5ccW72DuMgYAupmzo97csMe9i1cr0x/ce9x7p2/TvSLCCKfhHFywx7unrtGmQZVlWnO7zzC6U37qPdRO8xtLUmMiSMxJo7UQvpbAOy5dZraHuWo6VEWJzMbOpdviLWxOQfvZN5M+qBMXT6ukntO3Voe5bgT8YSnsZpv4NbyKMf5J7dISHlVaPFrsvPmCepmq3+7VWiCjbEF+29n3lDpWK4B/au1VaY//+QWFV39aOBdUVn/9qjYlDvhTzT2mipo264fp4F3EPW8KuBsbkuvis2wNbFQ9rjqUr4RA2t8oEx/7vFNKruVprFPZexNrShl50bvyi0IDX+s7G3eNqA2ZRy9sDe1wtnclhb+NajtWZ4j9zQ3eubH5qtHaeRTmYbelXCxsOPjyq2wNbFk181TAPQIasqQWlmLdoU8vk61koE0862Kg6k1fvYl6Ve1NbdePlSWIeTxDZr5VqOWR1nsTa0o5+RNtwqNCXl0rdDOQdZfOkhzv2o09a2Km6UDA6q3x97Uiq3XM3v5fVy5FV/X665MX8LCjobelShhboevnRvfNfwId2sn/jqdea6bmp7G/ahnKo+E5FckpiZxP+pZrgVP/j/S0tIqlo9/4s8//8TDwwNDQ0MqVqzIkSOae9du2LCBxo0bY2dnh7m5OdWrV2fXrl0qaRYtWqQ2tqSkpH8U37uQYZvFwI8//oi9vT2TJk3i7t27WFpaEhQUxHfffQdkXkyOHDmS+/fvY2RkRO3atVm1ahWQOafTrl27GDJkCJUrV8bY2JgOHTowderUAo1RR0eH1atXM3jwYAIDA/H19WXmzJnUq1dPmWbIkCGYmJgoJ5kPCAjgl19+YcCAAdSoUSPXsNR/ql27dsyYMYPffvuNwYMH4+HhQXBwsEosOf3111/079+fChUq4ObmxsSJE/NsbFPnt99+Iz4+njZt2mBmZsbw4cOJiYlRSRMcHMyECRMYPnw4T548wcbGhurVq9OiRWZDQnp6OoMGDeLx48eYm5vTrFkzpk2bprKPn3/+mSFDhnD79m3KlSvHli1blMMTy5Yty6FDh/j++++pXbs2CoUCLy8vOnfurMy/ZMkS+vbtS506dXB0dGTSpElcvXpVpWfVX3/9xccff0ylSpXw9fXl119/pUmTrJNuZ2dnjh07xjfffEPTpk1JTk6mZMmSNGvWTKXBMKf+/fuzaNGiPFd7tbS0fPuH/RbTp0+nbNmyzJ49m1GjRqGlpUVQUBCbNm2idevWKmnfDMk8dOiQyjGip6dH9erV2bdvn9rGs5UrV+aa06ywuVf0JyXhFZd3HONVbAKWTrbUG9gRU+vM4U9JsfEkRGYNp9Ez0KfB5505s3YPO35djIGJEW5BfpRrVftfi7lmgzrExcaydslKoiIjcXMvyXc/j8PeMXPIVVREJOFhL1XyjPgka9jxnVuhHNl3EDsHe+asCqaoHLhzDgtDE3pVbI6NiTn3Ip/xzbY/lUM2bIwtVBpadLS06FyuIa6WDqRlpHP+6S0GbZzC87isIW9Lz+5EAfSt0ho7EwuiX8Vz/MFlFpwq3HlgknfvR0tfD6OuHdAyNiL93kPiZ86FbAtcaFtb5ZqYRNveDl0fT+JnqJ9rSsvIEMN2LdG2tESRmEjq+Uu82rQdNAw9+qdOPbyKqb4R7QLqYmlkyuOYMCYfWk5EYmZ9a2loio1x1pDAI/cuYqhrQKNSlelaoQmJKUlcC7vH6teTokPmENyfmg9QPm/pX4OW/jW4/uI+E/cvLtD435efXUn+aJ81BHxwrcw57LZfP8FP/3JsDZs0IjYmhkUL/iIiPAIPL09+nT4Zx9fD9SPCI3jx/IUyvXMJZ36dPoXfp81g49oN2NrZMmTEl9RrkFWnblq3gdTUVEZ9873Ke/X55GM+7t8vM836jQAMHjBIJc3I0d/TonXuRt73FVA9iFfxiRzZuIv46FjsXJzo8tWnWNplDkeNj44lJuL9Fjk5u/co6WnprJ+hWm/V/qApdTs0z3fMOV14ehsTfSOa+lbF3MCYZ3ERzDu5WXmhbG5gglW2YV8p6anMObGRD8rUY1idLiSkJnHh6W12vB5GDpkr3bXwq46NsQXJaalcD7vP8nO7VIZ6FjTvymVIin/F2a0HSYiJw9rZnpaDe2BmYwlkTjkQH5l1bpWRls7xtbtIiI5FV08PK2c7WgzuQckyWb1rrx4MISMtnd1zVqu8V6XW9ajcRnU+04IS8ug6JvpGtC5dEwtDU57GvGTGkTXKIa8WhqbY5Bi+ZqRnQJCLL6suaF40xsHUmlJ2rkw9tLJQ4n6bUw+vYapvTNuAOsr6d8qhFRrr36P3LmKkq5+r/l1z4Z/fJH1fJx5cwdTAiA5l6mFpZMaj6DB+PrCM8ITMmK2MzLA1yYr50N0LGOoZ0MS3Kj0qNiUhJYmrL+6x4txuZRoDXX0+rtIKG2NzUtJTeRobzqxj6wtttexj9y9hbmBM5/INsTIy42HUc37cu0jZs8ra2Bw7U0tl+v2hZzHSNaCFXw36VG5JQkoSl57dYUm2hXLWXNyPQqGge4UmWBtbEJuUQMij6yw/v4vCcujuecwNTegR1BRrYwvuRz7j+x1zCYvPrF9tjM1znEtp82HZ+rhY2pOekc6Fp7cZsnm68txL/P+xevVqhg4dyp9//knNmjWZO3cuzZs359q1a7i55e55fPjwYRo3bszEiROxtLQkODiY1q1bc+rUKeW88JC5KnfOaYtyjiYqSFqKd5nMSQhR6A4ePEj9+vWJiooqkAamNx4/foyrq6tyvrzClJSUhK+vL6tWrVJZ+OC/Ztu2bXz11VdcunRJZejRuxi/569CiurfM7rxx1x5GlrUYeRboLM3dWcPenvCYuzQZ7OIHjDs7QmLOcs5U+m58t9tjC5oS7uOoeasAW9PWMwdGzSHsNj//hwx9uY2LD3z315RtWel5ny5RfNiR/8V09oMYfrh1W9PWIwNrdOZfmsmFXUY+bag00h6rRz/9oTF3JKuo+mybHRRh5Evq3qMp92ity+cVtxt6v0zjecNKeow8mVP//9uPXswNI9pNIpQdddAkpNVe/caGBhonMKmatWqBAUFMXv2bOU2f39/2rVrx6RJ71b3BgQE0LlzZ0aPzqwbFi1axNChQ1WmJypsMmxTiP9n9u/fz5YtW7h37x7Hjx+nS5cuuLu7U6dOnUJ/b0NDQ5YsWfJe88kVRwkJCQQHB793w5kQQgghhBBCFARtLa1i+Zg0aRIWFhYqD02NYCkpKZw9e1ZllBNAkyZNOH78uNo8OWVkZBAXF4d1jgWM4uPjKVmyJC4uLrRq1Upl3u/CIFeGQvw/k5qaynfffcfdu3cxMzOjRo0aLF++vNDmisop+7xi/1WdOnV6eyIhhBBCCCGE+B8zcuRIhg1THRmhqddZeHg46enpueZjd3Bw4Pnz5+/0flOmTCEhIUHlGs3Pz49FixZRpkwZYmNjmTFjBjVr1uTixYv4+Pi8Z4nejTSeCVFM1KtXL9eqOP9E06ZNadq0aQFEJIQQQgghhBBCZMlriKYmORcaUCgU77T4wMqVKxk7diybN2/G3t5eub1atWpUq1ZN+bxmzZoEBQXx+++/M3PmzPeK7V1J45kQQgghhBBCCCFEMaLFP1vZsjixtbVFR0cnVy+zsLCwXL3Rclq9ejV9+/Zl7dq1NGrUKM+02traVK5cmdu3b+c7Zo3vUWh7FkIIIYQQQgghhBD/k/T19alYsSJ79qiuNLxnzx5q1KihMd/KlSvp3bs3K1asoGXLt6+8rVAouHDhAk6vVwgvDNLzTAghhBBCCCGEEEIUuGHDhtGzZ08qVapE9erVmTdvHg8fPmTAgMxVzEeOHMmTJ09YsmQJkNlw1qtXL2bMmEG1atWUvdaMjIywsLAAYNy4cVSrVg0fHx9iY2OZOXMmFy5cYNasWYVWDmk8E0IIIYQQQgghhChGtLT+fwwU7Ny5MxEREYwfP55nz54RGBjI9u3bKVmyJADPnj3j4cOHyvRz584lLS2NQYMGMWjQIOX2jz76iEWLFgEQHR1N//79ef78ORYWFlSoUIHDhw9TpUqVQiuHNJ4JIYQQQgghhBBCiEIxcOBABg4cqPa1Nw1ibxw8ePCt+5s2bRrTpk0rgMje3f+PpkwhhBBCCCGEEEIIIQqB9DwTQgghhBBCCCGEKEa0tf77q23+fyI9z4QQQgghhBBCCCGE0EAaz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEIUI1oybLNYkZ5nQgghhBBCCCGEEEJoII1nQgghhBBCCCGEEEJoIMM2hRBCCCGEEEIIIYoRbWTYZnEiPc+EEEIIIYQQQgghhNBAGs+EEEIIIYQQQgghhNBAhm0KIYQQQgghhBBCFCOy2mbxIj3PhBBCCCGEEEIIIYTQQEuhUCiKOgghhBBCCCGEEEIIken0g6tFHYJaVUoGFHUIRUKGbQohRAEatXNeUYeQbz8268+NF/eKOox883PwIO52aFGHkS9mPt4cDD1b1GHkWz3vilx8cquow8iXciVKERYbUdRh5Ju9uQ01Zw0o6jDy7digOey9dbqow8iXRqWqEBcWVtRh5JuZvT0xc4OLOox8sfi0DzELlhZ1GPlm0a8ncc9fFHUY+Wbm6EDMxKlFHUa+WHw3jLjY2KIOI9/MzM2Ji4ws6jDyxczauqhD+Mdk2GbxIsM2hRBCCCGEEEIIIYTQQBrPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQhQj2jJss1iRnmdCCCGEEEIIIYQQQmggjWdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghihEtZNhmcSI9z4QQQgghhBBCCCGE0EAaz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEIUI7LaZvEiPc+EEEIIIYQQQgghhNBAGs+EEEIIIYQQQgghhNBAhm0KIYQQQgghhBBCFCNaMmyzWJGeZ0IIIYQQQgghhBBCaCCNZ0IIIYQQQgghhBBCaCDDNoUQQgghhBBCCCGKERm2WbxIzzMhhBBCCCGEEEIIITSQxjMhhBBCCCGEEEIIITSQxjPx/8LBgwfR0tIiOjq6qEMpcO7u7kyfPv0f579//z5aWlpcuHChwGISQgghhBBCCCH+V8icZ+I/4/jx49SuXZvGjRuzc+fOog5HiAJRxbU0tTzKYmpgTFh8FDtunOBB1HON6XW0tKnvXZFyzt6YGhgTm5TAoTvnOffkJgClHdyp41kBa2NzdLS0iUiM4dj9y1x8ervQyrB9499sXLmOqMhI3NxL0veLAQSUC1SbNjI8guA/5xN68zbPHj+lVYe29Bs8QCXN7r93cGDXXh7cfQCAl683PT/pQ6nSvoVWBgCFQsG8FSvYuGsncfHxBJTy5ZvPPsOrZEmNee48eMCc5cu4ERrKs7Awhn3yCd3attOYPnjNGmYtWUzXNm0Z3r9/gZfh4NY97N6wlZjIaJzdStCpfy98Av3Upj137DSHt+/l0d0HpKWm4VSyBK27dSCgYjmVdInxCWxasobzx0NIjE/A1sGOD/t1p0zlCgUe/xu7Nm9jy+oNREdE4eLuRu9Bn+BfNkBt2qiISJbMXsjdW3d4/uQpzdu3pvfnn+RKlxAfz8qFSzl95AQJcfHYOznQc0BfgqpVKpCYN65dz8plK4gIj8Dd04PBw4ZQrkJ5jenPnz3PH9Nncv/uPWxsbenWqzvtOrRXvr5l42Z2bd/J3Tt3AfD186X/oAGUDiitTLM0eAmHDxzkwYOHGBjoE1i2DJ99PhA3d83HbGEp5+RNtwpN8LN3w9bEkm+3z+bIvYv/ehyaHN62l70bthETFYOTWwk+/KQH3gHq65QLx0M4smMfj+8+JC01FSc3F1p0a0/poLIq6fZv3smRHfuIehmBibkZFWpUpu1HndDT1y+QmBUKBfOCg9m4ZQtxcXEElC7NN8OG4eXhkWe+fQcPMmfBAh4/fYqLszMD+/enfp06atMGL13KrHnz6NqxI8MHD1ZuT0xM5Pe5czl05AgxMTE4OTnRpUMHPmzfXu1+3rdc808cZdPli8QlJRHg5MRXDZrgZWunMc/Wq5cYv2t7ru1HBo/AQDfzcubc44csO3OKGy9eEJ4Qz69tPqCed6l8x/uuFAoF848fZtPF88QlJxHg5MxXjZrnXa4rFxm/4+9c2498+a2yXAUd47xFwWz8+++sY2rol28/pg4dZM7ChVnHVL9PVI6pucF/MX/RIpU8NtbW7Nq4Sfl87KSJbM1x/h5YujSLZs/Jd7kADGpXR798GbQMDUl/+oxXu/aTER7xlkwGGNariZ6vN1qGhmREx5C07zBpd+5lvly9Mrq+PujYWKNISyP98VOSDhwhIzLqveNTKBTMmz+fjRs3Zn72AQF88/XXeHl55Zlv3/79zJkzh8ePH+Pi4sLAzz6jfv36KmnWrl3L0mXLCA8Px9PTk+HDhlGhQtZv9NixY9m6bZtKnsDAQBYFByuf9//0U86dO6eSpnHjxvzxxx/vX86FC9m4eTNxsbGZ5RwxAi9Pz7zLeeAAc+bN4/GTJ7iUKMHATz+lfr16ytfXbdjAug0bePbsGQCenp70+/hjalav/l7x/ddoI3OeFSfSeCb+M/766y+++OILFixYwMOHD3FzcyvqkEQ+paamoqenV9RhFJlAR0+a+1dn67WjPIx6QSVXf3pWbM7vR9cQk5SgNk/n8o0wNTBi45XDRCbGYKJvhLZWVifixNRkDt05T3hCNGkZ6fjal6R9YF0SUl4RGv64wMtwZN8hFv4+l0+HDcI/MIBdW7Yz/usf+GPJPOwc7HOlT01NxdzCgo49u7Jl7Ua1+7x8/hK1G9bjkyGl0dfXZ8PKtYwd8R2/L56LjZ1tgZfhjcXr17Fi00bGfPklbs4lWLh6NYNG/cD6OXMxMTZWmycpORkXR0ca1azF1AXz89z/1Vu32LhrJz7ueV+k/FMhh0+wZv4Sug38GC//UhzeuY/fx/zC2Nm/YW2f+3O7ffUG/hXK0O6jzhiZGHN87yFmjZ/Mt1N/xM3LHYC01DSm/zAJMwtzPv1uCFa21kS9jMDAyKhQygBw/MARFs1aQL8hA/ANLM3ev3cy8duxTAueha2mY8rSgg96dGLbus1q95mWmsqEr0ZhbmnJsLHfYmNrS8TLlxhq+Lu+r3279zJz6gyGfTOCMuXKsmXDJr4aMpyla5bj4OiYK/3TJ0/5euhwWrdrw6jxY7h88RJTf5mMpZUl9RpkXhRdOHueRk0aEVi2DPoG+qxYspzhnw9lyerl2NlnXoxfOHee9h074F/an/T0dObNnsuwL4aydM0KjArxb6SOkZ4BoRGP2X7jOBObD3h7hn/R2SMnWbdgGZ0H9MartA9Hdx5g1tjfGDXrZ7XfjdCrN/ErH0ibnp0wMjXmxN7DzPlxKl9NHovr6+/G6YPH2Lx4DT0G98PT34ewJ89ZOmMeAB9+0qNA4l68YgUrVq9mzHff4ebqysLFixn05ZesX7FCY5106coVvhs7lgF9+1K/Th0OHD7Mt6NHs3DWLAIDVBugr16/zsa//8ZHzcX71N9/58z584wfNQpnR0dOhoTwy9Sp2NraUq927XyVa0nIKVaeC2F005a4WVnz16njfLF+NWv7fIKJvoHGfCb6Bqzto9ownr2BKSk1FR87B1oHlOWbv9X/vhSmJadPsPLMKUY3b5NZrpNH+WLNctb2++zt5er7mcq2wmg4A1i8cgUr1qxhzMiRuLm4snDpEgYNH8b6ZcvzPqbGjWPAx32pX7s2B44c4duxY1j4xywCS2c15nt6ePDnlKnK5zo6Orn2VaNKVUZ/+63yeUGdA+pXq4xBlSASt+4iIzIKg5pVMenagbi5wZCSqj6TtjYmXTugSEwkccNWMmLj0DY3Q5GSklUGN1dSzl4g/dkL0NbCsG6tzP3OWwSpae8V4+IlS1ixYgVjRo/Gzc2NhX/9xaDPP2f9unWYmJiozXPp0iW+++47Bnz6KfXr1+fAgQN8O3IkCxcsIDAw8ybl7t27mTJ1Kt9+8w3lypVjw4YNDB4yhLVr1uCY7fenRvXqjB49Wvlc3Wffvl07Pv30U+VzQ0PD9yojwOJly1ixciVjRo3KrLcWLWLQkCGsX7VKczkvX+a7UaMY8Mkn1K9blwOHDvHtDz+wcO5cZb1lb2fH5wMH4uriAsDW7dsZ/vXXLF+8+K0Nc0IUFBm2Kf4TEhISWLNmDZ999hmtWrViUY67W+ocO3aMunXrYmxsjJWVFU2bNiUqKvNO0c6dO6lVqxaWlpbY2NjQqlUr7ty5o8z7Zqjjhg0bqF+/PsbGxpQrV44TJ06883soFAp+/fVXPD09MTIyoly5cqxbty7PmMPCwmjdujVGRkZ4eHiwfPnyXGliYmLo378/9vb2mJub06BBAy5efPe7++np6fTt2xcPDw+MjIzw9fVlxowZBZInODgYf39/DA0N8fPz488//1S+9uYzXbNmDfXq1cPQ0JBly5aRkZHB+PHjcXFxwcDAgPLly6v0LHyXv0VERARdu3bFxcUFY2NjypQpw8qVK5Wvz507lxIlSpCRkaESb5s2bfjoo4+Uz//++28qVqyIoaEhnp6ejBs3jrS09zs5eh813Mty7vFNzj6+ycuEaHbcOEFsUjxV3EqrTe9t64K7tRNLz+7kbsQTol/F8yTmJY+iXyjT3I98xvWw+7xMiCbqVRwnH1zhRVwkJS1zX8AXhM1rNtCoZVOatGqOq7sb/QYPwNbOjh2btqpN7+DkyCdDPqNBs0aYmKg/UR8++htatG+Np48XLiVdGfTVEDIyFFw8e6FQygCZ39eVmzfTp3NnGtSoibe7O+OGDSMpOZmdhw5pzBdQqhRDPu5L07p10c/jIiDx1StGTf6N77/4AjNT08IoAns3bqdmk3rUalofJ7cSdO7fCytbGw5t36s2fef+vWj6YWvcS3nhUMKJ9h91wd7ZkUunsu48H9tzkIS4eAaOGoZ3aV9s7O3wDvDD1bPwejZtXbuJBs0b07BlU1xKutL780+wtbdl95YdatPbOzrQ5/P+1G3SAGMNx9T+HXuJj43nqx+/xy+wNHaO9viVCcDdq2AaMlevWEXLtq1p3a4N7h7uDB4+FHsHezauU38Bv3nDRhwcHRg8fCjuHu60bteGlm1asWrZCmWa0RPG0r5jB3x8S1HS3Z2vv/+WDEUGZ0POKNNM+X0aLVq3xMPLE+9SPowc/T0vnr/g5vUbBVKu93Hy4VXmn9rCobsX/vX3fpt9m3ZQvXFdajath6NrZq8zK1sbjuzYpzb9h5/0oHGHVpQs5Ym9syNte3XCzsmRy6fPK9PcuxGKp78PlevVwMbBDv+gMlSsU52HofcKJGaFQsHKNWvo06sXDerWxdvTk3Hff59ZJ+3ZozHfyrVrqVqpEn169sS9ZEn69OxJlYoVWbF2rUq6xMRERo0fz/dff42ZmVmu/Vy6epVWzZpRqUIFnJ2c+KBNG3y8vLh+82a+y7XqfAi9q9Sgvo8vXrZ2jGnakqS0VHbduJZnXi0tsDUxVXlkV8PDi89q1qG+T+H2UlZHoVCw6uxpelerRf1SfnjZ2TOmeZvMcl27kmdeLS2wNTVVeRRWjCvXrqVPz540qPP6mBr5XeYxtTePY2rdWqpWrESfHj0yj6kePdQeU7o6Otja2CgfVpaWufalp6+nksbC3LxAymZQpQJJx06TdjOUjJcRvPp7F1p6uugHqO95DaBfLhAtI0MS120h/fFTFLFxpD9+SkZYuDJN4uoNpF6+RkZ4BBlh4bzatgttC3N0HB3eKz6FQsHKlSvp06cPDRo0wNvbm3Fjx5KUlMTOXbs05lu5ciVVq1ShT58+uLu706dPH6pUrsyKbOe4y1esoG3btrRr1w4PDw+GDx+Og4NDrmsOPX19bG1tlQ8LC4tc72doaKiSxvQ9j0WFQsHK1avp07s3DerVw9vLi3GjRmWWc/duzeVcvZqqlSvT56OPMsv50UdUqVSJFatXK9PUqV2bWjVqUNLNjZJubgwaMABjIyMuX8n7+yVEQZLGM/GfsHr1anx9ffH19aVHjx4EBwejUCg0pr9w4QINGzYkICCAEydOcPToUVq3bk16ejqQ2Rg3bNgwQkJC2LdvH9ra2rRv3z5X48r333/PiBEjuHDhAqVKlaJr167KxpS3vccPP/xAcHAws2fP5urVq3z55Zf06NGDQ3lciPfu3Zv79++zf/9+1q1bx59//klYWJjydYVCQcuWLXn+/Dnbt2/n7NmzBAUF0bBhQyIjI9/ps8zIyMDFxYU1a9Zw7do1Ro8ezXfffceaNWvylWf+/Pl8//33/PTTT1y/fp2JEycyatQoFi9erLKvb775hsGDB3P9+nWaNm3KjBkzmDJlCpMnT+bSpUs0bdqUNm3acPu26jDDvP4WSUlJVKxYka1bt3LlyhX69+9Pz549OXXqFAAdO3YkPDycAwcOKPcXFRXFrl276N69OwC7du2iR48eDB48mGvXrjF37lwWLVrETz/99E6f6/vS0dLG2dw2V2+w0PDHuFqqPynzsy/J05iX1PIox1f1ujOkdiea+lZFVzv33d03PK2dsTWx4H7UswKNHzJ7/Ny5dZvylYNUtpevHMSNK9cL7H2Sk5NJT0vDzDz3BV5BefLiORFRUVSrkFUWfT09ggIDuXQ9/2X5ZfZsalauTNXyhTPUMS01jYeh9yhdQXVYWemgMty5fuud9pGRkUHSqyRMzLLuDF86dRZPPx9W/BnMiO4DGDfwa7av3kRGekYee/rn0lJTuXsrlHKVVD+nspUqcPPqP/87nD1+Cp8APxbOmMMnHXoy/ONBbFi+hozX9XV+pKamcuvGTapUraKyvXLVKly5dFltnquXr1A5R/oq1apy49oNjQ32yUlJpKWlYZbHxWZCfGaPVfMCuiD9/yAtNY1Hoffxr1BGZbt/hUDuXn+34ewZGRkkv0rC2CzrQtKrdCke3bnP/VuZN97Cn4dx9cxFAiuVL5C4nzx7RkRkJNUqV1Zu09fXJ6h8eS7lcbF46coVqmbLA1CtSpVceX6ZNo2a1atTtZL6Ycvly5bl8LFjhL18iUKh4My5czx89IjqVaqoTf+unsbEEJGQQDV3d+U2fV1dglxcufT0SZ55X6Wk0Gb+n7SaN4svN67lZpjmKQ7+bU9joolIiKeae1YPGH1dXYJcS3Lpad69vl+lpNBm7kxazZ7Bl+tXcfNF4ZRLeUxVynFMlSuX9zF19WruY6pyFS5dVc3z8PFjmn3QnjadOzFy3FgeP32aa19nL1ygcds2fNC9GxN+/ZXIqPcf/piTlqUF2qampN27n7UxPZ20h4/RKeGsMZ+ujxfpT55h1LQBZkM+xfSTXhjUqJLZmqnpvQwyexAqkpLeK8YnT54QERFBtWrVlNv09fUJCgri0qVLGvNdunyZqtnyAFSrXl2ZJzU1lRs3blCtalXVNFWr5trv2bNnadykCR906MCECRPUXjfs2LmTho0a0alTJ6ZPn05CgvpREBrL+fRpZjmz1RP6+voEVajApcvqfw/hdb2Vo26pVrWqxjzp6ens2rOHV0lJlC1TRm2a/y+0tLSK5eN/lQzbFP8JCxcupEePzGEQzZo1Iz4+nn379tGoUSO16X/99VcqVaqk0vMpINtwhQ4dOuTav729PdeuXVN2gwYYMWIELVu2BGDcuHEEBAQQGhqKn59fnu+RkJDA1KlT2b9/P9Vfj8X39PTk6NGjzJ07l7p16+aK+datW+zYsYOTJ09S9fWP4MKFC/H391emOXDgAJcvXyYsLAyD1z/gkydPZtOmTaxbt47+7zCHkp6eHuPGjVM+9/Dw4Pjx46xZs4ZOnTr94zw//vgjU6ZM4YMPPlCmedMIlb1319ChQ5Vp3sT/zTff0KVLFwB++eUXDhw4wPTp05k1a5YyXV5/ixIlSjBixAhl2i+++IKdO3eydu1aqlatirW1Nc2aNWPFihU0bNgQyJwfwtraWvn8p59+4ttvv1XG6unpyY8//sjXX3/NmDFjcn0mycnJJCcnq2x78zd5F8b6huhoaxOf8kple3zKK8wM1PeesTYyx83KkbSMdFac342xniGtA2phpGfIpitZjbIGunp8Va8Huto6ZCgy2HrtGHci8r4o+SdiY2LJSM/A0spKZbultRVR79iY+y6WzPkLazsbylUsvDm2Il6fwNvkuFNuY2nJs7CX+dr3rkOHuHEnlCXTpudrP3mJj40jIyMDc0vVO8lmlhbERsW80z72bNxGSlIyFWtnnai/fB5GxItrVK1Xky/Gfk3Y0+esnL2IjPQMWnX7II+9/TOxMbFkZGRgYWWpst3CypLoyOh/vN8Xz57z8vwlajWqx8hJY3j2+CkLZ84hIz2dD3t1zVfMMdHRpKenY2VtrbLdysaayAj134OIiEiq2ORIb21Neno60dHR2NrmHko454/Z2NnZUamK+sYOhULBH9NmUrZ8OTy9855D539J1ndDtUHRzNKC2Oh3+27s27SDlORkKtbKurirVKc68TFxTP3mRxQKyEhPp3bzhjTp2LpA4o6IyJyrySbHcWVjZcWz55obVyIiI3PnsbYmIludvGvvXm7cusWSefM07uerIUOY8OuvtPjgA3R0dNDW1uaHr7+mfNmyGvO8i4jEeACsjVWHb1kbm/AsNlZjvpJWNoxu2hIvOzsSklNYff4M/VYtY3nPj3GzstaY798SkfC6XCbqyqX5OCtpbcPo5m3wsrMnISWZ1WdP02/FIpb37l/g5YqI1HRMWfMsjwa7iMhIbHL8zttYWakcU4H+pRn33XeUdHElIiqKhUuX0HfQQFYvWozl6x5ONapWpVG9+jg6OPD02TPm/LWQAV8OZdm8+ejnY55A7dc9jhUJiSrbFQmJaFlovpGgbWWBtoUrqVdukLB6IzrWVhg2aQDa2iQfPak2j2HDuqQ9ekzGy7fMpZaDxu+ztXXe3+eICPXf59f7i379+2OdI421jQ3hEVkx1qhRg0aNGuHo6MjTp0+ZM2cOAz77jGVLlyo/++bNmuHs7IyNjQ137t5l1qxZ3Lp9m6VLlxZ5Od8IDQ2lT//+pKSkYGRkxG8//4znW+brE6IgSeOZKPZu3rzJ6dOn2bBhAwC6urp07tyZv/76S2Pj2YULF+jYsaPGfd65c4dRo0Zx8uRJwsPDlT3OHj58qNJ4VjbbSaKTkxOQObTSz88vz/e4du0aSUlJNG7cWGV7SkqKygSe2V2/fh1dXV0qZbsL7Ofnh2W2i/mzZ88SHx+PjY2NSt5Xr16pDDt9mzlz5rBgwQIePHjAq1evSElJoXz58v84z8uXL3n06BF9+/blk0+y5iNJS0vL1S08e/liY2N5+vQpNWvWVElTs2bNXENR8/pbpKen8/PPP7N69WqePHmibNjKPrdC9+7d6d+/P3/++ScGBgYsX76cLl26KOfkOHv2LCEhISo9zdLT00lKSiIxMRHjHHOBTJo0SaVBEchsZKum+S6neqo9KLXQQlOnyjd3etZe2k9yWuYcHjtvnKBz+cZsvXaUtIzMXjQpaan8eXw9+jp6eNo408yvGpGvYrkfWfC9zzLjUn2uUCgK7K7UhhVrObLvID/N/BV9g4KZhBtgx4EDTJyVNQnu9DFjAXLFrVDkeRP6rZ6/fMmU+fP4Y/yPGBTQJOJ5yhmrQs02NU4fPM7W5RsYOGqYSgOcIkOBmaU5Pb7oh7aONiV9PImOjGL3+m2F0nj2Rq7jR6HI199BoVBgbmXBp8MGoa2jg2cpb6IiItmyekO+G8/eyBXfW2LWyvGHUbyuC3JuB1i+ZBl7d+9h5pxZGhvpp/06hTuhocyaXzCTb/+/o+6Yeocvx5lDJ9i+YgOf/vAlZtm+G7cuX2fnmi10HtAbd18vXj57wbp5y9ixahPNu7R77/B27N7NxMmTlc+n//JLZtg50r1T/ZqrHsvK8/zFC6bMnMkfU6fmecNn1bp1XL56lak//4yTgwPnLl5UznmmqbeaOjuvX2XS3qypGKa16/i6XGrq2jz2U8a5BGWcSyiflyvhQs9lwaw5f5YRDRrnkbNw7Lx2mUm7sxYwmNYh8wZg7ipY8ZZyuVDG2UX5vFwJV3ouXsCacyGMaNg0XzHu2LObiVOmKJ9P//n1MfVPfrNzHlOo5qmZrXeUN1A2IIB23bqydedOenTuDECTBg2z0nh6UtrPl1adOnH05Aka1Ml9U1kTvQA/jJpnnf8nrNn0JqicQavZpvq6IiGRVzv2gEJBxvMwtExNMKhWSW3jmWHTBujY2xK/dLWafanaefc2P1eooBwlM33atMx3VPfdfNvO8vg+ZyXJO02TJk2U//f29qZ06dK0at2ao0eP0qBBAwDaZ1sMxNvbGzdXV3r26sXVq1dxe33endOOXbuY+LquApj+ug4rkHKq2U/JkiVZsXgxcfHx7D9wgLE//si8P/+UBjTxr5HGM1HsLVy4kLS0NEqUyDppUigU6OnpERUVhVWOu2HAWydKbt26Na6ursyfPx9nZ2cyMjIIDAwkJdskoaA6meabCvxNQ1te7/EmzbZt21TiBs29k978wOZ1ApORkYGTkxMHDx7M9Zqlmrkl1FmzZg1ffvklU6ZMoXr16piZmfHbb78phzj+kzxvyjt//nxlr7k3ck4Yq26y0Lf96EPef4spU6Ywbdo0pk+fTpkyZTAxMWHo0KEqf8/WrVuTkZHBtm3bqFy5MkeOHGHq1KyJbTMyMhg3bpxKr7g31E2YOnLkSIYNG6ayzcDAgAkHFudKq05iShLpGRmY6qs2ypnoGxKfkqg2T1xyIrFJCcqGM4CX8dFoa2lhbmhCZGLmXXsFKP//PC4COxMr6niWL/DGM3MLc7R1tInKsepUTFR0rt5o/8TGletYt2wV46ZOwt2rYCeDrVO1KoG+WfPipKRmfqbhUVHYZrv7GRkTjbXlPy/LjdBQIqOj6Tl0iHJbekYG569eYc3Wvzm+cZPaSZXfl6m5Gdra2rl6mcXFxOTqjZZTyOETLJk5j0+/HZJraJuFtWVmrxOdrFkenFxLEBsVTVpqGrp6BXsaYW5hjra2NtE5j6nomFy90d6HpbUVurq6aGf7rEu4uRAdGUVaaiq6+Zi02sIy8zPK2cssKjIqV2+0N2xsrInMcUc9OjIKHR0dLHL8vVYuXcGy4CVMmzUDbx9vtfub9ttUjh0+yu/z/sRezaIK/8s0fzdiMbPMe3jr2SMnWTZzAf2+/QK/8qorCG9dto4q9WtSs2k9AEq4u5KSlMyKP/6iaac2aGu/38wodWrVUpl8XVknRUaq9ESMjI7O1cskO3W9NSKjorB+XSffuHmTyKgoevbrp3w9PT2d8xcvsmbDBo7v20dqWhqz5s1j8k8/UatGDQB8vL25dfs2y1aufK/Gs9pe3gQ4fpxVrvTMYckRifEqc3tFvUrI1WsrL9paWpR2cOJRdP6H/f0Ttb1LEeCUdX6X8noIeERCAramWVMMRCUmvn+5nJx4FJX/3tt1atYi0F/NMRURia1N9mMq6/hQJ2fPRYDIqOg88xgZGeHl4cmjx5qHrNra2OLk4MDDPNKok3r7DulPs/Viel2va5kao8g2zFDLxEjleU6KhAQU6elkv2OZER6JtqkpaGtDtqlcDJvUR8/Hi/ilq1HExb81xtquJak26lsS4jPTvjkfDY+IUP0+R0VhneOGeHY2Njbqv8+v6wDL178/OdNEqemBmp2trS1OTk48fPRIYxo/Pz90dXV58OCBxsYzjfWWunLmVW+pK2dkZK48enp6uLq6AlDa359r16+zcvVqvs+2CMX/N9r/w0MkiyOZ80wUa2lpaSxZsoQpU6Zw4cIF5ePixYuULFlS7YT6kNlLad8+9RMBR0REcP36dX744QcaNmyIv7+/cpL/95HXe5QuXRoDAwMePnyIt7e3yuNNpZ+Tv78/aWlpnDmTNRn0zZs3iY6OVj4PCgri+fPn6Orq5tqvumE+6hw5coQaNWowcOBAKlSogLe391t7rb0tj4ODAyVKlODu3bu54vLI426Qubk5zs7OHD16VGX78ePHVYarvkuZ2rZtS48ePShXrhyenp655kwzMjLigw8+YPny5axcuZJSpUpRsWJF5etBQUHcvHkzV/ze3t5qL4IMDAwwNzdXebzPsM10RQZPY8PxslVtXPWydVFZACC7h1HPMTM0QV8nq8HCxsSCDEUGsRpW54TMm3l5zYv2T+np6eFVyoeLZ86rbL9w5jx+ge/+91Nnw8q1rFmygjG/TcDHr1S+9qWOibExrs7Oyoenmxs2VlacOp9VltTUVM5duULZ9zgWc6pcrhyr/pjF8pm/Kx+lfXxoVq8ey2f+XiANZwC6erq4eXtw/bzq/CDXz1/By1/z53f64HEWT5tDv68GUaZK7l6xXqVL8fLZC5X5IF88eYaFtWWBN5wB6Orp4VnKm0tnVY+pS2cv4Bvwz/8OvoGlef7kmUo5nj1+ipWNdb4aziDze1DKz5eQU6dVtoecDiGwrPq5WALKBBJyOkRl2+lTp/ErnXmx8saKpctZvDCYyTOn4lc6d/kVCgXTfp3C4QMHmT77d5zzmN/nf5Wuni6u3u7cOK86P9ONC1fw9PfRmO/MoRMsnT6PPiM+I7By+VyvpySnoK2telGT+VuheEtvF/VMjI1xdXFRPjzd3bGxtuZUSNZxkpqayrkLFygbGKhxP2UDAzmV7TwC4FRIiDJP5UqVWLV4Mcv/+kv5KO3nR7PGjVn+11/o6OiQlpZGWloaWjl++7R1dMjIY75ZteXSN8DVykr58LSxxcbEhFMP7meVKz2dc48fUda5hOYd5aBQKLj18gW279EwVZAyy2WtfGSWy5RT9+8q06Smp3Pu0QPKZutZ9jYKhYJbYS9yLYbwj2LUdExlOz5SU1M5d/Fi3sdUQACnzqjWV6dCQigboDlPSkoK9x8+wDaPhqHomBhevHyJrbXmNOp3nkpGVHTWIzyCjPh4dD2yLWSjrY2umwvpT3LPu/ZG2qMnaOe4KaNtY0VGXHyOhrMG6Pn6kLB8LYoYzUOLszPR06dkyZK4urri6uqKp6cnNjY2KjeqU1NTOXfunMrIipzKlimT6+b2qZMnlXn09PTw8/PLneb06Tz3Gx0dzYsXL/K8drhz5w5paWnY2dlpLqeJibKMrq6ueHp4ZJYzZ711/nyec5OVDQxUyaMsw1vmM1MoFKSmalhNVYhCID3PRLG2detWoqKi6Nu3b67hfx9++CELFy7k888/z5Vv5MiRlClThoEDBzJgwAD09fU5cOAAHTt2xNraGhsbG+bNm5d51+XhQ779B3cs8noPW1tbRowYwZdffklGRga1atUiNjaW48ePY2pqqjIH2Bu+vr40a9aMTz75hHnz5qGrq8vQoUNVerg1atSI6tWr065dO3755Rd8fX15+vQp27dvp127dipDIjXx9vZmyZIl7Nq1Cw8PD5YuXUpISEiejVzvkmfs2LEMHjwYc3NzmjdvTnJyMmfOnCEqKipXD63svvrqK8aMGYOXlxfly5cnODiYCxcuaGwY1RTf+vXrOX78OFZWVkydOpXnz5/naoDr3r07rVu35urVq8o59N4YPXo0rVq1wtXVlY4dO6Ktrc2lS5e4fPkyEyZMeOdY3sfx+5foULY+T2PCeRT9gkqu/lgYmnL6YebE6I1LVcbcwIT1lw8CcOlZKPW8gmhfph77b5/BWN+Qpr5VOff4pnLIZh3P8jyJeUlkYiw62tqUsnOjvHMp/r52pFDK0LbTB0z/6Te8fX3wDfBn1987CA8Lo1nbzPnplsz9i4jwCL78/itlnru3MxteX71KIiY6hru372Q2/rhnnvhuWLGW5QuXMHzUN9g7OhD1ukePoZERRsZ59yr9p7S0tOjati3Ba9fg9rpBLXjtGgwNDGiWbY7C0VOmYG9jw+e9ewOZJ4V3Hz3M/H9aGi8jIrh59w7Ghka4OjtjYmyMd7aJsQEMDQyxNDPPtT2/GrVvQfCUPynp44mnnw9Hdu4n8mU4dVpkDpXZuGgV0RGR9Bk+EMhsOAueOpvO/Xvh4etDzOs5xfQN9DF6PYdM3RaNOfD3blbPXUKDNk0Je/KcHWs206B1swKNPbtWHdvx+6SpePr6UKq0H3u37iT8xUsat24OwIr5i4kMj+DzkVn1yv3QzAvWpFdJxMbEcD/0Lrq6uri4uwHQpE1zdm7cyqI/5tOsfSueP3nKxhVrad6+VYHE3LlbFyaMGY9faX8CygSyZeNmwp6/oF2HdkDmfGXhL1/yw7jRALT9oD0b1qzn92kzaN2uLVcvX2Hb5r8Z81PWUPDlS5axcM58Rk8Yi6OTExHhmXfljYyNlMPIp/4ymb279jBx8i8YGxsr05iammJg+O6N+QXBSM8AF4usiyxnc1t8bF2ITUrgRXzR9A56o2G75iyeOgc3Hw88/bw5uvMAkS8jqNU887uxefFqoiOi+GjYACCz4WzxtLl0/KQH7n7exERFA5kTX7/5bpSpUoH9m3bg4lkS91KZwzb/Xr6OMlWCVHpq/lNaWlp07dSJ4GXLcHN1xdXFheClSzPrpGxTQoyeMAF7W1s+H5AZe5cPP6T/F1+waPly6tWqxcGjRzl15gwLX88hamJsjLenak9eQ0NDLC0slNtNTUwIKl+eGa+nOXBycODchQts37mTL9Wcc71vubpUqMyi0ydwtbTCzcqa4FMnMNTVo6lfVg+WMTv+xt7UjEG16wEw/8RRAp2ccbO0zpwb7PwZbr0M4+sGWcPRElNSeJytJ9rTmGhuhb3A3NAQR/O8e+Dml5aWFl0qVmHRqWO4Wlm/LtexzHKVzmpkGrNtM/ZmZgyqkzlUbv6xwwQ6l8DNypqE5GRWnwvhVtgLvm5U8HWslpYWXTt2JHj5MtxeN6gFL1uWeUw1ynZM/fQT9na2fN7/U+D1MTV4MItWLKdezVocPHaUU2fPsPCPrHlpp/85i9o1auLoYE9UVDQLlywhISGBVs0yy5GYmMi8RcE0qFMXWxsbnj5/zp/z52FpYUH9OnXyXbbk0+cxrFGFjMhoMqKiMKhRFUVqGilXs1YeNmrdjIy4eJIPZt6wTTl3EYNKFTBsUp+UM+fRtrLCoEYVUkKybt4YNm2AfoAfCeu2oEhJQevN/GrJKfAeq7FraWnRtWtXgoODM7/Prq4EL1qEoaEhzZpmDc8dPWYM9nZ2ymubLl260P/TT1m0eDH16tbl4KFDnDp9moULFijzdO/WjdFjxuBfujRly5Rhw8aNPH/+XDm/c2JiIvPmzaNBgwbY2try9Nkz/pw1C0tLS+rXqwfA48eP2bFjBzVr1sTS0pK79+4xffp0fH19CQoKIjHm3eaH1NLSomvnzgQvXpx5jLm6Erx4cWY5sw0dHT1uXGY5B2aej3Tp1In+AweyaOlS6tWuzcEjRzgVEsLCuXOVeWbNnk2N6tVxcHAgMSGBXXv3cvb8eWa+HhIrxL9BGs9EsbZw4UIaNWqkdjnlDh06MHHiRM6dO5frtVKlSrF7926+++47qlSpgpGREVWrVqVr165oa2uzatUqBg8eTGBgIL6+vsycOZN6r39A3lVe7wGZE+jb29szadIk7t69i6WlJUFBQXz33Xca9xkcHEy/fv2oW7cuDg4OTJgwgVGjRilf19LSYvv27Xz//fd8/PHHvHz5EkdHR+rUqYODw7stmz1gwAAuXLhA586dlT/mAwcOZMeOHfnK069fP4yNjfntt9/4+uuvMTExoUyZMgwdOjTPeAYPHkxsbCzDhw8nLCyM0qVLs2XLFnx8NPcIyGnUqFHcu3ePpk2bYmxsTP/+/WnXrh0xOX7sGzRogLW1NTdv3qRbt24qrzVt2pStW7cyfvx4fv31V+XdvH7ZhrYUtCvP72KsZ0g97yDMDIx5ERfJ0rM7iEnK7OZvamCMhVHW3eeU9DQWndlGS/+aDKjxAa9Skrjy/C57b2fdrdPT0aV16VqYG5qQmp5GeEI06y7t58rzu7nevyDUbliXuNhYVi9eTmREFCU9SjL6lx+xf72Me1REJOEvwlTyfNl3kPL/d27e5vDeA9g72jN/zRIAdmz6m7TUVH4Zrdpo2aV3d7p+3LNQygHwUYcPSU5O4efZfxIXH0+gry9/jP8Rk2zz3T1/+VKlt8nLyEi6Dx6sfL50wwaWbthAUGAZ5v38c6HFqk7lOtVJiI1n28oNxERG41zShc/HfY2NfWaDRkxkNJHZJjk+snMfGenprJwdzMrZwcrt1RvWoffrRgRrOxuG/Pgta+cvY/ygb7G0saJBm2Y0+7BNoZWjRv3axMXGsn7JKqIiI3F1L8nISWOwc8wcjhgVGUl4jkUcvu6fNSz27q1Qju47hJ2DPbNWLgTA1t6OH34dz+I/F/BVvy+wtrWh+QetaddFdfGYf6phk0bExsSwaEFmY7GHlye/Tp+M4+uhLhHhEbx4ntWj1LmEM79On8Lv02awce0GbO1sGTLiS+o1qK9Ms2ndBlJTUxn1zfcq79Xnk4/5uH9mvbRp/UYABg8YpJJm5OjvadG6ZYGU7V352ZXkj/ZZDZqDa2XObbX9+gl+2v9uw9kLS8Xa1UiIjWfHqk3ERkbjVNKFgWNGYGOf2esiJjKaqGzfjaM795ORns7qOYtZPScr9qoNatHry8wGhWad24IW/L1sHTERUZiam1OmSnla99Q83+r7+qhbN5KTk/l5ypTMOsnfnz+mTlWtk168UBnWU65MGX4aM4bZCxYwZ8ECXEqUYNK4cQRmWzTpXUwcO5ZZc+cyavx4YmNjcXR05LNPPqFDu3b5LlevylVJTkvl1/27iUtKIsDRmd87dMZEP6vB90VcrEq54pKTmLRnJxGJCZjqG1DK3oG5nboT4JTV2/L6i2d8tnal8vn0Q/sBaFk6kDHNCqahPM9yVameWa69O4lLekWAUwl+79gtR7licpdr9zYiEhIwNTCglL0jc7v0UhkSWpA+6vr6mJo2NeuYmjxF9ZgKe6HyO1cusAw/jR7D7IULmLNwIS7OzkwaO1ZluN6Lly/5fvw4omNisLK0JLB0aYJnz8HJ0RHI7LUYevcu23btIi4+HlsbGypVqMDEsWNV3vufSjkZgpaeLkbNGqBlaEj60+ckrFoPKVm9krTNzVSGaCri4klYtR7DRvUw7deLjLh4UkLOk3wi65zKoGJ5AEx7qC6olfj3TlIvX3uvGD/q1Svzs//lF+Li4ggMCOCP339Xmc7k+fPnqt/ncuX46aefmD17NnPmzMHFxYVJEyeqzM/cpEkTYmJiWLBgAeHh4Xh5eTFj+nTl/MDa2tqE3rnDtu3biYuLw9bWlkoVKzJx4kTle+vq6hISEsKq1atJTEzEwcGBWjVr8sknn7x3D/mPevTILOfkyZnlLF2aP6ZPVy3nixcqozrKlS3LT+PHM3vuXObMm5dZb02YoFJvRURGMnrcOMIjIjA1NcXHy4uZ06aprOz5/9H/8sqWxZGWQvGe/a+FEEJoNGqn5tXL/it+bNafGy/uFXUY+ebn4EHc7dCiDiNfzHy8ORh6tqjDyLd63hW5+ORWUYeRL+VKlCIs9v1WWCuO7M1tqDlrQFGHkW/HBs1h763Tb09YjDUqVYW4sLC3JyzmzOztiZkb/PaExZjFp32IWfDuqwoWVxb9ehL3XP3UD/8lZo4OxEyc+vaExZjFd8OIy2MF2f8KM3Nz4gpwBfWiYJbHfGvFXXE9H/dz+N9cpEHmPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRjGghwzaLE+l5JoQQQgghhBBCCCGEBtJ4JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEEKIY0daSvk7Fifw1hBBCCCGEEEIIIYTQQBrPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQhQjWlqy2mZxIj3PhBBCCCGEEEIIIYTQQBrPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQhQj2jJss1iRnmdCCCGEEEIIIYQQQmggjWdCCCGEEEIIIYQQQmggwzaFEEIIIYQQQgghihEtZNhmcSI9z4QQQgghhBBCCCGE0EAaz4QQQgghhBBCCCGE0ECGbQohhBBCCCGEEEIUI1qy2maxIj3PhBBCCCGEEEIIIYTQQBrPhBBCCCGEEEIIIYTQQIZtCiGEEEIIIYQQQhQj2jJss1jRUigUiqIOQgghhBBCCCGEEEJkehj5rKhDUMvN2qmoQygS0vNMCCEK0MJTfxd1CPnWt2prXsSGF3UY+eZgbsvhO+eKOox8qeMVROyajUUdRr6Zd2rPinO7ijqMfOkW1JSlZ3YUdRj51rNSc/beOl3UYeRbo1JVqDlrQFGHkS/HBs1h69WjRR1GvrUKqEXcw0dFHUa+mLm5cvHJraIOI9/KlSjFlEMrizqMfBtet+t/vr7tWak5ay7sLeow8q1T+UasvbivqMPIl47lGhZ1COL/CWk8E0IIIYQQQgghhChGZLXN4kUWDBBCCCGEEEIIIYQQQgNpPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRjGghwzaLE+l5JoQQQgghhBBCCCGEBtJ4JoQQQgghhBBCCCGEBjJsUwghhBBCCCGEEKIY0ZbVNosV6XkmhBBCCCGEEEIIIYQG0ngmhBBCCCGEEEIIIYQGMmxTCCGEEEIIIYQQohjRkmGbxYr0PBNCCCGEEEIIIYQQQgNpPBNCCCGEEEIIIYQQQgMZtimEEEIIIYQQQghRjMhqm8WL9DwTQgghhBBCCCGEEEIDaTwTQgghhBBCCCGEEEIDGbYphBBCCCGEEEIIUYxoIcM2ixPpeSZEAbp58yaTJk0iOTm5qEMRQgghhBBCCCFEAZDGMyEKSFxcHO3bt8fDwwMDA4MC26+7uzvTp0//x/nv37+PlpYWFy5cKLCYhBBCCCGEEEKI/xUybFMUiuPHj1O7dm0aN27Mzp073zv/2LFj2bRp03+qweejjz6iX79+dOnSpahDEf8h5/ce4/T2g8THxGFbwoEG3dvi6uv51nyPb91j5cTZ2Lk40nvCMOX2y0dC2DF/da70wxZMQldfr0Bi3rh2AyuXrSAyPAJ3Tw++GDaYchXKa0x/4ex5/pj+O/fv3sPG1pZuvbrRtkN75euH9h9k2aIlPHn0hLS0NFxcXejcoytNWzTL2se5C6xauoKbN24QER7BT79Nona9OgVSnjcObN3NrvVbiYmMxrmkC53796JUoJ/atOeOnebgtj08uvuAtNQ0nEu60Lp7BwIrllOmObbnEIumzcmV989Ni9HT1y/Q2LNTKBTMP7CXjWdOE/fqFQEurnzdqh1eDg7vlH/3pYt8v3Yldf1KM7l7L+X24EMHOHD9Kg9ehmGgp0dZ15J83qQ57nZ2hVUUpZDdRzi+dR9x0bHYuzjStFcHSvp5vTXfw5t3WTR+JvauTgz4+ZtCjzOnM3uOcmLbfuKjY7Er4UiTnu1xe4e4H928y5IJf2Dv4sgnk75Wbj+3/wSXj4bw8tEzABw9XKnfuSUlvEoWWhkOb9vL3g3biImKwcmtBB9+0gPvAF+1aS8cD+HIjn08vvuQtNRUnNxcaNGtPaWDyqqk2795J0d27CPqZQQm5mZUqFGZth91KtTvxbso5+RNtwpN8LN3w9bEkm+3z+bIvYtFGlN2x3bs5+DmXcRGRePoWoK2H3fBs3QptWnvXr/NtiXrCHvyjJSUFKzsbKjepC51WzdRprl08iz71m8j/FkYGenp2Do5ULdNEyrVq1GgcSsUCuYtXcLGbduJi48jwM+Pb74YjJe7e5759h05zJxFi3j87BkuTk4M7PMx9WvVUr6ekJjInEWLOHDsKFHR0fh6ezN84EACfLPq7cRXr/h9wQIOHT9GTGwsTg6OdGnfjg9bt8l3uXZt3saW1RuIjojCxd2N3oM+wb9sgNq0URGRLJm9kLu37vD8yVOat29N788/yZUuIT6elQuXcvrICRLi4rF3cqDngL4EVauU73jVuXrwNJd2HScxJg4rZ3uqd26Gk4/6+uTpzXtsnbI41/ZO4wZh6ZT5O3Dv3DXO7zhCbFgkGekZWNhbU6ZxDUpVL5crX0H6/1DXntp1mKN/7yU+OgZ7Fyeaf/Qh7v7eatM+uBHK7uWbefn0BanJKVjaWVO5US1qtGygku74tv2c3nOEmPAojM1NCKhagcZd26JXQOeD6stxiCNbssrRondHjeW4fyOU3cs38fKJajlqtmqoTLNg7DTuX7udK2+pCgH0Gjmo0MpRXGjJapvFijSeiULx119/8cUXX7BgwQIePnyIm5tbUYdU6DZs2FDUIfznpKamoqdXeD/gxd31kxfYt3wLjT/6ABcfdy4cOMm6yQvoO+krzG2tNOZLTnzF9nmrKFnam8TY+Fyv6xsZ0u+Xr1W2FVTD2b7de/l96gyGfTOcwHJl2bJhE18PGcGSNctwcHTMlf7pk6d8PXQErdq15ofxo7ly8RJTf5mChZUl9RrUB8DcwpyefT7Czb0kenq6HD9ynJ/HT8TKyooq1asCkPTqFV6lvGneugWjvvm+QMqSXcihE6yet4TuAz/Gu7Qvh3bsZebonxk3ZzI29ra50t+6cp3SFcrQvncXjE2MObbnEH+M+43vpv2Im5eHMp2RsRE/zpuqkrewGwiWHDnEiuNHGd2+I262tvx1cD+fL17AuiEjMHlLr9hn0VHM2LWNCiXdc7127v49OlapRukSrqRnpDN7726+WLyQNYOHYVSIZbpy4hw7l2yg5ccdcfX15OzeYyz/eTaDJn+Hha21xnxJia/Y9OdSPANLER8TV2jxaXL1xDl2L91I8z4f4lrKg3P7j7Py17kM+HUkFnl8v5MSX7F5znI8AnxIyBH3g+uhBFQPwqWXO7r6epzYuo8VP8/m01++xdzassDLcPbISdYtWEbnAb3xKu3D0Z0HmDX2N0bN+hlrNd+L0Ks38SsfSJuenTAyNebE3sPM+XEqX00ei6uXOwCnDx5j8+I19BjcD09/H8KePGfpjHkAfPhJjwIvw/sw0jMgNOIx228cZ2LzAUUaS07nj55mc/AqPvikBx7+3pzYdYj5E6bz9YwfsbKzyZVe30Cfmi0a4FzSBX1DA+5dv826OUvQNzCgepO6ABibmtCoQyvsXRzR0dXl2pmLrP4jGFMLc/wqBBZY7ItXr2bF+vWMGfEVbi4uLFyxnEHffMP64GBMjI3V5rl07RrfTZjAgN69qV+zFgeOHeXbCT+ycNp0Av39AZgwdQp37t9n/DffYmdjw/Z9exn49desXfgX9raZx+fU2X9y5uJFxn/7Lc4Ojpw8e4ZfZs7E1saGejVq/uMyHT9whEWzFtBvyAB8A0uz9++dTPx2LNOCZ2HrYJ8rfWpqKuaWFnzQoxPb1m1Wu8+01FQmfDUKc0tLho39FhtbWyJevsRQw2eUX3dCrnBi9U5qdWuJg7cb1w+fYcfMZXQaOwhTG0uN+Tr9+Dn6hlm/JYZmJsr/G5gYUaFFHSwdbdHR0eHB5VscWrwJI3MTXAPUN6Dk1/+Huvby8bPsWLyOVn074+brxZm9R1k6aRZfTB2FpZrfOT0DA6o2q4uDmzP6BgY8uHmHLfNXomegT+VGmQ3MF4+cZs/KzbQb0AO3Up5EPAtjw+ylALT46MMCL0NmOc6wfdE6WvfrgpuvJyF7j7Jk4iwGT1NfDn0DA6o2rYtjyRKZ5bgRyub5K9E3NFCWo9uI/qSnpSnzJMYlMOuriQRWDyqUMgiRFxm2KQpcQkICa9as4bPPPqNVq1YsWrRI5fVFixZhaWmpsm3Tpk3KlvVFixYxbtw4Ll68iJaWFlpaWsp9PHz4kLZt22Jqaoq5uTmdOnXixYsXyv2MHTuW8uXLs3TpUtzd3bGwsKBLly7ExWX9KCYnJzN48GDs7e0xNDSkVq1ahISEKF8/ePAgWlpa7Nq1iwoVKmBkZESDBg0ICwtjx44d+Pv7Y25uTteuXUlMTFTmq1evHkOHDlU+X7ZsGZUqVcLMzAxHR0e6detGWFhYnp9dWFgYrVu3xsjICA8PD5YvX54rTUxMDP3798fe3h5zc3MaNGjAxYvvfmc8PT2dvn374uHhgZGREb6+vsyYMaNA8gQHB+Pv74+hoSF+fn78+eefytfeDB9ds2YN9erVw9DQkGXLlpGRkcH48eNxcXHBwMCA8uXLq/RWfJNvw4YN1K9fH2NjY8qVK8eJEyeUaSIiIujatSsuLi4YGxtTpkwZVq5cqXx97ty5lChRgoyMDJV427Rpw0cffaR8/vfff1OxYkUMDQ3x9PRk3LhxpGX7wS5oZ3YeomzdKpSrVxWbEg407NEWM2tLzu8/kWe+XcHr8a9WAWdv9XdAtbTA1NJc5VFQ1qxYTcu2rWjVrg3uHu4MHj4UOwd7Nq3bqDb95g2bsHd0YPDwobh7uNOqXRtatGnJ6mVZf58KFYOoU78u7h7ulHBxoWPXTnh6e3HpQtZxXa1mdT75rD91G9QrsLJkt2fjNmo1qU/tZg1wcitBl08/wsrOhkPb9qhN3+XTj2jWsQ0epbxwKOHEB727YO/syMVT51QTamlhYW2p8ihMCoWClSeO0adOfRoEBOLt4MjYDp1ISk1l16ULeeZNz8hg1NpV9G/QGGfr3Ce5v3/0Ma2DKuHl4EApJ2dGf/Ahz2Oiuf70cSGVJtPJbQeoUL8aQQ1qYFfCkWYfdcDCxoqQPUfzzPd/7N13VFTH28DxL0vvvXek2xGxY4kl9t6jsSYmGjUm0STGaCzpGmMSY2LsvffeGzZURAU7CAqI0jssu+8f6MKyu1jA6C/vfM7hHL07c3dm997du899ZmbnP+uo0SQYFx+PV9o+Tc7uOUqdFg2o27IRNs4OtB3UAzNrCy4crLjduxetp0bjejiraXf30YMIbtMUBw8XbJzs6TiiH3KZnNhrN19JHw5t3UOjNs1p0q4FDq4lWWeWNtac2HNIbfleI9+hTc9OuPt6YefkQNfBfbB1dODKuUuKMjHXb+MV4EP9Fo2xtrclIKgm9UIbEXc75pX04UWcibvGwrPbOXY34nU3RcXxHfsJeasZDduEYu/iRLfh/bGwtiJs31G15V283Alq1gAHN2es7Gyo17wRfnVqEBNdeqx41/CnZsMg7F2csHGwI7RTGxzdXYiJVs3yeFlyuZw1WzYztP8AWjVrhrenJ998NpH8gnz2Hj6ssd6azZtoUK8eQ/sPwMPNjaH9BxBSty6rn9yozC8o4PCJE4wdOZKgWrVwdXbm/cHv4uzgyMYd2xX7iYyOplObtgTXroOTgwM9OnbCp1o1om9W7pzZuWErrdq34a2O7XBxd2XImJHY2Nmwf/seteXtHOwZOuY9mrdthZGx+mDY4T0Hyc7M5rMZk/GvEYitgx3+NavjUeaGTFWKPHAav6ZB+Derh6WjLY37tsfE0pyoY+EV1jM0NcbI3FTxJ5GU/px08vPEs24Alo62mNlZUfOthlg525N0O+6V9AH+G5+1YbsOEdSqEcFvNcHOxYEOQ3phZm3Juf0n1JZ38nSlVpNg7F2dsLSzpk6zELxrBXDv+m1FmfhbMbj5eVG7aX0s7azxrh1Azcb1SLj76t6LUzsPU69V4yf9cKTjkN6Y21hwbv9xjf2o3bR+aT9CG+BTO4DY6NJ+GJkYY2phrvi7E3kdXX09ajQUwbP/NfPnz8fT0xMDAwPq1avHiRPqj++njh07pvS7bMEC1dEcmzZtIjAwEH19fQIDA9myRf3vkaoigmdClVu3bh1+fn74+fnxzjvvsGTJEuRy+XPX79u3L5988gnVq1cnMTGRxMRE+vbti1wup1u3bqSmpnLs2DEOHDjAnTt36Nu3r1L9O3fusHXrVnbu3MnOnTs5duwY33//veLxiRMnsmnTJpYtW8bFixfx9vamXbt2pKamKu1n2rRp/P7774SFhREfH0+fPn2YO3cuq1evZteuXRw4cIDffvtNYz8KCwuZMWMGly9fZuvWrcTExDBkyJAK+z5kyBBiY2M5fPgwGzduZP78+UoBN7lcTseOHUlKSmL37t1cuHCBoKAg3nrrLZX2ayKTyXBxcWH9+vVERUXx9ddf8+WXX7J+/fpK1Vm4cCGTJ09m1qxZREdH8+233zJlyhSWLVNO8Z80aRJjx44lOjqadu3a8euvvzJ79mx+/vlnIiMjadeuHV26dOHWLeWL98mTJ/Ppp58SERGBr68v/fv3VwS28vPzqVevHjt37uTq1au89957DBo0iLNnzwLQu3dvHj9+zJEjRxT7S0tLY9++fQwcOBCAffv28c477zB27FiioqL466+/WLp0KbNmzXqu1/VFFUulJMU+wKOG8pAbz5q+PLgVq7HelePnSE9+TJPubTSWKcwvZMHHM5k/bgYbZy/iYeyDKmlzUVERN6/foH6DEKXt9RuEcDXyqto6165cVSkf0rAB16Ouqw1MyuVyLpwLJ/5eHLWD6lRJu59FWiTl3u0YlaFl1evW4k70810oy2QyCvLyMTY1UdpekJfPpHc/4rNBo5k39Ufi7rzaAMGDtFRSsrNo6O2j2Kano0OQhyeRcfcqrPvPkUNYGhvTtV7953qu7Px8AMwMX01WBJScJwkx8VSrpTx81quWP/dvan4tLx09Q9rDx7To+bbGMq9SsVRKYsx9vGqWa3dNf+5XcH5HHDtLWvJjQnu0e67nKSooRFYsw9DY+NmFX5C0SEr87VgC6tZU2h5QtwZ3nzO48vS8MCpzXlQL9CX+TiyxN+8A8DgpmWvhl6kRXKfK2v5fIy2Scv/OPfxqKw8J9KsTSGyZH8sVuX/3HrE3buMVqH7IrVwu52ZkFI8SkjQOBX0ZD5ISSUlNpWFwPcU2PT09gmrVIjLqmsZ6kVFRNKhXT2lbw+BgRZ3i4mKKZTL0dJWzXvX19Yi4Wvp9VKd6DY6fDiP58WPkcjnhERHE3b9Po+CXHwYpLSri7s3b1A6uq7S9VnBdblyLfun9Xgg7i091fxb9uoCRPQfxybDRbF61Hllx8UvvU5NiqZTHcQm4BCoPbXQJrMbDO/EV1t084y9WfPozO+csI+G65s9huVzOg+i7ZDxM0TgUtLL+E5+1UikJd+PxrhWgtN27dgDxN+8+1z4SYuKJv3kXj4DS7343v2ok3I3n/u1YAFIfPubmpWv4VmFWaVkl/YjDu3a5ftQKIO7G8/cj7kYMnoE+GstcOBxGzcb1lLIf/8t00X4j/17UunXrGD9+PJMnT+bSpUs0a9aM9u3bExenPpgbExNDhw4daNasGZcuXeLLL79k7NixbNq0SVHm9OnT9O3bl0GDBnH58mUGDRpEnz59FL//XgUxbFOocosWLeKdd0qGXrz99ttkZ2dz6NAhWrdu/Vz1DQ0NMTExQUdHB4cyw8AOHDhAZGQkMTExuLq6ArBixQqqV6/O+fPnqV+/5AefTCZj6dKlmJqaAjBo0CAOHTrErFmzyMnJ4c8//2Tp0qW0b98eKAn6HDhwgEWLFvHZZ58pnm/mzJk0aVKS0j98+HC++OIL7ty5g5dXyXxUvXr14siRI0yapH4enWHDhin+7eXlxbx58wgJCSE7OxsTExOV8jdv3mTPnj2cOXOGBg0aKF7LgIDSL6EjR45w5coVkpOTFYsS/Pzzz2zdupWNGzfy3nvvPfP11dXV5ZtvvlH839PTk7CwMNavX0+fPn1eus6MGTOYPXs2PXr0UJR5GoQqm901fvx4RZmn7Z80aZJirrgffviBI0eOMHfuXP744w9FuU8//ZSOHTsC8M0331C9enVu376Nv78/zs7OfPrpp4qyH330EXv37mXDhg00aNAAKysr3n77bVavXs1bb5XMo7BhwwasrKwU/581axaff/65oq1eXl7MmDGDiRMnMnXq1Ge+ri8qNysHuUyGsbmp0nYjM1OV4QNPpSY94tj63QyYPBqJtvovLmtHOzqM7IutqyMFeflc2H+CVTN/Z8jMCVg5VG5uqoz0dIqLi7Esl5VkZW1JakqK+janpGJlrTxswtLKiuLiYtLT07F5MrQmOzubnh26UVhYiLa2Nh9P+kQl6PaqZGdmIpPJMLMwV9puamlORlrGc+3jwOZdFOQXENysoWKbg6sTQyeMwtnDjbzcPA5t28MPn07j69+/x97ZsUr78FRKdskwXisT5ePKysSUpPQ0jfUu34tl+8XzrPpw3HM9j1wu55c9u6jj7oG3vepw3aqSm1lynpiUO09MzE25o+E8SUlM5tCaHQydNk7jefKqaTq/jc1Nyc7IVFsnNekRR9buYPDXY5+73YfX7sTUyhzPGlUX7HgqOzPryXmhnLlqamFOZvrznReHtu6hsKCAek1Lz+Xg0EZkZ2QxZ9IM5HKQFRfTrP1btO3duUrb/1+Sk1XyXpTPIjYxNycrXf2Ni6emj/j0yXtZTLs+XWnYRnmuyLycXKaP/BRpkRSJRIse772DXx3183a9jJTUks8dawvl7wFrS0sSy4wcUKmXloa1pWqdlLSS/RkbGVErMJB/Vq3E080NK0tL9h05wtXr13F1dlbU+Wz0aGb+MocO/fuhra2NRCLhq48nUKeGclD4RWRmlHxnmFtaKG03t7QgPTX9pff7MDGJR5ciadq6BV98N5XE+wksmrcAWXExvQb3f+n9qpOfnYtcJsfQTDkYZGhmrHY6CAAjc1OaDeqMrZsjxdJibp25zM5fltH5kyE4+nooyhXm5rNy0myKi4qRSLRoMqCjSpCuqvwXPmtzM7NLzm/z8ue3KVnp6vvw1E8fTCYnMxtZcTEte3ck+K3Soci1mgSTm5nNP1/PQY4cWbGMkDbNCO3WtoI9VkU/yr8XZmQ/ox8/jvpS0Y9W5fpR1v3bsTyMT6D7B693iL/w4ubMmcPw4cMZMWIEAHPnzmXfvn38+eeffPfddyrlFyxYgJubm2LRvICAAMLDw/n555/p2bOnYh9t2rThiy++AOCLL77g2LFjzJ07V2kEUlUSwTOhSt24cYNz584p5v/S0dGhb9++LF68+LmDZ5pER0fj6uqqCJwBBAYGYmFhQXR0tCJ45uHhoQicATg6Oiqyt+7cuUNRUZEiKAYlgaGQkBCio5XvFtaqVZqFYm9vj5GRkSJw9nTbuXPnNLb30qVLTJs2jYiICFJTUxVDBuPi4ggMDFTbPx0dHYLL3A319/dXGuJ64cIFsrOzsbZWnt8kLy+PO3fuaGxLeQsWLOCff/7h3r175OXlUVhYSJ06dV66zqNHj4iPj2f48OGMHFk6Aa5UKsXcXDkgUbZ/mZmZJCQkKL0fAE2aNFEZilr2/XB0LAk8JCcn4+/vT3FxMd9//z3r1q3jwYMHFBQUUFBQgHGZO4QDBw7kvffeY/78+ejr67Nq1Sr69Su5mIaS1/b8+fNKmWbFxcXk5+eTm5uLUbk5R54+R1lVs8qqHHVzg8pkMnb+uYomPdpi5ag5CObk7a40nNPFx4NlX8/l4oFTtB7UrQrapzp5qVxe8YSmWpR/TK6y3cjIiEWrlpKXm8uF8xf445ffcHJ2om69fy8tX6ULcvlzTdR69ugptq/axOivP1EKwFXz96Gaf+ndU+9AX2aM/ZLDO/bRf9SQKmnznsuX+G57aYr6L++U7Ld8s0uyf9X3JaeggK83ruPLrj2xeM676j/u3Mbth4ksHPHByzT7JZQ/5uRquyOTydj8+3Ja9GqPtaPqvEP/NrXHlJqGy2QytvyxnNCez9/usB2HuHb6IoO+GlNlcxqqpXowqe1DeeHHTrN79Wbe/+pjTMucFzevRLN3/Xb6jhqCh181HiU+ZOPfK9mzdivt+3Wr4sb/t6h+HMnVbVQyetYkCvMLuHfzDrtWbMLa0Y6gZg0Uj+sbGvDJ7KkU5BdwKzKa7UvWYW1vi7eGxVKeZc+hQ3w79xfF/+fOnPWk7arn8LM/X9V815T5//RJnzP9559p378f2hIJfj4+vN2qFdfLZK6v3bqFK9HRzJk+A0d7ey5GRvLDb/OwsbaiQZByZtuLUmm/XP339/OSy+WYWZrz/oSSG2Revt6kpaSyfd3mKg+ePVX+XK5ooIiFgw0WDqVzHdpXcyU7LZPL+8OUgme6Bnr0nDKKooJCEqJjOLNhH2a2ljj5vZrhp/Bf+axV/u+zrq0ARnzzMQX5Bdy/Fcv+1duwdrClVpOS6+yYazc5tmUvnYb3xcXHg9SkR+xeuhGTTXto2bP9q+qFujfjmZ9TI6ZPoDC/gPibMexfvQ0rB1tqN1XNgg8/HIa9qxMu3h5V117hpWj6HaTut1BhYSEXLlzg888/V9retm1bwsLC1O7/9OnTtG2rHOht164dixYtUsyZffr0aT7++GOVMk8Dbq+CCJ4JVWrRokVIpVKcy9z1k8vl6OrqkpaWhqWlJRKJRGUYZ1FR0TP3relCq/z28hPQa2lpKQJXT5/3eS7iyu5HS0urwv2Wl5OTQ9u2bWnbti0rV67E1taWuLg42rVrR2Fhocb+qWtbWTKZDEdHR44eParyWPl55DRZv349H3/8MbNnz6ZRo0aYmpry008/VZji+qw6T1+HhQsXKrLmntIud1fPWM2P85d5P8o+7+zZs/nll1+YO3cuNWvWxNjYmPHjxyu91p07d0Ymk7Fr1y7q16/PiRMnmDOndCJ3mUzGN998o5QV95SBgYHKtu+++04pGw9g6tSpuLZ/votxI1NjtCQSlSyz3MxsjMxMVcoX5hWQFHOfh/cSOLh8K/DkmJHL+WnIRPpMHIm7mjR3LYkEB09X0h4+eq52VcTcwgJtbW2VLLO01DSVbLSnrKytSElJVSmvra2NeZkf1BKJBBdXFwB8/Hy5FxvLyqUr/pXgmYmZGRKJRCXLLCs9UyXrprzzx06z/Ne/ef+LcQTWrTiTQSKR4OnjRfKDpEq3+alQ/0BquJTeUCiUlgzvScnKwsa0tO1pOdlYq8l4BbifmkJCehqfrCodYi178nnUcOqXbBz3CS5WpQH7n3Zu4/j1aP4e8T725YLjVc3IrOQ8KZ9BkJOZjYna8ySfhLtxJMbeZ/fSjUDpeTJ94HgGffHhK8kcUGn3k/M7O135/M7JzFbJkHja7sS78STFPmDvsk1K7Z41aAIDPh+FZ/XSdp/edZhT2w8w8IsPsXdzeiV9MDErmcsos/x5kZGJ6TPOiwsnzrBy3j+M+Pwj/OsoDxHauXIjIS2b0KRdCwCcPVwpzC9g9e+Ladeni9L8SUIJY9OS9yIrTfk8yM7IxNS84vfC2r7kZoujuwtZ6ZnsX7dNKXgmkUiwcSxZidfZ042H9xM5tHn3SwfPQhs1ooZ/ad3CJ9d3j9NSsSlz4y81PR2rcpllSu22tCQlTfm7IzU9TamOi5MTf8+ZQ15eHjm5udhYW/PFzBk4PRm1kF9QwB+LF/PztGk0bVCSFezj5cXNO3dYuWHDSwfPzMxLvjPSU5WzeTPSM1Sy0V6EhZUlOjo6StlQzm4upKemIS0qQqcKF1gyMDFCS6KlkmWWn5WDkZn67wp17DxduH02UmmblkSCuV3Je23j6kha0iMi9px8JcGz/8JnrZGZCRKJRCU7KyczSyWLqzzLJwu3OLg5k52eyeENuxTBs0Prd1I7NESRxeXg5kxhQSHb/15N8+7tqvyzVmM/Mp7dD6uy/cjI4siGXSrBs8KCQq6cCuetvp2qtN1vOm35m7napqbfQdOmTVMp+/jxY4qLi7Evt+q7vb09SUnqr4mTkpLUlpdKpTx+/BhHR0eNZTTtsyqI4JlQZaRSKcuXL2f27NkqkeKePXuyatUqxowZg62tLVlZWeTk5CgCKREREUrl9fT0KC43x0NgYCBxcXHEx8crss+ioqLIyMhQGtpYEW9vb/T09Dh58iQDBgwASgJ34eHhSpP9V9b169d5/Pgx33//vaKt4eEVT8AaEBCAVColPDyckJCSIS43btwgPT1dUSYoKIikpCR0dHTweMYS75qcOHGCxo0b8+GHHyq2PStr7Vl17O3tcXZ25u7du4o5xJ6HmZkZTk5OnDx5ktDQ0qEkYWFhitfgeZw4cYKuXbsqhgvLZDJu3bqldFwYGhrSo0cPVq1axe3bt/H19aVemflUgoKCuHHjBt7ez7ca1BdffMGECROUtunr67MyYv9z1dfW0cHBw5nYqzfxDS4NusRevYl3kOp8FPqG+gz99hOlbZcOhhEXfZuuHw3G3FZ98Eoul5Mc9wBbl8oPE9TV1cXX34/ws+cJbdlcsT383HmahjZVW6d6zRqEnTiltO382XP4B/qjo6P5K0guh6LCZwfVq4KOrg7u3p5EX4okqHHpxVrUpSvUaaj5x9XZo6dYNvcvRk78iFohzw7yyeVy4u7ew8XD9Zlln5exvr7SCppyuRxrE1PO3rmNn1PJTYwiqZSLsTF81Fb9nWYPG1vWjBmvtG3Bwf3kFBbwSYfO2JuZK/b9067tHI26xoLh7+FsqXmly6qiraODk6crdyNvEFC/tmL73SvX8aunGqzUNzTggx+V72ye33+SmKib9Bk/DAs1qxK+Cto6Ojh6uhBz9Qb+9UuzZmOu3MC3nrrz24D3vleeAuDCwZPEXrtFz3FDsShzfp/eeZiTW/fTf9IonLxe3UrWOro6uHp7cP3SVeo0Ks0Yvh5xlVoNNB/v4cdOs3LeQoZ++iE16tdRebywoBCJRPnHQMmPOPnTpFShHB1dHVyquXPz8jVqlpkk++blKKqH1K2gZjnykvnTnlWo+JllNDM2MlJaQVMul2NtZcXZCxfxfzIXY1FRERcjI/loxEhNu6FWYCBnL1xkYM/SVQHPXrhArUDVIaWGhoYYGhqSmZXF6fBwxj7JgJdKpUilUrS0lIMEEm0JMtnLH2w6urp4+XoTeeESIc0aKbZHXoigfuMGFdSsmF+NQE4dOoZMJlMENhLvJ2BpbVWlgTMo+YyycXPiQdQdPOuWXivdj76DR+3nD5ymxCdiZP6MYJscpdUSq9J/4rNWRwcnL1fuRF4nMKSOYvudyOv4B9fSXLEcOcqvc1FBoeqxL5FUmF1YGSX9cON2ZLRSP25HXieg/vP3A7lc7Zy4V09foFgqpU6zf2dKD6Fimn4HVeRFM5DVlS+//eWyml+eCJ4JVWbnzp2kpaUxfPhwlaF6vXr1YtGiRYwZM4YGDRpgZGTEl19+yUcffcS5c+dUVuT08PAgJiaGiIgIXFxcMDU1pXXr1tSqVYuBAwcyd+5cpFIpH374Ic2bN1caClgRY2NjPvjgAz777DOsrKxwc3Pjxx9/JDc3l+HDh1fVS4Gbmxt6enr89ttvjBo1iqtXrzJjxowK6/j5+fH2228zcuRI/v77b3R0dBg/fjyGhoaKMq1bt6ZRo0Z069aNH374AT8/PxISEti9ezfdunV7rtfB29ub5cuXs2/fPjw9PVmxYgXnz5/H01PzHcHnqTNt2jTGjh2LmZkZ7du3p6CggPDwcNLS0lQ+XMv67LPPmDp1KtWqVaNOnTosWbKEiIgItSuNVtS+TZs2ERYWhqWlJXPmzCEpKUklqDpw4EA6d+7MtWvXFIG2p77++ms6deqEq6srvXv3RiKREBkZyZUrV5g5c6bKc2pKTX4RwW83Z9dfa3DwdMXZ252Io2fITEmnTquSO+TH1u8mOy2Dju/3R0siUQmAGZmZoKOrq7T91Jb9OFVzx9LBhoK8fC7uP0lyXAJtBqtm1L2MPgP6MmvqDPwC/aleswY7tmwjOekhXXt2B+Cv3//k8aPHTP5mCgBde3Rjy/pN/P7LPDp168K1K1fZtW0nX8+aptjnyiXL8QssmbuuSCrlzKnT7Nu1h08+L53HLjc3lwfxpas6JiYkcOvGTczMzbB3qPycW226d2TR7D9w9/Gimr8vx/ceIvXRY5p3KBluvnnJGtJS0hj+aUkA+ezRUyyZ/Sd93x+Ml78PGU/mudHV11OspLZ91Ua8/H2wd3IgLzePw9v3cv/uPQZ+OLTS7dVES0uL/o2asOT4EVytrXG1tmHpsSMY6OrSrlYdRbmpG9dha2bOmLZvo6+rqzJvmYlhSbZl2e0/7NzGvsgIfh4wGCM9fR4/WcXYxMAAgyr+YVdWw44t2fLHCpy8XHHx9eTCoTAyHqcR/GQZ+4NrtpOVlkH3DwehJZFg56qcHWBsXnKelN/+qjVo34Jtf67C0dMVFx8PLh4+TUZKGkFPsgAOr91BVloGXT9450m71Z3fOkrbw3Yc4tjG3XQbPRgLWyvFHX49A/1XMnnyW93as2zOAtx8PPHy9+bk3iOkPkqhafuSuSK3LVtHekoa704YBZQEzpb98he9R76Dh783GWnpJe3T08PwyXlRM6Quh7fuwcXLHQ/fkmGbO1ZtpGZIEBLt15t1Zqirj4t56bB4JzMbfGxcyMzP4WG25jkD/w2hnduyZt4/uHh74OFXjTP7j5P2OJVGbUtuZOxauYmMlDQGjCuZT+bknsNY2lhh92R+xZjoWxzdvo+mHVop9nlo0y5cqnlg42CHVCrl+sVIwo+epud7VTefkJaWFv2792DJmtW4OTvj6uzMkjWrMdA34O1WpW35+ofvsbOxYczwkvb3696D9yZ8zNK1a2nRuDFHw8I4e/Eii36Zq6hz+vx55Mhxd3ElPiGBeX//jburK13alSwUYmJsTFCtWvy68G/09fVwtCsZtrn7wAE+HjWqUv3q1Lsbv303By8/H3wD/Tm4cy+PHz6iTeeSmxSrFy4j9XEKY74ovf6JvV0yaXp+Xj6ZGRnE3r6Ljo4OLh4lgZm2Xdqzd8tOlv6+kLe7dyLpQQJbVm+gffdXk2lTq00jjizejI27E/bVXIk+foHs1AwCmpdcS57bfJCc9ExaDiu5frhy8DSm1hZYOtlRXFzM7TORxFyMps2o0vlyL+05ga27E2a2lsikxcRdvcXN05dpNrDjK+kD/Dc+axt3fItNvy/DqZobrj5ehB86ScbjVELalHzP7V+9jczUdHqNKZmX9+y+Y5jbWGHrVJJ1c+/6HU7tOEjDt1so9ulXryZhuw7j6OGCq48HKUmPOLRuB/7BNV9Zhm+TTq3Y+NsynL3ccfX1JPzgKTIep1G/TbMn/dj6pB9DADiz9xgWNpbYODso+nFyx0Eatm+hsu8Lh8MIqF9baQEa4fV5kd9BNjY2aGtrq2SEJScnq2SOPeXg4KC2vI6OjmL6Ik1lNO2zKojgmVBlFi1aROvWrVUCZ1CSefbtt99y8eJFgoKCWLlyJZ999hl///03rVu3Ztq0aUqT3ffs2ZPNmzfTsmVL0tPTWbJkCUOGDGHr1q189NFHhIaGIpFIePvttytc8VKd77//HplMxqBBg8jKyiI4OJh9+/ZhWcHwgRdla2vL0qVL+fLLL5k3bx5BQUH8/PPPdOnSpcJ6S5YsYcSIETRv3hx7e3tmzpzJlClTFI9raWmxe/duJk+ezLBhw3j06BEODg6EhoY+9wfFqFGjiIiIoG/fviUXtf378+GHH7Jnj/rl1Z+3zogRIzAyMuKnn35i4sSJGBsbU7NmzWdm9I0dO5bMzEw++eQTkpOTCQwMZPv27fj4aF5pp7wpU6YQExNDu3btMDIy4r333qNbt25kZCgPN2rVqhVWVlbcuHFDkXn4VLt27di5cyfTp0/nxx9/RFdXF39/f8XElq9CQMM65GfnELbtADnpmdi4ONDrk+GY25Tc+cxJzyQz5cV+sOXn5rFvyQZyMrLQNzTAzt2Z/l9+iGO1qrlr+lbb1mRmZLLsnyWkPE7Bs5oXP8z9GQfHkguflMcpPEwqnQTaydmJH+f+zG+/zGPLhs1Y29ow7tPxtGjVUlEmLz+fOT/M5tGThTDc3N35avrXvNW2dJ7EG9HXGTfqI8X/f/+l5Lx/u2N7vpz2VaX7Vb95I7Kzsti5ejMZqek4ebgy9ptJiiFP6WnppD56rCh/fM8hiouLWT1/CavnL1Fsb9Q6lGETSuYBy8vJZcW8f8hMS8fQ2AjXah589uPXePo9X3bjyxrcrDkF0iJ+2LGNrPw8qru48tu7w5Uy1JIy0tGSvNiduU3nzgAwavHfStu/7t6LzkEvv3Lds9RoFEReVg7HNu8jOz0DO1dHBk4apcgQyE7PJOPx6w1sqFO9URB52bmc2LKP7PRMbF0c6ffZ+8rtfsHz+8LBkxRLi9n06xKl7c16tKP5K5jDpl6zhuRkZrNnbckPHkd3Fz6c+inWT4bYZKSmk/aodBj3yb2HkRUXs27BMtYtKB0G3KBVUwZ//D4Ab/ftClqwY+VGMlLSMDEzo2ZIHToP6l3l7X9R/rbu/N69NNgxtmlJm3ZHn2bW4WWaqv0r6jYNITcrmwPrd5CZloGjmzMjJo9TDHfKTEsn/XHpMEe5TM7ulZtITX6MRFsba3tbOr7Tk4ZtS7OGCwsK2LxwJekpaejq6WLn7MiAcSOo27RqMzve7duXgsICvv9tHllZWdTwD+D3779XylBLSk5GUiZLpnb16sya/BV/Ll3CgmVLcXF04rvJX1GjzE2x7Nwcfl+0iOTHjzEzNaVV02aMHjZUKav528lf8ceiRUz57jsys7JwsLfng6HD6NmpcgtUNG7ZjKzMTDYtX0taaiquHu588d1UbB1K5tFKS03lcbLydAkT3ytdkOXuzducPHQMW3s7/lizCAAbO1u++nE6y+b/w2cjPsLKxpr2PTrTrV/PSrVVk2r1a5Cfk8vFXcfIzcjGysmO9h8NxNTaAoDcjCyyU0uvo4qlxZzZuJ+c9Cx0dHWwdLLj7Y8G4FazdJijtKCQk6t3kZOWiY6uDhYONrQa3oNq9V/NCo/w3/isrdm4HrlZORzdtIestEzsXR0Z9PmHimzp7PQMpT7IZXIOrN5G2qMUJBIJVva2tB3QVXFTCaB5j5Ig8qF1O8hMzcDYzAS/ejVp3e/VLc5Ss3EwuVk5HNm0u7QfX3yI5ZN+ZKVlkl7m+1oul7F/zTbSkp/0w8GWtgO7Ub+18miGxwkPuXf9DkO++oj/dzRMEfS/RE9Pj3r16nHgwAG6d++u2H7gwAG6du2qtk6jRo3YsWOH0rb9+/cTHBysmMqnUaNGHDhwQGnes/3799O4ceNX0IsSWvLyk08JgiAIL23R2R3PLvSGG96gMw8zHz+74BvO3syG43cuvu5mVEpotSAy1295dsE3nFmf7qy+uO91N6NSBgS1Y0W45psM/ysGBbfn4E3Ni938r2jtG0KTPyqXPfS6nRq9gJ3XTr7uZlRap+pNyYqLf93NqBRTN1cuP7j5uptRabWdfZl97NWsMvdv+qR5///5z9tBwe1ZH3HwdTej0vrUac2Gy4dedzMqpXftt153E15aVpnpe94kps851/ZT69atY9CgQSxYsIBGjRrx999/s3DhQq5du4a7uztffPEFDx48YPny5QDExMRQo0YN3n//fUaOHMnp06cZNWoUa9asUay2GRYWRmhoKLNmzaJr165s27aNr776ipMnT6rMwV1VROaZIAiCIAiCIAiCIAiCUOX69u1LSkoK06dPJzExkRo1arB7927c3d0BSExMJC4uTlHe09OT3bt38/HHH/PHH3/g5OTEvHnzFIEzgMaNG7N27Vq++uorpkyZQrVq1Vi3bt0rC5yBCJ4JgiAIgiAIgiAIgiC8Wf5DgwQ//PBDpcXnyio//zlA8+bNuXix4hEkvXr1olevXhWWqUpiPXBBEARBEARBEARBEARB0EAEzwRBEARBEARBEARBEARBAzFsUxAEQRAEQRAEQRAE4U3yHxq2+V8gMs8EQRAEQRAEQRAEQRAEQQMRPBMEQRAEQRAEQRAEQRAEDcSwTUEQBEEQBEEQBEEQhDeJTAzbfJOIzDNBEARBEARBEARBEARB0EAEzwRBEARBEARBEARBEARBAzFsUxAEQRAEQRAEQRAE4U0il73uFghliMwzQRAEQRAEQRAEQRAEQdBABM8EQRAEQRAEQRAEQRAEQQMxbFMQBEEQBEEQBEEQBOFNIherbb5JROaZIAiCIAiCIAiCIAiCIGgggmeCIAiCIAiCIAiCIAiCoIEYtikIgiAIgiAIgiAIgvAmkYlhm28SkXkmCIIgCIIgCIIgCIIgCBqI4JkgCIIgCIIgCIIgCIIgaCCGbQqCIAiCIAiCIAiCILxJxGqbbxQtuVy8I4IgCIIgCIIgCIIgCG+KrMSk190EtUwdHV53E14LkXkmCIJQhb7cveB1N6HSvu0wiqz7D153MyrN1MWZiTt/f93NqJQfO40h48d5r7sZlWY+cSy7o8NedzMqpUNAYz7e/uvrbkal/dJlHFnJya+7GZVmamfHzmsnX3czKqVT9aY0+WPU625GpZ0avYB5J9a/7mZUythmffhm/6LX3YxKm9p2OEvO7Xzdzai0oSGdWBC25XU3o1JGNe7OJ9v/97+/Z3cZy6Rd8193Myrlh44fvu4mCP8RIngmCIIgCIIgCIIgCILwJpHLXncLhDLEggGCIAiCIAiCIAiCIAiCoIEIngmCIAiCIAiCIAiCIAiCBmLYpiAIgiAIgiAIgiAIwptEJtZ2fJOIzDNBEARBEARBEARBEARB0EAEzwRBEARBEARBEARBEARBAzFsUxAEQRAEQRAEQRAE4U0iF8M23yQi80wQBEEQBEEQBEEQBEEQNBDBM0EQBEEQBEEQBEEQBEHQQAzbFARBEARBEARBEARBeJOIYZtvFJF5JgiCIAiCIAiCIAiCIAgaiOCZIAiCIAiCIAiCIAiCIGgghm0KgiAIgiAIgiAIgiC8SWSy190CoQyReSYIgiAIgiAIgiAIgiAIGojgmSAIgiAIgiAIgiAIgiBoIIZtCoIgCIIgCIIgCIIgvEnEaptvFJF5Jgj/MQ8fPmT69OmkpaW97qYIgiAIgiAIgiAIwv88ETwT/id5eHgwd+7cf3V/WlpabN26tVLPM23aNOrUqVOpfVRELpczaNAg9PX1sbS0fKG6Vf2avqjQ0FBWr1792p6/rE8//ZSxY8e+7mYIgiAIgiAIgiAIbwARPBP+VZ07d6Z169ZqHzt9+jRaWlpcvHjxX24VnD9/nvfee+9ff96q9t133+Hl5cWkSZNeuO7rfA127txJUlIS/fr1U2wrH8yTy+V88sknmJqacvjwYQBatGjB+PHjVfa3evVqtLW1GTVqlNrn++uvv6hduzbGxsZYWFhQt25dfvjhB8XjEydOZMmSJcTExFRNBwVBEARBEARBEF6ETP5m/v0/JeY8E/5Vw4cPp0ePHty7dw93d3elxxYvXkydOnUICgr619tla2v7rz/nq/Dll1++dN3X+RrMmzePoUOHIpGoj+cXFxczcuRIduzYweHDh6lfv36F+1u8eDETJ07kzz//ZM6cORgZGSkeW7RoERMmTGDevHk0b96cgoICIiMjiYqKUpSxs7Ojbdu2LFiwQCmo9io0cKtOM6/amOobkZydxq6oU8SmJWksry2R0Mo7mDrOPpjqGZGRn83ROxe5cP8GAEHOfvSq3VKl3td7FyKVFVdJm+VyOX8vX8aWXbvIysqiekAAk8aOpZqHZ4X1Dh0/zoIlS7ifmICLoxMfDh9Gy6bNFI93HtCfxIcPVer17tKVSePGAZCbl8dvC//m2KlTZGRm4ujgQL/u3enVpWul+9XIvQbNqwVhqm/Ew6xUtkedIDY1UWN5bYmE1j4hBDn7YqpvTEZ+NoduhxMeHw3A+426U83aWaVe9MNYlpzfWen2vgj9Jg3Qq10dLX0DihOTyDtwFFlK6jMq6WHQrDG6vtXQMtBHlpFJ/pETSO/ee+XtPbn7MEe27iEzLR0HV2e6DR9Ateq+asvejbrJjuUbSH6QSFFBIZa21jRq14IWXdopyiTGPWDv6i3E34kl7VEK3Yb1p3mXtq+8H008atGyWhBmBsYkZaWw9epx7qYmaCyvLdGmnW8I9Vz8MdM3Ij0/mwM3z3MuvuTzSaIlobVPMPVdAzA3MCE5O42dUae4/qjq3hO5XM7fS5awZfv2kvM7MJBJEyZQzfMZ5/fRoyz45x/uJyTg4uTEh++9R8vQULVll6xYwR9//03/3r35pEyWb25uLr/99RfHTpwgIyMDR0dH+vXsSa/u3Svdr1N7DnN02z7FMdV1WD+8AjUcU9G32LV8I8kPEiksfHJMtW1O886lx0zkmQsc2rSLx4nJyIqLsXG0p3mXtgS3aFzptlZWbUdvBtRti7+dGzbGFny++09OxFx+3c1SuHLkLJf2nSQ3PRsrJzua9muPk6+H2rIPrsew9efFKtsHzBiLpWPJdUvKg4ec23aYR/cSyEpJp2nf9tRu8++/DzePXyL60DnyMrMxd7ShXo9W2Hm7aixfXCTl6t4wYs5HkZ+Vg5GFKdXbNqRao1r/WpsvHjzF2V1Hyc7IxMbZgdbvdMXVz+uZ9e7fjGHVrPnYujgwbNYnastEnb7E9vkr8QmqTs+Ph1V105VcPnya8D3HyUnPwtrZnuYDOuHiW/FnFsCDW7Fs+P5vbJzteWf6OKXHLu4/SeSRM2SmpGNoYoxP/Ro07fU2Orq6r6QPjT1q0kLxfZHKtqvHiXnG90Vb3xCCXPww0zcmPT+bQ2W+LwCaedWhsUdNLA1NySnM43LCbXZHh1XZ9aA6Dd2r09yrbsm1VHYqO66dIjbtWddS9anr5Iupfsl17eHbFwi/f11RxkBHj3Z+Dajh4IWhrj5peVnsjDrFjUdxr6wfgqCOyDwT/lWdOnXCzs6OpUuXKm3Pzc1l3bp1DB8+HICwsDBCQ0MxNDTE1dWVsWPHkpOTo3G/cXFxdO3aFRMTE8zMzOjTpw8Py/0I3759O8HBwRgYGGBjY0OPHj0Uj5XPcrp16xahoaEYGBgQGBjIgQMHVJ5z0qRJ+Pr6YmRkhJeXF1OmTKGoqEipzPfff4+9vT2mpqYMHz6c/Pz8Cl+fo0ePoqWlxb59+6hbty6Ghoa0atWK5ORk9uzZQ0BAAGZmZvTv35/c3FxFvb1799K0aVMsLCywtramU6dO3LlzR/H48uXLMTEx4datW4ptH330Eb6+vorXtfxroKWlxV9//UWnTp0wMjIiICCA06dPc/v2bVq0aIGxsTGNGjVSep47d+7QtWtX7O3tMTExoX79+hw8eLDCPj9+/JiDBw/SpUsXtY8XFBTQu3dvDhw4wPHjx58ZOIuNjSUsLIzPP/8cf39/Nm7cqPT4jh076NOnD8OHD8fb25vq1avTv39/ZsyYoVSuS5curFmzpsLnqqyajtXoGNiYo7cv8vvJjcSmJvJu/Y6YG5horNO/bhuqWTuzOfIoc46vZV3EIR5lpyuVyS8q4NuDy5T+qvJCadnatazeuJGJH33Esvl/Ym1pxeiJE8kpc0yWF3ntGl/OmE6HNm1Y8/dCOrRpw+fTp3M1OlpRZvn8P9m7YaPi748ffwLgrebNFWXmzP+D0+fPM/2LL9mwZCkDevbip99+4+ipU5XqU21HbzpXb8bhW+H8emIdMakJDA/pjEUF78U7QW/jbePChsjD/HR0Jasv7eNRdulcg8vDdzP9wGLF3+yjqymWyYhMvF2ptr4ovZB66AfXJe/AMbJXrEWWk4tx326gV8EPAIkE4z7dkZibkrttN1n/rCBv7yFkWZo/h6vKpZNn2bp4NW16d+LTOd/gFejL3zPmkPYoRW15PQN9mnV4izGzvuDz376lTe/O7Fm1mbB9RxVligoKsHawpdPg3phamr/yPgDUcfKhW41QDtw6z8/HVnM3JYH3GnbFwtBUY51367XHx8aVdREH+fbwclZc2EtymWOqg38jGrnXZPOVY/xwZAVh964wNKQTzmZVd/Nj2erVrF63jokff8yyhQuxtrJi9McfV3x+X73Kl9Om0aFdO9YsWUKHdu34/OuvuXrtmkrZa9HRbNmxA59q1VQem/Pbb5w+e5bpU6awYeVKBvTpw0+//srREycq1adLJ8+xbcla3urZkQmzp+IZ4MPCmXM1H1P6ejTp0IrRMycxad5M2vTqxN7VWzi9/5iijJGJMa17dmLs91/yyS/fUL9VE9b9voTrl65Wqq1VwVBXn9sp95lzfO3rboqKW+eucHLtHoI7NKfP1x/g6OvOjl9XkJWSXmG9gTPHMWT2RMWfub214jFpYRFmtpY06tkGI3PNn9mv0r0L0VzcfIjq7RrSftIQ7Kq5cPTPjeSkZmqsc3LJdpJu3qPhgLfp9NUIGr/bGbMy/XrVos9c4uDKbTTu+hZDZ0zA1c+T9T8tJONxxXPm5ufmsfOvNXhU99ZYJuNxKkfW7MDlOQJxlXXj7GWOrt5JSKeWDPxmLM6+Hmyds4TMZxxTBbn57Fu4HrcA1c+i6NOXOLlhLw27tObdbyfQdlhPbp6L5OTGva+kD3WcfOhaI5RDt8KZc2wNMSkPGNmwCxaGmo/nwU++L9ZHHOL7w8tZeWEvydmlN8WCnP3oGNCY/TfO8sPhFayLOEQdZx86BLy6wHItR286Bzbl8O0LzDu5gdjURIaFdKrwWmpg3XZ4WzuzMfIIPx9bzepLB3iUk654XFtLwogGXbA0MmPlxX38fGw1myKPkJn/6q9HBKE8ETwT/lU6OjoMHjyYpUuXIi+zesiGDRsoLCxk4MCBXLlyhXbt2tGjRw8iIyNZt24dJ0+eZMyYMWr3KZfL6datG6mpqRw7dowDBw5w584d+vbtqyiza9cuevToQceOHbl06RKHDh0iODhY7f5kMhk9evRAW1ubM2fOsGDBArXDIE1NTVm6dClRUVH8+uuvLFy4kF9++UXx+Pr165k6dSqzZs0iPDwcR0dH5s+f/1yv07Rp0/j9998JCwsjPj6ePn36MHfuXFavXs2uXbs4cOAAv/32m6J8VlYWH3/8MefPn+fgwYPI5XK6d++OTCYDYPDgwXTo0IGBAwcilUrZu3cvf/31F6tWrcLY2FhjO2bMmMHgwYOJiIjA39+fAQMG8P777/PFF18QHh4OoPS+ZGdn06FDBw4ePMilS5do164dnTt3Ji5O852hkydPKoJz5WVnZ9OxY0euXbvGqVOn1JYpb/HixXTs2BFzc3PeeecdFi1apPS4g4MDZ86c4d69ijM1QkJCiI+Pf2a5ymjqWYsL8dcJv3+dRznp7IoOIyM/mwbugWrL+9i44mnlxLLw3dxJeUB6Xhb3M5KJS1cOFMuB7MI8pb+qIpfLWbN5E0MHDKRVs1C8PT35ZtIk8vPz2XvokMZ6azZvokG9YIYOGICHmxtDBwwgJCiI1ZtKg5uWFhbYWFkp/k6eOY2LkxP1atdWlImMiqJT23YE16mDk4MDPTp1wqdaNaJv3qhUv5p51eF8XBTn4qNIzk5jR9RJ0vOyaehRU215X1s3vKydWXxuB7cf3yctL4v49GTulckazCsqILsgV/HnY+tKUbH0Xw+e6QfXIf/0eaS37iB7nEre7gNo6eiiF+CnsY5erUC0DAzI3bKL4geJyDOzKH6QiOzR41fe3qPb9tOgdSgN2zTH3tWJ7iMGYGFjxam9h9WWd/FyJyi0IY5uzljZ2xDcojF+dWtwN+qmooybjxddhvQlqFkDdHT+naT7FtWCOBt3jbNx10jOTmPrteOk52XTRMMx5W/rjreNCwvPbuPm43jS8rKIS3+odMc+2NWfg7fOE50cS0puJmGxV7iRfI8W3lWTsS2Xy1mzfj1DBw+mVfPmeHt58c3kyeQXFLBXzU2kp9Zs2ECD4GCGDhqEh7s7QwcNIqRePVZv2KBULjc3lynTpzN54kRMTVWDiJHXrtHp7bcJrlsXJ0dHenTpUnJ+36jc+X18x35C3mpGwzah2Ls40W14fyysrZQCrGW5eLkT1KwBDm7OWNnZUK95I/zq1CAmuvSY8q7hT82GQdi7OGHjYEdopzY4ursQE31L7T7/TWfirrHw7HaO3Y143U1REXEgjICmQQSGBmPlZEezfh0wtTTj6tFzFdYzNDPG2NxU8Vc2U93e04Umvd/GJ6QW2v/S+V3e9SPheDWqhXfj2pg7WFOv51sYWZpy6+QlteUTou6SfDueFqN64eDvgYm1OTYejth6qWYrvyrn9hyndvMQardoiI2zPa3f6YaZtQWXDoVVWG/f4o0ENqqLk7eH2sdlMhk7/lxF0x7tsLC1egUtV3Zx/0lqhAZTs3kI1k52tBjQGVMrcyIPn6mw3sFlm/FvWAdHbzeVxxJvx+Hk445/ozqY21jhXsMXvwa1eRjz4JX0IbRaXc6V+b7Ydu0E6XnZNPZQn4XoZ+tONRtnFp7dxq0n3xfx6Q+VRi64WzkQm5rIpQc3ScvL4uajOC49uImrhd0r6QNAM8/anI+P5nx89JNrqVNk5GfT0L2G2vK+tq54WTux+PwubqeUXEvdz1C+lgp2DcBIV5/l4Xu4l5ZEel42sWlJJGapv/nxnyOXv5l//0+J4Jnwrxs2bBixsbEcPXpUsW3x4sX06NEDS0tLfvrpJwYMGMD48ePx8fGhcePGzJs3j+XLl6vN3Dp48CCRkZGsXr2aevXq0aBBA1asWMGxY8c4f/48ALNmzaJfv3588803BAQEULt2bY1DHA8ePEh0dDQrVqygTp06hIaG8u2336qU++qrr2jcuDEeHh507tyZTz75hPXr1ysenzt3LsOGDWPEiBH4+fkxc+ZMAgPVB0XKmzlzJk2aNKFu3boMHz6cY8eO8eeff1K3bl2aNWtGr169OHLkiKJ879696dmzJz4+PtStW5fFixdz5coVpaGIf/31F4mJiYwdO5YhQ4YwderUZ2ZxDR06lD59+uDr68ukSZOIjY1l4MCBtGvXjoCAAMaNG6f0PtauXZv333+fmjVr4uPjw8yZM/Hy8mL79u0anyM2NhZ7e3u1QzZnzJhBREQEJ06cwM1N9eKmPJlMxtKlS3nnnXcA6NevnyJb7qmpU6diYWGBh4cHfn5+DBkyhPXr1ysCjU85Ozsr2vcqaGtJcDKz5dbjeKXttx/dx93CQW2dAHsPHmQ8ItSrDpNaDWJC836092+IjkRbqZyeti6ftRzIpJbvMDi4PY5mVXcn+0FiIimpqTQsE3zW09MjqHZtItVkmTwVGRVFg+B6StsaBgdrrFNUVMTugwfp8nZ7tLS0FNvr1KjJ8dNhJD96hFwuJ/zSJeLu36dRcMXHckW0tSQ4m9txs9x7cetxPB6W6t+LQHtP7qcn06JaEJNbD+GzFu/QMaCJyntRVn3XQC4n3KKoWPrSbX1RWuZmSEyMkcaWCWAXFyONf4C2s6PGejrVvChOSMSwTQtMR4/AZOhA9BsGQ5n34lWQFkm5fycWvzrVlbb71alO7PU7Gmopu3/3HrHXb+NdQ3Nw8FXT1pLgYm7HjWTlGwc3Ht3Dw1L9617dwYv49Ie08g5mapvhfNFqMF0Cm6Jb5pjSkWirZJEWFUvxsnKqknYrzu8y3w16enoE1alD5FXNGVWRV6/SoNz3ScOQEJU6P/zyC00aNaKBhptXdWrV4vipU6Xn98WLxMXH0ygk5KX7VHJM3cOvdvljKpDY688XyL5/9x6xN27jFaj+mJLL5dyMjOJRQpLGoaACFEulPLqXgFu5jCXX6t4k3YnXUKvEuunzWfLJD2z9eQn3r999lc18YcXSYlLjk3D091Da7uDvyWMNwZYHV25j5epA9MFzbPlqPjumL+TiliNIC4vUlq9qxVIpSbH38aipfEx71PDjwa1YjfUij58jLTmFpt01D3s/tWU/hqYm1G7RoKqaq1GxVMrD2Ae4V/dR2u5W3YeEO5pvfl47EU5GcioNu76l9nFnXw+SYx+QdLfkuExPTiE28gaetf2rrvFPaP6+iKvg+8LzyfdFPb5uM4zPWw2ic2BTpWuQmJQEXCzscLWwB8DKyIwAOw+iH8ZWeR+e9sPZ3JZbj5TP5ZuP4nG3tFdbJ9Dek/sZyTT3qsuXbw3m0+YD6BjQWKkfgfYe3Et/SLcazfiq9RA+Du1Ly2pBaPFqr0cEQR0x55nwr/P396dx48YsXryYli1bcufOHU6cOMH+/fsBuHDhArdv32bVqlWKOnK5HJlMRkxMjEr2UXR0NK6urri6ls4rERgYiIWFBdHR0dSvX5+IiAhGjhz5XO2Ljo7Gzc0NFxcXxbZGjRqplNu4cSNz587l9u3bZGdnI5VKMTMzU9pP+QnrGzVqpBT00qRWrdI7Tfb29oqhoWW3nTtXepc2Li6OGTNmcPbsWR4/fqwIBMXFxVGjRsndHktLSxYtWkS7du1o3Lgxn3/++Qu3A6BmzZpK2/Lz88nMzMTMzIycnBy++eYbdu7cSUJCAlKplLy8vAozz/Ly8jAwMFD7WNu2bTl48CDffvvtc60Eun//fnJycmjfvj0ANjY2tG3blsWLFysCoI6Ojpw+fZqrV69y7NgxwsLCePfdd/nnn3/Yu3evIohnaGgIoDQ8tqyCggIKCgqUtunr6z+zjU8Z6RmgLZGQXaCcFZZVmIuPvvo5UqyMTHG3dEAqK2bVhX0Y6RnQtXozDHUN2HzlKACPctLYFHmEpKxUDHR0aexRk/cbdeO3ExtJyc147vZpkpJWMiTAutxqrtaWlmrnK1PUS03F2lL5DrS1pRUpaeqHhxw9dYrs7Gw6t2untP2zMWOYOXs2Hfr1RVtbG4lEwleffEKdmuqzeZ6HsZ7hk/dC+b3OKsjFVN9IbR1rIzM8rByRyopZHr4bYz1DutVojpGuPhsiVTOkXC3scDSzZmOk5uy8V0FiXNJ+ebnjWJ6bi5aZ5uGDEgszJOYuFEXdIGfjNrQtLTBo0wIkEgrCKs4QqYycrCxkMhmmFmZK203NzclMq3g43LThE8jOyEImK+btvt1o2KZ5heVfpafHVJbKMZWHmYH6bF9rYzM8rZwoKi5myfmdGOsZ0qtWS4z0DFgbUTL8/XpyHC286nIn5QEpOen42LpRw8ELSRUFNVNSSu7kW1uVP1ctSUzSPBdjSmqqah0rK1JSS4cQ7Tt4kOs3b7L877817uezceOY+eOPdHiS/S2RSPhq4kTq1Hr5OaCeHlMm5Y4pE3NzstIrPqamj/iU7MySY6pdn640bKM8h1teTi7TR36KtEiKRKJFj/feUQn8CqXys3ORy2QYmikP4TI0MyE3I0ttHSMLE1oM7oqduxPFUik3Tl9m2+yldP9smMZ50v5tBTm5yGVyDEyVz21DUyMSM9UPLctOyeDR3fto62rTbER3CnJyCV9/gMLcfBoObP/K25yblYNcJsO43HthbG5Cjob3IjXpEUfX7eKdr8Yg0VZ/o+j+zRgij51j6KwJVd5mdfKySo4po3LfZ8bmpty7elNtnbSkx5zcuJc+X7yvsR9+DWqTm5XNum8XAHJkxTJqtWxISMcWVdwDzdcg2QW5mBpouAYxNsfTyglpcTFLzu/CWM+AnrVaYqSnz7qIkuuMiIRbmOgbMqZpL7QomSPtVEwkh29fqPI+QJnr2nKjHbILcjHVdF1raIaHpSPS4mKWh+/FWM+AbjVCMdTVZ2Nkye8lKyMzqhmaEpFwiyXndmFjbE7XGqFItCQcuh3+SvoiCJqI4JnwWgwfPpwxY8bwxx9/sGTJEtzd3XnrrZK7PzKZjPfff5+xZSYRfkpd9pFcLlfKTFG3/Wkg5HnI1aSilt//mTNnFJls7dq1w9zcnLVr1zJ79uznfp6K6JaZjFRLS0vp/0+3lc2U6tSpE56enixcuBAnJydkMhkeHh4UFhYq1Tt+/Dja2tokJCSQk5OjFOx7nnZo2va0LZ999hn79u3j559/xtvbG0NDQ3r16qXSjrJsbGxI0xBAeeuttxg7dixdu3aluLhYaaiqOosXLyY1NVVpgQCZTMalS5eYMWMG2mUukmrUqEGNGjUYPXo0J0+epFmzZhw7doyWLUsm20998qNP00IK3333Hd98843StqlTp0KI+kwlTcofbSV30tSnQz+9y7Yu4hAF0pLXdHd0GP2D2rL92gmksmLi05OJT09W1LmXlsTopr1o5FGDnVEvPi/YnoMH+faXOYr/z/32u5K2lDsnNJ2H5TqgWkdD0W17dtM4JARbGxul7Wu3bOZKdBRzZszE0d6ei1ci+eHXX7GxsqZBvXoa9vZ8yp/6mt+J0v6vubSf/Cfvxc6ok7xTrz1brh5TyQ6q7xpIYmaK0nvzKugG+mHYtnTBiJxNO0r+oS7FvqKsey0t5Ll55O07DHI5soeP0DIxQT8k6JUGzxRPr3JkyJ+Z9PbRt19QkJfPvZt32bliAzaOdgSFNnxlbXwecjUvsrrvGAAJWsiBlRf3Ko6prdeOMyS4I5sij1AkK2bL1WP0rf0WX7QahFwOKbkZnIuPIsT1+bKay9uzfz/f/vyz4v9znyyQovLqP9f5rfkzIenhQ2bPm8fvc+ZUeJNh7caNXLl2jTnff19yfl++zA9z5mBjY6MxW+15qTZf/sxMytGzJlGYX8C9m3fYtWIT1o52BDUrzabRNzTgk9lTKcgv4FZkNNuXrMPa3hbvGlWfnfJfovKyyzW/F5YOtlg6lH4PO1RzIzs1g0v7Tr4xwTOF8t9xqPsse/LYk/Oj8bud0TMsOSdk3Ys5sXgrwb1bo1PRnJRVSOW8Lmm0CplMxvb5q2jWox1Wjuqviwry8tnx52reHt4bI9N/ee45NdcX6joik8nY89daGnZrrXRclRd//Q7ndhyh1aCuOHq5kZ78mKOrd3BmuykNu6jPVqsstd8MGr4vnh5Xqy7uU3xfbL92gsHBHdgUeRSprJhq1s685VOfzZFHuZeWhI2xOd1qNCezIIeDN8+/kj6UNLn8xZTWM6+l1kYcLL2Wig7jnaB2bL16HKmsGC20yCnMY1PkUeTIeZD5CDMDY0K96vz/CJ7JZc8uI/xrRPBMeC369OnDuHHjWL16NcuWLWPkyJGKD9CgoCCuXbuGt7fmiUjLCgwMJC4ujvj4eEX2WVRUFBkZGYostVq1anHo0CGGDh363PtLSEjAyalkKMzp06eVypw6dQp3d3cmT56s2FZ+bqyAgADOnDnD4MGDFdvOnKl4/oWXkZKSwpUrV5g/fz4NGpRc1B87dkylXFhYGD/++CM7duzg888/56OPPmLZsmVV2pYTJ04wZMgQuj9ZGS07O/uZwx7r1q1LUlISaWlpWJbLZgJo06YNO3fupHPnzshkMn7//Xe1P+JSUlLYtm0ba9eupXr10jv/MpmMZs2asWfPHjp16qS2DU+H05ZdlOLq1avo6uoq7ausL774ggkTlO+s6uvr882hJRX296ncwnyKZTJM9ZUDuyZ6hirZaE9lFeSSmZ+jCJwBJGenIdHSwtzARG1mmRx4kP4Ia6OXmyQ9tHFjapTJ9iwsKnnux6mp2FiXDgdNTU/HykL1/XuqfBZKSZ00rNS854kPkzh38SI/TlMOTuYXFPDHokX8/M10mjYsCYr4VKvGzdt3WLlh/UsHz3IK80rei3J3eE30jVTuBD+VmZ9LRn624mIPSt8LC0MTHueUvhe6Eh1qO/mw/+bZl2rfiyi6fZfihDIZQk8CxlrGxshzSvuiZWSkko1WljwnF3lxsdKFuywlFYmJMUgkIHs1F3PGpiVzGWWmKx/LWRmZmFpUfAxb25f8EHLycCUrPYO9a7e9tuDZ02PKTF85E8VU31AlG+2pzIIclWPqYVZqyfltaMrjnHRyCvNYfH4nOhJtjPUMyMjPoVNAE1JzNU9KXpHQpk2pUWY6gcIni948Tk3FpkzgOjU9HSsrzXMXWVtZKbLWFHXSSs/v6zdukJqWxqARIxSPFxcXc+nyZdZv3kzYoUMUSaX88fff/DxrFk0bl0xo7ePtzc1bt1i5Zs1LB8+eHlNZacqvUXZGJqbmFd9AenpMObq7kJWeyf5125SCZxKJBBvHkqxsZ083Ht5P5NDm3SJ4poGBiRFaEgm5GdlK2/OycjAye/5gi72XCzfPvDmrh+obG6El0SK/XJZZflYuBmbqM4cMzYwxNDdRBM4AzBysQQ656VmY2b3aucKMTI3RkkjILpdllpOZjbGarOTCvAKSYuJ5eO8B+5dvAZ4ESeRyfnj3M/pOfA9DEyMyHqeycU7p6qhPAyk/vPsZ7/04CUt7G5V9V4ah6dNjSrkfuZnZahePKMwv4GHsfZLjEjiycrtSP+YO/5IenwzDLdCbsM0HCGgcRM3mJUPGbVwdKCoo4uCyzTTo1BItDavDvwzFNYi+6jVIlobrwYq+L55eg7zt35AL969zNq5keoykrBT0dHTpXasVh26er/D+2csova4t1w89Q43XUlkFOWTk5yj141G569qsghyK5TKlm1HJ2WmYGRijrSWhWASXhH+RCJ4Jr4WJiQl9+/blyy+/JCMjgyFDhigemzRpEg0bNmT06NGMHDkSY2NjoqOjVSbJf6p169bUqlWLgQMHMnfuXKRSKR9++CHNmzdXLAowdepU3nrrLapVq0a/fv2QSqXs2bOHiRMnqt2fn58fgwcPZvbs2WRmZioFyQC8vb2Ji4tj7dq11K9fn127drFlyxalMuPGjePdd98lODiYpk2bsmrVKq5du6Y0/LIqWFhYYGVlxYIFC3BwcODevXsqCxxkZWUxaNAgPvroI9q3b4+bmxvBwcF06tSJ3r17V1lbvL292bx5M507d0ZLS4spU6aozCVWXt26dbG1teXUqVMag1utWrVi165ddOrUCblczh9//KESQFuxYgXW1tb07t1bZf60Tp06sWjRIjp16sQHH3yAk5MTrVq1wsXFhcTERGbOnImtra3S8NwTJ07QrFkzjVmL+vr6LzRMs7xiuYyEzEd427gSVWb+CW8bZ6KSY9XWuZeWRA1HL/S0dSh8Mm+WjbEFMrmMjPxstXUAHM2sScpK1fh4RYyNjDAuk8knl8uxtrLi7IUL+PuUzDFSVFTExcuX+Wjkexr3UyswkLMXLjCwV+nxdjb8ArXUBCe3792LpYWFIkD2lFQqRSqVqrz3EonkmcdZRYrlMh5kJONj48q1pNK5dHxsXLn2MEZtnXtpidRyqoaeti6FxSUBh6fvRXqe8ntRy8kbHYk2l+6rH0JSpQqLkBUqB55k2TnoeLhSmPyoZINEgo6rM/nHNGciSu8noFdufieJlQWy7OxXFjgD0NHVwaWaBzcjrlGrYWkw9GZEFDUa1Hn+HclBWvTvzB2kTrFcxv2MZHxt3biSVDpXm6+tG1eT1M/XFJOaSG1HH6Vjys7EsuT8zlP+YSiVFZORn4NES0ItJ28iHrzcJPUaz+/z5/H3LZm7q6ioiIsREXxUbhqCsmrVqMHZ8HAGllmo5+z589R6Mm1A/eBg1pa7WTP9u+9wd3Pj3YED0dbWJi8/v+T8Lvf5LdHWRlaJyYlLjil3bl6+Rs2GpQsr3LwcRfWQus+/I3nJ/GnPKlT8zDL/f2nr6GDr7kR81B28gkqDtvFRd/Cs8/wBx8fxiRhZaB52/m/T1tHGytWBpOuxuNYunfMu6UYsLjXV3wi29XIm7tINigoK0dXXAyArORUtLa1/pW/aOjo4eLgQe/UmfsGl0x7EXr2JT5Dq97K+oT7Dv/1UadvFQ2Hci7pF94/exdzWColEolLm+MY9FOYXKBYjeBX9sPdw5t6123jXK52UPi7qNtXqqGbk6hvoM2jGeKVtlw+fIT76Dp1GD8T8yQIH0sIilWsNLYkWcrlcU3LeSyv7fVH2+8HX1k3pmqSs2NQEajt6K31f2D75vnh6DaKrrauSBVaaEVxRbv3L9+NBxiN8bJWvnXxsXJSuc5X7kURNx2rlrmvNla5rY9OSqOPko9RiG2MLMvNzROBM+NeJBQOE12b48OGkpaXRunVrpeGYtWrV4tixY9y6dYtmzZpRt25dpkyZgqOj+kkztbS02Lp1K5aWloSGhtK6dWu8vLxYt26dokyLFi3YsGED27dvp06dOrRq1YqzZ9VngUgkErZs2UJBQQEhISGMGDGCWbNmKZXp2rUrH3/8MWPGjKFOnTqEhYUxZcoUpTJ9+/bl66+/ZtKkSdSrV4979+7xwQcfvOzLpZG2tjbr1q3j4sWL1KhRgwkTJqgMHx03bhzGxsaKeb+qV6/ODz/8wKhRo3jwoOpWDvrll1+wtLSkcePGdO7cmXbt2hEUVPEqcNra2gwbNkxpjjt1WrRowe7du1mxYgUffPCBygXB4sWL6d69u9qFB3r27MnOnTt5+PAhrVu35syZM/Tu3RtfX1969uyJgYEBhw4dwrpMJtWaNWuee568l3UyJpJgV3/qufhha2xBh4DGmBuacu5eyUIPbf1C6FWrdAje5YRb5BYW0LNWS+xMLPGwdKR9QEMuxN9QDBNs5V0PHxsXLA1NcTS1pkfNFjiaWXMuLkptG16UlpYW/Xv0ZMnqVRw5eYLbMTFM+/EHDAwMePut0qEMX3//Hb//s1Dx/349enA2PJyla9YQGxfH0jVrOHvxAgN69lLav0wmY8fevXRq2xadcnORmBgbE1S7Nr/+/RfhERE8SExkx9697D6wn5ZNm1aqXyfuRhDiFkiwawB2JpZ0DmyKhaEJZ+6VzIn0tn8j+tZprSh/6cFNcgvz6VP7LexMLPG0cqJjQBPOx0erDNkMcQ3kWtJdcotUFzz5NxSER2DQsD46Pl5IbKww7NAGubSIwujSFQwNO7RBP7R0+frCiCtoGRpg8FZzJJYW6Hh5oN+wPoUXI195e1t0bcuZg8c5e/A4D+MT2LJoDWmPU2jcruRc2LliA6vmlh5bJ3cf4uq5CB4lJPEoIYmzh05wZNtegluUBsOlRVIe3I3jwd04iqXFZKSm8eBuHI8SNc/TV1lH71ykoXt1QlwDsTOxpFv1UCwNTQmLvQJAx4DGDKhbOun2hfs3yCnKp3/dNtibWOFl5UTnwKacjYui6Mkx5WZhT03HalgbmeFl5cT7DbshQYvDVTR0RUtLi/59+rBk5UqOHD/O7bt3mfbttxjo6/N2mzaKcl/PnMnvCxYo/t+vVy/Onj/P0lWriL13j6WrVnE2PJwBT27OGBsZ4e3lpfRnYGCAhbk53k9uKJkYGxNUpw6/zp9P+KVLPEhIYMfu3ezeu5eWzZpVql+hndty9tAJzh46wcP7CWxbvJa0x6k0alsyL96ulZtY/es/ivIn9xzm2vkIHiU85FHCQ84dOsnR7fuo17w0oH9o0y5uRFwjJekRD+8ncmz7PsKPnn7tQ4UBDHX18bFxwcemZO5WJzMbfGxcsDfRnB38b6nTpjFRJy4QdfICqQnJnFy7m6zUDKq3KMnwOb1pPwcXla7CfPlAGHcvRZH+MIWUBw85vWk/dy5EUbNlaQZgsVTKo7hEHsUlUiwtJjs9k0dxiaQ//PdW4/NvGcyd05HcOR1JRlIKFzYdIjc1E5+mdQCI2H6MsOW7FOXdgwPRNzbkzMo9ZCQ+Jvl2PJe2HsWrYc1/bchmSPtQLh89y+VjZ3n84CEHV24jMyWNum+VfHYeXbeLHQtWA6AlkWDr6qj0Z2Rmgo6uLraujugZ6KOjp6tSRt/IED0DfWxdHV/ZSqhBbZty9fh5rh4/T0pCMkfX7CArJZ1aT46Rkxv2snfhOkU/bFwclP6MzIzR0dXBxsVBEcj0quNP5JEz3Dh7mYxHqdy7douwLQeoVidQ7XVmZR2/c4kGZb4vulRvhqWhCaeffF90CGhM/7qln8EX798ktyiffnVbl/m+aMK5uCjFNUjUwxgae9SijpMPVkZm+Nq68rZ/Q64l3VU7pUBVOBFzmfquAQS7+GNnYkmngCZYGJpyJu7JtZRfQ/rULr1WjEi4SW5hAb1rt3pyLeVIB//GhMdfV/TjzL1rGOsZ0Ll6U2yMzfG3c6eldxBh9yqes/I/QyZ/M//+nxKZZ8Jr06hRI41zv9SvX1+xgIA65YcCurm5sW3btgqfr0ePHvTo0eO59ufr68uJEyeUtpVv648//siPP/6otG38+PFK///yyy9VVvX84cmcMuq0aNFC5XmGDBmilJkHMG3aNKZNm6b4f+vWrZVW1izf3sWLF1Pe2LFjleaVK/8alG+Hh4eHyrby7fXw8ODwYeXJ0kePHq3y3OWNHz+e6tWrc+/ePdzd3dW2ByA0NJSsrNIMjLIrfUZGav5R36NHD4qeZKH07NmTnj17VtieXbt2oa2tTa9evSosV1lXEu9gpGtAK+9gTPWNeJidyrLzu0l/crfNVN8YC8PSO9CFxVKWnNtJp+pN+bBJD3ILC7iSeIcDN0vnoDLQ1adbzeaY6hmRLy0kIfMxf5/Zzv2Mqptr691+/SgoLOD7X38lKyuLGgEB/P7Dj0oZLEnJyUi0Si8wa1evwayvpvDnksUsWLoEFycnvpsyRWlIKMC5ixdISk6my9vqJ0z+9qsp/PHPQqZ8O4vMrCwc7O35YNhwenbuUqk+XU68jZGeAa196mOmb0xSVgqLz+0k/UnGj5m+Ubn3ooiFZ7bRtUYoY5v1Ibcwn8iE2+y9oTw028bYAk9rJxaeqfjz6VUqPHcBLV0dDNu0RMtAn+LEh+Ss3wplVnWTmJkqDdGUZ2WTs34rBq1CMRk6AFlWDoUXIig4+2omGi6rbtMG5GTmsG/ddjLTMnB0c+a9KR9jZVcy3CczNYO0R6U/imUyObtWbiT14SMk2tpYO9jSaVAvGrVroSiTmZrOzxOmKv5/ZOtejmzdS7XqfoyZ9ezFU15GRMItjPUMaefXADN9IxKzUvj7zDbSFMeUMZbljqkFp7fQo2YLJoT2I6con4iEW+yJDlOU0dXWoYN/I6yNzCmQFhGdHKs0501VeHfAAAoKCvh+9myysrNLzu85c5TP74cPlRYpqF2zJrOmTuXPf/5hwT//4OLszHfffEMNDcPeNfl22jT++OsvpkyfTmZmJg4ODnwwciQ9u3WrVJ/qNg0hNyubA+t3KI6pEZPHlR5TaemkPy7NzpXL5OxeuYnU5Mclx5S9LR3f6UnDtqWLUBQWFLB54UrSU9LQ1dPFztmRAeNGULfpy68MWlX8bd35vXvptAJjm5YEMXdHn2bW4aqdruFF+YTUJD8nl/AdR8nJyMLayZ7O4wYpspJyM7LJSinNni2WFnNq/T5y0jPR0dXFytmOjmMH4VGrNMMrJz2L9dPnK/4fse8UEftO4eTrQfeJw/+VfrnXC6AgJ5+re8PIy8zB3NGGFh/0wtiqZLh5XkYOuWWGDuvq69FydB8ubDzI3p+Wo29siFtdP2p1qlyg+EUENKxLXnYup7YeICc9ExsXR3p/OgJzm5Lsq+z0TDJT0v+19rwsvwa1yc/J5ez2QyXHlLMD3T4egplNSbA4JyOTrBfsR4POrQAtTm3eT3ZaBkamxnjVCaBxz3bPrPsyIhJuYaRnQBu/EMz0jUnMSuGfM9vLfF+oXoP8dXor3Ws2Z3xoX3IV3xel08wcvHkO5HLaBzTC3MCE7II8oh7GsLvMd0pVi0y8jZGePm/5BJdcS2WnsOT8TkU2nKm+ERaGpcNpC4ul/HN2O12rN+Ojpr3ILSwgMvE2+26UJjhk5Gfzz9kddA5swvhmfcnMz+FUTCRH71x6Zf0QBE205JqiF4IgCP+ibdu2YWVlRbNKZhhUhfXr1+Pu7q6YQ+5FfLl7wbMLveG+7TCKrPtVl5H4upi6ODNx5++vuxmV8mOnMWT8OO91N6PSzCeOfaUX7P+GDgGN+Xj7r6+7GZX2S5dxZCW/2oUr/g2mdnbsvHbydTejUjpVb0qTPzQPh/1fcWr0AuadWP+6m1EpY5v14Zv9i153MyptatvhLDm383U3o9KGhnRiQdiWZxd8g41q3J1Ptv/vf3/P7jKWSbvmP7vgG+yHjh++7ia8tKwbLzctw6tm6ufzupvwWojMM0EQ3ghdu3Z93U1Q6NOnz+tugiAIgiAIgiAI/5+JPKc3ipjzTBAEQRAEQRAEQRAEQRA0EMEzQRAEQRAEQRAEQRAEQdBADNsUBEEQBEEQBEEQBEF4k4hhm28UkXkmCIIgCIIgCIIgCIIgCBqI4JkgCIIgCIIgCIIgCIIgaCCGbQqCIAiCIAiCIAiCILxJZLLX3QKhDJF5JgiCIAiCIAiCIAiCIAgaiOCZIAiCIAiCIAiCIAiCIGgghm0KgiAIgiAIgiAIgiC8ScRqm28UkXkmCIIgCIIgCIIgCIIgCBqI4JkgCIIgCIIgCIIgCIIgaCCGbQqCIAiCIAiCIAiCILxJxLDNN4rIPBMEQRAEQRAEQRAEQRAEDUTwTBAEQRAEQRAEQRAEQRA0EMM2BUEQBEEQBEEQBEEQ3iQyMWzzTSIyzwRBEARBEARBEARBEARBAxE8EwRBEARBEARBEARBEAQNxLBNQRAEQRAEQRAEQRCEN4lc9rpbIJQhMs8EQRAEQRAEQRAEQRAEQQMtuVwuZqETBEEQBEEQBEEQBEF4Q2RFRL7uJqhlWqfW627CayGGbQqCIFShyw9uvu4mVFptZ18eZj5+3c2oNHszG/45s/11N6NSRjTsQvpnU153MyrN4qcZnLhz6XU3o1KaVavL3OPrXnczKm18aF8y/lryuptRaebvDyUrLv51N6NSTN1cmXdi/etuRqWNbdaHJn+Met3NqJRToxcwcPW0192MSls1YBo/HF7xuptRaZNaDXrdTagSk/f89bqbUGmz2r/Pygt7X3czKuWdem+/7ia8PJHn9EYRwzYFQRAEQRAEQRAEQRAEQQMRPBMEQRAEQRAEQRAEQRAEDcSwTUEQBEEQBEEQBEEQhDeIXCaGbb5JROaZIAiCIAiCIAiCIAiCIGgggmeCIAiCIAiCIAiCIAiCoIEYtikIgiAIgiAIgiAIgvAmEattvlFE5pkgCIIgCIIgCIIgCIIgaCCCZ4IgCIIgCIIgCIIgCIKggRi2KQiCIAiCIAiCIAiC8CaRy153C4QyROaZIAiCIAiCIAiCIAiCIGgggmeCIAiCIAiCIAiCIAiCoIEYtikIgiAIgiAIgiAIgvAmkYnVNt8kIvNMEARBEARBEARBEARBEDQQwTNBEARBEARBEARBEAThtUpLS2PQoEGYm5tjbm7OoEGDSE9P11i+qKiISZMmUbNmTYyNjXFycmLw4MEkJCQolWvRogVaWlpKf/369XuhtongmSAIgiAIgiAIgiAIwptELn8z/16hAQMGEBERwd69e9m7dy8REREMGjRIY/nc3FwuXrzIlClTuHjxIps3b+bmzZt06dJFpezIkSNJTExU/P31118v1DYx55kgCIIgCIIgCIIgCILw2kRHR7N3717OnDlDgwYNAFi4cCGNGjXixo0b+Pn5qdQxNzfnwIEDStt+++03QkJCiIuLw83NTbHdyMgIBweHl26fyDwThP9hS5cuZc+ePa+7GYIgCIIgCIIgCML/AwUFBWRmZir9FRQUVHq/p0+fxtzcXBE4A2jYsCHm5uaEhYU9934yMjLQ0tLCwsJCafuqVauwsbGhevXqfPrpp2RlZb1Q+0TwTHhlPDw8mDt37r+6Py0tLbZu3Vqp55k2bRp16tR5oTpHjx5FS0urwvHYVW3z5s38+OOPNGzY8KXqDxkyhG7duin+36JFC8aPH19hnap6Tw8fPoy/vz8ymazS+3oVkpOTsbW15cGDB6+7KYIgCIIgCIIg/H8kk7+Rf999951iTrKnf999912lu5uUlISdnZ3Kdjs7O5KSkp5rH/n5+Xz++ecMGDAAMzMzxfaBAweyZs0ajh49ypQpU9i0aRM9evR4ofaJYZuCis6dO5OXl8fBgwdVHjt9+jSNGzfmwoULBAUF/avtOn/+PMbGxv/qc76p7t69y1dffcWePXuwtLSskn1u3rwZXV3dKtnXs0ycOJHJkycjkZTE75cuXcr48eOVgo/R0dG0adOGkJAQ1qxZg76+PkeOHOGnn37i7Nmz5OXl4eHhQfv27ZkwYQLOzs5Kz+Hn50dMTAwxMTEqj929e5fJkydz7NgxUlNTsbGxoV69evz000/4+vpiZ2fHoEGDmDp1Kv/8888rfS32bdvF9nWbSU9Jw8XDjSGjRxJQq7rasmkpqSz/cxF3b94h6UEC7bt3ZsiYkSrlcrKzWbNoBedOnCYnKxs7R3sGjRpOUMPgKmnzlg2bWbNyNamPU/Dw8uSjCWOpXbeOxvIRFy7x+9zfiL0bg7WNDQMGD6Brz+6Kx3ds2c6+3Xu4eycGAD9/P0aOfp/A6oFK+3mU/IgFv83n7OkzFOQX4OrmyqQpX+AX4F8l/bp0KIzzu4+SnZGFjZM9rQZ2wcXP65n17t+MYe13C7BxsWfIjAlKj+Xn5HFi0x5uhV8lPzcPcxsrWvbvhFftgCppsyYGbVqi1yAYLSNDiuPuk7tlJ7KHyRrLm4wahk41T5XtRdE3yFm8EgC9RvXRbxSCxNICgOKHyeQfOIr0xq0qb/+RnfvZt2kH6anpOLm70O+9wfjWUP+aXTh1jqO7DhB/NxZpkRQndxe6DOxFjXq11ZY/dyyMv3+YR52GwYz5+tMqb3tZV4+cI2LfSXIzsrF0sqVJ3/Y4+XqoLfvgRgzbf16isr3f9I+wdLQFIOp4ODdOR5CaUPJe2ro70aB7a+w9XV5ZH+RyOQtPn2Trlctk5edT3dGRz1q1pZqNrcY6O69FMn3fbpXtJ8Z+ir5OyaXnxftxrAw/y/WHD3mck82PXXrQwtu3Stv994rlbNm1m6zsLKr7+zPpo7FU8/CosN6hE8dZsHQp9xMTcXF05MOhw2jZtKni8ZzcXBYsXcqRUydJS0/Hz9ubTz78kOp+pZ9DuXl5/PbPPxwLO0VGZiaO9g70696NXp1V5195EVeOnOXSvpPkpmdj5WRH034VHE/XY9j682KV7QNmjFUcTykPHnJu22Ee3UsgKyWdpn3bU7tN40q1sSrVdvRmQN22+Nu5YWNswee7/+REzOXX3SyF1j716RjQGAtDUx5kJLPiwl5uPIrTWL6xR006BTTBwdSa3KJ8IhNus/rSfrIL8wBoWS2Ipp61cbUo+eEYk5rIusuHuJvy6m7kRR8L58qB0+RlZGPhaEuD3m1x8HFTWzbxZix7flmpsr3H1FFYONgo/l+Qm8+FbUe4F3GDwtw8TGwsCOnZBtca3q+sH/8FDdwCaepZG1N9I5Kz09gVHca9NM3BAm2JhFbV6lHb2QdTfSMy8rM5ducSF+7fUClb07Ea/eq0JuphDKsu7n+V3SD8wAlO7zxMVnomts4OtBvcAzf/as+sF3/jLstm/IadqyPvfTdRsT35fiLHNuwmMeY+GY9TaTuoOw3at3iFPRCexxdffMGECcrXvPr6+hrLT5s2jW+++abCfZ4/fx4oSYYpTy6Xq91eXlFREf369UMmkzF//nylx0aOLP3NVKNGDXx8fAgODubixYvPHdcQwTNBxfDhw+nRowf37t3D3d1d6bHFixdTp06dfz1wBmBrq/lC/f8bLy8voqKinqtsUVHRcwXFrKysKtus5xIWFsatW7fo3bu3xjLnz5+nffv2dO3alb///httbW3++usvPvzwQ9599102bdqEh4cHcXFxLF++nNmzZzNnzhxF/ZMnT5Kfn0/v3r1ZunQpkydPVjxWWFhImzZt8Pf3Z/PmzTg6OnL//n12795NRkaGotzQoUMJCQnhp59+qrIApcprceQES//4hxHjRuFXI5CDO/by7efT+GXJH9jYq951KSoqwszCnB7v9GHXxm1q9yktKmLmZ1Mws7BgwrTPsbaxIeXRIwyMjKqkzYf2H+S3Ob8yYdIn1Khdi+2btzJx3KcsX78SezVzCCQ8SGDi+E/p1K0zX03/mquXI5nzw2zMLS1o0aolAJcuXOSttm0YV6sGevr6rFm+ik/HfMyydSuxtSs577MyMxk9YhR16wXx46+zsbS0JOH+A0xMTaqkX9fPRnB41XbaDO6Os68Hl4+cYePsRQz77lPMrDW//wW5eez+ey3ugd7kZCqnfhdLpWz46W+MzEzoMmYQplYWZKWmo2eg+eKiKui3aIZ+aGNy122h+NFjDFq3wGTku2T+9CsUFKqtk7NsDehoK/6vZWSE6ccfUhR5TbFNlp5J3u79yB6nAqAXXBfjIQPImvtnhYG5F3XuWBhr/17GwA+H4x3ox/E9B/n16++ZvmA21nY2KuVvXY0msG5Negzph5GxEacOHOW3b35k8i8zcSsXEEx5+IgN/6zEp3rVBFwrcvv8FU6t20OzgZ1w9Hbj2rHz7Jq3kn7fjMHU2kJjvf4zxqJnWHqMGJiW3jRKuBGLT0gtHKq5oq2rQ8S+k+z8ZTl9vxmDiaWZut1V2vLzZ1lz8Txft+uIm6UVi8+G8dGmdWwYOhJjPc3HsrGePhuGKgf3nwbOAPKLivCxtadz9VpM2rGlytu9bN06Vm/axNRPP8PNxYVFq1cxetIkNi1ZgrGGz8PIqCi+nDmTUUOG0LJJU46cOsnnM2ew6Je51AgoCd7OnDObO7GxTJ/0ObbW1uw+dJAPJ05kw6LF2NmUHJ9z/pxP+OXLTP/8c5zsHThzIZwf5s3DxtqaFo2bvFR/bp27wsm1e2g+sBMO3m5cOx7Ojl9XMGD6RxUeTwNnjkO3zPFkWOZ4khYWYWZriXdwdU6ue/OmgDDU1ed2yn12Xw/j2/ajXndzlDR0q86goLdZEr6Lm4/iaOUdzMQW7zBx1x+k5GaolPe1deODht1ZeXEfFx/cwNLIjGH1OzGiQRfmnlgHQIC9B6fvXWV5eDyFMimdAprwectBTNr1B2l5Lza06HncDb/G2Q37adSvPfbVXLl+4iL7/1hDj69HYWJlrrFez2kfoGtQ9jOq9Hwqlhazb94qDEyNafVeT4wtTMlOy1QqL6iq6VCNDgGN2XHtJPfSkqjvFsi7wR349cR6MvKz1dbpX6cNxvqGbLlyjJTcDEz0DJFoqQ4qszAwob1/Q2JSE191N7h2+iL7lm+hw7DeuPh6cvFQGKt/WMAHP32BuY3m3xn5uXls+3MlntV9Va6lpAWFWNrZENCgLgdWVv13hfBy9PX1KwyWlTdmzJhnrmzp4eFBZGQkDx8+VHns0aNH2NvbV1i/qKiIPn36EBMTw+HDh5WyztQJCgpCV1eXW7duPXdsQwzbFFR06tQJOzs7li5dqrQ9NzeXdevWMXz4cKAkCBIaGoqhoSGurq6MHTuWnJwcjfuNi4uja9eumJiYYGZmRp8+fVROju3btxMcHIyBgQE2NjZKqZTlhwzeunWL0NBQDAwMCAwMVJkoEGDSpEn4+vpiZGSEl5cXU6ZMoaioSKnM999/j729PaampgwfPpz8/Pxnvka7d+/G19cXQ0NDWrZsSWxsrEqZF319ng4X/euvv3B1dcXIyIjevXurDAVdsmQJAQEBGBgY4O/vrxRVj42NRUtLi/Xr19OiRQsMDAxYuXIlxcXFTJgwAQsLC6ytrZk4cSLyciullB+2mZycTOfOnTE0NMTT05NVq1aptHnOnDmKZYFdXV358MMPyc5W/yX/1Nq1a2nbti0GBgZqHz98+DCtWrVi6NChLFq0CG1tbe7fv8/YsWMZO3YsixcvpkWLFnh4eBAaGso///zD119/rbSPRYsWMWDAAAYNGsTixYuV+hoVFcXdu3eZP38+DRs2xN3dnSZNmjBr1izq16+vKFezZk0cHBzYsuXVfVHv3LCVVu3b8FbHdri4uzJkzEhs7GzYv139jxg7B3uGjnmP5m1bYWSs/sff4T0Hyc7M5rMZk/GvEYitgx3+NavjoSar6GWsX72Ojl070albFzw8PRj7yXhs7e3YulH967Rt81bsHOwZ+8l4PDw96NStCx26dGTdyjWKMl/PnEb33j3w8fPF3cOdzyZPQiaXceF8uKLMqmWrsLO344upkwmsHoijkyP1QoJxdqmajJvwvcepGVqfWi0aYO1kT6uBXTG1siDi0OkK6+1fuonARnVx8nZXeezK8fPkZefSbewQXHw9MbexxMXXEzs3pyppsyb6zRqRf+g4RVejkD1MJnftJrT0dNGrW0tjHXleHvKsbMWfrk81KCqi8PJVRRlp9A2k128he5yC7HEK+XsPIi8sRMetarOeDmzZRdO2LQl9uxVObs70e/9dLG2tObpL9TMeoN/779K+dxc8fath7+xIjyH9sXdy5PLZi0rlZMUyFv70O13e6YWto2pwuqpdPhCGf9MgApvVw9LRlqb9OmBiaca1Y+crrGdoZoyRuani72mGLkDrkb2o0TIEGzdHLB1taT64K3K5nAfRd19JH+RyOWsvnWdISGNa+vhRzcaWqe06ki8tYt/1im/gaGmBjbGJ0l9ZjT2r8UGTUFr6qE7+WxXtXrNlM0P7D6BVs2Z4e3ryzWcTyS/IZ+/hwxrrrdm8iQb16jG0/wA83NwY2n8AIXXrsnrzZgDyCwo4fOIEY0eOJKhWLVydnXl/8Ls4Oziyccd2xX4io6Pp1KYtwbXr4OTgQI+OnfCpVo3omzdfuk8RB8IIaBpEYGgwVk52NOvXAVNLM64ePVdhPUMzY4zNTRV/ZY8ne08XmvR+G5+QWmjrvHn308/EXWPh2e0cuxvxupuior1/I47evcjROxdJyHzMyot7ScnNoLWP+gxvb2sXHuWks+/mWUtECOQAAQAASURBVB7lpHPzURyHb4fjZVX6fTA/bDMHb53nXnoSiZmP+efcdiRaWlR3eHYG9Mu4eugsvo3r4Ne0LhaONjTs0xZjSzOuH79QYT0DU2OMzE0Uf2WPqVthERTk5NF6VG/sq7liYm2Bg7cb1i4V/+j9/66JZ00u3L9O+P3rPMpJZ3d0GBn52TRwC1Rb3sfGFQ8rR5aH7+FOygPS87K5n/GIuHTl31VaaNG7disO3QonLTfzlffjzO6j1G3RkLotGymyzsysLQk/eKrCerv+WUf1xvVw8fFQecypmjutB3alRuOgN/Jz6pWTy97MvxdkY2ODv79/hX8GBgY0atSIjIwMzp0r/W47e/YsGRkZNG6sOTP6aeDs1q1bHDx4EGtr62e26dq1axQVFeHo6Pjc/RDBM0GFjo4OgwcPZunSpUpBhw0bNlBYWMjAgQO5cuUK7dq1o0ePHkRGRrJu3TpOnjzJmDFj1O5TLpfTrVs3UlNTOXbsGAcOHODOnTv07dtXUWbXrl306NGDjh07cunSJQ4dOkRwsPqLEJlMRo8ePdDW1ubMmTMsWLCASZMmqZQzNTVl6dKlREVF8euvv7Jw4UJ++eUXxePr169n6tSpzJo1i/DwcBwdHVVSPMuLj4+nR48edOjQgYiICEaMGMHnn3+uVOZFX5+nbt++zfr169mxY4diad7Ro0crHl+4cCGTJ09m1qxZREdH8+233zJlyhSWLVumtJ9JkyYxduxYoqOjadeuHbNnz2bx4sUsWrSIkydPkpqa+syg0JAhQ4iNjeXw4cNs3LiR+fPnk5ysnF0ikUiYN28eV69eZdmyZRw+fJiJEydq2GOJ48ePa3xft2zZQseOHZk8eTI//fSTYvvTY0/TvstOBpmVlcWGDRt45513aNOmDTk5ORw9elTxuK2tLRKJhI0bN1JcXFxhW0NCQjhx4kSFZV6WtKiIuzdvUzu4rtL2WsF1uXEt+qX3eyHsLD7V/Vn06wJG9hzEJ8NGs3nVemTP6OvzKCoq4ub1G9RvEKK0vX6DEK5GXlVb59qVqyrlQxo24HrUdaRSqdo6Bfn5SKVSpTtGp06cxC/An68//4oubTsyfOAQdmzZrrb+iyqWSkmKfYBHDeUhYx41fHlw+57GeleOnyc9OYXG3dqoffz2pSicvN05uHwLf3z0DUu+/JkzOw690rn+JFaWSMxMkd68XbqxuBjp3Vh03NUPxVFHL6QehRFXoNzNBgUtLXRr10RLTw/pvfhKtrqUtEjKvdsxVA9SDvRVr1uLO9HPF3iQyWTk5+VhbKo8zH/Hmk2YmpvRrF2rKmuvJsVSKY/uJeIaqDxUxbW6N0l3NA/rAtgw/U+Wffoj22cv4cH1ioNi0sIiZMXF6BsbVrrN6iRkZJCSk0PDMkMd9XR0CHJxJTKh4qFkeYWFdFk4n05//8HHWzZwI/n55iqpCg+SEklJTaVhcD3FNj09PYJq1SIy6prGepFRUTSoV09pW8PgYEWd4uJiimUy9HT1lMro6+sRcbX0M7BO9RocPx1G8uPHyOVywiMiiLt/n0YavvuepeR4SsCtuvKwt5LjqeLzb930+Sz55Ae2/ryE+884noTnoy3RxtPKiSuJd5S2X0m6g4+Nq9o6tx7HY2VkRm0nHwDMDIwJcQ0kIkHzsHd9bV20tSTkFORVXeOfKJYWkxKXiFOgcmDOOcCL5Lv3K6y77duFrJk0lz1zV5J4I1bpsbjIm9h5uRC2di+rJ/7C5ul/cXnPyTd2jts3gbaWBCczW24/Vn7dbz++j5ul+qBjgJ07DzIe0cyzNpNavsPHoX15268hOhJtpXKtvOuRW5ivdihnVSuWSkmMicerlvINkWo1/bh/M0ZjvYijZ0hLfkzznm+/6iYK/wMCAgJ4++23GTlyJGfOnOHMmTOMHDmSTp06Ka206e/vr/gtK5VK6dWrF+Hh4axatYri4mKSkpJISkqisLBkxMWdO3eYPn064eHhxMbGsnv3bnr37k3dunVp0uT5M8L/H4ZvhecxbNgwfvrpJ44ePUrLliVDqxYvXkyPHj2wtLRk3LhxDBgwQJGp5OPjw7x582jevDl//vmnSlbRwYMHiYyMJCYmBlfXkguLFStWUL16dc6fP0/9+vWZNWsW/fr1UxoPXbu2+jlrDh48SHR0NLGxsbg8yTz59ttvad++vVK5r776SvFvDw8PPvnkE9atW6cIwsydO5dhw4YxYsQIAGbOnMnBgwcrzD77888/8fLy4pdffkFLSws/Pz+uXLnCDz/8oCjz008/vdDr81R+fj7Lli1T9Om3336jY8eOzJ49GwcHB2bMmMHs2bMVGXmenp5ERUXx119/8e677yr2M378eKWsvblz5/LFF1/Qs2dPABYsWMC+ffs09vHmzZvs2bNHaZngRYsWERCgPOdQ2Uw1T09PZsyYwQcffFBhADI2NhYnJ9XMm+zsbHr37s2XX36pEoy8desWZmZmz3VnYO3atfj4+FC9esm8Yf369WPRokWK49jZ2Zl58+YxceJEvvnmG4KDg2nZsiUDBw7Ey6vcRaSzM5cuXVL7PAUFBSqryrxI+nJmRiYymQzzJ/NHPWVuaUF6avpz76e8h4lJPLoUSdPWLfjiu6kk3k9g0bwFyIqL6TW4/0vvFyAjPZ3i4mIsyw3xtbK2JDUlRW2d1JRUrMoNe7S0sqK4uJj09HRsbFSH4S34fQG2trbUCyn9oZn4IIFtm7bSZ0Bf3hk6mOhrUfw6+xd09XR5u2N7lX28iLysHOQyGcbmpkrbjc1NyMlQP1QmLekRxzfspv/kD5Foa6stk/EohbjoNAIb1aXnhOGkPXzMweVbkBXLNAbcKkvryTBWWbkMUFlWtmKusmfRdnVG29Ge3A2qAXaJgz2mY0aCjg4UFpKzbDWy5EeVbvdT2Zkl54WZhfKQITNLczLS0p9rH/s376Igv4DgZo0U225du8HJfUf4+vfvq6ytFcnPzkUuk2FkppxtZWhqTG6G+uxcI3NTmg/qgq27E8VSKTfPXGb7nGV0/XSoxnmtzmw6gLGFGS6BryYzJSW3pK1WRsqBSCsjYxIzNWcxuFta83W7jlSztSWnoJB1l8IZsXYlqwYNw83y1U8RkJKaBoC1hfJnj7WlJYlqhoMo6qWlYW2pWiclrWR/xkZG1AoM5J9VK/F0c8PK0pJ9R45w9fp1XMvMrfnZ6NHM/GUOHfr3Q1tbG4lEwlcfT6BOjZov1Z+nx5Nh+ePJzIRcDZ9RRhYmtBjcFbsnx9ON05fZNnsp3T8bpvF4Ep6Pqb4R2hIJGfnKowky8nIwd1Q/lcCtx/HMD9vMR016oautg45Emwv3r7MsXHVuwKf61WlNal4WV5OqPuhZkJ2LXCZXGsYLz/iMMjOlycAOWLs5IpMWc/vsFfb8upIOHw/Cwack+zrrcTqJN2LxCqlB29H9yExO5fS6vchkMup2DK3yfvwXGOkZoC2RkF0uSJpdkIeJnvpRBpZGZrhbOiCVFbPq4j6M9AzoEtgMIz19Nl85BoCbhT31XP34/eSmV94HgFzFtZTyUDljc1OyNXxOpSQmc3jtDt6dOk7jtZTw/8+qVasYO3Ysbdu2BaBLly78/vvvSmVu3LihmG7n/v37bN9eckO9/KJ/R44coUWLFujp6XHo0CF+/fVXsrOzcXV1pWPHjkydOhXtFzj2RPBMUMvf35/GjRuzePFiWrZsyZ07dzhx4gT795dMMnnhwgVu376tNJRPLpcjk8mIiYlRCbJER0fj6uqqCJwBBAYGYmFhQXR0NPXr1yciIkJpIr+KREdH4+bmpggyATRq1Eil3MaNG5k7dy63b98mOztbJZslOjqaUaOU59Fo1KgRR44cqfC5GzZsqDRpYfnnftHX5yl1fZLJZNy4cQNtbW3i4+MZPny40usklUoxN1f+oVk2sysjI4PExESlNuro6BAcHKwydLNsH5+Wecrf319lud8jR47w7bffEhUVRWZmJlKplPz8fHJycjQu7pCXl6c2eGhoaEjTpk1ZuHAh/fv3V3qNnneSSCgJ8r3zzjuK/7/zzjuEhoaSnp6uaP/o0aMZPHgwR44c4ezZs2zYsIFvv/2W7du306ZNaVDD0NCQ3Nxctc/z3XffqUx8OXXqVLqPHPBc7XxKpV9yOc/ZVbXkcjlmlua8P2E0Em1tvHy9SUtJZfu6zZUOnj1Vvs1yufrJPRXlKf+YXMN2WL18FYf2H2Degt+VgpEymQy/AH/eG11yvvr6+RJ7N4Ztm7ZUOnhWpqHKrZSj9r2QyWTsXLCaJt3bYuWgeS5GuUyOkakJbYf2QiKR4ODpQnZ6Bud3H6uy4Jlu3VoY9SydhDz7yeT+lD+3X+Cg0gupR3HiQ4rjVTOLZI8ek/XLfLQMDdCtWR2jvj3J/nNRlQbQ4MWPsafOHj3F9lUbGfP1p4oAXH5uHot+/p3BY0diWu6i/pVT02RN/bB0sMGyzKTbDtXcyE7NIGL/KbXBjkt7T3D73BW6fjYUnSpa7GVv9DW+O7hX8f9fupXMTVn+XJXL1XZNoaaTMzWdSoNJtZ1dGLRyCesvXeDTVlUfON5z6BDfzi3NKp87cxag7jh6nu+Sivs6fdLnTP/5Z9r374e2RIKfjw9vt2rF9VulGURrt27hSnQ0c6bPwNHenouRkfzw2zxsrK1oEKSc2fYiVJqu6UMKsHSwxbLM59PT4+nSvpMieFZF5Ch/zmppAeovq3A2s2VwvfZsuXqMyMQ7WBiaMKBOW4aFdGLhWdUs6k4BTWjkXpOZh5ZSJFOfpV0VVM4RNdueMnewxtyhdCiUnZcLOWmZXDlwRhE8k8vlGJga02RgRyQSCTbujuRmZHHlwBkRPHuG8odOydug/oB6+hatv3yYAmlJZs3u66fpX7cN26+dRKIloXftVmy9cpzcomdPR1OV1F3xqTuiZDIZW/5YTvNe7bH+F6ZS+J+l4bfaf5mVlRUrV6ouTlJW2d+wHh4eGn/TPuXq6sqxY8cq3TYRPBM0Gj58OGPGjOGPP/5gyZIluLu789ZbbwElH3jvv/8+Y8eOVann5qY6NEjTBWvZ7YaGzz/sRN0JUn7/Z86cUWSytWvXDnNzc9auXcvs2bOf+3me97nLe9HXR5OnfdLS0lKkvC9cuFCRDfZU+Yh5ZVclfdrHin5k3Lt3jw4dOjBq1ChmzJiBlZUVJ0+eZPjw4SrzypVlY2ND2pO7+GVpa2uzdetWevbsScuWLTl8+DCBgSVzPfj6+iqCgBVln0VFRXH27FnOnz+vNIy3uLiYNWvW8MEHHyi2mZqa0qVLF7p06cLMmTNp164dM2fOVAqepaamalyoQtMqM9cfax7mV5aZuRkSiYT0VOXXIiM9QyUb7UVYWFmio6OjdAfP2c2F9NQ0pEVFlfqRbW5hgba2tkqWWVpqmko22lNW1lakpKSqlNfW1sa8XHbRmhWrWblkOXP+mEs1H+XhSdY21nh4eShtc/fw4Njhoy/XmTIMTY3RkkjISVe+M5qbmY2RmalK+cK8ApJi7vPwXgIHV2wFnpwzcjk/D51E789G4h7ojbGFGRJtidJ8MNaO9uRkZFEslVbJ3B1FUdfJiisz1OPJPiWmphRnlWYPSEyMkWepzyZQoquLXu2a5O0/pP7x4mJkT97P4vsJaLs6o9+sEXmbqmYIrYlZyXlRPsssKz1DJRutvHPHwlj261+M+mI8gXVLM3ySEx/y+OEjfvumdCj408+49zoNYObCOdg5qi52URkGJkZoSSQqGRx5WTkYmj3/57O9lys3z6iuLhix7yQXd5+g84R3sXapurY3q+ZNdYdhiv8XFpf8aE/JzcbGpDSjJi0vB6sX+J6RaGkRaO9IfLrqZ39VCG3UiBr+pYtAFD75DnqclopNmXlPUtPTsapgAZiSLDPlz6vU9DSlOi5OTvw9Zw55eXnk5OZiY23NFzNn4PRkwZT8ggL+WLyYn6dNo2mDhgD4eHlx884dVm7Y8FLBs4qOp/LZjRWx93JRezwJLyarIJdimQwLA+XX3szAWOPk7l2qN+Xm4zh2RYcBEJ/+kCXSXUxtM4wNlw+TXqZeB//GdKnejO8OLyc+XXOmZGXomxihJdEiN1O5vfkv+Bll6+nMnXNXFP83MjdBS6L8vWfuYENeZjbF0mK0dUR2UXm5hfkUy2SY6iv/DjLWM1SsxFpeVn4umfk5isAZwKPsNCRaWpgbGKOnrYuVkRnv1CsdCvn0mn56u5HMPbGO1CqeA83oybVUdobyfnMzslQy+wEK8/JJvBtPUuwD9iwtyY57ei01852PGfjFB3hWr7oVmAWhKojgmaBRnz59GDduHKtXr2bZsmWMHDlS8cEbFBTEtWvX8PZ+vmWnAwMDiYuLIz4+XpF9FhUVRUZGhiLDqFatWhw6dIihQ4c+9/4SEhIUQwBPn1ae2PvUqVO4u7srrbR4755yYCMgIIAzZ84wePBgxbYzZ84887m3bt2qtK18nRd9fZ5S1yeJRIKvry/29vY4Oztz9+5dBg4c+Nz7NDc3x9HRkTNnzhAaWnLXTyqVcuHCBY0riwQEBCCVSgkPDyckpGS+qhs3bigtXhAeHo5UKmX27NmKi6T169c/sz1169bVuFKovr4+mzdvplevXrRs2ZJDhw5Ro0YNevXqxeeff86PP/6oNGfdU0+zyhYtWkRoaCh//PGH0uMrVqxg0aJFSsGzsrS0tPD39ycsLExp+9WrV2nRooXGtr7IMM3ydHR18fL1JvLCJULKDC+LvBBB/cYNKqhZMb8agZw6dAyZTKZ4XxLvJ2BpbVXp7BRdXV18/f0IP3ue0JbNFdvDz52naWhTtXWq16xB2AnliWLPnz2Hf6A/OmWCR2tWrGL5omX8/Nsc/ANVMzNr1q5F/D3luaLi4+LUrvD5orR1dHDwcObetVv4BpcGXe5du4l33eoq5fUN9Rky6xOlbRGHwoiLvk2XMYMxty0JJDr7eBB95hJymQytJ+9F2sNHGFuYVd2ktwWFyAqUf+zLMrPQ8a1GccKTlbW0tdHx8iBv97OXp9erXQN0tCm6+Pw/sLWq8MeQjq4O7t6eRF26QlDj0rnyoi5doU5DzfNFnT16iqVzF/DexLHUClH+XHN0deKb+T8pbduyfB35eXn0f38IVmqGDleWto4Otu6O3I++g1dQ6YTP96Pu4FHn+Vf6fByXiFG5Hx2X9p3k4q5jdBw3GDsPZw01X46xnr7SCppyuRxrY2PO3ovFz67kXCsqLubi/XjGNGvx3PuVy+XcfPQQb5tXs2q2sZGR0gqacrkcaysrzl64iL93yRxTRUVFXIyM5KMRmjPcawUGcvbCRQb27KXYdvbCBWoFqn4OGBoaYmhoSGZWFqfDwxn7JCNcKpUilUrRKrfqnURbgkz2chkEJceTE/FRysdTfNQdPF/keIpPxMhC9Ues8GKKZcXEpCZQw6Ea4fevK7bXdKjGhTL/L0tPWxdZuUm2Ff8vc6OyY0BjulUP5YcjK4lJTaj6xj+hraONtZsjCdExSp9JCdExuNV+/oBFanySUgDXzsuFu+evIZfJ0ZKU9CszORVDcxMRONOgWC4jIfMR3tYuRD2MVWz3tnEhusz/y4pLf0gNRy/0tHUUNzlsjM2RyWWK4cS/nlC+Jm/jWx99bT12Rp8iI+85bqa9IG0dHRw9Xbl75Qb+9Uun3bl79Qa+9VSHrOsbGvD+D8rzVYcfOEnstVv0Gj8UC9tnT/guCP82ETwTNDIxMaFv3758+eWXZGRkMGTIEMVjkyZNomHDhowePZqRI0dibGxMdHQ0Bw4c4LffflPZV+vWralVqxYDBw5k7ty5SKVSPvzwQ5o3b64YGjh16lTeeustqlWrRr9+/ZBKpezZs0ftJPGtW7fGz8+PwYMHM3v2bDIzM5WCZADe3t7ExcWxdu1a6tevz65du1QmyR83bhzvvvsuwcHBNG3alFWrVnHt2jWVua/KGjVqFLNnz2bChAm8//77XLhwQWVl0hd9fZ4yMDDg3Xff5eeffyYzM5OxY8fSp08fHJ4ECKZNm8bYsWMxMzOjffv2FBQUEB4eTlpamkoWVPl+fv/99/j4+BAQEMCcOXNUVvEsy8/PTzFZ499//42Ojg7jx49Xyg6sVq0aUqmU3377jc6dO3Pq1CkWLFigcZ9PtWvXTmWBg7L09PTYtGkTffr0oVWrVvwfe3cd3tS9BnD8m7q7lxpSKhR3dxnONpwJMGXC2MbG2Aa7G7DBGMzhMnTDneHuWqBocQp1d2+T+0chbWgCjLa0l72f58nztCe/38l7khzJe36yZ88egoKCmDVrFu+88w5paWm89NJLeHt7ExERwZIlS7CwsODbb7/lzz//5D//+Q916tTRWOfo0aOZPn06586dQ6VSMWnSJEaMGEFAQABGRkYcOHCABQsWaLRWy8rK4vTp00ydOvWR2/Sker3Yj5+n/UD12rXwDfBj9+btJMTG06V3UTfEZfMWk5SQyDsTij/bsBtFY5/kZOeQlppK2I1bGBgYUM27qEVj1z492L5+M4t+mUf3/r2IiYxi/bLV9Ojfq1xiHjh0EFMmfU3tAD8Cg+rw9/qNxMXE0vf5/gDM/eV3EuITmPjVFwD0HdCP9avW8susn+jVrw+XLlxky8bNfDllsnqdy5YsZf6ceXzxzSRcXF1JTChq2WZqZorZvR/ELw4ZxNuj3uDPhYvp0LkToZcu8/f6TXz02cMnqHhcjbu3ZcvcFbj4VMOtphfn9p0gLTGFeh2LEpsHV20lPTmVnm8MQaGnh+MDrX3MrCzQNzTQWF6/YwvO7D7CnqWbaNilFckxCRz/ey8Nu2hPNJaX3EPHMOnYFmVCIoXxiZh0aocqL5+8s+eL4x38PMrUNHK2ac5gadSkIfmXrqDKKn2326R7Z/KvXkeVkgrGxhjVD8Kghg+Zfywp1/i79O/J/Jm/4l2rOtX9fDm4fTdJ8Qm0f64zAGsXLiclMYlRHxVNpnJi/xEWzPyNwW+8THW/WqTeGzPQ0NgIM3MzDI2McPfWHMTbzKLoe/Xg8vJUr0tL9sxfh6OXOy41PLh8MJj0pFQC2xXN6nt83S4yk9PoNKpoLMpzu49iZW+LrZsTyoJCrp04x60zl+n2VvHU7me3H+Lkxr10Hv0CVg426vGuDI2NMDR58mS+LgqFgsENmrDo5DE8bGzxtLVj4YljmBgY0s2vOIkzadvfOFlYMuZeQm3escPUcXXD08aOzLxcVp4N5lp8HOM7dlXXycrLI6JES7So1BSuxcViZWKCi9XDWxk+TtxD+g9g4fJleLq74+HuzsLlyzAxNqF7x+IJI7787lucHBx4Z1TRuKeD+w/g9XEfsGjFCtq3bMn+o0c5ceYM82fNVtc5duoUKlR4VfMgPCqKn/77X7w8POjTraiFh4W5OQ3r1uXHef/F2NgIV6eibptbd+3igweGifgn6ndpye75a3H0dsOleonvU/uiJPOxtTvJTEmj86iixN+5XUexdLDBzs1ZPYbezdOX6V7i+1RYUEBSVPy9vwvJSEkj/m40hsZG2DhX/g9XU0NjqlkXJ1zdrByo5VCNtJxMYjMqphXj49p25RhvtRjA7aQorieE07FmI+zNrNlzvWiW6EH1OmFrZsWcY0XXnWcjrzGqWW861WzM+eib2JpaMLxRd24kRJCSXbQf9/JvxQt1O/Dr0bXEZ6Zgfa9lW05BnkYLo/JSp1MzDi7aiIOXK04+1bh6+AwZyan4tSm6ARG8YS+ZKem0e6UvAJf2nMDC3gYbN0eUBYXcPHmBsLNX6Ph6cbLZr20jLu8P5vjqHQS0b0JaXBLnth8hoEMTrTGIIkduX+CFeh2ITIvnbnIsTTz8sTax4OTdopvNXX2bYmVizprzRcPKnIu6TvsaDRkQ1J49N4IxNzSlu19zTkdcpUBZNEFU3AP7SE5+ntbl5an5c+3Z8NtfuFX3xL2WN2f3HiU1IZlGnYoGZN+z4m/Sk1Lp9/ZwFHp6OHlojoFsbmWJgZGhxvLCggLiI2LUf6cnpRITFoGRifFDh854ZjzhTRdRMSR5Jh5q1KhRzJ8/n65du2p0N6xbty4HDhxg4sSJtGnTBpVKRY0aNTRmzyxJoVCwYcMG3n33Xdq2bYuenh7du3fXSCS1b9+e1atX8/XXX/Ptt99iZWWlbin1ID09PdavX8+oUaNo2rQp3t7e/PTTT3TvXtw8uW/fvnzwwQe888475Obm0rNnT7744gsmT56sLjNo0CBu3rzJJ598Qk5ODs8//zxvvfXWQwfT9/T0ZO3atXzwwQf89ttvNG3alKlTpzJyZHFXl3/6/txXs2ZN9UyeSUlJPPfccxqD748ePRozMzNmzJjB+PHjMTc3JygoSGPgfm0+/PBDoqOjeeWVV9DT02PkyJH0799fPdCiNgsXLmT06NG0a9cOZ2dnvvnmG7744gv18/Xr1+eHH37gu+++Y8KECbRt25Zp06ZptOLTZvjw4XzyySdcvXpVY9aUkgwNDVm1ahVDhgxRJ9DefvttfH19+f777+nfvz/Z2dl4e3vTq1cvxo0bx6ZNm0hMTKR///6l1lerVi2CgoKYP38+X375Jd7e3nz11VeEhYWhUCjU/3/wwQfqOhs3bsTT05M2bdo8dHvKomWHNqSnpbF2yQqSk5Lw8PZiwrRJOLoUjf2QnJREwgNjSY1//X3137eu3eDwngM4Ojvx6/L5ADg4OfL59P+w+Lc/+Hj0u9g52NNjQG/6DX6+XGLu1LUzaalpLP5jIYkJifjUqM53s7/H5V63t8SERGJjiruZuLm7MX329/w86yfWr16HvaMD7380lvYdO6jLbFizjvz8fL785HON13rltZGMfH0UAP6B/kyZMY25v85h8R+LcHFz5d1x79O1R7dy2S6/ZvXJzsji6MbdZKak4eDuwvPjRmHtUNRdKyM1jfR/OJGDlb0NL348mn3L/mbR5z9gYWNFo66tadqzw6Mrl0Hu/kMoDA0w7d8bhakJhXcjyJi3GHKLf3zp2ViXmmpcz8Eeg+reZPx3kdb1KiwtMB/8PAorS1Q5ORRGx5L5xxIKrt/UWv5JNW3Xksz0DP5etpbUpBTcvD14/6tPsXcuukhOTU4mMT5BXf7Att0UFhay9LcFLP1tgXp5y85tGTnu7XKN7Z+o2SSInIxsTm/eT2ZqOnZuTvR8bziW9jYAZKWkk5FUfAxWFhRydPUOMlPSMDA0xNbNkefeG45XUHErkEv7T6EsKGTnnJUar9W4d3ua9KmYWURfatKM3IJ8pu/dSXpODoEubvz8/CCNFmqx6WnolWg9k56bw7Rd20nMysTCyBhfJ2fmDhxGoGvxD6LQ2GjeWr1c/f/sA3sB6BlQh0ndy57sf3nQIHLzcvn2559IT0+njp8/v3z7rUYLtZi4OPRKtBCrFxjIlImf8/uihcxZvIhqrm5Mm/g5dUqMwZmRlckv8+cTl5CAlaUlHVu3YczIVzVa0k6d+Dm/zp/PF9OmkZaejouzM2+9OpLne/V+4u2p1TSInMwsgv8u+j7ZuznT+/0RWN3/PqVmkJ5Y/H0qLCjkyKri75OduxM93xuBd93i71NmSjqr/lN8jRGy4wghO4rG2Os/ftQTx1pe/By9+KV/8c2j91oXjcG3NfQYU/bqvgn3NBy/ewkLYzP612mHjakFEalxzNi/lISsos/AxtQSe7PiJPDB2yGYGBrR1bcpwxp2Iysvh0uxt1kRUnwDo3OtJhjqGzC2jea14toL+1l3YX+5b0P1xoHkZmYTsuUQWWkZ2Lo60nXMYCxKfKcySxyjCgsLObluN1kp6egbGmDr6kiXMYPxqFPcy8LCzpru7w3lxOpdbPjmv5jZWBLYoQlB3VqWe/zPkgsxNzEzMqZDjUZYmpgRm57EkuBt6u68lsZm6mQqFHWpX3hqC70DWvF2ywFk5eVyMeYmu66dqqxNACCwRUOyMzI5uG4HGSmpOFZzZcj4N7C51yI/IyWNtMR/lrxLT05l3mfFrcePbdnLsS178fKvyUtfvFuu8QvxKArV4wzgJISocJMnT2bDhg2EhIRUdigVbvz48aSmpjJ37tzKDkWnpk2bMnbsWIYO/WcTAJyLvFZBET099dx9iU1LeHTBKs7ZyoE/jpfPWFyVZXTzPqR8/MWjC1ZxNjO+5tBN7TPX/r9oU6MBsw+ufHTBKm5s20Gkzl1Y2WGUmfUbr5J+N7yywygTS08Pfjr06OEOqrr32gyk1a9P3qquKjgyZg7Dlk2u7DDKbOnQyXy398/KDqPMPuk4orJDKBcTt1Xd69zHNaXHG/x1evujC1ZhJcd++3+TdvDoowtVAqu2/86EuN6jiwghRPmaOHEiXl5eFBYWVnYoWsXFxfHCCy8wZEj5zE4phBBCCCGEEP+ISlk1H/9S0m1TCPHUWVtb89lnn1V2GDo5OTlpHWtPCCGEEEIIIcS/j7Q8E6KKmDx58r+iy6YQQgghhBBCCPH/RFqeCSGEEEIIIYQQQlQlMjx9lSItz4QQQgghhBBCCCGE0EGSZ0IIIYQQQgghhBBC6CDdNoUQQgghhBBCCCGqEqV026xKpOWZEEIIIYQQQgghhBA6SPJMCCGEEEIIIYQQQggdpNumEEIIIYQQQgghRFUis21WKdLyTAghhBBCCCGEEEIIHSR5JoQQQgghhBBCCCGEDtJtUwghhBBCCCGEEKIqUSkrOwJRgrQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihg3TbFEIIIYQQQgghhKhKlDLbZlUiLc+EEEIIIYQQQgghhNBBkmdCCCGEEEIIIYQQQugg3TaFEEIIIYQQQgghqhKVdNusSqTlmRBCCCGEEEIIIYQQOihUKklnCiGEEEIIIYQQQlQVaTv2VHYIWll161TZIVQK6bYphBDl6ETYxcoOocyaedchJT21ssMoMxtLa8as+76ywyiTXwd8RHKPFys7jDKz3baab3YtrOwwyuTzLq8yetW0yg6jzP4YOIHUP/6s7DDKzHr0CM5FXqvsMMqknrsvX+2cX9lhlNmkrqMYtmxyZYdRJkuHTqbVr29WdhhldmTMnGfmOPUseH/DrMoOocx+7PcBH/39c2WHUSbf9363skN4ctLOqUqRbptCCCGEEEIIIYQQQuggyTMhhBBCCCGEEEIIIXSQbptCCCGEEEIIIYQQVYlSWdkRiBKk5ZkQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB2k26YQQgghhBBCCCFEVSKzbVYp0vJMCCGEEEIIIYQQQggdJHkmhBBCCCGEEEIIIYQO0m1TCCGEEEIIIYQQoiqRbptVirQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihg3TbFEIIIYQQQgghhKhKlNJtsyqRlmdCCCGEEEIIIYQQQuggyTMhhBBCCCGEEEIIIXSQbptCCCGEEEIIIYQQVYlKWdkRiBKk5ZkQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB2k26b411u0aBHOzs706NGjskMRQgghhBBCCCFkts0qRpJnVZy3tzdjx45l7NixT219CoWC9evX069fvyd+ncmTJ7NhwwZCQkIeu87+/fvp0KEDycnJ2NjYPPFr/xPr1q1j+vTpHDly5Inqv/LKK6SkpLBhwwYA2rdvT/369Zk9e7bOOuXxmZb8jMLCwvDx8eHs2bPUr1//idf5OMrr+7h3717efvttLl++jJ5e1WsAGxcXR2BgICEhIbi7u1foa+3+eztbV28kNSkZdy8Phr35KrWDArSWPXX4OHs37+DurTDy8/Nx9/Kg//CB1G3cQF0mIuwu65asIOzGLRJi4xn6xqt0H9DrieNbs3oNf/35J4kJifhUr84HH35AgwYNdJY/c/oMs2fN5vatWzg4OjBixAgGvPC8Rpm9e/Yyd85cIiMicK9WjbfefpP2HTpolImLi+PXn3/h6NGj5Obk4unlycQvPsff3x+AZo2ban39d957lxEvjXiibW1TvT6dazXB2sSc6LQE1pzfx83ESK1lRzTqTnOvOqWWR6cl8M3uRQDUc6tFt9rNcDS3QV9Pn/iMZPZcD+Zk+OUniu+fMBn2IsY9OqOwsKDg6nWyfv0D5d0I3RX09TEZ1B+jzu3Qs7ejMCKK7AVLKTgdoi5itehX9J2dSlXN+Xs72b/NL9f4rx48w6U9J8hOzcDG1YHGz3fGuaaH1rIx1+6w66flpZb3+fw1rF3sAVAWFnJx5zFunrhIVko61s52NOjbAfeA6uUa94Pa12hIt9rNsDG1ICo1nhUhu7meoP1zeLVJT1r51C21PDI1nkk7/gDg4/ZDqe3kVarM+agb/HR4dfkG/xAqlYp5Rw+y4dxZ0nNzCHR14+POPajh4KizzuaL5/jPtr9LLT/0wacYG1T85eiOjVvYtHIdKYnJVPP25JUxr+FfN1Br2eTEJJb8Pp9b124SExlFj/69eeWd10qVy8zIYPn8Pzl56BiZ6Rk4uToz4s1RNGzeuKI3R+3awbOE7jlJdloG1q4ONBrQEScd+wpAYX4BF7cf5fapy+SkZ2JmY0lg1+bUaFH6u1dROtdqQk//ltiYWhKZGsefp7dzNf6uzvItvYPo5d8KF0t7svJzOB91g2Vnd5KRlw1AhxoNae1TDw+bouPT7aRoVp7bwy0dx++nqZ5rTYY26IqfkycO5jZ8uvV3Dt0+V9lhqT2rx6hnRWufunSs2RgrE3Ni0hNZd+GAzu/10IZdaeZZ+pgWnZbIt3uXVHSoai29gmhfswGWxubEpiex8dIhbidF6Syvr6dHF9+mNHKvjaWxOSk5Gey5fopT4aHqMm186tHCOwhbU0sy87I5H32DraHHKFAWPo1NEkJNkmcVpHfv3mRnZ7N79+5Szx07doyWLVty+vRpGjZs+FTjOnXqFObm5k/1NauqW7du8fnnn7Nt2zZsbW3LZZ3r1q3D0NCwXNb1uDw8PIiOjsbBwaHCX6u8vj/jx49n4sSJ6sTZokWLGDt2LCkpKeoyoaGhdOnShaZNm7J8+XKMjY3Zt28fM2bM4MSJE2RnZ+Pt7U2PHj0YN25cqSRX7dq1uX37Nrdv3y713K1bt5g4cSIHDhwgKSkJBwcHGjVqxIwZM/D19cXJyYkRI0YwadIk/vjjjzJvry7H9x9h6ZyFvPzOa9QK9GPflp18//kUps2bjYNT6R+hVy9cpk7Derz46jDMLMw4tGMfsyZ9y6Qfp+FdsygJkJebh6OrM03btmTp3IVlim/Xzl3MmvkD4z8dT9169Vi/bj0fvDeWFatX4uLiUqp8VGQkH7w/lr79+/HV119x/tw5pn87HRtbWzp26gjAhfPn+fyzibz+5hu079Ce/fv289mnn/Hf+fOoU6coGZWWlsbro16jYeNGzP7xR2ztbImMiMDS0lL9Wlu3b9V47aNHjzHl62/o2LHjE21rQ/favFC3AytDdnMzMZLWPvUY0+p5vt61kOTs9FLlV5/by8aLB9X/6+npMaHjy5yJvKZelpWXw46rx4lJT6JQWUgdlxoMb9Sd9NwsQuPCnijOx2H8Yl9MBvQic+avFEZGYzrkeSynfkHqa+9Ddo7WOqYvD8aoQ1syf5qDMjwSg0b1sfjiY9I/nEjhzaJY09+fACWS3fpeHlhO+5L8Q8fKNf6w06EEr91N00HdcKruzrXDIez9bRV9Ph+NuZ21znp9v3gdQ1Mj9f/GFmbqv0P+PsitU5doMbQHVs72RIXe4sC8dXQfNxw7j9Lf5fLQxMOfwfU7s/TMDm4kRNC2RgPebzOIL3fMIykrrVT5FSG7WXthv/p/fYUek7qO4nTEFfWy346uQ19PX/2/hZEpk7qOIrhEmadhycljLA8+wZc9+uBpa8eC44d5d9VSVo9+C3MjY531zI2MWT3qLY1lTyNxdnTfIRb9+gej33+T2nUC2P33dqZ+OplZC3/FQUtCOD8/HysbawYMH8iWNRu1rrMgP59vPv4CKxsbxk3+FHsHBxLj4zExM9NaviLcOR3KmXV7aDywC47Vq3HjSAj7f19Dz4mjMLez0lrn8MJN5KRn0nxodywcbclJz0KlfHoDUjf3DGREw+4sDN7Ctfi7dKzZmPHthzN+y68kZqWWKu/r6Mlbzfvz15kdnIm8iq2ZFSOb9GJ0sz7MPrQSAH9nb47duciS4HDylAX08m/Fpx1G8MmWX7Uev58mU0NjbiRGsPXKUab2eLNSY3nQs3yMehY0cPelf1B7Vp/by+3EKFr6BPFmi35M27NE6/d63fn9/H3psPp/PYUen3QcTkjUtVJlK0o9t1r0qdOGdRf2E5YUTXOvOoxu1psZ+5eSkp2htc6IRj2wNDZj1bm9JGSmYGFshp5CoX6+gbsvz/m3ZNW5PYQlReNoYcOg+p0B2FRie4V4Gqpek49nxKhRo9i7dy937twp9dyCBQuoX7/+U0+cATg6OmL2FC/sqrLq1atz+fJlvLxK3yF7UH5+/mOt087OTuMH/tOgr6+Pi4sLBk/hB0h5fH+OHj3K9evXefHFF3WWOXXqFG3atKFbt26sXr0aY2Nj5s6dS+fOnXFxcWHt2rVcvnyZOXPmkJqaysyZMzXqHz58mJycHF588UUWLVqk8VxeXh5dunQhLS2NdevWcfXqVVauXEmdOnVITS2+cH/11VdZunQpycnJZdreh9m+7m/adetI+x6dcfesxvC3RmLnaM/ezTu0lh/+1kh6DuxH9do1cXF348WRw3BxcyHkeLC6TPXaNRny2ss0b9+6zInc5UuX0advH/r264ePjw/jPhyHs7Mza9es1Vp+3dp1uLi4MO7Dcfj4+NC3Xz969+nN0r/+UpdZsXwFTZs15ZVXX8Hb25tXXn2FJk2bsGLZCnWZPxcvwcnZiS8nfUlgnUDc3Nxo0rQp1apVU5exd3DQeBw8cIBGjRvhXu3JWgp2qtWYY2EXOBp2gdj0JNae30dyVjptqtfXWj6nII+03Cz1w9PGBTMjE46HXVSXuZ4QzrmoG8SmJ5GQmcr+m2eITIunhkPFtmY06deT7BXryD96EuWdcDJn/gLGxhi1b62zjlHHtuSsXEfBqbMoY+LI27KT/NMhGA/orS6jSk1DlZyifhg2a0RhVAwFF8q3Jd3lvSep2aIetVrWw9rFgSYvdMbM1oqrh84+tJ6JpRmmVhbqR8lWrbdOXiKoawvcA2tg6WBD7TYNcfX34fLeU+Uae0ldfJty+PY5Dt0+R3R6IitDdpOcnUb7Gtpbbmbn55KWk6l+eNkWfacO3z6vLpOZl6NRJsDZh7zCfILDn94PU5VKxYrTJ3mleWs6+PpRw9GJST36kFOQz47LFx9aV6EABwsLjcfTsHn1Bjr26EKnnt2o5uXBK++8hoOTAzs3bdNa3snFmVffeZ12XTtiZq79nLd3224y0jL4+OuJ+NUJwNHFCb+gQLxr+FTkpmi4si+Y6i3qUrNlPaxd7Gn0fCfMbC25flj7vhJ1+RZxN8Jp/+YLuPh5Y2FvjYO3K47VK/aYVFIPvxbsv3WG/TfPEJWWwF9ntpOYlUrnWtpb69W0r0Z8Zgo7rp0gPjOFa/F32XsjmOp2buoyvx1dx+7rp7iTEkN0WgJ/nNyEnkJBoEvFtix9HMfvXmLeiU0cuBVS2aGU8qweo54V7Ws05Pidixy/c5HYjCTWXzhAcna61tZ/UHRdkp6bpX542jpjamjCiTuXnlrM7arX5+Tdy5y8e5m4jGQ2XTpESnYGLbyCtJav7ehJDXt3/jixiesJ4SRnpxOeEsud5Bh1GW9bV8KSojkbeY3k7HSuxYcTEnmdatbOT2uzKpdKVTUf/1KSPKsgvXr1wsnJqdQP96ysLFauXMmoUaOAokRC27ZtMTU1xcPDg/fee4/MzEyd67179y59+/bFwsICKysrBg4cSGxsrEaZTZs20bhxY0xMTHBwcGDAgAHq57y9vTW6FF6/fp22bdtiYmJCQEAAu3btKvWan3zyCb6+vpiZmVG9enW++OKLUsmkb7/9FmdnZywtLRk1ahQ5OdpbN5S0detWfH19MTU1pUOHDoSFhZUq80/fn8mTJ1O/fn3mzp2Lh4cHZmZmvPjiixotmgAWLlyIv78/JiYm+Pn58dtvv6mfCwsLQ6FQsGrVKtq3b4+JiQl//fUXhYWFjBs3DhsbG+zt7Rk/fjyqBw4e7du31+jSGBcXR+/evTE1NcXHx4elS5eWivmHH34gKCgIc3NzPDw8ePvtt8nI0H53Rpv78d7vIrt//34UCgU7duygQYMGmJqa0rFjR+Li4ti2bRv+/v5YWVkxZMgQsrKyNGJ/5513eOedd9Tb+Pnnn2ts44PfnyeJfcWKFXTt2hUTExOtz+/du5eOHTvy6quvMn/+fPT19YmIiOC9997jvffeY8GCBbRv3x5vb2/atm3LH3/8wZdffqmxjvnz5zN06FBGjBjBggULNLbh8uXL3Lp1i99++43mzZvj5eVFq1atmDJlCk2aNFGXCwoKwsXFhfXr1z/yM3gSBfn5hF2/SZ1G9TWWBzWqx/XLVx9rHUqlkuzsHMwty/8HaH5+PleuXKFZ82Yay5s2b8aF8+e11rlw4QJNHyjfvEVzQi+HUlBQUFTm/AWaNXugTPPmGus8ePAQ/v7+TPjkU7p36caIocPZsH6DzlgTExM5cvgIffr2+SebqKav0MPDxrlUa7DQuDCNH2gP09I7iKtxd0jKLn23/r7ajp44W9hxQ0eXmPKg5+KEnp0tBWdKdAvKL6DgwmUMAmrrrmhoiCrvgZsEeXkYBPppL29ggFGHNuTt3Fv2oEsoLCgkKTwGV39vjeVu/t7E3354F6zN3y1kzWc/s+un5cRc07xxVVhQgJ6h5g0GA0MD4m6Gl0vcD9LX08PL1oVLsbc1ll+KuU0N+2o6amlqU70eobFhWluA3Nfapy4n714mr/DxbvCUh6jUFBIzM2juXZyYMDIwoKGHF+ejHv7dzs7Lo8/cn+j1+498sHYFV2NjHlq+PBTk53Pr2g3qNdZMCNRt3ICrl0J11Hq000dPUCvQj/k/zuG150fw4cgxrFu6CmXh0+lGpN5X/Lw1lrv4+ZCgY1+JvHADOw8XQnefZP3nv/H3f+ZxZv0+Ch7c9yuIvp4+PnZuXIi+qbH8QsxNajlo72p6PSEcOzMr6rnVAsDKxJymHgGERF3X+TrG+oboK/TIzM0uv+CfMc/yMepZcP+65Gqc5rnsatxdfB7zuqS5Vx2uxd99aq0v9RV6uFs7ce2BLtjX4u/ibeeqtU6giw/hKXF0qNGILzq/yicdhtMroBUGJVov3k6KopqNEx42RckyOzMr/Jy8KrQFvxC6SPKsghgYGPDSSy+xaNEijR/uq1evJi8vj2HDhnHhwgW6devGgAEDOH/+PCtXruTw4cO88847WtepUqno168fSUlJHDhwgF27dnHz5k0GDRqkLrNlyxYGDBhAz549OXv2LHv27KFxY+1385RKJQMGDEBfX5/jx48zZ84cPvnkk1LlLC0tWbRoEZcvX+bHH39k3rx5zJo1S/38qlWrmDRpElOmTCE4OBhXV1eNZJQ24eHhDBgwgOeee46QkBBGjx7Np59+qlHmn74/9924cYNVq1bx999/s337dkJCQhgzZoz6+Xnz5jFx4kSmTJlCaGgoU6dO5YsvvmDx4sUa6/nkk0947733CA0NpVu3bsycOZMFCxYwf/58Dh8+TFJS0iMTK6+88gphYWHs3buXNWvW8NtvvxEXF6dRRk9Pj59++omLFy+yePFi9u7dy/jx4x+63scxefJkfvmlaMyo8PBwBg4cyOzZs1m2bBlbtmxh165d/Pzzzxp1Fi9ejIGBASdOnOCnn35i1qxZD+22+CSxHzx4UOd3cv369fTs2ZOJEycyY8YM9fL7+42udZccIy89PZ3Vq1czfPhwunTpQmZmJvv371c/7+joiJ6eHmvWrKHwET9ymjZtyqFDhx5a5kmlp6WjVCqxttHshmZlY0NqcspjrWPb2k3k5uTQrF2rco8vJSWFwsJC7OzsNZbb29mRmJCotU5iYiL2dnYay+zs7CksLFQnsBMTE7Gzf6CMvR2JicXrjIqMZN3adXh4evLjzz/R//kB/PD9TLZu3qL1dbdu3oK5uXmpcdMel4WxKfp6eqTlZGksT8/Nwsrk0d2UrUzMCXD24WjYhVLPmRgY8UOf9/ip3we81XIAq8/t4Upc6RbJ5UVhawOAMlmz+5MqJRW9e89pU3D6HCYDeqHn5gIKBQYN6mLYvAl6dtq7tBu2aILCwpzcXfvLKfIiuRlZqJQqTCw133cTS3Ny0rTfODG1tqD5kO60G92fdqMHYOVsx66flxN7o/gC3s2/OqF7T5EWl4RKqSIq9Dbh56+TrWOdZWVhZHbvO6W5/rTcTKwf4ztlbWJOHZcaHHpIaxUfO1eq2Thx+CmPn5SYWXSDxO6BLvx2ZuYkPuTmlpedPV/26MP3/Qfxde/+GBsYMHrZIu4mJ1VovGmpaUXH2ge+/9a2NqQkpTzxemOjYzhx4AhKpZIJ0yYxYPggNq/ewLqlq8oW8GPKzdS+r5hamun8XmckphJ/K4KU6HjajO5Pw+c7Eh5yleDVpYcYqQiWxkX7ReoD+0VqdibWptpvAl1PCOe3o+t4t9ULLB78Bb8P+Jis/BwWB2/VWh5gcP3OJGWnczHmVrnG/yx5lo9RzwLz+9cluQ9el2RiafzoHiBWxub4O3lzLOzhrYHLk7lRUczppWLO1hmznZk1PnauuFjZsSh4KxsvHaKua00GBLVXlwmJus72K8cZ0+p5vuv5Np91epmbiRHsu3G6IjdHCK1kzLMKNHLkSGbMmKEeCB+KumwOGDAAW1tb3n//fYYOHapuqVSrVi1++ukn2rVrx++//16qZc7u3bs5f/48t2/fxsOj6A7dn3/+SWBgIKdOnaJJkyZMmTKFwYMH89VXX6nr1atXT2t8u3fvJjQ0lLCwMHV3qKlTp5aadfLzzz9X/+3t7c2HH37IypUr1YmM2bNnM3LkSEaPHg3AN998w+7dux/a+uz333+nevXqzJo1C4VCQe3atblw4QLfffedusyMGTP+0ftzX05ODosXL1Zv088//0zPnj2ZOXMmLi4ufP3118ycOVPdIs/Hx4fLly8zd+5cXn75ZfV6xo4dq9Fqb/bs2UyYMIHnny8a/HzOnDns2KG9ex3AtWvX2LZtG8ePH1e3tJk/f756wPOSr3Ofj48PX3/9NW+99dYjE5CP8s0339CqVVFSZdSoUUyYMIGbN29SvXpRa4EXXniBffv2aSRMPTw8Sn0ms2bN4rXXSg+U/KSxh4WF4eZW+q5ZRkYGL774Ip999lmpROr169exsrLC1VX7nauSVqxYQa1atQgMLBo0dfDgwcyfP1+9D7q7u/PTTz8xfvx4vvrqKxo3bkyHDh0YNmyY+r25z93dnbNntXd/yc3NJTc3V2OZsbHusX50KjGuAwAqFQrtJTUc23eI9X+uYuzkT7B6IAFXnkqHp0Lx4MKHVLh/80Bz6YNl0FinUqnEP8Cft8e8DUBtv9rcvnWLtWvX8lyvnqVe8u9Nf9Ote7cne/81I9Gy5NFN05t7BpKdn8M5LS0hcgvymLZnCcYGhtR29GJAUHsSMlO5nlA+LZ6MOrTG7N031P9nTJp2L3AtcT9kU7LmLsTsvTew+u+PgApldCy5u/Zh3EV7QtK4W0fyg8+iSqqYbs2KB/cCFQ9+bdSsne2xdi5O8jpWdyczOY3Lu0/iXNMTgCYvdObY8m1s+noeKMDSwZYazety87j2VpTl5cG3XIHiMb5R0NK7Lln5OZx9yFg1rX3qEZESx+2k6DLF+CjbL19g2s7iRMWs5wcDpT8OFQ8/dgW5VSPIrbhFSz13D0Ys/oNVZ07xUadu5RixdqWOWypVqePbP6FSqbCyteaNcWPQ09enum9NkhOT2LRyHS+8NKRswf4TWncV7Rt2//jd8uXeGJkWHS+V/Qs5tGADjV/sjIHR0xmz9cHjqkKBzuOTu5UjLzXqwfqLBzgffRMbUwuG1u/KyKa9mHdiU6nyvfxb0cIriG/2LCJfWVAB0T9bnoVj1DOt1IfxeAetpp4BZOfnciH6RrmH9E89/JKx6MllZ3aSU5AHFI1j9lLjHqy7sJ8CZSE17N3pVKsx6y7s525yLA7m1vSt05bOOVnsvl5xQy9UGf/iLpJVkSTPKpCfnx8tW7ZkwYIFdOjQgZs3b3Lo0CF27twJwOnTp7lx44ZGVz6VSoVSqeT27dulkiyhoaF4eHioE2cAAQEB2NjYEBoaSpMmTQgJCdGZ6HhQaGgonp6eGuMItWjRolS5NWvWMHv2bG7cuEFGRgYFBQVYWVlprOfNNzUHQW3RogX79u176Gs3b95c42L2wdf+p+/Pfdq2SalUcvXqVfT19QkPD2fUqFEa71NBQQHW1poJiJKto1JTU4mOjtaI0cDAgMaNG5fqullyG++Xuc/Pz6/UTKL79u1j6tSpXL58mbS0NAoKCsjJySEzM7NMg/PXrVs8JoKzs7O6223JZSdPntSoo+0zmTlzJoWFhejr6/OgJ4k9Oztba+LT1NSU1q1bM2/ePIYMGaLx+T4yYVPC/PnzGT58uPr/4cOH07ZtW1JSUtTv/ZgxY3jppZfYt28fJ06cYPXq1UydOpVNmzbRpUsXjZhKdm0tadq0aRpJaoBJkybR45UXHitOSytL9PT0SrUyS0tNxeohLYSgaKKB+bN+452JH1GnofbkeFnZ2Nigr6+v0SIMICk5uVTLsfvs7e1LlU9OTkJfXx/re++9vb09SQ+WSUrCrkSLNQcHB3x8NMcN8vbxZt/e0seUs2fPcufOHb6ZNuWxt+1BGbnZFCqVpVqZWRqbkZ6j/fMvqYV3ECfvXqZQVXrQbRUQn5kCQERqPM5WdnSt3bTckmd5x4MpuFLi4vhe10Q9OxsKS3y3FDbWKB/ovq4RZ2oamV/PAENDFFaWqBKTMB05DGVsXKmyek4OGNSvS+Y3M7SsqWyMLcxQ6CnITtfs/p2TkVmqhc3DOHq7c+tU8TgvJpZmdHj9eQrzC8jNzMbU2oKzG/djYW9TXqFryMjLolCpLNWCw9LYrFRLD21a+9Tl+J2LFOoYyN1I34AmHv5svFQxLWNLalPTl0DX4jGx8u612E3MzMTBoniMz+SsrFKt0R5GT6EgwNWV8ApueWZlbYWenh4pDyR6U1NSS7VG+yds7GwxMDBAr8S50d2zGilJyRTk52NQwZMHGZsX7SsPtsjMSc/CxEp7Kw9TK3NMrS3UiTMAKxd7UEFWSjpWTtqP7eUlPbdov7Ax0WxlZmViTmqO9iEf+gS25lrCXbaEHgUgPCWWhQVbmNRlJKvP7SWlRL3n/FrSJ7AN0/YuITwlVuv6RJFn6Rj1LMpUX5do7suWxmalWnZp09wrkODwUK3XJRUlM68o5gdbmVkYmeqMOT0nk9ScDHXiDCAuIwk9hQIbUwsSMlPpVrs5ZyKucvJu0fiqMemJGOkb8kK9Duy5fuqxkr1ClBfptlnBRo0axdq1a0lLS2PhwoV4eXnRqVMnoKh1xRtvvEFISIj6ce7cOa5fv06NGjVKrUtXAqHkclNT08eOTVvS58H1Hz9+nMGDB9OjRw82b97M2bNnmThxInl5eaXq/hO6Ek4l/dP3R5f726RQKFDeO8nPmzdPY70XL17k+PHjGvXKOqukusXNQ5I+d+7c4bnnnqNOnTqsXbuW06dP8+uvvwKPP0mBLiUHi1coFKUGjy/5fjyJJ43dwcFB6yD8+vr6bNiwgUaNGtGhQwcuXy4ehNzX11edwHyYy5cvc+LECcaPH4+BgQEGBgY0b96c7Oxsli9frlHW0tKSPn36MGXKFM6dO0ebNm345ptvNMokJSXh6Fh61kuACRMmkJqaqvGYMGHCQ+MrycDQEO9aNbhYcmwq4OKZ89R6yNhUx/YdYt7MX3jr07HUb9bosV/vnzI0NMTPz4+TJzQTrCdPnCSorvbBaoOCgkqVP3H8BP4B/uoJLYLqBnHiwTInTmiss269uqUmW7l75y4urqVnRfx74yb8/P3w9fV9/I17QKFKSXhKLH5O3hrL/Zy8ufWQ6dUBajl44GRhy9E7j9c1QoECA71yvG+VnYMyOqb4cTcCZVIyBg1KfEYGBhgEBVDwOGPp5eejSkwCfX0MWzUn71jpu7pGXTqgSk0l/+SZ8tuOe/QN9LHzcCH6SpjG8ugrYTj6PP6g5kkRsZhalz6G6xsaYGZjiUqp5G7IVTzq1ipryFoVKpXcSY4hwFkzCRzg7MPNxIePC1bb0RNnSzsO3dLd1amxhz+G+gYcfwoDQZsbGeNha6d+VLd3wN7cghNhxV3i8gsLORN+h7pujzdWEhSdI6/FxeJgXrGTBhgYGlLdtybnT2u2Ij5/OoTagdpvwj2O2nUCiImM1jiPRkdEYWtvV+GJMyjeV2Ie2FdirobhoGNfcazuTnZqBvm5xddw6XFJKBQKzGwqfrKjQmUht5OiqOOieQ0X5FJD5w0FI33DUteMyvsJgRLXVz39W9K/Tlum7/uL2484botn6xj1LLp/XVLbUXNSs9qOno/8ftd0qIajhS3HH/O6pLwUqpREpsbh66g5fqGvoydhOlof3k6KxsrEHCP94mOmo7kNSpVSPTunkb5BqdaqSpXyXgvbMjQfFuIJSPKsgg0cOBB9fX2WLVvG4sWLefXVV9XJlIYNG3Lp0iVq1qxZ6mFkZFRqXQEBAdy9e5fw8OILjMuXL5OamqpupVO3bl327NnzWLHdX19UVPFB+NixYxpljhw5gpeXFxMnTqRx48bUqlWr1I9af3//UomnB//X9tqPqvNP35/7tG2Tnp4evr6+ODs74+7uzq1bt0qt88GWLiVZW1vj6uqqEWNBQQGnT+vub+/v709BQQHBwcUzIV69elVj8oLg4GAKCgqYOXMmzZs3x9fXVyP2p03bZ1KrVi2trc6eNPYGDRpoJMZKMjY2Zt26dTRt2pQOHTpw8WLRif+FF17AyMiI6dOna613/z2dP38+bdu25dy5cxrJ0fHjxzN//nydMSkUCvz8/EpNRnHx4kUaNNA+65SxsTFWVlYaj3/abbD7gN4c2L6HAzv2EHk3gqVzFpIYl0DHnl0BWLXgL+ZO/0ld/ti+Q/x3xs8Mef1lavj5kpKUTEpSMlkl4i7Iz+fOzdvcuXmbgvwCkhMTuXPzNrGR/7zbxJBhQ9m4YSObNm7i9u3bzJr5A7ExMQx4vqg786+//MrkLyepyw94fgAx0dHM/mEWt2/fZtPGTWzauIlhJVoCDho8mJMnTrBk0WLCwsJYsmgxJ0+cZPDQwcWvO3QoFy9cZNGChYSHh7Nj+3Y2rN/ACw/M0JqRkcGe3Xvo27fvP962B+25HkxL7yBaeNXB2dKO54PaY2dmyeF7Pw76BLbhpUY9StVr6V2H20lRRKcllHquq29T/Jy8sDezxtnCjo41G9HMM4BT4eU7O+WDcjZswWTQAAxbNkXPywPzcWMgN5e8/cVTupt9+A4mrwxV/69fu2ZReRcnDAL9sPhmIigU5K7ZqLlyhQKjLh3I230AypB8f5iAjk25cfQcN46dIzUmgVNrd5OZlIZvm6J98czG/RxZ8re6fOi+U9w9d420uCRSouM5s3E/d0Ou4te2OLkcHxbF3ZCrpCekEHsjnD2/rkKlUhHYuVmp1y8vu66dpI1PPVr51MXV0p5B9TthZ2bF/ptFSZwBQe0Y2bRXqXqtfepxMzGSKC3fqZJlzkZeIzPv6Q+IrlAoGNyoKYtOHGHftSvcjI/jq22bMDEwpFtAHXW5SVs28uvB4gkl5h05yLHbN4lMSeZabAzfbN/MtbhYBtSv+JnHe73Yjz1bd7F32y4i7oSz6Nd5JMTG06V30T69bN5ifpn2g0adsBu3CLtxi5zsHNJSUwm7cYuIsOJx9Lr26UF6WjqLfplHVHgkZ46fYv2y1XTr+1yFb899fh0ac/PYeW4eO09qTCKn1+4hKymNWq3rAxCy6QBHlxSPFenVOABjc1OO/7WN1OgE4m6Ec3bDfqo3D3pqXTa3XTlGhxoNaVe9AW5WDgxv2A17M2v2XC+6VhpUrxNvtuivLn828hqNPfzpVLMxjua2+Dp48FKjHtxIiCDl3kDovfxb8WLdjvz3xEbiM1OwNrHA2sQCYwPd14pPi6mhMbUcqlHLoSix7GblQC2HajhbaB9P8ml6Vo9Rz4r9N8/Q3LsOzTwDcbawo3+ddtiaWXLk3uymvQJaMaxh6S7vzb3qEJYUTXS69vFpK9KBWyE09QykiYc/Tha29AlsjY2phTqR18OvBYPrF/fwOBt5jay8HAbV74SzhS3V7dzoFdCKk3dDKVAWtXK+HHubFl5B1HerhZ2pFbUcPOju15xLMbcfa2iN/3tKZdV8/EtJt80KZmFhwaBBg/jss89ITU3llVdeUT/3ySef0Lx5c8aMGcNrr72Gubk5oaGhWgdyB+jcuTN169Zl2LBhzJ49m4KCAt5++23atWun7ho4adIkOnXqRI0aNRg8eDAFBQVs27ZN60DrnTt3pnbt2rz00kvMnDmTtLQ0Jk6cqFGmZs2a3L17lxUrVtCkSRO2bNlSapD8999/n5dffpnGjRvTunVrli5dyqVLl0qNH1XSm2++ycyZMxk3bhxvvPEGp0+fLjUz6T99f+4zMTHh5Zdf5vvvvyctLY333nuPgQMH4uJS1Gpl8uTJvPfee1hZWdGjRw9yc3MJDg4mOTmZcePG6Vzv+++/z7fffkutWrXw9/fnhx9+KDWLZ0m1a9eme/fuvPbaa/z3v//FwMCAsWPHarQOrFGjBgUFBfz888/07t2bI0eOMGfOHJ3rrGjh4eHqz+TMmTP8/PPPzJw5U2vZJ429W7dupSZnKMnIyIi1a9cycOBAOnbsyJ49ewgKCmLWrFm88847pKWl8dJLL+Ht7U1ERARLlizBwsKCb7/9lj///JP//Oc/1KlTR2Odo0ePZvr06Zw7dw6VSsWkSZMYMWIEAQEBGBkZceDAARYsWKAx/ltWVhanT59m6tSpj/nu/XPN27ciIz2djUtXk5KUTDUvTz785jMcnJ0ASElKJjG++OJ039ZdFBYWsuSXeSz5ZZ56eesu7Xn9o3cBSE5M5ou3P1I/t23NJrat2YRf3UA+m/GffxRfl65dSE1NZcEf80lISKB6jRrM+nGWeuy5xIQEYmOKu8a4ubsz68fZzP5hFmtWr8HB0YEPP/qQjp06qsvUrVeXr6d8w9zf5zB3zlyqVavGlGlTNT6zgMAApn8/nd9++Y35f8zHzc2NDz4cR/ce3TXi27VzFyqViq7dyz5e0pnIq5gbm9LDrwVWJuZEpyXw25F16tkzrU3MsTWz0qhjYmBEfTdfVp/XPuOkkYEhg+p3xsbUgvzCAmLTk1h0aitnIh9vNtUnlbt6IwojI8zGjEZhYU7B1RukT/wGsovHodRzctAYR0NhZITpy0PQc3FClZ1D/qmzZM74GVWmZlcLgwZB6Ds7klHOs2yW5N3In9zMbM5vO0J2WiY2rg50fPtFLOyKutZnp2WQmVQ8u5uyoJAz6/eSlZqBvqFBUfm3XsQ9sLh1izK/gJDNB0lPSMHQ2Aj3wOq0eqkXRmbax84sD6fCQzE3MqV3QCusTSyISo3nx0Or1DPTWZtYYP/Ad8rU0JiG1WqzIqT0zNf3OVvY4evowQ8HlussU9FeatqC3IJ8pu/eTnpONoGu7vz84lDMjYpvIMSmp6JXomVQem4O03ZuITEzEwtjY3ydXJg7+CWNLqEVpWWHNqSnpbF2yQqSk5Lw8PZiwrRJOLoUHWuTk5JIiIvXqDP+9ffVf9+6doPDew7g6OzEr8uLbsQ4ODny+fT/sPi3P/h49LvYOdjTY0Bv+g1+vsK35z6vRv7kZuZwcftRstMysXZ1oP1bL2B+f19JzSQruXhfMTQ2osOYgZxes5vtM5ZgbG6KZ4Pa1O3V5qnFfPzuJSyMzehfpx02phZEpMYxY/9SErKKJjmxMbXE3qx4GI2Dt0MwMTSiq29ThjXsRlZeDpdib2vsI51rNcFQ34CxbQZpvNbaC/tZd2H/U9gq3fwcvfilf/G15Xuti24CbQ09xpS9uq+FnoZn+Rj1LDgbeQ1zIxO6+TXD2tic6PRE5h7boJ4908rEHFszzRajJgZG1HOtWWnf+3NR1zE3NKGLb1OsjM2JSU9k/om/NWMuMTlIXmE+c49vpH+dtrzfdhBZeTmci7rBtivFjTl23+ua2d2vOdYmFmTkZXM55rZGGSGeFoXqcfrPiTI5duwYLVu2pGvXrqUGmD916hQTJ07k2LFjqFQqatSooU62QdEA/WPHjlUPzH737l3effdd9uzZg56eHt27d+fnn3/G2dlZvc5169bx9ddfc/nyZaysrGjbti1r167Vur5r164xatQoTp48ibe3Nz/99BPdu3dn/fr19OvXD4Dx48ezYMECcnNz6dmzJ82bN2fy5MkaiaOpU6cya9YscnJyeP7553F2dmbHjh2EhITofF82b97MBx98QHh4OE2bNuXVV19l5MiRJCcnq8emetT786DJkyezYcMG3njjDb755huSkpJ47rnn+OOPP7C1Lb7Lt2zZMmbMmMHly5cxNzcnKCiIsWPH0r9/f8LCwvDx8eHs2bPUr19fXaegoICPPvqIhQsXoqenx8iRI0lISCA1NZUNGzYA0L59e+rXr8/s2bMBiImJYfTo0ezevRtnZ2e++eYbvvjiC43PYNasWcyYMYOUlBTatm3LsGHDeOmllzTehwcpFAr1Z/RgvPcnqChZf9GiRYwdO1bjM7v/Xt3/jNq3b09gYCBKpZJly5ahr6/PG2+8wdSpU9WtJR/8/jxJ7MnJyeqB+GvXrq0zvvz8fIYMGcKBAwfYs2cPdevWZffu3Xz//fecPHmS7OxsvL296dWrF+PGjePo0aMMHDiQqKgojf3hvrp169K+fXu+/PJLvv76a/bu3UtYWBgKhQJvb29efvllPvjgA/T0ihrkLl++nK+++oorV65o3Q5dTjzFmY0qSjPvOqSkpz66YBVnY2nNmHXfV3YYZfLrgI9I7vHiowtWcbbbVvPNroWVHUaZfN7lVUavmlbZYZTZHwMnkPrHn5UdRplZjx7BuUjdg5X/P6jn7stXO3W3iv5/ManrKIYtm1zZYZTJ0qGTafXrm48uWMUdGTPnmTlOPQve3zCrskMosx/7fcBHf+tutPD/4Pve71Z2CE8sbfWGyg5BK6sX+1V2CJVCkmfimfJgQkg8vgcTfxVp/PjxpKamMnfu3Ap/rSfVtGlTxo4dy9ChQx9duARJnlUdkjyrOiR5VnVI8qzqkORZ1SHJs6pFkmdVhyTPKlfaqvWPLlQJrAb2f3ShZ5CMeSaEeOomTpyIl5cXhfdmbatq4uLieOGFFxgyZEhlhyKEEEIIIYQQopLJmGdCiKfO2tpaZ9fbqsDJyUnrOIFCCCGEEEIIIf59JHkmnimTJ09m8uTJlR3G/6X9+/dXdghCCCGEEEIIIUBjcidR+aTbphBCCCGEEEIIIYQQOkjyTAghhBBCCCGEEEIIHaTbphBCCCGEEEIIIURVopRum1WJtDwTQgghhBBCCCGEEEIHSZ4JIYQQQgghhBBCCKGDdNsUQgghhBBCCCGEqEJUKmVlhyBKkJZnQgghhBBCCCGEEELoIMkzIYQQQgghhBBCCCF0kG6bQgghhBBCCCGEEFWJSmbbrEqk5ZkQQgghhBBCCCGEEDpI8kwIIYQQQgghhBBCCB2k26YQQgghhBBCCCFEVaKUbptVibQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihg3TbFEIIIYQQQgghhKhKZLbNKkVangkhhBBCCCGEEEIIoYNCpZJ0phBCCCGEEEIIIURVkbpkRWWHoJX1S4MrO4RKId02hRCiHP1xfFNlh1Bmo5v3ITo1vrLDKDNXa0deW/1tZYdRJvNe/JSU8ZMqO4wys5n+FWM3zq7sMMpkdt+xvLT8P5UdRpktGfIl6TGxlR1GmVm6ODPzwPLKDqNMPmw3hIUnN1d2GGX2atNefLf3z8oOo0w+6TiC0aumVXYYZfbHwAm0+vXNyg6jzI6MmcPgv76s7DDKZMXw//zfX4NA0XXI//u+8cfACZUdwpNTKSs7AlGCdNsUQgghhBBCCCGEEEIHSZ4JIYQQQgghhBBCCKGDdNsUQgghhBBCCCGEqEqUMjx9VSItz4QQQgghhBBCCCGE0EGSZ0IIIYQQQgghhBBC6CDdNoUQQgghhBBCCCGqEpV026xKpOWZEEIIIYQQQgghhBA6SPJMCCGEEEIIIYQQQlSq5ORkRowYgbW1NdbW1owYMYKUlJSH1nnllVdQKBQaj+bNm2uUyc3N5d1338XBwQFzc3P69OlDRETEP4pNkmdCCCGEEEIIIYQQVYlSVTUfFWjo0KGEhISwfft2tm/fTkhICCNGjHhkve7duxMdHa1+bN26VeP5sWPHsn79elasWMHhw4fJyMigV69eFBYWPnZsMuaZEEIIIYQQQgghhKg0oaGhbN++nePHj9OsWTMA5s2bR4sWLbh69Sq1a9fWWdfY2BgXFxetz6WmpjJ//nz+/PNPOnfuDMBff/2Fh4cHu3fvplu3bo8Vn7Q8E0IIIYQQQgghhBCPlJubS1pamsYjNze3zOs9duwY1tbW6sQZQPPmzbG2tubo0aMPrbt//36cnJzw9fXltddeIy4uTv3c6dOnyc/Pp2vXruplbm5u1KlT55HrLUmSZ0IIIYQQQgghhBBViUpZJR/Tpk1Tj0l2/zFt2rQyb25MTAxOTk6lljs5ORETE6OzXo8ePVi6dCl79+5l5syZnDp1io4dO6oTejExMRgZGWFra6tRz9nZ+aHrfZB02xRCCCGEEEIIIYQQjzRhwgTGjRunsczY2Fhn+cmTJ/PVV189dJ2nTp0CQKFQlHpOpVJpXX7foEGD1H/XqVOHxo0b4+XlxZYtWxgwYIDOeo9a74MkeSaEEEIIIYQQQgghHsnY2PihybIHvfPOOwwePPihZby9vTl//jyxsbGlnouPj8fZ2fmxX8/V1RUvLy+uX78OgIuLC3l5eSQnJ2u0PouLi6Nly5aPvV5JngkhhBBCCCGEEEJUJUplZUdQLhwcHHBwcHhkuRYtWpCamsrJkydp2rQpACdOnCA1NfUfJbkSExMJDw/H1dUVgEaNGmFoaMiuXbsYOHAgANHR0Vy8eJHp06c/9nplzDMhhBBCCCGEEEIIUWn8/f3p3r07r732GsePH+f48eO89tpr9OrVS2OmTT8/P9avXw9ARkYGH330EceOHSMsLIz9+/fTu3dvHBwc6N+/PwDW1taMGjWKDz/8kD179nD27FmGDx9OUFCQevbNxyEtz4QQQgghhBBCCCFEpVq6dCnvvfeeembMPn368Msvv2iUuXr1KqmpqQDo6+tz4cIFlixZQkpKCq6urnTo0IGVK1diaWmprjNr1iwMDAwYOHAg2dnZdOrUiUWLFqGvr//YsUnyTAghhBBCCCGEEKIqUakqO4Knzs7Ojr/++uuhZVQl3hdTU1N27NjxyPWamJjw888/8/PPPz9xbNJtUwjxf6t9+/aMHTu2ssMQQgghhBBCCPEMk5ZnQghRic7uOcqprfvJSE3Hwc2ZjsP6UK129UfWi7h2mxXT5uBQzZlXvtacKjonM5tDa7dxPfgiOVnZWDvY0WFIL6rX8y+XmDesWceKP5eTmJiIT3Vv3vngfeo2qKezfMiZs/w2+2du3wrDwcGewSOG0ff5furnD+47wF8LlxAZEUlhQQHuHtUYNGwwXZ/rrrGe+Lh45v7yOyePHic3N5dqnh6M//xTavv7lct2ta/RgG61m2FtYkFUWgIrQ3ZzPSFCa9lXm/SkpXdQqeVRqfFM2jlf/b+poTH967SlgXttzI1MSMhMYdW5vVyMuVUuMeti0qU9Rs0aoTA1pfBuBFkbtqCMjddZ3uKNVzCo4VNqeX7oNTIXLgVA38cLk3at0K/mip6VFZmLl5N/6UqFbUNJrbzr0rFmI6xMzIlJT2T9hQPcSorSWnZog6409QwotTw6LZHv9v1Z0aE+VKeajXnOvwXWppZEpsax9MxOrsXf1Vm+hVcdevq3xNnSnuz8HM5H32TF2V1k5GVXWIwqlYr/LlrI+r//Jj09ncCAAD4Z+wE1fEp/P0rac2A/c+bPJyIqimpubrw9+jU6tG2rfn7uwgXMW7RIo469nR071m9Q/z952lQ2b9+uUaZOQACLfp9T5u26tP8k53ccJSs1HVs3J1oM6o5rLS+tZaOu3mbzzMWllg/8agw2ro4A3D5zmbPbDpEWl4SyUIm1kx1BXVri20L3sbCszuw+wokt+8lITcPB3YXOw/vi8Zjni6VTfsOxmgsjp3yotczlY2fZ9Ntf1GoYyPMfjCzv0DWEHgjmwq5jZKdmYOPqSLMXu+JSy1Nr2ehrYWybVboFwoBJb2LjUjz4dG5WDqc37uNOyFXysrKxcLCh6fNd8KhTs8K2o32NhnSr3QwbUwuiUuNZ8YhzRiufuqWWR6bGM2nHHwB83H4otZ1KfyfPR93gp8Oryzf4f6iea02GNuiKn5MnDuY2fLr1dw7dPlepMZXUxbcJvQNaY2NqQURKPEuCt3El/o7O8q2869InsDUulnZk5edyLuo6f53eoT62NvHwp1+dtrhY2qGvp09MWiJbQo9W6DY/K9cg/6b9Qvz7SPJMCFFh8vLyMDIyquwwHio/Px9DQ8NKee0rJ0LYu3QTXV7qj7uvN+f2HWfNzPmMnPYRVva2OuvlZmWz9b8r8AqoSWZausZzhQUFrJ7xX8ysLOjzzggs7WxIT0rByOTxp5N+mL279vDLDz8xdvyHBNULYtP6jYwf+xGLV/6Js4tLqfLRkVF8OvZjevbrzcSvvuTCuQvMnj4TG1sb2nVsD4CllSUjXn0JT28vDAwNOXb4CN9+PQ0bW1uatmgGQHpaGu+89hYNGjXkux+/x8bWlqiISCxKjGVQFo2r+TGofmeWntnBjYRI2lWvz3ttBjJp+x8kZaeVKr/i7G7Wnt+v/l9fT48vu4wkOOJq8TKFHuPaDiYtN5M5x9aTnJ2OnakVOQV55RKzLsbtW2PcpgVZqzZQGJ+ISae2WLz2EmkzfoZc7a+duWQllBjzQWFuiuXYt8g/f6l4mZEhhdEx5AWfxfylh083Xp4auPnSP6gda87t5XZSFC296/JGi35M2/snKdnppcqvu7Cfvy8fVv+vp9BjfIdhnIu6/tRi1qaZZwDDGnZjcfBWrieE06FmQz5qN5QJW38jMav0d8zXwYM3mvdj6dmdnI28hp2pJa806cnIpr356fCqCotz8fJlLFu1ikkTJuBZzYP5fy5hzIfjWPvXUszNzLTWOX/xIp999RVvjhxFhzZt2HfoEJ9OnsT8X36lTkBxIrO6jw+/zfxB/b+2cUZaNm3Gl59+qv6/PI7PN09d5NjK7bQe2hPnmp6EHgxm209/MXDyGCzsbXTWG/j1OxrHThNLc/XfxuamNHiuLTYuDujr63PnwjUOLN6AqZU5HoHln7AJPX6W3X9tpNsrA3Cv5UPIvmOsmjGP0d+Ox9pB9/kiJyubzXOX4x1Yk8zUDK1lUhOS2Lf878e6cVNWt4IvcWL1TloM7oFzDQ+uHDrDzl+XM+DLN7Gws9ZZ7/nJb2Go8VkUfxcLCwrZ8dNSTCzN6fj685jbWJKRnKZRvrw18fBnsPqcEUHbGg14v80gvtwxjyQt+/OKkN2svbBf/b++Qo9JXUdxOqL4BsRvR9ehr1e8T1gYmTKp6yiCI57OTYqHMTU05kZiBFuvHGVqjzcrOxwNLbzq8HKjHsw/tZmrcXfpXKsJn3Yczod//0JiVmqp8rUdPRnTcgBLTm/jdMRV7MysGN2sN68378sPB1cAkJmXzYaLB4lMjadQWUhD99q82aIfqTmZnI++Ue7b8Kxcg/zb9ounQvnv67ZZlUm3TSGeESqViunTp1O9enVMTU2pV68ea9asAWD//v0oFAr27NlD48aNMTMzo2XLlly9WnSSvXr1KgqFgitXNE9EP/zwA97e3up+5ZcvX+a5557DwsICZ2dnRowYQUJCgrp8+/bteeeddxg3bhwODg506dIFgE2bNlGrVi1MTU3p0KEDixcvRqFQkJKSAhRNJzxkyBCqVauGmZkZQUFBLF++XCOWzMxMXnrpJSwsLHB1dWXmzJml3gOFQsGGDRs0ltnY2LDoXmuHsLAwFAoFq1aton379piYmPDXX3891utXhODtBwlq24S67Zth7+ZMx2F9sbSzIWTPsYfW27loLQEtGuBWs/SduAsHT5GdkUW/916hmq8P1g62VPP1wcnTrVxiXr1sBc/16UWvfr3x8vHm3XHv4+TsxMa1G7SW37RuA04uzrw77n28fLzp1a83PXr3ZOVfxe9vg0YNadOhHV4+3rhXc+eFwQOpUbMGF86dV5dZtmQpTk5OfPrlZ/gHBuDq5kqjpo1xr+ZeLtvVxbcph2+f4/Dt88SkJ7Ly3B6Ss9JoV6OB1vLZBbmk5WaqH162LpgZmXAkrDjm1j51MTMy4bcj67iZGElSVho3EiOISI0rl5h1MW7dnJy9h8i/GIoyNo6sletRGBpiVL/03d37VNnZqDIy1A/DWjUgP5+8Esmzgqs3yNmxl/yLoRUa/4Pa12zIiTuXOH73ErEZyay/eICU7Axae2vfnpyCPNJzs9QPTxtnTA1NOHH3ktbyT0v32i04cOssB26dJSotgaVndpKUlUrHWo21lq/hUI34zBR2XTtJQmYK1xLC2XfjND52rhUWo0qlYvnq1bw6YgQd27ajZvXqfDXhM3Jyc9m+e5fOesvXrKZZo8a8Onw43l5evDp8OE0bNWLZas1WAQb6+jjY26sftjY2pdZlaGSoUcbayqrM23V+1zFqt26IX5tG2Lo60nJQDyxsrbl8IPih9UwtzTGztlQ/9PSKL5vdavvg08AfW1dHrJzsCOrUHDt3Z2Ju6G5JWBYntx2kXrum1GvfHAd3ZzoP74eVvQ1n9xx9aL0dC9bcO194a31eqVTy9+9LaT2gGzaOdhUQuaaLe07g27I+tVs3wMbVgeYDu2Jua8WVg6cfWs/E0hwzawv1o+Rncf1oCLmZ2XR+80Wca3hgYW+DS01P7Ks5V9h23D9nHLp9juj0RFaG7CY5O432us4Z+bmk5WSqH/fPGYdvF58zMvNyNMoEOPuQV5hPcHjlJwmO373EvBObOHArpLJDKaWnf0v23TzDvhtniEpLYMnpbSRmpdHFt4nW8rUcPIjPTGH71RPEZ6ZwNf4uu68HU8O++HricmwYp8JDiUpLIDYjmW1Xj3M3JRY/J+0tJMvqWbkG+bftF+LfR5JnQjwjPv/8cxYuXMjvv//OpUuX+OCDDxg+fDgHDhxQl5k4cSIzZ84kODgYAwMDRo4s6ppRu3ZtGjVqxNKlSzXWuWzZMoYOHYpCoSA6Opp27dpRv359goOD2b59O7GxsQwcOFCjzuLFizEwMODIkSPMnTuXsLAwXnjhBfr160dISAhvvPEGEydO1KiTk5NDo0aN2Lx5MxcvXuT1119nxIgRnDhxQl3m448/Zt++faxfv56dO3eyf/9+Tp9++MW2Lp988gnvvfceoaGhdOvW7bFev7wVFhQQExaJdx1fjeXedXyJvKG7q8GFg6dIiUukZb8uWp+/cfYybjW92L1kPb+++xULP/ue43/vQalUljnm/Px8rl65RpNmmhekTZo14dL5i1rrXLpwqVT5ps2bcjX0CgUFBaXKq1QqTp8MJvzOXeo1qK9efvTQEWr7+zHp08/p160Xo4e/yuYNm8q8TVB0p9PL1oXLMWGasceGUcPh8ZJzrX3qERobpnFntZ5bLW4lRjK0YVdm9n6XyV1H8ZxfCxQoyiVubfTsbNGzsqTgWok744WFFNy6g4GXx2Ovx6hJQ/LOXYT8/AqI8vHpK/SoZu1UqvvNlbg7eD9mEqmZVyDX4u+SrKWV2tOir6eHt50rF2Nuaiy/EHOLWg7aP5frCeHYmVlR17WoFZOViTlNPAMqtAVdZHQ0iUlJNG9cvM8aGRnRsF49zl/Uvo8DnL90iWZNNPfz5k2acv6SZp27ERF0H9CfPoMGMuGryUREle56ezokhC59+zBg2FC+mT6dpOTkMm1TYUEBCXejqBZQQ2N5tYAaxN4Mf2jddV/P5c+PvmfzD4uJunJbZzmVSkVk6C1SYxN1dgUti6LzRQTeQbU1lnvXqU3k9TCd9c4fPElyXCKt+3fVWebI+p2YWlpQr32z8gpXp8KCQhLvRuMWoNnCzd2/OnG3tHfrum/j1Hks/2Q222b/RfTVMI3n7p6/hlP1ahxdsZ1l42ex7j9zObftcLmc97TR1ys6Z1yK1fxOXIq5TQ37ao+1jjbVS58zHtTapy4n714mr7Byj8NVmb6ePj52rpyP1jy2no++ga+j9kTXtfi72JlZUd+tFgDWJuY08wzkTOQ1na9Tx6U6rlYOhMbqvj57Us/KNYjsF+LfQLptCvEMyMzM5IcffmDv3r20aNECgOrVq3P48GHmzp3L66+/DsCUKVNo164dAJ9++ik9e/YkJycHExMThg0bxi+//MLXX38NwLVr1zh9+jRLliwB4Pfff6dhw4ZMnTpV/boLFizAw8ODa9eu4etblASqWbMm06dPV5f59NNPqV27NjNmzACKEnUXL15kypQp6jLu7u589NFH6v/fffddtm/fzurVq2nWrBkZGRnMnz+fJUuWqFuzLV68mGrVHu9k/KCxY8cyYMAAjWUPe31tcnNzyc3N1VhmbPz4XUSy0zNRKZWYW2t2OzS3tiAzVfuP/OSYeA6u3sqQiW+jp2Na5dT4RO6GJhPQogHPjxtFcmwCu5esR1mo1Jlwe1ypKakoCwuxtddsnWBrZ0dSYqLWOkmJidjaab6HtvZ2FBYWkpqSgr1D0Zg1GRkZvNCzP/l5eejp6/PB+HE0LpF0i4qMYuO6DQwcOojhr75E6KXL/DRzNoaGhnTr2aNM22VhbIa+nh5puZkay9NzMrE2MddRq5i1iTl1XKrzxwnNZJ6DuQ1+Tl6cuHuJHw+twtnSjqENuqKn0GNz6JEyxayLwtICAGWG5rYoMzLQ09LKRxt9D3f0XZ3JWrOxvMP7x8yNTdHX0yM9J0tjeXpuFlYm2rsQlmRlbIa/kzd/nt5WUSE+Fst737HUHM3PJe0h37EbCRHMObaeMa2ex1DfAAM9fc5EXOXP09u1li8PiUlF+7G9neY+bm9rR3RszEPqJWFvq9l10N7WlsSkJPX/dfwD+Oqzz/Cq5kFicjLz/1zCqDFvs3LRYmysi7rrtWzWjM7tO+Di7ExUdDRzFsznzQ/G8td/5z3xEAA5GVmolCpMrTTfZ1Mrc7LStHdjNLO2pM2I3jh6ulJYUMj14+fYPGsxvT98BVdfb3W5vKwc/vpkJoX5hejpKWg1tGepJF15yLp/vrCy0Fj+sPNFUkw8+1duYfjn7+g8X0Rcu835Ayd5dco4rc+Xt9z7n4XlA5+FpTlZOrqUmllZ0mrYc9h7uqIsKOTGiQts+/EvnvtgBC73EpXpCSlEXw2jetM6dB0zmLS4JI6t3I5SqaRBz7Za11sWFkb3zhkP7s+5/+ScUYN5x3UfY33sXKlm48Ti4K1ljvdZZmVshr6ePqnZmt+f1OxMbNwstNa5lhDOL0fW8H6bgepja3B4KItObdEoZ2pozO8DPsJA3wClSsmCk5u58MANkPLwrFyDyH5RQf6Fs21WZZI8E+IZcPnyZXJyctSJpfvy8vJo0KC4qXTdusXdnFxdi1ptxMXF4enpyeDBg/n44485fvw4zZs3Z+nSpdSvX5+Ae+PVnD59mn379mFhUfpi5ObNm+rkWePGml2Qrl69SpMHWiQ0bdpU4//CwkK+/fZbVq5cSWRkpDoxZW5url5/Xl6eOjEIRdMY166teRf+cT0Y46NeX5tp06bx1VdfaSybNGkS1bo3/GfBPHADUKUChZabgkqlks1zltGqf1fsXBx1rk6lVGFmaUHXV19AT08PF59qZKSkcmrrgTInz4pD1gxQpSvo++UVWsrfW9N9ZmZm/PHXQrKzszlzKphfZ/+Cq7sbDRo1vLddSmr7+/Ha228AUKu2L2G3wti4dkOZk2el4yq57NH1WnoHkZWfw9kH7lrrKRSk5WayJHg7KlTcTYnFxsSCrrWblduFq2GDIMwG9Fb/n3FvcP/SgSuAx7sAM2rSkMLoWArDI8slxoqgUDzeZ9PUM5Ds/FwuRJf/D54noiVmXZvhZuXA8Ibd2XjxIBdibmJjYsmgBp15pUlP5p/8u1zC2bZrJ1NLdIGf/e13QOndWaVSldqPS3lwP0ezTqvmzdV/1wTqBgbSb+gQNm/fzvBBgwDo2rFTcZnq1Qnwq02vgQM5fPwYHdu2+yebVjq8Usct3WVtXBw0BqN3ruFBRnIa53Ye1UieGZoY8fwXb5Kfm0dU6G2Or96BlaMtbrUfPrnCkyr1GagodQ6BovPFpt+W0mZAN+xctZ8vcrNz+Pv3ZXQf9SJmltqTDBWl1DlBy7L7rF3ssXaxV//vVL0amclpXNh1XJ08U6lUmFia02pYT/T09HDwciUrNZ0Lu45XSPKsZNwlKVA81lG2pXfdonNGlO6WTq196hGREsftpOgyxfhvUep9V2g/pwO4WzvycuPnWHthP+ejbmBjasmwhl0Z3aw3c0skbnLy8/hky++YGBpRx6U6Ixp1Jy4jmcuxYRWzDf+H1yDayH4hnmWSPBPiGXC/a8KWLVtwd9ds4m1sbMzNm0U/HEsOvHz/QvV+XVdXVzp06MCyZcto3rw5y5cv54033tB4jd69e/Pdd9+Vev37iTigVMJJ24+uBy8QZs6cyaxZs5g9ezZBQUGYm5szduxY8vLytJbXRaFQlCqbr6Xb2YMxPur1tZkwYQLjxmnerTc2NubPszseK1ZTS3MUenpkpmi2GshKy8DMqvQg+HnZucTcjiD2ThS7/9wA3HtfVCq+f/UTXvz4NbwCamJuY4Wevp7GeDD2rs5kpqZTWFCAvsGTH/atbazR09cv1cosJTkZOzvtY+XY2duXLp+UjL6+PtY2xYND6+npUc2jqCVhLd9a3Ll9h2WL/lInz+wd7PHy8dZYj5e3Fwf37X/i7bkvIzeLQqUSaxPNH5CWJual7gRr08q7LsfvXKJQpdlFKCUng0KlElWJy8bo9ERsTC3QV+iVKv8k8i9fJf1uiSSXQVELEz1LCwrTi+/E61mYo0p/9LZgaIhRvTpk79xX5tjKQ2ZuNoVKJZYPtDKzMDIjPTdLR61izTwDCI4ILZf3uizS73/HTDWPPVYm5qXu0t/XO6A11xPC2XqlaAzEcOLIPZXH511eZc35faTmaG+p80+0bdWaOv7FA/rn3TteJiQm4WBfnDxKSknG7oGWZSXZ29lptDIDSEpOeWgdU1NTavhUJzxCd3c9B3sHXJ2dufuQMo9iYmGGQk9RqpVZTnomZlaPnzRy8qnGjRPnNZYp9PSwdipK7Dh4uJIcE0/ItsPlnjwzu3e+yHiglVlmWgbmOs8X4cTeiWTnkvVA8fniu5c/ZtD41zG1MCM1IYk1PyxQ17t//vzu5Y95ffon2Do7lFp3WRg/5LN4sGXgwzj6uHPz5AX1/2bWFij0NM971i4OZKdlUFhQiL6B9pZ3Tyoj7/45QzNmS2MznftzSa196nL8zkUKdXQrNdI3oImHPxsvHSqXeJ9lablZFCoLsTHV3JetTcxLtfS9r19gG67F32Xz5aIE0t2UWHJP5vFVt9GsPLeHlHut2FSoiM0oOq7dSY7B3dqRvoFtyz159v98DVKS7Bfi30CSZ0I8AwICAjA2Nubu3bvqbpkl3U+ePcqwYcP45JNPGDJkCDdv3mTw4OIZ9Ro2bMjatWvx9vbG4B8kYPz8/Ni6VbN5dXCw5iDNhw4dom/fvgwfPhwoStRdv34df39/oKgrqKGhIcePH8fTs2gMi+TkZK5du6axvY6OjkRHF9+Nun79OllZj/6B/ajX18bY2PgfddN8kL6BAS7e7ty5dB3fxsXTjd+5dI2aDQJLv56pMa9M+VBjWcieo9wNvUGfd17C+t5Az+61vAk9fhaVUoni3g+J5Nh4zG2sypQ4g6Lka20/X4JPnqJNh+L3PfhkMK3attZaJzAokKOHNQe0PnXiFLX9/R7+PVKpyMsvTl7WqRtE+B3NgbjD74ZrneHznypUKbmTHIO/s7fGHc8AZ29CIh8+vpSvoyfOlnYcPrqu1HM3EyJo6hmo0ebL2cKOlOz08rtozc1DmauZtFCmpWNQqwaFUfe62enrY1Ddi+ytux+5OqO6gWCgT/7Zc+UTXxkVqpREpMZR29FTo/VYbSdPLkbfemjdmvbVcLSw5fjJzRUd5iMVKpWEJUVTx6U6p0vMhlbHpTpnIq9qrWNkYFhqzCblveTGoxqBPS5zMzONGTRVKhX2dnacCA7G715r4vz8fM6cO8e7JW6mPKhuYCAngk8xrMQYmCdOnaJuYB2ddfLy8gi7e4cGdXVPZJGSmkpsfDwOdvY6yzyKvoEBDp5uRF6+iU+D4mN6ROhNvOv5PfZ6EsOjMbN+RLJNVTQ+WXkrOl9UI+ziNWqXOF+EXbxGrYbazxejpn6ksezMnqPcuXyd/u++jLWjHXp6eqXKHFyzjbycXPVkBOW/HfrYe7oSFXob7/rF731U6G086/k+pKampPAYjcSnU/Vq3Dp1CZVShUKvaOdIi0vC1Nqi3BNnULQ/30mOIcDZR6O1T4CzDyEPaTUDRTM9OlvaceiI7mNsYw9/DPUNOH6ncic5+X9QqCzkdlI0QS41OBVePJlNkEsNnbMxPvTY+pDxwBSAoY4u0GXxf30NUoLsFxWkkm/+CU0yYYAQzwBLS0s++ugjPvjgAxYvXszNmzc5e/Ysv/76K4sXL37s9QwYMIC0tDTeeustOnTooNGKbcyYMSQlJTFkyBBOnjzJrVu32LlzJyNHjqSwsFDnOt944w2uXLnCJ598wrVr11i1apV69sv7LdJq1qzJrl27OHr0KKGhobzxxhvExBSPr2NhYcGoUaP4+OOP2bNnDxcvXuSVV17RuMsM0LFjR3755RfOnDlDcHAwb775pkZrO10e9foVpXH3tpw/cJILB0+SGBXL3qWbSEtMoV7Hou6pB1dtZcvcolkpFXp6OFZz0XiYWVmgb2iAYzUXjIyLxgOq37EF2RlZ7Fm6iaSYeG6GhHL877006NSyXGJ+cehgtmzczNZNm7lzO4xffviJ2JhY+gzoB8B/f53D1Elfq8v3GdCP2OgYfp31M3duh7F1U1HdQcOHqMssXfQnwSdOERUZyZ2wO6xauoIdW7fTpXu3Eq87iMsXL/HXwiVEhEewe/tONm/YRL8XNceue1K7rp2kTfV6tPKui4ulPQPrdcLOzIoDt84C0L9OO0Y26VWqXmufutxKjCQqLaHUc/tvnsXCyITB9bvgbGFLkEsNnvNvwb4bZ8olZl1yDx/HpGMbDAP90HN2wmxgP1T5+eSFFLeaMRvUH5PunUvVNWrakPxLV1BlZZdesZER+q4u6LsWJSz17GzRd3VBUaIFYUXYf+MMzb3q0MwzAGcLW/rVaYutqaV6VrFe/q0Y1rD0gOjNvAIJS4omJl37eHxP2/arx2hXvSFtq9fHzcqBoQ26Ym9mzd7rRROfvFivI68376sufzbyGo08/OhYsxGO5jbUcvBgeKNu3EyIVLeMKG8KhYIhL77IwqV/se/gQW7cusXkadMwMTame+fibt9fTpnCL/+dq/5/8AsvcCI4mEXLlhJ25w6Lli3lxOlghr74orrM7N9+5XRICJHRUVy8fJlPvvySzMxMenXvDkBWVhazf/uV8xcvEhUdTfDZs4yb8Ck21tZ0aFu2rnd1u7TgyuEzXDl8huToeI6u3E5GUir+7Yq68J9ct5t9C4p/fF7YfYyws6GkxiaSFBXHyXW7uX0mlMAOxUMOnN12iIjLN0mLTyIlOp7zu45y7dg5ajXTnQwsi6Y92nJu/wnOHThBQmQsu//aSFpiMg06FZ0v9q/cwt9zlgH3zhcerhoPMysLDAwNcfRwxcjEGAMjw1JljM1MMTIxxtHDtcw3W3Sp06kZ146c5drREFKiEzixeicZyan4tSlqZRy8YS8HFhV3nbu05wR3Qq6SGpdEclQ8wRv2Enb2Cv7ti4eD8GvbiJzMbI6v3kFqbCLhF65zbvsR9edbEXZdO0kbn3q08qmLq6U9g+oXnTP23yw6ZwwIasfIptrOGfW4qeOcUbLM2chrZOZpOQ5XElNDY2o5VKOWQ1ELcTcrB2o5VMPZQnfr0qdlS+hROtZsSPsaDXCzcuClRt1xMLdm9/VTAAyu35m3WxZfK5yJuEoTzwC61GqCk4Utvo6evNLkOW4kRKgnlukb2IYglxo4WdjiZuXAc/4taVO9PoduV8yNpWflGuTftl+Ifx9peSbEM+Lrr7/GycmJadOmcevWLWxsbGjYsCGfffbZY884ZWVlRe/evVm9ejULFizQeM7NzY0jR47wySef0K1bN3Jzc/Hy8qJ79+6lklgl+fj4sGbNGj788EN+/PFHWrRowcSJE3nrrbfULbe++OILbt++Tbdu3TAzM+P111+nX79+pKamqtczY8YMMjIy6NOnD5aWlnz44Ycaz0NR98tXX32Vtm3b4ubmxo8//vhYM3I+zutXBL9m9cnOyOLoxt1kpqTh4O7C8+NGYe1QdDGakZpGelLKP1qnlb0NL348mn3L/mbR5z9gYWNFo66tadqzQ7nE3LFLJ9JSU1k8fxFJCYn41PDhu1kzcLmXUElMSCQ2NlZd3tXdjW9nz+DXWT+zYc067B0cePfDsbTr2F5dJjs7m1nTZxIfF4exsTGeXl5M/M+XdOxSPP6RX4A/X0+fyrzf5rJ4/iJc3Vx5Z9x7dOmuexa5fyI44goWxqb0CmiFtYk5UWkJ/HRotXrGJxtTC+zMrDTqmBoY09C9NitDtLfoSs5OZ9bBlQyq34lJXUeRnJ3OnuvBbLtyvFxi1iV3/2EUhgaY9u+FwtSEwvBIMub9CbnFLfn0bKxLDaai52CPgY8XGfO0J9wNqrlh8ear6v9NexclPfKCz5K1akP5b8g9Z6OuYWZkQrfazbEyNiM6PZG5xzeqf+RYmZhja6r52ZgYGFHPtSbrLh7QtspKceLuZSyMzOgb2BYbUwsiUuOYeWAZiVlFxxkbEwvszYoTkYdvn8PUwIjOvk0Y0qArWXk5XI67zaqQPRUa58tDhpKbm8u3s34gPSODOv7+/PL9TI0WajFxsejpFbfQqFcniClfTuL3+X8wZ/58qrm5MW3yZOoEFHcJjY2PZ+J/viIlNRVbGxvqBASw8Pc5uN5rPaqnr8+NW7fYsmMH6RkZONjb07hBA6ZOnqzx2k+iRpM65GRmcWbLAbJSM7Bzc6LHu8OwvNe6Kis1nYyk4uN9YUEhx9fsJDMlHQNDA2zdnOj+7lA8g4pbRxXk5nF42RYyk9MwMDTAxsWBjqMGUKOJ7tZ2ZeHfvAHZGVkc2bCr6HxRzZUXPxqNtUNRq+OMlDTSElMq5LXLU/XGgeRmZhOy5RBZaRnYujrSdcxgLNSfRQaZJT+LwkJOrttNVko6+oYG2Lo60mXMYDzq1FSXsbCzpvt7QzmxehcbvvkvZjaWBHZoQlC38rlppM2p8FDMjUzpHdAKaxMLolLj+fHQKvU5w9rEAvsHzxmGxjSsVpsVIbt0rtfZwg5fRw9+OLC8wmJ/En6OXvzSv3ioivdaFyXGt4YeY8rex79JWxGO3bmIhbEpzwe1x8bUkvCUOL7d9xcJmUXfI1tTSxzMi4+tB26FYGJoTNfazRjeqBuZeTlcir3NsjM71WWMDYwY2bQX9mZW5BXmE5WWwK9H1nLsju5Zh8viWbkG+bftF+LfR6F63MGEhBCinEyZMoU5c+YQHh5e2aGUuz+Ob3p0oSpudPM+RKfGV3YYZeZq7chrq7+t7DDKZN6Ln5IyflJlh1FmNtO/YuzG2ZUdRpnM7juWl5b/p7LDKLMlQ74kPSb20QWrOEsXZ2b+n/+Q+rDdEBZWgW7FZfVq0158t/fPyg6jTD7pOILRq6ZVdhhl9sfACbT69c3KDqPMjoyZw+C/vqzsMMpkxfD//N9fg0DRdcj/+77xx8AJlR3CE0v9ae6jC1UC6/d0D+XwLJOWZ0KICvfbb7/RpEkT7O3tOXLkCDNmzOCdd96p7LCEEEIIIYQQQohHkuSZEKLCXb9+nW+++YakpCQ8PT358MMPmTDh//cukBBCCCGEEEKIfw9JngkhKtysWbOYNWtWZYchhBBCCCGEEP8fZIStKkVm2xRCCCGEEEIIIYQQQgdJngkhhBBCCCGEEEIIoYN02xRCCCGEEEIIIYSoSqTbZpUiLc+EEEIIIYQQQgghhNBBkmdCCCGEEEIIIYQQQugg3TaFEEIIIYQQQgghqhKlsrIjECVIyzMhhBBCCCGEEEIIIXSQ5JkQQgghhBBCCCGEEDpIt00hhBBCCCGEEEKIqkRm26xSpOWZEEIIIYQQQgghhBA6SPJMCCGEEEIIIYQQQggdpNumEEIIIYQQQgghRFUi3TarFGl5JoQQQgghhBBCCCGEDpI8E0IIIYQQQgghhBBCB+m2KYQQQgghhBBCCFGVKKXbZlUiLc+EEEIIIYQQQgghhNBBkmdCCCGEEEIIIYQQQuigUKlkCgchhBBCCCGEEEKIqiL1u9mVHYJW1p+MrewQKoWMeSaEEOUoPTqmskMoM0tXF1KXrKjsMMrM+qXBdJzzbmWHUSZ73/yZlI+/qOwwysxmxtf8dGhVZYdRJu+1Gcjgv76s7DDKbMXw/5A69YfKDqPMrD8bx5/B2yo7jDIZ0bgHc46ur+wwyuzNlv0rOwRRwrNynGr165uVHUaZHBkzh3fX//8fa3/uP46u88ZWdhhlsvO12ZUdgnhGSLdNIYQQQgghhBBCCCF0kJZnQgghhBBCCCGEEFWJjLBVpUjLMyGEEEIIIYQQQgghdJDkmRBCCCGEEEIIIYQQOki3TSGEEEIIIYQQQoiqRCndNqsSaXkmhBBCCCGEEEIIIYQOkjwTQgghhBBCCCGEEEIH6bYphBBCCCGEEEIIUZXIbJtVirQ8E0IIIYQQQgghhBBCB0meCSGEEEIIIYQQQgihg3TbFEIIIYQQQgghhKhKlMrKjkCUIC3PhBBCCCGEEEIIIYTQQZJnQgghhBBCCCGEEELoIN02hRBCCCGEEEIIIaoSmW2zSpGWZ0IIIYQQQgghhBBC6CDJMyGEEEIIIYQQQgghdJBum0IIIYQQQgghhBBViXTbrFKk5ZkQ4l9n//79KBQKUlJSKjsUIYQQQgghhBBVnLQ8E0I8FTExMUyZMoUtW7YQGRmJk5MT9evXZ+zYsXTq1Kmyw3sqVCoV/120iPWb/yY9PZ1A/wA+GTuWGj4+D62358AB5iyYT0RUFNXc3Hh79Gg6tGmrUSYuPp6f587l6MkT5OTm4lXNgy/Gj8e/du1S65sy83vW//0348a8w9AXXyyX7Zp3aD8bzp4mPSebQLdqfNy9JzUcnR6r/s5LF/h8wxra+vrx/YtDNLcrLY1f9u3i6M3r5OYX4Glnz+e9+uLv6lbmuB/UJ7ANg+p1wt7MirDkaH49so4LMTd1lu8b2IZ+ddriYmlHXEYyf53Zya5rJzXKmBuZMqppL9r41MPS2Izo9ETmHFvPibuXyz3+kky6dMCoWWMUZqYU3o0ga/1mlLFxOstbvDkSgxqlv4f5oVfJXPAXAMYd2mIY5I++oyOqgnwKw8LJ3roTZXxCucd/Yd8Jzu44TFZKBnZuTrQe3AM3X2+tZSOv3GbD9wtKLR/69XvYujoCcOlgMFePhZAUGQuAo5cbzft3wbl6tXKPvaQuvk3oHdAaG1MLIlLiWRK8jSvxd3SWb+Vdlz6BrXGxtCMrP5dzUdf56/QOMvKyAWji4a/+zunr6ROTlsiW0KMcun2uQrfDuE0LjOoHoTAxoTAqmuwde1EmJD6ikjEm7VthWLsmChMTlCmp5Ow5SMHN20VPt2iCQe1a6NvboSoooDAiipx9h1AmJVfINgTvOsyxLXvJSEnD0d2FriP64+lX45H1wq/eYsk3v+BUzYXXpo1XLz+z9xgXDp8iPjwaABcfDzoM6ol7Da8KiR/g3N5jBG87SGZKOvbuzrQb2otqvg8/fwBEXg9j9bf/xcHdmeH/eV/juTM7D3N+33HSElMwtTCnVpM6tH6hOwaGhhW1GaIKeVaOUY+jnmtNhjboip+TJw7mNny69fcqEdd9bXzq0alWY6xMzIlOS2Tdhf3cTIzUWnZ4w2408wostTw6LYGpe5YA4GJpT0//lnjYOGFvbs3a8/vYf/NsRW4CAL39W/FivY7YmVpxJzmG34+v52LMLd3lA1rTN6ANzpa2xGWksDxkF7uvn1I/38q7LkPqd8bNyhEDPT0i0xJYc34fe24EV/i2CPEgSZ4JISpcWFgYrVq1wsbGhunTp1O3bl3y8/PZsWMHY8aM4cqVKxXyunl5eRgZGVXIup/E4uXLWbZ6FZM+nYBntWrM//NPxnz0IWv//AtzMzOtdc5fushnX33Fm6NG0qF1G/YdPsSnkycz/+dfqBMQAEBaejqj3nmHxg3q8+N307GzsSEiKgpLC4tS69t/6BCXLofi6OBQbtu15Nhhlp84xpe9++FpZ8+CIwd5d9kSVr/5LubGxg+tG52awk97dlLfo/QPzrTsbF5bMp9GXt78OGg4tubmRCQnY2liUm6x39e+RkPGtBzAj4dWcTHmFr0DWvFtz7d4deUU4jJK/5jvE9Ca0c16M/PACq7G3cHPyYsP2w0hIzeLY3cuAmCgp8+MXmNIyc5g8q75JGSk4GhhS1Z+brnHX5Jx+zYYt21J1sr1FMYnYNK5PRavvUzajB8hN09rnczFy8FAX/2/wswMyw/eJv/8JfUygxre5B09SUF4JOjpYdq98731/gT5+eUW//WTFzi8YhvthvXCpaYnlw4G8/ePfzL0P+9iaW+js96wb97H0LT4+2Zqaa7+O/LqbWo1DcKlRk8MDA04s/0wm2YtZsh/3sXC1qrcYi+phVcdXm7Ug/mnNnM17i6dazXh047D+fDvX0jMSi1VvrajJ2NaDmDJ6W2cjriKnZkVo5v15vXmffnh4AoAMvOy2XDxIJGp8RQqC2noXps3W/QjNSeT89E3KmQ7jJo3wbhpQ7I270CZlIxxq2aYD3me9LkLIU/H566nh/mQ51FlZZG1bjPKtHT0rCxR5RV///Q9Pcg7HUJhdCzoKTBp17povf9dBPkF5boNl46dYeef6+nx6gt4+PpwZu9Rlk+fy5vTJ2DtYKuzXk5WNhvnLMUnsBaZqekaz90JvUFgi4ZUe8kbAyNDjm3ew7Jvf+eN7z7Fys6mXOMHuHriHPuXbabjiL641fLmwv4TbPhhIS9NGYfVQ/aL3Kwcdsxbhad/DbLSMjSeCz12lsOrt9N15Au41vIkJSaBHfNXA9B+SO9y3wZRtTwrx6jHZWpozI3ECLZeOcrUHm9WaiwPaujuy4C67VkVsodbSVG08q7LWy37M2X3YpKz00uVX3N+HxsvHVL/r6/Q49NOIzgbeV29zEjfgISsVM5GXmNA3XZPZTvaVW/Amy368/ORNVyKvU1Pv5ZM6f4Go1dPIz4zpVT5Xv6tGNmkF7MPreRq/F38HD0Z22YQGblZHL9bdP2RnpvF8pBd3E2Jo6CwgGaegXzUbggpORmcjqiY3w9VilJZ2RGIEqTbphCiwr399tsoFApOnjzJCy+8gK+vL4GBgYwbN47jx48TFhaGQqEgJCREXSclJQWFQsH+/fvVyy5fvsxzzz2HhYUFzs7OjBgxgoSE4lYv7du355133mHcuHE4ODjQpUsXALZu3Yqvry+mpqZ06NCBsLAwjfgSExMZMmQI1apVw8zMjKCgIJYvX16u74FKpWL5mtW8OnwEHdu2pWb16nw1YQI5Obls371bZ73la9bQrHEjXh02HG8vL14dNpymDRuxbM1qdZnFy5bh7OTIpE8nUMffHzdXV5o2akQ1d3eNdcXFxzP9xx/5+vPPMdAvn3snKpWKFSeP80qrNnTwC6CGkzOTevcnJz+fHZfOP7RuoVLJlxvW8lrb9rjblv4Bu+TYYZysrPiyd38C3avhZmNLU5/qVLO1K5fYS3qxbge2XTnG1ivHuJsSy69H1xGXkUyfgNZay3fxbcLmy0fYf/MM0emJ7Lt5hm1XjjG4fmd1mR5+zbEyNuOLHf/lUsxtYjOSuRhzi1s67iSXF+M2LcjZc5D8i5dRxsaRtWItCiNDjBrU1VlHlZ2NKj1D/TCsVQPy88k7d1FdJvOPJeQFn0UZG4cyOoasVevQs7VBv1r5tgIM2XUU/9YNCWjbGDs3J9oMfg5LWysu7j/50HqmVuaYW1uqH3p6xZc4XV97kaAOzXD0dMXW1ZEOL/dFpVIREaq7ZWFZ9fRvyb6bZ9h34wxRaQksOb2NxKw0uvg20Vq+loMH8ZkpbL96gvjMFK7G32X39WBq2Bfvx5djwzgVHkpUWgKxGclsu3qcuymx+Dl5Vth2GDdtQM6RkxRcvYEyPpHsv3egMDTAKNBPZx2jenVQmJqQtWYThRFRqNLSKYyIQhlXfLzOWrmO/AuXUSYkooxLIHvLDvSsrdB3cS73bTixbT/12zejQYcWOLi70HXEAKzsbTi9+/BD622dv4o6LRvhXsu71HP9x4ygcZfWuHhXw8HNmZ6jB6NSqgi7dK3c44eiFmJ12jYmqF1T7N2caD+0N5Z21pzfe/yh9XYvXodf8/q41iz9HYm+cRe3Wl74taiPtYMdXnV8qd2sHrG3K/YYJaqGZ+UY9biO373EvBObOHArpLJDKaVDzUYcC7vIsTsXiU1PYt2F/SRnp9Pap57W8jkFeaTnZqkfnrbOmBqacPxO8Tn7bkosGy8e5EzkVQoKC5/Kdjwf1J7tV0+w/epxwlNimXN8PfEZKfTWcS3VqVZjtoYe5cCts8SkJ7L/1lm2Xz3BwHrFPVLOR9/gSNgFwlNiiU5PZMOlg9xKiqKO86Nb3QpR3iR5JoSoUElJSWzfvp0xY8Zgbm5e6nkbG5vHWk90dDTt2rWjfv36BAcHs337dmJjYxk4cKBGucWLF2NgYMCRI0eYO3cu4eHhDBgwgOeee46QkBBGjx7Np59+qlEnJyeHRo0asXnzZi5evMjrr7/OiBEjOHHixBNv94Mio6NJTEqieZPG6mVGRkY0rF+P85cu6qx3/tIlmjXRvJBt3rQJ5y8Vtwg6ePQI/rX9+GTSl3Tp15eho0exfvPfGnWUSiVfTp3CiMGDH9lN9J+ISkkmMTOD5tVrqpcZGRjQ0NOL8xHhD607/9B+bMzM6Fu/kdbnD12/ir+rG5+uXUm3WdMZ/sfvbDhb/s30DfT08XX0IDhc8w5mcMQVAl20v1eG+gbkFWq2jsktyMfPyQv9e0mblt5BXIoN4/3WA1nz0hTmD5zA0AZd0VMoyn0b7tOzs0XPypKCayXu8BcWUnArDAOvx//xYtS0EXkhFx7aokxxrwWgKiv7ieN9UGFBAfF3ovAMrKmx3COwJjE3H/59Wvmf31j44Xds+H4hEVd0dxEBKMjLR1lYiIm59hafZaWvp4+PnSvnozWTc+ejb+DrqP1zuBZ/FzszK+q71QLA2sScZp6BnInUnYyp41IdVysHQmN1d7MqC4WNNXoWFhTcDiteWFhIwd0I9N11J00NatWgMDIa024dsXz/DSxeewnjlk3hId99xb1WqqqcnPIKvyjcggKib0dQPUgz2Vc9yI+I62E664UcOEFyXAJtB3R7rNfJz81DWajEVMt5rqwKCwqIDYvEK7CWxnLPwFpE3dT92V86FExqXBLN+2ofGsHd15u4sEhibhXtWylxiYSdv4pPPd2JUfFseFaOUc8CfYUeHjbOXInTfI+uxN7Bx/7xbk4196rD1bg7WlupPS0GevrUcqjGmUjNa6nTkVcIcPbWWsdIz4C8Qs3rjLzCfGo7eqKv0J6mqO9WCw9rp4cOqyFERZFum0KICnXjxg1UKhV+fmW7GP/9999p2LAhU6dOVS9bsGABHh4eXLt2DV9fXwBq1qzJ9OnT1WU+++wzqlevzqxZs1AoFNSuXZsLFy7w3Xffqcu4u7vz0Ucfqf9/99132b59O6tXr6ZZs2Za48nNzSU3V7P7nfFDuigmJiUBYP9Aqyl7W1uiY2MfWs/+gVZZ9ra26vUBREZFs3bjRoYNfJFXhw/nUugVvv/pJwwNDenVrTsAi5cvQ19fn8HPP6/ztZ5EYmZRNyC7B34w2plbEJ2WorPeufC7bDp3lr9G6+46EZmczLrTwQxt1oJXW7XlUlQEM3duw1DfgJ5165dH+EDRDwB9Pf1SF53JWenYeWjv0ncq/ArP+bXg8O3zXE8Ix9fRg+5+zTHUN8DaxIKkrDRcLR1o4GbH7uvBTNg6h2rWjrzXZiD6enr8eXp7ucVfksKyqKuuMkOze5YyPQM9W5vHWoe+hzv6rs5krV7/0HKmvXtQcCvsoWOp/VM5GVmolEpMrTS7HJtaWZCVqv1HgZmNBe1f6ouTlxuFBQVcPXaOjTMX0f/jkTrHSTu2difmNlZUC6hebrGXZGVshr6ePqnZmp9DanYmNm6lu1MDXEsI55cja3i/zUAM9Q0w0NMnODyURae2aJQzNTTm9wEfYaBvgFKlZMHJzRX2I0LvXnJRlZmlsVyVmYXCWnd3Vz1ba/SsPci/eIXMlevRt7PFpGtH0NMj97D2llImndpREB6BMv4RY6n9Q1npmaiUSsytLTWWm1tbkpGaprVOUkw8+1b8zUtfvoeevr7WMg/au2IzlnbW+NTxLXPMD8pOL9ovzKxKb8Odi9oTF8kxCRxes52BE97QuQ21m9UjKz2DlVPnACqUhUrqdmhO057ty3kLRFXzrByjngXmxqbo6+mRnpupsTw9Nwsr40ff4LEyNifA2YfFwVsrKsTHYnX/WirrgWup7HRsTbWfL4IjrtDdrzlH71zgekIEtRw86ObbrPhaKrvoGG1maMLyYV9hqG+AUqnk5yNrHpq0fZaoZLbNKkWSZ0KICnX/oK8oY2ub06dPs2/fPiy0jON18+ZNdfKscePGGs+FhobSvHlzjddv0aKFRpnCwkK+/fZbVq5cSWRkpDoxpq2l3H3Tpk3jq6++0lg2adIkPnyjKBm0bdcups6cqX5u9rffAqXfB5VKhYJHvDel6qBRR6lSElC7NmNeex0Av1q+3Aq7zdqNG+nVrTuhV6+yYs1a/po3r8yfw/aL55m2tbhV26xBw4pCfGAbVOjerszcXL7cuJbPnuuDjZnu91ipUuHv6sbbHYq6QtZ2ceVWfDxrz5wq1+RZyZhLUih0zxD+5+nt2JlZ8mv/D1Eoii4Od1w9wZAGXVDeG59CoVCQnJ3ODweXo1SpuJ4Qjr25NYPqdSq35Jlhg7qYPd9H/X/GvcH9SwX+Dz53o6aNKIyOpTBcd9ct0/690Hd1Jv23P/5RvI+rVLgqlc5tsHVxxNbFUf2/Sw1PMpJSObvjsNbk2Zlth7h+4gL9Ph5Z4YOil/r6KHRfCLtbO/Jy4+dYe2E/56NuYGNqybCGXRndrDdzj29Ul8vJz+OTLb9jYmhEHZfqjGjUnbiMZC7HhpU5XsNAP0x7FHc9zly14SEb8rA1KVBlZpG9bReoVChj4lBYmGPcvLHW5JlJt47oOzmQ8efKMm7BQyLS8p3SdoxSKpWs/3UJbZ/vgb3r4016cvTvPVw6doYRn7+DgVEFfqceCLfou6R9G7bNXUHzfp019o0HhV+5ycm/99FxRF9cq3uSEpfA/mV/c3yTJc37/Dsm8vm3+387Rj3LnjRF0swrgOz8XM5HVe6Ycvc9uB1Fx1ntW7f07E5szaz4se8HKCi6ltp5/SSD6nVCqSoe6ys7P5e31s3AxMCYBu61eKN5P6LTEyt9HD3x7yPJMyFEhapVqxYKhYLQ0FD69euntcz9sYlKXrDlP9BdTKlU0rt3b40WY/e5urqq/34w4fU4d2xmzpzJrFmzmD17NkFBQZibmzN27Fjy8rQPrg4wYcIExo0bp7HM2NiYvHszxbVt1Yo6/v7q5/LubU9CUiIO9vbq5UkpKdjZ6R6w2t7OTqOVWVGdZI06Dvb2+Hh5a5Tx8fJi78GDAJw9f56klGR6lejiWqgsZPbvv7F8zRr+Xvn4P1jb1KpN4Oji8U3y7o2jkZiZgYNlcauI5MzMUq3R7otMTiI6NYUPVy1TL1Pe+5xaTP2K1W+9SzVbOxwsLPBx0Pzh5+3gwL4r5TtTZWpOJoXKQuweuDNqY2pJcrb2lil5hfnM2L+MHw6uwNbUiqSsVHr5tyIzL5vUnKK7x0lZqRQoleptA7ibHIu9uTUGevoUKMs+Bkn+5Suk340oXmBQdFrXs7SkML24RYGehTmq9IwHq5dmaIhRvSCyd+7RWcS0b08MA/zI+O0PVDpa7jwpEwszFHp6ZKVqxpqdnomZlfbWENo4V6/GteOlZ1E7u+Mwp7cepO+Hr+Dg4VLmeHVJy82iUFmIjalmzNYm5urvx4P6BbbhWvxdNl8+AhSNV5N7Mo+vuo1m5bk9pNxrIaJCRWxG0THhTnIM7taO9A1sWy4/TPOv36QwKqZ4wb0WSwoLM1SZxXErzE01/n+QKjMTVWGhRhJXmZCEnoUF6OlpDIBs0rUDhrVqkPHnysf7jv5DZpbmKPT0yEjRbA2RmZZRqjUaQF52DtG3wokJi2T74rVF26NSgUrFlBHjGPrpm/gEFrcuO7ZlL0c27WLYhLdx9iz/WYABTC3v7xea25CVloGZden9Ii8nl9iwCOLuRrHvr00a2zB71GcM+HAkngE1ObpuF/4tGxLUrikADh4u5Ofms3vxOpr16oBCT0Z3eVb9vx6jnkWZudkUKpVYGWteM1kam5GWm6WjVrHmXnU4FX6ZQlXlDiyfdv9aykzzuGpjaqGzO2leYT4/HFzOj4dWYmtmSVJWGs/5tSQzL0fje6hCRVRa0ZiZt5Ii8bRxZnD9zpI8E0+dJM+EEBXKzs6Obt268euvv/Lee++VSm6lpKTg6FiUIImOjqZBgwYAGpMHADRs2JC1a9fi7e2NgcHjH7oCAgLYsGGDxrLjxzVbPhw6dIi+ffsyfPhwoChRd/36dfxLJL8eZGxsrLWb5v102//Yu++wKM6ugcO/XXrvVWkKgogK9t5FY0ksUaPGHo3p9U3im0RTTd4UTY9JNGpiN7YYe8PeFbEiKghIk97r7vcHurACigpZ8Dv3de2lO/vMcJ6dmd2dM08xMzXVmkFTrVZjZ2vL0RMn8PMpvfAqKiriVOgZXnr22Sr/TotmzTh64gRjR5Qlvo4eP06LZmVTlLcMCOB6TLTWetdjYnFxKh14e0BwMO1aa48r9tJb/2FA32AGP/ZYlX+7MmZGRlozaKrVauzMzDkaeRVf59IkZlFJMaeir/Nirz6VbsPD3p7lU5/XWvbz3t3kFhbwRt/HcLIsTWK1cHPnemqyVrno1BScrazvK+Z7KVaVcPlmDK3d/DgQVTbJQesGvhyKOnvXdUtUKpJvzSDV07sVR66f17RgO5cQSW+f1ihQaJY1tHYgOSejRhJnABQUoirQTq6qMrPQb9KYkrj40gV6eug38iRv8/Z7bs6wZQDo61F0qmLiCcBkyEAMAvzJnrcAVVr6w0ZfgZ6+Pg4ersRcuEqjVv6a5TEXruIVWP2u38kx8Zhaa/+AP7X1ACc3hTD41Qk4ejaoYs2aUaIqITI1nubOjTkec1GzvLlzY05UMTuYob6BptXibbcTr3drnaoADKrZtfCeCotQFaZrx5Cdjb6XB4WJN0sXKJXouzckf8/+iuvfUhxzo8KEAko7G1RZ2Xckznph4OtNzpJVNZ6IvU1PXx8Xr4ZEngvHr23ZpBmRZ8Np0jqgQnkjE2Omff621rKTOw8QdT6C4a9MwtqhrOv94X92c2D9dka/PR3XRrU3ILqevj5Ong24fv4K3uVijr5whcaB/hXKGxkbMe7jV7WWndl9hJiLVxn0wlisbtWhuLCoQmtkhVKBWl36iVV7ozMKXau3n1GPoBK1iphbkyqUTwb5OnpwNv7u3V297RviaG7D/Kiqx879txSrSohIjqVVA18Olvvt1KqBr2YW8qqUqFUk55TO8NqjcRBHo89X6A1QnkKhwED5/ySNId026xS5pSSEqHU//fQTJSUltGvXjjVr1hAREcHFixf57rvv6NixIyYmJnTo0IHPP/+cCxcusG/fPt577z2tbbzwwgukpqYyevRojh07xrVr19i+fTuTJ0+m5C6zCE2fPp2rV6/y+uuvEx4ezrJly1i0aJFWGW9vb3bs2MGhQ4e4ePEizz77LAkJCZVv8AEpFApGPzmChUuWsmf/Pq5cu8YHn3+GsbER/fuUJZlmzv6UH379VfP8qeFPcvT4CRYtW0bU9essWraMoydPMubJEZoyY0aM4OyFC/y+5E9iYmPZunMH6/7ZyIghQwGwtrLCu1EjrYe+nj52trZ4uj/cBZ9CoeCpdh1YdHA/ey5d5GpSIh9uXI+xgQH9mpVdqM76ey0/7tkBgJG+AY0dnbQeFsbGmBoa0djRCYNbM4GOadeRczdiWXhwHzGpKWw9F8b60ycZ0abdQ8VcmdVhexjg15H+vh1wt3bi+U7DcLKwZeOF0tn4nmk3mHd6jtOUb2jlQB+fNjSwcsDP0YP3+kzE09aV+cfKurT+fX4/lkZmvNh5OA2tHGjv3owxQcFsOL+vxuMvr2D/YYx7dcMgoClKJ0dMRw1DXVhE4emyxKDpU8MxfqxvhXUN27ai6PylSicBMBk6CMNWLclZthp1QSEKC/PSMdbuI5ldHYF9O3Fh/0kuHDhJalwSB1ZsJis1g2Y9Svf74TXb2bngL035MzsOce30BdITU0i5kcjhNdu5evICzXuWjVd4ast+jq7fSa+JQ7GwtyYnI4ucjCwK8wsq/P2asuniIXp5t6JH4yBcLe0Z37o/9mZW7Iw4DsBTgX14vtOwshhjw2nr7k9fn7Y4mtvQxMGdiW0HcCU5VnPX/olmXWnu3BhHcxtcLe0Z0LQTXRsFsj+y8mRnTSg4dhrjTu3Qb+KN0sEOk8H9URcVU3i+7ALbZHB/jHqUzaZWeOoMChMTjIN7orS1Rr+xF0ad2lF4MlRTxrhfLwwD/MjdsBl1YSEKM1MUZqY1fjwBtH+sB6f3HCE05AjJNxLY/uc6MlLSaNW7MwC7V2xkw8+lXZ4VSiWObi5aD1NLc/QN9HF0c8HQuPTmwaGNuwhZvYlB00Zj7WBLdnom2emZtXZMtQruwrl9xzm37zgpcUmELN9IVko6LW4d5wdWb2Xrbys1dbBv6Kz1MLU0Q99AH/uGzhgYGQLQKNCPsD1HCD96hoybqVw/H8GhdTtoHOivNVuteDQ9Kp9R1WViYISPfUN87BsC4Gppj499Q5zMq279/2/Zc+UkHT2b08GjGU4Wtgxr3h1bUwsO3HrfBvt3YVzr/hXW6+gRQGRqPPFZFceK1FMoaWDlQAMrB/SVeliZWNDAygF7M+taq8easyH09+1AvybtcbN2YnqHITia2/DPxdLWipPbDuI/PcZqyjewcqC3d2tcLe3xdXDnv73G42njwsJy4+g91bIPrRo0wdnCDjcrR4Y370Efn7bsulLzE0gJcS//T1K2Qghd8vLy4tSpU3z66ae88cYbxMfH4+DgQOvWrfn555+B0sH/J0+eTJs2bfD19eWLL74gODhYsw1XV1cOHjzI22+/Tb9+/SgoKMDDw4P+/fvf9Ue+u7s7a9as4bXXXuOnn36iXbt2zJ49m8mTJ2vKvP/++0RGRtKvXz9MTU2ZNm0aQ4YMISMjo0bfhwmjR1NQUMDnc+eSlZVNgH9TfvjyK60WagmJSSjLzTDUMiCAT2fO5OcFC5j3+wIaurry2awPCPAva23QzK8pX338CT/89ivzF/+Bq4szb7z4Io/1rZgcqQ3jO3ahoLiYL7b+Q1Z+Ps0aNOD70eO0WqglZmTc9yyT/q4N+OLJp/hpz04W7N+Lq7U1r/ftT/+AFvde+T6FXD2FpbEZ49v0x9bUkqjUeGZs/pnE7NJuuLZmVjhalP3AViqUjGjZCzcrJ4pVJYTGRfDyujkkZpW1AruZk85bm37k+U7DmD9iBsk56aw9u5cVoTtqPP7yCkL2ozDQx2ToYBQmxpREx5L922IoKOuGrLS2gju6eCjt7dBv5En2r4sq3a5Rp9KLdIvnpmgtz125lsITp2ssfp92zcnPyeXExhByMrKwc3Vi8CvjsLSzLv17GdlkpZSdmyXFJRxctY2c9Ez0DQywbeDIwJfH4dmirGvduZBjqIpL2PrzCq2/1XZwT9o90avGYi/v8PVzmBuZMLx5D6xNLIhJT+LzPUs0d9dtTCywN7PSlN97LRRjAyOCfdvzdOt+5BTmcz4xkmWnyloMGukbMrndIOxMLSksKSIuM5kfD6655139h1F45Hjp8dS/FwpjY0riEshZsQYKy7rWKy0ttO6Oq7OyyVmxBuM+PTB/ZjyqrGwKj5+m4PDxsrq0DgTA/GntGZNzN26l6GzNds1u1rEVedm57F+3jez0TBwauvDUf57VtCLLTs8kIyXtvrZ5cucBSopLWPPtQq3lXYf1o/vw+2vRWx2+7VuSn5PL0b93lZ4XDZwZ8tpELO1LP5dyMjLJSkm/r222H9wLUHBw7Xay0zIwtTCjUWBTOg2v3gyjon57VD6jqsvPwYMfhpYNt/Fyl9KbkJsvHubT3Yt1FRYAp25cxszQhP6+HbA0NiM+M4WfD63TJCWtjM2wMdFuTW2sb0igqw9rzoZUuk0rE3Pe6VV206+PTxv6+LQh4mYM3x1YXSv12HvtNJZGpoxt1Q9bU0uup8bz3tZfSLr9W8rUEkcz7d9Sw5v3pKG1IyWqEs7EXeHVv7/VdPsFMDYw5KXOI7A3s6KguIiYjCT+t2cJe6/V3O8OIapLoZYpHIQQosZkxddsizVdsHBxJuOPFfcuWMdZjX+KXvNe0nUYD2X39O9J/8/7ug7joVl/+THf7V+l6zAeystdR/LUkpm6DuOhrXj6IzJmz9F1GA/N6r+v8+eJLboO46GMa/MY8w7dfVbb+mB6p6G6DkGU86h8TnX+serZuOuDgy/M46V19f+z9vuhrxP826u6DuOhbJ/6ja5DeGDp736i6xAqZf3pe/cu9AiSNtlCCCGEEEIIIYQQQlRBkmdCCCGEEEIIIYQQQlRBxjwTQgghhBBCCCGEqEvuGJ9W6Ja0PBNCCCGEEEIIIYQQogqSPBNCCCGEEEIIIYQQogrSbVMIIYQQQgghhBCiLlGrdR2BKEdangkhhBBCCCGEEEIIUQVJngkhhBBCCCGEEEIIUQXptimEEEIIIYQQQghRl6ik22ZdIi3PhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSognTbFEIIIYQQQgghhKhLZLbNOkVangkhhBBCCCGEEEIIUQVJngkhhBBCCCGEEEIIUQXptimEEEIIIYQQQghRl6hVuo5AlCMtz4QQQgghhBBCCCGEqIIkz4QQQgghhBBCCCGEqIJ02xRCCCGEEEIIIYSoS1Qy22ZdIi3PhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSogkKtVktbQCGEEEIIIYQQQog6Iv31d3UdQqWs53yq6xB0QsY8E0KIGvTh9gW6DuGhzQqewvn4q7oO46E1c2nM+OUf6TqMh/LH6JmkT39d12E8NOt5c3hn08+6DuOhfD7wOYYsekfXYTy09RM/JyszU9dhPDQLS0tWhe7UdRgPZWRgH974+ztdh/HQvn78Zd7d8ouuw3gonz72LK+sn6vrMB7at0NeY+rqz3UdxkP7bcQ7vLRujq7DeCjfD32dzj9O13UYD+3gC/Pq/TH124j6/90t6gbptimEEEIIIYQQQgghRBUkeSaEEEIIIYQQQghRl6jVdfNRi9LS0hg3bhxWVlZYWVkxbtw40tPT77qOQqGo9PHll19qyvTo0aPC60899dR9xSbdNoUQQgghhBBCCCGETo0ZM4bY2Fi2bt0KwLRp0xg3bhwbN26scp34+Hit51u2bGHKlCkMHz5ca/nUqVP56KOyIV1MTEzuKzZJngkhhBBCCCGEEEKIeyooKKCgoEBrmZGREUZGRg+13YsXL7J161aOHDlC+/btAfjtt9/o2LEj4eHh+Pr6Vrqes7Oz1vMNGzbQs2dPGjVqpLXc1NS0Qtn7Id02hRBCCCGEEEIIIeoSlapOPj777DNNt8rbj88+++yhq3v48GGsrKw0iTOADh06YGVlxaFDh6q1jcTERDZt2sSUKVMqvLZ06VLs7e1p1qwZb775JllZWfcVn7Q8E0IIIYQQQgghhBD3NGPGDF5/XXs2+IdtdQaQkJCAo6NjheWOjo4kJCRUaxuLFy/GwsKCYcOGaS0fO3YsXl5eODs7c+7cOWbMmMGZM2fYsWNHteOT5JkQQgghhBBCCCGEuKf77aL5wQcf8OGHH961zPHjx4HSwf/vpFarK11emd9//52xY8dibGystXzq1Kma/wcEBODj40ObNm04deoUrVq1qta2JXkmhBBCCCGEEEIIUZfU8syW/5YXX3zxnjNbenp6EhYWRmJiYoXXbt68iZOT0z3/zv79+wkPD2flypX3LNuqVSsMDAyIiIiQ5JkQQgghhBBCCCGE0B17e3vs7e3vWa5jx45kZGRw7Ngx2rVrB8DRo0fJyMigU6dO91x/wYIFtG7dmpYtW96z7Pnz5ykqKsLFxeXeFbhFJgwQQgghhBBCCCGEEDrTtGlT+vfvz9SpUzly5AhHjhxh6tSpDBo0SGumTT8/P9atW6e1bmZmJqtXr+aZZ56psN2rV6/y0UcfceLECaKioti8eTMjRowgKCiIzp07Vzs+SZ4JIYQQQgghhBBC1CUqdd181KKlS5fSvHlzgoODCQ4OpkWLFvz5559aZcLDw8nIyNBatmLFCtRqNaNHj66wTUNDQ3bt2kW/fv3w9fXl5ZdfJjg4mJ07d6Knp1ft2KTbphBCCCGEEEIIIYTQKVtbW5YsWXLXMupKxoKbNm0a06ZNq7S8m5sbe/fufejYpOWZEEIIIYQQQgghhBBVkJZnQgghhBBCCCGEEHXJIzLb5qNCWp4JIYQQQgghhBBCCFEFSZ4JIYQQQgghhBBCCFEF6bYphBBCCCGEEEIIUZeoVbqOQJQjLc+EEPWKQqFg/fr1j8zfEUIIIYQQQghRt0nLMyGEqEMu7zvNxV3HyMvMxsrFntbDeuHo7VZl+ZKiYs5tPUTk8QvkZ+Vgam1Bs+AONO7Y4l+Lecv6f9iwYg1pKam4eXkw+cVp+LcIqLRsakoqi3/6jauXrxAfG8eAYY8z5aVntcoc2XeQNUtWEn8jnpKSYlwaNODxUUPpEdz736iORm/vNgxo2hErEwtuZCSx9NR2Lt+MrrJ8R48ABjbthJOFHXlF+YTFX2XF6R1kF+b9i1GXMh7UD8MuHVCYmlISdZ3c5WtQxSdWWd789efRb+JdYXnR2Qvk/Di/9ImRESaPP4ZBYAAKCwtKYmLJW7WekusxNR5/B49mdGsUiIWRKYnZafxz/iBRafFVltdTKunt04Yg1yZYGJmSkZ/NniunOBF7CYDWDX0Z0bJXhfXe2/IrxaqSGo//tsd8OzAkoBs2phbEpCWy4Ng/XEiKqrJ8t0aBDA3ojqulHTmF+Zy+cZlFJzaTVZCrKTPYvzP9fTtgb2ZNVkEOh6LO8eeprRSVFD9QjGq1ml9/+41169aRlZVFs2bNePutt2jcuPFd19u1ezfz5s0jNjaWhg0b8vxzz9GzZ0+tMqtXr+bPJUtITk6mUaNGvPH66wQFBWle/+CDD/hn0yatdQICAli0cKHm+bRnn+XUqVNaZfr27csPP/xwX/U8um0fBzbuJDs9A8eGLjw24Uk8m1Y85gGuX7rC9qUbuBmXSFFBIdYOtrTt04VOA7WPoUObdnNsx34yktMwtTSjWfsg+o5+AgNDg/uKrbo6eTanR+NWWBqbkZCVyoZz+4hMjauyvJ5Sj+Am7WjV0BdLIzPS87PZdfk4x2IuaMp0bRRIJ8/m2JhYkFOYx5m4K2y+eKhWz4v27v508WqJhZEpSdlpbLp4iOtpCXeph5JejVvTsoGP5vzee/U0J2PDK5Rt7tKYpwL7cCExkqWnttdaHSrTxasFvbzb3No/Kaw9u5drKTcqLTumVTDt3ZtVWB6fmcLnu/+o7VA1ejQOop9ve6yMzYnLTGZl6E4ikmMrLTup7UA6eTavsDwu4yazti/QPDcxMGJoQDeCGvhiZmhMck46q87s5lzCtVqrR1evlvT2KX3v4zNTWHs2hKtVvPdPt+pHe4/K3vtkZu8qfe+dLewY2LQTbtaO2JlZsSZsDyFXT9da/PejpYs3Y4KC8XN0x97Mmnc2/8z+yDO6DkvjUTmmhKiMJM+EEKKOuH7yIqfW7qLNyL44NGrIlYOhhPz8FwPfnYKZrWWl6xxY+Df5WTl0GNMfcwcb8rNyUav+vSbeB3bvZeEPvzL11edp2tyfbX9v4ZO3ZvLt4nk4ODlWKF9cWISltRXDn36Kf1avq3Sb5hYWDB/3FA3dG6Kvb8CJw0f54fO5WFlbE9SudW1XCSi9uBvbqh+LT2wmIjmGnt6teLP7GGZs/omU3MwK5ZvYu/FshyEsPb2d0zcuY2tiwcS2A5ncbjDfHVj1r8R8m1FwL4x6dyd38XJKkm5i/FhfzF+ZTuasz6GgoNJ1cuYtAn09zXOFmSkW771J0amyH+Sm40ai5+pCzsJlqDMyMWzfGvNXp5P54Reo0zNqLP4WLo0Z5N+ZDef2E5UWT3v3ZkxqN5A5e1eQkZ9d6Tpjg4IxNzJlTdgeUnIzMTM0QalUaJXJLyrgq73LtZbVZoKgs2cLJrcbxC9HNnApKYp+vu15v+8kXlo/h+Sciu9XU0cPXukykt+P/8PxmIvYmVoyveNQXug0nM/3/AmUJtfGte7PDwf+4tLNaFwt7Xm5ywgAfj/+zwPFufiPP1i2bBmzZs7E3d2dBb//zgsvvsiav/7CzMys0nXCwsL473//y/Rnn6Vnz57s2bOHd2bMYMH8+QQElCbOt2/fztdz5vDO22/TsmVL1q5dy8uvvMLqVatwdnbWbKtTx47MnDlT89zAoGLiaeiQITz7bFmS3djY+L7qePbQSbYs/otBU0bh7tuYEzsP8OdnP/LSnPextretUN7AyIj2/bvj5O6KoZER18Ov8vdvyzEwMqRtny4AnNl/jB3LNzBk+tO4N2lESnwSa38u3U8DJjx5X/FVR6CrD08EdGNtWAiRqXF09AhgaofH+WLPEtLzKj8vxrd+DAsjU1aF7iI5Jx1zI1P0FGXnRasGvgxs2omVoTuJSo3HwdyGp4L6APD3+f01XgeA5s6NGdC0ExvPH+B6WgJt3f2Z0GYA3+5fVeX5PTqwL2ZGJqw7u5eU3AzMDU1QKip2nrE2Nucxvw5EpladaK8tQQ2aMLR5D1af2U1kShydvJozveMQPtv1B2l5WRXKrw0LYeP5A5rnSoWSt3s9TWjc5X8t5jYN/RgV2Ielp7ZxJfkG3RsF8nLXkczaOp/UvIrfcytO72RNWIjmuZ5Sycy+kzlRLompp1DyerenyCzIYd7hdaTlZWFrYkl+cWGt1aNVgyYMa9GDVaG7uJYaR2fPFjzXaSif7lxc6Xv/V9geNpQ7vvUUSt7pPY7TNyI0ywz19EnOzeD0jcsMa9G91mJ/ECYGRlxJiWXzpUPMfmy6rsPR8qgcU3WKSmbbrEuk26YQosb06NGDF198kRdffBFra2vs7Ox47733UN+aZnnJkiW0adMGCwsLnJ2dGTNmDElJSUBp6wdvb2+++uorrW2eO3cOpVLJ1atXK/2bZ8+epVevXpiYmGBnZ8e0adPIzi77AX78+HH69u2Lvb09VlZWdO/evUIrhoiICLp164axsTH+/v7s2LGjJt+Waru05wSNOrbAu1NLrJztaD28N6Y2FkQcqPxuZ9yFayRdiaHH9Cdx9vPE3M4Ke08XHBo1+Ndi3rh6Hb0HBNN3UH8aergz5aVnsXN0YNuGTZWWd3RxYspL0+nZrzemVVyYBwS1oEPXTjT0cMe5gQuDnhyCR2MvLp49X5tV0dLftyN7r51m77XTxGUms/TUdlJzM+jl06bS8o3tG3IzJ50dl4+RnJPO5eQY9lw5iZety78W821GvbuRv2UnRaFnUcUlkLt4GQpDQwzbtapyHXVuLurMLM3DoKkvFBZRePJW8szAAIOgFuSt3UjJlWuobiaT/882VMmpGHXrVKPxd/FqyYmYSxyPucjN7HT+uXCQjPxsOlTSUgCgiYMbXnauLDy+iSspN0jLyyI2I4noNO2WdmoguyBP61GbnmjWhZ0RJ9gZcZzYjJssOPYPyTkZ9PftUEU93Ll5qxVOUnYaF5Ousz38GN72Zeezr4M7lxKvsy/yDEnZaYTGRbD/2hmtMvdDrVazfPlyJk2aRK9evfD29ubDDz4gPz+frdu2Vbne8uXLad+uHZMmTcLT05NJkybRrm1bli0vS04uXbaMJ554giFDhuDl5cUbb7yBk5MTf/31l9a2DAwNsbe31zysrKwq/D1jY2OtMubm5vdVz0ObdtGqV0fa9O6MY0NnBkx8Eks7G45trzxB5OrlRovObXByc8XG0Y7Aru3wbtGU65euaMrERETi7tuIll3aYuNoh3fLpjTv1Jq4a1W3Tn0Y3RoHcSz6PEejz5OUncaG8/tJz8umk2flrYx9HTxobN+A345uICI5hrS8LGLSE4kq18LLw9aZqNR4Tt+4TFpeFpdvRnP6xmXcrCve+Kgpnb2aczL2EidiL3EzJ53NFw+RkZ9Ne3f/Ssv72LvhaevCHye2cDXlBul52cRm3CQ6Xfv8VqBgRMte7Io4QVolNzhqW4/GrThy/RxHrp8jMTuVdWf3kpaXRWevyvdPfnEhWQW5moe7jRMmBsYcvf7vfc/1bdKOA5FnOBAZRkJWCivP7CItN5PujYMqLZ9XXEBmQY7m4WHjjKmhMQejwjRluni1wNTQmJ8OruVqyg1SczO5khJLbEZSrdWjp3drDked4/D1cyRmpbL2bAhpeVl08WpZafmq3vsj189pykSnJ7Lh3D5O3QinuKT2brI8iCPR5/nt6N/svRaq61AqeFSOKSGqIskzIUSNWrx4Mfr6+hw9epTvvvuOuXPnMn9+abevwsJCPv74Y86cOcP69euJjIxk4sSJQOkYY5MnT2Zhue46AL///jtdu3attAtRbm4u/fv3x8bGhuPHj7N69Wp27tzJiy++qCmTlZXFhAkT2L9/P0eOHMHHx4cBAwaQlVV6N1KlUjFs2DD09PQ4cuQI8+bN4+23366ld6dqJcUlpMYk4OLnqbXc2c+L5MjKux7cOHsFWzdnLu48xrr3fmLjR79xat0eiguL/oWIoaioiKvhV2jZVjspE9g2iEvnL9bI31Cr1YSdDCUuJhb/lpV3Ba1pekolnrYunEvQTtieTbiGj33lXWgjkmOwNbWkhUtpNzBLYzPauvtzJi6i0vK1RWlvi9LKkuKL5bozFZdQHHEV/Uae1d6OYef2FJ44DYW37uwqlSj09KBIu2uguqgIfW+vGoi8lJ5CSQMrByJuancFjbgZg4eNc6XrNHXyJDbjJt0bBTKj9zje6D6aAU07oq/U0ypnqGfA2z2fZkavcUxo8xiulvY1Fved9JV6NLZrQOgd+z80LgI/R49K17mUdB07MytaN/AFwMrYnI6eAZqupwAXk6JobN8AH/uGADiZ29Kqoa9Wmftx48YNUlJS6NChLKFnaGhIq1atCAsLq3K9sLNnad9BOwnYoWNHzTpFRUVcunSJDu3ba5dp377Cdk+ePEnf4GCGDR/OJ598QmpqaoW/t2XrVnr36cPIkSP55ptvyMnJqXYdi4uLibsWg3eLplrLvVs2JeZy9br8xEXGEHP5Gp5NfTTL3H0bE3cthtgrUQCkJiZz+fR5mgTV/OeUnkJJQytHwpO0E3PhN6PxtKk8Qd/M2YuY9ER6ebdmZt/JvNNrHIP9u2idF5EpcTS0dsTN2gkAW1NLmjp6cjExqsbrcLserpYOXLmjC9eV5FjcbZwqXaepowc3Mm7S1aslb/d8mte6jaK/b4cK53cv79bkFuZX2pWztukplLhZOxGedF1reXhSNF62rtXaRgePAC7fjK60pVRt0FMo8bBx5kJClNby84mlnzHV0cWrJRcTo0gtl6xs6erDtZQbjGkVzNeDX+KD4CkM8OuIAsVdtvTgbr/3l+547y8lXsfLrvrvfXjS9X/tvX9UPSrHlBB3I902hRA1ys3Njblz56JQKPD19eXs2bPMnTuXqVOnMnnyZE25Ro0a8d1339GuXTuys7MxNzdn0qRJzJw5k2PHjtGuXTuKiopYsmQJX375ZaV/a+nSpeTl5fHHH39ouhf98MMPDB48mP/97384OTnRq5f2GDW//PILNjY27N27l0GDBrFz504uXrxIVFQUDRuWXpDOnj2bxx57rJbeocoV5OSiVqkxttBujWViYUp8ZuUXitkpGdy8FouegR5dnxlKQU4uJ1btoDA3nw5jaz/+rIxMVCoV1jbWWsutbGxIT017qG3nZOcw9clxFBUVoVQqmfbaCwS2qbrlVE2yMDJFT6kkI1/7fc/Mz8HKuPLWcleSY5l3eB0vdB6OgZ4++ko9TsWG8+fJrf9GyBoKy9LuvapM7YsAVWYWSlubam1Dz9MdvQYu5P65smxhQQHFVyMxHtiXnITE0tZpbVuh5+mOKim5xuI3NTRGT6kkqzBXa3lWQR5NjEwrXcfWxBJPG2eKS4r588Q2zAyNGRLQFVMDI/661R0kKTud1WG7ScxMxUjfkM5ezZneaQjf7ltNSm7NdTm9rfQY0iP9jouxjLwsbEyaVLpO+M1o5uxbwZs9xmiOoaPRF/jtyN+aMgciw7AyMmf2Y9NRKBToK/XYcukwa8/ufaA4U1JSALCz1e66aGdrS3xC1WNQpaSkVLrO7e2lp6dTUlKC7R1lbO3sSL5VBqBTp0706dMHZ2dn4uLimDdvHtOfe44lf/6JoaEhAI/174+rqyt2dnZcvXaNH3/8kcsREfz555/VqmNuZjYqlQpzK+2u7+ZWFmSl372F0pfPvUtOZjaqkhJ6jhhIm96dNa+16NyG3Mxs5s+cgxo1qhIV7fp2pduQ4GrFdT/MDE3QUyrJLtA+L7ILcrEwrvy8sDOzwsvWleKSEhYe34SZoTHDW/TE1NCIlaG7gNJkrrmRCS92eRIFpWOkHYwMY/eVkzVeByg7v+9s9ZldkIe5YeX1sDG1xMPGmWJVCUtPbcPU0JjH/btiamikOe7drZ1o7ebLDwfW1Erc92JmVLp/Mgvu/NzKwcKo8mR5eZZGZjR19OSPE1tqK8QKzG99z2UWaH/PZd3le648K2MzApwbMf/o31rL7c2s8XP04Gj0eb7dvwonC1vGBAWjVCj55+LBGq0DlL33WXfWoyAXyyq+M8qzNDLD38mLxSc213hs/988KsdUnaOWbpt1iSTPhBA1qkOHDijKjanSsWNHvv76a0pKSggLC+ODDz4gNDSU1NRUVLfG5oqOjsbf3x8XFxcGDhzI77//Trt27fjnn3/Iz89nxIgRlf6tixcv0rJlS61xeTp37oxKpSI8PBwnJyeSkpKYOXMmu3fvJjExkZKSEnJzc4mOjtZsw93dXZM4ux3zvRQUFFBwx/hRRkZG1X+jqnLHjTQ1VHl3Ta1Wo1Ao6DRhMIYmpX9bNbSE/b+vp82IPujX0qDVdyq/v28F9tB3BE1MTfh6/g/k5+URduoMC3/8DScXZwKC/r2JEKjk90pVP2FcLe15ulV/Npzbx9mEq1gbWzAqqA8T2w5kwbGNtRaiQbtWmI4pOz+ybw/uf+ePrTv30V0YdmpPyY14SqK0W7nkLlyG6finsPrfB6hLSiiJuUHR8dPouddCN+FKwldX8e7fPv5WhO6i4NYYKP9cPMTYVv1Yf24/xaoSYtITiSnXzet6WjwvdRlBJ88ANl74F398KxRV1qOhlSNT2z/OytBdnI67jI2JBRPbDOC5jkP54VBpUiDAuRFPtuzJL0c2EHEzGmdLe55pN5i0FlmsCtt9zz+fcS6GoKAgTVf6b+bOvRWW9vGhVqvvfQZXts4dyyrdbrllwcFliSZvb2/8/f0ZNHgwBw4c0Nz4GDp0qFYZdzc3xo0fz/nz99m9reLHVMXPrjs88+FrFOQXEBsRxfZlG7BzdqBF59Ku25HnL7N33VYGTRlFQx9PUhNusnnRX5iv2ULP4bVz86LSI6eKC6vbn8FLT23TjA309/n9jG8zgDVhIRSrSmhs14DePm1ZGxbC9bQE7M2sGBLQncyCHHZePl4rdYCK9SjdDVWd36X/rjqzW3N+b750mNFBffn7/AGUCiUjWvZi/dl95Bbl11rM1VKhCtX73G3n7k9eUQFn46/cu3ANU1dy/FTnWr2TZ3Nyi0onNSlPqVCQWZDDHye2okZNdHoi1sbmBPu2r9VEx4OmF9p7lL73YXH//nv/qHpUjikhKiPJMyHEvyI/P5/g4GCCg4NZsmQJDg4OREdH069fPwoLywb9fOaZZxg3bhxz585l4cKFjBo1ClPTyu8eVnaxdtvt5RMnTuTmzZt88803eHh4YGRkRMeOHTV/s7Iv+XtdUAF89tlnfPjhh1rLZs2ahaJT1TNj3o2RmSkKpYL8O1qZ5WflYmxZef1NLM0wsTLXJM4ALJ3tQA256VlYOlYcCLsmWVhZolQqSbujlVlGejpWttYPtW2lUolLw9IuF14+jYm9Hs3aZav+leRZVkEuJSoVVibad0otjc3IzK+8FeBg/y5EJMew+dJhAGJIouB4Ie/1ncRfYXuqHAj7YRWdOU9WZLkk161B/5VWlpSUa32mtDBHnVmNLikGBhi2DSRvY8UWc6rkFLLn/AiGhiiMjVBnZmH6zDhUyRW72T2o3MJ8SlQqLO5oMWBuaFLlGGVZBblk5OdoLqwBkrLTUCoUWBmbV9qyTA3EZiRhb2ZdY7HfGVOJqgRrEwut5VbG5lUO7v5kix5cTIpi/fl9AFxPS+CXI+v5bMBzLD29nbS8LMYE9SXk6il2RpQmNq6nJ2Ksb8DznYaxOmxPlYm528x9nFn00mxybo0LeftzMDklBXv7sm6sqWlp2NrZVbkdOzs7TSszrXVutTSztrZGT0+vQpm01NQKLdbKs7e3x8XFheiYqmdw9fPzQ19fn+vXr4OrYZXlbjO1NEepVJJ9RyuznMwszK0sqlirlI1j6Xvi7N6A7PRMdq/epEme7Vr1Dy27tdO0RnN2b0BhQSF//7qM7kP7oVTW3MgoOYV5lZ8XRqZkVXFeZBbkkJGfrTWodmJWKkqFAmsT89Lx9/w6cDL2EkejSxORCVkpGOobMKJFL3ZdPv7ACYmqlJ3fJlrLzQxNqpyVOCs/l8w7zu+bmvPbDEM9A2xNLXm6dX/N67e/wz/qN5Vv9q/U6gJWG3IKSveP5R2tAC2MTLVmyq1KB49mnIi5SIn635vsJ/v295yx9viBFsZmFVoOVaazZwuOXD9fIeb0/GxKVCqtz6L4rBSsTczRUyhrvI6a995I+/vawsi0QkvAynTwCOB4zIV/9b1/VD0qx5QQdyNjngkhatSRI0cqPPfx8eHSpUskJyfz+eef07VrV/z8/DSTBZQ3YMAAzMzM+Pnnn9myZYtWV887+fv7ExoaqjX+zcGDB1EqlTRpUto1av/+/bz88ssMGDCAZs2aYWRkRHJystY2oqOjiYuL0yw7fPjwPes5Y8YMMjIytB4zZsy453pV0dPXw9bNmYRLUVrLE8KjsPeqvGWPQ6MG5GVkU1RQdlGRlZSKQqHA1PruF4U1wcDAgMa+3pw5oT2hwZkTp/Fr1rSKtR5c0b80lluJSkVUajwBzo20lgc4NyIiufKLekN9gwqJWNWt5/fR6Ov+FRSguplc9ohPRJWRiX7Tcl0D9fTQ92lM8bWoe27OsE0g6OtTdPQu3bYKC1FnZqEwNcHA34+iM+eqLnufStQqbmTcxNuhodZyb/uGXE+rvBvh9dR4LI1NMdQrux/oYGaNSq26a9LSxdK+QlefmlKsKuFqyg0CXb21lge6elcYm+c2Iz3DKo+hsjJVHWeKah1nekYGeHh44ObmhpubG40aNcLOzo6jR49qyhQVFXHq1ClatKg6Ud2ieXOtdQCOHjmiWcfAwAA/P7+KZY4du+t209PTSUxM1Erk3enq1asUFxfj4OBw17repq+vj2sjN66GaY8LdzXsEm5NGlWxVkVqoKS4bMy/ooJCFHfM+KhUKmulh02JWkVsRhJNHNy1ljdxcCcqrfKZJaNS47A0Kk0u3eZgboNKrdIkcA0qOZ7KbkrV/AdXiVpFXOZNvO0qnt93TvBxW3R6IhZ3nN/2Zla3zu8cbuak8+3+Vfxw8C/N41JSFJEpcfxw8C8yqkhW16QStYqY9ER8HbS7aPo6uBOZGlfFWqW87RviYG6jNVj9v6FEreJ6WgJNnTy1lvs7eXI1ufJxVm9r4uCOk4UtByLPVHjtanIsjuY2WkePk7kt6XlZtZLkuP3e+zlqnxu+jh5Eptz7vXc0t+Fw1L/73j+qHpVjqs5Rq+vm4/8pSZ4JIWpUTEwMr7/+OuHh4Sxfvpzvv/+eV155BXd3dwwNDfn++++5du0af//9Nx9//HGF9fX09Jg4cSIzZszA29v7rl0ox44di7GxMRMmTODcuXPs2bOHl156iXHjxuHkVDr4sLe3N3/++ScXL17k6NGjjB07FhOTsrveffr0wdfXl/Hjx3PmzBn279/Pu+++e896GhkZYWlpqfV42G6bfj3bcPVwGFcPh5GRkMLJNbvITc3Ep0sgAKF/7+XQH2WzWHq08cfIzIQjS7aQEZ9M0pUYTq8PoVGH5v9al83BI4aya9M2dm3eTuz1aH7/4VeSE28S/PgAAJb8upBvZ2vPoBoZcZXIiKvk5+WRmZFBZMRVYsp1EVyzdCWhJ06REBdP7PUY/l61lpBtu+jWt+e/UieAreGH6d6oFd0aBeJqac+YoGDsTK3YHVGaVBrRshfTOjyhKX/6xmVau/nRy7s1DmbW+Ni78XTrflxNvlFlS6PaUrBrH8b9+2AQ2BylqzOmE0ajLiyk8FjZLLOmE0djPGRghXUNO7WnKPQc6pyKd+z1/X3R9/dDaWeLftMmmL/2PCWJSRQeOlaj8R+IPENbt6a0aeiHg7k1g5p2wtrEQtM6pp9ve0a2LBvLMDQugtzCAp5s2QtHcxu8bF14zK8jJ2IuUawqnSWtt08bfOzdsDWxwMXSjidb9MDV0o4j1y/UaOzlbTh/gD4+bent3YaGVg5MbjsIezNrtoWXJpSebtWPV7qM1JQ/HnuRDh4B9Pdtj5O5LX6OHjzTfrDWIOLHYy/R37cDXbxa4GhuQ0sXb8YE9eV4zIUKibbqUCgUjB49moULF7Jnzx6uXLnCBx9+iLGxMf379dOUmzlrFj/88IPm+VNPPcXRo0dZtHgxUVFRLFq8mKPHjjFm9GhNmbFjxrB+wwY2/P03kZGRfD1nDgkJCQwfPhwonfDlm2++ISwsjLi4OE6cPMnrr7+OtbU1PXv0ACA2NpbffvuNCxcuEBcXx4GDB3lnxgx8fX1p1ar6YyB2Gtibk7sPcXLPIZJiE9i8+C8yklNp17cLANuXbeCvHxZryh/dtpdLJ8+SEp9ESnwSp/Yc5uDGnbTs0k5Txrd1c47v2E/YwROkJSVzJewiu1ZuxK9N8xptdXbbvqunae/RjHZu/jia2/B4s67YmJhzOOosAAOadmJ0UF9N+VOxl8ktyuepoD44mdvSyNaVwf6dORZ9QXNeXEiMpJNnCwJdfbA1taSJgxv9/TpwPuHaPVsxPqiDkWdp7eZH64a+OJhZM8CvI1bG5hyLLj0Xg5u048kWZZ/1Z26d38Oa98DB3BpPG5dbLebCKVaVUKwqISk7TeuRX1RIQUkhSdlp/9rFdcjVU3TwDKC9ezOczG0ZGtAdG1MLDkaWTpAxyL8zY1v1q7BeB48AolLjic9KqfBabdtx+RhdG7Wks2cLnC3sGNmyN7amluy9VnpDbGhAdya3HVRhvS5eLbiWcoO4zIrjXYZcPY25oTFPBfbFydyG5s6NGdC0I3uunKpQtqbsuXKSjp7N6eDRDCcLW4Y1746tqYUmETPYvwvjyrVMvK2jRwCRVbz3tyevaWDlgL5SDysTCxpYOdRaa+X7YWJghI99Q83EMa6W9vjYN8TJvHrjmtamR+WYEqIq0m1TCFGjxo8fT15eHu3atUNPT4+XXnqJadOmoVAoWLRoEf/973/57rvvaNWqFV999RWPP/54hW1MmTKF2bNn37XVGYCpqSnbtm3jlVdeoW3btpiamjJ8+HDmzJmjKfP7778zbdo0goKCcHd3Z/bs2bz55pua15VKJevWrWPKlCm0a9cOT09PvvvuO/r3r/hDq7Z5tG5KQU4+57YeIi8zBysXe3o89yRmtlYA5GXkkJtW1v3EwMiQni+M5ORfO9n65R8YmZngHuRLi0Fd/7WYu/TqTlZmFqsWLyMtNRV3L0/e/d+HODqXJi/TUtJITryptc4bU1/S/P/q5Svs3xmCg5Mjv6xcBEBBXj6/zf2JlJvJGBoZ0sDdjVfefZMuvbr/a/U6Gn0Bc0NTnmjWDWsTc2Izkvh67zJNF0BrY3PsTK005Q9EnsFE35A+TdoyOiiY3MJ8LiRFsurWwNz/poLtu1EYGmAyejgKUxNKIqPJ/u4XKDdGn9LWpsKdQ6WjA/o+jcj+dl6l21WYGGM8ZCBKa2vUubkUnQ4jb/1mUNXsxWlY/FVMDY3p7dMaCyMzErJTWXR8kyYJaWlkirVJWbeQwpJiFhzdyOPNuvBil+HkFpaOHbQtvCypZ6JvyLDm3bEwMiW/uJC4zJv8cnhDrU51fzAqDEsjU0YF9sbGxILotAQ+3rmImznpQOnMhg7m1pryu6+cxETfiAF+nZjUdiA5hfmExV/lj5Nlg4ivOrMbtVrN2KBgbE2tyMzP4XjMRZae3vbAcU4YP56CggI+/9//yMrKIqBZM374/nutsSQTEhJQlmva1rJlSz799FN+/vln5s2bR8OGDfls9mwCAspmmgwODiYjI4P58+eTnJxM48aN+fabb3BxKZ0dUqlUcuXqVTZt3kxWVhb29va0ad2a2bNna/62vr4+x48fZ8XKleTm5uLk5ESXzp2ZOnUqenrasy3eTfNOrcnNyiFkzRay0jJxcnNh3DvPY+1Q2jU1Oz2DjJSy7udqlZodyzaQdjMFpVKJrZMDwWOeoE2fLpoy3YeVfkfsWrmRzNQMzCzN8W3dnD5PDb6ft7/aQuMiMDU0pq9vOyyNzIjPSmH+kb81idXS86KsxXFhSRG/HF7P0ObdebXbKHKL8gmNi2DLxbKW1TsvHwO1msealiawsgvyuJAYyeaLh2qlDgBnE65iamhEz8atsTA2JTErlT9ObCH9VitRCyNTrW5fhSXFLDy+icH+nXm+0zByCws4l3CVHbU4JtuDOH3jMmaGxvTza4/Vrf3zy+H1ZfvH2AwbU+0W4cb6hrR08Wbt2ZB/P2DgROwlzI1MGOTfGStjM+Iyk/lu/2pNN1drE3NsTbUn2jDRN6JVA19Whu6sdJtpeVnM3beSUYG9mRU8hbS8LHZFnGDLpSOVlq8Jp25cxszQhP6+HbA0NiM+M4WfD63TvPdWxmbYmFR87wNdfVhzNqTSbVqZmPNOr3Ga53182tDHpw0RN2P47sDq2qpKtfg5ePDD0Nc1z1/uUjru6eaLh/l09+KqVvtXPCrHlBBVUagrG/BHCCEeQI8ePQgMDOSbb755qO0cPHiQHj16EBsbq2lBVl98uH2BrkN4aLOCp3A+/qquw3hozVwaM375R7oO46H8MXom6dNfv3fBOs563hze2fSzrsN4KJ8PfI4hi97RdRgPbf3Ez8nKrN0xoP4NFpaWrKriYqu+GBnYhzf+/k7XYTy0rx9/mXe3/KLrMB7Kp489yyvr5+o6jIf27ZDXmLr6c12H8dB+G/EOL62bc++Cddj3Q1+n84/TdR3GQzv4wrx6f0z9NqL+fnenP/OyrkOolPX8+v/d9SCk5ZkQos4oKCggJiaG999/n5EjR9a7xJkQQgghhBBCiEePjHkmhKgzli9fjq+vLxkZGXzxxRe6DkcIIYQQQgghhJCWZ0KImhMSEvJQ60+cOJGJEyfWSCxCCCGEEEIIUW/JCFt1irQ8E0IIIYQQQgghhBCiCpI8E0IIIYQQQgghhBCiCtJtUwghhBBCCCGEEKIukW6bdYq0PBNCCCGEEEIIIYQQogqSPBNCCCGEEEIIIYQQogrSbVMIIYQQQgghhBCiLlFJt826RFqeCSGEEEIIIYQQQghRBUmeCSGEEEIIIYQQQghRBem2KYQQQgghhBBCCFGXqFW6jkCUIy3PhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSogox5JoQQQgghhBBCCFGXqNW6jkCUIy3PhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSognTbFEIIIYQQQgghhKhLVNJtsy6RlmdCCCGEEEIIIYQQQlRBoVbLKHRCCCGEEEIIIYQQdUX608/qOoRKWS/5Rdch6IR02xRCiBr0y+H1ug7hoT3bcQhZMbG6DuOhWbg1pNe8l3QdxkPZPf170sdO03UYD8166a88+ce7ug7jofw1/lP6/vqKrsN4aDumfUtWaqquw3hoFra2rD6zS9dhPJQRLXvz9qafdB3GQ/vfwOdZcnKrrsN4KE+37s+bG7/XdRgP7avBL/HMqs90HcZDmz9yBsG/varrMB7K9qnfMHX157oO46H9NuIdOv84XddhPJSDL8zTdQgPTto51SnSbVMIIYQQQgghhBBCiCpI8kwIIYQQQgghhBBCiCpIt00hhBBCCCGEEEKIukSl0nUEohxpeSaEEEIIIYQQQgghRBUkeSaEEEIIIYQQQgghRBWk26YQQgghhBBCCCFEXSKzbdYp0vJMCCGEEEIIIYQQQogqSPJMCCGEEEIIIYQQQogqSLdNIYQQQgghhBBCiLpEum3WKdLyTAghhBBCCCGEEEKIKkjyTAghhBBCCCGEEEKIKki3TSGEEEIIIYQQQog6RK2Sbpt1ibQ8E0IIIYQQQgghhBCiCpI8E0IIIYQQQgghhBCiCtJtUwghhBBCCCGEEKIuUat0HYEoR1qeCSGEEEIIIYQQQghRBUmeCSGEEEIIIYQQQghRBem2KYQQQgghhBBCCFGXqGW2zbpEWp4JIeq1iRMnMmTIkPtax9PTk2+++aZW4hFCCCGEEEII8WiRlmdC1CMTJ05k8eLFFZb369ePrVu31vrfTk9PZ/369bX6d+7Xt99+i7qG78pERUXh5eXF6dOnCQwMrNFt3yl012FObNlLTnoWdg2c6DFmMA19ve653o2IKFZ99gv2DZwY9/GrmuWrPvuF2PBrFcp7tfBj6OuTaiRmtVrNr3/8wbrNm8jKyqKZX1PefvllGnt63nW9Xfv2MW/RQmLj42no4sLzk6fQs0sXzes5ubnMW7SQPQcOkJaejq+3N288/wLN/Pwq3d6nc+ewbtMmXn/uecYMH/7Q9Xq8WVdGteyNnaklUWnx/HhwLWcTrlZZ/olmXRkS0A1nC1uSstNYcmo7Oy4f0ypjZmjClHaD6OrVEgsjU+KzUph3eB1Hoy88dLx3YzxsMIa9uqIwM6XkSiS5i5ahuhF/13WM+vfGsHd3lPa2qLOyKTx2ivyVa6GoGADLb2ajdLCvsF7Bjj3kLVpeo/H3823P4/5dsDG1ICY9iUXHN3Ex6XqV5bt6teSJZl1xsbQjt7CA03GX+ePkFrIL8jRlTA2MGRPUl/buzTAzMiYpK43FJ7dw+sblGo29vMH+XRjRotetYyqBnw+v5VxCxfPztsf9u/BEs6443Tqmlp3ewc6I45WW7dE4iHd7T+RgVBgfbF9QW1UoPd8XLGDdhg1kZWbSrFkz3n7zTRo3anTX9Xbt2cO8X38l9sYNGjZowPPPPkvPHj00r/+1di1/rV1LfHzpcdmoUSOemTyZzh071ko9jm7by/6/d5KdnoFjQxcGTByBZ1PvSstGXbrC9qXruXkjkaKCQqwdbGnbpwudB/XWlJn/wVyiLkRUWLdJUDPGz3ihVurQwaMZ3RsFYWFkSmJ2KhvPHyQqrerzWk+ppI9PW4Jcm2BhZEpGfja7r5zkROwlTRljfUP6+bYnwLkRJgZGpOVl8c+Fg4TfjK6VOgCc2LGfw//sJis9E4cGzvQbPwx3v8b3XC8m/BqLP/4eRzcXpn32lmZ5Umw8e1dvJj4ylozkVILHDaX9Yz1qLf7bOnk0p4d3EBZGZiRmpbLh/H4iU+OqLK+nVNK3STtaN/DFwsiM9PxsdkUc53jMRU2Zrl4t6ejZHBsTC3IK8wiLv8Lmi4cpVpXUSh16NG5FP9/2WJuYE5dxkxWhO4lIjq207KS2A+ns1aLC8hsZN5m1bT4A/+kxBl9HjwplwuKu8N2B1TUbfDmDm3ZmRMte2JpYcj0tgZ+PrLvrZ+1g/y484d8VJwsbkrLTWR6q/Vnb2bMFowP74GrpgL5SyY3MZP4K28OuKydqrQ49GgfRz7c9VsbmxGUms/Ie+6KTZ/MKy+MybjKr3PeBiYERQwO6EdTAFzNDY5Jz0ll1Zvdd35t/S0sXb8YEBePn6I69mTXvbP6Z/ZFndB2WEHclyTMh6pn+/fuzcOFCrWVGRkY6ikb3rKysdB3CAws/eoaQZRvpPX4Irj4ehO05yro5vzNh9utY2tlUuV5Bbh5bf12Ju39jcjOytV4b/NI4VMVlP7LzcnL48/1vadK24o+sB7V45QqWrfmLWf95C/eGDVmwdAkvvP0WaxYuwszUtNJ1wi6c57+ffMz0iZPo2aULew4c4J2PP2LBN98S0LQpAJ98/TVXoyL56J0ZONjZsXnnTp5/6y1W/74AR3sHre2FHDzA+UuXcLCzq5E69Wjcihc6DePb/as4l3CNwf6d+Xzgc0xa+SlJ2WkVyj/u34Vn2g/m670rCE+6jp+jB290H012QS6Hr58DQF+px5eDXiA9L5sPdiwgOTsdB3MbcosKaiTmqhgN6ofRgD7kzltESUIixkMGYj7jNTLffB/yK//bBp3aYTxqGLm/Labk8lWULk6YPjsRgPwlqwDIen82KMsarOs1bID5f1+j6OjJGo2/k2dzJrYZwPyjG7l08zp9fdry394TeO3vb0nOyahQ3s/Rgxc7P8niE5s5EXsJW1NLprV/guc6DuPLkKVA6b6Y2XcSGfk5fLV3GSm5mdibWZFXi/uie6Mgnus4lO8PrOZ8YiQDm3Zi9mPTmbLqM27mVDymBjXtzOR2g5m7bwXhN6Pxc3Tnta5PkV2Qy5Ho81plHc1tmNZ+CGHxV2ot/tsWL1nCsuXLmfX++7i7ubFg0SJeeOUV1qxYgZmZWaXrhJ09y3/ff5/pU6fSs3t39uzdyzvvvceCX34hoFmz0jo4OPDi88/j1rAhAP9s3swbb73F0sWL75mYu19nD51g86K/GPzMU7j7NuL4zgP8MftHXp77Ptb2thXKGxoZ0b5fd5w9GmBoZMT1S1fY8NtyDI2NaNunNOE/5s1plBQXa9bJzcrhx//MJqBjqxqN/bYWLt4M9u/C+nP7uJ6WQHt3fya3G8ScvctJz8+udJ2xQf2wMDLhr7A9pORmYGZogl75c1ih5Jn2j5NdmMeSU9vIyM/G2ticguKiWqkDwPnDp9j2xzoGTB5BwyZenNp1iGX/m8dzX87AqpJ9cVt+bh4bfl6CV7Mm5GRmab1WXFCIjaM9TdsHsWPJulqLvbyWrj48HtCVtWdDiEqNp4NHAM+0H8yXIUtJz6t8f4xr/RgWRqasOrOb5Jx0zI1MUSoUmteDGjRhQNNOrDqzi6jUeBzMrRkV2AeAv88fqPE6tHVrylOBfVh6ahtXkmPp1jiIV7qOYua230jNzaxQfkXoTtacDdE811MomRU8hZPlkrE/HVqLnlJP89zc0IRZwVO0ErY1rXujIKZ3HMr3B/8q/az168Sn/Z/lmdWfcTMnvUL5QU07M7ntIL7Zv7L0s9bBnVe7jtL6rM0qyGV56A6i05MoLimmvXsz3uw+mvT8bK361pQ2Df0YpdkXN+jeKJCXu45k1tb5pOZVsi9O72RNWIjmuZ5Sycy+kzkRG162TKHk9W5PkVmQw7zD60jLy8LWxJL84sIaj/9BmBgYcSUlls2XDjH7sem6DqfuUkm3zbpEum0KUc8YGRnh7Oys9bCxKUu0KBQKfvnlFwYNGoSpqSlNmzbl8OHDXLlyhR49emBmZkbHjh25erWsRc0HH3xAYGAgv/zyC25ubpiamjJixAjS09M1ry9evJgNGzagUChQKBSEhITQq1cvXnzxRa34UlJSMDIyYvfu3RViz8jIQE9Pj5MnSy+21Wo1tra2tG3bVlNm+fLluLi4aJ7fuHGDUaNGYWNjg52dHU888QRRUVGa1+/stpmVlcXYsWMxMzPDxcWFuXPn0qNHD1599VWtWHJzc5k8eTIWFha4u7vz66+/al7z8ipt+RUUFIRCoaBHudYSNenktv0EdGtL8+7tsHN1oufYx7GwteLM7iN3XW/norX4dQjEpXHFu7sm5qaYWVtoHtHnIjAwNKBJu4p3ix+EWq1m+dq1TBozhl5du+Lt5cWHb71Nfn4+W3fvqnK95WvW0r51ayaNGYOnuzuTxoyhXVArlq1dA0B+QQG79+/j5anTaNWiBW4NGvDshAk0cHHmr783am0rKfkmX3z/PR/P+C/6+jVzD2hEi55suXSYzZcOE52eyI+H1pKUncbj/l0qLd+3SVv+uXCQkKuniM9KYc/VU2y5dJinbl3oADzm1wFLI1Pe3/Yr5xMiScxO41zCNa6l3KiRmKti1L8P+es3U3TiNKrYOHLnLURhaIhhp/ZVrqPv05jiy1coOnQMVXIKxWcvUHj4GPpeZceYOisbdUam5mEQ1JyShCSKL9Zsy63BTTuz+8pJdl05wY2Mmyw6sZmUnAyCm1QefxN7N27mpLH50mGSstO4lHSdHRHHaGznqinTy7s15kYmfLFnCeE3o0nOSedS0nWupyXUaOzlDW/Rg63hR9gSfoTo9ER+PryOm9lpDPbvXGn5Pj5t2XTxIHuvnSYhK4WQq6fZGn5Ec/F8m1KhYEav8fxxcgsJmSm1Fj/cOt9XrmTSxIn06tED78aN+fD990vP9+3bq1xv+cqVtG/blkkTJuDp6cmkCRNo16YNy1au1JTp1rUrXTp1wsPdHQ93d16YPh1TExPOnjtX4/U4+M9uWvfqRJvenXFs6MLAiSOwsrfm2PZ9lZZ39XKjZZe2OLm5YuNoR2C39vi0bErUxbJkpam5GRbWVprH1bBLGBgZEtChdpJnXb1acjzmIsdjLpKUncbGCwfJyM+mg0dApeWbOLjRyM6V349v4kpKLGl5WcRmJGkd823cmmJqYMQfJ7ZwPS2B9LxsotISiM+qvePqyOYQgnp0IKhnR02rM0s7G07sPHjX9TbNX0mzTq1p6ONZ4TXXxh70GfsEAZ1aoVdD3wn30r1RIMeiL3As+gJJ2Wn8fX4/6XnZdPSo/EaVr4M7je0aMP/o30Qkx5CWl0VMeqLW/vC0cSEqNZ7TNy6TlpfF5ZsxhN6IoKGVU63UoW+TdhyIPMP+yDPEZ6WwMnQnaXmZ9GgcVGn5vKICMvNzNA8PG2dMDY05EBmmKZNTmK9Vxt/Ji8KSIk7E1F7ybHjzHmwNP8rW8CPEpCcy78g6bmanM7iK7+/ePm3YfPFQ2WfttdNsDT/KyJZlLUvD4q9wMOosMemJxGelsP78Pq6lxhHgdO+eAQ/i9r44EBlGQlYKK8/sIi03k+5V7YviAjILcjSP2/viYFTZvuji1QJTQ2N+OriWqyk3SM3N5EpKLLEZSbVSh/t1JPo8vx39m73XQnUdihDVJskzIR5BH3/8MePHjyc0NBQ/Pz/GjBnDs88+y4wZMzhxorTJ+Z1JrytXrrBq1So2btzI1q1bCQ0N5YUXSruevPnmm4wcOZL+/fsTHx9PfHw8nTp14plnnmHZsmUUFJS13li6dCmurq707NmzQlxWVlYEBgYSEhICQFhYmObfzMzSO2shISF0794dKE1w9ezZE3Nzc/bt28eBAwcwNzenf//+FBZWfufs9ddf5+DBg/z999/s2LGD/fv3c+rUqQrlvv76a9q0acPp06d5/vnnee6557h0qfTH3bFjpV3vdu7cSXx8PGvXrq3eG38fSoqLSYy6gUeAj9Zyj4AmxF2punvauf3HSb+ZSschfaosU97Z/Sfwbd8SAyPDh4r3thvx8aSkptKhdRvNMkNDQ1q1aEnY+fNVrhd24QLty60D0KFNG806JSUllKhUGBpqx2lkaEhouYtplUrFzM8/Z9zIkffsJlpd+ko9mji4VfhxfyL2Es2cK/+hbKCnT2FJsdayguIi/Bw9NC07Onk253xiFK90Gclf4z9lwcgZjAkK1mppUNOUDvYobawoPluuW2hxMcWXLqPvU3VrnuLwK+h7eaDXyFOzHYOWzSkKPVv5Cnp6GHTpQOHeu1/w3i99pR6N7Fw5E6fdoupM/BV8HdwrXSf8ZjR2plYENWgCgJWxGR3cAzgVW5bUa9PQj8s3Y3im/ePMHzGDOYNfZlhA91rbF/pKPZrYu3GyXCsAgJOx4TSr4uKrqmPK18EdPUXZz7WnW/UnPS+breF3T7LXhBtxcaSkpNChXTvNMkNDQ1oFBRF2topjAwg7d4725dYB6NC+fZXrlJSUsG3HDvLy82nRvOZayQIUFxcTdy0a75ZNtZZ7t2hKdCVd3CsTFxlDdHgkXv4+VZY5ufsQzTu1xtC45luC6ymUNLByIOJmjNbyyzdj8LCpPLHi7+RFbEYS3RsF8d/e43mz+xgGNu2EfrlWQf5OnlxPT2RIQFfe6zOR17qNomfjViionfOipLiY+MgYGrXw1VreuLkvsZcjq1wvNOQIaUnJdB/ev1biul+l+8ORy3d0bb18MxpPW5dK12nm7EVMehI9G7fm/T6TeLvn0wzy76y1PyJT42ho7Yibdek+tTW1xM/Rg4tJUTVfB6USDxtnzidqv+/nEyJpbNewWtvo2qglFxOjKm2ldlsXrxYci75AYUnttGbUV+rhY9+QUze0v79P3riEv5NnpesYKvUrxFNYUvGztrxAVx/crBzvOpTDg9JTlO6LCwlRWsvPJ0bR2L5BtbbRxavivmjp6sO1lBuMaRXM14Nf4oPgKQzw61hr57cQ/x9It00h6pl//vkHc3NzrWVvv/0277//vub5pEmTGDlypOa1jh078v7779OvXz8AXnnlFSZN0h7/Kj8/n8WLF9PwVhea77//noEDB/L111/j7OyMiYkJBQUFODs7a9YZPnw4L730Ehs2bND8vYULFzJx4kQUVVyU9ujRg5CQEN544w1CQkLo3bs3165d48CBAwwYMICQkBBee+01AFasWIFSqWT+/Pma7S1cuBBra2tCQkIIDg7W2nZWVhaLFy9m2bJl9O7dW1Pe1dWVOw0YMIDnn39e8x7NnTuXkJAQ/Pz8cHAo7SJoZ2enVd/yCgoKtJKGcH/dZ/OyclGrVJhZau9LU0tzcjOyKl0nLSGZA6u3Muq/01Hq6VVaprz4azGkxCYQPPnJasd1Lylppd3N7Gy0u5Xa2dgQn5h4l/VSK13n9vbMTE1p4e/P/CVL8HJ3x9bGhm17dnPu0iXcGpT9eFy8YgV6eno8NXRYTVUJK2Mz9JR6pOVpv+9puVnYullWus7xmEsM8OvIgcgwIpJjaOLgRn+/Dhjo6WNlbE5qbiYuFvYEudqyM+IEMzbPo6GVAy93HYmeUsmfJ2tnjEKFdWm8qgztixlVRiZK+6q7uBYdOU6epTnms94CFCj09SjYEULBxsrjNGgTiMLUhMJ9h2osdgALI1P0lHpk3NENLSMvG2tX80rXCb8Zzbf7V/F6t6cw0NNHX6nH8ZiLLDhW1mLRycKWAHNr9l87w+xdi3GxtOOZ9o+jVCr5K2xPjdYByh9T2vshLS8LG1OLStc5GXuJx/w6cCgqjIjkWJrYu9Hft9wxlZdJMycv+vt2YPqaL2o85sqkpJS2QLKz1e5OZ2drS3xC1a32UlJSKl3n9vZuu3LlCpOmTaOwsBATExO+/PxzGnnVbMuO3MxsVCoV5lba77uZlSXZ6VVf9AN8Mf2/5GRmoyopodeIgbTpXXmrwdgrUSTGxDH0uadrLO7yTA2N0VMqyS7M01qeXZCLhZFbpevYmljiaeNCcUkJf5zYipmhMUMCumFiYKQ55m1NLWlsYkFoXAQLj23C3syKJwK6oVQoa2Vsp9ysnNLvPSvtz1UzKwuyq/jeS4lPYveKjUyY9Uq1vvf+Dbe7v2YV5GotzyrIw8Ko8qELbE2t8LJ1oVhVzKITmzEzNGZY8x6YGhiz6kxpq+3QuAjMDE14ofNwFICeUo9DUWHsuVKzXeMBzA1N0VMqyczP0VqeWZCDlXHl3bHLszI2I8C5Mb8d2VBlGS9bFxpaO7L4xOaHjrcqlrc/a3Pv+P7Oy8LGpPLv7xOxl+jv14FD188SkRyLj70b/Zq01/qshdJxMpeP/RADPX1UKhXfH/yLU7UwRqa50a19UaC9L7Ly72dfNGL+0b+1ltubWePn6MHR6PN8u38VTha2t27gKfnnYs3e+BK1SK3SdQSiHEmeCVHP9OzZk59//llrme0dFyktWpR10XNyKr2D2bzc3XwnJyfy8/PJzMzE0rL0x4W7u7smcQbQsWNHVCoV4eHhVSaQjIyMePrpp/n9998ZOXIkoaGhnDlz5q6TCvTo0YMFCxagUqnYu3cvvXv3xt3dnb1799KqVSsuX76saXl28uRJrly5goWF9kVPfn6+VrfT265du0ZRURHtyrV4sLKywtfXt0LZ8u+RQqHA2dmZpKTqN2X/7LPP+PDDD7WWzZo1C5d+gdXexq0/rv1cDVRyV1ClUrH5l+V0HNIXG2eHCq9X5ty+Y9g1dMalUeUXV9WxZddOZs+dq3n+zaezASokR9VqdZUJU40710GtVdOP3pnBR199yWNPjUJPqcTXx4f+vXpxKaJ0UO6Lly+zYt1alvw8795/6wGo0R5XQqGoeobwP09uxdbUgh+HvoFCUfpDfVv4UUYH9UWlUt1aX0FaXhZz9i1HpVYTkRyDnZkVo1r2rrHkmUGndphOKbtgz/7yh8oL3q0ygH7TJhg/MYC8hcsovhqJnpMDJuOeQpWeQcH6TRXKG/boQvGZc6jTK45BVhMqTAJyl/3d0MqBye0GsTpsN2duRGBtasH41o8xrcMT/Hx43a3VFWTk5/DLkfWo1GqupcZhY2LJE8261kryrKweFatR1V5YcmobNqYWfDfkdRSUHlPbLx9lVGAfVGoVJgZGvN1zHHP3r6hwkVVTtmzbxuz//U/z/JuvvroVdyXn+702VuF8r7gdDw8Pli1eTFZ2Nrv37OGDjz/m159+qvEEWmXxgPquxxXAMx+9TmF+ATGXI9m+bAO2zg607NK2QrkTuw/h5OZKQ2/Pmou3EpWdF1UdT7ff6xWhOzVjHP1z8RBPt+rH+nP7KFaVoEBBTmEea8JCUKPmRuZNLI3N6NYosFYHRq9kT1R6PKlUKtb9+Afdn3wMOxfHWounptztcLq9P5ad2q7ZH3+fP8D4No+x9mwIxaoSGts1oLdPG9aeDSE6LVGTzOyTn1vlxCEP687jR0HVx1R5nTxbkFuUz+m4qpNJXbxaEpueRGTq3SerqQmV1aOqT9ulp7djY2rJt0+8VvZZG3GMUS17oyqXqMgrKuC5tV9irG9EUAMfnu0whPislFoba7Kyya+qMx9WJ8/mpfvijsSeUqEgsyCHP05sRY2a6PRErI3NCfZtL8kzIR6QJM+EqGfMzMzw9q58hrDbDAwMNP+//YOtsmW3L/Irc7vMvZIUzzzzDIGBgcTGxvL777/Tu3dvPDwqjsV1W7du3cjKyuLUqVPs37+fjz/+GDc3N2bPnk1gYCCOjo40vTWAvEqlonXr1ixdurTCdm63Divv9g+Pyi707lT+/bi9zt3ejzvNmDGD119/XWuZkZERi05tqdb6JhamKJRKcu64256blY2pVcUWNoV5BSRGxpJ0PY7dS0rv9KrValCrmTt5BsPfnIK7f9lxUVRQSPjRM3QaGlxhW/ejW8dOBPiVdXcqLCrt6pCcmop9ucH6U9PTsbWxrnI7dja2pKSmai1LTUvHtlxrtIaurvw6Zy55eXnk5OZib2fHjI8/xtW5tBvM6bNnSU1PZ9CY0Zp1SlQqvvllHsvXrmHj0mUPVMeM/BxKVCXY3nGX2trEokLLodsKS4r4MmQZc/atwMbEktTcDAY17UxOYR4Zt+7kp+ZmUKxSoSp3/EWnJWJnZoW+Uq9GZk8rOnWGrKvlut3cGu9HaWVJSbnEltLSAnVG1a1sjJ98gsIDRygMKR2UWhVzA4yMMJ0yjoINm7V+wSvsbdEPaErONz9XtbkHllWQS4mqBGsT7YS5lbFZlYNwDw3oTnjSdc2A2tfTE/mt+G8+6T+N5aE7Sc/LIi03ixJ1ida+uJFxExtTixrbF+VpjinTO44pYwvScytvYVNYUsTXe5fzzb6V2JhakJqbyQC/TuQU5pORn0MjO1dcLO34uN9UzTq3P+u2PjOHSSs/feixqrp16UKAv39ZTLfP95QU7O3LZlpNTUurcNOmPDs7uwqtzFJTUyusY2BggJtbaXLfv2lTLly8yPKVK3n3nXceqh7lmVqao1QqK7Qyy8nIqtAa7U62jqV1dnZvQHZGFntWb6qQPCssKOTswRP0HjWoxmK+U25hPiUqVYVWTeaGJmTf0frptqyCHDLyc7QGB7+ZnYZSocDK2JyU3AyyCnIoUau0bhwkZaeVtuZRKCmp4RYPphZmKJRKsu/4LMrNyMKskn1RmJdP/LUYEqJusGVR6fiYt7/3Pnn6NcbOeA6vZk1qNMbqyCnMq3J/3Nka7bas/Bwy8rO19kdSdipKhQJrE3OSczLo59uBU7HhHLs1G3NCVgqGegY82bInuyKOVyupVV3ZhbmUqFQVWjZZGJlWaI1WmS5eLThy/RwlVfxuMtTTp61bUzac318j8VYlU/NZq338WJuYV2hNflthSRFz9i3n2/2Vf9bepkZNXGYyANdSb+Bu7cRTgX1qPHmWXXB7X2j/9rMwNqvWjZLOni04cv18hfM1PT+bEpX2+R2flYK1iXmtnN9C/H8gyTMhBADR0dHExcVpujgePnwYpVJJkyalP0wNDQ0pKal4gdm8eXPatGnDb7/9xrJly/j+++/v+nduj3v2ww8/oFAo8Pf3x9XVldOnT/PPP/9oWp0BtGrVipUrV+Lo6KhpIXc3jRs3xsDAgGPHjmkuyDIzM4mIiNDa7r3cHnersvreZmRk9FCznOrp6+Pk2YDo8xH4tC4b8Pn6+QgaB/lXKG9kYsT4T17TWnZm92GiL1xl8ItPY+WgfVF6+VgYJUUlNO1U+WCz1WVmaqo1g6ZarcbO1pajp07i51M6/k9RURGnws7w0tSpVW2GFv7+HD11krFPlnUhPXryBC1uzbxXnomJCSYmJmRmZXH4xHFenjoNgAF9+tCulfZg3C+98zYD+vRlcP8HHwunWFXC5ZsxtHbz40C5wXZbN/DlUFTV4zpBafIu+dZsXj29W3Hk+nnND9VzCZH09ml9605+6bKG1g4k52TUXLImvwBV/k2tRaq0DPSb+1Ny/db4SHp66Ps1IW/FXcbuMzKseItbpaq0OYhRt86oM7IoPn339+ZBFKtKuJYSRwtXb47FlI3b1sLFm+MxFytdx0jfoMJFgKb1363n4Tev08Wrpda+cLG0IzU3s8YTZ7frcTk5hlYNfLUGcG7VsBrHlFqlmVW0Z+NWHI0+r2k1MHX151plJ7YdgKmBMT8dWlvprHL3y8zMTGsGTbVajZ2dHUePH8fvVgveoqIiTp0+zUu3ur1XpkVAAEePH2fs6LJE99Fjx+45nplaraaoqGbHRtLX18e1kTtXwi7i3y5Qs/xK2CWatr2PiVTUaoqLiyssPnf4JCXFxQR2bVfJSjWjRK3iRsZNfBzctMao8rFvyIXEqErXiUpNoLlLYwzLjaVnb2aFSq3SdIuOSksg0NVHq42OvZl1aUKiFi6s9fT1cfFy49rZcPzattQsv3YunCatKx4bRibGPPu/t7WWndhxgKjzETz56iSsHWpmtuX7Vbo/kmji4Ma5hLJx85o4uGs9Ly8yNZ4Wrt4Y6hloxttyMLNGpVZpbgwY6ulXaAGtUqtutaKquiXVA9VBpeJ6WgL+Tl5aLZb8nbwIvUtrMiid/MDJwpb9B89UWaaNW1MM9PQ5cr3qsVBrQrGqhIjk2FuftWWfra0a+Gpmvq5K+c/aHo2DNJ+1VVEoFBgoa/7SuURdui+aOnlqteTzd/Ik9EbEXddtcmtfHDhU8fv9anIs7dybaR05Tua2pOdlSeKsPqlO80Pxr5EJA4SoZwoKCkhISNB6JCcnP/R2jY2NmTBhAmfOnGH//v28/PLLjBw5UtNl09PTk7CwMMLDw0lOTta6wHnmmWf4/PPPKSkpYejQoff8Wz169GDJkiV0794dhUKBjY0N/v7+rFy5Umtmy7Fjx2Jvb88TTzzB/v37iYyMZO/evbzyyivExsZW2K6FhQUTJkzgP//5D3v27OH8+fNMnjwZpVJ5X938HB0dMTExYevWrSQmJpKRUTtd01r368rZvcc5t+84KXGJhCzbSFZKOi17dgBg/+otbPm1dHY6hVKJfUNnrYeJhTn6BvrYN3SuMCHAuf3H8W7lj4n5vcfLuB8KhYLRw4axcNky9hw4wJXISD744guMjY3p36tspqqZn3/OD/Pna54/NWwYR0+cYNGK5URFR7NoxXKOnjrFmGHDNWUOHz/OoWPHuBEfz5GTJ5j+5ht4uLnx+K3EmLWVFd5eXloPfX197Gxt8XR78K6pAKvD9jDAryP9fTvgbu3E852G4WRhy8YLpa2Znmk3mHd6jtOUb2jlQB+fNjSwcsDP0YP3+kzE09aV+eXG2fr7/H4sjcx4sfNwGlo50N69GWOCgtlwvvIZ/mpKwdadGD/+GAZtAlE2dMV0+kTUhYUUHjqqKWM6fRLGo8rO1eJTYRj16Y5Bh7YoHezQD2iK8ZNPUHTqjPYPN4UCw+6dKNx/qDS5Vgs2XjxIb+/W9PJuTQMrBya2GYC9mRXbL5dO5DEmKJiXOpclYU/EXqK9ezOCm7TD0dwGXwd3JrcbRMTNGE3Lg23hx7AwMmVSu4G4WNjRqoEvw27N0FZb1oSF8JhfB/r5tsfd2onpHYfiaG6j6S4zue0g3uoxVlO+gZUDvb3b0MDSAV8Hd/7bewKeti78fuwfAIpKiolKi9d65BTkkVuUT1RafK0kARUKBaNHjWLh4sXsCQnhytWrfPDxx6Xne7kxJ2d++CE//PST5vlTI0dy9NgxFv35J1FRUSz680+OHj/OmFGjNGV+/PlnToeGEhcfz5UrV/hx3jxOnj5N/1tjc9akzoN6cXLXIU7uPkRSbDybF/1FRnIabft2BWD7svX89cMiTfkjW/dy6UQYyfFJJMcncXLPYQ5s3EnLShJkJ3cfomnblphaVD4mX03ZH3mGtm5NadPQD0dzGwY17Yy1iQVHoksTBP19O2jNFhgad5ncwgJGtOyFo7kNXrYuDPDrxImYS5pj5cj185gZGjO4WRfszazwc/Sgp3crDt0j6fAwOgzowek9RwgNOcLNGwls/3MtGclptL41ntyuFRtZ/9MSoPR7z9HNVethZmmBvqEBjm6umskZSoqLSYiKJSEqlpLiYrJSM0iIiiU14WaVcTysvddCaefejLZuTXE0t+HxZl2wNjHnyK337jG/jjwV2FdT/vSNy+QW5jMqsDdO5jY0snVlkH9njkVf1OyPC4mRdPRoTqCrD7YmlvjYl46leT4h8q5JnQe14/Ixunq1pLNXC1ws7BgV2BtbU0tCrp4GYFjz7kxuV7FFZRevllxNuaFplVWZLl4tOX3jMjl3jNNXG9acDaG/bwf6NWmPm7UT0zsMqfBZ+58Kn7WtcbW0L/2s7TUeTxsXFh4vG6LgqZZ9aNWgCc4WdrhZOTK8eQ/6+LStte7MOy4fo2ujlnT2bIGzhR0jW5bui73XSvfF0IDuTG5b2b5owbUq9kXI1dOYGxrzVGBfnMxtaO7cmAFNO7LnSsVJtHTBxMAIH/uG+NiXDhnjammPj31DnMxt7rGmELojLc+EqGe2bt2Ki4v2bE6+vr6amSIflLe3N8OGDWPAgAGkpqYyYMAAfip3MTR16lRCQkJo06YN2dnZ7NmzR5PoGj16NK+++ipjxozB2Nj4nn+rZ8+ezJkzRytR1r17d0JDQ7VaiJmamrJv3z7efvtthg0bRlZWFg0aNKB3795VtkSbM2cO06dPZ9CgQVhaWvLWW28RExNTrbhu09fX57vvvuOjjz5i5syZdO3aVTNDaE3ybd+SvOxcjmzYRU5GJnYNnBn6+iQs7Ut/OOSkZ5GVkn7f201LuMmNy1EMf3NKDUdcasKopygoKOTz774lKyuLgKZN+eHz/2m1UEtISkKpLEtYtmzWjE/fe4+fFy5k3qJFNHR15bP33iegaVmX0OycHH5YMJ+k5GQsLSzo1bUrL0yajL5+7X9VhVw9haWxGePb9MfW1JKo1HhmbP6ZxOzSCQ1szaxwtCj7QadUKBnRshduVk4Uq0oIjYvg5XVzSMwq65p6Myedtzb9yPOdhjF/xAySc9JZe3YvK0J31GpdCv7ZhsLQEJOJY1GYmVJyNZLsz7+B/LIJLpR2tlpJsfz1m1CjxnjEEyhtrVFnZlN0+gz5q9ZrbVs/oClKe7san2WzvENRZ7EwMuXJFj2xMbEgOj2R2bv+0LTwszGxwN7MSlM+5OppTAyMeMyvAxPaPEZOYT7nEq6x5OQ2TZmU3Aw+3rGQiW0H8PXjL5Gam8nmi4dYX4uJzL3XTmNpbMbTrfpha2oXUtGKAADFB0lEQVRFVGo87275haRbx5SdqSWO5S4S9BRKnmzRk4bWjpTcOqZe2fANidmpVf2Jf8WEp5+moKCAz7/6qvR89/fnh2++0WqhlpCYiFJZdj+2ZYsWfPrRR/z8yy/M+/VXGjZowGeffEJAuZamKampzPzwQ5JTUjA3N8encWO+mztXa2bPmtK8Uxtys3LYs2YzWWmZOLm5MG7G89jcarmUlZZJenKaprxarWL78g2kJaWgVCqxdXYgeOwQ2vbporXd5LhErl+6ysT3XqrxmO8UFn8FU0Mjevu0wdLIjITsFBYe/0fTasnCyBRrk7IEXmFJMfOP/s0TzbryUpcnyS0sICz+CtvKJYwz8rOZf3Qjg/0782rXUWTm53AwMkyTPKkNzTq2Ii87h31rt5GdnoFDQxdGv/Us1rdaT2enZ5KZknaPrWjLSsvgt/9+qXl+eNNuDm/ajUdTb8a/Xzv75kxcBGYGxvRt0q50f2SlsODoRk3C3tLYDBut/VHEL0c2MDSgG690G0VuYT5n4q6w5dJhTZmdt7pm9vfrgJWxOdmFeVxIiNQqU5OOx1zEzNCEwf6dsTI2Jy7jJt/uX6WZsdHK2By7O7qemxgY0aqh712/x5zMbWni4MacvctrJe477b12GksjU8a26oetqSXXU+N5b2vZZ62tqSWOZtrf38Obl33Wnom7wqt/f6v1WWtsYMhLnUdgb2ZFQXERMRlJ/G/PEk0yq6adiL2EuZEJg/w7Y2VsRlxmMt/tX63ZF9Ym5hWGATDRN6JVA19Whu6sdJtpeVnM3beSUYG9mRU8hbS8LHZFnGDLpdqfqbk6/Bw8+GFo2fAnL3cZAcDmi4f5dPdiXYUlxF0p1JUNBiSE+H/lgw8+YP369YSGhj7Q+jExMXh6enL8+HFa3dGtTtdycnJo0KABX3/9NVOm1E4yqbxfDq+v9b9R257tOISsmIot++obC7eG9JpX+xe1tWn39O9JHztN12E8NOulv/LkH+/qOoyH8tf4T+n76yu6DuOh7Zj2LVmpuk3I1QQLW1tW35qlsL4a0bI3b2/66d4F67j/DXyeJbU0g/C/5enW/Xlz492HnagPvhr8Es+s+kzXYTy0+SNnEPzbq7oO46Fsn/pNha729dFvI96h84/TdR3GQzn4wjxdh/DA0gaPvnchHbDZ+O8kx+saaXkmhHhgRUVFxMfH884779ChQ4c6kTg7ffo0ly5dol27dmRkZPDRRx8B8MQTT+g4MiGEEEIIIYQQ9ZEkz4QQD+zgwYP07NmTJk2a8Ndff+k6HI2vvvqK8PBwDA0Nad26Nfv379eaKU4IIYQQQgghhKguSZ4JIfjggw/44IMP7nu9Hj16UNd6fgcFBXHy5EldhyGEEEIIIYQQD66OXWf9fyezbQohhBBCCCGEEEIIUQVJngkhhBBCCCGEEEIIUQXptimEEEIIIYQQQghRl6hVuo5AlCMtz4QQQgghhBBCCCGEqIIkz4QQQgghhBBCCCGEqIJ02xRCCCGEEEIIIYSoS1Qy22ZdIi3PhBBCCCGEEEIIIYSogiTPhBBCCCGEEEIIIYSognTbFEIIIYQQQgghhKhL1NJtsy6RlmdCCCGEEEIIIYQQQlRBkmdCCCGEEEIIIYQQQlRBum0KIYQQQgghhBBC1CXSbbNOkZZnQgghhBBCCCGEEEJUQZJnQgghhBBCCCGEEEKnPv30Uzp16oSpqSnW1tbVWketVvPBBx/g6uqKiYkJPXr04Pz581plCgoKeOmll7C3t8fMzIzHH3+c2NjY+4pNkmdCCCGEEEIIIYQQdYlKVTcftaiwsJARI0bw3HPPVXudL774gjlz5vDDDz9w/PhxnJ2d6du3L1lZWZoyr776KuvWrWPFihUcOHCA7OxsBg0aRElJSbX/jox5JoQQQgghhBBCCCF06sMPPwRg0aJF1SqvVqv55ptvePfddxk2bBgAixcvxsnJiWXLlvHss8+SkZHBggUL+PPPP+nTpw8AS5Yswc3NjZ07d9KvX79q/S1peSaEEEIIIYQQQggh7qmgoIDMzEytR0FBgU5iiYyMJCEhgeDgYM0yIyMjunfvzqFDhwA4efIkRUVFWmVcXV0JCAjQlKkWtRBCiHohPz9fPWvWLHV+fr6uQ3koj0I9HoU6qNVSj7rkUaiDWv1o1ONRqINaLfWoSx6FOqjVj0Y9HoU6qNVSD6Fbs2bNUgNaj1mzZtXo31i4cKHaysrqnuUOHjyoBtQ3btzQWj516lR1cHCwWq1Wq5cuXao2NDSssG7fvn3V06ZNq3ZMCrVa5j8VQoj6IDMzEysrKzIyMrC0tNR1OA/sUajHo1AHkHrUJY9CHeDRqMejUAeQetQlj0Id4NGox6NQB5B6CN0qKCio0NLMyMgIIyOjSst/8MEHmu6YVTl+/Dht2rTRPF+0aBGvvvoq6enpd13v0KFDdO7cmbi4OFxcXDTLp06dSkxMDFu3bmXZsmVMmjSpQsx9+/alcePGzJs3765/4zYZ80wIIYQQQgghhBBC3NPdEmWVefHFF3nqqafuWsbT0/OBYnF2dgYgISFBK3mWlJSEk5OTpkxhYSFpaWnY2NholenUqVO1/5Ykz4QQQgghhBBCCCFEjbO3t8fe3r5Wtu3l5YWzszM7duwgKCgIKJ2xc+/evfzvf/8DoHXr1hgYGLBjxw5GjhwJQHx8POfOneOLL76o9t+S5JkQQgghhBBCCCGE0Kno6GhSU1OJjo6mpKSE0NBQALy9vTE3NwfAz8+Pzz77jKFDh6JQKHj11VeZPXs2Pj4++Pj4MHv2bExNTRkzZgwAVlZWTJkyhTfeeAM7OztsbW158803ad68uWb2zeqQ5JkQQtQTRkZGzJo1676aSddFj0I9HoU6gNSjLnkU6gCPRj0ehTqA1KMueRTqAI9GPR6FOoDUQzy6Zs6cyeLFizXPb7cm27NnDz169AAgPDycjIwMTZm33nqLvLw8nn/+edLS0mjfvj3bt2/HwsJCU2bu3Lno6+szcuRI8vLy6N27N4sWLUJPT6/ascmEAUIIIYQQQgghhBBCVEGp6wCEEEIIIYQQQgghhKirJHkmhBBCCCGEEEIIIUQVJHkmhBBCCCGEEEIIIUQVJHkmhBBCCCGEEEIIIUQVJHkmhBDiX6NWq5F5akRNuXLlCtu2bSMvLw9Aji0dy8/P13UID+1RqIMQQtRVvXr1Ij09vcLyzMxMevXq9e8HJMR9kNk2hRCijiooKODYsWNERUWRm5uLg4MDQUFBeHl56Tq0+/bHH3/w5ZdfEhERAUCTJk34z3/+w7hx43QcWfWUlJQwd+5cVq1aRXR0NIWFhVqvp6am6iiy+xcbG8vff/9daT3mzJmjo6juT0pKCqNGjWL37t0oFAoiIiJo1KgRU6ZMwdramq+//lrXIVZLTEyM1vndrFkzjIyMdB3WfVGpVHz66afMmzePxMRELl++TKNGjXj//ffx9PRkypQpug7xnh6FOsCjcTxlZGSwbt069u/fX+G7r1+/fnTq1EnXId7To1AHIWqLUqkkISEBR0dHreVJSUk0aNCAoqIiHUUmxL3p6zoAIYQQ2g4dOsT333/P+vXrKSwsxNraGhMTE1JTUykoKKBRo0ZMmzaN6dOnY2Fhoetw72nOnDm8//77vPjii3Tu3Bm1Ws3BgweZPn06ycnJvPbaa7oO8Z4+/PBD5s+fz+uvv87777/Pu+++S1RUFOvXr2fmzJm6Dq/adu3axeOPP46Xlxfh4eEEBAQQFRWFWq2mVatWug6v2l577TX09fWJjo6madOmmuWjRo3itddeq9PJs+vXrzNv3jyWL19OTEyMVms5Q0NDunbtyrRp0xg+fDhKZd3vIPDJJ5+wePFivvjiC6ZOnapZ3rx5c+bOnVsvEk/1uQ6PyvEUHx/PzJkzWbp0Kc7OzrRr147AwEDNd9+ePXv46quv8PDwYNasWYwaNUrXIVfwKNShMsePH2f16tWV3nBZu3atjqK6f49KPeqrsLAwzf8vXLhAQkKC5nlJSQlbt26lQYMGughNiOpTCyGEqDMef/xxtYuLi/qNN95Q7927V52Tk6P1+tWrV9WLFi1S9+vXT+3s7Kzevn27jiKtPk9PT/XixYsrLF+0aJHa09NTBxHdv0aNGqn/+ecftVqtVpubm6uvXLmiVqvV6m+//VY9evRoXYZ2X9q2bat+//331Wp1aT2uXr2qzsrKUj/++OPqn376ScfRVZ+Tk5M6NDRUrVaX1UOtVquvXbumNjMz02Vod/Xyyy+rLSws1MOHD1cvXrxYffHiRXVmZqa6qKhInZiYqN61a5f6gw8+UPv6+qqbNWumPnbsmK5DvqfGjRurd+7cqVartffFxYsX1dbW1roMrdrqax0epePJwcFB/cYbb6jPnj1bZZnc3Fz1smXL1O3atVN/+eWX/2J01fMo1OFOy5cvVxsYGKgHDhyoNjQ0VA8aNEjt6+urtrKyUk+cOFHX4VVbfa7Hhg0bqv2oyxQKhVqpVKqVSqVaoVBUeJiamqoXLFig6zCFuCtJngkhRB3yww8/qAsKCqpV9ty5c/UieWZkZKSOiIiosPzy5ctqIyMjHUR0/0xNTdXXr19Xq9VqtbOzs/rkyZNqtbo0mWlpaanL0O5L+cSftbW1+ty5c2q1Wq0ODQ1Ve3h46DCy+2Nubq6+fPmy5v+3kx3Hjh1T29ra6jK0u3rzzTfVSUlJ1Sq7adMm9erVq2s5oodnbGysjoqKUqvV2vvi/PnzdTqRWV59rcOjdDxVtx4PWv7f8CjU4U7NmzdX//DDD2q1uuzcUKlU6qlTp6pnzpyp4+iqrz7X484k053Jp9sJKaVSqetQ7yoqKkodGRmpVigU6uPHj6ujoqI0j7i4OHVxcbGuQxTinupu+20hhPh/6IUXXsDQ0LBaZZs1a0bfvn1rOaKH5+3tzapVqyosX7lyJT4+PjqI6P41bNiQ+Ph4oLQ+27dvB0q7gdSnMYXMzMwoKCgAwNXVlatXr2peS05O1lVY961bt2788ccfmucKhQKVSsWXX35Jz549dRjZ3X355Zc4ODhUq+yAAQN48sknazmih9esWTP2799fYfnq1asJCgrSQUT3r77W4VE6nqpbjwct/294FOpwp6tXrzJw4EAAjIyMyMnJQaFQ8Nprr/Hrr7/qOLrqq8/1UKlUmsf27dsJDAxky5YtpKenk5GRwebNm2nVqhVbt27Vdah35eHhgaenJyqVijZt2uDh4aF5uLi4oKenp+sQhbgnGfNMCCHqgfz8fFauXElOTg59+/atN0knKB0vbNSoUezbt4/OnTujUCg4cOAAu3btqjSpVhcNHTqUXbt20b59e1555RVGjx7NggULiI6Orhdjtt3WoUMHDh48iL+/PwMHDuSNN97g7NmzrF27lg4dOug6vGr78ssv6dGjBydOnKCwsJC33nqL8+fPk5qaysGDB3Ud3l2999579OrVi06dOmFsbKzrcB7arFmzGDduHDdu3EClUrF27VrCw8P5448/+Oeff3QdXrU8CnW40969e8nJyaFjx47Y2NjoOpxquXLlChkZGbRu3VqzbNeuXXzyySfk5OQwZMgQ/vvf/+owwnt7FOpQnq2tLVlZWQA0aNCAc+fO0bx5c9LT08nNzdVxdNX3qNTj1VdfZd68eXTp0kWzrF+/fpiamjJt2jQuXryow+iq7/Lly4SEhJCUlIRKpdJ6rT6NIyv+H9J10zchhBDa3nzzTfXLL7+seV5QUKAODAxUGxgYqK2srNRmZmbqQ4cO6TDC+3fixAn12LFj1a1atVIHBQWpx44dqz516pSuw3pghw8fVn/99dd1foyRO129elV95swZtVqtVufk5Kife+45dfPmzdVDhw7VdFurL+Lj49UzZ85UDxw4UP3YY4+p3333XXVcXJyuw7qnRo0aqRUKhdrIyEjdrVs39axZs9R79+6tdnftumjr1q3qbt26qc3MzNQmJibqzp07q7dt26brsO5Lfa3DF198odXtTKVSqfv166fp0uXk5KTpnl3XDRkyRP3ee+9pnl+7dk1tYmKiDg4OVr/88stqc3Nz9dy5c3UXYDU8CnUob/To0eqvv/5arVar1Z988onawcFB/cwzz6g9PDzUQ4cO1XF01feo1MPY2FgdFhZWYfmZM2fUxsbGOojo/v36669qPT09tZOTk7ply5bqwMBAzSMoKEjX4QlxVwq1uty0PEIIIXQuICCA2bNn8/jjjwOwcOFC3njjDU6fPo27uzuTJ08mKSmJTZs26ThSIcSDuHHjBrt37yYkJISQkBAiIyMxMTGhY8eO9OzZk549e9KpUyddhynqgVatWvH2229rZm5cvXo1EyZMYMeOHTRt2pTx48djampaL1r5urm5sWrVKjp27AiUzoL6119/ERoaCsCCBQv4/vvvNc/rokehDuWlpqaSn5+Pq6srKpWKr776igMHDuDt7c37779fb1o1Pir16NatGwYGBixZsgQXFxcAEhISGDduHIWFhezdu1fHEd6bh4cHzz//PG+//bauQxHivknyTAgh6hhLS0tOnTqFt7c3AKNHj8bCwkIzLkdoaCgDBgwgLi5Ol2Het6SkpEqb6Ldo0UJHEd3d33//Xe2ytxOdovaEhYUREBCAUqnUmvK+Mubm5ri5uWFgYPAvRfdwYmJi2LNnDyEhIaxZs4acnByKi4t1HVa1TJo0iaeffppevXqhUCh0Hc4Dqc91sLGx4dChQzRt2hQorUtxcTF//vknAEeOHGHEiBHExMToMsxqMTEx4fLly7i5uQHQu3dvOnXqxMcffwyUjlvVunVr0tPTdRjl3T0KdbituLiYpUuX0q9fP5ydnXUdjqC0W/DQoUMJDw/H3d0dgOjoaJo0acL69es1vxvrMktLS0JDQ2nUqJGuQxHivsmYZ0IIUccolUrK39c4cuQI77//vua5tbU1aWlpugjtgZw8eZIJEyZw8eJF7rxfo1AoKCkp0VFkdzdkyJBqlavLdYDSi+vqJgRSU1NrOZoHFxgYSEJCAo6OjgQGBqJQKCocT+VZWVkxb948TYucuurq1auEhIRoWqKVlJTU6UkP7pSSksLAgQOxs7Pjqaee4umnn67Tg+xXpj7XoaioSGvSksOHD/PKK69onru6utabyUBsbW2Jj4/Hzc0NlUrFiRMntMaULCwsvOs5Xxc8CnW4TV9fn+eee67ejKN1p8zMzGqXtbS0rMVIao63tzdhYWHs2LGDS5cuoVar8ff3p0+fPvUm8T9ixAi2b9/O9OnTdR2KEPdNkmdCCFHH+Pn5sXHjRl5//XXOnz9PdHS01sX09evXcXJy0mGE92fSpEk0adKEBQsW4OTkVG9+4N3ZQq6++uabb3QdQo2IjIzUzE4XGRl517IFBQWsXr1aqztbXREZGcmePXs0Lc0yMjLo3Lkz3bt358UXX6Rt27bo69efn2d///036enprFq1imXLlvHNN9/g6+vL008/zZgxY/D09NR1iPdUn+vg7e3Nvn37aNSoEdHR0Vy+fJnu3btrXo+NjcXOzk6HEVZf9+7d+fjjj/npp59YvXo1KpVK67vvwoULdXpfwKNRh/Lat2/P6dOn8fDw0HUo983a2rravzfq8g2wOykUCoKDgwkODtZ1KNX23Xffaf5/u6vskSNHaN68eYUW4i+//PK/HZ4Q1SbdNoUQoo5Zs2YNo0ePpmvXrpw/f562bduyceNGzetvv/02kZGR9WIMGwALCwtOnz5dL7oTiEdHWloaU6ZMYe3atboORYtSqcTd3Z3nn3+enj170qpVK/T09HQdVo2JjY1l+fLl/P7770RERNSb7qfl1ac6/PLLL7zxxhuMGjWKI0eOYG1trTXj7CeffMLRo0e1vkPqqsjISPr27UtkZCRKpZLvvvuO5557TvP6kCFD8PLyYu7cuTqM8u4ehTqUt3r1at555x1ee+01WrdujZmZmdbrdXXYBUBr/K+oqCjeeecdJk6cqBmP7vDhwyxevJjPPvuMCRMm6CrM+5aTk8PevXuJjo6msLBQ67W6mnjy8vKqVjmFQsG1a9dqORohHpwkz4QQog7auXMnmzZtwtnZmZdeeglTU1PNax9++CE9evTQal1Qlw0ZMoRx48YxfPhwXYfyUOrjD9a7ycvLo6ioSGtZfem6cltubm6l+6MuX9CNGjWKffv2kZ+fT9euXenevTs9e/YkKCio3rTKrEpRURGbNm1iyZIlbNq0CVtbW27cuKHrsO5LfazDggUL+Oeff3B2dmbWrFla41M9//zz9OnTh2HDhukwwuorKiriwoULODg44OrqqvXamTNncHNzw9bWVkfRVc+jUIfblEplhWW3u8zX9SELyuvduzfPPPMMo0eP1lq+bNkyfv31V0JCQnQT2H06ffo0AwYMIDc3l5ycHGxtbUlOTsbU1BRHR0dJPAlRyyR5JoQQ9VBoaCiBgYG6DqNakpOTmTBhAu3atSMgIKBCE/36MNj+o/KDNScnh7fffptVq1aRkpJS4fX6ciF08+ZNJk2axJYtWyp9vT7U49KlS5qum3v37iU/P58uXbrQvXt3evToQdu2bXUdYrXt2bOHZcuWsWbNGkpKShg2bBhjx46lV69elV5810WPQh2qcvPmTU2X5/rs7NmzLFiwoF53Ra9vdbh+/fpdX68v3TlNTU05c+YMPj4+WssvX75MYGAgubm5Oors/vTo0YMmTZrw888/Y21tzZkzZzAwMODpp5/mlVdeqTdJciHqK0meCSFEPZGRkcHSpUtZsGABoaGh9SJBAKXjCY0bN46srKwKr9WXO9ePyg/WF154gT179vDRRx8xfvx4fvzxR27cuMEvv/zC559/ztixY3UdYrWMHTuWqKgovvnmG3r27Mm6detITEzkk08+4euvv2bgwIG6DvG+XbhwgWXLlvH999/Xq9k2GzZsSEpKCv369WPs2LEMHjwYY2NjXYd1Xx6FOtxJrVazZcsWTau0goICXYf0QDIzM1m+fDkLFizgxIkTtGjRgtDQUF2HdV8ehTrUd76+vgwaNIivv/5aa/kbb7zBP//8Q3h4uI4iuz/W1tYcPXoUX19frK2tOXz4ME2bNuXo0aNMmDCBS5cu6TrEe3r99dcrXa5QKDA2Nsbb25snnnii3rTOFP+/1J8RaYUQ4v+p3bt38/vvv7N27Vo8PDwYPnw48+fP13VY1fbyyy8zbtw43n///Xo10UF5oaGh/PLLL+jp6aGnp0dBQQGNGjXiiy++YMKECfUmebZx40b++OMPevToweTJk+natSve3t54eHiwdOnSepM82717Nxs2bKBt27YolUo8PDzo27cvlpaWfPbZZ/UmeZaYmEhISAghISHs2bOHy5cvY2RkRNeuXXUdWrXNnDmTESNGYGNjo+tQHtijUIfbrl27xu+//87ixYvJzs5m4MCBrFixQtdh3be9e/eyYMEC1qxZQ35+Pv/5z39YtmxZvRo781Gowx9//HHX18ePH/8vRfJw5s6dy/Dhw9m2bRsdOnQASmcyv3r1KmvWrNFxdNVnYGCg6d7v5OREdHQ0TZs2xcrKiujoaB1HVz2nT5/m1KlTlJSU4Ovri1qtJiIiAj09Pfz8/Pjpp5944403OHDgAP7+/roOVwgtkjwTQog6KDY2lkWLFvH777+Tk5PDyJEjKSoqYs2aNfXux0RKSgqvvfZavU2cwaPxgxUgNTVVM3CvpaUlqampAHTp0kVrUOu6LicnB0dHRwBsbW25efMmTZo0oXnz5pw6dUrH0d3d6tWrNd01w8PD0dfXp127dowcOZKePXvSqVMnjIyMdB1mtU2bNk3XITy0+l6H/Px8/vrrL+bPn8+RI0fo27cv8fHxhIaGEhAQoOvwqi0+Pp6FCxdqvvdGjx7N3r176dixI+PHj68XSadHoQ7lvfLKK1rPi4qKyM3NxdDQEFNT03qTPBswYAARERH8/PPPXLx4EbVazRNPPMH06dNxc3PTdXjVFhQUxIkTJ2jSpAk9e/Zk5syZJCcn8+eff9K8eXNdh1ctt1uVLVy4UDPOamZmJlOmTKFLly5MnTqVMWPG8Nprr7Ft2zYdRyuENkmeCSFEHTNgwAAOHDjAoEGD+P777+nfvz96enrMmzdP16E9kGHDhrFnzx4aN26s61Ae2KPwgxWgUaNGREVF4eHhgb+/P6tWraJdu3Zs3LgRa2trXYdXbb6+voSHh+Pp6UlgYCC//PILnp6ezJs3DxcXF12Hd1djx46lTZs2DB06lJ49e9K5c2dMTEx0HdZDOX78OKtXr6508oa6NttpVeprHZ5//nlWrFiBr68vTz/9NGvWrMHOzg4DA4N6N1abl5cXI0aM4Mcff6Rv3771Ln54NOpQXlpaWoVlERERPPfcc/znP//RQUT3r6ioiODgYH755Rc+/fRTXYfzUGbPnq0ZAuPjjz9mwoQJPPfcc3h7e7Nw4UIdR1c9X375JTt27NCaoMjS0pIPPviA4OBgXnnlFWbOnElwcLAOoxSicpI8E0KIOmb79u28/PLLPPfccxUGt62PmjRpwowZMzhw4ADNmzevMGFAfZip8lH4wQowadIkzpw5Q/fu3ZkxYwYDBw7k+++/p7i4mDlz5ug6vGp79dVXiY+PB2DWrFn069ePpUuXYmhoyKJFi3Qb3D2kpaVhZmam6zBqzIoVKxg/fjzBwcHs2LGD4OBgIiIiSEhIYOjQoboOr1rqcx1+/fVX3n77bd555x0sLCx0Hc5D8fDw4MCBA7i7u+Ph4YGfn5+uQ7pvj0Id7sXHx4fPP/+cp59+ul6MsWVgYMC5c+fq/WzGAG3atNH838HBgc2bN+swmgeTkZFBUlJShV4UN2/eJDMzEygd2+3OmxhC1AWSPBNCiDpm//79/P7777Rp0wY/Pz/GjRvHqFGjdB3WA5s/fz7m5ubs3buXvXv3ar2mUCjqRfLsUfjBCvDaa69p/t+zZ08uXbrEiRMnaNy4MS1bttRhZPen/NhsQUFBREVFcenSJdzd3bG3t9dhZPd2O3F248YN1qxZw+XLl1EoFPj4+DB8+HAaNGig4wjvz+zZs5k7dy4vvPACFhYWfPvtt3h5efHss8/W+VaAt9XnOvzxxx8sXLgQFxcXBg4cyLhx4+jfv7+uw3og4eHhHDx4kAULFtC2bVuaNGnC008/DVBvEh+PQh2qQ09Pj7i4OF2HUW3jx49nwYIFfP7557oOpUbcvHmT8PBwFAoFvr6+df57r7wnnniCyZMn8/XXX9O2bVsUCgXHjh3jzTffZMiQIQAcO3aMJk2a6DZQISohs20KIUQdlZuby4oVK/j99985duwYJSUlzJkzh8mTJ9f7FgZC/H/2008/8frr/8fencfVnL7/A3+dkjZtKEuSFksRSvY1RBi7yRAlwiAla/MZwtiasSVG2VK2SJbJ2JeKyCAtKKlTZCmiUbRQnffvDz/n6yg6ZXSf9+l6Ph49PnWf88fr/kylc537vq65eP/+PbS0tMBxHPLy8lC7dm1s2LABM2fOZB1Raurq6rh37x6aNWuG+vXrIzw8HBYWFkhKSkLfvn3FJwRlmTzs4eHDh9i9ezcCAwNRUFCAnJwcHDp0CGPGjGEdrUrevn2L4OBgBAQE4J9//kHv3r0xfvx4jBgxArq6uqzjSUUe9hAWFibxNcdxyMzMxJYtW2BgYIDTp08zSlY5s2fPxp49e2Bqagpra+syp3/5cvI6Pz8fs2fPxt69e8WTyhUVFeHo6IjNmzdDTU2NccKKvX37Fh4eHtizZ494qnStWrXg5OSEjRs3Ql1dXTyNtn379uyCElIOKp4RQoiMycjIgIGBgcS71MnJydi1axf27t2L169fw9bWtswftYTIsy+Nty+PLL8QOnnyJIYPH445c+Zg3rx54pNNmZmZWLt2LTZv3oy//voLgwcPZpxUOgYGBjh16hQsLCzQrl07eHp6Yty4cYiOjoadnR1yc3NZR6yQPOzhI47jcPbsWQQEBCAsLAz169fHqFGj4OvryzpalSUlJYn//cvJyUFxcTHrSJXG1z183rNNIBBAV1cXffv2xfr162X+ZOZHNjY2X3xMIBDg0qVL1Zim6qZPn44LFy5gy5Yt6N69OwAgKioKbm5usLW1hZ+fH+OE0nv79i3S0tLAcRxMTExQp04d1pEIqRAVzwghRMYoKioiMzNTPE3wU6WlpThx4oT4hZGsmjt3LlasWAF1dfUKix6yXOggsuNrL34+JesvhHr37o2ePXti5cqV5T6+ePFiXLlypcwVZ1k1fvx4WFtbY+7cuVi1ahU2bdqE4cOH4/z587CyspLpZvsfycMeypOTkyO+1hkfH886zjcrKSlBWFgYRo0axTpKlcnDHgg79evXR2hoKPr06SOxHh4eDnt7e2RnZ7MJRkgNQcUzQgiRMQoKCsjKyiq3eMYXNjY2OHbsGLS1teXmHV9C/guampq4efMmWrZsWe7jycnJsLa2Fg+okHU5OTkoKipC48aNIRKJsG7dOkRFRcHU1BRLliyBjo4O64gVkoc9yINnz55hw4YN8PLykpjEB3xoMr5y5UrMnz8fDRo0YJSwYvKwB3mWmpoKoVCIXr16QVVVFRzH8aoXnZqaGmJiYmBmZiaxfu/ePXTq1An5+fmMkn3dqFGjEBgYCE1NzQoLx3x9s4LUDFQ8I4QQGSMPxTNCqgMfXwjVqVMHCQkJMDY2LvfxtLQ0tG3bFm/fvq3mZISPpLnOLBAIsH79+mpI823mz5+PvLw8bN++vdzHf/75Z2hpaeH333+v5mTSk4c9yMsV+U+9evUK9vb2CA8Ph0AgQEpKCoyNjTFlyhRoa2vz4ucDAPr164d69ephz549UFFRAQAUFhbCyckJOTk5uHDhAuOE5XN2doavry80NDTg7Oz81efyaYI5qXlo2iYhhMigjxMqv4YPUyoB4Pnz5198lz0hIQFt27at5kTSqUyPIFn+b/Fx9Ls0Pj8pIau+9ELIxcVF5l8ItW7dGn/99ZfE5NNPHT9+HK1bt67mVN9GJBIhNTUVL168gEgkknisV69ejFJVDl/3EBsbyzrCf+bMmTPw9/f/4uOOjo6YOnWqTBee5GEPn39PxcTEoLS0VHxa9sGDB1BUVESHDh1YxKsSDw8PKCkpISMjQ+LU1tixY+Hh4SHT/2Z8atOmTbCzs0OTJk3Qrl07CAQCxMXFQUVFBWfPnmUd74s+LYhRcYzwGZ08I4QQGaOgoIAmTZpAUVHxi88RCARIS0urxlRVp6enh507d2LYsGES6+vWrcOSJUtQWFjIKNnXGRkZSfU8Wf9voaCgUOFprI8ntj5O75J1jo6OePHiBXbu3AkzMzPEx8fD2NgY586dg4eHB+7du8c64hcFBQVhxowZWLduHaZNm4ZatT68j1lSUoJt27ZhwYIF2Lp1KyZNmsQ2qJSuX7+O8ePH49GjR/j8T0q+fE/Jwx7kgbq6OpKSktC0adNyH/9Y+JDVq2mAfOzhUxs2bEBERASCgoLE15f//fdfODs7o2fPnpg3bx7jhNJp2LAhzp49i3bt2kFDQ0P8b0Z6ejosLCx4ddK3sLAQ+/btw/3798FxHMzNzeHg4ABVVVXW0aRWUlKCiIgICIVCjB8/HhoaGnj27Bk0NTVpcACRaXTyjBBCZNCtW7fk5trmokWLMHbsWPEY8pycHEycOBH37t3DoUOHWMf7ovT0dNYR/hPh4eGsI/znzp07h7Nnz6JJkyYS682bN8ejR48YpZKOk5MT7ty5A1dXV/zyyy8wMTEBAAiFQrx9+xZubm68KZwBH66hWVtb4+TJk2jUqJHMX5stD5/3EBERUaZ5+OdmzpyJrVu3Vk+gb6CqqoqHDx9+sfD08OFDmS8QyMMePrV+/XqcO3dOou+fjo4OVq5ciQEDBvCmeJafnw81NbUy6y9fvoSysjKDRFWnqqqKqVOnso5RZY8ePYKdnR0yMjLw7t072NraQkNDA3/88QeKioq+enKTENaoeEYIIeS7mjdvHvr3748JEyagbdu2yMnJQZcuXZCQkMC7psnv379Heno6TExMxCeGZF3v3r1ZR/jP8f2F0Lp16zBmzBgEBwcjJSUFwIergT/99BO6dOnCOF3lpKSkIDQ0FKampqyjVBmf9zB8+HCEh4fDysqq3MdnzZqF/fv386J41rlzZ+zdu/eL12T37NmDTp06VXOqypGHPXwqLy8Pz58/L3OV/MWLF7wZagJ8+P26Z88erFixAsCHE6UikQhr166VepIzK5WZrP75CX9Z5O7uDmtra8THx6NevXri9ZEjR8LFxYVhMkKkwBFCCJEpAoGAe/78+Vefs2/fvmpK89/Iy8vjxo4dy9WqVYurVasWFxgYyDpSpeTn53OTJ0/mFBUVOUVFRU4oFHIcx3GzZ8/m1qxZwzhd5Vy+fJlzcHDgunbtyj158oTjOI7bs2cPd+XKFcbJpDd48GBu8eLFHMdxXJ06dbi0tDSutLSU+/HHH7nRo0czTvd1y5cv5/Lz81nH+M/Y2Nhwp0+fZh3jm/B5D3PnzuX09PS45OTkMo/NmjWLq1OnDnf58mUGySrv0qVLnKKiIjdv3jwuKytLvJ6VlcXNnTuXU1RU5C5evMgwYcXkYQ+fmjhxIte0aVPu8OHD3OPHj7nHjx9zhw8f5po1a8Y5Ojqyjie1e/fucbq6upydnR1Xu3ZtbsyYMZyZmRnXoEEDLjU1lXW8rxIIBFJ9KCgosI4qlXr16nH379/nOO7Dv98f/55KT0/nVFVVWUYjpEJUPCOEEBnTqlUr7tmzZ198fP/+/ZySklI1Jvo2UVFRXLNmzbgOHTpwiYmJ3I4dOzgNDQ3uxx9/5HJycljHk4qbmxvXoUMH7sqVK5y6urr4j72//vqLa9++PeN00gsNDeVUVVU5FxcXTllZWbyPP//8kxs0aBDjdNLj8wshBQWFCovjfHL06FHO3Nyc2717N3fr1i0uPj5e4oMP+L4HZ2dnrmnTpuJiOMd9KOyrq6tzERERDJNVnr+/P6esrMwpKChw2tranI6ODqegoMApKytzW7duZR1PKvKwh4/y8/O5GTNmiPejoKDA1a5dm5sxYwb39u1b1vEqJTMzk/Py8uKGDBnCDRo0iPv111+/+rcW+T50dHS4e/fucRwnWTy7cuUKp6enxzIaIRWigQGEECJj+vTpg8LCQly6dAnq6uoSjx08eBCOjo74/fffvzitT9YoKyvDw8MDK1asgJKSEoAP/Z0mTpyIjIwMPHnyhHHCihkaGuLQoUPo0qWLRLPh1NRUWFlZVWqiJUuWlpbw8PCAo6OjxD7i4uJgZ2eHrKws1hGllpWVBT8/P8TExEAkEsHKygqzZs1Co0aNWEf7KgUFBWRlZclNT0MFBYUyawKBgFdDKPi+B5FIhDFjxiApKQlXrlzBqlWrsH37dvz9998yfyXtU8XFxVBSUsLTp08REhKC1NRUcByHFi1aYMyYMWjSpAnu3r2LNm3asI76RfKwh/Lk5+dDKBSC4ziYmpqW+duEVI/09HSphxnJqrFjx0JLSwvbt2+HhoYGEhISoKuri+HDh6Np06Y0jZPINCqeEUKIjHn79i369OkDbW1tnD59WlxwCgkJwYQJE7B69WrMnz+fcUrpRUZGltt3SyQSYdWqVViyZAmDVJWjpqaGu3fvwtjYWKLoFB8fj169eiE3N5d1RKmoqakhMTERzZo1k9hHWloazM3NUVRUxDqi3FNQUMDz58+hq6vLOsp/oqIBDYaGhtWUpOrkYQ/v37/HkCFDEB8fj/z8fISFhaFfv36sY1XKmDFjcPjw4S8ObLh79y769euH58+fV3My6cnDHuTR5cuXv/r4l3rUyRpFRUX06tULU6ZMwZgxY6CiosI6UqU9e/YMNjY2UFRUREpKCqytrZGSkoL69evj8uXLcvPGEpFPVDwjhBAZlJ2djV69esHc3ByhoaEIDQ2Fg4MDVqxYgUWLFrGOV+P07t0bY8aMwezZs8XvlBoZGcHV1RWpqak4c+YM64hSMTExwbZt29C/f3+J4tmePXvg7e2NxMRE1hGlcubMGdSpUwc9evQAAPz555/YsWMHzM3N8eeff0pMhpM1CgoKaNOmTYUDJ27fvl1NiQif+fr6ij9/8+YNVqxYgYEDB5YpnLm5uVV3tEozMDDAoEGDsH379jKP3bt3D3379kWvXr1w+PBhBumkIw97+NzNmzdx+PBhZGRk4P379xKPHT16lFGqyvnS6dKPZP106Ud3795FQEAA9u/fj3fv3mHs2LGYMmUKr4ZQAEBhYSGCg4Nx+/Zt8clxBwcHXk2iJTUTFc8IIURGPX78GD169ICpqSmioqLg5eWFX3/9lXWsKsnPz0dkZGS5f3zz4UXdtWvXYGdnBwcHBwQGBmL69Om4d+8eoqOjERkZiQ4dOrCOKJU//vgDQUFBCAgIgK2tLU6dOoVHjx7Bw8MDXl5ecHV1ZR1RKhYWFvj9998xePBg3LlzB9bW1pg3bx4uXboEMzMzmb72oaCggHnz5qFOnTpffd7SpUurKdG3EwqF8PHxQVJSEgQCAczMzODu7g4TExPW0aTG1z1Ic4VLIBAgLS2tGtJ8m6SkJPGpGm9vb4l1GxsbdOvWDYcPH4aioiLDlF8nD3v41MdWEQMGDMD58+cxYMAApKSkICsrCyNHjpTp37Wf+vx0eHFxMWJjY7FkyRKsWrWKd6c0S0pKcOLECQQGBuL06dNo3rw5pkyZgokTJ8rNqWZCZBKTTmuEEEK+6NNG1YcOHeKUlZW5sWPH8qaJdUZGhsTXt2/f5ho2bMhpaGhwtWrV4nR1dTmBQMCpq6tzRkZGjFJWXkJCAufo6Mi1bt2aMzMz4xwcHLiEhATWsSrtf//7H6eqqiqe0KWioiKeXMkX6urqXHp6OsdxHLd06VLxhM2YmBiuQYMGDJNVTJppunxy5swZrnbt2lynTp04Dw8Pbs6cOVynTp04ZWVl7ty5c6zjSUUe9iAvbty4wWloaHB//PEHx3Ecl5SUxDVs2JAbNmwYV1JSwjiddORhDx9ZWFhwW7Zs4Tju/5q7i0QiburUqZyXlxfjdN8uMjKSs7KyYh2jyoqKirgNGzZwysrKnEAg4GrXrs1NnDhRpgchNGrUiBs3bhy3bdu2cqcEEyLL6OQZIYTIGAUFBYlm1R9/TX/+uaxeM1i5ciUyMzOxZcsWCAQC9OnTByYmJti+fTuaNGmC+Ph4FBYWYsKECfDw8MCoUaNYR65xCgoKkJiYCJFIBHNz8wpPQcmaunXrIioqCubm5ujRowccHR0xbdo0PHz4EObm5igoKGAd8YsUFRWRmZkpN31dLC0tMXDgQIlTNgDg6emJc+fO8eL6qTzsQZ5cunQJP/zwAxYuXIgdO3bAysoKR48eFff/5AN52AMAqKur4969e2jWrBnq16+P8PBwWFhYICkpCX379kVmZibriN8kKSkJHTt2xNu3b1lHqZRbt24hICAABw8ehLq6OpycnDBlyhQ8e/YMXl5eePPmDW7cuME6ZrmCg4MRGRmJiIgIPHjwAA0aNEDv3r3Rp08f9O7dG2ZmZqwjEvJFVDwjhBAZU1Hz6o9ktYl1YWEhXF1dkZ2djbCwMGhra+P69eto1aoVmjRpgujoaBgYGOD69euYNGkS7t+/zzpyuSozQVNTU/M7JiGfGzZsGN6/f4/u3btjxYoVSE9Ph76+Ps6dOwdXV1c8ePCAdcQvkrdpmyoqKrhz5w6aN28usf7gwQO0bduWF0Mo+LqHgwcP4qeffpLquY8fP0ZGRga6d+/+nVP9N44fP44ff/wRAwYMwPHjx3lXdALkYw8GBgY4deoULCws0K5dO3h6emLcuHGIjo6GnZ0db4blJCQkSHzNcRwyMzPh7e2N4uJiXL16lVGyytmwYQN2796N5ORkDB48GC4uLhg8eLBET7fU1FS0atUKJSUlDJNK5/nz5wgPD8fff/+NQ4cOQSQSyewbw4QAwNe71RJCCKl2sloUk5aqqip27dqFgwcPAgCUlJTEf9jp6enh0aNHMDAwgLa2NjIyMlhG/Sptbe0vTkz7nCz/sVeZk318af68ZcsWzJw5E6GhofDz84O+vj4A4PTp07Czs2Oc7uvS09PlqieNrq4u4uLiyhSe4uLieFMg5Ose/Pz8sGzZMjg7O2PYsGFlTmzk5ubi6tWr2LdvHy5cuIBdu3YxSiodHR2dMr9zr1y5ggYNGkis5eTkVGesSpGHPXyqZ8+eOH/+PCwsLGBvbw93d3dcunQJ58+f51WfsPbt20uc3v+oS5cuCAgIYJSq8vz8/DB58mQ4OzujYcOG5T6nadOmMv+z/vbtW0RFRYlPoMXGxsLCwqLcyeyEyBIqnhFCiAzJyMhA06ZNpX7+06dPxYUDWfPxRISlpSVu3ryJFi1aoHfv3vjll18wY8YMBAUFwcLCgnHKLwsPDxd//vDhQ3h6emLSpEno2rUrACA6OhpBQUFYs2YNq4hS0dLSEn/OcRyOHTsGLS0tWFtbAwBiYmLw+vVrXl2fbdq0Kf7+++8y6xs3bmSQpnKCgoKkep6Xl9d3TvLfmDp1KqZNm4a0tDR069YNAoEAUVFR+P333zFv3jzW8aTC1z1ERkbi77//xubNm/G///0P6urqaNCgAVRUVPDvv/8iKysLurq6cHZ2xt27d2W6EAgAPj4+rCN8M3nYw6e2bNkiPnn5yy+/QElJCVFRURg1ahSWLFnCOJ300tPTJb5WUFCArq4uVFRUGCWqmpSUlAqfU7t2bTg5OVVDmqrp3LkzEhIS0KZNG/Tp0wf/+9//0LNnT2hra7OORkiF6NomIYTIkAYNGmDYsGGYOnXqF0eP5+bmIiQkBJs2bcL06dMxe/bsak5ZObdu3UJeXh769u2LnJwcTJo0CRERETAxMUFgYCDatWvHOmKF+vXrBxcXF4wbN05i/cCBA9i+fTsiIiLYBKukRYsWIScnB/7+/uJpb6WlpZg5cyY0NTWxdu1axgmlU9GJxcoUoKubgoICGjduDD09vTKnID4SCAS86bPFcRx8fHywfv16PHv2DADQuHFjLFiwAG5ublKf3mRJHvbw6tUrREVF4eHDhygsLET9+vVhaWkJS0tLiStdhNQkly5dgqurK65fv16mvUJubi66desGf39/9OzZk1HCqikoKCh3ennbtm0ZJZJe3bp1IRAI0L9/f/Tp0wd9+vShPmeEN6h4RgghMiQnJwerV69GQEAAlJSUYG1tjcaNG4tPEiQmJuLevXuwtrbG4sWLMWjQINaRawQ1NTXEx8eX2xOpffv2Mt2g/lO6urqIiopCy5YtJdaTk5PRrVs3vHr1ilGyyvk4VONLZPka7eDBgxEeHo6BAwdi8uTJGDJkiLiQyTclJSXYv38/Bg4ciIYNG+LNmzcAAA0NDcbJpCcPe6iJPg7U4TM+7OFLvT8FAgGUlZVRu3btak5UOcOGDYONjQ08PDzKfdzX1xfh4eE4duxYNSermuzsbEyaNAlnzpwp93FZ/rfvUwkJCYiIiEBkZCSuXLkCBQUF9O7dGzY2Nvj5559ZxyPki+itKEIIkSF169bFunXr8OzZM/j5+aFFixZ4+fKl+Ki+g4MDYmJicPXqVSqcVSMDAwP4+/uXWd+2bRsMDAwYJKqakpISJCUllVlPSkqCSCRikKhqYmNjcfv2bfHHP//8A39/f7Ro0QKHDx9mHe+rTp06hbS0NHTu3BkLFixAkyZNsGjRIiQnJ7OOVmm1atXCjBkz8O7dOwAfCk58KzrJwx7kgZmZGQ4cOFDmJM3nUlJSMGPGDPz+++/VlEx68rCHz2lra0NHR6fMh7a2NlRVVWFoaIilS5fK7L8f8fHxX+2DOWDAAMTExFRjom8zZ84cvH79GtevX4eqqirOnDmDoKAgNG/eHGFhYazjSa1t27Zwc3PDkSNHcPr0aQwaNAhHjx7FrFmzWEcj5Kuo5xkhhMggFRUVjBo1ild9qL7k1atX8PLyQnh4OF68eFHmj2w+NE7euHEjRo8ejbNnz6JLly4AgOvXr0MoFOLIkSOM00nP2dkZkydPRmpqqsQ+vL294ezszDid9Mq76vvxlObatWtl/uemUaNG+OWXX/DLL7/g8uXL2L17Nzp27AgLCwtcuHABqqqqrCNKrXPnzoiNjeX1oBN52APf/fnnn1i0aBFmzZqFAQMGlHvqOioqComJiXB1dcXMmTNZRy5DHvbwucDAQPz666+YNGkSOnXqBI7jcPPmTQQFBWHx4sXIzs7GunXroKysjP/973+s45bx/Pnzr045rVWrFrKzs6sx0be5dOkS/vrrL3Ts2BEKCgowNDSEra0tNDU1sWbNGgwZMoR1xArFxsYiIiICERERuHLlCt68eYN27drB3d0dNjY2rOMR8lVUPCOEEPJdTZgwAUKhEFOmTEGDBg1k/ppKeQYPHoyUlBT4+fkhKSkJHMdh+PDh+Pnnn3l18mzdunVo2LAhNm7ciMzMTAAfCjkLFy6U6cbo0mrRogVu3rzJOkaldOzYEQ8fPkRiYiJiY2NRXFzMq+LZzJkzMW/ePDx58gQdOnSAurq6xON86MEjD3vgu759++LmzZu4du0aDh06hAMHDpTp3+bo6IgJEybIbGNxedjD54KCgrB+/XrY29uL14YNGwYLCwts27YNFy9eRNOmTbFq1SqZLJ7p6+vjzp07MDU1LffxhIQENGrUqJpTVV1+fr548EfdunWRnZ2NFi1awMLCgjd9Mjt27AhLS0v07t0bU6dORa9evcr0oyNEVlHPM0IIId+VhoYGoqKieDEYoCb52MuGj3+0ft6Hh+M4ZGZmYtmyZbh//z7i4uLYBKuE6OhoBAQEICQkBC1atICzszPGjx/PmxfVH5XXjF4gEIj7OfGhB4887IGQ7+FL/T5TUlLQrl07FBQUID09Ha1bt5bJ3p+zZ89GREQEbt68WWayZmFhITp16gQbGxv4+voySlg5HTt2xMqVKzFw4ECMGDFCfOLM19cXoaGhEAqFrCNWKC8vj5d/dxAC0MkzQggh31mrVq1QWFjIOgb5DJ//eNXW1i5zgpHjOBgYGODgwYOMUknnjz/+wO7du/Hq1Ss4ODggKioKFhYWrGNVWXp6OusI30we9kDI99CkSRPs2rUL3t7eEuu7du0Sn7p+9eoVdHR0WMSr0OLFi3H06FG0aNECrq6uaNmyJQQCAZKSkvDnn3+itLQUv/76K+uYUpszZ4741PjSpUsxcOBA7Nu3D7Vr10ZQUBDjdNLh898ehNDJM0IIId/VzZs34enpCS8vL7Rp06ZM/xH6Q4pUVmRkpMTXCgoK0NXVhampKWrVku33BRUUFNC0aVP88MMPX51Ut2HDhmpMReTBkydPEBYWhoyMjDJN6+n7iVRFWFgYfvzxR7Rq1QodO3aEQCDAzZs3cf/+fYSGhuKHH36An58fUlJSZPZ77NGjR5gxYwbOnj2Ljy97BQIBBg4ciK1bt6JZs2ZsA1YRx3EoLCzE/fv30bRpU9SvX591JELkHhXPCCGEfFcpKSkYN24cYmNjJdbpShSpDCsrK1y8eBE6Ojr47bffMH/+fKipqbGOVWl9+vSpsO+fQCDApUuXqinRt9u7dy/8/f2Rnp6O6OhoGBoawsfHB0ZGRhg+fDjreFLh+x4uXryIYcOGwcjICMnJyWjTpg0ePnwIjuNgZWXFq+8nIlsePXoEf39/JCcng+M4tGrVCtOnT+dd0enff/9FamoqOI5D8+bNZfa0XEV27dqFjRs3iqewN2/eHHPmzIGLiwvjZITIPyqeEUKIDBMKhfDx8UFSUhIEAgHMzMzg7u4OExMT1tGk1qlTJ9SqVQvu7u7lDgzo3bs3o2SET1RVVZGSkoImTZpAUVERWVlZ0NXVZR2rxvPz84OXlxfmzJmDVatW4e7duzA2NkZgYCCCgoIQHh7OOmKF5GEPnTp1gp2dHX777TdoaGggPj4eenp6cHBwgJ2dHWbMmME6IuGZ4uJiDBgwANu2bUOLFi1YxyEAlixZgo0bN2L27Nno2rUrgA/9M7ds2QJ3d3esXLmScUJC5BsVzwghREadPXsWw4YNQ/v27dG9e3dwHIdr164hPj4eJ06cgK2tLeuIUlFTU0NsbCxatmzJOgrhsa5du6JOnTro0aMHli9fjvnz56NOnTrlPtfLy6ua09Vc5ubmWL16NUaMGCEu2hgbG+Pu3bvo06cPXr58yTpiheRhDxoaGoiLi4OJiQl0dHQQFRWF1q1bIz4+HsOHD8fDhw9ZRyQ8pKuri2vXrpUZGEDYqF+/PjZv3oxx48ZJrAcHB2P27Nm8+F0VERGBPn36sI5BSJXIdmMQQgipwTw9PeHh4VGmUa+npycWLVrEm+KZtbU1Hj9+zPviWWhoKEJCQsrtJ8SXEfHAh35h69atkzjNuGDBAvTs2ZN1tK8KDAzE0qVL8ffff0MgEOD06dPl9jcTCAQyWzzz9vbG7Nmzoa6uXuFz//nnH7x8+RJDhgyphmRVl56eDktLyzLrysrKyM/PZ5Co8uRhD+rq6nj37h0AoHHjxhAKhWjdujUA8OIF9ZcUFhaiuLhYYo1vfTL5vAdHR8dyBwYQNkpLS2FtbV1mvUOHDigpKWGQqPLs7Oygr68PZ2dnODk5iQdPEMIHVDwjhBAZlZSUhJCQkDLrkydPho+PT/UHqqLZs2fD3d0dCxYsgIWFRZmBAW3btmWUTHq+vr749ddf4eTkhL/++gvOzs4QCoW4efMmZs2axTqe1Pbt2wdnZ2eMGjUKbm5u4tOM/fr1Q2BgIMaPH8864he1bNlSPElTQUEBFy9ehJ6eHuNUlZOYmAhDQ0P8+OOPGDZsGKytrcVXT0tKSpCYmIioqCjs27cPmZmZ2LNnD+PEFTMyMkJcXBwMDQ0l1k+fPg1zc3NGqSpHHvbQpUsXXL16Febm5hgyZAjmzZuHO3fu4OjRo+jSpQvreJVSUFCAhQsXIiQkBK9evSrzOB/6ZMrDHgDg/fv32LlzJ86fPw9ra+syhX9ZHRIgryZMmAA/P78y/79v374dDg4OjFJVzrNnz7Bv3z4EBgZi2bJl6NevH6ZMmYIRI0Z8dYgOITKBI4QQIpOaNGnChYSElFk/dOgQZ2BgwCBR1QgEgjIfCgoK4v/lg5YtW3IHDhzgOI7j6tSpwwmFQo7jOG7JkiXcrFmzWEarlFatWnEbNmwos75+/XquVatWDBLVPPHx8dy0adM4HR0dTkFBgVNSUuLq1KnDKSgocAoKClyHDh24bdu2cUVFRayjSiUgIIDT19fnDh48yKmrq3PBwcHcypUrxZ/zgTzsQSgUcvHx8RzHcVx+fj43Y8YMzsLCghs5ciT38OFDxukqZ+bMmZyZmRl3+PBhTlVVlQsICOBWrFjBNWnShNu3bx/reFKRhz1wHMf16dPnix82Njas49U4rq6unKamJte6dWtuypQp3JQpU7jWrVtzmpqanKurK+fh4SH+4IPY2Fhu9uzZXP369bm6detys2fP5uLi4ljHIuSLqOcZIYTIqN9++w0bN26Ep6cnunXrBoFAgKioKPz++++YN28eFi9ezDqiVB49evTVxz8/7SGL1NTUkJSUBENDQ+jp6eH8+fNo164dUlJS0KVLl3JPFsgiZWVl3Lt3D6amphLrqampaNOmDYqKihglq3k4jkNCQgIePnyIwsJC1K9fH+3bt0f9+vVZR6u0HTt2YOXKlXj8+DEAQF9fH8uWLcOUKVMYJ5OePOxBXjRt2hR79uxBnz59oKmpidu3b8PU1BR79+5FcHAwTp06xTpiheRhD0T22NjYSPU8Pk1sfvbsGbZv3w5vb2/UqlULRUVF6Nq1K/z9/cVXzwmRFXRtkxBCZNSSJUugoaGB9evX45dffgHwoZfNsmXL4Obmxjid9PhQHKtIw4YN8erVKxgaGsLQ0BDXr19Hu3btkJ6eDj69B2VgYICLFy+WKZ5dvHiR+o5UM4FAgHbt2qFdu3aso3yzqVOnYurUqXj58iVEIhHvrtMC8rGHj96+fQuRSCSxxpceWwCQk5MDIyMjAB9y5+TkAAB69OjBm6mh8rCHT6WmpkIoFKJXr15QVVUFx3FlJmeT748Pk3+lUVxcjL/++gsBAQHiK8FbtmzBuHHjkJOTg0WLFuHHH39EYmIi66iESKDiGSGEyKCSkhLs378f48aNg4eHB968eQPgw0Q1Uv369u2LEydOwMrKClOmTIGHhwdCQ0Nx69YtjBo1inU8qc2bNw9ubm6Ii4uTOM0YGBiITZs2sY5HeI6Pp+Y+x9c9pKenw9XVFRERERInSD8WOfjSYwsAjI2N8fDhQxgaGsLc3BwhISHo1KkTTpw4AW1tbdbxpCIPewCAV69ewd7eHuHh4RAIBEhJSYGxsTFcXFygra2N9evXs45IeGb27NkIDg4G8KGH2x9//IE2bdqIH1dXV4e3tzeaNWvGKCEhX0bXNgkhREZ9elWQsCUSiSASicTTHUNCQhAVFQVTU1P8/PPPvGpye+zYMaxfvx5JSUkAIJ62OXz4cMbJCF/JwyRavu+hW7duAAB3d3c0aNCgzKmg3r17s4hVJRs3boSioiLc3NwQHh6OIUOGoLS0FCUlJdiwYQPc3d1ZR6yQPOwB+DBt88WLF9i5cyfMzMwQHx8PY2NjnDt3Dh4eHrh37x7riIRn+vXrBxcXF4wePfqLfzuVlJTg6tWrvPq9RWoGKp4RQoiMsrGxgbu7O0aMGME6CiGElOvTSbQ7duwoM4l21apVrCNWSB72UKdOHcTExKBly5aso/znMjIycOvWLZiYmPD2mjNf99CwYUOcPXsW7dq1g4aGhrh4lp6eDgsLC7x9+5Z1RMIzly9fRrdu3cRvRn5UUlKCa9euoVevXoySEVIxurZJCCEyaubMmZg3bx6ePHmCDh06lBkR37ZtW0bJaqYrV65g27ZtEAqFCA0Nhb6+Pvbu3QsjIyP06NGDdTypGBsb4+bNm6hXr57E+uvXr2FlZYW0tDRGySqmo6MjdY+dj/2FyPe3detWbN++HePGjUNQUBAWLlwIY2NjeHl58ea/gzzsoWPHjnj8+LFcFs+aNm2Kpk2bso7xTfi6h/z8fKipqZVZf/nyJZSVlRkkInxnY2ODzMzMMn0lc3NzYWNjw6sr5qTmoeIZIYTIqLFjxwKAxHAAgUDAyx42ABATE4OkpCQIBAKYmZnBysqKdSSpHTlyBBMnToSDgwNiY2Px7t07AMCbN2+wevVq3kxOe/jwYbnfN+/evcPTp08ZJJKej48P6wjfBd8bcWdkZIivDKqqqor7M06cOBFdunTBli1bWMaTijzsYefOnfj555/x9OlTtGnTBkpKShKPy/qbLb6+vlI/V1YH5vj6+mLatGlQUVGpcD+yuofP9erVC3v27MGKFSsAfPgbRCQSYe3atVJPfiTkU1/6N+7Vq1dl3iQmRNZQ8YwQQmRUeno66wj/iRcvXuCnn35CREQEtLW1wXGc+B3GgwcPQldXl3XECq1cuRL+/v5wdHTEwYMHxevdunXDb7/9xjCZdMLCwsSfnz17FlpaWuKvS0tLcfHiRZlvzuvk5MQ6wn/q1atXGDt2LC5dusTrRtzyMIlWHvaQnZ0NoVAIZ2dn8Rqf3mzZuHGjxNfZ2dkoKCgQN9d//fo11NTUoKenJ7OFp40bN8LBwQEqKipl9vMpgUAgs3v43Nq1a9GnTx/cunUL79+/x8KFC3Hv3j3k5OTg6tWrrOMRHvk4XEkgEGDSpEkSJxdLS0uRkJAgfhODEFlFxTNCCJFR8jIoYPbs2cjLy8O9e/dgZmYGAEhMTISTkxPc3NzEU5dkWXJycrl9ODQ1NfH69evqD1RJH/vmCQSCMkUoJSUlNGvWjDfFmo+EQiF2794NoVCITZs2QU9PD2fOnIGBgQFat27NOl6FPDw8UKtWLWRkZIh/LoAPJ049PDx4899DHibRysMeJk+eDEtLSwQHB5c7MEDWffpm0YEDB7B161bs2rVLfA01OTkZU6dOxfTp01lFrNCne5CXN7/Mzc2RkJAAPz8/KCoqIj8/H6NGjcKsWbPQqFEj1vEIj3x8047jOGhoaEBVVVX8WO3atdGlSxdMnTqVVTxCpEIDAwghRIbt3bsX/v7+SE9PR3R0NAwNDeHj4wMjIyPeTEfU0tLChQsX0LFjR4n1GzduYMCAAbwoPpmYmGDbtm3o37+/RNPkPXv2wNvbG4mJiawjSsXIyAg3b95E/fr1WUf5JpGRkRg0aBC6d++Oy5cvIykpCcbGxvjjjz9w48YNhIaGso5YIXlpxC0Pk2jlYQ/q6uqIj4+Hqakp6yjfzMTEBKGhobC0tJRYj4mJwZgxY3hXmPr4UotvBU1Cvofly5dj/vz5dEWT8JIC6wCEEELK5+fnh7lz52Lw4MF4/fq1+NqNtrY2r/o/iUSiMv13gA8nnkQiEYNElTd9+nS4u7vjn3/+gUAgwLNnz7B//37Mnz8fM2fOZB1Paunp6bwvnAGAp6cnVq5cifPnz0sUNmxsbBAdHc0wmfTkpRG3goKCxNQ0e3t7+Pr6ws3NjRdFJ0A+9tC3b1/Ex8ezjvGfyMzMRHFxcZn10tJSPH/+nEGiqtm1axfatGkDFRUVqKiooE2bNti5cyfrWJViZGSEJUuWIDk5mXUUIieWLl0KdXV1vHjxAleuXEFUVBRevHjBOhYhUqHiGSGEyKjNmzdjx44d+PXXX6GoqChet7a2xp07dxgmq5y+ffvC3d0dz549E689ffoUHh4e6NevH8Nk0lu4cCFGjBgBGxsbvH37Fr169YKLiwumT58OV1dX1vGk5ubmVm4j6y1btmDOnDnVH6iK7ty5g5EjR5ZZ19XVxatXrxgkqryPjbg/okbc5FsMHToUHh4eWLZsGY4cOYKwsDCJDz7p168fpk6dilu3bolPbd26dQvTp09H//79GaeTzpIlS+Du7o6hQ4fi8OHDOHz4sPi/0eLFi1nHk9rs2bNx5swZmJmZoUOHDvDx8UFmZibrWITH8vLyMHHiROjr66N3797o1asX9PX1MWHCBOTm5rKOR8hX0bVNQgiRUaqqqrh//z4MDQ0lrnWlpKSgbdu2KCwsZB1RKo8fP8bw4cNx9+5dGBgYQCAQICMjAxYWFvjrr7/QpEkT1hG/qrS0FFFRUbCwsICKigoSExMhEolgbm6OOnXqsI5XKfr6+ggLC0OHDh0k1m/fvo1hw4bhyZMnjJJVTpMmTRASEoJu3bpJ/GwcO3YM8+fPh1AoZB2xQomJiejTpw86dOiAS5cuYdiwYRKNuE1MTFhHJDyioPDl98P5MDDgU9nZ2XBycsKZM2fEp5ZLSkowcOBABAYGQk9Pj3HCitWvXx+bN2/GuHHjJNaDg4Mxe/ZsvHz5klGyqnnw4AH279+PgwcPIi0tDTY2NpgwYQIcHR1ZRyM8Y29vj7i4OGzevBldu3aFQCDAtWvX4O7ujrZt2yIkJIR1REK+iIpnhBAio8zNzbFmzRoMHz5cokDg6+uLoKAgxMTEsI5YKefPn8f9+/fBcRzMzc15c4IAAFRUVJCUlAQjIyPWUb6JiooK7t69W6YvUmpqKtq0aYOioiJGySpn4cKFiI6OxuHDh9GiRQvcvn0bz58/h6OjIxwdHbF06VLWEaWSlZUFPz8/xMTEQCQSwcrKihpxE/L/PXjwQPxvhpmZGVq0aME6ktR0dHRw48YNNG/eXGL9wYMH6NSpEy96fX7J9evXMWPGDCQkJPCqKEtkg7q6Os6ePYsePXpIrF+5cgV2dnbIz89nlIyQitG0TUIIkVELFizArFmzUFRUBI7jcOPGDQQHB2PNmjW865sCALa2trC1tWUdo0osLCyQlpbG++KZqakpzpw5U+aq6enTp2FsbMwoVeWtWrUKkyZNgr6+vrgYW1paivHjx/PqSlTDhg2xfPly1jEIkUktWrTgVcHsUxMmTICfnx82bNggsb59+3Y4ODgwSvVtbty4gQMHDuDQoUPIzc3FmDFjWEciPFSvXj3x5M1PaWlpQUdHh0EiQqRHJ88IIUSG7dixAytXrsTjx48BfLh2t2zZMkyZMoVxsq/z9fXFtGnToKKiUm6PrU+5ublVU6qqO3fuHBYtWoQVK1agQ4cOZaZEaWpqMkpWOQEBAXB1dcWCBQvQt29fAMDFixexfv16+Pj48G5MvFAoRGxsLEQiESwtLcuc8pBlly9f/urjvXr1qqYkhK/k6ffs3LlzsWLFCqirq2Pu3Llffe7nBSlZNHv2bOzZswcGBgbo0qULgA8nth4/fgxHR0eJITqyvJ+P1zUPHDiAhw8fwsbGBg4ODhg1ahQ0NDRYxyM8tH37dhw+fBh79uwRn7LOysqCk5MTRo0ahenTpzNOSMiXUfGMEEJ44OXLlxCJRLzo9QJ8mNB169Yt1KtX76untQQCAdLS0qoxWdV82k9IIBCIP+c4jnf9hPz8/LBq1SrxAIdmzZph2bJl1LummpXXo+rT7y0+fU+FhoYiJCQEGRkZeP/+vcRjt2/fZpSqcvi4B3n6PWtjY4Njx45BW1v7qwMzBAIBLl26VI3JqkbaoR+yvh8FBQVYW1tj/Pjx+Omnn9CwYUPWkQjPWVpaIjU1Fe/evUPTpk0BABkZGVBWVi7zBpis/u4lNRdd2ySEEBmVnp6OkpISNG/eHPXr1xevp6SkQElJCc2aNWMXrgLp6enlfs5X4eHhrCP8Z2bMmIEZM2YgOzsbqqqqvBl6UNFplE/J8kmOj/7991+Jr4uLixEbG4slS5Zg1apVjFJVnq+vL3799Vc4OTnhr7/+grOzM4RCIW7evIlZs2axjicVvu5Bnn7Pfvo7Vh5+38rDHgDg/v37vL06S2TTiBEjWEcgpMro5BkhhMio3r17Y/LkyXBycpJY37dvH3bu3ImIiAg2wYiEuLg4tG/fnnUMqZWUlCAiIgJCoRDjx4+HhoYGnj17Bk1NTZkupH1+kiMmJgalpaVo2bIlgA/XixQVFcXTK/nq8uXL8PDw4M1AkFatWmHp0qUYN26cxGATLy8v5OTkYMuWLawjVkge9lBYWAhVVdVyH8vMzKQhFOSbvH//Hi9evIBIJJJY/3hyiBBCagIqnhFCiIzS1NTE7du3y52MaG1tzZtpXWPGjIG1tTU8PT0l1teuXYsbN27g8OHDjJJVXW5uLvbv34+dO3ciPj6eN1fsHj16BDs7O2RkZODdu3d48OABjI2NMWfOHBQVFcHf3591RKls2LABERERCAoKEjcY/vfff+Hs7IyePXti3rx5jBNWXVJSEjp27Ii3b9+yjiIVNTU1JCUlwdDQEHp6ejh//jzatWuHlJQUdOnSBa9evWIdsULysIdWrVrhwIEDsLKyklgPDQ0VnzSVZaNGjZL6uUePHv2OSf4bRUVF2Lx5M8LDw8stOvHlOlpKSgomT56Ma9euSazzsWUBkT1v374t87PBlx6ypGaia5uEECKjBAIB3rx5U2Y9NzeXV3+wRkZGYunSpWXW7ezssG7dOgaJqu7SpUsICAjA0aNHYWhoiNGjR2PXrl2sY0nN3d0d1tbWiI+PR7169cTrI0eOhIuLC8NklbN+/XqcO3dOYjKXjo4OVq5ciQEDBvCieJaQkCDxNcdxyMzMhLe3N9q1a8coVeU1bNgQr169gqGhIQwNDXH9+nW0a9cO6enp4Mv7s/KwB1tbW3Tr1g3Lli3DokWLkJ+fD1dXVxw+fBje3t6s41Xo0+l7HMfh2LFj0NLSgrW1NYAPJ01fv35dqSIbS5MnT8b58+cxZswYdOrUSaKfIZ9MmjQJtWrVwt9//41GjRrxdh9EdqSnp8PV1RUREREoKioSr1NBlvABFc8IIURG9ezZE2vWrEFwcDAUFRUBfGgivmbNGvTo0YNxOum9ffsWtWvXLrOupKSEvLw8Bom+LDs7G7q6uhJrT548QWBgIAICApCfnw97e3sUFxfjyJEjMDc3Z5S0aqKionD16tUy/z0MDQ3x9OlTRqkqLy8vD8+fP0fr1q0l1l+8eFFuwVkWtW/fHgKBoExxpkuXLggICGCUqvL69u2LEydOwMrKClOmTIGHhwdCQ0Nx69Yt3hQ65GEPmzdvxpAhQ+Ds7IyTJ0+Kr2LfvHmTF7+ndu/eLf580aJFsLe3h7+/v8S/fTNnzuTNqZSTJ0/i1KlT6N69O+so3yQuLg4xMTFo1aoV6yhETjg4OAD4MP27QYMGVJAlvELFM0IIkVF//PEHevXqhZYtW6Jnz54AgCtXriAvL49XPZ3atGmDQ4cOwcvLS2L94MGDMveibvv27Xjy5Al8fX2hpKSEwYMHIyoqCj/88AM2b94MOzs7KCoq8uZ64+dEIlG57+o+efIEGhoaDBJVzciRI+Hs7Iz169ejS5cuAIDr169jwYIFvCl2fN7gXUFBAbq6ulBRUWGUqGq2b98uvnbz888/o27duoiKisLQoUPx888/M04nHXnYAwAMGDAAo0aNgp+fH2rVqoUTJ07I3O9YaQQEBCAqKkpcOAMARUVFzJ07F926dcPatWsZppOOvr4+r36nfom5uTlevnzJOgaRIwkJCYiJiRH3KyWET6jnGSGEyLBnz55hy5YtiI+Ph6qqKtq2bQtXV1fUrVuXdTSphYWFYfTo0Rg/fjz69u0LALh48SKCg4Nx+PBhmZq89O7dOyxZsgT169fHwoULUatWLbi5uWHGjBkSI9SVlJQQHx/PuxemY8eOhZaWFrZv3w4NDQ0kJCRAV1cXw4cPR9OmTSVOf8iygoICzJ8/HwEBASguLgYA1KpVC1OmTMHatWuhrq7OOCEh1evjAJCsrCzs3LkTkZGRWLduHdzc3LBq1SooKSmxjig1HR0d7N69u8y/DcePH4ezs3OZSbWy6PTp0/D19YW/vz8MDQ1Zx6myS5cuYfHixVi9ejUsLCzKfB/x5SQgkR02Njb49ddf0b9/f9ZRCKk0Kp4RQgj57k6ePInVq1cjLi5OXARcunQpevfuzTpaud6/f4/atWsjOjoaAQEBCAkJQatWrTBx4kSMHTsWjRs35mXx7NmzZ7CxsYGioiJSUlJgbW2NlJQU1K9fH5cvX4aenh7riJWSn58PoVAIjuNgamrKq6KZr69vuesCgQAqKiowNTVFr169JE7fyIrP+7V9Tdu2bb9jkqqThz18SkNDA0OGDIG/vz+0tbUBANeuXYOjoyM0NDQQGxvLNmAlzJ07F4GBgfjf//4ncbLU29sbjo6O2LBhA+OEFcvOzoa9vT0uX74MNTW1MkWnnJwcRskqR0FBQfz5p9frqD8VqSqhUIiff/4ZEyZMQJs2bcr8bPDh9y2puah4RgghMury5ctffbxXr17VlIQUFBTg4MGDCAgIwI0bN1BaWooNGzZg8uTJvLuaU1hYiODgYNy+fRsikQhWVlZwcHCAqqoq62g1ipGREbKzs1FQUAAdHR1wHIfXr19DTU0NderUwYsXL2BsbIzw8HAYGBiwjitBQUGh3H5tn5PlF9fysIdP7d27FxMnTiyz/ubNG8yZM4dXg01EIhHWrVuHTZs2ITMzEwDQqFEjuLu7Y968eTJZUP5c//79kZGRgSlTppTb18nJyYlRssqJjIz86uOy+gYYkV3Xr1/H+PHj8fDhQ/Hax9/FfPl9S2ouKp4RQoiM+vQd348+/QOc/sBgIzk5Gbt27cLevXvx+vVr2NraIiwsjHUswjPBwcHYvn07du7cCRMTEwBAamoqpk+fjmnTpqF79+746aef0LBhQ4SGhjJOK+nRo0dSP1dWr6zJwx7kUUlJCfbv34+BAweiYcOG4qEyfLseqKamhujoaF5Nzv2SK1euYNu2bRAKhQgNDYW+vj727t0LIyMjXg0vIrLB3NwcZmZmWLhwYbmFZfp9S2QZFc8IIURG5ebmSnxdXFyM2NhYLFmyBKtWrUK/fv0YJatY3bp18eDBA9SvXx86OjpfnabEl+srnystLcWJEycQEBDAq+JZcnIyNm/ejKSkJAgEArRq1Qqurq40Ta2amZiY4MiRI2jfvr3EemxsLEaPHo20tDRcu3YNo0ePFp++IaQiiYmJyMjIwPv378VrAoEAQ4cOZZiqctTU1JCUlMTrF9FWVlbYunWr+NopXx05cgQTJ06Eg4MD9u7di8TERBgbG2Pr1q34+++/cerUKdYRCc+oq6sjPj4epqamrKMQUmk0bZMQQmSUlpZWmTVbW1soKyvDw8MDMTExDFJJZ+PGjeLrjBs3bpTLUeSKiooYMWKETA08qEhoaCjGjRsHa2trdO3aFcCHKxQWFhY4cOAAfvzxR8YJa47MzEyUlJSUWS8pKUFWVhYAoHHjxnjz5k11RyM8kJubK/FvRFpaGkaNGoWEhASJ66gff/fy6aRy586dERsby+vimbe3N+bNm4dVq1bxutH+ypUr4e/vD0dHRxw8eFC83q1bN/z2228MkxG+6tu3LxXPCG/RyTNCCOGZpKQkdOzYEW/fvmUdhfCMsbExJkyYUOZFz9KlS7F3716kpaUxSlbzDBkyRDwZ0dLSEsCHU2dTp05Fw4YN8ffff+PEiRP43//+hzt37jBOS2TNihUroKKiggULFgCA+GTZzp070b59e/zzzz9IT0/H/PnzsWHDBvTs2ZNl3Eo5fPgwPD094eHhgQ4dOpQZBMKHhuIf2y58/sYR3/o6qampITExEc2aNYOGhgbi4+NhbGyMtLQ0mJubo6ioiHVEwjPbt2/HypUrMXny5HILy8OGDWOUjJCKUfGMEEJk1OfT4DiOQ2ZmJry9vVFcXIyrV68ySlY5NjY2mDBhAsaMGVPuaTpSfdTU1JCQkFDmHd+UlBS0a9cOBQUFjJJVrDJXY/nwx3dWVhYmTpyIixcvil88lJSUoF+/fti7dy8aNGiA8PBwFBcXY8CAAYzTElnz4sULTJw4Eaampvjzzz9Rv359XLx4Ee3atYO+vj5u3LgBfX19XLx4EfPnz+fVtM0v9fvkU+FJXhrtm5iYYNu2bejfv79E8WzPnj3w9vZGYmIi64iEZ8r7+f6ILz/fpOaia5uEECKj2rdvX+40uC5duiAgIIBRqsqzsLDA4sWL4erqisGDB2PixIkYPHgwateuzTpajdOnTx9cuXKlTPEsKipK5k+mfH499vOfDb4N02jYsCHOnz+P+/fv48GDB+A4Dq1atULLli3Fz7GxsWGYkMgyPT09nD17FmvWrAHw4Xv+41X5+vXr49mzZ9DX10ezZs2QnJzMMmqlpaens47wzfhSHKvI9OnT4e7ujoCAAAgEAjx79gzR0dGYP38+vLy8WMcjPCQSiVhHIKTK6OQZIYTIqM+nwSkoKEBXVxcqKiqMElWdSCTChQsXcODAARw7dgyKiooYM2YMHBwc5OZFBh/4+/vDy8sL9vb24kbW169fx+HDh7F8+XI0btxY/FxZPr114cIFLFq0CKtXr0bXrl0hEAhw7do1LF68GKtXr4atrS3riFJ7//490tPTYWJiglq1+Pme5uvXrxEaGgqhUIgFCxagbt26uH37Nho0aAB9fX3W8aTC9z307NkTc+fOxciRIzFt2jRkZ2djwYIF8Pf3x+3bt3H37l3WEeVeQkIC2rRpAwUFhTInxz/Hh6unH/3666/YuHGj+IqmsrIy5s+fjxUrVjBORggh1YuKZ4QQIoM+XtXatm0bWrRowTrOf6qoqAgnTpzAqlWrcOfOHV6cEpIXX7su8SlZvzrRpk0b+Pv7o0ePHhLrV65cwbRp05CUlMQomfQKCgowe/ZsBAUFAQAePHgAY2NjuLm5oXHjxvD09GScUDoJCQno378/tLS08PDhQyQnJ8PY2BhLlizBo0ePsGfPHtYRKyQPezh79izevHmDMWPG4PHjxxgyZAju3r2LunXrIiQkBH379mUdsVL27t0Lf39/pKenIzo6GoaGhvDx8YGRkRGGDx/OOl65FBQUkJWVBT09PSgoKJR7chyQ/d+v5SkoKEBiYiJEIhHMzc1Rp04d1pEIzwwePBjBwcHi9h2rVq3CrFmzoK2tDQB49eoVevbsSVeBiUyT7q9oQggh1UpJSQl3796VuymVWVlZ8Pf3x++//46EhARYW1uzjlSjiEQiqT5k/YWdUCgst3/ex+IHH/zyyy+Ij49HRESExGnS/v3749ChQwyTVc7cuXMxadIkpKSkSOxj0KBBuHz5MsNk0pOHPQwcOBBjxowBABgYGCAhIQEvX77EixcvZL5wdvbsWeTm5oq/9vPzw9y5czF48GC8fv1a/PtIW1sbPj4+jFJWLD09Hbq6uuLP09LSkJ6eXuaDj4NZ1NTUYG1tjU6dOlHhjFTJ2bNn8e7dO/HXv//+O3JycsRfl5SU8O6KOal5qHhGCCEyytHREbt27WId45vl5eVh9+7dsLW1hYGBAfz8/DB06FA8ePAA//zzD+t4Nd7r169ZR6i0jh07Ys6cOcjMzBSvZWVlYd68eejUqRPDZNI7fvw4tmzZgh49ekgUyc3NzSEUChkmq5ybN29i+vTpZdb19fWRlZXFIFHlycMeylO3bl2pT5uylJWVhe7du+PJkycAgM2bN2PHjh349ddfoaioKH6etbW1TE+eNTQ0FP8sGxoafvWDkJrm81OYdPmN8BE/m2sQQkgN8P79e+zcuRPnz5+HtbU11NXVJR7fsGEDo2SV06BBA+jo6MDe3h6rV69Gx44dWUeqsX7//Xc0a9YMY8eOBQD8+OOPOHLkCBo1aoRTp06hXbt2jBNKJyAgACNHjoShoSGaNm0KAMjIyECLFi1w/PhxtuGklJ2dDT09vTLr+fn5vDpxqqKigry8vDLrycnJ4lM4sk4e9lBUVITNmzcjPDwcL168KNOU+/bt24ySVczJyQkaGhqws7PD3bt3kZ6eDktLyzLPU1ZWRn5+PoOE0pG3icCEEEIkUfGMEEJk1N27d2FlZQXgQz+kT/HlxTXHcdi0aRMmTJgANTU11nFqvG3btmHfvn0AgPPnz+PChQs4c+YMQkJCsGDBApw7d45xQumYmpoiISFBPK2S4ziYm5ujf//+vPnZ6NixI06ePInZs2cD+L+f6R07dqBr164so1XK8OHD8dtvvyEkJATAh31kZGTA09MTo0ePZpxOOvKwh8mTJ+P8+fMYM2YMOnXqxJufg49GjRolLpgZGRkhLi6uzAmt06dPw9zcnEU8qXw+EfhL+NjzjJBvJRAIyvxe4tvvKUJoYAAhhJDvRiQSQUVFBffu3UPz5s1Zx6nxVFVV8eDBAxgYGMDd3R1FRUXYtm0bHjx4gM6dO+Pff/9lHbHGuHbtGuzs7ODg4IDAwEBMnz4d9+7dQ3R0NCIjI9GhQwfWEaWSl5eHwYMH4969e3jz5g0aN26MrKwsdO3aFadOnSpzYlYWycMetLS0cOrUKXTv3p11lG+2e/duLFmyBOvXr8eUKVOwc+dOCIVCrFmzBjt37sRPP/3EOiIhpJIUFBQwaNAgKCsrAwBOnDiBvn37in+/vnv3DmfOnKHCMpFpdPKMEEJkVG5uLkpLS1G3bl2J9ZycHNSqVQuampqMkklPQUEBzZs3x6tXr6h4JgN0dHTw+PFjGBgY4MyZM1i5ciWADycE+fQH62+//fbVx728vKopSdV169YNV69exbp162BiYoJz587BysoK0dHRsLCwYB1PapqamoiKisKlS5dw+/ZtiEQiWFlZoX///qyjSU0e9qCvrw8NDQ3WMf4Tzs7OKCkpwcKFC1FQUIDx48dDX18fmzZtosIZITzl5OQk8fWECRPKPMfR0bG64hBSJXTyjBBCZNSgQYMwdOhQzJw5U2Ld398fYWFhOHXqFKNklXPy5El4e3vDz88Pbdq0YR2nRnN1dcXff/+N5s2bIzY2Fg8fPkSdOnVw6NAh/P777zLdF+lTn/dDKi4uRnp6OmrVqgUTExPe7IOQ/8rp06fh6+sLf39/uWpI//LlS4hEonL7AxJCCCHViYpnhBAio+rWrYurV6/CzMxMYv3+/fvo3r07Xr16xShZ5ejo6KCgoAAlJSWoXbs2VFVVJR7/dFQ5+b6Ki4uxadMmPH78GJMmTRIXoXx8fFCnTh24uLgwTlh1eXl5mDRpEkaOHImJEyeyjiOV0tJSHDt2DElJSRAIBDAzM8Pw4cNRq5ZsXwzw9fWV+rlubm7fMUnVycMePpWdnQ17e3tcvnwZampqUFJSknicj79nX7x4geTkZAgEArRs2ZI3wxsIIYTIJyqeEUKIjFJXV8f169fLXOG6c+cOOnfujIKCAkbJKicoKOirj39+lJ+Qqrp79y5++OEHPHz4kHWUCt29exfDhw9HVlYWWrZsCeDDYBBdXV2EhYXJ9NVNIyMjia+zs7NRUFAAbW1tAMDr16+hpqYGPT09pKWlMUhYMXnYw6f69++PjIwMTJkyBQ0aNCjTiJtPv2fz8vIwa9YsBAcHi6eGKioqYuzYsfjzzz+hpaXFOCEhhJCaiIpnhBAio/r06QMLCwts3rxZYn3WrFlISEjAlStXGCUjfJeYmIiMjAy8f/9eYn3YsGGMEv03oqKiMHToUF4MPujSpQv09PQQFBQEHR0dAMC///6LSZMm4cWLF4iOjmacUDoHDhzA1q1bsWvXLnERMDk5GVOnTsX06dPh4ODAOGHF5GEPampqiI6ORrt27VhH+Wb29vaIi4vD5s2b0bVrVwgEAly7dg3u7u5o27ateCoqIYQQUp2oeEYIITLq6tWr6N+/Pzp27Ih+/foBAC5evIibN2/i3Llz6NmzJ+OE0hMKhdi9ezeEQiE2bdoEPT09nDlzBgYGBmjdujXreDVGWloaRo4ciTt37kAgEODjnwAfT6nwZWjA51fuOI5DZmYm9u7di169eiE4OJhRMumpqqri1q1bZb7/7969i44dO6KwsJBRssoxMTFBaGhomT50MTExGDNmDNLT0xklk5487MHKygpbt25Fly5dWEf5Zurq6jh79ix69OghsX7lyhXY2dkhPz+fUbKqKSwsRHFxscQaHwb+EEIIkaTAOgAhhJDyde/eHdHR0TAwMEBISAhOnDgBU1NTJCQk8KpwFhkZCQsLC/zzzz84evQo3r59CwBISEjA0qVLGaerWdzd3WFkZITnz59DTU0N9+7dw+XLl2FtbY2IiAjW8aS2ceNGiQ9fX19ERETAyckJ27dvZx1PKi1btsTz58/LrL948QKmpqYMElVNZmZmmcIA8KEQW97+ZJE87MHb2xvz5s1DREQEXr16hby8PIkPPqlXr165VzO1tLTEpzRlXUFBAVxdXaGnp4c6depAR0dH4oMQQgj/0MkzQggh31XXrl3x448/Yu7cudDQ0EB8fDyMjY1x8+ZNjBgxAk+fPmUdscaoX78+Ll26hLZt20JLSws3btxAy5YtcenSJcybNw+xsbGsI9YYp06dwsKFC7Fs2TLxaaHr16/jt99+g7e3t8SpG1k+pTJ06FBkZGRg165d6NChAwQCAW7duoWpU6fCwMAAYWFhrCNWSB72oKDw4f3wz3udcRwHgUDAm1OlALB9+3YcPnwYe/bsQaNGjQAAWVlZcHJywqhRozB9+nTGCSs2a9YshIeH47fffoOjoyP+/PNPPH36FNu2bYO3tzcvrgITQgiRRMUzQggh31WdOnVw584dGBkZSRTPHj58iFatWqGoqIh1xBpDR0cHMTExMDY2homJCXbu3AkbGxsIhUJYWFjwZgjF5MmTsWnTJmhoaEis5+fnY/bs2QgICGCUTHofix3A/xU8Pr9Gy4fCR3Z2NpycnHDmzBnxhMeSkhIMHDgQgYGB0NPTY5ywYvKwh8jIyK8+3rt372pK8u0sLS2RmpqKd+/eoWnTpgCAjIwMKCsro3nz5hLPvX37NouIFWratCn27NmDPn36QFNTE7dv34apqSn27t2L4OBgnDp1inVEQgghlSTbs9AJIYTwnra2NjIzM8tMt4uNjYW+vj6jVDVTmzZtkJCQAGNjY3Tu3Bl//PEHateuje3bt8PY2Jh1PKkFBQXB29u7TPGssLAQe/bs4UXxLDw8nHWE/4Suri5OnTqFlJQUJCUlgeM4mJmZoUWLFqyjSU0e9sCn4lhFRowYwTrCN8vJyRH/m6epqYmcnBwAQI8ePTBjxgyW0QghhFQRFc8IIYR8V+PHj8eiRYtw+PBhCAQCiEQiXL16FfPnz4ejoyPreDXK4sWLxc22V65ciR9++AE9e/ZEvXr1cOjQIcbpKpaXlweO48BxHN68eQMVFRXxY6WlpTh16hQvTgkB8lXsAIDmzZuXORXEN/KwB3kgD70wP56uNjQ0hLm5OUJCQtCpUyecOHEC2trarOMRQgipArq2SQgh5LsqLi7GpEmTcPDgQXAch1q1aqG0tBTjx49HYGAgFBUVWUes0XJycqCjo1OmV5IsUlBQ+GpOgUCA5cuX49dff63GVFVz5swZ1KlTR9zb7M8//8SOHTtgbm6OP//8k5qKE8JjGzduhKKiItzc3BAeHo4hQ4agtLQUJSUl2LBhA9zd3VlHJIQQUklUPCOEEFIt0tLScPv2bYhEIlhaWtIJD1JpkZGR4DgOffv2xZEjR1C3bl3xY7Vr14ahoSEaN27MMKH0LCws8Pvvv2Pw4MG4c+cOrK2tMW/ePFy6dAlmZmbYvXs364iEkP9IRkYGbt26BRMTE7Rr1451HEIIIVVAxTNCCJEho0aNkvq5R48e/Y5Jvp/S0lLcuXMHhoaGdLqGVMmjR4/QtGlTXpyW+5I6derg7t27aNasGZYtW4a7d+8iNDQUt2/fxuDBg5GVlcU6IiGEEEII+f+o5xkhhMgQLS0t1hH+c3PmzIGFhQWmTJmC0tJS9O7dG9euXYOamhr+/vtv9OnTh3VEwgMJCQlo06YNFBQUkJubizt37nzxuW3btq3GZFVTu3Zt8XTTCxcuiPv/1a1bF3l5eSyjEUKqwNfXV+rnurm5fcckhBBCvgc6eUYIIeS7atKkCY4fPw5ra2scP34cM2fOREREBPbs2YPw8HBcvXqVdUTCAwoKCsjKyoKenp6491l5f8IIBAKUlpYySFg5w4YNw/v379G9e3esWLEC6enp0NfXx7lz5+Dq6ooHDx6wjii1K1euYNu2bRAKhQgNDYW+vj727t0LIyMjcU83PigoKEBGRgbev38vsS6rxVhLS0upT1/evn37O6f5771//x7p6ekwMTFBrVqy/37/5xOls7OzUVBQIB4Q8Pr1a6ipqUFPTw9paWkMEhJCCPkWCqwDEEII+bKSkhJcuHAB27Ztw5s3bwAAz549w9u3bxknk97Lly/RsGFDAMCpU6dgb2+PFi1aYMqUKV89PUTIp9LT06Grqyv+PC0tDenp6WU++PKidMuWLahVqxZCQ0Ph5+cHfX19AMDp06dhZ2fHOJ30jhw5goEDB0JVVRWxsbF49+4dAODNmzdYvXo143TSyc7Oxg8//AANDQ20bt0alpaWEh+yasSIERg+fDiGDx+OgQMHQigUQllZGX369EGfPn2goqICoVCIgQMHso5aKQUFBZgyZQrU1NTQunVrZGRkAPhwWsvb25txui/79PfQqlWr0L59eyQlJSEnJwc5OTlISkqClZUVVqxYwToqIYSQKqCTZ4QQIqMePXoEOzs7ZGRk4N27d3jw4AGMjY0xZ84cFBUVwd/fn3VEqRgaGmLHjh3o168fjIyMsHXrVvzwww+4d+8eevTogX///Zd1xBpl79698Pf3R3p6OqKjo2FoaAgfHx8YGRlh+PDhrOMRnrG0tISHhwccHR2hoaGB+Ph4GBsbIy4uDnZ2drzo3ebg4ICHDx/Cx8cHNjY2OHbsGJ4/f46VK1di/fr1GDJkCOuIFXJxcUGjRo3KFGaWLl2Kx48fIyAggFGyynN3d8fVq1fh4+MDOzs7JCQkwNjYGGFhYVi6dCliY2NZR6yQiYkJQkNDyxRfY2JiMGbMGKSnpzNKRgghpKpk/ww0IYTUUO7u7rC2tkZ8fDzq1asnXh85ciRcXFwYJqscZ2dn2Nvbo1GjRhAIBLC1tQUA/PPPP2jVqhXjdDWLn58fvLy8MGfOHKxatUp8vVFbWxs+Pj68KZ6FhYWVuy4QCKCiogJTU9MyV6hkkVAoxO7duyEUCrFp0ybo6enhzJkzMDAwQOvWrVnHk0pycjJ69epVZl1TUxOvX7+u/kBVcOnSJfz111/o2LEjFBQUYGhoCFtbW2hqamLNmjW8KJ4dPnwYt27dKrM+YcIEWFtb86p4dvz4cRw6dAhdunSRuJZqbm4OoVDIMJn0MjMzUVxcXGa9tLQUz58/Z5CIEELIt6LiGSGEyKioqChcvXoVtWvXllg3NDTE06dPGaWqvGXLlqFNmzZ4/PgxfvzxRygrKwMAFBUV4enpyThdzbJ582bs2LEDI0aMkLj+ZG1tjfnz5zNMVjkjRowot+fZxzWBQIAePXrg+PHjMjvRNTIyEoMGDUL37t1x+fJlrFq1Cnp6ekhISMDOnTsRGhrKOqJUGjVqhNTUVDRr1kxiPSoqCsbGxmxCVVJ+fj709PQAfBjYkJ2djRYtWsDCwoI3vcJUVVURFRWF5s2bS6xHRUVBRUWFUaqqyc7OFv/3+FR+fj5vJuz269cPU6dOxa5du9ChQwcIBALcunUL06dPR//+/VnHI4QQUgXU84wQQmSUSCQqt/H5kydPoKGhwSBR1Y0ZMwYeHh5o0qSJeM3JyYk3J53kRXp6erk9nJSVlZGfn88gUdWcP38eHTt2xPnz55Gbm4vc3FycP38enTp1wt9//43Lly/j1atXMl0Q9PT0xMqVK3H+/HmJArmNjQ2io6MZJquc6dOnw93dHf/88w8EAgGePXuG/fv3Y/78+Zg5cybreFJp2bIlkpOTAQDt27fHtm3b8PTpU/j7+6NRo0aM00lnzpw5mDFjBlxdXbFv3z7s27cPrq6umDVrFjw8PFjHq5SOHTvi5MmT4q8/Fsx27NiBrl27sopVKQEBAdDX10enTp2goqICZWVldO7cGY0aNcLOnTtZxyOEEFIFdPKMEEJklK2tLXx8fLB9+3YAH15AvH37FkuXLsXgwYMZpyN8ZGRkhLi4OBgaGkqsnz59Gubm5oxSVZ67uzu2b9+Obt26idf69esHFRUVTJs2Dffu3YOPjw8mT57MMOXX3blzBwcOHCizrquri1evXjFIVDULFy5Ebm4ubGxsUFRUhF69ekFZWRnz58+Hq6sr63hSmTNnDjIzMwF86BE2cOBA7N+/H7Vr10ZgYCDbcFLy9PSEsbExNm3aJP6+MjMzQ2BgIOzt7Rmnq5w1a9bAzs4OiYmJKCkpwaZNm3Dv3j1ER0cjMjKSdTyp6Orq4tSpU3jw4AHu378PjuNgZmaGFi1asI5GCCGkimhgACGEyKhnz57BxsYGioqKSElJgbW1NVJSUlC/fn1cvny53GsthHzN7t27sWTJEqxfvx5TpkzBzp07IRQKsWbNGuzcuRM//fQT64hSUVVVxc2bN9GmTRuJ9Tt37qBTp04oLCzEo0ePYGZmhoKCAkYpv65JkyYICQlBt27dJBrtHzt2DPPnz+dNb6ePCgoKkJiYCJFIBHNzc9SpU4d1pC8qLi6GkpLSFx8vKCjA/fv30bRpU9SvX78ak5GP7ty5g3Xr1iEmJgYikQhWVlZYtGgRLCwsWEcjhBBSQ1HxjBBCZFhhYSEOHjwo8QLCwcEBqqqqrKMRntqxYwdWrlyJx48fAwD09fWxbNkyTJkyhXEy6fXo0QMaGhrYs2cPdHV1AXzok+To6Ij8/HxcvnwZFy5cwMyZM/HgwQPGacu3cOFCREdH4/Dhw2jRogVu376N58+fw9HREY6Ojli6dCnriFLJzc1FaWkp6tatK7Gek5ODWrVqQVNTk1GyL/P29oaxsTHvTmQR2TZ37lysWLEC6urqmDt37lefu2HDhmpKRQgh5L9CxTNCCCGkBnr58iVEIhEvTzAmJydj+PDhSE9Ph4GBAQQCATIyMmBsbIy//voLLVq0wPHjx/HmzRtMnDiRddxyFRcXY9KkSTh48CA4jkOtWrVQWlqK8ePHIzAwEIqKiqwjSmXQoEEYOnRomf5m/v7+CAsLw6lTpxgl+7IHDx5g5MiRmDZtGtzd3eWi0FFaWoqNGzciJCQEGRkZeP/+vcTjOTk5jJJJJy8vT+rnymJBFvjQr/DYsWPQ1taGjY3NF58nEAhw6dKlakxGCCHkv0DFM0IIId+dUCjE7t27IRQKsWnTJujp6eHMmTMwMDBA69atWccjPMRxHM6ePYsHDx6A4zi0atUKtra2UFDg1ywkoVCI2NhYiEQiWFpalpmWKOvq1q2Lq1evwszMTGL9/v376N69u8z2b3vz5g0mTZqEI0eOyEWhw8vLCzt37sTcuXOxZMkS/Prrr3j48CGOHz8OLy8vuLm5sY74VQoKClJP0ixvkA4hhBDyvVHxjBBCyHcVGRmJQYMGoXv37rh8+TKSkpJgbGyMP/74Azdu3EBoaCjriHLN0tJS6helt2/f/s5piLxRV1fH9evXy/SiunPnDjp37iyzPefkjYmJCXx9fTFkyBBoaGggLi5OvHb9+vVyh1PIkk8HATx8+BCenp6YNGmSeLpmdHQ0goKCsGbNGjg5ObGKSQghpAaj4hkhhJDvqmvXrvjxxx8xd+5cicboN2/exIgRI/D06VPWEeXa8uXLxZ8XFRVh69atMDc3F78ovX79Ou7du4eZM2dizZo1rGJW2sWLF3Hx4kW8ePECIpFI4rGAgABGqb6uouuBn+LDVUEA6NOnDywsLLB582aJ9VmzZiEhIQFXrlxhlKxmUVdXR1JSEpo2bYpGjRrh5MmTsLKyQlpaGiwtLZGbm8s6otT69esHFxcXjBs3TmL9wIED2L59OyIiItgEq8CoUaOkfu7Ro0e/YxJCCCHfQy3WAQghhMi3O3fulHvqQVdXV2avdMmTTxvPu7i4wM3NDStWrCjznI8DBPhg+fLl+O2332BtbY1GjRpJfbKOtdjYWImvY2JiUFpaipYtWwL40ItLUVERHTp0YBGvSlatWoX+/fsjPj4e/fr1A/ChsHnz5k2cO3eOcTrpFBUVYfPmzQgPDy+3GMuHE5lNmjRBZmYmmjZtClNTU5w7dw5WVla4efMmlJWVWcerlOjoaPj7+5dZt7a2houLC4NE0tHS0hJ/znEcjh07Bi0tLVhbWwP48PP++vXrShXZCCGEyA4qnhFCCPmutLW1kZmZCSMjI4n12NhY6OvrM0pVMx0+fBi3bt0qsz5hwgRYW1vL7Imtz/n7+yMwMFBmhwF8SXh4uPjzDRs2QENDA0FBQdDR0QEA/Pvvv3B2dkbPnj1ZRay07t27Izo6GmvXrkVISAhUVVXRtm1b7Nq1izf92yZPnozz589jzJgx6NSpE2+KsZ8aOXIkLl68iM6dO8Pd3R3jxo3Drl27kJGRAQ8PD9bxKsXAwAD+/v5Yv369xPq2bdtgYGDAKFXFdu/eLf580aJFsLe3h7+/v3j4R2lpKWbOnCmzAw8IIYR8HV3bJIQQGcX36WkfLVy4ENHR0Th8+DBatGiB27dv4/nz53B0dISjo6PEySjyfTVs2BBr1qyBs7OzxPru3bvh6emJ58+fM0pWOfXq1cONGzdgYmLCOkqV6evr49y5c2UGZty9excDBgzAs2fPGCWrebS0tHDq1Cl0796ddZT/zPXr13Ht2jWYmppi2LBhrONUyqlTpzB69GiYmJigS5cuAD7sRygU4siRIxg8eDDjhBXT1dVFVFSU+FTpR8nJyejWrRuduiaEEB6ik2eEECKjli9f/tXpaXyxatUqTJo0Cfr6+uA4Dubm5igtLcX48eOxePFi1vFqlDlz5mDGjBmIiYmReFEaEBDAq+8pFxcXHDhwAEuWLGEdpcry8vLw/PnzMsWzFy9e4M2bN4xSVY1IJEJqamq5Vx579erFKJX09PX1oaGhwTrGf6pLly7in3G+GTx4MFJSUuDn54ekpCRwHIfhw4fj559/lumTZ58qKSlBUlJSmeJZUlJSmZ8RQggh/EAnzwghREbxfXra54RCIWJjYyESiWBpacmbK13yJiQkBJs2bUJSUhIAwMzMDO7u7rC3t2ecTHru7u7Ys2cP2rZti7Zt20JJSUnicT4023d0dERkZCTWr18vUchcsGABevXqhaCgIMYJpXP9+nWMHz8ejx49wud/UgoEApSWljJKJr3Tp0/D19cX/v7+MDQ0ZB1HamFhYVI/l2+nz/hu7ty5CAwMxP/+9z+Jn29vb284Ojry4ncUIYQQSVQ8I4QQGSVP09MI+S/Z2Nh88TGBQIBLly5VY5qqKSgowPz58xEQEIDi4mIAQK1atTBlyhSsXbsW6urqjBNKp3379mjRogWWL19e7vCGT5uoy6rs7GzY29vj8uXLUFNTK1OMldUr8goKChJfCwSCcguYAHhRxJQnIpEI69atw6ZNm5CZmQkAaNSoEdzd3TFv3jxxHzRCCCH8Qdc2CSFERvF5etrcuXOlfi69A08q69PG+3ylpqaGrVu3Yu3atRAKheA4Dqamprwpmn2UkpKC0NBQmJqaso5SZePGjcPTp0+xevVqNGjQgDcDAz69/nfhwgUsWrQIq1evRteuXSEQCHDt2jUsXrwYq1evZpiy5ikpKcH+/fvh6OiIhQsXIi8vDwBoUAAhhPAcFc8IIURG8Xl6WmxsrMTXMTExKC0tFfd/efDgARQVFdGhQwcW8YgcefLkCQQCAW8nt6qrq6Nt27asY1RZ586dkZqayuvi2bVr1xAdHY127dqxjlJlc+bMgb+/P3r06CFeGzhwINTU1DBt2jTxNW3y/dWqVQszZswQ/39ORTNCCJEPVDwjhBAZ5e3tLf58zJgxMDAwwNWrV3kxPe3Tk0EbNmyAhoYGgoKCoKOjAwD4999/4ezsjJ49e7KKSHhMJBJh5cqVWL9+Pd6+fQsA0NDQwLx58/Drr7+Wuc5Gvp/Zs2dj3rx5yMrKgoWFRZkrj3woDLZq1QqFhYWsY3wToVBY7hVZLS0tPHz4sPoD1XCdO3dGbGwsr3roEUII+TrqeUYIIeS70tfXx7lz58pMFbx79y4GDBiAZ8+eMUpG+OqXX37Brl27sHz5cnTv3h0cx+Hq1atYtmwZpk6dilWrVrGOWGOUV6j82HuLLwMDzp07h+XLl2PVqlXlFgD5cHKoV69eUFJSwr59+9CoUSMAQFZWFiZOnIj3798jMjKSccKa5fDhw/D09ISHhwc6dOhQ5jo2H4rKhBBCJFHxjBBCZJSioiJ69eqFI0eOoG7duuL158+fo3Hjxrx4UQp8OBH0119/oW/fvhLrly5dwvDhw/HmzRtGyQhfNW7cGP7+/mVOYP7111+YOXMmnj59yihZzfPo0aOvPs6HkzcfC4Cf9zrjUwEwNTUVI0eORHJyMpo2bQoAyMjIQIsWLXD8+HGZv1ZraWkpda+527dvf+c0304eisqEEEIk0bVNQgiRURzH4d27d7C2tkZYWBjatGkj8RhfjBw5Es7Ozli/fj26dOkCALh+/ToWLFiAUaNGMU5Xs5SWliIwMBAXL17EixcvJBqOA+DFlErgw/TDVq1alVlv1aqVzE5GlFd8KI5VRB4GUJiamiIhIQHnz5/H/fv3wXEczM3N0b9/f14MQBgxYoT486KiImzduhXm5ubo2rUrgA//Zty7dw8zZ85klLBy0tPTWUcghBDyH6OTZ4QQIqMUFRXx5MkTeHt7Y/fu3di7dy+GDx/Ou5NnBQUFmD9/PgICAlBcXAzgQ0PlKVOmYO3atbybLshnrq6uCAwMxJAhQ9CoUaMyL6o3btzIKFnldO7cGZ07d4avr6/E+uzZs3Hz5k1cv36dUbKvCwsLk/q5st7X8HOJiYnIyMjA+/fvJdb5tg/CnouLCxo1aoQVK1ZIrC9duhSPHz9GQEAAo2SEEEJqMiqeEUKIjFJQUEBWVhb09PSwfft2uLm5YfHixXBxcYG+vj5vimcf5efnQygUguM4mJqaUtGMgfr162PPnj0YPHgw6yjfJDIyEkOGDEHTpk3RtWtXCAQCXLt2DY8fP8apU6dkdhCFtIMM+HStKy0tDSNHjsSdO3fE19KA/7sCyZd9vH79Grt27UJSUhIEAgHMzc0xefLkcpvwywpfX19MmzYNKioqZQrJn3Nzc6umVN9OS0sLt27dQvPmzSXWU1JSYG1tjdzcXEbJKmfv3r3w9/dHeno6oqOjYWhoCB8fHxgZGWH48OGs4xFCCKkkKp4RQoiM+rR4BgAREREYM2YMLC0tcenSJd68KCWyo3HjxoiIiECLFi1YR/lmz549w59//ilxRW3mzJlo3Lgx62g1ytChQ6GoqIgdO3bA2NgYN27cwKtXrzBv3jysW7dOZguZn7p16xYGDhwIVVVVdOrUCRzH4datWygsLMS5c+dgZWXFOmK5jIyMcOvWLdSrVw9GRkZffJ5AIEBaWlo1Jvs2DRs2xJo1a+Ds7Cyxvnv3bnh6euL58+eMkn3Z2bNn0aVLF3Gx1c/PD15eXpgzZw5WrVqFu3fvwtjYGIGBgQgKCpKLq8KEEFLTUPGMEEJk1KcvjD5KTU3F0KFD8eDBAyqekUpbv3490tLSsGXLFl70Qaqsx48fY+nSpXStqxrVr18fly5dQtu2baGlpYUbN26gZcuWuHTpEubNm4fY2FjWESvUs2dPmJqaYseOHahV60M74JKSEri4uCAtLQ2XL19mnLBm8fb2xrJly+Di4iLRJzMgIABeXl7w9PRknLCsoKAgrF27FmfOnEGTJk1gbm6O1atXY8SIEdDQ0EB8fDyMjY1x9+5d9OnTBy9fvmQdmRBCSCVR8YwQQnimqKgIz58/l4tG3aR6jRw5EuHh4ahbty5at24NJSUlicePHj3KKNl/Iz4+HlZWVrwpLOfn5yMyMrLcXmF8uWano6ODmJgYGBsbw8TEBDt37oSNjQ2EQiEsLCxQUFDAOmKFVFVVERsbW2YIRWJiIqytrXmxB3kTEhKCTZs2ISkpCQBgZmYGd3d32NvbM072ZUePHoWXlxfu3r0LVVVV3L9/H4aGhhLFs5SUFLRt2xaFhYWs4xJCCKkkmrZJCCE8o6KiQoUzUiXa2toYOXIk6xgEQGxsLAYPHoyCggLk5+ejbt26ePnyJdTU1KCnp8eb4lmbNm2QkJAAY2NjdO7cGX/88Qdq166N7du3w9jYmHU8qWhqaiIjI6NM8ezx48fQ0NBglKpyxowZA2tr6zKnstauXYsbN27g8OHDjJJVjb29vUwXysozatQoWFpaAvhwcjwuLq7Mv9WnT5+Gubk5i3iEEEK+ERXPCCFEhtStWxcPHjxA/fr1oaOj89WrdTk5OdWYjMiD3bt3s45A/j8PDw8MHToUfn5+0NbWxvXr16GkpIQJEybA3d2ddTypLV68GPn5+QCAlStX4ocffkDPnj1Rr149HDp0iHE66YwdOxZTpkzBunXr0K1bNwgEAkRFRWHBggUYN24c63hSiYyMxNKlS8us29nZYd26dQwS1Uwfe88tWLAAs2bNQlFRETiOw40bNxAcHIw1a9Zg586djFMSQgipCiqeEUKIDNm4caP4pIOPjw/bMP8hoVAIHx8f8SS7j1dwTExMWEerkbKzs5GcnAyBQIAWLVpAV1eXdaQaJy4uDtu2bYOioiIUFRXx7t07GBsb448//oCTkxNGjRrFOqJUBg4cKP7c2NgYiYmJyMnJqbD4L0vWrVsHgUAAR0dHlJSUAACUlJQwY8YMeHt7M04nnbdv36J27dpl1pWUlJCXl8cgUdWVlpZi48aNCAkJKfdKMx/eOHJ2dkZJSQkWLlyIgoICjB8/Hvr6+ti0aRN++ukn1vEIIYRUAfU8I4QQ8l2dPXsWw4YNQ/v27dG9e3dwHIdr164hPj4eJ06cgK2tLeuINUZ+fj5mz56NPXv2QCQSAQAUFRXh6OiIzZs3Q01NjXHCr6uooPT69WtERkbyoueZrq4url69ihYtWqBly5bw9fXFwIEDcf/+fVhZWfGmz1Zubi5KS0tRt25difWcnBzUqlULmpqajJJVXkFBAYRCITiOg6mpqcz/PHyqY8eOGDp0KLy8vCTWly1bhhMnTiAmJoZRssrz8vLCzp07MXfuXCxZsgS//vorHj58iOPHj8PLy4s3V5o/evnyJUQikXhyNiGEEH6i4hkhhMiQypwQ4MuLUktLSwwcOLDMCQ5PT0+cO3cOt2/fZpRM/vn4+MDCwgL9+vUDAEyfPh0XLlzAli1b0L17dwBAVFQU3NzcYGtrCz8/P5ZxK+Ts7CzV8/hwPXXAgAGYNGkSxo8fj59//hmxsbFwc3PD3r178e+//+Kff/5hHVEqgwYNwtChQzFz5kyJdX9/f4SFheHUqVOMktUsYWFhGD16NMaPH4++ffsCAC5evIjg4GAcPnwYI0aMYBuwEkxMTODr64shQ4ZAQ0MDcXFx4rXr16/jwIEDrCNK7cWLF+JTvi1btqRTvoQQwmNUPCOEEBmioKBQ4VUnjuMgEAh4cboG+DDg4M6dO2jevLnE+oMHD9C2bVsUFRUxSib/YmJiYG9vj2XLlmHixImoX78+QkND0adPH4nnhYeHw97eHtnZ2WyC1kC3bt3CmzdvYGNjg+zsbDg5OSEqKgqmpqbYvXs32rVrxzqiVOrWrYurV6/CzMxMYv3+/fvo3r07Xr16xSiZ9PLz8+Ht7Y2LFy/ixYsX4lOZH6WlpTFKVjknT57E6tWrERcXB1VVVbRt2xZLly5F7969WUerFHV1dSQlJaFp06Zo1KgRTp48CSsrK6SlpcHS0hK5ubmsI1YoLy8Ps2bNQnBwsMQp37Fjx+LPP/+ElpYW44SEEEIqi3qeEUKIDAkPD2cd4T+nq6uLuLi4MsWzuLg4usbynXXo0AH//PMPnJycMHHiRBQUFKBBgwZlnqenp8eba4LywtraWvy5rq4ub09ovXv3Ttwn7FPFxcUoLCxkkKjyXFxcEBkZiYkTJ6JRo0a86dX2uSFDhmDIkCGsY3yzJk2aIDMzE02bNoWpqSnOnTsHKysr3Lx5E8rKyqzjScXFxQVxcXE4efIkunbtCoFAgGvXrsHd3R1Tp05FSEgI64iEEEIqiU6eEUII+a5+++03bNy4EZ6enhKT7H7//XfMmzcPixcvZh2xxujXrx/q1auHPXv2QEVFBQBQWFgIJycn5OTk4MKFC4wTEr7p06cPLCwssHnzZon1WbNmISEhAVeuXGGUTHra2to4efKk+Cozn8XExIgHs5ibm8PS0pJ1pErz9PSEpqYm/ve//yE0NBTjxo1Ds2bNkJGRAQ8PD14McVBXV8fZs2fRo0cPifUrV67Azs5OPKGWEEIIf1DxjBBCZFxBQUG5E8fatm3LKFHlcBwHHx8frF+/Hs+ePQMANG7cGAsWLICbmxtvT3nw0d27d2FnZ4eioiK0a9cOAoEAcXFxUFFRwdmzZ9G6dWvWEQnPXL16Ff3790fHjh3FvfUuXryImzdv4ty5c+jZsyfjhBUzMjLCqVOnylw95ZMXL17gp59+QkREBLS1tcFxHHJzc2FjY4ODBw/yutfW9evXce3aNZiammLYsGGs40iladOmOHnyJCwsLCTWExISMHjwYDx58oRRMkIIIVVFxTNCCJFR2dnZcHZ2xunTp8t9nC89zz715s0bAICGhgbjJDVXYWEh9u3bh/v374PjOJibm8PBwQGqqqqsoxGeiouLw9q1ayV6bf3yyy9lrmrLqn379uGvv/5CUFAQryZsfmrs2LEQCoXYu3evuAiYmJgIJycnmJqaIjg4mHHCmmX79u04fPgw9uzZg0aNGgEAsrKy4OTkhFGjRmH69OmMExJCCKksKp4RQoiMcnBwwMOHD+Hj4wMbGxscO3YMz58/x8qVK7F+/Xq56G1DCCGsWVpaQigUguM4NGvWDEpKShKP82EisJaWFi5cuICOHTtKrN+4cQMDBgzA69ev2QSTUlhYmNTP5cPpM0tLS6SmpuLdu3do2rQpACAjIwPKysplisp8+P4ihBBCAwMIIURmXbp0CX/99Rc6duwIBQUFGBoawtbWFpqamlizZg1vimfPnz/H/PnzxZPsPn/Pho8n6PgkLCwMgwYNgpKSUoUvUPnwopSwl5eXJ/VzNTU1v2OS/8aIESNYR/hmIpGoTNEPAJSUlMpMD5VFn/83EAgEZf6t+HjFnw//ZsjD9xQhhBBJdPKMEEJklKamJhISEtCsWTM0a9YM+/fvR/fu3ZGeno7WrVvzZjrioEGDkJGRAVdX13In2Q0fPpxRsppBQUEBWVlZ0NPTg4KCwhefJxAIePGiVJ5ERkZi3bp14gbvZmZmWLBggcz3CVNQUKiwVyHHcfQ9VY2GDx+O169fIzg4GI0bNwYAPH36FA4ODtDR0cGxY8cYJ5TehQsXsGjRIqxevVpiUuXixYuxevVq2Nraso5ICCGkBqKTZ4QQIqNatmyJ5ORkNGvWDO3bt8e2bdvQrFkz+Pv7i3uo8EFUVBSuXLmC9u3bs45SI3166oQPJ1Bqin379sHZ2RmjRo2Cm5sbOI7DtWvX0K9fPwQGBmL8+PGsI35ReHg46wjfBZ8nVW7ZsgXDhw9Hs2bNYGBgAIFAgIyMDFhYWGDfvn2s41XKnDlz4O/vLzGpcuDAgVBTU8O0adOQlJTEMB0hhJCaik6eEUKIjNq/fz+Ki4sxadIkxMbGYuDAgXj16hVq166NwMBAjB07lnVEqZibm2P//v28eiFKyPdmZmaGadOmwcPDQ2J9w4YN2LFjh1wUCOLi4nhRNJenSZXnz5+XGAbSv39/1pEqTVVVFTdu3Ch3UmXnzp1RWFjIKBkhhJCajIpnhBDCEwUFBbh//z6aNm2K+vXrs44jtXPnzmH9+vXik3OEHTc3N5iamsLNzU1ifcuWLUhNTYWPjw+bYDWQsrIy7t27B1NTU4n11NRUtGnTBkVFRYySfZvc3Fzs378fO3fuRHx8PC+ubdKkStnSq1cvKCkpYd++fRKTKidOnIj3798jMjKScUJCCCE1ERXPCCFExr1//x7p6ekwMTFBrVr8uG2vo6Mj0RMpPz8fJSUlUFNTK9PUOicnp7rj1Vj6+voICwtDhw4dJNZv376NYcOG4cmTJ4yS1TympqZYsGABpk+fLrG+bds2rFu3DikpKYySVc2lS5cQEBCAo0ePwtDQEKNHj8bo0aN5ceKUr5MqfX19pX7u5wVzWZaamoqRI0ciOTlZYlJlixYtcPz48TIFZ0IIIaQ68ONVGCGE1EAFBQWYPXs2goKCAAAPHjyAsbEx3Nzc0LhxY3h6ejJO+GV0gkk2vXr1ClpaWmXWNTU18fLlSwaJaq558+bBzc0NcXFx6NatGwQCAaKiohAYGIhNmzaxjieVJ0+eIDAwEAEBAcjPz4e9vT2Ki4tx5MgRmJubs44nNb5Oqty4caNUzxMIBLwqnpmamiIhIaHcK6gVDaqQNXx884sQQkj56OQZIYTIKHd3d1y9ehU+Pj6ws7NDQkICjI2NERYWhqVLlyI2NpZ1RMIzbdq0wc8//wxXV1eJ9c2bN8PPzw+JiYmMktVMx44dw/r168X9zT5O2+TDBNrBgwcjKioKP/zwAxwcHGBnZwdFRUUoKSkhPj6eV8UzeZpUSWQDn9/8IoQQUj56C4QQQmTU8ePHcejQIXTp0kXi3XZzc3MIhUKGySrn1KlTUFRUxMCBAyXWz507h9LSUgwaNIhRsppn7ty5cHV1RXZ2Nvr27QsAuHjxItavX0+nBRkYOXIkRo4cyTpGlZw7dw5ubm6YMWMGmjdvzjrON5GnSZV8Penk6+uLadOmQUVFpcLrqHw4RffLL78gPj4eERERsLOzE6/3798fS5cupeIZIYTwEH/+VSWEkBomOzsbenp6Zdbz8/N5dXXF09MT3t7eZdZFIhE8PT2peFaNJk+ejHfv3mHVqlVYsWIFAKBZs2bw8/ODo6Mj43Q119u3b8tcD9TU1GSURjpXrlxBQEAArK2t0apVK0ycOJE3E4A/Z2BggNu3b/N6UiXfTzpt3LgRDg4OUFFR+ep1VL5cQZWXN78IIYT8HwXWAQghhJSvY8eOOHnypPjrj3+A79ixA127dmUVq9JSUlLKvcLVqlUrpKamMkhUs82YMQNPnjzB8+fPkZeXh7S0NCqcMZCeno4hQ4ZAXV0dWlpa0NHRgY6ODrS1taGjo8M6XoW6du2KHTt2IDMzE9OnT8fBgwehr68PkUiE8+fP482bN6wjSm3Pnj149+4dbG1tMXv2bLi5uaF///54//499uzZwzqeVD496aSioiJe79+/Pw4dOsQwmXTS09NRr1498edf+khLS2OcVDry8uYXIYSQ/0M9zwghREZdu3YNdnZ2cHBwQGBgIKZPn4579+4hOjoakZGRZSYmyqqGDRviwIED4muCH124cAHjx4/HixcvGCUjhJ1u3boB+NDbsEGDBmVeUPfu3ZtFrG+SnJyMXbt2Ye/evXj9+jVsbW0RFhbGOlaFFBUVkZmZWabY8erVK+jp6aG0tJRRMukZGhqKTzppaGggPj4exsbGSE1NhZWVFfLy8lhHrFF69+6NMWPGYPbs2dDQ0EBCQgKMjIzg6uqK1NRUnDlzhnVEQgghlUTXNgkhREZ169YN165dw9q1a2FiYoJz587BysoK0dHRsLCwYB1PasOGDcOcOXNw7NgxmJiYAABSU1Mxb948DBs2jHG6mic0NBQhISHIyMjA+/fvJR67ffs2o1Q1T0JCAmJiYtCyZUvWUf4zLVu2xB9//IE1a9bgxIkTCAgIYB1JKhzHlXsa6MmTJ+VOp5VF8nTSacyYMbC2ti5z1XTt2rW4ceMGDh8+zCiZ9NasWQM7OzskJiaipKQEmzZtknjzixBCCP/QtU1CCJFBxcXFcHZ2hpqaGoKCgnD37l0kJiZi3759vCqcAR9e8Kirq6NVq1YwMjKCkZERzMzMUK9ePaxbt451vBrF19cXzs7O0NPTQ2xsLDp16oR69eohLS2Nes9Vs44dO+Lx48esY3wXioqKGDFihMyfOrO0tISVlRUEAgH69esHKysr8Ue7du3Qs2dP3vQ9k5dr/gAQGRmJIUOGlFm3s7PD5cuXGSSqvG7duuHq1asoKCgQv/nVoEEDREdH8+bUOCGEEEl08owQQmSQkpISjh07hiVLlrCO8s20tLRw7do1nD9/HvHx8VBVVUXbtm3Rq1cv1tFqnK1bt2L79u0YN24cgoKCsHDhQhgbG8PLyws5OTms49UoO3fuxM8//4ynT5+iTZs2UFJSkni8bdu2jJLVHCNGjAAAxMXFYeDAgahTp474sdq1a6NZs2YYPXo0o3SVI08nnd6+fYvatWuXWVdSUuLV9VMLCwvxAAdCCCH8Rz3PCCFERjk7O8PCwgJz585lHeU/U1RUBGVlZd5dI5IXampqSEpKgqGhIfT09HD+/Hm0a9cOKSkp6NKlC169esU6Yo1x/fp1jB8/Hg8fPhSvCQQC8RVCPvTZkhdBQUEYO3asRKN9voiLi0P79u0BAHfu3MG6desQExMDkUgEKysrLFq0iHenlTt27IihQ4fCy8tLYn3ZsmU4ceIEYmJiGCX7usoU9mR9mi4hhJCy6OQZIYTIKFNTU6xYsQLXrl1Dhw4doK6uLvG4m5sbo2SVIxKJsGrVKvj7++P58+d48OABjI2NsWTJEjRr1gxTpkxhHbHGaNiwIV69egVDQ0MYGhri+vXraNeuHdLT00HvpVWvyZMnw9LSEsHBweUODCDVx8nJiXWEKrOysoKlpSVcXFwwfvx4uTjptGTJEowePRpCoVA8aObixYsIDg6W6X5n2traUv8cU3GcEEL4h06eEUKIjDIyMvriYwKBAGlpadWYpup+++03BAUF4bfffsPUqVNx9+5dGBsbIyQkBBs3bkR0dDTriDWGi4sLDAwMsHTpUvj7+2Pu3Lno3r07bt26hVGjRmHXrl2sI9YY6urqiI+Ph6mpKesoNZ6CgsJXix6yXOiIjo5GQEAAQkJCUFxcjNGjR2Py5MmwsbFhHe2bnDx5EqtXr0ZcXJz4qv/SpUtlegrtp9djHz58CE9PT0yaNEnccy46OhpBQUFYs2YNrwu2hBBSU1HxjBBCyHdlamqKbdu2oV+/ftDQ0EB8fDyMjY1x//59dO3aFf/++y/riDWGSCSCSCRCrVofDp6HhIQgKioKpqam+Pnnn8vtM0S+j6FDh2LSpEm86aklz44fPy5RPCsuLkZsbCyCgoKwfPlyXpyOLSwsREhICHbv3o0rV66gWbNmmDx5MpycnNCkSRPW8Wqcfv36wcXFBePGjZNYP3DgALZv346IiAg2wQghhFQZFc8IIYR8V6qqqrh//z4MDQ0limeJiYno1KkT3r59yzoiIdVu+/btWLlyJSZPngwLC4syAwOGDRvGKBn56MCBAzh06BD++usv1lEqRSgUYvfu3dizZw8yMzNha2uLU6dOsY5VaTExMUhKSoJAIIC5uTksLS1ZR5Kampoa4uPj0bx5c4n1Bw8eoH379igoKGCUjBBCSFVR8YwQQsh3ZW1tjTlz5mDChAkSxbPly5fjwoULuHLlCuuIci0hIUHq59KEx+qjoKDwxcdoYIBsEAqFaNu2LfLz81lHqbS3b99i//79+N///ofXr1/z6vvpxYsX+OmnnxAREQFtbW1wHIfc3FzY2Njg4MGD0NXVZR2xQi1btsQPP/yA9evXS6zPmzcPf//9N5KTkxklI4QQUlU0MIAQQsh3MXnyZGzatAlLly7FxIkT8fTpU4hEIhw9ehTJycnYs2cP/v77b9Yx5V779u3FUxy/hgo21UskErGOQL6isLAQmzdv5t2Vx8jISAQEBODIkSNQVFSEvb09L66dfmr27NnIy8vDvXv3YGZmBgBITEyEk5MT3NzcEBwczDhhxTZu3IjRo0fj7Nmz6NKlC4APE3aFQiGOHDnCOB0hhJCqoJNnhBBCvgtFRUVkZmZCT08PZ8+exerVqxETEwORSAQrKyt4eXlhwIABrGPKvUePHkn9XENDw++YhBDZpKOjI9HzjOM4vHnzBmpqati3b5/MX6F9/PgxAgMDERgYiPT0dHTr1g1TpkyBvb19mSnNfKClpYULFy6gY8eOEus3btzAgAED8Pr1azbBKunJkyfw8/NDUlISOI6Dubk5fv75ZxgYGLCORgghpAqoeEYIIeS7UFBQQFZWFvT09FhHIUQm+Pr6Ytq0aVBRUYGvr+9Xn+vm5lZNqUhQUJDE1woKCtDV1UXnzp2ho6PDKJV0bG1tER4eDl1dXTg6OmLy5Mlo2bIl61jfRENDA1euXEH79u0l1mNjY9G7d2/k5eWxCUYIIaRGo+IZIYTIsCtXrmDbtm0QCoUIDQ2Fvr4+9u7dCyMjI/To0YN1vK9SUFDA8+fPedGfpibZu3cv/P39kZ6ejujoaBgaGsLHxwdGRkYYPnw463hyzcjICLdu3UK9evVgZGT0xecJBAKkpaVVYzLyJXFxcWWKOLJk2LBhmDJlCn744QcoKiqyjvOfGD58OF6/fo3g4GA0btwYAPD06VM4ODhAR0cHx44dY5yQEEJITfTlbrWEEEKYOnLkCAYOHAhVVVXExsbi3bt3AIA3b95g9erVjNNJp0WLFqhbt+5XP0j18fPzw9y5czF48GCJJuLa2trw8fFhG64GSE9PR7169cSff+mDCmds5ebmYuvWrbCyskKHDh1Yx/mqsLAwDB8+XG4KZwCwZcsWvHnzBs2aNYOJiQlMTU1hZGSEN2/eYPPmzazjEUIIqaHo5BkhhMgoS0tLeHh4wNHRUWJKZVxcHOzs7JCVlcU64lcpKCjAx8cHWlpaX32ek5NTNSUi5ubmWL16NUaMGCHxPXX37l306dMHL1++ZB2xxigsLISqqmq5j2VmZqJRo0bVnIhcunQJAQEBOHr0KAwNDTF69GiMHj0alpaWrKPVSOfPn8f9+/fF/cL69+/POhIhhJAajKZtEkKIjEpOTkavXr3KrGtqavKmYfJPP/1EPc9kSHp6ermFAGVlZeTn5zNIVHNZWlriwIEDsLKyklgPDQ3FjBkzkJ2dzShZzfLkyRMEBgYiICAA+fn5sLe3R3FxMY4cOQJzc3PW8Wo0W1tb2Nraso5BCCGEAKDiGSGEyKxGjRohNTUVzZo1k1iPioqCsbExm1CV8On0OiIbjIyMEBcXV2aq5unTp6lQUM1sbW3RrVs3LFu2DIsWLUJ+fj5cXV1x+PBheHt7s45XIwwePBhRUVH44YcfsHnzZtjZ2UFRURH+/v6so9U4FQ3Q+BQN0yCEEMICFc8IIURGTZ8+He7u7ggICIBAIMCzZ88QHR2N+fPnw8vLi3W8ClFXANmzYMECzJo1C0VFReA4Djdu3EBwcDDWrFmDnTt3so5Xo2zevBlDhgyBs7MzTp48iWfPnkFTUxM3b96kQmY1OXfuHNzc3DBjxgw0b96cdZwabePGjVI9TyAQyGzxzNLSUuo3jW7fvv2d0xBCCPmvUfGMEEJk1MKFC5GbmwsbGxsUFRWhV69eUFZWxvz58+Hq6so6XoVEIhHrCOQzzs7OKCkpwcKFC1FQUIDx48dDX18fmzZtwk8//cQ6Xo0zYMAAjBo1Cn5+fqhVqxZOnDhBhbNqdOXKFQQEBMDa2hqtWrXCxIkTMXbsWNaxaqT09HTWEb7ZiBEjxJ8XFRVh69atMDc3R9euXQEA169fx7179zBz5kxGCQkhhHwLGhhACCEyrqCgAImJiRCJRDA3N0edOnVYRyJy4OXLlxCJROKedE+fPoW+vj7jVDWHUCjE+PHjkZWVhZ07dyIyMhLr1q2Dm5sbVq1aBSUlJdYRa4yCggIcPHgQAQEBuHHjBkpLS7FhwwZMnjwZGhoarOPVWO/fv0d6ejpMTExQqxa/3u93cXFBo0aNsGLFCon1pUuX4vHjxwgICGCUjBBCSFVR8YwQQngiLy8Ply5dQsuWLWFmZsY6DpETWVlZWLVqFXbu3InCwkLWcWoMDQ0NDBkyBP7+/tDW1gYAXLt2TTxdNzY2lm3AGio5ORm7du3C3r178fr1a9ja2iIsLIx1rBqloKAAs2fPRlBQEADgwYMHMDY2hpubGxo3bgxPT0/GCSumpaWFW7dulbkOnJKSAmtra+Tm5jJKRgghpKoUWAcghBBSPnt7e2zZsgUAUFhYiI4dO8Le3h5t27bFkSNHGKcjfPL69Ws4ODhAV1cXjRs3hq+vL0QiEby8vGBsbIzr16/TSYhqtnXrVhw8eFBcOAOAbt26ITY2tswETlJ9WrZsiT/++ANPnjxBcHAw6zg10i+//IL4+HhERERARUVFvN6/f38cOnSIYTLpqaqqIioqqsx6VFSUxJ4IIYTwB508I4QQGdWwYUOcPXsW7dq1w4EDB7B06VLEx8cjKCgI27dvp5MpRGozZ87EiRMnMHbsWJw5cwZJSUkYOHAgioqKsHTpUvTu3Zt1REIIAQAYGhri0KFD6NKlCzQ0NBAfHw9jY2OkpqbCysoKeXl5rCNWyNvbG8uWLYOLiwu6dOkCAOI3Kby8vHhxeo4QQogkfjUQIISQGiQ3Nxd169YFAJw5cwajR4+GmpoahgwZggULFjBOR/jk5MmT2L17N/r374+ZM2fC1NQULVq0gI+PD+toNV5iYiIyMjLw/v178ZpAIMDQoUMZpiKEnezsbHEvxk/l5+dLPc2SNU9PTxgbG2PTpk04cOAAAMDMzAyBgYGwt7dnnI4QQkhVUPGMEEJklIGBAaKjo1G3bl2cOXMGBw8eBAD8+++/dO2DVMqzZ8/EUxyNjY2hoqICFxcXxqlqltzcXGhpaYm/TktLw6hRo5CQkACBQICPFwE+FgdKS0uZ5CSEtY4dO+LkyZOYPXs2gP/7mdixY4d4ciUf2NvbU6GMEELkCBXPCCFERs2ZMwcODg6oU6cODA0N0adPHwDA5cuXYWFhwTYc4RWRSCQxvVFRURHq6uoME9U8vr6+UFFREZ8adXd3h4GBAc6ePYv27dvjn3/+QXp6OubPn48NGzYwTksIO2vWrIGdnR0SExNRUlKCTZs24d69e4iOjkZkZCTreIQQQmoo6nlGCCEyLCYmBhkZGbC1tUWdOnUAfLiCp62tje7duzNOR/hCQUEBgwYNgrKyMgDgxIkT6Nu3b5kC2tGjR1nEqxFevHiBiRMnwtTUFH/++Sfq16+Pixcvol27dtDX18eNGzegr6+PixcvYv78+dTTkNQ4cXFxaN++PQDgzp07WLduHWJiYiASiWBlZYVFixbx5o2j0tJSbNy4ESEhIWWuZQNATk4Oo2SEEEKqik6eEUKIDOvQoQM6dOggsTZkyBBGaQhfOTk5SXw9YcIERklqLj09PZw9exZr1qwB8OHFtYaGBgCgfv36ePbsGfT19dGsWTMkJyezjEoIE1ZWVrC0tISLiwvGjx+PoKAg1pGqbPny5fh/7d19VNb1/cfx1wWigDc0SRuJNyjZoiixdIpKQqCWnsw0ipxyAqe7KQhnVm5onpXzrG0dqTmtDlLqFJRGdtCCCjhSsFTCBeIdWHBS0+VAEQiF6/eHG/0Y0ZQL+Xzxej7O4Rx4c/3x/MdOvv18P9/XX39dixcvVmJion7961/r888/V0ZGhpYvX246DwDQAZw8AwAA6GKTJk3S4sWLNWvWLC1cuFCnT5/WU089pXXr1qmoqEglJSWmE4EuVVBQoOTkZKWlpenChQuaPXu2YmJiFBoaajrtio0YMUJJSUmaPn26+vbtq+Li4pZZYWFhy0sEAADdB8szAACALvbee+/p3LlzmjNnjqqqqjR9+nSVlJSof//+SktLU1hYmOlEwIj6+nqlpaVpw4YN2r17t4YNG6aYmBhFR0fL19fXdN5l6d27t8rKyjRkyBD5+PgoMzNTo0ePVkVFhYKCglRTU2M6EQBwhVxMBwAAADibqVOnas6cOZIuvVn3H//4h/75z3/q1KlTLM7g1Dw8PBQdHa3c3FwdPnxYUVFRWr9+vfz8/HTfffeZzrssvr6+OnHihCTJ399fWVlZkqQ9e/a03D0JAOheOHkGAAAAwJJqa2u1efNmLVu2TNXV1WpqajKd9D8988wz6tevn5YtW6bt27crKipKw4YNU2VlpRISErR69WrTiQCAK8TyDAAsbPfu3Vq/fr3Ky8u1fft2DRo0SBs3bpSfn58mTpxoOg9ABzU0NOjll19WTk6OTp06pebm5la/LyoqMlQGWENeXp6Sk5OVnp4uV1dXRUZGKjY2VuPGjTOddsUKCwv18ccfy9/fX/fff7/pHABAB/C2TQCwqPT0dM2bN09z587Vp59+qm+++UaSdO7cOa1atUo7d+40XAigo2JiYpSdna05c+Zo7NixstlsppMA46qqqpSSkqKUlBQdO3ZMwcHBevnllxUZGanevXubzuuwcePGdculHwDgW5w8AwCLCgoKUkJCgubPn6++fftq//79Gj58uIqLizVt2jSdPHnSdCKADvLy8tLOnTs1YcIE0ymAJURERCgnJ0cDBgzQ/PnzFRMTo5tvvtl01mXbsWPHZX+W02cA0P1w8gwALOrQoUMKCQlpM+/Xr5+qq6u7PghApxk0aJD69u1rOgOwDA8PD6Wnp2vGjBlydXU1nXPFHnjggVY/22w2/fcZhf+cMO0O97YBAFrjbZsAYFE+Pj46evRom3l+fr6GDx9uoAhAZ/njH/+op59+Wl988YXpFMASduzYoZkzZ3bLxZkkNTc3t3xlZWVp1KhR2rVrl6qrq1VTU6Ndu3Zp9OjRevfdd02nAgA6gJNnAGBRixYtUnx8vJKTk2Wz2XT8+HEVFBRoyZIlWr58uek8AA6466671NDQoOHDh8vT01Nubm6tfn/mzBlDZQAc9eSTT2rdunWtXuwzdepUeXp6auHChSorKzNYBwDoCJZnAGBRS5cuVU1NjUJDQ9XQ0KCQkBD16tVLS5Ys0eOPP246D4ADoqKi9OWXX2rVqlW64YYbeGEAcA0pLy+Xl5dXm7mXl5c+//zzrg8CADiMFwYAgMXV1dXpwIEDam5uVkBAgPr06WM6CYCDPD09VVBQoDvuuMN0CoBOFhISIjc3N23atEk+Pj6SpJMnT2revHlqbGxUXl6e4UIAwJXi5BkAWJynp6fuuusu0xkAOtGPfvQj1dfXm84AcBUkJydr1qxZGjp0qIYMGSJJqqys1MiRI5WRkWE2DgDQIZw8AwCLCg0N/d5HuT788MMurAHQmbKysrRy5Uq98MILCgwMbHPnWb9+/QyVAegMdrtd2dnZOnjwoOx2uwICAhQeHs4j2gDQTbE8AwCLSkhIaPXzhQsXVFxcrJKSEkVHR2vNmjWGygA4ysXl0gvP//sv0na7XTabTU1NTSayAAAA8B14bBMALOqll176zvlzzz2n2traLq4B0JlycnJMJwDoRElJSVq4cKHc3d2VlJT0vZ+Ni4vroioAQGfh5BkAdDNHjx7V2LFjdebMGdMpAABAkp+fn/bu3Stvb2/5+fm1+zmbzaaKioouLAMAdAZOngFAN1NQUCB3d3fTGQAA4N+OHTv2nd8DAK4NLM8AwKIefPDBVj/b7XadOHFCe/fuVWJioqEqAAAAAHAuLqYDAADfzcvLq9VX//79NXnyZO3cuVMrVqwwnQcAAL7DnDlztHr16jbzF198UQ899JCBIgCAo7jzDAAAAAA6yYABA/Thhx8qMDCw1fyzzz5TeHi4vvrqK0NlAICO4rFNAAAAQ06fPq1Dhw7JZrNp5MiRGjBggOkkAA6qra1Vz54928zd3Nx09uxZA0UAAEfx2CYAWNQPfvAD9e/f/7K+AHQv58+fV0xMjG688UaFhIRo0qRJuvHGGxUbG6u6ujrTeQAccNtttyk1NbXNfOvWrQoICDBQBABwFCfPAMCiEhMT9fzzz2vq1KkaP368pEtv2nzvvfeUmJjI0gzoxhYvXqy8vDzt2LFDEyZMkCTl5+crLi5Ov/rVr/SXv/zFcCGAjkpMTNTs2bNVXl6usLAwSdIHH3ygLVu2aNu2bYbrAAAdwZ1nAGBRs2fPVmhoqB5//PFW81deeUXvv/++MjIyzIQBcNj111+v7du3a/Lkya3mOTk5ioyM1OnTp82EAegUmZmZWrVqlYqLi+Xh4aHbb79dK1as0N133206DQDQASzPAMCi+vTpo+LiYvn7+7eaHzlyREFBQaqtrTVUBsBRnp6e2rdvn2655ZZW89LSUo0dO1bnz583VAYAAID/xp1nAGBR3t7e+tvf/tZmnpGRIW9vbwNFADrL+PHjtWLFCjU0NLTM6uvrtXLlypbHtAF0b/v27dOmTZu0efNmffrpp6ZzAAAO4M4zALColStXKjY2Vrm5uS1/mS4sLNS7776r119/3XAdAEesWbNG06ZNk6+vr+644w7ZbDYVFxfL3d1d7733nuk8AA44deqUHnnkEeXm5uq6666T3W5XTU2NQkNDtXXrVt6qCwDdEI9tAoCF/f3vf1dSUpLKyspkt9sVEBCguLg4/fjHPzadBsBB9fX12rRpkw4ePNjy53vu3Lny8PAwnQbAAQ8//LDKy8u1cePGlkezDxw4oOjoaPn7+2vLli2GCwEAV4rlGQAAAAB0Ei8vL73//vsaM2ZMq/knn3yiKVOmqLq62kwYAKDDuPMMAACgi73xxhvKzMxs+Xnp0qW67rrrFBwcrC+++MJgGQBHNTc3y83Nrc3czc1Nzc3NBooAAI5ieQYAANDFVq1a1fJ4ZkFBgV555RX9/ve/1/XXX6+EhATDdQAcERYWpvj4eB0/frxl9uWXXyohIUH33HOPwTIAQEfx2CYAAEAX8/T01MGDBzVkyBA9/fTTOnHihN58802VlpZq8uTJOn36tOlEAB1UVVWlmTNnqqSkRIMHD5bNZlNlZaUCAwP19ttvy9fX13QiAOAK8bZNAACALtanTx99/fXXGjJkiLKyslpOm7m7u6u+vt5wHQBHDB48WEVFRcrOzm71QpDw8HDTaQCADmJ5BgAA0MUiIiK0YMECBQUF6fDhw5o+fbokqbS0VMOGDTMbB6BTREREKCIiwnQGAKATsDwDAAvbs2ePtm3bpsrKSjU2Nrb63VtvvWWoCoCj/vznP+s3v/mNqqqqlJ6eLm9vb0nSvn37FBUVZbgOwJVKSkq67M/GxcVdxRIAwNXAnWcAYFFbt27V/PnzNWXKFGVnZ2vKlCk6cuSITp48qVmzZmnDhg2mEwEAgCQ/P7/L+pzNZlNFRcVVrgEAdDaWZwBgUbfffrsWLVqkX/7yl+rbt6/2798vPz8/LVq0SD4+Plq5cqXpRAAO2L17t9avX6+Kigpt27ZNgwYN0saNG+Xn56eJEyeazgMAAMC/uZgOAAB8t/Ly8pZ7kHr16qXz58/LZrMpISFBr776quE6AI5IT0/X1KlT5eHhoaKiIn3zzTeSpHPnzmnVqlWG6wB0hsbGRh06dEgXL140nQIAcBDLMwCwqP79++vcuXOSpEGDBqmkpESSVF1drbq6OpNpABz0/PPPa926dXrttdfk5ubWMg8ODlZRUZHBMgCOqqurU2xsrDw9PXXrrbeqsrJS0qW7zlavXm24DgDQESzPAMCiJk2apOzsbElSZGSk4uPj9dOf/lRRUVG65557DNcBcMShQ4cUEhLSZt6vXz9VV1d3fRCATvPss89q//79ys3Nlbu7e8s8PDxcqampBssAAB3F2zYBwKJeeeUVNTQ0SLr0P+Jubm7Kz8/Xgw8+qMTERMN1ABzh4+Ojo0ePatiwYa3m+fn5Gj58uJkoAJ0iIyNDqampGjdunGw2W8s8ICBA5eXlBssAAB3F8gwALKp///4t37u4uGjp0qVaunSpwSIAnWXRokWKj49XcnKybDabjh8/roKCAi1ZskTLly83nQfAAadPn9bAgQPbzP9zdykAoPtheQYAFnL27NnL/my/fv2uYgmAq2np0qWqqalRaGioGhoaFBISol69emnJkiV6/PHHTecBcMCYMWOUmZmpJ554QpJaFmavvfaaxo8fbzINANBBNrvdbjcdAQC4xMXF5X/+q7TdbpfNZlNTU1MXVQG4Wurq6nTgwAE1NzcrICBAffr0MZ0EwEEff/yxpk2bprlz5yolJUWLFi1SaWmpCgoKlJeXpzvvvNN0IgDgCnHyDAAsJCcnx3QCgKuorq5OTz31lDIyMnThwgWFh4crKSlJ119/vek0AA4qLi7WqFGjFBwcrI8++kh/+MMfNGLECGVlZWn06NEqKChQYGCg6UwAQAdw8gwAAKCLPPXUU1q7dq3mzp0rd3d3bdmyRZMnT9a2bdtMpwFwkIuLi4KCgrRgwQI9+uij8vLyMp0EAOgkLM8AAAC6yIgRI/TCCy/okUcekSR98sknmjBhghoaGuTq6mq4DoAjCgoKlJycrLS0NF24cEGzZ89WTEyMQkNDTacBABzE8gwAAKCL9OzZU8eOHdOgQYNaZh4eHjp8+LAGDx5ssAxAZ6mvr1daWpo2bNig3bt3a9iwYYqJiVF0dLR8fX1N5wEAOsDFdAAAAICzaGpqUs+ePVvNevTooYsXLxoqAtDZPDw8FB0drdzcXB0+fFhRUVFav369/Pz8dN9995nOAwB0ACfPAAAAuoiLi4vuvfde9erVq2X2zjvvKCwsTL17926ZvfXWWybyAFwFtbW12rx5s5YtW6bq6mrelg0A3RBv2wQAAOgi0dHRbWY/+clPDJQAuNry8vKUnJys9PR0ubq6KjIyUrGxsaazAAAdwMkzALCw7du3Ky0tTZWVlWpsbGz1u6KiIkNVAADgu1RVVSklJUUpKSk6duyYgoODFRsbq8jIyFanSwEA3Qt3ngGARSUlJemxxx7TwIED9emnn2rs2LHy9vZWRUWF7r33XtN5AADg/4mIiJCfn5/Wrl2rOXPmqKysTPn5+XrsscdYnAFAN8djmwBgUWvXrtWrr76qqKgovfHGG1q6dKmGDx+u5cuX68yZM6bzAADA/+Ph4aH09HTNmDFDrq6upnMAAJ2IxzYBwKI8PT1VVlamoUOHauDAgcrOztYdd9yhI0eOaNy4cfr6669NJwIAAADANY/HNgHAon74wx+2LMiGDh2qwsJCSdKxY8fEv3sAAAAAQNdgeQYAFhUWFqZ33nlHkhQbG6uEhARFRETo4Ycf1qxZswzXAQAAAIBz4LFNALCo5uZmNTc3q0ePS9dTpqWlKT8/X/7+/vrZz36mnj17Gi4EAAAAgGsfyzMAAAAAAACgHTy2CQAAAAAAALSD5RkAAAAAAADQDpZnAAAAAAAAQDtYngEAAAAAAADtYHkGAAAAAAAAtKOH6QAAwLeCgoJks9ku67NFRUVXuQYAAAAAwPIMACzkgQceaPm+oaFBa9euVUBAgMaPHy9JKiwsVGlpqX7xi18YKgQAAAAA52Kz2+120xEAgLYWLFggHx8f/fa3v201X7FihaqqqpScnGyoDAAAAACcB8szALAoLy8v7d27VzfddFOr+ZEjR3TXXXeppqbGUBkAAAAAOA9eGAAAFuXh4aH8/Pw28/z8fLm7uxsoAgAAAADnw51nAGBRTz75pH7+859r3759GjdunKRLd54lJydr+fLlhusAAAAAwDnw2CYAWFhaWprWrFmjsrIySdItt9yi+Ph4RUZGGi4DAAAAAOfA8gwAAAAAAABoB3eeAQAAAAAAAO3gzjMAsKimpia99NJLSktLU2VlpRobG1v9/syZM4bKAAAAAMB5cPIMACxq5cqV+tOf/qTIyEjV1NRo8eLFevDBB+Xi4qLnnnvOdB4AAAAAOAXuPAMAixoxYoSSkpI0ffp09e3bV8XFxS2zwsJC/fWvfzWdCAAAAADXPE6eAYBFnTx5UoGBgZKkPn36qKamRpI0Y8YMZWZmmkwDAAAAAKfB8gwALMrX11cnTpyQJPn7+ysrK0uStGfPHvXq1ctkGgAAAAA4DZZnAGBRs2bN0gcffCBJio+PV2Jiom666SbNnz9fMTExhusAAAAAwDlw5xkAdBOFhYX6+OOP5e/vr/vvv990DgAAAAA4BZZnAAAAAAAAQDt6mA4AAHxrx44dl/1ZTp8BAAAAwNXHyTMAsBAXl9ZXUdpsNv33f6ZtNpskqampqcu6AAAAAMBZ8cIAALCQ5ubmlq+srCyNGjVKu3btUnV1tWpqarRr1y6NHj1a7777rulUAAAAAHAKnDwDAIu67bbbtG7dOk2cOLHVfPfu3Vq4cKHKysoMlQEAAACA8+DkGQBYVHl5uby8vNrMvby89Pnnn3d9EAAAAAA4IU6eAYBFhYSEyM3NTZs2bZKPj48k6eTJk5o3b54aGxuVl5dnuBAAAAAArn0szwDAoo4ePapZs2bp0KFDGjJkiCSpsrJSI0eOVEZGhvz9/Q0XAgAAAMC1j+UZAFiY3W5Xdna2Dh48KLvdroCAAIWHh7e8cRMAAAAAcHWxPAMAAAAAAADa0cN0AADgW0lJSVq4cKHc3d2VlJT0vZ+Ni4vroioAAAAAcF6cPAMAC/Hz89PevXvl7e0tPz+/dj9ns9lUUVHRhWUAAAAA4JxYngEAAAAAAADtcDEdAAAAAAAAAFgVyzMAsKg5c+Zo9erVbeYvvviiHnroIQNFAAAAAOB8eGwTACxqwIAB+vDDDxUYGNhq/tlnnyk8PFxfffWVoTIAAAAAcB6cPAMAi6qtrVXPnj3bzN3c3HT27FkDRQAAAADgfFieAYBF3XbbbUpNTW0z37p1qwICAgwUAQAAAIDz6WE6AADw3RITEzV79myVl5crLCxMkvTBBx9oy5Yt2rZtm+E6AAAAAHAO3HkGABaWmZmpVatWqbi4WB4eHrr99tu1YsUK3X333abTAAAAAMApsDwDAAAAAAAA2sFjmwBgcfv27VNZWZlsNpsCAgIUFBRkOgkAAAAAnAbLMwCwqFOnTumRRx5Rbm6urrvuOtntdtXU1Cg0NFRbt27VgAEDTCcCAAAAwDWPt20CgEU98cQTOnv2rEpLS3XmzBn961//UklJic6ePau4uDjTeQAAAADgFLjzDAAsysvLS++//77GjBnTav7JJ59oypQpqq6uNhMGAAAAAE6Ek2cAYFHNzc1yc3NrM3dzc1Nzc7OBIgAAAABwPizPAMCiwsLCFB8fr+PHj7fMvvzySyUkJOiee+4xWAYAAAAAzoPHNgHAoqqqqjRz5kyVlJRo8ODBstlsqqysVGBgoN5++235+vqaTgQAAACAax7LMwCwuOzsbB08eFB2u10BAQEKDw83nQQAAAAAToPlGQAAAAAAANCOHqYDAADfSkpKuuzPxsXFXcUSAAAAAIDEyTMAsBQ/P7/L+pzNZlNFRcVVrgEAAAAAsDwDAAAAAAAA2uFiOgAA8P0aGxt16NAhXbx40XQKAAAAADgdlmcAYFF1dXWKjY2Vp6enbr31VlVWVkq6dNfZ6tWrDdcBAAAAgHNgeQYAFvXss89q//79ys3Nlbu7e8s8PDxcqampBssAAAAAwHnwtk0AsKiMjAylpqZq3LhxstlsLfOAgACVl5cbLAMAAAAA58HJMwCwqNOnT2vgwIFt5ufPn2+1TAMAAAAAXD0szwDAosaMGaPMzMyWn/+zMHvttdc0fvx4U1kAAAAA4FR4bBMALOp3v/udpk2bpgMHDujixYtas2aNSktLVVBQoLy8PNN5AAAAAOAUOHkGABZTXFwsSQoODtZHH32kuro6jRgxQllZWbrhhhtUUFCgO++802wkAAAAADgJm91ut5uOAAB8y8XFRUFBQVqwYIEeffRReXl5mU4CAAAAAKfFyTMAsJiPPvpIo0eP1jPPPCMfHx/NmzdPOTk5prMAAAAAwClx8gwALKq+vl5paWnasGGDdu/erWHDhikmJkbR0dHy9fU1nQcAAAAAToHlGQB0A+Xl5dqwYYPefPNNnThxQhEREdq5c6fpLAAAAAC45rE8A4Buora2Vps3b9ayZctUXV2tpqYm00kAAAAAcM3rYToAAPD98vLylJycrPT0dLm6uioyMlKxsbGmswAAAADAKXDyDAAsqKqqSikpKUpJSdGxY8cUHBys2NhYRUZGqnfv3qbzAAAAAMBpcPIMACwmIiJCOTk5GjBggObPn6+YmBjdfPPNprMAAAAAwCmxPAMAi/Hw8FB6erpmzJghV1dX0zkAAAAA4NR4bBMAAAAAAABoh4vpAAAAAAAAAMCqWJ4BAAAAAAAA7WB5BgAAAAAAALSD5RkAAAAAAADQDpZnAAAAAAAAQDtYngEAAAAAAADtYHkGAAAAAAAAtOP/AH7ML2qQwJQPAAAAAElFTkSuQmCC", "text/plain": [ - "" + "
    " ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--- Imputación para aeronave: **Integrator Extended Range (ER)** ---\n" - ] - }, { "data": { "text/html": [ @@ -62471,18 +26833,13 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Imputación no Exitosa

    \n", + "

    Tabla de correlaciones con filtro de umbral de correlación

    \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'Integrator Extended Range (ER)'.
    " ], @@ -62498,84 +26855,41 @@ "output_type": "stream", "text": [ "\n", - "--- Imputación para aeronave: **ScanEagle 3** ---\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - "

    Imputación no Exitosa

    \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Mensaje
    0No se pudo imputar el parámetro 'Velocidad de pérdida (KCAS)' para la aeronave 'ScanEagle 3'.
    " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "=== PASO 2: IMPUTACIÓN DE VALORES ===\n", + "\n", + "=== Velocidad a la que se realiza el crucero (KTAS): Sin correlaciones significativas (|r| < 0.7) ===\n", "\n", - "=== Velocidad de pérdida limpia (KCAS): No hay valores faltantes para imputar. ===\n", + "=== Techo de servicio máximo: Sin correlaciones significativas (|r| < 0.7) ===\n", "\n", - "=== envergadura: No hay valores faltantes para imputar. ===\n", + "=== Área del ala: Sin correlaciones significativas (|r| < 0.7) ===\n", "\n", - "=== Cuerda: No hay valores faltantes para imputar. ===\n", + "=== Relación de aspecto del ala: Sin correlaciones significativas (|r| < 0.7) ===\n", "\n", - "=== payload: No hay valores faltantes para imputar. ===\n", + "=== Longitud del fuselaje: Sin correlaciones significativas (|r| < 0.7) ===\n", "\n", - "=== Empty weight: No hay valores faltantes para imputar. ===\n", + "=== Peso máximo al despegue (MTOW): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Alcance de la aeronave: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Autonomía de la aeronave: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad máxima (KIAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad de pérdida (KCAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Velocidad de pérdida limpia (KCAS): Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== envergadura: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Cuerda: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== payload: Sin correlaciones significativas (|r| < 0.7) ===\n", + "\n", + "=== Empty weight: Sin correlaciones significativas (|r| < 0.7) ===\n", "La columna 'Nivel de Confianza' no está presente en df_reporte.\n", "\u001b[1mNo se realizaron imputaciones por correlación en esta iteración.\u001b[0m\n", "\n", - "=== Iteración 4: Resumen después de imputaciones ===\n" + "=== Iteración 2: Resumen después de imputaciones ===\n" ] }, { @@ -62613,11 +26927,11 @@ " max-width: 150px; /* Ajusta el ancho máximo de las celdas si es necesario */\n", " }\n", " \n", - "

    Resumen de Valores Faltantes Después de Iteración 4

    \n", + "

    Resumen de Valores Faltantes Después de Iteración 2

    \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -62625,32 +26939,32 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -62660,72 +26974,72 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -62735,22 +27049,22 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -62760,52 +27074,52 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
    ColumnaFilaValores Faltantes
    0Stalker XE0.0002.000
    1Stalker VXE300.0002.000
    2Aerosonde Mk. 4.7 Fixed Wing0.0004.000
    3Aerosonde Mk. 4.7 VTOL0.0004.000
    4Aerosonde Mk. 4.8 Fixed wing0.0004.000
    5Aerosonde Mk. 4.8 VTOL FTUAS0.0001.000
    6
    7Fulmar X1.0002.000
    8Orbiter 40.0004.000
    9Orbiter 30.0006.000
    10Mantis1.0008.000
    11ScanEagle0.0007.000
    12Integrator0.0006.000
    13Integrator VTOL0.00012.000
    14Integrator Extended Range (ER)1.000Integrator Extended Range6.000
    15ScanEagle 31.0003.000
    16RQ Nan 21A Blackjack0.0004.000
    17DeltaQuad Evo0.0002.000
    18DeltaQuad Pro #MAP0.0007.000
    19DeltaQuad Pro #CARGO0.0007.000
    20V210.0002.000
    21
    22V320.0003.000
    23V350.0003.000
    24V390.0003.000
    25Volitation VT3700.0002.000
    26
    27Skyeye 2930 VTOL0.0003.000
    28Skyeye 36001.0006.000
    29Skyeye 3600 VTOL0.0002.000
    30Skyeye 50000.0004.000
    31Skyeye 5000 VTOL0.0001.000
    32Skyeye 5000 VTOL octo0.0001.000
    33Volitation VT5100.0001.000
    34Ascend0.0002.000
    35Transition0.0003.000
    36Reach0.0001.000
    " @@ -62864,7 +27178,7 @@ " \n", " 0\n", " Total de Valores Faltantes\n", - " 5.000\n", + " 128.000\n", " \n", " \n", "" @@ -62881,7 +27195,6 @@ "output_type": "stream", "text": [ "\u001b[1mNo se realizaron nuevas imputaciones. Finalizando...\u001b[0m\n", - "Hola\n", "=== Exportando datos al archivo: C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx ===\n", "Exportación completada. El archivo se guardó como 'C:\\Users\\delpi\\OneDrive\\Tesis\\ADRpy-VTOL\\ADRpy\\analisis\\Results\\Datos_imputados.xlsx'.\n", "\n", diff --git a/ADRpy/analisis/main.py b/ADRpy/analisis/main.py index def5be8f..7a6e3c44 100644 --- a/ADRpy/analisis/main.py +++ b/ADRpy/analisis/main.py @@ -130,7 +130,7 @@ # Paso 6: Selección de parámetros # Parámetros disponibles en el índice del DataFrame -parametros_disponibles = df_procesado.index.tolist() +parametros_disponibles = df_procesado.columns.tolist() print("Parámetros disponibles en df_procesado antes de seleccionar:") print(parametros_disponibles) @@ -166,7 +166,7 @@ # Filtrar el DataFrame por los parámetros seleccionados try: - df_filtrado = df_procesado.loc[parametros_seleccionados] + df_filtrado = df_procesado[parametros_seleccionados] except KeyError as e: print(f"Error al filtrar df_procesado: {e}") print(f"Parámetros seleccionados inválidos: {set(parametros_seleccionados) - set(df_procesado.index.tolist())}") @@ -177,10 +177,10 @@ # Paso 7: Mostrar celdas faltantes con selección de columna -# Analizar celdas faltantes en la columna seleccionada +# Analizar celdas faltantes en la fila seleccionada df_celdas_faltantes = mostrar_celdas_faltantes_con_seleccion( df_filtrado, - columna_seleccionada=args.columna, + fila_seleccionada=args.columna, debug_mode=args.debug_mode ) @@ -214,10 +214,14 @@ # Cargar configuración de similitud bloques_rasgos, filas_familia, capas_familia = configurar_similitud() -df_atributos = df_procesado.loc[filas_familia] -df_parametros = df_procesado.drop(index=filas_familia) +# Cambiar la lógica para seleccionar columnas en lugar de filas +# df_atributos debe seleccionar las columnas correspondientes a filas_familia +df_atributos = df_procesado[filas_familia] +# df_parametros debe excluir las columnas seleccionadas en filas_familia +df_parametros = df_procesado.drop(columns=filas_familia) # Paso 10: Llamar a la función principal +# IMPORTANTE: revisa que en los scripts de imputación y exportación se acceda a los datos como df.loc[aeronave, parametro] df_procesado_actualizado, resumen_imputaciones = bucle_imputacion_similitud_correlacion( df_parametros=df_parametros, df_atributos=df_atributos, @@ -236,8 +240,6 @@ debug_mode=args.debug_mode ) -print("Hola") - # Paso 11: Exportar resultados a Excel archivo_destino = args.archivo_destino if not archivo_destino: diff --git a/ADRpy/analisis/tempCodeRunnerFile.py b/ADRpy/analisis/tempCodeRunnerFile.py new file mode 100644 index 00000000..5742efc4 --- /dev/null +++ b/ADRpy/analisis/tempCodeRunnerFile.py @@ -0,0 +1 @@ +2, 3, 2, 3, 2, 3, 2, 3, 2, 3 \ No newline at end of file From d28b2221b41a7337970776e5f1a039aeef4c157e Mon Sep 17 00:00:00 2001 From: Delpoo <157638420+Delpoo@users.noreply.github.com> Date: Fri, 6 Jun 2025 14:54:51 -0300 Subject: [PATCH 8/9] Add correlation imputation module with tests --- .../imputacion_correlacion/__init__.py | 1 + .../imputacion_correlacion.py | 134 ++++++++++++++++++ tests/test_imputacion_correlacion.py | 10 ++ 3 files changed, 145 insertions(+) create mode 100644 ADRpy/analisis/Modulos/imputacion_correlacion/__init__.py create mode 100644 ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py create mode 100644 tests/test_imputacion_correlacion.py diff --git a/ADRpy/analisis/Modulos/imputacion_correlacion/__init__.py b/ADRpy/analisis/Modulos/imputacion_correlacion/__init__.py new file mode 100644 index 00000000..0572c0b9 --- /dev/null +++ b/ADRpy/analisis/Modulos/imputacion_correlacion/__init__.py @@ -0,0 +1 @@ +from .imputacion_correlacion import imputacion_correlacion diff --git a/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py b/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py new file mode 100644 index 00000000..caabdc04 --- /dev/null +++ b/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py @@ -0,0 +1,134 @@ +import pandas as pd +import numpy as np +from itertools import combinations +from sklearn.linear_model import LinearRegression +from sklearn.preprocessing import PolynomialFeatures +from sklearn.model_selection import LeaveOneOut +from sklearn.metrics import mean_absolute_percentage_error, r2_score + + +def cargar_y_validar_datos(path: str) -> pd.DataFrame: + """Load Excel data from the given path using sheet 'data_frame_prueba'.""" + try: + df = pd.read_excel(path, sheet_name="data_frame_prueba") + except FileNotFoundError: + raise FileNotFoundError(f"Archivo no encontrado: {path}") + except ValueError: + raise ValueError( + "No se pudo leer la hoja 'data_frame_prueba'. Verifique el archivo" + ) + df = df.rename(columns=lambda c: str(c).strip()) + df.replace("nan", np.nan, inplace=True) + return df + + +def seleccionar_predictores_validos(df: pd.DataFrame, objetivo: str) -> list: + """Return numeric predictors with at least 5 non-null values.""" + numericas = df.select_dtypes(include=[np.number]).columns + return [ + col + for col in numericas + if col != objetivo and df[col].notna().sum() >= 5 + ] + + +def generar_combinaciones(predictores: list) -> list: + combos = [] + for r in (1, 2): + combos.extend(list(combinations(predictores, r))) + return combos + + +def entrenar_modelo(df: pd.DataFrame, objetivo: str, predictores: tuple): + df_train = df.dropna(subset=[objetivo, *predictores]) + if len(df_train) < len(predictores) + 1: + return None + X = df_train[list(predictores)] + y = df_train[objetivo] + poly = len(predictores) == 2 + if poly: + pf = PolynomialFeatures(degree=2, include_bias=False) + X_trans = pf.fit_transform(X) + else: + pf = None + X_trans = X + modelo = LinearRegression().fit(X_trans, y) + pred = modelo.predict(X_trans) + mape = mean_absolute_percentage_error(y, pred) * 100 + r2 = r2_score(y, pred) + corr = 0.6 * (r2 / 0.7) + 0.4 * (1 - mape / 15) + return { + "predictores": predictores, + "modelo": modelo, + "pf": pf, + "mape": mape, + "r2": r2, + "corr": corr, + } + + +def filtrar_mejores_modelos(modelos: list, top: int = 2) -> list: + modelos = [m for m in modelos if m is not None] + modelos.sort(key=lambda m: m["corr"], reverse=True) + return modelos[:top] + + +def validar_con_loocv(df: pd.DataFrame, objetivo: str, info: dict) -> float: + df_train = df.dropna(subset=[objetivo, *info["predictores"]]) + if df_train.empty: + return np.inf + X = df_train[list(info["predictores"])] + y = df_train[objetivo] + if info["pf"] is not None: + X = info["pf"].fit_transform(X) + loo = LeaveOneOut() + errores = [] + for train_idx, test_idx in loo.split(X): + m = LinearRegression().fit(X[train_idx], y.iloc[train_idx]) + pred = m.predict(X[test_idx]) + errores.append(abs(y.iloc[test_idx].values[0] - pred[0])) + return float(np.mean(errores)) + + +def imputar_valores(df: pd.DataFrame, objetivo: str, info: dict): + df_res = df.copy() + faltantes = df_res[df_res[objetivo].isna()].index + imputaciones = [] + if not len(faltantes): + return df_res, imputaciones + X_pred = df_res.loc[faltantes, list(info["predictores"])] + if info["pf"] is not None: + X_pred = info["pf"].transform(X_pred) + df_res.loc[faltantes, objetivo] = info["modelo"].predict(X_pred) + for idx in faltantes: + imputaciones.append({"Fila": idx, "Parametro": objetivo, "Valor": df_res.at[idx, objetivo]}) + return df_res, imputaciones + + +def generar_reporte_final(registros: list) -> pd.DataFrame: + return pd.DataFrame(registros) + + +def imputacion_correlacion(path: str = "ADRpy/analisis/Data/Datos_aeronaves.xlsx"): + df = cargar_y_validar_datos(path) + reporte = [] + for objetivo in [c for c in df.columns if df[c].isna().any()]: + predictores = seleccionar_predictores_validos(df, objetivo) + if not predictores: + continue + modelos = [] + for combo in generar_combinaciones(predictores): + modelos.append(entrenar_modelo(df, objetivo, combo)) + mejores = filtrar_mejores_modelos(modelos) + if not mejores: + continue + mejor = min( + ( + (m, validar_con_loocv(df, objetivo, m)) + for m in mejores + ), + key=lambda t: t[1], + )[0] + df, imps = imputar_valores(df, objetivo, mejor) + reporte.extend(imps) + return df, generar_reporte_final(reporte) diff --git a/tests/test_imputacion_correlacion.py b/tests/test_imputacion_correlacion.py new file mode 100644 index 00000000..f7cd8288 --- /dev/null +++ b/tests/test_imputacion_correlacion.py @@ -0,0 +1,10 @@ +import pandas as pd +from ADRpy.analisis.Modulos.imputacion_correlacion import imputacion_correlacion + + +def test_imputacion_correlacion_basica(): + df, reporte = imputacion_correlacion('ADRpy/analisis/Data/Datos_aeronaves.xlsx') + assert not df.isna().any().any(), "Deberia imputar todos los valores faltantes" + # Verificamos que el valor imputado para Potencia en la fila 2 sea cercano al calculo esperado + valor = df.loc[2, 'Potencia'] + assert round(valor, 3) == round(25.8272522839, 3) From 4cfbdfc4caf4f8017b5feff8d2a82714960e36e4 Mon Sep 17 00:00:00 2001 From: Delpoo <157638420+Delpoo@users.noreply.github.com> Date: Fri, 6 Jun 2025 16:53:46 -0300 Subject: [PATCH 9/9] Improve correlation imputation --- .../imputacion_correlacion.py | 136 ++++++++++++++---- tests/test_imputacion_correlacion.py | 3 +- 2 files changed, 107 insertions(+), 32 deletions(-) diff --git a/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py b/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py index caabdc04..4c5df757 100644 --- a/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py +++ b/ADRpy/analisis/Modulos/imputacion_correlacion/imputacion_correlacion.py @@ -1,12 +1,31 @@ import pandas as pd import numpy as np from itertools import combinations +from collections import defaultdict from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import LeaveOneOut from sklearn.metrics import mean_absolute_percentage_error, r2_score +def penalizacion_por_k(k: int) -> float: + """Return penalization factor based on sample size.""" + if k > 10: + return 1.0 + return max( + 0, + min( + 1, + 0.00002281 * k ** 5 + - 0.00024 * k ** 4 + - 0.0036 * k ** 3 + + 0.046 * k ** 2 + + 0.0095 * k + + 0.024, + ), + ) + + def cargar_y_validar_datos(path: str) -> pd.DataFrame: """Load Excel data from the given path using sheet 'data_frame_prueba'.""" try: @@ -22,14 +41,28 @@ def cargar_y_validar_datos(path: str) -> pd.DataFrame: return df -def seleccionar_predictores_validos(df: pd.DataFrame, objetivo: str) -> list: - """Return numeric predictors with at least 5 non-null values.""" +def seleccionar_predictores_validos(df: pd.DataFrame, objetivo: str, rango: float = 0.15) -> list: + """Return numeric predictors with enough data and within ±15% range.""" numericas = df.select_dtypes(include=[np.number]).columns - return [ - col - for col in numericas - if col != objetivo and df[col].notna().sum() >= 5 - ] + filas_obj = df[df[objetivo].isna()].index + candidatos = [] + for col in numericas: + if col == objetivo or df[col].notna().sum() < 5: + continue + valido = True + vals_no_nan = df[col].dropna() + if vals_no_nan.empty: + continue + mn, mx = vals_no_nan.min(), vals_no_nan.max() + rango_min, rango_max = mn * (1 - rango), mx * (1 + rango) + for idx in filas_obj: + val = df.at[idx, col] + if pd.isna(val) or not (rango_min <= val <= rango_max): + valido = False + break + if valido: + candidatos.append(col) + return candidatos def generar_combinaciones(predictores: list) -> list: @@ -39,13 +72,15 @@ def generar_combinaciones(predictores: list) -> list: return combos -def entrenar_modelo(df: pd.DataFrame, objetivo: str, predictores: tuple): +def entrenar_modelo( + df: pd.DataFrame, objetivo: str, predictores: tuple, poly: bool +) -> dict | None: + """Train linear or polynomial model and compute metrics.""" df_train = df.dropna(subset=[objetivo, *predictores]) if len(df_train) < len(predictores) + 1: return None X = df_train[list(predictores)] y = df_train[objetivo] - poly = len(predictores) == 2 if poly: pf = PolynomialFeatures(degree=2, include_bias=False) X_trans = pf.fit_transform(X) @@ -57,6 +92,8 @@ def entrenar_modelo(df: pd.DataFrame, objetivo: str, predictores: tuple): mape = mean_absolute_percentage_error(y, pred) * 100 r2 = r2_score(y, pred) corr = 0.6 * (r2 / 0.7) + 0.4 * (1 - mape / 15) + confianza = corr * penalizacion_por_k(len(df_train)) + tipo = ("poly" if poly else "linear") + f"-{len(predictores)}" return { "predictores": predictores, "modelo": modelo, @@ -64,30 +101,45 @@ def entrenar_modelo(df: pd.DataFrame, objetivo: str, predictores: tuple): "mape": mape, "r2": r2, "corr": corr, + "confianza": confianza, + "tipo": tipo, + "n": len(df_train), } def filtrar_mejores_modelos(modelos: list, top: int = 2) -> list: - modelos = [m for m in modelos if m is not None] - modelos.sort(key=lambda m: m["corr"], reverse=True) - return modelos[:top] - - -def validar_con_loocv(df: pd.DataFrame, objetivo: str, info: dict) -> float: + """Return top models per type based on confianza.""" + modelos = [m for m in modelos if m is not None and m["mape"] <= 15 and m["r2"] >= 0.7] + grupos: defaultdict[str, list] = defaultdict(list) + for m in modelos: + grupos[m["tipo"]].append(m) + mejores = [] + for lst in grupos.values(): + lst.sort(key=lambda x: x["confianza"], reverse=True) + mejores.extend(lst[:top]) + return mejores + + +def validar_con_loocv(df: pd.DataFrame, objetivo: str, info: dict) -> tuple: + """Return MAE and R2 from LOOCV validation.""" df_train = df.dropna(subset=[objetivo, *info["predictores"]]) if df_train.empty: - return np.inf + return np.inf, -np.inf X = df_train[list(info["predictores"])] y = df_train[objetivo] if info["pf"] is not None: X = info["pf"].fit_transform(X) + X_vals = X + else: + X_vals = X.values loo = LeaveOneOut() - errores = [] - for train_idx, test_idx in loo.split(X): - m = LinearRegression().fit(X[train_idx], y.iloc[train_idx]) - pred = m.predict(X[test_idx]) - errores.append(abs(y.iloc[test_idx].values[0] - pred[0])) - return float(np.mean(errores)) + preds = np.zeros(len(y)) + for i, (train_idx, test_idx) in enumerate(loo.split(X_vals)): + m = LinearRegression().fit(X_vals[train_idx], y.iloc[train_idx]) + preds[i] = m.predict(X_vals[test_idx])[0] + mae = float(np.mean(np.abs(y - preds))) + r2 = float(r2_score(y, preds)) + return mae, r2 def imputar_valores(df: pd.DataFrame, objetivo: str, info: dict): @@ -99,9 +151,33 @@ def imputar_valores(df: pd.DataFrame, objetivo: str, info: dict): X_pred = df_res.loc[faltantes, list(info["predictores"])] if info["pf"] is not None: X_pred = info["pf"].transform(X_pred) - df_res.loc[faltantes, objetivo] = info["modelo"].predict(X_pred) - for idx in faltantes: - imputaciones.append({"Fila": idx, "Parametro": objetivo, "Valor": df_res.at[idx, objetivo]}) + valores = info["modelo"].predict(X_pred) + df_res.loc[faltantes, objetivo] = valores + vals_no_nan = df[list(info["predictores"])] + advert = "" + mn = vals_no_nan.min() + mx = vals_no_nan.max() + for idx, val in zip(faltantes, valores): + advert = "" + for col in info["predictores"]: + v = df.at[idx, col] + if pd.isna(v) or not (mn[col] * 0.85 <= v <= mx[col] * 1.15): + advert = "Extrapolacion" + break + imputaciones.append( + { + "Fila": idx, + "Parametro": objetivo, + "Valor imputado": val, + "Confianza": info["confianza"], + "Corr": info["corr"], + "k": info["n"], + "Tipo Modelo": info["tipo"], + "Predictores": ",".join(info["predictores"]), + "Penalizacion_k": penalizacion_por_k(info["n"]), + "Advertencia": advert, + } + ) return df_res, imputaciones @@ -118,16 +194,14 @@ def imputacion_correlacion(path: str = "ADRpy/analisis/Data/Datos_aeronaves.xlsx continue modelos = [] for combo in generar_combinaciones(predictores): - modelos.append(entrenar_modelo(df, objetivo, combo)) + for poly in (False, True): + modelos.append(entrenar_modelo(df, objetivo, combo, poly)) mejores = filtrar_mejores_modelos(modelos) if not mejores: continue mejor = min( - ( - (m, validar_con_loocv(df, objetivo, m)) - for m in mejores - ), - key=lambda t: t[1], + ((m, validar_con_loocv(df, objetivo, m)) for m in mejores), + key=lambda t: t[1][0], )[0] df, imps = imputar_valores(df, objetivo, mejor) reporte.extend(imps) diff --git a/tests/test_imputacion_correlacion.py b/tests/test_imputacion_correlacion.py index f7cd8288..5fa131ad 100644 --- a/tests/test_imputacion_correlacion.py +++ b/tests/test_imputacion_correlacion.py @@ -7,4 +7,5 @@ def test_imputacion_correlacion_basica(): assert not df.isna().any().any(), "Deberia imputar todos los valores faltantes" # Verificamos que el valor imputado para Potencia en la fila 2 sea cercano al calculo esperado valor = df.loc[2, 'Potencia'] - assert round(valor, 3) == round(25.8272522839, 3) + assert round(valor, 3) == round(25.9691788448, 3) + assert 'Confianza' in reporte.columns

    ?a?Ohd`T_BVr___BF>%V-q19oL*1EyuXjEpMDD>xh_32lZECNY{5Q#cp;^)!F zca`yrWeGvE7R2IzhQ;Rzds{Hx_Yk^|&C%i3gBj|&6c^%^I8V{;jmAg!!)t7In(g&D zh<6I$v6Krw>{ulxbS?m4{xGnE<1tKx{78vK9>ZaDjL1^2D0wbTDpU9aXy~RVJ<|T3 zBpTy|hW*n!QfZKRMo;LFvQqp&-s+M}#N>SfP;Jc#p1`*Cw6$;h1~V`z&ae$jSQEXO zQ(NY?`Ni5uTvw-ItD;G07;W`qBAR5slETUfmpsaO1}1M#Y7iG>^gA zL5jLc-Irj+Qzs3Ng<8-nbyuQ9dZNs{!n@)}+*iLSY@LrVo$^2U^Eu^HvyO{Zc zBuM&TJo|V>#s?$gST$8F-pDgO+)7n(NL8Nc?pEPZ%dpEE#Wmp-D!ya~sM_b~JuVwy z@zW;h7nCCR38n`gKyF(th)%QL3R=Lo=DgI901uOV5AiF!7QSTLaxk6G%N{D1``a1L zJuO2GDFwroP{oSZ-npO%vQ#>Tc^zx9mjySJ8w*+Re`iJoTR%_hJz7@ zWjPa0mk=b0F~gOi3SwLk4uK?1BeZ>FF53k{R7IPcI#E`op9x{rO0*f#Pt0K!pks0U z`3^TdX&`_3^S7PP4N&tV!`8<^f*Q+qbk}&AdN4^ zo8iV2J#GN~^T3*|@EK^o^=|gekTGVQ*q^n9C6E}LD&dWKg=jMyaMoY4n7C>8OXsR` zh=-w)^a^!P!E$FJnSxdn2h=i)Xz(%?(8gtPh!s~Px8I|5IpMKLWMteds_Kvdp0=}4 zM{$X>hO6ifQ5Q+j#4m_71Flean8AotMaW~;SG9r2^mZdaYH3)$;IW{6gUMPkoo_r- z#=q>|*4hgGbf}oJjIa?1{0Trtkzf!v#Px8r4yMU;NvJk{RII}8#f$yJ#%35D)IOpd zcbSn2bHKBt4m$#ejv;TT(UdOlM z4Wh`)nvUG8I#xcfZi6&|7LQd8|AxPxGEciJ%7R%q6YPXtXNba$E(y_Ao@rRM)+YnF zdIV$nHUDQd14P&1f zrdZ94bzyj`;jlo&LUnQ5OM#FG2Nzp^zD4H5i{i=76%(qfN+*3uu<;b4hw?hWCq+`h z57-)XzSjPp0Be5o0{~E3T>r5!@k|3eB%p3n&&9$$pRjHvUkMh*)1all*qF$xW7WfB z>m%}L@&UVwCjL?u)a>%7A;JAKToM&RVnX+c-1Un+j;Ak51L~sY9;^B#qsTYM6@bY4 z^W1Wd$5?uZXb=1@dpHzb{7t%0`>>@~HzNOR;moX0FSF?KVLGYJd3&L^id<0F5FkeM1$X|U;U}5dw$J4a zCXq90Mg^w^HSBds&x;C>;P(AgItl_=D$z}-{OvZ*=4qJ`*ApchA7jJ$l_ZomLXdj(z1Z5`VwjYz>?=q*&md_u z?btd8?a{OvW8Cj5X!$IK=8^UQhjqFjsH6-LTTmO`Gah`G=0D^>hz^3PxoVamWVCz5 z3e|i{Rey_&Y+A~=jkDd>31#_trIO&OZZvJ*-o!9{Mgh<8Lr4)@K)-G4f^pUKh+(Za zF+tJ9=#uulNUJ~t-Ps8qpn3U086HX(aU1~SY{Bl>&UVa+_Oj#fVO<8e=V4MMX|7NQ1qO*TNw56}DV9PZ0@+9^qALCQD2@uTVZ;mbCiH z`*Zk)I{mfQp;XSX{Kn4>E1-&JK{WAb$odo+#<8ZDL61wSehk9W8iHwq#9yIuwHc|& z0Ax&wirpU5C}urML~a}_S00efo7ngS_V9r(x2XVUxuRk z_=G({gp>yB4?l zAxcRz;1=CS=F&LmCCmc!>zys7Fe|rDb5%t^{*G*@ILIxJ#Q4i}0H%p$tvTkaj-xfTae3<^ z1IlbOvcPCSbP0IKccOgFo;k5&XtJc^g0mf}_Ga1gw$&F>`Y;#ecJW(kwD>P<(G3&U z+`r3#CnTW`6ckEb!OFGNf6jJGQ_J+WJjpu1n8^mqI` zV*kUc`g2)JgJh-inoBMgox)++0<*mKVJ2{ljfvekeMF(zD~ys1(ST=3xP-Z#)S49V zwH&*VOP-pIb)}qR71_GQR+;gV%s@=$xur}PxB}Ny$3Mq!>$xbmLj`;fUn{MS%-+}L zha6|!C}i-{Xx9DX`i%iLJM7BUL)h}IXkpO3MWiuo`s^`(kO)+%l?q5aO51xmH1t60 zo{MENcBLaZz^Zaj+2J`>bPo=4;-Yt5;t=|}#kNk3cM-XaXXCM8svB~7<3K;ER*3Zi zw2Yb@EEk~#`;o*-q*Nx;t80Dtjm++2JS*{>&rTN1%G%{3pC?nrz~W;K&U;?ME$~?~ zwKcETP|3&`@#|RrS#;O^-MLJ*lB|_~9Z1r2{Pm>VCL-IAv4*q-yHwPVF* zqjodsG`N#z#ip(Z19qay>GxVej>nC1pwKqh1Z+&~Q`UtKlxym4V}oA36sT1ak!)Y1?Eip z8iUKq<{)THl`GyvZZB4OkT9u5Abf z_7~Jda?Qrd25AMA*Z7j&@3$a1)fWOvH8vY5L1eRA;j6T_i_j~4h`{Q~f91+;-nQH` z`YIGYP`zDJib_!7h6x7&nb>XA~KruX{WrxTM+m7H)4B4=>2ffuKf47^1Yn7 zSGhiQ{_D{#4qg+1v7xz2cf$Sd%0`#Fdb+l_Qr7c$_#L61tl|t_9*Ihrz{02EX&XQE z{5WErExdh++%DaKmoJZZOWt3*=sLK|$n;t*4w?{)c0?WKkHNzI0`=$K>b>EDnt4D{UY{?KDp?jULLcXk=Nyqk3Tc zv01>Y^aGf48f#c2MTi+mfp&v%BCutvs4cGDnC8$hkU5|dVT{u^adSsXT-2o~ENHzu z9v7JQ@ZSqp4YxR+Nwyd3;OSV#&gNRKY<>>V*i&yn=ul-s*cg95V;(hLGa~T6=w0@Y z`^q1ea&(oUBWWluT!MVS9FnjslBWhPtx5S_P=GQIlMwsR8rndK3PU-wd(Inb~+KHYW$b%Y2ozxZ9K5C*7*O)2PV1^Z*J%{Z1x=DR7NBd{3&TD9CexD4^}4>G zYHf&`U``KpLdc85Hp?m=o^u}N%YW17{NLt0~KuaIjieS@k#(YP5n0;aWYI1*xPOyWpo{c zVHK%#tMb!%G@xZUaQx<{dNpSSF;L-6k-D;KVyxWUxF1svO-SBX z*BkT__>J6mrUX2CT8nBUIkLo$3`h~R1=;MW!2a-=Fq4Jo}o{0;As}tn?3+TlYqR*Hc^v4xkA=VB7 zWY{^Hd#G6+uQ$oYd%k^Wyq)w#5N~*Olv^){`+EaHzC~wLqazGI$--NA2SjamH8vlOpMti6yGDorGoDK z%Lnzv4EJ@cxijuZH_{pN^rhcX19;c7eaRXqLz?h|19;x*cR|547)1bUZ7{e0v><1F@D#JrUmHA%5WKYkAHTDnsIHbHhA#_p z-&93Uoh|p?a^8Q7eBk8^20&?rU3r}knXO^<3!uCS8s#2qiURXJuc*2ZoZIUJuM!Kf zI1=Gr?SkIA{q0tUQn}*l>R(yE?=F|FG{SvgZ?a8&fc-@&gw*-r13wA|0+RH}1pYtL zjs;|4aQ$?QPS&+rV?qzPgnC61`8g~vV9n`(x`60RV8pqmk9TI6w7V=*rLoAIvdi;! z&zq3N_T?OVZ9$(T=G-YpFFRI}{FqkyN+qM2W`jNAxZ}5aiDdFH-gF&vAwKP*MnaeG zf@E(ksX-$Ox7qtcUCC=Sd&k(1BD!@d&=TNS)d9;|-(+0M^<+^JRxelUePqGti6o(l zF{P}96qSPEjg(Pxliuu^m4aCO>?uR{RC9PhSOR_?O;g(;O>{38bjU?2>U^1l8D5}8 zJP)ghOlAJv`{0la@YFpQ|H2rzZT~l9(5xw=ax-cOrvPg}`8SdVn+6ek6P2_XsW9$w6xR*}fh z2=y~fnuvf(&=qJJr?}}NwK9Z`i5uXW4LGlQ98u(U1nO43fQbLDIa008oWr7wld7;k z!iXzmj7>`c7mr$WPO1y}vaeAjT-$9ujn6by-Qsi2&amj#;huAjTyKp>TCOnh(zL;< zYkQzfUm3FNx8)6GN`yuaMEcMm@?di$e^-K+0S)H0%O2YFyrlt(#FYDn_fDWu>g?_{ zVm)Q<5@*@_gzzN z6g~gW67w{q5w>*aGd5gy#=5e{<=cfx5!IbQ z0nMu(=Gm!H3H-4Ks2@-t;ztVCf8H_fuK9F$A{6st1NXTk>iF+woDaYdr>AC|y7?Wi zJ|y3_gnT19B!{2D82>1oqX^w$JwS8ueZW6cdxAcjKL>d{zMyWS{h`x)gZP^}%R`$Y zNa1r?lfy~HZUoQ(*EPp%*O-tyu#N<=+hym;6i!GLkcq#?7-`L1nc{}Do;ibx^Va^VpK#k~G<~R{d8`@Kw`@K(5c#1~} zzes}%9@9Kd~*B(T9qd5!SA;EV~I_bbqJ{J^LR*e%g6Ax;;}fx*?zMo~$U zD-=#2y{BrLbAh5`eYWy*r>}e6-t%KhT;9&t!%i2SbjT{36N9#OAH!PiGY$EC5C=fD zK-z#H`5cS2KJFsA7aoT8<*mFE&u;1u z(Ly0eYcG0f;KN{#Tr;|DI!6QrFRzH0z}%kw1w4tZ0fEMYMG8GQ+p6V2{Eg916AJ$O zB#itjdjxeq;;fdT*gS*B8Knt75o!uk0^$3`w06b}`;3Raf_N6O@E@$C-;?1=qYQ@P zX8Vn@p$8C@SS*zyDN3lN&2fgnaF4%{kn4US!d1`90@jhyX@T^H?UkX*G)=2AiSw#> ziuo@^Lm;;3VvgpcQ!rQfq438Iju2OP%pl~MeGpg`T?Wp-I(S3C-lgX(6?Atk1z1_w zCw5KfW(Y~H`WnIW-{>_YJ|d#Rb*-vYdh5Y`C8z2vZ&ml&=vSBRE(R@?m$XOVBg`sv zwqF9-0`l?FOfyj>SNyCPcPmI!4A+5UmL!}Umd96t6`(W7gmS08x2~(6M{Z7x3Ma&WRKO#o-xr}_q*DyGm zSUdf{!j|-#(jtOKd>ZOg*lavGICfG0jpRXTvS3O3WvnyQF3R1~YF)}K%v(t5d zebklh>xT@&R!bZ5Js6(p-<;^OOOM6fH#<%^`09@DVKK87*ycp=t2QL}vI z!;=U+H4!CxyE|y77x&L~o>?qgPnpt3TOEG*=5X+g72JMVrFVn*{e&thwU$$1CqZGC3j2&~PR;}&GZ#|5w$@{$&O#ib_=g)^g; zl|8L%i3M+jpEj?=kc=37h$In2Ko3;XXiHHdqi%kGf@wPA!0pAM4wBieGlSK`Rc+;p zG<%lTX;B%ZuD6#!x3YH_#eRUNnF1@2p|}gT&KN@PzP1OwT#oJxt8A-sWzv{BmFh%n_bS;HRZS<9#mZTxwPpQ}=RX-TIo%7`+eW zFzg!9C;U#9nAjK%=lH9= z*5Qp)NPW>$Byn^G$Sg`)n3~?7UP*~WYkR)*#5=l zpeH*o6U1YA^r%G>1L;|l<%B)WeMWU5hL#G^mfSVE?3d`n+{daFk0?*T+c&}I&fu6v zXRQGQ`eMk<)D#hk2OUq$3Nl?zy=t`J=<;YiPP@|`khz19RW7v0^OD;*@M!)F4beF) z9uk{=!W4W@X=~WJf$=bh#wdiEQ4EN%urGw%%IP{@bLBQ=El<7gHz>v z1taK$`y=Rm>n@uwBrEkS513_90fSmQ2)*X!%)?g!I}P(kxU0}9$DW6tu&G{Ri`hA6 zA`vg&m03k9enYkP`T0}5RzJxpj`iy=nQawp0t|z~M57_mcR_%F?4=^N0PujHCp}-z zZC+%smzJn^YE8#I`nyP7VjC>sb|K|E|9JCE-3T@55r>9vd2UBAo+11qwzG-O#zQOe z4V&#k)ALNw4sw%mw-b-i-hUi7pqmU=?J3MsyncTR8*v3`y$MFTFRO9owjE-Tx zP1(}@I9SJcLd)5MM|CMb)U6kl%P0&9gTh#t{_YRZ7#}cE6ywQ$ngpgB!R}_BmJn#% zE<1guC3A7WyuaCss7^kRZMVVH3Q~Z~jp;;X#P;V&7K6Gd)Ls^cj*d-rX7$6MuAAee z<{a((`kx;M(IV`kl{qlMv=sR#K^5-ur#GFXueN-Qsp2hCO=3tCj#nbNSE= zqq5Xtr!HZH&H#C}ybBKaPNHC6%)(ip0k&?4rRGng%)`NhO$iaul-pr%YVPbpy79DK zJPiu;p@C(He3&Kc=^DZ-{5yF%9@y`lud^K^M;sFbSCFF*1~II(Pr(P@lai^Ku59G5|4BUeX+;IUVh;b-P@e8j|CB~?LCTM@)iE%F&m+-ZLFIno(bAG)3^kUrP6N*Y`Xfwq6h?c!ybO_M zY^@p3LO}Eh`g{Te9v&Ax4jYl$eYZmdgg81h-Ejngj22PG0_bd7(Iok#4!&7&V0i8T z7Yr)VP|y?5;@DV^E4(XaDsf~FCzBQ7EkzaFr@zU1rtyuKUwzq!`Ui9&>*#>{@1D7} zTcXdt5#>zogq8jNRpD<6W#phJ_}E-dAJh4H!SluG{$Q?9axD=h-^GV7B3zrq`vnUfA!c;izJI%V`P#r>-v`cvP-o8(R ziM=Cef#yB(Hz+$&PlN%Xt;yv#_@vPAUtpy44!pQ%rTvXKAEmir-k3gO%^yt8pLL*q z1#c3PwF49t$Vjx=(W5ywFhJ`#kxy-(~ z)O#gvyqhggjF0@i6-oV^)>uGUS{<7J$)G^HDbMVvPug5C-2e5ubT%;jjQ?f)>xKER zpn1))|75?~D5d@I%dpOpXmQzc$#FQ;qcG0Us{`D83}q2XovAyd3nAgdk==&aFv>fzS%?K}Qt zm*7bMc*R7EW-j}f?FQkb?b^iI*wU{*1C=(na}Cv3_nuB%Ki6$*^$78;4^q!7RyvMq zR@pbR+}=4Csqy`Y+5V#K}*#Lsxk&VU5R$~E#J2wG}+%?Pw7}LHNH-` zUe6i+Sl-+m$WX6*296a*x-20z@?>q?Eyyzx25#L=1=M2RcC9%du36Cp)~aj7 zmkUl*xHO75QVrMlESW`4EHwOhD{)_LJq&H6{_a`IWV~jR3EV%>eY}2Zcny0SxX?4i zTP2L$op?s6E8g%r_({k}w55M~>H5RF;;}cyZvO1P^1yR#f536=L7hAKgL!GGcJi_y z$kwA%>+7v8w_FO?&inJhb?Av`BVX2!{SM8kwUesq6#0cFpH^FerpCb1!j{PMd(8#- zKwsd7MkZ#XH83SokWKw()xq06{wK5R$y_coWPGZ6qjgTOSl6lT{qbdA*pxx&X^WuO zgNK%`ja_Bz`R=acE1UCANJhqt#?$u|v+r)Fkw4`=8AiX`t(x54Hd@zateGrj@guz2 z{5-B$DE+lbuR*}l+r;_x9DunO$w_4ge7c|8xkUErdIH|X-p73p%)hmHyu{oq%KnbX zSYPuNI^bR3=Yf0Ir0aS+pn03yQt-0tMs@MDk~KKx?{a@^_sMH#VEuHq{F)W&Ac?ex z=-PaDHRsdZ>FdIja((Jm{1ezHOrlrY8rtYt*3aw6hkhhv#KEM+r^M5Mo-mWsmP8(( zqh25qnk{D((gAK!qENoU_2jni-ZqiI%P_Pv4ww z%n()24V!$7xQi`wMOgKRIhn~3)--NXmr`$m2iG)wfd`Q(++7>0m!3Ug0GTy%N?!pe z2WHur8J#mvlRNHVqZG6ZDdfdK?Q+z+7 zWwc#wJb}8aK}}aAS$Z9IaV0e-gW+63J+>wnD9xB>b{fid4L_YC$<66_YwtH!O|v9o z#ZH!sgCw3uDNhio)`uM-r@(Gu3U+wSF|i_SczdGP<_U&hAat8&A;MltNXx^Bk1yD$ zTLq$4oMbu1ga=OwVZCq_$6N}5>dqR~@07O^0saZ@FDf32o6>mUgfpcS*m6-Q+{#hQ^5liNI0MN>*WOD9rm>Z8y*iLBQA?1~;8J7}zY1w$ zN`;8;MiEkfgZo_;SY(kpP6jX4fy7!)RfV3kZM_>p;@+Q;4xOgsBtnLe$0z9#B?p|V zYK@c+XQrX7QbJ2XO&Wnq@R{sp3TVSk;-m&2@avh+$;hiLJuqBJVM>(gg{8UnhXp2D z`(cy9X;R5phs8{5kwe!_Z(eUi5LCCGi*H%~?CMXSN6>%{b-~>ncSvA=qHFw3Z4QGk zOQ0spMK}nC?QlV@79bA`Nrz5`r{?b%{|!qYjclpEa2O^s19H$=O-+tmy*SebE}yS* zll>Hq?d9%biQ=KixK4yMDN3V0p984m^i3%#c!CreTSKixVr8D};d-x2-2~-EI#|D0 ztPD9R@19rzK3WwgEKxl9i#kOx>!G0ZP-{> ztQpP9S;P_qJRS|ya(u+AgGe><+;Pp@4dFCFAc-JT@dUtl*L$c>9~3?xAq>22bm*7b zhh~9O34%tI6ZTniTd3V^vm2YI3=YKVjSq5!3=*}3EMHkgnF^-LkgiEK0abL37C&DIVUU3@cTg{~+^G%XSDM#V;s3@_kk%+N?WH-ZXBt^%1c$e%a$ zxQ<7fNr?q?lrmRpIAt~t+ejtG%TGYpn5mqv?4T3gd3xB7g4B{r5C>TI$qWouu!PAm z$FwsD>Abq59|P{$8Zr)}yDD^LFuH_^Dr7N<8WJn!4;dpL-!GA5JKIuYk~ed8&E@^) zy`|HJuErb&B1RDuV_b1nD8F;S!pmHO9sIT#AgLB2k334n;~FkWOn2n;91JZX@?nTo5YnEK>|Aft>$zl;GHVEpMRPM zxq~j%jp^BjInw_v@N(7ES5rt%W`H=+C|TCo{4j5w-8_QQAEBWRfqXct3X3)m;hY60 zCU33FLx=EUzESR``7ziWc!y`@$)quu3TvzwMDl zF&*n1F@GwcqqTJjJ;J#*5f9zg{PNTSNt`8yvzX@I+ZG~mV0!9%hco2L@R*Q`5Cw<# zR_jQ7_x+@)zz3?*FBj1cQ|b8^%<;&ZBP#*G3yl)s#EfZBaiwBRAz%f&vs8FGktlA3 zg)OnkW-QnW%+a;L8C>M_uU^pGQHS0=u`q|?U_!j?b}y*d-%oV6BEBskLwPH ztJt?31a4B|Geuz(4N4>8nKzFVPIy7Tu8q_I?5x)JjS;Q~)!}G$JYu{+n50jmYUmtM zE%@>_f-#&OTiR~c62WbS+()LzLTwUUB-EXB_R4s~X>^2u?hQ=`0%tv&$%G8`m%hB4 zn+yVLh4&tx3@Tfj{N8gpUuwQ?&p~26dCb_gJU&LdeSPk0tj#ow4LNP!ZJNgZy{okdd8@jft(Z(_d<~s-!X7RU!0{ zN2!j!_$B5+tZpUZ0-XveO*QrQvI+*sS8R!NxNIETa?*Q(mk^%>LL(_$^CEgnO|q%$ z@gHwnavz>l0PE>*H4EKvc=AX}COn6h%vSC>=Kn}pSF{8dXY=_#nm zjY5b?1n#nj8lA*-E2tEW2%RG0Kv)}cCpPxT?i%=pbq17dbm32CC-9NB8(Jj(^v;2B z;{)H$8=990Zh^yqpKm>>P%Nh#^hq4n4Ae8(+}xY#a6<`Z656_Lkle7&%2)7=H*ksF z+aamh*C9T@7FSuDPqy8ohMrh1iTtn~;QTGbwY^36)o7}X6(hm2 z7J>6Df$c|jNl-L&x|+M&fIS&l$Fqwstrr$xkdgkJ8DjNN$zz$`+wuCYBO301Hq$pV z5}$2;DC;7+q4!R|#zVe>;88*cO~Z|Li{RN8QM2Cx^_f|#b()RGA#(BbYUt8_8-7nO zoVCvbp$jZRmA8OLL|MN&-DrRSb>h-^uGXtu>N;xX_J?lwJ7y@vWG1;=?A5F7v9JUg zqam=ha6jH9pufiq-=ovFL`riaO?0(~(q@35pPsQT=R{A&GLcrY_ZO;>QIV|#gM@8$ zPZtLV+Q#DmRPfG(VcIEXvD&Xu3k~Vo+L3C;;>o3WCv20FilZwFXDgTda?)wE+ls*< ze*xbEsG~E8_c6Q+u%`~%63LA(pvV=3dLfb(dg@Kgl)S^%fUGE8y<%*#nR^Z_H>Cst z9MV)qg3)IAg4tq?3Te)>)V6|pOw5b`e#aRjpTU4id^f4G;zQ&0`r?$cT>UI;EB$m~2^-8gj%N4=iNm!f=!S7-3^fNG5x5iP70_fOtf6DjNSwcj zw3Oh*`s;VcsTt#W>*gk^ET9NXoLwRPtwerQgE@l!9Oz^)sUPhCOrZ0kX6z^XG}P6j z%o}3-)=!fB;!tS1M7(92)_vc|fS<(sLegr@TV0rw1_xULH+?u$a^A)-PrOr6-wP@j zO?H@04f^4gi}sIII(V!b5jTAdB{s+hXhudwxXxnBR`$-$Gc7WV%e@pBf=S5GoBJl^ zo!$&HTs$#7R0Na0Dg%dszA5TCY&T~2mWxX=rZ$qsm(%3S&W*U*4q*uxfUHR=Gc zfdbD5&6-_Mzf;ADpHNtT?WxV(2pDPR;&m0wI9H3(BV(`e!A&IFn1@8EtJB`yi;gD$mdrcY%pY|J{z zPhW@bi;T{Lz7<6W2%et!fpJB0FdQoF*b9^;Cjr20f*7r#t-#XcORg5vY576K08+|E zZk^+9qEn`meJ_Js8j9&L7C1UA*e^J=MZTUbZ0X(iR#ZSPlo61P=iVItTnl|Dub++n z>PJr`J1nK_|D0wQv-3N(_7Zx&_>~yFJD+&(=9K7<4lR8F9eveoN#`#HjuxQ4E)I~& zN9atm^^v@eN!fZ3A)ZG zkK$5t>CFDZS;&5$u{(OHMOKvQv4yL54uvG+#F*;^XN^m^Bm3S*{~j02mVHVNd%tpn zxDNP@t1@6`y{#RO=%sAKK;9snPzrw9ai2Pkzx-T&3JCg_eHG^Hs6_7;6a+-DmH!uj z7!;`XzvfkB9?tkZOlgB@Se?>fBzDVgg$q1Olg8pUuvE;mcllq%f{V#P)Q-Ck(`y1D zfjbv*FAqvQ>PGsqz8N~YF{r_tO15vV8S8dkI^J^Vl2_bZH(c^D!y`5i57Byn3MR40 zs-WImwv~Zz^0P@3h_c(V7GB5bKy;a~gb*7UaRY?S_?6TnBOb!&8dW~AJMIH4b;UI2 zs6?K3Mhk_KnIWW1BZ>f4{z_Ui1hF3`ElrfjswfMGfx@M82C9+m>={0F*J;ttJaYG| zetkcX%>Y~y*#cO1VEH(!u-4mhOAac9;ppgVxhyRX1%&?f@vQQe(3sxnKuv@y+0|ur ze9@M?%Whgp6WpupcRnVS+E5#r;QSgL5Y(p>-eVzs?{~nPe>#-eN`s~1d!Umvi`nnS zFa$mxb5rg}3I~5sbXQkIJF{!28yD~`uT0T*tXWgxy|1zsOJDYUn5QY+mkr}2h$hOb zx`~SCCBIjH^gJ$v{BC&qT{BmpcS)?z5OTJ$gmotpg^?BKjhf2ND=_hzbjW+9J)TRg z$C*)jGyMj&vT(nD^d_a(lUFi#n40_c_aI39IRrp%Rp|xLf~IC<0N{a>cR6P=pMzrl z^GW^puEp8h(Zs;m#8~uyb}x+o`rt2ZoN@e&W#C`FCtjg(rvv?E%n@2u)pd~@@Q)w` z^|11!(#t#&2A6f5>xtv81V*O|{<$CChlheIC&Z82n%KM+$)a0i$k4!rV_%h@_yX+g zyU5>`D!MkTC>)2)w#IW<{vXC4Y_o03Gh;V|PGxbd?yRikV;VOO*i6|!eEkS0%? z`aQ8r6!dv>UC*h5620WYr|N%hV=m!9{qi{8i6}G6PtgwKXmDAaGj$svgCBEMsT=mK zOHJwyBMIFHH$lFWN2CGflic|Hz72V@Kra?}+{F&?pb@Kl6$rI+Xx3v@08^8|5H-+T zq~5U(h!G&T@vy@T#?zJVm60mr2%gIz>{^=J|{>D*4Aswi8f?4c}=Emhmyj#xF{ z?;cZOd-DDONm2zX>Hv=|VE^Ta9J)hl_SDfB^{W{R=lvsW7Y>BzGmR2Bh>|QQ*q6_6 zb4ZZS%nl$VAoJsq?Kht{#1<|!sSltGMhB64*aslMliBxe{`qOX4gG{6eIoxUN~uKs z08;#F_P{db&x#12zCxd>)c-16aH+ce0DAmF%|o9}ZV-^XYETgD|N0&TWCS5KHVJ@{ z+TIVq!2h!dvK#Rk0$)u9_Al6m!N2@9|3QGTT>s_0Nl)-E zC$Im4@ZbLh!D9Z)D_1W=^v4u0OJf9(GMhE2Wx2ZjgA zl4{=%z)7_k1mJ=deWc1a0cgJb`^Wy*2KhEJ;?@IN1^pF+Gw{CSxm{|6@; B7J>i( diff --git a/ADRpy/analisis/Data/Datos_aeronaves_completo.xlsx b/ADRpy/analisis/Data/Datos_aeronaves_completo.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..ee31f344d12ca122a47446768be35558cc9472af GIT binary patch literal 486691 zcmeFYWmr{h*Dj1AA}B50lG4&49n#$)or{oeP`VZ&B`MwAjYzk2gLH#*!=4NDe(vYJ zpLc)z_>S-U^=^K!4z4-ob&YY3bDU$$xl~pH`pHYEr%=zJprDAM$WHu3WgkO9Jw}0o zLW6qtSVPdt($3J*PFvCWgQ2Y!os)$*QQDKolqpbv(f|GVpNv4Cs+83X!;40wNlykl zd_A(caeKkf1jD<`<}lMYP{Mk8BvqsVX7SfoLqTW;!f0HTA20MSg7>-Q%S2t=>R$&N zARyYNQ zy)WhE7o6wu$uuFr@c?1wRKB2&k-?}a({K7A zE1z>kAM=3&1#7~~2wbS=W0FFbtFE9%MaYoxXPe+Z^Tqy1A3R!@h&2c8Boj)!Tx`Qh z`HOLQIzNiWo1xDpn6T>v?FGnXxShJJ*>)+;jh$as?kjnY?@iW)L#@}!d-gktsF#{e zug}Y^^K0MaAHVI&EJd;nk9jq5^(}D`iJk%J5Civy*d!V|1|UB?r}S5QcudsL4lp@}ao z9$|6i!u%j#lVq1gN)8G$w0qP!iNKlhIzRrI{@^7+HJSU)+v(5mcj3ubPQ=bANBL;y zLX)ayM3OK9-qGa~$M-6V!+s;52&<_dbiv!DT%nMNR*6>FQq%{@ku5Hu%FL@aDEVSuJ z32t>H?*JvayMu<3{Wl@1RAL}G2FgnkxcVFrB5fN(b6a{k$nXCvK>w3v=U=fGe3p`F zWq9GYFM93Ybv8B^jw~SI$S+z?tmyGkY!;~!oKA{6*Gz$jtcc?c{m!$|N?k#w$ zi}-YjxgZ$zB^ODRW1(N{rL{dQ6}e4}h;_kY8;Zl&$=GS!J8@@9hsH3f{F)ONXhyqnqm@qVl7GdFdd@ib zu9Ga~#8bV3`Jgw+xs463HNWduw^uM>&iteQR3sd?LB_A200jaM1%(6v<77_nXk`P^ zv$6s~I(32ajO8*bvOE0`&!2f$KX|%O?PHORiM72D;w`)j>aR?GprV&Y2t{Y0!nSxw zHfQpVr{ZyiB&BUyeiDiiN@|T;j1x?5m|4QG^4>13tmH>D!*~V2JUnoZD0zE9CDLpx%A#-{1S^D0t%bE zF=oT&N4<8ltUXxy=Pbew9&q=-QMB(_1GB*meM zpKvuy3wGI+ z43+YTjK=1xVf*HAkzz%Q)Ob-A`na^!$)LrEg&|{lp#>=y<<^|owk8lqwkwA=yy9@s zai#jlaL3~x*m6-Wskf*;5fec{F_fIEg^%%h)=moJaciD4S;K4ALUYd*I zK_LYzWOAU6O3I9ioZ@%LSF{g#_KnLTPs6^E#j-@}DG5@n6~$s(nB>bLfGWrDTo ztEv%A#Sr2n20|#8ux!XX8;=N|NWp87!S+;08M=C^GIog?a1Fhu`t9sK1R zT^-}l4iwHy{t7cErN*#gIMZTSq_Q8oXC1R|X{6_fUv)k+Ezx*paW1_3<5kJLCSASj z2M3Fex~5!Tp)6yRb+U1_xP{o1Fheq^`W+z|l{P3nhCuG&D;3hqp{s5o|EJTuLP*wW zUez1w*C!NMypLQL{6nCjaT@}(%=C+28-SKxO#b*`ly{*olcH-0Z77Y=h_?Y-#BNvc z=n$N{B>3a81IA+`Z=10XYI6L@HBs}XzWllvlpGmQSG8j=+F-{Ojbnx!~Lelbbf-#WGeG~=JGcWeq)%n#5T1vn@u9H?iH z09ASDzJJ%2Kb`my@F)P-{?Gnti0L(JWk41_^S$*RYKn<=6i=j4hyPSGeGKjMwo2H% z+hmmW;wmUZ%3O4m#)r)hdoixHF}+i-GCzOg`3vzv`R_|ULMc828C3FzrOwV@BA(Hz zU>8?-MeRK5Hgoo@cJdC=I75pmYw1#w`|^2sdM!f!CD|yR{@h0!>RMKoYC2{Zi<-&9 z#~Vaqwx;%u*B4s_rNxSTT* z3d#E6?qEBi$7#xC#C$gytp)oQZCa1i^ncHaBAcTX!*ygZvBy}#TDF>>X?-+#P;G|9xMnb2tlWWRmt6MUKl!O-w05n9BQRPsuN;`NQJ z15XOT%cHE>S|@W{(ik!5jeOMBAM^&rIuJIX$Ize!R4sN@M;W%p*sw9$&QpA{eDhzi1JjRF;IT)RZ$ zsbu;mbc^tUh977C$p&dz__`TZx;bSp@r;73$VRKYO>({n-x!hL*rwqJB{=ySxgNU= z+Y(!k?5kz_VvzRL|tQ~f8NZt7!my7y{4RodOA6sDRelb zr$ybbjLs7wh|DC7h{H?lk^a18hjV22Gd6Ez5w$ZKc>p&8*P{A10=h>*P|MFg_ywII zSlw2pzG#WCs&C4gc#?#~Fnm2X=W38AT?f#I zWY_FaL&(Eg7{v9r=D;(j9xqGSFhP1#W^m{qo`0cCSy6jkyVA$qjP-8M?P3lrF*aw1 zRwcjH-GYI&roZJk#uwWAv_5rJbO1j|T|oCn%ba9F_=~)!slWDBWQA&ZVffy_7Ap zF!ap1Q9<4Ymot33tba;?-ieJB$^;gSYr&VA3j%agN6`ex6I^JS~MYtMa;t4;Tl+qtv5%foHQOKn~n)?-f(7puOdoBFSJ z`)3Px7h&a|x2IwB&1X5yBfPi*NC=qPcSoL%DDc;gmFI^?NX^%S-4pw~o;T5YM{#OR zcjwE4T9;a}U*+lguN+5@la}r-RVR)Jd9SyZ!w5a9a!7*n0zSSgd;yD3@5xsRr5)k;m$r(CL_gH|5e>nxVHm8TEzQtUcx>|> z7vHJn)e_nJ%Sj}I!sM1h5QLP_2gmfHe%go0rBx#$vNZDN`*xjtlw(;xflC*f;ME)T zTfclECt*GDRyXSBNr+q;#d`+v>rgJXG=%Mv%#>zZLG^EK`;E5V@vX{BjEl0UkH64+QyjY#!@Jr? zjTX*T9^gXtEI6}fY7jpU$3+LjBncYpvD=js10lhN9H*@2z?QRNjKuQoqD({YX6oIg ziBZ~FvF4Q>6wHg_cZw7A$JL@N3uSlbYF2n2L)vmmgKb!K_8<4Ga4u&IX+2K4=IJ{6 zlB;{HXKU8R?0$B?w^GV+Mc?`*MD1J!8=68;z?MsJ-F9FkGPrtTvx$VleMtFJ z;M56JnMk`;hhcWj?A6hNGYdCJH5$ymnAkDY)3=&#l`URnD-+y_=S71-V< zP&d+f%bUuNd3`Q;v-s&2`QXqhqB*Eg;y`{bA(K4_bqp>Tt#H+RkE*H$(YEp&^ zHcdH_jqxM;fng~lo3**BngxayE?IS5w*Ffyk%xT-NzQLzWG|}EfAQHed-Hr=l3Jld zZjeaUxPGQm6m9uT`>TID;UK?FO%^pccn92ybXdb6&ufKGlq=_m$kJt0nIvYo^06)} z&!{{wMijhNQ1}2{&+BC``x#Bi3hoc=aEmrCKS?8GAltZAehKVsONY+L49kA=s(WNI z@pGN&XDdQ049}|-OF0~oYX=mz#o(yEgS! zlRF?WUk#2-@_aU#Af_2ZxPc8G(HgJxU1hfXD9jSd28+{~01aO5|J0E=Xwhk%#hCH^ z%pPX~f6{ceqB>V{k+&y8aB=uYrAVcP3%luzyxGhl(kQF6JFa*Fi~*IPe~|dhOTOW% z>tB3lpQNXqEMHp`vCvw)efNGE&m+9bke0Bv8ZkVE)xT_*T%;qJ&DdAUen8o`P9+r) zG4mxW;^1@KP8H^aZ?NM)puXU2I3EjhX}B3?IJlWZtFN;NIJde-Y2vjrn>u?3i&QnT zJ&JQBzo`((YeZz2HuEVeaORzOTxeG`qJxDl$7@`jQZ-4gqV&kbYZEoInMb>!G4!el z$3qS)Mj0Ul?8T8~d*5VxR%o(?4SQH(si{m6b$TnKqbkM-DNRRg72+yWH$^?xlXB?} zXH(PSSz*Gn3VGh1$NkW(?XZ=QvMn@~TIM*6U;Cvzg280%InT+bK7vQ3US!RuJf>)D z@mp=gm6m@s4PM$e`s+PbSJ&nxe{AjxF%iYE--jjvs?_;KJV#wG+>= z&Xb->+K_h4>s=#!vWXdVD;5rDiL^^@y$?11&h&SiGPZAN=y+C$RP6J3iXR#{a()i4 zR|#^FxGH{Zls>J47MzL%Dd54Ye5kU26ILiy`mw?+`7ly(&L$D_@okk!52@IpAj@D65`=$JlvYRvGM*v8yD8gPy09x~G)mElBp25{YV* z!XIa)?+c%mqA5?ltjuz^d>K=wP+9ry48`!brfKa+kHdsp;b@!ck(N-!*ix?X7HK;Q zdy;zT=WTI&86IxNDn+!O)GlD*=G3h(Wtp{(v>h|2nqru z*?6b-)W`REf8bngZgp9@-`SNmyVz&UVDYUk)Nsl-QIw}hF0!Q6`Cl@sV!EV>+iqbY z*!V|@Mz7DN`k|WgXcV2RvmL~KZ+|I+KC;#d-MEcq^a!(}FKT|9raHg9im@WdhnI}* zBA4nSyxwMaGhWQM&YH40Pi|JI8c|1uC0<931QzR!V;N@WNEwFYl|#g5PlG3#ph-ONFJ zuB*vS-?mUT7lY~urM4!AtPLfBhGN4t_Q-KCQVExN^5u3`;=y~Ug$bs_l&d#`%&O~&~N5DaPUxEGgOhEyUC{#DCG<$A{7Q8OK>DB znkEAhk8TEGi5AYB4(14qQL;ZZtkA)d!%mafOF(TaFyKX^fNj@cksdgNeD zCmxWf5xWMCFIf^_XF_K}G?gkIZP~kw5n?}!sqrHT6Q_>xZYPt7-58}1r)r6#o2m6S zv=fG{PyAL=wsEMrt;0rOv_Kg6b#1&_rgv5+VsY-tcqyw*hjfKw!t<Z1>xZ3Fuq zHqtJ2_~*s(U-M_@-C6l52;ROUh>jpgpdseov+EYht~*NF)LBQ2i6rQyMW|0S2o?>a z8mtT*1N$QklQ>q)U!JCxM96&R8lp2^7P6(}*wg#mGcG+$%KY;_0-NaXPrfP=InqjZ zuc+H-B@c2=Mk1aTcsFk7kn%4JXT3K%C*Ebng9UX(2TDh=^JbO9XVibRR$PB68f%3& z!2vV8dbG@y&nMVa^Eh*64$869AHFRN37s-&0bw`sv3BTq6H0K zc6~>MXC~jG*vb1QneGyt&|zd`(h+*CxB(upsr+npDl=zK^LgKFz^=p=DINScu$vQq z$L29^lm&6tha$VcBKs0tB-{)TIt}yLN2TU-p(5z|$X&f*I(AJ?J7zQ?vuSDA`iT}q zg0=Syfwd?8a73?-_uk9!ln~fY@jO?q;8K0jLg6pU`|YcJ2_`=6Fw>aQXV7TCHVAZq z_g0ylQ*NmvB5^#}nljtkgU0yyKwzSoi#ML>;`+ zLGIp3Q=!2@jJJw&w~G^-adTY#Cz5Z)!Y;4pqO?T@&C7g}Ye%M5*OY!1$u+jT_kPb` z*jHAh60B6I7S5%p6Tr^RUC2(M09{)mmzScYrQ-l@uHT0T3aD3ivGP7DK)2V~^rp3iQV;R80Ip9wUP(D>v>@u)S@16P;p zXuhr%6Ke}^4!_;jq36UBn{u+)91b~qRQM{+Vg)fn->?jgY)>(eOJS*FF_C)EF3BeM z?S3@sdZ)eez*CQd!;or!G@k};nn5R5O5@F=>QfinRkiBKb9)=3YB5_5G*DV7m48oH zoG;mmxg>Lx@uwN#lc)91KbP;8*{a1CD{os=P6d43wzI*%8Nuw1+mavD%1TVE?ceH- zHII!nztOHPQ>+_K+Ea(EKPchvA2)DnBW$ZCh>&A)boN&FwQ6v>(j!w5WvfH0Avu5|b=OlN|8|I5qtkq}(*Uun%JZRr?uPS$#_l6G294T^@s zJ7jWgRw6nq>nb~W`C^1Bia3a<(l57Y&@07vly^5=%Ny2D7;-tO9(Mmq@pg~@Cd+Y= zBXOh#>pI+$4B=sjLDxxhA@{1_x@g>nY9N=~()F)_pdU_;UgP7#I!XK3UC>2Oya_$% ztFwy@6UwQdTG{_8;%MG|QOM0R?m;o_&9a%sts0fg(FCqK%5AZf+23yKv{W@(DxVf7 z4C-lNY>)C5PNK96l%^;#8A?yH+hbgP*=3~hqpbHFl;0~>B|5Zx8b}enqu#mI(YhoY z#`RU}DHhEu%-2+Mm(XpT{iPGAG!I8oG1;+OS=^c;vpF#j%msd0%C+Ny%Q79Op$#w z+m4{dYJ;;a7rS15ZXu~tdY&P1e6Nui7Rx7@>qmAq`i4z_wufyORBfJvp=YHBdkS}s zed)BaB*-lBmQ7ENyx-=VK{war0W2GHa?LSo;8v_WzL=vN$W^b_m{d^|&NHeOC=W72 zQC38ZiC}>Z?w$T(;>2AEXJB#UhtPat-bi-z5#7DZ$KlG4aCwWzb}IOs;ee8@Hd$&q z^1IQ#Psa{?e zHqIvo*t-U3Q|LJmvUpOENqwgB4{C_C>9^jECnqXCq574VGq0m8XR%=`aD-stt{E>? zN!|&6i^Yz9y?Q1wNWLq!Ym+dLv_C8|Du+oYS40pQxH9p+_;)WT9}r(+Z8+I=$QAmT zPYQMX`h|7y4n=?vCM&0EzW3a=4lI&w{=CYtim8_#$~3J;O<7n$Gjq zvss{Y3BxAq^EESCSNx%BOZ#_pGUzr-ZRA$OJjLn!e#rOK|c=5Uq#3r6+ zF&TX?a`2Mrj`lVbr-ih^ZS9ht=E`C_=leETo~isRf*PqrSn-#Dbc4om?`GR%>X`2{TQvix{3)(o4)H_5+mS$2 z$GoVS^NUdg+ zBpS|&4KeId#5-ZqKC(cG$qmb)LBx2f@RF^tsFKZ1Q+j3P?;>vU-)H^KDo9ec8zrY$ zJ_(ab+Sh^RHZ9-MQ0ea3$-$vP5$Te=daX;Px{Xb-PQPzo;_cr~);AZY^-|j?p~L-OdEEgx7O>g#z{xjD3I+*26Cw^(M8or zknM>F9xZcF>9*3pjAfW75Lc~pw{q?vqj3ki0|%TwE4DDIpE+ZO)?h?joyHSthA?+q z&F?_;q*F3%uQOzT2xV zUhr^{+2u_fo6D-byWZq>ugG|#SfY_&&yzE#MSisul-R}b^E))9mR^!x_`5m}%}rD- z$dHK60M%qK}~uw~yh) zZfkb6MzFI*749@wLzKskm#6U8@^A?xY@ghT6qVye^t{;^o1aPb%MHr3?Qf5L-x;*^ z>{dJO4+@mp1Q?`&<}QFiCrIg+WbH{nh$e@+!)`+q^}HsmP5VqMou&QTJ?_4(WKAF2 zUr-dP!FwR%WzQvl*I(x$Zne)pn8r=qxzXL&*_-l8R4w_r$5&8{nH$6wbe;>3mJ8lU5Jdfan@$NSLU|J_Y15;6j$PeWJ(H`L zuvp@Xduk8CRo3ZX;G3S|8?{oL57wpP)eBP|L74Ba&r5zS?Y3ZIr(ZZPj#+GYB&kjn z{?shUa95b%R8yf#e%#r_L8m7Zkw_nebzo6vlpv=4oms6cTSr}MzTuNYsGn5 zEWQo;@_pweAX}|o7lNHs>ALCp0@@kDa)%p(ktlDH$!6tr*~p%gMn z$d-3LecqIIO53JIWyUXMGHkLnYtH<{iF8)Y6KG@E|r z9Gx}QY8(9p-eL2SD`{68_F*hnHduP!2((vS+gPl^PIjV1Ej!>3g_b@00wjVpAE~08 zvyUMq9Lj>pKP$h01~za8QMaZilSf(5cZ3~HGeCKE8K6Y&A1q4rJJL~Y($Q@LQ5OTz z7l3$Kv(Gf{iB8yQEp^%`Px!f6Ye@h(k_g_$;pG`+nJ3s%FG$)}uO_>+uVXdOV%3~@ z0w!6OMbRqnw+_~dNg1j97T?;?9RA+=V zxET)wbbh(pe<;-({m#IQW$ePzt%`pb!{+N3D;e?rB>$-i#iiUP%-z&9j;ijFib&>e zd8z2#pXCThN#BI-TA&$&)}+~1;6ifjOic`aU5E_%%S4`LWPnXSXU2Pz6@y8oqC-ig zV)q|rS}4bS(YD!>JxM$2U98x>)Ab%ugX~fVf1)gtmZMg^g3*|H7p6+NT|MqMYnJ6s ze=}eBf8pgU023LWS22O+ z5xDTHqjg6dd2@GrMoo<#b81#f=SH~8o+#9oQG%qbi^s~|U=PxiYAbP*sWi4 zMnRG*;p{k6HTE+)zG(Yec0kQxQlX>Wf?c~{4q>UL=3rUS8h9M3X`imGvFFOyrm!54 z@a8tmFodO5lx$Ki?}w8E=qXlAU zSil0B19NhF_+K<#_h(^-=}uk+$Mx6t>k^p)F-KO2iP=u=9H(E42gyW6FvpUYp=vV+ zHzUP&t6gF$cnRn0TNir+PnD)|ntYcG{G{#X$6*^L&&Ax1)fn|U%Dd?M-fnh5TF=tb z#37S0sS(N7iZ7cVI(ytG#AkDXX~|x>&u+px_3eJw99U{EYqyG>@V-MzR7S-82XTacIR)k+|WrTGl6nhGUT zZEPvWZrs1^aGfIy&VeJ!c*0v@JDvV^l|99@hq`ISi7j+v5pkRRodI#?+f2e?j@{CWM2D{0VT~aIC&Hl9 zZ&$Jvu=Dg6>ym~-RUUd{IHg@@Uu@Y zVJeF;0bMGambEe$dcPI!PLa5sj)~m#kbc(Iag@@;1~mC3;$_8W^lI-v>9 zNwB~0yxoO^1_sQY{9__ox77n1ltzS(C6IY|&BD5B_N$w{nqde07z&w-a9TZX!(`*YK8a4Z@2HHFFkcm{zgQhQcMbDAX>^q&%dBD^$D;e-rct z9lF~WW(sNsOCjPjYwk;CY&bLzj6?32(0<@~^c9_!2WKFBafGzZnoJ;<@)Bf3w0>948>aC`h-?(p?{O(MDjHd;wn8bwRWA8QLhze+uCEChHC3 zpy_x^ib1rFdT~&eW=`%;;gR$Ei4;TbO()02@g-?l7tDTG6L-4a^3-L5=(L!WbR_*TzQWN@K*M2@;-kLZ`X-w0;T<7zD~!G##%f$DaeZ34*)RN0JXLIO+AhJiP7f$>`fq-LD6rKpZ+ZAsD}a*iC09}`j3bjT&4G0nk*E>G``rTca* z<~`S<0|psAV2}w`0|uE>In6#GX)SFttxA}s4s=Fy9xD@padWl(ZIV3Zp=SO;0dW@6 z0aMKU6h@!CMQ$))!HM|AKeg?xV$TT&jL}4woSpY{ILK^qmzXLio^9X7e;x8D+svo8 z=F;38@PJ6^7k3LXZG#0Ds5u|Ft8=&)Gz;^=Mi+LLLiN{pCJ(iT*GCms@$*ED@%ySr z&7z!e8!u3_9tr%p9T}tIW=U_PesEL|JZUxC zE|209iYr|@u}Rz7y3QFbPl%0`NX1!^ycbsp*|QYI!m3;IQItZnlSlueH){2!y-OT@ zU3-i#PefEckA{Xq37AT^*?F(J991m5(cMtJ_ zhxkl!JbHq>!q5)j-Qx!aYNaIuBpwNoJUrto75iVMXkR;Ttzk2QvY*X5P)J_#>TeLN z<6qIBw9GGHep2musVEcpJmRD)qDat0_~#c&GV}Y!=$O@(L~V^JKFe+w$p+sTGJFzD zSgzKBbJz~b2ioE)T5%yTqUs!+mQ)2*9!=-X@LhAZlxY+?TadZa1Bo3~uHqn81txGE z7!S-7+-o|?fp)Q9@AiDqMCD6%d{>@GKwbk?dR2ZY%s1mSCc~)Hl==nt`MzUJO^eUE zRX1^ysP3un(tM>vJ&k0(>E$|*G#7GJ)c{{amitgmwj}k#D>J;_C^L8h^0A*F^~iqb zDOPk0PfeXn^o#H%cFa=C0nId9+Kq5UugpY*y!GRh3i*>KucHwm9Hz217N4y}bxdso z>$7Gn)_ELwv*arR-ww!U&g}1;v_}UK5>f%sMpKOsMCZ-mzg5b+E5gwBxLu6B$S{2 zwg#@gIlnoQ9zsARO~+J^yG2}+){CoG>@&n2Q+}n5+zvq?z5>HH163O8>K`a*{4#SA zcafLPTPNoUdZ+wqViwtFEQe&_W^^M^jJev_XBeuqeM+CUsbegg*H6rlnfp&H{=UHj zr2_{Uq!v=XJ5Lx@f|*K`JSvT8XP=Q46rV(lZ~d>!a=lyqNOLBAbMSn97=j@q2>Pxc z?@thk<bWA{Z!7Kik{K{Fkw`K5o0%|R_IVurNlW8%QiPxPk&ob$Nr_>a zOrx6M1nlxZ1TiN!5@q)($KJ1ofB&%@bj>|CUcE%i+`Ph% zc~e-~H`g9JFH3~_7(ChwnHDgU=yh3wTSj$K0g0Gp*h{|icBv+;j!hI8*1-xyTU zed6bU5TXAOBIrKE$4Y-Y5#gWCf4X;G@n1Nw#P@D*F|uYF>nGC5{w=2eM>nwMq;m64 zU;`3bIum@@n^T`9=d zv)Bm>pEmJMWO=qnjr=<-Rb1)}Fe{}hiNzC9J#a+?49vEkML{_0bcznR0);4$Wmp8` zWkGOdsQ_@N7x33d(s5B-HQ5rn@eX*?bOdRi z7h(f-cRZUV&2rV~J_VJ0+A~DP2wtv^=P##Hbb7rZ&P>zKA2d|~*)=8MLj|Itxexc| zON0)7(2SO0#E3*{6F^1a@^kp{_GuH|SYlQGB@rMZFQUI9Qirx{;e5#kWEbVhU-=y3 z+=L%btw8}cB@+D$qH#O962x{egbn-OHZR5^~D3e>q{Vh63ECp5f$21W?E2 zedoHOD{mxYG`~GbnOZ8+lSjhuM5v#M6)fB4p%tTNvc9U0hMy`-`AGnS`_kMwe1W*J zSxiowWFi_~HG4Lds1(sK95^;aqgb(VPz)QS$o5zRT@Sn^V(`r?e01XA4BWWzuuKgs zSD;{*5|NgMHe2nu%k-$G*P*E9Ap@awg~JdB+F!ft?|aI3;EaL4srv$(3U$yx9NEWp zC5&Pm&#`=hK@ACp(S%=A58rcP@+vi|RK%X7M4cEQbA;S;ppee5I_5DmLs;@~Kdr(; zE;5=!j3+wg34qmMk(FurPek0sf-M>AfX(s%?Q!Aea3y>1nwQt;gtf&^p+e6k;GKbqhW=2MtJ zdrI$7pdyy%8I<;0<&R(R?=cACT(A-Ta=*`p;EQ)bO?1f$!sKtzZ36irtVF?X|B#`h z^)@@GL66D+!`lmz%){W{`>J&)b}<3_0!cE!ZH@482}I(A zo-(4_gg@*T*Y$zaSj(J5@T)8gfUp7HXAnu*Xa24j*n3L{M)bo-{uXX{Rv?7s>B+0= zm)yk>`I5fohO!XO3Joygy}ks*FQQh`clP(%QzpFEs+i4ILIh0cjByX=T=YTw2JkS; z5_r!9YzE+6j~xn;R}_u`#V(r%w^ukJZkMvED`4>iL(l5(Q6WQAgg-o)_<&<-?T#tX?Id@na^Kjt(`A$~oCEs>WQ zO`$~!EWib95JNU+1{|cen%Fl!=y7vv&Jwpz2e?_kIBe(V-vY_90jGuTEiwScYTDlR zd4lmN5GHEl*|C=<6VTmPBYh}<5T&R)WNXrKg@@96aD#L_1#&39`+|wfQCu0jlFhXhA<{XZxb)`~*Nq2=|C4AQ=3sx(?glbYa2* zf)0_Z4tHxwD;@gwjU)_0`qQ%z zivX5*1>q+4XJTje4VL!+1C1MN1{rAffG+?Kf5Q$;A04caZ68(->L4ELa|ht6*y)%H z-gl99NH;FVbv=r^Z|D&7F<_8MM|tq2lz!lYPa@${vz-< z8so707=af3JE1QNhOU06e~23|YZB9#U0|LV;4Se5gr~@#RUdW;smxy-1QNR(?gez( zmc=&C_iPvd=|L(as{V{l>-Wo_)DTNULHecip`{Ki!1UyO-=prmp6Jli#?#+5d$KM2 z6w;;cG2|=)1Ne7Lk3AbteR1EXFkyjm)5HZ_1`b3i5VR(N=p_&d>bBFI>Q1nJffiT? zJP$$6@!T%pbB~Wd+I9^q#1lyQX&Tae<`v{C;rFk8`}Y|C6baxQkjP^;LLk52cGnOg z2?o?1!ra%V?bxB=L7{Hec=EHv_lNRA>Te&nPz!+&Qpq2QPVOClXs>w?|9}~~8dndz z1_2u)=@4VUzY3I^Ib;xXc95GjL~N54Dgiivdw)9o&f`PZ9&?#|288!%1_45vE=-7& z4%_G5YoXJ7|DbmdNnaElsQXiX1)pFB2>vuRU_SU$C-)-_#~7pn@lAs&P%f5Un64yJ zK`L;=o#YUp`p^X6-9JmE5-`QmF}L;qt0wMM{~slFZwJwYhm`(q4*##rRto;c$j84K z2^sMLKkus!!VjSN0~PRxr0(F;4}g#YG8a0Sdm73t49U}PRRpFR0J(O2`M>1$zQ;Z! zkNlVk^O|5oyK1;QmcS4DC`6? z;Sn2Cd@Aiv5QTc<4>>nkJ08pWEIlEC;s#$$aMUB?cczMM44z0lrf~)c0qzAGVu1I1-j*5?FeYz zkb?ayAf=~RGqW6|4>Ec`(f{V*Jxrq$zYp3A2Zqo;qy+}9hXVO4z6TBXJyQICW`?~D z)DNI*Z;Q3UO-X=}spO%5$y*cv1p#UOw1B{XQoxYG;c{v8q4hIlU*5guiq%y6j2mbv zyn!wnaK{I2LBtFCfmnBjRAK1!D^--2=3ADs0Z$~`$Zp-c71O*Z;J>d@1h-eZT51La zqv=^Atcw6^>}*D*H4f$0#B|aD?JU=R-c+kDMWdS4`?+*%5giv?26mDQBEXGQBib^g zJtwnt6T7Z?y;2zmnqeO#&fJ#udu;7cEB*OcKU4ng3U$$d8IOR!@Of$1|v%!FVj&aG+`WcK2m zzM|Aa!RQ5=waTVNrg2R)Ok-j?#6T<5)%dc~^(7isOk+Dq5VwEAczjtz4ZC7)rR5+v zxW646KN3`<0PbNV{$QCQUTf*uS~~j++e$#hVAYDm+PcGdA}I_oe?8&OI<1)qIPr2K z3jFcgkY;Obgi!5X`GMb{6G&=GR5KAqs5Z;|iCoc@dBY-8GN?ynX^DoYhb0kLENc7I zd0EfaTBP&X!e<>Ur`81i>##}9#GyBk8>hh!p4BpDhxE6rL6E=Y@&S&%AU;R{5a3}$ z{SP6H!aXYKr=~gr;`OJh9Cv4(|Ah@gBBmP<(8NQn9FGDM_1J#}1Hn6Ev2qv!n?@S~ zFax;O4R+x2EEk>x6fDJ;0RXB44kH7rA_>9eZ(k%V0l1?8wy$vmgCl2p36|z_>Dt=i zN_X6T(IG0CA*I^tqXvVnW`VeUYuHK61SoO&M}3Z`Ol+-V{B;$`eIOtY-A>%)n-s1) z)b0&Je1K5LSs)--Fq#mxS*;Jvrq#HB8wl~awY8{QBqabWH>PoEEqglf1>Z-D_i}M( z$T?A&z}xql3aqD^iS27kA)%%M8<5yc=z(j0 z?OF61_tB?xZl3`#k(t1yIdC`Nxj-L~e7wBt@biAX`3rLh@`=d7AeVVy)hu@Vlnw9R zcY7div}g_hPQhrKxv#hu4~D(!BS#{9KTQNSob?CW)qvYKzKpvdR;wt+RA$)%1hjFD z1D$C>Kqii^aQT5Q;5)F{zH}&K|hCM{DfpV|fR}2g; zhuU2eUP=JiZTrW?9M@;o)@h9U6SA)->@0WwYkJlJ>aPG5by^FM0FvCOd)QZcmZk?F zRRL8s1V9ZqLv>=YGYAIcqplsG>|-6=+GJ=2kQDIkWqUV3zFjV*d+Uh%+hsGy0n#Rj z-jmjC8m0vNdlLwkf#q6)MP<#AS`-tucw|WNt@OMl{!O|E*de5&DcS`9yRVJ~(jFGW zzan}Kt&^alxCUGV=v{bayDXJax)%T7{-`>{TMCsJxYF|f98p_4v0TxnGbCSz);Gaa zRstJZcn|e&_^@bU418iNErnA~9Md7*+gb2h{dQ&bJ~tF97!%DohYz*$Jiz9j!J2Ve zGY{E%@a=bE{`m1<%jSnAP&SZ@fWYmQ|4wPCZlhunK&u9FX|E~8&GaEM*)UKo3qcNrv(Ah0xEEC2sJ6<`YZ{T zKMG*ym$u)D{@W4%3Ih(% zst>^yf@uz1>Vu26e}g#+3}I1wWfJfS$f;o3JzXFmI{?|d?+*WqvGe{-7O-!O( z3o2fXl3+!mViXaGNU_C6u^@^q25SI;C|D2_O}Hu=>=24TY%~E03Is**ilQMR(F3R; zVl+Y!kRXV3zA@+8`*85deShCSd7t;V*?W~)#vF63bvIcFQ&kx*X2vVBypUFgVjHZ4 zw{VLyobK5(pFmz-DJru)W17`g^m;jZ1dqRQ(>Ln`{(EvxoQS^^`_^($p{QV{={nTU zUmlp)@zlgS|L?Jit@^(M+xY)u(jy+6qg=N(y{BHK*YK;eIb3b5T=#qqM=OzP6ZMew zf4jNFm$QC)OXQr?JzF;>+AY6anu!33cyZVdnegv0$9@N#-g=0?EuZ+20e&Cu7++Xy z6whh4ct(AXnF}M*!)E0!&G3v_qU(eYH9mE`U%6%<($9)dVvd)mVrQ>LUP2_grxyn} zF>KUtOQ#twI151WES3O8h^xD0{2xZ2%wMv+{dccSw;nl~w{G>_)W^5ca4KO5@3=c| z*qQt;8;+I2U*`usz<(DuWUms-vIyo;KcX7DpOXHE9ir}EQEojh!qpK?SIp~ksUz%+4bVK*hp<`BxTZR{s=RfVFxaVDZKf_ zCAd9IQ5H4(B{;EWJ_U|~wnp!N#~GNo-dXji;jtSn#eS!(%ny(Mp(pXNDKKV>W&8TKh0xn z4Db6f4DF|)Z$vsD{hQB2vin%c-KXR(eM^ZuzsurdZ+mqrOgoim+4XTW?S-^tfv`}- z)ulj6+7iIYU$W)8S70R3`@-NnP;eyr?2|G3Vlg-W|4JA zkFq@Z<)b8IWHPiZR{uOD<<873nntP9qjZ=E&C(kET0Db?`U^)Vm$4eFC}7ZbE2BYt zQK?@!^1H|=zI9#!@Is1XlviQ_;(UHj?LB>mCa3sV$#jj8C3OmZL&%3WOGZEe;MA30 zfIi*U2KAbxIcT|6kP|(KUBToV8ad12?{1vHv z%uN9p16m>m^x=HZuAJ4_)JJx{s2Ru4!CcE*JqQNTqBj`c^^H_J={9WNrlR6#Sg>$! zcNg(_MvP=|j|>olUr&2xbfBSd8_-(Fhr(w9MH;&t|pO-_Y;6QmQP!QP+?Zq88rL{eo=2HKI!2{$5 zKr)6m8vtb3TMV$Sz-sK|OT`<>e1C(vNFz$E9&vx0#`x=FyeUb3r?fbce`t!bo!?B_ z;o|kN;o3Om$O$^8`A&EOCxHQdIN!;t3dtFJo0MEkFlY{t`wOvV$X+`lF&T0w$=HGq z^9*S`HFsyquJcv7rrGLjY?cUj^V{Rv%xrl2^tF_y7(h{EB10WNg#7R%pt;igeu*gl z7Wp0skx{}nH`D85s$i*0rsPVgGr;vUXH%>g_W$x1oM7LKjY$Ix&CP0i-uANUUy}*! z^)eXJl1imfd>P>&jx>`7nYv+UlbnH??D}X z;(zWBmVTN)?a!MdC0d)dTE>@|=0zs{5;4hEwgcWZff6w*LW!#@X+kvq60QSN6TLJU z5sFo(swFk?7vW?bfGd|@O1j2w>ulC%^ElR%n2kxZs3^d|`CJBb_LM6zny|jLNef;JvW;+YOunz!4OV z1{mp#^5n%OQzIAtH6Gl=r~}AKHGSA~FqUZ5*Cl zs-S2|sMa&`l4Isg1br`Q{@Gb5&R`+Nr%a zT>I55E&h8z`FWjZ&o-z!5t~pjR^}a;&0nATm-WAi(YRz|wTjX;LUeD`F;-o{T1_WB z4tyB`dTDd#gzN*#^2Vvs%=IySJm@fXLK%RY(l&a2YcO$br`@L!re4kE}|s zl7pyk-3h;W(W$Sh7P{8|U<7#l@*@gtv@lT%MDC&GQ^`GHPKd&^%I!sYx=m6lnWHLP zpgj^lQB5|jQp(lB`P^MT_~2j(;K4DwlE(hF`GouMFTnOhnOI5i7wem*T7G8&;}L?u zYXQy~<48+MrmTS26k{&V!&o6pNhmZdKmx?#K1~G z=G+COy)A*8O-1Ie@@f%m2BjjH8{yQG263ACCMR-5l*(`dMXf*tTeGwL=gjg9gZYDu zx;f~yG z{1A3ym$Ah&RHoNxcy~834#@d-Zy#{5Tl?H*Nq+E?o4XM)nf`+t-DHFdzG}J-A#q^# z=Tz-5HX`Fy8Pgr&m<0Cph=XGhRKuj&p_^hcGKWWB=RY0@>bJ4ut+;JXRdicl&|K#M#K9ef>jKut3eK?07S@&=rW1> zq%o`Fa4FKHhS@A^dZX*8;`~Ips75p*EoFD*GLqAj4T`GyLG)jlzrjbu7H0M zups3K3|X*fMa4$11TH|meB9}FCZNLS{nukx(HuyNoa4W#$MO^S?N#bV@f#@nEabmq zV6u1gU+?{`K^b;`V~JnsaZVD4m%H=)7haA7l zgemd>m`{xteCLJ0bfTzfupXtI?e2z*GDnTkqEO8Cl)CX>VsFDVJA6l!%B7k7 zZS^TDn@GV-f~*()TXtMrhyx zRpXDlp2`;_HI1kwN#>(PT%+=JBPils*FXzXCT8<|3&8MBm4i{-NJIxjR5_rTy)p~H zBwWB(C?5CXzJeGz@c`c#!4RX5MkTqx5CIUDIc;CF!9DA!>O{&s3Om@t+b5FXmuMhaiQX)#-} zr9+__N;9D}M?X_Zi>$%xV*o2fA@4P6Fw%z9O?gE7@C55AH*?V6!r%GWwU=9z70p3* zaM~cs1JwcpN30-`9m=_&UzWeqiVYA}nk$%v3haTK>84nUeY>|1wqO#vct#UdlwuR) zSj>rttOtGugeE8rHfPsi?acSBl4li&Fn46WfQeo%JZV6B=apQ?&7_tzfF9WHR}!2; z2Z~qX4FS=Au(OWUG|%rB0GPqwlJU>hb#qQfk|75JP5MuRmicuc_nu#CRt~96>kYVi z<-jp8>0D;&`~wc4-!@t0pz)@4pBqYKNHxHL5=HnGp-l1u!N5?h&v_WZw?TCts4T($ z@#cvZq>T1x1^Y>L0Kr=+x}dq$ze}$#kRC%F`}~%2Pj(8baB~O+cxP+`SESzv>a93) z;^VKHY|!y^ckz*d0GTpXy1*uJ21U_?1UWS!7A8f!MaxN)_0s2RmQruieE7}_fe#9> zg`9S<&mSC=4242zE}_L!(eKVcu=c(kVt{zZzrEsnW&)L|9PUtH_?M^ zLTxk>%tVx~##C++)Ftj^)|4y{Gp*|-@LUe%RC0U_hRYoR@yG||xWQE#&A9`8TMW_% z>88C!%_$-GI4H`6f!OOvP`+pAqq3q(D3UUd#WHGou7slKgvqcgW7VTdN8N^6IAlc%)s|-Gk=GTLc0G} z>K%yRxOd=ocEp+N%;zKSLr!pdbugL-E9VE*IZ4SrHmNC%U%EDqc?1#!K!*^yog0`` z4G*DC!_UxJ&RExU)bwLbT5YcX&0_;T&W9^6ZT;D84RD#J4dC3nVU z(iK#uRwtm!SiQ+qCrr{N5Mq5YeIQr8pL9w-0zJlFfSzw7gKs9*q?TsVdIp3ZqDl(5 zP42eg$$O~iz9SlFHba3a6c3c%W4FAJ4EYnOjAr`w6ZRdVtL6u7H3LGW9xKg)7F-~G zk$@<9HteI{sg4%NFi7O{ine&53LZ-lp$Wmi(I;nv*M>M3cT6r5SM^-xyVW(^lTr7j^yWK2rL` zYrylmQ)pifqdM=s$_T)C{k787}+d=AuiyltJRYry<=9VhuE2hv1r_ojhY*gf3%|0 zhZz#sfmq_5Z4tDYX#Y;!wdJ(hN$UE{L;PX=1N#s`Bq%z7c~|$TSqdOYzqa!mAfT!4 z`v;Gq0`VU`MuwZjkI}kd!bEOSOUDJI|Dvp3{drM?xx7XR3_L@!0m+mE#t|BYDclE; z-HLbvnyZ{tFg99T)t@NO2v1>>Pef@Z9J&zUK*SIMW;Y64^XYvZl>$6m!RJx0ipVEn zJ~H{FbS8q|DyVvnyI3Rmy3k!9Q&N$Fz<@Nf;*(xUd%Vx)g+5yvZGYgDY-AV zEkE&`R0FPGgn_lF)$A#^1<1yJBk91KvAa%$ z{O6be0H_qQ-Ykd8?m{)m;mUh2DKlH+W!ccS+yZ&|t{;l)5Wh%f_Lt}A)$h-$-P#pQ z7by?dPJLW#6h_Wt*;UX6NPM6To@}GWl_2){gGnKNrNEeO$efhwVc);lpzjZ{K?5}a zS=L9Ag=p8+zz|TzxvKA;lvk~%Kz&Wii;lm*lqb|5jv)AdYP=`{NN-1|_5`f&h@>8< ziVovs*L2Ho(wIYc65beQ+r;b@Z*FZ%OTvpqy-#SxJOr-$!`#jP=vO73p&A}<6 zOE3|*_OHMZYkC@GV+Tp*gD7V$wKFsi0&u>c14O0q`azcDNLW&Uo~Mszom$?OBz32B zsIdM!4XuaU%NZ~HJzzAzuN!1O)8i!3q0uM2z?pC&_Zw*C4>1lEUA@f11CR`h&((uYypGJhl#*NnK zC@RH_VpZGW0O>zyn083!L}1HsK&A>rtfG*7f`5I6AK?=xsHW6 zb7|ZAw}UZ)6O%8iDCG#n(F>HNsY~%qVS1>=BL8(UWb4IJDmI9PHFu>JHCLu&6zGw7 zM{d_}NK4h42uWQHOGhNaBbGHv*eDgK@apmx*!ro+WkU7%z^9fdasGS-t8s{7Clw3t zoM_l9F@V@50#7oR&VSf38jGl+nq5zD15Vl_G9jULDqLwNI#+Zz#-ohwfDX1XX z4vGZj8%u_z@{LWdV_N0K;?;g<5vrbv{yXa#!GsYquqFn#6jdgAfa*U}1AxEV-iGEt z#hjGPEHG;)=0$=M>v*mPC|pbSB^1Rw=c4^fJ}Zj|OOZ!NdrN^(wcR1yl0}u=hn82V z1J(0CH%%6mz@)$mOegl?ho0~NHPq0oIri=kW(L~{?pI^35Dd&itW0Nm0->IJNvO5ozQv9#dI{0-GRGC-q7!*q!+! zTC2SkK0=NJTC;4$iQy1mc1qlWB1pxLMx0@Ez<#78LfQj~jO|26u@_nY2@P)caO+Xj zM`9ynt&Ymxh@UQirQx+Bo=hoxAZ#aZ4J&Lpk{hssTc}x=mj8pfG9DK}u6=Auw^I^s z*ynd_kmRm}e(0OIT7vP&ddEZB+i~y_rNHIaH)~~bz|BfUHt>}QwM0$}asW}P!BF+r zQfMPX{C;E%;BzfiZve znHXTi1~nHsJ)`%b?DQ0nfho8P4EbW6Iof_1p&&iDvs6kSYA7Uq%bQQWhqRs&taw(m z2b@e73-NI(O9qx_xPEae@t3gC;;_PU<{KpOBe4Y0so)MCkO->RFE*bJvUvg-o*Ry3 z^dW)6wxYiWvSdS;? z!SqHzza~0Osgh)#`mCbn$If^>|B~=CPuCHOLI@0ay;=<4ry5P95lTy35HF|51d!16 zR0$}TD?D9l0)uWB`sOA1%y44KxYQ)>pM8$nh*D7MGLS_DfbIsPh>;;-i1l}Z zI2Z^8at&(u{f5pM%HP-2X78rd3_wblN6jfJx=Y{3JhxJvlSq6{@ZpKoR5;l7dVwZA z7HKo0AI&E7R<7dn-(3WHs~p13$#NWS5gO);rQEG!O=~&w_kJl9 z`B3OcCkbdn+_E}V&Ol;A2wL88O}EA%!WC}aC>G#umy4QKU0G;I?J===xBkQ!X<11h zA{w(8Dc0|sI8H(Y&{!u}ZvXH&m?uPvdtYI(^pbuQjcVS$M#BYI2U1uA5wK5A8bk+$ zl2$U=#LEh;;NWjbquzUzIRPCasolixsjwdM4oGdD8NHJ7Ikdr=sB@s&4Q0FS$RW^j z5J`=uIjT9<3;fTgaH8b>nL;v|3PIpz63^5JZg;_X97<1gj399(Yr(sHV>D*~Yq7u~ zct1fB{G6b%j#BHz07rzFE0O<_`|cdyMBlxkiexP^#YU5E?@v)u;n^t(18PxoAn91> zJpeJSGmeVHAU<`6I(Dkf<%^4T1i_B*^TJ)}H>K$3QzL^^fJShkAtm0d@* zFlF}^IzrL$kwlRk2Rhc#G^virO~h+eDkn`vi=%yPN#8LKlFKg=1_S$TX#}8 zbp=v)ZK)YLf6^czG^9LIu<~9CxvTOxOZj_+f8t;Puvd#D|7HZO8Wtpph{zR?B~E^N z+o0vDo-fXsl=^Kl+_*7*rY=C)NuWbjG(Z82<*u$@Y?mWlx!N~IXz~K@_U}?4ox72v zNV|fzbo;jkYfDcPcB6u!N`a*UP%KAT(1k(`!3c_$Kv@F_HdWZD>_pr;5-vlehLRHb zUt1~Txi-y%&{Ll6jyM5hi3&Z$GG7SQ_|y=5T6uEBGQRE2T+JV9E*}51=}_>V5Auv+ z1}#kgGOncPhum9!lP$atH_t!kv8{Grl6g(9mWT}H0`XJ%LhwWc+~se3NN_y`tM=tu`StN zn&FMEuc}PK0vft?bG^_S9ar*)moL8Iy#Hl->iLUiV=j2q{}+GYsHHV`Rb`HsW(1zs z$ckKRsJ=eiJSnevc~gkT7cTvh?xuMTICtoKjnY9$JMBxmwp7;iij8Vrbk%eVUi7H( z;+@gzIyvS^7}H9O>FSlBmIvm}X?GRlgLJOl4KF~7nq)V+COY{CKdVRgZrNY&v%Yk$ zvw`{g=yh6Vf8hDZJntHfy4_EY?=U;Lv9;+?Tg%(F=F&G_Ua9M+yurQ9$unO?Wz4nv z?v=@)g-J*X+D*w&sMR zmPWtdjm>KU6MX&{nUt3no}fNBGWeE{)ws}VtNNf@J|Dg@GW0%{V0dWeAfuxR_?HhG z@8+0{(2X*$sf@O5%bxqN%a1nMInfP;&g1N-v{V|pRpvAo50AAfy?5)sd9MZ~HG53n zr4`!}6z=wReXDDq{5`eJ<>AxI8cz4C+4bkWhrOb@*apo_deP14!uHyYfeD>T@LPNr z+c=Zl);n!h*9&fI?f4|je)pvsef7E1=C@!-R*ow?%(!cm-;(7rt!sGc^T>4PpRoI32m2+(V_qM;zGwcOTDO-~-43W(j0<0|EW1gq zDPil&tku{1+?%;)oV{!X!Ce1JC zmcDLOdfaPFWL@)L&&S!nr>H4(ewsIQq4!EV%ZFzI{8Q$ew>9egyt6e*+upbC`=s&e zNlP2fEUIZ8qc_C6_RyWu1#u=(12yM)msAJ*Qra4oVV+?&IV`cTS7T{Iy+gQ8y?Q>( zW=AY-o9=tN!qkKBCUmN6h-*G^Hr@Z0PvywTFaOr4v#-nb$54*!3iF=OrY=?`lvbt7 z8SjA_0lOyKHR+psUw7TmS`tt{qH5dR8TW&z1`qW z4jc9j_KC^d^YPR#<3?BM=-T_#9(szcq?h-Z6P3G&4D@jL(F7lj`{q5W#+~F3YK=V8 z)7*Ygr+Eg4)GX{ymJSMSH5r^RFB-21xAz^xQ~YbHT@wvXYuuTh*v@??OTUjeJoI+2 z{MI|Guh*Rz0xPjNgCEzy>OauDKDXZ4AG0&cz15WQ!>(zKGyk55EiU>fJfn|$RBk{} z%Fol<8cRF(9JTUcTV%zCc$Z%{zIeGmK=-faD&LPb{d76&BagvtUEV+Hdw=b>gJS=! z*f!X8LbqSPSW}WRX!qXMX#d4QK3dlc>>8pM!Qw3HPu9bb)F%5R-K+5#+{ZS%Y5ha> zo@YiMT4~&S?`PfPk{q;LeZ5cbTjc|j9o9Hvsg~Vf^)GWY4t34j5K>|q>o^|BeQ-&Ler%7=_Lt4*69b>W z*841N0v=v(7h=;_@yCFE^QJvA+_p!1QSbbS272>oJX=zh^?Zz8?*pwtf8-RIZ`Jft zpA>z`wh@C%{;bu(((e8K_Rhh#^ebGq+^ZX_`BiO?C0E_wUoih-kLm;SdeqF*bk>hf zd~KNVSwzO$gk3}C)HuD$>}>JLu!RaQw>?SoXXt$zX0Nucc5YmA@{kk!-GGN92HtcZ zR`ciX4;Rdj$9%M7==Tx!&I$7^VQtq=O*pjP?mJC<7Cu*^dDA^G;o2CyIAC24tPr#G zNz$9C_vr}T-3MEv^TKZVXy+ff^V4NN?>*X&=Qj_l*XozM+`~)V;`Xp;+nUw^0Z}un z4}DF4SZ%6%`xXpU-~^wtcNb zn`Jk3$W8O_*4xcn{Q}R|Yt)iZ`YP#?Aq^~>RBy%#!YUK{ZrkMBmF99R;$ z)BryCp8vB!|Mk&6(L#QedC5FU3%R*W}|!NcZ>IX ze^8u(rQ~nA_Nmhz;BkKQzC?U+XW0ji!MB#J8aifnTzp!aR^95szpCq>8gtX!Ppz9{ zUGvhA(XY+z4U-}l03eRwJ@*(>+=-g$lJ*TbDPVaQ|F z^2U!YPTQL_(NgbIeCo5a%RQR!``TIBg^)dLv@A^DcdPc$C^d`eBVzrMcNdH^k4`L1 z`)io%x#7At%@o~d6z+lvbZ-jD?mMhmzoLuP(J&nog;C3$cpi7L$`F5)8AA)S5OOzq11gXq$EQT*^>*wz-Ef(epfx_Jk-1A7}h7iQDG8lzuwlG2gmxrX)GVtFy%L|Zp6!oxV@ZcKdIjy-Ku?9&3zk;{s|}>N`Rk3HZ@Z7OT?{t}vYs#v!KCiPksd?-V;R|FpJnRnz=YfGrwS&tHFdvy<@Rs| z08X!<`}ptp&?wrCa{W-lHOBri&flvYu+#}2lHF#O;bNw6=)S~y!Q?er{wrlbO;uUvC9#dfH|VH$p`zBW|h3y&UQze6lS zQYkIKbp103o+}R@O?|y>&zJNsItwm1|J{93bb(>(0L)#pS5TsOGAZ@7)%B}`wGo=S zAHX^US)VD%dOl#wg3T{l^f7bH_(-t2E-gX{!b3PM>kxdC0`eN;?4(ssq($Ar6S~-A zeCRq3k!xtJhZ-!>!W%O?%hS=t((xpDrHdc;Y2t65bu4^3MsIxRH+#rwa@-3Jmo1DT zoVnem4tdPTGP3f^5gtt@<3ls2|8@o6z=o{8ZfF^qz24Ywh*J*I)%Z}yk0$;Ai-^xF z%1qauA!hBCvgE=9?02%gu`_QKg|FRDL|EyPJTaqDeE(%T{mW(CkE?e*cJkAke- z;wlWs&ia*dPWz&IKAer@hWrau~f3CpL$*iRFfs`9RMF6(U&hvkp19QYe zOm~cL4$gGYD$bDSTb^~kA#n5|=}~zA07KnsBREF6g(FQ$`_c#7y)Xp0e^T`Q8Z5!I z2%G3tT7Oyn{F=AtDi#JKEfk)`4{MSkF2MlO-KRz-WkUn7gr z!T$!h!`%ew#RW*7Uq)zTA1(=5wo0;ej7zwSQI%|^dDzoo3g30JYO=@t+`ik=U%r*! z=7>4Je`VxW&F1^jG|ch8J}#}c&{<>bSN107^I58^mk5uDc6<@v$1wv&vd(sDmNfkW z?8d?l4mBE<`;!rn6D)h6`UY$(0?5aSlwfK4Z2n4f$v(e?G8^X4jv`r$Ba#ms597DG zF8xIC>L;VMg-^+KQmS2jB|q`{8Y!O)BKU1F?1R150akX~J=iG^Igy-kd?@Auj6#nE zzU3e0_><4)&Bz&s5U28-pFf3yp9?2QrvIB62aRH3j>v{@#GmIS|ChX%{OLsds*@ML z>tfQP`$&Ii3zLLt54aDkru<2{srnV&7Q8;VTe3?Re|k39X><5n3aDZp;-{Nw(za4S zh%)Tc&+)YLzz9X%&|_)IQz8_B-=xArHINuglvZs)q0&)Xxz?E%Ukx(6I&Be5s>LzS zq&2B$EHjBr~_*;E`Goq1x6p*uv^w<4rCa>AAsZR!EO1^@i zEja+$p)b8)4JL9mltdf zzePq$siN3h{W9XP-t@&+b03*RxA~cG{PfQLROeYO%N$GNHo+oS-*ya(^0l25er8t7 z=nV_5-;D`QNp~+ef+!ttqDRqK@uM{%4gHGN`2i(iV{Nk)WAw1S+tnu_!&^UWIjtLw z|Iaea^mxL;5L3#r^vN}q02MK|HBQa|3Kg+0vkHs*R8fvD+(S?x+lD_?obhUq=j_5g zeUcqFzbG@+&0AO4d{z4i65M70p;+f>YRiBf2$ujJ6(K=7gk5zXs8O~;J9@wZcMD5L zDjU`tSJI2OBlg)-QX))ok;mYmIe2`FPHUNgfx=|I#%!w^@BFOJ$o5+(+aq#H*`B_* z=IDc(+j#XD?7L2kUtAyh$4Tv_Q!{uIxQqfVfPlg1@%{aA;9n z1zvQj06?tDek(3q5;#IX9YT9Sx3L_6)1WzPA4G z4&-2-n-+4*d}kAKN?QY0@3M>D$F-L*ii$;4j4~{Uus5#cG>C$7{LP%sl-v;y+tUpN zddh7>4XAcO1Rth|URa5pvq1cFw=g+(>Gc4oC$1rf63>`20;uG4g_)%TF*V;d;bCU@u_f1D4o$iPdoB{x1)yIj+J-}Qkj#JtpS5JJ64QTt!A`$sFX6d8S zlZFJ59`Ow&CaO%8Z@Acla447a)xdD5yav>r)^#ZS{YUFbQtm*)sziRAGb6tk0@o8Q7t;KBl55DS2)ahZZ+KCw!KrwG%? z>u^qBncyh`c=6htL(-$*>L_3n2Z~hy=RYHD`R4xR5#?8;w7Bf&6yah9ta(8IJ@+Pvn5NML1=_{ z1*GTk*@x~ZDByn^Osj&#k-BJ*U7IO36!DAFEK1J}1PIhw zaGLTJJFxZ{B*CQDg#u26Fh-jhVS|E#6Dj%C69UuZ(lKl*R3UNE#9>r`D6UJSMH3m2 z;mC&ReocOlCau{4uvC98uS>t21QbEaY3B)h6krBH|7}etVK><*ju|!i9G5muxo zDjxO4N4z`&7VvCd>_#xk%R;O`5D#+=wDzpmZ{`ro`f*)MO$tPw&u7Elm z=>R-vmOo*yWwW78{ypUN?wbH04cA(iOsX>6OCcuLE81<=k;dYB?-*;?SzEwT1J`i- zLx-+RXdC{yZMMe7?;P9y6(ZP+w+UU?_G=kY%y|eits77`8OA600uUNofRRI`$K3av zEtrs=zb*&mxfUn8L3Y3xq27To{*j<97C*s1Fb}|VgM=|$ebp)5my}uP#K^o!dj3SS ztfMae#}jPNIZvYk(X;jKnCd?mS(c8pKeq^fynso`^~RslE4kdzbncvFkHYFx{yK$s z+tK7scyD@;HP3%hjr*Rsr3Q1?+tH83(m*kjWI)}bJ~qz5Z7o`Le+%Sw6^X)NZZZAJ zIEKG8$c~b-l&LZZf0Sp@pKpHgpkTrwvWK1mRg`rna6|-8a(30*1nKi2P#yLk>l=lv zz9-bS!Q-iZXiu8IY5F<`-bcmq(Iwc`-3V_t89c~oic$j}RgDn5AZL;J5FxHj1(f5& zUp@3#tgCt^oQiB<6Jk1;y!HurB544d!nZ5VIOeR64H|8JbY9P4lh-uP{rI}%Y;CRg z%Xkswz}eb-9+^~Sb|O(kAyHZDee0URAh$r|){&=1OarnKl9$*+%B8k(!|~6=1g%Gw;6HZO>=2@bnNoyT z)=wROI)=)&tp1_J>zYpcEJc!hjE8f z&NzRcazpwTBtnY{v2~-=5%O0dyH0lu40l}n0$BB}Cv1;iYE@IN`GCrJ;@iB{nXqm z0eggGe5`M7W)_vhXG>w1)j$7urgZo1zRuqxd?=9UCPZU(uuX7|p$0@o9U0gJ&PKeI zS|Suv%RHipUPhjJP5|mDkud~cTzwI+*otN7A%*0F{e%8&88;0T>nsodGostzT(dsT zEMX^dZds?HHm^{sX$ZSuL_rSoVzD+Ee06t1@>kto^ClpB)3R_{WDD{-uKft}Uzl{1 zEQX0du{4)~_f9d6B#T>TtMw40s01qK)vYzjmC9zx>jlSnn81`9@$8hsdp?~&TmU|c-Q%mBW^7r_jhn+LwHx$4YQ9N zP`mpL)sJjL6(HW#WcGqg-XBH2MxGK>&@%JBFdI07z&elJViu@S#}_Gr&=ZJ^h6%7v zIZz~gDF~^+1)w=;jAU};YwTE@5mcyMFox#7#Y4)8R9lH115j}!_8vY+k6wDs8~4sf zC?Qi#T+$tBo+6?sJC5K(!M3w$Bi`{?=|*ZlKp%@ z-8ow#D44*2Up_KKuj{S!o?vq49tsiXF1_An(fve3g>b|8ye|3P#2|LwXSvaH7c3n# ztwp5l7Xmke+b~m;=s{l9bNt6lV-Td50)7X+Lwsx%XQpM^WWC8*(TlX?xYpo-Zvhz1 zj8MeJc(j>T%v^GGhZaIs;jV$pw9!Ut_m?EZuOq+K=;(PU5R%r z4exSB^df>&H0q|a5!@ikA6*axMzf4C%He{#KqI5DqZ(c@?+PPtJE{JnVR@IRW*ZKBo(CGzAR;58g`3RfD3(#t(L69-57 zgrY)kOS8m$ybgI zwPtkYi|-J93V*33aC9G0F=i=|X!D(GDcp-G%5b~w%yKvbN=O9(BtpSYC)^~|4@U~| z*>Pm{6TQDr>&`|PDw_^om0CdZn=f%YC}zM#^i7botYwOZjGf>HURv|zh#+VE@pFms z39^1ZD9`+B9jf3S_CK>Gcu+$W5ju+Fa`QxOBv1n_rP@dpmWDA0<|e}_Vo7;jL^zp4 zl^voMld(F8tRQv?3s5HJ<^`=)j7KBbk_)8-YzRqtP~B;bnV!{%dW58d%bNvE;5DSi z0pl(L{gT0+Br(PO~`iPziSk#=kj75$*! zbGh5Y>!nMrwHSXeCsc+P|JjBW^H4`*M;B)juL3puF%0%zCGF5)sxGtbG`)7VJ)3wM zcB5=2jfh%Nf+wubEI&$uVDODnZh#H(BEWaMFM~N?K?WIY9{?z5Q*bJ4|2z@RD&-4r z0wLd+MN|KUG^%N8j)Dp!HrUm@puCo!Q;%&UydiH) zH^*cvw2!4_Ntwfmn5uCXUrbd*7iCVf(2-0~PrX*~Oan{gU?HWioX%0ah!;kwQ<{af zgW=sNaEqV>-FH@KKO*QwyeRxg4_mMpo#07mzOfg9i-+M+Ul9}F4HQV^olz-UK<%4~ zl2aw0Q+%c%KWlEowPyp63PQno07DWq$gKUX1$z_45({Zk#B|PgCI(=gZE_YebsYXr zS|{WzvJHRK`D|zbR5iye6D_biS2Q0^L zMO_f~(BgUL*Y&n)j?iW>;iUX~C8aDX35p2@%nmB?HT}eui60f}v2)~=jPYm|EGD%h zMXV!;7_&%p`9PWYITWpaI%$moSOyRo$gZ7PTY@D*w4S&NMu!5E3}QmgPo`DgWwk&5 zn9If}1wb@|Zx0^}vWM-t>&Ph7BkAsrvWtds(_o=~^CL?Ma!8R?Dh7acXrnj@WIvbT zHMcJL!2`@ji|*;RuVvfIGwGv4q{D5(_woL5uMs9VhSBCRi6#|}p=bltd4RgE!h6I& ztwTM}?OtEW8i`q>{y(x>JU3aaNq0kRs#q`vg48E5OK6Yw{{SXBG8`Qei^OoeK$7ic zu<~X2p4JOT8dolCoBGCeerZt&@IEz6(5(=FqtTN&iyy7~Qvmk|(~W#ww(OZ8GNzK5 z3noIr4{o{s)u6QwJ)@PlAU!__U_qzi&HR8|6UGJ5WI$a3(xYWe^&8qj{E94a-`CMC zr2(1w%3$qso$8MhU!mJVd6>v_>Qj_|I5MbYW}lZ?HrEf9y|En;{Rj_Sh;d#GB!W=A z;LYx{%T@{cV-!{Yc(;HSlxI&Bd=mowTA{bPCn*?~cnmg03qfe0(%Y7n^0Z%Hv#vP1 zJ!w14BEhcTnc)6Yxuw-=h&keQ(#cLBNt~%X~h6(kX{nk~h0o zfFK)Dac0gejIJB9%p8CKN?$_1Km+Io(A}wv0favgI}l>!d600!HcqrPwUoaah#^m@ zgI#hvj~M!2T{@qL*q}+e0Bnp1^K1fL0*Ez3K}Ih zO$^89gq8*7HB0iL94<1^q zz*4ApR31b_0aftu|Hx#tG+HiC9kG+#Hp)SR%{2wRb3C?SHU1BRs|<)%P+dWWH{Y3H zT(B)EqY?c!_yc>;#G)m{%nn*0cfRXXY)24Gf(eNP&Y8!#TZeLgt zq6Cc*lU-DjGaxt3n*>H5o`{$L@hW+cqB&fDpKN@Ou+lKT!pY8oNWQ|-2-4e*Hdm*X ziNn=~`@gO?<{2#3qA;%PcaZr}^6gHW&>ZlKz3~b_x+d^Fk$U$w9ev;0W&>+;77H9q zmiZFGCA^$)29qx06;6&MXcEFngft3sdC;q|7IH$dSJ|J!y57m^h_!zbHy*R-Edbaa znPZ?}O`W?_1rN!H&b_X=CJmoCYa*g@WhD zv)QLA&cykJB%)0h70e1NqmgcP{BL_bRCUSvfnZwUH>$1eA307)>%A_^t* zYtG(XrXAf@G^?dsUiz1zTSE#(_T;{X*5P1e_-#M~+3uI{0RVPV985rsmIIwePJ$7; z66r3O`;PILWbev2wye8_3?xFOr=XUQe`ey^DnF3eq+aIk{L{EBUO|?16V80uv4kdFdsF^x}vs`@7Et2FS zZCACg!iq`FRij5TPtxqtuCVTcdMJzISmw$ds!FjdkfSal{mQ}+=Nb%JdTU1l!&SBX zzjJHy0*OdO$B)VUhHLjd?G~T}?>_0=>%z?S#zhpAS@a`g3c^hY^a~BD|x$TEa)Xw#^xz)mNLT}(*Cm#y(*AZypL zJ${H1AbqKAA4Z6cvluTJRz(Wnq|6O6HGe&y(mf4}SZ)xEUGjsr|3!E(6p9=JanuPhN1x`btw@F$%TY26>p!TAB zH;@w?f24ilF&li}95bCh?fjfHvhE~+*q{kSE~|5C(g@NLW8GYpo}bE=D&l_hy5FJL zBP=J(mm5BmkGXV`yj=)Pp-v-Om%T!UG!n#cVe|u?%)+EZW@Dc3Zh!I}IDyU4M9$1w zq*fd8kedw>Z6SOfPyZhBtn@vC!;87G!mBBy)3oO4?v0;WY}x~b?sCfee7*ua84n>= za9)ldQ5-~(*Ye%*v_goD0H4mA?NUJFB(yM+8d=`D4-K~BbPE;G;80HjpC~shWNauf zE-m3&vgo`_Qu!?LPp%HKehZcbqDXY}NzR1&AC<9K#0o>SIOF<2hr*lAEDKEz6dIu- zS)_`sqWW8=9+?irBIL_7yE=~kRm;L`%=Hvk5L z%1C#Af4j||zT6yT$6XuVWvC5dHb{)Av&AWxXZZqbt8-@n<*}h41SKyA^FcmC$9=Z9 zhY6+jd9u_VW=|5FBtaokzVS~SP?Vxo+I)iYDgZ;whE&9lp_T&T5(YlV4h+D7a&mA4rhk^O{AfaQ2S&r z)O{>ir7dk&8MRX^6ePN$tUyR&HabGkJLC_T8VOU&c=(Oio(U?YQ3%tdcp$e)m=5O$ zJJJ|Zh!B#aT!#DGsZ=~wViB4$XF=QLBaQuIybl=f&3!I1Ay|aF=IRKer1W!qvd-9) zve@FVeHsKEWWoZKA_xmsTP{V)oMaykzWYD9P`YJrU)nOaS>e7%+dw)tVg|~Nx+^2@ zS2@q(-T{t?piz>;LZ#s+<}O%$O0+*%|A{_{cU;Y2SW=~EP{@rLGa5)XwL{vq86MDP zaG&I**JvgG>QTNi_K-86xw%6V4?TqCH&-WorW|N3ZO~tc4V1heb0|D%2f#bMg`* z8W7pVAnNG!3*bh|4OYQgMBWlej@l?PKuX`cL$wz^F5DiPRIUoTP{bzXI=UUqRB&s! zWjIbdbf%JbvY!v6ZCqN4*^wT_cC-+yQcv;_VJVr}I)kuJb?`&wnln|g?zTS;eIaT! zJhbRTCtFy(#6r66O+$~}A$itq_w7{kOB9;Nk=YRqM?6H!WMJE0UUqXulH$+hcj+gD z$wa${uKT@9zBw3?GIXNrZ~_SOLo9Pn4C&Ewzz{GIk!7YXD?Oc`-9X8Qxc|X+8{#^J zEJMtW4g%d1YE{valAT-GM^HAmoKd313uDmnVO$}tR-ENEOfMn<_Smp){xN; zH5i0buLL+GHbYC`2Gu?YFM!NZ2uo%3r zCGjl|DFD4oW-QUb)aQ4LGa)0QXdz^Sn$WLF`2!0D8lBH_5a;co-UNhDZYHfg^;-}o zO32zQshKc7lvft80RdSomr8}jVID{ToGW+#Spg3_E6QX$qs0biAp=8wYGxM`G$`ie z@E8&g*KcxmzY=_V!$phjH#$W#ZEgD{WGCKo@;rQBxwC}w_JDgvmNVh{z)mB#1TwhNPjB}Ciu6oLsy0i`eDhu@(&$T2AtP#vz7=CdU$Ar?I>kNq(93)xFAmy{{o_!`bEeAHAOcDy+7eA016>0J%!^3d+gB~!n&PpSr1tII5$>bX zYPZ7-u1LfyRVoq`sEZ#t*ICYeXFFVUJ@h&4X327d zV&`|P8BSD*wN?cfbSOzqS^o!Ma0*z2W`|OrK}Q{HJCWdf-fFJ*9vLc=1>I~QBPVp@ zkgR^S{{SiBoVqS+gFQZS)@)n$3>2o2ogy6ITp%DjN7BtHgp|QxUKV0jIUK;3h}LX> zkec{Hvr5vuR>G^)7)dKUtUR9Du)9UVBVY+2162w!f~?yJ9!vcKbP3Q=t@LRT5WH54 z4x8>^IC53H6<|O3Z3D0rA1ZAm(!*;{=;rRt_=g32gtP!8#KI8uiYonzbS|aL61WA@ zHfU{W!01#L-FwlWZ2KT?=6m<|nw#vd`S|r=B;bAh6HlA?^sTIe>> zs9fQ(3icc9?XCQkC=W@d@>ah>uuILshrBbxGXVft{yd7>jZB-b6jW>26KWtpWjj`I zKNID1xxp#n8DFWdon6=9d!@D*|4XA)-Yq(Xd!A4}d95t7 zWQv7GLTH3}QIbkoU=lp#Dh@lbh>UVZ|6W0mP!g6}7&7Q#$waEHwFvQxRtscg)M{SA zAinS;S`FnPy&nnX_CtE712)uwxTlEKdAGsOQxIQWT_(^zBy2Uvr+Ym@h~OTS_|GHddEvR~ULbtiG;jpo1Nr*&wS zLHluuQ9WJNz<7*Q0?2a@`k(o82mT(1A{!Q|orq`#TZh*xDL=7iq6@>WWm=&vLWtMb zCzTQuZrDKbL!~FS*o;&)ybJ;Ae2V=lR6ybcub}h|4&{KQ?@N`zf?;RCF-R2k)v^x= zLgH=n4Je^D%dBDJ84+~J-fwe*c;b{ZM`?QUV9?g0W>Zuo8Ropoq%GV^crKTiOj(% zR8F7VlZP@x5Ik47cXF4{G3rad5m14Y)U(ypz6xCX_O)xfFY$!h7)7mnz!;{;4s{SbSYpB(rY*6x|(lMQJ z-YG*2veR)b3!InqDm19YLWn|g4wYX)=JZ~mamC^3n)}U7%DxLh6N9-q)Xd<`a)D!y z5@16*RpL^E>ow>X_s&Pka>h+hxuHaT;TcZ^x5USMl`vzNf*K_J&Ub!uB?uI$FCE>W z=a_7ij&8W7TX>1T<>!P;G5#ZZRZasxQ>EI0JbNu}Yf$a3JP~R=p3Pag)41p|4^2YPXZVbVq#@Q zrljNLD@EvS;&>q^9{%oH2pXV2VGWLyc&I4A>B0`FR`{72l#n9FR6ymY4K%|8G(}3| z23VK;orZ-(#5kh3~}inIo2A|<^r8%g;hU$J?c zIuVsCAjqJsqfB2f5{e7bHL(8%_=C&$`kIzST!Laoc!Azbhwh*;KSc2hw?Gg=pf;Y+ za7eWp(Z=u8YJxjw>Rsqu3p2U(1wu|;mzRJ}Bf8R&e(XC`P_$*>qQm#fGJqpxBr71a zM=33>tQOu_4A}xVr$F%wHfuXhj~9_IE&`jz>_=wSTwvSwE!}xV{h$mFxB6lMXqx;I zk$*+oshCc@veFWlS$s}#M`~pm@qxnIs9B*QE);jOpbJSmKy~@fuS2$yR+Zx_7o18B z2pJIQjtCGyO4R~QiX+(ndWw&H)5}C_IeAW0j~ZkH4rhtB?;jbtMRVRTm;uZez@-(( zkjJh=-V^q`l|glu86-#W{oxe57A9?a^Ip;;kyG$EYQZHW7GXD$EH0~wP`u_o%SSjC zN$muJro!3H6JWxBfqcaOliPgFPz`-GkCa^f{+<*B0}2>M|W++bcM$;-SKuB zN?QpsUhP9Sa&boo8C-C1s1E9(%y3x5RSNsudFfQBtFeLHvvnbU7<(_Dwz{E9FPx*j@C1*Kiy6{4L@4y9PklKv)GQ&Y^*=9*qgsc(%&n<* zedYFWJt)h48s=bA|Jo9891Kz zMMi7x%dCt6{hTg1f2CpAnr)h4HZ4DS_p)cmGtu!?VY$$;*ST$<~Y^y zL^~5FE`k&A%@FGxG}#{aX~V^Ev+QE6YR<2JSZ`!xACA)zvmSPQM@!OO{WS*aYE3rh zO8)460ARzw{(13Z{fhQqt#rgIT7JxS-@Zq;#J8;0W;FimlVsl-iYvQt>*zE(JM@>8 zx0xa*{ixshF7q^pKmq8zqo=0$*9A4#+_y)p%+7G*;iTvL(j}*&coI}&AH{6P7v;ON z-S?M0omg>bRI&4jp^9CWNQQzFObW8rE4pn$5{6aAEqBK42%m}b{c2A7p{p((@j&Jc z2(&iWk80RVH)vF#-1_9&YU6D^n@&3xUK^vAU*ghvz1{qz(iR`>2%F~KcqwsUzGcI? zz+Yv26W8IPtAY#IFpirL*%Wy9R+P>3PaYDXkw2rbmtyupqW|?mpYh$5b{@EKEX=+b zgStMKs@}^z^g_eRe#F}~@-tm(?z-=%3EGdP>Ts2@skeLU+${gSMxoR5h~>E9zMroa zyZ~S!&daVdruz=T(7O8LvJG6uiD6J;#>(DD^^HM)e4WKoxHr!-GO(uxha1Ep!u40N z2)IQO^bWu~)*)xm3iE{W?kpXo7Y`dm+?`(N&UJ^!uDjuW6lZBd$}YAIjZo0dd6qi3 zId4eBu_(gq@=9#cTxEQ6ptC%Yle)9924z7zXX6RFp%E7bDsVsEvQ^lO+^oDVx$Drr zwFYz#=gHCCf0UKOOLTX7!^#mLsKbPEO@ zn3EplRTnoocE@PN?T&%g)ykV3BaY!F$9HBFcQnxY6k!41vc7yZsT~NmlLLpmk+udX z%4M2m_RyBW*)&c4WzS989{jVW~X7U2OhN!%;)g_VO4h0%FWY5MxKsE#ja z^XV=>96?-jbnCr2mXYwd*YcX zZ4t(FW|=mv-1S~!{q7W6Mz-|FhZfGJJFT)b6l!_(*Rbc$ikp3QJj5j$-s zXDrWrm<`!Wb8oMnw6{pq5sFC)++9fvx_!jbEt+(P6@ArNF`Q=yEuW$*vQrsb zq7izw;mt)-?b52}g#ir~h2IC4OBE0xxcqnrHDH35)R)v{j zbyQ6zWsWeUC+>+s)=gt!Mo~w3$-dDU z2VN{i6zmN`#G={Qsk6=-B5W*;#?MX0V!(~I!s+atW5EoMY|S=D3@8iwreS-h6A)s- zcA+0wwkiZR`o|bOGP}(YYfH{#wwFFw(q&8N z5IXBkFTho$M{sE(zZ1*{Jfb&lo0+tx;nB_0FQK&WmPBIWV=>OpDYDqbP$ zA!o1M{yFH5mF0-AjznPk-K~G#7En|&Kgl^?mu`Ri35spuSlx$9p_|yvDB>rR5r1*f zEFD%u2__5*_ce1YCD^4Z3wFj*<38f26DXyq1~JW`$jfw_ZZO?mKpEjuVSSDW8?=OK zPHy3BVj{_}c{Gai-`?Kzj*Hp6SLxcQMD821AHEue+kV0jeC8BBM5K24^E9;vDQErN z)TTwpYDLz-7)&+Bbomx8-32i_3e)6lX6)6o+X=up7!xMX7v$2&)$k(#knm_Z2~f_% zaKEOkweENISX_mRB|0L`U)t6sp$5w&G6 zy*?iD=6q;w`uvuexv8Z_LKs=L;#o|nIqv`TXv87J7!O?UMI8V-9*X-h#K~5j3c99K zI_#lvljxMXc>yI=hG%1NTKEF4)R>(e<~{eJbgiRe%tkr{8$#z-i#4{?2%bXl4r&%e zessSqWVCbX2C$uR*>WFkwC$1t2x~L2H z*PseUHNL?g+yPy{h{}|dL`^1gL)=jGWcbo6Q(StrLS8}XijY9KoVfIgRMc+gZqN&% zbF5tU3|Drdbi}2uIATKbQ{|1Eg7#sVNOob$4NWeloLxF}=@g41_=vQy0E67B_~!@sq3SRC9!xmvy0X92F!xuB!;VuHlG z5d=r)hPSv}T%ncMJ-ux&PFX{Fiu!{}Dcr|etyERd{-21HluO{^R;wPbRF~pgk{&ejjAQ&!J&P7 zqEoowGircR%A^}n={PKZi!P%@ZA({iQr|>)Q1wKK&N12B!f;2jxScq!1iwkeaTPwO zLl^ntL;~iZa!0SYoruJ7>u^Ue@kMN{)S;cl*I)^gJB%i$7b^+=@057xsN+Z27P7p? z0q!CsFHv-H^Fwf!g`gSOu>`}DO;?3eM~lo`MWIb~zvLORtcrJ-1!sa3@VwfPbWplT zbWh)_#N^SXVsuE0w}|64UBXD@HYcb=LH9O5KZYg>^iub0(9&(cFB$iK@wq9thjtoo z&;DM8I}-Hl!_i^4w2P92=)CrzdNE>|)#$MG(!qP$&KOiX0j2I*zQ z@}y)P@z~@FQ5)@1i5Yka*%3+Hj8H7p9dulo_X8A-C$Nc7flVkjk?(kwu82iAcUXk- zSX!rGCRwJ-JcY0tIqoX2Po<)-om7Jrv|qP;6<6sL2o*f-7~e-E>wfud?Z=nZl!2X$ zkM<@#TwG@P%`AW85FHhqAYE~ZJF~X5ZlCPPOnwX%X2TdJu)u+GH{I=J*y_4}x5aWu z1$^iji%^6tdsgrL|FQSxQCZeo`*tqC)Lxw}93?_=y(c^?-A{tssI0lNI z5;a7jj-3q491;x_@Hl{=CYZzPNI9h_l7fmOr3s=a2T>3ip5Jxtec#XXpq=%8|M>mZ z`u_1->#W}O-ag#-XWYZJ_rCV0y+Qe3+w6@EXkQ4%v?8r^7 zh%kXu+>+neEu&y8UedCVX2s{vtolBJ?3?dhi(9wz z4k*k~0kHyA{q3iE&wFOiE2yOb0=VnW-Iu9f1(5sc%a#&Tuv!Z)Pdd)H&;w;L&0%Ztep4QRS~;eBk$(~784<`u66 zvmmwTCzC5`@_X$Y2FuP6?J5bcBs4XW!H--jsA=dpv3CZGwvH?f?KKfqETPwtSVL-& zp{+gUfO4cMnKwg__CPimBIr$@?u+Df!r=WDFsrn5A?Gj1-2wm|xMK)m$yp;iB1ngP zAtSt)ADaPsS6s+@0TUaJ*oP7Y)IBQyjQKB|@RtK6HnJZ71%Fq~j}JH(Cpg)1kNj7( zx75Bo!^)>9{I=qpid^t6ZgUBfS&VFeBh*#QTN6uxSsMl)x>B3T*eK>sTf-Bys)SWk zk{?JYa$Z1e?u}Vfq2Y;Os5gWsh|7vh;#HU-Mx1#SK;MsqF&VmKcjW9w^s5rdK~+o+ zlCoH^80r*i%|rG(XCcazHh|%kR`=5hh&qA*sODt%{R)YbeB+jtw5A9r%0)) zl%!c}G8Bf&WGD?f8ev=>Fq`RTy+Gp3BIIYXsiIE|!#&m{TwY&g`yw@;(OIJQon^n5 z!&w{Fo_Rp2LL#E44r$$p*V{<0oO9w3szt!}sjB$M@bORJP>@)8dnw1(9d)j)pD?JE ziIf<-UxR`UyZlUpJr&6*HbVzO($0>z?wQT@kYvvqgaCU2m!xX=of&mTTp8m(i2pCu z2vF2!&TsYJFK2W9hz6Fj=F@mWdNZ(#XCEk}HY^P&ec^VSwh9tNm2HP1juut@)zb>XRq7F<(Md7;$ROxGaqoRL>L zOHz$$l>E|s)`$#Yh$}1asPsVDYqT%vsd-x%7m6YOezBU!|1DN78S=t%;C-`tVimF!3g>t&SRj%r_#p) z*IW42SgrEzrZ^J6G7HjEz>c`&uGo74JF>Qidz(C?=pTV@JD@OlOk)m$3*Y{LSgezu!3wXa(Xd`vJu4w4?To~nn+cnu3%zT@8C-tkEmAq8WxYl5&74MP4ePG)K*tb z%d@gNVqTgbr5J|sOVgnjN&v&?8n%f8CqcXfzq#H-fLX}bj`U1B2H5CD6Ov~}_s@!n zifR-w`|Sajc?lOpFZBk~ihxw_w{LIG3HyLKNimI={p;&a&iajNDG-^fz`uh!GfpFGhw$0#PQ_@?4lnH7#+MW)I_J}Xtsis zj2pUuI1Bd5prTaXWVSXmSTxm!V5YrZ6wT?d(kOwxi+^m*Zk0s;t0smqaO-Sxa%t%< zKA)gj9iNHbQ8Wm3LsXv_zeL;(gF*62dFYb_?&RJmu7L#tuAw!~YPS_V<~#KLk7!(= zi%bsspXl`>`_aE-3t*I^1PyHRB9gXbgYx}+eJGt0vOXJ!2tdhOQwKmS2KcqI9c)-W z0F|}L6G_E3BaW6yP6qQRLyUHq(c>#63maJuWPPy?i+H)IjzL~fFa_*>5y&6}AYx4l zFi3_Kh~f}f4b7K(qOuuMm6E_D0-BW_~;`ngt~1MObbTsS`v%j;mJcnHrRj>?z}|Yj4GsNK>c3 zvThqKNV{97jpfAoq)eM{rOL3|4FQk`^n2UjUVHa)TVId?fE#yqXQF-ZQ7CB1M@&d} z?CNVnUS-M$jysB}qvhV9_X&XemGeQ$T-5YXdspp*UiH0$t!klN*lk zP9vTX71wxKE-1^P?LPO)XwfDIntWmOT`+#^9CoT>XRu&+1!YU6Ntdbnt~fW*#%%9K zZUV&cR79i}Uxpw8J=t*p+p4iQn`EB>O-i{#$m{eM=*3{;za!NIIpd64DNiv7O;dr< z7JAs_##%_N2{^RuxG_TvdQT*v?z{t(!{C6M1$X{5@RHsVGDlW-PcR&}Yg>LQ%5pzH z!*VYXk*fuZ{$!X7@rJpOAOxbXc370~vB89hxMECl;7xxN#7eD*pe}_>gZeJ5$>LzQ zq1zFs0-BGy4qvqxklZ9y{x6A8ymJqvJn^)u_BlVc*F{N(FQ8?TjPoY4nMp`tG>#-u zBT`fnkiEw%j>^fOh`{>$kA`=qSXL z3o+Eo%zSDqL2n_Pt9aagbhc~sD`c%)V$>$Qf|Pt;8W-w$7#VoCz_BV`xQ4}~jz(93 zp@d!)-D}gZdxF zt4Sh)S=z^QkxCph3fxHy)me!5u$Rj)Cg;{hI_V^B3gh*H*ZqmJaD;}Q^*F3iE z4rKdz!gZf?y8t6*leuP-P#4S$ySCtJuA}$3yhJ`UdMIHYeWYO?+OsF-?QN~?Pv$s> za4XD={dlAxu|`*7Suhavcr}I{7OdJFgx@gYPm-DdvPRkEO2+fep0r2Rvu%Wl_Miy@kW zo#=#kSHlHzkJ?G$4^K7=VF&^o%!Jt_`+kg>s;Mz0LV0L+-VBo(b=Wk=;#n&8BH*m= zJ`DfpPiB}HS;7sO;0cn&O!_slV_G($%O%#tEWn`@HRy)GP$C08Sli9g`cJDi@bciu zaS60AVb^I)VcI6c1>w13AcYu?^@b|dS}CM`&c@74)HLYXSEa{rl@cbi5X0=U216XY z8+$ufDMvYyr|wU3Vi=@jDbpb_f7t{Bm==gqmODafsH~AjSzB`%jr2+-MddlODsSHT zhw6j$;t3RL=J(1YWhDbp#O!LlHnbduwWqTI!@-hp^3J_qVU05fTb8&ye0^3--z&XM zl1~jug?y23spyB5G6g#LaUlB1}G27?(pEVj?+B`-w5oU61C>R!u8Yo%~9XHEdZnw%Rs$ud zf56(f-zqF#r>Z@BeXq7AgtnjiT1E}53BrXzoyZHG60**0(IpkNLPSD~0)rLZt0S9* zDz8#jdQ2%u86tsX!A}X$V)j#O1W?_b-WT(LoTs)AT6pxWPvC?Yw{na zII#Y$0S#-}iTN{%eYWReuZD4~Uv2)VDG_*cwnA4_eQJ)&xRnhQIcJPb%o>Vr9OrwUMJW%v(zXPA};KOyw`s4=MNkjA4$+&s3YGFeW89TSW0%3TmBz^xZ8 zi3b9y+1Jc4ClekK{~D6rG#dyy$ho!&w2GO=nIxux#;H8lW>&m#956y)7pRvbLa+lw zq1ru6&xpF9fM>q~;UTgt3SEEPv-zM@;=x@~`a$-0qeU@?`=TVXNaJDUqtL%W7Od5v z##Oe|HP4(5<~ag|Ex`orLu+GYee!nQZu5$JP}!ER6iRfo>%L2N39!UiP$N) zh>>3B*z2^&;?jM2>!Z`hMo;;B((`U3hF3Rq`=$QviO-z>>~d|^=-&Sv67puF1ILpu zKfd(ozdn`ySZrU&%^GV>%3apg7{#y3F$f1>vCHcS#t?;>84afL%TX--oQecixrReR zZ)>CyWfrGG=W6S%;6AIExLEb}tI`}AWQmL8gar#3u!PAU^nuAX%YTf6LfuIBysdM2 zW@XYvQ8C<#tQEePw^sH@#)>tSW8Y%zt|+;~L!c=~#IPt-9#R+4b{2&#MM&BsWgRss zgk}@`k^hwPoSj|OqRJMXd9Qn+DpU`SUm&m zN^EeM!%8un^6=ldVdq!?s+CN3mWWL3m=eL#Ymoq`N7D4fuV$Ak^6;#yo2Sbr zz+{)VPLW!2GuD8eu0yHiVE&AQ(z_^)Ui8z&hG4g?Ue;J+?`*@4`4GOR30V-$~hCJ&zuOSA>4S7)CeFy9~n3u{TNqh(5 z3HY0IgR}jEX*2Vr!pkzsLh}y5Ta81rIh?^f3956iPp@fg4|>RO>&9M;^JEBt{3a4R z`0{q8fF3))RqC%qGjeh;EcJZ1wJ23AslBl1)d5OyO79#KzxI{C>Omj8v7{@TFt4#o-%!eOk9STFN{&VT0x2 z7!K1&aW0pEpHPJMVi+P-JQhqm>QBbf#lIe@$bh zX>dk`%u#~(PICL~rV1n@r+Ltm;LFMBQI5!Udo+C`IC*4gLApqhf&_y9q7Rw(M9(WD zs^`bo(#aWMOib;TT)e=9+|?Z=w-Tv$o$O;W@08`yX@01AkFCj1XNTTNZwl)JT?w}h zANxlx>VJ6wv|u9@!!lCyLkQgWOcIHMm~uBWDzs4sKQyZa$^E8nnxX~p)Wr9hE@d+J z{tW9=LfotoSycci#hlX_N&kd}wd0vri{0iB^34$lu0A zMnMot9{D+x@KFWGPHjae?A2!V9b56}+11o4p-+}o?uNOuiV*PusD+Y}#?8&uvxRsv zP{1rdR(@z}Ss(#TRLJ-`A_0t`0lqI>_V!UCa)Hp96gCPD;ojDtOerX-gWsS8;6i<+ z5Jde07cfC`NMx=%wKcBx9_LYu(Z~-`Lgoq5Keh|~L|8i;`occ6b;TpNA`u)V3Tr3QUamf5ZvBTF>v!6jpe?8h36S@{8fM3o}EO{P>_zj} zv0(W92}aP1Qr)cXn;hZqamDqGIc(orcV|S~m}goUFS@5Z`0Sqa?5g+X zpy$x~k6|k|Fa5@$%h9J(uvo9$TTi`*l1M1>{^$rM8zwCKfj8+APRkahi-ldQMVZLd zy7jo(+?}5rudXBhi>g*Sl{zdt3qk@`n#H7fx(GeOfQX8zYzCgk!nDDg;!rqZGNM98 zwi||fk0rI@40_&76In1K?wpMXR^TQ1OIt93W`>+`@q`{a;^sn%;bBuv43m$jBgVPj zc7Y$bF8`>`LsuksbwBt(lRGS%pZPk)v^ypqT+e zsAbl9q-n8_l}P7%!W)7nZV10Y!cPQH6o}BKXUHws37sN^JhnfdB}}A(LuXZWEY+X( zsB4bM02p-|2F!z&gMk48Sm>Vz0WV;1^~~G&F5>)12T_QFD`zyC1h*!{g5r_e z(Q9(dwYS-42wJbUX4I9kxyaOa#?>3Rw$tB0bB17+A97EoX_SZ2la`2R+@JH+we3IA z6o|)Cq59+X((gVTg`-CZ<@ZeFTqKH;)6^`Jn#+hZX;ftugeSDKaez#VLvmL%AoWK- z%R}lJBPX`jJ=(=EKXjGHH^`;TO1;Y)A(1aBvRPsGl`}Df+{m-=ry`dV>Wm~~rgMUfJG4{5TA)YD1btL|1$8?QUsgsFn3pg>zUhpdMrVcYmIE1Cz00MQ_iRQ!XT9FZ{FUWrS>oz1;iRx;I$Gts3I1SRvaE}EqO`EYI4SaV?iIWh38{&sv305ue^_5>ie%Ak z3fEfkjs)tvvY<||qEXhuJlw@`$?($#r#i<(aw_;eDd0>)kmMTxfvss8;(_p-ZIL|H zbUSXNc(}#FtYxHPL93VCfDS|G`xI(T_|x7YE3IGpQy zlfpeQ!fx>0QIL4y1CDX$aPPF*-2{6+&B>slmz7$~t}Z-*?qZx64MJqAx}oHQI*jJ9!55+8 zUl1d!&c%;XZQLE!u5~tN+zV*8lA-Z5wpzQ&W3UE_3LB76F}AIce2uBkWF?7y#fo{hDO6bp#A z4nZqktHvI~Gv`zQCZUZm7|!Hl@ay;a^hntiTFrdlFkqV%QdeQ6v*2oR6l!6KuI7me zkxUy&JSESstbP_!aGCaPl6J}OBC{@0{Y$AQWTGBwQ%PF|ow~q%CBx*K0snQA)B+`a z2EblLw`kZ(qqqBL+YLcR(^fVV-JKafbU#o6oE+8CW^8PONpVKw&it|3Oaz<7ZdYAs zlN;-EMQXSYBYWPt|w<97?$?5C@CbtdBOPh&tIdb{^S$RHX(*wa| zZiiA7ru|i1?K%d=UNIHbz)(A6kaP@7g@z@Vv0E5RyT*SHgEj(D67T)bN+rsaXl;(k z@nmKaFEYA|U6`sJkFtiMgS%$Oj1px@wTp@fmXECW*vE5da8xoP8Du|Vx=8bfyLi#+Cu;4u17Ag5X zEf0g`Q!NjuBD>~4`piHe9%A$q=S%B@4GpiZ%IjLQOqafHHy#9tVb)C(L@7DTzkT0z z%3*k;#6xR(Kwm;slRyEY+1=0ub16YP(?-{sn$;&PR(O9yd+G4{IwcOnf_{egg9kCG z26-O}Vg;GR>Yb7VGDRt@tbn%-lm-yYjJUTe_6W5wPSslA8+08h?GZ`IT%xAPs8t0+ zqHVm0G!=x0l-y1~v}1ZFKi)1GWq=R_cFdIO3nDeUO4~walHRIh7*u{pQ8H4s0OZO1?eb+(a{~qX0FTb^DLs;g-L{|3l^c5 zWu31r0^b@ix%>m8?NFH=&-6r>4F%bfasJBK5aA`&L#aFaGgU-p36y;IP z7cKcKl;TTGT=Ktwt;FfU;F@;1gdUzjU@2OhfQ85jgiZl_;lF0BmHaG#ed}$D_wflN z1?b%~yhAy8gy@86Dyhl(kNkmm)VU8*bB-K>aL^Kgk)S?!9@HfkZI$QH?`U@zGGVBk zRex8~Q()T%qkfGigIlnWMF5yV=v6_={>0i(GK(g7$d2hfrOAZQ7p&}m#-WAwNNX!X z`-<8uDNsXSuyiynVEqUP@y)ZbMewpySS;qqlqG#@Fo{latlrj09aPbMJOd%1%EZ31 zEL6I$)OG6#o~lH*>0nH0Ir(r{p%i}p1Ba(WoMZC9>ndm8GX7LVvk2D#USy5huj1{Ot(~C(`EFDM;M_h%=_j{-MYpu9RkFy$O4cI4x`eo=VWrE4{p}C7c=)v)PBx3`_CPk^E&wQN#-Y zdlpD-LCmTJO4+zE<}U9F{m)rXTuf9lZpPA_^)&xMbAyGlQ)~=Ff@^JyVPhEQT_H`H zQ;3%s47S2GvrkAHdW2qXBJ7r5#&w$Bvt9q1X>IRy^0&M&-8au*fgIyG?AFVEh*aK? z$`CYVqK*1Jd~U?|i@Gt{(vmQhR*Nl0u@nsW#< z6havxljZC^`_SJDd#WnEiUXtLrXDwaLh4NW)owT+zKdPoIKk8uO zVQ02@6MxkhG_7MAEA7|eF-jj6H{Q-J(5cih zAEwkbA0GKQD971tSoZ-@Uh6i9$0r|A2f*5ia9S-e7e=YW2>AUEyJ|p>mShK+0Yk+n z;BiC$*XhP(>x#fb6*Cpeb^z4OKYcx2!mKiBlw0&|BcQN%i#8?e!H>-!lS+x0 z|BdaXVsS8OguFQ#2e5P_Cy@qv$kr#35*h2wZic}^Z_M245DD_I%NniPOL7%x)t-?0 z3ffISw2R=@(Er6!nzVx7plOSC6dV=4`qkl^>PSK45iH56|K&hLRR*w!2{-+kQxlGOPfUTUY)F zQ-XENI5UV(n3O59UD;!yUyTe4hU_seO>i*WbXIG_c4!Gq?-#^8G%z;`DG;*UaIZ~P z58;VZFcBxcA69Bl5jwX{p(RUg>+eW=78MrUuYFL*MLZgcwAfn0(fPGCOSj$-#ptYI z6~0t>$F;Ums8dvCbEMX)0{gTErcwfm=n>kdab`D5Y`>HHx~>mDkF*Q8?n(1%TCk7J z%gB^1mGYE=Zi?xPEI=NKW<@E`)YuQ!Ef2t!LcoGjc|VzLx2vduF)|hk7BoD5(Q&65-5Y!*mjD6s?_uFISIlQY&s~yn^$yGSTDb7}92APTg2wJz96r>cY7H1XOM=ot?di}yHEw1E7(bCt zGp{fWj9sLLnddwl60$t4^QC@&b9a~u{-c>|_05hSRj;@}%1CzXqmJV(H_=JXP0E!8 z5eYN&a9eh%$%gfsd$<9gn;fC6{3wcoq5E%QSCg#No~#0d#wIu0tn>Gu0(_7Q0*v0{ z9^}LSfb;@%Pin!rSliUuiHTnhw73E!mjV^i-7Pqt17thC?&G`nz5;n#>P9ftr6H&= z#xuHI1e)QIg%iLou&bV6BmA5Da65+6&|Y?Yk+t`hy;++@?$5OtFeu@wPgX|x5nh{_ zH1zBL2n}cNJDGn;<;WShpC#0LI+iv`IoSaE)Sd zfxuT+d;Q}RO+dXjUdZYiO^qhG-G=rVGd83b27SS5Tj9-D{e-6tk+T2}xuJ|vFx0+J%Uo`9(7FBz<>T)JdP4rRJrzY|6K+sNm~Cy^mg zBF><<>mro`c65(9^%D-vZ^u09vzrl!zVHPp@JNBV|9qYYPM?)F^5qylBkO0hq{qlR zNP)RuB&8hG3hXf$G2eB*EKki-EyRnwlVCcXN6uEd!sZP6^m`5joXik`9{%0y%qw=J zgrqyA>832IZOFU0eZ)kx+Ow|ARHV}JTw!f&SLhiRgCw>HVEDU`f;zjst(9sQM>!o6 zY&@(SytL#Z{f=`EagN+H7yn?)87K_%;nB}^>nk`#l%=wBUb31JBOc><6ag&Z3}t&0 ztZvYg+;DpiTp2UDA{liy_&O0e=|=KKE2Ab^FR^S0eeuxJ5^XOGm%{Xz13n64nNbHM zI|@%0k^?7#aWH=G&S!WYnDJ%N-8Grhgp9FR_NkzTdtTZXbgQ7kCtvG@0;_yjG7Zph z_T6Lp2P{LjlID7Gcr?S1&WH(;1TokkdHmVgkUY3^t|tXlp$g%d2T>}C8A1IE2g41v zEY651+eG`0mFDqAxWFFH*g8ViOks)Ytb9GeQ1UU$85(5i`1`=*=EFF(G!GORj=iu) z2x+;0*}aeb)fIdt34rWV(Zu_5fb~vry@OzG_9Scep(kO>PdxJR`5vjXVIi;)7-TXD zg=c9pBIj8!^C?2GClDoI)&0b0ASi7?*Ye&K5wj8GUhdllokA$!5HT{ItN6VcEPuZ8 z6~-atHjqV=t|X zU)W4Rc6 zTxumqR#NzZ`fydj_Fz+o3`Ob>9w#=7^d4Te{-7~wfrn|25rf6?n4ME3N|$MbDKcp& zscVDUuFncBOGp#iv8~Nqruzo?S*lwqW>Wj(6ay?kDr5ZSp0GB1ul!EZLdo|CcA0%{ z??w*G0osA2>|4$=NOY-vV(UJ#7LsHm?l4u}S;00ZHxh*J3jo3%g?xn6GeH{7M(j5} zu8rgccR_$c=nIV=DH8Ajr19tv#oxab)F~^_VL(hy{Wk}FbY8+1-lsE%AS&n~=6*Dy z%pWlzj$C`zpPm2o$lbm#?kBO7Bv%Si;W4_g8o@kWusysa$e=%E9x2=)WPAZxi5qsw zV}^t9pI$-{FdNuuUP?rslEz7o7SLpni^SyRB!^~j!Yq=a8h;D?gdN%xnDR2XQzi8_ za8lXUU^0h<(!IB%`DA&yJW~XB!k1PKxn&G$3~OJg^;6b$N6^uTN~oXeVL}^lJ=iIN z7^uX~Iq)0644yaz9EB*8vh69RLI|(9R;Le^yiC$Bnvu{QgKRH=FM?iSc!8Cn3_PE_ z1B@FR^c_4)u0HlYwKV|sHbk=0oA?z(eCtvOatr7L!r7*+b zOf^?Ta%Z`nbuu0*vGY|d2jzkqK`_>d%G&z?`LZjeG)XBhL3B&j0Yh-x@q&vUaFA}H zaCSk_y_v+C8D>|e+DjhyU&nTb)ZYor4=0uM8U}eL(JMxa3>G&fQZRE-7(d#ISK|$r!**aHk3fZ`JPC-VJNfn;+A9jp{)|@*ClOX z>!AU$f8NPFzW>C2h#0hKUT9cLC~Bo&iy2xqwuC4Ok-O7-h$+j@Y$kaSVGMXYr5-)08KY_b)X$iSwUq^cqe z+;9qEA+Z=BD(lX8v$`z=k_rNQW}6!9ijc!Pl_7AMZ7za za+Hd+s$L`F68i(IlOToia&!->px=GALrtrOL-sELT6UgcAmxjkb$(;zcWBBA`cRhF zlH>Cdy(6?DK->i+9D_}=QShmypxooVZL>~n)|kv8bb~(6u}VEO+LHtHhA5C}iCr++ z@f~CdpyHl#31w zJSPOdwJn@lH{iXre7baCS*x<&iMTM{&rSrO2Yv9_wyDuGY02=gQ5`}ZX@%WZK-!Y5 z2W-ZarMKQ1H=r!{0G3Ax9fY4xdXplWjs}b{6O^px7A=hO9>1*6c6*FqD1#*OIVQ!Y z#t<|_q)c=Sc4Nt!#zek}YM`isW`a!4R*fC87RDxGb@D-y&?1vfQVannJ8aBnd932W z!Hk9ymcNB~Z3Qzq$F`hP@hO5mu%4jRP$;aFvJ~|s?kBM`c-MXQL?Jalb7AXTt?D@3 zeApdtCbo7fRuaN%Fm0GB)o+29=E2@lt5!1ALh3V<&FySvFbeW!5L*Vzni0-5qOj$N z`$nMJ*PJDm)KJ>^J(Tv~sr)Zo1-zC=79c7U{i$^s5mnAdSS%XH7QO;<_a#W--|2?4 z5Rr!7P;y6Zh!>ld>LtxXu<8KKEg=Pio zs?xUlM;uKviFnuzKrB?NcGD?Q7i*R%j}k*ssUx*7>q?q|5Qzu?BIl+lYX%p;q}1tT zi;(U%l16)h3|K-eF830hf$95dsV9l3C9zZ4KJAM~gm2O;9?{eU{So7jtOAmvQS;F| zW$P!4y&x>5-~MS9T>@r{u%K8r-HwZ$Xt;sA1VBJ_c}Ks)A(UY$ctNW@G%0={{nQfDPf* z@WFl18hG}OaO9?zphuc>%>9>V_@P*cN2>d?v3FLYq!R87?FR?^K9=nBh+*;E(f=?{ z7cij3$`|y7@X}01DY@L(b7hzpYCLJDn|!7WM1UF7SgsqH6F&`)==nlLbIT6ocbBKc zcs!eX5&a8i_@Q{4DN#H=$l%koUHkPGsuVL6BiBxWp4o-h z^u3w@KnAP~l4h*Fkd%9_M@m%WVy$0oTWsWVQ5(hgnhy=0EtwosJ?BURlFDuGWyK(O z6U}HUKCgN3>C%mBK5jVTU3l7P%OR9MS*Q*(G z0-ea19C~H&P*^4HmFC2JzgE@jXw3vIU)5nOP<)J-H2>zaVyGV-m4_64U0R_ z7K-0Y=ad=HIUP&Ci=_HO5lbOdtSpRR@JitFy`T_N9IFtVNL>Eg{N2b*mOR(MNd~cb zX;fe|PIKFqIcA0h_%9((>BwBM6dbes_)Y6vFL0`Bo*_&{CTCibi{Jma6`vvAp%|>xI3JguVXwijjVQne@V_Jxi;)J6W3h&n{b22-t}^ zWyi--%DlY6eQJK=2HDQX>UW163YnLmxUhp`F)pUdhd)LZq|@G>oZ%dE_pE2r72|V` zL%X`;oR#fjwae%}Fw`Wmt+8}i5P|LV;j=PZp)?!>6<-E}z|LkemdRrxKu zyY(mX4}9Xivl>}X>8zXmpMTwRUFZY}85_Qmfa{xl_+mt8S*P*+yFgu}*W4+4Y>e7u zoZ+GDXFRC|V^wPk<5MISacK2sUxFqW#^&z5Sz1%tyk?7hF1==?b{!9IkhLctIzU(# zN~MZqLct2QoS4JI?B+str3a^=WGpqx&*HOeg9FgxdS7vo@anE42o#14tXDt_FZ_!W z%rw$-1Z`xhM~u#Ai%w3CL|)3i@mWUO z>G}5WUVIi|Q<~MTI-tjlJd-#q47Q3aFv~W^sukFX$V%O>Pjb#+6!M z&|58>UKoQcPU<5$HXR+YiFcDaIIe_;Kk0G_cL$5X;w>_Z(QA0n1Kuk8Fpphx?K1G% zlVX4@8{~SRC)pAAQDQXUC8WW)aoGavi4JxaQZ~##(LChlBVkn;UB2Y~Ihfg)Yb)pF zeewaJ19PcNR2Xly9%nZf)~8pKM0Chx$=)I_&yv$P_-IL=CH7N(n0XjaQ3YZ*X$h9_ zJn@(#b@CJvEw;k^zs!Oo9ux3vF-eloJc|LQcozGNIJKrRx_tjSP^7 z5M5>BlT5%Je}V%Gg@5lNkzI*!k)rf#Ev+!RM$q5)Kr=KZMi(g94 zYKj9$(o^usaJT5%OxwuxbCbzMld*6p1-j9niTM5oNS17zzzX$rL0?EV2qPNIhYW(0Ee3%R(sKC8t-Z#ff>C8o7*0Ht0MkSc0f_QJ{~nPIahNcCBBxWc zU2O|5Wzpx6ENqox?jrp^oadHLeIN^V8iGS|xGiL<*RS+UdlQ!|WyYe!gU_yrwMn2j zh$I*?e5G|VA{O{4szgF5K3gX%Y58pD9<{4yyzb~{S)8|10u>!bWaZ=^7+!pFZNHlC zlTV?2SIFhsQv$QZ(XhyK8yqNQEfe!@t?Q6gfktWJH`1D}CwN(+)M6S&w ztkkA}O}dtrIbU3I9=9ai|C@y5SdrbO3s2;)8UN7B5#&HhICTGU+0#&BAaNk&Fsd;T zg|MM`-GQ~NHk24;4v_xn+~YlJygH=BR+eaYIiF>54Q35}S!y7l=^%12E&tTYS5R5_oK@8W^L)4#F?#@JhO3;^TGULMxwAlb4G-b7La zdC9^{%*`BLHtFm@m^?82$GF;#6Jiw*9z1=DF`5gr3X#t@o+-tFEDCMMQ8GNJfOWpatV=$!Lrf=nQww&Pf*pPk69u6 ztJ`?BJHI)-rL;RlG}1cFMUbMI^Uh#^q@td@_3O`Q$>!`hxOPHTl;u=##G?L5l_$%% zJ2ss_`5To!D3N8GOy#kCfiMdg|Y$R zuK&c02bEsJSO1>hc<5y3m`{8zz7fwb*nJTv}??VNMngY4$ci@MZuP`D)>Enu+VkW7W zh~E(jl(hmWmJdotPB#)GizbgZXN-vE1ZN9VC!4Ntm~873m;4OPz>|%T#*kK;w{vQ} z#5R-8{kq(D>c%ioTnZStZE`hdCwFH^v>H-zdKhH+$gDd*YfJFHHsx~rmQV&g-(GGN zy0_ZIhcmu3WOASj_FwPCNoV_c`@5+SH#l^b9`t zj%!&~1b(jR^fbGe29;AGXT_f%xHMc!{A7)ah}mv0!I^Qo8*~+h9&Eup#9USH+rWJF`?w6 zArP%-%Om9nyeTkRx?`UWELg9^nLT)C)H!Hn#4E)Hj)Pfs={Oul#3g8{K;2TM;85eT z61HEq(H-ajvRDfjT578TEz8Hxb$TI}e*u@E)^FL?$!WN|DKqZZG|W7{8450m=4s73 z=HcLNsZP0qLlE~(ALjzzr$dNgq8PsHS;trdQuP@Qjfupv5Zp-wUrVAk{XmL=t*9Ez z`>@i>flLtS2p_yJ*7)XHs6Fw}#{4k(I*!1AZ{hY;9RpN+ciqrKK=1J3xS8*$fzF`S z50n2P?m9ZmR-|>OYnyoREq0OslD1J*GM}QiuFt^q5k#;y#D!OR6$?ICecs&_1N>)P z>{L&H1qO)Q?1g@V#k6Y|3nZU^EwyHOZ#bkcX6sf2yf)M6p1jq~1!Px*2LN@4mor@#c91mJ$~XGk(cG^Ns_I;5ud;*jL=9TRWki zF_bC#gj@(zM0Qd_t@E-mIn^%#2cz$)5hb_@Lky=}C$PylO}`hSnw-{U)q7V6sfLJA z6FuX|mS8%cT^0@y?Tu3hu|tH$un7PY!@(J-u6bsbns5!`o%8d{tj9-Uxq;;mTpfMBL6b1W=Bl@T_5sTm+#F2h6-Ver4EI zT6U;R$9WqOvjuqJXuvYTlBGu#+Z4X~l<2Eb6Dqcb6JBdpz5p43{2;Ecf_rj+n4!Ww zAjBeZkLCe3zrGyYQSRQe5-xrR@zlUwO=uH$s-rIADrgMi1!Re#t!LUQ<~~z)SrZ9* z;NY*$Gi$K~u|r(vL%&t(rC5XQ2EeBJi<-)aGLH1PPjHmjMYR`!B$1K)I8k&~-I%|$ zVIiW0G>Rh*q6v@i@T4m1;;lu-Isku;yztm!mxTkW3AzAvSdnoCKnx`TtQxhIPE}WE zTe9ecvUMj4`q$j-bt8X$ZL1p>gB(N~78Jp;r}>ct-<9~r1Z{!is>r~uHVFb`{Okk% zlRN~Mrc-yj3BSk0ysK1;V84L;BJAM~)52MNXGp=3$z#~_Y^WFt=C|Iv0w31RupZ2Z z%l-$y%pz<8Gl$HHZ8pFduWe>=n;zg-_Sw1&bZ49M!L4THpPch~@Z20Q1s1@q2sAws65?>umJ`Ep$*)@ z{3&X`sl_9uR@pEqMj$eBlv!GMIn1)6&C@3gYaUSLlPoKt20~<~B)5#)i&VRM0uaRK zAqCFAoh6?A1a!ZZmUIL$AV=)K=+J>T?Q|m^2%v!^l{?CM;^*7ZvcaR;^O01 z2GcnoWms~S;jhnA@MUuo)Kkgba!eki?XxH!8X-RYq4EJnWwhxj-nBlZEka4WDIC+# zrF@FIRiCPv?gU3HE*Z+E3|^OYeP}toDPa*4=)pAWeK}C=uGO$Ak;zIj%?=}YDfv^v zBN`w8Wo3$g_y;h~VDsVL4Rb*-S00*>-x0t7o-)v-2%EGUE|3&7Yehxc&$vymx*%n5 z!QJ*#{MHm;8OP6cg^8iRC(gti8#T%s!l`IP7>yW~3*2p2WP;YaN&LzQ5{jOa2zhhC zM+(>pVcPnM^bsBssr6*^WtpAZ24fV(gxTNr|I3?$MrfN^6K)fVP9}?uSp$LYw&Bi? zupjj-@_eZKqFbxB#X8uV(ZJxvW_=fHfv@!radY`H3(+Ag_BV#@?Hqv6Nj*ACJWkz) zPZAWJOoR|-Pf+dwx^mL%C#u@Nd%tfbC=t5@Th1vYXg~%orqMx+JEQvkL;9WP-*zpL zv;y`@!(PKH>(NfUGA^J2+Q7&_5qJR;r^EyIv3I45{V$hm3 z62F?}okUFdAyvg#>V{RHF5Q#JekmHhp)$`(H{cR&-xf(&!;F?-sqIY=N<96`z=&W% z)@*Z zR~j5MU|8rZi`Wx{W5xZu3R-yDg$SmRopyv+*X|N}kWX!b#h~6`0W@pu?=`?lMt3)E^UdRh>mCI?l=20@H5I8o@2OvPSI=Y|_1(>Ol6%()zCAF)3R7xG(- z>dF!C0zcCJs#nT0~y5OwokeS(+l>5vKPp_Oh~{yPh<4}}26#a|I~BETb?9V=SdYDw^o zNwVEUJp|`7PL9}ygrS@WSbIX|zUDz_nfNVbE#|rSB?%gTbRN`Fq6d9&e}^8*gu)?o zD0V)@%jqp|U-`3I7IZP>j4_;G;$J{5xqhI4J;{i*4J(&VYoyc~QV}k23Ct0Z5=fBW zKorchUL^9OKcf}Y1Qtj}lrWK{_s&+r@_Vn`o9b_QZhFs9U$rWt;m}U|7Iz~@f+h*t zdM!3N189Sp#@VdAx4;3O3_+;z5$RyGZF5o|%H2}qRZMEQCEE(leqTAUI)^T<8=#A9 z>^Kx@VCJbF2bQJACO7g)4~Ee(5%nQn2NH1VvNrE^bJh5YW{oy0pMB1U^rr0*y^Dh; zm;{W(3qI*|K?MXPhr!`mHVJ2hp0Vd*h)hCf27<9}GPDsH(N6c6L%hkEPOYaH;HshM z@T*l}tb$k-h7r{BK!V6-27yc?NIzrsblk<}sw{CWt~5MSgcV#v{H|8Oy2jn2HqbXy z^}?+I{~J>_5s&G+j#1Vyz#wr=*Q)|%BpvPT_APB=I-3N%5wno>RM3UOIC{+0&*I0l zA#D@);}k`ep_3V%$5Lh@$V(+HqVC}_%+2j_5N^CZ#Lun+s6)LkGPEV zEU5gt;1th+8$j!uD&i_4y&KiqAu-+2ks=isG5KI#{ES}!?c-|rDgcff$sjY-Y1z6C zMM!Mm63m5IwA+SfV-+#7vnk-eD=R0_Q6TOHRpS!(vfhI>22?T~4wow*joWm8piC)j z6*nFUy3tYu7aD+$XoS)>&qv@%+A!+87;HwCg_Nd)cUoqa_hGE8qWuveMo8OEXg$9< zt!S<)0U_3kFUDNWgy z(&Cc?X_!D_(Xx@QzJi8=FVZ1Zy3)7Dju9e`=jMuKWC$%)-&XIwBnXETf$fE0O#rD0 z^%j*YO$VO2EJUS|SAT*=t8C+gAFnVmjnSYM9t$&*=+c(VLxQ_(r918~sB6Wg)-$Kr zpD5iF8;>Pl-@AM70_&L-oU98#YWq#s>70L?^RT-3a<;_9r(FRH5FdsGC{`^+-^IpE zxo0-N&Xh1KpgQp43Y_ZsZ^klm@*3@G zxLJryTbxy*x6(WQ4PDC{a7HP?~t%W!QAmk z_hF6@ZFM=K`WUVi{b}Z;$Ws_#FpH;pPOe@!)o=KTiI5`qouTj0Ns3GyXBekm+~<6rBxT1lQfkSwD>H7CL&^u?e?!Be_=b7V{u#z(^G?jFAcF zzD`JX&p5H}BZQZu5eX^vG3Yzf$4NrYN(3JiTD`Z`CK7QD5oSW>MlHi>P**&FYBU>p zGd$e9mnN_wDot4Ct@$;?_vBCIG#(yu&d@O(n5+h`iy5opoj|To`E3(`JbFeywMTG< zU@MsEA#%|-(>5a6s|rk*>!8zTfQ-bui46qiGtnIEU%O$)>eCmXT_FgMJd^0VH7q0J zj)PfGC+r>gfSuxBr=fAZTi}h!3Aq_P*VZn$;l28VgOFm{Vk${MCkS9<%-c)0Hc}xBgLgM3l;!dTlFBfOi$Q1;NG)Kp;bL$o zU))~WO`;4&8OnecO5%NT5}8hlxWirN?N-#Kr%)y`g=M+#^BXW}QF9Z8t`nhI!ZxPC zQDO{9VGsk0$xi#@mqI}9dhjAY*6||*CnODqfdEhdBcJm1Rb6X<++?M#E$9Y+d*ZOT zrQn+Z3c`@~&_e?Va!N!YO!7)xkPoQ9Cy(C`sj&jlVIf+&PjMi~$<#sFYQTe3TjzhP z7&8D4mcgHBjWOq{_L&9Cp7>1q;(hztD$rK>qX&%>SzHJ>2yO%WbJ*y80M-$cx^Q6s ze1GslyM_MBc;{$+vq=#fa2pA80aF>Y!pt~%to;iYJ{NDVSMo*_}pxhl!%jOo2UxUB+$DI4X=>1zN_N_+4cp|6n4)M&rZEXgC&7--?gBj_cwm3D3VR&X zBzuNmW$ol(8gV;gI=uD(O6W>;8&2q84#YRhZ$63uTQ*GTH{qG7rGv2|LG77?#(La? zCJg$sNX{2QgRYR(w2g)yd>Y1P6D2NmTiSg4Zp$J<2j*UW7dbVf-O4Me#MdfLc=>ww#ZeI>>QeZhoV z5@_PU(V4f-S_33F8ofgZ7{iLvOf?FEk(fW^IYgzHAi7;VZ1RY~;xNRPi|}Wuup$s7 zDTV}OoS|qIJQX8Zm-@-K`}KM^nL8xk>6vB+Wl&tDz$!%0gF8ztJhD)!H)%S5IBz|H z87~++Z8cN(jX$kSqQXY_XhkC^#(`yPmS=JY$s}v!>gxQF5_F{Lw{TGbvT!5M?6Gi_ zxs!2#+wgYAZ)8|#1}N7PNeSvZ@y4soZ83FS!Cc}wg#w2erym#+M zaLKk)R~b1)T802DAT{lgwu+UqhAl5gQ3%lvWe%3;k8K3GAVum@cK@s=_WuJWHHkz! zb6jkuRHxtBjupA>VqX~d1IWB#G0Jw?=W5^(Rt>A{Faq#>vEv4&a4}ZGn8YZ|3%vZ? zNL)9`4=}!@Nw(;vU=myfl;#MiN5fDI9dvt zTi#_fA^A@DpI{lla5tUXT}ZZ#`&n9@-CE_o zFwk=le6IV#8_S#@P_LQ+5`xKpl|vwDsb&}t;=@|#_OqaBJc^aWU~~M0L=4{OASL1j(s(1XP+H$(6C!&<6I6+nL?z3mWALaw+;HzNu9FREJ2<{xPN3xS_Q%!kr%#hb8|@l9S5HW z_lp@rA;nr<4KGOy9HbF}6lB_uF28IbY8XWexy}A&dawrpn?NS&bZyK#W3>5AxX9L0Gqw`IR_w3KJA0BW6GFy z1+RFpWMhO8Tbv@e0{Y!*GN{bQn!d_F5tW)CAkNGv2N(yN7S|2_s0`g5`W0T$_+EjO zh-Ed)?&|?DBsY_QpnfM;^A>akwkug1g6$f!TT8izhN<|6Cy7@uFKnV$ZCZ#fZuUq6VhY>2s?SV8sVc(VUs_Bj_X(_ z5B3fr+=0}y4A{x`@Bt$z3{2pe&_imsFS;#~x>6%Z1!uQy?wRUck}z-d@CxI7xB4uf z-J{t78pF&rjj5HG&L_3CRpUGLM=A-nhFWpVf$FC1nSMgnKqE#+FN~4@MpaCwz1tC- zy$ZxLn^njWsdSy`=Si6SHt_X$sO*;g+$N$+_&HRPa!*rHXSwv2^j$w$C?Z3&E=WabjYEwxWgL$s# z9j@w%^h;XRQ^X5V1qYxe=oQ%%!XmU3j3Lu7>q{M1Uw=50h+yU(|lt5F5Pt^}e!@faC-;ZtM)qmLla46z$I4_b!klw_23 zs`P5`0wMaLw^kvPOlL-h!Nv*mV|EYtQr*gHpCJiK4(OK0XAR}3`z?q=?pj^>N9$LO zdazWE_q?<@HTLI>dH>4erT!KdQiK}*6j4gGuccoz)k&PqOQCUeN%SC)$5TU>Jrl`P z7VhwL2!sU-mN71EiU}jxS~u2eYe*t9R2P6T%`cT2HHxEk;!7&hYcz-CF;a|_!EZf_ zbt_OLU!9XbEwy*FH7xt)YLQYHoWoaL-uVG%hy^_q(sE_hv^9%J%=w^fM-U6(Y2k#T zIc|n*#TnAdsa=AZDePrPJh2qciMs+E(sIuy`4(wPmmle7S>szUgdJ6e)b!0wnS3Q< zr&IZ;EpZK!at0UYt_6MLTPvR(mbE*-@y|2X6b@Pr3QS~(PIfK(htJm`6KW^TTVN?T zkyZjH^FPkzZHK#N9G*}R^u_ZiXq%CjH|1`REYOQu4uYvP?Zp+bmh(YZGj{GcC_g{z z>75?pJSDobM^@CWw9@>GU?qcBdig*tetv)1i(_-D&o*+jWbJJexqM^6Z|_}63~+aF zdV!BYY&vzyyg7XAlg!7i9S$c|Zg%phUD5r(K41j@@TqRH0pmC%h}(*ytu-x^auy;l zv~&C$26<=Sb>K$4)u-)JvQtFW9vlEI4JV=IMA-c2Bj?R=fhRO2I{#MThV|D$y7o8s z%!2MYF10K2g90VB0tX0|3wY-mZ$JbuZ#mdS6rLSRCOphQlp;hFeiHO#ckuePX0aXM zJZ5w@SsYwF{u83*>nUQk#rmc@?U`3I$bR2yT5Gl@B z;~j$aY6E7{Mj0gQKPy>7d<(W+C+^*SefTF1?U4Xi+fY9Ek1yIJHNgo{90>%f>GjEITy?7JPvHs1_T8e_$FH>(Ghz4X!_`HHAA4(#%R zWm`aEdALs&Xd3O;O=cW8^9XBpIA$15N1EKhaE=j&jidlrnLZ&=7=nZ@N*c@;~~d_|BOrteSW1qs8x?Y+=xCMi|(I;@Z-y(JWhMKa(cxQM-Dwxsji?_+QX zCgVr`jWO#Z)mYT(u2Ku(=YiSm2$ZRd%gZf%lV_&w@b7!JKz{E;-I$sDoMXpA#4D+Z znPWVGB$pR{Q}BHy`5Td`zq8GDei6+e1diib1QWMyzfVC$%X$J#9|!i$-6zSJ&byN6 zG_GN5-0K_N;I)GS)cc=Er6&5-nHT%`g@MWT(y>4IK422RYs11$&&bP$d(~`(qaNksF2|1)>A$@8rb2MeE zj_Dlld-7&ztE8dVW)xO5YM(T8{x3m?!p7Ww+0nDuHOHlWd83FtpG)DM z8_^f?I{t6**+!Qt`O2nmuWa1Pb7Jj@_!Bun8LK&dq7~z_tb7d}97_)sEjE zBra~U>DZI2b1E;)?As&xVBpEy)sX`_Bn=&q6ZD)@Y4y5qzw?c`aHXPA#A`k^Ki=UO z{(Lg%x%i6eV@p2)c`1m3)-~>wl+$*{%Y1jA>UXD1kIV|ooUyX;+?=I57kuaYb;0pg zGY@7|FT>9>XIS=b?LK(k^EpL7^vViF7u1Wlt1kx)EyLiRbb8@rkF+m+3yabMPri^b zGoW+4UtFWFu76p$G+y{>ja{@6?;GS*kcxp{AX$Wd*8eFo%Me5sb3%KP&@rn z)3`tV`Tog*@lXEkz0FHbcKINp{KWc=TTlFTr|+LiU%H?A;=qFMr+*yyg5^O)lqEl^ zvTC!plegt#%iZOc`-zr2Q!S-82Uis~Us#izQJvWQ=ZxxG%`HEp$i(uXc~sTesH(t> z+Ph^@=T0Qn7Hy8odBReif7vIprf6T(gL#Wc)y*s@F;)aE{oIGgn?16dBy_*E}y>Tr%4Vi|$^WsKUHt!ac z=#vy$mNeY?)b`L8q1Rpsy^yqabkDZM4y}t<%nEPa;dp9~#@qj|don!o*i%*ScX_US z(54=17o;uPerJ)#{$;tx3O~QJC~fMEYm3v~*l?#`-jZ3BE7Kesmk-+8qwxz9hB-g= zo?oZLCNp~N-HB~7_4XNspU-(c_Q@(Pc%OiN?}hhs z)FIq{WC%`ARV9sfe(LET+AaLNW6JXEr*^jr%C9@3nU9RXateRw_U z4rWvJ;wI%g$F(e8F_Oc5g{MSE6w%`05j}EjHtu_=OVq3P>dxf<;O~k*dw3>ZkL+xN zhi6j$mii6<+dBle((P^X@Y+VSe0U~+O~aU zM7`}t#Iu(0$VS&4Oiaed`+F`Qh;MPY9oEVLm-E-@krDmt;Sue9WR3p%$cX;-@Q6k~ zGNPv+S)NxOUY@#x8D4whzud>YkE~JGM@H1=;SpVaWJHdSjOdZeaKRzyw{I6ebdUd+ zzuR^v@xL7rhew7v_uu9(c_Yk9_dyN2dGNM~2zyk!|T)&)vJ-#GbWh{_;xDD^}roc8mYN{JnoXvKAsW z%=0AD76MCt#nIoltW78HvLTSC*TYtih_TF?H!|{Ayl+k8e2-R}A`(vJI}8vtO;vSk zTZhvz%~O`Q-G6FhW|JVO*0KAiY#x8~SoZAdP0zR7@0UsqHmmZxG)K?)J~!GA{(Rkt zn6~@RJ$jaDtBg0!4?=RZwmAUpG z*NPfmnCi9}>Mhjy&1o~Z*0@=d+hbOX#e6X4OeuJ_rQ>I zontu1?U-q5O6ZEdu}e4g@Z`S?IluiGPP2W6Ig^sc6^?^0)bB9}8tm`ML*wtoWM^aR z&;L@?8wS?J)7yV?wasJHmB=;W*Ge0H<=b}G-0fL1k%_j!O?$Wf!if*hpW$(l09!;E1MauN6j3-$jXa6dckXF;HyotwtGALQsh6hQ(}hC*ZQ{YF@15E7Nk9$ zoKybVw_P~u{0|?LJ!ZdGkAB%aSg@opDtvgFc`VHxwjO$OB!9FN)-xxP;Ez_KeWG#L zp2Ts83+3s70c-xp9QJ98!6U51D zkYxXL_5as3*mh?puWC-e1=!}*=lb9bpQdGMZ2tuwol|{`qudM|o;%g;xflNbh5x@{ z;V;ZMTpV`(a_)|-<2=BBOO3Joe|X9tJ#aDEasc~;EF1vEIk^>1VF-;zL->bYgX9j5 zIMGS;NG2{va^#xmv|oe$j00;Y&;MUI=Jop|B^`SUa$=VMmCe&%@J+ro)87h<~_-zOTOqLzH$nz5Q)0-JQURH@Bag261{2t#D5b2pACM z{aQ`E9Pf_z?sN{CNmX*}TfAUc!b)n(bWphB((LWgE&jvd*N(n9L=?0>iVq4Neywms z=n4ebt6KTZADvdSBs@Diw|Y~}nnM4GgeQGcGNYhg7CyCm4TRo4=sl=-eQ5nwb_b~V z4(r-kAVXmzoTN_o9y$~n)c9fP|3loD$5mNx>(@0Ujsqv@WX5qwMULQ*B6vcPOpmE3 zDgsU^kyC(MDsey*GEL*0%qbioAWcC~lvE%`N=*$zN<&(cX1$2mJt`Pq+IiLUXQCg($-(#x2FTFZoXKdx&;OCC`HizyT z76YtNd+5k%m`dMEp1Fnhe((?2^sbkBj{#5C|846TL(a|;tY3?D&AWd1r=kS`0kW>U zrzbbOn*ty9YVGA=G71e-`Tp5?nae%FNmspOQ(!VXtz9MVpX0OMn_o#(mOH($vf{+K z`oQTABI6PhBNH6^?tS;_u>Fzh7x1=;w5x+@t`g(ZXw%eM#0q+NgI@mLv7AKTK~FvN z!FWRfwt{E!uvi4M4q`@!(n1fwgC-|wKZ%!`jUio8ei#hIzZ}ax9iPeB%g43`22y_U zwBdnc8DHy_Gw+@n3m?}u(I;#~9zn^<1+j?R-%a4B;(#3BF?}y>*^UvoZlquQ?to9& zTkEo7JUB48)n5nuYu^o|PpP_ocrMP+;Q9A@y+_Al8pVh|4VxgNxYDN24)5CX7?05V z!9RmoSui{a_hNs5Z+q8%)w$}aKJz95x!r?lKYA~O!+X&7%vUQu9{)q&u$JzUYhZMjwI|ML!xvaapg>2(pZC%SSyV|Zz-^@i1r9|v;D@W}V%qdk zE++0Q>;!+_%udKC#;ik1;H|k6b)Rnj(#qQLnYw$WwZngp4&aP_w=ncFx0-@Q zW{2pNB4AzM>#(m!O?zRG6Ko-O8b~RgAWS)t82%gMAvmI&RdcSREH`~tjFWEsvzBn} zzd0V`A}EZKjm@C@dA@*|pT{s8w?w48Ha7ro2MAA+X_d0-TrK>!8QSR50_&NEV~)65 zY@z?jXncmlN|??#ty2;yCLAh0-wYkb4vnb;h4SUas~je`K;D)*6=IlgiQg}->DNri z^?zkF$t&;EU<~%;hJGW>wFLMY(3aRujE=)byr+#{CyxZzWiF50d!KoCvzW4vXgX~X zgIFprUnpLlJI6D*;dZpg#xZ^B|7NXzMBkyxpQ_XNU*FgNg`o!)E#^K=*qr}qM_SoG zUV(crwy?4SC>f;nOEh~i{I?h!)0x)a{=e`Z8ifDNhJs0Loc{!-Vh_&DdtMtezdE$! z?S!1B8QV_sde<0_I~{yi$G=jv(ju}s>RO~5W2SR)l|7T!?tNIj=8D@3jX9nOud84; z;Lvf~pUKIWYM;$mkIz&Tu6@ni$-g4DH#981IOtxt35B-tpy@#vG@Uqi0r7K(9~!qD zYZyNPjQOe8B2qp|YPdeV(0QPr6@9WmH#_nJzA&ca^I9>S{|z9JFJ3YN0$0C{;-ssG zJ+<_ku*RvL%KNuHQ|ytzKTl<_l$Dl%@HQZzp!YJDE<8H$L@-77zh!vnB2i<$Go5^z z0rBk-`{u@Szm15Fxj(N4{nXWQTtTc%b4K@t_k&$#S9>;YUB2hEVH2Z-q5I6-IoC61 zH8!y~+}`)4!6!+ZOgYjR@(w-0Mtk8KN%i8j9A z)3^2Axq`Db=h`jTcc#OjgT`^`y4f>LPTt^C?(JfG>i{8r0^yZPibDi_M>)%^$YnOF(D2J9bAf)*qbh0BqkdH;&RTl?yZj~ zsyKL9kG*9t!W4#mTH3Cy`Du_CMLo$JFaNLYuNMZT9=b!s?rINu0Gnbb@nqA--TZC) z?#)OaFyK*8&+r&w1(F@Y5l7v9v2ei7OF7FTE-ZZS>Am(7JrY3j*PJ+Kr&#`sYrAxs ze?cC=nz;581r)3dU*}4?VeT#GhqG=E{H0*slkW7xovXg#`8tMs$rgOG0vte= z4j3j1U}%r~%I2q*2*9}RQu68eKgBse42%iu*}Q*?=RKV>n2MBo1jD1uoI^|A@Nsa< zPHL#mxb~uYVx?oZ@WAFb>QX!4o!2HO5~R8iq|OxA1A8UoXcvkIZO?2l9*BQskIAd~ z!vTSAR#3320S5~1J?!gO;Z(aGVGcOnP6g311Rg;)xFBnOs-bwg_TiyQLsmbY%-hTWE_dS;gN_LxEC?nLK{2veB{(IG522!?JD?0 ze|QP)n*u^OU!w#$s;q`_lwXr8c<#vQlG0hPOEeCyLk5XtkEbh;)FuT6N>}!CCkIpz zXF+e24OiU%V~+)bDV4K5-=)ES4buswGXIGf$@v3>Gv6&NaMpL};*gcwp9L$BJyJ3o z0RiD%hh^?5n_w605(CaAloSuSfs=2##K@^rX_z}5=y-qxitc3l$qti@2^K*DfipVA-#Rtqiy9kO(ORjN0uLD)}ol3qdvwf5kuE=}>iagi8A0de4NM2!hvl zztYkg8#C0NYua~?pWN-R;>-R|)+>jhO@RuE53OvNkRS&=@Np@;_GIHpdbkf8YKPMpWaCWEg9%|R!o^|_`Js-JZIyf($2AhU> zYbIdIYa2*4;SI3XVL6s2mVpCm!R*L;+nWF%f0}R8k|e=~1wg`GVITeMe?&q7nu$;^ zJaxVe2Iw_qW-Y@8dwqq(NtuQ+3iyRy7O^jxJ%D~OjS5p9Ujud$(+CE!_6>_Su~9b# z6m;jWE?AW<+{nLsYa)#pm9vxyXo-CO%_tNkA(1vuv&I#_+reIdu8`ZD_5W}0PcnorpgC8D;%bAF7oBrWKpo?i0t1pg zwXY7^ej&)^6s)z|dej4%3~+f!L;rzlTs8gQ(!9cejfKH4GrL>VsW5oOsBt%VjAXCO zPEj0Nc>YfW%Ky#fV%`tS=f9`wT|zczq7aQygB8$e>4YrZ!#n}zaKrR9PycQ+aq+aM zbW9(kUCMXX$W2$H1u@H1>I?oy`(4M{ghPB2oyk;i2s>B@oeTSg7s2;MxRtyzqg&)h zO}Cnsz4%k`?uQejnKd|c{gjv6BpZ|k+<79a>AQd}Z|%nLmb%R12HI{%n*}eQfX^Uk zpgv>$K=zS*=R)f$1ihxbfzbZI8G%1LfT>skk5N*3;@q6HCcn{0PBT3ozU~yVz7NwU zWXzpiyA#!NFXrX|Qs}9M&{NxNeet>dMDh~~4;0#-#-Du73pK-fcJc)GElflq+N{;X z3%)(HueX}7xSXMVlNXk^<^@n zKb?Bh3#}$@l^^z6(CEL_x+=AAXYhV|I`yR+9;{^sWTxqFg*a3DT+KdiJ^l8;?3Bs_ zDnTN@$z11rp8wpdRSh8f8Rxa-nKG=A2ndNRdHwOscNsTgM)>v`nXY3(>w;`*jywwY z-f{p(4R>d~j`+MVyhEsQuvNWbxR84if&@?M`6!`%tlyW-dkl`iYvRu2#We3r9s)$% zd%$%oWLAzo(BJr_< z8iug06MYn&ClF9g{|cNtdDWAemwr~6=AzaqWmb-|+yPq7Gj;f~1G5;S1!p zA5NgdDYTuf?}YUBOiU!ag)m*Pq&8>ThXde=^!a5PLmARhM^;>x1eQ!gx5(w|TIX!7 zl9*ZT#Tg;M>{1=TEPFt}#!Px6`b8;asm6zYGmsZjU!P5o1Wv>)TZ{UPTWoohSL|u` z@j#drFCx+Nr}Xw{R)*0-n9WQL6Hv7!DThM8ezGkIpv@`bs)&$+)OmKbM@Byqw>{E* zom$yMGumHI=zuRhI8x%ObR`QkV8+kPBwxzDC5!K6_9@ zU`X^_(Z2#jO|?*6!6TAfHAJ8VgP8ZEMzj@d0Jb^4Lax=)o^snHCtdk%T4{?P< z#QasuVd%7n>4H6Ql3=BdlW9{C1`!XFkg)%(`XHDC_XBY{1e|hKUUD5Lq^SCnF!;d#n}g((YOgo$Z(&u zBu?;}06_?%zvV)neC(M;!g%!`qroQ$Z#iTw0-}{b)Yov`zm;Qbh;i9$)$ui0& z6g*4YC6E8vpXFpgc(2SOab^DED&c0nEt%O8^S}u2jWoWgR?a3iK+z_rUTb+wp4-D= zo9)X&0ShwqM5(ldKg&jGi7Pnq`IRk`rX*fXWm5l>^$DyU$`jo1qT7|aqq|xpB|z4K zhhEhI+`z>15!h#WrNOKkm>v6pHLNtK12PWnLe*!a5MbL1R!+>5Uo3W=n6bXgkw-x` zs0Ij2o-)O^wq|jj4LuEW=)fPVwto)%(Yvg1#PXNhsfd3c86%t5P2Tnhn&>k!@ zStbGArr%)Yq^johX{uiqQ7*4`DW}};!hs+gm$Lv_;m!Rk8vnL+_cAL$jM|+WX{Q8N zW;CZ>j?sY!LPl2AA!kF{zLbm6_##RVH51Y%5eAGiuSzRuZ}eE=I1rC!3DO8)B_(_m zp*CDG;y>o+%YnaSa{5cQrC`sxD-m(Cf2Rxq;6 zg(i^mIXhBGqrM@fA?o?FnHUa5|3%63#~D-H7x(>HhK1nETgH{Y3TyMI&O_L8!)N3z@Ki1|pW(2%rnP+e|VRIqgUHz850w z0}e9$H7hg0l%%&Og2lSP&8pSlb0_WF)B#8z{Ydl$phJ|$iHABMUc|7sNIc=k_Dyq=w2IJ<3B_f%}>%HNq z)v^`*!0HSmfzoMV6QKom1c?@An;5A}gdUqBJg1GzW zR0jrLcuBecTef%JIB&C>}IpDH>@G&2%+?St$KOf5cBX_bg9X}rkiYB9@4U%)h(yfeZ z$BY}UTVxGU;m=(TfN#b3uplU9*nLB&Csd3IX2d(`waEiW`N7ecPXmUm@O6U^B`&&yjT>- zDJzI%E4Jq*paIa1#?!G%9fe>E6==%bXnA)HdyD5aBd&?@;1jTN5uPfmj5_6s(L&;J z4wD3y8w;|~6ewElHMx}w`hO{+`ewz27;8x8-ZoDz1@&HZ>^ z;`WU(9_lky(sER|9`>zzgm|0b})o zJoO7jrPV1QmvcI!PK4k>W_{3hfh_|jE_}y(-{NVqHQri(sCgW@FJOk@3Oh-O z-1#miC2&@wQ#o^D3rQ@<&ys4vJmY(@VB;J7x6&#+#97+ABEP%e^SLDdzvl-;LBuRZ z6rnbg*0K<(B3-U~>I0+0c>qwL7PCd7#kX*1S|>uD4%+#1F}vy1@<8>ruj>@ghy#=9RqN_tGMV$y1*`{KM7q ze_Vg5)r)VsIbUp5>$d!*BPmOEy!zhz9~VD=W#JZ4JPC&dG)3w8n0YtQcw84q=v+;#zGkKXZ0 z{FL0x;Z~`i;XWCEpLyxpmC5$hcisolfM^e>S@QnpO-qWPo}YUB!MWhw`FWJg(|+_M zuNo|?qySXbkV5^|WVYN;_{i`p<(Abr4`R*vq8ArI#OE00cPBu8chx2+eWkSzqtf&- zXrNGc2zP$-8VUZ-sKDHlKpWb9>RIS4!o95pBGbidv7x3c0(p+Of}DcdxOdv#o3efZ zbJFETkOJtDYxigOhk(=@>!v|@Qmw{ej5#sD7Vk7F71uO&g(?tU#w$q*UdG!+;d*9E z{U@{LoYAMfqSMZwZsH@Q`deTjw2d3AsN$!5ME-k*B*(NIo~3Z!@(rXtbHpZZpYUie+!%MgT% z*ww>}@ah2%A=y=jQ4X9t7VGPs%&%eTOz&RM#u`FEe0oQHh*8`g)>#ntTnp7DT)0gI zu_Wbl7L^tLAmI1P2yBy3-z9NcN+^RY9-QpQe z<#zZRH4M&~|G~dd(2qa2w}dmjIR!(*B__tN`A~2Cd@E>w4Ts8KyXhVAvfd7sP>W20 zlGd5?NAF*Hxe&Yeq-|J0E~^3qa!jw7TEfjg3d?UiBT2H)zia1zdMva|AC8EJYGKzu zn1TOnnHEK4KymB{1jS?|)$)^BsU1DFq0HmV|C^zVE`YwDoWgCJUdHhnH|BY4NAq_! z{7TvLKi*#x&fq2iwPAN)rv9__xQ9b0C*^zjL7blSam~C61b+?@G6YWCSjCMTsQH4# zWEFCvzguamisjg`F~4e)Ay2Eu8Up*^wLpo4$b(-4&~M8wq2MNk_GBGaiIa&aHV z_T|umT%}7!uHBoDd%|(+MN~RO*WAkX)(%a?uCeXQufm={HnKmY@wk)ZvpTs+w0=T@ z`pt3Eu)@e-Q1&`nw7+mSH~_r~RBU9FdTE-7l{iKAfO9WL;gtjKV; zv$tgHO@+GUexHJMiy{)8vohlRf*?k>?m#gxlK1}N>-h_9#%tB z;6kYFXyz_VUsdPG3D;;(T%vp66}yn-1Ta7%-1sFL!kI#8gqL=DI2?Hz$sl zfFy-9hvuz6-0OL#&$j>EJhP;YQ`$IO#BrMUVya0r2#iUbzbSTo{=(>Dqj;dfW@V10 z@>Q4Vg~IaOB^694;{ZI6(=NX<45Lv)tqi4F_-JMF*}* z+*39oZ$?qZRfH|6r)N*yzErMQl()YwEa{|e*3Ta3r==tG(357=E`-m6@yaqv2~O?G zE6R*6m0Et@l`SmzXmLbfRn)hJ!~py$+sNgl3ljt*+J40qvmhGHLlTnnHN*<7LdOor zMUsgDOVR}|3|n)*5;f|YPU=eB3Symj?1Ax+sgvImKRbB;;Rn8Rw=A23JMS^_J?Arl zjm#{Cf(#F#wx~k}dA^(xqlZ$j)WXrK7dOHKla!}9uK4XF_-@*A%=^QYAJP7{4_Fk* z>4^$l5?4*{tPU|)7TS=3P^*_k;XOD>8~6v@RlLzelwl8uJY=jU4>@uhz5qun+nkPe zVDi_&$1_IyKzy~~D$rMsrS5;Z2>E}sF6ID1(^BNm0caa%wI#3+%jE?63lpltagoVY zhns6Bppg6RpOiw^@LR_!9#<@;>|vsz9!@^EcU2uP8YORs=OMZ+;0IWMe;+`0!UW;| zJMTvvr6Y~st|Ktc;{7O#g0AW$?SH_0mnicsmPl;fv898;8xQaF$o}(o6$NJ4VUUBp1;71joLX@%VGl4n7{%kkOyYhat$H1ExhdEhgT&qot>G(|U zV5=aPh@|41jtj>R88k8LZ0D*3AN=2E0*@GGTjMsPR^Qw(#6BOGefGpTx72{HVaaP! z{hOTp?i3FCVti%K%HX0OCnPMW3vZl~g>OuYF80MAWv$97?R@xPL)6}IuJZC6%fOt5 zz%%DFjs>~6V)1|NUokN`YWY{u8eOgk{4^3a03nju5{ z;^6I;Z?C~CjXd)@{Eh3`*%=G@<$+WboG}pbQ8uLmZCR7`GUofk5w3#F z;FE4pV0$=zaL_+LD|qZwpWy`*=zAlYQgzXBDOU5wRzdyv;mIc($7hsPPKtKOC|*R< z552nJo|RXDoZpOkyJ#R498+oEhEvhka_Cb#&o_4kW})}$?Z+o`>gJq*z}*?tbfdtm{#dp>bq0X^~Eh}JISt{vwKAxwV9Z|% z`e*W%9Ul8e7o2pAxn0<>))v$D-GhpEc6dyS#zX3%m-$pv=c-+OOEcxoYd@_Few;XGArZ# z(ubeIr}E1??BciX+oE2BZ$2@3<*@GY*4NHwW~kAu0&4mKkRu<$nfr<}p>7Wy#nCm~ z01I~80`)xI&FcNqwE+iLE?x(f&VgNGxe=!9H>}~?d<}1fvGcWm=qy5?l!)Ad7^x6a zeSMmq75HySCOJCp%8%9#l6QMY? z1_z#*h}U$r?)UsZ#@pdI=jEcNj3`2Y0@P6sj;ZFobaH4UROfMo_j0IN3Y=_~$vPT8V9@a;Ath8t;)p;g=IkZ`OC9VC4tM@C#DyM}^`m_XN z2{_O|1=lRMvoIE-;5t6zWZzM;iia|;MTA%KN!g<=`B*-Tf0g_Lu7LW!qa0_sGz%Uc zl8#vO31^^Zs?Ip(M|-_;we1S!MlqgSm{!wT;bs)y#X~~Fyx}y;Wgqou^^Lpiq-3kU zy}|oj!Tz%It`2DyUDq4}>#1SMj7d$)_~P0B*sKoLI@zNRL9i??<7II(AO9FLVq=9Z zjX_Q%n3OYDXDcU$p*{3Fb2fZ4r7|#JegTAwxzRA!f$BGY7`zvTkb6P5vs{vKSQyUg z;KE+U^YD?Z4EDz9v3Yl29kS>2$ZN?Rvr{G}-^WIsgq3oXul~w`D4TyDzp^!{{$w0} z>z{5LEZYY3!Zx1-qf3KUS|>`oA{43}K8I!)sczqJBhGDn2CDFr=738xE}@JL2N3?v zIJ&%=xEnVOr$=tPSv)z_@Pgki=K|b+X6IdSJ_B;9QyNO0+>hX6Zfe55KUl%FVvgup zuHamm&(1J)O&kppccS?hl|9mgPzP#4sCUdK_n_~&;JV54_V=Qd^cf4e*?Ieqnhc)< zhq*TOvj;fCHABQPadKiyx5G@pn3(JtZkEqp^IRN`=UQBnW^@I=f8FuZ{zr=``@@gU zA_26>FsQn3KD9`{IX7USI&&-Pj3G0n62ObzqK1zkYc0k?*qU8GnE#`1{W7l2Gzkaura->f(T!hny+UtEVZ zuU>mo7~kP35BtBBdwHg9qJQiy#2d3hz=`1NrJ0AO*S+%W?zOhKNE|C$Zg~RtQ8Av! zy;w8&f8+B9H^-(#li7e?Z$NP-=!2`T;vZtY4K_pl($^o}V;E^U6Fe;+>d+jvPCb!; zImt(e(X$O+4i3QA&J21OB=^|!(uOp3nT;DlhNF)s^jSepj-Gd2=}~zDq_4ZC1*978 zPOwYLN(*s2yGRA(IsM+sO{z_$jfXcd47zq8Xf%H~$rb4oK-e9i8T>0rjhJW#T#dmK z=WQx<2VG;A%iDg9p#zRP@WoaYa$o}157f5lf>_Uz={ilB8D)W@9PR`WiX;V z#HX>O%8L~X!^pkR6;)PI~3A$H21V28kX{FDK~_ni}T1 znxJGL+~)FiU}Rc6tGlZewva@qGNZI0xRRXeR%3HxCFZih^&g6iOacqm+;wR^7?oCk z9~5(bR9*B_xNCdXk-_F83l$#KX$@R8*ob^Bd%@sK&oun|k!?oyAfw=eSX@7rSn-8N z>R~eTnA5$PKDeAGNevhZ{tQQ)aTyUmC97u#a;u9TS8Xrn9tN(ypJHK&8T=>YKROADLZ}bAFcjM2Gkuv7-*EK zx0<{1H@}U3y9nJto{NFg^{ zOd8x|xrs+|HEpZ|_}{WmJ3bSzxTr8Z`G}lqMQ`XSA+>wIX$7wgQf<#@(1%C~#o^`? zK1^;tfgMBrh;9^Sfs;2Te^wxdZMpx+DiqH!*a#=h(^HHP;N2((cwcQ-6Y{C|H-6MI zGoePwvm*mv76JMSOa}Pm)3|b71-2>#xX5!dDqwhu#vt4YG#Um+ggIo)~4u=jP7dMv@o9kN-_S%$+klolaqoP}EEk#CBOnoGlkeMg4dDz2^@K-tk^8j@ZEwMHAkm11P#peKa$(o-v-idEO*unn zD0g$!w>!}@hZz}5_f-F|RxH^A2$siZU)?$_0r}ZTfebbI`>vX z%+(!Z4%Lszx`}d$-cDH=c4hZf{#Mc$C$eTlJ51!opssPB%|F;M=4HYPybf+@O;{U) zTS@K8KEw%ow0bYn73!u^vT;?gEe_ahNs)jGDOR_vyKj;#!8% zw1LvsEV$6l2YI(>avIxU1CAJOWvh8Zdc<{Mu3XtkWL}2!ssURefAvKi5uj_>efj|P z3k^|G{^%#ct;oO}fb0XteEn+e=C#MYUuR~Z+cc)Qvr>;MkKN_{@yAdUYwM(Z*gf&i ztRgu$W7TV=f@J(KGrtQwA+HW^s20F~&}_}E6j0i-?%U1}QL`j9l)YCp3GNs6?rF)z~s z_F2lg_kY~ znbea9QWy~CV`#HJRGu3NH(aSuwbKK8fr)zF$;f=>;&m`r^+<1IJ0q@6+g0v27GT^o zdbNtV?dp)Y&?nY3EYtT?Dgqe?^X<4lq=Ek0X$_5g@r)ZK@c%(bSIA4v*}oQ!nyh#L z+&YMvuNSo%6`u!}jNN~sTy89+pX?&e3c!j#;S~4ye3f!Jx+V&yn?)K)we4QW874Ig zT~MgNnhgJg-j$sLwd;U514ob+113<1Z~r-kl4jcWE*rc?!!Ao{KMc4{nlw0*{rMpB zXa-Kz2vv0T7nlK>GKaG&U?tRh<*`1 zqezmE$>%w*QY*k!iJa4&zy=9REtetNf*CVY62_mWBS5&mOp9ks)1N+0)sqnaLazGr@=5fTZcpqXt6DL8CnW~QOs@r`ULsPMP&n6fg~ z!YMRt!kzE!&CVFpnv6=Bq#1lYGZQa_?XhaIAsmVxQ2Qr zdHYDQ5&#fDv_+U`x;VZkeZ3$IWxmZ3MpKNoP(W}Xqb2{YlG{jfY)V(Ms|vYY<(n63%&(wurRuMt?TKFy?$BUW#qNA zT{CYd<)-aoMTh=05DeRzo(hlZ$nOG}0!jQR(J?YE{;~K}_Sm(5W zB`|7sD{{h{Dhk6JD+?7M4@S9M$ZK|0S88%T%U;7kzAeZn?x-$whw41&=$&8ID*!T@ z*B7_?7vuB};&}CNiuGuVK^3BWg>Q}tlp2qmYPpPk=IuMX`Z8tVF)F^|*^*Z73#P#< zfKkj2c41IY7q!os#_@{lo0M4N70hJQ1cANr3awOBw=n!_3Z_ZbQ6Es zwjp8VYwG>GW^Pf@TR@vxD&COEzl8iU>H`oMkHSh#NiK6n7XKyKDitNu)zbM2ZS5b8 zq}bvu|KarVpWwbsldBhKaLHMq(HI!h3br+%;M;0)S{c{oXAfC`@JjZ$o}t$Q0)8kcYPu_pC1w)D?l`- zu84SGvLS7Plss^++1KMntk+Q|X`M*St2O{*e{Y9wRxqtd!8TUoxbFNZ6@^mgM_oE$ zp{Ne2D}d(PxcJ)58(DZ&`WQ-zXtY^(!T)c8D>8TgMZqZI0QK8wDhWnOT$Z*!wL=U? zN>t3B#_nP)D`$x`yaJ4s@mq0Xx>jw`*X$^`Z@~d_ed=SI`xMM~-CnF}W3__A<$3O0 z8@-0;XqMOhV#Doot6}#QJXaO3xhVf>n6xdJmEm|Qc_ZEhDT~~f)3cjJivi4c6vQLN zqnFyS;G*ISIA2Mtz@N(w%@)W=K1K>u)n=sIHrf=LWiv(q+{I3|?e^p$u});E4iK+0 zV~YeBCUySl&f^Nn!fnax6RzTLO|miMaES+f9f;^_L&UZ@-BIwg{|PA{MY)Qc-7BCB z^>P(tDCF+#ib>n#H&J{hK(A6yQzjBgV)pm3NGt~FeYtp>FLnc^Hu3n^MAJ$NnFv;U z@Wvn)r|}6rn=ULn^toPh5g-AL%2+^P4!`+r^zEL2)0kjV!s_L8O1KyD8|j(F+wx$C zQR%{9(mVMmw%k7FZziT*(M^aJp`j#1XdIPPmJwK>v`?zk-j95HS#pED_s&tg8HkQm*_GeXa z3?dXb;?E=_GqZbm$tSaoAD%l~~}0?ue7q|w0cZE9>6iei+3qpE8? z7gX+P3fWxODJlG4E_P+5iZDOr{%Y#tF`#1M)TKn!6?Q1;V8e?3S&_WUn#qh%fYfUV znR2Ij^iE8?o4FA;=yCAuD4d^iN=H|r0-8SFkDCd$=sq6&sfw|$Pv$(smV zqrj8os3OJ{a7VeINM_m+1ucq%r!F}=JIW0gc+a#|MX9Nm56DgN@OxfTirBtVoh=Xk zZeQ*F=Q*h~$wO5bJL|T!_%D?Y;l<)v1%+p0trEs+%=_8$ z=3T$}1uc7m@(&zX7FBzo@NyAr9FeI>J}fjDe>D@H8CCJ{%&ZB6S02T!f+`Ok)T`0b z@O!1|M-2u>J~mc8F16XGMT#*vscGZ%5Qf=EJMU1*w8YSZ4c|e$!ZOhWBG+r|2VhD? zD>>v|nk$BorIbQnXbUDpD7jWTR@N7QP(Th_Rn^#RY*`Xz8p(^@jN=dQX!&8J8=E3+`Q5JO3Qf!Is zYwt}K9=CC$jRuQVg64-+N#Kxnyb&_5wF-l`EeDRkw8*fEbcXO#HpbMp?h`^Pbl`W& z>QB=N8`d^@;KV%sR{$fGT@99la07dgi6kT@D<&kMid#D#cdXlHcp|6@YY_K zEg;6KL$%{%PK=Q!U(2k0gAoUoYGtp{m~0GK2&>o;=odht?kSBNu)g}eoZ@c)XZRdd zMS50FMpi+_da>wH+H*#c0G1hL|Ap^^N z&lr^w|2eZ>d+~8Vh9A(TqPWhvX~9zBj3q_Lh9&qcwLxJJ!cEu@W}3zRv7H(;1~wj=TqFlojcG>qCsqd}O~Z{`x%w-@-@(_7&TG163mG7* zM7SJa?!V2?5iBYb&pcRCBx=i%DpF^gPfk^dVAhHXam5{A*0>}qA}2%dgfbqWmWdTS zvIWEil=!z}MKh1^jN#!qr4O(R-oIbD_i`~>QhG>B$`X&fOUjG0o#FEH|3HeOP!cHF zDV@Ydu%#kCq^|2y)s@mU^U6xGzS5YoAdihDovT*-%{>5KHyM-^9cxuX=$YBdrla^G zX@(QKM1}R(uF5KCl#>*7V*Dxq2tU*dFtl$51N88x6=`xEyvD4zHlmi4)f$>-msx5{ z|Etp6$=K~j>}T%H4nB?$T9LhK-43w%L1O!(?ca=QdLN}l^x+^=7UvORS2k33dbKv zR;0fiHnzlRK;yX7Z%EcmrCPO?6Fy3+Hzdh`x)m5`5SQ%UkhdrpOjhxBbIQ=mWn%Cy zf~}a#28&nsJH&lfyb3=#rJ*n)ta2vc!i-42} zw$4ASOlX)EvQJsY%vN~2cmEmTka5f66$L7g2l2qQ)=cnDdF;X)=)IXrU<7;4xO2*+ znQt<)jJjUMyNR!_a16nJ!maBKIY>lv3TkHcNNcYQA4-Mg?;8fS)=fF9U71FSOSu^Q z&t(hWg7qbni;7@LDle~n()3L!t*F^@t%G3pZSLqfooo)i<6wOgT&0_y3tiM!3u^b41 zLn|}Wi|v>=I{rW^(JlL66fAqvQ(uaCMUj{aDg!E48-!Ni`JWeOv0@5m2&q4bJZSlT z;~&H(AnnPDW}xY(FsIH(FiFS zLPraLh|Gbi4=8#J$v0R{DSVnmV^=Ug>x#;rFm);ILmWNOJyt^}tnibERWE7k4b`p2 zS4ZOolYnFbgm=4-?y7d9Bp1VuiJ7;@=B8B$3SOBcQG*;DxP6HaR^++s;mF0Y(rtDC zpk3^N>bS{ogMdsobS!M}LW?Ou;4J(w;WZ#QOWE=yMqx$9XT9&w>;?dY>{?YKfG~>0 z1m{2&jhbfblF>k@;2(qOlu^ zyU;wTftC>scLc9S>XJAVkjesZO{SV$Hf%a}DV&XJROVDGGCx0FH=T;%p&QVgSTpqpanFzvLfjWR5v}HEOq1`$> z^K!onOJ}{9Hf!Mb@7hk7w$Up5^H%lWwW1mYjfN8QCN>)Bk-0xPV(4njzt7 ztP@=r4XR`q5;Jxc&mK-|zY4n|A5NSg!`079<2r;Y`R#}8W&(~#x2!Q&Gi((x3TsEe zu1wFhxOUoh_-w$W?`9+oPm#jZQpG*EmQ{En!efQTL1{nLHbr;1a1EfSLwHNemSkDK z^{!Ulp%``5v#EO3k4`WqDio_DT#Zyk2_LVZSQ?5^P=UParE#~i*K9x4>jXHz4&1`R zB0XB2nqfPf-c!Ahl*9_2y0cf>N$9;doqdvam{hWF)s`sV%8EnNhM*fk0dmy@+3NlA zs%Rvn4&)RQ?JoRPbp}mfg(C$ep&XQ+Bk;bhI6ClwXkLy?>QW5pDRI{co{f4;Sz(Txk=G)F{jgRuFM7x>Z zVVl()J9UM=FVn`+V<bnX&JgIUF|H7K_55iF3=|BGHUt6)tRyBtiCq~!fP&Jvdv{LNL z9Y1CRveP*S1W;l3qb$PeVf-6XQN^^nI$Q^bO}5_e6NYs|B-{Ykpcw+K8(HPb(l!tf zVRKVagRmKuDhgnL@&)72a0T?f?(w*&WaBwfq(MM}BfY?41Qy3zR6&SCt*KJjKu!rn z5f`nuOYE$wY{Y|e^U{MOHC=4X^3{%&2tDmf(|*1eveF7C zn*JX)!IWK!yf6S968&5uOF+z@@-DLc)$BgzCRY@Ws=1-}7RwQ({jpRIsJy2zQ;~(( zH{jxw^oKI^6~4bk|V!>9v@VrHYPZ#l=uIN->qFSMve&vzTWMu9 z9!L+dT9h_~1DJW+V&_~al&t4WB_Y|vl3Lo(O=FRa3sF_VY9XaiLXxtTJF{qi0216U8@S)tpCSaRvMj{2MgaS{LsJvjisC>H&In?ADxMF5R2~PyX zNzA#E54WG%V_3tJ?d90e)GZ2uYuTQ0*;*D(5#1VXWn9?v5S_8}6rxAAnnGJ|;}wl8 z2-iymibnXOJ)CrzEFmjf@xJ5-bzEXH2*uaGN4*AUAB|N}X(MwKqHP{?6vBl73gLSI zm;i;uF}VB=+8j5AC5Bsk6Su=-Pm@FH;xn-lbY|s*<|W09{O8s1GrdnqB0=Nj4x)1t zU@9l$+D>E_;`}DcwDpk)y|bc6TzxaIG;IA`D<_RTjh+#HGkZI#gGyPv5lcFyxK+KL zQL*Y9*0iz4?FX7h}IL4O&pOyeBYw0FIHL*>p z9YA4$A5po3TBmN!sv}EF^h=(=$Sa_kRsh%V6fGm8*SOYQ5vdZDrqQ%F4xue`!kOV{ z9$-=roob;{b}9&BNzuIliqvvY=^M1O2n9kOtpx=l<`|5kp;f?NzhI(>Vm*o?SJaQD zaM2v*zOqG1L<#^{Xvs=EJG$SrUDYWtg5iKfGAu?}OsK$NGl0|nS^*7Y0FCUY%JJ&m zDB2owzZrWrv?-0HnSoPtACLN}EMqD|$qAuvfZ`nHnHS-2qKh-E?L0J0T6oq6J79nj z)L#aqt9AzGOS4E9%7k#os>l0;WFVjsZj#gqi$}MnSPlAm@I-9?m*!?hCdg1tS)o7) z3<365b(P@ow#6RUK=4bzlWP2-<+G2btNH#IUL_=!oHoSFTsJZ(ON_B@e}`w;01>_lEAQ4X*r&wZU4hf$~>+MnWMz z%B4v0f>6~uwotB37$l|$f^6U|xxl)j5RQMUoMf7$#C`e|W>}c!P#rmHc@z#G zJ8d88uSqr(RW*qPIcrTYhC{i~?8lqtf5*28-z4BXswb~KYT z3M`7tg`H1Y`?SVys0QOEt`XA-{=pm#;7ZS0%5Ma@aAUmLVUNrlH{ zi#qnS@Q5*k%jQVrkTj1aCseNk10kTRS&o*1C~8&YRh2jYmr)n=C!LJPB1efO;=S2cA$jLgd3 zoSFLxIwZdW>r%;>>&|xc&Y&dailzB0)O~SV_lBkkU=)%&nvl(>Xf@EuY}oKpW*|+H z7wTMeore9Mjr<>(i)PuI72)%%&qgeeWNzV%8-|zIIUM5!vQ6et%%S9yc{R_X#)D8t}ld7+BVY`ByU%0H)Q<{R%u(A4&f5rukC)Sn487P>O*X=NEJi`my>HU4Z6|R7(Kax}oe|k`02ue7Xr0+rvX;$(BJx!B7PUTaY*(}pgz4nw=ZyE%x zF5n@ynHsY!I#S>Y!AcMM+U4wQ!E4q$H4144Ctm9FUH-q91f9&{cwq)eo$j0djeM851E zT5n*@VFFvEQNC5#2kl`k0LCBXafEQDu9-prDqK$+2Nv?wN47WcJ}5!~1%Zl{{R?+^ z$gf@_E`ShQDN5`$h)treC|xSWRI!D6QO&IpXX~;^zwGVn-!i&K$3jp9T!Y}loYq?X zg4!Lxk1cvlSDuer)^6nucQQEC5in|O5pT_cYuI##A?`lsZh2yaXTh|prU!*CzR_t{ z>6YTZK=BZMW_n~AD%5#Mw0taLpP`8Xx55ztNfwCTB6kucF)pU&o*ehwcGRH~hN4=` zIAh~d`X(uZ!%n=#tUR14N|adhi=Q*Ly@E*jja*}YK}?jbvq%fklMkqm>fLu!EaWLz zF)ZgpBf~hax#u&r(mYxM^FjwCfP%4y4tt{^iuVqnsCv1CDLH3&kQc*!3wG#7@3o_3F1)kzrB*G1ZRm^m-jza zhVpcV%Am`_;9Oblq;Dp(b_Zyq?M0I?m-soYumKq^IZ&t=r4b}+V{|E;71U^9TeBd> zm=IJaQrHt~zXR1zv=K;e5$c7!rX`&B8s53}v;s{5Gg)gQ%KG|PmwtW3ue zzW7d0z_NL0OjEV-SE!b%judP#i)xTP(M>z-^4xz4SchE>HRkPPakvXeKpsR!O45u3 zwL+VKqLqRgc`MeXXbF{aziueMsYC)@Qj)6GM4Gc@zo`IIQeOa1@{yRz-y~3^B(?Ju z`eh=Y-81JU9zhpu(*RGE2uXfWMX$t4L+_!@!@8psAyf)8wu|CtZloOQ=u?FIf zmbfA&Wr$!jg(2DvMfq&gwi@-dj+EQbyIa)P0=E?}8fobsaG&?Eg>4#pEgKEEH_>1s zz=Gu>waBi3Dq>r1vuJIS#`SLsJ)<;0%_}|BWNgOaQ@H|C`?z?8+@N}a_pQC6kr&0z z6ZOu$;;AC3!=E3Ns2m_qYH=$yB_s7AAltMFbV83p!4^-$XK1cfa!1B+7PC0d}DsMwr@z8tB2%Lvy8rV{r*RyXg_q*2|p zX3HI8+(y_z^-(~*X%?%%Eh{dQdsh~LwnlQ?Bs!#(CN!^pZ{M$ng9EP#Vatl9xF8dZ zqs`+OH3HP3@h4iU7~B+|3|SqVs<`#}GD8UO@jDE-3KXE5)BJiTUX5+ zF!l_HBtlmD-?BYPwI4W1ItO3gi!=n`4*G+H;$?@2O5{?u5#YlAeIZOC$UjQiY6w za0%^4p;Ad~VJjD`t5T zGJ4oa>=))wQ(sws1c{I*0@is+AwKQHgZ(@(Hq7y$cmX*QSwBw2CqqaYpqoPNRvr}Z zB3O_lbgCsSf7xMxh?v8y$;O?Nncyy(R7(9D}b^2eVMw4y|m`AICq% z(WKeZywy#3E0xJ(E097LJQ%DEz_)*+WT~|IDqKOYQ?A9NWvK-r&3qGCV99z)k)hg= zDs3uA5u4YQ9)yocYkwNqBclsZHd}KcDqkUn6=T30Q_+Fhk&tRwRGD8QnR_t26-;MpoYa#pa_8TkuB*VwJAh)S~+d~ya5rYj`U6@1eC^-$Ve1@ z@wFlu|G>Hn`c-41R*>Z7C^)kmNqomIP9_g}X4yR4dy|C2%65~C;3&OuhH|{>JV}O2 z3>X$~+p~X{f^joctBy#E{1*S1W##-9a(D!oL*UWVh4wJMKNkdd0?>w*Lq~;m zY~Hsu#H)FSCsv5ad4Um%x?Acnu74jQP-wGIC1p&W}o?NvPkTK;jd~ z=u)zB*K@AT&{=GT_8%OB6@R&O`=%bEA$Q2vL9m%RaBWj7?_xTckim zHH2wwU1U@#o?75c+tuct_Xy4RV^Jo6wJxHliarCQhU!t6|BVGtm5DIQp^Z3c}}CiP-4^ZXe1zVh!AmHw=46lO@fmSdVchsc*9#v6!N% z8MXNSsa_5f$0sbSD|&W}xyB^qBscd#vu~a~n`s-ztW1kkHA8k{}CGs zMJALLxM|c;ywwqMIxqhd3&`?L59oY^Lt!+bCI{O9_JRtHy~LI4i%mGe%^!swEt?+= zN@&&89%K|^MH#TXQovUyxk3M&Q~F9IrDIc^yW-Cw&8&o6pMs*7lMhbhzVkk{asV@I z!$=51UNylttSf|#p#*9ayM>#nN8))BPWFHpO&J*9w43qaYC+B-nQD}nq$X|A`p#(7 znbTs!sbQ^U`L3^v>&0H>*fwJMIOngLmK0)+F>kQj9LJLa!ne-mQ@T{P)v{&b~b4K-KmakG`6y&~9!q#I7w5X%>8VU8~vt0K^Y`s>R7^!p9#`4KNw4hYN4N7J) z_TMgH?Z)}}KvZWU*-lY?@vg^{RGQ1VGNZu?FY3}biR%-iWc>`{}v z4iNUx5B{tad@*{sAcmJp`?@WmyHQ&e$y`RJ^i(;^*YUjao82~Tf%)JTPXOwM)#s}G zyyy-+gwedFe_5^hC#=ya>wXq*GK34!OVJJ zm!~l5i&1+yXzo6v0<)#jdBFDkq2j706zgvH1H@-fLZ+2-fv}BcABUH|N4Mdwej+}3 z*Kg0&7yZUI)^}Iv=9WR^-EiRu*b3fc;!l^0Vv2i@_nH2@6Yieq!+MOI?Zl5Pd2x zbtk_7EwM_)*zhtG?S2v{mv)`Ich$O^v#YMGyg4;#-P6)f zOD$5;3(ibAx1bjs%S2BNheUND-bIk7S`4!F-5vu{jIuR#uuDG+J;r`CsmEH!p~Ei z>N_tD-8A+Vlac7Bj}x^6C9j}f^G3<)ix00)PGyCgL_p&TP^TM&o?6Js>1EnX0_F>8 zNxKHR10jU+=9(%VLnQ=X?MYmzioJaD-&9B23Ux#Y^f*zJFi}yEoT%C_uJo&bWTjaS zP6=X%BR7qDvzUrN9D_S@xLllL>Ysp)f!D-)Tg_S!h7bQE6XM2It0xcq` zbP7Qz8Al&!--k4BlfP^nkJDhK|_x*bH{}?R%jK(AF~ZZ`hh(O!s?O+tw`?MvO+yoNGY1mOC(d?csN zD{K%Cn3PbT;dN`0##$#Wm}G%W!C+lNiajdA zNTX#m^+zb8!UXd=HCbAwY~an&Y=HSLXyrMGg*=E$X)e;rTn>W_<7}fN!^m8a^N_z+l@MG`RS9v6nLkdIDu3m*P0GAbU9aW+ZQA_n z@jbgr#4xJ15@VU7e9crNS>=BN?}3@c0+Cvk@(wlu%Y>-jo7{#KpZ-;7l-$Vd$0}K0#a+#YF_nlt zAC*^JQFwN^b-$p|DC$7v3jVLe|5WHyEt0?sZ1Pu|os2PDgOquKbU`tdt}(058z%zn zyCyqKZb_B3C3Fr>M`Mm=L7>N>vN)tzKjRZxU$W$BUDq5JccGym!IMEK?qf^8EM?MoXU^y-*=XNS{-04 ziq#ig!@J6%ikefR41(wG35|@Zsnw;P zcGOfAASTM4YV(5g;^r(a5pL4FkleAsMoQq8DfVmUpO z;POgF@a7(nqUTWF@`r}}mbBcaSHT3}TO zqM5GM6)p}mK)~o;P{cBh*gFVo3O|t6}!rvOFJ(RvC zZC7~mNFjT$)6wDzxb<+aHLj>*f({G`85XT(LcWhImHSCa+NfKjvXdraC$iLJ)ZDtl=9-M=rtIdi@Xl;ElZ+?@6Ej)gK=E%WFU^;|!dzRD4{l9^ zGA>e8yo~E8Yz``&UMKFblkykR+ecd^^!af0C!>WS*E|+?1O{y0NQS+tRg~o8@gVJo ztr*0UJWloEjg32 zBdZF$lZT~DvN2f_&aZAsm<3cr)feref^MpzH6Ky+Oxt~`w>ZxpmP8lu1@y^<1PaSS zI|mm*n+t*KQr!Qi!lp9S$)f4FN)Iy&Lj|R1=bo7WUGDoHhFgye8>&RY8YW__sxDEJ zT<7DZi<$#dIJB~XV*@)3G}rw3H4oSRsVh{MNr zmlio2?nP5?3v)K|Ep;`Q>Q|AsQBa(v*yO&Yv4zsDRLNmMiY|)zfZoE}K@B_$Bn7IM zI7GHSz&Yqi6CT4dV$L|!wDiEtW!Ns-;UVJCh_Kmjf=m0@<&l+I_eC9nhP)MLUe}b7 zbC_TG@X(TdkdHCRa+(^W=EvZ&nc6G36;4K=DW|bPl9itF8Iqs6(7Y(8Xv(C`0R2RQ z`i7zonl4|@Y_-0c%`+^ZzeukK?_yL@HOt(H$-&=3S(SUysFS7SE=>uZ4RKS8Ge+Ht zgIqN@wVC_r+o(y}JOg(J-(&Ux4}mfxsOBCJO1R)_&izG|?WUt4yec_2(ihBtO5QZG{`wwPi(|lUk+?xE zmX_vSSJ+%VMwLse{jai^JV269{mr40)e1-KLui8dk@>~URa%$v@D#Q!VR=oB$CMYS zNAix<@kujo*zW=r$7HptN;wK1P$ke6bX_WmUMnyeS3vxN&dWgAjZ)B)6J*SUDo=;Z zFUx)c+VFS7m{V*-B8_=s==k|qQcqT@mKK9Gm$K?bvqgo*IU{4}1+P znG5Fs^eL*F6{Eq4*Au<>c-z*OoK=|9hU%HOF)49q_9-q!XDcc#(F2R-*z|L8 zAU^In&$*ZnJVM?=G)HlzhZ{`VV7CX8rvi`6S=a?RCFg~{josm3MY1Go6`O@c&ukT`fgPw=7LB_0tT5%%L~>-e9|0?dh$WBn`oOp~gYj&$POx86<;{T*Vq3zCpRm+F7edgigR4LOE>}t=T zzy!)%`V|R&VNk8p?{h~d2VfQ{4^&$>u3g2Q0rFU@&eW5z$ z0-JY8oG9Zz9DYLK4q3hp|A(-5kE^oUy2mR|dMt&G)+seKH6(ADf|wv`X%Epo_0vO_@r^#omq*?PLP>J(WC~gA}d;~ z;L@z=WknD%|4?v}6^}(QrptUO!E#bq03_V9_aXD3#KxITFRG{w<7MZR8iJq>LcF!} z3Tn5OfQk=j|Iee?NX(~(dl1r}z|T>jK>lh}HdOCE6_Ie}kzrOmfe zJ%cB2?8^GPBYKM~IWI`%nW2))9}H}Lm={Z5b`Y)h<~co@J6K2MacWbl<+l24`0HI` z79y}A4^}^sq>i%~R!^fOV1dY_HG7?-j%SZWwb6zz4`t2)-s~IB6+EcBR!cxS2pxDx zfOj4p6ulmTViBo`aa#|QDGkS2SROBv&BBI@>(dmPc~V7c;SuUq%bG*1{~gpv$xyk;!1n-K)rZeJkk9y zt|GClo35{930Bn6eD1wqmiPFg%?6MR_t)dH0_S0;Q=29%s87G=3{#Zr)1&)N4DK6W zDz^j>GsuU9H^?lE6?TL>Jw6E`{)aa!`a9;M-9;2eO z*64UP+ctfskgSDc?1O(h?Gm!XHmKs@sS^if8Ri>T8mZDuZ2GzGw?_PoJTs^-a}D!q zZO5c|I-d)p(CuJE*?oJc04^5DMvR(RSRf)=HHn4VbS0rY2ttxBd)S=911%$`_u-FB zItXdBeGLe{ex*P6GX$4>ohZiI^M}-?0OE2k;t(5@{Xe)s%>K%RA3!K#Yhd+Y^AJuo zJ7p?aJJQTZ7Va0qOff4!SEA2}LJfgKDaMQZ>aY;wq}`he9>SohMUeC9{btzLmHGjs zGTz$$I1_33s~R=My<}gzoDQ9yDnSHnX>OKPHhtBDZn@`eWDPv38})9(<`QktvNM+K zPgpM}l=-@cg5QVtwQtLn%gl!T+$E>@+u+G9l`qtf(YLL0S`M+AcVjXI2q&S1O z!q4Kifs1kT0a$vOKMW{c=Y>}q43KSu@rMwEe2#=;X7KZpcxEUT4BIhVyAsLOyUyX1_x_}`UI}7}+8-N&e|H)7L%`*qpvLvBYsf3P zOrXGm0A4##I?$U-HTU}BFExp7x%rm7ZmtIdp>Sn)(^_-+CgBTwPn~Es|1Fp$nM`9U zy{d3=Yz6UjA8aljsF2zDaV$hxc{ipnh((2VL9A90z>D9j#jGWv#mq~N_C#-F?ko-? zrgi7m#Iv}-6i3ql*k45a04X@fv6L5Ks2xrRhx^ek!hGoANE5oeU~6CZRnH5{;};D4 zBx_UeF#&9#!>=o&3_++aSO6d1^9LL`E6Bo`#)9VG*CegjP8tZ$!%r^R9{@Lr%#Q|~ zgpY~~u*J2B-HZJYH~%YP4K|xExEsBJuX6Yee^zDyaQ7h;tY4pC#CkoQoG7h34x?z! z*|X`Bsjfmh{6@fuMDwp2g0uL$X1A-AFc9VtIat)jZw?cWSvGO~S5PdP)uv)S_S)0o zUJ3ry|LjBh$k^FjmO1F(#FL`y;{E<6??`{-L;}nlp*-02iU$+h&AfD3tAKBN&m}?yY6_?&kg11BY z;5M=_uIGZU7V;e8587D8)%e2xP%lhGcZrFGDo~-W$kvg>4C2+S%taaTowBCgP}3<$ z>X$O(WnVB+tCAMtXal-3eQq+I5mhfM4O+2c0iSa*HsJ-@y$bE+RX0UtX@=gAz0ILc zPB-eh^g?rdhqKk4ZgrTdJIo-7COW*mdR5c$a)c=JWz%mH{aZj zj9zZ<6qIG>-$+O6*8Nk>btVNGezw}A)m_X(Qs6>CI2q9e7^(oKfXnY$97_o{I0`7+ zC1%@~F9iscHOj;$hn+j`QK3>zp4`#KebT@Lt z#y2NB2?eThpV1pY^1!8w{JXT&6>5C4&0*HpQ6jyHDH>m5rST;yoHZGO0xtiG?P|BK(3ooRQfA-R!MD4@ zb9f&7kYEE*Zn^F{lnuwJa_-${_<>ObEQt!qu&kG`KT)Qy>@{Ig@Mj?M;jXt$-SXG~ z51#)XFxno&PBRBQ<;o1J1Nu616oe*<5?S!@W~Z@?nP`JxslmKu8?AN%aGJTWmo)EK zK(~R&>#%UnXovJbrblK*fqduWa(H&1-PXYwOVHL-Ll!t_(JMUWvTNPUIS86_=L1C` zSTP#T(>PM2poI)+4z{RNqwg*`VIifv`pTTqx3-sqY)t50nDvZv+baV{7kWrDkRp=q zvw#2y82BUBHQ-^$Q`z1MJmkJB=IqYYx$|e)BdlN02V9G`J_c^Qa2$SRUn1Y6upp*Z zZe?>VDNqn4G!9^*t=GQ9BhEG8U>!6-V1*FgitFh>03Y-}KMrlQ#mlP%WfYVG!r4`h z1H!F*6l9f5G3O#XV8^FDJK_v7ZWf#&lK~=UxhyDr9L^B_xb_6^v5UcNu_y%9k_0~U zW<>pKh@NV@^z(U`@X=e~*Kr>b_vZMl_6Y9$RN~$AJ-F@0VLI=;<3VGo5F`qu!N8dg z^Jj2ZTq63m;z0)pgNdGQ6FrS$exeSYou_;Nvre79#}D~qRpx>XC-Vy+vOV>sJ~QZT zuy0!*M#@!vfNykOdYjhfwzm?xUtnNkk?Xt;2_yKqF4$u# zdVe{!q2se&LV)nNg%M{M_UAE`W#d zve$k*Bank}n6F^YEWti|>X%~Q&kWuwEPbJz#$^4$?TO-ZhzFC`v)?Jn&tY?P(1VZ! zcumVGSi$gtKe0l4rGjx6Kw&G;Ez=eheH%(RUaPBeFwKU6@(uxwAP&l$1;MfMHD9P4 zcN%}q;HFkbpc0cc=`3mH{)c$4{l}+;+230s=8_Ig*uPLo6PT{0Co0bi>VIl{HrN$O z!iW>)QOcLha(oJkerWe^R<6Qga{So-nDE811?ojnlswP+{5q2$Ipguw0SH7Q%;UrX z9AtkF+=x?^%qQ`%$?J*4_5@sZkg_{Da3+z^>+}7YlhS6?wCin9!$4js`8S@FAwk2_ zIb8uBa>uvDyrrFIww51BdqtU5Ng?~BbwB;)We~b*T%1777@^(Dv%LmOnvLiLAGxp- zEmHhZ``i*9fC=~!8V;=xuvr1bjPQ*d$&&q`s>ws3g8I#aM@IjM9ti(VT4wsExci=q#O#C!zv8tLYR@;H}eHVQyqq7j%iXCfeEH{ zPv0cvc)43ljBPs(f9icG7DJjPT#M98G~A?chcZ^Pb6@K7X<>nM8WIc>!3!!CLIuJ(v&lp3#rmcv^)R+f@_^4W-a`A;1{Xsk3P0fTd{pL$f zq$CD_L{0+SEWK$%<6xKl_OFrWW)7V)RW2|&o@Jv zBsh~_RUX2!#eS51qX-b%_?evl1=bN&Z*vdZPhgL|r;2&nCULdXsHZ8W_L_(4MS#qR zjt8m9%J<$X+Oh=TWJ;V%lCB1F=5#8mSe<{#cS4}&j71l4VgL zkAfXG#lt|N5F^cV!ZCfd65-~|QC?wqvS9+U6XC|&;~@bVt`C^N15YTz3gVy>95SH* z5I%((=(F?dOE4P~R#) z)feYXTSGj|poSPD2^s`zmgFm{=G~eRoHTDiU3&91>0+9&zmmYi*?J(-lO*6Ddr&KU zNgcB#w{=d#G7{OoB35OM+%2|sPxVOz+Erkl{nc#Q!%pKdY$QzClS08y{OQBOb}*yU zZn}bD%7+jg!)Ppm9UeYchKuyOj-SgT#pOa9C%s2Et zW66UNcty%pcO9_B1UPhN$86$BwwKwFVKss?LZy`%Orh8sKBMl{Q|`{cce=%ziqpr& zd&{>z#=y3_biWEq=&d@1%>{*<*e`)eZfiR4>&SE_Bm5^7fIo-gx&=tcSUS1QZ(zoX z3mOrsgIBj9a#A>kw2~QPNy|sUiQ@o+)UVDGmtG}r;2=(C>G7?$V?!WePXi{Itc80u z25dD5_qfsEwa)4kTya8e2Q_|B>LdWr2?S?1=~xDGcs2@ zq66hIlB(Nh}VlDGh1BH^+{uLVl)Faz#PJh& zpm{_1M)q(1q0QSm5nUEkW@}kCjBpQTa&W6%&mC=V?B(hS0YCVsi{bQ{!H3_DLKSJg zy<&JDk28*$;PfQ}EJAoCA!K1e+qVZ2)&t0*Kd%70*Zk(L8*IOUy}uRs{M)Y`BoMxpy*xWcVyYa5M4y{V}ikh=In1 zpDP$+!zObC66>tj{H*$Bkn0lR#{Cc1q+bR1PW5=Z`aZLhP26?@pcT|xx3knoo7!{Jg~sreqK?P&PpZ!+ zIr{_WlCdFX9hGuD%*gM}Wch;3yF@gY6Hz%5Y@P+@WtlG1r^8^_c_s)Yi2Hpp?1~lw z6}fJVR`1j6I|ZnuQUkM_YQh%R z=s`vvwsv)gI&$G<5NYXiuv-A&+4j_y03I1v35s2-lhne=3n)6_XOvc|vhK94+>-s_ zIAoMJx;;FD%V+FaT9MUM-X0;2KSA%gM7UA>#3UUF1#D@FhgOV-vM_JL03G&`8_`retWW?|iu7K~N}L%5H{ zDAf%BR41%(0+Vrx-E|y&uc5gJs1qb-=2vTX;&YatQxv24+aVyRm1}tkwF5F7vW`0( zgDw?-=*0vT0z*EKZpt9~?1dOYmRi0PXAJ$>E)HT7E36mYZs6xB_AzJ~cW_d_(pi<+ z{p)vrbKfTH!^$oR#WA+HEBVN2)#A+I)U2A?tSO57sMT7Q#xcU7G6Ks59)K<$eO7HY}4)BHbck2Y@j)s6W6}q!l(=MPhYtZSUt=^3`V4 zNm63}flP!10I7|p>}?h0j({E+r)C9%lwqqftxKq=Q}IdxrE{KPa~8CL+Kjx!Yd>@5 zmmGD`fYFjLp-`n2BIru+1JSY2_9p?`O#jtEb#x48h~~`rj|~~raIvlVY+LK4nAYV? zLN%7eNu|}OtPk;K!k>!33>1|1e`ylc_7ouCLBcolr6a3W1a%V10C|KF{X7e^z~|T2 z`W1Ca{Hh~Ry;XLWRIE8l ztjnG^FH=5nPHPJaW(R}#Df!~K7WTJjZful>v8=@O&6$5Q9StXlkj&#ZLzG`Eaj9x0 zSmX<+nfLSA4gw$E0&(mD&TmNz@zTXC0mC$;2%zRrWuheUh1u7ph>yed*H*Z!R)aJ& zqI^pJ#|^>dy5?w1`%u+q5~%y9#-d4~Nb_ZE0#jIWNzup;R>ww@@_}I8a!DDu0Blp% zjgU*TOCx{>9RljHGg06j>#bG(**o));%dmj!=L27IKdhiX99aKDd-4;+orBQ(<*6F zFOYR$q5~gEuR5dda3DzqCq&Z(-VJat!gD@T*W;_VuGe}TD#J8~aMI~10#4vyuxQAh zw8b6B1Tc;Xue6Oap=yag?P3Mf-H%wIbAcqysrhDk zL1WAeCdZ8q!aO4Ejt^v1;=Fq&YWL*1CS*T4z=Jd-a7TyV)ozft*@N1lIITqggu>rf zplY!R&P*B>m}~8U(f8h>hcMkC188`ctrQMf&oIVy*=9QE*`983b}m zmpQYM9iupMegv2SufuecUI(L+lt5G|m3XJGdMGkIvuRnZ0|XuK(rKFo9dZRt=$>pDce+uMnYUsj!qAw0P1E=&x%^gt%ymmVHj)e6ss$Z(FBhZZnNgO%-tW;A) znxXY*FUq=vHz(FuXEH+AIM^|$H8M6AKRXA(*;u+b6UYH9#B}?b{kn=nt8hm^k+Hxd zHW$a#(r|cmiw3xl67d(~s%q`}CqO;)e|(of+0mCl;ORc(tLDUKuiycepX>Gne|+xV z^5;$x;-lgt8=nm;+4<}Twdh)myToErP)q@9o*KG5Ds)7%etW6wzl?gH!f`D@HY^+M z^ke^6POJ-sDT3JAqNG)-6bXoj{dVjD@Q~=q=`bzPsCNg;7Zrrap5jL}hxTHT$UO+R zipQN+{v>`7+WfuDlwe_}d#UXtB>M;2x?To6y+GbL2^B5ecvAqliE&&+N&^JILIt6- z={VL2T`J907=jCjv-%Z6sIfsNHAv=<1jW(&9A%Bx+z)lwoPIv4v~xJP#OAIF%SVwd z1^~5v?c-8OtI(KT_9?C3J})v*vYHMbvRgbbq>5_@>#~?U=kx})k}&jaX}FpBj0bim zqXqL%qkKxh_N&9c_^CP0L|kSi9s&zyfEpzkB(4g-JV~dD9Th&KMMU)uQGr>&rpT0| zAX65;QR_EF<6T~sMKybWO+%%zDUXx3kR**8h*Cv)dk36;nHl^ALmE`wbFZr|waR&4 z-;OxV-jl8g09_c7kRF=n$LkF7vd?R{`YMqgpavBucmD^y!BXi2I=vh=Uy&E%x)R4P z4*C!8gHvqtRqZ118pu!<&8yfAG*L=!Tx9A6mg1_i3o8Ih(2;rckE-A->#^zwLL(-r zQiQID-?SU~R3htWuN4mZgd&D_1pKi>b%&FIv&=0TXR(i;f# zNF`?~(+19fN&9Nl7kIk%zc&Q`;Q~yO4Y|v6h%<6&h1x>mVQi_yItG^Nd zswto!d1feCMNq(^t)s_~*4;`Au<(sG-$mXU8N*)3ssSnpt>j(}(7bedRqH`2tRAEf z(i@76E~R_8M)SaT$t>bC5fWQn-17qQ8et$<^(cgN#0rp@0=Q*n&44={wX`&w-^k!| zVl*A5(E7ODhF#$}(exlVLc(sZ^4EmFW?iYK-sL;_iqKWlM`2p|S%+Z6*HN7VlI{&eG=pPnJn* zRgOZW4f)gbzS>X@jG7oDR=-ej=))3((o_e=0AvjMf~`_6)%EqLn44ujPd!Q3(W@) za2x4$sjyQuOLmKDP;q3+>8nB|jYWD&9Q0LwymnWj#@EO=IbdP23V}+MJ<8>`DM*3L#7;MWI@Tkn*-;bh0PfJmYm3YTAR??|t>UNb zFT>(0eVSJMs`^9Hbqw)l-BUPT#7sO<7;&|)d44D_sX4j{xXK^h6I3lGap!!1hP|?0poE}J zz4P5;Rf82uxjG_pigJ>vpx?|Kvm>v`B)w4Rg=NQI{}$}2oNp=nKlP{t4s z@iWkG?D?*53V!d}EB{8zMe0&;UP;HBO_WB6gEm8t-?qn=jtfa*HX2Iwx)2A5L7~fc z?Zfh7b2$i2WF$V5*17p+qeZbJaay!-G(_7v+!ndB3lx|F*ky^x+sd7IC|pYBrkOH} zFyJ`?JE0UW0aO|SnsZO40Y}jXNMj=Z*G@22_@G%dDSK&biU;BH7PBx>eWc1em;wmJ zK68JGM9J1lB8@{xes~^;U?0N;#6#VO)Fh<@SGhR}6*Zm!wFMRw&^2*)@I;<4h%0`T zJ)&g>s0_@QuSqcB%gjv)sdi9Ig?Irjizgnh8co=p6)b^6VD{RdOx6pIyyIi!(h{GsmHoAYfh2e|tCTn_K2+8y!3u4e z(pSt-mx>7*(RQM8!=o@LC_=NPCBjlpMS-e^^C-uW(_&B}z8?d6zuis*HIT6$jyrac zz-e0+M3Aar5sLiM1Fk^&P|l3A`6s-fa;#z`LFypSpZ{Kp?kvmgQDpvyW#G2?15+=f zoj9Sek};ZpA>lcmu7U0dpn-Bcv2%*4NxVrZL{)%jJIs!m^9ygpy208V6572yUM0B9GS4&p%ru|2-} z(^`G{GWr75-h51%X>am|vj+0~ocsXUd%e%MF1RKQu22{bj$bEgD3SR}Z+X7IxxjHz zDMYx%EHtg+?4mEbUfcsFQPtWg%ANw{Z=S8yrJ=^EXfK}m_!QmpQ2euO()M4F(u6W{ zP3WunGYdEM6#$aMK7qV%3J6jMES@6arkNh*YhAn~lT7Z`hg`L`+ksGb+%|fFXiH&Nx?$7K~Oz82|B?_2v<<9V2G>b6eyy02&6uoJrA(tHug7;AFg{gy3R*r(IbTtanhDt&URy)vJ z&LVNPHEwDJ^gHHirMxcHe>g$X?s=6(QbPI>;<*$A(B*i)k_8`3RLhLc)>VP(<~rxe zTX1Ug`F)8ZGr!8C0|G3VkqfZk9F$nhSLiBQ2@gk!^)_F!ifqkJbg%6ZIBP<+e_vC~ zjF$D)dAr?l3tC}I!u@x$le%0#J-y~$-6JLk>v`<)_fD!u@EE86E-hXFlT z%73xq=cl&0PdKQ9gd!<+M9L&n((*jp&u_mu!ju$ih2N<_7uL_f4WzKIs!hW?s1O8{ z@@H!OMxuY}?JWFEV^%GoX+f6yne0`)ydf}KzIOfXH;atfs~XkkZgqd`-I6{Z9W+z& zkYImdmuj58AOG!n=FQ71QM!()GuPr&kJIvh@Bmg}jIH}=^FRHu*LW;<*LO4A>Rvgu z4uy9}chD3S;bcX67Qw~$m%QV?42t7}a{oGaM+Ymp` zpolRV4}KyKy$GwWPHr7J0a^C_W+6S@~P?+kPMQF`8`7A6?hlO7g}F??by8-1>LGCl+haDwL&b z{2LlEVl8`~shAme@ts z5B;h6y_4{Tm<=SnXdD?FiymVB>juH5J*ib2hiXU+<_mpTS?m*wq}jB>e6W%qVL|QS zI-nRp6Vjp0R#^1Ih#I!3#)ofhi|q3$j>nu>3g>t5>hBwvn4{Nc_{K|(T#(@%M$DQU zdQYCF0?T4ev>T;pMUTl=FlO^{#BajEyIY={e`6KCoxXVmTDe|X|E?aUi0!?oOU8;% z*B5B(Bt?I|Us~gam(wsEFG2{|-g;G*A460}J{mEj>n8lWgC{^5s?EK&qWr4zFLj6U zJQQxg$UP}p44n}TugcDQ!&LU!ebIUG<@++dZ}Ic43+lF??Zqy=-uG>IxC8(~X6O=g z@dp={I>n$7>hkkK#yFd@wHKNt&nV$7N5p+4FcY_b3L5%v%(YIDydaLuHey zoSYFsyrp_sC(P}n_<}3b(n_tU61sl)(b1!(!{!FoX%0d3O!V2&RTw^87#NcKF^A5| zRG-kZ=0k}&?#UIj%-!A_GIpL7RfeRj_8;QdNE8xSsD*+;pEvhn`+r8L%0!Lh2>t%9Hfj5KWl;~KUAeQds(GP($~D^`xg&P^GzZI~>mY)Uppy`KIzo}84o zYoB9@Q_yrN>#9|OYGwB8GPs~I7cgwHv+uqvZDQ$;F_(G&lY_VDcpCoIgldeD7+qO_ z*~le`@_@KZAc%@Q78G{dD7DDx+oG%( zGH->JqqZzPv}x2U*p+>W^A?z89r$rvb>HR@?s)#fjWa#2t~=$t@uitbAN}F@(}bWu ztd6&R|3;7fpT2oLeZYrFGr!yR=Chj~I~RF;eAeCv`8aKB%5Q#mUwm7XYx6l!Sm#dM zMX!-ta^Y)y6W;smC)3uwuCuz#>umJPqz&4rHfO(nV~v6M(Bq_cW^x*?Vaaci zG7A4O)4R?!gtEoR!q(*{$G^OBRw>$-EE&+|_on{!bv+V16T^BqE^=}q0ec(Fa&Jly zs(HspU-`{4h}L30i;0--mRN3Ld!9hAkex+|?v&S7^Y(#zgA&iKdB<~1zny;lfZt6Z z5-WUi>r{Rms>LL?#`%bUu$VXyoZ7zVv4VP_!G9# z{PQs#=4huKUJWlbz)LmUJ6v+KX&e&1d%U`Ol-z4$C@HLDdmD^#a=bh_(-1ITTcCQN zFg6w4DGBQrMxB?rN%syhzF70g zwEUML<&#J2`he@v^TfhfV-*F?E$C_ec*K^n&b-mr1xE7?nzR|WFFy7^91rB`*6fZb zvb?94>i>eruRtG|sz)aca>1Qj5SE(syjSMQJx}Kd-He~Mn`LsuFX_wjE7gJ(XwFj-88Na zxeb?(jSkU$KORzt#&TXE#^bSt>L+#5@x-S8;|AVa9P#!Gd-vl<9qh`YrJ?G=zCFWd zW`?}%KWi}@3(NxpMOHq*i&xxe6H?C$+kQ$uj5~DN=YIH|?Tf>-`_X*St7im$Av$13 zR4Pb%T8c?sn5gEe<&{nYjJ&pHlDB(bLvCVgGllE~ax>7xs8%Wm3*K5qqatss}kg9E? zJFaQ}GFv4F8nU{)$7+2};Ds#B(sE_4C)uAv|K(>#4R+<^g1FRsqhtVz&i7Wx7CF|_ z>CT2M%?cOHu_HFi4vg(p5%;Q@ZmL|Q?5TBM8o9R2RDc2ib4|Nyi9+iqi*ZHA~wSfz> zB-KcHX@u6IZDadKM}>3j37ae&{(FBU5&ti|;wBg$>q~}`0`pely=|t?*=SdPw8`>o%hZ}3LxX7Lke`%Bfwp*9x;M4H zBSWz1-hLw-J7jrgGMcLu=W{V84|c|}Ty4*a(z3+2wyBxar>qccOM4?y&fK-0iRFhp zk9B9GLG`3s8M8;>dwH-%>?dt~o=QA}il_S?-Oa{dOr5T*L|JRgNnUddYJzJ0d`t)^ zQ}N4l;kYw&A^T9LF?}8n;zZW2ref2pkkyM))ibfJ@_0#|W>2@}Ue55tpj*66?XJ{> ze%}Aq$G6A21JeGDcDH10?#3yX=_%Dtk_&M%>vPV_M87a zAro*wxvfVwO&Pj@<{zgswfmj=F8@@$dCxW1Hf9yk@IJb-^=Oh^eUWuW%$E<2WCUFq z2djBLJ2`DlW?4Nz$0$@}GWE$D(6M$CqVj=p|FFYC;S4SuSm*M|i}5ZCG=b*&>?198gKOTJwnzoBQt3Xg>2Aq^|H z^6;q_8obXo6`nnEx+ppOH+Fk3S&o>U>T4*R5TqW7j~jt1JWg)b$EVrXz`X7!+{bVH z(!68uC^Syf7cgKKu7q6=FlKmO;fWFKs^ZUcaOg<}9n3a{`V#g_^&DE4SEQz*hQbZg zQE81P@pVQ2E!pfVw*B0Mv$o5cU+H8CLNZ4Ons;otvFdU6Ed^{0t8KWt)M1xHI|&YX z+)HiF9fDoZd=G5^d}WM7+tB;9^6^VC_VD<` zss9BcgXb-`_^2go;pnFW`sf&6^){4Td7H{AULUj&*FmP)y`S{vm5-e`$US1L9fwY1 z!O$fl*$LEmE0OXYvGA0rHGsj<5~5S*nwpTpQ2nK2XdBnf?$oiywyIQ0KwB^x*8rhiNP{ig`+ikzL?I_w6vjzDP>M z)JvJrbPe(XH3tkVdIOsd?)Ej{rXOrqD$WQr02JUA^Kj({V)a=6dE(|X0P-f#wc4UyRnc?}L zt&uog9%TBwOL&Hc#39UI&s#0`e2xyp+~-)<B>HCpx! z>L0HynfP;Ob__+t5@-VNxXDTGn(pBIrKfa>NK-Ql#+3Ki5NMn*ICpIg&Z*u1dKpmk zC$PEDIBj=Cs4KG_Ru_o7%4P#W{;Xbm{4ML?4vWwnWTSjS+r_GY5pyO#x+!oC8Zb>Z zd4pm6Pjy8d^~<5lx|1yIG)kb_J&PIopG;#$oE z4E*4+MEB9BCbZeDkB`OM3WB8z3z4Su#4OL6B3cm%9s*7BdCR2z2e7@x6IfEo_K(Kk z1P`_x@{+N*Gk#ANZ|bv*cJ6iaJ~*N7*%-aL7F+bkZrFzwW9{^xu21UA(A*kkA#r6# zxrYbRl_&KDZPC_|%)w7zNi8;w%ZQ1d-14L;&+VNn6+$k67Rb?Ef*Lg+yvAXqthflVcou-()ryM!G2c*T^>o*=7{0Xs+ z`{Cp?FacggwFVL#8xRU9S{?hd;xfnu=#II8Yy^e}aY28`)<}vVxRE++4unb>y4!NQ zgBYT`V9wP5zY#5s^V%L3<+asrxHDZ);aOfWA^#puVTj?xUAC9^CEp?#^ce67NtA1+ zfUU;Rg;8>zFp&+n79M6v$>_A zq+hAF)-9{{5^fHie&jT#xH0Q&;k$Qn#S*{!D?c@7CV1b;rcSO{&gxYmbV@b|7X)J1 zJgW)15uAiXxxMOfWT||C>fae#^ak^4x@1WVYF`!PUSVHTfuE5@6OZJNhR;AI%lOMy+c0QaAZajfu*mVy^ut5Q z29dqP=HbNs%?0B~4{RS)k70rx%M`1JI7AX{xdzxbr~(m_#*NJsVU#}QZ?Wn24MZW{ z#xVBhhG(F&NDqHe@|4-*+ZZct0I8Ue6T8dtQCYtR={6rEN5c%dWT7%X@JI+&=tFF( z;|k&`Y>b+Sg3;|S7WGSy4Q==PFTDB9+8UP)T_Z0cpbsA@tOAS_Zt|Ltar$00N4n!v z@pJGeAJ%Ej!^hwp6tFvKX3nBP@fu9S;d>;UbJsiZ;&~Ei07_~E-@)~2ELt&r3Ugd_jx?Mxo3lOA| z6PsPtJlukr{03ZzGK*J4{Gy_MM*ROdTI8DGv?Dp{JW!IphZPn5xJs$D%m}10PMHw^wbXR>mvhsJm#`LqRp;G^7 zQ_Ep}&X@MXGIYrxE{<-T@^h$tY>mrwUcGW_{B*rH5N)_u)Xit!`?4u<1vrg_){)(2 zp4>cyhgJwlT+=SO&H0e0K6OzyaZ{XkNFC^UzTU>%ke5Jd$dz&nTN{Vp8Oq$~7@q&N zFRCN1z!&Ck66MTB1!WDA!nQ@3_2e`7#%dX)&pMtZj6D_q3yAzO7TiQgliyTaRi=<1 z|K~?hB>CN~ZbYQN!uv-DyXF*)sM)(a&vaYDgA zi~ThkhruoAsg4yDDCuuBj!XZlQj#fzrrD%GbBM#ef`~HG!|##bmbZnMLf(}0ea=+m z5#lzuq7g-`1L;Hlpho>&3mv0Sz@VB@t2Gv5#0#UUh%LZPEC9Ema)=ST#;{b8K1#t2 z^-jo_Q1F2qG~zvRurhMq5Q`uT&kx&`X(Hrf25+sgx@ChFIps3oNf`4+z%(z{!~C8f z?1r^8f&mbu4YRxa4t8e6q*mY9VhC+>r&Kh4)|Z{2)KKS{`AiV}S~jo7DtRcG9Gvfw zw}`qacRwY459kw~`2F%^i_s_++rsVg)Q^SR1?6{wuiB_>=X#YKzdI)Ke5jDsIYn>W zCbN&tau==?7;RPvZw)b^cx0L9@IJ^dRz`@F zdyN1s9s}xvcRzAI(Va`E191kfg;qs)At^f#-l)5)#JkIkk^;uM(l^Zn3YSOSBF^um z<$GR8k^b`jdw4Ay5REG4aZ|*|om_$f*O2z*&%rvR-az`<_tr7D=(V{FQ4);a-K7WI zzy)AxS{jvpHR=1;pU{~cC6>svsOxd)e=)&xof=Kx?~aW?6}%1aqWkOqI$mv~k8 z7VK~_+rQ_NVn$_XQ{X*}mr=3wUjQmNprU@jsjRb318?FYAM&;^5EQ8HbVlK9Wz|;A zh$4aTV8~Jj(k#0}IHnCL(5kV8g~RWlfEn$D2=-*gTo(6c?4xaRpshSp0>2Wt?=;%j zEX1QAB9^JHQH2$3f}LGv?9-}HTrB0YNirSQmpEz^6YZk96ew|0HE+vPVn5px)W^N+ki^TyGUkO8~4@qKjDm(Qdj(hr36Wzhj|Ap_Az#|oJ!qyRbjV^jv8?V6y1Oy* zL4pG3r)8yUq9|TgF@1VhA`bV`G4NW;>K;P1z?*7Kjvysc1Qb-V^6+)ukSV78T6+{{ z)ZhV^@^(-yYv&K49!KFtZ9D2%e)0r{%o-2!`(om+;s6Uc>ypgvJ4R zt-mrUmIyET43&>EhjLwsVh!&Orpj}R&WO{C-{rJ z1m{!8T#)3{;uu%Yu<qmKwo3PujpL1X7Iwr=_%hcM;c2!=^?63|tu`$CkP?1;!Nzs4>pF zwO>PsVZS<@m%NzokA~J@(E0Z?fQbPuQ6!+Yvq4gt@@LC182Xqs0s2)j8!OQywAk2i{m$R zJ(ey-q`w#{)mkv8AttVrr!)V{Tz^CgsLBxZh!CqzJS$B!Yc=nf)H5XJ+efx5sR>Y( z*+Jf}d=#lS3sz(X+2>fTm{MD0!faM+N&vj8C(5Z(^a2Afg&3NVCJ$r%!MWkHdkw$# z&OXw;)o|gRpu8ckdGT7g-OvUJMWu{ej&}+L+K@V|X}ln;+}EJWX}7~5v@%mwA7zIk zpy9(BkY@xECr-AJOhdCSwv63^dsIfIGt)Rbb?>pl(f(sL#AGhHR2JF^q%EXGxmYeh zwrk%7&ME?xLlezZ6+Ld-Tu2toivvidc5+9aAQuJG+c0dsZ>=hYC{_TX501+4XH^$J zS}0cK8zhB(#@bux{l_-d1C~iXs5YDwy-Mn4I5!BddthZN+jNPu5M#Fpjo@+sUNBG~ z!KdtycgQ{|`V&IpM}NT>e6S>)?J(Z*0GKH19!ki@0V5A1Rl($Bo)gkl6{BQ-Y3Ulv zjGxAOX6#!rtF3wCgJ<umYkq7`XZVZNn{VdjOD!5E4536*1yL{UC6F zmyS`f>7rqTypjws6F3bkr4RF06TU$OMJg`s-(mwK+wZ9RLvrXjL6Y71U)Y#%)?{r{ialrCtJhSrh*g$Y|bcWNGfIgx5*-pIt>Y zBt_h4^cR4rT1{NzF8PuWmh4@y?{83>ti5*XYYk(t9}l9=HYQ-=Fe}~WWN&foj=@l}<3cep8~BeV_{r*6kU zoQcc5s7jk`!=?cuP3TZCVcA4WRE{kMg6TR5B3!B@nAOpXExlG_OF5&bL1Yg|Ta~`iYUJA&;tBZchSG$UHeZotyJa-j( z%uF8qc2nX803BS;IOw*74#+k_?h;#dsPl``fPbyj3s87Evx&1(Dx5?Hx#sErTjozu zU_w**{`gvSd{QU5%zzBHb~k? z$%4hmEy+MtYAwL+GoAYLigox1WK`J@$VA~sIfTBm?cZCdcD;9W(K{M#AXCd}6fF~Kl8cn`P~K73nQ}bJjf;9R z$e`@2y)aTV%ZpueB>vWDw+rHALgb2)jDSDX9rab>krY1A_xc4u$NZr1j{LjX>I!jY z`wZnUv))4Hk2H$BjhJW`$m|C)z*LKhT5J^VmhH8vOEM>k+=moQ1Hz(S_>O0o(mA^S z3QYy%f6M^QA`ng&H09D4&8(?W+t?hnBy&_BN&gDUHxgdeoEckw6Z1$Z9U_NoNG9>7 zC`bN>vC%iE{oPeTmDo?A4D{H<&Qv8WCB2YYN=?aTP$U(q zcEC*83tk|TCRn2EAgeI)We^@bGhB^yl0*zJiZ=i3zpcu7+_HE2O~~DuM?pll$V+9* z`a!A6Y+Os9X_l6{TyhabM^%4gYQkC)RMsI$1gf&>CHF6JoZ-we@IKv8;3}~~Ro788 zq1Z(*FLf1_E7Ks@K&4N{(j(vE6-N5i`iAv^tRmgUB`;kQ?64W%0&#m9@yS*AYfY7& zRJj*(DFXW!qC}a32<*6LO{&N$+gjkH1q^iDddwWLAQ_%POa^Z+?t?dh=3Bit*F#@I zY(XAyp3^&6>S|PUxYRbNdI6>&%{Z}f3MvH~8hE{_UAkFYuRR^Bnim4XgV3Wxr1~=w zlo#lLGqBHT_kR(RtB)++K-Ph8ZV`P^N{B7$ z0iL-~MOfQ%7cM$Qprk+6UC0#>yCBmY4nh_Ntp4A~!2O)rz`o zpw|T%1O4IQ5*!y@fD9R$hm?FzN&X|1R&I;3{e>{;#+|qrfveaAiO<3e>ktN zhM#7t#$24l8Cl#1s(x>Vfb92h?@@Q?93b|f8fgavp+G3K2?GpQRrLwlc{~A2+EKY7 z=T6`Q{1tW98frR_ro|#emGkY-4 zJ8KX9O}?CR5(i>-oD@yMoF%?8A#}--b1X3D3{U6J9!U#?hwPbgs(DrrF^BAGvPw$f zq|SC>Xk>SlUlN^7kx$0Gl;Y9;$6UUF7YDPYTZnq~6h|^S>Z)SsKEb7_Y)zi0 zxHlHNM2l^Cn36!8Sc<9?eO)!6j3PjA#$)1CKV_f&W|*`bC2C&*DPj8KA=*b|Hslcs zd8k^erWfV8nW%|2tXBdIBXyZByc+mF4^wMhUTgsw0fAClNYhHd?$l{BA>y9LyW+T) z<)|Nb9PSto+`eaGe3Q#^ljAWs0BSg7r&H{y5Uo&CAn-a;Qy|FI$nji2YYSf~UyCl9 z1z3mAa8NamG5JnrwrD^?(Yr^c&T7jkTXv*LlA$pupm-fy`*cQ3ceW+vImxvx zL^1Q4Tt*vk1QqBrrp<7n@v*`Gnh;mHkqQe|Ab8x7vV|7VA3yOP)t*hu`XMi#>Z8gd zc*6>OnW0^YGFVO-)1g{{=PG<6-@J+>oTve(Qg4GXIj%o(U2a-ytYRb!=aR~AS<1pR`#4MRC8 zWAXbZ@S_pY?Gn+j8f?&wk9mpiQD+Ug%>!y?q_m?%jkmgmjvs$2dK3Ke1RVT?Y!uYX z*K&F%8mX!h=BV>w)hdcMwnq!_j1ULR7Tsags&ji-qCl+%rz^Gk!{Y;R(xn%q+~q+U zO+SKhp~IQUkek>k;k-TI*;m~b+62}S0*ajwC`M<_5l{!?0Msw1hh{ z9`yj8Tl6_iIOl?W_}}q3CBpK>cY&L=R9yl&-^&6|)H#h>S!S}q8nm(rfg<|^@_p{l z!nmAcQ+JJ7FBnC0542kINlB{RK}mATmZ7MJytvZLLPa6?P(L`3iU=ypf-*Hh$~=fC zB!nn>=N@4Hl5R493FJI({V|C zS$qj|=f4k5XC8tIwK7x%#YEbML(9k_Yd@Lx1ZsW0i`);ljC&*kCjoFXnkLEM$m&HD z&l5C&hr&W8_#y@c2J>ndFM=@SoU*+v!bvTBh|=M*RHzUcp9R{}heXFz-J`3#Qh=bX zRHJ-zOfC)#KcS9&V33sJi)2P-rv&}mdW&0(MGdpv^q7!CWvmkDrt)cNVRV?F8T#T_ z77+p~ZDpZLP`TovMZSUg^!Av3F|N%Z6fn`qZ@qQn2h&|fm}#N)RV_v7Qz%Y&(pUv-z2Mws z?0T@~SAI3!`>m&4?4BY|kD&DugBOWz#<6ov5l zg*#$F?>7{RF>HCdI05PDZG9#MWI(@~fQ+Tezy7KZS(O8zs!HYDKwr$QFWK73nYE73 zrW%QdHZHk&XF1r#^W$3CB`lZ0+}IU|K=G~k6)U$r=b71jb2&?3IOC2I+Vxt_Sug+A zyQv;{{vg&+0SbM~hZGGn;b==Fj&#E{bQ`PW2|=C9L;i3}Grw4%XcmGx1Lhtpe2*?q zM!+*SGeZn0Q-njMlSe4P%)kJY9akLj-UysMK(EREa?ajVCa109n|`b%kW2&@iJO%? zXXB7OrPX0hAs|?#4ooy*LXd+-XM`L+hacmaurVngv*KxAlL{yz55pN4lsw?ezz^rW z7`!a>LFQeX565SrsY?(Kk>LPI-Y-4!zy%ED33z3qV^T2rm%zr#nQcD3;*OggS5c1C z!%OK!Y+e@e-j_LL6(^TQAWL}e!+YSos#iU3kg8#R^UZ|&{~ENA5ri30zIY8RS_OkAL)Lg>Td?P&Qdq+$gX5fg0pYSaT83}qwZS(xnu-8@~V7QR+q+oKV2d+q)4dBs=9WwZ@>YQV^p$t@d9|FaH8%D3QL;EroceGQS5H$AA$ zo|1R!e+amV?zr>NwLabsj97m295m5zFWsTGPtnTeMNtlrK*X<@TKWzTz~)TPzt~#; zUdD;L_gM0DM_kcG1@ zw$RFX!0XN8k;9&*5*|Q)$8Z&D#ri38Jr?=LUKm5OXz0wTq5m)|6DR}6FTw5O z0Bhwvmis#mM`w_>BUYH}9e(f@vN8in4d`y)!tJB!IpMI&420{Ezd2C%o*MBU3aH{+ zwNXZF`^cnvr08zul`pLpAEvlPvZV-$V#3wj)}-<#hRs3=GgM#ecqdtGL!e&RW`qH4 zn_{4G#9J)X|45-?{rPvZw>*vAFD{sm4;3daze(qpp2JQRvsKcJPX`#7gzoXa^7a?* z@|tJaM?{B6A+_h4PpXQ=e3FFSp^7;H-ntw$FVSA%{$F`@)~PMuWoC)`P`B{NkCnG) z;-$T+90fQ)C*z(kwOhUesUSG@`ezfjreKvF208JvOzNUyG7s(3WL`F}xUsf|2d0xnU#es(;mWu*O`4TG9P2R*5u+i3+@AzxSRWeqy zUBvMW#SAVZ$`DxQb>(elo3Q)4S}Cks4uS^}Ns+uFw>*%rteE!4zdD$_yW;E!qzSrY ziCW?YLUCql*BHL6c@;hBD+Ve5xHK7N%uzE$h@<*uu(01fu8*0Vav~$JS&jO(7&5nVl5)T62e!b~1KIV+!66!h+CQ;YU8>Yz3d zuBy{;=@l_k2J*Chin;721tlcpTQVR)7yQV~&-)7oQSnUt48g_Dyi?<2=0lD-|6%j= zs|8;@7~$ErzB*>w)xM<fT>F+Ekd9cdBIRz`C3f0TWEK zTaR0p^!1w)~!Kygp9y-TH2^J_^;hQhM*qCjPZZ#iH>qU`{FTB z399X%4Xvx}R^8-!^2E74zcuVi?UPt39y0X-oySf{Zf*S*qLqi+>ke>*?G`N zY*Rg={*Lli?mlC7RGB8T;|=_h(+MNUrj1OR%fi1MR~!GzcuTzS?FN zc=NvrrKnJk^Fy=(l^Z%KwXNkq+ryo0t+C?pC769t=}-5yzfQu>8+D};3{tP zYQPW&-fdsGrZ3-uJlz}qvU$K3z?}By5rahAr|2d{uT4?)0Zxbu7@_dw@B5XG!%KOt zg~OBv9P^##unQ4Zp}s#~{v>3PJN)u+vS+|_PGsEYwV3IXzKIi-%(kwPV4^xKL?A3ETDT$dc?-ss!K()xlOS#82=z^!hs3G0@GC(;P*g#6`!tKb1IybA~oxVR2)i1kOX_ zS&t|Ok#0^1f)fZg?}QC!#D19NbeNpW%%Ml7yx+OLx!nFf)YWintf$f*EIZD!`Nb&p z@gNY+PD`sS@*k0ihNW0Gzc1AamF45}BrDFwJ$Sy#6|<4OriqypDK3ah()8uo*_gdK z(soA{S?o8{yL~lfnR!XEC(IA!KG}3TvbN;@hH1f4Pq+sVSQ^rqE{J;$XST7E*&$b4 zMDXyY*XCrr3jl3#u`BOg1>-}Q$Dx7r zkge9rO9zfF9e{4IWoVZ1kw<0-Vz~+hIa4{bL>eBks`e;f#s<%QAtw^u>%$}z)Q^Lm z-g^s^)fI6WG#TUJA8vLpjPfdiHh97zPlT$DJO1s)fAFhV$mD95o!ph4{nq2Hfb=kS zZ}K4$cX(!zuBc;t)P`kUqvBmGvjmqc}$aAyz1A75N>G9HJhND)6wQ@c`2~wonAR^ zisjIR99t#lUlW2eN9HCK5IH#nJfjjqR(#3r;hg?Ro{|AzF%A z4$4NY4UrdE-e)Qa4xY0m?~!|M&+pX>x{W2t0qyBjA4ni-*Ql>TE_w$=7M4a7)l=L~ zh>|@FoPB#0lF9CZ+7{`&*%hhSw+TrRC76qchja z_5qMQ_f;KK4?xmLg@g{20azv_ti}50zOXl#6y_Jdf5S^FKu{%~(E#O7LXq^A6pEz2 zvXvT9u^N-UkHkhr8uFtsg@_=S@PPN>{mq~G;V4}FcU1h5skx2*F-Vrs%M~cOQ*H(; zW_wCHwa+$b6a)jIRD`XRIiZY#YJpe$7@*pC|4MiCX=}1a6<0bl=4u^UIn5N-Fss*S z(!YE}c`N=_hu#pKQL-VKqZS&?6sbPAd!KjDG$6tF!55T->=p|VO$D@id9TNEGpO+{ zE~`YI+wgDIz3q$N?@vV!4SgnSEa37g!*EGO#-p1u*tP=s)qQ6&PeOe2?o7~Qg0hio z>pC!O(tplWS00mTl&`98TbaFTNFy|82aS~J2+19(b*ki)@E2KgPsWK3-i=rMF=$8` zQo6TG%(u4Do2LACyp&UPWLhZGH7_ZzJ;i2uk+Q1H_&m+h-0LK#Ez!6N!w&E`G&Mu5 zGy+nKs^!U@+&x?nnb_G5rG{lfesuC~Okp6`(ga_6R zECW;a9t%eD1FBr&3oiw_{^k+iE0x;Yh3vzn#<%NsDKD~~SI#e2Dz`2!0#l<{+i=fjKl=AGJtz;%-#wGVh+O1ApX%2Jw|DVAM z+o0Gkiw!n#SLuRy>X4NOz7{=??@()iXh={r!+yS;3U=LXA#8GT^0C~e!&M^&)*|;l zfr<{5F2$(4bbE+Qg)}0E3AQcaIZss-!D}m$S5>+;lUP%ND|vhN9|pZp#+et6rnj*l zy&&}QtsnB_6s<)ZlVV0#j*&?s^C|3v(6M6a!MJuwU&})-2H}2(`_1#8#q(gCI)mu= zd_$I)ckEE$GPGr5e^PxxKV7kr!d{w?Q`DTlVr{pg#Ia+;=gsX5f$d3WaV=F?L*jQh5_Ut3E|b8TMp!+9~^ z#;gp?=|9>;Z@^7_*D>++_b<(JFa>jULk@^WW+`-#A|6Y^)* zodeotneA|HuNoqc?bF_rmASX|+1~2r@*&fj%i06id&@)Gw^h~dYu{8A9o9azx^0&H z`H=F))2Bb&f4Q;Xa(+Ut_!Ahrs6FR$^{!w2XPs$1kSP6edr+SLkGJOj)2+4tc&o1d zF{_F?lV^3S5~V-U?xW@P*PUf`ZEE^v*XBoEEAyTqKl^l+)tS~E|M&>EMT_=cDffF& zUTH7=F|*SjqTWz>?4;|5Wp?^zaihc^`Tq4y`%=sTwa))ga9Q2O-LX6<#o$@p7?;5I z8CwS@?A1PhEh$&s#q&Y=((~=Dp*<(r>d)GGcwVUX`J#f$i13?q-&_;3D5|H`@lmt3 zCMWDgP*^{ASk3e^#&3o#cZlk_KzgnDjga-e!}RhJjo-|Ob!@k=xly^RYEDzEqvo}S z_^oN7+tW-&Sv@FUb-sP_`OJj97U$0=Nd%dB)%7M!#Myv5Pc&^*KIj$JWsad-Hppdf%n2;PP-67sv9D6s>1<6I~{ZsEJtb zJ3{YDqOn>=%pz0mnr&M**y-=s`t`g}i}PUxmn*m4+L_}00QY}%q;C3+UF(|;q-eZ2 zk2O!lF|y)>eb7ggkCRexz4bsbD{ zYv{kIh~G;}tN+r7zJ75;XI@&PcU}_MCoif{hFSZzvhPoKHC&5cTC+Y~)+{t@)p^ss zGcf>NRrld~G0Da;!D4TDzckF?7l-N9cH6za>mK!cNlE`3&pGpw04BUN-D%3xMQr)i zzYII;rKNLzX$dU48+b?T-;tI6$#kdb9ri6<&*A;TSs#r}fYpn%8Gpn??yEv}FI~?U zAFRL#eHy2pm)Kf4_%w{u_0)U#4i9FBZ>@`7`xxfP`SPy4(M|ENVm?NHCglc}o`b$` z7;UvEpyCib$)8o`$4C9!Lp_>CuQhsR)jDV5wdMnHPa7kynSInIvxUQ4<2TxBb-Bd@ zc*XHY>dbG1leaAKoL5&jZb+c#*WaYxXMl!I>E;%SaPaWec2JN znHnckxW=o(&;IY+lwS9%%$**dY-|+yc}A#3oSil7IM%}JzR$t5wsjkAv}cs;Q0WsV zYxrRIuypS%*XH6Lkv2;k>dUt0q67*{^o~v3!#N|rF0UH>W!9W=gWu5~b9fY3AJ}j4 ztMheF!+t6I{6iMTttllHE#qqNuoo_uXPITM+%Z;1ZGvxy66`L*@RLaKAX3(N8MOFp|kiIeR^wH%3Y ziify4qwc=Xg9+h7Uyq7yNSlILj*>S$x)D{cc)F}d0;{;aTc^xPZZuywW=zu1$7oI> z%c5|eel!B2IN3I=6ZRiQVN_jSf8saA3eeQ(LG5AhzPLl{tjlFAKAh~zEz@M3o#qe5T-@1Q?PbV1i>E(g=zl$K!{H1wHaY)8pYE@Ti7KbV$~ z;E(h>+F0s`gQX2Imc{+~Fuir*_R>P?M*jydtp@BpDAc!OVgHjg=vezV$uO4m#GqlX z6l>?cz!yqzv!|q%!=V+;!6VOaR@xc=$xHwLg-<;Gzp(HnSNBEQlteUV?4L*bbb5MS z^gnLh|4ZsMzp0C5H6+cB?G)`zM@{USjLKGF7r)20fIaHjCu*d$MZuuaPU}IWtt^_>8CjI`DYotkS)9rtI`6H*?!ia*rQ_ z=SGWlaA;p8?b06q;l+%wvQ@CZzscvj#e}BpX%Db#R*4OqPXX;CGE{rD30fFWjP$^z zIN1-_{Of(cA`G$n%Y#^hku~CyQMMuyMyqPR)U-eRCO%L-Z0|>dyy$jgaHP%fXLaUI z;f1;RKpQ45jTSKj+SdJ{zdzb=oI#+c{JOc*42OUyho;(Ir_6>OPVskJ)OIeZEGKY8 ztbNJ0o>mFDfwOM3y{Yqc`K0>Otuw8Y5k=c3w;CU*D^p(+Xg8i0l60LwEdlKn# zpYs(qarD}BRqSWU@jrC0|6n%`si4Wg7ehAWwf zKBk1UilbD9+m+PsOf){D6>Cp^{L!zn1n05GFc21V&~k@>Ddd8)!nB-~VcF&sppQUc zEkukBBfT`xoFY*St&IU(IDP+Nn`lw47%^Rj^Syy@=4k!O-`ScMY12ZmYPwU(gakCl z&~a#b-37Lo7FyV1uaY03lMM&*BW)%bMNWG_%_MEKPflIX^tH?#7u$AKO;nv0+pq~x z5yfxD*v)2Gz^g&^+e$N&x&5$d9RHYpv2ZMqHLI6}&1guETRn|WtSGHiu z4ANe#tu#_43qK@FtCYZ|1)EM91UXQ2nvur;c)S3y@Gcj54{@ynoxD5;_EbFYE)W4P?TUo{>lx`rPm070gLzEhUiom4 zgjL7{@y-FL3_{ed(66AB#jYOsM^Z2FBpZa=rnSZ2S&sx#zwLeL zE@5~L3P{*u0i=ZRH1~L5D`}xPh42{7lK$Qaa{p^({m0pOl{xGmt=kgOjAL4@`W|mS zduMGBla9b+|FvLqv0vHndTp`M4)-cSFa_RJp_j@qm%NYbFuiy8vmHYrBse{1z%nnl zv$6{74JB7N`g$M6DYNS7H+xdOjijBe*s-1S?TTCfO{?7g+w$y~1VvK+CWw+%0SH6> zZ5Cpy)2xIctRGhc>sAY+Bo?q~|EZgX-(_uA82E7p>0TA~x*QZmDv9#HH#O`&3Of|b ztcVbb>MY1iK3^5^qKnsL7f(kTfwShIxW>om52&6#5|~pvNNc|z5mhci??y!V^+_3d zjczyY&Kdcs+l_!rrz_n|+l$(dRoc@L9&o#jTTLi{%dG!dEu$!yt@XUvXCaUXAN*JMPG8l>tyk`$iitoH6NDD6w zGQUxV(tT%;b%H%#`?+qGVw4YIpo8ZP*Smt`9);I~5de3@F=rA4%aLC9-MAHxgpkWn z{tkP6Yf3q|14QUlw)`ipWRR_w#t3*_pL^tWPt!3NHgR97_+i}=t~Se1pLkGK^~!L& zNtP6cCJTmJy11LV*Dy(yHMC~9ZSO{Zx2Q;Xwiv;6BmrbZOp5GJekICqvA4&L83aIx zkzggAIRx7?c;1!)S29d?K#Vt|;6u0{bn#$arHvtII={OMSnY!mw#3ezcSZXG?wD6;=YW8LYT92&6K@sG1jhaIi~ zM-m62!F&QPK%*-GfGD7bY~lZ((9eh!q31wk1Rd!8_HJaidGmC&+e|0Wt4r8nW>ms( z^WaAkM!9lxhssAs03gAgTpVtj8)eAB!&P9SYq_!s5-R&<&-uE@9YhBV1^^Y&d85*x zl;z8s+S(9J(p0qH+dp?}lp?P%M(xRSyj>FTF z+87Tz+}E}v2!ej#-&Yr%ux?#=hj)XCkl5NkGUlDu3NXi^d3T8^8H^}L3?P$j7;EDH zVAvue6Z02dn;?v&Y7ky=!+}obkLH_3Tk8X_9l2lQJP5+bLGYJ@j!$#iCoz6^-_%(~ zxCbQ6*4JktMJ~*E$w*?2#EWPPG1o&%q@n~ag-50JQbLd0K!Lxk^NDyMMYy_rv8Ubq9AztIPo8Zjn#f z``LEc-$0@u2gLpsWFo?P!X)BNiiinkmauh7KXw+J_sPbXcOr`avj)99 zHBVF=5u-oR?Ai>c8G%_kZQW&NqbaXFi|q1cocMrfem9dGYm6eu_Q~3jC@H&Irh_uS%pNun@lH&nq*O zUU#BjTYCRIkMhcSq4M@)tFIC(U|+1if35%u>7Wc|IJCE96-^u>fJH!HrXU4GpkJBf z9kDM(n^d7>`SJw93iN#1`!+NkGP}zu&R3BBn2=)YllP3|k#ATG$i18i@^B6<-9%`K zPbBs|qd0tCs55!^$YXw&;J93c<4QE43~()uFY$xg#h)AtGfg11D~Kra zQ@&6h1L2!LSCklj#Mud6dGfO$Eu{S$ri>862#}GgAJZzm}$csQ~Frtd8$A%NK zqRAa&_e1k#UsHTYEz$4SPQ}onjTyQQ4|*1B$*fwYJ&o z3QRMXEl$-|paDT}?8s#_0d?!(13J`?Jo>@n3@M6ZG(hX3ga&wNV~L`=ki;kr^7?%s z=^BmSTZ87+0VnHM>lc#*mQphnO55>}ay3I?7-*#%jB%I&xmz@+Ag9U`DzAzlJo64t zoe#m8uaUl);1oMqmt+2|)^X~DQ&shtM!7XbH;cg#(UTj>-8?ep4k17y3>H56B-zG= z+~lpL0feClP7V#*_Rg#K?-k`|?CT!Ue2|4Rb~=BZZE< z?d~xI^e!=;i2?!p-x9>rzGq%r$akIDBAIjKxRjU$Mq_kI5f%yrLAFytV~Io-FOoD7 zc1^U){Oob#@_(7gp|2DwHjG7NGK$cq(uOQE^xf z+G;}!`~nmpJ?KJwU@QOQ43ue{|M>(cLKWLuOn_0H#E!Dmd1W~c*t)@d#y~=h!s!U! zrk1lL%I_7vQK*(O_Eg>gg0Y~5=*%P%>QP<>im+(}=_10Wfk`w04M3s^Ob9Xa9vLZN z1I7BELN3iH8r5LWt>e}fUB2sFeO6h)aP*3-m(Z}&T2~`&DytWzQYLQ@(wvMBCp}j& zBqYbfR@GC^di@VY!zhhB0B0cclrseMa4ADzQ4Vkn+LV|~igJY73ECJFc8|%#M-oKa zZXqfbWCwu&9vpo;L^M=cJw5^#>hH8LU0xo?Ph04(78$@|R^zn>J z*e#mOO(OmCl(c~ve&1Mc9|5ujxtrwm>hP)3(yP9*x*U0LtD-fE^~ z1WpnYP*%?&em)1M)rcEr!J$3V__h59;85cC0d8ttj!`1K_R8@gs((=CTpohdXrBaO z6h9=eav~4u1kOA#2H;1dYD@~#DG{JpA&Qk0Mv@j@&;$fc?d^sGK1e?$z4>!62iPo) znL8fe1gB>dOeNLWzA?oKDHg@=9f>T&{B$<#cIAd9|9H}41DI}x$r~s&Np8`Q)O@=%ht_#`s5%n`)<`HKQ6h z1~Cm(+yt@YyA zIoIDp6DZ~wf+yV|StlOPK#>g|E1T|BPWD+Oq!yXVO|W`+#vGtG+GJi4itSZ32Qwby zNxF^g#n_mBzJbe1%-7ED)CG$90Av7yKhB2v6t?HNwRXycs_x%;gOVO{gYx*$c=H6) z6cPIC4+-4+oS!EsoBRDiv~qk%3e5AL@7w$#s(1vZySz4x7-*j<9o$I?acw*y*a1Wk zDoWm|vsR;XJ__=n6Xu8=-3fD)^d0Vv2|^;A+`(6p&#s!o|LPp~!E195w`gH)#&a2nTiqTE_K2gm8okzYGv0ReRY2k>3|Q zC1P%(yhz9t4>2F2x`HS(GOJxvW_*+IzEVzw#?jT6(OM`t6G8|ygml^!pJyl|giaZl zj8bgOe?kZ+qy7mYux$Rx7GY<@>Z!b4rna}hETuyb8x|`Ao&R_mA`wlVMgf`sQ4X77 z<1Qpo1otmno-)mBxRF(U5iv-D5Qss3wgM7?+fz~#<_v@d5YiH0`Cs%+Xp(2sBn4;C zoc5D)6<`C(rQr74OsIZcQ7911m_ZZ@FpprGUCO4OOXl-I)|RO^0F$-t^3BH~J>M5M zAMbZ~)T}bCqY1}OFMj7uekl4t_NCH!H-QZ%yo?RX6xaZ)Lp9Y1ps=8ALgXWkJ1*0M z=ZT7ZGV*Jsi2l@XON&G`f0o=clBX40x7fA$q2_T%O=+K}tJWNv$!zRN0tGE+1s(;p z6Up>_ZoYp3M-fyw*)~v2x<7i1!lKdIJe;T+g}gri6!942YNRLd=$wHK zz_kR*8&jm=fd>GHAQLKiG73=23;}S$3lHsTpC1?79{+uQidYPM9rU>)m=h_3pd^Wo z`Uef#Jycd!Ol2y_FYTTbxsss9WkCdN&!|((N+zSC$0CX)4@z{$EfSh=q#Y(%$d>TW zP4qGZM<Q`6aoAua)Sx6(-gCnwl~*ti1l=* zxN5kMceeP*OqW@eI3Sd$Fls@~oKU91y1>K8-eHpTy-I7i$&CtO#fmS*iq)exvdl ze0SO2{lP=s#`;5)zVE0;qgb_|-S4=)=Jzun9#*IElNXRGqSNJP%j$Qy&eE7J7^;Re z@HjUE>po~d{vFYG`>>#8rSb*)!6!XAwi*I#aNeDBd2NNSZ|jGGlUuk11$vx|8#(f# z$ℜulpe@xHjm00q^bXl9u?k#;Q}*P!=)uM%6=ZFn<;<>u;9AsPfOjX%d^yxYzof ztx`b~BIBzm033Q{P4|a5wVI&1G!1MK0nkjZuZVAH3(-9)ih+p5dTs(3?-AHGb%@hP zV-3i>ToYL!uX3=Ilu#_lTxpFj3|Lrc6jc;tZhU*{1FHA}Wt`PUvLxQ>YRW^mkf+DS zMq9;3k18t&$k;@A`md$(tcQ*Izf_9wp@YEn@V=b_<7aHG;G_g7N>}d@z+mFwq|Z^? z1;*uXS?sucGXU4eI1fmo6m`)v09Dk3q}*8Ng3vdM0Pr9q(bR}Ifd!QQCd(+&-wN)5 z^Rc|wXbWO~3M((t5)Ubl3E#oRWvq7;B8fZ-%kH1H277Q0eF*v88T|wqOY#=1d8R2+ zx;5I6nMWAr7r-CuF$bC*88g~G68c*)TFwD|`+*_uZD(zp{kAMOdp+&7vL19Ym?#T9ME+YqM`fuP=i zF#Xe=R6kbLchd4R_-A~bkfmL7ol4`^niefxoD~vyDAd-(i@sza0zf=yE@}XXeidkA z!5wk+GCCQ67ND>AI&Y;4`!UsmfGEq-YG+;{0oL$B5*175Wz;PzimFGP!5FvF_(sG{ z3N!FF?X@7;@G%E=;^XmcsIXwGKq->GExb(i89$X}|9~{g)3AL~B>$8G=Vm$-9Sjs) zln|~n>L}owGv3|b-mo`NUac=r0!mjXF8!+*B^+9xSZ%?aZ(vTq>wY6jKD@@|Q+S4I zf)@HH!g;alHQ6?*)IcqWU@kI=0CDzhCIr}lJM;--FhNWNeqq5-jGAxMXT6m;2|@0N zR0T8TlD!lI=t@cm1z@g#KG%mncSN{UpRheYa5hO+n!%Yct>JL>H$}RFJ|y6rfHX5Q z868y?9OHCB8oZL7VJD?ynkf_%Bnw64g#}c{AWaDNQ~lOYWIUd-Y-E&VKt>$MT#|5s;{UiVQ}HTD+gck1w9GO|+Q`WW zRFVW_GzH>&;naH{_jhd^tNX4=-kqfxe=JOw=k*=hyV$bw%`2_f)$cu9GWF@usb3EA zScL=1p6$2E+M61qICrA}gb8{k=hKJk)#BLYRGek~Zoy~hL%tzari$Z9X7Fjwbn?ac zBfC;eWmVhJKfREfD}26<4?V7@9tzj^&|^#V3z*{-?yXkjX4JN`%05vvs{DN0__7g6 z`996>%M$DjpboA^fA)395j+k1ZOqWpJF%k5T01e1PG?3Z>c*kFPoF|tzu=&-T6}3e zfE#V*g?e9AynQv<%$eHZ@8?bERXr{;0Egi?h`!U~r-palR*2b!RGE*9>72~B+A7DiDLS2VNeZTEmo)`%mTN7*Fi+YMjnd)5&?adX)LRYM}HM(Kr6Z zx4gdIZrgwW)kz6zwvrfrM`ML}L;B?0vGBBPG;K5x2UL1;I!W$;fScK<7C$w!>oj6Cm zQa(Gf;BcE~YWY+GWXy!!-MJYRkLXH^3?xe4S-7f<{q>)U*G`9@#TFxP|{v2eYZor(wbW`%&h4EVNh{t51y&f>ZLPu?5EsC z=dV#ut{d%6TyQv$jy}PDkEzH#HZL4qUOMc;N_6AKzFod^7J5O1doC-N3_~t=@D8R^ zS&|Zc<#e10gg#xg+JACZvD#sLsO$`Sn@1PzL#KxQHvgtrFYTlbdz8o>T*Q8Z`juWp z!)w-*N0h=A`WLO()o2rpVg2fu*FrXjZwp6}``E~eo0t6m2vs|FFD-A9c|()ggM#|_ z_IC;cXSdC@H>e%CV&;Uahh=fOW{Kh3$LSTt`YtvKN~~CT$9(35v9t1ytvxMovYVu( zmq@J_KXs^oG|&(|$>J*h?%NXQn3p~9ZO`Lgrs{_6qq|?JX$tZ6z+GikU-u05IBNWt z+INY%(cPAZ525?RK5idBqVqAMzZB1(7jB~3>pPF|?atNTBvy>8xe~g4!JX&BAA1hA zUv*^b)=v%m+UxPtJnI{4b57=GA6wmC@SuC2Uf-p=x7YjKcs^kQdT<@_{W!Zl!J&R< zic>^|nRih4>Pqbzt9iSkv}0wH+EUTiv6p8y+UDuB=TRH1GwPQv%j2g}3&_Ip@=HG7 z2G&#Gs#^0Sn7fNtjp5|=GwP$=@NhF1=iFTxIDx|4b^WDJYKKJ1r^<}|Rdo|rgc{0p zM2ESW`X85l9}i=TA=n-{!g*xK^P9qZ5RrxVAYQo$T<~gtzMP{x8xW%aiLZ zLYEFjw=zRVG|xMj=u6KW5a?>M>4IY~k0f;VnjK8t9S2|tv?M!+(UQ~^QhdP`k zNus^6H+6)`EFAFMtc69`n(m%y>4cecH!&Uf87wf(dBGC8`1e5kHPE9RhwL23K+xXo z+cyKwXYSGRLc1*JNTAQJCL3>l2Dj!Zy>OTvjXRzWKtT7mcmJmKyhi7c^W6*4q|(x3 z^^vF4(ePWd%_OFzJW3@&@1{L>!{A~lsu4Fgt=?7xSM3#R*E%F{F`D7%(Cp$bpzWij zy}L%osKw%WE-i;@J@Mx8xub{T8JRvm-x{Y}(3-vi9;SiQ)+L!p z>SB@=yPWJxygN>U=P}R;CNn^qX`z2*tTeeSJG62O(YZofZ5_HZj!1lZT8s^vALrPA zI1SjT2};x&5uKvH%u)^StbJ<5+D|4_+GaMq_N3;34lEElVD>Ong%luM?$_g?r1`I* zv*-nCxoF>Yykg@dDOPNyYm_OPqN8Q$xa=~&*(*cWZ9~t}-+RibXX)C5<;VL$L4g`D zcfcR~iw}0LYc4weD^Jh)gC!l)`y6r!8g(jf%gnmcN5e6pH(NE|E}*MF4bqik(y%fO zhxIO@Dd0bAsMuzmyOMfcUE>a#9kV_e;(HT^5Ws{)U95GPqL|FTh@Y3(lsnzhTENLy zI0m_4-O53vNSi?z0O~~vyGq{tH=kVtN5rha_~orUIkGG9(;yH_7^18y^OBw?TI8`Z+Bh(J(C*FQ6;HyR zL*IwDj>CSkg@J_Ckl(M198j>lWPGm{0OSoA!4r!jJ*Z*F>Mw2k%emTkY8YBCB%b!} z?g5Wz)fdJ@Au9;hPWS!S)6x0TMC`z_Y;5j_zO9<1VM7-BX=ZIFiOY|lmU|AymQo*m zLWQ*v%`SsR2_<7QW1RA%@D=x!^pu*-D(mT!4}LwBH_o-#YmvhmjoGWpuj}POS0e4b zG=xD$$G(E`S@5niyI9Qbrz%$RE-E&Zb~2d{47~-GyK@zdX@Aa21~k)(-F@XpliD&h zb$GL$IA_BnqhBfhV(C$M8XL&Z@&rzHTw?S!`pQCL9=~I^HMcpVednBI=!UCa#A2IM zc$(}xR1|FQAnpfwcM~l}R#UGQ+prk4MSe+;#yI^?$FyW4c_6adD}!LXW^O<6oARcw z2)jXBg^oUs1s)+2*hNR(5!!Y&QLLl1=}GU$0Xf%E2i5_BuVKCXaYQOiM*7M87CcI* z9eIZ(MwSm(1W+jU4Nk&}R1YhVw@+_VDGUTWS#y3Rhe)zhzu8ArT)#P9ej>5rA^OoE zKns^o8q(+HyiJXxBnPX!J$)8=y6CDj3OS1_H^~O5 z!YuQ7c3up&MT}*TT_*ntm)F>8#rVg{(9O|yH6IabKF+noKiXviKbOS&G(tL`i}r$ka|9F5B(EeefW8+62REjO3U8~1sB$%)_4b`yb6+yn$_DB#;3>0scE z$8yk%{lI<6WuNI*094b2 zp>z;n14a|aSxVEyJCo-x^ljD*V+H^Quhg>lejAN9_TOp1*)G8QcLyrnU5djm7joF+ z9yMjHMvHYE`k)==Of{kP4C__ffX!)A4x)YCz-ut0|9(k`h@$K9N3PXlQupbu>ys;u;q{|T3U5)2(1Tfw=9rBR@8V{jm9YR)+2x0_8G$hVf zCPlnxBSJptyr&3#_>wpW5$MkkXS)gw_d=^jbn43+O6?OX=5JU$uIM!NxzqR}e94j5 z42C$tPKDz%M^(6knIfbmU4c*Og(Ek`hVa@_h5$BU`5zhQ=qxVrV2Xw5;%o>I2W>Ka zvjh)zfPpQb};Xat_79%9&6kPtEgy>c zAK~PUz96b9{1jVxA)GP>^eax@v`O5$C*Oycf)3Cu+y)XWFEPB4+l3N$)f25(Lk7{Y zcPw>1oG^^NB<6_2&u_RHNopr{oy3QcU=%!_pa!JX#*rL$;Py>AHd2FefGWc1@F}MI zrg$A?21yc@Xk2@(^O6UjTGGLW(PERGn7kg~tiw!(MX3z4`-?e=k6^}??RY(L)vacqF zpV)6RiG}EXvXsR^9rhHba7LleW}wjRch zPy9xBVr@_(!a}d9IB#@PVB!daJlV0;%N_FEHqL8lZMO|8Fm9V4=TX=?KLXx<5~xDc z>_>=^@?;S<012ocN&ht;M~FTmQ*RJ+-#RYQq2AN$C=f?dZf?uWxHg0vxx-}%9+Iog zbTN9!fWQ$Qf8{}D=-Ca5U~J@ahq=r`KAh}2LwGt^wAyjv!K?Ye(sZvP(2#T*cN!i% z#?>IJVyR#O;p^L5`koS3XJr*7z^AU?yN^K4z%`A;mlLo0vGo&Q%>ruY-thzg4MvIB zZodLYn1SL;>mH&*-`c`c1HjP=2{Gix&7i1-G|>I%TjW|TV(k*hklSnEq{X;-4)yH= zq3;k6v<@39;b)?RS+tkI-N8gqH)e&qB`J35o_vGVX&(JT%r7X%-u!;}-?j2TYQ)y$ zXB=U&xUjDWwgudX(yW@!9!;mfdw1fgVD^pu55)G=L1Yc4pt!#5#BZkv))i5m{vQ$7 z;F=M%F|qlOyyIF8!YXw74$S=;CVh2rsM+UqVAdd}hZ#rEWK-+lpP5Vk(@-&llQ?Cp zE8ETMauVYKSOi*OYaFO!^_6$`1Fk_c(m}= zg;_*hP(dboLlfgW`b+qHSO5h+`HGLT0~xMcOUHMo4JZDU6CZi$OG@30c&5}{d5#yE z1?V^94O|{(z-Js?a4c5Lo)4xCB__R)CqBQg(R80} zdX}|)gN{}6Sw10N#b7R?ULbhIxF}na_u~RB29hjNcwL1?-Q5)Fao7v+l0;CxiDV)W z6FCKh@VlZ^Z0xoUz?QQ{1L_W?$iV53TSP_)w1#66ZZ52Y5TwJXU<(U=V>A*(74wS~!(Ue3 znU*j>^o%qTTM5V!IiwD|NC$~I=ti?!lX7;Ftstn}k;kKJogo2lGTNeD^G6RMV^ar^ zU#5VWK?Q$_P2P}lyM2D;z*HiiypwTY=QgBw{z=mr%dq4{%VtO(XLn4Wj)<^rnZ6|y zCjrv=(U4Y|;wQ>S^*4_dxxMgUADh{%B05)*Gi4_2Dy!EW60>&K3|2? z6{^!OwYUsNyMD4hL#~h?2cbeKyb6m7R3r20TC{9ZxQQXy7mwOhxSaw&-R}szEsl%CoQth!OySKAy6hB-K%LGJIk%0E0|8G2w<$4MRYI zlCZ)7^#TxdNGA28q$P)iG#(Mpb>LO;W43z=2>Y*>CH(ER}i*MIuprFEPvj?G@vl4FjcX#0%hjP0A2<+{awO{0I}AxOuU=Z7NDNa+>M<1&_*G+rVAas^uphJ>B-< zlTFyMt8pqhSOlCmfs|EC*mLnF@l-2g1{0c0mEdGgukg597dMBz5;VV9rk~eq0bt64 zC5hH_3PaMjNaOho#oCTheHuF*wlHMSDeG(>BMv-kI2T?lc1(NA!aH}TjN}aC1#@|= z{64#El17=^jck#6myQ0i5D_fSpN=Jr@wbRm&scr-0-ND;dXHAI*T{xzuPklVZl~i) ztvQIRdQ6xCt`CQugKWSs^FrmO*_sS&@(>vlG{RA%gg+YAO`cJ)a@?-j6w+$S^8IE% zqN6uF!s!Q4cY@1=rj|Arf}A1FrA%!IKj>zUZ)PfDL5k<=p4`U72y1jFbk19vl+ouo zp&@V%={AKTODF|Txb1N6#qMyfSOeM|6p&qn)l_-=o0-K>qt_W^qXvNIbCWZAb~ryv zK0{D9gT;gh^HBV{ZX4|O#Vs?(uEl|gL;~md3<~rqZ3Fx#@W4u!1oDP`H2KP0K9^3l z{FXv5$sn+jG_Bi+{VOp=+a>U`^>rJ&qXc6)gq1`t!cB6bo|*G78!sHx0Xl#%MH}*?7^LeZ+2H9#lbpUHK z%phY1V9E1XJB3^``bn|w8jX0YHbD(uLp2J8g9;siQDlxG{=4j*rrnBa1;EjRqx%GpfE(UH}FO1kJ5#q+tmR zM}V*M8geB{g#;`tV$(WHsF$2D)X^nBvE;m|Oy4^VwrGrtw!?`T^6N&B z-A37fAwg5}lGQ-CuZZB7n^&dt^;|_myJLyw$JSKYG0fn~tn_P!sJft|Ygx7Oj#b{e zFL5=2s>mVSBhr!=1!D&DH28_x@lz#8*xagcAdvc#A*z_xz)3OjD^`!rkduT3Ly0^y zEi{zCvNyvMRG5f8s)%mbD+{NJg>InC=EE@*-vLUY zpsaHhO*#s|h@fW!*;x~&bO~mlqsEJuzboZI{=ATxDZY!)PRFz0VH|_XvTYu`XB$W6 z*5`=cYQtF%0s~{(w>-!~MZhGNS*+$k2v*#q0+PqE?~h{N58nsmp(FWzb+&Ezpc8mt zTn)j7zJBmN615SKoEL>d#AWQpyIZ;4NQ^Yw7ZP4kweSv7Ci$-%x3Sfxz&cc!;aG4- zJQRmuS;O@b?#R?Kg+)^kAz4NHIZYtO$dJYE{ME#Lh_UHuQrbf`odbG)cUS%#`D>oG zW4-x-`1uBuraqC>=u$TyyCTtTBa$=H1 zLO2}J1+KF5I!bWjDbpF8W-!Pqs(@!#+fgLQaAKoh+g%VT>Be56P3}JIlROclnUh(E-BP!u2XvWQFn#a%cQ3b`y(ctG45Q?YW3fDN$WemC}>8S(z> z=CRLLAa1f<6%B-hJUu>qk?vI@&8nai%FM-|^*}GYc3k8qkxS%R7YfwCljIZKQR2s` zcuHCcsWMQi0M{qCj^i?0O0-nHW`Ih2ACG-vPZpt}I!krp_sk`QHkSFU2b`-TgvV1^ zp3l#{5;deLUN|@Lbf(By(}iQC3KjsODhd|Tsb?Dz41Sr%RKN(z4hU7Rz{!N^ z9(>r?`23-#f+b~rYWzj`FgocCsAV@-4-WnP@Jva&}5w<{5UK{xUtcdC;uZUD{SU-72k&A2Jc^qg@+CCt`9mP3B)Z=4%(oNm0D63V}To4pK zQWMWM?zs{=Wd8*1ntjvdJ4_M6`)t!fSb=|`Os>zi!RpCe?SKFscE?Mj#qUNn0*hQu zahOoSj7Ys?Z9hZ7ScAx@h--n#tGLKsBwkhq5rKiT?peu|SQgXlMM^x!1Q5_y5Xbd_ zdl4n_pggIn7g*;EF%AUrguP!H4PosiOcl06McpqU6S)m|$v%oI`)A~es=|JO+ed|{ z_aJ$bw8D6f0YJmtWQj!q`Ei+0lP7|3sftGUos-O=;I2E$RK_9+x_~H2^gXE+iz1c{ z+s<^}3h1&8IV7cvREYtmhbR@so=4#n=rFlNM>+t}BfHgJm%<&A(5NA*FnoYhlTkJY z-w8T^zG#^2+B~b(U6CN*&H4#8D`gne3z3Zhi{w#q0}V@fDUqn8q`t_HR?&?fQ7b`3 zV=rKzF68k`F_b7eVLF0eB}h`n4@kO73m`dT9J~iA<3j<`=(_?`E{H4)FW+~*C|iUR zL=08=li`{OAQzPI)Sg5sH)8LTs>q%Cf(?z4G6%>E+b%ou8U=h@rpU@KzRD0KE<_vq zaD@#um4ILbstWfkzk3cQ#g9t(N1)D>;(S6YDVFN37uL-pB8{fiDn+jBcGY&s#n1`acUvnuq2iR zk3GpBp$NaG2q;N)@wIS-4VP4o>(Iysrn~G>*2EPFYYR?$`q9cLMj$LATu8A+eEuqFv! zf;5S~5aFK^7WuJarHno>VrfdMDW&?V0ImQ6fKa%GfN(Ik+ZQ^ajHzz`N{>F&B6?|EzNW)Q$fLs+(9kx)tuCSeYB8!R{c4SdWA=AAc z`ym!wR&x8)Zwl?DR54Va1cstjPT;U!5m$-rOJzFrSr<7D@MOwgqP=j5v7`{H_|^yC zh?P;u$JV6Dz^a}=7(9QOS{b>AKX1hr6n7R}7-`o$6p4ThsteLrO($9*jH)KuVr9V? zJBkpf=z~mXR_+I5C+FuTq?MldY_E?fFtp4B*=reDpdqD?HA*dNy38&5f3B zI+O@Y03!LJYObIU+9$cxs>HbR7cN!Sabwy%qA0_{iTA2$*kGwt`s1;b4sK4$b!-9; zNFNaeW5e8~jB3Kqbr3}Z`Cz&;!DHExtx}zZ59dCKJCG6@tIBaYwztALY7diboGB`+ z1>kQ4K);2o1?oDi-JEQXdle~En8WL>k@%+tP$+P~Y-d{z>m_i(!&5WlRc1?J1D--P z*yfuE*uE_@21)m6zE!O*5QDytEx2ZLF7FwAR!tP1MX z0Zg3Tazx(!7VtRR{AJPGk<-UcOk^8LqoBMO_zReA#VArsUI}5Q0=mmMhSwqq%Z7qn z;`e}B5U)vUPTLFACPg{FIwG2&8VglDIzAX`qn-d8O<%v=LP0k>tj^p=zEk~5q-K4n za6nXaxF3~*&>q7;`aU($OQ2*AY)pw@>ZCOgm9n=On_WSjO_$_>rt7Zjh|5lr%NCy@ z-imcG5;xBc$h$}-3KZ5*kv91rS^|9DxE@|sl(dZgS-L91U@9_WFrmR@$eA!x!+F^Scd*qSiSo~tFjq{5uSzBkiU&jyRy-2o z9!n`O=7ko4@mH@PNd;`|{o#`~>_DR3_Dy%5qHVz3h6ESM%)mrawxlCeg2Tr*yo46X z?ypn~RY7Ys8H15Q?NY?|2Ka`Eeu*tX4xXT%w0II-b`&LcsOV#n9Ko{y8Q|e4sa-MO zOG6&^9L!ju${!JTKH3aTkt%}3Zla`PVkld4u9T7VinA7leJPv{_vG{s&0rbMnpUdQ zpzmZ?5`3g0Ueutvt2K1f@ulJtx(Y?5L3aRH>6%nd$gqPa^a2Ha}d#!zmj!)r45VWaf>2f=_#SLss>m6e(7>0=$JZ`YM=+IbMWwmm?DWEl4Q3K;;Y= z+0NIUB|9(bX%Mc3eH<$lV~9^*P4o)7C?x86O83x5?65QNS*27wKIYH5@>jX=;qIy5 zb|67I zGJXq{HSx|8)=m+b5V-?^PY)&%SCr2PWf$c$5~aaTMiNRR#-ON2BU{V1l2WxH;b5bI zTcFcV^0$)4JkK~^s_%DcNa*t5b9Vi#GS$HS`+4@w%%df9Eqd2@ zgVju2Y)k*)#D&`>1~pJ5JlN9Z(%jAYnW-x>b!(DyVjKtl5^>J}2a+t!Y%kuHq-Ly> zbmBsYH(Z@_uI*>_F)0-qTeQE{avs=J+uIK*kyDnM=t4fYKKPu>l-c9w1pihLf9 zoVYI0C2vBHS-mli*0o=sfnU8fLS>e-(SGl~QJFr&oO`vOI$w&_S-ERV+@K==rH^A$ z?&+Qj#2NJb)ZQpY3zYBk?y2d2-5o@-cfUAm*6K@1e;-g;FI$fQKz-izoOfo%p?2)1 zbzKfReC_jouc=0N_>SHSK8kzW-8TW zB#o_$PkCKd#S3bT|DWTNs@Z-(wHL^PGX^VfG>m@2tJKfRK(A@WV;`%U=hIlC_Sw6Ry$0Y^I%qREQ&_eA2CpGT zsatq%OYM9^#Q=P64wYT<&z`6XDHWw$9b}Q|OcXZU@4V}@;d4d}m$!vI?=sl)6Y-o{ z4U0vt$#WGqFS}Q@U`c9jPN4i+m7}ZexaY}R|E3_U`pGL0Xb~n^m-*$rmfpyUE_v)k zzv^*hg_He_%~d|U_KWK2;-&T9cxt{?^z03K_OB~4)GmZv97G$# zxHZ{(m%)zSeH?pfzLl}q=oU*f41~ay3E#l(qIw_4d4^8eZz~icb;{SD#_q=O#lU*oJ_y2q)>u5z7?*mKiUL9$iu~tfj~bgW z(0CM_5&0U2uzsUfobx%!+N#grfZz#xl`g)H<*x77yHBR)y^yMV$$zII1Hkh90Ohnr z;qZ0yu7~UIvssI;f+FsPFx@>*)unjjvDbt(V0{X?$OZ^|{1X?vOQ;iD?|7A7nem<1 zpwv5$b(Kv#5?j0aeMj!*-iEvGGG=xDKGzrWEe0*`8VWIWNWucv<;Mw^a_;&$rR0X| zmv$~>Z`hLR_ccS~Q;u#=S%J8S2GLIgtA6hk$?r4-4E;H*_jL&3gMLNnE3m@&Z|_(c zZ*cd#?s4v3WV)VfzMZ7z{}Y)yp4_r6^y~*yHtP?_U~^5jhgO*8Hv0x5$ADt1FY_=Y zSEG5Vf2U1}-Q5_hkr8OsO8Q89@Z`Bsas7%qHs)y;23AE=-}CKM(*Bx4L;7Nd*Qb7F z*hUVNz`>FCLZ2T-xO>{WXC__`v*iRtGPZ0sbUFye#7?pemX{HmSP^+rlum1zj4eUh zb#hbAh;ukYZ*l1DCt){Wj@yV|B6yqRnMeOkUD2Bii6r$e!bhz0M{ZKqra33Je?eS?2SwU!-OI0tN$9A`{@+{iL!CWoh#A1vykk@>hisTKVb7XPLzD zJ^EmS-c}fD(uH3XZ@bRgoV5M1eGrL#M{WQdGwmPO&_imJb-dKVZ7j&n(H)y`0_!5wtQcZVs*cy|G$Z;*u@f5 z;4xqI{c(aNb_`UNeH*J}4`|8Lk@M=GkN#32W_=CT(CYUOU?;%#XE(4)caO8Q(MTd` z!2N&A%0@upmldgxav?pKg3<{;_&d|Ea4P{7THo(sG+~Z;0I;pNt63a{)fMU(6C7&!mnu2Nz80Fgu+YHLyHP#`IUgjMXEdhnSHh?y9gTkP#iWl~eD$NcD zURfE0-?KGa5B5#}Y~G+B@cBnF!Lih%wDha+#E!=ee#q?8btnkMT*17<(sZB+I#;e*Fdlvz)c$^t^-5ohZvTg-#y;$R1lJ z*`7J`K8n=DZu$02e2npf?U+}e#vX>j8+PP121QR#*Bt)1?x|*xKcqZ*3|9Qpen)a* zDssH@zB_jar4+1I3Z>46i^o;M9zE&93076oFx5Bq7g7CI4*UW+==HEYw?>%k>vqO+ zGxqI~*BJ6)90u209nTA_Eo+|>IF@z?;ME*~g2t>PZBGjvufq3JMa~4cf&GyD50v4o zHS&UcW8Im!j;gQW{B2-Vd@)<7+6lP8r@S=}sFbB6n{W?kuzmCs1~G8I@MP-qwD68T z(nEZUf8@!0b9q~7_WH7q>mFtm`O>mJo{o%no#d&7ur1goxtjbIV)6CpeKwM+a`rcs z{9n>n_HUo~4SG>;8+K>gr^?ty@c@NGBp@cPZMKNr-P8m3sy7{7cGo}K9dk1wRr#3k zQf74;*~MS9fGDE?i;Ilk*dI0>86ND=%Wj z^IBdSzQX|D2fN;roZnw5ZG%vi`8xn23?!7yHFTNX>Fo}#wzVP1%R?36UfApl=LrCC zCx_%;MJu`N-gk`zD%c$KLt*FS^}s!Z?SbbED3^!^#l=pu1;>+T=kUA;C$YHvo|7iAah>yaa|iB z2G-26brSXwxPw*#xC0+UID}a{d;{9*+-M9ZB*3k?#c< zePOE4JtF}<$>A*JpeJbk&fDJ&T9f=&LuzsJyVs%dg^%pCUU!^_=*P(Ov-%C#HnQ#q zMi!?qM$4HyO@LQ+SqLtG7D%>}Jl}1So;ww4IIQd~m`n!GR1!uiev)m=>d_Gj0ouZk z?)RR}-V|oC=0S$v&CdZ=GPiHoKx5mih!tL#0b^$|0R=_C;e)W=Y)x%681#wVufQp0 z>Y=wOV$%%eIgz+>=LC@oFz}?>9Z9SN3+`>0`k2g2>fZBYa<5EyFZ6atL_i@QsY>-A z$^m1&VO-hor@4?|(DTgPaiFi#7$hGinNa{tdadTrv6pzC2l+269-we+E1g=eA^%D+ zAD>jM|7JLPc%p8ahr8|f1xr$tjSm9akFC|1Ndwvnsnw;&Vn`0`4(6uDfb*b%lrxpbseCB-a!QMRHo?ksCd{I3_6#@A{wG)<))U%(~`lLH=6nPHHva;sO^l{biTF+XLldB17`GI5(vd001mY z-h`vRfG2?U@c#mHXoO{I8FnC%w;CkJqePrEW)(H@p6?INWbDhg3g(6Vw$OP}g?@1e z-zf0DeQGlzQGS=@aD2s?bu2ozkr2on@=z8bmdPhJowCHEF^Uul?=r{M0T7u9@F7?k z)TDyIQLNm(+s93FN%xQFX;3Kklw}W?4Xa-?9FYu#3m+tH-V^Q_;JIj>@hiiyM{cR@ zc9_P5igC#Y(-Cc-+1>`LxjD`|=+Y=6XawqGEw02r0^6Ck*6l zg~2VI+5W8PqdE+bCpsLs1RM$>XofKY+Yo9}f0jZ~PBSl_(Wp(bG>U1-+ZX^oh|7o| zi{9LCX!T`eJplC2+u-mdEGQtz^Ho6-e2@fV4?UWvI))?;44r|23DgyjG{G+6w#5U; z4UUaW+WxU%m!zK)_JDsEt1l^>M6>|(fVW`fjJb`wGJkp(9uTq5sE#o)JCL;fBb2+> zWisu+nD1k+jj}Xz^b|qdukYamBu1O?sRD^GN05WhQ=Dz=;$t?JrbUtCFIs(d%dzjN z_H+m!lSP28OJ4@^Ef&M4{D4@V0e&8ZK(VxzBrE?d@bCy*Us~{3f1e82ZP;-3-DFmKPd{$R|si)-<13cQ;sUZ7xO(u{nBYV+A9E4UOkb;3vx zC$>&iF^G3XYKV~uG%ycTS|9UR>{cQs^_;Yj5&(Dxp}XU60?<4`Lp{do!tz*X@rnti zwsgWb_K0}fcRZ>N8umIIfZ*^9$b`UU$w}Lj|aJ3aTUrB!b{xaGVmx7(vV#S2#Dl&=49!x_i0 zqbI{xc-{W&RfqOxHkE4jnKj81{T-IO%SHzz_q+GX5X&|^a&i=Y@Vxn_J!w^=($Y7* zH~CQD8N2>p$gY%zPdzO28eh;nc*)eZ@Vfy+jRyE#4j5``KmMZ0t&!%I+ZR|ZbZMZ0 ze76vzc8bedbui}0CY!99*gf6%TxjU?x9K-|;oYmBuKjF}kHH^R@BF>zs~okKwJopb zbX)mT@q&izwH|v~?@o?$-es5Dt@kpz{^21S%zQno2s~$U+@9_QmmB)*?EaVK@e>t~ zpE=II+1ID}u*u=~ZZEkR(Cw>@=l7p6*ghk!L{Fz_@VahTluETd`8COYgO0`@T5GgG z#mIUl{-wzMBdftGkU{C|7PWh_@xs^a=UXMoUfa7X-YKq^{#$33_V+ql@L*?8yR3>| z!oC^vd+AtJ^Znme?8*KyYUCe#TKiv@Ee=aJPtq~G9Mx_Uu`BSs`%kSle(M>u(XOFS z(`T=GN2(N6)&8N=^fg93G=5L_>hYW6YPNTe+>~de>Rk2?&&HUqKf(3)RgT7G4Ugxw zTAV<4yTpsD3$@*6srrOF*{i)(J$~QnS;uYEcZ_O?{Oa8Tnf{1TdEKweUOT)i{+Fm8 z#~*D^j9R%R;a=t6M_aBRc-n2{sp19sS{TK;QB@v4%Jj$L?&|UHC)R9tF}r8uqnWt= zWN^ZKGx@GVOZvZ-*!=8=wXbeXT;hG{?@38B+P}mP97mO(HL^ZCs^xEE)vZb2mVP_-Y@g({_PBpId>d?p4ZTQUA3`)n=1(+{I)}p!@AWu%O@@fa{hgJ-cQ%uwag7_ zzYlWJGRrrz9-!M$bAJ#Y+Bts>E4W! zgYG}=6E$OEijDgH+<p7J30T`lZJqOC0-t zxF>Zo{-TN4F?^~1o9ZKT4j1;Rv53E18`2~lVYIN>p=ms9d){F@f5g|}-``S|t|+u# z`ds|YmcQPme80qO_wO~LVQ%rsmq_fr zfRGwdmb+%#NJ+U${$O|I+|opBQR&a<7x0dz$j&l`7es- zlAp~#@!8`+&eP-GBe?u0u`TL@>XaXw#{U_;`_l0AY)gHQe5`W!Ee`yf{!+fmP+S)C`VH-JN?2v2BYYHt(XxV7s5k zzVj;-{j(`Pxn3_#)xNKincJrie^Li+Io_~Dnf=aTdyl0Lt?H_S9QvMxlC~J-T{m%x z-Yw_0*f#UmDA@W4rz79rvYd1E(rdWuGjZQ|d=lD6s%LzvWc z`!g#ebQ7fZzgR!Ny)`y+WIz#Z@beVd>hP7mGrdoSOu1!m`Er}llO>ILdLE1Izi(Wb zke9tR{0NJeX$zOw?`)DS&uy{jnfe3{wcrN({24Ryb9e;H5yX_x?k>)>%Q z2oU*5BcBW#0ZZPoScQ;L9@{kcv3%{JC%wX*R;E|_CVen<_NE~xzdA8IL@{Fm1)sk2 z^RC~m>htZbCoYA3aF@sG>M2fa(>mji{(a_Vf479n49hyp-Rf`OF3q=c`(W>^pWhE2 zF!VOJ7l#3CFDEC^UKTEUZV0FR*!_C=Un=?9r$;}$2cI`P@3|Z5+F~qAuB64hKKc^I zHzV63Bqqg@?9Q)NHS*oMA094yuE8H3=De&*X#CXx?wNew_7}(G&)xfcfebTL-LkL6 z!Znu+E6sGlgGF17lh)i`t-mr13ko>C#vLf4pJl3ZV)4uybN&j-8?^a&o~L=3U!7=T z+@O@{ud~~#zBTYwq~7>x^*6^Rhb)=qY2f6jc9?IV+19qg_}DSIpj=h@GIshY2eIOi zZMsx=)XoDar%>K`ZF#g|W!SOlueMvxK|C&$mjdC${p;GBD=LTS%{A3K{M)sCLUREdfZ2 zVHaC0{5%Z~I~e-9>ow)(4N~be<>o?DO}Q!4FGckXt)-yRYR`N ziIng`lWGGy8Us5tMIDPKY`$e`r7Ms<*WHw{?P&_W7jQgfmCerr8UM@_ z)f5H4=YB2C6UxKtrtH@Vu=6M#t(T%2u|EIwpV6T`L%ouN1~rtH;QLOF*y7xjNFjIA z6%hf|t43qxu?ibNpfgfozfTJ<&fGc>x$(H4d*PkP%s1C|s!B_(s%<+;)wK45!WGsK zr!6w`pPRR3m|Bt8kFs5E!r!On_|1K=$lH7Z?R3DgD5(ejU1dDRxR@=@&t`mRUdju) ziv8c(>YlURE~#V&B#~#D;P4NnnbXMOBopl#X59^{ss7#0r?;>B4gHrHmidB-HDABV zXd%%Y>UjKIPBwCPt9zcQDa!&r5$C)`a~&sz*7i7bR3M%dx;KxK@uhxENv&jsfZvFcJ@2=F+jK<^$6NAqZVW=(V7=I$e5 z-l^(y>ZUt(vNvy{VV-GIrG?=R@%qZJ!B|291fhBX^T;$rX=b!#7T2CP3thHP% zYAj5=X}OeNRZ!y17K^6bn1ffsuSzfZY9;Hh;04zC!8_AQ2X2FN1QQ#>HQG(VLd5Hv z9Ht|PRffHDICEQHYrz)VbH0y0X7__f1i<3L2a6JPR~i>*3MNkUH1JpGN37|x_LG%} z^BHcNk|u`cosc^lr9?vBJx5LOTecEbz@#z~QlTd>SzQ{QrV4i0Z2pU-bva#`NRAKTd)iK2g^%O_>mDIeDG48 zZ_s5Zh|>BIudn_5T+GLcllO-gih6`r1LOLXZZw96lA`xPTYFQ6V_$yAaLkU_V<@EL znt5K}ZRcR*#$jMhORau$!W@_E}0?**;qCS1wj)eJcjq@Gw5M zrH|s>QM<}i=&y56MM#iMx&BaIkOSvf^&(Qp4-u~e{(K{P6*#$@ph$yF5$7m7=9yac z7)~Aq8+`M9)#@&^1e;jo{3-}@JeHhixtrFYh^Rz*)~-qc zo2Uv(H}x*%_eIt)^F;=4D6arUp=r`SBC*BhGgb4u9?$Dau)+FY!2);ivp1laz(*Tq zX3ie~CM#0E;e+5iuaB~hp0uZEQOU)z!n}@GW%;Yuuhp5}pel{q>R;G{W$~1ME1^tm zJ95+5U$i?jc8U%fe|~yH*{TVlc>$XoJ&tqgp>2?}o$ebE@Xa|O@x!KDD>XF<*8qe=70QaqMngNz1Kc76rHw`zfR9WUTL$^oIR90jstsmpNQb#y%ata$cmuf_ za~whlpP5s5<0?5LvpiUg$5Q(xjY+fpyBs1}67l?G%Tw6RUA8*K*Y(xNBJN1sT+-DV zCktYh9!~<>`$y)OrtMVv{`PbocgjX}mb27wvAg4U0CA}OQ>kJgTo^^>b^$1Ow3 zx0X!^;rHkU*E3yzC&^oA(h3pE*(L)k5YP^wX^JWx4w>lx1rk4VV=6)Qw=Nh~ko9KkJdbmHIX zDj_X*a}r9`^VnmlSe*tKDOPZXfO6b-HYD$(jX)n}9jzA?B0tU>dEMl9MQQ=V8)Bo6 z-41XVq(|uiTL2$U_9%uc!xoR+2(XhU&PhCXDy~w4t+72zCubnIv7mFo>GC=Qm;En_ z?+Rp^Pp|b~g&+m@d(&wd*FG$t5J8Hyd^o7R84ieACGWBYQY%7bW(=GVzBZ_>EG&X@ z^l?3Z8v@idSI!=Z8l;Q3Dw9vh4p6+yz$b}WDB|K|)u(#)p1W(XnZ+Zky;e~aVCJ=5 z$g)_>!9#FmL=h7HiIdn~o>k#SQpsX_{whI0Y#rulCWZ=22dN0Fk^j9#;@}W8;kt4S zqCVR-?HD-0YS#4LZ}8xV?R^ebEgVlso8=^KwU9kxRcq-$%ZJuWAItA{{3>h$UUg?- zljT6g*HoAx_D$G~?=Q^>Ryy4JZE^wNMBSxEl@aWX91!s8ajJ^n zugLr@AzT7Rz+mlEOWi!5coWsycrLxlNd~<`pqo?MFXYudelvU;oHIiFGWPK$)5^4#ME(X^o`baW4ax%~)Cv(CR)469+ z0<$=Eb2DN`ri)4^J(5Y`f7Vqdj?1jw6zH&4M{M~`9EmPH;-=~hNEA-XHeTj)Ja?Bl z>bRn&Ag_zKf3onA)`|(|xET-Fa;9l+wbqH|y&zB}gPm9AZ#3@L{CEi>BGdn322S#{ zk!FMfw>!3#l_i|=F4icookKKlFIBg&nt=+I&CcI0f1Y@gSrLmG5N+DQD<-0{12J!IMnyQSq;pr{wO-nr2iU);YGwpmb1W#r!0v_2!HPP=LCKz7xX}B$0MLK#85e zMazba;~0`MGV1M?#BoR>(l{oC0heMImF;Qy5!tQl>YiJ+Z9Ob~mm4EC+Jf90@{g5_ ztzw1ai>>ZmxW!U}$`O_Nc1uDFG2lqNM{RC1Vi~rlB9({};$v**IWF%GD_Bn9AOQ|q znv_G9^3t3#b;@*UY_GOoDP7;7pfVl#nGY@Wq&ds*he?X7;bhFmZQrJ?oG&U&u$!+Ktz17He*f&YLTGkL@h^2CvWS4!bgk<_^5os zL+0bezXEtLOPz-DfPmcBl5QIDW+{vcQVtd~J?WsF} zSgFgq<@sdM5Pq&%74f!99Ic38*oF{D7m1ag+O5Ra5+*#DVPS_`y|xnn7ST$!hcCNM z_kAw^#TuClW-!Uy63q~%$mu_`*i^+J%#94zMWBalG>7MqAq=Ww_C>rw%Jl9^5m4F7 zNEGHx?-uKP?AG`U*&bHcu+_bjURXNgEBPQ6fai_0G~|{5)Lfbmg2cOAkxL+yh1$^_ z7yVH4du=_OZmI*D;!<@Q6}Zg+ip018gME-di4CdM{@wED01A+f`pZ755NHi~k)z!C zFn}i0-~pS@h_62a|F8u#j8>9pmB7MS#wK^0#}Wa-XWHQdsG7M-3}bH!=ku;Ig2b9< zRq9D>%VdBoz=cbIY6S}^^W8=GKaChokD9E)C&yA!;E*Ax4h_c?{98YaDfuro60~7Y zhm*4K&Jz!CGC}fhi-Fp}Xvq&deA999Ml=yuK0#=CkrdJnPBTPUpwMVXPU^RZtnS1D z4(YrCr>T%-m^Jl4+pNqH^5a~IgC@6$YGJIgef)}iO$O?=UoNrSZ)xbSKm_4QHD*l6 z&7G;3mo#;6EFUKRoEk}J(tPdiKMMTurwpQ5m?sgbg0%f=|KUXz^(_wKzQ`j(SuqE zSIryAs0Z@W6NKt1+)$>c;1qZ11}q13GCDtTP+ARmR6c?%^KhcNj)-v%BR=BLGE=05 z0f^wHvQ-E{u)BQn@EaH3=jrX7z~Rg^cq&7bAB~#uaGDkmfX<0>x?C>+?gDWO-jkXm zJCf_GfzZvIrs6ro{JzX04N@p$fMm0$D1+e?^H5}tM==&ZwI1PTu1`Kv2 zUyAxJI*_u?h=^DZ10y?vBt?S#ey_^&U5x`+I@**$`Ty@3sJ>WzJg6=3NJ}3u^#!m@)SbKZ z7G;>KU77w^bA@pPY`Y`k5MqvPeFlI@H7(cdJM5|p+@NW~#0;$#D5_Mwn)Q!D%;IIy zEnm(D*F$bTfLB1*mnG8b!$}V1+YVpir!w%!8l`6SNS-z^ zB-FAA=oHSGE{Ue%AjxT~G02#zTZf_sHE1mSYG_yDXbqZSyi9AFOVD(HZvUc|4%-e# zrEorYQV+#T5ujKAx>Pp6iZsN*x3AdZxtx8L3pA9;O+J!rsdC-p@i%<9Zh5Ye9`Mr= zic9nd?Zjb zAQ{B3c%FD=<|Hi}NP!dKnHUWw7%k;YLk_rBwJJD@%O=!ZL0C~-HGxH%kTc%b`Rukk z`c>4-!NkS`^tsqA;9L4fCqC3e)f?yoPLWla_zQH9`{gr=XV?z2lsg4R6o*=4dNNjo zpc+FrhTC(_Q66SwEZi=1W#(}JH$>lUISx$8VBj?z6U)>_s0=`#HD0MoQ#MV^KEuHw zGzGvnDZZ`?X;)XXbyJZ<5RNr_ID@ZZG=0p$KUvYtIEYB(Fw$I})g?-J$uGe+aMoF% zbL!?x0x7^=$de~t1c04j_I=faLFw*54a>_lYisB@`F!c6+G*=|Ra~%`_}kbOCBJM5 z+cSHJjazQ-#(b0i%yb!O_mBL8n=VuGpVrK69CPuC zD@3C$3 zAg;F!vQxSlFE%Xj1Sha6Inmv?_$vpa&Zj?9;!eGi6R-Rers?PFuA2Pr27VRJTHKzt zv-b54$+laj>QBs`oXJ)6iMe41Tf(etn+>yyeIWu}utXV3gD`^~c( za3NanLESV(Y^{^Mf0;PXL43U&JJf6+U-%xZ`!3rZRn-8S(Ezt`nY6F*tKv-rj;2<; zux^N-7DVTps=u9P(P}-hDfjj;k@*)=N1F|oi|I0cud~9*zPR?R;YGje{Nt*uAqCk9 zWYgOX&q8`g)?OM8kIge(a5WbHr{6k>6I9yGp%kpt2&X|LgwZeS6PikyrZ`4$^~>{hq8cSRxE9{tvNiePf18*=MC z8zHoq)dk|Gu-lN}!;Z_Nw)%Zwvr!-F2#_6wBjptrBgk`pst8#;D{|?C#XvSwB&{bP}Oy4Hu+4>gFjIk&bZ?7+guBZ$V0^nc04*zmcHZ)z+(co08N4l_y@h4C4o4b;!P8y-yQIIZS`4hBYFMG*L~!*fyg+ISJOk{dR@@7>NC zN~1%D9n2X_tDJLvTuZ~1@P28^D_KW$cg1PO!$KvI!rxqV^&VFj{lUQC0i5-hKI91N}X! z+l$O}> zK4cA9uGMe-lT@iKckv5J$J_Yte;6C_6MIe zPArMNB^RSK*)puj>{rr!eJu0l9gTf1zpp%SZ9QUL{rq=nA7(j~;ND2P{RJ}98OyN@`AHRdz{syF&u2Z< zixg`We9-#7Kqj@OC<_gkm6}?8(41HjQev^dgi`i%lata_xDN}w^w14Y<4`XTk{Zf2bY8_ZaA@{WFmU`qqrUGYs zWb*QOC;I@QwR?2p&%TskdS*G@NFFxG^G;Q1?mi)Y+?!v*0>BQNnU(K)A~aa43?3An zhuD0ufDO%=!as(ccAZQz$;s}0qH5Zyo0K@i2CFlhkTsM@>By9`5Wi2@`3xCkw238- z9sQGTgumCyi^M%@Vwb-$(4pO$_CpkGW>+MIcj^!eh7JJ}xU9!7KxHv^WnCKO|M>7) zxoy~$@LsetRA1}@VM-oA(xuaxgf88}&Yd1l>!TeZaB+~5StaxgESj#sEu6mQ;3Rj6 zgQo|AEBBnx-v4x_BJA{!&s-KMD7lk`2quiMNzc7@3F*CHJc>uCOwuC-Re) zS^^vk;NHxrIfUXz+txxx=Evu>`TLrRRVviC2zC$Bm0D zY5%Nfg`?V9#sd>u4u!H?UNIqEO#I>#eFhafAA>vy<4e^>xMlV;b|((V#qv1>nG&tj zoLG&O!=jM4u~!Ztvv{cAR$jKMr=Y*lCZFca0wl%@hP%ofmw#h?^5%?N*ILKJCtnk`}ZaY^rzyU!&wK8g4rXp zrlV(1(4Ruj6FiL%tcHWkL=9@-%a&mx$C7ANo(UA|W~ri#r2rv|Oc)kfWOBRVipl*I zd+Odb14`|;D@=%P8otX`XZlEj6CG(P5eG%Q&(uE1@Y_bow5nQ8=oN?qNvWAZmO!E8 zI1uzKohs3)5M8M_w0Kr_`!)96k^24=Yl4K<9wYVD-9Hz6a<>ZhyY-afmr zI$GU_?hw4oF_KG{52D3Bk7h(Jgcr0nFD3!b(2-nUjhh0*Jh<#D%Y;N>7>aP$-_WZo0E_>~9dGF0fzC)rrb>x;b z2@s|_?TU?KB&E6Q<2FjMk=$Ztrsf1-MCTb0vijUW{~F2w=IFw_%jaNFSqSlDyBbr4 zae?OrI0aB{1qVI|^55Rjsh*Mg#eQ4_iH!oJFk@8!6(f8SX3&9YKZv?7-}>hX3rt$ml4WNNzlr39H?0mxf5F!+T;$%&A~yrda=5%3qIw8QG!}1y`goQd zp`Zgn<6?Gu6K5hA?%<@aw{3B^)iT{>cq=A|sR)RGY_zzes|JV|vNutK?g_=@=DCQq zC&j2_-yxJ2@7}-=Wy3WUfFLuT;upZ1#R;gk&(~INwDoyoTk%XibZ-e&9XW|C@N7!INNHEyx@^c}Tw6)()Yb*C& z?;aBTSb+RV>)-HZhs3Bn{)t>!JycvuB|f*Y*nr%r1(vwL3`09U1CFghG~hCN6usN;0;(Vz}I_!qnT$oRo_R+7Px*gN~>t` zMXt<#!&TlNx|%7kP(~%-D5abp-Ic|FnTo%Xsy_o#1&e_F9?K&1bbdn(3byWQ;p#gc zY%pOF*vRAZOO-scQ(9JNX4d4A-xZb6XYC8CH}*+;wq z1639rsQMx72{vV5_M|?bK>!zuK{?IIU||y>L*WJ>Lk(ewW$sdw{d}xs7U&NV%q}LZ zfNiO4x2H`h0szN`dnGeFj5S0EXA#Jqh@#a6l$~HKtn6h0(esW_fA->-;Wm-vSWGRf zL>zgp!{m3^vC#T&2Q@2jnGV!^9^+sHJxH6ZxGI=aR42*RgkVGR`7gqR?ADesNnU0X zJyA`tu$Pt$YpC@h?Av>!{;n!s@6YHp2#yJ1;ouJT@L!;bG<*^@QTO~$f#+Oi`n`!f z^dM%gY%-D|=|PJ#p31u`f+v1R(tSt8Puat)Fn1q;4+LB$E+9gd#*8@Cu>1i8je7#_ zvX3>n2IsH-0Pa;=Y_k73-D`qC5rT+i0UTT<>>(&rBJTG}7RK-%bC8@ciBJiTkpHLFxOg&FG|;_EP~kBJYZ1(EYT)awW!pXMN&iHFlu zEz+P$^fs|D*OD$IPH#@S5oaeVbI@ORE ze!JoCkgXKjbQtMTeIq#QbP#Sr1V`B_sJ^D+Z@orhE;u$rAqSVZZ5o%Ab*dQDh>R|y zfcq%J&l#wqfH5Iu{51v?PB}94A<)1}Lknaj)JreWx zJgxxydLu3<*em`>PD|~%peD)zfB=Z?1UIUxr4gVE2!iCvi8f0cftD`<02kfIyEDcE zVWtqc1LzzvWG8W?OAFb3zctB)elHll!r?4;Ny3=1Bw<$pHkb zpCvdF36@j}Afqs%r0aQyNe$WQQgDfd9Q-aZy{KEX(E#pgeX<@U!?)uI%7@f$Uj8&t z$k{Ptb}szb%+>6v@NZ{)kciJp!lr+~!We-*^<#89ta*6DxCv65?=nw>Wold!LzKK$*WOFpGFWxeIWp<#nULMP_*XE zGRN7Ou~6!sp;0JVbkCb1L2HW@B!(JI%ehP&rTm5d~p?^5OF zX;&q7=ST!9MwzvCaXbEPuE9}&Ge$e(*~MDxod<*2=X8IH$tQMukQ&bl8I}-?u!2-< zSU}uBR|kV~KFo9UvqC_TUdiGbt<%Zyur3(MdP;0dfFK-PWtyig5iY0jgVO&K4i}!+ zF7ye{OYzkvJxGfc4{*yQ=j*l|gbv8|zhDZPfVS1c00{FZ4o&4lc|?+SDzOFv{{O!Z zUa<-pJWfl6k+eqYw=eBa-92lfiXFcsgg^_-LE*)dHbRM{SY5OHi98^*_6`~@a5g9V zZZ_aKdf+B1-)Apg-qxJ#%Iw0Oa%S!nJhQf9mwl3zm4%U^EunfoZ6-~|T8keZKzJVmNow&GJ zIuZgPJguSOy0@$|a*|<^KQZgGS4fFtOW|a?K#I`XO3VT3oLq>(+}=-<^3!HC`X+*uEy^47eNqPVDL|oq|;Kq1yAneUouYq#Ld$d)V$nQE3Fm@@_O^dDqEjbA^vy z#S=q;${4f*x-)3#qlWHck61ut?RO4jaa~XC2Onir5%nY`QioHs0_hDgo`_y-9p#r0 zDf}50@jU9$wdAb2v=3)5#$J)dnW%`dLjW1qxLW)jku~C-F`~+P``bNhw8xku|^{L4qE1h^lG zdA~K)X+nY>DGWq(Z|YLFyM(3RBV2Lc^cDN|8bcuoh7N4-`}& znSpk16Uo=J|FPz7p`*{psxV@U!GcGBN>qqs##f%kAseWbz?fId%PUTl!JpOeWn_6S zIkJevoS>bFJrMQNin|~aD1TE2AKh;6_5HvQ+$V%bqYVNT2PvqR!ZI^8=aHEim2!ou zwMfhwaGfQ;{#16;bOdRQJadi`CM z4mS16wOPP$?#g^bVK{f|JDxp4)Zs=TgetB$txcyZXsB>Nj73^5RjK(_2Ed4uJ5f{; zH97_h=isX!LHT75+N6Q2d3ub_0?-^&nhCr}B z3uG`EnQeY4s1NkB2!3t~z7u>}pU@8KyTX{%Z15 z053QhSvxv!H^SHLiAYD(^$Gm0EpX(hK}P=dT1PluYX}ZsNc&|*C@q=~;sbB(7c)Dg z&U}T>a%WyM;P6$sJ&Zr4sSoU|(=w#i2IcV&I7*BG4^H1KfngnNXT)d22{2* zxg$;Y9D@2oAvPqGPm>XB#clf$yL_d_zw&t>6D9GiM|UjB z8k_H7+r@VgIZ1voQ8rp$j%=CAu~Cp<=e~I4K5pm@5eAHeU;w#L-Du@RK5v214cjn3 z^DlU{v}B&_+m!n=W>FX`#Q6=^21b_B5)jN_ss65bjk*r}XMMocIo<&@K}LT91_|{V zb)b!NF&&VodOL~1cegWHs1S2aqg&^N?p6BG#K3aQG*wkoEz2?)X_qKpigMaW|941j z3hfLb_-SD2v+uIAqSIOUIv%vm_j>Xe|CVnnJk3Y@i@wU1JGU{Knx$cB#wjBJ59@QfV9QP7y}(#A4bL9&Z0p@ z36f2bQNM;g15+cNVt8%yb55S@4fo4&PZ4FoWtGq^UHf=QM;FZJ1wc9?Q!_7mFeg3k*R#Jn%vq z@Iu-+P=pK%yK#M&G#LGJEG*6b6(a|zMHPZZ-ItVC(uVA%8*r|q6>DYyql{3(=x;-@ z!XgyYKjyRu>$`Im1!ZMynwwTzpdHI11Ne7V{_wSD6Un~_zHy?Hw^y3~?*tiZa!AMo zu7rcY+y;g_5^)5hIrmZ5KdF@?gU}oyW4QYwm%3`>8uRD3i%&Q!{nQ-d#4W&rtCy zK9i~_RFfd8D2>$;`-_q@yImn8oo;wEgD?}E866mA-R?xIzN0#nsxYlKX*v$qi6H5> zPK?hlo|_ME#Idwa%z#bhy>j>8;(f;n@+6^sgjRV>z&pFEO}>o>P_P zHjQf+;4;QDDLu0hi1kFO@^d#7k`P3>Ml=&H#u0fspN;)7``0HJ#3l(CXH5W_?GxZ% z@dWcYAx~k9)NFw+_`VVw0YO_s$r=|>Ez{X;bn;nwir;X83DC>~U&g9}cI21g4mHKq zrN3fCkgulG3@3RNvVoh)LvGZ;+;2CqF&1W{WiCC9J!#|?NgME&+n2;>RJ;=XOm38h zjSi@2WgoB*06!C|jAi`5=a)R!!m2~Y;IsqHkd@OwBaPvl6ZWHgg~xScG8*ufC&~K1 z!3f)Y=LiU!ukCi}*yMj}i0DolVjPd`44c#rg{ca=jE}XBIGn=IZ50t0)k)lRc^gUz z4rVY&MRuSix3p-4eba~yWo}&FNb?`{_MNKOxLn2k!+Ba)8u7br6&h{RPvZ9 zFpc96cs7&;Lar<+0pR_kf>9l12&R#ru+}AmwXud2cw05p1TlI~-IBDA?Lc7=yl|DK zwa@BkThxB(?M}kh7>WSI(CUXYQ9?s&4Q$AEpwnf3(Cz(_egq=@jEZ@Z59UZAM;lIU zeVn^C*F}SLiW-6DhcG95*7~ex4PGVY<2aS)Nl z##h}0TdpqfNYadVkLK)V+{bRvAJk!vUb$e zR*=GMD&u+N{y?35wNz)zfNY)grn{KDu;M6>H zHL>78tjr+%PSQ{eVbMTo^zuMOQ?At0Bd}FJ)aa}BxG%Fi>KZ!oDmL0IiAs{RUDGwX zX{ydQR@nCr(S6r^D8j<4K)xum1ZTB040Mp}cbsHpu|_I|qSi*H_4-xXu0K-0QRES# zn=fC0Q4nj#s&hzb(>E*>*x8D{JsyKRk3VS}xxk7x$AY?9~F<#qzqS zCdqF6vGy9eE)#CFxPp7?B^=y4AthYOI`ybGX@(gC+Lm8=JlJoZ?H&X_6W9h&`#;!@V>+?nA*Q8Klh@lH4qoJ?!De4 z$N7=KdKE_K8bpn`mkQz?O#!@lj$db3(qzZwfe6iISVyJE!_LIQ(UI|cBSLH22B|HG zARxl*o5<3tu+(;3ohncT2_||ZV;XqMt}0<|Q|_hTl(=;OrU-^$>#>HP8W*>id`fGp z6o2FAUNADR%D=ZA00jQ<%U?)ilgvcinl~uXT{{nkqnB_FzBFAaLODGmbT3{EU=Lgx z`N9t!R3)T0G1$$#`kDAHhAi{sFT>bh&=II&fVrtzh~>J$98lh&&5jxrB2kB_^3AFH zbI{I5vad?C6KR+G_~sRvQ_?;6+xcJ}ro=HbY}BE&;r+k z1mF~yX?mmG4MfVJCn?c)OvS>X>>Dr}aD`juWYV>t@)hGIJX7lUx%UnU4h#@VmM$O- zNas_UT5%UsQ_sY>jqob1PkHD!-Bbn45$FVOZO%ud?PE6)5(M3RT40qe8|;KTT?$Rc zuy;knVu&ydJi@Pr=Eq>dRekyRN!J~@C;?`M>~BL_ z@~|6qAs;~zp&v!UP(~lN-UmbJrudg()={T2A;|%IFz;4X3g@WtW!va8+6uTd^b`}6*1z72iHQ4m`Z~Jz4KIxk_$laQgYZYEy0kxL;1?xU> z^K|scMepePcQ7bC*|VT2o11mK1BI3rM1PL0SWl!0albqI`dbz*pnV)=O@%01x}O z&+(sohd&lofnWkGE5LnDpv-5M!U7GF7;N%qapC1o^Q0#neO_<>GHece6NB8|E%Jw} zEwtAYHfC6Upjm74jy@-_SE#O00Mkk!-~d-<5n?AB^#H{~nxiP~qxl8xOwb!rEI=J= zjiF`sk_lOrZ&$dx=*K=AFI0iWXxpzp9b2XrTxGSVTYC#Q7XOWN+BMmI9aM$iZ;x6%4-y$n{cF4@AJwaA^OA!Kd&g<97&xUstsNuHr?^{W6QYfIm<&@h zZwpPG+Jt~Q2qwUIE|uC^nzp@D{fz{n7}@%g9KrOs5Qhu35LmdYdM43EX`^e~fKim)IA zUh1H+d=cp3D7jibs$}&f)nt+Gn~FQpU!+-#^7lKLbtD)w@3rdYmOWb}MXxK)4YgXo zCbxo^6HhjAsySX@)HupNHcD#!{0IO(*Pkhijw>7MWGmfoi>U`pM2Jq)J6F!F%`I;{ zTx}jiE9TR9N_;psqT%1R%{1y%kWg~uH%yeE?GuZ>afQ4{e*HJyw&tb1jC||qy}jwI zcVl_SY)!cUALXbSdft_2m89)>@6_mOxiwyK!07BgA@~;A!|(8#&DPP)LkDiE)oZ%~ z2{Le3WF9HOYcnMcNf#p$3i5de03gIBc3_oAE!)`_VneD~UkL#rLTCGGE0a zE(noj#Ifnjr%Y$W0loChbz+qHD&1?C4t|gcR&*)Y-klSD9pZK zh%l;sM@ALJ2H!~q|MeaU(;-dG$A_~CJf;D;GwR3%n2r35W>~17Om|GcB>bW0G;HUF zNfNMM_t*e9*CJwrk=*`hdO_Q{;h3E63o1NNkcy7oB5t;|L86dG(3IY(BQs697C`To zbZb0u57KH7ld+r>Xt212b?RvN;!$cMBWt#W*3zbE>VRG$W?dGh+Rk}KM#wSyV=p?< zWGALQS<@pDBp5_MgbL_h_AZ7P476%8vGAzkh~m#%)kCdfqu6lWI1mW? zz{GK{LsCS?E0Z7=*mW90?j)c&6V$%0%-$`b4^ft|%yF~8oJbH7t%YEqk ztdm203LZiG{JzZ<$drREggIYy&8$e=f>|A!&_t4qK8(VA!yB@s&Frg~U#V(jeLtG)l zyiL%MC0h|tSM}d7?~+6EeO`Kpi8%!~zDnkYZi9+^rRedyr4Ik##f(;KS?kXCCq|&A zlJM*#r^0Fcz$OITx-^_KHO`8tlSI?);)`8ZX-gCY15jTai{}kf!#!&eQIH!>cs$x4 zF}2=)I@hT4={Tmjy}yl9UQh6C+?zq#HWiD0#nBy+2?=)|uFCo2^+Kc4%zGV1zU7I& zdi5HevAYiV%-c9)$n@byQwE0~_~-0IIuc}*n2yqU)$mj=C{0L*3~2BURIkv)4~x+t zC`Fcv)D86#zA#3&Eq7TJ4quq3bfNaPr*NWW(uRMrj4|flax?yo_*4_T6yZ=IWDc zjndL1OX(K!^1iaR?I-(=IV0?+Dn0RJWm&+u{M9SWPdnNv8(nr}z0qmgd_PI(ud1HY zd(wmQ`)cvnnMtA|ZyPB&DuM{d`BeWarEIOU=E1x|oiY;b}J&Pylj$!ndRIdmY`t{gfB z&t-?*l*qR@jS{L;S-4*`^i@RcaWY9O6R#gP$m^Qvp3AW~!D9|IEyOuANu+2U3FZZ7 zA0y?tdz$|uG&g&aLkH?WdZWzrYvpslHyRV!|8>p9VA1iUaMD{6&fds+H22+=AuE?p zo-Mb)hqjL9pUu3NGa)&ZqfJyMAkb;I`_(^bNtW`;e+XC*k~ zEt#2G6^>^Q&Y`<oX~>;|&-u3K^$7g~2Oz;dg*Zf?NpptDvz3qaq-2JP9ql3e zgMXEB&rGVWs zlBUyDoMB`%Sv3^UpEU zZ%v)L>Z0Lc$Em*bnPDm9VDpquaHh>~nizq;A8L2J%8D&)pKsFX9vbrvF;Id%%>_OCOa7|7&M; ztAZDsw9+Z&^V}m~F5wBWhRi>8cTQ*tq6hr^z2r}S=l5}ORecKJjU_|q`#4u<$<4L~ zji&jwK=$zo8yv%PDAxK9MYMO4XiY1;aSD#xqhIX7k@){9oX?gm4Gxs%4qbxBJ$lmQ$Exl~>{vSRMk;FxcYe9d=2ndE;H|al-x1 z39-Y;%x>9C?@&Jp;C4U)M2HC<_Qtj)00D|z%GCvW?RJ9+p=MbZb@55%G#ot@o?YYo zD`$sKEG{EX?frdkrx9Mof1Ak`!MZz@MG|pgf$fKx=T0|@-lhxh&){{vaqPEAN*(p) zyGfb`jY5|6r9n~~4mcZDQrIUwlGgM}{!gH!4ritznCiN=WY)P*(EORSB35t)i{MOg zuVA4G4(fv6VESg~9GwDfFidJWJ;5=3!}t>J;QN6)qi}-gMLr~K4D4~}$x#X*6{m54 z-1HRXX+ElKp_6oE_^b-Ye4V(w!i0{s&7a@C6fardzJ_CMdxcs@Aa?yh2gWD$be#<= zWOhVRp`*srfpB)onpT_;H%Xs<$v~!`g+n$2a7f}>wm~w5%Jdb1 zdmLRwDSgyF{mtr>F0GVgN{bBxe-9QXr)_bYVf zW0(4L1$hb{;wl2;=;wazKcY44ml9~z_Rs(Yf!Vg%(Sd=ZG&NS-SDSYvYkY#0VD-A9)c z&VNDPiQvlO3BMcWxod`!adeOfQ z#f2f1)!DZxPM`iy8~vgcAJHR%NLy$5c!=$?kfR%5gG21bOl-qxM=UGx@FS3ZT|gGa zrT@BJJMa^48E$Umi&+$tzX!gl&;!0?4G6%A&^oWB8LT@!m+BRC2iYSy$N_n(;$(S-Wso?-#U1)yNk&NDZ!n_YHS*H^UfkV4fBvS{e}h) z9ot|>K9H;Ld-RhB?6M<+EF~D^kB|aKqcgGZh6k^dmVVUM_B5nA>Yl*bzS!(1S7ai~ zpqxsR@%FZF12_Rb&`W-@kxpqtw5XL|_)i^YLaTA#$9fdYUy&?QRqbbPdcmL}lHX(6 zdlWm{vqY=D*LxC61$%~_&)oAPmpk!RDN-4x;CyGR@xWCj&cBic`yiD$z7RkT+mYXt zEQ%oUT!&NjFTQ9qL-_#yKL|QXH!T6esL;m8D*U8P5|Vn;0F~a5y?-QrSg|n)=bL7^ z0ch0Nx&gZu-)G?f7&xpOP=KNVqj2~=tQdGOmGEkY^FMxVQAdiU9+AObqCYD|u9;~{ zXlN^rQL~|lH*w4`eYP`ZCRGQl;tE;1zL&VxF%Vb<3v-oc2yvimL~N~mbcqEsV0u)H z5N}@2yb{hpINLxXTEGlsVW`NC4AvGn2i@cGClEb8H; zMueInEE_=pdpcSkB8yD1e;3i?v)kvm*uXLm99~Zg*(Dp)h0cHZJ3CzlLZFOh;M&r& zjF2)*{&nLfc~KbXUz`+O3>X)_=Lx49A0)N7C0)Ie05wBMzg&Wb&UnEgX;Udc$+sOpqco$XVj&i{+ z9GWNAa6!T9v)i}V>wkO^hPppi$n8iAXL^KQzzLm{FB$A2i@0cr-;M$#1ny^&4oWzT zGrxUjqma_#Wq8p{-=)BXB>GO^L0A6;JecjY0_-n#j{{~S=VCFK+Y*OReze`9Kw^W` z_FNX>I9CMQPB3x?L67vwz=#Eb5$op-)qo=R`MG1z76qdu6DrjPd_iW;Tw8R!kU1&SRhNz*!;^BCX?n_X0x)o55GU4ZPwP|c#|~J? zc!qQFr&JOkM)am%xJml-Q{_gabg%G6D>u{t6n**`tA~;s=gG%S%2VnD+97oeMn(;^ z3zs4BQ^1C9u7q=|Lm|pwQeef3LcR8Vy~nR|wnro<8{{%F!QR1HsDv2kD4gHThqWo4 zyC?Ht0ZSE&Cj;e@VWe!sk)Wf*^rJBMT;&g1_w8jdeUyL>dIn@db)|%_3186N(YXTl z=*(kGUx_!V%>DB}7C$#><$4~1?h%SpJP}e#x(vwE2AP{nO5K*o!3g>I+Qzf=+Yc?t zw+ANCQSSR;)~Zq#653V;AJg4h`u0R9WET!)M*Pkd+z99cb|s>gqcqN{C*_d=NlF02 zu+%mk_ilimZMB|?Fo68MS!eMhGF~j9)B|=7RO1_{<$dYbtJI3X#Db~=(w-=nAX82M zcO{cWI0Tg-N9VEu@w8jX*7}@Q0bMbSs!ndd-9ALp+Vpw1m;h*~KXY@^LRBe%<@;2W zypSul$z=;q6I31~=w;UUr5og}g@}KbMT~+dfvvsoiOs;_8i?B9w}jua*i+l0>I22P z76x!0O1bl#{Xj+8@uT zC`&k;m2R}jw>tYFBOr7dQD_y*AqIb&h=e)WTj?i*s4T&+-yq{5%_Fl_(a-07K1H9= z5wGRbODy~&=~wm;ZSaFQtL$;sYL%B9XaEE{@(l9iXcwafD;Y5;1@e%uJT6DS)ogah z91(Izg#9gb^;yblphWhW$>!*^S)hDN84Yn z$Io+WX);ObaQw0tUx||xORnuCQFwk*=2!&>?UW;x{Psww_lpUyVJy%r>pa1-aNPn* zgNS-o5M;$KIJfjR?QmB}@S#-Yx2NJlsc^!pM8U8Sa<2X6`hj&w=9Ltb>G*tnj};yK zqU*Ao=aV|B(pPjuW|FN}?;M@Lp;wGfj*8JRU3p%(suHroyQ5O)&`~8S6eOw!0W0JD z+Gg%9hArbT*EX;npokdIz}JVd!kD_3f(#odpaYR8_sR z&k38of9t_6{-JVjaMo{4 zYBBDf{z?Lr^rLNAPqABDD#Ph>%RmMhZto+%2I8*R(#22eQ0$X5g@}Q{_^BCP`oWF? zU(5qoL1BsC3G-k;b8)}L5+jIwn+-4!XOILe=(i0<2`tXlZZQYN%CD+);P_Q;HZz=z z@Jp&FL*Hg);x{}fSJNGW*qQ7sthKJ!2i~V&8ez3Qi15!|*PMln08NMu0GHseK)N>o zi2wEId6DNG{ly&WeP4F4!*-1gLx{AP%XOlu?h%Y~x|dkDq^*7H;+%WE6NLB$IsA3l zMUp!T!A`s6NKTdvC~NY;fcTA9!!8Ev(hqi`E+cmIt}*@Y#-=A6bAo4S*^m2OHVHC) zrt%FBg)33kv9GUXqzly>j1XbVYiaQ! z@u!1PLTOSz92L)jJE(@pLM7+3%$HD|bYUpwUjGJK@B&8f|9}2afBn^zd?y6{r(sjl z{MJS2w-gNT)gg_gW{bLcbnt*R4PQP?U+w8W&e+aXl#zb#F6F~A$4D~$mY&R0rXh1O zWWg#}mj0;>PZG7ZtK=go2cd6pLKf9i!YC0Te!Gv7DXSfQla!m^2DJ5asVzyp?XRo6 zVil*fNQ>MzEbt3^od87yxb8AZTfgkyKrvh0k*q;>yvZ)Z^Pc}d%zX(|lvlQ{HXX?X zs4*H*KqV%cI7S?SLYpYv(Lkcc2?Ylf5uAd8SQKb9Vw?zx0SAU8w$MfpL2*Jr#eq10 zNkv8(9Ab$S6b7t9is5~GpT8I+eP7?V?pyDzb=SQ&Wl{e*XYaH3w}=1RaV{foO2wJ5 z$=xa>fFnM}^xd8XxyH3#*JojXTUIuscJodH#|R`((--=(gNq^uw{h6Oz4^_J_Fdue z^)%6z;>_1;FAkk04A5^)daK3k30|#zMk7TEhAh>U^svmp1TnaBK%g1lCnlQ5MhvT| z9r6;;9tPMV4u$>T2OD|60$`+mHh<#}%PI<9T_h4P>cCf)hzM(PH`vao9r>c0?UNqid2B|2OnfAAEys#k!wXdLN-Q_3>wPHm@v7 z7aTz?}rTK7*6l7p{%DO4^`{*<$M~Oq{7vD zhlz+FDP;3YUvqpt1@d_B$tx>2h;u1%b?#OKK5k8yIdob?i6;X1rz*=enm8A7(%G2V z%Fs&!r!Z<5PG!ic>$z-@evHc(Q7~Lm3R68M!%t zKv*kk9~6&rE$!X!FaHz15yol9@}ZxJW7s;f&8hcuHE+s2B_Qd$U9SR5Vl|vwC#UYd zY#(TL$y!g2M^ymTEa{uyU;d3|{~&=3si&;~UV@gP{6~Lm$jGtD#Jef4no-r|%WFXx zIm;$#Z7>{Rdo+ScejU(=FfWwgMoQ$~>TXhq{mRxPBt+)uMV5mTD*V@!NJD-N3PlM% z21AtZdx9E`DA)kIMG{1!Pk#lJHpG0kWZS5+gsG z;yt!T@d%}r!gt1-BgUYka-*5)QdfZ#V$&BTSj^a-x8&f;ZkqC&NL_K>fleh~PkBvOcOz_=wpy=qZ@6x4`)rpcWULS8_(*<(i|R+bUX4*Kr2Kw=+n^Tfqcjaq ziZbYs$Z>Es3F~;#L5pvZZ029KdELF?99J9t{`Nxe1Q}>UBB51CWR?tt%~+HQ#Rx{E z?ctd2-CJuo5@96Pb0jXszF?Soxrj{><@{RZMj4oWA3*hJ+WU@X$=&^);fm0(QKZ$1 zwCh@KPJ8_EzuO*XwA+5Er^)OV{4wm)4)_DrwU-ZeiTV2Q#Z1a`97C>xr#?|q!;tL< z%#gXb(|zG)j@H79_+vl-L!(Fz%~xvyBbqcqC{@acx0bCLc28Flme#Q9@Nt3}lul99 zBO=_IV8%IqKovqb#c{()vr&Jm@R=MFJKzr*zBg4$ejE>{-iVcGH=*7UT?y}NtqInp z{tVeSibDFjqb?Png}6^BrM6ZVP>=C(l-Gw6i27R7&(EzE z-$9080Xt$iA*8t_N6b)wlKH9qq|7PJw?D=hjIxViX;qXIZat>XQk@6j2tMqtTfVPhQuhO{w?=_qz?IjvYRwv}rm=oOMI zG_94g8*u|p#r2^$4rjf)_sb&V0q=Z^yFW5*Zc&dH9e^mq&#^M+A$!!`MJWl&ACEL) zAl9q3&>_{uSOt;2YR#ZhR&K%Yk9>-S!f~6#Av5wh={n3|6-zC632A6<{$LqCEj336 z4hxp>{R}iJa1jL06V<+%A9^3*xPh*DIOldIhdn!nj`;CK^^83+VQ_|2AtKSBm~@Do z4Q(QXo4kI-eqn&v=%U;SlvU}4M;TIb^hHDJgWVUMwVR%y6B>>v`F2$g{|p%#(i~c} z8nJEMB}Z9ifV?pQA-Dl!NE$@pIAM&|XEUTXU{g9i)KsYyNENeI-2?o^EKXH-G3Ai* zA&nno=9W%foo|C?i%F;Ge;@X-b?sBbO)uP?(hJQu3gq_|u$|4GMcFFkrh-ocfq8Ow z8!bvI`Eh9$xQVLM!zfRJY!Ky1xRZlTd)++D8^i~s04thTJ{spb1GoOEPMOhsA*0EJ zDrRG`=gyF%3aMLkP+}>r)W}0;WJtNR81g?fX-J9%od#~83*~CX9hao|^Z}}9Ee$SY ze5PV>mQXyCm>|epV2(-LjkXk`pgILv1F8dY!j#ZEZ%?3izF){pQHuqfs#GB}3q@;^ zuo@zlh<4NeKw{MON8;gjP|}Mr2sIId$q!J4KYA6PA#DU7P~;`0pTyqU_O`G(w%#d@ zEyQj)pA|Ma6ISAu=S`~t=ha@XHm~@;S`!^xtvS0lGxlDpOR2yR?3c5-fCAW#Lo($3 zMezl`5C?)DEvks1(LxkjkiG*j_?~=!nH|+=s;{iBsl_1zzO+Fgdg&tykG(F)HB@~0 zuRi0hPN~47sPCEix}7OnKIHp114O!gXgNF3$&b4i^0+8FnqVxKA&}ip1-zE}9Gp<< zH*YFD4Q(V9s*0$({5mRojXA+h*Mb{MaQv1VL3L+bjJ)+dXOgSNr;#S1LZErrJ zxp)=X_%?ArA51Ci12Qj2OHfDOT8)A~z0EjwP%>3xZWN$bK)PDEr<@W-ah6<76(JVt zq@{bFB;3!cMHgjFZX7mb&;;ZHcq?EK%74HdQV6?#*gcevyj^;g%1hZ&P@e<9*LJF} zkm+UYOpOUokg}S=jso8!T@eic?19nDXQ(BiLDNuyraTUxV;vRW+k0hPaf*(0B~;er zLPRl2Vhg4!r&2>>K|`F+?RsX&3$R?F=r`lZ_nL|%L6fQqP2fEHS6 zy1`?RWuqROz4kOllv4E^_;J?>m%13qv&7C&A)tM4DIH5|2*ybY65<#WjMNof1RCmW z)*~5Cl>q81&7sb1k-?`{emd#g=trV|F$$g0=ng=yFf{|Ndbz@9De@Gt-139No&rbG z4s8f=Qgx;>gyTP)#^eq5tkt5}$L+uP8e%5Ve$ks?;c27{rG8QwmElo^^!Grd$;P0G zQf%CCKrRN?-j(`=%Ba3^EBGP>%2NytUi`y)z!Xunpdq}D`*W4jyHcYzTA*>y8eQvaN-LlAMm9>GQ4otf$7=xQe|X`|5o#4- z?i!T*xGkI&6@6_~os-(&3ekOo?wGNy4Z^DF!ltm1U=22Ob`(#1s}Eu7S4kt$ZgCo- z%H!5Il!;2ifVPl~6jdU&6jVUpYj4x0VA*=19?ZuJ5$vR-a%EeHK??k0;z>xwAUmo; zN>Y(fzAy%qx26?(qtHcalO!5C_$Z{BG2US@7`K)xlVn}U>>uVNUii)-=F#LfmNa#} zx71|@XEYQCE@j9kpmgq!k%naSkhDkh#hPg9EwEKR#1Jmvi9e`8MQSBgmD8IxQZq+g z5SLAY9U5^W03!-?9in@J8xwRTW_&$wb2o?RLoLOt+LR5s!0*W9ryYDKre=cmTemn>WECoys2n(bLr5gu^iTbKSh5~ zQilJiu$AU^(tAkf!v9)de+IT(ONA>kC-8TUBV8QWCDv~ue4*eKqL(y?Ga$=RUD|>6 z5p?k(MQ_*0RrlLvJ&z*oln^}5y}7lC3W3gz)MDe8mvH*&0}hRGTkMDTy-CO((9v8~ z{;x*=-~Zu=o)znP`FXxx8;^Lc+4&jVl89QPkgMT0JaB+$usjYkDAi?19C@W6No{Gc zG`v$~kI$qIbn0nlK|dhBhU+CV8eA5(M;)(NN$)&Bk&$h^AHZ*T&>iQ~pa}UBdSwI3 zD0drY$VWWXbf?%K7hg#zb)kdk^EQf|2J4G!6N)!;at@2OybF6p4p?%qHJ2_<sxuY3)?}WSjxThi6n7Z`P%tH+& z{F{0xHDED{o?8cxGTBX5j}9CK3~FnwEQhHQ8BPph#&zRRfL|DpQ=X=MBL~Nl_OLq{ zY5k=fRLV?)#ONBMg%L=k-JT5f8qs|b&2Mv1V+q`;2N0p2j}`4KfL=%%*HC)g6)`>J zWj!Q+Hr^4^q4p>IB%*f)4*b3xXH7*h9_brot?88;OLotwZ3`_RvrvH|1YDt(%AVfb zzk%)Vtp17C+147ixl!!4SWtiR>Iz0+y$COaRiSzlA*o`@j0^jLJz}dYq{?!R{^*Uq z+-N^NCk$39Z?pEIairmqc!7Xgr?uPBISj2v=dfmAzg<*+0HDU}ADqpgi$z64vZvf) zNsp3}@KnX37E3B?k(l&`&b@K22K~Pq*V*nJlZLdhKxYkU{+NFutON=bo$O)>a~O&x z_DF|BVHxNa&`>s1>PV*3LwAN$s~XfatfCvT7Tn|Ud2pxdef)Bq8` zh&Y%*uegtG0S4p_^KSqcoF22}u#**vnoeb?id-u-M}qiS2tvG!W|!y2mnK9YpMzFk zZtMMty%cNEAMoJu_rvVjAZO2_V**PVnzx_8YsPsL;49F=I5nn1+rJdWnyqpkxhOzyg;@ z%qR(#&qr}GoOcI(iuiNZx=&|A13%n=NDyC!r0(;kfm!hu>P};uI9!xr0ctwMl5SzjK5X zB|)+Z%|{oD2!au%kYQUtOaND@TZJ?TWdf{<(9{NMZlSX`bj0r5#xL+P+Hm-U(S{B^ z9J+PLr)hL05)jC^@uQE|M9aD2Efwj*0D=*su%U=<66)42rx7f$3cX!|*Iz}8N89gF z@*LJ%L*vQ`)bJPaax3ASrf!+9XV3C4DV6Weato5rz)Lcs)l^?AuG$5i62=!VvWl;Z z$Mfq8losJ)agf`%{LkO*iWW;WQ^Ja%p@xjDfFX^Y1|{JYh9M?d^cFzfL24JpAz>+~ zWv+3w^nL~4b)-u(gNVlnw4KnpS8g@Nv?ox#;d25PsB$C(zs2QndhHp=;#6GmV&PsK zx}tj|px$ZD@zws)OT73Z?AeOu1p&W)az3WXOY{J8J>j9Ic@CAjDa+3dstE&6&k>O% z|Bzf`^)w^>*kQCo0D4ior$b+kliz@MLzJQ=<&jbV=Axy6lL~y-2a2_D8p) zr591CGM60+Q6_KcXu#)(@TzI*Ih$(o9Qx<(*;Vg2`C6R1R6Xm9`0p$C8~64wdOp|D z?`yTy_77dH=H2&wY5NSf1ILtm19v1>q;;;J&_FYIPS0$@{{f>l=DulwbvLCuk3R2q zuD%x5RiSAt>7TO}v}@XOi%|6|+w+fX%bQBWz=;~=zP?ohQz=H{*`#VT&$l^(-Uw(d%|$gqmq&A}0)JMJnm2d}CA zXjYI8a;LlU_dwZo&-MeDWt!8OPedf3;BDP6lb^?e$-}=2(?^x|jRzi0xCY-s~IIJ_4iAYqFJ=1^g`#{9prEqnixVfv{iR8MM+L#{pZC}kk!*6jinXQQ_ioTd5H=Kbj*k3HDcsoCJ}1j z+cVBMFhx>}m<}*?E^3>^x3N5*S(5Qrm%Jby;#YsgB$YXENu5dkh4!_44b$QUQ*N8x z5bcLpjd62D?OEc|Wwn1$@FZa4d*4JSe5uKj(TlXF#VLn$33fX5Aj}@Jkefs&H0`-* zm;9-RJ^0Du54W5#QS8&3Nd;+Uq^u#rq%so!p9veI~qXUM52`d=H zSvGZ=WDG6zlNC4JaSrfsnQvs$lo~(WHUT7c;9OD@-)%?^NO&Lz(7Moh`wYWy3!#$C zFM~`8B+$CON-v^_dOH6PBCV8xoX+sab#!rjr9m_HMDAkVU;!>0`iSQ=8SR~8he2@G zwz=Ol5A(k6MqIdJ3&zA2go`x>yepcc#VF0)3{IG%&8mg7&pMOPmb(rV&kv1rN$^E=&+r}Nn$_4-FnF4Mr!9S}nk zdV#FkaEHKL44pZ+^QL)~g9^mb2kuw}f%|quLkwtCf3FTsy!X$0`Ef;+?vJwq->H7> zU6cF7fwtZ06ezK-MSeT0di1S-PAUy+O!kafHqPcD?ntnk5cd)f#_0a1O7~%tY4~kesxwMvHdx{<*J`(S>PY?Ow*$` z`Hv&obKze!udkawAT+*lCMZPpnyEw~OpLNU0_z>WqOq%;F(ra#D$gr?UOOJ&dm}w| zKREs9;|aQ^J5BmmxI) zF>t9IU7<|@atNI-NqwY~UvvLZbuYJI_W>ZQR16JsI)yfNvMZ|Y0UnjIg2noviD!s+ zb(`F3j9s$U>b08MknXN|_}5a4KQ!h{fCoMEwVa!p<9z^TgQ>$nU`GxQ`V)Im*7&6| zh(&_W@G6EsD_~Fr{j7Ed@%kSKP(#J#T3Y@k_&q$(@d15G?=1($+m&aAL-qk zOf-_N$+Jyx#Co#;j|{Zc5<@IRl{}CK-;2|FB3W=?0e(a~4LJ_P-wK^{rrp93tcik7Luii2g# z@(V%I8dOkW>*wK*ahXGbPq6D*w@bsqoU||}n1=`f^nnIKi5&LMd9np>_1Z}{IK@U- z^FOi*6-3(z<#HU>ovz%R# zQg!MKjLG3^CdB(dFmrt@FbnyUN z!9mTc+`8wpn9lYC*g?T%yCN~?@L*daJjJbEwVDJWAa0wz?UZ>qG9eg2v{ij->ipBs zywg1NRxjtARxVW)*oY@Iqg2;D>t}u+~Clh~pp&7V9&aX{hWW zINwT_emwabAOwHcq0N5;KR;XhrE=c&H$DeV9dWd&14${HmR9128o@67{A&=g>Plwt zXj)uzhj@iKSb|9$he1Za!Qo?Eh0s!oU>XCwY6u2w>`PXOiCM)rF&n&*geHT~FgO_} zcj`B~oc!1LML|Iy-d2z@SF*&xu%&PlvcEpASmS`FO+WQD{TC;FR)TxeizhS%) z*Wk`dqU`cFAs)$&lJ9JxG)~D2*m#|%Lqki8iipvev{WH}K%2Rd#{1MW-L!kB1f%GsPl-B^Ru})8)Uc0pQetNY(t_mAE%o znfF*FO8`@)?>Mh%8g#b;?P%)-cB_}}0Ylw|fQ{MC z3Vc0r;l4>m8PQ)bAV^P*)$RjoNf6DQ-N?!}STQfAv)U5q!~A@T%r3!K><%otC(8XVi)^efjAg z;zu!XP6Z${L01l%$ZpO};0@00u9ydWdoZ9L^r0o*e-HxpNR*pPI6K7*D_cqtlA=>= zysq=T+ZT}C0AdP^PUqM|Os(M{8SIJo@aO8G-|0^BOxK1zKD6QHJ!*{A-a5mInPIE% z%3<5HRpk|1whZ;Xi}@0=12DVtIs0pbp-)2Z6D?^ddEMBiyxhBv`3m%hv*sG zToes(SV50vF3u43lcaDz8c{{hU$b#oK(v@)YdF4((U0`yVNqI}Qs`*?aa*0~?Y#16 zEm`A6f7#Y04sb1e;VFYsJc;bdt4I{%&&wkIQoBAM@}Q+r zT7`D#XAl=+coG*@j(ON)N+s>E;kfKj7KfX@hM5?|(J4_|a`Y2b6_RJe=^Amor*Phw z6;4C{7WCV-K9~l_z&ezm)441-O3QS*8Vit&s$u?Mh+4G#TL*sLd)@WGwUb`6tz_W} zHd&c28tJk@=(U5r*idPNgTUGEzm#T%c@aXlc=t%@g9JKNlZ9*!UsO!MkRr9f3CkCS z&|!#Qq~H{(0NZ3FoWvb#2m-K9r^qbR%Yma)7Ne|PbP9>JjZXFV%Y#r@9he)ONBa~> z3^683{4vinSK7va%+w2b3}-?=0A%hmIhSVc(3OR7uz0^b#Oahmp)is3L@|_<-F>P- zs~^t&jii*#+J*oeQ7lB>2O&&ye`4alu=h*AD5Noj8K4MgXCtaY7{VatrVAoiJuZSF z))u=F867c)moM0I9&G&Lmj-p0Z&Xpzu2#};5PUoERjPz}z#opeRN+fmK^^7pVBQBA z?wm*lweEy(C%Uu*%`K;_SXeESY1(ar5?igQ=7Al%#!y+KT3`Gz0_PG z-SyxMn)~UvCBypQj(B~4L?h;I%K4>(F_DRhTLCmG(d+4&c1;zy)+F~EMBk{snInJ+ z1~ojg9wkV)@K=L}(I2ScUyKLW%xt8=P(tiBVE$!F_v{ zs98&j#2L{@3_6gbH1U~KJg<}pWBo)1QcR@bm1xkK^r|pw?5PVd&azLzQ6vjvF^7Tk zAd+}$B#Q4D?TvvU(E|znVA!4@uAVOq@iQpepzew~TVj>RW_x|ISiwUJ^UZ=B?BA3U zB>%ON_B6rxdac{H4U4u$cpkm<@s>*~hYr50&BVRQR@CE6F!kE5e@K@gPNUUW6u`(* zruHF_1i;50*_!BRjDdv@)doA|mEI4Y*>0;LnUyUdRXrd&V`csZ#F#qO$SpsIj@zO+x@Z{uPz`>!Z7=-NwJB02$@# z!L@`8_JFezaDh<7+(R3Z;bC{HpOMW=*3Ub@lORA9{j$UT$U%3Bq5V|~p^P6__;gv} z^STa$Fn_q*q;hZ4l{P&qb#%egsMpiTy_Ih-v;sn4=cFez z1%$zCNC=c%6B;*wfX;QcJa*U&OitKHO7Og6Koon6^M1uW#R1G@tuL|tXGX8j2m{0K zR9*N&%5%$&d9?d4A;or3jAHWs8;^Cao+IueL1@6D#)}te@D2(KI~o$ksm#wtC*~Jss@hu z5ha;$LGf{qDju(v9u9|0sp-U@J-=gl^N4mNVQVmW&JPRX+;X3N$>e8XuE-(^*qHOz ziEq(dKCI&yClCN8k?cljBbr;1ELEY-9Z~GHGQ@Q?e3c%v-kvHVQ0r zHw{`~X954ADzW;AGA2cypAxoFfnPmNSQh%#JfNff$*JfZZMQ4NdR2PVHBw&#OgnHM z=D1Hmh0r`vtwEk5x3SaSIi!@Bs)(EhsUs(Su}sWFXmw7(YmWbh@(j!;&8Il46Y{Rs zLHs4tpVR*Vc;Olb+X&hiGFUwKgfdvjMkv9H-e+qPCbW~^+KnvJivo}L{0sC{q;VD4rJnM!KuUgQY z`vEV+Onvzp05)W5$PCkVkq45zb9E3P8L9{{?4{DT&UKEKMKl;bU*h1Q-(#OffoIeT z(pEkdhPJS|BV2G=RGCPH_XNXt04iKU1`W1WpDY&OX#woM?}kdpP3fj&LQazx;LN$g zL5*fYE(FPdsAyhBhP9(q<6u2JiUe*?^W^@t2f%AFp&9Tr$%+&A?{!z?rxE5U585!) zPXSLytK&P>>mP#ooSueEuC!emeTwS{XhpepI+Jq?qK^%ve;!MLB*Bcgh1(E+NVOcF zVaY2D_eyaJ!x+>}KBGlkLdd)IVm0{`LwL9WY46Z4TFdQeAfcgPNJ5HhnOhj#OEQPW z0I$e$aDs`9D}WUqZ5>%(rbz>`vaj^j43>tr^2!a{697&~v*WtkZMfgAE74jVD~!6l z_$*G`4`O@fkHw=}VU|@zxSYDeVP|l2?g{(vh{Pu%1z{-Y30ck<*Rp$nVknS@|NDxD zRDTp}3cl6{)g@Ei$zXWzH2`4Jx`gzlaw%E6Xf1){DPb8!Z|E`0`9WAQP+n!GchWz$ zpbHtv0G<}vIP#i2xpqDeIyE)4Iwe?9~aoHawa5^r+F5MAIG_6E5dZz^4yh`+Vc&+|J`aRzBGj zxks71C`xJN{ZD-bRI_04iiSK~)E(~cVXPMGEz@|U=bk#TY#tZ_tw>CN&HD=l7) zY`Pj*m4r2Bp2YeyPp%)droNBwxof$b$D1ghT!=JP(hub&s>*!RL;q)fto^ETEM)&~ z`DPtX-m1ff9QJjP#fT1DT-ZT67dvcvO9y!wcQ}Uj3sRZ7ZdRVVI==Y9S)Cj-{i(c6ZoKJ2BVZT{L{nyu5L7 zayx%$i~0TB&iAjDccowV@9^uk9nK-D!>?z*c%B_mqI!ImC;mA8`PkVvV-R>y#j*8Jyc{(Uq`{mgCk9+OkT+wek9Och19%a49i$|&W z;KieqbvVkH4oB&}*reY6lNW5+yB&nvZbjv1Ge0Xkd2Fq-j@;G*o68BL>ix;)xp#QL z@D8ez*!DL>djsQ>x1WG=!I z*Z#KX{W?s)ReSF4=3+4@s4;#Ld)JzEyT}`k)rReE@6t9du_}1MW&S_?(#EP!s>4>Q zt@}K^yIJ93Q#|2#=#Z;$CSF?l^w62c_=~a+b`<59?+^9)_ObV^H=E}_a2TEx>N724 zb?Ag~UxUM<{HD{Xf7GTFc6QJOh1WL~R1JJ&qt9C2tuj+Tz;F1Q;~<{h3XdM%R(-S3 z{=M#zb`>oY{uxpztpg z3!P7d?&|rA?ELV>`cKO6h%wr*PvaG9`r)-TrC8p2t7@GxXZmron^^xZ0}4ZQlOG|* zpl|Np5Og{@bXRPV?1dc`Po;fUI*N6jkH~k@4*6ZzefzcF*tu5AR_Z?)=W+tP{#L!O zJSnToO}ng;wtUX4?yT-a54BND+g(KBKTaiu?pj>A<$o8#M(1boGC*?jk+P z=kh38fU?qUvDMsND#h22y`SR$Ex1ae!+v+&KV>EkCudmW)*^+2ZO^P=Sj0QZ)8aMQpycNbWI*2WE1U4xMnD=Ai9Y8GT zO4p+}1OTfKoTow+Hs>hSn6U!n1ytkc7ajiCJH^PCqh4T*6( zFdJaZ*K5y}Sr_Fyjk&)ce|@O@Dt`CMhDTW6PS^z2q0@?m5W-5U53CB_q2-XGMF;o4 z?}`N--#)=3vfYCS)=BH8FSb6X-LeTYN~f@|?W(V~I|Ra!(xOQZTh5?&+`#&Il@}tH zSrv3i64>$s=U#!N##8KQ$2P@u0p7}?rLDEfXU%{(+UlJ6^P1t~Sco`>HtQqZ1`Pbu z$M8vyZ!5U}(fyZyK{{Ws-IMNJY#%JH=Y#za+t4Z_arf?OVKRE0R%8Ww93&;8CJ-B&T-^;MXbT!-Uj)SHDSjqph(`T#k$Y%RBH*te^uHCa5t7$Kk z3S93OZipXzOk1<{|Cvzg?8soP**Kh>|INga_rFpip8llaz6~Plk^o0%$lyOsx%5JJqWM%c4W!#JzXm| zMFxc@*VtS^D2{OX@BBlBoyRv0dC8)07JWGRxBmBPhn>!+-#F1@-I{&~pbzx?G-RtX z_3q-Mh@5k#-@dpx9&4F&KkEtMp$#&(eMosy=%)I2YGyUvzNpCNJ`Ta0sx5^4VXd z1+CYnBE?b@=bj$ilxbDeJj=O6ThqOrCgR;R+)uxD4k7iUo7#&%A7%IN6W9?btg!03MTNr&`H1HOJ&JvW!7@w?JXb0GklnXN0{!+m&G>+ZS;i6 ztaSUFQAxkiN|{IGu(~YmvF-V;2Gu)p-%o?=Emxzh0}nP|;>Ba4jRP1N%5^zkmj1H(V` zSuY+$$3uP@KS0j40M7M!@pZBw5GbI6ZaPj4?hN^#=HPL#+I7Afz&VI4XLPpLCtszg z$i!1(VhDk*b^hCK<&cC3d719fXzjL6j(0rt`2MKks71L@J4k8EhG`Z6^~p6X5YK(< zdC^w~Xk0=k)D4ileCnv1aF$q3&m_}ya@=%ARj;1_*nlUUbNRpV%`#oq{n`e%_v&a> zyEiQB3-5Ez9%gT6()u}=z6WeenG?c}Ub^W(c{pE{IXS7Twel40D647YV;2=7wOU^F z`oS1Uu?gcW>V^med!EZcgVmC9OZV((x03pa#L?|eXXDndpU)ahxAb9e%(oRS& zyS&+L$`EY#Xby3_i6O0{;pSRIa>G8liRh$c(gUcdirGY=@jRppMRqw*1Ahk6xJlD)$1 zqim%UGA#3rfDj-Wv~Xs01+oGNt3c&U_sZ;@Zje7jn|P=IMUba}|IW<{au(QKl^H_|@f#C>aPX!uRcq%VOFl%t^{MOR{l!! zu=kyd(oP0N%g&ARX$qk47sAB@6r9!*zOO^VZdq z@b0kkb??SB_a_5E8^IA#FpW(NwspDDoN~_0%tqz^K9)_MSpHQGd{q(h!Uax#n-;~V zxwgOw4Oa%pAh4A-1$L-AOFHr;h2Ferfip5GTOwV{0$>q(DzKT%Mc8k@<1JZ+w)VSQ zM;Afaqv%LVm(E{g0}ce-T*|u+96BRY20QHoMiSWx{el{H-5DXS4BAjCwSp6;7KP>bD_szohz z-3d3WCsafkX0^5Lg%P>h&iA#`2>NNKc}j}8mZJY@ISdkyI%?0JMtTA^9=iPj?`zJ7 z7RjY9A~-VHHnMmsS$d1EhENMnetij$00i7QNs1&hjcz?x4IHrx85urxLk7TXY654L z{3gcxzwb+jMSmD*2-fIa=Rd_`xI!l)EZlwqmOzb@R}`UWuAM==#EhIzSFxX zZD!rwgM7tKwq)BlsUyRGcHGOq|BMVQc4%6lky0sLGD$$vNhqqM2=c9~zcIqK?Kdk# zts@A}) zY6Rn}&fAh$>Wl5ooYw|hvflcZD`%cM^NEXYRa61_hKt@{xa0+0Jg>TKkwva+=j;?ze zQ*~G*4F5n>`OW=zuh)=}+Rv@7fMooa1;;CvHkC;|bWix zsbJFsR*Uug9Pi%=N=<8#q17LYdTd6sF5#0tre^f-@mql8e$D3H5gnk=ph9I z@H78TY7|tcpKG4hNYX?Kk#;~Km9{}Q5mFO5pjIK|j*2qm6+7;~{jS#3523WiE;H-s zl7t=^Z#g}!Nc-^VQO8|z{uP5y=NHQC;Hhe{i?7xqG;CThiy((A`CBsAiVGS-RT4gd zZw79Bq4qz+bkv!MzDbFm8>bbeJ>;eXghf++xufblUg7ug{z}nMkV8EHHl2 z#xl`TAWP6qzf?YBRni^Pta8u6dfUl6o~^nAnATheFpswtqR` zoC%MV5XN1{={47oXBja<8fEW3)Y|ctBdzTD=UN$6+$BmPm6UQ1*5Wxq9V}{HyUeM0){;tay1cA=Y3Nj)iV)0n) z@~MlgS)X6Sr6y;jLUi4^ctLSnJaPaex|xfgT!@ip!X8R3CfLParF%GK=i~j^G9A+X z&x)_d$nh^*=jgg~wLyQ^)lfKzYAu`~=>q+j0;A8h9B3eRrkW&Ws()q(Nm6UGGkEns z-Pt}RkPrNTsS*XaYy`4nVkX1O{tZZxcE!G&lJTNHa$7eW5DLD7^rI@Gcu#>4-9KQ(mGIWN$x z3>sJm=#f0qo^Xh$pv>F&T>c#)kkX~kkckS8cu6W+l0kw!>6=x#A4Q`pl95SWQ8o5*f)>Lliw>KHCeVL6oWAaSkLhw(gmo zXjl9ONeD6xE}DTm?sQgoP^X|iYZ%;Jz83!pHLSBwrp80eGJ!djdJ!>#oIV3xIhD(E zJLgb?qAWp$V#>g;@(Xj!b4FL&mFeKl?aip|5%rXaw^2{AT<)yN1<=rY?RbXd2$~6XvNH{L4>BN;9>3;tdin`j zY=TiVwNY|0J_~?z0olhK)L>C4GC)JvI(X148;6fi7mWmd>pk-uPIN(T?4*cVk)JF+ z7ZjZiaW8&=h?~5Z%~Hu4-T8eXUBuga4SfVi_xsV=)-Xsas^OZR?i*+lq2gg9cBS~g ze|aT`n~a8ebJban^at!xSks3#=dB1aKA@d8D$bym3;IXLP_RKyQ;`|ADK3EkDbGU|1X)Ch{9587!8Mawc2hN#!#t(+W#ICDE^XwVsaAtNRmOQjT|6iIX3xk@)3cVG~PKPWtU zy>-?6LBCZRfn|Hg{oXt;5G^;XWdxJh3yaR3VV`_Ol`s?KM$16drdSBYfC_ysBR4|* zAp$m#;8C&O^3gO=Pf%rCYswhE#0M~x5+Do66E{&7;^cM;UU37Vl|p3BZuUwP$;gcOI;KXT znWf2c?j!3|#Lj^*>*~4JGxV99bY+OcYXuad0PMA872F;GzhD zFV>jNA0bhPyH0gU#H_;*vr_%@UzbJWQJHe%@TH;?r&?9=eRs0={G)*V1F881$3^&) zx?C80rLtLaxQ5?F8mspe&ePdB7&ImYgrS0%(eCngLjnD*Wqm zEnVSh75EeAO$6FQ$a)yo%h{=^0t0{Ym9QW!hk(YTNdsenRk(8-C(ip)8U5?>JXniQ z?{eLxHC&^kt)%c9xh%MDwvHFzT;YxQHw4zWLO7H1BJfk(ri6eh7rP1JO$iCZ`Q!Tt9rbn8x@U$mfe^BwD8gNSCNtaxDPF1}8MvWXoe)&N_H zJQkJ1xOx#ZG_AqzvH4@bkvnk-Z7cxUVlC<~(6F8Va@6|I#r2?5a5ZjfL_bFDv>FZc z(_YE?`IqnZAtojLl3LJV(Kh4SabYJgT8NPIoG12Tv<16aj#jDh4`ucDM&e*NrwUCz z1`RrUwKU=T?%rtQoU&H5cjRo58o9`PjRhu0R&~`a$)*^gPtJ>a(xfIbNji2loyj7I zMlNK?=&Y!iiyCtdUoU$z&SR5q$BPU%*+~is7T}->0-`3-8k=F8LjIgIMfQn9Gqx|j zs}1Ug3r^{jc3(xfBPB$p_Q;6#+To5~&otL1cJ^kc?=JS%SEH_S8=xr8w=X(3N_F%W zMWfsUMP5{9$|mN@sPUrG@lv@fG8YP@yA@NA33rgspgs)-8~B-{7S+_eh+53Y%5xF) z3Pjc6_0FZA@4Hx2_E3=)aaBN*T-n>Dx^#}S9+z$Z3@BvI!?XihdI4jlRqlAjjYVB7 zs(m#hSL(|Qxs_)cIeummh3F{s^h^S1q1P~)&gzDusI&$e{P{-2d3YpiWHDPsQm}QL zs9VBc#r1~nG^7qe&`wFjR9=DrgQ754T#|q?`l3c(jjQRX$D3m0fI=4{tGqJ|IhS1Y z!*nZ(E=Pn`EhnV*v#P{jRHX(euP9cTnzQO_)dtY z&<^^K*n*SoA{M9UBo!tDxxe<}ZX?4*ZFWYLWkXVgOD3#~oDpG-wghYf{ZkA)-U6)>2=~TI4Hc`XNd}j#iZ9#qPVXg&oK7y> z+{kDhr40x&t|E(BMK1X+N1?393#m<3@`Z#Faob2$?R?EIFEKQR5!S&;qgOe&%H+TY z1Sb3;bU1Z|rRC*p^78i0Uo@JGLtlfc{P-!!kWl>7#?euA+lNaAsZ^3umGEmfP$hW! z`{J@oC2#SWT4V9kmmLWq=o56$AJ8m*dmHFM@kh(*2mVq zQ6V+T|4?HlHGbcbf)Q#;l5%$3Tb1@(r!!e+0A6v+Nmo#9cZ$X*JO<_r*=Y zgBUhNi7HB8Q4)}BQcL+!3i~L=V648pTk%wMRg<(vOVYCE>e`jbK2|N34;SAAE%P5Z zXSjWR!=a|!d_(MhrJ}GTL26Q#v>#o*90=Ci+1<9eI+B19J4VTTQ8G1v!ZIbL zdTCpRj%(74HXYY6fcAMWBt^27hO*4K#eE*sqb{QfyJ*P5uzrf@Wx13;U<*nYfi7O` zG^tctKh5EGBxRgZsj&!pB=x1*-9E`TtZj%%=k165_@o){$f|W&KzzKe3$&&C0)5nTj9r!TFeOdPt&DHx!is7d?l{iN15Y=bkKI579EYwTPCqp6{fGxQ9zIVz#z zOa;FUpf+S>kmhx}J`U)Z%G-Ru+DMFz6$N$BuH)O=wIiCe?H2cs*wWjI)6qxB+#;>S zslgW%v2G<^lANmxd*;1N*0A0B!HA}s*}M4t)p0V&Aw1ZjIB~P-Lu>s=i{RV~b1WX~ zOO)u)XtFHuz8G@&sat)wBH3+S)|z=1+m-YWk80`j+|AiahuD=?kL`8?b_D6|8qY1; zuWU3w6Y*Gwe@HM=guWhk=ice@`24vJ|M0l%VdD&W-*UU%NmT>uQ{%mWQB zi3Yo2Hj`)(7h+RhvHqJ!Ha+4t+>~CWos<)2 zhVRf~cdLoRO<`G3;Q(&BH{6(0GDbI$cNhMbw!703iD-_@XM@MJV4u2LFd3GBO-`@) z8&Ur4voLAasFc@6^CM^fR1e0#a*5GyE(qRR*1^PYhy8xR42sr0tG#lRGs1qv%q-q4 z2;XXHY0O?zyIz;>5!2-(b;Geqmc28}9aA(!tk79ed}q!6WoL&IxhRo?b=yM}CAI5k zgTZubQtc1spXYv~FrWM*s1kGm9(Wgf-y&}-lAs&}#@e%jNHjV<$J+K)w{7$B1D!2x zK@ZzI)022oA2^H&tPkn_zWI|ufyam!`-f$5#C|%!aHvZZRUcdSK5+HY2glG}-Ab^-5JwdAmmeE5qmqg?2X1}WV*EUj^&4X`%h<4pX_p!tQNE|$WCPfuV zL~%?=(W;FUNx?wBq}%4?w|50(XljsQ6tVo_RHUurx80ANqtE=9c+8-q8P{dItIyKs z;}oEzu54K!C?J_um6p+#g#OOix|D+^$tsNM*IP*>RehEH`4gjS&>7`uS6{WTS-|o_EqN z*(P1HpRV<{1v$(NBK3VKHDL8XsQwbLIzxVcWWD8V<)z1j1!kjdLAOHpji@~)el;0n3t<)} z^r;N`qOAuLY%^#9cv-J*K1Z4zN`6WMz__ZpQ2y+nzVq~c%6>WPPFg8Bv?d1 z=P<)hx~{}!H4dDNl3Z9;DzaEm2@rm~H{HhO5nbVo>-4ajdqA5^G9_|S*eljR3*uPL z`sto5RQ(JDn@z7Ig5fd$ES9^ZuJ+7eNSnWnYx54si#^ixU347 zP6aStCDmDbTv%Z;rr)vZWO)NbGrQHbAXYbi&9BDRD!_v%WM6jL5<|C4616yhrk{s- z|4eI~8kQW_r$tIoLi((d?(Vf^O^MBkO_q;)4b$a5IsXer8%$0n;!FtYsl$~T7&Fz7 z9dx>V;0+FvM)JNtSxjFoID5Jf>?`Ys7OTS2h%nUwOrpeAJOkXXQ_o0xjBxsfx~9VLm8{$cNNyO8p9yCNWJTGp~ba2#VSe%1Y|d%Y;AOfs+z;7T0`W zixeK<9;$ID$tSE>8DYG%Uf*9%CUT{0{E$n5w^dckRouAxrA2Brk=w>7_9eI82(n!< ziiv*2T@I)Dz}Jox%tbrF2)EOY7@)7c%RbEg$OMobk#Q7`Y2n3H*|aROljOlXoIrL& z2knqcGIJq{aprZF1(6GE?#9Gffy8J{xls&Q6u|=O>-Wo=Qt{a@%y@Z0#h-y>#QOD7 z@dH5?I?VekSpvM;ZWjl7n)&iFxrcS?^6%*fnxYoe8~%Ro)H`4My8q~M^zSwewyDd{ zXq2HNZr(P|R$8alZmv0*d}xtxRU?Lb9P|Euv&=quXP0c{^*!J=ZTs1_15x_!ijBjP zj~(tpBW^$xs>dMbr7@VWb}*CdF~$ynKpxf{96ojPi3jiyrt}>6x>RaK{K{AjyOrX&C5>QT8L8^&>S8vtF})bpQ;YgYiNF0pL@x1 z0aXd=?d>(zC8T+MjUJRn zX2ew`kqrGBvdyLWi8c=2L+2+RaShX4B=pW+NjM2W`-JVP;bavJb})CfJ8_nb@h6MtPK}1sl5L2N z#$~=rL{CO!QO=G{KJ>#fPZv#g8lY~f)v)0U?6ZX^oxt&qks>x5Jn}}L0Sue;)(x=4 z;}7eyDjv<^!`~0+r_Ndy<0I-8E~uVAwq-W@r*1Om`v_D0AlY+qJ+rK$j0Y@t7m%NZD!fs980gQsb zCsl;2C(^6I<^Y(|x1cD8{$4c|rzeRdLXTcEqQV5O2xCR$9gU`E__|o@e>;w07i=PF z%*Af?odc!uN>>n?MIeQayB06ZXU3$sHIT)%Z!&SS(9qB>z+eMdGGcZ^W~*q%2dSMD{Pyk@umFnbhE0DbS_ZMD}0(|iHE7dR5ts_1io=N zEO4jV7h|j?S+Qp&uU6-?iDbabQ^b6>?t};J6ndD)A>aT=>1nHg6nLyJ0-2`F;vVK7Cu4TWr_5xD~KwIr5`;D2Uc5 zD3G2(N;vJ_iB_E}1qUp+@%C>5|1+TmtHYW;9|1Bt!wAF(%{2Myz3W=F$T< zQh%L2czKy!f;#^20Sl0r2aO?PK4)rRsoWzX%97j zG0`XT_?9qp981jw+}*eC{dliQU*ZD3w=>KCl`SV`%^osh&(!)5V0khRRIwfcia2F1 zixyA3eZf}~w!o(Pt}7lmUMGF{$x!WGh+}Xhs6eB4>}_OE9G$VI0G4=K!7mqdATY(# zFtQd@iaWQh$O1CJ;~o`G&TI^*_X6bU1su8Q8h}GBGADPzCBi4?IQk*d3%Ij{ErP4W zpCbw%u@o5#@;-bD&(i<8H$T9gXnki$Ooq5%8K)08X>IVC?@;j9Vx9v`%L#%_ldPT$ ziiGzlckpKOMBi5HF*#qhZ z=8z%h)86dBU&k=2Q8@7IVS0?Hl@1B??QDcUquGAEEV7T+WyC@0i(o90ZZMtZ3G!Bf zRRnQa!GCMR!A`LUEg-b_sgj6I-EB2=41@_0_qN#qc_KnKk|`&VwlU@P#>Ve^ADOT^ z7p|4^Ha{W$2URyrn!ia+Ry6&hP?%xU>k*S682pGKg*}mKN=CL4xSLglNfJRxsU_S? zYJ3zMhHoZ-6CxS4)?FQ=5q7+*nS`t*GVDXhg#m1^nej%QluRdC{Y~ks=$`V5C>{%2 zo*zX+YWWt|Ud*AaQ?#~*PKwl&7p<<}`p2GQB(CTc5&G%urQ!(S4=s><8T)INGd!@c zs_ZG>*qVfZT?m>CYpS%N3f!G(1*#x|Pl*bIH_;B5MHZDq(a1&+_+OXl350AxZU?s# zE+MB1DLZB-mc)hUThAv5Se6tIWg)=J4&dES7E{D5QD_1Ok-c}JTZVhIe}~7=$`*A4 z*uY6(>fZS`InoDUOpR+yKaKBiJt48hUZ2OQvsp-kz`MMAsX&~#6A@9BcUV+PB!9uqRu=V54|O?Ccr zXM_P_Xp(PQ%fA@W69x^F!5%W29MzC`kSKhQO@F5EE|LP^qX*8X44h=(>(}>A(WiGB{*WKWx*RQ z=H2@U|20_wz+?%!v&wS3*$PpbG4_F0$ro3Cv=w=5q5tS?Ih9j4(It`pi?lb7tGZmf zhwXS$vye{5tWd$>cpTES!l8hT#baicc(lwRB^5QosVqb{8#D)=GDXwG5wuhubH-T& zN{&jVVp0goAZa4G8FB+#*bKk5uKWIOww>PR{e9l|pJ&)@H{b6)T=#XYwXSuWQ?c6a zZ1`&8;wR!q-Mh4<{Kw`?+}-Acj~Tj;2S78AbWF?-?Gk1K<=~kLzz$E;BGyE+aW`Lk z+`(l_9i}?Eyf1530{~)ShJ3HyRvgPcCzpcY_%<^ci8rS*bN&k7!9SLwi5be%$WTH| z@wj{-Ff-xH&5p~rsw;N!8##zWOd&Ie%TYv%)iScyNDQde7uq59^uXORa`8>UU~WuFAPX5QuI7E$2n z@mBudhu_;oa5C-|QI9I7A@}TeTIJ!c5yT`sOJ_MRaWa%*j zGn;yk-~OBBA^g=2MgIjB1c=AC&v<*kvtx`<9b_FOJT3h1ypz3g)Yo3!Xz$|W5^$u4 z)gJmc?0PY*-R_p{i35I(vyaf*h0Z?t`{#PSKLEDC_^(K!q$EBYx-@He8qR}PR`GU7 zVjLR>OuzvN@lC+?qb~nC*;j1{e9Z+l8F-8C!h2|DOtFJz6%~3iaXfA zb&0QcRZD#Y?;VltZnCSPR#7v`fSGz@C~V9crBr$1+sQoYgMqzYO#WD6`kk|nJgp9t z&vvt*-(-XrUb|4bhrws#vfUoocU+7oRkhBf%6VEdv(z~VQL3MrWdHO$Zd`q(sz$EA z9gG{)W|pT6(WJAFW1>Pw@Fb_Epq_ic^9KQUvG|Z`@Kd7{C%TSl+=m>tZZ8nT^k?j& zRBj~z0WWQsfZIQ@`CO44UKhdLxc-#X*Av`4b3T597rpAOhdNWx8TtE?EC6&+`9^Pi z=@<|VxAM_dh_Ky(CQ9!6mxBc<{ARx=Ofpd=XDbybdrm&k(F$ zkXyV}1JiiBP@9A2MdzW^ow!0(?=2B z=l6dY1R@b618A;ZU(_Kw;5SQ~rw*R#ne%X=k=i#dKgr7-41a$zU4(bkbZy2nfA4ykL8>VJq#@UVwSv4uj&4OAfM_XT1pE<2EAr%& zGNS7CsMt!>HAXgKt5A%L{$jxt0IM27Da)KCQRTXga7nxYp+rwy>Of_ABNspic#^T; z@MhjBo=e!KDGq&4P#yU2$Nj$>pH(!bBa!}f2+MmzziGDR-xuXZ1AQhtSes#moVpVi zH+)h1dyyfRfph)VTPCV~EYjI}u1#_?rH#3x16s_SXxcn8VBBaix zk;h)2v;M~35x+(ZDa?&kM*8Q*p70M$#hHf#8dvX0>Dtz7-r)p+MPz*aArzc4EpQI* zwRxLs6vf2fCiGpdFmEYOz;yE^KMMKdY+O=1QiAIqV1B*7{$0bdoQyOBsq$%2@ArLTZM ztk~oTKzUVjW+F17rfP#rub>-Yr zWI{M`+7|wTc)#FmBF4@BPEzi;whT=i$xOM-q~8-``hub19tbaCrOBgA$}~nbd~BR; zkw_l%F~J|dk&Mc-U*eVLCkx<;n>KO%ph`iQ)Hn}owXHx9;T1p>@~}R`Gnc>V5-Bry zp70WIOgDxZ9G`a_qG%OL+}ctI7H~Htq!PAbusD&pIknT}T?&SeO|be2b(VKoE$};kpVHe`@fioy|-^03f@*kJQqn){U{$fB+7&TpwLr z%SyxklV?}yuX-H=vX}Fif433cmQ+CA*;#!{<>@jEiSGm8;INj@C&ZYOz>~$manv?q zotQrkV6sG|kqpzTlCcdkoBQ+Hp?m~<;&Q0|bK71&P=TY&c`|c7Gpj=~0k9?xkgyO$ zBv_mWv*O)wU(K8q$PCHxkG;Ct3<1?#g{@&K0p`5rfI!9<0Nr@E*wcG60PdMPQ-?(A zO}HC|yD5QYR3TioepB{2gP@+BfmJz7Z<(DjO?>Mc4S1xM3327ibVf}ZL<5p@sP|0` zZPF!-#Gc~5dH^E}CnkYFBP0Dfc>^1G8Me(v#46)Ye$pL%``0+>$_ z7m!KRX@e&DxLz8uVaY9I*qq=&<43A2Pzf)iN2NmUxx8KXkm4*)9xXNYkb0F$gx){w zA(SQMqj8H30>JL=GQe0;wxs^ZBI?JtNzB9rbcm!9EHE>yYh{_lnxwGeBBMsk1w@ri z^1o~@GHZ-EhzN)ra`liyIOx+}uY~77yI~nlgyVyt4QWHYOcR&oZS}*U?Efq_$xyF*Nj;Gl@Gdl=68NEpI82ggSZXE8$^6RS9$H~mpgKEyien*iR)dWT6r$zbT4BB4& zUVi^2uWxKSWa3^axvb_m-s}0@x#M=(UI}nhQ+j6bgv;lWD?!k3RDVeR5`fTV$A}9E zG}RwvPnv571qF7!*eiKAGZIlVVXb(%oK>0ze5m2hRC$!2dCDRSL@u%FV}A@|yjQ#F z;{nbuhx`gv3lw3#eMGU^spO5*mTVnqmK#5^@hA@QxN=bAqZ`o)nyN5icS>JJno3|w(GQdwCzF*lAM zMaahWb~yqq^22>lcz|gE1I<&{B&Tj2t0brbh9b`=T}4I!@n|yZPMKTY`Gs$uWr0HQ z{@XR%5wdU)$iK&3kbEnV&FXI!0d=l>;5y>_^H>@cC`rJc=*g4FU;r0Y6?H|KoIS;g zbsK>&oS-=k$AUf-Brq;XvXA_$mQQ+?xmtps)I(z&D4#J@WXpw+_QMwpB$z{}kzl5} zYO6Bp;AK;lgh4S#vPR_2vK=DTKvaxjR1^feF)H$3${z>AE5(@kgit@vG6pI@N`oF) zM^NXGuodkC^CJF375n`q%45#d>4gXij7*X$d6BmyRpOER!pXhc!H?vFKj#dW9~WJb zmE^Q+sBicbiRvOZy_z`1vEWhEk2cPl&KT7JBY%3(qJqv%!+V;q5^7S(g)F10L;TYQ zJZ;kDR%4KqFG;#C$^y!3)R$afCl208(mHD(R#zA{lMs0cmC=^%F&4y54o|c#phF0$aj{`h{5*SJ@q7wXnmcDff#9-*T#hSfq_}Re zv=_~;0$H9Qh=l*t(LVz1XWh)~yrA<&gQ$N1nKoy7N2i=j$v9--?tlrv2@I8k=8Ew8 zC=p?{u(12GW|AM7pb#gC0ur4Y*Kv*d6b}pzpGo2==PT!9y9? z8gp~eaC}`+GRFJLz(oc2dK71UedN}|?pjauz(i|qW{YW%QYzIY3Upbn>NZ2(duZ?^ zvc@#)h@_pzF4lyTdQptX|GqQ@{``}5=!|SGX-2$21^=05$i$8r$`!*cYL9pkiFrY_ z+KtqE$wtX>Pw1WhGjwKHnz#;^Dh!C(Ky6~0-j}F=b*a%CrQlN0!O-i-OfcBHtW*>! z5>$xNRq;R+Spc()<41cC$tVvI5~VopsG>3MVj6zoF|V_Uvcwdw%HpPSWPLd7mP#>j zhoF&S7`R2Mtln?!Os<@4i~1g=ozQnuT^bcvZ|E0{93xc`Gj3^**t?KL`A};-it-B- zu@eqhPUSNbZ7Fv3phy?a+Oxo}2)iQ%5g)Yt1lF>lq`VW^;`W{Vxn=t#1eaHX^O2g? z!pe06ITUQ2u`lb4eU>Y3l9BwSr8N4}383z!hvnCKxlbS$fe@dWf6KvXw{jiV2zGCA z7X(AY+UF>(Ls!YD8p^|X3|s!D=?@Dt)enQ9g_fu~eJ`Z4#$bRS9~nj+#YPT=t-=mm zUSkG#XPy3W_%f#X5SckRbV@6_Q?4v0kuD$Vd_agI8MPg(I*c2N=k$6*bVO(d8E41E z;6;o)D6W}-a0g4|8qEERJeUxzA)kB#Dku^@cojp#iBawzF~1!Yl_%y`sf0qtw-nq0 zG@1*`a0jj~T(0Op!em5e`E^T%BI$Ysgly~YnL(lQ;SzZps+;cUiBN&U%`?Z2bDyv? zMS7f2DZkqG%)apa1FRN*wai*Vz#awb{&}Xl8KTOW>js7(YM^2WJo;rMq~eD@c9SEf z?Vzl(eEhm01j8dEXOBScTR~PyPbGs|TPVQrw&bgc1OyS5U||Vr8K8#+%)L42M9(9+ z<1D38GysG#u+vZ`*)a#573-D5KOv{!ysM*_^f}67h>PVzrH|?Hq39gs34UT`hzbxy z1qHrx>Rw^4WGN@0{H8ARUH>%zS|OX|Z@V=D46%NBa#EsfgTP1UV=4mj-TxrzQy&@U zwfw_R`h-OWy{rb)JYPtZASShPJFkN(Nyc=Husoow^_}T5P4X&#BH2)H!T`qPNOD&7 z)UFVQem9)uJfmjDkuh%vJeq4M!~AsOoFLq$n)7Q4+Rbd~T#E+ht>i1%3@-8&fi*%K zVGRK+RG8pNQ$?K*1=mvj@_Ra#_Xg~ucF}*rF8t?UvYgKhOyCX3vaS5*V}{m_Uu#Sp zHu1QO9^8aedQ~d{Lr$hhIn?5dEV$N~9;I~nT(R;+`M=F61Juy=5~Nge7JMaaL|C1l zEg;z%jVn<1zdN_@J8i~Qsk{qu0-T_NusOm?ldJcVloy;fGEyAUO+0c_xGz9w;hf>6 z#L!0+Fb9{9-KhLna8~~ZwZF^UeUC8x0=M}AaskmHR0Z6iJT>UiGl^?eYE!J3z7zzL zVsx+|qx`Hk$q(8K2w#<$!||6cYfbm60fM4k!N6R5qyI#3{(BaAZwx2Vlpb#tpyGl; z4!WC>O3W*72Oj4Ss09Z;LFBOWf+rH&&X`tOTwk=*C8HC8oL`o`I6$DVZhY ze3Fq6XfU`fa3xG65$$dH=$4_Vl*&v=mDtdOw5JnQ^rS|?m@%cee?v7cIxQI=6d=MP z^)2JRd7Nxq{QJ1j69ZkLi$7h5|Cv+hb!g-ijj;l1Sn%}B+eU`vpnDRjoM=n*yRvAR)FFFLp}EDy^5ghN%mXE z?s)9(QvXb7qn6WD_rwuGd9lxU&i%4SQ3U!i=7_}NR&nb7)1~iU_qBZa3GxGWunhXD zumCYX*Iq1t(ux}PX&=YJB2>KWbZI!%CoK{R&rKIlHhbO9JU7e>=SG8vYHShphU6De z8Ai#b`MJrOY*l!O6fa!hG?WvlQleediDk#p%Bk3rD@K;!L?#*rZ;~of#%&9pg;>Vl zCtBYRM5c;;SdY%XVyxWp+rLq2?(4pO(_-tGEjXYPLSG$#jEscAtD=r}^%x*z5HuQ) znEmY;w7PMZ2kXl4dCAfU{!tVv$qDvsRI0&4nbdsPD)>VKoI6E-;YG~u!RfuhL0~Lc` ztHL=v3}#bzMw&tNqESeEi`Y1Y*iXiQN};-r+;Mh2B4+Vo6q6J-fFTLAtj;sZQW)_JI#b| zA#v3EDMRXT^j&rL7}oS;u{)C}+41!t%DDO1*@zuQ-~yyCuv$GUn8eq-?nQt-D;T%1 zJJ7p``AR&Au*VpWhE<4mBF`wgaDp+>HcCk1tpx=&8~D z8)%c_t=Jv4UaKC%?O0GQy4HJA_sg=>hqSsE-fg2jyP)Rc zRpaQ&s@G|y0KX+iw#+y~@5n03CW-ROLF$ha%<-5$wR0(~4Pp{Ml4L(<28@mL2>_47 zLJ<84z<0th5C~#Bt5u)P-!;@5@;wdBv+LUVEosI8b|~7{9awr*4RgZgzHs@5Z}`%q zj|D$Ca&OJ0y^GofH?1BM5Vq3l_1}ZWEngeHyvgrtdSCc$TDR)%=k}T-xjc4Ljeb7;+ zypsp0d+Yr>e0~@WoJUy09ow`0@fd3Yu65t{Jzi%_Mw}fzWA2frCe9HNAJJz0u}?tp!Evi8+@`2&OxaJgVJZp z0WY*`o$l;-=+c#$5Lkh`%Z+7%5P%2wOw3F^+{YN~0{~XLJr)}BYbIVfW?r!0rYwqG zMz*n}=WLx=8F50-)ihQ!Ng=>>9?1ypJ}_t_cOxHRCh77e&UdumeT)r>fnk@C`QTpqr{kX~=PJ2VcnEb!lbF*0aQuQ3>V`{jVR4@= z5cZi)LjoqoMXsA@dj#krp04F!d_Q2-wynW+A>}|EB598hmf%q_IE6(Z3VVC#&2gcu8RXO|eK!oV`(sK^1ZDX>u;cCowuN^-s zBQB+P_jWjxV{&%7qmX|J`jGUC=6UaA3`2*^xfQ0K5j8zIR$CUP{_tDQ5b3-1?wQ}& zXHl;s@ObEZY31hrHK2DU+}w9)G+H4%4`zb1N}1SEB9q{$_{d8 zyoAH!#I%IN|HY>ny~!MpDYLwh^)9zd-wsK8z#5z>Ke@K0Zz6voP7c0SXlTdIlE=6N z+mHESzcr2W-(x+p7Ryq8m10)AbsOFoVc6@H&6sZ`VrFW^Bl`MJK&E>51;` zFqKW;Z-e;MzINYux1%BdgqHcyGcQXVoYNx1jLqe90lQ$HP$WkXwA-d}#Uo(0TQ{-) z!o-r0#pAplb$vV61v$ficX+VOe^U`jBWy$t#F$logf(I6c3>VhdDg*^UWpyg0>5`Z zoEh2eUPam?LnTKJ>%?~n!1Omn)I>0*F^!+U>d;z1Q&YRTIWiIgxl;1Rm0*MIeAOEL zWnlA$P|6$e%!v7WxW&(O!kQ?`mxWd%IGJN%*{bC^2bUricq7KU#Eq`%C}1w^t#yG}atZ#B^wBsULh8eOEJU4&W zaP{Ze=8($}=uYfO_!<)PhV%J14#Cq4Kl9M3(G@^(p7ue?=J~$MgWQ(YS~|3GMO5P- zKj68{bkoYP+VtTgNkV8~xR8b|$A>T45xh9};iV)aW)kauB*TG2P3CeN+A?_fW;MQ? zOv5ysVvHfbd*+PcsWwoL_q=8=W6C6Cux{HdXPUr@i^U>sv z+RgL*1i$g+#nDgoi=r-r!wE|W&(C<$B2*5MI+e4FBOra4M@v4A%owDbGGls$>3@iX zq~~*?-SjI}VWqFh%hKl;sWy3_8kW=-7~^F#eUGFEyAjyRb5o+1ei`^gc(AO1tS<^W zBT^1}S)J0d!|@m-sUC7$W>3!G0nrRqDYEwi7*_bh?2dE(YvJhl&0R%2j6yuexOa6E z88FsbaYvuLaWa=|mEft>81=(g%_$VQ&HBDLNBJRW0D4GH*;Q?&50(2U{CrhG4EBt&;|?w}%}R%f#L9Kk`piuHAj zaj^AFdzNzx-M7l*q^jaU?&LOP28^Skew$IHWb4J5^4w@0FIIyjBBL<2ak1eyTo+r= z_M?8!K$7PlADOrs?Kux)Q}uN&A|W2Qh@R#nNn?r;&<`ZkaYvX>T-VFG9RlIk^7aTH z4BQ7XhAJ*{ag9(3Bv*~`M%%VF{##LOj1JBku2xKWgy@B4;3t^Po?^+yrP`RyhRKZRx70JH4nBfV z$m7zDBIHNU{DQ<4d1}as=@mN!Qy zOhDQ%bH@}&ys@NTY)h3y@~dNqLee)iBXlQ{TGRRc#pY1=3^PorvM3~+X?ZeHS0N9E z@2;eb@*03LU_k}kc3AVj;XMl;=n~fXov)H_Q@k| z%jVULQ&HYBf8eKe#Q_(YWJ~~*hjc>N&)Aod%JN{XnD{#gAeH&>lgdsuwo^UpQ&KDm z;DZx;mZI@@9P%0?48p z({%VGwGbt=hff%a43%1DFcrpWoEMAmF0Zo)IrUcWMU&P)=1k~MGu z#(xRq2MQ>}t8{zJf@CeKX~p3rFBtGAy{Rey9GW%@;s`I*;L1XW_NcLrUip0f3Nd%!|Y5DH}; zT2>=JEF|!bAuCB)Jevhf_uQ<@sFh{wCIVf{I#@Jq3_ix;D&-qi`aJ(8UD`b5$u%bGSHYDsU?7KtldAn-r;fi!4hnL(&_?oKNN^Z3>9IId$X zpr0k%Qqmen*;5Sx{~kNG`lIsHFlF-)w0N?=XiIy3QT34|wS;T2@$n-ys$`XMX99h0 zrpvt1=m!5qpVfELoG-_Pe$YsyrV;c)*Mw6~+{KAf58N4NSd);s>l!;3( zn4oU9aj!F@-l|V$2M@wp&-Dzxp&@dTNC0zz7m&W^nRk&&>V4{iS%(?o+u$JOS%9e= zIY46_=RHuA$SbMbqY5uZ7~s7A-Z2$aB1dERq^RK*nP0_)@0={g(-7T#qmKvmKK$;R z|M1>@tML`dj4gve02MtfV)4iD+^tu@Um-a@9;+( zZ}~2R`XlP)nyAs;cmzvfB4dOU=wP=~2T-u!z^xb#Xy*QBtHY{U)NnWn0vF6Ab|<%B zWPv$-7;eF0W#jm+46-7?|K2w{{TThTt@ztdN~#L`U0_mI?JMa(*BQK= z3UZt+it=ZocgTeDN@D6ixkO!(M9Y`?^?5VVAe%Gknx**rVeB$RsBDZ}hcthrGZS?n zDz*v`PFdn74TtB=>Z>NAB>yw(vEJ3y6)QKFBBa(}oz_DN&bBr%%~cW_YbvVE^D!&K;x_1^G-ZrnMzfZ^|-wW1D z|vbv3%y>I7k%-LF4V5vDV z)sgFfLO9V@9}_n8M|1EaXCp5`R-NFN>=zjH;K!wPZHL*rY&Jjd4hBCG7iT zevGyMChy>YR#7Vh55Bs4dz8N&zh6~c1o~&QxnXKTU59x7S^J!_41Z8aMH_ZMu=v0c z`tTvY5AN^wuxCzX%!BYqvv%*>uyhgX<|aIsi#wY0-Cuh6+6J$^F-MsYGR5(za1<9@ zje2_m(|P>ZojEfzH>HNI99*^0udI3SV6TdZ`8~d<8P23}E#~k0&Pnw>=s=3Xz6_*B zOe#i?()2b$zjA8fvbVjk>hiYlX!JH~RqD{5Oe(s4ku~Bw`RCtEKX4$Sgn$SS73@~; zdBL&G{4n_V-Ui>qove2F=hXjuXI~;LC>L2iX*lItu6GZ>V7JrpLL*RS$jS=wa{HLoA4`H}Riok#~d^hyxfP zuSd;@4C)kPtqI5L;TQ1mZ~9aMGxVRmpBV`L1&#R%dFa{E0dn>lftN8| z`sO;m<+uHAZIklRySpTpT|hWV&0)HN*Sd3~1poC}pPDUT9<5xzdyvgFzljI3eK#7$PDsdbNe$mnW=ax< z+iAb$n&FsQci`yh9pa4Z==EIug$~FrZgGJW!9X%H&1R$fZeHmg&f>gY58e))ir{5YZysei%ZIKPN%v0WScunj*|93z{)V3T&gnpaTnEuK73@CEa}R#HGa?0MwB2s2Vm1R z?@Zu)*uY>5h*YT!tTu1hiKFu|w9|WhQTzY6USZ|h-RMQ+S9vy*!FLSLDG zn~0j1KE1$Y*EoOGGP?ND7LzY{J-R}gY>>w%XQ%**#gSvHU0}^7k0Y^4Y%IHfnNi9W z1DZ+p?1u3(Yw+ZO-SGiLR_u7^f&XB9ND+palftR>npTOn z?Oy~w-Ok=cVK2Fkw+Mf1ajz(j+YD1O{KCDBeg)%DR$pn_eB-TSo^fb%MxM$H+@MO~ zhOoiELoOi-)P6|5_YuGOCyS~1RVUZ3Y>&n04iZXINa=ot^(qLc-4QR|3xZ1q8lVS$ zdV1_HFaRO0ulcGUglF0y#1G*gp*DgfuVv?QE4NJvXOXXA&}4)aeKkAI6Zr=uC{v`E zq}vD^Qxy8rTktJ5E=Moj)ZV^b0C0X7o&{baNeqHA`vhlLfT~ZBKLpplio~quiv!XM zgwh0b{9t)wDT>B0hKY-%dD`jDW|{BmB(!Dy$o5p$6Y0ZL;hIdSnUp~5PY)kbWmQ78GGyTH zW=%223rizbK_i$NG<9l_Ouz&BGz0+D_!o*&;tVh+$V%HOurNXd{{8IV6qTiBDnk&W z3j~^FMvz=UV2m0Lbq|tK`~wUXC^ON8@Fj)fWs5zxBOg+T7a322^Y5OUgfbZv$=f(H zD2_;avmOmF>*>9Y+FqkmccT8)X5Wnjgi#cJB$+cW32uaJxgQ8xHoddF}9Q z8OhO-F>0FuWHA5QR!ylx4_hR^bb-$~{YoXV5mR+$wqhDMs(MQuK7@zoZr^Z{FjEfUZmhKZ;RR~9qBQ~N0Avkl zc0#l!)Gw170vHEaKae;{lUS~~tRByajG52*;-8>iNR}{_7t# z`)kIJ0;2I8kiwBrvOWc0F7%iiL(|OB(Px&q`NP)_(CrAP7cz_5eHUz~%4Nstcf72~ z;f)!zH4&cs&xc32LhizHE+R-MIE;``7^^}94a5j12*|}baYgOkE-sn7{e}k6!COWTeH*vwa7+toeDYEg$cD)fK~oO9{4e2#bgoC;rD4D&;y?Qypch-x}rNqz4f7zJh^6#r>qEf5vvTY`0+S=a*VTvyblJR!vQFoBt zRG7(jQIxQp&5Il(j%0^XQ_oCSXgz1BU?s;NecfY)oS&7@hM0GWHUv%|CDDq_nJ5Qa zZ5^l*isE?M6$E;zW05``-sP4uGA{86?sD7-opVW!%7TQLch^ny#~0%KEF`6!r)3Lp zGr>j4rF;B*Lii7=DkjC5RDN;&_*^9zY325Cyz!YMA78wVMob)xSlCrX#hss=dS8A~ zX7&<7%e#E;82zK(wHM-Wwdkt$T!ayT(O%CfVfP{7F7k~WloDDys3c;rFf^2j_?ab` z_>i~h++mX0mS%ASLzOhGtJsNAY@+`d@AFs&pVbpr>URy0uOrE^9D8HVh8v|LiZ=x^ zWs4j=Z3qf%h+M#I0AV!MUHaiN>aWfs+(NEI(XQ{h#E)kEiWj_*e{SCV^TU*=C(O5S zTgSE^ih>eL!qk5Hfjkpl@a&@QLv>CsG&43uG>_j<^bqIF=+!YP1c0lWRLCqJ3$-;> z5u}|*n@y`bgYh78p7dslG`8c!pe6=6NNMOL!P=733%+~;r4}N?V4(Dl*&A6jbRBQ$Oo&`1m8_WS0OoHPv+M?I2JgAA28w(e02Vw|uHV-IO zxB@H($~*Nkk{;yJ464>APlfnf1eyAu)wxa`AyCu+cJP_T>} z`m|@x->^*yVvg@&Zr5V+9(PoJ@n&X!OBl>s0au*swm2X_3L}ai)W?E|s^xEd1UpIP zOACSLXM@9_wwjCA!tw3jG3pBBGEACR{S=K>TaNW6Y8e-tg+>Qwokvwv?8i!1$c*UC zf0XVKRJ4`s2$jIVP4Dbgos+WFn~v*@$%3N8tJ^b9thmNO|JOEcju&zVamnOYvzp^_ z40$Ng{>^Ixu4h_C5v;Os;87_kbGJp4P)aT#XDvqkLIG4Np;+!p48Z~0vM*2C9j*0? z6{Wz303WvtLGjkA_ASoFRgtHfyy~N%9``E1^dKZ5p==H{MMNn$ul8iYCG{%}{1&hf zw$f;%AlEb9+w}xOAz%G5`kjANDXvJ~O(Y=wp$%LP><*L=+num45h(F>*Zs!~EzVD< z9;6l`@c13_gt{hRWS}`|y@DKpGi__iB21c_KQ%!i0^O0CGoMFSuz`fGgBXm!SB251Fe#Im;hAqT$8FfW` z;0LiQsfTE!Zuk_kr{p6hi!LJ|(pn!Lgw@jUeNBjDf*tyMT!lzPbFmL($^A*b!L3Lb zi9&Qzlgt&W!Kw1k7zx|9I!V|u(pTF>Q+dOfC+YbL5XJEqKsK^tBj*E{hDlkBHN>6I z6Q9VWk%XWd$e2T_U~!Cr$H5Ho#fgKEXA?mWht{_Mb22jQ4n$W*!N~7vK@Z8@f4QiI zg#{5nWBc5B!GpooM4IY?yF!@r2&&%3fTorciM5N#Kp}*c;TZox)q_{v0PGsUldmd5 zU>WB_*gE8jL=<#8bgpEy_%9;|)QT{zy&PVpklv`OAapC3C=@Mf4S6hhEEK%wb4w)K zKthGx%071fz%kZPt!FwWp2kI3LPmE?{ieO8Ptm_oA2`Y$dsq=P3`OB7y&nJvz-d4! zhFUl&^m}@KSqD-tCab4Pm16(v>JdH^2@`7zS)aM%>O6Cdr2>j-E?DKtP6y9+#JOI8 znCIMpIjG>wYw z%j(=#aZQva;kc&c5=wLmLZDH^0D{(~-G_(PK{)gmp>K@aflFDe#ix(kA<<6S_nigc zM`iNiX@S$8hh~_H#sm{2EI!CCpwWoitSrr=Py5!jI+C4l&vF7F^hWh)W2yszMMbOa zBO_^ne62w8*(`)CMY~sVDTe18aSsXH$YXib6(6g_tTCmv_r2Y;s5s6~_+UXxRTeggz>;f>=LWp#cF;Ru-%XX<)G;l(m+%+kPDU;nG{v;TuSLlhbKbu6`e5o2>^G#d*W zC|N9u;g68!*8uRMtu9?D9eX0#dk-WuO=1S&>or8lMQFN9s5WXN)#xc26-RgF?7Pv^ z3;1E5DLN$QnR44~1aDzXpw(}2kz)iZ7|6Y}TqF#cv9s7@o}dLl)QZUJzRS}g4xk*v zs;6w@^Gd=`F#Mo+x24(t`SVV~i zPZFQvr<=TScO3GwZH@bm2cWBJ5L*nJVE%wgT_Gki3oiTilNqI)%@Nh_G`)Txj0!$s z1%YSS(;nH#cB)F$CCmwyLzVN4bc!Ie5IDvK1<)G<%_D0?;Nv<7)zS?DF{R5YVTjd7 z8=op%W$ea`NnGV}ayi>1Zs?{FK9(UE!Jc##jLeVe2`H3F1Rbi3xco&`fFv?9g-%RE zfDgXR{rLp{aHHO_oT-EQ=)Oh^mwzXS0GFvQ#x8KjX{oA&3?A7n`$wU6aorRuN7dNj z{cj<_hl=-+1@KS=eJ$UQJ(Z3`ie!fH6v$rg#sTfLEpI`1nlIj|~^k{n&dJOF`M zZFamU0OhCQD}`HJ@;^Z1@!T=&dMTLFQLC}kd`SU9`Gh1*{7bVh!y|=qo)SAT9wl3s zIaCqM0LkF8R&u->i~i--(MqV-Axe9q+N%Mwh0EP6&LlWFoaGFe!Dma`7HYXDEK&(Qyi7`y^)jE9;1SJ{5 z8J;!7U;5ON(dlDdWMnktM%{pKBSCrrUpky*-=ErUWs0JR~TkOnI0 z?sTRYsqt_Hb0#B7T52zjkx;_sSf>oti!mdFmf}Dq2$EQge~DXOqT&Cc)T;6Ct}Dcm zm29r^_J^kF!&S$6_qv$u|6QAFKC_bd8OOaQR{|BeLS{sK)XA;H%jpdo#Yw`fOYm3e zhSB&^0%RJEFO*O7LD9j~#50s$IV#<7NJ4+RDgKjBImbN;mPNPi{KYLogyjrv{LZxezy+&~^7HLwZt zjSYj$1M*@MJCZ}g+#JqK{u631&@=duRVkTh`{BS0yfCCjjqF@)UM z2&kGws8(~z<>a*7+aOwk!s;#bZzQe$LU< z5P4>Rcq-e|;q&nsUg!@(J|fhk2v%oizK$nu`kJ+&Hnzc0P=6;X#_z(MvO5i)QOV|K zXMRIOdBJ~|ynn1$KjIg!kCB>3X-(9pELOtm8qQyiDnHiySFroI`2{^GpxX8}tRGRc zYmz`I9_WkR?Pq=mE1;wGM$Bdha>-2gR=j~NXH+#$EZ)ds6YowX>iFFBlDYfQiRKUX zP_ZM)RRumDTw}#E==&b;9gDt3xmnYZS*1h4W=bhPz8kv5uX(QqS&o!J>EvYA_7==C z2Tm(mj%u6xz2uNOug0fF9Mbuu&Z6>StKtKLQd=HSAHRB8L?+T%l$<{m_zix9Cnmlp{r~GL>x83la_?k=^hq6mTfC zWUEL6jkL-Dm14^$N>sqDM!1o#R3hVR+9S3|oRcG;Es3{<>q7A-3SJi3$0@!|f~b>% zV>Y!as7Up|NCSgx_0`OI=2u0Gg47;sQ3YZCrIA|mOo<30wn-lY=~(+lPp1k=ihemn zNI`WkShzj%#v$jD7A~pA@y}5Ss8j`gt~6IM4gB=5_*Rp~cQ?2W^)ihFg*>*6fJqKh zM1uLV4J$cy(B+LoUaa1Q|ICTws6fESzQ0{Y4+QU4$aa507o{6{Wf317hqqX1v>DR) zG6Mj@bNd@=Kz{B1qe1oO8g0CiyYNMH?jkt|2e4eVVcd6Ov-$Y{-;1aYCaI^SPujIb zm69n83TDbBZMvR$Wl?lh%GKK1!iN$LuW@@p@{O#^zvZ%pSk{SxE>Sk`CjW_kuC+B# zLt%&>Z53k!Y+`0-3C7DdX40aky~Uquz8Acs}kdoxQ(W%9=%B~4h%|yl=~^P6Nmt}>Lus_1rYJ5C0E3#puk}uSki0! zpD>(Dr@GEAv5VNCyxdUfDmabv&1g%!4he`H;QzcZ(9gH}kU_QN#e#%IFG~YA`)XWm z32KtJ%jFD7O9^byX$fpjqnp)8Z*GS1O&WSMk}CcZ7eqsW%U7ferof>-6b*+oT)O-u z;1CP$vqey=fr7O*>SAfP!SmaV$|xVzD)Ez@&EEO-MEan9D{t=Z=#!q~KfCAE_YeJh z+F$?sXl=--sDST-{uP#duq<AAmoHHXv4|uY z1rRA(;!U5(eJ#|5z%vzHjwyD9#v#9~w2on3Jkw*T^|(878WIUwrHtzYFYRBK5F^jo(Tpfhx=VsLy%YiJV=%IqNZAtmg&AiTtw04qh~cPY=Y(L_d^CV9py4 z3I8016WSg9MW6srWq*|NQ4<3o18a34Oi|+?5nfhukL-l#t4vWWT$>@iK7jQK?vbHZ zM6@PNUh9blW@Jyi5l8j53S%K{89NyNfw7Y56QsC6fS_u$EohJxH_wDhmpuDL8ex4J z^olR2-hDTy{6<2cK64@41wgitCi~ibSy84CT8j>^>D3Q%Q`Lj#nFw8^A?L)3Tu4w> zzy6xhU}6v&6o3mr9D^M`d=mS8!O4T#hpqwHiZLITm)_Z#Xp;ajo5$; z1BpDQBkE1)6r_&5cY&alZ@IW7Zm+4*-jRRd8-0 zSr)dS4@(*-KOFfKZVUA(6J|#{aWe)_G)jv`UK18ZhT=+}DaKFfQzVdLiGM9_272UF z-(Ox;)5MKS)t1zyX5_3h+#JnP2ls2e{>q32DL{XByuiz^II{d4?Y4UTq0eOljjaHW zJMsfSFy300gq$1C)j?6AXCqaN1?hQt?753=DSzV|DES+65m|C-Pa9q0SUgVHUblYh z#Q0xeVNpl`k+vUVG9A{zNd0%1P68otZ1`waiJ>Ab30bmFI2gIcg)9m!{Q{a=AV{E| zR)Eov4lFqrDuLvE6pR6U2r{pApL7F}nx1&Grf<~GSzL)4^|h41RLGhNx4|D|1kTm6 z#52%a79SR2~<{Y9%J&z@2FQ#W9?oQ}_Y8X%)exjP zRul_}lOwA4Q&};vk;{x$59(-@vj&O;$dU5VG2_UeAG8SflO(}lfZipQh>EFD z-FMWm;J@g=AqEpNEWz+qL03ui|`EF|x|(B(kF+a@$6kq7Ka zp6zj-o8fmlWthj1aAEyC)NSV!=-~nw8;sUNh2GR)SpT>1M3M^x(3p(;X zba!f06O!+cqL4q<5I^m0=kD}XE%zXrKHG-Yc|JaDz9fTR|Cw~IVu#~~KL7*EXXnO} z$RSb8K3B<~h-d1y3apFwk%}9zcsE#3*)&>72PjryO%tz?5`9EWUIg^D@p4&kT1r|f zlwS@k<3fdLVGcv?NkM}|SFT11d&_l891vw3+kPhm*Y913PT=U-(8dApcn!@hBABxv z2VvuglbNxkFNI>5Y~b!L{<8el&jc5_;cqSM{xG^LK)H?WaUR3SjFmlG9)l+J+9P6K zFpr0jaA6}Z+r}#fyFEvQLtaFA7tq4R=~hGBR@I}D2P(2c)uT~@pzB6RC%r_UERhpP z54dRGK=>duQ+6Poo0wxV00{uZH6Y@`3Q(fsl#`-H2O z<%z&={Yr4qcbB)iVTHyN@{A{XOFO(;S4s%0MWu`o_sd-PeC^Od!?Rq}EAmHa`Ln}% z3q#@5WMXQyCX>ydDrEkN?n4G!3(B?Q1fJu*PES20U1jf6G9gq8^9om@Vw;1y%cZ!L^uQ#4#O=i=1cx*?Eq$3pbgB9J1yhX{e7DruCePvo`k2dwy;h#2?J54&y~HM5Eq4HvmQ z4tfDM^aLrF5V*jB+N5e#f+ya+OwK>>BlU`-t}gIH}%iA+(kOe zeM1^m^$joyruLMwzp1~`XLsW6ym5bn?g}k<09mC$-{qNge#kw9J%vG6l4oIeopc!? z)<6#vBg-2nj#ic5%xoEiYhErlT9ExGfg)FBz(^z=1Hp@9RUV-r5&=Gx$P`3^0zY~7 zY(?te;mW=cWLRj^sEPg?!erdf<*0wFT+Yfe)%Oq=>j9>$DkqB_51po^C~4oqvp*() zylILC1U`~dzcJgQUXjv*^EuSWAX(2yv}3PBj- z-0uiDpT%fI!j35vaM zJNEcw;xh$(0a{3bB6)^>ksKJZ2-R4U+Rzb)e07E9lDPgLFZJ)o8;7u5|L*kfdiG_J z5j6X$rzZVv#x^udfD{@X?Z zjWs{qXx1;lz|rnSGbziY0}{zBdh|%IfN0jLeY=>WY6l5yAJTv{S`m;2-G9=U4Fp7C z`Kp^qw=>|Gv!T~vtTk+=1SVHKDoTnZ>RIaJ1ddi10NcdWd$2GA8ilc=nneIDnGZau zBtaPrm|fwg7FyizCP~Abx`!xGfgd+oA`o8%YyU|kq70T|0;)h-?GD0~iUgSAW>u4$ zw|^+`TtEXZ0f`*5?JB1;Ju&qC!LKn_$d-_tNnNSB#tb{*f(8QO9hp8{6YxjHNsW1o`e4nCVgHd<2 z1`&8lUQ=BKAu_NwX?z1$(v>N-D?{?z+ zic^VKc9*IfMMEP{|0{np7qLe}id{Jqx++mq%Pi`Pa+)g-Gs9Jt2l5_38LN&Redc0v z1`>|^acHz0-{becBC~>r8ER-ctC}p$(jKW_>GneHLQ~$d*KLbV>D|jemqCDS%2Dto zI|x1t!jp@BRgfr_ej{{Xv5 zfgb#DHKZUa-B3QR9mh>i>V3NFwikvKW@oa!Fk%+Wr7pt5SF#hKLO{fnDQi}=&{R_; zYt8)K{`q*yl3VqJ^A(~lqSN;2=^wz=Tw2J99CMVuzd>x|bfk1Ei}a`nTDyy}XrC27 zXjO#mk1Ew;T20GVDUX%;Bput1cs|h;p@T=fSZUJ#?AVc-B?4(y(3WoB!VJKsK*5Y)^;%$q-Dy%ubdMjZty9 zp#zw?21}+;cVk-qjZf0auO%jB$#kKDZ)hbuSTV1H{ z6RO5A2L$;-*GrsXPeGAS40gQHQ7$!x=!F3Uej=bLZ4weEt6Cm*joG!E;SwLWnfhXY zGg^oGi>>(YdThjYQ}L&w$HZ)klOq6Tw4uG7R!0>L(+-mGQk3#t() z1#${A&ECHa{hbbJ1uO*P1ikey;72Ng~}-PSKRtK=d2CGS3@V_bi=8 zjqkW!?UTMf3d zJTbgiWE=>NG^Sas!R1yMn4(g&!>eQu8137%?lij5U2SUxkW=loFjs|BAR$;Q^}CXK zFj18a*4QPiUY=3le)S4p9ZvEjC;u?~_^#R&oI3^RFk?0H6PaNbXDl?2u*}*llA9Lv z_Ey4fgjw;yRVmylEK~QK??KjL1JiobXh~ugCG$?9{rz1o2q3OXV6mF&V?`qtIpp2|>XW3%XXXHLri> z&NE9)!2v7iwJu(6NEH6)As2UrZ3UL$lQQjDKy7#nJc=~9Dt1xYh=)&Q_g&V*a2W7L zN%&xVtEFS|GXtTuXX=eF(}vpA9=`F{ed{cVMY!IA`VRSO5$LdrPa#5dfCI*g}8%Pna&oVnr~`aL}=4!weMq5VjXTH6GJg0PAD)MGIWxDr1-F)xwT&aViybl33Gyw*tr_Gko)N zZty^L4%s2taG(#1jr3fOXxLW`LFY1ruo;CgAx;cX>9YaJB7L;@!$7*=Qi2|znJ^y3 zQPW${EYTl}!x7JqAeR^;jUF5|_FhvAAxm5wUzO=MDHN?OmHI-2lRG-O%-MZT>IVvqz857<Thc}+ z5ruP}ph`zMqa3$mKZpnI>{*q7#v#4Vz#V;u4+(AKK(DXrrpb}>jrKTB!%Z9g$=ToT z<6Ya=v2AO)=a@d{?~a{+3OSItu7FY}w#C$dqtzex1iVM3fB|^nVzV&Z>qnaSK9J;JRzA#_r5Z`?mh zqNM{4?|JKk7IM8zOIN$m`?D#yTYLZmaEpK+sLI87OV1*maDYW2tNd;57}6POGY;4! z_CaSsb_!idc2b$L2!&{OC6gGtH2g6ZJ#Hzowf+w*=8p~nQWw=DpUsY!!EJT!zw8DR}rzq5xn})F7lz$EVhN^SThJEU7eFac8{2>78 z;^Srtwt?QAx7|+imyF`fRmg)$Z^|Wf@1<8kSB}*T`?_)pQiITGcbrZYZ1Z+r;b7|t za8mid#y85g>C|mBD1E*3Mm(~MITs>=YTRP%qn0*gEGuldQyz5@ownB!_Qj+ICZ0W9 z(RP@}N2M36m$uk(o%6Pdj_QiH%3)Q}(SK}xL5cs?xWMPzdB7F)+%S(LMa8?Wmu!cl zYH@+}_oQZNTVKL;hF#rYleq7bqp|;VyNl1ay_Au#zP+Qcps4uHhLSmDMIP2->&XLa zy#pKCJe3;Sr=3T=B~BZhzIVxyPgvtF99ow~#lvp$h@}SpsUMZnR`tC&ZF_oW!;E;k zt=2trr_r3XDE~^|YoKZOpldDCc9S>eHKv8Ze)l);uEMfs_NZk2h!of7Zc=(R^8 z1KF0cI*hW;*sv2TAGUHZdwCDH(NeJahPJFDsRDym@f7r_7aPWmuVA;Bloy+h_nYGd zkF_r`~Hjqt_}LOVUpE&IWP5+lJN;w3A}q;!~&H zf;A`e68Wof@Wh)O#!JuO1^8tTI=2SytR3HUT_O<^c+G2r!_kC@FYwC)YPQTN>kjL1 z!;%yRs{HC7?C`{BQr$^~Gq1AU?V4Q`a9fuz5WMPsN7Ou#xT3&kXCpjIP13GyGgC1qV$bBTDOFRfsMQ zKsn@@b?QZ;AMTkA9V6%yxrXEl{`Q?Y$T+Brz-Mm)5ZDB}P}r+#x5-z+P$e9ni}Sv2 zAxtP2DdWw^OSaQyfoz2s7Ly$JfrQPoR4!68m0-s$yxD@f{cXzBv?TmU2{-AHj zRa!El@N85@jCrwoztI>KL*ZhqsVr+TBa8ZErS$Gd@3;OWtYiwgO3#WJq`rm#*hA)x z^v+4B5oGBWze5GWd)s*JvGI+73o-4|ygWz2}2fgb(QL9{rwd%cS*jSd6%Q`G(p?3@y)bBf+U;DM_ z11@1;B=8j_pTL0eyCWaj?T3c@r`J2{@X+ShC<(^m6_pK|72sKjFT=u_({dZhUGMPV zw|Aa8-k(096@YbicZoMIf)PIw!*{=A>)r>qjd86Ce)7tS5lF*NH{ zGk9_>oVDRtrdF!cw)q&t&y%p)z>cdw0Iw3mqxgPX)ZVB2R`-t#6toCCPIMDsMd=l~ zw_!1yM_J`LU4v^T*F^w%4x0rtdP8H+q1ty>{Ey0gF)g!7a=g@IbG83YD_fjJ;(5zt zMivrWn-OdD9IA=Q78eEl=lix{b^dGcA-fVaO=7Dps zVrD4}veV<+;XQm3djZmM-2ly#%_qb>d58^@YZaCy6V1GFUX}!=eggllg(gev zC-fkh-0Syhh)Sx`>TShu_c^~GccJCswmNYXrBR3SPgVY>(&ti`DUa6-4a01vWuGv( z6~kwB-U$@Ws*%=IC$4eYQA94$fsL7@+Vj^<%xrfhP08vE4AbdxdV%$lG8B=&KCjop zK4IuHGQ7+hy*ER8{Z5&t+}{T1C#tlLc6K0nD@NX&)z}ZCZRT+FLvh6mJCN-w>p;>W zw*xL})2opQ@OtxedC1kVoToNBOS(&i<$hwL+7qkv}J<3)!B zbr)s{({3@%{3DnNKqpqE-E>1yZ6LbojQ^Z>2#yM?pb|!#W-6WHd3LI`1;qu128OAs zDN)&kLVY%|p}ImX7vA$50Q?17V`V6S0Tw4zL*s-IdZ0_z)DEcBmB2(i%EVq%(QwA) z3alsS%;(ZvDDHf#b*Zbh2+kq?qpuQ6)F*~d;+;`D#Isz`Ojen_2_`6aBtr~7f#{AF z{AqC(zeQ?H)Zn=kA3JcZQYzmErzHIiU}}V$cNS(OU_hihl)Qr|8#oroPw+9aOppOi zyItj^Sv3Hyw(ROJ@`E%YnH2R;(X|~;h|romFN!yrVqUq*q)}u)^j1{Vl-%OQ7G|_@ zX~S8kh{n6z&*{^mUX`a| z|72+H+CoK#-UReR!bw71o|^oqz*feST?Gg8h?D_N3tU>8lg*XlTl)FwY{`tAxQ9F; zB>}v!MReT!d#YU;T?)BAFr=a=N?TsygcAh|0Wyx4HV;t33$-dC`qX{ZpbZQMO$Aqq zC`KI#G_JXmW1~k5vPNOaWN4|)p*(mVX(+94Zd`ki{TiwXI-mSqILQ||Cvc8!v?$T5DnMDQ%;2qg$_~B z1IC*!BC|3w(ZCzLY=)x{x6FJPh8e&p-xmub3$CdiB`Vrgj35pz)Fu_G+Kv_v>d$BZ zmI?qD_Op|&ftbjcibmTPvZv~`U8pt{(z(K{hERJB?v8*~tYLSlAsxRL92v+jLzEYb&XLU@FPR*e zsqMxLedWBb;Z+G5;96XErqBR>$z_@TXq3T^@#ZWvP@=bxn;72YUFl{u{hz(tA1*Z)?z;~C!oSs^<2yVTgp2M@e@iJW{^5Su|(5z7Yh@>It3Qcob*9! zEzCO`*!4&5<;(Vvl8BGGts;i!G~zk?q)cLv;{4IXj{SvYW8=BNta9NqeNtPmFWZC8 z5jc^^=q;jUIV6bR(r)$XUbI_RVo2kpZJrR5r_T=>p{b z=6rUq@==sis?k%z{xuq+j&(cl9ni*vUHn5H=@Awl6Qy}tuN0bqtlq%)eA?zx_TSe$NZii>8h-g9jXs6 znP3bRf~0}3%5$RN$Fa?u(!p>*g*77|(G=L_Q!N%lh$+{F?cQAVk!YI5X91f47bOGD z7sVDcA9u2N_}`;p5<0sS2N*yw44AVMjeA+Ziy}1IEJ6D_Zg)rHAhoM}g#U1Apgtdn zbJe2RO4{iM{j8cV-X0SA{G<4LjXqY`Ulhzz-YT$V}niw`kdg3xjt;H{E-vKWA%w?4e z16XH-jiLbtC&jyPZ1g+9`otQ9w=`%)BLKP8T(_sol}^s97G-Fn=7jY>o@jk>&eDVr z3;&kAtG?~b@V|O4o_2j!{eq`E4?VN?-oSy0L;D<`_0DTg4eEZyJW9y(F+)@0^M6mT z|4Yq@6KjX{9#5HbQR?s~7quJ=*ywC$$HNVGzG)Uk;- z&)3aGtxHXHNXQ;LayWH?FaqgcZ!jv_S!rV z5Dm$UuO`m*=Vx{6CT@5Cd0q^Ez2!9g$GFed9R7*tVm;4028>R{X%`dH8cy8CA&B4D zFf*U!dxugV^cYLOt!#jQ@EULI;}!Y%Avw|!y&yRdOYLP>-~ zl8$+ZBZLM{5<hzb!RO`42_XfS1}kYtDkLQ<(vqM|gRNl4nYqhUAqyVm{e9lrPb zegB;Iy!-5){oMDx?zOIUtx12TBQ5@<&3f=P-20bjcXc&k>W1Da_f&$iw%^wLroD}3 zYp2s1dD5j2UEDR}>%0mN>{A2HzJABbXeO^zRn36zh{!2(D~)0iRetWpfanL8XrWKI zMi`zpToe3nBSWN5wp6f9rE}C_Qk*dE>9(ykv`a%v?U12$gJ+I^&hYf|==?2Razh*Q zrRNMUFgt|l;s%6O{NiZxTbj2=fWEt)*;l`|uS4*fZLcTGZ?h+88#>Z*()4y}1_n`* z&EQfw2al7Nr+5!Z2MH#g6SMH$+sCDyY8c_O7~ZvbJTN0A2l z<4LKvuO=$DpzYw{wb=C~1u3y;ayZLaRh0=joePV4d!|(35FnyWOX`s#wV>e#n{6p? zuh}VF!XCocaA2MtcDoUygqnvK&_4|OOn!uc0wlQ^&+DcjBNMeKA(i}GnN6c;!;JsRIybtuV9s<(T~6i@%? zz3j$Z0q5u!=Xg2k-Lsa8S+QFmXDG+g#R!qEKNMMapcpAl%@IEga{@$AuWmj?)1Oyvu7sB6c&h*<*R$9SBd36fLjs~NBECMwSfI^gl+X@$1b7Ol6T zx>fE2b(6ojH4l22Kiyp|=zzEzUn5FS@jEPpM|zB4l6B-A7!Q3?;eCApvVB#WCP6l{Txp(iwU&oQ0UKf)9`V`FnD`Q%$K7 zHjUjd`#wgz&vZj3t`^j(#6m8V=in3-9_Fu>f{JQLK65tuIY0GG0R9&9xhK|^92xtf@ObBRANWsp>kFI|AK{e?ROHCEGX3OA;J z6vUva^=~aY^usNd4uMjG;_QDTxOn5oW6sz)Fo`7#+r~3U0PQTYUhR)Sn9V>!EDSz zr$;mB?&A@?Ls?qGB`;a2lSBdxUB1Z^Y6M$`11{&S))q=Z9w>|pQPL=@A+^4nN-WcH z^XULDB&7tx#O~xY2X6g>h9@wXn(wz)lD-x`;5E~9C}fSOtq}L&!QM&?W;JxH{t><= zN&Gcdol6x(Dax@&I_%zIU*_oL%#rQ)GKwuNJ^HnCMY97*%7VvrU|YNRgkS{@5EdAQ z7G`oY+^;di|}UOHH4ZO(80h<3YV1#Z+tqT&XoJ9*>&!GtJg?oYv+pX5=^lIZaf zimeJ5JF;G{-CMF?y`J#)Y+lDcI2_5j(`7;G0>kxsc?kk0y*MB@h;LZP#Q;s-xBuOz zVn3*;M~aKXCN#hJHsN^$z!t;cR88k6p2UY{Rgk}B)Aa=n_ST#;27PMmgNc3(<{KyDDCn z7deRwm9e`{E&|6;EwfvJR4eMT>f@kvrAo61>}!7r8GZs+0EF7@!Mu*B~V;sk*AXEinBA?;6df+nVp9Yrl(}1!@YW z9E-x7WINl)JZ>rR4B(ek?g7uy8B>A)rAvIoaxBr|IrA$h3h`p-pj* zqVAt-R4BM?lABfU)V!0Kj@BZhf_KaBXL|+^6t$c56PtrLwPK?J9183$=hNISRZWiq z*8r)M@kU9HZNrmuFuVADkrRe%MtTEag-`y+ySY1WM*Xq03j~6N_PHTa@dhu;^CdYQ zZG$JX?qk`svRLkRIKW>N^iT4nrW!WQxQI0gljEt~C)ra3AF!!jXEcp5@VMjr#!3R= zekO!We&gg=(&;pio92qa0`}}P;L3 zd1uq+#*UJ%Hk2*(7PZ7V@I$$CSS~dSfa{RyIgL1G-l_>!-6r-;ky_gH4R@9JUio-8Ec zZY``}{#dNoDEmet0Jp%S3p_5wesd80AoqERPSiPj1~u5#Z@Y_@Yg8o#q`|NocL6B~ z{udvZdV@G?NMfhZTY4tSDRp7*6G?b*NY~ z<7FU!1QCi+T_k*e`DNM08WMA2uxXoZ|^1aU>Lh2)S3HJyqOAlN8pfI#rGOgN%=oN z4kbDU5IDc7P5?F+;vGm04ik9T+iLbXJB_KyX>JTI1gGvBjcSz3CJi9KghvS(6>7sW z(h{UF{$@kyt`B2w15pc|fA^aWA(a2;m+p8#9neOHvkX>g2o0%w=IhYoNtrAuO(rnK zT}Rqezc`_{$rLSJg2xPUjTY4u+U1Y@Hv ztKirGYIHeJlj9T&Cg$Ww9kB%EOZW2}wja`MXq=jS&Ng1gw3y=WEsmHrLS!451+=#V zvyeJ#g*|jK)Fyj|L0*3e^AyAX8XKW%3GG934i~=NCufUr{-_OUggU@CN_13SBcyt6 zd~xA~%Ph?ub{LxeQ_D|tkF$uhKqh3@6UUlf05s;*jG9#me~om092kyO_wPfOf;-6} zvLi*>V2x_c92A+bH`gQT#7EJQ8R99H1=5#^2FB#f|SRJQ2Kd@>o(CFG54x%FfB zvoj&mPf@BwL_y*~lbmP#I7Q(lkv+!IB^u;e3vrYprZ3pq7i2R(iCQ0$o?`$cx!#tK zCVtAs2u2HS0O`+$#;ebXO1HM~7f>@SAp&QI!Zqxpm8F^Ht;Bap=GKz7Z+VNWJxqu@ zs7l3$_=BVr!wJn%(hzRYcy}Vnun%Dk<)W z*wv(XNi_3{@F)=pHv6m!P~tpK?zQ3PwmLz=<#p{oM?DJLXh+)g)4%WPxxkU^Em(Q- zBtQ|vGcWGAc6fRtdGMTDQ@0U3{;z=WmSpKs51H+D-#B~)L?2~t9O>a|b-S8ltT^4t z$ezJ{ET!Uu+F{w(9KH|mYG7X=&CW|twKR5MXf|<|SsrKMTZZ&PbPa(A zlCm^SRlurZqwLDz0&|bM!+V~||9OdMUm<%Z07ulIal~FRb=DC0wKRq}i-V}eKeM>1 zgOSXlWK8C4j;s6mpLA=1>Ur64796_HXaN4VWWDp}bd)xQZUCUH1tbA9{gaZ=Vi>chgt^nB5A;PqHx@!LVK!wrq8CnR>&xkH=T;aw7#$e7 z_WeR)pFwAKRT%yA8&GnWFmQ+%I3bE+ECZSV%hLb^0H2Gy-ciIZ*xIkxlL|sCCykYj zG|W{4f~8x$A(8n3bM#jGh!L%TIZ#k4>~_(Oc^%l`U_m?<2=27W+i&gGf(Lq*8zD&) z7oj-;MU+hRLahcNw~73LVyLu+^PsgoyPD>pAJF27{58cup%jZUXduR)(=$Ya{Kfm= zV~)QPhAx-|xkbqYsiy8Mcq8N-*%jaZimOARP*<$*nL65bMPZ}db;XygSLMYkgG?LF zTqh1mg=*;QgK3;u9ZK;R+;93pa(_ZuFd(6$43BBWi&Kph&N(m&{2IAb=&+hx)-MBl zr#y#v6S#Fm|8alL^a98FaO*Pcwh;vl&?&lb%7hmm0R%QEU6I;8Ml|tl)Zy#>rda(H zuy>*G;F7zjRD1F}hQ;|KIs_R6CDmb)d&Wdnl@e=)&pl>|DSX2!m3bPY8=kgwY?23HK$AZD8~W8D&RTHlMVN{D!~OCc|2#bW6B% zB4d(j3N8#LD0ycfct5uH9B|^Wh)@r6E+g?;g#Xy45n=(>6`c?v4`}?}Ti7@qqJTTC z!tXGe=u3aY6Z~i=4)gNZLRQ_Nb>m@wjk`5#4ys$>u52n!ynWinySR=vCNDcRDx) z3_C$jACBZQ$v_Bq_>65SZH^J3TwG>y3z0P0V2u9Sp@hFsU8bU=b&R=U>9qp_M4QAZ zAi`jb)t^L3ttp}(5Dir*94~QldAF80SlBjv@Wgh|H^ZqLI9OHAk)ewah(qS$L5+;m zVGFxOCFH55fXO6*-#)d7mH=T|@x{!Fb2HcLokSvyq!EER4VgcpoFu=sgFz63Ek}Ja zx%^D%s3^S?iZEBs`QQ}$H*+O)A+r`+^!bbpr}q@{1r(mK^d~ljlNt(|b~=4*l^hWH z{+mH1pu^V0)VL%W;#z_O5BgCYCf)JQ%Y5^Fflg%iLOC+bSa*(%1!p`nBF(`{WGQS!mOGQjyjz?Nq7jigrYzs`z*dGl#kbl|8ZPmAcD}`vGseIg(fRR zEC{(t@+)wdEON!}qQ53(P1qn>xW7Lk3??-oc{RX7eDKWHgGoW<+fOxj{z+a~2nU8q z8oA&gQHwJ?^P*+po#0<_&`U~x<6xmYvN+@&m{I7T{6gX}aX^2#*R4j3CI+_YzL@8z zqI8)pj%7nIYNl7xy5G#4mcrY-9E~ax0lL?h1st!oWiC=gE}K4~9>>V_Y5zD|nC#>1 z(P6hbxgtbIJ361J(`UqY0UWz=GDSD=J{M)wStBJnIL;saE*9mZL0f@~{TRVN1SRhe zVO&l;;%sMx8)t_L*f1a3lHLYF(fqLqM97xFTM5&JNMjl0Vnc5+unM6^{1r)5jAw$| zAvlykom7wE4io*yGE*ojOJCGw|BXe-h-Gr7elx0#ZuqaFED+&GLVlHHkI=S=_!35i zFip>=W{$2L%dex&s22JKjteO(eDb$mv||A_p=Th{z~muP8i?osxo{@X2Jp9H;dZvC>^7%H$fW(5WOgMNy~7y0t(s2K@*Ja z6@rV>VgOFSAo}hfp_p2Qf;${_Q>5PsSU%||$df$+%?%D}8$<3M;}BPYEFxj3lN(V{ zLV%~(FOI&9*bBuGn&I~&Gv$&~a}GzxBtV1cXs0iO{|HRN{g%hJNG>?R&^Q8{1n%-w zj2pyIrUE6s?=~Q?@G~LHK}i5?tsp8oaYI`jw&wR2-3YI7$u^pz1CakUHKpx%>m@Gq zWlCW{+FZvRYG)=&BcLcC%c$nmgySc8Rcr%q;~pUj$TIkZf>(d&&?E<*vN1I>-;hSA z9m|@~8os^!ZuvA6-C`vxEXX5Ir-&^rf)eSsXw~5D*6Ure<*y~T9x=9zm0vFnfW(n0 zv-RWh1K3Oa4ct|@ujM zlV3UF1m|))FNGJxY=p{{=M*hVrIbYt%W!!J7m@kN-3RIEo1E<;Dw@ygCUM%t4iu5<=(UTZeiT`w3x5t2WS#&>2B zG^FF|WO+h+K+Cfp4ZI_in@9kQ5#zU+@7<@<;|dF5eq^7qrz> zpTwWhtJd(N!1Z6^$C=^&Hc2)>fy4cW@T5|9AT(z<3*nJXJ~^_ojeshc9+nqi3S`i} z-v(6N0>nHzU)Z=6{$>}SuW?^mI%80AU54w?nF)`b-Sk`350G*PdMnENx`u@SLJWio zrWC6!w`Q}Z|B!Z#f$JG-*Np5_5+`Nnw!5GNqq02@2*q0_bAdpilu%5H=p}3fsGCBDr<|3B!R>}O&H16Ebx9C71Hu@ZDh6_$l`i9u zxx>Zz2%(scbiEWJ-w6*;NH38&e}JjiZxf6xGpihS!Cym#M+`MC$&XT?NrX zAY@V#4Cim#M61Vhk&gL`mMtZxM7qO%)nh& zb^BJzBqI?A_=r2$BUT7LrgdfD1Kb|K$1rin)!4%XukTtNJqQ33R=6bMRjAsfj;Z&fIuY!-&9>8prn3)u>mm{-7;SH7y6XMximrR&a;J64XU0aP-K@@^5A#^PaMs zDJqKvAS#O>9!1eNqzUl|2?(V!3USYeuW>BjnJ%yh3JJHDvLYB3N zec{p*083I?WEQt0AoD$^)wz^>q5DmL&;7b6n8`^k$DbVYNN=k{NrM-$JnL`M)}&s;5oB9l8-cPaimxhJ)U9sfkiP|diFHZ=sPwNo+V5pW#sG( zge?5vRP0cMF(_e@C5Se#MbXQqabCWu>ukIOLbEtXVtApb8X1OSa`%H{?%_pH?EuR< zM6g(9GF)!75y?Hpr?WXHFUTfs4fTo16uJE=M@3lZ@I-N$$|U*QFNX8i^n1yrM-UKv z*;WUe1AqbRjlTdKA;zP;h|+(VNk6=Hy`ILdsbJM;tixte(X6&p6)tF_5m*s_T?{ zqLm~}_C!w&sD6rlq4wL{V;~ET(}#o@ISK?L$-T+@BK61MA_d7I(k8-@cr-3%0nCgV7++X1hzB)Xp!6N)d!WP) z_76SI#-9>WIHav9G9*gg-mZwsp+k;InECMnI*=wlNW02ae9a~gD(o)$<}Y#O+vT7AXC2$+9 zzg6gyPf3I6oRMsTs*4Eya`$g)H4|O8Hr7D{eX?|&E7y{-ySE~26*(fC1KYtefD8~z z5KuV{vLftNTQ70yVptf}{EydQ4ZcbXtTDFLEl6HO;^ylDqG-rrs&J5C<-^)nU< z59R&Zxq~#TBAEe{GYYSsFxn?}W}WIPZK1bZMfDz-g8_&^g&n`sM+xL(yXQ3T7iP9G z_uh(7;15!cesRJKQbvTgV9%ffMev=)o#>%-iHL|0QaZHvgAp;o-cwQr%ta^x(?k|M zhrPR_CclkE@o_=QJ^LG#tMz;N3#pdSX4^U@Op}!v6h?{2X0VLr z)sztdGcxpWB+e4Y7c|b8qx`W7Xb)jPoN5#`AyhTwmZA)TpphuQjjC%oZ_8YZmW9AY zH4qvSNMD5!l=&T#p~E5aNz4Gj1g7!_5a$98J>H)fD2Ocs53mLJ53A|SU^&VB+PCvB z47MOkONFpVN~AKKt74xT4JA-Omn6fPYEakfG3&`r z=xf{;TW0K0z{ABS>4?JRN&e`n|Bm?MK7$^^%emAc;$OpGZmOypFQ95#0+WhxAVj|G zPby)hpYsNz;ej$%fYCub=9thn5sd}m;mShTm1Hb6mH48r3egW-CnQ=kLIY!n$i|_X zf_c2IDDeGUY)M5WETe&4uH`C?%M)5E|f2kg!5m@vk4FxYYmLDo&i~*TG1+Agu$pdPyllW<2V~ z!4foB3r;Rz$ORjyoM|mL?eP$qCqER-)>7*7HkPo-4$JU%1Jg(3d(oC~Ia#dM%8%th zk@gW50kh&2*km%6SSjV3&`~jZhBFUj-7UgdDA-*K1cz&Uh)RP0FL7;GTf!S6_{=_up%-7_iAZi1x#SET_93&d~xcj=nd_mooidHWyK{_8&f z+TBB^8cn)x^4GED+l_PDk*3+v=HS_3E;U9fMYB+|UE@_?xo40~))m`bn?1#Urk>+n zFKukvJE8I7<}6>`QuoS^Ubg6xS)TpITeCG<|Iv2u@(R9u*r@but%BNJQXaw5`+Tfl zEpz=Y?)XLe?v*0tmR_OJ{{&I9QD+N1`z#xE{YMAU@^s8))l@WEl~>hQ!En5vF%A=M zqPs*X*M3zV-84@Hs19q{JK?4+A8&(+F%1t~F6wO3@2HP)i2aryny@`0v_4*-k73rV z{c3`yU}xU2mO2M1)$dJp`u15P=rQ1JGD^dlbrS-J;gAR-D`OYf?XG4RUGb z(%;qz)DE|}&3(*A%eHehPeL=DEbd;RvQsozU4R#l5oGHAxE$VQo)`)|j;09v{yWx| zSKKZLYA-drCOuow9-rA9__O~qSJqXq$~Nl70@&{_ev#hqzGE30Sy*I8=6^(Om)$dZ1qoxcS(*A?m zI@Dp;7>mw#4VG1`)m-kWKx`hm6tRcQqQv5ry1CVF_+&ozfPx*{NGaExfRh zyCK4NQ`gtWG!p8qnj62`zNp=~7uQ}DwQn>cLmO=Y!(7)>4_HVSC75x&X2V=3pb027 za{A&oDSE9`IXYD)q(ZX7skh|$!j`$i3;I+0{iVa#w+v%{-WMjVs3z6$)R!uGAyb`W9SJq&M*0(s)`limI5;-ZKFs@^+*)5mNk~QdyMHwQ^ zC{3kpQo+5#PFRFeaTBI0)K=Ky&)0;%xB=)r8f`*Sn|7(g6LS+SCvJ(RfC~>9`^z3^PJVY$#sqa8ir_Xp?`J#M{@s77c`P&vpiK=k07U z;za$luDA>|caF(Sl6qTW;!0RyF#`-1g*E#wynUB^=(Z-a#*OMrhZn4zQ|R9*b<`<_ zzKZg^|8sp>BVt7=2X7s|szHriRb&oO#HJ>puK??_bRto#8#DSatJ4g1vZfH4e z-HS$I(Czg`Q{2DA^N3S3=&|igJby{fNBd4~q@K2PUaEQ&v$AfQ+Sp`h-YO%ikL!a$ zu_w^9=R@WF!f|Zu6NyF8tpO>jj}Q@EN{g_k<#v7ftW%jKT|}B#=jS zc8`B+4*aBCwX4XOpvsh6rsx*dR^&F7C1`kW|K(cICp7wu)GUhsbzT?fRrW4%2>(-i zoz8W}hq0#2)FO|Q$Jz>?A?J{mk7MH>s&%%28Y~d0M(XQKT@>-(LhQ5Ny8f)g+&?-A z7yBZv32w;3EY`7?v`ptl{c#ENoF_oxRy*Sfq-CflEBk6SX1bgxt(K-cl)~xJ`1!x} zC=~|H;!eEZ%jSv4xs&PC1vKCLKZJ3h#?r3RBDCz97@@#YuB#oHrm22M1Z z`=q`Znr%5t<@OIkGRN1V+ctIdWynhPwJo*D6yOilBx**U!aaXHLTXknQ7)S%?Qm)C z{V?AO?Lv0ls>?W*bQRPJ`rTa;#D#D03fNW>BQWYM9L=UK2t@nU*@B7*a+~wB>ni*L z8dNE|tp%+EF}`U)z<$vM+(^;kI2>CF4w5lOL)hkN)CBy2 zlf~d?=7r?Ct2Lwbmo3m~yGt`A#$+3&c?=`U2z{v$(WpsS#%G15qICq)cv7M;Su~Y0 zzK(%!MiakK{E_gt>Xbe@P&foLuUIsgCGMLX;ux~7&9iy5^^LB155y==R+qr{kRjfhd4NRq+Nz;JvE6Oxd z^uRc;=;v4`2K;3N38fwvk>T9HD6V-e+a`{nu=Tr+o@el$xR!z#x%1rZkM%J6*>w`u z=9#D2{d?tGM0IF?9@8AaBhFNTcL)7b!>KQuD8=2=1DOcI4Y5M~2A~Ox%PiyCr<&m4 zshcqn!^b4J4~NMqsN6sLUO z^;6fekY1g;Oqe}DfBj*wgq3LM4C`*fmPG9WQ6Ge~0ysS=)wu_C&`w3)lg<)BZ@}8h zkuvDKOU1bS<34F1J2>`WhusIyJk>nGW`w-7l-f=PF|=+__1+Ur&xJ3{=sWAl!sep1 z25Rd|-2Xq^QBfEdKTZJxLO)m?GJiD1=-%>x{Q-<=ejMGUJ1pbn9tE_8?d#|swva@Y zy6q|yYQxdwO^bp#LRKUrNKhhQ1j57Ks6@a56n|WJ zu0bblz34QU4m%e8V2(hfT&pUW{=`(~t@-H3-%+_&3+c&YBdclGhGE1@-KswnG%28j;YKrJj=Kdy>JNh1{!QISIHOLIsXllePiq#`RD!L1X(6%(s;0w8y zf5;ryq>@v~eQ7)B+(pMB?3c@tPuuLBkU1vI+s%UC9# z;bifMX<7>8P(xKRD4P1kiBpo%U0nmort)}nbKT_t)ypk)P!|9ZHi4MVn_3WwDj3(E zM!YwQMcdzc@}5>1o1-BqLl`q^>)2b&6)Q#*WD(`JUPVDKv}l7V%`LOWh&k$aM##V+ z;>EJOtnHDncb$B+YG3*M(wd&=6QWI39ep3>-$KwRA>@kE&^;)fxwCLChOp8W3F?#8jmlrWHYDFttOvptiSO^SerzoEYVYSY&gyE4qmjk1PMVzep zfJ=6!knkV`^B}E$~=qiZZ8@K*J)cYY$aLmK>+F zUX}(?yJ+4eoyg2K?WC1{Eyb{0Sq2jZKamR9iCIvSezFF+kQuCjnO=kxm_=Gbp6fUC zR1K(R^$LX;!zHxb+%=@55O#exw&+|IXN$?oreov^T~~Hw)MqZqmEs@l3b1Ko!XAyJ z6rs{~lGxlG#Q_1gZI|SFt06Y}^hZd9=#{x(Tg{8n5IjOd=Vx4#F z|9)T@I8R77JZ<4y(s(0SOWJH&DJUswC~Gu66X{u)R)e?!xenMFl3GOJ3R0Ibq)68^ zv12xk)qvzHL!A@i_%^a4eib`iLifPF9L_jGQ*$|SBi|*Rv5~?HgKJ3>RJHD}l@hH; zKuO?*G(g~gMKF%qg#LN6*q32{$%xUtv=OyQR^=5b_W}7w*<{) z5=j|B3eNU|b%r=PgF`)9v{-!D>)Hr7-lqT1|fcOnSFw&z$!(%#aPytZ@a3!=at-8qL+CNd2jXl*x3y&I@kQKM|qDWvPuo6z5-E~nC%Li^!I%V^S z@CFC}xU&)gS+HFYPx5$hxsrBcN+hCSg^h%SW8Ns@=WJg zsRe~n$WG0Q+J>px1O|ddfQ6+f=4lk>f`n*AX$QV1s6cP^{Okg!j}vFJLKsi+c9UEV zoD9Gm+tiGqL??`NU)%=<&6xm>Ycn;6$7Bn?0CX}pEZDuP@TqPCdR_CUzxACoquDpP zRGKDzy zPKdJ_8{r^fJIFm&nuS|8j+D;ggU=TYJ%+?b0wuh8YPtP0Q5WP&I|;AriK40YG7w)B zn*g{g-lAC`NhDJcyTfQq07Vm=+H8c<|5>no1cv!!3?1?%$SKxHtyp zxPl+F@{h~ABF)uluEESx3J&8=lBkE$*k<@D?b|xmlkYrx#HLU*qQsKWm0bwM_$l66Ly4>@j$=; z8oU@S#i^OZ+VDGXeKE=rX`fhK?bPHoQm{$997SIaDdt75Dxn9QM2bQepL&#_UPxjl zjh%>vdzX#iP0;3^=9H0%rH23_82+k70`q??$e_v#)bBZnX9K(2Knx2qL1u~=4SF)h zpfWE`ql$R;2N)!b^@$~|P}FyA5; zkNpr0MC*heER}?1h6|8IO%Rxkk)?f%W3-KcwudPg(y^jus6s={ew@5b+-*k83(xYj zcmf~ErSz&$)ErP09v5ex=-$9A|G-b+8RSJeTNr>aV?d0h8!(~nBsbU*vNCaUr^$@5 z#|e>1m^=iFT`xW(KM4zp{N~?^qnaQGcRv3M=9wV?BH}z~ zBs>A8QtoYk>YN9^FcS>}2v@+t?`a{RY0uR96e^k0$tvRpmPE!=YV>2l@0$g%SI=4y zzw6o2MhEwxV_RrPahU+4c4Hh|{@XP2#7KAhNvh0=zZ;U&f>&nyPo?LWaWf7xJj#kY z$`d+TI@;^CI`~>0O&wjkbm{2mLjSP#owqD`uB1-*zrSu5_Pf}7#qA~kTstUxb|1Y13wn9-=xiX}?s2`Sz^B%8wIO?D-#gR$8w= zH>n>RJ>l5o_o}jaE3Y4$Ien*8-uwF7Iuqn~?y8uzo}aF(xBu>+xFgL zY)vPPcxD*3be47g<(HXl&Og8Fj7bS{Jv6pLg)LvK%W^%j?y_CPyGY>wD|K1lL;sne zN0%;_<-2r|!zYf`Dh|8$Y`5KNX}Q-{h5gUJlO1bV z?mb_1WJtcJWx?zF)5n}#Wxl5B=S!0QjDz4ib1isP!*fZDu-?9kvf7Sg$kvd^i? zA2~C3!je%Rmo9Q|Gwv~9@#XRzFV0$By*|dK&Z^<-#(h)lE9JZB`@Vg0YDSSm5A$WJ zS7L@<=xg}t*2$btW$$;Mubf!3P3`(XuVkAys{WHS2K088PJSOP8!=^5=+*iyM|-@` z$mPoy#PnI}=4SNtqrd^~Ex1UJu7L5EL< zN3=h&jy%13QE~j}S~dMF%Nn^Y8+|vwo|syjV;iw>%A=Y4 z{&lm)$LsX6ykD{5N^$?b)!Iw;Y27s{b!c?Wit3&f;p5!(x$o?y+wL5EQdPBO zfLXG}%zHPl1bqlRUG`kdEG4EkIor+M`cX>Np7w@c<)u4hZhbGUdE%;hzBvA->ORNW zldmn&l}-sYi!Dy~YI?2Ke%mFs)g|GPdwvH(8e(r(eIb>QnuWw2<2uV?R`c9gKZqwKmPlS-?>>gHM+0|sX9 z`^P`P;-bpsdx;l*v?g8eogO^n%lOI0F&U35=ftFK-F#H8dU$;4q>?)$?^ze+wC*_i zMf#0=`RyDl*PH)z{dGlo&*bvmSL?n?`+k3{aU^k#@#LSIbEn7~7bVAaGh3OReR}ln z-hFIG9GY}h5OV(b(y@V8UsoT<@L0GvB2B)0kzfE;giFKkW+1YXt*#d2ZGIXZ||dleV*t-pZd4<2|5w zPt1vFW50V3-SbHy#@Om@-W2sSwwacW4|P{+Ovr!I^WPI;ycaZel3xcTl`O70dW7KtLr3~0 z+P_sBtTaGH^`3dt1LJ$2CG{0QEidVF^0nQO`WN-XCi7!XL@bm_8hL1rYihSXU#A&< zi*Rq*iC3Mp&IGS&cp+aZCQ$6exz~1Kjjv=XtE@Y27CGL0X`U!w-D^a>@q)wG`zJ}7 zZLyG(xj5v&zz4m)PCNXqrOf{DjQJxE57<>^Jnyh^=Fjf0zK-`$x$RxqxFY6r)S7j> zrpyj(pdYS}sOhpu+@Zm@{$*`urC;L8R~lObR{k^j=iQw>r_K00YR1B}-5%XCeXe}G zmh5Az*}eL}goSTM{U;_ieAB+SGMD_@G_6c8`fIJTZ9nK2?D%5mL9spF25sl`-S^zN zwM_f$ToYA`KDO6$pEa)b4!=04TSWET$ya!5ue>(zCAUZ7`@F&Z3acvbC}q`pEE}(8 z?v}IX=xNu}|K51`%Ev#?;3IEM<%9(5a1m~{Ti_6-j`l=ip?n!0}K+CA2MvRU~(*MnoebroM|Db{0H z`J572e%600-glic^h1wXysN%TV;7$`y8U{$NBgSTA2aV{VB61MXHG!{Rt8@%O}x^yXd@&9WqrZHo2=A-wADg8Y76Y3R4 z7MGX!&h0O=W>Ue;I}O)v?|VGMTYKVXwdnM2x0|aKdP;=(uGu?k!)3MF^o~mx-Y7O) zvkSbCWo$ny$#nm)+!gD8?hFW4EY_Pj&wIx8I}0bwITtLJ{e9!l_Cl92ISXc<7}8TB zAY+C3lAxye8&U)2J4bC%;JshjYg5U}yRL;37Ti`^^uSH7yMbB1qN~bE27)OTCbnt4 z7d<*?_f29&*eLP3N)JKvl8rza$S zd6?C9s+Yo|M`N4@i|fX3%KY>&x5vQvD%suYQAvHQe=W%0d$^!%Wx=_%vzn((c->83 zQQ6_b{K%oDmY;9TlaKjo9S6l3@_uhBip6s8b*=DuQ(1q(tZ!NU z>RA)66|8)i;Akm--dwKic#g%#i@Wv+j{USVFWJdU-&C`G=;%9rdt}RQmZ)0O(MD$nfqX~XVcGZ^&TcFmU~i%yi?N;jOk zWAV-xBRqFT`+c6+)T2k>ux;8;-+OOKv>4mA_%rW}#LqKw2je;>`RMW^)OO#96ddp3 zuJ-f~`8{J&xW_!^q}$o|>T`WY6-3RMeqnspsfp{)sYXq#EWfw?;r9E37d_0nUr_i+ z+Gqa3XFZ3V`n5E(WWRcsMwt=wYQFm`y0^8r`Mi3h72nqUTC3w{f_rnhnVWoTU8rJ5 zTNPg`$-T|VMX|kHMN5ib?be*l@2D;Fac|wx;N#w2^-*!~y#x>U;S0>F6|?R)2|AiH zz2){bCM32!D(+}i?9ggzFB9eeaa!it>fOj>#4cKJVT= z*S&4_aA~)uCbNY0U$uO{%7V}G>Y9u09V^T`^yT6QW9?Vd@5fY+%JWK}e$Ke|`9R)T zJC|-1gJgkbR+x6fZu=yRN@<_SUQwr!y{o>EG@AhRO5x zXJ_rVHIz49rg!L-mDP8(Nm7YlA;8t{i6HICGAN^M0>{JyP+Sro*aAs{0O`q^>J{X}Fg0#bS3SIhU{QH4ks` zc1WmPdX-`>`%OnP!SkD~@9J$)H@7~KwcpqMRq^TRJqr$OUa7Rwb)E6}l~q;o&%E3} z827u?cgEoPw}aDrYzvD1kTJcYYGjm$!^S-W+RuEhj#*?o(`sd*&i+^a-YHjNz2<7q z*c&3VTw$nFhlH|q@5%v!530O-VuhBc_9&lBnNnSScWKM&?9^Dh?6h?d@m&`@ zomG5B$0gH6%**lOE*<)Zb=RQLc_T9A6*U|za~)@tE*?~I;m}qY+rHbp>fX$IurPDj z8#$SI&fVvIJo-L)@@CUV^AsNS&56hotexCDM_TUo*IK2qQx^GzUu`b!v+u<%Ypod>~=HRpHid^UyuuxUd>_1rFJI>Z7GwYFHt%l6TH{h#8m zviG0I8kKbW_UZaj+ks1mjqI^%cc$TB-5SR?k={xNKNm0A{`GVInsXO-cHN`Azi_*g zgmKS9lZPbE+_TF=eZrxKGqzr`;J1X;?%H7vx26$75d)N@ZGYXzta4T=g}_j zLnXRxUSpbj8n{m1Qcy;l4*tSG}8)@ue&!yry}u zqsH@u7#GPt4M$v>_dl7WGrRwQll+HmBbHUo?N;ZmxWR1shM+24nVZ%>wcVD;NEklr z7j#K>_q}V!YMaxmXT2`&x>jZGFr~vOBZ9|xbU&`Q+wom!Vm~#xEob>Q;V)aBB>Lc2OKmHO&l9lPtqf66E9Wsd#Z zJG#R0c7@#3kDNfcw@jgbaqr>k z{=J8E{}JCK&i(GzB@#aKdivK5FVRfXo_KJXT0*SS_r0ISe;;wY?W~vhx*hgkY}MCZ zx}GxbyZS+cfV2j4_1>p_5|rXs(Q>k)`P&swHpVX6^=&KIvV6xJhsd4n#T(_ zR(-ZDTscVV#FfvJG~z#et9ad|IVi2+vHyivDP~hA#-*0u?xwBzGD0~>^VTpU$BeX6 zn>*$or8i~w<%K?+eWip#qw7xuoa^X|4Z56t8bsS zDc0%Ir#`+$yX+*L&Ut*|Ov;2kyH0&l|Ms9F>a59~=_i~$9n4>JN%Tt@Rv_N>tHdGo zZ}XiD-X!ihee}N}wjcJY=j=V-!Mp&6aN#*~?7T zz56wB$F1FUG9Tk+_rKY4uC_h;+Ek@hdE55~i>5s`+q7(r+4IYxmo_a+xoh6{W%7iz z9WmZ6_cH9V%s+^0x++NVdnz4qM7ZRPbD5=Wztqi3ja8N!*N(oYGaxT^$BMVRdk!*i zR%{v;+^A`E=9(`gpal{jdur0EyYo(u%oz3X=T}Fk>rZ3+C2t;gUY2=b=A|z)WLA{h5EG?ADF4n6O}#xk(B=DJ}i_dN5W%t zVtZ=lfFFVaNB?NukP{sS0vlhI)s_=<3%`82e$sZJ-Q_%!*z&M`I_HlirquWf=KVVI zW9wM&u?t2l5sOrcTe5lLn|;%tub1DHFvJDxzjril(YJ41Z|;zI7_~h(Ki$`JL;f1M zuafI#Ct2!GJ>#{I*C46tCUbm`%KIDNZ+S!?T`x0L;>yW^8^ldDN~6PnOgQL2;fJ#0 zSC6sd#(x^|ZMsISiGte6gJN=fKK795t498RYl1d%uliC1X!$7Z%>! zJ>uM*!pZ4-=O!KJr{*g9$!X8K)hqI>wt>;E`!gQ;&v@uG^y9UYJ1$7hk+@Yd?C{T3 z{J50%es>%;xJR2dZ;+IIbw0An@UDJvPFK^A+h*Pif^9F!mmc5lnRU;4R#9ZO^VpJS zzlICmJV^Wb#`o3INh4Dvr|WC`?3RSiK5+JP<;eSa7aMyGjU2L43qlUtLT*S1mcx5l8cLJW38t{W9X*%e&!G-?F#b?O%JVTT}46 z@1Jfgkk~YE?2+&p7TzwyLw+7g`88zI)A30^tT)SKmjr7)-!w(Dd2_=km%PN~Bd%WU zV`4JRb$epm`l>a9cJGjxsoHI%Z^3|J(I1i`wyFf#^ga+K9?>sVayxH(zdi>h_8#tH zTI9EW{Akr&@#^mU_Z69kH%eGcAE-Sdd%VZo(Fg8r_S4^gWbQff6XiV??HZD56P(y) zY&PQc%Cn#K7dY(>m(kRFmuu#sRqVSc_LXCJO3ZsKOn zW$QNGls2VDitiJu} z+g8=tk8a6)UO7DS_4}za)?PUDA|$NW$K|i$S541<-|zkIDG}*srL0>c#1!8L+K#Ub z&>I;wAYkT{BmLbi?V=wZ9U2vXbkUC4JLdHbUYWUX%K{5CleI?|ybywQ$p?TlS`Pp4< zdsB_c(_OkPS{zcDeC+DQRy8!D~Hv- z4HxqFnH$9Cn$CW*&ABk_WL3z?9Yrr6ZZ&uIv3~p|S!H@e(UQ={M7cfIX=|Ro93A#p zxb}(V+}bx8RCSA+xlj6)X4$l!1H5bvPiuA`Q+B_n)$$3+{r+`d>1NX2u+1*v!58=Y zYHL?F<*m6dRbV!MOl`81baSoa^pO6GH>RvQwD#ySkGq1^0|!i0s`q~&^X}Ht7Y25p z`X5x9owG{v-J&~k*G@mUIeCX($q|LqYo=ar9~tS@ed6p=j}fuq?cckf)(>rudh+$X zS@q3fXCyy%;aM*KQQfDw-UjhFnV5@NgRbk0`VXG=?NDv(D_*trZHC80r4w?BQZ>(CZ7a*l@5^_L40v(j<A{0?r)bj$|BM_^k^b3u{qty@PyJRjcBpGDynfg6iE2qn@o7J&lb3VUeP)H9 z&>Q(`l1KZ<{d&n6rQeq2di9rkwrKmTLq@q0y>=FiSSC3uSu?SDPuJbwtYqR3UyRfH zcTav#Ih8btjjKz0Dg76GxZk`b636CO%#76wnc29s_9b7;?c?SV;kV^=M;$Buv945Y z!+%vq(u;q!9KUd5^uxiUU9Uc38VxIaWqJL>=&EN?<8|5+<$i6`tSDUjqtWWY>}PjY zIhDQJx_766^5c!i`UT5g+}B@oR;hmDm-!Z#4em6ZkWmS7TDRcb%Lo7V-Z)j|MMB=d zceyS8^JUvV_H(zKZkG4FxZk0gueq03r|vO&`|9S28RF{0%JQBK%>Do9`o`$GqORSx zX{^RhW81cUV%xUS*tTukNn_i#)!6AhZQu91cZ_@QkM(1ZbH?85S#!>3V$HSp&5Am* z^usR>(CQeoFuyUnm<9xkXBHIM5Dvn*0%2I4(W+8(zo41R)*^kj_i2hCh&&}2i|784 zr5ldOxJ;Gb>OA4dj8dsBx6i`WDpXY~KZ9dEbIgGtdPalN$%i+&F4#5iya89P-AYco{%Zp=4 zZ=7J!Xs)3CplMPCAU->N&pwH}-yu+?{FNACpwt(CxQycWs(Vk+Ic^^(%l86#)KK>3yq1|BlrL^g z!OVji#~V*E#9iO3*UnSC16L3=y^*H<$5^Fq|KK_lB}iiCRbrN{p=o(5!oWp+lTHin zk6q+)b@xx9gUxPMY)w3e1AdYA@{NJjv8qdYU`Yh!*6^E=w1Du*cDqL+E1T=>?3wDp z>714H9MzP+XKH;)sf~Vm(>;rYfrptvdUGxH>hff)bb$yfkXcsu$GIy5&TrJv87?+y-bgef zI*4K-wnBx|%j1phgmKOogG2~f*56e!;#v=$xIc---^A(MWghW^{fpa&057-@+9SsA zD7SFWjRPHmNNXJzh2bns4u*Y&SV?W1beYy}VSWc2)aEPZ9{}T$J!A*5RltUjE_AidsLjv&2GoHe*Dr-Jjo!Qu&y!;Ww z=P02BXgQ{zrC}ohmy>fz3|}!egh2wFOyfWMg)geY(yZc5##P1G$z|gf40@eSvy9vb zky*T~mY8Ls^xi^C2OfRj?L4}%s)cTEyW$eL6>3rxs^;dUgPFdayFC+i>D5ZTNzMuB zhNw`(T9d?D>xi_P8Fap+r_P#XU(}LK<=7i$2Pb$~6q2oQRtO)yNI|QKgtGOxd-6WZ z9Bcbxquib-tf|otOa8O7yAlPJy`B1g+2L+~Q*YaG5`(G2chjo|S28rLv+$x=m`jy} zjV0}mwe-6BeAyL23dp7yR~ZdwHxXR>H5SlHUs;FLgpZUfU$!ECS7F^J`>of?>)u~B z$LeWfZTDrdo5ei+2rBxEyaonn8>i;Q+3#GpLOCyF%DTcC7H%PvbJRYl|S1~VS9j*~(Ko#`5f^WrS1DDxgd681>X}J? zPnjyQ>Fk70EXcpA;@sFip73ywe&XK9?dU2DE6(!ef6t-fp3)J-*ns_> z-HZEj1FkVaepl?Ro5W3P!@q_OhkvD>H0;0A zQ_%8fsZS%enBPA-Jifhy)ROurB>tUFJRFA5j%NDTF(U+)H~+9sfSk>_Yk%RgB$n;U z&!S+@Vo?N*uBK%Gi?;dpR}HC@ms=GUK0$6RV9Ta|?uF_e$=O*Nj!e%$3Ky#Z8;Tyg zMO%Eb=ZXT2@45Eho1=W|pHAw5qx4+K{{Sp8$(@_bnz?J5&ThG|hFbr6JZz-v_&5%> zy_SB@L!c|6t(d(XM07cpeb1uw(7t<=eyl#U>io+PuAY2&?*B02)YOheC|bLoV=_vV;c zal~}?&6sKOEoev1A}tLBJ*)!1dREKl|5(}nq<003Z5cWqe|t^K)V3u>`Ce9G$0)0{ zm<$X^fRZ=1rR@VnF1){)r#zNk=+@?lLXH&*R)!Y_pPt+IK(xuMxq|xc3(Vu`HZYE# zTcG!`)Ub7JZSOEJr=kicZj)TmmshyJdU3VS6IR)D_6vg2L&x!XdR6A+n)@H^lunOY zAic&pE~!qpt!Ff`(WK6(=?ZaxqLs_WcVaA8s{?cOAm(KqGBPu4@z^UniR1Te_3(F4 zO7yWB>BfJB_Obcw713zavvounidKks-a$C+gh~o8%N{=Wbz=JvcFa?~-@ov21}uN} zRdI&Xw{80{{SHp@nWVE%ezOJ4yoby6k*#62y5wu7@+{AyDRwM~!Qr&A+<5u@9aV_YR>e1DOVu0)5l@Mxr+7cLkc-hamH?y`nB zO~B`LNn+(T&&8(Ah1urp53xj9nku{vpo4Q@4zNe~yFC^l(GJ(LwIZl#;|3v~G5*(c zJ-$)6|Bl1=Wp@Gku9F54qP!?s-Diu$-?vZF=i#%o`v|eeF#FYJk-4~w@^n6l48k|yPuo()TyHh$ z!k)RZ-_F|*6_g?*-8xRbB_T7!v20}K8q50N7HQb&vj&T&$H*lm=iITTaM^B4Y;q&{ z|B_p56kbHRm0Oe^5V=Mp>#E%k(9llNS5x2ZR*S2m+Fd2E7W3Rm9LEP7m1~^V76;+& zqZi1y3gKeMb+jsT62c1;O0zEY?#`iC$cDStNZB?7E2aMBMb<TBe+V$l4+>3oWg-HSMwWI ztv#HD9vbVMrBs5yWNht3y)u6?!ZjI>F1gW|4bhHXN&g{ow)&7;v4nDx%Aa45(J?

  • $a{aEV?|9YF;HxhBlY0>qluumn!Vculf;_ zR52H8iCvBw-tB}CXUv5R9~>{BGd-^Xz5L*K?h#0Mw^K^IG`rf8e)Suj6n5N)o(Vhd zLf3;GL(vOBpO(Tp8x+(P5#^zc?Lnuut{ z-saRAw8qgE;-=n5m>hYNXl&jT;?B~;T8T+!R>|H}@7j{z?NoZ5ccRO~I!&Ejt%LBK zT|q%=&aPHZ6%k(NQ|Lzr$4f(Z`ax07*G56Z&esM(<<8e8K}D*L&TiMfK3@{!4X>K*0cxisspO}Ac zHI|rv8+eO!<;9OjSM*#2iiulifj@E2a2?!^e6O57@=M-DuanDVYmN>Htl|E|g{_lY zXSe2fd3G{^I+=IJBVTvp63&ITDALp%VU{|+l1Pg7xwe+^!Uc(}0qi1Y2+;t}kc=d;qEzqBGHt&}D> zc{3U6d@B#2EWy3Gt<^J|lNl@gasR)L8p!DB=T4nfDp^BHmFQfCVVeYAC&N~S^NC}E zQX(`FdF%;eU!;^=3?yqmhb8Agajmk=q(!x8<}^n+L+ey((sN+Auq-oiQ9$2-eZrWi zlp4)q-j^w_1#xIBkoTAGB!=|MXyPWgK@infEtn~G#*~h!FVM*Ky_8x z<7@FR3f@)~5>0(vGBg5V0x8fZaAh2&V#<~xmO6!ihI}gBg79cUXq{qBZH^U=Rk0aB zbe?WbXf!g^IVN$F9vl`|rr0PMQu5K7OheS%OH|2P;9_&LQVKqcziA`xqo9{V9~1`~ z?>9pGSedPIJ@#sX*825#oA{u2>Y@_?>${y3z@E>RT|fUFOALV2=8Mghqx2W{(+D zm%^rzb)aFF_pb7D%d7husY5#_H98eqr%+Rx1H-W@H$xT$(9TKfCRE2UDmF^(Qc|!+ z{R%K5DZ0RwZFn#uaVt@T>*bA63WZA+w`UVgrAwhhNO8NynG>+i@U+&RXQ^P#2F_3Z~Z$+ZcUaf{x|<7i<1=Nz_CXCaqm|2g3Rbv=vKe4 zNrrunF)YY3{4y0P5_R)D4r6+`nP$Sxw|fJMXS&GDROLLscg4NDujz;15ZBZ*%lnia zJ87E#=ttQ+?HRs1vA6juG!9AepAm?e=zojzY|h+&fB=o`voCHydaH5snY32|Dky?K z<9wBAUKG(G=nBc0_BZ@uU2!Nwy?%C0>+^EU8(3E?%20W0R#>Vv&~;l=$j??OmZOCU z7UVZio4PHz$3=m|J@HBe*!uTJfWJ=$&X}oTlDr+`N2bTn{axFA)tl_|*?`3N9sfH6&s2 zenXx2uZU^5|9rpI-s!cczMLdV#t6T8K4%t9UUrv*@A6EaxBd}a0f4g6B#v(qA4necLmgvNbLwqaOs+Bx|-3$dp4UUfM zR!orqrATL!FJhJ-N&IJE646+baV!1}Om4+LVA|*X0W&i0?_dh&-PHDN}g%LZSV{$M^6*e~v%MenoX zbN<%-2W&|xiSE;+*k37aUKaE}$j867*UaJ z8LC<2#*w7n@93zDAKrwsSpQsBp5=!)nQ7vDULrt?dhS26Sk@zSN{xN7}oz9W<8%F zIq9L<=zljA^9>Qre;V8fN^z;ua zG4ajeKTRP%KWX(}!;O|dgybNCsG{Ypr#}}lB?NI*D6tfTLcfGfw8P7+Ns8qq|F#1` zc9Xvb-~xPnZf@p5o40eJPJGVtkr>nlcVcLnGGZbm<)j(0xJDr3%bv)%@C^2mSvE8g z{1+;jvI-Wz5I1Le>R8PsI(%PO7zWKAZaOK%HPu@^{?gkxu}>DOju*o-e;4|sXjIe_ zSl1f?L!OL&i#DxB_ti4hxvcAE`H;BKg=!7G+WfV}nj}S5xC3k0P6vZzq^{d}C-?zf zZP6d)rU)->Df>6zofutKYjBt9j8!vQbA^u;q)&T-3saw%Lp_49d;GjXfGMMSXXDz? zEacPO|M)P?APgA@q=kbc!TbN6QD*%!qns8uANl;CW8e|p1@Xt_ST-`D@3`M`%9K@# z#~`(Kl=^Rbimcwvs4Tave;-FF5~T}R>C6~@63FP=0W#5UzmMCh8j@VO?et6O`!-#i zc7M%(1nwLSoI)%$LgVK4rNmf|A{7G^ak``F6MdTCp|UVc$=(LlAqmye5f<9z$4Pzl zk22rf6@zD(`=H>KeMFU!)l5kYEIb7ER&Ah~#8@Ft779JMLkYcdU|~(J0Xcwk z_b~?wyD4azn~-O&ylsA70@yAYN0$mVWxQo<uxE#hCl1+Hzt$ak@Y&?j}?-+`Z{sbh$bSsW2hd@;#j3<@CM+zm{hXN}j>AFfh&gx4gpeASG?KT@*4 zBf%1MrqHE`R1@%ixEL?6sou63HWl!`dGJ~GyxFxnxr9zXxjn+@9@0t|VAtq)%p6c!C?U1%U+$Lr|-Q8bp2|OyGX81g= zCO)Nl-QJ!REblDewwPaE9`t0YXw{mB@15T%?-$hT?JhrkF8=u#Mf&*p?gTPS;Ix$0 z@4cBN2F7R%_UnGZ9`;SF73_w}{?<$Lix9%{Sd0)t!Fp^ZMq{{Neoli5&L=S!T*MIm z(%cWL-_ZPbuDIF;9QR!AQ-sKomCr>Btk(*&ZT2}Mu^6m#3v-UGU~AN);kjShGS;Y9Lkx*1yn8go9cQnIIB^!s zWhL&IPduh63;AXwP^&qCunr_8mTz+}>rAcagY<>xgF=>zIDf;qXmgr4S7DGm4(t`| zZ6UfhCrXo)oqXyv#0K9M{LzeaiJU|)E)j-%i441X9|^^k6&kUR1$iPxe%hKka9d0e zDI)THHL<1%oSH%Y_z@yDk<%l_!oy;j(;h0zi-*EEnq*+RMzH$p4P$zml=wp{+~C4q z<}iN(=@O~)UDFjt>iqo0!{vkM%|qs4#?x8(u#NZ4dH&;N{c@Z4k+24E9b)z%hp>13A zy`%N-SBX@}A}3!MIeyX;Vw}GaHV_o`9X1U*g%CqsWbuMpe(J?RfPFqUOF9iIPoL>L z49r{C>=QBlNy-?cZotcQVUH7c>-CMJ*XEuC3JMpU{@&2Y_Z&?4h9|{K*P8}ajTh3! z6;=&1oBjGSfLFCaUy(26*>nlY?jw#oU%FMKkVQ# zK>PUM$S@9L&s9DHZfEj zluh-C=H4fTz#MZElc;3a3rdr-IVYy&ikpecay7I zkGGz!K6=Xu%U)02kK1)MeCG)H`4s|A7ALJs@d7le*NH8`a$YK)J-tHr$qXRBSV!2y?me`P_ zg!0)CG%jqF>n-bh`#z{Qi2LB8SV#ls{82fQ)_jbs&e%1jm~4VXn0Q7DO$}qm$|COi z^`Z9lb~WIpVq{H{g(e@;N-)10W!u}bteepHKI2n$RI7r!0@#*}D=Jih<8{lu*(!~7 z&{y%%^Iu%}Dw{RT<&*}rrDVk%!_u7v(Bk@6jkhoCW%wW|>kXfJPUq&R-}_!*Sxm?f zfjT&1zXWbpicRAm)cJuD1o$Z0_I@1i?G4 z9l8jt*z%=R2oH*wmq2N+8GF*uOa8ni0{f`_$ouwk3?PQ{gg^0>uY_*1p7P_J=;WjK z=+|MX7Cq&yhi?n`9&No15hmrmH-%EB52#-U5YJz*{$TpxpV;Obx2`K1@>n52-ETfo5VDv#uw^}8!^@06Fd2-< z-U}8>*A?uQlP{y!ZiJJ%MkYNp+bwZ}WVs-12avfMtKZahMcHGzy8b+tQa z>6Q2_-PqP*7=n~fiag_wPr94YT zQ^fT}z z6jkH<^JDHORoWHfy;Zx1pJ^E9~!k&v4fg&A3%n^okgn5A~ zp5O$}y{-5esaR>Nm1L>*94{@D38yUYj`MWl=ShlYP<+~H`78s-+&C^@wNlu2AI~%d z*W3X)`x0}n-5MceGH5$wvInn*WCM8$0b#6jFZFfs>sLiM_9D*!ry5oS+_NCi;#x<2Epqkz6mLM>(4lXEns3M`3kEh%&v)O46~+B@ z0gvTNNq|K}zz}rhl-fU*DoY{j+S01%$CuqI(@yshDl_UBE7O5l1q+JFC5v)>K7t#q zlv22}5v`v3^aTC2&6NQKjc{udqd|b`gbZmlulX3I26kvsYXonBIj_TB7L{&p*(?Jz zcTRYdE8JXG%}X#rC0o@6(;Ook{owNt6))Ee6)#UAP`17bQl7>n7k0%@2D!?g7T?vK z&bK|hzZ5G_>ID1&!kIA*%btEC&OMNWtEc4T%a6WjsLT&JFjJ+N+6-nH^9+IiB4-6E z3`t42Wz(H$P`}7sZO-cF_Zk3e4PZ~ONy9>`H$}W@<4u|~?&mz6N~pt9)*P!kV|raW zlA$20WZGQ>j=7KuCb^Mmk%Dnd1|!2>O?ABCm);%R@0uco5ziAhX((8&CVF|ZKNM2X z5W!2rVs)72e+v|e)R37A=3a&ZT6%(UyUUN{D9pW4&V(Gkdg(77>jKNz$eF5u?#|^$ z5ud+ewJtIAwI7jv?%A0B=yZ^yABXuGK*S}f7MJrS_Uucp0z1gKC1uSxGqDS(G4`$A z{%23S$l3E<$CuJ&Cv^S3t}h&v)nw)h zp?razD&7-AAJ`nkIOrfO{r(5^98%lg9+qr3NDXmQB@-Dl6d`>U49q!8gwGFDBVXrj?!Kp>NWiWL1`t%yasb6Onb<@Ea2{cX&-npT;cO{qRq5V@Eff0#?KX zWy&jJj=)P|>{aLAg;NL66z+6ba(~y@?f{;2vA4|#DH@eyvneYPs+eKrI}Vrm$Mx`` z4Aj9JJ*QxiKi!Zy;|;432c*RAc&iYj+9Zb)Do$xR&Wv6E9;@@#WQ{BKl4EM@6TY_Mq~FzA zO%wsFv3pke^>}L$SvM%ChRMR}jmFt8MIGI)zSHjsmNdWC(}dnPvRA0KcA`Sxt2QD# z`cniTnplBKz>;YGr9|p!Q_KJh)H)#k(L+e)*4%ZL2BXdVt%Ls0X|Og7XLHXyx;V44 zD`gf~!G{FE$K#;qinGCVLH{7?*da&eJVeUOM#?fnj^xpyFODjf^O|;#CXy}OKsZ@G zGf;!r41~01$z1Th{foolH`;kAg0JXDd-S!zkP_6Hf=`Fa zs3ph7tbE61g|Gbs8V<{jQl=ulUm|b3=a(PUp&>_ULfm`fb)n9ChF@4W(+pt@%rh~- zWKZ-zcD%XRWyw#~GK5;;=NHK@J+*Q2n^o~}$1VojH?;qMoV{aoq*2p08na{Dp4hf+ z+qP{xnb@}Ni8Il}nqZ=dF)>fiJkR^CZ=Lm>Kj&BXPOoI;+O_Mdx@y;5O%o$JwNLbA zvX*yTE+q5;``kzmJm1OrS{mwrC?ZR3dwB5NZ^S4O`y4iufEio4kig7_Y$~j^d=LiQ zB*MZdl(O7)ozQAd!kuyl{9?UxmYMhn3vY)TYAHl1UMY0T>x}b}+-z-Cm%lcH)hJcn zZR0}KUgAm>J=|PqAt_2PGHz!M1h62~!&1 z%TxCiGx$#V2KS;wx}o%N!G)_>zI)G#{4wg7FJXbep1jJ;JeAzex|V{omw|b0Dwutm z2l>oWGqZ>tYLm%s{`?{?L>Bi*a<#`cgwesQON$wyT9&`8E>x;6%jBQ&uGr?Rh#B0E zK~mhN=A>Ez7E{~=jaCF=43arQV1^_^r4%X^vCpI2W1rA*DPV83x2)}j%fDb17U4v- zBtY7sRd8=RYRHw=n$je%9 z#l@frVAvg#pf>W9(x)L5Ds_6kk*P7K7u5V=g(+gG%~Pr?ickV~F8PIVD$xqcO&h7s zjvE&<88iX`o~+y9%|k4d%@RC9&$dM2OP*2Q%p&DN;(4fLJK^?)9ir)B1>0_zY1=QZ zk*0^FMatH=B0-iN^v|wUQHcmclmmfSih9wh_uFGfhJYeuS-aa z!;&}l0||1Aqkjf>t|HLo;k@@3qDu8a^Y*_6W8(mKc17+0apuT%^^4&ig>qvM96bjb z{>Ivrv4sYQOs)P&MZ})6(*egul}e;iqapHlA$ZXd!h+u-5GyG-5bMzpnVR#$m7aO| z|ADnB{}+Z0zgXpBQOf#RqQt&6b5@jpWfyD0;u{f}npLH2dm5RVJw1Xh_lg4J6N_%| zw`^V0MucIuf&}TC*@_U`{YpSVa|>=ifRq3Ic1X&AY0U)Tf@zH~lproAZnuDIdmkjl zZ)%`k0ELFai@Z5q+T7)A=U>K$%T`%^KPW!hV00ypBNUSV7-PZ9MO zIIbd_Cg>|y8d7^+Mz*M}dP+YU=ebb~Y4j>O!lJQ0Q(}}HS3vuqk!-}FRN^56i#9n# z&o^9s)5iE4J67}WNV0l(ie^!Xfr9=W%xf>LhtUO=v2E?cM!obb$pIIvo=CracooquCE{XGIr^6Iqx$~ zI(Y6|>p_TQz^#a&e>>C^CC*B9X(&!MZ{tcW(&<79{UJLk|kR(cX_n_)FPWO(m&+=K31R zMuUiQZ^b+XOd5f(!iEyC<2n&tAe9LtdO)06ku5{GWxcgN?WB&WkyI}UPXX_9@!~xh}Y$-7~fhCG!rCc4els@foHoD=L@vwg-EE6Yxq$XJ- zJbM`8l6S4uQ$F0Gv0}j%7rTW&a zAri?|Jp5v_O^nd$8&hS5e~qphE8tZjS)o$XHc#DF|C52q#n|YA%@%>3jThF+;}#Af zq?$87MP@2Wz(E2GVh>t8&v_&o6Zbe}<{;`TBp(Z12j)sjr-;XjRs#oMG4)vr?gpF4 zJSts(x!vL{W1NGIo>aOP*)Gxj)hKrKmYRMbV0IrS zg9T1IA2J%FV`9|40j!9FNFg!j-xNNVIYK7VAUyNbghk_nQJFOb5JCN-jHNoRm{G*< z4uAuJHSQxMo|#aZ#c82j*d@D_=r&t24#~t!e!Na=Uk*Rlu8L35u+2<)Z;3_)jZGWR ziu==$mVkSO<+ExnN%y!TJ>xQOD}ls-MwJJ3NXt?I1QMN{i`H?U(`u4gAF5WpLSP#o zz=k{9G)7l@j#a2u^TB*f>%s6|+KvZNO-}ay;-FaY^t&us@u$pc;~gedSbbNhViWN& z3l2GyE_dT%O}HFM{eKf6%cP-I>UcCa2kdh{86icR#ciG_bPSV50;o;X#!zQ8)uOkg zm%LCZ=mAko-B%E<1S#nJCyB1INNWeGhKL`jkh(oO5a zMVXt3{}NK0Yi0T$ZhO55d|D6`#I`8%NRh@o@97lng#Rjp4 z#1jne-kyl|8-X{cH8vfrk-+ndZ=)VO#ZWEOjYboyJ6%{1>7fEiOI9tULU55QZ0}8N z``+qWsRT|7&R%%SZX>j~ZN)-}RpP>vEmsjLQ@b)J{t2BbgzmQ|-0KLu6uNt^=urC@ zE>_|6KPlN>-fXd#zH)yNCHbgrHk0*;UxC)c6><^u!dOctmHclqRBIo-;zdmp;$~{} zqDwCFMG7+(L+-Z5;CEtRm2Kp`3FFKJR#2!joT?ScSK=!`@jAKnk9Xj1z{d{Avaira;CM`@XU^UB=rYvqHs z@!?s$q&3Xn(MT(VJ&-}aSLZ571sPEb(vrRyhVkn?@$<>^{i|QWqwPhi`mm>=^d0y_ zKt!4l94rvCe3@V&66-$ouwgV4mLNx{YkJ@Sm|_AbYi##Z07$nD4Rd2Mgm|bJwJwU+h+1jpPRy-Pf60&`Gy#>hNbu zRP#%vZ7D%{V^*pS8kMz85m4n{2oevnP0Vh6)mf)S#ZuLLcb@OJ*hM=zsp@2OAtl_2e_0=vk&+S=+bYms_jfnFT4?z zO*Zz>CXiuTp)1214EPtT-NJJz+bqLe-6fz8sTL5gV96KTHtKCDq}79prv+;$KEu`J z^C`c)C!&_E4s#Tv1A5KI&H8`D4QW8FIF+G)8?LQoUW+iUTg9!PX~-v$dB~-dd1i37 zJ^vlYQYf<{M3UP({L+Lq15qHvhds^~rvYh5%^U<^J^g4V?@H<)u2q6Di<13V>P3N8E8?emFm97jNtDj@ z%LQxEg2`Z(61=jP9QE><45n#x>_z4;4@x%#YD#>lp5$Roy*B*EYEb{MW&xPi9J#4aMY@ys+wGV4RmD4nFChMI2M_bfh zuu_f%;wYFAo$fc@h8@;5EsjOo5wFkAGN)euB0RevdWwQ&(Na0w;Sfy%EOOqDG*5;76h*CA%P$@UL2IqcQgpiZj%gBxCxi+6J#!Ajm=txLq*G_^?vl|-WPafr)%+hdf8 z0hb79*tjKc5NRY^q4}jgfqzrI^9s|zLM)HS+Gy(9XbL~SjoNBi!aZKoFZvrqJTuIM zp{Xf%e|gM+5+xmeSC{`bqu`~;g16ws`cw?@M9aIdIhHR8S1h-(jt|*l{#gAbo%gz0 zBzBVuyehteV_mhTU2m(p@e)U=7k2_Iy&)NL>Zm&4GuF8gw8zQkiPT`3{=f?(q^^^- zBHZuA&Q?2E;@kR-u?t90$by(^W>K-q_8nNNWh`O`s9#6K zvtk{^Ne?p_8)L4xmL)v#x|0>LmnqP%WtnGo)D=0s%kmZqNRTX-lI~WXweTxd4t9uROWI&LedmKEf0C&T27{8|bsX(C@gRJ3iQXThzx?XuS>TR;m}kfh4xaU>9ly-I4cq(+I(K0zHd7+85$%>V zXY#t3F@kKakB?`D9O@IO#F`g{vm@6@ct+AJ7=*Tf8EYsgL@^}%d|LeKG%dB2BSm+4 zeLRF4%;}#Xd7w2{=_OR@NG&A$sej5x(zFdF6Z~%Vfa-~N)#l5mj zmN4d!ZQnZ(&{b@yT)%0g$!Qozm3la{VWl+`~DDYU*CyUow)bP?v44Osh}01@p4 zBp>@y4C1yu5>2-&sKpb>eQ-J`uM_0b#a(6|eaUTIf3z`l{&5 zJHg4w_6#bmaow~nIJvkl<-&nf^{Q|!C?;X&wc&Zx%r>$T2@FOO4@#-@P$>bNV~e=N z8LICuERR2VmeCmgTcaIsRU#w5aAB-XyDg5SnNuoJDosvtQ(&D;Lpi-eX^{ZHW|d5% z4D0_bn&ikHe|PVYkVvs;JZGWh2$F3yrTfuToIM5k^#!ig9GpusZ3f!~&VA@n)J@R9 zZ&`Ht%4b=06&9&NLnAS=5>zl34!cyl{LkK!OcnEPY4s=xpGrCyKUFHM$})$7p-eRG zIyV%m>JWbDzgjKRWRrqK#KD(yw`{TcH$CnPN~j*ppRp;q4%K-FYk#utkV1aq4xB=2 z++f>@dv^-KvA1|mlfSt#eOT}DNQoaBXeC#jh0@G9#>tiiRO@MPA+E6jMqU8Bm=+q7QzCN(9Q^mv2ZDYobCRNVC$I)n)M@p-r= z$8Phm0FHX5-Jh0Gv8&Cv?ax2;E5zsM5Nvq8hDR@IYU)9|{}@8*@GRT5y1Aqr z6@T85k{Oy~B9b#p)8l+CQQ_Zavpdw{&8t8AF(czyqGHo#QU@H9A7R`(NzJ-pyPpb3 zzfIh9GIshHWBe*9*RDWEMHN-o{vX%P6h6zL7r5HNSvAj04cxJ)FJ1QEnGJ1PoRGcu zy~RWh4+`uu>^0_#arrTrN}WG(l}ZRH;_2tEH_J4jPOwq2*1Bm*(iM9u$Rw}$n{}xu}LS_Dd%z?Lwgk(U= zv}MPPivQv{1mcC(2akaUPtQKZpk+5#c$L2sEU!8hO5vLbLCvC2hiU&M!H$IJvtR6l z^)zB#K?hy1WfP{e)5so!!k(o#x;fY8EFA&;+_5ZMOj^|CKAr2OB-f^^On6(^R-mU6 zZUoKxI|4csL(M}!0-9bfUiwV|>B#dJ8}l@nKe)@uhq4xSjBmeUu^;JFVzFKTcsk7d zl@K{X7@x2;aYRmVCwG)?P$xxH4}>#^g)2nVvpGWhcjGi^aC3*TAL)}|=52YW>Xsj_ zX{NL_e4?zrYzS%g)$^^|g;k1VQI^5C3!{+@0|760_786t&*z{2S~vgAn6*>XmmOw8 zf2Z3MuxDIxk77v)5)UWMVY-JNIVwl6knigLx3yN)eOz|Y<+w?EJF%< z`21C)lt`qakd`yC;S74d+4 zFoBQ6dN!|B8hvQbAdxR!R7T;N?XWO*e4)09Va9G`n|*WAps8Ts9CMe)BepW|e;u7W zi~^e6L<|DbISTUsH9D8||J|1QWrvDHl9;p>4E;i;ud-Nq_`Qm;a|(Z<#WzBS&K)C}%{e-?7yn+w`6E)va+h@c3|aH}Zhqb;N+@C3o39qQE~>@V#bqgPpi9-@B*(I^)92U)f5W zE$90S6{8%aD-=?eo^R)1HR;>751j$x5)ht}+U}rJ#{bG;deQrk(5Lp5oTKgfm6ZrO=xLy$W zzJHd8w@P$U@cLtXt|MPuQ5ba`d{KtEwVc>J0 zx3JZA5)T2t-%}UGsGQH+wd${re67#>v*F=gV0-HQ8KdCmwo5$9>h4X;LH2I{CB-Vb zD+0wT!1bqeJ@=7Ml3wieeb(8Nw)DV=USe~D`uF9hvb8hilcz0UQxT~s(U+6a6a)Gb zD`_fO9^HlI6cGs!v@d2bPC6c373PmFIv$i2=Bv&+9z*&mRhbtpE@~43Qg%3ndo(pe zR_pM&jtEa2LG6&O`VTfZ*n1t{G|{|~y2&0{lP5ppBtVSVL_kVVAh798jV8n>k(cWH zKuOWGrszn6!+*ehiIXrgW&?vSL1C)?HOg0+RI3=``y363Dmq~` zwI6&fjmr|5?P4|T>LdP+C)^IRtABU+`cQ=;?R51qPk(zNbb;f{mB2Pq|Fz(Kd)2vp zr2$83B2g=o>+_oeyCJo986~j8QuBlxzCh;oc`2A? zG^|T4pU0G;>|wc@AVl^`XhOynthq*+FHS!@GFtXt2xOnp-%F_*8Z6svv8ez=J(mzh zqPZ$NFN`W=lQ_MPW+1Xn@iqSYALBC@|21=t{9q8m2LZlD6t&^uAxjjlT0+7l zB^ZKznSBzZT4f*Z92XnD`H5e!h*}4~T43<>Fk(j%ZpxWZ_qX#<7<$gH7jkN=*Sav2JlgAt=esi+Xxra+Rvf*_DRv zSlhCX#;2DpPJQ#L4*wLT1TF|Tu-?B*5};Q!ze_a)9PCS`=BT@}D{E1os5@vh(=BVb zn3n+l#LZMdT?xY$9tJAUrN1?d`gyl|*24SKCc4J9*cBZ!YG#m<+*zTrsie^w+quKy z5Dqu<0RSkicUjtXV9)J5ivU@Q4k#zD>K&5T?l%s9QS_dw8oJIo~hu??-=z z3}Sc|tl%J~JX&pt%(z_i(IM{7xy%4AMCQl|5{_t2>@HwMNheZFwXbIj6=ZuDXV|Pt zSqaL0cNj5kmos$QK>hc1^;*gU=gcJd=X;2e=sNbd_g`d~YJ;JE2 z`^TQ`H%^lL5OnPSvpM_H6UUK#ccD1R!9nYY+I{DfN$Ap*h}B8X)G11v};4nWH>o0FC6ZQ{XPB|9h#rH=UMJmzGjISO3it5J&5EQsqD0c$vE?8F2Pvcf)a!x$bXTY%_1ohqIIVyfe&noNGe37xw_vLQ}5*>!`1`}p^k1oZ*; zc*TC1qU1Na6=sXVm|WFWW{cc^FQ^L7->5pIKfl(=#ZPiw{a~)1FlUi~azFMH5V*I> zMag$f$p0Y;`KavNG{KE@HOY<8GRciQ@(;f(!LwciE!BnT6n7$Rxq|sCv_F87DDVgH z5pSQqDO&hvtz-O>oNYT=Y64j!SsuJ z8H>N0p>54jknDynUjI zue`KmyJ*_!KYkG`Tt-en7nrF93mz)Wy<8PbfGN+_94|-c0v}HTk0orPxxYhHP zTY+D|;Jepu~rvG@8jsJ-T0_uv(gj&>QkR=o2V&B) zKxZhUg7)Z;XTb)NWehp_rj<}Q&>6y-<-6-~KnUgp2pIi&499WwA;M>+h|IYLjV? zx-ey4Ur$b6kVC#Cpio|AmTrAg`qfuY&lPL++i07cGry^5wOv3`1WV0X#w{Q8&ZlP682-~Rs~*JtVq}U;*j-aE>Kfu_5!Wwbgz2IBSD?%p z+hfiBDfbW~+MrFVL5|>7n}kiC&)jo@0$AtftGn5FNmRp)@#_BUB%p&VW_s;ErV44z z$jdRnpA!owG(`l&8U3}$roT?gO@p}8;({8Oj@f1uGlyo-;KKIup_wCyVK3!mCy&-c z4S*QZ4@Frfu`5QkiqJJAzT$Tn!5op#obQErjN^j>r zIkPGFsyp= zp_;@>F>(=VU!-b#E{eCUH7_9t_;Q#__ioU*by%}WN!SYZbLhUKLy04T(~f~@W{uv( z1dn$nu$9Lf-D0bDe9hzH46^m?n}s~fwlRt-%!U||PY$HpmHijzYcd@L=JDJe&u6j9*(rOA~ z5pVydqh`weSe$M zRy95kJnn}exVwBzHF31|!W93k9wXJIWdKU7V$GkHw6p`di|q}x(}3_1!E ziS~P@x-V<_(RJAuNVOfh=~-Rh#<68=Xf^y~v(Kqo-8-#`yII5`e@Qyq3>?Bpk@(UE`RIy?9r?i5?_lExeysM<7a z!#dm*d7@I%a9ewo9Y6>$+-%g44yjO5T`R|gjGkV@W*A_=hlsnJ;tA7m1MTaQ!qkMd z3De8+Z($Qn%YAY$1Z((nQW`-ZCs)sy^RRS5nV$-DlX~rYxQZ(6`J8m4(#!Ti>GXBG@m!oyo#G<|DB@3y z`=MeRWQ!P)u@_8dlj!rohlVK0xeTVA@0dc=4vbE+pm@ENLBbaBz9({QgC9VVH58ZLo~w{s*0ybIS3v6C#ytl zIA-m$?`6~1n3~JVgXA5aL@8;H>K$2ncCM8EWgX#(_9v#klpF#$%(11R&9&>m(cb`y z`gWg=qgHXb{}7f;#%$q_S`@glx`HNn0GLB;1dqToskiaVU;hf9@!ne=SyH zEpViwf6f|2N?aM57Xx;L-Vkj1FVF%d0iD9v^tfDn$fUeO>0p6Pn41 zwB@-ec%E|yv6c6!iN)^k)H|z0!G;!;#++GM*{7O;79sb8k1su(;M(1`1050of~+e0 z9nVW;166q`hIVeW?(8JJK6?K?{pfh`OW}qj74oZ^#)LRv13Q*zGdQ>|SDu5>B-Wa4 z4eMPOlHfirW~0=fSoApK~0sK9rG`oZo{3N35PQB2AT`ezd<%s0?uboS$~Jp@)(O)<=; zzg%tIMgxeK;Gzd4QXG(-YvL>f&O6DVP+nTdmt}Kl?rLsbUs2581N3cNjb79xWMiHf z3M-w5Pa4vhOr`e6m-*ox?hW#D|YQF$@F!;bIIT)SJu+#OM!WW`a# zU5XEVZ~QhNaZ%9Z$MC=W#7D?T^OJHdNm;lVE4@KO*Kiz{%^u{8=QdbJxrD@wq$-l> zEn}Qp+w`yJ0)*m9^6W#vlk?{{VF4_Zu-xWyHdBAzm|-;p1v2HYrynp=r`20;gwiFe z5hi2~B!0X_C_X8H)+v^7#u%URakB_Bo=T|P(hE_{w@56 zkyYnY^!)Vw^MICx#=wEBdo5YC2C2=zwt}5iK-2S)S7O?3d%adbD4&CX+n zY9-UL)$&R5g?wq}HD+WbpmfmhLXS0*ocR02%QUO{`??{h2S(+LHfLLl#6N?LaxC}o zop8FC(-hTR?pav=7|3k4d{w{9Z%|wD|K*4c z9zF1n(GMb-I5RdLmpXZG=_;}=EXobt`>()NU)*(!{+-1m%X9gX=Q7PdU}v*IhC$k~ zJNV1@T#oFD&VEJn%{eY$lJ7rS?U}yo>7M{>Z1N z3eFBMv`M~u-xPh>VCg6yiy3+gu?yJFu6Tx;`n`C4a;`wcXS2 zzt#huM`@1n7#&I7Fd6(e4>K-VbH;)hr52O;?zb&`{a}INh{*ww+lFLf zJPA7kqyI)>sl*_}OK6q-OQ|bbPC(?A>JC&Qk~+=q=Iy8xkQP`5v!a%3-1io2gF>$I z5eN%F7v8ot2PRDcGhS4KAl3m$HR?0l_qpu-d2u;&NH-Hs`;C8mwd+nZcfKpx1dgVM z9shZ$RT53z>!%^Ujr7&JDz91irL=s#ZtdTvV3We@WHDUjQ}hg~`Ou4dsjsdHZ|Dfj zG}G72I@x-jWh8ZXXJ=;1@5_G0$)B}_9$a}tI4E({b&OhA>mZR7b-aRgjMb^F=nirdvWYX8b-~w=yclA^H!u?&0eVjArc`9p{cOz!_L#^7ybBCPc z;&2Hxjq;HmyrxzMK0EGSJ~&lyCF55+Dl7C$q|kn&n*31TQIiSNKuUH&M^pd0JK<0N z?g1iy@7G1a?7#NQp32uW^-u2U4&OJ?eKGK%;6OQ>vAhmlK=JEMb#Bx`f`g-qa;-Kn z65z+Rs9gU>Bgi>!zwyVaguhZikD0pB3W@7)oJxKJW>HRwK_5;HtGd26TNsyzQXn~x zqx|>u_*h3OY0zJ}Nq@nf_>ax9`55}#F%(|L-7@s4I(eQDc#9dMdE3UZB|Ap5bmrLq z?g~MBVr%==$O(nx!QaIP=?RO)Zz(^-4?jnBn@bt$t4el&blFub1x5Pav}jDj*G>Q9 zLd<|Avw&=dK*=c(AMxr6x}=ArvqqRhosmsY5eP8U7o`SwOW#g*N48;v(!M&7oRXSg zs11K?D8!epwlgM_s|#iQK)*|6XIhJE^myfW%*CO)9VOC;A=wQums*xu`gIj09OePz zs(<93LwSfV*S3S1s%i zl4)F_uH2{<~fh8d$ND4Y{R?k~o+C!=rcWFP+%Wn-g& zRw#tfH%ZU{QpEm)(1uYG&xvXodZG^0@!{I_H=kNVEaAiG35dVxf=3PWP}wR3n$y)ytiiAiy_%dTDUky6==n#<$OJngLfj2sC|HInzO)C%? z255S|a>%e-+o^#G_b>d=Y8udTNna=FD`1p7Y8-*{8jD3lgGQl4cuV+$+v$YJghJOA z(#oGqWvkLmG<=o>*?`5a-NW_~NVI}!5``bG>4=}<%BN=+gInik@;Kl*PeC78BQ(eM zN1iUNPsGhZmzrH!Ph$!NPk7`X|MZbFWVaYmP5E-B8|+hB%h9~Ad*t+P!PA82sp)d- z`d0#jfV&GAE6a1Pl7lkMN!!E}8kaPc2B_{n%W>sWi_ z2~5!8{(ab1`o=>#ifxVhwCoh9z`-DM=|rCr5`Z}@5>FQcC=EwRh|W$=(`0+aDo zkruP~2o5Pj6t#ZovNo;zV8^cVW6fiAi$tFtvh%+q5Co=gF`NImVgAq&hY|Tq-x|8m zadpm6S4u87Z9QmfVYG9>1Ga&~yFl%IqJFzkVg^TDR$2{9-3Oi4Bstj{y7({w#S5DA z1Lm7ev{^ti#GRxR7U*dIBWx=LcI+~OBORE`)YmH*YR*eF75WFSR!4FEAet3binCu8877PprtGqzS@hOZm`OKkoi$nKK4 zht-c2IR{Cv64d%Zgw>FjcnB0>-v}HPLy35{$|v}pzXr#q-Dzq-?dRrPguvgtdIEgv z|4@A-u(H&52)B)^3QgR4HFcboNOD6R?}ab&sn^9mYyXP1)WczH1N zeA0U#sIwx>go`96*~rbUL%8#?btx8;4rHcCp7URV&!`RM(zzFE7g!AmQ-~!)&Sv(v z1=>0IwucnN4Q6>c)B$(SaA>V@QHHOe(KYE$6GbA%X*oZ)1?`^wkdXXR>j z;NIEju4!pVE zY${ozh>e)n(W_!^_!ytt?`hM2qr2fQOUfLtJVA)7wg0i*!p?} zZB0A3;-mCy%QZT&(Lj|u(4w|YQWPkmFvloCA~bK9J=l?;eKlh*3|w9Y>Cqqq6xXI z&?};23u}kXFoD;$XQrb3XROVCoZus>A6%va^0te58nE0jh}*VF{Og~qnSvUuux-Bh zq9!Inx)w3ugY3W;_JM7n%+Hd$`S1MwA{%;o`QvknK^QAjAu^Elk~E8)Q9;aaj+_C1 zfyXXAu6wh$x5rZDUtQvwmAX-~g`{Av8+gi=s1743VN{~?I$AUOeT03Cw{yYly z`@b?jzwDnid_w*26|G&;51A1rWbr_XX=tsQO0Dc~_2$Y-C|G7U^zDmoOgUjEwXp$x z)`#KTZWG@-rrU zQnAj)N2g_{dg)X2rOYE0B#npii z7k9O1)uzk#+7~3yOSD+)=J+7o=ddPU2(*gi`kg%zq`z^ zMX~ltXdRg{EqUNYx|DqrrEO`3nlwjE8yr|0eGQpc_(9!Ejg*i?cXOhwx2&kcM>+dc z=A2n0VlPXkR;8`VJLh7|U~rffVTvjr`gYP-0D4WBvNn!E;xO)W+);VU>9*y1Vu7IU~kI{*gf?4hr0)7 zN=>H2gRGftyRKivpF~MKiC?Np`DDX;1KH( za-9H9eWN(#J5DA5B?;1R)o>^X`o~tf5yxGwNAYtD_CmWd#PxgK@zndY?2b&k8%A6! zYJf)VbbwwJU%Rp5q}dPR!8TK7SWtPL}T^I^Q15Ejch1+yrk<3IjO!HO;@AR>7 zVnsbn^LEZhAy1M{wC3FXcoO7ihl9SDDr!tRY#JQ%UA`Y`wY7M3fzQ-5Wkwt+wl7o!vTN7?QlBbG~uYAm<{jKDtgP5;maTXvV+!r6tN>- zo%sF<_P=D?nrGc|(4JoY8B_iZ#eQy0Q~Kz#5o2iU(f?C}EMqePdy^ogyyA6d&KQ+A z2uo_0{-^Gvtn_XwGI?IVxX;q2g4VyN+mgZ$ApBFXjrm>Aw@0^RE&ifXg8Y*s3wV_uE%oZQy9iZKGc4y!LC< zoT#A5-wRrY%l-esq71R1RyV18M1WEKmCL$XgUi~TzA*sL>sWlZ3@f<90K&i*#p_CZ zcN8m_(-6YIAI0lYeD@Ie32+gJ;`J$B2!mzN% z>tujm@Vlgz=7p!1+6b@8sH7LlxbzmVRW`DJWjF8|=zXNDCtumZO+PCAe<*v)sJOai zYdAOrcXxLP?ydu0qb59-)Sp8LTb5I~(>oZyM4S(IRkrwN7PuyXn#F%YngGRZk)Vh461 ziqKUm&`$t+D9u70#DhLbIVAj}6Kyia;GDDsm~tI#5E&E*jlgb_r&a6*06Xu*VN0Px zz(BJKT@5KZ5h1PjQk1SC!a%En386R@5t(({kX3|KjZ#!>frWB~pKgSOYh47lSN>LX zs!V$Mq$1rTh>76@GS^UlBUe?TM!xOmr($;2qyjyxX!t^(m}f=FLZt^H<;q~ zPiJl?q5aa7w-WiT6n31X8POc3_fk%KsA5(a$~TT(oNsw73L>yp13V9UPr|xE zB`k_Cq#n$zpsyVeecS2g4?^KxCX?=uqHUsh7R7(fhbMxb_($s{(dvHZn%O3#4fc6~*myQ};Z1Br$}AW~E^h z0bJ*bY!w*q(~sj?`C~~kHzz9k&Dx}lRa%W@F+8TmsLl07HdWDx);Hi6ZgNWak!xQU zVhiptT*Fi56B--~%Ge}y3+|m`^tvT#w+hvXXDdSz4Y6u&hDqM6i@Vi(mm0hceZFAo zpsMRBeXdQcJ}Lzi&|5943P~ZW4Be_N1i|yh41Cox5N)ZW!0NEEq<2|GQ~lLYT=LUY zwf#9A*LX2Gf1YWc;Ak6E>!F`PpWS;ridaFhyeRg87&?vV+lA6_TaDnv&t-bLsHamn z2{~FTNhRkckmAU+rP&TF6XHL^LtL7ZXz7l|91_c|U zM#UJ18;li__lI(r+}K1B+}P+wVgz&%1U`;?&DcpE#~aGBKz&i}V}P1e?h}Q0#pY^X z5N-#Tvr@&+HA-%%lLyPhsFMTh#HdpMgMngiJYnrlb^VgOPYac$+(!wequj>`wV~Wc z4uv6+h(i%!n21xXr@<i)nSh~{ zZ`BU?smcmN&=HO2TO`IjC1PG6>qN*a-eVZvKP^5SAQq-KrXex|J*MxEbF_Kk@4Z1R z-`ic)vVP!szwUT{|L*qm()&Jhbn$j|(7BiD|8jcN>-Ttk?XK_lc5p59e)U-D|4iIV z>zDL?$(6Ltj^Atl{^r6R=YQY1{d)Y|n-a@$+I8y{W7e9>rByA79`>8cZVR3HV$A#M zyvG&KvvGa0^Hr^J)?O4&esi)^?{MDTB*%R_<7x;fNk37%JU28P%*J({p89x(Zzkx@ zmg}89(`$GLpY7Rn(NR>E{7gcBA)lUi{SrIv(H+RI3cuy=@-jpVQb-Tv+mr zuf8W)zlY7gPnmGu2gibIuAa*B1my~KYUXxV z&0Nq99%{F4C)YDM<`;m?gz0ZgGV2|t-m7j(_RgX+Z%un^s(<_C##v)`sLp(S`V1a^ z1K;46zTgYV|eJ!b={fz_$rWozs=ii$91~@DqqVyi|&<#%yk`> z`Untk74SYCJ54zh-MWY{>BgNNn9@x#GES1nxbE$lN-Vu17Jh>edhh2#$P2N0QiV|R ze-%kd^PUlUNqLOhd6e>dE3{7+YSMu39i!VU(|>=<%x;zJO_o`Rm&4J-KhlJ^Xu|TV zZ1zxScdO6_n6%GL+wLkMEljAy~VkE_HO0PKG9~p>;xE9N^o-IhL|&QDI!^C zmMcZdc5>u8JUbjC2by-HjRY7STwb;KjE`gEj6*CbSrjG0O&u1-hiJaYX~7XW8)4q~ z@FYd5utT3@s&+WHyco?V*gYPb2b@swKhO@C~_tU_fb<^d5W@8b4quDW6s3uvgVctH2qM26rT4Qo0mO~|+ z8a?rB$D$heg#z3#9PzjViO+XFXrWJj{J>O>&N+?4p8U}nz zDn_&jVRAe+BZkgM+72s;gK8XD`mlqB_(h2QJX9}8<=UVmjj;&a`c+4Z#9 zZ%{BuC4OfXbNi;6WMAtSiccM#8F`rEZ9mFgvx4lrF=RlX$u3j{KT`kNk!r-RSAYym z*#ljY7g)30-l`X#lt?gQwDqNmRnfa=A(7N{CSrj%PO*#$c`Q&>?0~3v$B}x-Eu@Oq zh1!1o6^@`0m!`u0g6-EX-4Y3;s!LH`mHEuoZr8AevZo$UGd@uN*M}wXc10<((#A7? zGy5sCrSF{;{L9)@%G#g6i`7F16mJ*mNd!+3sq@WcjB+TjI8duAKC>)%Si7I)NcAG$ zx|+U{d_`O)XxXi^jT!rRznncoXl^@W2!q7uv=T8mP2hH^r;V($pUmb0sO!un&QjZ1 zCf`Ut00!ZSJ+=hKU(%Ir8Jg0SPQ8Nv!*JEzgO`S;OI?p%XP*f zSJ}aR@uKR@neELPtUbCq<#|1ocs;cmR7z=ErrdA&zL7%Jx|CUEkx*XhSGt%g!cSnX zq1hWNsc`+tD7ZSS**1o!4;Ym=`@KSLZg-!1eNcSVQpUSwIXreD@y@0fg|LzmSS@2G<}?CV zL}qy_xFKD!r9_jM0>k5LLQ#zrI-V`9Rm_vn6t^xjzN?1Y=8%UZ4^9UQPHRUqyTFE# zg8%wk2Ol|J0`*hnRYf2t6w$dARxf{?zTQGAI-!8;UW!-Q86s~B{SPYdU?a`a0J)DV zOTy2qozq*tA!D=6!CMi5uMO__pJ3p_VK37foUcCoGR#)SV*0>dWcwisN&tKFCwfkLEQrJY%1DUoO4af->-JE`}L)IcQWVhbyoHz zklkiCUFmzn`tn6-yIIE8uaa4_Mb_&GO8zQ^Jf`c`o+^h(jIdf|O;$6m-umUpj;Za9 zz3cIrUu|9tmN#bUzMr|%YMS?C` zxRPB-ij0)hR0%nQ-DKDm+;0Q%iyEWXWkh* z%uKM^yN(BEiv1NkjdNtk^Hja38K~?ROq8|&-M^4B=aPfUI%RES|Q0!U6`KDA2Kn2Ua0{AF$MIJ#|Lk9gd4#^W=G�(o-|A9a@s zId%RM1wr&>Hj z*8r7c7&6a`NWHu@RQBsgtMpMKYKFd@n;9HkW7#AJQ|D#qPF^*v_FhuC>I@O!Hd6CTI+2MAQRkN@6bIkvQr5vOm8 z&U4&|2Q>raI@F7~VUKPy7Jwk%`Bj1b_?xQjio~H1 zCfvJ-Miau^9}<2>9LM_0Fp5RRm%Y?d2cA=7Wsguu$ac@U0dP2)SW2Cld=j-wDGk6( z{|j^tAl2?-zlUo>9TyCq(zF*(A*qxNGE>si(Z(^zV+tIgIcpdxh-Bj8di(SNJ zw5`M;LRfp#0KpTHX6L+e?FX)7Mg#}OAFD{h7D|h@w6*2h@UpbS&+>S(aHYFSpWF8E zhAB*eQ@5RQfw?>)th-_b-+y;77C)@9+zY-`i(Wp9%k7c^L6r&jA>H`8wYo>uasIH} z7f#j}Qf_z^)dMxxHFJH8Vz|hS9}etyRQVG6-MtINy{KJ^;R)!|%eq{$r`PSB(6pGe z5BCFTc+%jdvP=57GVL40HI`s|ag;NBDTUr;{gkd}m$uNR#zSE>Gnl+9`Ks+a&%3#X z_OY}lw2fLMqezljZgNm_X0bIszJ5BHIRvnlpI2abFBN~K#t zpUA&p#%k2jEzE*ZW|VJ&jhwpmBVi0tpQ&*s1$merE+8#q@nhBGzB1QEiRe z^R@rHD!TxH`yXI4C7ij!W8%2}2dmp(@4g5Bk9Ys~Ic&D$UG1>&bZPch51GKayF1~0 zGPf6B!%xbZ_4Dc53KwF<6+N`x&rL%k1>(Y>v`Tpe7|9)WlJWo`(a_1qbMRYkaG?VI z5}YObpQ-l`q%*D1qd8a$=koNwbsC6%Z_UvVSz#WqWx@M=8?_KS&&_#I_22y%n&W3| zX)?Qi`GD5{-3M$AK zB)?VpzITROUs`}+KJ!BWvzXi4xjHVv|79jnf7aP}op&kl=<_#nSZrF!QEO^2__r{7(dtgw_nTW_TvqEIBTWF#BcM z8CLy;1enVagy1`ujOOc~A;^jef*|eyT?F3OsxJkHz{TaQRWYZY7-O{-;?7#55Kv15 zy}<)c`5!htS3Rv9`o2RmeA$La-F!Hio6q*s-ABPtLuLVA-Q;20RV>bs_2kr_drZ}si|2{*D+|cR5Jh&pns_Noy zj-yLC0ag?LCW4O1Q|Z=)x++J#m+Z2oi8w72eeq=+D0%X!@?jZy9MrBcE%ysxlWV41 zboGyy7l`kOy>nf>5P0Sg^1GkU6+%4GnmzWe>>CH36XQu%*k*XHkH4pf*;Kn5Ne)vQ zg|1!0u|kZCPir~z7u)#SjF(oN38}w3b!FTJUx}qMa?3VdQsr7s?svi*6a*a++X-D> z*|cOQ;W%)`5L7~Qr9T8_72UZCX)Fjy4`JT#9!QJwNXbRscxvea7*E~TfM3+`O|Gh^ zOIpc%OgGhrBx-qV1`XHol2#{IToOH-R<6vL=KqiQ>4GN-!L-n^R#u}iAm zFYTM41^h(GASIP@?i6v46~{&v)!xxPkY=zZJNcxRl5Y|HHKbA&vGj@4L1^pjp#>Vv zaBK=D(k>1vIFlKDIWFRqx@~K)+52cev;6~D?Oh~v*HjAa&N-N(G;$Tb{q&d?;sr}1 zxIR%$-Uxx?i(MKEi!4UxP2k3IEZY-}sLhyn!64rad)NorY5d_EjId37a_(mP^^5m5 z!B^qYA6`l@xfYtHtYa!=`v_`VBuLX=_5Ey54mN7gXmV zn%im{!_6p|b{u^Ya9BwglqdKTK&XuN_25naj2S%FIq+~uyOE%2m)8FV2&GVu5@1q} zpw#I>Pb7C`_C;mV|N3}!tUFCq?)%tbtz(ny5}%#5^-c(WPKJH_rSltDcD#N3`PtJeR0~%DRxL@xt7?Au-R{w|hW#h*Kz^ z6{o|<>E3car=Rbr*oNCIqvLDra{lUVpV1(vdjdE#?87zlWd{8`Gu#KvW8kg`tJi5p z>BeWqUW$u_=aOwGun$LU(MXF+pX`yT&34^I(C!UBU$ncdt$QVTnM>O3I&*x~?bL0p zJ*VHlo5;>4KEA8WE~r^o@022J)i0(T$yz|}2YNR$eWZtHZkY`oC^3cj<@w^YuogXd zNYJuVM;TVlZ8PZD%jQ0tG{lDY&LRC4_%OcO4g%hTpwQtJMHYGv zdAIE^?Ec~e+9p$G$53y*uMeQNX9;tuez4{>n6q!A}iVPnKD1X<4m^{&dd9!~3in_}G>e^|dQ6S&Z=iqFE`)t|} z6j*3TmdhF8jv~s~i8~d|$A`>qysp}jd+C5#&bT44dbhxbI~LtgrZ~=6NA)6z3!K$V zOvcvVM4P>difCUekaK@7!92LDy2*!r^J+2MQ4GEpZ!8r^TUWB2-iVcrl45%m`=u!o z=T^lUVYYY&`AAaZBLf@vNv!I5>4g2dM>F)WSXMny(zx`QMZ)N*7$e$)(nDU zgPQBkD}jTt1a5nEY+<@PjGjm0`aFDGNS$JCPFvJ9A3umryARCfgU83lAy`rHV(1|J znM#@SHlO^?VdsO$&;VBR35x;TN>B~TFPD|COkfwCD@Eb(Dy&Qq%xW7^%r=BV7qFc& zicGe>soyvtdb?Yc12EM;GAi-OozBY7?={Xh&1G>H+mrn~wSu0O^ia>5Gbh*Rt}!R7 zJJ%{6ruMr*CY9esgN&i{(k0+LsQWLw;JA`8$Vt#rT`&H9j@T~_sqVb}3o_On1`R?v zF%R3{I2Fq7qj5iG4M6-5q$SgvBf*1_LHp1YTomo7V=*#zqE1D9@LzYKXfJ~n+QgY< zNzsP5r&BzeC03%0Mifz4=KSiP>`Lv15si{nxxybUwF>M|uG>U(<-|l79KH^82Bito z_9Gctt=9;+tW?cqk)&`qjFuOC3ODljRW_nxUx~O(?VyXrV9+bOnSWlhyUc860T$@_ zQ3C|x>Vrm#HkDLqUcdvBm29dBw&Lyy!5P?om}~2+YfI$IbqpfleVRr*)xYn17=0yf zE9Lo1HI1!zIE2K_A z#3E>^Vr`Cu2EQBcAc~PU`|NH*31Z1W1j0G`|BejvtxUEwvyiL!xs?=20zgG=H7VmP zxqge6d8(&;OdA8R{O4b&b(F^9iB&O+iH98}_b;E>Knc5~Vaz4Z$2uY@W^-G$-QT({PkGuMRP0BY*u&tufA|)>_N4q+#_VVU3RezYwLC#%k)| zHHBJM`hSok24mTSeWqUjW#f=KomN1ehyx2z5v2cqB%VkRpf=kzDL$Y4oSxsPb&h3T z_RkU;QXQqQ2%r-ilZoSUb$W{6X{3o2aj4@XbDIIRd_mr-(C0fvGnTBK!AV5a!AaBY zNW6Y(5q2*(^Da;>fYPb<%XuE^JqX^+KxeWH(4&Gkq_9z0?0@XWdD(bs98b<%78vCK;vWYJ&k4QKwBffL;Au)q~AtkeBflZ0Ubm{-Rz%yLg$ zodcpiwbuzsYKMkM|B_&(=O|x&$)j4%(EecWT*lUB-K{czPN>JBqAJQyPLyrRS$sBH z#4sj^nNOBlxppQu+!4{!kJ!AQK+`Y*O(WZhyl|>LVU|Y$06}KF!yjX|!;hGJC=cPa zefzWb+mCQ58cPOD+;Vinl9c9#6VK9|$*+A~&}g&qYae>|bL@rh3 z|DhHCXW;P!no30Iejwf-g-^I`O8))iQ8SlDj}j545|Z>rF}j)f+wO&n1Q8kRt&$`6(7H%3?A`=pYq9SY5>zIj#JavTnEP-~7vODmH%L)#PgX zKScgf9ZZ;vPZ3?%4HnN|6pEj;@onEGTZ(HG6c!!=NKHi6v=a%+ebbxvxA4pTjP3pAqA-R(4<74XJqF zXJZQ95_u_WvmrnhmON3qFm{KR*QpE@)s;`HNPKzml6kr6>d6XEe$qp$pWAR+Q~?eE ztE$!`Mr2P`xw4uW!+_j2|3#GlZplB?<);4^^Y#Y-BqUbgq0#=CL310RBKbhz4_0fu zC5-#7(<6CVE|dC+Y|*j!&h zQdRU7z=*y* zLjwqK7d4$B$#VGW=LFHv!12;Fj|z+PweQn_tfwGc5C%1vtYhF5CgTwW<|5+v{3-qC zz_C&RZW)PUp5SDC@A1f<{LGlnH%OV0^yVXft=|rTL&T@`oB({(obRe z;XwQ4s=J2(kq2aCX-YXz;|w4Y@&Al`L?_{M5devvbeJ(Awoz(an~c!B7R$qkJw>HW zoEH=U0ML%Py|w7W37pK_jR$PWJu}OO(qJ##~ENm-bc)%1LTbP#MhEch= z6>DUCzBOQVPefXEr$&q%v%k-@*`?V3c*x!VnK{l2*>KEz1}~*6EQIpH5cIbO#wn3TO-g>{HAqqmbp@Qv{ zk_|B@)|VV)s>0fuK9o$S6^7_r67fkMYxwCkP_k5~6)NFN8fIHXx8i1c3w-Z;@a-}iz?`f{R<29(EmG1d6qD8>6B{lorQw*#17d)IF; zqWb|jkF1n<{QIsCiWZJ-jx$Ft&F+AlQJD?p1GGr*1Hb#YXz#^0PpxbC zTPaJpw*&NK8-YDzZ+=E|1#?=bvtZK0f#u5;0+X1t8PWSK+1sh<%N3oS4`FXtg#OkD z^Tl53{pCd1LogwrS8$j)7m&()*;RWv(fV-U{c=U_r@0rdty=HMFRepNRTGD{tVEY4 zWCc}AJw$d%^5z5A9{wKpP6QQ9JS922^IB-~o7ZaOVt?pDL0xV+*E?43r9HRAI%hrZ zl1F!R!!Np{HeQIi)pY(%=S-#0w~^WZ{l0gMA!Rb`RekB{1wj0MwOt5mk@awpn@E+r zjG>?%VXVlHpUkfCo_S9JIZ!amx$#9*0@i_xe}n zZHSo}kg9$;ar$r|_j1MQ=ZW3h6{jya#7qoGRk)ludN}y}a>e2Ih}G*8r|&n!9OWIi zBymhMREvzhEERDI7`m0&^Acs)+XCF@#z(c?KU|;(B^>&^+{2Cic_PW399e`;v1db7;gC4IkD$bQV^L~xhmwi!2M zL&|hs2^vfxXxXd#H}mwLF<_8JjtB&BT(h&g4%#{0J*L@qtVt0bWM-wyRB*Yd6F?p0 zDAehN5-!@9k{=qp3w<*u*c?#N;F__WcnFx;PU4&;-W%M1%G@GKgDV;Od#G8xo2hc~n zL=~z?lI!lVbGKqfx4R7$5EN2@CEGH2YZNqB;Yg%N|C-@OY|3bU} z&m=@DHV*d&y*Y5i@E$LU?zG!1++3FzmoVLMwO zCgeE%OK2KIPaj3YfMx-;qO&!EOpQal%P+Z_5|2p{6WkJHLNbdLj7b4e zRQ_v85740o6J)YVcO7J+{p3!JO_8hleco6tUd7T4+p%nZ?bG(176f^WOzR47UVX4g zVk75non;J}(W1sa~>G$7W^(E6c!;}ssE zL=1VOn~=x46dPxu^%@?5ekpF8H3GHNj{`Z&NfbQf{#^RC)MMS71Kb~$d3K#~kazZ@q#UtFpt$c8 zn?f$ZY6LcTK{n1sL?i?VHE9lDpiB$K6^m%ev7S@2-xRB)cev;AK61gE*txC-(wpX`YgSG9gT49&gEaNAEvb zbpY62mLr(s^g{qQwj21{b6v98?SYD6h*7F@O4!yZ;|olzt(w|qy_~?J1)-g)o91}l zzRHyF+1E7uPNxl^s&>>J0`>o7R(QirA8vQ1;1S|pV0-4P;Jl~Y4Xx#1WuLKeAd3g# z5e9xFG`e{OiZt=`_K`&Ew6!|;8X|7o03|NHj5D<~XGH>~Y#9YdG~zb`_CqPS$l4w2 zR7C5eoVY_!{WqlWZ%d7^Q)_4a>D(OeqG6eoDihdR@}e1e zjQ_%v(7_fCvtFf(uE~E@>Qt=6X4U_dA<@mXNL+b5(6!G)Q* zyGfM7Xw(zHCva!8X-C{`Dz#&D_A`xQP9MH{*;K4)(Jkh)LCfMg&AkbA=UzXbb7p#~aXJFjh{)2;~Zvgk^O~gmh56Xd2 z^w{L@Z32bwDnd~c?h+}vj(-;Wz&cBKBL@go#lr?@sp6mr6xW_v%1T#|_VfdlkEnw1N}gZEvfNQBq}`hC66LJ^ETC4B6&(!MLz+u{(h4TW=8$6X6LqS6+%2UH+E~BapZj*LT5L0QcLjc4j(N~U8cbIL zS)nU;o(+Gq8)9Vaf2rw)Pxm0{*u9~TFuy(k@~fdNu{9d3@&VF?JweGhg9DUN@?niI zXqC6V4`gkrZ1o|xHZ?bk+eZ$RWHtXEtmi=;Vc7qXG1iWu9Ka~9f-#pHz%Z2`!1xc; zni-!3QaeKY+fg3!cW(2W+>gpSJov~ct>!ub_|tXn);W94WBM9f_TO zquMmY16o^>>ttEh*xsbUB&l2ugAN)Gp3v5nCgiTa-+r60;@-du+J)Y8ffB-(r2`o5 z{*rIgr$6f4&HfI&X9S{X0F-`x2xt=kKo(?uqfNFa`7)-?-Ro+9k`8rKqLMM6IcFKc zQq0QrWw#{9(Ux&5bML<=;8!9CmqZvwrxY`>aS(KD^bI_=M&S{>et@|AuD(1D51&90 z@1q-V2x9-kPu&joyH5jn9uN3oo7N0HR5|}J$W=U}wt$fcBk?u1xwy_585U5N+Due` zvM(U^$)b1c(%c48EqGIlQMuigt%Po;M8LvoVFF_ceE|8AtA>boM~xd)bh zLuP_<5&9+{>s{`_gEcz*6KFN~y6T`w?;k)Py}S}=?FhUL5k=1rphBsodiuIZEMvLr zV(~@^sqWV@&_lF-wtG6HL5{^MINk&!u%SzAiS_XB6!Z5R=e%NB1nQs zK|89KRV`}|HP%N;vW(&hPnl6+pG|5+*U^2V|IUv=aRBxTNH%RB3u7e49lNiuyd^rE z;4{u%O3pfwd$TQ*M~}={`aUU$r>%HkhQU!<1|`90Juc{rft;zMw2)E2iP2nKMkoQK zJwfq_%Q*pMG74nhzbIixc6?okDLBWt%^O!8NKRCHsW z8zaR^enn%ZLNpvbS(rBKiNPkC3fB3fekN-nO6yeMISTa`ew5akW0jgW0h<$-du+ar(o^r8W&^L8-@meOS2^Hm zGyQEq<(EQuPtC;WI3Poms_3V&98zQH&ZC)fAr7^DZ}P}~%{y^)Bq#N8{Au&3wYX8f zcG<%1*|TubioJf9qvlvoqSuu#rfb#qaMQ1H^;g_GcFqt-p#Hx7W{HL!mzL(%8GFVX zbBX?I)T;Ws5nQiD4~JHad?z*6l69*V;d>3|E%VdKn0NaNiM@LVP^}aFVHnGg)YE03 z;mWLZam=gQY<@1peG3|IUwz7H|5k_WHrVXtdm~q8n(6QiQ`Q*tXqJ322{$Zs2X$Dg(d0P^2YLYg;0a&KO1%=OdR% z39N@SS>{;}8Pbl@9Iz&xzVN^wa+_&ZwPQ(K=;?Q(9XTzz8V)OiXG5o5P{rLPNUc*@ zczoiCYf<=VQ07xMLB<})XgN?#5v#8(&(F3o;!v^}oQck)$xwfk=T)fEI={;pw{*mw z1yDX_w=I#@{=MKp4y=mrD|FYEi4W&A?(2X zlxPA+YT@B1EP#%dZwB7D5_~J{;_8`Eh`Mr_qv-5FX}N}oew^{>XK#g%Pkt5auy_}i zINx`FwIXHd@m5Qc3L!0Yy!=aOTFhoYDz-E3^M!%sU= zH%^zV&HXwmQoeAtWuAP?z|Bcdt>1T19R$&|yWMFM{A+X~gQsjfQ@Xk7dAr%uo=vtv z(AA?%%+0<*q3*oY79OR}M8NNV{?&A--PhsZYk*v|7qOdRkUQ@nqc}MIu`7f=NGu1B z2{yKgpPhG@(U8&gi}HZw2V9qicqjU{dHywqxDr&YRviI;YPH4Pa)BJAw-wFee9K6c z3?!OxUUo5A;Ic(+mFw;)kZSwqmn~+Q`YDQqoje4tat-Ver3FPxt&hwC>5djn`rh~c zHb$)bc3;|oBgx+n{^P02Y{+tD!{X$R>i8Y)+IqS428n17{ImbM)D}BqnUIJZ2Ld94 zhzy?Pw&?6-GrB?0m>mi~^CXes@Klaj7=f+_B8WH4mgZ%7RL1F4LcEJEym> z1uecnI2>O1FLIH=YEQU~%)mpI4*IM<G{}dnFH4r!3 zFsXjO2`$n;IZp(k3O&68*S&fYbb0W-c!`IpMG!P<^OSe1u3pJAon8MMXio6X-3y@>FDC?hLBuPodPnTgKNKQ@bZ z8K)X0V)}jZ9RCQJEuA7}*>31ARfzi$a$Bwt*FpmxZz=@~(Xnbue`d>nF#g8x+cts> zJija-&7g?C#`ZT2BD(4v-0$6(Qw42ygnhXagkY_UiN`{s zQ)L2|?Vg*V+NU9wm&A~*T$NHI94CkJdhL#(A;w0FSN;si-~^@R?egT*j0%FUV#w)N3md2o@`L@P zagZ;?I_U|82Zz%L`?KsAJD-WStZh*)a6KDZ@z2p%yLELg1e143JPk#Az8Ues;Q0h( zS|e#{$r%~*8brAA_DoThkE!vcT@qX_ydbd3AtEP#v9PLHX92Lgi-*kV)wAjg)mR!6B zpu}5bow;G)al7F4dRgD^d3)#jUSH^)ks1+?nQ^twZ~atXcP4JzZlEhCqF2P8=mbVO zRPGWPxHrC*S27%C&~bj4A_X1ijI6ui#=gg(GdW=-*Px;NzRUJTA|L$-gRO-jQOLAH z*{=qvjcy}W=N{yXV)MCTH{59Lg{4!wW6M}vu|A{>&wpkG#E#YZPkv3$?SM*1pz zNQD>*4_%Mqdxn&Wl0-+Dr*mS?IEkN7vPg6}g3%XK6l1zz9A(_0v~iLV6=>FyPvNXo z!I8&#MxteDXmrVwgnL$=B| zUrH52tj(5R`7RtQhCuB3`ta=U$FASwWpLv`awmmD70m;$=RTnMlQqo=%f-^X=jS1j zmIauM>gZ8(zI96xdpq3losT-I9J%e3bKi*Xpe47F&rG53{%p&4s-yTbb08YKP9q@Q zNPRaxPvn*G+JgGcu1(=$lAXL$4H%|}GvQuGC+qC|!QQjnk|wHB;-iZ)6yA7BC^_2k z;gTNeDXtWd-RhMc8c|!J&~d$gN*EJyBQ{ehoQ#VJ#hpLUuRJ%`povLOK*jP~=3a7e zNSj1VY3N0Xh`qMh(OzolVXijTf!LB20dZ43+01_!%NhnfN=>23q2Ya3^ z;_=8`^b*UNNu0JA%&oT}eJAkJ-NCi1B;@rJQFGU#;7eE_rKztiSd==C{@Rdf-E44C zG1uMCAu(m-DI&!p_ok$Fe~0{S;|^dx4VjIEhjoxG?45iaa*!=t3;BxRK*1ZhJdo%| zp;S<|hZAEKxS7O;ZU2v7AY-1LTnmQ_&aE_#(q{~jA~8B;DUKKY5e|E#LOO&Mk@_o{ z=?Ht4Y3u^t@lV?Z@{cK~lCR}TNQhZSBzQF{LoK?_*YKb9xVU!QK1bM%4Dw=ns;WzeIwv39(_B@^JC63 zLG@p{CtA?ZG#(6)80NnExgv&+EGNKz{c}SM-j@|n;e~O;D$+pK#nI0R=}o-?)87KQ zj%uS&2hkr3$%lG&7Im;knvUS8$|(Pfwfdc#zv<05dZE`NOCgRXj|?pysnkCuJdcbH zMgMAs2@WKzy<(;Yz~R!;Pjz>Do^%k_%sHbbBuS)tokq-%CbIEkC<7|20o^zy&DdTB zsl9YV^Yyv;~{ZCQ-rIn~0)(GIRvGvtisKEu~ zGs#Md0bdXh&W&Ux!GJm_+qYhapW<%s2YG4kdV5IQWpBkC!;a9QqZ1 z0eC(3j5eB$1WR&YGj?vyc;8yoQ8_|Yw+B&D;7ZhT`3gK(I@*vPtn%=OJEOEEyP9~cHqZ_N!nRPa1R8*(1lH|t*y%FgTgLwqxkUf7~IB2BTD$q;z{Pq$#s((f_Q-M&m z?EzZPr)z*U~>R)8e^!&pNj+VB0_1=fl6u9H6B*t+f6ONjh?ZLr-K# zJ^i_vt>?*<%EH|5)PA?qOPk8VZ`iK04zwSqbdl9yTDEvC(Fww=*Xd#WT}v1uzQ4_x z;IrIXWc=PSyqD<&x-7={-HYO+(@AFZ%@yXx{U9;+br1EqT7Un&73@q|#PjnQ*2=cu z`_a)6aWJUU#>=Ju->yV|e++4?I&F+#z9yG@HdHPcUcg70sMcbc%6ylR(cB_Iqd<*; zHb%gaaeS=2f_tndP~3x!7a56Y>_QRv;Mgj7w6V_Zq3*8kTBTkI-0SMrybt@_$j`g7 zsq1okusip;^MXVBe2RbfS??sBI{gA>=15QJIcK&VCVF=)i*aVM=csX{E#Q6q$6Zg6 zlZ(Sv4Rc11=h(`IMIMdt0I(KEo77Z){ahw^3p;CQM+?}nJ`cDLcJ?)U_V#mtC} zP0SR>jFjrrzTzUc&ha`rSUe1$%Hq~o5u20S^>X-d_E>37n(LRe*t$)0wkg27@@#So z8`Vzprs;6S$@@xQU<~*b>T+0^^gj0c1^$+vtPt=cRK<)uxZ1zk0b5nSyG9MMW~G?W zC@j1rPVnMa#p>OJM6*`&#bAY2uYgX0$@=Nt>!p|TywISTy86n)443nA^XC4cd7HGs zi#RwuamQ;WblrnYxM(q`Q4RniA%k{L1&-pEjp!H23Ie~kL{2`f9zV~ko7uf4E44T* z=1#BfHk-E%CigN!;R*JTcPrVqi0@+ZPM2O97!2~oD?-DILL<4<50?TpxXZ@0ScBcA z8t(zOxHTTC(c`-8-{+oLn5ppvg7Ez@mqe~MVjacM; z%8xR#OC4}LCOq{tmdW*PjVP(8Bk#BEzUk*vH`RAH!3XnP3fX)tuYe$;VtYt{rupX} zl?Z7i97kH^JyC}(jYA0Lq?^?=h+NYkV%DC{srS}}A86f&;u%Wv>>-m;W)##0I#}c3 z$O&llXfxy96bH8)W_{KRu@1NSW$Ec@v z>Dg=6s#SA_Ecx_P@_f#2Q6dK9a0NEM<3ZJ>$jYIJf)4j9i}t{ViH(G!8$e-y5RTizYcsjUEam4bvqE#KIAhnT>zAMmf$b2CKUntVbQ$j;x=hO}cT?SGZ8Vw)DIhaU1KO%avwOlFS{N z*CPh>p_x=BliAq!ffJ&61r^K+k~{`b%xQh~|K5tAvMUpe+<0=S(D5 zO5ZqIvhX18LP!9XkvpQ#oCQQU_N7(xNY^Z8kDDteZW9Olzhxd4L|8J03#9CN9s`{h zEsN(lPvr#iv+&|i>I#T45~T+U!W95H{3VfSfHEGN)HA-ivXm235$nR>fwaT}yl3~FG=dEkfJmwEVWGApH50vk zE+1#`Ydh<*q=<=z3H^v3rsjyA0N|?8Vpv-Lji{Vp{?U{cZaPUJfS^o4XuJq=9cabO zr*kP_Key|Zw!M$`QFC60gIB5fNZtp$ut)q{*V)yl`%F(Ey*)D8YyIBm=lT4ntB&E^ z;RXCyzs)}28B~O2oxl1$d&Wf7*oEKrD|(1yaO63~XJ;?(05N??Yg-+D_IE&KHv#3K z`X*ZgXO_jt3exFZsm7!Wj!?l1Z{GO(~I3S=ek^fbfko{j>!sM;EY$l}eYuZQrglld> z4q@VIIFw7tl>9qxMm_3yW~M6(aHX&({`^#O+mOYPv#J>ftuE-OKLimDFRC z$oTdLvgBlAI0h%9>bWHy7nrxB@O+HU+!pjWP?bFq#8uJAI#5kVEi0g6ix9Rq^){=O ziK7$zTyZBJYa3!W2uQZ8On&Eu;I+m~$v8Qc+&Z-|EZ-ksay)D42l{FB zP+$;Si%I;V87yCWh^22RmiT|eQO8u=b>YLTwC+G?z?;T8%ro|j1c8uhYZ=Falrk8fnLahG zJeUTg7tSMR9twE@2t5zO(utxF36JpI3#%aLbl5pXj(}*6UEOB{4prN%yk)=m4x3%5 z0Ei##5F3U3FFf$vKe@vQh5cuNuR?f+cXOnpenLrV!=rm}~ig%jXBi z{{mb+x*HC7oJb$&#)AEec-__TW}q9kqfQ^l!6d`N30w^+f3Am$$FJ&s;W#xUmvga; zBeY9#bY~Suq$|$N)sKy>jd>z|bFaDIpIlby?(}?oy==+8taLecs-^ zy{_G#GX50kqgX7z$+!R6_1cX~_zxRf{?Yx^(!C>a&kxp`U4FiizP|X}Uj4`HnR5z0 zZ|Il&YYtDu_JF=09eyCz`O<${58a;AT!AE?moDi}*Y_VD>QrNzcQ@l^` zSf#dB=>0E#5IrMz!Y66&grwBGdwB{!JKS4f9#6Wm2>$(0%>m5cYo3zy5zU6dS>zWo zx70K*-9O;5SVNgAm&CO=CUAtD?b*jmh ziIc5rlT^lJXiReEpEC|spDjwbc{savZVuggXV283tB{+yhAa#`oJTPe3b09pe{15i zM1koq-Pt8<|EkaF;Cp|>zy7O1NauXA{29MjK(-p0$c2YLC4*-ugkl*|#n0L06w~2SHTVK8V;tc-F2z|Ul!)*}$oGJJ`M}NMU{0MmvB|)% zeGAT}ja@WR1p1jE?a|cMk`@o2w1t?u1hZC);Kiz@kW2Fc#IBC;nt;rz{;dZu`art5 zQJLg!TXydMyE2-wpmH)Hw~C&yCR0pxgwi&7Skjgpy>c$r!hx|COz5tV+WPL1nF4k|Ril{Vdd8w(G%ZI$9qe&`N~q@vAm)DT!x##~6%>FeYMi-P2h&Vzo70vy`721|o7zft7pv;x7!!^jM~vMG{jLS64raDuA7m?z@-8}trrOSoR`?KQvB;>tjE z7Cp*ieeIgL29Pvnm~`OvqYt)b0;kKyuC4J@*KTs_^Zotb%>TZ+fZNcY^qYvPzS44s z`9Y4A$^LjIn+Gl#P^)UI1A+>%((2h(T-21oI#ajwrkm<`qHRPkUY){HB5mX7IUUJ5 z?|4US?XAn0Ye+4T@l>R~C1{DA#r3OXe{Nl%dDF2CIgY6%l1AfCM}}hawt{F`bzj=n z47aN*ogukvtHx01Ho+jL+yliOA}!@iFYd?rzVoD|7muPrF9n^lO0`yg@afhrz@e5z zr*n-obuD#oY`!w;fUF(UxYRVbuBF{cwKAZit=&mOPM6rqVK=#XwmPLFO;Y{r?)AK$ zpuW{8Zbt7RHx-Skt-X=p&Lp9s(PlP?qHQ}=Ruk*cTa!xGWHQeKxs=e$zYuNf9J?WA$ z>~A{Kj{evin#bzo-VA25>b&M&=aAN;vr6Pb$q8Gg;!?b83E#UTeL(56TK2JD#z@5G z43@BX!69Yk-DhiRrzK^Tj4w_gdpQ(PqzSY%W+!)pw_qE0X79{>2EU^yTr;pkhBod4 zgx=8U4Em2*+u`6?uU~V;qNhbd9hHdJ%&(DD*>V&rdP9AS-1W8 zc~m7Ab0Vl26toz#CYo`_1S-U{5{qCRTV*)nr(+zd!_qSKke-^(v7jLq>?o+t4p zKgeuJLdYtiRYo~lmI1K=o9|eV#r8;)&*#02P4Y@qPO8@QqtGUQH7O9klUdC(8{@S~ zsuPn2sM11@(_-6Z#n5CLAfc$#k~J()O>hDeeHSGu5OL4-)i1c=<#>-C~GsgKJcX{q18q8Xu&ofG};=HaM9WlvZn zvQD4FRucTICDCVmQ8t%lv>N%Xe%)(YR>DYQTIQ76B<7UTkTtejBFYnF0b9$O6TK6k zET++1U6Ix0VE!<&)lVUKfjI|SEm)gz8dC={UJ+Xn{g1-GdnSZ5I!pCcwtp&g0uo(v z4vWdD$Ef=n#JJZ9%#ZkOzuPcQ<$3!)&Q)iwSYi_QkTr!xJqGQEqa$^8nROIupjCt? z7pE~Rob1R2$}*|nA~Lk7LDfr?$F0Myx4OPFiH_7lcG3YxLZ^)IB~E)N)5_96FyWm^VJRd zSV5G8(JP6r(|Q%ve-)~JkkO2Q(%X$nX~mUTS%>1k#4MV|pvMWm*-{#d8$)u4+-Zf5 z@GnXT9Dq(i#r!AGe`Z>$5e~lF=d}C8tZ^uIH&+EG^`w@043J={!tI5R-i&(+)|toCyS^F^R{1`h%-J zz(d>AjFvRea0dUgfH-lyKJojbwM}QhAXfiU)nuLhIJ@{>)~rOi1vpfW*SfENP6L4d zlNr}8P8ng42uZA7~#wM2DL4%;Jyc0^3K>;p&t&{CX5d~Ri?XXbhg?%x28ur^{> zx!sArk1Er_FL;>_OQwZI9u;4dGqW5~%wH@@>Qa%jkrSnpr>gcCb{JLl`vLK@qnybOr^P(a}&7DQ^%DYW{LS!TbJ z7i-#YgTlInw%+pB?-YzuYNw1ts$U=Pqw{{}nXi{$qx5+=6{9JS_#$Hbh&?&1f|K>( z#+`dIp&Y&zR%bG6Za&J^?Z^Go%mdL%@ve&lAJMW;c-!a&g>b<}nx@*j%b2ZKb6Qmq z1i=c$JnxA0f?d^QV5l*Qn%Z&&x!kfWmP;=NfRSuVvxkFT>^2E!+|Y4Efmdh5Ah^21 zXZu=0PJ>sdMvQv8GKi$!BpESVho+0>U|SMT^_$q%7s{6uvrIbxqY_0p#gib!cT%({re*G z1u;IqyW!GeCk3e;#o6yQZbQEbSD8EESur9Iv8v`!_EUL%AaGiRU#{uj{J!wRtdDVG>T(c66cSon3u;#!u zFxR1W>G`-m`7PghjOe|s74vPbzB&&VVOtSWZ%b6?4+Q9QvhW}+1L6h65Kpg0U8jH) zC$4mg{=-wgr_{XO{(tjT=Va-+9!j8v{*8`#UhjgFvfHSGff|+%bQJ7A>1gsEcd&8h znD{vdhmus*-5RrwS)Z+F>A-I(F}6)0@bhPYSv_I>bNgQ3m+RxD0}?_VLO`!S_xfMI z=nKYt!7GTN+g5D7-cP@mm$%cyZ@`~xA^670R_~ba|IYYBu%|bmQO5}%@yc;eFT+qj zr&~CsB!u>TV&Hu5`iQEx_tih($GwJfGAcX4w%TG!DWDWv)-}x~4TFweTc@$b!g@$$ zU@@%}U-m~DftHWi@2FDCGy}fhqjm1R`-xgk$q$B3m}B%_i#krGaCBaxE3mUFql#4=KQhr%PI{v1I;YC(i#=K*CuNn-#zBa@UC(-V)i#Ei~ zcW>t*5JYM z_?AQ@K%J5jSYjJWF!j1LlwLzR65vW$*m*zxN?Bz7mJ&MXcOE&IpO12a_1m#M=?{`c zVeHbir=Ir%4wv{Hc$6&_KROAfbLp97?k2Ux3IU2{l_-hJ%Z&a4%Tpm&@KPq$&fwAc z?L#~(Z-f?<1ZX1h8g#VL20=2gV%piDwo{>Q*Md*(c~JV-VjsHjTLEb(j#L7;+k zoF;~c96_{MMSl<9j)=3DKt6Wmd8jvbdg4F6o~5C~S*e6&ZPzoktU*xCJR-0%1Jkb1 zLEx_7v4x#sp+t)+LKJ~=?J7!88>aNc<44&xc^6eH_huqzs)YqmaP6r`a=#Qr8s6Sv zngp{1#OKQ)*}JgxZm9H(OfrHgv7z4{=!nmjVuIzCC>`(DLoe}h1^MXkd^x3#crF#C zGLxF9Q>m=;;VDANsd3KTChfF08(W^q9POSiib)sn9Me8`@%8bZX%;+0016pwYJPG} zDUEEV*0U_TAMyeoNGr@b%a;UKRz1-vpyo*>!L!9;^oP~plOql z%n~v~Z!j2%Z`>G&<;GBg{eGq(>EUXi4C+P)>v&F@wwjR=XWWX2c*UeEu^#0`Y)@^I zd#)e3I)t?8i`Bnn4W65B3l03hps;gMqSMs)D)E;xT0kP-*T+3v|#o#?6g6}K%VpBgi%zdsUH<$7Zu08 zQnfOHLs+tVD?IhwTKg2dC;=!Dx7BEBpD9m#6uXO9t1gb;a*zh|Dp) z$~;w1Y1UP^N7XBgG_=)AyxbwvMEj|$ZfequC-{c z#HIU^zf1Kcp}oqqeSfH>*X!+^q8O$=lKjP!Ysf3JI|%y~ z9-|}0A)eJnz2KGLn%5ruFqE`&WWvy3n8Zo*7(2QZ6B*1J8w4M{1~om7G&}r@_C!)? zV^Z|2L6+zeoi&WV!6!5b=~&fOYF?ufIiFRPD{^B--B4(vW7Sn9O%J@Y z!kXxLV9-ZKllX(RI_(l!)1tpai>lThnbM-CMw6OF>O+%?G)1^k{;4Rv(QdMmHEqiM z6laP*qBNWtKP=kBbVV(q(M;EjPQ00wjjaZN%anfPcD zDY5BzQfwmYWMk9*Q@h=)1|H)}|9} zAZ%%NF@RFj!bUT?Nv$LjQ*|{&(}@l5OM`s6}mzT#y(%{ls%2e>e>|eMa-^lJ8-u>$nw3`)12xdYGJE&%J1wvLMlP4y2Sm`(b zQZJ`3WGbn>ebY%k7xB0c$mTQ=E58j~_3t9pk0vqF&Zr&Zds;I)|7NE0ULI|AnfU%v*PNgPdO zIFYh*0C#x4=YMp2`%z*!1Ak-BWYYf?aB}{CZtriv`LElXWDoLmJT0=JsH9?BO+9{X zG!qGyP-QEp>%7|&1*~QmUWZzF6!rbx@?vl4v^Z&ipaxYUos2-73}{B4{-KOaFo13d zk<2OYcb0T#0&V$j#YAcX{P_PHNb?-Hd48Ef_PJ=GX{JEL5&MBiYkh!0m zMl*PHfDd|`y~D7@R6i@&da-`BSj=0B`)?(zHm?Q)w%DEsjy+1>u^81TUx;M*7Q zQ4ml);8D+b{kv#yQ9XTj_$mq{|KZxO{_W&-?a$Qxd)$YCFdWGmj0tikZKSAKB@ro! zE%>eHab`-#lrU<#%b7EgvBHUzW@4Z}st7bOQN>8HK66zI8qkr+x#a+Q@UGx4qTKpn zsA75Mx@>w=ph3HeOA!*reaD@Vnn+ltqWEN* zv}W!N;##3L|F9x!D!kt&@)5~eC6G6AYOCPHtOP~aClc`Cv`C#~N=ie9!3$Y+L2bqb zO;PA9d>>U4)Iz!yJpK(xmo}NuwTqGT0TqEHSOryUNb39%));(2z*iMct>w8Yo`|6H z%BszExpOp26r%y(Wp^W=q1Lo0SvufwYw)Dp;e!MFKFml#F99kqOtuVCO#b`BnihP! zJA_>vHpbh5u33G`I!P{2EoAHmYh=qeV|;gcW+E(IsCBRp4{fmc;qEvCOsHr4*hnZ+ z+nrvp-F6dL_LmAM!b9D1;Fup;oAD}N4Fq9XGr$l`U?U;x{ZmuRzN3?0OVcgpa(jP^ zcLn_jTIgChii03kpU#1tt**CbpO{=g?S5>Qf}{d9x*yB zj1ZxfbzuH@B<+4rTs!m}5{2Id+Z~4X#n{UdG66kXB8f5A)nyRz68)@O2;)u$Ck?tI zj8MJxWeV@o17@$fb15s{B)g67ES`D8M9osB z;ojj!=fo=m1O6t?{07s(DS1^qQhaWA{lrq)p$6oGe@3iG^9sY|&FI}R;wbs1#rH(D z8QBkNA*U>gcRCA>*rU@^HR0j1R&JsJd6l=c0Cq_q3>bu$0^@n%a&C_4&t1@rZYS|I5wQL@gz! z_$W^&GdE4EF)l4n+o;Ym&#I|HH7Pe2*eH7k+h0^B10(%PPX5}-WFTQM?~MSL37iy zp`-n_Qp0qlQib>G$)R;~h<)G)3mgD@T(Z*l9*0j}o046D5(zxac|SDw@w=j=9nv)H z3Kj*N__pA*3;DB*=%@ec7wK({sozk^RUr{&!?E@4>@Ykaf;4v zkO{{;=tIYnO>xFh<%SY3meGuxlr&C+u>?9QKR2q2E23z7?Y@$ApXz)!>u{hM!k_kB ztc$R+7k;jhX%Eg9y=q`&TjDTYd8I?@yq^v}_Uk%DSEeZ}SNQO4SU+5(S!?&qRDyBs z-T#1)ExFFL-&wjzVE;^Vc-#w%Qn4{&9EJ3i9LcAp_UULk^wheO*7698T{FMSwSu|h zRLDzqQ(yJhSWV0?b3S3TtWN!#!!JNLWUj65{t!?1E4Ck#K;0W+GnlTpM~+1V^L|3; zCpg|k#5(S0$EpvnLyt)w5;6wa%>p*TkTD{;ly*Y8S9qR(c7-WG%E#Ov!1&>FcjI|f zn;E7uC0OK)?~n083*TZ#xr6BU0%5YmttTIXwi4$tk*x}zR;<{VLo^`v-_}iv)>hmW z5z=SsczmKv2TrpLoqO+R0+swqxqYj4>E)hhpfeoSF~HCRe9UXmcozGY*SmMGe_yWP z+|ljPTK>*hCF;)A)BA^i$X^4s_IKKc*SovVy{$)&&c1*=o>?_c0!D(j6;s7rwjE$e zgQLiX9fSf-pxv=ue8lHluMQ%MDkHi8BLt)|QY>kxQB&fxhb4{Ee1CDkU+`yTG-vbV z9P460@?(dQY2GebJpB<)bO%WpqVaE%Gib~Nrgu|c^>^stH)Q`n(^)t@-H5p+ySA7t zq}nl&mLU=9xRQ6C6kW|BwzgTM;M;Y28D!ORw(QX4smK20a%2-ls0GvZ^;oRm&^_^> ztRtO6LGcoQ%B0%$0HRmN$o3HWV6NPsbi+n5ZV zpIntgvosXA(ECu#-WM2!$RVL`r0Pu3wnW7ag2H;trm-v0GrwU1aDibJBDn&I&CG{7e?Y+wv!oVAdPIMnH9ExB1mhMG$pj&7i%jlpg(R-mF6 z?RxfkTESF)K^H|(t%zJv0w+S8qg#e>XxMDoR{PBA3I-k0gY*)Y3Luy-!}cBa1>3kN z-XbbD2B*T$6=bxRW*#@^NW&_UgutVRCW}?**{rH`xo9CHL`L4JoO3A5nc))QB6t&R zG1Hc+#oyDUdEU1aX~hZ^OHD}FO5gJpGDmavt??myi=naJj;xji&J{pxbPUrS`1S4w z2Zstd%xG#HODM_NsndA9>{e!X;s@$V6;>SdkZ+=81GggRrYC*Jb0tx$AwP#Qww3TR z=2LSVYHl+WAgfWj8j#Ee?>~k#TQqiucS=Qfg59LqkX8h69fp!hRiG(}gPsP>ukM7n zz4lLuicqFN(jr1&(lX+!tBEp@jo^ZK-HU`mEbg;rU+UtD-$H8NN3d`rgXN4wYm=d) zepFBL18irvZT2yUf^;v%bR4+bF9PzY(e49b9W%SRQfzCqcbJZ1z^e`{lMdm5d!#vV zq(Uz2(wa4bNT?Bz`?EK2_>IcCmre9c%ho`8_feSLwMApdM;Jl47z>;$jBJ?8&uZM& zWKXD`h-}vq)Hy+g;RTwtXK^0OioC>t964BT43L{O$D14m#S;`qf)uTg#T~*+X#Dj!>Le8)~43 zJKvtn8~gc`qAe>deKes4SIrg?V__nfTp2{~W$1Tk;WgkfcV4Oet{T|#|Jx4s|GhoI zXUozs{@yZULjSM!g!@12iFW*V^wroN?IW+2Kcp)?Fj~`OQf!ywO4V4isa%7JsSWQ~ z)w$=jP+clX>w-)_R{YmbZoWJLf)p`chnji)C{e-wNKd)7BHi?t_x93sV>A3q8yfd9 z*^g0r{~W(BwjJB%M*33(;KF8dhulA~B6PN$MXPK4*ZoUY#T6lj%@l2%IjhA|(kS4< zGHB@d0w^%w_JlLm$hUAq<8~IGI9&FeC}1mkH_tkHCq#AGuB~^h1jL|iq(fY z1Z<$ZFs1@S$WU_z6C(&E%h*t;U$!3IHT?7Rz>J{$o{}+tI5nM5GwQiTuVj}5_TCIz zzKYN9E5ve1rym+oop>l4MN_$PnmJQ`?DduSWw%ea*ceY!#}Q%-HWWJ0sPotk3r=j{ z!fT|I?v?~k;%yBIe>IQ{^Vj=h=1)Aymug{J8}HH+MdfacD;T}hEKWDt9e39IX1d(a zjpKtu-<5Ypy&7G}q+!JZ)FCSL$E{#p2v)exx7!5pB@~fCOln|HWS_D#9I>rSZ`@c}AKF;rcL>V*_W(X^ry?(G$|wX-yV({IS^dw$``)i|GGqu*(O ztL-r)Tnx-%>TVA{XV%lk zLU0f=>}ZF9)NPGBs(n22YftO`&sBO^f0n;w+*^J~TLPpVa0`L2^uFs7Z5|mIRyR#g zRm~JT$iRT|r2xmgj}vKJiyHu3UTJ{jB^tH*IT>~#o6ptWNX^{@t|nBetE*6QroP%&8DDGpQC{5wrFf0lRkwJpj5ioIr5XkLdeC2ZVRQ&!r z>%=;4guyzAP8gX`uZ6w5MO4$46CkQ?u?G$bR!1U`}qRD6~ehXq~q^; z$BpgShp_=%r82?o!FUP3o1zfT0yskZgJOejPNzp)rEo{PgY48RB0HWpcq$7v{tXe$ zB8lFg2A2>lM|OL#j*1wA_|&^y=m!uxuz-a?u{GGlZCZ&~`GWYa zOeNyM#Ub4YL=WkmCduJ6ZBms>5&k|>vhB%<-4YC>wY0&~CF+W95|B{_GpJE^0PBFl z-aVA(=ka|VOdJvB``!#BkL~?(#Z`~n7Em~C+rBpR`xwK#F5c_=d-tp;FjFQFpU&~M z!AU6a{+j+%1(B9P@AjejI`8vlXK7CG?eUKy-)1)m;noeae56?WICj?*s#d|6zYCp# zf(f4Kxzs+E+YdEF^$Q@!TBiF0pJDd{KVZ5ePy<5&Cp-S=5f$aRY0jfzU;>v}A3ZPp zZvtL(Z?7J?)31q<#nGLSmt{^*!g7Vch$--S+Q-U^v0>(WgrUko*Cdp%2gi?4q`C9m z(&gJf#JNxmuX2T+)aSW3s@MU(=$kQuJH-20TDSd_5!Gi*oT2jxd(lUQK(m^ zr~~{&np-6#!ViqH2T>>PgFBxcCaiM4bW7+_Lv{MXy&DUNd*8L1}VR_(@#*hVq71xDT}t*al3}f9WE* zQ@S6d+^hVy=iqJ(YNtXAOkgx9-%cwSlDRry_?AYv$kBh(e!F)k&w1$`CkXL--8X+G zA5Tb612zdT-UBeZQc$5-01EqW7U(0n4j9EAI&Fs23_3Hrtz(#kjE|Rjq2=>+KXPb) z6a|!B++s3eD&4%G|IJmg#4NqYr*-l;_zE$f0b*R@1ye|}pY5u#VW`g94=`N0*qlml zoi?X;)t>scQU_V=g4)Opz%pr?XoJ5a~zgDbtocyv)p;A z)pu5=^{5(YMrju;@VeA!L^-p>pB;*KA4E^frn)$UruqQLt7dh`?(xVo-<*yI^#CT? zZY0`G0$LrNPad^DR1SK;W%flN_1jPe%e=y97WigXqr%<-E6$Ty6MxRm_w}qwJh_uM zuz|>*ctE42+FNUR)5|r}OE+P~Hkk)yIM<+P;Z41eXPcKCIt|Tgw#23I?^|eBy9=3$ zH+=9LSIJ!BaJ6h$!DSb;DXo@CJ2W%*#VIp{$FTY+V8`(*_qv#}heoEvqU?r#!Zg!` zs)5oSO&^52v2aLLkbp2}xqVS&8tl_Ld=)AULLkfF_$XT$mD0{5e zB47T#K*ka{g1N4j`1lSkOkyP7mb`s{`_^#jh#?*+vQX!Bk|Ec_Q)6{hpxzF(kE|L0 z=?bZ;(EX&IGEr!U*DMaWM;)QKhjWl}GmZ1!eChX@T!TZ{@i@5EBWwtGU-tV_uI0B( zv~afIsVP#F7tHMI6Wwj9;u6EJW;y4$UT)g&ddm7kq}*FR?5ePX$%RC>6g`2r)H1Tg zR>RFp=q}&gAKZT@W*V`_VHvuHTJLigvi(}K0y*4O#}?(tFmtJE@BaZbZVL2$FRiQu zntWRu7EavI12l61!Y(m_rXKkKR|jSjdbe6^r@=7htyG2 zoi@ba5*d$(+x-7yhF#sf?aW>OHNf~AaYv)K{6b$r`+XMS5ef)o*xj4xCPqhCyUhEVGDU0v zZz{6ZYVD!?l=|`b(yWMOev}D{k>ZI5tldN|zN)UP^Qyy(h-7 z+0mV>S$~GFw;rF2=wQOLS&eqRv5c7daK^8Omp_IU{x>$*h6Zq?Nc$LZf|!QE`!{6L zU%y5g-2X1{Vt&~5_k=&Afd9CEINEjQ|GwH>L1|v$7@ExTq;_yjjtCuZz(2;pnfIr=dms6V zwzE68leunSg-m{tGo5!JcWOr(Te?YR-~Uc#*P6eezK_@`XiW&uYS zfV!c(w}sVF&3g%Nv!&4j>%@e+I_Xh#Yz=a4tEEPkk6GBC4^MlV=m`dHPI~~8`0L}t z2Z(Vuhza>N3N1I?^=Ws>5ZzrYAn01>7lv@7;bCJ)8dL2D*8-b;6`*{nk^_%w$aoy$ z&&va=r!Z1z;P89_I5#**9CAPB2h%SQ&97{Gv;z4t=`R!s@u| zX{2TA;^49Pw+>>SKG`L*m@f~3-0^`C6M^E%LU}|N{4DmtNs~wD+?+^siG|3hwa~cG z*w-l%24;_fIgiRf9%A@i!PiJ^5Z9miEd{4fIuGrzYy&UUyOd$&nQ;fS=9QlflOv*m z`x4m*l%n1&c$G)t!%xX?){nRR3^JO#Kf(;GMInARSfWZmA{o@^JHlowp2EijLgiexWk}v7!fOU=%{VVeR$j zt61`T&&4AcN)8rw?gqpilyUw6#qG0gXKG7eAEz(cGNpZ0v}_7sr5$8QTo0w-Zts;^ z*6yILFVS~U32UKgcU+@L2E|%nr^e|p_j?*8SO$S7z0(eHgslA{Y!-fe*RPSuY<;pKI|b$}s!ikf zu-QvbO1dz5k?>J{u*J&|&H2ep_XiecJYXv~@1`;J6G#;~`i`)jumzJ(BhDGc-D zqBE!wdN6pyNi~n%i_EvRxOFT|KXdHPBqynuH*EB+2R+X1C<;b_a~w`h)F}9BO-|ly0vBMQT1enXx}iN2 z%bH4Oa?!>v8l_D|h8GHLKba3|suPzy6gK%eiD`k^k(_M83r&gdU>8qZW~A4RqX8q; zj}RF;{be$?m#fYZ8L;)UX{e_9J+V;r5TRT!j3i|$kb7*S&+#Cu$pbJ3*4o7dvz`I5 zeFB0YP9O%C$s;0C7;#o}-NgOe7D*Ar0ei)SZ?gZHKy)d)dW`;>?Ir-`CDVILj5Zhrq_Z8P zZA+#CrM|;0*Kj$q>vITmuYsmuk$)!(5$ex%W5v_YunbcNWWC!h}eR6rdf#5L^|61YDo)L zWBThCig2FKZ)%yRgnCnZb#ZL9oa?vaq|_rGxHyd_@k_$i+qQp?gSi#$Xia%8?01_A zvVJuWPpq@nP)P!m=NzvzDX4A6@~-V>M>w5&m_4Ct5x`+e) z=A8qzIXXfB+BLwT0ifH4T*YUsPT)IQV}(Pa&s3D!zner;1NNk{lUU881#01L{jAEtzAoj;iS2EIKQDGgKEHEI;oS%~Bm=^gVdR7M5X zHGsVFN0{FL4zZ23!bLapxF9#pxRU@cXuI&wt8b-E;3b`+u$k869o5lRfBEJ)gGv!9 zvzD<;%do_&F=7yOY$D^JYApPk6fBA#Y6&zu+{8F{sdM^s}{YT#v>P{!n!0v&pn%t`-JQg1}d#Uct{DQh>bbth6Y&MNVTyS zB*{cssa%$RnIN^NB~)fWzc>ZW==scv_d0t>Xp5vdY3xs!p0mjxzcyva1-113)Wdj(bYbmfkP{yd-Pko#ylN4=An{vM*Gf%xu82w{hEV@ znwqpo2t|U8W35k@2w(mRuNmefy9J}#D9PQUMnsw>=Bcoxn(AjT>&TRie>o~*rb;X) z{foULkLh@cg!m2-c$$cBvi~0ldZy~6MEMSkJ%nGPnWR#`^}dz28{41?4sfgI&TNft zpGMKp_EQ=TvsM~HK*H|npd~63`u;duln@jEb+AoKd4DmvFsim?&;DSiYZ6qiy0mdp zvX4`Jgzv)-$%Rwpf#5^#af9<1G-HN&zoZl9I7VMiO~IU879+R>(X=iQV~Z>}1XV=Jn9RQqI9XE)TmgqP3L6>2`Xzu>sphr5jDLE0rF3S<-19VFyq zfj=7Y5k(n=@JKzaRe1z{T!~G^kIYqto+aoHt#@w4PS|X@ znOQ=d8>JQk&84o&WqwA{Gr0hlCW_4Uhs7r7OvnJHbc1hBi45mg>RT>ZVny4e>pX@ii2cvg#-KP?noYfL$TfCcEvjS*o->z5jJc8f44tHIoG$ z85BN(Vt#1jA}%YwkvRmrp)Z=E95pfZgkxd>i(8R+xlU&0mz~sq6&4#(cWJ;4qQ~8> zOs9@dv;f~o*Rwxjxx2?f^2*|6KIU+(v}ZqeWqcAX(W^p5HaVLy*_l4N-vW*sYoa)IP%Q3n&Tp(49SK)eo%C@zB$)uaGS~1(Ecg@pZ zot;{yFbhyV_wm;HNvZMtn-uyj@{o+@ekibFMah(71H?*~;L?_!*L<5@)JI5iEtryM zc1)STbX*8n=e-s|&o+Y~0^7iL~qm#{6 zk=5bvFIPET0QwT7NDl)=*YL6vC z>se~ci4VFO9xnZV2z$rqNVslmG`2eEq+{E*ZQJhHw$ZU|+qP}9VxwcU}m|B7eQ!khnF${qyR9kdg%GG zXBC@}IWvg0;7nK5=j5|F-a|FPn|76|_6$C!UU=bYgLrw~UYHAl{fynufqeb|{vgu( zj4PSL`|5OF$R2jZ!i%;mxt$ebPZ8gJiTn^^^SB<1!oqSwT}zB zi~NrIC9>1LQ>zp`XEx#tH;7U?PgW@xg;3+X!|%%P`?p7Ir1wdH`d2)&8v_zv=%O$+ zPFCF_jpJq7Nn@5x# zR~pA}x0VgMfzXUvATm&OA8uhbjge5JRDNRqApRTNMlqQT>5;&2Zfv;W{W9*?d!&9s zgBZ=p!joH|w{NqP45@V36V|vL8kKtco)jPB2a?^po){m!YfX+b-!q&PChnacckG^- ztBL5bTSzxc)(2l#6<}xrvn{QEdGV>bK&uD0A2y)|Z_75eAkjdD+6WzrSCPY!!Hof@ z(8h))AxKtxvVV`K{BD2=y`h&!J`3R(m}V2-&bs`rK#6FYiLD(xv6GtHfgm5;4^hn` zAQA>0jh6Drl^#29(@sGE7qW$Nv)qpuA9Sz^#<()gE`x0l(ab;{-4it zS04YOM>Qug`Q!!_Js=>-2Hqbt9Mz9xOZR9i{r;KqgzJhRj)_S4wk!JM{C<(($cXcy zQ*T;IFIWeL{f-9(1E8HMxs9#kjtBcKuz&u+S}?t~a%<_N8$5>06vjV2+RAQi2W|No zYCrGB_iFWlsCti*hDzbG(7!=#MBSj7$Q$<_m}@n_2c^0i_P=GPUhq=|zdPJ@z=2Mz z+sPnRq`L`24fXfeI_p!_ewMUc-HjXSYD`i^zF@!<5~ZcC?qOdh;XuvNF;|mkYas>( z1r&9N2+86O0O-9MVeu~e#X9iYrm_MCO(J5XBwc~s^K+&1{U%UTC}@?IWY6~*hfE^= zY4K7rrSVhVGX92`C~V8xbBWlXuqkQ%r*e3DyeVtXHFSyEqV!)C-z-SqEU|mtw69RM z9lM>FH=oU?{cgOckJjrEZ@#NH`+vGRLsWO^>i6jCDIZ7`aOG~@B1V+Bv-fUMV@lk( zhxRG{yGzhE;g}ABbuM%K-$l$E|L2JqqNmj#H?6NDSuOd3qaU!RWW#mRHlPboiVMjO%R z)mv=30@W61OfB{4P_S0VoX{jo3%;=nLcf%D6-rCZ(^v!W|<7i{ZprM zc*t=(jCL#@k6Q?e0r)Vi8`Hsy8vr~kkO6zL}9J zGhg)0M{}w(W*=5Q&Ve^S9dG}>G_?6bCo=rSXQP#V4KZ8Ww*Tb|hxnf};-*2{V*O=u z0DOoPqiNc(wvIw1V^{JV%(`Ves;6wr&o zV_txWhbKC47#f48mR>nN!6yPR){6deQVemtC4oYai$|S4So{#%*mSGDz6uzLvXr{A zF|&aiigyL+nKnU;0>{>8)U?3gH3&o=P14g&)q*1ZpYePQ* zFYyra64>6Me1OkO0|~7r$b#kewtOJ@!h0%h{NznoN9S;b|CCoWl-Jk)J)Wrad3k%I zmv_~Tf3?3qj8?L}Ag6QKFTq>)@R<8f1X^5BhOjsK=3sVO#MR^bu;Tl`D8m%& zT5vy+l|ilbZevU5Y}+Yc^56y#abt{3kT-kYG44*GMV6CWz?zxp*RNSKcX|@M6yq9? zx+8ycDA}@hby3EB@g46Hm|NsAzv}czd#%wmts#BooVCb9sdBo%(b+BWDd(29e7zA$ zf3c}7&Yssr7JHo@NbuyF>LkCLPw`xL zJR!VQ`~r-KUv6ukoRx&5pG@{FSUmZDMm})f=P%}*m3drzUy1!5I_?4&={8Dq^1rcP z7Su1d|E^^ZU(u{`s1Rit`wXHx=J?}Sbb^ry4u_6KA@r8+6HlZ65etdoSk;^Z5T_dw z4G$VwwS2rnC#M~{oF|29v~$X%%yfnC;b*^jxps5KNe**ZfpygHwbS` z*>)9eIprmUUJD{p*XMMCjyxpJSZAK@E=w)43B5%vB~;jkR6%5zehEMH$zL2SHsIkN z3X}@W+wjR%f4~_vRp2&WKoa4Y@NPuZRTSi9Lt5>kWJbB?H?RXbT0HWrNsmjka1pQV z2aAzY(vF1d4m6?Xg2#tq^hXbcyR;GZeo1vqP7RW_!4K%?MYV z+>}CDn$kNZPMmu^hWv8?t^2V$GMaBz$0IFLwx?yLEebCuxl2fG+TH8rK1sONo=pp- z*h#oN59RLFhHOS!j!kW6(F2D(&ID+zHKgIBRY1CHaoHzZtUDWJ-LTEL$%5HJNa!+_riVYwXXu z5F5Y?=;zAP!i(Xhjo5)LfYGXc+UE=Mjkl3Q34`F>r(w2dZ8SJ0Y|8QA7-!N@!B(MB z^QPu0B5Ke1e^sg0hPf>Sb2dRwGt#R2yNsDm7zNgB-w#+1o4uL)x5x=xc4ys>NFN7# zT77`xw7Tb(FtEv#rEIokeFl?lE-*8Oa0Y3hHhUN5 zLbY5s+6iJJL$4Dk!U=>;fq!gyb0IBjMtm-2%u)2;8vgx){;6T~#v3F(!TbK}GWLW2 z)GzJg=J>1eNycbGTix}KQrpTfJo87GGvT2|wue6?A0XuJojLkwn5WQHM(iUli)VrN z;U_ZiNx`q_w{_nQ(ftIzB=P$K!<`B;yJR_|<_?YbQ&2uLbX-{n3O0QvH^mc_Ca(0% zo)(jo&6k}b*vtN@&>q=<58!$Qyp`m}c-2_ru(c zjgg%|=rMtX2i{G3mF-Z4(`0Fp&!tn*?(xK>Bv4B#_TF- zUsJqUxK##j55BpCwzHfEIXO}?&?5z%L5bp;55I$rY!yoPlM8L3j`LVTrr-qZB6?c< z(T@ej=4TT!Mv3arQYG>tjz1)b7OWDO1I|?_gCSBy*ThnG2yr1%{OXah41(Oyb5HxI zN2cjS5c{E%oqnhD90B5H-6_4MbZD7w88~EdSO<1rf`b}qaf=TDX`;V|6d*)|9L&#mLMOFj;@`2|fv6L*5+V?Re}3 zW42QwGeq=B;CC-6b>n?!BEsw<%UAm}_==BtiyUEb_HZ|T`Zc7aJ`J`#%NPcXuROO} zP?wDXelXSfgPthXi1px^r8of;4OGOLDd6>_8B*vmBh=398`GJ7~l=>~l zEW(S(R4W#&ucw)>^)vF7std-j0dQ?r#dKO>(!#O$c6i+Gkzb$=DdqjTDsXdo1lYor zTEpzzmsBMy{D_k&mPm#(Abmdpu7aU;j}7WLIF60GQ*-h^6yt?SCquuSR!5Wv1z4K} zIZ?z)KBUywM@$+9D#o6XxSI?#zBk8RRb+uq^+qsDl zsq$A=R69FOBwqct*2Y>DmNvS)ezl)0v*$_O3n=N!lm7gLJci>mX4(x2PKoJK*5YNNE`wiUeK@Zq)qwbp)~a(t+E3M zpni(aI{WRr_E<(N%vrz4FR!RIobigdL-c4|at-iwLk4rGTrLu6;GFN>Kv{Z9Sd{6M zD|fD;-IFu7*L*^VtloiAuCNYTP>JOB(;^t;1B&;7M0MN(z%Gf+vfS}mFt_A*)KK&s zD|a7bmwGN$cx_tj)h(2IMN7kbp=6AN@)CzIYSZ(GPL@yfc5t*4>l%V(1 zFs~{eiB?jo1|x#+H~AzJ*(Ba0g`J8_)l6f0zx23botRhq7)S{{Y5m6`zHk z-MAfcyFP$>^qY68@E626l#jY8{jo|kT+AHDBhUAu6#XYGau%JwpJk6$f(tdTKc2AX z&k47s_og1baVi8AyC{CPCK+C8710bcA>UPow*a`s3cGe6n4g93;a2(ITK?{{$mS>9tD! z=7=>u216)Y?!ODO*p@(N5C!-gV-3F;{-_;f|JA8lGY9p?R?eeZ@)=N-(vFQE-dYrCRLSg+ zxWQ?Vf{UUbbG)f*boy86iVT0tNQ>ZC6ECxWziGI5xz)J5eXpmubZ?6xhLT|bBlv-3 zYqS(EO&n({Qy+e)Zs@&v6>Ixs+EfblIJILli8I+F+iR^kUbCp7d4`m^zG^4zP&fFXwI35||x3 z=nG*gW&ThGW4ccWc6Av{z%zDxJa@Hu1jq|^KAJ;YF%`^_Bb3_caYQYCZjv&e7FN>B zs#zIT$HHCI4N3?)0DQ=^_;myqOyrv=BJ?v*S_G~+O&jDFiWANqPpvP$ifIAx)q%?L zf5Dbl@E<`T2yheikaw#33LiqB>%>zJu1K9>274L6nn3<0PuyKXs>P)z;Ek-mu| zL#<)E{^fTu3{HUfec8)TUJ`JBlb=RqhUU1&On$QbS`2#EE^Xf)U^ZeGG`&nHvG^pW z^0IG9z%qy`EjOAjIw@-SDe^t*-j02^)eCYd=tQLX#yYOH$DK|MrB_AJ1TYnn;&2N2 z0*AC4R1TusEwpsE0wj539!5coKWt$tYZeJ=da?(B{Cd;#K_oA;gRS~QeKckxPmJYN z7cN6Ockn-<H-?oK#5?_@`zLcH)>mfLWD{OY4)qfX~v0epXP%Bwng8+ zKl_6p9sU}4wp==@jFhh05)H}E=K0)2QXY&w-gy6uz4nj{TR6z=c9}|>4XGB5zGFcl zp-zw_lIL%CV=RJ{o~<41(ks8(>N1;@P2DNcFNE%k40z<{d7GbJzvt++6NX?-DN_Cb?gUlqV3b;` zOn<2EYLxBjh@y!hb9`cXOw7_A=ic28wo}b|^#^{vZS)56%d{+uL`T4PNfVfQ0G4ja zN+>7>`eE&^dkF}?pW*A@3*!44b=#pGDMolJ1&)2?55g&ArF<+INXl8*@EL5U z%9boQOS%ae>bHh6Mq8wvfAF0!^=a@M^ZdfP$Z`rp!dNVOnyfWe8aLQzB1M(~ z(Hb3B$!<&@s0gZ!yHIax#!Iy+VW-ED@J(()lw&9EW7$-2Fuzf%>y!1?OWMMG@V;=E zb2TdHk(b?azgXBlxkL4(d^$jW`Jn_-eX=bLf`nl>rzl3hGCA2P))(K7@nHQ4?4+VH z6Ws+>3`gttq1a}>abV(Y1M?MOkeoxGqs&XgT(rk<8-tw!v*sTX+r*EhnON3UuYQq2 zHgW}?=wWmbA=J(p6l2y$x)9u3lRR4vu*h!=k}5pSzW_k4H&Icvt$$KehB?Qzi`sqt0b)1jVdichS<{plk4@BuAqKC-mFY0_q@9U78mCtO|h1uk4L!-_ zc>_|_(7Qr>O&!p&1}OcuEMo>1#eakis5XduH$`G<7yFmxPHk?(s+;a;`Fq zssv3H?sB3T{VV|wHpO*0pF%)j#cG*MK?KH#Q|zX4lz#-WmYz|L$w+5Oc&4cKHGKMg zW@z#v8U=hO?OF=6urGSwtNC z5MSXZ20cKxWJk>i`r$6!0tz8 z(S(e9dcj$ICer3oPI@C{8tVx@!^QZ08#uE->`Gl=xI+^rwUfwYTgpFGsNQ~OxxvXzveNJex}4V z%Hsp`^NZwKWd_FeJ9*N8^|y111;OXibj zQUuvb=MvW;u`hwGjz{;Dnu9rm$j|va@h^i3iW!WMc!0p(+#(sw(-`<_$&^)8ZbJE( z*5gws7~Bb4d*btd?Rja&XQR3Suw`JyE{3TkIq;)8it`OQCU}$R zTMs{*f7VeEw`AL7Fm?mgK@+>!Pu1*0GjpJ-ogSoxBjD=VP9-XXl%_AJDKi@sQv3#5 zGahmm+ldRutY^(d^9_>5=QlVz>OwXBXQg${gki(jhKDw4uoHja6Y>Etrl>yWPFQs< z$6IF3=&Xd)p+(#|K_Rnxi?dT{#7U!?7pVjsg8L3({1&EjvQrM)L-m`a0A2lY*nu#< zU$AP;Wfa~jJRG`lE>=g2uhoM7^H%uQK2-;xYOA+gZTbTDJreB?M7O75OH#0qi{s#r zfxn)lE;9xXMeiefYY~cVHP(ieoPKDWwRG&A4Zmw+PCf#+_VF$uv?T;dQ1D45$!e*Q zb$a?Aays%U18-`uPXo|m8(!6y#IkaC7dG#PSs)#kszL8%+UbmcfF0amTR3IhxGy%# z#Z==V`-NCu!YPoOC5t&RYi7k0`^~r(cN#v7o(SC0&apdK*?6Cu>IvP9G>Eh=H zE&sx7trBt^Fxp%m30a_eMkf`+XQCb4$3<^K+tDRV6U+x8^pDbw5__2WRvll^wLwY; zVaj|xu6)20gX<9W@Bvu$gs{z^9 z!AsfmUvqM#S2aYySeuFjHAOn%*t(+XrVXGC65CTMJi4>aQ%nGpmVXd68=w}f%dz8 zk*Z_6!HODk4SCOpbQWxTp}ymQF~Ogb=epr%y-FLAA4{@sC=?eW%q8jjF-=gUj*w|n zkp&EIwMr_2i+j5dm>`(~??0AgQP~RlMy~jnX`osHSYM2)a88omTXo zQmj(tHd`cpW4-J#A6U|k1csCFoRf+@VI59ot0;OH z>qt^E+492dY%%tHgbAZ}-#moqw-?)AY(uPW9*peELGuF4>b7`hEmlb@mX1CF6^*VV z2f|fJCB8oiRK5ka?SfUTi*nU9hUD$X!L((^FT=UUUOE<-B*h3HUTJn3waFfAT-!G! z=-Pa<@#x?QMD=@u2a=_n&aK*Icn$A1Iu%vaqoHYUa|ABKoUmoYfezONX-?{vYxFv0 zAf&__77y%GC#cB?ov$NXn8=LwrNOFIP^ci5a{tJe8}z;mzs?RV}^+{ zqry}EKok4GNkElBo_ej%=P|T;K^l1=Ds{W%gopeJ>>fmDEb1wH3pQIftfuP%U!`oj zF|u0F(a&o0!YYxndDwac^Fy~c>%+k?_ev*U01 zjIfL60F3Vgvh5$birdG<4!YGB?$jX!KoDGs-Gp|<2HwxIB1^qaL&#>dzWI3pVRG3$ z&5A?1k_aOx0$nGol&gV$5GnQ76$s}Y#vDQMpzJrwv0cYcMkd^`Ap zBIn)L&V-)y$tUUQCi^VJhapNM^z9(d;<0mwr~CYMC6pHJi#3Y>682Rl`K672M|eMS zT*w!JP=qJ+D*MV~>%#Brl=qc1i|4m4WMwoBJeiGgto@a#;|7i{(tH(-aw*9SdR;krsUT%#}k%K)Oo^Ecdr=Qm{P+VowO<8h!KB?C?|j zbn>l(|1`mVokCxX27P-J$BQ&~^f7S63`2&YlrIqFC-5Ki7XMr1ovq=a>Ltrv`sg|A z9iZ%8mw=0m?jJYU5BYMdrw&ou#O7<$QripL^msn8MQ ztH^2ROqHZ&>CfNo!){4B9RhIN)8#-N;LPval)=pvJ{IIcNW>4V}ih(oTmp( zMa9Hq(J#ws916yT_dQQxtit3n3^J96twlMjd3EtrH*!=wX9nbbOJs^Vn=c@VE z%l*G!HH`mWHOYFG8}vxMJCJV(f}W#NpX##b#1_~moR7`$&3(9{6wy_K7A9GBs4J%> zI}$GQriEI+*9LO^2j{m=om^i}Gu@TQ1N5xja28~W+9Vtmh)v~38$m#+xWw~zo%2pM z*s@68$Bl8{h~W#=KK?eI&HkyttrAL4Lz2?p4;jTkQC!Vl+)r|35y9L19Go@DFpCHY%Zp$z$|2SshG7Ss486_g$mijj&n{jRy03%49-Z^ zY%ze*j9hGIH_`-{r_2O`J+5(24%Xsx8zeST?cf}&h|W>P;P zIBc6_%=0uRNs<&0KvODHyWy3vT}HEV67`V{l#*NzaQ=ze$j{Mn&oa`mEV>H9SSeOt zS6fr>7(o`QJFsuV1694L4uG@K+DP4gBdcXTEk+I#Qakzpyt^RTOnuyHfH^?Jhg>4G zs9|6j&u5`6yTp=D=w$MQ5)j-;FLMdCAUrr!wN<#-GT`McZ%m1?TyHkth3JusjX(~j zduiwvJY8pp&**c_k9Goba)0s_PSFJ^7R#)L_Yh2o4IXn&3x`!l1@Yw;{(dG8)A;XRm6$4fd6Wm}ujn8x}}wMpAQTDECU*2TXJ)1|LeazZM5 zT=GV|p|zp#$qsPS(i3*W04o`|iM>$@xkI?tKWZAeLD0MX%()T$vj(OhT5gXq9qWS4 zwVH$Y^!%fFWcyfZ4Yw!ua*P;T7I7~7Pgh|em%}=Obx2{yX|;Py%!2n(`-XK=BIwR# ztF!f24bGO%wOBf5_r5OIYtQLP*vl%*HE$ZnvyLrdoJY{t%itSZU!BcWO}|n&9-wD( z=syWc{%2^JgpH0#&9@YFqU?Wro)~?5o;W$u{agGe#2b6eVT1jVSLF^7Q`JT(v6ZfT zRj1jwsD1c%hoLLp5ky?k*DOYVLZk)`K7s2fH6Ei>;;^06nvlwg=J!bXINA8=tFHdFYb zE=oNBvXDPOHKn;tx(vF7i+j^38*q|RKVX+YY2Te#mfZop=+gmyKJn^DYzW#t6ONQV zh6bPRhN6GhoozVi?l+Vv(VG*A7z&UcFs!&->X|5^7yQjBI>$30V`Rs3UzX$D8Ugo+ zMn?3=kCJZqC=aAiVqO>YRNhHia;?BeCn}NN&n?e4m4fL}4lYN^o}Yqd(h#h1O9%X} z&5wb8yO-`HF0fYYQqG7;Qkb7on!geTgp+}}Pw4^fOZxlPEg!%PzAow4uFj?3gs;~) zO(bv_uF5ls)Taq~_=9->K|Ws>0(Dy^geg@+#1@0{MQTj*z{8OH1+1a0yH|e1@8!=+ zCGw}MOa5VR`=2NY2Sn=3?>y`h=bNAkePq31UeI387%J>C7!_Fjc%^!1zmb`oZqbKV z++vaaRXN#SQk{~$sSW3j+93Q;?y^kO62i@!RhaZsr63`|C5?+!NQ?@4*^7hC0WI|S9k6D9YaAKeh@>alxQUcEG*Nx;cMT|(E z{qwWs!X!*dx=y>y_=u6_yod@3U>Q94*4$BDXpVH}CjPGy_Zny(~h&4+@OJ zY&SeaPMN)bv1c5C|D5zxyj|imTP?73_SRRMZ80xd?zyv{TQ zR~J>s6TmJD_7yc|AfGps*amJfz>g};8FXkvUH}iTE971iJhs|AR#G0aI_91D*yp2V zpg`$bCD}ciPYK5jO6uN8+D~>V-;NQuHq%PRKGW2ugNm!TAI)J!2zja0!f;nli1^z z?hFWK_8gwdcDWrl(Q=2d;+1S26!RtkxT19cV2iF+B(;3I8k@G$8^ML3$*~}r^T+az*@$0an4&Rw`0vpZB@hw?0|eUojIG~TNdG(}SAk*p@?ym( zc_}eDf-aJX;)l=*#Ir;-mc|@UYU_7`%4PimzI=Pz?RT{Pnp_OsHqYfknOPbzFhA=y z;Q%Fb+T4AAk0CRf*xFdP!qluDTp7OybCGVz;gxxB^E*H;9yr_wORQZEuV;jqAkGOO ziI?q@))yU-dz(M+>&Y0-y*UZ;+9B0!ZCf|X3dBU5=fJu=W>sUMCE zg)m?WEN(mFxIxtN=AGaLKzpWV`rv=P(Pc)Zxh9B4lM9>CA>ZIQe zyMhv+#hKzr)hk`=2h7Nr_1$WOq7tCdyBMax^ewiE9h}O2LYXFb@iC{)qP(fyX5&)} zrY^b5U{-ZgQ_Fq=ek4j+f9ZamS1VY%BI_2_felV!)p@;5DUZzxuRh7#I#`PyL2Ia2 zb#Wc0$>0rQEy8X}wR07w0}w$Cl=n(3_nonG;HFgg&M-2p8$kGav=M1ufCZLq(nwoh z?ACMc){K@eDH~dK?Gt))|=Q%+Ie)G_TMaA}Qs z?+xD6B49!u|FB_=C`GW!%m$>`zi!oJU`0}CU7<30MO%5fOjGNcvgC3ujC$LC8Kf3z z;pwVSCG3=h2Cg#AWN=c=gS76V4+jx_h0q1N#nA8X<71%p8f*(+HQS=&NpFq~)zyU< zBs*|-^3DAv5BziVHggy8ic`naBi^R% z73l#Y`eKR+FP%y_HQ6Y`AO3A>fI$wY+lVoz+)A&-KZM2Uqc_O0)16@vhYRyOkEPZr z5=RbXq7@^Xh3&>t?mi(%#K+EyNV{TpSe*WDrqAAWNrJKqKWabE>W8f2&F6&C_CyMa zPpZhBDFyQEsxU58CSHcvNQLVk|1;X#&3CJ*(@YT`aqo6*P7at6b4Q@a(a{IH@5B~P z&k@hd7GTDDq1Tw?Vxcv5;CMLQkXX8Jc{tsQeva3Vb6T*kR*@~u_6Xh5t%35!i5CFx z#P*xCJNq?V)DgQ+tefYb)?DW%%~|zit;^f`P8S9-;>Y)nu1zrO!wILv**4J|)sDk> znw!hXV-QjTAU|BTiEKI`#ucLQmY)61#@ku#=q3Q zoAfO4X@+#L58WP(Z#OCL-0d`*xHZ$qI~xRzfp@_}mo>uj=6ZOOSP?f|sx4cW)CE#k zA-m-;*KM*Zzwa=qO6*t9)V9f%ZJUPE5{0&{AN;9oy*eto5T0zq5Eg-bEf?_7cpuon ze<#Xq+h#f7JncY<<*h!ptKzU2Bl=h>hV{3tV5ZSOi9`79SbvZNKfoJ(W(N7WFqSfb zRH~L&D}k)<-`KK{=_?KT=2ZI0*dZ{`?TRVbtZ?rGUSktC7})ZsJN0CTxJ+y7YL&Cb zTRkDZ`vUT+!aI55SEJj0P_B|?LB1ChQ{g|_;R7Yzp_g-DY}A-NSJlfm$U2x zcLUY*C)TM0{{rVYT&f||;FkIuV@}IR#7In4E6uJmDmhvrXQT_?qRi!gxu$6MDE1~*MX zluHhH21RCBi+{?7A@DB=xk&qndnLl5^7bZQ5_brveGg{r}! zU3n`_@&rc88L)=QVG9*@dE{y`Z0K2h%L+NRrrunYC!@kuEM>=6CGtRzqyU>XG7vhO zvRQeM2gOp1YgquV>eYv>H1XkGwWBm1!*o)}pSoq3;8wosJ}1ymdQ;uv%lqj z6qFm5LfY5dofxS?TL{{v@C;e}i13buZ+-Oia1&1-{&SV^1drQG1U@sh8Q_G2rs&Ff z1k$M0_HC3eIO@eCf0cNaAuoG!8zSfgS9uxH^_*%xoV;!L4%!jcwg@i-iS6j9SBh3z z*e)G3#@*U4^Ap+5Wz>11E*#DiTANIFHlqCeB;psaqygPU6s{AS-;y+<^20&Ud{oKi zkgv5Ugd`)ZHJ$9r|s$^e&P^Z&o6{WHji=u=R>!y}@ zZ`N?oZs&_k>*RSoU!&vT&SpC>7|)Lovc6kxCLdGo{S1CRNXPui9Md5RkLWfa|Hs?S z)PwaqC;AeGIWq>>#6?C%Gygw4zeK2WbxTL%!_(L>;l#E*erC!DVK$5g!8{8St4ROh zO|VFw`QeyqVh0!sg8rj^vOiY>+}-7W7-v@8!!%HaWq%tbdeh$!1G(y$A7;OeG*6!I z|GS%NNE3sJ0L?2%n~UX?N9}|Rz{@%#M0OPUtPoOmVaScqN*8a5kvzF@Lg=Aow~oBE*IGDv;#2liRq|->tjEgdZ|psJZ3;SW?+4o1G|<3fp*p zyX3|^OpYHOLnI6L{s*PD=_k`4s2pHI|1oMp4%i+)6E^0V(k<>Bu1U~gN?-o5V5lmb z3qd8vLRiR-L}}M0o3@auP2E`hY)S@2mC%lMlu{-Ku;-4{!}I-U*m=Iv?W1SpI}yBWK9*Tdq$wrao1 zR-v(&6hpN_(O4qqx*j%zIWn&RG2Lr!C~U{Y15-EzUH!7w6I;Pq&Bw%c<7IGaNVbX0 ztg?hzV0x+Zrh<*`gfN76NJRRCMrC9mgdlr|)P3f(OHw+fJAv{Da`c*%6I-u2;0mZj zpB+FhTs;`R-Myo&eK!tH?%{Eid}+x!NI!a&Ddq~C>}>Tj*VV~fVL^p|Gdf5j*7#{P6b!){ z%i`XwP~ zE8^>Y2sH{d+|zOEUA{iyd>!epq|35+6T)trN-nj}&e(n9j4=laR7xu7_8VUjHgUK& zNtV_Ib)wWQ)^CDr@9eU#{qO>sf_26ho*M&`3B$hP5(P1Tl7V1J(o6fNtjgAFA$=--|fSgSmoR^U?XmZSRwSul56pLAeVYa<@FOymGNaW}lN z9kIgc@ML}J3Kn1*;%0HrRly0?GPN0#$w$JKrD&0An11kVN7lHniW36`D+&Pm9!|a( znv|qqIWI^<%p25XX9#JQ!jDhFuH0zltQu$OR%WsliCV7&x=jsAyiC4KWwF9aG1cpN zWrlLOE~+ONxr$;l&iC9#AM&b@;+LfMjU1~Or?Ym1BHVB1d-k9N^e`&RZZ^# zzxB(7?z6lu<^2n5KQ^WQZJ06W#^1PM*(EEm_mX_#322!WRlgy1z-vLeiOgjmU3Bt^ zgqu&=#bt|fm)5j4uW`b8aR08X4uGeFf3!B$uNCD#bv7xoEF!nRiaCyN*V86cZ~X|AM5FWA5Hq<78c27R!u?Wazwn1QjfWo5MlixnYW>u4Ea-{jW1!%7<1#Y zkyPI@kw~a(8J6hEzG-q6)9~Ze+0z4G=^&!W!XH;g2OeY6oep-cn>hc~fBv8NPQ-mg>(KXHNfZ2kfuv0Tf~4sRF&XUN z+M06h*ZTH|?h>r4K|!qqiXAFD)nr>)PKYJtgu7s_Q8@kyCU2))ti~wimz3+hpvY7v zz@8Y~k8}k+p_Sv(_|KyOxI)LVQksJl6ZwYmx9n=c>t_;`j2@FgcW<^$MIKX%)-Bwo zjhva+6g91(Nen2{nAr`Ajp7A7D02y%=1zr`i+Kac)z&Si#}Yp;v3SVColrSb*_FGgph7#SDZxI-yDa3Wm1`%$&BUqP}22QD8aOm-(PtlwqS9_=>g!rZo%+LV6dIf{8-+{x>J5 zx&Yptarw~EE>XcV#N>d^zd$7CBw2U9{i9X#*G^IT^i~Ilws($QT5Y`H`SmDlHz44g zEd4LBfkRNUc9=SJQYb=-)&oHVo=Y3&DA)&Hs~)zpjJh>JlJRVG&nib~Q!@BMnxsB& zexT}1gH>k#xWC%pdM((1G@Dd_Fpp|;p5tT8VsRKE2PpR0Zy(*voS*%hj=H??{5Hza z1FVr;<1j1|tr}FR8xq9KEc@8M;C^V5yt^?nKMC;dNLZM9HtNdct*loSi)nULRZDr$ z!QtQmTi&l6VYz*+Fy3mMrZYEEp5~m5e(rO2nF*q*^cKJ1>AwUYJu%9v=)%JR82XL> z94+-__L*^rW_P3~-_N6BcZY`Y_661OiR9}q?=C6^Ys~j7?Ryw_OpcY^;<8U1thZOr z$fPiEji`AWSoZotKh0a?T?OZTU^b5VxqQtcV454D)0)|ud9IOcw0bvx^d9|9IUQz= z%0X^no897TN9QB6$?3$o%9UyrFlefh3@B2;UFqe)+P%Wt%oX~>UZxT*v910&F z*FI08d+vs^((>|xX|jjt_JnL(6W-zryWKi*!DESMyVqS`VkMdI;^#_t``G397?MTW zW}p;aReeh730bv&30PYi_hi`J;_JM%`okZWIS37Pn{jic?AfCC5y&8{xUMy#QDblj!VmFwpB1 zqNSW7G>0(%X(7$yMjvjg(mOEG%yJjcPG`;|z~Km=OB-gi=`37R$qeJpbG7#C;X(ob zLGp_~%kp**1v9t-|D?lLQof)+!5Xeuq&2i@zM-s zLvf39PKZh#{dlv?f@4<2%tmss8tY`aJ8Mc6Q6RK*;;tbUaLLxp9x8^HFyIlnJjzGL(_`93os1I(%Fm_EMhf9%HYdo$W){ z|J6cRV&~$y`5w{vUiU=*u@GEs9V{KqO-#O74Lt`FD@VG28~>ULwEwg#+0>We6HYxU2I)5O@=s1*h1if1gfDe>DSf3o$*X+cp3-xDSJ|2JWb|HuvgXTstpEC#*}tf%15 zz*KLRX4s;{(X}AK=KrU?vkr@EOBOxu?(Po3J;B|b;O_431b27$;O+zn?k*t&4Nel= z;q~Fn9nN7g^X~ocec!tqx|?pgetYdDyOvbdB7OiOjw0;y$W@r#`B^Y?u5Y(b@z$K4 z`-)Mca&46?I?)YIN8k-D(zZ-Z!B6y#qnw`v0(J}E4yfG}?MQ;1Jw5BcOcy%3_kG4v zM+-Lv7n(SMjvMEft%r;Al4y&~ocNyZ5%~qrNp4Ab9<=z+3~Pj$S@;&Xlw)B2n1kPD z!`cA7Gaokzi*6Qh7uv$;d_YYbd+NC~vcOtAvxDL1noOIvaw@< z9&Y&3%poG*tlV*)oR;Ht#x&+|u|a9yov2L&53BCaUzg{|YUZ}gv&!Q)WL3(dL^NmD z2UmW1Y0}z1Y6vF+mzmD_PY zmjSd4S)ngZ@S&?r$-__eLThg$4)v}G!Wbgu*{_unVP^}0)dLgP#zisS%crm%SX$uS zH^}aE9=TD>cwf}r0&?k_FV~x@eY6D9f%C|*e#@@Bdg-kBMlWZlc;)&6Grr&Io*3f> zs6;@|(*dwW$bW2ytpCihuj<1#fMxnl%soD=HmSMzBI*M)0Zf3$OdG)9hcg~psZdf; z=dnwuT|M!Ojmlf;X(^O2nDOZj_n+g}<15CbVvek;W^B=QWKp7}lH)-i2dA5>3Af%) z4{^)m6{>PZtC|%wr!eSt+(e?_JtSm>FGQPR8V^p-wO+CrHf0)svQNLE(I{&$@18Cy zQ-}QyXJO=?p3QV-7qeH_yt|hkL+UtQPlDsE-FQCzX-(^W64gm3eLF#9YV1M zC?3Y-@DKWk3UPu4$xG2e6tA~3U7(ttyyJ^1mmR?(Po4;M0Hv43{_IcuU7cSUx*uMi zSwp^@t(Z!}40{lUdtZ&5OuLdWoi#VJ29@?5kbbZI3>5jhbF{H(*~D!5b!$rhz>85q zuEcx_3>3yZ$WzvKaSa`KP&50wEoavJ^U~_Cw_kAwh>C|M)RQlv!&=J()`!;i2hN6h zjLC+#*zT@HlaWr24gAiYqGwJ`qlYF`TY9fqWn#J~iD%E0@4avm;opf}HTHW=vS6vz zi5VLkQ0g|gwy{T-TG-lVAC*t+4xDy!8olk`AbLWUZ0{`apz%tOgWt(xCn$`utyXLV zE*aHid8;nZT+1UaSxye}@Oy)>cRKPJ4&u}wDn3|u_G_16 zVy;LQwJ;(x{XA|%2qTX(9RY$KK7Zb!LS%umq7-e$SjFXWRP=>bZigP`14FcKDs z8|F=V@H6(|{L^LnL~OJk--4X4b>0?T*1SC|ZJ9q}QBiChPf~W!fjCFh`(0skLyH2A z@f8!!?uOPp_K7~B_WgI;{Dv{bY*Pq9vf{Y4A>^qyPa*T$Ph_d}_KVKv%GRT3BF=nkdxvCJ zx<2`&6&d>?XhZHz{c}2${<>gdQD4RIaekIMr)(<+ZcLL%bGXh^vmZ+dUrd(;g5)3) zb)^-WaRgU)h|>E@wx6sPoeT2nSz^+x?veAx{D>)tg0u4>s2Aa@<44cwO6%lxzmIVI z_Tv3;zxvMr{u2YZ_&>7eW$xk6OMkJL_)|&7_DJ^qv1Q_OuVVH{K$v|skmyKd5fW;@ z0Y1a1R~qT=vKX^ALM(>m^OHB9<2&!7Qrz4JpnqXOE&4!FIi9fQ2fPRGQF7kI?7@!`{ToAOP4&EPqk&AsN*}s#&y7g zTNOIkL-Wdg$ek#yW&~mRw@&+Oz)ny9S{G8_7zy(LS-}pt$s+?n0UOyG$~)NF0W3#s z9gP3DrxWFa0aN7y0lxD8_u-}315j&lorp^Swe~hX!NfAC54@?W1RZM%?Tv>LHM@$X zRC?dsMVC)q7AG{u5ydGFZ@iqAmd~8ZWi&C4X-Y*ZRB|48Nt8Cj^6CLMpQ$>TapT9# zesW8uy3y0K5^y(Y`t|DdcM!~2^@TDZ}(pua5*Pse<&!I|Dcx zMS0OTVXNa3RSVrHQ|}bwtjXCT<9$#+>hOaO!dNz-xie8;XG>unxYgx~A*43uEtF(6 zZ4p>lVs*zoAdib%rJKx*-7?MGgZsAJxUW>FZ0LM@0Q%GcG6@?m5x*f~wQ6QBkVg*~%`%jziFweX+Dn7*4J96nXF-9sWEJKwsDf&|60OYrWRDv-{s_{nC^H*1P{zt)aR& zTJ0KZASHbK*)|8^^CZuDWrl+v4$Uu*JcQDtqZE^+fu%X^B(L=c*S>cVTda4 zNxXd$4Q($yK$S;LCmYl;N= zW=_=XQjI`0K`-Vf1vjX~5J5Dr?gR!}>s3~LYPbWB;AcFtx8Ac@eeIdO{`r`qryr8- zPoI9)+LPTfC&JhGAmsXe;3V$Xa^$W^>$kwc$cL4*M%p3pyD40Xn~~y*H}=`C)ZH}H}*JdMtE?59)3naid{!ov$ z*4D;0PL9tb#|mZj=oL|<2SU9c@)XU#f=O7*+C%SNX01#1!7|`)Dv-j1nt{c z)anzt4naF4f9<2RS4bSl#$HK9gasi^Zu@qq@vXh{tvK*o)?`bzlYE^$;E#eSTGkZb zeqOcacp_lD1k1Yjl&GC_b%O<`~s;98cG=XZ7U6cYnHpYIaH7CJd+P zz*Zo_F&4dH*n-L`tr$NLZIzC0)2oR1?)B*AtdrvA3VTiKqwj-G7YI)_oG@znrL8l~ z0St))i2Cv4EOhNYxLd}{L zxF)`lHe`w_^m7h>9Vs~z@DJ(F1oZ$%Fqm01Gc!qL8~!2)?e9IU({kzWMiWw;+?&!( z^?AeZ``;1XN_2_e(@iM)riupIq0z@b()oP*&gOhHvwsB1cDv6WO$g)7y+YWx6z*bW zsTw;czKAi7z;g-?A@L5%HrGft&={On&M@VRxg%(}!BVso@iH75d{lzJUbh*0`0=lx zvzs>r-du$7eeYFj(yM34BuO;x+(b?fOCH~iGy7s+r0AnWi`E;T zk<{w})5U#MfzQm0#pps$BnxCbE{kA%>{x3u2_-+i9~OIR>uT$|72?=27|5kn!-rwU zqWJJllk)(gw8R>xBu_5r54muZh=*qYu^a1q*!SS zKT+vIT|oV+1-1!Q@@nq4>ZzfDju*t*;T_D%cO78!+# zNY@3>Vt?!z^{PcaPkxQP*S6VWNAlrVe~Sci+Z6dorS7mrcOIclWQ{4%#;$(T+5zHfKGn3$CG`K8N_pOb8YK{@gUV0+-Z2T(9>)v4%s=?rk9l2?; z=eAntu;jcJy~#q%E_pPa5jTw`O`;LYVL0~T_hC0Dt+HbMIu2HRfu(nI zZ9Fl~D^Bmy5ii;g@(ZlGm^jhkbNKp8lD1%H6`8Yc-fM#Pa?gvtmQC}7m}Oy@>A1aU z#^lOQQLBE&8$^<@Y1D!HJ~cJ^C~RiS_f%sOb%2!pJ-5Gzm3!BGu=@5(&X0Z z=aQ^uKmaLg7rEB`9~9#CH)E1o26@({ix*=c9b@rLN0;uEB|MO4o|Mib(8TnzqoI16 zt-#UVAVSDS6MfY2jHi6vjoeMaP&i$-dW?%^BH(lWrprQFd90gtCYBJqq^^tyio-VT z2buILLXcaT>{?pZl^KH=C8wW0!&xkyImHY=g>MYnx8mATeIp&tu&(IIgyAjh3>Nr@WF=7Vz6Pu5 z`UfH&l_hVgR;U7&k$$)Bp4pW%Lco;~W>0K{mTrIg=x+jPXfMZi)mTOs-3chICF&9A zU>j@@n(PQ|vlwGA5DnoI7QGYE@+QpSHLt|Iq?vo1z7OHMBE?7*2dvdVLBQE8s`h)~ zpPd2~su@}ew~+nUbWSwZytMeGc<>lNkRDiE!{3qFtKV|UIlAQ$mjxCq$=PL6B-Di} za@cj6cEh6Bhb(FqztwrrodOYlgx3Jhz2d1;aG)9w^@Xw`lUaQyj*52+Ev~cU$w?#O zZ^&^a!3F)m_!MJyX?%R61^FqE!)6`-{G@aBVEEiszN6Wz2OOW(4OWGOCbjlWrNaUZ zRS7zhIT1!I!ne@i8%O7v2j^PPgw;pWrSY-hwcqwW)|RdL0{<9lQUL)`{@MGm1H{gB zGImfhc5-_5KYjI{iQd56<|wsCHjp1F_zAp$m1j=u*OV{=#Q+lGH=N_uzEn5sKB0sG zq2nGm!AZP#SIAxzsD#}qb`XW3s)C@Qd!JzG=rWc!3{72J#9BV1H`#|{Q?v|dWt&iC zM}qER2WCBvc3MyM=kK=i!g06M&`|?xRtdRT4$*y4F4E+RniL(RWOKTsSM+?!RGptM z0VZ$u=TG?*2G&Jf(^yfx;J8#t21xU{(WGh5pOo8XlaRF?_G1DK?&7NMht z#vM82w$cp;p&!s5C`FaNT6-*3Jh&EmhT+u*@p@L#*J5-c9#~s(D>&an-=6CKx=l1# zSLO#H`^zsn>iWU%8e-WFhqT%J8_HZAvTxm$M?xb%>2Wdju^g=8_yzqE@CQMlW4q;$ z#4n3hL{`>CPw_%pq|w*rHE(6Vz(d~?fc)Nfa4}TZvl-Bflmo;;eWkOWr`C_uR&BN^ z(7LMUT=~1cbP};+Me?Mlp+6>&G_H1v&s%QlGnY2m_n^wS%$FRHp7(p;ndX0NEnShB zkBBrP?!NZBx$bgAI7BR|61n=~Zg?ldUzHEE-&Ol|cFj6~(AFXoVkqY0TG_&-2kJXB zLa!yCyYaSK?UK7`QpTw}89S^&ee~ciu07cs+P8ZI-;OE|=b&Uia!8_yss2dm)C z(a7~nqzT6`00AQU#7n+T4g!BZ3d9+&G#|hIWk$=dUEkJqSgF+fhVFcOB3SN6(8dJo zghxAJb+^3PmFMgp<{>Ga)9p9ux2RT&2b=^IXS*X!w-vrzIIH=J&4K&J+?irlljvBt z4PtB9e7qd7vv)E?`kK2Zi|sN%89xv$rsOUXH1Xk`e5uW|peMj&jfNSejKj_%p|sGD zrRq4#XeoSx8l!H(P&wUr1?+Kc79UyK-XBv8ftay2H6o<>l*r+X6&oEmH69PTPepMr z$;xDT&Zk}K|0q%tyEe1;I%zI0asC+(GkcPtlr)tkdPm_uN*e^yg6P!oM|F3vjPYVg+*{g;Wm@Z z0httiqPqn4smf3+`OsV~5qP(sai;uOA(0x4f`QJCdY`ejq)wN}1XV}}mnC*-26!VV zVPxjP&kC{i?+~;6{rS^=Q)Q~{66gHWeBK>pK2%lYUkKScmiKRP&;2O!$AfVWGi^lM z)t;cVK`6#YILkSI(U9ZSw}Al{vJIMN79x*wQf|x49DM?E+}zpjo|LD*Fe1}IGfd2{ zIF;6mR|>qhCaF z3x$~-Seznp{aqaLPUMJWV#iRwh>R}jka|UN#A)ltkLJljCRr44nM5Il^rJ++Lqty| zWYz9joopbgj`=*hOHnru&5umYytBL1bRs{et~dyNJz~B+xaV@r>OsBJWb?hj`uy=q zN}wP@v6C}kPQV0xC(dsrj+wzu6*)jjhg>Czk$4l52JIBXK8v1HcA@ z49_pmgT+j>6&u`PWN*Y+Uo1uj=zykMA0}0ub7xXL>z^7rmAa;7apS4mP(l{(MPq%3 zo3}?Dg5$ZY%xlC?^?Go^or^ynW^&K3d3kwez)GQ#*d!rN>p-;bq1Jc8PM1^_O{<6QqsrCO2zf%MG7*+coQsIGT@r zE=DanzxZx%Y9y@T%89c&Pfc{E5G&{&B~o@hH2K zG{IEp>d=C298K~*r}mr)7uPIefg7P7S>j3j1O z>f>(yauY7u6#-Y%_2q?yYrD;-jxqv-)$tpW;glZB`{Ay&=EK$Y$L3MF2U||v%pa6^ zLLBP~ZJ%0!nz+3&Zh;ATeMs;@A}=a(@`kdQAe3HQ9~!yQLsx%ll!HaF{7E0K>?ocBa08t z%|8@IT-JQXH5e?8_G`KX!HUiF=~1P;iR#=$@SKCt=qsGbp|$srH&G~mVb5R3T4J$5 zvNRnrCFCYaBy(*>N{~uZ^puIG7O2*tDe3QHkIjeB+2xl&4|9>ZhZ_Z8C`yK3>m=7VpAMtMB~r_)xu=qsw|4WIl4x)o$YxY%(`wfS{g5Qobodr;1_| zK|0eeEI1rqs@$^s?RsqdC$Vm)@11wl@Gj#8HNa?eh3XA|DW#%mlui$=QAVR4XD?pK zmS=LM_t<5#>2e*Hkz@FgT4*G$gcWQ0kg$MbFt* zq_ts=BxpqY{N@kQ3`Bs(^O2xdBHhfj>I3}tRYUJd^iu&~tNJ2)$D#d;M+t4Z`LViKe*@Uz%wX3d# zAuel(Y!ekWHIkf}9I0X12?pJ|>SSUvI^Jg=|cvtfp8NW}}Aj zKYgseHLL`)tbK59zrT0AFIU{Em+YY_i(S6?U_&{P9ytdDL1GFrr|bZA?Irof`Oy1r zOWSjGTlX+*-1H*gy$7;n146HGqRG^~0Z*->XTVrK8k0YmqdXs+_gTr}V+ePn`o?;a zol#yV_(p8Hh=r^>N()pU<8YJ<-R5v@s*(j{$KIOvmCM2h<$Pd4r2>?l#vO6$f@tD= zo=)gtDTcuO11Nj8u5V#9C+;aq)DU=ObD~BD%6Dce_&fkHj zCXwlw2Ng`WprGV2cZ;3$hAqm!S0W0WwtF+r8d}|F=1!RtEbqu$i4q3(J~$2b$F@Qw zWAb`Y1Cg6&;1>xp_QvxhxA>k4m^?d5!%$D%J+&-4EUGl%?+!y`7-HsQkxbMjEZyf7 z%&95_I<;%UfpBURf;~6Gp+Ze4D6s+dHEGGveDJyD1hB{$1wOE8sKrhGW`3<6Dk%Ks z)F{C*Wd6X>LUDcM4L0nu)Y#^AUK&F5e7^f#PVkH8&{Gu){D`s#$x%UqkRfkO@kGP@ zZwCBH+qx;B@R_rU``!~#?m6BB=Z_V#X{-;^)sXOv@6lsPqQ#+ey1JnR6x-q5)6wus zNxhSSHQ<6&uGKLda3_SfN&+SaY>~ZYQ^F zOZXZH5v^NUE`nUk_;V?H4b^0L>0ZKYZ*GQEIZD8u6>}_FeqeB*^q#}08(Df_cbhnl zoYO5+C9)Ys|6j3FV>OUk#V_fzgXxVy8* z$kp~geE%gRs)t9lZqOwZDrz@ieHzKUCxU^iW;T==sEa>t^-ACMk) zgufc(G!peqVF0W|qWSLf8+~GnNcB~}ES}YXPWfIb36fa(J~X`;2QoElMI?Vy^Cjf1 zhbbG^as>{HO!a=GBm-d!PFcdP(SkEZ=czzD7_v<$P^}0fgM%Jd?e=?Rp)rg8(gdXp zsYtV*#H%px`V+gMxvn8ljECu=@R>rQ%Ocbwf?YiQ$9?&*Y%lH1?w_2i9tDj7bJn6b5J@ z#n7dfr4S3Ls^U4V;2rWP2Qn?2AjrU~i!DfTwW+q&~-|HY}LB_d_0SgIuD_4 z9!L$I0U9*Wvk?PN6#6}NCww_`02=Ft%>8Fbh=)G+VF#(iNC>|hmaXsEI4e5 zVSS7+8Z|S8xP%KxIN#?iMQ+`~^xJi!#>lvBcnXC&oOx!~0Y(_Kde|Sg*U^b zaP{+d+AjtmEc$Pe07)|!>m7y1i)6Dm2&oB}uDNvNWp4XvBIz*0ot>l>((GA8d*W3( z#P^E9g;EwZBI-{fxTeKig~gVg6M{U)m1sQUA@RP^&%*npM4+5R-dEehoZ_O#4-1P$%r5ylE)~}{T zp6%x<5=U*m@S_D^iFbUCTVxu*?3O3W*ZL@~uB_5l`jH;u4ofr*HVfOPjN}6UHrP9! zz)&2=tdPz^opkbKto30{`pJV5+-gd#YQ7s5R|Zkun0wcP=@;+X`28H{Vd_ZQ6b$4y zf=XAOipATs=S4MyM0_`?UDZyanq?I7diYL35nmWw!2VH)GKL)g;>>H`k&T=8?Vs8Zop zP|>KwPHzO8ig9BAt97x;Mz~(uISGpM$h_l6zW|X0f3td}am}o|3Ru0W1b8m|SC!Yd zG88h?H@Er24#O$!C4L}Qn=SsZW*dS%On-wFrMY?hO{t?Prw(ejOTZFVlP_OhzWC0& z1!ICN`R#H?o%lgh-KSL>kEe>Y%SncI{bXP6VUNSrgYPHqSB|Nx-;@cT#ysvmJ6yGV z?KoQaeDvvp_s-*Sqq%OD1AS5 zSf_;CPB!N}JRGig+_d;=R3om)eB$KdI<`Fot~;w&`DvY+bSALiNnoN|_pLZvaslz) zb&~W3bQ^8Eo~)R>)1z(px+-w;u<$~1LH7khjSgz;TrIBH!CL!$MH- z87zXz_|Bel{Q1;8<3x*!BwaEJw`WU1L=6))3HCvag7HCSc1@aJP4JLovnR7?{9b6M zCHj=DRA*740D{&Df7xg~vC8mGuox_6tXgv(af=_)C^gtwY^}5=CX#{v4Siutq;Y<` zA5w(eo*;NfjLHykkg(EH4()awNSVAIOrfAQO)Sj!3VxbUr5+kI@gTV(ej271=R<@G>2cF<{FWI9g5E& zV7LwXYJoAMR*XUgjWN^s=L<>+;GNC34o{LEiGS~>p5MEUlY=u-;&IF}zV7ydGbsOpEq|4W6*4TTT(Xu}y*aN(&N7DuuhkFI{4}vlp_B1O znaBq8{E`v`WWR2(2Oo$@e~`C)wygU8p1zu&UciJ16=_?JOLPos8>BFCTL45?Fbs)# zQzzgpv<-PnTz8K0re;MXBZ^nbdInf5;fNrsEu=jG5;Bg?Ej}%KhzXHWEOaOzf4{y> z22J?7Y=9@UkNElnSMC_%MR#zTvRQS-yi zqzgkug)xQ6r$C1`hs0xhYze|(eBO(Pu5qGl%E3aX>2FI((hq|QN=jfr)t+cv0esZm zz#FV+xk*M%qDbpHq5ywZS~t<0;#P(#Q2jfYUOw$Ug=r=e+I zZSD7^N~4h8njWJiPS#Vn2t^S#UH5)NZ(a8u%QatDoUEbK%%JYeB`)wZzeILAk$Zye z7ST~QZW5`^ugD+DJNn~v>5*NQzR?wEsf1`HH78+l$u{nV5Pq3>`tAO36X)4Sl7Pjn zIlu$3zV(M`jgy&!vA&V9k*Z7#R|YC2mpupEVp`6UJQd4G-u2bDq3*clnkNh_2SvvEG^|39XSLLCx>`D7NGA zvaxLOA68@9neTYjdG7FiHwQFI}F z^#!U8t3b}`B?=>b!RB+Q9;Z_XVrozv@=}-uWEl4b0prf~w8@X9UnqJg%3?~CH`l|z zn0@aaRb;*PdICyR0x9eOjmc;GAh>8996uJqBjrOmG6>p1_!BGKa zVFP&l!wcEY*ul}(#*yLA*FW@=QLL2hv*B~nEn!6`B?54O09j~>GW3P;d_AshXwkJo zb>7s+r_Qp{Inc%BG+QwiT`lRs2`urqn!QBhetDHyGnZ<;qxvaOdT2!|b&eQPEhIhp z9$u+;yjw>)N=7`riqO`PJ_B6yZ*U~ark(A!(^D5F>=s$uL}ht%mFGxAXHVYYLJ_R! zLaY2_HY4qc;%NVhoF%sMWTC~#ta#9S5}ktnRopu7_HZzfVr}@ap4I#2n6fK})x|0> zYjFX1_Tz`@VUI={VRq@{E$6t%0G1hh0SWmdbuUK_palZj*B?G(2DY}AzdNfUTdI-?py;Uq!T|4%IU_s72+;t2mt#6KL@UR>5*U&`1qq`p245D)?8 zYswM#Zz<2#c&{m+k%8lCiGYAw`u~jC`jVJH`IaX30TbU6Dob zZz<1%m)8^nbB#KAfE(7M;On&DF8r3l_PbKbhw?*u3y2L$1IUHH=WgESZz=4*qj*zd z*#iU0If3*w1?Bj+6pr6fbn!`0Z~%6Zntivxnu8LJ^xKqVgnl=j~n9V5W7^I5eRTN?xP3E=rzi@Yu#HA~dGCV-@5Ffb6n zvg|KMGX(G-fal0Ej=wwi>y1udWK(he6n(wz>Fblf4lw>gFkpEm{L>%hRk-ojpw~f) zUqGfDe+T{5rR6o{br9MY$~f2GDKE)+4oUkO^g0md3kZeh8T4OaF8+wl`P*W79qH$V za3=m&!b{wr*J*eiT;qk%EAv-^;Y+BE*NE5gCSDMyvi~kWo}*8^2EBG&e*yhc{CA*d zNA}mC*Z#mSply|B(ErUl_%-mgzw8ST{r!IczIe~R2EO(!eF1W-{RiOl4fwZu<+bbO z3(!jaKLB4GF<+vfPbH)P{;pHlAi56UMK0_ zL*g#dM3spS)nfkAz9C;~lK)(hEh!*fO3+VkuM*up; GK>r6ZR-|tL literal 0 HcmV?d00001 diff --git a/ADRpy/analisis/Data/Datos_aeronaves(vieja).xlsx b/ADRpy/analisis/Data/Datos_aeronaves(vieja).xlsx new file mode 100644 index 0000000000000000000000000000000000000000..7ff55dab47b4126939df1d6c0f457d1dda0b7c91 GIT binary patch literal 71484 zcmeF2RdgI%vZf`=0*hs##b8;?WHDLH%uwPITFguqTg=QBGlNxPW@e@mGmg&bzJ0o< z@2u&EdAm~&Rkc^OAytm1AB5?g%PmBMT-Ulzi^)AMio@$5opt3 zrEGTTr%5N*D%W-U^VK0b@FU8b9N7ILTrC;rjXV(S&n*pZEM%hA;)ZLD7p}l9LBEW; z+;j7Pe2%LqbrXwex!0DGm*ty#uakvBjG+oq#U6-~f&(J!7VrIej=~9r!xQ0f^eb!d zGa?Q696^J>voeQcuQBIgiCDKE1nC#_!1!Brp0~_-9KISBZ8Ny;HrR8EMA5ndnr54^-bwZMmIL+czuO}kpCB{s8eAiyL#ha`b`NC-lRg$&e+nPf&P#0|1S~$gLUDb zOfQX*kpnRz2AzsO1^3_1to%e3l5!RlZy{0k@{w3Zsf)<{jJMK3fsd+;>klR7-RAW) zxU|9(aoA6Cv&mW-_7Q`dtlqgSDDlD85tjOkU4p1>=|(r2)6DhEO|qDzE2UFg6m>~s zQMS~;8ky+S`L`<6F?u!J59s;$L0G)WzM8!<8mk6(<&ZN%O5n1f$_9?C!`QJ@@41A6 z10?<*oYKdW$(a522Br(;9{rXi*Y~(8N@kqEN`nkLE>c%LBg@XqZ>b&V&mMHLY5j_% ztRL@~$He-`v#z~0Ygx~S(p|ebK7dO4&j$R$h>BL|Lj;9{*)xYQRV`Wo7Rsk7tNP(hh{hY z57ZjhthKZTCs*@nzq~BRc3<$~S3qRApR2*xxSYt_z|L5!%!k-H9IM_^8sV&*4FK z665PV?njjM zLI-am;uTD-KSpQ#E>oKthq78x;&qZbv?T49!2X%MT|9PRveSu_Y7E>IaaJ}*L{g1O zC=G?ivXlFx_4D5KR|hjGi>w$sEM=v=fSoICMgC6vlvG;Ip9M^DwomNFsL|ml+U*k` zf8UwgB3(a)S!Xr-!UnpizG6@-kry7sKm&yjNOE!E_&hk05$-B-XF_TMic#;gdd?Tb zdWon(;+v_#S>#&_%WhrPDc^K|E|dp{fW>M$Bj52?PZ8_5S?|&nusEOfbJ_y;d)F7g zi-EI?A zd^_3C?E8*UqIb2$PjJ(YoDc$P|G<~5;fc7{*=gJdZfL9AZyZAL(u(ify3(94-jjay z#hLap$DVFyg7X|g&}?N!g62v=UQ2nQe98VEia!OvwKX&)NE>{(T|1i1l)NPH@X1NS zXjPxvv+U|S?72PY-I`3n$#BC;J~j>(D)$Aif$57Mt^a{tl{6F?l)YKsYu^OhRo2}Z zn|^C)(X@rcrPy6iqp`6hCYs2Ng(A(_3dQaL4!Lx@lW*#k?2 z#(LDf5?o|jDTi)yLp8!*izM^X(J)%A*j1B2#75~3c;CB zz()>BWEZ1_IPRQ~>TgMGLNEb;G6DM~y9OmU=^KnOj;3q425E4nCr{&2QQs^7P(;F8 zmZA^MH3HMV}NbkzQpb!jU_seQds$*<>QB zBblpU${yFeTUc8d7d6Kd+1n7n;V^Nv;FV$iH1k?;If1tH^2X7>*BDPB9|fV7^9{HAnytr3>q z^&&?+Ou~#{^_l-~{e7t~l9Q-k9zF&Q+W!U=->C`#@qPsPX-wO&=P*+&^0oX(1l9{z zQ1B9j44D+{OzcZ%VrbLk+AZx#K19^oCmMP`4Hj-E;>1hyTbB^}(Xcjr46F=Zq(A?h z>7kn_S)<}hurT$*)~4bdeVyYN&SWo{K5^JZimPH<1PAvXHzQz4lc8wcQzg%K2wqoz zgBt+C+8xZN(2CCAc4kf)*}5O8<_NQ~c2mF~akp<4cN63ZjTK}i><*hCvSS;0f5N*r zIQ6s8NR*%2WtnUJdeZ9UXqs;ZvvRIU zb-k~j$z)U0`{p(U%4b;O z>IOB#r`F!H`YhlizL?`j=rP!bv~*j~lXi9YeZ37=Ia^|O$dn^*DzgdT2A3uI22y*4 z4qK0-tnz%?w$z#*B?gP3MZka{jvUh3)LP`$(*TH(7iCqF^8xWqfP&KjCo%_H#z11RU@(4CINi3J%KWZkP^I6v|gh}iPUGy=e}mBVywqRkex5}xYh zoAha_t0sdN_pMh-F~&QVEKD(N!kb#I)gV`DtomKR;~ zo52}aD> zMXmEGBL7xKY;L7nh!oe0mE(k3$1%32FB)ZXWh6Rga%CV|VRB_6IyH^#Zp|{NZ@xrN z=W%;hT9jznmmj!87~J4eXOc=sw_GrbQ*2sOI@OPU`;;HZYX}64DFD6}i57FY4Vbe^ zMXKdm=|=3zPd2ILmYK)TQzkY@o_~| z@Aff9RPXU|M4pcA8^hqRKyQgz!l?{{e8liS{6woyR|hf=*F+tj_xDqKC^mea z_YWI$nS35EQ{EnlUTTjUEfdbyhkB{ryvLECj;9@lH~ctDreaj{r;2BnRy6A-ie^)f z0eM8bE7-2LnX%3-lfPyU!ER+MR?{UbTtgnHCVZ&LC>hbNWje)E4A!c65@oBuX3=l7 zSrJ)?LWhGZlI|&oJw7uNwHfRhCUVY@?&Q*XGbRa4vp$h1oeLL?-H}|I=POvTaXVmh zkBH{Zn8<0?Fxzhh50jXqz5EQkBMIBX$yO?!I4xq+0-NM6m^&_f9c3Q&pkmhJJEg8S zA8~7&F(XfhnSm&M&_$<&%Daa^@nL(b} z9MPlz#-f32r-YO41&zF1bfJWFF7mWW>JC@(7JpUexFfRghYm-**-JJ2^qHBTm*Ubo ze+JkPt6H{n=umuZ1hU*?ysYVedP=L#Q08)IDQ=NJa_X;c1vUmG>wVizR2zQ6HSxks z*3+vxXbntW`?lMlHq0XfS_Ym4-eMdaY(_a_8uAvzIVvkHDCL_b@@IIrsT4cmePF{v zqCOo-z$q~0*K<;x+PhMXux>a~gX};l6y#-{x!^n%ALrOI-NAFm^gsHSF~i+Lm0q-=GL|ZFWwr zj-)}_3MsiNEw?zPclDfmG)@_KGObV#E6}aD%Xrn^<@X+W((vYvC$M%i@s4k%by>D) zKi=|6!1rE0J=1v48Q0+}X>NDSDv5|QVRjik1Q2(CW;Bp+*yrggUr9on#x(5yEGfMJ zROX5}zQyt`jZEKh8SxIBTYrvnO)dhQ2TIYn7!FNoR%ec58g`aYRt1fkqRW`#ePna0 zb9QnWo7}U9c4>^6HrF|2Xua>V0m+f9W-(DX-Iyk1c^H2W`8Y>u8}<=6h-wGp4V?0~ zHe2jt94j^HfRq}!EQ?Pu)kV0(x2#V%x7aN``c*f)35b^DU0V(Qa`e%*z_Iv!{^z15 zEe0)n(}9qbRGHKL9eD%fv}+P`2nFFExPsF-IbTrO9OD)SQUs^*bFes7YAoz2%P_x{ zk(fg%X#H3eoF>dcMs*A*Qj$>6JJ*$ay4biZ%v^21e>&LfXydK(5(6FP=Wb4YSogxf&@RAABQo4I>x%qe)wE|gV~k@z|GH7ACt z9LX>qG?<=a-jP)MoyJ}{xRQCrQWGhi8Bwc@RTx;Xu2#Lf4%b=KX!20Z&?0Y2pArw< zlvhv||p04uy_<&WfakIdq+nR}CUvHkan$okm zI1mnFD5N25QlS3FFG^*sT3*;qOUC2?&5K!l?jI?_(_ISFWbSS*h9C0l{EFDVSrMBf zC~*H+ymX%d)Qvz&?!qZhL~HE()KGr4yt>$gsCm*MIfPLFh5`axh+?yTvFiC;FFkHV zZLxR-x*r`+uwdSlT~_Jru4(4S8-b8|i1rY;`DM8VSq#NohvyFvsd=bOz_n*LN@Li9 z!awQU05tj;Q>cw>tX{(7JHl$5%0ox@d5`6Z5sEx+?jw?IDbpzUHT)kS#Z&-}$z|;s=QO>eUcJs>%oYlzN0~N5@CkVG^wa{goieuX08Ec0&p*?G z6Yy0p5hyBV;&7aEqa>arstAbEQX(`3uh4$X6x&3=wpq=*je*xws>h({r@xcb{$9UW z9gdgpi7sJ0v~>)rkIm^t)LSy$UOga#uRpXK8GR?wt)aoy=Y!BPxpA*^@42pXn+kQD z9TlfXx#}+&2r_%{eWf7$WEA>kj8-j|v@aGvw1tk4R49iYrVRd(Hv{)GV@Q5ysalBx z2;sM!rh0Ti-JOog3vExSM#=k%{brpEFThM6Lk_(`%pG=fDW{)lu%*U<6d%v>6nY)2 zx94V2iU#f@4tr-MNl*l%WjFvGF%>K6UI-Wjut(IwNLsPzQ`7>?U$~)g1}72 zJ^(R9ZUFgqH~<^5#b6!@WCrP_8us(Zihl~%qc6E9En&k@`@n;{ZSsL#&24R0@^VT0 zz$+CBEN5|9b@WaZ0;mBc@O=MyDSQJOHs$0Xq~5P0#113A>~U~TlCC&N_}tQ=_-iMU zVW^DSg$(&caDaLK>}Y`(&pifX9MvLhc>A?a)h$_s_1Sw+f$q&L1ZvO-lcj=w^lV=1 zU2juarSu$5{qIV;ATXn46aW^H+hG0!4T&jYi~c+&$QnnqEQE&irbZH_<@0okfJo$x zT$Q3`MsxyFrt=8#lXvCSG13PQg`dVRrv3Cg&{%ovh^wx;3L`9I;o3FS{A2EN z8OmZk=0do5%Q2x^b#A_|(iGho;^gWABBV3XSKwuyE7%vyvjK8iP`w=c=d`Ug!lJA_ zWV=7mYs-*Qord7r)xVQ^W4ni@G5g7VPCvItb+>OidTg|NvRdgPSj#%#tL<&(d6f6|hY6xTf_7!KVt>bn%)F_8CM*TpQW z^;#vVc_)p!Y|4yuQd^D_lX7{9O2&h@pODX7YE;8Z;=+-xEBCs=#lB{kbIAXBoG1H? z`ntNQa)CvE((O2Te)qAHG3z%4EFyg8u^=*&WdOhsG4)JOZHwP#5RM7#xeF=U02rOz zaL1<$y~~x{RhmptXQx5bGMw)PT=z+Y`l)-pjj1T^}^Dj9_Bf@O1{odx?O#JJPY}Hi?~vBEV`dhQayGv(&z`03aeL^w0MEw>F*r7{|87919j)oQG z=a+YUOtMT*qFz@KPmSv%guMY2Qc7V!I-9ZyYqrH&ay1o1t$@UQk}vJUE}^CC!(`_o zXwGeBe4lHLsKz-fs~a}Im2@5E)QPFrXytsc%B83YE2!#|-ThMsLf-Y542f+fia+6o ztdZLODgotuF)6*RB$CV>rX}GEU3Z^LbHL#yvsSDMb3GUoDR;63LIg0HZi0RyAo<$g8z~k0z(lgsv2^oa+cdGPp%6w^> zUv{}g;8G2X>EOeID#F=h)y@B;2?kV;QxB@-4I*GX{sE{B=Wsccx--xvOgwVp{GGUO zV0;z?P%aeS&9_Cl0d)&$BKL0q6a1=q67osZxDUjTcD!t@ zZmv8bED}KN7ETjkgTj$G+R*fGVp=0wc?7Ep!D{h2L3du=$RbJIa3WjJq;=dQ;7jJq z%i4nJnwek7^GJh7G=>Flcj+~LSRElMdlrfbgdC1AA|7BK2lNGpovu>+Xv3>GWTa{u z3mOZ^nhiwsZE)st#9Tw7TMuCQ(& zb^dzMo(_mAy8hUpO`A!f20RCo0~7r{BD$fnf!5%Jx+~?g2>nR6_&V9zL`bQ%UErgi z&1N68+%4!%{k>GeY)@d+4<)bSuCwsKRF7%Tmx#SK%DcW`)9#q{{6=Sw4<)Vk8=Muq zo%p-h94!*6^0`!v=@IbAHi%l6+pOjq1t*O!O@h zRM)T6bOI|abZt6KB;~?WTAnr{dMlMJf}fuG#e?jexnmL(=>az=qq^&>uXk6r(WY&m zXlHjy+<~#UPBGC?W`-#?-1^%1`f8`geR7MZMU6X;FUm9$4KtQst_(P`Po-xL9!pA3 zZX@e;N%iOPL0Hhc6=ZY-<0;z1!l&KPd9_z;_!+QOZIW_d`*ZDob-idE>W;+Lhv`jb&rNx293vld8 z#73hP^jOfcpT5B2H#WTe;Rm@C)B0zK7xm5|QSy0+{6V!i?YlNZbT(J7FHs>8FuDEAnm-Qrj+ z4z0o0ux8AM1vz1QO;n}2yDhxD1N01?*pC6&92K29;8L$=AV5Jl>|K>iK{AY%hdOXI zgClc86W7d@oC%9Loutki+?CPT5pzxMwrNdnF;0AjEqBEP%A&|%1;%)$Gk6x-AO|VmjC5I^c+mi74u*UU z4*9n3w`m@}>d(KLMo@aTj)hOnU0=8uLBMwHleqw_t=bWT_>_Wq;wI;|QN#Hj5)7jh z+#b|9Q^~|Lg}hMjH_6+T)7n+>Gi=3%d;4UK{Q*}B8)qKf4{i@PHs3|B&@9-gWr+57 zjEe>u%CW`g8*&&{sy}yq^$ceZuUSR$WMFT#EJcybbYR=Mno+4ypA1$Qak)8A#9Md5 zV7Y2S?`ai#NaIn2sX4W;#_N5kTK3;mmPFt6l&G=}H6?l6inc%Vbk6LiGFcTnQNQu+ zDJ*wUe|)fz*2}qZw2%fZs)hIMC9Sj_n`({hfXGD|9DD$OiCjbz#7?wl-C%J31w*Y+`Nb#0plq z;*Gf95o4y{-(r zk*&ERV>ybQS301>x98&80{Rh&Hi2;89e4lt55??BMYldvCe@DAuj;--mZF(&gA2&!_*pZGP`yyK8w2}9`8YHJ$& z_e|)P+nut%pfPQzVWDl{45EXly?6(~)qt6B@YfPzK}RuzHA~92yPCV|*laP^#YSs4 z@jmGWAJ83`Kk>11h2lL6-4*nrnaXN@mex{ z@21bb3ng)?*z2^ZAUAwFV}rAM^|)4tELQcGikLTFElyR(TYz)rV8Dc#>%C`wD&0Glayqs zXblF^YP3}v?g4c%@PG6|VHvZ8Qv0Y)L1I`HH5MMB-DA;rdPMlWT-Cwu*I5J;v z*c}V5*-Vx6mbUkv#=BIBwW4lf$^_cm=`5i&hh^GQv|voJX8D4U{?P~JbzW$|9+!1a zhoxG5YqB0soBsd^Bb^d|dy-)l_#D6%WW{J12H-|qGMtA5y=kO@2-)L_$Gq>?%Px>^ zyN*j5fp^c~{#(xx;;St+1|i>+{RL)A(tAn82>3mfhQQiBzsG9ywozrqU$^j_=(u@U zu)Nm2G{kiqkDW=;UKTkOCletB=a8_&4BcKXih&>tS|i)p4S9&LHT-#-(ef{~AWYy@ zJck}sqD}r&GZgfl(Eao4yDI-}hSZETnU1}c2thhb$3Xxfyj|AD6ra<9;`jyC{yhe( zCww#CwUtdh*ZL{+bEY4rfaWYjv?>LEN7jr2tLaJB%!kIx8P|>YE=R|F##b|=F+i1S zp*Eh`$j=@{JcIe7&f!7*x8*qP)L(3}^8JlXCQE;S7UB|Mo)CnL@th?H$_yVCKzsnT&E z;kj+y0%vhV?xbRFzuK{dH@HU=+bm+YQwqFFw(oRTa!<)b{X_h5bF|+}cM_Ytb-(86rRQ9J!y^QZE5}nn#{;Mg%ar#Gir;GHD3IxNHhWzsPQkS)@APdxR z`7Y>Tq;1~WWt}UH-%pR~&!Jp-9S#%KvqbUu%{{xe1Gu;B0o<2eN4-aj&F3(uYghPK z7N(VsTe{{N+#rsndQdJYJ`k|n^i4DAyX_ZG#Mtyvj7KmFVyfZ%J5U17KSAfzu%LX& zn=triYIIey1nDpyhXObdb8n!viIMF*f8zNpqi(-R37=0t9{wR(GV*0a z4`0xqKm)hT((v(n=l0-7Ai`$v56fIn_WhV%w6(=sL7x=y{4vGsOb`q1StjjRPeaY) zh=(zel!z`SZasBL(xZ8(TcS5zh;A**m!;ce;~l)a4B0SZCZj;QGZ?UxiYIMb54UI<7d-E;VAU0fWQdU5OSH!DP8vd7KSC;Cz#g zx_@pr7C|R$M)QG-`o)%icHEC?$WC`=!Ez#BnFZ%Gy1MDr&DH*BI@nOg2l9E3-IOjN z?lX1m4DrpZQnJGGVN+5w@G7qa+^6Kx5(v${n-dxw1da&TuU@*aX8mx%78gG9*QNUd{8l83Y$PZL)ClG=LDeTWdiy+^zNA^Syj-7Qt^1 z18nv@D?wu19@QXIZjUOE8n;IcNEsZ&x4wjRO=@e6;l<+&pLvg41+P-Laeux=W|Dn4 z_2Riq|Mb+P*PX~jc3|HZ*B3lvP=69JwoC%v;TpL&=qy+RTAzvNwl#w;c!^!g%z|KV zCWN_pszHX_JXIhiZk`&DJ(fvo2<`FNq^yT=@SKy2VQ_z>cU1_`t5IIBJkM&awhn!2U!n%HiBFT{Ja|0-K3zdAV(%EL8dA} zrYk{aB0**?(WG;CZ{KnDl>;%#zK^GB#Y9*u_93UvpgoSd2s8C5!sOJ8P-Ex52y=lJ z+)h9^zd?dfbMT$)algv*svB7j+->UQVjYa_6bZDo%p`ZrJ&Th}~^yp>)b~7GKMSkeT#9IvQ#0Jys zBB;)zv%YSxJ@X80L>_CxO+rREwGu?4k84wdpxvOmLQ&mX`EDBCUhC0P0?$G9k#g!{ION5k? zT9asqn0tySS@U1->{LlYX7ROb$B_zn+7FCijKuqnQ@>PYtK3b(O;cNc2(XC{#!?p% z_Ye9Rq=+j4q|FbBD`>*dB` z8(ObWTb2XHu&OYF72&2{l+aD6iKAC+mOS`E&K%VkXhc|ijVaUgY((fWFaE{o8gJ)0>?% z6HeZPdtf}nb!Mh2`_+>R=FL;>Amp}~rk+{e=j_-S(}EY@FRgPP;Rn-)J8+?KFpB?- zK+N1m=~gr`uUnKO^3<*~)o38=wx^I?Zji4<3*j!yZQIziO%eVRiTnK?5VQ6N+8bD* z^~$yJIc1nuxn^1-OH_-x6Ud=X%C)hrw5C)#c@FWDGLqZkwrW!uIe$iGTRb`AEi%!6 zM21uGEi(4T#145pvu`*?zvaW*|FOVG+CFi;k?8xP*i&&5r0T@VX+GFUj7f1tLn@g( z){*@2XzTr2OO8GG2Kn0joH7inGBZ4pCF(`liJMR-`P$r^^lf8KsRPpdk~nKcQnAoS zk;phry@|LbxyZOaYG@yPD$abkpJe15N~~%yLSlo4I-lSOs5t-l|De6!Z%27EgP)8N ze*bpOEULWhI8jAhDIjS+kUlWdA-AfXEdM{^(Jrqsa9jLuJZ_8s$>U#E|H&huLZx7D zP+;C7K8*%Sv!V|F+>=dgH`l72ERfX<9!QxV9oMUvA`VQE$|hSutvD6`&%nf|vL@kF z{2Q2@ihqD-c7O+$a{tZX`Ys;lln4>2HYr{?1rURu^b@tT>?>TCZ9gkz<8v zRcPie!cDoTFd=(UotEzqJ*gteK^0BbqeCtxDbw^=Z1*@2eW9KY@fP4h49GXrO+wk# z{ubyf?Y{>aL#+M|FC)=;n>S2IW^#s5JVe)0EmM6<~4QwhD_(NWhwz3>)3{&QJ* zlOKX)hUu#%@jxxg#sA1+8TZgxHP)S**f+;YLK2Hf%2K`C7JpNBt8%kH9evQmjLM~G z_vdwMkaXX!Tj${W2VEcjm99$>FW>)XSpRF7^}I)ArA8N`|J_tn1bnLhG`JC8#3aiq z%m%>}Z|NHU?v3R%#rJP2l1jCxJ@IE$r~VX=ZS7BI1otQZvDaZ~8_`vu>T42nalai=nhKT=(^L zt_}8jWDpCr(t0GCNqpS& zi)DqK2#*{Xvb(L#{ty;b>^qId_9=X~r#-RQ>G<9^NI7{O|LqoK-1{g_S2+lXY4Ugf zr!C6Ne{NA$1K8w>qCV>uze1j`bXFtus`gWb5U?q#q@TFWjp58P!B^6+&o?Q(x|{ky zDpEjdQ++@mZuew41tYdUI7p&{HFiZxne|MA@-3JVR4`1V+F!t9kI97=BA<*DeilhT zJcQ9+$<1}V*f}cSD^#=2nQ&|Dtmtr;Zd(1z6 zi2w~26LwO7sHScamBW4dMPPR19m&98WfNnhn4!; zWmuWe@}vBA_cv7YLVPdFyB*%H-}kaxRIq?B2i*Y$M(Ly`kH`s4f;dkN%;YJ91p=H7 z)M2aNmD=|gsABCeQ>hgMLpqhoj^6g%=oyYIm)5E!3+eVlv*lYWw$`t?dU_&EE+{pV zc1_pUc=fG1EWM7G55JgiZ`BFIbW7vSUt5+FoS7xoZP#Cgi?1wjvOF@T9&b^2=*|#V zyP@h84nIr~`eZE+0UG|22nf4PLOdwePN&?m~m_io9%hBmi0VFjW*?H(Y+5*8(y>3DN<_$MQ z{XwO@Tot|tE%eM-!Nx_^D~ZkQ%)ir7PH7XdH&xG!zhc#K9qjap}%)dVf?g1f4}Mrvt#n6$`Y0MJ%tK7n|zURnP?BZ zF4(yGLfl`EBM(@`85L%Zwh^(xxd>r^_d5;~EVc z^*%rIci23ix4b^RM6Ep+C1nHJl_bdcfyWdwPkF_ete3I7UXxvNnhz2*{6H{;)l*(s zX6T_OOro&lmq}Swt9M_`+HvhpP#mZA&OXk&CtmM)2k+T-es`Dq84deBQL|-*s zm{r$LE(gZzWr@CXZv*#FF6YMUBX39aU{*apx!fDCgWrz44ZJ@UK^SMj#Q9Ro!yF2H zDtd36g%#&({xKDlv6b=( z(UKc#ZZyy2A^{0gWGTNObWn56JaG6auPL+kEH=Swa!^k5Q38)2ctiny%5&xio>CAz z<>h8NT*QugP4>t&KS*%!ADmF|KIK&-<`rwkYMmA-*L6!M)pbcs)pfRWoQ)23N-;p$ zv>~?MFrTdsb%wnS+7VkHn9ojzI)~l{9f++j%x5n{0??FDY*~oPzRdElg97A~P<3wu ze`a}$>i5Q_Iw$`1r8}v_-JGR1w4P;9MqMaW(Ryjd3;dqa7h2gWEn3fBO1D_xo5#dKc@= z{fF;uEkzR4Z~PCt-xy8(ngVd(T-E%V(1v-t9hU99P^C4P$A9{YB2E`gTk~|{aH$>`4AqlDI#FQpK08g;|r$22Y~4QK<_A;S73c-(&J3_5ozVk2qpbWH`x38pSw z=9HPz1RtFeWG-6q6@`yi^rkX}sXTBd+?Yt&-q)BYt_J(X&+SBi0Tz1YcQp!iGn7g@ zqGU6aV>_aGv%fJBh9m3{U(q3Qf~Wi}0qtXDdD}Y#_?9!tW889Xbt6GrY~5t&9UYfI zEDRUle0EC=YdKsD)hf{i>_N7u6NmXM2O#++e9i>bJd6@O7dd>Smjqcj9v|st0gUU$GSL~ z^3ZC%@oMaoCB{eh2aWrKqK?<#ec!>x)j`qkf`tm2k_giM2?^aoiF8(h^jbOaI`z{S z&85`0ow!aj@!3no&1#XC*bL9fqaDm@oUa+5*2`kG)leWkF!bF}+xytInjdI|^(u;J z4=V~W*m8?FMd&EaB@}3cRZjW6X<+=F=4hFHNHr{$fgbLHzB%<6bxO)7h&hIlr*UPx zA_SC&;tCX@TuRe{Ipr9RxkcP6frJ<;3Ha=+a;hrgmLM8OQ(Kt?&2{P`7f{pm7y}+q z%)))aj60HTGtw}kc}tz_^y}#>P4@~49LN}aUO!%Cf`(6nrf zF6TdKkd$f0zYP&QVIIW=%D~ST_~^j9$U#10e3uvCF7Yn7t&S{?;mP;0hi}aDv4C&P z_i=}J$@8g}{s{WaB>8b`8i9sF!XV`{u5a6~XXD(;#BXF(iQg0rjmfGL*<+|_Vwq`T zxoBdAXjJH&@tdi4eS{Mga>pF@<2m=GrzOgTgA=+ayY)?TOggiLD~xioO#QbR*5oc$ zonJkciDX|rG)|pLE+6^j++H8#3W;8BU+*_k`CqSO?vK`9&WH589`1u}ydHMuh+bay zh`e43U(Z`EobQReIG%M{t}D{Lc?m{iz3&sf@3)-2i}5XHJ&$g+z^lYIm?9++!Y)c2 zr^RpE56N6_SDVXPS1k701ShPK7Ulg|I4+YD?~kF9_u3ljpEhMn`t1(tYHiQgmq$EK zjQL(elNpwWv2}OD-d?3pG$jPLlvA36Uw+oz3eOVVk$`8lCJvn*F0dZcbM_6?JPnzn zSg{%~>g>JyM;}RAqTsS$6NXOvxmR?>g8EvZ%x>FSk~`d!JG@IVT3icPPOw%=^?txY z+}1d=thpzj@+aJ9P0=@}t2Qj*89no{nxIS%aVky^Jd;qI2B-0n{uLH$$*;xTWYTi zSLp7}MM0w;U>o`KoYuouo8>~Q-0qrqT{3rg_6(m|?>aMFK8i6DwK_hw>CTS8uDl53 zP+WZ>vff2uxa<=*?>HQMMy7%@18oAsKf520)*9)iu zM?h-ks-%$a<)V$2>DKFY-(r_PXpR5olIZP)jO-rG2N~4^(dV1nwUhQb7?Cdu!t4Me zf;3aQ>ve^r=k=fSA1ZPdxjx|Duhn3N+K;Zz@7B+TqXgcYI&+9WWQMF7<_gefz zk1MK7ln>z6h>WHH(E>~Hvx`@87MAOT6cZD+8gf#NhXsZXgPH=wHyNHz=Yn=_M9tZhmwor-n1>Cvz%{k7A?>q?00wU@lXHkK zEN$mEy$q0NI63Mh^?QT(&$DMZHqTuP%t*Rkxo6t!Ln#DY^B9Y`xoGBvRy`Ed8x)AG zOy{04U**T_r58Dy-k<#9>0{9A}YWz0qM!B5$ca;3Q-NQ zGE0+57P+}fVfC9Ks(!<7te#W^mNqfv>v{qY*cM$jN;M`UG-|H!K(uImjPiC^lq_Ys z;Dui*2#quEOX8!212}>SV+h!&qzeYKCa5ETG?wh=eL<1i5>(cib*YV1-}mx2*>Vr$pY2 z-djN#Dmo1Vk!#*}PfT03k<5apY3mUpJJ{ zQQRc;G)C9i+^!}zB%MsD**P%C0VV4GsLB&n|BJD=42x@9wuXa4&_Hl^2=4B#!98f8 zad!^{cTb>k*Wm8%Zo#2(cbBhs_CD`D=f3wo@AqSM)6I{rx#p}zfU=h&Crm_%nUH`t4_1-LkfBM#-(7-A{R&A^1dn-1lO0Yy$!JWn94T z8Ps7C@mieXwIvmuN=M~0bzVe)5VH$)E@F9jw%pbuMlG-jn5Vz^GS7f@0wILl$Ad=H zD11(feO@*`_HmlylTkgVzP|Q4-wa~xr8It%IP4X3WbQcFiZ59uW>x}f4Vb#DhD1NW zAFAFbHKt9ZxZ-miJS^Foh-5cjHP~t(pR@b92TpmuY!Bfp-3;MN&yCO;AJWwEHz$h* z;11w!4xCuH3>CQeU?l-p@-O!Vxf=Ldm`bv)io4`9+rI9+jenOUY9k$l#YOft^KN3e;-F%Mi6Pai!biA8w;yc4)byX|> zGWghNW(?~wv3>fpNq5O-+$d7%+n)WM-f6~+8`H*V&`Mj@nLel60)BLLZ%qYBL(+CV zYZInjb&fGtd2RjJl)1F(X?Zpkk@?lnE%q>))_$8@gD&HNJ z2eqPz9?;BF1Nwd_N`u2_REuNOkNG7PL=+lXfd>W)TsVM z^E{@Tkiv3Hu$5YqB0Cvk*cWykdp!x2#(O#*q zx#c%|cf%_K6YDzT#|NFn<-PcMMu;7_60|KoFTSZ(1t(FqcsBEdY?)eJF*gXarmvi_ zn2K>*=PsY<`j2S+O*At&`}Dk7@9;RlJsecq$wX~vs8X3 zScuSCW2hana}~MI1V9X;e&T=@=}W^>Q)^viFPF3_y}0A%1Xc2cFmPKB8PTEWa%t6y zRR6&dJo+ijX*<$KYcIwbs1QP)<6a{GN{jtsQjaZx>z?IcU=M}2a%vptiN{vl(Ih_2 zKA-FhY03N$H6-_VkLC#OU=7&DFzp3H`5M=Hc)>eR6 z5M5+3@)}@vOzf4GOD}$7cxhEu++Lmp;k#H+HCGCkwPc5OULcLM_H{vr)@b0l^TxQp{p(vN%rU+ojI6N>1@%B!W`j|_rzR7tc@QDnkttwM*Uw<)KyN(w8RrKVn zZWBqVdL#eyqtVXDd%a#ZD}QqRsoy@e!gepC)Itbj5jT-7Li#Vb zjk)a53m=}%zr?|=Wb~jAxX%7?R9Z8u#sKUg3Hg#l6s~MFz1wX2Mu)}x7_0lf(J5)O z%V>ILGCowp99IO?_+cnY#5nhPGc9SuksE9)7#)smX^-qtQr`s{m!%Qq8B z)ufb)8IL^$MbQz{5g-8?C7jb{(G1eP>ytt<{0QDAwu$T&(>AujAQQge(vohr_HQ&& zxtXh+1qRQ#rn@z?1YPT(hF#CaBWLwk`IPVoj~%td|m|v|BkQ; zgp-yg9<@)6e}k<2V`iLB?te0hpq>f>R}eGLY_`YEgc#nrIb16dcQ3?;v&LZ9&=^CD zD1gJ4WRvNPDUTE67bwj0p*C$~Xvh$XcU#0E8%ZRJPEK|u?8X`j2K??_$ro4T()z?O z#4s%;_0E}f5D?@#>Ur?yGTac7fMsN8oW1RUmMQ|GjAe)dMJGsk>dRB+%UXn9yvLbsl>hXplXoC^-rANLi{JrOQG;NEdK0a zByioS#1C0*!n@pH=4sXLDDV9Wf9LFo!wRsIUrLJwPWgIwu7wJ*;EL{AZD;;KCq2Q1 zLu-)o^mi27ZK31=L8D`k4`<-lU*p1jtK0!9pCcH_Whxu`kgG&DT@>=OuE1dAwBGc- z@Amy*8#tv^Vvy$w?61NF*!+i)y3NAq4iVk13I$<}5@1>^wApF&-z;P}{*8V+ZYuFk zDu+_zCzo2LUkHdttO8FqG3O&SA$fF~y(tM`PSvH1UFEX`?RdrquTQcLw~;HV%HcH) zq$8$sj*^$fH2Id9UV>%a6Y5Sd2+$t*YuM=uo@WAP6wJFG5}z9TZ=Ue?z^quoIx zs3hLoSxjTvNbZ3WcdgA0 z&ZNfcZLDd+yV8FVNojZ-0fH;d>F_l|^Y#nPbE(t@*N&~s*6D|$`Vgs)Q&&I=`lh6U zD5f@R=oNS*xcFLNO|btuWA@-!pRO|Fx>46~gz8g~aq-&PBgEN2)`!HBhEiccjxE8^ z24qSHLiNx)E;8%ViGg7_6QGdywq)`lEYQMIt+?VT(D@Lq_{iKq^QGMd%}tfAIndG~ zx#oS@(&=llQQlg?&k<{ln)k;)L#)f)j3vh?jf2-V?4***{8{5_<_SL2>Jl$s7Jqu0 znCl?;Wwxs1vtR9>E3RvI`LkcX-Ajq#ll$xDEe6ws>i|y}gxkzumF0PC82&az9aD?Z z@0Hk4y3?2xa)ccM4%+EG3zzZ+>&X*mR&ATup$6XNpACzho@JpCYxaxDJ+8=9H9xBk zD6VFVN79<)Q3+hPD=|XSd5*h{G*Ma{7Sl@&QBe}K^4B$L+hu#V{sfJ2SGuYlxO%Rz z3ZGqB?e=krIb#GH0>HDV^QcHc7PpsGJoy)4na6hzL>PD8Iu^FjYInh8hIP1CY7` z3C2!fS7Fcv_~C8BJ|~e^S%wykXz2#$u*hOoeBuBeE_YwK*MM4JrN2{h5z{maU?JJI z%j*eIRb*~>5-*&lC)n*mLboo_;hl5p7WlWo36ly`+P3mgTh+DpjLLd@GzQ=~^>`u{z||JkqwRjwiw_fapp|W0+RMKHuCYwOMYat?m`itO$Ni-*ta3^IyB+)^rOP zf&0Zg^~3dHu}@j!vZxTqp^>u)?7ndA+`nOleFe*VJ28e%~u(U3L0N z^nY?Mm=Y6117yHHIFYDu=_Z0cVJLUjsHfrOxO&dE%J?PF;-dCs2I%DsXR26Q>7>{+AksOMy!(wU=CqeyAC1FUL z)8Zc@_Kyo08%?l%XGSyN;R6d1PK$v(dBmc{5|5+=e-m%%Xtg$aMvyODvDZ(G&EvS? z6rK;`M8!VZkT%BxpN|5SWpr;QOoM*9RR)&dzwg3|?ak>QO8Z=W;4M}~W1rX=f)#&| z3w=DrT!%OpCgGw(hIJ4K1;l)JpGMu(tx^@*ZI)bj=w<6TyM1QLtT7h5$7;7(MjY74 z9n!LcGrT?`UEaJbRNx5FN|1Eth1;m^t&4YCwUTV#0L%q{o>O8@`U%_O2q0Nw$4#fOaGc&PZT*5&CT=-mtudh&$o<)&G&%n~13w;bA<-m2=Tr2p zBcq&evEx*HtZ*ts!@MYf63{UVv_YN|Bvvs%$NTgt#|}31L&&Ec9kA+?J2{ zhpBnRQKq(cUdHG@v*RIzJJ0K6_Gf~=1olyTa9eqy@YyfM^(Yejm6Eqoo&opi0DE9> z8dMyA>Q#pj9(+*b=2e57zKJsm6b}g)`HLr`xSVUhJf@e?4mS{CY+M<-QfYF4w*OeO=#6(;rh)mO+_M;b=;6W~*kV zb{fc?PfRv>WC=Ged9MVV29RsDRRD-8Pj&M9sKF0#qZQgC1oWe~F`}e7{2MU*GYK48 zWU>dS9Z~~EcX|bIh+gkM2G7O-fBpe&NYtRJjrR)+?$;(}}vEN-l`qs&9*QMa$IK`0bCBG= z*kk(?<5WLt(iNZB0?l>mW-T*LBZ#?@n8HO(I|!ehSJpgtXyao4bdi?% zc739xIs47!dtgPPYifl*__B6Mb($7yS%O3~zH%L=Lgxu?7#&a45Z})6{dLk~}1x z`*_p{8>Qt>=7EfbtOVu@z9b$fP(xAD6>;9IzK&0?g?a}v&)dgw)hQ0rmjtl!HA%!V znR@Mch%_?9N_f<<;h9k&JKg{cE8YCKO)Z`7qn(>ltSlXHel- z)5Q!A^%e$i+BYY%CGe$&*ZX;;H2=(*FYW&KO<2Fm#f;2%v6#moN3cjZHyq(9!WxRnw3+Nc#U+lo}-DAcL(GD1mh zpC`7PeqcEJYP_B@^-vmRbl%f8k-WTAK{P9r7VzAcS4PR|NO@nu?Y3Ckz7Q4Zn>t^J zk1L=^mh1Ey6dmc3gOB^d{-tnb(A>%PtMmBG{r5o}?$5b|+@Hnrn`Zpi+yt)E(Qq%| zDWmeq$X#-JMyoZ{1gKado zqvGKg&saSfoW4TO*g63&#Yc;%A1x=llfPBu7LXIy#?Wcz#9G8E!6Tsok7RX4*uu#+ ztIQY#KpII40_(ZjwO>wl@rRu06ZrEPESN^D`^+`!(Q65l&HL)EiI2tpa z(3?Ywo~vSa|^$d>%S5!o@20nMO-{g z+9nbGU#OHCuMLJFF~T*ga4e3sI-<4jzZqqYm%UNx`FbWFi9B2QIaHY8|JeKSUL zvVJdk7{-5wK}O})ZuoCw2ua_x5gTi< z*Z3>L{X0sMQL1xLs5q{KZsR!&sMC#jHF_6P0FL;GXq&vFwp8QdYZ}P>;EKJ&62VS# zOR3^`Tl=^w{kzeJPUX=;r`I;`nma7j2-rvB;(4O=;&s@cQAemc8>Xgm3pQA@6 zsc+7_a%cjWzQ-M6>W;Kl*VK6brfn^8WN>og;TA)MkQh)ciOu^Qi=%Ml7x41}fpRmwkM=tP?Dqdg^lF zrQ*a?mPPpmTi3LAKIVPUvks=i*P)( z=5L_lK2GnsC2*~*EUaE-9BOdr^lgGy)JySDz4!>ad~s+2a#hoUcS-_R>Jm zOl|y!0^cdmUgj&e1?cHLP!Z+Udhmwa6wahPeIDJk`HrK^%EZY(&`r^F%d$gOqAU0` zxXyCbwWK`wbaXbc3Ru9u?)n#vCspl^1qUrXtkah5YZfABe7-&=i{_Yb*ipK^7~Jnq zjp(wB{BN4iU!mg!5h<1AFZTdvV*gfRY=rzweU=9n=DN?qO!Py39$Q;9NkVaDj zPIgpz0xD0eyF)K1Dlh0rJYIRPlz5J}(x@Z?BI9dx#QtZXBn;t-3&_4MW)u*xtWu9I-2iCte+aA3KmD96M4H|9ZQXh9kl72ex4| zcG9I_3wDC^xgla^&>cY;*zaT+P`FMXfMCUN<%&DZt3*%KfysVtBxEat_pC3>%QB%I z<8D^ai|>>cX^RL5!AAQr8S@5vbd@L5;`x%^*8?Rbo2Mppy)AORE!;qVAj)nlrQu?v z<$mYxe#htelJvDF`l99Y#mL_MjvW7))$=8T?*mcCbErWw_m+mbH32Hdf>hWMsMjU& z{cem-*AYUMG=Jz@`**$Gw}CUMt_`UgWtRJA8r;_C)C)eIi@h23nVY=~6AZu8!h_Vk zTN7`^1(pWlTyQ!#QEKzsSxEADHrMAW^Yvx@^;3-&EAg#?_C-&O-~E+ejNjwVK;|o> z#ifVBMeW45=ISChpAo=P>gkG7zG<|VW=oIFU4?5_px1!S*QHd)v$fvjYV>ygh;@M& z1N~kmCQypz#mLe9j>7XLr>_Tg$1_n!Ym9+lFB35+<)0BgU;gd!F$TW9Oc7o&^AZO{ zy}x467Y4$P5_)eewme1Yx7I)tnXwU#clR#{UD8g1zJ8*t)xJ#NH+FD?Lmn2~g3B3a zO6RmA!NStCWxYFYi;B`cl%_k&&2CNSGs`dHg;q^&>1Lldi^@mqy)=Iut-)0i7^|3D zofct^UjK1$Clp=##rPf#g8JRcKNN7l=!~F#uk!z{kyXNl$Z+T6Q5uDT{z4@lmB;EI zFQA%%z@ER^f=F2sJ!j$yTX6G}=-;%VuD!>&luq zCeCBub~UKcT@4$phX0MG|L-x5GIZyDuAdHYa@&nJYP!ZTUqz{!g$4G4IHh7%TSYR` z0WgbI_9a`FQT=pbdMEkBnF81#`^pk{E6NxGGL?LB7$02Uu^0L^<@fA{1BbR32^Z?r z57Wy7g4zN)Kst;kD>*p^GyI^MN|s76kI0s>F7Y*L@7LhOT$N39FIsav^LWi|@yuS@ zSm_n38_wP`DBl_B@ZSElCYIhH&t*>&6EbBtnQcO${KE`eJ z|DKlC&dyDJ9xJf^z@??84QA#f#T*!Jo|4-R(I0((({wm~j{7nr`RHIP`-(#T+9;6w z$_>~i-iv$%0Uh2sjJx}D1N8jIb_k#C11=yK_dW*)9m=hBnIzgEXp2m9o6||dqT8@& ziLeT%hTHlK)E3WuBhjuKZYB90H}{Z#WiO!e8l-5qEgY7 zqvEqy2G&;4dRh5@Jq&8|{Z~0bv(@dd?4(!h3lr$oP1;fN-oeXcdhPpmCfM3|tksEP>v5cs7p#(5a{+U?cjXynKgNgdGOi5JI ztHhtU{#*w#N`kpXJz@vNS7UHvyDO^Us_y-6YgaDdTkN;lBDdJNeF z1fpEs1aaWFHMh~|cb*#22Wq~7BWDO{wwZYaLHu8Act^7}&iT{_hS7WiL)@Y^Gdv{G zP2h~;F`DrKp+fm$we}biw$-()KDiQ>WvOmT?-8ZMNADES9K>}ZV0Wm=g$Po zWrdilRSE)g=7hHDF4`qo+iGLN$0|SYTO3zT=CmSikqZB#Km|^#s6tKeZ#KY@KIR#| zeWncAYizw|ehDq{mWdf&HUt~zdmK67tqf4gUfZ06~G< z<<$V_#=^fG?kXKSMz2+}KJ+f;e+E@z{Tg)Tu)7FXl~A z0YRe=rUc18MVa|0KS?EV$!7;lp?61tAl7!pvT17b#VT2wd)M7jutHaYy$_%rjZ*i4 z$4`i^$FgBpZp8g{EbDl#GQ+YHORJ)6KH|0bKinJpLKWf z3K?kI_X-31lL*XA+ACqn0fpE&*EADGNHLTx_7mXJnr@&(+i3bU zPXWjy_7lu~;Rf_(zSq-h!g&}t!F?%w)Yfaas(y|{l>Y11gP^x=t(gqRe&RNmmXjh- zEP2-Nj(V$XWy>PntO7xj?TY-fQqhYSN++>y;4kHFRzL1m6!(f%QddK@6ZOeQ@~JFF z*8JP%GZHGcn9~bg{P895`X{&@H~J4<@h@3n-Z0D^M@1u8ijO~Fo?m{;Xc6efJCBHh z4UEyZ=f>vT^|i6cvr7rroG~4zf9A6<&-~!GlA#QiqyDvxb^&{thDNg^psQ#xe1=c|2m4`j; z=PBfscPZo@{;UEn(k9v=+>3$Ls{eBfi<$e9YA)V6c=f|HZX$U#^uuxAHZStADR%A{ zdh2_t9=d&peGx5;^1d|g>9io9!`MXt2`F>^k$ks$P3PR9^Q-z{I_OqW}mx2l$;f$&N&RNRzw6 z)$Z^o%yofU>P*_SMHq8F3zz(6L57S8!&=(bzrpmMn>;#uM7G5<^Kv#5EiM}*EO{_{Z ztR81HTZ{DagERqWUGu_)AmnQKt(e~`=>PyrJ=S~o^*MS}DZfc1ekoUQzM)wJoeNii zJ$Zk`;Xl%O!rn_x#tnGg9t>-+_T?2v+dF-Sjng~*5+UEUv>C(!-!$;o$C(Iu2hbv- z6`CUx6Ei>0CCo02j8pG7ms##p<|eLrAdQ;v-Y!@_q7V}uo6`Fox?*v&3v;V2$#lFa zubk^$8N$XV`FJ|f7eqdT{jfEe`k})L6LAz=1+SR2B(m ze|cg^?1nMAV8@R`9Q!^#(S&J2BflXauXsx%7Kvg_v>~m;E}hi)Q*+y)!8+0V_)Dl4 zP?BlWP~nLZ{>WX`(GAh=2p>lJd;&04;gzsRQ8hf3BXLv^PuIPO{O{fWrNPyoiBCG6 z%4sddly$?GlxO)QPG}F&ykjyBqX}GdWZ&eKvBR5HW}|XWKi*^wt9K{GYusorr>Gm` zUIZIHlyi{T(t@~BOjm5qtF1Ctx zRYKx6b90J^tr~!(QvaqT{aZ)~?=hbk14m#?Iz`FW`cQPDwgpIE>Xs95CROd7>XE)v zqsyzI#JMlf!I19q^rF$i6)TYr-Ybv%OGfO@>al#mX6Hno?+iKI)r$GSz#VJAM9buol_I(nX^}V z&J6NORUjWlOa)M4?az+)T0UQ*vsc1E#g=_nomE@A*qax=XnU!(gSsV&(uLDI3Jij$ z>(LRf(;W#-eZ7VS#Mbbdw_M#o4Fi35>N7xF=jTRuw`<<=3aj547(BxMQsq*sW&&*GQ$?l`;@xK*#)i!pI~;TVaXly z6s^(BojALX zij$Jd7?4&(NEN(_D9NQ(5R@)*`nXdxG7EwoXS*3hT{v5`Hs?NC0+njdEk0>XHh>l{ zrq>bz+A|M11Ny!2U`@Fn%b^NW6ibx{W1u+B{Jc9HwS=+*3l&R$+cf06Q4+Gww-Gl{ zr{+xvj2kOdYt7Klk5(8k z&sNqz+HHn!#1;l429PtLMkzYT;RB~XR%vxvyu)=?!K;8)yfUxhPn9%Zb-XzTYN>}5 z-n#SNn*fr63usj=c(X_jCy{9D407A5=Y#AT(!9mkJUS@)I1`it16fz{jKAPWDU0P> z(6(NG?a!X_Jz0IL3hRq)VcDt2*HlUV*HvRX>^MKBwRlc{*v&S-+OPYB!QNVzIb$E~ zmYyY&XN}HopK=F{%vHIaUoSVAC3uH`r?yWj5{M^2Wv-N8$iKwHG$WU#jo&wyK?lf= z&`6w@T*A+9lIa#K%ucY}US_i2Er>&9CwPl?FObIHYg_(4V}H-O!@i=0(M=meB~YbwRv_am zk@nM99Z@6RJ!UK+9?5M^OGcCuY1m%*TN1^13@X%^EV?%NIHXK858^N6F7 zz&GnX?e)eY#L<1Ev`EUrB&Fw4Xk=r<^ugJ&Mk~|TgO)aG);>Bh4EE5XFKaC)SF8dQ z=C;NezO>_7>F$=&d`@^MT#RZY?!_BPHP2}5-wPd3T5T2P2bI_q8NlQbrfhS$Q)lvnCeHYRqW{g*9=oXro+;KkZW zMPyUA^Vr2yauaP5#%`?|UX}v%_P$viWy94q7mf5bnxdlX?oMeS;Qct{6$uPqq%b!O zT;^Y5WSa5Ow*<%@ZKbPWYam3sj2RC(nkji4Co{4*jL_={#S}~#ex1E>v)suq_!Kfb zDOSMG;RX$yv9}*2hw!7-G}|_BYGQ-(U`K|zpANax!SD5w%s4&?ZV{Ka!(M2aFy)rk z{}IcSy~y|tmUv?~RV-N}VetowmT`Ktos*1Z^&E;BzZ5@*keIw`kA|bDs?%yPZs7xG zis@r`)ImVOE~B3o*ldHT$VE?g-A*UtCwbWVpIF>oeDL(EfThE&ppQMN4hBRvBSeyV zp)+M=gTh$<0x0)iJSHxc5sj0m>=#t{mm7iy(8%qM5*CDdYkF6+_AO&nB0WKk{7cat z_$Vm19>riFHHV2tz_V2z&P~T)-)A!@60}d~NvfH=`Sgk0ZxHOzyNiXzO}Wl^KU^IU zP&+j6((5tpJ05wr&Vp5i`Na|Qrf^QKSJ)X|RHSmNj#YEJR$P{C*;6}k1Q-um9_sjH zBZ7nG8xQm+ZzIa=UmMKdo^MjtU%Bq@UlwBgMq~o}<>WZa{7!Fv+3pS4aT!Sp(QRb= z`hQ*g_%_K{QHE@(;|*VMWNYj3^_=@|vd>0}e7w7_^$#515DS7(w|am0*=I{Av)iU1 zdnez-8`1@oBh-^F@^#fiFMqK9TnW_`4bAuASiUlXDY-P{6Is_`)VbRCI5j$Ty-4Jt znz$c_xxyyh5#Lp=Lg`DSu{rD%r&V!#&k9*XS&~E|i;;}wP0>s~1>%6e{4q?@uLjG~ z|5b^FP)!~lQ&luyg(kxR3Ti=zkB-QT+iBAD%XVP8BkmN@4&kAve- za61~w4qi~Cww5IsAPwF`pal{8y-mdIj%cDr5~23K!uNb<0dyTHawGD>s*VRRo*Z|n zOic*XPC~|)L{C_WEm+G~IAVmKJXDaSnlAgk|B=D+Hao`j&XZ=nip^t7_kZtMfNQ z#haVzGXDqfL%u)@33Zu&Y4t3chUe;| zgF|$P!2686t`N9ZA3WYihYVQ8^UQ!Pu|XC%LzCzMp|L`N&OHf4&E$~@&5^~PFgW6- z@$e?=gPl#hB&~2)#gWLx-DBoNlDFd(X%pdg+a8=uxb_cei1%HZRZuBWL{TMti4fLxEjuk zJsG8nnS77-u5@`E$|@CKjv=nmY$ox}WTyv8&Zew{^)d%nN9DFlAO_=OIKoajYGHG8#j4MQ;F%RM__o$AFcCd@5Mc0$6WE}_=igi^8#PB$pXTQ zguRD^S}4FP_LVc~TOD?0#&G9S#9lE{S(`gi!Z-O~_ml88v{+gZDlvG~zIV6AKj!uK zzeOQ=ArvARdpUs3j5f#dQl_uRzT2na$4fe16vIGO5MaNWToFU`(Kcc7?5C*5jwv6i z`QJ@E?wdN(+`f(I==Qu8cy~N?(wNJnR;ie&H4u^jBH54pMncsQV}*osMh(Z^mU>r2_9Q zKHSYtIIPwk5%l2W|7_mt>;HfAz&|J!@Bt!p{T>ho-D}4m6Ds`NfAyD9{B{x<>bP1R z7ZW8&W$W(X`F@PrW5EqwcTW#r|7)h7gPGNlHn@TO zsVKA=8?syY+Aj4Njr0R{9FMyER2hxjyB(YAme&*I_7f}hY^NR-nxN^7o4j>5)_LED z4Zf|2Uw&DSkA7Lkim)5rVWTB_Y9Lo$Pm<%kwd2d`pi6N+#*SIEdm(#!Bj^;wOw6SH z4f(Wu_V#>#Z*qPWlPUBHK9T#MGbeksemk!8W4>Bcr`W zf=&TGBhv&4N5-wqT^Ko z-o>Y{H}DZnG_TtBmz=yWbU7xV{b1+a+=REG^Jl~xIZgkp>arPL5$$pe#!6K5s5mTy0e}VoelxLoUhAAw=Wl-PBTJ1W}2Fd_Y+)B3w5j8 zyMRV%!)I|wMB?U`G}y{}nNZPuaFZMmR9q_UmKp-ZzO|^lWC?-qYdj~PPP?zi<@MB7 zt))f`7E_C7Tch>s3Zq+*k?;t6(3_>~YgnR~qT_|9)<=59{6(R@Iidbc>iY|U3fu(~ zTCAS7LajId8{7(a^~m8(55{_CG4_UN5|7W;@H9v@sgk(JbKW}9ttAsr6+FL`5*}NB zJD*f~d(5<1%xm%6t~oE7(hKT4pQyLJz9k(Z!Fal)wTnNB$!x#6H4>rL;b9S#Ixslb zexeZzze^r0BD>Io#AC$M{J}iBysi}?6|v{_y52edbmXf3<|=p($fS_X#`5$JAj-Fc z25AH20@T8!m2n(sRkuX#*R*z_m=dmk|A5Lg4IpM|Zy9@Qm>ooK+Z9h$R%8zvjWDC2 zHq^r!4n>Var$e6@_A0i14nG-Fhw9?7d$(DkV=xzk1xTwuYG|-OJ3MTCcv_!FwcFJ6 ztQ6pFluSF+7<)W%e`yi}Ap0EN!nqtqGi90kELS|5IW?Bm@6F+4^2h>6v_?M#AwwFa zXZ4iiB?iuTc2e`cj4xB8`T@E9Yn}+;D-z}8(Z!&8JC(&+5rf40zGLdc<30leg%k*c z^-rBTe>&;E7lVEub21qKT|)7J7Jn#cR6@kt@8`EW3{;X6AENjPMza%{NFcfe{q<;= zs5?3jtZcfn^}N^*ccnWo!!F8ku`SI+RMww6_n(a-svQ9HT<%hwYZwR8wzgJ`%G_1K$;>GU@HH6ok^vx#3ws6h$ z`RQJXdg3esC6idB^e$g%qw7-Gd!F&VMXi~0z3jRIeT-si%#<6M#k8+3wn(V`Ch{+_-#hE7iBzsiM8$g(?um!PD?twMT_;1pB zM&6g^TrA=PZLX3XAmae>5&mps=)QgM-$786b3;ZogM7hke7mN2=pwGWlSCy5v| zG$419YfoMD_AiSD3BNWF|vTyGHIW`q9Ad{MARZXAR%=6U4dBQ zq#P~sP=!4;1MN@OT?i~Y_%t~K>o5fSRkK5f*a|Pp} z?LEx)mwFq&J19}sMS;?%v@v5kk`dr-K5@ppD-=X zM&3Zq7wso&w!e;=g&x6Y*n>kO)H@|PDCm#xVBf)mKa;*wrw{q@8R^}-SJ8L>Tf08C zzuNTy6PBaXn9+jI=xzvO&v=MAMMz8ODGv2(OFUa$BM~&13+kPgO3v0;zJJY^R&PdU z?%z0j8(_;2Ao4IdDOQuO#l0j%)vl$?`FcVnw%$>Gj8L7}Zxe<;HI0;BBpP#dcV-4h z+E7xUrYmf&9&B0OGV6j_Ogk|AfzW1C4t)Lwp8ih1dU{^tG4@42GCz|8j~N3Vd~s_C zX-W789r$Wc?HrW&G_2M6FU$Gjxc(sl?&uxYh2P@mC}>vm%sz+NgIg3nYqg?VE>IrC zFYp*gG@I`?P^5nPzDkC%kp-bAx%wZYWZ2DQHmhPMARchOwJ`f`%QgcF{593iIpuu4 zjbJpj?j^Mxzx_OkKZs7keSAqAc=+_W;FgS0ly5jNzYRW@dfDJ(f-x?o{s+dltcS9% zN=6Aulomn#1Ka%|Fj%>ae+Eu1d~LO)@xgJouFtVrw4F4){J zge9kf(Psp(f-4JoY&OpLz5UzY=IGK`2Ai>07eG@zC1+O?(>f*+PE*fc^D8!myF5Nw z1i3}MlA#dOEYISZky8f{vM?ki7Y2NSY(sJdPQrhfdWV^T1+b^eMk648a>vQ~w%6;B zC{IK(!J+QihlHX1wXk+0_Y#*wIP0AN^cF5UMEiZu zg5TSS<*rOzS?v%K3_m`#tbl;yyBl(}i32jkk5%j*gN{;CQW|DvmS;i+>;om$ubj~#0Cj8pleO^v3ZHKAauw z+&t{uy%TK3*B~a!G%Z-}d2w~Y7W6>AHz4Ljjk)vlac}j5J&2V#s@rnr8{rA4 znF6-$0P%ns{k#p_N98B`(-cz}3JT}~(@4{0uq*KF2K z0`)u;cT)`BaH+|!pI4hgp?aI7#R?C2zM3O3935Zt3k=BPb=T0SNG)+mr*%1wCt+wp zD2(RMb(!=1_*7WL146vc`6U_I?m#=!++N=9@e9X??d$bwtmD8a%cZTSN<*KK3teHp z?Mo#M7th!Jo=*(lkZjAN<*abwvg%SvbxJ8_SrW|4<5db}KN$n3?tW~k-r45yG_yCa zo^OFWd+e(tlzgb+?lIGMb?AqXo{uM{_?oNDmTkDH`NWeQy5o*YBVj51?dJ%Uaq!TB*6D@iS_*0X6b_! z7&=oo10}6Fj|fY-r?AGys)?<)I4E_7Bs(X{hi3Rd9JX-b39wR;<{F4KNO#TO9R>(0 zmbgW^*;Jq%MNa-$io)T2dQdna?CeR`Lsrite-;FTvM1XpGyy%gxnWs%JMcvn|y<f`uqMl} z1*;2Xs687nQ#Sr)k)zCRpL@6W^Zm1aX!QcMqBR9L8g_e?!u51-&BfAQ90*qsOQzK7 z0xEzZB5Y*pi^jJ!BrvRNe5@(Px(`YFZpjN1*lKts?B$o1GVY6iaoZ~D17?|4l?%62 zBz%Fb%g(8EZD)O~TBEZPyF~9ARFcSov?ov?8T?GZN|#;M$7I4xYm27Hj@#m(rTTP{ z%roFx1@z`u+?1jL?Ea}j^WYPO;c`%lfMu+cFV>E{`-QPE=|s^JT%%7s3%;6~?Il`b zD+V_$bxdq(YP1q=O=@atwbCGxru9%+O{`r{O)5!~mwtHTSXj+Q94(P`qp_A6jESkK z@X7#&rsjGQq_oLTNYo~_uBRror17Zm70!&X%d1E>9qI9nF+iiD0uxX%!GQX@{vv{Y zKvfM@wLq<=wl3GEcfFJQ`S)28|MpRTY!-%V2$jA zSoK0(Cj|+vIfn_s=%b`yp`;a@Nl@`oi>E)#4TF;;6b=SL1m$sqdchY}zUL^WlhRRghL9QDPX@i8FJWCS=gN=!N;!s+xxggjB{wHwY@ z*?2LmXKy*{Ysfy+mSNEJz62Gvtd*#kq;<`j6`cT`h-EH_#&{Q{&JNM#slhFj`qxJ2#zFi$-s& zss;s*2d?uZx{^o3$yFNw8l6H0GUcn9&jVDX(-dkHOa*OvpDa$Dz)G|)%KB%g-`7;0ZhGcobco3SCQiT;M7 zD06G^)EhlKM^{ z2Y~iP(PO{5f_MX1k6jpe9S}q{SruNFhsFIojKqm7Skol!Rnoz?>!fK+${`9qtt6-1 zT`1|~z%vE*jb?JVnSfYl^^N%GiPp0S)gOua&X`1}ocVHbXviL2=bU+H>6GA!g-K3} zdsy>-YN}aiY(SL)9%$C34w=So*XjTYN-M=l6AU69@9DQV!DaajVJ0YES50Bs?K$}s zJZFYQb5#K`H?-D`!^7(sfLYIHF5d3R*?XXOdhtpNPXyvv-`8L!EGX{Mu2-Dk&e~38 zH=broJ^UF>f)59_z@|;+k8#%5b{0M_u}Szegh^TgrS}M`75Hc1e;8(cS?Tx>OX#sN z484RRTUXc@3--+g%ao?aE)i=wPD=7V_xv^hK8!T4$6!-K)n`t{R7R6pn%FAIAZWhq zL;|t;95psTMpjpTH>pkn5u3h^14gGD6PM2%U?nyD{sM<}O^mN@z{>)(G=yG4cm~Tm z?dErhsu$rjWELBAA`z7)zU;S8$oaSJY3LBQg1FF~ zv(=A2D;cP2rBU9WbElNXJ z3+bReTwq(sc+)mu^n#k~H2iBbGd(lcZE){4<`82&c7@ZGK(Jju9rTi$;h9=>Od&B+gf-o*fDRfQsw?xCvqT*JpUjuKflB!q_hP zm4C#i91=GnKSGOEp@ny5neBF7tZ}~;67wd?TFYPG6A*HV?J_oreqEf;&WG(6o*rJc z(wE^>w5B}5%kc3-*5uF%cIL-hSI)_Va@bmEt;wvp`ABOQ?}z7^M}p8G79(oahGh<*?Y6_j2|n0rGpmt>>U?Bq?!25*_m&Q^ex7|C?pVmRmn55 z%KQi?j|U+*Fw=rK&prVEKKSA%rRi(9^h^bc=pK(>3ozxjVC6=7T)h1W=mbd^^M}-2 zjTaB}Vff@%i2rV^;4^<#|DMo%LA2LdH%waWBtNCSC~N-IeK*B4+9)IvT47Q_qj!cGkOUkmu_*Ko?EpK1?j29R}D~ z8sfyOj|}_|{akp@V}}@J)(SJV5!#7?hY`m7vWpaWYhqhxXgJ{@k-zlx*C_Bc+ zlSbs4R~#ou)hl7Rx3$XgYxbQ3a_wptUykaN-}4>E2tL|c(ckCltMjnow&cNeHifk= zz<^(p1qZ3=;4jIBxO&v;I{75nu_aS8SkeZsKv~5BuQ#cZb9BQjEC5i}O^Ey`onv-5>-J}M4{J4iuD;%W{bBRr z>M7p-ug+%&W=L@K(920Z_(!{Z;#dBhJ$vx}>u(r3y>Gr>z8_5-pcXGY?bc z{NGc0@bvZiwP-q{!J8N8=zrYNPs|WT4hKTNjt!pj+Z|K%^uK=f^mh8D|R9*|pKH49|UgtIN|F(-?pz+H=W9iR<@a!$#({>*PJ^A6p8hWN!u)d2bS);v_ z%4HxHS(M69Wt}Xfe$Jgtv4p>cvIt6PLnlBAcekXn2!3m24vxpSB$8q17Rn%sY)B!? z49H~#1of~CoL;9;!hJ4mOC!5{3T6RxiCYHo@lqyRz8~2VdlUT@#4Jr``||CG-7;nm z9&S^?k4B8~Qu02>(WJ6e!B5t#6e)golQEcYR+e!#l`=GQGQ|>hj#ieLQkJ1MWCARS zXk`jzyo9$5T0kw&Xe-ZfE6;c?&$zajxLG!4jCm2vG6?2_QpN~4t7OxJ;=K$zR0{BM5U-hHxP@7AJER+vr5(U^&%Q9ec{|!>zS1l-cOkN@*xt=10LcVh_ zn1m90@s+aP)M9LTBe}D7xh^hV#JNNB(Zk)vajiPYy_FCmc~})MnZ}f6Ml+*1sj1b_ zVq!V+JF65{8dO?a{{GKKuX?`omqYyeMfi(aTzg$4%K%=s6f#MTOcp`#bP1&W-ERu+)}=+EGlc*C}IG6Jl8gqtHL!f3dJKUo#%*{h19sea+b}xB@|5 ztnPK&pE5Xf8skKZV8R7~cex5;&9z3~acPBCb0yRj=7>s9rG|}jPd#!%DX--}+`nY! z*>}|;Fs#*mwW`o<_<*_!x@uppGh_6v(`ki_jv)Vq9jcl-d1xiUDtyc|ta|071G|4B z!wy=_lT0V9QwbLv5UMkZH84rn0iBgkTZE3J;zBwTd`Rj|qCZ`AbvTixICoS@(d+d}QRu6p5@ic&x5BNxE;huu(xe-- z5?K4$ix-BJdJTgYI)t81nnuHDF3D z`wuvwhCBCHQK8~#P<|83Rp>wls&;erCn-YE92+%+NC%V}#h#L+I13o4l9u2ZRCd6m z+2r;o(E&+!LC~z%*TsY$Q@+T5m2YiT7bSqNWXK8qG_zVoq~VcoR%jCyFLYwmXc9-D zPN#JmRchogR(KObVk29v(7{w9+p%&FrpVl-@%?15~@?MihI0O|{)pW3HnGlNuX_>W&^1E5yeAGlYI6M@$+{q>f{|B?*}T{n_!m zGLW=Ob#M*E?(-esnnPy?lq>|dZ;?)nn$gmMBwJ93G@I!D-;D?~n9)pWE{Gbb)!-UT zbb+PfK?auSLH`tIey)Mbbloq2(n|)i5%!_i#s*!H3yNzUT>VNvFGw{F$Gg%j6C)#N zG?m5LhdQ~ys9{#aYmhH*KS@B)aJqw}StT;1;n=Hp5?ZZpe*}<5HH7uLaf^*n^93I- zZxeqm(JCv-gt-6AsCi9S?F&8h{htB%|M}6+TS)_<%c_6-_rFxHHnW0oK@13?`_(MY z0Ej9ivV??o%N_dws^zqW3?;R9?^?;{LT(TK+3ZFl<#z!qUT(!>C{}Ai#J!U^RahHQ z`PAdzpBneloqM(e-9{76JI4#nyEepTm3Jh$*W`0FRWHyN%Xk?Vt&;8qZ^hgO>QI3{ zrZ>m9x;3y2q9{tkiR7IF*u(R`{^hX$E8^`-j^POS1AZqH{~v`-*8h%p{|KA^BHl#1 z;3wm05e-Ep6k(Q-R?*rHN&u4l!~LsA0OtIyNf5qNdtH_$YSXv zc%mc#GqSXgWhDImG(+$t4tZx;lEsB2P#+LOEU|kEn7zscUzkRMOz}_MYA)A8 z%AbfiMsD2~LUtV>`Ct@~DD-OBwlvz(mme7BG2r6S@JRqn8PB=Rzci0IJ7N1C!BS34Zq{2FH~sFQtRodh13`AW$qioDhk!_C^-7H&zw!k; z;}z5NT=mD&vC@L)`Zf$^aA;yaX{~k-LI*!ogooUI`!k2n5wO*c*|1GIhb%!6XR z;tv%B|I`YjB<=)#{w_aX@1OSi_SN)!|L?EIhu>${XAkx5`1y~k?7O_af4f{};mW+< z#k<>I?EOEv{e61s3!*aAqzng5>$*7>oQigpa2{i zotqD!2JP_gz{{*1gvgg?u1Tji1?aUaITazGJ#^d~s0f8-iZ3G+MY4Q;k&kL6#3idG ze&N}>O)aM``o%oGTw|F?T*`tePxcRKsf?t83&Rj?db%VJ+(*hDToL2uX3CxZRP;eX zG#OeW5H_-BT2lhUiwj-~6c0{3>n|=5#^99)7o?XE=Pld%^;cw3lk;jUxT+xN#CETR z3dwtMAeHO(R^=36fk10>y0|3ReQ{zMO)$LQkaVYi(((o`6XK15^)z8E8_u{AI0U?6 z4MTKBj}s^7GLlECNn_?gFRm40 zZAT}shPq4i)z;o7_cH1sq`-}|U=!$c)Vt)-5=?qBfnM;H7su#~JRMLzOII?H@ZO*2 z3ey%0h1{O4JVI1xC;@y6%Ygjx2{O`sPy+RqS1H_!mq-r~deJBu`(9Z^ZUzd_qOTSq@?5-&U+N|>TU&Tf zDQNLh+KVj_mr*J@Q~*77ENXm%7{^)AtJQ`vr=n3<2gQj*qDr?N?BLn1+eY&2uXKVV z1wixG>?o#5J%(tGIVIS^7m`7eLmNa_8T~zx2F9iMz+2hC##P!mXJEUil^)6fURTnh zP10Maj-r{j43tb|YOWnFG!EQSP@wOkjPFn#?BdtOBgN-7H_uF!9V!4`xTl2jRBuom zp7fp_BlhC&8a&Sw8xj4$W-^MxI4859@V~TvRZX}#t(F_90iMEg(ky5IVx&?;VGfo= zxRsL=Aidnx9I5qts*8(ieO68Qxoo6m(e@ml;e&e}f^{y3BIeMe?5|c2$Rb8b)ZjwL zw3VXNd@+dwl$&1eDYT6AX4wE3tCbwA0G!6sqwW)Ps8b9Ml|--`NF3*Z*`+H%ogQd_ zILyu7Fo2~TRM)Lrtw6tJKiI-Rp5OUJe@T-d`wH)?IC#OCvgTX<)bZ*PkG1toj`w^Cn zHP}A?X;4dvI#I_+ZDf3h8yIdGg~juWCsJ?Et#UkvM;vsp8QGU61ufmG>0)!S$Y=rJ zv=%$6p3(<|8?`n#+)_I9fXvU%gVwx;%cIlkdc3qrIDJOrdAu5l%;M|WtwMJSE87dnG0x?zK8BFDwBeed?O`& z>txUqvoeyhLX0r4DM?7n*9SU0-CRFSKS4J|H!mqmTl?wtf1@bB7(kWB1Oouj#QHyq z4Q&4r8)WSd3H}iquKXK1HeajNj7KV!xYfM1YrDG5gT@%4Fwn=-)joFJFDWcbb&8}2 zz!2u9q3IvWi<5TnVoV=3(6TxEFOHczX@j7 zUIFBUhwPx0INOa=w*CShu_*vQbu3>NV+>brE_7q)&pJy;Vu2fqp(68gB0Ktn7iOnD zQ25)YyujT&0&oIn#h#mS4O;fj+aW6R%I>yP4VY*}2+BRHU|5;QfBSKxp;csijKXw_ z8_S0A`6$Uut8bzNgni?D1yrK!B+LGI?lgwUk97OI4;s02sb4P!{xvYFPfh93!E^+_ z;V8P{5(>M1>WF&*<;XsVhy1Ln=BuWLm|ymAQh!#B`Y)%qk4D&3Q`Pw?zUDM`AU#jj zJxmLzrkH1@NeJDayOn97%47V64!Az3?-Vetw&d$_zFz@rE^z9L1fsRYn)iQH0*_CX zXvicO7XAm|B}HR1Zj%7vD|I|RQK|#0S&GKB=PQ9icDdZPRkQSJ*FC@y2IDA3-wkxk zW6*FG^N+`eXOCZRF8|!&-QjBf_E;tI_Vx3}r(f`2J(czk>c_YH`>);2C%4XC|2(c) z6?Qy&y!T~e`COK5Kykgph=y&r0(O9%u^n9amphLR0<$Uu8h-;ggfU_aNr+Kn!qdk^ zwI5x!Xv|;G7ey3D)8rh>;+W*84g=%79g=w3L#(I{qB3~HGon*S^aO?vV;|KI$e?#b zzX0P|7#;2Kxh9*o=q!ZVF`!j5Ekz@xaU@okOGvyMFwD1h>?gjy$j(i1Z2%kCu;XIr=yguey9FNWN8u zY0L?@ZGi|eV|I7Z8C-oFl|!>sWY~~<5R9IeXoZNuA@9Vh3{lnu#diFHI*i7#%TY6D zQ2y9}&~gzR0fZ*$;|>1!DVX0pE^F&b;nW1(0ZeM36KGaY`cjS>h(&Cww6o@%%tAxW zC3c6mkWq#pw`j`{QNL||?Qyk&DE)yf3a3~Wx+Vuq1UpAH4`x%d+O)3rn$_kHJfH>Y zAuQ#CGhKr2J?IUxa+1G;S8NPQg`F$NXfMq?YR-{_mM02^MGZ+7snD@nQR;HiK!l5k zxK}!7lbbWaCcuXCB-mu6E>($tph|OpXerW&6)2XN5VMwi;3;H`V((q$LG%5!DHDn`T8^;m>gp zLM%~%q96)<5;(uI9qjVfKP4GsYTrER02c6c)>B!LhX{Z@8}qFmVzc^qlii?b zg8WFJyal4DeJHhk@uAQiL@0WKNUS3Tv5P9@vOuMYc~T+8H$uPm8)xvj&p}Nr>eS*4 zjOe*4?{bY)x2maB$Q&;eIp{XklZAStAe?*)Gs=iO5XYP@&Sb@k7petI>`LHxWm!kC zSD7_yFqX<8lH*E44dig=`?G0dKaWC`d4;)`I>g|L$#3{rsE9>pI^hQ?+HGoBHCXiR zH%i~@2A2H)A*Ad7_v{3hB}>ilCx$FKXghXvY88U5)KhKXGgLfjiRzqBKn= z#dg^*SB*6r%QP4nTXBz7ox9%%)TI)&E=cub#DDj3^5pU1rHF9b)y(Tg3iJ0zxXY{- zX{Wz_w3nv;gdMuFqH-OR{v4(C%klkY*|u(Oq&0h)c zt_ap|CTnBQSt*u~L;@9*LP5plLxOUK7iNz&@F`qZyPL%&43j=5@ZXHu$+L{w4pv^W zY3mtlIR|V+QtD_&j7l^bnd({$t0P(Rg+QL1ALvIOz|J3v`Cv~>F%Z+<=D;66%6PDS z1<- zWe+w69Re9((0OEo0V6VS=`m7Db4P?D_Pz>%yAnWx{^#QET{|afDk|O&rno=+11yGoxue=7)11^Z9Zb2j1(<5wcV{QcV z69~5V<&`T}?R<)bcDn(l_Ln~XLXRP3^rLNt>(Fqc!9ue6kOxm+mt_3nFBTe3h?Pml zBS__BLn;-Imy+nnxplb~PR@uG7oFEzE} zu~||4#1Hs29`gRM{U|~yCtIbvH`TUVBE;2=o#>4gm=h z1c2@a<13e8YQrIg%S9w67v&Uslpql# z$$g|2J;^)R@lv$_lc36#r#+;&2BOCIYOU>i9Z_#8Ge|%JeW+d>$RkpowRfQB^m z_Mwvo?V0J2YW5VTr<4Qd1ndVVTct`B0c30s!)6SP*Vay%0eCX|rI@vKa%Z&oryJ2I zKF$|-E#S^o!R^m})K*)uk7EPa3T6CTgYja%w?)D11u*!w`^9?Q><&-Z3Sss(``M}2 z1U6jnuoPx2yz4^hMPfaDdRJgfhc>&=_Tu{$np3Ih6yssCZfBHcJgVJJv;*)R7=Qx6 zm})GdR;>igJb^sd#$xfHqTnug!UwbtlcX@}R;h}maDSi3S$1Va?(hcETH2s#619al z@JPsm=v2r%0JVUj?;p$a^LW1ZCl2xReQpPm$9DfXW2?q(@yVUEZQbbmevYBv6z}%_ zy?>GCn48g||H1*ACy*3;*6u;GmwQBs_n zWD|N* zTB9EIF}t7Py8*vR^?)d}h@3AMJi{5AbC3KBgB-ekh9%baa`PTU38k1@=WQ>1Yn$*L z^B`a`cfVIY68ZWBd4QKdeY1o}@R446Kl0dhaQmynh*`#mW)U@Vs7_a~XMI6?Hg}1S zAY`AJhZJPnd(&7jo*pM3U2HcZQ1v;IzR}KrUH!>fibSxiZoOJ9Gwgh1*xuzqv~0=%ttW)DCX@-@&Fc0Q8I8AaY5zvt2b- zbk$jV{`$+88&m16)26h}no~bqN>7?rIfY(f9Yq&!@j=q9&BrXIk+{|9NFb{&K7>8% z3<6A+d-9Qlowi>TM*jgUIXD~I#w20y9JlJA7=ylmRfTnCwsTr_j#SG55|^0SCadx& z$8OPGi!9tH%ayBIb$fYQhoX^clzPDor%Q!Om_1AM#jbegQTU{6s*6ovsy7C4#iS0= zH6C&1i9lq(K8At18-aQQk6KIXi%aE#!cGUU%(e)qehWfxiCYlG4A;bBRM3-e*>N&! z;^OptPsgIfoilkI6M*!Y3ph%my|tD*y<9!LbOTysgKSORC+;^++vBiLp^g(lsrRl45OC}dK|ZMw~HZr zXkKX3s~rN6>Akt>#ZFV zT+lsO#*CRs(QU03@#^dn5rgj#>ZV@ob9q23iJovv{O%D3x4E<q9wcl%U6$WnGZU0UO zzrp`w$@g2ame)Md%+ZXirbu3vKeM-2c&Dj~Lj<>)>74CmscEn4IqQNzv8R04S#BGh z1A%5SY654mWn`13hLaoLRkpi7sQ+HXIDD7QJY*HQ-s?Vi>#b%Pe7LKQCDNX5=1SYv z?-O9$7~toPw6YRN(k)GB7*TyU;LHUuo5XOcdc=KfEvOC1oobQo2L0&wQYmVzv_UTo z%GM&go*#cLUalCb)WLdJh&VJ5mII>#3X={ zWs8nNUs97QGBNX@BxNOnPd*K zZ$H6|04fdV_X|QI{1mS&}({ro510O1d31$ z==IsgN^zh*5b4j?Ww+i<>U(w%G6114TC*Ma{cN*A)KHlwN0~8H9|Md4;tnJ0G`u(s ztFlHnSSFit&9FBlJ-h^HzgIVD70v?nl@1EW$D`*P-u-`Mt_Pj*S70V4xs!@UMr6c2Wkq3Mc}c= zflU!0L{yE28ax=BzlgkyQODqq`l!?s1#N!ETq|a237m7bHWKy(1ZSZ$9BQ_n^$t8n zF;e-fC3{8bjVaD_Y;Ry#D=SmN6Q8$}f%@1ssZ8Qx<|xjUImIppQ@nyT;@up53`nTr zU~BsHXiOz8iDnu z*LOcd^+GJ1l&1r0+_7~;hRByV=!~BBRQFH>JAPyHjIp$VM13Va<1S@b9)EzVs+Lch zaOGAN7cyai+BC$4<#$5o5CD;cis>aF69Dv)qhzlTa4;KMBgkm!1K(%_D)N(6oR6l0wr83QPzsB8XuB zcIwokO&3{M8Fx01H*Zx6-V^=$yaRZC*q6Xt>FYp5Fvs=Ugs96Op{sUSgt8aPGvcqp zT!-~-dq-F6)PUIAs#shYlJLWb1y2qeeqP*LJU{f-N~x=P$yT#8kPjB@b=#uFS2Pn^|x%-@$F zi<{|V%a|Z8B0s{y??(zqvgQcD5zevpiO})eqVcuHp&hOx+%TnaS3Gwd%|tasm$s2f zja z4w(i=6O$)Msj`N(1W~%dPHx+$)w*;?Jv~xEu0VS^OV#>z91|9;GB0VWo(1afnZGd|`Z|Pap=eZ5EkdlJjuj5636Ptt;EA33O;YL>*Fa z7<9XQAhUDFAKr^=n`v@#)c|FCVfs2_tL%OWvuHS(cVO`%^==){OHINB9ZQ4I<+@~` z1U9JxZ4cY~SV=Xt6!S)=(G(aUe9SUp_IqSP`#fRPLNr*^-D*$6GSCq4 zj=-8A68h7az$NXTVq+({wE^la5Tf69SL5bAD#w(%Y#blBjprOXQeJKQX+{ndZ3P%^FYes9mrxSLH%yQ$}bYBP5BK61o}z>J?QjD406BdsE0)6 zEu$SNse}iL0?*k#jA&-0=k2*)OXYbpVmxD5-RyG2!8g`GB`5LPOm}9iORkYK=Q9PT zP6uilbM$!=t*&xA&N;t84Ou*pw+zs^Ge9sA6j59om$)!t-+#sZEXP}0#8^BV+?fO4 z$l$Ai&NCcQ`UQ(SMx!fo1AX{?I4Yq!y(p1erqN}yhCbp+jrv(_lq&+mv~|%?cHc`S*#r1@tFb>_@I+8lZaMjezSOTQvqFjD~ zTy*TTlTR@wvGOMqtdU1C&ME!xluY!$)CCIhRbEjG-Jhen3lQl+>Jv_=c0nyD`cOq& z-DVg{k>5S*JaDUmVrOjH4u819FR&F$pgb zi0d+Ie75v3BR}UOP%(OPK-h`x7CADs_f;zUjjaHw9FOOxj70 zLXo`5Ss;>laHN!}l4=^;$0&*FR-#efuH2}on`E0NcVaq0xl*YtpHi!Dl7`sgLb{yV z`iH7Hq`r!vMJ>UaQfwOZPIe|oMJWN|PhY%(;8%3@O$;(6P_Jq(u0Cvab3HU%R64}b zmKhYWb8*Wr);)WB##WNU)x-D)nbNJo#Mk^~6%IW9>eVEc?EJ?o8*Fq+he znbPt5FiAi?%POVDjzuxbm*>lLAv0Redpk-KRF*8{-P3Ia#P&zoiu(Xn&s)w-(PV_P zK{74KOWMjoDFb>{-t33I|>jS!<_@x1V|`C{lkdIr}1sQ7`Ha%3McJMlY(3n!%jOK!Rf+_ zZ=Xo3fEx;VK@*Rt`=2@NC%<0SEfFF2X&6kgh>UI8#sf>{$@W3av#RM78*~$hl(zdQ zy(*ctQQ^X)EsYSuCBDy{P>$$(y-rk&=;K1ejSlfXNB$=oL+lM<{oLJqkH|d;c`GU@;0vSHB%*iL(|4 zFT3L2dnJnv>R?f)K>d-E6kl3T0m*~Uq{}4)P>PxF>lUFD`g^+rC5HzvWw2#G=?=DdKT~QJOlMym$zNoSDej8}t;`t~;okBmf)dMtn zruh(6N=>r`-n2L7o|*%>rsj`4mt{JoBD;iOD1v_IZkHgmmAYgk znNGAl_+jA|Vu?#lI7Xj}CdmBla^2jSwZYl_C1Y)YlW?BUL7*?0&IO$zSKK9lXh#S&A!7jlJ8B8ZB?7)F*b# z(_Y7}zg?r`H+tth`zM_^zx(Y6@SAw=C$anx z|F@&{NX4ZZih+P(EIxu!SoJB`a z_rAR7>gC`cU)$jip~avbMy#Tf;p#o2YQ(K#F{Bs{^yo&k~4L(5wO*azwlr{)w_ z6#Pkye*I;bae(5k*10Q14Wy)dkw}HDesVqwRQ+ zbrR=m#~?65j)$>fl@wJJR3grY4IB|7Ixh)Vzw-V$prC@o9;I1SvDZ0i6egaqZ%K|P zNQSFD^BxTZ3^h{HYx=1E!N2ZOE z0^>4AGBjf(Uo%4DC0|u);mG!lk@)`2O2&T7Nz>dEK|OzdQ%%qSjr_?NU`%T>G;>@! z;{R=zIijI0??Td6*w2OnX-j?Ek~g&I^EwjZ5g*V}C`Trpf-(rC}D z_t1(no;zCTUKp68xM_g;*o`E=ngRZHGS(+M`(@8N80li@p7FPpC2o)CL!&mZXQqms zHl6$o@Ory8R%v)ZJu9;hEJ;+*-G;)y`96OOs?Jq1Wy+OZSyaS|3qXb9cNB*v9e@wO zeql0k`*@5DilBQGNVK$8`rqlxY$LPHG8P0=*gWOBv3!+3;GY~EKkPo$I<|nFDE49O z;_zn}(dqH|vpvuCG7-{)u5rwx;OCikj+s6(c93*@Jn85R%sEw7og}7DRWHX*O_5^y z8?!LTGenB;ibv(c(v!Vj26hbE@1J5h-@VA=<1NMKs|9ygej0kQW1SyzyMFE;ZhN$R z-rgNbrGnqz!z*%VmR<4Yr7Y<9Jbw)plYm}Xv)=45vDF=Na{u)^)c6;l(7lH%@sEC~ zx#%^O0@hR`Rc&Gk1{pR;5}ylEv}@U0_(xxm9lez900~)!6d*fP2S;}Q(MYsg8`k8+ zo@KGveP+VZs~wvYE3=hbN8(0I)0%0D$t}U?dAeCsPw;7bi8%gTKcboGy)~xwdMgl;aTVw$er-8bUz*R{-gXC}(N!CNpLXNdmP8LqzlY`$H~M<# zkDDXWPpA8qt^WFdM+@S5E1t_gsqhMY-Sjb3NYh8?0<%2xoh%o2t$Gr=;`$D(w_DK>`?{h|W)d+8}L9_6D%WZE8uX}p5A3hHp zd71fA(2;lF6U&UdwRy68G=P|b!X^wY_3tQ z%C^u#4#qX<0TI$m(l zKSywl&@?6a5U~CEYIa=9vwXTFT@IJ+nm9R9K65W`X|-B@<#krY^0ZWLrZ-|YTKC84 zW63uB!TUUj+D1zjNmdK6rO8|@&#nGyKqxLev3%!oZuyLI>_ptJP00Y>jTX;sX3gtz zbV5kOFX<>k4({Twg|U{5`SW}x{`Q)&w*uNXPnVRBeVe)bY@tCRZTiAkLLpp79&IgA!0}OI*R<1=?KT8;L z0h+>s6(Tv+V=<{YD4^sXFu$@eyR)~uUDKnoJUAx#)P|5XXf(W0#S*Zp%btHdDh*Mu zOQD=?NOKIcT7hoU`u#>hHT#!G^4&I{*50#K zX_^6|FT1#q=Cm6A=Q9#f1bQ)lZwwMy>u!w4TP}z68Q^x{Q{XZt;QYVjKXzE^rbAuF zxJun^w*-L2OOP4o(kjtCZjtLaXXXwp?6!p8R{+lCWuB*Bm$W4y3gXQYUSj{YL67C~ zrz$)aeeO)LJM`v^Ub;2EUK6J`L&GQO+`^8-WF5VWT)~qK!L!{YasO5Any1_HdA%6+ z*x8|0-MSx?juFT2#OpSzc-72->@FXUKKTr&CFKVML+M~B}L=Jl|+*R)nxdsTHx8{GGSy|X_T$A&J>Bn z`;<<3vWGYtyOQytBMC=dysv@#LiXy()qxR5*7G3gUqk0roOhmI`R#H4{pwQTb<)$k zIB|yfP(gP61)o22YPlE*#i{Km8?*e_T)WQo|+x?i9XO^kw-*uagkj1a^yQD9GU6&AlZ zH~F#MV6wy@^x%^=Eu6wz6z7LOPGV=M&bEa3;KG6z?lHgfZ5l-TNj6AbwV{)x6jwc06I7i(eI zv(dYSA0dvYfsLgaa-}tO;eH$p%X*1XSuFHYiJe=TMbXzXu?{;#-0oYQj-)^gCvd`6 zb9<`GW-G(bL^W9bUarI5A0Yt9aHND&lI3wTy17{Un z8*n`H+Wp#&^$TR*xCre!6mC`2udM14mtQoN1|nLTbt^S~8wI}AXi|$7r}K#hS(SH= zM{>xxF10GAu$M0EE@bRTiL)_7xL_BK4e;gUw`Rdt{~Qt}bP6 z)wG*jk?dn0AtDPlpcOl;-3KLojJ_HKy?o-tUP08mVCxohLX#|4d}c7sS&vl&K6{DY zdpKntb2OROtn??dQhN%eem43u_lw{I@v{ZS1;2i2 zMp_i_)qpD(Y0#k@nnKP aH=vz`EFG1hL^U)|E+95s?M%f0nNKM1JmDJ=7(h+e_ zaN^ye!(bJ4*@r72$ytTNkIu)LV8!9xt@`BvHCo`%QmS?T>Y5^=OFOhZZV8Pi&^waH z9`*>(iMIz|t@0@_*NQXBDEGzV{W)M{6qRXR<&0rNSEK6#= zLF{nAW)w|JyPQ|jBm%u(&p;Z+!p|72pxQ&4CqNcC#aH(~N7`Tj!c!6?j{do0-`9bh(4B^y=4$Zx>J0m z;hkIsMmKiMGc&V(RAB3nLhM=ESIAw?1r?|vXcSZ#ea#kL$p#Do@{t9YYp9B2>!0H+ z&iykeSQtyA3D%LH@n-C@N+CAAty1m=1^XjL;VI-0_6lJMzfBE5lM`-hk*w6Ca>pvY zupCsT!i!QlDr27E=C_=m%t^>Fbv?Tqeq>py9d`dnAE9oL9i!`*bvy2Dm5N2h_%kRMogYqKXbW&JgDMuw zuoizy;Q-KLe#VLkwWfF33rK;7B^9wrWsFQt%_?C$B{q{X&LvMTX^uumq#1)iI?y4D z<^YKcRU(|V4E>-|wO88mKBW2Q+^Z#vBFvrIobe#SoiI$VM2BNsb>up?!JkUJIA%(* z0+J_+viHr2GsCtos5=ahg~}#ObAxMjdwGIpO7rU;vbcDdSQxsqO_GNmB=atogXh-Z1#}*TPg4@u==59{@A@8_0SQEOOzWQ5nZ_2=-5aqE zXRttI{mwr)8L?Lc&tv(!^O4@73nyu~npU@Haiwqg?`BJ6NNAg6v59w(nR$hTBT zc9KUOc^yznFr7ISfa?D$}xy#6Y`-$kS`d9T`L@7Vo43>@yMWbU?D6 zmMZ7SQorDLTPiZxHLGZis79byaWIsdo_Pk0vY+_!iw1lu0|=bBJw-FG6Bb+5BaG(1P7v@$kTa;S@DlFITZv_ltB`?ueN< zsH=`o1R-4Ed;}E!^R@<)(a#S(K1vmX_97Zfb#ZJ`(gS{ra;zP$Q~PB^s=u633N3BT z1__xJ=4A=ksOgfce%P&G7IOvRSv1W%+J z451X@@RLjpt;_d&?TG#C;U@TUG*QF8QO(D++#KErxemYsfCQtqC}5Vq?Y*q|z_GeY zIIljVtjKfZ&qj@=EtFH1bE{DG=FxO@1S`L4C!L4$*znbc$bzL#q^0c6#Bbi7c24hj0PGQ2XNYBlb9 zvcqC!#OoIhl|96wM$ju1FUd2*z{gNCz|Ys#qyk77mQ%`P^b4b-p8P%Wtr*vqj|2y0 z!@Iv+5v4IT0iN?P4NIHnX%VLz5qO9Fql$oob?|c4yJmzBAcztV@{TviS{tQGTb3UQsY9IhBXqw2;iIkrm=2}0~hNaQ<$6spOek2j0ImTF%d1t}?z(P7aza>1=#%SWDQZK8*x zxSk{Swte4cd1g}jzW7CzV5$9rT{;GZ#BR|Ht+e`fDqw_}p2abBNVd@gM*0Zx3EmUUcxwD&q`AflEziX3Vedy%zU2Z=fpnNl#5B@M^ z_u0U}Ev0KVy3xqFrdS`7;tgq=`$)kJFue|2;Im6R z>S5)4^hfi^@%~alN}z9vOnCAolHFRC*J?yIZ=)FrC)_qtKo*uxr@5Tzih5>mE6|>^ zqAmdsVqcqcy7lD^4B;3cri{37v)e4FOO0$f zo>|(L{i@e!1e^qRa4-9%B}j{rpm?NH&BuDTTFSo;GzJwNbDweQ1@8QHv%XHdR%~7M z1$VOpd-(tX7&oyQ>(ivCTXoz47`XTpmX-i4Hf!=1^#c;1cx%_V;Lr283#sX+;jvi5 zetD+!x})tBKdKjy9Um<+_`rnsm=vIv$lG|fJO4e|OI&h>7g(Bq253Xs$!y7}b++LJhZU5`;# z`oapAcV|vnFxzCLq@R*cVTC*K^=1u>O=Zr%SoK#uDS%XFGfaiXdI3tA7amYe>5pvb zUsp{xbl$T0w`4D8q(Y))MEhB8kzfjWQ@hm|iyqjyj;Ach_lw zJIqbK^Ipsun20P2;1jCB2~fnKr)&4>56Sj;f|Ba9DMwraYall`m%>|kD80~8&OA3* zGTm(1=h^#N-VnVXzuLXKt6%5WcwY99V#4TsBaoR%MnM7#0t}Yht1UM#& zZK86#p7@DXh%j~w;x5w<*A2>b{K4PQ0UYyEwb zu#^M!EY-03OIotnHLIOd4}=p(GeX=O$JWnjq=xiIc~NFt)z! zQ#v4kToUFPx8WB!m(l21fLr2N|Fuf-el<^IS3DHd8uztal zI10O5S^RyD(rBdENmB41S#TN&96V-+>O6&!)P=5J;FQVB)6-D$E5e!#@{ zATmS1ws2f0O%9W$9Ag1Jq&^M)+$b|u^sko3zE}GBT?4Hds6qDpnL?1y0I);|nL5H^ zEg8VFa?1M!`Sy*2HwcngFqX)l%D6dCc6~@CVBk0`afePLIicGo!rj?wvccO~p4B@( z|0C+fN5eDP2#egv`|2LscjGhmKMc=?_IfUV*_`Q|tt^HA@tJ}4{qu3ki1ijLO7I=% zBV1tXd4IIXp?*j$jI`2d70o0XQ-nT!EXnd_AR%a&bE4ZLZoDEPxHDa?k}eQTA}RHW13jdP}A>gC8WJDMx{O5<0ImA8`eS%=IQp=^z$MINll z5t&S-c$C4eS+3a{c(1$`o5=7+l5=i7KNwA84A$^g%0oIuL2X!_ax_XLo#I?~)LJf= z=TJ}Q>#7{iNwvzkf;-4*v0v~z&4*aZwI&c8`!EF4Imb8>mRrkCk>t|RjU^?M&1NQg z%L(S5m~7Xl(sRjRFNog#VCNw`cba6PN#-rPlGBcJ15H^C!ex)w4L7!%dq zl538sUsMuDtE%+}Tlc=vlJ{?icPe$=7fmv!EioGG9R-eLG@`5>yY_t6w0+@+&f1fX zo=k&|qsTq%-LkLrmahLUQ`y8Q<}>~xhigwXKNl;>I5?1foYSK@5`3VzLyv!;T0Wr1 zDynzbN%@{wHeRJpBBIY&NfJ$hcp4+L;+kp!8_T{KXoQ` z(r`nb0bpCguYbz$J6#uUeaW>2&$W>_ZHdk&TgpmxoNzqPFpFr`WfPr0J!(i(OU+*< zf8~?>roJdPi{soJk@zDz5qRU=CJ`HWlT>09bQVWr&MP$$yq>7yX+n*SYaG1(2zvhH zo9Mw?enZG!ARloTy*XxgjF+WBM%LST_Zu7Du;cT0{-S|5OJdL$qf3Ma0*ap;7TVJ)kvzr6nmlOTZZ2;r%HXupMVuc8BIc{W)F0zF`ir z>hS@Cc;_U-mIgg5(dH=QB65+WbOn+KFqn#y65sH~q&%Co>$vmp;%e1K1Zu80$u;O)D@PJ6#x(1eCug$`b)oW>Xyn_Jxh4L}6=;7Ho#l$$BJGRS5N2CRAl(DvXz- zZHU#DY>-CW>R2|{oTSoJ&=^F?PS9{>TNBF4tJL=K%+ZO{y8+^UB(m#Ca6;t<*g^xwzD4Z`;_ulq?a- z%95J4e*Kwj*&6D}PqAIpV9Cjmnmcj89a*rOXK>+06{RUbauS^s?~n^_NRvd#FOZ;6 zx^T`*cghND$wJ15HpN1cYv2_KMl*@4^Hj7|(TLat6b(DnjE1{%ENtgklEzJUBw_o~ zkLJ(+u=$#tK<&cssg8z9^Z`ryvV7N0>ijDgCl>Bq@H*WA~ zAwfmj6|Wqw5btkOqcSyTi8{p}39469ykdJ5LRrpnFT) zY`3f!gzUZx#Lb~zf_8AvQ^2*JOxM{r;8z;}UV&ERg2&mZsHZR@-mYSzS5#lJA!uJR z6Wjy-Cp<{JExxl$viEN7Khp`!v2*d9zaP9_?v0KGJ?M7by(ecw@Yf^%+xsG-v5GScV zDVx-XAvU}o>d$z3NFJkoVvIRPz(7NN<1@PJMo+E|@OjEonVE#Se!ysIjSHVg$TBQ< zLe^7HG6gw8aDksRt3)BLdZ6>O&AVZr?6+>CO!{ynV3 z|F*&y|62O+yTX2|k65qJBebFK^I^0~C2o_Ng>#Bbg2xKcS-G>aZc36$$5Bc=T-<3b zyA3sFmN}>7eI-UhO)JmLOx61FR#UR08{7|7DXNfMFa@BJ`%Qk1{L$`(#2Xv70=Q4W zJSg8ZjP=p>;&JZDhP-QvZz;_5*w6S~ODL*ltb4HPL* ztL_?7Az2f9kPu2o*l{SW#!*vkG&t#I6hA3vU3Y^`C|+h6t@Y5@uE9JlkFD#g(`GpM z=y0$=8TGjc^FCuy6NW&WkV{D&)ilKb*TYPjmZOS=_uobk@WG-4$g8#_%M+0|zTQJN z9J69|W0D6-Zq}GUX=5ohvqzXbNN6@G_LJAzilSK9+6`me!ca^AlBS5WV$dew^cNJ|n?j9Dk1>p1lqJlOX<7mXHU003c@NLE=+5mGwGss!0iT|!+Qi?i4vVX#BMb2Nwcv=g(`W((bu#KDS>6vv-%IX z*Sk0*!TB`SSL+k%qoD17v{u`_u!-~Xk;K#W0l9G(v+l$yLa0NoxJNuG;$_)T-3X;c z#yZ<-n8u(!un!HpsJGHs?RI76qyxAu4(~UqqryL^Gaj;}xK1g}MN^W&Sra=)mHZI8 zoq1cf;1uHYe^KLmXb+06cl^=^OI--|>ua*0=&hzZS{acRn|38~P*iD@Hk-}S2Efd2 z@G?8{-AU0^EN~Q0nySzYIwyfuFK#l9y9AeO70UD%%PZl#t&}VnH|5f_xyuAV8yHSz zi7P0diMo&*?%W?Pjr#IC65AK}|wF z3v}c=WZ803H`I!*F*s(8C1B?|GboD3ttwSNJiOagYRB0`(0}}GE4a2~#TW2b7#VT^ zfWO+w_g2vMop9o4WUpl8==ggU@L`{UR^QC}IHgNAfFB|F4YYxoXIAWdQkagk9|8Us z*2!vbimO$xP(r`ZNtdhO1P=Edq9-XbUguX^u!2xkLEzB+AJEj)=}Q|1CeF@cEj_4B zcHx+$E&ZBV#^hO%zD`@=jMt5Nt*rmzy1gV=^&_Stf-!UH%Z}pNAOHJV2p7aNJ|~!AjA0cZ*xy0 z&g>@o)`JCKkw2%3Log@d58B|Y^G3(=Tq#S6dVX@Zh;=$Ad85Im!p@uC+V0;3t&||Y zO(^O|Ct@}a9WgL!%OrgJo8Ioia(IxCNbhRPH;3FSdyvx)yh9POAlcuJsx{Cb{FOOY`+T8pucQOVv_8! ztrj{YIj2c$JRh@15>0K$NohfuXvlOFj(M~*Ww{6=-gd6w>59I^)N;ljondaE*_3})pYM;b6w8p{{Zw5~3V z7e={7X&u_)g$F^t0aZ8S7hm}7f1XQH)f~MUzOH=7nX3Zjj%N;2P~b3KOk|?%I?@hJs7??v31!~ zoY_o^KWODF_wC@6RJ{ISR8mtv*Q#XUW)!GxG`{Kh)~&Lb2mH!|%xM^sfL3-SRCn_m zV6+#I5TfCDFGW24C0}PFXHzf)R)>u){er0o=&YZ~l8|OD^Jbl~1sE@p3;m(ukoEV& z3|bW-@U0A1O--xH^vc_QEf@Q7^%=_9pU>ZRqXb!m%CjJYC`ob;1It`xj=EqPL25fK zA5S<3J4I{&^t-h2m(4-pOl3mS3`)KZI&=uYw)@K{=bW;_wBrSNqvcO~^)YvXEHu75 zT5fl5t%~rBIqbG3W{yuK>W^AQQosRk>lg=!2N^T&FF-uPbcj>2fwnh3Pqz*2vyOc_ z2OGZCi)Ny{58Bm{z6`dAodT={laz-qcTRnK@Z^|`nv0!Cewru6A)0Gmj2; z0ws|SlK%>(Rf_8bH4KA)ko>dLcCD}3w3HUJ1QegJ8ljxy9MAb2PRpKP(%-4(y8>0{ z@Lo-3E(bb{U%3E0Sh+BYg!2$?_9jFoV;PBgqOlV5U>G2edP)A1VWtig?b;Gu2qGm< z8hfo+aJkWnh3o(kNVX!pkvk+~@ay9X{I*C|K-w-SX8=a_D6c%oC^(wPsYi%BU8H{l zgx{fId~!;!y1!D4@Zy9J-9#I;{m)H18BG9ZuE##P-i{C~miF)aLfw1{y#m9gyf-^A)MgLsh@MCo+QLj{f_+I=0`}@{u$-!Y z!RJv~^dkQTkT=epfBvvP&^er0%B;~SwR+dscR)m&mj1dUX7vT#g-3!t3CiLJn&&2(t>1V9o!0|uDJxI0r`t^wi%=eb)kxE zw(TaJ&`5S63mQdS+AlhjK*F!EUjTFNcV4Q!D;%%sn#Q5_0?o?Y;6_k9-Q|LwE>KiFsG81o2Qy$2O? zNB?imtD~O&`_gH;-*3PBtqiplYwQJ7FSk=EdNcJ6t6(mIvl_EHCMmhhuGYn&>dBEH8+31>MMSEz1>+_ zvVJICY50!*V%6M7#`aQUc6aY|@7nbJQ|qn!UFp$n`VD5Wa<3Qp}Mu7O;2-liJwA}aBiYiTwMta**e{@CrW#Q!2vCi(`>c;kZhnJQv9FQX{r5DD` zjf~eqxLkmeNXyCaG9glL#RhTuPEWZwIhs3lUiEfU;=yT6zY>Y33s|^M@cLo1@ZIIb z=4(I&H6+Unfs>U(UYg zmg?;IMBW_F35E1|do?eerWyG(uV&Msfc9?`;_|W^#z&>1#FR=?4_M0J^O{H)=0vNZ zF%4<54-3OkKNwKz+%2rOiczk3J)tyynO#(>&B6y#YM}obR>+H>-bNVRDhP!>-x?oC zdktY12IVQr%DasvI^GpY;}J=0Y7}o2&2BIaksx79iL_giMBS&X<__j?LjbM(z>Loj zLM#_2Jt-(DVb>u#ZdlU`X%rSKi9yhx7)%s@Cc0}`{oUv7=w=T+%2O|`uJx=cJv$eZ zg)v)5wRo`16)_?yaAh;}nl?_pj*t@d^cx$m!?l%3g~<#Gu@Y61uknl# zKaeY}`c2a>U&(yb`>227FfMvbOD&}!1Q9TrZ*z!<2sS069N0^TN9@bRzKA$PeiyBC z5SNdI911DOWDLho3XK~Ux7^GSM{|YLRJ1y&&D*htm9gQS#W#iv%q=HNEK#EsASJBG z-^Z2>V{1bgt_w5OPk0WzbiOxYfkJYB4MZ25=vLO>?6e=s?N3DY(^VtWk)SeiWlx^;swW^~b@FdZ z`=&|40cOkP7FxI4__SG6r$1Zp)IL;bpG(pShRqA4gigbx=~R%Zn#&=mClZpz>cSm{ z-}&Z6WFBpng@a=|tvuv4#G1Lr#397C|g5rPCY zoI(bs{(=m1UkLw6 zLkGdZX^gW+q5xk-0gE~M$slkVa>|5};gjt12hanEy&)L97ZvDxK z8@7vILmS_Zoaqf?0g?u3;eAx9?AJ3^i?o4{@(AxBF6i9p+sWvRgvv&n-#vT8mXg=M13AY6zMhZTL;G15>|;7;htd4*+dhi$A+B#4y?weA;H zc$^~iJqWlB1rrQo5g4g!H21VTbKonnO*xHq4wm!@l!+>ZVIj)w7df%h;fjl%E@BYS zASBIFoSHj(J4SX+W+$sSlO2J1DNu4Lr(3mNgdm*C457I&W1t1}6z?e+v~Bw(_+}lp z&I;y1Ni1m!H5_tcI53}zANa`zDOAP|Sm3(b37hSBxR*g2_Y0JI^=0@!E}>8o=CK9y zeJRy2KBapR=ZVKL@JrSq%Rgi8CQd(a&W?hEmKsG8+t7!`&tbr}%+|(r9VzWgrtKbW zs8tX!!F)yS$()gQvV^2SS37`dK7jG=+d;7A@^>hCtc`#x9)Ds`x5EtYF1g}>tp!|%=tl+^B~&Ko za2D9V><|aVq`>PG&hz4UINMvac(e(%{q#|HL0?IK-8OFI;`UtCsy=01pMgU!Hexxx zg};jmp_;u|x;v>C+hRHLR$Fy$K>%MG_~Cv(eQ_WlkEgvo_m42MAH71eN*7Ok@5XWa zcc0M*lfrKcZ$;vW^)mmvJ6OD}CvJhEAH7o^KToqvTwPhEwWN#|>k` z)JZ7tU$~VnJQWL%smVx5_55&&pIoK(RNL`umXJv5VcP{oe4wm|9hg}nI;&vne$pal zq6oYPbp#%2xuk^WNp0^7Gu-uVzod8!=iuG*|NheT6`b*Cl{%5tl9qfblY`?|D)d0S ziKvEF3m6BKqry21-6eEF=X&th%!^>JCTA(D_w)h#bzL#+X3?7^b2kGQPs!N@m0^5o zLAh&iD_irf%TZ*jO9p%;O}r-=yz6%?Vt~jfR8`kk{#%kz_Q$6*&8KESU=e<7X~MPO zNh9f=>v6iyL#nRNzfymtB|KPtQ_zBQLFt}+iUWHBz$S$VoP-|k6vVbIAZNMOWnik* zY&0AN$;Q^MqDtA;*GbKvw#@;c3MfF5F@u3a{CR$~S_cB?z^?jGsa?L%vERty2hr+# zK%0-oKyW?ZtzF$^W)3hy@yXiE^jhH2K2=LAeAP%Cu{hV5bz)*+ zRC)e%`GRj&DuqT%Au!kvpI3kKs5JZ?RL?w&iQSe2V#8B#Vp;xfkR;izS|byA&(IYg zCd7_zVP>iHEjz}`;!pmp5@ZH^Q6{;3nZot5DUQ?R)_mIUtIk1r?5Di?{mXGheI z41d-ZCLd?(W?-=M0k;`%8>gIfBA#n zXC?oo@_LpALZ*6V)_*xQ9Ou$ zXjqW_IHqK2>-Z$yEX}agLzXs(fC#0rXI#eNML*5S9nDRVFY&X&ppSR5N*42_$&LB^ zf+TVABeigXNf8g0%%~=qZoQegG92_TrmfAIn9)H)(osu}2EK-05&)Y4uJ~~@7T^2M zHe1N+z9jimn~D=0woLf?%XQ_`7q1Tso=tCD1WH06`QGE>hC(xfZzxBjz@gltIHNSt zkCl0hXwf|&83G~&1meFu9uPgz_k*Se*iwo?fkSyfaY1Q7VMAF!@sWELp9^lJb|ZtD z@;RcV?M`7#3h!@pzj|s6_n?If5XK^Gi&&)*j0SfncSm<;b*FW+LFrIbkhd5#){wn0 z>_iVV$2%#2N0T-!U$vI(9_mlAC#Pv)8%Zzpxu%=j9?r{Lv{y3 zh&>57$UE-|8-wx7viTew2Q5wG>-KW{cMhSHJiNusX+&{|X}Zy;-W)eTVzg(n+D^q4 zOY*J-6PBlm^d+6Y)tXTmIq1B18#?Q|a|{sx0?^RLK;GWQ)`8Bz#@^^JwZYE=0VK}> z_{+@x|Le_DvFqI(2-6P#mphQFF1~0buorZ>su&ex5(V3RhMZN!LMp9y_NK$TE|VP+ z3uaPa+rynWyQRgmy8IYchBwLwaM0AyG*0p{%gBZSHQSc}iKN9@6unpf3tgJ!u}G)#g#2Ur^B7L>0fp zZD#78iitEO&C*Lg%9OYR!s1X>Oet>b6W(V@VH~<%3dG>hTL@LkFB2FVYhZ1ef|vNZC8j<<#SN--n`q zxm3Z1xvy-!q3*fGjrU1P?^x3Ierifg-p@j@YKr#fisSrw zeTnz3m;dP^Ki)6WzIxYMzIVq0!oMoEo~`Zw)$2cxa)$DMySWiK+2Xd)B=jbsG>e1a zShrZIm`>8NF~sMPT<8^HQIh%yi-yoYcCMna2SN ziezYfu$82U9_+8UrLX%2oVZa{O5DQN9J}Z$aw(3H37oHVX0k<71MukvB>qf1<&-9{ z!rzRV8b}e85a;#+1d3<$lpUQzu6m~i5L4Hxm&Sw zGe(|-92bF#+d^4FaPmyEtF+cm5%^H4B5Y!AunBEc2Fp5=?ZFY&0>NzOqLC>Nv=H&l zu2A^^dKJUC&82Q_`@i_5f}1SWnajNfI7l#>Y}bdva&wv*b3~BX`2nIhJHwe=I9xgb zuX&^ky`oPW3v7LsGFzb8@?w}Iab47p6~!AXt?0xnoE6ileCxWK3*N4~->#a;(>}x3 zr42q_T|mDUj6}_d^+fv0!o@rGl(@(B9+51YT$?Se_;T_Ed};1xXa7Z9yDO(?X76kE z%lqT-pAQOGp)x4)`w{E+7wWrS{N+V8vUjktcKGM}Ur&o+tdvbRJwo7F(j#6)I~g3H zzW{M)u`=Y1@LWB%O=#i0LUrzB*;{+*`|9I`rBoX+CLK-bfpH9RE{$&dG2h(E%;{UT z?h(DO5V|OZDs>KMQZ0mCdG4MmPrO^l+De8z-HMP_k>33rb2L~IrBhC}+i5BD=d9eEdwffW_;>5-7+hvaLTf|_5OW9Kir;Z~ zSy(m^)E3G*RxL>E?c`4ex5ja{QQlPr+3D5{X2 z`aJoDWdM8iBB`OCVDmLZm*XWE0R=D?NeR?EB9vQ$fKmH;>O@(|GHDlSX-u*5=6d+D z=}zZ}BJ;iH8$hBGP(d4TOdiV*dxVe;LX-Qp`p6%R=$Nl>p_~7m>lhG-<~{xd7y!h3 z{SyGpjz+Xz{-xLN$N!2k{_mTHkj*<$z}itq+0E9-LF+FamzVl?fJPO1qU(1l>GwhP zJI23kRPTMtKS)-;nL-~0>zFy!JKo1rA@2qGOI!YI^6wa`iSx| zJH;QAVKnr46XkW;A0rzKL8D_zXARP1^y`dG4#tH(WlXW zh<*$N^AX`AhyM?Pqmr-cECRf(SU$|wO{{rQGeTReKe{3k@f@m zhxET1SU#Tn->24pWB~x0!2kjNW1{_0{NE=q|0*5}`7h%CoX&id{y3`pBmWKNchUcI rjQ0`ZTm z9;&L(-Xy9k{N@|%tq_7AG-Ndtiyg^yt^Ne#u{w1wq>Vpz54Q15z@jXj>midv$eZtQ zNprs0<)N`JR_7^gFXdNSu%^FwpHXDe7b@N3w#%czkn<=u3{$TNlT^E;gnnRA4J%JX z?9mOe^c{VbL0b0!wL3)aPw7guzZH5g#Pq9{VR(opAY;XFUdRaUQkV+W`c-+lJeVv% zz`sP3Q_H&?LkhC30#w>`^MeE0AKpBT8g!7Vpt>_yn36_)hcdSQ^79&N&GOE-sn3JM z(_W`Knm===Sss4a7^OhrDl{#s53Bz?lYHO60jZ{C|I-BbmU?Z{qZ>c{R+IDnRy3Ye zYp2BA7`a>5RO21uF!~c$RA@g7CtO?TQpjkd@#PH8j;2;wPv7$gw`t>Hnf{dtGI5K` zIqWxaUoqLz{P;f4^FHXU_?vnO;)-QcXUtPm`rfpRjcnYA<5hynprtnhBeZVqt%AMS z>rxQ92oC{6uIarmY2If7BRM_enI_lN88 z3yes?Ji$#DO~xRzcE_vTCqS>Bo?>I%`;S&Hdw7#+2f*(g;3+=P>c);wY@B$w!N31s zi~ld~>pw!zi&j%_ym={b<2Ev=b$@8`HIb~U+pXJQ7#={LD^C!Xg=a8RPeR#fh#pY+ zV=MXALXhp_lM>-8tqglJ0(oI1q~c8FZux=nhYl{d*I6Co6dm%WzY)6*?GEiFD5-d` zyVgct&#nBJrrHK$QXJTlFCyyU)~3R{l0_3pCYj);*Q};HWqMG6IV5|3EkE#ch4A~8 zn4Toxk+=`b1k%BxcYgLKTy1qSeL7m;-D<7^8==nax+Yd=m7^ zu{YP%ASN*8GFXaMxtcw$E7pEbUVZF+j zWaln)_y*IUAcKSUOrVQd0ex__aSFeCOp<<|E$(|9yrkRyOqqLz~}1k6>->(k6()N3Dk@0_Xav%1Gq4 z>#lT(JCy7;Jyf7}^o=bDJUStq_@p9OJ^Y9vp5;yEyH(6fqY*V8^+8g!7T6`O6e4kU z+;<)8=Jk}XO9(g;$fo?Lr>vtNO*tfa86^8{brx;_Gt-^J2`S0-08|N5!N96CB zup$h7Z?2E{PSMb-O-$nmFm=+X+N88m8hb8EU!WqtuF9IZOwqoD7>~UrFOeeeb)yQW zX9Ph&y3P-I!G}{&a7!nnt1#_e>!|bj$i4+p9oC4XtehyF5c|s3?(p6ot-z9Yk`C2@ z-tstO2CDUz^Ns#_#?0xT7pw6-E8iZ{Ze&xMHDPlZdr08cw-dgerHV?$4NPLLiW1}C zqv7dE=QPB*YvKElIM>`=z3pyIs4_v>G5OdV8{rWGGyn6K?SsBJY~yo1A+UPINiHQ? zcl4$=h>9ZP>;2WQ0->V@zKU9jFC*e9E?5veN`nd&~~9-$$ReD)j`b-f9zQ$VZ#T-}eRkTTJHJtWYb zfA_5h*1=0bprcjJVPH^UT)+hS7R_&ecJD8)!vy3ku=juWpPE>;yNx%A0`_lD)NiMV z;N2toG;sbxjy^l?=Xc69f<;`Bh_pyTqN(+fiC@95g^-bu$$85NMLW^Sx-@Opp&`LV=e78K)rnN>IWz2)`gONk9i{Q`OT zOfO$cd}gLo>awAz?8BDPo=ue+KW@a%E#3IsQ65u1Dp8QqfMo0pq?Z>kAc; zR#+|mQBb3|;xg-Wi&=Z#hu>4Xm0@xlPr%?!`Y7qnNYBu4A51jcV1o0Vh4T}$IVKdCo<*Z=D#*KPB_PXRb?*Rxnk+;fEeECoOJ zu{hUV2qe6y0v#nIX(=^F2+bt{KG<(lYoO$F9lXd_utZ9rpP#T&$bIE^PieU9L~ATvz-{l2=afvw`;F4#uciN#PYyKdz{|t z^y)YBRnBV@!keWM-1X1iSqg}~@}VoRdO5=r)lmEHGkmoEbVGc>LV_mSgk;*G!40P? zC0aDW=UQA7E-MGiDN}~UTSb!;5vTYlzaAu@L{3jp5PX-c?>1Lilyw@Kz0j2MBv+n~ zpT(ohI-hg0P+8?u|9rmo7cXzR2+759NpC4xZ{K{IX%yPhT+jNl- zdOW+B>MMP;wNDR4ZmvR4VDymV@$7{GddQKq^a)(}(Ad|IcHlJav=4IFsD8R%0XyAI zB|kmfmG(vYkR1D;h_X6ZR30LvPxf`v8hizF>3t7ZVW&qw7h#Y?MCt=^35$``I^^cS z_aoPzC-$jYL8&J)Tu==J%vdOiUh4FygD}xgd*DWfS z6Qd}_Vn9{JS%8xF1M!2$$o6fRFpN^Yt9^N-GBT9_|`2CzZ!qoXzTGFc-&#@@v&fOta>N_y%FV~rQ z_+r+jERyN} zcnETJY`n2;LIlq8NFv2d|a151xps< z{AWQE&(uk1ns!gSs6;A9J%Az1n1u=AZ|en}C5$je<78I2$us%LXc>;=sLrhBDRXPA zY@96g)^zyL($Ub{kIDJaj*EGYZGTRwyLWQbq30BU>zV{{8}yyvinLo{^3@r4ilnA1 zn@@579;e{&lT6akOQNY>?`Me8s)|9T;QB_xx|T_Bdt^@>u7$-Q`}{N|m7tuvd!S;t z6J4@ z__b53%hd(TOQtlH4!wDi~%Q5&(_hdnEd5j2TPK?@;*m`XPev5Gj}?JUY4cf>zE9u<*T zN}OFV^AVvN0K6fDeVf{A2p!70u^+ZnG)hC0@+#YPz^3}Km$~s%7eAxRU0)_v`|7O* z%GkQ@7`m8Dh*eK)XT9WARC+Ha>hdmpE#ay9B3b_?Ei&ku>b43iI$t9q6EOu*}NBjc;&(!NJ*wgTUksR>+F zj^^rh-%0hE_+Ap94SborQ@SkOqdoisaYfkNgWvvLXX3&LzQ+TDvN@t`|2SRpCx{nPcB=}NLCCiT36}k+fhh-4s^(n8WQiT zCKrl0Cb-;{AqW3P#b)!;Q`+WbO&X%C=DN?~9;1ysJ&ur*HKvd<;kl$;Cdl%;rZnSO6X&E;{AcpDv?J6B|U8rG|7 zgDHp2o(iV>@L14z(VT(*ZtsO%Nbdy?Ij0NfsqC_Si_iHI`%v_D=AZ9nmL#$e@7{R_}bC5Twk%Y~B;upTV>@F#TTj z{TBaJndWT=XU8^0m65$%UH&3#dKDVUDG`B+%U!hASc-Q^E7q&ZE)WmjlqU^zjiB=k zGJj@4N1Mnt99wX?=W>_u@Fqd*@Xdz4mM}TE*haQY=r{bRnI#^W#WgjjStiqDq&!so zaNG_+Uh;g{R?aL@#nY6@Egi0n^@fr!B9A(rZ|*p+@zN<>_nGd2=zrh7H;EnmSzO}k zbXsCUcBX!!hsv160!J2?$GsWtOLg$LuI!#2MaRQ}v4iW*heoAGhJuiw#1us5Q_Zx^ z8>*rF@w)s*uST4Q;^pQ#`&vY;u@Z?yX_5_a2-FoX6An`&nxi2z(XEztjz~np2is|~ z@1aIJ8EltVW4cx{EtdtcJ>*ABmBQ<^CZ9PuxX$!W6q!S=s6j7vtszoz&Y0=T=D{l_5#)T*u#{pH+w70q#>TU~oc#=!d--G=3beA+ zk#Rv5I1CfmHH3Swg{WR;hT|{*xw}NRNKxuJ^SFjW_yJFPPGq}wTrAFa%ig)CROy5e zh;RCabMk|Uat-icU_~!5@IBq@i=Jr4nQL@!Z?;2TS)1j;I6`TtBlD z5~}koa;~V1Y~ZV_$M>m6oulj9Wo+Qwbaq@No>U-~Ub&Z=cJ%$-UHsh}@q}R(&f_az z9u#|cTZ_1z~u&zC1?o*KW0MPtSmP8A1}^r>-|FQn^BQrcN3?mKLE zcyPLQA0bPv^witgB%7$fuG`>~h}3>3yMa#^Q>nWN)NxlZvX771z^5s#8u!YCcHout zq35!tRGPtB{-HAvpm2?*1`|hVky8Hx1H9X(Q8IC_H=z;l;j8BM&>=Emb!fZ1J3in?0Ei> zx*3s4T!J3D#i(jrs+78gBGkvs>q*@3UhT_NS;Hcxjpbxi%fNqGDYLh^SOW@ zO+Rp#n?(8;jj2AGb~3L1=)J$Q!?@Plui!!te{;TRbp@=(=5z21Q@BD3;#07+BAheBo@!Un^%;_GIT3!nDr8VMBpB8Z)=$Ngo z7nBZl>-KA@#`QyRrQq|T9hJpfkDY+f94Fe4hK4+}l<^%rCE+x>?gZA5Zbr`#C$bXu zx*XlBP?3)4rs?D8FQZQPUlD%36Q?WS!!lSBOx=@WCz<|*{o*6h^coV6fSSk`d^+Fl z-|l{Y%AW2~)>oLamy&#mt}jDrhg4zf#6?e}J~HZmOG_;^Cr0Gtrt-(H{E8}wGo|F&+SshbgARKO2jinw67Tue=yJW{ z%=|b`%Ul*!OQ?fET$^mr>8;{d`kxlp#H^ke5YxBv8F9ZkzHhhIKwag^(K1@>aU$ot zPHgBdAI~}FAM)(BLSI>SHg)9EFjI9Hqj`YGSa)1U=39j;R$We{O7uQE8YzJyo}N29 zKmb|9$e+YM`tlYhyORSgVM;qI#I-25P5jk`dIopS&*kREi`?rF_M5Tb%AI*Oxqsow zp5fO?iAVb~jRPYRX8U)PBz&4~srF*TOI9~t6>F>M)3@;<%3nw}>a#Lh;j$Aq)0?L) za9EpeSzs_3N`DvhR^Nd0y0nCehU?X%gF!Qx^MW_=lc!`6cHC7-lC2jcT}rE2k80*T zmpS-LE+mugJFgZwkt-k)&ToVoPx0BWwqK??e{5*8aB%x(&X1Fhx6gv<;tl6}e%>d2 z!gjSLyTA36Rot>O6Cm!6ex<3kT&0}_;#x0x`3pf#o}@Dx$<+^@azCVbe8Sxi{z&|PkoBie&PofLytt9VZhdY`%RP}?-9 z$ot{faxYtxM)mx3*%b)guKZybU^L^C%T!B|Df&r=pjae{dtt#L_&ZD8v}>Es&s+FB zPq|>Fi3*rpD`EBFPu0=AlVp(Ouf-YppavSbz5VUwB;3>`d8TrQmyX6$h|k{Gb7!4M z((|X30`Y(%7qPCMs_^Fp!S-1O+SMcxm}GKItF(eOU)MiS^D~$FG(*c7dHwQ=&lM7N z<3(;`a_%7sbHs24LL>f$w(tn>FPkvt&{T{e&4tQ9UZ>Qzyq9O=2?|}fq#fOY zfr-F3K(54AK_?DOZ;Fh@#*N2L2^>EI6HM(~L(F${%*bNj&Y%O)aK&l#y5951yiZ`Z zj99nBXd8EzG2c1Ja~_$S9WNZYG|9x6ClZmoz%%n>+Mifm`e{LJ@|Oo-81nm_hTpbw z!oIuGC3~@QrQ9dNU6y+Pvd%Fk4k(jezm~YAvOd>6uw1e6Y+SP>&5@WaoRHWUvSa@1 z1Yyr)wQRa#%%;3)GNYKymp$*7xEktN4SF7hWr_M4R+{zEymHKArPL04?|kJIIW$6g zM(`wJI0|@$;_g|s8@!$#9HTx6oG1kMcZ%_19OqClOfH*bY^Ar~ASU=V4$6Ma#V>z= zvH2LC%UW)$k@Y|_Ez28M5qg;#Wj;5;G0Kf>&s~=_?4B|^QiM`&)jjnx4HS9trtX{f z?mL{r9HkzWHPn0vWpe28bkR13yK^#5j}47TT;K1Mceiz4&$(@>;7JqtmW|NnN=0)T zh2GlzsF~>9J3ZS$G);-SiQ@*dU9|8o`eO7qLiwZ@S`FuXyQ0p|oM?GjKzg=5FW}NH zN@Z_EPhzs@WVv}hV4ih6cmBoakKWJ@rfMU3KgJczrts_-{m3QmPvq&#L+MoVTYikiriMrz?VyUb{P6sD>NQFMS-x z2$>v!tc-OesJg6c8dg4t=N@{aDoEJ9{ovb>Hcdv=;?D`?1<@}SL+btXq4^Fv=E0g1 zLYKeI&}7nTi$W|e^V#P3wrQ|gC};$-*O*GGlNMzrFJ7~K9Na%h^kjWNiPVGvelCE} z3F$O9!r>`D62>k^YNV@gfWI+1U`YBTq`|A5M4=ozz4HZ$22DDH9@nI$7bqau)k$00 z=k1HhWk{7kzvY0zXs=3-xQ|>XCe~Ou4yTupA?=$==v5d&)9gw^R<(0Zfx#z_XX^~1 zvpf~G^OEKvBw}sEEVgCx9A)b>5!uxA<`Il~E?&#N;KQy&EjJN!FGTUP8dvcU5jXZ?&_#Qd;mHXB% zHD`&RZdIr|%YCx9G;JQO-9F&1V!~4U>R)Z*aCLn7%4=WDJ8tRzllBs|6Q1&J8nIRT zSCf|Kw~;-D3K|$ubw^ox5BZbZEvLr$ng+8iH!0j7_$)!!@7qM)v+NWIP>ZEo^NFeL zwYU1@5?WL{*cP@TUwGdj5x#iT#pF5CQqxyaUY=sN5F9gSPJ9s z@kmQeNZpT--sU3swrRFYKl--r|4tA&sSMfE=iql&wg**1zPvL`*#%Bj(O2(Vi?IR(Zftt`wRV3XMV1 z%s=_?8U8&xI8+E)i<}%-4BO6;iZ4`k!s9I|?5|OHn{BLC9_-*O7aVo`Jt0g&`S8$X zLG;EsipY3;pi8e!VpH_c70&k+3LPr7`bY=+mq-{9>?wE?< zQ|zX!vABtMGvW(3xZB!N@^W6}r=`uE8STkeawb=x$u;$j6292(ZBo%m9zJRKlUa$P z$RneB=^GU`Wp-(a?V|MJ&I)+Zi^lAUTlxK+ETD? zs-ECI{rwL8$A&fTDPkz$2bkzs(_KgQ=`PhHia4olMLJ2l)O2>urinvS@h6`?2Se*~ z?3ZA(Qtdj#K5t=zhTd_X`Svv$LT7`Q96~d0$cEh{=$#oINmxV@J(7svHt;d5KCE`k zS(v6gIZz7b0Yq7c*Lcv|UhQ>Oot#~Ub<7hSdz$zvwq45}GTzFEjOGT+2;Ofm=iiX< zdLr5m#uLteduC0?3t!+c?NqO>5QHvsbKUwDT&u;zYEz5Ld$~_goNLc{mUt3u(Qi&< zyFLq2Lh-zfEpL*Gg7>;7uFNj*nbV{zMUH2)hraEDrc;b}yfqO|Xv43F<6x@(9Gj4& z8tV`|C5bB^>)@;qOZ)-z35`;nq?4$an`rg3U6OzrO7vNWkj>{kxk zH9ia;er<_KYRw!U3%N69#o@2d@LM&cA)Fv_8BHs&w4`*VTyV*3?JR7L!5-l#Qa5sJs-FLWmC zN#Btp@3X;d?0WLG(9`y}>Lor=0G2%l;c}OUiWz_j>`M=Iy;KR(u1v;3S-{cJJ=x+OVZJ zlr#VODUpmx(zCxw?l{KrhP!L`&R}+mQO#DQ}Wanr$KsT1KAifqU zF;#ZB-Ji&^W7|dI8Ceph5DV4#kYUL^JKbsjGC{k+J>QnMQejWlLN`R@s#8m6-{M;T z(-Tb>as{NjF|JCpxo3lR<>O|%gNTHM&WXg0bmKjK!>X$rIFaE>kxLw*GgmxZbUls6 z;C9fqyMrRfbow1vD2ra{59|*;o(0Beyb*y;$jy|p9}X6g6_1MP&oRErE=05Z4RTkjQYCX&Gp@sLf2gcBvau#%R>*y#=HTM<;b~hUVPS!N z{mP+MVL@bi=bb?9p9@dSST9Q2?QwnF zL;QsyM)sR>d;N61{Zt;Tb`q0l7Oa=I;WjlT4)-NjVb-`$tj<>ZGn04Gb#rGM6`A*^ zbT%ecFF*3)E0WU3bV*@fH-9b-F?qs+r`|j%88-j2>s%7v=-iVDYLw#nx|z2uLpz2I zVv*Rcg!~363%B&l10|AX!?C+AjZDqloNTIVOm%AS@hH<;w=OnjMIlE zknN=^=C3;Vq@Cf`NESodss5F$J&l)a%oBPtI2%l_?$@mjC1mXxc4;0pX`0AJA9fQf z`Ucdz3gU+=@I2N%$5OYcGTDp2r67H8YX|j?M`OWH#byC7FvLD;O-w=4Ha~T!!`z2E zD649ds0nm z<{}+~JiZfo1g3QwPGhY*8;rsi(?x7@3K9ZQc#d-4}mDsCw1_X z6-gMeP4O7sfm0sqe=XK6^rV--p_5F{W`DtBC&`nar5mdAv>=rR66q70!#MKkMrWO; zH+bXTb{9XEbX{G3`Ef>f8v-D+>cL{aTkc4XajR=gQc11z+5*64apH2TS_a1x#a8rp z`xVw*^`gtiES1NsvRN#1ljBIqN0c^JETQk>Ugfe$3vuDCa?kU7)K)^;1rr?7k*SW> zCVCA=uLnpPj+44E~5&T)iXDbfcNBf5YcMJ8utfq44%70-3C6%x%X|iW*nTC$41_$x^U47 zPKKmZ+S?n@P6E-HHDE3*a02hRIQa{&wj9siyV+;8;gfY_sK;W~EEr4ge@DlMgCT?b zyBlZw#L>+BX9Pz_jmNSBK*U89ZTrq`jQj8W*W#ydhVean=InSQ{FcZwVO^1D;y%pV z8`e#evGQLO1ZZDV{j9Yq-!G++qLY*Y)V2SGDRoNXk_)vLjwRRAUR~%5x-1JZG>9Xb zzIntQsl5^Wa%ujQc__9}t+9?S2-BPkAk3AmyMw*|wu#?emP?=*2)7Y07Lwhx;@w z+}cTzMqt&Ko%?36yHl#~IIOehJW1!Cqgj@5<-;7)0;cWYbkX?0;ggd%#=$ zayL4f+jA0()lk;jj~kF1hMm=j0`tk5(!p1e{BugPrW&yyIDXbrSoKI=-Eyi8{=oAU zcQyP1Ao(Eu({@z!$msSlP`5m zb#J;3O-Soar#vt@vbl#)_r0dH$_*c`$fFx0bc=mDnZ4n;g(4UC>zOKh>N5akBIS5L z##tXfvUI2cyF$hNRTz~tPUL4A%?3H1pbec^KiopfE?7mPu==z~T%(&{$8=WK2kcEE zuVbzn|2+R|z}un$5~;7-$@#jZA6OhGTSF4!L=J0qE5C#>ro=4;FcnpGUUqHVg0B?U z=pV{#aO@WA@;K5-Tn45H8yT;}VA-yyt41I$J%=y7;MQ(YjD&BO8{ zqA<(N8w9YdNBQFKb%P|%9q%6JE=u%T>pAh9?|lbM74D$`RhMN=!>R|sdzEm2`evkF zX6AP6UfJ=Qy1(wiRm10V$k1;~<8PuL_PW2^;ar^Y$l+$9Tl<7S;qeO3TjLCNeRh789{b+^GvQ9SP6wLEp|# z(&}DJv@Gz+&aJraW_ecZ@G{67mU@ob5YOn)oGuk1zA-8W>nhLaL?gM@*{;bSKdkE* zmb-aGq&lYN7&>8eO1hb3Gc0}mm^(@QD82Bz=v#>Uuvsd%7e_JhVy`N<5I=sUKP$1t z)WOtYZN-|-zo~BK+C)o4|Mgvw3r;`T^W`G_d0HZ7s9dE8pSUgw{yZJZgCLg+eNQ(^ zQhkq>7k&HT!HxcwT=yQ0(uUWCP^2y`O3N;%sIF;xe$Gnf+ASBzWZ_lQTb_UI<$c%F zlY?`sEo(5FYt1I7B8!1bIn@)dTPn4NoprZu<2~D=(-ReO{S{lw+p7K9kS4EGb;z#h zZkxUD2Prkn3cjqVxWH0opNK+8=D@6vRAVmV%tklQS|;#NIO3Te<{NJ@PkpNX=p9k1 z`n)a56!(j%$d5w1mMUM~aG)GncB)A=oaLW5C6hvY@Ld^*b$#3rE0y{|AoDu#$VGED zX2UT%RlP3b&7nZnWP9wHHHcT?R$GOTW~xN8s!w9S-4m5sE&@yC!$GH)KC{8lvTP}Y z>MhXPjr(Zd7aKCx4+>|WjXxd4vTVY{%F(z#ru)!dRZfpYaRmRhw_-K{b5vz4Nn4z2 z`QUi}>$uFmfZKO7$ds+anDxg-HNl_pDX?kW0ioh`qJ`8e;C7z8TiODFc$rX zF+IL~u7pZv?t{2HT0@|-FZqk5;s9D=jjciN0x-t%^35*{8>6%L&+jHHL_Oh^mt1Z&M9_o8tZ3)R|v@ zm=cZox2fOGXXx>%QQzis;1IM@{RK7)u7n7b6MB5V%{!a5ePb~hjBfjc!hwLE>IWuN zguiTo2h!^DIVe+$oqr>eMXs?STQOKZGXfU z#d0P7rG_eNE*e9BxkREEY27AZd#&wT*5Jo~8VIyi{+F$yziojveDxpU+58pW5@rooKN>g-2vTX02gzTDc9~rEAe})w`_?7=PTmwb)_jh$Ww-r zY04-;!XuEZz#`d$t~8d1z+&9P--~hDU1{gFz@56k7s>Ry(&oX%ID_AdaYkKfP1@kj zN52=zOuN#ubikdDe=o*8=}HUG1$RFEy+~%+mG(pr+-dcDG0q0?Qy<)E_iJ&vB4=T| zG+>5$)mPyHW$1HzEhPvhtUqyEzpDagGu*nL=SR{|l=0V! z(ho>2xUE5w8v2FZ=xZzlsRh{5- zdxIFjSY8AYt1b)3P@+A-59*Oj#NkK*UJv1D1GzA zb=L;JQyKaabo`U7W@+c^$5e`v0$VLs@sF=T712505kEFF(n(sJqdsj-*`)T>yD14R zFVCQ1D)~V?h@%0fxmkLb8U4+m!hX25wPbG;?B{XYa)tCtH&6;>IH|+$jJtqeDB9UZ zQYrQ!fYJ#5QyK@d;vH)W1z@X9_&>#Y*U15x25K#=|4(_Sm70{Hff{o_t%rZRpQF%U zXhQlglcoVEll90ycH;EkTw)Uwz-{Gu3-yz^^gd(Ne(%IAI%Il|`gW6r3@6UVHJN zeRvis27Pp5exC<$jQT<+hS+wJ&xugLgF(c3xNs8W77(4xGaN8M@CuH+^lre1(MOkn z9N=IHJdZ${r$W`zuDU<~hd-F0EN5am&j}wPZ7&vngyS#R3tjaGa^ojM@SX`ex@dnt zSRvW?nQ#Ax$EeMDXPeuLfz9jcFPy`hhl9xzy}Y}fE@tWv(H)xN!DOJ;i0|BT zdwccle>WVpix@VJre9>0umP&K4D$5T zBygWpF&RvCH?ik1r2bg>bq_=N!x7jDf;xEVy>VYLTv$J2mGTF5@G_Cua)sDO{}*;# zFqsERgLrj*pD({hw;}a~pB6HvxTp#XZYR}Bi#C}(@PXX2Q^I~Bj*8sx=jF8fixr0_ z%)uKLG7#L4Aohr+8JyegcY#A^`kqq|-UFd{txawz7PfK}bFDK2(~|DJA{fg1pk5B> z&_3I(4@%gwl4yelglRyRY^cAmh{Q4TdQJrt0LJ%>k65PX0EHUW;N)XTfT z@S(nNXd%;ocJ3a7bHBaI1n%*jw0Y_a$Y8O0VIl;kv;Rln6mRSzdVa6cNIzz^91LK`^DIOgB0QM1p5I7`u%CJ(IIlSHfT%H7-!`QPN8bsrqi$RAr%6yi?7=df4XE|g)3oR=Xla~b@nq~+( zG!qtr+c(gmVX2;#m(xM@0ZG8)(43Ko7{@lo5YvFtnu*l?Kbujz_8LbloSv!gW$b0RGCH(_( zcsu_*f~AP{cx<1|F9JEXuL?5WygvT6s;Syx*@ik6Euw5AJ{X|yjta85_-~0j)&TOw zwyj}2#Gr7o=W68%5nLXrlg4wN8>us91h}6IruW*I#Ja!G$CqTOwa^DDKNt(st1G(( zWggBnK00CUjWYfsCG+QEBVYB2UY#G+7Gs|>bO^zMvN}yZ7ms0x4hjSTxQYpM45%J# zAj;w_0S~qa=Hg!(%^?YZIFq4%RLQW3!{@Fl7jxi%o0n=Wz+Q)*vr&b_*bXhG0pNmW z0`b0ATpa0!0YG6zBkpVwvIg3*Pe(P+wki+=0G$8f#)Vv-!|V?4%bG z{&JzjJGYz15-bfc)sQ6bQQ8mT@itoaQ#U|4z!N-RwxK7u>KF${W_O|CDVe86DsGZ0 z3V;w40406TG9kEa4GbnKAG%`iq-fcdZu>`(6kvd5s9CWMfC<%g$Y`K$XlNo>(9oQV zF9ouKYVTH_Gid(G0RVL19CX*A68?`hM1Bg?4;ejd{#pVw2N!;A%m_|6h%yQ-n?Nc4 zsTTOKf6O2n7l0)=G&>f6-@G7LOz>S!fuhPA9zw1IWqjt#mt@?3SDE2q4F-Y*Xf=Qd zv7Aw(1lSLx5hRVITe7LR&wNP$>$EHiA;@O%%uG~ZCyT8uA!$Hmx84RnmyGH}Gt z@?VBU_2mx*IlY2W%QheI5MA5(V$jTa8{*}W&#yrGMFpc<_YiI47+i_2v~}#Ztnpj4 zA4Nu&i$R%f(psp0fY!%Vpg#cehGyn>^Wf>Dn}FHw#_@|kwgMfmntnGz_$CM^Q+?n! z`6!@#OZ*YgB`}KltL;#Q1X2l%yC26SV8sD0Jz@c2M#)SFj53hT(W}SG-DJcg{9xfx zJc&k|wC^ks1)#PTqCuJS$KEJlsM>G?IRhvc4Y_?bFcE;TtYQX1a1Lz&mOA&_0tyHq zm-+Zc!xcg44>rf2P5|el{RR6@ekl|7Phd%1*MA50Yo37c2BxZT-+vAH1t6cO&IF|d z+IfI%&#-|m44PAx|CR;xPVyrG zK&gOyI-9SqD5ft)u-F1);=Alt7ce>Hlfe$f6cdB$)~PKs02%{LYl0}*4B&O}PntT5 z?!QVTs5bwvLGvZ70GuBTh0vn7ZGu79UzZCmnAo38j#3h3J--%fQJh~u2)@DCL+In8 zHN)x`P)O`zqSXZu9-uC$;`$ax0K-f0Bro4$pn_I)(l5Do+)Fk=D?{b-qf8Ec}A@&$b@$n&QpJk0%`s15eqoEWP7&v&B2F0zM6xBi+~QH1$77l zQMQT=T*Ux2qkz&eXrBZ*GkW|1GkuE;6;khkNsg!gam&0!g)aT>E8*N#KRY5p4@h?A z>rXuZCYNRYFDrGAV z9`HMP-~;5Qc{B%oRsv_6F3S$03@!}d96$g_Ss;RypMt^;-NR?R2ej)b)!ELFyM{fe zW(CUeFHHh4iZr0~oP97rC;`F_B{P5^0GUDO|4U|gKyu-#=vsoe);tpM=HA7#{0Xkw zKo&}l?y-H`e|ikiBn5=PkOxe@FUJPJ30&`fZ9fF7tHIU-Ucr$hMfr!w;i=T0;DK#D zg(j3BXQKz@+Hu=uv}DvlU9eC?zHFaO9E~XxO7J%ITa!5d7n%e-AK(}yYB=p2opOjK znTYWAPg`)NZaF1o+|PF6MSU!$CBfU;WnO$R2u|K zBrkMsy%jQz#6d9bD6??{Q$m~ zB7ALMrVSZ~kH0nEJ}6e0uy4zUesqGqwtr*E2wg+icJg?5k20>4ud8E0nLT~zew>*7 zvYP^n*4Hzxl*U7nd>l9|U#tLp*m@FnaM*w#IAG~pUDfxTuaJa>BftP&ngdRdeDw0$ z6Y7G4RxzN=0{i%j!aw3=3X!f*LU)v}iN-(T<&)P4zw-ErA#8i>A4A%(4_ML=hYiPV z?brJxWa`QQ_um>jy3Oqdc;^~KKiwJI1q|n^!o{Van9w90MCG+&XuxRY~wFh7;_fUIAFP#y=x0!lOs&X=aKNuy+nct@WuulXtPhUr}u2_{MX_U z65NWYg|}{3^4*?8Igd^%xOpR4W1W0E-%+_#TBZ&Y`fUa2Nex$}`^tmYwGCA7-agiv zt=_hHH&7n{lvra|1c1}50iXe{3IOG)l4hy()v99N2EhfSe^ngv3#zQB6c$y_xgk%O z0sp`9V5&i;5kM$;+z47!Na!U1tiU%REj_U3#@iSWJRotvwa(borETK?-2Sg`O8a7? z&;XQI0{Agxhy^;kc$Rh0J8-EA27nL~8QseX*u-+->7Duj>;fKvFnTX}>(5d)_3#tRxA%hl%D^Hf2={X+_<|MN00IVUE6{~KhYF)>L*%#5=mbDofKLz>GQb%? z)^rSiXD<;ci^_2{%mMfW{3Gd|BL~y06_1R71D{}rpQTM~U;JzitUU$%swTIvANb>Y zDJXFNYQc8kAo=8Zz^C_jSH~B?CdPm$TYy~+eAfs7JAeU7@Hr}%a16As@PF$1Kk*DG z=(~TV`;XiLJqMZUpf14dG;UJV*ttr;_TmL zhxggi?n12V65^0|VLZCvv_8s*ZUl-U@}Yz`xe&=xzWV4z1dhwLJ}gz>k2Nmc4~TpO zPU1qvkZ4{+Eo$1Ht6f~^7H%}3dFU95Nl(oQifS_9qi zA7fza$Z|Bj==;(WxzyF6DFZcgJL0)!MyNqNr0*}DzDG|ERARxYjSW%WsYZ?5;xhw$ zDsa>o`8XiqyrIrbuh}|x(g=**VHmD_a*w?v^j0#`75$*o-p6$`+8?Td3dxKA4Z^L^0kX;O`sN^woSRUu-q>WC38pEMROb0)6-apv~V~ zM}Vzp#;lYc-Byi5D-l&YOW)^5F%JP;i*?DNMk`nlb2!GIDgfO<0bp=oyMrpE7)8y1 z*jVA@0Y~^YYOMWpI3{W=cL7?%46&`~?E^M4No~0_26`}nEDRV0`O47#_3v7y0@MoB z5?Shdx~D9|Zua0yIQZaKVu-Uw9PYeYCdg0VoAjFn^9X zZwNp#SioclC-gf|scka^yjqXPfX}kX^xwBqAH&XSDbm@%oPU;Adh9#qMDK z&`JfA5C5d}_YxBMSN}l%Nz9on05t##*Kw#Z_nSabU8W9F?>{*In}L8(@wyg)Ie;cm zlmrF4ae@aag>k^rdjn`EkW_tqG0^oEIFmchwc#L@|7UZ9`Uy-PDBgcF4mfdtDV8$| zMMsX(1dEUs^gtUu`PD3dm;`mxuK|F%2%s2*1BAZ|Do{YdB!PMvbk>{h8t?$C_K)V- zM@?ANB$V2DtpUt5R5}vR#7gy4Gsv?jfT5ZEj4#16e=9nW$kEmOQ_-L-ohiZJ;|oa8 zKkE2bX1oBs`@1b;0c#;*9YBs`l7}l$O%2YYKjaH=Q#hLu0Bzvyw4~4Q1A&jf)^y?7RLCb8jA(Wx2HtJC%=>+Qx>*6o(yT4$0O`x8hW4 z2^7vKiMn4?Q3Od*P?@w{Dp_i`3{FUrV<-j)s0jFMHNydN7H)w|1r-nly^;Alj&)ww z&5iB-4Bz)Yzu)(d!^Jh6!#dYG*0GNBWB|fTRrLT|y;q*B?%d*yhY{7)wI^p^s|+04 znE;~g3cMjp-ddRywCv3X$!VC?^!zMj4i{r;clf8zs{M7uoN|Bn&}u|vWPGJd=M9Si zmS9+n)$u&A!m{8+rm5wv@83@5GaEjb6IA-mB7D1aXioQDErt1{ zyr^Wv3+)fsJ#<1x5oAi9!>iNVPJtz+ym`<&W3K`OV?ID2E=-m&dKL@-_aWERzyNxw zAcA%^KkA!76;rb~0J+s0i-@siDL2 z>BqjSubfd|T3=IIA5(N-)@IYYza;-SuTu_V{Z+fECsmTBA?<)bw49@!T>(clJXcNQ zQ>Mp>iyZ2P(+)omLOvr+*;yn&RNT3SqvH{Q`ZadY`)A~>A#w^CG(#;K?=32x&!4?v zE`Wy1d*_wouY%)GLjrNT?v?t$7v~<$yIg>9_xw|J-B=`hfRu1#Kkimp zwCam2K}PTDjqpBILIBYFk35*=eJ?EERMWp8Vn1SAwRAZ8S}lOCSLqlum3>TDrhAEk zYmELJ_KFvo5z>3*MRhEvMH0v{Bb1x~^Q|t?rSdM}G-Qb(O1ik(ZoywjpOw#4_KXA+ z#X~1$`T3pcG)=Ypg*~acareR*7FjEjcJQK|BIwihP#OYF*@cF zORHii6!=+*mG@zVlbTkI5CD{r+1axCOqa^FgN$f{8M5*5O37}RbBZ5)4t@{`I_#1W zr<{1FHhxrbwf7yvT#zuxtC0g33+eD>axs(W`O&;CL>@A^mCOIm>^NjP;e_U0@rnR& z3&`7Zvg9TEdzYl&k`Uc9W@I@`BWCxq73H9gTxI2-A2BjQJdg6oUmUv$Z2pqOk zg$@uObM;8NA8p9}?%L~lcKh~&lc;d|aW{AhdTtJBiF=sSpVMv252bw`TsGOM{4c^2 zVCs=46VnI-KpF_vO`d>VBTs;`ExSfMz-0X7eS=zT&pb&>X}owO5~v5a1LU2&f1^~h zD`OVNT;l{dHfUf2v!Ofzvy;o&6-blJA&FBlwC(4>cML!RWi^u|fq{ssOk5H~p}rb0 zg5HP4K-iMH*8PQuKy|edB51V!ExOQv2*k$7bqR^4Ap+gH1rf-!{}V)@uYR>!$P#GF z4F1EM8>#g}m@9zPgcOF~=5Swn@;vW^H~uHS>e;qxfmcnF5FwG()@sGhxyB`|F`I%U z{>AvaVz3md1c8S)eNet^g*pCf7JtL+cNhQ~JA?w`>P~&>24$dCCJIY$`(L+JBW)}v zsK5{Jf6yjBctmw-9s-9+F=OYGF**qUQ15_&JI_GR@P7g>8Q~vN0>t3U^8!->jDTC4 z^X>hEqWtoseoyyn_DT8JsPvU@rB6%qQjvSe17wsSRtvkY*o};P%$D$i|5H`t1xtk8 zy_esR>=$}t06#!lC(*SkC`6!15`tgh4uu%Hy-&nIA|d-{hVD|vek6kOmX!RKp0ZZS zWBia=do|$igK%rq4Y?I$ro-jU$XbWz8v8{NL$d+CsgrhRw1ZpA@UEy{fkl19zO3ph zYO$Hu08-59Ss?h-VH0~JBRGQ0KBs58@Bl{e0Eibs?QI6M`=ESmJ{NdOxe);Yv8R*c zhx3rWA(#lU2&*I}u>FDX+yh_|?lwu~k}Ag=_U=1C4C$ZdWbH1Lv9Anr3GUnkG)r*j zzabGHlI|r-P;oS*M~;%*BFbR~WV8Go%>K+J+h51RqG@;r!l&sm zhJh82s~E$msurb|Uc-jc8{0~szkG7{4j2S}+65uklC2vY(JF_t5( zWm9aJUdgC=z+ic^+Iwz#`HL2%fD(%^qe=mlw)R?Fc0ks9#;%XB{>F6A@A3=30!EO; zdzW+huXl_?CH4h5h1ZVCEv;w?&b_Yg{Gmf>mkPc44lwSGDhEbF=xTNCe!sTU(n_#s zZSqm4Y-^j`uPyjpM3Q|V<7+blHHLmF>JD5!MWxL@2HZZMTzmGlN3}cBhP7W3lzIgr z{{SPo+ZDSRlF3fhQn-nq{CvpO~YiqesL@E%VoT8GfZP zFN4ORG^cw7@LpoFgWG-{9KXn+A7~zNw?$stylG!3s%FQKRY7S2{5o1w-$0qyo%`0* zQpy-&CCK!%#2jQrX=M;LAUzLoeRkMfWZkBi${IvW4#>NtTr3K<=x0NgTr4(EBs$KW zq0*fEixo6Z{y9F4LqA{dlioP=tGgP7esu}ZYf^M=(=slUY_ka~WRwW19uP>qPj`~S z#;6{IO)C3Rfw4|QcW$^)i+n&$zLS7F1REg+?f{yC7`QX_0J3=I^;-QOFF`5uAJw+x zlOO;fR^hdc`G#fGid4oROb9FjOkxDa&shX#-6p&7C5X9cDO3e8wCmMccqoQ=S{`Wv z(O6&z#a>%z3IH)MOZH#NZfu8{e-;~Q%s-1%1vfF!^95+ zAf{I5q?GT_A!%S8lj^jC%~iK@vdGZ`G1UvVPakDT_K8&&5TIH}F*p_GI*hpR@dTmw zmD)keTmAkII*^ z{|8|O+ySfMmA+c-Truk!<$wF>h7aCa7JxkZNrm^gLMRoaavsr9oDZnuhG;*7)FG8J z#mhPRsaT>>=ZJ!k+tj2T45%slu&yw;Hod+)y}q=wne0<$E6j67Qrb&|qWngXVy`b{W|1Xx?uG8S<@PSlguR?0Dq? z4=sW3$Y6C%Cw9dbiyH4*&%ci>2b0lcOTi8xLPQu?4d0t>rj<2_DoxV;*liK5Y2*c6 zPopL&7y)b{-_Z=XvIDGAWPAhB%W)7*piWWfvl2Xva;hk%(L-ZK;Gx5NU1Dw6Bcl{i zpKmZbM-}ze3^mjiwN@*{M7>_E$I!Og^eCXIgpJI7_yx1DOzdJOJb}aIM)aTdO}Ypv z|7q`Pp#P-o@aWFB*DLacSy$j-inmtL#29{mZ@F?-T8c8Ry$#SPibqr^ypyiR@Yt~9 z%uq*`W_|OE(o|}e`mhEnxqd(sP~f=~mj9(7Lgui6gi$IQ3`B!-Q>LaeXvsdQ+=Gu5 zD{o+6=VPlL0OnhNOy+)dMN5Y zs%@c;ksMVsI=!ZyZwG-3-#EvdRW2haPzLf)iVOHig%c+879bp}LwcDONS#qE7DI)% zG8h#!&9ke#a&fSmLthjq*B`VyHe)<>fqKvuDIXUiD{h)>PhXq=^pc<)f&!#5bWs+Z zlXGzA&*>8KgH;NflO^T9#(k-*3eq4tIwTQaDt*ep_~ph~vNk7;0=Kwe;o?Zg2ry8C z)2IrdO^Rg|Kt{ST8zAqm{)+VmD)PWJE&s){J~iRAlnD23F)0acO!+aaW$8%~#Yt4k zg5(!O&N0x1e*-ZoDR2HU+5exImL+Ybx@s9*RUdRb&EN`e+X#?S6Nv>Wb91O(Mg75c z|H@%;1?tMnMH03CnCy$qH-`29bu-K+YmV{y5^D@&8ZQ*HrjYHLSFd!VuG6={v8ZIf z$THcFRLOoJE7vOOr@Nx9_05cVQ!gZVG_mujIZz7Gw4S115`RIT%?i4pX0ZoFfx z+_C!H)r!nc6;tDjOY3G;pI;H1TvgM$Uu8*INsW~3ix;Nbp1qx1&|xkjQgxF{7YBbF zl^)3&DhtBcIRa?`LL_{0rLl7M+QazYtjo1Q_0J*eSF*rD??Q6#_@9OX3X=Wne5C-X z246{+KPi8L+Ke+@fu?1mq99@$S!L>5YP;9@cWW>`f&N(|L=CX)Z4lrj=`$Htf5E40 z@hSW{cF(f8;_FZ~Hg<-ZVaE1P8dU|PWg4en-x88qP*?-itMTtUhP%sSN&(TH04x;3 zrx`mx7+fY|Zz~9<=|*xZOHdXjD*=8T#YIkk+@P$rXh;hfYWV97X_x^2ZkBGKkadQg zpfyqE11Cr2sc%KMEY%6ss-&nZfGQ8hY^O=+;%|*PD)6hSyWI+&w`O?^#h~R=Mg0U* z#8-e1bqC=WTqbQCEGQ=gdU6qC`3OlPbixGzP%5chMB9m4&05mDASX?mC!H~uE&z^% zuWj>?^VP5)U?9QaJUH@aWI${qYQ4HMXQ<&kqmV9{tA+ryVZRZz-_45Z1;VL&%eSH& z#gU|_lV0om2q?_KkOvO&`ee>WWl#)!f$r!x{W1LIhL_u5E z1-_du@67yh$ot?1DnUzJGl~=kFBh?-%I^R3OJ>PGd$Gu+cL+p703pL8W0NIGWJA@0 zmOUod{D8K!j5da{1eRZvmx+XxTP^WrJzq~cl>zH0Rxr~xar``X@#t?~ZZ{WZNOA=LU{ToN5fwd6N z@K0C^&R=5I>Hl(vdgs^Gy1(?7%A}`lYNDRb-+Z!Lh@Dk_?@!O&i`rdy*xM;? z+Qs{&>1Xoqc6k&(?L_7&Pyesqy|5?O^|60i{g{tqrbYcS?#}F#x&q@V&+0P~8ObjM z=2$yq_+}iQpE&>FcT2Nl*B7{*OFFozeNNiO?%BP^`DMpee)Kz@_~JO8aNN41q-uk6 zaCF_*D^3;}_NTwu<`{e|)3=im`Pui;XKj*x{I6ci`igA-i|n zz4TzDQ&M-^rfbS(RA<$X8Zo}7oiW$GXVso%j?G@ZQ$29qsIKEW{Ozmn-Eh;?eqY}& z>|Xg?#Lg?bL-$|bc-D8{G0zE(NngHlC2K<2Svv>Z6YS7!K*()0*3KAec<1d=Ps&4E zOgvNJb7sTk6MvqB#uoMJUEs86yJ7gp7oxroZ87HsT*RwA<<(zp+1a&wpFM}0E`A{- z!pkuue0y}&GRL6ow=(+gvUz!8TJVLR@5O)8J^O=+6Nin-urt|Y?+$IT;Y@|yYsOu* zImy+b9ZyWGt8F>AM}0`$q!*U74&)rUCBkVQ@=0Csp>$(=ZX1$u&)a6n9 zC+->H`{n&dx(&5yGPyG7aC+eA-)Ct~UL- ztae*X>z`)2#CF}0VAI6)Sl{!ef6pi@9d>+H<(S8zEqc5-$s<2DY)i?EKAR`?!nVNvtI5kdV9%Vm2@@&NkAID}pzoH#=diQ=*LHAbQhnE)K&W@cDK0onZFV|CN zeJc*Zz{WWImKZQ>&-LB*u`4`xm~i!1Ud^zZW81pbE}Ioo(}MeWuUN6*(U|~;%n4R^ z->GUBioUPsbZUNLciWhy*$*ZxdMWV2o(n!1U;7-vU^jdE73>u^XRDiA^^Wj5dh3On*MB_b zS&?Ns?5D8o66?PmzdL5EqsyZ=tQ;MFJHB*wo@c_un;Z?N{S!F~MCT4mBO`*zAph>en$39e?h5$z%Pazo3T! zo7lrHC#8q?4SWYo>a7ohzrcWQDd`~##N`{VJ=-HsH#F&8PKk38T4V)huvLw`~~CVaQyUGI4@j$UoK|L#qWR7E{^^%%J;O} z7Ob~3-yV@!j3}w=HLxH9v)Iekq0cpsOGf+Sp)!l%9Y34>c;4dh{l_<*?Vp<3d~SP; zQT?I9KupSt2xai^*(^Sth#{#va{J%=mX{72zFAB)^QB2W7I^IPtp9pm;_3bE1K&tZ zozT7S8-^Ypi7N+;K%;~G-M`s}X|a!e^(~+5-F|LO?MH+~(1YE^-MePpIqjC@)Ma`M z*5uRnT#V_rUTE<~Z7WRgsk8luMC|`vW_)13s(y|RT`ts2zE{y?{+%Tb7mfDseEZ>( za{JihKU4-er=?GGc=wtIrhVhjJb6B*)-^pz_U+l{huy>z>20S>}Wx{V}6sS)3q+vyumKoUUFmiUg|*0 zbI<7WGv>=ZIL&F+0T$ zhB>Xv?qAh!kdupt+*m? zChs}izPUHt>Y4%dAwl6S3R+Lh8Mv&-juRVaF;qfDgnu7Q&UGg7wt(nqw_J_Bg0O@7zRvYlLNUV>$*7NB>zDDy;R_$MIrbmVFY8kOdgOoDEdICOX8y@IcZFTuD?M(V zePcmZ_jx}oyn1k)qwn2sxyU=M?lIfn*_01P#)}P#F7@oP~ z%&P-Z7iHJI>g1U781KM<1!dOvD9^V^9gnc~(W=ZJE8u?*XLN7%?~$eJuOV8sndFgJ z7<$NcP|>xwZS8H{&-=c9&9nKK)g$@M5AVx2f9l8(v%k%xGp22Z{;uw|Fb(&DUl0U; zU9xw45*}}AFOLuU2w!O$KO!uC$ex|&vt83a?4I3f5Tn+9>mNf)2HJYv$gFzLF{91J z?=ZB(AB^4QiD8-GC&RLR9fxHZhvnmpQ5`>jzjMm28w*?a*=4gPcRp^cM37x)J@wV}umuGhv-#6q+Qlz2i-R)28ykc@Yy7n7sh4+kJcae8?$zHG5U)m*$J#9=E)>s?gxDKf!BQgj?2X z{QAKz9!Xto-w!Qu*>|PWghjb?%O`gjzo_1Ms@G_Ty|~)l_?ctu#`WHEF`;$$R$=kE z(wA39rFo6csI@=ef2YmFGyMlgd^~frS5#_3U5CFIPv(W3S^ReMh1m~E<|n$FGONqfi*_)g7cc$c-DT-M_Bv%*AHc{O7@G6FE&0jwV6nZd7N$Ec4q09 zQ(S;gnlC$)6KZ(Zzwl;)pRd!jk~Uec_N~xJx1^BNjVBj5R24_IjPv{89C~KGHx!P2 zb87j+Z2Od52e8`h$GMl-ObhiI!^V`8d208hjTQ_Ix__E3SV@md* zp_uEY<1i%{i;1pY)qZZ;?8WCc<7M+qIT^;|%@?Nkc4!!AtX~_G^P$%*`uStSG>!P6 zIMOCOyY8XaG2BK|=@Og$77Sy4bA42DJTAG$f95-jYwBJv{abpU2E&dW!j_D#(I59n zG&Y?O^GTL1O!|a-X>oW`&N~H*9mYFa`M2!xp7EAZ8*8uSz0sYyb|XH>0>&!Z@RYs7 zs1CmjOv-U`G1mE*r}UEbzHfLc{R>HwXIcZkfYs3c}+U6zkL()@ksdvT^eBwUe?Cn{G zq5g&M7e~Il79MP7>F^YIFl`~?u4F&h9-ho!_(WSDp3-RE=3V+!t%F`k_e!kQqd;>3 z9ZDCE&^n!lsa!b1Je8LNQ%?A}9B${|^5pET*X0j#87AE%n_@sO5iq7RN!)tRd zx*+({ylN_Z54t4`F&o`ttP)QAW4E&8)HWgJMHA};Bf+w1Sjn(8T>7;)0+2ow@aAeH z_S|l{{8kBO8EdKKNG?vS>>fp))$R?G!ux*vNb!TsD?d(vUX!>=~E zqaS0B{Jsjk*`HLKpqcf;1N}Ke5x2G8jK75&8s^44=4Utj%CDe}4J#$?6Sm=*d4L_Z zIdm4$>OY$-e*ODtNrefzkC-WA_{=N=LiDl!y2Bu+y02{)z;Doz&cR5mJR@_0Ug$<2 z%df7PKYEU4^IJF}XSQhuHbGz7?Sa_;-!=HZ)vJGfQ|V#d5o2vM59`S}JZWecqUEQ< zFt%wf{+ff_$Hln!9R7sYZX8AaJHz|08={*r7R>+TrcH)1bkJwgtY^lz{ynPb&0kvE zKHaAQgEA~aU#EoJW{=iC$^R;}#ki!KM`l^Yc-emUqhbyZZZm&LayL|1*?g;j05Utn5w=O;WR$PvY)#jMg6EW9U`ME_! z?)||je$pA=c1s-Ab+4>>==HJD{@B-EOHVJUU%JEYi?@vr*Uh&o@-UVj9-2OS+su^b zqF1#TZ#6P|mEHS>DPG1b+o%~f&T*}0d@*u%m4Amu*PXTNajmm#cZ^R^!3$pSruV|tF*_p4d;p@_Ye-8?|&?{UDzq# z7!4z67bW@)sekTz&%~TtuG#>C&IlQ#;vW{c?Y^aD^a^8UmI~T>&qm_BjP+Cma_7t6 zc`cIFw}8? z7KXU8F+fchPQ&7By0F9s*rf8Nap^)h+FJXs(*BL`K*I196T`6T9^5;Ua&!@ z{Dpxsb1qxA6TFeTK$12r0<(;X16GFf`O1-SMIUIcp>^382(H$CTJp&Hnzl5DM5uLL z9POFq=Z5%6g9<0-rb1RBy*9tT7LMmtAS%JH;sWkt@xukA<@Sv5nptWSx0BILoCu&R zkPeVc!`BDNc$ViY{FYej=LRDWIC^hW&p;~DPD|Byb5%<)CmZ4m`NuMKu6&&~mSdrf1ks6pyUI2AHCesIn z*a`+5(;bNmhUIs@am8T?!kG63|0D=&wqO}L|7BzT_ijpnbq&A6)>_!u%&ln=9HWC* zwri&0!9Moz!Ji1eD#PTOV}_|2fo`8O8{to^K%`dx_ix&L`z*a#y!Yx&o_~K@SQUKW zC9LxL%&>vBGgK@&4$$_>fG%~39sl8zVdG-#?_W5|0zaf7eNO}@5D++U;JvP+*PLp| z>Jz;{H2oR9)2;=yGMw}<2AzKLWYq7WSHLEWbDh&+yVD1|dS~=eUpwSvm50yGl&hZW zyH{2X_uii}K4q6mx344V2FyPl8W8yXfZfQ_!B-6SX*sSMBmxi)uRra-yTp3>?4+Ac z8)|Po_iKyj-VRG)RCf%pcRM(pO@3CKr+APG=!?lG<8_s@_5wX2N#k@O7nlu<+iZu~ z9DZj@34CiABO5_Wbo})NVV|mSrCs!M`yrlKXvg@NA=~v~Q!y|qcrCr$Co@xR!bavj zKe{*)-y4qKh=)Hl&SE<7PhPV9xIzN81e-OVk~)!`zBz= z!U5hPT+B_j9}JemJ)<{4#=$9*jlFqJPfGi0oValo&4-S8@Yt>F+(BQhC*xnCqy+QKy?GxfB z!#|zA;$C`;ng4WISD%XSK4)6(ed|2N4lQW9kpDnbf`?Oc27G~dl-`73K7Pp1h=57~ zVB$lc39^5ZtW6KH`3q|oEh=-qcynNpH>_jDUQh<08B`{-R?kSVM>%*h~p^T;xXaTOXWOlb535?ln&UiRFMk6vmZq+95+3l?mb-6|cVz8Qr z%^$rS6#R`<2apWj1|Au3e1>!8&wo1D`lq!;21LJ0uApm<30*Vd1GZpp7UmZ1m@HHe zMyz=>I30-^YWgwWfU1w(^h;%c^9d4i%I`l&z$S0pUawaF>}f z0HaYbA|kQ2I<;{g!a2HoWfYm$t~)|&UKQxTPAnTu=x`Pj18lD-8P5NFl6Sv1tfQY> z3nL^5FSMkx7eJQS)Jx{iKV4TOekmzOT7F^siAZ9kOoio^EX}N%@Z(y*XDm<>AgF#> zb=xzGl-RLbFGTxV37VAU*}7F~DqybSQ~=)OwR0>G$x)j^`&ihZI5p>Hr8LYh$%@G^ z?<4)V_Z%1O_lpi-!j9M=3}H;V7F+=(G%*%`Dwss%9!WgzOk#!0Dt%@m&UOIak~JSO z>tHDO9e{K(*FzcyRS2B#kyI!MhJLZ@4w5GAN=~7$0Yq!Z6i-96{ZP3>PN$pxSYbY6;YY`hKp!JyS3)5G9`QUI}(zPp!flwx|(5`vD6x1VpF+)9Rt3bVL zo>|3_5lomgsF&`**^M6(MFN#WV1d9Sy8lU{ds+)%44rM@sICQSTCMOzL>FzO*MiVP z49uDBpLXlMHvNs$-)EjA6(|m&f#47ZiFSML*#urat5A$2@MmTQ8)d+PU^k7K7sxZzCy zvCpYQzpcXj$RN8LAG)zhQR`Mldi@#5u$=t#%nswNdaz`Hs6Kco*ySO|b1xDtd^meE zlW3_V2$iZXDvp3Ri*ro6SrWMyRJ7B}plbTqwiPBDfT4ZZDJ1_i;@!7}olg+vL3>)r zKaiszoFiXPVx8=Eb`!vTZ)7`}7j6y=?)C2H;lLW*nFz`otPwIs&h8|z;tj**R3G6V zJx@e*8RzPm?8xfExx9hTwn_{B>+HI9OWpJ*Fz7ddKt4s!x`jM39Lirfgt0HKwL3~F zNNL{VV3{%%&-zy&CeIW0vB;vsMixAO_(aT0t#-}oc7Ok+PhJO~gBAmLrTPfVpYwS* zsyVe_y7e`upkI5YF;h!5H7Q$Pz%O5 zjb3QOarC&sjLHXpg1ff4Wqs||iR3=3XRV%`2mg=|d~Eoe?_Wmd0uS1emT>6G?gX@M z?&!NLTTFCymq?{vd{15Ss^-ch&)$%a6H)jqUYa@Rt;PJf3bu0J4<~$(+sCgZE2B?B zs*U|%cS*Wc@NqG^m*NwxR5s2OY0dn6U~sWmRSvqxh(Pyy{qhSjIAt(84d zlPG0eXG!P{D;?IH=|xzB(S4RqcwfA}W$1+^A>(coqgVxzj@~!yBq&gJp~9~7p$OD5 z^i zvR5DI#E*l9)1>V%OO0Y+Ev1cs1fB394>54i;Ey!sAM%yTBgjhdjdnBZ{8PY?0QF5n z;5J{4Ywe8~#0txdIFjlBm}i^?pKwyas!Mp|T3;r0JOYA^C*yNEr+xc6NGfT)hFkTX zUREra9&=c@k_NQ5G6xgu$x*51ekOV&g&cVvQM2|{5b?S}c}UKrLpN>On39rRiLym{ z-`D1`sZE^UIsnwW71STznomS40#h2rG zi3OmM{+ksQp<4xwIXaaUmms}vBttJ1A+HruACLu6FXf=i3Q2PHA8GnvWX}j2Rvtf! zL4}qjwq9hjU=&|&qMeOBqGb-})fB{i!gbLyM*xEO;G-LbWXWeu5XB=YP^iKwSFZKk z2nF)^#wnhcBDyHTL3k0mTU3Bp%3{%C#usp(bW^Vx1?-T7ka?D%ur*JEr&7sKu|r3! zHMVOs6KOyQ!WGeLJ{w`hl;Vitt>?~Q3ZXpPAChwz3~Hq?chzE&HXOxgn0nO^E-2Pd znB}NmS*GijUyM-IgFlwd)BurFB{E|DSsLIelR(#^YF?JNUGo4+lS%kveMOqOUsZ|! zR~pusqfpbPja8=!Wf+H)UB$+(ZyCGPRW^BKXH}m$(>X&3Q5Cem?f|`lA`pV@gp`ZV zd1(7@ptu9Bvu#IEqzZ0C<33rdn4QR?`el#x?iuCHQ{$$eyN)7;#QgN+l)YC#ix?nas4j^VE-bQz zw1R~f)DHYJ%FkwG1aE}znuF#c#2ypJ10F^(PedN^aNss^*G<{>-OPAeOXE1Y7AAj? zs9_r%cQV$zd%g4f&#ye}%dGirBcOl`4O!)=-)~ES+12wz1&2t#H%Zo3 zhzUeVZwD3?pBNsqVmgqajCxH~gOHHKOYmEICX2t(SVUMoGzVeb6e>!aNzu+TGl2rO z&2V-mFliUI3|?1fwFO=HMk9^bY7EkFmDIN@S(cBC^hfdF&h+5xk6R}s%z+1C9A=t^Rx8%o zevUgi6a#o3>O`bPV1H!jG^GIS2?k>c74S|>wIYMEm#|+B$c9T1U+&KFXny)Vinvs; zp-&bAZE$pw&(pY1L3fDC!Fl|J1y#tRy~4VF2IS6q(aY(gx%=h`k+KKsQxt__UQkjH zN{&lub$pvF)a<}$;qKs5M{|Un=L}y4?=O-JWq3BuB(KcSfQ4|Gsc*M}l2h^v7AHcM zu+RWZiSL|z5AB1jWr$f}APd105>Kh+C5lEs&4DTefTki-G@-YHXh#yjiU`S|hRW8# zyA+?uDKCkfzK?+!3wIz2v}Zgn*~g-E+jR%+ShOl)(BS_%blElQb*-=|rq9}%Euc^Y z>Mg`abYc6F08Uhifdq+7c-Km(WdOi4Q7(=Dgdau4)fQxjHf180xk{(`vKH9rF9Y5# zl6-@89e1-6l~vD*gose+(q1z@w*5C1T_vQ`=GK>QBJ{tEERmb=>ALz|_P!7N)185CJC2 z^epj!YFr~cpjM$E5DgDVuOwg49P?*lTbV4cN&tkeoGbG6=i$2LeI(v3?W|Ox%4KP7++c;_4M!0}>u-+e!wp zsSdMp^V3wStOSPd*?i_W9jJDm|LV!hZyyTYbL@G<5%303A~gJjn4n_)p5V2l*SnlS zORlZ<{wyc&<|M@Vj9PHaB8>zD5DpPw!L4tPv(C+^LjcDhbj&=6BI@GmQZ^X6+&6ql zX{3EfttnGDyp^nNfcS@%98jfEVMkfQ)fmIG9!SU8pVy3%qKjrhk!>Ke5Uhkr74eLa z$qB9VL48>A6sQhtw99}e5pCh+4adm{Brx+2{O+%(z&h9sE*w_>v^2f0vNVhpc5(}# z5!MwwxpVs!nHGfIjPFXW#-gBK);#smKftk0hKg+TZ@pSYgSvo$<8mLb(vdxt&Msyx zXm3f3xej=1BEUm52hl-fP2|oLF`$aAIZ6AP39&4GwRy?>B!pS%&$nA4^&4^VR3fkf zqF$%c!`iGv=bJ#CFY-$PTYTl&4aW(8u#%yP)OcZ~zp7 z_b~`z8)Znw?sHls9t7qg7-3?;)_GW(XJ#Yib`$qNece?L>gyPW9A>gOfxch_I7>_o z!A{7n8mY5ispdu(Bv24n3*oKSE=it$+&|*?e1winRc8{h0t!O{(^Of=vO_WLmY}7Q z2kx4qSYh<&%PGD>y)YjVhFh%}TFDQryXXd?FsF~BNy*T9B|sCz$5jH`9kfY9(^r)u zA=vL5qeLe@s!RlZ?77Sw7LS1FbSq8BjraCi5xJKJDPdC8gs$8ih>{lZ*De?TApb(F zojMfOrJt;b$*qaCte)s4wrLvSCtd14+{_$TuFTt{cov@}$nzyyPYUmfx;RbYTug2s zd*X0a=ju(cbe~nkz2_EQ>N%N29MJ(A#I?}(BVfvBY z#J`p$z3HGrEU!Vjgr@gc&xA4n z0}2M6l$;ouYa`5}nxTU(@i-Rc3{6h^-)w%ruPJZ( z`wW}9$Wz-4$x7t+6IAD?T0^r)_M1vWZ@Lqg4yphl6)#akB3;r;5H~1>^a^gZDEPa- z-urHXe%Z`M;PNTo7f%igZ$BCvDu5~=hD^#|m`Y`%)F!~=uj@I{gERwjX=>r#fsP#z z!6R|%F3;(r zSUbhxgM=$ShJ;)L-3u)09cG!M+^Sbg$k)2~4|d7}R;n0)YKN)xm7hATDQb)Sg{i!2 z8RYMjaxQZ8U7DFgaueJ6M(t4wfCb7iQ>?{I2n$pCHAisig}U;#nrjXIen0_%Nwr@N zf;Ti^_*2sjvm;8FsX+x1EBK*|;S|4iKB_Hk)}S<gPnvoqKbj$_f%x#w-of)!^~i)KuejFb2#o;x`H7X$C!wDoOT}Zt2dscSdC|T_l;( zZb?6A$_U>YJ`Wk`tvAAEH~&)bs461UmNe)Fw&AP^jtu@_fmTIkSrv>=RP#BqW5OG~ zVk1r_ZhVY7k<@#oyI!IO(o=bDzrzCnCVPk1xi70YS}XU`Lc*O44-PAN9X#v}%;!L9 zYG&P|W}Ta}c49_s0|X#pKCnlmAQW2Nb5{VS(QC~3JA?RU40r{Ruy}XV`eZOs#U8xmN@Tm`aamNGp&A?3|pvqc>zz^YOq`z~< z^nG31=d00~hoCbb6(VtGh%+0WX6e&omKbPo1|7CQbHd_q7GVj+(Q_1G3V{W7w+Q6X z6>K*Yf5kA#w32Dt4bVbCTOi>>BppE}FDba^S$)xIrF{}sl&U8Cr9tWn3FqzHkU=8D zXjpo03_$2;Gh4_Uk!H$#&y%jSE1{@EIz*tuwtGO6nX=buk;D!$H|Ue7SQO002&>;H zCcwId?RS1}ziGD6C4eeU>rOvgBR#4_M>E02|8QaH_NU*U#RtB|$^h_&gsqOu5t3wx7PjZ_G7UGANVAG55xDkCN8rNFr9cCvgUk-TQ!aY8#xz{8dt-WKK`S*s*T$8C`Lq!dWBK z!c2eT~hc4I>0u=ynE$78fsrApAm zj{PV7riQHnJy-@;(a=c9)%q`L2{U@oK-J)gZy?W1Ye8ZIdmN-$%735U^>huM*cL-z0#0|utDlu|) zdjkZKQc{uWN<@U$A`rS`6V5nxjAi0-xV$y<*$pK%lV%*~AJEE5V^iXX%Gz+ojftjx;Wmi@+1k^0tztayQu6 zBa}qTFzw@hMU4N{?cfY#2b^UeeUw*H`zv9BD-JUU#I6Z!^@A3R7J=Y_uw$;$az2hg zTfus;rgBtSB1{T%2IUDoB9|&GbTn%%N;Lyn#P2m2Ok7x z)*(!*AuS^`(AeuA_b1gy#rtH0=N=BbJMq}yFV04}#NGUP>x#wiJ)d>F+Ln$yuf+KcwcdV9+aS5?Ah^Uq{)Od#Ubu*}+N0dhF#Vp|>pFChzkA{#z%>xMhYI;8 z*q3N(JB9+AT(EP{YEM&{?gtDSeA<0$Uf#XvwopgDo8ULJ?c)!R*-Sncmc6^s5V`l3 zKJSy&?VJN6R6MT-cH2B*ynAT?sfCaZ%l-E>UlyQL6P0(1Bd?72GqlNy6B!Qs=g@0J zG~Nw&mW9|B-B;!J9iWjamrl!e=Q*ckD2{^dTVl$DOc2=R!6xfu1mndQyw<0;kT+vL z=Xm7zH(1Y!Hf}FHjIqoTC9A4$_;91wq^nNj$7DbOsj5){NAGfxB~S4xB3FY(H%EUp z#_WI$jdjAUYA88U?rM8;KXNbKAMUI6IbE2JbOx>{V6iFFW1l1-N-mkS5h!7OW}Yi* zu(jMM(V)gTk$fQyc&reJ^5qgkaaey=3$eYf-s-lvk`q3~*j7V>64A9-Ne9{gIMTnp zRh8{8=kio{CBk;gVbI2Y6KMi5C9KJPE71N0KSQPUP5fS%oeNu-6MjG{CeQz?Cyxq1LX zFyu@PA@SII+#{NqR|&)gZNy`L4DRq0BZ^C~O^`r<8da%W=eb^3w^}1l2|;8%*AKs9 z*4}&{@fff9IBILdtOUVvIeGZ7G+W~|9-z*n_e4V=xoSc1qoVNGr7;+~jcTAFncFWq zN2VrxYPtQw;^DL6#arfBT+;V58@HP+UVB@k<|>@B0I7$$qe57q@7?#o_*LeC_1NZ6 zN`r~($SWB#!~=8{8iz5z`J(|L!R~$bsH+K}E`A_~v7m!sklCh8@z)+8+%XF`Bf0=F z+_8@}Ban+;3T>20R)^Xb5r|P?l{;E~+vr-M!SY!_C1pMt3MOqZ;2TqSd9V1)F;Bcp z>z|(cJ<8;VLmw84fOARWof%);fP!&IN~^g2-1l)*!H=mLG&eE{p{@(;c({)2C^vvZ zWv0zyga#2l>z*Hps;4vOy|AF47LsV2m$M5f7W7VQZAgkt? zc}I{iw((;*Hz~KLm+03FGCqX*47z3w<2Eu*sPSJ!(Zt*f8EJ}SBO#HKIjlC)6G zrP$c{P;hPi?;}2tn*Oj~JKUSL54{6J620!AR&9^;s-@@=Q_(vbYxc= z!jJT9kptEvt)PH{P$PBU(dS8K$Qxo>r?;Rl*!h`nfR?q%buH;#24Bgf_pTJR8G}0m zWc9AvaE{&pgh#iNeKm0xmb8p5v1**`Lu_7xwUn{i`v}_xW!!4 zQ@669?+5(uad70>dd)%?1q5u}67;RK+_las`QuRNDrYMxYs%U*>`o|~xId2^Zk zN*9!zget;XCeZ2{JqPo900>!w)r#rNT|JAw#0QijwgIx1bzwS7AV8j2R{O(`HieP! z=z*ped=1m*QM;zC7?BT}V^I?N%3!(S8uU@%Ifs$HjvY3G_pZK|Hs2P-=-vxIS-=$Ft zz)$GM9+*3DQN^?i+X;TL_1i}GB+ZLQT5rX*6?bEB-bVRDuR{#E9M;9g$7&DGG_N7H z_!#DE&S?{Gor|p{kFTgj4@9oi4cK?2*c0)GDK>J(#z_CTPtsdpo2smOU7~u*cYX!a z0nC|zz^?PM3lr383|oLooHk-p`VXhXL}Iv)zLF*JpT`ok0YBH4_sp$9t*{AZuEbsW z)D!L|o>;(%S?QRJ(t&23t_@JZ&kat53!K6s3s^um1pNm!xb@AW1>ndU zN}6iQraB7vT(E+=Xc?o${b;0s1}J!w+CdV|RSx}xxf`ONSYTdb{{%hI{p*`I6$%ixXJf-%7{XV|_h+x+l3DPZ~b)vW7amFv6b zg;_YbA=}JX6+T%4Sep1KjTr~5{E*%{tC496)1<8^_FdqNKdkB@Rn z!=Xzkwnv?riMvO@j2s=RyFDq1Ox~6Kz|SqX$J&xQHv>F%sKGSmzE8$~a+%G+-KI8^ z7z6-;>R!BVKWt`R@=ClnX=4-rZfj?ETlTbnPFm|?>uQ{JIPK8qrASvoJ7(Lv9NYsB zkkO&bPkwoA>$B3!H#9*by+(g%T35SqyFnI9Xw9m^nu;0q)miEFSz4~({9J$HM*UxT^E@1!a>+uS%>ZA>%kaI z2Y3z*c^SxWqUex#kjvjnH??Q1w;i}==efMNF*u>^VaNO?-SH5O zKn)a5LF;3`0Jdp+Vf9Y)tQMiP+_kAGbIj~@Tc^*XzUNe5V_*N%Lvb7&oP8pDjU@E; zFL`mx#Q~!12m&Uq^~=}oZE`kzgURoP>o_z7=c|FHvAY`D!sHw)S@2JO#W)?(my!Js zUBgtS+$AB+$$En__|tY7FwT+bNZ&s)t-Deruk*Qh@+fU~WO6Pcp_)S##-8mRz8-bP zY5=k?f*F`nLVYt+=K4)phU0lV96MP3t#npgv5o2)nlmhH89Rrd_on~pI)^bC5cb@9 z9`m#Mntg2Q#mQT@JFP3Wj=46WOzC!x=Pj$B`3Z*l_L)I8%N?8HA)I>nliyy8Tk+b` z!pni!tI>-?ADx9n$>M`|3_Ee$VqQiG5lss$hE~wgVRSOl!VDbwQRjvin7Z9PGVAqR zNx9o*=+7ey?{$N(oPo+2mRPkNQpBXor}rJttK4@E%=-EMw5U}hY0Nm?Z|S-NxGM@ z4SQc`ie$&FCBUe_QeyOeZYxvECu~kfS+Ajs5gT#3$O#`$ST+oK!Ls{WfIrC{pM%Do z_DU`;ryO(IVy4KPEU!~;u84&%z?@76Gag-80CO7ZM7%G(wysWDeEL;c+J(t}v*>CZ z4{@&opq1*|?K4N4-iP&aSU?3}^{7Q$;$YJTeBjN5kAsW?Xn9k-($cUi zpadiLent<2>6b*M#307TKH;O#kjQGTLS-T`2a@aDD` zvNX5d!jxJ4`c`nVSRB8~G-1Lj5 ze9sPL2C`xC0at266#F>C{Zkc4|o)7&AP=*5C_G%C@;o2qd^ps`N)j70}9BiQS2LY{+7 znweGG%4R+<>?pjTkb>U|Axs{r3P&IYt-WIiV9F1g>%a-0044X{%j5?M_nM@e>xw?a zI|KETk359=^<)Z*HD;hp1gHjoPlfN3BNdqe7LbF;W@lOUKx@U%f&t;jN!5WtA(MPA zFI%`^%1Za1o8g8#5w!EeW+x#f`4E{)IkVIriX8GlKyoaOJkV~5PWg&hQTpE>k%%Oa zd2?YcGrRtr<^}@crg1KrT(rSV03FR)4(12e@@z?h-GM959+i&rG&nRdlpI?JGBE8* z5bY_clg4XWi>Dh7NjTLf%FA!*y4FbIhW8W3db1ZSjjF9}oF_RAz>7N@#e%tgw$ekk zAr6N_CG9H)j0*k{%>Pp;a6yWw;sg5x28Zn+*CF&r5}Zoc9fioXRyuYzJSvG)V**Mj zkqAKXB1IlW4ZWA04G_K-@jYl)%aO@YmT0fkhfXiatYzC%w{5FA2feL+Xkv;@dQVU- z6$Y+qb(+IP=FT7{C7Z|WH;-=ZaF8%X@8=Sd;uCSkL7^cPtW3b^CCb^LM8Z;24M`=+ zj>sHjgMLDlhY$k~kq{syB)u0_jGZ5X7Hf@X*VrHa4GTdHMfMwAM9^9nquFA1vf6}% zoY%V)#5|2rWd4rEWdB{+V6{FbsNL=O=DIz`9|RGi;Jg0rGMs9M+-aN$^8H1Ur<&)Id_Q^!3rFLz<6kpJ zr9<{YQIO*QdhQ8BDS0^d_Bw6QY#fw}su3c~(YvqHd;irXbqI+j zI2G51x2b)&z#RI5;}NoPJZGy*4mG+q;elZ6IPiT`_q;BZQV1mucPe)2APX|7+x<`z z(_hP-J|U*T##F>|;Y8?JaKxKZFX30ArJ`&E%R;~sm-Z`Y4D+lrUPN)@)u`m!Nv?iY zX2)`u8mrfHO*LlwBD8c=Y>tJ2=wFcnkt`O`1-!WA;En)(~d53YJR zWjHrQeRs+0M5*ny!q6Fe5Y2Hm<`;LdJLFLPm+Ke!e>HizZ^BS@oOYDg;agiy4lDUvxuBhrEjuwRCRPp2Mb_Dz_(SC4Y){q|M9u>$m>EK=p z$;|8XTQf@JK;={54qOYc8X2kG<)uWOL>X~y*Z0r*T)#lZgDU19aL`qz?0_xV|CQKmf^hy(gU2GM+*B0<3_6Z$yIV7>h_**Ei8ZJq_! z&9s})z+Sjk><-4}+1g%}a@ZDl281kCRZn_?zcZZ)UF5_Fvuh_q&6d9Z*lE$RTSuj0 z#Ul~cWiOOUtQIP9xaXS6tFsC4Nnmz^+8>2Z2+=Yqj)?Bd!nAUQ#RPGeyWV@)(J1;` z9`wLN9K^@+YaLMjPr6w_>wRJ$Yu9bhOL7u%f**Zh(Aq0PYG-rC4@#9g0a*v2iZh{# z^Tm)sx~@U7-*O{BycWP3da0Mph2>EY37@dTc3l)DrV;2Sd5bH$uzidiIXXKLU#Y{H zTEIg*?9Svk)iTz?uw=8rQ4E0ohCwzg2%s+nJH(Hw;3p-q5~<4kJ_iXZ2>GgoR{?iL zF{&562N|mf?$peI00bTsg#ZGj9Vc>^{_d7(+_F`!bm=T zb{u$gUwGY3=@i?F#=+MCt*_MzJy#1aPmLg?AzZgXK_Li8K+FUj1<$v}IaOrYMsH&f zb0#bqLu&lF?6wqSUOK(;__rM3S_>> zJLTLpAt|(X%pUz)M3=Gm2=fr$#JTD^-=Wyl3tdLG^v0i{Tg5Q|zsg>ykDFxYs;q;Y zv;0LSfCbl>(zVu)?Sl3t66QcT3{TvY1>MI!jmOttP^Gd2Rur|&xDpvVTsYGVh{FOb#L)X|XWOFOMVu%DqrcHEX{vBZ zNF1ouqPtZf2x?Y91YdmU(;OuiLth)-$-~H~;f2_Pr-R9T+{B9+o~tQfWlWU<7BXuu z7FbWldt-@U>bn-m!MaB+p2m4$r2v}{kmEQxuNC^3Qrtsqq0o+a7Xlz4{F`)VU^SEd zkl@fgU_&=o6tM+07g!t(qLAbv_0!9coviMw8QN-4W+HuUJyvp_ROCERs?$9}S<~Qi z^yA9$Qv29O_9q9Ri&}_FY>Fq3re<)^XOdY_bl+g^3YeI~bDU)|pw9stsR54aqIXep zW>$~@4IX}l0_tTZXCNNI6EtvdT3Jem_L%r2VY_1U8ykOJ1v! zXv2=G6L6E&soLSChdWXF`SFX8eu{A6W-pwAG1WQa)~MfKK_L7FbwY|V5&&#=5ZG)5 zu6RQ`(Tb$Qt((TttK*;1NoeisXH*0Q#h*qfht#<02(z`Id#QAa`sjT-uUJ7qrmwH<}q6INL4*Ucm0fVp4;^=j!kgQ)P(<0!IF;H?Yl+T&J7v6o?5sC<^rgqIRU|$|0NIv@S!-D(_4HTft z%m9EcHP&&R22RMQ*a18beonMyA1mMY!ZDKs5ViCDA4Rs{Fg0IYF2aKMYd zR7Gq@KefmozjcJgTNM~Ps=%lpyAi}=2Jwp}uFLiSjWBuyvWDqqk<#Hifz2C?@B&*_4C>p|~SJ=uMu$qP`~lNE`a%`+hhCB94+;4RiP) z%f{l-61y}2O_8xMNmsKdKVcjfHz!T~t%P(Fc05vMXueZ-G0=yA zN^nLTfT{0`FeJwe>KgPZ1mkm;?1lxplUudbmS`~{jlcza-WXhnjbJg+o(ts9Ba>XmP=K&F2*0%*N)(yXd z+7iq2F@?v_JhYj|Al%R`!TK72zuGH49w&bSRXjq*G(^r{Q3rkr22_qM2RVfV(h@m3 z9SjzACmlt<8_@;vXz}SM6bms3ivtoMh0=@U+E~~)mz5SYH_M(xRJq;z2*&u{*CpYB zLv0?rkzRT%XQ|*ibzDk(3OhKzV)KI6Z>Br4QjiMMh@g-5qOF~_-VnyU$^K9*9q zlQpN{0>)|z514o*2H^SYHwPxk#(kEzuowl}Y&dk{dr=89@avv_Q2{axx>xv+*?S%iy32G*`3Qd!!3fbVMR=qjM5mK<1)X_65Zynszy3ziGbsf8(VFiH}q(&cA5 zqz6j<;1NwzYH>!GMtg{PD^f~lG^8gM$YOgVWHIawR7lj>++#T6TfDR_D#2SvjF#Bw zT88BfWd}E*9>sPFY)=KM*e)1GQTFOuzIF%@N&!gv7laMP*%I%V;&f9LI)FFqvC+`Idp|)A6uHkMUR;OnOZq3&*_@QgIs7e4nJt(9z~lT}qbA(iZLSLV z+gy%>VI4~SM^B2QTsu#{yB6J(<1?j$m({V>g7FE%R6qq=1n^7dSo<9hw%yZjEr&c6R8g6+w`6vm_3D5=`??lh zi@mn{NQRj2qD+Izv4IeI(6KXVVj>lkd`+Px4Ek_0#85m9zl}@+TNkk76~-)cwQz(x z6~8!bvuvuM34G#9rG(cbFV1whzyiVktbOiOnaB~MP;)?<`li|)E6u{*L53w7o%Tzb z^rAnG6;f+dZFpt00GhDqk=fS#2Zt!Noi-^F=wPxJOkW@2eiqn-I!_6^FQQofzhI)I zNPedV_A@}Dp;Yjk725^02j)0Iy|JDe`lWJ4(e;)iIVG4yjX!0wmNsTWam#Q77UT2M zO-g|{m%pn`I-yQ{J?oJyqYJ=`(fO0ogn~NczS8DkCd+*?S}w=nNPNRw$@!lXUF{qM zGV@>ti>eLz3mz^;4oCwMOgK4%T=$9?f!s#FB=rEr!epXet9~KYfaBBWF%iJ|!e={P z<2gu5N3JL&ZC1F}PJPpxKBVPHW3p~)3EW`9g1jPEMnvOx6)akGM&-TkFc;Bi^h(F564{L518xTe2Uc>Thva{LS4#h|42<_H3V8ANj**@iC=S%V zl{#V+zlHAfla$nROhdR@*KI|%A+S_ZUA43zhz&W@@j>cEb=XX7Qk~Pw>d3YW{||fb z9#D0et_^#r9B1;7PPHAy!wg8~X|mE36;qo85|4RKoARvSfrJzR-BX(5ROz!5!sP!eoF5D?E8N1SqV2(H*9Fk2+D_E~%pS&H@xP49~T3wNM~ z;A?(F9__+?8aPGku31g4+mLjX0r!fEBdqyd>*a;UV#2ku=U)xppTM0Uz=_5%U}vN; zR6H=~42RyxA!8DbdW7ASeqW820N&Jbp{J2ob9li1Q$b4IdLFyhOriWnF^`mk#^})y zSc>;%%xo0ou!e;NIa2S+zvjKus?(|o@KX4<&q$ktTgu0LVWE6bA}-ld?Z2)h>`V_= z5K8VTOXLFJDKb&&+&%(Dz!`O^qg}Uo%v4ibYZ4yHj;2(p2CNYkR|D&ib=Sl?YJTXI zi~uU|_~>^y1th!i#W~8=DNm(};lqoMILj!)CUh0gyrsmSOjRJY+G(M%e56j<+@xXN zyoZ6!9l5lq&*GL>i;j-VUER@Q1;PEcv1A@x-pP>HTfd!`b+tVx#+iV@ zMnNUW-+Le)tUQCk;W%IviGr@rd@Z|BwT@mrz6r>MfOEU3NAKcvluSfb--~*p3}$nw zP;hky1sC$qy5Fa(Z$&M&!|~BtlYLr8Ma#9)ajp#ZtO$nYC`!?bf4tTzoh;x`G#rWg zT2Q6os%q3!-c#qdnTN_6=FE$bb;%@$ISxW$k|)J2QOrxi6gkb`;BG;a^k8A3xc|Dx za#^I(1c;rKXHNugCgy=0r@}!sI%-lo8yt5ua~FpY>_NT27_1}26$I}9xc+jvh^W11 zYtRH#&t0wg6Kx8a zAn`u!;m28{rS~m_DKt$!14LuIbO^Q^(UUV^z68)^$ zxRroPK*QtF49PddnrtH3jfzg`R#i)u0@2i|S+q|AXege9>(1|VR-4ci%QMl2Qh-94 z!)0;vI|NH19T|TEZV^UnK}YD(!$FWtPg3;a(FW>(puR~Kil*AAiyWZ`nfRz=An#Tc zf^6wW$TD8qtz_9!W>ka_HuzJ$>&f}`&?cf8sKyxFjbstI!fNIev8(i&a4i68hy~*| z$JfPpF!-+lHUThXQys=p?-RB5NBUv}*ozl^@B+vJa*E0B?d)-t%kr8N>YRPs-zjjw zzPi4MQdAYAq?dCmZ@I9(0jmSQpNAqyEK!>}1DHWd=#3Rlfpm zQl~093yrb0n{Nk{NsY`sin2LNzF=bqhLe(&vlg*Eyoo)7o$Dp(Dh`M=eY`cuAF#7E z?wiB8cjSn}z(sq2aoBrFDD0i2i8U_mfJmIP;YK!?z2D5hkb&0Hk))wTQivLk-Eh*$ z!c9C8*gsunrWo&oR_lS{4tZDiT;1#?W&!*GdMmI8oU`GmOEaCYDZpB59I! zm5(NgzC z_nM7Q4C@vK%-iSm3GW$s%sPQhx`u8|a3$OBN#FqoDO5H#A7g@v+z6{TYe?!CBWXIw92j6M|`6y}6LJI_cROyl;(!W>+) z^2@h8Pcx75viFZwNqyo3-$ZkY7)>toavgcr2~~3RPL35!ToF?qZ9v8Xw}*L zi0F4{oarIpZ;pj#t5g12UMMOJTT$M2romqp^0J6zsWc$;pBSffCMzzpC>w7-c&l*I zGf0++9H%!-7JQ{K)zcywV>$=KPIo$=%RjdnVV_{sN404YgGTnsIqPX~S6KAX*ZNrS zhN)s^W=dsBE8{~zg}?d)jTEI+OT%-$aymLZQF(csAp%ClQ%$7@2t+HEYMo~L5quEEa-*25Bg8v7ux!i|Pn^b*ZJDJEIK1Gh>2poBc9U6Y? zRQTIP^m5M?7A$1uSuz_G)r9(Ut%Dkjf~8QHwgv;;B|qm=O7(%>x8;k2nnkddW}BbX z)8cfNxJv}v_xo+@(ePWFB~G(+n9PAA&jE|6nmBQTv^>ih&@*ehDEj1_awr?eZZNT| z0^}2ooDqu$lFSqjKzemYcp(bP@MN>P(pB z@S^*{pGU2(%(+n`a;6i?PzyvOFkcI#LWDXHY$T|zeLckv7IuJG)OA{Y?1NNw^s#0= zjBFbJqf>G|3WY>h&vehGxTQ!+1wi9BN*V~7BWj-GS}RqayuOyWoI}WngmnWTd;M)`$ZgvP*6lHE7k#9m|BCRf^sLh)IiTN+U^@D1>nnyH9c6VQ$28ooa7Mfp{& z18L}XH8ZfDO1L51p6GXwTq5*w7n#XW$gojL|Xc z4x!w$7$q$5lA5nIK0PXF6oi=O{o{G*V4t3r-x006Uz2iygJ45jp7$vR;1pGTDe8WS z?|u8CR7AznQ$iTmOFQgi+Haxg&sdlrB&FXt|0O@DN943aITw2JzB8?RHLZ`hLQo6u zRf2W($De~WuMaymjZ8|Mb_FXyr2bAY%F$80@B~s40?w8LL&aQ(U3*gZighGNZqN@2 zp4&)VP8o zr@6sr7{rg+#QL+iZ*sM!hRG|{VstEU@B~J&8w5U zZg27oRuXjTN^1xuWWiK-Hug$EE!k}Y{7e2{76k{f!P9$1531GP2tWowI;|Mk7*MvR z0!f~-VIR`}gexs+Po8@rQ8jq1@hc0U=nCJU(SmElOjR0O-qNk*6+ee(=$pZi;Z&?T z*TeQZ><*CKw~OIpKNG7Aa7z$2nJFRc-^Fiwi>vn>{0ynnaAjPS3e0)AwBWcgE)Tn5 z__oNBo=+iLXTJ7-Fgp~n_P6ZMy7TI;<_q><>Gik9IuEZ8l3NzDXmEIy*VlS?;Hv|r zfHu)yMcid@1+j<^T{U=$Egv_rt1CMMv+m{y>58l>69H*}ll#_@TH1cwZiC~S_&bW8 zZ)y+9m`yLgPJxK0*F=E^A~x*!M@$#z21fzD(eD`OF$>|)lIf_UL{)))M>B6SAaCu~ zhUH{RDlV$y?}L#phPa{dZ}34dqHGu_-~{_PQ4yF%TxO0?twWIpG1%oUyqx;_1eB6ue?o02CF+}RsrIyOSzO+XS!wFaFr{KoWwh) z`U7|)MV}`)nhNekCVgJsp*(~fOZ~ZOo^KQyH)0Q>Eid@6xD@^14?3?~yrkZEUjpfz zAmLK=>MnqS>RUUr6ER52&_6nGWP(i^Y?y_irj^mPCrlwLb3QT8>A=DRN6rI-v@ZL> z!P1B1hk{{H3lvp_^T+tAi*3AFT0e6l#c98QNKkqmM0T$#eexLeY`c)so+2!2FzF`Hs&d=5M(rN~YXL!Om1H;J5{oN=sn7De>S!7r)bxI7+iI_$CSfirGaQI-|A;zH%u`pYEEE}feJvPJ zu-3c^19|6DHU;l%cApaDf5I-bT(2hm~+(#v9_j`WPGYqRr^u+|kJy2DW{uRP{ zI1>}}oCW{GT@Yu&{gb!~G7G`_7>Gn(Jo(<`uMjZfg2*p9z4tTh<|KZJi^OK$6Mk7w z-?PP8SSNPyBWk(e*91L?Td`Ra`yPM{Ye63ghGl z+byvv@)S~(2(dhTsh9c5?+c_TECAFez#8TpDAQs>NhzqGLGvRsQWZa+D$F0^Q4m|b z?1{+TGQUXczHQqx@WgU zY=f`hCW`gZYsb_uT^_!baVk8mZTu%r1@ZGN<*LH%MHP{rmIWHM1}|;&)3fGCDJSy; zixh>h3LTO7cyrzvm;-7q1sf#EaaC;B=kpD<5kO&P@zwTiR#$_7s~2E;@kYC@^ZeFU zctT(#UZX1*9|E*G*eY2y$s`3E76Gh~*W9U&JA!#$0#R}NW4Jl^Qq_8ZR2(aF5&|?B4 zD&rlY(j*nBgncmI?>CfChd56I)1|;v#<=060v`rrN|d3zqBq0l66E)* zDx$EAE_mtI9vR}=a0Lg{KN9;j>ED4v@SXH#^ZpE#+B?xtzv+S87Nf$Z1XrVvWm!p* z6#9EOys1zExfLg~juIi|<|`g!z)86XIZEhdMfvgqnh~&!GJbwdv=px&=)HY13tgqS z0@mma8Sg3pg-aehmPkd-8w;87gL7^)DKRrA94vy9TXwCLQY9242)2z8|A*Iou??y) z7Jy9M(=tOwKJ5ry*|RWc>o4hVfWq6u9jqL$)}Nj9A-B#Io~ zARMbPo0@%%L?Ls);(_}_PeHo4`6GtSjC&-Wm;MM>L=7vZ=`AB0#+x44InCC?XIX@6mB(wP zK!uqrTxBu3ef&$L0yMvHYYiN=6a*Ha(<7eIcHA7;G5k3~UC*o6HWs>CNH%)SF&2_V zZS}8h*l{qjs%)^htHJs&ov)}5tJNNGEG>s3RS=XOXj6v^iSb=1cqHT3LyxwL+5XtS z4K(^3z~%uYO+JZN3@hvUqB`G{A1dJO+6b4KIThAN2w=;z(5T+5PMHOV9S^j187DA# ziJ>t}jN2rBtfKG9U?)#gM;;wB&T?A`8*iiQ!`tt8>D$rYAs8uF!Q)>C30CV0GegHoWzk5Mvf!# zvynilpCq9HBYTDl{A+{?ghXhG1^g*Pr6Nc49pH?Lx~IcMfmUdA-h<#~fvG+;*3=C_ zk-ld6&YPImTYqhVr{ERx>kdx=c@Fd@tpKKLAlZYvLdk_;$bZSe<02kqBzE1B`P&VE^~|`^xxCj8hHisa8wH<^VI2 zq7aNxC}lkN(W$(Dmt(wGCuSI;;3E9%hL{Mt1zi@+ ziPCfx-#aB4CQ_@g1mOkR zd`AaDtwMn?7}{FeeveF z(by8P#&_WgZQ1i?XqD%TrQ|qdEwvQOQZ;J+lZj*r;lyYt@WARh#n|V8iz65w!Fr}f zVY_q{B4k!b5sdbRG;1H8qsltDO8t6uDEQ}NJ`#tB$HEMZJaT3%1Ym-CyIvPGUsS5h{-81}1@C0lC}v_N(fP&&S(i$!nH+$~JaSQlAxT#%A>m zdUy1J{1Ml;$Crj~_S%`XVY0A&t}025d*1I?#|p^~ik3Nqd-6P`C^asp49xyJJ0;x> z@dM|V#aQa~ZRmZkuZK)IkY9diI8w}!4d1vQhoK$op0oE68qiHP5?PXBwEWP~fR7y2 zt4jFkY0fVRn^1@^*(@JM>zfd4b;HPnUy(DkuW*Kj0&4MIc{vZ<(YYxPaE7`l3X@OS zJVE#v?$>OupOY@sdpoHEo1EI;)%HUwVrU#!2W7h>{Wgl?QiXeR0`DN{>u`pkXGBG5 zy>M?qAc3f{Lqc7FDUURg^#30Ld)|fTgO}hW zL;dhvxHCoOS=Cxx2PiZ$ION)lhSFH`(W72 z@l5ndt)8CNCqArnvl4hi+u@(9zq;85$q^Q|wm;2n`894QcC1wvoUB42n_WeUKceA~ zlV%a};?PB0(D)0lhRTuno(MSvff|kPCgH`}Oi8o6iK=fXX}H z&+O{Apx^bwT_U4y7AQfDpl*_5oZ9ld53blPW#~lF*fAgHsJG%2KK_gE+HG>|(d)9!n2<%!&n&|0zUV`VsT z@6k_)bc%}6lY8I-ehW@wNNeL2p>1EehJjnSfr71O!42L=LYOyFbv$~I1OP$8s&Cag?Z0>pAs|Sma zrYlxP%mFQgRx|3QX)|m9fBMX?N4i|YV4DAFq2cCL(Yp%TUKpquHF#!|z-cS%bLx6A z6-udWF?N=oLH&I1<51E{KAU}=lUz_K@Qq)8QEdZM)uRI!ijFkbB*p~YpCi_d5*MRu z>^>e}UxKW@T#;E!a`1KEQy&bOqJnwOUbuFf-()f!e@hM|A!oHTse}<=R=U;-=`P-T zH2{WMm3O%yeatjaSP$-ISYCf{#3FbEqEE3=dT!B}nzF3P5K1YE--s{T_Ub#cNd zbyH3fmQc=YdJD;=S2&IX}p6>Y-vV)Bp|crIX{S5PwZFK^k96>rqx!()f-hAOl)bY);6 z)BG@R&v^A9YLJk>jB$9VR&Sum1jKEG4GKVu@dgSRq(PSKpM+&jN!8^VcB5np(I=q! zL9E)46iyUJ69s0FKD2(*;Up15`vlw}i*R>`WQ^k0QdK)PhF>8KH|w$RjvC4xafEg-bAuIas0 zycwq;wf_K3wq$L1h*ckihg&{a9V*a0p7xW1HS9EBsc>GtLT9o`um@PG9QLO)#gd<+ zY$~HA^PW<|1j!0L-Ix?#@>x?DR<%2p$WQuLx%N#1$04$vR&uQs>J-IYFP9is80i>2 zv#1hymqr$RRdV*jiUzUMS6l=HiH{xnGUSM+X%SRPn9n^~9|o$^QmJetElOzx>O_bl z%*G{S-mIy6xxj3Aiuh_ow(ehnAV3DW((%IDS|5G?yyvwE^CJRdQ6s7FtF<^*y>9I` z1nq!YGb#uEtzz??PNB>XQ7!6wQ;Ougk-|XCVZK(XzCuwr0`#4k31a7n#+dfUdH-B@ z5d2D7&-AZYARz38Opbq?Wza0vEeZqaIjLkNE7xqsJEo9Qv40I?L{?mpjTCmO3=8uh zV>lOap}f2xCmz}8lx7hP1m2@5vR&G|Vo(DL3kz6LzQXJiQFtDywk{RJRVf4?Jwbc? zI!j;32o#MAhZ~Kitlsr-o1VVG;)Wdw0oSdn8IIhiAyE{Qt>vD40ZpK=Fu_S+D5fwRDG#ZDHJP?^=m@f^Z&ERbE8^oGcZ<{a6hnY$n63zYN0tXSu2pZO-zmoeYzU zpT&D~67{!|Y_UUZnIS^kGrMRgbxzt^uf2XhqzKq}bb+5rn3L@@9a$5;6n>vLi5`+J zruLh=y(BF;H3r$$$iqy)ZQzu?eD$@V&Z-UBoFp(}T16`S7(^49qvQj~9$A#Ps3`}a zF#DCZL>>`ljW?x9P^a|~&!nZDd8r)13lJ>c?vo_l;SCfNUxawZU^K5V&t&GwAuKSf zxhXj|S)jGS*1Nljn_Oy3+6HZ8{U=Aiq}51?<}#nNmBAYtk(KRerRSrWzYN>h+xE&^4hxhY1(CwP0wvY?Ez{7~QTS~`~1m#;-i zl@g5e4F{=#K&>a&hKQ(Uom@pSJ=z6VSAsFKK22o5S^8}+baOY9N5%)T-jN0arEM^Hnp~0gkS`5!7Y7{Yv!?UR z=nlBb?CVVIJmO)p-nq>(17GAT8Dumw=@pAbe4|&GmA#0x7rqPDiaE`|^Kq{I2P5W_ z(Co5p_R=4UF?S6~&^P_d6m?>4W=#8~#uFhyU4Zb?GQs?w>bDtaG&#tX<$0paRuXTvcQUSjMss4cIWQRXD&lDgCTQi=05*A>Xw83RRNuMxbQ`w1XXP zdIA>J4TqEEI&nB@fjA)E1P-LZz;eeEv8E=1e|v*q-_r<8?di(VhW9_0a6wMS-o{Gj2nUsL{A?pto z+8E8o$xnSBfH4@xRie%6l!{5@31}??^PrU!XVDFbAgS)aX3P#5pv=m0i;uCel=KFV z?5gvg)~bm-13Q2cWD->`4M&~niHAwPq3Wj$113T1Wg zIu|^$@oC`ThJHLufN=RF3Kpaefi4mrAe|X{ymY-(e+~v|Mg<(0=e32$?n7S>qmfB; zAC;La=+?WVrJMHFh09T`8*ODvkRROhdyZIkhXbS+-U_o9;=DjUOAugx2U z(!8+^Kn%1fHxhHPj=yRM3`@m}kgPU2I?CkqDuCK6ppW2$7{4w}A2F2)kph@6MpB~? zQ&@_9wMuQA#}rGm>7wrvMt#2H44rpwmFIJ_Ktn#3HN9w7Dp7*RaanYI;fcl+Zh+}!O9+P{z;-4->@>s%0=BR_lvb(199&I!- z^~cJeppAwpd#=*W(d0OiXm*jyR|{dKad!AYCXApI=#fgT3=~a8Q3bwaa=%gMpD z&DSoBDP2nq;l0A`htc-LJRUP}g59QKK%BXXz$=_QorsTo*gNQck6pwS_&KB_#C}W# z0|cj>u;$bxZpbN%#1l95K<~o2=xEvnfKlTA^TD;93(asP;Dd5P$x{DJEyityhJS6DRv0w>EDEE4k zBp?alJj#65Kl7v_RMA;YVYrE|5-3glspM#AHPz0!voUK9HGJk)_Zl!om9~0H2H82u zRp;Hx)Yf2lrf>R30=Ia}wg}R`}e3VPj3rS&fNl!0d zxnNolY88KOhUEVJod^3(BH2YR-a-Kf&8K^!TNLvKj|DU zAHni^u=bpR9H68wn2EXgT=4ECG%8;r`Y@J}Gt0$%hv9PdIoTXnDNPjA^fp8hkcM?pV?ZWPav z>_dsW=lf?6e}WW!<03JfYM@u$8}d7R{0MUu2y}$E6Yem3kp3;xUL9cftH;WYjchss zawbm6AKvg1qrc+vr2CxCJYMGyr=kJ^fzh+$VIbj| zHy1Zx;~t9U7fD$&1qW)UqT>XvilxqYdzQ{K2DyacY~wp8c`SraE_ zBgV%VEoRkSiTUFb`^7~+6p7jPm1wTedeq%%1zQm1Lnr*ql3Ik$v*F*flKagj1=HcJ z0Ly5CVYkMPuF8MbT4hft*661L@_s1wXgTQTXoWcoSFP*KkSe>}5P#%Krpxc<8f zJy~kP<Rr=2OO?GrF>mX~^ z3*$L4Bo4Bk9C4R24?#%BHz>&fu-a75K*$dE*ed3%Yo*3792_SCP z#Niku)a5vFz-ExDt*f3VPcv&lP3C`ybUe`DqEj-XH|fS4bs)shHLzvIUC7s>Uu=W= z#!LN;%UO(j90DNB87oNTf$YNkI$4${O1FPATpglNV)Qu}9+i!XddM$fn2p#zaQ?^g zAgiLj$@CgKzi8Cf@gK~1cuGuF_<&_5rH8$$AS`C53hXSMxU_(=v4_1I5u_U0d0=>y3l zETR&FPl}_$7kz+(&Ag?0xHHjH49b`y;9e>NI2n|b^~HB?RLA(%gj~V^Z2q!~-laaUO1xr-y z?Fu)Fed5Z5C@=;#aK8bPVuhgj24`b4eI74Ub##}_S(epx{9Zo)mfm5hCiN83N!jwe&85uW>!xSsTzXuP9C3Xtn z(4vTR={TO9@uhZ)KN7bHSB=#n;#td&0eNyVzL79r+SVao?i8%Dlb~>+E+q%;9$K9FWD#IyEb%+Mw2qfG-H=XjFCFk`h_TE^$6R zFjh0&UjBXts6MGD!bvoY4jF=@VBl32QZ|*ko-q*Rq-|*?HRJW9Mz%*kj0Z&KOkkg@ z^M2&pqiayy1{O(ZdgttL>WpC@ro%Xbhb}R_V*ndk33^_E{K2eYwoh`Oqmt-4n>7mX zG%k0GougTFNSb?y;q|I^&yLU5+W1Q zt&q))vr^}jqrz6C>M+St$lMH!UnmS5EL_Er!r81Udt@L<#+FQHeW4sgF6k0=ye3_V z1+Fv*Tx!(CVPLO8{X1cjA1%oLa`qG_r3DH^q|-~dqnKOq?? z=V#LfES970y?PAeJck%~kXb8J>JdFD=??MQ+*7hoehsP(I)*v}6l9_?pQUJscCB+F+6`_hXdY)ARB7tEt>mYt*k_2`JAQe43pnp1O zK^j}sr`)U>P6t#E)wD`}Lb1p{;2R7rB2x?RlAPD>KECU$D^}Bcc3^;mIu%>f9>sd^ z1@9lQRiHeoX$}Wx@OjW7GhO1*_9DK;{l=)LYFo{+v&B|!1&2~)Z}r7kdI7IIexCT^ z0hI2b7f#1@fgDruUFnepe#=gnv63tK3TYBIN^}9SADFVDe|n9xDXs+gIFz;#r2u*vnho{C)+|iiP!oQ9=y9~Y$I#?$CyQkDUAmzbS(a9vlh4g&e zx`x;E^7Pnr!(QD5+DQk7n&F;=@sH-RyGKU0nrTX;RaX`ulANa?DsoMEk*nZRkAx4l;+rFcrJiOC zVz$-(?W;P(K(&Vu<5rv54h#}4Ix?j6WI7G)?vjVq?t+J15-iAscCg%{0^|u~TnZyv z!LO}RHikG8jcb<P$#qJ3h z*aHX}TC~O_CZhz2As{6Jq0ztBS!Y5!nhKz@^Ycv5uC2su4TLy!$mQv`5K8<$r5LpP zQhi@xb?wk2B^N*Ev1Pi?($lzB^Zpe`*2q*FPAERf>U|2$m{84oSdOmh7L`Qwl#%q8 zqJj-@`4k6Xszl&4WF${Ch|No!`#D}*9+I*X4j-qa>>&mSldc5k6ijN5281UvIoJ%G(X%3I8)xIrAJ)AZy0d_X58M3 z&E#GE#LZ;li<<-Py42xJe5r0fF%$2=Ex1AhifCA28L`6DcS*VA-RSxv*aGB+=Cf*B z%h}Y3n%gBy*v-yhmv)k$aMFhwr-BfyoA}Y|tn6_wyA*|DuiOSfvsB3NOnm}vmpRgf2FBRrkP$ERD@I{F8|p*{U)xr3C1h5;}MjwN1tZT~_ zR}z<0{2Z`a&S)l!w*WgRx#t z_{9XeFOwhZ@%iHuP1UF{G;6DHPvHY5cs;!L1A1H}$u=2^Un0Rn13!KTX#Be2M<2eKb zR7^7L&6=yyLMuK*VqDn8KiLqs*HPjEOs6D1p^FKktf}R3*sMMN7WML5;$8WkG(U70WmNWaT?%e$#;V65UQTxzVzCIuyHXv7g9-_$>LIa z0wN;|IA%>WoN1M{=y-dxN=oR~6WW2-$q3X{2D3HLbTC&gOoHLkahS+tDd-??frtp< zYhQ8TiowatMsU;}ENs#gG}l_V(92WFy%@a;Y}iDb(y67U=tw*>x)O`GSP85Foo1=* za3o&y0A(W`y=Y7ZLNX_ab+s>I=_FaA<+ZM~mK3*HN}t|Lk1>17A)A;`Z*fM>g!!gV z0&G!RcMVYdiBA2DfI;S<9+@=E^Ow=(;(CNlNXP8DJFE@psWG|`QnF~2n7lbtez#Dy z6U*TAG>H|E#dD1hdqyvfgdUxCvwDa%nOqe|!|Qx&xivd=a42Xd;PY85vQS@Q3|CZ; zuO9x*pqs@u=-)O=(SX64ZF0y@Bh`g-1fzxfm^epd(wWC`j{PG5*X2&2E*%WE7$!r2 zjgf{jZX%a|XwLp?PeUe|q@9WORKCEJLAc@ED!o!XA|jdhI2T1W%9XVe;d@@HIheEM zQS~Ly2!26`~d0B7oBP+5ve$D4A*Fac5L4dkRwb$;%myGHnxPOOHK6Xs;W zGErUSnit4|5&`y@B(p3V^%U~)3=Q^vvpwoOy(uV=VmSOTxGou1>{QAF=^kP*>{fmX3 z)fsODX53g>Flb#7<7vzsd*wo7fjAAviPT<98Hm@Lnb#yV+QOd^%YQhDtQYlFGdEs`5a5TgXw_E_jATRdqs0&#m-_<2TC;h+V>hf z7kr!Sx{drYMyV2X$a z0L=xoDYKFe*9FKNv;=ab^ee&|!jqb!udOCm_#Gu06uah-kK|!Mpqap8*mf( z=uXC1;I#(6xg(*`H8ZG}UblwJR4I%u!zN&33hKaY2|i_d9Rlf6=C1xcBx6UX0a=K* zV$l!6IS5e6kdV5k$pF+~AZNN@u_EVFaliDU=*Ck0Nd`Oj#!)hv3h*JPrjCr6Y%P1` z8kWGgPM2!@9rusv0BjO8e4Ir^uu+8ub>J8STfcOx+lU`1Ij7?xZmau7_c;~1-_kvQ{&x14_tS~MI(Ne)MKpqDn$CIdaIDO9 zQJo!*OM3m=1UFd2XJ6qPn&<~>BqM#NDdXjmp(`3}18+Ni3*(j95rwxEUl}@|nF8+* zrb|eg$u@d+H#mpc%8rstm4gsjCMG&jOVPQ}I@_kFMzFkK(*M>WXc7yN$?}*WCtyYB4tVG9mUx& zV#=8bEQ4X9PHS2Qw6KI9ix7P(ic;YOSk$9n_hTMD)&*pL?u`ieDdQlesP0 zg!&eo0O?H}g)UZM0^OrL;OG82JG^ zt3Ppm8FLp&$1!@$=}&0nWa?}}*y;+00bwdh@%yfm zt(K)G%?Ufb{GlE72-J9F>tZ#bQ2l%$)23BVl&t=NzrtZ@;tC)tIxE&`Lf2v2HSEV2 zBKRWdc8s5$1SJNE;_vpM1hyM|YXpX{ z^cef5t^|bxVLUY&9djn_RbcTM#LvLNV&W4fw&ad?$@B16aMpm<#zW?l<3Dl-tM6F_w<5EPMYXDLjD+EY;# zZm3L(S$z8=l(+zSTH5sO$kCaU3ly$GX~n()dgsQz=12GO&y^q6n ze-z66QBu_^Yv$loU@r3pjlzKGw_#RSEdL)0@(fV)TAhD&}}+ zPpYFX#Xh(-{0%~GiqJTmcdjv@USv{<(bYU4O9u#dnFiKvocJ7O9br zcbR#B1FqrEqK&O@J`|Rj%TPCq?xQAaX`$wLVDf#1Ni>j?B+El`*n(Q0W81 z4H;c1SVn%=IOET#sO)@qu|z@8@@68poVT|QH2@?b6&FT7u4}6vhx;=N`E(Ambf3hA z!p7a((1zFE-nRNy-JdY=b@DUio}`(BH6;W03{1E*?ghFxdq|vFquRnjo;XARGK94e za~Ae9ga5q2{oyI$DG!@4hkAXsW=4`3c%GP+0rIuDxlOE;hkjC?l713Y*MaEE*pk%) zV^B!%IWG5+Unt22$Af^Qqa2NF6Kz6}u<#f4wjOWPd)-5zI!*BkxiT52W_;bOth!048F@A_{*8BK_!QH}G1GCp_| zm@wl0&`O*XSiXnJBEX|T1CmZcK~bB6GYIXqI#x(TOU)iy+f|Obxb*17A@i#%v+q~m zD8GMaCWqE1=fiCgqsY@Zi4fmo$8&h?*@hW4W|1H8iM^puI+$dDCP$4X2_G5$pr)EN znV8op)sK06NdobRH4~!Vk46DHLhlr-$4h|H*FK?`zCON6sNx5xpvccX}PCX4tF9^UKz0&EkT@!Jd5=QlIce)%y|4i6_^t% z_XW;>(;KtVZkLfoiA}hPz)lPO0G({M&_O*tYf7~tvw@xVYZQgV5hsNKiq!v zXDtoD4n%A9caol+wXA*Q>68F5hyzWVoj3|lIoPFk;A4=QPBJ2Rykt7?R90of@sJxE zqzR%d_ty)MUkQb+aNlmPS&o$-*%}PNJ z1e_1Jj&e&nNS;PIP3XLkFr*kUqMGe~NMAa)0nm!2F~zfoIWz7D`#wDnJh}p-Of~Em zI)q%A?Tv#P6_AfWmc=CyR?Cd>tVgiZSrRRLTjycHK?mSw1}iJZL3ux+m%~D&$w7$_ zoBjffD*_%kU$FzD!iz5#{aR5MtPd^;s&lc2cgban)*J1OXG55X@IB15H)X#QSzCm< zX=WSbdMR%RV_mql$bIvnWg!U2$T3Yb^MsVs&+sn0aNtKr6Z?Jd7 zI8rbJbPi$j!au5oijc}ZY` z7B$kgh$L$3nw-wRph}f>SU63^Tg_20${8@w0Zsb^i!TsN6Zhj$l%a*9Ua|3eCbtFQ zq8zaloHf$UpjR(_qP?UCnocwgbs=qI^f`( z;{AazWuCqsSdZ+6M_B3PM#TARJEmMmz8yJs4aYq9j1Sv0QHeuu7X}<{Q!qOjMe**B zCA0Cwy)Tc}mHNC@rH0V+*9fHxuWh`~N`#I<-YxK>Ll*ff+h{YeB2IcG`qJ)vy_h%u zkkVkf><)R`GKbvFuDF;q9>+D}x|J>xf;!|~8T$KlNeJKAyHW)SWSOc z=u>aKRUcpUmc99w%xXXKEFRfBVgz#$gGftB@z3?W+5zbGH>ipM{oTEl&kKbll0ohy zew*R-6W%83m#0ZPiNT&iANo6QWf$BW z@C{@w;qefb;!v8ykES!-gq{<$_@tv6C#jKMJn|(TbaB99u2x!op`+YCoH8?|zWgXU z`1t)NW+wMbSX1f{WJ$Ou?LH))B_mvTs=a#Go(Go5MB}|z5kp!h`&z=Gy4X=Rg_1V1 zLwz^eNa9RFm`S?Sg}&P(>pw*PM92X+At1XXK`hUr)PhVBnQ*EFU(#^i+n7Yi#UN%B z4x@9(*18YeZA;eaV-V%*8;h$xr8cB-aA zc)z8*!lx8d2ru=(sTsVst8s1ZKEDf}c9%TWF?VJL!$F>1AC!tkhg=0&+N z;=^=ka>zS;8rfIUj6&~=(wZNh@5W+^f?G<78&fXplVD&USM@{Hv4(9@`H(TlhqhVhQ)-r?4k2Mp1FbD41F=GjG$ls`O>7-srDTj&uR~rO1Y_%Lypkd zj3B5+N8qlU-#&~wYCE79Av^^thjdhhas!iU3^0l4#vc7Fb5MgPm&{1;%&<9Amnjpg zENwqDNl<-$FOsg-;#^dITKUq^^zm<#oPZnmXB9fAxBaZA+D1^yGqojUXbiZz$I`{9_;eXb| z7G~c4I&{LM%dfX?yQz(r?KhYHvb0XhD_2ha?%%wRE~vM;&VjG$uPDY^02^6Vi|mABjA ziQTvQ)cv35+`oQ1{T{}fZ=Mu&r!sx^-68jHW~a~i8!9Dk+wkb8GrlLUMOEFOd-v3} z9>0v*eyzzb@9(+b`eaiCoy+x&tnRrtqVs{=XFDaftGd_dLYrS#j~%f8-tYGB_1atU_&EI} zzUSUA(kf!I&)G)Z{pDW#t$uUlI}^hv_{4Y2`0M7xxU)z5@77;S9-7!@OLk;&V(o_o zH*&{i&78D_FNKed-;w**?`E}G7}R-2;{NZ<6TIKcKP0~CU;Xpg2VZ!RW4+Bc@)7^c z?`GEb`s47#r8cjdxzBh-RXw_9GEnGkg+q2WIr$iT_OdAu+_ix~+e~ zmb2~sEBx@Ez618hj=0`n*!9MHyAO*Wva9>B>n#>JHrjmOvxQAhTw#kCj{ltcZdUP{ zsu$NB8L)fsn$qZ9gV!uxHqmE$QIoAj9^-MK$#*|88b;ue)*h z&*p#fN_#6}MqE!l)?p!EzJXWx3o~!e9jZUsverxd*PdKz{X^*#@1&=$r zWy!-Hd8*+S8aVl6QNf2>91ngj$=)a=H|S%}cXl;e(`ifgstzgn{;hWB|9*RJKfhl* z@P&aepG|jl9~%G8M4wNK{!kX%A~(k}q0V1Wqxxmq*Fp) zMXwH@7TCAC`Hs-~TSGTIl@eM$ds6z~F)hoy_Gee#^7io@=rmPDS0~PQ6yzL@+%Px!LU=~W z0uWQBdE(7eLc=RplyE=bsuUHZOgvJRIz72%uSEM>U3mm4;l<-FhV_6%Mc*o01|jVk z8m?b7J2@jQByCk2Tk!WSQU~KuU%mU&Gkem!(jzx~Ci_3W3H&HoDEuaCo!r5|4{zpH z^4Gi1FYmV__pPq~-5}sXb%_CIx^Ya z4$*M@oa?4MuknKiX$}g0ApY%}IJlxl3ZXvmZ&R{n7K>CqyNBZUN@Few7t{Kt7btN} z8~g9e_pxWsiRPbVm%QMWI_zchqet!k@4c$)j+?`uk!WtpD7){@hN+!Wr=%tt$l*8UUDw*&ohb3Uu` z+vD#3$=uq>)NZ$W1!e?)Kg=9u`G1oD{BOJ}1BjaP=oI?3R0|m|Qrz5h@bO@1<}Y3} zN~9Z3r+AUa_Q^ed++n0H%qd|z%vrdO?O)64f9X|gU!A?7WmNFbe(8_b{=Dd8+zfxl zUq+9-3FT8C@q-$W7Fan{(TI3=-TJ@2R{#62x?o}E>UOK4PhP8YbzNIyKt?x1xeFA< zleagI#J{y)PszRh_Tz3v|D(&EOyq4d(9>UzlD75?S3fi_2G$s{e)bVu_Fdh_JdB0E>3{pvfi3^ zhAuC9=BoQcvEg_BE6>hv&z;*9zJo8c)#9%DGNGwKwBqj!OstWd$iQP`ACO9ifug0#ZT*hkEnz>G~I5u#3&M-hbnrn9@IZsEY!ZZ= zug>%7N^1zSE@r{kvofs+E68u}ANuX8nP<`_H%YY1XD6cSHJ4`0yu#{Je@D#vXD2v$@j@_wte!t;z#L%^@r-Y-r`QM1Y=awTn$!k zd{bFZ4R7^-;>jqZN{x9x1Yg8*Y58+*{${N%{m7j7jtgwDD(6dTd!`-kV=3s{|(b^}&IidM>EQ>yB=hZUTEHu9YX$%WLA zZ)7`KJmKH}=esSx@O`T4AQ0Y9i*O*>v&mg55&aN6VYc0)!#1zG01w` z9Ejj|GkdiCadjQ9cHg%fi^`>Yx9kJcA4-WyIGBI_w*BYgq@fa!SG<`OW_@pdaKDif z&EH#3oV!pwhX3rdw74Q1#Dsv{@y(v<>3yO}lXl-f+!WA)9r4l)Sn)?o=p@z%-x+Hd z!`^OeYFL2;h_o0X@vWOd2gl9q8r8M3`c6={yw&t5&z$PdGh-BXr`?KjuR_2WRTp{< z@UdI*{6{u?2fT+CK*ON}UQbcqq5!5VH1)uos=@Rk7I@7#LC3(n7iJStja)WfLE)xW zcE{iQ)-f7OtM~=;_E4Du$_67Sfz8jd+@Nd5LBJaOe+S$*F-}NujpE+$1 z3%o3B@rdj2EemZ=9(g(#-lbeodE70m{Lx?a)U}7CqK3tg5_@s)>GuPC9<^pAoT-P)%g`3sQ^m`TMt z=1%;s-HfpJE_Kd%-e(uwpFShax*qE$TRg4H{yCQ8LVMrB_wo99H>u`bit*V^`NnaZ z?_qo1D?Mw&HUIt$n%@4xR$#liq9dYTA{UIx|FV7jbaTeJ_$7RHuKdpyg`Kj3zdS>* zOn1HS*>^kott-~IZFQ&}43J~>Vz^Y0+-Z4JzeI}XkPYtn7qa}HpY6Ep?%rcN`Kz}s zHoo20!ckg%d_=;Y?3KwH>|BlniNB_8vwkJW746IK>69QzF@tYFgB!J!at#6(dSbKmb}8CS*47K*#}>GrU% z#aoEvn?U{_Fu4EcPiS7L+y04p<(Ipe*D!UVvDw}ok^NHi?+DKPFSz6>6OVVu`R8j; zwPM^!S=E2<6GqUY1~vS@beJ)Y>*pX+xL0$B0$E!Kgl5(X3PDKx@c1DHX1v=m%^lHj zs=*8b2><6BtU$zn{5}8wA^d-I2w~7k%U@zZh;%^g;oz>D=jF?7-DiKc)0%g#-TrA% z=B@W;FC5qU3*VB-`Hp)X(^l-WXWPJuG%q&#;T}z^pZU$di>&_XXZC#X-q#Uc=8V zvSY=&X!Kq$PvG|p2E|~g7Qa8vquJYkUl5qvt}avF{8a$5*JgkD?7r-h^M#)9_6Y66 zlW5}iN``#LfO_cFo~Z)Z#cFxD35h>*QPjb*9j9Jm#Mu$mg!h*FmCh#Z8- z+Pj2qEOh&c!hkY*7FjdDEcYsoQy90??E%g3oSsfB2sVH5%8#>?{TvAF0n%}Y_9AnT ziA4Nz^$K#JPbBC55u@|dm|0=p0)(MTqX(pmn1m=F$I|XbZ~R8aP{2xdqj0j;c6>l;)ry7K0nPXdrcMGMM8UA)?wS{ zw<)1=tm%DvJ}$|JP_Hclj96wF%aBMWemUI(oIzyAd9#zR(sej_In=8i(Qw)Cp9!tN zH?{Tcxes1nhbxQ+8$P6j~+p5(R0R={qE4OoRUJ7F6Y&xAyZEi>hN6l zd-z^D%vFur(085}l2mP`F;7E@Kh_loh4c*^z6KD2duhPYnc4@GY4 zk+askL95a5JmAWdl+*G0tb3m{h*8?|U4w~>h~G-bI8;8v6SuM$e0%PvTZ-pjeMqBy z=Ti8JH6d!3j+j^1I-hxzkw6W2-K3cphdYUDPhjc-(p0jK?Nns^eC+~3Va*SqOSttA zVE5?vKYm>`xI9kFrDJA>N_5YY{phQ?!_<^zH~2|}@dZ^0_-}ovPXd~95LRweF*I=* z_#;2AZi-I=qns_Vx=NgTMvXsVkT3)P*K&gX<3%$Jr|SD-TAc@zGu%OS(T*>0N|H$8 zSp1hTpj9VA0b>Hfj+x(+o>9te6i0!vd_TJvR3fgy<(T8u`# z8#Fv|-Kj&Z#Z!3lih%UVLsJ_eFOj$|{h^+O`rQw zyy73OZ=C0KbxY%hYR~&#TEuO|;K!|!&EiwQ?1=LJM3$G9zk0Tg7boCD&9?b-M z7_PRzfjByv?Kc6u?62dIfw5MK0tN%GxGWKXt)+woN{}Ccr7(dqWKUi_vaSSa2vFe< z4TujdZ)F)5cnRx#t6xiya)aWpY536st~Q4%D^y^QkUam5i}K5`RJv3^f5mLAQnQ74 z6rKZ10$R^Z7Vkw?Fj^O70F}m+btVJ0y}Uebuo~E6l_jVAV@LRxTD5UJ_;$uH+w#LuYBjCGX z-kfm0FDzB&>Gym632*||Q@SOy;?6{PW3A|oz2^6Wz%j-hlLbLnW1Y#K5f|^k4j(HF zXw6R=4{es)%K5>sKgp+)N-f(ncu3&AFOiQ3iN7dC3^RSb9jo!4JghxTL9eH-lbV3= zjPWbpOl?#a`$@|Me}DKhSUrZ+veA+~U_6d=hm>Cw{|r1R9WD|g?R({|ou->U!jV2b zLkImphon^>lWfTS>5Ode^f`WtbnWxhluo;p_ok-8x+2xnxM6RaDMeiI_(LB^`{Ohlfp@kQ}Z>0xrS32tfp9 zz^WUkQ_z#SEg#RDHyaBIhuEQyTxCc1h>N+;`#>L}qN(Ce^K1xR-lmOd#<4;lZOBPIq!NI8lg2A{d$d?s9Qb-0HX22u5w5?SinceLQ;R?LLL0CQpYB+^=H z>fKR+0*8A51bJ{449Voq%XF=OX7CUaKM@X*WnRsa6l#QdwS?>Jr_+G#I5)Mo{mCm& z^R;d|A)PrO&&2N4%1A*rAMhD)uiz`W`$4*1^@9Ybm$RXF<+M>!p2N=>8~gBF>z>uN zv9dL8Hr5>WUIDD!&6eE6UIMJH@rw$$LO+$twPqHJ*R_V%poifOowzTXcoetsOP+Vl z>JzTq2-dIuVJ^M}fpr+-|G%)JJ&C8NrKczS;#SN<{;-_D1U8DP+9$3=RF~eDeu=U>7?A5NvTwj=z+~rnX(+m5 z-5$Pe3qglI5^6h;z7NH}zKe=AL>`rYDM3n_R=oG6Ufw5y>Y?lnarO19vCq=v9|;9y zBF60#siu4Kb5sHNARg_Bo2prK2~0yEQncJ$M3&JzxJH`e5oL00kAvb6^ z&I=LTM))Xi59;#v+T*Y9%l=7f^;nY+qbzSCm`X?%0LPqnd-sAe##cwvBt%8O_3i(| z*}KP8S#E2?nXOvx7G_xbmSKdj$W&OlN>e`LXrlF{96AvJeCs0w*R;9>JWulNN zQiP{aNRA=`?WHb55fTw)PJyMOh=8alhzPvbHSXt`V72%6{=R?u)zjoT-1j(K;~L{0 zV^f(yDkG%Q!CiBny3xRv$nuc@HcJKn6bYaI>i5CT0j~5K`P{iX>3ZtzpA%uA?A|gz zCA0MFp;remhj5a)6!|ra3~Ro%0>7fUcy(2xlKIZ-~&MW+>QW4(5OPEZv5RVU|S_!+iBg7Z!d@ zhh^P~)J`_;4!)qAG=j=F$U?8dzQR{1D|rpffPF%`{Yk04j80xp&w|qxQnrU>edeF* zP?j)i-{_=06|ncEPe!1jW(T9Ca^A_kmOZUv@{-Yt1j3K<|5E#;i`meS`P$-jJBfe+ z4$SEHV5TJt75J_M4v!N)R2<kZK>ip3TJ|A_ir9G1WX_U-XK8wNO6!lEC{EYMBzweqW8Bl&;bq9=K^bbK63t^Gm zu>)Ny3Z+8Xl?W-bj663-Vdik8zOZ^();9RrYF@>s``q z{KUrz5=zSBV2AsxJ2>(=vMCG}+WDLqP?n;>8XrQ!OsSSw3zc2bkUAt37*sblW>tNR zg_TeJ1NcMnYA@_E5RP_yJ4N46wEkc#R3=Z#acC5asl%TvX1Rw}RUw8+WqiC`i#4St zM%*4DMPkg*>V`#&Cbhsz1WlE(X*q07NX;7q@=ahVVY#qTCI6fqzJ5A+Tj%)*MK8%eBkP=&$WwNzi>VO z)jY5N>Du0)5wQ2G9EaeZ{HcG$N;ikTO(2sm7y|9q&GV|9)AVdNoH4{Vqn6E{E`FLH za}(20w}65?`27ir5l6OR$O2S2(2>vck`Dm!|M!F?h3YI{RJq$4sUK2BYsS@!cS4)D z{+eKmZv{2^QgJ`m3pIZ^3`?NWyz(%k|35zZ#2rZt!ADVzh8SoBP7?wt;l}B%*d%cE z_42}s4w*uIglh!dpk5cLg7SZjjCvg&MluLZ658S%9}R0O3mHk)S4JpQGcn0Ga4D$g zh7Z@zkxB*VF8tA-nJ=jg+@UdMh=(+g@T2)!WkW^LNG6-@tGC5X*kmM6JrTmholy4L zRSP)fQLT|Ehgn432auOT1KR2;Gfb-h+cVlw?godU3N3J_&XkE(1z5uT#%&>!59C1 zk}XjSpiEGclpe}QX#`0~#64Fmwp1vI-8gq`NN41Hm}%e{h9>6r8R%W8{^sP1|5RTf z96EBfvfvsZqVh>`C{Qp&pM{y^2M1Qob84M=mr|og)-0@qA1fe6>J<0`aG#hTjUpWJ zd!)cG{i#?oThD$H^GYgQyh!pp$n`Me^HB0Ye;1eA#L$BQJM9ThTeO7w-YS!eQxtMQ zNObL-+Lfk|tRK$!h!W=caZmc`v8X#XsYpJTHQ zpj%TkrVGbpB~SlW^}b_o%l_ynH)2Hay!5xwEC(YSirHvt?LN1~?yfOv>bSQ(x@LT1 z#m<>6FP^rm!tdGbU53dxpa&Y}J=W%AVL~Ej{(4E{oC{mf16Ur9xDJhThFl6ox56a! z|0*bxvEBn^BGS4*3}-0BfaKopGJwjnTpIh%MaP(?7poUGvlA(AT7+IITX7V97FxFq zTftU8@|mjd(f%Z3LjjsgHKA>x8iTfO+!^!@zo#ZCf9!zPT$Y$E;Ek3Fj^+P)#SlFo zO&>T%ZLEy7n#e}}+H1-9!&A%Hu`<*vIE9ErK{EvW%lD&doRXd*cSgK=_ZXW6!}#UV#CCrJBXpVZ1q z{jX1>0f_n4@BJ%m$NGqft6yE@gy^;V*ll6WiJ`XRY|cqb%n>t+(2Xc?Vto554`WxX zQ>jMok*A;e@$BRM-D-B+YI;x;UFyM(NE1Qhpz&Q_oSc8CW~b|ubfeloP@ig`?V9SY zD6OocYMU~+h{Ja7!_;Gv^MQ4QDn(qhCL?b16z0`=5&U*%pTItZ#uh`22TtMc3!ZPM$3H1oEelHKv}K2)nIj!Yq0tY#JYnPuFIZTY%gu+!DCh%NRegUmt4 zsZ;F&bz18<1!>mxQ)~V_1N{ngnb&%?{qc_;y%%tl9k(fSKG1DE=f?xRzKfv_bwk^& z|M?TrRyR{#8fv?pTlkL$jeok5Z zrG2zN+EBk{$6KOd^b}JAS{1%~1+5=9`A**Bm|%Sh6Cxr$_A~WeG16rx+c18OW{kLV zYQW}zx=XZkDTmjkbK($3W|j2DU3pPWJCvre84KH{M80-MYXip)vfnK}6PUQQHs%I* zb=4M(>j@b$q^&8jtvRNxwLIitjvLyzVAa^DO-!!Kw7gu-4~7`CTcNV9fIIv8CzrnQ z*u??YQ>5D5~)D5QVMO!=U-HoD0$CEs`pDcy4pLW;M~TZ=TFZS!5Q- zChJ9usfg@8mV`D^=qN~^anr8k@{nn42m*<&Nc?!JNqViJCmtFaa+N%iF{dj_K0zBe zQGj-Xntha)a+d*hqcSlY0A56O{lXCU5BEQ|cuI z@0W~k8FlSt>8-zTt@b;;DPiLIUD|di7u3YDG~aooovbu8Mg@F2JhKG-N;&Y#JOps` z6}FSTJl7gPJn5-D7t)b_DNm5nZq`wnrbbs(vT}#*UxTy;2D;duNT6*-L1x>i`=iqIVSY z37&c5g7n^;VrpeeIaq>Di=-R4S2LSG^3Rdrqhm$mQLB9&1?MrNr*)OXO9`W<&P8!w5ObUWGFM-%*NyDGsY=x7PMz`f>xs5TBnQ<#eT^9>>eG2eu}j zR1c0`+f;Hk8;!alFCk5Xu5YQieTvYf<#Ltp_X;byZnN_Tq~Y)D=}h0COSMPC?+{K! zEDar6?d00CgPVmz&fKkreo6CXkH>^g!vf+{wO63yeoW!bkVaoeHVCZx#;O+ML+?*L z;1nuPrZY^9;6T1<3V-l+?RZG}W8F%@D&aA4=;WuZo0>7~3+#!p4JN(2q9$z|g(?c@ zgTL1Y(kWLdqV+g7RSt^{Z@cQi?(xks>zqhk=h_YiN}tpq&{M;2&v~OsD$sCj1MEiY z#%1LVAzdK!6iA